
AD-A282 968

MICRO-OPPORTUNISTIC SCHEDULING:
THE MICRO-BOSS FACTORY SCHEDULER

Norman Sadeh

CMU-RI-TR-94-04

'-kf94-24169

The Robotics institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

To appear in "Intelligent Scheduling" book edited by M. Zweben and M. Fox,
Morgan Kaufmann, 1994

DTIC
~ ELECTEI

Copyright © 1994 Sadeh -

b*
D'flS QtJAI~f I~l8P2CTED 5

This research was supported, in part, by the Defense Advanced Research Projects Agency
under contract #F30602-9I-F-0016 and in part by grants from McDonnell Aircraft Company and
Digital Equipment Corporation.

94 7 29 090

SShe akeOn .. m
PWujr* Pewh• IS2L%4Mg

22 July 1994

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

RE: Report No. CMU-RI-TR-94-04

Permission is granted to the Defense Technical Information Center and the National
Technical Information Service to reproduce and sell the following report, which contains
information general in nature:

Norman Sadeh
Micro-Opportunistic Scheduling: The Micro-Boss Factory Scheduler

Yours truly,

Marcella L. Zaragoza
Graduate Program Coordinator

enc.: 12 copies of report

Table of Contents
1. Introduction I

1.1. The Production Schedulg Problem 1
1.2. A Micro-Opportunistic Approach to Production Schedulng 3
13. Paper Outle 5

2. A Micro-opportunistic Search Procedure 6
2.1. A Deterministic Scheduling Model 6
"L2.2 Overview of the Search Procedure 9
2.3. Look-Ahead Analysis in Mkro-Bou 12

2.3.1. Optimizing Critical Conflicts First 12
2.3.2. Step 1: Reservation Optimization within a Job 13
23.3. Step 2: Building Demand Profiles to Identify Critical Resourceinme Intervals 13

2.4. Operation Selection 16
2.5. Reservation Selection 19

3. A Small Eample 20
4. Reactive and Interactive Scheduling in Micro-Boss 24

4.1. Reactive Scheduling and Control Issues 24
4.2. Interactive Scheduling with Micro-Baer 25

5. Performance Evaluation 28
5.1. Comparison Against Combinations of Priority Dispatch Rules and Release Policies. 29
5.2 Comparison Against Coarser Opportunistic Scheduling Procedures 31
5.3. Evaluating the Impact of Using Biased Demand Profiles 32

6. Concluding Remarks 34
Acknowledgement 37
References 39

AooessioU For

IITIS GRA&IL
DTIC TAB [

Unannoncoed
ust f ioatin

Ditrib ti ,,o

AvailabilitY Oodes

vail and/or
Dist Spec ialmE,.

II

V

!11

List of Figures
Figure 1: A simple job shop problem with four jobs. Each node is labeled by the operation that It 8

represents, its duration, and the resource that it requires.
Figure 2: An example of an unscheduled operation that absolutely needs a resource/time interval. 12

2 2Figure 3: Start time distribution a2 (r) for operation O2 In the Initial search state for the problem 14
defined In Figure 1.

Figure 4: Building R2 's aggregate demand profile In the initial search state. 15
Figure 5: Aggregate demands in the Initial search state for each of the five resources. 17
Figure 6: Operation selection In the Initial search state. 18
Figure 7: An edited trace 21
Figure 8: Gantt chart of the final schedule produced by Micro-Boss. 23
Figure 9: The Micro-Boss user Interface allows for Interactive manipulation of schedules. By 27

Interleaving both manual and automatic scheduling decisions, saving and comparing
alternative schedules, the user can easily assess different trade-offs and locally Impose ad
hoc constraints or preferences that are not easily amenable to representation in the
computer model.

Figure 10: Comparison of Micro-Boss and the best of 39 combinations of priority dispatch rules 29
and release policies under 8 different scheduling conditions (10 problems were
generated under each condition).

Figure 11: Comparison of Micro-Boss and two coarser opportunistic schedulers. 31
Figure 12: Comparison of the cost of the schedules produced by Micro-Boss and a variation of the 32

system that used unbiased demand profiles.

IV

v

List of Tables
Table 1: Earledt acceptable release dates, due dates, latest acceptable completion dates and 9

m-ria cost
Table 2: Characteristics of the eight problem sets. 28

Abstract

A major challenge for research in production management is to develop new finite-capacity
scheduling techniques and tools that (1) can account more precisely for actual production
management constraints and objectives, (2) are better suited for handling production
contingencies, and (3) allow the user to interactively manipulate the production schedule to
reflect idiosyncratic constraints and preferences not easily amenable to representation in the
computer model. This paper describes Micro-Boss, a decision-support system for factory
scheduling currently under development at Carnegie Mellon University. Micro-Boss aims at
generating and maintaining high-quality realistic production schedules by combining powerful
predictive, reactive, and interactive scheduling capabilities. Specifically, the system relies on
new micro-opportunistic search heuristics that enable it to constantly revise its scheduling
strategy during the construction or repair of a schedule. These search heuristics are shown to be
more effective than less flexible scheduling techniques proposed in the Operations Research and
Artificial Intelligence literature.

1. Introduction
In a global market economy, the need for cost-efficient production management techniques is

becoming more critical every day. In contrast with this need, current production management
practice is too often characterized by low levels of due date satisfaction, high levels of inventory
and, more generally, a state of chaos in which the computer systems that are used to provide
managerial guidance do not accurately reflect the current state of affairs, because they rely on
oversimplified and rigid models of the production environment. A major challenge for research
in this area is to develop new production management techniques and tools that (1) can account
more precisely for actual production management constraints and objectives, (2) are better suited
for handling production contingencies, and (3) allow the user to interactively manipulate the
production schedule to reflect idiosyncratic constraints and preferences not easily amenable to
representation in the computer model. This paper describes Micro-Boss, a decision-support
system for factory scheduling currently under development at Carnegie Mellon University.
Micro-Boss aims at generating and maintaining high-quality realistic production schedules by
combining powerful predictive, reactive, and interactive scheduling capabilities. Specifically,
the system relies on new micro-opportunistic search heuristics that enable it to constantly revise
its scheduling strategy during the construction or repair of a schedule. These search heuristics are
shown to be more effective than less flexible scheduling techniques proposed in the Operations
Research and Artificial Intelligence literature.

1.1. The Production Scheduling Problem
Production scheduling requires allocating resources (e.g., machines, tools, human operators)

over time to a set of jobs while attending to a variety of constraints and objectives.

Typical constraints include

e functional constraints limiting the types of operations that a specific resource can
perform

* capacity constraints restricting the number of jobs a resource can process at any
given time

" availability constraints specifying when each resource is available (e.g., number of
shifts available on a group of machines)

" precedence constraints existing between operations in a job, as specified in the job's
process routing

*processing time constraints specifying how long it usually takes to perform each
operation

* setup constraints requiring that each machine be in the proper configuration before

2

performing a particular task (e.g., proper sets of fixtures and tools)

time-bound constraints specifying for each job an earliest acceptable release date
before which the job cannot start (e.g., because its raw materials cannot arrive
earlier) and a due date by which ideally it should be delivered to a customer

Some of these constraints must be satisfied for a schedule to be valid (so-called non-relaxable
or hard constraints). For instance, milling operations can only be performed on milling
machines. Other groups of constraints are not always satisfiable and might need to be relaxed
(so-called relaxable or soft constraints). For instance, due date constraints often need to be
relaxed for a couple of jobs because of the limited capacity of the production facility.
Availability constraints are another example of constraints that can be relaxed, by either working
overtime or adding extra shifts. A good schedule is one that satisfies all hard constraints while
selectively relaxing soft constraints to maximize performance along one or several metrics.

Two factors that critically influence the quality of a schedule are due date satisfaction and
inventory levels. Missing a customer due date can result in tardiness penalties, loss of customer
orders, delayed revenue receipts, etc. Inventory costs include interests on the costs of raw
materials, direct inventory holding costs, interests on processing costs, etc. One often
distinguishes between in-process inventory costs (also referred to as work-in-process inventory
costs) and finished-goods inventory costs. Work-In-Process (WIP) inventory costs account for
inventory costs resulting from orders that have not yet been completed, and finished-goods
inventory costs result from completed orders that have not yet been shipped to customers.

Manufacturing contingencies such as machine breakdowns, late arrivals of raw materials, and
variations in operation durations and yields further complicate production scheduling. In the face
of contingencies, schedules need to be updated to reflect the new state of affairs. The sheer size
of most factory scheduling problems precludes the generation of new schedules from scratch
each time an unanticipated event occurs. In fact, most contingencies do not warrant such
extreme actions and are best handled by repairing a portion of the existing schedule [3].

As schedules are optimized at a more detailed level, they can also become more sensitive to
disruptions and require more frequent repairs. In general, there is a limit to the amount and
detail of information that one can reasonably expect to represent in a computer model. For
instance, a worker's preference for performing more demanding tasks in the morning might not
be worth storing in the computer model and, instead, might be best accounted for by allowing the
end-user to interactively manipulate the schedule.

Even under idealized conditions such as simplified objectives (e.g., minimizing total tardiness
or maximizing throughput) and deterministic assumptions, scheduling has been shown to be an
NP-hard problem [12, 14, 11]. Uncertainty further adds to the difficulty of the problem, and
makes it even more impractical to look for optimal solutions. Instead, practical approaches to
production scheduling are heuristic in nature. The next subsection briefly reviews earlier

3

approaches to production scheduling; identifies some of their shortcomings; and introduces a
new search paradigm, called micro-opportunistic search, that shows promise for addressing some
of these shortcomings.

1.2. A MIcro-Opportunistic Approach to Production Scheduling
To this date, the most widely used computer-based approach to production scheduling remains

by far the Material Requirements Planning (MRP) or Manufacturing Resource Planning (MRP-
I) approach developed in the 1970s [22, 41, 42]. In this approach, demand for end-products as
specified in a Master Production Schedule is exploded into time-phased requirements for
component items (subassemblies, parts, raw materials, etc.) required for the production of these
end-products 1 . Because their time-phasing logic relies on standard operation leadtimes that do
not account for the actual load of the production facility, MRP systems often fail to produce
realistic schedules. They sometimes overload the facility, thereby causing orders to be delivered
late. In an attempt to alleviate this problem, MRP systems often pad the schedule by inserting
generous "safety" leadtimes. These safety leadtimes tend to be rather arbitrary and produce
unnecessarily large amounts of inventory. In fact, because they are often unrealistic and are not
meant to be updated in real-time2 , MRP schedules are not directly used to schedule production
but rather to assign priorities to jobs [27,40]. These priorities in turn determine the order in
which jobs are actually processed at each work center.

Shortcomings of the traditional MRP approach reflect limitations of computing technologies
available in the 1970s. In the 1980s with the advent of more powerful computers, several more
sophisticated techniques emerged [13,9,23, 1,24,21]. The first and by far most publicized of
these techniques is the one developed by Goldratt and his colleagues within the context of the
OPT factory scheduling system [13, 15, 10]. OPT demonstrated the benefits of building detailed
production schedules that account for the actual load of the plant and the finite capacity of its
resources ("finite scheduling" approaches). This system also underscored the potential benefits
of distinguishing between bottleneck and non-bottleneck resources [15, 10]. In OPT, bottlenecks
are scheduled first to optimize the throughput of the plant. Later, the production schedule is
completed by compactly scheduling non-bottleneck operations to reduce inventory. The
distinction between bottleneck and non-bottleneck machines was pushed one step further in the
OPIS system [35, 24], as it was recognized that new bottlenecks can appear during the
construction of the schedule. The OPIS scheduler combines two scheduling perspectives: a
resource-centered perspective for scheduling bottleneck resources, and a job-centered
perspective to schedule non-bottleneck operations on a job-by-job basis. Rather than relying on
its initial bottleneck analysis, OPIS typically repeats this analysis each time a resource or a job

IFor instance, if an end-product required by the end of week 2 is obtained by assembling two sub-components and
the assembly process typically takes a week to be completed, both sub-components will be required by the end of
week 1.

2MRP systems are generally run on a weekly, possibly even a monthly basis.

4

has been scheduled. This ability to detect the emergence of new bottlenecks during the
construction of the schedule and revise the current scheduling strategy has been termed
opportunistic scheduling [24]. Nevertheless, the opportunism in this approach remains limited in
the sense that it typically requires scheduling an entire bottleneck (or at least a large chunk of it)
before being able to switch to another one. For this reason, we actually refer to these techniques
as macro-opportunistic.

In fact, variations in the job mix over time often cause different machines (or groups of
machines) to be bottlenecks over different time intervals. Bottlenecks are sometimes said to
"wander over time". Also, as a schedule is constructed for a bottleneck machine, a new machine
can become more constraining than the original bottleneck. For instance, scheduling decisions
on a bottleneck machine might require that a large number of jobs be processed on a preceding
machine over a short period of time. At some point during the construction of the schedule,
contention for the preceding machine might become higher than that for the original bottleneck.
A scheduling technique that can only schedule large resource/job subproblems will not be able to
take such considerations into account. It will overconstrain its set of alternatives before having
worked on the subproblems that will most critically affect the quality of the entire schedule.
This, in turn, will often result in poorer solutions. A more flexible approach would stop
scheduling operations on a resource as soon as another resource is identified as more
constraining. In the presence ut multiple bottlenecks, such a technique weuld be able to shift
attention from one bottleneck to another during the construction of the schedulb rather than focus
on the optimization of a single bottleneck at the expense of others. This paper presents such a
flexible approach to scheduling. We call it micro-opportunistic scheduling. In this approach,
resource contention is continuously monitored during the construction of the schedule, and the
problem solving effort is constantly redirected toward the most serious bottleneck resource. In
its simplest form, this micro-opportunistic approach results in an operation-centered view of
scheduling, in which each operation is considered an independent decision point and can be
scheduled without requiring that other operations using the same resource or belonging to the
same job be scheduled at the same time3 .

Experimental results presented at the end of this paper indicate that micro-opportunistic
scheduling procedures often yield better schedules than less flexible bottleneck-centered
approaches. Because of their flexibility, micro-opportunistic scheduling heuristics also seem
particularly well suited to solving problems in which some operations have to be performed
within non-relaxable time windows [29, 31] as well as repairing schedules in the face of
contingencies. Finally, we find that they can easily be integrated in interactive systems in which

3An alternative approach in which resources can be resequenced to adjust for resource schedules built further
down the road is described in [1] and [7]. This approach has been very successful at minimizing makespan, namely,
the total duration of the schedule. This measure is closely related to the throughput of the plant but does not account
for individual job due dates, tardiness costs or inventory costs. Attempts to generalize the procedure to account for
due dates seem to have been less successful so far [34]. It should be pointed out that the idea of continuously
reoptimizing the current partial schedule is compatible with a micro-opportunistic approach.

manual and automatic scheduling decisions can be interleaved, thereby allowing the user to
incrementally manipulate and compare alternative schedules (e.g., "What-if" type of analysis).

1.3. Paper Outline
The remainder of this paper successively reviews the predictive, reactive, and interactive

capabilities of the Micro-Boss scheduling system.

Section 2 describes the micro-opportunistic search procedure implemented in Micro-Boss,
focusing on look-ahead techniques used to measure contention, and heuristics to identify and
schedule critical operations. A small example illustrating the use of these techniques is provided
in Section 3. Section 4 describes the reactive and interactive components of the system. Section
5 reports the results of an experimental study comparing Micro-Boss with several popular
scheduling approaches, including coarser opportunistic schedulers, under a wide range of
simulated situations. Finally, Section 6 briefly reviews current research efforts and summarizes
the impact of this work.

6

2. A Micro-opportunistic Search Procedure
In this section, a deterministic scheduling model is assumed, in which all jobs to be scheduled

are known in advance. Issues pertaining to reactive scheduling and control in the face of
manufacturing contingencies such as machine breakdowns are addressed in a later section.

2.1. A Deterministic Scheduling Model
For the time being, we consider a deterministic scheduling problem in which a set of jobs

J=fJl,'"JIn has to be scheduled on a set of physical resources RES={Ri,...,Rm). Each job Jl
consists of a set of operations O0= { O:..... 01,) to be scheduled according to a process routing that

specifies a partial ordering among these operations (e.g., O BEFORE 0). We further assume
scheduling problems with in-tree process routings, namely process routings in which operations
can have one or several direct predecessors but at most one direct successor (e.g., assembly
process routings). This is by far the most common type of process routing encountered in
manufacturing.

Additionally, each job j, has an earliest acceptable release date, erdl, a due-date, ddl, and a
latest acceptable completion date, lWd1, where lcd1 2t dd1 > erdt. All jobs need to be scheduled
between their earliest acceptable release date and latest acceptable completion date4. The earliest
acceptable release date might correspond to the earliest possible arrival date of raw materials. It
is assumed that the actual release date (or job start date) will be determined by the schedule that
is constructed. The latest acceptable completion date might correspond to a date after which the
customer will refuse delivery. If such a date does not actually exist, it can always be chosen far
enough in the future so that it is no longer a constraint.

Each operation 01 has an expected duration, dui, and a start time, s/ (to be determined), whose
domain of possible values is delimited by an earliest start time, est!, and a latest start time, lsl
(initially derived from the job's earliest acceptable release date erdl and latest acceptable
completion date lcdW). We assume that each operation 01 requires a single resource R for which
there might be several alternatives in RES. The model further allows for resource availability
constraints that specify the times when each resource is normally available (e.g., what the
number of shifts is and whether the resource is available over the week-end). Finally, setup
operations might be required before an operation can start on a machine. Examples of setup
operations include changing the fixtures holding a part, loading a new part, cleaning a painting
station when switching from one color to another, etc.

The objective of the scheduling system, under deterministic assumptions, is to build a schedule
that satisfies the above constraints and minimizes (as much as possible) the costs incurred for
missing due dates or carrying overhead inventories. These costs are briefly described below.

COSTS

4Notice that this formulation does not exclude infeasible problems.

7

Each jobj 1 has

9 A marginal tardiness cost, tardt: This is the cost incurred for each unit of time that the job is
tardy (i.e., finishes past its due date). Marginal tardiness costs generally include tardiness
penalties, interest on delayed profits, loss of customer goodwill, etc5. The tardiness cost of job j/
in a given schedule is

TARD 1= tardl x Max(O, C1 -ddt) (1)

where Cl-S/ +du' is the completion date of job j, in that schedule, assuming that 0' is the last
whreC 1 n, n

operation in job ji.

* Marginal in-process and finished-goods inventory costs: In our model, each operation 01
can incrementally introduce its own non-negative marginal inventory cost, inv,. Typically, the
first operation in a job introduces marginal inventory costs that correspond to interest on the
costs of raw materials, interest on processing costs (for that first operation), and marginal
holding costs. Downstream operations 6 introduce additional marginal inventory costs such as
interest on processing costs or interest on the costs of additional raw materials required by these
operations. The total inventory cost for a job j1, in a given schedule, is:

n,
INV, = intv, × [Max(C ,ddl) - S~il (2)

i=I

This cost accounts for both work-in-process and finished-goods inventory costs7

The total cost of a schedule is obtained by summing the cost of each job schedule:

n

Schedule Cost= (TARDI+ INV,) (3)
l=l

A SMALL EXAMPLE

Figure 1 depicts a small scheduling problem with four jobs that will be used in this section to
illustrate the behavior of the micro-opportunistic scheduling heuristics implemented in Micro-
Boss. Each square box represents an operation and is labeled by the name of this operation (e.g.,

51n this model, inventory costs incurred after the due date are not included in the tardiness costs but, rather, in the
inventory costs described below.

6An operation Ok is said to be downstream (upstream) of another operation Oý within its job if O is a direct or

indirect successor (predecessor) of O in that job, as defined by the job's process routing.

7Note that, in this deterministic model, minimizing work-in-process inventory costs is equivalent to minimizing
job leadtimes or flowtimes.

8

O1), its (expected) duration (e.g., dul = 2), and the resource it requires (e.g., R1, =RI). In this
simple example, each operation is assumed to require a single resource, for which there are no
substitutes. The arrows represent precedence constraints. For instance, job jI has 5 operations

O, 0' ... ' O 0. has to be performed before 0' 0' before 04', etc. The other arcs in the graph
represent capacity constraints that require that each resource be allocated to only one operation at
a time. There is a capacity constraint between each pair of operations that require the same
resource. Notice that R2 is the only resource required by four operations (one from each job).
Notice also that in three out of four jobs (namely, j, , j 3 , and j 4), the operation requiring R2 is
one of the job's longest operations. Consequently, resource R2 can be expected to be the main
bottleneck of the problem. We will see that, to some extent, resource R, constitutes a secondary
bottleneck.

S R, ' R 0'2 R ' R

\ A

\), \ ,

\A /

J (o. W r, 3 ,

S precedence constraint

---- - --capacity constraint

Figure 1: A simple job shop problem with four jobs. Each node is labeled by the operation
that it represents, its duration, and the resource that it requires.

The earliest acceptable release dates, due dates, and latest acceptable completion dates of the
jobs are provided in Table 1 along with the marginal tardiness and inventory costs of these jobs.

9

Earliest acceptable release dates, due dates, latest acceptable completion dates, and costs

Jobj1 erd1 dd1 lcd1 tard1 inv, inV2 inv3 invt inv,

Jl 0 12 20 20 2 1 2 0 0

J2 0 14 20 20 5 0 - - -

h 0 9 20 5 1 0 0 -

j4 0 18 20 10 1 0 - -

Table 1: Earliest acceptable release dates, due dates, latest
acceptable completion dates and marginal costs.

2.2. Overview of the Search Procedure
In Micro-Boss, each operation is considered an independent decision point. Any operation can

be scheduled at any time, if deemed appropriate by the system. There is no obligation to
simultaneously schedule other operations upstream or downstream within the same job, nor is
there any obligation to schedule other operations competing for the same resource.

Micro-Boss proceeds by iteratively selecting an operation to be scheduled and a reservation
(i.e., a resource/time interval) to be assigned to that operation. Every time an operation is
scheduled, a new search state is created, where new constraints are added to account for the
reservation assigned to that operation. A consistency enforcing procedure then takes care of
updating the set of remaining possible reservations of each unscheduled operation. If an
unscheduled operation is found to have no possible reservations left, a deadend state has been
reached, in which case the system needs to backtrack (i.e., it needs to undo some earlier
reservation assignments to be able to complete the schedule). If the search state does not appear
to be a deadend, the system moves on and looks for a new operation to schedule and a
reservation to assign to that operation.

To enhance search efficiency 8 and produce high quality schedules, Micro-Boss interleaves
search with the application of consistency enforcing mechanisms and a set of look-ahead
techniques that help decide which operation to schedule next (operation ordering heuristic) and
which reservation to assign to that operation (reservation ordering heuristic).

1. Consistency Enforcing/Checking: Consistency enforcing techniques prune the
search space by inferring new constraints resulting from earlier reservation
assignments [19, 30]. By constantly accounting for earlier scheduling decisions,
these techniques reduce the chances of reaching a deadend (i.e., a partial schedule

8We define search efficiency as the ratio of the number of operations to be scheduled over the number of search
states generated. If the number of search states generated to build the schedule is equal to the number of operations,
search efficiency is equal to 1.

10

that cannot be completed without backtracking). Simultaneously, by allowing for

the early detection of deadend states, these techniques limit the amount of work

wasted in the exploration of fruitless alternatives.

2. Look-Ahead Analysis: A two-step look-ahead procedure is applied in each search

state, which first optimizes reservation assignments within each job and then, for

each resource, computes contention between jobs over time. Resource/time

intervals where contention is the highest help identify the critical operation to be

scheduled next (operation ordering heuristic). Reservations for that operation are

then ranked according to their ability to minimize the costs incurred by the jobs

contending for the critical resource (reservation ordering heuristic). By constantly

redirecting its effort toward the most serious conflicts, the system is able to build

schedules that are closer to the global optimum. Simultaneously, because the

scheduling strategy is aimed at reducing job contention as rapidly as possible,

chances of reaching deadend states tend to quickly subside too.

The opportunism in Micro-Boss results from the ability of the system to constantly revise its
search strategy and redirect its effort toward the scheduling of the operation that appears to be
the most critical in the current search state. This degree of opportunism differs from the one
displayed by earlier approaches where scheduling entities were large resource/job subproblems
[24, 6], i.e., where large resource/job subproblems had to be scheduled before the system could

revise its scheduling strategy.

Concretely, given a scheduling problem such as the one described in Figure 1, Micro-Boss
starts in a search state in which no operation has been scheduled yet9, and proceeds according to
the following steps:

1. If all operations have been scheduled, then stop; else go on to 2.

2. Apply the consistency enforcing procedure.

3. If a deadend is detected then backtrack; else go on to 4.

4. If one or more operations were found to have only one possible reservation left,

then schedule these operations (creating a new search state for each one). If all

operations have been scheduled, then stop; else go on to 5.

9Alternatively, Micro-Boss can also complete a partial schedule, in which case the initial search state corresponds
to the initial partial schedule. A description of reactive and interactive capabilities of the system is provided in
Section 4.

11

5. Perform a look-ahead analysis: Rank the possible reservations of each

unscheduled operation according to how well they minimize the costs of the job to

which the operation belongs (step 1), and evaluate resource contention over time

(step 2).

6. Select the next operation to be scheduled (i.e., operation ordering heuristic).

7. Select a reservation for that operation (i.e., reservation ordering heuristic).

8. Create a new search state by adding the new reservation assignment to the current

partial schedule. Go back to 1.

As in other constraint-directed scheduling systems [16], the consistency enforcing procedure
used in Micro-Boss (1) maintains for each unscheduled operation a pair of earliest/latest possible
start times and (2) marks as unavailable those resource/time intervals allocated to already
scheduled operations. Additionally, reservation pruning performed by the Micro-Boss
consistency procedure also accounts for resource/time intervals that are absolutely needed by
unscheduled operations. Figure 2 displays an example of an unscheduled operation O& whose
earliest and latest possible reservations overlap. Whichever reservation this operation is
ultimately assigned, it will always need time interval [Ls4, efti]. Accordingly, the Micro-Boss
consistency procedure prunes the set of remaining possible reservations of other unscheduled
operations requiring that resource by removing all those reservations that overlap with time
interval [Ise,, ef']10.

Results presented in this paper were obtained using a simple chronological backtracking
scheme. Experimentation with more sophisticated backtracking schemes is described in [31].

The remainder of this section gives a more detailed description of the look-ahead analysis and
the operation/reservation ordering heuristics used in Micro-Boss. Further details on these
techniques, as well as other aspects of the system, can be found in [30].

10This differs from an earlier version of the system [30], in which resource/time intervals needed by unscheduled
operations were only used to detect conflicts. In this earlier version, a conflict would be detected when two or more
unscheduled operations needed overlapping resource/time intervals. Rather than waiting for such conflicts to arise,
our new consistency procedure efficiently prevents such conflicts from occurring, thereby further reducing
backtracking. A generalized version of this procedure is used for parallel machines.

12

I IO

I I
I I

I I

I I

est o Isteft uft• time

VP4VP=/ earliest possible reservation

ME=\ latest possible reservation

absolutely needed Interval

Figure 2: An example of an unscheduled operation that absolutely needs
a resourcedtime interval.

2.3. Look-Ahead Analysis In Micro-Boss

2.3.1. Optimizing Critical Conflicts First
If all jobs could be scheduled optimally (i.e., just-in-time), there would be no scheduling

problem. Generally, this is not the case. Jobs typically have conflicting resource requirements.
The look-ahead analysis carried out by Micro-Boss in each search state aims at helping the
scheduling system focus its effort on those conflicts that currently appear most critical. A
critical conflict is one that will require an important trade-off, i.e., a trade-off that will
significantly impact the quality of the entire schedule. By first focusing on critical conflicts,
Micro-Boss ensures that it has as many options as possible to optimize these conflicts. As
illustrated by a trace provided in the next section, once critical trade-offs have been worked out,
the remaining unscheduled operations tend to become more decoupled and, hence, easier to
optimize1 1. As contention subsides, so does the chance of needing to backtrack In other words,
by constantly redirecting search towards those trade-offs that appear most critical, Micro-Boss is
expected to produce better schedules and simultaneously keep backtracking at a low level.

More specifically, a two-step look-ahead procedure is applied to each search state. This
procedure first optimizes reservation assignments within each job and then, for each resource,
computes contention between jobs over time. The so-called demand profiles produced by these
computations help identify operations whose good reservations (as identified in the first step)
conflict with the good reservations of other operations. These operations define the critical

I IThis is similar to the way bottleneck schedules drive other scheduling decisions in OPT.

13

conflicts on which Micro-Boss works first.

This two-step look-ahead analysis is further detailed below.

2.3.2. Step 1: Reservation Optimization within a Job
In order to measure contention between the resource requirements of unscheduled operations,

Micro-Boss keeps track of the best start times that remain available to each unscheduled
operation within its job. Additionally, the system implicitly maintains, for each remaining
possible start time c of each unscheduled operation O&, a function mincos4(r) that indicates the
minimum additional costs that would be incurred by job Jk (the job to which O& belongs), if O&
were to start at se=,c rather than at one of its best possible start times. By definition, if s4='T is
one of the best start times that remain available to O& within its job, then mincos4C(,)=O. Rather
than explicitly maintaining mincost functions, Micro-Boss simply maintains for each
unscheduled operation O& (1) an apparent marginal tardiness cost, app-tar4, that approximates
the cost incurred by job Jk for each unit of time that O0, starts past its latest best start time and (2)
an apparent marginal inventory cost, app-mvi, that approximates the cost incurred by job Jk for
each unit of time that O& starts before its earliest best start time. These costs are updated in each
search state to account for earlier scheduling decisions, using a set of efficient propagation
procedures described in (30].

2.3.3. Step 2: Building Demand Proffles to Identify Critical ResourceiTlme Intervals
In Micro-Boss, critical conflicts are identified as groups of operations whose good reservations

(within their jobs) conflict with each other. The importance of a conflict depends on the number
of operations that are competing for the same resource, the amount of temporal overlap between
the requirements of these operations, the number of alternative reservations still available to each
of these conflicting operations and their costs, as determined by the mincost functions computed
in step 1.

To identify critical conflicts, Micro-Boss uses a probabilistic framework in which each
remaining possible start time - of an unscheduled operation d, is assigned a subjective
probability di (T) to be selected for that operation in the final schedule. Possible start times with
lower mincost values are assigned a larger probability, thereby reflecting our expectation that
they will yield better schedules. Given these start time probability distributions, the probability
that an unscheduled operation Of uses its resource 12 at time t, which is referred to as the
individual demand of d, for k,, is:

12For the sake of simplicity, we assume here that each operation requires a single resource for which there are no
alternatives. The construction of demand profiles can easily be generalized to deal with parallel machines by
building profiles for entire groups of machines and normalizing them based on their remaining available capacities
over time.

14

O (4)

where dut is the duration of di. di(t) is also a (subjective) measure of the reliance of operation
Son the availability of its resource at time t. By adding the individual demands of all
unscheduled operations requiring a given resource, say Rk, the system obtains an aggregate

demand profile, Dwr(t) that indicates contention between (all) unscheduled operations for that
resource Rk as a function of time:

where the summation is carried over all unscheduled operations that need resource Rk.

Start time distribution a02)

MI I I0

7 o 9• 10 11 1 is 14 is

a- U

start time

FIgure 3: Start time distribution a22 (r) for operation O2 in the initial search state
for the problem defined in Figure 1.

Figure 3 displays a(,r), the start time distribution of operation O2 in the problem defined in
Figure 1. This start time distribution is depicted in the initial search state, where all operations
still have to be scheduled. In this search state, start time s-=-9 is the best possible start time for
O2: it corresponds to a just-in-time schedule of job j 2. Later start times have a lower subjective
probability because they would force the job to finish after its due date. Earlier start times are
also suboptimal because they would produce additional inventory. In this example, the marginal
tardiness cost of job j2, tard2=20, is four times larger than the marginal inventory cost
introduced by operation O&, inv2 = 5. Accordingly, a2 (r) decreases faster for T > 9 than for r < 9.

'5

D;L(): Individual Demand of o0 for R2

aIn

am

&2('): Individual Demand of &2 for R2

an.

&a. -

am.i
a * 0 i 7 a i b i t i ii is i 14 is 1? i is i? I -79

D3(): Individual Demand of O& for R2
I LU

am

aml

am 4

D"(C): Individual Demand of 02 for R2

~am 1

Figure 1: Bidn2 s aggegae dman pofi e is the isnistias ise stte

I1M
toom

Figm'e 4 displays theIndividual dea dpoieman of te four opratosr2 i~ e r

am,

* 1 2 * 4 5 8 N * i 51 4151 71 93

These demand profiles represent the subjective probability that each one of these operations usesresource R2 as a function of time. The aggregate demand for resource R2 is obtaied by summing

16

these four individual demands over time. The individual demands of operations O. and 0' are
quite uniform because these two operations have relatively low apparent marginal costs (see the
marginal tardiness and inventory costs of job j3 and jobj4 in Table 1). In contrast, operations O2
and O&, which have larger apparent marginal costs, have individual demands that are
concentrated around their best reservations.

Similar computations can be performed for each of the five resources in the problem. The
resulting aggregate demands (in the initial search state) are displayed in Figure 5. As expected,
resource R2 appears to be the most contended for. The aggregate demand for that resource is well
above 1.0 over a large time interval, with a peak at 1.79. Resource R1 appears to be a potential
bottleneck at the beginning of the problem, with a demand peaking at 1.52. Whether R1 will
actually be an auxiliary bottleneck or not cannot be determined directly from the curves
displayed in Figure 5. Instead, the system needs to update these curves in each search state to
account for earlier decisions. It could be the case that as operations requiring R2 are scheduled,
the aggregate demand for R1 becomes smoother. In this example, this is not the case. On the
contrary, as operations are scheduled on resource R2 , some operations on resource R1 end up
with only one possible reservation and need to be immediately scheduled, as indicated by the
trace provided in Section 4.

2.4. Operation Selection
Critical operations are identified as operations whose good reservations (as identified in the

first step of the look-ahead analysis) conflict with the good reservations of other operations. The
largest peak in the aggregate demand profiles determines the next conflict (or micro-bottleneck)
to be optimized; the operation with the largest reliance on the availability of the corresponding
resource/time interval (i.e., the operation with the largest individual contribution to the peak) is
selected to be scheduled next. Indeed, this operation is the one whose good reservations are the
most likely to become unavailable if other operations contending for the current micro-
bottleneck were scheduled first.

In the example introduced earlier, the largest demand peak is the one for resource R2 over
interval [4,8[. Figure 6 displays the aggregate demand for resource R2 together with the
individual demands of the four operations requiring this resource. The operation with the largest
contribution to the demand peak is O. Therefore this operation is selected to be scheduled next.
This is no real surprise: O belongs to one of the two jobs in the problem that have a high
marginal tardiness cost (tard1 = 20). While any delay in starting job j, will result in large
tardiness costs, job j 3 (i.e., the job with the next highest contribution) can tolerate a small delay
and is subject to lower tardiness penalties.

The computation of demand profiles, as described in 2.3.3 can be quite expensive when
performed for each resource in each search state over the entire scheduling horizon. Micro-Boss
can avoid this problem by incrementally maintaining a set of rough demand profiles for each
resource (or group of identical resources). These rough demand profiles use a much coarser time

17

DM,"(,(): Aggregate Demand for R,

IL-

I
* 1 i * 4 5 5 7 5 5 10 11 is 1i 14 4i i4 17 i i

Da•): Aggregate Demand for R2

am-

aR2

o I i i io ii is i • s id 15 If r1 It ata"f
am

./•ft "(•): Aggregate Demand for R3

t-e

1M.

Fade

0.00

Figur S: ie is i t is & 5 17ti t is iv

RFigure¶5: Aggregate Demands nteiiilsac tt for eahoRhefv4 esucs

18

Iryflr(t): Aggregate Demand for R2
"2

0. 0.

'.20°

0 i 2 3 4 5 5 7 i 9 10 il 12 iS 14 i5 If 1?7 1 19 20
time

DL(4): Individual Demand of Oý for R2

£.20

0 1 2 3 4 5 5 7o 9 0. 12 13 14 is ie 1? iS IC 20
time

1)•(t): Individual INmand of O•2 for R2

1.20

I::J

am-

0.2010 7 2 3 4 5 9 7 5 9 j0 ii 12 i7 14 15 19 17 is ic

time

D•(t): Individual Demand of O• for R2&0.20

tln0~~~~ 1 2 it 7591 11 12 is 14 is 1s i? it '9a2
time

D4(¶): Individual Demand of Od for R20.404

0 i 2 3 4 5 8 7 5 9 1it1i 12 13 34 is is 17 it it 20
VMe

Figure 6: Operation selection in the initial search state.

granularity and are obtained by splitting the demand of each unscheduled operation into two

19

components. One component (50% of the operation's total demand in the current implementation
13) is evenly spread between the start and end times of the latest best reservation of the operation
while the second component (the remaining 50% of the operation's demand) is evenly spread
between the earliest start time and latest finish time of the operation. Rough demand profiles can
be quickly updated as the system moves from one search state to the next and are used in each
search state to identify a small number of critical resource/time intervals over which the more
detailed demand profiles described in 2.3.3 are then constructed.

2.5. Reservation Selection
To schedule the critical operation identified in 2.4, the system attempts to identify a

reservation (for the critical operation) that will reduce as much as possible the costs incurred by
the job to which that operation belongs and the other jobs with which that operation competes.
This is approximated as a single-machine or parallel-machine early/tardy scheduling problem in
which operations scheduled past their best start times incur penalties determined by their
apparent marginal tardiness costs, while operations scheduled before their best start times incur
earliness penalties, as determined by their apparent marginal inventory costs [2, 30]. In the
experiments reported at the end of this paper, several variations of a single-machine early/tardy
procedure developed by Ow and Morton [26, 30] were successively run and the single-machine
schedule with the lowest cost was used to determine the reservation assigned to the critical
operation. More recently, a new scheduling heuristic has also been developed to solve problems
with setups [17].

13The total demand of an operation is equal to its duration.

20

3. A Small Example
Micro-Boss is implemented in C++ with an XTM/MotifTM interface. The small example used

throughout this paper requires less than 0.1 CPU seconds on a DECstationTM 5000/200 running
under UNIXTMIl4. An edited trace of this example is given in Figure 7.

In this example, the scheduling procedure first focuses on the scheduling of the main
bottleneck resource, R2. However, as it schedules operations on this resource, the system can
also jump to other resources and consolidate the schedule by allocating reservations to critical
operations requiring these other resources. In this small example where operations have a small
number of possible reservations, this is mainly accomplished through the identification of
operations that have only one possible reservation left (e.g. the scheduling of 01 or O&). In
general, this can be done based on the contention analysis performed by Micro-Boss (e.g., the
identification of a critical conflict on resource R4 at depth 6). As a result, the system jumps back
and forth between several resources, always trying to focus on what appears to be the most
critical decision.

The average expected demand displayed in each search state is the average demand for the
critical demand peak, and the average contribution is the percentage of the total demand for the
peak that comes from the critical operation. When search starts, contention is relatively high, as
illustrated by the average expected demand for the critical peak (1.58 at depth 0, 1.73 at depth 2
and 1.50 at depth 4) and the relatively low contribution of the critical operation to the demand
for the peak (e.g., O contributes only 63% of the total demand for the peak in the initial search
state, &2 57% at depth 2, etc.) indicating that the resource requirements of the critical operation
compete with those of several other operations. During construction of the schedule, the average
demand for the critical peak progressively decreases 15 and the critical operation progressively
contributes a larger percentage of the demand for the critical peak. This indicates that contention
between unscheduled operations decreases. After half of the operations have been scheduled
(depth 7), contention has totally disappeared: the critical operation is the only one to contribute
to the demand for the peak. The resource requirements of the operations that still need to be
scheduled no longer compete with each other. This is not particular to this example: the same
has been observed on all the problems we have run and suggests that the operation ordering
heuristic implemented in Micro-Boss is indeed very effective at redirecting search towards the
most serious conflicts.

Notice also that no backtracking was necessary to schedule this problem. The resulting
schedule is displayed in Figure 8.

14X Window System is a registered trademark of the Massachusetts Institute of Technology. Motif is a registered
trademark of the Open Software Foundation, Inc. UNIX is a registered trademark of UNIX Systems Laboratories,
Inc. DECstation is a registered trademark of the Digital Equipment Corporation.

"15Remember that the demand peak corresponds to the interval of highest contention in the current search state.

21

>> Depth: 0, Number of states visitedt 0
Critical demmnd peaks
R2 between 4 and 8, Avg. expected demands 1.58

Critical Operation: 0(, Avg. contrib.s 63%

02 is scheduled between 2 and S on

>> Depths 1, number of states visited: 2!
I has only one possible reservation left

and is scheduled between 0 and 2 on R

>> Depth: 2, Number of states visited: 2
Critical demand peaks
R2 between 10 and 14, Avg. ezpected demands 1.73

2
Critical Operation:s 0, Avg. contrLb.: 57%

0;. is scheduled between 9 and 14 on R,

>> Depth: 3, Number of states visited: 32
02 has only one possible reservation left
and is scheduled between 2 and 9 on R,

>> Depth: 4, Number of states visited: 4
Critical demand peaks
R2 between 14 and 18, Avg. expected demands 1.50

4
Critical operation: 02, Avg. contrLb.: 50%

4
02 is scheduled between 14 and 17 on R2

>> Depths 5, Number of states visitod: 5
3O has only one possible reservation left

and is scheduled between 17 and 20 on R2

>> Depth: 6, Number of states visited: 6
Critical demand peak:
R4 between 10 and 12, Avg. expected demand: 1.12

I
Critical Operation: 0, Avg. contrib.: 73%1
O is scheduled between 10 and 12 on R4

>> Depth: 7, Number of states visiteds 7

04 has only one possible reservation left
and is scheduled between 8 and 10 on R3

Figure 7: An edited trace

22

>> Depths 8, amer of states visited: 0
Critical demand peak:
R5 between 5 and S, Avg. expected demand: 0.95

Critical Operations Oj, Avg. contrib.: 100%

03 is scheduled between 3 ad S oan R5

>> Depth: 9, Number of states visited: 9
Critical demand peaks
R4 between 7 and 9, Avg. expected demands 0.96

4
Critical Operations 0, Avg. contrib.: 100%

4
01 is scheduled between 7 and 10 an R4

>> Depths 10, Number of states visited: 10
Critical demand peek:
R! between 14 sad 17, Avg. expected demand: 0.65

3
Critical Operation: O, Avg. contrib.: 100%

2 is scheduled between 15 and 17 on RI

>> Depth: 11, Number of states visited: 11
Critical demand peaks
R3 between 13 and 15, Avg. expected demand: 0.52

3Critical Operation: 0O, Avg. contrib.: 100%
3

01 scheduled between 14 and 15 on R3

>> Depth: 12, Number of states visited: 12
Schedule Completed
Total Cost: 180
Total Tardiness Cost: 55
Total Inventory Costs 125
Avg. Weighted Tardiness: 1.0
Avg. Weighted Flowtime (MlV): 10.33
Avg. Weighted Inventory (ilowtime + Zarliness): 10.42
CPU time: 0.067 seconds

Figure 7, concluded

23

RI~R i0

II I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 tme

Job, • job,

job, " job4

FIgure 8: Gantt chart of the final schedule produced by Micro-Boss.

24

4. Reactive and Interactive Scheduling in Micro-Boss
Manufacturing is a process often fraught with contingencies and subject to a multitude of

constraints and preferences that are not always easily amenable to representation in a computer
model.

Operation durations tend to vary, machines break down, raw materials fail to arrive on time,
new customer orders arrive, others get cancelled, etc. Many ad hoc constraints and preferences
that vary over time, such as the preference of a worker on a specific day to perform more
demanding tasks in the morning, might be best accounted for via interactive manipulation of the
schedule. This section briefly outlines reactive and interactive scheduling capabilities currently
under development in the Micro-Boss decision support system.

4.1. Reactive Scheduling and Control Issues
Small disruptions, such as minor deviations in operation durations, often do not warrant major

modifications to the schedule. However, as the effects of small disruptions accumulate or as
more severe disruptions occur, such as long machine breakdowns, it is sometimes desirable to
reoptimize the schedule from a more global perspective. Accordingly, in Micro-Boss, schedule
disruptions can be handled at two levels based on their severity and the required response time:

1. Control level: Small disruptions that require fast responses are handled by simple
control heuristics such as "process the operation with the earliest scheduled start

time first" or "when a machine is down, reroute critical jobs to equivalent

machines, if any."

2. Scheduling level: In the face of more severe deviations from the schedule, the
control level calls upon the Micro-Boss scheduling module to repair/reoptimize the
schedule from a more global perspective, while possibly continuing to attend to
immediate decisions.

Determining when disruptions should be handed over to the scheduling level can be tricky.
Decisions at the control level tend to be rather fast because they are based on local heuristics
with a very restricted view of the problem. Decisions at the scheduling level tend to produce
better repairs but take longer because they are based on more global considerations. There is
generally a trade-off between the responsiveness of the overall system and the amount of
reoptimization that can be performed. In manufacturing environments where disruptions are
very frequent, a large number of disruptions might need to be handled at the control level,
whereas, in less chaotic environments, a larger proportion of disruptions might be processed at
the scheduling level. A similar two-tier approach to handling schedule disruptions was first
proposed by Smith et al. [36]. Within this approach, the scheduling level restricts the set of
alternatives to be considered at the control level by imposing a legal temporal window of
execution on each operation. If the controller cannot respect an operation's window of execution,
it has to request a new schedule (and a new set of execution windows) from the schbduler. One

25

objective of ongoing research in reactive scheduling and control within Micro-Boss is to assess
the merits of different coordination regimes between the scheduling and control levels.

Schedule repair in Micro-Boss differs from recent approaches that emphasized the use of
iterative repair heuristics [37, 20,44]. In the process of resolving schedule conflicts, iterative
repair heuristics are allowed to introduce new conflicts, which, in turn, require more repairs.
This iterative behavior can sometimes lead to myopic decisions and can potentially become
expensive. In contrast to these approaches, schedule repair in Micro-Boss attempts to take a
more global view of the repair problem and capitalize on the strengths of the micro-opportunistic
search procedures in the system. Concretely, schedule repair in Micro-Boss is performed in two
phases: (1) a set of operations that need to be rescheduled is identified and all the operations in
this set are unscheduled, and (2) the scheduling problem consisting of all these unscheduled
operations and the constraints imposed on them by operations that have already been executed or
have not been unscheduled is passed to the micro-opportunistic scheduling module described in
the previous sections. The set of operations unscheduled in the first phase is selected in such a
way that the resulting scheduling problem (i.e., the one solved in phase 2) generally admits a
solution. In the event that a feasible schedule could not be built in phase 2, the system needs to
return to phase 1 and undo a larger number of operations. In practice, this situation can generally
be avoided by unscheduling slightly more operations than apparently required. Although the
resulting search space is slightly larger and, hence, might require longer to be explored, it might
also contain better repair solutions. Details on conflict propagation heuristics used in Micro-
Boss to determine which (and how many) operations to reschedule in the presence of
contingencies such as machine breakdowns can be found in [32116.

4.2. Interactive Scheduling with Micro-Boss
Although the combinatorial complexity of factory scheduling problems is best handled by

automatic scheduling procedures such as the ones described earlier in this paper, ad hoc
scheduling constraints and preferences that occur very infrequently or change over time are often
best accounted for through interactive manipulation of the schedule. Interactive user support
should also include mechanisms that help the user identify sources of inefficiency in the
schedule (e.g., tardy orders, overloaded resources, etc.) and ways of correcting these
inefficiencies (e.g., adding overtime on a set of resources, rerouting some orders, etc.). Through
interaction with the system, the user should be able to explore "what-if' scenarios and weigh
different alternatives (e.g., decide whether to complete some jobs past their due dates or work
overtime).

The Micro-Boss decision support system enables the end-user to interleave both manual and

16For particularly severe schedule disruptions such as the breakdown of a bottleneck machine over a long time
period, we are also considering rescheduling techniques that subdivide the scheduling horizon and only reschedule
those operations that are expected to fall within the near future while overlooking conflicts with operations whose
execution is expected to take place later.

26

automatic (micro-opportunistic) scheduling decisions, analyze, edit, save, and compare complete
and partial schedules.

Interactive schedule manipulation is performed using an interactive Gantt chart that displays
each resource along with the operations to which that resource has been allocated over time
(Figure 9). Schedule manipulation is performed under the supervision of the Micro-Boss
consistency enforcing module, which enforces consistency with earlier scheduling decisions
(manual and automatic). Partial or complete schedules can be saved and compared against each
other along different metrics, including total schedule cost, average weighted tardiness, average
weighted earliness, Work-In-Process and Work-In-System (which accounts for both Work-In-
Process inventory and finished goods inventoryJ. Optimistic estimates are used for partial
schedules for which these metrics cannot be computed exactly. By interleaving both manual and
automatic scheduling decisions and saving/restoring partial and complete schedules, the user can
compare the impact of alternative scheduling decisions and perform "what-if" analyses.

Figure 9 shows a typical view of the Micro-Boss user interface. In this example, the user is
getting ready to modify the working schedule displayed in the Gantt chart, by manually
unscheduling an operation on which he/she just clicked. Statistics for the working schedule are
compared with statistics for the "current" schedule, namely, the schedule currently in force in the
system. These statistics are continuously updated as the user edits the schedule. In another
window, the user can check information about specific orders (order2 in this example). In yet
another window, he/she has elected to rank orders based on their tardiness in the working
schedule. Alternative metrics to rank jobs or resources can be selected in the statistics menu
(e.g., cost, tardiness, flowtime, resource utilization, etc.). By clicking on boxes displayed in the
Gantt chart, the user can directly obtain information on specific operations (e.g., information on
operation milling3l), manually unschedule and reschedule operations (by moving the
corresponding box in the Gantt chart), unschedule jobs, or highlight a job by changing its color.
The Gantt menu also allows for zooming in and out of the Gantt chart, unscheduling specific
resource/time intervals, displaying contention measures over time for different resources, etc.

27

k IK# i u tai M.& Ci". 941;14 G.i ,Noas J.Idt 6465 6-t 0(2 - j
•:Uei M~ot-o. "lot- C"l) -064-b- 1 .I

GI G. L.99M291U - -

NbILS IEIKtO IIMH)I' II Uadi b-

cot ot Sic ioom dt/sm i 4413 • a." 4 INl h_.)r
OW /31 13.00 I1/ I P b-.

Fgr9:TheMcoBs sritraealw o interctiv I1manipuato

oo b- 0" 1UInqI~t2I Cost 3t 66l) 7) to b-iw
bwmaow Stt ",M 1.0 It .401747 b- I S.1%

oicahe1dule-s•. Byint0 Pl ea11ving both mu• a a Ia toic b h

decisitons.s.avi g a c a alternaivsceles, te ur cn e

tS• Nt~ IINmodel.e

gi 1~ Bost 003 1 4, o i 1. io I God 481114 1 00% 1 1 43 • ,1 11 •

z ~ 1W1dLM&A 0.4 I I I ,
ItMJP Stct SO MW ' i I i I

I I ---" "I
. I I

decisonssavin andcompaing lterative schdulsthen userc asil

model.l 1,0

28

5. Performance Evaluation
Experimental studies performed with an initial version of Micro-Boss implemented using

Knowledge CraftTm were reported in [30]. These experiments studied the performance of the
system under a variety of scheduling conditions and different cost assumptions 17. They included
comparisons with combinations of popular priority dispatch rules and release policies advocated
in the Operations Research literature, comparisons with coarser bottleneck-centered approaches
to scheduling described in the Artificial Intelligence literature and a comparison with a variation
of Micro-Boss in which resource contention was measured using unbiased demand profiles.

In this paper, we report the results of a similar study performed on the same set of scheduling
problems with a more recent version of the system written in C++. At the present time (January
1994), the new version of Micro-Boss is two orders of magnitude faster than the version
described in [30] on this set of problems, mainly because of the C++ reimplementation and the
use of rough demand profiles to identify small areas of high contention over which more detailed
profiles are then constructed (see section 2.4). The new system also uses a more powerful
consistency enforcing procedure (See Subsection 2.2) than the original version, which almost
eliminates the need for backtracking on the experiments reported in this paper. Finally, the new
system also produces schedules that are significantly better than those obtained with the earlier
version. This improvement in schedule quality is mainly attributed to the use of a more accurate
set of propagation heuristics to update the best remaining start time(s) of unscheduled operations
during construction of the schedule and the use of a stronger bias in the construction of demand
profiles.

Problem Sets

Problem Number of Avg. Due Date
Set Bottlenecks Due Date Range
1 1 loose wide

2 1 loose narrow

3 1 tight wide

4 1 tight narrow

5 2 loose wide

6 2 loose narrow
7 2 tight wide

8 2 tight narrow

Table 2: Characteristics of the eight problem sets.

The results reported below were obtained on a suite of 80 scheduling problems. The suite,

'7 Knowledge Craft is a registered trademark of Carnegie Group.

29

which is described in detail in [30], consists of eight sets of scheduling problems obtained by
adjusting three parameters to cover a wide range of scheduling conditions. The three parameters
are the following: an average due date parameter (tight versus loose average due date), a due
date range parameter (narrow versus wide range of due dates), and a parameter controlling the
number of major bottlenecks (in this case one or two). For each parameter combination, a set of
10 scheduling problems was randomly generated (see Table 2), thereby resulting in a total of 80
scheduling problems (10 problems x 2 average due date values x 2 due date ranges x 2
bottleneck configurations). Each problem requires scheduling 20 jobs on 5 resources for a total
of 100 operations. Marginal tardiness costs in these problems were set to be, on the average, five
times larger than marginal inventory costs to model a situation where tardiness costs dominate
but inventory costs are non-negligible18.

Micro-Boss required between 10 and 15 CPU seconds to schedule each problem on a
DECstationTM 5000/200. Nearly all problems were solved without any backtracking.

1. Comparison Against Combinations of Priority Dispatch Rules and Release Policies.

1400-

12000

10000-

SII] mto S9 cuimimdwUispstci

mt~ ~ idm. -
46000-

2000-

0-:
1 2 3 4 5 6 7 a

ftedmm s

Figure 10: Comparison of Micro-Boss and the best of 39 combinations of priority
dispatch rules and release policies under 8 different scheduling
conditions (10 problems were generated under each condition).

In a first set of experiments, Micro-Boss was compared with the best of a set of 39
combinations of popular priority dispatch rules and release policies. The priority dispatch rules
used in these experiments were of two types:

1. a set of five priority dispatch rules that have been reported to be particularly good

"1 8Experiments under different cost assumptions were also reported in [30].

30

at reducing tardiness under various scheduling conditions [39]: the Weighted

Shortest Processing Time (WSPT) rule; the Earliest Due Date (EDD) rule; the

Slack per Remaining Processing Time (S/RPT) rule; and two parametric rules, the
Weighted Cost OVER Time (WCOVERT) rule and the Apparent Tardiness Cost

(ATC) rule.

2. an exponential version of the parametric early/tardy dispatch rule recently
developed by Ow and Morton [26,21] and referred to below as EXP-ET. This rule

differs from the other five in that it can explicitly account for both tardiness and
inventory costs.

EXP-ET was successively run in combination with an immediate release policy (IM-REL) that
allows each job to be released immediately and with an intrinsic release policy that only releases
jobs when their priorities become positive, as suggested in [21]. The other five dispatch rules
were successively run in combination with two release policies: an immediate release policy
(IM-REL) and the Average Queue Time release policy (AQT) described in [21]. AQT is a
parametric release policy that estimates queuing time as a multiple of the average job duration
(the look-ahead parameter serving as the multiple). A job's release date is determined by
offsetting the job's due date by the sum of its total duration and its estimated queuing time.
Combinations of release policies and dispatch rules with a look-ahead parameter were
successively run with four different parameter values that generally appeared to produce the best
schedules. By combining these different dispatch rules, release policies, and parameter settings a
total of 39 heuristics 19 was obtained. On each problem, the best of the 39 schedules produced by
these heuristics was compared with the schedule obtained by Micro-Boss. Among the 39
scheduling heuristics (i.e., excluding Micro-Boss), each of the 6 dispatch rules (WSPT, EDD,
S/RPT, WCOVERT, ATC and EXP-ET) and each of the 3 release policies (IM-REL, AQT and
EXP-ET's intrinsic release policy) performed best on at least one problem out of the 80 and 12
combinations out of the 39 performed best on at least 1 problem.

Figure 10 compares the average cost of the schedules produced by Micro-Boss with the
average cost obtained by the best of the 39 combinations of dispatch rules and release policies on
each problem set. Schedule cost was computed as the sum of tardiness and inventory costs, as
specified in Equation (3). The results indicate that Micro-Boss consistently outperformed the
combination of 39 heuristics under all eight conditions of the study. Overall Micro-Boss yielded
reductions of 20% in schedule cost over the 39 heuristics. A more detailed analysis indicates that
this reduction in schedule cost corresponds to a reduction of about 20% in tardiness costs and

19The 39 combinations were as follows: EXP-ET and its intrinsic release policy (times four parameter settings),

EXP-ET/IM-REL (times four parameter settings), EDD/AQT (times four parameter settings), EDDIIM-REL,
WSPT/AQT (times four parameter settings), WSPTIIM-REL, S/RPT/AQT (times four parameter settings),
S/RPT/IM-REL, WCOVERT/IM-REL (times four parameter settings), WCOVERT/AQT (times four parameter
settings), ATC/IM-REL (times four parameter settings), and ATCIAQT (times four parameter settings).

31

about 23% in inventory costs (combined work-in-process and finished goods inventory costs).

5.2. Comparison Against Coarser Opportunistic Scheduling Procedures
Micro-Boss was also compared with several coarser opportunistic schedulers that dynamically

combine a resource-centered perspective and a job-centered perspective, such as in the OPIS
scheduling system [24]. Although OPIS relies on a set of repair heuristics to recover from
inconsistencies [25], the macro-opportunistic schedulers of this study were built to use the same
consistency enforcing techniques and the same backtracking scheme as Micro-Boss 2°. The
macro-opportunistic schedulers also used the same demand profiles as Micro-Boss. When
average demand for the most critical resource/time interval was above some threshold level (a
parameter of the system that was empirically adjusted), the macro-opportunistic scheduler
focused on scheduling the operations requiring that resource/time interval; otherwise, it used a
job-centered perspective to identify a critical job and schedule some or all of the operations in
that job. Each time a resource/time interval or a portion of a job was scheduled, new demand
profiles were computed to decide which scheduling perspective to use next.

3OWOO

0-

1 2 3 4 s 6 7 U
PrObkmen Set

(Granularity. 4) (Grmanuarty ,z)

Figure 11: Comparison of Micro-Boss and two coarser opportunistic schedulers.

Figure 11 summarizes the results of a comparison between Micro-Boss21 and two macro-
opportunistic schedulers that differed in the number of operations that they were allowed to

20An alternative would have been to implement a variation of Micro-Boss using the same repair heuristics as
OPIS. Besides being time-consuming to implement, such a comparison would have been affected by the quality of
the specific repair heuristics currently implemented in the OPIS scheduler.

2 1These experiments as well as the ones presented in the next subsection were performed in 1993 with an earlier
version of Micro-Boss than the one used in the comparison with dispatch rules.

32

schedule at once in their resource-centered perspective (referred to below as the granularity of
the scheduler). The macro-opportunistic scheduler with granularity 4 was allowed to schedule as
many as 4 operations in its resource-centered perspective, after which it had to compute new
demand profiles and decide which subproblem (ob-centered or resource-centered) to focus on
next. The macro-opportunistic scheduler with granularity 8 was allowed to schedule at once as
many as 8 operations in its resource-centered perspective. The results in Figure 11 indicate not
only that Micro-Boss consistently produced better schedules than the two macro-opportunistic
schedulers but also that schedule performance degraded as the granularity of the macro-
opportunistic scheduler was increased, namely, as the search procedure became less flexible.
More detailed performance measures not presented here indicate that the reductions in schedule
cost achieved by Micro-Boss correspond to reductions in both tardiness and inventory costs.

Overall, these results strongly suggest that the additional flexibility of a micro-opportunistic
scheduling procedure over coarser opportunistic procedures generally yields important
improvements in schedule quality.

5.3. Evaluating the Impact of Using Biased Demand Profiles
A third set of experiments was carried out to test the effect of using biased demand profiles to

guide the micro-opportunistic scheduler. A variation of Micro-Boss using unbiased demand
profiles was run on the same set of 80 scheduling problems.

16000-

14000-/

S12000-
- 10000-,- • •

1 2 3 4 S 7 a

Problem Set

[]Micro-Boss (biased version) E Unbiased version

Figure 12: Comparison of the cost of the schedules produced by Micro-Boss
and a variation of the system that used unbiased demand profiles.

Figure 12 compares the average schedule costs obtained by both variations of Micro-Boss. In
7 out of the 8 scheduling situations of the study, biasing the demand profiles produced reductions

33

in schedule cost ranging from 3 to 22 percent, including an impressive 20 percent in the most
difficult scheduling situation (Problem Set 8 with two bottlenecks, a tight average due date and a
narrow range of due dates). In the one case (out of eight) where the unbiased version produced
better schedules, the biased version was only 5% worse. A more detailed analysis of the results
indicates that overall, the biased version of Micro-Boss performed 30% better with respect to
tardiness while incurring a slight increase of 0.6% in inventory costs. Altogether, biasing the
demand profiles reduced schedule costs by more than 15%. These results validate both the idea
of building biased demand profiles to guide the micro-opportunistic search procedure and the
particular technique used in Micro-Boss to operationalize this idea (namely, the use of the
mincost functions). In general, it should be possible to obtain even better results by varying the
bias according to specific problem characteristics. One could also consider fine-tuning the bias
during the construction of the schedule.

34

6. Concluding Remarks
Current computer solutions to production management such as the one implemented in

MRP/MRP-II systems are of limited help, because they rely on oversimplified models of the
plant and only provide weak feedback loops to update the production schedule during execution
(typically, complete updates of the schedule are only performed on a weekly basis). A major
challenge for researchers in production scheduling is to come up with new techniques that can
account more precisely for actual manufacturing objectives and constraints, including execution
contingencies such as machine breakdowns, new job arrivals, variations in processing times,
yields, etc. New production scheduling tools should also enable the user to interactively perform
"what-if' analysis and account for ad hoc constraints and/or preferences that are not easily
amenable to representation in the computer model.

In this paper, we presented Micro-Boss, a decision support system for factory scheduling.
Micro-Boss aims at combining powerful predictive, reactive, and interactive scheduling
capabilities. To this end, the system relies on a new micro-opportunistic search procedure that
enables it to continuously track the evolution of micro-bottlenecks (or conflicts) during the
construction or repair ,f the schedule and to refocus its optimization effort on those micro-
bottlenecks that appear most critical. This approach differs from earlier opportunistic
approaches [24, 6], because it does not require scheduling large resource subproblems or large
job subproblems before revising the current scheduling strategy. The results of an experimental
study comparing Micro-Boss with combinations of popular priority dispatch rules and release
policies advocated in the Operations Research literature as well as coarser opportunistic
scheduling approaches proposed in the Artificial Intelligence literature, suggest that the
flexibility of this new search procedure can often yield important improvements in schedule
quality. We find that because of their flexibility, micro-opportunistic scheduling procedures are
also particularly well suited for repairing schedules in the face of execution contingencies and
can easily be integrated in interactive decision support systems that enable the user to
incrementally manipulate and compare alternative schedules.

Although our work on Micro-Boss has focused on generalized versions of the job shop
scheduling problem, micro-opportunistic scheduling techniques have been applied to other
manufacturing problems and other classes of problems such as transportation scheduling.
Rautaruukki Oy, a large Finnish steel manufacturer, and researchers at the Helsinki University of
Technology have reported adapting an earlier version of our micro-opportunistic scheduling
heuristics to schedule a steel rolling mill [38]. Variations of the Micro-Boss scheduling
heuristics are also used in the Knowledge Based Logistics Planning Shell (KBLPS) developed by
Carnegie Group, Inc. (CGI) and LB&M Associates to solve U.S. army transportation scheduling
problems and ammunition distribution planning problems [8, 5, 33]. Other efforts using
variations of the micro-opportunistic techniques developed in the context of Micro-Boss are
described in [4, 18, 28] and [431.

Current research efforts within our project aim at applying and extending the existing approach

35

to solve both manufacturing and transportation scheduling problems.

36

37

Acknowledgement
I want to thank Mark Fox for his help and support during the initial development of the

system. Special thanks to Bob Schnelbach for his help designing and implementing the Micro-
Boss user interface and reactive scheduling component and to Shinichi Otsuka for his help with
the C++ reimplementation of the system. Recent research efforts have also benefited from the
participation of Bryan Lewis, Gang Li, Yoichiro Nakakuki, Katia Sycara, Joe Toomey, Sam
Thangiah, and Yalin Xiong.

33

39

References
[1] J. Adams, E. Balas, and D. Zawack.

The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34(3):391-401, 1988.

[21 Kenneth R. Baker and Gary D. Scudder.
Sequencing with Earliness and Tardiness Penalties: A Review.
Operations Research 38(1):22-36, January-February, 1990.

[3] Bean, J.C.,J.R. Birge, J. Mittenthal, C.E. Noon.
Matchup Scheduling with Multiple Resources, Release Dates and Disruptions.
Operations Research 39(3):470-483, May-June, 1991.

[4] Pauline M. Berry.
The PCP: A Predictive Model for Sartising Conflicting Objectives in Scheduling

Problems.
Technical Report, Centre Universitaire d'Informatique, Universite de Geneve, 12, Rue du

Lac, CH-1207, Geneva, Switzerland, 1991.

[5] Camden, R., Dunmire, C., Goyal, R., SathiN., Elm, B., and Fox, M.
Distribution Planning: An Integration of Constraint Satisfaction and Heuristic Search

Techniques.
In Proceedings of the Conference on Al Applications in Military Logistics. 1990.

[6] A. Collinot, C. Le Pape and G. Pinoteau.
SONIA: a Knowledge-based Scheduling System.
International J, larnal of Artificial Intelligence in Engineering 2(4):86-94, 1988.

[7] S. Dauzere-Peres and J.B. Lasserre.
A Modified Shifting Bottleneck Procedure for Job Shop Scheduling.
Technical Report LAAS 90106, Laboratoire d'Automatique et d'Analyse des Systemes,

7, Av. du Colonel Roche, 31077 Toulouse Cedex, France, 1990.

[8] Dunmire, C., SathiN., Goyal, R., Fox, M., and Kott, A.
Ammunition Inventory Planning: An Integration of Configuration and Resource

Allocation Techniques.
In Proceedings of the Conference on Al Applications in Military Logistics. 1990.

[9] Mark S. Fox.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Department of Computer Science, Carnegie-Mellon University, 1983.

[101 R.E. Fox.
OPT: Leapfrogging the Japanese.
Just-in-time Manufacture.
In C.A. Voss,
IFS Ltd, Springer Verlag, 1987.

[111 S. French.
Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop.
Wiley, 1982.

40

[12] M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman and Co., 1979.

[13] Eliyahu M. Goldratt.
Optimized Production Timetable: Beyond MRP: Something Better is finally Here.
October, 1980
Speech to APICS National Conference.

[14] Graves, S.C.
A Review of Production Scheduling.
Operations Research 29(4):646-675, July-August, 1981.

[15] F. Robert Jacobs.
OPT Uncovered: Many Production Planning And Scheduling Concepts Can Be Applied

With Or Without The Software.
Industrial Engineering 16(10):32-41, October, 1984.

[16] Claude Le Pape and Stephen F. Smith.
Management of Temporal Constraints for Factory Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA

15-213, 1987.
also appeared in Proc. Working Conference on Temporal Aspects in Information

Systems, Sponsored by AFCET and IFIP Technical Committee TC8, North Holland
Publishers, Paris, France, May 1987.

[17] Gang Li and Norman Sadeh.
Single-Machine Early/Tardy Scheduling Problem with Setups: A Hybrid Heuristic

Approach.
Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,

1993.
Working paper. Presented at the Joint National ORSA/TIMS meeting held in San

Francisco, November 1-4, 1992.

[18] Theodore A. Linden.
Preference-Directed, Cooperative Resource Allocation and Scheduling.
Technical Report, Advanced Decision Systems, 1500 Plymouth St., Mountain View, CA

94043, September, 1991.

[19] A.K. Mackworth and E.C. Freuder.
The Complexity of some Polynomial Network Consistency Algorithms for Constraint

Satisfaction Problems.
Artificial Intelligence 25(1):65-74, 1985.

[20] S. Minton, M.D. Johnston, A.B. Philips, P. Laird.
Solving Large-Scale Constraint Satisfaction and Scheduling Problems Using a Heuristic

Repair Method.
In Proceedings of the Eighth National Conference on Artificial Intelligence, pages 17-24.

1990.

[21] T.E. Morton, S.R. Lawrence, S. Rajagopolan, S Kekre.
SCHED-STAR: A Price-Based Shop Scheduling Module.
Journal of Manufacturing and Operations Management :131-181, 1988.

41

[221 Joseph Orlicky.
Material Requirements Planning.
McGraw Hill, New York, 1975.

[23] Peng Si Ow.
Focused Scheduling in Proportionate Flowshops.
Management Science 31(7):852-869, 1985.

(241 Peng Si Ow and Stephen F. Smith.
Viewing Scheduling as an Opportunistic Problem-Solving Process.
Annals of Operations Research 12:85-108, 1988.

[25] P.S. Ow, S.F. Smith, and A. Thiriez.
Reactive Plan Revision.
In Proceedings of the Seventh National Conference on Artificial Intelligence, pages

77-82. 1988.

[261 Peng Si Ow and Thomas Morton.
The Single Machine Early/Tardy Problem.
Management Science 35(2):177-191, 1989.

[27] S.S. Panwalkar and Wafik Iskander.
A Survey of Scheduling Rules.
Operations Research 25(l):45-61, January-February, 1977.

[28] Paolucci, E., Patriarca, E., Sem, M., and Gini G.
Predit: A Temporal Predictive Framework for Scheduling Systems.
In Proceedings of the AAAI Spring Symposium on Practical Approaches to Scheduling

and Planning, pages 150-154. 1992.

[29] N. Sadeh and M.S. Fox.
Variable and Value Ordering Heuristics for Hard Constraint Satisfaction Problems: an

Application to Job Shop Scheduling.
Technical Report CMU-RI-TR-91-23, The Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA 15213, 1991.
Submitted to the Artificial Intelligence Journal.

[30] Norman Sadeh.
Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling.
PhD thesis, School of Computer Science, Carnegie Mellon University, March, 1991.

[31] Norman Sadeh, Katia Sycara, and Yalin Xiong.
Backtracking Techniques for Hard Scheduling Problems.
Technical Report CMU-RI-TR-92-06, The Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA 15213, 1992.
Submitted to the Artificial Intelligence Journal.

[32] Sadeh, N.M., S. Otsuka, and R. Schnelbach.
Predictive and Reactive Scheduling with the Micro-Boss Prodttion Scheduling and

Control System.
In Proceedings of the IJCAI-93 Workshop on Knowledge-based Production Planning,

Scheduling, and Control. Chambery, France, August, 1993.

42

[33] Victor Saks, Al Kepner, and Ivan Johnson.
Knowledge Based Distribution Planning.
Technical Report, Carnegie Group, Inc., 5 PPG Place, Pittsburgh, PA 15222, 1992.

[34] P. Serafini, W. Ukovich, H. Kirchner, F. Giardina, and F. Tiozzo.
Job-shop scheduling: a case study.
Operations Research Models in FMS.
In F. Archetti, M. Lucertini, and P. Serafini,
Springer, Vienna, 1988.

[35] S. Smith, M. Fox, and P.S. Ow.
Constructing and Maintaining Detailed Production Plans: Investigations into the

Development of Knowledge-Based Factory Scheduling Systems.
Al Magazine 7(4):45-61, Fall, 1986.

[36] Smith, S.F., N. Keng, and K. Kempf.
Exploiting Local Flexibility During Execution of Pre-Computed Schedules.
Technical Report CMU-TR-RI-90-13, The Robotics Institute, Carnegie Mellon

Univeristy, June, 1990.

[37] Stephen F. Smith, Peng Si Ow, Nicola Muscettola, Jean-Yves Potvin, Dirk Matthys.
An Integrated Framework for Generating and Revising Factory Schedules.
Journal of the Operational Research Society 41(6):539-552, 1990.

[38] Seppo Torma, Ora Lassila and Markku Syrijanen.
Adapting the Activity-Based Scheduling Method to Steel Rolling.
In G. Doumeingts, J. Browne, and M Tomljanovich (editor), Proceedings of the Fourth

IFIP Conference on Computer Applications in Production and Engineering
(CAPE'91), pages 159-166. Elsevier Science Publishers B.V. (North Holland), 1991.

[39] Ari P.J. Vepsalainen and Thomas E. Morton.
Priority Rules for Job Shops with Weighted Tardiness Costs.
Management Science 33(8): 1035-1047, 1987.

[40] Thomas Vollmann, William Berry, and Clay Whybark.
Manufacturing Planning and Control.
Dow Jones-Irwin, Homewood, IL, 1988.
Second Edition.

[41] Oliver Wight.
MRP II: Unlocking America's Productivity Potential.
Oliver Wight Limited Publications, Williston, VT, 1981.

[42] Oliver Wight.
Manufacturing Resource Planning: MRPII.
Oliver Wight Limited Publications, Essex Junction, VT, 1984.

[43] Andreas Winklhofer, Manfred Maierhofer, and Paul Levi.
Efficient Propagation and Computation of Prob!em Features for Activity-Based

Scheduling.
In Proceedings of the Seventh Symposium on Information Control Problems in

Manufacturing Technology (INCOM-92). Toronto, Canada, 1992.

43

[44] Monte Zweben, Eugene Davis, and Michael Deale.
Iterative Repair for Scheduling and Rescheduling.
Technical Report, NASA Ames Reserch Center, MS 244-17, Moffett Field, CA 94035,

1991.

44

. •- • ° • • • ,•" ': i •' m' , , • J . • m •• • " • t

