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3 ABSTRACT

FIRST PRINCIPLES INVESTIGATION OF THE

3 Ir-Zr-Nb TERNARY SYSTEM

by

UGregory Allen MillerU
Supervising Professor: Dr. Juan M. SanchezI

I

Alloy design could benefit greatly from a systematic approach that combines

current empirical practices with the predictive capabilities of computer modeling such

as first principles based methods. At this point in time, realization of such an aid to

I alloy design requires the investigation of alloying systems based on first principles

* approaches to determine ultimate limitations and gauge the merits of this type of

predictive method. The following study begins an investigation of the Ir-Zr-Nb

ternary system based on combining first principles total energy calculations with a

statistical mechanics description of solids.

3 The Ir-Zr-Nb ternary system was initially chosen for the two highly ordered

binary systems, Ir-Zr and Ir-Nb, and, more specifically, for coordinating with

experimental work on the k 3Zrl 1 Nb x system. The two main contributions of this

3 study include compiling a database of first principles data for fcc- and bcc-based

compounds for the Ir-Zr-Nb ternary system, and calculating the Ir-Zr-Nb fcc

3 metastable ternary phase diagram.

I
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First principles total energy calculations were performed using the linearized

muffin-tin orbital (LMTO) method in the atomic sphere approximation (ASA). The

database includes LMTO-ASA total energies and subsequent curve fitting parameters

for fifteen fcc-based compounds and twenty-one bcc-based compounds. Results of

calculations compared well with all experimental data found. Highlights include: i) I
correctly predicting the stability of Ir as fcc, Nb as bcc, IrZr as B2, IrNb as LI0 , lr 3Zr

as Li 2, and Ir3Nb as LI2, ii) a trend of increasing bulk moduli with content Nb for

Nb-Zr compounds, and iii) calculation of the formation energy of IrZr-B2 to within

4 %. Formation energies for fcc-based compounds were then combined with a

statistical mechanics model using the Cluster Variation Method (CVM) in the I
tetrahedron approximation for configurational entropies, and the cluster expansion of

Sanchez, Ducastelle, and Gratias for calculating free energies for the Ir-Zr-Nb fcc

metastable ternary phase diagram.

Results of ternary calculations include a single phase Ir3Zr (L12) and lr3Nb

(L12 ) region, the appearance of both the IrZr (L10) and IrNb (Li 0 ) ordered phases, I
and two miscibility gaps between two L12 phases and between two disordered phases.

The main conclusion of the phase diagram calculations is that serious improvement

will require combining the effects of bcc- and, possibly, hcp-based compounds with 3
those of the fcc-based compounds. U

I
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* Introduction
Intermetallic alloy design is still largely conducted by trial and error and alloy

I specific methods. This involves the addition of various alloying elements to tailor a

3 material to desired properties. The need exists for an intelligent and interactive alloy

design methodology to better guide time intensive experimental methods on new

intermetallic systems. An approach that combines predictive methods such as first

principles calculations with experimental work would allow for the development of

I such a design methodology. Currently, first principles methods have been developed

to the point of allowing the calculation of many properties of simple materials based

solely on input of atomic numbers, atomic masses and atomic positions in a given

3 crystalline structure. When combined with an accurate statistical mechanics theory, this

allows the finite temperature calculation of equilibrium and metastable phases. The

I computational approach to the determination of the thermodynamic properties of

materials is especially useful for cases where little or no experimental work exists, such

as multicomponent intermetallic systems. Here I present the results of a preliminary

3 investigation into the Ir-Zr-Nb system.

The Ir-Zr-Nb system was chosen with consideration for its high temperature

I stability. The future of high temperature superalloys requires finding suitably ductile

intermetallic systems with melting temperatures higher than the current generation of

nickel base superalloys (Tmelt - 1,385 °C). The Ir-Zr-Nb system contains several L12

3 phases with melting temperatures in excess of 2,200 *C. The two L12 compounds,

Ir3Nb and 1r3Zr, belong to a class known as Engel-Brewer intermetallics, which are

3 very stable transition metal compounds with high melting points. Intermetallics with

the LI 2 structure offer the possibility of enhanced ductility due to the large number of

i possible slip systems compared to more complex structures.3
I



Therefore, we have begun a systematic electronic structure and thermodynamic 3
study of stable and metastable compounds for the Ir-Zr-Nb ternary system. The goals

of this study include documenting a database of physical properties obtained using first

principles electronic structure calculations for compounds in the Ir-Zr-Nb ternary

system, and partial determination of the Ir-Zr-Nb ternary phase diagram. Thus, first I
principles electronic structure calculations have been carried out on thirty compounds I
and six pure elements based on fcc and bcc crystal structures. The results of these

calculations have been analyzed for trends and compared with experimental data to

confirm their overall accuracy. The total energies as calculated by first principles

methods were then incorporated into a free energy model to begin characterization of I
the Ir-Zr-Nb ternary phase diagram by calculation of the fcc metastable phase diagram.

The next two sections present the theoretical background used to obtain first

principles ground state properties and the free energy model used to investigate high 3
temperature stability. This is followed by a presentation of results, subsequent

conclusions, and recommendations for future work. I

2I
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* First Principles Calculations
In the last 30 years, first principles methods have progressed to become a

I reliable and accepted way of obtaining total energies of simple metals and ordered

intermetallic compounds. Common to several first principles techniques currently in

use are the Born-Oppenheimer approximation of separating the degrees of freedom of

nuclei and electrons, and the use of the local density approximation which reduces the

many body problem to the single-electron approximation. Various approaches include

I using large numbers of plane waves (e.g. augmented plane wave method), using a

minimum set of basis functions while assuming a shape for the potential (e.g. linearized

muffin-tin orbital method) and various combinations of these two. These techniques

have been successful in a wide range of applications regarding thermal and cohesive

properties of elemental transition metals [1], superconductivity [2], structural stability

I of elements and compounds [3], effects of ternary additions [4], elucidating empirical

theories [5] and modeling diatomic molecules [6]. Particularly important to the success

of first principles calculations is the acceptance of the local density approximation,

LDA, [7] of the density functional theory [8] of Hohenberg and Kohn, as an accurate

description of both small and extended systems. For more information on

I approximations used prior to the LDA and some LDA criticisms see reference [9].

Density functional theory states that the total energy of a system can be

expressed as a functional of the total charge density and, furthermore, that this energy

functional is minimized at the correct ground state charge density. In one formulation,

the energy functional can be cast in a form which separates the effects of the true

I
I3
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interacting system into components modeling the non-interacting electrons and the

effects of the interacting system. This energy functional includes three contributions,

which are all dependent on the charge density, n(r):

I
E(n) = T(n) + U(n) + E,(n) (1)

The first two terms in equation (1) contain energies based on a system of non-

interacting electrons while the last term accounts for effects due to exchange and

correlation. The first two terms are, respectively, the kinetic energy, T(n), of a system

of non-interacting particles of charge density n(r), and the potential energy, U(n), due

to contributions from the interaction of n(r) with itself, of n(r) with the nuclei, and

Coulombic interactions between nuclei. The last term, E1.(n), includes the many-body

effects of exchange and correlation.

Hohenberg and Kohn have shown that the correct electron (or charge) density I
can be obtained by solving a one-electron SchrMnger-like equation:

(-V2 + V)4fj = EM (2)

obtained by minimization of the previously mentioned energy functional subject to the I
constraint of a constant number of electrons. The effective potential, V:

V = UC + vC (3)

is comprised of UC, the Coulomb potential, and VC, the potential due to exchange 3
4 I

I



I

and correlation effects. A summation over the one-electron wave functions of all

occupied states gives the total charge density:

n(r) = (4)I
This result can then be used to obtain the Coulomb contribution, U c, to the effective

potential through solution of Poisson's equation:I
V2UC =-8ftn(r) (5)

Determination of the correct ground state requires the self-consistent solution of

equations (2) through (5). However, the correct form for the contribution to the

effective field due to exchange-correlation must be determined. It is at this point that

the approximation of importance to first principles calculations is introduced.

The local density approximation involves writing the exchange-correlation
I energy, E1o(n), as:

e E,(n) f fn(r)e,.(n(r))dr 
(6)I

where £, (n(r)) is the exchange and correlation energy per electron of a uniform

I electron gas of charge density n(r) [7]. The exchange-correlation energy can now be

connected with the Schrbdinger-likc equation via the relation:

IVXC = d(nec(n)) /dn (7)

I
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The LDA is exact only in the limit of a constant electronic density and, although most

real systems such as atoms, molecules or solids show strong variations within a local

Fermi wavelength, the LDA has proven more accurate than would be expected.

For our total energy calculations we used the linearized muffin-tin orbital

method (LMTO) in the atomic sphere approximation (ASA). For a complete and in I
depth derivation of the LMTO-ASA method including program code, see Skriver's

publication [10]. The LMTO method applies the variational principle to Schridinger's

equation using energy independent basis functions such that the resulting secular

equations are linear in energy. Thus the problem is reduced to solving an eigenvalue

problem of 9x9 (s, p and d states) per atom at each point in reciprocal space. I
The atomic sphere approximation (ASA) involves replacing the atomic

polyhedron of Wigner and Seitz with a sphere at each atomic position. This atomic

polyhedron is created by perpendicular planes bisecting interatomic distances. For pure

elements, the atomic volume is equal to a sphere of Wigner-Seitz radius. For

compounds, the average of the various atomic volumes is equal to a sphere for which I
the radius is then the effective Wigner-Seitz radius. With regard to calculations of total

energies, use of the ASA involves choosing the number of radial divisions which is the

only variable for spherical geometries.

For analysis of binding curves we used the Morse potential [1]. The Morse

potential serves merely as a convenient function for fitting binding curves although it I
merits no phenomenological significance. The fitting of this function allows for

I
I
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estimates for the bulk modulus, Debye temperature, and Grilneisen constant. The total

energy, E, is written in terms of the Wigner-Seitz radius, r, as:I
E(r) = A + Ce "2a(r 'r0) - 2Ce " ( 'rrO) (8)

where A, C, X, and ro are four fitting parameters. The parameters represent the

cohesive energy, C, the total energy, A-C, the equilibrium Wigner-Seitz radius, r0 ,

and a fitting variable, X. In terms of the above parameters we have for the bulk

modulus:

B(r) - CV (9)

i where ro is in a.u., X is in a.u. "1, C is in Ry/atom, and B is in Bar. The Debye

temperature and Griineisen constant can also be expressed in terms of the fitting

parameters:

I
r° (10)

* 2

0 = 41.63(I J 
(11)

I
where y is the Gruneisen constant, 0 is the Debye temperature expressed in Kelvin,

and M is the atomic weight.

I
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3 Free Energy Model
Calculation of phase stability of disordered alloys at finite temperatures has

I previously been carried out by using either empirical methods or phenomenological

3 models. An example of the empirical approach is the method introduced by Kaufman

and Nesor [11], widely used, which involves fitting simple functions to available

thermochemical data, including phase diagram information. In some cases these

functions can then be extrapolated into unexplored regions of phase diagrams. While

I these empirical methods have proven useful for prediction of phase stability, they are

limited to systems for which experimental data is available. Therefore, their use in the

development of new systems is questionable.

A more fundamental approach is based on the description of the statistical

thermodynamics of an alloy in terms of clusters of lattice sitts with effective cluster

I interaction energies provided by either phenomenological models or first principles

calculations. The accuracy of these models is usually improved by increasing the

cluster size from point, to pair to larger size atomic interactions. However, complexity

of the formalism and computation time increase as well. Some lower level

approximations include the Bragg-Williams or point approximation, the Bethe or pair

i approximation, and the quasi-chemical approach of Guggenheim. A more generalized

description of the configurational thermodynamics of alloys was provided in 1951 by

the Cluster Variation Method (CVM) of Kikuchi [ 12], which involves a hierarchy of

3 cluster sizes that allows for any level of approximation. Originally developed to

improve upon the mean-field and quasichemical combinatorial methods of treating

3 simple models of magnetism, the CVM has since undergone several developments

including the study of prototype phase diagrams involving first order transitions [13]

and the use of the method for studying real binary systems [14]. The current use of the

3 8
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CVM is based on a general formalism for the description of configurational cluster

functions in multicomponent systems as developed by Sanchez, Ducastelle and Gratias

[15].

The formalism of Sanchez, Ducastelle, and Gratias involves a cluster

expansion. This expansion is based on a one to one correspondence between the set of

clusters of lattice points in a crystal and orthogonal functions which describe the

configuration of a system in terms of spin (or occupation) numbers for eac site.

An N-dimensional vector of the occupation numbers will completely specify any

configuration of a system. The practical result of this formalism is that any function of

configuration can be derived in terms of a sum over all clusters in the crystal up to a

specified maximum cluster size. This maximum cluster size allows control of desired

level of approximation. The cluster expansion may then be combined with the energies

of a set of ordered compounds, for which the orthogonal basis functions can be

determined, in order to obtain effective cluster interactions. These interactions, in turn,

can be used to describe the disordered system.

Based on the success of this cluster description of the energy of alloys,

Connolly and Williams [16] combined first principles calculations with the cluster

expansion in order to determine the energy of formation of disordered transition metal

alloys. Subsequently, other investigations combining first principles calculations and

the CVM have shown this method to provide a reliable description of disordered

systems from ordered systems [ 17, 18, 19], including the successful application to the

modeling of ternary systems [20, 21]. Combining the CVM with first principles

calculations was a natural choice for our preliminary investigation of the Ir-Zr-Nb

ternary phase diagram.

I
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The free energy model used accounts for contributions due to formation

energies and configurational effects. The total free energy per phase, FP, is:I
F = AHf - TSa (12)

where AHf is the energy of formation, T is the temperature, and S.. is the

configurational entropy. Neglected in this model are structural energies and vibrational

effects. For the current use of the free energy model, calculations are performed only

for compounds based on the fcc crystal structure. Therefore, structural energies will

I contribute equally to phase stability of all compounds and can be neglected. Although

I vibrational effects will contribute considerably to the total free energy of a compound,

the calculation of phase diagrams requires energy differences for which these effects

should be small.

Formation energies involve a summation of cluster energies over their

I respective cluster probabilities:

I AHf = XeuZiju (13)
ijkl

3 where Z*Ia is the probability of a tetrahedron cluster of configuration ijkl, and i :

C' e - C3 '- Cbe'b- CAe (14)

is the formation energy of cluster of configuration ijkl for which c' are the total

3 energies as obtained from LMTO-ASA calculations. By carefully choosing ordered

I
* 10
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(a) (b)
Figure 1. Tetrahedron clusters for the (a), fcc, and (b), bcc, crystal structures.

Temperature dependence of the formation energy is implicit in the cluster probabilities.

intermetallic systems comprised of a given tetrahedron cluster (see Figure 1), theI

resulting total energies will be those of the tetrahedron clusters.

Configurational entropy is accounted for by using the cluster variation method

in the tetrahedron approximation. Using tetrahedra as the largest cluster includes 3
triangle, pair and point contributions in the approximation. This level of cluster

approximation accounts for first nearest neighbors in fcc-based phases and first and 1
second nearest neighbors in bcc-based phases. Increasing the accuracy of the CVM

requires using larger clusters. However, this also significantly increases the

complexity of the formalism. The configurational entropy per lattice point is:

S' k y nZ -1YI + 5yX In X(15)I

I
where kB is Boltzmann's constant. The variables in the equation (15) are the

tetrahedron cluster probabilities, Zijkl, and the sub-cluster probabilities for point I

111
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I
3 clusters (Xi), and pairs (Y, ). The following equations show the relationship between

each sub-cluster and the tetrahedron probabilities.

X i --XZiJi

(16)

Ik
I Using the thermodynamic definition of the chemical potential for a single

3 component, a grand potential can be derived. In the grand potential per phase, G':

G= (17)

I X i is the composition of pure element i, g' is the chemical potential of element i in

phase a, and r is the free energy per phase from equation (10). The arithmetic mean

of the chemical potentials is set at zero for the reference state.

Determination of the equilibrium atomic arrangement at a given temperature

requires differentiation of the grand potential with respect to Zjj, the tetrahedron

U cluster probabilities, while fixing the chemical potential. This differentiation results in a

set of non-linear algebraic equations from which the tetrahedron cluster probabilities

can be solved for iteratively using the Natural Iteration Method [22].

3 The following sections contain a discussion of our results and ends with

conclusions and recommendations for future work.

I
I
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3 Results

The investigation of the r-Zr-Nb ternary system is based on using the linearized

U muffin-tin orbital method in the atomic sphere approximation (LMTO-ASA) for the

3 calculation of first principles total energies, and using a cluster expansion to calculate

free energies and the ternary phase diagram. LMTO-ASA total energy calculations have

been performed for the pure elements and selected binary and ternary compounds based

on the bcc and fcc crystal structures. For each compound and/or pure element, the

calculation gives cohesive energies, formation energies, total energies, equilibrium

volumes, lattice constants, bulk moduli, Debye temperatures, and GrUneisen constants

for which the only input is the atomic numbers. Our calculations also reveal the relative

stability of different structures and allow us to observe trends in alloying. The results

of the LMTO-ASA total energy calculations for fcc-based compounds have been further

I used to calculate the fcc metastable ternary phase diagram for the Ir-Zr-Nb system. The

following sections contain discussions on the level of approximations used in

calculations, a description of all structures investigated, and a presentation of the results

of calculations and analysis of these results. Presentation of calculated results is further

divided into database related information followed by calculated isothermal sections of

3 the Ir-Zr-Nb ternary phase diagram.

Approximations

The LMTO-ASA calculations used no spin orbit coupling, 900 points in the

3 atomic sphere approximation (described in first principles section), and an average of

800 to 1000 k-points in the irreducible wedge of the Brillouin zone in reciprocal space.

3 By increasing the number of points used to describe the atomic sphere approximation, I

found that the total energies of pure elements and several compounds leveled off for a

number of points in excess of 800. Spin orbit (SPO) effects have clearly been shown

3 13
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to be important for transition metals with atomic number greater than fifty. Therefore,

there was concern over the neglect of SPO effects for Iridium compounds. We note

that calculations comparing pure elements show that including SPO effects increases the

total energies by .293, .016 and .026 (Ryd/atom) for fcc Ir, Zr and Nb, respectively.

Also, three compounds, Ir3Nb (DO3), Ir2ZrNb (D03-like), and Ir3Zr (DO3), were

tested, with and without SPO effects, for which formation energies were compared (see

Table 1 for structures). The formation energies for calculations including SPO effects

increased by 3.48, 5.44, and .666 (mRyd/atom), for Ir3Nb, Ir2ZrNb, and Ir3Zr,

respectively. Although calculations including SPO effects had less negative total

energies, trends in alloying properties such as relative stability and bulk moduli

remained constant.

Crystal Structures

Crystal structures were chosen to accommodate for all possible configurations

of the tetrahedron clusters described in the free energy model section (see Figure 1). Of

the thirty-six structures evaluated, fifteen were based on the fcc crystal structure while

twenty-one were based on the bcc crystal structure. Table I below shows some of the

simpler structures, according to Strukturbericht nomenclature, used for the LMTO-ASA

calculations, while Table 2 contains the more complex bcc-based compounds, including

two binary compounds and both ternary compounds.

Six of the thirty-six structures correspond to the three elements in both fcc and I
bcc crystal structures. For binary compounds, fcc-based compounds include the L12

I
(A3B) and the Li 0 (AB) structures, while bcc-based compounds include DO3 (A3B)

and B2 (AB). Ternary compounds, ABC2, include the fcc-based compound (L 12-like)

and the two bcc-based compounds (Huesler alloy and D03-like). The two bcc-based

ternary compounds are distinguished such that the Huesler alloy is comprised of bcc

14
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tetrahedra with atoms A and B as first nearest neighbors and the D03-like compound is

comprised of bcc tetrahedra with atoms A and B as second nearest neighbors.

i Table 1

Crystal structures used for LMTO-ASA calculations
with Strukturbericht nomenclature.I0

A fcc A bccI o

I AB Li AB B2

IIA 3B Ll 0A B32
A3B DO3

ABC2 Hueslkr See
Iternary Table 2

ABC2 Li-like *2 2

i ternary ABC 2 DO-like

I - ternary

m OA
*B

* C

By using these chosen structures, one can see that all four combinations of

atoms for the bcc and fcc tetrahedra are tested for at least one bcc- and fcc-based

I
* 15
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Table 2
Crystal structures used for LMTO-ASA calculations.

' ' I
,o ho I

AB B32 AB DO

A 0
ABC 2  B 0 ABC 2

Huesler type ternary C 0 Do-like

3I

structure, while the AB and ABC2 compounds are each tested for an additional bcc-

based structure. The various ordered compounds used for LMTfO-ASA calculations

were chosen to accommodate for all possible configurations of fcc and bcc tetrahedronI

16
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clusters. From the resulting LMTO-ASA total energies, effective interactions can be

determined for all possible configurations of Ir, Zr and Nb on the fcc and bcc

tetrahedra. The bcc compounds require extra structures, relative to the fcc compounds,

because the bcc tetrahedron includes first and second nearest neighbors allowing for

U more configurations.

I
I

I
I
I
i
I
I
I
i
I
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Database Results

In comparing our results with experimental data, it serves best to examine phase

I stability first. Those compounds that represent stable alloys can be further compared to

experimental data while metastable compounds can only be correlated to trends. The

results are separated by first discussing pure elements, then each binary system,

5 foliowed by the ternary compounds, and finally, any overall trends. As discussed in

the first principles section, all calculated values are based on fitting binding curves with

I the Morse potential. The values for the Morse potential parameters for all compounds

are contained in the Appendix. The fit provided by the Morse potential was compared

with the original calculated first principles total energies and resulted in excellent

agreement.

Pure Ir, Zr, and Nb

5 Beginnug with the pure elements, calculations correctly predict the stability of

Iridium as fcc and Niobium as bcc. Zirconium, however, is stable as hcp while our

calculations of bcc and fcc structures only showed Zirconium to be more stable as bcc.

5 Table 3 contains the calculated lattice parameters, bulk moduli, Debye temperatures,

and Griineisen constants for pure elements and binary compounds including available

5 experimental data. As seen in Table 3, Niobium (bcc) agrees well with the

experimental values for bulk modulus, Debye temperature and Griineisen constant.

II
I
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Table 3

Calculated and Experimental Ground State Properties for Pure
Elements and for Binary Compounds in the fr-Zr-Nb System.

Crystal Lattice Con.(Ang) Bulk Mod (Mbar) Debye Temp. (K) Griineisen
Structure Caic. Exp. Caic. Exp. Calc. Exp. Caic. Exp.

lr(fcc) 3.926 3.839* 3.689 310 420 D 1.89
k (bcc) 3.152 3.503 304 1.93
Zr( 0c) 4.625 1.139 272 1.42
Zr(bcc) 3.659 1.131 270 1.41
Nb (fcc) 4.309 1.926 338 1.64
Nb(bcc) 3.393 3.3002* 2.041 1.702 $ 347 2756 1.64 1.58 [
Lr3Nb (L12) 3.990 3.886* 3.520 328 1.86
k3Nb (DO3) 3.203 3.122 310 1.83
IrNb (LI0 ) ** 4.08 4.027,3.863* 2.981 330 1.79
INb (B2) 3.269 2.766 320 1.77
IrNb (32) 3.248 2.782 320 1.75
kNb3 (1i 2) 4.189 2.414 332 1.71
lrNb3 (DO3) 3.313 2.493 336 1.71

kr3Z (L12) 4.057 3.943* 3.053 308 1.77
Ir3Zr (13) 3.257 2.743 294 1.75
h 1zr(LI) 4.222 2.318 297 1.66
hZr $2) 3.370 3.318* 2.267 294 1.65
IrZr(B32) 3.346 2.167 287 1.61
IrZr3 (LI2) 4.414 1.639 282 1.54
Y&3 (DO3) 3.478 1.677 284 1.53
NbZr 3 (112) 4.539 1.311 288 1.48
NbZr 3 (DO3) 3.587 1.319 289 1.47
NbZr (L10 ) 4.460 1.498 305 1.54
NbZr $2) 3.523 1.512 305 1.52
NbZr(32) 3.518 1.536 308 1.53 [
Nb3Zr (112) 4.383 1.722 323 1.60
Nb3Zr(DO3) 3.455 1.763 326 1.58
• Pearson's Handbook [23]
* he IrNb-L1 0 experimental values reflect the tetragonal nature of the Li 0 type

structure, while our calculations assumed cubic L 10.
* American Inst. of Phys. Handbook [24]
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Ir-Nb Binary System

The relative stability of the components in the lr-Nb binary system, as gauged

3 by the formation energies relative to the most stable pure elements, fcc Ir, and bcc Zr

and Nb, can be seen in Figure 2 below. Of the three compounds tested, Ir3Nb, IrNb

Formation Energies for the Ir-Nb System

Sl 3 0 b1c

5 *L12
, 0 0.2 0.4 0.6 0.8 10 .1 0 iD0
-I A B2

-10

-1 5 - _ _ _ _ _ _ __ V B 3 2

Atomic % Nb

Figure 2. Energies of formation for intermetaIic compounds in the Ir-Nb system

3 relative to fcc Ir, and bcc Zr and Nb.

and, IrNb3 are more stable as L12, L10 and DO3, respectively. This correctly predicts

Ir3Nb as L12 and IrNb as L10.

U IroZr Binary System

3 In agreement with the experimental binary phase diagram for the Ir-Zr system

[25], the following formation energies predict Ir3Zr and IrZr to be L1 2 and B2,

3 respectively. Also, IrZr3 is more stable as D03. The standard molar enthalpy of

I
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Formation Energies for the Ir-Zr System

15

10 
fei

5 Obcc5 - 0 0.2 0.4 0.6 0.8 1* L120 - ' . .0 .= .., L 12
-5- 0 0D03

~-10 A L1OI

-15 A B2

-20 V B32

Atomic % Zr

Figure 3. Energies of formation for intermetallic compounds in the Ir-Zr system

relative to fcc Ir, and bcc Zr and Nb. I
formation for IrZr-B2 was experimentally determined by Topor and Kleppa [26] to be

-20.47 ± .93 Kcal/mol which agrees well with our calculated value of -19.74 Kcal/mol. 3
Nb-Zr Binary System

Unlike the previous two binary systems, the Nb-Zr binary system includes a I
miscibility gap and, therefore, no stable intermediate phases are observed

experimentally. Our calculated formation energies agree with this result. Another trend

correctly 3

I
I
I
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Formation Energies for the Nb-Zr System

8 N fcc

7 I rbcc

I5 A *L12
4 0 D03

21 A o A B2

0 0.2 0.4 0.6 0.8 1 B32
Atomic % ZrI

Figure 4. Energies of formation for intermetallic compounds in the Nb-Zr system

relative to fcc Ir, and bcc Zr and Nb.

reflected by our calculations, see Figure 5, is that the stiffness of Nb-Zr alloys should

increase with additional Niobium content from about 20 to 80 At% Nb [28].I
Bulk Moduli for Nb-Zr Compounds

I1.8 
fcc-based

jcompounds
I1.6- bcc-based

compounds

U ~ 1.4-

I 
1.2 - W

0.2 0.4 0.6 0.8
Atomic % Nb

Figure 5. Bulk moduli, as provided by LMTO-ASA total energy calculations,

versus atomic percent Niobium for the Nb-Zr system.
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Ternary Compounds

Three different ternary compounds were tested on three different structures.

These crystal structures included an L12-like structure (see table 1), a D03-like

structure, and a Huesler alloy. All ternary compounds were found to have formation

energies in the range of -4 to -12 Kcal/mole with the most stable configurations being I
the Huesler alloy for both Ir2ZrNb and IrZr2Nb, and the D03-like compound for

IrZrNb2 (see Figure 6). Table 4 contains the results of LMTO-ASA calculations for

ternary compounds including lattice parameters, bulk moduli, Debye temperatures and

Formation Energies for the Ir-Zr-Nb Ternary System

hI2ZrNb IrZr2Nb IrZrNb2

o L12-like

-2 ~I

0 D03-like
_ -4o A Huesler

-8 A0

AA

-12 A

-14 I
Figure 6. Energies of formation for intermetallic compounds in the Ir-Zr-Nb ternary

system relative to fcc Ir, and bcc Zr and Nb.
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3Grineisen constants. Morse potential fitting parameters are included in the Appendix.

No experimental data was found concerning mechanical properties or phase stability of

the tested Ir-Zr-Nb ternary compounds.

*Table 4

Calculated Ground State Properties for Ternary Compounds in the Ir-Zr-Nb System.

I Crystal Lattice Parameter Bulk Mod Debye Temp. Grineisen

Structure (Angstrom) (Mbr) (K) Constant

I Ir2ZrNb (Ll 2-1ike) 4.157 2.510 306 1.70

Ir2 ZrNb (Huesler) 3.298 2.505 306 1.70

Ir27zNb (D03 -1ke)) 3.320 2.513 308 1.713 IrZr2 Nb (L12 -ike)) 4.339 1.866 298 1.60

IrZr2Nb (uesler) 3.417 1.910 300 1.59

rZr2 Nb (D03 -like)) 3.430 1.894 299 1.58IrZrNb 2 (L12 -like)) 4.265 2.102 313 1.65

IrZrNb2 (Huesler) 3.365 2.182 318 1.653rZrNb2 (D0 3 -1ike)) 3.358 2.174 317 1.64

Trends

Based on the small number of structures used, qualitative trends are few.

However, through use of a linear law of mixtures, insight can be gained into non-ideal

3 behavior. All compounds show negative deviation from linearity as applied to bulk

moduli except for Ir3Nb, IrNb, Ir3Zr and IrNb3. The compounds, Ir3Nb, IrNb, and

3 IrNb3, show stronger deviations of 7.4, 4.0, and 1.65 %, respectively, while fr3Zr

shows almost ideal behavior with a deviation of 0.1 %. The bulk moduli results for

I Ir3Zr and Ir3Nb agree with an experimental investigation of the Ir3Zrl.XNbx system

which showed the Young's modulus of Ir3Nb to be three times that of Ir3Zr [28].

Overall these results show that most systems lose stiffness when compounded. With

3 regard to deviations as predicted by Vegard's law with primitive unit cell volumes, one
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3 Metastable fcc Ternary Phase Diagram

Isothermal sections of the metastable fcc Ir-Zr-Nb ternary phase diagram were

I calculated to begin the eventual full characterization of this system. Calculations were

performed at four different temperatures: 1200 K, 1500 K., 1700 K and 1900 K. This

temperature range was sufficient to contain all important features that this simple level

3 of free energy model encompassed. I mention again that our model involves two main

contributions: formation energies, for fcc-based phases only, as supplied by LMTO-

3 ASA calculations, and configurational entropy using the CVM in the tetrahedron

approximation, which is the lowest meaningful level of the CVM allowing for first

nearest neighbors. Our main goals included performing preliminary calculations for the

Ir-Zr-Nb ternary phase diagram and, more specifically, investigating the Ir3Zrl.xNbx

ternary system.

3 Beginning with temperatures at 1200 K and below, the results capture none of

the richness expected from the two highly ordered binary systems, Ir-Nb and Ir-Zr, and

I fail to predict the miscibility gap for the Nb-Zr system. This of course is expected since

the current model only includes contributions for fcc arrangements of atoms. The 1200

K isotherm, shown in Figure 7, reveals a miscibility gap between two disordered

phases, a miscibility gap between a Nb rich and a Zr rich L12 ordered compound, a two

phase L12 and disordered fcc phase region, and two LI 0 regions for both Ir-Nb and Ir-

I Zr compounds. The lines running across all two phase regions in Figure 7, and

similarly for all other two phase regions, represent tie lines between coexisting phases.

The black regions indicate three phases coexisting.

3 This isotherm correctly shows the formation of the IrNb-Ll 0 ordered

compound. The two phase L12 and fcc disordered region exists at much higher

I temperatures than for the experimental Ir-Zr and Ir-Nb binary phase diagrams [25].
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This is due to the simple level of free energy model used which includes no provisions

for calculation of the free energy of liquid phases. This isotherm does, however, show

that the two binary compounds, Ir3Nb and Ir3Zr, form a single phase region for the

Nb

0.2
0.8

0.4 DS0.6

LI o /
DIS

~0.4 /I

0.8 
L1

0.2

Ix/ DIS Zr

I /I L12

0 0.2 0.4 Lio  0.6 0.8

1200 Kelvin

Figure 7. Isotherm for the Ir-Zr-Nb system at 1200 K. U
Ir3ZrxNbx system as expected due to the similarities between the lattice parameters of

Ir3Nb and Ir3Zr. Lattice parameters for both compounds were within 1.6%, such that

27
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atomic size effects might be negligible. The strength in this prediction rests on the fact

that the free energy model uses energy inputs of compounds based on fcc crystal

structures only. Therefore, the Iridium rich portion of the ternary phase diagram

should be well represented in this approximation, at least with regard to short range

ordering, while regions closer to Niobium and Zirconium should represent metastable

phases and, thus, they are not observed in the equilibrium phase diagram. This single

phase L1 2 region points to the possibility of solid solution strengthening as a

3 mechanism for the recently tested ternary compound, lr.7 1Zr.08Nb.2 j, being stronger

than either Ir3Nb or Ir3Zr [28].
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The isotherm for 1500 K contains the same features as the 1200 K isotherm

with the loss of the IrNb-Ll 0 phase and, subsequently, the loss of the LID-L1 0 two

phase region. Both miscibility gaps are still prevalent.

Nb
0.2

0.8

0.4
/--- 0.6

0.6 / DIS
0.4/

Li2  / I
0.8L1

0.2
D IS //

1Ir D/ Li 
Zr

0 0.2 0.4 L 0.6 0.8

1300 Kelvin

MlPr S. Isotherm for the Ir-Zr-Nb ternary system at 1500 K
showing the loss of the IrNb-L1 0 phase.

l
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The 1700 K isotherm continues the trends of the 1500 K isotherm. Also, all

three phase regions have decreased in size.i
Nb

i 0.4
0.6

i
i DIS 0.

0.4

1 0.8 __0.2

'l /
/
/ / I

IrDI1 / Li 2
Ir I DIS l 20 Zr

0 0.2 0.4 L1 0  0.6

1700 KelvinI
Figure 9. Isothermal section for the Ir-Zr-Nb ternary section at 1700 K. Black

3 regions indicate three phases coexisting.

The remaining higher temperature isotherms contain only two phase regions: the

i earlier evidenced region involving the disordered fcc phase and the L12 phase, and

I
I
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a region between the Li 2 phase and a disordered phase. No new features appear above

1900 K. Both L10 phases have now vanished as well as both miscibility gaps. I

Nb
0.4 0.6

0.60.
0.64

/
// I

/

0.8 /DIS 0

Ll 
0.2

L1 2

DIS // 0 U
0 0.2 0.4 0.6

1900 Kelvin

I
Figure 10. Isotherm for the Ir-Zr-Nb ternary system at 1900 K showing the

remaining two phase regions.
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Conclusions and Recommendations

Calculation of binding curves and the resulting cohesive properties, Debye

Itemperatures and Griineisen constants was performed using the LMTO-ASA method in

order to begin generating a database of physical properties for compounds in the Ir-Zr-

Nb ternary system. The various levels of approximation were documented and

comparisons were made with available experimental data. For the compounds that

represented actual equilibrium phases, the available experimental data, including lattice

3parameters and formation energies, compared well with expected values. Further work

with regard to LMTO-ASA calculations should be directed at possible inclusion of

compounds based on the hcp crystal structure for use in the full characterization of the

Ir-Zr-Nb ternary phase diagram.

We also began calculation of the Ir-Zr-Nb ternary phase diagram using input

formation energies as provided by LMTO-ASA calculations, using the CVM in the

tetrahedron approximation to describe configurational thermodynamics and a cluster

expansion to describe the free energy. The main results showed correctly the stability

of the ternary Ll2 system, Ir3Zrl-xNbx, the Li 0 IrNb ordered phase, and, most

importantly, revealed that additional efforts must be employed to improve the accuracy

of the simple free energy model used. It must be noted, however, that improvements in

accuracy will require more than simply increasing the maximum cluster size and

I including vibraticaal effects as these changes will only shift phase boundaries. The

main features, including the single phase Li 2 and LI0 regions, the miscibility gap

between disordered phases, and the miscibility gap between Li 2 ordered phases, will

remain for the fcc metastable phase diagram. Description of the equilibrium phases

involves combining the free energy results of fcc-based compounds with those of bcc-

I and, possibly, hcp-based compounds. Therefore, additional work to be done for the
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eventual full characterization of the Ir-Zr-Nb ternary phase diagram includes

incorporating the effects of energies of bcc- and hcp-based compounds, modeling

vibrational effects, and testing for the convergence of the effective cluster interactions to

determine what range of nearest neighbor interactions must be included in the

calculations.

The Ir-Zr-Nb system is undoubtably an excellent system for exploring the

connections between mechanical properties and the underlying atomistic factors that are

responsible. The binary compounds, Ir3Nb and Ir3Zr, are similar enough to reduce

many variables such as cohesive, ordering and formation energies and, therefore,

provide an almost ideal system for advancing our current understanding of the I
mechanical behavior of intermetallic compounds.

I
I
I
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* Appendix

I The following Appendix contains all parameters used in the fitting of binding

curves with the Morse potential [1]. The fitting of this function allows for estimates for

the bulk modulus, Debye temperature, and Griineisen constant. The total energy, E, is

3 written in terms of the Wigner-Seitz radius, r, as:

I E(r) = A + C 2 (rro) - 2Ce "a(' 'O)

I where A, C, X, and r0 are four fitting parameters. The parameters represent the

3 cohesive energy, C, the total energy, A-C, the equilibrium Wigner-Seitz radius, ro,

and a fitting variable, X.

I
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Table 1

Morse parameters for the Ir-Zr-Nb system as fit to LMTO-ASA calculations.

Crystal Structure ro (a.u.) X(a. u.- ) C (Ryd) A (Ryd)

Ir (fcc) 2.899892 1307624 .801656 .382372
Ir (bcc) 2.933036 1.313567 .763108 .382372
Zr (fcc) 3.415488 .831499 .720940 .192230
Zr (bcc) 3.404107 .826975 .721381 .192230
Nb (fcc) 3.182551 1.033571 .735241 .687312
Nb (bcc) 3.157243 1.041800 .760747 .687312

Ir3Nb (L12) 2.946794 1.259961 .837302 .208607
Ir3Nb (DO3) 2.980336 1.225384 .794103 .208607
IrNb (LI0 o) 3.014884 1.184985 .820021 .034842
JrNb (B2) 3.041828 1.161256 .799538 .034842

IrNb (B32) 3.022169 1.155972 .806330 .034842
IrNb 3 (L12) 3.093720 1.107059 .78076 -.138923
IrNb3 0o3) 3.082230 1.11572 .797007 -.138923
Ir 0(L1 2) 2.996141 1.183415 .836823 .334837
Ir7 (DO3) 3.030435 1.155034 .798464 .334837
IrZr (Llo) 3.118082 1.065320 .816067 .287301
LZr (32) 3.136023 1.051268 .824439 .28730i
IrZr (1332) 3.113041 1.032941 .809960 .287301

IrZr 3 (L12) 3.259470 .943530 .769064 .239766
IrZr3 (1303) 3.236335 .945095 .778761 .239766

NbZr3 (L12 ) 3.352409 .882733 .722905 .066001
NbZr 3 (DO3) 3.337626 .879449 .729566 .066001
NbZr (L0 o) 3.293732 .933753 .725154 -.060229
NbZr (32) 3.278047 .929771 .734855 -.060229
NbZr(B32) 3.273462 .933422 .739348 -.060229
Nb3Zr (L12) 3.237312 .989477 .729573 -.186459
Nb3Zr (D03) 3.214737 .985204 .748261 -. 186459

Ir 2ZrNb (L12 -1ike) 3.069983 1.107863 .804326 .161072

lr2ZrNb(Huesler) 3.089152 1.107950 .810511 .161072
Ir2Zrm(D03-ike) 3.068522 1.104804 .807071 .161072
rZr2Nb (L12-ike) 3.204546 .997304 .770420 .113536
IrZr2Nb(Huesler) 3.189518 .993190 .784683 .113536
irzr2 (D0 3-ike) 3.179284 3997352 .782088 .113536
IrZrNb2 (L12-like) 3.149602 1.046145 .775192 .792045
frZrNb2(Huesler) 3.124752 1.052712 .785473 .792045

IrZrNb 2(D03-1ike) 3.130798 1.051235 .792045 .792045
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