
AD-A283 875

of EngAr ieerps USACERL Technical Report ECII4/21
o rt Engins June 1904

Reseach Laoatres

A Multiscale Random Field Model for Bayesian
Image Segmentation
by
Michael Shapiro, Charles Bouman, and Calvin F. Bagley

The Army's Land Condition Trend Analysis (LCTA)
program collects both space-based remotely-sensed
data and ground-level data for natural resource
inventory and evaluation. Coupling remotely sensed
digital data with traditional ecological ground data
could help Army land managers inventory and monitor
natural resources. This study used LCTA data sets to D T IC
test image segmentation algorithms that may be used
to interpret remotely sensed digital data. ELECT _

Many approaches to Bayesian image segmentation AUG Ol
have used maximum a posterori (MAP) estimation in
conjunction with Markov random fields (MRF). This
study developed a new approach to Bayesian image
segmentation that replaces the MRF model with a
novel multiscale random field (MSRF), and replaces
the MAP estimator with a sequential MAP (SMAP)
estimator derived from a novel estimation criteria.
Together, the proposed estimator and model result in a
noniterative segmentation algorithm that can be
computed in time proportional to MN, where M is the
number of classes and N is the number of pixels.

Results show that the SMAP algorithm improves
classification accuracy when applied to the
segmentation of multispectral remotely sensed images
with ground-truthed data, especially with the
introduction of mixed signatures to represent the
spectral information about the classes.

v94-27961

Una 3 QjUAL pT i y fD S

Approved for public release; dstruon is unlimIted. 9 4 8 2 9 2 4 5



The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR



USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report EC-94/2 1, A Multiscale Random Field Model for
Bayesian Image Segmentation

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL.
As user of this report, your customer comments will provide USACERL with information essential for
improving future reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for
which report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure,
management procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars
saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

4. What is your evaluation of this report in the following areas?

a. Presentation:

b. Completeness:

c. Easy to Understand:

d. Easy to Implement:

e. Adequate Reference Material:

f. Relates to Area of Interest:

g. Did the report meet your expectations?

h. Does the report raise unanswered questions?



i. General Comments. ce what you think should be changed to make this report and future
reports of this type more resý ... e to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the persoi.nel Aao prepared this report to raise Fpecific questions

or discuss the topic, please fill in the following irue'e otioi.

Name:

Telephone Number:

Organization Address:

6. Please mail the completed form to:

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATIN: CECER-IMT
P.O. Box 9005
Champaign, IL 61826-9005



REPORT DOCUMENTATION PAGE Form ApprovedT OMB No. 0704-0188

Pubic renpoting burden for this colletion of information is estimated to average 1 hour per response. including the time for reviewing instructions. searching existing data sources.

gathering and metntainlng the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of Information. including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENY USE ONLY (L Blk) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED
1.AG1CYUS NL (eveBln) I June 1994 T Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Multiscale Random Field Model for Bayesian Image Segmentation 4A 162720

A896
NN-TS2

6. AUTHOR(S) DACA -

Michael Shapiro, Charles Bouman, and Calvin F. Bagley 8890-D0029

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Construction Engineering Research Laboratories (USACERL) REPORT NUMBER

P.O. Box 9005 TR EC-94/21
Champaign, IL 61826-9005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Assistant Chief of Staff for Installation Management (ACSIM) AGENCY REPORT NUMBER

ATTN: DAIM-ED-N
600 Army Pentagon
Washington, DC 20310-0600

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA
22161.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The Arny's Land Condition Trend Analysis (LCTA) program collects both space-based remotely-sensed data and
ground-level data for natural resource inventory and evaluation. Coupling remotely sensed digital data with
traditional ecological ground data could help Army land managers inventory and monitor natural resources. This
study used LCTA data sets to test image segmentation algorithms that may be used to interpret remotely sensed
digital data.

Many approaches to Bayesian image segmentation have used maximum a posteriori (MAP) estimation in
conjunction with Markov random fields (MRF). This study developed a new approach to Bayesian image
segmentation that replaces the MRF model with a novel multiscale random field (MSRF), and replaces the MAP
estimator with a sequential MAP (SMAP) estimator derived from a novel estimation criteria. Together, the
proposed estimator and model result in a noniterative segmentation algorithm that can be computed in time
proportional to MN, where M is the number of classes and N is the number of pixels.

Results show that the SMAP algorithm improves classification accuracy when applied to the segmentation of
multispectral remotely sensed images with ground-truthed data, especially with the introduction of mixed
signatures to represent the spectral information about the classes.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Land Condition Trend Analysis (LCTA) Multiscale Random Field (MSRF) 52
Bayesian image segmentation
GRASS 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescared by ANSI Sid 239-18

296-102



FOREWORD

This study was conducted for the Office of the Assistant Chief of Staff for Installation Management
(OACSIM) under Project 4A162720A896, "Environmental Quality Technology"; Work Unit NN-TS2,
"Imagery Data for Training Area Management." The technical monitor was Dr. Victor Diersing, DAIM-
ED-N.

The work was performed by Environmental Compliance and Modeling Division (EC), Environmental
Sustainment Laboratory (EL), U.S. Army Construction Engineering Research Laboratories (USACERL).
Part of the work for this project was conducted by the School of Electrical Engineering at Purdue
University, Lafayette, IN, under contract DACA-8890-D0029, "Perform Design and Development of Image
Clustering and Segmentation of Remotely-Sensed Multispectral Images Using Contextual Information."
The USACERL principal investigator was Michael Shapiro. Calvin Bagley, CECER-ENR, of the
USACERL Environmental Natural Resources Division (USACERL-EN), and Mark Johnson, CECER-ECS,
were associate investigators. Special gratitude is owed to Dr. David Tazik and Gary Senseman, CECER-
EN, for specification of requirements and testing of the product described in this report. John Bandy is
Chief, CECER-EC and David Joncich is Acting Chief, CECER-FL. The USACERL technical editor was
William J. Wolfe, Information Management Office.

LTC David J. Rehbein is Commander and Acting Director, USACERL. Dr. Michael J. O'Connor
is Technical Director.

2



CONTENTS
Page

SF 298 1
FOREWORD 2

INTRODUCTION ................................................... 5
Background
Objective
Approach
Scope
Mode of Technology Transfer

2 TECHNICAL OVERVIEW OF BAYESIAN IMAGE SEGMENTATION .......... 8

3 MULTISCALE SEGMENTATION APPROACH ........................... 12
Multiscale Random Field Model
Sequential MAP Estimation

4 SEGMENTATION ALGORITHM ..................................... 19
Quadtree Model
Pyramidal Graph Model
Parameter Estimation

S EXPERIMENTAL RESULTS AND IMPLEMENTATION .................... 32
Results
Implementation

6 CONCLUSIONS AND RECOMMENDATIONS ........................... 35

REFERENCES 37

APPENDIX A: Optimality Property for SMAP Iteration 41
APPENDIX B: Product Form for Quadtree 44
APPENDIX C: Global Convergence of EM Algorithm 45
APPENDIX D: Automatic Parameter Estimation for Mixture

Signatures 46

DISTRIBUTION

Accession For

NTIS Wii R(
DTIC TAB 11
Unanno•,eed 0I
Justificat on

Availability Codes

IAvail and/or
Blot Fpoclal



A MULTISCALE RANDOM FIELD MODEL
FOR BAYESIAN IMAGE SEGMENTATION

1 INTRODUCTION

Background

Many approaches to Bayesian image segmentation have used maximum a posteriori (MAP)

estimation in conjunction with Markov random fields (MRF). This approach performs well, but has a
number of disadvantages: exact MAP estimates cannot be computed; approximate MAP estimates are

computationally expensive to calculate; and unsupervised parameter estimation of the MRF is difficult.

This study developed a new approach to Bayesian image segmentation that directly addresses these

problems. The new method replaces the MRF model with a novel multiscale random field (MSRF), and

replaces the MAP estimator with a sequential MAP (SMAP) estimator derived from a novel estimation
criteria. Together, the proposed estimator and model result in a noniterative segmentation algorithm that

can be computed in time proportional to MN where M is the number of classes and N is the number of

pixels. The classes are modeled as a Gaussian mixture model. Given sample pixels for each class, an
unsupervised, computationally efficient method was developed both for estimating the number of

subclasses in each class as well as the parameters for each subclass.

This multispectral SMAP algorithm and the multimodal mixed signature model described in this

report have been implemented in version 4.1 of the Geographic Resources Analysis Support System

(GRASS). GRASS is a public domain geographic information system (GIS) and image processing system
originally developed by researchers at the U.S. Army Construction Engineering Research Laboratories

(USACERL), in Champaign, IL. GRASS is used to input, display, analyze, and output geographic data

by users in both military and nonmilitary, and public and private agencies, based all over the world.

GRASS is also a component of the Integrated Training Area Management (ITAM) program implemented

by USACERL to assist in the management of Army training lands.

The ITAM program elements include inventory and monitoring of Army installation natural
resources, integration of land management and training missions, training area rehabilitation, and
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environmental awareness training for military personnel. The collection of ground-level data for natural

resource inventory and evaluation is conducted through the Land Condition Trend Analysis (LCTA)

element of the ITAM program (Tazik et al. 1992). Both spane-based remotely-sensed data and

ground-level data are collected for Army installations where the ITAM program is implemented. A

responsibility to inventory and monitor installation natural resources has led to the development of the

LCTA program. Research to support the LCTA program helps develop and apply available technologies

to enhance natural resource stewardship on U.S. Army lands. Coupling remotely-sensed digital data with

traditional ecological ground data has been identified as a technology with a potential to improve land

managers' capabilities to inventory and monitor Army installation natural resources. LCTA data sets were

used to test the image segmentation algorithms described in this report.

Objective

The objective of this study was to develop a new approach for processing remotely-sensed imagery

using an advanced image segmentation algorithm that contextually smooths or filters digital data so that

the classified polygons better model the ecological units on the ground. This algorithm was designed as

an analysis tool to improve the ability to use ground-truthed LCTA data to verify remotely sensed

electronic data.

Approach

Literature on existing approaches to Bayesian image segmentation was reviewed. A new

contextual-based multispectral image processing procedure was defined, developed, and implemented in

the GRASS using a multimodal mixed Gaussian distribution to represent spectral signatures for classes.

The accuracy of the procedure was tested with data for areas where both ground-truth data and

multispectral remotely-sensed imagery were already available.

Scope

The algorithms developed in this study and programs that implement these algorithms are part of

the 4.1 release of GRASS, and may not be accurate for post-4.1 releases of GRASS.
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Mode of Technology Transfer

The information in this report will be transferred to the field through its implementation in GRASS.

GRASS technology is disseminated through training programs, Cooperative Research and Development

Agreements, User Conferences, and the GRASSClippings quarterly newsletter, the GRASS Support Center,

extensive documentation, institutional structures at Army and Interagency levels, communication networks,

among other forums.

User feedback on the algorithms described in this report and their implementation in GRASS is

desirable and important to the development of GRASS. Users are encouraged to provide such feedback

to the GRASS development staff at USACERL via electronic mail grassbug@zorro.cecer.army.mil, and

through the GRASS Information Center, U.S. Army Construction Engineering Research Laboratories

(USACERL), P.O. Box 9005, Champaign, IL 61826-9005, Phone 217/373-7220, FAX 217/373-7222.
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2 TECHNICAL OVERVIEW OF BAYESIAN IMAGE SEGMENTATION

Haralick and Shapiro (1985) have suggested that a good segmentation of an image should separate

the image into simple regions with homogeneous behavior. In recent years, many authors have used

Bayesian estimation techniques as a framework for computing segmentations that best compromise

between these two opposing objectives (Therrien 1983; Besag 1986; Derin and Elliott 1987). These

methods model the shape of segmented regions in addition to the behavior of pixels in each homogeneous

region. The segmentation is then computed by estimating the best label for each pixel.

A number of estimation techniques and region models have been used for the Bayesian segmentation

problem. Typically, the labels of image pixels are modeled as a Markov random field (MRF) or

equivalent Gibbs distributions (Besag 1974). These models are used because they only require the

specification of spatially local interactions using a set of local parameters. This is important since spatially

local interactions result in segmentation algorithms that only require local computations. Most often, the

image is then segmented by approximately computing the maximum a posteriori (MAP) estimate of the

pixel labels.

These statistical approaches to segmentation provide an important framework, and have improved

results in the application of segmentation to natural scenes (Pappas 1972), tomographic cross sections

(Sauer and Bouman 1993), texture images (Therrien 1983), and multispectral remotely sensed images

(Zhang, Haralick, and Campbell 1990; Jeon and Landgrebe 1991; Kato, Zerubia, and Berthod 1992; and

Jeon and Landgrebe 1993). However, the approach has a number of important disadvantages.

Computing the MAP estimate requires the minimization of a discrete functional with many local

minima. Exact minimization is intractable, so the true MAP estimate must be approximately minimized.

Methods for approximation include simulated annealing (Geman and Geman 1984), greedy minimization

(Besag 1986), dynamic programming (Derin and Elliott 1987), and multiresolution minimization (Gidas

1989; Bouman and Liu 1988; Bouman and Liu 1989; and Perez and Heitz 1992). However, all of these

approaches require approximations in the two dimensional case, and are either iterative or computationally

expensive.

The MRF model has a limited ability to describe large-scale behaviors. For example, even though

segmented regions are likely to be at least 50 pixels wide, it is difficult to accurately incorporate this
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information by specifying the interactions of adjacent pixels. The model can be improved by using a

larger neighborhood for each pixel, but this rapidly increases the number of parameters of interaction, and

the complexity of the segmentation algorithms. The fundamental limitation of local models is that they

do not allow behavior to be directly controlled at different spatial scales. This is of critical importance

since scale variation occurs naturally in images, and is important in quantifying image behavior (Pentland

1984; and Peleg et al. 1984).

The MAP estimate does not have desirable properties for the segmentation problem (Marroquin,

Mitter, and Poggio 1987; Dubes et al. 1990). The MAP estimate minimizes the probability that any pixel

in the image will be misclassified. This is an excessively conservative criteria since any segmentation

algorithm is likely to result in some misclassified pixels. In practice, it has been noted that MAP

estimation has some undesi )le global properties that may actually make an approximate minimization

more desirable (Besag 1986; Dubes et al. 1990). For example, in multiresolution segmentation. MRF

correlations parameters were found to increase at coarser s'-ales (Bouman and Liu, 1988, 1991). This is

counter to the physical intuition that coarser sampling should produce less correlation.

The maximizer of the posterior marginals (MPM) estimator has been suggested as an alternative to

MAP estimation, since it minimizes the probability of classification error (Marroquin, Mitter, and Poggio

1987). However, it may only be approximately calculated in a computationally expensive procedure

similar to simulated annealing. Also, the MPM criteria does not consider the spatial placement of errors

when distinguishing among the quality of segmentations.

Finally, parameter estimation of MRFs is difficult. When parameters are above the "critical

temperature," there may be no consistent estimator as the image size grows to infinity (Pickard 1987).

Methods have been developed to estimate MRF parameters from images being segmented (Lakshmanan

and Derin (1989), but they are computationally expensive.

"This study addressed these difficulties by introducing a new approach to Bayesian image

segmentation. This method replaces the MRF model with a novel multiscale random field (MSRF), and

replaces the MAP estimator with a sequential MAP (SMAP) estimator derived from a new estimation

criteria. Together, the proposed estimator and model result in a noniterative segmentation algorithm that

can be computed in time proportional to MN where M is the number of classes and N is the number of

pixels. A method for estimating the parameters of the MSRF model directly from the image during the
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segmentation process is also developed. This allows images with differing region sizes to be segmented

accurately without specific prior knowledge of their behavior.

This MSRF model is composed of a series of random fields progressing from coarse to fine scale.

Each field is assumed to only depend on the previous coarser field. Therefore, the series of fields form

a Markov chain in scale or resolution. Further, this assumes that points in each field are conditionally

independent given their coarser scale neighbors. This leads to a rich model with computationally tractable

properties. In fact, Luettgen, Karl, Willsky and Tenney (1993) have shown in independent work that

models similar to the MSRF actually include MRFs as a subclass.

Earlier work (Chou et al 1989; Chou, Golden, and Willsky 1991; Basseville et al. 1992; Basseville,

Benveniste, and Willsky 1992a, 1992b) has shown that Markov Chains in scale can be used to model

continuously valued Gaussian processes in one and two dimensions. This work has resulted in fast

algorithms for problems such as optical flow estimation (Chou et al. 1991). Estimation for these models

is performed using a generalization of Kalman filtering (Basseville et al. 1992; Basseville, Benveniste, and

Willsky 1992a, 1992b). This approach is ideal for Gaussian models since the MAP, conditional mean,

and minimum mean squared estimates coincide, and may be computed using only recursively computed

first and second order statistics. However, since this model requires discrete value-, to represent pixel

classes, these methods are not applicable.

The MSRF model has a number of advantages over fixed scale MRFs. The Markov chain structure

facilitates straightforward methods for parameter estimation since it eliminates difficulties with intractable

normalizing constants (partition functions) found in MRFs. Yet the model does not impose an unnatural

spatial ordering to the pixels since the Markov chain is in scale. Also, since explicit parameters are

available to control both coarse and fine scale behavior, the MSRF model can more accurately describe

image behavior.

The SMAP estimation method results from minimizing the expected size of the largest misclassified

region. This is accomplished by assigning progressively larger cost to errors at a coarser scale.

Intuitively, the criteria accounts for the fact that an error at coarse scale is more serious since it causes

the misclassification of many pixels. The SMAP criteria results in a series of optimization steps going

from a coarse to fine scale. At each scale, the best segmentation is computed given the previous coarser

segmentation and the observed data. Each maximization step is computationally simple and noniterative

if the region parameters are known. The complete procedure is similar to pyramidal pixel linking
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procedures (Burt, Hong, and Rosenfeld 1981; Antonisse 1982), but requires local computations much like

those used in Bayesian networks (Pearl 1988).

Unknown region parameters may be estimated using an iterative procedure at each scale. This

iterative procedure, based on the expectation maximization (EM) algorithm (Dempster, Laird, and Rubin

1977), is implemented by subsampling the image. Therefore, parameter estimation only increases the

required computation by approximately a factor of two.
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3 MULTISCALE SEGMENTATION APPROACH

The random field Y is the image that must be segmented into regions of distinct statistical behavior.

(Upper case letters denote random quantities, while lower case letters denote the corresponding

deterministic realizations.) Individual pixels in Y are denoted by Y, where s is a member of a two

dimensional lattice of points S.

The basis of this segmentation approach is a hierarchical or doubly stochastic model (Figure 1).

This model assumes that the behavior of each observed pixel depends on a corresponding unobserved label

pixel in X. Each label specifies one of M possible classes, each with its own statistical behavior. The

dependence of observed pixels on their labels is specified through pyl,(y/x), the conditional distribution

of Y given X. Prior knowledge about the size and shapes of regions will be modeled by the prior

distribution p(x).

Since a variety of features can be used with this approach, it is a general framework for the

segmentation problem. For the texture segmentation problem, a stochastic texture model can be used for

p,,(y/x) (Derin and Elliott 1987; Manjunath, Simchony, and Chellappa 1990; Bouman and Liu 1991),

or texture feature vectors can be extracted at each pixel (Laws 1980; Unser and Eden 1989, 1990) and

modeled with a multivariate distribution. However, segmentation of multispectral remotely sensed images

will serve as the target application for the examples. In this case, a multivariate Gaussian mixture

distribution will be used to describe the behavior of the spectral components of the image. Appendix D

describes the method used for estimating the parameters for this mixture model.

•IY - Observed image containing
four distinct textures

3 X - Unobserved field containing
4 -the class of each pixel

Figure 1. Structure of a Doubly Stochastic Random Field Used in Segmentation.

12



The following sections describe the general structure of a MSRF model for p(x) and develop a

sequential MAP estimation approach for computing the best segmentation. Detailed models and recursion

formulas resulting from this framework are then derived in Chapter 4.

Multiscale Random Field Model

The multiscale Random Field (MSRF) model is composed of a series of random fields at varying

scales or resolutions. Figure 2 shows the pyramid structure of the MSRF. At each scale, n, the

segmentation or labeling is denoted by the random field VJ), and the set of lattice points is denoted by

So'. In particular, XV)J is assumed to be the finest scale random field with each point corresponding to a

single image pixel. Each label at the next coarser scale, XV•, then corresponds to a group of four points

in the original image. Therefore, the number of points in S(') is one-fourth the number of points in 9).

The fundamental assumption of the MSRF model is that the sequence of random fields from coarse

to fine scale form a Markov chain. Therefore, the distribution of X'") given all coarser scale fields only

depends on X"). This is a reasonable assumption since XV") should contain all the relevant information

from previous coarser scales. Formally, this Markov chain relation may be stated as:

P(X( = x€") VX) = x(A I > n) = P(X(") = x(") iX( + 1) X(- + [q)[Eq 1]

= px(M)Ix,..,1)(x~ ix("" I)

Figure 2. Pyramid Structure of the MSRF.
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Correspondingly, the exclusive dependence of Y on XV" implies that:

P(Y E dy IXX()n >0) = P(Y E dyIX(°)) [Eq 2]

= PY4o(Y Ix(0 )

The joint distribution of X and Y may then be expressed as the product of these distributions:

L-I P

P(YEdy, X=x) = pyJX,1 o(YIx (o)){Io p,ýx(.%.10(x (n)O (n+l)) (L(X (L)) (L

where L is the coarsest scale in X. This Markov structure in scale has the isotropic behavior associated

with MRFs, but in addition, the causal dependence in scale results in a noniterative segmentation algorithm

and direct methods of parameter estimation.

Sequential MAP Estimation

To segment the image, Y, the pixel labels in X must be accurately estimated. Bayesian estimation

techniques are the natural approach since the existence of a prior distribution p(x) is assumed. Generally

Bayesian estimators attempt to minimize the average cost of an erroneous segmentation by solving the

optimization problem:

i = argminE[C(X,x)IY = y] [Eq 41

where C(Xx) is the cost of estimating the true segmentation, X, by the approximate segmentation, x.

Notice that X is a random quantity whereas x is a deterministic argument. Of course, the choice of the

functional, C( -, -), is of critical importance since it determines the relative importance of errors.
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A look at the assumptions of its derivation will help explain the deficiencies of the MAP estimate.

The MAP estimate is the solution to [Eq 4] when the cost functional is given by:

CMAP(X,x) = 1 - a (X-x) (Eq 51

where 8(X-x) is 1 when X = x and 0 otherwise. Since CmAp(Xx) = I whenever any pixel is incorrectly

labeled, the MAP estimate maximizes the probability that all pixels will be correctly labeled. Of course,

a segmentation need not be completely accurate at all pixels to be useful. Even good segmentations will

normally have erroneously classified pixels along region boundaries. This is particularly true in high

resolution images where the misclassification of a single pixel is not significant. Therefore, the MAP

estimate can be excessively conservative (Marroquin, Mitter, and Poggio 1987; Dubes et al. 1990).

The implications of the MAP criteria appear even more inappropriate for the estimation of the

MSRF introduced in the previous sections. The cost function used for MAP estimation of a MSRF is:

CM4,(X,x) =- 1-6(X-x)

=- L 
[Eq 61

n=0

This cost function is 1 if a labeling error occurs at any scale, n, of the segmentation. Consequently, this

function assigns equal cost to a single mislabeled pixel at n=O or the mislabeling of approximately 256

pixels at n=4. This cost assignment is clearly undesirable.

Ideally, a desirable cost function should assign progressively greater cost to segmentations with

larger regions of misclassified pixels. To achieve this goal, the following alternative cost function is

proposed:

X- [Eq 71
CsM ,(X,x) = + 2 CR(X X)

2 8=0

15



where

L

C, (X, x) = 1-fl (XV) -x( 0 ) [Eq 1]
i=X

The behavior of CSMAp is solely a function of the coarsest scale, K, that contains a misclassified pixel.

More precisely, let K be the unique scale such that XIK) i 'K, but X.) = x") for all i>K. Then the functions

C. are given by:

C (XX)ifn K [Eq 9]Cn('x)= ifn >K

and the total cost is given by CsMAJ(X, x) = 2'. This error at scale K will generally lead to the

misclassification of a group of pixels at the finest scale. The width of this misclassified group of pixels

will be approximately 2K = CsMp (X, x). Therefore, the SMAP cost function has the following intuitive

interpretation.

Cs3 ~p (X, x) z width of the largest grouping of misclassified pixels [Eq 10]

The e•,cimator that minimizes this proposed cost is determined by evaluating [Eq 4].

II = argminE[C &APM(X,x)IY =y]
x

L

= argminE 2n-l{ 1-P(X(i) x(i) i;>nIY =y)} [Eq 111
X n=O

L

= argmaxE 2np(xa ) =xai)inIY =y)
X n=O

Since the random fields, XV, form a Markov Chain, this estimate is computed recursively in the scale

parameter n is done by assuming that .( ' has been computed for i>n, and using this result to compute fRI.

Appendix A shows that this recursive approach yields the following expression for the solution:

Sargmax {logpX(N),,xI),y (X(1), +), Y)+X(X(R)} [Eq 12]
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where iis a second order term which may be bounded by

0 : 4(XW) m,) (X W-•) 11n),y) < [Eq 131
X(R-1)

The approximation that A• < I is very good. To see this, notice that x(. is an interpolation of the coarser

segmentation, " ), given the image, y. Normally, there will be many pixels in the interpolation ,n-1) for

which the correct labeling is uncertain. This is particularly true around the boundaries of objects. Since

the number of unique labeling combinations for these pixels is enormous, the probability of any particular

combination will be small. In fact for these models, this probability goes to 0 as the number of pixels,

N, increases. Therefore:

lim X ((x(n)) = 0 [Eq 141
N-'

At very coarse scales, the number of labels becomes small, and often only one reasonable interpolation

will exist (i.e., F'= 1). However, in this case the correct labeling of pixels at the coarser scale, n, must

also be unambiguous, and any reasonable estimator should have good performance. Ignoring the

contribution of 8results in the following recursive equations:

i(i) = arg max log p.()ly (x(L)y) [Eq 151
x(L)

1(n) = argmaxlogPx•()11 (f,)(xen X (n÷l)Y) [Eq 16]
x(n)

The recursion is initialized by determining the MAP estimate of the coarsest scale field given the observed

data. The segmentation at each finer scale is then found by computing the MAP estimate of XV given

1 ") and the image, y. Due !o this structure, this estimator is referred to as a sequential MAP (SMAP)

estimator.

By using Bayes rule, the Markov properties of X, and assuming that V"L is uniformly distributed,

the SMAP recursion may be rewritten in a form that is more easily computed:

.(L) = argmaxlogpYx()yxL)) [Eq 17]
17yx
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= arg max {IogPyi,(.)(Y JX(")) + logp."..),(aI) (x(n) Ii(n +1))} [Eq 18]

The two terms in [Eq 181 play roles analogous to those of the likelihood function and prior distribution

in conventional Bayesian estimation. The first term of the maximization gives the likelihood of the

observed data y given the labeling at scale n. The second term of the maximization embodies the a priori

information about the behavior of X. Therefore, this term biases the solution to favor segmentations with

large regions and smooth boundaries.

The SMAP estimator has a number of additional advantages. Chapter 4 introduces specific models

so that each optimization step of [Eq 18] may be computed with a single noniterative pass. This is in

contrast to the MAP and MPM estimators, which require computationally expensive iterative optimization

methods (Geman and Geman 1984; Besag 1983; Marroquin, Mitter, and Poggio 1987). Further, the

SMAP estimator has a subtle advantage over MPM. The MPM method chooses each pixel individually

to minimize the probability of error. However, it does not consider the spatial placement of errors. Since

the SMAP method attempts to minimize the spatial size of errors, it will tend to generate a subjectively

more desirable segmentation.
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4 SEGMENTATION ALGORITHM

The specific models used for Y and X are defined by specifying the conditional density p,,, (y Ix

together with the coarse to fine scale transition densities PX .... (x t")1x "" I)). An adaptive segmentation

algorithm that estimates the parameters of the MSRF during the segmentation process can then be

developed.

For the multispectral segmentation problem, it is best to use models with observed pixels that are

conditionally independent given their class labels. This implies that the spatial texture of regions will not

be used as a discriminating feature. Instead, the multispectral characteristics of classes help to discriminate

distinct regions. This approach is supported by the fact that spatial correlation has been found to be weak

within regions of multispectral images corresponding to a single ground cover (Landgrebe 1980; Kettig

and Landgrebe 1976). Using this assumption, the conditional density function for the image has the form:

P-"0)) = i I (yOQ°jx (Y• ) [Eq 191

where py, k) is the conditional density function for an individual pixel given the class label k. Since

each pixel is composed of D multispectral components, py.,. ( I k) is a multivariate density function. Here

a multivariate Gaussian mixture density is used in numerical experiments, but other distributions can just

as well be applied.

More generally, the methods used throughout this study are applicable to any model that can be

expressed in the form:

logp*(Mj( 0)) = ( , ,°Ox) + c(y) Eq 20]

where the functions I, depend on all of y, and c is an arbitrary function of y. This type of model has been

used extensively in texture segmentation applications (Derin and Elliott 1987; Derin and Cole 1986;

Manjunath, Simchony, and Chellappa 1990; Bauman and Liu 1991).
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The choice of models for X was restricted to have two important properties. First, the pixels in XV)

were conditionally independent given the pixels in X". Second, each pixel XS("lwas only dependent on

a local neighborhood of pixels at the next coarser scale. This set of neighboring locations to s is denoted

by as. Based on these properties, the transition distribution from coarse to fine scale takes the form:

(n)$(nn)Px(u)l"(u.l)(X 0,)I X~n)) = a nl(X" tXa [Eq 211
SEP)~ ''a

where p is the probability density for x4n)given its neighbors at the coarser scale, x4i1). These two

assumptions assure that the pixels in P) will be conditionally independent given the pixels in i..

However, note that nearby pixels in xP) may still be highly dependent since they will share coarser scale

neighbors.

The choice of neighborhood as for the pixel s is important since it will define the structure of the

multiscale pyramid. Two types of neighborhoods are used. The first corresponds to a quadtree structure

and allows simple and exact calculation of the SMAP segmentation. The second neighborhood

corresponds to a more general graph structure and can account for more complex interactions that occur

across blocks of the quadtree. Therefore, this model produces smoother, less blocky segmentations.

Unfortunately, the graph structured pyramid does not allow exact calculation of the SMAP estimator.

Therefore, a hybrid model, which incorporates both the quadtree and graph structure, is used to

approximate the exact SMAP estimate.

Quadtree Model

The first pyramid structure considered is based on a conventional quadtree. Figure 3a shows the

structure of the quadtree, and the one dimensional analog is shown in Figure 3b. Since this is a tree

structure, each point in the pyramid depends only on a single point at the coarser scale. This coarser scale

neighbor of a point s is called the father of s and will be denoted by the function d(s). In a similar vein,

the n' successive father of a point will be denoted d"(s), and d-(s) will be the set of all points that occur

n levels down from s in the tree structure.

20



(a) (b)

Figure 3. (a) Quadtree Structure Used for MSRF Model; (b) One-Dimensional Analog to Quadtree
Structure.

The following transition function models the probability that X,')has class m, given that its father

is of class k:

1)(m Ik) a -0On~ [Eq 221Slk( ) I X **X0 on + M

where 8.,A is the unit sample function and M is the number of possible classes. The parameter O.o e [0,11

is the probability that the labeling will remain the same from scale n+l to n. If a class change does occur,

it is equally likely to be any one of the remaining class types. At fine resolutions, the neighboring pixels

are more likely to have the same class. Therefore, O0, will generally be an increasing function of

resolution (decreasing function of n). Notice that this distribution only depends on the the scale n through

0., but does not depend on the particular pixel s.

An important property of the quadtree structure is that the conditional distribution of Y given Xi"'

has a product form that may be computed using a simple fine-to-coarse recursion. Let y () be the set of

leaves of the quadtree that are on the branch starting at se S (. Specifically, y. R)y: d "(r) =s}.

Appendix B shows that the conditional density for Y given X~") has the product form:

Pyw1 ()(Y jx(n)) = fi ,,(a(a) ) [Eq 231
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Furthermore, the density functions py,.,1 . may be computed using the following recursion where M is the

number of class labels:

Mp Q, 1k) fj E PY (y ".Y I M) p.".) I•.,&(. )m I k) [Eq 241

red-'(s) m - 1

In practice, dynamic range considerations mandate that the logarithm of these functions be computed and

stored. Therefore, define the log likelihood function as:

I (k) 4 logp Y,() I,(ys"nIk) [Eq 251

where the dependence on y is suppressed for clarity. Substituting the transition distribution of [Eq 221

into [Eq 24] and converting to log likelihood functions yields the new recursion:

1.(0) (k) = log py, m) (Q, I k) [Eq 261

I (1JO,(k) lo exg lO(k)} + 1x00 + (M)) [Eq 271

r e d'- (s) M m=1

To perform the SMAP segmentation, these log likelihood functions must be computed at every point

in the quadtree. The number of points in the pyramid is approximately given by 4, where N is the

3

number of pixels at the finest scale. Since each of the log likelihood functions may be stored in the form

of M numbers, the total required storage is approximately (4MNI. Because the second sum of (Eq 2713

is not a function of k, each log likelihood function can be computed in time proportional to M.

Therefore, the total computation time for evaluating the log likelihood functions is 0 (MN).
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Note that in the limiting case of O0,(k) = 1, the recursion reduces to simple averaging:

5 (k) = E ,("k) [Eq 281
red- (s)

This is equivalent to assuming that all the pixels in the block of pixels, y,(-), must have the same label.

Of course, this is often not the case since some of the pixel blocks are likely to fall on region boundaries.

These blocks then have a mixture of pixels from the two regions. Therefore, simple averaging can cause

pixels on region boundaries to be misclassified. This is particularly true if the statistical average of the

two regions appears to have characteristics of a third class. Another advantage of the more accurate

recursion, [Eq 271, is that a small group of anomalous pixels will not adversely affect the classification

of a large region. Simple linear averaging of the log likelihood function tends to be easily biased by a

few pixels that are statistical outliers, whereas the more accurate recursion will tolerate such errors.

Once the likelihood functions are computed, the SMAP segmentation may be efficiently computed

using [Eq 18]:

g•') s(n){) x lgxl•.,
Sarg nax (4,) + log P Ila, S 4n+i [Eq 291

A seS1) S

This expression is easily evaluated by minimizing with respect to each pixel individually:

i~)= arg Ma 1n()+ 1ogqp 1X ( o.ij(.(k 12(~~ [Eq 30]

This coarse-to-fine segmentation operation requires order O(MN) computation time. Therefore, the

complete segmentation process consists of a fine-to-coarse and a coarse-to-fine operation, each of which

require O(MN) computation.

While the quadtree model results in an exact exprnssion for computing the SMAP segmentation,

it does not completely capture some aspects of imaine behavior. The following section introduces an

augmented model that improves on the quadtree.
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Pyramidal Graph Model

An important disadvantage of the quadtree model is that spatially adjacent pixels may not have

common neighbors at the next coarser scale. Therefore, the model does not enforce continuity of region,

boundaries when they pass across branches of the quadtree. For example, if the image is broken into four

quadrants at the second level of the quadtree, then a region boundary will not be constrained to be smooth

as it passes from one of these quadrants to the next.

This weakness may be corrected by increasing the number of coarse scale neighbors for each pixel.

Figure 4a shows such a pyramidal graph structure and Figure 4b shows an analogous one dimensional

graph. Notice that each point has three neighbors at the next coarser scale.

To express the positions of these neighbors, a pixel was explicitly denoted at scale n as s=(i, j),

where i andj are the row and column indices starting at 0 and ranging through the width minus one, and

the height minus one respectively. The three neighbors at scale n+1 may then be computed using the

function odd(i)=l if i is odd and -1 if i is even, and the greatest smaller integer function L'.:

S = (L#/24,Lj/2J)

s2 = (L 2,t Lj/2i) + (odd(i,O) [Eq 31]

s 3 = (L/2J, Lj/2J) +(0,odd))

(a) (b)

Figure 4. (a) Augmented Pyramidal Graph Structure Used for MSRF Model; (b) One-Dimensional
Analog of Pyramidal Graph Structure.
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The transition function chosen for this pyramid graph is a natural extension of the transition function used

for the quadtree based model:

:x,.,.,., Q, ijk)
P (X(") M m 0 + 1~) -(M I(,) ., •,(,+÷) =k

._SP =,,'12 = 3j, = [Eq 321

=•!-(36 8 + 26=,j + 26 ,k) +
7m M

The notation F is used to distinguish from the transition distribution used for the quadtree model.

As with the quadtree model, the parameter 0,, e [0,1] determines the probability that the label of the fine

scale point will be the same as one of the coarser scale points. Conversely, I - 0., is the probability that

a new label will be randomly chosen from the available labels.

The disadvantage of the pyramid graph structure is that the likelihood function for the labels does

not have a product form as was the case for the quadtree in [Eq 231. Therefore, there is no simple

fine-to-coarse recursion with the form of [Eq 24] for computing the likelihood of the image y given the

labels •)j.

For computations at a single scale, n, this problem may be circumvented by assuming that the

pyramid has a quadtree structure for scales finer than n, and a graph structure for coarser scales. Figure 5

shows a one-dimensional analog to this hybrid pyramid structure for n=2. Notice that, for levels above

n, the pyramid is a graph, but below n the pyramid has a simple tree structure. Using this hybrid

pyramid, the conditional likelihood of [Eq 18] then has the computable form:

1( (nlx) ( + lofn ,.+ = . ,(xfn) (n)÷(n ) [Eq 33]logpy, X(4)I"..(y-I)(Y')lt' =e~n 5 (")-(')" + -o io .+ (X3'Ri

which results in the following formula for the SMAP estimate of XK':

-W I1(L) ('k) 4
S = arg max 8 ,3

1 lk!5M
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pyramidal

n-2

qua tree

I

Figure 5. One-Dimensional Analog to Hybrid Graph Structure, Where Scales n >-2 Use a Pyramidal
Graph Structure, and Scales n&2 Use a Quadtree Structure.

•(n) 1a II(n) (k) + logoni(,l( p"•l

nS = arg max 1)(k I X1)}[Eq 3511: <k<M s- MI ~

where f is the transition function of [Eq 32], and l,)(k) are computed using the recursion of [Eq 271.

Of course, the application of the hbove formula at all scales is an approximation to the true SMAP

segmentation since the model may not legitimately be changed during the segmentation process. However,

this approximation is reasonable since the likelihood functions are primarily dependent on the image data

and have only a secondary dependence on the pyramid structure. Intuitively, if the pixels in y. (A) appear

to be principally from class k, then the likelihood function l,')(k) should be relatively large regardless of

the pyramid structure used.

All the following analysis and experimentation will assume the use of this hybrid quadtree-graph

structure. As in the case of the quadtree, segmentation using the hybrid structure is done in two steps,

each of which only requires order MN computation. The first step is a fine-to-coarse computation given

by [Eq 27]. The second step is a coarse-to-fine computation given by [Eq 35]. Together the total

computation is of order O(MN).
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Parameter Estimation

In typical applications, one does not have prior information about the exact behavior of the

segmentation X. However, it is possible to determine this information directly from the image as it is

being segmented by estimating the parameters 0. = [0..0, 0,.,] during the segmentation process.

The parameters 0.. are required for fine-to-coarse operations used in computing the log likelihood

functions, and the parameters 0,,• are required for coarse-to-fine operations used in the SMAP

segmentation. However, both of these parameter vectors will be estimated during the coarse-to-fine

operations. This means that the segmentation process will require two full passes composed of the

following steps:

I. Perform fine-to-coarse operations using initial parameter values O,-= 1.

2. Estimate parameters 0 .D and 0., during coarse-to-fine operations.

3. Perform fine-to-coarse operations using estimated parameters.

4. Re-estimate parameters 0.,, during final coarse-to-fine segmentation.

The estimation procedure of 2 and 4 above is performed sequentially at each scale. Each transition

parameter vector 0. is estimated concurrently with the computation of the segmentation 1 ("). The

computational overhead of this estimation procedure is greatly reduced by subsampling the image at high

resolutions. Since the number of pixels at high resolutions is great, this subsampling does not

substantially impact on the accuracy of the estimated parameters.

The two-pass process implies that parameter estimation will increase computation by at least a factor

of two. However, the additional computation required within each iteration is minimal due to

subsampling. So the total increase in computation for parameter estimation is generally close to two.

Begin by deriving the sequential parameter estimation procedure. The transition parameter e.,, is

estimated by finding the maximum likelihood value given the image, y, and the previous coarse scale

segmentation, I In". Formally compute the solution to the optimization criteria:

6,, 1E arg max py,,,j(y.'O+l),0n,) [Eq 361
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where Ql is the set of valid parameter values. Using the hybrid pyramid structure of previous section, the

log likelihood function, L, has the specific form:

L(ex,1) = log py I, .1) (y Ii (n l+ ',,)

,log ( exp(lk (k))P• ,i ko.,k ÷'eni)

where the dependence of5 on n is through the parameter 0,.. Notice thatP uses the subscriptxýa) Ix(o)

to emphasize that the conditional distribution assumed in [Eq 32] does not depend on s.

This likelihood, L(0,.,), may be maximized as a function of 0,,s by using the expectation-

maximization (EM).algorithm (Dempster, Laird, and Rubin 1977; Bamm et al. 1970). From the form of

the functionW L(O, 1) is known to be a convex function of 0,.. This fact shows that the EM algorithm is

guaranteed to converge to a value of 0,,m which maximizes L.

To apply the EM algorithm, first compute the function:

= E[log(p, 1 (-)(yIX")P'IX" (X() I X OR,,1)) [Eq 381
1 Y = yx" +1) =I n+1,e,]

where XV is a random object. The EM algorithm uses the following iterative procedure to find a sequence

of parameters that converge to I .I.

e arg max Q(Oe,,0,op 1) [Eq 391

To further simplify this expression a sufficient statistic for the transition distribution o, (m J i,j,k,O, 1 )

of [Eq 321 must be formulated. This statistic counts the number of distinct transitions that occur from
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a particular set of coarse scale neighbors, xa"*" to a point x,". Specifically, the sufficient statistic, T, is

defined so that:

1 2

logp .( i,jk,O, 1) = E Tih(m I i,j,k),Vih (O,,0) [Eq 421
/ 1=0 h =0

where T and V have the functional forms:

I if %i = I and 8,, + m , = h[Eq40
0 otherwise

and

V( = log(!n- (31+ 2h) + 1 )[Eq41

Substituting [Eq 401 into the expression for Q obtains the simpler expression:

0PIl E arg max [Eq 42

where:

I •(n 1) Eq 431

-E
se S W Ek-,1 exp(/s"'0 (k))P4" IZo " 1)(k I.l÷(s+'), ,)

Evaluation of t,,h is computationally expensive since it requires a summation over all the points in

S"). However, accurate estimation of 0. only requires a representative sampling of the image data. This

is particularly true at high resolutions where the number of pixels far exceeds the number required to

accurately estimate these parameters. Therefore, the points in S") at period P"R in both the horizontal and

vertical directions are subsampled, and P 2 -2 is chosen so as to still have an increasing number of
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samples at finer scales. Experimental results given in the following section will show that subsampling

substantially reduces computation without adversely affecting the performance of parameter estimation.

The two steps of each iteration in the EM algorithm are then:

E - Compute f using the parameter, 0"., sampling period P"", and [Eq 441.

M- Compute ";.,' E argmax0 .,, Q( 1,Op. I) using [Eq 431.

The M step can be efficiently computed since it requires the maximization of a convex function Q

over an interval. This may be done with, for example, the golden section search method (Press et al

1988). The question remains as to whether the algorithm converges to the global maximum of L.

Appendix C answers this question by adapting the convergence results of Wu (1983), and Redner and

Walker (1984) to prove the following theorem:

Theorem 1: If (i) Q is a compact, convex set, (ii) L(O) and Q(O. 0') are continuous and differentiable

on an open set containing K, and (iii) L(O) is convex, then any limit point, 8, of the sequence ( O7P has

the property that:

E E arg max L (0) (Eq 451
eEQ

Notice that assumption (ii) does not strictly hold since Q becomes infinite at the points 0 and 1.

In practice, this problem can be resolved by estimating 0.,, over some smaller interval-= [0÷sE, 1 -E].

In any case, the introduction of E, is required for numerical stability.

Finally, the parameters 0,0 are estimated using the statistics f resulting from convergence of the

EM algorithm.

O =rO 0 T-1h [Eq 46]
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These values are then used in the second pass of fine-to-coarse computations.

The complete SMAP segmentation algorithm with parameter estimation is summarized below:

1. Set the initial parameter values for all n, 0,oand 0 L61----0.5.

2. Compute the likelihood functions using [Eq 271 and the parameters 0.,o-

3. Compute • (L) using [Eq 34].

4. For scales n=L-l to n=O

(a) Use the EM algorithm to iteratively compute 6.., and T. Subsample by P") when computing

T, and stop when j0,.'-0., I< 2-.

(b) Compute 0 6.0 using [Eq 461.

(c) Compute 1 (") using [Eq 351.

(d) Set 0._. I =0.. 1 -10E2)

5. Repeat steps 2 through 4.

Since global convergence of the EM algorithm is guaranteed, the choice of e- and F2 only impacts

on the accuracy of convergence. The values E,=106 and E2=104 were used in this study, and were never

found to be problematic. Generally, smaller values of e, and e2 will lead to better estimates but slower

convergence. Also, E, should be chosen so that e,<<«. Also note that step 4d is used to accelerate

convergence of the EM algorithm by starting the new parameter values near the previous parameter values.
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5 EXPERIMENTAL RESULTS AND IMPLEMENTATION

Results

This chapter compares the performance of the SMAP algorithm with MAP segmentation using a

MRF prior model for the pixel classes. All results of the SMAP algorithm used unsupervised estimation

of the MSRF parameters. Unless otherwise stated, subsampling was used in all experiments, and the

subsampling period was always chosen using the formula:

P(n) = max IL2(L-N- 3)/2 j,1I [Eq 471

This generally resulted in sufficient sampling to accurately estimate parameters while keeping the

computational overhead of parameter estimation to a minimum.

For this comparison to MAP estimation, a conventional 8pt neighborhood MRF model (Bouman and

Liu 1991) was chosen for the class labels X. Specifically, the probability distribution has the form:

px(x) = I exp {-/.-)(t 1 (x) + t2(x)/ 4)} I[Eq 481

where -=-1.5, t, is the number of horizontal and vertical neighbors of different class, and t2 is the number

of diagonal neighbors of different class. This appeared to yield the best overall results.

Since the MAP estimate can not be exactly computed, an optimization method must also be chosen.

Here the methods used were simulated annealing (SA) (Geman and Geman 1984), ICM (Besag 1986), and

multiple resolution segmentation (MRS) (Bouman and Liu 1991). The ICM and SA methods were started

with the maximum likelihood estimate of the segmentation. SA used a temperature schedule of the form:

1 1
I I + A[Eq 49]

Tn., Tn

where Td=l, Tff=O.2 666 and A were chosen to achieve the desired number of iterations. Both 100 and

500 iterations were used to compare the performance. After the desired number of iterations, ICM was
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used (equivalently T=O) to assure convergence to a local minima. These annealing parameters were

chosen since they seemed to give the best performance over the range of test images used. In practice,

the choice of annealing parameters must be a compromise since the optimal parameters depend on the

specific image being processed.

The MRS algorithm differs from ICM and SA since it effectly uses different values of X at each

scale. The scale dependent X is used because the MAP estimate would otherwise have unreasonable

behavior at coarse scales (Bouman and Liu 1991). Intuitively, the MRS algorithm attempts to

approximately correct the undesirable properties of the MAP estimator by varying the prior model.

To test accuracy with real data, a multispectral remotely sensed image was segmented and the results

were compared to measured ground truth to determine classification accuracy. The image used was a 927

x 1097 three-band SPOT (Systeme Probatoire d'Observation de ]a Terre) image with a spatial resolution

of 20m. Ground truth information was collected along 90 positions (transects) placed randomly

throughout the full image (Tazik et al. 1992). Each transect is 100m long with a random orientation.'

Along each transect, detailed measurements of ground cover were made, but for this experiment only five

classes were considered based on the aggregate measure of percent bare ground for each transect: 0

percent; 1-10 percent; 11-21 percent; 21-30 percent; and 31-100 percent. Sixty of the transects were

randomly chosen to use for training the class models, and the remaining 30 were used to test the

segmentation algorithm performance.

Each of the five classes was modeled as a multivariate Gaussian mixture. The mixture model is

important because it captures the multimodal spectral behavior that is typical of most classes. The method

for estimating the parameters of the mixture model is described in Appendix D.

Only 100 iterations of SA were used due to the excessive computation time required to process the

large image. The percent misclassification was also computed using the 30 testing transects for each class.

The results are tabulated in Table 1. For each class and algorithm, the average region size was computed.

Classes were formed from ranges of percentage bare ground, and percent classification accuracy was

tabulated for each class. The classification accuracy of the SMAP segmentation was substantially better

than the maximum likelihood algorithm and slightly better than ICM. The SMAP and SA algorithms had

"Also, to increase the number of pixels associated with each transect, the transects were considered to be 60m wide, thus
covering approximately 15 pixels on the image.
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Table 1

Tabulated Results for the Segmentaton of Multispectral SPOT Data With Ground Truth

Claw
Clam 1 Class 2 Claw 3 Claw 4 Class 5 Average

Percent Bare Ground 0% 1-10% 11-21% 21-30% 31-100%

Accuracy SMAP 88.1% 27.8% 17.5% 27.5% 93.5% 50.88%

SA IN 88.1% 22.5% 17.5% 27.5% 96.0% 50.32%

1CM 87.5% 23.2% 17.5% 27.5% 93.5% 49.84%

ML 78.5% 26.5% 17.5% 20.0% 85.1% 45.52%

Average Region SMAP 131.7 18.7 10.7 21.2 57.7 48.0
Area SA 10 126.9 16.4 7.5 14.7 49.9 43.1

1CM 112.2 13.2 7.2 12.9 44.2 37.9

ML 32.1 3.9 3.9 4.7 16.1 12.1

approximately comparable accuracy with SMAP performing 5.3 percent better for class 2 and SA

performing 2.5 percent better for class 5.

It is also interesting that the SMAP segmentation produces the largest average region sizes. This

is because the SMAP segmentation produces fewer regions containing a small number of pixels.

Implementation

The multispectral SMAP segmentation algorithm and the multinodal mixed signature model have

been implemented in the Geographical Resources Analysis Support System (GRASS) Version 4.1

(Westervelt, Shapiro, and Gerdes 1993). The mixed signature model is generated from ground-truth data

by the GRASS i.gensigset module, and the SMAP segmentation is performed by the GRASS i.smap

module.
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6 CONCLUSIONS AND RECOMMENDATIONS

This study has derived a new criterion and model for statistical image segmentation. The SMAP

estimator is proposed because it minimizes the expected size of the largest misclassified region, and it

results in a computationally simple segmentation algorithm. The MSRF model uses a pyramid structure

to capture the characteristics of image behavior at various scales. Because the MSRF has a Markov Chain

structure, its parameters can be estimated efficiently from the image during segmentation.

Experiments indicate that the SMAP algorithm performs comparably to or substantially better than

MAP estimation using a Markov random field model and simulated annealing. In addition, the SMAP

algorithm requires less computation than ICM and much less then simulated annealing. The SMAP

algorithm was tested on multispectral SPOT data using LCTA transects ground-level data and found to

improve segmentation accuracy.

The single test run that was done used an image from only one date, a single sensor (SPOT), and

a single LCTA ground-truth component, i.e., percent ground cover. Also, the linear nature of the LCTA

transects required that the transects be artificially widened to include more pixels. This is necessary for

statistical sampling reasons and for the spatial nature of the remotely-sensed imagery.

It is recommended that:

1. Further tests with LCTA ground-truth data sets using other components (e.g., plant community

classes) should be used to test the efficacy of the segmentation model for omer ground measures.

2. If LCTA transect information is to be used, rigorous methods should be found to "widen" the

transects to more closely match the resolution of the imagery and to encompass more image pixels. This

general recommendation is not isolated to the requirements of these algorithms, but is a general

requirement for classification of remotely-sensed imagery using ground-truth data.

3. Other physiographic regions should be used to test the applicability of these algorithms to

other regions of the earth.
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4. Timing of the ground-truth data acquisition and the acquisition of the imagery may have

impacts on the ability to correlate these data. At least one set of images should be acquired that relate

very closely in time to the acquisition of the ground-truth to minimize the temporal effects due to

differences in acquisition dates.

5. The efficacy of these algorithms should be tested with other sensors. SPOT has 3 spectral

bands, each with 20m spatial resolution. Sensors with more spectral resolution (e.g., Thematic Mapper

(TM) that has 6 spectral bands, with 30m resolution) could be used for testing. Also, since the

segmentation algorithm is contextual, higher spatial resolution imagery (e.g., airborne multispectral

scanners) could also be tested.
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APPENDIX A: Optimality Property for SMAP Iteration

Assume that i "' has been computed for i>n. Compute 1 ý" using the Markov chain structure of the

random fields V"'.

L

=arg max max E 2k P(X(Ol= x()i;-j k IY= y)

L

-arg max max maxEj2k p(yEdy, X(1)=X(O~i >k)

E 2kP(YEdy,X(t)=x(ok.-i--nIX(o =i()'i>n)P(X10 =x^(Oj>n)

+ 1: 2k p(y E dyX(O =,f(0i>k)}

k=n+1

= argmnax max 2kP(YEdy,V(O=x()k:.V5,n IX(n+l)=I(n+l))
P) x~i-cn k=O

= arg max{ P(Y Edy, X~ x ~+1 +

n-1
+ inax E 2k-nP(YEdy,X(O =X( 0k • i ~n jX~')=X(+)

x(Ii~cn k=O
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Next, define a residue term, R(xiM )), so that the following equality holds:

-arg max P(Y Edy, X~n) = x(") I -~+)( +~~)

=arg maxpx,(. ,x..,),y (xn) 10"+), y) (1 +R(x~n)))[EA2

Specifically, R(x'")) is given by

SI2k-np(yE dy, Xy) -x
0 k

R(x~n)) = max i~ 0 =X',k:Ln X(j'i+l) [Eq A31
A i~n P(Y Edy, X~n) -~n I~~ JXQ +) f-n+1

Since this expression is the ratio of positive quantities, it follows that RŽeO. Further, R may be bounded

from above as follows:

R(x('0) = max 2kn(X, = x ( 0 ,k .i :gn - I I X =1) y)
x(),~ k=O

.5max 2 2k-np(X(n-1) - xWO1  I -~)X~) y)
Sk=O [Eq A41

maX p(X~n X~ -x 1 ) X () = X =n) y)

- lflPx(M1) J.X(R),y (X (A1 X~n),y)

Finally,

I2n) = arg maxflog p,(.) Y (X n i(+1),j y) + log (1 + R(~))- I}

X(4 argR max{Ig 1) ,y (X (n) (is + 1), y) + Z'(X (n))} E 5
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where

o:5 9((, log (1 +R(X('))) - 1

:5 max P(-~ 1) 1 () I- ~))[ A61
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APPENDIX B: Product Form for Quadtree

This appendix shows by induction that, for a quadtree based pyramid structure, the distribution of

Y given XV)• has the form of [Eq 231 and that the terms in the product may be computed using the

recursion of [Eq 24]. For n=O, these relations are true by assumption. So, assuming the result for scale

n yields:

P(YEdy jX(R+) - x(n+'))= E P(YEdy I V) = x())p.W.,I•"' (X•) I x•.-l))

= ii P~''..(n) I .1) Ifj PX(a (4n)JxrES(") .I)
x(a) I e(n) P r 4"')j

rES~zr x&M
W )( R) I( (A +1)

- ~ Y(- Hr. H (y'(" I X&)~ ~ (~~IX¶~1

SreS() r d-(n ) zr = I

S1 P, rl)(

[Eq Bi1

where

M
ps.1) I(..,)((11+1)i k) = II E ( _, p I m)pl . x•.,, (mM k) [Eq B2]X8 I ý • Y r v •X ~

r e d-z) 3=1
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APPENDIX C: Global Convergence of EM Algorithm

This appendix proves theorem I by extending basic results on the convergence of the EM algorithm

(Wu 1983, Redner and Walker 1984).

By the stated assumptions and theorem 4.1(v) of Redner and Walker, any limit point, 0, of the

sequence (0P17" has the property that 0 e arg max 8,aQ(0,0). Since Q is convex and Q is differentiable,

this implies that for all 0 E Q

D1 ,,Q(6,6)(0-6) . 0 [EqC11

where D"0 computes the gradient of Q with respect to the first argument.

Let Q. be an open set containing Q such that Q and L are continuous, differentiable on LU,. Then

define the continuous, differentiable function H(OA) = Q(0,6) - L(O) on a.o. It has been shown

(Dempster, Laird, and Rubin 1977) that H has the property 0 r arg max.eqH(,8O), which implies that

DL(O) = D's, Q(6,6) + D",0 H(6,6) [E C21
= D1,Q(0,0 )

Therefore, for any 0 e Q.

DL(e)(O-O) = DI' 0 Q(O,O)(O -O) < 0 [Eq C31

Since L is a convex function and fQ is a convex set, it follows that 0 is an (implied) global

maximum of L.
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APPENDIX D: Automatic Parameter Estimation for Mixture Signatures

It is often desirable to segment multispectral images into regions corresponding to various

information classes. For example, forest, grasslands, or urban areas are examples of information classes

that may be of interest. In practice, these information classes often contain subclasses, each with

distinctive spectral characteristics. The objective of mixture classes is to form a probabilistic class model

composed of a number of spectral subclasses. Each subclass is then characterized by a set of parameters

describing the mean and variation of the spectral components.

For each mixture class, it is necessary to determine the number of subclasses and the parameters of

each subclasses. This can be done by using a representative sample of training data from each class and

estimating the number of subclasses and their parameters from this data. Specifically, for a given

information class with K subclasses, the following parameters are required for the keh subclass where

1 ! k ! K.

nk - the probability that a pixel has subclass k.

.uk - the spectral mean vector for subclass k.

Rk - the spectral covariance matrix for subclass k.

Let x,, x2, ..., x,, be the N samples used to train the class in question. Assuming that each subclass

has a multivariate Gaussian distribution, the probability that the pixel x. is from subclass k is given by:

pXlk(X(I2k) -21)Rx(p - Pk) [Eq DI1

(2 'iW X

where M is the number of spectral components.

The integer value K is known as an order parameter since it identifies the order of the model.

Initially, assume that K is known, and then introduce a specific method for computing it. The parameters

;,, pu, and R. may be computed for a fixed K by using the expectation maximization (EM) algorithm

(Baum et al. 1970; Dumpster, Laird, and Rubin 1977; Redner and Walker 1984). The EM algorithm is

an iterative method for computing maximum likelihood (ML) estimates. The ML estimates of xkuk, and
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R. are the values of these parameters that maximize the log probability of the data x. The log of this

probability may be exactly computed as:

logpx(x) = log Pxk(Xs~k)7k IEq D21

and is often referred to as the log likelihood.

The EM algorithm works by clustering the data into groups corresponding to each subclass.

However, instead of the membership to each subclass being deterministic, the membership is represented

using a "soft" probability. The probability that pixel x. belongs to subclass k may be computed usIng

Bayes rule as:

Pk x(k Ix.)k (X. I k) kEq D31
= I Px Dk(XfIk) "k

Then using these "soft" subclass memberships compute new spectral mean and covariance estimates for

each subclass. These new estimates are denoted by *A:, A,, and 'k to distinguish them from the initial

estimates values iq,/.k and R.:

IN

1= - Pklx(k lx)

Ilk E X~kl~k Ix.)[Eq D41Nn=

I N

k X xf- Ad Xn - k~tPkIx(kI x.)
Nn1

The application of [Eq D21 followed by [Eq D4] improves the parameter estimates by increasing the log

likelihood of [Eq D2]. Therefore, iterative application of these two operations will converge to a (local)

maximum of the log likelihood. Specifically, the procedure is repeated until the change in p/(x) is less

than E where:
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E I +M+ (MI ) Mlog N [Eq 1351

Estimation of K is difficult because ML estimation does not work for K. Intuitively, the log

likelihood may always be increased by adding more subclasses since more subclasses may be used to more

accurately fit the data. This problem is addressed in the work of Rissanen (1985). Rissanen suggested

that the best model order is the one that minimizes the total number of bits required to store or transmit

the data and parameters. Using a theoretical argument, Rissanen showed that this minimum description

length (MDL) model can be approximately achieved by minimizing the criteria:

MDL = -logp,(x) + I (# of parameters) log N [Eq D61
2

where the number of parameters is the total number of degrees of freedom in the parameter sets of all

subclasses:

(#of parameters) = K(1 +M+ (M;)M) -1 [Eq D71

Notice that, for fixed K, minimizing the MDL criteria is equivalent to maximizing the log likelihood.

The overall strategy for computing the mixture class parameters may be outlined as follows:

1. Initialize the class with a large number of subclasses, K=K0 .

2. Apply the iterative EM algorithm to minimize the MDL criteria.

3. Record the value of the MDL criteria, K and the subclass parameters.

4. If the number of subclasses is greater than 1, combine the two subclasses that have minimum

"distance," and go back to step 2.

5. Choose the subclass parameters corresponding to the minimum value of MDL.
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It remains to defime the measure of distance between subclasses, and the initialization procedure.

The initial subclass parameters are chosen to be:

S" K1

= x. wheren = L(k-1)(N-1)I(Ko-1)J+1 [EqD81

Rk = I

where I is the identity matrix and LJ is the greatest smaller integer function. The function used to

measure distance between the subclasses is:

d(k,j) = N'Tk log + log! IRJ1 l EqD9]

where Rkj may be computed using

itk it.
N•J = ir Ik + Il R

7k + i1 tk + 91 [Eq DIOI

it (Rk+(Pk - NJ)(Pk -ij)) + it(
S+itk j Ik + I*j
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