AD-A280 132

94

6

PERSONAL COMPUTER and WORKSTATION
OPERATING SYSTEMS
TUTORIAL

by
Charles E. Frame Jr.

March, 1994

Thesis Advisor: Norman F. Schneidewind

Approved for ﬁhblic release; distribution is unlimited.

94-17772

9 (085 WHMRwnn -

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

“ Public reportiag burdes for thia collection of informationis estimated to average | hour per response, including the time for reviewing instruction, searching

existing data sources, gathering and maintainingthe data aceded, and completing and reviewing the collection of information. Scad comments regarding this
burden estimats or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorats for Information Operstions and Reports, 12135 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,and 10 the Office of Masagement
and Budget, Paperwork Reduction Project (0704-0188) Washiogton DC 20503

1
4

WORKSTATION OPERATING SYSTEMS TUTORIAL
6. AUTHOR Charles E. Frame Jr.
7
9

|
|
|

. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1994 Master’s Thesis
. TITLE AND SUBTITLE PERSONAL COMPUTER and 5. FUNDING NUMBERS
!

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORIN
G
AGENCY REPORT
NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

‘ 1 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b.

Approved for public release; distribution is unlimited. DISTRIBUTION CODE
A

! 13. ABSTRACT (maximum 200 words)

This thesis is a review and analysis of personal computer and workstation operating systems. The
‘ | emphasis is placed on UNIX, MS DOS, MS Windows and OS/2 operating systems. UNIX is covered
o under the U.S. Government POSIX standard, which dictates its use when practical. MS DOS is the most
' | used operating system worldwide. OS/2 was developed to combat some of the shortcomings of MS

| DOS. Each operating system which is discussed has a design pi...osophy that fulfills specific user’s
| needs. UNIX was designed for many users sharing a computer system. MS DOS, MS Windows and
| 0S/2 are designed as single user computer systems. All of these operating systems are in use at the
| Naval Postgraduate School.
All of the operating systems are discussed with regard to their: history of development, process
| management, file system, input and output system, user interface, network capabilities, and advantages
| and disadvantages. UNIX has a section devoted to the POSIX standard and MS DOS has a section
| devoted to Windows 3.1. Apple Corporation’s System 7 is mentioned throughout the text, but is not
| covered in detail. '

| 14. SUBJECT TERMS Personal Computer and Workstation Operating Systems : 15. NUMBER OF
UNIX, MS DOS, 0S/2. PAGES 155

| 7 16. PRICE CODE

117. SECURITY CLASSIFI- |18. SECURITY CLASSIFI- |19. SECURITY CLASSIFI- [20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT
Unclassified Unclassified ABSTRACT UL

Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sul. 239-18

Approved for public release; distribution is unlimited.

Personal Computer and Workstation
Operating Systems
Tutorial
by
Charles E. Frame Jr.
Lieutenant, United States Navy
B.S., Auburn University, 1986

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY
MANAGEMENT
from the
NAVAL POSTGRADUATE SCHOOL
March 1994

uer Ll Tl

Charles E. Frame Jr. !

” -

-~

A 4
Norman F. Schneidewind, Thesis Advisor

’
)

Approved by:

__,&%?ﬂbf,
Myurig W. Suh, nd Reader

[4

David R. Whifiple, Chairman
Department of Sys gement

ii

ABSTRACT
This thesis is a review and analysis of personal computer and

workstation operating systems. The emphasis is placed on UNIX, MS DOS, MS
Windows and OS/2 operating systems. UNIX is covered under the U.S.
Government POSIX standard, which dictates its use when practical. MS DOS is
the most used operating system worldwide. OS/2 was developed to combat some
of the shortcomings of MS DOS. Each operating system which is discussed has
a design philosophy that fulfills specific user’s needs. UNIX was designed for
many users sharing a computer system. MS DOS, MS Windows and OS/2 are
designed as single user computer systems. All of these operating systems are in
use at the Naval Postgraduate School.

All of the operating systems are discussed with regard to their: history of
development, process management, file system, input and output system, user
interface, network capabilities, and advantages and disadvantages. UNIX has a

section devoted to the POSIX standard and MS DOS has a section devoted to

Windows 3.1. Apple Corporation’s System 7 is mentioned throughout the text,
Accesion For
but is not covered in detail. NTIS CRA&I E
DTIC TAB
Unannounced O
Justification
By
Dist:ibution|
Availability Coces
Avail ardfor
1 Dist Special

il |

II. UNIX

TABLE OF CONTENTS
I. OPBRATING SYSTEM BACKGROUND

INTRODUCTION. . . cccceeeeeeccccoccsscosocsccsns p
CENTRAL PROCESSING UNITS............. cesnccas 2
MEMORY.....oceeeneacccnananss cecsssccsceanoces 6
NETWORK COMMUNICATION..... cteecavstencnscanan 9
OPERATING SYSTEMS............ Cececectencnans 12
UNIX BACKGROUND....cocececoccccccnsnas I ¥
UNIX and POSIX........ T P, ¥]
UNIX PROCESS MANAGEMENT.......ccccceececncns 26

UNIX FILE SYSTEM and FILE SECURITY..........32
UNIX INPUT/OUTPUT SYSTEM...... ceseean cosscne 38
UNIX USER INTERFACE........ cecsctsscssrasene 43
UNIX NETWORKING.....coccceeecenccccccccccnss .48

UNIX ADVANTAGES and DISADVANTAGES..... R 51
DOS BACKGROUND.ccvvveneeaanns R ...54
DOS PROCESS MANAGEMENT...... Ceeeeeenn R 66
DOS File System and FILE SECURITY........... 69
DOS INPUT/OUTPUT SYSTEM.......cccceen.. cee..75
DOS SHELL USER INTERPACE........ovevnunnnnn. 78
WINDOWS 3.1....c000ccevoccccann ceeceecasea..B83
DOS 6.0 And DOS 6.2...ccceveecnnnncannannnn .86
DOS and WINDOWS NETWORKING...........ccce... 92
DOS ADVANTAGES and DISADVANTAGES............ 94

iv

IV. 08/2

A. 08/2 BACKGROUND.cuvuenenennnncncnss ev..98

B. 0S/2 PROCRSS MANAGEMENT..... cereaan cereeaas 104

. 0S/2 FILE SYSTEM and FILE SECURITY......... 110

D 0S/2 INPUT/OUTPUT SYSTEM.......cueuenennnn. 117

E. 0S/2 USER INTERFACE.........e...... T 119

F. 08/2 NBTWORKING...:.oeoceuescocassscessnans 124

G. 0S/2 ADVANTAGES and DISADVANTAGES....... ...127
VIII.OPERATING SYSTEMS SUMMARY

A. INTRODUCTION.uvuenenenennnncncnenennnns 131

B. CPU REQUIREMENTS.......covuvuenencnennnnnn. 132

C. MEMORY REQUIREMENTS.......0cuvvuenenenennnn 135

D. DPROCESS MANAGEMENT.coenenenenannnn. 137

BE. FILE SYSTEMS......ecuenenenenenncncncnennns 138

F. INPUT/OUTPUT SYSTEMS......... e, 140

G. NETWORKING........ e, 142

H. APPLICATION PROGRAM SUPPORT................ 143

T. CONCLUSIONS. ... suvuensnsnnenncnsnsnenenennss 144

LIST OF REFERENCES.............. e 145

INITIAL DISTRIBUTION LIST. .. . useneenenennnncnnnenenennnns 148

I. OPERATING SYSTEM BACKGROUND

A. INTRODUCTION

Today’s computer customer is faced with a wide array of
decisions. Changes in hardware and software occur so
frequently that a dedicated effort is required to maintain
currency. An important part of the computer hardware is the
Central Processing Unit (CPU). Since 1971 Intel Corporation
has released eight major CPU designs, each an improvement over
the previous design. 1Intel and its competitor Motorola have
both released new CPU designs in 1993.

The most important piece of system software to the
microcomputer is the operating system. The operating system
is a group of programs that allocates resources and manages
execution of user programs. It also acts as an interface
between the user and the computer hardware. In 1993 the three
major operating system'vendors for the personal computer (PC)
all released new versions of their systems. Apple released
System 7.1 for the Macintosh. IBM and Microsoft released 0S/2
2.1 and MS DOS 6.2 respectively.

The emphasis in this thesis is on operating systems. The
purpose is to provide a tutorial that promotes informed

decisions about PC operating systems. In this introductory

section a brief look into hardware will include: CPU'’s,
computer memory, and some network communication devices. This
is followed by some background information on operating system
software.

Following this Background chapter, three PC operating
systems are discussed in the order of their chronological
development. These systems are: UNIX, MS DOS, and 0S/2. UNIX
is chosen because it is covered by the Government POSIX
standard for operating systems. It also forms the basis for
parts of MS DOS and 0S/2. A brief mention of Microsoft’s LAN
Manager is also presented along with IBM’s LAN Server because
they are both based on the 0S/2 operating system.

The Macintosh System 7 is not given close scrutiny since
Apple has integrated much of this operating system into
hardware. Microsoft’s WindowsNT is also not fully discussed
since it is not considered a PC operating system. All of
these systems are summarized in the final chapter to

facilitate a an operating system comparison.

B. CENTRAL PROCESSING UNITS
The current design of the computer is based on the von
Neumann architecture that consists of the three key concepts:

[Ref. 1:p. 204]

* Data and instructions are stored in a single read- write

memory (Random Access Memory or RAM)

* The contents of the memory is addressable without regard
to contents of the memory.

* Execution of the instructions are sequential unless
specified otherwise.

Avoiding details of registers that hold addresses, data
and instructions, consider only that a program is read from a
fixed disk to a RAM area where it is executed by the CPU. The
program consists of instructions that perform operations on
data. The CPU will perform two basic steps. [Ref. 2:p. 82]
First the CPU will fetch an instruction and then the CPU will
execute the instruction. Together a fetch and an execute form
a CPU cycle.

To join the CPU to memory and input/output devices a
highway called a system bus is used. [Ref. 2:p. 232] The
system bus is actually three basic buses, one for control
(timing), one for addressing memory, and one for data
transfer. It is the control bus that provides the speed of
the CPU measured in megahertz (MHZ) or millions of cycles per
second. For example, a CPU operating at 25 MHZ is performing
25 million cycles per second. This is a measure of the
computers raw internal speed.

Buses are extremely important to utilize the potential
power of the CPU. The;e are actually more than just the three

3

basic busses mentioned. [Ref. 3:p. 70] A local bus that runs
at the same speed of the CPU may be used with a video
controller device. An intermediate bus may be connected to
the CPU’s data bus through a buffer controller for data
operations. A Small Computer System Interface (SCSI) often
used with fixed disk drives and CD-ROM drives may be
considered a type of bus. SCSI requires a controller that
fits into a computers bus socket.

In the jargon of computers two types of buses seem to
dominate. [Ref. 3:p. 72] The "ISA" (Industry Standard
Architecture) bus is the older model used to support a 16 bit
bus architecture. The "EISA"™ (Extended Industry Standard
Architecture) bus is the newer model that supports a 32 bit
bus architecture. Other types of buses exist, but this is
merely a fundamental background to aid in the understanding of
16 and 32 bit architectures for computers.

The CPU communicates along a bus at some clock rate
measured in megahertz. To measure the work being performed by
the CPU, three performance indicators are traditionally used.
These three indicators are: Millions of Instructions per
Second (MIPS), Millions of Floating Point Operations per
Second (MFLOPS), and Throughput. MIPS is the most common
measure, but for more mathematically intensive operations
scientists may prefer MFLOPS. Business interests may prefer
Throughput, since i_t measures performance from an input and

4

output standpoint.

In TABLE 1 is the evolution of the Intel CPU showing: the
model, the year of introduction, MIPS, internal data path and
clock rate measured in megahertz. Other CPU examples could be

used, but Intel has always been an industry leader and was

chosen for this example. [Ref. 4:p.S/8] [Ref. 5:p. 42] [Ref.

6:p. 110]

TABLE 1 CPU EVOLUTION
4004 1971 000.06 4 1
8080 1974 000.29 8 2
8086 1978 000.75 8 4
8088 1979 000.75 16 4.77
80286 1982 001.5 16 16 “
80386 1985 005.0 32 33
80486 1989 027.0 64 66
Pentium 1993 100.0 64 66

Other models of the basic Intel CPU are available. For

example, the 80386 is available in a 80386SX model has a 16

bit external bus to communicate with peripherals and a 32 bit

internal bus. The 80386DX and the 80486SX are 32 bit internal
and external. The 80486DX has the 80487 numeric coprocessor
installed with the CPU. All models shown in TABLE 1 are top
of the line in architecture and clock speed. Faster clock
speeds are more expensive; slower clock speeds are available.

CPU’s have yet another classification, they may be
Complex Instruction Set Computers (CISC) or Reduced
Instruction Set Computers (RISC). CISC are the standard CPU'’s
found in most PC’s. RISC is accomplished by reducing the
instruction set, increasing the number of CPU registers and
ueing instruction pipe lining. [Ref. 7:p. 434] The very fast
and powerful RISC is desirable for high end operating systems

like UNIX and WindowsNT.

c. MEMORY

CPU’s operate with memory in a hierarchical fashion.
[Ref. 2:p. 235] The actual portion of memory that interacts
with the CPU is the register. When the computer is turned on
the first memory read into the registers comes from Read Only
Memory (ROM). This allows the computer to perform some self
tests and boot up for operation. The disk drives will be
checked for a system disk and if none are present a system
start up routine may be read from a fixed disk. For example,
if MS DOS is installed on the fixed disk and the floppy disk
drives are empty, DOS will take control of the computer using

6

the fixed disk.

Some computers may be equipped with a CD-ROM in addition
to the fixed disk. CD-ROM has a large storage capacity
usually in excess of 600 megabytes. Here is where the
hierarchy may begin to form a triad of three factors: cost,
size, and speed. The rule is simple. The clogser the memory

The size of a given register is normally going to match
the size of the bus. Most registers will hold 32 bits or four
bytes [Ref. 2:p. 124]. The registers receive memory
addresses, data, and instructions from main memory. The size
of the main memory may range from under one megabyte to
sixteen megabytes or more. Programs are normally read into
main memory from an internal fixed disk. Common sizes for
fixed disks range from 20 megabytes to 200 megabytes or more
[Ref. 1:p. 154] [Ref. 2:p. 209]. The larger operating systems
like 0S/2 ,UNIX and WindowsNT are now available on CD-ROM.
CD-ROM can hold the equivalent of 600 high density floppy
disks or 683 megabytes [Ref. 8:p: 13]. Register to CD-ROM is
a hierarchy of small to large, bytes to megabytes.

The cost of memory is extremely volatile so specifics are
avoided. Normally a user will never expand the number of
registers because they are an integral part of the CPU.
(Unless the mother board is replaced.) Occasionally the user

7

will expand RAM or what is sometimes called main memory to
improve system performance. More often the user will buy a
new fixed disk so the computer will hold more programs
internally. The trend today is for the user to buy a CD-ROM
that houses vast amounts of information. This forms a cost
hierarchy that ranges from most expensive registers to the
least expensive CD-ROM. (The cost considered here is per unit
of memory and not an overall cost of a given unit.)

Recall the fastest 1Intel CPU operated at 66 MHZ.
Assuming the register is receiving new information every other
clock cycle means the information rate for the register is
actually 33 MHZ. Another way to view how fast the information
is going into the register is in a time domain rather than a
frequency domain knowing that time and frequency are
reciprocals of one another. The 33 megahertz rate translates
into new information in the register every 30 nanoseconds (10°
° geconds) .

The main memory interacting with the register is accessed
every 80 to 100 nanoseconds (ns). The fixed Disk can be
accessed every ten to 100 microseconds (10°6). The CD-ROM can
be accessed every 300 milliseconds (10°3) (ms). To resolve
these differences in speed a buffer area called a cache may be
placed between any two of these memory hierarchies. The
information must pass through this hierarchy to be processed
by the CPU. These time delays give the CPU time to do other

8.

things while waiting for data.

TABLE 2 summarizes the memory

hierarchy by memory component, component size and access time.

Units of nanoseconds and milliseconds are used for easier

comparison.

TABLE 2

Conpbnont

MEMORY EIERARCHY

Size

Time

Register

4 bytes

30 ns

Main Memory

l to 16 MB

80 to 100 ns

Fixed Disk

20 to 200 MB

0.01 to 0.1 ms

CD-ROM

683 MB

Other issues must be taken into account for memory usage.

The memory must be addressable.
on the address bus raised to that power of two gives the
addressable space.

paging information in and out of memory is beyond the scope of

this discussion.

Other tricks like virtual addressing and

All modern operating systems accomplish

these tasks in various ways.

D. NETWORK COMMUNICATION

Networking has become an integral part of computer

operations. Many users are familiar with the modem, but fewer

9

The number of address lines

users may be knowledgeable about the network interface card
(NIC) and terminal emulation. Modems and NIC's are hardware
devices. This discussion is not an exhaustive presentation of
networking or networking devices, but rather a brief overview
of local area networking. A very generic look at modems and
NIC'’s followed by two common terminal emulations is presented.
(The issues concerning protocols are delayed until specific
operating systems are discussed.)

Modems, whether internal or external to the computer,
provide a quick and easy way to achieve network access with a
stand alone system. America Online, CompuServe, and Prodigy
are some of the commercial vendors that provide services via
modem. A modem takes the computer’s digital format and
translates it into analog to transmit the signal over an
analog phone line. [Ref. 9:p. 69] The modem on the other end
reverses the procedure. The name modem is deri- :d from the
fact that the signals are modulated and later demodulated.

Moving from a stand alone modem to a local area network
(LAN) introduces the need for NIC (or LAN adapter). [Ref.
10:p. 17] Other hardware requirements 1like cabling and
connectors are also needed, but the emphasis. here is on the
hardware native to the user computer on the LAN. The NIC is
connected to the cabling giving access to the LAN. The LAN
may be peer to peer where all computers have equal status or
the LAN may be cliené-server. In one mode of client-server

10

the server provides file server and print server services for

the clients. The server will also have a NIC. Both client
and server will have a network operating system (NOS)
installed.

The NIC has two basic parts. ([Ref. 9:p. 272] The bus
interface unit (BIU) connects to the computer’s input/output
bus. The communications interface unit (CIU) connects to the
medium or cabling system of the LAN. The NIC has a
transmitter/receiver called a transceiver thec transmits and
receives data from LAN caialing. The NIC is also responsible
for media access control (MAC), meaning that it must know when
the computer can transmit.

The two types of MAC are contention and managed. [Ref.
10:p. 88-91] The two methods used to accomplish MAC are
CSMA/CD and Token Ring respectively. CSMA/CD stands for
carrier sensing media access with collision detection. 1In
this contention environment, the NIC will listen for a carrier
signal and if all is clear will transmit. If a collision is
detected from another station the transmitting NIC will wait
a variable length of time and transmit the information again.
In Token Ring the transmitting computer must have the token to
transmit. The token is passed around in circular or ring
manner. Heavy LAN usage tends to make Token Ring more

efficient since collisions are avoided.

11,

From a PC on a LAN equipped with a modem a user may
access a mainframe computer such as Amdahl or IBM. When this
is done a special piece of software is needed to emulate a
mainframe terminal. Common software for emulation is SimPC
and 3270 Emulation. They allow the PC to emulate the 3270
terminal on the mainframe [Ref. 9:p. 380). The keyboard on
the PC is mapped to the terminal so the PC keys have a new
meaning.

Emulation may be supported by modem or through a coaxial
connection between a LAN server and a mainframe. Another
popular piece of emulation software is SoftPC. SoftPC allows
Macintosh users to emulate a PC. Emulation is important to
expand user hardware and software options.

One of the main issues concerning networking is the use
of protocols. Protocols for LAN’s and wide area networks
(WAN's) are covered with the applicable operation system that

supports them.

E. OPERATING SYSTEMS

As mentioned in the introduction, the operating system
provides the user interface to the computer and an interface
for user programs to the hardware. These are only part of the
operating system functions. Other functions include managing
program processes, files, and devices. A generic look at
these functions followed by a brief mention of application

12

programs, compilers, and interpreters is given here.

The operating system brings program processes or tasks to
the CPU. A process has three possible states: running
(executing on the CPU), ready (waiting to run), and blocked
(unable to run until some other event happens) [Ref. 7:p. 52]
[Ref. 11:p. 30). Process and task are used here
interchangeably. When the CPU is able to run more than one
process it is called "multitasking”. (Multiprocessing means
more than one processor or CPU.) The CPU has time to run more
than one process due to the time lags in the memory hierarchy.

Not all operating systems support multitasking; the ones
that do can support it in one or more ways. Preemptive
multitasking is considered true multitasking. Priorities are
calculated for the active processes and the highest priority
process gains control of the CPU. The remaining two types of
multitasking are not considered true multitasking by operating
system purists.

Cooperative multitasking relies on special, "well
behaved*®, programs designed to give up CPU time cooperatively
without operating system intervention. Time slice
multitasking allows user intervention to assign resources to
a process. These resources are a percentage of CPU time and
main memory (RAM). The user can set a type of high priority
by assigning a large percentage of CPU time and a large amount
of available RAM.)

13

Authors vary on strict definitions of multitasking (Ref.
10:p. 132,133,171,211,261]. The definitions for multitasking
used here are:

* Preemptive - the operating system, without user
intervention, calculates a process priority and assigns CPU
time and RAM. (Examples are UNIX and 0S/2.)

*+ Cooperative - programs are written to keep track of the
CPU time used and give up CPU time at regular intervals. This
is a function of the appli_cation program and not the operating
system. (Examples are Microsoft Windows 3.1 applications and
Apple System 7 Savvy.)

* Time slice - the user can assign a percentage of CPU
time and a portion of available RAM. (Windows 3.1 and System
7 both allow this function.)

Taking multitasking one step further is the idea of
multithread processing. [Ref. 7:p. 587] [Ref. 10: p. 212}
Each executable path through a process is a thread. By
keeping the threads active a process can run threads in
parallel for even faster execution. Multithread processing
requires special coding.

In a single CPU environment multitasking is an illusion.
The CPU is switched between tasks or processes s0 fast the
user has the appearance of many things happening at once.
When a process is blocked it is kicked out of the CPU and
another process is brc;ixght in for execution. The most common

14

reason for a block in a process is waiting for some input cr
output to a file (disk drive etc.) or other device.

File systems differ between operating systems. Some
operating systems support more than one file system. PFor
example, 08/2 supports the MS DOS file system that differs
from its own. File systems are always closely joined to input
and output. Handling for input and output to a specific
device is rather uniform in the way an operating system is
implemented. The operating system is kept as generalized as
possible where devices are concerned. The operating system
will not command the device directly, but will use a "device
driver® instead. Device drivers may be hardware or software.
The device driver is device specific and is usually provided
by a device manufacturer or software vendor. [Ref. 11:p. 206]
The device driver interfaces the hardware or software to a
particular operating system.

A similar procedure is used to interface user application
programs to an operating system. Application programs
include: drawing programs, spreadsheets, word processors, and
others. Application progrars are written to a specific
operating system. The operating system designers provide
documentation on Application Program Interfaces (API’s) to
application program developers. These API‘s consist of
operating system function calls where the application program
can use the functions ‘of the operating system.

15

For users who may want to write their own applications,
operating systems provide an environment for compilers and
interpreters. [Ref. 1:p. 206,208])] A compiler, such as the
UNIX C++, translates source code written in C++ language rules
(called syntax) into machine binary code. This conversion is
accomplished in one pass through the code. The computer can
then execute the compiled binary code. Other programs called
linkers and binders assist the compiler in memory addressing.

An interpreter, such as DOS BASIC, recognizes commands,
translates the command and executes before going to the next
command. The interpreter must translate and execute with each
pass. This is much less sophisticated than a compiler.

Clearly, the operating system affects every aspect of
computing from hardware to application software. This most
important piece of software justifiably deserves a close study

prior to selection.

16

II. UNIX

A. UNIX BACKGROUND

To understand the UNIX operating system a brief history
and current status of UNIX is in order. Using a PDP-7
computer and the predecessor of the programming language C
called B, Ken Thompson developed an early version of UNIX
(Uniplexed Information and Computing Service) [Ref. 1l:p.
267). [Ref. 7:p. 572] [Ref. 10:p. 207] Thompson was later
joined by Dennis Ritchie and they rewrote the UNIX operating
system in C. This version of UNIX written in C originally ran
on the PDP-11 series computers. Current versions of the UNIX
operating system are written in Ce++.

Ritchie and Thompson published a paper on UNIX in 1974
and ten years later received the ACM Turing Award for
computing excellence. [Ref. 11:p. 267] The paper stimulated
the interest of many universities which prompted requests to
Bell Labs for a copy of the UNIX operating system source code.
At that time the parent company of Bell Labs, AT&T, was a
regulated monopoly. AT&T could not compete in the computer
industry and was willing to 1license copies of the UNIX

operating system for a nominal fee.

17

Fortunately, most universities had the PDP-11 series
computers in their computer science departments. The
operating systems installed on most university computers were
woefully inadequate. Furnished with the UNIX source code,
professors and students enhanced the UNIX operating system by
finding and fixing bugs and making improvements. Symposiums
held on the UNIX theme led to the first de facto academic UNIX
standard called Version 6. The USENIX users group was
established to support this standard in 1975 [Ref. 7:p. 572].
The publication which supported Version 6 was the UNIX
Programmer’s Guide Sixth Edition [Ref. 11:p.267). Version 6
was soon replaced by Version 7 which was the last time the
UNIX operating system was covered under a single standard.

The goals of UNIX have remained relatively stable through
the years. UNIX is an interactive time sharing system,
designed by programmers for programmers. The design is
multitasking for multiple users. Multitasking allows the CPU
to run several parent and child processes, at times in
parallel. Multiple users can share information on a
restrictive basis. UNIX supports three user domains: the
programmer, the programmer’s group and others. Functions

supported among users are read, write, and execute.

18

In the 1980's major events took place to shape the future

of UNIX. ([Ref. 7:p. 573] [Ref. 10:p. 207] Microsoft'’'s
commercial version of UNIX hit the market. The operating
system name was XENIX. XENIX was designed to run on 16-bit
microprocessors. To enhance the commercial UNIX product
Microsoft Corporation added hardware error recovery, shared
data segments and improved interprocess communication. During
the same year (1980), the University of California at
Berkeley, with grants from DARPA (Defense Advanced Research
Projects Agency), now ARPA, had developed and released their
own version of UNIX known as Berkeley UNIX or BSD (Berkeley
Software Distribution). BSD supported distributed computing
(peer to peer) on Digital Equipment Corporation (DEC) VAX mid-
size computers.

With the divestiture of AT&T in 1982, the company was
free to compete in the computer industry. [Ref. 7:p. 573]
[Ref. 11:p. 268] Reacting quickly AT&T released their own
rofficial" version of the UNIX operating system. AT&T'’s first
serious UNIX operating system marketing attempt began with
System III. System III offered remote job entry, source
code control system and system accounting routines. System
III evolved into System V which offers other system
enhancements. Unfortunately, the AT&T System V and Berkeley
UNIX are not compatible. Current releases of each operating
system are System V Rélease 4 (SVR4) and BSD 4.4.

19

—

Berkeley introduced Wide Area Networking (WAN) to UNIX
with the inclusion of TCP/IP (Transmission Control
Protocol/Internet Protocol). [Ref. 10:p. 231)] ([Ref. 11l:p.
269] The TCP/IP network protocol has become a de facto
standard in the United States and is a DOD military standard.
TCP/IP is in far greater use than the official standard
supported by the International Organization for
Standardization. Berkeley also added several utilities such
as the "vi" editor and the "csh" shell along with Pascal and
Lisp compilers.

These improvements prompted companies such as Sun
Microsystems to originally model their SunOS after Berkeley'’s
BSD instead of AT&T System V, but currently SunSoft follows
SVR4 AT&T standards for both its Solaris and INTERACTIVE UNIX
operating systems [Ref. 12:p. 2]. The vast majority of all
UNIX operating systeams support TCP/IP.

Many other competitors have entered the UNIX market with
vergions of the UNIX operating systems. Apple’s version
called A/UX was originally released for the Macintosh II in
1984 [Ref. 7:p. 772]. IBM'S vef;ion called AIX is supported
by the Open Software Foundation (OSF) that was established in
1988 [Ref. 7:p. 605]. The lack of a comprehensive UNIX
standard (see POSIX) has limited the sale of UNIX in the

system software market.

20

Milestones in the history if UNIX include:

1970
1973
1974
1975
1979
1980
1980
1982
1984
1986
1987
1988
1988
1993

UNIX name coined

UNIX rewrote in C

Ritchie & Thomas UNIX paper published
UNIX used at university level on PDP-11
UNIX Time-Sharing, Seventh Edition
Microsoft released XENIX

Funding for Berkeley UNIX

AT&T released System III with RJE

ACM Turing Award to Ritchie & Thomas
AT&T System V Interface Definition (SVID)
Apple releases AU/X for Macintosh II
AT&T System V Release 4 (SVR4)

OSF founded to support IBM’s AIX

Berkeley withdraws from BSD

21

B. UNIX and POSIX

The Government has designated UNIX as the operating
system standard for its departments and agencies. [Ref. 11:p.
270) [Ref. 13:p. 8-1] UNIX has several implementations in the
market place that are not portable across hardware platforms.
In an effort to make UNIX portable across platforms the
National Institute of Standards and Technology (NIST) under
the Department of Commerce has adopted the Portable Operating
System Interface for Computer Environments Standard, (acronym
POSIX). The "ix" portion of POSIX indicates the operating
system portability is for the UNIX system [Ref. 11:p. 269].

Various attempts to completely standardize UNIX have
failed. [Ref. 11:p. 269] ([Ref. 13:p. 8-2] Two distinct
incompatible wversions of UNIX emerged in the late 1980’s
(System V and BSD). Vendors adding nonstandard enhancements
further complicated UNIX compatibility. AT&T, Berkeley and
consortiums of various vendors have tried to standardize UNIX.
One of the initial attempts at standardization by AT&T was
SVID (System V Interface Definition). SVID defined file

formats and system calls in an attempt to standardize System

V. SVID was ignored by the Berkeley UNIX group. The

22

Finally, a neutral body was brought in to reconcile

System V and BSD. [Ref. 7:p. 603] The body chosen was IEEE
(Institute of Electrical and Electronics Engineers). IEEE
began the POSIX project with the goal of standardizing the
UNIX operating system in an effort to achieve portability
across UNIX platforms. The IEEE designator for POSIX is
1003.x (where "x" represents a series number dealing with a
specific function or service). The designator IEEE 1003.0 may
also be referred to as POSIX.O, which in this case refers to
a "Guide and Overview" of the POSIX standards.

The fundamental idea behind POSIX is that a software
vendor that supplies a program which is POSIX compliant has
used only procedures defined by the POSIX standards. When
POSIX is fully enacted this will ensure the program will run
on a conforming UNIX system. POSIX can best be described as
an incomplete standard. [Ref. 13:r 8-2] The problem is
POSIX does not currently address all ~f the functions needed
to implement operating system software. The reason POSIX is
incomplete is due to the way IEEE decided to implement the
standard.

IEEE took the intersection of features found in System V
and BSD rather than the union of features. [Ref. 7:p. 13]
[Ref. 11:p. 270] In other words, if a feature is present in
both System V and BSD the feature is included in the IEEE
standard otherwise it“is not addressed. Examples of services

23

not addressed by IEEE standards are: login services standards,
checkpoint and restart standards and resource limit standards,
just to mention a few [Ref. 13:p. 8-28,8-32,8-34].

The result of the IEEE intersection of System V and ESD
creates a standard that closely resembles the academic UNIX
prior to the AT&T divestiture, namely Version 7 [Ref. 11:p.
270]. It.is possible for vendors to be POSIX compliant and
still conflict between themselves. [Ref. 14:p. 594] A group
of vendors responding to AT&T control of a large part of the
UNIX market set up a consortium called OSF/1 (Open Software
Foundation). The purpose of OSF is to produce a system that
meets IEEE standards. The additional features of OSF/1 such
as X11 Windows and MOTIF graphical user interface makes the
OSF/1 system incompatible with System V and BSD. The AT&T
consortium response to OSF is UNIX International (UI).

The requirement of functions outside the realm of POSIX
has lead to "Extensions" to POSIX. It is the extension
portion of the operating system which leads to incompatibility
and non-portability between vendors. Different
implementations that conform to POSIX (e.g. BSD, OSF/1, UI,
and other vendor products) often support the same function
differently. The names of UNIX system calls may be identical
between vendors. Vendor incompatibilities arise £from
differences in data types of the function, data types of the
arguments, the retufh values, the header files and the

24

symbolic error values [Ref. 13:p. 8-2]. These systems

continue to evolve in different directions.

Three gets of nearly identical documents govern the POSIX
*"Application Program Interface" standard. [Ref. 13:p. 8-1]
[Ref. 15:p. 1] The IBEE 1003.1, POSIX Interface for Computer
Environments was originally adopted by NIST in 1988. NIST
adopted IEEE 1003.1 calling it FIPS 151-1 (Federal Information
Processing Standard). The most current edition is FIPS 151-2
which was released in May 1993. The goal of FIPS is to give
the federal government more effective control over information
resources via compatibility and portability. NIST currently
conducts POSIX compliance tests and publishes a register of
POSIX compliant UNIX products. Mirroring the IEEE 1003 series
standards are the ISO/IEC 9945 series standards. The ISO/IEC
9945-1 standards are exactly the same as IEEE 1003.1.

X/Open is the nonprofit, international UNIX standards
organization [Ref. 14:p. 607). It provides a common ground for
two industry leaders. The UNIX International group backing
System V Release 4 (SVR4) includes: AT&T, Data General
Corporation, Sun Microsystems, and Unisys Corporation. [Ref.
14:p. 594] The Open Software Foundation supporters of OSF/1
consists of: IBM, Digital Equipment Corporation, Groupe Bull,
Hewlett Packard, and Nixdorf Computer AG. Vendor specific
features and proprietary barriers result in UNIX non-
portability across platforms.

| 25

C. UNIX PROCESS MANAGEMENT

UNIX is a multiprogramming, multitasking system, so
several independent processes from different programs appear
to be running at the same time. The process is the simplest
level of a program and can be viewed as an individually
controllable computation entity or a task to be accomplished.
Processes can be running (or executing), ready to run
(waiting) or blocked from running pending some action. The
idea of multitasking is to keep the microprocessor as busy as
possible and not to wait for a process that is blocked.

UNIX primarily uses preemptive multitasking. As an
example, at timed interrupts of ten times per second, the UNIX
scheduler of the Sun0OS examines the processes that are ready
to run. [Ref. 7:p. 582] The scheduler algorithm is a finite
amount of definable steps to accomplish the scheduling task.
Based on a priority adjustable algorithm the scheduler takes
into account the following:

* process priority,

* amount of CPU time recently used, and

* amount of time the process has been on hold.
These determine which process the scheduler will start next.
Process priority is recalculated once per second by the
scheduler.

The scheduling algorithm is set to forget a portion of
CPU time used by a pa;ticular process based on the number of

26

competing ready processes waiting for the CPU. [Ref. 7:p.

583] (Ref. 10:p. 212) This means that the running process is
not indefinitely penalized for past CPU usage and that it will
receive more time with less competitors present. New
processes have a higher priority if they have not received any
CPU time. The result is three favorable factors for
multitasking:

* Processes that require little CPU time, (called I/O

bound processes), get favored treatment.

* Processes that take more CPU time, (called processor

bound processes), are not postponed indefinitely because

the scheduler is programmed to forget some of the CPU time

used by a process.

* The system adjusts to the process environment based on

the number of ready processes.

Programs that run on UNIX all start as a single process.
[Ref. 10:p. 209]) [Ref. 11:p. 281] [Ref. 14:p. 208] UNIX uses
a fork call to divide a process into two or more processes if
needed. The fork call makes an exact copy of the original
process. The original process is the parent process and the
copy is the child process. The child has the same priority
as the parent since it is an exact copy, but each process is
given its own memory space to run and is treated
independently. To distinguish the parent from the child
process the fork calilassigns a process identifier (PID) to

27

each process.

Interprocess communications can take place in a variety
of ways in UNIX. (Ref. 7:p. 583] (Ref. 1l1:p. 283] If
processes share a memory area for communications a semaphore
data structure (usually binary) is used to lock the shared
resource, Communications paths between processes may be
permanent, which are called Named Pipes or they may be a First
In First Out (FIFO) queue of bytes, simply called a Pipe.
Similar to Named Pipes and Pipes, Sockets are two-way
communications lines between processes that can be created and
destroyed dynamically. Sockets are particularly useful
because they support the use of protocols such as Berkeley’s
TCP/IP. (Berkeley introduced sockets while AT&T introduced
Named Pipes and Pipes). AT&T System V currently uses Message
Queues for primary interprocess communications.

Signals are actually software interrupts similar to
hardware interrupts. [Ref. 7:p. 583] [Ref. 11l:p. 283] A
process can send a signal to another process and the receiving
process can act upon the signal or not. Unlike hardware
interrupts, signals have no priority system. Because signals
have no priority system and are 1limited in scope of
communication. They are not intended for interprocess
communications. Signals can only be sent between the same
process group which are parent, children and other direct
descendent. UNIX su_ppérts approximately 20 different signals.

28

To keep track of all the processes generated, UNIX

employs a process table for all running processes. (Ref.
10:p. 210) [(Ref. 11:p. 300] Information maintained in the
process table falls under four areas: scheduling, memory,
signals, and miscellaneous information. Scheduling parameters
include all the needed information for the scheduler. This
includes process priority, amount of CPU time used, and how
long the process has been waiting for CPU time. Memory
information is simply add;ess information (pointers) to where
various program parts reside on disk or in main memory, such
as data, stack and text segments. The program in main memory
is the memory image. The process is the execution of the
image [Ref. 14:p. 186€]).

Signal information stored for each process includes:
which signals are being ignored (blocked), which signals are
pending, and which signals have special handling routines.
[Ref. 10:p. 210] The miscellaneous information category
includes ownership and process relationship information.
Ownership is information about user and group identification
used for security. The process relationship information has
the process identification numbers of the immediate family of
a group processes. The current status of the process is also
filed under miscellaneous.

Maintaining a process table for each process causes a
great deal of proceébing overhead. [Ref. 7;p. 587] Each

29

process has its own program counter, set of registers and
address space. Some programming languages provide the ability
for parts of a process to execute in parallel. Parallel
processes have various threads of control which are discrete
execution paths. Several threads of a process executing in
parallel are called multithread execution. Multithread
execution has two advantages. First, it allows the operating
system to take full advantage of multitasking capabilities and
second, there is a reduction in process overhead.

Unlike processes ,threads share address space so there is
less protection between threads. (Ref. 7:p. 587] [Ref. 10:p.
212] ([Ref. 11:p. 508] This lack of protection is not a
problem since threads belong to the same process. Sun
Microsystems version of the UNIX operating system (SunOS),
calls this multithread execution with low overhead lightweight
processes.

The high efficiency which the UNIX operating system
controls the CPU enables multiple programs to run in what
appears to be a concurrent manner. Programs are said to be
running in the foreground or the backgroungd. {Ref. 14:p.
189,190] Bach program is composed of processes. The
processes running in the background are called daemons [Ref.
11:p. 279] 'Ref. 14:p. 197]. Typical uses for daemons are:
electronic mail services, handling a print queue, managing
memory and timer servlces. Implementation of daemons in UNIX

30

is elegant and simple since each daemon is a separate process
that is independent of other processes.

The minimum CPU requirement .or running the UNIX
operating system is the Intel 80386 or the Motorola MC68030
(Ref. 10:p. 205]. Memory requirements vary between vendors.
Typical UNIX PC’'s require 12 megabytes of RAM and 200
megabytes of fixed disk space [Ref. 12:p. 12].

31

D. UNIX FILE SYSTEM and FILE SECURITY

A UNIX file is a collection of addressable bytes
containing arbitrary information that the user has chosen to
place into it [Ref. 7:p. 577]. UNIX makes no distinction
between ASCII files and binary files, so the meaning of the
file is left to the owner [Ref. 1l1l:p. 276)]. The UNIX file
system is hierarchical system with the root node at the
origin. [Ref. 7:p. 576] ([Ref. 10:p. 216] Security is
provided to all files via a nine bit protection called rights
bits [Ref. 1l1:p. 277].

File extensions that are added to the end of a file name
such as .EXE or .SYS for executable and system files,
respectively, are not enforced in UNIX. [Ref. 10:p. 218]
File names are normally up to 14 characters, but can be up to
255 characters long in Berkeley UNIX. The result is that very
flexible and descriptive file names may be used.

The hierarchical file system supports directories and
subdirectories. [Ref. 10:p. 216] (Ref. 11:p. 287] Unlike DOS
and 0S/2 that use the back slash (\) to delineate the path
name to a file, UNIX uses a forward slash (/). Files can be
accessed by using either the absolute path name or the
relative path name. Starting at the root directory and
specifying all subdirectories down to the file name is the
absolute path name. Starting at the current or working
directory and specify:fng only subdirectories below the current

32

directory down to the file name is the relative path name.

The file system always knows the user’s current or
working directory. Therefore, the user can access the desired
file that is under the current directory without referencing
through the root directory because the file name used is
assumed to be under the current directory. The mount system
call can be used to attach a file system to a directory in
another file system [Ref. 7:p. 577]. Unmount reverses the
procedure.

The disks that employ the UNIX file system have a
defined data structure resident on those disks. [Ref. 7:p.
5771 [Ref. 10:p. 217] [Ref. 11:p. 307] The physical structure
can be viewed as a series of contiguous blocks up to some
point and then the address (or pointer) of the next set of
contiguous blocks. The first block (block 0), is not used by
UNIX and is usually reserved for computer boot code. Block 1
is called the super block. The super block contains
information that defines the file system. Destruction of the
super block renders the system unreadable because a list of
actual data file blocks and a list of free blocks are
maintained here. All block allocations are in fixed-.:ized
blocks.

In addition to lists, the super block also contains an
array of inodes. [Ref. 7:p. 578] [Ref. 10:p. 219] ([Ref. 11:p.
308] An inode is “sixty four bytes 1long and contains

33

information about a particular file. There is an inode for
every file and directory on the disk. UNIX also uses
directories to relate the name of a file to its inode number.
These directory lists are separate from the file description
on disk so more than one directory can point to the same file
on disk. UNIX calls this capability linkiﬁg.

The concept of 1linking is important because a non-
directory file may appear in many different directories under
different names. ([Ref. 7:p. 577] [Ref. 10:p. 217]) [Ref. 11:p.
288] The number of names a physical file has is called the
link count. Directory entries for the files are called links.
Files can exist independently of the directory entries.
Links pcint to inodes that point to the physical file on disk.

An inode contains the information on: the number of links
to a file, time modifications, file type, physical size,
location, ownership and permissions [Ref. 7:p. 578]. Unix
permissions fall into three categories: the owner, the owner’s
group and all others. [Ref. 7:p. 578]) [Ref. 10:p. 215] Each
category has three options: read, write and execute the file.
The owner may also elect to grant no permissions indicated by
a dash (-) rather than r,w,x used for the read, write and
execute permissions. Nine bits are used in this file
protection scheme, tlLcee for the user, three for the user’s
group and three for all others. Only the user and the system
administrator can.mgdify the protection of a file. The system

34

administrators are also called the superusers because they
alone have control over system files.

UNIX time modifications are similar to other file
systems. Time modifications include: the time the file was
created, last used and modified. The time the inode was last
modified is also maintained.

File types are: ordinary, directory and special. The
first two are the standard files that most users are familiar
with seeing. [Ref. 7:p. 578] [Ref. 11:p. 291]) The special
files are used with input/output devices and are either
character special files for eight bit serial transfers (one
byte) or block special files for larger transfers typically.
These are 512 or 1000 bytes for random access.

The physical size of the file will determine how the UNIX
stores it. [Ref. 7:p. 578] [Ref. 11:p. 165] The inode points
directly to the first ten blocks of a file. For small files
this is usually all the memory space needed. As the file
grows, UNIX employs an indirect addressing method that can
extend three levels deep. Inode fields zero through nine are
direct block addresses, field ten is a single indirect block
address, field 11 is a double indirect block address and field
12 is a triple indirect block address.

For files larger than ten blocks of memory, field 10 of
the inode contains the address of the single indirect block.
This block contains the disk addresses of more disk blocks.

35

=gl A oc Tty St

R

For example, if the block is 1000 bytes (1 K) and each address
was four bytes, the single indirect block could hold up to 256
addresses (or 256 K of memory) before the double indirect
block is needed. Following the same example, the double
indirect block would contain 256 single indirect blocks that
would each hold addresses of 256 data blocks. Double indirect
address will hold up to 65,536 addresses and beyond that the
triple indirect blocks hold up to about 17 million addresses.

As the file grows the time necessary to access the entire
file past the first ten blocks also grows because the levels
of addressability increase. A large file may require several
pointers to be used to retrieve the entire file due to the
indirect addressing method used with UNIX.

No organization is enforced on the file. The
organization is decided by the application program that
created the file. This emphasizes the notion that UNIX treats
files as addressable bytes defined by the user or application
program.

To facilitate sharing files across a network two systems
are dominate among UNIX users, NSF and RFS. [Ref. 7:p.
601,602) [Ref. 10:p. 231,729] Network File System (NFS) was
developed by Sun Microsystems and released in 1984. The design
of NFS was for wide area usage across several dissimilar
networks. NSF is based on the Remote Procedure Call (RPC) and
External Data Represeﬁtation (XDR) .

36

RPC enables programs to retrieve values from other
computers on the network and XDR is the standard used to
represent the data between different types of computers.

The Remote File System (RFS) was released in 1986 by AT&T
to support distributed UNIX computing with System V Release
3.0. [Ref. 10:p. 727] RFS can operate using TCP/IP and other
network protocols. AT&T’'s RFS and Sun’s NSF are not
compatible without an intermediate translation [Ref. 13:p. 8-

10].

37

B. UNIX INPUT/OUTPUT SYSTEM

UNIX treats input and output (I/0) to devices as streams
of bytes {[Ref. 7:p. 590] [Ref. 14:p. 402]. Devices for I/0
typically include terminals, disk drives, printers, and
networks connected to the devices. This macro-level handling
of I/0 has the net effect of placing the burden of defining
the streams of bytes on the application program. A common
structure for UNIX operating system application program is a
text stream of ASCII characters. The UNIX I/O system calls
assume unstructured byte streams; no definition of the byte
stream is assigned by UNIX. All structure for the byte stream
is created by the application program.

To allow access to devices, UNIX integrated the devices
into the file system as special files. [Ref. 7:p. 591] [Ref.
11:p. 290] Like other system files, special files are owned
by the superuser (system administrator). By convention device
special files are usually placed in a directory called "/dev".
Each device is assigned a path name. For example, a line
printer may be referenced by /dev/lp. The path name not only
gains access to the particular device, but since the device
driver is part of the file system it is afforded file
protection. The disadvantage of embedding device drivers in
the UNIX system is the requirement that they must be linked to

the system by the system administrator.

38

Special files have two categories, block and character
special files. [Ref. 7:p. 582] ([Ref. 11:p. 290] Block
special files are for random access and are used to access
disks. The file consists of a sequence of numbered blocks.
Each block is individually addressed and accessed. The goal
of UNIX I/O system on block special files is to minimize the
number of data transfers. UNIX systems place a buffer cache
between the disk drives and the file system which minimizes
the transfers needed.

A read cache is very easy to implement and is used even
in the simplest operating systems. The operating system
merely reads more data than what is requested thus reducing
the number of disk accesses for sequential requests. Write
cache is more difficult to implement and is handled
differently between specific versions of