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ABSTRACT

Collocation schemes are presented for solving linear fourth order differential equations
in one and two dimensions, The variational formulation of the model fourth order problem
is discretized by approximating the integrals by a Gaussian quadrature rule generalized to
include the values of the derivative of the integrind at the boundary points. Collocation
schemes are derived which are equivalent to this discrete variational problem. An efficient
preconditioner bawsd on a lw-order finite differene approximation to the same differential
operator is presented. The corresponding multi-domain problem is also considered and
interface conditions are derived. Psledudpectral approximations which are C' continuous at
the interfaces are used in each subdomain to approximate the solution. The approximations
are also shown to be (" continuous at the interfaces asymptotically. A complete analysis
if the collocation schemne for the multi domain problem is provided. The extension of the
method to the bihartnonir equation in two dimensions is discusled and results are pr~ented
for a problem defined in a nonrectangIular domain
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1 Introduction

Spectral methods are characterized by the representation of the solution to a differential
equation in terms of a truncated series of smooth global functions which are known as trial or
basis functions. The basis functions are usually chosen to be the eigenfunctions of a singular
Sturm-Liouville problem (Gottlieb and Orszag, 1977). It is this choice which is responsible
for the superior approximation properties of spectral methods over other standard methods
of discretization. For linear problems possessing smooth solutions these eigenfunctions yield
expansions that converge asymptotically faster than any finite power of N-1.

Two areas of research in spectral methods which are receiving much attention at the
current time are the construction and analysis of well-posed approximations to the Stokes
and Navier-Stokes equations and the development of methods which can be applied easily
to problems defined in complex domains. With respect to the first, it is well-known that
in the primitive variable formulation the velocity and pressure approximation spaces need
to be compalible to avoid problems of ill-conditioning. This is similar to the Babulka-
Brezzi condition required for the corresponding finite element approximation spaces. In two
dimensions it is possible to avoid this difficulty by reformulating the governing equations in
terms of a stream function. The governing equation is then fourth-order, and nonlinear in
the case of the Navier-Stokes equations. In this paper we seek to construct pseudospectral
approximations to fourth -order differential equations with the ultimate goal of applying them
to solve the nonlinear stream function formulation of the Navier-Stokes equations.

.Secondly, the development of techniques for handling complex geometries is essential
if spectral methods are to be applied to problems defined in more than just the simplest
domains. The basic idea behind domain decomposition is to break up the domain into smaller
%impler subdomains in which spectral approximations can be used. The approximations are
suitably linked by appropriate interface continuity conditions. The way in which this is
implrnmnted is important if the full power of the spectral method, in terms of the accuracy
of the approximation, is to be achieved.

In this paper we shall restrict ourselves to the model fourth-order problem in one and
two dimensions. Starting from a variational formulation of the problem we shall derive a
corresponding collocation problem complete with interface conditions. In a domain decom-
position setting this approximation will be chosen to be C' continuous implicitly. In addition
(C continuity across the subdomain boundaries is achieved asymptotically as the order of
the approximation is increased.

Although there are many applications of spectral methods to olve second-order elliptic
partial differential equations in the literature there is little previous work on fourth-order
problems even though the regularity of the solution to theswe problems is generally higher than
for sneond-order problems. Some interesting ideas are proposed in the works of Morchoisne
(1984) and Orszag (1971). Bernardi and Maday (19W) give a survey of strategies that may
be employed for fourth-order problems.

Maday and MNtivrt (1986) have studied Chebyhev spectral and pseudospectral approx-
imations of the stream function formulation of the Navier-Stokes equations. They prove the
convergence of the schemes and derive error estimates in weighted Sobolev spaces. Kara-
grorghis and Phillips (1989a,1989b) use a spectral collocation strategy to solve for the laminar



flow through a channel contraction again using a stream function formulation for moderate
values of the Reynolds number. They use a domain decomposition method to subdivide
the flow region into rectangular subdomains and patching to piece the solutions together, in
some sense, across the subdomain interfaces.

In a collocation method the choice of the collocation points is crucial. In spectral methods
they are always chosen to be the nodes of a Gaussian quadrature rule principally for two
reasons. First, the Lagrange interpolating polynomial which interpolates data at these nodes
has good approximation properties. Secondly, the collocation method may be shown to be
equivalent to a variational formulation of the problem when the same Gaussian quadrature
rule is used to approximate the integrals appearing in this formulation. For second-order
problems the Gauss-Lobatto nodes are used because the boundary conditions can then be
imposed efficiently. This leads to an optimal error in the resulting spectral approximation
(Canuto et al. (1987)). For fourth-order problems two boundary conditions are imposed on
the solution. Tlhese are usually of Dirichlet and Neumann type. The imposition of these
boundary conditions is facilitated by the construction of a generalized Lagrange interpolating
polynomial which interpolates the function at the interior nodes and the function and its
derivative at the boundary nodes. The generalized Gaussian quadrature rule associated with
this interpolating polynomial can then be derived. Quadrature rules of this form are quite
well-known in the theory of numerical integration (see, for example, Golub and Kautsky
(1983), and the references therein). Golub and Kautsky (1983) describe how the weights
in these quadrature rules may be determined computationally. In this paper closed form
expressions fur the weights are derived using the properties of orthogonal polynomials.

We show that, for fourth-order problems, the natural choice of nodes are the zeros of cer-
tain Gegenbauer (or ultraspherical) polynomials. Explicit representations for the quadrature
weights are derived for evaluating integrals od the form

jW (:)dX

where the weight functioa takes the form

,%(Z)--(I- )" , >-1.

The particular form o( these weights is given when A =0 (the LegAedre weight function) and
A = - 1/2 (the Cbebyshev weight function). The interior nodes in the case when A = -1/2
are the seros of TA(s) wherea the interior GauwChebyshev-Lobatto nodes are the zeros of

A collocation schere for solving a fourth-order model problem is derived by considering
a variational formulation a( the boundary value problem with suitably defined inner prod-
ucts. The two formulations are shown to be equivalent if the inner product in the discrete
variational problem is defined by the geteralized Gauss quadrature rule. The linear system
o equations which derives from this collocation scheme is ill-conditioned. The condition
number of the coefficient matrix scales like O(N*) where N is the order of the approxi-
mation. An efficient preconditioner for this system based on a low order finite difference
approximation to the same differential operator is presented. The combination of general-
ized Gaussian quadrature rules with spectral methods has also been proposed by Bernardi
et at. (1990). This idea is extended to multi-domain problems in the present paper. Pseu-
dospectral approximations which are C' continuous at the subdomain interfaces are used to
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approximate the solution in each subdomain. The discrete variational problem enables us
to derive interface continuity conditions which, in the asymptotic limit, result in C 3 con-
tinuous approximations. The variational formulation is used to provide an analysis of the
collocation scheme for domain decomposition. The analysis shows that the pseudospectral
approximation is optimal in the sense that it is of the same order as the corresponding error
in the best approximation. Numerical results are presented in which the usual exponential
convergence behaviour of spectral approximations is exhibited. Finally, the extension of
the method to two dimensions is described and numerical results presented for a number of
model problems. An application of the method to the solution of the biharmonic equation
in a non-rectangular domain, an L-shaped region, for which standard spectral methods are
not applicable is presented.

2 Variational Formulation of the Model Problem

In this section we consider the variational formulation of the fourth-order model problem.
Consider the fourth-order boundary-value problem

U(±l) , du ±() 0du
u(*l~(O)

where 1(z) is a given source function. It is well-known that, for any f E H-2 (-1, 1), (1)
has a unique solution u E HU0(-1, 1) ( wee Grisvard (1985), for example ). A collocation
scheme for solving (1) is derived by considering a variational formulation of the problem
with suitably defined inner products.

To set up the variational formulation we need to define function spaces for each A > -1.
Let LJ(- 1, I) be the Hilbert sWe defined by

L3(-1, 1) { v::(-,I)--.Ris measurable ;}AI-II = fi ',,.,{),,4z)d. < 00

endowed with the inner product

(U. 4)4 = wA(z)u(z)vlz)dr. (2)

We also introduce the Sobolev space HI(- 1, 1) defined by diO -0481 on ?o r

H R{- i,| ) fi (v : • E L3 1( - , ) ,0 ! O t 2) ITIS •

with correspooding norm J •*-

AT4118bilty CoL.@
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Let H.(-1,1) be the subspac of H2(- 1,1) defined by

HS,(-l, 1)f v •(-lI): u lV(+)=o; V'(+l)=O).

Consider now the bilinear form .4.,.) defined on
Hl(- 1, 1) x H3( ,n

by

a,(U, v) = U'(z)[w.%(x)v(z)]'dz. (3)

For any f E H- 2(-1, 1) the fourth-order model problem (1) is equivalent to the variational
problem : Find u E H].(-1, 1) such that

a.%(u,v)=(f,v).%, VvEH2..(-1, 1). (4)

Bernardi and Maday(1991) have proved the following result:

Proposition 2.1 Let A uatisfy -I < A < 1. The bilinear form a. is elliptic on H2,(-l, 1)
and Co0tin3o3 on HI(-l, 2 ) x HI,(-I, 1), i.e.

0 11 U N22<- 5 A(U, U) , V u E HA2,(-I, I), 5

IaA(u,v) 1_<0 0u l:,lv 113.A, VuE H'(-ll), vE H3-l,l), (6)

reapectvely, wAerr a snd $ err posi*ive coaasants.

This is a generalization of an earlier result of Maday (1990) for A = -1/2. An immediate
consequence of Proposition 3.1 is the following theorem:

Theorem 2.1 Let A tuesfy -I <A < 1. For amy f E Hj 4 (-1, 1) the variational prObem
(4) has .a N ,e I,*WW U E H.,,( -1, 1). Mo,.eer, " sea.ts

I j,:<- C I f UH;,(-I.I) - (7)

3 Pseudopectral Approximation

We consider the peesdospectral dicetisation of the fourth-order problem (I). Let PN(-I, 1)
denote the spae of algebraic polynomials of degree N or les on the interval 1-I, 1]. Let z,,
I < N - I be N - I distinct points in the interval [-1, 1) with x, = -I and ZN., = I.
Throughout this paper we take N ? 4 in order to have at least one point in the interior of
the interval j-l,1 1. Suppose that the values fa of some function f(z) are given at the points
Z? 1 1 !5 j < N - 1, together with the values fl and N-I, of r(z) at z = zj, and z = zN-,
respectively. To set up the poeudospectral approximation of (1) which automatically satisfies
the boundary conditions it is necessary to construct the Lagrange polynomials for this data.
Define the polynomials v(z) and 71(s) by

N-2

V(z) = (I - :2•), f1(:) = fI (: - z,) (8)
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It can be verified that the Lagrange polynomial of degree N which interpolates this data is
given by

N-1
pN(Z) =E fh,(z) + f, 1 (z)+ (9)

j=1

where
where,) 2!< j < N - 2,

h =) = (10){~F (x,) R

IT(Z) S,(z)

and I,= T(:)vC•) s,) = v(z)
R,(z) - ) S'(z) -j) i j=l,N-1. (12)

The corresponding integration rule based on these points

N-i
JwA(Z)f(Z)dz = E wf(Z,) + Wr(r) + fN-,f'(zN-), (13)

can be shown to be exact for all f E P2N -3(- 1, 1) if the interior nodes zV 2 < < N - 2
are chosen to be the zeros of the Gegenbauer or ultraspherical polynomial 4"+- of degree
N - 3. The location of the nodes are determined by Newton's method and polynomial
deflation. For the sake of generality we consider the general case A > -1 here although
when we investigate the solution of differential equations we will only consider the case A = 0.
Important properties of the ultraspherical polynomials G-O)(z) are given in the Appendix
(hereinafter the reference (A.m) will be used tu denote equation (m) from the Appendix
(rn = 1,2,...)). The weights depend on A and this will be assumed in the following.

The polynomials h,(z), 1 _ j 5 N - I and W,(z), = ,N - 1 defined by (10) and
(i1), respectively, form a basis for PN(-1, I). Therefore, choosing f(z) to be each of these
polynomials in turn we obtain explicit expressions for the N + I weights:

Wj w%(Z)hm,(z)dz. lj N - 1, (14)

W)= jw(l:)X,(z)dz, = I, N - 1. (15)

Although otly the boundary weights are of relevance to the present paper in that they
are required for the statement of the multi-domain collocation problem we give details here
of the representations for the interior weights as well. These are necessary if one was to solve
the discrete variational problem without restating it as a collocation one. The advantage of
doing this is that it results in a symmetric system of linear equations to be solved for the
unknown nodal values of the solution.

We are able to derive an original result in which explicit representations for the weights
(9,10) are obtained using the properties of the ultraspherical polynomials (see the Appendix).



Let us begin with the weights w., 2 < j < N - 2, associated with the interior points. The

polynomials 11(z) and '•N-32 x-) are related by

11(z) = -- 'N uS-3 •. (16)
AN-3

since they are of the same degree and have the same zeros, where AN- 3 is the leading
coefficient of C-Nj-+)(z). Thus using (10) and (14) we may write

w = dZ•{:+()'L( j) __. 2<j5N-2. (17)G(N-'!(32)"(ZJZ) ' -1

In order to determine the value of this integral, we make use of the Christoffel-Darboux
identity:

3Gi+ 3)(z)d,(b 3)(,) _ z)G 3( ÷,..-÷,,, ,)GN: 1,)AN- (

bus '=N-3(3 - ) AN-,'

where ?,, (1 < k _< N - 3) is defined by (A.4). Now we repace by , where "1 3(Z,) = 0
then (18) reduces to

'-' N-3, W -- E vh -- ,• t, (19)
?N-SAN.-2 (S-:,) ho 7

H we now multiply both skies of (19) by (I - x')`•+')(x) and integrate with rapext to
x over -1, 1 them using the orthogonality property (A.3) we obtain

-$;(3Av-.. (S18l) -|-4

which mAbtm a to write

w,- - a,,_ Gj,. ,) 2 < j:5 N - 2, (20)

since .'(4 )(s) is a costant. Uing the recwrreDm•relation (A.6) withn = N - 3 we write
(17) in the kom

2•+sr(N + A - i)r(N + A) I
"(N -3)t(N + 2A + 2) (1 - :,)'d. (:,}G(. ,)

for 2! <_ ! N-2.
Representations for the boundary weights lws_-, ra, and W,-j are found using the

integrals (A.8) and (A.9). Coosider 91 which, in view of (11). (12) (15) and (16), may be
written in the form

,= +2) 1 (1-(-1) - ')'(1 - t)'(1 + :)G'*m, (:)d . (2 )
G'M• _3 (-I)S(-I)

m m im Im i li I lilll lilill li Il i n m mml U ml mm n



Now Si(z) (1 - z)2(l + z) and therefore S,(-l) = 4. The condition (A.5) enables us to
write (22) in the form

(-I)N(N - 3)!r(A + 3) (1 -z)A+2( 1 + z)d+2
41"(N + A) (

The integral in (23) may be evaluated analytically using (A.8) to give

22 ÷2r(A + 2)r(A + 3)(N - 3)!• = (24)
r(N + 2A + 2)

Similarly we can show that

2 JA+lFA + I)( +J3)(N - 3)!1 (A+2)N* +(A+2)(2A -).%'-14A 3±9A + 3)), (25)
(A + 3)r(N + 2A + 2)

and also
W = w , I = -1I 11 (26)

In the. spýcial cias A = 0 the (;getbauefr pulynomials cutincide with the Ltgendre poly-

noutials sitic wu(2) = 1. "'he boundary weights are gi••en by

,14 2.'V' N - 3)wt= w.-, =, -)
3(N - 2)(N - I)N(N + )

( N -2)AN - I)VN + 1)

mid the intrrior wtight. by

1321 N l)N I
1 " I (N -- 2)(N + I)( N + 2P ( z 17

for 2 < j/ < N 2 Th$i form for the interlor wrights to d e-ruid using (A 6) and (A 10).

When A - 1/2, the (Cw 1batwf polynomials arc multiple.- the (Cheby~hri polynomwis
ros(n cu-l'.) In this rasw the boundary Weights ur given by

3,r13N' - 6N + 1)

10(N - 2)(N - I)N "(3)

4(N - 2)(N - O)N

and the interior weghts by

" -
.- 2 < S - 2. (2)

Having written down an exprrssion for a generalised pweUdospr-(tral approximation (9)
and determined the wrights in the corresponding quadrature rule we are now in a position



to write down the discrete problem corresponding to (4). The discrete variational problem
corresponding to (4) is: Find uN E PN(- -,1)nH.(-1, 1) such that

ax(uN,v) =(f, v),,xA, V vv E PN(-i,i)fnHA0(-I ,), (33)

where the bilinear form (., .)Ad is defined by

N-2

(f,gb•, = • w,f(z,)g(z,) + w[(fg)(z) + (f.g)(zN -)0 + 0I -() ()g)'(( - 1N-,), (34)

and z,, 2 ! 5 N - 2, are the wros of 64N4+3z

Theorem 3.1 The vaFs twRal probem (YY) 9s equimlent to the following co~locvtiaon prob-

lem: Find up E Pv(- l, i) n HI (- l, l) vch thAt

N z)(,) = !(z,) , 2 !5 J 5 N - 2, (35)

where z,, 2 <~ < N - 2 om the :troa fs 43

Proof. The left-hand side, GA(IN,VN) is integrated by parts twice to give the following
equivalent problem : Find uv E Pm(- , 1) n HI (-I, 1) such that

(U (-,vN).), (36)

k all viv E PN(- 1, 1) n H•,(AAI)

Now a basis for the space PN(-,l n H,3(-1, I) are the polynomials h,(:) , 2 < .

N -2, defined in (10). These are used " test functions in (36). Since uClVN E P2,,-- 1 )n

H•o( - 1, 1) and the quadrature rule (13) is exct toe all polynomials in Pz.-.(-I,!) we have

(Vw'),) = wta4")(:,) , 2 _ :5 N - 2. (37)

Further, from the definition (34).

(�f~,),.jwf(z,) . 2 Nj - 2. (38)

and theref since w > 0. for 2 j 5 N - 2. we obtain (35) which compktes the proof
of the theo"M.O

We have an analou murlt to Theorm 2.1 for the discrete problem:

Theorem 3.2 Let A staply -I < A < I. For say f E C'(-1. I), tMe prvbirm (.?3) has a
,,,4.,, ,ehho,, w, •E A,,, -1.) n H" ,(- 1. 1).

k-mrardi and Maday (1991) establbh the following error estimate:

Theorem 3.3 Let A sIm/y -1I < A < 1 If the Polao, u of(.09) belongs to H(-I.1) for
a real *uambr u > I. tad of the d.at f as such that the jan-ho. (I - P')If briong., to a spare
H"(-1. I) for a rl **Mier > 112. the /ollo.' l tre rrtImat, &rtirrr• th1 .4oluwhou of
(19) end (38) os a•eUird

S- U, NJS C(,,(V'-* I . +qU'"'-" 1W (I - ZI)If1,.,) (39)



The collocation method (38) results in a system of equations for the values uj of uN(Z)

at the points z, , 2 !5 j < N - 2. The pseudospectral collocation approximation is then
given by

N-2

UN(X) = ,ujh(x) (40)
j=2

where h,(z) is given by (10) (cf. (9)).

The generalization of the collocation method (35) for problems with inhomogeneous
boundary conditions is straightforward. The nature of the pseudospectral approximation
(9) is such that inhomogeneous boundary conditions are satisfied exactly by simply insert-
ing the specified values directly into (9). If HA B(-, 1) is the subspace of H2(-1, 1) which
consists of those functions that satisfy the given inhomogeneous boundary conditions then
we have the collocation problem : Find UN E PN(-l, 1) n H' 1 c, % H.(--1, 1) such that

u(v'}(xj)=f () , 2_<j_<N-2,

where x, , 2 < < N - 2 are the zeros of G4_a(2).

4 Preconditioning

The collocation problem (35) can be restated in the form of a linear system of algebraic
equations

Au = b (41)
where u is the vector of values of UN(x) at the collocation points z,, 2 < j N - 2, b is the
vector of values of f(z) at these points and A is the (N - 3) x (N - 3) matrix whose entries
are defined by

A]-_,._ =a (), 2:_ j, k < N - 2.

The fourth-order pseudospectral differentiation operator A has postive, real eigenvalues. The
extreme eigenvalues of A are shown in Table 1. In this table we see that the largest eigenvalue
of A scales like N' while the smallest eigenvalue is independent of N. Therefore, since the
condition number of A is O(N*) an efficient preconditioner is necessary for the accurate
inversion of (41).

Orszag (1980) proposed a preconditioner for spectral methods based on a low-order finite
difference approximation to the same differential operator. The advantages of such a pre-
conditioner are that it is sparse, easily invertible and yields an inverse close to the inverse
of the original spectral operator. Therefore we propose using a second-order finite difference
operator as our preconditioner. This requires the solution of a pentadiagonal system which
may be performed very ,-fficiently and stably using Gaussian elimination.

For 3 < I < N - 3 the second-order finite difference approximation to u(z) at the point
X, is

u(')(.r,) u au(.r,_) + bu(z,-,) + cu(x,) + d~u(z,+,) + e,u(z,+2 )

where

24
a, = (Z,_1 - x,)(z,_i - , - Z,+,)(z,_2 - z,+2)'

9



-24

(i1- Xi)(X,... 2 - Xi-1)(Xi-I - Xil(X- - X+)

d, =-24
(Xi - Xi+l)(Xi- 2 - X,+l)(Xi-I - Xi+,)(Xi+l -

24

(xi - Xi+ 2 )(xi_2 - xi+2 )(xi_1 - xi+2 )(xi+l - Xi+2)'

4 = -(a + bi+ d,+ e,).

A similar formula holds at X2 and XN-2 after taking into account the homogeneous Neumann
boundary conditions. Let H denote the finite difference differentiation matrix defined by
the above equations. We are interested in the eigenvalue spectrum of the operator H- 1A
since this governs the rate of convergence of the preconditioned iterative method for solving
(41). The eigenvalues of H-1A are real and positive. The extreme eigenvalues of H-1A
are shown in Table 2. Again the smallest eigenvalue remains independent of the choice
of N while the largest eigenvalue grows very slowly with N. The entries in this table
demonstrate the effectiveness of H as a preconditioner for A. Haldenwang et al (1984)
showed theoretically that the eigenvalues of the corresponding preconditioned second-order
pseudospectral differentiation operator lie between 1 and (7r/2) 2. From this result one would
expect that the eigenvalues in the case of the fourth-order problem to lie between 1 and
(w/2)4. We can see from Table 2 that they do indeed lie between these bounds.

5 Analysis of the Multi-Domain Problem

Given a fixed integer M we consider a partition of (-1,1) into M subintervals I,. where

I. = (dd.+,),

and the d4 are M + 1 points in (-1, 1) such that

-1 = do < di <.-. < dM-, < dM= 1.

Associated with each subinterval I,,,, we define a set points xT , 1 < j _5 N - 1, and weights
w" , I < j 5 N- 1 , Wj, j = 1, N- 1, which correspond to a generalized Gaussian quadrature

rule of the form (13) defined on I,J. Let hT(x) -, I < j _• N- 1, and 7W (x), j = 1,N- 1, be
the corresponding interpolating functions which have compact support on the interval I,n.
We introduce the finite dimensional spaces

YN = {t E L2(-_, 1): 4 limE PN(Jm)},

where N is some integer and PN(A) denotes the set of all polynomials of degree less than or
equal to N over A. In order to discretize the space H/o(-1, 1), let us introduce the spaces

XN = YN n H2(-l, 1),

ZN {(0 E L 2(-, 1) : 4 lm,.E PN(I,.,) n Ho(Im)}.

The elements of XN are continuous and have continuous derivatives at the points d,,, 1 <
m < M - 1, and vanish along with their first derivatives at x = ±1.

10



In this paper we shall only consider the case A = 0 as far as domain decomposition is
concerned. This is the only value of A for which the weight function over (-1, 1) is the
same as the weight function over each of the subintervals ],,, I < rn -< M. Throughout
this section, in which A = 0, the zero subscript has been deleted. For example, a(.,.) is
used synonymously with a(., .)o and the corresponding norm notation has also been altered
accordingly. We now define the discrete problem: Find UN E XN such that

a(U N, VN) = (f, VN),M, V v.,v E XN, (42)

where the bilinear form (., .)m is defined by

M

(fgM = jZ(f'g),•, (43)
M=1

where

N-2

(f-0).= Z w'f(x7)g(:") + w'[(fg)(4.) + (fg)(•_.1 )j + (fg)'() - g)(-0).
J=2

Lemma 5.1 For any real number a > 2 and for any o E HoJ(-l, 1) r) HI(-l, 1) we have

where 4r•,o as the orthogonal projection operator fromn t11(- 1, 1) onto P, ,(-!, 1)n lH2(-l I).

Proof. See. Bernardi and Maday (1991). 0

Since H( - 1, I) is contained in C(([- 1, l,) we can show that for any 0 E H 2(-1, 1). there
exists a cubic polynomial Oo such that 0 - Oo E HG'(-1, 1) and for any real number . > 0.

II o 10 <_5 CII 0 111.

Now define an operator wr by vr = 1rp 0(€ - 0o) + Oo from HJ(-1, 1) onto PN(-I, 1). So
that if 0 E H'(-1, 1) then by Lemma 4.1,

< CNV2 - II 4j I1.
< CN 2- II C II..•

We can easily verify that this operator satisfies

(W#V)(±I) = #(±I),(o )'(!) I

Theorem 5.1 The" exuns an operator i2 from H2(- 1, 1) onto XN satisfying

II A - tI 1l3< CN3 - II ' I1, (44)

for any vnction 0 E H'(-l, i) n H,'(-1, 1) wihl o > 2.

11



Proof. We recall that for a general interval (a, b) there exists a projection operator XN from
H 2(a, b) onto PN(a, b) satisfying

II W - #JNW 1IH2(.b)• CN'-° II w I1-(a,4), (45)

lrNw(a) = w(a), (*Nw)'(a) = w'(a), (46)

rNw(b) = w(b), (WNw)'(b) = w'(6), (47)

for all w E H'(a, b).
Let us define the projection operators 1 N,.,, for 1 < rn < M, as being the projection

operators from Hl(l,,,) onto PN(I,.). We deduce that the element ir 2 , defined on each I1,
by

,N'I,(X) = IrN,.,V,(X), V x E 1.,

is an element of PN(-1, 1)fn H,'(-i, 1) that satisfies due to (48)

110 - 410' 112:< CN 2 -- II V 11. .0 (48)

Define dNf to be the Lagrange interpolating polynomial which interpolates the function
f at the N - 3 interior collocation points of the generalized Gauss quadrature rule on (-1, 1).
Then Bernardi and Maday (1991) have shown that

Lemma 5.2 For any real number p > 1/2 and for any 0 such that the function (1 - P2) 1 E
HO(- 1, 1), the following inequality holds

11 (1 - xz)I(f - Jif) Iio_ CN' 2- 'I (I - --')If I1, (49)

Lemma 5.3 For any real number p, > 1/2 and for any f such that the function 1(d4+1 -
X)(X - d,5)j

1/2f E H'(I.), then

(I,"VN). - (f, vV). < cN,_•_.." II {(,+, -)(:_ d-4)13/2f IIH-(I..),
l~p4PN(I)OH~Iw,) II N lIIH(I.m)

(50)
where ( i, .)g. is the L' inner product on I,.

Proof. The generalized Gauss quadrature rule on 1,. is exact for any polynomial in
PN-•~(I,) and so for any vN E Pv(I/,) n H0o(i.) we have

(f, vN,0.. - (f. t's),. = (f - JNf -tN)I..,

where JN is the Lagrange interpolation operator at the N - 3 interior nodes of a generalized
Gauss rule on the interval I,. We recall that the mapping u, -- w/[(d4+, - r)(" - d,)]' is
continuous from H0I(I,) into L'(I,,). Then we can write

(1f VN)g. - (f, V'IV), !5 C 1I 1(d,4,+, - X)(: - d,,)1'/(f - .iV) VV2I..dlI t 'N l1.H(4.) •

Finally using Lemma 4.2 we obtain

(f, P•,)I. - (f.,,,v)., <_ CN'I'--" 11 J(d..+, - x)(.r - 4.)]""af JiIl-(I.fII VV ~'i) (51)

from which we deduce the result. 0
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Theorem 5.2 Let us suppose that the solution u to (32) belongs to HO(-1, 1), for a real
number a > 2 and that [(d,+l - x)(x - d,,)] 2f E HP(I,.) for a real number pm > 1/2 for
each m = 0, 1,..., M - 1. Then the following error estimate holds:

U - UN 112< C(N 2-° II u I1. + • N 112-p" II [(d.+, - X)(x - d,,)] 312f II---,(I.)). (52)
0 0=O

Proof. Let us define u" = u - u° and uz = uN - uO, where u° and u, are piecewise cubic
polynomials such that u" I,.E H.(Im) and uý It,.E PN(I,,) n H2o(,,), 0 < m <- M - 1.
Then Proposition 2.1, together with (4) and (42), gives for any VN E ZN,

iu - VN II < C(a(uý - vN, U, - VN)

= C(a(u--VN,Uý.-VN)-(f,Ut4 --VN)+(f,u --VN)M), (53)

from which we obtain

u - u, 112!5< C inf 11 u',- vN 1121 + sup (f, wN) - (f, WN)MI (54)

We choose vN = f' u" and use Theorem 4.1 to show that

inf 11 u* - vN 1125 CN 2 -° II u" J1, a > 2. (55)
"vNE42

Since WN E ZN we have on each interval I.,

(f, WN),. - (f, WN)m = (f - JNf, WN)I,.

We can also show that

(f ,wN) - (f, w)M A4- (f, WN)I1. - (f, WN))m
sup 11E sup
IV z 11 WN 1E12(,. (,) II -o I1-,(I.)

and therefore using Lemma 4.3 we may deduce that

(f, WN) - (f , WNO hf-1
sup < C N 1 2'p-' II [(d.+, _ X)(Z - 4)13/2f IIH,,(,.) (56)

W-fEZN H WN 112 - Mao

Since
II U - UI 112511 U" - uv 112 + 11 U° - ULp 112

and 11 .o - U'N 1125_ C 11 U" -ý u;112,

then
II U - UN 1125 C1 U*- UN 112 .

Finally using (54)-(56) we obtain the result. 0
We now set up the collocation scheme for the domain decomposition problem. We define

"ujy E XN which interpolates data at the points z' , I < < _ N - 1. 1 _< m M by

N-I

uN(x) = • u'h';() + (u')7'g"(z) + (u'),-_,•_,(x), x E .,. (57)

13



where
gU = ;'÷*', ()A = (U)'I < m < M - 1. (58)

Theorem 5.3 The variational problem (42) with the discrete inner product defined by (43)
is equivalent to the following collocation problem : Find UN E XN such that

u"(z)= f(z"'), 2<j<N-2, 1 <re<M, (59)U'(z'l÷,+) -u z
- uN(zN_-) wT'÷r(zr'+ ) + w--_r(zl-),

1 m < M - 1, (60)
uh((z+'*+) - u;'(Z'.,-) = -wr''r(z'"*+) - w'_,r(z'_-)

-•',*' •(=?* +)-N-_,r'(=•_,-)

<_<m<M-1, (61)

and where r(z) = uN(z) - A(z).

Proof. Let us examine a(uN, VN) defined by (3). By linearity we may write the integral on
the right-hand side of (3) as the sum of integrals over each subinterval 1,, for I < m < M.
Subsequent integration-by-parts twice gives

M M-I
a(Up, VN)= E j u](Z)VN(z)dz - , { U',VJ(zXN_,) - [U'VNN(ZNI)}, (62)

where [11(y) = f(y+) - f(y-) denotes the jump at z = y in f.
We choose as our basis for the space XN the polynomials h"'(z), 2 < j < N - 2,

I _ vn < M - I and hN _(z), I._.(z), 1 <5m < M - 1. The use of these polynomials as
test functions in (42) with the discrete inner product given by (43) results in (59)-(61) which
completes the proof of the theorem. 0

Remark I Note that in view of the expressions for the weights given in (27) and (28),

"tL = WN = O(N-2 ), • -= -BN O(N- 4 ) , as N - oo,

and therefore form (60) and (61) we can write

U'(zl++)- u' (z'.-, O(N 2 ) ,.;(=;,*,+) -um

-- I N((z_-.-) = O(N-)

as N -o co. Thus we have second and third order continuity at the interface asymptotically,
as N- oo.
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6 The Biharmonic Problem in Two Dimensions

Consider the biharmonic problem

V 4"(x,y)= f(z, Y), in fl, (63)

O(zy) = g,(zy), on r, (64)

(x,y)=-9(x,y), onr, (65)

where 01 = (-1,) x (-1,1) and r is the boundary of fl. Grisvard (1985) shows that
provided the boundary data satisfies certain compatibility conditions there exists t0, E H3(fl)
satisfying (64) and (65). Since we are primarily concerned with the domain d ,position
problem we only consider the case when the weight function is unity. The ai for the
single domain problem is thus greatly simplified.

In order to write down the variational formulation of the problem (63)-(65) we define the
bilinear form on H3(fl) x H1(fl):

a(, ) (V )(V2¢)dzdv. (66)

The biharmonic problem (63)-(65) is then equivalent to the following variational problem:
Find 0, E H2(O) such that (0 - 0') E H02(fl) and

a(O, 4$) = (f,4), for all 4 E H02(fl), (67)

where

(U, 0) = fif4. ddy.

We see that , is a solution of the variational problem (67) if and only if 0, = - b is a

solution of the problem: Find ý E H02(fl) such -that

a(O, 4) = (f, 4) - a(O', 0), for all 0 E H (fl). (68)

It can be easily verified that the bilinear form a(.,.) defined by (63) is continuous and
elliptic on H0'(fl) x HII(fl) and hence that problem (71) has a unique solution in Ho2(fl) for
I E H-(fl)•

Let PN(fl) be the space of algebraic polynomials of degree at most N in each co-ordinate
direction. The collocation problem associated with (63)-(65) is:

Find OIN E Pv(fl) n H2 (fl) such that

V 4ON(z,y) =A(z,y), (z,y) E R, (69)

Ori(z,y) = g1(z, y), (x,y) E SUT, (70)

N• z,Y)= g2(z,l) , (z,Y)ESUT, (71)

•2N (z, ) = 4--(z, y), (z,y) E T, (72)
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where 9/On and 8/ot represent differentiation Pormal and tangential to I', respectively, the
sets R, S and T are defined by

R =
S = {(&,+1),(+1,fj):2< i<N -2),

T =

and GN..3((,) = 0, 2 :5 i < N - 2. There are a total of (N + 1)2 linear equations for the
(N + 1)2 unknowns. The dimension of PN(fl) is (N + 1)2. The basis functions in 2D are the
tensor product of the one-dimensional basis functions given by (10) and (11).

We define the two-dimensional discrete inner product in an analogous way to (34) by
applying the quadrature rule in each co-ordinate direction. So in the case when one of the
functions 4 or # belongs to H2(fl) we have

N-2 N-2

(, *)N- = E wW (,,)(,,). (73)
i.=3 jl

Next we define the discrete bilinear form aN(.,.) by

a= (0, #) = (V4O, O)N. (74)

Theorem 6.1 If there is a function ONI E PN(fl) nH 2(fl) satisf•/ing the boundary conditions
(67)-(68) then the collocation problem (69)-(72) is eqtumilent to the vriational problem:

Find ON E PN(f) n H2(0) such that (10N - t44) E H2o(0) and

aN(N = (f,4,iN)N, for tal 4N E PN(f) A HO2(f). (75)

Proof. On each horizontal or vertical side of fl, '•N and 0' are polynomials of degree
N satisfying N + I conditions and so are identical on I'. The same argument applies to
their normal derivatives and so (ON - 446) E PN(fl) n Ho2(fl). If we now choose tON(X, Y) =

h,(z)h,(y), 2 < j, k < N - 2, then (75) implies (69)-(72). Conversely, since these (N - 3)2
polynomials form a basis for PN n Ho2(fl), (69)-(72) implies (75). 0

Let us now turn our attention to the problem of domain decomposition, and for simplicity
restrict ourselves for the moment to the case when fl is divided into two subdomains with
interface

-Y={(O,y): -1_<y5<l}.

We define
Al, ={(Z,y):-1 5<Z<50, -1 5< 51)<I,

f12 = (z,Y): 0:5X<-1, -1 5I Y5 1),

and r, is the boundary of Olf for k = 1,2. Define the subspace V of H 2(fl1 ) x H2(f)2) by

V=# = (1,,k 2 )E H2 (fl,) x H 2 (fl) = €:2= , 0,' 4 '2,

6 O-12= O6T on
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and the subspace Vo of V by

V0 = = * E V ~o' =0 on r form = 1,2}

We consider the bilinear form defined on V x V by

a(,#)= a,(0', 0') + a 2(1,2,0 2 ), (76)

where
ah(?k, 4) = Jj (V0kk)(V 2 4A)dxdv,

We can show, using Green's theorem, that if 4 E Vo then the above bilinear form may
be written as

a*f)= Ifn (v 4o1)q'dXdY + 1103(V40i2)02dXdy

+ f ' - )ýdy - f,' (0' - 0)0'dy (77)

If there exists *' E V satisfying (64)-(65) then the variational problem is: Find * E V such
that * - *6 E Vo and

a(*,#) = Jf fjai'dzdy + Jf f02 .dzdy , (78)

where fk is the restriction of f to flI.
The variational problem (78) is equivalent to the following interface problem:

V40k =fk, infA,, k=1,2, (79)

Ok = .g , on r nflr#, k -1,2, (80)

-t-=92, onlFlIk, k=1,2, (81)

0- = 2--,-' on -. (82)
Ox Ox

Define the finite dimensional space VN by

VN = {# = (01,t2 ) E PN(111) n H 2 (fl) x PN(0l2 ) f 2 H2 (fl 2):

0 ' =2 - on ,

and the subspace VN,o of VN by

VN.o={ (0', 2) E VN : Ov, = -°7" = 0 on r for m = 1,2}.
On

In the case when one of *P or t belong to VN.O we define a discrete inner product by

(,)= ( ', + (
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where
N-2 N-2

N= ,

i=2 j=2

N-+

+( Wk W)k V, (of)Ok(oJf,(i)

j=3
N-2

for k = 1,2, where 6/oN is the normal derivative to Ilk. The discrete bilinear form on
VN x VN is defined by aN(*,,)= aNv(O', 0') + a'N(02, 02),

where

N-?C k

+ F W-1-6-(o,4)-f-(O,4) -X (of)o(o,f)]
3=2

for k = 1,2.
Theorem 6.2 If there is an element 'I'N E VN satisfying (80) and (81) then the variational

problem: Find *N E VN sUch that (*N - *N) E VN,O and

aN(*N,'N) = (f',•1 ) + ( 2 ,4)%,, (83)

for all = (01,02 ) E VNo, is equivalent to the collocation problem: Find *N E VN such that

V 4 4O(z, Y) = fk'(zy), (z,y) E R , k = 1,2, (84)

4(z,Y)=gi(z,Y), (z,y)ESkUTk, k= 1,2, (85)
aO,

N 2 •(_,Y), (z,y)EShUTk, k=1,2, (86)
On

a-(zY) = (zY), (z,y) E TA, k =1,2, (87)

83 (jkN- _4,)(0, f) = -- WN-'[(V4•'I -_ f)(0,f,)]

-21(V402_ f)(o, f4)]

-WNI_,[±(v - f)(o, 4)

- [--(V402-f)(O,j,)], 2 <j < N-2, (88)
8 2 ( 2 O N)(0 ,f,) W NI_,[(V 40 NI f )(0, f .]

•(N- •v~)(0,4•) = w' [V '4 -

+w2[(V 402 -f)(O,f,)j, 2<j <N-2, (89)
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where

R, = 2 < i, N - 2),k = 1,2,

S1 =

S2=

and
1 (•-)/2, C2=0I+ f)/2, 2<_ i 5N -2.

Proof. We can show (*N - *&N) E Vvo as in the proof of Theorem 5.1. If we now choose
as our test functions the following:{ '(z,y)=hk(2z+l)hA(y), q9(z,y)=0, 2 < k,l < N-2,

0'(z,y) = o, 0 2(zy) = hh(2z - 1)h,(y), 2 _< k, _< N - 2
3') = hN,,(2. + l)h1(Y), 02(z,y) = h1(2z - l)hl(y), 2 < I < N - 2, ' (90)

= )N-t(2z + l)ht(Y), q2(z,y) =)(2z- l)hi(y), 2 < 1< N-2,

then we obtain immediately (84), (85), (88) and (89). Conversely, since these 2(N-3)(N-2)
test functions constitute a basis for VNo, (84)-(89) implies (83).

7 Numerical Results

The quadrature rule (8) is used to compute approximations to the integrals

(a) f, wA(z)ecOS(WZ)dZ',

(b) f_ wA(x)z~dz,

when A = 0 and A = -1/2. The errors in the quadrature rule are given in Tables 3 and 4 for
integrals (a) and (b), respectively, for different values of N. The quadrature rule evaluates
the integrals accurate to machine precision for a value of N as small as 17.

7.1 1-D Problems

Numerical solutions to the fourth-order model problem (1) are obtained when the exact
solution is given by

(a) u(z) = (1 - x2)2sin(rz),
(b) u(z) = 1 + sin(2'z).

In example (a) the boundary conditions are homogeneous whereas for (b) we have inho-
mogeneous boundary conditions. The differential equation is collocated at the generalized
Legendre and Chebyshev nodes given by the zeros of (1 - (2 )P_1 (z) and (1 - x2)Tý_Jx),
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respectively. The error in the numerical solution is measured using weighted norms based
on the corresponding generalized quadrature rule. The infinity norm is also given to show
the maximum pointwise error at the collocation points. These are displayed in Tables 5 and
6 for examples (a) and (b), respectively, where we define

N-I

e [ 1. w,e, + 2 -(CIA,..12,
)=I

Hlell.= max le, 1,

and

ej =u(Zj) - UN (Zj), =12,..., N- 1

where the points z,, I < j N - I, are the generalized nodes. The usual exponential con-
vergence of spectral approximations to smooth solutions of differential equations is observed
with accuracy to machine precision being obtained when N = 24.

Next we apply these techniques in the case of domain decomposition. For simplicity we
consider a partition of the interval [-1, 1] into the two subintervals [-1,0] and [0, 1] with
common point x = 0. We solve again the model problems (a) and (b) using the collocation
scheme (59)-(61). The corresponding error norms are shown in Tables 7 and 8, respec-
tively. The mono-domain and two-domain spectral approximations converge exponentially
as expected. The two-domain approximation converges slower than the mono-domain ap-
proximation for the same total number of collocation points since for the problems considered
here there is no particular advantage to be gained in using the former since the solutions
are smooth and the problem is one-dimensional. Patera (1984) observes similar behaviour
for spectral element approximations to second-order problems. The power and usefulness
of a multi-domain approach for pseudospectral methods will be demonstrated for problems
defined in nonrectangular geometries in 2-D.

7.2 2-D Problems

Numerical solutions to the biharmonic equation are obtained using the pseudospectral method
when the exact solution is given by

(a) O(z,iy) = (1 - :2)2(l - yt)2qin(ri),

(b) O,(z,y) = (1 - :2)2(1 - y2) 2 sin(rrz)sin(ry),

(c) O(z, y) = sin(2rx)sin(2iry).

In examples (a) and (b) the boundary conditions are homogeneous whereas for (c) the
Neumann boundary condition is inhomogeneous. The mixed second order derivative 0...
is zero at the four corners of 0 for these three model problems. The biharmonic equation
is collocated at the Cartesian product of generalized Legendre nodes. The weighted and
infinity norms of the errors are shown in Table 9 for problems (b) and (c). We see that a
numerical solution correct to machine accuracy is obtained on a grid as coarse as 21 x 21.
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In the case of domain decomposition we consider a partition of Q1 into two rectangular
subdomains [-1,0] x [-1, 1] and [0, 11 x [-1,1] with common interface x = 0. Here we solve
the model problem (a) using the collocation scheme (84)-(89). Both the mono-domain and
two-domain pseudospectral approximations converge exponentially as expected. Again the
two-domain approximation converges slower than the mono-domain approximation for the
same total number of collocation points. This phenomenon was observed for 1-D problems
too. In Figure 1 we give the contours of the approximation to the solution of problem (a)
obtained using domain decomposition with N = 20. This figure is included to show the
snioothnesi of the contours across the interface x = 0.

7.3 2-D Problems in Nonrectangular Domains

We extend the ideas developed in this paper to the solution of the Stokes problem for the
flow through an L-shaped channel. The flow geometry in this example is nonrectangular
for which a standard single domain pseudospectral approximation is not applicable. The
ability of pseudospectral methods to solve problems in this kind of geometry justifies the
development of the theory of the multi-domain formulation considered earlier. The flow
domain is divided into three rectangular subdomains as shown in Fig. 2. The stream
function within each subdomain is approximated by a pseudospectral representation which
interpolates values of the stream function at interior collocation points and values of the
stream function and its normal derivative on the boundaries and subdomain interfaces. These
representations are C' continuous across the subdomain interfaces. The unknowns in the
pseudospectral approximations are determined from the collocation scheme derived from
the discrete variational formulation. This scheme results in C3 continuous approximations
asymptotically.

If approximations of degree N are used in each direction in each subdomain then the
collocation equations yield a system of (3N - 5)(N - 3) equations for the (3N - 5)(N - 3)
unknowns. A total of 2(N - 3) of these unknowns represent the values of the normal deriva-
tives of V, at the interior nodes along the interfaces between subdomains A1, and f12 and
between subdomains f12 and 013. The remaining unknown values are the nodal values of 4,
at the interior and interface points of subregions (11, f)2 and (13. The collocation equations
give rise to a linear algebraic system Au = b. The vector u contains the nodal values of 4,
and also the normal derivative of 4' at the interface nodes. The block tridiagonal structure
of the matrix A for the L-shaped domain is shown in Fig. 3. This system is solved using a
Crout factorization subroutine from the NAG Library (1988). A more efficient direct solution
technique which takes account of the inherent matrix structure is the almost block diagonal
solver of Brankin and Gladwell (1990) which has been used in spectral calculations by Kara-
georghis and Phillips (1990,1991). However, this subroutine has not yet been incorporated
into the present algorithm.

The entry and exit lengths, a and b respectively, are chosen to be long enough to obtain
fully developed flow. In Figs. 4 and 5 we show the contours of the stream function for
N = 14, b = 7, c = I with a = -3 and a = -5, respectively. A small weak vortex is
observed in the salient corner. Fully developed flow is reached within a channel width of the
reentrant corner.
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8 Conclusions

Pseudospectral approximations to the solution of fourth-order elliptic partial differential
equations are constructed using a collocation procedure based on the nodes of generalized
Gaussian quadrature rules. Analytic expressions for the weights appearing in these quadra-
ture rules are derived and their forms for the generalized Legendre and Chebyshev rules are
given. The equivalence between a discrete variational form of the differential problem with
suitably defined inner products and a collocation scheme is demonstrated when the collo-
cation points are chosen to be the zeros of certain ultraspherical polynomials. The natural
choice of collocation points for fourth-order problems differs from the choice for second-
order problems, viz. the Gauss-Lobatto points. The usual convergence properties of spectral
approximations are observed.

A domain decomposition procedure based on the generalized Gauss-Legendre nodes is
considerel. Pseudospectral approximations which are automatically C0- continuous at the
subinterval interfaces are used to represent the solution. An examination of the correspond-
ing discrete variational problem results in an equivalent collocation method. The resulting
approximation is shown to be C-- continuous at the interfaces asymptotically, i.e. as the
order of the approximations is increased in each subinterval. The scheme is analyzed and an
error estimate is derived for the domain decomposed problem.

For fourth-order problems in two dimensions we propose using a tensor product of the
one-dimensional basis functions to represent the solution. The equivalence between the collo-
cation method defined by collocating the differential equation on a grid formed by the tensor
product of the one-dimensional collocation points and a discrete variational formulation of
the problem is described as well as the corresponding domain decomposition problem. It
is intended to apply this collocation method to the solution of the Navier-Stokes equations
in rectangularly decomposable domains using a stream function formulation even though a
simple variational principle does not exist for these equations.

An application of this methodology to a biharmonic problem in a nonrectangular geom-
etry is described. A single domain approach is not feasible for this class of problems unless
one first transformed the original irregular domain to a simpler rectangular one. However,
this would be cumbersome if it could be done at all since a transformation would need to be
found for each new geometry.
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TABLE I

Extreme eigenvalues of A

N A.&, A,&X An./N"
8 0.3128+2 0.4768+4 0.2842-3
12 0.3128+2 0.1091+6 0.2537-3
16 0.3128+2 0.1111+7 0.2587-3
20 0.3128+2 0.6788+7 0.2652-3
24 0.3128+2 0.2979+8 0.2706-3
28 0.3128+2 0.1039+9 0.2750-3
32 0.3128+2 0.3065+9 0.2788-3

TABLE 2

Extreme eigenvalues of H-A
N Aj., X.

8 1.000 3.312
12 1.000 4.180
16 1.000. 4.635
20 1.000 4.915
24 1.000 5.104
28 1.000 5.241
32 1.000 5.344

TABLE 3

Quadrature error in the approximation of fP, w(z)e-co.(vz)dz
for different weight functions

N w(z) = w(z) = -z2)-I/-
5 0.497-2 0.689-2
9 0.767 -10 0.122 -8
17 0.300-15 0.710-14

TABLE 4

Quadrature error in the approximation of f-11 w(z)xexdx
for different weight functions

N Wz = ,z = 1-)-
5 0.579-5 0.843-5
9 0.800-14 0.640-14
17 0.300-15 0.360-14
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TABLE 5

Errors in the numerical solution of the model problem (1)
with exact solution given by u(x) = (1 - X2)2sin(wrx)

A-=0 A=0 A=-1/2 A=-1/2
N 11 e 112,. 11 e 11. II e 112,W. 11e 11.0
8 1.387-2 1.515-2 3.041-2 3.200-2
12 2.941-6 2.954-6 2.057-5 2.783-5
16 3.077-10 3.041-10 6.355-9 7.289-9
24 1.177-13 1.329-13 1.804-13 2.018-13

TABLE 6

Errors in the numerical solution of the fourth-order problem
with u(±+) = 1, du/dz(±+) = 21r

and exact solution u(z) = 1 + sin(27rx)

A=0 A=0 A=-1/2 A=--1/2
N 11 e 112,w 11 e 11. 11 e 112, 11 e 11.o
8 0.236 0.266 0.450 0.494
12 1.883-4 1.845-4 5.926-4 7.976-4
16 1.181-7 1.150-7 8.848-7 1.052-6
24 5.795-13 6.701-7 4.534-13 5.190-13

TABLE 7

Errors in the numerical solution of the model problem (1) with exact solution given by
u(x) = (1 - r 2)2 sin(wz) using domain decomposition

A = 0 = 0 = -1/2 A =-1/2
N 11 e 112,u 11 e 11. 11 e 112,. . 11 .I
6 2.633-2 2.024-2 3.294-2 2.747-2
8 1.490-3 1.096-3 1.890-3 1.377-3
12 3.494-7 2.642-7 4.075-7 3.073-7
16 1.293-11 1.243-I1 1.254-11 9.523-11
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TABLE 8

Errors in the numerical solution of the fourth-order problem
with u(±1) = 1, du/dx(±1) = 2v and exact solution u(z) = 1 + sin(27rr) using domain

decomposition

A= 0 A= 0 A =-1/2 A= -1/2
N 11e113.. 1lell . Iell.
6 0.326 0.230 0.476 0.331
8 2.794-2 2.080-2 3.580-2 2.632-2
12 3.221-5 2.430-5 3.757-5 2.839-5
16 7.491-9 5.677-9 7.961-9 6.058-9

TABLE 9

Errors in the numerical solution of the biharmonic problem (63)-(65)
with exact solutions given by (b) and (c)

Problem (b) Problem (c)
N 11 e 13. 1 Cel!* 1 e 112, 11 C I11.
6 0.347 0.512 1.467 2.483
8 5.145-3 3.779-2 5.831-2 8.238-2
12 4.667-6 9.413-5 1.879-4 4.925-4
16 5.631-10 7.836-9 3.856-8 7.437-8
20 2.935-13 4.291-12 9.648-11 1.502-10
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Figure 1. Contour plots of f#x, V) for problem (a) when N =20, using domain
decomposition and the generalized Legendre pseedospectral method.
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Figure 2. The L-shaped domain and boundary conditions.
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Figure 3. Structure of the matrix A for the domain decomposition problem in 2-D.
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Figure 4. Contours of '(z, 1) for.a = -3, b = 7, c = I and N = 16.
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A Properties of Ultraspherical Polynomials

The ultraspherical or Gegenbauer Polynomials are the solutions of the differential equation

[wx+,(x)G$n)'(x)]' + n(n + 2A + I)wA%()G( )(z) = 0, (1)

that are bounded at z x ± 1, where

W.() = (I - x2)A, A> -1. (2)

They are orthogonal with respect to wA(x) over the interval [-I,I]

1 1 (X)G( ) )(x)dx = ' ,., (3)

where
22A+IJ[r(m + A + 1)1]2 (4)

(2m + 2A + 1)m!r(m + 2A + 1) '

and r is the gamma function. At z = I1 , Gn()(z) satisfies the condition

r(n + A + 1)
n!r(A + 1) (5)

The ultraspherical polynomials may be generated using the recurrence relation

(n + 1)(n + 2A + 1&`%)

= (2n + 2A + 1)(n + A + 1)zG ) - (n + A)(n + X + 1)G•?1 , (6)
G~o')(z-) = 1 , c(1A)(x) = (A\ + 1)x.

The leading coefficient, An, of G( A)(x) is given by

1 = r(2n + 2A + 1)
2n n!r(n + 2A + 1)"

We have the following integrals involving ultraspherical polynomials (Erdelyi (1954), p.284)

(',(1 - z)•(1 + x)UG$)(z)dx - 2A+1+lr(o + 1)F(A + n + 1)r(or - A + 1) (8)

i-i( T)(+ ' "('d n!r(or-A-n+ l)1(A+a+n+2)I A+7+r(or + i - n + n)( + 1)( - or + n) ()
11,(1 - z) (I + x)-G$ \) (x)dx = 2A+or(•r(- a)r(A + a + n1)r(A - o+n) (9)

where A,a > -1.
The ultraspherical polynomials satisfy the recursion relation

(1 - z2 )GX A)I'(x) = -nxGn(A)(x) + (n + A)G$') (x). (10)
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