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EVALUATION OF NAPPED FABRICS FOR AEROSOLIZED
CHEMICAL AGENT PROTECTION

INTRODUCTION

In September 1991, the Navy Clothing and Textile Research Facility
(NCTRF) was tasked by the Marine Corps Research, Development and
Acquisition Center, Quantico, VA, to evaluate the potential of enhancing
aerosol protection of existing chemical protective suits by napping the
back side of the outershell fabric layer. The prcgram was established as
a two phase approach; Fhase I of the program was to be conducted as a
validation of concept, and Fhase II would act as a contimuance of the
program if Phase I provided supporting data. The information reported
herein provides the findings of Phase I only.

Candidate fabrics representing existing and developmental outershell
layers from various Department of Defense chemical protective suits were
napped at different levels of densities. The napped and unnapped
candidate fabrics were subsequently subjected to in-house testing to
evaluate the effects of napping on each material's thermal insulation and
physical properties. Small scale liquid aerosol fabric swatch testing
for filtration efficiency data was conducted on all candidate fabrics at
the Research Triangle Institute (RIT), Research Triangle Park, North
Carolina. RIT's report is attached as Apperdix A, and will be referenced

throughout this report.
Overall results of this evaluation determined:

. Napping does not appear to provide a significant increase in
aerosol protection of the candidate fabrics.

. Napping does not significantly increase the insulation properties
of the candidate fabrics.

3. With the exception of increased air permeability and shrinkage,
the napping had an insignificant effect on the physical properties
of the candidate fabrics.

Napping is a mechanical process by which individual fibers are raised
fram the fabric yarn structure to create surface cover (e.g., flamnel).
It has been theorized by NCIRF that by napping a fabric, aerosolized
particlesmybecanemtrappedwithﬂ:esurfaoefibers thus increasing

provided to the wearer of the napped garment. Since
mppm;isafairlysnpleardmmivepmcess, it was the intent of
this program to investigate the possibility of improving the protection
of the Marine Corps Protective Overgarment with minimal increase to cost
ard heat stress.




Emerging technologies in chemical agent dissemination has increased
awareness of the aerosol threat, thereby warranting the necessity for
specialized protection. An aerosol may be defined as a suspension of
solid or liquid particles in the air.(1) Aerosols, in the sense of
posing a chemical warfare threat, can be thought of as being in the range
of 0.1 to 10 microns in diameter, which is intermediate in size between
droplets and vapors. Particles in this size range tend to penetrate
permeable protective fabrics to a higher degree than do either droplets
or vapor. This is because, on the one hand, the particles are
sufficiently large that they do not have the high diffusion rates to be
efficiently absorbed by carbon as are the smaller vapor molecules
(diffusion rates are inversely proportional to particle, or molecule
size). On the other hard, the particles are sufficiently small that,
unlike the larger droplets, they ternd to follow the flow steamlines as
air flows through a garment and are not collected efficiently by the
threads of a protective garment. (2)

To date, the Navy is the only branch of service that has established
an aerosol requirement for chemical protective clothing. This aercsol
requirement only applies to the Navy's experimental Advanced Chemical
Protective Garment program.

MATERTAL DESCRIPTION

Four candidate fabrics, which represent existing or experimental
outershell layers from Navy, Army and Marine Ccrps chemical protective
clothing, were procured and napped. The actual degree to which each
fabric was napped was not quantified. Rather, the degree of napping was
expressed as the mmber of times the base fabric was passed through the
napping machine. (3) Each candidate fabric was subjected to 1, 2, 3, and
4 napping passes, which the exception of the nylon/cotton woodland
twill. The strength of the nylon fiber required that this fabric be
subjected to twice as many napping passes in order to achieve the same
"cover" or density as all the other candidate fabrics. As was expected,
each candidate fabric respanded differently to the napping process, due
to the varying constructions, weaves and weights. Fabrics were napped on
a Woonsocket napper at Galey & Lord, Society Hill, South Carolina.

The candidate fabrics consisted of the following:

Fabric A - 100% cotton ripstop, quarpel water repellent treated, 6
ounces per square yard, desert camouflage, conforming to MIL~C-43468.

Fabric B - 50/50 polyester/cotton twill, fire retardant/water
repellent teated, 6 ocunces per square yard, navy blue.

Fabric € - 100% cotton twill, fire retardant/water repellent treated,
6 ounces per square yard, navy blue.

Fabric D - 70/30 cotton/polyester twill, fire retardant/water
repellent, 6.5 ocunces per square yard, navy blue.*

Fabric E - 50/50 nylon/cotton, quarpel water repellent treated, 7
ounces per square yard, woodland camouflage, conforming to
MIL~C-44031.




A full description of the candidate fabrics can be found in Table I.

*Fabric D was not an existing or experimental fabric for any of the
service chemical protective suits, but was specifically engineered by
Galey & lord for the napping procedure. Since napping is considered a
»filling phenomencm", whereby the process digs into the filling yarns to
produce a cover, Fabric D was designed to possess a high filling
construction with low twist yarns. It was necessary to evaluate a fabric
designed uniquely for napping, in order to investigate any potential
differences or improvements Fabric D may offer over the other candidate
fabrics which were not specifically created for napping. Due to
technical difficulties experienced by Galey & Lord, the quantities of
Fabric D necessary to produce the four levels of napping were
unavailable. It was also questionable as to whether or not the umnapped
materials possessed a water repellent treatment. As a result, Fabric D
could not be fully evaluated.




TABLE - I

NAPPED CANDIDATE FABRICS

Material

A - WR treated 100%
cotton ripstop desert
camouflage

B - FR/WR treated, 50/50
polyester/cotton twill,
navy blue

C - FR/WR treated, 100%
cotton twill, navy
blue

D - FR/WR treated, 70/30
cotton/polyester twill,
navy blue

E - WR treated 50/50
nylon/cotton twill,
woodland camouflage

Suit
Saratoga chemical
protective overgarment

Interim chemical
protective suit
(experimental)

Interim chemical
protective suit
(experimental)

N/A

Battle dress
overgarment

ROD Branch

Marine

Corps

Navy

Navy

N/A

Army

WR - water repellent
FR - Fire retardant
N/A - Not applicable




All of the candidate fabrics were subjected to physical, thermal
insulation and aerosol penetration testing. With the exception of
aervso]l penetration, the test methods that were performed on the
candidate fabrics are listed in Table II.

Psical teristi

The physical characteristics were cbtained (break and tear ’
air permeability, colorfastness, etc.) by testing the candidate materials
in accordance with the test methods listed in Table II.

Dimensjonal Stability
The dimensional stability for all of the candidate fabrics was
determined using the test methods listed in Table II. Wash wheel results

were recorded after one ard ten cycles. Hame laundering results were
recorded after one and five cycles.

Flame Resistance

Vertical flammability testing was performed only on the candidate
fabrics (B & C) containing a flame retardant treatment. Testing was
conducted before and after ten launderings in accordance with Federal
Test Method 5903. This method judges the ability of a material to
self-extinguish after removal of the flame source and the degree of
material degradation caused by the flame exposure. Since Fabrics B and C
are being proposed for use in chemical protective garments which are pot
laundered, the repeated launderings normally conducted to evaluate the
durability of a fabric's finish were not required. However, the testing
of the candidate fabrics after ten cycles was still performed in order to

investigate potential trends resulting from napping.
Quarded Hot Plate

Since the insulation properties of a fabric could potentially be
altered by napping, guarded hot plate testing was conducted in accordance
with the test procedure cited in Table II. Guarded hot plate testing
measures the thermal insulation (clo) and water vapor permeability (i,
values of material. To minimize heat stress, the material in a cheuc;l
protective garment should have low thermal resistance and high water
vapor permeability. To rank candidate garments, the ratio of i to clo
is calculated. The lighter the i /clo ratio, the greater the rate of
heat loss through the material, resulting in less thermal stress to the
wearer.

The total clo for each material was determined by using ASTM D-1518.
Since there are no applicable standards for i, testing. Conditions for
clo and i measurements were as follows:

clo: Ambient temperature - 20°C
Dewpoint temperature - 10°C
Relative humidity - 50%
Plate temperature - 33-36°C
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27°%
15°C
48%
33-36°C

im: Ambient temperature
Dewpoint temperature
Relative Humidity
Plate temperature

Aerosol Penetration Testing

Aerosol penetration testing of all candidate napped fabrics was
conducted by RIT, and is reported in its entirety in Appendix A. RII's
test procedure is summarized as follows:

Both a polydispersed challenge aerosol and size discriminating
aerosol analyzer were used to measure the filtration efficiency of each
sample (in triplicate) at a 0.3 to 6.5 micron particle size range. A
Collision~type nebulizer generated a liquid oleic acid aerosol
challenge. The aerosol was passed through an aerosol neutralizer to
eliminate any possible electrostatic charge. An airstream was set to
generate a standard airflow rate of 5 any/sec through all candidate
fabrics during aerosol testing. This rate roughly corresponds to the
airflow encountered in a 10 mph wind. A Climet 226/8040 High Resolution
Optical Counter performed upstream and downstream aerosol concentration
measurements through 16 sizing channels, from which filtration
efficiencies were camputed. (4) For each size chamnel, the ratio of the
average of six downstream concentration measurements to the average of
six upstream concentration measurements yielded the Aerosol Penetration
for that channel. The aerovsol penetration is a measure of how much
aerovsol passes through the fabric.(5) The aerosol penetration was a
function of both particle size and air permeability.

RESULTS/DISCUSSTON
Fhysical Properties

The physical properties for candidate fabrics A, B, C, ard E are
provided in Table III through VI, respectively. (As previously discussed
in the Material Description section of this report, Fabric D will not be
discussed as a result of the unavailable napping levels required for
camparison. Additionally, the water resistance data reported in Table
VII, indicates that the unnapped sample was not water repellent treated
and the 1 napping pass was. Since the consistency of water repellency of
the only two Fabric D samples are questionable, a camparison cannot be
conducted on the available data to draw valid conclusions.) Results are
provided for the umapped, as well as for each of the four napping levels
of each candidate fabric. Since there was very little difference in
properties measured within each of the candidate fabrics from one nap
level to the next, discussion of results will be limited to camparing the
umapped sample and the sample with four nap passes.

Napping had little or no effect on any of the candidate fabrics with
respect to weight, stiffness, hydrostatic resistance (before and after
laundering). With the exception of Fabric B, napping tended to increase
the air permeability of the samples. With exception of Fabric A, napping
had little effect on dimensional stability. The thickness of Fabrics C
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TABLE - II

Laboratory Test Methods

Characteristic Test Method*
Weight 5041

Yarns per inch 5050

Air permeability 5450

Break strength 5100

Tear strength D1424, ASTM=*»%
Abrasion resistance 5302
Stiffness 5202
Thickness 5030
Hydrostatic resistance 5514

After 3 launderings 5556 & 5514
Water resistance 5526

After 3 launderings 5556 & 5526
Dimensional stability 5556
Dimensional stability AATCC-135%%#
Flame resistance 5903

After 10 launderings 5556 & 5903
Guarded hot plate (Insulation) D1518, ASTM#**

* Federal Standard for Textile Test Methods No. 191A, except where
noted:

*#% ASTM - American Standard Test Methods

*#*% AATCC - American Association of Textile Chemists and Colorists




and E were slightly increased by the napping process. Fabric C
experienced significant increase in both hydrostatic resistance and water
resistance after laundering. Based on the 4 percent shrinkage Fabric C
experienced after ten cycles of TM5556, the only explanation that may be
provided for the increased hydrostatic and water resistance is that the
construction tightened after miltiple launderings. Abrasion resistance
decreased significantly for Fabrics B and C (28% and 16%, respectively).
Of the two candidate fabrics possessing fire retardant treatments, only
Fabric B experienced a slight increase in char length in the unlaundered
state as a result of napping. This increase was still within acceptable
levels. The strength properties varied from one cardidate sample to the
next, with no predictable trends.

Insulation

The results for clo and i are summarized in Table VIII. The clo,
and iy/clo rations were statistically analyzed and summarized as
ollows:

clo: Oompared to the initial fabric, Fabrics A, C, and E showed a
significant increase in clo after the first nan pass. For Fabrics A, ard
E, there was little further increase in insulation as nap passes
increased. Three and ..our nap passes significantly increased the clo
value of Fabric C campared to the one and two nap passes. Napping
appeared to have little effect on the clo value of Fabric B.

ipe Napping had no effect on the i, values on Fabrics A and B.
However, napping did increase the water vapor permeability of Fabrics C
and E. As with clo values, one and two nap passes had similar results;
greater mumber of passes showed significantly increased i, values.

i,/clo Ratio: There were no significant differences in the
iy/clo ration due to napping of the fabrics. Therefore, it wouid be
expected that napping the fabrics would not increase heat stress.

Aerosol Penetration

The results for the aerosol penetration measurements and standard
deviations for each nap level of the candidate fabrics are attached as
Appendix A of this report. It was reported that each aerosol penetration
auxve represents the average of three replicate runs for that particular
fabric/napping cambination.(6) RTIT noted that there appeared to be two
sources which contributed to variability in test results: a. drift
within the challenge aerosol concentration; and b. differences which
resulted in significant pressure drops within a given fabric/napping
sample.

Based on RTI's results, it appears that napping the fabrics had
1little or no effect on aercsol penetration. Differences between test
runs for a given fabric at the various level of napping fall within the
measure of error. (7)




TABLE - III
FABRIC A - PHYSICAL PROPERTIES
100% COTTON RIPSTOP, DESERT CAMOUFLAGE

Characteristic Initial 1 Ppass 2 Passes 3 Passes 4 Passes
Weight, finished
(oz/8q yd) 6.2 6.2 6.2 6.2 6.2
Yarns/inch
Warp 108 108 107 108 108
Filling 55 55 55 55 55
Air
Permeability
(£t3/sec/ft2) 13.3 16.8 18.5 17.4 17.9
Break
Strength (1lbs)
warp 155 154 154 153 151
Filling 78 83 85 80 83
Tear
Strength (1lbs)
Wwarp 8.1 8.7 7.5 7.2 7.9
Filling 7.2 8.0 6.7 8.0 7.6
Abrasion
Resistance
(cycles) 620 690 710 660 653
Stiffness
(1lbs)
Warp .001 .001 .001 .002 .001
Filling .001 .001 .001 .001 .001
Thickness (inch) .015 .015 .015 .015 .015
Hydrostatic
Resistance (cm)
Initial 20.5 19.4 19.4 20.4 20.9
After 3 launderings 24.2 24.8 24.6 25.3 26.8
Water Resistance
(average)
Initial 100 100 100 100 100
After 3 leunderings 100 100 100 100 100




TABLE ~ III (cont'd)
FABRIC A - PHYSICAL PROPERTIES
100% COTTON RIPSTOP, DESERT CAMOUFLAGE

Characteristic Initial 1 Pass 2 Passes 3 Passes 4 Passes

Shrinkage (%)
™ 5556
Initial
Warp 2
Filling 1l
After 10 cycles
Warp 4
Filling 1l

Shrinkage (%)
AATCC-135
Initial
Warp 2
Filling 0
3
1

=W,
. .
* *

After 5 cycles
Warp
Filling

oo

oo (o o
= O owm
N ® LV V]
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TABLE - IV
FABRIC B - PHYSICAL PROPERTIES
50/50 POLYESTER/COTTON TWILL, FRT/WRT

Characteristic Initial 1 Pass 2 Passes 3 Passes 4 Passes
Weight, finished
(oz/8q yd) 5.9 6.0 6.0 6.0 6.0
Yarns/inch
Warp 109 108 108 108 108
Filling 43 43 43 43 43
Alir
Permeability
(ft3/sec/ft2) 80.2 73.4 71.1 74.9 83.0
Break
Strength (1lbs)
warp 125 129 122 126 120
Filling 63 66 63 65 56
Tear
Strength (1lbs)
warp 3.3 3.7 3.7 4.0 4.1
Filling 2.9 3.4 3.4 3.2 3.2
Abrasion
Resistance
(cycles) 1180 1040 700 660 850
Stiffness
(1bs)
warp .005 . 005 .004 .004 . 004
Filling .001 .002 . 001 . 001 .001
Thickness (inch) .015 .015 .015 .015% .01%
Hydrostatic
Resistance (cm)
Initial l6.8 17.1 17.6 16.5 17.0
After 3 launderings 18.0 19.0 19.4 18.1 18.3
Water Resistance
(average)
Initial 100 100 100 100 100
After 3 launderings 100 100 100 100 100
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TABLE - IV (cont'd)
FABRIC B - PHYSICAL PROPERTIES
50/50 POLYESTER/COTTON TWILL, FRT/WRT

Characteristic Initial 1 Pass 2 Passes 3 Passes 4 Passes

Shrinkage (%)
T™ 5556
Initial

Warp 1.0
Filling 0.5
3.1

1.5

o .

e &

- o 0N =
O
wN

After 10 cycles

Warp
Filling

MW oK
- w
&

Shrinkage (%)
AATCC-135
Initial

Warp 0 )
Filling 0 0
After 5 cycle
warp :
Filling

o o0 = W

o © o
N W
o

or
e o
(SN ]
oW
N
e o
N O
-
[« )
~
O (oW =
* o

Flame Resistance

Initial

warp
After Flame (sec)
After Glow (sec)
Char length (inch)
Filling
After Flame (sec)
After Glow (sec)
Char length (inch)

.
e o O
w ™

(=]
e ¢« O
0
=
(S 0
= O

s ¢« O

W
e o O
[ I

o~
o=
&> -
e o« O
~N 0

After 10 launderings
Warp
After Flame (sec) 0
After Glow (sec) 1.7
Char length (inch) 3.1
Filling
After Flame (sec) 0

W
e« O
[ S
W =
e ¢+ O
~J
W
<N

After glow (sec)
Char length (inch)

.
o0
&
s ¢+ O
L]
rye
e o O
N O
™
w oo
&
s ¢ O
0
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TABLE - V
FABRIC C - PHYSICAL PROPERTIES
100% COTTON TWILL, FRT/WRT

Characteristic Initial 1 Pass 2 Passes 3 Passes 4 Passes

Weight, finished

(oz/sq yd) 6.2 6.1 6.1 6.3 6.3
Yarns/inch
Warp 102 101 101 102 ic
Filling 75 76 76 76
Alr
Permeability
(ft3/sec/£t2) 47.3 45.0 48 54.1 53.6
Break
Strength (lbs)
Warp 114 111 111 110 106
Filling 71 62 67 62 62
Tear
Strength (lbs)
Warp 8.0 8.1 8.5 7.8 8.1
Filling 6.4 4.8 6.1 5.7 4.7
Abrasion
Resistance
(cycles) 510 550 400 440 430
Stiffness
(1bs)
Warp .002 .001 .002 .002 . 002
Filling .001 .001 .001 .001 .001
Thickness (inch) .016 .015 .016 .017 .020
Hydrostatic
Resistance (cm)
Initial 11.4 11.5 11.4 11.7 11.1
After 3 launderings 20.7 20.7 20.1 19.6 20.0
Water Resistance
(average)
Initial 0 0 (o] 0 0
After 3 launderings 50 50 50 50 50

13




TABLE - V (cont'd)
FABRIC C -~ PHYSICAL PROPERTIES
100% COTTON TWILL, FRT/WRT

Characteristic Initial 1 Pass 2 Passes 3 Passes 4 Passes

Shrinkage (%)

T™™5556
Initial
warp 1.1 2.5 2.5 2.0 2.3
Pilling 1.2 2.0 1.8 1.9 2.3
After 10 cycles
Warp 4.6 5.7 5.8 5.6 5.3
Filling 1.7 2.1 2.1 1.9 1.9
Shrinkage (%)
AATCC~-135
Initial
Warp () 0.2 1.2 0.4 0.3
Filling -0.3 0.2 0.7 -0.3 0.8
After 5 cycles
Warp ) -0.5 1.4 1.4 1.0 1.6
Filling -0.1 0.6 -0.1 0.1 -0.7
Flame Resistance
Initial
Warp
After Flame (sec) 0 0 0 0 0
After Glow (sec) 1.6 1.6 1.8 1.7 1.6
Char length (inch) 3.5 4.0 4.0 3.6 3.7
Pilling
After Flame (sec) 0 0 0 0 0
After Glow (sec) 1.8 1.9 1.8 1.5 1.8
Char length (inch) 3.7 4.0 3.5 3.7 3.6
After 10 launderings
Warp
After Flame (sec) 0 0 0 0 0
After Glow (sec) 1.9 1.9 2.1 1.7 2.0
Char length (inch) 3.4 3.8 3.6 3.5 3.8
PFilling
After Flame (sec) 0 0 0 0 0
After glovw (sec) 2.0 2.4 2.3 2.1 2.0
Char length (inch) 4.0 3.9 3.5 3.3 3.9

14




TABLE - VI
FABRIC D - PHYSICAL PROPERTIES
70/30 COTTON/POLYESTER TWILL, FRT/WRT

Characteristic Initial 1 Pass

Weight, finished
(oz/sq yd) 7.0 6.8

Yarns/inch
warp 107 108
Filling 40 40

Alr
Permeability
(ft3/sec/L£t2) 44.5 60.3

Break

Strength (1lbs)

warp 131 121
Filling 39 44

Tear

Abrasion
Resistance
(cycles) 1170 1020

Stiffness

(1bs)

Warp .002 .002
Filling .003 .003

- Thickness (inch) .015 .015

Hydrostatic
Resistance (cm)

Initial 10.8 12.9
After 3 launderings 16.5 18.5

Water Resistance

(average)

Initial 0 100
After 3 launderings 70 100
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TABLE - VI
FABRIC D - PHYSICAL PROPERTIES
70/30 COTTON/POLYESTER TWILL, FRT/WRT

Characteristic Initial 1 Pass

Shrinkage (%)
T™S5556
Initial

Warp 1.
rilling 0.
After 10 cycles

Warp 4
Filling 1

Shrinkage (%)
AATCC-135
Initial
Warp 0
Filling -0.6
After 5 cycles
wWarp 1.3
Filling -1.0

o> W (G

L] *
W

N N
S0

Flame Resistance

Initial

Warp
After Flame (sec)
After Glow (sec)
Char length (inch)
Filling
After Flame (sec)
After Glovw (sec)
Char length (inch)

W e
s ¢« O
om

e
ow

o
e ¢« O
=N
s « O

o
[SRe

After 10 launderings
Warp
After Flame (sec) 0
After Glow (sec) .
Char length (inch) .
Filling
After Flame (sec)
After glow (sec)
Char length (inch)

n e .
s o O
=~ 0 ®
YY) &
e o O
N~ 0NV
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TABLE - VII
- FABRIC E - PHYSICAL PROPERTIES
% 50/50 NYLON/COTTON TWILL, WRT

Characteristic Initial 2 Pass 4 Passes 6 Passes 8 Passes

Weight, finished

(oz/8q yd) 7.8 7.8 7.6 8.5 1.9
Yarns/inch
warp 90 92 92 90 91
Filling 56 57 57 57 57
Air
Permeability
(ft3/sec/ft2) 9.0 10.7 11.9 12.8 12.1
Break
Strength (1bs)
Warp 271 272 272 273 264
Filling 160 168 155 150 146
Tear
Strength (1bs)
Warp 14.4 14.4 15.0 13.6 14.8
Filling 10.8 11.0 10.9 12.2 8.7
Abrasion
Resistance
(cycles) 5880 5660 6120 5980 5580
Stiffness
(1bs)
Warp .002 .002 .002 .002 .002
Filling .002 .001 .001 .001 . 002
Thickness (inch) .016 .017 .019 .020 .021
Hydrostatic
Resistance (cm)
Initial 30.4 30.0 29.2 29.9 30.1
After 3 launderings 31.9 29.8 30.6 30.9 30.9
Water Resistance
(average)
Initial 100 100 100 100 100
After 3 launderings 100 100 100 100 100
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TABLE - VII (cont'd)
FABRIC E - PHYSICAL PROPERTIES
50/50 NYLON/COTTON TWILL, WRT

Characteristic Initial 2 Pass 4 Passes 6 Passes 8 Passes

Shrinkage (%)

TM5556
Initial
Warp 2.0 3.3 3.1 3.3 3.4
Pilling 0.4 0.1 0.2 0.3 0
After 10 cycles
Warp 3.5 5.1 4.3 4.9 4.7
Filling 0.5 0.2 0.3 0.5 -0.5
Shrinkage (%)
AATCC-135
Initial
Warp 0.8 2.6 1.7 2.2 2.2
Filling -0.6 -0.9 -0.7 -1.1 -1.3
After 5 cycles
warp 0.9 2.4 2.0 2.7 2.2
Filling . -1.0 -0.8 -0.8 -1.5 ~2.1
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TABLE - VIII
GUARDED HOT PLATE RESULTS

Pabrics clo (+/-Std Dev) iy (+/-std Dev) Average

ig/clo ip/clo

A initial 0.55 (+/-0.01) 0.41 (+/-0.02) 0.75
1 pass 0.57 (+/-0.01) 0.43 (+/-0.06) 0.76
2 passes 0.57 (+/-0.01) 0.40 (+/-0.01) 0.69
3 passes 0.59 (+/-0.02) 0.44 (+/-0.02) 0.75
4 passes 0.60 (+/-0.01) 6.43 (+/-0.02) 0.72

B initial 0.58 (+/-0.01) 0.44 (+/-0.03) 0.75
1 pass 0.55 (+/-0.01) 0.42 (+/-0.02) 0.77
2 passes 0.55 (+/-0.01) 0.45 (+/-0.04) 0.82
3 passes 0.57 (+/-0.01) 0.44 (+/-0.02) 0.77
4 passes 0.57 (+/-0.01) 0.44 (+/-0.05) 0.77

C initial 0.57 (+/-0.01) 0.34 (+/-0.02) 0.60
1 pass 0.61 (+/-0.02) 0.42 (+/-0.06) 0.70
2 passes 0.63 (+/-0.02) 0.43 (+/-0.02) 0.68
3 passes 0.68 (+/-0.02) 0.47 (+0.02) 0.70
4 passes 0.69 (+/-0.01) 0.48 (+/-0.01) 0.70

E initial 0.54 (+/-0.01) 0.30 (+/-0.04) 0.56
1 pass 0.62 (+/-0.02) 0.34 (+/-0.01) 0.55
2 passes 0.59 (+/-0.02) 0.35 (+/-0.02) 0.60
3 passes 0.61 (+/-0.01) 0.35 (+/~0.00) 0.57
4 passes 0.62 (+/-0.02) 0.36 (+/-0.03) 0.58

Results are the + mean + S.D. for 3 replicate tests.
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Although the intent of napping the outershell fabric of chemical
protective garments was to possibly enhance the entrapment of aerosolized
particles within the raised surface fibers, napping actually resulted
with little or no effect on the degree of aerosol penetration.

In general, the napping process did not appear to have an adverse
effect on the physical properties of the candidate fabrics tested, with

excaption of slight increases to air permeability and shrinkage.

As indicated by the statistical analysis of the L /Clo ratiocs, the
napping of candidate fabrics indicates that it would not produce any
additional thermal stress to the wearer.

Since none of the napped fabrics provided enhanced aervsol
protection, it is this Facility's recommendation to terminate this

project.
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1.0 INTRODUCTION

Under contract with the US Navy Clothing and Textile Research Facility
(Contract No. N00189-91-P-BG47), the Research Triangle Institute (RTI)
investigated the efficacy of using fabric napping as s means to enhance a
fabric's resistance to aerosol penetration. Napping of a fabric has the
potential to alter the degree of aerosol penetration (either for better or for
worse) by altering the interaction of the aerosol particles with the fabric
fibers. The tests were performed using 5-inch diameter fabric swatches
mounted in an serosol penetration test apparatus. An optical particle counter
was used to measure aerosol concentrations, over the particle size range of
0.3 to 6.5 ym diameter, upstream and downstream of the fabric swatches. The
size-dependent aerosol penetration of the fabrics was calculated from these
measurements.

The tests examined the effect of napping on five different base (un-
napped) fabrics identified as Fabrics A through E. The fabrics provided by

the Navy for the tests were:

Fabric A: 1002 cotton 6 ozlyd2 ripstop, quarpel treated, woodland
camouflage.

Fabric B: 50/50 polyesterlgdtton twill, fire retardant/water repellent
treated, 6 oz/yd“, blue.

Fabric C: 1002 Sotton twill, fire retardant/water repellent treated, 6
oz/yd“, navy blue.

Fabric D: 70/30 cotton/polyegter twill, fire retardant/water repellent
treated, 6.5 oz/yd“, navy blue.

Fabric E: 50/50 Nylon/cotton twill, quarpel treated, 7.0 ozlydz.
woodland camouflage.

Section 2 describes the processes that occur as aerosol particles
interact with a permeable fabric. Section 3 outlines the test matrix.
Procedures used to perform the aerosol penetration measurements are described
in Section 4. Test results are presented in Section 5 with a summary
presented in Section 6. The Appendix contains results from each individual

test run.




2.0 THE PROCESS OF AEROSOL PENETRATION THROUGH PERMEABLE FABRICS

2.1 INTRODUCTION

An aerosol can be defined as a suspension of solid or liquid particles
in the air. The size of individual aerosol particles can range from near
molecular size on up to raindrop size (Figure 1). Generally, particles smaller
than about 10 microns have sufficiently low terminal velocities that they have
a long residence time in the atmosphere. On this program, we examined the
degree to which particles in the 0.3 to 6.5 micron size range penetrated the
test fabrics. As can be seen in Figure 1, this size range roughly corresponds
to that of the ambient aerosol. Particles in this size range are too small to
be seen individually with the unaided eye though their collective effect is
readily observed in, for example, cigarette smoke and atmospheric haze.
Realizing that there are typically more than 100,000 micron-sized particles
per cubic foot of ambient air attests to the small size of these particles.

2.2 AEROSOL COLLECTION MECHANISMS

There are several mechanisms which can lead to the collection of aserosol
particles in permeable fabrics. These include the processes of sieving,
inertial impaction, interception, and diffusion. Other collection mechanisms
for aerosols include electrostatic attraction and gravitational settling.
These processes are shown schematically in Figure 2.

Sieving is the straightforward collection of particles whose diameter is
greater than the °pore size® of the fabric. Thus, for the test fabrics, the
sieving mechanism is responsible for the collection of particles greater than
sbout 100 microns. PFor particles smaller than the pore size, the aerosol can
still be collected by the fabric by one of the other collection mechanisms.

Inertial impaction occurs when the inertia of the particle prevents it
from following the airflow as the flow deviates around the fabric fibers. 1In
general, inertial impaction is important for particles greater than about 1
micron. For smaller particles (less than 0.1 micron), inertial impaction is
insignificant due to the small mass of the particles.
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Interception occurs when the streamline a particle is following comes
within one particle radius of an obstacle. For the test fabrics, this
mechanism would be most significent for particles in the 1 to 10 micron size
range.

Por particles smaller than about 0.5 microns diameter, collection
resulting from diffusion can be significant. Particle diffusion is the result
of the Brownian motion small particles undergo due to collision with gas
molecules. Diffusion is a small-particle phenomenon; larger particles
(greater than about 0.5 microns) are too massive to have their trajectories
significantly altered by collision with gas molecules. The particle diffusion
cosfficient increases sharply with decreasing size. Thus, the smaller the
particle the greater its diffusion coefficient will be. Taken one step
further, the diffusion coefficient of gas molecules (about 0.001 microns in
size) is about 100,000 times greater than for a 1 micron diameter particle.
This fact explains how activated carbon filters, which rely on the diffusion
process, can be highly efficient for the removal of toxic gases, yet be poor
filters for aerosol particles.

To summarize, the mechanisms responsible for aerosol collection in the
permeable fabrics include sieving for the collection of particle larger than
about 100 microns, inertial impaction and interception for particles greater
than about 1 micron, and diffusional collection for particle smaller than
sbout 0.5 microns diameter. This is, of course, a somewhat simplified view as
the size ranges over which the mechanisms operate tend to overlap
substantially. It should also be noted that only the screening process,
involving particles larger than the pore size of the fabric, can be considered
to be 1002 efficient. The other processes, involving particles smaller than
the pore size, will have efficiencies below 100Z. Thus, some degree of
penetration by aerosol particles smaller than the fabric pore size would be

expected.




3.0 THE TEST MATRIX

The base and napped fabrics were provided as outlined in Table 1. The
actual degree to which each base fabric was napped was not quantified.
Rather, the degree of napping was expressed as the number of times the base
fabric was passed through a napping machine. Because the base fabrics were of
different construction, each responded differently to the napping machine.
After 4 passes through the machine, Fabrics A and C appeared to have the
greatest degree of napping, while Fabrics B and E appeared to have the least.
Note that Fabric D was supplied in only its base fabric and after 1 pass
through the napping machine. Also note that fabric E had double the number of
passes through the napping machine due to its inherent resistance to napping.

TABLE 1. THE TEST FABRICS

Fabric C Fabric D Fabric E

Fabric B

Fabric A

Initial Initial Initial Initial Initial I

1l Pass 1 Pass 1l Pass 1 Pass 2 Passes

2 Passes 4 Passes

2 Passes 2 Passes

3 Passes 3 Passes 3 Passes 6 Passes

8 Passes

& Passes 4 Passes 4 Passes

Each fabric/napping combination was tested in triplicate yielding a
total of 66 runs. The airflow rate through the fabrics was set at 5 cm/sec
for all tests. This flowrate was selected based on prior measurements (1, 2)
that showed that the airflow rate through permeable fabrics is approximately
12 of the incident windspeed. While this relationship will vary depending
upon the permeability of the fabric, it was used to select a reasonable
airflow for the tests. Thus, an airflow of 5 cm/sec (0.1 mph) was chosen so
as to be roughly equivalent (i.e., within an order of magnitude) to the
airflow that would be expected to occur in a 10 mph wind.




4.0 TEST PROCEDURES

The tests were performed with the apparatus illustrated in Figure 3.

The challenge aerosol particles were composed of oleic acid -- a non-toxic,
low volatility, DOP-like liquid. A syringe pump was used to meter the oleic
acid at a rate of 0.3 cc/min into a collison-type nebulizer (similar in design
to the TSI Model 3076 Constant Output Aerosol Atomizer). Air pressure to the
nebulizer was set at 0.4 psi (300 cc/min). This pressure is well below the
nebulizer's normal operating pressure but was used to keep the resultant
aerosol concentration below the saturation limit of the optical particle
counter. After exiting the nebulizer, 24.3 1/m of additional air was added
through a porous-tube diluter to achieve the desired 5 cm/sec face velocity
through the fabric. The aerosol was passed through a charge neutralizer (TSI
Model 3054) to neutralize any electrostatic charge that have been present on
the aerosol (electrostatic charging is a natural consequence of the
nebulization process).

Asrosol concentrations upstream and downstream of the fabric were
measured with a Climet 226/8040 High Resolution Optical Particle Counter
(OPC). The OPC measures particle concentrations in 16 sizing channels between
0.3 and 10 microns. The sampling rate of the OPC was 0.25 cfm (7.1 lpm).

The concentration measurements consisted of a 3 upstream - 6 downstream
« 3 upstream sampling sequence. The measurements began by taking 3
consecutive upstream l-minute samples. Then, the OPC sample line was switched
to the downstream sample line. After waiting 2- minutes, 6 consecutive
l-minute downstream samples were obtained. The two minute period between the
downstream and upstream samples is provided to allow the OPC'c sample line and
optical chamber time to "flush out" the old sample and get the new one. The
OPC was then switched back to the upstream sample line and, after waiting
2-minutes, 3 consecutive 1l- minute samples were obtained.

For each size channel, the ratio of the average of the six downstream
concentration measurements to the average of the six upstream measurements
yielded the Aerosol Penetration for that channel:

Asrosol Penetration = Avg. of gix downstream measurements

Avg. of six upstream measurements
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penetration of the fabric samples.




The Aerosol Penetration is a measure of how much aerosol passes through

the fabric. The amount of aerosol retained in the fabric is simply:
Aerosol Retention = 1 - Aerosol Penetration
The pressure drop across the fabrics was measured with an inclined

manometer. System flow rate was measured with a Meriam Laminar Flow Element
Model 50MW20-1.




5.0 TEST RESULTS

Particle counts (counts per minute) for each sizing channel for the
upstream and downstream measurements for a typical test are shown in Table 2.
The upstream counts were approximately the same during all the tests. The
downstream counts varied depending upon the filtration efficiency of the
particular fabric under test. Due to the low concentration of particles above
7 ym in the upstream airstream, the upper size limit for the penetration
measurements was 6.5 um (i.e., the 6 to 7 um channel of the particle counter).

The results of the aerosol penetration measurements for each level of
napping for fabrics A through E are shown in Figures 4 through 8,
respectively. Each curve in these figures represents the average of the three
replicate runs for that particular fabric/napping combination. The
penetration values measured for each of the 66 individual test runs are
presented in the Appendix. Also presented in the Appendix is the pressure
drop measured across each fabric at the test flow rate of S cm/sec.

Figures 9 through 13 show the estimated error (+/- 1 standard deviation)
associated with the measurements for the various fabrics. These curves are
based on the average of the means and standard deviations for the triplicate
runs (tabulated in the appendix) within each fabric group.

There were two general sources of variability in the test data. One
source was differences between individual samples taken from the same
fabric/napping bolt. While samples from the same bolt visually appeared
identical, undetected differences would lead tc variability in the measured
penetration. In some instances, significantly different pressure drops
(tabulated in the Appendix) were measured across the three samples for a given
fabric/napping combination indicating that the samples were not always as
identical as they appeared to be visually. The second source of variability
was drift in the challenge aerosol concentration. The drift was greatest at
the larger particle sizes (from about 2 to 6 microns diameter). Combined with
the high penetration at these sizes for some of the fabrics (particularly
fabrics B and D), aerosol drift would lead to greater variability in those

tests.
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Fabric A

Summary of Penetration Measurements
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Figure 4. Average aerosol penetration
curves for Fabric A. Each curve is the
average of three replicate runs.
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Fabric B
Summary of Penetration Measurements
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Figure 5. Average aerosol penetration
curves for Fabric B. Each curve is the
average of three replicate runs.
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Fabric C
Summary of Penetration Measurements
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Figure 6. Average aerosol penetration
curves for Fabric C. Each curve is the
average of three replicate runs.
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Fabric D
Summary of Penetration Measurements

Penetration
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Figure 7. Average aerosol penetration

curves for Fabric D. Each curve is the
average of three replicate runs.
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Fabric E
Summary of Penetration Measurements
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Figure 8. Average aerosol penetration

curves for Fabric E. Each curve is the
average of three replicate runs.
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Fabric A

Mean +/- 1 Standard Deviation
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Figure 8. Mean and +/- 1 standard

deviation penetration curves for
Fabric A.
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Fabric B
Mean +/- 1 Standard Deviation

1 Penetration
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Figure 10. Mean and +/- 1 standard

deviation penetration curves for
Fabric B.
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Fabric C
Mean +/- 1 Standard Deviation

1 Penetration
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Figure 11. Mean and +/- 1 standard
devistion penetration curves for
Fabric C.




Fabric D
Mean +/- 1 Standard Deviation
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deviation penetration curves for
Fabric D.
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Fabric E
Mean +/- 1 Standard Deviation

1 Penetration
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Figure 13. Mean and +/- 1 standard
deviation penetration curves for
FabricE.
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6.0 SUMMARY

From the results, it appears that napping the fabrics had little or no
effect on aerosol penetration. Differences between test runs for a given
fabric at the various levels of napping fall within the measurement error.
The physical appearance of the fabric samples intuitively supports this
finding in that, overall, napping had only a slight affect on the fabrics
outward physical appearance. Theoretically, napping could alter (either for
better or for worse) the degree of aerosol penetration though a fabric by
altering the way the aerosol particles interact with the fabric fibers.
However, the degree of napping given the fabrics on this program was
insufficient to significantly alter the degree of aerosol penetration.
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APPENDIX

AEROSOL PENETRATION AND PRESSURE DROP
FOR EACH TEST RUN
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