- 1
-
- ' *

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A283 6
HIIIIHlIlHlIl’lllllIH!IIHHII!I”I!HII’

X 94-26844 ¥ 4
N T THESIS —

Mark A. Schivley

June 1994

Thesis Advisor: G.M. Lundy

Approved for public release; distribution is unlimited.

94 8 23 040

SECURITY CLASSIRICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la WRTSECURITY C CATIO UNCLASSIF[ED 3 RESTRICTIVE MARRINGS

T2 SECURITY C CATION AUTHOR T DS TRIRUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE AppfOVCd fOl' pUth relem

distribution is unlimited

3. PERFORMING ORGANLZATION REPOR MBER(S) 3. MONTTORING ORGANIZATION REPORT NUMBER(S)

B OF PERFORMING ORGANIZATIO . OFFICE, 2. NAME OF MONITORING ORGANIZATION
omputer Science Dept. wwch:mbk) Naval Postgraduate School

Naval Postgraduate School : S

6c. ADDRESS (Cty, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Cade)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

3a. NAME OF FUNDINGAPONSORING [S5. OFTICE SYMBOL 1 9. PROC > CATIO
()R(:ANIZATION (if applicabie)
8c. ADDRESS (Cisy, State, and ZIP Cade) %ﬁﬁ_ o
0G ' PROJIECT] TASR [WORK UNIT |
ELEMENTNO. | NO. NO. ACCESSION O,
11. TITLE (Include Security Classification)

Throughput Analysis Between High End Workstations Across an FDDI Network (Unclassified)

.P ER -‘) [T H ” s)
Schiv ey, Mark Allen, CPT.

PE OF REPOK 13b. C 14. DATE OF REPORT (Year, Month, Day) 13-PAGE COUNT
Vaster’s Thesis FROM 10 06/94 1994, June, 16 159
16. SUPPLEMENTARY NOTATION The views expre In tus thesis are those of the author and do not retlect the otficial
policy or position of the Department of Defense or the United States Government.
17. COSATI CODES 18.SUBJECT TERMS (Condinue on reverse if necessary and idensify by block aumber)
- FDDI1, TCP/IP
FIELD GROUP SUB-GROUP

9. ABS'ITAT’-T (Contnue on reverse if nccessary and idensfy by block mumber)

Recently developed high speed networks are capable of transmitting data at rates of 100 Mbps or more. One such network protocol is
Fiber Distributed Data Interface (FDDI). This network has a physical transmission rate of 100 Mbps. Analytical and simulation studies have
shown that the FDDI protocol should provide actual throughput of 80% to 95% of this physical rate. Can the end user expect to see this kind
of performance? If not, then what kind of throughput can actually be expected and where are the bottle necks?

In order to answer these and other related questions. two areas were studied: First, a performance comparison between a 40MHz
SPARCstation 10 workstation and a SOMHz SPARCstation 10 workstation was conducted using the Neal Nelson commercial benchmark
tool. Next. a well-known network measurement tool. ftcp, was used to obtain data transfer rates while varying several tunable operating
system and network parameters. The parameters varied were: Target Token Rotation Time, TCP/IP window size, NFS asynchronous threads.
Logical Link buffer size and Maximum Transfer Unit size. The results from the.commercial benchmark analysis were used to determine it
there are any differences which can affect transfer rates between the two workstations.

The results from the commercial benchmark tool clearly showed that the newer. higher speed processuor is faster. The network tool #ep
showed that the TCP/IP window size had the largest impact on throughput performance. Throughput more than doubles from a window size
of 4k to a window size of 20k.This is followed by having more than one workstation transmitting data simultneously. Having two
workstations transmitting nearly halves throughput. This is followed by having a faster processor. A measurement of tile trnsters using rcp
system calls showed that the largest impact on file transfer speed is the overhead of receiving the transferred file.

0. DINTRIBUTION/AVA LITY OF ABSTRAC 1. ABSTRACT SECURITY CLASSIFICATION
[§ UNCLASSIFIED/UNLIMITED [T] SAMEASRPT. [7] DTIC USERS UNCLASS[FIED

P FRESPURSIBLE INDIVIDUAL 33b, TELEPHONE rea Ce % E_——_-E YVBOL
Brot 4. .t‘.un§‘° Hvibta (4(%65"(;:\2()“’)"4‘ 449" < | T

DD FORM 1473, 53 MAR 81 APR edition may be used unitl exhausted NECLRITY CLANSIFICATION OF THIS PAGE

All uther edhtions are uhwlfu' UNCLASSIFIED
1

Approved for public release: distribution is unlimited

Throughput Analysis Between High End
Workstations Across an
FDDI Network

by
Mark {3 Schiviley
Captain, United States Army

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1994

Author:

Approved By: ﬁ’ m

G.M. Lundy, Thesis A

Shridhar B. Shukla, Second Reader

Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

Recently developed high speed networks are capable of transmitting data at rates of
100 Mbps or more. One such network protocol is Fiber Distributed Data Interface (FDDI).
This network has a physical transmissiop rate of 100 Mbps. Analytical and simulation
studies have shown that the FDDI protocol should provide actual throughput of 80% to
95% of this physical rate. Can the end user expect to see this kind of performance? If not,
then what kind of throughput can actually be expected and where are the bottle necks?

In o'+ - to answer these and other related questions, two areas were studied: First, a |

perform.. .c ¢ parison between a 40MHz SPARCstation 10 workstation and a 5S0MHz |
SPARCstanc:. 10' workstatior was conducted using the Neal Nelson commercial |
benchmark tool. Next, a well-known network measurement tool, tzcp, was used to obtain
data transfer rates while varying several tunable operating system and network parameters.
The parameters varied were: Target Token Rotation Time, TCP/IP window size, NFS
asynchronous threads, Logical Link buffer sizc and Maximum Transfer Unit size. The
results from the commercial benchmark analysis were used to determine if there are any
differences which can affect transfer rates between the two workstations.

The results from the commercial benchmark tool clearly showed that the newer, higher
speed processor is faster. The network tool #zcp showed that the TCP/IP window size had
the largest impact on throughput performance. Throughput more than doubles from a
window size of 4k to a window size of 20k.This is followed by having more than one — |
workstation transmitting data simultaneously. Having two workstations transmitting nearly

halves throughput. This is followed by having a faster processor. A measurement of file O

transfers using rcp system calls showed that the largest impact on file transfer speed is the ————
overhead of receiving the transferred file.

Di.t ibation/
" availability Codes

Avail andjor
Special

TABLE OF CONTENTS

INTRODUCTIONccotniinrriineneerireessssnsstsmssessssstscnssasasssscsessssasensnssesssnensssssssssses 1
A. BACKGROUNDcinintiinnnisiiasesisssnssessssssesssssnsssssssssmssssessessesnsssssoseses 1
B. OBIJECTIVEcvrvicuenncnes 2 eereeneereneasansssaansss devsessesnensanssenentenssssnenertssesenenas 2
C. SCOPE, LIMITATIONS AND ASSUMPTIONSocovemrenenmrucrenceneseseesoncnnes 3
D. ORGANIZATION OF THESIS.........coocinnnineserannccesssnensssssssssssssosasssses 3
NETWORK PROTOCOLSouoiieiriiennsinassisssasssssssssenmsssstsssnsassasssssssonsasssessass 4
A. NETWORKING THEQORYcooviriniininanssesssssecsassesssssssassessosssssasssssssssce 4
B. OPEN SYSTEM INTERCONNCETION........cccotvtiiirmrisrncsnrnnsassessssssasacssssscs 4
C. TRANSMISSION CONTROL PROTOCOL/INTERNET PROTOCOL 6
1. Link Layer.. - reesesassssssnessnsrseasssassnsasnsasareas 7

2. Network Layer reesenessesraearens reererennesstsanenarassssassasensontessanaes 7

3. TransSport LAYeT.......ciceininsncesensinisssssacsesssssssnncscsarssssssssssssnsssensssasses 7

4. ADPHCAUON LAYETcouurerinirisanaenssnsessansrsersasssssassssesassasassssscssssnasssssessase 8

D. FIBER DISTRIBUTED DATA INTERFACE.............cnincnernnnnccecsnnrnee. 10
1. Fiber Distributed Data Interface Basics.......... sesestssentessasstnsessassasassesssssssnes 10

2. Fiber Distributed Data Interface Layersccccococurveccnncnncscnerncnsncnenees 10

a. The Physical Medium Dependent Layercccoevecccnnnncccnncroncncs 1

b. The Physical Layer ctererenenesssennesnsnuesasasas 13

c. The Media Access Control Layer............ooovcivminuencccnerscsuesecccnee 13

d. The Station Management Layer cresssssensestsnssstonesssasestsssssnesssses 13

3. Fiber Distributed Data Interface Framing...........cccocevevcvennsccniresiercscsnaseneas 14

4. Encoding Method..............ccimvncnnncisssacsnncscssssasassnssssosssasasssssssssssnsssssonss 15

E. NETWORK OVERHEAD tressestssasasssessnsntsssesansssnssnsases 15

iv

F. FIBER DATA DISTRIBUTED INTERFACE PARAMETERS..................... 17

II. NETWORK EQUIPMENTcoooirtiiticcreneentiseesestiestoscssenssessossssssssssssossssassesses 19
A. NETWORK OVERVIEWccorinninnineniiissiiiscsssssesesssssussassessessens 19

1. Fiber Optics EQUIPIMENLccvnuiriimrenininnnriiinniissisnecssesnsnessosssesessens 20

2. Network Peripherals’ Interface.ccovoviiveeiviniencnnicieneiiiicceanene 20

3. Silicon Graphic’s INtErfaceccccovveveenienrineniinissonscscssosnsscsseosseresssossenes 21

B. WORKSTATION OVERVIEW.ooricerernrercnrreersensesssessssssessanssansesssssnns 22

1. SUN SPARCStation 10 SYStEMcceerrerrrreereeccersensersanesessssesnrensesasssassanas 22

2. Software ArChiteCtUTe.........coeveeirertrsineesenunrannsansusncsasnsssssseesessssneneas 22

b. Hardware Architecture............ccccvivernuneninencisensenscncnseiunseesecsesannae 23

2. Silicon Graphics IRIS INdig0......cccvireninnnnirnenersesnisncenssnssresesseesesonssssnes 25

a. Software ATChiteCtUTE.ccoverererirerrcsersnnsarsunsansansusensssisansssessenesseones 25

b. Hardware: ATCRIECIUTE.oceeienirennrnncainrsntessonissessessnosessssnsosssasessones 25

IV. TEST DESIGN PLAN........ociiairinninnisisucnnsssssisrsassssesestssssssesssssssssossassasssssssssssss 28
A. TEST STRATEGY ..cccirnrniscrrnsneriessssnsssssessescsessssssssssssassassssessssssssasssssssens 28

B. NEAL NELSON BENCHMARKoccoitririsrcnisssnsiseescsasssscsssssssasssssoses 28

C. NEW TEST TRANSMISSION CONTROL PROTOCOLccccereeeercsece. 31

D. REMOTE COPY PROTOCOL TRANSFER........cuisnmrerncrscrssincessesenssans 34

E. PARAMETERS WHICH AFFECT BOTH TESTccccnnvveninecivnsnnesseseans 36

F. FILE SIZES FOR BOTH TRANSFERSc.oninnernsasesnsssssaencssssense 36

G. SYSTEM CONFIGURATIONS FOR ALL TESTSccuovivecnenriennsercsnenss 37

H. PARAMETER BASELINEcotiseiecnisesonssencncesnsesssasosssasssanes 39

V. TEST RESULTS AND ANALYSIScunininniisenacnsasansssssstsssnsssssssssaesssssssnes 41
A. NEAL NELSON BENCHMARKciiiiunensensisnssesssssssscsssssassssscnns 41

1. Gold Versus White, Two Processors and Solaris 2.3oeevveeenrecnees 42

2. Gold One Processor Versus Gold Two Processors and Solaris 2.3.......... 43

3. Gold With One Processor, Solaris 2.3 Versus SunOS 4.1.3.................... 44

B. NEW TEST TRANSMISSION CONTROL PROTOCOL 45

1. Single Processor RESults.........cueeuiiveiiinenneesinircienecnccsreeiteenseesssessenne 47

2. Two Processor Results...........c.ccocnimniinicnnonsnneniisissessssnsnsssssense 51

3. One And Two Processor Resultsccocveienirieeninreeninnenniersrcerennenesaesenens 53

C. REMOTE COPY PROTOCOL TRANSFERS.......c.....oocmmnecvsemmmsenssssssnnen 60

D. ANALYSIS SUMMARY 64

V1. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH.............ccccceveuruencn.. 67
A, CONCLUSION ... ernntstseietseesennesssnenasssssssssssssssesssntssssssssnsassnsnsansaes 67

1. Workstation CONCIUSIONSccceviruecirirucrisnnrinsiscscsseiinisnescssnesssssncssacases 67

2. Throughput CONCIUSIONS........c.cceeuirinrirererisrsinnencssssessnssessnsasessasassnsssnenes 68

B. TOPICS FOR FUTURE RESEARCH.........ccocnniniirninnssssesssncsesssssnssssasesens 70
APPENDIX A: NTTCP PROGRAM and TEST SCRIPTS..........coiirceneenerenceseneorssncnss 72
APPENDIX B: RCP PROGRAM......ucucoiieiinniiesssssssnmsstsssssssssssssssmsasanssssssssasarsesssses 88
APPENDIX C: NEAL NELSON BENCHMARK RESULTS.........cccccocennnirenrmrusnienreses 91
APPENDIX D: NTTCP SINGLE PROCESSOR RESULTS........cccovueemnrrescruncnsessenes 106
APPENDIX E: NTTCP TWO PROCESSORS RESULTScccceenrnncnnsncsnsnencncsescenses 119
APPENDIX F: GLOSSARY OF TERMS.. st sssaneaes 138
LIST OF REFERENCES..............cininnntenaareaeesessssaenssssssssssessssassssssessasassssssassenssassens 142
INITIAL DISTRIBUTION LISToiiinerericnisssncsnsesssassassesnseasossasssasssssssssesnssssns 144

vi

LIST OF TABLES

TABLE 1: RCP FILE SIZES AND ASSOCIATED OVERHEADcicinecncnccnnnn. 37
TABLE 2: FILES (DATA SIZES) FOR NTTCP TESTccuiriiictnirntnissnsrnsecssisenenses 37
TABLE 3: DEFAULT PARAMETERS USED FOR ALL THREE TESTcccoovunnriiricnnnn. 39
TABLE 4: TEST RESULTS IN SINGLE PROCESSOR MODEccovrvimicnviincnecernnne. 40
TABLE 5: FILES (DATA SIZES) FOR NTTCP TESTcooininnnenricnsnninncessnecsisnns 46
TABLE 6: RESULTS OF SAS PREDICTIONSoiniiiecntinnisececneesesresisscsnessesessene 56
TABLE 7: RCP ONE PROCESSOR TRANSFER RESULTSccoiimenmncsmesncsiiesescsnsnns 61
TABLE 8: RCP TWO PROCESSOR TRANSFER RESULTS ... 62
TABLE 9: CPU SUBSYSTEM ..ottt s tn s snnssssnses 91
TABLE 10: DISK SUBSYSTEM tresestesesse b e bestese e aban st eren s e s et resasrans 91
TABLE 11: CACHE INFORMATIONciinniininansinisnnisnsnnsssisissssesssensssssssassessoscssensss 92
TABLE 12: GOLD2.SOL VRS WHITE2.SOL, TEST 1 &2 &3 &4ccuueuvevvrnnnveenens 94
TABLE 13: GOLD2.SOL VRS WHITE2.SOL, TESTS &6 & 7 & 8ccoveevvcrrrccnnee. 94
TABLE 14: GOLD2.SOL VRS WHITE2.SOL, TEST9& 10 & 11 & 12cccevvurmemecnnenenee 95
TABLE 15: GOLD2.SOL VRS WHITE2.SOL, TEST 13 & 14 & 15 & 16cconuueueurnece. 95
TABLE 16: GOLD2.SOL VRS WHITE2.SOL, TEST 17 & 18 & 19 & 20 S 96
TABLE 17: GOLD VRS WHITE2.SOL, TEST 21 & 22 & 23 & 24cccevcvvnvrcvencrencenens 96
TABLE 18: GOLD2.SOL VRS WHITE2.SOL, TEST 25 & 26 & 27 & 28§cccccovveurucncrenne 97
TABLE 19: GOLD2.SOL VRS WHITE2.SOL, TEST 29 & 30c.ccoervveirccennerncrcnnncniennens 97
TABLE 20: GOLD1.SOL VRS GOLD2.SOL, TEST 1 &2 &3 & 4cccvvveevcncennen 98
TABLE 21: GOLD1.SOL VRS GOLD2.SOL, TEST5& 6 & 7 & 8cccvvucvsrnnncrecccannnns 98
TABLE 22: GOLD1.SOL VRS GOLD2.SOL, TEST 9 & 10 & 11 & 12 c.ovvoovvecevvmemeeenrrecern: 99
TABLE 23: GOLD1.SOL VRS GOLD2.SOL, TEST 13 & 14 & 15 & 16cccoeucuruencucncnanne. 99
TABLE 24: GOLD1.SOL VRS GOLD2.SOL, TEST 17 & 18 & 19 & 20ccceueceuvurucnce.. 100
TABLE 25: GOLD1.SOL VRS GOLD2.SOL, TEST 21 &£22 &23 & 24cccuvueueneeee. 100
TABLE 26: GOLD1.SOL VRS GOLD2.SOL, TEST 25 & 26 & 27 & 28ccoceuvueucucece. 101

vii

TABLE 27: GOLD1.SOL VRS GOLD2.SOL, TEST 29 & 30 ...t 101

TABLE 28: GOLD1.SOL VRS GOLDL.SUN, TEST 1 & 2& 3 & 4 ... 102
TABLE 29: GOLD1.SOL VRS GOLDI.SUN. TESTS & 6 & T & &ocevmene, 102
TABLE 30: GOLD1.SOL VRS GOLDI1.SUN, TEST9& 10& 11 & 12c.ceenrrenrnnnens 103
TABLE 31: GOLD1.SOL VRS GOLD1.SUN, TEST 13 & 14& 15 & 16cocvueuevennnenes 103
TABLE 32: GOLD1.SOL VRS GOLD].SUN., TEST17& 18 & 19& 20cuuucnvnnnene 104
TABLE 33: GOLD1.SOL VRS GOLD].SUT:J, TEST21&22&23& 24uuenneneee 104
TABLE 34: GOLD1.SOL VRS GOLD1.SUN, TEST 25 & 26 & 27 & 28ccovrvierevvnrennanne 105
TABLE 35: GOLD1.SOL VRS GOLD1.SUN, TEST 29 & 30cccoceermivenirrcrmrrncrnsnrereenaes 105
TABLE 36: SINGLE PARAMETER TEST RESULTS ..o 106
TABLE 37: SINGLE PROCESSOR, I1ST TEST RESULTScovvninnrnncncncninsenenennenen 107
TABLE 38: SINGLE PROCESSOR, 2ND TEST RESULTScocccervinnsencrenrenercsssnsaens 107
TABLE 39: SINGLE PROCESSOR, 3RD TEST RESULTSccvniiinncsneneresnsussesesseses 107
TABLE 40: SINGLE PROCESSOR, 4TH TEST RESULTSccvverivmennsnenenresnesesosesnsens 108
TABLE 41: SINGLE PROCESSOR, STH TEST RESULTSccccovuuenesmnrarissenvesnieesas 108
TABLE 42: SINGLE PROCESSOR, 6TH TEST RESULTSconeirieereenenesencnenesenns 108
TABLE 43: SINGLE PROCESSOR, 7TH TEST RESULTSccucccnimirenruenurnsnenssesenesenne 109
TABLE 44: SINGLE PROCESSOR, 8TH TEST RESULTS e 109
TABLE 45: SINGLE PROCESSOR, 9TH TEST RESULTScoirnminnnnsissisessssinssessnss 109
TABLE 46: SINGLE PROCESSOR, 10TH TEST RESULTScvivnercrennsnsnssneescnssesenne 110
TA! E 47: SINGLE PROCESSOR, 11TH TEST RESULTScccomvirrnereeceeninnees 110
TAL_E 48: SINGLE PROCESSOR, 12TH TEST RESULTScccocnvuivnnirnnsrirnccreaarnanene 110
TABLE 49: SINGLE PROCESSOR, 13TH TEST RESULTSccconinerrrrnrcrcrencncnenane 111
TABLE 50: SINGLE PROCESSOR, 14TH TEST RESULTScccovuninnmnecmrunnsesncrcresneas 111
TABLE 51: SINGLE PROCESSOR, 15TH TEST RESULTSvivinnenirnerinenenenessssnes 111
TABLE 52: SINGLE PROCESSOR, 16TH TEST RESULTS ... 112
TABLE 53: SINGLE PROCESSOR, 17TH TEST RESULTScccvnvnivcnnnisnsncnncsernenes 112
TABLE 54: SINGLE PROCESSOR, 18TH TEST RESULTSceniccnnnencnsienens 112
TABLE 55: SINGLE PROCESSOR, 19TH TEST RESULTScciniinrieencrencnensnsacsenene 113

viii

TABLE 56: SINGLE PROCESSOR, 20TH TEST RESULTS ... 113
TABLE 57: SINGLE PROCESSOR, 21ST TEST RESULTS ..o 113
TABLE 5%: SINGLE PROCESSOR, 22ND TEST RESULTS ..o 114
TABLE 59: SINGLE PROCESSOR, 23RD TEST RESULTS ... 114
TABLE 60: SINGLE PROCESSOR, 24TH TEST RESULTS ..., 114
TABLE 61: SINGLE PROCESSOR, 25TH TEST RESULTS ... 115
TABLE 62: SINGLE PROCESSOR, 26TH TEST RESULTS ..ccounnrvevevvvveamnsenensreessssssssseeee 115
TABLE 63: SINGLE PROCESSOR, 27TH TEST RESULTSciircrerniecninncncnenns 115
TABLE 64: SINGLE PROCESSOR, 28TH TEST RESULTS ... 116
TABLE 65: SINGLE PROCESSOR, 29TH TEST RESULTSccomveiinnneiecreienae 116
TABLE 66: SINGLE PROCESSOR, 30TH TEST RESULTSirnneercnnnenenenene 116
TABLE 67: SINGLE PROCESSOR, 31ST TEST RESULTSeieereirnennne 117
TABLE 68: SINGLE PROCESSOR, 32ND TEST RESULTS ... 117
TABLE 69: SINGLE PROCESSOR, 33RD TEST RESULTS ...t 117
TABLE 70: SINGLE PROCESSOR, 34TH TEST RESULTS ...t 118
TABLE 71: PARAMETERS USED FOR TWO PROCESSOR TESTcccceounerivimennnnnnnnen 119
TABLE 72: TWO PROCESSORS, IST TEST RESULTScorrereiieeenereeesnencnenenes 120
TABLE 73: TWO PROCESSORS, 2ND TEST RESULTScooeirrtererrennersasannnsaenes 121
TABLE 74: TWO PROCESSORS, 3RD TEST RESULTSc.couinirnncecrnrenenninnnennennens 121
TABLE 75: TWO PROCESSORS, 4TH TEST RESULTS ...t 121
TABLE 76: TWO PROCESSORS, 5TH TEST RESULTScuoeereeeerenensnennenessnesencacs 122
TABLE 77: TWO PROCESSORS, 6TH TEST RESULTScccocivniinccnnecrinencreerscanens 122
TABLE 78: TWO PROCESSORS, 7TH TEST RESULTSerrrineeriiesnnenccnreecnen 122
TABLE 79: TWO PROCESSORS, 8TH TEST RESULTSceecirncnnscenncennans 123
TABLE 80: TWO PROCESSORS, 9TH TEST RESULTSc.cooeiteeenreenccnsenennnnens 123
TABLE 81: TWO PROCESSORS, 10TH TEST RESULTScuieeeerceennncrcrerennnnnnans 123
TABLE 82: TWO PROCESSORS, 11TH TEST RESULTSceeeeirnteenccrencnnanane 124
TABLE 83: TWO PROCESSORS, 12TH TEST RESULTScueermiceenceeeenercneacans 124
TABLE 84: TWO PROCESSORS, 13TH TEST RESULTSccicrenrenrncrcnnnnnane 124

TABLE 85:
TABLE 86:
TABLE §7:
TABLE &&:
TABLE 89:
TABLE 90:
TABLE 91:
TABLE 92:
TABLE 93:
TABLE 94:
TABLE 95:
TABLE 96:
TABLE 97:
TABLE 98:
TABLE 99:

TABLE 100:
TABLE 101:
TABLE 102:
TABLE 103:
TABLE 104:
TABLE 105:
TABLE 106:
TABLE 107:
TABLE 108:
TABLE 109:
TABLE 110:
TABLE 111:
TABLE 112:
TABLE 113:

TWO PROCESSORS,
TWO PROCESSORS. 15TH TEST RESULTSccccoimnniinieiereeenene 125
TWO PROCESSORS, 16TH TEST RESULTS ... 125
TWO PROCESSORS, 17TH TEST RESULTS ..., 126
TWO PROCESSORS, 18TH TEST RESULTS ... 126
TWO PROCESSORS, 19TH TEST RESULTS ...t 126
TWO PROCESSORS, 20TH TE'ST RESULTSocoooiiiricinircrenenceienees 127
TWO PROCESSORS, 21ST TEST RESULTS ..o 127
TWO PROCESSORS, 22ND TEST RESULTS ... 127
TWO PROCESSORS, 23RD TEST RESULTS ..ot 128
TWO PROCESSORS, 24TH TEST RESULTS ...t 128
TWO PROCESSORS, 25TH TEST RESULTScininncinrernnncnenns 128
TWO PROCESSORS, 26TH TEST RESULTSccooevinrnnminnccsinniienennnes 129
TWO PROCESSORS, 27TH TEST RESULTT7ccvevinrerienciienneneenennen 129
TWO PROCESSORS, 28TH TEST RESULTS ..., 129
TWO PROCESSORS, 29TH TEST RESULTSccovimiiiinirnrcenncncannnens 130
TWO PROCESSORS, 30TH TEST RESULTScoveviiiccinnnsevesnsennnes 130
TWO PROCESSORS, 31ST TEST RESULTScccivenriiiineinnnniininencae 130
TWO PROCESSORS, 32ND TEST RESULTScocovvvinnnnenccenseresinsennnns 131
TWO PROCESSORS, 33RD TEST RESULTSccoovevnnnrcrerrensireranene 131
TWO PROCESSORS, 34TH TEST RESULTSccccoevviniunncnnnnnisiescscanes 131
TWO PROCESSORS, 35TH TEST RESULTS ... 132
TWO PROCESSORS, 36TH TEST RESULTScccovvvniicertrncenecnees 132
TWO PROCESSORS, 37TH TEST RESULTScccnriicnnntcrenennes 132
TWO PROCESSORS, 38TH TEST RESULTScccccomnunerieeirnccnnnen 133
TWO PROCESSORS, 39TH TEST RESULTScvomrciiniirnenenneennenes 133
TWO PROCESSORS, 40TH TEST RESULTScccocevnnrmnnnrnesvnissereneanes 133
TWO PROCESSORS, 41ST TEST RESULTScccooeecemierrrirennesereneninnenes 134
TWO PROCESSORS, 42ND TEST RESULTScovimiiririicnecrcnnanens 134

TABLE 114: TWO PROCESSORS, 43RD TEST RESULTS ...coccooiie 134

TABLE 115: TWO PROCESSORS, 44TH TEST RESULTS ... 135
TABLE 116: TWO PROCESSORS, 45TH TEST RESULTS ... 135
TABLE 117: TWO PROCESSORS, 46TH TEST RESULTScccooie 135
TABLE 118: TWO PROCESSORS, 47TH TEST RESULTSccccooviiiiiiiinencnns 136
TABLE 119: TWO PROCESSORS, 48TH TEST RESULTS ... 136
TABLE 120: TWO PROCESSdRS, 49TH TEST RESULTS ...oooerveeeee e ssesenseanns 136
TABLE 121: TWO PROCESSORS, SOTH TEST RESULTScoovniiieieeiiereeennees 137
TABLE 122: TWO PROCESSORS, 5I1ST TEST RESULTScooerereeenteieneenennes 137

xi

LIST OF FIGURES

Figure 1: ISO-OSI Reference Model ... icicievninnccnesenneesesreesenssseessssnessssnesecasenns 5
Figure 2: The Four Layers of the TCP/IP Protocol Suiteccveveeervvecrcreerenenenrenesneenens 7
Figure 3: [P Headerccccceneveevvnennnenen. freeerneteesarsniesuassrassestonassasasesanesssesnsesasesnsesnsasnsans 8
FIBUIE 4: TCP HEAET ...t ctneveeassscesaesssanssesssessessesssesssassssnsesssssssnsens 9
Figure 5: Relationship Between FDDI and ISO-OSI Layerscccoceeeeveveccccnrennenennne A1
Figure 6: Block Diagram of the FDDI Layerscccccccvnernrersereeenenresnenssssesassessessesenns 12
Figure 7: FDDI Frame FOrmatcccocccieiieenninnnnenennesensesrsnnnnessessesessessssersesssnsssssesasses 14
Figure 8: Composition of FDDI Frames and Percentage of Qverhead 16
Figure 9: Timers and Counters Used in Data TranSmiSSionccceeceeveerrereveerservernesnennes 18
Figure 10: NPS’s FDDI Research NEtWOTKccccccceereerrerernnrensecsuessessssesnssnssassscsssnssses 19
Figure 11: Sun-4m Architectare Used in the SPARCstation 10 Systemccceureevennnee. 24
Figure 12: The IRIS Indigo CPU BOArdccceoeereeermrnseernrunessinreeesesssssssessencssesssseseens 26
Figure 13: Flow of Data Across the FDDI Network Using the RCP Command 29
Figure 14: Example of setsockopt and getsockopt System Callsccoeeereeeecerenennnnen. 33
Figure 15: Implementation of RCP System Callcooocnnneerennnereessssnessresassaeseenees 34
Figure 16: Gold Versus White, TWO PrOCESSOIScccccerrecasrsaesaerssrnsaesessesnesesssseessnssnasns 42
Figure 17: Gold One Processor Versus Gold TWO ProCESSOTScceereeeerereesenssesssesenans 43
Figure 18: Gold, One Processor, SunOS 4.1.3 Versus Solaris 2.3ccvevennreareenens 45
Figure 19: NTTCP Output for File Size of 4194304 BYtesccccecerneeansassesnssenensaans 46
Figure 20: SAS Analysis of Single Processor Transfers sevssessressnssetsnessasnenesessnsesnenes 49
Figure 21: Single Processor, File D Transfer From White to Goldcccceocveuevceneuennens 51
Figure 22: SAS Analysis of Two Processor Transfersccceevereeersensssereesesseransnssenses 52
Figure 23: SAS Analysis of Single and Two Processor Transfersccceereevveveervennn. 54

xii

Figure 25: SAS Throughput PrediCtionc.cocoiviivinininininciirnnnccinineeecscnsenaesesnees 56
Figure 26: Relative Importance of Each nttcp Parameterccoceveveeeiiieininiiininccnncns 5%
Figure 27: Throughput Comparison Between White and Goldcccccceevrivvrnicvenenn. 60
Figure 28: RCP File Transfers From Gold To Whitec.cccovvrcininininninncnenscnsinrcnnernnne 63

1. INTRODUCTION

A. BACKGROUND

Data communication networks are now an essential part of our society. Our
technology base has given us workstations which can process data at speeds which makes
mainframes from just a few years ago look slow in comparison. Now, not only must we
process the data faster, but we also distribute the information to other locations at speeds

which just a few years ago were impossible. We truly are in the information era.

In the 1960s and 1970s, the computer industry worked hard to develop new
technologies which would give us faster, more powerful computers. The dramatic advances
in integrated circuits technology made possible the wide availability of larger, more
powerful super computers, low-cost workstations, and personal computers [ALBEY4].
There were the companies which believed that the large, centralized processors were the
solution to everyone’s problems. At the same time, other companies developed smaller
computers called minicomputers. These minicomputers, and their successors, desktop
workstations, started filling the needs of small companies and universities which couldn’t
afford the cost of large mainframes and did not need the processing power provided by the
large, all in one solution provided by the mainframe.

In the world of mainframes, the need to distribute data to other computers was not
critical. The single mainframe would handle all of a company’s processing needs. If there
was a need to handle additional processing, the manufacturer of that mainframe provided a
solution which would allow their mainframe to communicate with another of their
mainframes. This of course ensured that the company or university continued to buy all or
most of their computer equipment from the same computer manufacture.

With the growth of the minic smputers and the workstations came the need to connect
these less expensive and less powerful machines. This provided the motivation and the

driving force behind the development of Local Area Networks (LAN). There were the
proprietary options provided by the computer manufactures. However. with the need to
provide connectivity between systems came the desire to have connectivity between
systems from different manufacturers. This was very difficult without some sort of agreed
upon standards. In the late 1970s, the International Standards Organization (ISO)
developed the Open Systems Interconnection (OSI) reference model to serve as the basis
for future open networks. This model would provide the basis for computers from different

vendors to be able to communicate with each other [ALBEY4).

Now we have the beginnings of connectivity between computers and the beginnings
of smaller, more powerful computers. In the 1980s, Sun Microsystems started producing
their line of desktop workstations. Within a few years, these workstations were being based
on new Reduced Instruction Set Computer (RISC) technology which allowed Sun
Microsystems and other companies to produce faster, more powerful workstations. Now if
we combine the advancements of the desktop workstations with the advancements made in

networks, we have the true beginnings of the information era.

The question now becomes one of which technology is advancing faster. Are we
producing workstations which can exceed the capability of the networks or are the
networks staying ahead of the abilities of the workstations. Also, advancements in
workstation technology isn’t just limited to faster hardware. Is the operating system and its

networking tools keeping pace with current demands?

It is clear that the workstations are faster and more powerful than in the past. It is also
clear that the networks can handle more data at faster rates than in the past. But where do
we stand if we compare a recently released product produced by Sun Microsystems with
one of the current high speed networks such as Fiber Distributed Data Interface (FDDI)?

B. OBJECTIVE

The objective of this thesis will be to measure actual throughput between high
performance workstations over an FDDI network to determine what bottlenecks, if any,

exits between Sun Microsystem SPARCstation™ 10 multiprocessors running SolarisT™

2.3 and the Network Peripheral™ SBus FDDI Network Interface cards and to evaluate
Transmission Control Protocol/Internet Protocol (TCP/IP) as a high speed transport
protocol. This process will require an analysis of the workstations being used in this study.
an understanding of current network operating system tools and measurements of data
transfers across the network being tested. .

This is not simply a matter of reading the vendor’s pror;10ﬁonal literature and seeing
which aspect of the distributed processing environment is more capable. Vendors normally
promote those aspects of their products which they can demonstrate as performing at or

above some threshold. This threshold may or may not be value to the consumer.

C. SCOPE, LIMITATIONS AND ASSUMPTIONS

The scope of this investigation is limited to performing testing and tuning at the level
available to any system administrator. No modifications are made to any hardware or
changes made to the workstation kernel which are not considered tunable parameters. From
this investigation, a determination will be made as to whether or not there are any
bottlenecks.

It is assumed that the changes made and the results observed on the SPARC 10
multiprocessors running Solaris 2.3 can be extrapolated to pther vendor’s hardware and
software. If we note that changing the TCP/IP window size on our workstations results in
a 10 fold increase in throughput, then we assume comparable results would be observed on

other vendor’s workstations.

D. ORGANIZATION OF THESIS

This thesis is organized into seven chapters. This chapter provides the introduction and
scope of work to be performed. Chapters II and I provide a background on networks in
general, FDDI1 specifically and the specifics on the workstations involved in this
investigation. Chapters IV and V cover the methodology, test results and analysis of results.

Chapter VI covers what conclusions can be derived from these results.

II. NETWORK PROTOCOLS

A. NETWORKING THEORY

The primary focus behind the development of network protocols has been the
organization of the protocol into a series of layers. This has allowed the design of the
protocols to be simplified by focusing attention at each layer upon that layer’s function and
its interaction with the layers above and below. The purpose of each layer is to offer certain
services to the layer above without the higher layer needing to know how those services
were provided.

When designing a network protocol the network designer must determine how many
layers the protocol will have, what those layers will do and how the layers will
communicate with ecach other. This last decision, deciding how the layers will
communicate, is one of the more important considerations. A clean-cut interface must be
defined which will minimize the amount of information that must be passed between
layers.

The set of layers and protocols is know as the network architecture. Enough
specification must be given for each layer of the protocols so that vendors can write their
versions of the protocol for their computer architecture. This is what makes the network
architectures beneficial to everyone accessing a network. By having an agreed upon
network architecture that everyone is willing to use, we can have distributed processing
over heterogencous processors [MINO91].

B. OPEN SYSTEM INTERCONNCETION

The Open System Interconnection (OSI) reference model, Figure 1, was proposed in
1978 to promote compatibility between network designs. This model was approved as a
standard [ALBEY4] in 1983 by the International Standards Organization (ISO). The
reference model is not a protocol or set of rules but a layering of required functions. or

services, that provides a framework with which to define protocols. In practical terms. OSI
is seen as a means of developing communications networks which are not restricted by the

need to conform to a rigid set of manufactures™ proprietary standards and protocols.

Application Application
Presentation Presentation
Session Session
Transport Open Relay Systems Transport
Network Network Network
Data Link Data Link . Data Link
Physical Physical Physical

Physical Media for Interconnection

Figure 1: ISO-QOS1 Reference Model

The purpose of these seven layers is to define the various functions that must be carried
out when two machines communicate. Each of the seven layers is architecturally
independent, so that the relevant protocols and service functions of each layer can be
developed independently. The seven layers of the model can be roughly divided into two
parts; the first four layers, physical to transport, provide the telecommunications functions
and operate on a node-to-node basis. The top three layers, session to application, are
concerned mainly with carrying out processing functions and creating a meaningful dialog
between the user and the application.

Below are the seven layers of the OSI model [STAL91]:

« Layer 1: Physical Layer
« Layer 2: Data Link Layer
« Layer 3: Network Layer

* Layer 4: Transport Layer

* Layer 5: Session Layer

* Layer 6: Presentation Layer
* Layer 7: Application Layer

C. TRANSMISSION CONTROL PROTOCOL/INTERNET PROTOCOL

The Transmission Control ProtocolIntemet Protocol (TCP/IP) protocol is also
structured as a series of layers. Each layer is designed for a specific purpose. They are
designed so that a specific layer on one machine sends or receives exactly the same object
sent or received by its twin on another machine. This is done without regard to what is

going on in layers above or below the layer under consideration.

The advantage of layering is that it simplifies protocol design. The designer can
concentrate on a specific layer without regard to the design of other layers. For example,
when designing the transport layer of the protocol, the engineer need be concerned only
with assuring that a packet received by one machine is identical to the packet sent by
another. The message contained in the packet is of no concem. The integrity of the message
is of concern only to the designer of the application layer.

Members of the TCP/IP family include the Internet Protocol (IP), Transmission
Control Protocol (TCP), User Datagram Protocol (UDP), Address Resolution Protocol
(ARP), Reverse Address Resolution Protocol (RARP), and the Internet Control Message
Protocol (ICMP). The entire family may be referred to as TCP/IP, reflecting the names of

the two main protocols.

The OSI model describes an idealized network communications model. TCP/IP does
not correspond to this model at every level, but instead either combines the functions of
several OSI layers into a single layer, or finds no need to make use of certain layers. In
consequence, TCP/IP can be described by a simpler model as shown in Figure 2 [STEVY4].

1. Link Layer

The Link layer is the hardware level of the protocol model. It specifies the
physical connections between hosts and networks, and the procedures used to transfer

packets between machines.

Application Telnet, FTP, e-mail, etc.
Transport TCP, UDP
Network IP, ICMP, IGMP
Link device driver and interface card

Figure 2: The Four Layers of the TCP/IP Protocol Suite

2. Network Layer

This layer is responsible for machine-to-machine communications. It determines
the path a transmission must take, based on the receiving machine’s IP address. The
network layer also provides transmission formatting services; it assembles data for
transmission into an internet datagram. If the datagram is outgoing (received from the
higher layer protocols), the network layer attaches an IP header (Figure 3) to it. This header
contains a number of parameters, most significantly the IP addresses of the sending and
receiving host. Other parameters include datagram length and identifying information, in
case the datagram exceeds the allowable byte size for network packets and must be
fragmented.

3. Transport Layer
The transport layer protocols enable communications between application
programs running on separate machines. The transport layer assures that data arrives in

sequence. and without error. It does so by swapping acknowledgments of data reception.
and the retransmission of lost packets. This type of communication is known as “end-to-

end”. Protocols at this level are TCP, UDP, and ICMP.

0 15 16 3
-t | Abirhesder [8-bit °§m 16-bit total length (1n bytes) T
e * | b :
16-bit idensification flags 13-6it {mpmen: ollset

&w‘:«l’;"m $-bit protwcol 16-bwt beader checksum 20
bytes

32-bit source IP address

32-bik destiaation IP address

options (if any)
data

Figure 3: IP Header

TCP attaches a header onto the transmitted data. This header contains a large
number of parameters, see Figure 4, which help processes on the sending machine connect
to peer processes on the receiving machine. TCP uses 16 bit port numbers as its addressing
method. Servers are normally know by their well-known port number. For example, every
TCP/IP implementation that provides an FTP server provides that service on TCP port 21.
Every Telnet server is on TCP port 23 {STEV94).

4. Application Layer
The application layer lets you use various TCP/IP standard internet services.
These services work with the.next lowest level of protocols (transport) to send and receive
data. These services include telnet, fip, rcp, and the Domain Name Service (DNS).
telnet. The Telnet protocol enables terminals and terminal oriented processes to

communicate on a network running TCP/IP.

0 15 16 31

16-at source port number 16-bat desnnanon port number T

32-bit sequence number

-
32-bit acknowledgment number 20

) bytes
ULAIP[RIS|F
4-bit header reserved .
length 16 bits) z (K'S MAMR 16-b1t window size
-
16-bit TCP checksum 16-bit urgent pointer
options (if any)
data (if any)

Figure 4: TCP Header

Jip. fip transfers files to and from a remote network. Unlike rcp, fip works even
when the remote computer is running a non-UNIX operating system. A user must “log in”
to the remote computer to make an fip connection unless a system administrator has set up
the computer to allow “anonymous ftp™.

rep. rcp copies one or more files or hierarchies to and from a remote computer.
The remote computer must be running UNIX. One must be an accepted user of the remote
computer (i.e., the user’s name must be in the remote computer’s password database, and
the user’s machine name must be listed in the remote .rhost file). If this is not the case, a
user cannot copy anything to or from the remote machine. The user must know the
complete pathname of the file or directory to be copied.

DNS. DNS provides host names to the IP address service. It is a distributed
database that is used by TCP/IP applications to map between hostnames and IP addresses.
The DNS provides the protocol that allows clients and servers to communicate with each

other and to provide electronic mail routing information.

D. FIBER DISTRIBUTED DATA INTERFACE

1. Fiber Distributed Data Interface Basics

Fiber Distributed Data Interface (FDDI) is a 100 Mbps high speed LAN standard
developed under the auspices of American National Standards Institute (ANSI) X3T9.5
committee. FDDI was developed to create a reliable fault-tolerant, high-speed network
connecting numerous stations over greator distances than existing standards. Although
FDDI is somewhat similar to the IEEE 802 standards, it is not part of that family of
standards [MINO91].

The ANSI X3T9.5 commitiee developed specifications for a network based on a
dual counter-rotating fiber optic ring using a timed-token protocol, which is capable of
transmitting data at 100 Mbps in each ring and which can extend to 500 stations over total
fiber length of 200 km with full system performance. The dual counter-rotating ring can
support connections up to 2 km with multimode fiber and connections up to 60 km using
single-mode fiber.

The FDDI standard allows for two types of traffic: synchronous and
asynchronous. Synchronous traffic should consist of data which is time sensitive such as
voice or interactive video. Any delay in the throughput of this traffic has an adverse affect
of the quality of the data being transferred. Asynchronous traffic should consist of more
routine data transfers such as email, file transfers and Network File System (NFS) or
Network Information Service (NIS) traffic. These packets of data can sustain some

reasonable delays in transmission without any adverse affects on the applications.

2. Fiber Distributed Data Interface Layers

The standard for FDDI developed by the X3T9.5 committee included four layers
shown in Figure 5. They are the Media Access control (MAC) layer, the Physical (PHY)
layer, the Physical Medium Dependent (PMD) layer, and the Station Management (SMT)
document [ALBE9%4].

10

Applicaton
Presentation

Session
:é Transport . _-7]. wc
80 P ”~
g Network _ - MAC |
= | Datalink __—=""1] PHY [smr

Physical PMD

OSI Model FDDI Standards

Figure 5: Relationship Between FDDI and ISO-OSI Layers

The four layers of FDDI fall under the first two layers of the OSI Model. The
physical layer of FDDI is specified in two documents: the FDDI PMD which defines the
optical interconnecting components used to form links and the FDDI PHY which defines
the encoding scheme used to represent data and control symbols. The DLL is also divided
into two sublayers: A MAC and LLC layer. The MAC portion provides access to the
medium, address recognition, and generation and veriﬁcaﬁc;n of frame check sequences.
The LLC specification is not part of the FDDI standard [MINO91).

Below in Figure 6 is an additional graphical representation of the interaction
between the FDDI standards as described in [POWE93].

a. The Physical Medium Dependent Layer

This layer defines all transmitters, receivers, cables, connectors and other
physical media and hardware. There are currently 6 media options provided for the PMD
layer:

11

« Multimode fiber (PMD)

« Single-mode fiber (SMF-PMD)

« Low-cost fiber (LCF-PMD)

« Shielded twisted pair (STP-PMD)

» Unshielded twisted pair (UTP-PMD)

» FDDI on Synchronous Optical Network (SONET)

[EEE PRO2Z LLC
‘ v 1
MAC

<> - packet interpretation
SMT - token passing
- monitor ring - packet passing
- manage ring

- configure ring * J
- ecti
manage connections POy

- encode/decode
- clocking

v

es| PMD
- electronic/optic conversion

v 1

Fiberout Fiberin
Figure 6: Block Diagram of the FDDI Layers

F

The first three options are published or soon to be published standards. The
last three options are under development [ALBEY94].

The PMD layer provides the PHY layer all the services required to transport
a coded bit stream from one node to the next node. It converts the encoded data requests
from the PHY layer into either optical or electrical signals depending on the media being
used. It also provides SMT with the needed services required for proper ring management.
The PMD layer informs both the SMT and PHY layers whenever it detects a signal on the
medium [ALBE9%4].

12

b. The Physical Layer
This layer provides media independent functions associated with the OSI
physical layer. The PHY layer decodes incoming bit stream into a symbol stream for use
by the MAC layer and it encodes the data and control symbols provided by the MAC layer
for transmission via the PMD layer. The PHY layer continuously monitors the ring status

by listening to incoming signals and passes this information onto the SMT layer [ALBEY4].

¢. The Media Access Control Layer

This layer provides fair and deterministic access to the network. The access
is fair because a workstation’s physical location does not give it any advantage in accessing
the medium over another workstation’s location. The service is deterministic implies that
the time the workstation has to wait for the token can be predicted under error free
conditions.

In FDDI, medium access is controlled by a token. The workstation which
possesses the token can transmit frames. The other workstations on the network repeat the
frame, and the destination workstation copies the frame in addition to repeating it. The
MAC layer of the workstation which generated the frame is responsible for removing the
frame and passing the token downstream to the next workstation when it’s Token Holding
Time (THT) has expired [ALBE94].

d. The Station Management Layer

The SMT layer provides services such as node initialization, bypassing faulty
nodes, coordination of node insertion and removal, fault isolation and recovery and
collection of statistics. The SMT layer provides these functions using services provided by
the PMD, PHY and MAC layers.

13

3. Fiber Distributed Data Interface Framing

Most communications within FDDI is done on frames (Except Physical
Connection Management (PCM) signaling). Within the MAC layer there are three frame
types:

« Tokens

+ Management frames
e Data frames

Each frame is made up of three parts. The first part is the start of the frame
sequence. The next part is the data or information part of the frame. The last part is the end
of the frame sequence. The data frame is shown in Figure 7 along with the size of each field
in symbols [ALBEY4).

[o -
m§ - . . 4 13 H)g
§.§ gg Destination §§ Information gg% §_§ §§
28| £8) M= | &2 6% | 28| &3
2 2 12 . 12 8 1, 3
\ P |
-
Sizes are in symbols - |
1 symbol = 4 bits _ - 7
Total frame (minus information) size: Detected | Reco Copied
40 symbols * 4 bits / 8 bits = 20 bytes n : :

Figure 7: FDDI Frame Format

The start part of the frame is 28 symbols in length. Each symbol is a 4 bit unit.
This means the start portion of the FDDI frame is 28 symbols * 4 bits / 8 bits = 14 bytes
long. The end portion of the FDDI frame is 12 symbols or 6 bytes long. Since the maximum
frame length is 9,000 symbols or 4,500 bytes, this lcaves 4,480 bytes available for data or
information. This remaining portion of 4,480 bytes, is also know as the FDDI Maximum
Transfer Unit (MTU) value [ALBE9%4].

14

4. Encuding Method

Digital data needs to be encoded for proper ransmission.The type of encoding
used is determined by the type of media being used. the desired data rate. noise present on
the transmission media and other factors. Since FDDI was originally intended for use over
fiber optics, the encoding method selected needed to provide a digital-to-analog capability.

FDDI uses a two-stage encoding scheme; 4B/5B group encoding along with the
digital signal encoding method known as Non-Retumn to Zero Inverted (NRZI). NRZl is an
example of differential encoding. The signal is decoded by comparing the polarity of
adjacent signal elements rather than determining the absolute value of a signal element. In
4B/5B, the encoding is done 4 bits at a time resulting S encoded bits. Then, each element
of the 4B/5B stream is treated as a binary value and encoded using NRZI.

The result is that FDDI is able to achieve a 100 Mbps throughput using a 125-
MHz rate. As mentioned earlier, the PHY layer is responsible for decoding the 4B/5B
NRZI signal from the network into symbols that can be recognized by the station. The
synchronization is derived from the incoming signal and the data are then retimed to an

internal clock through an elasticity buffer.

E. NETWORK OVERHEAD

The process of transferring data from one workstation to another involves all the layers
of protocols described previously. Even though the protocols are broken into layers to
distribute functionality, the result is increased overhead. As discussed earlier, for each layer

of protocol. there is an associated overhead at that layer as shown in Figure 8.

15

User data Application
4440 bytes l
+@—— TCP segment —>
TCP
header User data TCP
20 bytes | 4440 bytes l
<§———————[P segment - P
p TCP User d .
header header ser data l
20bytes | 20 bytes | 4440 bytes
FDDI
F—mm MTU (4480 bytes) ——> FDD
- FDDI frame -]
FDDI IP TCP FDDI FDDI
14byes | 20byes | 20bytes | 4440 bytes | 6 bytes

Maximum FDDI frame: 4500 bytes
Maximum data transferred: 4440 bytes
Percentage of overhead: 1.33%

Figure 8: Composition of FDDI Frames and Percentage of Overhead

16

The amount of overhead involved in transferring data is dependent upon the protocols
used and the network media being used as the transfer agent. For FDDI. the overhead is

calculated as follows:

Data Overhead Level Total Overhead
4.440 bytes 0 Application 0 bytes
4,440 bytes 20 bytes . TCP . 20 bytes
4,440 bytes 20 bytes 1 g 40 bytes
4,440 bytes 20 bytes FDDI 60 bytes

In this example, the frame of data being sent is 4,500 bytes: total amount of data being
transferred is 4,440 bytes and total amount of overhead is 60 bytes. Therefore, the
percentage of overhead is the amount of overhead (60 bytes) divided by the total frame size
(4,500 bytes). Overhead = 60 bytes / 4,500 bytes = 1.33%. If we were to only send 11 bytes
of data, then the overhead would be 60 bytes / 71 bytes = 84.5%. It is clear that the more
data sent in each FDDI frame, the lower the percentage of overhead associated with that
frame. Note that in this example the overhead from the application layer was not included.

F. FIBER DATA DISTRIBUTED INTERFACE PARAMETERS

This section will give a brief explanation of FDDI parameters as covered in the ANSI
standards. The MAC layer must implement a number of thecz parameters as timers and
counters. The three main goals of these timers and counters are to [ALBE94]:

* Allow the initialization of the token rotation timer
* Permit fast recovery from ring errors
* Aid in the collection of ring statistics for SMT

Below in Figure 9 are a list of the important timer values and variables used in the data
transmission process. According to the FDDI standards, every time a node releases a token,
it loads the value of T_Opr into Token Rotation Timer (TRT). This timer then decrements
until it reaches zero. If it reaches zero before a valid token is received. the token is said to
be late and the late counter (Late_Ci) is icremented. If TRT expires a second time before

a valid token is received, an error condition exists and recovery procedures are initiated.

17

The token holding timer (THT) is used to control asynchronous wansmission in a dynamic
manner. When a valid token is received and the Late_Ct is not set. the token is said to be
early and the node may transmit asynchronous data. In this case, THT is set to 7_Opr minus
TRT and the node may transmit until THT expiries. TVX is a hardware backup timer that
is used to prevent nodes from blabbering on the network due to some error or

miscalculation of THT [ALBEY4).

Parameter Description

TTRT Target token rotation time

TRT Token rotation timer

T Opr Operative TTRT negotiated during claim process
Late_Ci Late counter

THT Token holding timer

TVX Transmission valid timer

Figure 9: Timers and Counters Used in Data Transmission

18

IIIl. NETWORK EQUIPMENT

A. NETWORK OVERVIEW

The Naval Postgraduate School (NPS) FDDI research network consist of the three
machines operating on a ring. The names of the three machines on the FDDI LAN are
“Black”, “White” and “Gold”. Gold is the server on the network. The network is setup as

shown in Figure 10.
Gold White
NPI SBus FDDI NPI SBus FDDI
SMT7.2 V2.2 SMT7.2 V2.2

Token Rotation
and Data Flow

-

Figure 10: NPS’s FDDI Research Network

 Black
SGI xpi0 *
| SGI FDDI SMT V3.0.1

19

1. Fiber Optics Equipment

The specifications for the fiber optics equipment can be found in the PMD
standards. Originally, only optical fiber was specified as a physical media for FDDI. Now
it is possible to also use shielded twisted-wire for short-distance transmissions. The
requirements for twisted-wire can be found in the STP-PMD standards.

The recommended fiber size for FDDI is 62.5/125 p m.The operating wavelength
is specified as 1300 nm and the minimum‘allowable power for the transmitter is -16 dBm.
Pin diodes are to be used in the link. Pin diodes were chosen over avalanche photodiodes

since pin diodes are a more mature technology and would result in a lower cost receiver.

The bit-error rate (BER) of the network is 4 x 10"!! and the maximum number of nodes is
500 [POWE93).

2. Network Peripherals’ Interface.

The Network Peripherals Inc. (NPI) SBus FDDI Network Interface conforms to
Sun Microsystems’ requirements for an SBus adapter. It mounts in a SBus slot and
implements burst mode Direct Memory Access (DMA) for the highest system performance
[NPI193].

As stated earlier, FDDI is designed to provide the capability for both synchronous
and asynchronous data transfer. This is not the case with NPI's SBus FDDI Interface card.
Furthermore, it is not the case for all known current implementations of FDDI. This makes
the relationship of the timers and counters described earlier not as well defined. Without
synchronous and asynchronous transfers, there is no need for Late_Ct and THT. Below is
a list of parameters which NPI list as its tunable parameters. Note that there is not a
parameter listed here which specifies how long a node can maintain the token.

sbf num_lic_rx /* For LLC network traffic:
/* number of 4k receive buffers, maximum is 64 4k buffers
/* Default is 48 4k buffers per NP-SB adapter

sbf_num_sme_rx [* For SMT network traffic:

20

/* number of 4k receive buffers, maximum is 64 4k buffers
/* Default is 4 4k buffers per NP-SB adapter

sbf mtu /* Maximum protocol packet size, default is 4352 bytes
sbf T Notify /* SMT Neighbor Notification Timer, default is 30 seconds

sbf_num_mcast /* number of multicast entries, default is 16

These parameters can be tuned by entering the appropriate line below in /

etc/system for each parameter.

1. To change number of receive buffers to 64:
set sbf:sbf num_lic_rx = 64

2. To change MTU size to 4192 bytes:
set sbf:sbf mtu = 4192

3. To change T_Notify timer to 10 seconds:
set sbf:sbf T Notify = 10

After contacting NPI it was learned that there is another parameter which is not
advertised called ¢_req. This parameter determines how long the node is allowed to ho!~
the token.

3. Silicon Graphic’s Interface

FDDIXPress™ 3.0.1 is a network interface controller (board and software)
providing FDDI connectivity for Silicon Graphics workstations and servers. For the RIS
Indigo. FDDIXPress has two configurations of the FDDI board: FDDIXPI and FDDIXPID.
The FDDIXPI board allows one single-attachment FDDI connection to an FDDI
concentrator; the FDDIXPID board provides a dual-attachment FDDI connection directly
to the dual ring, or one or two connections to an FDDI concentrator. An Indigo can

accommodate one of these boards.

21

When FDDIXPress is installed, an Indigo can also use its built-in Ethernet
network interface, thus having two network interfaces. FDDIXPress for IRIS Indigo has

been designed for customer installation.
B. WORKSTATION OVERVIEW

1. SUN SPARCstation 10 system

The SPARCstation 10 systems used in this test were the new multiprocessing
systems running Solaris 2.3 We had two SPARCstation 10 systems, Gold and White,
available for our FDDI research. Both systems have two processors, two internal hard disk
drives and 224 Dynamic Random Access Memory (DRAM). Gold has two SOMHz
processors and 2 - 1 GB internal drives. White has two 40MHz processors, 1 -1 GB internal
drive and 1-425 MB internal drive.

a. Software Architecture

Solaris 2.3 is a multilayered operating system that includes SunOS 5.3, Open
Network Computing (ONC), Open Windows, and the DeskSet. At the core of Solaris is
SunOS, the collection of programs that actually manages the system, which includes the
kernel, the file system, and the shells.

SunOS is a collection of UNIX programs that control the Sun workstation and
provide a link between the user, the workstation, and its resources. It has its roots firmly
placed in the two most popular UNIX families: Berkeley UNIX (BSD) and AT&T’s UNIX.
Early versions of SunOS blended some of AT&T’s UNIX with Berkeley UNIX and offered
additional enhancements.

AT&T and Sun Microsystems later worked together to create a new industry
standard, AT&T UNIX System V Release 4, commonly known as SVR4. SunOS 5.3
merges SunOS 4.1 and SVR4. Most of the new changes in SunOS come from SVR4. As a
result, Solaris 2.3 is based on SVR4 but contains a few additional BSD/SunOS features
[HESL93).

b. Hardware Architecture
The SPARCstation 10 architecture is shown in Figure 11 [SUNMY0]:
SuperSPARC microprocessor This is a high-performance CPU chip that
has the following features:

» A single chip with integer, floating point, memory management, and caches.
* Superscalar pipeline with up to three instructions launched per clock cycle.
« 20-Kbyte instruction cache and 16-Kbyte data cache.

* 64 entry TLB with hardware page-table walking.

* Integral support for cache-coherent multiprocessing.

The SuperSPARC processor has a companion chip, the SuperCache
controller, which provides for a 1-Mbyte external cache. Additionally, SPARC modules
with SuperCache controllers can operate asynchronous to the system clock.

MBus. The MBus is a high performance memory bus which was first
introduced in Sun’s SPARCserver 600MP family. It is a synchronous, 40-MHz 64-bit bus
that is capable of a peak transfer rate of 320 Mbytes/second. Typically, the MBus can
sustain a rate of 100 Mbytes/second.

This bus provides support for symmetric multiprocessing by means of a
“snooping” protocol. Whenever a processor puts an address onto the MBus, all other
processors “snoop” the bus, checking to see if data at the snooped address is in their cache.

Main memory architecture: The Sun-4m architecture uses a 144 bit wide
memory data path (128 bits of data and 16 bits of error detection and correction). The use
of a 128-bit wide memory data has two advantages. First, the 32-byte cache fill can be
accomplished quickly. Second, error corrections can be performed on each 64-bit word.
Single bit errors can be corrected and double-bit (4-bit) errors can be detected.

23

r———— - - - Q S
l Memory SIMMs - eight l
| | /} 16 MH/63 MB
l 1 — |
| Super Super 1 ECC | = |
Cache PAR(" | {.‘_. Memory J
‘ ' G : Controller i‘ |
| | 64-bit | -— |
40 MHz r—
l | | Sy — — e o
Super uper L 128 b data+ 16 bats ECC I
| Cache PARC| |
.
|]
b oo om oo o o cm o o <7
MBuw Sbus Boo PROM

o - 1 Do RI4S
St S o T, L e

| 40 ova | Bbemar |
I k’ Controlier

|

I T

: FDDI CARD

l l RIS

I ! ISDN "> ISDNNT

' I ‘H DBRI m;D ISDNTE

' | HD26,y Spoaker

| | Elbx

I I ‘VL [e e e o — =

tm—————- 4 I Linein |
: sysian mgguuo :mam :
b e - e o — — —— — — 4

Figure 11: Sun-4m Architecture Used in the SPARCstation 10 Systemn

I/O architecture: A single Application-Specific Integrated Circuit (ASIC)
serves as the interface between the MBus and the SBus. The MBus is used as the processor
memory interconnect, while the SBus is used only for I/O. The SPARCstation 10 system

24

supports four SBus slots. They provide the means to interface a variety of /O options,

including network interfaces such as FDDI, graphics adapters and laser printer interfaces.

2. Silicon Graphics IRIS Indigo

The Silicon Graphics RIS Indigo used in this test was an IRIS-4D™, model 4D/
RPC. The IRIS Indigo uses the R3000A CPU RISC processor from MIPS Computer
Systems Inc. It is assisted by a 32 Kbyte data and instruction cache and a MIPS R3010A
floating-point unit. To speed up data transfers, IRIS Indigo uses custom ASICs designed
by Silicon Graphics. These chips manage memory and processor interrupts, handle I/0 and
control the bus, often without CPU intervention [SILIC91].

We had one IRIS Indigo, Black, available for our FDDI research. This system has
one 33 MHz processor, one 1 GB internal hard disk drive and 32 Mbytes of RAM. The
workstation has the following features:

* A single 33 MHz chip with integer, floating point, memory management, and
caches.

* 32-Kbyte instruction cache and 32-Kbyte data cache.

* Integral support for cache-coherent multiprocessing

a. Software Architecture.
The IRIS Indigo uses IRIX 4.0 which is Silicon Graphics’ implementation of
the UNIX operating system. IRIX 4.0 is based on AT&T UNIX System V.3, but also
includes numerous 4.3 BSD extensions, such as TCP/IP network protocols and NFS, which

provide transparent access to files across a heterogeneous network

b. Hardware Architecture.
This IRIS Indigo CPU board, Figure 12 [SILIC91], contains four functional

sections:

« The processor core, which contains the CPU and FPU.

» Main memory, which contains DRAM and supporting circuitry

« The 1/O system, which contains peripheral ports and hardware designed to read
incoming data, manage incoming and outgoing data

« The audio system, which contains audio ports and digital signal processi:g
hardware.

25

Instr » Data
R3000VA R3010A Cacth Cache Sl

CPU FPU 32 Kbyte |32 Kbyte
; } ; e * e CPU bus
Expansion
DR!:M A PICI : Slot0 Slot |
up 0 R “‘e e ﬁ‘ OO0
96 Mbyres|' [224PPGA | FpD1j 15883

nel /N
68
POFP PROM
256 Bytes
WD)
33C93A |
[RAM
HPCl [| o> 321(:24&9
224 PPGA
SEEQ o

RS8573
8003 Clock _© +
t kT BaTT
and Mouse
285130

Audio DPS 285130

Subsysterf* | \Motorola ~<ap{ DUART [¢ @zwm
w7 g

Figure 12: The IRIS Indigo CPU Board

Peripheral Bus
g
g

Three busses connect parts of the CPU board:
« The CPU bus, which connects the CPU, FPU, cache control, and bus control

hardware.
» The G1O32 bus, which is the main system bus connecting the processor core,

26

main memory, I/O system. expansion slots, and graphics board.

« The Peripheral bus. which connects the peripheral ports, audio system, and
other /O components.

The CPU bus and the GI032 bus have separate clocks and run at different
speeds so that each part runs at maximum capability. The CPU and other chips can be

upgraded independently as technology improves.

Instruction and Data Caches. Each cache is a 32 Kbyte cache.The
instruction cache holds frequently used instructions and the data cache holds frequently
used data. The IRIS Indigo uses a write-through scheme in the data cache to ensure that

writes made to the cache are also written to the corresponding page in main memory.

The GI032 Bus. This bus is the IRIS Indigo’s main system bus, and is
designed for high speed data transfer. It connects the main systems of IRIS Indigo; the
processor core, main memory, the I/O systems, the graphics system, and any systems
plugged into the expansion slots. This bus is a synchronous, multiplexed address/data, burst
mode bus that operates at 33.3 MHz, clocked independently of the CPU. The bus protocol

supports data transfers at a maximum sustained rate of one word per clock.

The VO System. The /O system ties together a variety of I/O ports and the
chips that drive them, a system clock, system Programmable Read-Only Memory (PROM)
for booting up, an static RAM.

The HPC1 ASIC. The HPC1 is a custom Silicon Graphics chip that connects
to the GI032 bus, the peripheral bus, and directly to several of the I/O ports. It is the heart
of the I/O system, and quickly transfers data between main memory and a rich collection

of peripheral devices.

Expansion Slots. The two expansion slots, connected directly to the GI032
bus, provide direct access to the system for Silicon Graphics and third party plug-in boards
for such applications as high-speed networking, image compression, video deck control,

and additional [/O. Slot 0 is used for our FDDI connection.

27

IV. TEST DESIGN PLAN

A. TEST STRATEGY
The objective is to find the upper limit of throughput by measuring actual throughput

between high performance workstations pver an FDDI network and to determine what
bottlenecks, if any, exits between Sun Microsystem SPARC 10 multiprocessors running
the Solaris 2.3 and NPI’s FDDI network interface cards. This process will include
identifying the various parameters which affect throughput and testing these parameters in
enough detail to determine their impact on network performance. As explained in Chapter
11, there are various levels of software that are involved in transferring data. As shown in
Figure 13, as data is transferred from White to Gold, there are several impacts on the data
transfer rate.

The key to this test design plan will be gathering the appropriate data to determine
what impact these various parameters have on the transfer rate, and how to measure them.
Three different methods will be used to measure the performance of data being transferred
between workstations across the FDDI network. First, a commercial benchmarking tool
will be used to provide performance results on the workstations. Second, a public domain
networking benchmark tool will be used to show the transfer rate of the network. Third, a
simple program which issues an rcp command and measures the time of the file ransfer
will be used.

B. NEAL NELSON BENCHMARK
The primary benchmarking tool to be used for providing the performance results on

the workstations will be the Neal Nelson Business Benchmark™. This benchmark tool has
been around for over 9 years and has been used as a tool for verifying vendor compliance
during government contract awards. The Business Benchmark differs from other popular
benchmarks in that its primary focus is not to provide a single number speed rating for a

28

system, nor is its primary purpose to emulate a particular user group or duplicate the load
created by certain task mix. The Business Benchmark was designed to incrementally stress
various parts of a computer system and record how the system performs. The benchmark
was intended to uncover both the strengths and the weaknesses of a computer architecture

and report them separately so that they can be understood and analyzed [GRAY91].

White Gold
RCP fife to Gold
'
OS process RCP command Ack prepared
File is Made Available File stored
* TCP TCP f
13 P
‘ FDDI interface FDDI interface f
< Data Transferred via FDDI B—
— —

Figure 13: Flow of Data Across the FDDI Network Using the RCP Command

The Neal Nelson Business Benchmark is a multitasking benchmark with a parent/child
design. A parent process creates child processes and instructs them to run tests in various
combinations. There can be from one to one hundred child processes running
simultaneously during a benchmark session. During a test session the parent process creates
a single child process and instructs the child to perform a series of tests. Then the parent

creates a second child and directs both children through the same series of tests. This

29

process is repeated until a desired maximum number of child processes is reached. or until
the system runs out of some resource such as disk space [NNBMY4].

The benchmark consists of thirty tests, which are divided into three groups.

Group 1: Tests a of mix of activities that are intended to approximate the processing

activities for the following five types of users. Group 1 includes the following tests:

-

1) Simulated Office Automation Workload

2) Simulated Database Workload

3) Simulated Software Development Workload

4) Simulated Transaction Processing Workload

5) Simulated Calculation Workload (Math/Statistics/CAD/CAM)

Group 2: Tests designed to perform various types of calculation tasks and thereby
profile the performance of the computer’s calculation subsystem. Group 2 includes the
following tests:

6) Write to Shared Memory

7) Read from Memory, Small Instruction Area, Small Data Area
8) Read from Memory, Small Instruction Area, Larger Data Area
9) Read from Memory, Larger Instruction Area, Small Data Area
10) Read from Memory, Larger Instruction Area, Larger Data Area
11) Make Machine Page or Swap with ‘malloc’ and ‘free’

12) Combined Integer and Floating Point Math

13) Math Library Functions

14) Semaphores, Shared Memory, Context Switch

15) Write to and Read from Pipes, Context Switch

16) Sample System Calls

17) Increasing Depth of Function Calls

Group 3: Tests that perform a series of disk input and output functions to profile the
performance of the disk subsystem. Group 3 includes the following tests:

18) 1024 byte Sequential Reads from Unix File(s)
19) 1024 byte Sequential Writes from Unix File(s)

30

20) 8192 byte Sequential Reads from Unix Files(s)

21) 3192 byte Sequential Writes to Unix File(s)

22) 4096 byte Synchronized Reads from Unix File(s)

23) 4096 byte Synchronized Reads from Raw Device(s)
24) 16384 byte Synchronized Reads from Unix File(s)
25) 16384 byte Synchronized Reads from Raw Device(s)
26) 4096 byte Pseudo Random Reads from Unix File(s)
27) 4096 byte Pseudo Random Reads from Raw Device(s)
28) Profile Disk Cache for Unix File(s)

29) Profile Disk Cache for Raw Device(s)

30) 8192 byte Sequential Writes then ‘sync’

During each of the above tests, measures will be obtained at load factors from 1 to 20.
This load factor number indicates the number of copies of the benchmark program which
were running simultaneously. Each load factor unit might approximate the workload of one
or two heavy users or possibly twenty light users. The measurements will be in seconds to
complete the measured task. The system which takes less time to accomplish the measured

task is the faster system.

C. NEW TEST TRANSMISSION CONTROL PROTOCOL

New Test TCP (nttcp) uses Test TCP (tzcp) as the basic tool for determining measured
throughput over any physical network media. ntzcp provides the option of dynamically
changing the TCP/IP window size during the throughput test. zzcp was developed by the U.
S. Army'’s Ballistic Research Lab (BRL) which is now the U. S. Army’s Research Lab
(ARL) and is considered one of the default network performance benchmarks.

nttcp tests TCP and UDP performance by timing the transmission and reception of
data between two systems using the UDP or TCP protocols. It differs from common “blast”
tests, which tend to measure the remote inetd as much as the network performance, and

which usually do not allow measurements at the remote end of a UDP transmission.

For testing. the transmitter should be started with -t after the receiver has been started

with -r. For testing various window sizes, nstcp allows a -w option which permits the user

31

to specify the desired TCP/IP window size. Some of the other options which were used

during this investigation are shown below:

-t Transmit mode.

T Receive mode.

-u Use UDP instead of TCP. *

-n Number of source buffers transmitted.
-1 Length of buffers in bytes.

-w TCP/IP window size in k bytes.

-p Port number to send to or listen on.

Below are the commands used in a typical session during this investigation:

Receiving system (gold):

gold: nezcp -r -p3000 -w12

Transmitting system (white):

white: nstcp -t -p3000 -165536 -n1024 -w12 gold

The shell scripts along with the nrtcp program are in Appendix A. The shell scripts
doit.sh and ttest.sh were written by personnel at the U. S. Army Research Lab (ARL) and
modified to fit this investigation. These scripts were designed to be used with the program
nizcp. The first script, doitsh, provides the various combinations of data sizes to be
transferred along with starting and stopping times of each run. This script runs through six
iterations of identical data sets. The shell script ttest.sh, provides the calls to the program
ntep. Using the data length and number of packets specified in the shell script doit.sh,
ttest.sh makes numerous calls to n#zcp varying the window size from 4 k to 60 k in 8 k
increments. This combination of amount of data transferred, number of test runs and
number of window sizes provides a total of 576 measured data transfers during a single run.
Amount of data transferred (12 sizes) * number of test runs (6 runs) * number of window

2

sizes (8 different window sizes) = 576 measured data transfers. Below is an example of the
results from a single call to artcp with the amount of data to be transferred equal to
33.554,432 bytes of data and the TCP/IP window size being varied from4 k to 60 k in 8 k

increments:
Window Size(bytes) Transfer Rate (Mb/s)
4096 « 32,7680
12288 29.1271
20480 37.4491
28672 43.6907
36864 52.4288
45056 43.6907
53248 43.6907
61440 37.4491

The TCP/IP window size is adjusted during these runs using the setsockopt system
call. After the window size has been adjusted, the getsockopt system call is performed to
verify that the TCP/IP window size has been changed as requested. Figure 14 shows an
example of the setsockopt and getsockopt system calls used in the artcp program.

if (setsockopt (fd. SOL_SOCKET, SO_SNDBUF, (char *) &sendwin, sizeof(sendwin)) < 0)
printf(-get send window size didn’t work\n™);
if (setsockopt (fd. SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin, sizeof(rcvwin)) < 0)
printf(“get rcv window size didn’t work\a”™);

if (getsockopt (fd. SOL_SOCKET, SO_RCVBUF, (char *) &sendwin, &optlen) <0)
printf(“get send window size didn’t work\n");

else printf(“send window size = %d\n". sendwin);

if (getsockopt (fd. SOL_SOCKET., SO_RCVBUF., (char *) &rcvwin, &optlen) <0)
printf(“get rcv window size didn’t work\n™);

else printf(“receive window size = %d\n", rcvwin);

Figure 14: Example of setsockopt and getsockopt System Calls

i3

D. REMOTE COPY PROTOCOL TRANSFER

Another program being used to measure the data wransfer rate is a simple C program
which issues a rcp command transferring a file from one workstation to another (Appendix
B). The primary reason for choosing the rcp command is that it uses TCP which is a reliable
transfer agent versus UDP which is unreliable. By using the rcp command, we are able to
measure the time from the rcp command being issued to the time the ack is received back
from the other workstation. The system’ can access the clock prior to issuing the rcp
command, and then again after it receives the ack from the other workstation. Since the rcp
provides for reliable data transfer, this allows a measurement of the total transfer time.
Figure 15 shows the code obtaining the current system time, issuing the r¢p command and

then obtaining the system time again after the transfer is complete.

a = gettimeofday(×tart, zonestart);
if (a'=0)
pﬁnﬁ (llmps ! m"’ a);

/* Use system call to do file transfer */
system (“rcp large_file gold-fddi:/usr/test/gtow_test™);

/* Get stop time in sec&usec and check if successful */
b = gettimeofday(&timedone, zonedone);
if (b!=0)
printf ("Oops! %d\n", b);
Figure 15: Implementation of RCP System Call

This method includes all the overhead from the operating system, rcp, TCP, IP and
FDDI. After the rcp command is issued, the file is located in the file system and loaded into
memory. Next, the workstation from which the command is being executed must perform
a name/address resolution to determine where the file is being transferred. DNS provides
this name/address resolution. Once this name/address resolution is performed the file is
handed off to TCP to begin the transfer from workstation A to workstation B. TCP hands

34

the file transfer off to IP which forwards the file to the FDDI protocol. At this point the
FDDI SBus card transfers the file from workstation A to workstation B. At workstation B
the reverse scenario takes place. The file is handed off from the FDDI protocol to the IP
protocol, to the TCP protocol, and finally reaches the OS on workstation B. At this point,
TCP on workstation B must issue an ack to let workstation A know that the file has been
correctly received and handed off to the OS.

The rcp command copies files bc;ween machines. Each filename or directory

argument is either a remote file name of the form:
hostname:path

or a local file name (containing no: characters, or a / before any: characters).

If a filename is not a full path name, it is interpreted relative to the users home
directory on hostname. A path on a remote host may be quoted (using \, ", or ‘) so that the
metacharacters are interpreted remotely.

rcp does not prompt for passwords; your curren: local user name must exist on
hostmname and allow remote command execution by rsh.

rcp handles third party copies, where neither source nor target files are on the current
machine. Hostnames may also take the form

username@hostname:filename

To use username rather than your current local user name as the user name on the

remote host. rcp also supports Internet domain addressing of the remote host, so that:

username@host.domain:filename

35

I

specifies the username to be used, the hostname. and the domain in which that host
resides. Filenames that are not full path names will be interpreted relative to the home

directory of the user named username, on the remote host.

E. PARAMETERS WHICH AFFECT BOTH TEST

The following driver parameters will be tuned under Solaris 2.3.

sbf num_lic_rx /* For LLC network traffic:
/* Number of 4k receive buffers, maximum is 64 4k buffers
/* Default is 48 4k buffers per NP-SB adapter

nfs_async_threads /* Number of NFS thread for handling network file service
/* Default is 8 :

sbf treq /* Amount of ume for TTRT, default is 8ms
/* Range is from 2ms to 165ms

sbf mtu /* Maximum protocol packet size, default is 4352 bytes

The above 4 tunable parameters along with the TCP/IP window size will be varied
during the rcp and nttcp transfer test. The TCP/IP window size controls the amount of data
permitted to be transferred between TCP acknowlegments. Numerous tests will be run
varing each of the four parameters to determine what combination of values provides the
optimum throughput performance and what weight each parameter has on the changes. The
baseline test will be the values the manufacture recommends as the default values.

F. FILE SIZES FOR BOTH TRANSFERS

In order to measure the impact of the TCP, IP and FDDI overhead during the test,
various sizes of files will be transferred. For the rcp test, the properties of the four files to
be used are shown in TABLE 1. These files range in size from 6 bytes to 17,989,936 bytes.
The amount of overhead during the transfers can be estimated as follows:

For the nttcp test, the amounts of data to be transferred is shown is TABLE 2. The
amounts of data to be transferred is obtained by specifying the length of a buffer to be
transferred and the number of buffers. As an example, if 2048 buffers of length 8192 bytes

36

are transferred, then a total of 16,777,216 bytes of data are being transferred. The
combinations listed in TABLE 2 give a range from 4,194,304 bytes to 2.684354e+08 bytes
being transferred.

TABLE 1: RCP FILE SIZES AND ASSOCIATED OVERHEAD

Size otal Overhead
uge (17,989,936 bytes) 137%
e (1314923 bytes) 137%
edium (48,072 bytes) 142%
iny (6 bytes) 90.9%

In order to make it easier to reference which file size has been used in the various test,
the files will be referred to as File A through File H with File A being the smallest file,
4,194,304 bytes, and File H being the largest file, 268,435,400 bytes. The rest of the files
are in order of size from the smallest file to the largest file.

TABLE 2: FILES (DATA SIZES) FOR NTTCP TEST

of Buffen 3192
(Fles A - D) E -ll)
Nnmber of Buffers

-_IWIW
[1024 || 838608byes || 67108864 bytes
“llw
[4% — || 3333ad32byws || 2.634334e+08 bytes |

G. SYSTEM CONFIGURATIONS FOR ALL TESTS

As described in the previous sections, various tunable parameters and file sizes will be
used during this investigation. In order to obtain reliable results, numerous test must be
conducted to achieve a comfortable confidence level. Unfortunately, it is not practicable to
perform all the test runs necessary to test all combinations possible let alone run enough
iterations of each test to obtain the desired confidence level in the results.

As an example, just running the various combinations of tests described earlier with

the nttcp program, there were 576 measured data transfers during a single run. One such

37

test took a combined total of 3 hours and 15 minutes to run. During initial runs of the nricp
program, the TCP/IP window size was varied in 4 k increments. It was determined that
there was little difference between the individual wansfer rates of 4 k window sizes.
Therefore, follow-on test were run at intervals of & k window sizes. This change reduced
the run times from over 6 hours to just over 3 hours with little to no loss of usable results.

As noted earlier, there are other tunable parameters which can be modified by using
the set command in the /etc/system file. Once again, it is not possible to test all possible
combinations of parameters. As an example, if we start with the 576 measured data
transfers which took over 6 hours with a 4 k TCP/IP window size increment, then test the
TTRT parameter at 5 ms increments (33 tests), then the sbf_num_lic_rx buffers at 4 k
increments (15 test), then the sbf_num_smt_rx buffers at 4 k increments (15 tests) and
assume that we would like a confidence level which requires 50 runs of each test, we would
have a total of 33*15*15*50 = 371250 tests needed to reach any conclusions. If each test
took over six hours to conduct, it would take a total of 2,227,500 hours or 92,812.5 days
just to finish conducting the tests.

In his book [JAIN91], Raj Jain discusses this dilemma of having too many variables
to consider. The solution is to first get a gross picture of the impact of changing selective
parameters. Once a parameter’s impact on performance has been determined, then more
thorough testing can be conducted by adjusting the correct parameters to obtain the desired
confidence level. An example of this method in practice is changing from 4 k intervals in
the TCP/IP window size to 8 k windows sizes.

In addition to the tunable parameters already discussed, this investigation is looking
into the impact of the workstations running in multiprocessor modes and using a recently
developed operating system, Solaris 2.3. This now doubles the required testing! First, tests
will be conducted in the two processor configuration. Then, each Sun SPARCstation will
be tested with only a single process, but still running Solaris. Once again, it is not possible
to test all possible tunable parameters especially in both hardware configurations. Once a
pattern has been established in the single processor configuration, follow-on tests in the

38

multi-processor hardware configuration will be focused to limit the scope of tests to

changing those parameters which produce the best results.

H. PARAMETER BASELINE

First, a baseline condition must be established before any changes are made to the
system. This baseline will be with the following parameter values shown in TABLE 3. This
table pertains more to the parameter settings in the ntzcp and rcp test than the Neal Nelson
Benchmark test. The first parameter, NFS_asynch_threads, has an impact on all three test.
The other three parameters only impact the results of the artcp and rcp test. No changes will
be made to the workstations other than the changes to the tunable parameters listed below.
Stored with the results of each ntrcp and rcp test run is a README file with the below
parameters and their values for that test.

While the below parameters are changed for the nrtcp and rcp test, the TCP/IP window
size will also be varied. The TCP/IP window size is not listed below in TABLE 3 as a
tunable parameter. It is being treated differently due to the r;lethod it is varied during the
test transfers. The nstcp program will be varying the TCP/IP window size during the test
whereas the below listed tunable parameters must be changed by rebooting the

workstations in-between the various tests.

TABLE 3: DEFAULT PARAMETERS USED FOR ALL THREE TEST

_asyach t_req ,_oum_lic_rx | mtu
ads
eal Nelson
Benchmark
NTTCP 8 Sms 48K 4352
RCP 8 8ms 48K 4352

Below is a review of the parameter descriptions:
shf_num_lic_rx /* For LLC network traffic. Number of 4k receive buffers

/* maximum is 64 4k buffers
shf_mtu /* Maximum protocol packet size, default is 4352 bytes
t_req /* Token holding time, default is 8ms

nfs_asynch_threads /* For NFS service. Number of threads alloted. Default is 8

39

The results of the initial arrep baseline test during the single processor test are shown
below in TABLE 4. The results shown in this table are the averaged results obtained from
running this test for six runs. The first column shows the TCP/IP window size used during
the test. The next 8 columns which are labeled File A through File H. show the averaged

measured throughput in Mbps achieved during this test run.

TABLE 4: TEST RESULTS IN SINGLE PROCESSOR MODE

indow Size
(K bytes)

V. TEST RESULTS AND ANALYSIS

In this chapter, the resuits from the three tests discussed in Chapter IV will be
presented. First, the results from the Neal Nelson Benchmark tests will be presented. These
results will show that the newer, faster SOMHz processors should outperform the older
40MHz processors. Next, the results from the New Test TCP (nrtcp) network throughput
tests will be presented. These results will show under what conditions the highest
throughput can be achieved and what throughput bottlenecks exists. Last, the results from
the rcp transfer tests will be presented. These results will help to identify bottlenecks within
the workstation as a whole. The nrcp tests directly access the TCP/IP layer and d- "ot

provide a true measure of all the overhead present in distributed processing.

A. NEAL NELSON BENCHMARK

The Neal Nelson Benchmark is the tool being used to measure the capabilities of the
workstations and the operating systems being tested. It is important to verify that the
hariware we believe will perform faster has been verified to perform faster.

To begin with, two system disks were configured with the Solaris 2.3 operating system
and one system disk was configured with the SunOS 4.1.3 operating system. A three
gigabyte disk was partitioned and half of it made into a Unix file system, leaving the other
half as a raw disk partition. The source code for the benchmark was obtained, installed, and
compiled under Solaris 2.3 and SunOS 4.1.3 with the default tuning parameters.

The benchmark was started in the background and took approximately 20 hours to run
under each of the following four hardware configurations: Gold with two S0HMz
processors and White with two 40MHz processors, each running Solaris 2.3; Gold with one
50MHz processor running Solaris 2.3; Gold with one 50Mi-lz processor running SunOS
4.1.3. Solaris 2.3 is Sun Microsystem’s new operating system based on AT&T System V
unix while SunOS 4.1.3 is based on Berkley’s unix.

41

Once the benchmark testing was completed, the results were collected and
electronically mailed to Neal Nelson & Associates, where the test reports were generated.
The results from the three different configurations discussed below are listed in Appendix
C with approval from Neal Nelson & Associates.

1. Gold Versus White, Two Processors and Solaris 2.3

In group 1 tests, which are intended to approximate the processing activities of
five types of users, Gold consistently performed the tasks approximately 20 percent faster
than White.

SECONDS

0 2 4 6 8 10 12 14 " 16 18 2
LOAD

Figure 16: Gold Versus White, Two Processors

In group 2 tests, which are designed to perform various types of calculation tasks
and thereby profile the performance of the computer’s calculation subsystem, Gold
continued to perform the tasks approximately 20 percent faster than White.

42

In group 3 tests, which performed a series of disk input and output functions to
profile the performance of the disk subsystem, the results were mixed, but Gold still
outperformed White on the average. These results varied from Gold outperforming White
an average of 20 percent, to times when White outperformed Gold.

In Figure 16 on page 42 are the graphical results of Test 1, Simulated Office
Automation Workload. Gold, with two 50MHz processors running Solaris 2.3. clearly took
less time to perform the test than White .with two 40MHz processors running Solaris 2.3
except at a load of 11. Once again, a load can signify either several light users or a single

heavy user. As the loads increase you have either more light users or multiple heavy users.

3000 v v v v v - v v

2500

2000 p

1500 }

SECONDS

1000 }

500

Gold1.50l" agem
- =®” Gold2.50]" s

0 2 4 6 8 10 12 14 16 18 20

Figure 17: Gold One Processor Versus Gold Two Processors

2. Gold One Processor Versus Gold Two Processors and Solaris 2.3

In group 1 tests, the two processor configuration consistently outperformed the

single processor configuration by 80 to 90 percent.

43

In group 2 tests, the two processor configuration continued to outperform the
single processor configuration by 80 to 90 percent in all areas but one. In test 14,
Semaphores. Shared Memory and Context Switch, the two processor configuration only
outperformed the single processor configuration by 5 to 7 percent.

In group 3 tests, the results were once again mixed. The two processor
configuration outperformed the single processor configuration in all tests but three by 50
percent. In test 19, 1024 byte Sequential Writes from Unix File(s) and test 21, 3192 byte
Sequential Writes to Unix File(s), the single processor outperformed the two processor
configuration by an average of over 200 percent. In test 30, 8192 byte Sequential Writes
then ‘sync’, the single processor configuration outperformed the two processor
configuration by approximately 20 percent.

In Figure 17 on page 43 are the graphical results of Test 1, Simulated Office
Automation Workload. Go!d with one 50MHz processor running Solaris 2.3 clearly took

more time to perform the test than Gold with two SOMHz processors running Solaris 2.3.

3. Gold With One Processor, Solaris 2.3 Versus SunQS 4.1.3

In group 1 tests, the results were once again varied. SunOS 4.1.3 outperformed
Solaris 2.3 in 4 of the 5 tests at the higher load levels by 3 to 4 percent. Solaris 2.3
outperformed SunOS 4.1.3 in two of the test at the lighter load levels by 3 to 4 percent.

In group 2 test, the results were more consistently in favor of SunOS 4.1.3. In 7
of the 12 test, SunOS 4.1.3 outperformed Solaris 2.3 by 4 to 5 percent. In test 13, Math
Library Functions, SunOS 4.1.3 outperformed Solaris 2.3 by an average of 40 percent.
Solaris 2.3 only outperformed SunOS 4.1.3 in three of the test areas. Two of the areas the
percent was once again, only by 2 to 3 perceat. In test 17, Increasing Depth of Function
Calls, Solaris 2.3 outperformed SunOS 4.1.3 by an average of 40 to 50 percent.

In group 3 tests, the results were once again varied. In 6 of the tests, SunOS 4.1.3
outperformed Solaris 2.3 by anywhere from 15 to over 500 percent. In seven of the tests,
Solaris 2.3 outperformed SunOS by anywhere from 100 to over 400 percent. Once again

4

though, it appears that SunOS 4.1.3 came out slightly ahead in the high load area over
Solaris 2.3

Below in Figure 18 are the graphical results of Test 1, Simulated Office
Automation Workload. Gold with one 50MHz processor running SunOS 4.1.3 slightly beat
out Gold with one SOMHz processor running Solaris 2.3 at the higher loads.

3000 v v v v v v

2000 }

1500

SECONDS

1000 ¢

500 p

Gold]1.501" wem
Gold].sun” ~e -

o re & 2 a A 2 2 . A
0 2 4 6 8 10 12 14 16 18 20
LOAD

Figure 18: Gold, One Processor, SunOS 4.1.3 Versus Solaris 2.3

B. NEW TEST TRANSMISSION CONTROL PROTOCOL

As discussed in Chapter IV, the file sizes used during the test runs with New Test TCP
(nticp) are shown below in TABLE 5. The files are created by specifying the length of the
buffer to be created and the number of buffers to be sent. The files will be referred to as File
A through File H with File A being the smallest file, 4,194,304 bytes, and File H being the

45

largest file, 26%,435,400 bytes. The rest of the files are in order of size from the smallest

file to the largest file.

TABLE §: FILES (DATA SIZES) FOR NTTCP TEST

length of Buffers- 8192 bytes 65536 bytes
(Files A - D) (Files E -H)
Number of Buffers
—I!_IWIW
—EE—I FILEB 8388608 bytes | 1? LEF 67108864 bytes
“IIW

a9 FILED 53552 byws [FILEH 2604354008 byisy

After conducting several test runs and observing the resuits, it became obvious that
some smaller file sizes were not large enough to obtain accurate results. Whenever data is
transferred using the nstcp program, the actual CPU time is the time used for calculating the
throughput. If the CPU time used is too small, less than 0.1 seconds, the results become
unreliable. An example of an unreliable transfer rate is given below in Figure 19. The
reason for the inaccurate throughput result is the small amount of CPU time taken during
this data transfer.

Transfers using the number of buffers = 512 and the length of buffer = 8192 were the
only ones which had the unreliable transfer rates. There were typically only one or two
transfer rates in each test which were unreliable. However, the window size was not always
the same at which the unreliable transfer rate occurred. Therefore, the results of File A
transfers were not used in this analysis.

ttcp-1: nbuf=>512, buflen=8192, port=2001

send window size = 12288

receive window size = 12288

ttcp-1: 4194304 bytes in 0.06 real seconds = 68266.67 KB/sec = 546.1333 Mb/s

Figure 19: NTTCP Output for File Size of 4194304 Bytes

1. Single Processor Results

The first 32 test were run while Gold and White were set up in a single-processor
configuration running Solaris 2.3. These 32 test represent a small subset of all possible
tunable parameter combinations. The primary focus of this first set of test was to determine
the effect of modifying the TCP/IP window size, the nfs_async_threads and the t_req
parameters. Additionally, tests were conducted transferring data from White to Gold, Gold
to White and both ways simultancously. The 32 tests and the values of the tunable
parameters are listed in TABLE 36, Appendix D.

The data gathered in the above 32 tests was analyzed using multiple linear
regression analysis according to the model y = B, + B,x, +B,x, + ... + B_x,, +¢& Which relates the
behavior of a dependent variable y to a linear function of the set of independent variables
X1» X2, ... X The B;'s are the parameters that specify the nature of the relationship, and ¢ is

the random error term. The dependent variable y in this model is throughput. Refer to
Figure 20 on page 49 under the bold face number 12 for the list of p;s used in this model.

The tool used to produce the multiple linear regression analysis is Statistical
Analysis System (SAS). The SAS tool is used to assist data analysts in analyzing data using
regression analysis. Below in Figure 20 is an analysis of data throughput between White
and Gold in the single processor configuration using the results from tests 1 - 32. Below is
a description of the output from SAS as explained in [SASI91]. The bold face numbers
have been added to aid in a description of the output.

1. The name of the dependent variable is THRUPUT.

2. The degrees of freedom (DF) associated with the sums of squares (SS).

3. The Regression SS (called Model SS) is 61279.61308, and the Residual SS
(called ERROR S8)is 65217.01718. The sum of these two sums of squares is the C TOTAL
(corrected total) SS = 126496.63026. This illustrates thé basic identity in regression
analysis that TOTAL SS = MODEL SS + ERROR SS. Usually. a good model results in the
MODEL SS being a large fraction of the C TOTAL SS.

47

4. The corresponding Mean Squares are the Sum of Squares divided by the
respective DF. The MS for ERROR (MSE) is an unbiased estimate of o . provided the
model is correctly specified. -

S. The value of the F statistic, 239.470, is the ratio of the MODEL Mean Square
divided by the ERROR Mean Square. It is used to test the hypothesis that all coefficients
in the model, except the intercept, are 0. In this case, this hypothesis is:

Ho: B,= B,= B;= B,= B;
6. The p value (Prob>F) of 0.0001 indicates that some of the p, are not equal to 0.

7. Root MSE = 6.04621 is the square root of the ERROR MS and estimates the
error standard deviation.

8. Dep Mean = 30.21891 is simply the average of the values of the variable
THRUPUT over all observations in the data set.

9. C.V. =20.00803 is the coefficient of variation expressed as a percentage. This
measure of relative variation is the ratio of Root MSE to Dep Mean, multiplied by 100.

10. R-SQUARE = 0.4844 shows that a large portion of the variation in
THRUPUT can be explained by variation in the independent variables in the model.

11. ADJ R-SQ is an alternative R-SQUARE and is an alternative to R-SQUARE
that is adjusted for the number of parameters in the model according to the formula

ADJR-SQ=1-(1-R-SQUARE)(n-1)/(n-m- 1))

where n is the number of observations in the data set and m is the number of
regression parameters in the model, excluding the intercept. This adjustment is used to
overcome an objection to R-SQUARE as a measure of goodness of fit of the model. This
objection stems from the fact that R-SQUARE can be driven to 1 simply by adding
superfluous variables to the model with no real improvement in fit. This is not the case with

ADJ R-8Q, which tends to stabilize to a certain value when an adequate set of variables is
include in the model.

48

Mode: SINGLE PP OCESSOR MODEL
Dependent Variable: "‘rIRliIPUT

Analysis of Variance

3 4
2 Sumof Mean 5 6
Source DF Squares Square F Value Prob>F

Model 7 61279.61308 8754.23044 239.470 0.0001
Error 1784 65217.01718 36.55662
CTotal 1791 126496.63026

7 Root MSE 6.0462 10 R-square 0.4844
8 DepMean 30.21891 11 AdjR-sq 0.4824

9 cwv. 20.00803
Parameter Estimates
13 14 15
12 Parameter Standard T for HO: 16
Variable DF Estimate Error Parameter=0 Prob>IT!
INTERCEP 1 27.673306 0.68625789 40.325 0.0001
SINGLE 1 8.620893 0.28565645 30.179 0.0001
WHITRAN 1 5.140603 0.28565645 17.996 0.0001
NUMBUFF 1 -0.000246 0.00010718 -2.295 0.0219
LENBUFF 1 -0.000107 0.00000511 -20.927 0.0001
WINDSIZE 1 0.008507 0.00779192 1.092 0.2751
TTRT 1 0.016060 0.01864409 0.861 0.3891
1

THREADS 0.008069 0.03570706 0.226 0.8212

Figure 20: SAS Analysis of Single Processor Transfers

12. The labels INTERCEP, SINGLE, WHITRAN, NUMBUFF, LENBUFF,
WINDSIZE, TTRT and THREADS identify the coefficient estimates. The parameter
SINGLE is used to show if the transfers were just between one workstation at a time, or if
both White and Gold were transmitting at the same time. The parameter WHITRAN is used
to show if White is transmitting or if Gold is transmitting. The other parameters were

previously describ. .1 Chapter IV, Test Design Plan.

49

13. The Parameter Estimates give the fitted model

THRUPUT = 27.673306 + 8.620893(SINGLE) + 5.140603(WHITRAN)

- 0.000246(NUMBUFF) - 0.000107(LENBUFF)
+ 0.008507(WINDSIZE) + 0.016060(TTRT) + 0.008069(THREADS)

Thus, for example, a window size of 1k contributes 0.008507 to the throughput of
data if all other parameters are held fixed. If the window size is 45k, then it contributes
0.382815 if all other parameters are held fixed.

14. These are the (estimated) standard errors of the parameter estimates and are
useful for constructing confidence intervals for the parameters.

15. The 1 tests (T for HO: Parameter = 0) are used for testing hypotheses about
individual parameters. The complete model for all of these ¢ tests contains all the variables
on the right side of the MODEL statement. The reduced model for a particular test contains
all these variables except the one being tested. Thus, the t statistic = 0.008507(WINDSIZE)
for testing the hypothesis Ho: p= 0 is actually testing whether the complete model
containing NUMBUFF, LENBUFF, WINDSIZE, TTRT and THREADS fits better than
the reduced model containing only NUMBUFF, LENBUFF, TTRT and THREADS.

16. The p value (Prob > IT1) for this test is p = 0.0001.

As shown in Figure 20 under item 16, Prob<IT), the parameters NUMBUFF,
WINDSIZE, TTRT and THREADS had the least impact on THRUPUT in this model. This
shows up as the higher the Prob<IT! of the independent variable, the less impact it has on
the dependent variable being.modeled. Included in this model was the system transferring
the data (WHITRAN) and whether it was a one way transfer or two way transfer (SINGLE).
Therefore, the tunable parameters are competing with the fact that a 40MHz workstation is
being compared to a SOMHz workstation and whether or not another station is competing
for the token to transfer data.

The end result in this model is that the independent variable SINGLE has the most
impact on THRUPUT and WHITRAN has the next largest impact on THRUPUT. This
shows that competition for the token has more impact on throughput than tuning the

50

system. However, there is still a performance gain to be realized with tuning the system for
better throughput. In Figure 21 is a graphic comparison of the 1st Test with the 29th Test.
As a reminder, the 1st Test is using the default parameters and the 29th Test is using the

following parameter settings: ¢_req = 25ms; nfs_async_threads = 16; sbf_num_llc_rx = 48.

44 - v v e
42
49} <

‘c

)

’---.---‘---‘---?

Throughput Mbps
%

36 - -
[}
[|
o A ' 1st Test” ws w
LYY 29th Test " ugpus
$
32 - ' & A A
0 10 20 40 50 60

30
TCP/IP Window Size
Figure 21: Single Processor, File D Transfer From White to Gold

2. Two Processor Results

The second set of test were run while Gold and White were set up in a two-
processor configuration running Solaris 2.3. These 48 tests represent a small subset of all
possible tunable parameter combinations. The primary focus of this set of test was to
determine the effect of modifying the TCP/IP window size, the nfs_async_threads, t_req,
sbf_ num_llc_rx and the sbf mtu parameters.The 48 test and the values of the tunable

parameters are listed in TABLE 71, Appendix E.

51

The primary difference between this set of tests and the single processor test is
that all ransfers were made from White to Gold. To have also included wansfers from Gold
to White in this set of test would have doubled the number of transfers to 96 tests.
Originally it was thought that by increasing the number of parameters being observed the
R-square value would also have increased. The intention here was to account for more of

the factors which impact the dependent variable THRUPUT.

Mode:TWO PROCESSOR MODEL
Dependent Variable: THRUPUT
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 7 66901.88212 9557.41173 68.151 0.0001

Error 2680 375842.31356 140.23967
CTotal 2687 442744.19568

Root MSE 11.84228 R-square 0.1511
Dep Mean 40.72729Y AdjR-sq 0.1489
C.V. 29.07702

Parameter Estimates

Parameter Standard T for HO:

Variable DF - Estimate Error Parameter=0 Prob>ITl
INTERCEP -91.980251 12.35679655 -7.444 0.0001
NUMBUFF -0.000068737 0.00017141 -0.401 0.6884
LENBUFF -0.000062619 0.00000817 -7.664 0.0001

1

1

1
WINDSIZE 1 -0.019754 0.01246095 -1.585 0.1130
TTRT 1 -0.024980 0.02981591 -0.838 0.4022
THREADS 1 -0.034226 0.05710325 -0.599 0.5490
LLC 1 0.643378 0.03496846 18.399 0.0001
MTU 1 0.024786 0.00285516 8.681 0.0001

Figure 22: SAS Analysis of Two Processor Transfers

52

As shown in Figure 22 on page 52, the R-square value decreased considerably
between the single processor test and the dual processor test. As it will be shown later on,
the cause for this decrease was the removal of the largest impact on throughput, competing
with other stations for the token. Another indicator of the lack of confidence in the data
being modeled is the large Standard Error for the independent variable INTERCEP. In the
single processor model INTERCEP had a value of 0.68625789. In the dual processor
model, the error has increased to 12.35679655.

The independent variables, NUMBUFF, THREADS and TTRT continued to have
the least amount of impact on the dependent variable THRUPUT as indicated by their low
Prob>IT! values. The independent variables with the largest impact were LENBUFF, LLC
and MTU.

3. One And Two Processor Results

In the final analysis of both one and two processor tests, some additional facts
need to be presented. There were a total of 4,480 throughputs measured in this analysis.
There were 896 measurements in the one processor configuration and 2688 measurements
in the two processor configuration. These are averaged measurements taken from the six
runs in each 32 + 48 = 80 tests. Also, there were 896 measurements where both Gold and
White were transmitting at the same time and 2688 measurements where only one station

was transmitting.

When the model was first run including all the data from the one and two
processor tests the R-square value was only 0.3559. This was higher than in the two
processor model but lower than in the one processor model. A scatter plot was made of the
various parameters to determine where there might be some problems with individual
parameters. The most obvious problem was seen with the large variation of throughput with
the parameter window size. At both the high end and the low end, the plot of window size

versus throughput was not linear. By restricting the analysis of data to window sizes less

53

than 50k and greater than 16k the R-square value increased to 0.6600. This reduced the

number of measured observations from 4,480 throughputs to 2,240 measured throughputs.

Mode: ONE & TWO PROCESSOR MODEL
Dependent Variable: THRUPUT
Analysis of Variance
Sumof ° Mean
Source DF Squares Square F Value Prob>F
Model 179959.58511 17995.95851 432.681 0.0001
Error 2229 92708.03657 41.59176
CTotal 2239 272667.62168
Root MSE 6.44917 R-square 0.6600
Dep Mean 42.53933 AdjR-sq 0.6585
C.v. 15.16048
Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob>IT!
INTERCEP 1 -70.427345 9.87019489 -7.135 0.0001
SINGLE 1 9.928996 0.43090313 23.042 0.0001
WHTRAN 1 3.652165 0.43090313 8.476 0.0001
NUMBUFF 1 -0.000052070 0.00010226 -0.509 0.6107
LENBUFF 1 -0.000047372 0.00000487 -9.719 0.0001
WINDSIZE 1 0200113 0.01523473 -13.135 0.0001
TTRT 1 -0.012831 0.01778717 -0.721 0.4708
THREADS 1 -0.039099 0.03406588 -1.148 0.2512
LLC 1 0.583336 0.02693145 21.660 0.0001
MTU 1 0.015782 0.0021989%4 7.177 0.0001
SD 1 9.535964 0.44849820 21.262 0.0001

Figure 23: SAS Analysis of Single and Two Processor Transfers

The results of the one and two processor analysis are above in Figure 23. One new
independent variable, SD is used to model whether the transfer comes from the one

processor tests or the two processor tests. Just as before, the independent variables

54

NUMBUFF, TTRT, and THREADS have the least amount of impact on THRUPUT. With
the removal of the window si.es noted above, WINDSIZE now carries more weight in this
model. The largest impact on THRUPUT in order of impact is caused by the variables
SINGLE, SD, LLC and WINDSIZE. This statement will be covered in more detail later.
This indicates once again that processor power has the largest impact on throughput. A
graphical model of the difference is below in Figure 24. In this figure are plots of
throughput from identical parameter conhgurations, but one is from a two processor run

and the other is from a one processor run.

60 v v v
55}
50}
&
£
=
a 445}
L&
¥
[
E
40 b 4
.nuw.wnu.mwn'nnm‘
5t 4
dual_test!"” wipm
single_test:" aghme
30 2 __ 8 Y __a
0 10 20 30 40 50 60
TCP/IP Window Size

Figure 24: White Single Processor vrs White Two Processors

Another useful result which can be determined from the analysis of the one and
two processor tests is a predicted throughput. Below in Figure 25 are SAS predictions of
THRUPUT based on the 2,240 measured throughputs used in this analysis. To achieve the

minimum predicted throughput, the following test was run using the parameter settings

55

indicated in Figure 25. Data was transferred from Gold to White and White to Gold
simultaneously. The results were taken from Gold with NUMBUFF = 4096, LENBUFF =
65536, WINDSIZE = 44, TTRT = 25. THREADS = 16, LLC = 40 and MTU = 4192. The
results are below in TABLE 6.

The SAS predictions for the minimum predicted throughput was for a rate of
15.5302 Mbps. As shown in TABLE 6 the results from the actual tests was an average of
15.1463 Mbps and an mean of 15.0454 .Mbps. Since the data used in the model was
averaged data instead of mean data, the averaged achieved rate is the more accurate
throughput rate to use. The SAS predictions for the maximum predicted throughput was for
a rate of 58.7810 Mbps. As shown in TABLE 6 the results from the actual tests was an
average of 60.07 Mbps and an mean of 65.5360 Mbps. In both cases the average throughput
measured was very close to the predicted throughput. This shows that the SAS model was

very accurate
w

W N L 1 T T

S H U E N H H

I I M N D R R

N T B B S T E U

O G R U U I T A L M S P

B L A F F Z R DL T D U

S E N F F E T S C U T
1 1 1 1024 8192 20 S 8 56 4352 2 58.7544
2 0 0 4096 65536 44 25 16 40 4192 1 15.5302

Figure 25: SAS Throughput Prediction

TABLE 6: RESULTS OF SAS PREDICTIONS
WIWIWIWIWIWIWIMIW

The following formula relates the behavior of the dependent variable THRUPUT
to a linear function of the set of independent variables SINGLE, WHITRAN, NUMBUFF,
LENBUFF, WINDSIZE, TTRT, THREADS, LLC, MTU and SD. These are the values
calculated in the One and Two Processor Model, Figure 23 on page 54.

THRUPUT = -70.427345 + 9.928996(SINGLE) + 3.652165(WHITRAN)
- 0.000052070(NUMBUFF) - 0.000047372(LENBUFF)
- 0.200113 (WINDSIZE) - 0.012831(TTRT) - 0.039099(THREADS)
+0.583336(LLC) + 0.015782(MTU) + 9.535964(SD)

When the minimum and maximum throughput was predicted above in Figure 25
on page 56, it was simply a matter of inserting the largest parameter value in the above
formula . the parameter estimate is positive and the smallest parameter value if the
parameter estimate is negative. This resulted in the maximum predicted throughput. For the
minimum predicted throughput, the largest parameter value is used if the parameter
estimate is negative and the smallest parameter value if the parameter estimate is positive.

Below are the formulas for minimum and maximum throughput with the
parameter estimates and parameter values multiplied together.

Maximum Throughput:

58.7544 = -70.427345 + 9.928996 + 3.652165 - 0.05331968 - 0.38807142 - 4.00226
- 0.064155 - 0.312792 + 32.666816 + 68.683264 + 19.071928

Minimum Throughput

15.5302 =-70.42734 + 0 + 0 - 0.21327872 - 3.1045714 - 8.804972 - 0.320775
- 0.625584 +23.33344 + 66.158144 + 9.535964

Once the minimum and maximum throughputs were computed, the reiative value
of each parameter was calculated by subtracting the parameter’s minimum value from it’s
maximum value. Below in Figure 26 are the results from this calculation. The value from

the maximum calculation is listed, then the value from the minimum value is listed and

57

finally the difference is listed. It is this difference which shows the impact each parameter
has on the end throughput. The higher the difference is, the more weight that parameter

carries in determining the maximum throughput.

w

w N L I T
S H U E N H
1 1 M N D, R
N T B B S T E
G R U U I T A L M S
L A F - F Z R D L T D
E N F F E T S C U

MAX: 992 365 -0.05 -038 400 -0.06 -031 3266 68.68 19.07
MIN: 0O 0 021 -3.10 -880 -032 -062 2333 66.15 953
DIFF: 992 365 0.6 272 438 026 031 933 253 954

Figure 26: Relative Importance of Each ntrcp Parameter

The results listed above show that the following parameters, in order of

importance, have the most impact on throughput using the current model:

« If the data was only being transferred from one workstation to another or if
both workstations were transferring data to each other simultaneously.

» Whether the workstation had one or two processors
 The number of 4K receive buffers allotted for receiving data.
 The number of TCP/IP windows available for sending data.

Since the TCP/IP window size was limited in the above model to a range of 20k to 44k,
this parameter showed up having less of an impact than it really has. As an example, in
TABLE 72 on page 120 of Appendix E, the throughput rate for File C is 32.77 Mbps for a
window size of 4k and 58.25 Mbps for a window size of 44k. That means the throughput
rate at a 4k window size is only 56 percent the rate of the 44k window size. In this case, the
window size has the largest impact on throughput performance. Unfortunately though, the
results at the lower and higher window sizes were not consistent in all cases and the data

was removed from the analysis. In most cases though, the difference in throughput

58

performance between a TCP/IP window size of 4k and a window size of greater than 20k

is more significant than any other factor considered in this investigation.

Based on the visual inspection of the results from both the one processor tests and
the two processor tests, below is a revised list in order of importance the parameters having

the most impact on throughput:

» The number of TCP/IP windaws available for sending data.

« If the data was only being transferred from one workstation to another or if
both workstations were transferring data to each other simultaneously.

» Whether the workstation had one or two processors
 The number of 4K receive buffers allotted for receiving data.

Another parameter which showed unexpected results is the WHITRAN
parameter. This parameter is used to track any differences in throughput between
transmitting data from White to Gold, or from Gold to White. The result in Figure 25 on
page 56 indicates that transmitting data from White to Gold was faster than transmitting
data from Gold to White. In the first 32 one processor tests, White had one 40MHz
processor and Gold had one SOMHz processor. In the second 48 tests, White had two
40MHz processors and Gold had two 50MHz processors. Based on the Neal Nelson
Benchmark tests, Gold should be capable of transferring data faster than White.

Several additional tests were conducted to determine why White was able to
transmit data at a higher throughput than Gold. First, the FDDI cards were swapped to see
if the FDDI card in Gold was causing the problem. The results of these tests are in TABLE
69 on page 117 and TABLE 70 on page 118. There was not any noticeable difference in
throughput rates with the boards swapped. Next, the two SOMHz processors were placed in
White and the two 40MHz processors were placed in Gold. The results of these tests are in
TABLE 121 and TABLE 122 on page 137. As shown in Figure 27, even when both
transmitting systems had two SOMHz processors and both receiving systems had 40MHz
processors, White still had a higher throughput rate with File C than Gold.

59

5
st
as |
g
2 4
oo
[7]
g
[
35
ot ~ White to Gold. 2-SOMHz e
Gold to White, 2-50MHz é# =
ﬁ ™ - - . a2
0 10 20 30 40 50 o0

TCP/IP Windowsize
Figure 27: Throughput Comparison Between White and Gold

The only other difference between White and Gold is that Gold is the server on
the FDDI network. Since the FDDI network only had three workstations on the network,
this additional load on Gold should not be that great.

C. REMOTE COPY PROTOCOL TRANSFERS

Initially, the plan was to conduct file transfers using the rcp system call varying the
tunable parameters just as in the nttcp tests. However, it was quickly observed that there
were not any noticeable differences in measured throughput at the different parameter
settings. This was understandable with the parameters nfs_async_threads and t_req. The
SAS model showed that these tunable parameters had little effect on throughput. However,
it was expected that there would be some different throughput rates with the TCP/IP
window size, llc and mtu parameters varied.

The reason why the these parameters did not have an impact was that rcp does small
size read()’s and write()’s, so the syscall overhead dominates over the time spent in the
kernel in TCP. If an application wants optimum bulk data throughput, it should increase the
receive buffering, and also do moderately large read()’s and write()’s so that the syscall
overhead does not dominate. Also, rcp has to go through a complete login, exec of the
user’s shell, and run through the user’s “:cshrc" or “.profile” on the server side before it
begins transferring any data. If the data transfer is not really huge, the time spent logging

in will be much greater than the time spent wransferring the data.

Knowing that the largest impact on throughput based on the SAS modeled data is TCP/
[P window size, processor power and whether or not another station is also transmitting,
four different transfer tests were conducted with each of the four file sizes. As shown below
in TABLE 7 and TABLE 8 on page 62, tests were conducted in the one processor
configuration and the two processor configuration while transferring files one-way and

two-way (between White and Gold simultaneously).

TABLE 7: RCP ONE PROCESSOR TRANSFER RESULTS

A 0 0 5
(6 bytes (48,072 bytes) {I (1,314,923 bytes) [|(17,989.936 bytes

RANSFER
White to Gold

13.20 Mbps
- /DEV/NULL : ; 26.41 Mbps

TW(. WAY TRANSFERS
White to Goad & Gold to White

11.49 Mbps
16.72 Mbps

Also, files were transferred from disk to disk and from disk to /dev/null. This second
ransfer method does not result in a disk write at the destination workstation. The device
driver, /dev/null, is used to dispose of files without needing to delete them. Files can be sent

to /dev/null and this device driver accepts the data without writing them to disk.

61

The largest impact seen in this set of tests was the file size. The lowest throughput rate
was observed when transferring the smallest file, TINY. This file has an associated
overhead of 90.9% when being transferred over FDDI. The highest throughput was seen
with the file HUGE. This file only had an overhead of 1.37% when transferred over FDDI.
These overhead figures include the overhead associated with the FDDI, [P and TCP
protocols. Another area with similar results as the nrzcp test is whether the transfers are one-

way or two-way. When the two workstations have to compete for the token the throughput

drops.

TABLE 8: RCP TWO PROCESSOR TRANSFER RESULTS

') UM LARGE HUGE
(1,314,923 bytes) }|(17.989,936 bytes

Wlute to Gold
: [FILE-NAME
: [DEV/NULL

ONE-WAY TRANSFER
Gold to White

: [DEV/NULL

TWO-WAY TRANSFERS
White to Gold & Gold to White

: [FILE-NAME X . . 13.27 Mbps
: [DEV/NULL . . . 23.18 Mbpx

The results during the rcp tests were much lower than during the nttcp tests. As an
example, on the transfer of a file size of over 17 Mbytes from Gold with two processors to
White:/dev/null, the best achieved throughput rate was 29.82 Mbps with rcp. This is only
29.82 percent of FDDI's available bandwidth and only 43.7 percent of the highest achieved
throughput using arzcp (65Mbps). When transferring the same file from Gold to White and
writing the file to disk, the transfer rate was 21.66 Mbps. This rate is only 72 percent of the

transfer rate of transferring the data to /dev/null. Below in Figure 28 on page 63 is a

62

graphical plot of the transfer rates just mentioned while transferring the 17.9 Mbyte file
from Gold with two SOMHz processors to White with two 40 MHz processors.

There were two main differences between the transfer methods: First, the rcp transfers
add another layer of protocols to the transfers. The rcp protocol hands off the data to be
transferred to the TCP/IP protocol layers. This of course increases the amount of overhead
transferred. Second, using rcp to transfer the data involves reading the data from disk
before it can be transferred. Even thouéh large amounts of data can be cached in the
SuperCache 1-Mbyte external cache, this is not large enough for extremely large files being
transferred to be completely cached. During this test files were transferred 9 times and then

the median throughput rate was used for the results.

30
25 J
204
£
=
2 15 -
wkae
2
e
=
104
5 i i Transfer to disk e
Transfer to /dev/null o s
o o p— P R P —— e
0 2e+06 4e+06 6e+06 Be+06 1e407 12e407 14e+07 1.6e+)7 1.8e+07
File Size in Bytes

Figure 28: RCP File Transfers From Gold To White

The results from the rcp tests were pretty much as expected. The two processor

transfers were faster than the single processor transfers and the one-way transfers were

63

faster than the two-way transf.ers. However, the difference in these throughput rates was not
as large as that seen with the nrrcp tests. Since the additional overhead from the rep system
call should affect the transfer rates evenly, then the only other difference is that the data
was transferred from disk instead of being generated by the CPU. The large difference in
throughput rates achieved between the two test methods would indicate that the disk access

is a very large bottle neck in throughput performance.

A quick comparison of the through;mt rate observed using ntrcp for a file size of
16,777,216 bytes (File C) and a rcp transfer of a file size 17,989,936 bytes shows a
throughput rate of 32.77 Mbps for the ntrcp transfer and a throughput rate of 28.42 Mbps
when transferred to /dev/null. Both of these tests were one-way tests from White to Gold
with both systems in the two processor configuration. In this comparison, the rcp tests had
a throughput rate which is 86.7 percent of the nttcp throughput rate. This seems to indicate
that the retrieval of the file from disk and the overhead of the rcp protocol are responsible

for 13.7 percent of the slow down in throughput when transferring files.

When comparing the transfer rate of an rcp transfer from White to a file location on
Gold with the ntzcp throughput rate, there is a much larger difference in throughput. The
nticp throughput rate is still 32.77 Mbps and the throughput rate for the rcp file to file
transfer is 13.54 Mbps. Here the rcp throughput rate is 41.3 percent of the nttcp throughput
rate. This means that the time to receive and process the file at the destination workstation
accounts for 45 percent of the reduced throughput. This is the 58.7 percent reduction minus
the 13.7 percent attributed to the retrieval of the file from disk and the overhead of the rcp

protocol.

D. ANALYSIS SUMMARY

The results from the Neal Nelson Benchmark showed that the systems being
investigated were functioning as expected. The SOMHz system outperformed the 40MHz

system and the two processor system outperformed the one processor system. One

64

unexpected result was that SunOS 4.1.3 slightly outperformed Solaris 2.3 in just about

every test except disk access to unix files. Solaris 2.3 was the clear winner in this area.

The nttcp results were analyzed using a linear multiple regression analysis model.
Even though the throughput results were not linear, the model is believed to be accurate
enough to show the relationship between the parameters being investigated. The analysis

of this data provides the most concrete results of the two throughput tests methods.

The number of workstations on an FDDI network transmitting has the largest impact
on throughput among the parameters investigated according to the one processor and two
processor models. An example of this impact is to take the SAS prediction shown in Figure
25 on page 56 and change the parameter SINGLE from its one-way value to the two-way
value. This allows SAS to predict a new throughput rate based on all the previous values
except the change just noted. The result of the new prediction shows a new throughput
prediction of 48.8254 Mbps. This is only 83.1 percent of the original | throughput
predication of 58.7544 Mbps.

The power of the workstation itself is a major factor in throughput potential. This is
seen in the fact that the second largest impact on throughput in the one processor and two
processor model is whether or not the workstation had two processors. The result of the
new one processor prediction shows a throughput predication of 49.2184 Mbps. This is
83.7 percent of the original throughput predication of 58.7544 Mbps.

Since the TCP/IP window size was limited in the model to a range of 20k to 44k, this
parameter showed up having less of an impact than it really has. In most cases though, the
difference in throughput performance between a TCP/IP window size of 4k and a window
size of greater than 20k is more significant than any other factor considered in this

investigation.

The results from the rcp tests are more of an observation of the effects of the disk drive
on throughput performance. Since both tests measure the time from start of test to receiving

the ack from TCP on the receiving workstation that the data has been received, the only

65

other real differences is the rcp protocol and the fact that the data is being mansferred as
files instead of being generated by the processor.

As pointed out earlier, the overhead of the rcp protocol and the time spent retrieving
the file from disk is approximately 13.7 percent of the throughput rate observed during the
nttcp throughput tests. Additionally, the overhead of processing the file at the receiving
workstation is approximately 45 percent of the throughput rate observed during the nrzcp
throughput tests. . .

The observation made in the nerep tests that white with only 40MHz processors could
transfer data faster than Gold with SOMHz processors was not seen again in the rcp tests.
In the rcp tests, Gold was able to transfer data at a higher throughput rate than White when
Gold had the two SOMHz processors and White had the two 40MHz processors.

V1. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

A. CONCLUSION

The objective of this research was to measure actual throughput between high
performance workstations over an FDD} network to determine what bottlenecks, if any,
exits between Sun Microsystem SPARC 10 multiprocessors running the Solaris 2.3 and
Network Peripheral Inc.’s (NPI) FDDI network interface cards. and to evaluate
Transmission Control Protocol/Internet Protocol (TCP/IP) as a high speed transport
protocol.

At the beginning of this investigation there were many speculations as to what
throughput rates could be achieved and what effect varying the different tunable parameters
would have on the throughput rates. It was assumed that the workstation with the SOMHz
processor would have a faster throughput rate than the workstation with the 40MHz
processors. It was also assumed that since Sun Microsystems was encouraging their users
to switch from SunOS to Solaris, that Solaris 2.3 would clearly out perform SunOS 4.1.3.

The following sections outline the conclusions drawn from these investigations:

1. Workstation Conclusions
There were four benchimetk tests conducted using the Neal Nelson Business
Benchmark run on the two workstations, Gold and White.

* Gold had two 50MHz processors installed and was running Solaris 2.3.
* Gold had one 50MHz processor installed and was running Solaris 2.3.

¢ Gold had one SOMHz processor installed and was running SunOS 4.1.3.
» White had two 40MHz processors installed and was running Solaris 2.3.

Three test comparisons were conducted by Neal Nelson and Associates and the
resuits can be summarized as follows:

* A workstation running Solaris 2.3 with two SOMHz processors can be expected
to outperform a workstation running Solaris 2.3 with two 40MHz processors

67

in most areas of performance by approximately 20 percent.

» A workstation running Solaris 2.3 with two SUMHz processors can be expected
to outperform a workstation running Solaris 2.3 with one S0MHz processor in
most areas of performance by approximately 90 percent.

A workstation running SunOS 4.1.3 with one SOMHz processor can be
expected to outperform a workstation running Solaris 2.3 with one SOMHz
processor in most areas of performance by approximately 2 percent.

Of the three comparisons noted above, the first two results were expected.
However, it was assumed that Sun Microsystem’s release of Solaris 2.3 would result in
improved operating system performance, not a slight drop in performance. These results
were very important in the next step of the investigation. Knowing that the workstation with
two 50MHz processors should outperform the workstation with two 40MHz processors

helped isolate some unexpected results in workstation throughput.

2. Throughput Conclusions

There were two methods used in this investigation to measure throughput. First,
a public domain network throughput measurement tool, New Test TCP (nfrcp), was used
in order to minimize the workstation overnead. Next, the Remote Copy Protocol (rcp)
system call was used in order to include all the overhead of daily distributed processing.
The results obtained from these two test methods were consistent with each other.

New Test TCP (nttcp): During the nttcp tests the following tunable parameters
were varied to determine their impact on throughput performance:

» TCP/IP window size, the amount of data that can be in transient at any one time
between workstations.

* sbf_num_lic_rx, number of receive buffers (4k each) on the FDDI board
allotted for receiving data.

* nfs_async_threads, number of asynchronous threads allotted for handling
network file system service.

* sbf treq, amount of time allotted for each workstation to transfer data prior to
passing on the token. This is the TTRT.

* sbf mtu, maximum protocol packet size.

68

Additionally, the nrzcp tests were run on both single processor configurations and
on two processor configurations. During this investigation the nttcp tests results showed
that the four most significant impacts on throughput and the order of impact were as

follows:

*

Whether data was being transferred one-way or if both workstations were
transferring data simultaneously.

Whether the workstation had one or two processors

The number of 4K receive buffers allotted for receiving data.

The size of TCP/IP window available for sending data.

One note about the TCP/IP window size. During this investigation TCP/IP
window sizes less than 20k and greater than 44k had too large of a deviation in their
throughput results to be included in the final analysis. When the all of the TCP/IP window
sizes are included, this parameter ends up having the largest impact on throughput rates.
The rest of the results retain the above order of impact on throughput.

The other tunable parameters varied during these tests had little impact on
throughput performance. Below are the rest of the factors affecting throughput in their
order of importance:

« The length of the buffers being transmitt . This equates to the size of the data
being transmitted.

» The Maximum Transmission Unit (MTU) size. This is the size of the FDDI
frames of data being transmitted.

» The number of NFS asynchronous threads allowed for servicing network file
service.

« The number of buffers (file size) being transmitted.

Remote Copy Protocol (rcp): During the rcp tests the tunable parameters were
varied, but there was no noticeable difference in these th.roughput rates. The TCP/IP
window size, which had the largest impact in the nezcp tests, did not have any noticable
impact on throughput. The reason why the TCP/IP window did not have an impact was that
rcp does small size read()’s and write()’s, so the all overhead dominates over the time

spent in the kernel in TCP. If an application want.. uptimum bulk data throughput, it should

69

increase the recieve buffering, and also do moderately large read()’s and write()'s so that

the syscall overhead does not dominate.

The only difference between the nircp tests and the rcp tests was the additional
overhead with the rcp disk transfers and the rcp protocol overhead. Therefore, the
conclusion can be drawn that one of these two differences accounted for the very large drop

in throughput between the nztcp tests and the rcp tests.

On the transfer of a file size of over 17 Mbytes from White with two processors
to Gold, the best achieved throughput rate was 13.54 Mbps with rcp when the transferred
data is written to disk. This is only 13.54 percent of FDDI’s available bandwidth and only
41.3 percent of the highest achieved throughput using nrtcp at the same TCP/IP window
size of 8k. Most of this 41.3 percent difference between rcp and nttcp can be attributed to
the rcp protocol overhead. RCP has to go through a complete login, exec of the user’s shell,
and run through the user’s “.cshrc” or “.profile” on the server side before it begins
transfering any data. If the data transfer is not really huge, the time spent logging in will
be much greater than the time spent transfering the data

B. TOPICS FOR FUTURE RESEARCH

Several topics for further study can be derived from this investigation. All of them are
related to either improving throughput or to explaining events which were not explained in

this thesis.

Since the nttcp tests were only able to obtain a maximum throughput using TCP
transfers of 65 Mbps, 35 percent of the available bandwidth of FDDI is not being used.
What portion of this unused bandwidth is due to lack of processor power and what portion

is due to inefficiencies in the TCP/IP protocol?

This investigation primarily looked at throughput rates associated with TCP transfers,
not User Datagram Protocol (UDP) transfers. The UDP frames have a header of 8 bytes and
the TCP frames have a header of 20 bytes. Also, UDP is not a reliable transport protocol.

70

How much of a throughput can be achieved using UDP and what problems occur when
using an unreliable transfer protocol?

File transfers using the rcp system call displayed a throughput rate of only 13.54 Mbps
when the ransferred data is written to disk. What percentage of this bottleneck is caused
by the throughput rate on the SCSI-2 controller and what percentage is caused by other

overhead associated with file transfers?

71

APPENDIX A: NTTCP PROGRAM and TEST SCRIPTS

#!/oin/sh

date > start
date > runl_start_time

ttest.sh 65536 512
ttest.sh 8192 512
ttest.sh 65536 1024
tiest.sh 8192 1024
ttest.sh 65536 2048
ttest.sh 8192 2048
ttest.sh 65536 4096
ttest.sh 8192 4096

date > runl_finish_time

mkdir runl
mv *.log *.out runl/.
mv *time runl/.

date > run2_start_time

tiest.sh 65536 512
tiest.sh 8192 512,
tiest.sh 65536 1024
ttest.sh 8192 1024
ttest.sh 65536 2048
test.sh 8192 2048
tiest.sh 65536 4096
ttest.sh 8192 4096

date > run2_finish_time

mkdir run2
mv *.log *.out run2/.
mv *time run2/.

date > run3_start_time

ttest.sh 65536 512
ttest.sh 8192 512
ttest.sh 65536 1024
ttest.sh 8192 1024

DOIT.SH Script

ttest.sh 65536 2048
test.sh 8192 2048
ttest.sh 65536 4096

. ttest.sh 8192 4096

date > run3_finish_time
mkdir run3

mv *.log *.out run3/.
mv *time run3/.

date > rund_start_time

ttest.sh 65536 512
ttest.sh 8192 512
ttest.sh 65536 1024
ttest.sh 8192 1024
ttest.sh 65536 2048
ttest.sh 8192 2048
ttest.sh 65536 4096
ttest.sh 8192 4096

date > rund_finish_time

mkdir rund
mv *.log *.out rund/.
mv *time rund/.

date > run5_start_time

tiest.sh 65536 512
ttest.sh 8192 512
ttest.sh 65536 1024
ttest.sh 8192 1024
ttest.sh 65536 2048
ttest.sh 8192 2048
ttest.sh 65536 4096
trest.sh 8192 4096

date > run5_finish_time
mkdir run5

mv *.log *.out run5/.
mv *time run5/.

72

date > runé_start_time

ttest.sh 65536 512

ttest.sh 8192 512

ttest.sh 65536 1024

ttest.sh 8192 1024

ttest.sh 65536 2048

ttest.sh 8192 2048

ttest.sh 65536 4096

ttest.sh 8192 4096 .

date > runé_finish_time

mkdir run6
mv * log *.out runé/.
mv *time run6/.

date > finish

TTEST.SH Script

#!/boin/sh

#

Use nttcp to test network throughput.

Usage: ttest.sh byte_per_write
number_of_writes

#

DATALEN=§1

NPKTS=3$2

#White to Gold
RECHOST=131.120.1.2
RSH=/usr/ucb/rsh
NTTCP=nticp

rm -f ttest.out
rm -f ttest.ran.log
rm -f test.recv.log

from 4KB to 60KB windows in steps of 8KB
SIZE=4
while test SSIZE -1t 61
do
SRSH SRECHOST SNTTCP -r -w3$SIZE
>wmpl 2>&1 &

sleep §

SNTTCP -t -ISDATALEN -n$NPKTS -wSSIZE

SRECHOST >> ttest.tran.log 2>& 1

73

sleep §
grep ‘Mb/s’ mmpl |
'$SIZE™*1024 312}’ >> utest.out
cat umpl >> ttest.recv.log
SIZE="expr $SIZE + &
done

awk ‘{pnint

rm -f tmpl
mv ttest.out test SDATALEN.SNPKTS.out
my ttest.tran.log

ttest SDATALEN.SNPKTS.tran.log
mv ttestrecv.log

ttest. SDATALEN SNPKTS.recv.log

NTTCP Program

r

* NTTCP.C

®

* Test TCP connection. Makes a connection on port 2000
* and transfers zero buffers or data copied from stdin.

*

* Usable on 4.2, 4.3, and 4.1a systems by defining one of
* BSD42 BSD43 (BSD41a)

t .

* Modified for operation under 4.2BSD, 18 Dec 84

* T.C. Slattery, USNA

* Minor improvements. Mike Muuss and Terry Slattery, 16-Oct-85.
L

* Modified on 5 Apr 94 for opertion under Solaris 2.3 based on changes
* for the TTCP.C program provided by Don Merritt of ARL.
* CPT Mark Schiviey, USA
¢/
#ifndef lint
static char RCSid[] = "@(#)$Header: /src/opt/bri/sbin/itcp/RCSAtcp.c.v 1.2 1993/11/30 20:15:39
root Exp § (BRL)";
#endif
#define BSD43
/* #define BSD42 */
* #define BSD41a */
#include <stdio.h>
#include <ctype.h>
#include <emno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinetfin.h>
#include <netdb.h>
#include <sys/time.h> /* struct timeval */
#ifdef SYSV
#include <sys/times.h>
#include <sys/param.h>
#else
#include <sys/resource.h>
#endif
#ifdef SYSV
#define beopy(s.d.l) memcpy(d., s, (size_t) 1)
#define bzero(s,l) memset(s, 0, (size_t) 1)
#endif
struct sockaddr_in sinme;
struct sockaddr_in sinhim;
struct sockaddr_in sindum;
struct sockaddr_in frominet;
int domnain, fromlen;

74

im fd:

int sendwin = 32 * 1024;

int rcvwin = 32 * 1024;
int optlen = sizeof(int);
int buflen = 1024;

char *buf;

int nbuf = 1024;
intudp=0;

int options = ();
intone=1;

short port = 2001;

char *host;

int trans;

int sinkmode = I;

int verbose = 0;

int nodelay = 0;

int window = 0);

struct hostent *addr;
extern int ermo;

char Usage(] = "\

/* fd of network socket */

/* length of buffer */

/* ptr w dynamic buffer */

/* number of buffers to send in sinkmode */
/*0=1tcp. !0=udp */

/* socket options */

/* for 4.3 BSD style setsockopt() */

/* TCP pert number */

/* ptr to name of host */

/* O=receive, !0=transmit mode */

/* O=normal 1/O, !0=sink/source mode */

/* set TCP_NODELAY socket option */
/* O=use default l=set 10 specified size*/

Usage: ticp -t [-options] host <in\n\
-l length of bufs written to network (default 1024)\n\
- don't source a pattemn to network, use stdin\n\
-n## number of bufs written to network (-s only, default 1024)\n\
-p## port number to send to (default 2000)\n\
-u use UDP instead of TCPAN\

Usage: ticp -1 [-options] >out\n\

W length of network read buf (default 1024)\n\

-s sink (discard) all data from network\n\

-p## port number to listen at (default 2000)\n\

-B Only output full blocks., as specified in -l## (for TAR)\n\
-u use UDP instead of TCP\n\

-,

char stats[128);
double t;

long nbytes;

int b_flag = 0;

void prep_timer():
double read_timer():
double cput, realt;
main(argc.argv)

int argc;

char **argv;

{

unsigned long addr_tmp:
if (argc < 2) goto usage;

argv++; argc—-;

/* transmission time */

‘/* bytes on net */

/* use mread{) */

/* user, real time (seconds) */

while(arge>0 & & argv([0][0] =="-') {

switch (argv({O){1]) {
case 'B"

b_flag = 1;

75

break:
case 't
trans = |;
break:
case '’
trans = ();
break;
case 'd":
options = SO_DEBUG:
break:
case 'n"
nbuf = atoi(&argv([0][2)): .
break:
case 1"
buflen = atoi(&argv{0][2]);
break;

case 'w"
window=1];
sendwin = 1024 * atoi(&argv{0}(2]);
rcvwin = 1024 * atoi(&argv{0]{2]);
break;
case ‘s"
sinkmode = 1;/* source or sink, really */
break:
case p"
port = atoi(&argv([0](2]);
break;
case 'u"
udp = 1;
break;
defauit:
’ £0to usage;
argv++; arge—;
}
if(trans) {
/* xmitr */
if (argc != 1) goto usage;
bzero((char *)&sinhim, sizeof(sinhim));
host = argv{0};
if (atoi(host) >0) {
/* Numeric */
sinhim.sin_family = AF_INET:
#ifdef cray
addr_tmp = inet_addr(host);
sinhim.sin_addr = addr_tmp:
#else
sinhim.sin_addr.s_addr = inet_addr(host);
#endif
} else {
if ((addr=gethostbyname(host)) == NULL)

76

err("bad hostname");
sinhim.sin_family = addr->h_addrtype:
beopy(addr->h_addr,(char*)&addr_tmp. addr->h_length); *
#ifdef cray
sinhim.sin_addr = addr_tmp:
#else
sinhim.sin_addr.s_addr = addr_tmp:
#endif cray
}
sinhim.sin_port = htons(port);
sinme.sin_port = (0:/* free choice */ .
} else {
[*revr */
sinme.sin_port = htons(port);
}
if((buf = (char *)malloc(buflen)) == (char *)NULL)
err("malloc”);
fprintf(stderr,"ucp%s: nbuf=%d, buflen=%d. port=%d\n",
trans?"-t":"-r",
nbuf, buflen, port):
if ((fd = socket(AF_INET, udp?SOCK_DGRAM:SOCK _STREAM. 0)) < 0)
err("socket”);
mes("socket"):
/* Try the getsockopt & setsockopt for Solaris here */
#ifndef SOLARIS
if (bind(fd, &sinme, sizeof(sinme)) < 0)
err("bind");
#else
/&
* Under Solaris. calling connect() on a stream socket binds the
* socket to an address. If a bind() is done before the connect(),
* an error "connect: Address family not supported by protocol family”
* results. Only call bind() for the cases where you're not going
* to call connect().
*/
if (udp Il (‘udp && !trans))
if (bind(fd. (struct sockaddr *) &sinme, sizeof(sinme)) < 0)
err("bind");
#endif /* SOLARIS */
if ('udp) {
if (trans) {
/* We are the client if ransmitting */
if(options) {
#ifdef BSD42
if(setsockopt(fd. SOL_SOCKET. options. 0.)) < 0)
#else BSD43
#ifndef SOLARIS .
if(setsockopt(fd. SOL_SOCKET. options. &one. sizeof(one)) < 0)
#else
if(setsockopt(fd. SOL_SOCKET, options, (char *) &one. sizeof(one)) <
(1))

i

#endit /* SOLARIS */
#endif
em("setsockopt™);
}
#ifndef SOLARIS
if(connect(fd, &sinhim, sizeof(sinhim)) < 0) {
#else
if(connect(fd, (struct sockaddr *) &sinhim. sizeof(sinhim)) < 0) {
#endif * SOLARIS */
err("connect”™);
}
mes("connect”); .
if(window){
if (setsockopt (fd. SOL_SOCKET, SO_SNDBUF, (char *) &sendwin,
sizeof(sendwin)) < 0)
printf("get send window size didn't work\n™);
if (setsockopt (fd. SOL_SOCKET, SO_RCVBUF. (char *) &rcvwin,
sizeof(rcvwin)) < 0) .
printf("get rcv window size didn't work\n");
if (getsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &sendwin, &optien) <0)
printf("get send window size didn't work\a");
else printf("send window size = %d\n", sendwin);
if (getsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin, &optlen) <0)
printf("get rcv window size didn't work\n");
else printf("receive window size = %d\n", rcvwin);
}
} else {
/* otherwise, we are the server and
* should listen for the connections
*/
#ifndef SOLARIS
listen(fd,0); /* allow a queue of 0 */
#else
r
* Under Solaris, specifying a queue length of 0
* results in a "connection refused”.
*/
listen(fd.1);
#endif /* SOLARIS */
if(options) {
#ifdef BSD42
if(setsockopt(fd, SOL_SOCKET., options, 0, 0) < 0)
#else BSD43
#ifndef SOLARIS
if(setsockopt(fd, SOL_SOCKET, options, &one, sizeof(one)) < 0)
#else
if(setsockopt(fd, SOL_SOCKET., options, (char *) &one, sizeof(one)) <
0)
#endif /* SOLARIS */

#endif
err("setsockopt™);

78

}
fromlen = sizeof(frominet);
domain = AF_INET:
#ifndef SOLARIS
if((fd=accept(fd, &frominet, &fromlen)) <)
#else
if((fd=accept(fd. (struct sockaddr *) &frominet, &fromlen)) < 0)
#endif /* SOLARIS */
emr("accept™);
mes("accept”);
if (window){ .
if (setsockopt (fd, SOL_SOCKET, SO_SNDBUF., (char *) &sendwin,
sizeof(sendwin)) <0)
printf("get send window size didn't work\n"):
if (setsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &rcvwin,
sizgof(rcvwin)) <0)
printf("get rcv window size didn't work\n");
if (getsockopt (fd, SOL_SOCKET, SO_RCVBUF, (char *) &sendwin, &optlen) < 0)
printf(“get send window size didn't work\n");
else printf("send window size = %d\n", sendwin);
if (getsockopt (fd. SOL_SOCKET, SO_RCVBUF. (char *) &rcvwin, &optlen) <0)
printf("get rcv window size didn't work\n");
else printf("receive window size = %d\n", rcvwin);
}
}
}
prep_timer();
emo = {;
if (sinkmode) {
register int cnt;
if (trans) {
pattern(buf, buflen);
if(udp) (void)Nwrite(fd, buf, 4); /* rcvr start */
while (nbuf-- && Nwrite(fd.buf buflen) == buflen)
nbytes += buflen;
if(udp) (void)Nwrite(fd, buf, 4); /* rcvrend */
} else {
while ((cnt=Nread(fd.buf buflen)) > 0) {
static int going = 0;
if(cnt<=4) {
if(going)
break:/* "EOF" */
going = 1:
prep_timer():
} else
nbytes += cnt:
}
}
} else {
register int cnt;
if (trans) {

9

whuc((cnt=read(0.buf.butlen)) > 0 &&
Nwrite(fd.buf.cnt) == cnt)
abytes += cnt:
) else |
while((cnt=Nread(fd.buf buflen)) > 0 &&
write(1.but.cnt) == cnt)
abytes += cnt;
}
}
if(ermo) err("10");
(void)read_timer(stats,sizeof(stats));
if(udp& &trans) { g
(void)Nwrite(fd, buf, 4); /* rcvrend */
(void)Nwrite(fd. buf, 4); /* rcvr end */
(void)Nwrite(fd, buf, 4); /* rcvrend */
(void)Nwrite(fd, buf, 4), /* rcvr end */
}
fprintf(stdout,
"ticp%s: %ld bytes in %.2f real seconds = %.2f KB/sec = %.4f Mb/s\n",
trans?"-t":"-1",
nbytes, realt, ((double)nbytes)/realt/1024,
((double)nbytes)/realyy128000);
if (verbose) {
fprintf(stdout,
"ttcp%s: %ld bytes in %.2f CPU seconds = %.2f KB/cpu sec\n",
trans?"-t":"-r",
\ nbytes, cput, ((double)nbytes)/cput/1024);

exiy(0);

usage:

fprintf(siderr.Usage);
exii(1);

err(s)
char *s;

{

}

fprintf(stderr,"ttcp%s: *, rans?"-t":"-r");
perror(s);
fprintf(stderr,"ermo=%d\i" ermo);
exit(1);

mes(s)
char *s;

{
}

fprintf(stderr,"tcp%s: %s\n", trans?"-t":"-r", s);

pattemn(cp, cnt)
register char *cp;
register it cng;

{

register char c;

c=0:
while(cnt-->0) |
while(lisprint((c&0x7F))) c++:
*cp++ = (c++&UxTF):
}
}

P.‘.“‘ timmg ..t‘tt“./

#ifdef SYSV
exiern long time();
#if sgi
static void tvsub(); .
static structtimeval time0:/* Time at whict. imeing started */
#else
static long time0;
#endif
static struct tms tms0;
#else
static structtimeval time0;/* Time at which timeing started */
static structrusage ru(:;/* Resource utilization at the start */
static void prusage():
static void tvadd():
static void tvsub();
static void psecs();
#endif
F
. PREP_TIMER
*/
void
:nep_timero
#ifdef SYSV
#if sgi
gettimeofday(&time0, (struct timezone *)0);
#else
(void)time(&time0);
#endif
(void)times(&tms0);
#else
gettimeofday(&time0, (struct timezone *)0);
getrusage(RUSAGE_SELF, &ru0);
#endif
}

~

* READ_TIMER
*®

*/

double

read_timer(str.len)

char *str;

{

#ifdef SYSV

81

long now;
struct tms unsnow;
char line(132]:
#ifdef sgi
struct timeval timedol;
struct timeval td;
getameofday(&timedol. (struct imezone *)0):
tvsub(&td. &timedol. &timel);
realt = td.tv_sec + ((double)td.tv_usec) / 1000000;
#else
{void)ime(&now);
realt = now-time0); .
#endif
(void)times(&tmsnow);
cput = tmsnpow.tms_utime - tms(.tms_utime;
cput /= HZ;
if(cput < 0.00001) cput = 0.01;
if(realt < 0.00001) realt = cput;
sprintf(line,"%g CPU secs in %g elapsed secs (%g%%)".
cput, realt,
cput/reait*100);
(void)stmcpy(str, line, len);
return(cput);
#else
/* BSD */
struct timeval timedol;
struct rusage rul;
struct timeval td;
struct timeval tend, tstart;
char line[132];
getrusage(RUSAGE_SELF, &nul);
gettimeofday(&timedol, (struct timezone *)0);
prusage(&m0, &rul, &timedol, &time0, line);
(void)stmcpy(str, line, len);
/* Get real time */
tvsub(&td, &timedol, &time0);
realt = td.tv_sec + ((double)td.tv_usec) / 1000000;
/* Get CPU time (user+sys) */
tvadd(&tend, &rul.ru_utime, &rul.ru_stime);
tvadd(&tstart, &ru(.ru_utime, &ruQ.qu_stime);
tvsub(&td, &tend, &tstart);
cput = td.tv_sec + ((double)td.tv_usec) / 1000000;
if(cput <0.00001) cput = 0.00001;
return(cput);
#endif
}
#ifndef SYSV
static void
prusage(r0, r1, e, b, outp)
register struct rusage *r0, *rl;
struct timeval *e, *b;

82

char *outp;

struct timeval tdiff;

register time_t t;

register char *cp;

register int i;

int ms;

t = (r1->ru_utime.tv_sec-r0->ru_utime.tv_sec)* 100+
(rl->ru_utime.tv_usec-r0->ru_utime.tv_usec)/10000+
(r1->ru_stime.tv_sec-r(->ru_stime.tv_sec)* 100+
(r1->ru_stime.tv_usec-r0->ru_stime.ty_usec)/10000:

ms = (e->tv_sec-b->tv_sec)* 100 + (e->tv_usec-b->tv_usec)/10000;

#define END(x){ while(*x) x++:}

cp = "%Uuser %Ssys %Ereal %P %Xi+%Dd %Mmaxrss %F+%Rpf %Ccsw";

for (; *cp: cp++) {
if (*cp !="%")
*outp++ = *cp;

else if (cp[1]) switch(*++cp) {

case U
tvsub(&udiff, &r1->ru_utime, &r0->ru_utime);
sprintf(outp,”%d.%01d", wdiff.tv_sec, tdiff.tv_usec/100000);
END(outp).
break:

case 'S"
tvsub(&diff, &r1->ru_stime, &r0->ru_stime);
sprintf(outp,” %d.%01d", wdiff.tv_sec. tdiff.tv_usec/100000);
END(outp): .
break;

case E:
psecs(ms / 100, outp);
END(outp);
break;

case 'P"
sprintf(outp."%d%%". (int) (t*100 / ((ms ? ms : 1))));
END(outp);
break:

case 'W'"
i =rl->ru_nswap - rO->ru_nswap:
sprintf(outp."%d", i)
END(outp):
break;
case X"
sprintf(outp."%d". t == 0 ? 0 : (rl->ru_ixrss-r0->ru_ixrss)/t);
END(outp).
break:
case D"
sprintf(outp."%d". t==070:
(r1->ru_idrss+r1->ru_isrss«(r0->ru_idrss+r0->ru_isrss))t);
END{(outp): .
break:

case 'K"

83

}

sprintf(outp."%d". t==070:
((r1->ru_ixrss+rl->ru_isrss+rl->ru_idrss) -
(rO->ru_ixrss+r0->ru_idrss+r0->ru_isrss))/):

END(outp):
break:

case ‘M’
sprintf(outp."%d". r1->ru_maxrss/2);
END(outp):
break:

case F:
sprintf(outp."%d", r1->ru_majflt-r0->ru_majflt):
END(outp); .
break;

case R"
sprintf(outp.”"%d", r1->ru_minflt-r0->ru_minflt);
END(outp):
break:

case 'T:
sprintf(outp,"%d", r1->ru_inblock-10->ru_inblock);
END(outp);
break;

case ‘0"
sprintf(outp,”"%d". r1->ru_oublock-r0->ru_oublock);
END(outp); .
break;

case 'C":
sprintf(outp.”"%d+%d", r1->ru_nvcsw-10->ru_nvesw,

rl->ru_nivesw-r0->ru_nivesw);

END(outp);
break;

}

}

*outp = \0';

static void
tvadd(tsum, t0, t1)

{

}

struct timeval *tsum, *t0, *tl;

tsum->tv_sec = t0->tv_sec + tl->tv_sec;
tsum->tv_usec = t0->tv_usec + t1->tv_usec;
if (tsum->tv_usec > 1000000)
tsum->tv_sec++, tsum->tv_usec -= 1000000;

static void
tvsub(udiff, t1, t0)

{

struct timeval *tdiff, *t1, *t0:

tdiff->tv_sec = t1->tv_sec -)->tv_sec;
wdiff->tv_usec = t1->tv_usec - t0->tv_usec;
if (tdiff->tv_usec < 0)

wdiff->tv_sec--, tdiff->tv_usec += 1000000;

}
static vuid
psecs(l.cp)
long I:
register char *cp;
{
register int i;
i =1/3600;
if (i) {
sprintf(cp."%d:". i):
END(cp): .
i=1% 3600:
sprintf(cp,"®d%d". (1/60) / 10, (/60) % 10);
END(cp):
) else {
i=L
sprintf(cp."%d". i / 60);
END(cp):
}

i %= 60;
*cp++ ="
sprintf(cp."%d%d". i/ 10, i % 10);
}
#endif
r
e NREAD
*/
Nread(fd. buf, count)
{
struct sockaddr_in from;
int len = sizeof(from);
register int cnt:
if(udp) {

cnt = recvfromy fd. (char *) buf, count. 0. (struct sockaddr *) &from. &len);

} else {
if(b_flag)
cnt = mread(fd. buf, count):/* fill buf */
else
cnt = read(fd, buf. count);
}
retum(cnt);
}
r
. NWRITE
*/
Nwrite(fd. buf. count)
{
register int cnt:
if(udp) {
again:

cnt = sendio{ fd. (char *) buf. count. 0. (struct sockaddr *) &sinhim.

sizeof(sinhim)):
if{ cni<O) & & ermo == ENOBUFS) |
delay(18000);
ermo = 0.
£010 again;
}
} else {
cnt = write(fd .ount)
}
rewarn(cnt):
)
delay(us)] .
{
struct timeval tv;
tv.tv_sec =
tv.tv_usec = us;
(void)select(1, (fd_set *)0. (fd_set *)0, (fd_set *)0, &tv);
return(1);

}
P
* MREAD
.
* This function performs the function of a read(Il) bur will
* call read(lI) multiple times in order to get the requested
* number of characters. This can be necessary because
* network connections don't deliver data with the same
* grouping as it is written with. Written by Robert S. Miles, BRL.
*/
int
mread(fd, bufp. n)
im fd;
register char*bufp;
unsignedn;
{
register unsignedcount = 0;
register inmread;
do {
nread = read(fd, bufp, n-count);
if(nread < 0) {
perros(“ucp_mread®);
return(-1);
)
if(nread == 0)
return{(int)count);
count += (unsigned)mread;
bufp += nread;
} while{count < n);
return((int)count);
}

#if sgi
static void

tvsub(tdiff, 11, 10)
struct timeval *tdiff, *t1, *t0;
{
tdiff->tv_sec = tl->tv_sec - t->tv_sec:
tdiff->tv_usec = t1->tv_usec - t0->tv_usec:
if (tdiff->tv_usec < 0)
tdiff->tv_sec—, tdiff->tv_usec += 1000000;
}
#endif

&7

APPENDIX B: RCP PROGRAM

#include <stdioh>
#include <sys/time.h>

main ()
{

long clapsed_sec. /* Seconds variable *
elapsed_usec; /* Microseconds variable */

int file_size;

float total_time,

part_usec,
transfer_rate;

float average_time = 0;

int loop_counter,
a, /* Subroutine result variables */
b:

int n=§;

char name[30), system_name[30];
char rcp_string[30] = “rcp*;

char blank_string(2] = " *;

int true=1;

char answer{2];

char* get_name(char *string);

/* Variable structure defns */

struct timeval timestart, timedone;
struct timezone zonestart, zonedone;
/* Get file name & Dest machine name & path ~ */
printf("\n\n\n Here is a list of availble files for transfering: \n\n");
system ("Is -al”);)
while(answer{0] I='y")

{

printf("\n Input the file name 10 be transfered: \n\n");

gets(name);
printf(™\a Is the below input correct? Enter y if yes or n if incosrect: \n\n");

puts(name);
printf("™\n");
gets(answer),
}
answer{0] ='n"; /* reset for next loop */

/* Get file size */

while(answer{0] != ‘y")
{
printf("™n Input the file size to be transfezed: \n\n");
scanf("%d", &file_size);
printf("\n Is the helow input correct? Enter y if yes or n if incorrect: \n\n™):
printf("%d\n", file_size);
gets(answer);
gets(answer):
answer({0] ='y";
}

answer{0] ='n", /* reset for next loop */

while{answer{0] !='y")
{
printf("™\n Input the Dest machine name & path to be transfered: \n\n");
printf("An example would be: gold-fddi:/usr/test/wtog_test\n\n"):
geis(system_name);
printf(™\n Is the below input correct? Enter y if yes or n if incorrect: \n\n");
puts(system_name);
printf("\n");
gets(answer);

}

strcat(rcp_string, blank_string);
strca(rcp_string, name);
streat(rcp_string, blank_string);
strcat(rcp_string, system_name);

/* Set up outer loop to execute transfers n times */
for (loop_counter = 1; loop_counter <= n; loop_counter += 1)
{
/* Get start time in sec&usec and check if successful */
a = gettimeofday(×tart, zonestart):
if (a 1= 0)
printf ("Oops ! %d\n", a);
/* Use system call to do file transfer */
system (rcp_string):
/* system ("rcp american_pie.au gold-fddi:/usr/test/wtog_test"); */
/* Get stop time in sec&usec and check if successful */
b = gettimeofday(&timedone, zonedone):

89

if(b'=)

printf ("Oops! %d\n". b):

/* Get structure values for calculations. */
clapsed_sec = tinedone.tv_sec - timestart.tv_sec:
elapsed_usec = timedone.tv_usec - timestart.tv_usec:

/* Make sure that we account for the usec */

/* variable rooling over (through zero) */
if (elapsed_sec >= 1)

{
if (elapsed_usec < 0)

{
clapsed_sec -= 1; .
elapsed_usec += 1000000;
}
}
/* Convert the usec variable to a floating point number. */
part_usec = elapsed_usec/1.0e6;
/* Add the seconds to the microseconds to get a real number */
total_time = elapsed_sec + part_usec:
/* And print the results on the CRT */
printf ("%f \t%f\n", total_time, ((file_size*8/total_time)/1000000));
average_time =+ total_time;
}

/* Print out the results of the avg transfer rate */
printf("\n\nls this time correct? %f", average_time);

printf("tThe average time was %f and the average transfer rate was %f\n", average_time/n,
((file_size*8/otal_time)/1000000));

/* This is the end of the control loop. */
exit (0);
}

APPENDIX C: NEAL NELSON BENCHMARK RESULTS

TABLE 9: CPU SUBSYSTEM

GOLD2.SOL White Gold
CPU Type Sparc Sparc
CPU Clock Speed 45 MHz 50 MHz
Total Size of Main Memory 224 Mbytes | 224 Mbytes
Speed of Main Memory Chips 80 ns 80 ns
Type and Speed of Math Coprocessor None None
Number of Main CPUs 2 2
TABLE 10: DISK SUBSYSTEM .
White Gold
Total Number of Disk Controllers 1 1
Total Number of Disk Devices 2 2
Disk Drive Type SCsl SCsl
Disk Drive Brand/Model Seagate Seagate
Disk Average Seek Time
Seagate ST11200 1-10.5ms 2-10.5 ms
Seagate ST1480 1-10.5ms
Does system have 1/O buses separate from the Yes Yes

main bus?

91

TABLE 11: CACHE INFORMATION

White Gold
Does the system have instruction or data cache? Yes Yes
How many levels of instruction/data cache are 2 2
there?
How is cache coherency accomplished? Snooping Snooping
with with
invalidation | invalidation
Does CPU have separate instruction and data Yes Yes
caches?
Total size of all instructions/data caches:
On-board Instruction | 20 Kbytes 20 Kbytes
Data 16 Kbytes 16 Kbytes
(Note: External SuperCache controller provides 1
Mbyte external cache)
Total swap approx 280 | approx 280
Mbytes Mbytes

Group 1: Tests a of mix of activities that are intended to approximate the processing

1) Simulated Office Automation Workload
2) Simulated Database Workload

3) Simulated Software Development Workload
4) Simulated Transaction Processing Workload
5) Simulated Calculation Workload (Math/Statistics/CAD/CAM)

activities for the following five types of users. Group 1 includes the following tests:

Group 2: Tests designed to perform various types of calculation tasks and thereby
profile the performance of the computer’s calculation subsystem. Group 2 includes the

following tests:

92

6) Write to Shared Memory

7) Read from Memory, Small Instruction Area, Small Data Area
8) Read from Memory, Small Instruction Area, Larger Data Area
9) Read from Memory, Larger Instruction Area, Small Data Area
10) Read from Memory, Larger Instruction Area,.Larger Data Area
11) Make Machine Page or Swap with ‘malloc’ and ‘free’

12) Combined Integer and Flaating Point Math

13) Math Library Functions

14) Semaphores, Shared Memory, Context Switch

15) Write to and Read from Pipes, Context Switch

16) Sample Systemn Calls

17) Increasing Depth of Function Calls

Group 3: Tests that perform a series of disk input and output functions to profile the

performance of the disk subsystem. Group 3 includes the following tests:

18) 1024 byte Sequential Reads from Unix File(s)

19) 1024 byte Sequential Writes from Unix File(s)

20) 8192 byte Sequential Reads from Unix Files(s)

21) 3192 byte Sequential Writes to Unix File(s)

22) 4096 byte Synchronized Reads from Unix File(s)

23) 4096 byte Synchronized Reads from Raw Device(s)
24) 16384 byte Synchronized Reads from Unix File(s)
25) 16384 byte Synchronized Reads from Raw Device(s)
26) 4096 byte Pseudo Random Reads from Unix File(s)
27) 4096 byte Pseudo Random Reads from Raw Device(s)
28) Profile Disk Cache for Unix File(s)

29) Profile Disk Cache for Raw Device(s)

30) 8192 byte Sequential Writes then *sync’

93

(;old Verses White, Two Processors

TABLE 12: GOLD2.SOL VRS WHITE2.SOL, TEST 1 & 2&3& 4

2

451

SIS1a] o] 4 o] ol
=
o~
L

J9854

ey
>

el
&
w
o
L,

HEﬁQ

H

>
—
-

EREEEE
CEEE

TABLE 13: GOLD2.SOL VRS WHITE2.SOL, TESTS5& 6& 7 & 8
—l-m_1-|-m_|-|—m_|-l-.m-

595!&?35

CEEEEEEEEEE

3

aaaaqa

RRREEES

TABLE 14: GOLD2.SOL VRS WHITE2SOL, TEST9& 10& 11 & 12
_ll-l-m_ll-ﬂl_l-l-ﬂl!-

[P ees | e Secs Illﬁ

p) T3 187 ’)
k) 03 {7 m lﬂ— J LJ uz 137
) 3768 i L] BT | ¥ LN 30 1.5}
11 k] b7 Lv () L ¥ v by B ‘
. » K i) L < 2 . $? 313 263
7 az r) (13] < & LJ v ki 3 {1
3 L4 @3 k) T v (] r 7
L] (77} 337 L Y L 2 L LA az ‘
11} 38 [1;] 1% L x . L) L L1 1] r)
1 — 387 o7 1213 11"’ LJ [%% 33
1§ T kLK) ™ T 8 v v v X
) &) LL0] 7 § 117" LJ v it <y
14 1663 L1 T72¢ T [L Tl |
111 I 3 pi[] TRRY) v e 3
T 1244 182 pxLi] ¥ L L] r

TR | Ei LN ¥ I 12}

138 | 1158 2948 | ® (] L)

5% 7 171 LJ LJ 8%
1303 T2 387 p) [) [] L§

TABLE 15: GOLD2.SOL VRS WHITE2.SOL, TEST13 & 14 & 15 & 16

[€S €es
I) 0 0 T} 0
Secs || Secs Secs || Secs Secs || Secs Secs | Secs
b] 8 LI 140 134 31 111 ~ 5%
3 %% T pikg 187 ™ 5%
) 211 ™ p1] 248 217 1§13
1 1y 3 3 Kk § k! Y 17 L.
3 33 pI*] 81 a1 K| I8 ™
7 77 k1| 14§ ! k| 2 y1] 72
{3 22 L §| [} EiD) [Ly) pii] 1103
L] 3 k(1] 3 5 1) T ! LA
e L5 1] i) L3 (5719 L7 |
11 393 i T3 R 1 kyiJ
 +) (5L L4 L1 18 = L34] KL
L&) I3 R T8 T e i n3 |
T4 ™ 3] 8¢ | i/ T a3
L1 L 70 TI¥ TS L (11 ki) 0B 3
T¢ 5 s 1541 T | 130 Ly
T 37 1 . TRY L Y | 7 gy
108 | 328 TS Ta% 1127 332 Ly .
TRT | 53 TITS 313 R L7 1111
1118 932 1541 1082 138 i) €13

98

TABLE 16: GOLD2SOL VRS WHITE2.80OL, TEST17& 18& 19 & 20

szuuNu

ﬁﬁ#ﬁ§#§§ﬂ#ﬁﬁﬁduanea
dead el el ded dd ol dd o d

TABLE 17: GOLD VRS WHITE2.SOL, TEST 21 & 22 & 23& 24

£
g

JaJeéeﬂsﬂqﬁuaJa.qu &

OLD2SOL VRS WHITE2.SOL, TEST25& 26 & 27 & 28

TABLE18: G

OLD2SOL VRS WHITE2SOL, TEST 29 & 30

G

TABLE 19

97

Gold One Processor Verses (Gold Two Processors Resuits

TABLE 20: GOLD1SOL VRS GOLD2SOL,TEST1&2&3& 4

Secs || Secs

Secs

163

T8
Lt

141

166

TABLE 21: GOLD1SOL VRS GOLD2SOL, TESTS&6&7& 8

TABLE 22: GOLD1SOL VRS GOLD2SOL, TEST9& 10& 11 & 12

e[Sl [seaf sl [

-

t_§ iestiv § }

_
|
M
|
_
|
“
|
ﬂ
|

I TS

i

TABLE 23: GOLD1.SOL VRS GOLD2SOL,TESTI3& 14 & 15 & 16

L)

14

4
17

3%
427

3
Y
.
&)

“I¥
a7

TABLE 24: GOLD1.SOL VRS GOLD2SOL,TEST 17 & 18 & 19 & 20

327
433

TABLE 25: GOLD1.SOL VRS GOLD2SOL,TEST21 & 22& 23& 24

8337

Secs || Secs Secs

Secs

343

14

100

TABLE 26: GOLD1.SOL VRS GOLD2SOL, TEST 25 & 26 & 27 & 28

11
1A
13
17

1
14

)

a8
8T

T™HS

TABLE 27: GOLD1.SOL VRS GOLD2SOL, TEST 29 & 30

1

Solaris 2.3 One Prucessor Verses SunQS 4.1.3 One Processur Results

TABLE 28: GOLD1SOL VRS GOLDISUN, TEST1&2&3& 4

pit

163

™™ [17

TSy 1138

™ T

TABLE 29: GOLD1.SOL VRS GOLD1SUN, TESTS& 6 & 7& 8

Secs

Secs || Secs

PEERRERES

PRERERRAIRE

102

TABLE 30: GOLD1SOL VRS GOLD1LSUN, TEST9& 10& 11 & 12

TABLE 31: GOLD1.SOL VRS GOLDISUN,TESTI13 & 14 & 15& 16

103

TABLE 32: GOLPLSOL VRS GOLDISUN, TEST17& 18 & 19& 20

TABLE 33: GOLD1.SOL VRS GOLD1SUN,TEST21 & 22&23& 24

104

TABLE 34: GOLD1.SOL VRS GOLDLSUN, TEST 25 & 26 & 27 & 28

]
3
4
L]
[]
7
[)
k)

-
- O

[~

g

CEEEEE H%S‘?H: CEEEERN

TABLE 35: GOLD1.SOL VRS GOLD1.SUN, TEST 29 & 30

:i:ﬂ'iJE::J-Jau;un

EEEE‘H#“"*“HAUWN—

108

APPENDIX D: NTTCP SINGLE PROCESSOR RESULTS

TABLE 36: SINGLE PARAMETER TEST RESULTS

threads fle rx
€S (3 ms
Ind Test Cold White 4 ~8ms 8K
3rd Jest & White Cold 8 “8ms A8K
4thTest . Gold White
Sth Test White Gold 18 “Bms ZBK
“Oth Test Gold White [Bms 48K
~Tth Test & ~White Gold 18 " 8ms 48K
8th Test Gold White
Oth Test White Gold T Sms 48K
TOth Test Gold White 3 Sms 48K
TTth Test ‘White Gold 3 Sms 48K
12th Test Gold White
T3th Test White Gold 1 Sms 48K
Tdth Test Cold ~ White 18 Sms 48K
T5th Test "White Gold 16 Sms 48K
16th Test Gold White
— 1 7th Test ‘White Cold B TIms ~3BK
—IBth Test Gold - White B TIms — 48K
— 10th Test & ~White Cold 4 TIms 48K
20th Test Gold White
21st Test White Gold 16 TTms J8K
22nd Test Cold White | (3 TTms 48K
23rd Test & White Gold 16 TIms BK
24th Test Gold White
— 25th Test "White Gold — 8 s — 48K
~J6st Tost Gold White ~8 ms 48K
Test & White Gold B ms a8K
28th Test Gold White
~ J9th Test *White Gold 18 Sms BK
— 30th Test Cold "White 18 TSms —48K
35t Test & . White Gold 16 25ms riiq
32nd Test Gold White
33rd Test White Gold 1 5
FDDI Boards switched
34th Text Gold — White g ~ 8 BK

FDDI Boards switched

106

TABLE 37: SINGLE PROCESSOR, 1ST TEST RESULTS

From: White Threads: 8 LLC Buffers: 48K
To: Gold TTRT: 8ms Single Test

TABLE 38: SINGLE PROCESSOR, 2ND TEST RESULTS

From: Gold Threads: 8 LLC Buffers: 48K
To: White TTRT: 8ms Single Test

TABLE 39: SINGLE PROCESSOR, 3RD TEST RESULTS

.;,:J ®
sntm'saagg

From: White Threads: 8 LLC Buffers: 48K
To: Gold TTRT: 8ms Dual Test

107

TABLE 40: SINGLE PROCESSOR, 4TH TEST RESULTS

naow >Size

(K bytes)
I L% T7.57 038 | <896 0.5 oY KRS .08 |
T ik) LAR) 57 b Al ToO.K 8.7 T5.51 55 |
piG 3% 0% A TR AR 155y pLJT nIT
1) = 3913 78.76 T8I R K 26.96 RATS RN I
k(3 Y T .58 T8 pi o ™ D) T
a 30.04 L] k! 31.68 31,38 o T 2513 35,73
3T Ry X T35 5% T3.03 37

26.4% kg 3.8 LX) To% 30|
From: Gold Threads: 8 LLC Bufters: 48K
To: White TTRT: 8ms Dual Test

TABLE 41: SINGLE PROCESSOR, 5STH TEST RESULTS

G
(K bytes)

4

12

20

pi]

36

=3

32

60

From: White Threads: 16 LLC Buffers: 48K
To: Gold TIRT: 8ms Single Test

TABLE 42: SINGLE PROCESSOR, 6TH TEST RESULTS

From: Gold Threads: 16 LLC Buffers: 48K
To: White TTRT: 8ms Single Test

108

TABLE 43: SINGLE PROCESSOR, 7TH TEST RESULTS

oW dlze
(K bytes)

From: White Threads: 16 LLC Buffers: 48K
To: Gold TIRT: 8ms Dual Test

TABLE 44: SINGLE PROCESSOR, 8TH TEST RESULTS

From: Gold Threads: 16 LLC Buffers: 48K
To: White TTRT: 8ms Dual Test

TABLE 45: SINGLE PROCESSOR, 9TH TEST RESULTS

From: White Threads: 8 LLC Buffers: 48K
To: Gold TTRT: Sms Single Test

109

TABLE 46: SINGLE PROCESSOR, 10TH TEST RESULTS

oW
(K bytes)
-

12

U

From: Gold Threads: 8 LLC Buffers: 48K
To: White TIRT: Sms Single Test
TABLE 47: SINGLE PROCESSOR, 11TH TEST RESULTS

TABLE 48: SINGLE PROCESSOR, 12TH TEST RESULTS

(K bytes) Mbps | Mbps | Mb Mbps | Mbps | Mb Mbps | Mbps
3 004 | 0B 1 B8 | 393 2137 20.89 5.5 | ;
12 T - — BB | A0 AB | 188 1 181 |
20 BT | B | BB [D% | %&| 244 3358 |
EL) (%] 2. A Y] 041 R .13 o3 | X
r.” PO | D 1580 W0 | 2.8 | 2708 TTA2 5.8l

32 0o | ; 2731 [14.03 T3.82 432 1327

%0 X T7.31 .13 753 ~T.30 =790 737

From: Gold Threads: 8 LLC Buffers: 48K

To: White TIRT: Sms Dual Test

110

TABLE 49: SINGLE PROCESSOR, 13TH TEST RESULTS

From: White Threads: 16
To: Gold TTRT: Sms

LLC Buffers: 48K
Single Test

TABLE 50: SINGLE PROCESSOR, 14TH TEST RESULTS

- %

(K bytes) Mbps | Mbps | M Mbps | Mbps { Mbps | Mbps | Mbps
3 YL17 B | B 1 BT B%] D% 1 5551 -
T2 I3 L7 VB | OB | BB [o pLX7] 77
20 oIS ki Vi) & | S8 33.72 1553 T8 1.
78 T D | B | B8 1 B8 7 X5 BTN
73 TR | 45)< Y k5411 k7 X] AL
ry 3517 TR 1T X8 1 =0 £ 31 537 1 5%
37 31.02 Ky Ny 3T Ky X\ LT!'E"" 133 3% | x
(1) 32.77 kN1 3577 5 .08 745 787 Y
From: Gold Threads: 16 LLC Buffers: 48K
To: White TIRT: 5ms Single Test

¥

1

Mb, Mb,

-

TABLE 51: SINGLE PROCESSOR, 15TH TEST RESULTS

e L) 1 !

From: White
To: Gold

Threads: 16
TTRT: Sms

LLC Buffers: 48K
Dual Test

111

TABLE 52: SINGLE PROCESSOR, 16TH TEST RESULTS

oW Size
(K bytes)

-

T2

20

28
£
a
5y

From: Gold Threads: 16 LLC Buffers: 48K
To: Whitwe TTIRT: Sms Dual Test

TABLE 53: SINGLE PROCESSOR, 17TH TEST RESULTS

From: White Threads: 8 LLC Buffers: 48K
To: Gold TIRT: 1lims Single Test

TABLE 54: SINGLE PROCESSOR, 18TH TEST RESULTS

1 1) 1 1) 1) 17

(K bytes)
4

From: Gold Threads: 8 LLC Buffers: 48K
To: White TIRT: 1lms Single Test

112

(26

bytes)
4

(K

Mb,

12

N

20

jie 1

TABLE 55: SINGLE PROCESSOR, 19TH TEST RESULTS

From: White
Gold

To:

Threads: 8

TIRT:

11ms

LLC Buffers: 48K
Dual Test

TABLE 56: SINGLE PROCESSOR, 20TH TEST RESULTS

(K bytes) Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps
3 380 | 05 ST | %68 | 50 | % | NI :
T2 ke Ay B | B8 1 %15 1 28 | 1T 8%]
70 | N1 BB] B o X3 7308
i § VX7 pr&)| R | N1 | 3 HRa | B3
% —%0.1T TN BRO | B | BB] BZ [AD |
9 Ly Wyl kY 2 I DA | A] Bl X
33 [7 %] Py A)l IS 1 02 | 1408 kX 1288 T3
) ~%.03 1 25 5.2 1 580 T34 T3 &0
From: Gold Threads: 8 LLC Buffers: 48K
To: White TIRT: 1lims Dual Test

TABLE 57: SINGLE PROCESSOR, 21ST TEST RESULTS

From: White
Gold

To:

Threads: 16
TTRT:

Iims

LLC Buffers: 48K
Single Test

113

TABLE 58: SINGLE PROCESSOR, 22ND TEST RESULTS

From: Gold Threads: 16 LLC Buffers: 48K
To: White TIRT: lims Single Test

TABLE 59: SINGLE PROCESSOR, 23RD TEST RESULTS

(K bytes) Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps
) W08 | WX | B8] B3T [A0 | X [08 2
T2 271.31 2731 A .03 % 11913 5.7/ 1611
0 2730 I3 | 2642 23.72 [23.37 W03 70
78 R | D131 DR | B3 | ar | A pYA (] .
36 2640 | B] BR pyALS 30.77 yi AV R > £
44 577 w0 kv X) 0.% k” X1 pik) 0% 2
191)| 3 TR 1 30 T 28T 175 I %
B0 13330 | 68 | 3207 | . pd 23.70 23.08

From: White Threads: 16 LLC Buffers: 48K

To: Gold TIRT: 1lms Dual Test

TABLE 60: SINGLE PROCESSOR, 24TH TEST RESULTS

(K bytes) Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps
7 TR0 | W% 737 IR | DR | a0 |
LY R T B2 BB patis] VR | 2210 | D87 |
%0 0.04 T B | D | B8 | B | B8]
— % N DI Tz w0 B | 2702 L%
% N 3731 I] BB | BSS B | 5.4 |
r ’ 0K T8 | A0 | B8 BX 1 2.0 Bor | ;
32 2731 .13 713 2781 TSR | 1608 | 1463 (X5
0 “30.0% a1.37 pyAc) W S8 S K T30 30 Ak
From: Gold Threads: 16 LLC Buffers: 48K

To: White TTIRT: 1lms Dual Test

114

TABLE 61: SINGLE PROCESSOR, 25TH TEST RESULTS

From: White Threads: 8 LLC Buffers: 48K
To: Gold TIRT: 25ms Single Test

TABLE 62: SINGLE PROCESSOR, 26TH TEST RESULTS

From: Gold Threads: 8 LLC Buffers: 48K
To: White TIRT: 25ms Single Test

TABLE 63: SINGLE PROCESSOR, 27Tt ST RESULTS

e B e 1"

From: White Threads:] LLC Buffers: 48K
To: Gold TIRT: 25ms Dual Test

115

TABLE 64: SINGLE PROCESSOR, 28TH TEST RESULTS

0
(K bytes) Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps
I %) TT.31 YARY BH 1 055 1 N5 p RS 063
T2 Ay L P yZ Wi 321 TR MW 1 10w | o0
0 3T T ol | BB | 28 ; BRALE 17
pryy T 3.5 2331 P2} B AT) PIN BIX Y
3 X1ty WIS T V&% | BT B% 1 B8 | B9 "
Py =T X . — 0% pL 26.06 by p)] 76.33
3T L% pL81Y 7.0 B IS¢ T5.57 13 .
0 3 5 2 k| 366 ¥ 391
From: Gold Threads: 8 LLC Buffers: 48K
To: White TTRT: 25ms Dual Test

TABLE 65: SINGLE PROCESSOR, 29TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 48K
To: Gold TIRT: 25ms Single Test

TABLE 66: SINGLE PROCESSOR, 30TH TEST RESULTS

(K bytes) Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps
7} ki) =] AN TH W3 | D8 | DR
T2 3577 ST i IR I727 | B8 | %37
0 7] T BT | 50 | A% |
v 77 A AP | 38 —W'J R 1 BW

% kA1 BB AR | BT 1 BR[| B8 1 53

a] O] AW] SB] oK =8 o7 X
37 Xl A0] BB 1 Re 1508 : T [NE)
[24] KA 0B 1 A% “m— 0 &%) 731

From: Gold Threads: 16 LLC Buffers: 48K

To: White TIRT: 25ms Single Test

TABLE 67: SINGLE PROCESSOR, 31ST TEST RESULTS

(K bytes) Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps
| P8] pL AL I7 3 PLA N P rim1 TS | "
13 (AT ey) X R WA | OR 0.1 X
iy W | 28| B0 30 X 31 B3 "
Pill L8] KA &) pit 14 PA] Rk £} 9% 14 "0
;3 77 PiALS W] 30] N] NB | B%
r 7 WS | AA | Lol Y2353 T B3
124 T TN T 2y g B rTnrY
] 1 T p) & N 1 N L% 1 Pk N2)

From: White Threads: 16 LLC Buffers: 48K

To: Gold TTRT: 25ms Dual Test

TABLE 68: SINGLE PROCESSOR, 32ND TEST RESULTS

v/ 17 e B il e L d' I 1"

From: Gold Threads: 16 LLC Buffers: 48K
To: White TIRT: 25ms Dual Test

TABLE 69: SINGLE PROCESSOR, 33RD TEST RESULTS

RCTFRD [TR RF | il

From: White Threads: § LLC Buffers: 48K
To: Gold TTRT: 8ms Single Test. FDDI Boards Switched

117

TABLE 70: SINGLE PROCESSOR, 34TH TEST RESULTS

oW
(K bytes)

From: Gold Threads: 8 LLC Buffers: 48K
To: White TIRT: 8ms Single Test, FDDI Boards Switched

118

APPENDIX E: NTTCP TWO PROCESSORS RESULTS

TABLE 71: PARAMETERS USED FOR TWO PROCESSOR TEST

est Number NFS_asynch . sbf pum_ [[sbf_mtu
threads lic rx
old K Bms 48K 4

1st Test Whate
2nd Test White Gold 16 8ms 48K 4352
3rd Test White Gold 8 Sms 48K 4352
4th Test White Gold 16 Sms 48K 4352
5th Test White Gold 8 1lms 48K 4352
6th Test White Gold 16 1ims 48K 4352
Tth Test White Gold 8 25ms 48K 4352
8th Test White Gold 16 25ms 48K 4352
Gth Test White Gold .3 Sms 56K 4352
10th Test White Gold 16 8ms 56K 4352
11th Test White Gold 8 5ms 56K 4352
12th Test White Gold 16 S5ms 56K 4352
13th Test White Gold 8 1lms 56K 4352
14th Test White Gold 16 1lms 56K 4352
15th Test White Gold 8 25ms 56K 4352
16th Test White Gold 16 25ms 56K 4352
17th Test White Gold 8 8ms 40K 4352
18th Test White Gold 16 8ms 40K 4352
19th Test White Gold 8 S5ms 40K 4352
20th Test White Gold 16 5ms 40K 4352
2ist Test White c 8 1lms 40K 4352
22nd Test White Gonus 16 1lms 40K 4352
23th Test White Gold 8 25ms 40K 4352
24th Test White Gold 16 25ms 40K 4352
25th Test White Gold 8 8ms 48K 4192
26th Test White Gold 16 8ms 48K 4192
27th Test White Gold 8 5ms 48K 4192
28th Test White Gold 16 5ms 48K 4192
20th Test

119

TABLE 71: PARAMETERS USED FOR TWO PROCESSOR TEST

est Number _asyach sbf_num_ sbf_mtu
threads tie 2

3(th Test Whate Gold 16 1lms 48N 4192
31st Test Whte Gold 8 25ms 438K 4192
32nd Test Whte Gold 16 25ms 43K 4192
33rd Test White Gold 8 8ms 56K 4192
34th Test White Gold 16 8ms 56K 4192
35th Test White Gold 8 Sms 56K 4192
36th Test Whte Gold 16 S5ms 56K 4192
37th Test White Gold & iims 56K 4192
38th Test White Goid 16 Ilms 56K 4192
39th Test White Gold 8 25ms 56K 4192
40th Test Whate Gold 1> 25ms 56K 4192 |
4lst Test White Gold 8 8ms 40K 4192]!
42nd Test White Gold 16 8ms 40K 4192
43rd Test White Gold 8 5ms 40K 4192
44th Test White Gold 16 5ms 40K 4192
45th Test White Gold 8 1lms 40K 4192
46th Test White* Gold 16 1lms 40K 4192
47th Test White Gold 8 25ms 40K 4192
48th Test White Gold 16 25ms 40K 4192

TABLE 72: TWO PROCESSORS, IST TEST RESULTS

indow Size Al Fiel C | FieD 4 ‘ '

(K bytes) Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps
4 30.04 3277 nn nn 30.34 3L 30.7 31.08
12 30.04 2n L3 29.37 30.46 30.43 30.86

20
28
3
4
52
60

From: White

To:

Gold

.Thteads: 8
TTRT: 8ms

LLC Buffers: 48K

MTU:

4352 Bytes

120

TABLE 73: TWO PROCESSORS, 2ND TEST RESULTS

indow Size
(K bytes)

4
12
20

28

36

44
52
60
From: White Threads: 16 LLC Buffers: 48K
To: Gold TTRT: 8ms MTU: 4352 Bytes

TABLE 74: TWO PROCESSORS, 3RD TEST RESULTS

dow Size A C D le File G le

(K bytes) Mbps | Mbps | Mbp: Mbps | Mbps | Mbps | Mbps | Mbps
4 277 2.7 n 35.11 30.95 3213 31.46 31.70
12 004 | 3095 30.58 30.95 3034 30.55 31.02 30.55
20 11833 | 6007 | s8.25 54.61 5243 | 5005 | 4959 | 5097
2 571344 | 4369 | 5825 5243 | sS243 | s163 | S1e0 | si2l
% 2T | 430 | se1s | 5243 | S0 543 s289 | Sl
4 0310 | 6007 | 5825 5680 | 4952 | S1.63 | s252 | 5267
52 38593 | 6007 | 346l 53.16 | 4702 | S00S | 4959 | s070
60 9557 | sl 5097 | 5680 | 4920 | 4179 | 4475 | 4sal

From: White Threads: 8 LLC Buffers: 48K

To: Gold TIRT: 5ms MTU: 4352 Bytes

TABLE 75: TWO PROCESSORS, 4TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 48K
To: Gold TTRT: Sms MTU: 4352 Bytes

121

TABLE 76: TWO PROCESSORS, 5STH TEST RESULTS
Window Size
{K bytes)
4

12

From: White Threads: 8 LLC Buffers: 48K
To: Gold TTIRT: 1lms MTU: 4352 Bywes

TABLE 77: TWO PROCESSORS, 6TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 48K
To: Gold TIRT: 1lms MTU: 4352 Bytes

TABLE 78: TWO PROCESSORS, 7TH TEST RESULTS

From: White Threads: 8 LLC Buffers: 48K
To: Gold TTRT: 25ms MTU: 4352 Bytes

122

TABLE 79: TWO PROCESSORS, 8TH TEST RESULTS

indow Size
(K bytes)

4

12

20

From: White Threads: 16 LLC Buffers: 48K
To: Gold TTRT: 25ms MTU: 4352 Bytes

TABLE 80: TWO PROCESSORS, 9TH TEST RESULTS

Window Size
(K bytes)
4
12
20
28

3%
4
52
60

From: White Threads: 8 LLC Buffers: 56K

To: Gold TIRT: 8ms MTU: 4352 Bytes

TABLE 81: TWO PROCESSORS, 10TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 56K
To: Gold TTRT: 8&ms MTU: 4352 Bytes

123

TABLE 82: TWO PROCESSORS, 11TH TEST RESULTS

Window Size
(K bytes)

4
12

From: White Threads: & LLC Buffers: 56K
To: Gold TTRT: 5ms MTU: 4352 Bytes

TABLE 83: TWO PROCESSORS, 12TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 56K
To: Gold TIRT: Sms MTU: 4352 Bytes

TABLE 84: TWO PROCESSORS, 13TH TEST RESULTS

From: White Threads: 8 LLC Buffers: 56K
To: Gold TTRT: 1lims MTU: 4352 Bytes

124

TABLE 85: TWO PROCESSORS, 14TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 56K
To: Gold TIRT: llms MTU: 4352 Bytes

TABLE 86: TWO PROCESSORS, 15TH TEST RESULTS
i Yie E y e D 1 ile

From: White Threads: 8 LLC Buffers: S6K
To: Gold TIRT: 25ms MTU: 4352 Bytes

TABLE 87: TWO PROCESSORS, 16TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 56K
To: Gold TIRT: 25ms MTU: 4352 Bytes

TABLE 88: TWO PROCESSORS, 17TH TEST RESULTS

indow Size
(K bytes)

4

From: White Threads: 8 LLC Buffers: 40K
To: Gold TTRT: 8ms MTU: 4352 Bytes

TABLE 89: TWO PROCESSORS, 18TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 40K
To: Gold TIRT: 8ms MTU: 4352 Bytes

TABLE 90: TWO PROCESSORS, 19TH TEST RESULTS

30.04
2n
1017.63
240.30
nn
236.35 °
163.84
24.58

From: White Threads: 8 LLC Buffers: 40K
To: Gold TTIRT: Sms MTU: 4352 Bytes

126

TABLE 91: TWO PROCESSORS, 20TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 40K
To: Gold TTRT: Sms MTU: 4352 Bytes

TABLE 92: TWO PROCESSORS, 21ST TEST RESULTS
. - YRR - -

From: White Threads: 8 LLC Buffers: 40K
To: Gold TIRT: 1llms MTU: 4352 Bytes

TABLE 93: TWO PROCESSORS, 22ND TEST RESULTS

From: White Threads: 16 LLC Buffers: 40K
To: Gold TIRT: 1lms MTU: 4352 Bytes

127

TABLE 94: TW(O PROCESSORS, 23RD TEST RESULTS

From: White Threads: 8 LLC Buffers: 40K
To: Gold TIRT: 25ms MTU: 4352 Bytes

TABLE 95: TWO PROCESSORS, 24TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 40K
To: Gold TTIRT: 25ms MTU: 4352 Bytes

TABLE 96: TWO PROCESSORS, 25TH TEST RESULTS

From: White Threads: 8 LLC Buffers: 48K
To: Gold TTRT: 8ms MTU: 4192 Bytes

128

TABLE 97: TWO PROCESS(O 26TH TEST RESULTS

dow Size
(K bytes)
4

12
20

28
%
44
52
60
From: White Threads: 16 LLC Buffers: 48K
To: Gold TTRT: 8ms MTU: 4192 Bytes

From: White Threads: 8 LLC Buffers: 48K
To: Gold TIRT: Sms MTU: 4192 Bytes

129

TABLE 100: TWO PROCESSORS, 29TH TEST RESULTS

indow Size
(K bytes)

From: White Threads: 8 LLC Buffers: 48K
To: Gold TIRT: 1llms MTU: 4192 Bytes

TABLE 101: TWO PROCESSORS, 30TH TEST RESULTS

A] MieB 1 MieD

From: White Threads: 16 LLC Buffers: 48K
To: Gold TIRT: 1lims MTU: 4192 Bytes

From: White Threads: 16 LLC Buffers: 48K
To: Gold TIRT: Sms MTU: 4192 Bytes

130

TABLE 103: TWO PROCESSORS, 32ND TEST RESULTS

4

12
20

8

%
44
52
60

From: White Threads: 16 LLC Buffers: 48K

To: Gold TIRT: 25ms MTU: 4192 Bytes

TABLE 104: TWO PROCESSORS, 33RD TEST RESULTS
e A B] MieC | FieD [FU ' ;

From: White Threads: 8 LLC Buffers: 56K
To: Gold TIRT: 8ms MTU: 4192 Bytes

From: White Threads: 16 LLC Buffers: 56K
To: Gold TTRT: 8ms MTU: 4192 Bytes

131

TABLE 106: TWO PROCESSORS, 35TH TEST RESULTS

indow Size
(K bytes)

4

12

From: White Threads: 8 LLC Buffers: 56K
To: Gold TIRT: Sms MTU: 4192 Bytes

TABLE 107: TWO PROCESSORS, 36TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 56K
To: Gold .'l'I'RT: Sms MTU: 4192 Bytes

Mbps
30.04
30.04

nn

From: White Threads: 8 LLC Buffers: 56K
To: Gold TIRT: 1llms MTU: 4192 Bytes

132

TABLE 109: TWO PROCESSORS, 38TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 56K
To: Gold TIRT: 1lms MTU: 4192 Bytes

From: White Threads: 8 LLC Buffers: 56K
To: Gold TTRT: 25ms MTU: 4192 Bytes

TABLE 111: TWO PROCESSORS, 40TH TEST RESULTS

From: White Threads: 16 LLC Buffers: 56K
To: Gold TTRT: 25ms MTU: 4192 Bytes

TABLE 112: TWO PROCESSORS, 41ST TEST RESULTS

Window Size
(K bytes)
<4

12

From: White Threads: 8 LLC Buffers: 40K
To: Gold TTRT: 8&ms MTU: 4192 Bytes

TABLE 113: TWO PROCESSORS, 42ND TEST RESULTS

From: White Threads: 16 LLC Buffers: 40K
To: Gold TIRT: 8ms MTU: 4192 Bytes

TABLE 114: TWO PROCESSORS, 43RD TEST RESULTS

3

Window Size A ile B the 1

(K bytes)

4

12

20

28

36

44

[7)

60
From: White Threads: 8 LLC Buffers: 40K
To: Gold TTIRT: Sms MTU: 4192 Bytes

134

TABLE 115

: TWO PROCESSORS, 44TH TEST RESULTS

From: White
To: Gold

Threads: 16
TTRT: Sms

LLC Buffers: 40K
MTU: 4192 Bytes

TABLE 116: TWO PROCESSORS, 45TH TEST RESULTS

Threads: 8
TIRT: 1lms

From: White
To: Gold

Threads: 16
TTRT: llms

LLC Buffers: 40K

MTU: 4192 Bytes

TABLE 118: TWO PROCESSORS, 47TH TEST RESULTS

Window Size | File A | FileB | File C | FileD | FleE | File F | File G | File H

(K bytes) Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps | Mbps
4 2.7 38.23 3641 36.67 36.67 36.62 36.80 3647
12 30.04 25.49 26.2 26.70 30.46 29.47 29.18 28.21
20 19938 | 4918 54.61 50.97 5243 50.84 Su.87 $2.23
28 622.59 65.54 $4.61 $50.97 48.06 52.43 5347 $3.03
3 136.53 33.23 41.33 4.2 0.9 46.29 a2.24 4198
4 21.85 24.94 29.4$ 28.02 24.57 25.73 1976 T
52 20.4% 20.68 17.63 19.46 16.82 15.8! 14.0s 165y
ou 15.93 22.06 15.4% 17.38 18.20 14.40 1159 1089 J

From: White Threads: & LLC Buffers: 40K

To: Gold TTRT: 25ms MTU: 4192 Bytes

TABLE 119: TWO PROCESSORS, 48TH TEST RESULTS

Window Size
(K bytes)

4

From: White Threads: 16 LLC Buffers: 40K
To: Gold TTRT: 25ms MTU: 4192 Bytes

TABLE 120: TWO PROCESSORS, 49TH TEST RESULTS

From: White Threads: 8 LLC Buffers: 48K Max Throughput Prediction Test

Gold TTRT: 8ms MTU: 4352 Bytes

136

TABLE 121: TWO PROCESSORS, S0TH TEST RESULTS

indow Size
(K bytes)

4

From: Gold-50MHz Threads: 8 LLC Buffers: 48K
To: White-SOMHz TTRT: 8ms MTU: 4352 Bytes

TABLE 122: TWO PROCESSORS, 51ST TEST RESULTS

From: White-50MHz Threads: 8 LLy Buffers: 48K
To: Gold-50MHz TIRT: 8ms MTU: 4352 Bytes

137

802.2

ACK

ANSI

ARPA

ARPANET

ASIC
asynchronous

bandwidth

beacon
BER

bps
CCITT

DARPA

APPENDIX F: GLOSSARY OF TERMS

IEEE standard for the Logical Link Control.

Acknowledge. A network packet acknowledging the receipt of
data.

Address Resolution Protocol. A TCP/IP protocol to translate an IP
address into a MAC address.

American National Standards Institute. A private organization that
coordinates some United states standards-making. Represents the
United States to the International Standards Organization.

Advanced Research Projects Agency. A Department of Defense
agency that has helped fund many computer projects including
ARPANET, the Berkeley version of Unix and TCP/IP. ARPA use to
be known as DARPA.

Advanced Research Projects Agency Network. A Department of
Defense sponsored network of military and research organizations.
Replaced by the Defense Data Network (DDN).

Application-Specific Integrated Circuits.

FDDI term for data transmission where all requests for service
contend for a pool of ring bandwidth.

The amount of data that can be moved through a particular
communications link. FDDI has a bandwidth of 100 Mb/s.

A token ring packet that signals a serious failure on the ring.
Bit Error Rate.
Bits per second. Transmission speed over some media.

Comite Consultatif International Telegraphiges et Telephonique
(Consultative Committee for International Telephone and
Telegraph). Standards-making body administered by the
Intemational Telecommunications Union.

Defense Advanced Research Projects Agency. See ARPA.

138

DAS

DDN

DLL
DMA

DNS

FDDI

ICMP

IEEE

IGMP

Dual Attached Stations. FDDI term for a node that is attached to
both the primary and seco~ 1ary fiber optic cables (as opposed to a
node that is connected tc ie ring via a concentrator or not dual
attached.

Defense Data Network. A network for the Department of Defense
and their contractors based on the TCP/IP and X.25 networking
protocols.

Direct Memory Access. This is a device (controller) for controlling
the trensfer of data directly to or from the memory without
involv 1 the processor. The DMA controller becomes the bus
master and directs the reads or writes between itself and memory.

Domain Name System. A mechanism used in the Internet for
translating names of host computers into addresses. The DNS also
allows host computers not directly on the Internet to have registered
names in the same style.

Fiber Distributed Data Interface. A 100 M/bs fiber optic LAN
standard based on the token ring.

File Transfer Protocol. FTP is the Internet standard for file transfer.
FTP was designed from the start to work between different hosts,
runing different operating systems and using different file
structures. RFC 959 is the official specification for FTP.

Internet Control Message Protocol. ICMP is often considered part
of the IP layer. It communicates error messages and other
conditions that require attention. ICMP messages are transmitted
within IP datagrams. RFC 792 contains the official specification of
ICMP.

Institute of Electronic and Electrical Engineers. A leading standard-
making body in the United States, responsible for the 802 standards
for local area networks.

Internet Group Management Protocol. IGMP lets all the systems
on a physical network know which hosts currently belong to which
multicast groups. This information is required by the multicast
routers, so they know which multicast datagrams to forward onto
which interfaces. IGMP is defined in FRC 1112.

139

Internet

IP
ISO
LAN

LLC

Mbps

NAK

NFS

NIS

NPI

(01}

A collection of networks that share the same namespace and use
the TCP/IP protocols.

Internet Protocol. The network layer protocol for the Internet.
Internadonal Standards Organization.

Local area network. Usually refers to Ethemet or token ring
networks.

Logical Link Control. The upper portion of the data link layer,
defined in the IEEE 802.2 standard. The logical link control layer
presents a uniform interface to the user of the data link service,
usually a network layer. Undemeath the LLC sublayer of the data
link layer is a Media Access Control (MAC) sublayer. The MAC
sublayer is responsible for taking a packet of data from the LLC
and submitting it to the particular data link being used.

Media Access Control. This layer provides fair and deterministic
access to the medium.

Million bits per second. 220 bits of information (usually used to
express a data transfer rate; as in, 1 megabit/second - 1 Mbps).

Maximum transfer unit. The biggest piece of data that can be
transferred by the data link layer.

Negative acknowledgment. Response to nonreceipt or receipt of a
corrupt packet of information.

Network File System. A distributed file system developed by Sun
Microsystems and widely used on TCP/IP systems.

Network Information Service. Name service in the Sun Open
Network Computing (ONC) family.

Network Peripheral Inc. The manufacture of the FDDI interface
cards used in this investigation on the Sun SPARC workstations.

Nonreturn-to-Zero Inverted. NRZI is an example of differential
encoding. In differential encoding, the signal is decoded by
comparing the polarity of adjacent signal clements rather than
determining the absolute value of a signal element.

Open System Interconnection.

Physical Connection Management.

140

PHY

PMD

PROM
RARP
RISC

SMT

SPARC

SUN

TCP/TP

TTRT

Physical Layer. PHY provides the media independent functions
associated with the OSI physical layer.

Physical Medium Dependent Layer. PMD specifies the
transmitters, receivers and other associated hardware

Programmable Read-Only Memory.
Reverse Address Resolution Protocol.

Reduced Instructioh Set Computer. Generic name for CPUs that use
a simpler instruction set than more tradit 'nal designs. The Sun
SPARC workstation uses RISC technology.

Station Management document. This layer provides the capability
to monitor the FDDI network. SMT can provide services such as
node initialization, bypassing faulty nodes and recovery.

Scalable Processor Architecture. A reduced instruction set (RISC)
processor developed by Sun and licensed by several vendors
including AT&T and Texas Instruments. ’

Stanford University Network. This name was given for a printed
circuit board developed in 1981 that was designed to run the UNXI
operating system.

Transmission Control Protocol/Internet Protocol. This is a common
shorthand which refers to the suite of application and transport
protocols which run over IP. These include FTP, Telnet, SMTP, and
UDP.

Token holding timer. Token ring and FDDI term for the amount of
time a node can transmit data before sending the token back out to
the ring.

Target token rotation time. A term used in FDDI to set performance
parameters. The TTRT serves as a measure of expected delay and is
used, among other things, to set time-out parameters.

User Datagram Protocol.

141

[ALBEY4)

[AMDY2]

LIST OF REFERENCES

Albert, B., Jayasumana, A., FDDI and FDDI-I1, Architecture, Protocols, and
Performance, Artech House, 1994

Advanced Micro Devices, Multimedia Over FDDI, Conference Paper
Reprint, 1992

[COMMY1] Communications Week, FDDI Poster, Access Media Inc, 1991

[CLARY9]

{DIG193]

[DIGI93]

[DRUSY3)

[DOD83]

[GRAY91]

[HEAT39])

(HENN90]

[HESL93]
[JAINS1}

[JAINY4]

[LANT93]

Clark, D., Jacobson, V., Romkey, J. and Salwen, H. An Analysis of TCP
Processing Overhead, IEEE Communications Magazine, June 1989

Digital Equipment Corporation, Digital's Solution to High-Speed Network
Computing: FDDI EISA NICs, White Paper, 1993

Digital Equipment Corporation, High Performance TCPI/IP for OSF!1 Alpah
AXP Workstaions, White Paper, March 1993

Druschel, P., Abbott, M., Pagels, M., Peterson, L., Network Subsystem
Design, IEEE Network Magazine, July 1993

.Department of Defence. Military Standard Internet Protocol, MIL-STD-
1777, August 12, 1983

Gray, J., The Benchmark Handbook, Morgan Kaufrnann Publishers, Inc.,
1991

Heatley, S., Stokesberry, D., Analysis of Transport Measurements Over a
Local Area Network, IEEE Communications Magazine, June 1989

Hennessy, J., Patterson D, Computer Architecture A Quantitative Approach,
Morgan Kaufmann Publishers Inc., 1990

Heslop, B., Angell, D., Mastering Solaris 2, Sybex, 1993

Jain, R., The Art of Computer Systems Performance Ananlysis, John Wiley &
Sons, Inc., 1991

Jain, R., FDDI Handbook, High-Speed Networking Using Fiber and Other
Media, Addison Wesley, 1994

LAN TIMES, Buyers Directory Issue, McGraw-Hill, August 1993

[MALAY2] Malamud, C., Analyzing Sun Networks, Van Nostrand Reinhold, 1992

142

[MINO9Y1]

[NNBMY4]

[NPI93]

[PATT94]

[POWEY3]

[SASI9]

[SILIC91]

[STAL91]

[STEV94]

[SUNM90]

Minoli, D., Telecommunications Technology handbook. Artech House. Inc..
1991

Neal Nelson Bench Mark, Business Benchmark Test Descriptions, Neal
Nelson & Associates, Chicago IL, 1994

Network Peripherals Inc., SBus FDDI Interface, User’'s Manual, Netwok
Peripherals Inc., 1993 |

Patterson, D. Hennessy, .!., Computer Organization & Design, The
Hardwarel/Software Interface, Morgan Kaufmann Publishers Inc, 1994

Powers, 1., An Introduction to Fiber Optic Systems, Aksen Associates Inc.,
1993

Littell, R., Freund, R., Spector, P., SAS System for Linear Models, SAS
Institute Inc, 1991

SiliconGraphics, Iris Indigo 4DIRPC Technical Report, SiliconGraphics
1991

Stallings, W., Data and Computer Communications, 3rd ed., Macmillan
Publishing Co., 1991

Stevens, R., TCP/IP Illustrated, Volume 1, The Protocols, Addison Wesley,
1994

Sun Microsystems, Inc., SPARCstation 10 System Architecture, Technical
White Paper, 1992 :

143

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library *
Code 052

Naval Postgraduate School

Monterey, CA 93943

LTC Steven A. Ruegnitz

127 IMA Det R&D

17 Muirfield Lane
Bridgewater, NJ 08807-1269

Director

U.S. Ammy Research Laboratory
ATTN: AMSRL-CI (CPT Schivley)
APG, MD 21005-5067

Chairman, Code 37 CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor G.M. Lundy, Code CS/Ln
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Professor Amar Zaky, Code CS/Za
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Professor Shridhar Shukla, Code EC/Sh

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

144

10

Sun Microsystems

Attn: Patrick Barrett

1842 N. Shoreline Blvd.

MS UMTV80-01

Mountain View, CA 94043-1100

Network Peripherals Inc
ATTN: Chia-ming Huang
1371 McCarthy Blvd
Milpitas, CA 95035

Jourdan Bailey
1160 Pomeroy Ave.
Santa Clara, CA 95051

145

