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EXECUTIVE SUMMARY

The general emphasis for 1994 would be on increased software
development, testing of subelements and design calculations. For these
purposes, the constitutive law coding and development would be
coordinated by Nick Aravas, and implemented in ABAQUS. The initial
implementation would be the elastic/plastic model for MMCs with interface
debonding developed in 1993 (Leckie). This would be extended in 1994 to
include creep and some aspects of thermomechanical cycling. The code
would be used for design calculations concerned with MMC rotors,
actuators and vanes (Leckie). A plan is being formulated to collaborate with
Pratt and Whitney to acquire MMC sub-elements representative of these
components during 1994. Experimental tests on these subelements would
be capable of providing a direct validation of the code capabilities.

Constitutive law and fatigue lifing software :,ould be created for CMCs
using continuum damage mechanics (CDM) approaches (Leckie,
McMeeking). The approach has been motivated by micromechanics models
developed in 1993 (Hutchinson. Zok. Evans). These codes would be used to
calculate stress redistribution effects and fatigue life on simple sub-
elements, such as center notched and pin-loaded plates. Comparison with
experimental measurements needed to test the fidelity of the models will be
based on moir6 interferometry and thermoelastic emission. This effort is
coordinated with the NASA EPM program through both General Electric and
Pratt and Whitney. A plan for acquiring sub-elements from DuPont Lanxide
is being formulated.

A new emphasis for 1994 would be on the transverse properties of
CMCs. The measurements and calculations performed in 1993 have
indicated a strategy for curved sections and junctions that would establish a
consistent design approach. The basic approach for resisting failures from
combinations of interlaminar shear and transverse tension involves the use
of stitching and angle ply weaving patterns that inhibit major reductions in
stiffness when matrix cracks are induced by transverse loads and bending
moments. For this purpose, calculations would be performed that combine
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the mechanics of delamination cracks with models of bridging by inclined
fiber bundles (Hutchinson, Ashby, Evans, McMeeking). The insight gained
from these calculations would be used to design and acquire sub-elements,
such as C sections and Tjunctions.

Additional software development will be for creep and creep rupture
(McMeeking). The models devised in 1993 and test data relevant to MMCs
will be combined into a code that predicts the creep and rupture of
unidirectional MMCs subject to multiaxial loads. Some aspects of this code
will also be applicable to CMCs.

Two new activities will be introduced in 1994: thermal properties and
damping. The thermal properties will be studied on both CMCs and MMCs
(Ashby. Hutchinson). Measurements of thermal diffusivity will be made by
the laser flash method and related to the properties of the interface and the
density of matrix damage in the material. Thermal expansion measurements
will also be performed with emphasis on determining hysteresis effects,
which can be related to the temperature dependence of the interfaces
properties, through cell models. The latter might evolve into a diagnostic for
establishing relationships between the interface properties and
thermomechanical fatigue.

The processing activities in the program will have newly established
goals in 1994. The principal emphasis will be on concepts for affordable
manufacturing. The issues selected for investigation will be consistent with
manufacturing processes that allow near-net shape consolidation while still
yielding reasonable combinations of longitudinal and transverse properties.
Performance models developed in the program would be used as an initial
test of concept viability.

Beyond these general trends, specific activities are planned for 1994.
These are elaborated below. The status of understanding and development
in each of these areas is summarized in Table I. Increasing magnitudes
between 0 and 1 designate a knowledge range from limited to
comprehensive.
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TABLE 1A

Status of Design Knowledge for MMCs

[O]n MMC [0"/90*]n

LONG. TRANS.

Tesl P S P S P S
Tensile

Strength 3/4 1 1 1/2 1/4 -0

Creep and

Creep 3/4 0 1 0 0 0

Rupture

Cyclic Flow
(Isothermal, 1/4 0 1 1/2 0 0

TMF)

Crack

Growth
1 1 0 1/2 0 0(Isothermal

Fatigue)

Crack

Growth 1/2 1/2 0 0 0 0

Compressive
Strength 3/4 0 0 0 0 0
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TABLE IB

Status of Design Knowledge for CMCs

[0/90] [45/45]
P S P S

Stress/Strain 3/4 1/4 1/2 0

Fatigue 3/4 0 0 0

TMF 1/4 0 0 0

Creep and 1/2 0 0 0
Rupture

Compression 3/4 1/4 0 0
Strength

Transverse 3/4 1/2
Properties

Thermal 1/4 0
Properties

P Primary Structure

S Secondary Structure
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2. CONSTITUTIVE LAWS

Two approaches will be used to create a formulation capable of

representing the in-plane properties of CMCs. One would be based on

Continuum Damage Mechanics (CDM) (Leckie). The other would use

concepts analogous to those used in plasticity theory (Hutchinson). The

CDM approach uses damage parameters that relate explicitly to

micromechanics models. A potential function has already been identified as

the state variable which separately represents the strain from the elastic

compliance change caused by the matrix cracks and the inelastic strains

associated with the debonding and sliding interfaces. Derivatives of the

potential with regard to strain and damage give the relationships between

variables, such as stress, interface sliding resistance, matrix crack density,

etc.

The first version of the CDM model would use the minimum number of
damage variables potentially capable of representing the behavior of

laminated or woven composites. Cross terms between the damage variables
would not be considered at this stage. Moreover, matrix cracks would be

introduced normal to the maximum principal tensile stress, consistent with

the experimental observations.

The plasticity theory approach would seek a formulation based on
matrix cracks occurring normal to the maximum principal tension. It would

introduce parameters that reflect the inelastic strain caused by interface

sliding upon off-axis loading which would be calibrated from tests performed

in tension in 0/90 and 45/45 orientations.

The insight needed to characterize off-axis loading effects will be gained

from cell models (Hutchinson) in a manner analogous to that previously

used for axial loads. The principal objective will be to understand trends in

matrix crack opening and interface debonding/sliding with applied loads.

The stress on the fibers will be calculated with the intent of predicting

effects of loading orientation on fiber failure. The models will be compared
with measurements made in 45/45 tension, using various CMCs (Evans).

Calibration of the damage parameters for each material would be made
from hysteresis loop measurements in accordance with procedures

developed in 1993. Experimental results obtained in 0/90 tension, 45/45

KJS 42744
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tension and in-plane shear will be used. In future work, it is hoped that

shear tests will not be necessary.
The validation of the constitutive laws will be achieved by comparing

calculations with measurements made on sub-elements, especially pin-

loaded holes (Evans). The experimental results include residual strains

obtained by Moire interferometry (Fig. 2.1). ultimate loads for either tensile

or shear failure and principal strain trajectories delineated by matrix

cracking patterns. Acoustic methods will also be developed to probe the
local values of the elastic modulus (Clarke, Wadley) which could be
compared directly with the CDM predictions.

3. FATIGUE LIFING
3.1 CMCs

A software program for isothermal low cycle fatigue (LCF) of CMCs,

developed in 1993 (Fig. 3. 1) will be extended in 1994. The present program
asserts that fatigue is associated with cyclic degradation of the interface
sliding resistance, r, which can be characterized by analyzing hysteresis
loops measured periodically during a fatigue test. With this methodology,
S-N curves have been predicted for both unidirectional and woven 0/90
composites tested in cyclic tension as well as changes in compliance and
permanent strain. Some additional effort is required to analyze data on 0/90
laminates in order to validate the model predictions. The extensions
envisaged for 1994 include thermomechanical fatigue (TMF), strain
controlled LCF and off-axis fatigue (Zok, Evans). Experiments are planned
which would assess the effects of temperature cycling and of inclined fibers

on t degradation, measured from hysteresis loops. Various cell model
calculations (Hutchinson) will be used to interpret the experiments. The
results will be used to establish general rules for interface degradation in

CMCs.
The off-axis experiments will also give insight into the fiber failure

criterion that replaces the global load sharing (GLS) results successfully

used for 0/90 loadings. This study will coordinate with the cell calculations
described above, and the 45/45 tensile experiments.

Notch fatigue studies will be initiated. These will examine cyclic stress
redistribution and notch sensitivity (Evans).

gJS 4W27
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3.2 MMCs

Fatigue crack growth and notch strength studies in MMCs will be

extended to 0/90 laminates (Zok. Suo). The experiments concerned with

crack growth will be interpreted using crack bridging models. The utility of

such models has been validated in previous years through studies on

unidirectional MMCs. It is envisaged that the fatigue crack growth

characteristics of the unidirectional and 0/90 configurations will be related

through the volume fraction of fibers aligned with the loading direction. The

notch strength behavior will also be interpreted using crack bridging

models. Such models have been developed in 1993 and found to be useful in

rationalizing the behavior of unidirectional materials (Zok, Suo). In all cases,

the mechanical measurements will be augmented by in-situ observations to

identify changes in damage mechanisms with temperature, fiber

architecture, etc. Plans to study the influence of panel thickness on fatigue
and fracture resistance are also being developed, as wen as tests to

understand the potential for crack growth in mixed mode loadings (Hirth,

Zok).
Studies of the TMF response of MMCs loaded parallel to the fiber axis

will be initiated (Zok, Leckie). Experiments will evaluate both in-phase and
out-of-phase loadings. Models of load shedding (matrix-fibers) will be used

to interpret the hysteresis loops and to develop fatigue life models applicable

to low cycle, high strain TMF.

4. CREEP AND RUPTURE

4.1 MMCs

The considerable progress made in 1993 towards identifying and

understanding the mechanisms of creep and rupture in unidirectional

MMCs containing non-creeping fibers (McMeeking, Zok) will be used to

develop creep rupture software. The longitudinal creep model to be used

incorporates stochastic fiber fracture and interface sliding in a format

amenable to the prediction of primary and tertiary creep in terms of matrix

creep strength, interface sliding resistance, fiber strength, Weibull modulus,

etc. The concepts would be visualized in a rupture mechanisms map

K.JS 41271"4
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(Fig. 4.1). The transverse creep behavior would include interface debonding.

which greatly accelerates the creep, leading to marked anisotropy. A

constitutive law for creep that includes these effects will be developed

(Aravas, McMeeking).

Additional experiments and calculations will be conducted to assess the

effects of notches and holes on creep rupture (Zok, Suo). Experience with

MMCs at ambient temperature indicates that the notch sensitivity is largely

dictated by matrix properties (i.e., strength and ductility). The reduction in

matrix properties at elevated temperatures may lead to a substantial

elevation in notch sensitivity. However, this behavior may be complicated by

the development of alternate damage processes, such as shear bands.

4.2 CMCs

Studies of the creep and rupture of CMCs will continue with emphasis
on materials containing creeping fibers. A particular emphasis will be on

matrix cracking that arises as fiber creep relaxes fiber bridging tractions

(McMeeklng, Evans). The experimental studies will be performed on SiC/SiC

composites. Hysteresis loop measurements will be used to monitor matrix
damage during composite creep, using procedures devised in 1993. Models

will be developed based on time dependent fiber bridging concepts

(McMeeking, Cox).

It is envisioned that the lifetime of some CMCs will be dictated by time-

dependent rupture of the fibers. A lifetime prediction tool for such a

composite must incorporate the knowledge of fiber strength degradation over

time. A new activity will be initiated to address this problem (Suo, Evans).

The initial work will involve a survey of data in the existing literature, and a

comparison with available models. A new model is being developed for single

crystal fibers. This model involves a residual pore inside a fiber which

changes shape, under stress, via surface diffusion, to become a crack. These
issues will be viewed in the broad context of fiber and composite

manufacture.

KJS 4/27/94
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5. TRANSVERSE PERFORMANCE OF CMCs

Analyses and tests performed in 1993 (Ashby, Hutchinson, Bao) have
highlighted the essential issues related to components that experience
combinations of transverse tension and interlaminar shear. In both
loadings, matrix cracks form at manufacturing flaws at low stresses, of
order 10-100 MPa. These cracks extend across the plies and interact
minimally with the fibers. Although the crack configurations differ for
transverse tension and interlaminar shear loadings, multiple cracks always
form. This multiplicity of cracking causes a major reduction in stiffness,
which can cause unacceptably large displacements and also redis te
stress into other areas. The formation of the matrix cracks Is probabih.. in
nature and governed by the size distribution of manufacturing flaws. Design
based on the prevention of such transverse cracks must rely on weakest
link statistics, usually with a low Weibull modulus. Alternatively, it may be
assumed that cracks inevitably form and, instead, reliance is placed on
controlling the diminished modulus of the material, after matrix cracking
has occurred. This approach relies on having 3-D architectures, with
transverse fibers introduced locally either by stitching or by using angle
plies. To explore this possibility, calculations will be performed (Hutchinson,
Evans) to examine fiber architectures that lead to minimum stiffness loss,
subject to acceptable in-plane properties. Based on these calculations, sub-
elements will be designed that test out the concepts.

6. COMPRESSIVE BEHAVIOR

The studies completed in 1993 on the compressive failure of polymer
matrix composites by the growth of kink bands (Budiansky, Fleck) will be
extended to metal matrix composites, through a coordination with 3M.
Compressive failure of Al and Ti MMCs with small diameter fibers has been
observed by 3M to occur in accordance with the same kink band
mechanism known to operate in PMCs and in C/C composites. The theory
should thus extend to the MMCs, with the fiber misalignment, the shear
yield strength of the matrix and Its work hardening coefficient as the
principal variables. A comparison between the theory and experimental

"KJS 4*27i•4
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results would provide the basis for specifying the compressive properties of
MMCs.

Compression failure of CMCs occurs by different mechanisms (Ashby).

The dominant failure modes are similar to those that operate in porous

brittle solids such as monolithic ceramics, concrete and rocks. The theory is

well established and validated for these materials. Applications of the theory

to various CMCs will be made and applied to the understanding of a

behavior of pin-loaded holes (Evans. Ashby).

7. THERMAL PROPERTIES

A new focus on the thermal properties of CMCs and MMCs will be

initiated In 1994. Calculations of the effects of matrix cracks in the thermal

expansion of CMCs will be made (Hutchinson). These will be compared with
data obtained from TMF testing (Zok). The effects of such cracks on the In-

plane thermal conductivity will also be calculated (Hutchinson).

Measurements will be performed using the laser flash method (Ashby).

Thermal conductivity measurements will be initiated on Ti MMCs

(Ashby). These will be used to understand the effects of the fiber/matrix

interphases and of matrix damage on the transverse and in-plane thermal

conduction.

8. MATERIALS SELECTION

The Cambridge Materials Selector software will be expanded in 1994 to

include high temperature creep design with the corresponding data base

(Ashby). This expanded version will permit estimates to be made of

temperature limits for MMCs based on creep controlled TMF and on the

transverse creep of components with unidirectional reinforcements.

9. DESIGN CALCULATIONS AND SUB-ELEMENT TESTS

A larger fraction of the effort in 1994 will be on design and sub-element

testing, particularly for MMCs. Discussions are now in progress with Pratt

and Whitney, Textron and 3M to perform design calculations using the

KJS 4127)U
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constitutive equations developed at UCSB and to produce sub-elements for
testing.

The design emphasis for MMCs will be on various diffusion bonded
joints with Ti matrices and monolithic Ti attachments. Two specific
subelements are envisaged. The first involves unidirectionally reinforced
rods (or plates), clad with monolithic metal. The purpose of the cladding is
to prevent exposure of the fibers to the environment and to mechanical
abrasion. The design of clad MMC structures requires consideration of
WI) the residual stresses resulting from thermal mismatch between the
cladding and the composites section, (ii) the potential for fatigue cracks to
initiate and grow through the monolithic material, and (iii) the interaction of
such cracks with the composite section and their influence on the strength
and life of the structure. The design and testing of such subelements (Zok,
Leckie) will be augmented by calculations of crack growth and fracture,
incorporating the effects of thermal and elastic mismatch between the
cladding and the composite (McMeeking). The clad structures will also be
used to initiate studies on the reinforcement of holes in composite sections
with monolithic metal patches, as drawn in FIg. 9.1 (Zok, Suo). The second
subelement involves the attachment of a MMC actuator rod to a pin-loaded
monolithic section (Fig. 9.2). The critical design issues relate to the strength
and fatigue resistance of the interfaces between the composite and
monolithic matrices. Design studies shall also be completed on rotor rings
with special efforts made to produce rule-based design procedures which
would be used by industry at the conceptual level of design to determine
sizes and the efficient disposition of material.

For CMCs, the sub-element studies would be based on the calculations
described above in Section 5. These would include C sections and
TJunctions (Fig. 9.3) Negotiations for manufacturing these sub-elements
will be initiated and tests performed at UCSB.

10. AFFORDABLE MANUFACTURING

As our understanding of composite mechanics and its interplay with
design and performance has evolved, it has become increasingly evident that
cost and reproducibility, are major constraints. Even as processing

KJs 4d2713
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developments make the prospect of affordable high temperature fibers more

realistic, evolving knowledge on the mechanical and thermochemical
functions of interfaces have led to design concepts involving carefully
tailored interphase layers, with unfavorable impact on cost. Moreover, if

affordable coated fibers were available today, fabrication costs associated
with consolidation and pressure densification would often remain
prohibitive. Future processing and manufacturing activities are predicated
on these issues, especially the need for new ideas, and the related
knowledge base.

10.1 MMCs

Melt processing methods provide the more affordable options in
composite synthesis with the added benefit of near-net shape capability. For
continuous fiber composites melt infiltration also enables full density while
minimizing the consolidation stresses that typically cause premature
reinforcement failure in solid state processes. However, melt processing
requires a high degree of thermochemical compatibility between matrix and
reinforcement since deleterious diffusional interactions would be accelerated
by the liquid phase. Conventional melt processing also exhibits limited
ability to control the volume fraction and spatial uniformity of the
reinforcements.

Among metal matrices, Ti alloys epitomize unsuitability for direct melt
infiltration owing to aggressive reactivity. Fiber clustering is also a concern,
even in solid state processes based on powder or foil matrices. Composite
consolidation by vapor deposition (PVD) of the matrix on the fibers provides
an avenue for improving homogeneity of fiber spacing. However, present
schemes require expensive pressure densification with its many problems. A
potential solution involves a hybrid manufacturing route wherein part of the
matrix is first applied to the fibers by PVD. The pre-metallized fibers are
then assembled into a preform having the desired shape and then infiltrated
with the remaining matrix in liquid form.

Direct infiltration with Ti alloys could be feasible owing to the protection
of the fiber by the PVD layer, but the high temperatures involved would
exacerbate the diffusional interactions at the fiber-matrix interface. An
alternate approach involves depositing the more refractory constituents of

K4 427/"
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the matrix (e.g., Ti, Nb, Mo, etc.) by PVD and then infiltrating with the lower

melting point constituents (e.g. Al). Based on stoichiometric considerations,

the latter approach would be suitable for matrices with > 25 at.% Al, notably

the orthorhombic and a2 alloys. The obvious problem with this approach is

the homogenization of the matrix after consolidation, which may require

lengthy high temperature treatments in the solid state. However, a

significant part of the matrix synthesis reaction could be effected in the
presence of molten Al, followed by a final heat treatment in the solid state.

While this lower temperature infiltration approach is evidently desirable
from a manufacturing viewpoint, it is not clear that matrix homogenization

can be achieved.
A program involving modeling and experimental work will be initiated in

1994 to generate the knowledge base appropriate to hybrid approaches for

Ti matrix composites (Levi. Evans). Cell models (single fiber environment)
would be developed to study diffusional interactions and
remelting/solidification phenomena as a function of processing cycle

(temperature-time history). Experiments would be performed to elucidate
the relevant aspects of microstructural evolution and provide the reaction
and Interdiffusion kinetics needed to calibrate the models. Initial

experiments would be performed by infiltrating pure Ti-wire preforms with
molten Al and subjecting the "composite" to different treatments in the

semi-solid state. Subsequent experiments would focus on developing a
metallization route for Ti-Nb alloys on SIC fibers and on the relevant
interactions with infiltrated Al. Larger scale modeling Issues would be

tackled in 1995 if the proposed approach appears promising.
Ongoing activities on the understanding of microstructure evolution

and its relationship to properties in in-situ TMC systems based on TiB
reinforcements would be continued (Levi). These are by nature affordable

composites which exhibit inherent thermochemical stability and may be cast
into shapes using conventional Ti processing techniques. A potential

application of these materials would be in joints with unidirectionally
reinforced composites, wherein their higher modulus and creep resistance

combined with acceptable toughness and isotropic properties could be
advantageous. It is also anticipated that these materials could be used for

cladding in PVD or plasma-sprayed form, thereby reducing the potential for

fatigue crack initiation in the cladding. Since TIB is thermochemically stable

KS 4027194
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with practically all Ti matrices of interest in fiber composites, such
strengthening concepts may be readily implemented.

10.2 CMCs

Measurements and observations in 1993 have shown that strong, high
strain to failure CMCs can be fabricated using an inexpensive method that
Involves a) packing a powder around fibers within a fiber preform using
pressure filtration and b) making the powder matrix strong by heat
treatment followed by infiltration with a liquid precursor that decomposes to
an inorganic material. A composite made this way, with polycrystaUine
alumina fibers in a silicon nitride matrix, demonstrated that the matrnx
deflects the crack. This observation is significant since it suggest that a
class of CMCs can be processed without needing weak fiber/matrix
interfaces. The potential of this observation will be explored (Lange. Evans),
by processing a composite with strong, polycrystaline alumina fibers in a
mullite matrix because the thermomechanical properties of mullite minimize
thermal stresses and resist creep. In addition, the thermal expansion
mismatch is relatively small. Mixed Al. Si metal alkoxide precursors which
can be gelled In-situ, prior to decomposition, will be used to strengthen the
matrix.

Manufacturing studies would initiate with understanding the precursor
infiltration into mullite power compacts. The densification of the matrix
would be determined as a function of the cyclic infiltration. Microstructure
changes would be controlled to avoid flaw populations during densification.
The fracture toughness and the strength of the matrix would be determined
as a function of the number of precursor infiltration cycles. Composite
processing would initiate with precursor infiltration into alumina fiber
preforms by pressure filtration, with emphasis on the colloidal aspects of
this processing step. The goal would be to determine the processing
conditions needed to produce a matrix that optimizes the ability to deflect
cracks without degrading fiber strength. To optimize composite processing,
panels for testing under conditions of both strain and stress control would
be manufactured.

JS27M4
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11. STRESS AND DAMAGE SENSORS

The extensive exploitation of the optical fluorescence method of

measuring stresses in sapphire fiber and alumina-containing ceramic

composites begun in 1993 will be continued in 1994 (Clarke, Wadley). The

empha.s is on using the method to understand basic, unresolved issues in

stress redistribution in composites by the direct measurement, with high

spatial resolution, of the stresses themselves. Particular attention will be

paid to determining the stress distribution associated with interfacial

sliding. One of the problems to be addressed relates to new concepts for
oxidation resistant interfaces within MMCs and CMCs, particularly the

concomitant roles of fiber roughness and sintering on interface sliding and

debonding, after exposure to high temperatures and cyclic loadings. For this

purpose, fibers with fugitive, low modulus coatings will be explored and
fluorescence measurements used to understand stress evolution and its

connection with fiber durability within the composite. A second problem
relates to the distinction between the line spring and large scale sliding

models for fiber bridging (Budiansky. Hutchinson), so - s to determine the

range of applicability of the two models. The two competing models predict

different distributions of stresses in the fibers within the bridging zone and

hence are amenable to validation on the basis of the measured stress

distribution.

Two approaches to measuring local damage are under development and

will be the focus of the sensor activities. One is the use of acoustic methods

(Wadley) to probe local variations in the elastic modulus of CMCs as a

function of load. This should provide a means of mapping the distribution of

damage which can be compared directly with the predictions of continuum

damage mechanics models. The second approach (Clarke) is to detect the
third harmonic signal generated by the presence of local damage.

Preliminary experimental results obtained in 1993 concerned with the

detection of crack-like voids in thin metal lines, together with computer
simulation studies, have demonstrated the viability of the technique. This
work will be extended in order to detect damage accumulation in CMCs and

MMCs.
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MODE I FATIGUE CRACKING IN A FIBER
REINFORCED METAL MATRIX COMPOSITE

D. P. WALLSt, G. BAO and F. W. ZOK
Materials Department, University of California, Santa Barbara, CA 93106-5050, U.S.A.

(Received 8 June 1992; in revised form 20 January 1993)

Ak&a-The mode I fatigue crack growth behavior of a fiber reinforced metal matrix composite with
weak interfaces is examined. In the longitudinal orientation, matrix cracks initially grow with minimal
fiber failure. The tractions exerted by the intact fibers shield the crack tip from the applied stress and
reduce the rate of crack growth relative to that in the unreinforced matrix alloy. In some instances, further
growth is accompanied by fiber failure and a concomitant loss in crack tip shielding. The measurements
are compared with model predictions, incorporating the intrinsic fatigue properties of the matrix and the
shielding contributions derived from the intact fibers. The magnitude of the interface sliding stress inferred
from the comparisons between experiment and theory is found to be in broad agreement with values
measured using alternate techniques. The results also indicate that the interface sliding stress degrades with
cyclic sliding, an effect yet to be incorporated in the model. In contrast, the transverse fatigue properties
are found to be inferior to those of the monolithic matrix alloy, a consequence of the poor fatigue
resistance of the fiber/matrix interface.

1. INTRODUCTION matrix composites (CMCs) under monotonic loading
conditions suggests that the existing mechanics (de-

Fiber reinforced metal matrix composites exhibit a veloped from CMCs) may have applicability to
variety of damage modes under cyclic loading con- MMCs, provided appropriate modifications are
ditions [1-5]. In the presence of holes or notches, the made to account for the cyclic nature of the imposed
damage may involve the propagation of a single mode stress. The present article examines one of these
I matrix crack perpendicular to the fibers [1-31. fatigue mechanisms (mode I matrix cracking), and
Provided the fiber/matrix interface is sufficiently attempts to assess the utility of the mechanics for-
weak, cracking initially occurs without fiber failure. mulisms [6-8] in describing fatigue crack growth. The
The tractions exerted on the crack face by the intact study compares experimental measurements with
fibers shield the crack tip from the remote stress and model predictions, incorporating the effects of fiber
thus reduce the crack growth rate relative to that of bridging. The role of fiber failure in the fatigue
the matrix alone. Further growth may lead to fiber crar' ing process is also examined.
failure, both in crack wake and ahead of the crack tip, The paper is organized in the following way. First,
leading to an acceleration in crack growth. Alterna- a summary of the mechanics of crack bridging by
tively, the damage may be in the form of a process frictionally constrained fibers under cyclic loading is
zone comprised of multiple mode I cracks (4]. The presented (Section 2). The mechanics identifies the
mechanics of this process again involves issues of important material properties and loading par-
crack bridging and fiber failure, as well as an under- ameters governing fatigue, and provides guidance for
standing of the role of the interactions between the design and interpretation of the experiments. This
cracks. In yet other instances, failure occurs by is followed by a description of the materials and
splitting parallel to the fiber direction [4, 5]. The experimental methods employed (Section 3), and a
splitting mode is enhanced by the application of eprmal methodsuem e d ( se tion3 ,summary of the measurements and observations,
bending moments, as exemplified by tests conducted along with comparisons with model predictions
on compact tension specimens [5]. (Sections 4 and 5).

A comprehensive understanding of the material
parameters governing the various damage modes and
the role of the damage in fatigue lifetime is not yet 2. MECHANICS OF CRACK BRIDGING
available. However, the recognition that the damage 2.1. Shielding effects
modes have close analogies in fiber reinforced ceramic The mechanics of crack bridging by frictionally

constrained fibers in brittle matrix composites under
tPresent address: United Technologies. Pratt and Whitney, monotonic tensile loading has been well established

West Palm Beach, FL 33410-9600. U.S.A.
:Present address: Department of Mechanical Engineering, (9-Ill. A fundamental assumption in the analysis is

The Johns Hopkins University, Baltimore, MD 21218, that the driving force for crack extension is the crack
U.S.A. tip stress intensity factor, Kt, as governed by the
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remote stress and the tractions acting in the crack I . (8)
wake. Equating K, with the composite fracture tough- 2A A .
ness (which usually scales with the fracture toughness
of the matrix itself), gives the stress required for Here A is a material parameter defined byt

matrix cracking in terms of the component geometry D( I -f) 2E 2

and various constituent properties. = 4E2 Errf2  (9)
These concepts have been extended to describe where D is the fiber diameter, f is the fiber volume

matrix cracking in fiber reinforced metal matrix fractions, E. and E, are the matrix and fiber Young's
composites under cyclic loading conditions [6-81. By moduli and E is the longitudinal composite modulus
analogy with the monotonic loading problem, the (=fE+(I f)E). Combining equation (4)-(8)
driving force for crack extension is taken to be the an integral equation ofth(fr
crack tip stress intensity factor amplitude, AK, gives an integral equation of the form

AK, = AK. + AK, ( 2) tu&au,%R X1

where AK, is the component due to the applied stress 4 a"
amplitude, Au., and AK,, is the component due to the f Aab(t)H(t, x, a) dt. (10)
bridging tractions, Aub , exerted by intact fibers in the

crack wake. For an infinite center-cracked tensile This equation is solved numerically for Avb using an
panel, these components are given by [12] iterative scheme, and the result combined with

equations (1)-(3) to evaluate AK,.
AK. - Ao, Ina (2) The effects of finite specimen width, 2w, have also

and been studied through calculations based on finite
element methods [7]. For specimens with a normal--2 I -2 A d (x)( ized notch size a0 /w -0.2 (a value comparable to

AK---- _, (3) those used in the present experiments) and crack

lengths in the range a/w ! 0.5, the effects of finite
where 2a0 is the initial notch length, 2a is the curent width on the crack tip stress intensity amplitude can
crack length and x is the distance from the crack be approximated by the relation
center.

To evaluate the distribution of bridging tractions, AK,(a/w, Au) = Y(a/w) A/.(a/lo, Au) (II)
AOb(X), it is first necessary to specify the contri- where AK,(a/w, Ao) and AK,(a/oo, Ao) represents
butions to the change in crack openin,, splacements values for the finite and infinite specimens, respect-
Au due to the applied stress Au, and ,at due to the ively, and
bridging fibers Aut, 112]

4Y(a1w)-,/s / (12)
Au, q•/o,./a- X2 (4) (the usual finite width correction used in calculating

the applied stress intensity (I 2). The error introduced
and by this approximation is less than - 3%. As seen

_ -f* later, this range of crack lengths is consistent with the
Aub T Aub(t)H(t, x, a) dt (5) majority of values measured experimentally, making

the approximate width correction [equations (I1) and
where E is an effective composite modulus (taking (12)] suitable for subsequent calculations.
account of material orthotropy) and the Green's 2.2. Fatigue crack growth
function H is [121 fBy analogy to monolithic materials, it is expected

H(t,x, a) log 1 _X_ + _ __2___ l (6) that the rate of fatigue crack growth in composites
Xt /a'72- la can be described in terms of AK, through an empirical

relation of the form
The sum of these components

Au = Au, + Aub (7) da/dN= P(AKJr (13)

where N is the number of loading cycles. The par-
is required to be consistent with the cyclic traction ameters p and n represents the behavior of a matrix
law (taking into account reverse slip during unload- crack propagating through an array of elastic fibers
ing) [6] and are thus properties of the composite. However, in

view of the lack of understanding of the effects of the
tThe parameter A differs from that used in Refs. [6,91 by a fibers on the processes occurring at the crack tip, it

factor of 4,(I -f)IE. This modification provides con- seens adequate to select values of P and n that are
sistency between the steady-state stress intensity factor
and the value obtained from energy-based approaches representative of the monolithic matrix alloy. With
[10]. A more detailed discussion of the origin of such this approach, the effects of the fibers at the crack tip
effects can be found in (13]. are neglected.
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2.3. Fiber failure vacuum hot-pressed. During consolidation, a brittle

Once the fibers begin to fail, their contribution to reaction product consisting primarily of TiC forms

crack tip shielding is reduced substantially. To incor- are the interface between the Ti matrix and the C-rich

porate such effects in the model, a deterministic fiber coating [14]. Prior studies have sho.,n this

criterion for fiber failure has been used [71. The system to exhibit the requisite properties for interface

calculations are conducted by continuously adjusting debonding and sliding to occur during matrix crack-

the unbridged portion of the crack to maintain a ing [2, 15, 16). A transverse cross section of the

stress at the tip of the unbridged segment equal to the composite is shown in Fig. 2.

fiber strength. Through this approach, the entire
cracking history (a vs N) can be simulated. 3.2. Fatigue testing

The results of these calculations can also be used Fatigue tests were conducted in the 0: orientation
to develop a criterion for a "threshold" stress ampli- using center-notched tensile specimens. To minimize
tude, Aoa,, below which fiber failure does not occur machining damage, the notches were formed using
for an), crack length. Within such a regime, the crack electrical discharge machining. The normalized notch
growth rate approaches a steady-state value, with all lengths were in the range 0.23 < a0 /w" < 0.35. One
fibers in the crack wake remaining intact. The vari- face of each specimen was subsequently diamond
ation in the "threshold' stress amplitude with fiber polished to a I pm finish. Tests were conducted on a
strength is plotted in Fig. I. The maximum value of servohydraulic mechanical test system at fixed stress
Aot, occurs when there is no notch, i.e. a0 = 0, amplitude, A6. In all cases the stress ratio, R, was
whereupon maintained at 0.1. Crack extension was monitored

using two techniques: indirect potential drop (with
Aou/JS(I - R) 1 1 (14) thin foil crack gauges mounted at the notch tips), and

where R is the ratio of the minimum to maximum with a traveling stereo-microscope. The loading par-

applied stress. Increasing either the notch length or ameters and specimen geometry were selected to

interface sliding stress (or, equivalently, decreasing elucidate the effects of stress amplitude, Au., and

the fiber strength or fiber diameter) has the effect of notch size, 2ao. The transverse fatigue behavior was

decreasing the quantity Aath/(l - R)/S. measured using compact tension specimens, in ac-
cordance with the ASTM standards [17].

The extent of fiber failure during fatigue cracking
3. EXPERIMENTAL METHODS was monitored using an acoustic emission (AE) sys-

3.1. Material tem. The system consists of a 175 kHz resonant

The material used in this study was a metastable piezoelectric transducer, a variable gain amplifier,
PThemateium alloyed ithis stdywa1-sn) aretasfaced and a detector. The detector incorporates a variablel-titanium alloy (Ti-l5V-3Cr-3AI-3Sn) reinforced threshold voltage with two counting techniques.

with continuous, aligned SCS-6 (SiC) fibers. The Ringdown counting records each positive slope
fibers are 140 pm in diameter and are coated with a threshold crossing of a decaying acoustic signal,
3p m graded C/Si layer. The purpose of the coating whereas event counting records the first crossing and
is to inhibit fiber/matrix interaction during consolida- ignores subsequent crossings within a fixed reset
tion. The composite was fabricated through a period (I ms). The latter technique (employed in the
foil-fiber-foil technique, wherein Ti-alloy foils and present study) has the potential to resolve individual
fiber mats are alternately stacked and subsequently fiber fractures provided that three cor.ditions are

satisfied: (a) the acoustic signal decays below the
threshold within the reset period, (b) multiple fiber

4 tEIE/(1 -4)
2Em 

2

£0

"Fiber FailureS06 •

0 02 No Fiber Failure
Z

00 02 04 06 08 '0

Normahzed Notch Length. •, a6VIDS

Fig. I. A diagram showing the influence of notch length. rm
2 a0. and material parameters (t. Df. S) on the applied T
stress Av (/ - R) at which fiber failure is predicted to occur O1m
during fatigue cracking (adapted from Refs 17] and 1221). Fig. 2. At transverse section through the composite.
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failures do not occur within the reset period. and (c) During matrix dissolution, the fractured fibers were
the system settings can be adjusted to prevent signals removed, whereas the intact fibers continued to span
from alternate acoustic sources from crossing the the entire length of the specimen. A comparison of
threshold. To determine the system settings appropri- the spatial distribution of fractured fibers with the
ate to the Ti/SiC composite, a series of preliminary matrix crack prior to dissolution provided a direct
tensile tests were conducted on monofilament com- measure of the length over which intact fibers had
posite specimens. The specimens were prepared by bridged the matrix crack. The fatigue fracture sur-
extracting individual SiC fibers from the composite faces were also examined in a scanning electron
and bonding fibers onto aluminium strips using an microscopy (SEM).
epoxy adhesive. Tensile tests were conducted with the
transducer attached to the aluminum strip, and the
number of acoustic events associated with fiber fail- 4. LONGITUDINAL PROPERTIES
ure recorded. The system settings were systematically 4.1 Measurements and observations
varied until individual fiber failures were consistently
counted as single acoustic events. These settings were Figure 3(a-c) show representative trends in the
subsequently used during fatigue testing of the coin- crack growth behavior, plotted as crack extension,
posite. Furthermore, the accuracy of the acoustic Aa, vs number of loading cycles, N, for tests con-
emission measurements was evaluated by examining ducted at various stress amplitudes. Here, the speci-
the tested specimens following matrix dissolution, as mens had an initial notch size, 2a 0 - 3 nun. The
described below. results are re-plotted as crack growth rate, da/dN, vs
3.3. Oapplied stress intensity range, AK., in Fig. 3(d).

.3.Observatio Similarly, Fig. 4(a-d) show trends with notch length

Direct observations of fiber bridging and fiber at a fixed stress amplitude, Au. = 400 MPa.
fracture were also made. For this purpose, tested In all cases, the crack growth rates initially de-
specimens were sectioned along a plane - 3rm creased with increasing crack length, despite the
above the matrix crack plane, and the matrix sub- corresponding increase in AK,. This behavior is a
sequently dissolved down to a depth of -6 umm. manifestation of crack tip shielding by intact fibers in

(a) (b)

A0sw -0 216A- 370M

to-o

20 2

31.3

0.0' ______________________.__.. ... . .
0 .010m 300.. 0 10.000 20.000 30.000 40.0o0 50.000

Num~w of Cyces Numbff of Cycles

(c) (d)
3.0 IV -
2. 3 S5-3W05 3t 3E 1t 216-3

10 00 Ii.
'[ 35 f 1047

t• 1.0

0.0 [ • 104 3

0 10.000 20.000 30.000 m00

N~ of Cyds A Stress Inwes4 Flnge. AK. (MP&,r/T)

Fig. 3. The influence of stress amplitude on crack growth in the longitudinal orientation, for a notch length
2a0 = 3 nun: (a) Av = 300 MPa, (b) 370 MPa, (c) 436 MPa. The solid lines are model predictions, assuming
no fiber failure in the crack wave. The additional lines in (c) show the model predictions incorporating
fiber failure, using a sliding stress, T = 35 MPa, and 3 values of fiber strength. (d) The data of (a-c)

replotted in the conventional format.
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Fig. 4. The influence of notch length on crack growth in the longitudinal orientation, for a stress amplitude
Avo -400MPa (R -0.1): (a) 2ao -=3 mm, (b) 6 mm, (c) 9 mm. The solid lines are model predictions
assuming no fiber failure. The additional lines in (c) show model predictions incorporating fiber failure,
using a sliding stress T = 25 MPa, and 3 values of fiber strength. (d) The data in (a-c) replotted in the

conventional format.

the crack wake. The presence of such fibers was notches exhibited extensive acoustic activity, in ac-
confirmed through comparisons between the matrix cord with observations of fiber failure. Figure 7
cracks following fatigue testing and the distribution shows one example of the evolution of the number,
of underlying fibers following matrix dissolution: an nr, of failed fibers with crack extension, correspond.
example is shown in Fig. 5. For tests conducted at ing to the test results presented in Fig. 4(c). The
low stress amplitudes or with small notches, the parameters in this figure have been normalized such
deceleration in crack growth continued throughout that a line of slope unity represents failure of all the
the duration of the tests fFigs. 3(a, b) and 4(a, b)]. In fibers in the crack wake: the region above the fine
contrast, tests conducted at high stress amplitudes or corresponds to the incidence of fiber failure ahead of
large notches exhibited a transition in which the the crack tip. In this case, fiber failure began at a
growth rate accelerated rapidly with crack extension relatively small amount of crack extension
[Figs 3(c) and 4(c)]. The transition was correlated (Aa/D = 2-3). Further crack growth was ac-
with the onset of fiber failure. The distribution of companied by increasing fiber failure and a concomi-
broken fibers following fatigue testing for one such tant increase in crack growth rate. The acoustic
test is shown in Fig. 6. [These observations corre- emission measurements also indicate that, beyond
spond to the data in Fig. 3(c).] In this case, the zone Aa/D - 12, fiber failure occurs ahead of the crack tip.
of intact fibers at the end of the tests was only This point corresponds closely to the onset of rapid
-300rpm (or -2 fiber spacings). crack acceleration (at N % 8000), seen in Fig. 4(c).

The evolution of fiber failure during fatigue crack- SEM examination of the specimen following matrix
ing was also confirmed by the acoustic emission dissolution (Fig. 8) confirmed the number of failed
measurements. For tests conducted at low stress fibers measured through acoustic emission (within
amplitudes or with short notches, the total number of - 10%).
acoustic events was typically g 10. These measure- SEM examinations of the fracture surfaces re-
ments correspond to the failure of fibers that were vealed two notable features. Firstly, the amount of
partially cut during machining of the notch, an fiber pullout on the fatigue fracture surface was small;
example of which is seen in Fig. 5. In contrast, tests typically _ 2D (Fig. 9). This observation indicates
conducted at high stress amplitudes or with long that the fiber strength distribution is narrow, in
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Notch Tip U

* 0.2 mm

IL~otch Tip

(b),0.2 mm
Fig. 5. Comparison between (a) a matrix fatigue crack, as seno h xenlsurface, and (b) the
underlying fibers following matrix dissolution. The micrograph are at the same magnification and
represent the identical region of the specimen. The fatigue test was conducted at &a, - 30 MNa. R - 0. 1.

and 2a, 3 mm.

accord with the reported values of Weibull modulus compare the experimental data with model predic-
for the SCS-6 fibers (-. 10). Secondly, the fiber coat- tions for a range of values of T and then assess whether
ings exhibited extensive fragmentation following fa- consistency is achieved over the entire range of
tigue [Fig. 10(a)J. In contrast, the coatings on the measurements. The model predictions also accounted
fibers in the fast fracture region were left intact for fiber failure, assuming a deterministic fiber
[Fig. 10(b)]. Evidently, the cyclic sliding leads to a strength, S. In this regime, the calculations were
degradation in the fiber coating. based on a fixed value Of T (chosen to be consistent

4.2.Comarion etwen epermen an thory with the data in the regime prior to fiber failure) and
4.2.Comarion etwen epermen an thory comparisons made for a range of values of S. The

The measured crack growth curves have been inferred value of S was then compared with values
compared with model predictions [ 7). taking into reported elsewhere.
account the effect of bridging fibers on &K,. The Figures 3 and 4 show the comparisons between
parameters P and n in equation (13) were taken to be experiment and theory. In the regime prior to fiber
those for the matrix alloy 1 5] and are given in Table 1. failure, all the experimental data are consistent with
The various elastic moduli 114] are also given in the model for T in the range of 15-35 MWa.
Table 1. The material parameter that is subject to the The values of T inferred from the fatigue tests have
most uncertainty is the interface sliding stress. -r. been compared with those measured on both pristine
Consequently. the approach adopted here was to and "fatigued" fibers; using single fiber pushout
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1 ~ rq,

',Notch Tp;
Cb_ Illumsw it 1 0.5 mm

Fig. 6. A comparison similar to that shown in Fig. 6, for a specimen tested at Aaý = 436 MPa. R = 0.1
and 2ao = 3 mm. Note the extent of fiber failure in the crack wake.

tests (18] (Fig. II). Specimens with "fatigued" fibers The model predictions in the regime following fiber
were prepared by cutting composite sections failure are consistent with a fiber strength of -4 GPa
-600 pm thick, adjacent to a matrix fatigue crack. [Figs 3(c) and 4(c)]: a value comparable to previous

The sections were then ground and polished to a final measurements of the strength of pristine SCS-6 fibers
section thickness of -400rpm. The pristine speci- [201t.
mens were prepared in a similar fashion, using unde- The present observations have also been used
formed material. The pushout tests show that to assess the predictions of the 'threshold"
the sliding resistance of the pristine fibers is initially stress amplitude, described in Section 2.3. A compari-
- 90 MPa, but decreases as the fiber slides out of son of the measurements and predictions is shown
the composite. This trend has previously been in Fig. 12. Here, the experimental data have
rationalized in terms of the wear of asperities on been plotted for an average value of sliding
the fiber coating during sliding [191. In contrast, stress, r = 25 MPa, with the error bars corres-
the sliding stress for the fatigued fiber is initially ponding to the uncertainty in T (15-35 MPa). Despite
only -20MPa, but subsequently increases with the rather broad uncertainty, the observations
pushout distance. This behavior is consistent with
the extensive fragmentation of the fiber coating fol-
lowing fatigue (Fig. 10). Comparisons of the data A Q 4 0 MP,&; 2%"•

with the range of values of T inferred from the fatigue 9 0 ,E,-,-,
crack growth experiments shows broad agreement, 30 00

providing additional confidence in the utility of U.
the micromechanical model. However, it must be 1 2D 0 0
emphasized that the fiber coatings degrade during 0
cyclic sliding, leading to changes in the interface
sliding stress. Such effects have yet to be incorporated
in the model.

0

0 10 20 30 40

tit is recognized that a deterministic fiber failure criterion Crack Extenson. aa D
is not, strictly speaking, applicable to ceramic fibers.
However. in the present case, the range of fiber strength Fig. 7. Evolution of fiber failure with crack extension (t is
is narrow and thus the criterion appears to be adequate. the thickness of the composite panel).
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Notch
0.5 mmw

Notch Tip

111111 1 10 .5 MM
Fig. 8. Compansod of matrix crack and underlying fibers for tst conducted at Av. - 400 MPa. R -0.1
and 2aq - 9 mm. Note the absence of intact fibers in the crack wake and the extent of fiber failure ahead

of the crack tip.

appear to be consistent with the predictions. S. TRANSVERSE PROPERTIES

Specifically, both the experiments and the
theory indicate that a transition to the regime of 5.1. Measurements and observations
fiber failure can be brought upon by increasing either In contrast to the longitudinal behavior, fatigue
A•u or a0 . crack growth in the transverse orientation was not

0.2 mm
Fig. 9. SEM view of fatigue fracture surface, showing the extent of fiber pullout.
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0 ~ Fo,l~ PuStioutQ.

Pnsane Foot

Fasue Fee

% 040 -

0 2 1 6 8 0

(a) L206 •Push-out Distance (9m)

Fig. I I. Results of single fiber push out tests on pristine and
fatigued fibers. Also shown is the range of T inferred from

the fatigue crack growth experiments.

neglecting the fatigue resistance of the fiber matrix
A, interface. The driving force for crack extension in the

composite is thus obtained through a net section
correction of the form

AK, = AK.,A,,, (15)

where A,. is the area fraction of matrix on the fracture
surface. Measurements made on the fracture surface
give Am ; 0.38. This value compares favorably with

W4%"r one calculated, assuming that the fibers are arranged
(b) ~in a square array and that the fatigue crack propa-

Fig. 10. SEM observations of failed fibers in (a) the fatigue gates along the narrowest matrix ligament between
region, and (b) the fast fracture region. Note the damage on fibers, giving

the fiber coating in (a).
Am = I - (41r/f )If`. 0.33. (16)

accompanied by crack bridging. Indeed, the fatigue The model predictions based on this adjustment are
resistance of the composite in this orientation was shown by the dashed lines on Fig. 13. Evidently, the
inferior to that of the matrix alloy. The trends in the predictions lie above the measured data. This result
crack growth rate with the applied stress intensity suggests that either the fiberimatrix interface provides
amplitude are shown in Fig. 13. The behavior of the some fatigue resistance, or a closure effect arises from
composite closely parallels that of the matrix alloy, the presence of the debonded fibers in the crack wake.
though the growth rates are somewhat higher in the The latter effect is consistent with the thermal expan-
composite. SEM examinations of the fatigue fracture sion mismatch in this composite system.
surface indicate that the cracks propagate along the
matrix ligaments between fibers, with no evidence of ,0
fiber bridging or fiber fracture in the crack wake Eeiments TSiC
(Fig. 14). These observations are consistent with the U 0 Feet, are
static tensile properties of the composite, wherein the C' o No Fbe, Fv,,r,

transverse strength is lower than that of the matrix ( S.4 OGP.•1.1535mpa)

[14]. 06

5.2. Comparison between experiment and theory 04

An upper bound estimate of the transverse crack =
growth rate in the composites can be obtained by Eb 02

Z

Table I. Mechanical properties of fiber, matrix and composite oo00, ,

Matix modulus E, = 115GPa 1141 00 02 04 06 0' 10

Fiber modulus E, = 360 GPa [141
Longitudinal composite modulus E '00 GPa (141 Normalized Notch Length. t aJ'DS

Effective composite modulus E' = 193 GPa' Fig. 12. A diagram showing the conditions under which fiber
Coefficient in Paris law = 5.5 5 - 10' (m, )51 failure was observed during fatigue cracking. The line shows
Exponent in Paris law fl2.8 151 model prediction. based on the results of Fig. 3. (The
'Calculated in Ref. 17). parameter I` is defined on Fig. 1.)
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, in crack growth rate with increased crack extension.

-TI ScC (W)The measurements have been found to be consistent
o with the predictions of a micromechanical model in

which the fibers are assumed to be frictionally
a1 -coupled to the matrix, with a constant interface

- ,- sliding stress. The values of the sliding stress inferred
"IT, from such comparisons are in broad agreement with

leo' TO values measured from single fiber pushout tests on
fatigued specimens. These values, however, are sub-

______..... ______, _ _. .stantially lower than those measured on pristine
,0 0o 2o 30 40 50 60 fibers, suggesting that the fiber coatings degrade

Ap, SVG",sa ktmnsdy Ra-g.. K (uMP.Vr) during cyclic sliding. The role of such degradation on

Fig. 13. Comparison of crack growth rates in composite in the cyclic traction law will be addressed elsewhere
transverse orientation with that of the monolithic matrix (211. In some instances, the fibers in the crack wake
alloy. The broken lines represent model predictions for the fail, leading to a loss in crack tip shielding and an
composite, based on a net section correction [equation (16), acceleration in crack growth. The behavior in this

A. = 0.381. regime is also consistent with the model predictions,
using a deterministic value for fiber strength. In the

6. CONCLUDING REMARKS transverse orientation, the weak fiber/matrix inter-
face results in a degradation in the fatigue resistance

The fatigue crack growth characteristics of a uni- of the composite relative to that of the matrix alloy
directional, fiber reinforced metal matrix composite alone.
have been measured and the results compared with An important conclusion derived from both the
model predictions. The results indicate that the prop- experimental measurements and the model predic-
erties of the fiber/matrix interface play a central role. tions pertains to the use of the applied AK as a loading
In the longitudinal orientation, matrix cracking in- parameter in describing fatigue crack growth in this
itially proceeds with minimal fiber failure: the weak class of composite. It is apparent that the bridging
fiber/matrix interface allows debonding and sliding to effects in the longitudinal orientation are so pro-
occur, leaving the fibers intact in the crack wake. The nounced that AK. does not generally provide even a
bridging fibers provide substantial crack tip shielding rough estimate of the crack tip stress field. Conse-
during crack growth, as evidenced by the reductions quently, no unique relationship exists between da/dN

- -

Fig. 14. Fatigue fracture surface of the composite in the transverse orientation.
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ABSTRACT

An experimental investigation of interface fatigue in a fiber reinforced metal

matrix composite has been conducted. For this purpose, the cyclic traction law (the

relationship between the fiber stress and the pullout displacement) was measured using

fiber pullout tests. On the first loading cycle, the traction law was found to be parabolic,

in accord with predictions of a micromechanical model based on a constant interface

sliding stress. Upon subsequent unloading and re-loading, the relationship changed,

following trends which suggest that the sliding resistance degrades with cyclic sliding.

Such effects have been confirmed through SEM examinations of the fiber coatings

following fatigue testing. Furthermore, the degradation was found to be greatest near

the plane of the matrix crack. The results are consisternt with the notion that the

degradation in sliding stress occurs most rapidly in regions where the relative sliding

distance (fiber/matrix) is greatest. A phenomenological model incorporating such

degradation is presented and compared with the experimental measurements.
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1. INTRODUCTION

The growth of mode I matrix fatigue cracks in fiber reinforced metal matrix

composites (MMCs) is frequently accompanied by interface debonding and sliding.

This process allows the fibers to remain intact in the crack wake. .he tractions exerted

by the fibers reduce the crack tip stress intensity amplitude (relative to an unbridged

crack) and thus reduce the rate of matrix crackingl-5 . The fundamental composite

property governing the fatigue resistance of such composites is the cyclic traction law:

the relationship between the bridging stress amplitude ard the crack opening

amplitude 6,7. Such laws have been combined with fracture mechanics analyses to

predict crack tip stress intensity amplitudes for a variety of specimen geometries6,7.

Through this approach, fatigue life predictions can be made, incorporating the relevant

constituent properties.

The existing models of fiber bridging are based on the assumption that the

sliding behavior of the interface is characterized by a constant shear stress, T6-11. This

approach has been validated for a variety of metal and intermetallic matrix composites,

subject to monotonic tensile loading11,14. However, there is experimental evidence to

suggest that the sliding behavior changes substantially during high cycle fatigue.

Specifically, measurements of fatigue crack growth rates have been found to be

consistent with the bridging models for values of or that are substantially lower than

those measured on pristine fibers 12. Such trends have been confirmed by fiber push-out

tests, conducted on specimens cut adjacent to a fatigue crack 13. The purpose of the

present article is to present experiments that provide more direct information about

changes in the cyclic traction law in MMCs subject to high cycle fatigue, and make

comparisons with predictions of the model based on constant "t.
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2. MATERIALS AND EXPERIMENTAL TECHNIQUES

The composite used in the study was a metastable 0-titanium alloy

(Ti-15V-3Cr-3AI-3Sn) reinforced with continuous, aligned SCS-6 (SiC) fibers. The fibers

had a 3 pLm graded C/Si layer, in order to protect them from damage and inhibit

fiber/matrix interaction during consolidation. The composite panel was -2 mm thick

and consisted of 9 fiber plies, with a fiber volume fraction of 35%. Fatigue studies on

this composite have shown that interface debonding and sliding occurs during matrix

cracking, resulting in substantial crack tip shielding1 2. The relevant properties of this

composite are summarized in Table 1.

Pullout specimens suitable for fatigue testing were made by a process involving

cutting, grinding and chemical dissolution (Fig. 1). First, long slender specimens, 6 mm

wide by 50 mm long, were cut parallel to the fiber direction. Two coplanar notches

were ground into each side of the specimens. The process was carefully monitored to

ensure that the central 3 fiber layers were not damaged during grinding. In addition,

shallow notches (-0.5 mm) were cut on either side of the central notch on one face, with

a separation of 10.0 mm. These grooves were subsequently used for mounting an

extensometer on the specimen. The section of the specimen away from the notch was

masked with an epoxy and the matrix material within the notch dissolved using

concentrated nitric acid, leaving a section consisting of only 3 rows of fibers.

Uniaxial fatigue tests were performed in a servohydraulic mechanical testing

machine. The specimens were gripped over a length of -10 mm on either end using

hydraulic wedge grips. The load amplitude was selected to give a fiber stress range,

A00, in the notch plane between 1500 and 2000 MPa, with an R ratio (minimum to

maximum stress) of 0.1. The loading frequency was fixed at 5 Hz. The displacements

were measured using a 10 mm clip-on extensometer. The knife edges of the

extensometer were inserted snugly into the grooves, and the extensometer securely

7F'MS25(June 15. 1993)13:07 PM/mef



attached to the specimen using rubber bands. Cycling was periodically interrupted and

the load/displacement behavior recorded while loading the specimen at a rate of

0.2 pm/s.

Subsequent to testing, one of the specimens was fractured along a plane

perpendicular to the notch plane, exposing the fiber/matrix interfaces (both pristine and

cycled). This was accomplished by cutting a deep notch from the gripped region of the

specimen and subsequently wedging the notch open. The specimen was broken in

liquid nitrogen (-1960C) in order to minimize the effects of matrix plasticity on the

exposed interfaces. The interfaces on both pristine and cycled fibers were examined in a

scanning electron microscope (SEM).

3. MECHANICS OF FIBER PULLOUT

Prior to presenting the experimental results, the relevant mechanics associatod

with fiber pullout is briefly reviewed. The mechanics provides a framework within

which the results are presented and interpreted.

The simplest model of fiber pullout is based on the assumption that the sliding

resistance of the interface is characterized by a constant shear stress, "r. This approach

has been used to study crack bridging in fiber-reinforced CMCs under monotonic

loading and MMCs under cyclic loading. The relations pertinent to the present study

are summarized below. Additional details of the mechanics can be found in Refs. 6-8.

Under monotonic tensile loading, the fibers slip past the matrix over a length, 1,

given by

00= (1-f) EmD

4TE (1)
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where D is the fiber diameter, f is the fiber volume fraction, q4 is the fiber stress in the

matrix crack plane, and Em and Ef are the Young's moduli of the matrix and fiber,

respectively. The remote displacement due to pullout, 8 p, is obtained by integrating the

additional fiber strain due to sliding over the slip length, yielding

D 2 02

P 4Ef T(1+z) 2  
(2)

where a a Em (1-f) / Ef f. During unloading, slip occurs in the reverse direction,

whereupon the pullout displacement becomes6

a• f max 0 0
= - 8Ef r (1 + a) 2  

(3)

where 8 p nax is given by Eqn. (2), evaluated at the stress maximum, Of max. The

corresponding result for re-loading is6

D Da 2 (a 0 0)2

P 8Ef T(1+(x) 2  (4)

where Sp min is given by Eqn. (3), evaluated at the stress minimum, Of min. Figure 2

shows the predicted trends for the case where R = 0. A notable feature here is that the

cyclic traction law remains the same beyond the first loading cycle, provided T remains

constant.

Application of these formulisms to the present experiments requires two

modifications. First, because the notching process used to make the specimens reduces
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the fiber volume fraction within the notched section, the matrix "crack" is not fully

bridged. This effect can be treated through a modified shear lag analysis, assuming that

load is transferred uniformly from the composite to the bridging fibers (Appendix).

Following this approach, the relations between Sp and af become

02oD(il+a)2 of0
8p=

4Ef 'T(1+a)2  (5)

D(+a) 2 (Omax -O)2

8Ef 'r(1+0) 2  
(6)

D(ii+ac)
2  0 a )0

slop pniin ( f raf-in ]
P8Ef '•(l+a)2 (7)

where TI is the number fraction of broken fibers. In the present geometry, Ti = 2/3.

When 11 is zero, Eqns (5)-(7) reduce to Eqns. (2)-(4), as required.

The second problem involves interpretation of the measured displacement, 8.

This displacement has two components. One is due to elastic extension, Be, both in the

fibers within the notched section and in the composite, and the other is due to pullout,

8 p. The elastic component varies linearly with load, P, whereas the pullout component

is proportional to the square of the load (subject to the constant T assumption). The

total displacement can thus be expressed as

8 = C1 P + C2 P2 (8)
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where C1 represents the (elastic) compliance of the specimen and C2 is a parameter that

embodies the material properties given in Eqn. (4). Upon rearrangement, Eqn. (8)

becomes

8/P = C1 + C2 P (9)

The form of Eqn. (9) suggests that B/P should vary linearly with P, with the slope being

C2 and the intercept C1.

4. MEASUREMENTS AND OBSERVATIONS

The measured load-displacement curve for the first loading cycle of each test was

used to determine the specimen compliance, C1 , and to assess the validity of the

constant "c model. Figure 3 shows the variation in 8/P with P for one such test. In this

case, the degree of linearity is high, with a correlation coefficient, r = 0.998. Two

additional tests conducted at similar stress levels provided essentially the same results,

with correlation coefficients consistently above 0.99. The values of T, evaluated from the

slopes of these plots, were in the range, -T = 55 to 60 MPa. This range is consistent with

values measured on other metal and intermetallic matrices reinforced with the same

fibers11,14 .

A series of hysteresis loops (stress vs. pullout displacement) for various numbers

of loading cycles, N, is shown in Fig. 4. The pullout displacement was obtained by

subtracting the elastic displacement, CiP, from the measured displacement S, using the

experimentally determined value of C1 . Two features are noteworthy. (i) The slope of

the loops decreases with loading cycles, suggesting that the interface sliding resistance

is diminished. Closer examination indicates that the first cycle (loading and unloading)

7F'MS25(Jwie 15, 1993)43:07 PM/mef
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is consistent with the constant T model (Fig. 5). Substantial deviations from the model

predictions occur on the second loading cycle. (ii) Cyclic loading results in an increasing

amount of permanent (zero-load) displacement, manifested in the translation of the

hysteresis loops. The variation in permanent displacement with number of cycles is

plotted on Fig. 6. This trend is also consistent with a diminishing sliding stress with

loading cycles.

Further insight is obtained by plotting the results as the change in pullout

displacement, A8p, during a single loading cycle with the change in fiber stress, A Yo,

using logarithmic coordinates. Figure 7 shows one such plot. (For clarity, only the

loading portion of each cycle is shown.) The linearity of the data suggests that the

traction law can be represented by a power law, with the power law exponent,

d log A 8p/d log A ao, varying with loading cycles, N. The exponent decreases rapidly

from an initial value of 2 to a value of -1.3 following -100 loading cycles, and

subsequently remains constant (Fig. 8). The change in the exponent from a value of 2

indicates thkz the degradation process occurs non-uniformly along the slip zone, i.e. the

sliding stress varies along the fiber length.

SEM examinations of the fiber coatings confirmed that the coatings did indeed

undergo changes during cyclic sliding. The surfaces of the pristine fibers, exposed by

breaking the sample along the fiber length, exhibit a hillock morphology, with a

roughness amplitude of -0.3 grm and a wavelength of -3 jin (Fig. 9). On the fatigued

fibers, the hillocks are smeared out along the fiber length (Fig. 10). Furthermore, the

degree of smearing varies along the length of the fiber, being highest near the notch

plane. At distances a: 1mm from the notch plane, the surfaces appear to be essentially

the same as those of the pristine fibers. The observations suggest that the degree of

wear and the corresponding reduction in the sliding resistance depends on the amount

of relative sliding between the fibers and the matrix: the amount of sliding being

greatest near the notch plane.
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The measurements and observations form the basis for a phenomenological

degradation model that incorporates changes in the interface sliding stress. Details of

the model and comparisons of the model predictions with the experimental

measurements are presented below.

5. MODEL OF INTERFACE DEGRADATION

The change in the cyclic traction law was simulated using a simple interface

degradation law. In this law, the sliding stress T was assumed to vary linearly along the

length of the fiber, being lowest at the notch plane (where the largest amount of wear

had occurred) and highest at the end of the slip zone. Furthermore, the value of r at the

notch plane was assumed to be zero. This relation can be written as

T(x) W To x/max (0 5 x/lnux S 1) (10)

where tmax is the slip length at the stress maximum, x is the normal distance from the

crack plane and 11o is the initial (pristine) sliding stress. Combining Eqn. (10) with the

analysis presented in Section 3 yields the results for the cyclic traction law:

2 I0o11  O3/2
8 2D(,q+a) fmaxof

P3 TO Ef (1 + a)2 (11)

,2-D(1+,2 o)/2 (,o )3/2

S3 3Ef TO (1+ a) 2  (12)
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,r2+ TD i+a)2  ay '2 ( - 0 ) 3/28 bpni +~ n -O Ofmax (of f in
P 3Ef ro (1+a)2  (13)

In this case, the exponent on the cyclic traction law, d log A Sp/d log A ar' = 3/2.

The predictions of the model are plotted in Figs. 6 and 8. The predicted

permanent displacement was evaluated by setting CI• = 0 in Eqn. (12). Evidently the

predicted exponent is in reasonable agreement with the experimental measurements for

N > 100 (1.5 vs. -1.3). In contrast, the correlation between the measured and predicted

permanent displacements is poor. However, the model correctly predicts the direction

of such changes.

6. CONCLUDING REMARKS

The present results indicate that, on the first loading cycle, the traction law is

consistent with the model based on constant 'r. The value of *t inferred from the

measurements (-60 MPa) is comparable to values measured in other fiber-reinforced

composites11, 14, but somewhat lower than values measured on the same composite

using fiber pushout tests (-90 - 100 MPa) 12 . This disparity may be attributed to the

Poisson effect. During the pullout tests, the fibers contract laterally, reducing the radial

thermal residual stress. Conversely, during pushout, the fibers expand, increasing the

radial stress and the corresponding sliding stress.

Substantial changes occur in the traction law during subsequent cyclic loading.

The changes in the shape of the loops (manifested in the reduction in traction law

exponent) and the progressive increase in permanent displacement are consistent with

the noticn that the interface sliding stress degrades non-uniformly along its length, with

the degradation being greatest near the matrix crack plane. SEM examinations of the

7F.MS25(Jwis 15. 1993Y3:07 PMFmf
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fiber coatings following testing have confirmed such non-uniformity. These trends

have been qualitatively demonstrated using a simple interface degradation law wherein

the sliding stress is assumed to vary linearly along the fiber length. However, a model

of interface degradation incorporating explicitly the effects of the cyclic sliding

amplitude is required.

The process of interface degradation is expected to play a dual role in the fatigue

cracking behavior in this type of composite. First, the reduction in sliding stress will

reduce the shielding associated with bridging fibers, resulting in an acceleration in the

rate of matrix cracking. Second, this reduction will reduce the stress borne by the fibers

in the crack wake, reducing the propensity for fiber fracture. The onset of fiber fracture

during cyclic loading has been shown to lead to dramatic increases in the rate of matrix

cracking 12 . The net effect of these two opposing trends on fatigue life is not yet dear.
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Table 1 Properties of the Ti/SiC Composite

Matrix Modulus, Em 115 GPa

Fiber Modulus, Ef 360 GPa

Longitudinal Composite Modulus, 200 GPa
E =Em (1-4 + Eff

Fiber Diameter, D 140 gnm
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APPENDIX

The shear lag analysis presented in Refs. 6-8 is based on the assumption that all

of the fibers in the crack wake are intact. In the present experiments, a significant

fraction of the fibers are cut during preparation of the specimens. Below is a

modification to the shear lag analysis that accounts for this effect. The analysis

presented here assumes that T is constant and that the load is increased monotonically,

though it can be readily applied to cyclic loading as well as other traction laws.

Consideration of mechanical equilibrium requires that the fiber stress in the

matrix crack plane be

fof = V- E /f (-T1) (Al)

where 11 is the number fraction of broken fibers. Consequently, the fiber strain at this

point is

q = Of I Ef = E- E / f Ef (-Tl) (A2)

The additional remote displacement due to sliding is obtained by integrating the fiber

strain distribution, whereupon

Sp = I (4f - E (A3)

and the slip length, 1, is

I = £* DEf(T1 + a) / 4T(1-11) (A4)
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Combining Eqns. (AI) through (A4) gives Eqn. (5) in the text. For unloading and

reloading, the expressions in Eqns. (3) and (4) are modified in a similar way, such that

the term a in the numerator of these equations is replaced by (71 + a). This modification

lead to Eqns. (6) and (7).
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Fig. 1 Schematic diagram of the interfacial fatigue specimen.

Fig. 2 Cyclic traction law predicted from the constant T model.

Fig. 3 Plot showing the variation in the ratio of displacement / load against load for
one of the fatigue tests. The solid line was obtained by linear regression
analysis.

Fig. 4 Changes in the cyclic traction law with number of loading cycles, N.

Fig. 5 An enlarged view of the hysteresis loops on the first two loading cycles. The
solid line represents the predictions of the constant T model, using a value
S= 60 MPa.

Fig. 6 Variation in the permanent (zero-load) displacement with number of loading
cycles. Also shown are predictions of the models. (The normalization of the
ordinate is selected to give a value of unity for the constant T model.)

Fig. 7 Results of Fig. 3 replotted in logarithmic coordinates. The ordinate is the
change in pullout displacement, ASP, such that the translation in the loops with
loading cycles is removed.

Fig. 8 Variation in the bridging law exponent determined from the slope of the
curves in Fig. 6, with number of loading cycles. Also shown are predictions of
the models.

Fig. 9 SEM micrograph of the coating on a pristene fiber.

Fig. 10 SEM micrographs of the fiber coating on a fatigued fiber (x is the distance from

the notch plane).
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ABSTRACT

Fatigue crack growth in fiber-reinforced metal-matrix composites is modeled

based on a crack tip shielding analysis. The fiber/matrix interface is assumed to be

weak, allowing interfacial debonding and sliding to occur readily during matrix

cracking. The presence of intact fibers in the wake of the matrix crack shields the crack

tip from the applied stresses and reduces the stress intensity factors and the matrix

crack growth rate. Two regimes of fatigue cracking have been simulated. The first is

the case where the applied load is low, so that all the fibers between the original notch

tip and the current crack tip remain intact. The crack growth rate decreases markedly

with crack extension, and approaches a "steady-state". The second regime occurs if the

fibers fail when the stress on them reaches a unique fiber strength. The fiber breakage

reduces the shielding contribution, resulting in a significant acceleration in the crack

growth rate. It is suggested that a criterion based on the onset of fiber failure may be

used for a conservative lifetime prediction. The results of the calculations have been

summarized in calibrated functions which represent the crack tip stress intensity factor

and the applied load for fiber failure.
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NOMENCLATURE

a matrix crack half length

ao initial notch half length

D fiber diameter

E Young's modulus of composites: f Ef + (1-f)Em

R. effective composite Young's modulus considering material orthotropy

Ef Young's modulus of fiber

Em Young's modulus of matrix

f volume fractLon of fibers

F(a/w) shape function for stress intensity factor: 4sec (lca/2w)

I unbridged segment half length

n Paris law exponent

N number of load cycles

S fiber strength

w finite panel width

(X non-dimensional bridge length: (a-t)/a

Paris law coefficient

S total crack opening displacement

8F crack opening displacement induced by bridging fibers

SA crack opening displacement caused by applied stress

AK ratio of AKtip to AY

AKA range in applied mode I stress intensity factor

AKtip range in mode I crack tip stress intensity factor

AS change in crack opening

Am non-dimensional measure of the stress amplitude/crack length: 2XF-AO/a

A•o non-dimensional measure of the stress amplitude/notch length: 2XPAG/ao

Aa cyclic applied stress amplitude
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Aas cyclic bridging stress amplitude

bridging law coefficient: D(1-f)2(Em)2/4f2 Ef E2 T

V Poisson's ratio

a applied stress

Onmax maximum applied stress

as bridging stress due to fibers

non-dimensional measure of the maximum applied stress: 4UX max,/t

"interface sliding stress

non-dimensional measure of fiber strength: 4WE1 f S/I
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INTRODUCTION

Fatigue crack growth in metal matrix composites reinforced with brittle fibers

has been studied extensively (Naik and Johnson, [1]; Kantzos, Telesman and Ghosn, [2]:

Sensmeier and Wright, [3]; McMeeking and Evans, [41; Walls, Bao and Zok, [5, 6]).

Experimental results (Sensmeier and Wright, [3]; Walls, Bao and Zok, [5, 6]) indicate the

following fatigue cracking behavior. Under tensile cyclic loading of the composite in

the fiber direction, the matrix undergoes mode I fatigue cracking normal to the fibers,

while the fibers in the crack wake remain intact due to the frictional sliding at the

fiber/matrix interface. These fibers bridge the crack and shield the crack tip from the

applied stress. Consequently, a transient occurs in which the crack growth rate da/dN

diminishes upon crack extension, and a steady-state regime follows in which da/dN is

small. When the applied stress level is high, the stress in the fiber at the original notch

tip may reach the fiber strength and then the fibers begin to fail. The crack growth

thereafter accelerates again, leading to the final rupture. These features of fatigue

cracking in fiber reinforced metal-matrix composites are shown in Fig. 1 in which a

typical fatigue crack growth curve of a Ti matrix composite with SiC fibers is replotted

from the work of Walls, Bao and Zok [5]. The composite tested contains 35% of

unidirectional fibers, with fiber diameter D = 140pm (Jansson, Deve and Evans, [7]).

In this paper, the micromechanical model of McMeeking and Evans [4] is

extended to predict the above fatigue crack growth behavior. The materials of

particular interest for this model include Ti/SiC composites that have "weak" interfaces.

Attention here is focused on mode I cracking that initiates from a sharp notch. Matrix

fatigue cracking in metal matrix composites in the absence of a notch has been modeled

recently by McMeeking and Evans [4]. The analysis of fiber stresses, interface sliding

and crack bridging in their model is analogous to that conducted earlier for

fiber-reinforced ceramics subject to monotonic tensile loading (Marshall, Cox and
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Evans, [8]; Marshall and Cox, [91; McCartney, [101). Following the analysis of Marshall

and Oliver [11] and Cox [12], McMeeking and Evans [4] considered the effect of reversal

of the fiber interface sliding direction during cyclic loading. They found that the results

for bridging during monotonic loading can be scaled simply to represent the effect of

bridging during fatigue loading. The model is further developed here to include the

effects of an initial sharp notch which is unbridged by fibers at the outset. This analysis

permits the inclusion of the effect of breaking fibers which can increase the size of the

unbridged segment. The influence of finite specimen width and, of greater importance,

the role of fiber failure in fatigue cracking behavior is accounted for too. Fatigue crack

growth curves, both with and without fiber fracture, are predicted for given values of

the relevant parameters.

Calibrated functions have been devised to represent the results. One set of

functions provides values for the crack tip stress intensity factor amplitude as a function

of material parameters, the applied load, the matrix crack length and the size of the

unbridged segment of the crack. Another set of functions gives the applied load

sufficient to fail a fiber in terms of the fiber strength, material parameters, the matrix

crack length and the extent of the unbridged segment.

The results in this paper are based on individual models (for bridging fibers, for

their effect on crack tip stress intensities, for the incidence of fiber failure, for cyclic

loading of bridging fibers and for matrix fatigue) which, in one way or another, have

been developed and used previously. In addition, the basic method of analysis

employed to solve integral equations in this paper has been used widely. However, the

previous applications mostly have concerned monotonic loading of brittle matrix

composites and only the work of McMeeking and Evans [4], Cox and Marshall [13] and

Cox and Lo [14, 151 addressed the question of cyclic loading. Furthermore, the earlier

modelling of fatigue in fiber-reinforced metals has not fully explored the phenomena

when there are notches and failing fibers. In this paper, all of the individual model
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elements are brought together in a treatment of matrix fatigue crack growth in

conjunction with notches and fiber failure. The models have been shown to agree well

with the available data for matrix fatigue growth with and without fiber failure (Walls

et al., [6]). Therefore, the comprehensive model in this paper is suitable for studying in

some detail the phenomena associated with this important damage mechanism in

fiber-reinforced metals to augment the insights available from experimental data. Such

features that can be studied are: the deceleration of the crack growth rate as the matrix

crack grows; the relative influence of notches; the interplay play between applied load

amplitude and the matrix crack length in controlling the crack growth rate; and the

relatively sudden and dramatic transition from survival of fibers to failure of fibers

leading to rapid crack growth as the load is increased or a critical matrix crack length is

reached and exceeded. It is true that these features can be deduced directly or indirectly

from results available in several different papers in the literature. However, we believe

that it is important to bring the results and phenomena together and present them in a

focused manner for the matrix fatigue crack growth problem.

The model presented in this paper is based on certain assumptions. Important

ones are: the interface shear strength T is uniform and does not degrade during fiber

load cycling; the strength of the fibers is deterministic and not statistical; the matrix

fatigue crack growth obeys the Paris law for fatigue crack growth in the monolithic

matrix; the entire component or specimen, except for the fiber bridging, can be analyzed

elastically which implies that crack tip plastic zones are small. Some assumptions are

known to be inexact. For example, measurements have shown that the interface shear

strength T for a fatigued specimen with a matrix crack is lower than that for a pristir.e

material (Warren, Mackin and Evans, [16]). This is known to influence the crack tip

opening shape since the fiber constraint near the matrix crack tip on freshly exposed

surfaces is relatively stronger than the fiber constraint far from the matrix crack tip on

old and therefore fatigued surfaces (Kantzos et al., [2]). In some cases this influences the
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fatigue crack growth rate. However, there has been significant success when the model

with the fixed value for T is compared with the data for matrix fatigue crack growth.

There are some discrepancies in the transient behavior which can be attributed to the

degradation of r. However, even those discrepancies can be rationalized in terms of

interpolation among models with a fixed T (Walls et al., [6]).

The value of the interface shear strength 'r which is used to compare the models

to the experiments is usually chosen empirically to obtain one match to the steady state

crack growth rate usually observed after some crack growth in large specimens with

short cracks under modest load amplitudes. Furthermore, the fiber strength S is usually

chosen empirically so that onset of fiber failure in the model agrees in one case with the

initiation of fiber failure in an experiment. There is therefore an element of fitting in the

model presented in this paper. However, it should be emphasized that with this

minimal degree of fitting, the model is capable of capturing the rich interplay among

phenomena as controlled by load amplitude, peak load level, matrix crack length and

initial notch length. Furthermore, the pragmatic app: oach to choosing values for T and

S is made necessary by the fact that in situ properties are needed. In contrast to other

empirical material constants such as fiber and matrix elastic moduli which are relatively

unchanged in situ, it is well known that the interface shear strength Tr and fiber strength

S are sensitive to processing, treatment, handling and to fatigue cycling itself (Walls et

al., [6]).

CRACK-TIP SHIELDING ANALYSIS

Consider the crack configuration depicted in Fig. 2. The center section of length I

is unbridged. The unbridged center section can represent the original notch of length

2ao or a current unbridged segment after fiber failure. The bridged sections represent

the growing, mode I, plane strain matrix fatigue crack in the infinite body. With the
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possibility that fibers can break, the bridge segment can become unbridged. The current

unbridged segment will then have a length 21 > 2ao. Both the fibers and the matrix are

assumed to be linear elastic, with Young's modulus Ef and Em respectively. Plasticity of

the matrix is neglected in this study. The continuous reinforcing fibers are aligned

normal to the plane of the matrix crack. The fracture energy of the fiber/matrix

interface is assumed to be small, such that debonding and sliding occur readily during

matrix cracking. The sliding behavior of the interface is characterized by a constant

frictional shear stress "r, such that the bridging stress as is related to the crack opening

displacement 8 during monotonic opening by (Aveston, Cooper and Kelly, [17];

McCartney, [101; Hutchinson and Jensen, [181)

S = X. (1)

where X is a material parameter given by

X = D (1 _ f)2 E2/4 E2 Ef f2t". (2)

The bridging stress as is the force per unit surface area applied by the fibers to the crack

surface and the opening 8 is the additional displacement of the material on one side of

the crack compared to the .r due to the presence of the crack and is measured on a

gauge length larger than c cerface slip zones on the fibers at the crack. In eq. (2), D

is the fiber diameter, f the fiber volume fraction and E the composite Young's modulus,

E = f Ef + (1-f) Em. Upon cyclic loading, the change in crack opening displacement AB

after the first peak opening is related to the change in bridging stress Aas in a similar

fashion (McMeeking and Evans, [4])

A = 1±X (Aas)2  (3)

2
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"where the plus (+) and minus (-) signs correspond to the loading and unloading

portions of the cycle, respectively.

The bridging law and the theory of elasticity and fracture mechanics can be used

to solve the problem depicted in Fig. 2. Pertinent results are the distribution of fiber

stresses within the bridged zone and the crack tip stress intensity factor. Such solutions

have been obtained for both infinite and finite geometries previously by many workers

(Marshall et al., [8]; Marshall and Cox, [9]; McCartney, [101; Cox, [12]; Cox and Lo, [14]).

A summary of the analytical method is provided in the Appendix. Values for the

bridging stress amplitude have been computed for the applied load range 0 < Al: 20

where the dimensionless parameter Al is such that

Al = 2XREAa/a (4)

with E an effective elastic modulus for crack problems which takes the orthotropy of the

material into account (see Appendix). A representative result for the bridging stress is

shown in Fig. 3 where it is shown in dimensionless form as a function of position on the

matrix crack. Each curve represents a result for a case with a different unbridged

segment.

Two features in Fig. 3 are noteworthy. The peak stress in the bridging zone

always occurs at the edge of the unbridged segment. This implies that if fiber failure

occurs at a unique deterministic strength, it will always start at the original notch tip. In

addition, when the crack length a becomes very large, for low values of AO almost all

the applied stress is transferred through the intact fibers (i.e., Ac5s - AC), as indicated by

the I/a = 0 curve. The bridging stress is then rather uniformly distributed except in the

crack tip region where Aas falls well below Aa. At higher values of Aa, the fiber
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stresses Aas are nonuniform even for long cracks and fall somewhat below AO,

indicating that the shielding effect in that case is less effective.

The stress intensity factor range at the crack tip AKtip is normalized by the stress

intensity factor range which would occur in the absence of the bridging fibers. For an

infinite body, this would be

AKA = Aa r (5)

The resulting ratio is

AKtip
Aic =-

AKA. (6)

Numerical results for Aic for the problem shown in Fig. 2 are plotted in Fig. 4

against the non-dimensional bridge length (a - 1)/a for AY = 1, 2,4,8, 12 and 20. For a

small bridge, AKtip is almost the same as AKA, since the shielding effect is small. The

stress intensity at the crack tip is reduced significantly as the crack length a is increased

beyond the bridged segment to produce a large bridge. These general trends are shown

clearly in Fig. 4.

For the purpose of investigating when a fiber will fail, it is of interest to

determine the largest stress in the fibers in a given state of matrix crack length,

unbridged segment and applied stress. The maximum fiber stress, which always occur

in the fiber adjacent to the unbridged segment, is plotted in Fig. 5a against the

normalized bridge length (a-W)/a. These calculations were carried out with the bridging

law in eq. (1) and represent the stress in the fiber at maximum applied load. Results are

presented in Fig. 5a for several values of the maximum applied load amax. The points

in Fig. 5a were obtained by numerical calculation. The full lines were obtained by
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fitting functions to the numerical results which will be discussed below. The results in

Fig. 5a can be replotted to give the length (a-1) of the bridge which will have a

maximum fiber stress exactly equal to S as a function of the maximum applied stress

amax. This is shown in Fig. 5b. Since the unbridged segment I will grow as fibers fail,

the value of 11 (defined in (10b) below) will increase when fibers break. However, in the

initial configuration with I = ao, the curves can be used to predict when the first fiber

will fail. At the beginning of fatigue crack growth, the bridge length a-I is zero and gets

bigger as fatigue cracking proceeds. Therefore, at a given maximum load, the state of

the specimen starts at the bottom of the diagram and moves upwards at constant I

(defined in (10c) below) since I is fixed at ao. This will proceed until the curve

representing the fiber strength is reached at which point the first fiber will fail. Thus,

the diagram predicts directly the amount of fatigue crack growth which can occur

before fiber failure will occur. Note that if the fiber strength is high enough or the

maximum applied stress is low enough, fatigue crack growth will proceed without

fibers ever failing.

The numerical results for the maximum fiber stress just discussed can be

augmented with an exact result due to Suo, Ho and Gong [19] for the situation where

the maximum applied stress is low and the matrix crack is very long compared to the

unbridged segment. In this situation, the unbridged segment will behave like an

isolated crack since the stress transmitted through the bridge almost everywhere will be

equal to the applied stress. Only near the tip of the matrix crack and near the edge of

the unbridged segment will the bridge stress differ from the applied stress. However,

the tip of the matrix crack is too far away from the unbridged segment to have any

influence. Thus, the unbridged segment will behave like a finite crack in a uniform

stress field. Furthermore, the smallness of the applied stress will ensure that the region

of nonuniform bridge stress will be effectively small and the unbridged segment will

behave as a crack with small scale yielding. Thus, the value of the J-integral (Rice, [20])
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for the tip of the unbridged segment is just that for a finite elastic crack in a uniform

tensile stress. Denoting the value of the J-integral to be J, we thus have

E (7)

when the maximum stress is being applied. An elementary result (Rice, [201) gives the

J-integral to be the energy per unit area absorbed by the bridging process and thus

J = ro(8 ) d8 = 2 X (fS)3
3 (8)

where So is the crack opening displacement when as = f S. Thus, eq. (7) & (8) can be

combined to give

1

2ia e 3
2Xs (9)

or = (67 j (10a)

D(1-f)2 E2 ES
where fl 2 E f (10b)E2 Ef fe

and 1D(1- f)2 E2 r amax (10c)

Ea2 Ef f2 / "

As noted above, this result is valid for small I and large a/l. The latter means that

(a-t)/a = a in Fig. 5a is close to unity. The result for I = 0.5 in Fig. 5a agrees closely

with eq. (10a) but for I = 1 the agreement is merely good. Thus, we conclude that the
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asymptotic limit in eq. (10a) can be used when 1 < 0.5 and inspection of Fig. 5a

suggests that it will be applicable for I/a < 0.5.

FINITE GEOMETRY

The crack tip shielding analysis performed in the previous section is based on a

model geometry of a center crack in an infinite body. Clearly, fatigue tests on

center-notched tensile specimens are conducted with finite widths. To justify the

relevance of the model just developed for finite widths, finite element calculations have

been carried out for such specimens using the ABAQUS code (Hibbitt et al., [211). The

specimen length 2h is much larger than the specimen width w (h/w = 10) and the

non-dimensional original notch size, ao/w is taken to be 0.2 for these calculations, as

shown schematically inset in Fig. 6.

To simulate the intact fibers that bridge the matrix crack, non-linear springs are

used, with a spring law identical to eq. (1). Crack tip stress intensity factors AKtip are

obtained through the J-integral, and normalized by the applied stress intensity, AKA

AKA = A 47a F (a/w) (lla)

where F (a/w) is given in Tada et al., [221 to be approximately

F(a/w) = FseCw. (1 1b)

Plotted in Fig. 6 as the solid lines are finite element results for the normalized

crack tip stress intensity amplitude AKtip/AKA against the normalized crack extension

(a - ao)/a for A~o = 1 and A1 0 = 2 where A1 0 is the value of Al when a = ao. The
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corresponding results for the infinite body (w --- oo) are shown as the dashed lines.

Inspection of these results indicates that for (a-ao)/a < 0.6, the values of AKtip/AKA for

finite width specimen are essentially the same as those given by the infinite body

solution. Consequently for (a-ao)/a < 0.6, the results in Fig. 4 can be used for the finite

strip as long as AKA is computed according to eq. (11). These findings imply that in

general as long as a/w < 0.5, the results in Fig. 4 can be used to determine the stress

intensity factor in the finite strip.

Following the argument leading to eq. (9), we infer that the maximum stress in

the fiber adjacent to the unbridged segment is such that

1

fS 3 F 2 ( .e 2 X max (12a)

or l= (61c) [F(/w)] (12b)

when Gmax is small and the matrix crack is very large compared to the unbridged

segment. This result is valid for any value of t/w as long as the applied stress is

sufficiently low so that small scale "yielding" prevails in the bridge next to the

unbridged segment (Suo et al., [19]).

CALIBRATED FUNCTIONS

It is convenient to approximate the numerical results in Fig. 4 by a set of

functions. These functions can then be used to compute results without recourse to the

numerical methods used to generate the curves in the first place. Calibration functions

of this type were pioneered by Cox and Lo [15] including those for finite geometries

with center notches as in this paper and for edge notches. The functions suggested here
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serve the same purpose as those of Cox and Lo [151 and are presented as possible

alternatives. We state the following expression for Aic = AKtip/AKA:

AK (AM, W) = exp {-sina [A (Al) + B (AM) a + C (Al) a 2]/ca'/ 4)

where a = (a -)/a (13)

A (A) = -0.049 + 3.0/<• - 0.027 / AYL

B (AL) = -0.399 + 2.504 / 4-- - 3.207 I AY + 0.379 / AL 3 / 2

C (AL) = 0.439 - 1.784 / 4 + 1.374 / Al - 0.04 / Ay 3/ 2

This approximation is accurate to within a few percent of the numerical results depicted

in Fig. 4 for the range 0.1 < A 5 < 12. It is similarly close to the function devised by Cox

and Lo [15] for the case of the finite crack in tension. In addition, it should be noted that

the expression in eq. (13) is valid for the finite strip w-ith AKA given by eq. (11) as long

as a/w < 035.

In a similar manner, a function can be fitted to the peak fiber stresses shown in

Fig. 5. This function finds its utility in predictions of fiber failure. The function is

= 4(L exp[ F(1X~n~ (14a)

where a = (a- t)/a as before,

0(L) = L2+(g•)
(14b)

(Y.) 13.1 - 2.3X + 0.2L 2  (14c)
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m (Z) = 14.037 - 15.327 Y. + 7.237 Y-2

- 1.5628 1' + 0.1274 14 (14d)

and Tj and I are given by (10b) and (10c) respectively. When a = 1, the form given in

eq. (14a) represents the relationship for an infinite body split by a bridged matrix crack

with a center unbridged notch. The form given in eq. (14b) has been deduced from an

expression of Cui and Budiansky [231 and is asymptotically exact both for small and

large 1. Cui and Budiansky [23] have shown that this expression compares well with

their numerical results for I ranging from 0.4 to extremely large values. The function in

eq. (14a) has been plotted and compared with the numerical results in Fig. 5a. It can be

seen that the agreement is good. No comparison has been made between (14a) and

numerical results for values of a not equal to unity for values of I other than those

shown in Fig. 5a. Thus the accuracy of (14a) outside the range shown in Fig. 5a (apart

from a = 1) is not known.

The form in eq. (14a) is valid for the infinite body only and forms cannot as yet be

given for the finite strip. However, based on the work of Suo et al. [19], in the case of

the finite strip with the matrix crack extending across the entire width so that a = w, the

form

112 = 12/(1 - I/w)2 + [67C F2 (1/w) y212/3 (15)

can be stated with F(U/w) given by (I b). The form in eq. (15) is an interpolation

between results for small and large L, in the manner of Suo et al. [191 but using the

findings of Cui and Budiansky [23] to give accuracy for small 1/w. For cases where the

matrix extends over only a fraction of the width of the finite strip, it is possible that

eq. (14a) can be used with 0 (1) given by the right hand side of eq. (15), (1-0) replaced
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by I (w-a)/a(w-t) but•--retained as it is. The resulting behavior takes Tj from zero in

the absence of bridging to the known estimate for Tj when the matrix crack extends over

the entire width of the finite strip. However, no o,.tempt has been made to check

whether this assertion is reasonable.

MATRIX FATIGUE CRACKING

The governing equation for matrix fatigue crack growth in fiber reinforced

composite is assumed to be simply the Paris law (McMeeking and Evans, [4])

da/dN = 0 (AKtip/Em)n (16)

where 13 and n are material parameters for the matrix material. An underlying

assumption here is that the fatigue crack growth rate in the matrix is governed by the

crack tip stress intensity amplitude, AKtip, in accord with the Paris law for the matrix

alloy alone. Therefore, the intact fibers contribute to the composite fatigue behavior

only through AKtip. In the calculation of AKtip, the composite is taken to be

homogeneous and orthotropic, and the crack front is assumed to be straight. In

practice, however, only the matrix is fatigue cracked when fibers remain intact, and the

crack front adopts a rather complex shape. As a consequence, the local stress intensity

factor amplitude will not generally be equal to the calculated AKtip values established

through idealized bridging calculations. One approximate model for the effect is that

the average stress intensity factor amplitude at the matrix crack front is equal to

AKtip/ (1-0) F/Em (Budiansky Amazigo and Evans, [24]), accounting for the reduced

area of material being cracked as well as the elastic inhomogeneity. To permit

incorporation of this effect into the model, the modulus Ln has been used in eq. (16)

instead of Em. Thus, the Budiansky et al., [241 model would be accounted for by use of
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S= ' (1-f) E/Em. However, in this paper, Em will simply be assumed to be Em and

any effect of this assumption will be compensated for in the empirical choice of a value

for T.

The fatigue crack growth law of eq. (16) was integrated with AKtip evaluated

from the expression in eq. (13) with AKA = AcT '-\ -as for the infinite body. The

calculation was carried out for exponents n 2 and 4 and for 4 values of A-o in each

case where AZo = Al a/ao. Note that A1 0 remains constant if Aa is held fixed during

fatigue. The results for non-failing fibers are shown in Fig. 7a and 7b. The plots show

that for the load amplitudes assumed, the crack does not have to extend very far

compared to the original notch length for the rate of crack extension to diminish

dramatically.

The theoretical predictions of fatigue crack growth in Fig. 7 have two of the

features exhibited in the experimental results, i.e., a transient region in which da/dN

diminishes upon crack growth, and a seemingly steady-state region in which da/dN

remains almost constant. The non-dimensional parameter A1 0 that governs the

prediction is a combination of the original notch size, material properties and the fixed

applied load amplitudes. Fatigue crack growth curves for situations with a varying

load amplitude AoY have not been presented because there are too many possibilities.

However, they can be pieced together in a rather complicated manner from the curves

for constant A1 0 . The appropriate procedure can be deduced from integration of

eq. (16).

It has been observed experimentally that at high values of applied stress

amplitude Aa, the crack growth rate decreases first due to the fiber shielding, reaches a

minimum value and then increases with further crack extension, as exemplified by the

crack growth curve shown in Fig. 1 (Walls et al., [5, 61). The acceleration in crack

growth rate has been attributed to the occurrence of fiber failure, as suggested by the
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direct observations of fiber bridging and fiber fracture along the length of the matrix

crack (Walls et al., [5, 61).

In practice, there is a statistical characteristic to the fiber failure process.

However, to incorporate the effects of fiber breaking into the fatigue crack growth

model just developed, a deterministic approach is adopted. The fibers are assumed to

have a unique strength S, such that they fail in the plane of the matrix crack when the

stress on them there reaches S. Both the bridging law eq. (3) and the Paris law eq. (16)

remain valid. The frictional pull-out effect of broken fibers on AKtip is neglected since

the deterministic fiber strength implies that fibers break at the matrix crack rather than

inside the material. Once the fibers begin to fail, the unbridged notch length is

continuously adjusted in the calculation to maintain a fiber stress at the unbridged

notch tip equal to the fiber strength. The conditions giving rise to this have been

presented and discussed already in connection with Fig. 5.

Of interest, however, is the relationship between the current unbridged segment

length 21 and the original notch length 2ao for a given fatigue problem. For simplicity,

attention will be confined to cases where ACY is fixed during fatigue. The function in

eq. (14) can be used to predict I vs. ao during fatiguing for given fiber strength. A

particular result is shown in Fig. 8 for crack growth in an infinite body. The dashed line

on the diagonal specifies I = ao and so depicts the relationship prior to first fiber failure.

At the beginning of fatiguing, a = ao so the top right of Fig. 8 is the starting point for the

process. As the fatigue crack grows at first without fiber failure, the state of the

specimen will move down the dashed line on the diagonal towards the bottom as

indicated by the arrow. The state departs from the dashed line when fibers begin to fail.

The point of departure for several ratios of maximum applied stress to volume fraction

reduced fiber strength are marked on Fig. 8. Thereafter, as the fatigue crack grows, the

state of the specimen follows the relevant full line towards the top left of the diagram as
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indicated by the arrow. Each full line in Fig. 8 represents the relationship for the fixed

ratio of Imax/fS noted at the intersection of that full line with the diagonal dashed line.

If the fibers are weak or the maximum applied stress is high, the fibers break

close to the matrix crack tip (ao/a is close to unity) and the bridging zone is always a

small fraction of the crack length (1/a remains close to unity as the crack grows). This

means that fibers will continuously fail close to the matrix crack tip as the matrix crack

grows. In this case there will not be much shielding and the fatigue crack growth rate

will be similar to what would be expected in an unreinforced matrix. If the fibers are

moderately strong or the maximum applied stress is moderately high, the fibers remain

intact at first and a sizable bridging zone can develop. However when the first fiber

fails, say when ao/a = 0.5, subsequent fiber failure occurs fairly rapidly as the crack

grows. The unbridged crack length increases faster than the matrix crack length. In

that case the value of AKtip will increase quite rapidly as the matrix crack grows after

the first fiber fails. That means that the matrix crack growth rate will accelerate

significantly after first fiber failure. When the fibers are strong or the maximum applied

stress is modest, first fiber failure is delayed. However, after it occurs, say when

ao/a = 0.1, many fibers fail essentially simultaneously and the unbridged length

increases very rapidly. This causes A Ktip to jump to a higher value with a

corresponding sudden increase in the crack growth rate. As noted previously, when the

fiber strength is higher than a threshold value, they will never break and the fatigue

crack growth rate will persist at the low level associated with extensively bridged

cracks. The annotation on Fig. 8 makes it clear that the sensitivity to fiber strength is

quite marked, with the different types of behavior outlined in the last few sentences

occurs over a very narrow range of fiber strengths, or equivalently over a very narrow

range of maximum applied stress.

Plotted in Fig. 9 are the fatigue crack growth curves predicted from the Paris law

eq. (18) for infinitely large specimens taking fiber fracture into account. Without fibers
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breaking, the fatigue crack growth curves are the same as those in Fig. 7. In the

presence of fiber fracture three matrix fatigue crack growth curves are presented

corresponding to three different fiber failure strengths. If fibers are relatively weak,

fiber failure occurs early on, and a gradual transition is predicted. For stronger fibers,

however, the transition occurs later but becomes more abrupt as can be seen in Fig. 9.

This sudden increase of crack growth rate is due to the sudden lengthening of the

unbridged zone after first failure of stronger fibers as depicted in Fig. 8. Once the fiber

failure process starts for strong fibers, it tends to continue rapidly until most of the

fibers fail in the bridging zone that has been previously built up. As a consequence the

crack growth rate increases suddenly and is comparable to the fatigue crack growth rate

in the unreinforced matrix. This has been observed in experiments (Walls et al., [5,61).

FIBER FAILURE

The rapid growth of fatigue cracks after fibers have commenced failing, as

depicted in Fig. 9, suggests that an important strategy for design and use of fiber

reinforced metal components will be the avoidance of fiber failure. Once fibers begin to

fail after significant crack growth, they will quickly break along the fatigue crack. In

addition, further crack growth will be accompanied by more fiber failure. As a

consequence, the benefits of fiber reinforcement will be partially lost and if there are

many matrix fatigue cracks, fiber reinforcement may be significantly impaired.

Therefore, it can be suggested that the end of useful life of the composite material can be

considered to be the onset of fiber failure. It should be noted that fracture of the

composite material after fatigue crack growth will depend on a combination of the

matrix toughness and the fiber strength. This has been studied by Cui and Budiansky

[23]. However for high toughness matrices such as titanium alloys, fracture of the

composite material after matrix fatigue and fiber failure will depend primarily on
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matrix toughness. A very approximate estimate for residual composite strength after

fiber failure is therefore KIC/ra where KIC is the fracture toughness of the matrix

alloy. A more exact assessment of residual strength can be carried out using the more

accurate models of Cui and Budiansky [23]. However, an important point is that fiber

failure is a necessary precursor before the residual strength of the composite material

becomes a relevant consideration. Therefore, the life up to fiber failure is an important

determinant and the time between first fiber failure and composite fracture is likely to

be relatively short.

As noted previously, if the maximum applied stress is low enough, fibers will

never fail during matrix fatigue crack growth. It is useful to investigate the

circumstances which will ensure that fibers will remain intact throughout crack growth.

As implemented by Walls et al. [6], this can be done by plotting the ratio of the

maximum applied stress to the fiber strength against the intercepts of the curves in

Fig. 5a with Ot = 1 (where 1/a --* 0). The result, shown in Fig. 10, is a map determining

when fibers will fail and when they do not. The numerical results have been shown for

the infinite body in which case ao/w = 0. Below the line in the diagram, no fiber failure

will occur no matter how much matrix fatigue crack growth occurs. However, if a

component is highly stressed so that it operates above the line in the diagram,

eventually fiber failure will occur during matrix fatigue crack growth. Walls et al. [6]

have found this diagram to be effective in distinguishing the incidence of fiber failure

from nonfailure in experiments.

For comparison with the numerical results, a relationship derived from eq. (15)

has been plotted in Fig. 10. This is

A[(1-ao /W)fS13 Omax 3 F1 -O 2 F 2r 6n ]'1
C ax[(1-a 0 /w)fS W) w Wj (17)
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where 11 is given by eq. (10b) and F2 (ao/w) = sec (IC ao/2w). It can be seen that the

prediction agrees well with the numerical results. Furthermore, the form of eq. (17)

indicates that the map can be generalized to the finite strip without significant

alteration. In view of this, the map in Fig. 10 has been presented in a form allowing for

the notch to width ratio of a finite strip.

The map in Fig. 10 can be adapted to show the extent to which crack growth can

occur in an infinite body prior to fiber failure. If the loading of a very large component

is such that according to Fig. 10 fiber failure will eventually occur, the matrix crack will

reach the length 2af and then fibers will commence failing. The ratio of this length to

the original notch length is shown in Fig. 11 for various levels of loading and original

notch length taking fiber strength and volume fraction into account. For a given notch

length, the contours in Fig. 11 indicate the permissible maximum stress for a given

extension of the matrix crack. For example, the contour marked af/ao = 2 shows the

relationship between maximum applied stress and notch length which will produce

exactly a doubling of the flaw length before fiber failure will begin to occur. Similarly

the contour for af/ao = 20 shows the maximum stress which will exactly cause the

matrix crack to reach 20 times the length of the initial notch before fiber breakage. The

line with af/ao = oo is the boundary between fiber nonfailure and failure from Fig. 10

and for a maximum stress lying on or below this contour, the matrix crack can extend to

infinity without fiber failure. The plots in Fig. 7 can be used to predict how many cycles

of constant load amplitude will occur before the matrix crack reaches the extent at

which fiber failure will commence. Thus, for large components, Figs. 7 and 11 can be

combined to provide a basis for life estimation up to fiber failure for values of AZ 0

ranging from 1 to 8.
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CONCLUDING REMARKS

A model has been presented for matrix fatigue crack growth emanating from a

finite notch. Predictions have been presented for the relationship between the matrix

crack length and the number of load cycles of a given amplitude. In addition, the

matrix crack length when fibers will begin to fail has been identified in terms of fiber

strength, maximum applied stress and initial notch length. These predictions have been

compared to experimental data for fatiguing of titanium/SiC fibrous composites and

the model has been shown to work well (Walls et al., [6]). As mentioned in the

introduction, the comparison between the model and the data has been based on a

number of empirical steps. Over and above the use of empirical values for fiber and

matrix elastic moduli, fiber volume fraction, fiber diameter and monolithic matrix

fatigue crack growth rates, a single value for the interface shear stress T is determined to

ensure that the steady state fatigue crack growth rate in one experiment is accurately

predicted. The transient prior to steady state matrix fatigue crack growth is then

predicted accurately without any further empiricism. Furthermore, it is then found that

when no fiber failure occurs, the model with the same value of T can predict the results

of other experiments carried out at different load amplitudes and with different notch

lengths.

Fiber failure is treated in a similar way. A value of fiber strength S is determined

that will cause the model to accurately predict the onset of fiber breakage in one

experiment. Without further empiricism, the model then accurately predicts the rate of

matrix fatigue crack growth after the initiation of fiber breakage in that experiment. In

addition, without alteration to parametric values, the model accurately predicts the

onset of fiber failure when different initial notch lengths and maximum applied stress

magnitudes are used in the experiments. The value of T used in the comparison of the

model with experimental data is consistent with in situ measurements by push out of
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fibers (Warren et al., [16]) after fatigue cycling of the specimen. In addition, the fiber

strength used in the model is in good agreement with the strength of fibers tested after

being removed from the composite by dissolution of the matrix. This strength is less

than that for pristine fibers and the reduced value is thought to be due to processing of

the composite material.
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APPENDIX

GOVERNING EQUATIONS

The equation governing the stress distribution along a bridged matrix crack

subject to a monotonic applied stress c3max and the bridging law eq. (1) is (McCartney,

(101)

S+ 1 , s(3) H(t,R)dt = (Al)

where

S= 4 X P-.s/a (A2)

and as is the stress transmitted through the matrix crack by the fibers defined as a

traction on the crack area. Thus as is equal to the actual stress in the fibers at the matrix

crack multiplied by the volume fraction of fibers. In addition, ; is given by eq. (2),

1 - Cc = 1/a (A3)

21 is the length of the unbridged segment, 2a is the length of the matrix crack, i = x/a

where x is the distance from the center of the notch,

1 , -T2 + lt
H(t,K) = 1 log 2 2

1- 1t2 (A4)

= 4 anzx/a = 1/a (A5)
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with 1 given by eq. (GOc) and E is an effective elastic modulus taking the material

orthotropy into account.

Consider a plane strain, center crack running in the x-direction in an infinite,

orthotropic body. Results from Sih, Paris and Irwin [25] for cracks in orthotropic bodies

can be used to provide solutions for the point force on a crack surface and therefore for

fully and partially bridged cracks. This justifies the use of P in (Al). For example, when

the coordinates x and y coincide with the principal axes i and 2 of the orthotropic

material, the crack opening displacement BA due to the remote applied tension (5 is (Bao

et al., [26])

1

__-xE-2  J (A6)

provided that

= f EE'2  - V2~) 1
2G 12  

(A2)

Consequently, the effective Young's modulus E is given by

= E'[E/E'](AS)

where
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= E -/(-v1 3 v 31 )

E' = E 2 /l-v 23 v 32 )

Vh2  = (v 12 + V13 V32)/(1-v 13 V31)

V'2 = (V21 +V23 V31)1(1-V 23 V32 ). (A9)

In the cases where p is close to 1, E can be approximated by

2

For more general situations Cui and Budiansky [23] have provided numerical values for

orthotropy factors A which can be used to determine E. The relationship between E

and A is

SAE

1-v 2  (All)

in which v is the Poisson's ratio of fiber and matrix which are assumed to be the same.

The orthotropic modulus E can be used to determine the opening of the crack due to the

applied load and for the effect of fibers on the crack opening (Cui and Budiansky, [231).

For a bridged matrix crack subject to load cycling such that the amplitude of the

applied load is ACF the bridging behavior is given by eq. (3) and the governing is

(Marshall and Cox, [91; McMeeking and Evans, [41)

Al2(Z)/16 + l_ AXs(t) H(t,R)dt = Al-J 2(

where Al is given by eq. (4) and
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A = 2 X R A(s/a (A13)

and Aas is the amplitude of the stress cycle at the matrix crack surface. Note that as

shown by McMeeking and Evans [4] i and AYs obey exactly the same equation so that

results for them can be interchanged.

The equations were solved by standard methods discussed by Marshall and Cox

[9].
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FIGURE CAPTIONS

Fig. 1 A typical fatigue crack growth curve for a Ti/SiC composite. The length Aa of

the matrix fatigue crack beyond the original notch is plotted against N the

number of load cycles. The actual dimensions of the specimen are shown in

the insert.

Fig. 2 Schematic of a center crack in an infinite body under remote tension, with

bridging fibers in the matrix crack wake.

Fig. 3 Distributions of the non-dimensional bridging stress for different unbridged

lengths for Al = 1.

Fig. 4 Non-dimensional stress intensity ranges versus normalized crack extension for
different applied stress amplitudes.

Fig. 5 Plots giving the relationship among the length of the crack, a, the unbridged
segment t, the maximum stress in the fibers S and the maximum applied load

(Ymax.

Fig. 6 Full lines show the normalized stress intensity ranges versus normalized crack

extension for a finite width specimen computed by finite elements. The

dashed lines show the results for an infinite body computed by solution of the

integral equation.

Fig. 7 Predicted fatigue crack growth curves when fibers do not fail. The normalized
crack extension is plotted versus the normalized number of load cycles.

(a) Paris law exponent n = 2; (b) Paris law exponent n = 4.

Fig. 8 Fiber breaking rate related to fiber strength, applied load and matrix crack

growth rate; 21 is the length of the current unbridged segment of the crack,
whereas 2ao is the length of the original unbridged notch.

Fig. 9 Predicted fatigue crack growth curves in the presence of fiber failure for n = 2

and different values of A1 0 .
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Fig. 10 Map for fiber failure and non-failure in a finite strip with a central notch in
which a matrix crack can grow by fatigue.

Fig. 11 Relationship between applied stress, fiber strength and notch length for a

specified extension of the matrix crack before fiber failure will occur.
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ABSTRACT

A theoretical model is developed for thermomechanical fatigue cracking in fiber

reinforced metal matrix composites. Interfacial debonding is assumed to occur readily,

allowing fibers to slide relative to the matrix resisted by a uniform shear stress. The

fibers therefore bridge any matrix crack which develops. The crack bridging traction

law is obtained, including the effect of thermal expansion mismatch between the fiber

and the matrix and a temperature dependence of the frictional shear stress. Any

combination of thermal and mechanical cycling is considered as long as the slip zone

along the fiber increases in length monotonically during each increment of cycling.

However, for clarity, the results are presented in terms of in phase and out of phase

cycling of the thermal and mechanical loads at the same frequency. For each case, the

stress distributions in the bridging zone as well as the stress intensity factors at the

crack tip are computed for relevant regimes of the thermal and mechanical loading

parameters. Predictions are made of the matrix fatigue crack growth under combined

thermal and mechanical loading conditions. It is found that when the thermal

expansion coefficient of the fiber is less than that of the matrix, a significant increase in

the crack growth rate results in out-of-phase thermomechanical fatigue. On the other

hand, there is decreased tendency for fibers to fail in this case. For in-phase

thermomechanical fatigue, the crack growth rate is reduced but the stress in the fiber is

larger than that due to mechanical loading alone, resulting in an increased tendency for

fiber failure. The implications for life prediction for fiber reinforced metal matrix

composites are discussed.
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1. INTRODUCTION

Fiber reinforced metal matrix composites are designed and developed for high

performance aerospace applications, including advanced gas turbine engines and

supersonic airframes. A combination of cyclic thermal and mechanical loading in these

applications may cause thermomechanical fatigue (TMF) cracking in the composite,

perhaps reducing the load carrying capacity, and potentially leading to failure.

Prediction of fatigue crack growth in fiber reinforced metal matrix composites under

thermomechanical loading is therefore of critical importance in the safe design of

composite structures.

In many fiber reinforced metal matrix composites, the fibers are made of ceramic

with a coefficient of thermal expansion (CTE) af lower than that of the metal matrix am.

Thus during cool down, axial tensile stress builds up in the matrix, while parallel

compressive stress results in the fibers; the opposite is true when the composite is

warming up. The thermal stresses and stress amplitudes due to CTE mismatch can be

very high, possibly exceeding the applied mechanical stress and its range. The history

of thermal stress and mechanical stress can be very complex, since both the applied load

and the temperature can vary independently with time. However, for this initial study,

two limiting cases are considered: the temperature change is completely in phase (IP) or

completely out-of-phase (OP) with the mechanical loading, as shown in Fig. 1.

However, certain of the results can be interpreted for arbitrary TMF cycling.

The most effective application of metal matrix fiber composites is for longitudinal

stressing of uniaxially reinforced materials. To preserve good toughness and fatigue

properties, the fiber/matrix interface is relatively weak. Debonding in shear occurs

readily along the interface, allowing the fibers to slide relative to the matrix with drag

provided by friction. Due to these phenomena, fibers remain intact in the tip region of a

matrix crack as depicted in Fig. 2. This permits the fibers to bridge the matrix crack,
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thus reducing the crack tip stress intensity. In the absence of thermal loading, crack

bridging models have been developed (e.g., Marshall, Cox and Evans, 1985; Marshall

and Cox, 1987; McCartney, 1987; Hutchinson and Jensen, 1990) based on the justifiable

assumption that the frictional sliding shear stress T is a constant along the interface.

These models have been used extensively in fiber bridging calculations (Marshall et al.,

1985; Marshall and Cox, 1987; McCartney, 1987; Marshall, 1991; Cox, 1991; Cox and Lo,

1992). Corresponding mechanical fatigue crack growth analyses have been performed

for metal matrix composites by McMeeking and Evans (1990), Cox and Lo (1992) and

Bao and McMeeking (1993). Comparisons between the model predictions and

experimental measurements at room temperature made by Walls, Bao and Zok (1993)

show good agreement.

Without thermal loading, the bridging fibers exert closure forces on the crack

surfaces. This increases the fracture and fatigue resistance of the composite. With

thermal loading, the bridging fibers can prop open the crack. This will occur if the

thermal stresses are large enough and place the fibers in compression. In this case, the

effect of the bridging fibers will be to increase the stress intensity at the crack tip.

Therefore crack bridging can be detrimental to fatigue crack growth rather than helpful.

In addition, the bridge contributions are different in in-phase and in out-of-phase

thermomechanical fatigue.

Some previous work is available for thermomechanical behavior of frictionally

constrained fiber reinforced composites. The matrix-cracking model of Budiansky,

Hutchinson and Evans (1986) included the effect of thermal strain mismatch and

showed that thermal strains can promote matrix cracking. In addition, Cox (1990) has

analyzed extensively the behavior of a fiber near a free surface due to cyclic thermal

strains. However, no analysis has been carried out for bridging fibers in a finite matrix

crack during thermomechanical load cycling.
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In this paper, matrix fatigue crack growth in fiber reinforced metal matrix

composites under combined thermal and mechanical cyclic loading is analyzed and

quantified. A crack bridging model is developed first to include the effect of thermal

stress. A bridging model is then used to calculate the stress distribution in the bridging

zone and the crack tip stress intensity range for both fully bridged and partially bridged

cracks. The effect of thermal load on matrix fatigue crack growth and composite fatigue

life until fiber failure are predicted using nondimensional loading parameters. Different

roles of fiber bridging in in-phase 7IMF and out-of-phase TMF are revealed. Finally, the

implications of the present work for life prediction for metal matrix composites under

thermomechanical loading conditions are discussed.

2. CRACK BRIDGING ANALYSIS

2.1 The Crack Bridging Law

Consider a single mode I crack bridged by intact fibers as shown schematically in

Fig. 2. The behavior of intact fibers in the bridging zone is represented by a cylindrical

model consisting of a single fiber embedded in a matrix cylinder, as shown in Fig. 3.

Shear lag analysis following Budiansky et al. (1986), McCartney (1987) and Cox (1990)

shows (Appendix A) that under monotonic thermal and mechanical loadings, the crack

opening displacement 8 is related to the bridging stress t by

8 = X [t + fEf(af- (XnT]2  (1)

where T is the temperature defined with T = 0 in the stress free state, and X is a material

parameter given by

4LMS32(Apj9 21. 1994)3.27 PMKnd



6

D_-f)2 E2

4f 2 E 2 Ef - (2)

where D is the fiber diameter, f is the volume fraction of fibers, Em is Young's modulus

for the matrix, Ef is the Young's modulus for the fiber, E is the rule of mixtures axial

modulus for the composite (see Appendix A) and T is the shear stress at the sliding

interface at temperature T. It should be x.oted that in certain circumstances the crack

will tend to close rather than open during monotonic loading. For example, if T is

negative and Of is greater than am, the crack will tend to close when t = 0. This will

also be true if t is positive but small. It will be assumed that the crack can remain open

and traction free on the matrix surface at all times so that matrix closure effects will not

be taken into account. This will generally be true for the common situation in which

am > Caf and T is negative. Without thermal loading, the crack bridging law (2)

becomes 8 = X t2 which has been used in previous fatigue studies (e.g., Bao and

McMeeking, 1993).

Following McMeeking and Evans (1990), the crack bridging law under cyclic

loading conditions is similar to that in (1) with

A8 = ±+2X[At + fEf(af - am)AT]2  (3)

where AB is the change in crack opening displacement, At is the change in bridging

stress, AT is the temperature change as depicted in Fig. 1. The sign preceding X should

be chosen according to whether At + fEf (af - am) AT is positive or negative. The

positive sign is used when this term is positive and the negative sign is used when the

term is negative (see Appendix A). The parameter X is that given in eq. (2) except that r

is replaced by [( (T1 ) + -T (T2)]/2 where Ti and T2 are the temperatures at the extremes
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of the cyclic range; i.e. the relevant interface shear stress is the average of the interface

shear stresses at the extremes of the cycle. The temperature dependence of T can be due

to a temperature influenced change in material properties or due to the change of the

thermal residual compression on the fiber-matrix interface which will affect friction.

The expression in (3) is valid as long as the current slipping zone has increased

monotonically in length from the beginning of the increment as given by eq. (A8) &

(AWO) in Appendix A. Thus, separate increments or half cycles must be defined to

account for each stage in which the slip direction reverses, which means every time

At + f Ef (af - axm) AT changes sign. On this basis, arbitrary TMF can be accounted for.

For example, if the temperature is rising slowly while the mechanical stress is cycled

rapidly, each mechanical stress change would be counted as a half cycle if the

magnitude of At is sufficiently large to change the sign of At + f Ef ((Xf - Oam) AT even

though AT is the same for each mechanical stress half cycle. On the other hand, if

At + f Ef (xf - arm) AT has the same sign during each mechanical stress half cycle, the

TMF half cycle would be the single increment lasting until the temperature rise is

completed. Arbitrary TMF can therefore be studied by repeated application of eq. (3)

with each half cycle accordingly identified each time At + f Ef (af - cxm) AT changes

sign.

2.2 The Bridging Stress Distribution

There are two key quantities pertaining to the thermomechanical fatigue

behavior of fiber reinforced metal matrix composites. One is the stress intensity

amplitude at the crack tip which governs the matrix cracking and the other is the

maximum stress in the bridging fibers which dictates fiber fracture. Both can be

obtained from the stress profile in the bridging zone. Typically, the fatigue specimens

for matrix cracking fatigue tests are notched panels with finite widths. The calculation

of bridging stress distribution in such specimens can be carried out using finite
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elements (e.g., Bao and McMeeking, 1993) or by solving integral equations (Cox and Lo,

1992). To gain some insight into the role of crack bridging in thermomechanical fatigue,

attention in this paper is focused on a mode I, plane strain crack in a large body, as

shown schematically in Fig. 2 and the analysis of finite bodies will be deferred to future

work. Specifically, a linear elastic composite infinite body contains a center crack of

length 2a and is subjected to remote cyclic loading Aa. The unbridged center section

has the length 2ao, while the sections of length a - ao at both ends of the crack represent

the segment bridged by intact fibers. Clearly a fully bridged crack is the special case

ao = 0. A partially bridged crack can be created by fiber failure or by the initial presence

of a notch. Thus 2ao can be the initial notch size but it can also be the current unbridged

length due to fiber failure.

Under cyclic loading conditions, the crack opening displacement change AS in

the bridging zone is related to the change in bridging stress At by the crack bridging

traction law eq. (3). The elastic analysis of the body follows a standard approach as

used by Marshall et al., (1985) and McCartney (1987). AS is related to the amplitude of

the applied stress Aa and the amplitude of the bridging stress At by

AS = ASA + ASB (4)

where

ABA = !A(;aa - x2F (5)

is the crack opening change induced by the applied stress amplitude AG and

-4 fa

ASB = ato At(Q)H(4,x,a)d(
E2o (6)
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is the contribution to A8 due to the bridging fibers. In eq. (5) & (6), R is the effective

Young's modulus considering material orthotropy (Bao and McMeeking, 1993) and x is

the position in the bridging zone measured from the center of the notch (Fig. 2). The

Green's function H in eq. (6) is given by

2 2
H(4,x,a) -log 2 2

I Pa' -x - ja '(7)

Substitution of eqs. (3), (5) & (6) into eq. (4) and use of suitable normalizations

shows that, the governing equation for At can be expressed as

±[1 ; (R) + A01/ 16 + J/ A b(4)H(t,R,1)d4 = AM V-(8)

where R = x/a,

D(1-f)2 E2EAt D(1-f)2 E 2 EAa
Al = M l -- m= 2f 2 E 2 Ef ra ' 2f 2 E 2 Efta (9)

are the nondimensional bridging stress amplitude and nondimensional applied stress

amplitude, respectively, and

D(1-f)2 2 E(, f -am) AT
2fE2 Ta (10)

is the nondimensional thermal stress amplitude. The positive sign preceding the

bracketed term should be used if the term in brackets is positive whereas the negative

sign should be used if the term in brackets is negative.
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2.3 Crack Tip Stress Intensity and Maximum Bridging Stress

The crack tip stress intensity amplitude, AKtip is given by

AKtip = AKA + AKB (11)

where AKA = AO;i is due to the applied stress amplitude and

g ' "At(----x) d
AKB =a -2x dx(

a,4 (12)

is the stress intensity amplitude due to crack bridging. Using the nondimensional

parameters defined in eq. (9) & (10), we have

AKtip 2 1 A 1Zb () d

A a4 7Z JAl / 42 (13)

All stress intensity factors given below are computed from eq. (13).

Critical to fiber fracture is the maximum stress in the bridging zone. As

demonstrated by McMeeking and Evans (1990), such a stress can be obtained by solving

eq. (8), but with the quantities involved redefined. Specifically At/2 in eq. (9) should be

replaced by the bridging stress t; A(T/2 and AT/2 in eq. (9) & (10) should be changed to

the applied stress a and the temperature T (measured from the stress-free state).

respectively. The solution to eq. (8) will then give the bridging stress t(x) arising due to

monotonic loading. Fiber failure models can be applied to the bridging stress to assess

the extent of fiber fracture. The values for ar and T used in this calculation should be

those occurring simultaneously which produce the largest value for

0 = a + f Ef (oaf - acm) T, during the load cycle. This will produce the highest fiber
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stresses in the cycle. In certain circumstances, the largest value of 4) will be due to the

thermal stress alone in the absence of applied load. For example, this will be the case in

a material with am > af which is operated at modest applied stress and below its

processing temperature, but above room temperature. The largest value of 0) will occur

at room temperature before warming up and prior to the application of load. However,

if fiber failure were to occur due to thermal stresses alone, the material would be

impractical. Therefore, the relevant stresses to be used in connection with fiber failure

are those occurring when 4) has its largest value during load cycling.

3. FULLY-BRIDGED MATRIX CRACKS

When the matrix crack depicted in Fig. 2 is fully bridged, with ao = 0, the analysis

can be carried out using the equations in Section 2. Upon introduction of an effective

bridging stress amplitude Ab

A4 W = At (x) + f Ef (af - am) AT (14)

and an effective applied stress amplitude AO)

AO) = Aa + f Ef (af - am) AT (15)

and with the definitions

D(1-f)2_E2_____ D(1-f)2 Em EAO4A(Db = AMb + AO 2 2 2• 22f 2 E2 Ef "E a 2f 2 E 2 Ef "ta (16)

the governing equation for A4b, eq. (8), becomes

4EMS32(ApdJ 21, 1994)3:27 PMMd



12

16+ Ab(4) H (4,R, 1) d4 = AO 1 2  (17)

The term

j1AO H (4,R,1) d = AOJf H (4,3Z,1) d = AO 1ii2 (18)

has been added to both sides of eq. (8) to obtain the final result. The result in eq. (18)

arises because AO is, of course, independent of 4.

The negative sign preceding the bracketed term in eq. (17) has been dropped.

This can be done because experience has shown that if A4) is positive then so is A4)b (R)

for all I If A(I is negative, the solution for A4)b (n can be found by simply reversing

the sign of the solution obtained for positive AOD. The expression eq. (17) is identical to

the governing equation used by McMeeking and Evans (1990) for the fully bridged

isothermal fatigue case. Consequently, the value for AKtip obtained by McMeeking and

Evans (1990) for the fully bridged isothermal case is applicable to thermomechanical

fatigue of fully bridged cracks by replacement of Aa wLh A0. The effect of thermal

stress in the fully bridged case is as if the applied load amplitude were augmented by

f Ef (oa - oan) AT. This result is analogous to the finding of Budiansky et al. (1986) that

steady matrix cracking is driven by the augmented stress 0 = a + f Ef (af - at) T.

Note that the augmentation of the stress amplitude is different in the cyclic case

depending on whether in-phase or out-of-phase loading is occurring. In in-phase

loading, A(T and AT have the same sign. If am exceeds of (usually the case with

ceramic fibers in a metal matrix), it follows that in-phase cycling leads to a reduced

augmented stress amplitude AO compared to isothermal fatigue at the same applied

stress level. In general, this will mean that fully bridged fatigue cracks propagate more

slowly due to in-phase thermomechanical cycling compared to isothermal fatigue at the
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same applied stress. On the other hand, with am > (af, out-of-phase cycling

(A(/AT < 0) will lead to an increased augmented stress amplitude AO compared to

both isothermal fatigue at the same applied stress and compared to in-phase

thermomechanical cycling with the same AO and the same magnitude for AT. It follows

that when am > af, the fully bridged fatigue crack growth rate for out-of-phase cycling

will exceed the rate for isothermal fatigue at the same Aa and this latter rate will, in

turn, exceed the rate for in-phase thermomechanical cycling at the same Aa and with

the magnitude of AT the same as for the out-of-phase case. An exception to this is

in-phase cycling for metal matrix composites with very large temperature changes. If

the temperature change is large enough, AO can have the opposite sign from Aa since

af - am will be negative. If the absolute value of AO) is then greater than the absolute

value of AG, the rate of fatigue growth in in-phase TMF will be greater than that for

isothermal fatigue. This is therefore an exception to the general rule that for metal

matrix composites, out-of-phase TMF fatigue cracking will ,-i faster than isothermal

TMF which will in turn out pace in-phase TMF. Another interesting point is that

thermal cycling without mechanical stress causes a finite AlKtip. Thus thermal cycling

by itself will cause fatigue crack growth of bridged matrix cracks.

Figure 4 is a plot of the crack tip stress intensity against the thermally augmented

applied stress for both the monotonic and cyclic loading cases, as indicated in the figure.

These results are valid for arbitrary TMF where each half cycle is defined to occur

whenever AO changes sign. It should be recalled that in the cyclic case, T is the average

of the interface shear stress at the extreme temperatures of the cycle, whereas T is the

current value in the monotonic case. Notably in Fig. 4, AKtip increases monotonically

with A0. This is confirmation that, when am > (if, in out-of-phase thermomechanical

fatigue the matrix crack growth rate will be larger than that in isothermal mechanical

fatigue, and that the opposite is true for in-phase TMF when am > af. Note that Fig. 4 is

plotted with absolute values for 4) or AO) along the abscissa. This permits the use of the
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figure when 0 or A4) is negative. Clearly, in the case where 4) or AO is negative, so will

4 Nf-I-and AO) 1--and thus Ktip and AKtip will, in turn, be negative. The meaning of

a negative AKtip should be understood a follows. In the isothermal case when Au is

applied to increase the stress on the body, the crack will tend to open, since AKtip will

be positive. AKtip is negative when f Ef (Cf - am) AT/Ao is less than -1 and when the

mechanical load is increased (i.e. addition of a positive Aa to the existing load) the crack

will tend to close, this effect being caused by the thermal stresses. The behavior of the

crack opening will therefore be out of phase with the applied mechanical load, opening

on unloading and closing on reloading.

With less than 2% error in the range 0:_ I Act I -< 8, the numerical results given in

Fig. 4 can be represented by the following fitting formula

AKp /AO ,-,= ,JFAcbI/127r [I - 0.03 11-AD-ln (2 IA41/ 3)] (19)

Eq. (19) is asymptotically exact for small I ACI 1, but not so accurate for larger values of

I A) 1. In typical metal matrix composites (e.g. SiC in Ti alloy), it would be unusual for

I A4 1 to be greater than 4 (Walls et al., 1993). However, for completeness, an

approximation for large values of Act will be given. For large values of I AO ,
McMeeking and Evans (1990) offered the approximation

AKtip 3.05 vi-A,0+3.3 + 5.5
A077=-a 1----- IA4I+3(20-

which is asymptotically exact for large I Ac) I. The approximations in eq. (19) & (20)

differ by less than 3% at A) = 8.

To show more clearly how AKtip changes with the crack length a, in Fig. 5, a

nondimensional stress intensity range, which does not involve crack length,
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C K~L f2E 2E tfT

is plotted as a function of the nondimensional crack length

2f 2 E 2 Ef "a
= 1/1A01 = (1-f)2 Em EJIA0D (21)

The normalized AKtip increases rapidly when 11 is small; at values of 112 >1, the

normalized AKtip essentially reaches a steady-state value of 1/ '21.
Following McMeeking and Evans (1990), the governing equation for matrix

fatigue cracking under thermomechanical loading conditions is taken to be the Paris

Law

da/dN = 3(IAKtjp I/Em)n (22)

where 1 and n are material parameters for the nmatrix material; Em = NFO1-) Em FE is an

effective modulus accounting for the reduced area of material being cracked as well as

the elastic inhomogeneity and anisotropy (Budiansky, Amazigo and Evans, 1988). The

steady state AKtip, which is a good estimate if 11 as defined in eq. (21) is greater than 1,

is given by

_f)2p = [ .(1 -f 2 E D I 313 
( )

so that the steady state matrix fatigue crack growth rate for fully bridged cracks is
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daN) SS= RI(1-f)Em DIA 3 12
24 24f 2 E 2 Ef r (24)

where -= E (1 -E has been used and only positive roots should be considered.

It follows that during steady state growth of a fully bridged crack, the number of cycles

to grow the crack from an initial fully bridged half length of ai to the current half length

ais

Nss 24f 2 E2 Efr 1  (a-ai)

[(1-f)Em DIA0~3 J P1 (25)

where only positive roots are used. Relatively few materials will be such that T1 is less

than 1 for fully bridged cracks, so the estimate in eq. (25) will usually be valid.

However, if 71 is less than 1, the numerical results in Figs. 4 & 5 and the estimates given

in eq. (19) and (20) can be integrated numerically to predict the fatigue crack growth

curves for fully bridged cracks during TMF in which the temperature and mechanical

loading are cycled at the same frequency, either in-phase or out-of-phase. The results of

such numerical calculations are shown in Fig. 6a & 6b. These integrations were carried

out with an initial crack length such that 11 = 0.025. Thus, in the plot in each case

11 = 0.025 when N = 0. However, curves for any case with an initial crack length greater

than 1 = 0.025 can be obtained simply by translating the origin. In Fig. 6a & 6b, it can be

seen that the curves are almost linear at 11 = I reflecting the near steady state crack

propagation occurring there.
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4. PARTIALLY-BRIDGED MATRIX CRACKS

Consider a partially-bridged crack in a large body with an unbridged segment

2ao, as shown schematically in Fig. 2. The bridging stress distributions are calculated by

solving eq. (8) numerically (Marshall et al., 1985; McCartney, 1987) for various values of

the crack length ratio a/ao and the nondimensional mechanical and thermal loading AE

and AO. Displayed in Fig. 7a are bridging stress profiles for ao/a = 0.5, Aa = 0 for

various AO. This case is thus subject to thermal loading only without applied stress. It

can be seen clearly that a negative AO causes a positive Alb and vice versa. Since a

negative value of Alb means that the increment of bridging stress is compressive, such

bridging stress increments cause an increase in the stress intensity factor. Since the plot

in Fig. 7a can also be used to determine bridging stresses induced by monotonic heating

or cooling from a stress free state, the compressive bridging stresses in Fig. 7a show that

thermal stress can prop open partially bridged matrix cracks and cause a positive stress

intensity factor. This will occur if T is negative and am exceeds CXf as is the case

typically for metal matrix composites which are cooled down from their processing

temperature. In the cyclic case, the thermal bridging stresses will cause a crack tip

stress intensity factor amplitude. Thus purely thermal cycling will cause matrix fatigue

crack propagation for partially bridged cracks.

Fig. 7b shows the bridging stress distributions for combined mechanical and

thermal cycling when Al = 0.25 and ao/a = 0.5. Results for both positive and negative

A9 are shown. Note that for most metal matrix composites with ceramic fibers,

af < am. Thus for such typical cases AO < 0 represents in-phase TMF while AO > 0

represents out-of-phase TMF. All curves in Fig. 7b have peak stresses at the notch root

indicating that fiber fracture is likely to start there. The bridging stress amplitude near

the crack tip is compressive when AO is positive. This occurs because the crack opening

at the tip is zero and eq. (3) shows that the bridging stresses have to be compressive to
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sustain this when AI is positive. Similarly, when AO is negative, the bridging stress at

the crack tip has to be tensile. Thus a major portion of the differences in the results

shown in Fig. 7b is simply the offset caused by this effect.

It is evident from Fig. 7b that, compared with the purely mechanical fatigue case

(AO = 0), the bridging stress is lower when A9 is positive and is higher when AO is

negative. Consequently, the crack tip stress intensity amplitude is expected to be higher

when AG is positive. However, when AG is negative the maximum stress in the bridging

zone is higher. Therefore, in the typical case in which positive AG represents

out-of-phase TMF, the crack tip stress intensity amplitude is greater than in the

isothermal case with the same applied stress. Similarly, in the typical case in which

negative AG represents in-phase TMF, the crack tip stress intensity amplitude is lower

than in the isothermal case. This ranking is the same as was found for fully bridged

cracks. However, the maximum bridging stress, which will tend to induce fiber failure,

is higher in in-phase TMF in the typical case than in the isothermal case and is lower in

out-of-phase TMF than in the isothermal case. Thus, in typical cases, in-phase TMF will

cause less rapid matrix fatigue crack growth than the isothermal case at the same stress

but will be more prone to fiber failure. In contrast, in typical cases, out-of-phase TMF

will cause more rapid matrix fatigue crack growth than the isothermal case at the same

stress but will be less prone to fiber failure.

Fig. 8 shows the stress intensity factor amplitude due to purely thermal cycling

(i.e. no mechanical stress cycling) for partially bridged cracks. The results are shown for

several levels of thermal stress amplitude and are shown as a function of bridge length

as a fraction of total crack length. The same results apply for positive and negative AT,

with AKtip positive if (4f - oa) AT is positive and vice versa. These results show, as

expected, that there is no stress intensity for unbridged cracks (a = ao) and that the

results converge to the fully bridged results when the unbridged segment is a negligible

fraction of the matrix crack length. In between, AKtip increases monotonically with

4EMI32(A1Xil 21. 1994)3.2V 1Mind



19

crack length for fixed ao. However, when shown in the form normalized by

f Ef (af - a.) AT I , there is a maximum between the results for short and long bridge

lengths.

Shown in Fig. 9a & b are normalized crack tip stress intensities AKtip/AKA

plotted against the normalized bridge length (a - ao)/a for A-, = 0.5 for several values

of A90 where AKA = Aa 'c, AL0 = (a/ao) AM and A0o = (a/ao) A0. Two features in

Fig. 9 are noteworthy. The fatigue driving force AKtip increases with increasing A 0o, as

is expected. Further, when A 0o is large (say,;> 1.0, see Fig. 9b), AKtip can exceed AKA,

the applied stress intensity amplitude. Due to compressive thermal stresses, the

development of a bridge can increase the stress intensity factor amplitude. This

indicates that in certain circumstances, the fibers prop open the crack rather than

provide shielding. Crack bridging, therefore, can be detrimental to the fatigue behavior

of the composite. This is in contrast to the isothermal case in which crack bridging

always improves the composite fatigue resistance to matrix cracking. Note also, that if

A 0o is less than -0.5 (see Fig. 9b), AKtip can become negative. Due to tensile thermal

stresses, the development of a bridge can provide so much shielding that the sign of the

stress intensity factor reverses. This means that when tensile mechanical stress is added

to the applied load, the crack opening will diminish rather than open further, and vice

versa. Thus, the crack tip cycling will be out of phase with the mechanical stress

cycling. Of course, the rate of fatigue crack growth will be unaffected by this

phenomenon since it will depend only on the magnitude of AKtip. However, it can be

seen in Fig. 9b that AKtip can pass from positive to negative as a bridge is extended by

fatigue crack growth. As a consequence, the rate of fatigue crack growth will diminish

as AKtip falls to zero and the matrix crack may become non-propagating. However, a

change in the mechanical stress amplitude or the thermal stress amplitude will cause

AKtip to become non-zero and the crack can be caused to recommence growth. Thus,

the trapped state of the fatigue crack would be easily destabilized. However, if
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A00  -AZo (i.e. if f Ef (af - am) AT = -AY), the net fatigue driving force for extensively

bridged cracks (i.e. Au + f Ef (Cf - Em) AT) will be zero. In this case, AKtip will approach

zero as a bridge is built by fatigue growth and therefore the matrix fatigue crack will

become markedly non-propagating.

Fig. 10a & b contains the same results as Fig. 9 but for a higher applied stress

amplitude. Comparison with the curves in Fig. 9 indicates that at higher applied stress

amplitude, the detrimental effect of the thermal load is less pronounced. This is due to

the fact that the larger applied stress induces a stronger beneficial shielding effect in the

bridge because of the greater crack opening which occurs. In contrast, the detrimental

propping action of the thermal stresses is fixed for a given thermal load.

A feature of all the results in Figs. 8-10 is that AKtip/AKA approaches zero as

(a - ao)/a goes to unity. The reason is that near (a - ao)/a = 1, there is an extremely long

matrix crack with a small unbridged segment in the middle. The effect of the unbridged

segment on the value of AKtip will be negligible, so the stress intensity factor amplitude

should approach the result for the fully bridged crack when (a - ao)f/a is very close to 1.

That is, with AZo positive, eq. (19) can be rearranged to show that for partially bridged

cracks

AKti 1 AOO 2  AL. a.-4 ± 1+-
AKAA Alol 12nra (26)

as (a - ao)/a approaches 1. The positive root is taken if 1 + A 0o/Ao is positive and the

negative root is used if 1 + A0o/AZo is negative. Thus, if A 0o is sufficiently negative,

AKtip will first pass through zero and become negative (AKA = Ao 4i-•-is assumed

positive) as (a - ao)/a gets larger. Then as (a - ao)/a approaches unity, AKtip will

approach zero from below. This phenomenon will be a feature of the behavior when

f Em (af - am) AT/Aa is less than -1. The meaning of a negative AKtip when Aa is
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positive has been discussed in the context of the fully bridged crack. When AKtip is

negative and Aa is positive, the crack tip region will tend to close when the mechanical

load is increased and will tend to open when the mechanical load is decreased. This

out-of-phase effect is caused by the thermal stresses.

There is a further significance to the results in Figs. 7-10. The plots also give the

value of Ktip/a ;/"4-when the load is applied monotonically to a large body containing

a partially bridged matrix crack. To interpret the results this way, Aa/2 in A1o should

be replaced by a and AT/2 in A0o should be replaced by T. Thus Fig. 9a gives values

for Ktip/a c-4--for D (1-f)2 E2 E a1/f 2 E2 Ef "t ao = 0.5 for

D (1-f)2 E2m E (af - am) T/E 2 f T ao = -0.5, -0.2, -0.1, 0,0.2 and 0.5 and similarly for

Figs. 8, 9b, 10a & 10b. This interpretation of the results can be used to confirm that in

typical cases, shutting of matrix fatigue cracks is not likely to be an issue. As

emphasized previously, the typical case is a metal matrix with ceramic fibers in which

am > (f. Such materials are processed at high temperature and used in service at

temperatures below the processing level. Thus, the operating temperature is negative.

Consequently f Ef (af - am) T will be positive and could readily be a few hundred MPa.

For example, when SiC fibers are used in a Ti alloy matrix with f = 0.35, each Celsius

degree below the stress free temperature induces a value for f Ef (af - am) T of

approximately 1 MPa. Thus the ratio f Ef (af - am) T/a will be quite large typically

(assuming a to be positive) and so the relevant results are those in Figs. 7-10 for larger

values of AOO. This makes it dear that as soon as matrix fatigue crack growth occurs

and a bridge is developed, a large positive Ktip will be induced by that bridge due to

the large thermal stress. The fatigue cycling will occur around this mean value of Ktip

but the cyclic AKtip is unlikely to cause the total Ktip to go to zero. Thus crack closure

is unlikely to occur. This assertion can be considered further in the context of a fully

bridged crack which, as discussed, is the state which a matrix fatigue crack propagating

without fiber failure in a large body will effectively approach. Fig. 4 shows that a fully
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bridged matrix crack with a large positive value of f Ef (of - am) T will have a large

positive value of Ktip. It follows that the thermal stresses will prop open a fully bridged

matrix crack to a significant extent so that thermomechanical cycling is not likely to

cause shutting of the crack.

For investigation of the effect of thermal cycling on the fatigue growth of matrix

cracks, the Paris Law Eqn. (22) can be integrated numerically subject to the results in

Figs. 8-10 for AKtip/AKA with AKA always taken to be positive. Fibers are assumed to

remain intact during crack growth. Therefore, the unbridged segment length is always

the initial notch length. Fig. 11 shows the resulting curves for purely thermal cycling

with no mechanical load cycling when the amplitude of the thermal cycles is constant

during crack growth. The Paris law exponent is taken to be 2. A small bridge of length

0.001 ao was assumed to exist at the beginning of the growth process to initiate fatigue

cracking. That is, (a - ao)/a = 0.001 initially. In Fig. 11, it can be seen that the rate of

growth is initially small. This stage corresponds to the left end of Fig. 8 where AKtip is

small. The rate of growth increases as the crack lengthens and AKtip increases. The rate

then evolves to a steady level of growth as large bridge lengths are developed.

Displayed in Fig. 12 are the resulting fatigue crack growth curves for A10 = 1, n = 2 for

various thermal stress amplitudes. These results are for TMF in which the frequency of

temperature cycling is the same as that for mechanical load cycling and the two loads

are either exactly in-phase or out-of-phase. Also, the amplitude of the temperature and

mechanical stress cycles is constant during crack growth. It is found that when A 0o is

positive, fatigue crack growth is significantly higher than that due to mechanical load

alone, depending on the magnitude of the thermal stress amplitude. When A 0o is

negative, the amount of fatigue growth is less than in the isothermal case. When

A 0o = -1 which is also exactly the negative of Alo, the matrix fatigue crack should

eventually become non propagating since the fatigue driving force

(AU + f Ef (af - am) AT) for extensively bridged cracks is zero. However, this will occur
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beyond f37C [Aa/EFn]2 N = 50. Similarly, when A1 = -2, the matrix crack should

eventually become non-propagating. It can be seen in Fig. 12 that the case with

A0o = - 2 is propagating very slowly when 07C [Ao/FI]2 N = 50.

5. FIBER FRACTURE AND FATIGUE LIFE

Experimental evidence (Walls et al., 1993) shows that when the applied stress is

high, fibers fail along the matrix fatigue crack, accelerating the matrix crack growth and

leading to a loss of load carrying capacity. Therefore, it can be suggested that the onset

of fiber failure is effectively the end of the useful life for a fiber reinforced metal matrix

composite material. The onset of fiber failure depends primarily on the fiber strength,

which, in practice, has a statistical distribution. However, to gain some insight into the

influence of thermal stresses on fiber fracture, we assume that the fibers have a unique

strength S. Certain fibers have a narrow strength distribution, so that the assumption of

a unique strength is a reasonable approximation to this case. Fibers with a wide

strength distribution would fail more gradually than predicted below. In addition,

failure of fibers with a wide distribution of strengths can occur inside the matrix rather

than at the matrix crack as assumed below.

The governing equation for the bridging stress distribution corresponding to

monotonic loading a and temperature T is essentially identical to Eqn. (8); only the

nondimensional parameters need to be redefined. The nondimensional applied load -,

is defined as

D(1-f)2 E2 a
0 E2 Ef f2 ra. (27)

while the nondimensional thermal load 0o has the form
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D(1- f)2  2 E(af -am) T

E 2 ftao (28)

For monotonic C and T, the bridging stress distributions shown in Fig. 7 remain

unchanged if AM is replaced oy l-o, Alb by 1b and AO by 0o. 1b equals ZO with a

replaced by t. As mentioned earlier, the peak stress in the bridging zone usually arises

at the notch root. The exception to this is where 00 is negative with a large magnitude

compared to -o. In that case, the largest fiber stress can be at the tip of the matrix crack.

The clearest example is where there is no mechanical load as illustrated in Fig. 7a.

However, for metal matrix composites, this will be an unusual situation and so we will

assume that the critical case is when the largest fiber stress occurs at the root of the

unbridged notch. Thus, fibers at the notch root begin to fracture when the bridging

stress there rises to fS (f is the fiber volume fraction). Results as shown in Fig. 7b can be

used to predict this. The situations giving rise to such fiber failure are summarized in

Fig. 13. These are plots of the maximum stress in the bridging zone as a function of

bridge length for various temperatures for 2 different applied mechanical stress levels.

The maximum stress in the bridging zone has been equated to fS. As a result, the

figures show the maximum bridge length possible for a given fiber strength. In Fig. 13,

it can be seen that when 00 is positive, which is typical of metal matrix composites, the

maximum stress in the bridge increases monotonically with bridge length.

Furthermore, because of compressive thermal stresses, the maximum stress in the

bridge is less than that occurring in the isothermal case. When 00 is negative, the

maximum stress in the bridge is higher than in the isothermal case, a situation which

occurs because of tensile thermal stresses. It is also apparent that the maximum stress

in the bridge diminishes as the bridge length rises beyond a certain level. This means

that once fiber failure begins, all fibers will fail since the maximum stress in the bridge
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will tend to increase as the bridge disappears due to fiber fracture. However, the

typical case for metal matrix composites with eo positive will involve gradual fiber

failure since the maximum fiber stress will diminish as the bridge length falls due to

fiber fracture.

The results such as those shown in Fig. 12 and in 13 can be used to predict the life

of a metal matrix composite with a pre-existing notch, subject to TMF with in-phase or

out-of-phase cycling at the same frequency with constant amplitude. Crack length

versus the number of load cycles is predicted in Fig. 12 while the onset of fiber fai!'re

can be determined from Fig. 13. Since the fatigue crack growth rate will rise rapidly

after the onset of fiber failure, the end of life can be considered to occur very shortly

after fiber failure commences (Walls et al., 1993). In some cases, however, the condition

for fiber failure will never be met. That is, if the fiber strength is high, it will always

exceed the maximum stress in the fibers in the bridge. In those circumstances, very long

bridged matrix cracks will 'be grown, but the fibers will remain intact. These cases can

be considered to give rise to infinitely long life for the metal matrix composite.

For very large panels, the conditions leading to the preservation of fibers can be

summarized in the form of a map as used by Bao and McMeeking (1994). Such a map is

shown in Fig. 14. The map shows combinations of maximum applied stress,

temperature and initial notch length which will lead to fiber failure and to no fiber

failure as determined by the deterministic fiber strength. Dividing lines in the map are

shown for various temperatures. Below the dividing line, matrix cracks will be grown

from the notch, but fibers will never fail and therefore the composite will have infinite

life. Above the dividing line, matrix fatigue crack growth will eventually lead to fiber

failure, and therefore the composite will have a finite lifetime. It can be seen that if 00 is

negative, fiber failure is more prone to occur. On the other hand, if 00 is positive, it is

more likely that matrix fatigue crack growth will occur without fiber failure. For metal

matrix composites, eo will generally be positive, since (Xf < am and T, measured from
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the stress free processing temperature, will be negative. Thus, when thermal effects are

accounted for, a larger window exists for the preservation of fibers than is apparent

from isothermal considerations.

6. CLOSURE

It has been shown that thermal strains can induce bridging stresses in fully and

partially bridged matrix cracks. These stresses can, in turn, alter the stress intensity

factor at the tip of the matrix crack and therefore affect the fatigue crack growth rate for

the crack. For fully bridged cracks, the effect of the thermal stresses is to augment the

applied stress amplitude by an amount equal to f Ef (of - am) AT. Therefore, for metal

matrix composites, where am exceeds (f, in-phase TMF in which the temperature

increases at the same time as the stress will lead to a reduced rate of fatigue crack

growth compared to isothermal fatigue. Out-of-phase TMF gives rise to an increased

rate of fatigue cracking. On the other hand, in-phase TMF will make it more likely that

fibers will fracture and out-of-phase cycling will reduce the likelihood of fiber failure.

As in the isothermal case, a low applied stress will avoid fiber failure no matter how

long the matrix crack grows while a high applied stress will cause fiber failure and

therefore lead to rapid fatigue cracking since the bridging shielding effect will be

destroyed. It is notable that thermal cycling by itself without applied load will induce a

crack tip stress intensity factor amplitude and therefore will cause matrix fatigue

cracking. However, it should be noted that no data exist for matrix fatigue cracking by

TMF. The validity of the model presented in this paper can only be confirmed by

comparison with data.
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APPENDIX A

Consider the cylindrical fiber/matrix model shown in Fig. 3. Shear lag analysis

(Budiansky et al., 1986; McCartney, 1987; Cox, 1990) will be used to model the behavior.

Both the fibers and the matrix are taken as elastic; creep and plastic deformations in the

matrix are neglected. The elastic moduli for the fibers and the matrix are Ef and Em

respectively. The interface between the fibers and the matrix is assumed to be weak and

the debond toughness is neglected. Therefore the fibers, with diameter D, behave

effectively as frictionally constrained reinforcements. When load is applied to the fiber,

or when the temperature changes, a sliding zone of length I develops as shown in Fig. 3.

the interface shear stress in the sliding region is T which is taken to be a function of

temperature only. The boundary conditions for the cell are such that an average

bridging stress t is applied at the top which is opposed by a stress t/f in the fiber at the

matrix crack where f is the volume fraction of fibers. Thus the outer diameter of the cell

is taken to be D/•. The stress in the matrix at the matrix crack is zero as is the shear

stress everywhere on the outer boundary of the unit cell shown in Fig. 3. The axial

mechanical stresses in the fiber tf and the matrix tm are related to the bridging stress t by

t = ftf + (1-f) tm (Al)

In addition, above the sliding region, the axial strain in the fiber equals that in the

matrix so that

tf + afT =tm + amT = E
Ef Em (A2)
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where af and am are the expansion coefficients for the fiber and matrix respectively and

T is the temperature with T = 0 defined to be the state in which the thermal stresses in

the composite is zero. It follows that above the sliding region

tm = E-[t + fEf(af -a)T] (A3)

Equilibrium of the fiber and the matrix in the sliding zone implies

(1-f)DEm [t+fEf (af -am)T]

4 f E r (T) (A4)

where E = f E4 + (1-f) Em and T (1) is the sliding stress at the current temperature. For

the analysis of the monotonic case it has been assumed that the term in brackets is

positive, which will be discussed below. The opening 8 is defined to be the average

axial strain in the fiber in the sliding zone minus the axial strain in the composite above

the sliding zone multiplied by 21. The result is such that t8 is the work done per unit

area of matrix crack when the matrix crack is introduced into a previously uncracked

system. (Budiansky et al., 1986; McCartney, 1987; Hutchinson and Jensen, 1990) The

average strain in the fiber in the sliding zone is

v = tIt (1f)Em [ + fEf(af-am)T]

fE f 2fEEf (A5)

whereas the strain in the composite above the sliding zone is

F_ t -1f)E Mt -+- f)Em [t + fEf(af-am)T]
T E f fEEf (A6)
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Multiplying the difference by 21 from (A4) gives

( -(f)2 DE'[t +fEf(af-a.)T
2

4f2 E2 Ef 'E(T) (AW)

which gives eq. (1) & (2). The reason for assuming that the term in brackets is positive is

now dear. If the term in brackets were negative, the proper result (in contrast to

eq. (A7)) would predict a negative value for 8. Since the most reasonable assumption is

that cracks are closed when T = 0 and 0 = 0, negative values for 8 are precluded by

compressive contact of the crack surfaces.

As noted by Marshall and Oliver (1987), McMeeking and Evans (1990) and Cox

(1990), unloading for the fiber causes the initiation of a new sliding zone. In the

thermomechanical problem, unloading will be defined as the stage of the cycle during

which the applied mechanical tensile stress is being reduced. During unloading, as long

as the new sliding zone grows monotonically, its length is given by

= ±(1-f)DEm [t- t +fEf (af -am)(Ti -T)]
4fE[r(T1 ) + (T)] (A8)

where tj is the peak applied stress prior to unloading (taken to be tensile), and Tj is the

temperature just prior to unloading as shown in Fig. 1. The stress t is the current

applied stress and T is the current temperature. The difference t1 - t is thus positive.

However, the term in the brackets in the numerator can be positive or negative due to

the thermal stress. If the term in the brackets in the numerator is positive, the positive

sign in eq. (A8) is used, whereas if the bracketed term in the numerator is negative the

negative sign should be used to define lu. The definition of 8 and results equivalent to

eq. (AS) & (A6) can then be used to predict that

4L"U]p32dAp 21. 1994)3:27 Fftnd



32

2-tDE t -t + fEf(af -am)(TI T)12

4 f2 E2 Ef[T(T¶) + T(T)] (A9)

where 81 is the value of 8 just prior to unloading and 8 is the current opening when the

applied stress is t and the temperature is T. If the term in the brackets in the numerator

is negative, the negative sign in eq. (A9) should be used to give 81 - 8, otherwise the

positive sign is used. The negative sign means that during mechanical unloading, the

matrix crack actually opens more due to the thermal strains.

Upon reloading from t2 back up to t with the temperature simultaneously

changing from T2 to T (t2 and T2 as shown in Fig. 1), a new slip zone is created once

again. The length of this new slip zone is given by

= (1-f)DEm[t-t 2 +fEf(O(f-Cam)(T-T2)]
4 4fE[T(T) + )(T2)] W1)

where, as before, the preceding sign should be chosen to match the sign of the term in

brackets in the numerator. Similarly, the current opening on reloading is given by

1= (-f) 2 DE 2[t-t 2 +fEf(otf- am)(T-T 2 )]2

4f2 E 2 Ef[,r(T) + -(T2)] (All)

where 81 is the value of 8 just prior to reloading. If the bracketed term in the numerator

in eq. (All) is negative, the negative sign should be used. This means that during

reloading, the crack tends to close due to thermal effects.

Representing 81 - 82 by AS, ti - t2 by At and T1 - T2 by AT, the magnitude of AS

for repeated cycling between the same limits is given by
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±1(_-f) 2 D 2 [At +fEf (af -a,,,)AT] 2

4 f2 E 2 E , [,r(T 1 ) + r(T2)] (A12)

As above, the preceding sign in eq. (A12) should be chosen to match the sign of the term

in the brackets in the numerator. Use of T to represent [E (T1) + T (T2)]/2 then gives

eq. (3).

The condition that the length of the slip zone increases monotonically ensures

th-;- eq. (A9), (All) & (3) are valid. When tl - t2 + f Ef (af - am) (TI - T2) is positive, the

length of the slip zone increases monotonically when; (i) for in-phase cycling (a) during

unloading

dt + fEf(af-am) > - t 1 -t + fEf (af-cam)(TI-T) drd +T [,r(T) + T (T)] dT (A13)

(b) during reloading

dt fE ' a t-t 2 + fEf(af -am)(T-T 2 ) dTdT [,f (T) + r(T 2 )] dT (A14)

and (ii) for out-of-phase cycling (a) during unloading

dt + fEf(af-am) _< t 1 -t + fEf(af-am)(TI-T) dTd +-)T [,r(T 1) +,r (T)] dT (A15)

and (b) during reloading when
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dt + fEf(af-a.) < t-t 2 + fEa(af-am)(T-T 2 ) dr

dT [,(T) + (T2 )] d (A16)

When t - t2 + f Ef (04 - am) (T - T2) is negative, all the inequalities in eq. (A13) to (A16)

are reversed.
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FIGURES

Figure 1 Stress and temperature for in-phase and out-of-phase thermomechanical

cycling.

Figure 2 A partially bridged matrix crack subject to a cyclic stress.

Figure 3 Unit cell for the shear lag analysis of fiber sliding.

Figure 4 Stress intensity amplitude as a function of stress and crack length for a fully

bridged crack.

Figure 5 Stress intensity amplitude as a function of stress and crack length for a fully

bridged crack.

Figure 6 Crack length as a function of load cycles for fatigue growth of a fully

bridged crack.

Figure 7 Bridging stress for a partially bridged crack.

Figure 8 Stress intensity amplitude as a function of bridge length for a partially

bridged crack for temperature cycling at constant stress.

Figure 9 Stress intensity amplitude as a function of bridge length for a partially

bridged crack for thermomechanical cycling.

Figure 10 Stress intensity amplitude as a function of bridge length for a partially

bridged crack for thermomechanical cycling.

Figure 11 Crack growth as a function of the number of temperature cycles for fatigue
at constant stress.

Figure 12 Crack growth as a function of the number of load cycles for
thermomechanical fatigue.
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Figure 13 Maximum fiber stress as a function of bridge length.

Figure 14 Map for fiber failure during crack growth.
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ABSTRACT

The transverse properties of a SiC fiber reinforced Ti alloy matrix composite subjected

to transverse mechanical and cyclic thermal loading has been investigated. Fibers and matrix have

a mismatch in the coefficients of thermal expansion that induces thermal stresses in addition to

those caused by mechanical loading. When fluctuations occur in the operating temperature the

thermal stresses change and this could cause an incremental accumulation of plastic strain or

increase in creep rate. The composite under consideration has a modest mismatch and it was

found that the strain accumulation is caused by creep deformation in the matrix at the high

temperature portion of the thermal cycles. In the early stages of the deformation for low

transverse loading the interface is closed and the creep rate is accelerated by the cyclic thermal

stresses. After debond has occurred the cyclic thermal stress component is diminished and the

creep rate is given by a matrix with holes. '

1. INTRODUCTION

An attractive feature of metal-matrix composites is that excellent longitudinal properties

are combined with reasonable transverse and inplane shear strength. This enables the composites

to sustain many of the multiaxial stress states which occur in practice when using efficient

unidirectional fiber lay-ups. Use of multidirectional reinforcements is less advantageous when

weight saving is essential for successful application. In addition to mechanical loading, many

components are subjected to cyclic thermal loading, which is expected to influence the matrix

dominated transverse and shear properties. Thermal loading causes two components of stress:

the first is a stress field resulting from the variation of the temperature field within the

I



component, the second is the consequence of the mismatch of the coefficients of thermal

expansion of fiber and matrix which produces stress fields at the micro-level. In a study of an

aluminum metal-matrix composite reinforced with alumina fibers, Jansson and Leckie (1992b)

observed that the application of cyclic temperature in combination with constant transverse stress

could result in a ratchetting mechanism which produced an increment of transverse strain for each

thermal cycle. The source of the ratchetting mechanism is the combination of the stress fields

supporting the applied mechanical stress and the cyclic thermal stresses resulting from the

thermal mismatch. During each temperature cycle the matrix is subjected to a stress history which

results in plastic deformation in the matrix with a bias in the transverse direction. To avoid

ratchetting, the combination of the applied transverse stress and the magnitude of the temperature

excursion should not exceed a shakedown condition. This system features a significant difference

in the coefficients of thermal expansion of fiber and matrix, a low matrix yield strength and a

strong interface between fiber and matrix.

In this study a titanium matrix reinforced with silicon carbide fibers is subjected to a

similar test program. '>.. present titanium matrix systems feature a weak interface, in contrast

to the strong bond which characterizes the alumina-aluminum composite. Furthermore, compared

to the A120 3-A1 system the mismatch of the coefficients of thermal expansion is substantially

lower and the matrix strength substantially higher. The strongly contrasting properties of the

SiC-Ti system suggest that the transverse properties differ significantly from the A1,0 3-AI system,

and it is the aim of this investigation to determine these differences.
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2. COMPOSITE MATERIAL AND FABRICATION

The composite material SCS6/Ti 15-3 used in this study features many of the properties

of titanium matrix composite systems that are currently considered for structural applications. It

consists of coated SiC fibers with a diameter of 140 m. The complex C and SiC coating causes

the composite to have a weak interface. The fibers are arranged in a uniaxial lay-up with a fiber

volume fraction of 35 %. in the P3-Ti alloy matrix, Ti-15V-3Cr-3AI-3Sn. The composite is

fabricated by Textron using a fiber foil lay-up consolidation technique. The consolidation

temperature is approximately 900 C and in the subsequent cool down, the thermal expansion

mismatch of fiber and matrix introduces residual stresses.

Ambient tensile properties of the matrix have been obtained from tests on foil extracted

from the composite and the fiber modulus from bend tests on extracted fibers [Jansson et al,

1991]. The matrix and fiber stress-strain relationships are shown in Fig. 1, which indicates that

the failure strain of the matrix foil is approximately 3%, which is low compared to the values

commonly reported for Ti alloys. The remaining fiber and matrix properties have been extracted

from the literature and are summarized in Table 1.

A finite element caiculation was performeu oy Gunarwardena et al [1993] to estimate the

residual stresses after processing. Due to lack of high temperature data for Ti-15-3 the

temperature dependence of elastic modulus and yield strength of the matrix was estimated by

using data for the similar alloy Ti-6V-4AI [Nimmer et al, 1991]. The estimated residual stress

state in the fiber following a consolidation temperature of 900 C consists of an axial compression
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of 720 MPa and a nearly uniform compressive radial stress of 200 MPa. At the interface the

radial stress is 200 MPa and compressive while the matrix hoop stress is 500 MPa tensile. In the

axial direction the matrix stress is almost uniform and tensile with a value of 400 MPa. No

matrix cracking has been observed in the as-received composite [Jansson et al, 1991] which

suggests that the matrix toughness is sufficiently high to sustain the residual stresses state induced

during fabrication.

3. TRANSVERSE TENSILE RESPONSE

The transverse tensile response measured on a virgin specimen at ambient temperature is

shown in Fig. 2. After an initial linear elastic response the behavior becomes nonlinear when the

transverse stress exceeds 140 MPa. Thereafter the tangent stiffness gradually decreases and failure

occurs at a stress of 420 MPa when the strain is 1.1%. The strength and ductility of the

composite are substantially less than the corresponding values for the Ti matrix for which the

strength is 950 MPa and failure swain 3%. For weakly bonded composites it was established

[Jansson et al 1991] that the limit strength of the composite is obtained by multiplying the matrix

area on the weakest plane perpendicular to the loading direction by the ultimate strength of the

matrix. The measured matrix area fraction of the failure surface is A. = 0.4, the ultimate strength

of the matrix o=, = 950 MPa so that the theoretical prediction of the composite strength is

WL=A .-2 2 o, M= 440 M[Pa()

-73

This value compares well with the experimental value of 420 MPa. In a more detailed

finite element calculation performed by Gunarwardena et al (1993) it was found that the initial
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residual stresses ensure contact is maintained at the fiber-matrix interfaces during initial loading.

When the applied stress is 140 MPa tensile stresses develop at the interface and debonding is

initiated. When the applied stress reaches 200 MPa the debonding is fully developed. The

debonding is accompanied by a substantial decrease in the elastic modulus. In the absence of

matrix plasticity the calculated elastic response after debond is shown in Fig. 2. When the

additional effect of matrix plasticity is included the experimental observations are closely

reproduced. The experimental results and the calculations both suggest that the behavior

immediately after debond is dominated by a decrease of the elastic modulus and as the applied

stress approaches the limit value the deformation is dominated by plastic deformations of the

matrix. The debonding prevents build-up of large hydrostatic stresses which can cause loss of

matrix ductility [Hancock and Mackenzie, 1976 and Rice and Tracy, 1969]. However the matrix

deformation is concentrated in the ligaments between the fibers so that the composite failure

strain is 1.1%, which is approximately one third of the matrix failure strain. The results of the

detailed computations are consistent with experimental observation indicating that fiber-matrix

debonding accounts both for the decrease in the elastic modulus and transverse strength of the

composite. The macroscopic failure surface, shown in Fig. 3a, is irregular with visible debonded

fibers between the matrix ligaments. A high magnification view of the fracture surface of the

matrix ligament, Fig. 3b, indicates the dimpled topology associated with ductile failure.

4. THERMO-MECHANICAL TEST PROGRAM

A schematic of the experimental setup is shown in Fig. 5. The specimens were loaded in

a servo-hydraulic machine and heated by means of an induction coil. The strain was measured
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by an extensometer with 3/8" gauge length and the temperature was measured by three type K

thermocouples mounted at the center and ends of the gauge section. The center thermocouple was

used to control the temperature while the top and bottom thermocouples were used to measure

the temperature field along the length of the specimen. The recorded temperatures shown in Fig.

6 indicate that a uniform temperature field was achieved in the gauge section of the specimen

throughout the cycle. The heating rate was approximately : C/s, resulting in temperature

dependent cycle time of order 5 mins for the current tests. It was found that 100 temperature

cycles were sufficient to reach a steady state condition. Because of the limited availability of the

material each specimen was subjected to one stress level and a number of temperature ranges.

The specimens were initially subjected to a low temperature range and the temperature range was

subsequently increased in steps of 20 C until failure occurred. The transverse stresses selected

were i = 50, 100, 200 and 350 Ma. The lowest temperature in the cycle T., = 60 C and the

upper temperature T, was selected to be in the range 300-550 C. Above this temperature range

the material exhibits severe oxidation.

5. EXPERIMENTAL OBSERVATIONS

Representative examples of recorded strain histories are shown in Fig. 7a for a high

transverse stress and in Fig. 7b is for a low transverse stress. The measured strain ranges are

shown in Fig. 8 as a function of the temperature range AT = T. - Tm. The steady state strain

rates are shown in Fig. 9a as the average rate over a cycle and in Fig. 9b as the strain

accumulation per cycle. The test at the highest transverse stress of 350 MPa failed in the first

thermal cycle during the temperature decrease. The failure strain was found to be independent
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of the loading conditions and was approximately 1%.

The relationship between deformation rate and temperature range, Fig. 9a, indicates that

the graphs for the stress extremes have different shapes. For the high applied stress of 300 MPa,

the deformation rate increases monotonically with increase in temperature amplitude. For the low

stress of 50 MPa the deformation rate at first decreases with increasing temperature amplitude,

reaches a minimum value and thereafter increases monotonically with increasing temperature

amplitude. For intermediate values of stress the character of the results changes progressively

from one extreme behavior to the other. The experimental strain ranges, shown in Fig. 8 as a

function of AT, also exhibit two extremes of behavior. In the 50 MPa test the measurements

indicate a transition from a cyclic strain range corresponding to a coefficient of thermal

expansion of 8.5 10" to a higher value in the range 10.5 - 12 10' 1/C. The test for the higher

loadings exhibits the higher coefficient of thermal expansion from the first loading sequence.

An examination of the sides of the specimens, Fig 10a, shows permanent debond

cracks perpendicular to the loading direction. The cracks are distributed rather evenly with the

largest crack openings at the pole of the fibers. A higher magnification view, Fig. 10b, indicates

that debond occurs both at the fiber matrix interface and in the fiber coating. The photographs

also reveal that the fibers are pultruding out of the matrix, indicating that a sliding has occurred

in the longitudinal direction between fiber and matrix. An examination of the failure surface,

shown in Fig. 4a, indicates that the specimen subjected to thermo-mechanical loading have fewer

fibers left on the failure surfaces compared to the ambient tensile test, Fig. 3a. The shape of the
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failed ligaments differs from those of the room temperature tests. The failure occurs by the

formation of longitudinal necks, typical of a ductile creep fracture. A high magnification view

that perpendicular to the failure surface of a matrix ligament, Fig. 4b, shows that the formation

of the neck causes small longitudinal cracks to form at the former fiber matrix interface. The

portion of the failure surface at the top of the ridge reassembles the texture of the failure surface

at ambient temperature.

The above observations would suggest that interface debonding occurs at some stage

during all the tests. For stresses 200 MPa or greater the debond occurs on first load while for the

lower stress levels the debonding is delayed to some later time in the test. In the 50 MPa test the

onset of the debonding process was captured in the strain history for the temperature range 420

C, Fig. 7b. The strain at the beginning of this loading sequence was 0.08%. When the strain

reaches 0.15% the deformation rate changes noticeably from 1.1 x 10" to 0.33 x 10" 1/s.

Coinciding with this transition it was observed that coefficient of thermal expansion changed

suddenly from 8.5 x I0W to 10.5 x 10' 1/C.

The test performed at 50 MPa was terminated before the specimen failed. A tensile test

was performed at ambient temperature to determine the value of the transverse modulus following

thermo-mechanical loading. The result of the test is shown in Fig. 2 together with the tensile

curve for a virgin material. The modulus was determined to be 44 GPa, which is only a third

of the modulus of the virgin material. Fiber push through tests were also performed on a 0.45

mm thick slice cut from the loaded specimen. Some fibers had such a low sliding resistance that
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they fell out during thc specimen preparation. The results shown in Fig. I I are typical of the

fibers which exhibited the higher sliding resistance. Even these high values indicate a substantial

degradation of the fiber push-through properties after thermal cycling.

6. INTERPRETATION OF THE EXPERIMENTAL RESULTS

From the room temperature transverse tension test, Fig. 2, it was found that the onset of

debonding occurs when the transverse stress is 140 MPa, at which point there is discernable

change of the gradient of the stress-strain curve until the stress is 200 MPa. Thereafter the change

in slope is much more gradual suggesting that the debonding process is complete.

The experimental results and micro-structural observation for the constant load-cyclic

temperature also indicate that fiber-matrix debond occurs during the test. When the stress is

sufficiently large the deformation rate immediately establishes a steady state value. When the

transverse stress is low there is a transient period during which the creep rate is greater than the

steady state value. The results of the test in Fig. 7b suggest that the transient period is complete

when interface debonding occurs and the coefficient of thermal expansion increases from 8.5 x

106 to 10.5 x 10-6 I/C. The properties of the ccmposite can be expected to describe the strain

range before debond while the post-debond strain range would be dictated by the property of the

matrix. Simple calculations, based on the data in Table 1, indicate that the coefficients of thermal

expansion for the composite system is 8.5 x 10"' 1/C, which is close to the experimental value

before debond. The matrix value of 9.7 x 10"6 V/C is slightly lower than the observed value after

debond.

9



The evidence of the experiments would appear to be consistent with the following

interpretation. After processing the stress at the fiber-matrix interface is compressive. When the

applied transverse stress is 140 MPa or greater, there is immediate debond at the interface,

resulting in a release of the residual stresses and a steady state deformation rate is established

after a few cycles. When the transverse stress is lower than 140 MPa there is no initial debond

and a compressive residual stress is maintained at the interface. This residual stress field is such

that the initial matrix deformation rate is greater than the steady state value. When the plastic

strain reaches a value of 0.15% the debond is fully established, the residual stresses are released

and steady state deformation rate ir established.

Before the experimental results are studied in more detail it is instructive to evaluate the

loading conditions in relation to the elastic shakedown conditions. The shakedown boundary

when the composite is subjected to constant transverse stress and cyclic temperatures have been

determined analytically for this composite system by Jansson and Leckie (1992b). The results are

shown in Fig. 12 in a normalized form for three different conditions: the first is for a residual

stress field causing a full contact at the interface, the second is for a fully relaxed contact

pressure at the interface with longitudinal strain continuity and in the third all the constraints are

fully relaxed. For operating conditions within the shakedown condition, the steady state response

is purely elastic. However, when the operating condition exceed the shakedown condition

ratchetting occurs with an incremental accumulation of plastic strain for each cycle.
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An experimental shake down curve has been determined from the data by using dE./dN

= 10 as the shake down condition. It is plotted on the interaction diagram in Fig. 12 using the

most conservative estimate of yield stress. All experimental conditions lie well within the

calculated shakedown condition suggesting that time-independent plasticity does not contribute

to the incremental deformation observed in the experiments. It is concluded therefore that the

source of the deformation must be creep. The average creep rates over a cycle are plotted in Fig.

13 for different operating conditions. Also shown in the graph are the steady state matrix creep

data [Tuttle and Rogacki, 1991 and Rosenberg, 1983] and constant stress .ansverse creep data

for the composite after debond [Majumdar and Newaz, 1992]. It is observed that the transverse

creep data and the creep rate for cyclic temperature both exhibit the same stress dependency as

the matrix data. For the same stress and temperature levels the composite creep rate is much

higher than the matrix creep rate. The composite creep rate for cyclic temperature is also higher

than the creep rate for the matrix at the highest temperature in the cycle.

Simple estimates are now made to predict creep rates of the composite before and after

debond from the matrix creep data.

i. Creep Deformation Rate After Debond

When the transverse stress is greater than 200 MPa there is complete debonding on first

loading and the residual stress is released. For no longitudir constraint the reference stress is

OR ... (2)
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where U is the applied transverse stress and A. is the matrix area fraction of the weakest

ligaments, which is equal to the matrix area fraction of the failure surface. The matrix steady

state creep rate given in Fig. 13 can be fitted by the Norton equation wi.h an exponential

temperature dependence

exp[3(T-To)] (3)

where e0= 3.1 1012, n = 4.2, and 3 = 0.05 for aF. = 100 MPa and the creep threshold

temperature T. = 300 C. For conditions after debond the reference stress is given by Eqn. (2).

Assuming that the temperature variation is triangular and integrating Eqn. (3) over a cycle T the

average creep rate "r per cycle is given by

.- _: t ') M 1 (4 )T Ifidt -(I21 exp[J3 (T.~ -To)] (- -J-.L. 4

from which it can be deduced that the average creep rate is given by the matrix creep at the

highest temperature of the cycle multiplied by corrections for the reference stress and the cyclic

temperature. The experimental data for the composite normalized using this relation are shown

in Fig. 14 together with the matrix data for 100 MPa. It can be concluded that the average creep

rate after debond is well represented by this relation.

ii. Creep Rate Before Debond

When the applied transverse is small the deformation rate shown in Fig. 9a first

decreases with temperature range, reaches a minimum and then increases monotonically. This
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initial decrease in deformation rate can in generally be attributed to stress redistribution and

hardening in primary creep. The transition at debond was captured in Fig. 7b when the

transverse stress was 50 MPa and temperature range AT = 420 C. This loading condition was

applied when the accumulated plastic strain following the previous loading history was 0.08%

and the strain rate was 1.1x0 3 1/s . When the accumulated plastic strain reached 0.15% the strain

rate decreased quite rapidly to a constant value of 0.33x10 3 1/s.

The effect of the stress redistribution and debonding on the creep rate could be determined

from a ful numerical analysis. It is more instructive however to calculate the response of the

simple representative volume element shown in Fig. 14. The element has a square cross-section

for which the matrix area fraction at the weakest plane is 1-4f = 0.41, which is very close to the

measured value of .4 for the composite. The analysis of the elastic stress distribution for the

element is outlined in Appendix for an applied transverse stress U and temperature change from

Tc to T.

From the equations given in the Appendix it is possible to evaluate the history of stress

in the matrix during the first thermal cycles before the accumulated creep strain has changed the

stress distribution. Since the elastic strain range i.'. the cycle is two orders of magnitude greater

than the plastic strain accumulated in the cycle use can be made of the Rapid Cycle Solution

developed by Ponter [1976]. In this method the elastic stress distribution over the cycle is used

to evaluate the creep rate. The method is simple and valid when the creep strains accumulated

over a cycle are small compared to the variation of elastic strains.
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Using the stress distribution given in the Appendix and the multiaxial generalization

u 3 4, s. exp(13(T-To)) (5)

to 2 o , s

of the constitutive Eqn. (3) where a, is the von Mises equivalent stress and sj is the stress

deviator, the strain rate in the matrix can be calculated to be

gym OT j 6
~o ~DO)R~2A -A 2 +(21 -B2) W.xpP~f (T-T0 ))(6

OT (7

~z...•- -• T -•j -A+(

_.•.o2 .__o)R 2A2-A,+(2B2-B,) xp((T-To)) (7)

Where

R=A 2-AA 2+A+[AI(2B1  a) +(B 2-B B +B 2 0

aT.=E(a, --%)(T-Tr)

and T, is the consolidation temperature. The constants B,, Ai and D are given in the appendix

and are functions of the elastic properties of the constituents and fiber volume-fraction. The

average creep rate over the cycle for the composite before debond can be calculated by use of

Eqn. (A8) that relates the plastic strain increment for the composite to the plastic strain
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increments in the matrix. The average creep rate for the cycle is

1f[Bit/LT-f)P-Yrn(T(t)) +B~ftzm(T(t)I1dt (92)
DAt 0

For a triangular temperature variation over the cycle the temperature is linearly dependent on

time and a change of integration variable can be performed to give

.•=_• f [B,(Ff/-ff)tj,•T)+B~ftzn(T)]dT (9b)
DAT .

After debonding has taken place the thermal and residual stresses vanish and the creep

deformation is governed by a constant stress in the ligament in Fig. 15. Assuming the same linear

temperature variation over the cycle the composite creep rate for the model is found to be

r '~~exp(j3 (AT+T0)(13/)Y PAT 
(2

Using the data for the loading condition of Fig. 7b and integrating Eqn. (9b) numerically

the ratio of the two rates are found to be !IF,,,- 4.9 which is in close agreement with the

experimental value of 3.3. The experimental rate before debond was measured after a plastic

strain accumulation of 0.8 %. The plastic strain cause the residual stress state to relax in the

matrix and the experimental value can be expected to be lower that the calculated value because

the model does not include this relaxation. It is interesting to note that the model predicts a
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matrix creep rate that is approximately 50 times higher than the composite creep rate. However,

the interaction between the stiff fiber and matrix limits the strain rate of the composite so it is

a tenth of the matrix creep rate.

8. CONCLUSIONS

When the composite SCS6/Ti 15-3 is subjected to a combination of constant transverse

and cyclic thermal loading it is observed that the transverse strain ratchets continuously with time

for some loading conditions. This has also been observed for the composite FP/AI [ Jansson and

Leckie, 1992a]. In the case of the FP/A1 composite the rachetting strain is caused by time

independent plasticity resulting from a large thermal mismatch of the alumina fibers and the

aluminum matrix. By contrast the thermal mismatch for the SCS6/Ti 15-3 system is modest and

it was established that the source of the ratchetting is time dependent creep deformation, which

may be predicted using the simple Norton creep law with a temperature dependence of the

Arrhenius type.

Debonding occurs during initial loading when the transverse stress is sufficiently high and

after an accumulation of creep strain for lower stress levels. For the lower stress levels the

debond is associated with a decrease in creep rate. When debond occurs the residual stress field

induced during the fabrication is relaxed. The residual stress state in combination with the

stresses due to the mechanical loading give rise to a higher creep rate than for pure mechanical

loading.
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After debond the creep rate of the composite corresponds to that of a matrix with a -void

fraction equal to the fiber volume fraction. The effective creep rate of the composite is given

by a matrix where the fiber locations are regarded as holes. The transverse elastic modulus is also

reduced to a third of the initial value.

The sliding resistance determined from push out tests on fibers is also greatly degraded

afmer zhenmal cycling. This implies that the sliding resistance cannot be controlled in this

composite when subjected to operating conditions which causes inelastic deformations.
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10. Appendix

A simple model is developed to provide physical insight and which predicts stress and

strain histories. The composite is represented by a square element as shown in Fig. 14. The

element is subjected to a constant stress - in one of the transverse directions and a temperature

change to T from a stress free temperature T,. It is assumed that the stress component in the

unloaded transverse direction is zero throughout the element and that the matrix deformation is

dictated by the highly stressed ligaments. Constant stress fields are assumed in each of the section

of the element. Equilibrium in the loaded transverse direction then requires

U=(1 -Ff. ),+Fyf ÷ ff (Ala)

Assuming that the longitudinal stress is constant in the matrix, equilibrium in the longitudinal

direction gives

0:.( -f.•¢f--O(Alb)

Compatibility in the transverse and longitudinal directions requires

(A2a)

E. f :• '-{•b

NI G,.vI+a-aX -T) 0fvaý(U
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The stresses in the matrix ame found to be

[AaTB-f (Aa)

a ZIM A 2aYT+B 2 (y](A

where the elastic constants are

A(1f i E + i-Ff (A4a)E f f V 7f

EE
A2= V-V+f { fJ (A4d)

BE E. 1 Ad
-E, f VTV)

E19 fIF



and

OT=E,(a .- af)(T-T) (A5)

For a temperature change of T-Tc = -900 C and use of the data given in Table 1 gives

the stresses ;,-= 590 MPa and a,,= 497 MPa. A detailed finite element analysis (Gunawardena

et al, 1993) predicted the residual stresses which occur after processing to be cr• = 500 MPa and

o.. = 400 MP .The approximate stress predictions are 20 % higher than those of the more

precise finite element analysis but should be capable of predicting creep rates within a factor of

2 which is sufficiently close for the purposes of this investigation.

By use of the reciprocity theorem it-can be shown that the plastic strains in the matrix are

related to the average strain of the composite as

1=.- [B(1 -VT)V-d,,+B2fJ (A6)
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Table I. Elastic constants

. (GPa) v (a/C)

Matrix 115 .32 9.6 10-6

Fiber 360 .17 4.5 10.6
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FIGURE CAPTIONS

Fig. 1 Uniaxial stress strain curves for matrix and fiber.

Fig. 2 Experimental transverse stress strain curves for composite before and after thermo-

mechanical loading. In the graph are also shown calculate responses for different residual

stress states and interface characteristics.

Fig. 3 a) Fracture surfaces of virgin specimen tested at ambient temperature.

b) A high magnification view of the fracture in the matrix ligament.

Fig. 4 a) Fracture surface of specimen subjected to mechanical and cyclic thermal loading.

b) A high magnification view of the fracture in the matrix ligament.

Fig. 5 Experimental setup.

Fig. 6 Recorded temperature distribution in specimen.

Fig. 7 Accumulation of plastic swain:

a) High transverse loading: ; = 200 MPa and AT = 380 C

b) Low transverse loading. a = 50 MPa and AT = 420 C
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Fig. 8 Strain range as a function of temperature range and transverse loading.

Fig. 9 a) Average steady state strain rate as a function of temperature and transverse

loading.

b) Steady state strain accumulation per cycle as a function of temperature and

transverse loading.

Fig. 10 Photographs of side surface of specimen after thermno-mechanical testing;

a) Picture showing debond at fiber-matrix interface.

b) Detailed picture showing debonded pultruding fiber.

Fig. 11 Effect of thermal and mechanical fatigue on interfacial sliding resistance.

Fig. 12 Experimentally determined shakedown conditions and calculated elastic shakedown

conditions for different interfaces.

Fig. 13 Steady state creep rate for matrix and composite at constant temperature and

composite at cyclic temperature.

Fig. 14 Creep rates normalized with use of Equation (4).
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Fig. 15 Simplified unit element for composite.
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ABSTRACT

Fatigue in ceramic matrix composites typically occurs when matrix cracks are

present by cyclic degradation of the sliding resistance of the interface. The basic

mechanisms are discussed and a methodology is developed that enables fatigue life

predictions to be made, based )n a minimum number of experimental measurements.

The methodology relies on analysis of hysteresis loops. Changes in modulus upon cyclic

loading as well as the permanent strains are predicted, as well as the fatigue threshold

and the S-N curve.
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1. INTRODUCTION

Ceramic matrix composites (CMCs) are subject to fatigue upon cyclic mechanical

and thermal loading (Holmes, 1993; Zawada and Butkus, 1991; Butkus and Holmes,

1992; Allen et al., 1991; Minford and Prewo, 1987; Rousseau, 1990; Rouby and Reynaud,

1993). Understanding the mechanisms of fatigue represents an important step in the use

of these materials. This article provides a review which describes fundamental

mechanisms, gives predictions of fatigue damage and relates predictions to

experimental measurements.

Various observations and measurements provide the background needed to

establish the mechanisms. Three phenomena are consistently present upon cyclic

loading of CMCs (Fig. 1.1). Fatigue occurs in accordance with a classical S-N curve

subject to a definite threshold ath. The secant modulus decreases as fatigue proceeds.

There are corresponding permanent deformations.

For fatigue to occur, matrix cracks must be present after the first cycle. In

consequence, fatigue only arises at stresses that exceed the matrix cracking strength,

designated amc (Fig. 1.1). Moreover, the fatigue threshold, ath, is always considerably

larger than amc. The cyclic opening and closing of these cracks provides the basic

fatigue mechanisms. The fundamental fatigue model requires that the fiber/matrix

interfaces debond and slide as the matrix cracks cycle, manifest as hysteresis loops

(Fig. 1.2). An understanding of hysteresis is central to the modelling and prediction of

fatigue. There are three possible mechanisms. (i) Changes in the interface sliding

resistance may occur upon cycling, with corresponding changes in hysteresis (Fig. 1.3).

(ii) The strength of the fibers may be degraded by cyclic sliding along the interface by

means of an abrasion mechanism, which introduces flaws in the fibers. (iii) Fatigue

crack growth occurs in the matrix itself in accordance with a Paris Law. These three

mechanisms are compatible with the fatigue behavior found in high-toughness,
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monolithic ceramics, such as Si3N 4, in which crack face bridging tractions are

diminished by cyclic loading (Lathabai et al. 1991; Rbedel et al. 1990; Guiu et al. 1992).

For many CMCs, there is no fatigue mecharnism operating in the matrix itself,

because the matrices have low-toughness. For these composites, either interface or fiber

degradation dictate fatigue. When ceramic fibers are used (rather than C), interface

degradation is the dominant fatigue mechanism. This mechanism is emphasized in the

present article. As the sliding stress T diminishes upon cycling, the inelastic strain and

the ultimate tensile strength (UTS) are affected. The inelastic strain increases, because the

interface sliding distances increase leading to both a reduction in the secant modulus

and a permanent strain. Conversely, the UTS decreases, because the effective fiber gauge

length operating within the composite increases as r decreases. This leads to enhanced

fiber bundle failures and a classical S-N curve. Matrix cracking and load sharing models

are used to predict the fatigue behavior, subject to cyclic interface degradation.

2. THE INTERFACE MODEL

2.1 Basic Model

When matrix cracks are present, large shear stresses are imposed onto the coating

between the intact fibers and the matrix. These stresses elicit responses that control the

inelastic deformation and the fatigue of CMCs. The first interface event to occur is

fracture, or debonding (Hutchinson and Jensen, 1990; Charalambides and Evans, 1989;

Gao et al., 1988). Since most CMCs have fibers subject to residual compression, the

debond is a mode II (shear) crack that extends either within the coating are at one of the

interfaces. Debonding occurs with an energy dissipation per unit area, designated Fi.

Behind the debond front, the crack faces are in contact, especially at undulations along

the fiber (Fig. 2.1). Coulomb friction operates at these contacts, resulting in a sliding
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resistance, T. The thermomechanical properties of interfaces in CMCs are characterized

by a combination of ri and T.

Mode 11 crack growth within such a thin brittle layer occurs by the formation and

coalescence of an array of microcracks, en echelon (Fig. 2.2). Generally, the microcracks

develop with a spacing that scales within the layer thickness, such that the debond

energy is proportional to the intrinsic fracture energy of the coating material itself, Fco,

(Xia and Hutchinson, 1993a),

r•1 = 4r., (2.1)

Sliding behind the debond front is sensitive to the residual stress, the amplitude of

undulations that occur along the fiber, and the friction coefficient. The simplest model is

based on a unit cell containing a fiber with circumferential roughness having amplitude,

H, and wavelength, L (Fig. 2.1). When the fiber rigidly displaces by L/2, the matrix

must displace outward to its maximum extent in order to allow continued sliding of the

fiber. The sliding stress may be estimated by analysis of this situation (Liang and

Hutchinson, 1993; Kerans et al., 1992; Mackin et al., 1992). The outward elastic

displacement of the matrix cylinder, urn, due to an average interface pressure, pi, is

given by,

_ R [P +f ] (2.2)

where R is the fiber radius, Em the matrix modulus, f the fiber volume fraction and Vm

the matrix Poisson's ratio. The inward elastic displacement of the fiber caused by the

same average pressure is
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U f El (2.3)

There is also an elastic contraction of the fiber, caused by the axial fiber strain, •j

U, = vfEf (2.4)

where V1 is the Poisson's ratio of the fiber. The total elastic displacement of matrix and

fiber must balance the misfit displacement, as modified by elastic flattening of the

asperities (Liang and Hutchinson, 1993). The misfit displacement is

u = RET+H (2.5)

where &r is the misfit strain due to differences in the thermal expansion coefficient.

Combining Eqns. (2.7., to (2.5) and neglecting the elastic flattening, the average interface

pressure becomes,

E,[ ET + H/R- Vfef]

Pi = 1 +(Ef/Em)[(1 + f)/(1- f)+ vm] (2.6)

The sliding stress is related to this average pressure by a Coulomb friction law

9- Pi (2.7)

where the proportionality depends on the number of contact points per unit interface

area between the fiber and the matrix. The final result is
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= 4[T+H/R- vf e], (2.8)

where •. is a parameter that depends on the elastic properties and the fiber

concentration. Interface sliding in CMCs has been understood through these three strain

terms, associated with thermal expansion misfit, roughness and Poisson's contraction,

respectively.

2.2 Interface Wear

Upon cyclic loading, when matrix cracks are present, the matrix slides past the

intact fibers. These sliding displacements change r and, in consequence, cause further

debonding. It has been suggested (McNulty et al., 1993) that the changes in T be

represented by,

(r -to)/(r, -co) = 1- exp(-0wN") (2.9)

where To is the initial value in the first cycle, Ts is a steady-state value, and co and ). are

numerical coefficients. These reductions in T are attributed to 'wear' mechanisms

operating in the fiber coating (Fig. 2.1), especially at those contacts subject to high

pressure. Evidence that a reduction in the height of asperities occurs along the fiber

coating has been presented for the analogous problem of fatigue in Ti MMCs (Walls et

al., 1992). Related effects probably occur in CMCs, but direct observations have yet to be

performed. The 'wear' process is facilitated by the temperature rise that occurs along

the interface, as frictional dissipation proceeds. At high frequencies, the increase in

temperature can be large enough to oxidize the fiber coating, even though the ambient

is at room temperature (Holmes and Cho, 1992). When the fiber coating is C, it reacts to

form CO, resulting in a large reduction in "r.
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A model that predicts changes in T with cycling would require a mechanism that

reduces the roughness parameters in the sliding model, based on the sliding

displacements that occur and the temperature reached. Some simple wear concepts

provide insight about the roles of the strain amplitude, AaF, and temperature amplitude,

AT.

The basic formula that characterizes adhesive wear, relates the thickness of

material removed, Ah, to the sliding displacement I by (Archard, 1953)

Ah = ki (2.10)

where k is a coefficient that depends on yield strength. The maximum distance moved

is related to the change in crack opening displacement per cycle AS by

I - 2NA8 (2.11)

where N is the number of cycles. When the debond energy is small, A 8 is given by

(McMeeking and Bao, 1993),

A = (Ao +fEAaAT)2 p (2.12)

where Aa is the stress amplitude, AT the temperature amplitude and p is a coefficient.

The extent of the wear thus scales as,

Ah - kpN(Acr-+ fE 1 AaAT)2  (2.13)

The effect can be characterized by first establishing the isothermal behavior at a

reference stress amplitude AaYo,
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Aho - kp NoA(20 (2.14)

Thus, for a general thermomechanical cycle,

r 2
_Ah [A+fE1 AaAT] N

Aho Lu I N0  (2.15)

This result provides some insight about coupling effects between the stress, the

temperature amplitude and the number of cycles. The reduction in the roughness H by

Ah would have a direct effect on T, in accordance with Eqn. (2.8).

3. FIBER PROPERTIES

3.1 Load Sharing

The strength properties of fibers are stat stical in nature. Consequently, it is

necessary to apply principles of weakest link statistics, which define the properties o0

fibers within a composite. The initial decision to be made concerns the potential for

interactions between failed fibers and matrix cracks. It has generally been assumed that

matrix cracks and fiber failure are non-interacting and that global load sharing (GLS)

conditions obtain* (Curtin, 1991; Phoenix and Raj, 1992, Hild et al., 1993). In this case, the

stress along a material plane that intersects a failed fiber is equally distributed among

all of the intact fibers. Experience has indicated that these assumptions are essentially

valid for a variety of CMCs.

* However, a criterion for GLS breakdown has yet to be devised.
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Subject to the validity of GLS, several key results have been derived. Two

characterizing parameters emerge (Henstenburg and Phoenix, 1989): a characteristic

length

8M÷I = Lo[SoR/]']m  (3.1)

and a characteristic strength

S = S. [Lot/R] (3.2)

where m is the shape parameter, So the scale parameter and Lo the reference length.

Various GLS results based on these parameters are described below.

When fibers do not interact, analysis begins by considering a fiber of length 2L

divided into 2N elements, each of length 8 z. The probability that fiber element will fail,

when the stress is less than 0, is the area under the probability density curve (Matthews

et al., 1976; Freudenthal, 1967)

8)= a-g(S)dS (3.3)

where g(S)dS/Lo represents the number of flaws per unit length of fiber having a

"strength' between S and S + dS. The local stress, (;, is a function of both the distance

along the fiber, z, and the reference stress, N. The survival probability Ps for all elements

in the fiber of length 2L is the product of the survival probabilities of each element

(Daniels, 1945),

N

P,(Ub,L) = I1L[1-8.(Ub,z)] (3.4)
n--N
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where z = nSz and L = N 8 z. Furthermore, the probability OS that the element at z

will fail when the peak, reference stress is between i% and Cb + 8db, but not when the

stress is less than d is the change in 80 when the stress is increased by Wb divided by

the survival probability up to Ob, given by (Matthews et al., 1976; Freudenthal, 1967; Oh

and Finnie, 1970)

VS(Ub,z) = [1-80(Fb,z)] [ jd. (3.d)

Denoting the probability density function for fiber failure by (&1(, z), the

probability that fracture occurs at a location z, when the peak stress is i%, is governed

by the probability that all elements survive up to a peak stress Er, but that failure occurs,

at z, when the stress reaches d (Thouless and Evans, 1988; Oh and Finnie, 1970). It is

given by the product of Eqn. (3.4) with Eqn. (3.5)

r= HN [j-80(Ub, z)] [~ bIZ)1s (IbZ d[1-8o(b,z)] - JdUb. (3.6)

While the above results are quite general, it is convenient to use a power law to

represent g(S),

Jog(S)ds" = (0/S0) . (3.7)

Alternative representations of g(S) are not warranted at the present level of

development. Using this assumption, Eqn. (3.6) becomes (Thouless and Evans, 1988)
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Otb') = 0  1L 0  a exp{- 2 fL[(Ozj dzj 1 ' ... [(bz1 (3.8)

This basic result has been used to obtain solutions for several problems (Thouless and

Evans, 1988; Sutcu, 1989; Curtin, 1991).

3.2 The Ultimate Tensile Strength

When multiple matrix cracking precedes failure of the fibers in the 0' bundles, the

load along each matrix crack plane is borne entirely by the fibers. Nevertheless, the matrix

has a crucial role, because stress transfer between the fibers and the matrix still occurs

through the sliding resistance, T . Consequently, some stress can be sustained by the

failed fibers. This stress transfer process occurs over a distance related to the

characteristic length, 8c. As a result, the stresses on the intact fibers along any plane

through the material are less than those experienced within a 'dry' fiber bundle (in the

absence of matrix). The transfer process also allows the stress in a failed fiber to be

unaffected at distance 5 8c from the fiber fracture site (Fig. 3.1). Consequently,

composite failure requires that fiber bundle failure occurs within 8 c (Curtin, 1991). In

essence, SB becomes a measure of the gauge lengths operating within the composite.

This leads to an ultimate tensile strength (UTS) independent of gauge length, Lg, provided

that Lg > 8c.t The magnitude of the UTS can be computed by first evaluating the

average stress on all fibers, failed plus intact, along an arbitrary plane through the

material. Then, by differentiating with respect to the stress on the intact fibers, in order

to obtain the maximum, the UTS becomes,

S8 = f. S, F(m) (3.9a)

*At small gauge lengths (Lg < 8 c), the UTS becomes gauge length dependent and exceeds Su (Hild et al.,
1993).
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with

F(m) = [2/(m + 1) [(m + 1)/(m + 2)]

It is of interest to compare this result to that found for a 'dry' bundle. Then, the 'fiber

bundle' strength Sb, depends on the gauge length in accordance with (Corten, 1967),

Sb = fSo(Lo/L,) e-x (3.9b)

In all cases, Sg > Sb. The effect of the interface on the UTS is apparent when Eqn. (3.2) is

inserted into Eqn. (3.9a) to give

s = F(m)s LT J (3.10)

Specifically, if T decreases because of cyclic degradation, the UTS also decreases. This

arises because the stress transfer length 8c increases leading to a larger effective gauge

length within the composite. This phenomenon is considered to be the fundamental

origin of S-N behavior in CMCs.

3.3 Inelastic Strains

As the load increases, the fibers fail systematically, resulting in a characteristic

fiber fragment length. At composite failure, there can be multiple cracks within some

• 2, 1M9.)433 Momd 14



fibers.t Fiber failure results in inelastic strains. The stress/strain relationship for a

monomodal fiber strength distribution is (Hild et al., 1993),

.+fE.1+[ (m + l(EI/S,)(m+I) (3.11)
.,2n! [1+ n(m +1) 1

Bimodal flaw populations in fibers can produce different behaviors, as found in

SiC/CAS (He et al., 1993, Curtin, 1993)

4. MATRIX CRACKING IN UNIDIRECTIONAL MATERIAL

4.1 The Matrix Cracking Stress

The development of damage in the form of matrix cracks within 1-D CMCs subject

to tensile loading has been traced by direct optical observations on specimens with

carefully polished surfaces and by acoustic emission detection (Kim and Pagano, 1991;

Beyerle et al., 1992; Pryce and Smith, 1992; Kim, 1992, Cho et al., 1992; Kim and Katz,

1988), as well as by ultrasonic velocity measurements (Baste et al., 1992). Interrupted

tests, in conjunction with sectioning and SEM observations, have also be used. Analyses

of the matrix damage found in 1-D CMCs provides the basis upon which the behavior

of 2-D CMCs may be addressed. The matrix cracks are found to interact with

predominantly intact fibers, subject to interfaces that debond and slide. This process is

established at a stress, designated crmc (Fig. 1.2). The crack spacing d decreases with

increase in stress above anc and may eventually attain a saturation spacing, ds, at stress

a.s (Fig. 4.1). The details of crack evolution are governed by the distribution of matrix

flaws. The matrix cracks reduce the unloading E and secant Es moduli, and also induce

t The existence of many fiber fragments is still compatible with a high ultimate tensile strength. A good
analogy being the strength of a wire rope.
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a permanent strain, co (Fig. 1.2). Relationships between Es, CO and constituent properties

provide the key connections between processing and macroscopic performance, via the

properties of the constituents. The basic cell model is shown in Fig. 4.2.

The deformations caused by matrix cracking, in conjunction with interface

debonding and sliding, exhibit three regimes. These depend on the magnitude of the

debond stress, Cli, as governed by the debond energy, through the relationship

(Hutchinson and Jensen, 1990),

o, = (/c,)4E.ri/R - E.ET(C2/C1)

(4.1a)
= OD -0 T

which has a useful non-dimensional form

I,= : j o/ (4.1b)

Here cj are coefficients defined by Hutchinson and Jensen (1990) and OT is designated

the misfit stress. A mechanism map that identifies the three regimes is shown in Fig. 4.3

(Vagaggini and Evans, 1993). When Yi > 1, debonding does not occur, whereupon

matrix crack growth is an entirely elastic phenomenon. When Ii < 1/2, small debond

energy (SDE) behavior arises. The characteristic of this regime is that the reverse slip

length at the interface, upon complete unloading, exceeds the debond length. In SDE, Fi

is typically small and does not affect certain properties, such as the hysteresis loop

width. Hereafter, the term SDE is used, loosely, to represent the behavior expected

when ri -+ 0. A large debond energy (LDE) regime also exists, when 1/2 < 1 i: <1. In

this situation, rever se slip is impeded by the debond.
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The approach used to simulate mode I cracking under monotonic loading is to

define tractions (Yb acting on the crack faces, induced by the fibers (Fig. 4.4) and to

determine their effect on the crack tip by using the J-integral (Marshall et al., 1985;

Budiansky et al., 1986),

= G-f 0abdu (4.2)

where G is the energy release rate and u is the crack opening displacement. Cracking is

considered to proceed when Crip attains the pertinent fracture energy. Since the fibers

are not failing, the crack growth criterion involves matrix cracking only. A lower bound

is given by (Budiansky et al., 1986; McCartney, 1987)

Gip = r.(1- f) (4.3)

with lTm being the matrix toughness. Upon crack extension, G becomes the crack

growth resistance, FR, whereupon

rR = r.(1-f)+ f "cbdu. (4.4)

The sliding distance t, in the absence of fiber failure, is related to the crack surface

tractions, Cr, by (Hutchinson and Jensen, 1990),

1 = [RE.(1-f)/2'tOELf](Ob-di) (4.5)

where EL is the initial longitudinal composite modulus. The sliding length is, in turn,

related to the crack opening displacement, us. The corresponding traction law is,
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Ob--• = [24EoELfu./R]r (4.6)

where

4 r fEf/(1-f)E.

The preceding basic results can be used to obtain solutions for matrix cracking

(Aveston, Cooper and Kelly (ACK), 1971; Marshall et al., 1985; Budiansky et al., 1986;

McCartney, 1987; Zok and Spearing, 1992; Singh, 1989). Present understanding involves

the following factors. Because the fibers are intact, a steady-state condition exists

wherein the tractions on the fibers in the crack wake balance the applied stress. This

special case may be addressed by integrating Eqn. (4.2) up to a limit u = uo. This limit

is obtained from Eqn. (4.6) by equating ab to C. For SDE, this procedure gives

(Budiansky et al., 1986)

(a+° T)3E2 (1- f) 2R
S 6; f 2 E E 2 (4.7)

A lower bound to the matrix cracking stress, Gmc, is then obtained by invoking Eqn. (4.3),

such that (Budiansky et al., 1986)

C = EL [( _) RE T

(4.8)
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The non-linear composite properties are usually dominated by fully-developed matrix

cracks that form at stresses above amc. However, in some cases, small matrix cracks can

form at stresses below amc (Kim and Pagano, 1991). These occur either within matrix-

rich regions or around processing flaws. These small flaws may provide access of the

atmosphere to the interfaces and cause degradation.

A corresponding result for LDE is (Fig. 4.3) (Budiansky et al., 1993),

aim a+ +2 D= 1( 3() -!-)2+2JE_3(49
4.2 Crack Evolution

The evolution of additional cracks at stresses above (Ymc (Fig. 4.1) involves two

factors: screening and statistics (Zok and Spearing, 1992; Cho et al., 1992). When the

sliding zones between neighboring cracks overlap, screening occurs and Gtip differs from

qt. The relationship is dictated by the location of the neighboring cracks. When a crack

forms midway between two existing cracks with a separation 2d, subject to SDE, iip is

related to Gt by (Zok and Spearing, 1992)

=lut/•, = 4(d/21)3  (for0<d/t1) (4.10a)

and

Gtp/Gtp = 1-4(1-d/2e) 3  (forl1d/1<2) (4.10b)

When d is sufficiently small, Eqn. (4.10a) applies and Gtip is independent of the stress.

Once this occurs, qtip cannot increase and is unable to again satisfy the matrix crack
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growth criterion (Eqn. 4.3). This occurs with spacing, d s, at an associated stress as

(Fig. 4.1). This saturation spacing is given by,

X[r. (1 -f)2Ef E./fr2 E, Rfv (4.11a)

where X is a coefficient that depends on the spatial aspects of crack evolution: periodic,

random, etc. Combining Eqn. (4.11a) with Eqn. (4.8), ds becomes

ds ./R = (X/6)(70[(1-f)Em/fEL] (4.11b)

Note that this result is independent of the residual stress, because the terms containing

((Yb + OT) in Eqns. (4.5) and (4.7) cancel when inserted into Eqn. (4.10a). Simulations for

spatial randomness indicate that, X - 1.5 (Spearing and Zok, 1993). Moreover, these

same simulations indicate that the saturation stress should vary as

a, = 1.26oa€ _ 0 T (4.12)

In addition to these screening effects, the actual evolution of matrix cracks at stresses

above 03mc is governed by statistics that relate to the size and spatial distribution of

matrix flaws. Various simulations have been performed (Spearing and Zok, 1993;

Curtin, 1993). In these, a condition Xs < 1 corresponds to a high density of matrix flaws

already large enough to be at steady-state, and vice versa. The simulated crack densities

(Fig. 4.5) indicate a sudden burst of cracking at Y = a•mc, when ?-s < 1, followed by a

gradual increase with continued elevation of the stress. The saturation stress is similar

to that given by Eqn. (4.12). In contrast, when Xs >> 1, the cracks evolve more gradually
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with stress, reaching saturation at substantially higher levels of stress4t These simulated

behaviors are qualitatively similar to those measured by experiment (Fig. 4.1). It has

been found that a simple formula can be used to approximate crack evolution in most

CMCs (Evans et al., 1993), given by (Fig. 4.1),

d - - 1] (4.13)

At stresses, a > as, the crack density remains essentially constant. There is no

additional stress transfer between the fibers and the matrix. In this case, the tangent

modulus is of order (Aveston et al., 1971):

Et = do/dE = fEf (4.14)

In practice, the tangent modulus is usually found to be smaller because of fiber failure

(Eqn. 3.10) as well as fiber straightening effects allowed by matrix cracking (He et al.,

1993).

5. MATRIX CRACKING IN 2-D MATERIALS

General compariscn between the tensile stress/strain curves [(()], for 1-D and

2-D materials (Fig. 5.1, provides important perspective. It is found that (s(e) for 2-D

materials is quite closely matched by simply scaling down the stress for the 1-D curves

by 1/2. The behavior of 2-D materials must, therefore, be dominated by the 0' plies,4

t Nevertheless, the saturation spacing remains insensitive to ks (Spearing and Zok, 1993).
4Furthermore, since some of the 2-D materials are woven, the 1/2 scaling infers that the curvatures

introduced by weaving have minimal effect on the stress/strain behaviors.
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because these plies provide a fiber volume fraction in the loading direction about half

that present in 1-D material (Evans et al., 1993).

The typical matrix crack evolution found in 2-D CMCs is depicted in Fig. 5.2.

Cracks first form in the 900 plies at a stress, (Y, and multiply over a small stress range

above a•. Subsequently, these cracks extend laterally into the 0' plies. This occurs stably

subject to increasing stress. Finally, the matrix cracking may saturate and the fibers then

carry the load prior to composite failure. The most significant 2-D effects occur at the

initial deviation from linearity. At this stage, matrix cracks that form 1 900 plies evolve at

lower stresses than cracks in 1-D materials. The associated non-linearities are usually

slight and do not normally contribute substantially to the overall non-linear response of

lhe material. However, these cracks have important implications for oxidation

emorittlement and creep rupture and require analysis. Matrix cracking in the 900 plies

often proceeds by a tunneling mechanism (Fig. 5.2). Tunnel cracking evolves at a stress

G? (Xia et aL, 1993; Hutchinson and Suo, 1992), given by

cy, = ao- e (EL +ET)/2ET (5.1)

with

aO = [ErR/h]f g(f,Ef/E,)

where

Eo = EL(I+EL/ET)/2[EL/ET-2L]

ET is the initial transverse modulus of the 1-D material, h is the ply thickness, OR is the

residual stress at the ply level and VL is defined by
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VL = (v/2)(1+EL/ET).

FR is the fracture energy of the 90 ply given approximately by

rR (1-f) rm

The function g depends quite strongly on whether the transverse fibers either remain in

contact with the matrix upon loading or separate (Fig. 5.3).

The unloading modulus associated with tunnel cracks, E/Eo, depends primarily on

the crack density, h/1, with L being the mean crack spacing in the 900 plies (Xia

et al., 1993; Laws and Dvorak, 1990), as illustrated for contacting fibers on Fig. 5.4. The

ratio E/Eo is larger when the fibers separate. Note that, at large crack densities, a

limiting value Et is reached, given by,

Er/Eo = EL/(EL + ET) (5.2)

The corresponding permanent strain is

o = (1/E- 1/Eo)CR(EL + ET)/2EL (5.3)

Examples of the overall stress/strain response are summarized in Fig. 5.5.

Lateral extension of these tunnel cracks into the matrix of the 0* plies results in

behavior similar to that found in 1-D material. In most cases, the cracks extend stably

into the 0* plies, resulting in inelastic strain. The overall behavior can be expressed

through groups of non-dimensional parameters. The evolution of crack length a with

stress a has the form (Xia and Hutchinson, 1993b),

"IMS3(Dwom* 29. 1993)4:33 PMdmd 23



afto= F 1[a/h,h/L, 1. (5.4)

where

6 6 E'f 2 Th¾ h%
mc 1Omc~o Rr!(1-f E A HE O

13= (AEL/Eo)'s

00 V AEL( - f)Fmfrh(¶ - V2)

and A is an orthotropy factor (Budiansky and CUm, 1993). The function F1 is plotted on

Fig. 5.6 for a typical crack spacing, h/L .-- 1. Extension of the cracks occurs at stresses

below that at which matrix cracking would develop if the material were unidirectional.

Moreover, when the cracks emerge from the 0* plies, Y/oa.,c is in the range, 0.7- 0.9.

The corresponding inelastic strain ept as the cracks extend is given by,

E= F2 (a/h,!/h,I1) (5.5)

where F2 is plotted on Fig. 5.7, for h/1 = 1. These results may be used to predict

stress/strain curves, illustrated on Fig. 5.8, up to the stress at which the cracks extend

through the 00 plies.

A simplified form of the above results is preferred for subsequent analysis of

fatigue. Inspection reveals that the extension of the matrix cracks across the 0 plies

occurs in approximate accordance with the following formula,
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-(a/h)(Zmc-1) (5.6)

Moreover, the cracks penetrate the 0* plies (a = 3h) at a stress 0, given by

u. = 3 0umc- 2aO (5.7)

At stresses above M., the subsequent behavior depends on the interface properties.

When " and 1i are relatively small, the debond zones overlap at matrix cracks emanating

from tunneling cracks in the 90" plies. Crack saturation is achieved at C - G.. The

subsequent load is then borne by the fibers, resulting in an essentially constant tangent

modulus given by Eqn. (3.10). Such behavior is exemplified by SiC/CAS. Conversely,

when either 'T or ri are large, the slip zones from these cracks do no overlap at a = a..

Then, upon further loading, additional cracks form in the 0 plies. The subsequent

behavior is precisely analogous to that found in unidirectional materialtas exemplified

by SiC/SiC composites made by CVI (Guillaumat, 1993).

6. HYSTERESIS

6.1 Unidirectional Material

Analyses of the plastic strains caused by matrix cracks, combined with calculations

of the compliance change, provide a constitutive law for the material (He et al., 1993).

The important parameters are the permanent strain co and the secant modulus, Es.

These quantities, in turn, depend on several constituent properties; the sliding stress, C,

the debond energy, Fi, and the misfit stress (T. The plastic strains also govern the

hysteresis that arises when the material is unloaded and reloaded (Vagaggini et al.,

* Subject to knowledge of the stresses borne by the 0 plies.
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1993). This hysteresis relates in a fundamental way to the fatigue process. For this

reason, the most important hysteresis results are summarized below.

Matrix cracks increase the elastic compliance. Numerical calculations indicate that

the unloading elastic modulus, E, is given by (He et al., 1993),

EL/E*- = (R/d)B[f,E,/Em] (6.1)

where B is a function. Finite element calculations give the values for B plotted on

Fig. 6.1. In practice, B is often larger because of fiber straightening effects (He et al.,

1993). An example for SiC/CAS is shown on Fig. 6.2. The matrix cracks also cause a

permanent strain associated with relief of the residual stress. This strain, e*, is related to

the modulus and the misfit stress by (He et al., 1993),

E* Sa T[1/E* - /EL] (6.2)

The preceding effects occur without interface sliding. The incidence of sliding leads to

plastic strains that superpose onto e*. The strains can be calculated from the crack

opening displacement (Eqn. 4.6) by using

b2  u.
(b2 +b 3) d

There are two basic behaviors depending on the stress relative to the saturation

stress, as. When a < as, d decreases with increase in stress and the inelastic strains are

relatively large. When G > Os, the inelastic strain arises primarily because of fiber

failures (Eqn. 3.10).
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When a < as, there are two different results. These obtain for SDE and LDE,

respectively, as differentiated by the magnitude of 1: (Fig. 4.3). For SDE (1 = 1/2), the

permanent strain is (Vagaggini and Evans, 1993)

(Eo-=•' = 4(1-1Zi)z 'T+1-21: (6.4)

where XH is a hysteresis index given by

11H -- /o

with

a1  = 2[Ef/Em(1-f)] 4=doE./b 2R

and

IT -a UT/O. (6.5)

The secant modulus is

1/ES = 1/E. + Eo/a (6.6)

Upon unloading and reloading, the curves have mirror symmetry (Fig. 1.2). In practice,

only one (unloading or reloading) need be analyzed. For example, the unload strain F,

at stress, aY, is

U= [H + ] + /E'+ " (6.7)
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where I u = ou/0- It is convenient to define a strain difference

eu= EO06 E

= (a- )/a. +(a-oa)/E. (6.8)

where 4 is the strain at the peak stress. There is a corresponding result for reloading.

This strain difference can be used to evaluate 0 oand E. from experimental

measurements, as discussed in the following section.

For LDE, the permanent strain is (Vagaggini and Evans, 1993),

(0o- ') = 2(1- 1j)(1- Zj + 21T) (6.9)

There is a corresponding change in the secant modulus (Eqn. 6.6). The unloading strain

is initially parabolic and given by Eqn. (6.7), such that Aeu is still given by Eqn. (6.8).

Then, when

zu : 2 IM - 1 (6.10)

linearity resumes, such that

C, -- (1- £") [21T + (1- I) +2u] + ou/E'+ " (6.11)

giving

AE = 4(1- 1:-)(o-O•)/c,2+(o-a.)/E" (6.12)
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Beyond saturation, (d Ž da, the extra inelastic strains are given by Eqn. (3.10).

The permanent strain and the secant modulus change accordingly. There is also a

change in the hysteresis. Upon unloading, the initial behavior is still parabolic with Aeu

given by Eqn. (6.8). A transition then takes place when the stress Cou reaches the reverse

slip zone overlap stress, (;. This overlap stress is given by Eqn. (4.5), with I =

Y,-G, = 2"o'dELf/REm(I-f) (6.13)

When (Yu < a1, the unloading strain difference becomes

AEU= Ou(1- f)Em + u OU dr

EfEf E EfR (6.14)

In composites with relatively large values of To and/or ri, matrix crack closure

effects often arise upon unloading as C -+ 0 (Fig. 1.2b). The closure stress, ace, then

becomes the effective minimum, Omin. When this behavior arises, analysis of the

unloading strain is the preferred method for obtaining the constituent properties. The

analysis must be restricted to Yu > cct in order to avoid spurious interpretations.

6.2 2-D Material

As cracking proceeds in the 900 plies, the fraction of the load borne by the 00 plies

increases. The nominal stress on these plies 0 L (0) is related to the moduli by,

OL/ = E (6.15)
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with E given by Fig. 5.4. This result applies before the matrix cracks penetrate the 00

plies. The changes that occur once 00 ply cracking commences have yet to be analyzed.

An approximate procedure has been used, which appears to provide useful predictions.

The stress ratio OL/O is computed from Fig. 5.4, at the appropriate crack spacing in the

900 plies. Typically, this is in the range 1.8-2, with 2 being the maximum possible value.

This ratio is then assumed to remain constant as cracking proceeds in the 0° plies. With

this modification, the unidirectional results described above give direct predictions of

the permanent strain, the reload strain and the secant modulus.

7. CYCLIC CRACK GROWTH

7.1 Mechanisms

For many CMCs, there is no fatigue mechanism operating in the matrix itself,

because the matrices are low-toughness materials. For these materials, the criterion for

crack extension is that energy release rate at the tip, Cqtjp, reaches the matrix fracture

energy rm. In this case, fatigue relies on cyclic degradation mechanisms operating at the

interfaces. The important fatigue phenomena may be elucidated by equating Cmip and

Frn, but allowing 'r to vary with cycles, N.

In composites involving a tough ceramic matrix, there is an additional contribution

to matrix crack growth given by the Paris law criteriont,

da/dN = P,(AKV/E)P (7.1)

where a is the matrix crack length, N the number of cycles, of is a fatigue coefficient for

the matrix and p the fatigue exponent. Moreover, when oxide matrices are used, stress

* For fatigue, stress intensity factors K are used more commonly than the energy release rate, G. Hence

Ks are emphasized in this section.
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corrosion is also possible. Then, the matrix cracks extend by static fatigue at a growth

rate governed by (Wiederhorn, 1%7)

da/dt = vo(Kt./Ko) (7.2)

where t is time, Ko and vo are reference values of the energy release rate and velocity,

respectively, and n is the exponent.

A simple transformation converts the monotonic crack growth parameters into

cyclic parameters that can be used to interpret and simulate fatigue growth of matrix

cracks. The key transformation is based on the relationship between interface sliding

during loading and unloading, which relates the monotonic result to the cyclic

equivalent (McMeeking and Evans, 1990):

(½)Aab(x/a, AG) = ab(x/a, Ac/2) (7.3)

where AO is the range in the applied stress. Notably, the amplitude of the change in fiber

traction Aab caused by a change in applied stress, A(, is twice the fiber traction ab

which would arise in the monotonic loading of a previously unopened crack, caused by

an applied stress equal to half the stress change. There is a similar relationship for the

stress intensity range experienced by the crack tip,

AKtp = 2KuP(Aa/2)- (7.4)

When the fibers remain intact, a cyclic steady-state can be obtained with the above

transformations (McMeeking and Evans, 1990),

AKdP = (R/12)%• (Aa/AT) (7.5)
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where AT is a cyclic sliding parameter, given by

AT = 4(1E/AaE, )M'

The corresponding matrix crack growth rate is determined from the Paris law, as,

da oR A CF_]P.
S= t"Li2ATEm J (7.6)

The effects of fiber breaking can be introduced by using the fiber strength, Sg. Once

the fibers begin to fail, the unbridged crack length is continuously adjusted to maintain

a stress at the unbridged crack tip equal to the fiber strength (Bao and McMeeking,

1993). If the fibers are relatively weak and break dose to the crack front, the bridging

zone is always a small fraction of the crack length, and there is minimal shielding by the

fibers. Conversely, when the fiber strength exceeds a critical value, they never break

before the crack extends across the plate and the fatigue crack growth rate always

diminishes as the crack grows. This is the case found in most CMCs. The sensitivity of

these behaviors to fiber strength is quite marked (Fig. 7.1).

This basic matrix crack growth model can be extended to include

thermomechanical fatigue (TMF). This can be achieved by means of another

transformation wherein all of the range terms in Eqns. (7.3) to (7.6) are replaced, as

follows (McMeeking, 1993),

A = Au + fE,(a, - am)AT

(7.7)

aob = Aob + fE(af - m)AT
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where AT represents the temperature cycle and Aa the stress cycle. It is immediately

apparent that matrix crack growth rates are expected to be quite different for out-of-

phase and in-phase TMF. A key result is that, whereas A tip always reduces upon

initial crack extension, either for stress cycling alone or for in-phase TMF, it can increase

for out-of-phase TMF.

7.2 Composite Behavior

Composite behavior is addressed here for materials in which matrix fatigue is

minimal. The consequence is that, for unidirectional material, all of the matrix cracking

occurs in the first cycle. The crack density and the elastic modulus, E., remain constant

upon further cycling, provided that amax does not increase in subsequent cycles.

However, the interface sliding resistance diminishes, causing both a permanent

deformation and a diminished secant modulus, as cycling proceeds. The reduction in c

also diminishes the ultimate tensile strength, because the effective gauge length is

increased, leading to S-N behavior. The preceding analysis of the inelastic strain and of

the UTS may be used directly to predict the fatigue behavior. This is described in

section 8. When stress corrosion occurs in the matrix, matrix cracks continue to form as

cycling proceeds. This effect can be included in the fatigue model.

Fatigue in a 0/90 cross ply system, has some different aspects, which depend on

the maximum stress reached on the first cycle, designated Oma. (1). The behavior may

be understood with reference to the results presented on Fig. 5.6. There are three

regimes. (i) When (mx (1) Yo, there are no matrix cracks and cyclic loading does not

lead to any property changes. (ii) Between Go and a., cracks form in the 90 plies during

the first cycle and these cracks partially penetrate the 0 plies. In this case, the cracks in

the 0* plies extend during cycling, leading to reductions in elastic modulus, E& and

secant modulus, Es, as well as an increase in the permanent strain, E.. (iii) At stresses
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above (., most cracks penetrate the 0* plies on the first cycle. Upon subsequent cycling,

the behavior is essentially the same as that found for unidirectional materials. The

changes in elastic modulus are minimal, but there is a decrease in secant modulus and

an increase in permanent strain.

In the range ;o < Oax (1) < ac, an approximate solution for crack growth through

the 0 plies can be obtained by using Eqn. (5.6). At the simplest level, it may be

assumed that all interfaces degrade uniformly in accordance with Eqn. (2.9). In practice,

the interface must progressively degrade as the cracks extend and interact with the

fibers. The uniform degradation approximation thus represents an upper limit for the

crack growth rate. This solution is given by,

a/h =(Omax-Oo)/[t30•cN-/ 3 -Oo] (7.8)

The number of cycles needed to extend the crack across the 0 plies, N., is then

N. = [3P30O,/(co. +20°)]' (7.9)

When N < N, because the matrix cracks are extending, there will be a decrease in the

elastic modulus, as well as the usual changes in Es and rro, which can be estimated from

the crack length using Fig. 5.7.

At N > N,, the material behaves in the same manner as unidirectional material.

However, the stress acting in the 0 plies needs to be known before the fatigue

properties can be predicted.
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8. FATIGUE METHODOLOGY

8.1 Philosophy

A practical methodology should be able to predict the overall fatigue response

from a small n-mber of critical experiments. The present concept is to use a few tensile

and fatigue tests to evaluate the constituent properties (Fig. 8.1). These are then used to

predict the S-N curve, the changes in elastic modulus, the permanent strain and the

thermomechanical fatigue response. Two general observations facilitate the analysis.

(i) Measure~aents of the crack density d are non-trivial. A procedure that does not

require such measurements is preferred. This has been found possible, because all of the

relevant formulae contain the non-dimensional quantity,

L = U/E.R

(8.1)

H (1-f)2b2

- Ef

(ii) There are three types of constituent property which affect fatigue. The first type is

stress independent. These are initial modulus, E, and the misfit stress ;T. The second type

is dependent on the maximum stress reached during the first cycle, apeak. These

properties are elastic modulus, E*, and the misfit relief strain, e*. The third is cycle

dependent. These are the sliding parameter L, and the UTS, Sg.

8.2 Tensile Tests

Tension tests with periodic unloading are used to evaluate the constituent

properties. Parameters given immediately by the stress/strain curve (Fig. 8.1) are E and

Sg(1). Here the designation (1) is used to refer to the first cycle. At each unload or

reload, corresponding to a particular peak stress, Opeak, the permanent strain E0 (1) is
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recorded and the unload strain differential, Aeu, is determined. The latter is obtained

from the data and fitted with a polynominal. Differentiation then gives the hysteresis

modulus,

H d(Ae=/dau (8.2)

This modulus is related to the interface parameter, L, (1) and the elastic modulus, E,,

when O• < a0 by (Eqn. 6.8),

EH' = +[(1-f)2b2/2E2 f2] u/L(1) (8.3)

A least squares linear fit of F4. (Yu) to Eqn. (8.3) gives L (1) and E,. The analysis is

repeated at several values of Opeak, to give, E* (Opeak) and £ (1, apeak).

In order to further enhance the fidelity of the data, the linearities between both

V1) and E- with Opeak are noted. Specifically since To is essentially independent of

Opeak, Eqn. (4.13) indicates that L (1) usually varies as:

L (1) = L, ady i
S(8.4)

where Ls represents the magnitude of the sliding parameter at =peak Os. It is also

evident from Eqn. (6.1) that £ (Opeak) and E- (Opeak) are related by

[E/E. - 1/1L = B (8.5)
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where B is a constant. The linearity expected from Eqns. (8.4) and (8.5) facilitates a least

squares fit to obtain the following parameters: Omc, Gs, 4s. At stresses above as, both

L = Ls and E* = Eu5 remain constant.

Various approaches can be used to obtain the misfit stress, aT, subject to the

material being either SDE or LDE. For example, with SDE materials, the permanent

strain F-o (1, apeak) can be used. For this purpose, the product, So L (1, Opeak) has an

explicit dependence on the peak stress (Eqn. 5.4), given by,

(Xa- + 4xo oaT + UT [1/E - l/E] (8.6)

where

x = (4/b2)(c2 /a 2c1 )2

A least squares fit to Eqn. (8.6) with x known allows OT to be obtained from the second

term on the RHS. At this stage, the following parameters are known:

E, E. (C",CT, Sg(1), L, L(1, apea), FMC, 'a.

8.3 Cyclic Tests

Cyclic loading experiments are conducted at fixed stress amplitude AO and fixed

ratio of maximum to minimum stress, R. Hysteresis measurements are made

periodically during the test (Figs. 1.3 and 8.1). A convenient test condition is:

a•ax = 0.7 Sg, R = 0.05. The hysteresis unload behavior is analyzed, using Eqn. (8.3) to

obtain E, and L (N). There are two basic behaviors. Wi) When both stress corrosion and
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matrix fatigue are absent, the crack spacing and E, remain constant and the cyclic

degradation of the interface is obtained directly

L (N)IL (1) =* r/l'r. (8.7a)

This is expressed in the form

Z/Zo = F(N) (8.7b)

When E- is found to change upon cycling, the crack spacing d diminishes because

of either stress corrosion or matrix fatigue. Then, T P o is not given by changes in L (N).

However, since d and E, are related by Eqn. (6.1), it is still possible to obtain T"/ T 0

using

L(N) E/E. (1) - 1

L() LE/E.(N)-l 11 (8.8)

One complication arises because the slip overlap stress decreases during cycling.

This causes the hysteresis loop shape to change. When this occurs, the hysteresis loop

width diminishes upon further cycling and there is a change in A eu from parabolic to

linear when the unloading stress ou -ý O. Analysis of the hysteresis loops to obtain

"r /T o is confined to the parabolic range, in which Eqn. (8.3) is still applicable. However, to

check for consistency, it is noted that slip overlap occurs at oaf after NI cycles, where

NI is obtained from Eqn. 6.13, by equating 01 to Omax, as

L(NI) (1-) (Umax -Oi)
Ef 2 (8.9)
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8.4 S-N Curves

When matrix crack growth does not occur during cycling, it is straightforward to

predict the S(N) curve from the above measurements. The failure criterion specifies that

failure occurs when the UTS decreases to Omax =ý rnax = Sg (N). This criterion is

combined with the measurement of o /' o (N, Aao) to give the cycles to failure, N1 . The

simple result is

Nf = (ma/Sg) F-1. (8.10)

For the case in which T(N) is given by Eqn. (2.9), with Sg given by Eqn. (3.10), the cycles

to failure are,

N1 = (Sg/amax)(m+l)/X

provided that Gmax > ath, given by

Oth = Sg (;/To)I/(m+l)

A typical example is plotted on Fig. 8.2.

8.5 The Secant Modulus

The permanent strains prior to slip zone overlap can be predicted by a formula

obtained upon rearranging Eqn. (6.4)
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Eo(NOm., AO = E*(a --- L [E ( )-E(a)l
L(N) 0(8-11)a~

when overlap occurs, there are no further changes in E0. When d remains constant

during fatigue, since Eo (1, amax) is known from the tensile data, it is straightforward to

predict eo (N, Om, AO) from Eqn. (8.11), by inserting L(N) from Eqn. (8.7). Changes in

d upon cycling, manifest as changes in E-, can be included by using E. (N) to re-evaluate

S(N).

With so now known, the secant modulus can be predicted from Eqn. (6.11), by

using

I/E. = 1/E. + eo.. (8.12)

One limitation is that a model for predicting changes in crack spacing a with Aa and

R-ratio does not yet exist for matrices susceptible to either stress corrosion or fatigue.

This is not a serious limitation for many technologically important non-oxide CMCs.

For certain oxide matrix CMCs, and high toughness Si3N4 matrix CMCs, further

analysis is needed to address this problem. In the interim, experimental measurements

of crack spacing are required.

9. PRELIMINARY FATIGUE EXPERIMENTS

Some preliminary fatigue results are presented to illustrate the methodology

described in Sections 8.3 and 8.4. For this purpose, cyclic loading experiments have

been conduced on a unidirectional CAS/SiC composite and the hysteresis

measurements used to predict the fatigue life. This composite exhibits an unusually

rapid degradation in the interface sliding stress with cyclic loading. Moreover, the
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matrix is susceptible to stress corrosion, making it necessary to measure crack spacing

in order to predict cyclic behavior. Nevertheless, it will be demonstrated that the

fatigue life can be predicted with good accuracy. The fatigue threshold is particularly

well defined.

The results to be described refer to tension fatigue tests conducted on straight

specimens, with dimensions 150 x 3 x 4 mm and with axial strains measured using a 10

mm extensometer. Tests conducted at several stress ranges Aq, with a fixed stress ratio

R=0.05, have the typical hysteresis loops shown in Fig 9.1. Initially, the width of the

hysteresis loops increases with cycles, a result of the degradation in T. However, upon

further cycling, the loop width decreases. Moreover, the loops exhibit a linear portion

following loading to large stresses, (; - anin. The tangent modulus EH in the linear

region is essentially EH = f Ef = 74 GPa. These two latter effects are associated with the

overlap of the slipped regions between adjacent matrix cracks, caused by the

degradation in ".

The evolution of matrix cracking with loading cycles is shown in Fig 9.2. The crack

spacing decreases rapidly in the first few cycles and subsequently reaches a saturation

value of -140 pm. During the period in which the matrix cracks develop by stress

corrosion (N < 10), the hysteresis loops exhibit a consequent asymmetry, and do not

close upon reloading.

The sliding stress was evaluated by analyzing the parabolic regions of the loading

stress-strain curves. The results are plotted in Fig. 9.3. The initial sliding stress Uo =

MPa, is consistent with previous measurements obtained by pushout tests (Mackin and

Zok, 1993). The sliding stress drops rapidly with N, reaching a saturation level of -5

MWa following -30 cycles.

The degradatie:' function T/To has been obtained by fitting the data in Fig. 9.3 with

Eqn. 2.9. This function was then combined with Eqn 8.10 to obtain the fatigue life

prediction, shown in Fig. 9.4. Evidently the predictions are in good agreement with the
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experimental measurements. In particular, the fatigue threshold, ath, appears to be

given with good fidelity.

10. CONCLUDING REMARKS

A methodology has been described which may be used to predict the fatigue

response of CMCs when the dominant mechanism is the cyclic degradation of the

interface sliding stress. It predicts the S-N curve, the permanent strain and the modulus

reduction, based on a relatively few hysteresis loop measurements. An illustration of S-

N behavior has been given for a SiC/CAS material.

In some cases, it would be expected that fiber strength degradation occurs during

fatigue. Such behavior arises when C fibers are used. It may also occur at high

temperatures, particularly upon thermomechanical fatigue. A procedure for including

fiber strength degradation is a priority for further research.
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FIGURE CAPTIONS

Fig. 1.1 Fatigue effects in ceramic matrix composites: a) S-N curve, and b) decrease in

elastic modulus.

Fig. 1.2 Typical tensile stress-strain curves for CMCs. Also shown are typical
hysteresis loops, a) without and b) with crack closure.

Fig. 1.3 Effects of cycling on the hysteresis loop.

Fig. 2.1 A schematic of the interface model.

Fig. 2.2 A mode II crack in a thin brittle layer.

Fig. 3.1 A schematic of stress redistribution around a failed fiber.

Fig. 4.1 The change in crack density with stress for a unidirectional CAS/SiC

composite (Beyerle et al., 1992).

Fig. 4.2 The cell model used to relate macroscopic strains to constituent properties.

Fig. 4.3 The mechanism map distinguishing the regimes of interface response
(Vagaggini and Evans, 1993).

Fig. 4.4 A schematic of a growing matrix crack with bridging fibers.

Fig. 4.5 Simulations of crack density evolution as a function of the matrix flaw size
variable, designated Xs (Spearing and Zok, 1993).

Fig. 5.1 Comparison between stress-strain curves for 2-D and 1-D materials. (a) Data

for SiC/SiC and SiC/CAS, (b) schematic.

Fig. 5.2 Matrix crack formation in 2-D materials.

Fig. 5.3 Effect of interface bonding on the stress for tunnel cracking (Xia et al., 1993).

Fig. 5.4 Change in modulus caused by tunnel cracking (Xia et al., 1993).

Fig. 5.5 Predicted stress/strain curves for tunnel cracking (Xia et al., 1993).
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Fig. 5.6 Stress needed for the growth of a crack through the 00 plies (Xia and

Hutchinson, 1993b).

Fig. 5.7 Inelastic strains caused by cracks as they extend through the 0* plies (Xia and

Hutchinson, 1993b).

Fig. 5.8 Predicted stress, strain curve for cracks extending around 00 plies (Xia and

Hutchinson, 1993b).

Fig. 6.1 Effect of matrix cracks on the elastic modulus (He et al., 1993).

Fig. 6.2 Change in elastic modulus with crack density for SiC/CAS.

Fig. 7.1 Predicted crack growth curves for a matrix material subject to Paris Law

behavior (Bao and McMeeking, 1993).

Fig. 8.1 The fatigue life methodology.

Fig. 8.2 A schematic showing the relationship between the S-N curve and the

interface sliding properties.

Fig. 9.1 Hysteresis loops measured upon fatigue.

Fig. 9.2 Evolution of matrix cracking with loading cycles.

Fig. 9.3 Effect of cyclic loading on the interface sliding stress, T. Also shown is a fit

based on Eqn. 2.9.

Fig. 9.4 Predicted and measured S-N curve for CAS/SiC. (Weibull modulus of fibers,

m=3.)
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Ab'tr-c-The influence of the type, volume fraction, thickness and orientation of ductile phase
reinforcements on the room temperature fatigue and fracture resistance of Y - riAl intermetallic alloys is
investigated. Large improvements in toughness compared to monolithic y-TiAl are observed in both the
TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing
ductile phase content, reinforcement thickness and strength; orientation effects are minimal. Crack-growth
behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and
extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of
ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to
monolithic y-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-remnforced
composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are
actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under
monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic
loading.

1. INTRODUCTION In this case, toughening contributions arise from an
intrinsic change in the deformation mechanism, i.e.

Titanium aluminide alloys based on the ordered mechanical twinning of the y -phase [7], as well as
intermetallic compound y-TiAI (LI 0 structure) are crack deflection and blunting at y'/a, or y /3 interfaces,
currently of considerable interest as advanced high- and shear-ligament bridging by the more ductile a2
temperature structural materials, owing primarily to phase [4-7],
their higher specific modulus, greater elevated-tem- Composite approaches to toughening have cen-
perature strength and better oxidation resistance tered around reinforcing TiAI with small volume
compared to conventional titanium alloys, superal- fractions of ductile Nb, TiNb or Ti-6AI-4V particles
Joys and a2-Ti3A] based intermetallic alloys [1-7]. The [8-11). The primary objective is to enhance toughness
alloys are currently being developed as potential by crack-tip shielding arising from tractions provided
materials for use in the cooler compressor sections of by unbroken ductile ligaments bridging the crack
high-performance turbine engines and for skin struc- wake, akin to approaches first proposed for brittle
tures of hypersonic and high-speed civil transport ceramics [12-14]. When the length of the bridging
vehicles. However, the application of monolithic y- zone is very small compared to the specimen and
TiAI is severely limited by its relatively low tensile crack length dimensions, the toughness increases with
ductility (<2%) and fracture toughness crack extension up to a maximum steady-state level,
(- 8 MPa,/m) at ambient temperatures. Accordingly, Ksss, associated with the development of a steady-
much work in recent years has focused on obtaining state bridging zone length, LssB. At this small-scale
an understanding of the structure-property relation- bridging limit, Kssb, is given as [I I
ships in these alloys and in improving their ductility + E + (1)
and fracture resistance.

Both alloy modification (intrinsic) and compositing where X, is the critical crack-tip stress intensity factor
(extrinsic) approaches to toughening y-TiAI have required for crack initiation, E' is the plane-strain
been explored [3-11]. Microalloying with elements elastic modulus of the composite [=E/(I - v 2), v
such as V, Cr. Mn, Mo and Nb and optimized being the Poisson's ratio], o0,f, and 1 refer to the yield
thermomechanical processing treatments have led to strength, volume fraction and characteristic dimen-
toughened dual-phase microstructures composed of sion of the reinforcement, respectively. The non-di-
alternating microlaminae of y (TiAl) and a, (Ti0Al). mensional work of rupture, y, is the area under the
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normalized-reinforcemen! stress [a (u)]-displacement isms include crack trapping, crack renucleation. crack

(u) function, defined as [13] deflection and branching. and process-zone phenom-

f'r 6[(u) ]() ena such as microcracking and twinning. Many of
X= I d - (2) these latter contributions are incorporated into K,.

J 0 1 which is larger than the intrinsic K1, toughness of the
where u* is the critical crack-opening displacement at brittle y-TiAI matrix.

the point of reinforcement rupture. The characteristic Despite the success in toughening ;,.-TiAI with
dimension, t, is appropriately defined based on the ductile-phase reinforcements, the composites may
reinforcement geometry, i.e. the diameter of a fiber, have lower crack-growth resistance under cyclic fa-
the average diameter of circle inscribing a sphere, and tigue conditions 1i 5, 161 than monolithic ---TiAI. as

the thickness of a foil (lamina) or a pan-cake shaped illustrated in Fig. 1. Under monotonic loads, the

reinforcement. Typical values of X for y-TiAI re- y-TiAI + 10 vol.% TiNb composite exhibits an in-

inforced with Nb or Nb-alloys range between 0.9 to itiation toughness of about 16 MPa,//m, nearly twice

1.5. Much larger values of X, up to 4 or more, can be that of pure y-TiAI [Fig. 1(a)]; the fracture resistance

obtained using strain-hardening reinforcements that increases with further crack extension (referred to as

undergo extensive debonding from the matrix [9]. For resistance-curve or R-curve behavior) primarily due
nominal values of x = 1.2, a0- = 400 MPa and to bridging by unbroken TiNb ligaments in the crack
t = 100 pm, the addition of a mere 20 vol.% of wake [Fig. 1(b)]. In contrast, the diminished role of

ductile particles (f = 0.2) yields Kssa values of about crack bridging under cyclic loads due to subcritical

44 MPa,/m, over five times the nominal TiAI tough- fatigue failure of the ductile TiNb phase [Fig. l(d)],

ness of 8 MPa,/m. Additional toughening mechan- can lead to marginally faster crack velocities in

E40 ,,

STLJT * 10% TiNti Composde
- Edge Orientatnon

30 A A -

AA A

Ksm

UI tfI o L

0 2 4 6 8
(a) 0 CRACK EXTENSION, 4a (mm)

,-10,Z TiU * 10% TiNb Composite

Edge Orntation. R-0.1

S'--iI{

(C) STRESS-INTENSITY RANGE, AK (MPa'Jm)

Fig. I. Illustration of the contrasting role of ductile reinforcements on crack-growth behavior in a
P-TiNb/7-TiAl composite, showing (a) improved toughness compared to 7-TiAI under monotonic
loading, due to (b) crack bridging by uncracked TiNb ligaments, and (c) faster growth rates in the

composite under cyclic loading. (d) due to premature failure of the TiNb particles [after Ref. 15].
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the composite compared to unreinforced TiAl
[Fig. l(c)). drein

Accordingly, it is the objective of the present paper

to provide an extensive evaluation of ductile-phase
toughening in '-TiAI intermetallic-matrix composites
by systematic measurements of the influence of vol-
ume fraction, thickness, orientation and type of
reinforcement on their fatigue and fracture toughness
properties. Specifically, a comparison of Nb and
TiNb ductile phases provides the opportunity to
evaluate the effects of widely different interface and
reinforcement constitutive properties on the
monotonic and cyclic crack-growth resistance of
ductile-phase toughened composites. W

L. MATERIALS AND EXPERIMENTAL

PROCEDURES

21 . Materials and fabrication

The ductile-phase toughened composites under 4 ,
study, listed in Table 1, were fabricated by phase
blending - 80 mesh y -TiAl (Ti-55 at.% Al, with small "' '
additions of Nb, Ta, C and 0) with various amounts
of single-phase P-TiNb (Ti-33 at% Nb) or pure Nb- . .,
powders of -35+50 mesh (nominal size
-300-500 pm) or -50+ 140 mesh (nominal size
-100-300 pm). The blends were hot pressed and
forged to upset ratios of 10:1 at 1025±15°C,
producing a pancake-shaped ductile particle
morphology. Assuming a uniform thickness of
- 10% of the particle diameter, the nominal
aspect ratio of the pancaked reinforcements is about
5:1 and the nominal particle thicknesses are -40
and --20pm for -35+50 and -50+ 140 mesh 0

powders, respectively.
The actual microstructures, however, were much 10

more heterogeneous, as illustrated in Figs 2 and 3,
and consisted of a distribution of irregularly shaped, 06--. _
lenticular-crenulated particles. Volume fractions and , -

characteristic dimensions of the ductile particles
varied, both between specimens and locally within a
specimen. Measurements along the cracked edge and •
on the fracture surface of representative specimens 200 pm
(Fig. 3) showed a rather wide range of particle
thicknesses (between 50 and 150% of nominal values)
and aspect ratios in part due to the particle-size Fig. 2. Three-dimensional optical micrographs of typical
distribution and irregularities in particle shape. Fur- ,-TiAI intermetallic-matrix composite microstructures re-
thermore, unusually thick reinforcements resulted inforced with (a) 5 vol.%, (b) 10 vol.%, and (c) i5 vol.% of
when two particles were welded during processing, TiNb phase; the TiNb particle thickness is -40 pm.

more frequently so at the higher volume fractions.
Local fracture-surface area fractions of the ductile phase, taken along 500,pm slices, were found to vary

by up to a factor of 2; however, specimen averages
Table I. Details of ductile-phase toughened ,.-TiAl composites were generally within a few percent of the nominal

Nominal Nominal values. Henceforth, the discussions will reference
Mesh reinforcement reinforcement nominal reinforcement parameters, recognizing that

Reinforcement size volume fraction thickness (pm) these are surrogate measures for more complex distri-
TiNb -35 + 50 0.05 40 butions.
TiNb -35+50 0.10 40
TiNb -35 + 50 0.20 40 The matrix consisted primarily of - 2-10 pm-sized
TiNb -50+ 140 0.20 20 grains of -i-TiAl (ordered LI 0 tetragonal structure)
Nb -35 + 50 0.20 40 with small regions of m:-Ti 3AI (ordered hexagonal
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Fig. 3. Montage of SEM micrographs of the fractured surfaces of TiAJ + 20 vol.% TiNb composite
showing the distribution of ruptured ductile TiNb particles. Note the variations in particle thickness and

the non-uniformity of their distribution.

DO13, structure). Yield and ultimate strengths for brittle (dislocation- and twin-free) a grains [Fig. 4(b)].
unreinforced y-TiAI range between 400 and 500 MPa The reaction-layer phases are critical in mediating the
at room temperature with a tensile elongation of interface toughness. debonding characteristics and
- 1.8% [3,4]. While the yield strength (ao) of the resultant constrained-deformation behavior of the
TiNb phase is about 430 MPa, this solid-solution reinforcing phase; results are summarized in Table 2.
hardened Ti-Nb alloy does not post-yield harden In the case of Nb/TiA], the brittle ar reaction-layer
(strain-hardening exponent, n - 0). Thus, defor- phases result in a significant amount of debonding;
mation in the TiNb phase is highly localized and the
measured fracture strains strongly depend on speci-
men geometry and gauge length. Niobium, on the
other hand, has a lower yield strength of about
140 MPa, but strain hardens extensively with an
initial exponent of n - 0.3, reaching an ultimate
strength (a.) of 250 MPa before failing at a nominal
fracture strain of -0.45 [9]. -

2.2. Interface characterisuics .L-

Thermomechanical processing at high tempera-
tures caused interfacial reactions between the V-TiA!
matrix and TiNb and Nb reinforcements (Fig. 4)
[10, 17]. The -5-10 pm thick reaction product layer
between TiNb and TiAi was composed of a2
(- 3-5 pm) separated by a sharp boundary from a
mixed region (-2-5 pm) of a, and B, (ordered). and
possibly some ) (B82) phase. Transmission-electron
microscope (TEM) observations in Fig. 4(e) also
indicated the presence of dislocations in ductile a2
grains within the TiNb/TiA ! reaction layer interface.
The corresponding Nb/TiAI interface consisted of a
- 1-2 pm brittle or (D1) region and thinner layers of
T2 (Ti-44Al-IINbat.%) and 6 (Nb3AI-AI5 struc- Fig. 4. Transmission electron microscope images or the
ture) adjacent to TiA ! and Nb phases, respectively. In reaction-layer (RL) interface characteristics between (a-c)
addition, microcracks were observed in the relatively Nb and 3'-TiAl. and (d.e) P-TiNb and -,-TiAI.
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Table 2. Summary of interfacial properties between TiNb TiAI and Nb TiAI

Maximum Critical Debond Work of Interfacial
Interface stress displacement length rupture fracture energy

Interface phase V-a16o uot 4 I 7Y r m,(i)

TiNb/y-TiAI 2.2 ± 0.3 0.7±0.2 <0.2 1.1 +0.2 > 330
Nb/Y-TiAI 1.8 ± 0.2 1.1 ± 0.3 1.0 ± 0.3 1.3 ± 0.3 -45

the interfacial toughness is estimated to be about 2.3. Fracture toughness testing

45 Jim2 M91. Typical debond length to particle thick- The fracture toughness behavior of TiNb/TiAi and
ness ratios (id/I) were roughly unity compared to Nb/TiAI composites was characterized in terms of
values of about 4 reported for laminate foils [9]. This K,(Aa) resistance curves, i.e. toughness as a function
difference is probably due to the irregular shape and of crack extension. Specimens were fabricated by
smaller thickness of the particles in the composite. electro-discharge machining in two different orien-
However, in either case, the effect of matrix con- tations relative to the forging direction, namely, C-R
straint on a (u) is minimal and the peak stress (ia-) and C-L (Fig. 5). The crack intersects the edges of the
and normalized failure displacement (u*/t) are ap- pancake-shaped particles in the C-R orientation, in
proximately equivalent to the corresponding ultimate the C-L configuration the crack intersects the faces of
tensile strength and total elongation strains measured the pancakes [1I]. Hence, C-R and C-L are sub-
in geometrically-similar tensile tests; values of am-/aol sequently referred to as the edge and face orien-
and ult for the Nb particles are - 1.8 and 2.2, tations, respectively. Tests were conducted using
respectively. - 5 mm thick and 12.7 to 15.2 mm wide, pre-cracked,

In contrast, only minimal particle debonding single-edge notch bend SE(B), TiNb/TiA! composite
(Id/t <0.2) was observed for the TiNb/TiAi com- specimens, with a span-to-width ratio of about 3:1,
posites compared to values of 0.75 ± 0.25 observed in loaded in three-point bending; the Nb/TiAI samples
sandwich tests (91, again the variation being attribu- were 2.5 mm thick and 7.5 mm wide. To facilitate a
table to the particle thickness and shape. Debond direct comparison of the extrinsic toughening behav-
cracking occurred in the y-TiAi matrix or 7/22 inter- ior in the various composites, a set of 7.5 mm wide
face, suggesting a reaction-layer toughness in excess TiNb/TiA! specimens were also tested.
of -330 J/m2. Particle constraint factors cannot be Pre-cracking was achieved by initiating stable
measured directly but are expected to be at least crack growth from the electro-discharge machined
comparable to values between 2 and 2.5 measured in chevron notch by slow monotonic loading, under
sandwich tests; in fact, the constraint may be even a.splacement control, using a servo-hydraulic testing
higher due to the minimal debonding. The critical machine. Subsequently, a major portion of the pre-
crack-opening displacements, uO/t, were -0.7. crack bridging zone was removed by grinding the

crack wake to within - 50 pm behind the crack front.

L The final pre-crack depth to specimen width ratio
(a6/W) varied from about 0.3-0.5 for the various test
samples.

R R-curve tests were carried out by monotonically
loading the pre-cracked samples under displacement
control in laboratory air (-22°C, -45% relative

Forging Direction humidity) until crack extension was initiated. Crack
Sd lengths and crack/particle interactions were moni-

tored using a high-resolution optical video camera
Ductile Phase system. In general, crack initiation was followed by

a load drop and crack arrest after a small yet rapid
uncontrolled jump. Automated detection of these
load drops or direct observation of crack extension

was used to trigger additional unloading, by about
15%. to further stabilize cracking. After measuring
the new crack length (and recording other relevant
observations), loads were again increased until the
next initiation event. Applied load and crack-length
measurements were used to calculate the initiation/re-
initiation stress intensities (Kr) according to ASTM

Fig. 5. Nomenclature for specimen and reinforcement orien- Standard E-399 [18]. The complete resistance curve
tations in the composite forging, namely C-R and C-L; L. was evaluated up to a/ ratios >0.8 by carrying out
C and R refer to the forging, circumferential and radial
directions, respectively. C-R and C-L are also referred to as a large number of interrupted initiation/arrest (load-

the Edge and Face orientations, respectively. ing/unloading) cycles.
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It is important to emphasize that small-scale bridg- tests at R ratios of 0.5 and 0.7 were carried out on
ing conditions, stipulated by the model in equation selected composites. To characterize the crack-growth
(I). are seldom met in practice under monotonic rate behavior at different stress intensities, the applied
loading. For the TiNb/TiAI and NbjTiAI composites stress-intensity range, AK ( = Ki., - K,.). was gradu-
studied in this work, monotonic bridging-zone lengths ally increased and/or decreased using exponential
are often comparable to specimen and crack size load-shedding schemes (variable AK at constant
dimensions, i.e. large-scale bridging conditions are R ), with the K-gradient set to +0.1 mm- 121]. Using
prevalent; specimen widths in excess of 500 mm would such procedures, crack-growth rates per cycle
be needed in some cases to fulfill small-scale bridging (da/dN) ranging between 10-1 and 10- rm/cycle
requirements. Crack-growth behavior under large- were obtained; the stress-intensity range corre-
scale bridging is a function of the entire a (u) function sponding to the slowest growth rate,
as well as K, and E' [II]; moreover, the extrinsic, da/dN < 10-2 rm/cycle, is operationally defined as
large-scale bridging toughness can be significantly the fatigue threshold, AKTH, below which no appreci-
greater than Ksss and is sensitive to test specimen size able crack extension is observed for specific cyclic
and geometry. Accordingly, R-curve measurements in loading conditions. Tests on Nb- and TiNb-
this study must be considered as extrinsic and explic- reinforced TiAI composites were terminated under
itly depend both on specimen width and initial a./ W. increasing-AK conditions, at AK levels marking the
While repeated tests demonstrated that results were acceleration in crack-growth rates to very high values;
reproducible, reinforcement heterogeneity and speci- for monolithic y,-TiAI, the tests ended when the
men-to-specimen differences in W and a0/W can specimen fractured. Cyclic crack-growth data are
complicate direct comparison of K,(Aa) curves for the presented in terms of the crack-growth rate per cycle,
various composite architectures. Effects of these vari- da/dN, as a function of the applied stress-intensity
ations were mitigated, whenever possible, by compar- range, AK.
ing results for the most similar and representative test Premature contact between the cracked surfaces
specimens and excluding data for a/W values greater above the minimum load (crack closure) was moni-
than 0.8. In addition, corrections to experimental tored using strain gauges mounted on the back face
crack-growth data were made, where necessary, to of the specimens; the closure stress intensity, K,, was
account for large-scale bridging. Small-scale bridging specified by the load at the first deviation from
conditions may, however, be common under cyclic linearity on the unloading compliance curve, reflect-
loading because of the short bridging zones. ing initial contact between the two surfaces. Where Kd

exceeds Km,. the local (near-tip) stress-intensity range
2.4. Fatigue-crack propagation testing can be computed as AKd = K.~ - Kd. The extent of

Cyclic crack-growth behavior in TiNb/TiAI com- bridging by ductile particles under cyclic loading was
posites under tension-tension loading was examined estimated by comparing the crack length (of a bridged
primarily with 25 mm-wide, 2.5 mm-thick, compact crack) estimated from back-face strain compliance
tension C(T) specimens in the edge (C-R) orientation; with equivalent values (for an unbridged crack)
approximately I-mm thick C(T) samples were used to measured using bonded metal-foil gauges; procedures
characterize behavior in pure TiNb. Due to limi- are described in Ref. 1221. These global estimates were
tations in the available material. corresponding prop- supplemented by in situ observations of crack/particle
erties in the face (C-L) orientation of TiNb/TiAI interactions on the specimen surface, using a high-res-
composites and unreinforced y-TiAl were determined olution optical telescope.
using 15mm-wide, 2.5 mm thick SE(B) samples (span
"- 60 mm) loaded in four-point bending. Behavior in 2.5. Fractography
Nb/TiAI (face orientation) was examined using Profiles of crack paths in the plane of loading and
2.5 umm-thick and 7.5 mm-wide samples under identi- crack fronts across the specimen thickness were exam-
cal loading conditions. All specimens were fabricated ined by taking metallographic sections parallel and
with a wedge-shaped (semi-chevron) starter notch to normal to the crack growth direction, respectively.
facilitate fatigue pre-cracking, which was performed These sections and all fracture surfaces were imaged
under alternating tensile loads prior to testing. using optical and scanning electron microscopy

Experiments were performed in laboratory air (SEM). In addition, crack-reinforcement interactions
(- 220C, - 45% relative humidity) on computer-con- and specific fracture mechanisms were examined by
trolled servo-hydraulic testing machines operating SEM by periodically interrupting tests (cyclic loading)
under stress-intensity control. This was achieved by or by using an in situ loading stage in the microscope
continuously monitoring the crack length, to a resol- (monotonic loading).
ution better than ±5pum, using thin metallic foils
bonded to the specimen surface, similar to techniques 3. RESULTS AND DISCUSSION
used for fatigue testing of ceramics [19,20]. Unless
otherwise stated, cyclic loads were applied at a con- 3.1. Fracture toughness properties

stant nominal load ratio, R (= Km./K..), of 0.1 and The basic processes leading to toughening under
a frequency of 50 Hz (sine wave). however, additional monotonic loading in the TiAl composites examined
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c i

._, gari -11 m m 11t

between TiAI and the reaction layer, (b) crack-tip blunting
at the TiNb particle. (C) renudclation of the crack in front
of the particle leading to crack bridging, and (d) large-scale
plastic deformation in the TiNb particle leading to final
rupture. Images were obtained using a SEM with an an situ
loading stage; arrow indicates the general direction of crack

growth.

10u

are illustrated in Figs 6 and 7. Specifically, Fag. 6

shows 6.Smar typicrlasequeinfofevents asnthecrackinsi

intersects a ductile TiNb particle in the composite: (a)

crack arrest at the ductile rf layer; (b) penetration of-
the reaction layer and initiation of plastic defor-bl
mation in the particle, (c) renucleation in the matrix front
ahead of the particlel and (d) large-scale deformation

along intense slip bands prior to particle rupture._•o •L -•-Note that the TiNb particles do not decohere fromi

the matrix during crack extension but exhibit limited
debond cracking along the gez interface, as seen in
Fig. 6(a) and 6(b), similar to observations made on
sandwiched-composite tests o9e. The bridging zones,
i.e. the length scales over which TiNb reinforcements c (a)
remain intact in the crack wake, are on the order of
several millimeters (Table 3). Fig. 7. Fractography of fracture surfaces in TiNbpTiAo

t ncomposites under monotonic loading (a--c) at various mag-
henifications, showing (b) transgranular cleavage failures in

show minimal secondary cracking at the interface. y-TiAI, and (c) dimpled rupture in the ductile TiNb phase.
The constituent phases exhibit similar fractographic Arrow indicates the general direction of crack growth.

Table 3. Summary of monotonic crack-growth data in in-TiAl composites
IniF6ation R-Curve slope Steadyastate Steady-state

Volume Particle toughness d,, da toughness brdge
fraction thickness K, (MPak, m) (MPawameam) on length

Reinforcement f a (pmo a Edge F Fa ad ace rMPatrm) i..n I mm )

TiNb 0.05 40 11.3 l2.7 2.1 2.5i(i.9a 18.3 38.8
TiNb 0.1 40 18.6 15.7 2.5 3.3 (2.9)* 24.7 22.3
TiNb 0.2 40 17.3 19.0 4.2 5.0 32.6 13.7
TiNb 0.2 20 18.9 18.4 2.3 2.4 (2.2?• 26.6 5.3TiNb

5  
0.2 40 17.3 19.1 12.4 9.6 32.6 1387

NbW 0.2 40 12.2 13.8 6.9 5.5 21.2 57.5

*Values in parenthesis are corrected to 15.2amm width.
b7.5 mm-wide specimens.
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Open Symils: Face FiNed Symbols: Edge y'-TiAI are predictably brittle, characterized by trans-

50 1 1 a - granular cleavage with small regions showing inter-

S0.20 T#b &a ,granular failure [Fig. 7(c)]. The distribution of
40 t40pm a ruptured ductile TiNb particles dispersed over the

a AAA brittle TiAI fracture surface is illustrated in Fig. 3.
630 Effects of these crack-extension processes on resist-

a. ance-curve behavior as a function of the ductile-re-
2 20 inforcement characteristics are summarized in Figs 8

10 KTW and 9; estimates of the crack-initiation toughness, K,,
.... and R-curve slope, dKr/da, values based on linear

0.
0 2 4 6 8

(a) ' (mm) Oen Synmols: Face FI'ed Symbols E gep

50 ._,_ ,__ ,_. 50 ,- z -Nb0.10 t h 0.20 T6

40 t.-40M.m 40 6-40im • •••

30 310...................

30 ________ 0
0 2 4 6 6 0 2 4 6 8

0 2 4 6 8

(b) As (mm) (a) Aa (mm)

50
1 0.20 TiNb

0.056Tlb 40 .- 201am
40 t-40 m O

30•
come" a.0

a.0 2n 20: 4 • q

10--------------------------......................

0 0 2.....0 2 4 6 8
0 2 4 6 8 (b) 6a (mm)

(C) Aa (mm) (b) , -0

Fig. 8. Resistance curves characterizing the crack-growth 0.20 TM~ or Nb
behavior in TiNb/TiAI composites under monotonic load- 40 l- 40prn
ing, as a function of the volume fraction, (a) 20, (b) 10 and
(c) 5 vol.% of TiNb phase (thickness, t = 40 pri), in the Ti -
edge (or C-R. denoted by open symbols) and face (or C-L. 30
denoted by filled symbols) orientations. Dashed line KTjI CL : 000

represents the toughness of pure y-TiAI. 2 20 0 o 0Nb

features in composite and monolithic form; the duc- 10 ------------------

tile TiNb particles fail by a transgranular, microvoid 0__
nucleation and coalescence mechanism, as evidenced 0 1 2
by the dimpled surfaces in Fig. 7(b). Fractures in (C) Aa (mm)

tNote that specimens in the face orientation with TiNb Fig. 9. Influence of (a.b) reinforcement thickness, t, of
volume fractions of 0.05 and 0.10 were 12.7 mm-wide 20 pm vs 40 pro, and (c) reinforcement type, TiNb vs Nb,
compared to the typical width of 15.2 mm. While the on the monotonic crack-growth resistance of 7-TiAI corn-
crack-initiation toughness would not be influenced by posites, for a volume fraction. f = 0.2. in the edge (open
such size differences, K, increases more rapidly with symbols) and face (filled symbols) orientations. Note that
crack advance in smaller test specimens. For example, results presented in Fig. 9(c) were obtained using 7.5rmm-
large-scale bridging calculations indicate that at crack wide specimens (under large-scale bridging), both for
extensions of 7 mm, the smaller specimen size increases TiNbiTiAl and Nb/TiAI composites, to enable a direct
the extrinsic toughness by -25% and - 13% for the 5 comparison; all other data presented are for 15 mm-wide
and 10vol.% TiNb-reinforced y-TiAI composites, re- samples. Dashed line represents the toughness of pure
spectively. -.-TiAI. KTI.
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-. Nb * The reduction in reinforcement thickness from

N -40 to 20 pm at a volume fraction of 0.2 decreases

the slope of the resistance curve, but does not appear
to have a large effect on the initiation toughness

[Fig. 9(a, b)]. The effectiveness of Nb vs TiNb ductile

reinforcements in enhancing the monotonic fracture
resistance of ,,-TiAI composites. compared in
Fig. 9(c). illustrates the significance of effectire par-
ticle strength on toughness as mediated by the combi-
nation of yield stress, constraint (for TiNb) and strain

S, ,hardening (for Nb). Specifically, the Nb particles in
S, • : ;Nb/TiAI composites readily delaminate from the

- 25'., matrix during crack advance (Fig. 10) and relax
constraint (or reduce the degree of triaxiality) during

Fig. 10. SEM micrograph of fracture path morphologies in fracture compared to the highly constrained failure of
NbTiAt composites under monotonic loading. Note the TiNb ligaments in TiNbiTiAl composites (Fig. 6).
extensive debonding at the interface compared to TiNbTiAI Consequently, the higher (constrained) maximum

composites. effective strength of the TiNb reinforcements

(-950 MPa) y:eld a significantly higher crack-in-

least-square fits to the experimental data are listed in itiation toughness and a steeper resistance curve
Table 3. Despite the influence of specimen size on the compared to Nb additions (unconstrained, effective
measured fracture propertiest, it is clear that both strength of Nb -250 MPa). The larger critical open-
crack-initiation toughness and crack-growth tough- ing displacement in Nb (u * - 1.1t) vs TiNb
ness. i.e. the slope of the resistance curve, increase (u* - 0.7t ) appears to have no effect on the initiation
with ductile-phase content for the 40,pm-thick TiNb toughness and relatively little effect on crack-growth
reinforcements [Fig. 8(a-c)]. In comparison, re- toughness in these small samples. Furthermore, little
inforcement orientation has a minimal effect on duc- effect of orientation on toughness is noted for either
tile-phase toughening at lower volume fractions, reinforcement.
particularly after specimen-size variations are con- The effects of reinforcement volume fraction (f)
sidered. The toughness is marginally superior in the and thickness (t) on the apparent crack-initiation and
face orientation, compared to the edge, but only for crack-growth toughness values are more clearly
TiAM composites reinforced with 20 vol.% TiNb. shown in Fig. I l(a--c) [the small symbols in Fig. 1 (a)

6 2 5 •6 1 1
~' dI4da 10.90 0 ~8 + 26.81f' dlYda-0.1 14t
E -20

2 0 0 4

c2 0
S~~dge 10 ~ c

"(a) (b) (C)
0 .5 0 ".
0.00 0.10 0.20 0.30 0.0 0.1 0.2 0.3 0 10 20 30 40 50

f f t (Am)

15 25

SdKda = 0.58oMO.43 0 K4 - 8 + 0.33/fam

V 
10

'c'

V (d) (e)
0 5 I i

0 250 500 750 1000 0 250 500 750 1000

Omax (MPa) amax (MPa)

Fig. I1. Variations in crack-initiation toughness. K,. and crack-growth toughness. dK,'da, with (a.b)
volume fraction .f. of reinforcement phase. (c) particle thickness, t, and (d.e) reinforcement strength. a,,,.,.

for both NbTiAI and TiNbTiAI composites.
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represent the estimated size corrections to a common function of the composite. a (u). where x is the
specimen width of 15.2 min]. With respect to volume distance behind from the crack tip; details are pre-
fraction of TiNb, ANM, [Fig. I I(a. b)] power-law fits sented elsewhere [I I]. Using this model, the intrinsic
yield steady-state toughness. Kss,. and steady-state bridg-

dK, ing length. LssB, were estimated by computing the
d .9(fTINb)0 55  Kr(Aa) curves up to steady-state in a ve.-y large
da specimen. The calculations assumed nominal re-

K, = 8 + 26.8(fTiNb) 5. (3) inforcement parameters given in Table 2; K, and E'

The corresponding fit of dK, Ida to the TiNb particle are approximated by the initiation toughness, K_. and
the nominal plane-strain elastic modulus of TiAIthickness, tT•Nb, yields a linear dependence (193 GPa). The stress-displacement function for the

(Fig. I l(c)]. Particle thickness has little effect on

crack-initiation toughness; hence, a plot of these data composite is of the form

is not shown. Figure 1 l(d) and (e) plot the apparent a (u) = a,...(u/u,) for u < u. (6a)
crack-initiation toughness values and resistance-
curve slopes vs the effective maximum reinforcement a (u) = £T.[I - (uiu .*)OS] for u > up (6b)
strength, yielding power-law fits where, u, is the displacement at peak stress ttaken as

dK 2 pm). and u'* is taken as twice the average critical
d, 0.58(a.~, )043 (4) particle displacement or the corresponding value

measured in sandwich tests. This formulation of a (u)
K, = 8 + 0.33(G.m~,)°. (5) is a modification to the nearly saw-toothed stress-dis-

The extrinsic toughening behavior measured in this placement functions measured in the sandwich tests
study cannot be analyzed using the intrinsic, steady- in order to account approximately for the distribution
state, small-scale bridging model represented by of particle thicknesses in the actual composite. Re-
equation (1). Nevertheless, the experimental trends suits from these calculations, summarized in Table 3.
are qualitatively consistent with predictions that also indicate that significant intrinsic toughening can
toughness increases with the square root of the be achieved in y-TiAI composites even under small-
reinforcement volume fraction and strength. The scale bridging conditions. Also note the remarkably
linear dependence of toughness on particle thickness long steady-state bridging lengths under small-scale
is not predicted by equation (i). The particle thick- bridging conditions.
ness effect on crack-growth toughness (dK•/da) is Results on crack-growth resistance curves
probably a consequence of the combination of a measured under monotonic loading can be summar-
higher effective strength (particularly in the initial ized as follows. Even small volume fractions of
portion of the R-curve) and longer extrinsic bridge ductile reinforcements produce marked toughening
length (particularly at large a/W) for the large-scale due (i) the formation of large bridging zones and (ii)
bridging conditions experienced in these tests. crack trapping and renucleation mechanisms which

One puzzling result, however, is the absence of an mediate the critical crack-tip stress intensity. The
effect of particle thickness on the apparent initiation slope of the R-curve increases with reinforcement
toughness. Recall that the elevation of K1 above the volume fraction, strength and thickness; with the
Kk value for y-TiAI matrix is attributed to a combi- exception of particle thickness, similar trends are
nation of crack trapping, deflection, and renucleation observed for crack-initiation toughness. Reinforce-
mechanisms along with the presence of a small ment orientation appears to have relatively little
(- 50 p m) residual crack-bridging zone. While crack effect on the degree of toughening on these com-
deflection contributions are not believed to be signifi- posites. Overall, the experimentally measured extrin-
cant, the toughening increment associated with renu- sic toughening behavior is consistent with predictions
cleation and residual bridging effects would be of large-scale bridging models.
expected to scale roughly with the iquare root of the
reinforcement thickness [11, 23]. This suggests that 3.2. Fatigue-crack propagation behavior
crack trapping (pinning by ductile phases, as in the Cyclic fatigue-crack growth results in the ductile-
case of a tunnel crack) effects in the edge orientation particle reinforced y-TiAi composites, along with
may be comparable to toughening contributions from data for unreinforced y -TiAI and P -TiNb constituent
crack-renucleation mechanisms in the face orien- phases, are plotted in Figs 12-14; fatigue-threshold
tation. More research is needed to resolve the effect data and other crack-growth parameters are summar-
of particle thickness and orientation on the apparent ized in Table 4. As noted in previous studies on the
crack-initiation toughness. TiNb/TiAI system [15, 16], under cyclic loading,

A more rigorous analysis of these data must take cracks propagate subcritically at stress intensities of
into account the effects of large-scale bridging, by 4-12 MPa,/m for all Y -TiAI composite microstruc-
calculating self-consistent solutions to the crack- tures and specimen orientations, below the K, values
opening profile, u (x), the distribution of tractions in necessary to initiate and sustain cracking under
the crack wake, a (x), and the stress-displacement monotonic loading (Table 3). Subcritical crack
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Fig. 12. (a) Cyclic crack propagation and (b) crack-closure behavior in a j-TiAI + 20 vol.% f!-TiNb
(t - 20um) composite, in the edge (C-R) and face (C-L) orientations, at R = 0.s, compared with the

crack-growth properties of the constituent phases, monolithic y-TiAI and f!-TiNb.

propagation under cyclic loads must therefore be growth rate regimet is still very sensitive to the
considered an important damage mode in the struc- applied AK, especially at low volume fractions. In
tural design and use of ductile-phase toughened fact, when expressed in terms of the empirical Paris
brittle-matrix composites. power-law relationship that is often used to describe

The general features oti daldN-AK curves for the fatigue crack-growth rate behavior in this region.
composites resemble those seen for most metallic dlN=CK 7materials with a low-growth rate region (region 1) at d/N:CK 7

AK levels close to the fatigue threshold, where the the exponent m ranges between 10 and 20 for the
rate of crack advance strongly depends on applied various composites, compared to values of -~2--4 that
AK, followed by an intermediate or mid-growth rate are typically reported for monolithic metallic
region (region II) where this dependence is moderate. materials; m - 4.6 for pure /•-TiNb [Table 4,
However. unlike behavior in metals, crack-growth Fig. 12(a)]. In other words, the mid-growth rate
behavior for the 7-TiAI composites in this mid- (power-law) regime of cyclic crack growth is rela-

tively small for ductile-phase toughened TiAI com-
tBehavior in this region is characterized by curve fitting the posites and virtually non-existent for unreinforced

daidN data between 10-1 and 10' m/cycle. 7,-TiAI (m -. 30). At high AK levels approaching the
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Fig. 13. Influence of load ratio. R = 0.1. 0.5 and 0.7, on the cyclic fatigue-crack growth behavior in a
7-TiAI composite reinforced with 20 vol.% ( -. 20/um) TiNb particles in the edge (C-R) orientation.

initiation toughness, K, (high-growth rate regime, ation of ductile reinforcements can also enhance the
region 111), a rapid increase in crack-extension rates cyclic fatigue-crack propagation resistance of brittle
is seen for small changes in AK, similar to behavior y-TiAl intermetallic alloys, in addition to improving
near the fatigue threshold.t their fracture toughness. However, the magnitude of

3.2.1. Orientation effects for TiNb/TiAi corn- improvement is relatively small, indicated by
posites. Figure 12(a) depicts the cyclic fatigue-crack -- 2 MPa,/m shift in the entire da/dN-AK curve
growth data for the edge and face orientations in the compared to the nearly five-fold increase in toughness
y-TiAI composite reinforced with 20 vol.% of seen under monotonic loads, and is seen only specific
-20 pm-thick TiNb particles. Specifically, in the orientations i.e., where the crack periodically
edge orientation, region I fatigue-crack growth rates encounters the pancake faces of ductile particles.
in the composite are faster than in unreinforced Similar reinforcement-orientation effects are also ob-
y-TiAl and much slower than in pure f-TiNb. The served in other TiNb/TiAl composite microstructures
near-threshold cyclic crack-growth behavior [Fig. 14(b)].
(da/dN < 10-'in/cycle) of the composite is essen- Corresponding measurements of the extent of
tially bounded by properties of the individual phases. crack closure in the TiNb/y-TiAI composites and
In region II, growth rates in the edge-orientation of their two unreinforced constituents are shown in
the composite are comparable to those measured in Fig. 12(b) in terms of the closure stress intensity, Yd,
monolithic f-TiNb. normalized by K,,,, as a function of AK. The K8 /K.,

However, Fig. 12(a) also reveals that the crack values in the edge orientation of composite are
velocities in the TiNb/TiAI composite for the face slightly lower compared to TiAI in the edge orien-
(C-L) orientation are slower than in 1-TiAI; in tation suggesting faster growth rates due to increased
fact, the composite fatigue properties are superior AKd values locally at the crack tip; no such distinc-
to both unreinforced TiA! and TiNb. Thus, unlike tion is apparent in the face orientation. Although
the response under monotonic loading, the such variations are partly consistent with observed
reinforcement orientation has a marked effect on reinforcement-orientation effects on cyclic crack
cyclic crack-growth behavior. More importantly, growth, closure effects do not appear to completely
these results clearly demonstrate that the incorpor- account for the differences in crack-growth rates

between the composite and monolithic alloys.
Specifically, at high AK levels where the influence of

fIt should be noted that fatigue-crack growth behavior in closure is reduced, cracks propagate faster in the
the high-AK regime (region I1l) has not been fully
characterized in this study due to the rapid crack edge-oriented composite than in pure y -TiAI or (I-
velocities inherent with test frequencies of 50 Hz used for TiNb [Fig. 14(a)]. As such, it seems more likely that
cyclic loading, especially for brittle-matrix composites. cyclic crack-growth rate variations are principally
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Fig. 14. Microstructural effects or (a) volume fraction (I - 40 Im) and (b) particle thickness (f 0.2) on
the cyclic fatigue-crack propagation resistance of TiNb/TiAI composites in the edge (C-R) orientation,

at R -0.1.

attributable to differences in intrinsic mechanisms of - 8.5-9.3 MPa,/m, slightly in excess of the matrix
cyclic crack advance in these microstructures. fracture toughness of - 8 MPaJm, and is indepen-

3.2.2. Load ratio effects. The effect of load ratio dent of the load ratio.
(R = Kee/Ke,) on cyclic crack-growth rates, in the As noted above, premature crack closure is ob-
20 vol.% TiNb/y-TiAl composite in the edge (C-R) served to occur in the composites at stress intensities
orientation, is shown in Fig. 13. Compared to a above K,., presumably from the wedging of frac-
baseline of R = 0.1, load ratios of 0.5 and 0.7 reduce ture-surface asperities including any intrinsic bridg-
the fatigue threshold stress-intensity values by about ing ligaments or broken remnants, e.g. at threshold,
27 and 51%, respectively. This phenomenon is con- K, is -0.4 K,,. As a result, for load ratios below 0.4,
sistent with behavior observed in many metallic ma- such closure causes a net increase in K,, or a
terials [24], where increasing R accelerates reduction in the driving force from the nominal
crack-growth rates for a given AK, especially in the (applied) value of AK to a local "near-tip" value
near-threshold and high-AK regions. Although the AK•, thereby resulting in slower crack-growth rates.
marked sensitivity to applied AK in the threshold At high R, closure effects are minimal (K.,,. > KJ)
regime is essentially unchanged, higher load ratios and the crack remains open during the entire loading
suppress the intermediate growth-rate regime (region cycle; accelerated crack-growth rates are thus to be
II) separating the behavior at near-threshold and high expected. From these considerations, load ratio
stress intensities. The latter occurs at K.1 •, of effects on cyclic crack growth in the composite are

AMU 42)--U
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Table 4. Summary of cyclic crack growth data in .-TiAI composites

Load Threshold
ratio AKTH Exponent' Constant

Material R (MPa, m) m C

-TiAI 0.3 5.8 29.4 9.7. 10
P-TiNb 0.1 I.7 4.6 3.0 - 10

Edge orientation
y-TiAI + 5%/ TiNb (

4
0pm) 0.1 4.5 17.6 5.3 x 10

+ 10% TiNb (40um) 0.1 5.6 14.1 1.3 x 10 0
+ 20% TiNb (40Mm? 0.1 5.0 9.6 2.0 - 10
+ 20% TiNb (20mprm 0.3 5.3 9.7 2.5x l0-'1

0.5 3.6 - -

0.7 2.6 - -

Face orientation
-TiAI + 20% TiNb (40 pm) 0.1 8.2 6.7 1.0 X 10-

+20% TiNb (20/rm1 0.3 8.2 14.8 [.1 X 10-"K
+20% Nb (40Mpm) 0.1 10.1 8.7 1.0X 10K

.For crac.'-growth rates between 10-' and lO-'m:cycle.
'Units: micycle (MPa./m)-"

expected to be small for R > 0.4, since Kj is at least cyclic loads reveal that there is minimal ductile-liga-
-0.4 K... However, other factors are clearly rel- ment bridging in the crack wake (Fig. 15). Crack
evant in view of the marked differences in behavior paths in the plane of loading and crack fronts across
between R = 0.5 and 0.7, e.g. the rapid crack growth the specimen thickness (- 150I pm behind the crack
at K... levels approaching the matrix K3, due to tip) clearly indicate that the TiNb particles rapidly
cleavage fracture of 7-TiA! [Fig. 7(c)], akin to the fail under cyclic loading without any sign of plastic
high-AK behavior controlled by static-mode fracture deformation. In the edge (C-R) orientation. fatigue
mechanisms seen in metallic alloys [24]. cracks traverse the ductile particles apparently with-

3.2.3. Crack-particle interactions. In contrast to out significant interaction [Fig. 15(a)]; crack blunting,
behavior under monotonic loads (Fig. 6), crack-path crack renucleation and resultant in-plane bridging
morphologies in TiNb/y-TiAl microstructures under effects, which are so dominant under monotonic

Fig. IS. SEM macrographs of crack-path morphologies in TiNb/7'-TiAI composites under cyclic loading
in the (a) edge (C-R) and (b) face (C-L) orientations, taken at specimen mid-thickness location in the

loading plane. Horizontal arrow indicates the crack-growth direction.
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loads, are simply not observed. This conclusion was
verified by in situ telescopic observations on the
specimen surface, and also by quantitative estimates
of the extent of crack bridging at various AK levels.
Crack lengths, estimated from elastic-compliance
measurements using strain gauges, were within
±200,um (<2%) of those measured using indirect
d.c. potential methods, indicating that crack-bridging
effects in fatigue are relatively insignificant. No dis-
cernible differences in crack paths were noted at the
various load ratios.

Although cracking is still continuous through the
matrix and ductile phases in the face (C-L) orien- a-- 1
tation, as shown in Fig. 15(b). there is indication of
crack branching, deflection, multiple cracking in the
matrix and coplanar bridging (associated with a
non-planar and discontinuous crack front across the
specimen thickness because of overlapping cracks on
different planes), consistent with the improved crack-
growth resistance in this orientation. Crack renucle-
ation in the matrix ahead of the TiNb particle under
cyclic loading is observed at AK levels of
-9-10 MPa,/m. however, due to the rapid fatigue
fracture of the TiNb particle, the effective range of
crack/particle interactions is limited to a few hundred
microns or less (cyclic bridging zone - particle thick-
ness); equivalent dimensions under monotonic load-
ing are on the order of several millimeters (Table 3).
In fact, even in the face orientation, the TiNb par-
ticles show minimal evidence of plastic stretching.

Corresponding fracture-surface morphologies are
shown in Fig. 16. Unlike the microvoid coalescence
seen under monotonic loading (Fig. 7), the TiNb
phase fails by transgranular shear under cyclic load-
ing in both the composite and monolithic form
[Fig. 16(b)]; features resemble fatigue failures in
coherent-particle hardened alloys that deform by
planar slip [25]. Likewise, the 7-TiAI matrix also
shows intrinsic fatigue damage, evidenced by the
parallel slip markings in Fig. 16(c), in addition to the
transgranular and intergranular cleavage modes of
failure [Fig. 16(c)]. 0 I

From these observations and other studies [15, 16]
it may be inferred that the lack of toughening from Fig. 16. (a-c) SEM images of fracture surfaces in TiNb/y-
crack-bridging mechanisms under cyclic loads is TiAI composites under cyclic loading at various magnifi-
the principal reason for subcritical crack-growth cation levels. Micrographs (b) and (c€ illustrate the cracking

features in P-TiNb and I,-TiAl regions of the composite.effects in TiNb/TiAI composites at AK levels below Horizontal arrow indicates the general direction of crack
their crack-initiation toughness values. Such en- growth.
hanced crack growth results from fatigue-induced
failure of the ductile particles before tie crack can
establish a bridging zone, which is alih;ady limited corresponding crack-tip opening displacements in the
under cyclic loading because of the relatively small face orientation; (ii) restriction of crack deflection,
crack-opening displacements associated with the branching and coplanar bridging effects in the edge
lower stress intensities, orientation by the reinforcement; and (iii) differences

The sources for reinforcement-orientation effects in the phase angle of any local debond cracks.
on cyclic crack growth are not altogether clear. 3.2.4. Reinforcement size and volume fraction
Potential explanations include: (i) fatigue failure of effects. The influence of TiNb reinforcement volume
the reinforcements in the edge orientation in fewer fractions, ranging between 0.05-0.2 (-40,pm-thick),
cycles, since the opening along the crack flanks and on fatigue-crack growth behavior of TiNb!TiAI com-
resultant plastic displacements would be larger than posites in the edge orientation, is illustrated in
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Fig. 14(a). While fatigue thresholds for all composites in the face (C-L) orientation, especially for AK levels
fall below the value for monolithic y,-TiAI, there in the mid-growth rate regime, above -9 MPa,! m.
appears to be no consistent effect of fT,1 b on the Toughening mechanisms associated with crack renu-
fatigue threshold; AKTH values range between cleation in the matrix ahead of the ductile particle.
-4.5 MPa,/m (fTNb ~-0.05) and -5.6 MPal/m which scale with particle thickness [If, 23], are be-
(fVTNb - 0. ). lieved to account for the improved fatigue resistance

However, the slope of da /dN-AK curves (measured of coarse microstructures. Once again, note that
as the exponent, m) in the intermediate growth-rate reinforcement-orientation effects are prominent
region is found to decrease consistently with increas- under cyclic loading, with face-oriented composites
ing ductile-phase content (Table 4); the AK interval exhibiting better crack-growth resistance over -' -TiAI
for region 11 and the maximum AK marking the onset and f-TiNb.
of region III show a corresponding decrease. In effect, 3.2.5. TiNb tvs Nb reinforcements. Figure 17 com-
intermediate crack-growth rates in the composites, at pares the fatigue-crack growth properties of i-TiAI
a given AK, are lowered by increasing the reinforce- reinforced with 20 vol.% (-40 pm thick) Nb par-
ment volume fraction. More notably, crack-growth ticles in face (C-L) orientation to corresponding
rates in the composites with 10 vol.% TiNb, and behavior in the TiNb/TiAl, both in the edge and face
particularly 5 vol.% TiNb, are significantly higher orientations. While both reinforcements in the face
than those found in either unreinforced TiNb or orientation improve the fatigue resistance of y-TiAI,
TiAI. These interesting, albeit puzzling, effects could the cyclic toughening increment is clearly greater for
be associated with the competing role of residual the Nb phase than for TiNb. The fatigue threshold
stresses or crack-closure effects (which increase AK6,) for the Nb/TiAI composite, AKH - 10 MPalim. is
vs limited crack bridging/trapping (which reduces about 75 and 40% larger than the pure ,'-TiAl
AK6,); with increasingf-,Nb, crack bridging/trapping (-6 MPa,/m) and the TiNb/TiAI composite
effects may become dominant. (-8 MPa,/m), respectively. This is in contrast to

Reinforcement thickness has a minimal effect on fracture toughness behavior under monotonic load-
cyclic crack-growth behavior in the edge (C-R) orien- ing, where the high-strength TiNb reinforcements are
tation, for samples containing 20 vol.% TiNb (Fig. significantly more effective in impeding crack ad-
14(b)]. However, increasing TiNb particle thickness vance. When compared at a fixed AK of 10 MPa,/m.
from - 20 to 40 pm is found to retard crack advance growth rates are nearly five orders of magnitude

1 2 I 10 2

10 - I I I I I I I I I 10"

20 vol.% (t = 40 pim) Nb- or TiNb-TiAI Composites, R = 0.1

S 1 A "fiNb I TIN - Edge

A TINb I TLAJ - Face 10I*- =b/MI-Fc

M 0A10-Mo° i.° MAIooacU, Nb/Trd

102 , 10-

010-10 10-1

U 10711 10-11

I I I .10,12
1 2 5 10 2

STRESS-INTENSITY RANGE, AK (MPaf4m)

Fig. 17. Effect of Nb vs TiNb ductile reinforcements on the cyclic crack-growth resistance of y'-TiAI in
the face (C-L) orientation (R = 0. 1). Note the superiority of Nb.-,-TiAl composites due to their relatively

weak interfacial bonding compared to TiNb-'7-TiAl.
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Map

- i

202 lam

Fig. 18. Summary of cyclic crack-path morphologies (in the plane of loading) observed for the Nb!,' -TiAI
composite in the face (C-L) orientation, showing significant interfacial debonding, cracking ahead of the
Nb particles and evidence of crack bridging. Horizontal arrow represents the crack-growth direction.

slower in NbjTiAI than in TiNbrTiAI. However, the resistant and susceptible to debonding compared to
enhancement in fatigue resistance of ý-TiAI from Nb the ductile z, layer around TiNb particles. Neverthe-
additions is far less compared to that equivalent less. such debonding at the Nb/TiAI interface relaxes
increase in fracture toughness [Fig. 9(c)]. constraint, diffuses plastic strains, and prevents con-

Such improved fatigue-crack growth properties tinuous crack penetration into the ductile Nb phase;
using Nb reinforcements can be traced to significant these mechanisms, in addition to crack renucleation
secondary-cracking effects locally near the Nb/TiAI which preserves local crack-tip bridging, extend the
interface. As illustrated in Fig. 18. these are charac- fatigue life of the Nb reinforcements. However, the
terized by (i) crack arrest at the interface. (ii) decohe- extent of debonding during fatigue is less than that
sion along the interface and (iii) crack renucleation in seen under monotonic loading (Fig. 10) and is much
the brittle matrix ahead of the particle, prior to more evident in Nb'TiAl. Conversely. debonding is
particle failure. Analogous to behavior under not evident for TiNb'TiAI composites under fatigue,
monotonic loads, the brittle a-layer interface sur- as under monotonic loading, and consequently the
rounding Nb particles is expected to be less fatigue cracks advanced continuously through the i, layer
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into the TiNb particle without significant interfacial of various local crack, particle interactions on
interactions, thereby leading to rapid failure of the monotonic crack-growth resistance.
TiNb phase. Moreover, the TiNb phase is inherently Very different mechanisms and microstructural
more susceptible to fatigue failure in fewer cycles (due factors are associated with fatigue-crack propagation
to localized planar-slip deformation) than the strain- resistance. This is perhaps best illustrated by the
hardening Nb phase, consistent with previous results. degradation in fatigue thresholds compared to 7 -TiAI
(Note that fatigue-crack growth rates in Nb are also and accelerated crack-growth rates relative to either
strongly dependent on interstitial H2 , C, N2 , 0,, and monolithic constituent in the edge-oriented
Si impurity contents [26].) TiNb/TiAI composites, particularly at low volume

Finally, it is useful to estimate the magnitude of fractions. The premature cracking or low-cycle
toughening associated with various mechanisms fatigue failure of ductile particles at small crack-
under cyclic loading to provide some insight into their opening displacements under cyclic loading result in
relative contributions. The effects of local crack very limited bridging zones and therefore minimal
bridging in fatigue (Fig. 18), specifically in the face toughening. Improved fatigue resistance is seen only
orientation, on the reduction in near-tip stress inten- in the face-oriented composites, the increase being
sity, AKb, may be assessed using the Dugdale ap- attributed to local crack-particle interaction mechan-
proximation [27] isms that are similar to those under monotonic

2 loading, yet are far less potent under cyclic loading.
AKb = fa. v54 (8) The fatigue resistance of the composites is further

enhanced by weak (debonding) particle-ma.
where, 4b is the bridging-zone length and a, the faces and ductile particles with optimal fat;
effective value for uniform bridging tractions in erties, e.g. strain-hardening phases with higf as
that zone. Taking L-b 40 pm (bridging and strength. Debonding can be induced at intý. ý tly
zone,- reinforcement thickness) and the average strong reaction-layer interfaces by applying thin ox-
bridging tractions under cyclic loading to be roughly ide coatings between constituents, although this can
one half the flow stress (a,, - 0.5[ac + a.J/2, or - 215 reduce the toughness. These observations suggest that
and - 100 MPa for TiNb and Nb, respectively), the ductile phases are associated with multiple and coin-
in-plane bridging contributions, AKb, for a composite peting mechanisms, with the net effect under fatigue
reinforced with 20 vol.% ductile particles are a mere loading being sensitive to reinforcement architecture,
- 0.4 and -,0.2 MPa./m for TiNb and Nb phases, volume fraction and particle thickness.
respectively. Measured shifts in the da/dN-AK Such differing, and in some cases contradictory,
curves (Fig. 17) are, respectively, -,2 and requirements for superior toughness and fatigue re-

4 MPa./m for the TiNb/TiAI and Nb/TiAl sistance suggest that optimized composite micro-
composites, implying that other mechanisms are structures may require a variety of reinforcements
relevant. Crack trapping and renucleation of the and architectures based on alternative shielding
fatigue crack in the ductile phase associated with mechanisms. For example, a semi-continuous net-
blunting (via interfacial decohesion for Nb), and work of the ductile phase offering a preferred crack
coplanar bridging from multiple and discontinuous path may provide improved fatigue resistance by
crack fronts (for TiNb and Nb) are expected to promoting crack meandering. This in turn promotes
provide the additional contributions to the fatigue- crack-tip shielding from roughness-induced crack
crack growth resistance. closure by wedging of enlarged fracture-surface as-

perities, and has proved to be very effective in
4. CONCLUDING REMARKS improving the fatigue-crack growth resistance of

duplex ferritic/martensitic steels and a/# titaniumThe present results extend previous studies [15, 16] alloys [28, 29]. Such an approach should also provide

in illustrating the contrasting role of ductile reinforce- adequate toughness under monotonic loads due to

ments on monotonic (fracture toughness) and cyclic the formation of extensive bridging zones.

(fatigue) crack-growth resistance of intermetallic-

matrix composites. With respect to R-curve tough- 5. CONCLUSIONS
ness, the principal factors are effective reinforcement
strength and ductility as mediated by constraint Based on an experimental study of the monotonic
imposed by debonding characteristics of the interface and cyclic crack-growth properties of ductile-phase
and resultant constrained deformation properties of toughened y-TiAl intermetallic composites, re-
the reinforcement; local crack/particle interactions inforced with either Ii-TiNb or Nb, the following
contribute to intrinsic crack-initiation toughness. Re- conclusions can be made:
inforcement thickness (initiation toughness) and I. Brittle y-TiAI intermetallic alloys can be signifi-
orientation (edge vs face) effects on toughness, pre- candy toughened under monotonic loading by dis-
viously seen in coarse laminated composites, appear persing ductile Nb or TiNb reinforcements;
to be modest for the pancake-shaped ductile-phase compared to a fracture toughness of 8 MPa,/m for
toughened composites, suggesting competing effects pure y-TiAI, both type of composites show increased
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Abstract

Creep models for metal matrix composites reinforced by long brittle fibers

with weak interfaces are presented. These models extend the work of McLean(1)

to include effects of fiber breaks and the consequential stress relaxation in

the broken fibers on the creep strain and the creep rupture time when global

load sharing occurs. Systematic analyses are conducted for composites with

a wide range of fiber volume fractions, Young's modulus of the fibers and the

matrix, interfacial sliding stress and Weibull properties for the strength of the

fibers. The results derived from this study are compared with those predicted

by McLean's model(l) and another model accounting for part of the effects of

broken fibers. The creep life is found to be sensitive to the extent of fiber stress

relaxation in the broken fibers. Models, which ignore this effect overestimate

the creep rupture time especially when the composite is subjected to a low or

moderate level of stress.



1 Introduction.

The use of advanced continuous fiber reinforced metal matrix composites (SIC/TZ,

Al 20 3/Al) as engineering materials requires that the materials have sound mechanical

behavior at both elevated and room temperatures. The mechanical behavior of metal

matrix composites in terms of strength, plasticity and fatigue at room temperature

is relatively well understood (2-6). Moreover, a comprehensive constitutive model

which takes into account the material anisotropic behavior for the situation where

the composite is subjected to a multi-axial loading has been developed(4). In con-

trast, relatively little work has been done on modeling the response of metal matrix

composites at elevated temperatures. In order that comprehensive predictive models

similar to those used in low temperature environments can be assembled for high

temperature applications, the mechanical behavior associated with time dependent

creep deformation of metal matrix composites has to be addressed.

In the range of operational temperatures, fibers usually do not creep but the matrix

can creep. For example, in the case of a SiC/Ti composite at 6000C, which normally

is the peak value of the operational temperature, the homologous temperature for

the matrix material is 0.45, which will lead to deformation by power law creep. The

reinforcement, in contrast, operates at a homologous temperature of 0.2 and therefore

should exhibit little time-dependent creep deformation.

A number of models have been developed to address creep problems in this regime

for composites reinforced either by continuous or discontinuous fibers. Cell models are

widely used for this purpose(7-11). Dragone and Nix(7) and Bao et al.(8) undertook
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detailed numerical analyses on discontinuous fiber reinforced composites, while Kelly

and Street(9), McLean(1), Goto and McLean(10) and most recently, McMeeking(1 1)

adopted approximate models without recourse to complete numerical treatment. Of

these models, McLean's (1), which is concerned with a composite with a power-law

creeping matrix reinforced by elastic fibers, is particularly of interest. In his model,

it is assumed that the fibers do not either creep or fracture and deform elastically

at a rate governed by the surrounding creeping matrix. The governing equations for

stress a and strain c in the model are given by

af = Efe (1)

Un+ (2)
Em

and

0 - fo! + (1 - f)m (3)

where f is the fiber volume fraction, E! and E.. are the Young's modulus of the

fibers and the matrix respectively, U 1 and Un are the fiber and the matrix stresses

respectively, and n and B are the creep exponent and creep constant of the matrix

respectively.

In McLean's (1) model, the strain rate decreases as the stress in the matrix de-

creases due to the matrix creep. As time progresses, the fibers therefore sustain more

load formerly carried by the creeping matrix. Eventually, when the matrix stress

is completely relaxed, all of the load is carried by the intact fibers and the strain

approaches a steady state. This type of behavior is associated with matrix stress
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relaxation which is usually completed in a relatively short time. For the situation

where the composite is subjected to a low level of stress, this model predicts creep

strain with reasonable success. However, when a relatively large load is applied to the

composite, damage initiates in the form of isolated or localized fiber breaks(12,13). In

addition, crack like defects can also be introduced in the fibers during manufacture.

In either situation, in order for the creeping matrix to deform at a rate that is compat-

ible with the more compliant broken fibers, creep strains must increase. Furthermore,

the more fibers fail, the larger is the increase in creep strain. The composite therefore

may never exhibit a steady-state creep rate and instead may progress directly from

a primary to a tertiary stage(12). In this regime McLean's original model(1), which

ignores such effects, underestimates the creep strain and fails to predict creep rup-

tures resulting from the failure of fibers. However, McLean(14) has also developed

a model which includes the effect of statistical fiber failure and has predicted creep

curves with a tertiary stage.

Recently, theoretical studies on fiber failure stochastics within the framework of

global load sharing, whereby the load shed from a broken fiber is shared nearly equally

among all intact fibers, have been carried out by Curtin (15) for composites with weak

interfaces. This has led to a statistical strength prediction procedure for uniaxial

composites. However, in his study, the effect of a creeping matrix on the stress

distribution in the composite has not been addressed. The methodology used by

Curtin (15), however, provides insight for including such an effect. McLean relaxation

will cause the fiber stress to increase which increases fiber fracture and effective fiber

compliance. If the fiber stress rises above the effective strength of the fibrous system,
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failure of the composite will occur rapidly, leading to rupture after creep.

Another phenomenon associated with the failure of the fibers, which has received

little attention, is the stress relaxation in the broken fibers. Previous work has ad-

dressed the evolution of the stress concentration around a broken fiber in a viscoelastic

or power-law creeping matrix(16, 17). Other modeling has involved the finite element

analysis of the matrix and fiber behavior with broken fibers(18, 19). When a fiber is

broken, the stress in the fiber is gradually relaxed due to matrix shear stress leading

to creep. This reduces the load carrying capacity of the broken fiber. The more the

stress relaxes in the broken fiber, the higher is the load carried by the intact fibers.

As a result, the strain in the intact fibers increases and more fibers fail. This effect

influences the creep strain to rupture and the rupture life. Such behavior is important

when a considerable amount of fibers fail, resulting from a high applied stress in the

composite or a low to moderate Weibull modulus of the fibers. It is demonstrated in

this paper that fiber stress relaxation is a relatively slow process in comparison with

matrix stress relaxation. The fiber stress relaxation therefore leads to a significant

reduction of the strength of the fibrous system in the long term, giving rise to a lim-

ited creep life for the composite even when the composite is subjected to a relatively

low stress.

The remainder of the paper is organized in the following way. Section 2 describes

three creep models. The first two consider the situation where there are broken fibers

in the composite, but the consequential fiber stress relaxation due to creep is omitted.

These models are established by extending Curtin's work(15) on fiber failure stochas-

tics within the framework of global load sharing to include the effect of a creeping
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matrix. In one model, McLean relaxation is assumed to occur uninfluenced by fiber

failure. In the other, the additional compliance due to fiber failure is permitted to

influence the McLean relaxation and is similar to McLean's damage model(14). The

third model is much more comprehensive. It is concerned with the effects of both fiber

breaks and the consequential fiber stress relaxation due to matrix creep in shear. Sec-

tion 3 presents the results obtained from various models for composites with a wide

range of fiber volume fractions, Young's modulus of the fibers and the matrix, ratios

of the interface sliding or yield stress to the fiber strength and the Weibull modulus

of the fibers. Analyses of the results and comparisons in terms of creep strain and

creep rupture time among these models are also presented. The results are discussed

in Section 4.

2 Creep Rupture Models

In this section, detailed derivations for the three models are described. When the

models are developed, a number of assumptions are made. The major one is that the

composite is in the global load sharing regime(2, 15). Stress concentrations due to

broken fibers do not cause localized damage in the material. Instead, damage in the

fibers develops in an uncoordinated manner. In addition, fibers are elastic and brittle

and deform at a rate compatible with the surrounding creeping matrix. The interface

between the fibers and the matrix is weak and will slide or yield in shear when the

shear stress on the interface equals a critical value -t,. This will occur adjacent to

fiber breaks controlling load transfer between the broken fiber and the matrix.
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2.1 Curtin's Model for Stochastic Fiber Failure

Curtin's (15) analysis of stochastic fiber failure with global load sharing is outlined

first. Consider a representative volume for the composite subjected to a uniaxial

stress a as illustrated in Fig.l(a). The stress at a cross section of AB in accordance

with the rule of mixtures is such that

= = (1 - f)a m + f•J (4)

where f is the fiber volume fraction, a. is the uniform matrix stress and •! is the

average stress in fibers at AB.

For a broken fiber, as illustrated in Fig.l(b), the shear stress is set equal to r0

near the end of fiber break, and by equilibrium, the stress recovery distance Lf is

Lf = DEfe
Lf=(5)

where D is the fiber diameter, E! is the Young's modulus of the fiber and e is the

axial strain in the composite. The probability that a fiber breaks within the distance

L! from AB is q. The stress in a fiber which is unbroken up to a distance L! from

AB is Eye. Random position of breaks in fibers broken within a distance Li from

AB (as illustrated in Fig.l(b) ) implies that the average stress at AB in such fibers

is ½Efe. Therefore, the average stress in fibers at AB is given by

1

•3 = (1 -q)Efe + q-Efe (6)

If fibers broken twice within the distance Lf from AB are negligible and the fiber

length L is much larger than the stress recovery length Lf, the number of fracture



nuclei in the fibers with strength up to Efe predicts q. Weibull statistics then gives

2Lt Efeq T=) (7)
Lo

where L0 and So are length and strength parameters of the Weibull distribution and

m is the Weibull modulus. Substituting Lf of eqn(5) into eqn(7) then provides the

expression for the fiber failure probability

Eft m+1

where S, is a characteristic stress for the fibrous system such that (15, 20, 21)

S (2 Dr L)o (9)

D

Substitution of q of eqn(8) into eqn(6) then gives the average stress in the fibers at

AB

"Fj = E.e[I - 1 (Eef.)+. (10)

it can be seen that the average stress in the fibers depends not only on the strain in

the composite and Young's modulus of the fibers but also on the Weibull strength

properties of the fibers.

The maximum value for Ff occurs when

ra+2S= (11)

and is

S 2S( 2 , m+1 (12)
S = S:--•--+2) (m-+2

It follows that S is the effective strength of the fibrous system.
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2.2 Rupture Based on McLean Relaxation

Consider a unidirectionally reinforced material subject to a fixed axial stress beginning

at time t=O. The solution to eqns(1)-(3) given by McLean(1) is

a (1- f) E f f(n -1)Ef EBt]-(13)-

(t)= fE fE 1  [E-( + E

where E is the rule of mixtures modulus

E = fE! + (1 - f)Em (14)

The stress in a fiber is the strain multiplied by Ef. Two rupture models can be

postulated. In one model, rupture is considered to occur when the strain in the

fibers equals the value from eqn(11), which is the strain at maximum load for the

Curtin fiber strength model. Creep of the matrix is consie Ared to accelerate rapidly

thereafter, leading to rupture after negligible additional time. This is termed the

strain based McLean rupture model and gives

E a f 2 1n - Ea 1-n

f(n - 1)E,.m(1 -f)S: 1 _-fm( -+2)" - (-S7) } (15)

where tr is the time to rupture. The second McLean based model assumes that

rupture occurs when the stress in the fibers reaches the effective strength S from the

Curtin model. This gives
E _ f 2 .+' m+11- Ema)

TBS t i(n )Em{[(1f)Sc 1 - f m) + (m+2- -ES,

(16)

which is termed the stress based McLean rupture model. It predicts shorter rupture

times than the strain based model.
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2.3 Curtin Rupture Model

The creep response of the global load sharing composite can be predicted with eqn(10)

used as the effective stress-strain relationship for the fibers. The matrix response is

given by eqn.(2) and the fibers and matrix are coupled together through eqn(4). By

substitution of the average fiber stress y of eqn(10) into eqn(4) and rearrangement,

an expression for the matrix stress is obtained as
aCm 1~ {a f• ~j1E/.
a -= '1 Sa - f( )[ 2 _ 1 -- f-e ) m } (17)

Differentiation of eqn(17) with respect to time then gives the matrix stress rate for

constant stress a

6• " -. I- ( [1 + -)(-- e ) m ] l (18)

S. 1--f S, T~~5 ~ (18

Consequently, combination of eqns(17) and (18) with eqn(2) provides the evolution

law for the creep strain

± _L [ E 1+ fi)(f•_)m+1
nt i - Segrationc SE--f (19)

Integration of eqn(19) hence gives the strain as a function of time. However, this

cannot be achieved analytically and a numerical scheme is required to perform the

task. When eqn(19) is solved, it proves convenient to present the equation in terms

of normalized parameters. If the stress, strain, time and the Young's modulus of

the fibers and the matrix in eqn(19) are non-dimenisionalized such that & = aISo,

S= ErIe/S,, i = tBE1Sn-1 and E Ef/Em, eqn(19) then reduces to

1 + • ,[L-M ( + f)e+:] de I1- (20)
[ fe£(i - -+)]n dt (1 - f1
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This can be rearranged to give

(1 1 + fE[- (1 + m+1]
[ �( 1- f(1

where ;o is the initial strain which can be obtained from eqn(10) by use of am = Em,

and e = ESc/S, in eqn(4). Integration of the above expression with the trapezoidal

rule provides a value of i. A tertiary creep behavior is often predicted, terminated by

divergence of the strain. This is caused by widespread fiber failure and is considered

to be creep rupture.

2.4 Fiber Relaxation Model

When this model is developed, two steps are taken. First, a cell model which is4
concerned with the stress relaxation in a sin,( broken fiber surrounded by intact

neighbors is described. From the analysis of the cell model, the governing partial

differential equation for the evolution of the fib-r stress is derived. Then, in order to

account for the fibers broken randomly during creep, an approximate binary model

averaging the effect of initially broken, progressively broken and intact fibers is de-

veloped. The analysis of the binary model allows the creep strain of the composite

to be evaluated.

2.4.1 Governing Equations for Stress Relaxation in a Broken Fiber

Consider a cell model as illustrated in Fig.2. It consists of a long broken elastic fiber

of length L and diameter D embedded in a creeping matrix. A uniaxial tensile stress

a is applied parallel to the axis of this cell. Within the unit cell it is assumed that
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there is only one pre-existing fiber break and the break occurs in the middle of the

fiber, i.e. at z = L. The neighboring fibers are intact.

The displacement on the lateral surface of the unit cell is u,(z,t) such that

u,(z,t) = e(t)z, where e(t) is the strain of the composite. The displacement in

the lower segment of the broken fiber is u1 (z, t) and the shear strain in the matrix

j,, is then given by
IM - u,(z, t) - uf(Z, t) (22)

w

where w is

w = 2 (-2 1) (23)

to represent a material with volume fraction of fibers f.

The shear strain rate in the matrix can be expressed by

= + 3Bauh-ar (24)

Gm

where Gm is the shear modulus of the matrix, r is the shear stress in the matrix and

a, is the effective stress such that

a = ijSij (25)

2 Si Si

where Sij is the deviatoric stress. For the problem analyzed, the effective stress is

found to be

e = + 37 (26)

where a,, is the longitudinal matrix stress. The longitudinal matrix stress is assumed

to be independent of the z and r whereas the matrix shear stress r is taken to be

dependent on z but independent of r. The longitudinal matrix stress or, is computed
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from the composite response as if the fiber in the unit cell were intact and therefore

is controlled by eqn(2).

Additional equations are provided by equilibrium and the elastic behavior of the

lower segment of the broken fiber. These are

4-r (27)
az D

and
bz= Ef aUf(Zt) (28)

where a( is the stress in the broken fiber. Except where r = 0, eqn(27) implies that

there will be a gradient of stress in the fiber. The load shed from the fiber cannot

be taken up by the matrix since a,, is assumed to be uniform. Thus, the stress is

transmitted by shear to other fibers. Combination of eqn(27) with eqn(28) then gives

an expression for the shear stress in terms of fiber displacement

1 DEf z2U(Z) (29)

The value of r is limited by the interfacial sliding stress r0, i.e. Itr _< r0.

By substitution of 7, from eqn(22) and r of eqn.(29) into eqn(24), a governing

partial differential equation for the evolution of the displacement in the broken fiber

is derived

1 1 '(z t) - u1 (Z t)1  DE f uf(z,it) 3 3 BD n 1E f a'ui (z't) (30)
w at at 4G.. uz28t 4 az 2

where ae is givenTi by eqn.(26). The boundary conditions are

auf (L/2, taz =0 (31)
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to represent the free end of the broken fiber and uj(O. t) = 0 as noted in Fig.2. Initial

conditions represent the stress in the elastic state for a broken fiber. Thus

L
uj(zO) = C(O)z 0 < z < L. - L (32)

where Lf is computed from eqn(5) with e = e(0). The remaining portion of the fiber

has
L2e(0) [z z2  1L 2 L L21

u(-,z,O) = -L , 1 L ( L ) z < - (33)

to ensure compatibility and agreement with stress recovery from the load free end.

The partial differential equation (30), along with initial and boundary conditions,

is solved numerically with a finite difference scheme. Details are given in the appendix.

Results for the stress in the fiber are shown in Fig.3 when the unit cell shown in Fig.2 is

subjected to a constant overall strain c = 0.5SIEs. Therefore, these results represent

the stress in a broken fiber in a relaxation test when there are not too many broken

fibers. An important point is that in a relaxation test of a fresh composite, fibers

would break on initial loading and not thereafter. The longitudinal stress a' in the

broken fiber is presented in Fig.3 as a function of a distance along the fiber at various

times for a composite with a fiber volume fraction of 0.35, a ratio of the fiber to

matrix Young's moduli of 3, a ratio of the interfacial shear stress to the characteristic

fiber stress ro/Sc of 0.01 and a creep exponent for the matrix of 3. The stress recovery

segment can be seen in Fig.3 in the vicinity of the break. The stress recovery length,

Lf, which is defined as the distance measured from the fiber break along the fiber

direction to a point at which the tensile stress just attains the level of the remote fiber

stress, increases as time increases. Within the stress recovery length, the stress decays
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with the increasing time, showing that the fiber is relaxing as the matrix creeps in

shear. Examination of Fig.3 reveals that stress relaxation of this type takes a long

time. This behavior is in contrast to that associated with the matrix stress which

relaxes in a short time. For example, it is found from eqns.(1)-(3) that the matrix

stress reduces by 50% at tBEfSc = 160 and by 90% at tBEIS,2= 5.3 x 103.

Another interesting feature of the results presented in Fig.3 is that although it

decreases with increasing time, the gradient within the stress recovery length at any

given instant is found to be weakly dependent on position. Since the stress gradient

is proportional to the shear stress in the matrix, an approximation can be made that

at a given instant, the shear stress evaluated at any position along the fiber within

the stress recovery length is identical. As a result, this uniform reduction of the stress

gradient in the recovery zone can be used to characterize the degree of fiber stress

relaxation.

Similarly, beyond the stress recovery segment, the stress in the fiber is almost

uniform and almost constant at its original value. This indicates that the solution is

insensitive to the fiber length, a situation which will prevail until the stress recovery

segment reaches the specimen end which is at z=0.

2.4.2 Model for Randomly breaking fibers

In a creep test at constant applied stress, fibers will break randomly as the strain

increases. At any stage, the fibers can be divided among those that are intact and

those which are broken. The survival probability of the fiber in accordance with a
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two parameter Weibull distribution is given by

P-(e) = exp[-+0(-•o)] (34)

Let W be the average stress in the broken fibers. The overall average fiber stress is

then given by

"07 = P.(e)Efe + [1 - P.(c)]F (35)

Composite response can now be predicted from integration of eqn(2) subject to

eqns(4) and (35).

As an example, consider the case with no matrix creep, In this situation, the

average stress in a broken fiber segment of length L/2 with only one break is given

by
= 2 =1 0r6(z)dz (36)

The stress arb(z) is equal to Efe over most of the fiber length and falls linearly to zero

in the stress recovery segment of length L! (given by eqn(5)) near the break. Thus,

the average stress in the broken fibers is

L- (1 T )Efe (37)

leading to

1 {1 -[1 - Po(e)] j1}Eje (38)

When the absolute value of the argument for the exponential in eqn(34) is small

compared to unity, eqn(38) then gives

= [1- L -S e (39)
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which is identical with eqn(6) combined with eqn(7). Thus, under the same assump-

tion, the present model is identical to that of Curtin for the average stress in the

fibers as fiber breakage takes place.

In a similar fashion, the model can be applied directly to a relaxation test with a

creeping matrix. For example, Fig.3 gives the stress in a broken fiber during a test

at constant strain and eqn(36) can be used as before to obtain the average stress in

the broken fiber. As discussed above, an approximate representation of the stress in

the fiber is a uniform value Efe joined to a linear fall off within the distance L! from

the break, where Ly is a function of time. (This approximation must be abandoned

before L1 grows to L/2.) Under similar assumptions as used in deriving them, eqn(37)

through (39) can be used once more to give the average stress in all fibers with L!

taken to be a function of time. The stress relaxation so implied for the fibers can be

combined in volume fraction weighted terms with the stress relaxation in the matrix

to give the overall stress for the composite material. In a relaxation test with the

strain c imposed rapidly at t=O, the matrix stress is

a.. = [(Eme)I'- + (n - 1)BEmt]- n- (40)

In a creep test at constant applied stress, a problem arises that fibers will break

randomly as the strain in the composite increases. A model for this would include

identification of the fibers newly broken at each stage and a calculation of the stress

in them thereafter according to eqn(30). However, this would involve the numerical

solution of the p.d.e. for dozens if not hundreds of fibers. Given the approximations

involved in the derivation of eqn(30) in the first place, such an approach is probably

out of place. Instead, progressively breaking fibers can be allowed for in a rudimentary
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fashion for each increment of strain by averaging the stress in fibers newly broken

during the increment of strain with the current stress in the existing broken fibers.

The current stress in the broken fibers is computed by incrementing the solution of

eqn(30). The fraction of fibers which break during an increment of time is given by

differencing eqn(34) to provide

APo(C) = (Ef(C) exp[-+ _ (41)

Lo~ SoLoSo dt

and -Ap.(c) is the fraction newly broken. It follows that the fraction broken at the

end of the increment is 1 - P.(-) - AP,(e) where c is the strain at the beginning of

the increment. The stress in the newly broken fibers is (e + AC)Ef except near the

break where it decays linearly to zero at the break over the distance L1 (C + AE). The

results for the averaged stresses are

SMin[4ro(O.5L - z) b1 - P(E)

OD(netu) (Z)=MD 1 ( P.() - AP.

+Min[ 4ro(O.SL - z) ;E(e-Ap()
MD + P1- ) - AP,(W) (42)

where afb is the stress in the existing broken fibers at the end of the increment as

computed from eqn(30). Note that the first term on the right hand side of eqn.(42)

represents the contribution from the existing broken fibers and the second term is due

to the addi'ional fibers broken during the increment. The Min function is required to

ensure that the new value for r does not exceed to. Finally, the variable uf needed in

eqn(30) is found from numerical integration of eqn(28) with ab (new) used on the left

hand side. The resulting values of uj are then used as the starting point for a new
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time incrementation of eqn(30). At all stages eqn(2) is used to compute the increment

of strain for the composite and eqns(4), (35) and (36) used to couple the solution to

eqn(30) for the broken fibers with the longitudinal creep of the matrix.

When a composite with f=0.35, EI/Em = 3, ro/Sc = 0.01, m=5 and n=3 is

subjected to a constant uniaxial tensile stress such that a = 0.2SC, the stress in a

broken fiber normalized by the fiber stress far away from the break, is presented in

Fig.4 as a function of a distance along the fiber at various times. It is found that the

extent of stress relaxation in the broken fiber is more significant in comparison with

that obtained with a constant displacement loading. This seems to be a result of the

increase of fiber failure due to the increase of the strain which replenishes the stress

level driving the rre ,ping matrix shear.

As with the broken fiber stress calculated during a relaxation test, the stress

relaxatica significantly affects only the stress recovery segment of the fiber near the

break. The stress in the portion of the fiber away from the break is almost uniform

and is at the stress level in the intact fibers. This result indicates that the length of

the fiber does not influence the relaxation of the fiber stress to any significant extent.

As a result, lumping all broken fibers together and doing a single calculation for stress

relaxation can be partially justified. Only those fibers which break very near the end

of the specimen are wrongly represented since the stress recovery segment will quickly

reach the specimen end from those breaks. However, it is obvious that lumping of all

the fibers into one broken fiber stress relaxation calculation cannot be fully justified.

Results obtained for the stress in a broken fiber with different values of fiber

volume fraction, f, modulus ratio EjIEm, creep exponent n and ratio of interfacial
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sliding stress to characteristic fiber stress ro/S, show similar trends to those shown in

Fig.4 except that a low fiber volume fraction f, a high modulus ratio E / Em., a low

creep exponent n and a high ratio of interfacial sliding stress to characteristic fiber

stress rI/S, all cause the broken fiber stress to relax faster.

3 Creep Strain and Creep Rupture

The results for the creep strains at constant applied stress a/S, = 0.2 predicted by

the various models are illustrated in Fig.5 as a function of time for materials with

a matrix creep exponent n=3, a ratio of the fiber to the matrix Young's modulus

Ef/E.. = 3, a Weibull modulus of the fiber m=5, fiber volume fractions f=0.5 and

0.25 and ratios of the interfacial sliding stress to the characteristic stress of the fibers

,"o/S, = 0.005 and 0.01. When the fiber volume fraction is high, e.g. f=0.5, all models

predict an identical result in terms of the creep strain. This occurs because at this

stress, the fibers allow only a low strain in the composite. As a result, the strain is

so low that fiber failure in the composite is negligible.

For the composite with a relatively low fiber volume fraction, e.g. f=0.25, the

effect of the fibers on the overall deformation of the composite is less stringent. At

this stress, the composite experiences a higher strain. As a result, more fiber failure

and the consequential fiber stress relaxation occurs during creep, giving rise to an

even higher strain in the composite. This is clear in Fig.5 where there are obvious

differences for the results predicted by different models when f=0.25. The results

predicted using the fiber relaxation model and the Curtin model are higher than
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those predicted by McLean's model. Note that with the Curtin model the results

for To/IS, = 0.005 and 0.01 are exactly identical. The Curtin model accounts for the

additional creep permitted when fibers break and their end regions unload. The fiber

relaxation model accounts for the additional creep which occurs when broken fibers

gradually unload completely.

The composite eventually fails if the fiber relaxation or the Curtin model are used.

Failure occurs when the creep strain increments diverge numerically. This behavior is

clearly illustrated in Fig.5 where failure of the composite is marked by the arrows. The

failure point marked for the McLean model is where the stress in the fibers reaches S

as given in eqn(12). The fiber relaxation model gives shorter creep rupture times than

the Curtin model due to the reduction of the effective fiber strength associated with

the fiber stress relaxation. In addition, a longer creep rupture time is observed for a

composite with foiSt = 0.005 than for that with tr/So, = 0.01. This is attributed to

the fact that the matrix shear stress in a composite with a higher value of ro can be

higher which drives matrix shearing creep and fiber stress relaxation faster.

Although the predictions for the strain differ in detail among the various models

when the fiber volume fraction is low, examination of the results reveals that the

differences of the strain predicted by each model are relatively small at any given

time until near the end of life. For example, at tBE1 S, = 1600, just beiore the creep

rupture occurs, the strains predicted by the fiber relaxation model for the composite

with ro/S, = 0.01 and with the Curtin model are only 13% and 7% higher respectively

than the strain predicted using McLean's model. These results indicate that McLean's

model, which is the simplest one, is reasonably appropriate to predict the creep strain
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even when the composite experiences fiber fractures. However, McLean's model does

not directly predict creep rupture of the composite.

For the case with a composite having an intermediate value of the fiber volume

fraction, e.g. f=u.35, and subjected to the same level of stress, i.e. o'/S = 0.2, the

strains obtained from different models are plotted in Fig.6 as a function of time for

different values of fiber Weibull modulus, m. It can be seen that for the composite

with a fiber Weibull modulus m=5, the differences among various models remain

small indicating that fiber failure is negligible. However, for the case with a smaller

Weibull modulus, e.g. m=2, fibers are more likely to break and as a result, differences

in the strain are observed among all the models. The fiber relaxation model predicts a

failure of tChe composite with ro/S, = 0.01 but when ro/S, = 0.005, rupture does not

occur within the time plotted. The strains predicted by the fiber relaxation model

for the composite with a ratio ro/S, = 0.005 are nearly identical with those predicted

with the Curtin model. These values at tBEfS2 = 4 x 104 are about 11% higher

than predicted by McLean's model, which is, of course, unaffected by the Weibull

modulus.

At a relatively high level of stress such that a/S, = 0.25, all the models predict

similar results for the composite with a fiber Weibull modulus m=10, as shown in

Fig.7. However, for the case with m=5, both the fiber relaxation model and the

Curtin model predict higher strains than McLean's model at any given time. These

higher strains prompt failure of the composite for m=5 within the time plotted in

Fig.7. The failure point marked for m=10 is when the stress in the fibers for the

McLean calculation equals S as given by eqn(12).
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At an even higher level of stress such that o/So = 0.3, even the composite with

fiber Weibull modulus m=10 experiences creep rupture within the time plotted in

Fig.9 and is predicted by both the fiber relaxation model and the Curtin model. The

failure point marked for McLean's model is when the fiber stress equals S as given by

eqn(12). All these results suggest that at the same level of applied stress and mean

fiber strength, the lower the fiber Weibull modulus, the higher is the creep strain and

the more likely is the composite to exhibit creep rupture.

The effect of the ratio of the fiber to the matrix Young's modulus on the creep

strain and the creep rupture time is illustrated in Fig.9(a) and 9(b) for the composite

with a fiber volume fraction of 0.35. Not surprisingly, the composite with a low ratio

LEf/E,,, would experience a higher strain due to the more compliant fibers, leading to

the earlier cre'~p rupture predicted by the fiber relaxation model.

Fig.10 shows Lhe applied stress as functions of creep rupture times predicted by

different models for the material with n=3, m=5, EjiE,m = 3, ro/S, = 0.01 and

f=0.35. Fig.11 is similar but for f=0.25. Strain based rupture for McLean's model

occurs when the composite strain equals the level predicted in eqn(11). Stress based

rupture for McLean's model occurs when the fiber stress equals S given by eqn(12).

In general, it can be seen from Fig.10 that at a given level of stress, the creep rupture

time predicted using the Curtin model is higher than that predicted by the fiber

relaxation model. The former however, is lower than that predicted by the strain

based rupture criterion with McLean's model. Stress based rupture with McLean's

model occurs intermediate to the prediction of the fiber relaxation model and the

Curtin model. Examination of Fig.10 also reveals that the results predicted by both
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the Curtin model and the McLean model exhibit a creep rupture threshold below

which a non-creeping state is reached. These threshold stresses are predicted by

eqn(12) for the Curtin model and by eqn(11) (as EfE) for the strain based rupture

criterion with McLean's model. For the case shown in Fig.10, the thresholds for the

two models are a/S, = 0.244 and 0.284 respectively. In contrast, the results predicted

using the fiber relaxation model have a creep rupture threshold at the fiber bundle

strength for dry fibers. This is so because fiber relaxation will eventually unload

all the broken fibers. Thus only the intact fibers support load after a sufficiently

long time has passed. This is identical to what happens in a bundle of fibers without

matrix or friction between them. If the applied stress is above the bundle strength for

the dry fibers, creep of the matrix must continue and eventually will accelerate rather

than slow down. It is this acceleration of the creep which causes tertiary behavior and

eventual rupture. The stress strain curve for a dry bundle of fibers obeying the two

parameter Weibull distribution is given by Efe multiplied by P8(C) given by eqn(34).

As a result, the dry fiber bundle strength is
1

SbS=(S.( exp(-- (43)
mL m

This, therefore, represents the creep rupture threshold for long fiber composites. If

the applied stress is below this, the composite will eventually reach a non-creeping

state. It is notable that this threshold is dependent on L, where L is the length of

the specimen or component. For the case illustrated in Fig.10, the threshold is such

that SbI/S = 0.151.

It is useful to consider the differences in the results predicted by various models in

more detail. It is found that at a high level of stress, e.g. o/S, = 0.3, the fiber stress
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relaxation model and the Curtin model predict creep rupture times which are 20 times

and 9 times lower respectively than that predicted by the strain based criterion for

McLean's model. Compared to each other, these values differ only by a factor of 2.

This occurs because at such a high stress, the failure of fibers happen so fast that the

stress in the broken fibers has not had time to relax.

At a relatively low stress, e.g. ajS, = 0.25, the impact of the fiber stress relax-

ation becomes more significant. This is clearly illustrated in Fig.10, where the fiber

relaxation model predicts a creep rupture time which is 13 times lower than that

predicted using the Curtin model. At an even lower applied stress, e.g. a/S, = 0.21,

the influence of the fiber stress relaxation on the creep rupture time is even more pro-

nounced. This stress is below the threshold for the Curtin model and so an infinite

creep life is predicted by both the Curtin model and the strain and stress based cri-

teria for McLean's model. This is in contrast to a finite creep rupture time predicted

by the fiber relaxation model.

4 Discussions

In this paper, McLean's model for creep deformation of metal matrix composites

reinforced by continuous fibers has been extended to include the effects of fiber failure

and the consequential fiber stress relaxation. Two models have been developed. The

first one considers fiber breaks but ignores the effect of the following fiber stress

relaxation. The evolution law for the creep strain is established by extending Curtin's

work(15) on fiber failure stochastics within the framework of global load sharing to

25



include the effect of a creeping matrix. Relatively simple numerical calculations are

required to solve the governing equation (21) derived from this model. The second

model is more comprehensive with emphasis on the aspect of fiber stress relaxation

in the broken fibers due to matrix/fiber shear stress interaction. It involves solving a

partial differential equation derived from a cell model for the fiber stress relaxation to

determine the fiber stresses, Then a non-linear equation obtained from the analysis

of the composite as a whole is solved to evaluate the strain numerically for each

iteration. This model requires significant numerical calculations and computer time.

From the set of problems analyzed, the major features associated with the fiber

stress relaxation have been identified. These have been compared with phenomena

associated with the matrix stress relaxation as discussed by McLean(l). It is found

that the fiber stress relaxation tends to influence the creep strain and the rupture

behavior more significantly at long times than at shorter times. This is in contrast to

the impact of the matrix stress relaxation which is known to increase the composite

strain quickly due to creep, perhaps ultimately leading to a non-creeping state. The

results presented in this paper show that even when there are fiber breaks in the

composite, the models, including McLean's model, all provide a reasonable prediction

for the creep strain. This suggest that McLean's model, which is the simplest one,

can be used to make an approximate prediction for the creep strain. However, when

examining the creep rupture times predicted by different models(e.g. as in Figs.10-

11), we find that the creep life is very sensitive to the extent of fiber stress relaxation in

the broken fibers. The other models, which ignore such effects, severely overestimate

the creep rupture times especially when the composite is subjected to a low level of
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stress. This suggests that the development of a comprehensive model including fiber

stress relaxation is essential for predicting the creep life at low stress.

In this paper, certain material parameters have been varied to assess the sensitiv-

ity of the predicted creep strain and the creep rupture time to the variation of the

individual parameter. It is found that a low fiber volume fraction f, a low modulus

ratio EL/Em, a high interfacial sliding stress, a low characteristic fiber stress and a

low Weibull modulus of the fiber all make the composite creep faster, perhaps giving

rise to quicker rupture of the composite. Although all material parameters influence

the creep strain and the creep rupture time, most interest centers on the interfacial

sliding stress since this quantity can be tailored for a given composite in which the

fiber and matrix properties and the fiber volume fraction are set. From the results

presented, it appears that a low value of the interfacial sliding stress is desirable to

minimize the strain and provide a longer creep life.

Finally, There has been some success in comparing the models presented in the

current paper with experimental data for creep and rupture. This will be reported in

separate publications.
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Appendix: Finite difference scheme

In this appendix the finite difference scheme that was employed to solve eqn(30) of

the main text is described. Attention is centered on the situation where the unit

cell is subjected to a constant displacement loading. Similar procedure can be ap-

plied to the case with a constant uniaxial stress. If the stress, strain, displacement,

length, time and the Young's modulus of the fiber and the matrix in eqn(30) are

non-dimenisionalized, respectively, in the following manners such that 6 = o/So,

= Ef•1S5, , = tBE1 S,-', E = Ef/Em, f(.,i) = u(z,t)E1 /LSo, r = /,

&=e adeSc, a4. aoI/S., D = D/L, L1 = Lf/L and i = z/L, eqn.(30) becomes
Aff(p, i) a1 + •3,(1, 1)

-- 1 + b 2t(f-1 12_ 1 ) uz2t
0£4 0;2&j

+3b2&',1-(f-1/2 1)- 02tf(i ) (Al)

Let
fif(1, 1 + A!) = fif(i, i) + Ai Off p(t)(A2Uf('i (A2)

8i
eqn(AI) can then be written as

fii(p, i + Ai) - fii(p, i) = 8q 2t~(,+A) e 2 fZt 8t 1 2 (M3)

where a and 8 are given by

1 +Vb2,(f _1) (A4)

3• =32(f-' )(S
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At t 0+ when the fiber just breaks, by noting that 1 0 and isj(.,0) =

eoi, eqn(A3) reduces to
a2fi f ( j, 0+) _fi f(p, 0+) = - eo i. (A 6)&9 2

An approximate solution is given by

-fi,0+) =eo 0 < i < 0.5 - (A7)

Af

The corresponding tensile and shear stresses can also be obtained by

trSzO) =Min4fo(Il- i') 01fi!(P,,O+)l"&' "= Min[ (A9)

D

and

f(i,0+) = Min [o,-P U P(z'o+)I (AlO)
4 a;2

Consequently, the initial values for the problem are obtained.

Let
=•(•i fi!(p + Ai, i)- ,f p(, i)(Al

ai Ai

and
02ti!(f, i) _ !(i + AW, i) - 2fif((, i) + if,(p + Ai, i) (A12)&k2 =Aj2(A )

eqn(A3) becomes

(a + p.Ai)fi (I - Ai, i + Ai) - (Ai 2 + 2a + 2/&eAi),i&f(i, i + Ai)

+ /&At 1 (i + Ai, i + Ai) = -A. 2 tfif(p, i)

+a[(ff _ - AW, i) - 2fi (i, i) + fif (i + A•,i)] (A13)
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The above equation can also be written in the following general form

(a + 1 - 1,j + 1) - (Ai 2 + 2a + 2,3&,AtPfi(i,j + 1)

+(a + 1eAi)31e (i + 1,j + 1) = a[fij(i - 1,j) - 2 &if(i,j) + fif(i + 1,j)]

--Ai2fi ( i,) (A14)

where i and j indicate the distance and the time increments respectively. It can be

seen that the problem on solving a partial differential equation effectively becomes

one for finding the roots for a series of linear equations with a tridiagonal matrix.

When j=O, i.e. i = 0+ the quantities in the right hand side of the above equation are

known. The unknown quantities in the left hand side of the equation can be solved

combined with boundary conditions such that fi1 (k + 1/2,j + 1) - fi(k/2,j + 1) = 0

and fif(0,j + 1) = 0, where k is the total number of divisions made for the fiber.

Using the results obtained as initial values for the next time increment and repeating

the above analysis then give new values of the displacement. It is noted that &, is

calculated from the values at the start of the increments for each step.
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Fig.1 (a) A representative volume for a composite subjected to a uniaxial loading.

(b) Near the end of the fiber break.

Fig.2 Unit cell for fiber stress relaxation analysis

Fig.3 The stress in a broken fiber as a function of a distance z measured from the

break at various times for a material with a fiber volume fraction f=0.35, a

ratio of fiber to matrix Young's modulus • = 3, a Weibull modulus of the

fiber m=5, a creep exponent of the matrix n=3 and a ratio of interfacial sliding

stress to characteristic fiber stress ' = 0.01 when the composite is subjected
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to a constant strain such that E = 0.5
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Fig.4 The stress in a broken fiber as a function of a distance z measured from the

break at various times for a material with a fiber volume fraction f=0.35, a

ratio of fiber to matrix Young's modulus L = 3, a Weibull modulus of theEm

fiber m=5, a creep exponent of the matrix n=3 and a ratio of interfacial sliding

stress to characteristic fiber stress ' = 0.01 when the composite is subjected

to a constant unaxial loading such that 2 = 0.2

Fig.5 The creep strains predicted by different models as a function of time for mate-
rials with a ratio of fiber to matrix Young's modulus E - a e

E 3, a creep exponent

of the matrix n=3, a Weibull modulus of the fibers m=5, two different ratios

of interfacial sliding stress to characteristic fiber stress -7 and two different

fiber volume fractions f when the composite is subjected to a constant uniaxial
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loading such that - = 0.2.S,

Fig.6 The creep strains predicted by different models as a function of time for ma-

terials with a fiber volume fraction f=0.35, a ratio of fiber to matrix Young's

modulus • = 3, a creep exponent of the matrix n=3, two different WeibullE.n

moduli of the fibers m and two different ratios of interfacial sliding stress to

characteristic fiber stress Z- when the composite is subjected to a constantSC

uniaxial loading such that •- = 0.2.

Fig.7 The creep strains predicted by different models as a function of time for ma-

terials with a fiber volume fraction f=0.35, a ratio of fiber to matrix Young's

modulus -ý = 3, a creep exponent of the matrix n=3, two different Weibull

moduli of the fiber m and two different ratios of interfacial sliding stress to char-

acteristic fiber stress 1- when the composite is subjected to a constant uniaxialSC

loading such that - = 0.25.

Fig.8 The creep strains predicted by different models as a function of time for ma-

terials with a fiber volume fraction f=0.35, a ratio of fiber to matrix Young's

modulus • = 3, a creep exponent of the matrix n=3, two different WeibullE.

moduli of the fiber m and two different ratios of interfacial sliding stress to char-

acteristic fiber stress 1 when the composite is subjected to a constant uniaxial

loading such that j = 0.3.

Fig.9 The creep strains predicted by different models as a function of time for mate-

rials with a fiber volume fraction f=0.35, a creep exponent of the matrix n=3,

a WeibuUl modulus of the fiber m=5, two different ratios of interfacial sliding
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stress to characteristic fiber stress 1- and two different ratios of fiber to matrix

Young's modulus: (a) 1 and (b) - - 5 when the composite is subjected

to a constant uniaxial loading such that j = 0.2

Fig.10 The applied stress as a function of creep rupture time predicted by different

models for a material with a ratio of fiber to matrix Young's modulus fI- 3,

a creep exponent of the matrix n=3, a Weibull modulus of the fiber m=5, a

ratio of interfacial sliding stress to the characteristic fiber stress 1- = 0.01 and

a fiber volume fraction f=0.35

Fig.11 The applied stress as a function of creep rupture time predicted by different

models for a material with a ratio of fiber to matrix Young's modulus E f = 3,Em

a creep exponent of the matrix n=3, a Weibull modulus of the fiber m=5, a

ratio of interfacial sliding stress to the characteristic fiber stress L = 0.01 and

a fiber volume fraction f=0.25
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Introduction

This review is intended to focus on ceramic matrix composite materials.

However, the creep models which exist and which will be discussed are generic in the

sense that they can apply to materials with polymer, metal or ceramic matrices. Only a

case by case distinction between linear and nonlinear behavior separates the materials

into classes of response. The temperature dependent issue of whether the fibers creep

or do not creep permits further classification. Therefore, in the review of the models, it

is more attractive to use a classification scheme which accords with the nature of the

material response rather than one which identifies the materials per se. Thus, this

review could apply to polymer, metal or ceramic matrix materials equally well.

Only fiber and whisker reinforced materials will be considered. The fibers and

whiskers will be identified as ceramics but with different characteristics from the

matrix. As noted above, at certain temperatures, the reinforcement phase will not be

creeping and then it will be treated as elastic or rigid as appropriate to the model. At

higher temperatures, the reinforcement phase will creep, and that must be allowed for

in the appropriate model. On the other hand, the case of creeping fibers in an elastic

matrix will not be considered, although certain of the models have a symmetry between

fiber and matrix which permits such an interpretation. The models reviewed will be for

materials with long fibers, broken long fibers and short fibers or whiskers. Aligned

fibers and two and three dimensional reinforcement by long fibers will be discussed.

However, general laminate behavior will not be a subject of this review.

The material behaviors considered will include linear elasticity plus linear or

nonlinear creep behavior. The nonlinear case will be restricted to power law rheologies.

In some cases the elasticity will be idealized as rigid. In ceramics, it is commonly the

case that creep occurs by mass transport on the grain boundaries1 . This usually leads to

a linear rheology. In the models considered, this behavior will be represented by a

continuum creep model with a fixed viscosity. That is, the viscosity is strain rate
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independent, although it will in general be temperature dependent. Thus, the mass

transport per se will not be explicit in the models. In some situations, even though the

mechanism is mass transport, the creep behavior involves a power law response with a

low exponent. Such a case is polycrystalline alumina at certain temperatures1 . This

explains the inclusion of power law models in this review. An additional constitutive

feature considered in this review is mass transport on the interface between the fiber

and the matrix. This path can be a faster route for diffusion than the grain boundaries

within the matrix. Therefore it merits a separate treatment as a mechanism for creep. A

rudimentary model for the progressive breaking of reinforcements will be discussed.

Creep void growth and other types o. rupture damage in the matrix and the fiber will,

however, be excluded from consideration.

Because the creep behavior of a ceramic composite often has a linear rheology,

the behavior of the composite usually can be represented by an anisotropic viscoelastic

constitutive law. Thus, a rather general model for such composites involves hereditary

integrals with time dependent creep or relaxation moduli2,3 with a general anisotropy.

the parameters for the law can be determined through creep and relaxation tests, but a

multiplicity of experiments are required to evaluate all the functions appearing in a

general anisotropic law. As a consequence, some guidance from micromechanics is

essential for the generalization of the results. In this review, the focus will be on the

micromechanics based models and the hereditary integral methods will not be

considered. However, the micromechanics models can, if desired, be recast in the

classical viscoelastic form. It should be noted that there exists a vast literature on the

linear elastic properties of reinforced materials. These elasticity models can be

converted into creep models by use of standard methods of linear viscoelasticity 2. This

approach will be avoided in this review even though it can provide effective creep

models for ceramic matrix composites. Instead, the focus in this chapter will be on

models which involve nonlinearities or have features such as interface diffusion which
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are not accounted for when linear elastic models are converted to linear viscoelastic

constitutive laws.

Material Models

All phases of the composite material will be assumed to be isotropic. The creep

behavior of a ceramic will be represented by the law

1 ~3B n- *+a1
t ii 11--+ _- "- akk + 3 fn1Sij + (X 5ij ti

2G= k" i+�S + K1] (1)

where t is the strain rate, (I is the stress, _ is the stress rate, G is the elastic shear

modulus, K is the elastic bulk modulus, 8ij is the Kronecker delta, B is the creep

rheology parameter, n is the creep index, S is the deviatoric stress and the effective

stress F is defined by

a = q Sij ij, (2)

a is the coefficient of thermal expansion and t is the rate of change of temperature. In

all expressions the Einstein repeated index summation convention is used. xj, x2 and x3

will be taken to be synonymous with x, y and z so that a,, = Yxx etc.. The parameter B

will be temperature dependent through an activation energy expression and can be

related to microstructural parameters such as grain size, diffusion coefficients etc. on a

case by case basis depending on the mechanism of creep involved1 . In addition, the

index will depend on the mechanism which is active. In the linear case, n = 1 and B is

equal to 1/3Ti where 11 is the linear shear viscosity of the material. Stresses, strains and

material parameters for the fibers will be denoted with a subscript or superscript f and

for the matrix with a subscript or superscript m.
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Various models will be used for the interface between the fiber and the matrix.

For bonded interfaces, complete continuity of all components of the velocity will be

invoked. The simplest model for a weak interface is that a shear drag equal to T

opposes the relative shear velocity jump across the interface. The direction of the shear

drag is determined by the direction of the relative velocity. However, the magnitude of

Tr is independent of the velocities. This model is assumed to represent friction occurring

mainly because of roughness of the surfaces or due to a superposed large normal

pressure on the interface. Creep can, of course, relax the superposed normal stress over

time, but on a short time scale the parameter T can be assumed to be relatively invariant.

No attempt will be made to account for Coulomb friction associated with local normal

pressures on the interface.

On the other hand, a model for the viscous flow of creeping material along a fiber

surface is exploited in some of the cases covered. This model is thought to represent the

movement of material in steady state along a rough fiber surface and is given by

(McMeeking, to be published)

vRel = n jkk (Bi - nk ni)(3)

where vRel is the relative velocity of the matrix material with respect to the fiber, t is a

rheology parameter proportional to B but dependent also on roughness parameters for

the fiber, n is the unit outward normal to the fiber surface and the stress is that

prevailing in the creeping matrix material. The law simply says that the velocity is in

the direction of the shear stress on the interface but is controlled by power law creep.

When there is mass transport by diffusion taking place in the interface between

the fiber and the matrix, the relative velocity is given by1

v Rel n (V.j)
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where j is the mass flux of material in the plane of the interface and V is the divergence

operator in 2-dimensions also in the plane of the interface. The mass flux in the

interface is measured as the mass per unit time passing across a line element of unit

length in the interface. The flux is proportional to the stress gradient so that

i = DV~n (5)

where D is an effective diffusion coefficient and

Onn = n.O.n (6)

is the normal stress at the interface. Combination of eq. (4 & 5) for a homogeneous

interface gives

vRel = -n D V2 Onn. (7)

The diffusion parameter D controls mass transport in a thin layer at the interface and so

its relation to other parameters can be stated as1

D =8Db
kT (8)

where 8 is the thickness of the thin layer in which diffusion is occurring, Db is the

diffusion coefficient in the material near or at the interface, Q is the atomic volume, k is

Boltzmann's constant and T is the absolute temperature. The diffusion could occur in

the matrix material, in the fiber or in both. The relevant diffusion parameters for the

matrix, the fiber or some weighted average would be used respectively.
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It is worth noting that the "rule of mixtures" for stress, stress rate, strain and

strain rate is always an exact result in terms of the averages over the phases4 . That is

aYijf (4-+(1 a m-f (9)

1J- 1)1)

Ei ý+ (1 - f)I (10)

etc. where the unsuperscripted tensor variables are the averages over the composite

material and the superscripted variables are the averages over the fibers (f) and the

matrix (m) respectively. The volume fraction of the fibrous phase is f. The result

applies irrespective of the configuration of the composite material, e.g. unidirectional or

multidirectional reinforcement. However, an allowance must be made for the

contribution arising from gaps which can appear such as at the ends of fibers. The

difficulty in the use of the rule of mixtures is the requirement that the average values in

the fibers and in the matrix must be known somehow.

Materials with Long Intact Fibers

Creep laws for materials with long intact fibers are relevant to cases where the

fibers are unbroken at the outset, and never fracture during life. As a model, it also

applies to cases where some but not all of the fibers are broken so that some fibers

remain intact during service. Obviously these situations would occur only when the

manufacturing procedure can produce composites with many or all of the fibers intact.

In the problem of the creep of materials with intact unidirectional fibers, as

shown in Fig. 1, most of the insights arise from the compatibility of the strain rates in

the fibers and in the matrix. When a stress azz is applied to the composite parallel to
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the fibers, the strains and strain rates of the fibers and the matrix in the z-direction must

be all the same 5. This gives rise to a creep law of the form

-z '5z + tzz + a[L t•
EL (11)

and

t~xx _-t VL 6= + c+ aT t
EL (12)

where EL is the longitudinal composite modulus, t is the longitudinal creep strain

rate, (ZL is the longitudinal coefficient of thermal expansion, VL is the Poisson's ratio for

the composite relating transverse elastic strain to longitudinal stress, tx is the

transverse creep strain rate and aT is the transverse coefficient of thermal expansion.

The temperature is taken to be uniform throughout the composi[e mnaterial. Evolution

laws for the creep rates are required and these laws involve the stress levels in the

matrix and fibers. Thus, in turn, evolution laws are required for the matrix and fiber

stresses.

The exact >. vs, based on continuum analysis of the fibers and the matrix would

be very complicated. The analysis would involve equilibrium of stresses around and in

the fibers and compatibility of matrix deformation with the fiber strains. Furthermore,

end and edge effects near the free surfaces of the composite material would introduce

complications. However, a simplified model can be developed for the interior of the

composite material based on the notion that the fibers and the matrix interact only by

having to experience the same longitudinal strain. Otherwise, the phases behave as two

uniaxially stressed materials. McLean 5 introduced such a model for materials with

elastic fibers and he notes that McDanels, Signorelli and Weeton6 developed the model
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for the case where both the fibrous and the matrix phase are creeping. In both cases, the

longitudinal parameters are the same, namely

EL = f Ef + (1-f)Em (13)

aL = [f Ef af + (1 - f) Em aXmI/EL (14)

,=[f Ef Bf Of + (1 - f) Em Bm On,/EL. (15)

When the fibers do not creep, Bf is simply set to zero. The longitudinal stress azz in the

fibers and the matrix are denoted af and am respectively. To accompany eq. (13-15),

evolution laws for the fiber and the matrix stresses are required. These are

S= Ef(pz - Bf nf -O XfT) (16)

and

dm = Em (Pzz -Bm am - Mto T) (17)

Indeed, combining these by the rule of ',tures, eq. (9), leads to eq. (13) to (15).

Since the fibers and the matrix •t interact transversely, the model implies

that no transverse stresses develop in the matrix or the fibers. The rule of mixtures,

eq. (10), then leads to

VL = f Vf + (l-f)Vm (18)

aT = f af + (1 - f) am + f (1 - f) ((Xf -am) (Vf Em- Vm Ef)/EL (19)
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and

nm nf+f(1 - f) (BmOm - Bf Of ) (Vf Em - Vm Ef)/EL. (20)

The data suggest that the elastic parameters in this model are reasonably good to first

order7 and experience with plasticity calculations8,9,10 indicates that there is little plastic

constraint between fibers and matrices at low volume fractions. Thus, the model should

work reasonably well for any creep exponents at low volume fractions of fibers.

Indeed, McLean 5 has used the isothermal version of the model successfully to explain

longitudinal creep data for materials with non-creeping fibers.

Of interest, is the prediction of the uniaxial stress model when the applied stress

and the temperature are held constant. The governing equations (19), (16) & (17) then

have the feature that as time passes the solution always tends towards asymptotic

values for stress in the fibers and the matrix. The evolution of the matrix stress occurs

according to

+ m= Bm3n m - Bf y-(1-f)am 
(1 n

f~ (21)

and it can be shown that for any initial value of matrix stress, the matrix stress rate

tends to zero. Therefore, the matrix stress tends toward the value which makes the

right hand side of eq. (21) equal to zero. This can be solved easily for four common

ceramic cases. One is when both matrix and fibers creep with a linear rheology so that

both creep indices are equal to one. In that case the stresses tend towards the state in

which
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fBm + (1-f)Bf (22)

and

=f Bm (

fBm + (1-f)Bf. (23)

Another case is when the fibers creep linearly and the matrix creeps with an index of 2.

Then the matrix tends towards a stress

amJm ) [L 1
(f 2  (24)

and of course am = [a - (1 - f) am/f. The opposite case of a linear matrix and

quadratic fibers is such that the fibers tend towards the stress

af =-f_4(_-f) 2

(B= [ 4B 1--'a +4f)2 4 2(1-f) (25)

and am = [a - f af]/(1 - f). Finally, when the fibers do not creep, the matrix stress tends

towards zero and the fiber stresses approach a/(1 - f).

In the latter case, the transient stress can be stated as well. The isothermal result

for constant a is5

am(t) = -(n1)fEf Em Bt + 1
EL ICYe (0)]n-1 (26)
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when n * 1 and

am (t) = am (0) exp (-f Ef Em B t/EL) (27)

when n =1. The subscript on the creep rheology parameter for the matrix has been

dropped and the unsubscripted B refers to the matrix henceforth. In both cases

of = [a - (I - f) amJ/f and the composite strain is af/Ef. The stress at time zero would

be computed from the prior history with t = 0 being the time when both the temperature

and the applied stress become constant. For example if the temperature is held constant

at creep levels until equilibrium is achieved and then the load is suddenly applied,

am (0) = a Em/EL. To the extent that there are any thermal residual stresses at t = 0,

they will contribute to am (0). However, eq. (26) & (27) make it clear that thermal

residual stresses will be relaxed away be creep.

Steady Transverse Creep with Well-Bonded Elastic Fibers The previous paragraph

has made it clear that if there are elastic fibers and a constant macroscopic stress is

applied, the longitudinal creep rate will eventually fall to zero. With constant

transverse stresses applied as well, the process of transient creep will be much more

complicated than that associated with eq. (27) and (28). However, it can be deduced

that the longitudinal creep rate will still fall to zero eventually. Furthermore, any

transverse steady creep rate must occur in a plane strain mode. During such steady

creep, the fiber does not deform further because the stress in the fiber is constant. In

addition, any debonding which might tend to occur would have achieved a steady level

because the stresses are fixed.

For materials with a strong bond between the matrix and the fiber, models for

steady transverse creep are available. The case of a linear matrix is represented exactly

4H:MS26(September 1,1992)10:25 AM/mef
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by the effect of rigid fibers in an incompressible linear elastic matrix and is covered in

texts on elastic materials 7,11,12 . For example, the transverse shear modulus, and

therefore the shear viscosity, of a material containing up to about 60% rigid fibers in a

square array is approximated well by1'

GT = 1+2 Gm
1-f m (28)

It follows that in the coordinates of Fig. 1, steady transverse creep with well bonded

fibers obeys

t 3B( 1-f )()(Y- txx4-+2 Y -Ox (-T• (• •= 29)

and

t XY 3B(1-f )/%2 1+2fTiT (30)

with tzz = 0. A material with fibers in a hexagonal array will creep slightly faster than

this. Similarly, creep in longitudinal shear with fibers in a square array can be

approximated well by

3B(1-f'o

tx 2 +f ) z(31)

and

t 3Bfl-f)
-YZ = 2 ,•) Iyz. (32)
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There are few comprehensive results for power law matrices. Results given by

Schmauder and McMeekingllfor up to 60% by volume of fibers in a square array with a

creep index of 5 can be represented approximately by

t = -_yy = 0.42B Io a - jyyI4 (Oxx- 3 ,yy)/S 5  (33)

where t~zz = t" = ;xy = 0

S = (1 + f2)/( - f) (34)

is the creep strength, defined to be the stress required for the composite at a given strain

rate divided by the stress required for the matrix alone at the same strain rate. The

expression in eq. (34) is only suitable for n = 5. The result in eq. (33) when f = 0 is the

plane strain creep rate for the matrix alone. Results for Oxy * 0 are not given because of

the relative anisotropy of the composite with a square array of fibers. Relevant results

for other power law indices and other fiber arrangements are not available in sufficient

quantity to allow representative expressions to be developed for them.

Three-Dimensional Continuous Reinforcement This configuration of reinforcement

can be achieved by the use of a woven fiber reinforcement or interpenetrating networks

of the two phases. Another possibility is that random orientation of whiskers produces

a percolating network and even if the whiskers are not bonded together, this network

effectively forms a mechanically continuous phase. In the case of woven

reinforcements, there may be some freedom for the woven network to reconfigure itself

by the straightening of fibers in the weave or because of void space in the matrix. Such

effects will be ignored and it will be assumed that the fibers are relatively straight and

that there is little or no void space in the matrix. A straightforward model for these
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materials is tlv't the strain rate is homogeneous throughout the composite. The

response is then given by

dij = 2G itj + (K - 8 G kk- 3K t ij
-nf-l f -rm-(-3fGfBfaf )Sij -3( )GmBm mn (35)

where

G= f Gf + (1-f) Gm (36)

K= fKf + (1-f) Km (37)

and

= ff Kf + ( - • am Km. (38)

The evolution of the fiber and matrix average stresses appearing in the last two terms in

eq. (35) is given by eq. (35) with f = 1 and f = 0 respectively. It is of interest that the

constitutive law in eq. (35) is independent of the configuration of the reinforcements

and the matrix. As a consequence, the law is fully isotropic and therefore may be

unsuitable for woven reinforcements with unequal numbers of fibers in the principal

directions. In addition, the fully isotropic law may not truly represent materials in

which the fibers are woven in 3 orthogonal directions. Perhaps these deficiencies could

be remedied by replacing the thermoelastic part of the law with an appropriate

anisotropic model. A similar alteration to the creep part may be necessary but no

micromechanical guidance is available at this stage.
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If the composite strain rate is known, the composite stress during steady state

isothermal creep can be computed from the rule of mixtures for the stress, eq. (9). This

gives

1-nf jP

2 f ( E i f C -
SiJ = 3Bf Bf) B B

M( M (39)

where t must be deviatoric (i.e. 4kk = 0) and

r3 - i4 tiJ (40)

A hydrostatic stress can be superposed, but it is caused only by elastic volumetric strain

of the composite. The result in eq. (39) is, perhaps, not very useful since it is rare that a

steady strain rate will be kinematically imposed. When both fiber and matrix creep, the

steady solutions for a fixed stress in isothermal states are quite complex but can be

computed by numerical inversion of eq. (39). The solution can however be given for the

isothermal case where the fibers do not creep. (For non-fiber composites, this should be

interpreted to mean that one of the network phases creeps while the other does not.)

The matrix deviatoric stress is then given by

S!P (t) = S (0) [3(n- 1)fGf Gm B t/ + (Um (0))1-nII

when n * 1 and for n = 1

Sij (t) = S17 (0) exp (- 3 f Gf Gm B t/G). (42)
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The subscripts on B and n have been dropped since only the matrix creeps. The

interpretation of time and the initial conditions for eq. (41) & (42) are the same as for

eq. (26) & (27). The fiber deviatoric stresses are given by

S= [sij - (1-if) SP/f (43)

and the composite deviatoric strain eij is therefore

eij = Sý/2 Gf. (44)

The volumetric strains are invariant and given by

Ekk = 1kk/3 K. (45)

As expected, the matrix deviatoric stresses will be relaxed away completely.

Thereafter, the "fiber" phase sustains the entire deviatoric stress. As a consequence, in

the asymptotic state

j = Sij/f (46)

and the composite strain will be given by (44) to (46) as

iij (1 1_ 1
=iJ = 2fGf 4 3K- 2fGf -)3 (4;)

It follows that in uniaxial stress, with 2zz = C; and Ezz = E, the asymptotic result will be
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F, T G-f+ 9(48)

This result indicates that the composite will have an asymptotic modulus slightly stiffer

than f Ef because the matrix phase is capable of sustaining a hydrostatic stress.

Two-Dimensional Continuous Reinforcement This configuration of reinforcement

occurs when fibers are woven into a mat. It could also represent whisker reinforced

materials in which the whiskers are randomly oriented in the plane, especially if

uniaxial pressing has been used to consolidate the composite material. In the case of the

whisker reinforced material, it is to be assumed that their volume fraction is so high that

they touch each other. The whiskers have either been bonded together, say by

diffusion, or the contact between the whiskers acts, as is likely, as a bond even if there is

no interdiffusion.

In a simple model for this case, which as in the 3-d case ignores fiber

straightening and anisotropy of the fibrous network, a plane stress version of eq. (35)

can be developed. As such, it can only be used for plane stress states. Consider the x-y

plane to be that in which the fibers are woven or the whiskers are lying. The strain rates

in this plane are taken to be homogeneous throughout the composite material and azz,

(;xz and (;yz are taken to be zero. The resulting law is

-F V . I+ *1i•8
d•p = 2G; jaO + V :& x 1-

-3faBf f +Boo
~3f~f f'rI[ + (1- Vf) 8c~~y]

-3(1-f)GmBm nm-'[SM + Vm 8
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where Greek subscripts range over 1 & 2 and where

-V f G, ' + (1- f) Gm Vm
11 -Vf 1-Vm] (50)

and

S= [ Gf '+V + (1-f) am Gm 1+V / --("+ Vj51
1- vf 1- Vm . (5V

The fiber and matrix evolution laws for stress are identical to eq. (49) with f = 0 and f = I

respectively. Being isotropic in the plane, this law suffers from the same deficiencies as

the 3-d version regarding the orthotropy of the woven mat and any inequality between

the warp and the woof. As before, this could be remedied with an anisotropic version

of the law.

In steady state isothermal creep, the relationship between in plane components of

stress and in plane components of strain rate are given by

nf 1- n mfc-- m+ Oa)

I B(52)

with Oxz = Gyz = Ozz = 0 and with -E given by eq. (40) but with txz = tyz = 0. As in the

3-d case, this must be inverted numerically to establish a steady state isothermal creep

rate for a given imposed stress.

When the fibers are elastic and non-creeping, the isothermal behavior at fixed

applied plane stress is given in terms of the deviatoric stress by eq. (41) or (42) and
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eq. (43). The expression for the deviatoric composite strain, eq. (44), still applies.

However, the composite strain obeys

= 3(1 f)- a.-,- (1 +v)(1V)-
e' 2 G M (1+v)(_Vm) S• (53)

and

L =Vf + 01 f) - --- 3( 1 f) B Sm

The latter result indicates that the volumetric strains can be relaxed to some extent by

matrix creep. This contrasts with the 3-d case where complete compatibility of strains

precludes such relaxation. The extent to which the relaxation occurs has not yet been

calculated. However, if it is assumed that the relaxation can be complete so that the

matrix volumetric strain is zero, then the fiber stress tends towards (Yap/f and therefore

the composite strain approaches

i+Vf Gij Vf ij (

f Ef f Ef (55)

which, of course, is restricted to plane stress. It can be seen that in uniaxial stress, the

effective asymptotic modulus would now equal f Ef. A properly calculated solution for

Ckk (t) is required to investigate whether this result holds true.
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Uniaxial Reinforcement with Long Brittle Fibers

The reinforcement configuration of interest now is once more that depicted in

Fig. 1 and the loading will be restricted to a longitudinal steady stress azz. The

possibility will be taken into account that the fibers might be overstressed and therefore

could fail. Only elastic fibers which break in a brittle manner will be considered,

although ceramic fibers are also known to creep and possibly rupture due to grain

boundary damage. Frictionally constrained fibers only will be considered since well

bonded fibers will fail upon matrix cracking and vice versa. The case where the fibers

have a deterministic strength S can be considered. In that situation, the fibers will

remain intact when the fiber stress is below the deterministic strength level and they

will break when the fiber stress exceeds the strength. The fracturing of the fibers could

occur during the initial application of the load, in which case elastic analysis is

appropriate. If the fibers survive the initial application of the load, then subsequent

failure can occur as the matrix relaxes according to eq. (26) or (27) and the fiber stress

increases. Thus the time elapsed before first fiber failure can be estimated based on

eq. (26) or (27) by setting the fiber stress equal to the deterministic strength. This

predicts that failure of a fiber will occur when

am = [a - f S]/(1 - f) (56)

from which the time to failure can be computed through eq. (26) or (27). The failure of

one fiber in a homogeneous stress state will cause a neighboring fiber to fail nearby

because of the fiber/matrix shear stress interaction and the resulting localized load

sharing around the broken fiber. Thus a single fiber failure will tend to cause a

spreading of damage in the form of fiber breaks near a single plane across the section.

This will lead to localized rapid creep and elastic strains in the matrix near the breaks

perhaps giving rise to matrix failure. It follows therefore that tertiary failure of the
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composite will tend to occur soon after the occurrence of one fiber failure when the fiber

strength is deterministic.

Tertiary failure processes akin to this have been modelled by Phoenix and

coworkers 13-15 in the context of epoxy matrix composites. Indeed, they show that such

tertiary failures can occur even when the fiber strength is statistical in nature. This

mechanism will not be pursued further in this paper but some other basic results

considered on the assumption that when there is a sufficient spread in fiber strengths

such tertiary failures can be postponed well beyond the occurrence of first fiber failure

or indeed eliminated completely. Thus, attention will be focused on fibers which obey

the classical Weibull model that the probability of survival of a fiber of length L stressed

to a level of is given by

Ps = exp L ,S)

where Lg is a datum gauge length, S is a datum strength and m is the Weibull modulus.

Clearly the results given below can be generalized to account for variations on the

statistical form which differ from eq. (57). However, the basic ideas will remain the

same.

Long Term Creep Threshold Consider a specimen of length Ls containing a very large

number of wholly intact fibers. A stress a is suddenly applied to the specimen parallel

to the fibers. The temperature has been raised to the creep level already and is now

held fixed. Upon first application of the load, some of the fibers will break. The sudden

application of the load means that the initial response is elastic. This elastic behavior

has been modelled by Curtin 16 among others but details will not be given here. If the

applied stress exceeds the ultimate strength of the composite in this elastic mode of
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response, then the composite will fail and long term creep is obviously not an issue.

However, it will be assumed that the applied stress is below the elastic ultimate

strength and therefore creep can commence. It should be noted, however, that matrix

cracking can occur in the ceramic matrix and the characteristics of creep relaxation

would depend on the degree of matrix cracking. However, this aspect of the problem

will not be considered in detail. For cases where there is matrix cracking and for which

the specimen length Ls is sufficiently long, Curtin16 has given the theoretical prediction

that the ultimate elastic strength is

Su = f [4 Lg Sm" "/D (m + 2)11/(m+l) (m + 1)/(m + 2) (58)

where 'r is the interface shear strength between the fiber and the matrix and D is the

diameter of the fibers. The interface shear strength is usually controlled by friction. For

specimens shorter than 8c, the ultimate brittle strength exceeds Su where Sc is given

by16

c = [SL D/2 T]m/(m+l) (59)

This critical length is usually somewhat less than the datum gauge length.

When the applied stress a is less than Su, creep of the matrix will commence after

application of the load. During this creep, the matrix will relax and the stress on the

fibers will increase. Therefore, further fiber failure will occur. In addition, the process

of matrix creep will depend on the extent of prior fiber failure and, as mentioned

previously, on the amount of matrix cracking. The details will be rather complicated.

However, the question of whether steady state creep or, perhaps, rupture will occur or

whether sufficient fibers will survive to provide an intact elastic specimen can be

answered by consideration of the stress in the fibers after the matrix has been assumed
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to relax completely. Clearly, when the matrix carries no stress, the fibers will at least fail

to the extent they do in a dry bundle. It is possible that a greater degree of fiber failure

will be caused by the transient stresses during creep relaxation, but this effect has not

yet been modelled. Instead, the dry bundle behavior will be used to provide an initial

estimate of fiber failure in these circumstances.

Given eq. (57), the elastic stress strain curve for a fiber bundle is

a = fEfF.exp -hmli(6]

Thus when a stress a is applied to the composite, creep will occur until the strain has

the value consistent with eq. (60). Numerical inversion of eq. (60) can be used to

establish this strain. The stress-strain curve in eq. (60) has a stress maximum when

E = S(g-Ef ýmLs) (61)

with a corresponding stress level given by

= s f,(ILsJ ( (62)

This result is plotted as a function of m in Fig. 2. If aY < ac, the composite will creep

until the strain is consistent with eq. (60) and thereafter no further creep strain will

occur. Of course, the non creeping state will be approached asymptotically. (It should

be noted that due to possible fiber failure during the creep transient, the true value for

ac may lie below the result given in eq. (62).) For an applied composite stress equal to
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or exceeding Oo, creep will not disappear with time because all of the fibers will

eventually fail and the strain will continue to accumulate.

The critical threshold stress for ongoing creep given by eq. (62) is specimen

length dependent. For very long specimens, the threshold stress is low whereas short

specimens will require a high stress for ongoing creep to continue without limit. On the

other hand, the ultimate brittle strength as given by eq. (58) for a composite specimen

longer than 8c is specimen length independent. Thus there are always specimens long

enough so that ac is less than Su. This means that the specimen can be loaded without

failure initially and if a exceeds ac, the specimen will go into a process of long term

creep. (It should be remembered, however, that this model is based on the assumption

that tertiary failure is delayed and does not occur until a substantial amount of matrix

creep has occurred.) For shorter specimens, the relationship between ac and Su

depends on the material parameters appearing in eq. (58) and (62). However, for

typical values of the parameters, ac is less than Su so that there is usually a window of

stress capable of giving rise to long term creep without specimen failure when the

specimen length exceeds Sc. Typical values for the parameters are given by, among

others, Hild et al.17. From these parameters, predictions for ac can be made. For

example, a LAS matrix composite containing 46% of SiC (Nicalon) fibers (m equals 3 or

4) is predicted to have a value for ac between 400 MWa and 440 MPa for a specimen

length of 25 mm whereas its measured ultimate brittle strength is between 660 MPa and

760 MPa. At 250 mm specimen length, the long term creep threshold ac is predicted to

fall to the range 185 MWa to 250 MPa. Similarly, a CAS matrix composite with 37% SiC

(Nicalon) fibers (m equals 3.6) in a specimen length of 25 mm is predicted to suffer long

term creep if the stress exceeds 160 MPa whereas the measured ultimate brittle strength

is 430 MPa. For a 250 mm specimen length, this creep threshold is predicted to fall to

85 MPa. Thus it is clear that in some practical cases, applied stresses which are modest

fractions of the elastic ultimate strength will cause long term creep.
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Steady State Creep For specimens which have (i) previously experienced an applied

stress exceeding the long term creep threshold or (ii) which had every fiber broken prior

to testing or service (e.g. during processing) or (iii) which had few fibers intact to begin

with so that initially the long term creep threshold is much lower than oc as predicted

by eq. (62), a prediction of the long term creep behavior can be made. Prior to this state,

there will, of course, be a transient which involves matrix creep and, perhaps, the

fragmentation of fibers. This transient has not been fully modelled. Only a

rudimentary assessment of the creep behavior has been made revealing the following

features.

For those composites initially having some of the fibers intact, there will always

be some which must be stretched elastically. This will require a stress which will tend

towards the value given by eq. (60) with f replaced by fi, the volume fraction of fibers

initially intact. If a relaxation test were carried out, the stress would asymptote to the

level predicted by eq. (60). The remaining broken fibers will interact with the matrix in

a complex way, but at a given strain and strain rate, a characteristic stress contribution

can be identified in principle. Details have not been worked out. However, the total

stress would be the sum of the contribution from the broken and unbroken fibers. If

the transient behavior is ignored (i.e. assumed to die away relatively fast compared to

the strain rate) a basic model can be constructed.

Steady State Creep with Broken Fibers First, consider a composite with a volume

fraction f of fibers, all of which are broken. There are two possible models for the

steady state creep behavior of such a material. In one, favored by Mileiko18 and

Lilholt19 among others, the matrix serves simply to transmit shear stress from one fiber

to another and the longitudinal stress in the matrix is negligible. The kinematics of this

model requires void space to increase in volume at the ends of the fibers. However,
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with broken fibers there is no inherent constraint on this occurring. Furthermore, if

matrix cracking has occurred, the matrix will not be able to sustain large amounts of

longitudinal tension and its main role will be to transmit shear from fiber to fiber.

Indeed, matrix cracking will probably promote this mode of matrix flow since there will

be no driving stress for other mechanisms of straining. The other model, favored by

McLean 20 and developed by Kelly and Street 21 involves a stretching flow of the matrix

between fibers at a rate equal to the macroscopic strain rate of the composite material.

This requires substantial axial stress in the matrix. In addition, volume is preserved by

the flow and there is no need for space to develop at the end of the fiber. The model

requires a considerable matrix flow to occur transporting material from the side of a

given fiber to its end and the injection of matrix in between adjacent ends of the broken

fibers. There is good reason to believe that the Mileiko 18 pattern of flow prevails when

there are broken fibers.

In a version of the Mileiko 18 model in which it is assumed that each of six

neighboring fibers has a break somewhere within the span of the length of a given fiber

but that the location of those breaks is random within the span, the relationship

between the steady state creep rate and the composite stress is (McMeeking,

unpublished work)

S= g (n, f) (D /L)n+l B a n (63)

where L is the average length of the broken fiber segments and

g(nf) = 245[ 2nf (1 ) (64)
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when n * 1 and

g(1,f) = (9/f) 0n(1/FTh. (65)

These functions have been computed for uniform fiber length and based on a hexagonal

shape for the fiber even though interpreted to be circular. That explains why creep

strength goes to infinity at f = 0 rather than at f less than 1. In this creep model, the

influence of both volume fraction and the aspect ratio L/D on the strain rate is clear

with both having a strong effect. As noted, this model could serve as a constitutive law

for the creep of a material in which all of the fibers are broken to fragments of average

length L. In addition, it could be used for short fiber composites which have weak

bonds between the fiber end and the matrix so that debonding can readily occur and

void space can develop as a result. However, the aspect ratio L/D should be large so

that the Mileiko 18 flow pattern will occur and end effects can be neglected when the

composite creep law is computed.

The shear stress transmitted to a fiber is limited to the shear strength T. As a

result, the formuma given in eq. (63) is valid only up to a composite macroscopic stress of

2nf (L
y = 2n+1 D) 

(66)

for both the linear and nonlinear cases. According to the model, at this level of applied

stress, the shear stress on the fiber interface will start to exceed T. Therefore, at stresses

higher than the value given in eq. (66), the strain rate will exceed the level predicted in

eq. (63). This situation will persist in the presence of matrix cracks up to a composite

macroscopic stress of
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aLIM = f T L/D (67)

at which stress the entire fiber surface is subject to a shear stress equal in magnitude to

T. Then, the mechanism represented by eq. (63) provides an indeterminate strain rate as

in rate independent plasticity. Thus GLIM can be thought of as a yield stress. This

concept is probably satisfactory for materials with many matrix cracks so that there is

no constraint on stretching the matrix. However, when there are no matrix cracks, the

strain rate is probably controlled by the mechanism which generates void space at the

fiber ends. This has been considered to require negligible stress in the version of the

model leading to eq. (63). For a proper consideration of the limit behavior, the

contribution to the stress a-ising from void development at the fiber ends should be

taken into account.

The Effect of Fiber Fracture If the stress applied to the composite is increased, the

stress sustained by fibers will increase also. When the probability of survival of fibers

obeys the statistical relationship given by eq. (57), the effect of a raised stress will be to

fracture more fibers, with a preference for breaking long fibers. This will have the effect

of reducing the average fiber length L and therefore raising the strain rate at a given

applied stress as can be deduced from eq. (63). Therefore, the composite will no longer

have a simple power law behavior in steady state creep since the fiber fragment length

will depend on the largest stress which the composite material has previously

experienced. In this regard, the elastic transients will play an important role in

determining the fiber fragment length. However, the average fragment length in steady

state creep will generally be smaller than the average fragment length arising during

initial elastic response. Therefore, some guidance can be obtained from a model

designed to predict the steady state creep response only.
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For the Mileiko1 8 model of composite creep leading to the steady state creep rate

for fixed fiber length given in eq. (63), a rudimentary fiber fragment length model gives

(McMeeking, unpublished work)

L = (m+1)[1l+1?l~a] Lg9 (68)

subject to L being less than the specimen length. When a stress 0 is applied to the

composite material and steady state is allowed to develop, the average length for the

fiber fragments is predicted by eq. (68). This model is by no means precise, based as it is

on some approximations in the calculations as well as the notion that all fibers can be

treated as if they had the same length. However, the model conveys the important

notion that the fiber fragment length will fall as the applied stress is increased.

The fiber fragment average length during steady state creep can be substituted

into eq. (63) from which results

S= h (n, f, D /Lg, m , S) B 0yn+m +nm (69)

where h is a rather complicated function of its arguments and can readily be calculated.

A significant conclusion is that the creep index for the composite is no ionger just n but

is n+m+nm. Thus a ceramic matrix material with a creep index for the matrix of 1 will

have composite creep index of 2m + 1. In the case of a fiber with a Weibull modulus of

m = 4, the composite creep index will be 9. Similar effects will be apparent in

composites with a nonlinearly creeping ceramic matrix, say with n = 2. It has been

observed that metal matrix composites with noncreeping reinforcements often have a

creep index which differs from that of the matrix5,22 and the effect is usually attributed
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to damage of the fibers or of the interface. It can be expected that ceramic matrix

composites will exhibit a similar behavior.

It should be noted that the model leading to eq. (69) is incomplete since the stress

required to cause the enlargement of void space at the fiber breaks is omitted from

consideration. At high strain rates this contribution to stress can be expected to

dominate other contributions. Therefore at high stress or strain, the creep behavior will

diverge from eq. (69) and perhaps exhibit the nth power dependence on stress as

controlled by the matrix. The creep rate at these high stresses can be expected to exceed

the creep rate of the matrix at the same applied stress since the void space at the fiber

ends is a form of damage.

Creep of an Initially Undamaged Composite The issue to be addressed in this section

is the long term behavior of a composite stressed above the threshold ac given by

eq. (62) which means that the specimen will creep continuously. As in the immediately

preceding sections, elastic transient effects will be omitted from the model of long term

creep of the initially undamaged composite. No model exists as yet for the transient

behavior, but there is little doubt that the transient behavior is important. Many

composite materials in service at creep temperatures will probably always respond in

the transient stage since the time for that to die away will typically be rather long.

However, a quasi-steady state model, as before, will give some insight into the state

towards which the transients will be taking the material. However, the model

presented below is rather selective, since it includes some elastic effects and ignores

others. It is not known how deficient this feature of the model is. Perhaps the material

state will evolve rather rapidly towards the state predicted below and therefore the

model may have some merit.
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The specimen is composed of a mixture of matrix, unbroken fibers and broken

fibers. The volume fraction of intact fibers is given by eq. (57) with L = Ls, the specimen

length. To the neglect of transients, the macroscopic stress supported by these intact

fibers is given by eq. (60). The strain will now exceed the level of eq. (61) associated

with the ultimate strength of the fiber bundle. Therefore the stress supported by the

intact fibers will be less than ac which is the ultimate strength of the fiber bundle

without matrix. The applied stress exceeds Oc and the balance in excess of the amount

borne by the intact fibers will cause the composite material to creep.

The steady state result given in eq. (69) will be taken to express the creep

behavior controlled by the broken fibers. The volume fraction of broken fibers is

fb ex [ _ L s (E f E~ m 1 70

and a material with this volume fraction of broken fibers creeping at a rate t will

support a stress

ab = [s/B h (n, fb, D/Lg, m, S)]1 /P (71)

where

p = n + m + nm (72)

which comes directly from eq. (69). The total stress sustained by the composite material

is therefore

a = fb Ob + Ou (73)
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where ou is the contribution due to unbroken fibers. This leads to

a = fb[t/Bh(fb)]I/P + fEfEexp-[•Ls -•- 74E)

which can be seen to be a rather nonlinear Kelvin-Voigt material in which the stress is

the sum of a viscous element and an elastic element both of which are nonlinear. As the

strain increases, the second term on the right hand side of eq. (74) (i.e. the term due to

the intact fibers) will diminish and become rather small when only a few unbroken

fibers are left. At the same time, fb will approach f and so the strain rate will approach

the steady state rate for a material in which all of the fibers are broken. However, as

long as a few fibers remain intact, the creep behavior will not precisely duplicate that

for the fully broken material. This transient effect will be compounded by the

redistribution of stress from the matrix to the fibers which will occur both after the first

application of load to the composite material and after each fracture of a fiber, both

effects having been omitted from this version of the model.

Creep of Materials with Strong Interfaces

It seems unlikely that long fiber ceramic matrix composites with strong bonds

will find application because of their low temperature brittleness. However, for

completeness, a model which applies to the creep of such materials can be stated. It is

that due to Kelly and Street21 . It is possible also that the model applies to aligned

whisker reinforced composites since they may have strong bonds. In addition, the

model has a wide currency since it is believed to apply to weakly bonded composites as
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well. However, the Mileiko 18 model predicts a lower creep strength for weakly bonded

or unbonded composites and therefore is considered to apply in that case.

The Kelly and Street21 model uses the notion that creep of the composite material

can be modelled by the behavior of a unit cell. Each unit cell contains one fiber plus

matrix around it so that the volume of the fiber divided by the volume of the unit cell

equals the fiber volume fraction of the composite material. The perimeter of the unit

cell is assumed to be deforming at a rate consistent with the macroscopic strain rate of

the composite material. (It can be observed at this stage that this notion is inconsistent

with the presence of transverse matrix cracks which would make it impossible to

sustain the longitudinal stress necessary to stretch the matrix. This is an additional

reason why the Kelly and Street21 model is not likely to be applicable to unbonded

ceramic matrix materials which are likely to have matrix cracks.) Only steady state

creep of materials with aligned reinforcements which are shorter than the specimen is

considered. The unit cell is assumed to conserve volume. This means that material

originally adjacent to the reinforcement must flow around the fiber and finish up at its

end. This phenomenon has to occur when the end of the fiber or whisker is strongly

bonded to the matrix. For this reason, the Kelly and Street21 model is considered to be

relevant to materials with strong bonds.

Kelly and Street21 analyzed this model but their deductions were not consistent

with the mechanics. McMeeking 23 has remedied this deficiency for nonlinear materials.

His results for n = 2 are relevant to composite materials with nonlinearly creeping

ceramic matrices which tend to have low creep indices. In that case, the steady state

creep rate is given by eq. (63) with n =2 and

g(2,f) - 8f2 I 4F( + 2f 1 f2 + _.f3
(2 5 2 2 10(5 (75)
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which is invalid for f = 0. When f is close to zero a different form should be used which

accounts for the matrix stress so that the matrix creep law is recovered smoothly as the

volume fraction of fiber disappears. This result is developed below and is given in

eq. (77). Comparison of eq. (75) with eq. (64) for n = 2 will show that the model of Kelly

and Street21 creeps more slowly than the Mileiko 18 law confirming that the Mileiko

model is the preferred one when it is kinematically admissible.

It is thought that at higher temperatures, the interface between the fiber and the

matrix becomes weak and sliding occurs according to the constitutive law given in

eq. (3). In that case, creep of a composite with a well bonded interface obeys eq. (63)

with n = 2 and23

g (2, f) 2.54-3- [31 W + f _ f2 + 1 f3)+ (1-f)3B1
r,) [ 2  5 2 2 10 2DB. (76)

This form for g is identical with that in eq. (75) when B = 0. Thus, sliding at the interface

increases the creep rate at a given stress. If B/B D is very large, signifying a very weak

interface, then the interface term will dominate the matrix term in eq. (76). It should be

noted that there is a relative size effect, with large diameter fibers making sliding less

important.

At large strain rates, stretching of the matrix as it slides past the matrix will

contribute to the creep strength. Under those circumstances, the term g(2, f) in eq. (63)

should be replaced by23

g(2, f) = /g-(2,f) + f)

(77)
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where, in eq. (77), g(2, f) is to be calculated according to eq. (76). Note that as g(2, f)

becomes large (i.e., the composite strain rate is large because either f is small or B is

large), the composite strain rate will approach

S= B [O/(1 _f)]2  (78)

which is the rate that would prevail if the fibers were replaced by long cylindrical holes.

Creep of Materials with a Linear Rheology The equivalent correction to the Kelly and

Street21 model for cases where the matrix creep obeys a linear rheology (n = 1) was not

given by McMeeking 23. However, consideration of this case can be included in a model

with accounts for the ability of a well bonded interface between the fiber and the matrix

to sustain sliding according to eq. (3) and in which mass transport may cause the effect

described by eq. (4). In unpublished work, McMeeking has given the steady state creep

law for the composite material in these circumstances to be

a = h(f) + 1 - f
(79)

where

8f'f [4n(1/-f) - 3 + Vf - f 2]

3B(1-f)2  48f

fBD BD 3  
(80)

Recall that if sliding between the fiber and the matrix occurs readily, B will be large and

also rapid mass transport is associated with a large value of D.
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It is thought that as the temperature is increased, the relative importance of

sliding and mass transport is enhanced. Thus at low creep temperatures, B/B D and

D/B D3 would be small. Then only the first term on the right hand side of eq. (80) will

be important and when L/D is large, as required by this asymptotic model, the creep

strength will be high. As the temperature is increased, either B/ B D or D/B D3 or both

will increase in magnitude. When they become large, h(f) will become small and the

creep strength of the composite will fall, as can be seen in eq. (79). However, if h(f)

becomes negligible, the steady state creep law for the composite will be approximately

S= B /(1 - f). (81)

As in the case of the quadratic matrix rheology, the creep behavior when sliding

dominates (or as in this new case mass transport is significant) is the same as for a

material containing cylindrical holes instead of fibers even if the interface is nominally

well bonded. This behavior will occur when h(f) is much smaller than (D/L)2 so that

the relevant term containing h(f) in eq. (79) is negligible.

It should be noted that the creep behavior is affected in the way predicted by

eq. (79) and (80) whether interface sliding occurs readily or mass transport occurs

rapidly at the interface between the fiber and the matrix. It follows that rapid sliding by

itself is sufficient to diminish the creep strength of the composite material and long

range mass transport at the interface is not necessary. Note also that if the matrix does

not creep (i.e. B = 0) neither sliding nor mass transport will have any effect on creep and

the composite will be rigid. This feature arises because the matrix must deform when

any sliding or mass transport occurs at the interface.

An additional feature is a size effect in the creep law when sliding or mass

transport at the interface are significant enough to affect the composite behavior. A

small diameter fiber (i.e. small D) will tend to enhance the effect of sliding or mass

4H2M6(S2ptmber 1, 992)1O.25 AM/mef



38

transport on the creep rate of the composite and the composite will creep faster.

Similarly, a large diameter fiber will tend to suppress the effect of sliding or mass

transport and the creep strength of the composite will correspondingly be increased.

Similar effects tied to grain size are known to occur in the creep of ceramics and metals

controlled by mass transport on the grain boundaries1 . Note that the mass transport

term in eq. (80) is much more sensitive to fiber diameter than the sliding term. The

cubic dependence on fiber diameter in the mass transport controlled term will cause it

to disappear rapidly as D is hicreased. However, if both D) and B are substantial, the

creep strength of a composite will not be improved substantially by increase of fiber

diameter until both the effects of sliding and mass transport are suppressed. It seems

likely that in practice this will mean that mass transport will be relatively easy to

eliminate as a contributor to rapid creep strain of the composite by increase of the fiber

diameter, whereas the effect of sliding at a given temperature will be more persistent.

Furthermore, there is also an interplay with volume fraction, with the importance of

interface sliding being greater at low volume fractions of fibers and mass transport

being more significant at higher volume fractions.

Discussion

As previously noted, this chapter has been concerned mainly with those models

for the creep of ceramic matrix composite materials which feature some novelty which

cannot be represented simply by taking models for the linear elastic properties of a

composite and, through transformation, turning the model into a linear viscoelastic one.

If this were done, the coverage of models would be much more comprehensive since

elastic models for composites abound. Instead, it was decided to concentrate mainly on

phenomena which cannot be treated in this manner. However, it was necessary to

introduce a few models for materials with linear matrices which could have been
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developed by the transformation route. Otherwise, the discussion of some novel

aspects such as fiber brittle failure or the comparison of nonlinear materials with linear

ones would have been incomprehensible. To summarize those models which could

have been introduced by the transformation route, it can be stated that the inverse of the

composite linear elastic modulus can be used to represent a linear steady state creep

coefficient when the kinematics are switched from strain to strain rate in the relevant

model.

No attempt has been made to discuss in a comprehensive manner models which

are based on finite element calculations or other numerical analyses. Only some results

of Schmauder and McMeeking1 0 for transverse creep of power law materials were

discussed. The main reason that such analyses were in general omitted is that they tend

to be in the literature for a small number of specific problems and little has been done to

provide comprehensive results for the range of parameters which would be

technologically interesting - i.e. volume fractions of reinforcements from zero to 60%,

reinforcement aspect ratios from I to 106, etc.. Attention was restricted in this chapter to

cases where comprehensive results could be stated. Et almost all cases, this means that

only approximate models were available for use. Furthermore, numerical analyses for

creep in the literature tend to be for metal matrix composites and so use creep indices

which are rather high for ceramic matrices. Indeed, this latter fault applies to the finite

element calculations so far performed by Schmauder and McMeeking1 0 even though

there was an attempt to be comprehensive. Those finite element results which are

available in the literature such as the work by Dragone and Nix24 are very valuable and

provide accurate results for a number of specific cases against which the more

approximate models discussed in this chapter can be checked. A limited amount of this

checking for a single model has been done by McMeeking 23 in comparison with the

Dragone and Nix24 calculations. The results show that the approximate model is

reasonably accurate. However, more extensive checking of the approximate models is
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required and to do this in many cases it will be necessary to create the finite element

analyses.

Also omitted from this chapter was any attempt to compare the models with

experiments. This would require a lengthy chapter by itself and some comparisons are

given elsewhere in this book. In addition, limited data are available for such

comparisons in general. For metals, there are some successful comparisons5 and some

unsuccessful ones22. It seems that when there is good knowledge of the material

properties and the operating mechanisms, the right model can be chosen, but lack of

such knowledge makes it virtually impossible to identify which features must be

present in the model. Thus, multidisciplinary work is necessary to understand the

microstructure, to identify the mechanisms and to select and develop the appropriate

model. An example of such an effort, although for the closely related subject of the

plastic yielding of a metal matrix composite, is the work of Evans, Hutchinson and

McMeeking 25, where careful control of the metallurgy and the experiments was used to

confirm the validity of the models.
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Fig=r Captions

Fig. 1 A uniaxially reinforced fiber composite.

Fig. 2 Threshold for long term creep of a uniaxially reinforced composite as a function
of Weibull modulus for the fiber strength distribution.
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SumMa The leading order solution for the power law creep of a matrix around a

rigid finite fiber is developed. The matrix is well bonded to the fiber but the interface is

assumed to be capable of slip with a drag which is linearly proportional to the slip

velocity. In addition, mass transport by stress driven diffusion is assumed also to be

possible at the interface between the fiber and the matrix. It is found that when there is

no slip or interface mass transport, the composite has a high creep strength compared to

the matrix. However, both slip and mass transport acting individually or together are

capable of reducing the creep strength of the composite material. If slip occurs very

readily or mass transport is very rapid or both, the creep strength of the composite can

fall below that of the pure matrix material. It is notable that mass transport and

interface slip with a linear rheology have an identical effect on the creep strength of the

composite material.

Introduction

Cell models have been used extensively to represent the mechanical properties of

fiber or whisker reinforced materials [1-5]. Kelly and Street [1] presented a model for

the power law creep of a material with aligned fibers. McMeeking [2] improved this

model by analyzing the matrix flow field more accurately. In both of these treatments,

the interface between the matrix and the fiber was taken to be well bonded with no slip

or to slip in a manner controlled by the rheology of the matrix. Another possibility

allowed for in these treatments was an interphase between the matrix and the fiber but

with the same power law exponent as the matrix. On the other hand, it is desirable to

have models in which slip and diffusion is allowed for at the fiber-matrix interface. In

addition, many composite materials have an interphase between the matrix and the
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fiber with very different creep properties. The purpose of this paper is to provide an

enhancement of McMeeking's [2] model to feature interface slip and diffusion and the

influence of a distinct interphase. A previous treatment of these features by Goto and

McLean [3] was based on the original Kelly and Street [1] model without the benefit of

the improved flow fields analyzed by McMeeking [2].

Debonding is not allowed for in the model presented here. The main reason is

that debonding occurs primarily on the fiber end. Mileiko [6] and Lilholt [7] have

developed models in which the end of the fiber is debonded and gaping occurs between

the fiber end and the matrix during creep deformation. The degree of freedom

permitted by this allows matrix deformation to occur in simple shear between adjacent

reinforcements. As a result, the flow field in the matrix is quite different from that

computed by McMeeking [2]. The latter work involves a flow field in which material is

squeezed out from between reinforcements, extruded around the fiber end and

deposited there. This eliminates gaping at the fiber end and preserves

incompressibility. Since the results in this paper represent an extension of McMeeking's

[2] work, it is necessary to invoke the hypothesis of a strong bond between the fiber and

the matrix. Thus, the situation for which the model in this paper is most relevant is a

fiber with a strong interphase strongly bonded to the fiber and matrix but with creep

properties distinct from the matrix.

The analysis follows closely the method of McMeeking [21 and generates the

leading order solution in an asymptotic analysis. Background to this can be found in

the squeeze film solution of Johnson [8]. The small parameter in the analysis is b/L as

shown in Fig. 1. Since 2b represents the center to center spacing of neighboring parallel

fibers, the ratio b/L is approximately equal to 1 /(4/T ,) where f is the volume fraction of

fibers and X = L/a is the aspect ratio of the fibers. Thus for the solution to be
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asymptotically valid, the aspect ratio of the fibers should be large and the volume

fraction of the fibers must be finite and such that 4f-X is large.

An additional feature of the approach is that in the estimation of the creep

strength of the composite material, contributions due to flow around the fiber ends are

neglected. This can be justified as follows. The most significant effect of the fiber ends

is taken into account, namely the way that the well bonded fiber end requires material

to be squeezed out from the region adjacent to the side of the fiber and extruded around

the fiber end to flow into the region beyond the reinforcement. The pattern of flow in

the fiber end region is not very important to the results obtained because the fiber end

regions typically represent a small fraction of the total volume of the composite

material, especially since X must be large for the analysis to be valid. Thus the creep

dissipation of the composite material will be dominated by the dissipation which takes

place in the regions adjacent to the side of the fiber and the dissipation in the fiber end

region can be neglected. Thus it is sufficient to analyze in detail only the flow in the

region adjacent to the side of the fiber. This is the axisymmetric volume with section

ABCD shown in Fig. 1.

Formulation

The geometry of the problem is shown in Fig. 1. The fiber is rigid with length 2L

and diameter 2a and it is assumed that all fibers have the same aspect ratio. The matrix

creeps with a power law rheology and is incompressible. Only steady state creep is

considered. The unit cell with diameter 2b and a length somewhat longer than 2L is

chosen so that the ratio of the volume of the fiber to the volume of the unit cell equals

the volume fraction of fibers in the composite material. The exact relationship of a/b to
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the composite volume fraction depends on how the fibers are packed into the matrix

and on the end to end and side to side spacing of the fibers [2].

The unit cell deforms in such a way that its cylindrical shape is preserved. The

axial strain rate is t and by incompressibility the transverse strain rate is - P/2.

Therefore the radial velocity at r = b on the side of the unit cell is - k b/2 as indicated in

Fig. 1. The shear stress on the side of the unit cell is zero. However, the radial stress is

not uniformly zero there, but is zero on average. This ensures that the net transverse

stress is zerv so that the only applied load is the axial stress ca, as shown in Fig. 1.

The boundary conditions on the fiber surface involve slip of the matrix relative to

the fiber, so that the axial velocity on the fiber surface can be nonzero. A linear

rheology for the resulting drag will be assumed. This can be justified in terms of an

interphase which is creeping in the linear regime controlled by Nabarro-Herring or

Coble creep [9]. The creep behavior of the interphase can be expressed then as r = 11 4

where -T is the shear stress, T1 is the viscosity and ? is the shear strain rate. The thickness

of the thin interphase is t and therefore the shear strain rate in the interphase is vz(a)/t

where vz(a) is the axial velocity of the matrix material immediately adjacent to the

interphase. It follows that the slip boundary condition at the fiber surface can be stated

as

O = n Vz (1)

where arz is the shear stress at the fiber surface and g = 1ilt. If a no slip condition

prevails (i.e. no interphase), the boundary condition becomes vz = 0 on the fiber surface.

Mass transport by diffusion is assumed to be possible at the interface between

the fiber and the matrix. The process is driven by stress differences with material
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traveling from compressive or low tensile stress regions to high tensile stress locations.

The process is assumed to occur fastest on the interface between different materials or in

the interphase between the fiber and the matrix. Consequently, diffusion processes in

the matrix and in the fiber are neglected.

The end of the fiber will be under the greatest tension. However, the flow of the

matrix around the fiber end is neglected in the model and it follows that diffusion to the

end of the fiber should be neglected as well. Consequently, diffusion processes only on

the side of the fiber will be included in the model. The mass transport rate in the z

direction at the interface is given by

j(z) = Da, (a, z)
az (2)

where jz is the volume of transported material passing through a unit length of the fiber

surface in unit time, arr (a, z) is the radial stress on the surface of the fiber, D is a

diffusion coefficient for the interface given by

Db 8b(
kT (3)

where Db is the interface or interphase diffusion coefficient, 8b is an effective interface

thickness or is the interphase thickness, k is Boltzmann's constant and T is the absolute

temperature. Volume conservation requires

Vr (a,z) + d 0
dz (4)
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where Vr (a, z) is the velocity at which the matrix moves away from the fiber surface. It

follows that

Vr(a,z) = -D d' arr (a,z)
dz 2  (5)

which is the remaining boundary condition on the fiber surface. If mass transport is

inactive, the boundary condition is vr (a, z) = 0.

Analysis

The domain of the problem is the axisymmetric region with section ABCD in

Fig. 1 (a < r < b; 0 5 z : L). Considering the boundary conditions in Fig. 1, we assume [2]

On - aGoo (3zz =- (, (3rz << (Y (6)

which can be justified by asymptotic analysis when b/L is small. It follows that the

term o3arz/)z can be neglected and, the governing equilibrium equation in a cylindrical

coordinate system reduces to

kyarz
- + -- +r +F'(Z) = 0

ar r (7)

where (T is the hydrostatic part of the stress and a' (z) denotes da/dz. Note that

(T = a (z) in (7) results from the radial equilibrium equation upon use of (6).

The matrix obeys power law creep with an incompressible rheology given by
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3 (•/°-

2 co ) Oo (8)

where tij is the strain rate, sij is the deviatoric stress given by

sij = 7ij- C8ij (9)

0 is the effective stress such that

* ijS ij (10)

and (Yo and -o are material constants. Note that to leading order the effective stress in

this problem reduces to

0 = 43 (11)

given that Orz is positive. Thus, the creep law can be written as

- r
Z)r GOo )(12)

where the term oiVr/az is ignored due to smallness [2]. Incompressibility provides

aVr Vr aVz
- + - + -- 0

c)r r z (13)
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The boundary conditions on AB (z = 0) are

Vz (r, 0) = 0 (14)

Orz (r, 0) = 0. (15)

On AD (r = a) one boundary condition is eq. (5) repeated here for completeness

z) az2 )F =(a,z)

a z2 (16)

if the interface diffusion is considered, otherwise Vr (a, z) = 0, while the slip condition

from eq. (1) becomes

Vz (a, z) = arz (a, z)/pt (17)

where Dis the interface diffusion parameter and 9L is the interface drag parameter.

On BC (r = b) the boundary conditions are

arz (b, z) = 0 (18)

and

Vr (b,z) = - b..

2 •(19)
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An additional condition on r = b is that

Lf(z) dz 0 (20)

to ensure that the transverse stress is approximately zero. The approximation arises

because the cell extends a small distance above CD, but that portion is neglected.

Note that no explicit boundary conditions are posed for CD. This is consistent

with the neglect of the details of flow around the fiber end. The average axial stress at

CD will be of interest and determines Ga. The creep strength S of the composite

material is defined as the average axial stress in the composite at a given axial strain rate

divided by the stress in the matrix alone at the same axial strain rate. Thus,

S= ya(t) = a (W)/ 0o

[eI( iaf~f'~ (eit) 1 " ~(21)

Solution

Integration of (7) subject to eq. (18) gives

Cyr =b (Z)(br-'r
2 r b) (22)

Note that T' (z) is positive for z > 0 and thus so is Grz. Consequently, eq. (12)

shows that
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53 -,F3b ' b _r 1 f
ar -

0  2r br(23)

Integration of eq. (23) with (17) provides

V,(r,z) = 2 h(b )O'(z) + •,•o •(t,(z)Jnrb a ndp2g(,b 2(0 o (,p-b (24)

Differentiation of eq. (24) with respect to z provides the axial strain rate which is

inserted into the incompressibility condition (13). Integration of eq. (13) with respect to

r and use of eq. (19) gives

Vr (r,z) = 3+onb b z)Jn- (Z)J_ P _,nd.dp2 n -- r 2 Z)r fa 4 , b)

0 2 (25)

+ b a" (z)(b 2 _ 2)(b _a) -b2+ 4gr (ab 2r

The boundary condition specifying the interface diffusion, eq. (16), i.e.,

= ~a 2 0 , (a, z) a2_O__Vr(a,z) = -D-2az 2  = -D 2 -Do"(z), (26)aZ Z2  = ~a(z,(6

then provides the nonlinear differential equation

4 (a~bf) 2a dz L a 0 J4: (a 2
/J) J 2a (27)
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where

H= 2---,-a/bn)a/b _n d(8dnb2nfb fl (28)

The differential equation can be restated as

d r&()j + C d2i6-2 = 1
Tz[ dýTT + dZ2  (29)

where = - (30)
L

= 2H a.n eob * bc
(~b ' T J L] (31)

and

C = D[ + (1-a 1 4
Lb 2 4ga 2 /b 2  L b2H(a n to b](2j L (b(32)

which is inherently positive. It can be seen that in the normalized variables, all

solutions are controlled by a single parameter, C, which accounts for geometry, size,

matrix creep properties, interface properties and the axial strain rate.

A
Eq. (29) can be integrated once and symmetry with respect to z invoked to give
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[d4&(z) n] + d d&(z)-
[-j ZI -CFZ-(33)

Linear cas: When the matrix flows with a linear rheology (i.e. Nabarro-Herring or

Coble creep) the creep exponent n = 1. The solution to eq. (33) is then

3i2 -1

6(1+ C) (34)

where (20) has been used to determine the constant of integration. Thus, the axial and

radial stress vary quadratically parallel to the fiber axis and are compressive near the
A

center of the fiber at z = 0.

The applied stress will be #kE~n to be approximately equal to the matrix stress at

A
z = 1 (i.e. at z = L). This neglects the relatively small increment of stress induced by

A
flow of the matrix around the fiber end. The normalized stress at z = 1 is evaluated to

be

1
3(1+C). (35)

A
The result for 3 a (1) is plotted against C in Fig. 2. By a balance of axial forces, the

normalized fiber stress is

=f M 2 1(-a-2'-

6(1+QC)M30(,J" b,9)lP
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where

&f = 2H a 1 tob 2 Cyf
( )t 7 (37)

is, A

with Of (z) the axial fiber stress. That is,f is normalized in the same way that a is (see

eq. (31)). The fiber stress therefore rises quadratically from the applied level at the fiber

end to a maximum value of

= 3b 2 /a 2 -1
6(1+ C) (38)

A

at the center of the fiber at z = 0. It follows that the maximum fiber stress is always

(3 b2/a 2 - 1)/2 times the applied stress irrespective of the state of the interface. Note

that a2/b 2 can be interpreted in terms of the fiber volume fraction. If the fibers are very

long with little space between them end to end then a2/b 2 is approximately equal to the

volume fraction. Other estimates can be made for a2/b 2 depending on the geometry of

packing [1,2].

The applied stress is given by eq. (35), restated as

1(L/b)2

Ca a6H (_ D)+ [ - + (1 - a 2 / b 2 )2 ] ( 9a

CYO (b b2 ',43a2/b23 
(39)
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hH(a,) 3[a2 2 I a3 a40,b 2 2"b 2 b In 8 8 b4 (0
with- 8bj(0

It should be noted that this estimate is only valid for large values of L/b and therefore

should not be used when L is comparable to b. It is also not suitable for a = 0 since the

matrix behavior is not recovered in that limit. Correction terms have been suggested by

McMeeking [2] for the case with the perfect interface to allow for recovery of the pure

matrix limit.

A correction term is desirable to cover the situation in which the interface drag

disappears (i.e. gi -+ 0) or the interface diffusion becomes very fast (!D -- w) or both.

The results of McMeeking [2] and a simple model for axial straining of the matrix

indicate that when the right hand side of eq. (39) goes to zero, (Ta should be given

approximately by

-a ., (•o• 1 -
o b 2  

(41)

(Note: the formula in eq. (41) neglects constraint when there is no mass transport or

drag in which case aa would be somewhat higher.) The model of eq. (41) means that

the composite material is weaker than the matrix by itself which would sustain a stress

equa•l to G•o tto. With no drag at the fiber-matrix interface or with infinitely fast mass

transport, the fibers simply serve to eliminate matrix material and therefore weaken the

composite. For a model which behaves sensibly when g goes to zero, the right hand

sides of eq. (39) and (41) can simply be added.
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Inspection of eq. (39) reveals that the creep strength of the material is always

quadratic in L/b so that long fibers promote creep resistance no matter the state of the

interface. When there is no interface diffusion and no interface slip, the creep strength

is

So = L2 /6 b2 H (a/b,1) (42)

which is the ratio of the applied stress for the composite material to the applied stress in

the pure matrix at the same strain rate. When either interface diffusion or interface slip

or both are active, the creep strength is degraded. A similar effect was identified by

Sofronis and McMeeking [10] in particulate composites. The extent of the effect

depends on the magnitudes of D and jt It is expected that these parameters will be

temperature dependent as will be the effective matrix viscosity CO/t. However, the

activation energies for (,o/4,, D and gt can be expected to be different in general and so

their relative magnitudes will depend on temperature. Therefore, temperature is

expected to be an important consideration in the extent of degradation of the creep

strength by interface diffusion and slip.

An important conclusion to be drawn from eq. (39) is that the effect on creep

strength of interface diffusion and interface slip is the same. Furthermore, only one

mechanism need be active for the creep strength to be degraded. Thus, one cannot

automatically say that interface diffusion is responsible for loss of creep strength in fiber

reinforced materials at high temperatures as is sometimes stated [11,12] because it could

equally well be due to interface slip. An experiment identifying slip or diffusion would

be required to distinguish the mechanisms.
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If either mass transport is very rapid so that D is very large or the drag generated

by slip is very low so that gL is very small, the denominator in eq. (39) will be very large.

As a result, the creep strength of the composite material will be low, with the effect of

the fiber length nullified by interface slip and mass transport. This makes it clear that

the creep strength of the composite material is critically dependent on the integrity of

the interface between the matrix and the fiber.

Q Lar.aiccse. : When n = 2, the differential eq. (33) can be solved quite

straight-forwardly. The solution is

= 12(-2) I 120 .C+z - .i(24P+120. (43)

It follows that the applied stress is given by

=Y O b 5 { + 1 (C2 14)2 (6-C2)+ 1 C5} (44)

5[H(*b 2)]'

where Ha-' 1 3 1 b(4
(b 2 4 [ 5 10,b) 2k b + 2b + 2a (45)

Since the matrix alone would sustain a stress of o0(t/fo)I/2, the creep strength of the

composite can be easily ascertained. It can be seen that the creep strength of the
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composite material is proportional to (L/b)3 / 2 irrespective of the state of the interface.

This creep strength, in normalized form, is plotted against C in Fig. 2. The result

presented in eq. (44) and plotted in Fig. 2 is valid only if L/b is sufficiently large to

ensure that the asymptotic limit is relevant. It is suggested, but not proved, that

L/b > 10 would guarantee the validity of eq. (44) and Fig. 2.

From eq. (2), it can be seen that when there is no interface diffusion and no slip,

C = 0. The term in eq. (44) in the curly brackets is then unity, so that the term outside

the curly brackets in eq. (44) is the creep strength of the composite with a perfect

interface. When interface diffusion is active or slip is possible or both, C is finite and

increases in magnitude as the mass transport rate goes up (i.e. Dtincreases) and as slip

becomes easier to induce (i.e. j. decreases). Thus, the plot in Fig. 2 shows the creep

strength of the composite material versus the degree of interface activity as measured

by C. However, the form of C as stated in eq. (32) shows clearly that interface diffusion

and interface slip are indistinguishable as far as their effect on the creep strength of the

composite material are concerned, since ) and 1/g both cause a proportional increase

inC.

It should be borne in mind that C is dependent on the strain rate k of the

composite material as well as the interface diffusion and slip parameters. In the

quadratic case, C is inversely proportional to the square root of the strain rate.

Consequently, when the stress is high, so that the strain rate is also high, the strength of

the composite material will be more like that of the case where the interface is free of

diffusion and is not slipping. At low stress, the strain rate will be low and so C will be

high leading to a reduction in the creep strength of the material. It is apparent that

when the strain rate is high, the nonlinearity of the matrix creep response causes the

matrix contribution to dominate the creep strength. Over a narrow range of stress, the
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transition from interface dominated response to matrix dominated response can be

interpreted as cha'nging the creep index of the composite material to less than that of the

matrix material. It is sometimes observed in experiments that the creep index of a

composite material with large rigid reinforcements differs from that of the matrix [13]

although typically the index for the composite is higher than that of the matrix rather

than lower. McMeeking [141 has rationalized the higher index of composite materials in

terms of fiber failure (although other damage mechanisms would have a similar effect)

and interface diffusion and slip with a linear rheology is now seen to have a contrary

effect.

When C is very large, stretching of the matrix in the axial direction will dominate

shearing. As a consequence, the creep strength of the composite will no longer be given

by eq. (44) which will be negligibly small. Instead, an estimate of the creep strength

when C -+ oo can be given by

aya = 0 (t / toy'(1 -a 2/ b2) (6

which is based on uniform axial straining of the matrix material. As before, this

estimate neglects constraint when there is no interface drag but also no diffusion. An

estimate of the creep strength over the whole range of C can therefore be made by

adding eq. (44) to eq. (46).

Nonlinear Cases For several integer values of n, we obtained numerical solutions for

eq. (33). A shooting method was used to find a solution satisfying eq. (20) with

integration of the equation carried out by a 4th-order Runge-Kutta method with an
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interval halving technique. The numerical solutions for n = 2 were compared with the

analytical solution of eq. (43). In addition, for all values of n, the solution with C = 0

was compared with the analytical result of McMeeking [2]. The agreement between

numerical and analytical solutions was very good.

The strength of the composite material in each case was taken to be given by G(z)

at z = L. The results are plotted in Fig. 2 as a function of C for several values of n. All of

the comments previously made in the context of n = 2 apply to the results for other

values of n plotted in Fig. 2. Allowance must be made for the different values of n

involved; e.g. C is proportional to t, but that still means that C varies inversely with

the strain rate (except when n = 1). In addition, when C -- cc the creep strength can be

estimated by

aa = (1 (o/-o)i/n (1 - a2 /b 2) (47)

instead of through eq. (46). Therefore, the discussion of the results for n = 2 in the

previous section serves also as a discussion of the results for the other values of n.

Creep Strength of Composites

The results plotted in Fig. 2, although concise, are difficult to interpret since both

xne parameters of the ordinate and the abscissa are complicated. To aid in

interpretation of the results, some specific cases are illustrated in Figs. 3-5. The creep

strength is
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s = aa 0§f
CO, (48)

and is the ratio of the stress in the composite material divided by the stress in the pure

matrix at the same strain rate. For simplicity, it has been assumed that S -- 1 when

diffusion is very rapid or interface slip occurs with very little drag. That is, without

drag or with extremely rapid mass transport, the composite material behaves like the

matrix rather than the weakened material having the strength given by eq. (47). In any

case, the models are considered to be quite approximate in this extreme case and the

main reason for using a limiting value for S is to avoid giving the impression in the

figures that the creep strength goes to zero completely.

Fig. 3 shows the creep strength as a function of the interface drag for a material in

which a2 /b 2 = 0.2 (which can be interpreted as a 20% volume fraction of fibers) and a

fiber aspect ratio L/a = 5. There is no interface diffusion. It is of interest that the creep

strength of the composite tends to decay if

J1.
- ,U (ib~ln

a 0  (49)

falls below 10 and is effectively lost if . is below 10"1. Therefore, generalizing to other
A

cases, g is a figure of merit for the composite with values above unity necessary for

creep strength and above 10 for good creep strength. Fig. 4 shows that this concept is

general with the transition from high creep strength to low creep strength occurring at

around p = 1 for materials with different volume fractions of fibers.
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Fig. 5 shows the creep strength as a function of the interface diffusion coefficient
A

when a2 /b2 = 0.2 and L/a = 5. The interface drag coefficient g = 10 so that in the

absence of interface mass transport the composite has good creep strength. The plot

shows that the creep strength tends to diminish if

1

~DO (tL n~

b 2 L • 0 b) (50)

A
rise above 10-1. If Dtis greater than 10, the creep strength of the composite is gone.

A A
Thus D plays a similar role as g as a figure of merit for the composite, with the

A
transition from high creep strength to low creep strength occurring at around D = 1.

Approximate Creep Strength

The plots in Fig. 2 suggest that all of the results in that figure can be

approximated by 1 /(1+C) which is the exact result for the linear case with n = 1. This

approximation has deficiencies when C is less than 2 but in an absolute sense, the error

will be small if C exceeds 2. In addition, the use of this result permits some insight into

the behavior of the solution not afforded by the figures alone although these features

are present in a particular way in Figs. 3-5. The approximation can be expressed as
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1 1+1

S Ca o1+2n()
O 2H(a n + 214D + (1-a2/b2) ____t

(b b 2  4jaa2 /b 2 J O b 2 Lo b)

+ (,_a 2

Sb" )(51)

In this expression, the term 1 - a2 /b 2 has been included on the right hand side in

addition to the approximation devised from Fig. 2. The expression shows the interplay

between strain rate and the condition of the interface. If D is zero and pi is infinite so

that there is a well bonded interface without interface slip or mass transport, the creep

strength is dominated by the first term on the right hand side of eq. (51) and, since L/b

is large, the creep strength will be high. If D or gL are nonzero and finite, the creep

strength depends on the strain rate. If the strain rate is high, diffusion and slip will be

rendered unimportant and the creep strength will be like that of a well bonded

composite without slip or mass transport at the interface. This means that the creep

strength is matrix dominated at high strain rates and the creep index of the composite

will be that of the matrix, i.e. n.

At lower strain rates, the term containing D and g. in eq. (51) will become

relevant if D and g. are finite and nonzero. This will reduce the creep strength below

that of the well bonded composite without interface slip or diffusion. If the strain rate is

plotted against the stress for strain rates at which D and gA affect the creep strength, the

creep index will be inferred to be less than n, the matrix creep index.

At very low strain rates, the term containing Dand g. in eq. (51) will dominate if

Dand I. are finite and nonzero. The first term on the right hand side of eq. (51) will be
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small and possibly will be negligible compared to 1 - a2 /b 2. Thus the interface slip or

the interface mass transport has destroyed the creep strength of the composite and the

creep strength will be entirely due to the volume fraction of the composite which is

matrix material. At these strain rates, the creep index of the composite will be that of

the matrix, n, and the creep strength will be lower than that of the matrix by itself.

The transition from high to low creep strength for the composite material will

take place around 1 = 1 where

=~ +(a 2 /12)21
12H( b an)]o 0( 0 / L J (52)

That is, for values of 4 substantially higher than 1, the composite material will have

high creep strength. On the other hand, if 4 is substantially less than 1, the creep

strength of the composite will be comparable to or worse than that of the matrix

material alone. The combined figure of merit 4 as expressed in eq. (52) indicates the

importance of various parameters which can affect the composite creep strength such as

strain rate, fiber volume fraction, fiber aspect ratio and the interface properties V ar'd id.

These latter parameters will generally depend on temperature and the temperature

dependence will often differ from the temperature dependence of the matrix creep.

Thus the figure of merit 4 will generally be temperature dependent. Such behavior has

been observed in experiments [11,12] and the loss of creep strength at high temperature

in composites has been attributed to the dominance of interfacial mass transport.

However, the model presented in this paper suggests that the loss of creep strength can

occur due to slip at high temperature without any need for long range mass transport at

the interface.
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List of Figure Captions

Fig. 1 Unit cell for creep analysis.

Fig. 2 Applied stress for the composite material as a function of strain rate, matrix

creep properties, interface slip, interface mass transport and unit cell

geometry.

Fig. 3 Creep strength of a composite material as a function of the interface drag

coefficient when there is no interface mass transport.

Fig. 4 Creep strength of a composite material as a function of the interface drag

coefficient when there is no interface mass transport.

Fig. 5 Creep strength of a composite material as a function of the interface diffusion

coefficient.
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is developed. The physical meaning of the constitutive functions involved is discussed
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with the requirements of homogenization theory, are solved using the finite element
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1 Introduction

Fiber-reinforced metal-matrix composites are expected to play a key role in achieving the

performance goals of the next generation of aircraft engines. Compared to traditional metal

alloys, these materials have superior creep resistance at elevated temperatures, as well as

high strength to stiffness ratio.

In view of their potential as high-temperature structural materials, metal-matrix com-

posites have attracted increasing attention recently, and several attempts to develop con-

stitutive models for the mechanical behavior of such materials have been made. Several

one-dimensional models that can be used to predict the creep behavior of fiber-reinforced

composites under simple types of loading are already available in the literature; we mention

amongst these the work of Mileiko (1970), Kelly and Street (1972), McLean (1985, 1988),

Goto and McLean (1991a,b), and McMeeking (1993a,b). Johnson (1977) appears to be the

first to propose a set of three-dimensional constitutive equations for creeping transversely

isotropic materials; he based his model for steady-state creep in directionally-solidified eutec-

tic alloys on a generalization of the Bailey-Norton law, which connects the creep strain rate

and applied stress by a power-law relation. More recently, deBotton and Ponte Castafieda

(1993) have developed estimates as well as rigorous bounds for the dissipation functions of

multiple-phase fiber composites, in which the constituent phases are non-linear isotropic ma-
terials. The work of deBotton and Ponte Castafieda was presented in the context of nonlinear

elastic materials, but it can be also used to describe the steady-state creep of fiber-reinforced

transversely isotropic composites. A review of several models for the effect of fibers on the

creep characteristics of unidirectional composites has been presented by McMeeking (1993a).

It appears that, whereas some progress has been made in developing constitutive equations
for creeping anisotropic composites, there have been only few experimental studies on fiber-

reinforced compgsite systems having practical utility at elevated temperatures. The creep

behavior of metal-matrix composites reinforced with continuous fibers was studied recently

by Weber et al. (1992). Their results show that, when both the matrix and the fibers creep,

the composite exhibits steady-state behavior, following an initial transient; however, when

the fibers do not creep, transient creep of the composite is observed, with a creep strain

limited by the elastic deformation of the fibers.

In this paper, we develop the general three-dimensional form of the constitutive equations

that describe steady-state creep of fiber-reinforced metal-matrix composites with transversely

2



isotropic overall symmetry. The constitutive equations for the creep strain rate involve four

scalar functions that depend on the five transversely isotropic invariants of the stress tensor;

the physical meaning of these constitutive functions is discussed in detail. The numerical

implementation of the general form of the transversely isotropic constitutive equations in

a finite element program is discussed, and a method for the numerical integration of such

equations is presented. A specific constitutive model for steady-state creep of fiber-reinforced

composites that has been developed recently by deBotton and Ponte Castaiieda (1993) is

examined. The predictions of the model are compared with the solutions of a number

of 'unit cell' problems; periodic boundary conditions, consistent with the requirements of

homogenization theory, are imposed on the unit cell problems, and the solutions are obtained

using the finite element method. Finally, the model of deBotton and Ponte Castafieda (1993)

is implemented in a general purpose finite element program, and the problem of a composite

plate with a hole is solved.

Standard notation is used throughout. Boldface symbols denote tensors the order of

which is indicated by the context. All tensor components are written with respect to a fixed

Cartesian coordinate system, and the summation convention is used for repeated indices,

unless otherwise indicated. The prefices tr and det indicate the trace and the determinant

respectively, a superscript T the transpose of a second order tensor, a superposed dot the

material time derivative, and the subscripts s and a the symmetric and anti-symmetric parts

of a second order tensor. Let a and b be vectors, A and B second order tensors, and C and

D fourth order tensors; the following products are used in the text (ab)i, = aib,, (A. a)i =

Aia,, (a. A), = aAj,, (A -B),, = AkBkj, A : B = A,,Bi, (aA/8B)igkj = OA,,/OBkj,

(AB)iw = A,,BkB, (C : A),, = CQjjAd, and (C : D),jkI = C,,jmDmwnjr.

2 Constitutive equations

We consider infinitesimal deformations and write the infinitesimal strain tensor c as the sum

of the elastic and the creep strains, i.e.

C = +e . (1)

The focus of this paper is the steady state creep behavior of fiber-reinforced composites.

However, for comparison purposes, we start with a brief discussion of some commonly used

constitutive equations for creeping isotropic materials.

3



2.1 Creep of isotropic materials

The constitutive equation for the steady state creep strain rate is of the form

i' = g(O',s) (2)

where g is an isotropic function of its arguments, 0. is the stress tensor, and s is a set of

material constants. Using the representation theorems for isotropic functions, we can readily

show that the most general form of the last equation is (Wang, 1970a,b; Smith, 1971)

ic = cl I + 2 c2 cr + 3c 3 ff2 (3)

where the ci's are functions of s and the three isotropic stress invariants I, = tr(ff), 12 =

tr(o"2) and 13 = tr(cr3).

We assume next that the creep strain rate ei' is derived from a creep potential ' =

I(ef, s), i.e.

icr - - (4)

The creep potential must be an isotropic function, i.e. a function of the form

'I' = ''(,I 2, 1,, s). (5)

Using the chain rule, we can readily show that

=cr • i 0  c=I+2 + c2 3+3 c3a 2, (6)

where now

4= (7)

The three-dimensional form of the standard steady-state 'power-law' creep constitutive

equations is

J• .( Or)o where ObE 4 = (fL (8)'of ioo ad -- I a'2"= "-

ff' is the stress deviator, ae = ,1.5 _fr~) 1/2 -[0.5 (312- _ 1)]1/2 is the von Mises equivalent

stress, n is the creep exponent, and (a0, Qo) are material constants. Equation (8) is a special

case of (3) with

c1=-11 c2  C3=- = c 0. (9)el 2I] C2 C2 = 4 O'o a, )

Note that the power-law creep equation (8) does not involve a quadratic stress generator

term a, 2 (i.e. c3 = 0).
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2.2 Fiber-reinforced composites

Consider next a material reinforced by aligned fibers. The macroscopic response of the

composite is assumed to be transversely isotropic, and the unit vector n in the direction of

the fibers is used to define the axis rotational symmetry.

2.2.1 Elasticity

The elastic strain is written in terms of the stress tensor a as

ce = C-1 : f (10)

where C is the fourth-order elasticity tensor for a linear transversely isotropic material. The

elasticity tensor is of the form (Aravas, 1992)

C = 2aII+2bJ +2caa+ dP + e(Ia+ aI), (11)

where I is the second order identity tensor, J is the fourth-order identity tensor with cartesian

components Jijkl = ( 6 ikbjl + i6jbik)/ 2 , a is the orientation tensor a = n n, (a, b, c, d, e) are

elastic constants, and

Pijkl (aik bil + ail bi + 6 tk ail + 6j, ajk). (12)

The constants (a, b, c, d, e) are related to the standard elastic moduli (E 11, p 12, 02, K23, v1/ 2 ),

as defined for example in Christensen's (1979) book, by
1 1 1 1

a = •(K2 - p23), b = P23, c = Ell + p23 - 2 Pu2 + ý(1 - 2v12 )2K2 3 , (13)

d = 2 (p12 - P23), e P P23 - (1 - 2L' 12 )K 23 , (14)

where the xl-axis is in the direction of transverse isotropy.

2.2.2 Creep

The constitutive equation for the steady state creep strain rate is of the form

ic = f(0,s) (15)

where f is a transversely isotropic function, and s is collection of material parameters such

as the volume fraction of the fibers, the material constants that enter the constitutive equa-

tions of the matrix and the fibers, etc. Using the results of Liu (1982) together with the
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representation theorems for isocropic functions (Wang, 1970a,b; Smith, 1971), we can readily

show that the most general form of the above constitutive equations is

i' = a, I + 2a 2  + 3a3 o2 + a4 a + as (or . a + a.- o) + a6(o'2 - a + a . &2) = f(o',s), (16)

where the ai's are functions of s, and the following five transversely isotropic invariants:

I, = tr(u), 12 = tr(o2), 13 = tr(&3), 14 = tr(o.a) = n.-on, 15 = tr(o 2 .a) = no.2 .n.

(17)
An alternative set of commonly used transversely isotropic invariants is given in Appendix

A.

If the creep response of the material is incompressible, then the following equation must

be satisfied for all values of o':

3a, + 2a 2 11 + 3a 312 + a4 + 2as 14 + 2a6 15 = 0. (18)

We consider composite materials in which both the fibers and the matrix are isotropic

with constitutive equations such that i'(-o-) = -d(o) We assume that the same is true

for the composite, and require that the constitutive equation of the composite (16) satisfies

the condition i'(-of) = -i'(o-) as well. Then, one can readily show that i'(0) = 0, and

that the functions ai are such that

ai(-1 1, 12,-1 3,-1 4, Is) = -a(I(I,12, 13,1 4, I5) for i = 1,3,4,6, (19)

and

ai(-1,, 12, -13, -14,Is) = a,(l1, 12, 13, I4 , Is) for i = 2,5, (20)

which imply that

a, = a 3 = a4 = a 6 = 0 when /1 =13 =14 = 0. (21)

We assume next that the creep strain rate i, is derived from a creep potential T - t(of, s).

In view of the assumed transverse isotropy, 1Y must be of the form

*P = *(l ,12, 13, 14, Is, s). (22)

Using the chain rule, we can readily show that

Cr5 P i f2 (3S-Of "- i -- ' aI+2a 2 °'+3a 3o +a 4 a+a 5(ff'a+a.o,), (23)
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where now

a =-(24)

Note that equation (23) is a special case of the more general form (16) with ac = 0.

Consider now the case in which both the matrix- and fiber-material creep according to

the power-law equation (8). Since quadratic stress generators are absent in (8), we introduce

the assumption that the corresponding creep equation for the composite does not involve

quadratic stress generators either, i.e. a3 = 09P/0913- 0. We emphasize, however, that this

is meant to be only a reasonable approximation; in general, such quadratic generators may

appear in (23) even though they are absent in (8).

Summarizing, we mention that the assumed constitutive equation for the creep strain

rate of the fiber-reinforced material is

ie = a, I + 2 a2 ff + a4 a + as (fr. a + a- a-) = f(o,, s). (25)

3 Identification of material functions ai

Let the coordinate axis x3 be along the direction of the fibers, so that n = e3, where e3 is

the unit base vector along the X3-axis. Then the constitutive equation (25) can be written

as
i.j= a, 6ii + 2 a 2 Oij + a 4 6i3 6j3 + as (Oi3 bj3 + 643 Oj3), (26)

or, equivalently,

i = a, + 2a 2 01 1, (27)

22 = at + 2 a 2 0'22 , (28)

G = a, + a4 + 2(a 2 + as)a33, (29)

i = 2a 2 a 12, (30)

icr = (2a 2 + as)o,23 , (31)

i3 = (2a 2 +as)0o31. (32)

The relevant invariants I; now take the form

I1= tr(ff), 12 = tr(or2 ), 14 = a 3 3 , IS = a321 + 0,322 + 0,.. (33)

Equations (27)-(32) show that:
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* a2 and as relate to the response of the composite under shear, whereas a, and a4 refer

to longitudinal and transverse tension,

* if as = OWW/Osi = 0, then the response of the material is identical under longitudinal

(6 23, Or3 l) or transverse shear (a,2),

e in view of (21), longitudinal shear loading (i.e. r13 # 0 and/or a23 6 0, other aij = 0)

causes longitudinal shear strain rates only, i.e. i' = i= = M = i=1 = 0,

* in view of (21), transverse shear loading (i.e. a,12 3 0, other ar = 0) causes transverse

shear strain rates only, i.e. i - i= = = i= = • = 0.

The last two conclusions are true even when the quadratic stress generator is included in

the constitutive equation for ik', because the function a3 vanishes under longitudinal or

transverse shear, in view of equation (21).

4 Finite element implementation of the constitutive

model

In this section, we discuss the implementation of the general form of the constitutive model

described in section 2 in a finite element program. In a finite element environment, the

solution of the creep problem is developed incrementally and the constitutive equations are

integrated at the element Gauss points. In a displacement based finite element formulation

the solution is deformation driven. At a material point, the solution (,,, c,,) at time t,, as

well as the strain c,,+, at time t,,+, = t,, + At are supposed to be known and one has to

determine the solution a,,+,.

4.1 Numerical integration of the constitutive equations

We start with the elasticity equation (10)

of,,+1 = C : C•+1 "- C :(C', + AE - AC•') = o"e - C : A•cr, (34)

where Ae --- + -- , and n••--, - are the total- and creep-strain increments, and
ofe = o'n + C : Ac is the (known) elastic predictor.
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The creep constitutive equation (25) is integrated using a generalized trapezoidal method:

Ae =[af((,,+,s) + (1 - a)f(o,,s)] At (0 <a < 1). (35)

When a=0,l or 1/2 the integration scheme reduces to the forward Euler, backward Euler or

the trapezoidal method respectively.

Summarizing, we write

F(Ae') =- A'e - [a f(or,+,(AcE'), s) + (1 - a) f(o,,, s)] At = 0, (36)

where

off+ 1(AcE') = o. - C : AE'. (37)

We choose Accr as the primary unknown and treat (36) as the basic equation in which o',,+,

is defined by (37). The solution is obtained using Newton's method. The first estimate for

Ac- used to start the Newton loop is obtained using a forward Euler scheme, i.e. (A=e)at -

f(off, tn, s) At. An alternative and more accurate estimate for Ace can be obtained by using

the so-called 'forward gradient' technique as described in the following. The function f(o,,+,)

is approximated by

f(ofn+1 ) = f(ud,,) + Off A. -f(f,) + ( C : (Ae - Ace') (38)
( n : (C

and substituted into (36), which then yields the following estimate for Ace':

(AEC T ),, =9+ a :Ck i t : o.) + a ): I : *j t. (39)

The Jacobian associated with the Newton loop in equation (36) is given by

S- j - At (1f).+. n1= j + .At ( ) :C. (40)
TAJý a o. ~n+1 MAE- of

Once AcE is found, equation (37) defines the stress o',n+, and this completes the integration

procedure.

In the following, we derive the general form of af/0o.. Recalling the creep constitutive

equation

icr = = 09k ow i

= == f(, (41)
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we readily conclude that
af a 2 * 5 5 a2 %p O a lj a j . S 9% a 2 I ,

Of =2' a ,a 01aaL + E (42)
i=1j 9, o j=l aij fl9

where

Ola 021 (3
a"= I, 0aaa,-O, 43

'912 a2 2 Ja' -f = 2 a., O cr ='-• : , (4 3 )
ah = 2o,? 22=2I(4

013 = 3o, 22I13 = 3 (6Vik a + Oik 6ij), (45)To-"= or, aa~ijak,

014 0214
-r= a, adra"- = 0, (46)

-' =- I a+ a . or, 00aijaakl = aik 01j + Orik ati. (47)

We conclude this section with a brief discussion of the appropriate time increment used

in the integration procedure. Let a.,.. be the maximum of the absolute values of the stress

components (i.e., a., = maxloij) and define

CETOL = 0.1 (48)Ell'

where Ell is the elastic modulus defined in section 2.3. The time increment At is chosen so

that the maximum difference in the creep strain increment calculated from the creep strain

rate based on the conditions at the beginning and at the end of the increment is always less

than CETOL, i.e.

IfA(ffn+1) - flj(oa,)I At < CETOL for all ij. (49)

4.2 Linearization moduli

In an implicit finite element code, the overall discretized equilibrium equations are written at

the end of the increment, resulting in a set of non-linear equations for the nodal unknowns. If

a full Newton scheme is used to solve the global non-linear equations, one needs to calculate

the so-called 'linearization moduli' J

0tf+" (50)
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For simplicity, we drop the subscript (n + 1) with the understanding that all quantities are

evaluated at the end of the increment, unless otherwise indicated. Starting with the elasticity

equation (34), we find

Oo = C : CE - C : aAEC'. (51)

The differential MAe' is evaluated from equation (35) as follows

ME Ae€ . CIO, = a At of :(0.(20AE= 0€ • :0€.(52)

Substituting the last equation into (51) and solving for o&or/Oe, we find

al (+ aAtC KY :C= C-I+CAty M). (53)

Note that afi,/Oaki is symmetric with respect to the pair of indices (i,j) and (k, 1). Therefore,

in view of (53) and the usual symmetries of the elasticity tensor C, the Jacobian Jik,, is also

symmetric with respect to (i,j) and (k, 1), which leads to a symmetric 'stiffness matrix' in

the finite element computations.

4.3 The case of plane stress

In this section, we consider the case in which the fibers are all parallel to the X3 = 0 plane

(i.e. n = rile 1 + n2e2) and the applied loads are such that a33 = aal = a32 = 0. The stress

and strain tensors are now of the form

a = aeae and e = caeaep + e33e 3 e3 , (54)

where Greek subscripts range over the integers (1,2).

In such problems, the the strain increments Afn, AC2 2 and AC12 are known, but the

out-of-plane component of the strain incrc•ient AE is not defined kinematically; therefore,

some modifications to the method described in section 4.1 are needed.

The total- and creep-strain increments are written as

Ae = ALceceO + AL33 e3e3  and Ac' = Aceec + Acee3 e 3. (55)

The plane stress condition q3 = 0 requires that

C33ij(Aeij - Ae7) = 0 or Af33 = (C33ij ACýT - C33.0 AC/O)/C333. (56)
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Summarizing, we write

F(Ae-) = - f(u(e),t,s)+(1-a)f(o.,t_,s)]At=0, (57)

&rij(Af') = &, + Cj33 AC33(AL') - Cijk) A4', (58)

AE(A,') = (C3ij Ali• - C3  Af)/C3M3, (59)

where

&j = (o.),j + C4,,.0 ••. (60)

We choose AEcc as the primary unknown and treat (57) as the basic equation in which

ff((At-) is defined by (58)-(60). The solution is obtained using Newton's method. The

corresponding Jacobian is
OF Of 0o Ofa- = J -C t At- =J+a At 2E : (C - A), (61)

where

Ajlk = C,,33 C3ki/C.w. (62)

5 An analytical model for creeping fiber-reinforced

materials

deBotton and Ponte Castaheda (1993) have presented recently a constitutive model for non-

linear composite materials reinforced by continuous fibers. They developed their model in

the context of infinitesimal non-linear elasticity, but their results can be used to describe

steady-state creep as well.

For the special case of incompressible behavior in which the creep potential for both the

matrix and the fibers is a function of the von Mises equivalent stress a,, their model can be

summarized as follows. Let the creep potentials for the matrix and the fibers be of the form

, -= i,(k)(0), k = 1,2, (63)

where k = I refers to the matrix and k = 2 to the fibers. If the matrix is the 'weaker'

material, then the creep potential of the composite is estimated to be (deBotton and Ponte

Castaf,"a, 1993)
1(1, 12, 14) = (o'a.,2 ) = Im1PcM •Fc (1)) + c2 (2) (o2))], (64)
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where cl and c2 are the volume fractions of the matrix and the fibers respectively (c, +c2 = 1),

and

a.(OW,1) = {[+ C2••) 2 + C2W21a,](a) + (1 + C2 1)2o (e)}"'2 , (65)

0,.1(,•' W,,,,,) = ((1 - c,,.2)'0(.) + (1 -c, 7)2 2(,,)] 1/2, (66)

a.2(a) = 3(r.2 + r,)= i(31-2 )-12)- (1, -3), (67)14

1(of) = 1(314 _ I,)2, (68)

an = n.o'.n, (69)
1

ap = jo:(I-nn). (70)

The quantities a, o,, i. and r,- are the alternative set of transversely isotropic invariants

discussed in Appendix A.

Note that in (64) the creep potential '* is independent of 1s, which implies that the

predicted response of the composite will be the same under longitudinal and transverse

shear.

Let 4 and e be the values of q and w that minimize the right hand side of (64) for a

given stress state a, i.e.

* = c1 *(')(,, C, 6) + c2  
2)(O, CJ,). (71)

In general, 4 and 4, are functions of a, and the corresponding equation for the creep strain

rate is

a'1d2) I 8 I ) i (2) ~ , / 8 p ~ a P 2)
icr = "'2C;-+C.--.-+ -•. +C2 I + c -,-•-. (72)

However, in view of the minimization in (64), each of the terms in parentheses on the right

hand side of the above equation vanishes identically. Therefore, in computing i', one may

regard W and 4 as constants (deBotton and Castafieda, 1993). The corresponding constitutive

equation for the creep strain rate can be now written as

i c 10,'I[( + C2 Z,)2 + C2 Z2la 2ors 4) Id~
=j orO)( o -+ (I + C2?)d

+ c2 --"() (1 C, C') 2  + -1 - c, 4)2 "d -- " , (73)

where
- d(, k = 1,2, (74)
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and

8cr. 3 , 1
Oa (75)•'ga=0j • %- (a. - or,) (3 ni nj - bij), (5

ao d 1
a = -o) (an -p) (3n, nj - 6ij). (76)

It should be noted that the above model is independent of the hydrostatic stress p = akk/3

and that the predicted creep response is volume preserving, i.e. i = 0.

If the fibers are rigid, then one can formally set V(2) 0. The minimization in (64) then
yields11

yl- and =_---. (77)

I +c 2  C2

Then ai) = ar./VFF and the estimated creep potential and the corresponding constitu-

tive equations of the composite become

*(It.. 12, M) = C1 ,'(.') (78)

i ---- •-2c'@ ') 80 c, ()•_ [3 ai _(r-_(a ,-a ) (3 ni nj _- ij)] (9

Using the last equation, one can readily show that

n.e ' -n=O, (80)

i.e., the composite is inextensible in the direction of the rigid fibers. If n - e3 , then the

constitutive equations (79) become

A ,ic---=(ol--2), i==0, and ij-=Aarij for i ~j, (81)

where 3 c1  ()
A c(82)

2 VFT 7_ a,,

6 Comparison with results of homogenization theory

The predictions of the constitutive model described in the previous section are compared here

with the results of periodic homogenization theory (Sanchez-Palencia, 1980; Bakhvalov and

Panasenko, 1989). The homogenization techniques were originally developed in the context

of linear elasticity, but they have been extended to infinitesimal non-linear elasticity (Suquet,
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1982; Jansson, 1992). The comp;,ril -s are carried out for non-linear elastic materials, for

which the model of deBotton and Ptate Castafieda (1993) has been developed.

The non-linear composite is assumed to be macroscopically homogeneous and we seek to

determine an effective constitutive equation of the form E = g(E), where E and E are the

macroscopic stress and strain respectively, and g is a tensor-valued constitutive function to

be determined. The macroscopic field equations for a certain elasticity problem involving

the composite are

a--- i' + b = = 0, (83)

S= g(E ), (84)
1 (Ou Oui+ýL-

E =i = j• -x+ O , (85)

where u is the displacement field, and b = b(x) is the body force.

In the following, we summarize some of the results of homogenization theory as developed

by Sanchez Palencia (1980) (see also Lene and Leguillon, 1982; Suquet, 1982, 1987; Lene,

1986; Jansson, 1992).

6.1 Homogenization theory

The composite is now modeled as an inhomogeneous continuum made of two different ho-

mogeneous non-linear elastic constituents. The microstructure is assumed to be periodic,

i.e. the constituents of the composite are arranged in such a way that it can be constructed

by the periodic repetition of self-similar elements. We define the 'unit cell' as the smallest

such repeatable element. The characteristic length I of the unit cell is assumed to be small

compared to any characteristic dimension L of the body, i.e.

= << 1. (86)

Let x denote the position vector with respect to a fixed global cartesian coordinate system.

A local variable y is introduced for the unit cell by

xy or x = by, (87)

so that a change of 0(1) ii, y corresponds to a 0(6) change in x. Note that the coordinate

x is constant at the unit cell level, where positions are described in terms of y.
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In view of the periodicity of the microstructure, the constitutive equations at any point

of the heterogeneous medium can be written as

o = f(e, 1) = f(e,y), (88)

f being a periodic function consistent with the periodicity of the microstructure, i.e. such

that

f(e, + 1iej) = f((e, i = 1,2,3 (no sum over i) (89)

where 1i is the characteristic length of the unit cell in the i-th coordinate direction, and e,

is the unit vector in that direction. Functions of the type of equation (89) will be referred

to in the following as Y-periodic.

Next, we search for an asymptotic expansion of the displacement field u as b --* 0. A

two-scale expansion of the form (Sanchez Palencia, 1980)

u(x,y) =- u()(x) + bu ()(x,y) + 52 U(2)(x,y) + 0(b3) (90)

is attempted, where the functions u0), U(2), etc. are Y-periodic. In the above equation

u(0)(x) corresponds to the macroscopic deformation field E(x), whereas the subsequent Y-

periodic terms u0), u(2), etc. are local perturbations due to the presence of the fibers in the

continuum.

The corresponding strain expansion is

C(x,y) = [E(x) + E'(')(x,y)] + 6 [e("(x,y) + EV(2)(Xy)I + 0(62) (91)

- E(°)(x,y) + 6eb)(x,y) + 0(b2), (92)

where
x~) _1 Oik(k) 1)an (Ott. +~k_ ~ ~ e ~ kUlk )

2 Ox, Ox 2 0' Oyi

Note that (o°)(x) = E(x). The stress field can be written as

o'(x,y) = f(e(0 ),y) + bc(C(0),y) : C1) + Q(5 2) = o.(0)(x,y) + -- 5( 1)(x,y) + O(52), (94)

where

c(W0),y) - ".(E(y) (95)

The equilibrium equations become

+ +(+b, + 0(6) = 0. (96)

b Oy, Ogxj O~y,
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In view of the Y-periodicity of u0) and f, the fields e(0), S1l, i.(o) and of() are Y-periodic

as well. Also, since the outward unit normal N to the boundary OY of the unit cell takes

opposite values on opposite sides of WY, the traction vector t(°) = N. o-o) is Y-anti-periodic.

Collecting terms having like powers of 6, we obtain the following hierarchy of problems.

6.1.1 Leading order problem (the unit cell problem)

We can recast the leading order terms of the above equations in the following form.

(y) -- E(:x).y+u(1)(x,y), (97)

4(Y) f !p(xY) = I ,oy + cgy, (98)

&r(y) z o(0)(x,y) = f(i,y), (99)
-L 0, (100)

090j

with

0) Y-periodic, t = N a Y-anti-periodic, (101)

where f0(y), i(y) and &(y) be the displacements, strains and stresses of the unit cell. Recall

that x is constant at the unit cell level; therefore, the macroscopic strain field E(x) is also

constant in (97) and can be viewed as the macroscopic 'applied load' to the unit cell. The field

equations (97)-(100) over the unit cell together with the conditions (101) define a well-posed

boundary value problem that can be solved for (fi, 1, dr) or, equivalently, for (u0), e(o), 0(o))

(e.g., see Suquet, 1987). One can readily show that, if the constitutive function f in (88) is

convex, then the unit cell problem has a unique solution.

For any function O(x, y), we define

< 0 >= (x, y) dV,, (102)

where Y denotes the unit cell. Using equations (98) and (99) and taking into account the

Y-periodicity of u0), we find

< i >=< E(o) >= e(o) = E and < &> >=< f(°) > (103)

The solution of the unit cell problem can be used to determine the functional relationship

between < & > and < i >, i.e. to find a tensor-valued function h such that

< &r >= h(< i>). (104)
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Note that, in view of (103), the last equation can be also written as

< f(o) >= h(< c(O) >). (105)

We conclude this section by stating the well known result

< &j? >= T1I (1y + i ,)dS,. (106)
8Y

6.1.2 Second order equations

The equilibrium equation yields, to second order,

ao°)(x'Y) + + b1 (x) = 0. (107)Oxj 19yj

Taking the Y-average of the above equation and using the fact that a(') is Y-periodic, we

find
< ,> + b = 0. (108)

We summarize our findings by restating equations (108), (105), (103a) and (93a) as follows

" + b2 = 0, (109)axj
< o"(°) > = h(< c(o) >), (110)

<(E0)> = -I ( 2Ug.() agjO_)(1)

Equations (109)-(111) define the homogenized problem for u(°)(x). Comparing equations

(109)-(111) to the macroscopic field equations (83)-(85), we conclude that the function h,

determined from the solution of the unit cell problem, provides the leading-order homogenized

constitutive equation for the composite.

In the following, we use the finite element method to obtain numerical solutions of the

unit cell problem for various types of loading. The solutions are then used to calculate nu-

merically the function h, which is the leading-order constitutive function of the homogenized

composite.
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6.2 Numerical solution of the unit cell problem

We consider a composite material made of a non-linear elastic matrix reinforced by contin-

uous aligned fibers, which are assumed to be non-linear elastic as well. The constitutive

equations for the matrix and the fibers are of the form

OW) 3 nk-+ (, 1 - ~ Ok
-C fOk (a, nj1 0  k-= 1,2. (112)

The distribution of the fibers is assumed to be periodic, with the fibers arranged in a

hexagonal array. The linear and quadratic stress invariants of the hexagonal arrangement

are the same as those of a transversely isotropic system; therefore, a hexagonal array of fibers

can be used to study linear transversely isotropic elastic materials, since the elastic potential

is a function of the linear and quadratic stress invariants only (Green and Adkins, 1960;

Jansson, 1992). In the general case, however, where terms of higher degree are involved, the

hexagonal system will provide only an approximation for a non-linear transversely isotropic

material.

The fibers are assumed to be aligned with the y3 coordinate direction, and the unit cell

is infinitely long in that direction. Figure 1 shows the cross section of the unit cell on the

yI-Y2 plane.

The macroscopic applied loads are taken to coincide with the principal material directions.

In particular, the following four types of loading are considered:

1. Longitudinal tension: 0.33 3 0, all other arj = 0,

2. Transverse tension: o,11 7 0, all other o0ij = 0,

3. Transverse shear: 0`12 = 0`21 # 0, all other rii = 0,

4. Longitudinal shear: 0`31 = 013 # 0, all other ,ij = 0,

where the oij's are understood to represent the components of the macroscopic stress E,

which is consistent with the macroscopic strain E.

In view of the geometric symmetries of the unit cell and the applied loads, the periodic

boundary conditions (101) of the unit cell problem can be transformed to 'classical' traction

and displacement boundary conditions. A detailed discussion of this transformation is given

in the Appendix B. It should be emphasized, however, that the periodic boundary conditions
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cannot be reduced to classical boundary conditions when more general types of loading are

considered.

The unit cell problem is solved using the ABAQUS general purpose finite element program

(Hibbitt, 1984). The calculations are carried out for n, = 10, n2 = 3, a0l = a02 = r0 and

£01 = C02 = eo = 0-s. The 'deformation plasticity' model in ABAQUS has an additional

'linear-elastic' term on the right hand side of equation (112a); the elastic moduli used in

the finite element computations are four orders of magnitude larger than ao, so that the

contribution of the additional elastic terms becomes negligible. The volume fraction of the

fibers is 39.5%, i.e. c2 = 0.395, cl = 0.605. Figure 2 shows the finite element mesh used for

problems 1, 2 and 3; the dark and white regions in Fig. 2 represent the fibers and the matrix

respectively. The layout shown in Fig. 2 is repeated in the third direction to produce the

layer of three-dimensional elements used for the solution of problem 4. The type of elements

and the exact boundary conditions used in the calculation can be found in the Appendix B.

Figure 3 shows the calculated longitudinal stress-strain curve. In Figure 3, and in all

subsequent figures, the solid line is the prediction of the model of deBotton and Ponte

Castafieda, whereas the circles indicate the results of the finite element calculations. The

predictions of the analytical model agree well with the solution of the unit cell problem.

Figure 4 shows the calculated transverse stress-strain curve. At a transverse strain el l

0.01, there is a 7% difference between the --diction of the analytical model and the finite

element solution.

Figure 5 shows the transverse shear stress-strain response. At a transverse shear strain

C12 = 712/ 2 = 0.01, there is a 13% difference between the prediction of the analytical model

and the unit cell solution.

The finite element solution of problem 4 (longitudinal shear) produces a shear stress-strain

curve identical to that shown in Fig. 5 for the transverse shear. This is consistent with the

structure of the analytical model which also predicts identical response to longitudinal and

transverse shear.

Figures 3-5 show that, at a given strain level, the stress predicted by the analytical model

is always higher than that of the finite element solution. This is consistent with the fact that

the complementary elastic energy function * developed by deBotton and Ponte Castafieda

is an upper bound to the actual complementary energy of the composite. It should be

also noted that the model of deBotton and Ponte Castafieda is developed for a transversely

isotropic composite with a random distribution of fibers, whereas the unit cell calculations
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refer to a composite with a given periodic microstructure (hexagonal array).

7 An example: a plate with a hole

The model of deBotton and Ponte Castafieda is implemented in the ABAQUS general pur-

pose finite element program. This code provides a general interface so that a specific con-

stitutive model can be introduced as a 'user subroutine.' The constitutive equations are

integrated using the method presented in section 4 with a = 1/2 (trapezoidal method).

Figure 6 shows a schematic representation of a plate with a hole; the plate is reinforced

by continuous rligned fibers as shown in the figure, and the ratio w/2a equals 6. Elasticity

and creep are assumed to be the only possible mechanisms of deformation. The diameter of a

typical fiber is assumed to be small compared to the size of the hole and the thickness of the

plate, so that the continuum model described in section 5 can be used in the calculations. As

a model material, we consider a y1-TiAl matrix reinforced by polycrystalline A120 3 continuous

fibers. The fiber volume fraction is assumed to be 20%, i.e. c2 = 0.20. Typical values of

the elastic constants are E = 200 GPa and v = 0.3 for -y-TiA1, and E = 385 GPa and

V = 0.33 for A120 3, where E and v are Young's modulus and Poisson's ratio respectively.

Using the estimation procedure described in Christensen (1979), we find the following values

for the elastic constants of the composite: Ell = 235 GPa, A12 = 85 GPa, P23 = 85 GPa,

K2'3 = 220 GPa, and v12 = 0.31. The matrix and the fibers are assumed to creep according

to a power-law equation of the form

/k(k) 3.Ok { & f__ +1
-- - 3. -T -= ýfok ! I' V(k)(O) -- (Ge -,k I k = 1,2. (113)

47(l-Dn+ I -le- )
E 8o" 2 \ 0 ok / kfrl Ok

The model of deBotoon and Ponte Castafieda is used to describe the creep behavior of the

composite. The following creep constants are used in the computations: n, = 2.6 and

ol/or,' = 1.304 x 10-1 MPa-" 1 . s' for the matrix, and n2 = 1 and i02/gn = 10-9

MPa-n 2 . s-' for the fibers.

Plane stress conditions are assumed, and two types of loading are considered, in which

a constant tensile stress of 70 MPa is applied a) in the direction of the fibers, and b) in the

transverse direction. In both cases, the load is applied suddenly to the plate at the time

t = 0. The instantaneous response of the material is elastic and the elastic stress distribution

provides the initial condition for the creep problem.
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Four-node isoparametric elements with 2 x 2 Gauss integrations are used in the calcula-

tions. The analysis is carried out incrementally and the maximum size of the time increment

is controlled by the formula in equation (49). At every element integration point, the values

of Ca and 4 that minimize the right hand side of (64) are found using the values of the stress

tensor a,, at the beginning of each increment.

Figures 7-10 show contour plots of several transversely isotropic invariants of the creep

strain el at a time t =1 hr for both cases analyzed. The invariants plotted in these figures

are (deBotton and Ponte Castafieda, 1993):

, 0= 11= -" 33 (114)
U = cr : a = e (115)

1 1 1
(_,)2 = • (cr.1): ( .3) - : #3)2 = (4)2 + 1 4(f" - )2, (116)

(-C) 2 = (E,)2 : a - (E': a) 2 = (e) 2 + (er)2 , (117)

where n = e2 , 13 = I - nn = ele, + e3e3, and the cartesian components refer to the

coordinate system shown in Fig. 6. The strain in the direction of the fibers C,, and the

in-plane 'volumetric' strain e, attain their maximum values at point A (see Fig. 6), which

appears to be a possible site of fiber failure and debonding. Figures 9 an 10 show that

the longitudinal (t,,) and transverse (-yp) shear stresses reach their maximum values on the

surface of the hole.
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Appendix A: Transversely isotropic invariants

An alternative set of commonly used transversely isotropic invariants is

1
J, = rp= ,(118)

"J2 = a,,=or:a, (119)

J3 = r12)( (0:,)2], (120)

J,/ = r2 f=o'2:a-(o:a)2, (121)

Js = det(cr), (122)

where a = nn, and 3 = I - a. Physically, (ap, o.,, Ti, T,) correspond to the in-plane hydro-

static stress, the longitudinal stress, the maximum transverse shear stress, and the resolved

longitudinal shear stress respectively. A schematic representation of the above invariants is

shown in Fig. 11.

For convenience, we also define

22
0.•= 0.- ".2=(3n-o"n) and a = 3(Tr•+ r,•), (123)

and note that
0,2 = (2p_ a.)2 -r. + -'.)--ad + a.2

+3( (124)

If the fibers are aligned with the x3 coordinate direction, i.e. n - e3 and 3 = eje1 + e2e2,

then

1

Orp = (al I + 022), (125)

O'n= 0'3, (126)

TP2 r 12~ (0'1- '2 2 (127)12 

(

13 + Or23, (128)

and
(2
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In the following, we state the relationships between (Il, 12, 14, Is) and (ap, a,, , -r 1,,r):

=rP = (11 - 14 (130)

C = 14, (131)

" = 12 1=1
12 I + 14 (11 - IX), (132)

= IS- 14, (133)

and

A = 2a,1+2u,, (134)

12 = + 2o + 2(r- + rT2), (135)

14 = 0.,, (136)

IS = 0,2 + r2. (137)

Appendix B: The unit cell problem

We start with the case where the unit cell occupies the region -cl < y _5 c1, -C 2 _5 Y2 _<

c 2 , -c 3 _< y3 :< c3 , and then let c3 -- oo.

In the following we refer to problems 1, 2, 3 and 4 defined in section 6.2.

Problem 1: Longitudinal tension

The only non-z, mponents of the macroscopic strain E are Ell, E 22 and Er3. The

geometry of the Aell and the applied loads are symmetric with respect to y3 = 0 in this

case. Let u()(y) be the solution of the unit cell problem and define fi(y) by

• ,( ,, 2, 3) = u M )
ii1(Y1, Y2, Y3) I (Y1 Y,2, -- Y3), (138)

u2 (Y1,y 2,y 3 ) = u41)(Y1,2,-WY3), (139)

u3(Y3,,1 2 ,313) = -u(3)(yl,Y 2 , -Y3)- (140)

One can readily show that fi(y) satisfies the governing equations and the boundary conditions

(97)-(101), i.e. fi is another solution of the unit cell problem. Since the solution is unique,
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this implies that C1 = 0), i.e. U(0) has the following symmetries

u(I)(YlY•,-Y3) = u.1)(YIY 2 , 3 ), (141)

u(')(yj,y2,-y 3 ) = U2 )(y,yI2,y3), (142)

U31()(Yl,Y 2 ,-Y 3 ) = -U.() (YyY2,Y 3 )" (143)

Therefore,

u(')(yI, Y2,0) = 0. (144)

When c3 -- oo, there is no way to distinguish the location of Y3 - 0; therefore, in view of

the above symmetries, u(0) must be independent of Y3, i.e.

,M = , 1 )(yI, y2 ), (145)
u24) = u1)((yIy2), (146)

u(=) 0. (147)

The solution of the unit cell problem can be now written as

fil(Y142) = Ejyj+,,1 ')(Y,,Y 2), (148)

u 2(YI,Y 2) = E22y 2 +u2')(yI,y 2), (149)

u3 (Y3 ) = E3y 3. (150)

The geometry of the unit cell and the applied loads are also symmetric with respect to yj = 0

and y2 = 0. Therefore, using arguments similar to those used above, one can readily show

that the Y-periodic field u0) has the additional symmetries

u=I)(Y,-Y2) = U(1)(Y 1,y•2 ), (151)

,•)(Y,,-Y2) = -- (')(Y,,Y2), (152)

and

u(I')(-yI,,y2) = -uil(Ny1, 2), (153)

u 1)(-yj,y2) = u('3)(y3,2) (154)

In view (149)-(151), the total displacement ii of the unit cell problem has the symmetries

stated in (151)-(154) for the Y-periodic displacement 0).
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Also, since the macroscopic load corresponds to longitudinal tension, the only non-zero

component of < of(0) > is < a(0) >.

Taking into account the aforementioned symmetries of ii and u01), the symmetries of the

geometry, and the Y-periodicity of 0), we readily conclude that only one quarter of the

unit cell needs to be analyzed (see Fig. 2). The corresponding boundary conditions are

Y3 = 0: it, = 0 and &12 = 0, (155)

Y2 =0: 2-=0 and b21 =0, (156)
b

yl = bi/'3 : ,l = Ell bV, &12 = 0 and 1 &11 dY2 = 0, (157)

b Y0bVg

Y2 =b : fi2 = E22 b, &21 = 0 and J b22 dy1 = 0. (158)
0

The integral conditions in (157) and (158) are consequences of the fact that < 0o) >=< a2o >=

0, and are obtained by using equation (106) and taking into account the symmetries of the

problem. Using equation (106), one can also show that

( F3  where F3 = 0/3dA, (159)
A

A being the area of the finite element mesh on the y1-y2 plane shown in Fig. 2.

The boundary conditions (155)-(158) can be easily implemented in a standard finite

element program. The problem is solved using four-node generalized plane strain elements

with 2 x 2 Gauss integration.

Let h be the thickness of the elements in the y3-direction. The U3̂ component of the

displacement is set to zero at Y3 = 0, the value of fi3 at y3 = h taken to be equal to E33h.

The displacement component u3 at Y3 = h is a degree of freedom common to all nodes,

so that 631 = i32 = 0 and i = (1/h)(fi3)l=h = E33 =constant everywhere in the finite

element mesh. In view of the isotropy of the constituents, we also have that &31 = &32 = 0

everywhere. Note that the force F3, defined in (159b) is work conjugate to 4i3 at y3 = h.

The macroscopic strain component E33 is applied, and the corresponding < (0) >, E1

and E 22 are determined. The average stress < ai) > is found using (159).

Problem 2: Transverse tension

The only non-zero components of the macroscopic strain E are Ell, E- 2 and E3. Also, the

only non-zero component of < or(0) > is < or,, >. One can readily show that the solution of
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this problem has the same symmetries as that of Problem 1. One quarter of the cross-section

of the unit cell is analyzed, and the boundary conditions are

YJ =0=: it,=0 and &12=0, (160)

Y2 =0: u2 =0 and &21=0, (161)

yj = bW3: fil = E11 bV3A and &12 = 0, (162)
bVI

y2 = b f: 2= F 22 b, b"21 =0 and b 22 dy1 = 0, (163)
0

y 3=h: fi 3 =E33h and F 3 =0. (164)

The solution is obtained using four-node generalized plane strain elements with 2 x 2

Gauss integration. The macroscopic strain component Ell is applied, and the corresponding

< •01 >, E22 and E3 are determined. The average stress < oil > is found using the

relationship
b

< oT >= I f &11(bv3-,Y 2)dY2. (165)

0

Problem 3: Transverse shear

The only non-zero components of the macroscopic strain E are E12 = E 21. Also, the only

non-zero components of < o,0) > are < oA) > (<°)

Using arguments similar to those used in Problem 1, one can readily show that i) u(1) = 0,

ii) ul1) and u(1) are independent of y3, and iii) the solution has the following symmetries (or

anti-symmetries)

U-(I11,-Y12) =,1)(Y Y,2) (166)
U(1(l_2 = U2)Y,) (167)

and

U'l)(--Yl,Y2) = UtI )(yIy 2 ), (168)

) (-Y , Y2) = -u(•l)(YY2). (169)

One quarter of the cross-section of the unit cell is analyzed, and the boundary conditions

are

Yl = 0 :i2 = 0 and 6I = 0, (170)
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Y2 =0: ul = 0 and &22 = 0, (171)

y-b= W35: i 2 =E2 1-EW35 and &11= 0 , (172)

Y22=b: fl =E 12 b and 6'22=0. (173)

The solution is obtained using four-node plane strain elements with 2 x 2 Gauss inte-

gration and an independent interpolation for the dilatation rate are used in order to avoid

artificial constraints on incompressible modes (Nagtegaal et al., 1974). The macroscopic

strain component E12 is applied, and the corresponding < a12 > is determined using the

relationship

(0) bV =ON
23 f &21 (,b)d&2(bV,) (174)

0 0

Problem 4: Longitudinal shear

The only non-zero components of the macroscopic strain E are E13 = E31. Also, the only

non-zero components of < o"(°) > are < 0.io >=< ail >.

Using arguments similar to those used in Problem 1, one can readily show that i) ul1) =

u24) = 0, ii) u3") is independent of Y3, and iii) the solution has the following symmetries (or

anti-symmetries)

(1) = -U( Y2), (175)

)(yl,--y2) -" u(l)(yIy2). (176)

One quarter of the cross-section of the unit cell is analyzed and the solution is obtained

using eight-node three-dimensional brick elements with 2 x 2 x 2 Gauss integration. Let h

be the thickness of the elements in the y3-direction. The following boundary conditions are

used

=l = E 13 Y3 and fi 2 = 0 everywhere,

Yl-=0: u13 =0 and &11-=0, (177)

Y2=0: & 2 1=&2 3=0, (178)

Y3=0: &33=0, (179)

3y =b/*: ui3 = E31 b%/3 and &11 =0, (180)

Y2=b &2 1 =&23 =0, (181)

Y3 =h: &33=0. (182)
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The macroscopic strain component E1 3 is applied, and the corresponding < a13 > is

determined using the relationship

(0) &3, - 3 (YI,Y 2)dA. (183)

0 A
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Figure captions

1. Hexagonal array of fibers and the corresponding unit cell.

2. Finite element mesh.

3. Longitudinal stress-strain curve.

4. Transverse stress-strain curve

5. Stress-strain curve for transverse shear.

6. Schematic representation of a plate with a hole. The fibers are in the X2 coordinate

direction.

7. Contours of creep strain invariant E,.

8. Contours of creep strain invariant fp.

9. Contours of creep strain invariant -y,,.

10. Contours of creep strain invariant -yp.

11. Transversely isotropic stress invariants.
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ABSTRACT

Creep studies conducted on a unidirectional SiC/CAS composite indicate that the

Nicalon fibers provide longitudinal creep strengthening at 1200°C. The deformation is

transient in nature because grain growth in the fibers enhances their creep resistance.

The transverse creep strength is considerably smaller, being dominated by the matrix,

resulting in appreciable creep anisotropy. This anisotropy leads to severe distortion

when off-axis loadings are imposed. Residual stresses develop upon unloading after

creep, and cause superficial matrix cracking.
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1. INTRODUCTION

Ceramic matrix composites are expected to have a key role in achieving the

performance goals of the next generation of advanced aircraft. The intrinsic ceramic

properties of high refractoriness, good oxidation resistance and low density have been

motivating the development of these materials. Much of the recent effort has been

expended in overcoming some of the key limitations of monolithic ceramic materials,

particularly their notch sensitivity. This work has led to the development of ceramic

matrix composites (CMCs), using fiber reinforcements as a means of controlling damage

and redistributing stresses.1-9 Critical to the success of this approach is the presence of a

fiber coating that provides a "weak" interface.5-7 However, much remains to be

addressed at high temperatures, where most of the performance benefit is to be

obtained. The presence of fibers can have either beneficial or detrimental influences,

depending upon the creep strength of the fibers compared with that for the matrix.10,11

The situation to be explored in this study represents a CMC in which the fibers have a

greater creep strength than the matrix, exemplified by glass ceramics reinforced with

silicon carbide fibers. In this case, the fibers should impart creep strengthening. 12-14 The

actual magnitude depends on the explicit role of the 'weak' interface.

Another important factor is the creep anisotropy. While creep resistant fibers result

in strengthening in the fiber direction, the composite has inferior transverse properties,

which may limit structural integrity. It therefore becomes imperative to understand this

anisotropy, in order to guide materials development and ensure reliable engineering

design.

KJS 1114 3



2. BACKGROUND AND PHILOSOPHY

CMC components typically experience large thermal gradients, but small pressure

loads. Such situations result in bending moments and shears, which may cause flexural

creep and distortion. The material anisotropy can have a substantial effect on these

responses. The philosophy of the present study is to perform flexural creep tests and to

provide an interpretation by comparing with compression and tension data. Moreover,

the tests are performed at the relatively low stress and strain levels expected in actual

applications, wherein distortions > 1-2% are unacceptable.

Anositropy in the creep of CMCs is investigated by using a calcium aluminosilicate

(CAS) system, unidirectionally reinforced with SiC (Nicalontm ) fibers.A In this CMC, the

fibers have a greater creep strength than the matrix.1 0 ,15 However, both the fibers and

the matrix are susceptible to microstructural changes and transient creep responses. At

temperatures above - 12000 C, Nicalon fibers experience both compositional and

microstructural changes.16-18 These involve the evolution of CO with the resultant

creation of an outer sheath of 1-SiC, having relatively large grains (- 15 nm in

diameter).1 8 As the peripheral grains coarsen, the creep strength of the fibers

increases. 15 Within a composite matrix, the role of the Nicalon fibers depends on the

actual CO evolution. These effects are examined at a temperature of 1200C, which

represents a compromise between the desire to use CMCs at the highest possible

temperature and the need to have microstructural and compositional stability.

Glass ceramics have creep characteristics dominated by the residual amorphous

material. 19 The extent of crystallization thus dominates the creep strength of the CAS

matrix. Moreover, such materials often exhibit creep asymmetry: they deform more

rapidly in tension than compression, because of void formation in the amorphous

t The material was provided by Coming through K. Chyung.
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material. 19 Such asymmetry, when present, has important implications for the

interpretation of flexural creep.20

3. EXPERIMENTAL PROCEDURES

3.1 Testing Procedures

In SiC/CAS, the presence of a carbon layer at the fiber/matrix interface results in a

strong dependence of mechanical properties on the extent of oxidation. 5,6

Consequently, in order to allow separation of the influence of mechanical loading and

environment, creep tests were conducted under inert conditions by using a hydraulic

testing machine in argon (- 0.1 MPa) within a furnace having a 22000C temperature

capability. Flexural experiments were performed on beams measuring approximately

3 x 3.5 x 45 nmm. A device was constructed which directly and continuously evaluates

the curvature over the inner span, by measurement of the displacement, A21 (Fig. 1).

Pure bending operates within this region. The normal strains F are thus axially uniform

and are related to the displacement A in a straightforward manner.t The maximum

normal strain on either the tensile or compressive surface is explicitly related to A by,21

e_ = hA/(e +S2) (1)

where h is the beam thickness and s the span. The device allows strain measurements

accurate to within ± 0.01%, and a resolution of ± 0.0005%.

The stresses that develop in flexure relate to the applied moment, M. Determining

exact values is not straightforward (Appendix I). It is established that, at the moments

and deflections used in this study, SiC/CAS has minimal creep asymmetry and,

t This simple relationship obtains, even at deformations substantially larger than those explored in the

present tests (e < 2%).
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moreover, stress transfer from the matrix results in fiber dominated behavior.

Additionally, since the fibers are viscoelastic,22 linear solutions may be used to obtain

nominal stresses from the moments. The linear formula for peak stress on the tensile

surface is

007 = (3/2)P(L- 1)/bh 2  (2)

where P is the load, L is the outer span, z the inner span and b the beam width.

The same system was adapted for compressive creep measurements. For this

purpose, the outer gauging rods (Fig. 1) were attached to the top loading plate, while

the central gauging rod (attached to the LVDT) contacted a creep resistant SiC platen

directly under the specimen. Deformation of the specimen was measured from the

relative displacement of the inner and outer gauging rods from which the strain could

be determined directly.

3.2 Characterization Techniques

The materials were examined by both scanning and transmission electron

microscopy. For scanning electron microscopy (SEM), specimens were prepared using

standard metallographic techniques. Carbon-coated samples were examined in the

JEOL SM 848 SEM in secondary mode. The microscope was equipped with a Tracor

Northern TN 5500 analysis system. For transmission electron microscopy (TEM),

samples prepared by ion milling were examined at 200kV in a JEOL 2000FX TEM

equipped with a LINK eXL high take-off angle energy dispersive spectroscopy system.

Computer simulations and indexing of selected area diffraction (SAD) patterns were

facilitated by the Desktop Microscopist software package (Virtual Labs, Ukiah, CA

95482).
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TEM analysis of the composite after creep was impeded by crumbling of the

matrix during foil preparation. The following, alternative, procedure was thus used to

obtain samples of fibers. Wafers, approximately 2.5 mm square and 300 ;m thick, were

cut using a slow speed diamond wafering blade, with the fiber orientation in the plane

of the wafer. These wafers were then soaked in concentrated hydrofluoric acid for about

3 minutes to remove most of the matrix, leaving the intact fibers behind. These fibers

were then extracted using a tweezers, mounted on a copper grid and ion milled prior to

TEM analysis.

4. RESULTS

4.1 Material Characterization

The SiC/CAS material has 16 plies, with an average fiber volume fraction / - 0.4,

although local variations are evident (Fig. 2). It has a glass-rich surface layer. During

testing, this layer was located at the outer surface of the side faces. Characterization by

TEM revealed that the matrix consists primarily of anorthite with a grain size 1 pzm.

Substantial twinning was evident throughout the matrix. Very fine precipitates (20 run),

probably zirconia, were detected within the CAS grains. The fiber/matrix interface

consisted of a 300A thick carbon layer (Fig. 3), identified by means of scanning EELS

micrographs. Electron diffraction analysis of the fibers revealed a characteristic ring

pattern, representative of P-SiC with a very fine grain size. Dark-field imaging

established a grain size, d - 1-3 nm.

4.2 Creep Rates

The flerural creep experiments with longitudinally oriented fibers, conducted at

1200°C, were performed at moments corresponding to nominal stress levels between 50

to 150 MPa. The strains were limited to - 1%. These tests gave the longitudinal flexure
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creep rates summarized in Fig. 4. The strain is transient, at all applied moments. Tensile

creep rates obtained at similar stresses10 superpose onto the flexural results (Fig. 4). This

correspondence between flexure and tension indicates that there is minimal creep

asymmetry at small strains (< 1%) and at stresses up to - 150 MPa.

Two flexure tests were conducted at the same moment, but with one periodically

interrupted. The sample was cooled rapidly upon interruption, in order to limit

recovery effects.10 The strain was then measured from the beam curvature at room

temperature.21 The results demonstrate the history insensitivity of composite creep

(Fig. 5).

Transverse compressive creep data are presented in Fig. 6. In contrast to the

longitudinal response, the transverse behavior is characterized by a minimum

deformation-rate, preceded by an initial transient. The creep rate minimum can be

characterized by a power-law, with an exponent, m - 2.4.

A comparison of longitudinal and transverse creep at 50 and 75 MPa (Fig. 7)

illustrates the anisotropy and provides direct evidence that longitudinal creep

strengthening is imparted by Nicalon fibers. An alternative demonstration of the creep

anisotropy is provided by the cross-sectional profiles of crept flexural samples (Fig. 8).

The relatively low (matrix-controlled) shear creep strength of unidirectional fiber

composites results in large shear distortions between the inner and outer loading points.

These distortions are substantially higher than the (fiber-controlled) longitudinal

deformations caused by pure bending between the inner loading points. Such behavior

does not occur in isotropic beams because the ratio of the peak shear stress to the peak

tensile stress is typically low (: 0.i).I

I•For elastic or linearly creeping fibers, this ratio is,23 X = 2 (L - 1)(k
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4.3 Observations

SEM and TEM conducted on the crept samples has established that there is

minimal matrix damage at small strains C 1%). The absence of matrix cracks is

consistent with earlier studies conducted at room temperature9 at the stress levels used

in these tests (maximum of 150 MPa) and with the minimal creep asymmetry. However,

cracks were found in the glass-ceramic coating, on those sides that had been subject to

compression during creep. Cracking was more prevalent at higher loads. The

occurrence of such cracks implies the presence of a residual tension after cooling and

unloading. Related behavior has been found in monolithic ceramics.24

In transverse compressive loading, transverse matrix damage initiated, but only at

larger strains (5 2%). This damage is manifest as voids emanating from the interfaces, at

segments perpendicular to the loading axis (Fig. 9). At higher stresses (5 50 MPa)

squeezing out of the matrix from between fibers resulted in impingement of the fibers.

Fragmentation of the fibers then typically occurred at the points of contact. These

damage initiation mechanisms were found to be spatially non-uniform and appeared to

correlate with locally high concentrations of fibers. Coalescence of damage along well-

defined shear bands led to failure of the samples.

TEM revealed significant microstructural changes in the fibers (Fig. 10). A well-

defined outer shell formed, within which substantial grain growth had occurred (grain

size, d - 10-15 runm) and an inner core in which the grain size remained unaltered

(d - 1-3 nm) (Fig. 11). This behavior is consistent with that found for Nicalon fibers in

the absence of a matrix.18 The extent of the large grained regions increased with time at

temperature. More precise determinations of the kinetics of grain growth and shell

evolution are in progress. There were no apparent changes to the C interphase.
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5. DISCUSSION

The interpretation of the above results relies on three basic features, each governed

by the flexural and compressive characteristics of anisotropic beams. (i) For the pure

bending region between the inner loading points, in which the flexural strain

measurements have been made (Fig. 1, Eqn. 1), there are no in-plane shear stresses.23 In

consequence, the deformations are controlled by the longitudinal properties of the

composite. (ii) The similarity of the deformation rates measured in flexure and tension

establishes that the deformation is symmetric, within the stress and strain ranges

explored in the present study, consistent with the absence of creep induced matrix

damage. (iii) The matrix dominated deformation in transverse compression

substantially exceeds the longitudinal deformation, verifying that the fibers are

considerably more creep resistant than the matrix. This anisotropy is the origin of the

beam distortions found in four-point bending (Fig. 8).

These three features provide the logic for the following sequence. The transverse

compression data are first used to estimate the creep properties of the matrix. These

values are then used with the flexural data to characterize the fiber dominated

longitudinal behavior. Finally, the creep properties of the fibers within the composite are
established.

Both constituents are assumed to exhibit power law creep. The steady-state formulae

are, for the matrix,

S= ((/.)r (2)

and for the fibers,

i = i (010,o)" (3)
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where Omo and GYo are the reference stresses.

5.1 Matrix Creep Strength

The creep properties of the matrix are estimated from the composite steady-state

data obtained in transverse compression (Fig. 6), given by,

k = io0/o (4)

where aco is the reference stress for the composite. In the absence of significant matrix

damage, the power law for the matrix should be the same as that for the composite25,26

(m = 2.4). Furthermore, the reference stresses should be related by25,26

CF. = oJU(f,m) (5)

with f being the fiber volume fraction. The coefficient P has been calculated for perfectly

bonded interfaces.26, 27 For the present composite (m = 2.4 and f = 0.4) the

calculations give P = 0.7. Consequently, the data of Fig. 6 can be related to the matrix

creep properties by means of a reference stress conversion. Eqn. (3)V gives I = 0.7, such

that in Eqn. (2): inwo = 0.7 MPa and e = 4.0 x 10-11 s-l.

5.2 Longitudinal Creep

The longitudinal data are dominated by the fibers (Fig. 4). The lack of significant

fiber fracture at small strains suggests that an equi-strain criterion may be used for

interpretation.12 The following procedure is used for this purpose. First, based on the

$ This conversion is strictly applicable only in steady-state and at sinall strains, prior to matrix damage.
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above matrix creep parameters, a beam analysis yields the fraction of the moment borne

by the fibers (Appendix I). This analysis indicates that essentially all of the creep

strength is associated with the fibers, except during the initial transient (times, t Z 5h).

The primary nature of the creep arises because of microstructural changes within the

fibers (Figs. 10,11). The most important mechanism appears to be grain growth, which is

time dependent. Consequently, by using time as an independent variable (rather than

strain), it is found that the axial creep data can be uniquely correlated (Fig. 12). The

associated constitutive law for the composite closely approaches the form (t 5 lh),

i/ic= o / )(t)n (6)

with a stress exponent, n - 1, a time constant r = 5.5 x 10.6 s andx -- 0.9. The

coefficient 11 is unity for the composite but becomes f for the fibers. The reference

parameters are co- 1 MPa, io = 1/s. The extent and magnitude of the grain growth

are consistent with the observed creep strengthening of the fibers (Appendix ID, and also

with a stress exponent, n - 1, characteristic of diffusional creep.27

There is a similarity between the microstructural changes in the Nicalon fibers

found here during creep within a CAS matrix, to those previously found in the absence

of a matrix.18 This indicates that a CO partial pressure having sufficient magnitude to

suppress chemical changes does not develop. The evolving CO can presumably escape

from the composite. The consequences are that longitudinal creep of the composite is

primary in nature and that the creep rates are comparable to those for the fibers in the

absence of the matrix.15 The C interphase remains relatively stable, at least upon testing

in an inert environment. Consequently, this phase appears to have minimal effect on the

longitudinal creep rates, at the stress levels explored in this study. These stresses are

below those needed to cause appreciable fiber failure, such that an influence of the
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interphase would not be expected. However, interphase effects are likely at higher

stresses, approaching the fiber bundle strength.

5.3 Residual Stress

The cracking of the coating on the compressive side of the flexural specimens after

unloading is associated with the development of residual tensile stresses. Such cracking

may be important in causing exposure of the fibers to environmental attack. The peak

value of the residual stress is expected to be proportional to the magnitude of the

applied stress during creep (Appendix III), consistent with the greater tendency for such

cracking at larger stresses. The mechanism involved is associated with load transfer

from the fibers to the matrix and differs from that found in flexure in monolithic

ceramnics.24

6. CONCLUSION

Nicalon fibers have a beneficial effect on the longitudinal creep strength of calcium

aluminosilicate (CAS) glass ceramics. Moreover, time-dependent microstructural

changes in the fibers result in long-term creep hardening. The transverse creep strength

is much smaller, being dominated by the matrix. The composite is thus highly

anisotropic. This anisotropy causes extensive distortion with off-axis loadings. Residual

stresses resulting from stress redistribution during creep can damage the composite

upon cooling and may degrade its subsequent structural integrity.
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APPENDIX I

Stress Redistribution in a Creeping Beam

Stress redistribution in flexural beams has been analyzed for a variety of non-linear

problems, including power law creep 28 and tension/compression asymmetry.20 In this

appendix, results relevant to fiber composites are derived, subject to symmetric

behavior in tension/compression. The new feature concerns the load shedding from the

matrix to the fibers and its influence on the flexural deformation. When both

constituents have the same creep rates (m = n, i6, = eio, arno = c/o) the steady-state

stress distribution is well-known and given by,28

__. 2 + 1, y) Y. (Al)
(Y 3n ) (2h)

where y is the distance from the neutral axis and Oe is the stress expected for a linear

beam (Eqn. 2). In the transient, before steady-state is obtained, a much more complex

stress distribution exists.

When the fibers have a higher creep strength than the matrix, account must be

taken of the redistribution in moment from the matrix to the fibers. In the absence of

fiber fracture, the strain-rates in the fibers and matrix are equal.12 Inserting this equality

into Eqns. (2) and (3), the following steady-state relationship is obtained from Eqn. (Al)

for the fraction 4 of applied moment carried by the fibers,

4 n = X 2m +l1 (3n (A2)
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where X = [•=o/eoa~J] The maximum stresses in the matrix and fibers during

steady-state creep are respectively,

=r (2m+1) (1-4) (M3)
CF* 3m a(1-fT

and

= - .2m+1"_ (A4)Z. 3m (A-f

The equivalent result for the composite is

= 2n+1 (1-V (A5)
C. , 3n ) + 3m ) I

An evaluation of the composite properties using these formula is achieved by

iteration. Initially, it is assumed that the composite properties are controlled exclusively

by the fibers in accordance with Eqn. (6). Then 4 is evaluated for Eqn. (A2). The revised

distribution of stress between the fiber and matrix is determined from 4, using

Eqns. (A3) and (A4). The procedure is repeated until convergence is achieved. One

complication for SiC/CAS is time dependence of the strain rate ratio, X, caused by the

creep hardening of the fibers. This time dependence may be obtained from the actual

flexural data, and expressed from Eqn. (6) as

i. f. ) (A6)
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The consequence is a time dependent 4, which may be estimated from Eqns. (A2) to
A

(A4). Trends in 4 (t), as well as Gc/ae (t) computed from these formulae, using the

present data show that (Fig. Al) for f = 0.4, most of the load is carried by the fibers

(4 - 1) except during the early stages. Consequently, with n - 1, Eqn. (A5) indicates

that the elastic formula (Eqn. 2) may be used to evaluate stresses for the conditions used

in this study. Hv'wever, for other testing conditions, this simplification will not apply.
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APPENDIX II

Creep Properties of Fibers

Fine-grained polycrystalline ceramics often creep in accordance with a steady-state

law,27

ifto = (q/ajo)" (a/d) (BI)

where Q is the atomic volume, d is the grain size, 0 a coefficient between 1 and 3 and n

is in the range 1-2. In this case, n - 1.22 Based on the present microstructural

observations (Fig. 10) the fiber is treated as two concentric cylinders, the outer defined

by a grain size df and the inner by a grain size di. The thickness of the outer cylinder is

represented by, t = t/R, (Fig. 11). The load distribution between the large and fine

grained regions is determined from the 'rule-of-mixtures,' by using Eqn. B1. Then the

overall creep-rate is

ifto = (aF/cF.)n (0n1/d*) (B2)

where d- = [(l1-() 2 di + ý (2--) df]. By inserting the measured value for di - 2 nm and

di = 15 nm and noting that t - 0.4 after 2 h at 1200*C,18 Eqn. (B2) predicts a creep

strengthening of about an order of magnitude. This strengthening level is consistent

with the measurements summarized in Fig. 12, as well as the transient nature of the

creep found in Nicalon fibers.15, 22
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APPENDIX III

Residual Stresses

Stress redistribution during creep in the presence of creep resistant fibers causes

the matrix stress levels to approach zero. Cooling under load to retain this stress

condition, followed by elastic unloading, causes residual stresses. The residual matrix

stresses, upon unloading, are simply the elastic stress on initial loading, but with

opposite sign, as dictated by the relative moduli of the matrix and the fibers:

= _f) + + f (Cl)

Consequently, residual tensile stresses may occur in those regions of the matrix initially

subject to compression. Note that the reduced stress in the matrix during actual creep

contributes to the absence of matrix damage and the consequent creep symmetry.
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FIGURE CAPTIONS

Fig. 1. Schematic of apparatus used for flexural creep assessment. The modification
used for transverse compressive creep measurements is shown in the insert.

Fig. 2. Overview of the fiber distribution.

Fig. 3. a) TEM bright field micrograph of interfacial carbon layer. b) EELS spectrum
for carbon: brightness correlates with concentration of carbon.

Fig. 4. Longitudinal creep characteristics of the composite at 1200°C obtained in
flexure. Also shown are literative data for tension.10

Fig. 5. Effects of periodic unloading on flexural creep curves.

Fig. 6. Transverse compressive creep curves at 1200*C.

Fig. 7. A comparison of longitudinal flexure and transverse creep rates at two
equivalent stress levels. Longitudinal tensile results at similar stresses are also
shown.10

Fig. 8. The profile of a flexural specimen after testing at 1250'C and 50 MPa.

Fig. 9. Scanning electron micrograph of matrix and interface damage found upon
transverse compression testing- a) e - 1%, b) e = 2%, c) E = 4%.

Fig. 10. Transmission electron micrograph of Nicalon fiber after creep testing of
SiC/CAS at 12000C for 50 h.

Fig. 11. Schematic of grain growth behavior in Nicalon fibers at 12001C.

Fig. 12. Normalized plot of longitudinal creep strength.

Fig. Al. a) Fraction of applied moment carried by the fibers at different times during
creep. Dashed line is approximate. b) Maximum composite stress relative to
linear result, Fe.
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POWER LAW CREEP OF A COMPOSITE MATERIAL
CONTAINING DISCONTINUOUS

RIGID ALIGNED FIBERS

ROBERT M. MCMEJKING
Department of Materials and Department of Mechanical Engineering,

University of California, Santa Barbara, CA 93106, U.S.A.

(Rtceved 16 December 1991 ; in revised form 24 September 1992)

Alirmet-An asymptotic analysis is presented for the power law creep of a matrix containing
discontinuous rigid aligned fibers. The fibers analysed have a high aspect ratio. As a result, the fiber
length is much greater than both the fiber diameter and the spacing between neighboring fibers. For
this situation, flow around the fiber ends can be neglected when the creep strength is being calculated.
When the matrix is not slipping on the fiber surface or is nearly stuck, shearing flow dominates the
behavior. The radial gradient of shear stres is balanced by the axial gradient of hydrostatic stress.
Longitudinal, radial and circumferential deviatoric stresses are negligible. The resulting power law
crep rate of the composite material is inversely proportional to the fiber aspect ratio raised to the
power I + I/n where n is the creep index. The fiber volume fraction also influences the creep rate.
When the matrix slips freely on the fiber surface, or nearly so, stretching dominates the matrix flow.
In this situation, the composite creep strength is not much better than the unreinforced matrix.

NOMENCLATURE

Note: superposed caret indicates a physical variable; a symbol without a caret is normalized and dimension-
less. e.g. A is the fiber radius, a is i/6 where £ is the unit cell radius.

4 fiber radius
6 unit cell radius
3 matrix creep rheology parameter
D function of geometry and creep parameters; controls the creep strengthf axial strain rate
F function for radial distribution of axial velocity
6 function controlling hydrostatic stress distribution
£ fiber half Length
OF interface drag exponent
a matrix creep exponent
N higher order term in creep strength

radial coordinate
S relative creep strength of composite material
S scaled creep strength in excess of matrix strength

same as levaluated in Bao et al. (1991)
S average radial stress

stress deviator
Svelocity
Vf fiber volume fraction
I axial coordinate
2 f/1 fiber aspect ratio
6 6/£ small parameter
a, effective strain rate

Z16,t LIS - 1la
interface drag parameter

p integration variable
6 hydrostatic stress
* stress tensor
, macroscopic axial stress

6 fiber axial stress
matrix axial stress

6, tensile equivalent stress
I_. (V/Ib)M" parameter for stress normalization
9 circumferential coordinate.
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INTRODUCTION

Cell models are popular and effective for estimating the creep strength of metal matrix
fiber reinforced composites and such an approach has been used by Kelly and Street (1972),
Dragone and Nix (1990), Goto and McLean (1991) and Bao et al. (1991b). For aligned
discontinuous fibers, an individual reinforcement is considered embedded in a unit cell of
the matrix material such that the volume ratio of fiber to matrix in the unit cell equals the
average ratio in the composite material. Boundary conditions to cause the deformation are
imposed on the perimeter of the unit cell to enforce periodicity and symmetry. For the creep
response to tensile stresses aligned with the axis of circular fibers, it is sufficient to calculate
the behavior of an axisymmetric cell such as that shown in Fig. 1. The deformation imposed
on the cell forces it to retain its circular cylindrical shape. Each point on the surface of the
cell is free of shear traction. The average transverse stress on the cell is zero and appropriate
conditions are imposed at the interface between the fiber and the matrix material. In the
annotations in Fig. I the conditions appropriate to an interface around a rigid fiber without
debonds but with a nonlinear viscous sliding behavior are stated. In general, however, any
physical assumption can be incorporated into the cell model such as fiber elasticity or creep,
debonding of the interface, etc.

Cell models usually require a numerical treatment as undertaken by Dragone and Nix
(1990) and Bao et al. (1991b). However, in certain circumstances an approximate model is
accurate and can be analysed without recourse to complete numerical treatment. This
approach has been used by Kelly and Street (1972) and Goto and McLean (1991). One
such circumstance is when the fibers are aligned and have an aspect ratio which is high and
a volume fraction that is moderate to high. Then the matrix segment around the fiber (with
section ABCD in Fig. 1) is slender and can be readily analysed with approximate flow
fields. In addition, the flow in the remaining matrix segment at the fiber ends does not need
to be analysed accurately because it contributes little to the yield or creep strength compared
to the matrix around the fiber. That is, when the fiber aspect ratio is high, the energy
dissipation in the fiber end regions during matrix creep is negligible compared to the energy
dissipation rate in the matrix surrounding the fiber. The creep strength is directly related
to the energy dissipation rate, so it can be analysed by calculating the major contributions
to the energy dissipation rate. In this paper, that is achieved by analysing the creeping flow
of the matrix adjacent to the fiber sides. If this approach is unsatisfactory in a particular
case, it can always be rectified by considering longer fibers, thereby making the fiber end
regions relatively less important. In this sense, the analysis can always be justified by taking

D C &rZ-0
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Fig. 1. Unit cell for matrix creep analysis.
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the asymptotic limit of extremely long fibers. However, the analysis is proposed as being
justifiable for fibers with a range of finite aspect ratios.

The issue has been studied by Bao et al. (1991a) for layered composites with perfectly
plastic matrices. Bao et al. found that less than 10% of the yield strength is due to the end
region when the volume fraction of rigid reinforcements is 25% and their aspect ratio is
100. For smaller aspect ratios the contribution from the end region is a higher fraction but
can be modeled in an ad hoc manner as was demonstrated by Bao et al. (1991a). In addition,
the aspect ratio of the cell relative to the aspect ratio of the fiber is known to affect the
prediction of strength significantly which was demonstrated by Bao et al. (1991 b). Thus, it
is likely that the choice of aspect ratio of the cell will also influence how much of the strength
is due to the matrix material around the fiber compared to the amount due to the material
at the fiber ends. For example, choosing the aspect ratio of the cell to be the same as the
aspect ratio of the fiber, as Bao et al. (1991a) did, is likely to exaggerate the importance
of the fiber end region for high aspect ratio cases. A perhaps more sensible choice, in which
the distance between the fiber and the cell edge is the same at the end and on the side, is
likely to diminish the importance of the matrix at the fiber ends and so the 10% contribution
mentioned above is probably an overestimate. At the other extreme of the rheology, namely
a linearly viscous matrix, an argument can be made that as well as fiber end regions
occupying relatively small volumes of the total composite microstructure, any non-
uniformity of flow which they induce will be confined to the fiber end region by a St Venant
effect. Thus, for all types of matrix an analysis concerned only with the matrix material
surrounding the fibers circumferentially can be justified in certain cases.

In particular, the problem of a high aspect ratio rigid fiber embedded in a power law
creeping matrix can be analysed in terms of the matrix material around the fiber. The cell
shown in Fig. 1 will be used. The fiber is bonded to the matrix so that the radial velocity
at the fiber is zero. However, it is assumed that the bond, or thin layer of interphase material
at the interface, has a power law rheology of its own which allows slip of the matrix relative
to the fiber. The end of the fiber is bonded strongly to the matrix as well, so that matrix
incompressibility forces a net matrix flow parallel to the fiber. The axisymmetric quasistatic
creeping response to an axial stress is considered. A power law rheology is assumed so that
the analysis represents the steady state creep of metal or ceramic matrices around rigid (e.g.
ceramic) fibers.

PROBLEM FORMULATION

The domain of the problem is the axisymmetric region with section ABCD in Fig. I
(6 < f < 6; 0 < ! < L). In cylindrical polar coordinates, the governing equilibrium equa-
tions neglecting inertia and body forces are

0 0r + ra, - + J 0 , (1)
Tr r az

° + L + a = (2)

where a is a scaled stress such that

6 = EV, (3)

with u being the Cauchy stress and I a scaling parameter to be discussed later. The
components r and z are scaled measures of position defined by

f= Sr (4)

and
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2•= £z, (5)

where f, 2, 6 and L are specified in Fig. I. The parameter 6 is such that

6 = 6L, (6)

and in the problems to be analysed is much less than 1. The choice of differential scaling
for r and z introduces a coordinate stretching transformation (Van Dyke, 1975) which will
be useful in the subsequent analysis.

The matrix creeps with a power law incompressible rheology given by

e,,= Be, .S, (7)

where e is the strain rate, 9 is the deviatoric stress given by

S, .= 6,,- -6,j, (8)

where d(-= dk/ 3 ) is the hydrostatic part of the stress, , is the effective stress such that

Lf. '/ ','(9)

and B is a material constant which is, however, dependent on temperature. Note that in
uniaxial stress the axial strain rate equals B times the nth power of the stress. In terms of
scaled variables, the creep law can be written as

Or, = je_- Is., (10)
Fr

8v. = 0,.- Is.,

6z

BV, + 6 ' =3e-o., (13)
Tr az

where f is the velocity and

=i = BZv. (14)

On AB (z = 0) the boundary conditions by symmetry are

vj(r,O) - 0, (15)

a,:,(,O) - 0. (16)

On AD (r = a = d6/) one boundary condition is

v,(a,z) = 0, (17)

while the slip condition (see Fig. 1) becomes
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V..(a Z) =(18)

where

u =,(19)

and A is a slip parameter for the interface. It should be noted that the last boundary
condition can represent a variety of physical situations. One possibility is that there is a
thin but distinct interphase of thickness I so that V.(a, :)/I is the shear strain rate in the
interphase. Equation (18) then implies that the interphase is subject to power law creep but
with an exponent m and the coefficient in the creep law is 1/(31"÷ 1)21i1) replacing B in eqn
(7). Another possibility is that there is no interphase but instead the fiber has a rough
surface over which the matrix must flow even though the bond between the matrix and the
fiber is relatively weak in shear. In that case, the index m would equal n and the slip
parameter A would depend on the roughness of the fiber surface which would provide drag.

On BC (r = 1) the boundary conditions are

6, ( I,z) =0 (20)

and

v,(1, z) = -16, (21)

where

e = BZM6 (22)

is the axial strain rate. The condition in eqn (21) means that the scaled axial strain rate is
equal to 6. This choice is arbitrary, though convenient. As a consequence, eqn (22) estab-
lishes I in terms of l, the axial strain rate in ; aysical variables. The boundary condition,
eqn (21), states that the unit cell remains a cylinder of uniform diameter. As a result, the
normal stress a,, is not uniformly zero on r = 1. However, the average of a,, on r = 1 can
be set to zero so that

o a,,(l, z) dz = 0 (23)

to ensure that the transverse stress is approximately zero. The approximation arises because
the cell extends a small distance above C, but that portion is neglected. The boundary
condition equation (23), can be met through adjustment of the hydrostatic stress.

Note that no explicit boundary conditions are posed for CD. The average stress there
will be of interest and determines d,. The creep strength S of the composite material is
defined as the average axial stress in the composite at a given axial strain rate divided by
the stress in the matrix alone at the same axial strain rate. That is

S = d. (;)/(;/B) ,, (24)

where d. is a function of the axial strain rate e.

ASYMPTOTIC ANALYSIS

A perturbation series solution will be developed. It will have much in common with
the outer solution for a plane strain power law squeeze film due to Johnson (1984). In
addition, there are boundary layers, but fully matched solutions will not be established in
them. In the outer solution for the fiber problem, the matrix flow is dominated by shearing
and the shear stress can be expanded in integer powers of 6, so that
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o,: = a,.' +6oX'," + 0(0 2 ). (25)

As a consequence of qln (13), r: is 0(l) at leading order so

V: = r.1I + 61.1 + 06.2). (26)

Incompressibility [i.e. the sum of eqns (l0)-(12)] then implies that

r, = t'(,) + 0(b 2 ), (27)

and, apart from e,:, Sj is 0(6), so

S, = 6S•P) + 0(62 ), (28)

etc. Any gradient of a,: in the r direction must be balanced by a gradient of Uz. in the z
direction. For this to be possible, the stress a-, must be 0(1/6) so that the contribution of
the longitudinal gradient of a.- to eqn (2) is 0(l) which is the same order of magnitude as
the contribution of the shear stress gradient in eqn (2). This suggests

or = ý or(- 1) + 040) +0(b) (29)

so that the hydrostatic stress is an order of magnitude larger than the deviatoric stress.
The leading order governing equations can now be stated. With terms of higher order

omitted, it is found that eqn (1) gives

= 0, (30)

Or

while eqn (2) provides

O&Oo) e7(o) 8o.(-
=r + +O =0. (31)

Ar- r &z

The creep relationship of eqn (13) gives

a -= 3(au°))' -1,(, (32)
Orr

where

a -.0 = ./31$r? 1, (33)

while incompressibility provides

OvI) V('I) OVI°)-Fr + 7r +--z = 0. (34)

Equations (15)-(23) give the boundary conditions

v!°)(r,0) = 0, (35)

o(r, 0) = 0, (36)

r,"(a,z) = 0, (37)
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t°:(a,:) - (C•Y"/1, (38)

",l)= (39)

'~(i, :) = 0 (40)

and

(1, -(Iz) dz = 0. (41)

Solution
Equation (30) shows that o(- -) is independent of r. Therefore, integration of eqn (31)

subject to eqn (40) gives

, = I( - r dz (42)

It will be confirmed that da(- ')/dz is positive for z > 0 and thus so is oa,°•. Consequently
eqn (32) shows that

OvI°) 3`+ "1/2 0! " do(- 1)'

ar = 2= -'-r dz (43)

Integration of eqn (42) with eqn (37) provides

_ 1(1 YI'da'-___
-a +F(r,.a, nk) (44)

where
3(n+ I)12 Cr1'J

F(r,a,n) .012 -p dp. (45)

Differentiation of eqn (44) with respect to z provides the axial strain rate which is inserted
into eqn (34). Integration of eqn (34) with respect to r combined with boundary condition
equation (37) then gives

1fi I /! (a/'a2 r) d do- 17 i d (do"-)' (46

" -- r-ra, a- -rj-dz }+ pF(p,a,n) dz )* (46)

The boundary condition specifying the strain rate, eqn (38), then provides the nonlinear
differential equation

d LG(a,n),------) + ,2m+, -dz 2'_1 = 1 (47)

where
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G(a, n) = pF(p. a, n) dp. (48)

This can be integrated once and boundary condition equation (36) along with eqn (42) can
be used to give

G (a.n)d + A2"'a" \+ dz 2' (49)

This is hard to solve in general when m o n except when n = 2 and m = I and vice versa.
Substantial insight and a degree of generality can be retained by choosing M = n. As
discussed previously, this case represents that of a well bonded fiber-matrix interface with
a rough fiber sn-face at a temperature sufficiently high to give rise to a negligible shear
strength of the bonded interface. The resistance to slip arises from the drag induced by the
creep of the matrix along the rough fiber suface. Alternately, it could represent the case of
an interphase with the same creep index as the matrix but with a different creep coefficient.
The approach of using m = n permits the study of the effect of a weak interface and some
general insights are obtained. With m = n, eqn (49) provides

do(- 1) (z'In

z ='(50)

where

D(a, n) = 2G(a, n) + (I -a 2 )(51)
Pu2 (a"

Integration of eqn (49) and use of eqn (41) reveals that

zl+ I /) n

I- 2n 1 (52)

The remaining significant terms in the solution are then

ao__ ( r-r (Dz) , (53)

vzO) 1 I--a +F(r,a,n) -, (54)

UP, (_ I -a)(r _)+ I {pF(p,a,n)dp . (55)

Thus the key assumption made by Kelly and Street (1972) that the velocity in the z direction
is proportional to z is correct to leading order. However, now the dependence on r has been
established too.

Boundary layer
It is possible to proceed with the solution to higher order terms and so establish the

small corrections involved but this will not be done here. However, it should be noted that
boundary layers are involved at z = 0 and at r = I. The shear stress to leading order is zero
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at those locations and thus so is the effective stress a,. In the pure power law rheology being
used in this problem, this makes the matrix rigid to leading order at z = 0 and r = I.
However, material is deforming at those locations and as a result the higher order terms in
the deviatoric stress in the perturbation series diverge there. To correct this, a boundary
layer analysis is required. However, the result of Johnson (1984) for the plane strain squeeze
film indicates that the boundary layers are passive and so do not disrupt the leading order
outer solution. Consequently, the leading order outer solution equations (52)-(55) are valid.
The boundary layer analysis provides a significant correction term at higher order in the
outer solution. This correction term has not been worked out. However, the boundary layer
at z = 0 can be analysed and terms for the correction estimated there. An overall axial
balance of stress then provides the net resultant stress for the composite material and
therefore an estimate to higher order of the creep strength of the composite. The details of
the boundary layer results are developed in the Appendix.

COMPOSITE MATERIAL CREEP RESPONSE

We now have an estimate for the average axial stress at z = I in the cell. This is given
by eqn (52) at z = I divided by 5 plus the correction c "N arising from the analysis of the
boundary layer at z = 0 (see eqns (A16), (A22) and (A28)]. The correction is required at
z = I to balance the tension in the boundary layer at z = 0. Thus, the average stress at
z = I in normalized variables is

n

n + 6 N. (56)6(2n + l)Du I'll " 56

Clearly, as long as D is not large, the first term will be the largest contribution to da (see
Fig. 1) whir-h r-presents the 4.-en stress of the composite material. Additional contributions
to d, will arisc from the effects of matrix flow around the fiber end. This term may be of
the same order of magnitude as the boundary s, er term N, but the fiber end flow term is
difficult to estimate. Although it may be nconsistent, we will simply omit the fiber end flow
ten' bdt include the boundary term. It is hoped that the result will then be meaningful for
low fiber volume fractions where the fiber end flow term will tend to be small. In any case,
as long as D is not large, the discrepancy relates only to a higher order term and the creep
behavior predicted by the leading order term in eqn (56) is still reliable. The omission will
be more serious in the case of low drag fiber-matrix interfaces with moderate to high
volume fractions of fibers because D becomes large in that case. Then the fiber end term
will be just as significant as the leading term in eqn (56). The validity of the model is then
doubtful.

The estimate for d. is obtained from eqn (56) in physical variables. Accordingly

Ln,'

= -(2n+ I)D"`

( ~~ 2n+ 1)D + NJ (57)

where A =/L/e. In turn, the creep strength is

).1 I'nn

(2n+ I)D1 1 R +N. (58)

Note that the term S functions as a dimensionless reference stress (Leckie, 1986) for the
creep behavior of the composite as in
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e = B(dIS)R. (59)

The results will be left in the form presented in eqns (57) and (58) even though the
dependence on parameters like fiber volume fraction and fiber aspect ratio is not apparent.
The forms presented, in terms of a and i, are more versatile with the advantage that there
is no asumption dependent conversion from a and A to volume fraction and fiber aspect
ratio. However, such conversions can be made easily by the user of the results. For example,
Kelly and Street (1972) neglected the ends of the unit cell and assumed that 6 is half the
nearest neighbor center to center spacing in a hexagonal array of fibers. In that case

a = J16 = (2,/3 Vf/n)" 2 , (60)

where Vf is the fiber volume fraction. On the other hand, if the unit cell is assumed to have
the same aspect ratio as the fiber, then

a = Vfl 3. (61)

Therefore, it is best to avoid any conversion and leave the user of the results to choose an
approach which is appropriate to the material of interest.

In any case, since

A = 16 = (L1,0 6) (62)

A will be proportional to the aspect ratio of the fiber a = LI/. Therefore, the creep strength
S, eqn (58), depends relatively strongly on the fiber aspect ratio, being proportional to
a+ "". This ranges from a quadratic dependence for linear viscosity to nearly linear for

high n. This dependence was identified by Kelly and Street (1972). As the fiber volume
fraction increases, a will increase and be around unity for fiber volume fractions around
unity. This will cause D to become very small or zero, predicting very large or infinite creep
strengths. This locking up is present in the model of Kelly and Street (1972), occurring at
Vf = 0.91 in that case, which is when fibers in a hexagonal array touch each other.

As the fiber volume fraction approaches zero with p finite, a will disappear and so will
the creep strength predicted by the first term in eqn (58). The second term, N, then provides
the creep strength, which will be unity according to eqn (A22). Returning to the general
case, consider what happens if u -+ 0. This is the zero drag case and eqn (51) makes it clear
that D --+ co. Consequently, the creep strength is then given by N, expressed in this case by
eqn (A28). Results for N for several values of n are plotted in Fig. 2. The values are less

.2

0 .1 .2 .3 .4 .5 .6 .7 .8

Volume Fraction, Vg

Fig. 2. Creep strength of a material with zero drag between the fiber and the matrix.
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than or equal to unity, indicating that the composite will be weaker than the matrix alone.
This effect occurs because the fibers act only to fill cylindrical holes in the matrix and the
composite behavior represents the creep of a matrix filled with such cylindrical holes. It can
be seen in Fig. 2 that N is approximately given by I - Vr, confirming this effect. This result
is not exact because the effect of flow around the fiber end has been neglected. The true
result is probably I - Vr plus a small amount accounting for the fiber end effect. However,
the magnitude of the contribution due to flow around the very end of the fiber will not
depend to any great extent on the aspect ratio of the fiber. Thus, for long, discontinuous
fibers, the creep strength will be modest if the matrix is free to slip without drag relative to
the fiber. This effect was apparent, although not emphasized, in the model ot Kelly and
Street (1972).

It is difficult to know realistic physical values of p. In addition, the model for interface
drag with m = n is of limited value although it is very similar to a form implied in the model
of Kelly and Street (1972). As they pointed out (in terms of their interface sliding parameter
but the implications are the same), a given value of p (less than oo) will have a stronger
effect on the creep strength of a material with a low n compared to a high n. This arises
because S is controlled by D- 'I" and p enters the creep strength to leading order through
D. However, the effect of a more physically realistic slip law remains to be investigated.
For example, interface diffusion tends to occur readily in metal matrix composites at creep
temperatures. This will tend to induce slipping with a linear rheology, i.e. m = 1 in eqn
(18).

Finally, we can consider the creep strength in detail for the no slip case p = oc. This

is accomplished by consideration of 9 = (S- l)/a+ " " computed from eqn (58). This
parameter is the excess creep strength over the matrix strength normalized to make it
independent of a. The result is plotted as a function of a 2 in Fig. 3 for several creep
exponents. For comparison, the equivalent parameter from the model of Kelly and Street
(1972) is plotted as well. For the latter model, the volume fraction has been converted to a
by use of eqn (60). The result has the form

•x=(S- 0aI+)/n'l/

- (2\/}a 1 a2 (63)

It can be seen in Fig. 3 that there are significant differences between the two models.

S-- .,Auptma~c AM*=
-. 2 -- ------ KMy a- - StMi Shear Lao M blyn 2
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2

Fig. 3. Excess creep strength of a material with no slip between the fiber and the matrix. The result
is normalized by the fiber aspect ratio raised to the power I + I/n.
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FIBER STRESSES

Fiber stresses are important because the reinforcements can crack and degrade the
creep strength when the stress exceeds the fiber strength as observed by Weber et al. (1993).
In addition, Sancaktar and Zhang (1990) have demonstrated that high shear stresses on the
interface can cause interphase and matrix cracking. The shear stress at the interface between
the matrix and the fiber is directly related to the gradient of the average axial fiber stress
along the fiber. The average axial stress at any point in the fiber can be computed from a
net balance of forces in the axial direction. This requires

e, = a2 rf(i) +(l - a2 )dm(2) (64)

at any position 2 where 6T is the average axial fiber stress at 2 and ,,. is the average axial
matrix stress at 2. From eqn (52) we have

f 1 I-/[(!j + '/_ n l

d.(U) = ej/ - 2n+ 1n1• +N~l (65)

Given eqn (57), it follows that

(= ln 1-• n+" l a- n ]Z2 + Nf+Jr. (66)

The highest value is at 2 = 0 where

dr' -- f(0)

- '( - .'K+ n) (A +N (67)
=\B LDT n+l ;- 2n+ 1 "

Neglecting N, which will be small compared to other terms when A! is large, we find

6f 2n+ l--a2 n

a, = a2(n+1) (68)

Thus the maximum axial fiber stress can be obtained approximately by multiplying the
composite stress by a factor given by a fairly simple formula. For example, with a2 equal
to a quarter (i.e. the fiber diameter is equal to the fiber spacing), the ratio is (7n + 4)/(n + I)
which, for example, is equal to 6.4 for n = 4. It is interesting that the ratio is independent
of the aspect ratio of the fiber. This, however, only applies if the fiber is long enough, say
with an aspect ratio of 5 or greater.

A further interesting point is that the minimum matrix stress (at 2 = 0) is compressive.
Expressed as a fraction of the composite stress, the minimum matrix stress 6" d, = ,(0) is

a• n
M_= n (69)d. n + I

independent of the volume fraction and the fiber aspect ratio (given that the fiber aspect
ratio is high enough).



Power law creep 1819

COMPARISON WITH FINITE ELEMENT RESULTS

There are few finite element results available in detail for comparison. The most useful
is the analysis by Dragone and Nix (1990), who treated an aluminum alloy with 20% by
volume of SiC fibers. A unit cell approach was adopted and calculations performed for
n = 4. The fiber was perfectly bonded to the matrix and so the relevant comparison is with
our results whenp = oc. A number of features found in the asymptotic analysis are apparent
in their steady-state solution for a = 5, a somewhat lower aspect ratio than we would prefer
for comparison. The stress in the matrix around the fiber is dominated by the hydrostatic
stress with the hydrostatic component apparently 25 times the longitudinal deviatoric stress.
The hydrostatic stress in the matrix varies almost linearly down the length of the fiber. (Our
analysis predicts a variation with . 2', but it would be difficult to distinguish this from a
linear behavior in numerical results.) The hydrostatic stress adjacent to the fiber is inde-
pendent of distance from the fiber. The axial stress at the fiber end is about 25% higher
than the composite stress indicating an effect of flow around the end of the fiber which we
have neglected. The aspect ratio of the cell is equal to the aspect ratio of the fiber. Therefore,
by eqn (61), a2 - Vf . For Vr = 0.2, this gives a2 = 0.34. For this value of a2, we predict
4.5 for df "/6, from eqn (68) and -0.8 for d.d/6. from eqn (69). Dragone and Nix (1990)
find these ratios at steady state to be 4.9 and - 1.2, respectively. Thus even for the low
aspect ratio fiber the asymptotic analysis is reasonably good. We suspect that most of the
discrepancy is due to the stress arising from flow around the fiber ends. When the difference
between the composite stress and the stress at the fiber end is factored out, our ratios predict
the Dragone and Nix (1990) stress values almost exactly. Thus, for longer fibers, we believe
our estimates will be quite accurate even without adjustment.

The steady-state strain rates computed by Dragone and Nix (1990) at 80 MPa for
fibers with aspect ratios 5, 7 and 10 are listed in Table 1. Also given is a strain rate for an
aspect ratio of 20 obtained by extrapolation of the transient results. The matrix steady
creep law used by Dragone and Nix (1990) is our eqn (7) with B = 2 x 10-13 when strain
rate is given in units of s' and stress in MPa; as noted before, n = 4. The finite element
creep strength is computed from eqn (24) and the asymptotic result from eqn (58) with
u = o and a' = Vf' 3 = 0.34 as used in the finite element results. N was taken to be I in
eqn (58); there is reasonable agreement. The Kelly and Street (1972) predictions for creep
strength, based on our eqn (63) with N = 1, are also given in Table I under the heading
"shear lag". They are well below the other results. Dragone and Nix (1990) provide
additional results in which the aspect ratio of the cell is varied and the asymptotic solution
also agrees reasonably well with those.

Another comparison can be made with the finite element results of Bao et al. (1991b).
The comparison is made in Table 2. One feature in the results of Bao et al. (1991b) is the
contrast with the results of Dragone and Nix (1990). Bao et al. (1991b) predict lower creep
strengths as can be seen in the results for n = 4 in Table 2. This suggests that either Dragone
and Nix (1990) or Bao et al. (1991b) are in error. However, the asymptotic analysis
consistently predicts higher strengths than Bao et al. (1991b). The substantial differences are
probably due to the contribution to the creep strength in the finite element results arising
from the fiber end region. The cell length in the finite element calculations is I/V f 3 times
the fiber length. The portion of the cell beyond the fiber ends as a fraction of the whole cell
Table I. Comparison of steady-state creep results from the finite element calculations of Dragone and Nix (1990)

and the asymptotic solution. The results are for 20% SiC fibers in 6061 Al at 80 Mpa. (aJ m extrapolated

Fiber aspect ratio a Steady creep rate Creep strength S

Finite element results Finite elements Asymptotic Shear lag
(Dragone and Nix) (Dragone and Nix) analysis (Kelly and Street)

$-1

5 3.5x 10'- 3.9 4.5 2.7
7 1 x 10-' 5.3 6.4 3.6

10 1.5 x 10- 8.6 9.4 5.0
20 (7 x 10-'') (18.5) 21 10.5
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Table 2. Comparison of creep strength calculated by Bao et al. (1991b) by finite elements with the asymptotic
solution. The adjusted column lists .S -I + V• 3(S- I) based on the asymptotic solution

Fiber volume Fiber aspect Creep index
fraction V, ratio 3 n Creep strength S

Finite
elements Asymptotic

(Sao et al.) analysis Adjusted S

0.1 5 5 1.8 2.5 1.7
0.1 5 10 1.6 2.2 1.5
0.1 10 5 2.4 4.3 2.5
0.1 10 10 2.1 3.5 2.2
0.2 5 4 3.4 4.5 3.1
0.2 5 5 3.3 4.1 2.8
0.2 5 10 2.9 3.3 2.3
0.2 10 4 4.7 9.4 5.9
0.2 10 5 4.5 8.1 5.2
0.2 10 10 3.9 5.8 3.8

length is I - Vf' 3. This region of the cell experiences relatively unconstrained flow compared
to the matrix material surrounding the fiber circumferentially. An estimate of the effect can
be made by consideration of radial stressing. The portion of the cell around the fiber would
require a radial stress S to produce the same strain rate as unit radial stress would produce
in an unconstrained end region. Therefore, the average radial stress on the whole cell for
the same strain rate is

S= I + V" 3(S- l). (70)

This can be converted to an axial stress result by addition of hydrostatic stress. Therefore
eqn (70) with S given by the asymptotic solution provides an estimate for the axial creep
strength of a unit cell with the same aspect ratio as the fiber. In Table 2 it can be seen that
S agrees better than S with the creep strength of Bao et al. (1991b). There are still discrep-
ancies, but the conversion represented by eqn (70) is an approximation at best. It seems
safe to conclude that the asymptotic results should be used for cases where the fiber aspect
ratio is greater than 20 so that fiber end effects are less important.

CONCLUSION

An asymptotic solution has been presented for power law creep of a composite material
containing aligned, rigid, discontinuous, well bonded high aspect ratio fibers. The solution
exhibits several of the features assumed by Kelly and Street (1972) for their shear lag model.
These features include the linearity of the axial velocity with distance along the fiber
and the dominance of the creep strength by the shearing flow in the matrix. However,
asymptotically exact forms for the velocity and stress are provided rather than the estimates
used in the shear lag model. The asymptotic solution provides a model for the creep law of
the composite material. Although the shear lag creep law of Kelly and Street (1972) exhibits
several of the characteristics of the more exact asymptotic creep law, the shear lag model
underestimates the creep strength of the composite material. We think this arises from a
stress averaging procedure used by Kelly and Street (19.72) which seems to be faulty.

The dominant characteristic of the creep law predicted by the asymptotic analysis is
that the creep strength is proportional to the fiber aspect ratio raised to the power I + I/n,
where n is the creep exponent. In addition, the model shows that fiber-matrix interface slip
can have a disastrous effect on the creep strength of discontinuous fiber composites. If the
interface has no shear strength, the creep strength of the composite is approximately equal
to the creep strength of the matrix alone. This indicates that such a composite material
would creep as fast as the unreinforced matrix at the same applied stress. However, modest
levels of interface drag can be mitigated by very long fibers. The effect can be identified in
eqn (58) where the interplay between interface drag and aspect ratio is evident. A low drag



Power law creep 1821

coefficient, p, gives rise to a high value of D. However, very long fibers will have a large
aspect ratio leading to high values of A. The resulting combination can lead to significant
creep strengths. Thus continuous fibers, even with occasional breaks, can provide good
strengthening even when some interface slip can occur.

The asymptotic solution agrees reasonably well with finite element analyses of the
problem. The solution features in the matrix are very similar. Some adjustments have to be
made to the creep strength for some of the comparisons to account for the fact that the
finite element results were obtained typically for low aspect ratio fibers with unit cells
containing substantial volumes of relatively unconstrained matrix beyond the fiber ends.
With an appropriate adjustment, there is quite good agreement in terms of the creep
strength.
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APPENDIX. BOUNDARY LAYER ANALYSIS

According to Johnson (1984), the outer solution velocity equations (54) and (55) prevail into the boundary
layer at z - 0. Thus in terms of unstretched coordinates with " = z/6 in the boundary layer

":I=-L -- a +F(ra,n) ?I (AI)

and

V, =- I I--alir- -i+-ipF(p,a,n)dpi (A2)
Dý2ý -a~ / r/r , .J

An effective strain rate can be computed as

4- ~+ \2 ] (A3)

and then thke constitutive law provides

S, = _. (A4)

sea i'-le: V, (A5)

$AS 30434-
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S= . -,. (A6)

and

, -(A7)

The hydrostatic stress can be computed from the two equilibrium equations

a- + r (AS)

and

0= , o , (A9)

According to Johnson (1984), on the scale of the boundary layer, the hydrostatic stress at leading order is uifmom
and given by eqn (52) with z - 0. It is sustained by tractions on the side of the cell enforcing the constraint that
v,- - 6 there. Therefore, the boundary condition for evaluation of the hydrostatic stress is

U0,0) = - 6(n+ l)(2n+ 2 )D' -S,,(l,0). (AIO)

which ensures that eqn (23) is satisfied at higher order. At higher order. eqn (23) degenerates to a point wise
condition on a,. because S,, is uniform at r = I which is a boundary layer also.

Thus by solution of eqns (AS) and (A9) subject to eqn (AIO), the stresses can be established throughout the
boundary layer at z - 0. In particular, a., can be computed on z - 0. This stress at z - 0 plus the axial stress in
the fiber at z - 0 must be balanced at the other fiber end by an appropriate average stress. The leading order term
in eqn (52) at z - I plus a smaller correction arising from terms computed in eqn (AS) is required. This provides
an estimate of the creep strength of the composite material to higher order.

The form of v, is such that on : - 0

(All)

because, through (avdr)2 , 4 depends on q1. Therefore, on z - 0. eqn (AS) becomes

&. I- W- [,) 2 !, r 2ir, I ", (AI2)

Since kv~l/r - 0 there, on z = 0

.- (/'+3 a -)2+(r)] , (A13)

with v, and v. given by eqns (AI) and (A2). To compute the higher order terms in a'. on z=0, eqn (A12) can be
integr'ated subec to

o..(!,0) = 0 (A14)

which is equivalent to eqn (A 10) with the leading order term (i.e. the first term on the right-hand side) omitted.
The result for v,,(r, 0) can be used to compute the axial stress from

a.(r, 0) = +,(r,).+ $(r, 0) -S,,(r. 0). (A1S)

The net resultant in the boundary layer is

2x a..(r,O)rdr = 6"Ng, (A16)

which defines N. Two cases can be considered. One situation arises if p is large or infinite and there is little or no
slip at the fiber-matrix interface. This is the high drag case. In that situation N only becomes important in the
creep strength at small volume fractions of fibers. The other case is where p is small or zero so that the matrix is
free or almost free to slip against the fiber without drag.

High drag interface
In this case. D in eqn (51) is large only if a is small. With D large, the leading order stress estimate at z = I

can be modest in magnitude and the higher order corrections are significant. Investigation of the velocities in eqns
(Al) and (A2) reveals that when a is small, the term containing p can be neglected and the effective strain rate .
on z - 0 is almost uniform except when r is just slightly larger than a. However, the strain rates tend rapidly to
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eroat = a and according to eqns (A4-(A6) so do the deviatonc stresses. Consequenti). the small region around
the fiber with r slightly larger than a will contribute very little to the stress resultant .%. In view of this. a treatment
will be reasonably accurate with . taken to be uniform everywhere on: = 0 but with the strain rate components
allowed to vary otherwise according to eqns (AI) and (A2).

With the strain rates computed from eqns (Al) and (A2) (with -P x ) eqn (A12) becomes

w-"- -[f pF(p, a.n)dp- F(r. a. n)+ I Ir " (A17)

With a. uniform, this integrates, subject to eqn (A 14) to give

1,, = , - L pp.,dp-,G(a.n)- F(r.,a.,n)+ F(l.a. n). (AIS)

On z = 0, from eqns (A4) and (A6)

S,,-s= - "ý k2Fr, a, n) - -1 pFp, a. n)ldp (A 19)

5Ir
so

c.. = W-1 JzF(r.a.n)+ F(l,a.n)-G(an)I (A20)

which is valid forr close to I but suspect for r close to a. Calculation of N from eqn (A 18) then gives

N = 6 - '.-.)"[2(2+a )G(a,n)+J(I-a2 )FYI.an)I. (A21)

This result is most readily utilized for even integer positive values of n. In that case, calculation of F( I, a, n) and
G(a, n) can be carried out by binomial expansion. In addition, the leading terms in 4 can be computed at r = I.
The result to leading terms is

N= I (2n 2-2n-7)(n-I1) a .2 + (A22)
6n(n-3)

Low drag interface
In this situation, p is close to zero. The limiting case of p - 0 (no drag) will be considered. As a consequence.

the velocities in eqns (Al) and (AM) become

l-a' (A23)

and

= - jT~(A24)

and D - ao. This is a planar flow in the fiber direction, as would be expected when there is no drag. The effective
strain rate is

,.=,- i+ ( • A25)

and integration of eqn (A 12) gives, on z = 0,

3 LJ I ,[J 7 dr. (A26)

The deviatoric stresses are such that

2 + I .r lc 1-),-,-r3 i1a-2
3.-S \l L r'J4 22+ (A27)

Finally, the stress a,,, the sum of eqns (A26) and (A27), can be integrated to give

N 4J3),, L+ I J Lr + - d,. (A28)

Note that when a = 0, N = I. as in eqn (A22).
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Abstract-Interconnects are susceptible to solid diffusion under residual stress, electric current,

and elevated temperature. As atoms diffuse, voids nucleate, drift and enlarge. At some point, the

voids of rounded shape can collapse to narrow slits and sever the lines. The fatal slits are often

found to be transgranular, i.e. each slit cuts across a single grain. They have raised much

concerns, but the underlying mechanism has remained unclear. We propose that a void changes

shape due to surface diffusion under the combined action of surface energy, elastic energy and

electric current. The void will be rounded if surface energy prevails, but will collapse to a slit if

the elastic energy or the electric current prevails. This paper analyzes a cylindrical void in an

infinite crystal under biaxial stresses but under no electric current. Four things are done. (1) A

suitable thermodynamic potential is minimized and maximized to select, among a family of

ellipses, equilibrium void shapes. The bifurcation diagram consists of a subcritical pitchfork and

two Griffith cracks. (2) A void under biased stresses is analyzed to illustrate the effect of

imperfections. (3) Exact initial bifurcation modes are determined. The critical loads for the

successive modes are closely separated, indicating that the shape evolution will be sensitive to

initial imperfections. (4) A variational principle for shape evolution under stress, current and

surface energy is identified. Stress-induced evolution time is estimated by using this var.ational

principle.



1. INTRODUCTION

Making reliable interconnects has been a persistent challenge as integrated circuits evolve.

Present-day interconnects are made of aluminum or aluminum-based alloys, and are less than a

few microns in width. Submicron lines will be in use around the turn of the century. Copper

interconnects have longer lifetimes; they would prevail should fabrication overcome the

difficulties. In this paper, data for aluminum are quoted to illustrate various points, but the

physical processes apply to any metals. The interconnects operate under severe conditions: high

stress, intense current, and temperature exceeding one third of the melting point (933 K for

aluminum). Diffusion-mediated degredation is ubiquitous as the brute forces act in the small

dimensions. 1.2

The stress results from the mismatch in thermal expansion coefficients of the metal lines

and the surrounding insulators. Pure aluminum in bulk has low yield strength, below 100 MPa at

the room temperature, and usually is not under high stress. Yet high stress prevails in fine lines

constrained by stiff insulators. The stress is raised in two ways. First, the thermal expansion

mismatch results in a hydrostatic stress which, under triaxial constraint, can not be relieved by

plastic flow; for typical thermal history, tensile stress around 400 MPa is found by finite element

calculations and X-ray measurements. 3-5 Second, in the small dimensions dislocations are

severely bent and can only move under high stress; even without triaxial constraint the stress in

thin films may exceed 200 MPa. 6

In addition to the stress, the interconnects carry intense electric current, sometimes

exceeding 1010 A/m2. Both stress and current cause atoms to diffuse, known respectively as

stressmigration and electromigration. Evidence has recently accumulated that narrow,

transgranular slits can form and sever the lines. 7-9 The sequence of the events has also been

revealed: a rounded void nucleates first, enlarging and drifting, and then collapses to a narrow

slit. 10 Since forming a slit transfers much less mass than growing a rounded void across the

linewidth, a slit can significantly reduce the interconnect lifetime. Consequently, the
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transgranular slits have raised much concerns, even though they may not as prevalent as rounded

voids, as judged from their less frequent appearance in the published micrographs.

In a previous communication, we have shown how electric current alone can cause the

shape instability. 11 Yet most slits form under both electric current and thermal stress. In this

paper we focus on the role played by the stress under no electric current. Instability under

combined stress and current will be analyzed elsewhere using some of the methods developed

here. The interconnects operate in such a temperature range that, within the time of interest,

ample atoms diffuse on the void surface but negligible atoms diffuse in the lattice. The void is

assumed to reside inside a perfect grain so that grain boundaries are inaccessible for diffusion.

Creep is assumed to be slow compared to surface diffusion and therefore neglected. Also

neglected is instantaneous dislocation glide, which seems to be a reasonable first approximation,

given the high stress in the interconnects. As such, surface diffusion is the only dissipative

process included in this analysis.

As diffusion varies the void shape, the solid varies energy by either varying the elastic field

or creating the surface. The instability of the void shape is an outcome of the competition

between the variation in the elastic and the surface energy. Figure 1 illustrates a small cylindrical

void in an elastic solid under biaxial stresses. The two dimensional problem conveys the essence

of the competition; the three dimensional version will be treated elsewhere. Focus on the

problem of perfect symmetry: a circular void in an infinite isotropic solid under biaxial stresses

or, = o2 = a. The perfect circle is obviously an equilibrium shape: nothing is unbalanced to

drive surface diffusion. However, this equilibrium becomes unstable if the stress is high, as

discussed below. Imagine a void perturbed from the circular shape, say, an ellipse in Fig. 1.

Now both stress and surface energy drive the atoms to diffuse on the void surface, but in the

opposite directions. Let K be the curvature of, and w the elastic energy density on, the void

surface. Because K,4 > K,, the surface energy strives to move atoms from B to A and restore the

circular symmetry. Because wA > w,, the elastic energy strives to move atoms from A to B and
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amplify the asymmetry. The void collapses if the elastic energy prevails over the surface energy.

This picture forms the basis of a dimensional analysis. Let a0 be the initial radius of the

void, a the thermal stress, y the surface energy, and E Young's modulus. The relative

importance of the elastic energy and the surface energy is described by a dimensionless number

A= ° (1.1)

When A is small, surface energy dominates, and the void will be rounded. When A is large,

strain energy dominates, and the void will collapse into a narrow slit. The circular void collapses

when A exceeds a critical value, A,. The analysis in this paper will show that A, = 3/8. For

aluminum with E = 7x 1010 N/m 2 and y = 1 N/m, under stress a = 4x 108 N/m 2 the critical

radius is a0 = 164 nm. Any larger void will collapse under this stress level. The mechanism

works under both tensile and compressive stress.

The same phenomenon is anticipated for other material systems. A technically important

example is residual gas pores inside single crystal oxide fibers, subjected to both high

temperatures and mechanical loads. The mechanism can limit the lifetime of the composite

materials based on these fibers (Private communication with A.G. Evans). In this paper,

however, we will set aside these potential applications and concentrate on the general

formulation of the problem, and on the implications for the interconnects.

Surface diffusion mediated instability in elastic solids has been studied by several

investigators. 12-15 The lead phenomenon, which has engaged the previous studies, is that an

initially flat surface may undulate due to surface diffusion, driven by elastic energy against

surface energy. Recent kinetic simulation has shown that crack-like slits may result from such

undulation. 15 A dimensionless group similar to A has appeared in these studies, with a0

replaced by the wavelength. In writing this paper, we have been inspired by these studies, and by

the recent synthesis of the spatio-temporal complexity on the basis of nonequilibrium

thermodynamics and dynamical systems. 16

In this paper, the void evolution is viewed as an irreversible process, and formulated in a

4
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sufficiently general way that other mechanisms of energy variation or entropy production can be

readily incorporated. A variational principle is identified which governs the evolution under

combined action of surface energy, elastic energy and electron wind force. Questions typical for

any evolutionary process also have direct bearing on the voids in the interconnects. (1) Under

what conditions does a circular void become unstable? (2) What is the destination of the

evolution, a slit of vanishing thickness, or something still quite rounded? (3) Given nomainally

the same experimental conditions, why are the slits not always observed? (4) How fast does the

shape change? (5) What is the role of stress bias or other imperfections? Energetics and kinetics

will be considered separately in two sections; together they illuminate the phenomenon.

IM ENERGETICS

The suitable thermodynamic potential, consisting of both elastic and surface energy, is a

functional of the void shape. Approximate equilibrium void shapes are selected, among a family

of ellipses, by minimizing and maximizing the potential. The bifurcation diagram is a composite

of a subcritical pitchfork and the Griffith cracks. A void under biased stresses is analyzed to

illustrate the effect of imperfections.

A. Why does a circular void collapse

Figure 1 illustrates the cross section of a cylindrical void in a solid, subjected to biaxial

stresses on the external boundary, but not on the void surface. The cross-sectional shape of the

void is arbitrary. The work done by the load either varies energy in the solid, or produces

entropy in the diffusion process. The first law of thermodynamics requires that

(Energy Rate) + (Dissipation Rate) = (Work Rate). (2.1)

The solid varies energy either in the body or on the surface. Denote w as the strain energy per

volume, and ythe surface energy per area. They are taken to be independent from each other

for practical purposes. That is, y is independent of the applied stress, and the strain field in the
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body is determined by the elasticity theory neglecting the effect of surface energy. The total

elastic energy and surface energy are

U,,,=f wdA, Us = fJYdL. (2.2)
boW surface

For the two dimensional problem, they are energy per length, integrated over the cross-sectional

area of the solid, A, and the arclength of the void, L, respectively. Under the fixed mechanical

load, the suitable potential is () = Ue+ Us-(LoadxDisplacement). Furthermore, U. =

(LoadxDisplacement)/2 for linear elastic solids. Thus, the thermodynamic potential for the

linear elastic solid under constant load is

S= -Ue + us. (2.3)

The potential is a functional of void shape. For a given void shape, U, is determined by the

elasticity problem, and Us is integrated over the perimeter of the void. The same potential has

also appeared in the linear fracture mechanics as a functional of crack size and, in three

dimensions, crack shape.

The first law (2.1) becomes

d4)/dz + (Dissipation Rate) = 0. (2.4)

The second law of thermodynamics requires that the dissipation be nonnegative, and vanish in

equilibrium. That is, atoms diffuse to reduce the potential of the system. Of all void shapes, the

equilibrium shape minimizes 0. Because atoms diffuse only on the surface, the void conserves

the cross-sectional area as the shape changes. Other kinetic details are unnecessary for

equilibrium considerations and are left to the next section.

In Introduction, the shape instability is analyzed by the local states on the surface.

Alternatively, it can be analyzed by the global energy. Compare 4) for the circular void and a

void with reduced symmetry, say an ellipse having the same area as the circle. Here and later we

will use A to signify the difference of a quantity for an ellipse and a circle; for example, A4) =

4)(ellipse) - 0b(circle). The ellipse has longer perimeter than the circle, so that AUL > 0. The

body with the elliptic hole is more compliant to the external load than the body with the circular

6
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hole, so that AU, > 0. Consequently, both the surface and the elastic energy increase when the

circle breaks the symmetry; A4) < 0 if AU, > AU,. The circular void is unstable when either the

elastic energy is large, or the surface energy is small. These considerations also identify A in

(1.1).

B. To relax or to collapse

The fate of the voids need be clarified. Will a noncircular void relax to a circular void, or

will it collapse to a narrow slit? In the following, the potential energy is calculated for ellipses

having the constant area, and the ellipse that minimizes it is taken to be in equilibrium. The

procedure is that of Rayleigh-Ritz: the potential is a functional of the void shape, but only a

restricted family of shapes are searched to minimize it. The procedure usually yields

approximate equilibrium shapes, and the accuracy improves as more families are searched. The

family of ellipses with the constant area are parameterized by only one number. Yet it will be

shown that this family contain two exact asymptotes: the initial bifurcation from the circle, and

the slit of vanishing thickness. Thus, it is not unreasonable to expect that the ellipses well

approximate the equilibrium shapes between the two asymptotes.

Let a0 be the radius of the initial circular void. The ellipses have the same area as the

circle, =ra6. Their shapes are described by

1++m
X ~ =Tcs ,Y= o =Msin0. (2.5)

The circle corresponds to m = 0, the X-direction slit to m -ý + 1, and the Y-direction slit to m

- 1. The ellipses have perimeter

ao =MJ (,+M2 2mcos2 )l2 dO. (2.6)

The elastic solution for the elliptic voids exists in the literature, from which U. is

calculated (Appendix A). For the body with an elliptic hole and the body with a circular hole, the

elastic energy differs by
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AU, = 4x .a m (2.7)

Thus U. increases as the ellipse becomes more elongated, the area and load being constant. This

has been stated previously on an intuitive basis that a body with an elliptic hole is more

compliant than a body with a circular hole. Combining (2.6) and (2.7), the difference in the

potential is

-=2 = A- +I -2 2. (2.8)
2=z0y 1-rn (2=r0  )

Now 0 is a function of the shape parameter m for a given control parameter A.

Figure 2a displays the function 0(m) at several constant levels of A. Each minimum and

maximum represents a stable and unstable equilibrium state, respectively. Three types of

behaviors emerge depending on the value of A, i.e. the relative importance of elastic and surface

energy. (1) When A = 0, the stress vanishes; 0 reaches a minimum at m = 0, and maxima at m

= + 1. The circular void is stable and the two slits are unstable: any ellipse will relax to the

circle. (2) When A E (0, 3/8), the stress is finite but surface energy still dominates; 4 reaches a

local minimum at m = 0, two maxima at some ± mc, and two minima at m = ± 1. The maxima

act as energy barriers: an ellipse of H < mc will relax to the circle, but an ellipse of n > mc

will collapse to the slits. (3) When A e (3/8, o-), the stress dominates; ( reaches the maximum at

m = 0, and minima at m = ± 1. The circle is unstable but the slits are stable: any elliptic void

will collapse to the slits.

The above information is projected onto the (A, m) plane, Fig. 2b. The heavy solid and

dotted lines correspond to the stable and unstable equilibrium states, respectively. The two slits

m = ±+1 are stable for any A > 0, but unstable for A = 0. The circle m = 0 is metastable when A <

3/8, but unstable when A > 3/8. The dotted curve is the unstable equilibrium states, referred to as

mc in the preceding paragraph. These lines divide the (A, m) plane into four regions. A point

in each region corresponds to an ellipse under a constant level of A, evolving toward a stable

equilibrium state, either the circle or the slits. The evolution direction in each region is indicated

8
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by an arrow. An ellipse below the dotted curve relaxes to the circle, and an ellipse above the

dotted curve collapses to a slit. An initially circular void will collapse if A exceeds the critical

value Ac = 3/8. This value has been used in Introduction to calculate the critical void radius

under a given stress.

C. Pitchfork and crack

The bifurcation diagram, Fig. 2b, is better appreciated as follows. First focus on how the

perfect circle breaks the symmetry, i.e. the subcritical pitchfork bifurcation at Ac. The shape

parameter m measures the order in the critical point theory. 16 Expand (2.8) in powers of m:

AO = 2A+ 3 2 + I-2A +_3)m4+... (2.9)
2=ra0 7y 4)' 64

Only the two leading terms are retained for small m. When A > 3/8, the coefficient is positive

for m2 , so that m = 0 maximizes 4). When A < 3/8, the coefficient is positive for m 2 but

negative for m4 , so that m = 0 minimizes 4). Consequently, A = 3/8 is the critical point above

which the circle is unstable. Equilibrium requires that d4) / dm = 0, i.e.

2(-2A + + 4(-2A + -)m3 = 0. (2.10)

When A < 3/8, 4) reaches the two maxima at

m2= (-A A 4.(2.11)
15 k8 1 8

This analysis determines the critical point, Ac = 3/8, and the asymptotic behavior of the dotted

curve in Fig. 2b as m -+ 0. Yet the analysis is not rigorous in that the equilibrium shapes are

only searched among the ellipse family. This concern will be removed in Section BIB where the

ellipse is shown to be an exact initial bifurcation mode.

The other limiting case, the slit of vanishing thickness, reproduces the Griffith theory of

cracks. 17 Keep only the unbounded terms in (2.8) as m -) ±1:

AO) 2A 4
2mraoy -i- --- f+ (2.12)

For a given A, the potential attains the maxima when
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)/Im2= MA, A -4 0. (2.13)

This is the asymptote in Fig. 2b as m -- ±1. From (2.5) the crack length is a = a0-]2 / (1 - m) as

m -+ 1, so that (2.13) becomes
a'~a 2

=-- 2, (2.14)

which is just the Griffith condition for crack growth.

The connection with the Griffith cracks is not fortuitous. Both phenomena are based on the

competition between the elastic and the surface energy, i.e. on the potential (2.3), although the

kinetic process are different: a void changes the shape by surface diffusion, and a crack extends

by atomic decohesion. The energetics coincide of the two phenomena in the limit when the void

approaches the crack. The conclusion should apply to other loading configurations if a void is

sufficiently elongated to be approximated by a crack. Let G be the elastic energy releases rate for

the crack. As atoms diffuse on the surface, the elongated void will become shorter if G < 2y, but

longer if G > 2y. The connection is useful because G has been solved in fracture mechanics for

many configurations.

D. Stress bias and other imperfections

A void in an interconnect deviates from the perfect symmetry in many ways. Surface

energy is anisotropic in crystals; for example, the {I1 } planes in aluminum have the lowest

surface energy, and are the preferred void surfaces. The interconnect is finite and encapsulated

by insulators; the elastic modulus misfit causes asymmetry. The stresses in two directions are not

exactly the same. Given these imperfections, the circular symmetry breaks even at vanishing

stress. What use, then, is the perfect problem?

The significance of the perfect problem is understood as follows. If an imperfection is not

too large in magnitude, it only changes the potential 0 slightly. Changing with it will be the

locations of the minima and maxima. The lines in Fig. 2 will bend somewhat, but the essential
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features should remain unchanged. Even for large imperfections there will still be regions, just as

in Fig. 2b, where a void will relax to a rounded shape (no longer a perfect circle), and other

regions where a void will collapse to a slit.

It is obviously impractical, and often unnecessary, to analyze all the imperfections. To

illustrate the general idea, we study a void in an isotropic crystal under a biased stress state, i.e.

a2 *a,0 in Fig. 1. The potential is

E 2ra• m 2 m 2 + ,( - 2 ) (2.15)

The first term, the elastic energy, is evaluated in Appendix A. As evident from (2.15), the tensile

and the compressive stresses give the identical response. We will consider the case a2 > 01

0, and modify the control parameter as A = o'a 0 / Ey.

Figure 3a and 3b are for 1/0.2 = 0.8; they are representative for any stress ratios in the

interval 0 < or/q2 < 1. Several asymmetries are noted when comparing Figs. 2a and 3a. For

small A, the local minimum no longer occurs at m = 0, nor do the two maxima at the same value

of Iml. At a critical value, still denoted as Ac, the minimum and the maximum on the right-hand

side annihilate, but the maximum on the left-hand side persists. In Fig. 3b, the values of m

minimizing 0 are the heavy solid lines, and the values of m maximizing 0) are the dotted lines.

As expected, under the biased stress, the equilibrium shape is noncircular even for a small value

of A. The heavy solid curve ends at A,, and is continued by the dotted curve.

Figure 4a and 4b are the corresponding diagrams under uniaxial stress state, oa = 0 and

0"2 * 0, Fig. 1. For a small A, 0 has a local minimum and a local maximum. For a large value

of A, 0 monotonically decreases as m increases. In Fig. 4b, the slit m = -1 is an unstable

equilibrium state, and the slit m = 1 is a stable equilibrium state. The heavy solid curve ends at

Ac, and is continued by the dotted curve. Note that the critical value AC is reached at about m

= 0.5, corresponding to an ellipse with axes ratio 3.

An inspection shows that Fig. 3b v 71 degenerate to Fig. 2b as a, / 0.2 -" 1, and to Fig. 4b

as 01 / 02 -' 0. They all have the identical Griffith limit as m -41, as anticipated. Although
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Figs. 2b-4b look very different, they mean practically the same thing. The initial void shape is

usually not too different from a circle. It will relax to a more or less rounded void if A < A,, but

collapse to a slit of vanishing thickness if A > Ac. Plotted in Fig. 6 is AC as a function of the

stress ratio. The critical number does not vary significantly for the entire range of the stress ratio.

I-L KINETICS

In this section, kinetic concepts for surface diffusion in elastic solids are reviewed. 12-15

We present them in the language of nonequilibrium thermodynamics, is so that other

mechanisms of energy variation or entropy production can be added readily. Electromigration is

used to illustrate the procedure. Exact initial bifurcation modes of a circular void are determined;

the critical loads for successive modes are closely spaced, indicating that complicated void

shapes may evolve for slighdy different initial imperfections. A variational principle governing

shape change is identified and used to estimate the evolutionary rate.

A. Evolution is an irreversible process

Nonequilibrium thermodynamics has three elements: mass conservation, the two

thermodynamic laws, and phenomenological kinetic relations. These are examined in turn for the

present problem. Conservation of atoms sets a kinematic constraint: at any point the surface

recedes if the flux has a positive divergence, i.e.

V. =L"J /l aL. (3.1)

On the left-hand side, V. = n o3X / A is the normal velocity of the surface, where t is the time,

X the position vector of a point on the surface, and n the unit vector normal to the surface

pointing into the solid; V. > 0 if the surface recedes. On the right-hand side, J is the surface

atomic flux, i.e. the number of atoms per time across per length, L is the arclength, and 02 is the

atomic volume.

Express the first law (2.4) explicitly as

12
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dO/dt+ fFJdL = 0. (3.2)

The integral extends over the void perimeter. Everything else having been defined, this equation

uniquely defines F as the diffusion driving force on each atom. Furthermore, (3.2) links the

global energy variation with the local kinetic process. The first term is the potential energy

increase rate, and the second term the dissipation rate associated with surface diffusion. The

second law of thermodynamics requires that the dissipation be positive when atoms diffuse, and

vanish when an the void attains equilibrium. Consequently, the potential energy decreases as the

void evolves toward the equilibrium shape. Equation (3.2) is valid for any virtual surface

velocity V. and flux J compatible in the sense of (3. 1), even if F and J are not connected by

any kinetic relation. This rigorous understanding will lead to an explicit formula for F in (3.5),

and an evolutionary variational principle in Section IIIC.

When a piece of the void surface recedes, the body becomes more compliant to the constant

load and the void has longer perimeter, so that both U, and U, increase. Formalizing these

observations with 4 defined by (2.2) and (2.3), one can show that

6 / d, = -f (w- 7Vd.(3.3)

The elastic energy density is evaluated on the surface; for a traction-free cylindrical void,

w = o / 2E, at being the hoop stress. The curvature, K, is taken to be positive for a convex

void. Equation (3.3) shows that the potential changes only when the surface moves, as sensible.

The capillary term in (3.3) is the same as the Laplace-Young relation for soap films. Replacing

V/, in (3.3) by J using (3.1), and then integrating by parts, one reaches

dO /dt fJJ±(fw - Q)K)dL. (3.4)

Since (3.2) and (3.4) are valid for any virtual flux, a comparison of them gives

F = -d(12w- KK) / X. (3.5)

Given a void shape with the prescribed load, w is determined by the elasticity problem and K by

the geometry. Atoms diffuse in the direction of F; the void reaches equilibrium when F vanish

at every point on the surface. It is sometimes convenient to think in terms of quantity

(Ow - •K), the chemical potential. Atoms diffuse toward the position with lower chemical

13
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potential. This forms the basis of the instability argument in Introdu -t• n.

The above considerations are applicable for any kinetic relations. In the remainder of the

section, a linear kinetic relation is assumed:

J = MF. (3.6)

The phenomenological constant obeys Einstein's relation M = D, 8, / T, with D. the surface

diffusivity, 8, the effective thickness of the surface atomic layers participating in the diffusion

process, k Boltzmann's constant, and T the absolute temperature. The crystal is assumed to be

isotropic so that M is constant along the void surface.

The following normalizations prevail in the remainder of Section III:

[x,1l,1/ ]=[X,L,I K]/ ao, X=cr,/a, r= 612My 1 a4. (3.7)

A combination of (3.1), (3.5) and (3.6) gives

n.i=- A! 1 2 _ C (3.8)

The superimposed dot signifies the derivative with respect to the dimensionless time z. The

right-hand side is completely determined for a given void shape and load; the dimensionless hoop

stress Z is determined by the elasticity theory. Consequently, (3.8) governs the evolution, a

moving boundary problem with only one parameter, A. Although every individual physical

origin is well understood, the evolutionary process can be remarkably complex. In what follows

we will concentrate on the aspects that have direct bearing on the voids in interconnects.

B. Initial bifurcation modes

The Rayleigh-Ritz procedure in Section IIB does not warrant that an ellipse is indeed a

bifurcation mode. Here we solve, by a semi-inverse approach, the exact initial bifurcation modes

of the circular void under biaxial stress or = q2 = a, Fig. 1. The initial bifurcation modes are

first guessed, and then confirmed, to be hypotrochoids.

A hypotrochoid is the trajectory of a point fixed on • circular disc which rolls, without

14
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slipping, upon the interior of another fixed circle. It is described by

x = cos0 + mcosnO, y = sin6 - msinn0, 9 < [0,2Kr]. (3.9)

Here n is a positive integer; m(r) o 1 measures the small perturbation from the circle. They

look like curved polygons; for n = 1 an ellipse, for n = 2 a triangle etc. To the first power in m

the hypotrochiods defined by (3.9) always have the same area, x

The elastic solution of a hypotrochoidal hole exists in the literature, as outlined in Appendix

B. To the first power in m, the dimensionless hoop stress is

I = 2 + 4mncos(n + 1)8. (3.10)

After some manipulations, the first order perturbation of the dimensionless curvature is found to

be

C =1+ m(n2 + 2n)cos(n + 1)0, (3.11)

and that of the surface velocity

n x = A cos(n + 1)0. (3.12)

Substituting the above into the evolution equation (3.8), and only retaining the terms of first

power in m, one obtains that

ph = mn(n + 1)2(8A - n- 2). (3.13)

In the above cos(n + 1)0 has been canceled from the both sides. That this evolution equation is

independent of the position on the surface, 0, is significant: with a small perturbation from the

circle, the nth hypotrochoid will grow or shrink only as the nth hypotrochoid. This confirms

that hypotrochoids are indeed the initial bifurcation modes. The perturbation grows if rn > 0, and

shrinks if A < 0. The critical load is reached when f - 0 in (3.13). Thus

An = n+2 (3.14)
8

For n = 1, the bifurcation mode is an ellipse, and the critical load is A, = 3 / 8.

Observe that the critical loads for successive bifurcation modes are not far apart, being

spaced by 1/8. If the control parameter A is large (large void or high stress), the long term shape

will be selected according to the initial imperfection of the hole. The spatio-temporal complexity

can be resolved by tracing the evolution governed by (3.8) for various initial imperfections. The
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Mon. Dec 27. 1993



calculation will not be pursued here, but a variational principle identified in the folio- Ing section

will ease the labor.

C. Variational principles for evolution

Numerical computation is inescapable to trace the evolution in general. Given a void

shape, the elasticity problem must be solved first, usually numerically, and the void shape is then

updated according to (3.8). The whole process is repeated for many time steps. Equation (3.8)

has been exclusively used in the previous studies, but it may not be efficient because it involves

high order differentiations of the boundary. Instead, variational principles may be used.

Variational principles have been developed for problems such as grain boundary cavitation

and powder compaction. 19.20 We find a variational principle governing the shape change in the

present problem. Recall that the first law of thermodynamics (3.2) is valid for any compatible

virtual velocity and flux. Write this explicitly as

d (3)+ fF&CL = 0. (3.15)

The variation in 0 is due to the shape change. Replacing F in (3.15) by using the kinetic

relation F = JIM, one obtains

2-[ + f I 2dL] = 0. (3.16)

This suggests the following variational principle.

Of all virtual velocities and fluxes compatible in the sense of (3.1), the actual velocity and

flux minimize functional

=do+ _.Lj 2dL. (3.17)
d .2M

The integral extends over the perimeter of the void. For a given shape, the first term can only

vary with the surface velocity, which in turn relates to the flux by (3.1). Consequently, n' can be

viewed as a functional of either V. or J, both being functions of the arclength L. Compared

with the grain boundary cavitation problem, 19 a new term, dO / d&, appears to account for energy
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variation. An example in Section IIID will illustrate how this term works.

Using (3.3), one can also write the functional in alternative forms, e.g.

n fJ[-(w~ - K)V, + I LJ2}l (3.18)

which may be convenient in some circumstances. Rigorously, (3.17) only says that fn is

stationary at the actual velocity and flux. A proof of minimum on the basis of (3.18) follows.

Let J be the actual flux that satisfies (3.1), (3.5) and (3.6). Because atoms only diffuse on the

void surface, the function J(L) is periodic with the perimeter of the void. Let Q(L) be an

arbitrary function having the same period, (J + Q) be a virtual flux, and the associated virtual

velocity be obtained from (3.1). The virtual flux need not satisfy the kinetic relation (3.6). We

now compute the difference (J + Q) - n(J) using (3.18). Replacing both the virtual and the

actual velocity with their associated fluxes by (3.1), the difference in 1I becomes

J{K(w K) + 1 [(j +Q)2 _j2]}d. (3.19)

Integrating the first term by parts, one reaches

fJ{±(aw - )K) + L}dL f QMd. (3.20)

The first integral vanishes because J satisfies (3.5) and (3.6). The second integral is always

nonnegative because M > 0, which in turn is required by the second law of thermodynamics.

Thus, f(J + Q) - f(J) ? 0 for any virtual flux. This proves the variational principle.

We now wish to illustrate the versatility of the variational principle by considering how to

include electromigration. As an electric current passes an interconnect, the drifting electrons

exert on each atom on the void surface a force F' = -q*EE, known as the electron wind force. 1

Here q* (> 0) is a phenomenological constant having the unit of electric charge, and E, is the

electric field tangential to the void surface. The negative sign signifies that the force directs

along in the electron flow, which is opposite to the electric field. Including the work done by the

electron wind force, the first law (3.2) becomes

d4 / dt + f FJdL= f F*JdL. (3.21)
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As before, J can be any virtual flux, and (D varies with the virtual V. compatible with J. It

follows that, of all virtual velocities and fluxes that satisfy (3.1), the actual velocity and flux

minimize the functional

n = LO_ (_Lj_ F* dL.(3.22)

It also follows from (3.2 1) that

F=F- d(!w- Q)K) / dL. (3.23)

That is, the diffusion driving force consists of the electron wind force and the thermodynamic

forces resulting from the elastic and the surface energy. Let 0 be the electric potential governed

by the Laplace equation. The electric field tangential to the void surface is given by

E= - / o. If q* is constant along the surface, the diffusion driving force in (3.23) becomes

F = -d(-q* + Ow- Q)K) / dL. (3.24)

The quantity in the bracket plays the same role as the chemical potential.

The above variational principles apply to a void subjected to periodic boundary conditions.

For other problems such as powder compaction, suitable boundary terms must be added. It is

straightforward to extend the variational principles for a surface in the three dimensions. There

will be two surface flux components, J1 and J2, and (3.1) be replaced by the surface divergence.

In (3.17), the line integrals will be replaced by surface integrals, the surface integrals by volume

integrals, and J2 by J42 + j2. The variational principle can be used by dividing the surface into

finite elements, so that surface evolution problems can be readily solved in three dimensions.

D. How fast does a void evolve

In using the variational principles, the void shape is approximately described by a finite

number of parameters, all evolving with time. The more parameters, the better the description.

As an example, the evolution rate of a void under biaxial stress oy, = a2 = a will be estimated.

The initial imperfections are such that the void will evolve in the first mode, from a circle to a

slit. As before, we will approximate the shapes between the two limits by a family of ellipses, a
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choice compromising the accuracy of the prediction and the complexity of the calculation. The

family of ellipses are

X=aacosO, Y=a 0 a-lsinO. (3.25)

The dimensionless semi-axis, a(r), is the parameter that describes the void shape; it is

restricted to be a > 1. The ellipses conserve the area, elongating and shrinking in the X and Y

directions, respectively, at the same rate.

The variational principle of version (3.17) will be used here. The dimensionless velocity is

v, = n-x = (d / a)(d / dl)cos20. (3.26)

The dimensionless flux j is so defined that (3.1) becomes v. = dj / dl. Owing to the symmetry,

j = 0 when 6 = 0. Integrate (3.26) and one obtains

j=-sin20. (3.27)
2a

The potential (D for an ellipse has been given by (2.8); m and a are related by comparing (3.25)

and (2.5). The normalized functional takes form

In= (-A10 +11)6 +11262. (3.28)
(2raoy X)( My / 4) 2

The coefficients I's depend on a only. Straightforward calculations yield

1o= a(1 - a ), (3.29)
2x•/2 sn20 # -4 co29

1 2. sin 6 +•Cos ,do, (3.30)

o 4sin2 6+& a-4

12 x/2 sin22 0sin20+a-4COS20d0. (3.31)
0

The integrals are computed numerically. Minimizing n in (3.28) by setting MT* / da = 0, one

obtains the approximate evolution rate

C =(A o-1J)/12. (3.32)

Two limiting cases are obtained explicitly. For ellipses close to the circle, a --+ 1, the

initial velocity is

i = 4(a - 1)(8A - 3), a --* 1'. (3.33)

The rate a is linear with the perturbation (a - 1). This result is consistent with (3.13), noting
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a = 1 + m to the first power in m. For very elongated ellipse, a > 1, neglecting the terms

with a- in Ts, one finds that

& = a(Z Aa-1 ao,. (3.34)

The rate is quadratic with the semi-axis for a very elongated void, and vanishes when the Griffith

condition (2.14) is satisfied.

Equation (3.32) is plotted in Fig. 6. Denote a as the semi-axis of an ellipse and

a = a / a0 > 1. The ellipse will elongate further if the velocity is positive, but relax toward a

circle if the velocity is negative. Three behaviors emerge for different values of A. For A = 0,

the rate is negative for any ellipse, which wil' relax to the circle under the action of surface

energy alone. For A c (0, 3/ 8), the rate is negative for ellipse not too far from the circle, but

positive for very elongated ellipses. For A c (3 / 8,o-), the rate is positive for any ellipse, which

will collapse to a slit.

The evolution time from one ellipse to another is obtained by integrating (3.32). The three

types of behaviors are plotted in Figs. 7a, b, c, respectively. Since the evolution is an irreversible

process, the time always increases in these figures. When A e (3 / 8,*-), any ellipse will become

more elongated, Fig. 7a. The curves are plotted by arbitrarily assigning the initial value a =

1.01 at r = 0. One can also read from the diagram the time needed for, say, an ellipse with a =

1.2 to evolve to an ellipse with a = 2.0 under load level A = 5/8. When A r (0,3/ 8), there is an

unstable equilibrium shape for each value of A, which is marked as the dashed line in Fig. 7b for

A = 1/8. More elongated ellipses will collapse to slits, but less elongated ellipses will relax to the

circle. When A = 0, any ellipse will relax to the circle, Fig. 7c. This diagram gives the relaxation

time of the ellipses after the load is removed. Conversely, the surface kinetic constant, M, can

be deduced if the relaxation time is measured experimentally.

Approximate, but explicit formulas can be obtained from (3.33) and (3.34). For example, if

both initial and final axes, ai and ap are not too far from the circular radius a0 , the time

duration is integrated from (3.33):
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if- i kTag In(a~ 3f -/ (335
32f~D1s5s( Ly 8) a - ao)

The formula can also be used to estimate the order of magnitude even when af is not very close

to ao.

If the void shape is described by many parameters, (3.28) will consist of a linear and a

bilinear forms of their rates. Setting the partial derivatives of fl with respect to the rates to be

zero, one obtains simultaneous linear algebraic equations for the rates. They are solved by

Gaussian elimination to yield coupled initial value problems, which are then integrated by any

standard procedure. Of course, as the void shape evolves, the elasticity problem must be

independently solved at each step. The implementation as described is now in progress.

IV. CONCLUDING REMARKS

A void in an elastic solid collapses into a transgranular slit when the dimensionless group

a2a0 / Ey exceeds a critical value. The mechanism works under both tensile and compressive

stress. It is important to examine this mechanism among the related ones. The transgranular slits

will dictate the interconnect lifetime only if grain boundary cavitation does not prevail. The

latter has been thoroughly studied; 21 the stress to initiate grain boundary cavitation is

or = 2 Y / ao, which is substantially lower than the stress to initiate a transgranular slit. Several

considerations might explain why the transgranular slits occur in interconnects. First, a void

drifts in a line under electric current, so that even a void nucleated at a grain boundary or a triple

junction may sever the line inside a grain. 10 Second, for a line having the bamboo-like grain

structure, encapsulated by dielectrics, atomic sinks are partially eliminated which, in turn, limits

the growth rate of a rounded void. 22 Third, electric current is expected to contribute in causing

the shape instability. 11 Fourth, electromigration will redistribute stress in the interconnects. 23

As discussed in Introduction, surface diffusion is the only dissipative process included in

the present analysis. Among other dissipative processes, plastic creep gives rise to the greatest
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uncertainty. If operating at sufficiently high rate, creep will relax the thermal stress in the

interconnect, and reduce the stress concentration at the tip of an elongated ellipse. Consequently,

plastic creep tend to prevent a void from collapsing, or to blunt the tip of an existing elongated

void. Creep can be incorporated into the analysis, which adds numerical complexities, but the

major uncertainty arises from the lack of precise knowledge of the creep law in submicron

dimensions. Some basic development is needed before such numerical analysis is worthwhile.

Although this work has been motivated by the interconnects, the phenomenon is anticipated

for other material systems where stress is high and grain boundaries are inaccessible for

diffusion. For example, single crystal oxide fibers under mechanical load may suffer delayed

fracture due to this mechanism. Unlike the existing stress corrosion cracking mechanisms, this

one does not invoke environmental effects. It will cause a pre-existing void inside a well coated

material to collapse; general fracture follows when the void is sufficiently elongated. It is hoped

that experiments with better controlled systems will soon succeed in sorting out these matters.
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APPENDIX A: ELASTIC ENERGY CALCULATION

An infinite body containing an elliptic hole subjected to remote stresses stores infinite

amount strain energy. Yet one can compute the energy difference between a body containing an

elliptic hole and a body containing a circular hole subjected to the same remote stress state.

Denote AU, = U,(ellipse) - U,(circle). The ellipse and the circle have the same area, Wra6.

The hole can be regarded as an elastic medium with vanishing stiffness, so it can have strains. Of

course, the stresses inside the hole vanish. For an infinite body containing an elliptic hole under

remote stress, it is well known that the strain inside the hole is uniform. Denote the applied

remote stresses as a,7, and the strains inside the hole as r9. We will show that

Aue = 2 2 - 0 (A1)
2 'T46 17#A~ij

Here Ae 0 are the differences in the strains inside the elliptic hole and those inside the circular

hole.

To prove (Al), consider a body of external boundary S. containing an arbitrary hole of

boundary So. Denote n- as the unit normal vector on the surfaces, pointing away from the solid.

Let 0./7 be a stress tensor independent of position. The body is subjected to the traction vector

ao7nk on the external surface, but free of traction on the void surface. Let uj be the displacement

field in the body. The elastic energy in the body is

U, I a hniujdS. (A2)
2 jJJ

Rewrite the above as

= -+f a.nu.dS (A3)
s.+so So

In the second integral, the surface normal is switched to point into the solid.

To understand the first integral in (A3), one needs an auxiliary body with the same

geometry as the original body. The auxiliary body is under the uniform stress a'7 everywhere,

with traction 0",7ni on both internal and external surfaces. Consequently, the first integral in

(A3) is the virtual work done by the traction on the auxiliary body through the displacement of
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the original body. According to the reciprocal theorem, it is the same as the virtual work done

by the traction of the original body through the displacement of the auxiliary body. Neither the

traction ai-ni on the original body, nor the displacement of the auxiliary body depends on the

hole geometry. Thus, the first integral in (A3) is independent of the hole geometry. Only the

second integral makes the difference when the hole changes shape or size.

To take advantage of the fact that strains are uniform in the elliptic hole, one apply the

Gauss theorem to the second integral in (A3), which changes the displacement to the strain inside

the hole, leading to (A l).

Referring to Fig. 1, for an elliptic hole subjected to remote biaxial stress state, the hoop

stresses at point A and B, respectively, are 24

3+m 3-rnart(A) = -a, + i3--+m'2 rB -a2 + 3----m ali (A4)

The corresponding stresses for a circular void are obtained by setting m = 0. Because the point

on the surface is under uniaxial stress state, the hoop strains are given by the stress divided by

Young's modulus E of the solid. Compatibility requires that on the surface the hoot strain in the

solid is the same as the hoop strain in the "medium" inside the hole. Thus,

AcO =--4m n Ae 0= 4m fr, (A5)
l'a I E' +m 1-mE"

Substituting (AS) into (Al), one finds the elastic energy difference between a body with an

elliptic hole and a body with a ý..rular hole:

A, = 2mra ( m a2

Plane stress conditions are assumed in the above; under plane strain conditions, replace E by

E / (I - v2), v being Poisson's ratio.
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APPENDIX B: STRESS AROUND A HYPOTROCHOIDAL HOLE

The hoop stress around a hypotrochoidal hole is obtained from Ref. 24 with some

manipulations. For two dimensional elasticity problems, the stress field is solved by two analytic

functions Q(z) and aoz) where z = x + iy and i = 41- 1, namely

ao- + a., = 4Re[i'(z)], (BI)

2yy - +a. + ,= 2f"(z) + (o'(z). (B2)2

The function

z = R(C + mC-n) (B3)

conformally maps the exterior of a unit circle on the C-plane,C = exp(iO), to the exterior of a

hypotrochoid on the z-plane. Here n is a positive integer and 0 < m < 1/n. The last restriction

ensures that the hypotrochoid does not have loops and only has cusps if m = 1/n. A

hypotrochoid hole under remote biaxial tension, oa, = = aGas Iz1-- -c, is solved by

()= --- -- • + -a. (B4)

2

The hole is traction free so that the hoop stress on the surface is giving by the first invariant of

the stress tensor, a, = o', + ayy . From (B 1), (B3) and (B4) one fimds that

a= dIda 2-2m2n2  (
[dz/dCJ 1+ m 2n2 - 2mncos(n + 1)8

In the body of the text, (3.10) retains the terms up tc st power in m.
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FIGURE CAPTIONS

Fig. I The cross section of a cylindrical void in an elastic solid under biaxial stresses.

Fig. 2 Biaxial stress state a1 = q2 = a. a) The potential as a function of the void shape m

at several levels of A. b) The bifurcation diagram is a combination of a subcritical

pitchfork and two Griffith cracks.

Fig. 3 Biased biaxial stress state a1/a 2 = 0.8 a) The potential as a function of the void shape

m at several levels of A. b) Stability conditions projected on the (m, A) plane.

Fig. 4 Uniaxial stress state a, = 0, a 2 * 0. a) The potential as a function of the void shape

m at several levels of A. b) Stability conditions projected on the (m, A) plane.

Fig. 5 The critical number Ac as a function of the stress ratio.

Fig. 6 The evolution rate of an elliptic void.

Fig. 7 The P` -.e for one ellipse to evolve to another.
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