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STATISTICS OF COMPLEX CROSS SPECTRUM ESTIMATE FOR

SINUSOIDAL SIGNALS AND ARBITRARY NOISE SPECTRA

INTRODUCTION

The analysis of the stability of the estimate of the complex

cross spectrum usually proceeds on the basis that the two input

processes have a slowly varying cross spectrum relative to the

spectral window employed. See, for example, [1; (4) and sequel].

Here, we will eliminate that restriction and allow real input

signals with arbitrarily narrow width, namely sinusoids, and

allow real additive input noises with arbitrary spectra.

On the other hand, we will restrict consideration to the

special case where the two input noise processes are zero mean

Gaussian and are statistically independent of each other.

Furthermore, the temporal weightings applied will be presumed

nonoverlapping in time, thereby leading to (approximately)

independent spectral estimates for each time segment.

We will derive the exact joint characteristic function of the

real and imaginary parts R and Q, of the cross spectrum estimate

G = R + iQ, with both signal and noise present. This result

enables determination of the high-order joint cumulants of random

variables R and Q, for arbitrary signal-to-noise ratios.

For the noise-only case, the corresponding joint probability

density function of random variables R and Q will be derived in

closed form. It can then be used to derive various moments of

the magnitude of estimate G, such as the average magnitude JGI.
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When signal is present, the joint probability density

function of R and Q cannot be found in closed form. Instead, a

two-dimensional fast Fourier transform is utilized, followed by

numerical integration to find the moments of interest. Compari-

son of these accurate results with a Gaussian approximation

affords quantitative -,erification of the Gaussian approximation

when the number of pieces, K, used in the finite average for

cross spectrum estimate G exceeds 10 approximately.

A deflec ion criterion of cross spectrum magnitude estimate

IGI is defined and evaluated, both numerically and by use of the

same Gaussian approximation for che joint probability density

function of R and Q. Finally, the same statistics are evaluated

for an auto spectrum estimate obtained from the two input

processes optimally scaled prior to addition.

2
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PROBLEM DEFINITION

This study is a follow-on to an earlier report [1], where the

overlapped fast Fourier transform processing method of weighted

data segments for the purpose of estimation of the cross spectrum

was well documented. Familiarity with that material and results

is presumed in the following development.

A common sinusoidal signal s(t) at frequency f is present in

both input channels; that is,

s(t) - A cos(2nf ot + *) , (1)

where + is a random variable uniformly distributed over 2n. The

input noise processes in the two channels are x(t) and y(t),

respectively. The k-th time weighting function and its spectral

window (Fourier transform) are given by

wk(t) = w(t - Tk) for 1 l k K, (2)

Wk(v) a f dt exp(-i2nvt) wk(t) = exp(-i 2 7vTk) W(v) , (3)

where K is the total number of pieces used in the cross spectrum

estimate G, and W(v) is the window (Fourier transform)

corresponding to fundamental time weighting w(t). Time delays

ITkI are taken widely enough spaced that individual temporal

weightings (wk(t)I do not overlap on the time axis. (Integrals

without limits are over the range of nonzero integrand.)

The k-th voltage density estimate, at analysis frequency f,

of the signal component is, for both channels,

3
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S k f dt exp(-i2nft) wk(t) A cos(2nfot + ) =4)

• ei J dt wk(t) exp(-i2n(f-fo)t) - A e Wk(f-fO) - +

where random variables ak and Ak are real. It is presumed that

analysis frequency f is close to the actual input signal center

frequency fo, but they need not be equal.

The k-th voltage density estimate, at analysis frequency f,

of the noise component x(t) is

Xk f J dt exp(-i2nft) wk(t) x(t) a ak + ibk (5)

for 1 1 k I K. Random variables ak and bk are zero mean

Gaussian, since the two input processes x(t) and y(t) are zero

mean Gaussian processes. The corresponding quantities for the

other channel are

¥k a f dt exp(-i2nft) Wk(t) y(t) a ck + idk . (6)

The complex cross spectrum estimate at analysis frequency f

is therefore given by

G EK= (Sk + Xk)(Sk + Yk)*
k-i

=1 K+a
) (ak + iOk + ak + ibk) (ak - k + ck - idk) -

- __ (Rk + iQk) E R + iQ , (7)
k-i

where real and imaginary parts

4
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Rk - (ak + ak)(Uk + Ck) + (Ak + bk)(Ak + dk)

Qk " (Ak + bk)(ak + Ck) - (ak + ak)(Ak + dk) . (8)

It is important to notice from (4) and (3) that

Is 2 2 2- + A2 2 1 A2 IW(f-f )12  Y (9)

where the latter quantity y is a constant, not a random variable,

and that, furthermore, y is independent of k, the segment number.

STATISTICS OF ak AND bk

From (5), we observe that ensemble average

I12 . 2 m 2 +b2"k lak + lbkI -a + =

= f dt du exp(-i2nf(t-u)) wk(t) wk(u) Rx(t-u) =

- f dv Gx(v) IWk(f-v) = f dv Gx(v) W(f-v)1 2 , (10)

where Rx (r) and Gx (v) are, respectively, the covariance and

spectrum of random process x(t), and we used (3). Again, notice

that this average is independent of k. Also, the result in (10)

holds regardless of the relative widths and variations of window

IW(v)I2 and spectrum Gx(V)-

At the same time, from (5) and (3),

5
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-x 2.a+ 2 M 2_b2+i

Xk -(k +ik) - k -k +iak bk

- f dv Gx(V) Wk(f-V) Wklf+v) -

- exp(-i4nfTk) f dv Gx(V) W(f-v) W(f+v) a 0 , (11)

if analysis frequency f is not near zero frequency. Combining

(10) and (11), we find properties

a 2-.b 2W fdv Gx''Wfv)2Ma ab 0(2k 2J x V k i1 x ak bk 0, (2

which are independent of k. Thus, Gaussian random variables ak

and b k are statistically independent of each other.

STATISTICS OF ck AND dk

In an entirely similar fashion, but working instead from (6),

Ck Tk - 0o, ck dk M 0

Ck2 dk 2 G (V) IW(f-v)12 a2 13k f y y (3

all quantities being independent of k. Furthermore, the time

delays ITk) in (2) are widely enough separated that all the

random variables for weighting k are independent of all those for

weighting m, when k # m.

6
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JOINT CHARACTERISTIC FUNCTION OF R AND Q

The joint characteristic function of the k-th pair of random

variables Rk and Qk in (7) and (8) is given by ensemble average

fk z,y) z xoz xp( +

fk( exp(zRk + yQk exp[z(ak+ak)(ak+ck) +

+ z(Pk+bk)(Ak+dk) + y(pk+bk)(ak+Ck) - y(ak+ak)(pk+d (14)

where we have let variables

z - i& and y - ih, • and h real , (15)

for shorthand purposes. At the same time, from (12) and (13 ,

the joint probability density function of ak, bk, ck, dk is,

for all k, given by

p(a,b,c,d)= 2na2)-1 (2n 02)-1 exp[ a2 +2b 2 2 2 + d . (16)
x y

When we employ this result for p in the average required by

(14), holding random variables ak and Ak fixed for now, the

resulting four-fold integral can be evaluated by first evaluating

the double integral on a and b, followed by the double integral

on c and d, by means of the following result:

ff dx dy exp (21-x 2 - y2 + yxy + px + vy) -

2H (a. 2½ exp[ 01 2 + av2 +2vuvv (17)

2(aft-y
2 1

2
for a r > 0, Ar > 0, ar r r> Yr The end result, after much

7
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manipulation, is the joint characteristic function of Rk and Qk'

conditioned on given fixed values of random variables ak and AM

namely

1z + (z 2 +(2) (02y + a2)/21

fk(zly) 2 2 1 2 ~2 z 2  p y2) 1- (z2 2 2 J (18)

where we ustd relation (9).

But, since (18) contains no random variables, it is actually

the unconditional joint characteristic function of Rk and Qk"

Also, since the constant y is independent of k, we see that

fk(zy) is independent of k. This leads to the desired result,

namely the joint characteristic function of summation variables R

and Q in (7), as

K K
-FTK kf+(K'K)= Q

k-1

-K z + (z2 + Y2)(2 )/(2K)
a - 2 2 (z2 + y 2 )/K22 1  exp X 2
~xy ya1- 2 ao2 (z 2 + y 2 )/K 2

x y

(19)

This is an exact result for the joint characteristic function of

R and Q, under the conditions cited above, such as disjoint

temporal weightings {wk(t)}, common sinusoidal signal s(t), and

independent input noise processes x(t) and y(t). The complex

cross spectrum estimate is given by (7) as G - R + iQ.

8
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JOINT CUMULANTS OF R AND Q

When we expand in f RQ(Z,y) in (19) in a power series in z and

y according to

in fRQ(ZIY) == X z • n! 0 (20)RQ ~m-0 n-0=O! !0

then, Xmn is the m,n-th joint cumulant of R and Q. There follows

X1 0 = Y X01 0 , Xmn w 0 for m + n = 3,5,7,...

2 2 ~2
.x-Y(1 +R +1) RJ 0X20 = X02 = K 1+Rx + y) X11 0,

X22 = K3 (1 + 2R + 2Ry )
KX

X40= -X04 3 X2 2  X31= -X13 0 , (21)

where we have defined, with the help of (9) and (12),

1 A2 IW(f-f )12
R =L y 2 1 2'

X 2a~ J dv Gx(v) IW(f-v)t

1 - A 2JW(f-f )1222

y 2a 2 ' dv G (v) IW(f-v)1 2

These latter quantities are measures of the signal-to-noise power

ratios at the outputs of window IW(v)I2 in (3).

9
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The results in (21) indicate that as the number of pieces

K 4 w, the two random variables R and Q tend to joint Gaussian.

For example, we find

X40  3 1 + 2Rx +2R
X20 (1 + R + Ry) 2

Since the joint third-order moments are all zero, this result

indicates a rather rapid approach to the Gaussian approximation.

10
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GAUSSIAN APPROXIMATION

The quantities X1 0 and X01 in (21) are the means of R and Q,

respectively. Also, X2 0 and X02 are the respective variances,

which are equal and will be denoted by a2; that is,

o222:°

" K (1 + Rx + Ry) . (24)

Since covariance X11 is zero, the Gaussian approximation to the

two-dimensional probability density function of R and Q is given

by

pgUV-1 exp[-(u -- y) 2 + v2]

Pg(ulv) ana 2 ex 2 for all u,v (25)

MEAN MAGNITUDE OF G

With this approximation at hand, we can now evaluate some

moments of G that are not available directly from joint

characteristic function (19) or joint cumulants (21). In

particular, we are interested in the mean magnitude of complex

cross spectrum estimate G = R + iQ; namely,

"p1  I (R2 + Q 2)= ff du dv (u2 + v2 ) PRQ (u,v) - (26)

; fdu dv (u 2 + v2 ½ p g(uv) pig= (27)

11
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2 2½2
- du dv (u + v exp( (U - y)2 + vff2no2 ex 2a2

drrjderexp r2 -2yr cose + y2

I 2n2 0
0 - 22

C 2 

r 

2

f dr 2 exp(- 2 Y iO) 2)-
0

- (* a exp(-V) 2F(.;;)-(J a 1 F1(-.5;1;-V) , (28)

where we used [2; 6.631 1], [3; 13.1.27], and defined

2Rx RY

2a02 1+ Rx +R (29)

The function 1F1 is the confluent hypergeometric function

[3; 13.1.2 and 13.1.10].

It must be repeated that (28) is an approximation for the

desired average pl, because the Gaussian density function

pg(UV), employed in (27) and the sequel, is itself an

approximation to the true (unknown) probability density function

PRQ(uV) of R and Q. The result of the Gaussian approximation in

(27) and (28) has been denoted by pig.

Upon use of (24), the mean value approximation, Plg in (28),

takes the form

(1+R +R ) 1Fl(-.5;1;-V) , (30)

12
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where the various parameters are defined in (12), (13), (22), and

(29). If the signal is absent at the input, then A - 0, Rx = 0,

Ry - 0, V - 0, giving
y%

Pjg(A0)- Kx 0 (Ir), (31)

which decays to 0 as K-0 for large K.

On the other hand, for A > 0, suppose that K is large enough

that parameter V in (29) is large compared with 1. Then, we have

the asymptotic result (4; A.1.16b]

Plg 1 1 +! = w2 W(f-fo)12 (1 + as V 4 , (32)

where we used (9). That is, the mean magnitude plg approaches

the signal-only output y, with an additive term that decays as

K 1, not K-; as in (31). These results are expected to be most

accurate for large K, where the Gaussian approximation is best.

MEAN SQUARE MAGNITUDE OF G

The mean square magnitude of cross spectrum estimate G is

a~ IG 12 =_ +Q 2 + a2 +Q2 + 2 =Y2 +2a2 (33)
/p2 E jR Q R +QY

where we used (21) and (24). Upon additional use of (22), this

develops into

2 I+ x y (34)
-2 " x 4 y Rx Ry+ K (

13
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This result is exact, having been developed directly from the

exact joint characteristic function (19) of R and Q; hence, there

is no need to add subscript g to P2. However, it can be noted

that use of the Gaussian probability density approximation (25)

yields exactly the same result (34).

DEFLECTION OF MAGNITUDE IGI

The deflection of the magnitude of the complex cross spectrum

estimate IGI is defined here as

d rc P1 - P, (A=0) (5
c(A-0)- p (A=0)),

However, since only the approximate result p1g is available, we

also define the Gaussian-approximation deflection as

d Plq - Plq (A=0) (36)(,1 2(A=O)- p g(A=0))"

Substitution of (30), (31), and (34) (with A = 0) yields

g 4-n (1 + R + R 1F(-.5;1;-V) - 1 (37)

where V is given by (29).

If the number of pieces K is so large that V >> 1, use of the

asymptotic behavior of 1F1 [4; A.1.16b] yields

14



TR 10709

dg 4-( K R. Ry) - 4--) - 2.16 (K Rx Ry)½ - 1.91 as K .

(38)

Thus, the Gaussian deflection increases as Kh for large K and is

proportional to the geometric mean of the individual signal-to-

noise ratios.

A comparison of the Gaussian deflection d in (37) with some

exact results for the desired deflection dc in (35) will be made

in the next section for selected values of K and A. The

asymptotic behavior (38) will not be employed for that

comparison, since it is valid only for larger values of K.

15/16
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EXACT RESULTS

Some special cases for mean magnitude p, defined in (26) can

be carried out in closed form. These results complement the

earlier approximations, furnish a check on the Gaussian

approximations, and establish their regions of accuracy.

MEAN MAGNITUDE FOR ONE PIECE, K = 1

When K = 1, the magnitude of complex estimate G follows

immediately from (7) as

IGI = ((al +a1 )2 + ([1+bl)2 ) ((al+cl) 2 + (Pl+dl) 2) (39)

The desired average over the six random variables involved is

conducted by first holding random variables al and P, fixed. The

conditional average over the remaining four random variables then

factors into the product of two averages. The first conditional

average can be expressed as

((a 1+a,)2 + (p1+b1 )
2) =

[f da db exp (b ( a)2 + 2 ft'+b ½

S2x

fr dt du exp[- (t - a,) + (U Ai)] (t 2 + U2

17
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r" r 2  -2alr cos 8- 2A1r sinO + a 2  + A2

dr r do 2- exp - 21 1

0 -R 2no a, 2a x

" dr -2 exp r 2 + _I _ _(!) a IF(-.5;1;-Rx) , (40)
f 0  a 2a2 a ~ 2j L2  X 1I
0 x X x

where we used (16), (9), (2; 6.631 1, 9.210 1, 9.212 1], and

(22). But, it must now be observed that no random variables

remain in the end result, meaning that no further averaging is

required! A similar approach can be used for the second term in

(39), yielding the desired exact result for the mean of IGI as

Pl(K-1) = xay 1Fl(-.5;1;-R ) 1F,(-.5;1;-R ) . (41)

This can be compared with the corresponding Gaussian

approximation according to (30) and (29), namely

Plg(Kl) = x a ay (1+Rx+R Y) I-.;1;- 1+R x+Ryj (42)

A short table follows; for K = 1, the Gaussian approximation is

anywhere from 6% to 13% in error, over this range of values.

Tabulation of Mean Magnitude for K = 1

RRpl(K Plq(K l) Pjq(K-l)
x Ry ax a y ax ay pl(K1l)

0 0 1.57 1.77 1.13
.5 .25 2.18 2.43 1.12
.5 .5 2.40 2.66 1.11

1 .25 2.55 2.80 1.10
1 .5 2.81 3.08 1.10
1 1 3.29 3.56 1.08
2 .5 3.52 3.77 1.07
2 1 4.12 4.38 1.06
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DEFLECTION FOR ONE PIECE, K - 1

The deflection of interest was defined in (35). When we use

exact results (41) and (34), we find, that for K = 1,

d~ c Km2) If 1FI(-.5;I;-Rx} IFI(-.5;1;-R y 1 (43)
( 16 - n )

On the other hand, the Gaussian approximation to the deflection

is given by (37) and (29) in the form

dg(K-1) = 4_--t [(1+Rx+Ry} F1(-.5;1;- 1+Rx+Ry -1] .(44)

A comparison of these two results is given in the following

table; the Gaussian approximation overestimates the deflection by

about 40% for K - 1. This is not too surprising when we recall

that the Gaussian approximation cannot be expected to be valid

for K - 1, but rather to be best for large K, where summation

variables R and Q in (7) are tending toward Gaussian.

Tabulation of Deflection for K =1

R Ry dc(K-1) dg(K=1) dc9(K=l)

0 0 0+ 0+ 1.51
.5 .25 .489 .707 1.45
.5 .5 .668 .959 1.43

1 .25 .789 1.11 1.41
1 .5 .999 1.41 1.41
1 1 1.39 1.93 1.39
2 .5 1.57 2.16 1.37
2 1 2.06 2.81 1.37
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JOINT PROBABILITY DENSITY FUNCTION FOR SIGNAL ABSENT, ANY K

When amplitude A in input signal (1) is zero, then parameter

y in (9) is zero, and the exact joint characteristic function of

R and Q in (19) reduces to

f 0 Wi4i°) I [i + 2  + 42 - (45)

where we used (15) and defined B - a y /K. The corresponding

exact joint probability density function of R and Q is then

p0Q(UV) -_ i1 d& dh exp(-iu&-iv) [1 + B 2(E2 + 42]RQ ~4n 2

" "2 r r dO expf-irCu cos + v sinej j

0 -1 1 + B rJ

1 J0 (pr) P K-1
dr r K (46K0fI + B2 r 2 )K n 2 K (K-i)! BK+l K-1(B)(

where we have defined p = (u 2 + v 2 )½ and used [2; 6.565 4]. The

function Kv(x) is a modified Bessel function of the second kind

and order v [3; 9.6]. Relation (46), which applies only for

signal amplitude A = 0, is valid for all argument values u,v and

any number of pieces K; this joint density is seen to be a

function only of radius (u2 + v2)
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MOMENTS OF MAGNITUDE ESTIMATE IGI FOR SIGNAL ABSENT, ANY K

The exact mean magnitude p1 - IGI is given by (26). When

signal amplitude A - 0, this becomes

pl(A-0) - du dv (u 2 + v 2  po0 (uv) -"f PRQ

K-i-ddp p d+ p K K+I KK1() -
01-2 (K-I)!

0h B-uK.) for all K *(47)-½% r(K+.5)

B (K) x y (1)K

where we used (46), [2; 6.561 16], and B = a xa y/K. More

generally, the 2v-th moment of IGI for signal absent is

available according to

(A-) -ffr dv (U 2+v2 )V p 0 u'v1 r(K+v) r(v+1) 12 (48dv' = r(K) K (48)

which is exact for all K and v. As checks on (48), we have:

1 for v - 0; result (47) for v - h; and 4 a2 a2/K for v = 1. The

last result is the mean square value R + Q and agrees with

exact result (34) when signal amplitude A = 0 there. The

asymptotic behavior of moment (48) is given by

P2v(A=0) - r(v+l) Kas K 4 (49)

where we used [3; 6.1.47].
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The Gaussian approximation, Plg(A=0), to pl(A-0) is given by

(31). A comparison of the two is given below; it reveals that

the Gaussian approximation is excellent for K > 10.

Tabulation of Mean Magnitude for A - 0

K Pl(A-O)/(Oxay) Plg(A-0 )/(Oxay)

1 1.5708 1.7725
2 1.1781 1.2533
3 .9817 1.0233
4 .8590 .8862
5 .7731 .7927
6 .7087 .7236
7 .6581 .6699
8 .6169 .6267
9 .5827 .5908

10 .5535 .5605
20 .3939 .3963
30 .3223 .3236
40 .2794 .2802
50 .2500 .2507
60 .2283 .2288
70 .2115 .2118
80 .1979 .1982
90 .1866 .1868
100 .1770 .1772
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JOINT PROBABILITY DENSITY FUNCTION FOR SIGNAL PRESENT, ANY K

We have analytically determined the exact joint

characteristic function of R and Q in (19), for arbitrary signal

amplitude A and number of pieces K. However, the corresponding

joint probability density function PRQ(ulv) is not generally

available in closed form. When (19) is substituted into the

double Fourier transform for PRQ(uv), and a change to polar

coordinates is made, the following single integral results:

I2 
2)d r 21 a xJ o

PRQ(uv) 1 f dr rK exp y Br) Jo(D(r;u,v)) (50)
0 ;(7r) 1 2KxB(vr)J

where

a2 a2 r2  2
B(r) - + - D(r;u,v) - r u - Bvr (51)

K2 1( B(r)j

Although numerical values could be obtained from (50), a more

efficient approach is to use a two-dimensional fast Fourier

transform directly on characteristic function (19).

We begin by defining, for numerical convenience, the

normalized random variables

x y q 0 (52)

The joint characteristic function of r and q is then
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f (i&,it) a exp(i~r+iMq) iexp 1R+ih W i& 0, y .
frq~ ,• I e ap ax ay xyRQ axay

-[+ 
2 2)Kl-K (i&200R - (4 2+2 )(R +R)1
+ E+ / 1 exp x y )(x+y (53)

1 + (E2+h2 )/K 2

where we used (19) and (22). There follows

- 2 R• R , - , 0 "r -q o -r q - 2(1+R x+R y)/K (54)

The joint probability density function of r and q is

Prq(UV) W 4n-21 JJ dt d exp(-iuE-ivh) frq(iZih) -

2 0

0 -0

f4 Re E exp_ -iaf(uk+vX) frikAf,iXAf (55)
k0 £k = )~~ rq( ff

where we used the conjugate symmetry of f rq and took a common

sampling increment af for f rq in both & and h. Coefficient Ek

is associated with the trapezoidal rule and is 1 for all k except

for r - 1/2. It should be observed that the resulting

approximation in (55), which will be denoted by 2rq(uv), is

periodic in both u and v, with period 2n/Af. This aliased

probability density function, Prq(uv), is the quantity that will

be evaluated.
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We now take samples of the function 2 rq(uv) over full

periods in u and v, that is, 0 1 m,n I N-i, according to

A2
fq 2nn - - Re E Ek f exp -i2w(mk+nA)
rqN-f' N-f 2w-- k-0 I,- J rq ikf, iRAf)

,2 Re L • exp=?(mk+ fa(ik~f~iAXf) , (56)

"2- k-0 X-0

where ifa(ikAftiXAf)I is the collapsed (or prealiased) version of

iEk frq(ik&f,iXAf)I. No approximation is involved in the last

step in (56), in reducing the infinite sums to finite sums. The

double sum in (56) will be recognized as a two-dimensional fast

Fourier transform, when N is taken as a power of 2.

The common increment in the two arguments of the aliased

probability density function 2rq(uv) in (56) is

a - 2 (57)

Sampling increment A f in E and h must be small enough that the

resulting aliasing in periodic function 2rq(uv) is

insignificant. Also, sampling increment Ap in u and v must be

small enough to track important variations in 2rq(uv). This

will generally require large values of N.
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MEAN MAGNITUDE FOR SIGNAL PRESENT, ANY K

The desired moment is mean magnitude

2r 2 71i D

PI (R2 + Q2)% = ax a y (r2 + q2)

"a x ay ff du dv (U2 + v2) Prq(UV) a x ay D2 (58)

In order to evaluate double integral D2, three approximations

must be accepted. First, the doubly infinite range must be

replaced by a square of size 2 x/A f covering the region where

Prq(uv) is essentially nonzero; this region, to be denoted by S,

is roughly centered at u,v = r1,q. Then, prq (u,v) must be

replaced by 2rq(uv), since the former function cannot be

evaluated. Finally, the double integral must be replaced by a

double sum, using the sample points furnished by (56). The

accuracy of these three replacements depends critically on the

ability to accomplish the goals listed under (57), and therefore

on the ability to utilize large values of N in (56). The

resulting approximation to D2 is

D2Ep (in2 + n2 )½ r% n n

Dan q(mp,nAp) (59)Pmen E S

One final nuance is that since region S can encompass

negative values for m and/or n, whereas (56) is typically

evaluated only for 0 1 m,n I N-i, the lookup for the appropriate

value of 2rq(mAp,nAp) to use with (m2 + n2 ) in (59) is in bins
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m modulo N and n modulo N, respectively. A program that achieves

all of these features is listed in the appendix; it includes some

diagnostic plots that keep track of the aliasing and attempt to

control the error inherent in (59).

An example for K - 1, Rx - Ry - 10 yielded pl/(axay) D2

21.026487893, when done exactly by means of (41). As an illus-

tration of the accuracy of (59), it yielded D2 Q 21.026487800 for

the same parameter values, using increment Af - .06 and N - 128.

Also, Km - 200 samples of characteristic function frq(i&,it) in

each dimension were used, thereby minimizing termination error.

Another check on the above procedure and program was

accomplished by deliberately taking, as a test case, a Gaussian

two-dimensional characteristic function, and subjecting it to the

above numerical techniques. The exact answer for the mean

magnitude is furnished by (30) for this Gaussian example. In

particular, for K = 10, Rx = Ry = 1, (30) yielded plg/(axay) -

2.1577687. On the other hand, for Af = .6, N = 128, Km = 50,

numerical procedure (59) yielded 2.1577675, an error of 1.2E-6.

DEFLECTION OF MAGNITUDE IGI, ANY K

We now have the ability to exactly evaluate the deflection dc

of magnitude estimate IGI defined in (35), and to compare it with

the Gaussian approximation defined in (36) and evaluated in (37).

A numerical comparison is presented in the table below.
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Tabulation of Exact and Gaussian Deflections

K Rx Ry P1 Plg dc dg af Km

10 .5 .5 1.2131 1.2241 2.1558 2.2650 .5 50
10 1 .5 1.5978 1.6068 3.4135 3.5712 .5 50
10 1 1 2.1515 2.1578 5.2231 5.4517 .5 50
10 2 .5 2.1795 2.1859 5.3148 5.5477 .5 50
10 2 1 2.9701 2.9742 7.8990 8.2384 .5 50
10 2 2 4.1245 4.1272 11.672 12.174 .4 50
10 4 1 4.1505 4.1533 11.757 12.263 .3 50
10 4 4 8.1120 8.1133 24.706 25.779 .3 50

100 1 1 2.0150 2.0151 19.748 19.836 1.5 30

For K - 10, the agreement of mean magnitude p, and Gaussian

approximation plg is very good over the entire range of parameter

values considered, with the Gaussian approximation being a slight

overestimate by less than 1%. On the other hand, the agreement

between deflections dc and d is not quite as good, with the

Gaussian case overestimating by about 4.5%. High accuracy in the

deflection for K = 10 can only be achieved through the detailed

numerical procedure presented above; the Gaussian approximation

has some limitations at this low value of K, the number of

independent pieces.

On the other hand, for K = 100, the means are virtually

identical, while the deflections differ by 0.5%. This is an

illustration of the approach of summation variables R and Q in

(7) to Gaussian for large numbers of pieces, K.
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AUTO SPECTRUM ESTIMATE

In this section, we consider adding the two received

processes together and estimating the resulting auto spectrum.

We then evaluate the deflection of this auto spectrum estimate

and compare it with the deflection for the magnitude of the

complex cross spectrum estimate, IGI.

Since the two input noises x(t) and y(t) utilized in (6) and

(7) can have different levels, we scale them and sum according to

z(t) - [s(t) + x(t)] + X[s(t) + y(t)) =

= (1 + X) s(t) + X(t) + A y(t) . (60)

Scale factor X will be chosen to maximize the deflection of the

auto spectrum estimate of process z(t). (More generally, we

should filter the two processes and add.)

CHARACTERISTIC FUNCTION OF AUTO SPECTRUM ESTIMATE

Analogous to (4), (5), and (6), the k-th voltage density

estimate, at analysis frequency f, of process z(t) is

Zk a f dt exp(-i2nft) wk(t) z(t) =

= (1+ A) A e2 Wk(f-fo) + Xk + X =

= (1 + A)(ak + i0k) + ak + ibk + A(ck + idk) • (61)
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The auto spectrum estimate at analysis frequency f is given by

G a2 1+
Zk2 - K k ( + A)(ak + k+ k + , (62

where independent Gaussian random variables

ek a ak + 'k Ck, fk bk + X dk , (63)

with properties

e- 2 . 2 + k2 F2 a2 (4
e.o0. f-o, ek- ,k. °+X a °. ° . (64)
kk k k xy e

Here, we used (12) and (13). An alternative form for (62) is

k-i1 ( + X) ak + ek)2 + ((1 + X) k+ )]* (65)Sk-1

We now hold the set of random variables [ak1 and 100 fixed

and compute the conditional characteristic function of the k-th

term of (65). Using (64), the Gaussian property of the random

variables lekI and {fk1 , and (17), the desired quantity is

Fk~~) exp i&(l+A)a~k + ek)2 + ~(+)k+~ )21

k(r & 2-exp-k + ' ' 2(' + .(f1

=f de df 2  exp[ e22 (1+X)ak+e 2 + i& ) 21

e e

+ )2 (a2 + 2

1 - i&2a e 1 - i (
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But, by use of (9), the end result in (66) is not a random

variable at all, and furthermore, does not depend on k.

Therefore, the characteristic function of auto spectrum estimate

Gz in (65) is given by

F(i&) - Fi K - (i - i&2 02/K) exp'& (1 +iX)2 • (67)
e

This result in (67) is exact. By expanding ln F(i&) in a

power series in i&, the j-th cumulant of estimate Gz is found to

be

X " KI- 2a)e i + j X(2 R + R for j k 1 (68)

x y

where we used (64) and (22).

DISTRIBUTION OF AUTO SPECTRUM ESTIMATE

The exceedance distribution function corresponding to

characteristic function (67) is the detection probability for

random variable Gz and is given by [5]

Pr(G > v) = 2K (1 + k)2 Rx R ½ Ky J (69)

Pd 'Pr(Gz > v) =QK X2 R + Ry

where we used (64) and (22). The false alarm probability is

obtained by setting Rx = Ry = 0, thereby yielding
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Pf exp[ ~ Ky a2I (70)

x y

We now want to choose scale factor A in (60) so as to

maximize the detection probability while holding the false alarm

probability fixed. This latter requirement means holding the

argument of the exponential in (70) fixed, which makes threshold

v a function of X. It also makes the second argument of the QK

function in (69) constant. Therefore, maximization of Pd is

achieved by maximizing the first argument in (69), or

equivalently by maximizing the quantity

(1 + k)2

X2 R + R (71)

by choice of scale factor A. The best choice is

R
Y = , (72)Rx

leading to maximum value 1/R + 1/Ry for (71). Substitution of

these results in (69) yield the maximum detection probability as

= 2K (Rx + R f,[ K v 1' (73)

x y

(The nonsymmetry in the second argument can be eliminated by

using the symmetric combination h[s(t) + x(t)]/ax + h-1 sMt) +

y(t)]/ay instead of (60), and choosing h optimally.) The

corresponding false alarm probability is obtained by replacing

the first argument in (73) by zero, that is, Rx = Ry = 0.
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DEFLECTION OF AUTO SPECTRUM ESTIMATE

The deflection of auto spectrum estimate Gz is defined

analogously to that for magnitude cross spectrum estimate IGI in

(35), namely

X1 - X1 (A-0) K(1 + X) 2 Rx R(da i ) -KR2 + (74)
X2 (A-O) Rx + Ry

where we used the relevant cumulants in (68). But, this quantity

has exactly the same dependence on scale factor X as does (71).

Therefore the best choice of X is again (72), leading to the

maximum deflection, which is exact for all K, of

da = K½ (Rx + Ry) . (75)

Thus, the choices of X that maximize the deflection and the

detection probability coincide for the auto spectrum estimate.

The maximum deflection da in (75) is not always larger than

the magnitude cross spectrum deflection d c considered earlier,

even though (75) has utilized the best scale factor X in

summation (60). For example, for large K, we have from (38) the

very good approximation,

dg~ Kh (--L- Rx RyJ as K 4 0 (76)

The ratio of deflections is therefore given by

da 4-½R R +(RXRh +R
- -I x.4 = 63 as K 4 . (77)

g 4' RRRy x)x3y
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The minimum value of this ratio is .926, reached when Ry - Rx
However, if R y/Rx > 2.207 or if R y/Rx < .453, then ratio (77) is

always larger than 1. Thus, which deflection is larger (for
2 2

large K) depends on the ratio R y/Rx - aX/ay . For small K, direct

numerical evaluation reveals that da is usually larger than dc.

GRAPHICAL COMPARISON OF DEFLECTIONS

It was demonstrated in the previous section that the Gaussian

approximation is rather accurate for evaluating the deflection of

the magnitude cross spectrum estimate IGI, when K is larger than

10. The resulting Gaussian deflection d was given by (37) along

with (29). On the other hand, the deflection da for the auto

spectrum estimate Gz is given exactly by (75), and is valid for

all K.

Plots of deflections d and da are presented in figures 1 and

2 for R y/Rx - 1 and 1/2, respectively. They confirm the general

behavior predicted earlier. For example, figure 1 for Ry W Rx

shows d to be larger than da for large K, but the curves cross

for smaller values of K. On the other hand, figure 2 for

Ry - R x/2 has da generally larger than dg, except when K gets

very large. The ratio R y/Rx = 1/2 is not smaller than the

breakpoint .453 (above) that would guarantee da greater than dg

for large K.

The fact that cross spectrum deflection d (or dc) is greater

than auto spectrum deflection d a for some ranges of the parameter
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Figure 2. Deflections d 9and d a for R y R x/2
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values does not necessarily reflect in the relative detection

capability of the two processing techniques. After all, the

deflection criterion only involves moments up through second

order, whereas the full detection and false alarm probabilities

involve all orders of moments. An example where the deflection

.f a random variable can be artificially accentuated is

illustrated in the next section.
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ACCENTUATION OF DEFLECTION

The deflection of a random variable is based upon its two

lowest order moments, and can therefore be a misleading statistic

regarding detectability. That is, the detection and false alarm

probabilities depend on the entire probability density functions

for signal present and absent, respectively, not just their first

two moments.

To illustrate these points, consider detection of a Gaussian

random variable x with mean m0 under signal-absent hypothesis H0 ,

and mean m, (> m0 ) under signal-present hypothesis H1 . Also, let

the standard deviations have a common value a under both

hypotheses. Then, the deflection of random variable x is

mi -m0
dx 1 0 (78)

a

The detection probability, for threshold v, is given by

Pd Pr(x > vIHl)=J du exp (u- -

v (2n) 2

=J dt (2Jt)½ exp(-t 2/2) '1(mJav) .(79)
(v-ml)/a

Similarly, the false alarm probability is given by

Pf = Pr(x > vIH0 ) = 0(• ) . (80)

For a given false alarm probability Pf, (80) can be solved for
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threshold v, and then substituted into (79). The result is

Pd #(d x + -*(Pf)) ' (81)

where # is the inverse I function, and we used (78). Thus, given

a specified performance level Pf, Pd' the single parameter dx

completely quantifies performance. Observe that we are still

using the entire probability density functions of x under H0 and

H1 , as we must in order to evaluate the exceedance distribution

functions in (79) and (80); however, the receiver operating

characteristic depends on only the single parameter dx, through

rule (81).

Now, let us consider a monotonic nonlinear distortion of

random variable x, yielding new random variable y according to

y = exp(C!) , (82)

where scaling C (> 0) is an unspecified constant at the moment.

Obviously, the receiver operating characteristic for random

variable y will be identical with that determined for x above in

(79), (80), and (81); only the thresholds will change.

However, let us now consider the deflection of random

variable y. Since x is Gaussian, we have under hypothesis Hk,

the n-th moment of y in the form

y n x du expf- 0- + nC
- - (2n) I 2 =

= exp(nC n2C2  (83)
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The deflection of random variable y follows immediately as

exp(Cdx - 1

y (exp(C)(84)

Deflection dy depends on dx and the dimensionless scaling C. If

scaling C is very small, then we have dy Q dx; this agrees with

the observation that distortion (82) is virtually linear then.

However, if parameter C is substantial, deflection dy can be

much greater than d . In fact, given a value of dX, there is a

value of C, namely C = X, at which dy peaks, with value

max dy - (exp(d2)- )1 . (85)
C

As an example, the value of dy is greater than 1000 if dx > 3.72.

Thus, the deflection of random variable y can be greatly

accentuated relative to the deflection of x, merely by performing

a monotonic nonlinear distortion. The ability to achieve this

artificial improvement in deflection strongly cautions against

relying on the deflection as a reliable measure of detectability.

39/40
Reverse Blank



TR 10709

SUMMARY

The joint characteristic function of the real and imaginary

parts of the complex cross spectrum estimate has been derived in

closed form, for arbitrary signal strength and noise spectra.

For noise-only, the corresponding joint probability density

function has also been derived in closed form and used to obtain

exact results for fractional moments of the magnitude of the

cross spectrum estimate. For signal present, an efficient two-

dimensional fast Fourier transform numerical procedure has been

utilized to get accurate probability density functions and

moments.

When the number of pieces, K, used in the estimate of the

cross spectrum is large, a Gaussian approximation has been

employed for the joint probability density function of the real

and imaginary parts. Numerical computations reveal that this

Gaussian approximation is adequate if K > 10, and is very

accurate for K > 100. This Gaussian approximation has then been

used to determine the deflection of the magnitude of the cross

spectrum estimate.

Comparisons of the deflections for the magnitude of the cross

spectrum estimate and for the auto spectrum estimate reveal that

they are rather close to each other. However, even though one

deflection may be larger than the other for some ranges of

parameter values, that does not necessarily make the

corresponding processor a better detector. An example is

presented to show how the deflection may be artificially enhanced
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merely by nonlinear transformation of the decision variable, but

without any change in the fundamental detectability of the

signal.

A program is furnished in BASIC which enables calculation of

the joint probability density function of the real and imaginary

parts of the cross spectrum estimate, for arbitrary signal

strength. In addition, it calculates the mean magnitude of the

cross spectrum estimate and compares it with the Gaussian

approximation.

42



TR 10709

APPENDIX - PROGRAM FOR CALCULATION OF

This appendix contains a listing of a BASIC program for the

evaluation of the aliased joint probability density function Rrq

given by (56), in addition to the normalized moment D2 defined by

(59). Inputs required of the user are Delf (Af) in line 10,

P (K) in line 20, Rx (R x) in line 30, Ry (R y) in line 40, N (N)

in line 50, and Km (Kim) in line 60. An explanation of each of

these symbols is given in the program listing.

The first plot produced is a slice of the magnitude of the

aliased characteristic function fa(i&,i) in (56) along the &

axis; this affords a determination of whether adequate decay has

been realized. The next plot displays the real and imaginary

parts of f a; this indicates whether the sampling rate is adequate

to track the variations in these two functions.

Then, the sum of the sampled probability density function is

computed and subtracted from 1; this error furnished a measure of

the accuracy with which the density has been calculated. Next, a

slice of density Q(u,v) along the u axis is plotted; this

indicates whether sufficient decay has been achieved before the

aliasing shows up. (Strictly, this observation replaces the one

above on the real and imaginary parts of fa.) The user must also

note the maximum location of the density and enter this number

into the program at this point. Finally, a slice of 2(u,v) in v,

for u equal to the maximum location, is plotted; this guarantees

that adequate decay in the other dimension of the density has

been achieved.
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The values of pI' P1g' pl(A=O), dc, and d are then printed

out. This complete procedure furnishes a measure of accuracy of

the Gaussian approximation results, provided that sufficient

decays have been realized in all the plots indicated above.

10 Delf=.5 INCREMENT FOR CHARACTERISTIC FUNCTION
20 P=10. NUMBER OF PIECES, K
30 Rx=l. MEASURE OF SIGNAL-TO-NOISE RATIO IN x
40 RY=l. I MEASURE OF SIGNAL-TO-NOISE RATIO IN V
50 N=128 I SIZE OF FAST FOURIER TRANSFORM
60 Km=50 I NUMBER OF SAMPLES IN EACH DIMENSION
70 DOUBLE N,Km,NI,K,L,Kt,Lt,K1 ! INTEGERS
80 DIM Fr(127,127),Fi(127,127),X(127),Y(127),Cos(32)
90 NI=N-I

100 REDIM Fr(O:NI,O:N1),Fi (:NI,O:NI),X(0:N1),Y(0:NI>,Cos(O:N/4)
110 TI=Delf*Delf/(P*P)
120 T2=(Rx+RY)*Delf*De1f/P
138 T3=2.*SQR(Rx*Rv)*Delf
140 A=2.*PI/N
159 FOR K=O TO N/4
160 Cos(K)=COS(A*K) I QUARTER-COSINE TABLE IN Cos(*)
170 NEXT K
180 FOR K=0 TO Km
190 Kt=K MODULO N
200 K2=K*K
210 T4=T3*K
220 FOR L=-Km TO Km
230 Lt=L MODULO N
240 Sq=K2+L*L
259 T=I.+TI*Sq
260 A=-P*LOG(T)-T2*Sq/T
270 IF A<-500. THEN 320
280 E=EXP(A)
290 A=T4/T
309 Fr(Kt,Lt)=Fr(Kt,Lt)+E*COS(A) I COLLAPSING
310 Fi(Kt,Lt)=Fi(Kt,Lt)+E*SIN<A)
320 NEXT L
330 NEXT K
340 GINIT
350 GRAPHICS ON
360 WINDOW 0,N,-10,0
370 GRID N/8,1
380 FOR K=O TO NI
390 Fr=Fr(K,O)
400 Fi=Fi(K,O)
410 Fs-Fr*Fr+Fi*Fi
420 IF Fs>9. THEN 450
430 PENUP
440 GOTO 460
450 PLOT K,LGT(Fs)*.5
460 NEXT K
470 PENUP
480 PRINT " Ir<×i'o l"
490 PAUSE
500 PRINT " Re f(xi,O) and Im f(xi,O)"
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510 GCLEAR
520 WINDOW 0,N,-I,1
530 GRID N/8,.2
540 FOR K=O TO NI
550 PLOT K,Fr(K,O) Re fcxi,O)
560 NEXT K
570 PENUP
580 LINE TYPE 3
590 FOR K80 TO NI
608 PLOT K,Fi(Ke) Im f(xi,O)
610 NEXT K
620 PENUP
630 LINE TYPE 1
640 FOR K-0 TO Ni
650 FOR L=O TO N1
660 X(L)=Fr(K,L)
670 Y(L)=Fi(K,L)
680 NEXT L
690 IF K>8 THEN 720
700 MAT X=X*(.5)
710 MAT Y=Y*(.5)
720 CALL Ffti4(N,Cos(*),X(*:,Y(*))
730 FOR L=O TO Ni
740 Fr(K,L)=X(L)
750 Fi(K,L)=Y(L)
760 NEXT L
770 NEXT K
780 FOR L=O TO Ni
790 FOR K=O TO N1
80e X(K)=Fr(K,L)

810 Y(K)-Fi(K,L)
820 NEXT K
830 CALL Ffti4(N,Cos(*),X(*.,Y(*))
840 FOR K=8 TO Ni
850 Fr(K,L)=X(K)
860 ! Fi(K,L)=Y(K) Fi(*) unnecessary
870 NEXT K
880 NEXT L
890 MAT Fr=Fr*(Delf*Delf/(2.*PI*PI))
900 Delpf2.*PI/(N*Delf)
910 S=SUM(Fr)*Delp*Delp
920 PRINT "P =";P;" Rx =';Rx;" Ry =";Ry
930 PRINT "ERROR =";S-1.
940 PRINT " p(u,O)"
950 GCLEAR
960 WINDOW 0,N,-12,0
970 GRID N/8,1
980 FOR K=8 TO NI
990 Fr-Fr(K,8)

1000 IF Fr<>O. THEN 1030
1010 PENUP
1020 GOTO 1040
1030 PLOT K,LGT(ABS(Fr))
1040 NEXT K
1050 PLOT N,LGT(Fr(8,o))
1060 PENUP
1070 INPUT "MAXIMUM LOCATION OF Fr(K,O):",KI
1080 PRINT " p(ul,v)'
1090 GCLEAR
1100 WINDOW 0,N,-12,0
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1110 GRID N'8,1
1128 FOR L8O TO NI
1138 FrzFr(K1,L)
1148 IF Fr<>8. THEN 1178
1158 PENUP
1160 GOTO 1180
1178 PLOT L,LGTCABS(Fr))
1188 NEXT L
1198 PLOT N,LGT(Fr(K1,8))
1288 PENUP
1218 PAUSE
1228 GCLEAR
1238 MIsS.
1248 FOR K=K1-N'2 TO KI.N'2
1258 Kt=K MODULO N
1268 K2=K*K
1270 FOR L--N'2 TO N'2
1288 Lt=L MlODULO N
1290 MI=M1+SQR(I(2+L*L)*Fr(Kt,Lt)
1300 NEXT L
1318 NEXT K
1328 Ml=Ml*Delp*Delp*Delp
1330 PRINT "Mul ='011
1348 V=P*Rx*Ry/( 1.+Rx+Ry)
1350 CALL F1I(-.5,1.,-V,FI1,I)
1360 Mlg=SQR(PI*(1. +Rx+Ry)/P)*F1 1
1370 PRINT "Mul(GAUSS) =";Mlg
1388 M18=PI
1398 FOR K=1 TO P
1488 P118=M1O*(K-. 5)/K
1418 NEXT K
1428 PRINT "Mul(S) =";M18
1438 M2=4. 'P
1448 Dc=CM1-M18)/SQR(M2-M18*M18)
1458 PRINT " Dc =";Dc
1468 Dg=SQR(PI/(4.-PI))*(SQR(1.+Rx+Ryfl*F11-1.)
1478 PRINT "Dc(GRUSS) =";Dg
1488 PRINT
1498 PAUSE
1588 END
1518
152$' SUB Ff't14(DOUBLE N,REAL Cos(*),X(*),Y('*)) IN<=2A14=16384; 0 SUBS
1530 DOUBLE Log2n,N1,N2,N3,N4,J,K !INTEGERS ( 2'31 = 2,147,483,648
1548 DOUBLE I1,12,I3,14,15,I6,I7,I8,I9,118,I11,I12,I13,114,L(6:13)
1550 IF N=1 THEN SUBEXIT
1568 IF N>2 THEN 1648
1578 A=XQ3)+X(1)
1588 XC1)=X(8)-X(1)
1590 X(8)AR
1688 A=Y(8)+Y(1)
1618 Y(1)=Y(8)-Y(1)
1628 Y(8)AR
1630 SUBEXIT
1648 A=LOG(N)/LOGC2.)
1658 Log2n=A
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1660 IF ABS(A-Log2n)<I.E-8 THEN 1690
1670 PRINT "N =";N;"IS NOT A POWER OF 2; DISALLOWED."
1680 PAUSE
1690 NI=N/4
1700 N2=Nt+1
1710 N3-N2+1
1720 N4=N3+N1
1730 FOR I1=1 TO Log2n
1740 I2=2^(Log2n-I1)
1750 13=2*12
1760 14-N/I3
1770 FOR I5=1 TO 12
1780 16=(15-1)*14+1
1790 IF 16<=N2 THEN 1830
1886 RI=-Cos(N4-16-1)
1810 R2=-Cos(I6-HI-1)
1820 GOTO 1850
1830 R1=Cos(I6-1)
1840 R2-Cos(N3-I6-1)
1850 FOR 17=0 TO N-13 STEP I3
1860 I8=I7+15-1
1870 19f18+12
1886 TI=X(18)
1890 T2=X(19)
1900 T3=Y(IS)
1910 T4=Y(I9)
1920 A3=T1-T2
1930 A4=T3-T4
1940 X(18C)TI+T2
1950 Y(I8)=T3+T4
1960 X(I)=fRI*83-82*A4
1970 Y(19)=R1*84+A2*A3
1986 NEXT 17
1990 NEXT I5
2000 NEXT I1
2010 II=Log2n+1
2020 FOR 12=1 TO 14
2030 L(12-1)=l
2040 IF 12>Log2n THEN 2060
2050 L(12-1)=2^(Il-I2)
2060 NEXT 12
2070 K0=
2080 FOR Il=1 TO L(13)

8090 FOR 12=11 TO L(12) STEP L(13)
2168 FOR 13=12 TO L(11) STEP L(12)
2110 FOR 14=13 TO L(10) STEP L(11)
2120 FOR 15=14 TO L(9) STEP L10)
2130 FOR 16=15 TO L(8) STEP L(9)
2140 FOR 17=16 TO L(7) STEP L(8)
2150 FOR I8=17 TO L(6) STEP LM)
2160 FOR 19=18 TO L(5) STEP L(6)
2170 FOR I16=I9 TO LM) STEP L(5)
2180 FOR lw11 TO L(3) STEP L(4)
2190 FOR 112=111 TO L(2) STEP L(3)
2200 FOR I13=112 TO L(1) STEP L(2)
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2210 FOR 114=113 TO L(O) STEP t(l)
2220 Jz114-1
2238 IF K>J THEN 2300
2240 R=X(K)
2250 X(K)-X(J)
2260 X(J)sR
2270 AsY(K)
2280 Y(K)=Y(J)
2290 Y(J)=R
2300 K=K+1
2310 NEXT 114
2328 NEXT 113
2330 NEXT 112
2340 NEXT Ill
2350 NEXT 110
2360 NEXT 19
2378 NEXT I8
2388 NEXT I?
2398 NEXT 16
2488 NEXT 15
2410 NEXT 14
2420 NEXT 13
2430 NEXT 12
2440 NEXT It
2450 SUBEND
2460
2470 SUB FI1(A,B,X,F1I,D) ! POWER SERIES
2480 Error=l.E-16 ! RELATIVE ERROR TOLERANCE
2490 Number=1000 ! MAXIMUM NUMBER OF TERMS IN SERIES
2580 DOUBLE Number,N I INTEGERS
2510 BI-B-I.
2520 IF X<O. THEN 2640
2530 Al=A-i.
2540 F11=T=Big=1.
2550 FOR N-1 TO Number
2560 Fn=FLT(N)
2570 T=T*X*(Fn+Al)/(Fn*(Fn+B1))
2580 F11=F11+T
2590 Rf-ABS(FI1)
2600 Big=MAX(BigAf)
2610 IF ABS(T)<=Error*Af THEN 2750
2620 NEXT N
2638 GOTO 2740
2640 Bal-B-A-I.
2650 F11=T=Big=EXP(X)
2660 FOR N=i TO Number
2670 Fn-FLT(N)
2680 T=-T*X*(Fn+Bal)/(Fn*(Fn+B1))
2690 F11=F11+T
2700 Af-ABS(F11)
2710 Big=MAX(Big,Af)
2728 IF RBS(T)<=Error*Af THEN 2750
2730 NEXT N
2740 PRINT Number;"TERMS IN SUB Fil AT ";R;B;X
2750 D-15.-LGT(Big/Af) I NUMBER OF SIGNIFICANT DIGITS
2760 SUBEND
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