
0
NaSUoN D1ense

1 Defence naonale

AD-A279 873

EVALUATION OF BORLAND TURBO VISION

by

David Lee and Andrew Mudry

DTIC
J% ELECTE/JUNQ f 1l

94-16314 B

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 93-37

December 1993CanadM Ottawa

Nainl Ddfense
Defence nationale

EVALUATION OF BORLAND TURBO VISION

by

David Lee and Andrew Mudry
Electronic Support Measures Section

Electronic Warfare Division

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 93-37

PCN December 1993
041LK Ottawa

ABSTRACT

Turbo VisionTM, a new application framework for PC DOS-based software development,
is evaluated for its effectiveness as a base for computer applications. Turbo Vision provides an
object-oriented, text-mode user interface and an event-driven program structure. An overview
of the structure and software tools provided by Turbo Vision is presented. Various factors, such
as consistency in architectural design, technical support, and ease of use, are considered.

RI9SUME

Dans le present rapportTurbo Vision', une nouvelle application destinde A l'Plaboration
de logiciels A base PC DOS, fait l'objet d'une 6valuation visant i determiner son efficacit6 en
tant que base pour les applications informatiques. Turbo Vision fournit une interface centree-
objet ainsi qu'une structure de programme dirig•e par les dv~nements. Nous pr~sentons une vue
d'ensemble de la structure et des outils logiciels que fournit Turbo Vision. Divers facteurs, tels
que la coh6rence de la conception architecturale, les dispositifs techniques de soutien et la facilit6
d'utilisation sont 6galement 6tudi6s.

Accession Fr
ITIS GRA&I U
DTIC TAB 9
Unannounced 3
Justification

BY
Dismribution/.:,
Availability W•Vo

vIil and/or
9ist ISpecial

EXECUTIVE SUMMARY

Turbo VisionTM, a new application framework for PC DOS-based software development
from Borland, is evaluated for its effectiveness as a base for computer applications. Turbo
Vision provides an object-oriented, text-mode user interface and an event-driven program
structure. Because of its tightly integrated, hierarchical architectural design and object-oriented
implementation, Turbo Vision must be used in its entirety. It is not a disjoint set of tools. For
the same reasons however, it is very flexible and easily extended with a minimal amount of code.

Turbo Vision provides a full suite of user interface features, such as windows, dialogue
boxes, buttons, and keyboard and mouse support. Other important factors in evaluating Turbo
Vision's usefulness include the learning curve, the level of technical support provided by
Borland, the advantages and limitations resulting from using Turbo Vision's program structure,
and the ease of conversion from the DOS-based, text mode environment to a Windows-based,
graphics mode environment.

This document describes Turbo Vision, and evaluates it according to the above factos.

v

TABLE OF CONTENTS

A BSTRA CT . .. iii

EXECUTIVE SUMMARY ... v

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... ix

1.0 INTRODUCTION .. I

2.0 AN OVERVIEW OF TURBO VISION I
2.1 Screen Display with Turbo Vision Views 1
2.2 Turbo Vision's Event-Driven Framework 2
2.3 The Influence of Turbo Vision on Software Design 3

3.0 IMPORTANT CONSIDERATIONS IN SOFTWARE DESIGN 3
3.1 The Influence Of Turbo Vision On Software Design 4
3.2 Technical Support and Other Resources 5
3.3 Portability To Other Functions 5

4.0 AN EXAMPLE IMPLEMENTATION 6
4.1 The User Interface .. 6
4.2 The Fax Converter . .. 8
4.3 The Fax Viewer .. 8
4.4 The Fax File Manager 9

5.0 CONCLUSIONS .. 10

6.0 REFERENCES 11

APPENDIX A: TECHNICAL SUPPORT FOR TURBO VISION 12

APPENDIX B: THIRD PARTY RESOURCES FOR TURBO VISION 13

vii

LIST OF FIGURES

Figure 1: Defaxer Application Main Menu 6

Figure 2: Defaxer File Manager Dialogue Box 10

ix

1.0 INTRODUCTION

Turbo Vision is an object-oriented, hierarchical framework for PC DOS based software
applications. Turbo Vision provides a full suite of user interface features, ranging from simple
buttons to a fully functional file selection module, that can be extended using the object oriented
inheritance feature. Turbo Vision also provides an event driven program structure with keyboard
and mouse support that can be likewise extended using object oriented techniques. Turbo Vision
is available for use with Borland's C++ and Object Oriented Pascal compilers. Indeed, Borland
uses Turbo Vision for its integrated development compiler environments. The C++ and Pascal
versions are very similar in design, although only the C++ version 1.03 is discussed in this
document.

In addition to the actual tools provided by a software package such as Turbo Vision,
there are several other factors to consider. The primary consideration is the amount of time
necessary to develop and to maintain an application. As an application's functionality is
expanded following its initial development, the user interface and program structure must be
easily extendable in order to handle any new modules or data flow paths. Since Turbo Vision
imposes a program structure that is inextricably linked with its user interface features, this
event-driven structure must also be evaluated. Other factors to consider are the level of technical
support provided by Borland, the tesources provided by third party sources, and the portability
of applications developed for Turbo Vision. The observations and opinions presented in this
document are based on personal experiences obtained during the development of a fax
demodulator and viewer application in the Electronic Warfare Division at DREO. This example
application is presented briefly, with focus on the influence of Turbo Vision on design decisions
and program development.

2.0 AN OVERVIEW OF TURBO VISION

The elements of a Turbo Vision application can be separated into three groups: views,
events, and mute objects. Views are rectangular program elements that access the screen display.
Events are occurrences to which the application must respond, and finally, mute objects are any
non-view objects.

2.1 Screen Display with Turbo Vision Views

A view is any element of the program that writes to the screen. Views include fields,
scroll bars, labels, window borders, dialogue boxes, and even the application itself. They are
derived from the Turbo Vision TView class. A view is responsible for a rectangular area of the
screen and must manage the entire area. There are special collective views derived from the
Turbo Vision TGroup class that own and manage arbitrary collections of views. Turbo Vision
provides a skeleton application called TApplication which is a group view responsible for the
entire screen and that owns, either directly or indirectly, every other view in the program. Since
each view contains the information necessary to display itself, the program can redraw the entire
screen simply by directing each view to draw itself in its own rectangular area. Thus, if the user

moves or resizes a window, the Turbo Vision framework automatically handles the redisplay of
the screen. A TGroup based collective view also determines if any of its subviews are hidden
by other views. It will only call the subviews which are not completely covered by other views.

The object oriented approach to this screen display framework considerably reduces the
amount code that one must write to create new views. TView and TGroup member functions
already provide all of the decision making code for scrolling, resizing, and moving windows, and
for deciding when to redraw the screen and how to handle subviews. When one derives a new
view from TVMew and possibly also from TGroup, this functionality is automatically inherited
from Turbo Vision's base classes. All one really needs to supply is the member function for
drawing the view. Turbo Vision handles the peripheral work of the user interface.

2.2 Turbo Vision's Event-Driven Framework

An event is any occurrence to which the application must respond. These include key
presses, mouse clicks, commands from other parts of the program, or a character input from a
serial port, Turbo Vision provides an event driven framework which provides centralized event
gathering, event routing, and event queuing. One can concentrate on handling events instead of
spending development time continually rewriting event gathering routines. As a user interface,
Turbo Vision is responsible for obtaining keyboard and mouse inputs, as well as inputs from
other sources that one defines. It is also responsible for sending these inputs, along with
commands from other modules, to the target object or module.

Each event is stored in a Turbo Vision TEvent object that contains a header and data
space for a message. There are four kinds of events: mouse events, keyboard events, nothing
event, and message events. Mouse and keyboard events are generated by Turbo Vision from the
corresponding user inputs. Nothing events are dead events that have already been completely
handled. Message events, which are divided into commands, broadcasts, and user messages, are
used for internal communication. Since there are a large number of predefined command and
broadcast messages, as well as the possibility new user defined message events, Turbo Vision
is flexible enough for large programs. There are predefined masks for quickly identifying the
different kinds of events. Commands can also be individually disabled and enabled at any time.
In general, the event format appears to be well-organized and flexible.

The Turbo Vision framework provides an event manager and a centralized mechanism
for gathering these events from the event manager. One can override this event gatherer to
search for events from other input sources, such as the serial port. Having a centralized event
gatherer makes it easier to upgrade an application to work with a new input source.

Turbo Vision is responsible for routing the events to the proper module for processing.
One can thus concentrate on handling the events without being concerned about getting the events
or about from where the events came. The event driven framework is embedded within Turbo
Vision's TView class, so it permeates the entire application framework. Class TView has the
virtual member functions getEvento and handleEvento to get and handle events. One normally
overrides handleEventO to extend the capabilities of a new view. Due to the inheritance feature
of object oriented programming, the derived view is capable of handling all of the events that
TView handles, such as opening, closing, and resizing windows. One concentrates solely on the
new functionality, allowing Turbo Vision's base classes to handle the basic functionality.

2

2.3 The Influence of Turbo Vision on Software Design

Turbo Vision offers some general software tools that are used internally and are also
available to external applications. TCollection and various derivative classes provide basic
mechanisms for handling collections of objects. The Turbo Vision stream manager provides an
extension to C++ stream I/O. The Resource classes aid in storing and retrieving objects to and
from streams.

The Collection classes provide dynamic data structures and member functions to handle
objects such as strings, files, and resources. TStringCollection handles a sorted list of ASCII
strings. TResourceCollection is derived from TStringCollection, and handles a collection of
resources which are described in the following paragraphs. TFileCollection and TDirCollection
are designed specifically to handle file names and DOS directory path names. TFileList and
TDirListBox use these classes to display lists of files and directories through which the user can
scroll and select individual entries.

A stream is an abstract data type representing a sequence of objects. The standard class
iostream handles I/O operations in C++. In these operations, data which is stored in a file or
a block of memory, sent to a monitor, read from the keyboard, or transmitted across a modem,
is treated as a stream. Turbo Vision provides a stream manager which extends the capabilities
of the C++ iostream class, allowing the handling of more complicated objects in Turbo Vision.
The class TStreamable provides the read and write functionality that the stream manager
requires. Since TView and TCollection are derived from TStreamable nearly all the classes in
Turbo Vision, ranging from simple buttons and menus to extensive lists and even the entire
application itself, are streamable. Each object inherits the streaming functionality from
TStreamable, so it knows how to store its internal data on a stream and how to retrieve or
initialize itself from a stream. Thus, the contents of one's entire application may be stored in a
file with a single command that propagates through all the streamable objects in the application.

A Resource in Turbo Vision is an indexed random file. The Turbo Vision resource
classes extend the file I/O capabilities of streams to provide more flexibility in accessing objects
without knowing where the objects are located in a stream. Resource files can be used to
customize an application without changing the code. For example displayed text, such as menu
labels, on-line help, and dialog box information, can be stored in a file. To create a version in
a different language, one only needs to replace the resource file instead of changing the original
code and recompiling application. Configuration information, such as directory names, dialog
box text, and colours, can be stored in a resource file for easy modification.

3.0 IMPORTANT CONSIDERATIONS IN SOFTWARE DESIGN

The main criteria in selecting an external software development package such as Turbo
Vision is the cost associated with development and maintenance time. The greatest factor
affecting this criteria is the architectural design of the software package. A well-designed,
consistent architecture will lower the learning curve and reduce development and debugging time,
while a poor disjointed design will force one to spend excessive amounts of time patching the
software together. Various secondary factors such as the level of technical support provided and
portability to other platforms must also be considered.

3

3.1 The Influence Of Turbo Vision On Software Design

A well-designed, consistent architecture adheres to the object-oriented programming
methodology of structured, modular, reusable code that manages both the behavioural and
informational complexity of an application. There should be a consistency among the modules
and classes of an application in terms of naming conventions, and the partitioning of functionality
among member functions.

The core of the application is that part of the application which does the actual work,
such as signal processing or computations. The Turbo Vision architectural design separates the
display (screen output) process and the input processes from the core of the application. The
input processes may be external, such as keyboard and mouse inputs, or internal, such as
commands and messages. This modularization provides for well-structured programs with clean
internal interfaces, resulting in programs that are easier to debug and maintain. This enforced
modularization has potential for positive long-term effects since it inhibits the degradation of an
application's initial modularization which often occurs with successive maintenance upgrades.

In regards to development time, simple, straightforward user interfaces may be developed
very quickly with minimal coding using Turbo Vision. One merely derives a new class based
on the skeleton application TApplication and completes the application by adding member
functions and by overriding TApplication::handleEvento to control the member functions. To
create a complete menu structure requires only one function call per menu entry, with all of these
function calls linked together in a single call to the menu bar. Turbo Vision handles the
formatting, hotkeys, pull down menus, and mouse support automatically. Indeed, one can
construct straightforward applications simply by following the various example programs
provided by Borland, without knowing much about the underlying structure.

Although Borland provides a large variety of example programs demonstrating the
various features of Turbo Vision, one must eventually learn about Turbo Vision in order to use
it effectively. Due to its tightly integrated structure, one must sometimes learn large portions of
Turbo Vision in order to make extensions to the user interface. For example, suppose one wishes
to modify the file lister TFileList to display information from each file, such as file size and
date. One must examine the base classes TSortedListBox, TListBox, TListViewer, and TView
to understand how TFileList works and then derive a new TMyFileList class that overrides key
member functions of TFileList. Conversely, because Turbo Vision is object oriented, each
derived class builds on its base classes, so learning about the base classes reduces the amount
of learning in other derived classes. After learning about the base classes of TFileList, one also
knows a great deal about the directory lister TDirListBox.

Ease and quality of application maintenance may be one of the most important features
of Turbo Vision applications. Since Turbo Vision provides a consistent architecture, one can
easily isolate the modules requiring modification when it is necessary to add or change the
functionality of the application. For instance, in order for an object to handle new features, the
object's handleEvento member function must be altered to accept new commands or messages
and to invoke the appropriate member functions implementing the new functionality. In order
to display new information, one modifies the object's draw() member function. Moreover, since
the Turbo Vision architecture is preserved throughout the application's lifetime, modifications
maintain the separation of display and input processes from the core of each object and module.
This inhibits the degradation of an application's initial modular structure through quick patches.

4

3.2 Technical Support and Other Resources

Another important factor to consider is the level of technical support provided for a
commercial software package. As with the other tools provided with its language compilers,
Borland is promoting and supporting Turbo Vision seriously. Borland provides a variety of
technical notes on advanced topics, as well as technical support services. (See Appendix A.)
They also provide the source code for Turbo Vision, an unusual and significant action. This is
very valuable because, while the manual is well-written and provides a good introduction to
Turbo Vision's main features, it is by no means exhaustive or sufficiently detailed for
complicated extensions. Indeed, some of the low level system structure is only mentioned
briefly. For example, to switch to graphics mode in order to display a bitmap image, one must
suspend the Turbo Vision framework. Otherwise it would automatically switch the screen back
to text mode at the first opportunity. Unfortunately, suspending the Turbo Vision framework also
suspends the event manager, including keyboard and mouse support. One can implement
keyboard and mouse support to handle this situation, but it is far easier to just re-enable and work
directly with the event manager. The Turbo Vision manual discourages such practices, but it was
found to reduce the amount of redundant code and development time during the programming
of the application discussed in Section 4.0.

Third party resources for a software package are an important complement to the official
technical support. Since Turbo Vision is quite new, very little external resources are currently
available. Some shareware utilities for Turbo Vision, such as a dialogue box editor, have been
developed. There is an unmoderated Internet news group established in Spring 1993 that has a
small but consistent amount of traffic. Borland monitors the news group, although it does not
provide technical support on the Internet. Freeware and shareware resources, which are listed
in Appendix B, are available through two anonymous ftp sites. As of August 1993, no
commercial utilities for Turbo Vision are known by the authors.

3.3 Portability To Other Functions

Another consideration in software design is that of portability. Turbo Vision is intended
only for a PC MS-DOS system with text mode display. As is typical of all user interfaces, Turbo
Vision uses low level software routines that are dependent on the operating system. Porting of
a Turbo Vision application to another system would not be trivial. As an example of this, one
could consider the porting of a Turbo Vision application from a PC DOS based system to a
Microsoft Windows environment. ObjectWindows is a separate application framework created
by Borland for MS-Windows systems. The authors have no personal experience in converting
applications from Turbo Vision to ObjectWindows, but can offer a few simple observations. The
Turbo Vision and ObjectWindows class hierarchies have a similar structure but significant
differences are apparent. The TView class is essentially the root of all Turbo Vision classes.
One usually overrides its draw() and handleEvento member functions to provide the desired
functionality and inherits the rest of the functionality unchanged. The TWindowsObject class
is the corresponding base class for all the ObjectWindows classes, but it is completely different.
TWindowsObject has different data members and member functions applicable to the Windows
operating system. These fundamental differences propagate through the entire class hierarchy
for both frameworks. These differences arise because, while Turbo Vision provides an
event-driven, windowing framework, ObjectWindows provides an interface to the Windows

5

Application Programming Interface (API), which itself is a large user interface for Windows
applications. It therefore is not straightforward to port an application from Turbo Vision to
ObjectWindows.

4.0 AN EXAMPLE IMPLEMENTATION

Turbo Vision was used extensively in the development of the Defaxer application, a
program for converting and viewing Group III fax transmissions. It serves as the C++ based user
interface for the HIGHWIRE facsimile analysis system [2]. The application consists of four main
modules: the user interface, the fax converter, the fax viewer, and the fax file manager. This
section discusses the influence of Turbo Vision on the development of these modules.

4.1 The User Interface

The main menu in the Defaxer application appears as shown in Figure 1. The menu bar
on the top line contains two menus, the File menu and the Configuration menu. The status line
on the bottom shows quick keys for certain common commands. On the menu bar in the top
right, the current time is displayed. The amount of available memory is displayed on the status
line in the bottom right of the screen. Since all of these objects, as well as the background, are
displayed on the screen, they are Turbo Vision views.

Figure 1: Defaxer Application Main Menu

6

Turbo Vision provides TMenuBar, TSubMenu, TMenultem, and TStatusLine classes
for the menu bar, submenus, menu items, and the status line. To create them, one simply
initializes an object of the corresponding class with the appropriate information. Specifically, the
following nested function call creates the Defaxer menu structure in its entirety:

return(new TMenuBar(r,

*new TSubMenu("-F-ile", kbAltF) +
*new TMenultem("-N-ew", cmNewFile, kbF2, hcNoContext, "F2") +
*new TMenultem("-O-pen", cmFileOpen, kbF3, hcNoContext, "F3") +
*new TMenultem("-L-ist", cmListFax, kbF4, hcNoContext, "F4") +

newLine0 +
*new TMenultem("E-x-it", cmQuit, kbAltX, hcNoContext, "Alt-X") +
*new TSubMenu("-C-onfiguration", kbAltC) +
*new TMenultem("-F-ax directory", cmFaxDirCfg, kbNoKey) +
*new TMenuhtem("-V-ertical resolution", cmVertCfg, kbNoKey)

Full mouse and keyboard input support is automatically provided by the Turbo Vision
classes. The TMenuBar object handles the File and Configuration submenus. This means that
the TMenuBar displays itself, places the submenu labels on the screen, and will open the
appropriate submenu if the user clicks on its label with the mouse or presses the submenu hotkey.
The hotkey is defined by the delimiting tildes (-). Similarly, the TSubmenu objects handle their
menu items.

The status line shown in Figure 1 is created by the following nested function call:

return(statusLine = new TStatusLine(r,
*new TStatusDef(0, OxFFFF) +
*new TStatusItem("-Fl- Help", kbFl, cmHelp) +
*new TStatusItem("-F2- New", kbF2, cmNewFile) +
*new TStatusltem("-F3- Open", kbF3, cmFileOpen) +
*new TStatusItem("-F4-- List", kbF4, cmListFax) +
*new TStatusltem("-Alt-F3- Close", kbAltF3, cmClose) +
*new TStatusltem("-Alt-X~ Exit", kbAltX, cmQuit)

In this case, the mouse and keyboard input support is provided by the Turbo Vision
classes TStatusLine, TStatusDef, and TStatusltem. The TStatusLine displays itself, places
the status item labels on the screen, and will invoke the appropriate item if the user clicks on its
label. Each TStatusltem object will issue a message command if it is selected.

The time display at the top right of the screen, and the available memory indicator at
the bottom right of the screen are objects derived from TView. They are non-active views that
simply display their information whenever the Turbo Vision application is idle (i.e. not
processing user inputs). They were developed quickly and easily from an example heap view
program that Borland Technical Support provided (see Appendix B).

7

4.2 The Fax Converter

The fax converter converts fax image files from CCITT T.4 data format to black and
white bitmap format [3]. It consists of an object of class TConvertFax, which accepts the input
and output file names from the fax file manager. The TConvertFax object reads each fax image
line from the input file, converts the input data into bitmap format, and stores the convened fax
image line in the output fi!e. The fax converter returns the number of fax image lines converted
and the number of corrupted image lines. TConvertFax is not derived from any Turbo Vision
class and operates independent of Turbo Vision. Thus Turbo Vision has no influence on this
module.

The fax convener does however indirectly influence the display. During the conversion
process, tht, user interface is inactive and the display is frozen. For a large input file
corresponding to one or more highly detailed fax pages, the conversion process can take several
seconds per page. Although not currently implemented, the fax converter can display the
progress of the conversion and update it periodically. This can be accomplished easily by
including the Turbo Vision TView class as one of the base classes of TConvertFax.
TConvertFax will then have a draw() member function that displays the current number of lines
converted and the current number of corrupted lines. During the conversion process, the fax
converter will update the display each time it converts a certain number of lines.

4.3 The Fax Viewer

The fax viewer displays converted fax images on the screen. It can display the image
at any integral scale factor. At higher resolutions it will allow the user to scroll through parts
of the image. Turbo Vision provides full mouse and keyboard input.

The fax viewer consists of an object of class TViewFax, which accepts the input file
name containing the fax image to be displayed. During initialization of the fax viewer, the
screen is switched from text mode in which Turbo Vision operates, to graphics mode, which is
necessary for displaying the bitmap image usingBorland's graphics library. Because of a special
feature of Turbo Vision, it was necessary to suspend the Turbo Vision display engine while
operating the fax viewer.

Originally, TViewFax was derived from Turbo Vision's TView. Since the Turbo Vision
display routine does not update any views completely covered by other views and since the
TViewFax view covers the entire screen, none of the other views should be displayed if the
Turbo Vision display engine isoperating. Hence, the application should not return to text mode
until the user exits the fax viewer. Unfortunately, Turbo Vision treats the status line differently,
always updating the status line after every user input. Thus one cannot disable the display engine
without suspending the. entire Turbo Vision application engine.

Suspending the Turbo Vision application is not discussed in the User's Guide, although
it is demonstrated in various example programs that Borland Technical Support provides (see
Appendix B). Unfortunately, suspending Turbo Vision also eliminates the keyboard and mouse
support. There are two options to deal with this problem: re-enable the keyboard and mouse
support in Turbo Vision or develop keyboard and mouse support specifically for this module.
In the Turbo Vision User's Guide, Borland discourages the former option and does not provide
any information on how to accomplish it. However, the latter option contradicts the principle

8

of a consistent architectural design. With the latter option, the programmer must deal with two
different lower level system calls during maintenance upgrades, an undesirable and costly
complication. For this reason, it was decided that an attempt would be made to re-enable the
keyboard and mouse support in the Defaxer application.

The re-enabling of Turbo Vision's event queue to provide the keyboard and mouse
support, turned out not to be a complicated task. However, because Borland does not encourage
this practice, learning how to accomplish it is a complicated task that involves investigating the
source code provided by Borland. It should be noted that this code is sparsely documented and
that it will not be serviced by Borland Technical Support except for bug fixes.

In summary, the viewing of a facsimile image in the Defaxer application is achieved by
initiating a TViewFax object which switches the screen to graphics mode, suspends the Turbo
Vision application engine to prevent it from returning to text mode, re-enables the event queue
to provide mouse and keyboard support, and allows the fax viewer to operate. The fax viewer
has a structure that parallels the Turbo Vision application, allowing it to handle events from the
event queue in a manner consistent with the main application.

4.4 The Fax File Manager

The fax file manager constructs and maintains a list of previously stored data files. It
uses certain Turbo Vision classes to display the list of fax files and to allow the user to select
one of the images for display. The development of this module was greatly aided by the Turbo
Vision classes for handling and displaying collections of files.

The list of fax files is stored in an object of class TFaxCollection, which is derived from
TCollection. This list is displayed in a two column, scrollable box by an object of class
TFaxListBox, which is derived from TListBox. TFaxListBox only needs to override
TListBox::getTextO member function to display specific information about each entry in the fax
file list. Turbo Vision's TListBox handles all the other details of displaying the list, allowing
the user to scroll through the list and to select a particular fax entry. The fax file manager
dialogue box is illustrated in Figure 2.

9

qgC X..t

OpnAFxImage Rfl......

SiN

Fl flcelp tFZN. V~pi14:LiA Alt+R C3IDp AkJCKFxit 6

Figure 2: Defaxer File Manager Dialogue Box

5.0 CONCLUSIONS

The application framework Turbo Vision from Borland is an excellent software
development framework for many PC DOS-based applications. It is appropriate for text mode
applications written in C++ or Object Oriented Pascal. It is not appropriate for applications
requiring extensive graphics displays. As with many user interfaces, it is designed for a single
platform. It is therefore not easily ported to other platforms or operating systems. An example
was considered of porting a Turbo Vision Application from a DOS environment to a MS-
Windows environment. Technical support and supplementary resources for Turbo Vision are
currently somewhat limited, but are still developing. Lack of detailed information on and support
for the low level systems operation of Turbo Vision is the main drawback in developing
applications that differ from the Turbo Vision application structure.

Turbo Vision was used extensively in the development of the Defaxer application. Basic
user interface features such as menus, a file selector, dialog boxes, and a fax list box were
developed quickly. The event driven structure of Turbo Vision isolated the user interface from
the other modules and aided in the modularization of the application. Problems with operating
in graphics mode to view fax images while using Turbo Vision's mouse and keyboard support
were resolved with some effort.

10

6.0 REFERENCES

[1I Borland International, Inc. "Turbo Vision for C++ User's Guide", USA, 1992

(21 Mudry, A, Lee, D., Poulin, P. "The Feasibility Of Tactical VHF/UHF Facsimile ESM",
DREO Report, To Be Published

[3] International Telegraph and Telephone Consultative Committee, CCITT Blue Book,
Recommendation T.4

S~11

APPENDIX A: TECHNICAL SUPPORT FOR TURBO VISION

Borland Technical Support provides technical support to registered Borland C++ users.
Support for Turbo Vision is included since Turbo Vision is provided as a tool along with the
compiler. Technical Support can be reached in a variety of ways, as listed in pp 5-7 of the
Turbo Vision manual [1]. Borland provides technical information sheets on various topics as
well as answering individual questions.

The following list is taken in part from the Borland Turbo Vision for C++ User's Guide, p. 6.

1. TechFax (800-822-4269 voice) is a 24-hour, automated service that sends technical information
to one's fax machine free of charge. Use a touch-tone phone to receive up to
three documents per call.

2. The Borland File Download Bulletin Board Service (408-439-9096 modem) has sample files,
applications, and technical information for downloading via modem. No
special setup is required.

3. CompuServe, GEnie, and BIX BBS's can receive technical support by modem.

4. Borland's mailing address is

Borland International
Technical Support Department - Turbo Vision
1800 Green Hills Road
P.O. Box 660001

Scotts Valley, CA
USA 95067-0001

5. Borland's phone number is 408-438-5300 (voice), available from
6:00 a.m. to 5:00 p.m. Pacific Standard Time.

6. Borland technical information is available on the anonymous ftp site ftp.cica.indiana.edu
in the directory Ipub/pc/borland. Of special interest is a bug fix patch
for version 1.03 available at this site in the file Ipublpclborland/clpatchlbc3lpl.zip.

12

APPENDIX B: THIRD PARTY RESOURCES FOR TURBO VISION

Since Turbo Vision is a recent product, third party resources are somewhat limited but still
J• developing and expanding.

1. The Internet News group comp.os.msdos.programmer.turbovision is an
unmoderated discussion group devoted to C++ and Turbo Pascal versions
of Turbo Vision.

2. The anonymous ftp site vtucs.cc.vt.edu in the directory /turbo-vision
maintains an archive of Turbo Vision messages, sample files, a bug list,
a faq (frequently asked questions), freeware and shareware utilities,
and peripheral information.

3. A shareware dialogue box editor is available at vtucs.cc.vt.edu in the file
/turbo-visionicpp/dlgdsc2.zip. This editor allows one to place dialogue
box objects in a dialogue box, to move them around, to adjust all the
parameters of each object, and to generate the resulting code.

13

UNCLASSIFIED -15-
SECURITY CLASSIFICATIONa OF FRoM

1highest clossifeomme of Title. Abstract. Keywords)

DOCUMENT CONTROL DATA
Seewety eleesifiestie. of title, body of abtract ea" Indesiong annotation muet be emwed i~e the overaii occument to cesiaef led

I. OI1G*dTOR (the nome orid addem of the orgenissonen preparing thS document. 2. SECURITY CLASSIFICATION
Organ~etiens for whom fth decumnen was proepred. eag. Estebhlisment sponsoring loverall security classificatien of the documeWnt
a contracter's report. or tasking agency, wre mvitered in section L) including special warning terms if applicable)

* DEFENCE RESEARCH ESTABLISHMENT OTTAWA
NATIONAL DEFENCE UNCLASSIFIED
SHIRLEY BAY, OTTAWA, ONTARIO KIA 0K2 CANADA

3. TITLE (fth eMples dcuvmet title 81 indicated On the1 title pope. Its clasification should be indicated by the appopirite
abbreviation (L.C or U) in paenthesses after the title)

EVALUATION OF BORLAND TURBO VISION (U)

4. AUTHORS Best nine first name, middle initial)
LEE, DAVID AND MUDRY, ANDREW H.

5. DATE OF PUBLICATION (month and yew of publication of B& NO. OF PAGES (total 6b. NO. OF REFS ftoal cited in
d~ndociit containifig information. Include document)

December 1993 Annexes, 1 "ppndices. etc.) 3
7. DESCRIPTIVE NOTES (fth category of the document. e~g. technoical report. technical nete or memorandumn. it eppropriate. ente the typ of

report. eog interim, progress, summary, annual or final. Give the inclusive dates when a specific reorting period is covered.)

DREO TECHNICAL NOTE 93-37

8. SPONSORING ACTIVTY Ifth name of the department preject off ice or laboratory sponsoring the research and devielopmento nclude the
address)

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
NATIONAL DEFENCE
SHIRLEY BAY. OTTAWA. ONTARIO KlA 0K2 CANADA

9a. PROJECT OR GRANT NO. (if appropriate. the applicable research 9b. CONTRACT NO. (it appropriate. the applicable number under
and development project or grant number under which the document which the documenit was written)
was written. Please specify whether project or grant)

041LK

10Oa ORIGINATOR'S DOCUMENT NUMBER (fth official documeint 10b. OTHER DOCUMENT NO&. OAn other numbeors which may
number by which the docmen is idenrtif led by the orignatin be assigned this document either by the originator or by the
activity. This numnber must be unique to this decumnt) "pNsNr)

11. DOCUMENT AVAILABILITY (any limitations on few-tho dmisemingtign of fth document. ote than those imposed by security classification)

Un Wlimited distribution
I IDitrbution limited to defenc department and defence cenhaters. further distribution only as @aprved

Distrbution limte to defence department end Cam"ie defenc contactors; furthe distribution only as appoved
I Distribution limited to pverntme departments and agenciev further distribution only as approved

)Distlribution limited to defenc depertments; f~rhe distribution only as @aprved
a (~I Othe Wplas specify)'

1 2. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic annuncmen of this document This will normally correspond to
the Document Aveilabulty 111). Hlowever, where furthe distribution (beyond the audience specified in 11) is possible. a wider

S inineouncemen audience may be selecteid)

UNCLASSIFIED

SECURITY CLASUIFICATION OF FOOM

0CD03 2/06/87

-16- UNCLASSIFIED
SECUPIVY Ct.ASSIPICATION OP FIoa1M

13I ABSTRACT (a brief and feCOMsox inery ef the decueftae ft May also now elsewhere in the body of the documnent itself. It is highl1y
desirable thu the aliac o clausmsif ied desuent be enclossified Each pw@apl of the obsveci shell begin with an indication of the
secawhy claessificome of the afeaumen n the prwsp~h (umlen the deewanent itself is unclassified) repiresented at M 0,) or UW.
It is net necessaiy te includle here davusts in beth officel no-,unges unless the text is bilingual).

(U) Turbo ViioT, a new application framework f or PC DOS-based
software development, is evaluated for its effectiveness as a base
for computer applications. Turbo Vision provides an object-
oriented, text-mode user interface and an event-driven program
structure. An overview of the structure and software tools
provided by Turbo Vision is presented. Various factors, such as
consistency in architectural design, technical support, and ease of
use, are considered.

14. KEYWORDS. DESCRIPTORS or IDENTIFIERS 1 -ph ficely meanfingu tor.o or short phrues thot cheraclorize a decwnent and could be
helpful in choegiming the decieneul. They sheuild be selected so tho io securiy classificatimn is required. Identifes. such as eqiMeW
Medel design1110Mtronade 11001111. NOWliMry proje Whe no. 911ovoPhic localtio may also be included. If possible keywords should be selected
fromn a pubished thesmus. e~g. Thesauru of Enimneering anid Scientific Terms 7W? amd tat hesiaurus-idenirfied. if it is not possible to
select index"n terms which we Unclassifiled. the classification of each should be indicated as with the titIle)

BORLAND C
OBJTECT ORIENTED
MS DOS

UNCLASS IFIED

Uc0ImTY OLANWIICATION OP FOAM

