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1.0 INTRODUCTION

The purpose of this report is to discuss the optical resonator issues in the design of Ring Laser
Gyroscopes (RLGs) used for launch vehicle navigation applications. In the present work, we have
analyzed an optical ring resonator geometry that is typical of some existing commercial RLGs.
For a stable ring resonator, we have calculated parametrically the laser beam intensity distribu-
tions, longitudinal and transverse mode beat frequencies, and mirror alignment sensitivities. In
particular, we have analyzed the effect of vibration-induced, out-of-plane tilt of the ring resonator
mirrors in reducing the output power of an RLG due to laser beam occlusion by the mode con-
trol aperture(s).

We performed a geometric optics analysis of an RLG resonator and determined the change in
position of the optical axis due to an angular tilt of one of the cavity mirrors. For small tilt
angles, the stable cavity transverse mode retains a Gaussian intensity distribution. From the calcu-
lated transverse displacement of the optic axis, we have computed the reduction in the RLG out-
put power due to occlusion by the mode control aperture(s) as a function of mirror tilt angle.
The reduction in output power was then related to vibration-induced tilt effects due to bending of
the resonator structure.
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2.0 THEORY

A typical three-mirnor resonator design for an RLG is shown in Figure 1. The resonator consists
of two flat mirrors (FM 1 and FM2) and a concave minror (CM) with a radius of curvature, R. The
distance between the minror, CM, and either flat is L2 and between FMI and FM2 is L1 . The
angle of incidence on the CM is A, and typically has a large value (200 to 300). This large angle
of incidence on the CM implies that the resonator is astigmatic, with two effective concave radii of
curvatures, RX and R . Figure 2 shows the theoretical variation of Rx/R and Rv/R with angle of
incidence A.. These radii are parallel and perpendicular to the plane of incidence (resonator
plane), respectively. The resonator in Figure 1 has the equivalent lens sequence shown in Figure
3, where the reference plane corresponds to the position of the CM. The ABCD matrix for one
resonator round trip through the lens sequence in Figure 3 is given by 1,2

Radius, R

L1 L,

Gaussi
Mods Control Mlods

Apertures

Beam Waist

12%FM1 I  FM2

Figure 1. Three-mirror ring laser gyro resonator geometry.
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Figure 2. Mirror radii for astigmatic ring resonator.
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Figure 3. Equivalent lens sequence for ring laser gyro resonator.
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1 2(L1 + 2L2) (LI + 21, 2) ]iJ
C D -2/R1

where the ABCD matrix relates the position (r) and slope (') of an arbitrary paraxial ray that
traverses the optical train.

(rg (C AB (ro

The ABCD matrix predicts the resonator stability properties, the beam spatial intensity distribution,
the radius of curvature of the wavefront, the cavity longitudinal and transverse mode frequencies,
and the alignment sensitivity of the cavity mirrors. The resonator stability is given by m = (A + D)/2
= [1 - (L1 + 2L2 )/R], where m = 1 is the boundary of stability. If Iml is less than 1, an off-axis
paraxial ray launched within the aligned stable ring resonator will follow a bounded (low diffraction
loss), sinusoidal path within the equivalent lens sequence. 2 If Iml is greater than 1, the resonator is
unstable and an off-axis paraxial ray will walk out (large diffraction loss) of the equivalent lens
sequence. A low-loss, stable ring resonator design is required for a conventional RLG.

2.1 BEAM WAIST DIMENSIONS

The TEMo mode pattern inside a stable ring resonator is a Gaussian intensity distribution with a
beam half-width (at the position of the CM in Figure 2) given by1 ,2

w2=2- [4 - (A+

in terms of the ABCD matrix parameters. From the Gaussian beam relation,

the beam waist, wo, (halfway between FMI and FM2) can be calculated in terms of the cavity
parameters, Li , L2 , mirror radius R, and wavelength ). as
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? 1/2IR
wo = (ZTR -, - I A

where Lr = L1 + 2L 2. Using the relation

Wa=woi + b 2 1 /2
01 ,

where za = L1/2 + L2 - L,,, the beam half-width at the mode control apertures can be calculated.

Figure Al in the appendix shows the variation of the Gaussian beam waist parameter w/(gL/x)1/2
with the resonator parameter Lr/R. Thus, when the mirror radius, R, becomes large, the beam waist
becomes large for a fixed value of the ring resonator total length, Lr. Also plotted is the beam
half-width parameter (w /Wo) for various values of the aperture location parameter La/Lr, which
varies between 0 and 0.5, the latter corresponding to a single aperture at the beam waist. For
typical RLG geometries wa = wo to within about 5 percent

2.2 RESONATOR BEAT FREQUENCIES
The stable ring resonator longitudinal and transverse mode beat frequencies for typical RLG
designs are discussed in the appendix and shown in Figure A2. The astigmatic three-mirror
design in Figure I leads to transverse mode frequencies associated with the Rx and R mirror radii
as well as the difference frequency. These beat frequencies could be a source of noie in the
RLG output if they were within the bandpass of the detector/amplifier electronics. These beat
frequencies can be eliminated by using a mode control aperture within the resonator with a
diameter approximately equal to the Gaussian beam width. Reducing the diameter of the mode
control aperture for transverse mode control, on the other hand, will increase the alignment sensi-
tivity to resonator mirror tilt.

2.3 RESONATOR MIRROR ALIGNMENT SENSITIVITIES
The ray-matrix approach for the RLG resonator can be used to calculate the sensitivity to mis-
alignment of both the flat and concave resonator mirrors. One can calculate the radial posi-
tion (r) and slope (r') of the optical axis ray at the position of the mode selection aperture. The
analysis assumes a small angle (sinr' = r') or paraxial ray approximation. This approximation
only applies to rays with a small angle of incidence on the concave resonator mirror, i.e., tilt
angles perpendicular to the resonator plane (y direction). Note that for typical RLG resonator
designs, Ai = 200 to 300, and the paraxial approximation does not apply for tilt angles within the
resonator plane (x direction). Thus, for the present analysis, only the mirror radius of curvature,
Ry, will be used to calculate the tilt sensitivity within the paraxial approximation.

We use the approach given by A. Schnu&" to calculate the alignment sensitivity of the RLG res-
onator. Let rf denote the ray position on the aperture after one round trip through the lens
sequence in Figure 2 starting at position ro. Let ri denote the ray position on FM2 tilted by an
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angle 0 in a direction perpendicular to the resonator plane. If the FM2 flat RLG resonator mirror
is tilted, the ray matrix equation relating rf to ri is given by:

The matrix equation relating ri to ro is given by:

ri )=( 1L)(1  L2 ) (1 0 )(ro)
r'i 01 0 1 -L 1 ro

Ry

These two equations, plus the condition that the optical axis ray self-replicates after one round
trip, (i.e., r = ro, and r'f = r' ) yield a solution for the FM2 tilt sensitivity. The solution at the
position ofth mode control apertures al and a2 is:

ral = [Ry - 2(L1 + L2)La/(LI + 2L 2)]O

r'al = 20(L1 + L2)I(L 1 + 2L2)

r2 = (Ry - 2(L1 + L2)(L2 + La)/(LI + 2L2) + 2La]e

r'a2 = -20[l1 - (L1 + L2)/(L1 + 2L2)].

In a similar manner, the solution for the CM tilt sensitivity can be obtained. The result is r =

R ., and e'a, = r' = 0. Thus, tilting the CM translates the optical axis in a direction parallelto its
initial direcon. I should be noted that tilting FM2 produces a different displacement of the
optical axis at apertures 1 and 2. This difference is small, however, for typical resonator design
parameters (-2%), and the largest displacement occurs at aperture I. It can be shown that an
optical axis displacement of r = R 0 is a reasonable approximation (to within 10%) for tilting
either the concave or a flat mirror f a typical RLG resonator.
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2.4 RLG POWER SENSITIVITY TO VIBRATION

Now that the RLG resonator alignment sensitivity characteristics have been determined, the effect
of vibration on output power due to occlusion by the mode control aperture can be studied. A
calculation was made of the variation in power transmitted through a circular aperture due to a
transverse translation of a Gaussian laser beam4 . This result is shown in Figure A3, where the
transmitted power is plotted as a function of beam translation, ra, for various values of Da/(2wa),

assuming either one or two mode control apertures. Two apertures imply approximately twice as
much loss as for a single aperture for a given translation. Figure A3 also shows how decreasing
the aperture radius compared to the beam half-width increases the power loss due to translation. A
procedure is discussed in the appendix that uses Figures 2, Al, and A3 to calculate the power loss
versus mirror tilt angle due to occlusion of the laser beam by the mode control apertures for the
three mirror RLG resonator design in Figure 1 with arbitrary parameters, L1, L2 , La, Da, R, and Ai.

The variation in resonator output power versus resonator mirror tilt for four typical RLG res-
onator designs is shown in Figure 4. A critical angle is defined as the tilt angle required to reduce
the output power by 20 percent. A vertical line of 50 microradians defines the maximum
expected mirror tilt due to flexure of the resonator structure (e.g., Zerodur material) for a 40g
acceleration. 5,6 This is the maximum acceleration expected due to random vibrations that could
occur in a launch vehicle such as an Atlas IH or Titan IV. Design numbers 2, 3, and 4 correspond
to some typical RLG designs, and design number I corresponds to a hypothetical resonator where
significant power degradation due to tilt is expected. Thus, designs 1 and 2 are approximately 14
and 4 times, respectively, more sensitive to tilt than design 4. The most important parameters
determining tilt sensitivity for a specific laser wavelength are R, Lr, and Da. Critical angles for the
three typical RLG designs vary between 140 and 470 microradians. Design number 2, which is
the most sensitive to misalignment of these three designs, is still about a factor of 3 from the
flexure limit.
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DESIGN # RLG RESONATOR DESIGNS, X = 0.6328 I

1 Lr = 15 cm, R = 5 m, Ai = 300 , Da = 0.66 mm, wa = 0.33 mm, I APERTURE

2 Lr = 32 cm, R = 5 m, Ai = 250 , Da = 2.16 mm, wa = 0.43 mm, 2 APERTURE

3 Lr= 15 cm, R = I m, Ai = 300 , Da = 1.10 mm, wa = 0.22 mm, APERTURE

4 Lr = 32 cm, R = I m, Ai = 250, Da = 1.42 mm, wa = 0.28 mm, 2 APERTURE

1.01 11 1 1 1 1
LOW

*,\SENSITIVITY
0.8 -

HIGH
0.6 SENSITIVITY

0~ CRITICAL
ANGLE

0.4
#3 #4

#1 #20.2
MAXIMUM FLEXURE OF RESONATOR
DUE TO VIBRATION

0 - I I I I I
0 100 200 300 400 500 600

0 (grad)

Figure 4. Power loss vs resonator mirror tilt angle due to occlusion by mode
control aperture(s).
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3.0 CONCLUSIONS

In conclusion, we have developed a theoretical model of a three-mirror stable ring resonator con-
sisting of a concave mirror and two flat mirrors applicable to ring laser gyros. This model
determines the Gaussian beam sizes, the longitudinal and transverse mode frequencies, and the
sensitivity of laser power loss due to occlusion of a mode control aperture by misaligning the res-
onator mirrors. A geometric optics approach employing ABCD ray matrices was used to calcu-
late the effects of misalignment within the paraxial approximation. A calculation procedure was
developed to compare alignment stability of various three-mirror RLG resonator designs. Critical
cavity mirror tilt angles were calculated for four RLG resonator designs that reduced the laser
power by 20 percent due to mode control aperture occlusion. In addition, the analysis can
determine the sensitivity of a given resonator design to the random vibrations within a launch
vehicle environment. Typical critical angles of 140 to 470 microradians indicate that resonator
block flexure induced by random vibrations (as high as 40g's) is not sufficient to cause a signifi-
cant variation in laser power. We are curently developing a non-paraxial analysis of tilt effects
within the resonator plane (x direction).
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APPENDIX

BEAM WAIST DIMENSIONS

Figure Al is a plot of the beam waist half-width and the half-width at the mode control apertures
as a function of L1AR and La/Lr, respectively (Equations 1 and 2). This plot is required to calcu-
late the power loss due to resonator mirror tilt as discussed below.

RESONATOR BEAT FREQUENCIES
The formula for the longitudinal and transverse mode frequencies of the RLG stable ring res-
onator is given by7

v/vo = q + -L cos-1 (1- Lr/Ryn + -)+ I-cos-1(l- Lr/Rx(m + -)

where q, m, and n are integers.

The longitudinal mode frequency spacing is therefore vo = c/Lr. The longitudinal and transverse
mode frequency spacings are shown in Figure A2 as a function of CM radius of curvature, Rx or
Ry, for two different cavity lengths, Lr, appropriate for typical RLG resonator geometries. It
should be noted that mirror radii Rx and R due to astigmatism will produce two different trans-
verse-mode frequencies, v and v , as wel as the difference frequency v - v in the laser output
beam. For example if A.= 30*, IZ= 5 m, L = 30 cm, then from Figure =, R - 4.33 m, R
5.77 m, vx = 60 MHz, v = 52 MHz, and v - v = 8 MHz. The 8-MHz beat frequency could
be a source of noise in the laser detector output. These beat frequencies will appear in the laser
detector output signal if the mode control aperture is not small enough (Da = 2w o) to ensure
Gaussian TEMo00 mode operation.

RLG POWER SENSITIVITY TO CAVITY MIRROR TILT

Figure A3 is a plot of the variation of the power (P/Po) transmitted through a circular aperture
due to the transverse translation (ra) of a Gaussian laser beam.4 The curves are plotted for various
values of the parameter Da/( 2Wa), assuming either one or two apertures. Figures 2, Al, and A3
were used to generate Figure 4.

The calculation procedure is illustrated for the specific example of design No. 2 in Figure 4.
Consider a typical RLG resonator design where L = 32 cm, X = 0.6328 microns, R = 5 m, A. =

250, and two apertures with L/L = 0.09. From Figure 2, R = 5.5 m. The beam waist is deter-
mined from Figure Al for LA - 0.058 as wol(XL/x)1/2 11.68, which yields w,= 0.427 mm
and wa = 0.433 mm. We can now determine a critical tilt angle to reduce the RL8 power by 20%
from Figure A3. Assume DaI(2 wa) = 2.5, which implies an aperture diameter, D, of 2.16 mm.
From Figure A3 this gives 2 ra/Da = 0.73 for two apertures. r is approximately equal to R 0 for
either the concave or flat mirrors. This implies a critical tilt angle of 0 = (2ra/Da)Da/(2Ry) y 143
microradians to produce a 20% power reduction.
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