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EXECUTIVE SUMMARY

The general emphasis for 1994 would be on increased software
development, testing of subelements and design calculations. For these
purposes, the constitutive law coding and development would be
coordinated by Nick Aravas, and implemented in ABAQUS. The initial
implementation would be the elastic/plastic model for MMCs with interface
debonding developed in 1993 (Leckie). This would be extended in 1994 to
include creep and some aspects of thermomechanical cycling. The code
would be used for design calculations concerned with MMC rotors,
actuators and vanes (Leckie). A plan is being formulated to collaborate with
Pratt and Whitney to acquire MMC sub-elements representative of these
components during 1994. Experimental tests on these subelements would
be capable of providing a direct validation of the code capabilities.

Constitutive law and fatigue lifing software 1rould be created for CMCs
using continuum damage mechanics (CDM) approaches (Leckie,
McMeeking). The approach has been motivated by micromechanics models
developed in 1993 (Hutchinson, Zok, Evans). These codes would be used to
calculate stress redistribution effects and fatigue life on simple sub-
elements, such as center notched and pin-loaded plates. Comparison with
experimental measurements needed to test the fidelity of the models will be
based on moiré interferometry and thermoelastic emission. This effort is
coordinated with the NASA EPM program through both General Electric and
Pratt and Whitney. A plan for acquiring sub-elements from DuPont Lanxide
is being formulated.

A new emphasis for 1994 would be on the transverse properties of
CMCs. The measurements and calculations performed in 1993 have
indicated a strategy for curved sections and junctions that would establish a
consistent design approach. The basic approach for resisting failures from
combinations of interlaminar shear and transverse tension involves the use
of stitching and angle ply weaving patterns that inhibit major reductions in
stiffness when matrix cracks are induced by transverse loads and bending
moments. For this purpose, calculations would be performed that combine
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the mechanics of delamination cracks with models of bridging by inclined
fiber bundles (Hutchinson, Ashby, Evans, McMeeking). The insight gained
from these calculations would be used to design and acquire sub-elements,
such as C sections and T junctions.

Additional software development will be for creep and creep rupture
(McMeeking). The models devised in 1993 and test data relevant to MMCs
will be combined into a code that predicts the creep and rupture of
unidirectional MMCs subject to multiaxial loads. Some aspects of this code
will also be applicable to CMCs.

Two new activities will be introduced in 1994: thermal properties and
damping. The thermal properties will be studied on both CMCs and MMCs
(Ashby, Hutchinson). Measurements of thermal diffusivity will be made by
the laser flash method and related to the properties of the interface and the
density of matrix damage in the material. Thermal expansion measurements
will also be performed with emphasis on determining hysteresis effects,
which can be related to the temperature dependence of the interfaces
properties, through cell models. The latter might evolve into a diagnostic for
establishing relationships between the interface properties and
thermomechanical fatigue.

The processing activities in the program will have newly established
goals in 1994. The principal emphasis will be on concepts for affordable
manufacturing. The issues selected for investigation will be consistent with
manufacturing processes that allow near-net shape consolidation while still
yielding reasonable combinations of longitudinal and transverse properties.
Performance models developed in the program would be used as an initial
test of concept viability.

Beyond these general trends, specific activities are planned for 1994.
These are elaborated below. The status of understanding and development
in each of these areas is summarized in Table I. Increasing magnitudes
between O and 1 designate a knowledge range from limited to
comprehensive.
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TABLE 1A

Status of Design Knowledge for MMCs

[0°]n MMC [0°/90°]n

LONG. TRANS.

P S P S P S

Tensile

Strength 3/4 1 1 12 1/4 ~0

Creep and
| Creep 3/4 0 1 0 0 0
f Rupture

Cyclic Flow
(Isothermal, 1/4 0 1 12 0 0

Crack

(Isothermal
Fatigue)

Crack
Growth 172 172 0 0 0 0

Compressive
Strength 3/4 0 0 0 0 0
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TABLE 1B
Status of Design Knowledge for CMCs
[0/90] [45/45]
P S P S
Stress/Strain 3/4 1/4 172 0
Fatigue 3/4 0 0 0
TMF 1/4 0 0 0
Creep and 12 0 0 0
Rupture
Compression 4 1/4
Strength 3/ / 0 0
Transverse 3/4 12 _ _
Properties
Thermal 1/4 0 — —
Properties
P Primary Structure
S Secondary Structure
KIS 4/27/%4




2. CONSTITUTIVE LAWS

Two approaches will be used to create a formulation capable of
representing the in-plane properties of CMCs. One would be based on
Continuum Damage Mechanics (CDM) (Leckie). The other would use
concepts analogous to those used in plasticity theory (Hutchinson). The
CDM approach uses damage parameters that relate explicitly to
micromechanics models. A potential function has already been identified as
the state variable which separately represents the strain from the elastic
compliance change caused by the matrix cracks and the inelastic strains
associated with the debonding and sliding interfaces. Derivatives of the
potential with regard to strain and damage give the relationships between
variables, such as stress, interface sliding resistance, matrix crack density,
ete.

The first version of the CDM model would use the minimum number of
damage variables potentially capable of representing the behavior of
laminated or woven composites. Cross terms between the damage variables
would not be considered at this stage. Moreover, matrix cracks would be
introduced normal to the maximum principal tensile stress, consistent with
the experimental observations.

The plasticity theory approach would seek a formulation based on
matrix cracks occurring normal to the maximum principal tension. It would
introduce parameters that reflect the inelastic strain caused by interface
sliding upon off-axis loading which would be calibrated from tests perforined
in tension in 0/90 and 45/45 orientations.

The insight needed to characterize off-axis loading effects will be gained
from cell models (Hutchinson) in a manner analogous to that previously
used for axial loads. The principal objective will be to understand trends in
matrix crack opening and interface debonding/sliding with applied loads.
The stress on the fibers will be calculated with the intent of predicting
effects of loading orientation on fiber failure. The models will be compared
with measurements made in 45/45 tension, using various CMCs (Evans).

Calibration of the damage parameters for each material would be made
from hysteresis loop measurements in accordance with procedures
developed in 1993. Experimental results obtained in 0/90 tension, 45/45
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tension and in-plane shear will be used. In future work, it is hoped that
shear tests will not be necessary.

The validation of the constitutive laws will be achieved by comparing
calculations with measurements made on sub-elements, especially pin-
loaded holes (Evans). The experimental results include residual strains
obtained by Moiré interferometry (Fig. 2.1), ultimate loads for either tensile
or shear failure and principal strain trajectories delineated by matrix
cracking patterns. Acoustic methods will also be developed to probe the
local values of the elastic modulus (Clarke, Wadley) which could be
compared directly with the CDM predictions.

3. FATIGUE LIFING
3.1 CMCs

A software program for isothermal low cycle fatigue (LCF) of CMCs,
developed in 1993 (Fig. 3.1) will be extended in 1994. The present program
asserts that fatigue is associated with cyclic degradation of the interface
sliding resistance, t, which can be characterized by analyzing hysteresis
loops measured periodically during a fatigue test. With this methodology.
S-N curves have been predicted for both unidirectional and woven 0/90
composites tested in cyclic tension as well as changes in compliance and
permanent strain. Some additional effort is required to analyze data on 0/90
laminates in order to validate the model predictions. The extensions
envisaged for 1994 include thermomechanical fatigue (TMF), strain
controlled LCF and off-axis fatigue (Zok, Evans). Experiments are planned
which would assess the effects of temperature cycling and of inclined fibers
on T degradation, measured from hysteresis loops. Various cell model
calculations (Hutchinson) will be used to interpret the experiments. The
results will be used to establish general rules for interface degradation in
CMCs.

The off-axis experiments will also give insight into the fiber failure
criterion that replaces the global load sharing (GLS) results successfully
used for 0/90 loadings. This study will coordinate with the cell calculations
described above, and the 45/45 tensile experiments.

Notch fatigue studies will be initiated. These will examine cyclic stress
redistribution and notch sensitivity (Evans).
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Figure 2.1
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3.2 MMCs

Fatigue crack growth and notch strength studies in MMCs will be
extended to 0/90 laminates (Zok, Suo). The experiments concerned with
crack growth will be interpreted using crack bridging models. The utility of
such models has been validated in previous years through studies on
unidirectional MMCs. It is envisaged that the fatigue crack growth
characteristics of the unidirectional and 0/90 configurations will be related
through the volume fraction of fibers aligned with the loading direction. The
notch strength behavior will also be interpreted using crack bridging
models. Such models have been developed in 1993 and found to be useful in
rationalizing the behavior of unidirectional materials (Zok, Suo). In all cases,
the mechanical measurements will be augmented by in-situ observations to
identify changes in damage mechanisms with temperature, fiber
architecture, etc. Plans to study the influence of panel thickness on fatigue
and fracture resistance are also being developed, as well as tests to
understand the potential for crack growth in mixed mode loadings (Hirth,
Zok).

Studies of the TMF response of MMCs loaded parallel to the fiber axis
will be initiated (Zok, Leckie). Experiments will evaluate both in-phase and
out-of-phase loadings. Models of load shedding (matrix-fibers) will be used
to interpret the hysteresis loops and to develop fatigue life models applicable
to low cycle, high strain TMF.

4. CREEP AND RUPTURE
4.1 MMCs

The considerable progress made in 1993 towards identifying and
understanding the mechanisms of creep and rupture in unidirectional
MMCs containing non-creeping fibers (McMeeking, Zok) will be used to
develop creep rupture software. The longitudinal creep model to be used
incorporates stochastic fiber fracture and interface sliding in a format
amenable to the prediction of primary and tertiary creep in terms of matrix
creep strength, interface sliding resistance, fiber strength, Weibull modulus,
etc. The concepts would be visualized in a rupture mechanisms map

KJS 4/27/94




|

10

(Fig. 4.1). The transverse creep behavior would include interface debonding,
which greatly accelerates the creep, leading to marked anisotropy. A
constitutive law for creep that includes these effects will be developed
(Aravas, McMeeking).

Additional experiments and calculations will be conducted to assess the
effects of notches and holes on creep rupture (Zok, Suo). Experience with
MMCs at ambient temperature indicates that the notch sensitivity is largely
dictated by matrix properties (i.e., strength and ductility). The reduction in
matrix properties at elevated temperatures may lead to a substantial
elevation in notch sensitivity. However, this behavior may be complicated by
the development of alternate damage processes, such as shear bands.

4.2 CMCs

Studies of the creep and rupture of CMCs will continue with emphasis
on materials containing creeping fibers. A particular emphasis will be on
matrix cracking that arises as fiber creep relaxes fiber bridging tractions
(McMeeking, Evans). The experimental studies will be performed on SiC/SiC
composites. Hysteresis loop measurements will be used to monitor matrix
damage during composite creep. using procedures devised in 1993. Models
will be developed based on time dependent fiber bridging concepts
(McMeeking, Cox].

It is envisioned that the lifetime of some CMCs will be dictated by time-
dependent rupture of the fibers. A lifetime prediction tool for such a
composite must incorporate the knowledge of fiber strength degradation over
time. A new activity will be initiated to address this problem (Suo, Evans).
The initial work will involve a survey of data in the existing literature, and a
comparison with available models. A new model is being developed for single
crystal fibers. This model involves a residual pore inside a fiber which
changes shape, under stress, via surface diffusion, to become a crack. These
issues will be viewed in the broad context of fiber and composite
manufacture.
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5. TRANSVERSE PERFORMANCE OF CMCs

Analyses and tests performed in 1993 (Ashby, Hutchinson, Bao) have
highlighted the essential issues related to components that experience
combinations of transverse tension and interlaminar shear. In both
loadings, matrix cracks form at manufacturing flaws at low stresses, of
order 10-100 MPa. These cracks extend across the plies and interact
minimally with the fibers. Although the crack configurations differ for
transverse tension and interlaminar shear loadings, multiple cracks always
form. This multiplicity of cracking causes a major reduction in stiffness,
which can cause unacceptably large displacements and also redis ‘te
stress into other areas. The formation of the matrix cracks is probabili. . in
nature and governed by the size distribution of manufacturing flaws. Design
based on the prevention of such transverse cracks must rely on weakest
link statistics, usually with a low Weibull modulus. Alternatively, it may be
assumed that cracks inevitably form and, instead, reliance is placed on
controlling the diminished modulus of the material, after matrix cracking
has occurred. This approach relies on having 3-D architectures, with
transverse fibers introduced locally either by stitching or by using angle
plies. To explore this possibility, calculations will be performed (Hutchinson,
Evans) to examine fiber architectures that lead to minimum stiffness loss,
subject to acceptable in-plane properties. Based on these calculations, sub-
elements will be designed that test out the concepts.

6. COMPRESSIVE BEHAVIOR

The studies completed in 1993 on the compressive failure of polymer
matrix composites by the growth of kink bands (Budiansky, Fleck) will be
extended to metal matrix composites, through a coordination with 3M.
Compressive failure of Al and Ti MMCs with small diameter fibers has been
observed by 3M to occur in accordance with the same kink band
mechanism known to operate in PMCs and in C/C composites. The theory
should thus extend to the MMCs, with the fiber misalignment, the shear
yield strength of the matrix and its work hardening coefficient as the
principal variables. A comparison between the theory and experimental
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results would provide the basis for specifying the compressive properties of
MMCs.

Compression failure of CMCs occurs by different mechanisms (Ashby).
The dominant failure modes are similar to those that operate in porous
brittle solids such as monolithic ceramics, concrete and rocks. The theory is
well established and validated for these materials. Applications of the theory
to various CMCs will be made and applied to the understanding of a
behavior of pin-loaded holes (Evans, Ashby).

7. THERMAL PROPERTIES

A new focus on the thermal properties of CMCs and MMCs will be
initiated in 1994. Calculations of the effects of matrix cracks in the thermal
expansion of CMCs will be made (Hutchinson). These will be compared with
data obtained from TMF testing (Zok). The effects of such cracks on the in-
plane thermal conductivity will also be calculated (Hutchinson).
Measurements will be performed using the laser flash method (Ashby).

Thermal conductivity measurements will be initiated on T{ MMCs
(Ashby). These will be used to understand the effects of the fiber/matrix
interphases and of matrix damage on the transverse and in-plane thermal
conduction.

8. MATERIALS SELECTION

The Cambridge Materials Selector software will be expanded in 1994 to
include high temperature creep design with the correcsponding data base
(Ashby). This expanded version will permit estimates to be made of
temperature limits for MMCs based on creep controlled TMF and on the
transverse creep of components with unidirectional reinforcements.

9. DESIGN CALCULATIONS AND SUB-ELEMENT TESTS

A larger fraction of the effort in 1994 will be on design and sub-element
testing, particularly for MMCs. Discussions are now in progress with Pratt
and Whitney, Textron and 3M to perform design calculations using the
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constitutive equations developed at UCSB and to produce sub-elements for
testing.

The design emphasis for MMCs will be on various diffusion bonded
joints with Ti matrices and monolithic Ti attachments. Two specific
subelements are envisaged. The first involves unidirectionally reinforced
rods (or plates), clad with monolithic metal. The purpose of the cladding is
to prevent exposure of the fibers to the environment and to mechanical
abrasion. The design of clad MMC structures requires consideration of
(i) the residual stresses resulting from thermal mismatch between the
cladding and the composites section, (ii) the potential for fatigue cracks to
initiate and grow through the monolithic material, and (iii) the interaction of
such cracks with the composite section and their influence on the strength
and life of the structure. The design and testing of such subelements (Zok,
Leckie) will be augmented by calculations of crack growth and fracture,
incorporating the effects of thermal and elastic mismatch between the
cladding and the composite (McMeeking). The clad structures will also be
used to initiate studies on the reinforcement of holes in composite sections
with monolithic metal patches, as drawn in Fig. 9.1 (Zok, Suo). The second
subelement involves the attachment of a MMC actuator rod to a pin-loaded
monolithic section (Fig. 9.2). The critical design issues relate to the strength
and fatigue resistance of the interfaces between the composite and
monolithic matrices. Design studies shall also be completed on rotor rings
with special efforts made to produce rule-based design procedures which
would be used by industry at the conceptual level of design to determine
sizes and the efficient disposition of material.

For CMCs, the sub-element studies would be based on the calculations
described above in Section 5. These would include C sections and
T junctions (Fig. 9.3) Negotiations for manufacturing these sub-elements
will be initiated and tests performed at UCSB.

10. AFFORDABLE MANUFACTURING

As our understanding of composite mechanics and its interplay with
design and performance has evolved, it has become increasingly evident that
cost and reproducibility, are major constraints. Even as processing
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developments make the prospect of affordable high temperature fibers more
realistic, evolving knowledge on the mechanical and thermochemical
functions of interfaces have led to design concepts involving carefully
tailored interphase layers, with unfavorable impact on cost. Moreover, if
affordable coated fibers were available today, fabrication costs associated
with consolidation and pressure densification would often remain
prohibitive. Future processing and manufacturing activities are predicated
on these issues, especially the need for new ideas, and the related
knowledge base.

10.1 MMCs

Melt processing methods provide the more affordable options in
composite synthesis with the added benefit of near-net shape capability. For
continuous fiber composites melt infiltration also enables full density while
minimizing the consolidation stresses that typically cause premature
reinforcement failure in solid state processes. However, melt processing
requires a high degree of thermochemical compatibility between matrix and
reinforcement since deleterious diffusional interactions would be accelerated
by the liquid phase. Conventional melt processing also exhibits limited
ability to control the volume fraction and spatial uniformity of the
reinforcements.

Among metal matrices, Ti alloys epitomize unsuitability for direct melt
infiltration owing to aggressive reactivity. Fiber clustering is also a concern,
even in solid state processes based on powder or foil matrices. Composite
consolidation by vapor deposition (PVD) of the matrix on the fibers provides
an avenue for improving homogeneity of fiber spacing. However, present
schemes require expensive pressure densification with its many problems. A
potential solution involves a hybrid manufacturing route wherein part of the
matrix is first applied to the fibers by PVD. The pre-metallized fibers are
then assembled into a preform having the desired shape and then infiltrated
with the remaining matrix in liquid form.

Direct infiltration with Ti alloys could be feasible owing to the protection
of the fiber by the PVD layer, but the high temperatures involved would
exacerbate the diffusional interactions at the fiber-matrix interface. An
alternate approach involves depositing the more refractory constituents of
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the matrix (e.g.. Ti, Nb, Mo, etc.) by PVD and then infiltrating with the lower
melting point constituents (e.g. Al). Based on stoichiometric considerations,
the latter approach would be suitable for matrices with 2 25 at.% Al, notably
the orthorhombic and 02 alloys. The obvious problem with this approach is
the homogenization of the matrix after consolidation, which may require
lengthy high temperature treatments in the solid state. However, a
significant part of the matrix synthesis reaction could be effected in the
presence of molten Al, followed by a final heat treatment in the solid state.
While this lower temperature infiltration approach is evidently desirable
from a manufacturing viewpoint, it is not clear that matrix homogenization
can be achieved.

A program involving modeling and experimental work will be initiated in
1994 to generate the knowledge base appropriate to hybrid approaches for
Ti matrix composites (Levi, Evans). Cell models (single fiber environment)
would be developed to study diffusional interactions and
remelting/solidification phenomena as a function of processing cycle
(temperature-time history). Experiments would be performed to elucidate
the relevant aspects of microstructural evolution and provide the reaction
and interdiffusion kinetics needed to calibrate the models. Initial
experiments would be performed by infiltrating pure Ti-wire preforms with
molten Al and subjecting the “composite” to different treatments in the
semi-solid state. Subsequent experiments would focus on developing a
metallization route for Ti-Nb alloys on SiC fibers and on the relevant
interactions with infiltrated Al. Larger scale modeling issues would be
tackled in 1995 if the proposed approach appears promising.

Ongoing activities on the understanding of microstructure evolution
and its relationship to properties in in-situ TMC systems based on TiB
reinforcements would be continued (Levi). These are by nature affordable
composites which exhibit inherent thermochemical stability and may be cast
into shapes using conventional Ti processing techniques. A potential
application of these materials would be in joints with unidirectionally
reinforced composites, wherein their higher modulus and creep resistance
combined with acceptable toughness and isotropic properties could be
advantageous. It is also anticipated that these materials could be used for
cladding in PVD or plasma-sprayed form, thereby reducing the potential for
fatigue crack initiation in the cladding. Since TiB is thermochemically stable
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with practically all Ti matrices of interest in fiber composites, such
strengthening concepts may be readily implemented.

10.2 CMCs

Measurements and observations in 1993 have shown that strong, high
strain to failure CMCs can be fabricated using an inexpensive method that
involves a) packing a powder around fibers within a fiber preform: using
pressure filtration and b) making the powder matrix strong by heat
treatment followed by infiltration with a liquid precursor that decomposes to
an inorganic material. A composite made this way, with polycrystalline
alumina fibers in a silicon nitride matrix, demonstrated that the matrix
deflects the crack. This observation is significant since it suggest that a
class of CMCs can be processed without needing weak fiber/matrix
interfaces. The potential of this observation will be explored (Lange, Evans),
by processing a composite with strong, polycrystalline alumina fibers in a
mullite matrix because the thermomechanical properties of mullite minimize
thermal stresses and resist creep. In addition, the thermal expansion
mismatch is relatively small. Mixed Al, Si metal alkoxide precursors which
can be gelled in-situ, prior to decomposition, will be used to strengthen the
matrix.

Manufacturing studies would initiate with understanding the precursor
infiltration into mullite power compacts. The densification of the matrix
would be determined as a function of the cyclic infiltration. Microstructure
changes would be controlled to avoid flaw populations during densification.
The fracture toughness and the strength of the matrix would be determined
as a function of the number of precursor infiltration cycles. Composite
processing would initiate with precursor infiltration into alumina fiber
preforms by pressure filtration, with emphasis on the colloidal aspects of
this processing step. The goal would be to determine the processing
conditions needed to produce a matrix that optimizes the ability to deflect
cracks without degrading fiber strength. To optimize composite processing,
panels for testing under conditions of both strain and stress control would
be manufactured.
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11. STRESS AND DAMAGE SENSORS

The extensive exploitation of the optical fluorescence method of
measuring stresses in sapphire fiber and alumina-containing ceramic
composites begun in 1993 will be continued in 1994 (Clarke, Wadley). The
emphacis is on using the method to understand basic. unresolved issues in
stress redistribution in composites by the direct measurement, with high
spatial resolution, of the stresses themselves. Particular attention will be
paid to determining the stress distribution associated with interfacial
sliding. One of the problems to be addressed relates to new concepts for
oxidation resistant interfaces within MMCs and CMCs, particularly the
concomitant roles of fiber roughness and sintering on interface sliding and
debonding, after exposure to high temperatures and cyclic loadings. For this
purpose, fibers with fugitive, low modulus coatings will be explored and
fluorescence measurements used to understand stress evolution and its
connection with fiber durability within the composite. A second problem
relates to the distinction between the line spring and large scale sliding
models for fiber bridging (Budiansky, Hutchinson), so ¢ s to determine the
range of applicability of the two models. The two competing models predict
different distributions of stresses in the fibers within the bridging zone and
hence are amenable to validation on the basis of the measured stress
distribution.

Two approaches to measuring local damage are under development and
will be the focus of the sensor activities. One is the use of acoustic methods
(Wadley) to probe local variations in the elastic modulus of CMCs as a
function of load. This should provide a means of mapping the distribution of
damage which can be compared directly with the predictions of continuum
damage mechanics models. The second approach (Clarke) is to detect the
third harmonic signal generated by the presence of local damage.
Preliminary experimental results obtained in 1993 concerned with the
detection of crack-like voids in thin metal lines, together with computer
simulation studies, have demonstrated the viability of the technique. This
work will be extended in order to detect damage accumulation in CMCs and
MMCs.
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MODE 1 FATIGUE CRACKING IN A FIBER
REINFORCED METAL MATRIX COMPOSITE

D. P. WALLSt, G. BAO? and F. W. ZOK
Materials Department, University of California, Santa Barbara, CA 93106-5050, U.S.A.

(Received 8 June 1992; in revised form 20 January 1993)

Abstract—The mode 1 fatigue crack growth behavior of a fiber reinforced metal matrix composite with
weak interfaces is examined. In the longitudinal orientation, matrix cracks initially grow with minimal
fiber failure. The tractions exerted by the intact fibers shield the crack tip from the applied stress and
reduce the rate of crack growth relative to that in the unreinforced matrix alloy. In some instances, further
growth is accompanied by fiber failure and a concomitant loss in crack tip shielding. The measurements
are compared with model predictions, incorporating the intrinsic fatigue properties of the matrix and the
shielding contributions derived from the intact fibers. The magnitude of the interface sliding stress inferred
from the comparisons between experiment and theory is found to be in broad agreement with values
measured using alternate techniques. The results also indicate that the interface sliding stress degrades with
cyclic sliding, an effect yet to be incorporated in the model. In contrast, the transverse fatigue properties
are found to be inferior to those of the monolithic matrix alloy, a consequence of the poor fatigue
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resistance of the fiber/matrix interface.

1. INTRODUCTION

Fiber reinforced metal matrix composites exhibit a
variety of damage modes under cyclic loading con-
ditions [1-5]. In the presence of holes or notches, the
damage may involve the propagation of a single mode
I matrix crack perpendicular to the fibers [1-3].
Provided the fiber/matrix interface is sufficiently
weak, cracking initially occurs without fiber failure.
The tractions exerted on the crack face by the intact
fibers shield the crack tip from the remote stress and
thus reduce the crack growth rate relative to that of
the matrix alone. Further growth may lead to fiber
failure, both in crack wake and ahead of the crack tip,
leading to an acceleration in crack growth. Alterna-
tively, the damage may be in the form of a process
zone comprised of multiple mode I cracks [4]. The
mechanics of this process again involves issues of
crack bridging and fiber failure, as well as an under-
standing of the role of the interactions between
cracks. In yet other instances, failure occurs by
splitting parallel to the fiber direction [4,5). The
splitting mode is enhanced by the application of
bending moments, as exemplified by tests conducted
on compact tension specimens (5]

A comprehensive understanding of the material
parameters governing the various damage modes and
the role of the damage in fatigue lifetime is not yet
available. However, the recognition that the damage
modes have close analogies in fiber reinforced ceramic
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matrix composites (CMCs) under monotonic loading
conditions suggests that the existing mechanics (de-
veloped from CMCs) may have applicability to
MMCs, provided appropriate modifications are
made to account for the cyclic nature of the imposed
stress. The present article examines one of these
fatigue mechanisms (mode I matrix cracking), and
attempts to assess the utility of the mechanics for-
mulisms [6-8] in describing fatigue crack growth. The
study compares experimental measurements with
model predictions, incorporating the effects of fiber
bridging. The role of fiber failure in the fatigue
crar*ing process is also examined.

The paper is organized in the following way. First,
a summary of the mechanics of crack bridging by
frictionally constrained fibers under cyclic loading is
presented (Section 2). The mechanics identifies the
important material properties and loading par-
ameters governing fatigue, and provides guidance for
the design and interpretation of the experiments. This
is followed by a description of the materials and
experimental methods employed (Section 3), and a
summary of the measurements and observations,
along with comparisons with model predictions
(Sections 4 and 5).

2. MECHANICS OF CRACK BRIDGING

2.1. Shielding effects

The mechanics of crack bridging by frictionally
constrained fibers in brittle matrix composites under
monotonic tensile loading has been well established
[9-11}. A fundamental assumption in the analysis is
that the driving force for crack extension is the crack
tip stress intensity factor, K,, as governed by the
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remote stress and the tractions acting in the crack
wake. Equating K, with the composite fracture tough-
ness (which usually scales with the fracture toughness
of the matrix itself), gives the stress required for
matrix cracking in terms of the component geometry
and various constituent properties.

These concepts have been extended to describe
matrix cracking in fiber reinforced metal matrix
composites under cyclic loading conditions [6-8). By
analogy with the monotonic loading problem, the
driving force for crack extension is taken to be the
crack tip stress intensity factor amplitude, AK,

AK,= AK, + AK, ()

where AK, is the component due to the applied stress
amplitude, Ao,, and AK, is the component due to the
bridging tractions, Ao, exerted by intact fibers in the
crack wake. For an infinite center-cracked tensile
panel, these components are given by [12)

AK, = Ad, /na (3]
and
Aoy (x )

AKy= -2 3
* ‘/>J-¢o\/a -x? ()

where 24, is the initial notch length, 24 is the current
crack length and x is the distance from the crack
center.

To evaluate the distribution of bridging tractions,
Aady(x), it is first necessary to specify the contri-
butions to the change in crack openine . splacements
Au due to the applied stress Ay, and - .at due to the
bridging fibers Au, {12)

Au.a%Aa.,/a’-—x’ )]

A= f'Aa.,(r)H(r,x,am ©)
-

where E is an effective composite modulus (taking
account of material orthotropy) and the Green's

function H is [12]
|v/a> = J:’-i—\/a’—lz ©

lai=x - Ja? =

The sum of these components
Au = Au, + Au, @)

H(, x,a)s- fog

is required to be consistent with the cyclic traction
law (taking into account reverse slip during unload-
ing) (6]

1The 4 differs from that used in Refs. [6,9] by a
factor of E_(1 —f)/E. This modification provides con-
sistency between the steady-state stress intensity factor
and the value obtained from energy-based approaches
[10]. A more detailed discussion of the origin of such
effects can be found in {13).
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Here 4 is a material parameter defined byt
D(l - fYE7,
AE*Ef*?
where D is the fiber diameter, f is the fiber volume
fractions, E,, and E; are the matrix and fiber Young's
moduli and E is the longitudinal composite modulus
(=fE;+ (1 —f)E,). Combining equation (4)-(8)
gives an integral equation of the form

%4Aa,=EAa.,/ - x?

_% f *AoyH(, x,a)dr. (10)
L)

9

This equation is solved numerically for Ao, using an
iterative scheme, and the result combined with
equations (1)-(3) to evaluate AK,.

The effects of finite specimen width, 2w, have also
been studied through calculations based on finite
element methods (7). For specimens with a normal-
ized notch size a,/w =0.2 (a value comparable to
those used in the present experiments) and crack
lengths in the range a/w £ 0.5, the effects of finite
width on the crack tip stress intensity amplitude can
be approximated by the relation

AK(a/w,Ac) = Y(a/w)AK (a/0,Ac) (11)

where AK,(a/w,Ac) and AK,(a/c0, Ac) represents
values for the finite and infinite specimens, respect-

ively, and
Y(a/w) = /sec ma /2w (12)

(the usual finite width correction used in calculating
the applied stress intensity {12]). The error introduced
by this approximation is less than - 3%. As seen
later, this range of crack lengths is consistent with the
majority of values measured experimentally, making
the approximate width correction [equations (11) and
(12)] suitable for subsequent calculations.

2.2. Fatigue crack growth

By analogy to monolithic materials, it is expected
that the rate of fatigue crack growth in composites
can be described in terms of AK, through an empirical
relation of the form

da/dN = B(AK,) (13)

where N is the number of loading cycles. The par-
ameters § and #n represents the behavior of a matrix
crack propagating through an array of elastic fibers
and are thus properties of the composite. However, in
view of the lack of understanding of the effects of the
fibers on the processes occurring at the crack tip, it
seeras adequate to select values of 8 and n that are
representative of the monolithic matrix alloy. With
this approach, the effects of the fibers ar the crack tip
are neglected.
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2.3. Fiber failure

Once the fibers begin to fail, their contribution to
crack tip shielding is reduced substantially. To incor-
porate such effects in the model, a deterministic
criterion for fiber failure has been used [7). The
calculations are conducted by continuously adjusting
the unbridged portion of the crack to maintain a
stress at the tip of the unbridged segment equal to the
fiber strength. Through this approach, the entire
cracking history (a vs N) can be simulated.

The results of these calculations can also be used
to develop a criterion for a *“threshold™ stress ampli-
tude, Aa,, below which fiber failure does not occur
for any crack length. Within such a regime, the crack
growth rate approaches a steady-state value, with all
fibers in the crack wake remaining intact. The vari-
ation in the “threshold ' stress amplitude with fiber
strength is plotted in Fig. 1. The maximum value of
Aay, occurs when there is no notch, ie. =0,
whereupon

Ao, /fS(1—R)=1

where R is the ratio of the minimum to maximum
applied stress. Increasing either the notch length or
interface sliding stress (or, equivalently, decreasing
the fiber strength or fiber diameter) has the effect of
decreasing the quantity Aa,, /(1 ~ R)/S.

(14

3. EXPERIMENTAL METHODS

3.1. Material

The material used in this study was a metastable
B-titanium alloy (Ti-15V-3Cr-3Al1-3Sn) reinforced
with continuous, aligned SCS-6 (SiC) fibers. The
fibers are 140 um in diameter and are coated with a
3 um graded C/Si layer. The purpose of the coating
is to inhibit fiber/matrix interaction during consolida-
tion. The composite was fabricated through a
foil-fiber—foil technique, wherein Ti-alloy foils and
fiber mats are alternately stacked and subsequently
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Fig. 1. A diagram showing the influence of notch length,
2a,. and material parameters (1. D,f. S) on the applied
stress Aa /(1 — R) at which fiber failure is predicted 10 occur
during fatigue cracking (adapted from Refs [7] and [22)).
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vacuum hot-pressed. During consolidation. a brittle
reaction product consisting primarily of TiC forms
are the interface between the Ti matrix and the C-rich
fiber coating [14). Prior studies have shown this
system to exhibit the requisite properties for interface
debonding and sliding to occur during matnx crack-
ing [2,15.16). A transverse cross section of the
composite is shown in Fig. 2.

3.2. Fatigue testing

Fatigue tests were conducted in the 0° orientation
using center-notched tensile specimens. To minimize
machining damage, the notches were formed using
electrical discharge machining. The normalized notch
lengths were in the range 0.23 € q,/w £0.35. One
face of each specimen was subsequently diamond
polished to a 1 um finish. Tests were conducted on a
servohydraulic mechanical test system at fixed stress
amplitude, As. In ali cases the stress ratio, R, was
maintained at 0.1. Crack extension was monitored
using two techniques: indirect potential drop (with
thin foil crack gauges mounted at the notch tips), and
with a traveling stereo-microscope. The loading par-
ameters and specimen geometry were selected to
elucidate the effects of stress amplitude, As,, and
notch size, 2a,. The transverse fatigue behavior was
measured using compact tension specimens, in ac-
cordance with the ASTM standards [17].

The extent of fiber failure during fatigue cracking
was monitored using an acoustic emission (AE) sys-
tem. The system consists of a 175 kHz resonant
piezoelectric transducer, a variable gain amplifier,
and a detector. The detector incorporates a variable
threshold voltage with two counting techniques.
Ringdown counting records each positive slope
threshold crossing of a decaying acoustic signal,
whereas event counting records the first crossing and
ignores subsequent crossings within a fixed reset
period (1 ms). The latter technique (employed in the
present study) has the potential to resolve individual
fiber fractures provided that three conditions are
satisfied: (a) the acoustic signal decays below the
threshold within the reset period; (b) multiple fiber

Xl X X J

Fig. 2. At transverse section through the composite.




I T O O B

FATIGUE CRACKING IN METAL MATRIX COMPOSITES

2064 WALLS er al:

failures do not occur within the reset period: and (c)
the system settings can be adjusted to prevent signals
from alternate acoustic sources from crossing the
threshold. To determine the system settings appropri-
ate to the Ti/SiC composite, a series of preliminary
tensile tests were conducted on monofilament com-
posite specimens. The specimens were prepared by
extracting individual SiC fibers from the composite
and bonding fibers onto aluminium strips using an
epoxy adhesive. Tensile tests were conducted with the
transducer attached to the aluminum strip, and the
number of acoustic events associated with fiber fail-
ure recorded. The system settings were systematically
varied until individual fiber failures were consistently
counted as single acoustic events. These settings were
subsequently used during fatigue testing of the com-
posite. Furthermore, the accuracy of the acoustic
emission measurements was evaluated by examining
the tested specimens following matrix dissolution, as
described below.

3.3. Observations

Direct observations of fiber bridging and fiber
fracture were also made. For this purpose, tested
specimens were sectioned along a plane ~3mm
above the matrix crack plane, and the matrix sub-
sequently dissolved down to a depth of ~6mm.

(a)
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S
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During matrix dissolution. the fraciured fibers were
removed, whereas the intact fibers continued to span
the entire length of the specimen. A companson of
the spatial distribution of fractured fibers with the
matrix crack prior to dissolution provided a direct
measure of the length over which intact fibers had
bridged the matrix crack. The fatigue fracture sur-
faces were also examined in a scanning electron
microscopy ( SEM).

4. LONGITUDINAL PROPERTIES

4.1. Measurements and observations

Figure 3(a-c) show representative trends in the
crack growth behavior, plotted as crack extension,
Aa, vs number of loading cycles, N, for tests con-
ducted at various stress amplitudes. Here, the speci-
mens had an initial notch size, 2a,=3mm. The
results are re-plotted as crack growth rate, da/dN, vs
applied stress intensity range, AK,, in Fig. 3(d).
Similarly, Fig. 4(a—d) show trends with notch length
at a fixed stress amplitude, Ag, = 400 MPa.

In all cases, the crack growth rates initially de-
creased with increasing crack length, despite the
corresponding increase in AK,. This behavior is a
manifestation of crack tip shielding by intact fibers in

w-mﬁh
—- 28, =3mm T« 15MP2
£ |
2
%
8 1
$0.000

Crack Growth Rate, da/dN {m/ cycle)

Applied Stress Intensity Range, aK, (MPa./m)

Fig. 3. The influence of stress amplitude on crack growth in the longitudinal orientation, for a notch length

22, = 3 mm: (a) Ao = 300 MPa, (b) 370 MPa, (c) 436 MPa. The solid lines are model predictions. assuming

no fiber failure in the crack wave. The additional lines in (c) show the model predictions incorporating

fiber failure. using a sliding stress, * = 35 MPa, and 3 values of fiber strength. (d) The data of (a—)
replotted in the conventional format.
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Fig. 4. The influence of notch length on crack growth in the longitudinal orientation, for a stress amplitude

Ag, =400 MPa (R =0.1): (a) 2a,= 3 mm, (b) 6 mm, (c) 9mm. The solid lines are model predictions

assuming no fiber failure. The additional lines in () show model predictions incorporating fiber failure,

using a sliding stress t = 25 MPa, and 3 values of fiber strength. (d) The data in (a—) replotted in the
conventional format.

the crack wake. The presence of such fibers was
confirmed through comparisons between the matrix
cracks following fatigue testing and the distribution
of underlying fibers following matrix dissolution: an
example is shown in Fig. 5. For tests conducted at
low stress amplitudes or with small notches, the
deceleration in crack growth continued throughout
the duration of the tests {Figs. 3(a, b) and 4(a, b)). In
contrast, tests conducted at high stress amplitudes or
large notches exhibited a transition in which the
growth rate accelerated rapidly with crack extension
[Figs 3(c) and 4(c)}. The transition was correlated
with the onset of fiber failure. The distribution of
broken fibers following fatigue testing for one such
test is shown in Fig. 6. [These observations corre-
spond to the data in Fig. 3(c).] In this case, the zone
of intact fibers at the end of the tests was only
~300 um (or ~2 fiber spacings).

The evolution of fiber failure during fatigue crack-
ing was also confirmed by the acoustic emission
measurements. For tests conducted at low stress
amplitudes or with short notches, the total number of
acoustic events was typically <10. These measure-
ments correspond to the failure of fibers that were
partially cut during machining of the notch, an
example of which is seen in Fig. 5. In contrast. tests
conducted at high stress amplitudes or with long

notches exhibited extensive acoustic activity, in ac-
cord with observations of fiber failure. Figure 7
shows one example of the evolution of the number,
n, of failed fibers with crack extension, correspond-
ing to the test results presented in Fig. 4(c). The
parameters in this figure have been normalized such
that a line of slope unity represents failure of all the
fibers in the crack wake; the region above the line
corresponds to the incidence of fiber failure ahead of
the crack tip. In this case, fiber failure began at a
relatively small amount of crack extension
(Aa/D =2-3). Further crack growth was ac-
companied by increasing fiber failure and a concomi-
tant increase in crack growth rate. The acoustic
emission measurements also indicate that, beyond
Aa/D = 12, fiber failure occurs ahead of the crack tip.
This point corresponds closely to the onset of rapid
crack acceleration (at N = 8000), seen in Fig. 4(c).
SEM examination of the specimen following matrix
dissolution (Fig. 8) confirmed the number of failed
fibers measured through acoustic emission ( within
~ 10%).

SEM examinations of the fracture surfaces re-
vealed two notable features. Firstly, the amount of
fiber pullout on the fatigue fracture surface was small;
typically <2D (Fig. 9). This observation indicates
that the fiber strength distribution is narrow, in




1 —

WALLS e al:

FATIGUE CRACKING IN METAL MATRIX COMPOSITES

Fig. 5. Comparison between (a) a matrix fatigue crack, as seen on the external surface, and (b) the

underlying fibers following matrix dissolution. The micrograph are at the same magnification and

represent the identical region of the specimen. The fatigue test was conducted at Ao, = 300 MPa, R = 0.1,
and 2g, = 3 mm.

accord with the reported values of Weibull modulus
for the SCS-6 fibers (~ 10). Secondly, the fiber coat-
ings exhibited extensive fragmentation following fa-
tigue [Fig. 10(a)]. In contrast, the coatings on the
fibers in the fast fracture region were left intact
(Fig. 10(b)]. Evidently, the cyclic sliding leads t0 a
degradation in the fiber coating.

4.2. Comparison between experiment and theory

The measured crack growth curves have been
compared with model predictions [7], taking into
account the effect of bridging fibers on AK,. The
parameters f and n in equation (13) were taken to be
those for the matrix alloy [5] and are given in Table 1.
The various elastic moduli [14) are also given in
Table 1. The material parameter that is subject to the
most uncertainty is the interface sliding stress. 7.
Consequently. the approach adopted here was to

compare the experimental data with model predic-
tions for a range of values of t and then assess whether
consistency is achieved over the entire range of
measurements. The model predictions also accounted
for fiber failure, assuming a deterministic fiber
strength, S. In this regime, the calculations were
based on a fixed value of t (chosen to be consistent
with the data in the regime prior to fiber failure) and
comparisons made for a range of values of S. The
inferred value of S was then compared with values
reported elsewhere.

Figures 3 and 4 show the comparisons between
experiment and theory. In the regime prior to fiber
failure, all the experimental data are consistent with
the model for t in the range of 15-35 MPa.

The values of t inferred from the fatigue tests have
been compared with those measured on both pristine
and “fatigued™ fibers using single fiber pushout
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Fig. 6. A comparison similar to that shown in Fig. 6, for a specimen tested at As, =436 MPa, R =0.]
and 2a, = 3mm. Note the extent of fiber failure in the crack wake.

tests (18] (Fig. 11). Specimens with “fatigued™ fibers
were prepared by cutting composite sections
~600 um thick, adjacent to a matrix fatigue crack.
The sections were then ground and polished to a final
section thickness of ~400um. The pristine speci-
mens were prepared in a similar fashion, using unde-
formed material. The pushout tests show that
the sliding resistance of the pristine fibers is initially
~90 MPa, but decreases as the fiber slides out of
the composite. This trend has previously been
rationalized in terms of the wear of asperities on
the fiber coating during sliding [19). In contrast,
the sliding stress for the fatigued fiber is initially
only ~20 MPa, but subsequently increases with
pushout distance. This behavior is consistent with
the extensive fragmentation of the fiber coating fol-
lowing fatigue (Fig. 10). Comparisons of the data
with the range of values of t inferred from the fatigue
crack growth experiments shows broad agreement,
providing additional confidence in the utility of
the micromechanical model. However, it must be
emphasized that the fiber coatings degrade during
cyclic sliding, leading to changes in the interface
sliding stress. Such effects have yet to be incorporated
in the model.

+1t is recognized that a deterministic fiber failure criterion
is not. strictly speaking. applicable to ceramic fibers.
However. in the present case, the range of fiber strength
is narrow and thus the criterion appears to be adequate.

The model predictions in the regime following fiber
failure are consistent with a fiber strength of ~4 GPa
(Figs 3(c) and 4(c)]: a value comparable to previous
measurements of the strength of pristine SCS-6 fibers
[20}F.

The present observations have also been used
to assess the predictions of the ‘“threshoid”
stress amplitude, described in Section 2.3. A compari-
son of the measurements and predictions is shown
in Fig. 12. Here, the experimental data have
been plotted for an average value of sliding
stress, 1 =25MPa, with the error bars corres-
ponding to the uncertainty in 7 (15-35 MPa). Despite
the rather broad uncertainty, the observations
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z_ o 8 SEMMessweman 8 4
i ]
, 4
uw (o]
2 =} 0’ 3 1
g °
w
B w0} 4.
g 4
[} i I i
o 10 20 3% ©

Crack Extension, Aa/ D

Fig. 7. Evolution of fiber failure with crack extension (¢ is
the thickness of the composite panel).
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Fig. 8. Comparison of matrix crack and underlying fibers for test conducted at Ao, = 400 MPa, R = 0.1
and 2z, = 9 mm. Note the absence of intact fibers in the crack wake and the extent of fiber failure ahead
of the crack tip.

appear to be consistent with the predictions. S. TRANSVERSE PROPERTIES
Specifically, both the experiments and the
theory indicate that a transition to the regime of 5.1. Measurements and observations

fiber failure can be brought upon by increasing cither In contrast to the longitudinal behavior, fatigue
Aa, or a,. crack growth in the transverse orientation was not

Fig. 9. SEM view of fatigue fracture surface, showing the extent of fiber pullout.
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Fig. 10. SEM observations of failed fibers in (a) the fatigue
region, and (b) the fast fracture region. Note the damage on

the fiber coating in (a).

accompanied by crack bridging. Indeed, the fatigue
resistance of the composite in this orientation was
inferior to that of the matrix alloy. The trends in the
crack growth rate with the applied stress intensity
amplitude are shown in Fig. 13. The behavior of the
composite closely parallels that of the matrix alloy,
though the growth rates are somewhat higher in the
composite. SEM examinations of the fatigue fracture
surface indicate that the cracks propagate along the
matrix ligaments between fibers, with no evidence of
fiber bridging or fiber fracture in the crack wake
(Fig. 14). These observations are consistent with the
static tensile properties of the composite, wherein the
transverse strength is lower than that of the matrix
{14).

5.2. Comparison between experiment and theory

An upper bound estimate of the transverse crack
growth rate in the composites can be obtained by

Table 1. Mechanical properties of fiber. matrix and composite
Matnx modulus E. =115GPa [14]

Fiber modulus E, = 360 GPa [14]
Longitudinal composite modulus E =200 GPa {i4]
Effective composite modulus F = 193 GPa*

Coefficient in Paris law B=55x10m' ") (5]
Exponent in Paris law n=28 (5]

*Calculated n Ref. [7}.
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Fig. 11. Results of single fiber push out tests on pristine and
fatigued fibers. Also shown is the range of t inferred from
the fatigue crack growth expenments.

neglecting the fatigue resistance of the fiber matrix
interface. The driving force for crack extension in the
composite is thus obtained through a net section
correction of the form

AR = AK, A, (15)

where A4, is the area fraction of matrix on the fracture
surface. Measurements made on the fracture surface
give A,, =~ 0.38. This value compares favorably with
one calculated, assuming that the fibers are arranged
in a square array and that the fatigue crack propa-
gates along the narrowest matrix ligament between
fibers, giving

A, =1-(4n/f)*=033. (16)

The model predictions based on this adjustment are
shown by the dashed lines on Fig. 13. Evidently, the
predictions lie above the measured data. This result
suggests that either the fiber/matrix interface provides
some fatigue resistance, or a closure effect arises from
the presence of the debonded fibers in the crack wake.
The latter effect is consistent with the thermal expan-
sion mismatch in this composite system.
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Fig. 12. A diagram showing the conditions under which fiber

failure was observed during fatigue cracking. The line shows

model prediction. based on the results of Fig. 3. (The
parameter : is defined on Fig. 1.}
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Fig. 13. Comparison of crack growth rates in composite in

transverse orientation with that of the monolithic matrix

alloy. The broken lines represent model predictions for the

composite, based on a net section correction [equation (16),
- = 0.38].

6. CONCLUDING REMARKS

The fatigue crack growth characteristics of a uni-
directional, fiber reinforced metal matrix composite
have been measured and the results compared with
model predictions. The results indicate that the prop-
erties of the fiber/matrix interface play a central role.
In the longitudinal orientation, matrix cracking in-
itially proceeds with minimal fiber failure: the weak
fiber/matrix interface allows debonding and sliding to
occur, leaving the fibers intact in the crack wake. The
bridging fibers provide substantial crack tip shielding
during crack growth, as evidenced by the reductions

P ga—
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in crack growth rate with increased crack extension.
The measurements have been found to be consistent
with the predictions of a micromechanical model in
which the fibers are assumed to be frictionally
coupled to the matrix, with a constant interface
sliding stress. The values of the sliding stress inferred
from such comparisons are in broad agreement with
vaiues measured from single fiber pushout tests on
fatigued specimens. These values, however, are sub-
stantially lower than those measured on pristine
fibers, suggesting that the fiber coatings degrade
during cyclic sliding. The role of such degradation on
the cyclic traction law will be addressed elsewhere
{21]. In some instances, the fibers in the crack wake
fail, leading to a loss in crack tip shielding and an
acceleration in crack growth. The behavior in this
regime is also consistent with the mode! predictions,
using a deterministic value for fiber strength. In the
transverse orientation, the weak fiber/matrix inter-
face results in a degradation in the fatigue resistance
of the composite relative to that of the matrix alloy
alone.

An important conclusion derived from both the
experimental measurements and the model predic-
tions pertains to the use of the applied AK as a loading
parameter in describing fatigue crack growth in this
class of composite. It is apparent that the bridging
effects in the longitudinal orientation are so pro-
nounced that AKX, does not generally provide even a
rough estimate of the crack tip stress field. Conse-
quently, no unique relationship exists between da/dN

Fig. 14. Fatigue fracture surface of the composite in the transverse orientation.
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and AK,. except in the extreme cases where the crack
extension into the composite is small, i.c. less than one
fiber spacing, or when all the fibers in the crack wake
have failed. Similar conclusions have been reached
regarding the use of the applied stress intensity factor
in characterizing matrix cracking in brittle matrix
composites.
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ABSTRACT

An experimental investigation of interface fatigue in a fiber reinforced metal
matrix composite has been conducted. For this purpose, the cyclic traction law (the
relationship between the fiber stress and the pullout displacement) was measured using
fiber pullout tests. On the first loading cycle, the traction law was found to be parabolic,
in accord with predictions of a micromechanical model based on a constant interface
sliding stress. Upon subsequent unloading and re-loading, the relationship changed,
following trends which suggest that the sliding resistance degrades with cyclic sliding.
Such effects have been confirmed through SEM examinations of the fiber coatings
following fatigue testing. Furthermore, the degradation was found to be greatest near
the plane of the matrix crack. The results are consisterit with the notion that the
degradation in sliding stress occurs most rapidly in regions where the relative sliding
distance (fiber/matrix) is greatest. A phenomenological model incorporating such

degradation is presented and compared with the experimental measurements.
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1. INTRODUCTION

The growth of mode I matrix fatigue cracks in fiber reinforced metal matrix
composites (MMCs) is frequently accompanied by interface debonding and sliding.
This process allows the fibers to remain intact in the crack wake. ~he tractions exerted
by the fibers reduce the crack tip stress intensity amplitude (relative to an unbridged
crack) and thus reduce the rate of matrix cracking!-5. The fundamental composite
property governing the fatigue resistance of such composites is the cyclic traction law:

the relationship between the bridging stress amplitude ard the crack opening

amplitude®7. Such laws have been combined with fracture mechanics analyses to
predict crack tip stress intensity amplitudes for a variety of specimen geometries6.”.
Through this approach, fatigue life predictions can be made, incorporating the relevant
constituent properties.

The existing models of fiber bridging are based on the assumption that the
sliding behavior of the interface is characterized by a constant shear stress, T¢-11. This
approach has been validated for a variety of metal and intermetallic matrix composites,
subject to monotonic tensile loading11.14. However, there is experimental evidence to
suggest that the sliding behavior changes substantially during high cycle fatigue.
Specifically, measurements of fatigue crack growth rates have been found to be
consistent with the bridging models for values of T that are substantially lower than
those measured on pristine fibers12. Such trends have been confirmed by fiber push-out
tests, conducted on specimens cut adjacent to a fatigue crack!3. The purpose of the
present article is to present experiments that provide more direct information about
changes in the cyclic traction law in MMCs subject to high cycle fatigue, and make

comparisons with predictions of the model based on constant 1.
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2. MATERIALS AND EXPERIMENTAL TECHNIQUES

The composite used in the study was a metastable B-titanium alloy
(Ti-15V-3Cr-3Al-35n) reinforced with continuous, aligned SCS-6 (SiC) fibers. The fibers
had a 3 um graded C/Si layer, in order to protect them from damage and inhibit
fiber /matrix interaction during consolidation. The composite panel was ~2 mm thick
and consisted of 9 fiber plies, with a fiber volume fraction of 35%. Fatigue studies on
this composite have shown that interface debonding and sliding occurs during matrix
cracking, resulting in substantial crack tip shieldingl12. The relevant properties of this
composite are summarized in Table 1.

Pullout specimens suitable for fatigue testing were made by a process involving
cutting, grinding and chemical dissolution (Fig. 1). First, long slender specimens, 6 mm
wide by 50 mm long, were cut parallel to the fiber direction. Two coplanar notches
were ground into each side of the specimens. The process was carefully monitored to
ensure that the central 3 fiber layers were not damaged during grinding. In addition,
shallow notches (~0.5 mm) were cut on either side of the central notch on one face, with
a separation of 10.0 mm. These grooves were subsequently used for mounting an
extensometer on the specimen. The section of the specimen away from the notch was
masked with an epoxy and the matrix material within the notch dissolved using
concentrated nitric acid, leaving a section consisting of only 3 rows of fibers.

Uniaxial fatigue tests were performed in a servohydraulic mechanical testing
machine. The specimens were gripped over a length of ~10 mm on either end using
hydraulic wedge grips. The load amplitude was selected to give a fiber stress range,
AG?, in the notch plane between 1500 and 2000 MPa, with an R ratio (minimum to
maximum stress) of 0.1. The loading frequency was fixed at 5 Hz. The displacements
were measured using a 10 mm clip-on extensometer. The knife edges of the

extensometer were inserted snugly into the grooves, and the extensometer securely
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attached to the specimen using rubber bands. Cycling was periodically interrupted and
the load/displacement behavior recorded while loading the specimen at a rate of
0.2 um/s.

Subsequent to testing, one of the specimens was fractured along a plane
perpendicular to the notch plane, exposing the fiber/matrix interfaces (both pristine and
cycled). This was accomplished by cutting a deep notch from the gripped region of the
specimen and subsequently wedging the notch open. The specimen was broken in
liquid nitrogen (-196°C) in order to minimize the effects of matrix plasticity on the
exposed interfaces. The interfaces on both pristine and cycled fibers were examined in a

scanning electron microscope (SEM).

3. MECHANICS OF FIBER PULLOUT

Prior to presenting the experimental results, the relevant mechanics associated
with fiber pullout is briefly reviewed. The mechanics provides a framework within
which the results are presented and interpreted.

The simplest model of fiber pullout is based on the assumption that the sliding
resistance of the interface is characterized by a constant shear stress, T. This approach
has been used to study crack bridging in fiber-reinforced CMCs under monotonic
loading and MMCs under cyclic loading. The relations pertinent to the present study
are summarized below. Additional details of the mechanics can be found in Refs. 6-8.

Under monotonic tensile loading, the fibers slip past the matrix over a length, ¢,

given by

of (1-f)E,, D
41E (D
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where D is the fiber diameter, f is the fiber volume fraction, o? is the fiber stress in the
matrix crack plane, and Em and E¢ are the Young's moduli of the matrix and fiber,
respectively. The remote displacement due to pullout, 8p is obtained by integrating the
additional fiber strain due to sliding over the slip length, yielding

2
Do?o?
4E;t(1+a)? ()

Bp

where o = Emy, (1-f) / Ef f. During unloading, slip occurs in the reverse direction,

whereupon the pullout displacement becomesé

2
Dt (0fwe -7

8E¢ (1 +a)? (3)

% = Bpmax

where Sp max is given by Eqn. (2), evaluated at the stress maximum, Gf max. The

corresponding result for re-loading is®

2
2({.0 o
Da (cf —ofmi,,)

8E;t(1+a)’ @

where 8p min is given by Eqn. (3), evaluated at the stress minimum, G¢ min. Figure 2
shows the predicted trends for the case where R = 0. A notable feature here is that the
cyclic traction law remains the same beyond the first loading cycle, provided T remains
constant.

Application of these formulisms to the present experiments requires two

modifications. First, because the notching process used to make the specimens reduces
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the fiber volume fraction within the notched section, the matrix "crack” is not fully
bridged. This effect can be treated through a modified shear lag analysis, assuming that

load is transferred uniformly from the composite to the bridging fibers (Appendix).
Following this approach, the relations between 8p and Of become

D(n+ oz)2 6?2

P 7 4Eit(1+0)? )
2 (.0 0)?
5 - 5 D(n+)” (6Fmax — )
P pimax 8E; T(1+a)> ©)
2{ .0 o] 2
5” 5 D(T\"'Q) (Gf —Gfmin)
P = “pmin

8E; t(1+a)’ )

where 7 is the number fraction of broken fibers. In the present geometry, | = 2/3.
When 1 is zero, Eqns (5)-(7) reduce to Eqns. (2)-(4), as required.

The second problem involves interpretation of the measured displacement, §.
This displacement has two components. One is due to elastic extension, &, both in the
fibers within the notched section and in the composite, and the other is due to pullout,
8p. The elastic component varies linearly with load, P, whereas the pullout component
is proportional to the square of the load (subject to the constant T assumption). The

total displacement can thus be expressed as

6 =CiP + C2P2 (8)
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where C; represents the (elastic) compliance of the specimen and C3 is a parameter that
embodies the material properties given in Eqn. (4). Upon rearrangement, Eqn. (8)

becomes

3/P =C1+ C2P 9

The form of Eqn. (9) suggests that 8/P should vary linearly with P, with the slope being
C2 and the intercept Cj.

4. MEASUREMENTS AND OBSERVATIONS

The measured load-displacement curve for the first loading cycle of each test was
used to determine the specimen compliance, Ci, and to assess the validity of the
constant T model. Figure 3 shows the variation in 8/P with P for one such test. In this
case, the degree of linearity is high, with a correlation coefficient, r = 0.998. Two
additional tests conducted at similar stress levels provided essentially the same results,
with correlation coefficients consistently above 0.99. The values of T, evaluated from the
slopes of these plots, were in the range, T = 55 to 60 MPa. This range is consistent with
values measured on other metal and intermetallic matrices reinforced with the same
fibers11.14,

A series of hysteresis loops (stress vs. pullout displacement) for various numbers
of loading cycles, N, is shown in Fig. 4. The pullout displacement was obtained by
subtracting the elastic displacement, C1P, from the measured displacement S, using the
experimentally determined value of C1. Two features are noteworthy. (i) The slope of
the loops decreases with loading cycles, suggesting that the interface sliding resistance

is diminished. Closer examination indicates that the first cycle (loading and unloading)
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is consistent with the constant T model (Fig. 5). Substantial deviations from the model
predictions occur on the second loading cycle. (ii) Cyclic loading results in an increasing
amount of permanent (zero-load) displacement, manifested in the translation of the
hysteresis loops. The variation in permanent displacement with number of cycles is
plotted on Fig. 6. This trend is also consistent with a diminishing sliding stress with
loading cycles.

Further insight is obtained by plotting the results as the change in pullout
displacement, Adp, during a single loading cycle with the change in fiber stress, A of,
using logarithmic coordinates. Figure 7 shows one such plot. (For clarity, only the
loading portion of each cycle is shown.) The linearity of the data suggests that the
traction law can be represented by a power law, with the power law exponent,
d log A 8,/d log A ©f, varying with loading cycles, N. The exponent decreases rapidly
from an initial value of 2 to a value of ~1.3 following ~100 loading cycles, and
subsequently remains constant (Fig. 8). The change in the exponent from a value of 2
indicates tha: the degradation process occurs non-uniformly along the slip zone, i.e. the
sliding stress varies along the fiber length.

SEM examinations of the fiber coatings confirmed that the coatings did indeed
undergo changes during cyclic sliding. The surfaces of the pristine fibers, exposed by
breaking the sample along the fiber length, exhibit a hillock morphology, with a
roughness amplitude of ~0.3 um and a wavelength of ~3 um (Fig. 9). On the fatigued
fibers, the hillocks are smeared out along the fiber length (Fig. 10). Furthermore, the
degree of smearing varies along the length of the fiber, being highest near the notch
plane. At distances 2 Imm from the notch plane, the surfaces appear to be essentially
the same as those of the pristine fibers. The observations suggest that the degree of
wear and the corresponding reduction in the sliding resistance depends on the amount
of relative sliding between the fibers and the matrix: the amount of sliding being

greatest near the notch plane.
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10
The measurements and observations form the basis for a phenomenological
degradation model that incorporates changes in the interface sliding stress. Details of
the model and comparisons of the model predictions with the experimental

measurements are presented below.

5. MODEL OF INTERFACE DEGRADATION

The change in the cyclic traction law was simulated using a simple interface
degradation law. In this law, the sliding stress T was assumed to vary linearly along the
length of the fiber, being lowest at the notch plane (where the largest amount of wear
had occurred) and highest at the end of the slip zone. Furthermore, the value of T at the

notch plane was assumed to be zero. This relation can be written as
where {may is the slip length at the stress maximum, x is the normal distance from the

crack plane and T, is the initial (pristine) sliding stress. Combining Eqn. (10) with the
analysis presented in Section 3 yields the results for the cyclic traction law:

. _ 2Dl ot ot
P 31, E; (1+a)? (11)
1/2 3/2
5 = _ "/-Z-D(ﬂ"’a)z O P max (c?max -0’?)
P pmax 3E; 1, (l+ct)2 : (12)
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1/2 3/2
ﬁD(‘H a)Z 0'?max (O'? —c?min)

3E; 1, (1+a)? (13)

In this case, the exponent on the cyclic traction law, d log A 8,/d log A 0 = 3/2.

The predictions of the model are plotted in Figs. 6 and 8. The predicted
permanent displacement was evaluated by setting of =0 in Eqn. (12). Evidently the
predicted exponent is in reasonable agreement with the experimental measurements for
N 2100 (1.5 vs. ~1.3). In contrast, the correlation between the measured and predicted
permanent displacements is poor. However, the model correctly predicts the direction
of such changes.

6. CONCLUDING REMARKS

The present results indicate that, on the first loading cycle, the traction law is
consistent with the model based on constant T. The value of T inferred from the
measurements (~60 MPa) is comparable to values measured in other fiber-reinforced
compositesil.14, but somewhat lower than values measured on the same composite
using fiber pushout tests (~90 - 100 MPa)12, This disparity may be attributed to the
Poisson effect. During the pullout tests, the fibers contract laterally, reducing the radial
thermal residual stress. Conversely, during pushout, the fibers expand, increasing the
radial stress and the corresponding sliding stress.

Substantial changes occur in the traction law during subsequent cyclic loading.
The changes in the shape of the loops (manifested in the reduction in traction law
exponent) and the progressive increase in permanent displacement are consistent with
the noticn that the interface sliding stress degrades non-uniformly along its length, with
the degradation being greatest near the matrix crack plane. SEM examinations of the
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fiber coatings following testing have confirmed such non-uniformity. These trends
have been qualitatively demonstrated using a simple interface degradation law wherein
the sliding stress is assumed to vary linearly along the fiber length. However, a model
of interface degradation incorporating explicitly the effects of the cyclic sliding
amplitude is required.

The process of interface degradation is expected to play a dual role in the fatigue
cracking behavior in this type of composite. First, the reduction in sliding stress will
reduce the shielding associated with bridging fibers, resulting in an acceleration in the
rate of matrix cracking. Second, this reduction will reduce the stress borne by the fibers
in the crack wake, reducing the propensity for fiber fracture. The onset of fiber fracture
during cyclic loading has been shown to lead to dramatic increases in the rate of matrix

cracking12. The net effect of these two opposing trends on fatigue life is not yet clear.

ACKNOWLEDGMENTS

Funding for this work was supplied by the Defense Advanced Research Projects
Agency though the University Research Initiative Program of UCSB under ONR
Contract no. N-0014-86-K-0753, and by ONR 3M Contract no. N-00014-92-J-1991.

TF:MS25(June 15, 1993)/3:07 PM/mef

<




Table1l  Properties of the Ti/SiC Composite

Matrix Modulus, Em
Fiber Modulus, E¢

Longitudinal Composite Modulus,
E=Enm (1-f) + E¢f

Fiber Diameter, D

115 GPa
360 GPa
200 GPa

140 pm
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APPENDIX

The shear lag analysis presented in Refs. 6-8 is based on the assumption that all
of the fibers in the crack wake are intact. In the present experiments, a significant
fraction of the fibers are cut during preparation of the specimens. Below is a
modification to the shear lag analysis that accounts for this effect. The analysis
presented here assumes that T is constant and that the load is increased monotonically,
though it can be readily applied to cyclic loading as well as other traction laws.

Consideration of mechanical equilibrium requires that the fiber stress in the

matrix crack plane be

of = €2 E /£(1-N) (A1)

where 7] is the number fraction of broken fibers. Consequently, the fiber strain at this

point is
& =0f/E =¢€2E /f E(1) (A2)

The additional remote displacement due to sliding is obtained by integrating the fiber
strain distribution, whereupon

8p = £(gf - &™) (A3)
and the slip length, ¢, is
L= DEM+0)/41T(1-1) (Ad)
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Combining Eqns. (A1) through (A4) gives Eqn. (5) in the text. For unloading and
reloading, the expressions in Eqns. (3) and (4) are modified in a similar way, such that
the term Q. in the numerator of these equations is replaced by (N + &). This modification

lead to Eqns. (6) and (7).

TF:MS525(une 15, 1993)/3:07 PM/mef




17

LIST OF FIGURES

Fig.1  Schematic diagram of the interfacial fatigue specimen.

Fig.2  Cyclic traction law predicted from the constant T model.

Fig.3  Plot showing the variation in the ratio of displacement / load against load for
one of the fatigue tests. The solid line was obtained by linear regression
analysis.

Fig.4 Changes in the cyclic traction law with number of loading cycles, N.

Fig.5 An enlarged view of the hysteresis loops on the first two loading cycles. The
solid line represents the predictions of the constant T model, using a value
T = 60 MPa.

Fig.6  Variation in the permanent (zero-load) displacement with number of loading
cycles. Also shown are predictions of the models. (The normalization of the
ordinate is selected to give a value of unity for the constant T model.)

Fig.7  Results of Fig. 3 replotted in logarithmic coordinates. The ordinate is the
change in pullout displacement, Ady, such that the translation in the loops with
loading cycles is removed.

Fig.8 Variation in the bridging law exponent determined from the slope of the
curves in Fig. 6, with number of loading cycles. Also shown are predictions of
the models.

Fig.9  SEM micrograph of the coating on a pristene fiber.

Fig. 10 SEM micrographs of the fiber coating on a fatigued fiber (x is the distance from

the notch plane).
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ABSTRACT

Fatigue crack growth in fiber-reinforced metal-matrix composites is modeled
based on a crack tip shielding analysis. The fiber/matrix interface is assumed to be
weak, allowing interfacial debonding and sliding to occur readily during matrix
cracking. The presence of intact fibers in the wake of the matrix crack shields the crack
tip from the applied stresses and reduces the stress intensity factors and the matrix
crack growth rate. Two regimes of fatigue cracking have been simulated. The first is
the case where the applied load is low, so that all the fibers between the original notch
tip and the current crack tip remain intact. The crack growth rate decreases markedly
with crack extension, and approaches a "steady-state”. The second regime occurs if the
fibers fail when the stress on them reaches a unique fiber strength. The fiber breakage
reduces the shielding contribution, resulting in a significant acceleration in the crack
growth rate. It is suggested that a criterion based on the onset of fiber failure may be
used for a conservative lifetime prediction. The results of the calculations have been
summarized in calibrated functions which represent the crack tip stress intensity factor

and the applied load for fiber failure.

4H:MS28(November 23, 1993)9:37 AM/mef




NOMENCLATURE

matrix crack half length

initial notch half length

fiber diameter

Young's modulus of composites: f Ef + (1-f)Em

effective composite Young's modulus considering material orthotropy
Young's modulus of fiber

Young's modulus of matrix

volume fract.on of fibers

shape function for stress intensity factor:  sec (ta/2w)
unbridged segment half length

Paris law exponent

number of load cycles

fiber strength

finite panel width

non-dimensional bridge length: (a-¢)/a

Paris law coefficient

total crack opening displacement

crack opening displacement induced by bridging fibers
crack opening displacement caused by applied stress
ratio of AKjp to AK,

range in applied mode I stress intensity factor

range in mode I crack tip stress intensity factor

change in crack opening

non-dimensional measure of the stress amplitude/crack length: 2AEAG/a

non-dimensional measure of the stress amplitude/notch length: 2AEAG/a,

cyclic applied stress amplitude
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Ac; cyclic bridging stress amplitude

A bridging law coefficient: D(1-H%(Em)*/4f2 Ef E2T
Poisson's ratio

o applied stress

Omax maximum applied stress

Os bridging stress due to fibers

z non-dimensional measure of the maximum applied stress: 4AEAGmax/ ¢
interface sliding stress

n non-dimensional measure of fiber strength: 4AE £ S/¢
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INTRODUCTION

Fatigue crack growth in metal matrix composites reinforced with brittle fibers
has been studied extensively (Naik and Johnson, [1}; Kantzos, Telesman and Ghosn, [2]:
Sensmeier and Wright, [3]; McMeeking and Evans, [4]; Walls, Bao and Zok, (5, 6]).
Experimental results (Sensmeier and Wright, [3]; Walls, Bao and Zok, [5, 6]) indicate the
following fatigue cracking behavior. Under tensile cyclic loading of the composite in
the fiber direction, the matrix undergoes mode I fatigue cracking normal to the fibers,
while the fibers in the crack wake remain intact due to the frictional sliding at the
fiber/matrix interface. These fibers bridge the crack and shield the crack tip from the
applied stress. Consequently, a transient occurs in which the crack growth rate da/dN
diminishes upon crack extension, and a steady-state regime follows in which da/dN is
small. When the applied stress level is high, the stress in the fiber at the original notch
tip may reach the fiber strength and then the fibers begin to fail. The crack growth
thereafter accelerates again, leading to the final rupture. These features of fatigue
cracking in fiber reinforced metal-matrix composites are shown in Fig. 1 in which a
typical fatigue crack growth curve of a Ti matrix composite with SiC fibers is replotted
from the work of Walls, Bao and Zok [5]. The composite tested contains 35% of
unidirectional fibers, with fiber diameter D = 140um (Jansson, Deve and Evans, [7]).

In this paper, the micromechanical model of McMeeking and Evans [4] is
extended to predict the above fatigue crack growth behavior. The materials of
particular interest for this model include Ti/SiC composites that have "weak" interfaces.
Attention here is focused on mode I cracking that initiates from a sharp notch. Matrix
fatigue cracking in metal matrix composites in the absence of a notch has been modeled
recently by McMeeking and Evans [4]. The analysis of fiber stresses, interface sliding
and crack bridging in their model is analogous to that conducted earlier for

fiber-reinforced ceramics subject to monotonic tensile loading (Marshall, Cox and
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Evans, [8]; Marshall and Cox, [9]; McCartney, [10]). Following the analysis of Marshall
and Oliver [11] and Cox [12], McMeeking and Evans (4] considered the effect of reversal
of the fiber interface sliding direction during cyclic loading. They found that the results
for bridging during monotonic loading can be scaled simply to represent the effect of
bridging during fatigue loading. The model is further developed here to include the
effects of an initial sharp notch which is unbridged by fibers at the outset. This analysis
permits the inclusion of the effect of breaking fibers which can increase the size of the
unbridged segment. The influence of finite specimen width and, of greater importance,
the role of fiber failure in fatigue cracking behavior is accounted for too. Fatigue crack
growth curves, both with and without fiber fracture, are predicted for given values of
the relevant parameters.

Calibrated functions have been devised to represent the results. One set of
functions provides values for the crack tip stress intensity factor amplitude as a function
of material parameters, the applied load, the matrix crack length and the size of the
unbridged segment of the crack. Another set of functions gives the applied load
sufficient to fail a fiber in terms of the fiber strength, material parameters, the matrix
crack length and the extent of the unbridged segment.

The results .in this paper are based on individual models (for bridging fibers, for
their effect on crack tip stress intensities, for the incidence of fiber failure, for cyclic
loading of bridging fibers and for matrix fatigue) which, in one way or another, have
been developed and used previously. In addition, the basic method of analysis
employed to solve integral equations in this paper has been used widely. However, the
previous applications mostly have concerned monotonic loading of brittle matrix
composites and only the work of McMeeking and Evans [4], Cox and Marshall [13] and
Cox and Lo [14, 15] addressed the question of cyclic loading. Furthermore, the earlier
modelling of fatigue in fiber-reinforced metals has not fully explored the phenomena

when there are notches and failing fibers. In this paper, all of the individual model
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elements are brought together in a treatment of matrix fatigue crack growth in
conjunction with notches and fiber failure. The models have been shown to agree well
with the available data for matrix fatigue growth with and without fiber failure (Walls
et al., [6]). Therefore, the comprehensive model in this paper is suitable for studying in
some detail the phenomena associated with this important damage mechanism in
fiber-reinforced metals to augment the insights available from experimental data. Such
features that can be studied are: the deceleration of the crack growth rate as the matrix
crack grows; the relative influence of notches; the interplay play between applied load
amplitude and the matrix crack length in controlling the crack growth rate; and the
relatively sudden and dramatic transition from survival of fibers to failure of fibers
leading to rapid crack growth as the load is increased or a critical matrix crack length is
reached and exceeded. Itis true that these features can be deduced directly or indirectly
from results available in several different papers in the literature. However, we believe
that it is important to bring the results and phenomena together and present them in a
focused manner for the matrix fatigue crack growth problem.

The model presented in this paper is based on certain assumptions. Important
ones are: the interface shear strength 7 is uniform and does not degrade during fiber
load cycling; the strength of the fibers is deterministic and not statistical; the matrix
fatigue crack growth obeys the Paris law for fatigue crack growth in the monolithic
matrix; the entire component or specimen, except for the fiber bridging, can be analyzed
elastically which implies that crack tip plastic zones are small. Some assumptions are
known to be inexact. For example, measurements have shown that the interface shear
strength T for a fatigued specimen with a matrix crack is lower than that for a pristir.e
material (Warren, Mackin and Evans, [16]). This is known to influence the crack tip
opening shape since the fiber constraint near the matrix crack tip on freshly exposed
surfaces is relatively stronger than the fiber constraint far from the matrix crack tip on

old and therefore fatigued surfaces (Kantzos et al., {2]). In some cases this influences the
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fatigue crack growth rate. However, there has been significant success when the model
with the fixed value for T is compared with the data for matrix fatigue crack growth.
There are some discrepancies in the transient behavior which can be attributed to the
degradation of T. However, even those discrepancies can be rationalized in terms of
interpolation among models with a fixed T (Walls et al., [6]).

The value of the interface shear strength T which is used to compare the models
to the experiments is usually chosen empirically to obtain one match to the steady state
crack growth rate usually observed after some crack growth in large specimens with
short cracks under modest load amplitudes. Furthermore, the fiber strength S is usually
chosen empirically so that onset of fiber failure in the model agrees in one case with the
initiation of fiber failure in an experiment. There is therefore an element of fitting in the
model presented in this paper. However, it should be emphasized that with this
minimal degree of fitting, the model is capable of capturing the rich interplay among
phenomena as controlled by load amplitude, peak load level, matrix crack length and
initial notch length. Furthermore, the pragmatic app:oach to choosing values for T and
S is made necessary by the fact that in situ properties are needed. In contrast to other
empirical material constants such as fiber and matrix elastic moduli which are relatively
unchanged in situ, it is well known that the interface shear strength 7 and fiber strength
S are sensitive to processing, treatment, handling and to fatigue cycling itself (Walls et

al., [6]).

CRACK-TIP SHIELDING ANALYSIS

Consider the crack configuration depicted in Fig. 2. The center section of length ¢
is unbridged. The unbridged center section can represent the original notch of length
2a, or a current unbridged segment after fiber failure. The bridged sections represent

the growing, mode I, plane strain matrix fatigue crack in the infinite body. With the
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possibility that fibers can break, the bridge segment can become unbridged. The current
unbridged segment will then have a length 2¢ > 2a,. Both the fibers and the matrix are
assumed to be linear elastic, with Young's modulus Ef and En, respectively. Plasticity of
the matrix is neglected in this study. The continuous reinforcing fibers are aligned
normal to the plane of the matrix crack. The fracture energy of the fiber/matrix
interface is assumed to be small, such that debonding and sliding occur readily during
matrix cracking. The sliding behavior of the interface is characterized by a constant
frictional shear stress T, such that the bridging stress G; is related to the crack opening
displacement & during monotonic opening by (Aveston, Cooper and Kelly, [17);

McCartney, [10}; Hutchinson and Jensen, [18)])

8 = Aol (1)

where A is a material parameter given by

A=DU-02E /4E2Ef21. @

The bridging stress Oy is the force per unit surface area applied by the fibers to the crack
surface and the opening d is the additional displacement of the material on one side of
the crack compared to the -+ due to the presence of the crack and is measured on a
gauge length larger than . terface slip zones on the fibers at the crack. In eq. (2), D
is the fiber diameter, f the fiber volume fraction and E the composite Young's modulus,
E =fEf + (1-f) Em. Upon cydic loading, the change in crack opening displacement Ad
after the first peak opening is related to the change in bridging stress AG; in a similar
fashion (McMeeking and Evans, [4])

AS = i-;-l (AG,2 3)
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where the plus (+) and minus (-) signs correspond to the loading and unloading
portions of the cycle, respectively.

The bridging law and the theory of elasticity and fracture mechanics can be used
to solve the problem depicted in Fig. 2. Pertinent results are the distribution of fiber
stresses within the bridged zone and the crack tip stress intensity factor. Such solutions
have been obtained for both infinite and finite geometries previously by many workers
(Marshall et al., [8); Marshall and Cox, [9]; McCartney, [10]; Cox, [12]; Cox and Lo, [14]).
A summary of the analytical method is provided in the Appendix. Values for the
bridging stress amplitude have been computed for the applied load range 0 < AX < 20

where the dimensionless parameter AX is such that

A = 2AEA0C/a ¢

with E an effective elastic modulus for crack problems which takes the orthotropy of the
material into account (see Appendix). A representative result for the bridging stress is
shown in Fig. 3 where it is shown in dimensionless form as a function of position on the
matrix crack. Each curve represents a result for a case with a different unbridged
segment.

Two features in Fig. 3 are noteworthy. The peak stress in the bridging zone
always occurs at the edge of the unbridged segment. This implies that if fiber failure
occurs at a unique deterministic strength, it will always start at the original notch tip. In
addition, when the crack length a becomes very large, for low values of AG almost all
the applied stress is transferred through the intact fibers (i.e., AGs = AG), as indicated by
the £/a =0 curve. The bridging stress is then rather uniformly distributed except in the
crack tip region where AG; falls well below AG. At higher values of AG, the fiber
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stresses AG are nonuniform even for long cracks and fall somewhat below AG,
indicating that the shielding effect in that case is less effective.

The stress intensity factor range at the crack tip AK¢jp is normalized by the stress
intensity factor range which would occur in the absence of the bridging fibers. For an

infinite body, this would be

AKp = AV Ta. (5)
The resulting ratio is
AK
Ax = P
AK, . ©

Numerical results for AX for the problem shown in Fig. 2 are plotted in Fig. 4
against the non-dimensional bridge length (a-£)/afor AX =1, 2, 4,8, 12 and 20. For a
small bridge, AKyp is almost the same as AKy, since the shielding effect is small. The
stress intensity at the crack tip is reduced significantly as the crack length a is increased
beyond the bridged segment to produce a large bridge. These general trends are shown
clearly in Fig. 4.

For the purpose of investigating when a fiber will fail, it is of interest to
determine the largest stress in the fibers in a given state of matrix crack length,
unbridged segment and applied stress. The maximum fiber stress, which always occur
in the fiber adjacent to the unbridged segment, is plotted in Fig. 5a against the
normalized bridge length (a-£)/a. These calculations were carried out with the bridging
law in eq. (1) and represent the stress in the fiber at maximum applied load. Results are
presented in Fig. 5a for several values of the maximum applied load Omax. The points

in Fig. 5a were obtained by numerical calculation. The full lines were obtained by
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fitting functions to the numerical results which will be discussed below. The results in
Fig. 5a can be replotted to give the length (a-£) of the bridge which will have a
maximum fiber stress exactly equal to S as a function of the maximum applied stress
Omax- This is shown in Fig. 5b. Since the unbridged segment £ will grow as fibers fail,
the value of 1] (defined in (10b) below) will increase when fibers break. However, in the
initial configuration with £ = a,, the curves can be used to predict when the first fiber
will fail. At the beginning of fatigue crack growth, the bridge length a-{ is zero and gets
bigger as fatigue cracking proceeds. Therefore, at a given maximum load, the state of
the specimen starts at the bottom of the diagram and moves upwards at constant
(defined in (10c) below) since £ is fixed at ag. This will proceed until the curve
representing the fiber strength is reached at which point the first fiber will fail. Thus,
the diagram predicts directly the amount of fatigue crack growth which can occur
before fiber failure will occur. Note that if the fiber strength is high enough or the
maximum applied stress is low enough, fatigue crack growth will proceed without
fibers ever failing.

The numerical results for the maximum fiber stress just discussed can be
augmented with an exact result due to Suo, Ho and Gong [19] for the situation where
the maximum applied stress is low and the matrix crack is very long compared to the
unbridged segment. In this situation, the unbridged segment will behave like an
isolated crack since the stress transmitted through the bridge almost everywhere will be
equal to the applied stress. Only near the tip of the matrix crack and near the edge of
the unbridged segment will the bridge stress differ from the applied stress. However,
the tip of the matrix crack is too far away from the unbridged segment to have any
influence. Thus, the unbridged segment will behave like a finite crack in a uniform
stress field. Furthermore, the smallness of the applied stress will ensure that the region
of nonuniform bridge stress will be effectively small and the unbridged segment will

behave as a crack with small scale yielding. Thus, the value of the J-integral (Rice, [20])
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for the tip of the unbridged segment is just that for a finite elastic crack in a uniform

tensile stress. Denoting the value of the J-integral to be J, we thus have

o,zmx ¥4

] = E @)

when the maximum stress is being applied. An elementary result (Rice, [20]) gives the

J-integral to be the energy per unit area absorbed by the bridging process and thus

8 2
)= [ os(a)d5=§x(fs)3 @

where 8, is the crack opening displacement when G5 =fS. Thus, eq. (7) & (8) can be

combined to give

1
S = (:?’l‘fzmgf_]a
2AE ©)

1.2
or n = (6x)3 X3 (10a)

D(1-f*EL ES
E2E f/ 1

(10b)

where n

D(1-£)? E2 Eoppy,

and z =
EzEffZZT

(10c)

As noted above, this result is valid for small ¥ and large a/¢. The latter means that
(a-¢)/a = o in Fig. 5a is close to unity. The result for £ = 0.5 in Fig. 5a agrees closely

with eq. (10a) but for = 1 the agreement is merely good. Thus, we conclude that the
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asymptotic limit in eq. (10a) can be used when ¥ < 0.5 and inspection of Fig. 5a
suggests that it will be applicable for £/a < 0.5.

FINITE GEOMETRY

The crack tip shielding analysis performed in the previous section is based on a
model geometry of a center crack in an infinite body. Clearly, fatigue tests on
center-notched tensile specimens are conducted with finite widths. To justify the
relevance of the model just developed for finite widths, finite element calculations have
been carried out for such specimens using the ABAQUS code (Hibbitt et al., [21]). The
specimen length 2h is much larger than the specimen width w (h/w =10) and the
non-dimensional original notch size, ap/w is taken to be 0.2 for these calculations, as
shown schematically inset in Fig. 6.

To simulate the intact fibers that bridge the matrix crack, non-linear springs are
used, with a spring law identical to eq. (1). Crack tip stress intensity factors AKy;p are
obtained through the J-integral, and normalized by the applied stress intensity, AKa

AKa = Ao \/na F(a/w) (11a)

where F (a/w) is given in Tada et al., [22] to be approximately

( na
F(a/w) = seco— (11b)

Plotted in Fig. 6 as the solid lines are finite element results for the normalized
crack tip stress intensity amplitude AKip/AKa against the normalized crack extension

(a-ap)/a for AZy =1 and AX, =2 where AZ, is the value of AX when a =a,. The
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corresponding results for the infinite body (w — o) are shown as the dashed lines.
Inspection of these results indicates that for (a-ao)/a < 0.6, the values of AKyjp/AKA for
finite width specimen are essentially the same as those given by the infinite body
solution. Consequently for (a-ap)/a < 0.6, the results in Fig. 4 can be used for the finite
strip as long as AK 4 is computed according to eq. (11). These findings imply that in
general as long as a/w < 0.5, the results in Fig. 4 can be used to determine the stress
intensity factor in the finite strip.

Following the argument leading to eq. (9), we infer that the maximum stress in

the fiber adjacent to the unbridged segment is such that

1
(s - (31:F2(l/w)6,2naxl)3
2)AE (12a)
2
or n = (6m)3 [F(£ /w)I)f (12b)

when Omax is small and the matrix crack is very iarge compared to the unbridged
segment. This result is valid for any value of £/w as long as the applied stress is
sufficiently low so that small scale "yielding" prevails in the bridge next to the

unbridged segment (Suo et al., [19]).

CALIBRATED FUNCTIONS

It is convenient to approximate the numerical results in Fig. 4 by a set of
functions. These functions can then be used to compute results without recourse to the
numerical methods used to generate the curves in the first place. Calibration functions
of this type were pioneered by Cox and Lo [15] including those for finite geometries

with center notches as in this paper and for edge notches. The functions suggested here
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serve the same purpose as those of Cox and Lo [15] and are presented as possible

alternatives. We state the following expression for AX = AKip/AKa:
AKX (AZ, a) = exp {-sint [A (AZ) + B(AZ) a + C(AZ) a2]/al/4)

where o= (a-8/a (13)
A(AD) = -0.049 + 30/ VAT - 0027/ AS

B (AY) = -0.399 + 2.504 / \]A): - 3207/ AX + 0.379 / AX3/2
C(AY) = 0439 - 1.784 / \/AZ + 1.374 / AY - 0.04 / AX3/2

This approximation is accurate to within a few percent of the numerical results depicted
in Fig. 4 for the range 0.1 <A £ £ 12. Itis similarly close to the function devised by Cox
and Lo [15] for the case of the finite crack in tension. In addition, it should be noted that
the expression in eq. (13) is valid for the finite strip with AK A given by eq. (11) as long
asa/w<05.

In a similar manner, a function can be fitted to the peak fiber stresses shown in

Fig. 5. This function finds its utility in predictions of fiber failure. The function is

(1- o)™
n = ¢(Z) exp| ——=———
"[ Yoy (z) (142
where o = (a-4{)/a as before,
2 2 %
0(®) = |2 + (6x37)
v(Z) = 131 -23% + 02322 (140)
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m(Z) = 14.037 - 15327 £ + 7.237 £2
- 1562833 + 0.1274 £* (14d)

and 1} and X are given by (10b) and (10c) respectively. When o = 1, the form given in
eq. (14a) represents the relationship for an infinite body split by a bridged matrix crack
with a center unbridged notch. The form given in eq. (14b) has been deduced from an
expression of Cui and Budiansky [23] and is asymptotically exact both for small and
large . Cui and Budiansky [23] have shown that this expression compares well with
their numerical results for X ranging from 0.4 to extremely large values. The function in
eq. (14a) has been plotted and compared with the numerical results in Fig. 5a. It can be
seen that the agreement is good. No comparison has been made between (14a) and
numerical results for values of O not equal to unity for values of X other than those
shown in Fig. 5a. Thus the accuracy of (14a) outside the range shown in Fig. 5a (apart
from @ = 1) is not known.

The form in eq. (14a) is valid for the infinite body only and forms cannot as yet be
given for the finite strip. However, based on the work of Suo et al. [19], in the case of
the finite strip with the matrix crack extending across the entire width so that a = w, the

form
M2 = 2/(1-£/w)? + [6% F2(¢/w) Z2]%/3 (15)

can be stated with F(¢{/w) given by 711b). The form in eq. (15) is an interpolation
between results for small and large 2 in the manner of Suo et al. [19] but using the
findings of Cui and Budiansky [23] to give accuracy for small £/w. For cases where the
matrix extends over only a fraction of the width of the finite strip, it is possible that

eq. (14a) can be used with ¢ (Z) given by the right hand side of eq. (15), (1-0) replaced
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by £ (w-a)/a(w-£) but V. retained as it is. The resulting behavior takes 1) from zero in
the absence of bridging to the known estimate for 1} when the matrix crack extends over
the entire width of the finite strip. However, no =ttempt has been made to check

whether this assertion is reasonable.

MATRIX FATIGUE CRACKING

The governing equation for matrix fatigue crack growth in fiber reinforced

composite is assumed to be simply the Paris law (McMeeking and Evans, [4])
da/dN = B (AKip/En)™ (16)

where B and n are material parameters for the matrix material. An underlying
assumption here is that the fatigue crack growth rate in the matrix is governed by the
crack tip stress intensity amplitude, AKp, in accord with the Paris law for the matrix
alloy alone. Therefore, the intact fibers contribute to the composite fatigue behavior
only through AKtip. In the calculation of AKyip, the composite is taken to be
homogeneous and orthotropic, and the crack front is assumed to be straight. In
practice, however, only the matrix is fatigue cracked when fibers remain intact, and the
crack front adopts a rather complex shape. As a consequence, the local stress intensity
factor amplitude will not generally be equal to the calculated AK(jp values established
through idealized bridging calculations. One approximate model for the effect is that
the average stress intensity factor amplitude at the matrix crack front is equal to
AKyip/ \j (1-f) E/Em (Budiansky Amazigo and Evans, [24)), accounting for the reduced
area of material being cracked as well as the elastic inhomogeneity. To permit
incorporation of this effect into the model, the modulus Em, has been used in eq. (16)

instead of Em. Thus, the Budiansky et al., [24] model would be accounted for by use of

4H:MS28(November 23, 1993)9:37 AM/mef

18




Em =V (1-) E/En. However, in this paper, Ey, will simply be assumed to be Er, and
any effect of this assumption will be compensated for in the empirical choice of a value
for T.

The fatigue crack growth law of eq. (16) was integrated with AKyip evaluated
from the expression in eq. (13) with AKA = AG \/;a- as for the infinite body. The
calculation was carried out for exponents n = 2 and 4 and for 4 values of AX, in each
case where AX, = AY a/a,. Note that AX, remains constant if AG is held fixed during
fatigue. The results for non-failing fibers are shown in Fig. 7a and 7b. The plots show
that for the load amplitudes assumed, the crack does not have to extend very far
compared to the original notch length for the rate of crack extension to diminish
dramatically.

The theoretical predictions of fatigue crack growth in Fig. 7 have two of the
features exhibited in the experimental results, i.e., a transient region in which da/dN
diminishes upon crack growth, and a seemingly steady-state region in which da/dN
remains almost constant. The non-dimensional parameter AX, that governs the
prediction is a combination of the original notch size, material properties and the fixed
applied load amplitudes. Fatigue crack growth curves for situations with a varying
load amplitude AG have not been presented because there are too many possibilities.
However, they can be pieced together in a rather complicated manner from the curves
for constant AX,. The appropriate procedure can be deduced from integration of
eq. (16).

It has been observed experimentally that at high values of applied stress
amplitude A0, the crack growth rate decreases first due to the fiber shielding, reaches a
minimum value and then increases with further crack extension, as exemplified by the
crack growth curve shown in Fig. 1 (Walls et al,, (5, 6]). The acceleration in crack

growth rate has been attributed to the occurrence of fiber failure, as suggested by the
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direct observations of fiber bridging and fiber fracture along the length of the matrix
crack (Walls et al., [5, 6])).

In practice, there is a statistical characteristic to the fiber failure process.
However, to incorporate the effects of fiber breaking into the fatigue crack growth
model just developed, a deterministic approach is adopted. The fibers are assumed to
have a unique strength S, such that they fail in the plane of the matrix crack when the
stress on them there reaches S. Both the bridging law eq. (3) and the Paris law eq. (16)
remain valid. The frictional pull-out effect of broken fibers on AKtp is neglected since
the deterministic fiber strength implies that fibers break at the matrix crack rather than
inside the material. Once the fibers begin to fail, the unbridged notch length is
continuously adjusted in the calculation to maintain a fiber stress at the unbridged
notch tip equal to the fiber strength. The conditions giving rise to this have been
presented and discussed already in connection with Fig. 5.

Of interest, however, is the relationship between the current unbridged segment
length 2¢ and the original notch length 2a, for a given fatigue problem. For simplicity,
attention will be confined to cases where AC is fixed during fatigue. The function in
eq. (14) can be used to predict £ vs. ap during fatiguing for given fiber strength. A
particular result is shown in Fig. 8 for crack growth in an infinite body. The dashed line
on the diagonal specifies £ = ap and so depicts the relationship prior to first fiber failure.
At the beginning of fatiguing, a = a, so the top right of Fig. 8 is the starting point for the
process. As the fatigue crack grows at first without fiber failure, the state of the
specimen will move down the dashed line on the diagonal towards the bottom as
indicated by the arrow. The state departs from the dashed line when fibers begin to fail.
The point of departure for several ratios of maximum applied stress to volume fraction
reduced fiber strength are marked on Fig. 8. Thereafter, as the fatigue crack grows, the

state of the specimen follows the relevant full line towards the top left of the diagram as
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indicated by the arrow. Each full line in Fig. 8 represents the relationship for the fixed
ratio of Omax/ fS' noted at the intersection of that full line with the diagonal dashed line.

If the fibers are weak or the maximum applied stress is high, the fibers break
close to the matrix crack tip (ap/a is close to unity) and the bridging zone is always a
small fraction of the crack length (£/a remains close to unity as the crack grows). This
means that fibers will continuously fail close to the matrix crack tip as the matrix crack
grows. In this case there will not be much shielding and the fatigue crack growth rate
will be similar to what would be expected in an unreinforced matrix. If the fibers are
moderately strong or the maximum applied stress is moderately high, the fibers remain
intact at first and a sizable bridging zone can develop. However when the first fiber
fails, say when ag/a = 0.5, subsequent fiber failure occurs fairly rapidly as the crack
grows. The unbridged crack length increases faster than the matrix crack length. In
that case the value of AK¢;p will increase quite rapidly as the matrix crack grows after
the first fiber fails. That means that the matrix crack growth rate will accelerate
significantly after first fiber failure. When the fibers are strong or the maximum applied
stress is modest, first fiber failure is delayed. However, after it occurs, say when
ap/a =0.1, many fibers fail essentially simultaneously and the unbridged length
increases very rapidly. This causes AKjp to jump to a higher value with a
corresponding sudden increase in the crack growth rate. As noted previously, when the
fiber strength is higher than a threshold value, they will never break and the fatigue
crack growth rate will persist at the low level associated with extensively bridged
cracks. The annotation on Fig. 8 makes it clear that the sensitivity to fiber strength is
quite marked, with the different types of behavior outlined in the last few sentences
occurs over a very narrow range of fiber strengths, or equivalently over a very narrow
range of maximum applied stress.

Plotted in Fig. 9 are the fatigue crack growth curves predicted from the Paris law

eq. (18) for infinitely large specimens taking fiber fracture into account. Without fibers
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breaking, the fatigue crack growth curves are the same as those in Fig. 7. In the
presence of fiber fracture three matrix fatigue crack growth curves are presented
corresponding to three different fiber failure strengths. If fibers are relatively weak,
fiber failure occurs early on, and a gradual transition is predicted. For stronger fibers,
however, the transition occurs later but becomes more abrupt as can be seen in Fig. 9.
This sudden increase of crack growth rate is due to the sudden lengthening of the
unbridged zone after first failure of stronger fibers as depicted in Fig. 8. Once the fiber
failure process starts for strong fibers, it tends to continue rapidly until most of the
fibers fail in the bridging zone that has been previously built up. As a consequence the
crack growth rate increases suddenly and is comparable to the fatigue crack growth rate

in the unreinforced matrix. This has been observed in experiments (Walls et al., {5, 6]).

FIBER FAILURE

The rapid growth of fatigue cracks after fibers have commenced failing, as
depicted in Fig. 9, suggests that an important strategy for design and use of fiber
reinforced metal components will be the avoidance of fiber failure. Once fibers begin to
fail after significant crack growth, they will quickly break along the fatigue crack. In
addition, further crack growth will be accompanied by more fiber failure. As a
consequence, the benefits of fiber reinforcement will be partially lost and if there are
many matrix fatigue cracks, fiber reinforcement may be significantly impaired.
Therefore, it can be suggested that the end of useful life of the composite material can be
considered to be the onset of fiber failure. It should be noted that fracture of the
composite material after fatigue crack growth will depend on a combination of the
matrix toughness and the fiber strength. This has been studied by Cui and Budiansky
[23]. However for high toughness matrices such as titanium alloys, fracture of the

composite material after matrix fatigue and fiber failure will depend primarily on
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matrix toughness. A very approximate estimate for residual composite strength after
fiber failure is therefore Kic/ ‘\/E where Kjc is the fracture toughness of the matrix
alloy. A more exact assessment of residual strength can be carried out using the more
accurate models of Cui and Budiansky [23]. However, an important point is that fiber
failure is a neressary precursor before the residual strength of the composite material
becomes a relevant consideration. Therefore, the life up to fiber failure is an important
determinant and the time between first fiber failure and composite fracture is likely to
be relatively short.

As noted previously, if the maximum applied stress is low enough, fibers will
never fail during matrix fatigue crack growth. It is useful to investigate the
circumstances which will ensure that fibers will remain intact throughout crack growth.
As implemented by Walls et al. [6], this can be done by plotting the ratio of the
maximum applied stress to the fiber strength against the intercepts of the curves in
Fig. 5a with 0. = 1 (where £/a — 0). The result, shown in Fig. 10, is a map determining
when fibers will fail and when they do not. The numerical results have been shown for
the infinite body in which case ao/w = 0. Below the line in the diagram, no fiber failure
will occur no matter how much matrix fatigue crack growth occurs. However, if a
component is highly stressed so that it operates above the line in the diagram,
eventually fiber failure will occur during matrix fatigue crack growth. Walls et al. [6]
have found this diagram to be effective in distinguishing the incidence of fiber failure
from nonfailure in experiments.

For comparison with the numerical results, a relationship derived from eq. (15)

has been plotted in Fig. 10. This is

2 2
3

Otorots] [ ome [ 8] ()l
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where 1 is given by eq. (10b) and F2 (ap/w) = sec (Tt ag/2w). It can be seen that the
prediction agrees well with the numerical results. Furthermore, the form of eq. (17)
indicates that the map can be generalized to the finite strip without significant
alteration. In view of this, the map in Fig. 10 has been presented in a form allowing for
the notch to width ratio of a finite strip.

The map in Fig. 10 can be adapted to show the extent to which crack growth can
occur in an infinite body prior to fiber failure. If the loading of a very large component
is such that according to Fig. 10 fiber failure will eventually occur, the matrix crack will
reach the length 2a¢ and then fibers will commence failing. The ratio of this length to
the original notch length is shown in Fig. 11 for various levels of loading and original
notch length taking fiber strength and volume fraction into account. For a given notch
length, the contours in Fig. 11 indicate the permissible maximum stress for a given
extension of the matrix crack. For example, the contour marked ag/a, = 2 shows the
relationship between maximum applied stress and notch length which will produce
exactly a doubling of the flaw length before fiber failure will begin to occur. Similarly
the contour for af/ao = 20 shows the maximum stress which will exactly cause the
matrix crack to reach 20 times the length of the initial notch before fiber breakage. The
line with a¢/ao = oo is the boundary between fiber nonfailure and failure from Fig. 10
and for a maximum stress lying on or below this contour, the matrix crack can extend to
infinity without fiber failure. The plots in Fig. 7 can be used to predict how many cycles
of constant load amplitude wiil occur before the matrix crack reaches the extent at
which fiber failure will commence. Thus, for large components, Figs. 7 and 11 can be
combined to provide a basis for life estimation up to fiber failure for values of AX,

ranging from 1 to 8.
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CONCLUDING REMARKS

A model has been presented for matrix fatigue crack growth emanating from a
finite notch. Predictions have been presented for the relationship between the matrix
crack length and the number of load cycles of a given amplitude. In addition, the
matrix crack length when fibers will begin to fail has been identified in terms of fiber
strength, maximum applied stress and initial notch length. These predictions have been
compared to experimental data for fatiguing of titanium/SiC fibrous composites and
the model has been shown to work well (Walls et al.,, [6]). As mentioned in the
introduction, the comparison between the model and the data has been based on a
number of empirical steps. Over and above the use of empirical values for fiber and
matrix elastic moduli, fiber volume fraction, fiber diameter and monolithic matrix
fatigue crack growth rates, a single value for the interface shear stress 7 is determined to
ensure that the steady state fatigue crack growth rate in one experiment is accurately
predicted. The transient prior to steady state matrix fatigue crack growth is then
predicted accurately without any further empiricism. Furthermore, it is then found that
when no fiber failure occurs, the model with the same value of T can predict the results
of other experiments carried out at different load amplitudes and with different notch
lengths.

Fiber failure is treated in a similar way. A value of fiber strength S is determined
that will cause the model to accurately predict the onset of fiber breakage in one
experiment. Without further empiricism, the model then accurately predicts the rate of
matrix fatigue crack growth after the initiation of fiber breakage in that experiment. In
addition, without alteration to parametric values, the model accurately predicts the
onset of fiber failure when different initial notch lengths and maximum applied stress
magnitudes are used in the experiments. The value of T used in the comparison of the

model with experimental data is consistent with in situ measurements by push out of
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fibers (Warren et al,, [16]) after fatigue cycling of the specimen. In addition, the fiber
strength used in the model is in good agreement with the strength of fibers tested after
being removed from the composite by dissolution of the matrix. This strength is less
than that for pristine fibers and the reduced value is thought to be due to processing of

the composite material.

ACKNOWLEDGMENT

This work was supported in part by DARPA through the University Research
Initiative at UCSB (ONR Prime Contracts N00014-86-K0753 and N-00014-93-1-0224).
The work of GB was in addition supported by NSF through a Research Initiation Award
MSS-9210250. Provision of the ABAQUS Finite Element Code by Hibbitt, Karlsson and
Sorensen Inc. through an Academic User's License is gratefully acknowledged.

REFERENCES

1. Naik, R A. and Johnson, W.S., Third Symposium on Composite Materials: Fatigue
and Fracture, ASTM STP 1110 (edited by T.K. O'Brien), p. 753, American Society
for Testing and Materials (1991).

2. Kantzos, P., Telesman, J. and Ghosn, L., NASA TM-103095 (1989).

3. Sensmeier, M.D. and Wright, P.K,, in "Fundamental Relationships between
Microstructure and Mechanical Properties of Metal Matrix Composites”, (edited
by P.K. Liaw and M.N. Gungor), p. 441, The Minerals Metals and Materials
Society (1990).

4. McMeeking, R M. and Evans, A.G., Mech. of Materials, 9, 217 (1990).

5. Walls, D., Bao, G. and Zok, F., Scripta Metall. Mater., 25,911 (1991).

6. Walls, D., Bao, G. and Zok, F., Acta Metall. Mater., 41, 2061 (1993).

7. Jansson, S., Deve, H. and Evans, A.G., Metall. Trans., 22A, 2975 (1990).

4H:MS28(November 23, 1993)9:37 AM/mef

26




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

24.

26.

27

Marshall, D.B., Cox, B.N. and Evans, A.G., Acta Metall., 33, 2013 (1985).
Marshall, D.B. and Cox, B.N., Acta Metall., 35, 2607 (1987).

McCartney, L.N., Proc. Roy Soc. Lond., A409, 329 (1987).

Marshall, D.B. and Oliver, W.C., ]. Amer. Ceram. Soc., 70, 542 (1987).

Cox, B.N., Acta Metall. Mater., 38, 2411 (1990).

Cox, BN. and Marshall, D.B., Fatigue Fract. Engng. Mater. Struct., 14, 847 (1991).
Cox, B.N. and Lo, C., Acta Metall. Mater., 40, 69 (1992).

Cox, B.N. and Lo, C., Acta Metall. Mater., 40, 1487 (1992).

Warren, P, Mackin, T. and Evans, A.G., Acta Metall. Mater., 40, 1243 (1992).

Aveston, J., Cooper, G.A. and Kelly, A., in The Properties of Fiber Composites,
IPC Science and Technology Press, p. 15 (1967). ’

Hutchinson, J.W. and Jensen, H.K., Mech. of Materials, 9, 139 (1990).

Suo, Z.,, Ho. S. and Gong, X., Trans. ASME, Series H (J. Eng. Mat. Tech.) 115, 319
(1993).

Rice, J.R., ]. App. Mech., 35, 379 (1968).

Hibbitt, H.D., Karlsson, B.I. and Sorensen, E.P., ABAQUS User's Manual Version
4.8, Hibbitt, Karlsson and Sorensen, Inc., Providence, RI (1990).

Tada, H., Paris, P.C. and Irwin, G.R., The Stress Analysis of Cracks Handbook, Del
Research, St. Louis (1985).

Cui, L. and Budiansky, B., to be published.
Budiansky, B., Amazigo, J. and Evans, A.G., |. Mech. Phys. Solids, 36, 167 (1988).
Sih, G.C., Paris, P.C. and Irwin, G.R., Int. ]. Frac. Mech., 1, 189 (1965).

Bao, G., Ho, S., Suo, Z. and Fan, B., Int. ]. Solids Struct., 29, 1105 (1992).

4H:MS28(November 23, 1993)9:37 AM/mef




APPENDIX

GOVERNING EQUATIONS

The equation governing the stress distribution along a bridged matrix crack
subject to a monotonic applied stress Omax and the bridging law eq. (1) is (McCartney,
(10D

—_ 1 = —
T2(x)/16 + L-a T, (%) H(t,X)dt = T+1-%> (A1)

where
25 =4 7\. -E Gs/ a (A2)
and O is the stress transmitted through the matrix crack by the fibers defined as a

traction on the crack area. Thus O is equal to the actual stress in the fibers at the matrix

crack multiplied by the volume fraction of fibers. In addition, i is given by eq. (2),
1-o=¢/a (A3)

2¢ is the length of the unbridged segment, 2a is the length of the matrix crack, X =x/a

where x is the distance from the center of the notch,

le1 2 + \1-t|
Ixf- \[l tzl (A4)

H(t,x) =

T = 4AECmax/a = Z¢/a (A5)
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with X given by eq. (10c) and E is an effective elastic modulus taking the material
orthotropy into account.

Consider a plane strain, center crack running in the x-direction in an infinite,
orthotropic body. Results from Sih, Paris and Irwin [25] for cracks in orthotropic bodies
can be used to provide solutions for the point force on a crack surface and therefore for
fully and partially bridged cracks. This justifies the use of Ein (A1). For example, when
the coordinates x and y coincide with the principal axes 1 and 2 of the orthotropic
material, the crack opening displacement 84 due to the remote applied tension G is (Bao

et al, [26])

2L E1 (A6)
provided that
JEL E5 1
L2 (vip vi)2 = 1
2Gy, ( ) . (A7)
Consequently, the effective Young's modulus E is given by
T ’ ’ ’ 1
E = E5(Ej/E5]* (AB)

where
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Ei = E/(1-vi3va)

Ey = Ep/(1-vyvy)

viz = (V2 + Vi3 va2)/(1-vi3 va)

vir = (Va1 + Va3 var)/(1- Va3 va). (A9)

In the cases where p is close to 1, E can be approximated by

N

ol l+p ’ ’ ’ %
E = ( 2 ) E3[E1/E3]* (A10)

For more general situations Cui and Budiansky [23] have provided numerical values for
orthotropy factors A which can be used to determine E. The relationship between E
and A is

1-v2 (A11)

in which V is the Poisson’s ratio of fiber and matrix which are assumed to be the same.
The orthotropic modulus E can be used to determine the opening of the crack due to the
applied load and for the effect of fibers on the crack opening (Cui and Budiansky, [23)).

For a bridged matrix crack subject to load cycling such that the amplitude of the
applied load is A0 the bridging behavior is given by eq. (3) and the governing is
(Marshall and Cox, [9]; McMeeking and Evans, {4])

1
Ax2(%)/16 + L_a AZ(t) H(t,X)dt = AZV1- (A12)

where AX is given by eq. (4) and
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AXs = 2AEAcGg/a (A13)

and AG; is the amplitude of the stress cycle at the matrix crack surface. Note that as
shown by McMeeking and Evans [4] T and AT obey exactly the same equation so that
results for them can be interchanged.

The equations were solved by standard methods discussed by Marshall and Cox

[9].
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

A typical fatigue crack growth curve for a Ti/SiC composite. The length Aa of
the matrix fatigue crack beyond the original notch is plotted against N the
number of load cycles. The actual dimensions of the specimen are shown in
the insert.

Schematic of a center crack in an infinite body under remote tension, with
bridging fibers in the matrix crack wake.

Distributions of the non-dimensional bridging stress for different unbridged
lengths for AX =1.

Non-dimensional stress intensity ranges versus normalized crack extension for
different applied stress amplitudes.

Plots giving the relationship among the length of the crack, a, the unbridged
segment ¢, the maximum stress in the fibers S and the maximum applied load

Omax-

Full lines show the normalized stress intensity ranges versus normalized crack
extension for a finite width specimen computed by finite elements. The
dashed lines show the results for an infinite body computed by solution of the
integral equation.

Predicted fatigue crack growth curves when fibers do not fail. The normalized
crack extension is plotted versus the normalized number of load cycles.
(a) Paris law exponent n = 2; (b) Paris law exponent n = 4.

Fiber breaking rate related to fiber strength, applied load and matrix crack
growth rate; 2£ is the length of the current unbridged segment of the crack,
whereas 2a, is the length of the original unbridged notch.

Predicted fatigue crack growth curves in the presence of fiber failure for n = 2
and different values of AX,,.
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Fig. 10 Map for fiber failure and non-failure in a finite strip with a central notch in
which a matrix crack can grow by fatigue.

Fig. 11 Relationship between applied stress, fiber strength and notch length for a
specified extension of the matrix crack before fiber failure will occur.
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ABSTRACT

A theoretical model is developed for thermomechanical fatigue cracking in fiber
reinforced metal matrix composites. Interfacial debonding is assumed to occur readily,
allowing fibers to slide relative to the matrix resisted by a uniform shear stress. The
fibers therefore bridge any matrix crack which develops. The crack bridging traction
law is obtained, including the effect of thermal expansion mismatch between the fiber
and the matrix and a temperature dependence of the frictional shear stress. Any
combination of thermal and mechanical cycling is considered as long as the slip zone
along the fiber increases in length monotonically during each increment of cycling.
However, for clarity, the results are presented in terms of in phase and out of phase
cycling of the thermal and mechanical loads at the same frequency. For each case, the
stress distributions in the bridging zone as well as the stress intensity factors at the
crack tip are computed for relevant regimes of the thermal and mechanical loading
parameters. Predictions are made of the matrix fatigue crack growth under combined
thermal and mechanical loading conditions. It is found that when the thermal
expansion coefficient of the fiber is less than that of the matrix, a significant increase in
the crack growth rate results in out-of-phase thermomechanical fatigue. On the other
hand, there is decreased tendency for fibers to fail in this case. For in-phase
thermomechanical fatigue, the crack growth rate is reduced but the stress in the fiber is
larger than that due to mechanical loading alone, resulting in an increased tendency for
fiber failure. The implications for life prediction for fiber reinforced metal matrix

composites are discussed.
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1. INTRODUCTION

Fiber reinforced metal matrix composites are designed and developed for high
performance aerospace applications, including advanced gas turbine engines and
supersonic airframes. A combination of cyclic thermal and mechanical loading in these
applications may cause thermomechanical fatigue (TMF) cracking in the composite,
perhaps reducing the load carrying capacity, and potentially leading to failure.
Prediction of fatigue crack growth in fiber reinforced metal matrix composites under
thermomechanical loading is therefore of critical importance in the safe design of
composite structures.

In many fiber reinforced metal matrix composites, the fibers are made of ceramic
with a coefficient of thermal expansion (CTE) 0 lower than that of the metal matrix Oy,
Thus during cool down, axial tensile stress builds up in the matrix, while parallel
compressive stress results in the fibers; the opposite is true when the composite is
warming up. The thermal stresses and stress amplitudes due to CTE mismatch can be
very high, possibly exceeding the applied mechanical stress and its range. The history
of thermal stress and mechanical stress can be very complex, since both the applied load
and the temperature can vary independently with time. However, for this initial study,
two limiting cases are considered: the temperature change is completely in phase (IP) or
completely out-of-phase (OP) with the mechanical loading, as shown in Fig. 1.
However, certain of the results can be interpreted for arbitrary TMF cycling.

The most effective application of metal matrix fiber composites is for longitudinal
stressing of uniaxially reinforced materials. To preserve good toughness and fatigue
properties, the fiber /matrix interface is relatively weak. Debonding in shear occurs
readily along the interface, allowing the fibers to slide relative to the matrix with drag
provided by friction. Due to these phenomena, fibers remain intact in the tip region of a
matrix crack as depicted in Fig. 2. This permits the fibers to bridge the matrix crack,
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thus reducing the crack tip stress intensity. In the absence of thermal loading, crack
bridging models have been developed (e.g., Marshall, Cox and Evans, 1985; Marshall
and Cox, 1987; McCartney, 1987; Hutchinson and Jensen, 1990) based on the justifiable
assumption that the frictional sliding shear stress T is a constant along the interface.
These models have been used extensively in fiber bridging calculations (Marshall et al.,
1985; Marshall and Cox, 1987; McCartney, 1987; Marshall, 1991; Cox, 1991; Cox and Lo,
1992). Corresponding mechanical fatigue crack growth analyses have been performed
for metal matrix composites by McMeeking and Evans (1990), Cox and Lo (1992) and
Bao and McMeeking (1993). Comparisons between the model predictions and
experimental measurements at room temperature made by Walls, Bao and Zok (1993)
show good agreement.

Without thermal loading, the bridging fibers exert closure forces on the crack
surfaces. This increases the fracture and fatigue resistance of the composite. With
thermal loading, the bridging fibers can prop open the crack. This will occur if the
thermal stresses are large enough and place the fibers in compression. In this case, the
effect of the bridging fibers will be to increase the stress intensity at the crack tip.
Therefore crack bridging can be detrimental to fatigue crack growth rather than helpful.
In addition, the bridge contributions are different in in-phase and in out-of-phase
thermomechanical fatigue.

Some previous work is available for thermomechanical behavior of frictionally
constrained fiber reinforced composites. The matrix-cracking model of Budiansky,
Hutchinson and Evans (1986) included the effect of thermal strain mismatch and
showed that thermal strains can promote matrix cracking. In addition, Cox (1990) has
analyzed extensively the behavior of a fiber near a free surface due to cyclic thermal
strains. However, no analysis has been carried out for bridging fibers in a finite matrix

crack during thermomechanical load cycling.
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In this paper, matrix fatigue crack growth in fiber reinforced metal matrix
composites under combined thermal and mechanical cyclic loading is analyzed and
quantified. A crack bridging model is developed first to include the effect of thermal
stress. A bridging model is then used to calculate the stress distribution in the bridging
zone and the crack tip stress intensity range for both fully bridged and partially bridged
cracks. The effect of thermal load on matrix fatigue crack growth and composite fatigue
life until fiber failure are predicted using nondimensional loading parameters. Different
roles of fiber bridging in in-phase TMF and out-of-phase TMF are revealed. Finally, the
implications of the present work for life prediction for metal matrix composites under

thermomechanical loading conditions are discussed.

2, CRACK BRIDGING ANALYSIS
21 The Crack Bridging Law

Consider a single mode I crack bridged by intact fibers as shown schematically in
Fig. 2. The behavior of intact fibers in the bridging zone is represented by a cylindrical
model consisting of a single fiber embedded in a matrix cylinder, as shown in Fig. 3.
Shear lag analysis following Budiansky et al. (1986), McCartney (1987) and Cox (1990)
shows (Appendix A) that under monotonic thermal and mechanical loadings, the crack
opening displacement  is related to the bridging stress t by

O = Alt + fE¢ (0 —- Oy T2 (1)

where T is the temperature defined with T = 0 in the stress free state, and A is a material

parameter given by
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D(1-f)?E2,
4f2E2E;1 V)

where D is the fiber diameter, f is the volume fraction of fibers, Ep, is Young's modulus
for the matrix, E¢ is the Young's modulus for the fiber, E is the rule of mixtures axial
modulus for the composite (see Appendix A) and 7 is the shear stress at the sliding
interface at temperature T. It should be r.oted that in certain circumstances the crack
will tend to close rather than open during monotonic loading. For example, if T is
negative and Oy is greater than O, the crack will tend to close when t = 0. This will
also be true if t is positive but small. It will be assumed that the crack can remain open
and traction free on the matrix surface at all times so that matrix closure effects will not
be taken into account. This will generally be true for the common situation in which
Om > 0 and T is negative. Without thermal loading, the crack bridging law (2)
becomes & = A t2 which has been used in previous fatigue studies (e.g., Bao and
McMeeking, 1993).

Following McMeeking and Evans (1990), the crack bridging law under cyclic
loading conditions is similar to that in (1) with

1 2
Ad = :tEl[At + fE¢ (0 — o) AT &)

where A8 is the change in crack opening displacement, At is the change in bridging
stress, AT is the temperature change as depicted in Fig. 1. The sign preceding A should
be chosen according to whether At + fE¢ (0 - Oty AT is positive or negative. The
positive sign is used when this term is positive and the negative sign is used when the
term is negative (see Appendix A). The parameter A is that given in eq. (2) except that T
is replaced by [T (T1) + T (T2)]/2 where T1 and T are the temperatures at the extremes
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of the cyclic range; i.e. the relevant interface shear stress is the average of the interface
shear stresses at the extremes of the cycle. The temperature dependence of T can be due
to a temperature influenced change in material properties or due to the change of the
thermal residual compression on the fiber-matrix interface which will affect friction.
The expression in (3) is valid as long as the current slipping zone has increased
monotonically in length from the beginning of the increment as given by eq. (A8) &
(A10) in Appendix A. Thus, separate increments or half cycles must be defined to
account for each stage in which the slip direction reverses, which means every time
At + f E¢ (0 — Oipyy) AT changes sign. On this basis, arbitrary TMF can be accounted for.
For example, if the temperature is rising slowly while the mechanical stress is cycled
rapidly, each mechanical stress change would be counted as a half cycle if the
magnitude of At is sufficiently large to change the sign of At + f E¢ (0¢ ~ Olmy) AT even
though AT is the same for each mechanical stress half cycle. On the other hand, if
At + f Ef (0l - Olyy) AT has the same sign during each mechanical stress half cycle, the
TMF half cycle would be the single increment lasting until the temperature rise is
completed. Arbitrary TMF can therefore be studied by repeated application of eq. (3)
with each half cycle accordingly identified each time At + f Ef (0 - Olm) AT changes

sign.
22  The Bridging Stress Distribution

There are two key quantities pertaining to the thermomechanical fatigue
behavior of fiber reinforced metal matrix composites. One is the stress intensity
amplitude at the crack tip which governs the matrix cracking and the other is the
maximum stress in the bridging fibers which dictates fiber fracture. Both can be
obtained from the stress profile in the bridging zone. Typically, the fatigue specimens
for matrix cracking fatigue tests are notched panels with finite widths. The calculation

of bridging stress distribution in such specimens can be carried out using finite
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elements (e.g., Bao and McMeeking, 1993) or by solving integral equations (Cox and Lo,
1992). To gain some insight into the role of crack bridging in thermomechanical fatigue,
attention in this paper is focused on a mode I, plane strain crack in a large body, as
shown schematically in Fig. 2 and the analysis of finite bodies will be deferred to future
work. Specifically, a linear elastic composite infinite body contains a center crack of
length 2a and is subjected to remote cyclic loading AG. The unbridged center section
has the length 2a,, while the sections of length a - a, at both ends of the crack represent
the segment bridged by intact fibers. Clearly a fully bridged crack is the special case

ap = 0. A partially bridged crack can be created by fiber failure or by the initial presence
of a notch. Thus 2a, can be the initial notch size but it can also be the current unbridged
length due to fiber failure.

Under cydlic loading conditions, the crack opening displacement change A in
the bridging zone is related to the change in bridging stress At by the crack bridging
traction law eq. (3). The elastic analysis of the body follows a standard approach as
used by Marshall et al., (1985) and McCartney (1987). Ad is related to the amplitude of
the applied stress AG and the amplitude of the bridging stress At by

Ad = Adp + Adp @)

ASA = %AG\/&Z - X2 )

where

is the crack opening change induced by the applied stress amplitude AG and

ASp = —% j:o At(E)H(&,x,a) dE ©
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is the contribution to A3 due to the bridging fibers. In eq. (5) & (6), E is the effective
Young's modulus considering material orthotropy (Bao and McMeeking, 1993) and x is
the position in the bridging zone measured from the center of the notch (Fig. 2). The

Green's function H in eq. (6) is given by

lJaz_xz _\ﬁlz_ézl *

Substitution of egs. (3), (5) & (6) into eq. (4) and use of suitable normalizations

shows that, the governing equation for At can be expressed as

£[aZ, (%) + 0] /16 + [ AL, ()H(EX1)dE = AZV1-%2 @

where X = x/a,

_ D@-f)*E2 EAt

_a2p2 ®
AL, = AT = D(1-f)°E,EAc

2f2E2E;ta 22 E2E; 1a )

are the nondimensional bridging stress amplitude and nondimensional applied stress

amplitude, respectively, and

D(1-f)? E2 E(a¢ ~0 ) AT

A0 = 3
2fE‘ ta (10)

is the nondimensional thermal stress amplitude. The positive sign preceding the
bracketed term should be used if the term in brackets is positive whereas the negative
sign should be used if the term in brackets is negative.
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2.3  Crack Tip Stress Intensity and Maximum Bridging Stress

The crack tip stress intensity amplitude, AK4p is given by
AKﬁp =AKaA + AKp (11)

where AKp = AO‘\/;t_a_ is due to the applied stress amplitude and

AKp = —2\/—L At(x) dx

a2 —x (12)

is the stress intensity amplitude due to crack bridging. Using the nondimensional

parameters defined in eq. (9) & (10), we have

Lo _ g2 p ARG,
Ac+na MAL ‘ao/a [1_ g2 (13)

All stress intensity factors given below are computed from eq. (13).

Critical to fiber fracture is the maximum stress in the bridging zone. As
demonstrated by McMeeking and Evans (1990), such a stress can be obtained by solving
eq. (8), but with the quartities involved redefined. Specifically At/2 in eq. (9) should be
replaced by the bridging stress t; AG/2 and AT/2 in eq. (9) & (10) should be changed to
the applied stress O and the temperature T (measured from the stress-free state),
respectively. The solution to eq. (8) will then give the bridging stress t(x) arising due to
monotonic loading. Fiber failure models can be applied to the bridging stress to assess
the extent of fiber fracture. The values for G and T used in this calculation should be
those occurring simultaneously which produce the largest value for

¢ = 0 + f Ef (0 - Oim) T, during the load cycle. This will produce the highest fiber

41:MS32(April 21, 1994)3:27 PM/mef

10




stresses in the cycle. In certain circumstances, the largest value of ¢ will be due to the
thermal stress alone in the absence of applied load. For example, this will be the case in
a material with Oy, > O which is operated at modest applied stress and below its
processing temperature, but above room temperature. The largest value of ¢ will occur
at room temperature before warming up and prior to the application of load. However,
if fiber failure were to occur due to thermal stresses alone, the material would be
impractical. Therefore, the relevant stresses to be used in connection with fiber failure

are those occurring when ¢ has its largest value during load cycling.

3. FULLY-BRIDGED MATRIX CRACKS
Wher the matrix crack depicted in Fig. 2 is fully bridged, with ap = 0, the analysis
can be carried out using the equations in Section 2. Upon introduction of an effective
bridging stress amplitude Adyp
Adp (x) = At(x) + fEf(0f — Om) AT (14)
and an effective applied stress amplitude A

AP = ACG + fEf(0f - Op) AT (15)

and with the definitions

D(1-f)>E2 EA¢, A = D(1-f)2E2 EA¢
2¢2E2E;ta 22 E*E;ta  (16)

Ad’b = Azb + Ae =

the governing equation for Adp, eq. (8), becomes
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[a0, ) /16 + [ 40, E)H(EX,1)dE = A01-%2 )
The term
j ABH(E,X,1)dE = Aej (&,%,1)dE = AB1- (18)

has been added to both sides of eq. (8) to obtain the final result. The result in eq. (18)
arises because A is, of course, independent of &.

The negative sign preceding the bracketed term in eq. (17) has been dropped.
This can be done because experience has shown that if A® is positive then so is ADy, (%)
for all . If A® is negative, the solution for A®y, (X) can be found by simply reversing
the sign of the solution obtained for positive A®. The expression eq. (17) is identical to
the governing equation used by McMeeking and Evans (1990) for the fully bridged
isothermal fatigue case. Consequently, the value for AKp obtained by McMeeking and
Evans (1990) for the fully bridged isothermal case is applicable to thermomechanical
fatigue of fully bridged cracks by replacement of AG wich Ad. The effect of thermal
stress in the fully bridged case is as if the applied load amplitude were augmented by
f Ef (Oim - Oim) AT. This result is analogous to the finding of Budiansky et al. (1986) that
steady matrix cracking is driven by the augmented stress ¢ = G + f E¢ (0l - 0ty T.

Note that the augmentation of the stress amplitude is different in the cyclic case
depending on whether in-phase or out-of-phase loading is occurring. In in-phase
loading, AG and AT have the same sign. If Oum exceeds 0 (usually the case with
ceramic fibers in a metal matrix), it follows that in-phase cycling leads to a reduced
augmented stress amplitude A$ compared to isothermal fatigue at the same applied
stress level. In general, this will mean that fully bridged fatigue cracks propagate more

slowly due to in-phase thermomechanical cycling compared to isothermal fatigue at the
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same applied stress. On the other hand, with 0ty > 0, out-of-phase cycling

(AG /AT < 0) will lead to an increased augmented stress amplitude A$ compared to
both isothermal fatigue at the same applied stress and compared to in-phase
thermomechanical cycling with the same AG and the same magnitude for AT. It follows
that when 0, > Oy, the fully bridged fatigue crack growth rate for out-of-phase cycling
will exceed the rate for isothermal fatigue at the same AG and this latter rate will, in
turn, exceed the rate for in-phase thermomechanical cycling at the same AG and with
the magnitude of AT the same as for the out-of-phase case. An exception to this is
in-phase cycling for metal matrix composites with very large temperature changes. If
the temperature change is large enough, A can have the opposite sign from AG since
O — Olm will be negative. If the absolute value of A¢ is then greater than the absolute
value of AG, the rate of fatigue growth in in-phase TMF will be greater than that for
isothermal fatigue. This is therefore an exception to the general rule that for metal
matrix composites, out-of-phase TMF fatigue cracking will = faster than isothermal
TMF which will in turn out pace in-phase TMF. Another interesting point is that
thermal cycling without mechanical stress causes a finite Akijp. Thus thermal cycling
by itself will cause fatigue crack growth of bridged matrix cracks.

Figure 4 is a plot of the crack tip stress intensity against the thermally augmented
applied stress for both the monotonic and cyclic loading cases, as indicated in the figure.
These results are valid for arbitrary TMF where each half cycle is defined to occur
whenever A changes sign. It should be recalled that in the cyclic case, T is the average
of the interface shear stress at the extreme temperatures of the cycle, whereas T is the
current value in the monotonic case. Notably in Fig. 4, AKyip increases monotonically
with A¢. This is confirmation that, when 0im > 0, in out-of-phase thermomechanical
fatigue the matrix crack growth rate will be larger than that in isothermal mechanical
fatigue, and that the opposite is true for in-phase TMF when O > 0. Note that Fig. 4 is
plotted with absolute values for ¢ or A¢ along the abscissa. This permits the use of the

41:MS32(April 21, 1994)3.27 PM/mef




14

figure when ¢ or A¢ is negative. Clearly, in the case where ¢ or A¢ is negative, so will
¢ \[n_a- and Ad \/E and thus Kip and AKjp will, in turn, be negative. The meaning of
a negative AKtip should be understood a follows. In the isothermal case when AG is
applied to increase the stress on the body, the crack will tend to open, since AK(ip will
be positive. AKﬁp is negative when f E¢ (0f ~ Olm) AT/AG is less than -1 and when the
mechanical load is increased (i.e. addition of a positive AG to the existing load) the crack
will tend to close, this effect being caused by the thermal stresses. The behavior of the
crack opening will therefore be out of phase with the applied mechanical load, opening
on unloading and closing on reloading.

With less than 2% error in the range 0 < |A®| < 8, the numerical results given in

Fig. 4 can be represented by the following fitting formula

8Ky /A0ma = (AG[/12x[1 - 0030 In(2jad|/3)] g,

Eq. (19) is asymptotically exact for small | A®|, but not so accurate for larger values of
|A®]. In typical metal matrix composites (e.g. SiC in Ti alloy), it would be unusual for
|A®| to be greater than 4 (Walls et al., 1993). However, for completeness, an
approximation for large values of A® will be given. For large values of |A®|,
McMeeking and Evans (1990) offered the approximation

AKyp 3.05 5.5
— = 1-— A0[+33 + 2=

which is asymptotically exact for large |A®|. The approximations in eq. (19) & (20)
differ by less than 3% at A = 8.
To show more clearly how AKyip changes with the crack length a, in Fig. 5, a

nondimensional stress intensity range, which does not involve crack length,
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(Axﬁp) PEEc |
Ad J|D(1-£)? E2 E|a¢|

is plotted as a function of the nondimensional crack length

2f2E%E; ta
(1-f)2 E2 E|a¢|D 1)

n = 1/|Ad| =

The normalized AKjyjp increases rapidly when 1] is small; at values of | 2 1, the
normalized AKtip essentially reaches a steady-state value of 1/ \/ﬂ

Following McMeeking and Evans (1990), the governing equation for matrix
fatigue cracking under thermomechanical loading conditions is taken to be the Paris
Law

da/dN = B(AKp|/Em) 22)

where B and n are material parameters for the matrix material; Ep, = \j (1-f) EmEis an
effective modulus accounting for the reduced area of material being cracked as well as

the elastic inhomogeneity and anisotropy (Budiansky, Amazigo and Evans, 1988). The
steady state AK¢p, which is a good estimate if ] as defined in eq. (21) is greater than 1,
is given by

up 24f2E2E 1

1

22 = 312

AKSS. = [(l’f) EmED'A¢IJ
(23)

so that the steady state matrix fatigue crack growth rate for fully bridged cracks is
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dN 24f2E%E¢ 1 24)

(E)ss _ B[(l-f)Em D|A¢|3J2
where B, = 'V (1-f) Ep, E has been used and only positive roots should be considered.

It follows that during steady state growth of a fully bridged crack, the number of cycles
to grow the crack from an initial fully bridged half length of a; to the current half length

ais

NS - [ 24f2E?E¢ 1 ]7 (a-a;)
(1-f)E,, D]a¢f B (25)

where only positive roots are used. Relatively few materials will be such that 1 is less
than 1 for fully bridged cracks, so the estimate in eq. (25) will usually be valid.
However, if 1 is less than 1, the numerical results in Figs. 4 & 5 and the estimates given
in eq. (19) and (20) can be integrated numerically to predict the fatigue crack growth
curves for fully bridged cracks during TMF in which the temperature and mechanical
loading are cycled at the same frequency, either in-phase or out-of-phase. The results of
such numerical calculations are shown in Fig. 6a & 6b. These integrations were carried
out with an initial crack length such that 1 = 0.025. Thus, in the plot in each case

M =0.025 when N = 0. However, curves for any case with an initial crack length greater
than M = 0.025 can be obtained simply by translating the origin. In Fig. 6a & 6b, it can be
seen that the curves are almost linear at 7] = 1 reflecting the near steady state crack

propagation occurring there.

41:MS32(April 21, 1994)3:27 PM/mef




17

4. PARTIALLY-BRIDGED MATRIX CRACKS

Consider a partially-bridged crack in a large body with an unbridged segment
2a,, as shown schematically in Fig. 2. The bridging stress distributions are calculated by
solving eq. (8) numerically (Marshall et al., 1985; McCartney, 1987) for various values of
the crack length ratio a/a, and the nondimensional mechanical and thermal loading AX
and A@. Displayed in Fig. 7a are bridging stress profiles for as/a = 0.5, AG = 0 for
various A@8. This case is thus subject to thermal loading only without applied stress. It
can be seen clearly that a negative A8 causes a positive ALy and vice versa. Sincea
negative value of AXp, means that the increment of bridging stress is compressive, such
bridging stress increments cause an increase in the stress intensity factor. Since the plot
in Fig. 7a can also be used to determine bridging stresses induced by monotonic heating
or cooling from a stress free state, the compressive bridging stresses in Fig. 7a show that
thermal stress can prop open partially bridged matrix cracks and cause a positive stress
intensity factor. This will occur if T is negative and Oim exceeds O as is the case
typically for metal matrix composites which are cooled down from their processing
temperature. In the cyclic case, the thermal bridging stresses will cause a crack tip
stress intensity factor amplitude. Thus purely thermal cycling will cause matrix fatigue
crack propagation for partially bridged cracks.

Fig. 7b shows the bridging stress distributions for combined mechanical and
thermal cycling when AZ = 0.25 and ap/a = 0.5. Results for both positive and negative
A0 are shown. Note that for most metal matrix composites with ceramic fibers,

O < Om. Thus for such typical cases A8 < 0 represents in-phase TMF while A8 > 0
represents out-of-phase TMF. All curves in Fig. 7b have peak stresses at the notch root
indicating that fiber fracture is likely to start there. The bridging stress amplitude near
the crack tip is compressive when A8 is positive. This occurs because the crack opening

at the tip is zero and eq. (3) shows that the bridging stresses have to be compressive to
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sustain this when A6 is positive. Similarly, when A8 is negative, the bridging stress at
the crack tip has to be tensile. Thus a major portion of the differences in the results
shown in Fig. 7b is simply the offset caused by this effect.

It is evident from Fig. 7b that, compared with the purely mechanical fatigue case
(A8 = 0), the bridging stress is lower when A is positive and is higher when A8 is
negative. Consequently, the crack tip stress intensity amplitude is expected to be higher
when A8 is positive. However, when A@ is negative the maximum stress in the bridging
zone is higher. Therefore, in the typical case in which positive A8 represents
out-of-phase TMF, the crack tip stress intensity amplitude is greater than in the
isothermal case with the same applied stress. Similarly, in the typical case in which
negative A0 represents in-phase TMF, the crack tip stress intensity amplitude is lower
than in the isothermal case. This ranking is the same as was found for fully bridged
cracks. However, the maximum bridging stress, which will tend to induce fiber failure,
is higher in in-phase TMF in the typical case than in the isothermal case and is lower in
out-of-phase TMF than in the isothermal case. Thus, in typical cases, in-phase TMF will
cause less rapid matrix fatigue crack growth than the isothermal case at the same stress
but will be more prone to fiber failure. In contrast, in typical cases, out-of-phase TMF
will cause more rapid matrix fatigue crack growth than the isothermal case at the same
stress but will be less prone to fiber failure.

Fig. 8 shows the stress intensity factor amplitude due to purely thermal cycling
(i.e. no mechanical stress cycling) for partially bridged cracks. The results are shown for
several levels of thermal stress amplitude and are shown as a function of bridge length
as a fraction of total crack length. The same results apply for positive and negative AT,
with AKtip positive if (0if — Oim) AT is positive and vice versa. These results show, as
expected, that there is no stress intensity for unbridged cracks (a = ap) and that the
results converge to the fully bridged results when the unbridged segment is a negligible
fraction of the matrix crack length. In between, AKyp increases monotonically with
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crack length for fixed a5. However, when shown in the form normalized by
f Ef (0 - Q) AT \/—1;;, there is a maximum between the results for short and long bridge
lengths.

Shown in Fig. 9a & b are normalized crack tip stress intensities AKtjp/AKa
plotted against the normalized bridge length (a - ag)/a for AX, = 0.5 for several values
of A8; where AKp = AC \fn_a, AX, = (a/ay) AX and A6, = (a/ap) AB. Two features in
Fig. 9 are noteworthy. The fatigue driving force AKtjp increases with increasing A6y, as
is expected. Further, when A8, is large (say, 2 1.0, see Fig. 9b), AKtip can exceed AK 4,
the applied stress intensity amplitude. Due to compressive thermal stresses, the
development of a bridge can increase the stress intensity factor amplitude. This
indicates that in certain circumstances, the fibers prop open the crack rather than
provide shielding. Crack bridging, therefore, can be detrimental to the fatigue behavior
of the composite. This is in contrast to the isothermal case in which crack bridging
always improves the composite fatigue resistance to matrix cracking. Note also, that if
A8, is less than -0.5 (see Fig. 9b), AKip can become negative. Due to tensile thermal
stresses, the development of a bridge can provide so much shielding that the sign of the
stress intensity factor reverses. This means that when tensile mechanical stress is added
to the applied load, the crack opening will diminish rather than open further, and vice
versa. Thus, the crack tip cycling will be out of phase with the mechanical stress
cycling. Of course, the rate of fatigue crack growth will be unaffected by this
phenomenon since it will depend only on the magnitude of AKyjp. However, it can be
seen in Fig. 9b that AKtip can pass from positive to negative as a bridge is extended by
fatigue crack growth. As a consequence, the rate of fatigue crack growth will diminish
as AKp falls to zero and the matrix crack may become non-propagating. However, a
change in the mechanical stress amplitude or the thermal stress amplitude will cause
AKﬁp to become non-zero and the crack can be caused to recommence growth. Thus,

the trapped state of the fatigue crack would be easily destabilized. However, if
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ABg = -AX, (i.e. if f Ef (O - Oim) AT = -A0), the net fatigue driving force for extensively
bridged cracks (i.e. AG + f Ef (0t - Ey) AT) will be zero. In this case, AKyip will approach
zero as a bridge is built by fatigue growth and therefore the matrix fatigue crack will
become markedly non-propagating.

Fig. 10a & b contains the same results as Fig. 9 but for a higher applied stress
amplitude. Comparison with the curves in Fig. 9 indicates that at higher applied stress
amplitude, the detrimental effect of the thermal load is less pronounced. This is due to
the fact that the larger applied stress induces a stronger beneficial shielding effect in the
bridge because of the greater crack opening which occurs. In contrast, the detrimental
propping action of the thermal stresses is fixed for a given thermal load.

A feature of all the results in Figs. 8-10 is that AKip/AK 4 approaches zero as
(a-ap)/a goes to unity. The reason is that near (a - ap)/a = 1, there is an extremely long
matrix crack with a small unbridged segment in the middle. The effect of the unbridged
segment on the value of AKyp will be negligible, so the stress intensity factor amplitude
should approach the result for the fully bridged crack when (a - ap)/a is very close to 1.
That is, with AX, positive, eq. (19) can be rearranged to show that for partially bridged
cracks

AK 4

12xa (26)

as (a - ap)/a approaches 1. The positive root is taken if 1 + A8y/AZ, is positive and the
negative root is used if 1 + A8y/AZ, is negative. Thus, if A8, is sufficiently negative,
AKjip will first pass through zero and become negative (AKa = Ac \/_n_; is assumed
positive) as (a - ap)/a gets larger. Then as (a - a)/a approaches unity, AKyp will
approach zero from below. This phenomenon will be a feature of the behavior when

f Em (04 - O) AT/AG is less than -1. The meaning of a negative AKyip when AG is
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positive has been discussed in the context of the fully bridged crack. When AKiip is
negative and AG is positive, the crack tip region will tend to close when the mechanical
load is increased and will tend to open when the mechanical load is decreased. This
out-of-phase effect is caused by the thermal stresses.

There is a further significance to the results in Figs. 7-10. The plots also give the
value of Ktip/C \f;a— when the load is applied monotonically to a large body containing
a partially bridged matrix crack. To interpret the results this way, AG/2 in AX, should
be replaced by ¢ and AT/2 in A8, should be replaced by T. Thus Fig. 9a gives values
for Keip/O \/—n:for D (1-f)2 Ef’n Eo/f2E2Eftay =0.5for
D (1-H2E2, E (0 - Gum) T/E2f Tao = -0.5,-0.2,-0.1,0,0.2 and 0.5 and similarly for
Figs. 8, 9b, 10a & 10b. This interpretation of the results can be used to confirm that in
typical cases, shutting of matrix fatigue cracks is not likely to be an issue. As
emphasized previously, the typical case is a metal matrix with ceramic fibers in which
Olm > 0. Such materials are processed at high temperature and used in service at
temperatures below the processing level. Thus, the operating temperature is negative.
Consequently f E¢ (0 - Oim) T will be positive and could readily be a few hundred MPa.
For example, when SiC fibers are used in a Ti alloy matrix with f = 0.35, each Celsius
degree below the stress free temperature induces a value for f E¢ (0 - Om) T of
approximately 1 MPa. Thus the ratio f E¢ (0if - Otm) T/ 0 will be quite large typically
(assuming O to be positive) and so the relevant results are those in Figs. 7-10 for larger
values of A6,. This makes it clear that as soon as matrix fatigue crack growth occurs
and a bridge is developed, a large positive Kip will be induced by that bridge due to
the large thermal stress. The fatigue cycling will occur around this mean value of Kyip
but the cyclic AKip is unlikely to cause the total Ktip to go to zero. Thus crack closure
is unlikely to occur. This assertion can be considered further in the context of a fully
bridged crack which, as discussed, is the state which a matrix fatigue crack propagating
without fiber failure in a large body will effectively approach. Fig. 4 shows that a fully
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bridged matrix crack with a large positive value of f E¢ (0 - 0tyy) T will have a large
positive value of K¢p. It follows that the thermal stresses will prop open a fully bridged
matrix crack to a significant extent so that thermomechanical cycling is not likely to
cause shutting of the crack.

For investigation of the effect of thermal cycling on the fatigue growth of matrix
cracks, the Paris Law Eqn. (22) can be integrated numerically subject to the results in
Figs. 8-10 for AKip/AKA with AKy always taken to be positive. Fibers are assumed to
remain intact during crack growth. Therefore, the unbridged segment length is always
the initial notch length. Fig. 11 shows the resulting curves for purely thermal cycling
with no mechanical load cycling when the amplitude of the thermal cycles is constant
during crack growth. The Paris law exponent is taken to be 2. A small bridge of length
0.001 ap was assumed to exist at the beginning of the growth process to initiate fatigue
cracking. Thatis, (a-ap)/a =0.001 initially. In Fig. 11, it can be seen that the rate of
growth is initially small. This stage corresponds to the left end of Fig. 8 where AKyp is
small. The rate of growth increases as the crack lengthens and AKjyip increases. The rate
then evolves to a steady level of growth as large bridge lengths are developed.
Displayed in Fig. 12 are the resulting fatigue crack growth curves for A¥, =1,n =2 for
various thermal stress amplitudes. These results are for TMF in which the frequency of
temperature cycling is the same as that for mechanical load cycling and the two loads
are either exactly in-phase or out-of-phase. Also, the amplitude of the temperature and
mechanical stress cycles is constant during crack growth. It is found that when A6, is
positive, fatigue crack growth is significantly higher than that due to mechanical load
alone, depending on the magnitude of the thermal stress amplitude. When A6, is
negative, the amount of fatigue growth is less than in the isothermal case. When
A8, = -1 which is also exactly the negative of AY,, the matrix fatigue crack should
eventually become non propagating since the fatigue driving force
(Ao + f Ef (04 - Oiy) AT) for extensively bridged cracks is zero. However, this will occur
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beyond PR [AG/Em]2 N = 50. Similarly, when A%, = - 2, the matrix crack should
eventually become non-propagating. It can be seen in Fig. 12 that the case with
A6, = - 2 is propagating very slowly when 1t [AG/Em]? N = 50.

5. FIBER FRACTURE AND FATIGUE LIFE

Experimental evidence (Walls et al., 1993) shows that when the applied stress is
high, fibers fail along the matrix fatigue crack, accelerating the matrix crack growth and
leading to a loss of load carrying capacity. Therefore, it can be suggested that the onset
of fiber failure is effectively the end of the useful life for a fiber reinforced metal matrix
composite material. The onset of fiber failure depends primarily on the fiber strength,
which, in practice, has a statistical distribution. However, to gain some insight into the
influence of thermal stresses on fiber fracture, we assume that the fibers have a unique
strength S. Certain fibers have a narrow strength distribution, so that the assumption of
a unique strength is a reasonable approximation to this case. Fibers with a wide
strength distribution would fail more gradually than predicted below. In addition,
failure of fibers with a wide distribution of strengths can occur inside the matrix rather
than at the matrix crack as assumed below.

The governing equation for the bridging stress distribution corresponding to
monotonic loading G and temperature T is essentially identical to Eqn. (8); only the
nondimensional parameters need to be redefined. The nondimensional applied load X,
is defined as

D(1-f)’E Eo

Yy =
° E? E¢ £2 Ta, (27)

while the nondimensional thermal load 6, has the form
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D(1-£)?EZ E(og-om)T
E%fra, (28)

8, =

For monotonic © and T, the bridging stress distributions shown in Fig. 7 remain
unchanged if AZ is replaced vy o, AZp by Zp and A8 by 8,. X equals X, with G
replaced by t. As mentioned earlier, the peak stress in the bridging zone usually arises
at the notch root. The exception to this is where 6, is negative with a large magnitude
compared to Xy. In that case, the largest fiber stress can be at the tip of the matrix crack.
The clearest exampie is where there is no mechanical load as illustrated in Fig. 7a.
However, for metal matrix composites, this will be an unusual situation and so we will
assume that the critical case is when the largest fiber stress occurs at the root of the
unbridged notch. Thus, fibers at the notch root begin to fracture when the bridging
stress there rises to fS (f is the fiber volume fraction). Results as shown in Fig. 7b can be
used to predict this. The situations giving rise to such fiber failure are summarized in
Fig. 13. These are plots of the maximum stress in the bridging zone as a function of
bridge length for various temperatures for 2 different applied mechanical stress levels.
The maximum stress in the bridging zone has been equated to fS. As a result, the
figures show the maximum bridge length possible for a given fiber strength. In Fig. 13,
it can be seen that when 6, is positive, which is typical of metal matrix composites, the
maximum stress in the bridge increases monotonically with bridge length.
Furthermore, because of compressive thermal stresses, the maximum stress in the
bridge is less than that occurring in the isothermal case. When 6, is negative, the

maximum stress in the bridge is higher than in the isothermal case, a situation which

occurs because of tensile thermal stresses. It is also apparent that the maximum stress
in the bridge diminishes as the bridge length rises beyond a certain level. This means
that once fiber failure begins, all fibers will fail since the maximum stress in the bridge
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will tend to increase as the bridge disappears due to fiber fracture. However, the
typical case for metal matrix composites with 8, positive will involve gradual fiber
failure since the maximum fiber stress will diminish as the bridge length falls due to
fiber fracture.

The results such as those shown in Fig. 12 and in 13 can be used to predict the life
of a metal matrix composite with a pre-existing notch, subject to TMF with in-phase or
out-of-phase cycling at the same frequency with constant amplitude. Crack length
versus the number of load cycles is predicted in Fig. 12 while the onset of fiber failure
can be determined from Fig. 13. Since the fatigue crack growth rate will rise rapidly
after the onset of fiber failure, the end of life can be considered to occur very shortly
after fiber failure commences (Walls et al., 1993). In some cases, however, the condition
for fiber failure wiil never be met. That is, if the fiber strength is high, it will always
exceed the maximum stress in the fibers in the bridge. In those circumstances, very long
bridged matrix cracks wili be grown, but the fibers will remain intact. These cases can
be considered to give rise to infinitely long life for the metal matrix composite.

For very large panels, the conditions leading to the preservation of fibers can be
summarized in the form of a map as used by Bao and McMeeking (1994). Such a map is
shown in Fig. 14. The map shows combinations of maximum applied stress,
temperature and initial notch length which will lead to fiber failure and to no fiber
failure as determined by the deterministic fiber strength. Dividing lines in the map are
shown for various temperatures. Below the dividing line, matrix cracks will be grown
from the notch, but fibers will never fail and therefore the composite will have infinite
life. Above the dividing line, matrix fatigue crack growth will eventually lead to fiber
failure, and therefore the composite will have a finite lifetime. It can be seen that if 8, is
negative, fiber failure is more prone to occur. On the other hand, if 8, is positive, it is
more likely that matrix fatigue crack growth will occur without fiber failure. For metal

matrix composites, 8, will generally be positive, since 0f < 0m and T, measured from
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the stress free processing temperature, will be negative. Thus, when thermal effects are
accounted for, a larger window exists for the preservation of fibers than is apparent

from isothermal considerations.

6. CLOSURE

It has been shown that thermal strains can induce bridging stresses in fully and
partially bridged matrix cracks. These stresses can, in turn, alter the stress intensity
factor at the tip of the matrix crack and therefore affect the fatigue crack growth rate for
the crack. For fully bridged cracks, the effect of the thermal stresses is to augment the
applied stress amplitude by an amount equal to f E¢ (0if — Olm) AT. Therefore, for metal
matrix composites, where Om exceeds 0, in-phase TMF in which the temperature
increases at the same time as the stress will lead to a reduced rate of fatigue crack
growth compared to isothermal fatigue. Out-of-phase TMF gives rise to an increased
rate of fatigue cracking. On the other hand, in-phase TMF will make it more likely that
fibers will fracture and out-of-phase cycling will reduce the likelihood of fiber failure.
As in the isothermal case, a low applied stress will avoid fiber failure no matter how
long the matrix crack grows while a high applied stress will cause fiber failure and
therefore lead to rapid fatigue cracking since the bridging shielding effect will be
destroyed. It is notable that thermal cycling by itself without applied load will induce a
crack tip stress intensity factor amplitude and therefore will cause matrix fatigue
cracking. However, it should be noted that no data exist for matrix fatigue cracking by
TMF. The validity of the model presented in this paper can only be confirmed by

comparison with data.
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APPENDIX A

Consider the cylindrical fiber/matrix model shown in Fig. 3. Shear lag analysis
(Budiansky et al., 1986; McCartney, 1987; Cox, 1990) will be used to model the behavior.
Both the fibers and the matrix are taken as elastic; creep and plastic deformations in the
matrix are neglected. The elastic moduli for the fibers and the matrix are Ef and Em
respectively. The interface between the fibers and the matrix is assumed to be weak and
the debond toughness is neglected. Therefore the fibers, with diameter D, behave
effectively as frictionally constrained reinforcements. When load is applied to the fiber,
or when the temperature changes, a sliding zone of length £ develops as shown in Fig. 3.
the interface shear stress in the sliding region is T which is taken to be a function of
temperature only. The boundary conditions for the cell are such that an average
bridging stress t is applied at the top which is opposed by a stress t/f in the fiber at the
matrix crack where f is the volume fraction of fibers. Thus the outer diameter of the cell
is taken to be D/Vf. The stress in the matrix at the matrix crack is zero as is the shear
stress everywhere on the outer boundary of the unit cell shown in Fig. 3. The axial
mechanical stresses in the fiber tf and the matrix tm are related to the bridging stress t by

t = ftg+ (1-Dtm (A1)

In addition, above the sliding region, the axial strain in the fiber equals that in the

matrix so that

11 t
- + o T==-"+0a,T=¢
Eg " Em (A2)
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where 0 and O, are the expansion coefficients for the fiber and matrix respectively and
T is the temperature with T = 0 defined to be the state in which the thermal stresses in

the composite is zero. It follows that above the sliding region

E
tm = -—Em-[t + fEf(af-am)T] (A3)
Equilibrium of the fiber and the matrix in the sliding zone implies
(1-f)DE,, [t+fE¢ (af —ay)T]
- 4fE(T) (A4)

where E = f E¢ + (1-f) E, and T (T) is the sliding stress at the current temperature. For
the analysis of the monotonic case it has been assumed that the term in brackets is
positive, which will be discussed below. The opening & is defined to be the average
axial strain in the fiber in the sliding zone minus the axial strain in the composite above
the sliding zone multiplied by 2¢. The result is such that td is the work done per unit
area of matrix crack when the matrix crack is introduced into a previously uncracked
system. (Budiansky et al., 1986; McCartney, 1987; Hutchinson and Jensen, 1990) The

average strain in the fiber in the sliding zone is

eV = LA o T - (A-HEy

fEf ZfEEf [t + fEf (af-—am)T]

(A5)

whereas the strain in the composite above the sliding zone is

t (1-f)E
E = —m— +0,T - _fE—]::-fl [t + fEf(af—am)T]

fE¢ (A6)
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Multiplying the difference by 2¢ from (A4) gives

(1-£)> DEZ [t + B¢ (o - 0y) T]

5 =
4£2E2E;t(T) (A7)

which gives eq. (1) & (2). The reason for assuming that the term in brackets is positive is
now clear. If the term in brackets were negative, the proper result (in contrast to

eq. (A7)) would predict a negative value for §. Since the most reasonable assumption is
that cracks are closed when T = 0 and G = 0, negative values for d are precluded by
compressive contact of the crack surfaces.

As noted by Marshall and Oliver (1987), McMeeking and Evans (1990) and Cox
(1990), unloading for the fiber causes the initiation of a new sliding zone. In the
thermomechanical problem, unloading will be defined as the stage of the cycle during
which the applied mechanical tensile stress is being reduced. During unloading, as long

as the new sliding zone grows monotonically, its length is given by

. (1-)DE, [t; —t +E; (a; -y )(T, - T)]
) 4fE[1(Ty) + ©(T)] (A8)

L

where t; is the peak applied stress prior to unloading (taken to be tensile), and T is the
temperature just prior to unloading as shown in Fig. 1. The stress t is the current
applied stress and T is the current temperature. The difference t; - t is thus positive.
However, the term in the brackets in the numerator can be positive or negative due to
the thermal stress. If the term in the brackets in the numerator is positive, the positive
sign in eq. (A8) is used, whereas if the bracketed term in the numerator is negative the
negative sign should be used to define £,. The definition of  and results equivalent to
eq. (A5) & (A6) can then be used to predict that
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(1-£)° DE4 [t; -t +fE¢(a; -mm)(Tu"T)]2
4P E2E¢[1(Ty) + ©(T)] | (A9)

5,5 =

where 31 is the value of 8 just prior to unloading and § is the current opening when the
applied stress is t and the temperature is T. If the term in the brackets in the numerator
is negative, the negative sign in eq. (A9) should be used to give d; - §, otherwise the
positive sign is used. The negative sign means that during mechanical unloading, the
matrix crack actually opens more due to the thermal strains.

Upon reloading from t3 back up to t with the temperature simultaneously
changing from T to T (t2 and T2 as shown in Fig. 1), a new slip zone is created once

again. The length of this new slip zone is given by

, (1-f)DEn, [t—t; +FE¢ (04 -0 )(T-T)]
4£E[1(T) + 1(Ty)) (A10)

where, as before, the preceding sign should be chosen to match the sign of the term in
brackets in the numerator. Similarly, the current opening on reloading is given by

- f)’ DEZ [t—t; +fE¢(0g - ) (T - Tz)]

5-8, =
42 E2E¢[1(T) + 1(T,)] (A11)

where 8 is the value of 8 just prior to reloading. If the bracketed term in the numerator
in eq. (A11) is negative, the negative sign should be used. This means that during
reloading, the crack tends to close due to thermal effects.

Representing 81 - & by A, t1 - t2 by At and Ty - T2 by AT, the magnitude of AS
for repeated cycling between the same limits is given by

41:MS32(April 21, 1994)3:27 PM/mef

“'—-—




A5 - (1-f)* DE2 [At +£E (a; - a,,)AT]"
4fE*E([t(Ty) + 1(T,))

(A12)

As above, the preceding sign in eq. (A12) should be chosen to match the sign of the term

in the brackets in the numerator. Use of T to represent [T (T1) + T (T2)]/2 then gives

eq. (3).

The condition that the length of the slip zone increases monotonically ensures

th~+ eq. (A9), (A11) & (3) are valid. When t1-t2 + f Ef (0 - Oi) (T7 - T2) is positive, the

length of the slip zone increases monotonically when; (i) for in-phase cycling (a) during

unloading

at + fE¢(as-ay) 2 _hote fE; (0 -0y ) (T =T) dt
T [x(T1)+ ©(T)] aT
(b) during reloading

.gi + fE; (af —am) > t-t, + fE; (af —am)(T_TZ) _gf_
ar [£(T) + 2(Ty)] aT

and (ii) for out-of-phase cycling (a) during unloading

dt ti—t + fE¢(0¢ -0 )(T;-T) dr
— + fE - < - ' —_—
dT ¢(0¢ ~0m) [+(Ty) + <(T)] dT
and (b) during reloading when
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t-tz + fEu (af —'am)(T“Tz) d‘[
— fE -a < v
ar * fEileraa) (D)7 <(%5)] ar 16

When t-t2 + f Ef (04~ Omy) (T - T2) is negative, all the inequalities in eq. (A13) to (A16)

are reversed.
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Figure 1

Figure 2
Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Stress and temperature for in-phase and out-of-phase thermomechanical
cycling.

A partially bridged matrix crack subject to a cyclic stress.

Unit cell for the shear lag analysis of fiber sliding.

Stress intensity amplitude as a function of stress and crack length for a fully
bridged crack.

Stress intensity amplitude as a function of stress and crack length for a fully
bridged crack.

Crack length as a function of load cycles for fatigue growth of a fully
bridged crack.

Bridging stress for a partially bridged crack.

Stress intensity amplitude as a function of bridge length for a partially
bridged crack for temperature cycling at constant stress.

Stress intensity amplitude as a function of bridge length for a partially
bridged crack for thermomechanical cycling.

Stress intensity amplitude as a function of bridge length for a partially
bridged crack for thermomechanical cycling.

Crack growth as a function of the number of temperature cycles for fatigue
at constant stress.

Crack growth as a function of the number of load cycles for
thermomechanical fatigue.
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Figure 13 Maximum fiber stress as a function of bridge length.

Figure 14 Map for fiber failure during crack growth.
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ABSTRACT

The wransverse properties of a SiC fiber reinforced Ti alloy matrix composite subjected
to transverse mechanical and cyclic thermal loading has been investigated. Fibers and matrix have
a mismatch in the coefficients of thermal expansion that induces thermal stresses in addition to
those caused by mechanical loading. When fluctuations occur in the operating temperature the
thermal stresses change and this could cause an incremental accumulation of plastic strain or
increase in creep rate. Thc composite under consideration has a modest mismatch and it was
found that the strain accumulation is caused by creep deformation in the matrix at the high
temperature portion of the thermal cycles. In the early stages of the deformation for low
transverse loading the interface is closed and the creep rate is accelerated by the cyclic thermal
stresses. After debond has occurred the cyclic thermal stress component is diminished and the

creep rate is given by a matrix with holes. °

1. INTRODUCTION

An attractive feature of metal-matrix composites is that excellent longitudinal properties
are combined with reasonable transverse and inplane shear strength. This enables the composites
to sustain many of the multiaxial stress states which occur in practice when using efficient
unidirectional fiber lay-ups. Use of multidirectional reinforcements is less advantageous when
weight saving is essential for successful application. In addition to mechanical loading, many
components are subjected to cyclic thermal loading, which is expected to influence the matrix
dominated transverse and shear properties. Thermal loading causes two components of swress:

the first is a stress field resulting from the variation of the temperature field within the




component, the second is the consequence of the mismatch of the coefficients of thermal
expansion of fiber and matrix which produces stress fields at the micro-level. In a study of an
aluminum metal-matrix composite reinforced with alumina fibers, Jansson and Leckie (1992b)
observed that the application of cyclic temperature in combination with constant transverse stress
could result in a ratchetting mechanism which produced an increment of transverse strain for each
thermal cycle. The source of the ratchetting mechanism is the combination of the stress fields
supporting the applied mechanical stress and the cyclic thermal stresses resulting from the
thermal mismatch. During each temperature cycle the matrix is subjected to a stress history which
results in plastic deformation in the matrix with a bias in the transverse direction. To avoid
ratchetting, the combination of the applied transverse stress and the magnitude of the temperature
excursion should not exceed a shakedown condition. This system features a significant difference
in the coefficients of thermal expansion of fiber and matrix, a low matrix yield strength and a

strong interface between fiber and matrix.

In this study a titanium matrix reinforced with silicon carbide fibers is subjected to a
similar test program. 7.:.: present titaniura matrix systems feature a weak interface, in contrast
to the strong bond which characterizes the alumina-aluminum composite. Furthermore, compared
to the AL,O,-Al system the mismatch of the coefficients of thermal expansion is substantially
lower and the matrix strength substantially higher. The strongly contrasting properties of the
SiC-Ti system suggest that the transverse properties differ significantly from the Al,O,-Al system,

and it is the aim of this investigation to determine these differences.




2. COMPOSITE MATERIAL AND FABRICATION

The composite material SCS6/Ti 15-3 used in this study features many of the properties
of titanium matrix composite systems that are currently considered for structural applications. It
consists of coated SiC fibers with a diameter of 140 m. The complex C and SiC coating causes
the composite to have a weak interface. The fibers are arranged in a uniaxial lay-up with a fiber
volume fraction of 35 %. in the B-Ti alloy matrix, Ti-15V-3Cr-3Al-3Sn. The composite is
fabricated by Textron using a fiber foil lay-up consolidation technique. The consolidation
temperature is approximately 900 C and in the subsequent cool down, the thermal expansion

mismatch of fiber and matrix introduces residual stresses.

Ambient tensile properties of the matrix have been obtained from tests on foil extracted
from the composite and the fiber modulus from bend tests on extracted fibers [Jansson et al,
1991]. The matrix and fiber stress-strain relationships are shown in Fig. 1, which indicates that
the failure strain of the matrix foil is approximately 3%, which is low compared to the values
commonly reported for Ti alloys. The remaining fiber and matrix properties have been extracted

from the literature and are summarized in Table 1.

A finite element caiculation was performea oy Gunarwardena et al [1993] to estimate the
residual stresses after processing. Due to lack of high temperature data for Ti-15-3 the
temperature dependence of elastic modulus and yield strength of the matrix was estimated by
using data for the similar alloy Ti-6V-4Al [Nimmer et al, 1991). The estimated residual stress

state in the fiber following a consolidation temperature of 900 C consists of an axial compression




of 720 MPa and a nearly uniform compressive radial stress of 200 MPa. At the interface the
radial stress is 200 MPa and compressive while the matrix hoop stress is S00 MPa tensile. In the
axial direction the matrix stress is almost uniform and tensile with a value of 400 MPa. No
matrix cracking has been observed in the as-received composite [Jansson et al, 1991] which
suggests that the matrix toughness is sufficiently high to sustain the residual stresses state induced

during fabrication.

3. TRANSVERSE TENSILE RESPONSE

The transverse tensile response measured on a virgin specimen at ambient temperature is
shown in Fig. 2. After an initial linear elastic response the behavior becomes nonlinear when the
transverse stress exceeds 140 MPa. Thereafter the tangent stiffness gradually decreases and failure
occurs at a stress of 420 MPa when the strain is 1.1%. The strength and ductility of the
composite are substantially less than the corresponding values for the Ti matrix for which the
strength is 950 MPa and fajlure strain 3%. For weakly bonded composites it was established
[Jansson et al 1991] that the limit strength of the composite is obtained by multiplying the matrix
area on the weakest plane perpendicular to the loading direction by the ultimate strength of the
matrix. The measured matrix area fraction of the failure surface is A, = 0.4, the ultimate strength

of the matrix 6, = 950 MPa so that the theoretical prediction of the composite strength is

G,=A_—=_0_= 440 MPa (1)

2
V3
This value compares well with the experimental value of 420 MPa. In a more detailed

finite element calculation performed by Gunarwardena et al (1993) it was found that the initial

4
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residual stresses ensure contact is maintained at the fiber-matrix interfaces during initial loading.
When the applied stress is 140 MPa tensile stresses develop at the interface and debonding is
initiated. When the applied stress reaches 200 MPa the debonding is fully developed. The
debonding is accompanied by a substantial decrease in the elastic modulus. In the absence of
matrix plasticity the calculated elastic response after debond is shown in Fig. 2. When the
additional effect of matrix plasticity is included the experimental observations are closely
reproduced. The experimental results and the calculations both suggest that the behavior
immediately after debond is dominated by a decrease of the elastic modulus and as the applied
stress approaches the limit value the deformation is dominated by plastic deformations of the
matrix. The debonding prevents build-up of large hydrostatic stresses which can cause loss of
matrix ductility [Hancock and Mackenzie, 1976 and Rice and Tracy, 1969). However the matrix
deformation is concentrated in the ligaments between the fibers so that the composite failure
strain is 1.1%, which is approximately one third of the matrix failure strain. The results of the
detailed computations are consistent with experimental observation indicating that fiber-matrix
debonding accounts both for the decrease in the elastic modulus and transverse strength of the
composite. The macroscopic failure surface, shown in Fig. 3a, is irregular with visible debonded
fibers between the matrix ligaments. A high magnification view of the fracture surface of the

matrix ligament, Fig. 3b, indicates the dimpled topology associated with ductile failure.

4. THERMO-MECHANICAL TEST PROGRAM

A schematic of the experimental setup is shown in Fig. 5. The specimens were loaded in

a servo-hydraulic machine and heated by means of an induction coil. The strain was measured




by an extensometer with 3/8" gauge length and the temperature was measured by three type K
thermocouples mounted at the center and ends of the gauge section. The center thermocouple was
used to control the temperature while the top and bottom thermocouples were used to measure
the temperature field along the length of the specimen. The recorded temperatures shown in Fig.
6 indicate that a uniform temperature field was achieved in the gauge section of the specimen
throughout the cycle. The heating rate was approximately > C/s, resulting in temperature
dependent cycle time of order 5 mins for the current tests. It was found that 100 temperature
cycles were sufficient to reach a steady state condition. Because of the limited availability of the
material each specimen was subjected to one stress level and a number of temperature ranges.
The specimens were initially subjected to a low temperature range and the temperature range was

subsequently increased in steps of 20 C until failure occurred. The transverse stresses selected
were T =50, 100, 200 and 350 MPa. The lowest temperature in the cycle T, = 60 C and the

upper temperature T,,, was selected to be in the range 300-550 C. Above this temperature range

the material exhibits severe oxidation.

5. EXPERIMENTAL OBSERVATIONS

Representative examples of recorded strain histories are shown in Fig. 7a for a high
transverse stress and in Fig. 7b is for a low transverse stress. The measured strain ranges are
shown in Fig. 8 as a function of the temperature range AT = T, - T,.. The steady state strain
rates are shown in Fig. 9a as the average rate over a cycle and in Fig. 9b as the strain
accumulation per cycle. The test at the highest transverse stress of 350 MPa failed in the first

thermal cycle during the temperature decrease. The failure strain was found to be independent




of the loading conditions and was approximately 1%.

The relationship between deformation rate and temperature range, Fig. 9a, indicates that
the graphs for the stress extremes have different shapes. For the high applied stress of 300 MPa,
the deformation rate increases monotonically with increase in temperature amplitude. For the low
stress of SO MPa the deformation rate at first decreases with increasing temperature amplitude,
reaches a minimum value and thereafter increases monotonically with increasing temperature
amplitude. For intermediate values of stress the character of the results changes progressively
from one extreme behavior to the other. The experimental strain ranges, shown in Fig. 8 as a
function of AT, also exhibit two extremes of behavior. In the 50 MPa test the measurements
indicate a transition from a cyclic strain range corresponding to a coefficient of thermal
expansion of 8.5 10 to a higher value in the range 10.5 - 12 10 1/C. The test for the higher

loadings exhibits the higher coefficient of thermal expansion from the first loading sequence.

An examination of the sides of the specimens , Fig 10a, shows permanent debond
cracks perpendicular to the loading direction. The cracks are distributed rather evenly with the
largest crack openings at the pole of the fibers. A higher magnification view, Fig. 10b, indicates
that debond occurs both at the fiber matrix interface and in the fiber coating. The photographs
also reveal that the fibers are pultruding out of the matrix, indicating that a sliding has occurred
in the longitudinal direction between fiber and matrix. An examination of the failure surface,
shown in Fig. 4a, indicates that the specimen subjected to thermo-mechanical loading have fewer

fibers left on the failure surfaces compared to the ambient tensile test, Fig. 3a. The shape of the




failed ligaments differs from those of the room temperature tests. The failure occurs by the
formadon of longitudinal necks, typical of a ductile creep fracture. A high magnification view
that perpendicular to the failure surface of a matrix ligament, Fig. 4b, shows that the formation
of the neck causes small iongitudinal cracks to form at the former fiber matrix interface. The
portion of the failure surface at the top of the ridge reassembles the texture of the failure surface

at ambient temperature.

The above observations would suggest that interface debonding occurs at some stage
during all the tests. For stresses 200 MPa or greater the debond occurs on first load while for the
lower stress levels the debonding is delayed to some later time in the test. In the 50 MPa test the
onset of the debonding process was captured in the strain history for the temperature range 420
C, Fig. 7b. The strain at the beginning of this loading sequence was 0.08%. When the strain
reaches 0.15% the deformation rate changes noticeably from 1.1 x 10® 10 0.33 x 107 1/s.
Coinciding with this transition it was observed that coefficient of thermal expansion changed

suddenly from 8.5 x 10 to 10.5 x 10 1/C.

The test performed at 50 MPa was terminated before the specimen failed. A tensile test
was performed at ambient temperature to determine the value of the transverse modulus following
thermo-mechanical loading. The result of the test is shown in Fig. 2 together with the tensile
curve for a virgin material. The modulus was determined to be 44 GPa, which is only a third
of the modulus of the virgin material. Fiber push through tests were also performed on a 0.45

mm thick slice cut from the loaded specimen. Some fibers had such a low sliding resistance that




they fell out during the specimen preparation. The results shown in Fig. 11 are typical of the
fibers which exhibited the higher sliding resistance. Even these high values indicate a substantial

degradation of the fiber push-through properties after thermal cycling.

6. INTERPRETATION OF THE EXPERIMENTAL RESULTS

From the room temperature transverse tension test, Fig. 2, it was found that the onset of
debonding occurs when the transverse stress is 140 MPa, at which point there is discernable
change of the gradient of the stress-strain curve until the stress is 200 MPa. Thereafter the change

in slope is much more gradual suggesting that the debonding process is complete.

The experimental results and micro-structural observation for the constant load-cyclic
temperature also indicate that fiber-matrix debond occurs during the test. When the stress is
sufficiently large the deformation rate immediately establishes a steady state value. When the
transverse stress is low there is a transient period during which the creep rate is greater than the
steady state value. The results of the test in Fig. 7b suggest that the transient period is complete
when interface debonding occurs and the coefficient of thermal expansion increases from 8.5 x
10° to 10.5 x 10° 1/C. The properties of the ccmposite can be expected to describe the strain
range before debond while the post-debond strain range would be dictated by the property of the
matrix. Simple calculations, based on the data in Table 1, indicate that the coefficients of thermal
expansion for the composite system is 8.5 x 10 1/C, which is close to the experimental value
before debond. The matrix value of 9.7 x 10 1/C is slightly lower than the observed value after

debond.




The evidence of the experiments would appear to be consistent with the following
interpretation. After processing the stress at the fiber-matrix interface is compressive. When the
applied transverse stress is 140 MPa or greater, there is immediate debond at the interface,
resulting in a release of the residual stresses and a steady state deformation rate is established
after a few cycles. When the transverse stress is lower than 140 MPa there is no initial debond
and a compressive residual stress is maintained at the interface. This residual stress field is such
that the initial matrix deformation rate is greater than the steady state value. When the plastic
strain reaches a value of 0.15% the debond is fully established, the residual stresses are released

and steady state deformation rate i< established.

Before the experimental results are studied in more detail it is instructive to evaluate the
loading conditions in relation to the elastic shakedown conditions. The shakedown boundary
when the composite is subjected to constant transverse stress and cyclic temperatures have been
determined analytically for this composite system by Jansson and Leckie (1992b). The results are
shown in Fig. 12 in a normalized form for three different conditions: the first is for a residual
stress field causing a full contact at the interface, the second is for a fully relaxed contact
pressure at the interface with longitudinal strain continuity and in the third all the constraints are
fully relaxed. For operating conditions within the shakedown condition, the steady state response
is purely elastic. However, when the operating condition exceed the shakedown condition

ratchetting occurs with an incremental accumulation of plastic strain for each cycle.

10




An experimental shake down curve has been determined from the data by using de/dN
= 10™ as the shake down condition. It is plotted on the interaction diagram in Fig. 12 using the
most conservative estimate of yield stress. All experimental conditions lie well within the
calculated shakedown condition suggesting that time-independent plasticity does not contribute
to the incremental deformation observed in the experiments. It is concluded therefore that the
source of the deformation must be creep. The average creep rates over a cycle are plotted in Fig.
13 for different operating conditions. Also shown in the graph are the steady state matrix creep
data [Tuttle and Rogacki, ‘1991 and Rosenberg, 1983] and constant stress .ansverse creep data
for the composite after debond [Majumdar and Newaz, 1992]. It is observed that the transverse
creep data and the creep rate for cyclic temperature both exhibit the same stress dependency as
the matrix data. For the same stress and temperature levels the composite creep rate is much
higher than the matrix creep rate. The composite creep rate for cyclic temperature is also higher

than the creep rate for the matrix at the highest temperature in the cycle.

Simple estimates are now made to predict creep rates of the composite before and after

debond from the matrix creep data.

i Creep Deformation Rate After Debond
When the transverse stress is greater than 200 MPa there is complete debonding on first

loading and the residual stress is released. For no longitudir *' constraint the reference stress is

af;_ 2
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where U is the applied transverse stress and A_ is the matrix area fraction of the weakest

ligaments, which is equal to the matrix area fraction of the failure surface. The matrix steady
state creep rate given in Fig. 13 can be fitted by the Norton equation wi.n an exponential

temperature dependence

£ 49 | expIB(T-T))] 3)
0 60

where €,= 3.1 103, n = 4.2, and B = 0.05 for 6,= 100 MPa and the creep threshold
temperature T, = 300 C. For conditions after debond the reference stress is given by Eqn. (2).

Assuming that the temperature variation is triangular and integrating Eqn. (3) over a cycle T the

average creep rate E per cycle is given by

- Leare| 3 expipar o L | L @
T ofedz = | xPIB T T - |

from which it can be deduced that the average creep rate is given by the matrix creep at the
highest temperature of the cycle multiplied by corrections for the reference stress and the cyclic
temperature. The experimental data for the composite normalized using this relation are shown
in Fig. 14 together with the matrix data for 100 MPa. It can be concluded that the average creep

rate after debond is well represented by this relation.

ii. Creep Rate Before Debond
When the applied transverse is small the deformation rate shown in Fig. 9a first

decreases with temperature range, reaches a minimum and then increases monotonically. This

12




initial decrease in deformation rate can in generally be attributed to stress redistribution and
hardening in primary creep. The transition at debond was captured in Fig. 7b when the
transverse stress was 50 MPa and temperature range AT = 420 C. This loading condition was
applied when the accumulated plastic strain following the previous loading history was 0.08%
and the strain rate was 1.1x0? 1/s . When the accumulated plastic strain reached 0.15% the strain

rate decreased quite rapidly to a constant value of 0.33x10” 1/s.

The effect of the stress redistribution and debonding on the creep rate could be determined
from a full numerical analysis. It is more instructive however to calculate the response of the
simple representative volume element shown in Fig. 14. The element has a square cross-section
for which the matrix area fraction at the weakest plane is 1-¥f = 0.41, which is very close to the
measured value of .4 for the composite. The analysis of the elastic stress distribution for the
element is outlined in Appendix for an applied transverse stress T and temperature change from

Te o T.

From the equations given in the Appendix it is possible to evaluate the history of stress
in the matrix during the first thermal cycles before the accumulated creep strain has changed the
stress distribution. Since the elastic strain range i: the cycle is two orders of magnitude greater
than the plastic strain accumulated in the cycle use can be made of the Rapid Cycle Solution
developed by Ponter [1976]. In this method the elastic stress distribution over the cycle is used
to evaluate the creep rate. The method is simple and valid when the creep strains accumulated

over a cycle are small compared to the variation of elastic strains.

13




Using the stress distribution given in the Appendix and the multiaxial generalizaton

a-1

eij=3 oe - (5)
Eo- 3 ?o s, exp(B(T-Ty))

of the constitutive Eqn. (3) where G, is the von Mises equivalent stress and s; is the stress

deviator, the strain rate in the matrix can pe calculated to be

[y
8 o n-1 —

Smo Y o1 R T|24,-4,+28,-B)) S expB(T-T)) 6)
¢, ZKDO'OJ \ o,

e, 1 o |5 5 )
Sm 1) O | RT]24,-4,+(28,-B) S T-

&, 2| Do, :4,+(25,°B) o, PBI-T)

Where

R=A,2-A1A2+A22+[A,(281—Bz)+A2(282-Bl)]§_+(B,2-Ble+Bzz) 2

T T
oT=Em(am—a,)(T—Tc)

and T, is the consolidation temperature. The constants B, , A; and D are given in the appendix
and are functions of the elastic properties of the constituents and fiber volume-fraction. The
average creep rate over the cycle for the composite before debond can be calculated by use of

Eqn. (A8) that relates the plastic strain increment for the composite to the plastic strain
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increments in the matrix. The average creep rate for the cycle is

- 1 o
B J[B,(s/f e, (T(D)+B, f¢, (T(H))dr (9a)

For a triangular temperature variation over the cycle the temperature is linearly dependent on

time and a change of integration variable can be performed to give

T, +AT

After debonding has taken place the thermal and residual stresses vanish and the creep
deformation is governed by a constant stress in the ligament in Fig. 15. Assuming the same linear

temperature variation over the cycle the composite creep rate for the model is found to be

o (8 YemB@r-T)
&  |a~fo,| PAT

Using the data for the loading condition of Fig. 7b and integrating Eqn. (9b) numerically

(12)

the ratio of the two rates are found to be &/E,,= 4.9 which is in close agreement with the
experimental value of 3.3. The experimental rate before debond was measured after a plastic
strain accumulation of 0.8 %. The plastic strain cause the residual stress state to relax in the
matrix and the experimental value can be expected to be lower that the calculated value because

the model does not include this relaxation. It is interesting to note that the model predicts a

15




matrix creep rate that is approximately S0 times higher than the composite creep rate. However,
the interaction between the stff fiber and matrix limits the strain rate of the composite so it is

a tenth of the matrix creep rate.

8. CONCLUSIONS

When the composite SCS6/Ti 15-3 is subjected to a combination of constant transverse
and cyclic thermal loading it is observed that the transverse strain ratchets continuously with time
for some loading conditions. This has also been observed for the composite FP/Al [ Jansson and
Leckie, 1992a). In the case of the FP/Al composite the rachetting strain is caused by time
independent plasticity resulting from a large thermal mismatch of the alumina fibers and the
aluminum matrix. By contrast the thermal mismatch for the SCS6/Ti 15-3 system is modest and
it was established that the soufce of the ratchetting is time dependent creep deformation, which
may be predicted using the simple Norton creep law with a temperature dependence of the

Arrhenius type.

Debonding occurs during initial loading when the transverse stress is sufficiently high and
after an accumulation of creep strain for lower stress levels. For the lower stress levels the
debond is associated with a decrease in creep rate. When debond occurs the residual stress field
induced during the fabrication is relaxed. The residual stress state in combination with the
stresses due to the mechanical loading give rise to a higher creep rate than for pure mechanical

loading.

16




After debond the creep rate of the composite corresponds to that of a matrix with a void
fraction equal to the fiber volume fraction. The effective creep rate of the composite is given
by a matrix where the fiber locations are regarded as holes. The transverse elastic modulus is also

reduced to a third of the initial value .

The sliding resistance determined from push out tests on fibers is also greatly degraded
after thermal cycling. This implies that the sliding resistance cannot be controlled in this

composite when subjected to operating conditions which causes inelastic deformations.
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10. Appendix

A simple model is developed to provide physical insight and which predicts stress and

strain histories. The compbsitc is represented by a square element as shown in Fig. 14. The

clement is subjected to a constant stress ‘g in one of the transverse directions and a temperature

change to T from a stress free temperature T.. It is assumed that the stress component in the
unloaded transverse direction is zero throughout the element and that the matrix deformation is
dictated by the highly stressed ligaments. Constant stress fields are assumed in each of the section

of the element. Equilibrium in the loaded transverse direction then requires

o=(1~f )o’m-c-\[f_ o, (Ala)

Assuming that the longitudinal stress is constant in the matrix, equilibrium in the longitudinal

direction gives

G, (1-f)+c <0 (Alb)

Compatibility in the transverse and longitudinal directions requires

10,.v.0, 1+, - ,)(T—Tc)%;[o,,-v,o,,] (A2a)
1o,v,0,] +(am-a,)(T-Tc)=%,[02,—vp’,] (A2b)
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The stresses in the matrix are found to be

c,,%m,c,w,a (A3a)
om=.}).[Azor+Bza (A3b)
where the elastic constants are
i ) i
A={1ev, o En| 1S oy 1 (Ada)
B G
i i 1
A1y 2 vid. 1f (Adb)
L BT
B, =i{1 vy B[ 17 e (Add)
ENf Efk f N3
B=nly vy 1S 1AF (Add)
E\f E1rl F

D=1-v2+imy v,V ,)[‘/f—*f —2}(5"' ](1 -v})[l L ‘\/f_] (Ade)
E wF J\E A

!
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and

o,=E (a,-a)T-T) (AS)

For a temperature change of T-T. = -900 C and use of the data given in Table 1 gives
the stresses 6,,= 590 MPa and ©,,,= 497 MPa. A detailed finite element analysis (Gunawardena
et al, 1993) predicted the residual stresses which occur after processing to be G,,, = 500 MPa and
O, = 400 MPa .The approximate stress predictions are 20 % higher than those of the more
precise finite element analysis but should be capable of predicting creep rates within a factor of

2 which is sufficiently close for the purposes of this investigation.

By use of the reciprocity theorem it:can be shown that the plastic strains in the matrix are

related to the average strain of the composite as

4= 1B, (1~ WF defu+B, L) (A6)
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Table 1. Elastic constants

o—

E (GPa) \Y a (1/0)

Matrix 115 32 9.6 10°®

Fiber 360 .17 4.5 10°
R e
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. §

Fig. 6

Fig. 7

FIGURE CAPTIONS

Uniaxial stress strain curves for matrix and fiber.
Experimental transverse stress strain curves for composite before and after thermo-
mechanical loading. In the graph are also shown calculate responses for different residual

stress states and interface characteristics.

a) Fracture surfaces of virgin specimen tested at ambient temperature.

b) A high magnification view of the fracture in the matrix ligament.

a) Fracture surface of specimen subjected to mechanical and cyclic thermal loading.

b) A high magnification view of the fracture in the matrix ligament.

Experimental setup.

Recorded temperature distribution in specimen.

Accumulation of plastic strain:

a) High transverse loading: ¢ = 200 MPa and AT = 380 C

b) Low transverse loading. ¢ = 50 MPa and AT =420 C
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Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Strain range as a function of temperature range and transverse loading.

a) Average steady state strain rate as a function of temperature and transverse
loading.
b) Steady state strain accumulation per cycle as a function of temperature and

transverse loading.

Photographs of side surface of specimen after thermo-mechanical testing;
a) Picture showing debond at fiber-matrix interface.

b) Detailed picture showing debonded pultruding fiber.
Effect of thermal and mechanical fatigue on interfacial sliding resistance.

Experimentally determined shakedown conditions and calculated elastic shakedown

conditions for different interfaces.

Steady state creep rate for matrix and composite at constant temperature and

composite at cyclic temperature.

Creep rates normalized with use of Equation (4).
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Fig. 15 Simplified unit element for composite.
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ABSTRACT

Fatigue in ceramic matrix composites typically occurs when matrix cracks are
present by cyclic degradation of the sliding resistance of the interface. The basic
mechanisms are discussed and a methodology is developed that enables fatigue life
predictions to be made, based 2n a minimum number of experimental measurements.
The methodology relies on analysis of hysteresis loops. Changes in modulus upon cyclic
loading as well as the permanent strains are predicted, as well as the fatigue threshold
and the S-N curve.

TH:MS33a(Decomber 29, 1993)4:33 PM/mef 3




1. INTRODUCTION

Ceramic matrix composites (CMCs) are subject to fatigue upon cyclic mechanical
and thermal loading (Holmes, 1993; Zawada and Butkus, 1991; Butkus and Holmes,
1992; Allen et al., 1991; Minford and Prewo, 1987; Rousseau, 1990; Rouby and Reynaud,
1993). Understanding the mechanisms of fatigue represents an important step in the use
of these materials. This article provides a review which describes fundamental
mechanisms, gives predictions of fatigue damage and relates predictions to
experimental measurements.

Various observations and measurements provide the background needed to
establish the mechanisms. Three phenomena are consistently present upon cyclic
loading of CMCs (Fig. 1.1). Fatigue occurs in accordance with a classical S-N curve
subject to a definite threshold Oy,. The secant modulus decreases as fatigue proceeds.
There are corresponding permanent deformations.

For fatigue to occur, matrix cracks must be present after the first cycle. In
consequence, fatigue only arises at stresses that exceed the matrix cracking strength,
designated G (Fig. 1.1). Moreover, the fatigue threshold, Gy, is always considerably
larger than Omc. The cyclic opening and closing of these cracks provides the basic
fatigue mechanisms. The fundamental fatigue model requires that the fiber /matrix
interfaces debond and slide as the matrix cracks cycle, manifest as hysteresis loops
(Fig. 1.2). An understanding of hysteresis is central to the modelling and prediction of
fatigue. There are three possible mechanisms. (i) Changes in the interface sliding
resistance may occur upon cycling, with corresponding changes in hysteresis (Fig. 1.3).
(ii) The strength of the fibers may be degraded by cyclic sliding along the interface by
means of an abrasion mechanism, which introduces flaws in the fibers. (iii) Fatigue
crack growth occurs in the matrix itself in accordance with a Paris Law. These three

mechanisms are compatible with the fatigue behavior found in high-toughness,
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monolithic ceramics, such as Si3Ny, in which crack face bridging tractions are
diminished by cyclic loading (Lathabai et al. 1991; RGedel et al. 1990; Guiu et al. 1992).

For many CMCs, there is no fatigue mecharism operating in the matrix itself,
because the matrices have low-toughness. For these composites, either interface or fiber
degradation dictate fatigue. When ceramic fibers are used (rather than C), interface
degradation is the dominant fatigue mechanism. This mechanism is emphasized in the
present article. As the sliding stress T diminishes upon cycling, the inelastic strain and
the ultimate tensile strength (UTS) are affected. The inelastic strain increases, because the
interface sliding distances increase leading to both a reduction in the secant modulus
and a permanent strain. Conversely, the UTS decreases, because the effective fiber gauge
length operating within the composite increases as T decreases. This leads to enhanced
fiber bundle failures and a classical S-N curve. Matrix cracking and load sharing models
are used to predict the fatigue behavior, subject to cyclic interface degradation.

2. THE INTERFACE MODEL
2.1 Basic Model

When matrix cracks are present, large shear stresses are imposed onto the coating
between the intact fibers and the matrix. These stresses elicit responses that control the
inelastic deformation and the fatigue of CMCs. The first interface event to occur is
fracture, or debonding (Hutchinson and Jensen, 1990; Charalambides and Evans, 1989;
Gao et al., 1988). Since most CMCs have fibers subject to residual compression, the
debond is a mode II (shear) crack that extends either within the coating are at one of the
interfaces. Debonding occurs with an energy dissipation per unit area, designated I’;.
Behind the debond front, the crack faces are in contact, especially at undulations along

the fiber (Fig. 2.1). Coulomb friction operates at these contacts, resulting in a sliding
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resistance, T. The thermomechanical properties of interfaces in CMCs are characterized
by a combination of I'j and 7.

Mode II crack growth within such a thin brittle iayer occurs by the formation and
coalescence of an array of microcracks, en echelon (Fig. 2.2). Generally, the microcracks
develop with a spacing that scales within the layer thickness, such that the debond
energy is proportional to the intrinsic fracture energy of the coating material itself, ',

(Xia and Hutchinson, 1993a),
I' = 4T 2.1)

Sliding behind the debond front is sensitive to the residual stress, the amplitude of
undulations that occur along the fiber, and the friction coefficient. The simplest model is
based on a unit cell containing a fiber with circumferential roughness having amplitude,
H, and wavelength, L (Fig. 2.1). When the fiber rigidly displaces by L/2, the matrix
must displace outward to its maximum extent in order to allow continued sliding of the
fiber. The sliding stress may be estimated by analysis of this situation (Liang and
Hutchinson, 1993; Kerans et al., 1992; Mackin et al., 1992). The outward elastic
displacement of the matrix cylinder, um, due to an average interface pressure, pj, is

given by,

u, = p._li_[l_tf_ + vm] (2.2)

where R is the fiber radius, Ey the matrix modulus, f the fiber volume fraction and v,
the matrix Poisson's ratio. The inward elastic displacement of the fiber caused by the

same average pressure is
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R
u, = %—I— 2.3)

There is also an elastic contraction of the fiber, caused by the axial fiber strain, €¢
u, = Vg (24)

where Vy is the Poisson’s ratio of the fiber. The total elastic displacement of matrix and
fiber must balance the misfit displacement, as modified by elastic flattening of the

asperities (Liang and Hutchinson, 1993). The misfit displacement is

u = Re;+H (2.5)

where €} is the misfit strain due to differences in the thermal expansion coefficient.
Combining Eqns. (2.2} to (2.5) and neglecting the elastic flattening, the average interface

pressure becomes,

Ef[t-:T +H/R—v,e,] _
1+(E;/Em ) [(1+ £)/(1~ £) + Var] (2.6)

Pi

The sliding stress is related to this average pressure by a Coulomb friction law

T ~ Kp;i (2.7)

where the proportionality depends on the number of contact points per unit interface

area between the fiber and the matrix. The final result is
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T = H[GT +H/R—Vf€f]§t (2.8

where &, is a parameter that depends on the elastic properties and the fiber
concentration. Interface sliding in CMCs has been understood through these three strain

terms, associated with thermal expansion misfit, roughness and Poisson's contraction,

respectively.
2.2 Interface Wear

Upon cyclic loading, when matrix cracks are present, the matrix slides past the
intact fibers. These sliding displacements change T and, in consequence, cause further
debonding. It has been suggested (McNulty et al., 1993) that the changes in T be
represented by,

(t-1,)/(t,—1,) = l-exp(-aN*) (2.9)

where 7T, is the initial value in the first cycle, Ts is a steady-state value, and @ and A are
numerical coefficients. These reductions in T are attributed to ‘wear’ mechanisms
operating in the fiber coating (Fig. 2.1), especially at those contacts subject to high
pressure. Evidence that a reduction in the height of asperities occurs along the fiber
coating has been presented for the analogous problem of fatigue in Ti MMCs (Walls et
al., 1992). Related effects probably occur in CMCs, but direct observations have yet to be
performed. The ‘wear’ process is facilitated by the temperature rise that occurs along
the interface, as frictional dissipation proceeds. At high frequencies, the increase in
temperature can be large enough to oxidize the fiber coating, even though the ambient
is at room temperature (Holmes and Cho, 1992). When the fiber coating is C, it reacts to

form CO, resulting in a large reduction in T.
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A model that predicts changes in T with cycling would require a mechanism that
reduces the roughness parameters in the sliding model, based on the sliding
displacements that occur and the temperature reached. Some simple wear concepts
provide insight about the roles of the strain amplitude, AG, and temperature amplitude,
AT.

The basic formula that characterizes adhesive wear, relates the thickness of

material removed, Ah, to the sliding displacement ¢ by (Archard, 1953)
Ah = k¢ (2.10)

where k is a coefficient that depends on yield strength. The maximum distance moved
is related to the change in crack opening displacement per cycle Ad by

£ ~ 2NAd (2.11)

where N is the number of cycles. When the debond energy is small, A 8 is given by
(McMeeking and Bao, 1993),

A8 = (Ac+fE;AcAT) p 212)

where AG is the stress amplitude, AT the temperature amplitude and p is a coefficient.

The extent of the wear thus scales as,

2
Ah ~ kpN(Ac+ fE, AaAT) (213)

The effect can be characterized by first establishing the isothermal behavior at a

reference stress amplitude AG,,
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Ah, ~ kpNoAG? (2.14)

Thus, for a general thermomechanical cycle,

Ah Ac+fE; AuATT N
Ah, Ao,

N, (2.15)
This result provides some insight about coupling effects between the stress, the
temperature amplitude and the number of cycles. The reduction in the roughness H by
Ah would have a direct effect on 7, in accordance with Eqn. (2.8).

3. FIBER PROPERTIES
3.1 Load Sharing

The strength properties of fibers are statsstical in nature. Consequently, it is
necessary to apply principles of weakest link statistics, which define the properties o’
fibers within a composite. The initial decision to be made concerns the potential for
interactions between failed fibers and matrix cracks. It has generally been assumed that
matrix cracks and fiber failure are non-interacting and that global load sharing (GLS)
conditions obtain’ (Curtin, 1991; Phoenix and Raj, 1992, Hild et al., 1993). In this case, the
stress along a material plane that intersects a failed fiber is equally distributed among
all of the intact fibers. Experience has indicated that these assumptions are essentially
valid for a variety of CMCs.

* However, a criterion for GLS breakdown has yet to be devised.
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Subject to the validity of GLS, several key results have been derived. Two

characterizing parameters emerge (Henstenburg and Phoenix, 1989): a characteristic

length

*' = L,[SR/]" (3.1)
and a characteristic strength

s*! = SP[L,t/R] (3.2)

where m is the shape parameter, S, the scale parameter and L, the reference length.
Various GLS results based on these parameters are described below.

When fibers do not interact, analysis begins by considering a fiber of length 2L
divided into 2N elements, each of length 3 z. The probability that fiber element will fail,
when the stress is less than 0, is the area under the probability density curve (Matthews

et al., 1976; Freudenthal, 1967)

56(c) = % [ g(s)ds (33)

where g(5)dS/Lg represents the number of flaws per unit length of fiber having a
‘strength’ between S and S + dS. The local stress, G, is a function of both the distance
along the fiber, z, and the reference stress, C'Sb The survival probability P for all elements
in the fiber of length 2L is the product of the survival probabilities of each element
(Daniels, 1945),

P(5, L) = ﬁ[1-5¢(6,,,z)] (34)

n=~N

TH:MS33a(Decamber 29, 1993)4:33 PMjmef 11




wherez = ndzand L = N 3 z. Furthermore, the probability ®g that the element at z
will fail when the peak, reference stress is between Gy, and &, + 83y, but not when the
stress is less than Gy, is the change in 8¢ when the stress is increased by 3Gy, divided by
the survival probability up to Gy, given by (Matthews et al., 1976; Freudenthal, 1967; Oh
and Finnie, 1970)

@5(3,.2) = [1-80(5,.2)] [ia—%(—::—'z—)]dﬁb. (3.5)

Denoting the probability density function for fiber failure by ®(G,, z), the
probability that fracture occurs at a location 2, when the peak stress is Gy, is governed
by the probability that all elements survive up to a peak stress G, but that failure occurs,
at z, when the stress reaches Gb (Thouless and Evans, 1988; Oh and Finnie, 1970). It is
given by the product of Eqn. (3.4) with Eqn. (3.5)

IT'.[1-56(5..2)] [aaq»(a.,,z)]dab_ (3.6)

®,(5,,2)86,0z = [1-56(,,2)] 35,

While the above results are quite general, it is convenient to use a power law to

represent g(S),

865 = (ofSe)™ 37

Alternative representations of g(S) are not warranted at the present level of

development. Using this assumption, Eqn. (3.6) becomes (Thouless and Evans, 1988)
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0(5,,2) = exp{— 2 j:["(as‘;' z)]m %05} (é) aaa,, ["(i:'z)]m. (3.8)

This basic result has been used to obtain solutions for several problems (Thouless and
Evans, 1988; Sutcu, 1989; Curtin, 1991).

3.2 The Ultimate Tensile Strength

When multiple matrix cracking precedes failure of the fibers in the 0° bundles, the
load along each matrix crack plane is borne entirely by the fibers. Nevertheless, the matrix
has a crucial role, because stress transfer between the fibers and the matrix still occurs
through the sliding resistance, T . Consequently, some stress can be sustained by the
failed fibers. This stress transfer process occurs over a distance related to the
characteristic length, 8. As a result, the stresses on the intact fibers along any plane
through the material are less than those experienced within a ‘dry’ fiber bundle (in the
absence of matrix). The transfer process also allows the stress in a failed fiber to be
unaffected at distance S §; from the fiber fracture site (Fig. 3.1). Consequently,
composite failure requires that fiber bundle failure occurs within 8. (Curtin, 1991). In
essence, 3. becomes a measure of the gauge lengths operating within the composite.
This leads to an ultimate tensile strength (UTS) independent of gauge length, Lg, provided
that Lg > 8¢ The magnitude of the UTS can be computed by first evaluating the
average stress on all fibers, failed plus intact, along an arbitrary plane through the
material. Then, by differentiating with respect to the stress on the intact fibers, in order
to obtain the maximum, the UTS becomes,

S, = f,S.F(m) (3.9a)

# At small gauge lengths (Lg< 3 ¢), the UTS becomes gauge length dependent and exceeds Sy, (Hild et al.,
1993).
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with
Fm) = [2/(m+1)}*"[(m+1)/(m+2)]

1t is of interest to compare this result to that found for a ‘dry’ bundle. Then, the ‘fiber
bundle’ strength Sp, depends on the gauge length in accordance with (Corten, 1967),

S, = S, (LofLg) ™ (3.9b)

In all cases, Sg > Sp. The effect of the interface on the UTS is apparent when Eqn. (3.2) is
inserted into Eqn. (3.9a) to give

L,t ("™
S, = f,F(m)S, [R so]/ o

Specifically, if T decreases because of cyclic degradation, the UTS also decreases. This
arises because the stress transfer length 8. increases leading to a larger effective gauge
length within the composite. This phenomenon is considered to be the fundamental
origin of S-N behavior in CMCs.

3.3 Inelastic Strains

As the load increases, the fibers fail systematically, resulting in a characteristic

fiber fragment length. At composite failure, there can be multiple cracks within some
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fibers.t Fiber failure results in inelastic strains. The stress/strain relationship for a

monomodal fiber strength distribution is (Hild et al., 1993),

o - reefreg G e ey

n21

Bimodal flaw populations in fibers can produce different behaviors, as found in
SiC/CAS (He et al., 1993, Curtin, 1993)

4. MATRIX CRACKING IN UNIDIRECTIONAL MATERIAL
4.1 The Matrix Cracking Stress

The development of damage in the form of matrix cracks within 1-D CMCs subject
to tensile loading has been traced by direct optical observations on specimens with
carefully polished surfaces and by acoustic emission detection (Kim and Pagano, 1991;
Beyerle et al., 1992; Pryce and Smith, 1992; Kim, 1992, Cho et al., 1992; Kim and Katz,
1988), as well as by ultrasonic velocity measurements (Baste et al., 1992). Interrupted
tests, in conjunction with sectioning and SEM observations, have also be used. Analyses
of the matrix damage found in 1-D CMCs provides the basis upon which the behavior
of 2-D CMCs may be addressed. The matrix cracks are found to interact with
predominantly intact fibers, subject to interfaces that debond and slide. This process is
established at a stress, designated Omc (Fig. 1.2). The crack spacing d decreases with
increase in stress above Omc and may eventually attain a saturation spacing, ds, at stress
Os (Fig. 4.1). The details of crack evolution are governed by the distribution of matrix
flaws. The matrix cracks reduce the unloading E and secant Es moduli, and also induce

¥ The existence of many fiber fragments is still compatible with a high ultimate tensile strength. A good
analogy being the strength of a wire rope.
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a permanent strain, € (Fig. 1.2). Relationships between E;, €, and constituent properties
provide the key connections between processing and macroscopic performance, via the
properties of the constituents. The basic cell model is shown in Fig. 4.2.

The deformations caused by matrix cracking, in conjunction with interface
debonding and sliding, exhibit three regimes. These depend on the magnitude of the
debond stress, ;, as governed by the debond energy, through the relationship
(Hutchinson and Jensen, 1990),

o, = (Yc) ,/E I/R - E_e(c/c,)
(4.1a)
= OD - OT
which has a useful non-dimensional form
%, = oo (4.1b)

Here ¢ are coefficients defined by Hutchinson and Jensen (1990) and o7 is designated
the misfit stress. A mechanism map that identifies the three regimes is shown in Fig. 4.3
(Vagaggini and Evans, 1993). When ¥ > 1, debonding does not occur, whereupon
matrix crack growth is an entirely elastic phenomenon. When ¥; <1/2, small debond
energy (SDE) behavior arises. The characteristic of this regime is that the reverse slip
length at the interface, upon complete unloading, exceeds the debond length. In SDE, I';
is typically small and does not affect certain properties, such as the hysteresis loop
width. Hereafter, the term SDE is used, loosely, to represent the behavior expected
when I'; — 0. A large debond energy (LDE) regime also exists, when 1/2< Z ; <

this situation, reverse slip is impeded by the debond.
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The approach used to simulate mode I cracking under monotonic loading is to
define tractions G, acting on the crack faces, induced by the fibers (Fig. 4.4) and to
determine their effect on the crack tip by using the J-integral (Marshall et al., 1985;
Budiansky et al., 1986),

G = G-[odu 4.2)

where G is the energy release rate and u is the crack opening displacement. Cracking is
considered to proceed when Grip attains the pertinent fracture energy. Since the fibers
are not failing, the crack growth criterion involves matrix cracking only. A lower bound

is given by (Budiansky et al., 1986; McCartney, 1987)
G = Tau(1-F) 4.3)

with ', being the matrix toughness. Upon crack extension, G becomes the crack

growth resistance, I'r, whereupon

L = L(1-f)+[e,du. 4.4)

The sliding distance £, in the absence of fiber failure, is related to the crack surface
tractions, G-, by (Hutchinson and Jensen, 1990),

¢ = [RE,(1-f)/21,E,f](o, - 5)) (4.5)

where EL is the initial longitudinal composite modulus. The sliding length is, in turn,

related to the crack opening displacement, us. The corresponding traction law is,
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0,-5, = [287,E, fu/R}" 4.6)
where
¢ = fE/(1-f)E,

The preceding basic results can be used to obtain solutions for matrix cracking
(Aveston, Cooper and Kelly (ACK), 1971; Marshall et al., 1985; Budiansky et al., 1986;
McCartney, 1987; Zok and Spearing, 1992; Singh, 1989). Present understanding involves
the following factors. Because the fibers are intact, a steady-state condition exists
wherein the tractions on the fibers in the crack wake balance the applied stress. This
special case may be addressed by integrating Eqn. (4.2) up to a limit u = ug. This limit
is obtained from Eqn. (4.6) by equating G}, to ©. For SDE, this procedure gives
(Budiansky et al., 1986)

(c+0™)’E2(1-f)'R
67, f°E,E;]

Gep 4.7)

A lower bound to the matrix cracking stress, Omc, is then obtained by invoking Eqn. (4.3),
such that (Budiansky et al., 1986)

%
I fE
On = Ep Ot Inl"E, "‘{ -o’
(1- f)EZRE,
(4.8)
= o:\c - GT
TH:MS33a(Decamber 29, 1993)4:33 PMjmef 18




The non-linear composite properties are usually dominated by fully-developed matrix
cracks that form at stresses above Omc. However, in some cases, small matrix cracks can
form at stresses below G (Kim and Pagano, 1991). These occur either within matrix-
rich regions or around processing flaws. These small flaws may provide access of the
atmosphere to the interfaces and cause degradation.

A corresponding result for LDE is (Fig. 4.3) (Budiansky et al., 1993),

6 +o7) 6. +6" o, ) op )
(ons) fome) (] o] - o ws
cmc mc mc ornc

4.2 Crack Evolution

The evolution of additional cracks at stresses above Omc (Fig. 4.1) involves two
factors: screening and statistics (Zok and Spearing, 1992; Cho et al., 1992). When the
sliding zones between neighboring cracks overlap, screening occurs and Gip differs from
Gp- The relationship is dictated by the location of the neighboring cracks. When a crack
forms midway between two existing cracks with a separation 2d, subject to SDE, Gyip is
related to Gg, by (Zok and Spearing, 1992)

Gup[G = 4(d/2¢)° (for0<d/e<1) (4.10a)

and

Gep/Gep 1-4(1-d/2¢)° (for1<d/r<2) (4.10b)

When d is sufficiently small, Eqn. (4.10a) applies and Gtip is independent of the stress.

Once this occurs, Gtip cannot increase and is unable to again satisfy the matrix crack
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growth criterion (Eqn. 4.3). This occurs with spacing, d g, at an associated stress O

(Fig. 4.1). This saturation spacing is given by,

H,/R = x[l‘m(l— f)E,E, fzf,ELR]’6 4.11a)

where Y is a coefficient that depends on the spatial aspects of crack evolution: periodic,
random, etc. Combining Eqn. (4.11a) with Eqn. (4.8), ds becomes

d,t/R = (x/6%)o%[(1- f)E./fE.] (4.11b)

Note that this result is independent of the residual stress, because the terms containing
(0, + ©7) in Eqns. (4.5) and (4.7) cancel when inserted into Eqn. (4.10a). Simulations for
spatial randomness indicate that, ¥ = 1.5 (Spearing and Zok, 1993). Moreover, these

same simulations indicate that the saturation stress should vary as
o, = 12662 -6" 4.12)

In addition to these screening effects, the actual evolution of matrix cracks at stresses
above Omc is governed by statistics that relate to the size and spatial distribution of
matrix flaws. Various simulations have been performed (Spearing and Zok, 1993;
Curtin, 1993). In these, a condition A5 < 1 corresponds to a high density of matrix flaws
already large enough to be at steady-state, and vice versa. The simulated crack densities
(Fig. 4.5) indicate a sudden burst of cracking at 6 = Gmc, when A < 1, followed by a
gradual increase with continued elevation of the stress. The saturation stress is similar

to that given by Eqn. (4.12). In contrast, when As >> 1, the cracks evolve more gradually
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with stress, reaching saturation at substantially higher levels of stress.} These simulated
behaviors are qualitatively similar to those measured by experiment (Fig. 4.1). It has
been found that a simple formula can be used to approximate crack evolution in most

CMCs (Evans et al., 1993), given by (Fig. 4.1),

d = HSIEM (4.13)

[0/6a - 1]

At stresses, O > G, the crack density remains essentially constant. There is no
additional stress transfer between the fibers and the matrix. In this case, the tangent

modulus is of order (Aveston et al., 1971):

E, = do/de = fE, (4.14)

In practice, the tangent modulus is usually found to be smaller because of fiber failure
(Eqgn. 3.10) as well as fiber straightening effects allowed by matrix cracking (He et al.,
1993).

5. MATRIX CRACKING IN 2-D MATERIALS

General compariscn between the tensile stress/strain curves [G(€)], for 1-D and
2-D materials (Fig. 5.1} provides important perspective. It is found that 6(€) for 2-D
materials is quite closely matched by simply scaling down the stress for the 1-D curves
by 1/2. The behavior of 2-D materials must, therefore, be dominated by the 0° plies

¥ Nevertheless, the saturation spacing remains insensitive to As (Spearing and Zok, 1993).
$ Furthermore, since some of the 2-D materials are woven, the 1/2 scaling infers that the curvatures
introduced by weaving have minimal effect on the stress/strain behaviors.

TH:MS33a(December 29, 1993)4:33 PM/mef 21




because these plies provide a fiber volume fraction in the loading direction about half
that present in 1-D material (Evans et al., 1993).

The typical matrix crack evolution found in 2-D CMCs is depicted in Fig. 5.2.
Cracks first form in the 90° plies at a stress, O, and multiply over a small stress range
above O¢. Subsequently, these cracks extend laterally into the 0° plies. This occurs stably
subject to increasing stress. Finally, the matrix cracking may saturate and the fibers then
carry the load prior to composite failure. The most significant 2-D effects occur at the
initial deviation from linearity. At this stage, matrix cracks that form i 90° plies evolve at
lower stresses than cracks in 1-D materials. The associated non-linearities are usually
slight and do not normally contribute substantially to the overall non-linear response of
the material. However, these cracks have important implications for oxidation
emprittlement and creep rupture and require analysis. Matrix cracking in the 90° plies
often proceeds by a tunneling mechanism (Fig. 5.2). Tunnel cracking evolves at a stress
O (Xia et al., 1993; Hutchinson and Suo, 1992), given by

G, = G oF (B, +Eq)/2E; oD
with
o, = [Erx/h]%g(f,E;/Em)

where

tm
o
Il

E (1+ EL/ET)/Z[EL/ET = Vlz.]

Et is the initial transverse modulus of the 1-D material, h is the ply thickness, GR is the
residual stress at the ply level and vy is defined by

TH:MS33a(December 29, 1993)4:33 PM/mef 22




v, = (V/2)A+E /E,).
IR is the fracture energy of the 90° ply given approximately by

The function g depends quite strongly on whether the transverse fibers either remain in
contact with the matrix upon loading or separate (Fig. 5.3).

The unloading modulus associated with tunnel cracks, E/E,, depends primarily on
the crack density, h/L, with L being the mean crack spacing in the 90° plies (Xia
et al., 1993; Laws and Dvorak, 1990), as illustrated for contacting fibers on Fig. 5.4. The
ratio E/E, is larger when the fibers separate. Note that, at large crack densities, a

limiting value Ey is reached, given by,

E,/JE, = E,/(E, +E;) (5.2)

The corresponding permanent strain is
e, = (VE-1/E,)o%(E, +E;)/2E, (5.3)

Examples of the overall stress/strain response are summarized in Fig. 5.5.

Lateral extension of these tunnel cracks into the matrix of the 0° plies results in
behavior similar to that found in 1-D material. In most cases, the cracks extend stably
into the 0° plies, resulting in inelastic strain. The overall behavior can be expressed
through groups of non-dimensional parameters. The evolution of crack length a with

stress O has the form (Xia and Hutchinson, 1993b),
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o/c, = F[a/h,b/L 2] (5.4)

where

™
Ll

%
6n%E, B} f21, h* }

m = Boifo. = [Rrgf(l- f)*E2A%E,

B = (AE./E,)*

6, = |AE(1-f)L/xh(1-V?)

and A is an orthotropy factor (Budiansky and Cui, 1993). The function F; is plotted on
Fig. 5.6 for a typical crack spacing, h/L == 1. Extension of the cracks occurs at stresses
below that at which matrix cracking would develop if the material were unidirectional.
Moreover, when the cracks emerge from the 0° plies, G/ oy, is in the range, 0.7 - 0.9.

The corresponding inelastic strain €p¢ as the cracks extend is given by,
E.e,/Bos. = E(a/h,L/h,Z,) (5.5)

where F, is plotted on Fig. 5.7, for h/L = 1. These results may be used to predict
stress/strain curves, illustrated on Fig. 5.8, up to the stress at which the cracks extend
through the 0° plies.

A simplified form of the above results is preferred for subsequent analysis of
fatigue. Inspection reveals that the extension of the matrix cracks across the 0° plies

occurs in approximate accordance with the following formula,
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(0'/0'0)-' 1 = (a/h) (zmc - 1) (5.6)

Moreover, the cracks penetrate the 0° plies (a = 3h) at a stress 6", given by

o, = 3Ppo,.—-20, (5.7)

At stresses above O., the subsequent behavior depends on the interface properties.
When T and T are relatively small, the debond zones overlap at matrix cracks emanating
from tunneling cracks in the 90° plies. Crack saturation is achieved at G = G.. The
subsequent load is then borne by the fibers, resulting in an essentially constant tangent
modulus given by Eqn. (3.10). Such behavior is exemplified by SiC/CAS. Conversely,
when either T or T are large, the slip zones from these cracks do no overlap at G = C..
Then, upon further loading, additional cracks form in the 0° plies. The subsequent
behavior is precisely analogous to that found in unidirectional materialt,as exemplified
by SiC/SiC composites made by CVI (Guillaumat, 1993).

6. HYSTERESIS

6.1 Unidirectional Material

Analyses of the plastic strains caused by matrix cracks, combined with calculations
of the compliance change, provide a constitutive law for the material (He et al., 1993).
The important parameters are the permanent strain £; and the secant modulus, Es.
These quantities, in turn, depend on several constituent properties; the sliding stress, T,
the debond energy, I';, and the misfit stress OT. The plastic strains also govern the

hysteresis that arises when the material is unloaded and reloaded (Vagaggini et al.,

% Subject to knowledge of the stresses borne by the 0° plies.
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1993). This hysteresis relates in a fundamental way to the fatigue process. For this
reason, the most important hysteresis results are summarized below.
Matrix cracks increase the elastic compliance. Numerical calculations indicate that

the unloading elastic modulus, E', is given by (He et al., 1993),
E /E' -1 = (R/d)B[f,E,/E,] 6.1

where Bis a function. Finite element calculations give the values for B plotted on

Fig. 6.1. In practice, Bis often larger because of fiber straightening effects (He et al.,
1993). An example for SiC/CAS is shown on Fig. 6.2. The matrix cracks also cause a
permanent strain associated with relief of the residual stress. This strain, €, is related to
the modulus and the misfit stress by (He et al., 1993),

€ = o'[IfE' -VE] (6.2)

The preceding effects occur without interface sliding. The incidence of sliding leads to
plastic strains that superpose onto €". The strains can be calculated from the crack
opening displacement (Eqn. 4.6) by using

b2 us

s = (b2+b3) ‘dr ©3)

E

There are two basic behaviors depending on the stress relative to the saturation
stress, Gs. When G < O, d decreases with increase in stress and the inelastic strains are
relatively large. When O > G;, the inelastic strain arises primarily because of fiber
failures (Eqn. 3.10).
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When G < O, there are two different results. These obtain for SDE and LDE,
respectively, as differentiated by the magnitude of X ; (Fig. 4.3). For SDE (X j = 1/2), the
permanent strain is (Vagaggini and Evans, 1993)

(e, -€)Zh = 4(1-I)Z;+1-2Z] (6.4)

where Xy is a hysteresis index given by

I, = oy/o
with

oy = 2[E,[En(1-)] Ydt,E./bR
and

. = ¢'/e. (6.5)
The secant modulus is

1/E, = 1E.+¢g/c (6.6)

Upon unloading and reloading, the curves have mirror symmetry (Fig. 1.2). In practice,
only one (unloading or reloading) need be analyzed. For example, the unload strain €,

at stress, 0, is

u

g, = [4(1-Z)Z"+1-222+2%, -Z2|2F +0,/E +¢€ 6.7
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where £, = 0,/0. Itis convenient to define a strain difference

Ag, = €, —¢,

(o-o2)/ok +(c-0,)/E. 6.8)

where e.f: is the strain at the peak stress. There is a corresponding result for reloading.
This strain difference can be used to evaluate T, and E. from experimental
measurements, as discussed in the following section.

For LDE, the permanent strain is (Vagaggini and Evans, 1993),

(e,-€)2% = 2(1-X)(1-Z, +2%,) 6.9)

There is a corresponding change in the secant modulus (Eqn. 6.6). The unloading strain
is initially parabolic and given by Eqn. (6.7), such that Agy is still given by Eqn. (6.8).

Then, when

I, s 2%, -1 (6.10)
linearity resumes, such that

e, = 2Z5(1-%)[2Z"+(1-%)+2%,] + o, /E +¢€ (6.11)
giving

Ae, = 4(1-%)(6-0,)/04+(6-06,)/E (6.12)
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Beyond saturation, (d 2 dy), the extra inelastic strains are given by Eqn. (3.10).
The permanent strain and the secant modulus change accordingly. There is also a
change in the hysteresis. Upon unloading, the initial behavior is still parabolic with Ag,
given by Eqn. (6.8). A transition then takes place when the stress O, reaches the reverse
slip zone overlap stress, ;. This overlap stress is given by Eqn. (4.5), with ¢ = d,

6,~0, = 21,dE, f/RE_(1-) (6.13)

When G, < Oy, the unloading strain difference becomes

Mﬂ.{.ﬁ‘_-i

Ae :
u E/Ef E' E4R (6.14)

In composites with relatively large values of T, and/or I';, matrix crack closure
effects often arise upon unloading as 0 — 0 (Fig. 1.2b). The closure stress, Ocy, then
becomes the effective minimum, Gmin. When this behavior arises, analysis of the
unloading strain is the preferred method for obtaining the constituent properties. The

analysis must be restricted to Gy > Gy in order to avoid spurious interpretations.
6.2 2-D Material

As cracking proceeds in the 90° plies, the fraction of the load borne by the 0° plies
increases. The nominal stress on these plies O (O) is related to the moduli by,

o /o = E[E (6.15)
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with E given by Fig. 5.4 . This result applies before the matrix cracks penetrate the 0°
plies. The changes that occur once 0° ply cracking commences have yet to be analyzed.
An approximate procedure has been used, which appears to provide useful predictions.
The stress ratio 61/ G is computed from Fig. 5.4, at the appropriate crack spacing in the
90° plies. Typically, this is in the range 1.8-2, with 2 being the maximum possible value.
This ratio is then assumed to remain constant as cracking proceeds in the 0° plies. With
this modification, the unidirectional results described above give direct predictions of
the permanent strain, the reload strain and the secant modulus.

7. CYCLIC CRACK GROWTH
7.1 Mechanisms

For many CMCs, there is no fatigue mechanism operating in the matrix itself,
because the matrices are low-toughness materials. For these materials, the criterion for
crack extension is that energy release rate at the tip, Gtip reaches the matrix fracture
energy I'n,. In this case, fatigue relies on cyclic degradation mechanisms operating at the
interfaces. The important fatigue phenomena may be elucidated by equating Gtip and
I'm, but allowing T to vary with cydles, N.

In composites involving a tough ceramic matrix, there is an additional contribution

to matrix crack growth given by the Paris law criteriont,
P
da/dN = B,(AK,/E) (7.1)

where a is the matrix crack length, N the number of cycles, By is a fatigue coefficient for

the matrix and p the fatigue exponent. Moreover, when oxide matrices are used, stress

1 For fatigue, stress intensity factors K are used more commonly than the energy release rate, G. Hence
K's are emphasized in this section.
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corrosion is also possible. Then, the matrix cracks extend by static fatigue at a growth
rate governed by (Wiederhorn, 1967)

daj/dt = v,(Ky/K,) (7.2)

where t is time, K, and v, are reference values of the energy release rate and velocity,
respectively, and n is the exponent.

A simple transformation converts the monotonic crack growth parameters into
cyclic parameters that can be used to interpret and simulate fatigue growth of matrix
cracks. The key transformation is based on the relationship between interface sliding
during loading and unloading, which relates the monotonic result to the cyclic
equivalent (McMeeking and Evans, 1990):

(3)Ac,(x/a,A0) = oy(x/a,Ac/2) (7.3)

where AG is the range in the applied stress. Notably, the amplitude of the change in fiber
traction AG;, caused by a change in applied stress, AG, is twice the fiber traction G},
which would arise in the monotonic loading of a previously unopened crack, caused by
an applied stress equal to half the stress change. There is a similar relationship for the
stress intensity range experienced by the crack tip,

AKy, = 2Ky(Ao/2). (7.4)

When the fibers remain intact, a cyclic steady-state can be obtained with the above
transformations (McMeeking and Evans, 1990),

AK,, = (RN2)* (Ac/AT) (7.5)
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where AT is a cyclic sliding parameter, given by

AT = &(tE/AcE)"

The corresponding matrix crack growth rate is determined from the Paris law, as,

da _ g AoVR T
dN flJ12aTE_ | (7.6)

The effects of fiber breaking can be introduced by using the fiber strength, Sg. Once
the fibers begin to fail, the unbridged crack length is continuously adjusted to maintain
a stress at the unbridged crack tip equal to the fiber strength (Bao and McMeeking,
1993). If the fibers are relatively weak and break close to the crack front, the bridging
zone is always a small fraction of the crack length, and there is minimal shielding by the
fibers. Conversely, when the fiber strength exceeds a critical value, they never break
before the crack extends across the plate and the fatigue crack growth rate always
diminishes as the crack grows. This is the case found in most CMCs. The sensitivity of
these behaviors to fiber strength is quite marked (Fig. 7.1).

This basic matrix crack growth model can be extended to include
thermomechanical fatigue (TMF). This can be achieved by means of another
transformation wherein all of the range terms in Eqns. (7.3) to (7.6) are replaced, as
follows (McMeeking, 1993),

Ao=Ac+fE (e, ~a,)AT

(7.7)
Ac, = Ao, + fE(a, -, )AT
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where AT represents the temperature cycle and A0 the stress cycle. It is immediately
apparent that matrix crack growth rates are expected to be quite different for out-of-
phase and in-phase TMF. A key result is that, whereas AGtip always reduces upon
initial crack extension, either for stress cycling alone or for in-phase TMF, it can increase

for out-of-phase TMF.

7.2 Composite Behavior

Composite behavior is addressed here for materials in which matrix fatigue is
minimal. The consequence is that, for unidirectional material, all of the matrix cracking
occurs in the first cycle. The crack density and the elastic modulus, E., remain constant
upon further cycling, provided that Omax does not increase in subsequent cycles.
However, the interface sliding resistance diminishes, causing both a permanent
deformation and a diminished secant modulus, as cycling proceeds. The reduction in T
also diminishes the ultimate tensile strength, because the effective gauge length is
increased, leading to S-N behavior. The preceding analysis of the inelastic strain and of
the UTS may be used directly to predict the fatigue behavior. This is described in
section 8. When stress corrosion occurs in the matrix, matrix cracks continue to form as
cycling proceeds. This effect can be included in the fatigue model.

Fatigue in a 0/90 cross ply system, has some different aspects, which depend on
the maximum stress reached on the first cycle, designated Gmax (1). The behavior may
be understood with reference to the results presented on Fig. 5.6. There are three
regimes. (i) When Omax (1) 2 O, there are no matrix cracks and cyclic loading does not
lead to any property changes. (ii) Between G, and O., cracks form in the 90° plies during
the first cycle and these cracks partially penetrate the 0° plies. In this case, the cracks in
the 0° plies extend during cycling, leading to reductions in elastic modulus, E. and

secant modulus, E;, as well as an increase in the permanent strain, €, (iii) At stresses
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above O., most cracks penetrate the 0° plies on the first cycle. Upon subsequent cycling,
the behavior is essentially the same as that found for unidirectional materials. The
changes in elastic modulus are minimal, but there is a decrease in secant modulus and

an increase in permanent strain.

In the range O, < Omax (1) < O, an approximate solution for crack growth through
the 0° plies can be obtained by using Eqn. (5.6). At the simplest level, it may be
assumed that all interfaces degrade uniformly in accordance with Eqn. (2.9). In practice,
the interface must progressively degrade as the cracks extend and interact with the
fibers. The uniform degradation approximation thus represents an upper limit for the
crack growth rate. This solution is given by,

a/h = (Ope—0o)/[Boo N -0, (7.8)

The number of cycles needed to extend the crack across the 0° plies, N,, is then
N, = [3B0%/(Cou +26,)[* (7.9)

When N < N,, because the matrix cracks are extending, there will be a decrease in the
elastic modulus, as well as the usual changes in E; and €,, which can be estimated from
the crack length using Fig. 5.7.

At N > N,, the material behaves in the same manner as unidirectional material.
However, the stress acting in the 0° plies needs to be known before the fatigue
properties can be predicted.
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8. FATIGUE METHODOLOGY
8.1 Philosophy

A practical methodology should be able to predict the overall fatigue response
from a small n'mber of critical experiments. The present concept is to use a few tensile
and fatigue tests to evaluate the constituent properties (Fig. 8.1). These are then used to
predict the S-N curve, the changes in elastic modulus, the permanent strain and the
thermomechanical fatigue response. Two general observations facilitate the analysis.

(i) Measurezents of the crack density d are non-trivial. A procedure that does not
require such measurements is preferred. This has been found possible, because all of the

relevant formulae contain the non-dimensional quantity,

L td/E_R

8.1)

o2(1- f)’'b,
4E}

(i) There are three types of constituent property which affect fatigue. The first type is
stress independent. These are initial modulus, E, and the misfit stress 67. The second type
is dependent on the maximum stress reached during the first cycle, Gpeak. These
properties are elastic modulus, E+, and the misfit relief strain, €+. The third is cycle
dependent. These are the sliding parameter £, and the UTS, Sg.

8.2 Tensile Tests

Tension tests with periodic unloading are used to evaluate the constituent
properties. Parameters given immediately by the stress/strain curve (Fig. 8.1) are E and
Sg(1). Here the designation (1) is used to refer to the first cycle. At each unload or

reload, corresponding to a particular peak stress, Gpeak, the permanent strain &, (1) is
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recorded and the unload strain differential, Ag,,, is determined. The latter is obtained
from the data and fitted with a polynominal. Differentiation then gives the hysteresis
modulus,

Ey = d(Ag,)/do, (8.2)

This modulus is related to the interface parameter, £, (1) and the elastic modulus, E»,
when 0, < ¢ by (Eqn. 6.8),

By = E+[(1-1)'by/2E? £2]./L() 83)

A least squares linear fit of El,} (Gw) to Eqn. (8.3) gives L (1) and E». The analysis is
repeated at several values of Gpeak, t0 give, E+ (Opeak) and L (1, Gpeak)-

In order to further enhance the fidelity of the data, the linearities between both
(1) and E» with Opeak are noted. Specifically since T, is essentially independent of
Opeak, Eqn. (4.13) indicates that £ (1) usually varies as:

L) = L{—L——"’ Ome 1 ]

O peak [One = 1 (8.4)

where L represents the magnitude of the sliding parameter at Opeak = Os. It is also
evident from Eqn. (6.1) that L (Gpeak) and E+ (Gpeal) are related by

[E/E.-1]/c = B (8.5)
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where B is a constant. The linearity expected from Eqns. (8.4) and (8.5) facilitates a least
squares fit to obtain the following parameters: Omc, Os, Ls. At stresses above Os, both
L = Lgand E+ = E«remain constant.

Various approaches can be used to obtain the misfit stress, 6T, subject to the
material being either SDE or LDE. For example, with SDE materials, the permanent
strain €, (1, Opeak) can be used. For this purpose, the product, €, L (1, Opeak) has an
explicit dependence on the peak stress (Eqn. 5.4), given by,

Le,(1,0p) = X%y +4XxGC,,0" + Lo [/E - E] 8.6)
where
x = (4/b,)(c,/a,0,)"

A least squares fit to Eqn. (8.6) with x known allows 67 to be obtained from the second

term on the RHS. At this stage, the following parameters are known:

E, E.(Op ), 67, Sg(1), £, L(L, 6pei)s O, O,

8.3 Cyclic Tests

Cyclic loading experiments are conducted at fixed stress amplitude AG and fixed
ratio of maximum to minimum stress, X . Hysteresis measurements are made
periodically during the test (Figs. 1.3 and 8.1). A convenient test condition is:

Omax = 0.7 Sg, R = 0.05. The hysteresis unload behavior is analyzed, using Eqn. (8.3) to
obtain E+« and L (N). There are two basic behaviors. (i) When both stress corrosion and
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matrix fatigue are absent, the crack spacing and E+ remain constant and the cyclic

degradation of the interface is obtained directly

LIN)/L() = 71, (8.72)
This is expressed in the form
1/t, = F(N) (8.7b)

When E- is found to change upon cyding, the crack spacing d diminishes because
of either stress corrosion or matrix fatigue. Then, T /7T, is not given by changes in L (N).
However, since d and E- are related by Eqn. (6.1), it is still possible to obtain T /T o

using

£(N) [E/E.(1)-1
L(1) [E/E.(N)—l] = %

(8.8)
One complication arises because the slip overlap stress decreases during cycling.

This causes the hysteresis loop shape to change. When this occurs, the hysteresis loop

width diminishes upon further cycling and there is a change in A &, from parabolic to

linear when the unloading stress Gy — O¢. Analysis of the hysteresis loops to obtain

T /7 o is confined to the parabolic range, in which Eqgn. (8.3) is still applicable. However, to

check for consistency, it is noted that slip overlap occurs at Gmax after Ny cycles, where

N¢ is obtained from Eqn. 6.13, by equating Gy to Omax, as

— (1_f) (omax_ci)
L(N,) =5 7 5 59)
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8.4 S-N Curves

When matrix crack growth does not occur during cycling, it is straightforward to
predict the S(N) curve from the above measurements. The failure criterion specifies that
failure occurs when the UTS decreases t0 Omax = Omax = Sg (N). This criterion is
combined with the measurement of T /T o (N, AG,) to give the cycles to failure, N f- The

simple result is
Ny = (Omax/Sg) F1. (8.10)

For the case in which T(N) is given by Eqn. (2.9), with Sg given by Eqn. (3.10), the cycles
to failure are,

Ny = (sg/omax)(mn)/l
provided that Omax > Oth, given by
G = sg (Ts/To)/ (m+1)

A typical example is plotted on Fig. 8.2.
8.5 The Secant Modulus

The permanent strains prior to slip zone overlap can be predicted by a formula
obtained upon rearranging Eqn. (6.4)
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€o(N,Opas AC) = e'(cmx)+f&)) [eo(l, omx)-e'(om,)]

(8.11)
when overlap occurs, there are no further changes in €. When d remains constant
during fatigue, since €o (1, Omay) is known from the tensile data, it is straightforward to
predict €, (N, Omax, AC) from Eqn. (8.11), by inserting L(N) from Eqn. (8.7). Changes in
d upon cycling, manifest as changes in Ev, can be included by using E+ (N) to re-evaluate
€+ (N).

With €, now known, the secant modulus can be predicted from Eqn. (6.11), by

using
1/E, = 1/E.+¢,/0. (8.12)

One limitation is that a model for predicting changes in crack spacing d with AG and
R-ratio does not yet exist for matrices susceptible to either stress corrosion or fatigue.
This is not a serious limitation for many technologically important non-oxide CMCs.
For certain oxide matrix CMCs, and high toughness Si3N4 matrix CMCs, further
analysis is needed to address this problem. In the interim, experimental measurements

of crack spacing are required.

9. PRELIMINARY FATIGUE EXPERIMENTS

Some preliminary fatigue results are presented to illustrate the methodology
described in Sections 8.3 and 8.4. For this purpose, cyclic loading experiments have
been conduced on a unidirectional CAS/SiC composite and the hysteresis
measurements used to predict the fatigue life. This composite exhibits an unusually

rapid degradation in the interface sliding stress with cyclic loading. Moreover, the
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matrix is susceptible to stress corrosion, making it necessary to measure crack spacing
in order to predict cyclic behavior. Nevertheless, it will be demonstrated that the
fatigue life can be predicted with good accuracy. The fatigue threshold is particularly
well defined.

The results to be described refer to tension fatigue tests conducted on straight
specimens, with dimensions 150 x 3 x 4 mm and with axial strains measured using a 10
mm extensometer. Tests conducted at several stress ranges Ao, with a fixed stress ratio
R=0.05, have the typical hysteresis loops shown in Fig 9.1. Initially, the width of the
hysteresis loops increases with cycles, a result of the degradation in T. However, upon
further cycling, the loop width decreases. Moreover, the loops exhibit a linear portion
following loading to large stresses, 0 — Omin. The tangent modulus Ey in the linear
region is essentially Ey = f E¢ = 74 GPa. These two latter effects are associated with the
overlap of the slipped regions between adjacent matrix cracks, caused by the
degradationin T,

The evolution of matrix cracking with loading cycles is shown in Fig 9.2. The crack
spacing decreases rapidly in the first few cycles and subsequently reaches a saturation
'value of ~140 um. During the period in which the matrix cracks develop by stress
corrosion (N < 10), the hysteresis loops exhibit a consequent asymmetry, and do not
close upon reloading.

The sliding stress was evaluated by analyzing the parabolic regions of the loading
stress-strain curves. The results are plotted in Fig. 9.3. The initial sliding stress To =
MPa, is consistent with previous measurements obtained by pushout tests (Mackin and
Zok, 1993). The sliding stress drops rapidly with N, reaching a saturation level of ~5
MPa following ~30 cycles.

The degradatic> function T/T, has been obtained by fitting the data in Fig. 9.3 with
Eqn. 2.9. This function was then combined with Eqn 8.10 to obtain the fatigue life
prediction, shown in Fig. 9.4. Evidently the predictions are in good agreement with the
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experimental measurements. In particular, the fatigue threshold, Oh, appears to be
given with good fidelity.

10. CONCLUDING REMARKS

A methodology has been described which may be used to predict the fatigue
response of CMCs when the dominant mechanism is the cyclic degradation of the
interface sliding stress. It predicts the S-N curve, the permanent strain and the modulus
reduction, based on a relatively few hysteresis loop measurements. An illustration of S-
N behavior has been given for a SiC/CAS material.

In some cases, it would be expected that fiber strength degradation occurs during
fatigue. Such behavior arises when C fibers are used. It may also occur at high
temperatures, particularly upon thermomechanical fatigue. A procedure for including
fiber strength degradation is a priority for further research.
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FIGURE CAPTIONS
Fig. 1.1 Fatigue effects in ceramic matrix composites: a) S-N curve, and b) decrease in
elastic modulus.

Fig. 1.2 Typical tensile stress-strain curves for CMCs. Also shown are typical
hysteresis loops, a) without and b) with crack closure.

Fig. 1.3 Effects of cycling on the hysteresis loop.

Fig. 2.1 A schematic of the interface model.

Fig. 22 A mode II crack in a thin brittle layer.

Fig. 3.1 A schematic of stress redistribution around a failed fiber.

Fig. 41 The change in crack density with stress for a unidirectional CAS/SiC
composite (Beyerle et al., 1992).

Fig. 42 The cell model used to relate macroscopic strains to constituent properties.

Fig. 43 The mechanism map distinguishing the regimes of interface response
(Vagaggini and Evans, 1993).

Fig. 44 A schematic of a growing matrix crack with bridging fibers.

Fig. 45 Simulations of crack density evolution as a function of the matrix flaw size
variable, designated As (Spearing and Zok, 1993).

Fig. 5.1 Comparison between stress-strain curves for 2-D and 1-D materials. (a) Data
for SiC/SiC and SiC/CAS, (b) schematic.

Fig. 5.2 Matrix crack formation in 2-D materials.
Fig. 5.3 Effect of interface bonding on the stress for tunnel crackfng (Xia et al., 1993).
Fig. 54 Change in modulus caused by tunnel cracking (Xia et al., 1993).

Fig. 5.5 Predicted stress/strain curves for tunnel cracking (Xia et al., 1993).
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Fig. 5.6

Fig. 5.7

Fig. 5.8

Fig. 6.1
Fig. 6.2

Fig. 7.1

Fig. 8.1

Fig. 8.2

Fig. 9.1
Fig. 9.2

Fig. 9.3

Stress needed for the growth of a crack through the 0° plies (Xia and
Hutchinson, 1993b).

Inelastic strains caused by cracks as they extend through the 0° plies (Xia and
Hutchinson, 1993b).

Predicted stress, strain curve for cracks extending around 0° plies (Xia and
Hutchinson, 1993b).

Effect of matrix cracks on the elastic modulus (He et al., 1993).
Change in elastic modulus with crack density for SiC/CAS.

Predicted crack growth curves for a matrix material subject to Paris Law
behavior (Bao and McMeeking, 1993).

The fatigue life methodology.

A schematic showing the relationship between the S-N curve and the
interface sliding properties.

Hysteresis loops measured upon fatigue.
Evolution of matrix cracking with loading cycles.

Effect of cyclic loading on the interface sliding stress, T. Also shown is a fit
based on Eqn. 2.9.

Predicted and measured S-N curve for CAS/SiC. (Weibull modulus of fibers,
m=3.)
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Abstract—The influence of the type, volume fraction, thickness and orientation of ductile phase
reinforcements on the room temperature fatigue and fracture resistance of y-TiAl intermetallic alloys is
investigated. Large improvements in toughness compared to monolithic y-TiAl are observed in both the
TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing
ductile phase content. reinforcement thickness and strength; orientation effects are minimal. Crack-growth
behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and
extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of
ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to
monolithic y-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-reinforced
composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are
actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under
monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic

loading.

1. INTRODUCTION

Titanium aluminide alloys based on the ordered
intermetallic compound y-TiAl (L1, structure) are
currently of considerable interest as advanced high-
temperature structural materials, owing primarily to
their higher specific modulus, greater elevated-tem-
perature strength and better oxidation resistance
compared to conventional titanium alloys, superal-
loys and «,-Ti, Al based intermetallic alloys [1-7]. The
alloys are currently being developed as potential
materials for use in the cooler compressor sections of
high-performance turbine engines and for skin struc-
tures of hypersonic and high-speed civil transport
vehicles. However, the application of monolithic y-
TiAl is severely limited by its relatively low tensile
ductility (<2%) and fracture toughness
(~ 8 MPa,/m) at ambient temperatures. Accordingly,
much work in recent years has focused on obtaining
an understanding of the structure-property relation-
ships in these alloys and in improving their ductility
and fracture resistance.

Both alloy modification (intrinsic) and compositing
{extrinsic) approaches to toughening y-TiAl have
been explored [3-11]. Microalloying with elements
such as V, Cr, Mn, Mo and Nb and optimized
thermomechanical processing treatments have led to
toughened dual-phase microstructures composed of
alternating microlaminae of y (TiAl) and 2z, (Ti,Al).

In this case, toughening contributions arise from an
intrinsic change in the deformation mechanism, i.e.
mechanical twinniag of the y-phase [7], as well as
crack deflection and blunting at y/a, or y /y interfaces,
and shear-ligament bridging by the more ductile a,
phase [4-7].

Composite approaches to toughening have cen-
tered around reinforcing TiAl with small volume
fractions of ductile Nb, TiNb or Ti-6A}-4V particles
[8-11}. The primary objective is to enhance toughness
by crack-tip shielding arising from tractions provided
by unbroken ductile ligaments bridging the crack
wake, akin to approaches first proposed for brittle
ceramics [12-14]. When the length of the bridging
zone is very small compared to the specimen and
crack length dimensions, the toughness increases with
crack extension up to a maximum steady-state level,
Kssp, associated with the development of a steady-
state bridging zone length, Lgy. At this small-scale
bridging limit, Ky, is given as {11]

Ksss = \/K{+ E ftagx (1)

where K, is the critical crack-tip stress intensity factor
required for crack initiation, £’ is the plane-strain
elastic modulus of the composite [=E/(1 ~v2), v
being the Poisson’s ratio], ¢,, /, and ¢ refer to the yield
strength, volume fraction and characteristic dimen-
sion of the reinforcement, respectively. The non-di-
mensional work of rupture, y, is the area under the
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normalized-reinforcement stress [o (u)]-displacement
(u) function, defined as {13)

SRESO

where u* is the critical crack-opening displacement at
the point of reinforcement rupture. The characteristic
dimension, 1, is appropriately defined based on the
reinforcement geometry, i.e. the diameter of a fiber,
the average diameter of circle inscribing a sphere, and
the thickness of a foil (lamina) or a pan-cake shaped
reinforcement. Typical values of y for y-TiAl re-
inforced with Nb or Nb-alloys range between 0.9 to
1.5. Much larger values of y, up to 4 or more, can be
obtained using strain-hardening reinforcements that
undergo extensive debonding from the matrix [9]. For
nominal values of y=12, 6,=400MPa and
t = 100 pgm, the addition of a mere 20vol.% of
ductile particles (f = 0.2) yields Ky values of about
44 MPa,/m, over five times the nominal TiAl tough-
ness of 8 MPa,/m. Additional toughening mechan-

2)
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isms include crack trapping. crack renucleation. crack
deflection and branching. and process-zone phenom-
ena such as microcracking and twinning. Many of
these latter contributions are incorporated into K.
which is larger than the intrinsic K, toughness of the
brittle y-TiAl matrix.

Despite the success in toughening ;-TiAl with
ductile-phase reinforcements. the composites may
have lower crack-growth resistance under cyclic fa-
tigue conditions {15, 16] than monolithic ;-TiAl. as
illustrated in Fig. 1. Under monotonic loads. the
y-TiAl + 10 vol.% TiNb composite exhibits an in-
itiation toughness of about 16 MPa,/m, nearly twice
that of pure y-TiAl [Fig. 1(a)}; the fracture resistance
increases with further crack extension (referred to as
resistance-curve or R-curve behavior) primarily due
to bridging by unbroken TiNb ligaments in the crack
wake [Fig. 1(b)]. In contrast, the diminished role of
crack bridging under cyclic loads due to subcritical
fatigue failure of the ductile TiNb phase [Fig. 1(d)].
can lead to marginally faster crack velocities in

T O v ————— v y -
o TiAl + 10% TiNb Compostte
S [ Edge Orientation 1
< a
> 2w} &6 Rp, 8 J
: 0 “ A A [y s A &
g | 4 ;
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< Iy ad
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Fig. 1. Illustration of the contrasting role of ductile reinforcements on crack-growth behavior in a

B-TiNb/y-TiAl composite. showing (a) improved toughness compared to ;-TiAl under monotonic

loading, due to (b) crack bridging by uncracked TiNb ligaments, and (c) faster growth rates in the
composite under cyclic loading. (d) due to premature failure of the TiNb particles [after Ref. 15].
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the composite compared to unreinforced TiAl
[Fig. 1(c)}.

Accordingly, it is the objective of the present paper
to provide an extensive evaluation of ductile-phase
toughening in 7-TiAl intermetallic-matrix composites
by systematic measurements of the influence of vol-
ume fraction. thickness, orientation and type of
reinforcement on their fatigue and fracture toughness
propertics. Specifically, a comparison of Nb and
TiNb ductile phases provides the opportunity to
evaluate the effects of widely different interface and
reinforcement  constitutive properties on the
monotonic and cyclic crack-growth resistance of
ductile-phase toughened composites.

2. MATERIALS AND EXPERIMENTAL
PROCEDURES

2.1. Materials and fabrication

The ductile-phase toughened composites under
study, listed in Table 1, were fabricated by phase
blending — 80 mesh y-TiAl (Ti-55 at.% Al, with small
additions of Nb, Ta, C and O) with various amounts
of single-phase 8-TiNb (Ti-33 at.% Nb) or pure Nb
powders of —35+50 mesh (nominal size
~300-500 um) or —50+ 140 mesh (nominal size
~100-300 um). The blends were hot pressed and
forged to upset ratios of 10:1 at 1025+ 15°C,
producing a pancake-shaped ductile particle
morphology. Assuming a uniform thickness of
~10% of the particle diameter, the nominal
aspect ratio of the pancaked reinforcements is about
5:1 and the nominal particle thicknesses are ~40
and ~20pum for —35+ 50 and —50+ 140 mesh
powders, respectively.

The actual microstructures, however, were much
more heterogeneous, as illustrated in Figs 2 and 3,
and consisted of a distribution of irregularly shaped,
lenticular-crenulated particles. Volume fractions and
characteristic dimensions of the ductile particles
varied, both between specimens and locally within a
specimen. Measurements along the cracked edge and
on the fracture surface of representative specimens
(Fig. 3) showed a rather wide range of particle
thicknesses (between 50 and 150% of nominal values)
and aspect ratios in part due to the particle-size
distribution and irregularities in particle shape. Fur-
thermore, unusually thick reinforcements resulted
when two particles were welded during processing,
more frequently so at the higher volume fractions.
Local fracture-surface area fractions of the ductile

Table 1. Details of ductile-phase toughened ;-TiAl composites

Nominal Nominal

Mesh inf inforcement
Reinforcement size volume fraction  thickness (um)
TiNb -354+ 5 0.05 40
TiNb ~35+ 50 0.10 40
TiNb —-354+50 0.20 40
TiNb -50 4+ 140 0.20 20
Nb ~35+50 0.20 40

DUCTILE-REINFORCEMENT TOUGHENING 895

| Forging
y direction

Fig. 2. Three-dimensional optical micrographs of typical

y-TiAl intermetallic-matrix composite microstructures re-

inforced with (a) 5 vol.%, (b) 10 vol.%. and (c) 15 vol.% of
TiNb phase; the TiNb particle thickness is ~40 um.

phase, taken along 500 um slices, were found to vary
by up 1o a factor of 2; however, specimen averages
were generally within a few percent of the nominal
values. Henceforth, the discussions will reference
nominal reinforcement parameters, recognizing that
these are surrogate measures for more complex distri-
butions.

The matrix consisted primarily of ~2-10 um-sized
grains of y-TiAl (ordered L1, tetragonal structure)
with small regions of ,-Ti;Al (ordered hexagonal
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DUCTILE-REINFORCEMENT TOUGHENING

Fig. 3. Montage of SEM micrographs of the fractured surfaces of TiAl +20vol.% TiNb composite
showing the distribution of ruptured ductile TiNb particles. Note the variations in particle thickness and
the non-uniformity of their distribution.

DO,y structure). Yield and ultimate strengths for
unreinforced y-TiAl range between 400 and 500 MPa
at room temperature with a tensile elongation of
~1.8% [3,4]). While the yield strength (¢,) of the
TiNb phase is about 430 MPa, this solid-solution
hardened Ti-Nb alloy does not post-yield harden
(strain-hardening exponent, n ~0). Thus, defor-
mation in the TiNb phase is highly localized and the
measured fracture strains strongly depend on speci-
men geometry and gauge length. Niobium, on the
other hand, has a lower yield strength of about
140 MPa, but strain hardens extensively with an
initial exponent of »# ~ 0.3, reaching an ultimate
strength (¢,) of 250 MPa before failing at a nominal
fracture strain of ~0.45 [9].

2.2. Interface characteristics

Thermomechanical processing at high tempera-
tures caused interfacial reactions between the y-TiAl
matrix and TiNb and Nb reinforcements (Fig. 4)
[10, 17). The ~5-10 um thick reaction product layer
between TiNb and TiAl was composed of a,
(~3-5 um) separated by a sharp boundary from a
mixed region (~2-5 um) of a, and B, (ordered). and
possibly some w (B8,) phase. Transmission-electron
microscope (TEM) observations in Fig. 4(e) also
indicated the presence of dislocations in ductile «,
grains within the TiNb/TiAl reaction layer interface.
The corresponding Nb/TiAl interface consisted of a
~1-2 um brittle ¢ (D,) region and thinner layers of
T, (Ti-44Al1-11Nb at.%) and 6 (Nb,Al-AlS5 struc-
ture) adjacent to TiAl and Nb phases, respectively. In
addition, microcracks were observed in the relatively

brittle (dislocation- and twin-free) o grains [Fig. 4(b)).
The reaction-layer phases are critical in mediating the
interface toughness. debonding characteristics and
resultant constrained-deformation behavior of the
reinforcing phase; results are summarized in Table 2.

In the case of Nb/TiAl, the brittie o reaction-layer
phases result in a significant amount of debonding;

Fig. 4. Transmission electron microscope images of the
reaction-layer (RL) interface characteristics between (a—;)
Nb and 7-TiAl. and (d.e) 8-TiNb and ;-TiAl.
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Tabie 2. Summary of interfacial properties between TiNb TiAl and Nb TiAl

Maximum Critica) Debond Work of Interfacial
Interface stress displacement length rupture fraclure energy
Interface phase Ornae 0o u®t Iyt 7 r.(m’)
TiNb/y-TiAl ay 22+03 0.7+0.2 <0.2 1.1 +02 >1330
Nb/y-TiAl o 18+02 1.1+03 1.0 +03 1.3+03 ~45

the interfacial toughness is estimated to be about
45 )/m? [9]. Typical debond length to particle thick-
ness ratios (/,/t) were roughly unity compared to
values of about 4 reported for laminate foils [9). This
difference is probably due to the irregular shape and
smalier thickness of the particles in the composite.
However, in either case, the effect of matrix con-
straint on o (u) is minimal and the peak stress (0y,,)
and normalized failure displacement (1*/t) are ap-
proximately equivalent to the corresponding ultimate
tensile strength and total elongation strains measured
in geometrically-similar tensile tests; values of 6,,, /6,
and u*/t for the Nb particles are ~1.8 and 2.2,
respectively.

In contrast, only minimal particle debonding
(l4/t <0.2) was observed for the TiNb/TiAl com-
posites compared to values of 0.75 1 0.25 observed in
sandwich tests [9], again the variation being attribu-
table to the particle thickness and shape. Debond
cracking occurred in the y-TiAl matrix or y/a, inter-
face, suggesting a reaction-layer toughness in excess
of ~330J/m? Particle constraint factors cannot be
measured directly but are expected to be at least
comparable to values between 2 and 2.5 measured in
sandwich tests; in fact, the constraint may be even
higher due to the minimal debonding. The critical
crack-opening displacements, u*/t, were ~0.7.

Fig. 5. Nomenclature for specimen and reinforcement orien-

tations in the composite forging, namely C-R and C-L; L,

C and R refer to the forging, circumferential and radial

directions, respectively. C-R and C-L are also referred to as
the Edge and Face orientations, respectively.

2.3. Fracture toughness testing

The fracture toughness behavior of TiNb/TiAl and
Nb/TiAl composites was characterized in terms of
K, (Aa) resistance curves, i.e. toughness as a function
of crack extension. Specimens were fabricated by
electro-discharge machining in two different orien-
tations relative to the forging direction, namely, C-R
and C-L (Fig. 5). The crack intersects the edges of the
pancake-shaped particles in the C-R orientation; in
the C-L configuration the crack intersects the faces of
the pancakes {11]. Hence, C-R and C-L are sub-
sequently referred to as the edge and face orien-
tations, respectively. Tests were conducted using
~ 5 mm thick and 12.7 to 15.2 mm wide, pre-cracked,
single-edge notch bend SE(B), TiNb/TiAl composite
specimens, with a span-to-width ratio of about 3:1,
Joaded in three-point bending; the Nb/TiAl samples
were 2.5 mm thick and 7.5 mm wide. To facilitate a
direct comparison of the extrinsic toughening behav-
ior in the various composites, a set of 7.5 mm wide
TiNb/TiAl specimens were also tested.

Pre-cracking was achieved by initiating stable
crack growth from the electro-discharge machined
chevron notch by slow monotonic loading, under
a.spfacement control, using a servo-hydraulic testing
machine. Subsequently, a major portion of the pre-
crack bridging zone was removed by grinding the
crack wake to within ~ 50 um behind the crack front.
The final pre-crack depth to specimen width ratio
(a,/W ) varied from about 0.3-0.5 for the various test
samples.

R-curve tests were carried out by monotonically
loading the pre-cracked samples under displacement
control in laboratory air (~22°C, ~45% relative
humidity) until crack extension was initiated. Crack
lengths and crack/particle interactions were moni-
tored using a high-resolution optical video camera
system. In general, crack initiation was followed by
a load drop and crack arrest after a small yet rapid
uncontrolled jump. Automated detection of these
load drops or direct observation of crack extension
was used to trigger additional unloading, by about
15%. to further stabilize cracking. After measuring
the new crack length (and recording other relevant
observations), loads were again increased until the
next initiation event. Applied load and crack-length
measurements were used to calculate the initiation/re-
initiation stress intensities (K,) according to ASTM
Standard E-399 [18). The complete resistance curve
was evaluated up to a/W ratios > 0.8 by carrying out
a large number of interrupted initiation/arrest (load-
ing/unloading) cycles.
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It is important to emphasize that small-scale bridg-
ing conditions. stipulated by the model in equation
(1). are seldom met in practice under monotonic
loading. For the TiNb/TiAl and Nb, TiAl composites
studied in this work, monotonic bridging-zone lengths
are often comparable to specimen and crack size
dimensions, i.c. large-scale bridging conditions are
prevalent; specimen widths in excess of 500 mm would
be needed in some cases to fulfill small-scale bridging
requirements. Crack-growth behavior under large-
scale bridging is a function of the entire o (¢) function
as well as X, and E’ [11); moreover, the extrinsic,
large-scale bridging toughness can be significantly
greater than Kgg and is sensitive to test specimen size
and geometry. Accordingly, R-curve measurements in
this study must be considered as extrinsic and explic-
itly depend both on specimen width and initial a,/W.
While repeated tests demonstrated that results were
reproducible, reinforcement heterogeneity and speci-
men-to-specimen differences in W and q,/W can
complicate direct comparison of X, (Aa) curves for the
various composite architectures. Effects of these vari-
ations were mitigated, whenever possible, by compar-
ing results for the most similar and representative test
specimens and excluding data for a/W values greater
than 0.8. In addition, corrections to experimental
crack-growth data were made, where necessary, to
account for large-scale bridging. Small-scale bridging
conditions may, however, be common under cyclic
loading because of the short bridging zones.

2.4. Fatigue-crack propagation testing

Cyclic crack-growth behavior in TiNb/TiAl com-
posites under tension-tension loading was examined
primarily with 25 mm-wide, 2.5 mm-thick, compact
tension C(T) specimens in the edge (C-R) orientation;
approximately 1-mm thick C(T) samples were used to
characterize behavior in pure TiNb. Due to limi-
tations in the available material. corresponding prop-
erties in the face (C-L) orientation of TiNb/TiAl
composites and unreinforced y-TiAl were determined
using 15 mm-wide, 2.5 mm thick SE(B) samples (span
~ 60 mm) loaded in four-point bending. Behavior in
Nb/TiAl (face orientation) was examined using
2.5 mm-thick and 7.5 mm-wide samples under identi-
cal loading conditions. All specimens were fabricated
with a wedge-shaped (semi-chevron) starter notch to
facilitate fatigue pre-cracking, which was performed
under alternating tensile loads prior to testing.

Experiments were performed in laboratory air
(~22°C, ~45% relative humidity) on computer-con-
trolled servo-hydraulic testing machines operating
under stress-intensity control. This was achieved by
continuously monitoring the crack length, to a resol-
ution better than +5 um, using thin metallic foils
bonded to the specimen surface, similar to techniques
used for fatigue testing of ceramics {19, 20]. Unless
otherwise stated, cyclic loads were applied at a con-
stant nominal load ratio, R (= K,/ K., ), of 0.1 and
a frequency of 50 Hz (sine wave): however, additional

——
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tests at R ratios of 0.5 and 0.7 were carried out on
sclected composites. To characterize the crack-growth
rate behavior at different stress intensities. the applied
stress-intensity range, AK (= K, — K, ). was gradu-
ally increased and/or decreased using exponential
load-shedding schemes (variable AK at constant
R), with the K-gradient set to £0.1 mm~'[21}. Using
such procedures, crack-growth rates per cycle
(da/dN) ranging between 10-* and 10-“*m/cycle
were obtained: the stress-intensity range corre-
sponding to the slowest growth rate,
da/dN < 10~ mjcycle, is operationally defined as
the fatigue threshold, AKy,, . below which no appreci-
able crack extension is observed for specific cyclic
loading conditions. Tests on Nb- and TiNb-
reinforced TiAl composites were terminated under
increasing-AK conditions, at AK levels marking the
acceleration in crack-growth rates to very high values;
for monolithic y-TiAl, the tests ended when the
specimen fractured. Cyclic crack-growth data are
presented in terms of the crack-growth rate per cycle,
da/dN, as a function of the applied stress-intensity
range, AK.

Premature contact between the cracked surfaces
above the minimum load (crack closure) was moni-
tored using strain gauges mounted on the back face
of the specimens; the closure stress intensity, K, was
specified by the load at the first deviation from
linearity on the unloading compliance curve, reflect-
ing initial contact between the two surfaces. Where K
exceeds K, the local (near-tip) stress-intensity range
can be computed as AK 4 = K, — K. The extent of
bridging by ductile particles under cyclic loading was
estimated by comparing the crack length (of a bridged
crack) estimated from back-face strain compliance
with equivalent values (for an unbridged crack)
measured using bonded metal-foil gauges; procedures
are described in Ref. [22]. These global estimates were
supplemented by in situ observations of crack/particle
interactions on the specimen surface. using a high-res-
olution optical telescope.

2.5. Fractography

Profiles of crack paths in the plane of loading and
crack fronts across the specimen thickness were exam-
ined by taking metallographic sections parallel and
normal to the crack growth direction, respectively.
These sections and all fracture surfaces were imaged
using optical and scanning electron microscopy
(SEM). In addition, crack-reinforcement interactions
and specific fracture mechanisms were examined by
SEM by periodically interrupting tests (cyclic loading)
or by using an in situ loading stage in the microscope
(monotonic loading).

3. RESULTS AND DISCUSSION
3.1. Fracture toughness properties

The basic processes leading to toughening under
monotonic loading in the TiAl composites examined
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Fig. 6. Summary of crack/reinforcement interactions in
TiNb/TiAl composites under monotonic loading, showing
(3) crack arrest at the interface with minimal debonding
between TiAl and the reaction layer, (b) crack-tip blunting
at the TiNb particle, (c) renucleation of the crack in front
of the particle leading to crack bridging, and (d) large-scale
plastic deformation in the TiNb particle leading to final
rupture. Images were obtained using a SEM with an in siru
loading stage; arrow indicates the general direction of crack
growth.

are illustrated in Figs 6 and 7. Specifically, Fig. 6
shows a typical sequence of events as the crack
intersects a ductile TiNb particle in the composite: (a)
crack arrest at the ductile a, layer; (b) penetration of
the reaction layer and initiation of plastic defor-
mation in the particle; (c) renucleation in the matrix
ahead of the particle; and (d) large-scale deformation
along intense slip bands prior to particle rupture.
Note that the TiNb particles do not decohere from
the matrix during crack extension but exhibit limited
debond cracking along the ;/a, interface, as seen in
Fig. 6(a) and 6(b), similar to observations made on
sandwiched-composite tests [9). The bridging zones,
i.¢. the length scales over which TiNb reinforcements
remain intact in the crack wake, are on the order of
several millimeters (Table 3).

The resulting composite fracture surfaces in Fig. 7
show minimal secondary cracking at the interface.
The constituent phases exhibit similar fractographic

DUCTILE-REINFORCEMENT TOUGHENING

Fig. 7. Fractography of fracture surfaces in TiNb/TiAl
composites under monotonic loading, (a—) at various mag-
nifications, showing (b) transgranular cleavage failures in
y-TiAl, and (c) dimpled rupture in the ductile TiNb phase.
Arrow indicates the general direction of crack growth.

Table 3. Summary of monotonic crack-growth data in y-TiAl composites

Inination R-Curve slope Steady-state Steady-state

Volume Particle toughness dK, da toughness bnidge

fraction thickness K, (MPaym) (MPa_,; m/mm) Kssa length
Reinforcement / t(um) Edge Face Edge Face {MPaym) Logptmm)
TiNb 0.05 40 [RI] 12.7 21 2.5(1.9y 18.3 38.8
TiNb 0.1 40 18.6 15.7 25 3329y 247 223
TiNb 0.2 40 17.3 19.0 4.2 50 326 13.7
TiNb 0.2 20 18.9 184 23 242y 26.6 53
TiNb® 0.2 40 17.5 9.1 124 9.6 N6 13.7
Nb® 0.2 40 122 13.8 6.9 5.5 21.2 57.8

*Values in parenthesis are corrected 1o 15.2 mm width.
7.5 mm-wide specimens.
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Fig. 8. Resistance curves characterizing the crack-growth
behavior in TiNb/TiAl composites under monotonic load-
ing, as a function of the volume fraction, (a) 20, (b) 10 and
(c) 5vol.% of TiNb phase (thickness, ¢t = 40 um), in the
edge (or C-R, denoted by open symbols) and face (or C-L,
denoted by filled symbols) orientations. Dashed line Ki,,,
represents the toughness of pure y-TiAl.

features in composite and monolithic form; the duc-
tile TiNb particles fail by a transgranular, microvoid
nucleation and coalescence mechanism, as evidenced
by the dimpled surfaces in Fig. 7(b). Fractures in

tNote that specimens in the face orientation with TiNb
volume fractions of 0.05 and 0.10 were 12.7 mm-wide
compared to the typical width of 15.2 mm. While the
crack-initiation toughness would not be influenced by
such size differences, K, increases more rapidly with
crack advance in smaller test specimens. For example,
large-scale bridging calculations indicate that at crack
extensions of 7 mm, the smaller specimen size increases
the extrinsic toughness by ~25% and ~ 3% for the §
and 10vol.% TiNb-reinforced y-TiAl composites, re-
spectively.
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+-TiAl are prediciably brittle, charactenzed by trans-
granular cleavage with small regions showing inter-
granular failure [Fig. 7(c)). The distnibution of
ruptured ductile TiNb particles dispersed over the
brittle TiAl fracture surface is illustrated in Fig. 3.
Effects of these crack-extension processes on resist-
ance-curve behavior as a function of the ductile-re-
inforcement characteristics are summarized in Figs 8
and 9; estimates of the crack-initiation toughness, X,,
and R-curve slope, dK,/da. values based on linear
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Fig. 9. Influence of (a.b) reinforcement thickness, ¢, of
20 um vs 40 um, and (c) reinforcement type, TiNb vs Nb,
on the monotonic crack-growth resistance of y-TiAl com-
posites, for a volume fraction, f =0.2. in the edge (open
symbols) and face (filled symbols) orientations. Note that
results presented in Fig. 9(c) were obtained using 7.5 mm-
wide specimens (under large-scale bridging). both for
TiNb/TiAl and Nb/TiAl composites. to enable a direct
comparison; all other data presented are for 15 mm-wide
samples. Dashed line represents the toughness of pure
7-TiAL Kpa,-
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Fig. 10. SEM micrograph of fracture path morphologies in

Nb/TiAl composites under monotonic loading. Note the

extensive debonding at the interface compared to TiNb/TiAl
composites.

least-square fits to the experimental data are listed in
Table 3. Despite the influence of specimen size on the
measured fracture propertiest, it is clear that both
crack-initiation toughness and crack-growth tough-
ness, i.e. the slope of the resistance curve, increase
with ductile-phase content for the 40 um-thick TiNb
reinforcements {Fig. 8(a—)]. In comparison, re-
inforcement orientation has a minimal effect on duc-
tile-phase toughening at lower volume fractions,
particularly after specimen-size variations are con-
sidered. The toughness is marginally superior in the
face orientation, compared to the edge, but only for
TiAl composites reinforced with 20 vol.% TiNb.
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The reduction in reinforcement thickness from
~40 to 20 um at a volume fraction of 0.2 decreases
the slope of the resistance curve, but does not appear
to have a large effect on the initiation toughness
[Fig. 9(a. b)). The effectiveness of Nb vs TiNb ductile
reinforcements in enhancing the monotonic fracture
resistance of 7-TiAl composites. compared in
Fig. 9(c). illustrates the significance of effective par-
ticle strength on toughness as mediated by the combi-
nation of yield stress, constraint (for TiNb) and strain
hardening (for Nb). Specifically, the Nb particles in
Nb/TiAl composites readily delaminate from the
matrix during crack advance (Fig. 10) and relax
constraint (or reduce the degree of triaxiality) during
fracture compared to the highly constrained failure of
TiNb ligaments in TiNb/TiAl composites (Fig. 6).
Consequently, the higher (constrained) maximum
effective strength of the TiNb reinforcements
(~950 MPa) veld a significantly higher crack-in-
itiation toughness and a steeper resistance curve
compared to Nb additions (unconstrained. effective
strength of Nb ~ 250 MPa). The larger critical open-
ing displacement in Nb (u*~1.1r) vs TiNb
(u* ~ 0.7t ) appears to have no effect on the initiation
toughness and relatively little effect on crack-growth
toughness in these small samples. Furthermore, little
effect of orientation on toughness is noted for either
reinforcement.

The effects of reinforcement volume fraction (/)
and thickness (¢ ) on the apparent crack-initiation and
crack-growth toughness values are more clearly
shown in Fig. 11(a—) [the small symbols in Fig. 11(a)
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Fig. I1. Variations in crack-initiation toughness. K|, and crack-growth toughness. dX, ‘da. with (a.b)
volume fraction /, of reinforcement phase, (c) particle thickness. 1, and (d.e) reinforcement strength. o,,,,.

for both Nb,TiAl and

TiNb TiAl composites.
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represent the estimated size corrections to a common
specimen width of 15.2 mm]. With respect to volume
fraction of TiNb, fr.n,. [Fig. 11(a. b)] power-law fits
yield

dk,

@ 10.9( frins )° ¥
K =8+ 26.8( frine ). (3)
The corresponding fit of dK,/da to the TiNb particle
thickness, Iry,, Yields a linear dependence

[Fig. 11(c)]. Particle thickness has little effect on
crack-initiation toughness; hence, a plot of these data
is not shown. Figure 11(d) and (¢) plot the apparent
crack-initiation toughness values and resistance-
curve slopes vs the effective maximum reinforcement
strength, yielding power-law fits

% = 0.58(0 s )® @)

K, =8 +0.33(65 ). 6

The extrinsic toughening behavior measured in this
study cannot be analyzed using the intrinsic, steady-
state, small-scale bridging model represented by
equation (1). Nevertheless, the experimental trends
are qualitatively consistent with predictions that
toughness increases with the square root of the
reinforcement volume fraction and strength. The
linear dependence of toughness on particle thickness
is not predicted by equation (1). The particle thick-
ness effect on crack-growth toughness (dX,/da) is
probably a consequence of the combination of a
higher effective strength (particularly in the initial
portion of the R-curve) and longer extrinsic bridge
length (particularly at large a/W ) for the large-scale
bridging conditions experienced in these tests.

One puzzling result, however, is the absence of an
effect of particle thickness on the apparent initiation
toughness. Recall that the elevation of K; above the
K, value for y-TiAl matrix is attributed to a combi-
nation of crack trapping, deflection, and renucleation
mechanisms along with the presence of a small
(~ 50 um) residual crack-bridging zone. While crack
deflection contributions are not believed to be signifi-
caat, the toughening increment associated with renu-
cleation and residual bridging effects would be
expected to scale roughly with the square root of the
reinforcement thickness [11,23). This suggests that
crack trapping (pinning by ductile phases, as in the
case of a tunnel crack) effects in the edge orientation
may be comparable to toughening contributions from
crack-renucleation mechanisms in the face orien-
tation. More research is needed to resolve the effect
of particle thickness and orientation on the apparent
crack-initiation toughness.

A more rigorous analysis of these data must take
into account the effects of large-scale bridging, by
calculating self-consistent solutions to the crack-
opening profile, u (x), the distribution of tractions in
the crack wake, ¢(x), and the stress-displacement

function of the composite. o (u). where x is the
distance behind from the crack tip; details are pre-
sented elsewhere [11). Using this model, the intrinsic
steady-state toughness. K5y, and steady-state bridg-
ing length, L. were estimated by computing the
K,(Aa) curves up to steady-state in a very large
specimen. The calculations assumed nominal re-
inforcement parameters given in Table 2; K, and E’
are approximated by the initiation toughness, X,, and
the nominal plane-strain elastic modulus of TiAl
(193 GPa). The stress-displacement function for the
composite is of the form

0 (u) =0y, (u/u,) for u < u, (6a)

0 (U) =0 {l — (u/u’*)**] for u >u, (6b)

where, u, is the displacement at peak stress (taken as
2 um), and u ’* is taken as twice the agverage critical
particle displacement or the corresponding value
measured in sandwich tests. This formulation of o (1)
is a modification to the ncarly saw-toothed stress-dis-
placement functions measured in the sandwich tests
in order to account approximately for the distribution
of particle thicknesses in the actual composite. Re-
sults from these calculations, summarized in Table 3,
also indicate that significant intrinsic toughening can
be achieved in y-TiAl composites even under small-
scale bridging conditions. Also note the remarkably
long steady-state bridging lengths under small-scale
bridging conditions.

Results on crack-growth resistance curves
measured under monotonic loading can be summar-
ized as follows. Even small volume fractions of
ductile reinforcements produce marked toughening
due (i) the formation of large bridging zones and (ii)
crack trapping and renucleation mechanisms which
mediate the critical crack-tip stress intensity. The
slope of the R-curve increases with reinforcement
volume fraction, strength and thickness; with the
exception of particle thickness, similar trends are
observed for crack-initiation toughness. Reinforce-
ment orientation appears to have relatively little
effect on the degree of toughening on these com-
posites. Overall, the experimentally measured extrin-
sic toughening behavior is consistent with predictions
of large-scale bridging models.

3.2. Fatigue-crack propagation behavior

Cyclic fatigue-crack growth results in the ductile-
particle reinforced y-TiAl composites, along with
data for unreinforced y-TiAl and B-TiNb constituent
phases, are plotted in Figs 12-14; fatigue-threshold
data and other crack-growth parameters are summar-
ized in Table 4. As noted in previous studies on the
TiNb/TiAl system [15,16], under cyclic loading,
cracks propagate subcritically at stress intensities of
4-12 MPa/m for all y-TiAl composite microstruc-
tures and specimen orientations, below the K, values
necessary to initiate and sustain cracking under
monotonic loading (Table 3). Subcritical crack
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Fig. 12. (a) Cyclic crack propagation and (b) crack-closure behavior in a y-TiAl + 20 vol.% B-TiNb
(¢t ~ 20 pm) composite, in the edge (C-R) and face (C-L) orientations, at R = 0.1, compared with the
crack-growth properties of the constituent phases, monolithic y-TiAl and S-TiNb.

propagation under cyclic loads must therefore be
considered an important damage mode in the struc-
tural design and use of ductile-phase toughened
brittle-matrix composites.

The general features on da/dN-AK curves for the
composites resemble those seen for most metallic
materials with a low-growth rate region (region I) at
AK levels close to the fatigue threshold, where the
rate of crack advance strongly depends on applied
AK, followed by an intermediate or mid-growth rate
region (region II) where this dependence is moderate.
However, unlike behavior in metals, crack-growth
behavior for the y-TiAl composites in this mid-

fBeﬁkvior in this region is characterized by curve fitting the
da/dN data between 10-° and 10-* m/cycle.

growth rate regimet is still very sensitive to the
applied AK, especially at low volume fractions. In
fact, when expressed in terms of the empirical Paris
power-law relationship that is often used to describe
fatigue crack-growth rate behavior in this region.

da/dN = CAK™ )

the exponent m ranges between 10 and 20 for the
various composites, compared to values of ~ 2—4 that
are typically reported for monolithic metallic
materials; m ~4.6 for pure B-TiNb [Table 4,
Fig. 12(a)]. In other words, the mid-growth rate
(power-law) regime of cyclic crack growth is rela-
tively small for ductile-phase toughened TiAl com-
posites and virtually non-existent for unreinforced
+-TiAl (m ~ 30). At high AK levels approaching the
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initiation toughness, K; (high-growth rate regime,
region III), a rapid increase in crack-extension rates
is seen for small changes in AKX, similar to behavior
near the fatigue threshold.t

3.2.1. Orientation effects for TiNb/TiAl com-
posites. Figure 12(a) depicts the cyclic fatigue-crack
growth data for the edge and face orientations in the
y-TiAl composite reinforced with 20vol.% of
~20 um-thick TiNb particles. Specifically, in the
edge orientation, region [ fatigue-crack growth rates
in the composite are faster than in unreinforced
y-TiAl and much slower than in pure §-TiNb. The
near-threshold cyclic  crack-growth  behavior
(da/dN < 10~ m/cycle) of the composite is essen-
tially bounded by properties of the individual phases.
In region I, growth rates in the edge-orientation of
the composite are comparable to those measured in
monolithic g-TiNb.

However, Fig. 12(a) also reveals that the crack
velocities in the TiNb/TiAl composite for the face
(C-L) orientation are slower than in 7-TiAlL in
fact, the composite fatigue properties are superior
to both unreinforced TiAl and TiNb. Thus, unlike
the response under monotonic loading, the
reinforcement orientation has a marked effect on
cyclic crack-growth behavior. More importantly,
these results clearly demonstrate that the incorpor-

+1t should be noted that fatigue-crack growth behavior in
the high-AK regime (region III) has not been fully
characterized in this study due to the rapid crack
velocities inherent with test frequencies of 50 Hz used for
cyclic loading, especially for brittie-matrix composites.

ation of ductile reinforcements can also enhance the
cyclic fatigue-crack propagation resistance of brittle
y-TiAl intermetallic alloys, in addition to improving
their fracture toughness. However, the magnitude of
improvement is relatively small, indicated by
~2MPa,/m shift in the entire da/dN-AK curve
compared to the nearly five-fold increase in toughness
seen under monotonic loads, and is seen only specific
orientations i.e., where the crack periodically
encounters the pancake faces of ductile particles.
Similar reinforcement-orientation effects are also ob-
served in other TiNb/TiAl composite microstructures
[Fig. 14(b)].

Corresponding measurements of the extent of
crack closure in the TiNb/y-TiAl composites and
their two unreinforced constituents are shown in
Fig. 12(b) in terms of the closure stress intensity, K,
normalized by K., as a function of AK. The K,/K .,
values in the edge orientation of composite are
slightly lower compared to TiAl in the edge orien-
tation suggesting faster growth rates due to increased
AK g values locally at the crack tip; no such distinc-
tion is apparent in the face orientation. Although
such variations are partly consistent with observed
reinforcement-orientation effects on cyclic crack
growth, closure effects do not appear to completely
account for the differences in crack-growth rates
between the composite and monolithic alloys.
Specifically, at high AK levels where the influence of
closure is reduced, cracks propagate faster in the
edge-oriented composite than in pure ¢-TiAl or §-
TiNbD [Fig. 14(a)]. As such, it seems more likely that
cyclic crack-growth rate variations are principally
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Fig. 14. Microstructural effects of (a) volume fraction (1 ~ 40 um) and (b) particle thickness (f ~ 0.2) on
the cyclic fatigue-crack propagation resistance of TiNb/TiAl composites in the edge (C-R) orientation,
at R =0.1.

attributable to differences in intrinsic mechanisms of
cyclic crack advance in these microstructures.

3.22. Load ratio effects. The effect of load ratio
(R = K. /K ) On cyclic crack-growth rates, in the
20 vol.% TiNb/y-TiAl composite in the edge (C-R)
orientation, is shown in Fig. 13. Compared to a
baseline of R = 0.1, load ratios of 0.5 and 0.7 reduce
the fatigue threshold stress-intensity values by about
27 and 51%, respectively. This phenomenon is con-
sistent with behavior observed in many metallic ma-
terials [24], where increasing R accelerates
crack-growth rates for a given AKX, especially in the
near-threshold and high-AK regions. Although the
marked sensitivity to applied AKX in the threshold
regime is essentially unchanged, higher load ratios
suppress the intermediate growth-rate regime (region
1) separating the behavior at near-threshold and high
stress intensities. The latter occurs at K, of

AMM 42)—u

~8.5-9.3 MPa,/m, slightly in excess of the matrix
fracture toughness of ~8 MPa,/m, and is indepen-
dent of the load ratio.

As noted above, premature crack closure is ob-
served to occur in the composites at stress intensities
above K.,, presumably from the wedging of frac-
ture-surface asperities including any intrinsic bridg-
ing ligaments or broken remnants, e.g. at threshold,
K,yis ~0.4 K, . As a result, for load ratios below 0.4,
such closure causes a net increase in K,, or a
reduction in the driving force from the nominal
(applied) value of AK to a local “near-tip” value
AK.y, thereby resulting in slower crack-growth rates.
At high R, closure effects are minimal (K, > K,
and the crack remains open during the entire loading
cycle; accelerated crack-growth rates are thus to be
expected. From these considerations, load ratio
effects on cyclic crack growth in the composite are
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Table 4. Summary of cyclic crack growth data in ;-TiAl composies

Load Threshold
ratio AKyy Exponent® Constant®
Material R (MPa, m) m C
++TiAl 0.1 58 294 97x10 "
B-TiNb 01 1.7 4.6 30x10°"
Edge orientation
v-TiAl + 5% TiNb (40 um) 0.1 4.5 17.6 53xi0 ™
+ 10% TiNb (40 um) 0.1 5.6 14.1 11 x 107
+ 20% TiNb (40 um) 0.4 5.0 9.6 20x10°"
+20% TiNb (20 um) 0.1 5.3 9.7 25x10° "
0.5 36 - —
0.7 6 - —
Face orientation
+-TiAl + 20% TiNb (40 um) 0.1 8.2 6.7 1.0 x 107"
+20% TiNb (20 um) 0.1 8.2 14.8 1.1 x10°%
+20% Nb (40 um) 0.1 10.1 8.7 1.0x 10"

*For crack-growth rates between 10-° and 10-°m:cycle.

®Units: m;cycle (MPay/m) ™™

expected to be small for R > 0.4, since K, is at least
~0.4 K,,.. However, other factors are clearly rel-
evant in view of the marked differences in behavior
between R = 0.5 and 0.7, e.g. the rapid crack growth
at K,,, levels approaching the matrix K, due to
cleavage fracture of 7-TiAl [Fig. 7(c)}, akin to the
high-AK behavior controlled by static-mode fracture
mechanisms seen in metallic alloys [24].

3.2.3. Crack-particle interactions. In contrast to
behavior under monotonic loads (Fig. 6), crack-path
morphologies in TiNb/y-TiAl microstructures under

cyclic loads reveal that there is minimal ductile-liga-
ment bridging in the crack wake (Fig. 15). Crack
paths in the plane of loading and crack fronts across
the specimen thickness {~ 150 um behind the crack
tip) clearly indicate that the TiNb particles rapidly
fail under cyclic loading without any sign of plastic
deformation. In the edge (C-R) orientation. fatigue
cracks traverse the ductile particles apparently with-
out significant interaction [Fig. 15(a)]; crack blunting,
crack renucleation and resultant in-plane bridging
effects, which are so dominant under monotonic

Fig. 15. SEM micrographs of crack-path morphologies in TiNb/;-TiAl composites under cyclic loading
in the (a) edge (C-R) and (b) face (C-L) orientations, taken at specimen mid-thickness location in the
loading plane. Horizontal arrow indicates the crack-growth direction.
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loads, are simply not observed. This conclusion was
verified by /n situ telescopic observations on the
specimen surface, and also by quantitative estimates
of the extent of crack bridging at various AKX levels.
Crack lengths, estimated from elastic-compliance
measurements using strain gauges, were within
+200 um (<2%) of those measured using indirect
d.c. potential methods, indicating that crack-bridging
effects in fatigue are relatively insignificant. No dis-
cernible differences in crack paths were noted at the
various load ratios.

Although cracking is still continuous through the
matrix and ductile phases in the face (C-L) orien-
tation, as shown in Fig. 15(b). there is indication of
crack branching, deflection, multiple cracking in the
matrix and coplanar bridging (associated with a
non-planar and discontinuous crack front across the
specimen thickness because of overlapping cracks on
different planes), consistent with the improved crack-
growth resistance in this orientation. Crack renucle-
ation in the matrix ahead of the TiNb particle under
cyclic loading is observed at AK levels of
~9-10 MPa,/m: however, due to the rapid fatigue
fracture of the TiNb particle, the effective range of
crack/particle interactions is limited to a few hundred
microns or less (cyclic bridging zone ~ particle thick-
ness); equivalent dimensions under monotonic load-
ing are on the order of several millimeters (Table 3).
In fact, even in the face orientation, the TiNb par-
ticles show minimal evidence of plastic stretching.

Corresponding fracture-surface morphologies are
shown in Fig. 16. Unlike the microvoid coalescence
seen under monotonic loading (Fig. 7), the TiNb
phase fails by transgranular shear under cyclic load-
ing in both the composite and monolithic form
(Fig. 16(b)]; features resemble fatigue failures in
coherent-particle hardened alloys that deform by
planar slip [25). Likewise, the y-TiAl matrix also
shows intrinsic fatigue damage, evidenced by the
parallel slip markings in Fig. 16(c), in addition to the
transgranular and intergranular cleavage modes of
failure [Fig. 16(c)].

From these observations and other studies [15, 16)
it may be inferred that the lack of toughening from
crack-bridging mechanisms under cyclic loads is
the principal reason for subcritical crack-growth
effects in TiNb/TiAl composites at AK levels below
their crack-initiation toughness values. Such en-
hanced crack growth results from fatigue-induced
failure of the ductile particles before 1ne crack can
establish a bridging zone, which is alicady limited
under cyclic loading because of the relatively small
crack-opening displacements associated with the
lower stress intensities.

The sources for reinforcement-orientation effects
on cyclic crack growth are not altogether clear.
Potential explanations include: (i) fatigue failure of
the reinforcements in the edge orientation in fewer
cycles. since the opening along the crack flanks and
resultant plastic displacements would be larger than

DUCTILE-REINFORCEMENT TOUGHENING
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Fig. 16. (a-c) SEM images of fracture surfaces in TiNb/y -

TiAl composites under cyclic loading at various magnifi-

cation levels. Micrographs (b) and (c) illustrate the cracking

features in f-TiNb and y-TiAl regions of the composite.

Horizontal arrow indicates the general direction of crack
growth.

corresponding crack-tip opening displacements in the
face orientation; (ii) restriction of crack deflection,
branching and coplanar bridging effects in the edge
orientation by the reinforcement; and (iii) differences
in the phase angle of any local debond cracks.
3.2.4. Reinforcement size and tolume fraction
effects. The influence of TiNb reinforcement volume
fractions, ranging between 0.05-0.2 (~ 40 ym-thick),
on fatigue-crack growth behavior of TiNb/TiAl com-
posites in the edge orientation, is illustrated in
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Fig. 14(a). While fatigue thresholds for all composites
fall below the value for monolithic y-TiAl, there
appears to be no consistent effect of fr, on the
fatigue threshold;: AKy, values range between
~45MPay/m (frno~0.05) and ~5.6 MPa/m
Urine ~ 0.1).

However, the slope of da/dN-AK curves (measured
as the exponent, m) in the intermediate growth-rate
region is found to decrease consistently with increas-
ing ductile-phase content (Table 4); the AKX interval
for region 11 and the maximum AK marking the onset
of region III show a corresponding decrease. In effect,
intermediate crack-growth rates in the composites, at
a given AK, are lowered by increasing the reinforce-
" ment volume fraction. More notably, crack-growth
rates in the composites with 10vol.% TiNb, and
particularly 5vol.% TiNb, are significantly higher
than those found in ecither unreinforced TiNb or
TiAlL These interesting, albeit puzzling, effects could
be associated with the competing role of residual
stresses or crack-closure effects (which increase AK,;, )
vs limited crack bridging/trapping (which reduces
AK,,); with increasing fy,n,, crack bridging/trapping
effects may become dominant.

Reinforcement thickness has a minimal effect on
cyclic crack-growth behavior in the edge (C-R) orien-
tation, for samples containing 20 vol.% TiNb [Fig.
14(b)]. However, increasing TiNb particle thickness
from ~ 20 to 40 um is found to retard crack advance

DUCTILE-REINFORCEMENT TOUGHENING

in the face (C-L) orientation, especiaily for AK levels
in the mid-growth rate regime, above ~9 MPa;/m.
Toughening mechanisms associated with crack renu-
cleation in the matrix ahead of the ductile particle,
which scale with particle thickness [11, 23], are be-
lieved to account for the improved fatigue resistance
of coarse microstructures. Once again, note that
reinforcement-orientation effects are prominent
under cyclic loading, with face-oriented composites
exhibiting better crack-growth resistance over y-TiAl
and B-TiNb.

3.2.5. TiNb vs Nb reinforcements. Figure 17 com-
pares the fatigue-crack growth properties of y-TiAl
reinforced with 20 vol.% (~40 um thick) Nb par-
ticles in face (C-L) orientation to corresponding
behavior in the TiNb/TiAl both in the edge and face
orientations. While both reinforcements in the face
orientation improve the fatigue resistance of y-TiAl,
the cyclic toughening increment is clearly greater for
the Nb phase than for TiNb. The fatigue threshold
for the Nb/TiAl composite, AKyy ~ 10 MPa/m, is
about 75 and 40% larger than the pure y-TiAl
{(~6MPa,/m) and the TiNb/TiAl composite
(~8 MPa,/m), respectively. This is in contrast to
fracture toughness behavior under monotonic load-
ing, where the high-strength TiNb reinforcements are
significantly more effective in impeding crack ad-
vance. When compared at a fixed AK of 10 MPa,/m,
growth rates are nearly five orders of magnitude

1 2 5 10 2
1 O-G 1 d 1 | ] | 1 41 1 0-6
20 vol.% (t = 40 um) Nb- or TiNb-TiAl Composites, R = 0.1
< A TiNb/TiAI-Edge a
& 107 a 107
Al A TiNb / TiAl - Face g@ °
E @  Nb/TiAI-Face - » ’.
3 10° p 10°®
= )
~ A ‘.~
© “ r'Y ~
ui R Nb/TIA} .
[ 9 .
1 F 10
3 1 B-TiNb e
T 'y
_ [ ] _
% 10°"° NS 107
1~
9 +TiAl TINW/TIAI
g 10" s 10™
O ®
10?4 T T T T T T T7 10"
1 2 s 10

STRESS-INTENSITY RANGE, AK (MPavm)

Fig. 17. Effect of Nb vs TiNb ductile reinforcements on the cyclic crack-growth resistance of ;-TiAl in
the face (C-L) orientation (R = 0.1). Note the superiority of Nb/;-TiAl composites due to their relatively
weak interfacial bonding compared to TiNby-TiAl
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Fig. 18. Summary of cyclic crack-path

DUCTILE-REINFORCEMENT TOUGHENING

composite in the face (C-L) orientation, showing significant interfacial debonding, cracking ahead of the
Nb particles and evidence of crack bridging. Horizontal arrow represents the crack-growth direction.

slower in Nb/TiAl than in TiNb/TiAl. However, the
enhancement in fatigue resistance of y-TiAl from Nb
additions is far less compared to that equivalent
increase in fracture toughness [Fig. 9(c)].

Such improved fatigue-crack growth properties
using Nb reinforcements can be traced to significant
secondary-cracking effects locally near the Nb/TiAl
interface. As illustrated in Fig. 18, these are charac-
terized by (i) crack arrest at the interface. (ii) decohe-
sion along the interface and (iii) crack renucleation in
the brittle matrix ahead of the particle. prior to
particle failure. Analogous to behavior under
monotonic loads. the brittle o-layer interface sur-
rounding Nb particles is expected to be less fatigue

resistant and susceptible to debonding compared to
the ductile a, layer around TiNb particles. Neverthe-
less. such debonding at the Nb/TiAl interface relaxes
constraint, diffuses plastic strains, and prevents con-
tinuous crack penetration into the ductile Nb phase;
these mechanisms. in addition to crack renucleation
which preserves local crack-tip bridging. extend the
fatigue life of the Nb reinforcements. However, the
extent of debonding during fatigue is less than that
seen under monotonic loading (Fig. 10) and is much
more evident in Nb'TiAl. Conversely. debonding is
not evident for TiNb'TiAl composites under fatigue,
as under monotonic loading, and consequently the
cracks advanced continuously through the x, layer
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into the TiNb particle without significant interfacial
interactions, thereby leading to rapid failure of the
TiNb phase. Moreover, the TiNb phase is inherently
more susceptible to fatigue failure in fewer cycles (due
to localized planar-slip deformation) than the strain-
hardening Nb phase, consistent with previous results.
(Note that fatigue-crack growth rates in Nb are also
strongly dependent on interstitial H,, C, N,, O,, and
Si impurity contents [26].)

Finally, it is useful to estimate the magnitude of
toughening associated with various mechanisms
under cyclic loading to provide some insight into their
relative contributions. The effects of local crack
bridging in fatigue (Fig. 18), specifically in the face
orientation, on the reduction in near-tip stress inten-
sity, AK,, may be assessed using the Dugdale ap-
proximation [27]

AK.,=% to.</3L, ®)

where, L, is the bridging-zone length and o, the
effective value for uniform bridging tractions in
that zone. Taking L,~40um (bridging
zone ~ reinforcement thickness) and the average
bridging tractions under cyclic loading to be roughly
one half the flow stress (6, ~ 0.5{¢, + 0,)/2, or ~215
and ~ 100 MPa for TiNb and Nb, respectively), the
in-plane bridging contributions, AK,,, for a composite
reinforced with 20 vol.% ductile particles are a mere
~04 and ~0.2MPa,/m for TiNb and Nb phases,
respectively. Measured shifts in the da/dN-AK
curves (Fig. 17) are, respectively, ~2 and
~4MPa,/m for the TiNb/TiAl and Nb/TiAl
composites, implying that other mechanisms are
relevant. Crack trapping and renucleation of the
fatigue crack in the ductile phase associated with
blunting (via interfacial decohesion for Nb), and
coplanar bridging from multiple and discontinuous
crack fronts (for TiNb and Nb) are expected to
provide the additional contributions to the fatigue-
crack growth resistance.

4. CONCLUDING REMARKS

The present results extend previous studies [15, 16)
in illustrating the contrasting role of ductile reinforce-
ments on monotonic (fracture toughness) and cyclic
(fatigue) crack-growth resistance of intermetallic-
matrix composites. With respect to R-curve tough-
ness, the principal factors are effective reinforcement
strength and ductility as mediated by constraint
imposed by debonding characteristics of the interface
and resultant constrained deformation properties of
the reinforcement; local crack/particle interactions
contribute to intrinsic crack-initiation toughness. Re-
inforcement thickness (initiation toughness) and
orientation (edge vs face) effects on toughness, pre-
viously seen in coarse laminated composites, appear
to be modest for the pancake-shaped ductile-phase
toughened composites, suggesting competing effects

|y
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of various local crack particle interactions on
monotonic crack-growth resistance.

Very different mechanisms and microstructural
factors are associated with fatiguecrack propagation
resistance. This is perhaps best illustrated by the
degradation in fatigue thresholds compared to y-TiAl
and accelerated crack-growth rates relative to either
monolithic constituent in the edge-oriented
TiNb/TiAl composites, particularly at low volume
fractions. The premature cracking or low-cycle
fatigue failure of ductile particles at small crack-
opening displacements under cyclic loading result in
very limited bridging zones and thercfore minimal
toughening. Improved fatigue resistance is seen only
in the face-oriented composites, the increase being
attributed to local crack-particle interaction mechan-
isms that are similar to those under monotonic
loading, yet are far less potent under cyclic loading.
The fatigue resistance of the composites is further
enhanced by weak (debonding) particle-mat-  -1er-
faces and ductile particles with optimal fat: >-
erties, ¢.g. strain-hardening phases with higt Js
and strength. Debonding can be induced at inn.. cntly
strong reaction-layer interfaces by applying thin ox-
ide coatings between constituents, although this can
reduce the toughness. These observations suggest that
ductile phases are associated with multiple and com-
peting mechanisms, with the net effect under fatigue
loading being sensitive to reinforcement architecture,
volume fraction and particle thickness.

Such differing, and in some cases contradictory,
requirements for superior toughness and fatigue re-
sistance suggest that optimized composite micro-
structures may requirc a variety of reinforcements
and architectures based on alternative shielding
mechanisms. For example, a semi-continuous net-
work of the ductile phase offering a preferred crack
path may provide improved fatigue resistance by
promoting crack meandering. This in turn promotes
crack-tip shielding from roughness-induced crack
closure by wedging of enlarged fracture-surface as-
perities, and has proved to be very effective in
improving the fatigue-crack growth resistance of
duplex ferritic/martensitic steels and a/f titanium
alloys [28, 29). Such an approach should also provide
adequate toughness under monotonic loads due to
the formation of extensive bridging zones.

5. CONCLUSIONS

Based on an experimental study of the monotonic
and cyclic crack-growth properties of ductile-phase
toughened 7-TiAl intermetallic composites, re-
inforced with either B-TiNb or Nb, the following
conclusions can be made:

1. Brittle y-TiAl intermetallic alloys can be signifi-
cantly toughened under monotonic loading by dis-
persing ductile Nb or TiNb reinforcements;
compared to a fracture toughness of 8 MPa/m for
pure y-TiAl, both type of composites show increased
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crack-initiation toughness (K;) and marked resist-
ance-curve behavior with K, (Aa) values in excess of
~40MPa,/m. Under monotonic loading, the
stronger §-TiNb particles impart greater toughening
than Nb reinforcements.

2. Improvement in crack-growth toughness (as
reflected by the resistance-curve slope. dX,/da)
under monotonic loading is primarily attributed
to shielding effects. associated with extensive
bridging by intact TiNb or Nb ligaments, over
dimensions of several millimeters, in the crack
wake. A number of local crack-particle interactions
enhance the crack-initiation toughness, and provide
secondary contributions to crack-growth toughness.
Depending on the measure, toughness increases
with thickness (X;) and volume fraction (K|, dK,/da)
of the ductile-phase particles; however, reinforcement
orientation appears to have a relatively minor
effect.

3. Ductile TiNb and Nb reinforcements also lead
1o enhanced cyclic fatigue-crack growth resistance of
y-TiAl, although the effect is specific only to the face
(C-L) orientation and is seen as a modest increase in
the fatigue threshold, AKy;. The increase appears to
be associated with local crack—particle interaction
mechanisms, including crack renucleation (in the
matrix and/or particle), crack branching, limited in-
terface debonding and discontinuous (out-of-plane)
crack bridging.

4. Conversely in the edge (C-R) orientation, TiNb
particles actually degrade the AKy, relative to y-TiAl,
and at low volume fractions accelerate the intermedi-
ate crack-growth rates relative to either monolithic
constituents. Behavior is primarily due to the prema-
ture fatigue fracture of ductile phases under cyclic
loads, which severely limits bridging in the crack
wake, and the absence of any other microstructural
interactions.

5. In direct contrast to their effect on toughness
under monotonic loading, in the face (C-L) orien-
1ation, Nb particles yield better fatigue-crack growth
resistance compared to TiNb particles. This results
from extensive debonding of Nb particles from the
y-TiAl matrix. due to the weak Nb/TiAl interface,
and their inherently better fatigue properties com-
pared to TiNb reinforcements.
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Abstract

Creep models for metal matrix composites reinforced by long brittle fibers

with weak interfaces are presented. These models extend the work of McLean(1)

to include effects of fiber breaks and the consequential stress relaxation in
the broken fibers on the creep strain and the creep rupture time when global
load sharing occurs. Systematic analyses are conducted for composites with
a wide range of fiber volume fractions, Young’s modulus of the fibers and the
matrix, interfacial sliding stress and Weibull properties for the strength of the
fibers. The results derived from this study are compared with those predicted
by McLean’s model(1) and another model accounting for part of the effects of
broken fibers. The creep life is found to be sensitive to the extent of fiber stress
relaxation in the broken fibers. Models, which ignore this effect overestimate
the creep rupture time especially when the composite is subjected to a low or

moderate level of stress.




1 Introduction.

The use of advanced continuous fiber reinforced metal matrix composites (SiC /T4,
Al;03/Al) as engineering materials requires that the materials have sound mechanical
behavior at both elevated and room temperatures. The mechanical behavior of metal
matrix composites in terms of strength, plasticity and fatigue at room temperature
is relatively well understood (2-6). Moreover, a comprehensive constitutive model
which takes into account the material anisotropic behavior for the situation where
the composite is subjected to a multi-axial loading has been developed(4). In con-
trast, relatively little work has been done on modeling the response of metal matrix
composites at elevated temperatures. In order that comprehensive predictive models
similar to those used in low temperature environments can be assembled for high
temperature applications, the mechanical behavior associated with time dependent
creep deformation of metal matrix composites has to be addressed.

In the range of operational temperatures, fibers usually do not creep but the matrix
can creep. For example, in the case of a SiC/Ti composite at 600°C, which normally
is the peak value of the operational temperature, the homologous temperature for
the matrix material is 0.45, which will lead to deformation by power law creep. The
reinforcement, in contrast, operates at a homologous temperature of 0.2 and therefore
should exhibit little time-dependent creep deformation.

A number of models have been developed to address creep problems in this regime
for composites reinforced either by continuous or discontinuous fibers. Cell models are

widely used for this purpose(7-11). Dragone and Nix(7) and Bao et al.(8) undertook

(8]




detailed numerical analyses on discontinuous fiber reinforced composites, while Kelly
and Street(9), McLean(1), Goto and McLean(10) and most recently, McMeeking(11)
adopted approximate models without recourse to complete numerical treatment. Of
these models, McLean’s (1), which is concerned with a composite with a power-law
creeping matrix reinforced by elastic fibers, is particularly of interest. In his model,
it is assumed that the fibers do not either creep or fracture and deform elastically
at a rate governed by the surrounding creeping matrix. The governing equations for

stress o and strain € in the model are given by

gp = EIE (1)
E= %’1+Ba,’:, (2)

and
o= fo;+ (1~ flom (3)

where f is the fiber volume fraction, E; and E,, are the Young’s modulus of the
fibers and the matrix respectively, o5 and oy, are the fiber and the matrix stresses
respectively, and n and B are e creep exponent and creep constant of the matrix
respectively.

In McLean’s (1) model, the strain rate decreases as the stress in the matrix de-
creases due to the matrix creep. As time progresses, the fibers therefore sustain more
load formerly carried by the creeping matrix. Eventually, when the matrix stress
is completely relaxed, all of the load is carried by the intact fibers and the strain

approaches a steady state. This type of behavior is associated with matrix stress
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relaxation which is usually completed in a relatively short time. For the situation
where the composite is subjected to a low level of stress, this model predicts creep
strain with reasonable success. However, when a relatively large load is applied to the
composite, damage initiates in the form of isolated or localized fiber breaks(12,13). In
addition, crack like defects can also be introduced in the fibers during manufacture.
In either situation, in order for the creeping matrix to deform at a rate that is compat-
ible with the more compliant broken fibers, creep strains must increase. Furthermore,
the more fibers fail, the larger is the increase in creep strain. The composite therefore
may never exhibit a steady-state creep rate and instead may progress directly from
a primary to a tertiary stage(12). In this regime McLean’s original model(1), which
ignores such effects, underestimates the creep strain and fails to predict creep rup-
tures resulting from the failure of fibers. However, McLean(14) has also developed
a model which includes the effect of statistical fiber failure and has predicted creep
curves with a tertiary stage.

Recently, theoretical studies on fiber failure stochastics within the framework of
global load sharing, whereby the load shed from a broken fiber is shared nearly equally
among all intact fibers, have been carried out by Curtin (15) for composites with weak
interfaces. This has led to a statistical strength prediction procedure for uniaxial
composites. However, in his study, the effect of a creeping matrix on the stress
distribution in the composite has not been addressed. The methodology used by
Curtin (15), however, provides insight for including such an effect. McLean relaxation
will cause the fiber stress to increase which increases fiber fracture and effective fiber

compliance. If the fiber stress rises above the effective strength of the fibrous system,
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failure of the composite will occur rapidly, leading to rupture after creep.

Another phenomenon associated with the failure of the fibers, which has received
little attention, is the stress relaxation in the broken fibers. Previous work has ad-
dressed the evolution of the stress concentration around a broken fiber in a viscoelastic
or power-law creeping matrix(16, 17). Other modeling has involved the finite element
analysis of the matrix and fiber behavior with broken fibers(18, 19). When a fiber is
broken, the stress in the fiber is gradually relaxed due to matrix shear stress leading
to creep. This reduces the load carrying capacity of the broken fiber. The more the
stress relaxes in the broken fiber, the higher is the load carried by the intact fibers.
As a result, the strain in the intact fibers increases and more fibers fail. This effect
influences the creep strain to rupture and the rupture life. Such behavior is important
when a considerable amount of fibers fail, resulting from a high applied stress in the
composite or a low to moderate Weibull modulus of the fibers. It is demonstrated in
this paper that fiber stress relaxation is a relatively slow process in comparison with
matrix stress relaxation. The fiber stress relaxation therefore leads to a significant
reduction of the strength of the fibrous system in the long term, giving rise to a lim-
ited creep life for the composite even when the composite is subjected to a relatively
low stress.

The remainder of the paper is organized in the following way. Section 2 describes
three creep models. The first two consider the situation where there are broken fibers
in the composite, but the consequential fiber stress relaxation due to creep is omitted.
These models are established by extending Curtin’s work(15) on fiber failure stochas-

tics within the framework of global load sharing to include the effect of a creeping




matrix. In one model, McLean relaxation is assumed to occur uninfluenced by fiber
failure. In the other, the additional compliance due to fiber failure is permitted to
influence the McLean relaxation and is similar to McLean’s damage model(14). The
third model is much more comprehensive. It is concerned with the effects of both fiber
breaks and the consequential fiber stress relaxation due to matrix creep in shear. Sec-
tion % presents the results obtained from various models for composites with a wide
range of fiber volume fractions, Young’s modulus of the fibers and the matrix, ratios
of the interface sliding or yield stress to the fiber strength and the Weibull modulus
of the fibers. Analyses of the results and comparisons in terms of creep strain and
creep rupture time among these models are also presented. The results are discussed

in Section 4.

2 Creep Rupture Models

In this section, detailed derivations for the three models are described. When the
. models are developed, a number of assumptions are made. The major one is that the
composite is in the global load sharing regime(2, 15). Stress concentrations due to
broken fibers do not cause localized damage in the material. Instead, damage in the
fibers develops in an uncoordinated manner. In addition, fibers are elastic and brittle
and deform at a rate compatible with the surrounding creeping matrix. The interface
between the fibers and the matrix is weak and will slide or yield in shear when the
shear stress on the interface equals a critical value 7,. This will occur adjacent to

fiber breaks controlling load transfer between the broken fiber and the matrix.




2.1 Curtin’s Model for Stochastic Fiber Failure

Curtin’s (15) analysis of stochastic fiber failure with global load sharing is outlined
first. Consider a representative volume for the composite subjected to a uniaxial
stress o as illustrated in Fig.1(a). The stress at a cross section of AB in accordance

with the rule of mixtures is such that
oc=(1~ flom + fo; (4)

where { is the fiber volume fraction, o,, is the uniform matrix stress and &, is the
average stress in fibers at AB.

For a broken fiber, as illustrated in Fig.1(b), the shear stress is set equal to 7,
near the end of fiber break, and by equilibrium, the stress recovery distance Ly is

_ DE}E
- 4T0

(5)

Ly

where D is the fiber diameter, E; is the Young's modulus of the fiber and ¢ is the
axial strain in the composite. The probability that a fiber breaks within the distance
L; from AB is q. The stress in a fiber which is unbroken up to a distance L; from
AB is Eye. Random position of breaks in fibers broken within a distance L; from
AB (as illustrated in Fig.1(b) ) implies that the average stress at AB in such fibers

is 3 Ege. Therefore, the average stress in fibers at AB is given by
- 1
7r=(1-q)kre+q5Ese (6)

If fibers broken twice within the distance L; from AB are negligible and the fiber

length L is much larger than the stress recovery length L;, the number of fracture
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nuclei in the fibers with strength up to Eye predicts q. Weibull statistics then gives

~J
~—

2Ly Eie ™
q — LO ( SO ) (
where Ly and Sy are length and strength parameters of the Weibull distribution and

m is the Weibull modulus. Substituting L; of eqn(5) into eqn(7) then provides the

expression for the fiber failure probability

EEm+l
q=(5f) {8)

where S, is a characteristic stress for the fibrous system such that (15, 20, 21)

1
256" To Lo m+1

Se=( o)

(9)

Substitution of q of eqn(8) into eqn(6) then gives the average stress in the fibers at

AB

1 EfE m+1
5( 5 ) ] (10)

it can be seen that the average stress in the fibers depends not only on the strain in

Ty = E,s[l —

the composite and Young’s modulus of the fibers but also on the Weibull strength
properties of the fibers.

The maximum value for &; occurs when

SC 2 4l
€= E(;"—‘*_Q) (11)
and is
2 =T om+1

m+2 m+ 2
It follows that S is the effective strength of the fibrous system.
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2.2 Rupture Based on McLean Relaxation

Consider a unidirectionally reinforced material subject to a fixed axial stress beginning

at time t=0. The solution to eqns(1)-(3) given by McLean(1) is

1

_o (=0 E " f(n~1)EEBt
W)= 5~ g llgy) ] (13)

where E is the rule of mixtures modulus
E=fE;j+ (1~ f)En (14)

The stress in a fiber is the strain multiplied by E;. Two rupture models can be
postulated. In one model, rupture is considered to occur when the strain in the
fibers equals the value from eqn(11), which is the strain at maximum load for the
Curtin fiber strength model. Creep of the matrix is consic :red to accelerate rapidly
thereafter, leading to rupture after negligible additional time. This is termed the

strain based McLean rupture model and gives

E f, 2 &7 Bt

nel, _ o

where ¢, is the time to rupture. The second McLean based model assumes that
rupture occurs when the stress in the fibers reaches the effective strength S from the

Curtin model. This gives

E o foo2 Fmomtr Eno
froE s T me? G ~(Es) )
(16)

BE,S*'t, =

which is termed the stress based McLean rupture model. It predicts shorter rupture

times than the strain based model.




2.3 Curtin Rupture Model

The creep response of the global load sharing composite can be predicted with eqn(10)
used as the effective stress-strain relationship for the fibers. The matrix response is
given by eqn.(2) and the fibers and matrix are coupled together through eqn(4). B

substitution of the average fiber stress &; of eqn(10) into eqn(4) and rearrangement,

an expression for the matrix stress is obtained as

LI ey 3 E5™) (1)

Differentiation of eqn(17) with respect to time then gives the matrix stress rate for

constant stress o

e ES”

Consequently, combination of eqns(17) and (18) with eqn(2) provides the evolution

) ]€ (18)

law for the creep strain
1+ 355 - 1+ H)(E)™ B _ BSI'Er
- 1t -3 S (A=)

Integration of eqn(19) hence gives the strain as a function of time. However, this

(19)

cannot be achieved analytically and a numerical scheme is required to perform the
task. When eqn(19) is solved, it proves convenient to present the equation in terms
of normalized parameters. If the stress, strain, time and the Young’s modulus of
the fibers and the matrix in eqn(19) are non-dimenisionalized such that 6 = o/S.,
é = Ese/S.,t =tBE;S* " and E = E;/E,p,, eqn(19) then reduces to
1+ 5B - (1+3)™]de 1
(6 —fe(1- S5 dt T a-iy

(20)
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This can be rearranged to give
¢ 14 THE[l — (1 + 2)em+]
o [5-£20-52))

where &g is the initial strain which can be obtained from eqn(10) by use of 0,, = E,,¢

dé (21)

t=(1-1)"

and £ = E;e/S. in eqn(4). Integration of the above expression with the trapezoidal
rule provides a value of £. A tertiary creep behavior is often predicted, terminated by
divergence of the strain. This is caused by widespread fiber failure and is considered

to be creep rupture.

2.4 Fiber Relaxation Model

When this model is developed, two steps are taken. First, a cell model which is
concerned with the stress relaxation in a sine. broken fiber surrounded by intact
neighbors is described. From the analysis of the cell model, the governing partial
differential equation for the evolution of the fibur stress is derived. Then, in order to
account for the fibers broken randomly during creep, an approximate binary model
averaging the effect of initially broken, progressively broken and intact fibers is de-
veloped. The analysis of the binary model allows the creep strain of the composite

to be evaluated.

2.4.1 Governing Equations for Stress Relaxation in a Broken Fiber

Consider a cell model as illustrated in Fig.2. It consists of a long broken elastic fiber
of length L and diameter D embedded in a creeping matrix. A uniaxial tensile stress

o is applied parallel to the axis of this cell. Within the unit cell it is assumed that
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there is only one pre-existing fiber break and the break occurs in the middle of the
fiber, i.e. at z = L. The neighboring fibers are intact.

The displacement on the lateral surface of the unit cell is u.(z,t) such that
u.(z,t) = €(t)z, where €(t) is the strain of the composite. The displacement in
the lower segment of the broken fiber is us(z,t) and the shear strain in the matrix
~m is then given by

uc(2,t) — uyg(z,1)

TYm = w (22)

where w is

w=2(4-1) (23)

to represent a material with volume fraction of fibers f.

The shear strain rate in the matrix can be expressed by

Ym = GL +3Bo.," 17 (24)

m
where G,, is the shear modulus of the matrix, 7 is the shear stress in the matrix and

o, is the effective stress such that

§S,'j5.'j (25)

% =1\3

where §;; is the deviatoric stress. For the problem analyzed, the effective stress is

o, = /0% + 372 (26)

where o,, is the longitudinal matrix stress. The longitudinal matrix stress is assumed

found to be

to be independent of the z and r whereas the matrix shear stress 7 is taken to be

dependent on z but independent of r. The longitudinal matrix stress o,, is computed
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from the composite response as if the fiber in the unit cell were intact and therefore

is controlled by eqn(2).

Additional equations are provided by equilibrium and the elastic behavior of the

lower segment of the broken fiber. These are

30‘? 4T -
2:-"D (27)
and
Ouy(z,t)

where a} is the stress in the broken fiber. Except where 7 = 0, eqn(27) implies that
there will be a gradient of stress in the fiber. The load shed from the fiber cannot
be taken up by the matrix since o,, is assumed to be uniform. Thus, the stress is
transmitted by shear to other fibers. Combination of eqn(27) with eqn(28) then gives

an expression for the shear stress in terms of fiber displacement

62‘U.f(z,t)

1
T= —ZDEf 322

(29)

The value of 7 is limited by the interfacial sliding stress 7o, i.e. |7| < 7o.
By substitution of v, from eqn(22) and 7 of eqn.(29) into eqn(24), a governing
partial differential equation for the evolution of the displacement in the broken fiber

is derived

1 0ucz,t) Ouy(z,t),  DEj;Pus(z,t) 3 ae1 p Pus(z,)
ol ot o T T1G, aet a0l By (30)
where o, is givenu by eqn.(26). The boundary conditions are
Ous(L/2,t) _
3 =0 (31)
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to represent the free end of the broken fiber and u(0.t) = 0 as noted in Fig.2. Initial

conditions represent the stress in the elastic state for a broken fiber. Thus

L

us(z,0) = €(0)2 0<z<5 -1y (32)

where Ly is computed from eqn(5) with € = £(0). The remaining portion of the fiber
has

2 . 2 2
L%¢(0),z =z 1 Ly £-L1SZS§ (33)

to ensure compatibility and agreement with stress recovery from the load free end.
The partial differential equation (30), along with initial and boundary conditions,
is solved numerically with a finite difference scheme. Details are given in the appendix.
Results for the stress in the fiber are shown in Fig.3 when the unit cell shown in Fig.2 is
subjected to a constant overall strain € = 0.55./E;. Therefore, these results represent
the stress in a broken fiber in a relaxation test when there are not too many broken
fibers. An important point is that in a relaxation test of a fresh composite, fibers
would break on initial loading and not thereafter. The longitudinal stress o% in the
broken fiber is presented in Fig.3 as a function of a distance along the fiber at various
times for a composite with a fiber volume fraction of 0.35, a ratio of the fiber to
matrix Young’s moduli of 3, a ratio of the interfacial shear stress to the characteristic
fiber stress 7,/S. of 0.01 and a creep exponent for the matrix of 3. The stress recovery
segment can be seen in Fig.3 in the vicinity of the break. The stress recovery length,
Ly, which is defined as the distance measured from the fiber break along the fiber
direction to a point at which the tensile stress just attains the level of the remote fiber

stress, increases as time increases. Within the stress recovery length, the stress decays
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with the increasing time, showing that the fiber is relaxing as the matrix creeps in
shear. Examination of Fig.3 reveals that stress relaxation of this type takes a long
time. This behavior is in contrast to that associated with the matrix stress which
relaxes in a short time. For example, it is found from eqns.(1)-(3) that the matrix
stress reduces by 50% at tBE;S? = 160 and by 90% at tBE;S? = 5.3 x 10°%.

Another interesting feature of the results presented in Fig.3 is that although it
decreases with increasing time, the gradient within the stress recovery length at any
given instant is found to be weakly dependent on position. Since the stress gradient
is proportional to the shear stress in the matrix, an approximation can be made that
at a given instant, the shear stress evaluated at any position along the fiber within
the stress recovery length is identical. As a result, this uniform reduction of the stress
gradient in the recovery zone can be used to characterize the degree of fiber stress
relaxation.

Similarly, beyond the stress recovery segment, the stress in the fiber is almost
uniform and almost constant at its original value. This indicates that the solution is
insensitive to the fiber length, a situation which will prevail until the stress recovery

segment reaches the specimen end which is at z=0.

2.4.2 Model for Randomly breaking fibers

In a creep test at constant applied stress, fibers will break randomly as the strain
increases. At any stage, the fibers can be divided among those that are intact and

those which are broken. The survival probability of the fiber in accordance with a
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two parameter Weibull distribution is given by

L Epey

Pi(e) = eapl-7-(%) | (34)

Let 3@ be the average stress in the broken fibers. The overall average fiber stress is
then given by
Ty = P,(¢)Ese + [1 — Py(e)]7,; (35)
Composite response can now be predicted from integration of eqn(2) subject to
eqns(4) and (35).
As an example, consider the case with no matrix creep, In this situation, the
average stress in a broken fiber segment of length L/2 with only one break is given

by

2 £
%=1 [ o) (36)

The stress o%(z) is equal to Ege over most of the fiber length and falls linearly to zero

in the stress recovery segment of length L; (given by eqn(5)) near the break. Thus,

the average stress in the broken fibers is

%= (1- 2B (37)
leading to
7= {1-[1 - P Ee (38)

When the absolute value of the argument for the exponential in eqn(34) is small

compared to unity, eqn(38) then gives

Eie ™
5) 1B (39)

— Ly
aj-{l—Lo(
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which is identical with eqn(6) combined with eqn(7). Thus, under the same assump-
tion, the present model is identical to that of Curtin for the average stress in the
fibers as fiber breakage takes place.

In a similar fashion, the model can be applied directly to a relaxation test with a
creeping matrix. For example, Fig.3 gives the stress in a broken fiber during a test
at constant strain and eqn(36) can be used as before to obtain the average stress in
the broken fiber. As discussed above, an approximate representation of the stress in
the fiber is a uniform value E;¢ joined to a linear fall off within the distance L, from
the break, where L; is a function of time. (This approximation must be abandoned
before L; grows to L/2.) Under similar assumptions as used in deriving them, eqn(37)
through (39) can be used once more to give the average stress in all fibers with L,
taken to be a function of time. The stress relaxation so implied for the fibers can be
combined in volume fraction weighted terms with the stress relaxation in the matrix
to give the overall stress for the composite material. In a relaxation test with the

strain € imposed rapidly at t=0, the matrix stress is
-
Om = [(Em€)' ™+ (n = 1)BE,t] ™ (40)

In a creep test at constant applied stress, a problem arises that fibers will break
randomly as the strain in the composite increases. A model for this would include
identification of the fibers newly broken at each stage and a calculation of the stress
in them thereafter according to eqn(30). However, this would involve the numerical
solution of the p.d.e. for dozens if not hundreds of fibers. Given the approximations
involved in the derivation of eqn(30) in the first place, such an approach is probably

out of place. Instead, progressively breaking fibers can be allowed for in a rudimentary
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fashion for each increment of strain by averaging the stress in fibers newly broken
during the increment of strain with the current stress in the existing broken fibers.
The current stress in the broken fibers is computed by incrementing the solution of
eqn(30). The fraction of fibers which break during an increment of time is given by
differencing eqn(34) to provide

mLEy Eye\™™ oL (Eee)" de

LOSO ( SO ) ezp LO( SO ) ]ZAt (41)

AP(e) = -

and —AP,(¢) is the fraction newly broken. It follows that the fraction broken at the
end of the increment is 1 — P,(¢) — AP,(¢) where ¢ is the strain at the beginning of
the increment. The stress in the newly broken fibers is (¢ + A¢)E; except near the
break where it decays linearly to zero at the break over the distance L;(¢ + A¢). The
results for the averaged stresses are

470(0.5L — 2) 1 — Py(e)

Tinew(2) = Min| D ;a;(z)]l ~ P,(e) — AP,(¢)
. 41(0.5L — z) —AP,(¢)
+Mm[—T——,E'f(€ + Ae)]1 ~P.e) - AP (42)

where o} is the stress in the existing broken fibers at the end of the increment as
computed from eqn(30). Note that the first term on the right hand side of eqn.(42)
represents the contribution from the existing broken fibers and the second term is due
to the addi*ional fibers broken during the increment. The Min function is required to
ensure that the new value for  does not exceed 7,. Finally, the variable u s needed in
eqn(30) is found from numerical integration of eqn(28) with o'}(mw) used on the left

hand side. The resulting values of u; are then used as the starting point for a new
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time incrementation of eqn(30). At all stages eqn(2) is used to compute the increment
of strain for the composite and eqns(4), (35) and (36) used to couple the solution to
eqn(30) for the broken fibers with the longitudinal creep of the matrix.

When a composite with =035, E;/E,, = 3, 7,/S. = 0.01, m=5 and n=3 is
subjected to a constant uniaxial tensile stress such that o = 0.25,, the stress in a
broken fiber normalized by the fiber stress far away from the break, is presented in
Fig.4 as a function of a distance along the fiber at various times. It is found that the
extent of stress relaxation in the broken fiber is more significant in comparison with
that obtained with a constant displacement loading. This seems to be a result of the
increase of fiber failure due to the increase of the strain which replenishes the stress
level driving the cre ping matrix shear.

As with the broken fiber stress calculated during a relaxation test, the stress
relaxaticn significantly affects only the stress recovery segment of the fiber near the
break. The stress in the portion of the fiber away from the break is almost uniform
and is at the stress level in the intact fibers. This result indicates that the length of
the fiber does not influence the relaxation of the fiber stress to any significant extent.
As a result, lumping all broken fibers together and doing a single calculation for stress
relaxation can be partially justified. Only those fibers which break very near the end
of the specimen are wrongly represented since the stress recovery segment will quickly
reach the specimen end from those breaks. However, it is obvious that lumping of all
the fibers into one broken fiber stress relaxation calculation cannot be fully justified.

Results obtained for the stress in a broken fiber with different values of fiber

volume fraction, f, modulus ratio E;/E,,, creep exponent n and ratio of interfacial
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sliding stress to characteristic fiber stress 7,/S,; show similar trends to those shown in
Fig.4 except that a low fiber volume fraction f, a high modulus ratio E;/E,,, a low
creep exponent n and a high ratio of interfacial sliding stress to characteristic fiber

stress 7,/S. all cause the broken fiber stress to relax faster.

3 Creep Strain and Creep Rupture

The results for the creep strains at constant applied stress o/S. = 0.2 predicted by
the various models are illustrated in Fig.5 as a function of time for materials with
a matrix creep exponent n=3, a ratio of the fiber to the matrix Young’s modulus
E;/E, = 3, a Weibull modulus of the fiber m=5, fiber volume fractions f=0.5 and
0.25 and ratios of the interfacial sliding stress to the characteristic stress of the fibers
7./ Se = 0.005 and 0.01. When the fiber volume fraction is high, e.g. {=0.5, all models
predict an identical result in terms of the creep strain. This occurs because at this
stress, the fibers allow only a low strain in the composite. As a result, the strain is
so low that fiber failure in the composite is negligible.

For the" composite with a relatively low fiber volume fraction, e.g. f=0.25, the
effect of the fibers on the overall deformation of the composite is less stringent. At
this stress, the composite experiences a higher strain. As a result, more fiber failure
and the consequential fiber stress relaxation occurs during creep, giving rise to an
even higher strain in the composite. This is clear in Fig.5 where there are obvious
differences for the results predicted by different models when f=0.25. The results

predicted using the fiber relaxation model and the Curtin model are higher than
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those predicted by McLean’s model. Note that with the Curtin model the results
for 7,/S. = 0.005 and 0.01 are exactly identical. The Curtin model accounts for the
additional creep permitted when fibers break and their end regions unload. The fiber
relaxation model accounts for the additional creep which occurs when broken fibers
gradually unload completely.

The composite eventually fails if the fiber relaxation or the Curtin model are used.
Failure occurs when the creep strain increments diverge numerically. This behavior is
clearly illustrated in Fig.5 where failure of the composite is marked by the arrows. The
failure point marked for the McLean model is where the stress in the fibers reaches S
as given in eqn(12). The fiber relaxation model gives shorter creep rupture times than
the Curtin model due to the reduction of the effective fiber strength associated with
the fiber stress relaxation. In addition, a longer creep rupture time is observed for a
composite with 7,/S. = 0.005 than for that with 7,/S. = 0.01. This is attributed to
the fact that the matrix shear stress in a composite with a higher value of 7, can be
higher which drives matrix shearing creep and fiber stress relaxation faster.

Although the predictions for the strain differ in detail among the various models
when the fiber volume fraction is low, examination of the results reveals that the
differences of the strain predicted by each model are relatively small at any given
time until near the end of life. For example, at tBE;S? = 1600, just berore the creep
rupture occurs, the strains predicted by the fiber relaxation model for the composite
with 7,/S. = 0.01 and with the Curtin model are only 13% and 7% higher respectively
than the strain predicted using McLean’s model. These results indicate that McLean’s

model, which is the simplest one, is reasonably appropriate to predict the creep strain
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even when the composite experiences fiber fractures. However, McLean’s model does
not directly predict creep rupture of the composite.

For the case with a composite having an intermediate value of the fiber volume
fraction, e.g. f=0.35, and subjected to the same level of stress, i.e. o/S. = 0.2, the
strains obtained from different models are plotted in Fig.6 as a function of time for
different values of fiber Weibull modulus, m. It can be seen that for the composite
with a fiber Weibull modulus m=5, the differences among various models remain
small indicating that fiber failure is negligible. However, for the case with a smaller
Weibull modulus, e.g. m=2, fibers are more likely to break and as a result, differences
in the strain are observed among all the models. The fiber relaxation model predicts a
failure of tize composite with 75/S, = 0.01 but when 75/S. = 0.005, rupture does not
occur within the time plotted. The strains predicted by the fiber relaxation model
for the composite with a ratio 7/S. = 0.005 are nearly identical with those predicted
with the Curtin model. These values at tBE;S? = 4 x 10* are about 11% higher
than predicted by McLean’s model, which is, of course, unaffected by the Weibull
modulus.

At a relatively high level of stress such that ¢/S. = 0.25, all the models predict
similar results for the composite with a fiber Weibull modulus m=10, as shown in
Fig.7. However, for the case with m=5, both the fiber relaxation model and the
Curtin model predict higher strains than McLean’s model at any given time. These
higher strains prompt failure of the composite for m=>5 within the time plotted in
Fig.7. The failure point marked for m=10 is when the stress in the fibers for the

McLean calculation equals S as given by eqn(12).
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At an even higher level of stress such that ¢/S. = 0.3, even the composite with
fiber Weibull modulus m=10 experiences creep rupture within the time plotted in
Fig.9 and is predicted by both the fiber relaxation model and the Curtin model. The
failure point marked for McLean’s model is when the fiber stress equals S as given by
eqn(12). All these results suggest that at the same level of applied stress and mean
fiber strength, the lower the fiber Weibull modulus, the higher is the creep strain and
the more likely is the composite to exhibit creep rupture.

The effect of the ratio of the fiber to the matrix Young’s modulus on the creep
strain and the creep rupture time is illustrated in Fig.9(a) and 9(b) for the composite
with a fiber volume fraction of 0.35. Not surprisingly, the composite with a low ratio
E;/E,, would experience a higher strain due to the more compliant fibers, leading to
the earlier cre=p rupture predicted by the fiber relaxation model.

Fig.10 shows the applied stress as functions of creep rupture times predicted by
different models for the material with n=3, m=5, E;/E,,; = 3, 7,/S. = 0.01 and
f=0.35. Fig.11 is similar but for f=0.25. Strain based rupture for McLean’s model
occurs when the composite strain equals the level predicted in eqn(11). Stress based
rupture for McLean’s model occurs when the fiber stress equals S given by eqn(12).
In general, it can be seen from Fig.10 that at a given level of stress, the creep rupture
time predicted using the Curtin model is higher than that predicted by the fiber
relaxation model. The former however, is lower than that predicted by the strain
based rupture criterion with McLean’s model. Stress based rupture with McLean’s
model occurs intermediate to the prediction of the fiber relaxaticn model and the

Curtin model. Examination of Fig.10 also reveals that the results predicted by both

23




the Curtin model and the McLean model exhibit a creep rupture threshold below
which a non-creeping state is reached. These threshold stresses are predicted by
eqn(12) for the Curtin model and by eqn(11) (as Eye) for the strain based rupture
criterion with McLean’s model. For the case shown in Fig.10, the thresholds for the
two models are o/S, = 0.244 and 0.284 respectively. In contrast, the results predicted
using the fiber relaxation model have a creep rupture threshold at the fiber bundle
strength for dry fibers. This is so because fiber relaxation will eventually unload
all the broken fibers. Thus only the intact fibers support load after a sufficiently
long time has passed. This is identical to what happens in a bundle of fibers without
matrix or friction between them. If the applied stress is above the bundle strength for
the dry fibers, creep of the matrix must continue and eventually will accelerate rather
than slow down. It is this acceleration of the creep which causes tertiary behavior and
eventual rupture. The stress strain curve for a dry bundle of fibers obeying the two
parameter Weibull distribution is given by E;e multiplied by P,(¢) given by eqn(34).
As a result, the dry fiber bundle strength is

L, = 1
mL) eiL‘I’(—T-n') (43)

This, therefore, represents the creep rupture threshold for long fiber composites. If

Sy = So(

the applied stress is below this, the composite will eventually reach a non-creeping
state. It is notable that this threshold is dependent on L, where L is the length of
the specimen or component. For the case illustrated in Fig.10, the threshold is such
that S,/S, = 0.151.

It is useful to consider the differences in the results predicted by various models in

more detail. It is found that at a high level of stress, e.g. ¢/S, = 0.3, the fiber stress
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relaxation model and the Curtin model predict creep rupture times which are 20 times
and 9 times lower respectively than that predicted by the strain based criterion for
McLean’s model. Compared to each other, these values differ only by a factor of 2.
This occurs because at such a high stress, the failure of fibers happen so fast that the
stress in the broken fibers has not had time to relax.

At a relatively low stress, e.g. ¢/S. = 0.25, the impact of the fiber stress relax-
ation becomes more significant. This is clearly illustrated in Fig.10, where the fiber
relaxation model predicts a creep rupture time which is 13 times lower than that
predicted using the Curtin model. At an even lower applied stress, e.g. ¢/S. = 0.21,
the influence of the fiber stress relaxation on the creep rupture time is even more pro-
nounced. This stress is below the threshold for the Curtin model and so an infinite
creep life is predicted by both the Curtin model and the strain and stress based cri-
teria for McLean’s model. This is in contrast to a finite creep rupture time predicted

by the fiber relaxation model.

4 Discussions

In this paper, McLean’s model for creep deformation of metal matrix composites
reinforced by continuous fibers has been extended to include the effects of fiber failufe
and the consequential fiber stress relaxation. Two models have been developed. The
first one considers fiber breaks but ignores the effect of the following fiber stress
relaxation. The evolution law for the creep strain is established by extending Curtin’s

work(15) on fiber failure stochastics within the framework of global load sharing to
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include the effect of a creeping matrix. Relatively simple numerical calculations are
required to solve the governing equation (21) derived from this model. The second
model is more comprehensive with emphasis on the aspect of fiber stress relaxation
in the broken fibers due to matrix/fiber shear stress interaction. It involves solving a
partial differential equation derived from a cell model for the fiber stress relaxation to
determine the fiber stresses, Then a non-linear equation obtained from the analysis
of the composite as a whole is solved to evaluate the strain numerically for each
iteration. This model requires significant numerical calculations and computer time.

From the set of problems analyzed, the major features associated with the fiber
stress relaxation have been identified. These have been compared with phenomena
associated with the matrix stress relaxation as discussed by McLean(1). It is found
that the fiber stress relaxation tends to influence the creep strain and the rupture
behavior more significantly at long times than at shorter times. This is in contrast to
the impact of the matrix stress relaxation which is known to increase the composite
strain quickly due to creep, perhaps ultimately leading to a non-creeping state. The
results presented in this paper show that even when there are fiber breaks in the
composite, the models, including McLean’s model, all provide a reasonable prediction
for the creep strain. This suggest that McLean’s model, which is the simplest one,
can be used to make an approximate prediction for the creep strain. However, when
examining the creep rupture times predicted by different models(e.g. as in Figs.10-
11), we find that the creep life is very sensitive to the extent of fiber stress relaxation in
the broken fibers. The other models, which ignore such effects, severely overestimate

the creep rupture times especially when the composite is subjected to a low level of
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stress. This suggests that the development of a comprehensive model including fiber
stress relaxation is essential for predicting the creep life at low stress.

In this paper, certain material parameters have been varied to assess the sensitiv-
ity of the predicted creep strain and the creep rupture time to the variation of the
individual parameter. It is found that a low fiber volume fraction f, a low modulus
ratio E¢/E,,, a high interfacial sliding stress, a low characteristic fiber stress and a
low Weibull modulus of the fiber all make the composite creep faster, perhaps giving
rise to quicker rupture of the composite. Although all material parameters influence
the creep strain and the creep rupture time, most interest centers on the interfacial
sliding stress since this quantity can be tailored for a given composite in which the
fiber and matrix properties and the fiber volume fraction are set. From the results
presented, it appears that a low value of the interfacial sliding stress is desirable to
minimize the strain and provide a longer creep life.

Finally, There has been some success in comparing the models presented in the
current paper with experimental data for creep and rupture. This will be reported in

separate publications.

5 Acknowledgments

The work was sponsored by the Advanced Research Projects Agency through the
University Research Initiative at the University of California, Santa Barbara (ONR
Contract N-0014-92-J-1808)

27




6 References

1. M. McLean, (1985) Creep deformation of metal matrix composite, Com-

posite Science and Technology, 23, 37

2. M.Y. He, A.G. Evans and W. A. Curtin, (1993) The ultimate tensile
strength of metal and ceramic-matrix composites, Acta. Metall. Mater.

41, 871

3. S. Jansson, H.E. Deve and A.G. Evans, (1991) The anisotropic mechanical
properties of a Ti matrix composite reinforced with SiC fibers, Metal Tran.

22a, 2975

4. S. R. Gunawardena, S. Jansson and F.A. Leckie, (1993), Modeling of
anisotropic behavior of weakly bonded fiber reinforced MMCs, Acta. Met-
all. Mater. 41, 3147

5. G. Bao and R.M. McMeeking, (1994) Fatigue crack growth in fiber-reinforced

metal-matrix composites, Acta. Metall. Mater. (to appear)

6. Z-Z. Du and R.M. McMeeking, (1994) Control of strength anisotropy of

metal matrix fiber composites (to be published)

7. T.L. Dragone and W.D. Nix (1990), Geometric factors affecting the inter-
nal stress distribution and high temperature creep rate of discontinuous

fiber reinforced metals, Acta. Metall. Mater. 38, 1941

8. G. Bao, J.W. Hutchinson and R. M. McMeeking (1991), Particle rein-

forcement of ductile matrices against plastic flow and creep, Acta Metall.

28




10.

11.

12.

13.

14.

15.

16.

Mater. 39, 1871

A. Kelly and K.N. Street (1972), Creep of discontinuous fiber composite
II, Theory for the steady-state, Proc. R. Soc. London, A328, 283

S. Goto and M. McLean (1991), Role of interfaces in creep of fiber- rein-
forced metal matrix composite II short fibers, Acta Metall. Mater. 39,
165

R. M. McMeeking (1993), Power law creep of a composite material con-

taining discontinuous rigid aligned fibers Int, J. Solids and Structures, 30,
1807

C. Weber et al. (1994), to be published.

N. Ohno, K. Toyoda, N. Okamoto, T. Miyake and S. Nishide (1993),
Creep behavior of a unidirectional SCS-6/Ti-15-3 metal matrix composite

at 450°C, Trans. ASME (Series H, J. Engr. Mater. Tech.)

M. McLean, (1989), Creep of metal matrix composites, in Materials and
Engineering Design: The Next Decade (Eds. B.F. Dyson and D.R. Hay-
hust), Institute of Metals, London, 287

W.A. Curtin, (1991), Theory of mechanical properties of ceramic matrix

composites, J. Am. Ceramic Sol. 74, 2837

D.C. Lagoudas, C.-Y. Hui and S. L. Phoenix, (1989), Time evolution of
overstress profiles near broken fibers in a composite with a viscoelastic

matrix, Int. J. Solids Structures, 25, 45

29




17.

18.

19.

20.

21.

D.D. Mason, C.-Y. Hui and S. L. Phoenix, (1992), Stress profiles around
a fiber break in a composite with a nonlinear power law creeping matrix,

Int. J. Solids and Structures, 29, 2829

E. Barbero and K.W. Kelly (1992), Predicting longitudinal creep of a con-

tinuous fiber metal matrix composite, to be published.

Y. Song, G. Bao and C.-Y. Hui, (1994), On creep of unidirectional fiber

composites with fiber damage, to be published.

M. Sutcu (1989), Weibull statistics applied to fiber failure in ceramic com-
posites and work of fracture, Acta Metall. 37, 651

M. D. Thouless and A.G. Evans (1988) Effects of pullout on the mechanical

properties of ceramic matrix composites, Acta Metall. 36, 517

30




Appendix: Finite difference scheme

In this appendix the finite difference scheme that was employed to solve eqn(30) of
the main text is described. Attention is centered on the situation where the unit
cell is subjected to a constant displacement loading. Similar procedure can be ap-
plied to the case with a constant uniaxial stress. If the stress, strain, displacement,
length, time and the Young’s modulus of the fiber and the matrix in eqn(30) are

non-dimenisionalized, respectively, in the following manners such that ¢ = ¢/8S.,

¢ = EefS., i = tBE;S", E = E;[/En, i(3, {) = u(z,t)Ef/LS., #+ = /8.,
6. =0./S., & = a}/Sc, =D/L,L; = Ly/L and % = z/L, eqn.(30) becomes
6&,(2,{) 1+" D2E(F-17 _ iy (3,1)
< D‘E
% (f V—zar
é A2an—1¢ r=1/2 _ Buy (2, t)
+5Drar (g =LY (A1)
Let
u,(z t+ At) = uf(z t) + Atgti{agtﬁ (A2)

eqn(Al) can then be written as

B*ug(z,t + AL)  9%ug(3,1)

~ 8%44(3, 1)
952 932

032

(2,1 + Af) —64(3,7) = o] J+BAt6m (A3)

where a and § are given by
a= 1+"D’E(f F_1) (A4)

p=gDif4-1) (A3)




At t = 0% when the fiber just breaks, by noting that 92{‘—31;};—'-0—) =0 and us(2,0) =

éo2, eqn(A3) reduces to
9%,(2,0% . . -
T — (2,07 = ot

An approximate solution is given by

iy(2,0%) = 26, 0<:<05-1L,
af(2,0+)=§i°;*—22-(0.5-i,)2] 0.5-L; <:<05

The corresponding tensile and shear stresses can also be obtained by

abia At . “‘0('1' 2) 6121‘(2,0 )
—_ 2
64(2,07) = Min[ A , 52 ]

and
s . D&*uys,0f
#(2,0%) = Min[7,, —I——-f-(?,—)]

-~

Consequently, the initial values for the problem are obtained.

et

dus(5,4) _ dy(2+A%,1) —d(3,7)
9z Az
and
Fig(2,8)  as(3+ Az,E) - 2a(3,8) + 04( + A2, 1)
sz Az?

eqn(A3) becomes

(a + Bo.Ad)is (5 — Az, 1+ Af) — (A2 + 20 + 286, A8)i (3,1 + Ad)
+a + Bo Ab)ag (2 + Az, T+ Af) = ~AZ20,(2,1)
+alig(2 — Az, 1) — 24,(3,8) + 44(2 + A3, 1)]

i

(A6)

(AT)

(A8)

(A9)

(A10)

(Al1)

(A12)

(A13)




The above equation can also be written in the following general form

(o + BoAb)is(i — 1,5 + 1) — (A2 + 20 + 286, At)a (5,5 + 1)
+(a+ Bo Ab)is(i + 1,5 + 1) = et (i — 1,5) — 2iy(i,7) + 4,0 + 1, 7))

—Aa(i,j)  (Al4)

where i1 and j indicate the distance and the time increments respectively. It can be
seen that the problem on solving a partial differential equation effectively becomes
one for finding the roots for a series of linear equations with a tridiagonal matrix.
When j=0, i.e. { = 0% the quantities in the right hand side of the above equation are
known. The unknown quantities in the left hand side of the equation can be solved
combined with boundary conditions such that 4;(k+1/2,57 +1) —a(k/2,5 +1) =0
and 4s(0,7 + 1) = 0, where k is the total number of divisions made for the fiber.
Using the results obtained as initial values for the next time increment and repeating
the above analysis then give new values of the displacement. It is noted that &. is

calculated from the values at the start of the increments for each step.
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Introduction

This review is intended to focus on ceramic matrix composite materials.
However, the creep models which exist and which will be discussed are generic in the
sense that they can apply to materials with polymer, metal or ceramic matrices. Only a
case by case distinction between linear and nonlinear behavior separates the materials
into classes of response. The temperature dependent issue of whether the fibers creep
or do not creep permits further classification. Therefore, in the review of the models, it
is more attractive to use a classification scheme which accords with the nature of the
material response rather than one which identifies the materials per se. Thus, this
review could apply to polymer, metal or ceramic matrix materials equally well.

Only fiber and whisker reinforced materials will be considered. The fibers and

whiskers will be identified as ceramics but with different characteristics from the
matrix. As noted above, at certain temperatures, the reinforcement phase will not be
creeping and then it will be treated as elastic or rigid as appropriate to the model. At
higher temperatures, the reinforcement phase will creep, and that must be allowed for
in the appropriate model. On the other hand, the case of creeping fibers in an elastic
matrix will not be considered, although certain of the models have a symmetry between
fiber and matrix which permits such an interpretation. The models reviewed will be for
materials with long fibers, broken long fibers and short fibers or whiskers. Aligned
fibers and two and three dimensional reinforcement by long fibers will be discussed.
However, general laminate behavior will not be a subject of this review.

The material behaviors considered will include linear elasticity plus linear or
nonlinear creep behavior. The nonlinear case will be restricted to power law rheologies.
In some cases the elasticity will be idealized as rigid. In ceramics, it is commonly the
case that creep occurs by mass transport on the grain boundariesl. This usually leads to
a linear rheology. In the models considered, this behavior will be represented by a

continuum creep model with a fixed viscosity. That is, the viscosity is strain rate
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independent, although it will in general be temperature dependent. Thus, the mass
transport per se will not be explicit in the models. In some situations, even though the
mechanism is mass transport, the creep behavior involves a power law response with a
low exponent. Such a case is polycrystalline alumina at certain temperatures!. This
explains the inclusion of power law models in this review. An additional constitutive
feature considered in this review is mass transport on the interface between the fiber
and the matrix. This path can be a faster route for diffusion than the grain boundaries
within the matrix. Therefore it merits a separate treatment as a mechanism for creep. A
rudimentary model for the progressive breaking of reinforcements will be discussed.
Creep void growth and other types o. rupture damage in the matrix and the fiber will,
however, be excluded from consideration.

Because the creep behavior of a ceramic composite often has a linear rheology,
the behavior of the composite usually can be represented by an anisotropic viscoelastic
constitutive law. Thus, a rather general model for such composites involves hereditary
integrals with time dependent creep or relaxation moduli23 with a general anisotropy.
the parameters for the law can be determined through creep and relaxation tests, but a
multiplicity of experiments are required to evaluate all the functions appearing in a
general anisotropic law. As a consequence, some guidance from micromechanics is
essential for the generalization of the results. In this review, the focus will be on the
micromechanics based models and the hereditary integral methods will not be
considered. However, the micromechanics models can, if desired, be recast in the
classical viscoelastic form. It should be noted that there exists a vast literature on the
linear elastic properties of reinforced materials. These elasticity models can be
converted into creep models by use of standard methods of linear viscoelasticity?. This
approach will be avoided in this review even though it can provide effective creep
models for ceramic matrix composites. Instead, the focus in this chapter will be on

models which involve nonlinearities or have features such as interface diffusion which

4H:MS26(September 1, 1992)10:25 AM/mef




are not accounted for when linear elastic models are converted to linear viscoelastic

constitutive laws.

Material Models

All phases of the composite material will be assumed to be isotropic. The creep
behavior of a ceramic will be represented by the law

. 1 A 1 . 3 =n-1 :

eij = ‘5&-5,] +§-Izsij Ok + "Z'B o] Sl] + aﬁijT

1
where ¢ is the strain rate, G is the stress, § is the stress rate, G is the elastic shear
modulus, K is the elastic bulk modulus, &;j is the Kronecker delta, B is the creep
rheology parameter, n is the creep index, S is the deviatoric stress and the effective

stress O is defined by
= 2545y 2)

. is the coefficient of thermal expansion and T is the rate of change of temperature. In
all expressions the Einstein repeated index summation convention is used. xi, x2 and x3
will be taken to be synonymous with x, y and z so that 611 = Oxx etc.. The parameter B
will be temperature dependent through an activation energy expression and can be
related to microstructural parameters such as grain size, diffusion coefficients etc. on a
case by case basis depending on the mechanism of creep involved!. In addition, the
index will depend on the mechanism which is active. In the linear case,n=1and B is
equal to 1/31 where 1 is the linear shear viscosity of the material. Stresses, strains and
material parameters for the fibers will be denoted with a subscript or superscript f and

for the matrix with a subscript or superscript m.
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Various models will be used for the interface between the fiber and the matrix.
For bonded interfaces, complete continuity of all components of the velocity will be
invoked. The simplest mode! for a weak interface is that a shear drag equal to T
opposes the relative shear velocity jump across the interface. The direction of the shear
drag is determined by the direction of the relative velocity. However, the magnitude of
T is independent of the velocities. This model is assumed to represent friction occurring
mainly because of roughness of the surfaces or due to a superposed large normal
pressure on the interface. Creep can, of course, relax the superposed normal stress over
time, but on a short time scale the parameter T can be assumed to be relatively invariant.
No attempt will be made to account for Coulomb friction associated with local normal
pressures on the interface.

On the other hand, a model for the viscous flow of creeping material along a fiber
surface is exploited in some of the cases covered. This model is thought to represent the
movement of material in steady state along a rough fiber surface and is given by

(McMeeking, to be published)

Rel " =n-1
vi© B " nj oy (85 — nk n;) (3)

where vRel is the relative velocity of the matrix material with respect to the fiber, Bis a
rheology parameter proportional to B but dependent also on roughness parameters for
the fiber, n is the unit outward normal to the fiber surface and the stress is that
prevailing in the creeping matrix material. The law simply says that the velocity is in
the direction of the shear stress on the interface but is controlled by power law creep.
When there is mass transport by diffusion taking place in the interface between

the fiber and the matrix, the relative velocity is given byl

vRe! = -n(vj) @
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where j is the mass flux of material in the plane of the interface and V is the divergence
operator in 2-dimensions also in the plane of the interface. The mass flux in the
interface is measured as the mass per unit time passing across a line element of unit

length in the interface. The flux is proportional to the stress gradient so that

where Dis an effective diffusion coefficient and

Onn = N.G.N 6

is the normal stress at the interface. Combination of eq. (4 & 5) for a homogeneous

interface gives

‘_IREI =-n D Vz Cnn. (7)

The diffusion parameter D controls mass transport in a thin layer at the interface and so

its relation to other parameters can be stated asl

8D, Q

2= =T ®)

where 0 is the thickness of the thin layer in which diffusion is occurring, Dy is the
diffusion coefficient in the material near or at the interface, €2 is the atomic volume, k is
Boltzmann's constant and T is the absolute temperature. The diffusion could occur in
the matrix material, in the fiber or in both. The relevant diffusion parameters for the

matrix, the fiber or some weighted average would be used respectively.
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It is worth noting that the "rule of mixtures" for stress, stress rate, strain and

strain rate is always an exact result in terms of the averages over the phases4. That is
Gii = fﬁfl + (l-f)G:)n (9)
gj = f €f + 1-DE] (10)

etc. where the unsuperscripted tensor variables are the averages over the composite
material and the superscripted variables are the averages over the fibers (f) and the
matrix (m) respectively. The volume fraction of the fibrous phase is f. The result
applies irrespective of the configuration of the composite material, e.g. unidirectional or
multidirectional reinforcement. However, an allowance must be made for the
contribution arising from gaps which can appear such as at the ends of fibers. The
difficulty in the use of the rule of mixtures is the requirement that the average values in

the fibers and in the matrix must be known somehow.

Materials with Long Intact Fibers

Creep laws for materials with long intact fibers are relevant to cases where the
fibers are unbroken at the outset, and never fracture during life. As a model, it also
applies to cases where some but not all of the fibers are broken so that some fibers
remain intact during service. Obviously these situations would occur only when the
manufacturing procedure can produce composites with many or all of the fibers intact.

In the problem of the creep of materials with intact unidirectional fibers, as
shown in Fig. 1, most of the insights arise from the compatibility of the strain rates in

the fibers and in the matrix. When a stress G is applied to the composite parallel to
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the fibers, the strains and strain rates of the fibers and the matrix in the z-direction must

be all the sameS. This gives rise to a creep law of the form

é . .
= 2 4+ ¢, +a T

€
= EL (11)
and
. . VK . .
eu=ew=——li3—Lz£+e§x+aTT .

where EL is the longitudinal composite modulus, &, is the longitudinal creep strain
rate, 0 is the longitudinal coefficient of thermal expansion, v is the Poisson's ratio for
the composite relating transverse elastic strain to longitudinal stress, &, is the
transverse creep strain rate and O is the transverse coefficient of thermal expansion.
The temperature is taken to be uniform throughout the composi:e mnaterial. Evolution
laws for the creep rates are required and these laws involve the stress levels in the
matrix and fibers. Thus, in turn, evolution laws are required for the matrix and fiber
stresses.

The exact .- ws, based on continuum analysis of the fibers and the matrix would
be very complicated. The analysis would involve equilibrium of stresses around and in
the fibers and compatibility of matrix deformation with the fiber strains. Furthermore,
end and edge effects near the free surfaces of the composite material would introduce
complications. However, a simplified model can be developed for the interior of the
composite material based on the notion that the fibers and the matrix interact only by
having to experience the same longitudinal strain. Otherwise, the phases behave as two
uniaxially stressed materials. McLean introduced such a model for materials with

elastic fibers and he notes that McDanels, Signorelli and Weetoné developed the model
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for the case where both the fibrous and the matrix phase are creeping. In both cases, the

longitudinal parameters are the same, namely

EL=fE + (1-0)Em 13)
oL = [fEfaf + (1-) EmOoml/EL (14)
&5, = [(fEBs G + (1— Em Bm Opl/EL. (15)

When the fibers do not creep, By is simply set to zero. The longitudinal stress Oz, in the
fibers and the matrix are denoted Gf and Om, respectively. To accompany eq. (13-15),

evolution laws for the fiber and the matrix stresses are required. These are

Of = Ef(Ezz ~ Brog' - ofT) (16)

and

6m = Em @€z - BmOp - Om . 17)

Indeed, combining these by the rule of ~ ‘tures, eq. (9), leads to eq. (13) to (15).
Since the fibers and the matrix it interact transversely, the model implies
that no transverse stresses develop in the matrix or the fibers. The rule of mixtures,

eq. (10), then leads to
VL = fVf + (1-H)Vm (18)

oT

fog + 1-0)am + £(1-1) (0~ Q) (V§ En~ Vi Ef)/EL (19)
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and

& = -3 (1-HBnop - 1 £B; o'
+£(1-0) Bm O - B¢ O;") (V¢ Em - Vm EQ/EL. 20)

The data suggest that the elastic parameters in this model are reasonably good to first
order’ and experience with plasticity calculations89:10 indicates that there is little plastic
constraint between fibers and matrices at low volume fractions. Thus, the model should
work reasonably well for any creep exponents at low volume fractions of fibers.

Indeed, McLean> has used the isothermal version of the model successfully to explain
longitudinal creep data for materials with non-creeping fibers.

Of interest, is the prediction of the uniaxial stress model when the applied stress
and the temperature are held constant. The governing equations (19), (16) & (17) then
have the feature that as time passes the solution always tends towards asymptotic
values for stress in the fibers and the matrix. The evolution of the matrix stress occurs

according to

1 1-f]. n o-(1-flo, I
-+ — |6, =B m - B
[Em fEf] m m%m f[ £

1)
and it can be shown that for any initial value of matrix stress, the matrix stress rate
tends to zero. Therefore, the matrix stress tends toward the value which makes the
right hand side of eq. (21) equal to zero. This can be solved easily for four common
ceramic cases. One is when both matrix and fibers creep with a linear rheology so that
both creep indices are equal to one. In that case the stresses tend towards the state in

which
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- - Bf (o]
m £B,, + (1-f)B; 22)
and
e = B,_n c
f fB, + (1-f)By. (23)

Another case is when the fibers creep linearly and the matrix creeps with an index of 2.

Then the matrix tends towards a stress

o = (gf_) (E,_n_)g+(l-f)2 _ 1=t
m B B ) f 4f2 2f 24)

and of course Om = [0 - (1 -f) Oml/f. The opposite case of a linear matrix and

quadratic fibers is such that the fibers tend towards the stress

- G
f B, Bn) 1-f  4(1-f)2 2(1-f) (25)

and On, = [0 ~f 0¢] /(1 — ). Finally, when the fibers do not creep, the matrix stress tends

towards zero and the fiber stresses approach 6/(1 - f).
In the latter case, the transient stress can be stated as well. The isothermal result

for constant © isS

1-n
_ |(n-1)fE(Eq Bt 1
Om (t) { EL + [cm (O)]n-l}

(26)
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whenn # 1 and

Om () = Om (0) exp (f E¢ Em B t/Ep) 27)

when n = 1. The subscript on the creep rheology parameter for the matrix has been
dropped and the unsubscripted B refers to the matrix henceforth. In both cases

Ot = [0 - (1-f) Oml/f and the composite strain is Os/E¢. The stress at time zero would
be computed from the prior history with t = 0 being the time when both the temperature
and the applied stress become constant. For example if the temperature is held constant
at creep levels until equilibrium is achieved and then the load is suddenly applied,

Om (0) = 6 En/EL. To the extent that there are any thermal residual stresses at t = 0,
they will contribute to Gm (0). However, eq. (26) & (27) make it clear that thermal

residual stresses will be relaxed away be creep.

Steady Transverse Creep with Well-Bonded Elastic Fibers The previous paragraph
has made it clear that if there are elastic fibers and a constant macroscopic stress is
applied, the longitudinal creep rate will eventually fall to zero. With constant
transverse stresses applied as well, the process of transient creep will be much more
complicated than that associated with eq. (27) and (28). However, it can be deduced
that the longitudinal creep rate will still fall to zero eventually. Furthermore, any
transverse steady creep rate must occur in a plane strain mode. During such steady
creep, the fiber does not deform further because the stress in the fiber is constant. In
addition, any debonding which might tend to occur would have achieved a steady level
because the stresses are fixed.

For materials with a strong bond between the matrix and the fiber, models for

steady transverse creep are available. The case of a linear matrix is represented exactly
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by the effect of rigid fibers in an incompressible linear elastic matrix and is covered in
texts on elastic materials?.11.12. For example, the transverse shear modulus, and
therefore the shear viscosity, of a material containing up to about 60% rigid fibers in a
square array is approximated well byl

1+2f

Gr = 777 Om (28)

It follows that in the coordinates of Fig. 1, steady transverse creep with well bonded
fibers obeys

b = —g. = E(l_-f_)(c ~ox)
y - 4 \1+2fF)V VY X (29)

and

m-
|

—

_ 3B(1—f)o
Xy 2 \1+2f) 9 (30)

with &z = 0. A material with fibers in a hexagonal array will creep slightly faster than

this. Similarly, creep in longitudinal shear with fibers in a square array can be

approximated well by

e = 200

2 2 \1+f) % (31)
and

€ = Q(ﬂ)c

yz 2 \1+f) Y= (32)
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There are few comprehensive results for power law matrices. Results given by
Schmauder and McMeeking!!for up to 60% by volume of fibers in a square array with a

creep index of 5 can be represented approximately by

Exx = —&yy = 042B |0xx - Oyyl* (G- Oyy) /S5 (33)
where ezz = exy = ny =0
S=@1+R)/(1-9 (34)

is the creep strength, defined to be the stress required for the composite at a given strain
rate divided by the stress required for the matrix alone at the same strain rate. The
expression in eq. (34) is only suitable for n = 5. The result in eq. (33) when f = 0 is the
plane strain creep rate for the matrix alone. Results for Oxy # 0 are not given because of
the relative anisotropy of the composite with a square array of fibers. Relevant results
for other power law indices and other fiber arrangements are not available in sufficient

quantity to allow representative expressions to be developed for them.

Three-Dimensional Continuous Reinforcement This configuration of reinforcement

can be achieved by the use of a woven fiber reinforcement or interpenetrating networks
of the two phases. Another possibility is that random orientation of whiskers produces
a percolating network and even if the whiskers are not bonded together, this network
effectively forms a mechanically continuous phase. In the case of woven
reinforcements, there may be some freedom for the woven network to reconfigure itself
by the straightening of fibers in the weave or because of void space in the matrix. Such
effects will be ignored and it will be assumed that the fibers are relatively straight and

that there is little or no void space in the matrix. A straightforward model for these
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materials is th~t the strain rate is homogeneous throughout the composite. The

response is then given by

6 = 2G & + (K- % O §jéu - 3Ka TS

~3fG¢B;3; NS} - 3(1-DGmBm Gy S5 (35)
where
G =fGf+ (1-9Gn (36)
K =1fK¢+ 1-9Kn (37)
and
a=fogKs + (1-00mKm. (38)

The evolution of the fiber and matrix average stresses appearing in the last two terms in
eq. (35) is given by eq. (35) with f = 1 and f = 0 respectively. It is of interest that the
constitutive law in eq. (35) is independent of the configuration of the reinforcements
and the matrix. As a consequence, the law is fully isotropic and therefore may be
unsuitable for woven reinforcements with unequal numbers of fibers in the principal
directions. In addition, the fully isotropic law may not truly represent materials in
which the fibers are woven in 3 orthogonal directions. Perhaps these deficiencies could
be remedied by replacing the thermoelastic part of the law with an appropriate
anisotropic model. A similar alteration to the creep part may be necessary but no

micromechanical guidance is available at this stage.
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If the composite strain rate is known, the composite stress during steady state
isothermal creep can be computed from the rule of mixtures for the stress, eq. (9). This

gives

2l (€)™ 1-f( € \™m
S: = S|—|= + — = £
3 3| Bg (Bf B, (Bm) 3

(39)

where € must be deviatoric (i.e. £k = 0) and

. 7, .
€= J'éeii &, (40)

A hydrostatic stress can be superposed, but it is caused only by elastic volumetric strain
of the composite. The result in eq. (39) is, perhaps, not very useful since it is rare that a
steady strain rate will be kinematically imposed. When both fiber and matrix creep, the
steady solutions for a fixed stress in isothermal states are quite complex but can be
computed by numerical inversion of eq. (39). The solution can however be given for the
isothermal case where the fibers do not creep. (For non-fiber composites, this should be
interpreted to mean that one of the network phases creeps while the other does not.)

The matrix deviatoric stress is then given by

S (1) = —S-M[S(n-l)fo G Bt/G + (B (0))‘““]ﬁ
) Gm (0) (41)
whenn=zlandforn=1
S§ () = Si (0} exp (~3f Gf G B t/G). 42)
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The subscripts on B and n have been dropped since only the matrix creeps. The
interpretation of time and the initial conditions for eq. (41) & (42) are the same as for

eq. (26) & (27). The fiber deviatoric stresses are given by
S = IS - (1- O S/ (43)
and the composite deviatoric strain ejj is therefore
e = Si/2Gr. (49)
The volumetric strains are invariant and given by
€k = Ok/3K. 45)
As expected, the matrix deviatoric stresses will be relaxed away completely.

Thereafter, the "fiber" phase sustains the entire deviatoric stress. As a consequence, in

the asymptotic state
S = Sy/f (46)

and the composite strain will be given by (44) to (46) as

e = o (L __1 |1 &
y 2fG; (3K 2fG¢)3 U 47)
It follows that in uniaxial stress, with G,z = O and €&z, = €, the asymptotic result will be
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11
= + —=
€ [3fo 9 K] ° 48)

This result indicates that the composite will have an asymptotic modulus slightly stiffer

than f E¢ because the matrix phase is capable of sustaining a hydrostatic stress.

Two-Dimensional Continuous Reinforcement This configuration of reinforcement
occurs when fibers are woven into a mat. It could also represent whisker reinforced
materials in which the whiskers are randomly oriented in the plane, especially if
uniaxial pressing has been used to consolidate the composite material. In the case of the
whisker reinforced material, it is to be assumed that their volume fraction is so high that
they touch each other. The whiskers have either been bonded togethez, say by
diffusion, or the contact between the whiskers acts, as is likely, as a bond even if there is
no interdiffusion.

In a simple model for this case, which as in the 3-d case ignores fiber
straightening and anisotropy of the fibrous network, a plane stress version of eq. (35)
can be developed. As such, it can only be used for plane stress states. Consider the x-y
plane to be that in which the fibers are woven or the whiskers are lying. The strain rates
in this plane are taken to be homogeneous throughout the composite material and G,
Oxz and Oy are taken to be zero. The resulting law is

v 1+V . ]

60-5 = ZG[EaB + 8‘15 sw - 1—_;aT8aB

-1| of V¢
-3foBf nf [Saﬂ-’-(l—vf) W]
~3(1-f)G,, By, 30" [sm +—Ym__§ . 5m }
momIm TR T 1-v,) vm) o 49)
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where Greek subscripts range over 1 & 2 and where

E

= |fG /G
[ 1 "1 Vm:l (50)

+ (1-1)G
V§

o

-V

and

A 14+ v¢ 1+v 1+V =
& = [faf G¢ v + (1-flog Gml—v:]/(l—v G)

(51)
The fiber and matrix evolution laws for stress are identical to eq. (49) withf =0and f=1
respectively. Being isotropic in the plane, this law suffers from the same deficiencies as
the 3-d version regarding the orthotropy of the woven mat and any inequality between
the warp and the woof. As before, this could be remedied with an anisotropic version
of the law.

In steady state isothermal creep, the relationship between in plane components of

stress and in plane components of strain rate are given by

1-nf 1-nm

c=2f n‘+l——f—€—nm(.é+£:8)
of :«',BfBf B, (B, of T Fyr OB

(52)

with Oxz = Oyz = Oz = 0 and with € given by eq. (40) but with &, =&, =0. Asin the
3-d case, this must be inverted numerically to establish a steady state isothermal creep
rate for a given imposed stress.

When the fibers are elastic and non-creeping, the isothermal behavior at fixed

applied plane stress is given in terms of the deviatoric stress by eq. (41) or (42) and
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eq. (43). The expression for the deviatoric composite strain, eq. (44), still applies.

However, the composite strain obeys

- _(1 f) m g zn-1 (1+vm)(1-V) gm

Ey Om 1+V)(1-vy) " (53)
and
. V¢ . (l 2Vm) —=n-1om
g, = -—|f + (1-f (1 fyj—B G, S
= [l-vf (-9 -Vm:’ [T-vm) ™Y

The latter result indicates that the volumetric strains can be relaxed to some extent by
matrix creep. This contrasts with the 3-d case where complete compatibility of strains
preciudes such relaxation. The extent to which the relaxation occurs has not yet been
calculated. However, if it is assumed that the relaxation can be complete so that the
matrix volumetric strain is zero, then the fiber stress tends towards Gqg/f and therefore

the composite strain approaches

& = = Gy ~ 3 Oy
fE, fE (55)

which, of course, is restricted to plane stress. It can be seen that in uniaxial stress, the
effective asymptotic modulus would now equal f Es. A properly calculated solution for

€kk (t) is required to investigate whether this result holds true.
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iaxi inforcement with Long Brittle Fibers

The reinforcement configuration of interest now is once more that depicted in
Fig. 1 and the loading will be restricted to a longitudinal steady stress Gzz. The
possibility will be taken into account that the fibers might be overstressed and therefore
could fail. Only elastié fibers which break in a brittle manner will be considered,
although ceramic fibers are also known to creep and possibly rupture due to grain
boundary damage. Frictionally constrained fibers only will be considered since well
bonded fibers will fail upon matrix cracking and vice versa. The case where the fibers
have a deterministic strength S can be considered. In that situation, the fibers will
remain intact when the fiber stress is below the deterministic strength level and they
will break when the fiber stress exceeds the strength. The fracturing of the fibers could
occur during the initial application of the load, in which case elastic analysis is
appropriate. If the fibers survive the initial application of the load, then subsequent
failure can occur as the matrix relaxes according to eq. (26) or (27) and the fiber stress
increases. Thus the time elapsed before first fiber failure can be estimated based on
eq. (26) or (27) by setting the fiber stress equal to the deterministic strength. This
predicts that failure of a fiber will occur when

Om = [0 - £S})/(1-D (56)

from which the time to failure can be computed through eq. (26) or (27). The failure of
one fiber in a homogeneous stress state will cause a neighboring fiber to fail nearby
because of the fiber/matrix shear stress interaction and the resulting localized load
sharing around the broken fiber. Thus a single fiber failure will tend to cause a
spreading of damage in the form of fiber breaks near a single plane across the section.
This will lead to localized rapid cseep and elastic strains in the matrix near the breaks

perhaps giving rise to matrix failure. It follows therefore that tertiary failure of the
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composite will tend to occur soon after the occurrence of one fiber failure when the fiber
strength is deterministic.

Tertiary failure processes akin to this have been modelled by Phoenix and
coworkers13-15 in the context of epoxy matrix composites. Indeed, they show that such
tertiary failures can occur even when the fiber strength is statistical in nature. This
mechanism will not be pursued further in this paper but some other basic results
considered on the assumption that when there is a sufficient spread in fiber strengths
such tertiary failures can be postponed well beyond the occurrence of first fiber failure
or indeed eliminated completely. Thus, attention will be focused on fibers which obey
the classical Weibull model that the probability of survival of a fiber of length L stressed
to a level Of is given by

L (o \™
Ps = exp [-i—(-gf') } 7
g

where Lg is a datum gauge length, S is a datum strength and m is the Weibull modulus.
Clearly the results given below can be generalized to account for variations on the
statistical form which differ from eq. (57). However, the basic ideas will remain the

same.

Long Term Creep Threshold Consider a specimen of length Lg containing a very large
number of wholly intact fibers. A stress O is suddenly applied to the specimen parallel
to the fibers. The temperature has been raised to the creep level already and is now
held fixed. Upon first application of the load, some of the fibers will break. The sudden
application of the load means that the initial response is elastic. This elastic behavior
has been modelled by Curtin!é among others but details will not be given here. If the
applied stress exceeds the ultimate strength of the composite in this elastic mode of
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response, then the composite will fail and long term creep is obviously not an issue.
However, it will be assumed that the applied stress is below the elastic ultimate
strength and therefore creep can commence. It should be noted, however, that matrix
cracking can occur in the ceramic matrix and the characteristics of creep relaxation
would depend on the degree of matrix cracking. However, this aspect of the problem
will not be considered in detail. For cases where there is matrix cracking and for which

the specimen length Ly is sufficiently long, Curtin16 has given the theoretical prediction

that the ultimate elastic strength is

Su = f[4LgS™T/D(m + 2P/ (m+1)/(m +2) (58)

where 7 is the interface shear strength between the fiber and the matrix and D is the
diameter of the fibers. The interface shear strength is usually controlled by friction. For
specimens shorter than §, the ultimate brittle strength exceeds S, where 3 is given
bylé

8c = [S I.%/m

D/2 g™/ (m+1), (59)
This critical length is usually somewhat less than the datum gauge length.

When the applied stress G is less than Sy, creep of the matrix will commence after
application of the load. During this creep, the matrix will relax and the stress on the
fibers will increase. Therefore, further fiber failure will occur. In addition, the process
of matrix creep will depend on the extent of prior fiber failure and, as mentioned
previously, on the amount of matrix cracking. The details will be rather complicated.
However, the question of whether steady state creep or, perhaps, rupture will occur or
whether sufficient fibers will survive to provide an intact elastic specimen can be

answered by consideration of the stress in the fibers after the matrix has been assumed
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to relax completely. Clearly, when the matrix carries no stress, the fibers will at least fail
to the extent they do in a dry bundle. It is possible that a greater degree of fiber failure
will be caused by the transient stresses during creep relaxation, but this effect has not
yet been modelled. Instead, the dry bundle behavior will be used to provide an initial
estimate of fiber failure in these circumstances.

Given eq. (57), the elastic stress strain curve for a fiber bundle is

m
G = fEfeexp[—-!“—-s-(-Ef—e) }
Le\ S/ ] 60)

Thus when a stress G is applied to the composite, creep will occur until the strain has
the value consistent with eq. (60). Numerical inversion of eq. (60) can be used to

establish this strain. The stress-strain curve in eq. (60) has a stress maximum when

1
- 3
E¢\mLg 61)

with a corresponding stress level given by

g~

L
o, = fs( i] exp(-1/m)

mLg . (62)
This result is plotted as a function of m in Fig. 2. If 0 < O, the composite will creep
until the strain is consistent with eq. (60) and thereafter no further creep strain will
occur. Of course, the non creeping state will be approached asymptotically. (It should
be noted that due to possible fiber failure during the creep transient, the true value for
O¢ may lie below the result given in eq. (62).) For an applied composite stress equal to
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or exceeding O, creep will not disappear with time because all of the fibers will
eventually fail and the strain will continue to accumulate.

The critical threshold stress for ongoing creep given by eq. (62) is specimen
length dependent. For very long specimens, the threshold stress is low whereas short
specimens will require a high stress for ongoing creep to continue without limit. On the
other hand, the ultimate brittle strength as given by eq. (58) for a composite specimen
longer than &, is specimen length independent. Thus there are always specimens long
enough so that G is less than S,. This means that the specimen can be loaded without
failure initially and if G exceeds O, the specimen will go into a process of long term
creep. (It should be remembered, however, that this model is based on the assumption
that tertiary failure is delayed and does not occur until a substantial amount of matrix
creep has occurred.) For shorter specimens, the relationship between G¢ and Sy
depends on the material parameters appearing in eq. (58) and (62). However, for
typical values of the parameters, O is less than Sy so that there is usually a window of
stress capable of giving rise to long term creep without specimen failure when the
specimen length exceeds &.. Typical values for the parameters are given by, among
others, Hild et al.17. From these parameters, predictions for G can be made. For
example, a LAS matrix composite containing 46% of SiC (Nicalon) fibers (m equals 3 or
4) is predicted to have a value for G, between 400 MPa and 440 MPa for a specimen
length of 25 mm whereas its measured ultimate brittle strength is between 660 MPa and
760 MPa. At 250 mm specimen length, the long term creep threshold G is predicted to
fall to the range 185 MPa to 250 MPa. Similarly, a CAS matrix composite with 37% SiC
(Nicalon) fibers (m equals 3.6) in a specimen length of 25 mm is predicted to suffer long
term creep if the stress exceeds 160 MPa whereas the measured ultimate brittle strength
is 430 MPa. For a 250 mm specimen length, this creep threshold is predicted to fall to
85 MPa. Thus it is clear that in some practical cases, applied stresses which are modest

fractions of the elastic ultimate strength will cause long term creep.
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Steady State Creep For specimens which have (i) previously experienced an applied
stress exceeding the long term creep threshold or (ii) which had every fiber broken prior
to testing or service (e.g. during processing) or (iii) which had few fibers intact to begin
with so that initially the long term creep threshold is much lower than G as predicted
by eq. (62), a prediction of the long term creep behavior can be made. Prior to this state,
there will, of course, be a transient which involves matrix creep and, perhaps, the
fragmentation of fibers. This transient has not been fully modelled. Only a
rudimentary assessment of the creep behavior has been made revealing the following
features.

For those composites initially having some of the fibers intact, there will always
be some which must be stretched elastically. This will require a stress which will tend
towards the value given by eq. (60) with f replaced by f;, the volume fraction of fibers
initially intact. If a relaxation test were carried out, the stress would asymptote to the
level predicted by eq. (60). The remaining broken fibers will interact with the matrix in
a complex way, but at a given strain and strain rate, a characteristic stress contribution
can be identified in principle. Details have not been worked out. However, the total
stress would be the sum of the contribution from the broken and unbroken fibers. If
the transient behavior is ignored (i.e. assumed to die away relatively fast compared to

the strain rate) a basic model can be constructed.

Steady State Creep with Broken Fibers  First, consider a composite with a volume
fraction f of fibers, all of which are broken. There are two possible models for the

steady state creep behavior of such a material. In one, favored by Mileiko!8 and
Lilholt!9 among others, the matrix serves simply to transmit shear stress from one fiber
to another and the longitudinal stress in the matrix is negligible. The kinematics of this

model requires void space to increase in volume at the ends of the fibers. However,
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with broken fibers there is no inherent constraint on this occurring. Furthermore, if
matrix cracking has occurred, the matrix will not be able to sustain large amounts of
longitudinal tension and its main role will be to transmit shear from fiber to fiber.
Indeed, matrix cracking will probably promote this mode of matrix flow since there will
be no driving stress for other mechanisms of straining. The other model, favored by
McLean20 and developed by Kelly and Street?! involves a stretching flow of the matrix
between fibers at a rate equal to the macroscopic strain rate of the composite material.
This requires substantial axial stress in the matrix. In addition, volume is preserved by
the flow and there is no need for space to develop at the end of the fiber. The model
requires a considerable matrix flow to occur transporting material from the side of a
given fiber to its end and the injection of matrix in between adjacent ends of the broken
fibers. There is good reason to believe that the Mileiko!8 pattern of flow prevails when
there are broken fibers.

In a version of the Mileiko!8 model in which it is assumed that each of six
neighboring fibers has a break somewhere within the span of the length of a given fiber
but that the location of those breaks is random within the span, the relationship
between the steady state creep rate and the composite stress is (McMeeking,

unpublished work)

¢ = g, H(D/L)™! Bon (63)

where L is the average length of the broken fiber segments and

V3 (2n+1)Jn (1 'fn%l)

g(n.f) = 2‘/5[ 2n f (n-1)

(64)
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whenn =1 and
g(1,f = 9/ a1/ (65)

These functions have been computed for uniform fiber length and based on a hexagonal
shape for the fiber even though interpreted to be circular. That explains why creep
strength goes to infinity at f = 0 rather than at f less than 1. In this creep model, the
influence of both volume fraction and the aspect ratio L/D on the strain rate is clear
with both having a strong effect. As noted, this model could serve as a constitutive law
for the creep of a material in which all of the fibers are broken to fragments of average
length L. In addition, it could be used for short fiber composites which have weak
bonds between the fiber end and the matrix so that debonding can readily occur and
void space can develop as a result. However, the aspect ratio L/D should be large so
that the Mileiko18 flow pattern will occur and end effects can be neglected when the
composite creep law is computed.

The shear stress transmitted to a fiber is limited to the shear strength T. Asa

result, the formuia given in eq. (63) is valid only up to a composite macroscopic stress of
_ 2nf ( L) <
2n+1 \D (66)

for both the linear and nonlinear cases. According to the model, at this level of applied

stress, the shear stress on the fiber interface will start to exceed T. Therefore, at stresses
higher than the value given in eq. (66), the strain rate will exceed the level predicted in
eq. (63). This situation will persist in the presence of matrix cracks up to a composite

macroscopic stress of
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ouM = fTL/D 67)

at which stress the entire fiber surface is subject to a shear stress equal in magnitude to
7. Then, the mechanism represented by eq. (63) provides an indeterminate strain rate as
in rate independent plasticity. Thus GLiM can be thought of as a yield stress. This
concept is probably satisfactory for materials with many matrix cracks so that there is
no constraint on stretching the matrix. However, when there are no matrix cracks, the
strain rate is probably controlled by the mechanism which generates void space at the
fiber ends. This has been considered to require negligible stress in the version of the
model leading to eq. (63). For a proper consideration of the limit behavior, the
contribution to the stress a-ising from void development at the fiber ends should be

taken into account.

The Effect of Fiber Fracture If the stress applied to the composite is increased, the
stress sustained by fibers will increase also. When the probability of survival of fibers
obeys the statistical relationship given by eq. (57), the effect of a raised stress will be to
fracture more fibers, with a preference for breaking long fibers. This will have the effect
of reducing the average fiber length L and therefore raising the strain rate at a given
applied stress as can be deduced from eq. (63). Therefore, the composite will no longer
have a simple power law behavior in steady state creep since the fiber fragment length
will depend on the largest stress which the composite material has previously
experienced. In this regard, the elastic transients will play an important role in
determining the fiber fragment length. However, the average fragment length in steady
state creep will generally be smaller than the average fragment length arising during
initial elastic response. Therefore, some guidance can be obtained from a model

designed to predict the steady state creep response only.
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For the Mileiko!8 model of composite creep leading to the steady state creep rate

for fixed fiber length given in eq. (63), a rudimentary fiber fragment length medel gives

(McMeeking, unpublished work)
(n+1 ST
L = 1)]-————| L
m )[(2n+l)0 & 68)

subject to L being less than the specimen length. When a stress O is applied to the
composite material and steady state is allowed to develop, the average length for the
fiber fragments is predicted by eq. (68). This model is by no means precise, based as it is
on some approximations in the calculations as well as the notion that all fibers can be
treated as if they had the same length. However, the model conveys the important
notion that the fiber fragment length will fall as the applied stress is increased.

The fiber fragment average length during steady state creep can be substituted
into eq. (63) from which results

€ = h(n,f D/Lgm,S) B gn*menm ©69)

where h is a rather complicated function of its argurnents and can readily be calculated.
A significant conclusion is that the creep index for the composite is no ionger just n but
is n+m+nm. Thus a ceramic matrix material with a creep index for the matrix of 1 will
have composite creep index of 2m + 1. In the case of a fiber with a Weibull modulus of
m = 4, the composite creep index will be 9. Similar effects will be apparent in
composites with a nonlinearly creeping ceramic matrix, say with n = 2. It has been
observed that metal matrix composites with noncreeping reinforcements often have a

creep index which differs from that of the matrix322 and the effect is usually attributed
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to damage of the fibers or of the interface. It can be expected that ceramic matrix
composites will exhibit a similar behavior.

It should be noted that the model leading to eq. (69) is incomplete since the stress
required to cause the enlargement of void space at the fiber breaks is omitted from
consideration. At high strain rates this contribution to stress can be expected to
dominate other contributions. Therefore at high stress or strain, the creep behavior will
diverge from eq. (69) and perhaps exhibit the nth power dependence on stress as
controlled by the matrix. The creep rate at these high stresses can be expected to exceed
the creep rate of the matrix at the same applied stress since the void space at the fiber

ends is a form of damage.

Creep of an Initially Undamaged Composite The issue to be addressed in this section
is the long term behavior of a composite stressed above the threshold G given by

eq. (62) which means that the specimen will creep continuously. As in the immediately
preceding sections, elastic transient effects will be omitted from the model of long term
creep of the initially undamaged composite. No model exists as yet for the transient
behavior, but there is little doubt that the transient behavior is important. Many
composite materials in service at creep temperatures will probably always respond in
the transient stage since the time for that to die away will typically be rather long.
However, a quasi-steady state model, as before, will give some insight into the state
towards which the transients will be taking the material. However, the model
presented below is rather selective, since it includes some elastic effects and ignores
others. It is not known how deficient this feature of the model is. Perhaps the material
state will evolve rather rapidly towards the state predicted below and therefore the

model may have some merit.

4H:MS26(September 1, 1992)10:25 AM/mef




The specimen is composed of a mixture of matrix, unbroken fibers and broken
fibers. The volume fraction of intact fibers is given by eq. (57) with L = Lg, the specimen
length. To the neglect of transients, the macroscopic stress supported by these intact
fibers is given by eq. (60). The strain will now exceed the level of eq. (61) associated
with the ultimate strength of the fiber bundle. Therefore the stress supported by the
intact fibers will be less than O which is the ultimate strength of the fiber bundle
without matrix. The applied stress exceeds O and the balance in excess of the amount
borne by the intact fibers will cause the composite material to creep.

The steady state result given in eq. (69) will be taken to express the creep
behavior controlled by the broken fibers. The volume fraction of broken fibers is

Lg (Efe m
fb = 1~ exp[_._s..(_) ]
Lg S (70)

and a material with this volume fraction of broken fibers creeping at a rate & will

support a stress

Op = [€/B h(n, fp, D/Lg, m, S)]/P 71)
where

pP=n+m+nm (72)

which comes directly from eq. (69). The total stress sustained by the composite material
is therefore

G = fpOp + Ou 73)
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where Gy, is the contribution due to unbroken fibers. This leads to

. 1/p Ls (Efe m
o = f,|¢/Bh(fy) + fEfeexp[——(———) ]
[ ] Lg\ S (74)

which can be seen to be a rather nonlinear Kelvin-Voigt material in which the stress is
the sum of a viscous element and an elastic element both of which are nonlinear. As the
strain increases, the second term on the right hand side of eq. (74) (i.e. the term due to
the intact fibers) will diminish and become rather small when only a few unbroken
fibers are left. At the same time, fy, will approach f and so the strain rate will approach
the steady state rate for a material in which all of the fibers are broken. However, as
long as a few fibers remain intact, the creep behavior will not precisely duplicate that
for the fully broken material. This transient effect will be compounded by the
redistribution of stress from the matrix to the fibers which will occur both after the first
application of load to the composite material and after each fracture of a fiber, both
effects having been omitted from this version of the model.

Creep of Materials with Strong Interfaces
It seems unlikely that long fiber ceramic matrix composites with strong bonds

will find application because of their low temperature brittleness. However, for
completeness, a model which applies to the creep of such materials can be stated. Itis
that due to Kelly and Street21. 1t is possible also that the model applies to aligned
whisker reinforced composites since they may have strong bonds. In addition, the
model has a wide currency since it is believed to apply to weakly bonded composites as
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well. However, the Mileiko!8 model predicts a lower creep strength for weakly bonded
or unbonded composites and therefore is considered to apply in that case.

The Kelly and Street?! model uses the notion that creep of the composite material
can be modelled by the behavior of a unit cell. Each unit cell contains one fiber plus
matrix around it so that the volume of the fiber divided by the volume of the unit cell
equals the fiber volume fraction of the composite material. The perimeter of the unit
cell is assumed to be deforming at a rate consistent with the macroscopic strain rate of
the composite material. (It can be observed at this stage that this notion is inconsistent
with the presence of transverse matrix cracks which would make it impossible to
sustain the longitudinal stress necessary to stretch the matrix. This is an additional
reason why the Kelly and Street?! model is not likely to be applicable to unbonded
ceramic matrix materials which are likely to have matrix cracks.) Only steady state
creep of materials with aligned reinforcements which are shorter than the specimen is
considered. The unit cell is assumed to conserve volume. This means that material
originally adjacent to the reinforcement must flow around the fiber and finish up at its
end. This phenomenon has to occur when the end of the fiber or whisker is strongly
bonded to the matrix. For this reason, the Kelly and Street2! model is considered to be
relevant to materials with strong bonds.

Kelly and Street?! analyzed this model but their deductions were not consistent
with the mechanics. McMeeking23 has remedied this deficiency for nonlinear materials.
His results for n = 2 are relevant to composite materials with nonlinearly creeping
ceramic matrices which tend to have low creep indices. In that case, the steady state

creep rate is given by eq. (63) with n =2 and

g(2.f) = 75‘/3(1 -2+ %f Y —1—f3)

8f2 2 5 2 10 (75)
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which is invalid for f = 0. When f is close to zero a different form should be used which
accounts for the matrix stress so that the matrix creep law is recovered smoothly as the
volume fraction of fiber disappears. This result is developed below and is given in
eq. (77). Comparison of eq. (75) with eq. (64) for n = 2 will show that the model of Kelly
and Street2! creeps more slowly than the Mileiko!8 law confirming that the Mileiko
model is the preferred one when it is kinematically admissible.

It is thought that at higher temperatures, the interface between the fiber and the
matrix becomes weak and sliding occurs according to the constitutive law given in
eq. (3). In that case, creep of a composite with a well bonded interface obeys eq. (63)
with n = 2 and?3

g(2.f) = -231[2[3(1 8 3¢_lp —l-f3) + ——(l-f)s -ﬁ]

8f2 | \2 5 2 2 10 2DB 76)

This form for g is identical with that in eq. (75) when B = 0. Thus, sliding at the interface
increases the creep rate at a given stress. If B/B D is very large, signifying a very weak
interface, then the interface term will dominate the matrix term in eq. (76). It should be
noted that there is a relative size effect, with large diameter fibers making sliding less
important.

At large strain rates, stretching of the matrix as it slides past the matrix will
contribute to the creep strength. Under those circumstances, the term g(2, f) in eq. (63)
should be replaced by23

-2

g(2,f) = [1/M+(1_f)(_13)15]

(77)
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where, in eq. (77), g(2, f) is to be calculated according to eq. (76). Note that as g(2, f)
becomes large (i.e., the composite strain rate is large because either f is small or Bis

large), the composite strain rate will approach
& = Blo/(1 -0 (78)

which is the rate that would prevail if the fibers were replaced by long cylindrical holes.

Creep of Materials with a Linear Rheology The equivalent correction to the Kelly and

Street2! model for cases where the matrix creep obeys a linear rheology (n = 1) was not
given by McMeeking23. However, consideration of this case can be included ir a model
with accounts for the ability of a well bonded interface between the fiber and the matrix
to sustain sliding according to eq. (3) and in which mass transport may cause the effect
described by eq. (4). In unpublished work, McMeeking has given the steady state creep

law for the composite material in these circumstances to be

o = %[h(f)(%)z £ 1- f] .

where

U/h() = 2[4m(/E) - 3 + af - £7]

3B(1-f)? , 486D
fBD BD? . (80)

Recall that if sliding between the fiber and the matrix occurs readily, B will be large and

also rapid mass transport is associated with a large value of D.
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It is thought that as the temperature is increased, the relative importance of
sliding and mass transport is enhanced. Thus at low creep temperatures, B/B D and
D/B D3 would be small. Then only the first term on the right hand side of eq. (80) will
be important and when L/D is large, as required by this asymptotic model, the creep
strength will be high. As the temperature is increased, either B/B D or D/B D3 or both
will increase in magnitude. When they become large, h(f) will become small and the
creep strength of the composite will fall, as can be seen in eq. (79). However, if h(f)
becomes negligible, the steady state creep law for the composite will be approximately

¢ =Bo/(1-1). (81)

As in the case of the quadratic matrix rheology, the creep behavior when sliding
dominates (or as in this new case mass transport is significant) is the same as for a
material containing cylindrical holes instead of fibers even if the interface is nominally
well bonded. This behavior will occur when h(f) is much smaller than (D/L)? so that
the relevant term containing h(f) in eq. (79) is negligible.

It should be noted that the creep behavior is affected in the way predicted by
eq. (79) and (80) whether interface sliding occurs readily or mass transport occurs
rapidly at the interface between the fiber and the matrix. It follows that rapid sliding by
itself is sufficient to diminish the creep strength of the composite material and long
range mass transport at the interface is not necessary. Note also that if the matrix does
not creep (i.e. B = 0) neither sliding nor mass transport will have any effect on creep and
the composite will be rigid. This feature arises because the matrix must deform when
any sliding or mass transport occufs at the interface.

An additional feature is a size effect in the creep law when sliding or mass
transport at the interface are significant enough to affect the composite behavior. A
small diameter fiber (i.e. small D) will tend to enhance the effect of sliding or mass
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transport on the creep rate of the composite and the composite will creep faster.
Similarly, a large diameter fiber will tend to suppress the effect of sliding or mass
transport and the creep strength of the composite will correspondingly be increased.
Similar effects tied to grain size are known to occur in the creep of ceramics and metals
controlled by mass transport on the grain boundaries!. Note that the mass transport
term in eq. (80) is much more sensitive to fiber diameter than the sliding term. The
cubic dependence on fiber diameter in the mass transport controlled term will cause it
to disappear rapidly as D is increased. However, if both D and B are substantial, the
creep strength of a composite will not be improved substantially by increase of fiber
diameter until both the effects of sliding and mass transport are suppressed. It seems
likely that in practice this will mean that mass transport will be relatively easy to
eliminate as a contributor to rapid creep strain of the composite by increase of the fiber
diameter, whereas the effect of sliding at a given temperature will be more persistent.
Furthermore, there is also an interplay with volume fraction, with the importance of
interface sliding being greater at low volume fractions of fibers and mass transport

being more significant at higher volume fractions.

Discussion

As previously noted, this chapter has been concerned mainly with those models
for the creep of ceramic matrix composite materials which feature some novelty which
cannot be represented simply by taking models for the linear elastic properties of a
composite and, through transformation, turning the model into a linear viscoelastic one.
If this were done, the coverage of models would be much more comprehensive since
elastic models for composites abound. Instead, it was decided to concentrate mainly on
phenomena which cannot be treated in this manner. However, it was necessary to

introduce a few models for materials with linear matrices which could have been
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developed by the transformation route. Otherwise, the discussion of some novel
aspects such as fiber brittle failure or the comparison of nonlinear materials with linear
ones would have been incomprehensible. To summarize those models which could
have been introduced by the transformation route, it can be stated that the inverse of the
composite linear elastic modulus can be used to represent a linear steady state creep
coefficient when the kinematics are switched from strain to strain rate in the relevant
model.

No attempt has been made to discuss in a comprehensive manner models which
are based on finite element calculations or other numerical analyses. Only some results
of Schmauder and McMeeking!0 for transverse creep of power law materials were
discussed. The main reason that such analyses were in general omitted is that they tend
to be in the literature for a small number of specific problems and little has been done to
provide comprehensive results for the range of parameters which would be
technologically interesting - i.e. volume fractions of reinforcements from zero to 60%,
reinforcement aspect ratios from 1 to 106, etc.. Attention was restricted in this chapter to
cases where comprehensive results could be stated. In almost all cases, this means that
only approximate models were available for use. Furthermore, numerical analyses for
creep in the literature tend to be for metal matrix composites and so use creep indices
which are rather high for ceramic matrices. Indeed, this latter fault applies to the finite
element calculations so far performed by Schmauder and McMeeking10 even though
there was an attempt to be comprehensive. Those finite element results which are
available in the literature such as the work by Dragone and Nix?4 are very valuable and
provide accurate results for a number of specific cases against which the more
approximate models discussed in this chapter can be checked. A limited amount of this
checking for a single model has been done by McMeeking?3 in comparison with the
Dragone and Nix24 calculations. The results show that the approximate model is

reasonably accurate. However, more extensive checking of the approximate models is
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required and to do this in many cases it will be necessary to create the finite element
analyses.

Also omitted from this chapter was any attempt to compare the models with
experiments. This would require a lengthy chapter by itself and some comparisons are
given elsewhere in this book. In addition, limited data are available for such
comparisons in general. For metals, there are some successful comparisons® and some
unsuccessful ones22. It seems that when there is good knowledge of the material
properties and the operating mechanisms, the right model can be chosen, but lack of
such knowledge makes it virtually impossible to identify which features must be
present in the model. Thus, multidisciplinary work is necessary to understand the
microstructure, to identify the mechanisms and to select and develop the appropriate
model. An example of such an effort, although for the closely related subject of the
plastic yielding of a metal matrix composite, is the work of Evans, Hutchinson and
McMeeking25, where careful control of the metallurgy and the experiments was used to
confirm the validity of the models.
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Fi Capti
Fig.1 A uniaxially reinforced fiber composite.

Fig.2 Threshold for long term creep of a uniaxially reinforced composite as a function
of Weibull modulus for the fiber strength distribution.
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Summary The leading order solution for the power law creep of a matrix around a
rigid finite fiber is developed. The matrix is well bonded to the fiber but the interface is
assumed to be capable of slip with a drag which is linearly proportional to the slip
velocity. In addition, mass transport by stress driven diffusion is assumed also to be
possible at the interface between the fiber and the matrix. It is found that when there is
no slip or interface mass transport, the composite has a high creep strength compared to
the matrix. However, both slip and mass transport acting individually or together are

capable of reducing the creep strength of the composite material. If slip occurs very

readily or mass transport is very rapid or both, the creep strength of the composite can
fall below that of the pure matrix material. It is notable that mass transport and
interface slip with a linear rheology have an identical effect on the creep strength of the

composite material.

Introduction

Cell models have been used extensively to represent the mechanical properties of
fiber or whisker reinforced materials [1-5]. Kelly and Street [1] presented a model for
the power law creep of a material with aligned fibers. McMeeking [2] improved this
model by analyzing the matrix flow field more accurately. In both of these treatments,
the interface between the matrix and the fiber was taken to be well bonded with no slip
or to slip in a manner controlled by the rheology of the matrix. Another possibility
allowed for in these treatments was an interphase between the matrix and the fiber but
with the same power law exponent as the matrix. On the other hand, it is desirable to
have models in which slip and diffusion is allowed for at the fiber-matrix interface. In

addition, many composite materials have an interphase between the matrix and the
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fiber with very different creep properties. The purpose of this paper is to provide an
enhancement of McMeeking's [2] model to feature interface slip and diffusion and the
influence of a distinct interphase. A previous treatment of these features by Goto and
McLean [3] was based on the original Kelly and Street [1] model without the benefit of
the improved flow fields analyzed by McMeeking [2].

Debonding is not allowed for in the model presented here. The main reason is
that debonding occurs primarily on the fiber end. Mileiko [6] and Lilholt [7] have
developed models in which the end of the fiber is debonded and gaping occurs between
the fiber end and the matrix during creep deformation. The degree of freedom
permitted by this allows matrix deformation to occur in simple shear between adjacent
reinforcements. As a result, the flow field in the matrix is quite different from that
computed by McMeeking {2]. The latter work involves a flow field in which material is
squeezed out from between reinforcements, extruded around the fiber end and
deposited there. This eliminates gaping at the fiber end and preserves
incompressibility. Since the results in this paper represent an extension of McMeeking's
[2] work, it is necessary to invoke the hypothesis of a strong bond between the fiber and
the matrix. Thus, the situation for which the model in this paper is most relevant is a
fiber with a strong interphase strongly bonded to the fiber and matrix but with creep
properties distinct from the matrix.

The analysis follows closely the method of McMeeking [2] and generates the
leading order solution in an asymptotic analysis. Background to this can be found in
the squeeze film solution of Johnson (8]. The small parameter in the analysis is b/L as
shown in Fig. 1. Since 2b represents the center to center spacing of neighboring parallel
fibers, the ratio b/L is approximately equal to 1/ (VE M) where f is the volume fraction of
fibers and A = L/a is the aspect ratio of the fibers. Thus for the solution to be
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asymptotically valid, the aspect ratio of the fibers should be large and the volume
fraction of the fibers must be finite and such that Vf A is large.

An additional feature of the approach is that in the estimation of the creep
strength of the composite material, contributions due to flow around the fiber ends are
neglected. This can be justified as follows. The most significant effect of the fiber ends
is taken into account, namely the way that the well bonded fiber end requires material
to be squeezed out from the region adjacent to the side of the fiber and extruded around
the fiber end to flow into the region beyond the reinforcement. The pattern of flow in
the fiber end region is not very important to the results obtained because the fiber end
regions typically represent a small fraction of the total volume of the composite
material, especially since A must be large for the analysis to be valid. Thus the creep
dissipation of the composite material will be dominated by the dissipation which takes
place in the regions adjacent to the side of the fiber and the dissipation in the fiber end
region can be neglected. Thus it is sufficient to analyze in detail only the flow in the
region adjacent to the side of the fiber. This is the axisymmetric volume with section
ABCD shown in Fig. 1.

Formulation

The geometry of the problem is shown in Fig. 1. The fiber is rigid with length 2L
and diameter 2a and it is assumed that all fibers have the same aspect ratio. The matrix
creeps with a power law rheology and is incompressible. Only steady state creep is
considered. The unit cell with diameter 2b and a length somewhat longer than 2L is
chosen so that the ratio of the volume of the fiber to the volume of the unit cell equals

the volume fraction of fibers in the composite material. The exact relationship of a/b to
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the composite volume fraction depends on how the fibers are packed into the matrix
and on the end to end and side to side spacing of the fibers [2].

The unit cell deforms in such a way that its cylindrical shape is preserved. The
axial strain rate is £ and by incompressibility the transverse strain rate is - £/2.
Therefore the radial velocity at r = b on the side of the unit cell is - £ b/2 as indicated in
Fig. 1. The shear stress on the side of the unit cell is zero. However, the radial stress is

not uniformly zero there, but is zero on average. This ensures that the net transverse

stress is zerc so that the only applied load is the axial stress Ga, as shown in Fig. 1.

- The boundary conditions on the fiber surface involve slip of the matrix relative to
the fiber, so that the axial velocity on the fiber surface can be nonzero. A linear
rheology for the resulting drag will be assumed. This can be justified in terms of an
interphase which is creeping in the linear regime controlled by Nabarro-Herring or
Coble creep [9]. The creep behavior of the interphase can be expressed thenas T =1 ¥
where T is the shear stress, 1 is the viscosity and ¥ is the shear strain rate. The thickness
of the thin interphase is t and therefore the shear strain rate in the interphase is v,(a)/t
where v;(a) is the axial velocity of the matrix material immediately adjacent to the
interphase. It follows that the slip boundary condition at the fiber surface can be stated

as
Orz = HVz (1

where Oy is the shear stress at the fiber surface and jL = 1}/t. If a no slip condition
prevails (i.e. no interphase), the boundary condition becomes v, = 0 on the fiber surface.
Mass transport by diffusion is assumed to be possible at the interface between

the fiber and the matrix. The process is driven by stress differences with material
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traveling from compressive or low tensile stress regions to high tensile stress locations.
The process is assumed to occur fastest on the interface between different materials or in
the interphase between the fiber and the matrix. Consequently, diffusion processes in
the matrix and in the fiber are neglected.

The end of the fiber will be under the greatest tension. However, the flow of the
matrix around the fiber end is neglected in the model and it follows that diffusion to the
end of the fiber should be neglected as well. Consequently, diffusion processes only on
the side of the fiber will be included in the model. The mass transport rate in the z

direction at the interface is given by

06, (a,z)
oz (2)

j2(z2) = D
where j; is the volume of transported material passing through a unit length of the fiber
surface in unit time, Gy (a, 2) is the radial stress on the surface of the fiber, Dis a

diffusion coefficient for the interface given by

Dy, 8, Q
kT 3)

D =
where Dy is the interface or interphase diffusion coefficient, dy, is an effective interface
thickness or is the interphase thickness, k is Boltzmann's constant and T is the absolute

temperature. Volume conservation requires

djy (2 _

v.(a,z) + iy @
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where v; (a, 2) is the velocity at which the matrix moves away from the fiber surface. It

follows that

d? o (a,2)

Z) = -D
vr(a2) dz? ©)

which is the remaining boundary condition on the fiber surface. If mass transport is

inactive, the boundary condition is v (a, z) = 0.

Analysis
The domain of the problem is the axisymmetric region with section ABCD in

Fig. 1 (asr<b; 0 <z <L). Considering the boundary conditions in Fig. 1, we assume [2]
Orr = Ogp = Ozz = G, Orz << © 6

which can be justified by asymptotic analysis when b/L is small. It follows that the
term dGrz/9dz can be neglected and, the governing equilibrium equation in a cylindrical

coordinate system reduces to

acrz G& ’ —
55 T Ty +0'(z)=0 *

where GO is the hydrostatic part of the stress and 6’ (z) denotes d6/dz. Note that
O = 0 (2) in (7) results from the radial equilibrium equation upon use of (6).

The matrix obeys power law creep with an incompressible rheology given by

41:MS20(Seprember 22, 1993)2:33 PM/mef




Oy (8)
where &jj is the strain rate, s;; is the deviatoric stress given by
sij = Oij - 0 J;; ©)

O is the effective stress such that

6 - §S"S"
N2y (10)

and G and &, are material constants. Note that to leading order the effective stress in

this problem reduces to
8 =130, (11)

given that Oy is positive. Thus, the creep law can be written as

Nz - B, (“’3"")“

ar G, (12)
where the term dv;/dz is ignored due to smallness [2]. Incompressibility provides
av, RN v, _ 0
or r } : (13)
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The boundary conditions on AB (z = 0) are
v2(r,0) =0 (14)
Grz (r, 0) = O. (15)

On AD (r = a) one boundary condition is eq. (5) repeated here for completeness

o 3’0o, (a z)

vi(a,2) = P 6

if the interface diffusion is considered, otherwise vr (a, 2) = 0, while the slip condition

from eq. (1) becomes
vz(a, z) = Oz (a,2)/Q (17)

where Dis the interface diffusion parameter and M is the interface drag parameter.

On BC (r = b) the boundary conditions are
Orz(b,2) = 0 (18)
and
2 . (19)
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An additional condition on r = b is that

LLG(Z) dz =0 (20)

to ensure that the transverse stress is approximately zero. The approximation arises
because the cell extends a small distance above CD, but that portion is neglected.

Note that no explicit boundary conditions are posed for CD. This is consistent
with the neglect of the details of flow around the fiber end. The average axial stress at
CD will be of interest and determines Oa. The creep strength S of the composite
material is defined as the average axial stress in the composite at a given axial strain rate

divided by the stress in the matrix alone at the same axial strain rate. Thus,

s - _ % i@/,
o, IR T (s 7a (/N
[8/(80/"0)] (€/8)"" @1)
Solution
Integration of (7) subject to eq. (18) gives
(e = .‘3. 6'(2)(2-1)
" 2 r b/ (22)

Note that 6’ (2) is positive for z > 0 and thus so is Gr;. Consequently, eq. (12)
shows that

41:MS0(September 22, 1993)2:33 PM/mef

10




11

W _ 3 éo(————-ﬁb“'(’*))n (- 1)“

or 20, r b (23)
Integration of eq. (23) with (17) provides
b(b a . (V3bo’(z))" ¢r(b oY
2} = —|=-=]¢’ —_— ——=] d
va(e:2) 2u(a b)c(zhﬁ%( 20, ) k p b) P (24)

Differentiation of eq. (24) with respect to z provides the axial strain rate which is

inserted into the incompressibility condition (13). Integration of eq. (13) with respect to

r and use of eq. (19) gives

n+l | ’ n-1 n
virz) = 20 nb(bc (Z)) @ o [} (E'E) dede

n 2 b
20, T N . (25)
+ 202 (2 _,2)(2_3) _be
4ur a b 2r
The boundary condition specifying the interface diffusion, eq. (16), i.e.,
3% Gr (a,2) ()
vela,z) = - D—m—m——= = - D——— = —-Dc”(2), (26)
T ( ) b 22 b zz ( )
then provides the nonlinear differential equation
2
EUA el PTE s Y
b’ 2a dz| o 2 /p2 -
a dz| o, m (a /b ) 2a o)
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where

a 3% n n (1 "
H(E’“) = Ll (E g) dsdn 28)
The differential equation can be restated as

1[19&] . cd8®

dz| dz dz? (29)
where 53 = Z (30)
L
b b
- a € n (o]
= |2H|=,n|-=2
¢ [ H(b n) EL] Lo, 31)
and
1
2 n
D (l‘az/bz) o, a EL ]
C =25+ 7 3.2 -_%E
b®  4pat/b" € 2H(3,n)éob
b (32)

which is inherently positive. It can be seen that in the normalized variables, all
solutions are controlled by a single parameter, C, which accounts for geometry, size,
matrix creep properties, interface properties and the axial strain rate.

Eq. (29) can be integrated once and symmetry with respect to Z invoked to give
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dé(z)]" dé(z) .
[di] v TF (33)

Linear case: When the matrix flows with a linear rheology (i.e. Nabarro-Herring or

Coble creep) the creep exponent n = 1. The solution to eq. (33) is then

5(2) = 332 -1
6(1+C) (34)

where (20) has been used to determine the constant of integration. Thus, the axial and
radial stress vary quadratically parallel to the fiber axis and are compressive near the
center of the fiber at Z = 0.

The applied stress will be *3ken to be approximately equal to the matrix stress at
Z=1(.e atz=L). This neglects the relatively small increment of stress induced by
flow of the matrix around the fiber end. The normalized stress at Z = 1 is evaluated to

be

1
3(1+C). (35)

5(1) =

The result for 3 6 (1) is plotted against C in Fig. 2. By a balance of axial forces, the

normalized fiber stress is

2,,.2 2
o) = 355 2~ (-5 -0)
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where

. a ) ¢, blo
O¢ = ZH(E’I) Lz——i
el%o, (37)

with O¢ (z) the axial fiber stress. That is, %f is normalized in the same way that 3 is (see
eq. (31)). The fiber stress therefore rises quadratically from the applied level at the fiber

end to a maximum value of

smax _ 3b%/a’-1
f 6(1+C) (38)

at the center of the fiber at z = 0. It follows that the maximum fiber stress is always
(3 b2/a2 - 1)/2 times the applied stress irrespective of the state of the interface. Note
that a2/b2 can be interpreted in terms of the fiber volume fraction. If the fibers are very
long with little space between them end to end then a2/b? is approximately equal to the
volume fraction. Other estimates can be made for a2/b2 depending on the geometry of
packing [1,2].

The applied stress is given by eq. (35), restated as

%(L/b)z é

. _ .2 2\
Eo_H(i 1)+ o (1270 )
b’ b2 4pa?/b? | b2

(o]

(39)
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a 3| a2 1 a 3 at
. -, - -— — — — ln —_— - = - — |
with H(b 1) 2[21:2 T T3 8b4] (40)

It should be noted that this estimate is only valid for large values of L/b and therefore
should not be used when L is comparable to b. It is also not suitable for a = 0 since the
matrix behavior is not recovered in that limit. Correction terms have been suggested by
McMeeking [2] for the case with the perfect interface to allow for recovery of the pure
matrix limit.

A correction term is desirable to cover the situation in which the interface drag
disappears (i.e. L — 0) or the interface diffusion becomes very fast (D — o) or both.
The results of McMeeking [2] and a simple model for axial straining of the matrix
indicate that when the right hand side of eq. (39) goes to zero, G, should be given

approximately by

(41)

(Note: the formula in eq. (41) neglects constraint when there is no mass transport or

drag in which case 0, would be somewhat higher.) The model of eq. (41) means that
the composite material is weaker than the matrix by itself which would sustain a stress
equal to Gp £/&,. With no drag at the fiber-matrix interface or with infinitely fast mass
transport, the fibers simply serve to eliminate matrix material and therefore weaken the
composite. For a model which behaves sensibly when L goes to zero, the right hand
sides of eq. (39) and (41) can simply be added.
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Inspection of eq. (39) reveals that the creep strength of the material is always
quadratic in L/b so that long fibers promote creep resistance no matter the state of the
interface. When there is no interface diffusion and no interface slip, the creep strength

is

So = L2/6 b2H (a/b,1) (42)

which is the ratio of the applied stress for the composite material to the applied stress in
the pure matrix at the same strain rate. When either interface diffusion or interface slip
or both are active, the creep strength is degraded. A similar effect was identified by
Sofronis and McMeeking [10] in particulate composites. The extent of the effect
depends on the magnitudes of Dand JL. It is expected that these parameters will be
temperature dependent as will be the effective matrix viscosity Go/€,. However, the
activation energies for Go/€o, D and |t can be expected to be different in general and so
their relative magnitudes will depend on temperature. Therefore, temperature is
expected to be an important consideration in the extent of degradation of the creep
strength by interface diffusion and slip.

An important conclusion to be drawn from eq. (39) is that the effect on creep
strength of interface diffusion and interface slip is the same. Furthermore, only one
mechanism need be active for the creep strength to be degraded. Thus, one cannot
automatically say that interface diffusion is responsible for loss of creep strength in fiber
reinforced materials at high temperatures as is sometimes stated [11,12] because it could
equally well be due to interface slip. An experiment identifying slip or diffusion would
be required to distinguish the mechanisms.
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If either mass transport is very rapid so that Dis very large or the drag generated
by slip is very low so that JL is very small, the denominator in eq. (39) will be very large.
As a result, the creep strength of the composite material will be low, with the effect of
the fiber length nullified by interface slip and mass transport. This makes it clear that
the creep strength of the composite material is critically dependent on the integrity of

the interface between the matrix and the fiber.

Quadratic case: When n = 2, the differential eq. (33) can be solved quite

straight-forwardly. The solution is

23 = S(1oost e L(c2aasy - 1 (c2, 8. C
6(2) = 4(1 22) + 12(C +4z) 120(C +4) * 155, @3)
It follows that the applied stress is given by
: \2
‘/E°°(é—£') (%)2 5C 1 3 1
_ ) _ 2o\t (e_e2\, 1 5
c, . { 5 +48(C +4) (6 C )+48 C} (44)

a 3J3| 8 1(ay 1(a}® 3a 1b
h H_’Z —3 ——— — — { — — ] — — — —_——
where ( ) [5+ () ()+2b+2a (45)

Since the matrix alone would sustain a stress of Go(£/&,)1/2, the creep strength of the

composite can be easily ascertained. It can be seen that the creep strength of the
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composite material is proportional to (L/b)3/2 irrespective of the state of the interface.
This creep strength, in normalized form, is plotted against C in Fig. 2. The result
presented in eq. (44) and plotted in Fig. 2 is valid only if L/b is sufficiently large to
ensure that the asymptotic limit is relevant. It is suggested, but not proved, that

L/b 2 10 would guarantee the validity of eq. (44) and Fig. 2.

From eq. (2), it can be seen that when there is no interface diffusion and no slip,
C = 0. The term in eq. (44) in the curly brackets is then unity, so that the term outside
the curly brackets in eq. (44) is the creep strength of the composite with a perfect
interface. When interface diffusion is active or slip is possible or both, C is finite and
increases in magnitude as the mass transport rate goes up (i.e. Dincreases) and as slip
becomes easier to induce (i.e. U decreases). Thus, the plot in Fig. 2 shows the creep
strength of the composite material versus the degree of interface activity as measured
by C. However, the form of C as stated in eq. (32) shows clearly that interface diffusion
and interface slip are indistinguishable as far as their effect on the creep strength of the
composite material are concerned, since 2and 1/}4 both cause a proportional increase
inC.

It should be borne in mind that C is dependent on the strain rate € of the
composite material as well as the interface diffusion and slip parameters. In the
quadratic case, C is inversely proportional to the square root of the strain rate.
Consequently, when the stress is high, so that the strain rate is also high, the strength of
the composite material will be more like that of the case where the interface is free of
diffusion and is not slipping. At low stress, the strain rate will be low and so C will be
high leading to a reduction in the creep strength of the material. It is apparent that
when the strain rate is high, the nonlinearity of the matrix creep response causes the

matrix contribution to dominate the creep strength. Over a narrow range of stress, the
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transition from interface dominated response to matrix dominated response can be
interpreted as changing the creep index of the composite material to less than that of the
matrix material. Itis sometimes observed in experiments that the creep index of a
composite material with large rigid reinforcements differs from that of the matrix [13]
although typically the index for the composite is higher than that of the matrix rather
than lower. McMeeking [14] has rationalized the higher index of composite materials in
terms of fiber failure (although other damage mechanisms would have a similar effect)
and interface diffusion and slip with a linear rheology is now seen to have a contrary
effect.

When C is very large, stretching of the matrix in the axial direction will dominate
shearing. As a consequence, the creep strength of the composite will no longer be given
by eq. (44) which will be negligibly small. Instead, an estimate of the creep strength

when C — oo can be given by

G, = O, (é/éo)% (l—-az/bz) (46)

which is based on uniform axial straining of the matrix material. As before, this
estimate neglects constraint when there is no interface drag but also no diffusion. An
estimate of the creep strength over the whole range of C can therefore be made by

adding eq. (44) to eq. (46).

Nonlinear Cases  For several integer values of n, we obtained numerical solutions for
eq. (33). A shooting method was used to find a solution satisfying eq. (20) with

integration of the equation carried out by a 4th-order Runge-Kutta method with an
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interval halving technique. The numerical solutions for n = 2 were compared with the
analytical solution of eq. (43). In addition, for all values of n, the solution with C =0
was compared with the analytical result of McMeeking [2]. The agreement between
numerical and analytical solutions was very good.

The strength of the composite material in each case was taken to be given by 6(z)
atz = L. The results are plotted in Fig. 2 as a function of C for several values of n. All of
the comments previously made in the context of n = 2 apply to the results for other
values of n plotted in Fig. 2. Allowance must be made for the different values of n
involved; e.g. C is proportional to S%‘l, but that still means that C varies inversely with

the strain rate (except when n = 1). In addition, when C — oo the creep strength can be

estimated by
Ga = O (E/85)1/1 (1-a2/b2) 47)

instead of through eq. (46). Therefore, the discussion of the results for n = 2 in the

previous section serves also as a discussion of the results for the other values of n.

I tren f Composites
The results plotted in Fig. 2, although concise, are difficult to interpret since both
wne parameters of the ordinate and the abscissa are complicated. To aid in
interpretation of the results, some specific cases are illustrated in Figs. 3-5. The creep

strength is
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!
- 2]
G, \ € (48)

and is the ratio of the stress in the composite material divided by the stress in the pure
matrix at the same strain rate. For simplicity, it has been assumed that S — 1 when
diffusion is very rapid or interface slip occurs with very little drag. That is, without
drag or with extremely rapid mass transport, the composite material behaves like the
matrix rather than the weakened material having the strength given by eq. (47). In any
case, the models are considered to be quite approximate in this extreme case and the
main reason for using a limiting value for Sis to avoid giving the impression in the
figures that the creep strength goes to zero completely.

Fig. 3 shows the creep strength as a function of the interface drag for a material in
which a2/b2 = 0.2 (which can be interpreted as a 20% volume fraction of fibers) and a
fiber aspect ratio L/a = 5. There is no interface diffusion. It is of interest that the creep

strength of the composite tends to decay if

. » l
Q= pLé (eo b]“

G, \EL (49)
falls below 10 and is effectively lost if ﬁis below 10-1. Therefore, generalizing to other
cases, ﬁ.is a figure of merit for the composite with values above unity necessary for
creep strength and above 10 for good creep strength. Fig. 4 shows that this concept is
general with the transition from high creep strength to low creep strength occurring at

around ﬁ = 1 for materials with different volume fractions of fibers.
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Fig. 5 shows the creep strength as a function of the interface diffusion coefficient
when a2/b2 = 0.2 and L/a = 5. The interface drag coefficientﬁ =10 so that in the
absence of interface mass transport the composite has good creep strength. The plot

shows that the creep strength tends to diminish if

1

. Da, (éL)“
D = ,
b2LélED (50)

A
rise above 10-1. If Dis greater than 10, the creep strength of the composite is gone.

A
Thus D plays a similar role as ﬁ as a figure of merit for the composite, with the

A
transition from high creep strength to low creep strength occurring at around D = 1.

Approximate Creep Strength
The plots in Fig. 2 suggest that all of the results in that figure can be

approximated by 1/(1+C) which is the exact result for the linear case with n = 1. This
approximation has deficiencies when C is less than 2 but in an absolute sense, the error
will be small if C exceeds 2. In addition, the use of this result permits some insight into
the behavior of the solution not afforded by the figures alone although these features

are present in a particular way in Figs. 3-5. The approximation can be expressed as
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n L 1+1
S = gg_(é_g)% _ 1+2n(§)
c 1

2 1_
° a n D (l’az/bz) c,a ( éL\" !
b b qua“ /b [é b (€D

a2’
+ 1———2-
( b J (51)

In this expression, the term 1 — a2/b2 has been included on the right hand side in

addition to the approximation devised from Fig. 2. The expression shows the interplay

between strain rate and the condition of the interface. If Dis zero and M is infinite so

that there is a well bonded interface without interface slip or mass transport, the creep

strength is dominated by the first term on the right hand side of eq. (51) and, since L/b
is large, the creep strength will be high. If Dor W are nonzero and finite, the creep
strength depends on the strain rate. If the strain rate is high, diffusion and slip will be
rendered unimportant and the creep strength will be like that of a well bonded
composite without slip or mass transport at the interface. This means that the creep
strength is matrix dominated at high strain rates and the creep index of the composite
will be that of the matrix, i.e. n.

At lower strain rates, the term containing P and M in eq. (51) will become
relevant if Dand |l are finite and nonzero. This will reduce the creep strength below
that of the well bonded composite without interface slip or diffusion. If the strain rate is
plotted against the stress for strain rates at which Dand U affect the creep strength, the
creep index will be inferred to be less than n, the matrix creep index.

At very low strain rates, the term containing D and |l in eq. (51) will dominate if

D and W are finite and nonzero. The first term on the right hand side of eq. (51) will be
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small and possibly will be negligible compared to 1 - a2/b2. Thus the interface slip or
the interface mass transport has destroyed the creep strength of the composite and the
creep strength will be entirely due to the volume fraction of the composite which is
matrix material. At these strain rates, the creep index of the composite will be that of
the matrix, n, and the creep strength will be lower than that of the matrix by itself.
The transition from high to low creep strength for the composite material will

take place around & = 1 where

1

L o, - . \I-L 1- 2/b2)2
a n b€, |[ LE D ( a
- = [ZH(F’n)] [aoo J(béo) /2 b2 apaZ/b2

(52)

That is, for values of § substantially higher than 1, the composite material will have
high creep strength. On the other hand, if € is substantially less than 1, the creep
strength of the composite will be comparable to or worse than that of the matrix
material alone. The combined figure of merit  as expressed in eq. (52) indicates the
importance of various parameters which can affect the composite creep strength such as
strain rate, fiber volume fraction, fiber aspect ratio and the interface properties D and J.
These latter parameters will generally depend on temperature and the temperature
dependence will often differ from the temperature dependence of the matrix creep.
Thus the figure of merit & will generally be temperature dependent. Such behavior has
been observed in experiments [11,12] and the loss of creep strength at high temperature
in composites has been attributed to the dominance of interfacial mass transport.
However, the model presented in this paper suggests that the loss of creep strength can
occur due to slip at high temperature without any need for long range mass transport at

the interface.
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Fig. 1 Unit cell for creep analysis.
Fig. 2 Applied stress for the composite material as a function of strain rate, matrix

Fig. 3

Fig. 4

Fig. 5

creep properties, interface slip, interface mass transport and unit cell
geometry.

Creep strength of a composite material as a function of the interface drag
coefficient when there is no interface mass transport.

Creep strength of a composite material as a function of the interface drag
coefficient when there is no interface mass transport.

Creep strength of a composite material as a function of the interface diffusion
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STEADY STATE CREEP OF
FIBER-REINFORCED COMPOSITES:
CONSTITUTIVE EQUATIONS AND
COMPUTATIONAL ISSUES

N. Aravas, Cao Cheng and P. Ponte Castaneda
Department of Mechanical Engineering
and Applied Mechanics
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USA

Abstract

The general form of the constitutive equations that describe steady-state creep of
fiber-reinforced metal-matrix composites with transversely isotropic overall symmetry
is developed. The physical meaning of the constitutive functions involved is discussed
in detail. A method for the numerical integration of the constitutive equations is de-
veloped. The ‘linearization moduli’ associated with the integration algorithm are com-
puted, and the constitutive model is implemented in a general purpose finite element
program. A constitutive model for steady-state creep of fiber-reinforced composite that
has been developed recently by deBotton and Ponte Castafieda (1993) is also consid-
ered. A number of ‘unit cell’ problems with periodic boundary conditions, consistent
with the requirements of homogenization theory, are solved using the finite element
method, and the results are compared with the predictions of the analytical model of
deBotton and Ponte Castafieda.
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1 Introduction

Fiber-reinforced metal-matrix composites are expected to play a key role in achieving the
performance goals of the next generation of aircraft engines. Compared to traditional metal
alloys, these materials have superior creep resistance at elevated temperatures, as well as

high strength to stiffness ratio.

In view of their potential as high-temperature structural materials, metal-matrix com-
posites have attracted increasing attention recently, and several attempts to develop con-
stitutive models for the mechanical behavior of such materials have been made. Several
one-dimensional models that can be used to predict the creep behavior of fiber-reinforced
composites under simple types of loading are already available in the literature; we mention
amongst these the work of Mileiko (1970), Kelly and Street (1972), McLean (1985, 1988),
Goto and McLean (1991a,b), and McMeeking (1993a,b). Johnson (1977) appears to be the
first to propose a set of three-dimensional constitutive equations for creeping transversely
isotropic materials; he based his model for steady-state creep in directionally-solidified eutec-
tic alloys on a generalization of the Bailey-Norton law, which connects the creep strain rate
and applied stress by a power-law relation. More recently, deBotton and Ponte Castaiieda
(1993) have developed estimates as well as rigorous bounds for the dissipation functions of
multiple-phase fiber composites, in which the constituent phases are non-linear isotropic ma-
terials. The work of deBotton and Ponte Castaiieda was presented in the context of nonlinear
elastic materials, but it can be also used to describe the steady-state creep of fiber-reinforced
transversely isotropic composites. A review of several models for the effect of fibers on the
creep characteristics of unidirectional composites has been presented by McMeeking (1993a).
It appears that, whereas some progress has been made in developing constitutive equations
for creeping anisotropic composites, there have been only few experimental studies on fiber-
reinforced compgsite systems having practical utility at elevated temperatures. The creep
behavior of metal-matrix composites reinforced with continuous fibers was studied recently
by Weber et al. (1992). Their results show that, when both the matrix and the fibers creep,
the composite exhibits steady-state behavior, following an initial transient; however, when
the fibers do not creep, transient creep of the composite is observed, with a creep strain
limited by the elastic deformation of the fibers.

In this paper, we develop the general three-dimensional form of the constitutive equations

that describe steady-state creep of fiber-reinforced metal-matrix composites with transversely
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isotropic overall symmetry. The constitutive equations for the creep strain rate involve four
scalar functions that depend on the five transversely isotropic invariants of the stress tensor;
the physical meaning of these constitutive functions is discussed in detail. The numerical
implementation of the general form of the transversely isotropic constitutive equations in
a finite element program is discussed, and a method for the numerical integration of such
equations is presented. A specific constitutive model for steady-state creep of fiber-reinforced
composites that has been developed recently by deBotton and Ponte Castaiieda (1993) is
examined. The predictions of the model are compared with the solutions of a number
of ‘unit cell’ problems; periodic boundary conditions, consistent with the requirements of
homogenization theory, are imposed on the unit cell problems, and the solutions are obtained
using the finite element method. Finally, the model of deBotton and Ponte Castafieda (1993)
is implemented in a general purpose finite element program, and the problem of a composite
plate with a hole is solved.

Standard notation is used throughout. Boldface symbols denote tensors the order of
which is indicated by the context. All tensor components are written with respect to a fixed
Cartesian coordinate system, and the summation convention is used for repeated indices,
unless otherwise indicated. The prefices tr and det indicate the trace and the determinant
respectively, a superscript T the transpose of a second order tensor, a superposed dot the
material time derivative, and the subscripts s and a the symmetric and anti-symmetric parts
of a second order tensor. Let a and b be vectors, A and B second order tensors, and C and
D fourth order tensors; the following products are used in the text (ab);; = aib;, (A - a); =
A.-,-a,-, (a . A),‘ = ajA,-,-, (A . B),-j = A,—kBkj, A:B= A,'jB.'j, (BA/BB).-,-H = 3A¢j/3Bu,
(AB)ijis = AijBu, (C: A)ij = CijuAu, and (C : D)sjig = Cijmn Dimnsa-

2 Constitutive equations

We consider infinitesimal deformations and write the infinitesimal strain tensor € as the sum
of the elastic and the creep strains, i.e.

€=¢€+¢€". (1)

The focus of this paper is the steady state creep behavior of fiber-reinforced composites.
However, for comparison purposes, we start with a brief discussion of some commonly used
constitutive equations for creeping isotropic materials.
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2.1 Creep of isotropic materials

The constitutive equation for the steady state creep strain rate is of the form

7 =glo,s) (2)

where g is an isotropic function of its arguments, o is the stress tensor, and s is a set of
material constants. Using the representation theorems for isotropic functions, we can readily
show that the most general form of the last equation is (Wang, 1970a,b; Smith, 1971)

T=ql+2¢0+3c0? (3)

where the ¢;’s are functions of s and the three isotropic stress invariants I) = tr(e), I, =
tr(e?) and I; = tr(o?).
We assume next that the creep strain rate € is derived from a creep potential ¥ =

¥(o,s), i.e.
.. oV
€ = b; (4)

The creep potential must be an isotropic function, i.e. a function of the form
v = ‘I’(Il’ I?a 13’3)' (5)

Using the chain rule, we can readily show that

\Ii oV 9I;

261 o —=ql+2c;0+3c30? (6)
where now oy
G = -a'z (M

The three-dimensional form of the standard steady-state ‘power-law’ creep constitutive
equations is
-1 .
e=gpmya(Z) 5 e v=vLE=ZR(Z)T. ©
o’ is the stress deviator, o, = (1.5 0%;0;)'/? = (0.5 (3 I; — I})]'/? is the von Mises equivalent
stress, n is the creep exponent, and (0, ¢;) are material constants. Equation (8) is a special
case of (3) with

2 3 n—1
G = -3 L c, = 1 :: (Uo) , c3=0. (9)

Note that the power-law creep equation (8) does not involve a quadratic stress generator

term o? (i.e. c3 = 0).




2.2 Fiber-reinforced composites

Consider next a material reinforced by aligned fibers. The macroscopic response of the
composite is assumed to be transversely isotropic, and the unit vector n in the direction of

the fibers is used to define the axis rotational symmetry.
2.2.1 Elasticity
The elastic strain is written in terms of the stress tensor o as
€=C'l:0o (10)

where C is the fourth-order elasticity tensor for a linear transversely isotropic material. The

elasticity tensor is of the form (Aravas, 1992)
C=2all1+2bJ+2caa+dP+e(la+al), (11)

where I is the second order identity tensor, J is the fourth-order identity tensor with cartesian
components Jijxi = (6651 + 6ub;x)/2, a is the orientation tensor a = nn, (a,b,c,d,¢) are

elastic constants, and
1
Pju = '2-(0.'1: 8;1 + ai 851 + bk azt + 85 a k). (12)

The constants (a, b, c,d, e) are related to the standard elastic moduli (Ey1, p12, #23, Kaa, t12),
as defined for example in Christensen’s (1979) book, by

1, 1 1 1
a=g(Kn—pn), b=pn, c=zEutgpn—2u+g(l- 22)’Kzn,  (13)

d= 2([112 - [lzs), € = U3 — (1 - 2”12)K23, (14)

where the z,-axis is in the direction of transverse isotropy.

2.2.2 Creep

The constitutive equation for the steady state creep strain rate is of the form
e =1f(o,s) (15)

where f is a transversely isotropic function, and s is collection of material parameters such
as the volume fraction of the fibers, the material constants that enter the constitutive equa-
tions of the matrix and the fibers, etc. Using the results of Liu (1982) together with the
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representation theorems for isocropic functions (Wang, 1970a,b; Smith, 1971), we can readily

show that the most general form of the above constitutive equations is
€ =a;1+2a;0+3a;0° +aatas(0-at+a-o)+as(o’-a+a-o0?)=f(a,s), (16)
where the a;’s are functions of s, and the following five transversely isotropic invariants:

L =tr(e), I =tr(0?), L=tr(c®), Iy=tr(0-a)=n-o-n, Iy=tr(c’-a)=n-o% n.
(17)
An alternative set of commonly used transversely isotropic invariants is given in Appendix

A.
If the creep response of the material is incompressible, then the following equation must

be satisfied for all values of o:
3a1+2a211+3a312+a4+2a514+2a615=0. (18)

We consider composite materials in which both the fibers and the matrix are isotropic
with constitutive equations such that é”(—a) = —€“ (o). We assume that the same is true
for the composite, and require that the constitutive equation of the composite (16 satisfies
the condition é"(-0) = —é“ (o) as well. Then, one can readily show that é€7(0) = 0, and

that the functions a; are such that
ai(—lh I21 _137 —141 IS) = "'ai(Ily 12’ 13) 14, 15) for 1= 19374’ 6’ (19)

and
a.-(—Il, Iz, —13, —14, 15) = a.-(Il, Iz, 13, ]4, Is) for 1= 2, 5, (20)

which imply that
a1=a3=a4=a6=0 when Il=13=14"-=0. (21)

We assume next that the creep strain rate € is derived from a creep potential ¥ = ¥(o,s).

In view of the assumed transverse isotropy, ¥ must be of the form
\I’ = ‘I’(I],Ig, 13, I4, I5,S). (22)

Using the chain rule, we can readily show that

) ov 5. 8V aI;
e":—a-&-:g bTi-a}—=a11+2a20+3a3¢r2+a4a+a5(¢r-a+a-o’), (23)




where now
oV

a; = -8—1-
Note that equation (23) is a special case of the more general form (16) with as = 0.

(24)

Consider now the case in which both the matrix- and fiber-material creep according to
the power-law equation (8). Since quadratic stress generators are absent in (8), we introduce
the assumption that the corresponding creep equation for the composite does not involve
quadratic stress generators either, i.e. a3 = d¥/0I; = 0. We emphasize, however, that this
is meant to be only a reasonable approzimation; in general, such quadratic generators may
appear in (23) even though they are absent in (8).

Summarizing, we mention that the assumed constitutive equation for the creep strain

rate of the fiber-reinforced material is

€ =a11+2a;0+a5a+a5(0-a+a-o)=1(0,s). (25)

3 Identification of material functions q;

Let the coordinate axis z3 be along the direction of the fibers, so that n = e3, where e; is

the unit base vector along the z;-axis. Then the constitutive equation (25) can be written

as
€ =a16;;+ 2020+ ag 63 6j3 + as (013 6j3 + 8i3 0j3), (26)
or, equivalently,
€T = a1+2ay0m, (27)
€ = a1+2ay07, (28)
€3 = a1+a4+2(a; +as) o3, (29)
&7 = 2aj0y3, (30)
é3 = (2a2 +as)omn, (31)
& = (2a;+a;5)03. (32)

The relevant invariants I; now take the form
L=tr(o), L=tx(o?), Ii=o0w, Is=a3 +03,+03. (33)

Equations (27)-(32) show that:




e az and as relate to the response of the composite under shear, whereas a; and a4 refer

to longitudinal and transverse tension,

o if as = OW/3Is = 0, then the response of the material is identical under longitudinal

(023, 031) or transverse shear (o,;),

e in view of (21), longitudinal shear loading (i.e. 013 # 0 and/or o33 # 0, other o;; = 0)

causes longitudinal shear strain rates only, i.e. &} = €3, = €5 = €, = 0,

e in view of (21), transverse shear loading (i.e. 012 # 0, other o;; = 0) causes transverse

shear strain rates only, i.e. &] = €5, = €53 = é§5 = &5 = 0.

The last two conclusions are true even when the quadratic stress generator is included in
the constitutive equation for é”, because the function a; vanishes under longitudinal or

transverse shear, in view of equation (21).

4 Finite element implementation of the constitutive

model

In this section, we discuss the implementation of the general form of the constitutive model
described in section 2 in a finite element program. In a finite element environment, the
solution of the creep problem is developed incrementally and the constitutive equations are
integrated at the element Gauss points. In a displacement based finite element formulation
the solution is deformation driven. At a material point, the solution (o,,€,) at time ¢, as
well as the strain €,4, at time t,,; = t,, + At are supposed to be known and one has to

determine the solution &,;.

4.1 Numerical integration of the constitutive equations
We start with the elasticity equation (10)

01 =C:€,, =C: (e +Ac — Ae”) = 0° — C: Ae”, (34)

where A€ = €,41 — €, and Ae” = €], — €7 are the total- and creep-strain increments, and

o° = o, + C: Ac is the (known) elastic predictor.
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The creep constitutive equation (25) is integrated using a generalized trapezoidal method:
= [af(Fns1,8) + (1 —a)f(o,,8)]At (0 a<). (35)

When a=0,1 or 1/2 the integration scheme reduces to the forward Euler, backward Euler or
the trapezoidal method respectively.

Summarizing, we write
F(A€) = Ae™ — [af(0u41(A€7),s) + (1 — a)f(o.,s)] At =0, (36)

where

Ons1{A€T) =0 - C: Ae”. (37)

We choose A€ as the primary unknown and treat (36) as the basic equation in which o,
is defined by (37). The solution is obtained using Newton’s method. The first estimate for
A€ used to start the Newton loop is obtained using a forward Euler scheme, i.e. (A€™ )ey =
f(on, s, 8) At. An alternative and more accurate estimate for A€ can be obtained by using
the so-called ‘forward gradient’ technique as described in the following. The function f(o,.,;)

is approximated by

f(onn) 2 f(on) + () <20 =t(on)+ (;;"{)c (Ae—Ae)  (38)

n

and substituted into (36), which then yields the following estimate for Ae*":

(A€ )ept = [J +a (g;)n : cm]hl : [f(aﬂ) +a <g£),. :C: Ae] At (39)

The Jacobian associated with the Newton loop in equation (36) is given by

OF of 80 41 AN
A = et (aa) PR =J+aAt (ad)m.c. (40)

Once A€ is found, equation (37) defines the stress .41, and this completes the integration
procedure.
In the following, we derive the general form of 9f/3o. Recalling the creep constitutive

equation

°’|e
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we readily conclude that

2 5.8 2 0L, & ?
where _
3_2 -1 5%’_({;_0 =0, (43)
% = 2o, a—iz-(% =2J, (44)
% = 307 30’6;:;::71;: =3 (8 o1j + ouk &y;), #9)
;agé' = a aiz;:r =0 “o
%é_ = o-ata-o, -a;?%;fyj:a,-kau+dekau- (47)

We conclude this section with a brief discussion of the appropriate time increment used
in the integration procedure. Let 0y,., be the maximum of the absolute values of the stress
components (i.e., Omax = max|o;;|) and define

CETOL = 0.1 Zmax (48)
Ey

where Ey, is the elastic modulus defined in section 2.3. The time increment At is chosen so
that the maximum difference in the creep strain increment calculated from the creep strain
rate based on the conditions at the beginning and at the end of the increment is always less
than CETOL, i.e.

[fij(Ons1) — fij(@a)| At < CETOL for all 1,j. (49)

4.2 Linearization moduli

In an implicit finite element code, the overall discretized equilibrium equations are written at
the end of the increment, resulting in a set of non-linear equations for the nodal unknowns. If
a full Newton scheme is used to solve the global non-linear equations, one needs to calculate
the so-called ‘linearization moduli’ J

—- oo n+1
a€n+1

J (50)

10




For simplicity, we drop the subscript (n + 1) with the understanding that all quantities are
evaluated at the end of the increment, unless otherwise indicated. Starting with the elasticity

equation (34), we find
do = C:0e - C:0A€. (51)

The differential dA€™ is evaluated from equation (35) as follows

o OAeT of
0A€™ = e 0o = a At p do. (52)
Substituting the last equation into (51) and solving for do/d¢, we find
do of\™! - afr\™

Note that df;;/ 8o is symmetric with respect to the pair of indices (7, j) and (k,1). Therefore,
in view of (53) and the usual symmetries of the elasticity tensor C, the Jacobian J;y, is also
symmetric with respect to (i,7) and (k,!), which leads to a symmetric ‘stiffness matrix’ in

the finite element computations.

4.3 The case of plane stress

In this section, we consider the case in which the fibers are all parallel to the z3 = 0 plane
(i.e. n = nye; + nze;) and the applied loads are such that o33 = 03; = 033 = 0. The stress

and strain tensors are now of the form
o =0,3e,epg and €= ¢ype,e5 + €33€3€3, (54)

where Greek subscripts range over the integers (1,2).

In such problems, the the strain increments Ae¢;;, Aey; and Ae;; are known, but the
out-of-plane component of the strain incre.1ent Aea; is not defined kinematically; therefore,
some modifications to the method described in section 4.1 are needed.

The total- and creep-strain increments are written as
A€ = Aeypeqep + Aeszeze; and Ae™ = Aegze.ep + Aegzezes. (55)
The plane stress condition o33 = 0 requires that
Cazij(Aei; — A7) =0  or  Aesz = (Cazij A€} — Cazap A€ap)/Casaa. (56)
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Summarizing, we write

F(A€™) = Ae™ —[af(o(Ae™),t,8)+ (1 — a)f(o,,t,, )] At =0, (57)
oi;i(A€T) = &; + Cijoz Aexa( A€T) — Ciju Aejy, (58)
Aen(Ae™) = (Caaij Ac?j' — C33ap Ac€ap)/Caaas, (59)

where
65 = (a)ij + Cijap Atap. (60)

We choose A€ as the primary unknown and treat (57) as the basic equation in which
o(Ae€™) is defined by (58)-(60). The solution is obtained using Newton’s method. The

corresponding Jacobian is

dF of Oo of
—a—A—ec-::J—aAtg;.-é-Zz;—J'i'aAtb;.(C—-A), (61)
where
A.-ju‘ = C,-j33 C33k1/03333. (62)

5 An analytical model for creeping fiber-reinforced

materials

deBotton and Ponte Castafieda (1993) have presented recently a constitutive model for non-
linear composite materials reinforced by continuous fibers. They developed their model in
the context of infinitesimal non-linear elasticity, but their results can be used to describe
steady-state creep as well.

For the special case of incompressible behavior in which the creep potential for both the
matrix and the fibers is a function of the von Mises equivalent stress o., their model can be

summarized as follows. Let the creep potentials for the matrix and the fibers be of the form
¥R = g (g,), k=12, (63)

where k = 1 refers to the matrix and ¥ = 2 to the fibers. If the matrix is the ‘weaker’
material, then the creep potential of the composite is estimated to be (deBotton and Ponte
Castaf >1a, 1993)

Y(h, b, 1) = ¥(0?,03) = min [0 4D (o) + c, ¥ (6®)], (64)
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where ¢, and ¢; are the volume fractions of the matrix and the fibers respectively (¢; +¢; = 1),

and
oW (e,w,n) = {[1+aw?+awt] i)+ +an?ad@)})”, (@)
oP(o.w,n) = [(1-awPod(@)+(1-an’ai@)”, (66)
oHo) = (47} =3Bk -F) -1 (h-3L), (61)
Gi0) = (on—0p) =7 (31— BV, (68)
0, = h-0-Nn, (69)
g, = %v:(l—nn). (70)

The quantities 0,,0,,7, and 7, are the alternative set of transversely isotropic invariants
discussed in Appendix A.

Note that in (64) the creep potential ¥ is independent of I5, which implies that the
predicted response of the composite will be the same under longitudinal and transverse
shear.

Let /) and & be the values of  and w that minimize the right hand side of (64) for a

given stress state o, i.e.
¥ = ¢, ¥ e, d, %) + c; ¥ e, &, ). (71)

In general, 7 and @ are functions of &, and the corresponding equation for the creep strain

rate is
o 0¥ 390 A AA A Y A A AR WL
A A = +(°l 3% oG )5:*( o " on )'a‘; (72

However, in view of the minimization in (64), each of the terms in parentheses on the right
hand side of the above equation vanishes identically. Therefore, in computing ¢, one may
regard & and 1} as constants (deBotton and Castafieda, 1993). The corresponding constitutive

equation for the creep strain rate can be now written as

o yay 2 .q1 0o, 2 Ooq
C,‘j cl;gl_){[(l+c2w) +02w]a:a +(1+C27]) ada IJ}
+ ey [(l a o)’ "'a“a; +(1-ap) Crem (73)
where
d¥*)(a.)
(b . |2 _V2e) =
v [ o k=12, (14)
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and
do 3 1
-2 = =g . - = -— o 6
s 5% = 3 (9 = ) Bmin; — &), (78)
8o, 1
Ud%-i' = 3 (o — 0p) (3nin; - &;). (76)

It should be noted that the above mode] is independent of the hydrostatic stress p = o4 /3
and that the predicted creep response is volume preserving, i.e. € = 0.

If the fibers are rigid, then one can formally set ¥(?) = 0. The minimization in (64) then

yields | :
w=—l+c2 and 7)=—‘—:2-. (77)

Then (¥ = 0,//T+c; and the estimated creep potential and the corresponding constitu-
tive equations of the composite become

Y(h, I, Ig) = ¢ ¥ (o), ' (78)

sor a¥)' dg, _ 2] ph ' i — s
& = 75 5o, TS o Lo (nm o) Grin &) (1)

Using the last equation, one can readily show that
-n=0, (80)

i.e.,, the composite is inextensible in the direction of the rigid fibers. If n = e;, then the

constitutive equations (79) become
.er . A er ser C
q=-p=3 (0611 —022), €53 =0, and ¢ =Aog;y; for i#j, (81)

where
Gy v )y

3
A vTe o 2

6 Comparison with results of homogenization theory

The predictions of the constitutive model described in the previous section are compared here
with the results of periodic homogenization theory (Sanchez-Palencia, 1980; Bakhvalov and
Panasenko, 1989). The homogenization techniques were originally developed in the context

of linear elasticity, but they have been extended to infinitesimal non-linear elasticity (Suquet,
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1982; Jansson, 1992). The compuri. . us are carried out for non-linear elastic materials, for
which the model of deBotton and Pcute Castaiieda (1993) has been developed.

The non-linear composite is assumed to be macroscopically homogeneous and we seek to
determine an effective constitutive equation of the form X = g(E), where ¥ and E are the
macroscopic stress and strain respectively, and g is a tensor-valued constitutive function to
be determined. The macroscopic field equations for a certain elasticity problem involving

the composite are

22

Dz +b = 0, (83)
3
T = g(E), (84)
_ 1 [ Ou; au_,'
E; = 3 (a—z’ + E:-'-) , (85)

where u is the displacement field, and b = b(x) is the body force.

In the following, we summarize some of the results of homogenization theory as developed
by Sanchez Palencia (1980) (see also Lene and Leguillon, 1982; Suquet, 1982, 1987; Lene,
1986; Jansson, 1992).

6.1 Homogenization theory

The composite is now modeled as an inhomogeneous continuum made of two different ho-
mogeneous non-linear elastic constituents. The microstructure is assumed to be periodic,
i.e. the constituents of the composite are arranged in such a way that it can be constructed
by the periodic repetition of self-similar elements. We define the ‘unit cell’ as the smallest
such repeatable element. The characteristic length ! of the unit cell is assumed to be small
compared to any characteristic dimension L of the body, i.e.

6=% << 1. (86)

Let x denote the position vector with respect to a fixed global cartesian coordinate system.

A local variable y is introduced for the unit cell by
y= % or x=4y, (87)

so that a change of O(1) in y corresponds to a O(6) change in x. Note that the coordinate

X is constant at the unit cell level, where positions are described in terms of y.
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In view of the periodicity of the microstructure, the constitutive equations at any point

of the heterogeneous medium can be written as

o =1f(e, ) = (e, y), (88)

f being a periodic function consistent with the periodicity of the microstructure, i.e. such
that
f(e,§ + lie;) = f(e, %), i=1,2,3 (no sum over i) (89)

where [; is the characteristic length of the unit cell in the i-th coordinate direction, and e;
is the unit vector in that direction. Functions of the type of equation (89) will be referred
to in the following as Y-periodic.

Next, we search for an asymptotic expansion of the displacement field u as § — 0. A

two-scale expansion of the form (Sanchez Palencia, 1980)
u(x,y) = u®(x) + §u(x,y) + 6 u?(x,y) + O(&°) (90)

is attempted, where the functions u(!), u®, etc. are Y-periodic. In the above equation
u@(x) corresponds to the macroscopic deformation field E(x), whereas the subsequent Y-
periodic terms u®), u®, etc. are local perturbations due to the presence of the fibers in the
continuum.

The corresponding strain expansion is

e(x,y) = [Ex)+e(x,y)]+6 [V(x,y)+eD(x,y)] + O() (91)
= 9(x,y) + 5V (x,y) + O(6), (92)
M e 1[0 o w1 (2 aulh

Note that €*(9(x) = E(x). The stress field can be written as

o(x,y) = f(e?,y) + (e, y) : €V + 0(8%) = eV (x,y) + eV (x,y) + O(8%), (94)

where Bf(e.y)
(e, y) = [____"y ] : 95
(®,y) e |emew (95)
The equilibrium equations become
1 60}-9) 80}9) aa;-”
- 1 1 1 b" 6 = 0.
5 By, + oz, + 3y; +b5)]+0(6)=0 (96)
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In view of the Y-periodicity of u{?) and f, the fields €(?, eV, &(® and (V) are Y-periodic
as well. Also, since the outward unit normal N to the boundary 3Y of the unit cell takes
opposite values on opposite sides of Y, the traction vector t(® = N-o(® is Y-anti-periodic.

Collecting terms having like powers of §, we obtain the following hierarchy of problems.

6.1.1 Leading order problem (the unit cell problem)

We can recast the leading order terms of the above equations in the following form.

i(y) = E(x)-y+ul(x,y), (97)
&i(y) = & (xy)=3 ( ay,-+ ay.-)’ (98)
a(y) = o9®x,y) =1(¢y), (99)
6&,.-
dy; (100)
with
u®  Y-periodic, t=N.& Y-anti-periodic, (101)

where G(y), é(y) and &(y) be the displacements, strains and stresses of the unit cell. Recall
that x is constant at the unit cell level; therefore, the macroscopic strain field E(x) is also
constant in (97) and can be viewed as the macroscopic ‘applied load’ to the unit cell. The field
equations (97)-(100) over the unit cell together with the conditions (101) define a well-posed
boundary value problem that can be solved for (i, &, &) or, equivalently, for (u(, €, &(®)
(e.g., see Suquet, 1987). One can readily show that, if the constitutive function f in (88) is
convex, then the unit cell problem has a unique solution.

For any function ¢(x,y), we define
<¢>= = [ 4xy) v, (102)
¥1J

where Y denotes the unit cell. Using equations (98) and (99) and taking into account the
Y-periodicity of u®, we find

<é>=<€0>5=¢@=E and <é>=<00>. (103)

The solution of the unit cell problem can be used to determine the functional relationship

between < & > and < &€ >, i.e. to find a tensor-valued function h such that

<o >=h(<é>) (104)




Note that, in view of (103), the last equation can be also written as
<ol >=h(< ? >). (105)
We conclude this section by stating the well known result

. 1 s s
< 0 >= ‘2_}78'{(“ y; +1; y;) dSy. (106)

6.1.2 Second order equations

The equilibrium equation yields, to second order,

30D (x,y) . 8o (x,y)

Oz; dy;

+ bi(x) = 0. (107)

Taking the Y-average of the above equation and using the fact that o(!) is Y-periodic, we

find
0
a < 0’;,') >

5 thi=0. (108)

We summarize our findings by restating equations (108), (105), (103a) and (93a) as follows

a< of?) >

<o > = h(<e?>), (110)
0 (o
©) _ _1_ Ou; Ou;
<> = 3 (_az,- +—ax,-)' (111)

Equations (109)-(111) define the homogenized problem for u‘®(x). Comparing equations
(109)-(111) to the macroscopic field equations (83)-(85), we conclude that the function h,
determined from the solution of the unit cell problem, provides the leading-order homogenized
constitutive equation for the composite.

In the following, we use the finite element method to obtain numerical solutions of the
unit cell problem for various types of loading. The solutions are then used to calculate nu-
merically the function h, which is the leading-order constitutive function of the homogenized

composite.
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6.2 Numerical solution of the unit cell problem

We consider a composite material made of a non-linear elastic matrix reinforced by contin-
uous aligned fibers, which are assumed to be non-linear elastic as well. The constitutive

equations for the matrix and the fibers are of the form

6‘P(k) 3 (4 na=1 U' Ook €ok ['e ] nix+l
= 23 (YT g, = Tokfor (_.) . k=12 (112
€ do 2 €ok (dok) 0ok ( ) ny+1 \oox ( )

The distribution of the fibers is assumed to be periodic, with the fibers arranged in a
hexagonal array. The linear and quadratic stress invariants of the hexagonal arrangement
are the same as those of a transversely isotropic system; therefore, a hexagonal array of fibers
can be used to study linear transversely isotropic elastic materials, since the elastic potential
is a function of the linear and quadratic stress invariants only (Green and Adkins, 1960;
Jansson, 1992). In the general case, however, where terms of higher degree are involved, the
hexagonal system will provide only an approzimation for a non-linear transversely isotropic
material.

The fibers are assumed to be aligned with the y; coordinate direction, and the unit cell
is infinitely long in that direction. Figure 1 shows the cross section of the unit cell on the
¥1-y2 plane.

The macroscopic applied loads are taken to coincide with the principal rn_ateria.l directions.

In particular, the following four types of loading are considered:
1. Longitudinal tension: o33 # 0, all other o;; =0,
2. Transverse tension: oy; # 0, all other o;; = 0,
3. Transverse shear: 013 = 091 # 0, all other 0;; = 0,
4. Longitudinal shear: o3; = 013 # 0, all other o;; = 0,

where the 0;;’s are understood to represent the components of the macroscopic stress X,
which is consistent with the macroscopic strain E.

In view of the geometric symmetries of the unit cell and the applied loads, the periodic
boundary conditions (101) of the unit cell problem can be transformed to ‘classical’ traction
and displacement boundary conditions. A detailed discussion of this transformation is given

in the Appendix B. It should be emphasized, however, that the periodic boundary conditions
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cannot be reduced to classical boundary conditions when more general types of loading are
considered.

The unit cell problem is solved using the ABAQUS general purpose finite element program
(Hibbitt, 1984). The calculations are carried out for ny = 10, n; = 3, o = o3 = g and
€1 = €2 = €o = 1075, The ‘deformation plasticity’ model in ABAQUS has an additional
‘linear-elastic’ term on the right hand side of equation (112a); the elastic moduli used in
the finite element computations are four orders of magnitude larger than oy, so that the
contribution of the additional elastic terms becomes negligible. The volume fraction of the
fibers is 39.5%, i.e. c; = 0.395, ¢; = 0.605. Figure 2 shows the finite element mesh used for
problems 1, 2 and 3; the dark and white regions in Fig. 2 represent the fibers and the matrix
respectively. The layout shown in Fig. 2 is repeated in the third direction to produce the
layer of three-dimensional elements used for the solution of problem 4. The type of elements
and the exact boundary conditions used in the calculation can be found in the Appendix B.

Figure 3 shows the calculated longitudinal stress-strain curve. In Figure 3, and in all
subsequent figures, the solid line is the prediction of the model of deBotton and Ponte
Castaiieda, whereas the circles indicate the results of the finite element calculations. The
predictions of the analytical model agree well with the solution of the unit cell problem.

Figure 4 shows the calculated transverse stress-strain curve. At a transverse strain €, =
0.01, there is a 7% difference between the =diction of the analytical model and the finite
element solution.

Figure 5 shows the transverse shear stress-strain response. At a transverse shear strain
€12 = m2/2 = 0.01, there is a 13% difference between the prediction of the analytical model
and the unit cell solution.

The finite element solution of problem 4 (longitudinal shear) produces a shear stress-strain
curve identical to that shown in Fig. 5 for the transverse shear. This is consistent with the
structure of the analytical model which also predicts identical response to longitudinal and
transverse shear.

Figures 3-5 show that, at a given strain level, the stress predicted by the analytical model
is always higher than that of the finite element solution. This is consistent with the fact that
the complementary elastic energy function ¥ developed by deBotton and Ponte Castafieda
is an upper bound to the actual complementary energy of the composite. It should be
also noted that the model of deBotton and Ponte Castaiieda is developed for a transversely

isotropic composite with a random distribution of fibers, whereas the unit cell calculations
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refer to a composite with a given periodic microstructure (hexagonal array).

7 An example: a plate with a hole

The model of deBotton and Ponte Castafieda is implemented in the ABAQUS general pur-
pose finite element program. This code provides a general interface so that a specific con-
stitutive model can be introduced as a ‘user subroutine.” The constitutive equations are
integrated using the method presented in section 4 with a = 1/2 (trapezoidal method).
Figure 6 shows a schematic representation of a plate with a hole; the plate is reinforced
by continuous zligned fibers as shown in the figure, and the ratio w/2a equals 6. Elasticity
and creep are assumed to be the only possibie mechanisms of deformation. The diameter of a

typical fiber is assumed to be small compared to the size of the hole and the thickness of the

plate, so that the continuum model described in section 5 can be used in the calculations. As
a model material, we consider a 4-TiAl matrix reinforced by polycrystalline Al;O3 continuous
fibers. The fiber volume fraction is assumed to be 20%, i.e. ¢; = 0.20. Typical values of
the elastic constants are £ = 200 GPa and v = 0.3 for 4-TiAl, and E = 385 GPa and
v = 0.33 for Al;03, where E and v are Young’s modulus and Poisson’s ratio respectively.
Using the estimation procedure described in Christensen (1979), we find the following values
for the elastic constants of the composite: E;; = 235 GPa, p12 = 85 GPa, g3 = 85 GPa,
K,3 = 220 GPa, and v, = 0.31. The matrix and the fibers are assumed to creep according

to a power-law equation of the form

a\I’(k) 3 c nk—l o.l o " éok o "k+1
cor 3 (YT g =_°__(_:.) k=12 (1
¢ do 2 COk(aok) Ook (o:) nig+1 \oo ’ (113)

The model of deBotion and Ponte Castafieda is used to describe the creep behavior of the
composite. The following creep constants are used in the computations: n; = 2.6 and
/oy = 1.304 x 10~® MPa~™ . s7! for the matrix, and n; = 1 and é&g/og; = 107°
MPa~"2 . s~ for the fibers.

Plane stress conditions are assumed, and two types of loading are considered, in which
a constant tensile stress of 70 MPa is applied a) in the direction of the fibers, and b) in the
transverse direction. In both cases, the load is applied suddenly to the plate at the time
t = 0. The instantaneous response of the material is elastic and the elastic stress distribution

provides the initial condition for the creep problem.
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Four-node isoparametric elements with 2 x 2 Gauss integrations are used in the calcula-
tions. The analysis is carried out incrementally and the maximum size of the time increment
is controlled by the formula in equation (49). At every element integration point, the values
of & and # that minimize the right hand side of (64) are found using the values of the stress
tensor o, at the beginning of each increment.

Figures 7-10 show contour plots of several transversely isotropic invariants of the creep
strain €™ at a time ¢t =1 hr for both cases analyzed. The invariants plotted in these figures
are (deBotton and Ponte Castafieda, 1993):

& = %e":ﬂ:%(c‘l”{+c§'3), (114)
& = € :a=¢€3, (115)
(7 = (e B): (e7-B)— (7 A = (@) + (i - &V, (116)
(TR = (T a— (e ) = () + (630, (17)

where n = e;, 8 = I — nn = e;e; + eze;, and the cartesian components refer to the
coordinate system shown in Fig. 6. The strain in the direction of the fibers ¢, and the
in-plane ’volumetric’ strain €, attain their maximum values at point A (see Fig. 6), which
appears to be a possible site of fiber failure and debonding. Figures 9 an 10 show that
the longitudinal (y,) and transverse (v,) shear stresses reach their maximum values on the

surface of the hole.
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Appendix A: Transversely isotropic invariants

An alternative set of commonly used transversely isotropic invariants is

J = a,=-;-a:ﬂ, (118)
J» = o,=0:a, (119)
ho= =5 B 8-50:8, (120)
Jo = ?=0%:a-(0:a) (121)
Js = det(a), (122)

where a = nn, and 8 = I — a. Physically, (o,,0,, 7y, 7n) correspond to the in-plane hydro-
static stress, the longitudinal stress, the maximum transverse shear stress, and the resolved
longitudinal shear stress respectively. A schematic representation of the above invariants is
shown in Fig. 11.

For convenience, we also define

2
of = (0, —0,) = (g n-o'- n) and o) =3(r} +72), (123)

and note that

0: = (0, —0n)’ +3(1; +71) = 07 + o). (124)

If the fibers are aligned with the z3 coordinate direction, i.e. n = e; and 8 = e;e, + eje,,
then

1
Op = 5(011 + 022), (125)
dn = 033, (126)
1
T: = 0‘122 + Z (011 - 022)2, (127)
T: = a¥3+a§3’ (128)
and
a_ (3
o5 = (5 033) . (129)




In the following, we state the relationships between (I, Iz, Iy, Is) and (0,, 00, 75, Tn):

1
Op = '2'(11 - 1), (130)
Oy, = 14, (131)
2 = rh— L+ il —t(h- L) (132)
4 2 2 2 4 4 1 ]
2 = Ig-12, (133)
and
L = on+20, (134)
I, = o2+202+2(r} +73), (135)
14 = O0Op, (136)
Iy = ol+ 72 (137)

Appendix B: The unit cell problem

We start with the case where the unit cell occupies the region —¢; <y < ¢, —6; €y, <
¢2, ~¢3 < y3 < c3, and then let ¢ — oo.

In the following we refer to problems 1, 2, 3 and 4 defined in section 6.2.

Problem 1: Longitudinal tension

The only non-z 'mponents of the macroscopic strain E are E,;, F2; and Ej3;3. The
geometry of the :ell and the applied loads are symmetric with respect to y3 = 0 in this
case. Let u)(y) be the solution of the unit cell problem and define ii(y) by

Gy, ¥29) = v (4, ¥, -1), (138)
t2(y1,¥2,¥3) = "gl)(yl, Y2, —¥3), (139)
ﬁ3(yl’ Ya, y3) = —ul(il)(yhy% _y3)' (140)

One can readily show that ii(y) satisfies the governing equations and the boundary conditions

(97)-(101), i.e. 1@ is another solution of the unit cell problem. Since the solution is unique,
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this implies that @ = u(?, i.e. u®® has the following symmetries

ugl)(yhyh -y3) = ugl)(yl)y2yy3)1 (141)
u(zl)(yl’ Y2, _y3) = “(21)(311,.92, y.'!), (142)
“gl)(yl, ¥, —y3) = —Ugl)(yu Y2, ¥3)- (143)
Therefore,
u$’(31,42,0) = 0. (144)

When ¢3 — oo, there is no way to distinguish the location of y; = 0; therefore, in view of

the above symmetries, u(!) must be independent of y3, i.e.

) = oM, w), (145)
u;l) = ugl)(yhyZ)a (146)
ugl) = 0. (147)

The solution of the unit cell problem can be now written as

ay) = Euyn+u (), (148)
(v, 92) = Env+ui(n,w), (149)
U3(ys) = Essya. (150)

The geometry of the unit cell and the applied loads are also symmetric with respect to y; =0
and y; = 0. Therefore, using arguments similar to those used above, one can readily show

that the Y-periodic field u(*) has the additional symmetries

ugl)(yh -yZ) = ugl)(yliyi‘)a (151)

(i, -y2) = —ul (w1, 32), (152)
and

u?)('yl,yz) = "ugl)(yh y2)1 (153)

"gl)(—yl,yz) = u;l)(yl,yZ)- (154)

In view (149)-(151), the total displacement W of the unit cell problem has the symmetries
stated in (151)-(154) for the Y-periodic displacement u(V).
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Also, since the macroscopic load corresponds to longitudinal tension, the only non-zero
component of < 0@ > is < o3% >.

Taking into account the aforementioned symmetries of i and u(!), the symmetries of the
geometry, and the Y-periodicity of u("), we readily conclude that only one quarter of the

unit cell needs to be analyzed (see Fig. 2). The corresponding boundary conditions are

B = 0: ﬁl =0 and &]2 = 0, (155)
Y2 = 0: lAlg =0 and &21 = 0, (156)

b
w=b/3: iy=Eyb/3, &5=0 and /&udy2=0, (157)
0

w3
y2=b: f3=FEnb  n=0 and / 822 dys = 0. (158)
0

The integral conditions in (157) and (158) are consequences of the fact that < o >=< o >=

0, and are obtained by using equation (106) and taking into account the symmetries of the

problem. Using equation (106), one can also show that

<o >= 52135 where F3= / b33 dA, (159)

A

A being the area of the finite element mesh on the y,-y, plane shown in Fig. 2.

The boundary conditions (155)-(158) can be easily implemented in a standard finite
element program. The problem is solved using four-node generalized plane strain elements
with 2 x 2 Gauss integration.

Let h be the thickness of the elements in the y;-direction. The #3; component of the
displacement is set to zero at y; = 0, the value of i3 at y3 = h taken to be equal to Es3h.
The displacement component i3 at y3 = h is a degree of freedom common to all nodes,
so that é; = é&; = 0 and &3 = (1/h)(l3)y;=n = E33 =constant everywhere in the finite
element mesh. In view of the isotropy of the constituents, we also have that 63 = 63, =0
everywhere. Note that the force F3, defined in (159b) is work conjugate to i3 at y; = h.

The macroscopic strain component E; is applied, and the corresponding < a;(,g) >, En

and E;; are determined. The average stress < agg) > is found using (159).

Problem 2: Trapsverse tension

The only non-zero components of the macroscopic strain E are Ey;, E;; and Ez3. Also, the

only non-zero component of < o > is < oﬁ’) >. One can readily show that the solution of
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this problem has the same symmetries as that of Problem 1. One quarter of the cross-section

of the unit cell is analyzed, and the boundary conditions are

n=0: =0 and d12 =0, (160)

y2=0: d4,=0  and 69 =0, (161)

n= b\/i: ﬁ) = E" b\/§ and &12 = 0, (162)
bv3

ya=b: fp=FEpb &p=0 and / b2 dy, = 0, (163)
0

Ys = h: fl3 = Es;;h and F3 =0. (164)

The solution is obtained using four-node generalized plane strain elements with 2 x 2
Gauss integration. The macroscopic strain component E,, is applied, and the corresponding
< a’{? >, Ey and FEj; are determined. The average stress < ag) > is found using the

relationship

b
1
<off >=1 / (6v/3, y2) dys. (165)
0

Problem 3: Transverse shear

The only non-zero components of the macroscopic strain E are E;; = E;,. Also, the only

non-zero components of < o{® > are < o!9 >=< ag‘;’ >

Using arguments similar to those used in Problem 1, one can readily show that i) um =0,

(1)

ii) u; ' and ul") are independent of ys, and ili) the solution has the following symmetries (or

anti-symmetries)

Py, —) = —ui(y, ), (166)

Wy, -1) = ) ,n), (167)
and

ugl)(—yl,yz) = "gl)(ynyz)s (168)

w(-v3) = —u)(u,0)- (169)

One quarter of the cross-section of the unit cell is analyzed, and the boundary conditions

are

1= 0: ‘!‘lg =0 and &)1 = 0, (170)




y2=0: u =0 and 632 =0, (171)
n= b\/é—‘ flg = Ezl b\/§ and &u = 0, (172)
2= b: fl] = En b and &22 = 0. (173)

The solution is obtained using four-node plane strain elements with 2 x 2 Gauss inte-
gration and an independent interpolation for the dilatation rate are used in order to avoid
artificial constraints on incompressible modes (Nagtegaal et al., 1974). The macroscopic
strain component E,; is applied, and the corresponding < a{g) > is determined using the

relationship

V3 ]
1 . 1 r.
<o) >= 3 / on(y, b)dy, = ‘5/012(5\/5, y2) dys. (174)
0 )

Problem 4: Longitudinal shear

The only non-zero components of the macroscopic strain E are E;3 = E3;. Also, the only
non-zero components of < a{® > are < o >=< o >.

Using arguments similar to those used in Problem 1, one can readily show that i) ugl) =
ul) =0, ii) ul is independent of y3, and iii) the solution has the following symmetries (or

anti-symmetries)

uW-n.) = —u(vn,1), (175)
P -1) = v (n,n) (176)

One quarter of the cross-section of the unit cell is analyzed and the solution is obtained
using eight-node three-dimensional brick elements with 2 x 2 x 2 Gauss integration. Let
be the thickness of the elements in the y3-direction. The following boundary conditions are

used

4, = Fiays and i, =0 everywhere,

n1=0: 43=0 and &y, =0, (177)
y2=0: 09 =205=0, (178)
ya=0: 033=0, (179)
p=bv3: d3=Eub/3 and &, =0, (180)
y2=0b: & =20823=0, (181)
y3=h: 633=0 (182)
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The macroscopic strain component Ey3 is applied, and the corresponding < aig) > is

determined using the relationship

b
1 7. 1 7.
<ofd >= 3 /‘713(6‘/57 y2)dy2 = 2/0'31(!/1,!/2)4/4- (183)
0 4
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Figure captions

10.

11.

Hexagonal array of fibers and the corresponding unit cell.
Finite element mesh.

Longitudinal stress-strain curve.

Transverse stress-strain curve

Stress-strain curve for transverse shear.

Schematic representation of a plate with a hole. The fibers are in the z; coordinate

direction.

Contours of creep strain invariant ¢,.
Contours of creep strain invariant e,.
Contours of creep strain invariant v,.
Contours of creep strain invariant -,.

Transversely isotropic stress invariants.
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ABSTRACT

Creep studies conducted on a unidirectional SiC/CAS composite indicate that the
Nicalon fibers provide longitudinal creep strengthening at 1200°C. The deformation is
transient in nature because grain growth in the fibers enhances their creep resistance.
The transverse creep strength is considerably smaller, being dominated by the matrix,
resulting in appreciable creep anisotropy. This anisotropy leads to severe distortion
when off-axis loadings are imposed. Residual stresses develop upon unloading after
creep, and cause superficial matrix cracking.
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1. INTRODUCTION

Ceramic matrix composites are expected to have a key role in achieving the
performance goals of the next generation of advanced aircraft. The intrinsic ceramic
properties of high refractoriness, good oxidation resistance and low density have been
motivating the development of these materials. Much of the recent effort has been
expended in overcoming some of the key limitations of monolithic ceramic materials,
particularly their notch sensitivity. This work has led to the development of ceramic
matrix composites (CMCs), using fiber reinforcements as a means of controlling damage
and redistributing stresses.1-9 Critical to the success of this approach is the presence of a
fiber coating that provides a “weak” interface.>-7 However, much remains to be
addressed at high temperatures, where most of the performance benefit is to be
obtained. The presence of fibers can have either beneficial or detrimental influences,
depending upon the creep strength of the fibers compared with that for the matrix.10,11
The situation to be explored in this study represents a CMC in which the fibers have a
greater creep strength than the matrix, exemplified by glass ceramics reinforced with
silicon carbide fibers. In this case, the fibers should impart creep strengthening.12-14 The
actual magnitude depends on the explicit role of the ‘weak’ interface.

Another important factor is the creep anisotropy. While creep resistant fibers result
in strengthening in the fiber direction, the composite has inferior transverse properties,
which may limit structural integrity. It therefore becomes imperative to understand this
anisotropy, in order to guide materials development and ensure reliable engineering

design.
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2. BACKGROUND AND PHILOSOPHY

CMC components typically experience large thermal gradients, but small pressure
loads. Such situations result in bending moments and shears, which may cause flexural
creep and distortion. The material anisotropy can have a substantial effect on these
responses. The philosophy of the present study is to perform flexural creep tests and to
provide an interpretation by comparing with compression and tension data. Moreover,
the tests are performed at the relatively low stress and strain levels expected in actual
applications, wherein distortions > 1-2% are unacceptable.

Anositropy in the creep of CMCs is investigated by using a calcdium aluminosilicate
(CAS) system, unidirectionally reinforced with SiC (Nicalon™) fibers.¥ In this CMC, the
fibers have a greater creep strength than the matrix.10,15 However, both the fibers and
the matrix are susceptible to microstructural changes and transient creep responses. At
temperatures above ~ 1200°C, Nicalon fibers experience both compositional and
microstructural changes.16-18 These involve the evolution of CO with the resultant
creation of an outer sheath of B-SiC, having relatively large grains (~ 15nm in
diameter).18 As the peripheral grains coarsen, the creep strength of the fibers
increases.15 Within a composite matrix, the role of the Nicalon fibers depends on the
actual CO evolution. These effects are examined at a temperatuvre of 1200°C, which
represents a compromise between the desire to use CMCs at the highest possible
temperature and the need to have microstructural and compositional stability.

Glass ceramics have creep characteristics dominated by the residual amorphous
material.19 The extent of crystallization thus dominates the creep strength of the CAS
matrix. Moreover, such materials often exhibit creep asymmetry: they deform more

rapidly in tension than compression, because of void formation in the amorphous

1 The material was provided by Corning through K. Chyung.
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material.19 Such asymmetry, when present, has important implications for the

interpretation of flexural creep.20

3. EXPERIMENTAL PROCEDURES
3.1 Testing Procedures

In SiC/CAS, the presence of a carbon layer at the fiber /matrix interface results in a
strong dependence of mechanical properties on the extent of oxidation.5.6
Consequently, in order to allow separation of the influence of mechanical loading and
environment, creep tests were conducted under inert conditions by using a hydraulic
testing machine in argon (= 0.1 MPa) within a furnace having a 2200°C temperature
capability. Flexural experiments were performed on beams measuring approximately
3x3.5x 45 mm. A device was constructed which directly and continuously evaluates
the curvature over the inner span, by measurement of the displacement, A21 (Fig. 1).
Pure bending operates within this region. The normal strains € are thus axially uniform
and are related to the displacement A in a straightforward manner.¥ The maximum

normal strain on either the tensile or compressive surface is explicitly related to A by,21

€aee = hA[(A%+5?) 1)

where h is the beam thickness and s the span. The device allows strain measurements
accurate to within + 0.01%, and a resolution of £ 0.0005%.

The stresses that develop in flexure relate to the applied moment, M. Determining
exact values is not straightforward (Appendix I). It is established that, at the moments
and deflections used in this study, SiC/CAS has minimal creep asymmetry and,

1 This simple relationship obtains, even at deformations substantially larger than those explored in the
present tests (€ < 2%).
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moreover, stress transfer from the matrix results in fiber dominated behavior.
Additionally, since the fibers are viscoelastic,22 linear solutions may be used to obtain
nominal stresses from the moments. The linear formula for peak stress on the tensile

surface is
o = (32)P(L-¢)/bh’ @

where P is the load, L is the outer span, ¢ the inner span and b the beam width.

The same system was adapted for compressive creep measurements. For this
purpose, the outer gauging rods (Fig. 1) were attached to the top loading plate, while
the central gauging rod (attached to the LVDT) contacted a creep resistant SiC platen
directly under the specimen. Deformation of the specimen was measured from the
relative displacement of the inner and outer gauging rods from which the strain could
be determined directly.

3.2 Characterization Techniques

The materials were examined by both scanning and transmission electron
microscopy. For scanning electron microscopy (SEM), specimens were prepared using
standard metallographic techniques. Carbon-coated samples were examined in the
JEOL SM 848 SEM in secondary mode. The microscope was equipped with a Tracor
Northern TN 5500 analysis system. For transmission electron microscopy (TEM),
samples prepared by ion milling were examined at 200kV in a JEOL 2000FX TEM
equipped with a LINK eXL high take-off angle energy dispersive spectroscopy system.
Computer simulations and indexing of selected area diffraction (SAD) patterns were
facilitated by the Desktop Microscopist software package (Virtual Labs, Ukiah, CA
95482).
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TEM analysis of the composite after creep was impeded by crumbling of the
matrix during foil preparation. The following, alternative, procedure was thus used to
obtain samples of fibers. Wafers, approximately 2.5 mm square and 300 pm thick, were
cut using a slow speed diamond wafering blade, with the fiber orientation in the plane
of the wafer. These wafers were then soaked in concentrated hydrofluoric acid for about
3 minutes to remove most of the matrix, leaving the intact fibers behind. These fibers
were then extracted using a tweezers, mounted on a copper grid and ion milled prior to
TEM analysis.

4. RESULTS

4.1 Material Characterization

The SiC/CAS material has 16 plies, with an average fiber volume fraction f = 0.4,
although local variations are evident (Fig. 2). It has a glass-rich surface layer. During
testing, this layer was located at the outer surface of the side faces. Characterization by
TEM revealed that the matrix consists primarily of anorthite with a grain size 1 um.
Substantial twinning was evident throughout the matrix. Very fine precipitates (20 nm),
probably zirconia, were detected within the CAS grains. The fiber/matrix interface
consisted of a 300A thick carbon layer (Fig. 3), identified by means of scanning EELS
micrographs. Electron diffraction analysis of the fibers revealed a characteristic ring
pattern, representative of B-SiC with a very fine grain size. Dark-field imaging

established a grain size, d = 1-3 nm.
4.2 Creep Rates

The flexural creep experiments with longitudinally oriented fibers, conducted at
1200°C, were performed at moments corresponding to nominal stress levels between 50
to 150 MPa. The strains were limited to ~ 1%. These tests gave the longitudinal flexure
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creep rates summarized in Fig. 4. The strain is transient, at all applied moments. Tensile
creep rates obtained at similar stresses!0 superpose onto the flexural results (Fig. 4). This
correspondence between flexure and tension indicates that there is minimal creep
asymmetry at small strains (< 1%) and at stresses up to ~ 150 MPa.

Two flexure tests were conducted at the same moment, but with one periodically
interrupted. The sample was cooled rapidly upon interruption, in order to limit
recovery effects.10 The strain was then measured from the beam curvature at room
temperature.2! The results demonstrate the history insensitivity of composite creep
(Fig. 5).

Transverse compressive creep data are presented in Fig. 6. In contrast to the
longitudinal response, the transverse behavior is characterized by a minimum
deformation-rate, preceded by an initial transient. The creep rate minimum can be
characterized by a power-law, with an exponent, m = 2.4.

A comparison of longitudinal and transverse creep at 50 and 75 MPa (Fig. 7)
illustrates the anisotropy and provides direct evidence that longitudinal creep
strengthening is imparted by Nicalon fibers. An alternative demonstration of the creep
anisotropy is provided by the cross-sectional profiles of crept flexural samples (Fig. 8).
The relatively low (matrix-controlled) shear creep strength of unidirectional fiber
composites results in large shear distortions between the inner and outer loading points.
These distortions are substantially higher than the (fiber-controlled) longitudinal
deformations caused by pure bending between the inner loading points. Such behavior
does not occur in isotropic beams because the ratio of the peak shear stress to the peak
tensile stress is typically low (< 0.1).1

1 For elastic or linearly creeping fibers, this ratiois, 23 A = 2 (L-1yh.
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4.3 Observations

SEM and TEM conducted on the crept samples has established that there is
minimal matrix damage at small strains € 1%). The absence of matrix cracks is
consistent with earlier studies conducted at room temperature? at the stress levels used
in these tests (maximum of 150 MPa) and with the minimal creep asymmetry. However,
cracks were found in the glass-ceramic coating, on those sides that had been subject to
compression during creep. Cracking was more prevalent at higher loads. The
occurrence of such cracks implies the presence of a residual tension after cooling and
unloading. Related behavior has been found in monolithic ceramics.24

In transverse compressive loading, transverse matrix damage initiated, but only at

larger strains (5 2%). This damage is manifest as voids emanating from the interfaces, at
segments perpendicular to the loading axis (Fig. 9). At higher stresses (5 50 MPa)
squeezing out of the matrix from between fibers resulted in impingement of the fibers.
Fragmentation of the fibers then typically occurred at the points of contact. These
damage initiation mechanisms were found to be spatially non-uniform and appeared to
correlate with locally high concentrations of fibers. Coalescence of damage along well-
defined shear bands led to failure of the samples.

TEM revealed significant microstructural changes in the fibers (Fig. 10). A well-
defined outer shell formed, within which substantial grain growth had occurred (grain
size, d = 10-15nm) and an inner core in which the grain size remained unaltered
(d = 1-3 nm) (Fig. 11). This behavior is consistent with that found for Nicalon fibers in
the absence of a matrix.18 The extent of the large grained regions increased with time at
temperature. More precise determinations of the kinetics of grain growth and shell
evolution are in progress. There were no apparent changes to the C interphase.
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5. DISCUSSION

The interpretation of the above results relies on three basic features, each governed
by the flexural and compressive characteristics of anisotropic beams. (i) For the pure
bending region between the inner loading points, in which the flexural strain
measurements have been made (Fig. 1, Eqn. 1), there are no in-plane shear stresses.23 In
consequence, the deformations are controlled by the longitudinal properties of the
composite. (ii) The similarity of the deformation rates measured in flexure and tension

establishes that the deformation is symmetric, within the stress and strain ranges

explored in the present study, consistent with the absence of creep induced matrix
damage. (iii) The matrix dominated deformation in transverse compression
substantially exceeds the longitudinal deformation, verifying that the fibers are
considerably more creep resistant than the matrix. This anisotropy is the origin of the
beam distortions found in four-point bending (Fig. 8).

These three features provide the logic for the following sequence. The transverse
compression data are first used to estimate the creep properties of the matrix. These
values are then used with the flexural data to characterize the fiber dominated
longitudinal behavior. Finally, the creep properties of the fibers within the composite are
established.

Both constituents are assumed to exhibit power law creep. The steady-state formulae

are, for the matrix,
& = é,(0/0m) 2
and for the fibers,
| € = &,(of0,) 3
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where G, and Oy, are the reference stresses.

5.1 Matrix Creep Strength

The creep properties of the matrix are estimated from the composite steady-state

data obtained in transverse compression (Fig. 6), given by,
¢ = é,(0/0,)" @)

where O is the reference stress for the composite. In the absence of significant matrix
damage, the power law for the matrix should be the same as that for the composite2526
(m = 2.4). Furthermore, the reference stresses should be related by25.26

0, = O, p(f,m) (5)

with f being the fiber volume fraction. The coefficient B has been calculated for perfectly
bonded interfaces.26. 27 For the present composite (m = 2.4 and f = 0.4) the
calculations give B = 0.7. Consequently, the data of Fig. 6 can be related to the matrix
creep properties by means of a reference stress conversion. Eqn. (3) gives B = 0.7, such
that in Eqn. (2): Opo = 0.7 MPa and € = 4.0x 1011 571

5.2 Longitudinal Creep

The longitudinal data are dominated by the fibers (Fig. 4). The lack of significant
fiber fracture at small strains suggests that an equi-strain criterion may be used for
interpretation.12 The following procedure is used for this purpose. First, based on the

% This conversion is strictly applicable only in steady-state and at small strains, prior to matrix damage.
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above matrix creep parameters, a beam analysis yields the fraction of the moment borne
by the fibers (Appendix I). This analysis indicates that essentially all of the creep
strength is associated with the fibers, except during the initial transient (times, t < 5h).
The primary nature of the creep arises because of microstructural changes within the
fibers (Figs. 10,11). The most important mechanism appears to be grain growth, which is
time dependent. Consequently, by using time as an independent variable (rather than
strain), it is found that the axial creep data can be uniquely correlated (Fig. 12). The
associated constitutive law for the composite closely approaches the form (t S 1h),

e/, = (6/0,) (/1) (9]

with a stress exponent, n = 1, a time constant T = 5.5x 106s and o0 ~ -0.9. The
coefficient 17| is unity for the composite but becomes f for the fibers. The reference
parameters are Geo = 1 MPa,€, = 1/s. The extent and magnitude of the grain growth
are consistent with the observed creep strengthening of the fibers (Appendix II), and also
with a stress exponent, n = 1, characteristic of diffusional creep.2”

There is a similarity between the microstructural changes in the Nicalon fibers
found here during creep within a CAS matrix, to those previously found in the absence
of a matrix.18 This indicates that a CO partial pressure having sufficient magnitude to
suppress chemical changes does not develop. The evolving CO can presumably escape
from the composite. The consequences are that longitudinal creep of the composite is
primary in nature and that the creep rates are comparable to those for the fibers in the
absence of the matrix.15 The C interphase remains relatively stable, at least upon testing
in an inert environment. Consequently, this phase appears to have minimal effect on the
longitudinal creep rates, at the stress levels explored in this study. These stresses are

below those needed to cause appreciable fiber failure, such that an influence of the

KIS 11483 12




interphase would not be expected. However, interphase effects are likely at higher

stresses, approaching the fiber bundle strength.
5.3 Residual Stress

The cracking of the coating on the compressive side of the flexural specimens after
unloading is associated with the development of residual tensile stresses. Such cracking
may be important in causing exposure of the fibers to environmental attack. The peak
value of the residual stress is expected to be proportional to the magnitude of the
applied stress during creep (Appendix ITI), consistent with the greater tendency for such
cracking at larger stresses. The mechanism involved is associated with load transfer
from the fibers to the matrix and differs from that found in flexure in monolithic

ceramics.24

6. CONCLUSION

Nicalon fibers have a beneficial effect on the longitudinal creep strength of calcium
aluminosilicate (CAS) glass ceramics. Moreover, time-dependent microstructural
changes in the fibers result in long-term creep hardening. The transverse creep strength
is much smaller, being dominated by the matrix. The composite is thus highly
anisotropic. This anisotropy causes extensive distortion with off-axis loadings. Residual
stresses resulting from stress redistributicon during creep can damage the composite

upon cooling and may degrade its subsequent structural integrity.
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APPENDIX 1

Stress Redistribution in a Creeping Beam

Stress redistribution in flexural beams has been analyzed for a variety of non-linear
problems, including power law creep8 and tension/compression asymmetry.20 In this
appendix, results relevant to fiber composites are derived, subject to symmetric
behavior in tension/compression. The new feature concerns the load shedding from the
matrix to the fibers and its influence on the flexural deformation. When both
constituents have the same creep rates (m = 0, €mo = Efo. Omo = Ofo) the steady-state
stress distribution is well-known and given by,28

4
2 - (223

where y is the distance from the neutral axis and G, is the stress expected for a linear
beam (Eqn. 2). In the transient, before steady-state is obtained, a much more complex
stress distribution exists.

When the fibers have a higher creep strength than the matrix, account must be
taken of the redistribution in moment from the matrix to the fibers. In the absence of
fiber fracture, the strain-rates in the fibers and matrix are equal.12 Inserting this equality
into Eqns. (2) and (3), the following steady-state relationship is obtained from Eqn. (A1)
for the fraction & of applied moment carried by the fibers,

i - ol (B () w2
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where ¥ = [¢_,0h/¢,05 ). The maximum stresses in the matrix and fibers during

steady-state creep are respectively,

6, _ (2m+1) (1-8)
o, ( 3m )(1-—f) (A3)
and
S . 2‘““) 5 Ad
o, (Bm (1-5) (A9

The equivalent result for the composite is

6. _ (2n+1 2m+1) .
Ef'(sn )§+(3m )(1 Y (A5)

An evaluation of the composite properties using these formula is achieved by
iteration. Initially, it is assumed that the composite properties are controlled exclusively
by the fibers in accordance with Eqn. (6). Then & is evaluated for Eqn. (A2). The revised
distribution of stress between the fiber and matrix is determined from &, using
Eqns. (A3) and (A4). The procedure is repeated until convergence is achieved. One
complication for SiC/CAS is time dependence of the strain rate ratio, X, caused by the
creep hardening of the fibers. This time dependence may be obtained from the actual
flexural data, and expressed from Eqn. (6) as

&, = fe,(t/7) (A6)
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The consequence is a time dependent &, which may be estimated from Eqns. (A2) to
(A4). Trends in & (1), as well as Gc/ O, (t) computed from these formulae, using the
present data show that (Fig. A1) for f = 0.4, most of the load is carried by the fibers
(€ = 1) except during the early stages. Consequently, with n = 1, Eqn. (A5) indicates
that the elastic formula (Eqn. 2) may be used to evaluate stresses for the conditions used
in this study. Hrwever, for other testing conditions, this simplification will not apply.
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APPENDIX 11

Creep Properties of Fibers

Fine-grained polycrystalline ceramics often creep in accordance with a steady-state

law'27

éé, = (ofo,) (@¥/d) (B1)

where Q is the atomic volume, d is the grain size, B a coefficient between 1 and 3and n
is in the range 1-2. In this case, n = 1.22 Based on the present microstructural
observations (Fig. 10) the fiber is treated as two concentric cylinders, the outer defined
by a grain size d; and the inner by a grain size d;. The thickness of the outer cylinder is
represented by, { = t/R, (Fig. 11). The load distribution between the large and fine
grained regions is determined from the 'rule-of-mixtures,’ by using Eqn. Bl. Then the
overall creep-rate is

éfe, = (ofo,) (@%/d’) (B2)

where d* = [(1-0)2 d; + { (2-0) d]. By inserting the measured value for d; = 2nm and
ds = 15nm and noting that { =~ 0.4 after 2 h at 1200°C,18 Eqn. (B2) predicts a creep
strengthening of about an order of magnitude. This strengthening level is consistent
with the measurements summarized in Fig. 12, as well as the transient nature of the

creep found in Nicalon fibers.15, 22
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APPENDIX II1

Residual Stresses

Stress redistribution during creep in the presence of creep resistant fibers causes
the matrix stress levels to approach zero. Cooling under load to retain this stress
condition, followed by elastic unloading, causes residual stresses. The residual matrix
stresses, upon unloading, are simply the elastic stress on initial loading, but with

opposite sign, as dictated by the relative moduli of the matrix and the fibers:
E 1
@t = ~afa-n)+ 5] S

Consequently, residual tensile stresses may occur in those regions of the matrix initially
subject to compression. Note that the reduced stress in the matrix during actual creep
contributes to the absence of matrix damage and the consequent creep symmetry.
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FIGURE CAPTIONS

Fig. 1.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.
Fig. 12.

Fig. Al.

S 11483

Schematic of apparatus used for flexural creep assessment. The modification
used for transverse compressive creep measurements is shown in the insert.

Overview of the fiber distribution.

. a) TEM bright field micrograph of interfacial carbon layer. b) EELS spectrum

for carbon: brightness correlates with concentration of carbon.

. Longitudinal creep characteristics of the composite at 1200°C obtained in

flexure. Also shown are literative data for tension.10

. Effects of periodic unloading on flexural creep curves.
. Transverse compressive creep curves at 1200°C.

. A comparison of longitudinal flexure and transverse creep rates at two

equivalent stress levels. Longitudinal tensile results at similar stresses are also
shown.10

The profile of a flexural specimen after testing at 1250°C and 50 MPa.

Scanning electron micrograph of matrix and interface damage found upon
transverse compression testing: a) € = 1%,b) € = 2%, ¢) € = 4%.

Transmission electron micrograph of Nicalon fiber after creep testing of
SiC/CAS at 1200°C for 50 h.

Schematic of grain growth behavior in Nicalon fibers at 1200°C.
Normalized plot of longitudinal creep strength.

a) Fraction of applied moment carried by the fibers at different times during
creep. Dashed line is approximate. b) Maximum composite stress relative to
linear result, Ce.
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POWER LAW CREEP OF A COMPOSITE MATERIAL
CONTAINING DISCONTINUOUS
' RIGID ALIGNED FIBERS

Rosert M. MCMEEKING
Department of Materials and Department of Mechanical Engineering,
University of California, Santa Barbara, CA 93106, US.A.

(Received 16 December 1991 ; in revised form 24 September 1992)

Abstract—An asympiotic analysis is presented for the power law creep of a matrix containing
discontinuous rigid aligned fibers. The fibers analysed have a high aspect ratio. As a result, the fiber
length is much greater than both the fiber diameter and the spacing between neighboring fibers. For
this situation, flow around the fiber ends can be neglected when the creep strength is being calculated.
When the matrix is not slipping on the fiber surface or is nearly stuck, shearing flow dominates the
behavior. The radial gradient of shear stress is balanced by the axial gradient of hydrostatic stress.
Longitudinal, radial and circumferential deviatoric stresses are negligible. The resulting power law
creep rate of the composite material is inversely proportional to the fiber aspect ratio raised to the
power 1+ 1/n where n is the creep index. The fiber volume fraction also influences the creep rate.
When the matrix slips freely on the fiber surface, or nearly o, stretching dominates the matrix flow.
In this situation, the composite creep strength is not much better than the unreinforced matrix.

NOMENCLATURE

Note: superposed caret indicates a physical variable ; a symbol without a caret is normalized and dimension-
less, e.g. 4 is the fiber radius, a is d/é where & is the unit celi radius.

fiber radius

unit cell radius

matrix creep rheology parameter

function of geometry and creep parameters ; controls the creep strength
axial strain rate

function for radial distribution of axial velocity
function controlling hydrostatic stress distribution
fiber half length

interface drag exponent

matrix creep exponent

higher order term in creep strength

radial coordinate

relative creep strength of composite material
scaled creep strength in excess of matrix strength
same as 3 evaluated in Bao ez al. (1991)
average radial stress

stress deviator

velocity

fiber volume fraction

axial coordinate

L/é fiber aspect ratio

/L small parameter

effective strain rate

2/

Lib=1/5

interface drag parameter

integration variable

hydrostatic stress

stress tensor

macroscopic axial stress

fiber axial stress

matrix axial stress

tensile equivalent stress

= (é/B5)""  parameter for stress normalization
circumferential coordinate.
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1808 R. M. MCMEEKING
INTRODUCTION

Cell models are popular and effective for estimating the creep strength of metal matrix
fiber reinforced composites and such an approach has been used by Kelly and Street (1972),
Dragone and Nix (1990), Goto and McLean (1991) and Bao er al. (1991b). For aligned
discontinuous fibers, an individual reinforcement is considered embedded in a unit cell of
the matrix material such that the volume ratio of fiber to matrix in the unit cell equals the
average ratio in the composite material. Boundary conditions to cause the deformation are
imposed on the perimeter of the unit cell to enforce periodicity and symmetry. For the creep
response to tensile stresses aligned with the axis of circular fibers, it is sufficient to caiculate
the behavior of an axisymmetric cell such as that shown in Fig. 1. The deformation imposed
on the cell forces it to retain its circular cylindrical shape. Each point on the surface of the
cell is free of shear traction. The average transverse stress on the cell is zero and appropriate
conditions are imposed at the interface between the fiber and the matrix material. In the
annotations in Fig. | the conditions appropriate to an interface around a rigid fiber without
debonds but with a nonlinear viscous sliding behavior are stated. In general, however, any
physical assumption can be incorporated into the cell model such as fiber elasticity or creep,
debonding of the interface, etc.

Cell models usually require a numerical treatment as undertaken by Dragone and Nix
(1990) and Bao er al. (1991b). However, in certain circumstances an approximate model is
accurate and can be analysed without recourse to complete numerical treatment. This
approach has been used by Kelly and Street (1972) and Goto and McLean (1991). One
such circumstance is when the fibers are aligned and have an aspect ratio which is high and
a volume fraction that is moderate to high. Then the matrix segment around the fiber (with
section ABCD in Fig. 1) is slender and can be readily analysed with approximate flow
fields. In addition, the flow in the remaining matrix segment at the fiber ends does not need
to be analysed accurately because it contributes little to the yield or creep strength compared
to the matrix around the fiber. That is, when the fiber aspect ratio is high, the energy
dissipation in the fiber end regions during matrix creep is negligible compared to the energy
dissipation rate in the matrix surrounding the fiber. The creep strength is directly related
to the energy dissipation rate, so it can be analysed by calculating the major contributions
to the energy dissipation rate. In this paper, that is achieved by analysing the creeping flow
of the matrix adjacent to the fiber sides. If this approach is unsatisfactory in a particular
case, it can always be rectified by considering longer fibers, thereby making the fiber end
regions relatively less important. In this sense, the analysis can always be justified by taking

“i
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Fig. 1. Unit cell for matrix creep analysis.




Power law creep 1809

the asymptotic limit of extremely long fibers. However, the analysis is proposed as being
justifiable for fibers with a range of finite aspect ratios.

The issue has been studied by Bao et a/. (1991a) for layered composites with perfectly
plastic matrices. Bao er al. found that less than 10% of the yield strength is due to the end
region when the volume fraction of rigid reinforcements is 25% and their aspect ratio is
100. For smaller aspect ratios the contribution from the end region is a higher fraction but
can be modeled in an ad hoc manner as was demonstrated by Bao et al. (1991a). In addition,
the aspect ratio of the cell relative to the aspect ratio of the fiber is known to affect the
prediction of strength significantly which was demonstrated by Bao ez al. (1991b). Thus, it
is likely that the choice of aspect ratio of the cell will also influence how much of the strength
is due to the matrix material around the fiber compared to the amount due to the material
at the fiber ends. For example, choosing the aspect ratio of the cell to be the same as the
aspect ratio of the fiber, as Bao er al. (1991a) did, is likely to exaggerate the importance
of the fiber end region for high aspect ratio cases. A perhaps more sensible choice, in which
the distance between the fiber and the cell edge is the same at the end and on the side, is
likely to diminish the importance of the matrix at the fiber ends and so the 10% contribution
mentioned above is probably an overestimate. At the other extreme of the rheology, namely
a linearly viscous matrix, an argument can be made that as well as fiber end regions
occupying relatively small volumes of the total composite microstructure, any non-
uniformity of flow which they induce will be confined to the fiber end region by a St Venant
effect. Thus, for all types of matrix an analysis concerned only with the matrix material
surrounding the fibers circumferentially can be justified in certain cases.

In particular, the problem of a high aspect ratio rigid fiber embedded in a power law
creeping matrix can be analysed in terms of the matrix material around the fiber. The cell
shown in Fig. 1 will be used. The fiber is bonded to the matrix so that the radial velocity
at the fiber is zero. However, it is assumed that the bond, or thin layer of interphase material
at the interface, has a power law rheology of its own which allows slip of the matrix relative
to the fiber. The end of the fiber is bonded strongly to the matrix as well, so that matrix
incompressibility forces a net matrix flow paraliel to the fiber. The axisymmetric quasistatic
creeping response to an axial stress is considered. A power law rheology is assumed so that
the analysis represents the steady state creep of metal or ceramic matrices around rigid (e.g.
ceramic) fibers.

PROBLEM FORMULATION

The domain of the problem is the axisymmetric region with section ABCD in Fig. 1
(@ <7< b; 0 <z < L). In cylindrical polar coordinates, the governing equilibrium equa-
tions neglecting inertia and body forces are

06,, 0,—0Cg do,,

T 10 -0 M
do,, o, do,,
E“+T+5 3z =0, (2)

where ¢ is a scaled stress such that
é =10, 3)

with & being the Cauchy stress and I a scaling parameter to be discussed later. The
components r and z are scaled measures of position defined by

F=br “)

and
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=Lz, ()
where 7, 7, 6 and L are specified in Fig. 1. The parameter & is such that

6=b/L, (6)
and in the problems to be analysed is much less than 1. The choice of differential scaling
for r and z introduces a coordinate stretching transformation (Van Dyke, 1975) which will
be useful in the subsequent analysis.

The matrix creeps with a power law incompressible rheology given by
ef,-j = 380":‘ lSij’ (7)

where ¢ is the strain rate, $ is the deviatoric stress given by

Sij»= 6‘,-,—66,7, (8)

where ¢(= d,,/3) is the hydrostatic part of the stress, d. is the effective stress such that

é. = Vv ;gijgij’ (9)

and B is a material constant which is, however, dependent on temperature. Note that in
uniaxial stress the axial strain rate equals B times the nth power of the stress. In terms of
scaled variables, the creep law can be written as

ov, -
v,
7= io:-ls“, (ll)
ov, -
65 =1ot7'S,,, (12)
o, o, .,
yr +0 i 36t 'a,,, (13)
where ¥ is the velocity and
¥ = bBZ"v. 49

On 4B (z = 0) the boundary conditions by symmetry are
v,(r,0) =0, (15)
0,.(r,0) = 0. (16)
On AD (r = a = 4/b) one boundary condition is
v,(a,2) =0, an

while the slip condition (see Fig. 1) becomes




[ e
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v:(a,2) = o/, (18)

where
u = jiBbT ", (19)

and j is a slip parameter for the interface. It should be noted that the last boundary
condition can represent a variety of physical situations. One possibility is that there is a
thin but distinct interphase of thickness / so that V.(a,z)/! is the shear strain rate in the
interphase. Equation (18) then implies that the interphase is subject to power law creep but
with an exponent m and the coefficient in the creep law is 1/(3"™* "i?) replacing B in eqn
(7). Another possibility is that there is no interphase but instead the fiber has a rough
surface over which the matrix must flow even though the bond between the matrix and the
fiber is relatively weak in shear. In that case, the index m would equal # and the slip
parameter ji would depend on the roughness of the fiber surface which would provide drag.
On BC (r = 1) the boundary conditions are

0.(1,2) =0 (20)
and
v,(1,2) = —15, @21
where
é= BZ"S (22)

is the axial strain rate. The condition in eqn (21) means that the scaled axial strain rate is
equal to 4. This choice is arbitrary, though convenient. As a consequence, eqn (22) estab-
lishes Z in terms of ¢, the axial strain rate in ; uysical variables. The boundary condition,
eqn (21), states that the unit cell remains a cylinder of uniform diameter. As a result, the
normal stress g, is not uniformly zero on r = 1. However, the average of 6,,on r = | can
be set to zero so that

1
J; 6,(1,2)dz=0 ‘ (23)

to ensure that the transverse stress is approximately zero. The approximation arises because
the cell extends a small distance above C, but that portion is neglected. The boundary
condition equation (23), can be met through adjustment of the hydrostatic stress.

Note that no explicit boundary conditions are posed for CD. The average stress there
will be of interest and determines 6,. The creep strength S of the composite material is
defined as the average axial stress in the composite at a given axial strain rate divided by
the stress in the matrix alone at the same axial strain rate. That is

S = 6,(€)/(¢/B)'", 29

where 4, is a function of the axial strain rate é.

ASYMPTOTIC ANALYSIS

A perturbation series solution will be developed. It will have much in common with
the outer solution for a plane strain power law squeeze film due to Johnson (1984). In
addition, there are boundary layers, but fully matched solutions will not be established in
them. In the outer solution for the fiber problem, the matrix flow is dominated by shearing
and the shear stress can be expanded in integer powers of 4, so that




1812 R. M. MCMEEKING
g,. = 0'® +d0') + 0(57). (25)

As a consequence of eqn (13), v. is O(1) at leading order so
v. =%+ otV + 0(87). (26)

Incompressibility [i.e. the sum of eqns (10)~(12)] then implies that

r, = otV + 0(6°), 27
and, apart from o,., S, is 0(J), so

S, = 68! +0(8%), (28)
etc. Any gradient of g,. in the r direction must be balanced by a gradient of ¢.. in the :
direction. For this to be possible, the stress o.. must be O(1/8) so that the contribution of

the longitudinal gradient of o.. to eqn (2) is O(1) which is the same order of magnitude as
the contribution of the shear stress gradient in eqn (2). This suggests

6 =-a"V+0'"4+0() 29

Qnl =

so that the hydrostatic stress is an order of magnitude larger than the deviatoric stress.
The leading order governing equations can now be stated. With terms of higher order
omitted, it is found that eqn (1) gives

o=V
Pt 0, (30)
while eqn (2) provides
06!? ¢'? do'="
‘a—r + *'r— + F P 0. €)))
The creep relationship of eqn (13) gives
K| ;0)
5 =360y 'e, (32)
where
o = /3047, (33)
while incompressibility provides
ol oY gl
o Yt =0 (34)
Equations (15)-(23) give the boundary conditions
ry
v{9(r,0) =0, (35)
0)(r,0) = 0, (36)
t;"(a,2) = 0, (37)
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1%, 2) = (@2)"/n, (38)
vi(l,2) = -4, (39)
a?1,2)=0 (40)
and
1
j ¢"V(1,2)dz = 0. (41)
0
Solution
Equation (30) shows that o'~ " is independent of r. Therefore, integration of eqn (31)
subject to eqn (40) gives
1{1 dot~ "
0 _ | _
o)) = 3 (r r) & (42)

It will be confirmed that do'~ V/dz is positive for z > 0 and thus so is '?. Consequently

eqn (32) shows that
avE_O) 3(n+ 2 1 do.(— A
o T T (?")"< dz ) “

Integration of eqn (42) with eqn (37) provides

(~1) -
o® = ;‘_21_;(‘]_1 —a)’(d‘:iz )’|+F(r, a,n)(da;Z )', (44)

3(n+|)/2£r<l )n
F(r,a,n) = —— —=p)dp. 45
am="5—|(-¢)d 45)

where

Differentiation of eqn (44) with respect to z provides the axial strain rate which is inserted
into eqn (34). Integration of eqn (34) with respect to r combined with boundary condition
equation (37) then gives

1 [1 )" a’ d (do'"" )" 1 (" d (dot-" )’
(0 - —_——y =) - —_
U, ”2m+l (a a (r r) dZ( d r J: PF(P’av") dP ’ ( dZ . (46)

The boundary condition specifying the strain rate, eqn (38), then provides the nonlinear

differential equation
dot-"Y (l _az)m-o-l (da.(— l))m 1
[G("’ ")( dz ) o \d ) Ty “7)

&le

where
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1
Gla,n) = J' pF(p.a,n)dp. (48)

This can be integrated once and boundary condition equation (36) along with eqn (42) can

be used to give
da'""Y  (1—a)"! (da“ ”)" z
G(a.n)( dz j+ u2mtlagm d: T2 (49)

This is hard to solve in general when m # n except when n = 2 and m = 1 and vice versa.
Substantial insight and a degree of generality can be retained by choosing m = n. As
discussed previously, this case represents that of a well bonded fiber-matrix interface with
a rough fiber surface at a temperature sufficiently high to give rise to a negligible shear
strength of the bonded interface. The resistance to slip arises from the drag induced by the
creep of the matrix along the rough fiber suface. Alternately, it could represent the case of
an interphase with the same creep index as the matrix but with a different creep coefficient.
The approach of using m = n permits the study of the effect of a weak interface and some
general insights are obtained. With m = n, eqn (49) provides

dd(_” z 1/n
P ('5) , (50)
where
1— 2y+ 1
D(a,n) = 2G(a,n) + (——#25,,:,—— (51)
Integration of eqn (49) and use of eqn (41) reveals that
z 1+ Vn__ n
1
L (52)

The remaining significant terms in the solution are then

1{1 z\"
-l
@ = [‘Tl—(l —a)"+F(r a n)]i (54)
z 2” a 0 D’
] 2 ’
TR SR (1 s R

Thus the key assumption made by Kelly and Street (1972) that the velocity in the z direction
is proportional to z is correct to leading order. However, now the dependence on r has been
established too.

Boundary layer

It is possible to proceed with the solution to higher order terms and so establish the
small corrections involved but this will not be done here. However, it should be noted that
boundary layers are involved at z = 0 and at r = 1. The shear stress to leading order is zero
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at those locations and thus so is the effective stress .. In the pure power law rheology being
used in this problem, this makes the matrix rigid to leading order at z =0 and r = 1.
However, material is deforming at those locations and as a result the higher order terms in
the deviatoric stress in the perturbation series diverge there. To correct this, a boundary
layer analysis is required. However, the result of Johnson (1984) for the plane strain squeeze
film indicates that the boundary layers are passive and so do not disrupt the leading order
outer solution. Consequently, the leading order outer solution equations (52)—(55) are valid.
The boundary layer analysis provides a significant correction term at higher order in the
outer solution. This correction term has not been worked out. However, the boundary layer
at z = 0 can be analysed and terms for the correction estimated there. An overall axial
balance of stress then provides the net resultant stress for the composite material and
therefore an estimate to higher order of the creep strength of the composite. The details of
the boundary layer results are developed in the Appendix.

COMPOSITE MATERIAL CREEP RESPONSE

We now have an estimate for the average axial stress at z = 1 in the cell. This is given
by eqn (52) at z = 1 divided by 4 plus the correction 6'"N arising from the analysis of the
boundary layer at z = 0 {see eqns (A16), (A22) and (A28)]. The correction is required at
z = 1 to balance the tension in the boundary layer at z = 0. Thus, the average stress at
z = | in normalized variables is

n

1/n
5@n+ D 7O N (56)

Clearly, as long as D is not large, the first term will be the largest contribution to 4, (see
Fig. 1) whirh represents the <rzep stress of the composite material. Additional contributions
to 4, will arisc from the effects of matrix flow around the fiber end. This term may be of
the same order of magnitude as the boundary ! yer term N, but the fiber end flow term is
difficuit to estimate. Although it may be inconsistent, we will simply omit the fiber end flow
terrr bat include the boundary term. It is hoped that the resuit will then be meaningful for
low fiber volume fractions where the fiber end flow term will tend to be small. In any case,
as long as D is not large, the discrepancy relates only to a higher order term and the creep
behavior predicted by the leading order term in eqn (56) is still reliable. The omission will
be more serious in the case of low drag fiber-matrix interfaces with moderate to high
volume fractions of fibers because D becomes large in that case. Then the fiber end term
will be just as significant as the leading term in eqn (56). The validity of the model is then
doubtful.
The estimate for &, is obtained from egn (56) in physical variables. Accordingly

. ZLn "
% = g@ns D7 TN
e" tin ).'*”"n
= (E) [(2n+1)1>""+” ] 67

where 4 = L/b. In turn, the creep strength is

;. i+ lin n
S= W +N. (58)
Note that the term S functions as a dimensionless reference stress (Leckie, 1986) for the
creep behavior of the composite as in
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é = B(4,/S)". (59)

The results will be left in the form presented in eqns (57) and (58) even though the
dependence on parameters like fiber volume fraction and fiber aspect ratio is not apparent.
The forms presented, in terms of a and 4, are more versatile with the advantage that there
is no asumption dependent conversion from @ and 4 to volume fraction and fiber aspect
ratio. However, such conversions can be made easily by the user of the results. For example,
Kelly and Street (1972) neglected the ends of the unit cell and assumed that 5 is half the
nearest neighbor center to center spacing in a hexagonal array of fibers. In that case

a = adlb=(2/3Vn)"?, (60)

where ¥V is the fiber volume fraction. On the other hand, if the unit cell is assumed to have
the same aspect ratio as the fiber, then

a= V. (61)

Therefore, it is best to avoid any conversion and leave the user of the results to choose an
approach which is appropriate to the material of interest.
In any case, since

i=Lb = (L/a)a/b) (62)

A will be proportional to the aspect ratio of the fiber « = £/d. Therefore, the creep strength
S, eqn (58), depends relatively strongly on the fiber aspect ratio, being proportional to
a'* ' This ranges from a quadratic dependence for linear viscosity to nearly linear for
high n. This dependence was identified by Kelly and Street (1972). As the fiber volume
fraction increases, @ will increase and be around unity for fiber volume fractions around
unity. This will cause D to become very small or zero, predicting very large or infinite creep
strengths. This locking up is present in the model of Kelly and Street (1972), occurring at
V; = 0.91 in that case, which is when fibers in a hexagonal array touch each other.

As the fiber volume fraction approaches zero with y finite, a will disappear and so will
the creep strength predicted by the first term in eqn (58). The second term, N, then provides
the creep strength, which will be unity according to eqn (A22). Returning to the general
case, consider what happens if u — 0. This is the zero drag case and eqn (51) makes it clear
that D — oo. Consequently, the creep strength is then given by N, expressed in this case by
eqn (A28). Results for N for several values of n are plotted in Fig. 2. The values are less

[} L L0 LA L LA RN B AL LS N B N AN N N N N N N

Creep Strength, N

U I O B O S U G R

ol Lo n o Lox oo Lo sl a0 s by oxaldsyygalggg

0 .1 2 3 4 5 8 7 8

Volume Fraction, Vj
Fig. 2. Creep strength of a material with zero drag between the fiber and the matrix.
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than or equal to unity, indicating that the composite will be weaker than the matrix alone.
This effect occurs because the fibers act only to fill cylindrical holes in the matrix and the
composite behavior represents the creep of a matrix filled with such cylindrical holes. It can
be seen in Fig. 2 that N is approximately given by 1— V/, confirming this effect. This result
is not exact because the effect of flow around the fiber end has been neglected. The true
result is probably 1 — I; plus a small amount accounting for the fiber end effect. However,
the magnitude of the contribution due to flow around the very end of the fiber will not
depend to any great extent on the aspect ratio of the fiber. Thus, for long, discontinuous
fibers, the creep strength will be modest if the matrix is free to slip without drag relative to
the fiber. This effect was apparent, although not emphasized, in the model ot Kelly and
Street (1972).

It is difficult to know realistic physical values of u. In addition, the model for interface
drag with m = n is of limited value although it is very similar to a form implied in the model
of Kelly and Street (1972). As they pointed out (in terms of their interface sliding parameter
but the implications are the same), a given value of u (less than oo) will have a stronger
effect on the creep strength of a material with a low n compared to a high n. This arises
because S is controlled by D~ "" and u enters the creep strength to leading order through
D. However, the effect of a more physically realistic slip law remains to be investigated.
For example, interface diffusion tends to occur readily in metal matrix composites at creep
temperatures. This will tend to induce slipping with a linear rheology, i.c. m =1 in eqn
(18).

Finally, we can consider the creep strength in detail for the no slip case u = oo. This
is accomplished by consideration of §= (S—1)/x'*"" computed from eqn (58). This
parameter is the excess creep strength over the matrix strength normalized to make it
independent of a. The result is plotted as a function of a® in Fig. 3 for several creep
exponents. For comparison, the equivalent parameter from the model of Kelly and Street
(1972) is plotted as well. For the latter model, the volume fraction has been converted to a
by use of eqn (60). The result has the form

§K = (s_ l)/al+|/n

2 1in n a \in 02 '
=<§) 2n+l(l—a) 1-a* (63)

It can be seen in Fig. 3 that there are significant differences between the two models.
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Fig. 3. Excess creep strength of a material with no slip between the fiber and the matrix. The result
is normalized by the fiber aspect ratio raised to the power 1+ 1/n.
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FIBER STRESSES

Fiber stresses are important because the reinforcements can crack and degrade the
creep strength when the stress exceeds the fiber strength as observed by Weber et al. (1993).
In addition, Sancaktar and Zhang (1990) have demonstrated that high shear stresses on the
interface can cause interphase and matrix cracking. The shear stress at the interface between
the matrix and the fiber is directly related to the gradient of the average axial fiber stress
along the fiber. The average axial stress at any point in the fiber can be computed from a
net balance of forces in the axial direction. This requires

Py

6, = a*6((H)+ (1 —a*)6n(9) (64)

at any position Z where d; is the average axial fiber stress at Z and 6, is the average axial
matrix stress at 7. From eqn (52) we have

AN n FIRar
g)u» L) "~ 2n+1

Ould) = (E (1+1/n)D™

+N}|. (65)

Given eqn (57), it follows that

o S\ fi+m g 1 1—a?(z\+im n ] }
"f‘”=(§) {Wm[af' pe (z) “metN 66

The highest value is at 7 = 0 where

6™ = 6¢(0)
e‘-‘ lin Al-o—l/n n 1 n
=(E) [D”" n+l(a_i—2n+l)+N]' €7

Neglecting N, which will be small compared to other terms when 4 is large, we find

6" n+l-d’n

Pl T et €8)

Thus the maximum axial fiber stress can be obtained approximately by mulitiplying the
composite stress by a factor given by a fairly simple formula. For example, with a? equal
to a quarter (i.e. the fiber diameter is equal to the fiber spacing), the ratio is (Tn+4)/(n+1)
which, for example, is equal to 6.4 for n = 4. It is interesting that the ratio is independent
of the aspect ratio of the fiber. This, however, only applies if the fiber is long enough, say
with an aspect ratio of 5 or greater.

A further interesting point is that the minimum matrix stress (at Z = 0) is compressive.
Expressed as a fraction of the composite stress, the minimum matrix stress 67" = ¢,,(0) is

Gmin n

6 = mel’ ©)

independent of the volume fraction and the fiber aspect ratio (given that the fiber aspect
ratio is high enough).
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COMPARISON WITH FINITE ELEMENT RESULTS

There are few finite element results available in detail for comparison. The most useful
is the analysis by Dragone and Nix (1990), who treated an aluminum alloy with 20% by
volume of SiC fibers. A unit cell approach was adopted and calculations performed for
n = 4. The fiber was perfectly bonded to the matrix and so the relevant comparison is with
our results when u = oo. A number of features found in the asymptotic analysis are apparent
in their steady-state solution for « = 5, a somewhat lower aspect ratio than we would prefer
for comparison. The stress in the matrix around the fiber is dominated by the hydrostatic
stress with the hydrostatic component apparently 25 times the longitudinal deviatoric stress.
The hydrostatic stress in the matrix varies almost linearly down the length of the fiber. (Our
analysis predicts a variation with 7'-2%, but it would be difficult to distinguish this from a
linear behavior in numerical results.) The hydrostatic stress adjacent to the fiber is inde-
pendent of distance from the fiber. The axial stress at the fiber end is about 25% higher
than the composite stress indicating an effect of flow around the end of the fiber which we
have neglected. The aspect ratio of the cell is equal to the aspect ratio of the fiber. Therefore,
by eqn (61), a*> = ¥?>. For ¥; = 0.2, this gives a* = 0.34. For this value of a?, we predict
4.5 for 6™ /6, from eqn (68) and —0.8 for 62*/4, from eqn (69). Dragone and Nix (1990)
find these ratios at steady state to be 4.9 and — 1.2, respectively. Thus even for the low
aspect ratio fiber the asymptotic analysis is reasonably good. We suspect that most of the
discrepancy is due to the stress arising from flow around the fiber ends. When the difference
between the composite stress and the stress at the fiber end is factored out, our ratios predict
the Dragone and Nix (1990) stress values almost exactly. Thus, for longer fibers, we believe
our estimates will be quite accurate even without adjustment.

The steady-state strain rates computed by Dragone and Nix (1990) at 80 MPa for
fibers with aspect ratios 5, 7 and 10 are listed in Table 1. Also given is a strain rate for an
aspect ratio of 20 obtained by extrapolation of the transient results. The matrix steady
creep law used by Dragone and Nix (1990) is our eqn (7) with B = 2 x 10~ !* when strain
rate is given in units of s~ ' and stress in MPa; as noted before, n = 4. The finite element
creep strength is computed from eqn (24) and the asymptotic result from eqn (58) with
# = o0 and a®> = V¥? = 0.34 as used in the finite element results. N was taken to be 1 in
eqn (58); there is reasonable agreement. The Kelly and Street (1972) predictions for creep
strength, based on our eqn (63) with N = 1, are also given in Table 1 under the heading
“shear lag”. They are well below the other results. Dragone and Nix (1990) provide
additional results in which the aspect ratio of the cell is varied and the asymptotic solution
also agrees reasonably well with those.

Another comparison can be made with the finite element results of Bao er al. (1991b).
The comparison is made in Table 2. One feature in the results of Bao er al. (1991b) is the
contrast with the results of Dragone and Nix (1990). Bao et al. (1991b) predict lower creep
strengths as can be seen in the results for # = 4 in Table 2. This suggests that either Dragone
and Nix (1990) or Bao er al. (1991b) are in error. However, the asymptotic analysis
consistently predicts higher strengths than Bao et al. (1991b). The substantial differences are
probably due to the contribution to the creep strength in the finite element results arising
from the fiber end region. The cell length in the finite element calculations is 1/} times
the fiber length. The portion of the cell beyond the fiber ends as a fraction of the whole cell

Table 1. Comparison of steady-state creep results from the finite element calculations of Dragone and Nix (1990)
and the asymptotic solution. The results are for 20% SiC fibers in 6061 Al at 80 Mpa. ( ) = extrapolated

Fiber aspect ratio a Steady creep rate Creep strength S

Finite element results Finite elements Asymptotic Shear lag
(Dragone and Nix) (Dragone and Nix) analysis (Kelly and Street)

s-l

5 3.5x10°* 39 45 2.7
7 1x10-* 53 6.4 36
10 1.5%10-° 8.6 94 5.0

20 (7x10°') (18.5) 21 10.5
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Table 2. Comparison of creep strength calculated by Bao er al. (1991b) by finite clements with the asymptotic
solution. The adjusted column lists $ = 1 + ¥/ *(S—1) based on the asymptotic solution

Fiber volume Fiber aspect Creep index

fraction V¢ ratio 2 n Creep strength S
Finite
clements Asymptotic
(Bao e1 al.) analysis Adjusted §
0.1 5 S 1.8 2.5 1.7
0.1 5 10 1.6 2.2 1.5
0.1 10 5 24 4.3 2.5
0.1 10 10 2.1 35 22
0.2 S 4 34 4.5 31
0.2 5 5 33 4.1 28
0.2 5 10 29 33 23
0.2 10 4 47 94 59
0.2 10 5 4.5 8.1 52
02 10 10 39 5.8 38

length is 1 — V'3, This region of the cell experiences relatively unconstrained flow compared
to the matrix material surrounding the fiber circumferentially. An estimate of the effect can
be made by consideration of radial stressing. The portion of the cell around the fiber would
require a radial stress S to produce the same strain rate as unit radial stress would produce
in an unconstrained end region. Therefore, the average radial stress on the whole cell for
the same strain rate is

S=1+V}/3(S-1). (70)

This can be converted to an axial stress result by addition of hydrostatic stress. Therefore
eqn (70) with S given by the asymptotic solution provides an estimate for the axial creep
strength of a unit cell with the same aspect ratio as the fiber. In Table 2 it can be seen that
S agrees better than S with the creep strength of Bao et al. (1991b). There are still discrep-
ancies, but the conversion represented by eqn (70) is an approximation at best. It seems
safe to conclude that the asymptotic results should be used for cases where the fiber aspect
ratio is greater than 20 so that fiber end effects are less important.

CONCLUSION

An asymptotic solution has been presented for power law creep of a composite material
containing aligned, rigid, discontinuous, well bonded high aspect ratio fibers. The solution
exhibits several of the features assumed by Kelly and Street (1972) for their shear lag model.
These features include the linearity of the axial velocity with distance along the fiber
and the dominance of the creep strength by the shearing flow in the matrix. However,
asymptotically exact forms for the velocity and stress are provided rather than the estimates
used in the shear lag model. The asymptotic solution provides a model for the creep law of
the composite material. Although the shear lag creep law of Kelly and Street (1972) exhibits
several of the characteristics of the more exact asymptotic creep law, the shear lag model
underestimates the creep strength of the composite material. We think this arises from a
stress averaging procedure used by Kelly and Street (1972) which seems to be fauity.

The dominant characteristic of the creep law predicted by the asymptotic analysis is
that the creep strength is proportional to the fiber aspect ratio raised to the power 1+ /n,
where n is the creep exponent. In addition, the model shows that fiber—matrix interface slip
can have a disastrous effect on the creep strength of discontinuous fiber composites. If the
interface has no shear strength, the creep strength of the composite is approximately equal
to the creep strength of the matrix alone. This indicates that such a composite material
would creep as fast as the unreinforced matrix at the same applied stress. However, modest
levels of interface drag can be mitigated by very long fibers. The effect can be identified in
eqn (58) where the interplay between interface drag and aspect ratio is evident. A low drag
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coefficient, u, gives rise 1o a high value of D. However, very long fibers will have a large
aspect ratio leading to high values of i. The resulting combination can lead to significant
creep strengths. Thus continuous fibers, even with occasional breaks, can provide good
strengthening even when some interface slip can occur.

The asymptotic solution agrees reasonably well with finite element analyses of the
problem. The solution features in the matrix are very similar. Some adjustments have to be
made to the creep strength for some of the comparisons to account for the fact that the
finite element results were obtained typically for low aspect ratio fibers with unit cells
containing substantial volumes of relatively unconstrained matrix beyond the fiber ends.
With an appropriate adjustment, there is quite good agreement in terms of the creep
strength.
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APPENDIX. BOUNDARY LAYER ANALYSIS

According to Johnson (1984), the outer solution velocity equations (54) and (55) prevail into the boundary
layer at z = 0. Thus in terms of unstretched coordinates with n = z/é in the boundary layer

ol 1 (1
v. = 5[”—2" (‘—1 —a).+F(r,a, n)]ry (Al)

o 1 1 \' 2 1{"
v, = —B[F(;_a> (r— ‘—lr—)+;-[ pF(p,a,n)dp]. (A2)

An eflective strain rate can be computed as

oY fv,¥ (ov.¥ 1 [fec. V]2
«=va| 5+ () (&) +2(5)] @)
and then the constitutive law provides
S, = (A%)
(AS5)

SAS 30:113-H
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o,
S, = {\—atw ==, (A6)
$el p»
and
&,
- V—mpn 2 7
g, i%‘ ar (A )

The hydrostatic stress can be computed from the two equilibrium equations

da  2S. Sw—S, da.

ér ar+ r on

(AB)

do do,. o,

-a—" = - 'E’- - T (A9)
According to Johnson (1984), on the scale of the boundary layer, the hydrostatic stress at leading order is uniform
and given by eqn (52) with z = 0. It is sustained by tractions on the side of the cell enforcing the constraint that
v, = — 14 there. Therefore, the boundary condition for evaluation of the hydrostatic stress is

2

n
o0 = — e han T D™

-8.(1,0). (A10)

which ensures that eqn (23) is satisfied at higher order. At higher order, eqn (23) degenerates to a point wise
condition on o,, because S, is uniform at r = | which is a boundary layer also.

Thus by solution of eqns (A8) and (A9) subject to eqn (A10), the stresses can be established throughout the
boundary layer at z = 0. In particular, o,. can be computed on z = 0. This stress at z = O plus the axial stress in
the fiber at z = 0 must be balanced at the other fiber end by an appropriate average stress. The leading order term
in eqn (52) at z = 1 plus a smaller correction arising from terms computed in eqn (A8) is required. This provides
an estimate of the creep strength of the composite material to higher order.

The form of v, is such thaton : = 0

az
"T""': - A1D)
because, through (v,/dr), ¢, depends on »°. Therefore, on z = 0, eqn (A8) becomes
de,, caml® 1du, 1 3%,
ok [ﬁ'?a—r‘iir—a'q]' a2

Since dv,/or = 0 there,onz = 0

av' 2 v, 2 60, 2 2
<=3 (3 + ()R] @
with v, and v, given by eqns (A1) and (A2). To compute the higher order terms in 0,, on z = 0, eqn (A12) can be
integrated subject to

0,.(1,0) =0, (Al4)

which is equivalent to eqn (A10) with the leading order term (i.e. the first term on the right-hand side) omitted.
The result for 0,,(r, 0) can be used to conpute the axia) stress from

0.(r.0) = 0,,{r,0)+S.,{r.0)— 5, (r.0). (A15)
The net resultant in the boundary layer is

]
21:-[ 0,.(r.0)rdr = §'" Nz, (A16)

which defines N. Two cases can be considered. One situation arises if g is iarge or infinite and there is little or no
slip at the fiber-matrix interface. This is the high drag case. In that situation N only becomes important in the
creep strength at small volume fractions of fibers. The other case is where u is small or zero so that the matrix is
free or almost free to slip against the fiber without drag.

High drag interface

In this case, D in eqn (51) is large only if a is sinall. With D large, the leading order stress estimate at z = |
can be modest in magnitude and the higher order corrections are significant. Investigation of the velocities in eqns
(A1) and (A2) reveals that when a is small, the term containing u can be neglected and the effective strain rate ¢,
on z = 0 is almost uniform except when r is just slightly larger than a. However, the strain rates tend rapidly to
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2ero at r = g and according to eqns (Ad)-(A6) so do the deviatonic stresses. Consequently. the small region around
the fiber with r slightly larger than a will contribute very little to the stress resultant V. In view of this. a treatment
will be reasonably accurate with ¢, taken to be uniform everywhere on = = 0 but with the strain rate components
allowed to vary otherwise according to eqns (Al) and (A2).

With the strain rates computed from eqns (A1) and (A2) (with g — x) eqn (A12) becomes

do. .., ,.012) 1 128Fr.a.n)
= = —3& plr pF(p.a.n)dp-—’F(r.a.n)+2————ir . (A17)
With &, uniform, this integrates, subject to egn (A14) 1o give
SN )
a, = {&! "'“‘B = pF(p.a,mdp—Gla.my=\Fir.a.m+1F(l.a.m | (A1B)
On z = 0, from eqns (A4) and (A6)
é 1
S.-S, = i;;"“"‘BI:ZF(r.a.n)— F_[ pF(p,a.n)dp] (A19)
so
0., = §e' 7 L (1F(r, a.m)+ LF(L, a.m) Gla.n) (A20)
which is valid for 7 close to ! but suspect for r close to a. Calculation of N from eqn (A18) then gives
N=§" ""s{""”"% 32+a*)Gla.n)+ {(1 —a*)F(1.a.n)]. (A21)

This result is most readily utilized for even integer positive values of a. In that case, calculation of F(1,a,n) and
G(a, n) can be carried out by binomial expansion. In addition, the leading terms in ¢, can be computed at r = 1.

The result to leading terms is
_ @’ -2n—T)(n-1) ,
N=1- orn=3) + (A22)
Low drag interface

In this situation, u is close to zero. The limiting case of 4 ~ 0 (no drag) will be considered. As a consequence,
the velocities in egns (A1) and (A2) become

S
=g (A23)
and
é 1 a?

- i(-%) (A24
and D = oo. This is a planar flow in the fiber direction, as would be expected when there is no drag. The effective
strain rate is

é 1a*|"?
& = -2 [] + 3 '—"] (A25)

and integration of eqn (A12) gives, on z = 0,

2 6 ta 1 lﬂ‘ I—n)fznaz
o, = —S(T:;i) I [l+§"—‘]. —r-}d' (A26)

The deviatoric stresses are such that

2 & (] la‘ V=m 20 3 la:
s;;—s"—g(i_—az) [|+§r—‘]' [;—,+§r—3] (A27)

Finally, the stress 0,,, the sum of eqns (A26) and (A27), can be integrated to give

4/3 i lal t—m 2n 3 a‘

Note that whena = 0, N = 1, as in eqn (A22).
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Abstract—Interconnects are susceptible to solid diffusion under residual stress, electric current,
and elevated temperature. As atoms diffuse, voids nucleate, drift and enlarge. At some point, the
voids of rounded shape can collapse to narrow slits and sever the lines. The fatal slits are often
found to be transgranular, i.e. each slit cuts across a single grain. They have raised much
concerns, but the underlying mechanism has remained unclear. We propose that a void changes
shape due to surface diffusion under the combined action of surface energy, elastic energy and
electric current. The void will be rounded if surface energy prevails, but will collapse to a slit if
the elastic energy or the electric current prevails. This paper analyzes a cylindrical void in an
infinite crystal under biaxial stresses but under no electric current. Four things are done. (1) A
suitable thermodynamic potential is minimized and maximized to select, among a family of
ellipses, equilibrium void shapes. The bifurcation diagram consists of a subcritical pitchfork and
two Griffith cracks. (2) A void under biased stresses is analyzed to illustrate the effect of
imperfections. (3) Exact initial bifurcation modes are determined. The critical loads for the
successive modes are closely separated, indicating that the shape evolution will be sensitive to
initial imperfections. (4) A variational principle for shape evolution under stress, current and
surface energy is identified. Stress-induced evolution time is estimated by using this var:ational

principle.




L. INTRODUCTION

Making reliable interconnects has been a persistent challenge as integrated circuits evolve.
Present-day interconnects are made of aluminum or aluminum-based alloys, and are less than a
few microns in width. Submicron lines will be in use around the turn of the century. Copper
interconnects have longer lifetimes; they would prevail should fabrication overcome the
difficulties. In this paper, data for aluminum are quoted to illustrate various points, but the
physical processes apply to any metals. The interconnects operate under severe conditions: high
stress, intense current, and temperature exceeding one third of the melting point (933 K for
aluminum). Diffusion-mediated degredation is ubiquitous as the brute forces act in the small
dimensions. '

The stress results from the mismatch in thermal expansion coefficients of the metal lines
and the surrounding insulators. Pure aluminum in bulk has low yield strength, below 100 MPa at
the room temperature, and usually is not under high stress. Yet high stress prevails in fine lines
constrained by suff insulators. The stress is raised in two ways. First, the thermal expansion
mismatch results iti a hydrostatic stress which, under wriaxial constraint, can not be relieved by
plastic flow; for typical thermal history, tensile stress around 400 MPa is found by finite element
calculations and X-ray measurements. 3-5 Second, in the small dimensions dislocations are
severely bent and can only move under high stress; even without triaxial constraint the stress in
thin films may exceed 200 MPa. 6

In addition to the stress, the interconnects carry intense electric current, sometimes
exceeding 10! A/m2. Both stress and current cause atoms to diffuse, known respectively as
stressmigration and electromigration. Evidence has recently accumulated that narrow,
transgranular slits can form and sever the lines. 72 The sequence of the events has also been
revealed: a rounded void nucleates first, enlarging and drifting, an.d then collapses to a narrow
slit. 1 Since forming a slit transfers much less mass than growing a rounded void across the

linewidth, a slit can significantly reduce the interconnect lifetime. Consequently, the
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transgranular slits have raised much concerns, even though they may not as prevalent as rounded
voids, as judged from their less frequent appearance in the published micrographs.

In a previous communication, we have shown how electric current alone can cause the
shape instability. !! Yet most slits form under both electric current and thermal stress. In this
paper we focus on the role played by the stress under no electric current. Instability under
combined stress and current will be analyzed elsewhere using some of the methods developed
here. The interconnects operate in such a temperature range that, within the time of interest,
ample atoms diffuse on the void surface but negligible atoms diffuse in the lattice. The void is
assumed to reside inside a perfect grain so that grain boundaries are inaccessible for diffusion.
Creep is assumed to be slow compared to surface diffusion and therefore neglected. Also
neglected is instantaneous dislocation glide, which seems to be a reasonable first approximation,
given the high stress in the interconnects. As such, surface diffusion is the only dissipative
process included in this analysis.

As diffusion varies the void shape, the solid variés energy by cither varying the elastic field
or creating the surface. The instability of the void shape is an outcome of the competition
between the variation in the elastic and the surface energy. Figure 1 illustrates a small cylindrical
void in an elastic solid under biaxial stresses. The two dimensional problem conveys the essence
of the competition; the three dimensional version will be treated elsewhere. Focus on the
problem of perfect symmetry: a circular void in an infinite isotropic solid under biaxial stresses
0, = 06, = 0. The perfect circle is obviously an equilibrium shape: nothing is unbalanced to
drive surface diffusion. However, this equilibrium becomes unstable if the stress is high, as
discussed below. Imagine a void perturbed from the circular shape, say, an ellipse in Fig. 1.
Now both stress and surface energy drive the atoms to diffuse on the void surface, but in the
opposite directions. Let K be the curvature of, and w the elastic energy density on, the void
surface. Because K, > K, the surface energy strives to move atoms from B to A and restore the

circular symmetry. Because w, > w,, the elastic energy strives to move atoms from A to B and
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amplify the asymmetry. The void collapses if the elastic energy prevails over the surface energy.
This picture forms the basis of a dimensional analysis. Let a; be the initial radius of the
void, O the thermal stress, ¥ the surface energy, and £ Young's modulus. The relative

importance of the elastic energy and the surface energy is described by a dimensionless number

a’ay
A=—m=. (1.1
YE

When A is small, surface energy dominates, and the void will be rounded. When A is large,
strain energy dominates, and the void will collapse into a narrow slit. The circular void collapses
when A exceeds a critical value, A.. The analysis in this paper will show that A_ = 3/8. For
aluminum with E = 7x10'® N/m? and ¥ = 1 N/m, under stress ¢ = 4x 108 N/m? the critical
radius is @, = 164 nm. Any larger void will collapse under this stress level. The mechanism
works under both tensile and compressive stress.

The same phenomenon is anticipated for other material systems. A technically important
example is residual gas pores inside single crystal oxide fibers, subjected to both high
temperatures and mechanical loads. The mechanism can limit the lifetime of the composite
materials based on these fibers (Private communication with A.G. Evans). In this paper,
however, we will set aside these potential applications and concentrate on the general
formulation of the problem, and on the implications for the interconnects.

Surface diffusion mediated instability in elastic solids has been studied by several
investigators. 1215 The lead phenomenon, which has engaged the previous studies, is that an
initially flat surface may undulate due to surface diffusion, driven by clastic energy against
surface energy. Recent kinetic simulation has shown that crack-like slits may result from such
undulation. 13 A dimensionless group similar to A has appeared in these studies, with a,
replaced by the wavelength. In writing this paper, we have been inspired by these studies, and by
the recent synthesis of the spatio-temporal complexity on the basis of nonequilibrium
thermodynamics and dynamical systems. 16

In this paper, the void evolution is viewed as an irreversible process, and formulated in a
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sufficiently general way that other mechanisms of energy varnation or engopy production can be
readily incorporated. A variational principle is identified which governs the evolution under
combined action of surface energy, elastic energy and electron wind force. Questions typical for
any evolutionary process also have direct bearing on the voids in the interconnects. (1) Under
what conditions does a circular void become unstable? (2) What is the desiination of the
evolution, a slit of vanishing thickness, or something still quite rounded? (3) Given nominally
the same experimental conditions, why are the slits not always observed? (4) How fast does the
shape change? (5) What is the role of stress bias or other imperfections? Energetics and kinetics

will be considered separately 1n two sections; together they illuminate the phenomenon.

IL ENERGETICS
The suitable thermodynamic potential, consisting of both elastic and surface energy, is a
functional of the void shape. Approximate equilibrium void shapes are selected, among a family
of ellipses, by minimizing and maximizing the potential. The bifurcation diagram is a composite
of a subcritical pitchfork and the Griffith cracks. A void under biased stresses is analyzed to

illustrate the etfect of imperfections.

A. Why does a circular void collapse

Figure 1 illustrates the cross section of a cylindrical void in a solid, subjected to biaxial
stresses on the external boundary, but not on the void surface. The cross-sectional shape of the
void is arbitrary. The work done by the load either varies energy in the solid, or produces

entropy in the diffusion process. The first law of thermodynamics requires that
(Energy Rate) + (Dissipation Rate) = (Work Rate). 2.1)
The solid varies energy either in the body or on the surface. Denote w as the strain energy per
volume, and 7y the surface energy per area. They are taken to be independent from each other

for practical purposes. That is, yis independent of the applied stress, and the swrain field in the
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body is determined by the elasticity theory neglecting the effect of surface energy. The total
elastic energy and surface energy are
U= [wda, U= [ydL. (2.2)

body surface
For the two dimensional problem, they are energy per length, integrated over the cross-sectional

area of the solid, A, and the arclength of the void, L, respectively. Under the fixed mechanical
load, the suitable potential is ®=U,+U;—(LoadxDisplacement). Furthermore, U, =
(Loadx Displacement)/2 for linear elastic solids. Thus, the thermodynamic potential for the
linear elastic solid under constant load is

o=-U,+U,. (2.3)
The potential is a functional of void shape. For a given void shape, U, is determined by the
elasticity problem, and U is integrated over the perimeter of the void. The same potential has
also appeared in the linear fracture mechanics as a functional of crack size and, in three
dimensions, crack shape.

The first law (2.1) becomes

d®/d: + (Dissipation Rate) = 0. (2.4)
The second law of thermodynamics requires that the dissipation be nonnegative, and vanish in
equilibrium. That is, atoms diffuse to reduce the potential of the system. Of all void shapes, the
equilibrium shape minimizes ®. Because atoms diffuse only on the surface, the void conserves
the cross-sectional area as the shape changes. Other kinetic details are unnecessary for
equilibrium considerations and are left to the next section.

In Introduction, the shape instability is analyzed by the local states on the surface.
Alternatively, it can be analyzed by the global energy. Compare @ for the circular void and a
void with reduced symmetry, say an ellipse having the same area as the circle. Here and later we
will use A to signify the difference of a quantity for an ellipse and a circle; for example, AD =
®(ellipse) - (circle). The ellipse has longer perimeter than the circle, so that AU; > 0. The
body with the elliptic hole is more compliant to the external load than the body with the circular
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hole, so that AU, > 0. Consequently, both the surface and the elastic energy increase when the
circle breaks the symmertry; A® <0if AU, > AU,. The circular void is unstable when either the
elastic energy is large, or the surface energy is small. These considerations also identify A in

(1.1).

B. To relax or to collapse

The fate of the voids need be clarified. Will a noncircular void relax to a circular void, or
will it collapse to a narrow slit? In the following, the potential energy is calculated for ellipses
having the constant area, and the ellipse that minimizes it is taken to be in equilibrium. The
procedure is that of Rayleigh-Ritz: the potential is a functional of the void shape, but only a
restricted family of shapes are searched to minimize it. The procedure usually yields
approximate equilibrium shapes, and the accuracy improves as more families are searched. The
family of ellipses with the constant area are parameterized by only one number. Yet it will be
shown that this family contain two exact asymptotes: the initial bifurcation from the circle, and
the slit of vanishing thickness. Thus, it is not unreasonable to expect that the ellipses well
approximate the equilibrium shapes between the two asymptotes.

Let g, be the radius of the initial circular void. The ellipses have the same area as the

circle, ma3. Their shapes are described by

X =ag 7™ cos8, ¥ = g™ sind. 2.5)
-m 1+m

The circle corresponds to m = 0, the X-direction slit tom — + 1, and the Y-direction slit to m

— - 1. The ellipses have perimeter

p= 71_“.0_2 J‘:"(lmz ~2mcos26)"d6. 2.6)
-m

The elastic solution for the elliptic voids exists in the literature, from which U, is
calculated (Appendix A). For the body with an elliptic hole and the body with a circular hole, the

clasuc energy differs by
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5202 2
AU =47r———°———2-. 2.7
¢ E 1-m @7

Thus U, increases as the ellipse becomes more elongated, the area and load being constant. This

has been stated previously on an intuitive basis that a body with an elliptic hole is more

compliant than a body with a circular hole. Combining (2.6) and (2.7), the difference in the

potential is
2
——Ad) ==2A m 5+ P -1]. (2.8)
2nayY l-m 2ma,

Now @ is a function of the shape parameter m for a given control parameter A.

Figure 2a displays the function ®(m) at several constant levels of A. Each minimum and
maximum represents a stable and unstable equilibrium state, respectively. Three types of
behaviors emerge depending on the value of A, i.e. the relative importance of elastic and surface
energy. (1) When A =0, the stress vanishes; ® reaches a minimum at m = 0, and maxima at m
=+ 1. The circular void is stable and the two slits are unstable: any ellipse will relax to the
circle. (2) When A € (0, 3/8), the stress is finite but surface energy still dominates; ® reaches a
local minimum at m = 0, two maxima at some + m_, and two minima at m =+ 1. The maxima
act as energy barriers: an ellipse of [m| < m_ will relax to the circle, but an ellipse of |m| > m,_
will collapse to the slits. (3) When A € (3/8, =), the stress dominates; ¢ reaches the maximum at
m =0, and minima at m = 1. The circle is unstable but the slits are stable: any elliptic void
will collapse to the slits.

The above information is projected onto the (A, m) plane, Fig. 2b. The heavy solid and
dotted lines correspond to the stable and unstable equilibrium states, respectively. The two slits
m = %] are stable for any A > 0, but unstable for A = 0. The circle m =0 is metastable when A <
3/8, but unstable when A > 3/8. The dotted curve is the unstable equilibrium states, referred to as
m_ in the preceding paragraph. These lines divide the (A, m) plane into four regions. A point
in each region corresponds to an ellipse under a constant level of A, evolving toward a stable

equilibrium state, either the circle or the slits. The evolution direction in each region is indicated
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by an arrow. An cllipse below the dotted curve relaxes to the circle, and an ellipse above the
dotted curve collapses to a slit. An initially circular void will collapse if A exceeds the criucal
value Ac = 3/8. This value has been used in Introduction to calculate the critical void radiuc

under a given stress.

C. Pitchfork and crack
The bifurcation diagram, Fig. 2b, is better appreciated as follows. First focus on how the
perfect circle breaks the symmetry, i.e. the subcritical pitchfork bifurcation at Ac. The shape

parameter m measures the order in the critical point theory. !¢ Expand (2.8) in powers of m:

A _ (-2,\ + é)mz + (-—2/\ + 2)m“+... 2.9)
2nayY 4 64

Only the two leading terms are retained for small m. When A > 3/8, the coefficient is positive
for m2, so that m = 0 maximizes ®. When A < 3/8, the coefficient is positive for m? but

negative for m*, so that m = 0 minimizes ®. Consequently, A = 3/8 is the critical point above

which the circle is unstable. Equilibrium requires that d®/dm =0, i.e.

2(-21\ + -:i)m + 4(-2/\ + 3—3)m3 =0. (2.10)
4 64
When A < 3/8, @ reaches the two maxima at
m2=-6i(.§—A) Ao, @.11)
15\8 8

This analysis determines the critical point, Ac = 3/8, and the asymptotic behavior of the dotted
curve in Fig. 2b as m — 0. Yet the analysis is not rigorous in that the equilibrium shapes are
only searched among the ellipse family. This concern will be removed in Section IIIB where the

ellipse is shown to be an exact initial bifurcation mode.

The other limiting case, the slit of vanishing thickness, reproduces the Griffith theory of

cracks. 7 Keep only the unbounded terms in (2.8) as m — *1:
A® 2A

4
=- + .

2y 1-m’ V- m?
For a given A, the potential attains the maxima when

(2.12)
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Vi-m?=7A, A—O. (2.13)

This is the asymptote in Fig. 2b as m — *1. From (2.5) the crack length is a = aoﬁ / (1-m) as

m — 1, so that (2.13) becomes

2
E,EL%' (2.14)

which is just the Griffith condition for crack growth.

The connection with the Griffith cracks is not fortuitous. Both phenomena are based on the
competition between the clastic and the surface energy, i.e. on the potential (2.3), although the
kinetic process are different: a void changes the shape by surface diffusion, and a crack extends
by atomic decohesion. The energetics coincide of the two phenomena in the limit when the void
approaches the crack. The conclusion should apply to other loading configurations if a void is
sufficiently elongated to be approximated by a crack. Let G be the elastic energy releases rate for
the crack. As atoms diffuse on the surface, the elongated void will become shorter if G < 27, but
longer if G > 2y. The connection is useful because G has been solved in fracture mechanics for

many configurations.

D. Stress bias and other imperfections

A void in an interconnect deviates from the perfect symmetry in many ways. Surface
energy is anisotropic in crystals; for example, the {111} planes in aluminum have the lowest
surface energy, and are the preferred void surfaces. The interconnect is finite and encapsulated
by insulators; the elastic modulus misfit causes asymmetry. The stresses in two directions are not
exactly the same. Given these imperfections, the circular symmetry breaks even at vanishing
stress. What use, then, is the perfect problem?

The significance of the perfect problem is understood as follows. If an imperfection is not
too large in magnitude, it only changes the potential @ slightly. Changing with it will be the

locations of the minima and maxima. The lines in Fig. 2 will bend somewhat, but the essential
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features should remain unchanged. Even for large imperfections there will still be regions, just as
in Fig. 2b, where a void will relax to a rounded shape (no longer a perfect circle), and other
regions where a void will collapse to a slit.

It is obviously impractical, and often unnecessary, to analyze all the imperfections. To

illustrate the general idea, we study a void in an isotropic crystal under a biased stress state, i.e.
0, # 0, in Fig. 1. The potential is
ZM(%( m 2 m 2)
A =- o - op |+y(P-2 . 2.15
£ \Tom 02 Tam 01 )+ V(P -270) @13
The first term, the elastic energy, is evaluated in Appendix A. As evident from (2.15), the tensile

and the compressive stresses give the identical response. We will consider the case 0, > 0, 2
0, and modify the control parameter as A = 62a,/ E7.

Figure 3a and 3b are for 0,/0, = 0.8; they are representative for any stress ratios in the
interval 0 < 0,/0, < 1. Several asymmetries are noted when comparing Figs. 2a and 3a. For
small A, the local minimum no longer occurs at m = 0, nor do the two maxima at the same value
of Iml. At a critical vahic, still denoted as A, the minimum and the maximum on the right-hand |
side annihilate, but the maximum on the lefi-hand side persists. In Fig. 3b, the values of m
minimizing @ are the heavy solid lines, and the values of m maximizing @ are the dotted lines.
As expected, under the biased stress, the equilibrium shape is noncircular even for a small value
of A. The heavy solid curve ends at A, and is continued by the dotted curve.

Figure 4a and 4b are the corresponding diagrams under uniaxial stress state, g, = 0 and
g, #0, Fig. 1. For a small A, ® has a local minimum and a local maximum. For a large value
of A, ® monotonically decreases as m increases. In Fig. 4b, the slit m = -1 is an unstable
equilibrium state, and the slit m = 1 is a stable equilibrium state. The heavy solid curve ends at
A, and is continued by the dotted curve. Note that the critical value A, is reached at about m
= 0.5, corresponding to an ellipse with axes ratio 3.

An inspection shows that Fig. 3b v "I degenerate to Fig. 2b as 0,/ 0, — 1, and to Fig. 4b

as gy/ 0, — 0. They all have the identical Griffith limit as m — 1, as anticipated. Although
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Figs. 2b-4b look very different, they mean practically the same thing. The initial void shape is
usually not too different from a circle. It will relax to a more or less rounded void if A < A, but
collapse to a slit of vanishing thickness if A > A_. Plotted in Fig. 6 is A_ as a function of the

stress ratio. The critical number does not vary significantly for the entire range of the stress ratio.

OL KINETICS
In this section, kinetic concepts for surface diffusion in elastic solids are reviewed. 1213
We present them in the language of nonequilibrium thermodynamics, 13 50 that other
mechanisms of energy variation ‘or entropy production can be added readily. Electromigration is
used to illustrate the procedure. Exact initial bifurcation modes of a circular void are determined;
the critical loads for successive modes are closely spaced, indicating that complicated void
shapes may evolve for slightly different initial imperfections. A variational principie governing

shape change is identified and used to estimate the evolutionary rate.

A. Evolution is an irreversible process
Nonequilibrium thermodynamics has three elements: mass conservation, the two
thermodynamic laws, and phenomenological kinetic relations. These are examined in turn for the
present problem. Conservation of atoms sets a kinematic constraint: at any point the surface
recedes if the flux has a positive divergence, i.c.
V,=Qdl/dL. (3.1)
On the left-hand side, V, = n-JX / & is the normal velocity of the surface, where ¢ is the time,
X the position vector of a point on the surface, and n the unit vector normal to the surface
pointing into the solid; V, > 0 if the surface recedes. On the right-hand side, J is the surface
atomic flux, i.e. the number of atoms per time across per length, L is the arclength, and Q is the
atomic volume.

Express the first law (2.4) explicitly as
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d®/dr+ [ FIdL=0. (32)
The integral extends over the void perimeter. Everything else having been defined, this equation
uniquely defines F as the diffusion driving force on each atom. Furthermore, (3.2) links the
global energy variation with the local kinetic process. The first term is the potential energy
increase rate, and the second term the dissipation rate associated with surface diffusion. The
second law of thermodynamics requires that the dissipation be positive when atoms diffuse, and
vanish when an the void attains equilibrium. Consequently, the potential energy decreases as the
void evolves toward the equilibrium shape. Equation (3.2) is valid for any virtual surface
velocity V, and flux J compatible in the sense of (3.1), even if F and J are nor connected by
any kinetic relation. This rigorous understanding will lead to an explicit formula for F in (3.5),
and an evolutionary variational principle in Section IIIC.

When a piece of the void surface recedes, the body becomes more compliant to the constant
load and the void has longer perimeter, so that both U, and U, increase. Formalizing these
observations with @ defined by (2.2) and (2.3), one can show that

d/dr=~(w—1KW,dL. (3.3)
The elastic energy density is evaluated on the surface; for a traction-free cylindrical void,
w= 0',2 / 2E, o, being the hoop stress. The curvature, X, is taken to be positive for a convex
void. Equation (3.3) shows that the potential changes only when the surface moves, as sensible.
The capillary term in (3.3) is the same as the Laplace-Young relation for soap films. Replacing
V,in (3.3) by J using (3.1), and then integrating by parts, one reaches
d®/de= | J%(Qw—Q)K)dL. (3.4)
Since (3.2) and (3.4) are valid for any virtual flux, a comparison of them gives
F=-d(Qw-Q¥)/dL. (3.5)
Given a void shape with the prescribed load, w is determined by the elasticity problem and K by
the geometry. Atoms diffuse in the direction of F; the void reaches equilibrium when F vanish
at every point on the surface. It is sometimes convenient to think in terms of quantity
(Qw—-Q¥K), the chemical potential. Atoms diffuse toward the position with lower chemical
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potential. This forms the basis of the instability argument in Inrodu "t~ n.

The above considerations are applicable for any kinetic relations. In the remainder of the
section, a linear kinetic relation is assumed:

J=MF. (3.6)

The phenomenological constant obeys Einstein's relation M = D, 8,/ QKT , with D, the surface
diffusivity, 6, the effective thickness of the surface atomic layers participating in the diffusion
process, k Boltzmann's constant, and T the absolute temperature. The crystal is assumed to be
isotropic so that M is constant along the void surface.

The following normalizations prevail in the remainder of Section III:

[x01/x]=[X,L,1/K]/ay, £=0,/0, T=1Q*My/d}. (3.7
A combination of (3.1), (3.5) and (3.6) gives
2
n-f:—%f(%zz-x). (3.5)

The superimposed dot signifies the derivative with respect to the dimensionless time 7. The
right-hand side is. completely determined for a given void shape and load; the dimensionless hoop
sress X is determined by the eclasticity theory. Consequently, (3.8) governs the evolution, a
moving boundary problem with only one parameter, A. Although every individual physical
origin is well understood, the evolutionary process can be remarkably complex. In what follows

we will concentrate on the aspects that have direct bearing on the voids in interconnects.

B. Initial bifurcation modes
The Rayleigh-Ritz procedure in Section IIB does not warrant that an ellipse is indeed a
bifurcation mode. Here we solve, by a semi-inverse approach, the exact initial bifurcation modes
of the circular void under biaxial stress 0, = 0, = 0, Fig. 1. The initial bifurcation modes are
first guessed, and then confirmed, to be hypotrochoids.

A hypotrochoid is the trajectory of a point fixed cn 2 circular disc which rolls, without
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slipping, upon the interior of another fixed circle. It is described by
x=cos@ +mcosnf, y=sin@-msinné, 6¢[0,2n]. (3.9)
Here n is a positive integer; m(7) « 1 measures the small perturbation from the circle. They
look like curved polygons; for n = 1 an ellipse, for n = 2 a triangle etc. To the first powerinm ,
the hypotrochiods defined by (3.9) always have the same area, 7.
The elastic solution of a hypotrochoidal hole exists in the literature, as outlined in Appendix
B. To the first power in m, the dimensionless hoop stress is
Z=2+4mncos(n+1)6. (3.10)
After some manipulations, the first order perturbation of the dimensionless curvature is found to
be
x =1+m(n?+2n)cos(n+1)8, (3.11)
and that of the surface velocity
n-x=rmcos(n+1)6. (3.12)
Substituting the above into the evolution equation (3.8), and only retaining the terms of first
power in m, one obtains that
= mn(n+1)%(8A - n~2). (3.13)
In the above cos(n + 1)@ has been canceled from the both sides. That this evolution equation is
independent of the position on the surface, 6, is significant: with a small perturbation from the
circle, the nth hypowrochoid will grow or shrink only as the ath hypotrochoid. This confirms
that hypotrochoids are indeed the initial bifurcation modes. The perturbation grows if i1 > 0, and

shrinks if m < 0. The critical load is reached when m =0 in (3.13). Thus
n+2

8
For n = 1, the bifurcation mode is an ellipse, and the critical load is A; =3/8.

(3.14)

A=

Observe that the critical loads for successive bifurcation modes are not far apart, being
spaced by 1/8. If the control parameter A is large (large void or high stress), the long term shape
will be selected according to the initial imperfection of the hole. The spatio-temporal complexity
can be resolved by tracing the evolution governed by (3.8) for various initial imperfections. The
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calculation will not be pursued here, but a variational principle identified in the follo* ing section

will ease the labor.

C. Variational principles for evolution
Numerical computation is inescapable to trace the evolution in general. Given a void
shape, the elasticity problem must be solved first, usually numerically, and the void shape is then
updated according to (3.8). The whole process is repeated for many time steps. Equation (3.8)
has been exclusively used in the previous studies, but it may not be efficient because it involves
high order differentiations of the boundary. Instead, variational principles may be used.
Variational principles have been developed for problems such as grain boundary cavitation
and powder compaction. 1920 We find a variational principle governing the shape change in the
present problem. Recall that the first law of thermodynamics (3.2) is valid for any compatible
virtual velocity and flux. Write this explicitly as _
d
E(5:») +[FasdL=o. (3.15)
The variation in @ is due to the shape change. Replacing F in (3.15) by using the kinetic

relation F = J/M, one obtains
[ j--szL] (3.16)
This suggests the following variational principle.

Of all virtual velocities and fluxes compatible in the sense of (3.1), the actual velocity and

flux minimize functional

do 1 2
M=—+|—J“dL. 3.17
e ‘2M .17
The integral extends over the perimeter of the void. For a given shape, the first term can only
vary with the surface velocity, which in tumn relates to the flux by (3.1). Consequently, I can be
viewed as a functional of either V, or J, both being functions of the arclength L. Compared

with the grain boundary cavitation problem, !° a new term, d® / dr, appears to account for energy
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variation. An example in Section I1ID will illustrate how this term works.

Using (3.3), one can also write the functional in alternative forms, e.g.

n=j[—(w-)l<)v,,+-2’ﬁ12]dl., (3.18)
which may be convenient in some circumstances. Rigorously, (3.17) only says that I1 is
stationary at the actual velocity and flux. A proof of minimum on the basis of (3.18) follows.
Let J be the actual flux that satisfies (3.1), (3.5) and (3.6). Because atoms only diffuse on the
void surface, the function J(L) is periodic with the perimeter of the void. Let Q(L) be an
arbitrary function having the same period, (/ + Q) be a virtual flux, and the associated virtual
velocity be obtained from (3.1). The virtual flux need not satisfy the kinetic relation (3.6). We
now compute the difference I1(J + Q@) -TI1(/) using (3.18). Replacing both the virtual and the

actual velocity with their associated fluxes by (3.1), the difference in I1 becomes

Q. 1 2_ 2
j{—(w— ‘)K)QI‘F?&!-[(.I +Q) -J ]}dL (3.19)
Integrating the first term by parts, one reaches ‘
. 2 (Qw—an)+ L ¢
j{aL(Qw QK+ M}QdL+ImdL. (3.20)

The first integral vanishes because J satisfies (3.5) and (3.6). The second integral is always
nonnegative because M > 0, which in turn is required by the second law of thermodynamics.
Thus, I1(J + Q)-TI(J) 2 0 for any virtual flux. This proves the variational principle.

We now wish to illustrate the versatility of the variational principle by considering how to
include electromigration. As an electric current passes an interconnect, the drifting electrons
exert on each atom on the void surface a force F' = —¢ E,, known as the electron wind force. !
Here ¢° (> 0) is a phenomenological constant having the unit of electric charge, and E, is the
electric field tangential to the void surface. The negative sign signifies that the force directs
along in the electron flow, which is opposite to the electric field. Including the work done by the
electron wind force, the first law (3.2) becomes

d¢/dz+jFJdL= jF‘JdL. (321)
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As before, J can be any virwal flux, and ® varies with the virtwal V, compatible with J. It
follows that, of all virtual velocities and fluxes that satisfy (3.1), the actual velocity and flux

minimize the functional

n=93¢, (—’- Ji- F'J)dL. (3.22)
dr 2M
It also follows from (3.21) that
F=F -9(Qw-QK)/dL. (3.23)

That is, the diffusion driving force consists of the electron wind force and the thermodynamic
forces resulting from the elastic and the surface energy. Let ¢ be the electric potential governed
by the Laplace equation. The electric field tangential to the void surface is given by
E,=-0d¢ /dL. If ¢ is constant along the surface, the diffusion driving force in (3.23) becomes
F=-3(-q"¢+Qw-QiK)/ L. ' (3.24)
The quantity in the bracket plays the same role as the chemical potential.
The above variational principles apply to a void subjected to periodic boundary conditions.
For other problems such as powder compaction, suitable boundary terms must be added. It is
straightforward to extend the variational principles for a surface in the three dimensions. There
will be two surface flux components, J, and J,, and (3.1) be replaced by the surface divergence.
In (3.17), the line integrals will be replaced by surface integrals, the surface integrals by volume
integrals, and J2 by JZ + J%. The variational principle can be used by dividing the surface into

finite elements, so that surface evolution problems can be readily solved in three dimensions.

D. How fast does a void evolve
In using the variational principles, the void shape is approximately described by a finite
number of parameters, all evolving with time. The more parameters, the better the description.
As an example, the evolution rate of a void under biaxial stress 6 = 6, = ¢ will be estimated.
The initial imperfections are such that the void will evolve in the first mode, from a circle to a

slit. As before, we will approximate the shapes between the two limits by a family of ellipses, a
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choice compromising the accuracy of the prediction and the complexity of the calculation. The
family of ellipses are

Lsin@. (3.25)

X =ggacosl, Y =gy~
The dimensionless semi-axis, a(7), is the parameter that describes the void shape; it is
restricted to be & > 1. The ellipses conserve the area, elongating and shrinking in the X and Y
directions , respectively, at the same rate.
The variational principle of version (3.17) will be used here. The dimensionless velocity is
ve=n-x=(a/a)de /dl)cos26. (3.26)
The dimensioniess flux j is so defined that (3.1) becomes v, =dj/d/. Owing to the symmetry,

Jj=0when 6=0. Integrate (3.26) and one obtains

j=5=sin26. (3.27)

The potential ® for an ellipse has been given by (2.8); m and a are related by comparing (3.25)
and (2.5). The normalized functional takes form

I1 D U
=(-Aly+1)a+=1La“. (3.28)
The coefficients I's depend on a only. Swaightforward calculations yield
h=all~a™), (3.29)
n)2 .2, -4 2
11___2 sin 26 a” cos 29 46, (3.30)
LIS Vsin? 6 + a4 cos?@
n/2
12=—1-— j sin®20Vsin?@ + a4 cos?0d6 . (3.31)
2na °

The integrals are computed numerically. Minimizing IT in (3.28) by setting J[1/da =0, one
obtains the approximate evolution rate
a=(Ay~1h)/1,. (3.32)
Two limiting cases are obtained explicitly. For ellipses close to the circle, @ — 1, the
initial velocity is
a=4a-1)(8A-3), a—>1". (3.33)
The rate a is linear with the perturbation (a - 1). This result is consistent with (3.13), noting
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a =1 + m to the first power in m. For very elongated ellipse, a » 1, neglecting the terms
with @™ in I's, one finds that
= 1~5-oz(onz - 1), anl. (3.34)
2 \2
The rate is quadratic with the semi-axis for a very elongated void, and vanishes when the Griffith
condition (2.14) is satisfied.

Equation (3.32) is plotted in Fig. 6. Denote a as the semi-axis of an ellipse and
a =a/ay>1. The ellipse will elongate further if the velocity is positive, but relax toward a
circle if the velocity is negative. Three behaviors emerge for different values of A. For A =0,
the rate is negative for any ellipse, which wil' relax to the circle under the action of surface
energy alone. For A €(0,3/8), the rate is negative for ellipse not too far from the circle, but
positive for very elongated ellipses. For A € (3/8,o), the rate is positive for any ellipse, which
will collapse to a slit.

The evolution time from one ellipse to another is obtained by integrating (3.32). The three
types of behaviors are plotted in Figs. 7a, b, ¢, respectively. Since the evolution is an irreversible
process, the time always increases in these figures. When A €(3/8,0), any ellipse will become
more elongated, Fig. 7a. The curves are plotted by arbitrarily assigning the initial value a =
1.01 at 7=0. One can also read from the diagram the time needed for, say, an ellipse with a =
1.2 to evolve to an ellipse with a = 2.0 under load level A = 5/8. When A €(0,3/8), there is an
unstable equilibrium shape for each value of A, which is marked as the dashed line in Fig. 7b for
A = 1/8. More elongated ellipses will collapse to slits, but less elongated ellipses will relax to the
circle. When A =0, any ellipse will relax to the circle, Fig. 7c. This diagram gives the relaxation
time of the ellipses after the load is removed. Conversely, the surface kinetic constant, M, can
be deduced if the relaxation time is measured experimentally.

Approximate, but explicit formulas can be obtained from (3.33) and (3.34). For example, if
both initial and final axes, a; and ap are not 100 far from the circular radius g, the time

duration is integrated from (3.33):
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4 2 -1 -
I~ = kTaq 0a _3 In 4% . (3.35)
320, 6,\ Ey 8 a;,—ay

The formula can also be used to estimate the order of magnitude even when 4 is not very close
to a,.

If the void shape is described by many parameters, (3.28) will consist of a linear and a
bilinear forms of their rates. Setting the partial derivatives of Il with respect to the rates to be
zero, one obtains simultaneous linear algebraic equations for the rates. They are solved by
Gaussian elimination to yield coupled initial value problems, which are then integrated by any
standard procedure. Of course, as the void shape evolves, the elasticity problem must be

independently solved at each step. The implementation as described is now in progress.

IV. CONCLUDING REMARKS

A void in an elastic solid collapses into a transgranular slit when the dimensionless group
0200/ Ey exceeds a critical value. The mechanism works under both tensile and cdmpressive
stress. It is important to examine this mechanism among the related ones. The &ansgranular slits
will dictate the interconnect lifetime only if grain boundary cavitation does not prevail. The
latter has been thoroughly studied; 2! the stress to initiate grain boundary cavitation is
O =27/ ay, which is substantially lower than the stress to initiate a transgranular slit. Several
considerations might explain why the transgranular slits occur in interconnects. First, a void
drifts in a line under electric current, so that even a void nucleated at a grain boundary or a triple
junction may sever the line inside a grain. ! Second, for a line having the bamboo-like grain
structure, encapsulated by dielectrics, atomic sinks are partially eliminated which, in turn, limits
the growth rate of a rounded void. 2 Third, electric current is expected to contribute in causing
the shape instability. 1! Fourth, electromigration will redistribute stress in the interconnects. 2

As discussed in Introduction, surface diffusion is the only dissipative process included in

the present analysis. Among other dissipative processes, plastic creep gives rise to the greatest
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uncertainty. If operating at sufficiently high rate, creep will relax the thermal stress in the
interconnect, and reduce the stress concentration at the tip of an elongated ellipse. Consequently,
plastic creep tend to prevent a void from collapsing, or to blunt the tip of an existing elongated
void. Creep can be incorporated into the analysis, which adds numerical complexities, but the
major uncertainty arises from the lack of precise knowledge of the creep law in submicron
dimensions. Some basic development is needed before such numerical analysis is worthwhile.
Although this work has been motivated by the interconnects, the phenomenon is anticipated
for other material systems where stress is high and grain boundaries are inaccessible for
diffusion. For example, single crystal oxide fibers under mechanical load may suffer delayed
fracture due to this mechanism. Unlike the existing stress corrosion cracking mechanisms, this
one does not invoke environmental effects. It will cause a pre-existing void inside a well coated
material to collapse; general fracture follows when the void is sufficiently elongated. It is hoped

that experiments with better controlled systems will soon succeed in sorting out these matters.
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APPENDIX A: ELASTIC ENERGY CALCULATION
An infinite body containing an elliptic hole subjected to remote stresses stores infinite
amount strain energy. Yet one can compute the energy difference between a body containing an
elliptic hole and a body containing a circular hole subjected to the same remote swess state.
Denote AU, = U (ellipse) - U (circle). The ellipse and the circle have the same area, rtag
The hole can be regarded as an elastic medium with vanishing stiffness, so it can have strains. Of
course, the stresses inside the hole vanish. For an infinite body containing an elliptic hole under

remote stress, it is well known that the strain inside the hole is uniform. Denote the applied

remote stresses as a,-}' .

and the strains inside the hole as 83-. We will show that
R L (A1)
Here Aeg are the differences in the strains inside the elliptic hole and those inside the circular
hole.
To prove (A1), consider a body of external boundary S_ containing an arbitrary hole of
boundary S,. Denote n; as the unit normal vector on the surfaces, pointing away from the solid.
Let o;; be a stress tensor independent of position. The body is subjected to the traction vector

0'};' n; on the external surface, but free of traction on the void surface. Let u; be the displacement

field in the body. The elastic energy in the body is

1 o
U,=Ejaijn,-ujd5. (A2)
s-
Rewrite the above as
1 - | P
U‘=Es IO,jniude+5J0ijniude. (A3)
-+S° So

In the second integral, the surface normal is switched to point into the solid.

To understand the first integral in (A3), one needs an auxiliary body with the same
geomerry as the original body. The auxiliary body is under the uniform stress o7; everywhere,
with traction o,-}'n,- on both internal and external surfaces. Consequently, the first integral in

(A3) is the virtual work done by the traction on the auxiliary body through the displacement of
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the original body. According to the reciprocal theorem, it is the same as the virtual work done
by the traction of the original body through the displacement of the auxiliary body. Neither the
traction 0;;n; on the original body, nor the displacement of the auxiliary body depends on the
hole geometry. Thus, the first integral in (A3) is independent of the hole geometry. Only the
second integral makes the difference when the hole changes shape or size.

To take advantage of the fact that strains are uniform in the elliptic hole, one apply the
Gauss theorem to the second integral in (A3), which changes the displacement to the strain inside
the hole, leading to (A1).

Referring to Fig. 1, for an elliptic hole subjected to remote biaxial stress state, the hoop
stresses at point A and B, respectively, are 2

o,(A)= —o,+%_t£02, o(B)= —ag%q. (A4)
The corresponding stresses for a circular void are obtained by setting m = 0. Because the point
on the surface is under uniaxial stress state, the hoop strains are given by the stress divided by

Young's modulus E of the solid. Compatibility requires that on the surface the hoor strain in the

solid is the same as the hoop strain in the "medium" inside the hole. Thus,
-4m o 4dm O
Aed =——=1 Agl = — 22 AS
* 14mE’ "” 1-mE (A3)

Substituting (AS) into (A1), one finds the elastic energy difference between a body with an
elliptic hole and a body with a i..rcular hole:

2
AU, = 2’;""

Plane stress conditions are assumed in the above; under plane strain conditions, replace E by

( 2 oi-=2 a?). (A6)

1-m 1+m

E/ (1 - vz), v being Poisson's ratio.
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APPENDIX B: STRESS AROUND A HYPOTROCHOIDAL HOLE
The hoop stress around a hypotrochoidal hole is obtained from Ref. 24 with some
manipulations. For two dimensional elasticity problems, the stress field is solved by two analytic

functions Q(z) and aXz) where z = x + iy and i = V-1, namely

G,y + 0 = 4Re[Q'(2)], (B1)
3&_;_“_" iy =10"(2)+ 0'(2). (B2)

The function
=R(¢+m¢™) (B3)

conformally maps the exterior of a unit circle on the {-plane,{ =exp(i@), to the exterior of a
hypotrochoid on the z-plane. Here n is a positive integer and 0 £ m < 1/n. The last restriction
ensures that the hypotrochoid does not have loops and only has cusps if m = 1/n. A

hypotrochoid hole under remote biaxial tension, 0,, = 0, = 0as [zl s, is solved by

Q(z)=925( --g"i,,) . (BY)

w(z)=—§[%—m¢" (’{‘;'I'ngc" D (BS)

The hole is traction free so that the hoop stress on the surface is giving by the first invariant of

the stress tensor, 0, = 0, + 0,,. From (Bl), (B3) and (B4) one finds that

2 2
o,=4Re dQ/d{ o 2 2m°n (B6)
dz/d{ 14+m*n® -2mncos(n+1)8
In the body of the text, (3.10) retains the terms up ic ‘5t power in m.
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FIGURE CAPTIONS

Fig. 1  The cross section of a cylindrical void in an elastic solid under biaxial stresses.

Fig.2  Biaxial stress state 0, = 0, = 0. a) The potential as a function of the void shape m
at several levels of A. b) The bifurcation diagram is a combination of a subcritical
pitchfork and two Griffith cracks.

Fig.3 Biased biaxial stress state 0,/0; = 0.8 a) The potential as a function of the void shape
m at several levels of A. b) Stability conditions projected on the (m, A) plane.

Fig. 4 Uniaxial stress state 6, = 0, 0, #0. a) The potential as a function of the void shape
m at several levels of A. b) Stability conditions projected on the (m, A) plane.

Fig. 5 The critical number A_ as a function of the stress ratio.

Fig. 6 The evolution rate of an elliptic void.

Fig.7 The* _e for one ellipse to evolve to another.
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