REPORT DOCUMENTATION PAG AD A279 804

quw-mw-uumh.mum1mnm nchuding 1 nng
the deie nesded, and reviewing the eslisctien of inlormation. Send aomments this bu sing
.u.mm.mmw o Washington Haasiquariers Service, Diretiersie far information . VA
222024302, and 10 the Ofus of indermation ervt Regulaiory Alleirs, Offies of Management end Busiget, Weshin Lo
m ‘1“" . P Tt W - -
)

"TYMEARD - 7
940325581.11351, AVF: . 94ddc500 8c, Compiler: DACS Sun SPARC/ [/

Sun0S to Pentium PM Bare Ada Cross Compiler System with Rate
MonotonicScheduling, Version 4.6.4

€. RUTHOTS:

National Institute of Standards and Technology
Gaithersburg, Maryland

%Ha?a; éggfiﬁggﬁ xgsgtandards and Technology

Gaithersburg, Maryland 20899

USA

N ING AGENCY NAME (S) AN 10. SPONSORINGMONTTORING |
Ada Joint Program Office D T l C AGENCY
The Pentagon, Rm 3E118
Washington, DC 20301-3080 ELECTE
MAY 3 1 1994

1. SUPPLEMENTARY
1 RIBUTION/AVAILABIL 12b. DISTRIBUTION

Approved for Public Release; - distribution unlimited

3. (Maximum 200

Host: Sun SPARCS8tatiom _IPX (under Sun0OS, Release 4.1.2)
Target: Intel Xpress Desktop (product number XBASEG6E4F-B, with Pentdum €pu),
operating as a bare machine (bare machine)

(14, SUBJECT 15. NUMBER OF
Ada programming 13dnguage, Ada Compler Validation Summary Report, A -

m;gm A3l lgigapbgéég; val. Testing, Ada1Va'l Office, Ada Val. HBcil);

mssracmou < CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFEED

NBN P v Proscribed by ANSI 8.

AVF Control Number: NIST94DDC500_3C_1.11
Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on November 19, 1993.

Compiler Name and Version: DACS Sun SPARC/SunOS to Pentium PM Bare
Ada Cross Compiler System with Rate
Monotonic Scheduling, Version 4.6.4

Host Computer System: Sun SPARCstation IPX running under Sunos,
Release 4.1.2

Target Computer System: Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product
. ' number: XBASEGE4F-B)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11351 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Dr. David K. Mr. L. Arnold Johiison
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CSL)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.

>

Ada Joint Program Office

Ada Va

Director, David R. Basel

Engineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

_ 1 609 1 Q() U.S.A.
\\|||\|\l\\\lﬂ|\\\|\||\\\\||\\| L[] N

94 5 27 050

AVF Control Number: NIST94DDCS500_3C_1.11

DATE COMPLETED
BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 940325S1.11351
DDC-1
DACS Sun SPARC/SunOS to Pentium PM Bare Ada
Cross Compiler System with Rate Monotonic Scheduling,
Version 4.6.4

Sun SPARCstation IPX => Intel Pentium (operated as Bare Machine)

based in Xpress Desktop (Intel product number: XBASE6E4F-B)

Prepared By:
Software Standards Validation Group
Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A. Accesion For

OTIC TAB

NTIS CRA&|

Unannou:.ced
Jusmicahon‘ B

Dist: ibution/

[Prmp—

1]

Availabiliy e ,

_ Avail oo
Dist Specia!

|

AVF Control Number: NIST94DDCS500_3C_1.11
Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on November 19, 1993.

Compiler Name and Version: DACS Sun SPARC/SunOS to Pentium PM Bare
Ada Cross Compiler System with Rate
Monotonic Scheduling, Version 4.6.4

Host Computer System: Sun SPARCstation IPX running under Sunos,
Release 4.1.2

Target Computer System: Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product
number: XBASEGE4F-B)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
94032581.11351 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Y
Dr. David K. Mr. L. Arnold Jobnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CSL)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

uls.A.

Ada Joint Program Office
David R. Basel

Enqineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301
U.S.A.

MISTS@DCS00 X 1.11
DECIARATION OF CONFORMNCE
The fallowing declaration of confontance wes supplied by the custorer.
Qusterer: Doc-I
Certificate Amrdee: DOC-I
A Valichtion Facility: Mational Institute of Standards and
: Techmlogy

AOC Versim: .1

A Inplementation:
Conpdler Name and Version: DACS Son SPARC/SUnCS to Pentium PM Bare Ada
Cross Cxpiler System with Rate Myotcanic
Schednling, Version 4.6.4
Host Cormputer System: Sun PARCstation IPX ruming under Su0S,
Relsase 4.1.2

Target Campter System: Intel Pentivm (cperated as Bare Machine) based
inm}c-ginltnp (Intel mroduct ngmber:

Declaration:
I the undersigned, declare that I have no krowledge of deliberate deviations

fxom the Ada Langiage Standard ANST/MIL-STD-1815A ISO 8652-1987 in the
inplamertation lisced above.

éi é,{w 96-04-22
Date
e DoC~1

i o04-22
Signature Date

Campary 0OC-T
Title

—a-------IIIllllllllIIIIIIIIIIIIIIlIIIIllllllllllllllllllllll!

TABLE OF CONTENTS

CHAPTER l..ccceceieereceencocanescssoccsnensscsnscssossnsesal=l
INTRODUCTION. c et iueeeneeacecnoscscacasosassscssssossnssasl=l
1.1 USE OF THIS VALIDATION SUMMARY REPORT....ccc00..1~1

1.2 REFERENCES....c.ccccccescccscscccsscscscsscsvcnscssl=2

1.3 ACVC TEST CLASSES.:.ccccvecccccscscsscsscscccsnssessl=2

1.4 DEFINITION OF TERMS......ceceeeecscvssccccsrasccseal=3

CHAPTER 2. .cccccececaccaccecoccscosacsccosnsascsosssssscssacsel=l
IMPLEMENTATION DEPENDENCIES...:cccccoccccccssccscscaccsace2=]l
2.1 WITHDRAWN TESTS.:cccceccecccscccscssscsscssccccseecl=l

2.2 INAPPLICABLE TESTS..cccccoceccsecccscscccsnccccsces2~l

2.3 TEST MODIFICATIONS...cccceccevecccssccsccccoseccl=3

CHAPTER 3...vccccccceccrosccocsscocscsascssoscncssssncccsscsncsossacld~l
PROCESSING INFORMATION..:::tceccococsccacccscsosscssascsosccaald=l
3.1 TESTING ENVIRONMENT.....ceceeesccscsssnccscccscel=l

3.2 SUMMARY OF TEST RESULTS...cccceeccssccccscccssasd=l

3.3 TEST EXECUTION. . cceecccsccscscscscccocescscscsccccaeeld=2

APPENDIX A..'.0..............0.......................'....OA-l
MACRO PARAMETERS-.-00..-0'0...00.0.......oot.oo.oo-o-.--A-l

APPENDIX Boc-.ooo..o.oanoo.loon.oo-oco.o.'c.o...loCOQOOOOQOB-]-
COMPILATION SYSTEM OPTIONS ® 5 0 20 000 SO0 C 000 P ESE 00O B-l
LINKER OPTIONS ® S 0 5 5 T 5 0 O SO S 00 SO E G LGS S0 PO OO PGS OO L0000 8o B-2

APPENDIX Co.c.l-.n-.o..ooo.o-t..aqooocno.t.o.o........o...oc-l
APPENDIX F OF THE Ada STANDARD....ceccceecesscssasaassssC-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92) against the Ada Standard {Ada83)
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92). A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield, Virginia 22161

U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria, Virginia 22311-1772

U.S.A.

1.2 REFERENCES

(Ada83) Reference Manual for the Ada Programming _Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro92) Ada Compiler Validatjon Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

(UGs9) Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, p0551b1y some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each

test of the customized test suite according to the Ada Standard.

1.4. DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability (ACVC)

Ada Implementation

Ada Joint Program
Office (AJPO)

Ada Validation
Facility (AVF)

Ada Validation
Organization (AVO)

Compliance of an
Ada Implementation

The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada

implementations, Validation consisting of
the test suite, the support programs, the
ACVC Capability User's Guide and the

template for the validation summary (ACVC)
report.

An Ada compiler with its host computer
system and its target computer system.

The part of the certification body which
provides policy and guidance for the Ada
certification Office systenm.

The part of the certification body which

carries out the procedures required to
establish the compliance of an Ada
implementation.

The part of the certification body that
provides technical guidance for operations
of the Ada certification system.

The ability of the implementation to pass an
ACVC version.

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable Test

IS0

Operating System

Target Computer
System

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process, or
service of all requirements specified.

An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring
that conformity is realized or attainable on
the Ada implementation for which validation
status is realized.

A computer system where Ada source programs
are transformed into executable form.

A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

International Organization for
Standardization.

The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

A computer system where the executable form
of Ada programs are executed.

1-4

Validated Ada
Compiler

Validated Ada
Implementation

validation

Withdrawn Test

The compiler of a validated Ada
implementation.

An Ada implementation that has been
validated successfully either by AVF testing
or by registration [Pro92].

The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B495008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CCl223A BCl1226A CCl1226B BC3009B BD1B02B BD1BO6A
AD1BO8A BD2A0O2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CDh4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CcD9005A CD9005B CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B
2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..2 (15 tests)

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..2 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_INTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAX_ MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type: for this implementation, MACHINE_OVERFLOWS is TRUE.

C4A013B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type:
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
this implementation does not

size for a floating-point type:

support such sizes.

CD2A84A, CD2ASBA4E,

CD2A84I..J (2 tests),
clauses to specify non-default sizes for access types;

implementation does not support such sizes.

and CD2A840 use length
this

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external

files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CEZ106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) <CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M. .0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)
CE2103A, CE2103B, and CE3107A use an illegal file name in an

attempt to create a file and expect NAME _ERROR to be raised; this
implementation does not support external files and so raises
USE_ERROR. (See section 2.3.)
2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 71 tests.

The fullowing tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in

2-3

the way expected by

the original tests.

B22003A B26001A B26002A B2600SA B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B BS55A01A B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83A07B B83A07C B83EO1C
B83EO1D BS83EO1lE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BAl1101B BC1109A BC1109C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may -be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT_INT at lines 14 and 13,
respectively, will raise PROGRAM_ ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the wunits that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE_ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information abort this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
(Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3562

b) Total Number of Withdrawn Tests 104
¢c) Processed Inapplicable Tests 504
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests o

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see sectio:
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-1
Ada downloader runs on the host machine and is used for downloading
the executable images to the target machine. The DDC-I Debug
Monitor runs on the target machine and provides communication
interface between the host downloader and the executing target
machine. The two processes communicate via ethernet.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list
Test output, compiler and linker 1listings, and job logs were

captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89). The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line

length.
Macro Parameter Macro Value
$MAX_IN_LEN 126 -- Value of V
$BIG_ID1 (1..V=1 => 'A', V => '1') o
$BIG_ID2 (1..V=1 => 'A', V => 121)
S$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V=-1=-V/2 => 'A')
$BIG ID4 (1..V/2 => 'A') & '4' & (1..V-1-V/2 => 'A')
$BIG_INT LIT (1..V=-3 => '0') & "298"
$BIG_REAL LIT (1..V=-5 => '0') & "“690.0"
$BIG_STRING1 tant & (1..V/2 => 'A') & trne
$BIG_STRING2 rtunt & (1..V=-1-V/2 => 'A') & '1' & ‘'
$BLANKS (1..V=20 => ')

$MAX LEN INT BASED LITERAL
"2T" & (1..V=5 => '0') & "11:"

SMAX LEN REAL BASED_LITERAL
w16:" & (1..V-7 => '0') & "F.E:"

SMAX STRING_LITERAL ‘'""' & (1..V=2 => 'A') & 'nm

The following table contains the values for the remaining
macro parameters.

FORM_STRING
FORM_STRING2

Macro Parameter Macro Value
ACC_SIZE : 48
ALIGNMENT -
COUNT_LAST T 2_147_483_647
DEFAULT MEM SIZE : 16#1_0000_0000#
DEFAULT_STOR_UNIT : 16
DEFAULT_SYS NAME : IAPXS586_PM
DELTA_DOC ¢ 2#1.0#E-31
ENTRY_ADDRESS : (140,0)
ENTRY_ADDRESS1 : (141,0)
ENTRY_ADDRESS2 : (142,0)
FIELD_ LAST ¢ 35
FILE_TERMINATOR : ASCII.SUB
FIXED_NAME ! NO_SUCH_FIXED_TYPE
FLOAT_NAME H SHORT SHORT FLOAT

"CANNOT RESTRICT_FILE_CAPACITY"

GREATER_THAN_DURATION : 75 000.0
GREATER_THAN_ DURATION_BASE_LAST H 131_073 0

GREATER THAN FLOAT _ BASE LAST ¢ 16#1.04E+32

GREATER THAN FLOAT SAFE —LARGE : 16#5.FFFF_FO#E+31
GREATER THAN SHORT FLOAT SAFE_LARGE: 1.0E308

HIGH PRIORITY : 31

ILLEGAL EXTERNAL FILE NAME1l ¢ \NODIRECTORY\FILENAME

ILLEGAL EXTERNAL FILE NAME2
" THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM -

INAPPROPRIATE LINE_ LENGTH -1

INAPPROPRIATE PAGE LENGTH -1

INCLUDE PRAGMA1

PRAGMA INCLUDE ("A28006D1.ADA")
INCLUDE_PRAGMA2

:
:

INCLUDE ("B2800O6El.ADA")

INTEGER_FIRST : -2147483648
INTEGER_LAST : 2147483647
INTEGER_LAST PLUS_1 : 2_147_483_648
INTERFACE_LANGUAGE : ASM86
LESS_THAN_DURATION : =75_000.0
LESS_THAN_DURATION_BASE_FIRST : -131_073.0
LINE_TERMINATOR : ASCITI.CR
LOW_PRIORITY : 0

MACHINE_CODE_STATEMENT

MACHINE_INSTRUCTION' (NONE,m_NOP) ;
MACHINE_CODE_TYPE ¢ REGISTER_TYPE
HANTISSA poC : 31

MAX_DIGITS
MAX_INT
MAX_INT PLUS 1
MIN_INT

NAME
NAME_LIST

NAME SPECIFICATION1

15
9223372036854775807
9223372036854775808
-9223372036854775808
SHORT SHORT INTEGER
IAPX586 PM

DISK$AWC_2: [CROCKETTL. ACVCll DEVELOPMENT]1X2120A

NAME_SPECIFICATION2

DISKSAWC 2:[CROCKETTL. ACVCll DEVELOPMENT]X2120B

NAME_SPECIFICATION3

DISKS$AWC_2:[CROCKETTL. ACVCll DEVELOPMENT) X3119A

NEG_BASED_INT
NEW_MEM STZE
NEW_STOR UNIT
NEW_SYS_NAME
PAGE_TERMINATOR
RECORD_DEFINITION
RECORD_NAME
TASK_SIZE
TASK_STORAGE_SIZE
TICK

VARIABLE ADDRESS
VARIABLE_ADDRESS1
VARIABLE_ADDRESS2
YOUR_PRAGMA

86 00 00 93 00 64 a0 S0 00 05 00 00 S0 o0

164#FFFF_FFFF_FFFF_FFFF#
16#1_0000_0000#

16

IAPX586_PM

ASCII.FF

RECORD NULL;END RECORD;
NO_SUCH_MACHINE_CODE_TYPE
32 ,

1024

0.000 000 062 5
(16#0%,16¥%444%)
(16#4#,16#44%)
(16#8#,16#44#)
EXPORT_OBJECT

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwvise, references in this appendix are to compiler documentation and
not to this report.

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specified source file and insens the
generated objects into the current program library. Compiler options are provided to allow the
user control of optimization, run-time checks, and compiler input and output options such as list
files, configuration files, the program library used, etc.

The input 1o the compiler consists of the source file, the configuration file (which controls the

format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options, and Section 5.2 describes the source and configuration files.

If any diagnostic messages are produced during the compilation, they are output on the diagnostic

file and on the current output file. The diagnostic file and the diagnostic messages are described
in Section 5.3.2.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Qutput is described in Section 5.3.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an intemnal representation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invoking the Ada Compiler

Invoke the Ada compiler with the following command to the SunOS shell:
$ ada {<option>} <source-file-name>

where the options and parameters are:

35

DACS-80x86 User's Guide

Ada Compiler
OPTION DESCRIPTION REFERENCE
«[nojauto_inline Specifies whether local subprograms should be 5.1.1
inline expanded.
-check Controls run-time checks. 512
-configuration_file Specifies the configuration file used by the 5.13
compiler.
-[noldebug Includes symbolic debugging information in 5.14

program Library. Does not include symbolic
information.

-[no}fixpoint_rounding Generates fixed point rounding code. Avoids fixed 5.15
point rounding code.
-[no]float_allowed Flags generation of float instructions as 5.1.6
. error if selected.
-[no]library Specifies program library used. 5.1.7
-[nollist Writes a source listing on the list file. 5.1.8
-[nojoptimize Specifies compiler optimization. 519
-[no]progess Displays compiler progress. 5.1.10
«[noixref Creates a cross reference listing. 5.1.11
-(nojsave_source Copies source to program library. 5.1.12
-[nojtarget_debug Includes Intel debug information. Does not include 5.1.13
Imel debug information.
-unit Assigns a specific unit number to the compilation 5.1.14
(must be free and in a sublibrary).
-recompile Interpret the file name as a compilation unit body
that must be recompiled from library. 5.1.15
-specification With -recompile interpret file name as a
compilation unit specification rather than body. 5.1.16
Examples:

$ ada -list testprog

This example compiles the source file testprog.ada and generates a list file with the name

testprog.lis.

$ ada -library my library test

This example compiles the source file test.ada into the library my_library.

Defauit values exist for most options as indicated in the following sections. Option names may
be abbreviated (characters omitted from the right) as long as no ambiguity arises.

36

DACS-80x86 User's Guide
Ada Compiler

<source-file-name>

The Ada compiler has one mandatory parameter that should specify the Ada source file.
This parameter specifies the text file containing the source text o be compiled. If the file type
is omitted in the source file specification, the file type ".ada" is assumed by default.

The allowed format of the source wext is described in Section 5.2.1.

Below follows a descripion of each of the available options to the invocation of the Ada
compiler.

5.1.1 -[nolauto_inline

-auto_inline local | global
-noauto_inline (default)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occurs if the subprogram has less than 4 object declarations and less than 6 statements, and if the
subprogram fulfills the requirements defined for pragma INLINE (see Section C.2.3). LOCAL
specifies that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other units.

§.1.2 ~check

~check [<keyword> = ON | OFF { ,ckeyword> = ON | OFF }]
~check ALL=ON (default)

-check specifies which run-time checks should be performed. Setting a run-time check to ON
enables the check, while setting it to OFF disables the check. All run-time checks are enabled by
default. The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL.
ALL All checks.

DISCRIMINANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.

INDEX Index check.

LENGTH Array length check.

OVERFLOW Explicit overflow checks.

RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available.

37

DACS-80x86 User’s Guide
Ada Compiler

5.1.3 -configuration_file

-configuration_file <flle-spec>
-configuration_file conflg (default)

This option specifies the configuration file to be used by the compiler in the current compilation.
The configuration file allows the user to format compiler listings., set error limits, etc. If the
option is omitted the configuration file config located in the same directory as the Ada compiler
is used by default. Section 5.2.2 contains a description of the configuration file.

5.1.4 -[noldebug

-debug
-nodebug (default)

Generate debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-1 Ada Symbolic Cross Debugger. See Section 6.5.11.

5.15 -[no)fixpoint_rounding

-fixpoint_rounding (default)
-nofixpoint_rounding

Normally all inline generated code for fixed point MULTIPLY and DIVIDE is rounded. but this

may be avoided with -nofixpoint_rounding. Inline code is generated for all 16 bit fixed point
types and for 32 bit fixed point types. when the target is 80386PM or 80486PM.

5.1.6 -[no]float_allowed

-float_allowed (default)
-nofloat_allowed

Float instruction generation may be flagged as errors, if -nofloat is selected. This is for use in

systems, where no floating point processor (nor emulator) is available. Notice that TEXT_IO uses
floats in connection with FLOAT_IO and FIXED_IO.

38

DACS-80x86 User's Guide
Ada Compiler

5.1.7 .library

-library <file-spec>
-library $Sada_library (default)

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary, the current
program library (current sublibru”y and ancestors up to root) is also implicidy specified.

If this option is omitted, the sublibrary designated by the environmental variable ada_library is
used as the current sublibrary. Section 5.4 describes how the Ada compiler uses the library.

5.1.8 -[nollist

-list
-nolist (default)

-list specifies that a source listing will be produced. The source listing is written to the list file,
which has the name of the source file with the extension Jis. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced, regardless of LIST pragmas in the program or
diagnostic messages produced.

5.1.9 -optimize

-optimize { <keyword> = on | off { ,ckeyword> = on | off }]
-optimize all=off

This option specifies which optimizations will be performed during code generation. The possible
keywords are: (casing is irrelevant)

all All possible optimizations are invoked.

check Eliminates superfluous checks.

cse Performs common subexpression elimination including common
address expressions.

fct2proc Change function calls returning objects of constrained array types
or objects of record types to procedure calls.

reordering Transforms named aggregates 0 positional aggregates and named
parameter associations to positional associations.

stack_height Performs stack height reductions (also called Aho Ullman
reordering).

block Optimize block and call frames.

Setting an optimization to on enables the optimization, while setting an optimization to off disables
the optimization. All optimizations are disabled by default. In addition to the optional
optimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

39

DACS-830x86 User's Guide
Ada Compiler

5.1.10 <[no]progress

-progress
-noprogress (default)

When this option is given, the compiler will output data about which pass the compiler is
currently running.

5.1.11 -[nojxref

xref
-noxref (default)

A cross-reference listing can be requested by the user by means of the option -xref. If the -xref

option is given and no severe or fatal errors are found during the compilation, the cross-reference
listing is written to the list file. The cross-reference listing is described in Section 2.

5.1.12 -[no]save_source

-save_source (default)
-nosave_source

When -save_source is specified, a copy of the compiled source code is placed in the program
library. !f -nosave_source is used, source code will not be retained in the program library.

Using -nosave_source, while helping to keep library sizes smaller, does affect the operation of

the recompiler, see Chapter 7 for more details. Also, it will not be possible to do symbolic

debugging at the Ada source code level with the DACS-80x86 Symbolic Ada Debugger, if the
source code is not saved in the library.

5.1.13 -[no]target_debug

-target_debug
-notarget_debug (default)

Specifies whether symbolic debug information on standard OMF is included in the object file.
Currently the linker does not support the OMF debug information.

This option may be used when debugging with standard OMF tools (i.c., FICE).

DACS-80x86 User's Guide
Ada Compiler

5.1.14 -unit
-unit = <unit_number>

The specified unit number will be assigned to the compilation unit if it is free and it is a legal
unit number for the library.

5.1.15 -recompile
-recompile
The file name (source) is interpreted as 3 compilation unit name which has its source saved from

a previous compilation. If -specification is not specified, it is assumed to be body which must be
recompiled.

5.1.16 -specification
-specification

Works only together with -recompile, see Section 5.1.15.

5.2 Compiler Input

Input to the compiler consists of the command line options, a source text file and, optionally, a
configuration file.

§.2.1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or more compilation units (see ARM Section 10.1).

The format of the source text must be in ISO-FORMAT ASCIL This format requires that the
source text is a sequence of ISO characters (ISO standard 646), where each line is terminated by
sither one of the following termination sequences (CR means camriage retum, VT means venical
tabulation, LF means line feed, and FF mcans form feed):

« A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF, or FF.

« Any of the characters VT, LF, or FF, immediately preceded and followed by a sequence of zero
or more CRs.

In general, ISO control characters are not pcrmitted in the source text with the following
exceptions:

41

DACS-80x86 User's Guide
Ada Compiler

« The horizontal tabulation (HT) character may be used as a separator between lexical units.
« LF. VT, FF. and CR may be used 10 terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the
configuration file (see section 5.1.3). The control characters CR, VT, LF, and FF are not

considered a pan of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

§.2.2 Configuration File

Certain processing characteristics of the compiler, such as format of input and output, and error
limit, may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SPARC/SunOS text file. The contents of the
configuration file must be an Ada positional aggregate, writtien on one line, of the type
CONFIGURATION_RECORD, which is described below.

The configuration file (config) is not accepted by the compiler in the following cases:

« The syntax does not conform with the syntax for positional Ada aggregates.

A value is outside the ranges specified.

A value is not specified as a literal.

LINES_PER_PAGE is not greater than TOP_MARGIN + BOTTOM_MARGIN.
The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) fc: "he sake of clarity.

42

DACS-80x86 User's Guide
Ada Compiler

type CONFIGURATION_RECORD is
record
IN_FORMAT: INFORMATTING:
OUT_FORMAT: OUTFORMATTING:
ERROR_LIMIT: INTEGER:
end record;

type INPUT_FORMATS is (ASCII):

type INFORMATTING is
record
INPUT_FORMAT: INPUT_FORMATS;
INPUT_LINELENGTH: INTEGER range 70..250;
end record;

type QUTFORMATTING is

record
LINES_PER_PAGE : INTEGER range 30..100:
TOP_MARGIN : INTEGER range 4.. 90;
BOTTOM_MARGIN : INTEGER range 0.. 90;
OUT_LINELENGTH : INTEGER range 80..132;

SUPPRESS_ERRORNO : BOOLEAN;
end record:

The sutformatting parameters have the following meaning:

1) LINES_PER_PAGE: specifies the maximum number of lines writen on each page
(including top and bottom margin).

2) TOP_MARGIN: specifies the number of lines on 1op of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTTOM_MARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PER_PAGE - TOP_MARGIN - BOTTOM_MARGIN.

4) OUT_LINELENGTH: specifies the maximum number of characters written on each line.
Lines longer than OUT_LINELENGTH are separated into two lines.

5) SUPPRESS_ERRORNO: specifies the format of error messages (see Section 5.3.5.1).

The name of a user-supplied configuration file can be passed to the compiler through the

configuration_file option. DDC-{ supplies a default configuration file (config) with the following
content:

43

B

DACS-80x86 User’s Guide
Ada Compiler

((ASCIL, 126). (48.5,3,100.FALSE), 200)

-
Top
NAZgin

Lines

Page

Bottom
margin
d

Out_line_length
Figure 5-1. Page Layout

5.3 Compiler Output

The compiler may produce output in the list file, the diagnostic file, and the current output file.
It also updates the program library if the compilation is successful. The present section describes

the text output in the three files mentioned above. The updating of the pmgnm library is
described in Section 5.4.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is written on the list file,
if the option -list is active.

2) A compilation summary is written on the list file, if -list is active.

3) A cross-reference listing is written on the list file, if -xref is active and no severe or fatal
errors have been detected during the compilation.

4) If there are any diagnosti: messages, a diagnostic file containing the diagnostic messages
is wrinten.

S) Diagnostic messages other than wamings are written on the current output file.

DACS-80x36 User's Guide
Ada Compiler

$3.1 The List File

The name of the list file is identical to the name of the source file except that it has the file type
"lis". The file is located in the current (default) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If the user requests any listings by
specifying the options -list or -xref, a2 new list file is created.

The list file may include one or more of the following pans: a source listing, a cross-reference
listing, and a compilation summary.

The parts of the list file are separated by page ejects. The contents of each part are described in
the following sections.

The format of the output on the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

§.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

« Parts of the listing can be suppressed by the use of the LIST pragma.

* A line containing a construct that caused a diagnostic message to be produced is printed even
if it occurs at a point where listing has been suppressed by a LIST pragma.

§.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the
option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

2) The number of diagnostic messages produced for each class of severity (see Section
5.3.2.1).

3) Which options were active.
4) The full name of the source file.
5) The full name of the current sublibrary.

6) The number of source text lines.

45

DACS-80x86 User's Guide
Ada Compiler

7) The size of the code produced (specified in bytes).
8) Elapsed real time and elapsed CPU time.

9) A "Compilation terminated” message if the compilation unit was the last in the compilation
or "Compilation of next unit initiated” otherwise.

§.3.13 Cross-Reference Listing

A cross-reference listing is an alphabetically sorted list of the identifiers, operators, and character
literals of a compilation unit. The list has an entry for each entity declared and/or used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occurrence of muitiple
entries for the same identifier.

For instantations of generic units, the visible declarations of the generic unit are included in the
cross-reference lizting as declared immediately after the instantiation. The visible declarations are
the subprogram parameters for a generic subprogram and the declarations of the visible pant of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string
literals.

The following are not included in the cross reference listing:
+ Pragma identifiers and pragma argument identifiers.
» Numeric literals.

+ Record componemt identifiers and discriminant identifiers. For a selected name whose selector

denotes a record component or a discriminant, only the prefix generates cross-reference
information.

» A parent unit name (following the keyword SEPARATE).

Each entry in the cross-reference listing contains:

+ The identifier with, at most, 15 characters. If the identifier exceeds 15 characters, a bar ("I")
is wrinten in the 16th position and the rest of the characters are not printed.

» The place of the definition, i.e., a line number if the entity is declared in the current
compilation unit, otherwise the name of the compilation unit in which the entity is declared
and the line number of the declaration.

+ The numbers of the lines in which the entity is used. An asterisk ("**) after a line number
indicates an assignment 10 a variable, initialization of a constant, assignments to functions, or
user-defined operators by means of RETURN statements. Please refer o Appendix B.3 for
examples.

46

DACS-80x86 User's Guide
Ada Compiler

§.3.2 The Diagnostic File

The name of the diagnostic file is identical to the name of the source file except that it has the
file type “.err”. It is located in the current (default) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation 2 new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line
showing the number of the line in the source text causing the message, and a blank line. There
is no separation into pages and no headings. The file may be used by an interactive editor to
show the diagnostic messages together with the erroneous source text

5.3.2.1 Diagnostic Messages

The Ada compiler issues diagnostic messages on the diagnostic file. Diagnostics other than
wamnings also appear on the current output file. If a source text listing is required. the diagnostics
are also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any panticular line are placed at the top of the listing. Every
diagnostic message in the diagnostic file is followed by a line stating the line number of the
objectional line. The lines are ordered by increasing source line numbers. Line number O is
assigned to messages not related to any particular line. On the current ourput file the messages
appear in the order in which they are generated by the compiler.

The diagnostic messages are classified according to their severitv and the compiler action taken:

Waming: Repons a questionabie construct or an error that does not influence the meaning of the
program. Wamings do not hinder the generation of object code.

Example: A waming will be issued for constructs for which the compiler detects will
raiss CONSTRAINT_ERROR at run time.

Error: Reports an illegal construct in the source program. Compilation continues, but no object
code will be generated.

Examples: most syntax errors; most static semantic errors.

Severe Repors an error which causes the compilation to be terminated immediately.
error: No object code is generated.

Example: A severe error message will be issued if a library unit mentioned by a
WITH clause is not present in the current program library.

47

DACS-80x86 User's Guide
Ada Compiler

Fatal Reponts an error in the compiler system itself. Compilation is terminated immediately

eror: and no object code is produced. The user may be able w0 circumvent a fatal error by
correcting the program or by replacing program constructs with alternatives. Please
inform DDC-1 about the occurrence of fatal errors.

The detection of more errors than allowed by the number specified by the ERROR_LIMIT
parameter of the configuration file (see section 5.2.2) is considered a severe error.

§.3.2.2 Format and Content of Diagnostic Messages

For certain syntactically incorrect constructs, the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (a carat symbol A) to the offending symbol or 1o an illegal
character.

The text line contains the following information:
« the diagnostic message identification "***"
« the message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error:

W: waming
E. ermor

S: severe error
F: fatal error

Z is an integer which, together with the message number X, uniquely identifies the compiler
location that generated the diagnostic message: Z is of importance mainly to the compiler
maintenance team - it does not contain information of interest to the compiler user.

The message code (with the exception of the severity code) will be suppressed if the
parameter SUPPRESS_ERROR_NO in the configuration file has the value TRUE (see
section 5.2.2).

< the message text; the text may include one context dependent field that contains the name of
the offending symbol: if the name of ihe offending symbol is longer than 16 characters only
the first 16 characters are shown.

Examples of diagnostic messages:
**» 18W-3: Warning: Exception CONSTRAINT_ERROR will be raised here
**+ 320E-2: Name OBJ does not denote a type

ve» 535E-0: Expression in return statement missing

48

DACS-80x86 User’s Guide
Ada Compiler

wee 15085-0: Specification for this package body not present in the library

5.4 The Program Library

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the program library, the user is referred to Chapter 3.

The compiler is allowed to read from all sublibraries constituting the current program library, but
only the current sublibrary may be changed.

§.4.1 Correct Compilations

In the following examples it is assumed that the compilation units are correctly compiled, i.e., that

no errors are detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with

its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together

with an empty body unit.

Compilation of a library unit which is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current sublibrary

€OMtains a subprogram declaralion or a generic subprogram declaration of the same name and this

declaration unit is not invalid. In all other cases it will be treated as a library unit, i.e.

¢ when there is no library unit of that name

+ when there is an invalid declaration unit of that name

< when there is a package declaration, generic package declaration, an instantiated package, cr
subprogram of that name

Compilation of a library unit which is an instantiation

A possible existing declaration unit of that name in the current sublibrary is deleted together with

its body unit and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which is a library unit body

The existing body is deleted from the sublibrary together with its possibie subunits. A new body
unit is inserted.

49

DACS-80x86 User's Guide
Ada Compiler
Compilation of 3 secondary unit which is a subunit

If the subunit exists in the sublibrary it is deleted together with its possibie subunits. A new
subunit is insened.

§.42 Incorrect Compilations

If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units, the program library will not be updated for 2ny of the compilation units.

§.5 Instantiation of Generic Units

This section describes the rules after which generic instantiation is performed.

5.5.1 Order of Compilation

When instantiating a generic unit, it is required that the entire unit, including body and possible
subunits, be compiled before the first instantiation. This is in accordance with the ARM Chapter
10.3 (1).

5.52 Generic Formal Private Types

The present section describes the treatment of a generic unit with a generic formal private type.
where there is some construct in the generic unit that requires that the corresponding actual type
must be constrained if it is an array type or a type with discriminants, and there exists
instantiations with such an unconstrained type (see ARM, Section 12.3.2(4)). This is considered
an illegal combination. In some cases the error is detected when the instantiation is compiled, in
other cases when a constraint-requiring construct of the generic unit is compiled:

1) If the instantiation appears in a later compilation unit than the first constraint-requiring
construct of the generic unit, the error is associated with the instantiation which is rejected
by the compiler.

2) If the instantiation appears in the same compilation unit as the first constraint-requiring
construction of the generic unit, there are two possibilities:

a) If there is a constraint-requiring construction of the generic unit after the instantiation,
an error message appears with the instantiation.

b) If the instantiation appears after all constraimt requiring constructs of the generic unit

in that compilation unit, an emor message appears with the constraint-requiring
construct, but will refer to the illegal instantiation.

50

DACS-80x86 User's Guide
Ada Compiler

3) The instantiation appears in an earlier compilation unit than the first constraint-requiring
construction of the generic unit, which in that case will appear in the generic body or a
subunit. If the instantiation has been accepted. the instantiation will correspond to the
generic declaration only. and not include the body. Nevertheless, if the generic unit and
the instanuation are located in the same sublibrary, then the compiler will consider it an
error. An error message will be issued with the constraint-requiring construct and will refer
to the illegal instantiation. The unit containing the instantiation is not changed. however,
and will not be marked as invalid.

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

5.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-80x86 Ada Compiler Systems for the Real Address
Mode and 286 protected mode only:

« The Ada compiler supports a "modified large” memory model for data references. The
"modified large” memory model associates one data segment for each hierarchical sublibrary in
the Ada program library. All package data declared within a sublibrary is efficiently referenced
from Ada code compiled into the same sublibrary. A slight increase in code size results from
referencing package data compiled into a different hierarchical level. Intel’s medium memory

model can thus be obtined by utilizing only one level of Ada program library, the root
sublibrary.

+ The Ada compiler supports a large memory model for executable code. Although the size of
a single compilation unit is restricted to 32K words, the total size of the code portion of a
program is not restricted.

» The space availablie for the static data of a compilation unit is 64K - 20 bytes.

= The space available for the code generated for a compilation unit is limited to 32K words.
= Any single object cannot exceed 64K - 20 bytes.

The following limitations apply to all DACS-80x86 products:

» Each source file can contain, at most, 32,767 lines of code.

« The name of compilation units and identifiers may not exceed the number of characters given
in the INPUT_LINELENGTH parameter of the configuration file.

« An integer literal may not exceed the range of LONG_INTEGER., a real literal may not exceed
the range of LONG_FLOAT.

51

DACS-80x86 User's Guide
Ada Compiler

* The number of formal parameters permitted in a procedure is limited 10 127 per parameter

specification. There is no limit on the number of procedure specifications. For example, the
declaration:

Procedure QVER_LIMIT (INTEGEROI,
INTEGEROZ2,

INTEGER166: in INTEGER);

exceeds the limit, but the procedure can be accomplished with the following:

Procedure UNDER_LIMIT (INTEGEROl : in INTEGER:
INTEGERO2 : in INTEGER:

INTEGER166 : in INTEGER):

The above limitations are diagnosed by the compiler. In practice these limitations are seldom
restrictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublibraries.

5.8 Compiler Code Optimizations

DDC-l's Ada compiler for the iAPX 80x86 microprocessor family generates compact. efficient
code. This efficiency is achieved, in pan. by the compiler’s global optimizer. Optimizations
performed include:

Common sub-expression elimination
Elimination of redundant constraint checks
Elimination of redundant elaboration checks
Constant folding

Dead code elimination

Optimal register allocation

Selection of optimal jumps

Optional run-time check suppression

52

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and
not to this report.

6 THE ADA LINKER

The DACS linker must be executed to create an executable program in the target environment
Linking is a two stage process that includes an Ada link using the compiladon units in the Ada
program library, and a target link to integrate the application code, run-time code. and any
additional configuration code developed by the user. The linker performs these two stages with 3
single command, providing options for controlling both the Ada and target link processes.

This chapter describes the link process, except for those options that configure the Run-Time
System, which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker:

$ ada_link {<option>} <unit-name>

where the options and parameters are:

Ada Linker Options

OPTION

DESCRIPTION REFERENCE
-[no]debug Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.
-enable_task_trace Enables trace when a task terminates in 6.5.28
unhandled exception.
-exception_space Defines area for exception handling in task stack. 6.5.29
-{no]extract Extracts Ada Object modules 6.5.14
-interrupt_entry_table Range of interrupt entries. 6.5.27
-library The library used in the link. 6.5.7
-[nojiog Specifies creation of a log file. 6.5.9
-It_segment_size Library task default segment size. 6.5.23
-It_stack_size Library task default stack size. 6.5.22
-mp_segment_size Main program segment size. 6.5.25
-mp_stack_size Main program stack size. 6.524
-[nojnpx Use of the 80x87 numeric coprocessor. 6.5.16
-options Specifies target link options. 6.5.6
-priority Default task priority. 6.5.18
-reserve_stack Size of reserve stack. 6.5.21
-rms Select Rate Monotonic Scheduling Run-Time 6.5.13
Kemel (optional).
-[nojroot_extract Using non-DDC-I units in the root library. 6.5.10

53

DACS-80x86 User's Guide

The Ada Linker
-[nojrts Includes or excludes the run-time system. 6.5.12
-searchlib Target libraries or object modules to include 654
in target link.
-selective_link Removes uncalled code from final program. 6.5.8
-sign_on Produce sign on and sign off messages. 6.5.30
-stop._before_link Performs Ada link only. 6.5.5
~tasks Maximum number of tasks or non-tasking 6.5.17
applicaton.
-task_storage_size Tasks default storage size. 6.5.26
-template Specifies template file. 6.5.15
~titner Timer resolution. 6.5.20
-time_slice Task time slicing. 6.5.19

All options may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options but not for options keywords.

Note: Several simultaneous links of the same program shouid not be performed in the same
directory.

6.1.1 Diagnostic Messages

Diagnostic messages from the Ada Linker are output on the current output file and on the optional
log file. The messages are output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

A waming reports something which does not prevent a successful linking, but which might be an
error. A waming is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit, e.g. if the body unit is invalid or if there is no object
code container for the body unit. Wamings are only output on the log file, not on the current
output file. The linking summary on the log file will contain the total number of wamings issued,
even if the issued wamings have not been output.

A severe error message reporns an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe error message, e.g. if some required unit
does not exist in the library or if some time stamps do not agree. If the linker is used for
consequence examination, all inconsistencies introduced by the hypothetical recompilations are
reported as errors.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.2 The Linking Process

The linking process can be viewed as two consecutive processes. Both are automatically carried
out when issuing the link command ada_link.

DACS-80x86 User’'s Guide
The Ada Linker

The first process constitutes the Ada link process and the second constitutes the target link
process.

The Ada link process
» retrieves the required Ada object modules from the program library,

« determines an elaboration order for all Ada units,

« creates a module containing the User Configurable Data (UCD) from the specified configuration
options t0 the linker and

+ creates a shell script that carries out the target link process (i.e., dinkbldx86). The locate/build
phase is an integral pant of the target link.

If the option -stop_before_link is NOT specified (default). the above script is executed
automatically. Otherwise the linking process is halted at this point.

When -stop_before_link is specified. all temporary files are retrieved for inspection or
modification. The target linker is invoked by executing the shell script.

6.2.1 Temporary Files

The following temporary files are in use during the link phase:

<main_program>_link.com The shell script which invokes the target linker.

<main_program>_elabcode.o The object code for the calling sequence of the elaboration
code.

<main_program>_ucd.o The object code generated from the RTS configuration

options (see Section 7.2).

<main_programs>_uxXxxx.0 The Ada object modules which have been extracted from the
program library. xxxxx is the unit number of the Ada unit.

55

DACS-80x86 User's Guide
The Ada Linker

Figure 6-3. The Linking Process

The following components make up the run-time system:
1) User configurable portion of the RTS

a) User configurable data (UCD) and
b) User configurable code (UCC)

2) Pemmanent pant of the RTS

a) Non-tasking RTS (rll.lib) or
b) Tasking RTS (r12.1ib)
¢) RMS Tasking RTS (rl3.lib)

The User Configurable Code defined by the environmental variable ada_ucc_lib is included in the
link. If no tasking has been specified, then the RTS non-tasking library (r11.lib) will be included.

If asking has been specified, then suppont for tasking will be included (r12.lib or, when -rms,
1'3.lib).

56

DACS-80x86 User's Guide
The Ada Linker

The output of the linker step is an absolute executable object file with the extension ".dat™ and
a map file with the extension ".mpS".

6.2.2 Environmental Variables

When a link is executed, 2 number of files are referred to and most are accessed through
environmental variables. The locate/build phase uses the control file $ada_ucc_dir/config.bid_ddci,
the remaining variables are:

VARIABLE

PURPOSE

ada_system_library

ada_library

ada_root_lib

ada_r11_lib
ada_r12_lib
ada_r13_lib
ada_uce_lib

ada_template

ada.ucc._dir

Identifies the root library where the system compilation units reside.

Identifies the default library used by all DACS-80x86 wols. It is the
lowest level sublibrary in the program library hierarchy.

Identifies the OMF library where the system library units have been
extracted from the system library. By having a separate Library for the
root compilation units, the link process is much fasier than otherwise
having 10 extract each unit from the system library for each link.

Identifies the OMF library for the Permanent Part of the non-tasking
version of the Run-Time System.

Identifies the OMF library for the Permanent Pan of the tasking version
of the Run-Time System.

Identifies the OMF library for the Permanent Part of the optional Rate
Monotonic scheduling Run-Time System.

Identifies the OMF library for the User Configurable Code pornion of
the Run-Time System.

Identifies the template file for the Linker.
Identifies the directory of the current UCC.

With each of these environmental variables, the name will differ depending on how the sysiem
was installed (ada86, ada186 etc). Throughout this document ada is assumed. For example, the
environmental variables for the root library for the 80186 version of the compiler would be
adal86_root_lib, and the RTS UCC library environmental variables for the 8086 version would

be adad6_ucc_lib.

57

S——

DACS-80x86 User's Guide
The Ada Linker

6.3 Run-Time System Overview

The Run-Time System for DACS-80x86 is defined as all code and data, other than the code and
daw produced by the code generator, required to make an embedded sysiem application operate
properly on a specific hardware system.

In general, there are two major components that make up the Run-Time System.

1) Code and data assumed to exist by the code generator. This is hardware independent and
known as the RTS Permanent Parn.

2) Code and data tailoring the application with respect to the characteristics of the hardware

and other requirements of the embedded sysiems developer. This code is called the RTS
User Configurable Part.

Both of the above components consist of modular OMF libraries. The modules are only included
in the user program if they are needed. i.e., if a call or reference is made to the module. This
ensures a compact RTS (typical applications are 4 KB 10 10 KB).

The RTS Permanent Part does not make any assumptions about the hardware other than an 80x86
and some amount of memory available.

There are several versions of the RTS User Configurable Pant available for different development
targets. Also, the source code is provided to allow the modification of the User Configurable
Code (UCC) to operate on other *argets. Refer to the RTS Configuration Guide for complete

information on modifying the UCC.

DDC-1 has carefully analyzed and selected the parts of the Run-Time System that must be
configurable for hardware independence, freeing the user from major rewrites whenever the
Run-Time System is retargeted while, stll allowing for almost unlimited adaptability.

Four important features of the run-time system are:

* It is small

» It is completely ROMable

« It is configurable

* It is efficient

Conceptually, an Ada run-time system can be viewed as consisting of the following components:

- Executive, i.c., the start-up mechanism

Storage Management

Tasking Management

* Input/Output
Exception Handling

58

DACS-80x86 User's Guide
The Ada Linker

» Run-Time Library Routines
+ Package CALENDAR suppon routines
The run-time system (RTS) can be configured by the user through Ada Linker command options.

The Ada Linker will generate appropriate data structures (0 represent the configured characteristics
(UCD).

Two versions of the RTS are supplied, one including tasking and one excluding tasking. The

hnkerselectsmeRTSvemonmwmgushnngy|fmeopuon-usksnspmauormksn
is present and n > 0. Otherwise, the linker selects the RTS version excluding tasking.

6.4 Linker Elaboration Order
The elaboration order is primarily given by the unit dependencies, but this leaves some freedom
heré and there to arbitrarily choose between two or more aliernatives. This arbitrary is in the

DACS-80x86 linker controlled by the spelling of the involved library units, in order for "free”
units 1o become alphabetically sorted.

Recompiling from scratch, an entire system may thus affect the allocation of unit numbers, but the
elaboration order remains the same.

It is also auempted to elaboraie “body after body”. so that a body having a with 10 a specification,
will be artempted elaborated after the body of this specification.

Also elaboration of units from diffsrent library levels is atempted to compiete elaboration of a
father-level prior to the son-level.

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6.5 Ada Linker Options

This section describes in detail the Ada linker option and parameters.

6.5.1 The Parameter <unit-name>
<unit-name>

The <unit_name> must be a library unit in the current program library, but not necessarily of the
current sublibrary.

Note that a main program must be a procedure without parameters, and that <unit-name> is the

identifier of the procedure, not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

59

DACS-80x86 User's Guide
The Ada Linker

652 The Parameter <recompilation-spec>

The syntax of <recompilation-spec> is:

<unit_spec>{-body|-spedification](,...]

This parameter tells the linker to perform a consistency check of the entire program using the
hypothetical recompilation of all units designated in the <recompilation-spec>. The link process
in this instance is not actually performed.

The <unit_spec> is a list of unit-names (wildcards are allowed). separated by comma (,) or plus

(+). Each unit-name should include an option to indicate if the body or specification is 0 be
hypothetically compiled (-spec is the default).

6.53 Required Recompilations
If the consistency check found that recompilations are required, a list of required recompilations
is written 10 the current output file or 10 a text file if the -log option is specified (the name of
he text file is indicated in the log file. line 8). The list will include any inconsistencies detected
in the library and recompilations required by the hypothetical recompilations specified with the
options -declaration and -body.
The entries in the list conain:

1) The unit name.

2) Indication of what type of unit (declaration unit, body unit, or subunit).

3) If the unit is specified as recompiled with the -declaration or -body option, it is marked
with “-R-".

4) The environmental variable of the sublibrary containing the unit.
In the recompilation list the units are listed in a2 recommended recompilation order, consistent with
the dependencies among the units.
6.5.4 -searchlib

-searchlib <file_name> {,<file_name>})
The -searchlib option directs the Ada Linker to search the specified 80x86 target libraries for
object modules in order to resolve symbol references. The 80x86 target libraries for object files
will be searched before the DACS Run-Time System (RTS) library normally searches for run-time
routines; in this way one can replace the standard DACS RTS routines with custom routines.

The -searchlib option is also intended to specify libraries of modules referenced from Ada via
pragma INTERFACE.

DACS-80x86 User's Guide
The Ada Linker

Examples:
$ ada_link -searchlib interface_lib p

Links the subprogram p. resolving referenced symbols first with the target library interface_lib
and then with the standard RTS 1arget library.

6.5.5 -stop_before_link

-stop_before_link
The -stop_before_link option allows the user to introduce assemblers and linkers from third
parties or to otherwise configure the link to suit the application. The link is halted with the
following conditions:

* The user configurable data file, <main>_ucd.o, is produced with the default or user specified
linker option values included.

« The elaboration code is contained in the <main>_elabcode.o file.

« The shell script file that contains the link command is present and has not been executed. The
file's name is <main>_link.com.

» The temporary Ada object file(s) used by the target linker are produced. These objects are
linked and deleted when <main>_link.com is executed.

» With -selective_link the object files comprise all Ada units including those from the root
library. At this point it is possible to disassemble the "cut” object files using -object with the
disassembler.

To complete the link, the <main>_link.com script must be executed. To use third party tools, this
file may have to be modified.

6.5.6 -options

-options <parameter>

-options allow the user to pass options onto the target linker.

61

DACS-80x86 User's Guide
Run-Time System

6.5.7 -library

«library <file-name>
-library Sada_library (default)

The -library option specifies the current sublibrary, from which the linking of the main unit will
take place. If this option is not specified, the sublibrary specified by the environmental variable
ada_library is used.

6.5.8 -selective_link
-selective_link

This extracts all required object modules from the Ada library (including the root library) and cuts
out exacly those parts that are acmally called, in order to make the resulting target program
considerably smaller. If a2 program uses e.g. PUT_LINE as the only routine from TEXT_IO, the
contribution from the TEXT_lO object module will only contain PUT_LINE (and whatever that
needs). Note that disassemblies of units used in a selective link normally will not match what is
linked, because of the cutting. Such disassemblies may though be obtained by disassembling
directly those units that made up the selective link, by stopping the linking before the target link
phase (-stop_before_link), making disassemblies using -object and then resuming the link.

Note also that unused constants and permanent variables are not removed.
Only "level 1" subprograms may be removed. Nested subprograms (that are not called) are 10 be

removed during compilation using the -optimize option. Nested subprograms are only removed,
if the routine in which the nesting occurs is removed.

6.5.9 -[nojlog

-log [<file-spec>]
-nolog (default)

The option specifies if a log file will be produced from the front end linker. As default, no log
file is produced. If <file-spec> is not entered with -log the default file name for the log file will
be link.log in the current directory.

The log file contains extensive information on the results of the link. The file includes:

+ An elaboration order list with an entry for each unit included, showing the order in which the
units will be elaborated. For each unit, the unit type, the time stamp, and the dependéncies are
shown. Furthermore, any elaboration inconsistencies will be reported.

+ A linking summary with the following information:

< Parameters and active options.

» The full name of the program library (the current sublibrary and its ancestor sublibraries).

62

O,

DACS-80x86 User's Guide
» The Ada Linker
+ The number of each type of diagnostic message.

+ A termination message, stating if the linking was temminated successfully or unsuccessfully or
if a consequence examination was terminated.

» Diagnostic messages and wamings are written on the log file.

If recompilations are required (as a result of the consistency check) a text file is produced
containing excerpts of the log file. The name of this text file is written in the log file, line 8.

The log file consists of:
» Header consisting of the linker name, the linker version number, and the link time.

» The elaboration order of the compilation units. The units are displayed in the order elaborated
with the unit number, compilation time, unit type, dependencies, and any linking errors.

« If retompilations are required, the units that must be recompiled are listed along with its unit
type and sublibrary level

« The linking summary that includes the main unit name, the program library, any recompilations
that are required, and if any errors or wamings occurred.

6.5.10 -[nojroot.extract

-root..extract
-noroot_extract (default)

The units contained in the Ada system library supplied by DDC-1 have been extracted and inserted
into the Sada_root_lib OMF Library, thus eliminating extractions from the system library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-I.
If however, a unit is compiled into the Ada system library, the $ada_root_lib will no longer
match the Ada system library and -root_extract must be specified in order 1o link from the Ada
system library.

6.5.11 -{noldebug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is

required 10 enable symbolic debugging. If -nodebug is specified, the Ada linker will skip the
generation of debug information, thus saving link time, and will not insert the debug information

63

DACS-80x86 User's Guide
The Ada Linker

into the chosen sublibrary, thus saving disk space. Note that any unit which should be
symbolically debugged with the DDC-I Ada Symbolic Cross Debugger must also be compiled with
the -debug option.

6.5.12 -(nojrts

-rts (default)
-norts

The -rts option directs the Ada Linker 10 include the appropriate Run-Time System (RTS) in the
link. -norts directs the Ada Linker 10 exclude the RTS in the link.

The ability to exclude the Run-Time Sysiem from the link allows the user to do an additional link
with a private copy of a cusiom RTS. The Ada Linker may report unresolved references 0 RTS
routines, but will still produce a relocatable object file.

6.5.13 -rms
-rms

This option selects the Rate Monotonic Scheduling Tasking Kemel (if tasking is selected). The
default is to use the Standard Tasking Kemel. This feature is supplied as an option.

6.5.14 -[nojextract

-extract (default)
-noextract

This option to the linker allows the user to specify that program unit objects should not be
extracted from the Ada program library. This option would be used if the user knows that many

objects have not changed since the last link and does not want the linker to waste time extracting
them.

To use this feature, the user should modify the template 1o not delete unit object files after a
target link is performed. This way the object files remain in the current directory (or whereever
the user decides t0 put them). On subsequent links the user can extract object modules of
modified units from the Ada library using the standalone DACS extract wol. A new target link
can then be performed using a combination of newly extracted objects and the object files from
previous links that have gone unchanged. This could significantly improve linker speed when
linking programs that share common and rarely modified libraries and when relinking programs
that have had only a few units modified.

DACS-80x86 User's Guide
The Ada Linker
6.5.15 -template

-template <file-name>
-template $ada_template (default)

The template file is known 10 the linker via the environmental variable ada_template. DDC-I

supplies a default template file as part of the standard release system. Please refer to appendix H
for detailed information.

65016 OI'IPX

-npx (default)
-nonpx

The -npx option specifies that the 80x87 (8087, 80287, or 80387) numeric coprocessor is used
by the Ada program. When -npx is specified. the 80x87 is initialized by the task initialization

routine, the floating point stack is reset during exception conditions, and the 80x87 context is
saved during a task switch.

Configurabie Data

A 16 bit boolean constant is generated by the Ada Linker:

_CD_NPX_USED |boolean

0 - 80x87 is not used
1 - 80x87 is used

6.5.17 -tasks

-tasks [n]
(default is no tasking)

This option specifies the maximum number of tasks allowed by the RTS. If specified, n must be
greater than zero. If -tasks is specified without a value for n, n defaults to 10. If -tasks is not
specified, the RTS used will not include support for tasking. If -tasks is specified, the RTS used
will include suppornt for tasking,

Ada Interrupt tasks identified with pragma INTERRUPT_HANDLER need not be included in the
count of maximum number of tasks. The main program must be counted in the maximum number

of tasks. Note that the main program, which may implicitly be considered 3 task, will not run
under control of the tasking kemel when -notasks is specified. See also -rms option.

Configurable Data
For -tasks, the linkcr generates the following configurable data:

65

DACS-80x86 User's Guide
The Ada Linker

_CD_WAX_TASKS | INTEGER = N I

CD_TCBS ¥ Task

Control

Blochks
(TCBS)

If ~apx i
active, W
aumeric co-
processor

Example:
$ ada_link -tasks 3 p

* Link the program P, which has at most 3 iasks, including the main program.

6.5.18 -priority

-priority n

-priority 15 (default)
The -priority option specifies the default priority for task execution. The main program will run
at this priority, as well as tasks which have had no priority level defined via pragma PRIORITY.
The range of priorities is from O w 31.

Priorities can be set on a per task basis dynamically at run time. See section E.1 (Package
RTS_EntryPoints) for more details.

Configurable Data

The Ada Linker generates the following constant data:

CO_PRIORITY ‘ Constant = N I

Exampie:
$ ada_link -tasks -priority 8 p

. Link the subprogram P which has the main program and tasks running at
default priority 8.

DACS-80x86 User's Guide
The Ada Linker

6.5.19 -time_slice
-time_slice [r) (default no time shcing is active)

The -time_slice options specifies whether or not time slicing will be used for tasks. If specified,
R is a decimal number of seconds representing the default time slicc to be used. If R is not
specified, the default dme slice will be 1/32 of a second. R must be in the range Duration’Small
< R £ 2.0 and must be greater than or equal to the -timer linker option value. Time slicing only
applies to tasks running at equal priority. Because the RTS is a preemptive priority scheduler, the
highest priority task will always run before any lower priority task. Only when two or more tasks
are running at the same priority is time slicing applied to each task.

Time slicing can be specified on a per task basis dynamically at run-time. See Section E.1
(Package RTS_EntryPoints) for more details.

Time slicing is not applicable unless tasking is being used. This means that the -tasks option
must be used for -time_slice to be effective.

Configurable Data

The Ada Linker generates the following data:

_CD_TIME_SLICE_USED L BOOLEAN ‘

- 0 = No time slicing
- 1 =~ Time slicing

_CD_TIME_SLICE | absolute integer I

« representing the number Y that satisfies Y * DURATION'SMALL = R

Example:
$ ada_link -time_slice 0.125 -tasks p

» Specifies tasks of equal priority to be time sliced each eighth of a second.

6.5.20 -timer

-timer R
-timer 0.001 (default)

The -timer option specifies the resolution of calls to the Run-Time System routine TIMER (see
the Run-Time System Configuration Guide for DACS-80x86 for more information). The number,
R, specifies a decimal number of seconds which have elapsed for every call o TIMER. The

default TIMER resolution is one millisecond. R must be in the range DURATION'SMALL< R
< 2.

67

DACS-80x86 User's Guide
The Ada Linker

Configurable Data
The Ada Linker generates the following 16 bit constant:

CO_TIMER I Absolute Integer I

» representing the number Y that satisfies Y * DURATION'SMALL=R

6.521 -reserve.stack

-reserve_stack [n]
The -reserve_stack option designates how many words are reserved on each task stack. This
space is reserved for use by the RTS, which does no checking for stack overflow. This reserved

space also allows the RTS to function in situations such as handling a storage error exception
arising from stack overflow.

The -reserve_stack option also reserves pan of the main program stack size, specified by the
linker option -mp_stack_size.

Configurable Data

The Ada Linker generates the following integer constant:

CD_RESERVE_STACX [INTEGER I

Examples:
$ ada_link -reserve_stack 200 -tasks p

» Reserve 200 words from each stack for use by the RTS.

6.522 -lt_stack_size

-It_stack_size n

-It_stack_size S00(default)
The -It_stack_size option designates the library task defauit size mwolds.Ahbnrynskxs
formed when a task object is declared at the outermost level of a package. Library tasks are
created and activated during the initial main program elaboration. (See the Ada Reference Manual

for more details).

DACS-80x86 User's Guide
The Ada Linker
For each library task, the representation spec:
FOR Task_object’'STORAGE_SIZE USE N:

can be used to specify the library task stack size. However, if the representation spec is not used,
the default library task size specified by -it_stack_size will be used.

For efficiency reasons, all tasks created within library tasks will have stacks allocated within the
same segment as the library task stack. Normally, the segment which contains the library task
stack is allocated just large enough to hold the default library task stack. Therefore, one must use
the option -lt_stack_option or the pragma LT_SEGMENT_SIZE 10 reserve more space within the

segment that may be used for nested tasks’ stacks. (See the implementation dependent pragma
LT_SEGMENT_SIZE in Section F.1 for more information).

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase of the link, and the maximum segment size (64K for all except the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linker generates the following integer constant:

_CD_LT_STACK_SIZE INTEGER

Example:
$ ada_link -lt_stack_size 2048 -tasks p

+ Link the subprogram P using a 2K words default library stack size.

6.5.23 -lt_stack_size

-Iit_segment_size n
-It_segment_size (lt_stack_size + 20 + exception_stack—space) (default)

This parameter defines in words the size of a library task segment. The library task segment
contains the task stack and the stacks of all its nested tasks.

The default value is only large enough to hold one default task stack. If -It_stack_size is used and

specifies a value other than the default value, -It_segment_size should also be specxﬁed 10 be the
size of <task_stack_size> +

<total_of_nested_tasks_sizes> +
<20_words_overhead> +
exception_stack_space.

Note that the task stack size specified by the 'STORAGE_size can be representation spec or by
the option -It_stack_size.

Dynamically allocated tasks receive their own segment equal in size to the mp_segment_size.

69

DACS-80x86 User’s Guide
The Ada Linker

The range of this parameter is limited by physical memory size, task stack size allocated during

the build phase, and the maximum segment size (64K for all except the 386/486 protected mode.
which is 4 GB).

Configurable Data

The Ada Linker generates the following data structure:

_CD_LT_SEQMENT_SIZL | ___INTEGER |

Exampie:
$ ada_link -lt_segment_size 2048 -tasks p

* Link the program P using a library task segment size of 2K words.

6.524 -mp_stack_size

-mp_stack_size n
-mp_stack_size 8000 (default)

The -mp_stack_size option specifies the main program stack size in words.
The range of this parameter is limited by physical memory size, task stack size allocated during

the build phase (in tasking programs only), the maximum segment size (64K for all except the
386/486 protected mode. which is 4 GB), and the size of mp_segment_size.

Configurable Data

The Ada Linker generates the following data structures for nontasking programs:

oo @ smace_suzz

_CD_MP_STACK MP_STACK_SIZC
O

rds of
storage ‘

_CD_MP_STACK_START Highest addrs.
of MP stack

For tasking programs, the Ada Linker generates the same structures but limits the

words. This stack is only used for the execution of the system startup code and elaboration.
Al main program activation, a segment for the main program equal 10 the size specified by -
-mp_segment_size will be allocated from the dynamic memory pool and a stack for the main
program equal to the size specified by -mp_stack_size will be allocated from the memory
pool.

DACS-80x86 User's Guide
The Ada Linker
Example:
$ ada_link -mp_stack_size 1000 p
« Link the subprogram P with a stack of 1000 words.

6.5.25 -mp_segment_size

-mp_segment_size n
-mp.segment_size 8100 (Default)

The -mp_segment_size option specifies the size, in words, of the segment in which the main
program stack is allocated. The default setting can be calculated from the formula:

mp_segment_size = mp_stack_size +
overhead + (tasks - 1) *
(overhead + task_storage_size)

Normally, the main program segment size can be set to the size of the main program stack.
However, when the main program contains nested tasks, the stacks for the nested tasks will be
allocated from the data segment which contains the main program stack. Therefore, when the

main program conwins nested tasks, the main program stack segment must be extended via the
-mp_segment_size option.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), and the maximum segment size (64K for all except
the 386/486 protected mode, which is 4 GB).

Note: Dynamically allocated tasks receive their own segment equal in size to mp_segment_size.

Configurable Data

The Ada Linker allocates the _CD_MP_STACK (see the -mp_stack_size option) within a data
segment called _CD_MP_STACK_SEGMENT:

_CD_MP_STACK_SEGQMENT ‘w STACK I]
1 1 t
MP_STACK_START ¥P_STACK_SIZE MP_SEGMENT_SIZE
Example:

$ ada_link -tasks -mp_segment_size 32000 program_a

Links the subprogram PROGRAM_A, which contains tasks nested in the main program
allocating 32,000 words for the main program stack segment.

n

DACS-80x86 User's Guide
The Ada Linker

6.526 -task_storage.size

-task_storage_size n
-task_storage_size 1024 (default)

This option sets the default storage size in words for stacks of tasks that are not library tasks.
This value can be overridden with a representation clause.

The range is limited by the size of the lt_segment_size (if it is a subtask to a library task), or by
mp_segment_size (if it is a subtask to the main program).

Configurable Data

The Ada Linker generates the following data structure:

_CD_TASK_STORAGE_SIIE I IWTEGER I

6.5.27 -interrupt_entry_table
-interrupt_entry_table L,H

The -interrupt_entry_table option specifies the range of interrupt vector numbers used by the
Ada program in interrupt tasks.

The number, L, specifies the lowest numbered interrupt handler. The number, H, specifies the
highest numbered interrupt handler. The range for low and high interrupts is 0 to 255.

Configurable Data

If -interrupt_entry_table is specified, the Ada Linker will generate the following data structure:

_CD_LOW_INTERROPT COMSTANT (L)
_CD_BIGH_INTERRUPT CONSTANT m
_CD_INTERROPT_VECTOR (B-L+1) *S

words reserved
for Interrupt
Vector

If the user ever detects unresolved references to the symbols:

_CD_LOW_INTERRUPT
-CD_HIGH_INTERRUPT
-CD_INTERRUPT_VECTOR

DACS-80x86 User's Guide

The Ada Linker
the Ada program contains standard interrupet tasks for which the RTS the above data
structure. You must relink the Ads program specifying the -interrupt_entry_table option.

Example:
$ ada_link -tasks -interrupt_entry_table 5,20 p

+ Links the subprogram P, which has standard Ada interrupt entries numbered §
through 20.

6.5.28 -[nojenable_task_trace

-enable_task_trace
-noenable_task_trace (default)

This option instructs the exception handler ' produce a stack trace when 2 task terminates because
of an unhandled exception.

Configurable Data

_CD_TRACE_ENABLED l BOOLEAN I

= 0 - task trace disabled
= 1 - task trace enabled

6.5.29 -exception_space

-exception_space n
-exception_space 0abh (default)

Each stack will have set its top area aside for exception space. When an exception occurs, the
exception handler may swiich stack to this area to avoid accidental overwrite below the stack
bottom (which may lead to protection exceptions) if the size of the remaining part of the stack
is smaller than the N value. Specifying a value =0 will never cause stack switching. Otherwise an
N value below the default value is not recommended.

Configurable Data

_CD_EXCEPTION_STACK_SPACE_SIZE [INTEGER |

Note that this value is added to all requests for task stack space, thus requiring an increase in the
requirements of the appropriate segment’s size

DACS-80x86 User's Guide
The Ada Linker

6.530 -sign_on

-sign_on [<string>)
When this option is specified the linker will generate code to output a sign on message, before
the Ada elaboration is initiated and a sign off message when the target program has terminated
mﬁ:ﬂy. If the program terminates with an uncaught exception, the sign off message is not
The sign on message coasists of:

START (<string>] <program name>
and the sign off message

STOP [<suing>] <program name>
The <string> may contain spaces, ¢.g.

-sigt;..on "Test 3" (remember the quotes).

This facility is very useful to separate output from several target programs run after each other,

and 10 verify that a program that produces little or no output has actually been loaded and run
successfully.

74

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by tne customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
type SHORT INTEGER is range -32_768 .. 32_767;
type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type LONG_INTEGER is
range -16#8000_0000_0000_0000# .. 16#7FFF_FFFF_FFFF_FFFF#;

type FLOAT is digits 6
range -16#0.FFFF_FF#E32 .. 16#0.FFFF_FF4E32;

type LONG_FLOAT is digits 15
range -16#0.FFFF_FFFF_FFFF_F8#E256 .. 16#0.FFFF_FFFF_FFFF_F84E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

APPENDIX F - IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-80X86™ as required
in Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas
This section describes all implementation defined pragmas.

F.1.1 Pragma INTERFACE_SPELLING

This pragna allows an Ada program to call a non-Ada program whose name contains characters
tha are invalid in Ada subprogram identifiers. This pragma must be used in conjunction with
pragma INTERFACE, i.c., pragma INTERFACE must be specified for the Ada subprogram name
prior to using pragma INTERFACE_SPELLING.

The pragma has the format
pragma INTERFACE_SPELLING (subprogram name, string literal);
where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language. This pragma is
only required when the subprogram name contains invalid characters for Ada identifiers.
Example:
function RTS_GetDataSegment return Integer:

pragma INTERFACE (ASM86, RTS_GetDataSegment):
pragma INTERFACE_SPELLING (RTS_GetDataSegment, "R1SMGS2GetDataSegment”):;

The string literal may be appended 'NEAR (or 'FAR) to specify a particular method of call. The
default is 'FAR. This suffix should only be used, when the called routines require a near call

(writing 'FAR is however harmless). If "NEAR is added, the routine must be in the same segment
as the caller.

F.12 Pragma LT_SEGMENT_SIZE

This pragma sets the size of a library task stack segment.
The pragma has the format:

pragma LT_SEGMENT _SIZE (T, N);

where T denotes either a task object or task type and N designates the size of the library task

193

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

stack segment in words.

The library task's stack segment defaults to the size of the library task stack. The size of the
library task stack is normally specified via the representation clause (note that T must be a task
type)

for T'STORAGE_SIZE use N;

The size of the library task stack segment determines how many tasks can be created which are
nested within the library task. All tasks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus, pragma LT_SEGMENT _SIZE
must be specified t0 reserve space within the library task stack segment so that nested tasks’
stacks may be allocated (see section 7.1).

The following restrictions are places on the use of LT_SEGMENT_SIZE:
1) It must be used only for library tasks.
2) it must be placed immediately after the task object or type name declaration.

3) The library task stack segment size (N) must be greater than or equal to the library task
stack size.

F.13 Pragma EXTERNAL_NAME

F.13.1 Function

The pragma EXTERNAL_NAME is designed 10 make permanent Ada objects and subprograms
externally available using names supplied by the user.

F.13.2 Format
The format of the pragma is:

pragma EXTERNAL_NAME(<ada_entity>,<external name>)
where <ada_entity> should be the name of:

« a permanent object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate from package specifications and bodies only,

» a constant object, i.. an object placed in the constant pool of the compilation unit - please

note that scalar constants are embedded in the code, and composite constants are not always
placed in the constant pool, because the constant is not considered constant by the compiler,

194

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

» a subprogram name, i.. a name of a subprogram defined in this compilation unit - please
notice that separate subprogram specifications cannot be used. the code for the subprogram
must be present in the compilation unit code. and where the <extemal name> is a string
specifving the extenal name associated the <ada_entity>. The <extemal names> should be
unique. Specifving identical spellings for different <ada_entities> will generate errors at compile
and/or link time, and the responsibility for this is left to the user. Also the user should avoid
spellings similar to the spellings generated by the compiler, ¢.g. E_xxxxx_yyyyy. P_xxxxx,
C_xxxxx and other intemal identfications. The target debug type information associated with
such external names is the null type.

F.1.3.3 Restrictions

Objects that are local variables to subprograms or blocks cannot have extemal names associated.
The entity being made external ("public”) must be defined in the compilation unit itself. Atempts
to name entities from other compilation units will be rejected with a waming.

When an entity is an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.13.4 Example
Consider the following package body fragment:
package body example is

subtype stringl0 is stzring(l..10):

type s is
record
len : integer:
val : stringlQ:

end record:

global_s : s;
const_s : constant stringlQ := "1234567890";

pragma EXTERNAL NAME (global_s, "GLOBAL_S_OBJECT"):
pragma EXTERNAL NAME(const_s, "CONST_S"):

procedure handie(...) is
end handle:

pragma EXTERNAL_NAME (handle, "HANDLE_PROC"}:

end example;

The objects GLOBAL _S and CONST_S will have associated the names "GLOBAL_S_OBJECT"
and "CONST_S". The procedure HANDLE is now also known as "HANDLE_PROC". It is

195

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

allowable 10 assign more than one extemal name 0 an Ada entity.

F.1335 Object Layouts

Scalar objects are laid out as described in Chapter 9. For arrays the obiject is described by the
address of the first element; the amay constraini(s) are NOT passed, and therefore it is
recommended only to use arrays with known constraints. Non- discriminated records take a
consecutive number of bytes, whereas discriminated records may contain pointers 1o the heap. Such

complex objects should be made extemally visible, only if the user has thorough knowledge about
the layout.

F.13.6 Parameter Passing

The following section describes briefly the fundamentals regarding parameter passing in connection
with Ada subprograms. For more detail, refer to Chapter 9.

Scalar objects are always passed by value. For QUT or IN OUT scalars, code is generaied to
move the modified scalar to its destination. In this case the stack space for parameters is not
removed by the procedure itself, but by the caller.

Composite objects are passed by reference. Records are passed via the address of the first byte
of the record. Constrained arrays are passed via the address of the first byte (plus a bitoffset when
a packed amray). Unconstrained arrays are passed as constrained arrays plus a pointer 1o the
constraints for each index in the array. These constraints consist of lower and upper bounds, plus
the size in words or bits of each element depending if the value is positive or negative
respectively. The user should study an appropriate disassembler listing w0 thoroughly understand
the compiler calling conventions.

A function (which can only have IN parameters) retums its result in register(s). Scalar results are
registers/float registers only: composite results leave an address in some registers and the rest, if
any, are placed on the stack top. The stack still contains the parameters in this case (since the
function result is likely to be on the stack), so the caller must restore the stack pointer 10 a
suitable value, when the function call is dealt with. Again, disassemblies may guide the user to
see how a particular function call is to be handled.

F.1.4 Pragma INTERRUPT_HANDLER

This pragma will cause the compiler to generate fast interrupt handler entries instead of the normal
task calls for the entries in the task in which it is specified. It has the format:

pragma INTERRUPT_HANDLER;
The pragma must appear as the first thing in the specification of the task object. The task must

be specified in a package and not a procedure. See Section F.6.2.3 for more details and restrictions
on specifying address clauses for task entries.

196

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.1.5 Pragma MONITOR_TASK

F.1.5.1 Function

The pragma MONITOR_TASK is used to specify that a task with a cenain structure can be

handled in a special way by the Run-Time System, enabling a very efficient context switch
operation.

F.1.52 Format
The format of the pragma is
pragma MONITOR_TASK:

The pragma must be given in a task specification before any entry declarations.

F.1.53 Restrictions

The following restrictions apply on tasks containing a pragma MONITOR_TASK :

» Only single anonymous tasks can be "monitor tasks".

+ Entries in "monitor tasks” must be single entries (i.e. not family entries).

* The task and entry attributes are not allowed for "monitor tasks” and "monitor 5. .." entries.

* The <declarative par> shou7ld only contain declaration of objects: no types or nested sturctures
must be used.

+ The structure of the task body must be one of the following:
1.
task body MON_TASK is
<declarative part>
begin
<statement list>
loop
select
accept ENTRY l<parameter_list> [do
end];
or
accept ENTRY 2<parameter_list> [do
<statement_list>
end] ;
or
terminate
end select;
end loop;
ond;

where each entry declared in the specification must be accepted unconditionally exactly once.

197

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

2.
task body MON_TASK 1is
<declarative part>
begin
<gtatement list>
loop
accept MON_ENTRY<parameter_list>(do
<statement_list>
end];
end loop;
end;

where the task only has one entry.

In both cases the declarative parts, the statement lists and the parameter lists may be empty.

The statement list can be arbitrarily complex, but no nested select or accept statements are
allowed.

No exception handler in the monitor task body can be given.

The user must guarantee that no exceptions are propagated out of the accepts.

F.1.5.4 Example

The following tasks can be defined

task LIST_HANDLER is
pragma MONITOR_TASK;
entZy INSERT(ELEM:ELEM TYPE):
entry REMOVE (ELEM:out ELEM_TYPE);
entry IS_PRESENT(ELEM:ELEM_TYPE;

RESULT:out BOOLEAN) ;
end LIST_HANDLER;

task body LIST_HANDLER is
“define list®
begin
“initialize list"
seiect
accept INSERT(ELEM:ELEM_TYPE)do
“insert in list”®
end INSERT:
[}
accept REMOVE(ELEM:out ELEM_TYPE)do
find in list and remove from list®
end REMOVE
or
accept IS_PRESENT (ELEM:ELEM_TYPE
RES: out BOOLEAN)do
“scan list*®
end IS_PRESENT;
or
terminate,
end select
end MON_TASK;

The task can be used
task type LIST_USER is
end LI ST_OSER;

task body LIST_USER is

198

DACS-80x86 User's Guide
Implementation-Dependert Characteristics

begin
select
LIST_BAMDLER.INSERT (FIRST_ELENM);
else
raise INSERT_ERROR;
end select;
loop
LIST_BANDLER.INSERT (WEXT_ELEM):
end loop:
end LIST _USER;

F.16 Pragma TASK_STORAGE_SIZE (T, N)

This pragma may be used as an alternative to the attribute "TASK_STORAGE_SIZE to designate
the storage size (N) of a particular task object (T) (see section 7.1).

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-80x86 in Real Address Mode and
DACS-80286PM systems are identical except that type Name and constant System_Name vary:

iler Svstem System Name
DACS-8086 iAPX86
DACS-80186 iAPX186
DACS-80286 Real Mode iAPX286
DACS-80286 Protected Mode iAPX286_PM

Below is package system for DACS-8086.
package System 1is

type Word i3 new lInteger;
type DWord is new long_integer;

type Unsignediord is range 0..6553S;
for UnaignedWord’ SIZE use 16;

type byte is range 0..258;
for byte’ SIZE use §;

subtype SegmentId is Unsignediord;
type Addzess is
record
offset : Unsignediord;
segment : Segmentld;
end record;

subtype Priority 1is Integer range 0..31;

199

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

type Name is (LAPXS6);

SYSTEM NAME : constant Mame := LAPXSG;
STORAGE_ONIT : constant 1= 16;

MEMORY_SIZE : constant 1= 1_048_376;
MIN_INT : constant re =2 147_483_647-1;
MAX_INT : constant ro 2 _147_483_647;
MAX_DIGITS : constant ;e 15;

MAX_MANTISSA : constant 1w 31,

FINE_DELTA : constant cm 201.00E-31;

TICK : constant := 0.000_000_125;

type Interface_language 1s
(ASME6, PLMEG, ce6, C86_REVERSE,
ASM_ACF, PLM ACF, C AT, C_REVERSE_XCT,
ASM_NOACT, PLM_WOACF, C_WOACF, C_REVERSE_WOACF):

type Exceptionld 4is record
unit_number : Unsignediord;
unique_number : Unsignediord:
end record;

type TaskValue is new Integer;
type AccTaskValue i3 access TaskValue;
type SemaphoreValue is newv Integer;

type Semaphore is record

counter : Integer;

fizst : TaskValue;
last : TaskValue;
SQNext : SemaphoreValue;

== only used in BDS.
end record;

InitSemaphore : constant Semaphore := Semaphore’ (1,0,0,0);

end System;

The package SYSTEM specification for DACS-80386PM package system is:

package System is

type Word i3 new Short_lInteger;

type DWord is new Integer;

type QWord i3 new lLong_Integer;

type UnsignedWord is range 0..6553S;

for UnsignedWord’ SIZE use 16;

type OnsignedDWord is range O..168FFFF_FTTTY;
for OnsignedDNord’ SIZE use 32;

type Byte i3 range 0..255;

for Byte’ SIZE use 8;

subtype Segmentld is UnsignedWord;

type Address is
record
offset : UnsignedDWord;
seqment : SegmentId;
end record;

for Address use
record
offset at O range 0..31;
segment at 2 range 0..15;
end record;

subtype Priority 1is Integer range 0..31;

200

Lype Xame

SYSTEM_NANE
STCRAGE_DNIT
MMORY_SI2E
MIN_INT
MAX_INT
MAX_DIGITS
MAX_MANTISSA

FINE_DELTA
TICK

DACS-80x86 User's Guide

Implementation-Dependent Characteristics
is (LARPX386_PN);
i constant Mame := 1APX386_¥IM;
: constant @ 16;
: constant := 1641_0000_0000¢;
: constant 1w «1608000_0000_0000_0000¢;
: constant := L64TTYT_FrIT_Frer_FITFFY;
: constant :w 15;
: constant e 31;
¢ constant tw 241.00E-31;
: constant 1@ 0,000_000_062_S;

type Interface_language 1is

(ASMB6, PLNEE, ce6, C86_REVERSE,
ASM_ACT, PLM_ACF, C_ACF, C_REVERSE_ACF,

ASM_NOACF, PLM_MNOACF, c:uoncr. C_REVERSE_NOACT) ;

type Exception

type TaskValue

Id 1is record
unit_number : UnsignedDworzd;
unique_number : UnsignedOwWord;
end record;

is new Integer:;

type AccTaskValue is access TaskValue;
type SemaphoreValue is new Integer:;

type Semaphore

InitSemaphore :

end System.

is recorc
counter : Integer;
fizst, last : TaskValue;
SQNext : SemaphoreValue;

-~ only used in HDS.
end record;

constant Semaphore := Semaphore’ (1,0,0,0);

F.4 Representation Clauses

The DACS-80x86™ fully supports the "SIZE representation for derived types. The representation
clauses that are accepted for non-derived types are described in the following subsections.

F.4.1 Length Clause

Some remarks on

implementation dependent behavior of length clauses are necessary:

» When using the SIZE autribute for discrete types, the maximum value that can be specified is
16 bits. For DACS-30386PM/80486PM the maximum is 32 bits.

« SIZE is only ohcyed for discrete types when the type is a part of a composite object, e.g.
arrays or records, for example:

type byte is range 0..255;
for byte’size use 8;

sixteen_bits_allocated : byte: ~-- one word allocated

201

DACS-80x86 User's Guide
Impiementation-Dependent Characteristics

eight_bit_per_element : array(0..7) of byte; =-- four words allocated
type rec is
record

cl,c2 : byte: -- eight bits per component
end record:

Using the STORAGE_SIZE attribute for a collection will set an upper limit on the total size
of objects allocated in this collection. If further allocation is anempied, the exception
STORAGE_ERROR s raised.

When STORAGE_SIZE is specified in a length clause for a task type, the process stack area

will be of the specified size. The process stack area will be allocated inside the "standard” stack
segment. Note that STORAGE_SIZE may not be specified for a task object.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of -32767..+32766 (or

-16#7FFF..16#7FFE).

F.43 Record Representation Clauses

When representation clauses are applied to records the following restrictions are imposed:

« if the component is a record or an unpacked array, it must stan on a storage unit boundary
(16 bits)

a record occupies an integral number of storage units (words) (even though a record may have
fields that only define an odd number of bytes)

a record may take up a maximum of 32K bits
a component must be specified with its proper size (in bits), regardless of whether the
component is an array or not (Please note that record and unpacked array components take up
a number of bits divisible by 16 (=word size))

if a non-array component ilas a size which equais or exceeds one storage unit (16 bits) the
component must start on a storage unit boundary, i.e. the component must be specified as:

component aaNrange 0.16 * M - I;

where N specifies the relative storage unit number (0,1....) from the beginning of the record, and

M the required number of storage units (1.2,...)

« the elements in an array component should always be wholly contained in one storage unit

« if a component has a size which is less than onc storage unit, it must be wholly contained
within a single storage unit:

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

component at Nnnge X . Y;

where N is as in previous paragraph, and O <= X <= Y <= 15. Note that for this restriction

a component is not required to start in an integral number of storage units from the beginning
of the record.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler.

Pragma pack on a record type will attempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with representation clauses.

F.43.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristics:

If the declaration of the record type is done at the outermost level in a library package. any
alignment is accepted.

If the record declaration is done at a given static level higher than the outermost library level,
i.e., the permanent area), only word alignments are accepted.

Any record object declared at the outermost level in a library package will be aligned according
to the alignment clause specified for the type. Record objects declared elsewher: can only be

aligned on a word boundary. If the record type is associated with a differeat alignment, an
error message will be issued.

If a record type with an associated alignment clause is used in a composite type. the alignment
is required to be one word; an error message is issued if this is not the case.

F.5 Implementation-Depencent Names for Implementation Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and what types of entities may have
their address specified by the user.

203

DACS-80x86 User's Guide
Implementation-Dependent Characteristics
F.6.1 Objects

Address clauses are supported for scalar and composite objects whose size can be determined at
compile time. The address clause may denote a dynamic value.

F.62 Task Entries

The implementation supports two methods to equate a task entry to a hardware interrupt through
an address clause:

1) Direct transfer of control t0 a task accept statement when an interrupt occurs. This form
requires the use of pragma INTERRUPT_HANDLER.

2) Mapping of an interrupt onto a normal conditional entry call. This form allows the interrupt

entry to be calied from other tasks (without special actions), as well as being called when
an intersupt occurs.

F.6.2.1 Fast Interrupt Tasks

Directly wansferring control to an accept statement when an interrupt occurs requires the
implementation dependent pragma INTERRUPT_HANDLER 1o tell the compiler that the task is
an interrupt handler.

F.6.2.2 Features

Fast interrupt tasks provide the following features:

» Provide the fastest possible response time t0 an interrupt.

» Allow entry calls to other tasks during interrupt servicing.

» Allow procedure and function calls during interrupt servicing.
» Does not require its own stack to be allocated.

» Can be coded in packages with other declarations 1at desired visiblity to appropriate parts
of the program can be achieved.

+ May have multiple accept statements in a single fast interrupt task, each mapped 10 a different
interrupt. If more than one interrupt is to be serviced by a single fast interrupt task, the accept
statements should simply be coded consecutively. See example 2 how this is done. Note that
no code outside the accept statements will ever be executed.

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.62.3 Limitations

By using the fast interrupt feature, the user is agreeing (0 place ceriin restrictions on the lasx in
order 0 speed up the software response (0 the interrupt. Consequenty, use of this method to
capture interrupts is much faster than the normal method.

The following limitations are placed on a fast interrupt task:

» It must be a task object, not a task type.

» The pragma must appear first in the specification of the task object.

Al entries of the task object must be single entries (no families) with no parameters.

+ The entries must not be called from any task.

The body of the task must not contain any Statements outside the accept statement(s). A loop
statement may be used o enclose the accept(s), but this is meaningless because no code outside
the accept statements will be executed.

The task may make one entry call to another task for every handled interrupt, but the call must

be single and parameteriess and must be made 10 a normal tasks, not another fast interrupt
task.

« The task may only reference global variables; no data local 1o the task may be defined.

The task must be declared in a library package, i.c., at the outermost level of some package.

Explicit saving of NPX state must be performed by the user within the accept statement if such
state saving is required.

F.6.2.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normal tasks as long as the entries are single (no
indexes) and parameteriess.

If such an entry call is made and there is a possibility of the normal task not being ready to
accept the call, the entry call can be queued to the normal task's entry queue. This can be forced
by using the normal Ada conditional entry call construct shown below:

accept E do
select
TE:
else
null;
end select;
end E;

Normally, this code sequence means make the call and if the task is not waiting to accept it
immediately, cancel the call and continue. In the context of a fast interrupt task, however, the
semantics of this construct are modified slightly to force the queuing of the entry call.

205

m

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

If an unconditional entry call is made and the called task is not waiting at the corresponding
accept statement, then the interrupt task will wait at the enory call. Altemnatively, if a imed entry
call is made and the called task does not accept the call before the delay expires, then the call
will be dropped. The condilional entry call is the preferred method of making task entry calls
from fast interrupt handlers because it allows the inerrupt service routine to complete straight
through and it guaraniees queueing of the entry call if the called task is not waitng.

When using this method. make sure that the interrupt is included in the -interrupt_entry_table
specified at link time. See Section 7.2.15 for more details.

F.6.2.5 Impiementation of Fast Interrupts

Fast interrupt tasks are not actually implemented as true Ada tasks. Rather, they can be viewed
as procedures that consist of code simply waiting 10 be executed when an interrupt occurs. They
do not have a state, priority, or a task control block associated with them, and are not scheduled
10 “run” by the run-time system.

Since a fast interrupt handler is not really a task, to code it in a loop of somekind is meaningiess
because the task will never loop; it will simply execute the body of the accept statement whenever
the interrupt occurs. However, a loop construct could make the source code more easily understood

and has no side effects except for the generation of the executable code to implement to loop
construct

F.6.2.6 Flow of Control

When an interrupt occurs. control of the CPU is transferred directy 10 the accept statement of the
task. This means that the appropriate slot in the interrupt vector table is modified to contain the
address of the corresponding fast interrupt accept statement.

Associated with the code for the accept staiement is
at the very beginning:
code that saves registers and sets (E)BP to look like a frame where the interrupt retum
address works as return address.

at the very end:
code that restores registers followed by an IRET instruction.

Note that if the interrupt handler makes an entry call to another task, the interrupt handler is
compieted through the IRET before the rendezvous is actually completed. After the rendezvous
completes, normal Ada task priority rules will be obeyed, and a task context switch may occur.

Normally, the interrupting device must be reenabled by receiving End-Of-Interrupt messages. These
can be sent from machine code insertion stalements as demonstrated in Example 7.

206

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.62.7 Saviny NPX State

If the interrupt handler will perform floating point calculations and the state of the NPX must be
saved because other tasks also use the numeric coprocessor, calls to the appropriaie save/resiore
routines must be made in the statement list of the accept statement. These routines are located

in package RTS_EntryPoints and are called RTS_Store_NPX_State and RTS_Restore_NPX_State.
See example 6 for more information.

F.6.2.8 Storage Used

This section details the storage requirements of fast interrupt handlers.

F.6.2.9 Stack Space

A fast interrupt handler executes off the stack of the task executing at the time of the interrupt
Since a fast interrupt handler is not a task it does not have its own stack.

Since no local data or parameters are permitted, use of stack space is limited to procedure and
function calls from within the interrupt handler.

F.6.2.10 Run-Time System Data
No task control block (TCB) is created for a fast interrupt handler.

If the fast interrupt handler makes a task entry call, an entry in the _CD_INTERRUPT_VECTOR
must be made to allocate storage for the queuing mechanism. This table is a run-time system data
structure used for queuing interrupts to normal tasks. Each entry is only 10 words for 80386/80486
protected mode compilers and 5 words for all other compiler systems. This table is created by
the linker and is constrained by the user through the linker option -interrupt_entry_table. For
more information, see Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section F.6.2.7), it is done so in the NPX save
area of the TCB of the task executing at the time of the interrupt. This is appropriate because it
is that task whose NPX state is being saved.

F.63 Building an Application with Fast Interrupt Tasks

This section describes certain steps that must be followed to build an application using one or
more fast interrupt handlers.

207

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.6.3.1 Source Code

The pragma INTERRUPT_HANDLER which indicates that the interrupt handler is the fast form

of interrupt handling and not the normal type, must be placed in the task specification as the first
statement.

When specifying an address ciause for a fast interrupt handler, the offset should be the interrupt
number, not the offset of the interrupt in the interrupt vector. The segment is not applicable
(although a zero value must be specified) as it is not used by the compiler for interrupt addresses.
The compiler will piace the interrupt vector into the INTERRUPTVECTORTABLE segment. For
real address mode programs, the interrupt vector must always be in segment 0 at execution time.
For protected mode programs, the user specifies the interrupt vector location at build time.

Calls 10 RTS_Store_NPX_State and RTS_Restore_NPX_State must be included if the state of the
numeric coprocessor must be saved when the fast interrupt occrus. These routines are located in
package RTS_EntryPoints in the root library. See example 6 for more information.

F.63.2 Compiling the Program

No special compilation options are required.

F.633 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have to be accounted for when using the
-tasks option at link time. In fact, if there are no normal tasks in the application, the program
can be linked without -tasks.

This also means that the linker options -it_stack_size, -It_segment_size, -mp_segment_size, and
-task_storage_size do not apply to fast interrupt tasks, except to note that a fast interrupt task will
execute off the stack of the task running at the time of the interrupt.

If an entry call is made by a fast interrupt handler the interrupt number must be included in the
-interrupt_entry_table option at link time. This option builds a table in the run-ime sysiem data
segment to handle entry calls of interrupt handiers. The table is indexed by the interrupt number,
which is bounded by the low and high interrupt numbers specified at link tme.

F.63.4 Locating/Building the Program

For real-address mode programs. no special actions need be performed at link time; the compiler
creates the appropriate entry in the INTERRUPTVECTORTABLE segment. This segment must be
at segment 0 before the first interrupt can occur.

For protected mode programs no special actions need be performed. The Ada Link automatically
recognizes Ada interrupt handlers and adds them to the IDT.

208

DAC§-80x86 User's Guide ‘
Implementation-Dependent Characteristics

F.6.4 Examples

These examples illustrate how to write fast interrupt tasks and then how to build the application
using the fast interrupt tasks.

F.6.4.1 Example 1

This example shows how to code a fast interrupt handler that does not make any task entry calls.
but simply performs some interrupt handling code in the accept body.

Ada source:

with System;

package P is
<potentially other declarations>

© task Fast_Interrupt_Handler is

pragma INTERRUPT_HANDLER;

enry E:

for E use at (segment => 0, offset => 10);
end;

<potentially other declarations>

end P;
package body P is
<potentially other declarations>
task body Fast_Interrupt_Handler is
begin
accept E do
<handle interrupt>

end E;
end;

<potentially other declarations>
end P;
with P;
procedure Example_1 is
begin

<main program>
end Example_1;

Compilation and Linking:

209

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

$ ada Example_1
$ ada_link Example_1 ! Note: no other tasks in the system in this example.

F.6.4.2 Example 2

This example shows how 0 write a fast interrupt handler that services more than one interrupt.

Ada source:

with System:
package P is

task Fast_Interrupt_Handler is
pragma INTERRUPT_HANDLER;

enry El
enry E2:
entry E3;

for E1 use at (segment => 0, offset => 5);
for E2 use at (segment => 0, offset => 9);
for E3 use at (segment => 0, offset => 11);

end;
end P;
package body P is
task body Fast_Interrupt_Handler is
begin
accept E1 do

<service interrupt 5>
end EI,

accept E2 do
<service interrupt 9>
end E2;
accept E3 do
<service interrupt 11>
end E3;
end;

end P,

Compilation and Linking:

210

DAC>-80x86 User's Guide
Implementation-Dependent Characteristics

$ ada Example_2
$ ada_link -tasks - Example_2 # assumes application also has normal tasks (not shown)

F.6.43 Example 3

This example shows how to access global data and make a procedure call from within a fast
interrupt handler.

Ada source:

with System:
package P is

A : Integer.

task Fast_Interrupt_Handler is

pragma INTERRUPT_HANDLER;

entry E:

for E use at (segment => 0, offset => 16#127#);
end;
end P;

package body P is

B : Integer;
procedure P (X : in out Integer) is
begin
X =X+1;
end:

task body Fast_Interrupt_Handler is
begin
accept E do
A=A +B;
P (A)
end E;
end;

end P,
Compilation and Linking:

$ ada Example_3
$ ada_link Example_3

211

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.6.4.4 Example 4

This example shows how 10 make a task entry call and force it to be queued if the called task
if not waiting at the accept at the time of the call.

Note that the application is linked with -tasks=2, where the tasks are T and the main program.
Since the fast interrupt handler is making an entry call o T, the techniques used guarantee that
it will be queued, if necessary. This is accompiished by using the conditional call construct in
the accept body of the fast interrupt handler and by including the interrupt in the -
interrupt_entry_table at link time.

Ada source:

with System;
package P is

task Fast_Interrupt_Handler is

pragma INTERRUPT_HANDLER:

entry E;

for E use at (segmert => 0, offset => 8);
end.

task T is
entry E;
end;

end P;
package body P is

task body Fast_Interrupt_Handler is
begin
accept E do
select
T.E:
else
null;
end select;
end E;
end;
task body T is
begin
loop
select
accept E;
or
delay 3.0;
end select:
end loop;
end;

end P;

212

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

Compilation and Linking:

$ ada Example_4
$ ada_link -tasks 2 -interrupt_entry_table 88 Example_4

F.6.45 Example §

This example shows how to build an application for 80386/80486 protected mode programs using
fast interrupt handlers.

Ada source:

with System:
package P is

task Fast_Interrupt_Handler is
pragma INTERRUPT_HANDLER;
envy E;
for E use at (segment => 0, offset => 17);
end;
end P;
package body P is
task body Fast_Interrupt_Handler is
begin
accept E do
null;
end E;
end,

end P;

Compilation and Linking:

$ ada Example_S
$ ada_link -tasks - Example_S

213

DACS-380x86 User's Guide
Implementation-Dependent Characteristics

F.6.4.6 Exampie 6

This example shows how to save and restore the state of the numeric coprocessor from within a
fast interrupt handler. This would be required if other tasks are using the coprocessor to perform
floating point calculations and the fast interrupt handler also will use the coprocessor.

Note that the state of the NPX is saved in the task control block of the task executing at the time
of the interrupt.

Ada source:

with System;
package P is

task Fast_Interrupt_Handler is

pragma INTERRUPT_HANDLER;

entry E:
for E use at (segment => 0, offset => 25);
end;
end P:

with RTS_EntryPoints;
package body P is

task body Fast_Interrupt_Handler is
begin
accept E do
RTS_EntryPoints.Store_NPX_State;
<user code>
RTS_EntryPoints.Restore_NPX_State;
end E;
end:
end P;
Compilation and Linking:

$ ada Example_6
$ ada_link -npx -tasks - Example_6

F.6.4.7 Example 7
This example shows how to send an End-Of-Interrupt message as the last step in servicing the
interrupt.

Ada source:

214

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

with System:
package P is

task Fast_lnterrupt_Handler is
pragma INTERRUPT_HANDLER:

entrv E:
for E use at (segment => 0, offset => 5).
end.

end P

with Machine_Code; use Machine_Code:

package body P is

procedure Send_EOI is
begin

machine_instruction’
(register_immediate, m_MOV, AL, 16#66#);
machine_instruction’ :
- (immediate_register, m_OUT, 16#0e0#, AL);
end:
pragma inline (Send_EOI);

task body Fast_Interrupt_Handler is
begin
accept E do
<user code>
Send_EOI;
end E,
end;
end P;
Compilation and Linking:

$ ada Example_ 7
$ ada_link -tasks - Example_7

F.6.5 Normal Interrupt Tasks

"Nomal" interrupt tasks are the standard method of servicing interrupts. In this case the interrupt
causes a conditional entry call to be made to a normal task.

F.6.5.1 Features
Normal interrupt tasks provide the following features:
1) Local data may be defined and used by the interrupt task.

215

DACS-80x86 User's Guide
Impiementation-Dependent Characteristics

2) May be called by other tasks with no restrictions.
3) Can call other normal tasks with no restrictions.

4) May be declared anywhere in the Ada program where a normal task declaration is allowed.

F.6.52 Limitations

Mapping of an interrupt onto a normal conditional entry call puts the following conswraints on the
involved entries and tasks:

1) The affected entries must be defined in a task object only, not a task type.

2) The entries must be single and parameteriess.

F.6.53 Implementation of Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is given a priority and runs as any other
1ask, obeying the nommal priority rules and any time-slice as configured by the user.

F.65.4 Flow of Control

When an interrupt occurs, control of the CPU is transferred to an interrupt service routine
generated by the specification of the interrupt task. This routine preserves the registers and cails
the run-time system, where the appropriate interrupt task and entry are determined from the
information in the _CD_INTERRUPT_VECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that corresponds to the interrupt, then the
interrupt task is scheduled for execution upon retum from the interrupt service routine and the call
to the run-time system is compieted. The interrupt service routine will execute an IRET, which
reenables interrupts, and execution will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is not in the body of the accept statement that corresponds to the interrupt, then

the entry call is automatically queued 1o the task, and the call to the run-time system is
completed.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is executing in the body of the accept statement that corresponds to the interrupt,
then the interrupt service routine will NOT complete until the interrupt task has exited the body
of the accept statement. During this period, the interrupt will not be serviced, and execution in
the accept body will continue with interrupts disabled. Users are cautioned that if from within
the body of the accept statement corresponding to an intersupt, an unconditional emry call is made,
a delay statement is executed, or some other non-deterministic action is invoked, the result will
be emratic and will cause non-deterministic ‘nterrupt response.

Example 4 shows how End-Of-Interrupt messages may be sent to the interrupting device.

216

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.655 Saving NPX State
Because normal interrupt tasks are standard tasks, the state of the NPX numeric COprocessor is

saved automatically by the run-time system when the task executes. Therefore, no special actions
are necessary by the user (0 save the state.

F.65.6 Storage Used

This section describes the storage requirements of standard interrupt tasks.

F.6.5.7 Stack Space

A nommal interrupt task is allocated its own stack and executes off that stack while servicing an
interrupt. Sec the appropriate sections of this User’s Guide on how to set task stack sizes.

F.6.5.8 Run-Time System Data
A task conuol block is allocated for each normal interrupt task via the -tasks option at link time.

During task elaboration, an entry is made in the run-ume system _CD_INTERRUPT_VECTOR
table to "define” the standard interrupt. This mechanism is used by the run-time system 0 make
the conditional entry call when the interrupt occurs. This means that the user is responsible to
include all interrupts serviced by interrupt tasks in the -interrupt_entry_table option at link time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uses standard Ada tasks to service
interrupts.

F.6.6.1 Source Code

No special pragmas or other such directives are required to specify that a task is a normal interrupt
task. If it contains interrupt entries, then it is a normal interrupt task by default.

When specifying an address clause for a normal interrupt handler, the offset should be the
interrupt number, not the offset of the interrupt in the interrupt vector. The segment is not
applicable (although some value must be specified) because it is not used by the compiler for
interrupt addresses. The compiler will place the interrupt vector inwo the
INTERRUPTVECTORTABLE segment. For real address mode programs, the interrupt vector
must always be in segment 0 at execution time. This placement can be accomplished by specifying

217

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

the address o locate the INTERRUPTVECTORTABLE segment with the loc86 command. or at
run tme., by having the startup code routine of the UCC copy down the
INTERRUPTVECTORTABLE segment 0 segment 0 and the compiler will put it there

automatically. For protected mode programs, the user specifies the interrupt vector location at
build time.

F.6.62 Compiling the Program

No special compilation options are required.

F.6.63 Linking the Program

The interrupt task must be included in the -tasks option. The link options -lt_stack_size, ---
It_segment_size, -mp_segment_size, and -task_storage_size apply to normal interrupt tasks and
must be set o appropriate values for your application.

Every interrupt task must be accounted for in the -interrupt_entry_table option. This option
causes a table to be built in the run-time system data segment to handle interrupt entries. In the

case of standard interrupt tasks, this table is used to map the interrupt onto a normal conditional
entry call to another task.

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and then how 0 build the application
using them.

F.6.7.1 Exampie 1
This example shows how to code a simple normal interrupt handler.

Ada source:

with System;
package P is
task Normal_Interrupt_Handler is
enwry E;
for E use at (segment => 0, offset => 10);
end;
end P;
package body P is

task body Normal_Interrupt_Handler is

218

DACS-80x86 User's Guide
begin
accept E do
<handle interrupt>
end E;
end;
end P.

with P;
procedure Example_1 is
begin
<main program>
end Example_1:
Compilation and Linking:

S ada Example_1
$ ada_link -tasks 2 -interrupt_entry_table 10,10 Example_1

F.6.7.2 Example 2

This example shows how to write a normal interrupt handler that services more than one interrupt
and has other standard task entries.

Ada source:

with System;
package P is

task Normal_Task is

entry El;
entry E2: -~ standard entry
enoy E3;

for E1 use at (segment => 0, offset => 7);
for E3 use at (segment => 0, offset => 9);

end.
end P;
package body P is

task body Normal_Task is
begin

select

accept E1 do
<service intermupt 7>

219

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

end El;
or
accept E2 do
<standard rendezvous>
end E2;
or

accept E3 do
<service interrupt 9>
end E3:

end P;
Compilation and Linking:

$ ada Example_ 2
$ ada_link -tasks -interrupt_entry_table 7,9 Example_2

F.6.73 Example 3

This example shows how to build an application for 80386 protected mode programs using normal
interrupt handlers.

Ada source:

with System;
package P is
task Normal_Interrupt_Handler is
enry E:
for E use at (segment => 0, offset => 20);
end.
end P;

package body P is
task body Normal_Interrupt_Handler is
begin
accept E do
null;

end E;
end:

end P;

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

Compilation and Linking:

S ada Example_ 3
$ ada_link -tasks -interrupt_entry_Table 20,20 Example_3

F.6.7.4 Example 4

This example shows how an End-Of-Interrupt message may be sent to the interrupting device.
Ada source:

with System;
package P is

task Normal Interrupt_Handler is
entry E:
for E use at (segment => 0, offset => 7);
end;
end P;
with Machine_Code:

use Machine_Code:
package body P is

procedure Send_ECI is
begin

machine_instruction’

(register immediate, m_MOV, AL, 16#66#);
machine_instruction’

{immediate_register, m OUT, 16#0e0#, AL):
end;
pragma inline (Send_EOI):

task body Normal_ Interrupt_Handler is
tegin
accept E do
<user code>
Send_EOI;
end E;
end;

end P;
Compilation and Linking:

$ ada Example_4
$ ada_link -tasks -interrupt_entry_table 7,7 Example_4

221

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.6.8 Interrupt Queuing

DDC-] provides a useful feature that allows task entry calls made by interrupt handlers (fast and
normal variant) to be queued if the called task is not waiting to accept the call, enabling the
interrupt handler to complete to the IRET. What may not be clear is that the same inlerrupt may

be queued only once at any given time in DDC-I's implementation. We have made this choice
for two reasons:

a) Queuing does not come for free, and queuing an interrupt more than once is considerably
more expensive than queuving just one. DDC-I feels that most customers prefer their
interrupt handlers to be as fast as possible and that we have chosen an implementation that
balances performance with functionality.

b) In most applications, if the servicing of an interrupt is not performed in a relatively shornt
period of time, there is an unacceptable and potentially dangerous situation. Queuing the
same interrupt more than once represents this situation.

Note that this note refers to queuing of the same interrupt more than once at the same tme.
Different interrupts may be queued at the same time as well as the same interrupt may be queued
in a sequential manner as long as there is never a situation where the queuing overlaps in time.

If it is acceptable for your application to queue the same interrupt more than once, it is a
relatively simple procedure to implement the mechanism yourself. Simply implement a high
priority agent task that is called from the interrupt handler. The agent task accepts calls from the
interrupt task and makes the call on behalf of the interrupt handler to the originally called task.
By careful design, the agent task can be made 10 accept all calls from the interrupt task when they
are made, but at the very least, must guarantee that at most one will be queued at a time.

F.6.9 Recurrence of Interrupts

DDC-I recommends the following techniques to ensure that an interrupt is completely handied
before the same interrupt recurs. There are two cases to consider, i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers.

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call 10 a nomal task, then place the code that
reenables the interrupt at the end of the accept body of the called task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually completed between te fast
interrupt handler and the calied task even if the call was queued. Note that the interrupt task

executes all the way through the IRE™ before the rendezvous is completed if the entry call was
queued.

Normally, end-of-interrupt code using Low_Level_lO will be present in the accept body of the fast

interrupt handler. This implies that the end-of-interrupt code will be executed before the

rendezvous is completed, possibly allowing the interrupt to come in again before the application
is ready to handle it

If the fast interrupt handler does not make an entry call to another task, then placing the

22

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

end-of-interrupt code in the accept body of the fast interrupt task will guarantee that the interrupt
is completely serviced before another interrupt happens.

F.6.9.2 Normal Interrupt Handler

Place the code that reenables the interrupt at the end of the accept body of the normal interrupt
task. When this is done. the interrupt will not be reenabled before the rendezvous is actually
completed between the normal interrupt handler and the called task even if the call was queued.
Even though the interrupt "completes” in the sense that the IRET is executed, the interrupt is not
yet reenabled because the rendezvous with the normal task's interrupt entry has not been made.

If these techniques are used for either variant of interrupt handlers, caution must be taken that

other tasks do not call the task entry which reenables interrupts if this can cause adverse side
effects.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However, if scalar type
has different sizes (packed and unpacked). unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits the other type.

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional I/O system, but in order to support
testing and validation, DDC-I has developed a small terminal oriented /O system. This I/O system
consists essentially of TEXT_IO adapted with respect to handling only a terminal and not file 1'O
(file /O will cause a USE ermor to be raised) and a low level package called
TERMINAL_DRIVER. A BASIC_lO package has been provided for convenience purposes.
forming an interface between TEXT_IO and TERMINAL_DRIVER as illustrated in the following
figure.

BASIC 10
TERMINAL DRIVER
(R/W interface)

The TERMINAL_DRIVER package is the only package that is target dependent, i.e., it is the only
223

m

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

package that need be changed when changing communications conurollers. The actual body of the
TERMINAL_DRIVER is written in assembly language and is pant of the UCC modules DIIPUT
and DIIGET. The user can also call the terminal driver routines directly, i.e. from an assembly

language routine. TEXT_IO and BASIC_IO are written completely in Ada and need not be
changed.

BASIC_IO provides a mapping between TEXT_IO control characters and ASCI as follows:

TEXT_IO ASCIl Character
LINE_TERMINATOR ASCILCR
PAGE_TERMINATOR ASCILFF
FILE_TERMINATOR ASCILSUB (CTRL/Z)
NEW_LINE ASCILLF

The services provided by the terminal driver are:
1) Reading a character from the communications port. Get_Character.

2) Writing a character to the communications port, Put_Character.

F.8.1 Package TEXT_IO

The specification of package TEXT_10:

pragma page;
with BASIC_I0;

with IO_EXCEPTIONS;
package TEXT IO is

type FILE TYPE is limited private;

type FILE MODE is (IN_FILE, OUT_FILE):

type COUNT is range 0 .. INTEGER’LAST;

subtype POSITIVE_COUNT 1s COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length

-=- max. size of an integer output fleld 2¢....4
subtype FIELD is INTEGER range O .. 35;

subtype NUMBER_BASE is INTEGER range 2 .. 1§;
type TYPEL_SET is (LOWER_CASE, UPPER CASE);

pragma PAGE;
~= File Management

piocedure CREATE (FILE : in out FILE TYPE;

MODE : in FILE_MOOE :=OUT_FILE;
NAE : in STRING :="°;

FORM : in STRING H
¥

procedure OPEN (FILE : in out FILE TYPE;

MODE : in FILE_MODE;
NAME : in STRING:

24

DACS-80x86 User's Guide
Impiememation-Dependent Characteristics

FORM : in STRING imee
)i

procedure CLOSE (FILE : in out FILE {YPE);
procedure DELETE (FILE : in out FILE_TYPE);
procedure RESET (FILE : in out FILE_TYPE;
MODE : in FILE_MODE:;
procedure RESET (FILE : in out FILE TYPE):

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING:
function FORM (FILE : in FILE_TYPE) retuzn STRING:

function IS _OPEM(FILE : in FILE_TYPE return BOOLEAN;

pragma PAGE;
== control of default input and output files

procedure SET_INPOT (FILE : in FILE_TYPE);
procedure SET_OUTPUT (FILE : in FILE_YYPE);

function STANDARD_INPUT return FILE_TYPE;
function STANDARD_CUTPUT return FILE_TYPE;

function CURRENT_INPOT retuzn FILE_TYPE;
funczion CURRENT OUTPCT return FILE_TYPE;

pragma PAGE;
-- specification of line and page lengths

procedure SET_LINE_LENGTE (FILE : in FILE_TYPE;
TO : in COUND);
procedure SET_LINE_LENGTE (T0 : in COUNT):

proceduze SET_PAGE_LENGTE (FILE : in FILE TYPE;
TO : in COUNI);
procedure SET_PAGE_LENGTIH (TO : in COUNT);

function LINE_LENGTR (FILE : in FILE_TYPE)
retuyrn COUNT;
function LINE_LENGTRE return COUNT;

function PAGE_LENGTH (FILE : in FILE_TYPE)
return COUNT;
function PAGE_LENGTH return COUNT;

pragma PAGE;
== Column, Line, and Page Control

procedure NEW _LINE (FILE : in FILE_TYPE:
SFACING : in POSITIVE_COUNT := 1);
procedure NEW_LINE (SPACING : in POSITIVE_COUNT := 1);

procedure SKIP_LINE (FILE : in FILE_TYPE:
SPACING : in POSITIVE_COUNT := 1);
procedure SKIP_LINE (SPACING : in POSITIVE_COUNT := 1);

function END_OF_LINE (FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_LINE retuzn BOOLEAN;

procedure NEW _PAGE (FILE : in FILE_TYPE):
procedure NEW_PAGE;

procedure SKIP_PAGE (FILE : in FILE_TYPE):
procedure SKIP_PAGE:

function END_OF_PAGE (FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_PAGE return BOOLEAN;

function END_OF_FILE (FILE : in FILE_TYPE) return BOOLEAN;
function END_OF FILE retuzrn BOOLEAN;

225

DACS-80x86 User's Guide

Impiementation-Dependent Characteristics
procedure SET_COL (FILE : in FILE_TYPE:

TO : ia POSITIVE_COUWT);
procedure SLT_COL (T0 : in POSITIVE_COONWT):
procedure SET_LINE (FILE : in FILE TYPE;

70 : in POSITIVE_COUNT);
procedure SET_LINE (TC : in POSITIVE_COUNT);
function COL (FILE : in FILE_TYPE)

ceturn POSITIVE_COOWT;
function COL return POSITIVE_COONT;
function LINE (FILE : in FILE TYPE)

return POCSITIVE_COONT:
function LINE return POSITIVE_COONT;
function PAGE (FILE : in FILEZ _TYPE)

retuzn POSITIVE COUNT;
function PAGE

pragma PAGE;
== Character Input-Output

teturn POSITIVE_COUNT:

procedure GET (FILE : in FILE _TYPE: ITEM : out CHARACTIER):
procedure GET ITEM : out CEARACTER).
procedure PUT (FILE : in FILE_TYPE: ITEM : in CBARACIER);
procedure PUT (ITEM in CBARACTER) ;
== String Input-Qutput
procedure GET (FILE : in FILE TYPE. ITEM : out CHARACTEN):
procedure GET (ITEM : out CEARACIER):
procedure PUT (FILE : 4in FILE_TYPE: ITEM : in CHARACTER);
procedure PUT (ITEM : 4in CBARACTER);
procedure GET_LINE (FILE : in FILE_TYPE;

ITEM : out STRING:

LAST : out NATURAL):;
procedure GET_LINE (ITEM : out STRING;

LAST : out NATURAL);
procedure PUT_LINE (FILE : in FILE_TYPE;

ITEM : 4in STRING):
procedure PUT_LINE (ITEM : in STRING):

pragma PAGE;

-= Generic Package for Input-Qutput of Integer Types

generic
type NUM is range <;
package INTEGER_IO i3

DEFACLT_WIDTR : FIELD 1= NUM'WIDTH;
DEFAULT_BASE : NOMBER BASE := 10;
procedure GET (FILE : in FILE TYPE;
ITEM : out NOM;
WIDTE : ina FILLD := 0);
procedure GET (ITEM : out NOM;
WIDTR : in FIELD := 0);
procedure POT (FILE : in FILE_TYPE:
ITIM : in NOM;
WIDTE : 4ia FIELD := DEFAULT_WIDTE;
BASE : in WOMBER_BASE := DEFAULT_BASE):
procedure PUT (ITEM : 4a NOM;
WIDTE : 4ia FIELD := DEFAULT_WIDTH;
BASE : in NOMBER_BASE := DEFAULT_BASE);
procedure GET (FROM : in STRING:
ITEM : out WOM;

226

DACS-80x86 User’s Guide
Implementation-Dependent Characteristics

LAST : out POSITIVE);

pcscedure PUT (IO : out STRING;
ITEM : in WOM;
BASE : in WOMBER_BASE := DEFAULT_BASE);

pragma PAGE;
-« Generic Packages for Input-Qutput of Real Types
generic

type NUM i3 digits <;
package FLOAT_IO is

DEFAULT_FORE : FIELD := 2;
DEFAULT_AFT : FIELD := NUM‘DIGITS - 1;
OEFAULT_EXPp : FIELD := 3;

procedure GET (FILE : in FILE_TYPE:
ITEM : out ¥OM;
WIDTE : in FIELD := 0);
procedure GET (ITEM : out WNOM;
NIDTH : in FIELD := 0);

-

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
FORE : in FIELD := DEFAOLT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FILLD := DEFAOLT_EXP);
procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAOLT_AFT;
EX? : in FIELD := DEFAULT EXP);

procedure GET (FROM : in STRING;
ITEM : out NOM;
LAST : out POSITIVE):

proceduze PUT (10 : out STRING;
ITEM : 4n NOM;
AFT : in FIELD := DEFAOLI_AFT;
EXP : 4n FIELD :e= DEFAULT_EXP):

end FLOAT_IO;

pragma PAGE;

generic
type NUM is delta <>;
package FIXED_IOC 1is

DEFAOLT_FORE : FIELD := NUM’FORE;
DEFAULT_AFT : FIELD := NUM’AFT;
DEFAULT_EX» : FIEL) := O;

procedure GET (FILE : in FILE TYPE:
ITEM : out NOM;
WIDTE : in FIELD :»= 0);
procedure GET (ITEM : out NOUM;

WIDTIH : in FIELD := 0);
procedure PUT (FILE : in FILE TYPE:
ITEM : in NONM;
FORE : in FIELD := DEFAULT_FORE;
: in FIELD := DEFAULT_AFT:
: ia FIELD := DEFAULT_EXP);

procedure RPUT (ITEM : in NUNM;

FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;

227

DACS-80x86 User's Guide

Implementation-Dependent Characteristics
EXF : in FIELD := DEFVAULT EXP);
procedure GET (FROM : in STRING;
ITEM : out WONM;
: out POSITIVE):
procedure PUT (TO : out STRING;
ITEM : in WON;
AFT : in FILLD := DEFADLT_AFT:
BX® : in PIELD := DEFAULT_IXP);
end FIXED_IO;
pragaa PAGE:

-« Generic Package for Input-Output of Enumeration Types

generic
type ENUM i3 (<)
package ENUMERATION_IO is

DEFAOLT_WIDTE : FIELD := O;
DEFAULT_SEITING : TYPL_SET :» UPPER_CASE;

procedure GET (FILE : in FILE_TYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENOM);

procedure PUT (FILE : FILE_TYPE;
ITEM : in ENUN;
WIDIR : in FIELD :» DEFAULT _WIDTH;
SET : in TYPE_SET := DEFAULI_SETITING);
procedure PUT (ITEM : in ENONM;
WIDTE : in FIELD := DEFACLT_WIDTH;
SET : in TYPE_SET := DEFAULT_ S3ETITING):

procedure GET (FROM : in STRING;
ITEM : out ENOM;
LAST : out POSITIVE);
procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPE_SET := DEFACLYI_SETTING);
end ENUMERATION_IO:
pragma PAGE:
-= Exceptions

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS ERROR;

MODE_ERROR : axception renames IO_EXCIPTIONS.MODE_ERROR:
NAME ERROR : exception renames IO_EXCEPTIONS.NAME ERROR;
USE_ERROR : exception renames IO _EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.EMND _ERROR;
DATA_ERRCR : exception renames IO_EXCEPTIONS.DATA_ERRCR;
LAYOUT_ERROR : exception renames IO_EXCEPTIONS.LAYOUT ERROR;
pragma page;
private
type FILE TYPE is
record
FT : INTEGER :» -1;
end record;
end TEXT_10;

228

ﬂ

DACS-80x86 User's Guide
Implementation-Dependent Characteristics
F.82 Package I0_EXCEPTIONS
The specification of the package 10_EXCEPTIONS:

package IO_EXCEPTIONS is

STATUS_ERROR : exception;
NODE_ERRCR : exception:

NAME ERROR : exception;
USE_ERROR : exception;
DEVICE_ERROR : exception:
ERD_ERROR 1 exception;
DATA ERRCR : exception;

LAYOUT_ERRCR : exception;

end IO_EXCEPTIONS;

F.83 Package BASIC.10
The specification of package BASIC_IO:

with I0_EXCEPTIONS;
package BASIC_IO is
type count is range O .. integer’last;

subtype positive_count is count range 1 .. count’last;

function get_integer return string;

-= Skips any leading blanks, line terminators or page
-- terminators. Then reads a plus or a minus sign if
-~ present, then reads according to the syntax of an
-= integer literal, which may be based. Stores in item
== a8 stzing containing an optional sign and an integer
== literal.

== The exception DATA_ERROR i3 raised if the sequence
~= 0f characters does not correspond to the syntax
-=- described above.

== The exception END_ERROR i3 raised if the file terminator
-= 13 read. This means that the starting sequence of an
~= integer has not been met.

~= Note that the character terminating the operation msust
~- be available for the next get operation.

function get_real return string;

-- Corresponds to get_integer except that it reads according
«« to the syntax of a real literal, which may be based.
function get_enumeration return string:

~-= Corresponds to get_integer except that it reads according
== to the syntax of an identifier, where upper and lower

~= case letters are equivalent to a character literal
== including the apostrophes.

DACS-80x86 User's Guide
Implementation-Dependent

function get_item (leagth : in integer) zeturn string;
== Reads a string from the curreat line and stores it ina
~= ftem. If the remaining number of characters on the

e= gurrent line is less than leagth thes only these

== characters are returned. The line terminator is not

-= gkipped.

procedure put_item (itea : in string):

== If the length af the string is greater than the current
-~ saximum line (lineleagth), the exception LAYCOT ERROR
-« {3 raised.

== If the string does not fit on the curreat line a line
-= tEIMINACOr is output, thea the item 15 output.

== Line and page lengths - ANM 14.13.3.

procedure set_line_length (to : in count);
procedure set_page_length (to : in eount);
function line_length return count;

function page_length return count;

-= Operations on columns, lines and pages - ARM 14.3.4.

procedure new_line;

procedure skip_line;

function end _of_line return booclean;

procedure new_page;

procedure skip_page;

function end_of_page return boclean:

function end_of_file return boolean;

procedure set_col (to : in pouttvi_emr.):
procedure set_line (te : in positive_count);
function col return positive_count;

function line rzeturn positive_count;

function page return positive_count;

== Character and string procedures.
== Corresponds to the procedures defined in ARM 14.3.6.

procedure get_character (itea : out character);

procedure get_string (itea : out string);
procedure get_line (item : out striang:
last : out natural);

procedure put_character (item : in character):

procedure put_string (item : in string);

230

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

procedure put_line (item : in string):

0SE_ERROR : exception renames IO_EXCEPTIONS.OSE_ERROR;
DEVICE _ERAOR : axception renames 10 _EXCEPTIONS. omcz ERROR;
IND_ERACR : axception cenames 10)_EXCEPTIONS . XD n.non
DATA_ERROR : exception renames 0. _EXCZFTIONS .DATA _EJROR;
LAYOUT_ERROR : exception renames 10_) _EXCEPTIONS. urwr ERROR;

end BASIC_IO:

F.8.4 Package TERMINAL_DRIVER
The specification of package TERMINAL_DRIVER:

package TERMINAL DRIVER 1s
procedurs put_character (ch : 1in character);
procedure get_character (ch : out character);
private

pragma interface (ASMS6, put_character);
pragma interface_spelling(put_character, "D1IPUT?put_chazacter®);

pragma interface (ASM86, get_character):
pragma interface_spelling(get _character, "D1IGET?get_character®);

end TERMINAL_DRIVER;

F.85 Packages SEQUENTIAL_IO and DIRECT_IO
The specifications of SEQUENTIAL_IO and DIRECT_IO are specified in the ARM:

Since files are not supported the subprograms in these units reaiss USE_ERROR or

STATUS_ERROR.

231

DACS-80x86 User's Guide

F.8.6 Package LOW_LEVEL_IO
The specification of LOW_LEVEL_10 (16 bits) is:

with System;
package LOW_LEVEL_IO is
subtype port_address i3 Systea.Unsignediord;

type 11 _io_8

is aew integer range -128..127;
type 11_io_16

is new integer;

procedure send_control (device : in port_address;

data : in System.Byte):
-=- ungsigned § bit entity
procedure send_control (device : in port_address;
data : in System.Unsignedvozd);

-= unsigned 16 bit entity

procedure send_control (device : in port_address;
data : in 1l1_to_8);
-= signed 8 Dit entity
procedure send_control (device : in port_address;
data : in 11_10_16);

-~ signed 16 bit entity

procedure receive_control (device :
data
== unsigned 8 bit entity

procedure receive_contzol (device
data
~= unsigned 16 bit entity

procedure :oeolvo_eonuol (device

in port_address:

: out System.Byte):

: in port_address;
: out System.UnsignedWord);

: in port_address;

daca : out ll_io_8);
-= gigned § Dbit entity
procedure receive_control (device :
daca
-~ signed 16 Dbit entity

in port_address;
: out 11_io_16);

private

pragma inline(send_control, receive_control);

end LOW_LEVEL_ZO;

The specification of LOW_LEVEL_IO (32 bits) is:
with SYSTEM;
package LOW_LEVEL_IO is
subtype port_address is System.Unsignediord;
type 1l_io_8

type 11_1o0_16
type 11_ic_32

is nev short_integer range -128..127;
13 new short_integer;
is new integer:;

procedure send_control (device :
data
<= unsigned 8 bit eantity

in port_address;
ia System.Byte):

procedure seand_control (device :

in port_address;
data :

in System.Unsignediord);

232

DACS-80x86 User's Guide

Implementation-Dependent Characteristics

-~ unsigned 16 bit entity

procedure send_coatrol (device :
data
-= unsigned 32 bit entity

procedure send_control (device
data
-= gigned & Dbit entity

procedure send_control (device :
data
== gigned 16 Dbit entity

procedure sand_control (device
data
== gigned 32 bit entity

procedure receive_control (device :

data
-= unsigned 8 Dbit entity

proceduse receive_control (device
data
-~ unsigned 16 bit eatity

proceduze receive_control(device :

data
«= unsigned 132 bit entity

procedure receive_control (device :

data
-= gigned 8 bit entitcy

procedure receive_control (device
data
== signed 16 bit entity

procedure receive_control (device :

data
-= signed 32 bit entity

private
pragma inline(send_control, r

end LOW_LEVEL_Z0:

F.9 Machine Code Insertions

2 in
t 4n

: 4n

: in
: ia

in port_address;

: in System.UnsignedDWord);

port_address;
11_10_0);

in port_address;

1l_to_16);

port_address;
11_10_32);

in port_address;
: out System.Byte):

: 4in port_address;
: out System.Unsignediord);

in port_address:
: out Systc- OUnsignedDWord) ;

in port_address;
: out 11_to_8);

: in port_address;
: out 1l1_io_16);

in port_; add:ua.
: out 11_i0_32);

eceive_contzol);

The reader should be familiar with the code generation strategy and the 80x86 instruction set to
fully benefit from this section.

As described in chapter 13.8 of the ARM (DoD 83] it is possible 10 write procedures containing
only code statements using the predefined MACHINE_CODE. The package
MACHINE_CODE defines the type MACHINE_INSTRUCTION which, used as a record aggregate,
defines a machine code insertion. The following sections list the type MACHINE _INSTRUCTION
and types on which it depends, give the restrictions, and show an example of how to use the
package MACHINE_CODE.

233

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.9.1 Predefined Types for Machine Code Insertions

The following types are defined for use when making machine code insertions (their type

declarations are given on the following pages):

opcode_type
OPCFIM.WPC
register_type
segment_register
machine_instruction

type
type
type
type
type

The type REGISTER_TYPE defines registers. The registers STi describe registers on the floating

stack. (ST is the top of the floating stack).

The type MACHINE_INSTRUCTION is a discriminant record type with which every kind of

instruction can be described. Symbolic names may be used in the form
name'ADDRESS

Restrictions as to symbolic names can be found in section ¥.9.2.

It should be mentioned that addresses are specified as 80386/80486 addresses. In case of other

targets, the scale factor should be set to "scale_1".

type opcode_type i3 (
-= 8086 instructions:

m_AAA, m_AAD, ®_AAM, ®_AAS, m_ADC, m_ADD, m_AND, m_CALL,
m_CALLN,
m_CBW, a_CLC, m_CLD, s Cll, = _Q«, a QF, n_QFS, a_CWD, =DM
m_DAS, m _DEC, m_DIV, a_HLZ, =a_IDIV, a_IMUL, m_IN, m_INC, m2C
m_INTO, m_IRET, m_JA, m_JAE, =_JB, = JBE, m_JC, m_JCXZ, a X
m_JG, a_JGE, = _JL, B _JLE, m_JNA, a_JWAL, =_JNB, n_JNRE, aJC
m_JNE, m_JNG, =m_JNGE, a_JNL, = _JNLE, m_JNO, = _JNP, a_JNS, aJdt
=_Jo, a_JP, = _JPE, ®_JPO, = JS, = JI, = JW, ®_LABT, n IR
m_LES, m_LEA, m_LOCK, a_LODS, m_LOOP, m_LOOPE,
m_LOOPNE, m_LOOPNZ,
m_LOOPZ, @ _MOV, = _MOVS, a_MOL, = _NEG, = _NOP, m NOT, a_OR, adr
m_POP, m_POPF, m_PUSH, m_PUSHF, a_RCL, m_RCR, ®m_ROL, =_ROR,
m_REP, m_REPE, m_REPNE, ®_RET, m_RETP, a_REIN, n_REINP, R,
m_SAL, m_SAR, m_SHL, m_SHR, m SBB, m_SCAS, m_SIC, o_ST0, asy
m_STOS, m_SOB, = _TEST, m_WAIT, = XCHG, m_XLAT, m_XOR,
-- 8087/80187/80287 Floating Point Processor instructions:
m_FABS, =_FADD, a_FADDD, a_FADDP, m_FBLD, a_FBSTP, m_FCES,
m_FNCLEX, m_FCoM, a_Fcomm, a_FCOMP, m_FCOMPD, = _FCOMPP, m_FDECSTP,
m_FDIV, m_FDIVD, = _FDIVP, =_FDIVR, m_FDIVRD, = _FDIVRP, =_FFRLE,
m_FIADD, =_FIADDD, m_FICOM, a_FICOMD, o _FICM®, = _FICOMPD, a_FIDIV,
m_FIDIVD, = FIDIVR, m _FIDIVRD, a_FILD, m_FILDD,s_FILDL, a_FIMUL,
m_FIMOLD, = FINCSTP, m_FWINIT, a_FIST, m_FISTD,a_FISTP, n_FISTPD,
m _FISTPL, = FISUB, =a_FISUBD, s _FISUBR, = FISUBAD, = _FLD, =_FLDD,
m_FLDCW, m_FLDENV, a FLDLG2, s_FLDLN2, = FLDL2E, m_FLDL2T, =_FLDPI,
m_FLDZ, =_FLD1, a_NQL, a_fMULD, »_MOLP, =_FNOP, u_FPATAN,
m_FPREM, m_FPTAN, = _FRMDINT, & _FRSTOR, = _FSAVE,m FSCALE, = _FSETPNM,
m_FSQRT, m_FsT, m_FSID, a_FSTCH, m_FSTENV, a FSTP, a_FSTPD,
m_FSIsw, a_FSTSUAX, a_FsSUB, a_FSURD, m_FSUBP, =a_FSUBR, a_FSUBRD,
=_FSUBRP, = _FIsT, a_FWAIT, a_FXANM, a_rxca, a_FXTRACT, a_FYL2x,
m_FYL2XPl, =m_F2XMl,
~= 90196/80286/80386 instructions:
== Notice that soms immediate versions of the 8086
-= instructions only exist oa these targets
~= (shifts, rotates,push,imul,...)
m_BOUND, m_CLIS, a_LNTER, a_INs, B_LAR, a_LEAVE, a_LGDT,
m_LIDT, =_LSL, a_0UTs, »_POPA, n_PUSEA, »_SGDT, a_SIDT,
234

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

a_ARPL, ®_LLDT, n_LMsN, a_LTR,
== 16 bit always...
a_SLDT, m_SMSW, a_STR, B_VERR, m_VEMN,
== the 80386 specific instructions:
m_SETA, ®_SETAE, a_SITD, =_SETAE, »_SETC, »_SETE,
a_SETG, a_SCTGL, =_SETL, ®_SETLE, m_SETHA, m_SETMAR,
a_sSETs, n_SEINRE, =_SITNC, a_SCIME, »_SETNG,
m_SCINGE, =_SETNL, a_SETMLE, ®8_SETMO, m_SETHP, =a_3SETNS,
a_SETNZ, a_SETO, a_sere, a_STTPL, m_SETPO, =m_SETS,
=_SETZ, a_Bsr, a_3SR, n_BT, a_BTC, =_BIR,
=_3TS, n_LrS, »_LGS, =_LsS, a_MOVIX, m_MOVSX,
T_MOVCR, a_MOVDE, = _MOVIR, a_SELD, »_SERD,
== the 80387 specific instructions:
®_Focom, a_rocoe, a_FUCOMPP, m FPREML, = _FSIN,
m_FSINCOS,
== byte/w ord/dword variants (to be used, when
== not deductible from context):
a_ADCS, =_ADCW, 8_ADCD, =_ADDB, m_ADDW, ®_ADDD,
.B_ANDSB, =_ANDM, 2_ANDD, a_BIW, »_BTD, a_BTCW,
m_BTCD, m_BTRW, a_BTRD, a_BTSW, m_BTSD, n_CBWN,
m_CWDE, n_CWON, a_CoQ, a_QPB, s_O0vw, a_OfD,
n_CMPSE, = QFSN, = _O@SD, =_DECB, =_DECW, =_DECD,
m_DIVe, a DIV, s _DIVD, =_IDIVB, =_IDIVM, = IDIVD,
m_IMULB, = _IMULN, =_IMOLD, a_Iucs, m_INCW, =a_INCD,
m_INSS, a_INSW, m_INSD, ®_LI0SB, m_LODSW, m_LODSD,
oa_MOVE, a_MoN, a_MOVD, a_MCYSB, m_MOVSW, |_MOVSD,
m_MOVSXB, = _MOVSXN, = MOVZXS, m_MCVZXN, ~ m_MOLD, n_MOLW,
m_MULD, n_NEGE, m_NEGW, a_NEGD, »_NOTS, u_NOTN,
a_NOTD, =_CRB, m_ORW, m_ORD, =_OUTSS, m_OUTSW,
a_0UTSD, n_POPN, a_PorD, a_PUSHW, =_PUSHED, a_RCLB,
=_RCLW, a_RCLD, a_RCRB, a_RCRM, s_RCRD, a_ROLD,
a_ROLM, a_RoLd, a_RORB, =_RORW, =_RORD, a_SALS,
m_SALY, a_SALD, a_SARB, a_SARW, a_SARD, =_SELS,
=_SHLW, »_SELDN, =_SHRB, a_Sam, #_SHADW, m_SBAB,
m_SBAW, =_SBRD, m_SCASS, a_SCASW, =_SCASD, a_ST0S8,
m_STOSW, m_STOSD, na_SUBS, m_SUBW, a_sSUBD, a_TIST
m_TESIN, = . m_XORB, m_XORW, B_XORD, N_DATAB
m_DATAN, m_DATAD,
== Special ‘instructions’: a_label, =_reset,
== 8087 temp real load/store_and_pop: a_FLDT, = _FSTPT);

pragma page;
type operand_type is (none, =-- no operands

ismediate,

== one immediate operand
register, == one register operand
addcress, == one address operand
system_address, == one ’'asddress operzand
name, == CALL name
register_ismediate, == two Operands :
== destination is
== register
== sOuUrce is immediate
register_register, ~= twWo register operands
register_address, == two operands :
== dastination is
~= register
== gource is address
address_register, == two operands :

235

a_Fcos,

.

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

== destination i3

== address

== source is register
Tegister_system_address, ~= two operands :

== destination is

== register

== source 1is ’‘address
systesm_address_reqister, == Two qperands :

== destination is

-= 'address

== source is register
address_immediate, -~ tvo opetands :

== destination is

== address

== sOUZCe i3 immediate

system_address_immediate, == two opesands :

== dastination is

== ‘adkicress

== source i3 immediate
immediate_register, =~ only allowed for OUT

=~ port is immediate

== source ia register

immediate_immediate, == oaly allowed for
== ENTER

Tegister_register_immediate, ~= allowved for IMULimm,
== SHRDimm, SHLDism

register_address_immediate, == allowed for IMULimm

Tegister_system_address_immediate, -- allowed for IMULimm

address_register_immedlate, == allowed for SERDimm,
== SHLDimm

system_address_register_immediate == allowed for SERDimm,
== SHLDimm

):

tyPe register_type is (AX, CX, DX, BX, SP, BP, SI, DI, -- word regs
AL, CL, DL, BL, AB, CH, DE, BR, -~ byte regs
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, -~ dword regs

ES, CS, 8S, Ds, rs, Gs, == gselectors
Bx_SI, BX DI, BP_SI, BP_DI, -- 8086/80186/80286 combinations
8T, 871, sT2, sT3, == floating registers (stack)
STY, SIS, sT6, s?7,

nil);

-=- the extended registers (EAX .. EDI) plus FS and GS are only
-- allowed in 80386 targets

type scale_type i3 (scale_l, scale_2, scale_d, scale_§);
subtype machine_string is string(l..100);

pragma page;
tyPe machine_instruction (operand_kingd : operand_type) is
Tecord

opcode opcode_type;

case cperand kind is
vhen immediate =>
ismediatel : integer; == immediate

wvhen zegister >
r_register : register_type: -- source and/or destination

vhen address =>
4_segment : register_type; -- source and/or destination

a_address_base : register_type;
a_address_index i register_type;
a_address_scale i scale_type;

a_address_offset : integer:;

vhen system_address =>
sa_address : system.address; -- destination

236

when name =>

DACS-8Uxs80 User's Guide
Implementation-Dependent Characteristics

== destination
== source

-~ destination
-= SOUICe

-= destination
-= s0urce

-= destination

== SOurce

~= destination
-= source

destination
-~ sOuUICe

destination

n_string : machine _string; == CALL destination

vhen Tfegister_ismediate =>
£_1_register_to 1 register_type;
£_i_ismediate : integer:;

when register_register =>
$_c_register_to ¢ register_type:
£_r_register_from : register_type:

when register_addresa =>
£_a_register_to : register_type;
:_a_u“n: : register_type;
£_a_address_base : register_type;
r_a_address_index : register_type;
£_a_address_scale : scale_type;
£_a_address_offset : integer;

when address_register =>
a_r_segment : registec_type:
a_ _T_ add:..s base ! register_type;
a C_ addnu index : register_type;
a_r_address_scale : scale_type;
a T_ "address ottuc : integer;
a_r :oq:.a:o: fzom : register_type;

when register_systea_address =>
£_sa_register_to ! register_type:
r_sa_address : system.address;

when system_address_register =>
sa_r_address : system.address;
ta_r_reg_from : register_type;

when address_immediate =>
a_l smnt : register_type:
a_ 1 n«xou_buc ¢ register_type;
a_ 1 _address_index ¢ register_type:
a_. 1 _address_scale : scale_type;
a_ 4 _address_offset : integer;
a_ Y _immediate : integer;

when system_address_immediate =>

sa_i_address
sa_i_immediate

: system.address;
: integer;

when immediate_register =>

3_z_immediate
i_z_register

1 integer;
: register_type;

when immediate_immediate =>

1_i_immediatel
1_t_immediate?

: integer:
: integer;

when register_register immediate =>

£_r_i_registerl
£_z_1i_register2
r_r_i_imeediate

: register_type;
: register_type;
: integer:

when register_address_immediate =>

addzou 1ndex :
ldd:ou sulo : scale_type;

: register_ type:
: register_type:

: register_type;
register_type;

addnu “offset: integer;

4 A_]._Mlt'

integer;

vhen register_system_address_ismediate =>

r_sa_i_regiscer
addrl0
r_sa_i_immediate

: register_type;
: system.address;
: integer;

237

== gource

-~ destination
-= gource

== dastination
== gource

== immediatel
== immediate2

== destination
== gourcel
-= gource

== destination

-= gourcel

-= source2

-« destination
== gourcel
~= gourcel

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

when address_register_ immediate =>

a_z_i_segment : register_type:

a_r_i_address_base : register_type;

a_r_i_address_index : register_type:

a_z_i_address_scale : scale_type:

a_r_i_address_offset: integer;

a_r _i_tegister 1 register_type;
_1_immediate : integecr;

a

vhen system_address_register_immediate =>
sa_r_i_address T System.address;
sa_r_1_register ! register_type;
sa_r_i_immediate ! iateger;

when others =>
null;
end case;
end record:

end machine_code;

F.92 Restrictions

== destination

== sourcel
= gsource

== destination
-= gsourcsl
== gource2

Only procedures, and not functions, may contain machine code insertions.

Symbolic names in the form x’ADDRESS can only be used in the following cases:

1) x is an object of scalar type or access type declared as an object. a formal parameter, or

by static renaming.

2) x is an armray with static constraints declared as an object (not as a formal parameter or by

renaming).

3) x is a record declared as an object (not a formal parameter or by renaming).

The m_CALL can be used with "name” to call (for) a routine.

Two opcodes to handle labels have been defined:

m_label: defines a label. The label number must be in the range 1 <= x <= 999 and is put
in the offset field in the first operand of the MACHINE_INSTRUCTION.

m_reset: used to enable use of more than 999 labels. The label number after a m_RESET
must be in the range l<= x <= 999. To avoid errors you must make sure that all
used labels have been defined before a reset, since the reset operation clears all used

labels.

All floating instructions have at most one operand which can be any of the following:

+ a memory address
» a register or an immediate value
+ an entry in the floating stack

238

DACS-80x86 Uscr's Guide
Impiementation-Dependent Characteristics

F.93 Examples

The following section contains examples of how 10 use the machine code insertions and lists the
generated code.

F.9.4 Example Using Labels

The following assembier code can be described by machine code insertions as shown:

MOV AX, 7
wv X, 4

2

+ AX
'a

: {BP+DI), AX

§gg§aald
8RRV K

1:
2:

package example _MC i3

procedute test_labels;
pragmd inline (test_labels):

end example_MC;
with MACHINE_CODE: use MACHINE_CCOOE;
package body example MC 1is
procedure test_labels is
begin
MACHINE_INSTRUCTION’ (registez_immediate, a_MOV, AX, 7);

MACRINE_INSTRUCTION’ (register_ismediate, m_MOV, CX, 4);
MACHINE_INSTRUCTION' (register_register, m_Q@, AX, CX):

MACHINE_INSTRGCTION (immediats, aJe 1);
MACHINE_INSTROCTION’ (immediate. s JE, 2);
MACHINE_INSTRUCTION’ (register_register, m_MOV, CX, AX);
MACEINE_INSTRUCTION’ (immediate, =_label, 1):

MACHINE_INSTRUCTION’ (register_register, = ADD, AX, CX);
MACHINE_INSTRUCTION' (immediate, m_label, 2);
MACHINE_INSTRUCTION’ (address_register, a_MOV, Ss, BP,

DI, scale_l, 0, AX);
end test_labels;

end example_MC;

F.9.5 Advanced Topics

This section describes some of the more intricate details of the workings of the machine
code insertion facility. Special attention is paid to the way the Ada objects are referenced in
the machine code body. and various altemnatives are shown.

239

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.9.5.1 Address Specifications

Package MACHINE_CODE provides two altemative ways of specifying an address for an
instruction. The first way is referred to as SYSTEM_ADDRESS and the parameter associated
this one must be specified via OBJECT"ADDRESS in the actual MACHINE_CODE insertion. The

second way closely relates to the addressing which the 80x86 machines employ: an address has
the general form

segment:[base+index*scale+offset]

The ADDRESS type expects the machine insertion to contain values for ALL these fields. The
default value NIL for segment, base, and index may be selected (however, if base is NIL, so
should index be). Scale MUST always be specified as scale_1, scale_2, scale_4, or scale_8. For

16 bit targets, scale_1 is the only legal scale choice. The offset value must be in the range of
-32768 .. 32767.

F.9.52 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be
referenced by the machine insertions using the SYSTEM_ADDRESS or ADDRESS formats
explained above. However, there is a great difference in the way in which they may be specified.
whether the procedure is specified as INLINE or not.

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEM_ADDRESS form. This will be dealt with correctly even if the actual values are
constants. Using the ADDRESS form in this context will be the user’s responsibility since the
user obviously attempts to address using register values obtained via other machine insertions. [t
is in general not possible to load the address of a parameter because an ‘address’ is a two
component structure (selector and offset), and the only instruction 10 load an immediate address
is the LEA, which will only give the offset. If coding requires access to addresses like this, one
cannot INLINE expand the machine insertions. Care should be taken with references to objects
outside the current block since the code generator in order to calculate the proper frame value
(using the display in each frame) will apply extra registers. The parameter addresses will,
however, be caiculated at the entry to the INLINE expanded routine to minimize this problem.
INLINE expanded routines should NOT employ any RET instructions.

Pure procedure machine insertions need 10 know the layout of the parameters presented to, in this
case, the called procedure. In particular, careful knowiedge about the way parameters are passed
is required to achieve a succesful machine procedure. When not INLINE a block is created around

the call which allows addressing of parameters, and code for exiting the procedure j§ also
automatic.

The user takes over the responsibility for correct parameter addressing. The rules of Ada
procedure calls must be followed. The calling conventions are summarized below.

240

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.953 Parameter Transfer

It may be a problem to figure out the correct number of words which the parameters take up on
the stack (the x value). The following is a short description of the transfer method:

INTEGER types take up at least 1 storage unit. 32 bit integer types take up 2 words, and 64 bit
integer types take up 4 words. In 32 bit targets, 16 bit integer types take up 2 words the low

word being the value and the high word being an alignment word. TASKs are transferred as
INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).
FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considered scalar values and consist of a 16 bit segment value and a 16 or
32 bit offset value. When 32 bit offset value, the segment value takes up 2 words the high word

being the aligment word. The offset word(s) are the lowest, and the segment word(s) are the
highest.

RECORD types are always transferred by address. A record is never a scalar value (so no
post-procedure action is carried out when the rccord parameter is OUT or IN OUT). The
representation is as for ACCESS types.

ARRAY values are transferred as one or two ACCESS values. If the array is constrained, only
the array data address is transferred in the same manner as an ACCESS value. If the amay is
unconstrained below, the data address will be pushed by the address of the constraint. In this
case, the two ACCESS values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferred as ARRAY values with the addition
of an INTEGER bit offset as the highest word(s):

+H: BIT_OFFSET
+L: DATA_ADDRESS
+0: CONSTRAINT_ADDRESS - may be missing

The values L and H depend on the presence/absence of the constraint address and the sizes of
constraint and data addresses.

In the two lauter cases, the form parameter’address will always yield the address of the data. If
access is required to constraint or bit offset, the instructions must use the ADDRESS form.

F.9.5.4 Example
A small example is shown below (16 bit target):
procedure unsigned_add
(opl :in integer;

op2 :in integen;
res : out integer);

241

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

Notice that machine subprograms cannot be functions.
The parameters take up:

opl :integer 1 word
op2 : integer 1 word
res : integer 1 word
Total 3 words

The body of the procedure might then be the following assuming that the procedure is
defined at outermost package level:

procedure unsigned_add

{opl : in integer;
op2 : in integer;
res H out iateger) 1is

begin
pragaa abstract_acode_insertions(true);
aa_instr’ (aa_ Create nock.a ,0,0,0); ~=x=3, y=1
aa_ _instr’ (aa_ _End o! _declpare,0,0,0,0,0);
pragma abst net_aeodo_iuottzona (false):

machine_instruction’ (register_system_address, m_MOV,
AX, opl’'address);

sachine_instruction’ (register_system_address, ®_ADD,
AX, op2’ address);

machine_instruction’ (ismediate, IR, 1):
machine_instruction’ (immediate, a_Iw, 3);
machine_instruction’ (immediate, m_label, l);

machine_instruction’ (system_address_register, m MOV,
res’ address, AX);

pragma abstract_acode_insertions(true);
aa_instr’ (aa_ £xit mbpnu.o 0,0,ni1_arg,ni)_arg);-- (2)
I.m:z' (u Sat b.l.oek _level,0,0,0,0, ,0); e y=l =0
pnpn nbu:ut_ceodo__zuoutons (false);
end unsigned_add;

A routine of this complexity is a candidate for INLINE expansion. In this case, no changes to the
above 'machine_instruction’ statements are required. Please notice that there is a difference between
addressing record fields when the routine is INLINE and when it is not:

type rec is
record
low : integer;
high : integer;
end record;
procedure add_32 is
(opl : in integer;
op2 : in integer;
res : out rec);

The parameters take up I + 1 + 2 words = 4 words. The RES parameter will be
addressed directly when INLINE expanded, i.e. it is possible to write:

242

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

machine_instruction'(system_address_register, m_MOV,
res’address, AX);

This would, in the not INLINED version, be the same as updating that place on the stack where
the address of RES is placed. In this case, the insertion must read:

machine_instruction’(register_system_address, m_LES,
S1, res’address);
-- LES SL[BP+...)

machine_instruction'(address_register, m_MOV,
ES, SI, nil, scale_1, 0. AX);
- MOV ES:[SI+0],AX

As may be seen, great care must be taken to ensure correct machine code insertions. A help
could be to first write the routine in Ada, then disassembie to see the involved addressings, and
finally write the machine procedure using the collected knowledge.

Please notice that INLINED machine insertions also generate code for the procedure itself. This
code will be removed when the -nocheck option is applied to the compilation. Also not
INLINED procedures using the AA_INSTR insertion, which is explained above, will automatically
get a storage_check call (as do all Ada subprograms). On top of that, 8 bytes are set aside in the
created frame, which may freely be used by the routine as temporary space. The 8 bytes are
located just below the display vector of the frame (from SP and up). The sworage_check call will
not be generated when the compiler is invoked with -nocheck.

The user also has the option NOT to create any blocks at all, but then he should be certain that
the rerumn from the routine is made in the proper way (use the RETP instruction (return and pop)

or the RET). Again it will help first to do an Ada version and see what the compiler expects to
be done.

Symbolic fixups are possible in cerain instructions. With these you may build 'symbolic’
instructions byte for byte. The instructions involved all require the operand type NAME (like used
with CALL), and the interpretation is the following:

(name, m_DATAD, "MYNAME") a full vinual address (offset and selector) of the
symbol MYNAME (no additional offset is possibie).

(name, m_DATAW, "MYNAME") the offset part of the symbol MYNAME (no additional
offset is possibie).

(name, m_DATAB, "MYNAME") the selector value of symbol MYNAME

In inlined machine instructions it may be a problem to obtain the address of a parameter (rather
than the value). The LEA instruction may be used to get the offset part, but now the following
form allows a way t0 load a selector value as well:

(system_address, LES, param’address) ES is loaded with the selector of PARAM. If thi
selector was e.g. SS, it would be pushed and
into ES. LES may be substituted for LFS and
for 80386.

g

o3

243

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.10 Package Tasktypes

The TaskTypes packages defines the TaskControlBlock type. This data structure could be useful
in debugging a tasking program. The following package Tasktypes is for all DACS-80x86 except
for DACS-80386PM/DACS-80486PM.

with System;
package Tasklypes is

subtype Offset is System.Unsignediord;
subtype Blockld is Systea.Onsigneddord;

type TaskEntry is nev Systea.OUnsignediord;
type EntryIndex is new Systea.UnsignedWord;
type Alternativeld is new Systes.Onsignediord;

type Ticks i3 new System.DWord;

type Bool is new Boolean;

for Bool’size use §;

type Ulatg is new System.Onsignediord;
type TaskState is (Initial,

== The task i3 created, but activatiocn
== has not started yet.

Engaged,

-« The task has called an entry, and the
== call i3 now accepted, ie. the rendezvous
== i3 in progress.

Running,
~= Covers all other states.

Delayed,
<= The task awaits a timeout to expire.

EntzyCallingTimed,
== The task has called an entry which
-= i3 not yet accepted.

gatzycCallingUnconditional,
== The task has called an entry unconditionally,
== which i3 not yet accepted.

SelectingTimed,
== The task i3 waiting in a select statement
== with an open delay alternative.

SelectingUnconditional,
== The task waits in a select statement
== entizrely with accept statements.

SelectingTerminable,
== The task waits in a select statement
== with an open terminate alternative.

Accepting,
== The task waits in an accept statement.

Synchroaizing,
== The task wvaits in an accept statement
-= with no statemeat list.

Completed,

== The task has completed the execution of
== its statement list, but not all dependent
== tasks are terminated.

Terminated):

== The task and all its descendants
~= are terminated.

24

DACS-80x86 User's Guide

for TaskState

for TaskState’size

use (Initial => 164004

Cagaged => 160080 ,
Ruaning => 164100 ,

Delayed => 164180 ,

EntryCallingTimed => 160200 ,
EatryCallingUnconditional => 16428¢ .
SelectingTimed => 1646310 ,
SelectingUnconditional => 1601394 ,
SelectingTerminable => 166410 ,
Accepting => 1684A0 ,

Syachronizing => 164536 ,

Caompletad => 1645CH ,

Terminated => 160640);

type TasklypeDescriptor is

record

priority
entry_count
block_id
firet_own_address :
module_number
entry_number
code_address

. stack_size

stack_segment_size:
end record;

: System.Priorzity:;
: OXaeg:
: Bloekld:

System.Address;

: OIntg;

: Ulntg:

: System.Address;
: System.DWord;
durmy :

Integer:
Ulatg:

type AccTaskTypeDescriptor 1s access TaskTypeDescriptor;

type NPXSaveArea is array(l..40) of System.UnsignedWord;

type FlagsType is

tecord
wPXTlag : Bool;
Intersuptliag : Mool;
end record;
pragma pack(rlagsType):
type StatesType 1is
tecord
state : TaskState;
1s_sbnormal : Bool;
is_activated : Bool;
failuze : Bool;

end record;
pragma pack(StatesTypel:

type ACY_type 13
record

: Offset;

addr
end record;
pragma pack(ACF_type):

: System.Address;

pragma page:
type TaskCoatrolBlock is
record
sen : System.Semaphore;
isMonitor : iateger;

== Delay queue handling

dnext
dprev
ddelay
-« Saved registers

: System.TaskValue ;
: System.TaskValue ;
: Tieks ;

: System.Unsignediord ;

245

DACS-80x86 User's Guide
Implementation-Dependent Characieristics

P : offaet ;
Ready queue handling
next : Systea.TaskValue ;

Semaphore handling

semnext : System.TaskValue

Priority fields

priocity : System.Priority;
saved_priority : System.Priority:

Miscelleancus fields

time_slice : System.Unsignediord;
flags : FlagsType;
ReadyCount : Systea.Word;

Stack Specification

atack_start : Offset;
stack_end : Offset;

State fields
states 1 Statestype;

Activation handling fields

activator : System.TaskValye;
act_chain : System.TaskValue;
next_chain i System.TaskValue;
no_neot_act : System.Word;
act_block : Blockld;

Accept queue fields

partner : System.TaskValue;
next_partner : System.TaskValue;

Entry queve fields
next_caller : System.TaskValue;
Rendezvous fields

called_task : System.TaskValue;

isAsynch : integer;
task_eatry : TaskEntry;
entry_index : Eatrylndex;
entry_assoc : System. Address;
call _params : System.Address;
alt_id : Alternativeld;
excp_id : System.Exceptionld;

Dependency fields

pacent_task : System.TaskValuve;
parent_block : Blockld;
child_task : System.TaskValue;
next_child : System.TaskValue;
first_child : System.TaskValue;
prev_child : System.TaskValue;
child act : System.Word;
block_act : System.Word;

terminated_task: System.TaskValue;
Abortion handling fields

busy : System.Word;

246

DACS-80x86 User's Guide

Implementation-Dependent Characteristics
«= Auxiliary flelds
ted : AccTaskTypeDescriptor;
FirstCaller : System.TaskValue;

o= Run-Time System flelds

ACY : ACF_type: == cf. User’'s guide 9.4.2
sQrircst : Integer; == Only used in M3
sSamrirst : lateger; == Only used in RMS
ThlockingTask : Systea.TaskValue; == Only used ia RMS
PBlockingTask : System.TaskValuse; == Only used in RMS
collection : System.Address;
partition : Integer;

TaskCheckLimit : Offset; -« £0 assute inline storage check

Lastixception : System.DWord; =2 * 16 Dits

Savedidaiddr : Offset; == tO improve readesvous’s

== When the application 13 linked with -npx, & special
== gave ares for the NPX is allocated at the very end
== of every IC3.

== 10:

-= case WPX_Present is

.- when TRUE => NPXsave : WPXSaveArea;
- when FALSE => null;

.- end case;

end record:;

-+ The following i3 to assure that the TCB has the expected size:
ICB_size : constant INTIGER := TaskControlBlock’'size / 8;

subtype TCB_ok_value is INTEGER range 136 .. 136;
TCB_ok : constant TCB_ok_value := TaskCoatrolBlock’size / §;

end TaskTypes:

F.11 RMS Tasking (OPTIONAL)

The DACS-80x86 systems may run tasking applications by means of Rate Monotonic Scheduling
(RMS). RMS capability is purchased optionally, and is thus not included by default. Please contact
DDC-I for more information regarding RMS and your system. RMS allows the programmer to
guarantee properties of a tasking system, i.e. that tasks will meet their hard deadlines. The RMS
tasking is selected by specifying -rms to the Ada link command.

247

