
Naval Research Laboratory
Washington, DC 20375-5320

AD-A278 759 NRL/MR/8140--94-7479
i lili l lllli lll1111 JIII11111111Jlllllllllill

Developing Software For Ease of Change:
Metrics From Later in the TRALAB System
Life Cycle

JAMES A. HAGER

HRB Systems, Inc.
State College, PA 16804

Louis J. CHMURA, JR.

Command Control Communication Computers & Intelligence , -

Naval Center for Space Technology
:,,=AY 0 4 1-994 •,/

April 11, 1994

94-13230

Approved for public release; distribution unlimited.

P,*lbc repeflaeg b~d forthi Vol Cllteabi of meunalton is estmated to evelage I hour per response. includng the timw fo revieewing squtructiam, searuc; eng ctwing data source.
acthenir and morcta~wwr the date edd. . &W compeleting aid reviwing the collection of informastion. Send comnmerse rogwdin this burden estimate or any other impact of thie

aelotdIenofad~dW lilrmte.d 1.0uin eurita far roducing thes Widen, to waverhcgan Neadgquorter Service.. Owiecorete for Information Operatio.wic,& ePAone. 1215 Jefferson
Davis Highwaiy. Suite 1204. ^Arnton. VA 22202-4302. end to the office of Manacgement arid Budget. Paperwork Raduction Propec 10704-0 1881, Washrington, DC 20503.

1. AGENCY USE ONLY Ue~ive fillnki 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I April 11, 1994 Interim
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

*Developing Software For Eane of Change: Metrics From Later in the TRALAB System Life
Cycle

6. AUTHOR(S)

James A. Hager* and Louis J. Chmura, Jr.

7. PERFORMEING ORGANIZATIONI NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory NLM/ 4-477
Washington, DC 20375-5320 R/ /84--79

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

*HRB Systems, Inc., State College, PA 16804

12a. DISTRIBUTION/AVAILABILITY STATEMENT ~12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.I

13. ABSTRACT (M&XhnuM 200 weeds)

This paper is a summary of software change and defect data collected during extended development and post-deployment sofwr
support (PDSS) for the Training Laboratory (TRALAB), a computer-based training system developed starting in 1984 by the Naval
Center for Space Technology (NCST) at the Naval Research Laboratory (NRL). Of note, the development contractor was required to
apply software engineiering technology developed previously at NRL as part of the Software Cost Reduction (SCR) project. Another
important requirement was for the collection of project metric data that could be used to evaluate the effectiveness of the SCR
approach. Data collection was accomplished by modifying customary project Software Problem Reports (SPRs).

Analysis of the data collected on SPR resolution work during extended development integration and test (I&T) during August
198 through April 1989 indicates that the application of SCR technology enhanced software ease of change. This paper is a
continuation of the earlier analysis to include PDSS SPR data collected during August 199 through May 1991. The more recent
analysis continues to suggest that identifying expected system changes during system definition stages and modularizing the system to
encapsulate these changes yield life-cycle benefits. Modifications required by changes tend to be confined to a small number of
design components, and it is easier to implement expected changes in comparison to arbitrary changes.

14. SUBJECT TERMS 15. NUMBER OF PAGES

computer programs Ease of change Information hiding 28
software PDSS SCR 16. PRICE CODE
Metrics TRALAB

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7S40-01-2804500 Stanidard Permn 299 Aev. 2431
IN orbed by AM3 VA 230-16

298-1102

CONTENTS

1.0 INTRODUCTION ... 1

2.0 BACKGROUND ... 1

3.0 DATA ANALYSIS ... 8

4.0 ACKNOWLEDGMENTS .. 20

5.0 REFERENCES ... 20

APPENDIX A - TRALAB Data Collection Forms 22

AooC•3.-fii For

D: *... .,

z, C

A-I

iii,

DEVELOPING SOFTWARE FOR EASE OF CHANGE: METRICS FROM
LATER IN THE TRALAB SYSTEM LIFE CYCLE

1.0 Introduction

This paper is a summary of software change and defect data collected during extended
development and post-deployment software support (PDSS) for the Training Laboratory
(TRALAB), a computer-based training system developed starting in 1984 by the Naval Center for
Space Technology (NCST) at the Naval Research Laboratory (NRL). Hager [89] describes the
TRALAB project in detail. Of note, the development contractor was required to apply software
engineering technology developed previously at NRL as part of the Software Cost Reduction
(SCR) project [CLEMENTS 86; HENINGER 80; PARNAS 84]. Another important requirement
was for the collection of project metric data that could be used to evaluate the effectiveness of the
SCR approach. Data collection was accomplished by modifying customary project Software
Problem Reports (SPRs).

Analysis of the data collected on SPR resolution work during extended development
integration and test (I&T) during August 1988 through April 1989 indicates that the application of
SCR technology enhanced software ease of change [HAGER 911. This paper is a continuation of
the earlier analysis to include PDSS SPR data collected during August 1990 through May 1991.
The more recent analysis continues to suggest that identifying expected system changes during
system definition stages and modularizing the system to encapsulate these changes yield life-cycle
benefits. Modifications required by changes tend to be confined to a small number of design
components, and it is easier to implement expected changes in comparison to arbitrary changes.

The remainder of this paper comprises five sections. Section 2 is a summary of NRL's
earlier SCR project, fundamental SCR design and documentation concepts, and the TRALAB
project and architecture. Section 3 contains analyses of the SPR data. Section 4 provides
acknowledgments; section 5, references. Appendix A provides the Software Problem Report
(SPR) and Software Modification Transmittal (SMT) forms used to collect and report the TRALAB
change and problem data.

2.0 Background

2.1 Problem

The difficulty of generating software that is easily maintained is evident when full software
life-cycle costs are examined. Typically, PDSS efforts account for 60% or more of the total life-
cycle costs [BOEHM 73]. One reason for such a situation may be that ease of maintenance is not a
natural by-product of many currently used development approaches and methodologies. For
example:

- maintainability requirements are omitted or not clearly identified in system requirements
specifications,

- verification of maintainability requirements is imprecise at best,
- documentation structures do not provide enough visibility for maintainability concerns,

and
- design approaches do not address directly how to ensure that modifications required by

eventual likely changes will not ripple throughout the design and implementation.

2.2 Software Cost Reduction ASmMach

Controlling software maintenance costs would seem to require changes in both software
design approaches [CLEMENTS 86; LAMB 88; CLEMENTS 83; WALLACE 87; PARNAS 72]
and supporting documentation structures [HESTER 81]. In 1978, the SCR program was initiated
by NRL and the Naval Weapons Center to develop and illustrate software technology that could be

Maunusrip apgvd Mai-b 3. 1994.

used to control software life-cycle costs. Analyses of early SCR project metrics showed patterns
that suggest that SCR technology can help to control such costs [CHMURA 90].

A fundamental aspect of the SCR approach was the principle of information hiding, a
software design concept first introduced by Parnas [72]. With information hiding, a software
"module" is treated both as a unit of work and as a unit of rework. Accordingly, software
designers should consider likely future changes when identifying software modules to prevent
unpredictable and possibly wide-ranging rework in the future. The first step in effectively
applying the information hiding principle is to identify expected changes early in the requirements
specification process. Once the expected changes are agreed upon, they are prioritized based on
their likelihood of occurrence. The expected changes are then factored explicitly into the design of
the system. The general approach is to identify and specify modules that limit the rework required
of future changes by trying to confine or "hide" each expected change in separate modules, which
are referred to as information-hiding modules. The information that will be hidden behind an
"abstract" programming interface to an information-hiding module is referred to as the "secret" of
the module. The TRALAB design architecture described in section 2.4 below is an information-
hiding module structure.

2.3 TRALAB Prori

The TRALAB program started in September 1984 with the purpose of developing a
computer-based training system to support several data collection and processing systems
developed and maintained by the NCST at NRL [HAGER 89]. Following a successful System
Definition phase, NRL redirected the effort to incorporate SCR concerns. For example, a list of
expected TRALAB changes was generated and refined over the course of the initial development,
and an information-hiding design approach was used. The rationale for the redirection was (1) to
reduce the risks associated with the history of frequent and significant upgrades experienced with
the NCST data collection and processing systems, and (2) to experiment with the SCR technology
in the development of a new NCST system.

A TRALAB system comprises 26 Zenith 286 personal computers, networked via Ethernet.
System users consist of Students, Courseware Authors, Instructors, and Administrators.
Instructors have the ability to interact and monitor students engaged in training on TRALAB
computers.

A TRALAB system consists of approximately 49,000 lines of non-commented logical source
lines (NCLSLOC) [BAUMERT 92] of Pascal code, 25,000 database records, and an additional
10,000 scenario script records. Logical source statements have a defined beginning and ending,
independent of any relationship to the physical lines on which it is recorded or printed.
Descriptions of user-interface menus and forms, as well as messages and displays characteristic of
a "target system" for which TRALAB would offer computer-based training are stored as database
entries to facilitate easy capture and change. Scenarios are script files used to control the flow of
the training simulations. Scenarios are created and maintained by trainers using utilities generated
as part of the development and, by design, do not require programming skills to develop or
maintain.

TRALAB modules are implemented as Pascal packages (non-ANSI standard
implementation). Pascal packages are similar to the Ada package construct and provide support for
information hiding concerns through separately compilable interfaces (visible to a programmer) and
implementations (hidden).

-2-

Table 2.3-1 is a list of the latest sizes of each of the third-level modules in terms of
NCLSLOC. The NCLSLOC count for Simulation Activity is an aggregate. The Simulation
Activity module comprises three fourth-level target-system-specific modules.

Table 2.3-1 Third-Level Module Size

MODULE SOURCE LINES OF CODE (NCLSLOC)

HARDWARE-HIDING
VIRTUAL OPERATING SYSTEM 2183

VIRTUAL NETWORK 1071

VIRTUAL TERMINAL 2869

BEHAVIOR-HIDING
SCENARIO MAINTENANCE 3455

DATA BASE EDITOR 1675

SYSTEM ADMINISTRATION 1740

SIMULATION ACTIVITY 12254

TRAINING EVALUATION 1724

STUDENT OBSERVATION 946

MENU PROCESSING 4599

CONTROL 718

SOFTWARE DECISION-HIDING

SCENARIO TRANSLATION 2563

SIMULATION DEULVERY 3417

VIRTUAL DATABASE 602

SYSTEM DATA 2622

TARGET DATA 2556

SYSTEM ADMINISTRATION DATA 1946

OPERATIONAL DATA 1631

-3-

2.4 TRALAB Module Structure

The TRALAB module structure is hierarchical where a submodule of a module hides one or
.more of the secrets of the parent module. The first two levels of the design hierarchy provide an
organizational road map for identifying what collections of software modules/components might
need to be modified in response to a change. These upper levels of the information-hiding design
are somewhat generic and may apply to many systems. Modules at level 3 and below tend to be
objects that will be implemented in code (e.g., as Pascal or ADA packages). There are four levels
in the TRALAB hierarchy, the first level of which consisted of the following:

- Hardware-Hiding module
- Behavior-Hiding module
- Software Decision-Hiding module

The designers of the TRALAB module structure did not adjust the design decomposition
based on NCLSLOC size or complexity of a module implementation. The decomposition strategy
relied entirely on encapsulating expected changes within distinct components of the system. This
philosophy was a departure from traditional development approaches that limit module size and
complexity to support span of control and testability concerns.

2.4.1 Hardware-Hiding Module

The Hardware-Hiding module comprises modules that would need to be modified when
system or interface hardware is replaced or modified. The Hardware-Hiding module includes
(i.e., is decomposed into) the Extended Computer and the Device Interface modules.

The Extended Computer module hides those characteristics of the computing platform that are
likely to change if the computer or its operating system is modified or replaced. It offers a virtual
computer for the remaining TRALAB software. The major submodule of the Extended Computer
module is the Virtual Operating System (VOS) module that hides some of the peculiarities and
changeable features of the OS version used initially for TRALAB. It should be noted that the VOS
offers features similar to the initial OS; in other words, TRALAB software engineers were careful
not to commit to design a new portable OS. One area where this philosophy influenced the
development approach was the TRALAB executive module (TCN). A lack of tasking primitives
in the underlying OS led to a polling approach to event notification and processing. No attempt was
made to extend existing OS functionality to support real-time tasking concerns by adding new
tasking primitives.

The Device Interface module comprises two third-level submodules - the Virtual Network
Interface (VNI) and the Virtual Terminal (VTM) modules. The VNI module hides the commercial
network software used. The abstract interface specifications written for this module identify
abstract network primitives for establishing a circuit, sending a message, and receiving a message.
If the technology for establishing a circuit or sending a message changes, other modules using the
VNI service routines do not have to be modified.

The Virtual Terminal module insulates the system from changes to the terminal by
providing abstract primitives for screen display and keyboard drivers. The display output device is
managed as a set of windows, each with characteristics to simulate portions of target screen
displays. The Virtual Terminal Interface hides the physical characteristics of the display device,
locations of the devices, and windowing mechanisms. The virtual interface provides the capability
to change physical screen characteristics without impacting existing software.

-4-

Figure 2.4.1-1 illustrates the composition of the Hardware-Hiding Module.

HARDWARE
HIDING

EXTENDED DEVICE
COMPUTER INTERFACE

VIRTUAL VIRTUAL VIRTUAL
OPERATING NETWORK TERMINAL

SYSTEM

Figure 2.4.1-1. Hardware-Hiding Module and Submodules

2.4.2 Behavior-Hiding Module

The Behavior-Hiding module comprises modules that would need to be modified if there
are changes to the required system behavior specified in the TRALAB System Technical
Specification [HAGER 89]. The Behavior-Hiding module is decomposed into two second-level
modules: the Application Driver module and the Shared Service module.

The Application Driver (AD) module is the sole controller of sets of closely related outputs.
Each of its third-level submodules hides the rules determining the values of the outputs and the data
structures and algorithms necessary to implement the outputs. Expected changes dealt with in the
AD module include the authoring exchange necessary to create and maintain scenarios, the system
administrator exchange necessary to maintain target system databases, the system administration
classroom management policies, the processing unique to specific target system simulations, the
student evaluation processing and criteria, and the student monitoring processing. A change in one
of these areas should be confined to a specific third-level AD submodule.

The Shared Service module comprises software that controls required external behavior
common to two or more AD modules. The Shared Service modules hide the characteristics of the
shared behavior and the algorithms and data structures necessary to implement the shared behavior.
Some of the secrets of the Shared Service module include AD module initialization, menu services,
and control structures common to the AD modules. A change in any of these areas is isolated to

-5-

the Shared Service modules, even though the change may affect an external behavior shared by
many application modules.

All required TRALAB system behavior is provided by the Behavior-Hiding modules.
During early design work, design credibility is established by mapping the required system
behavior identified in the System Requirements Specification to Behavior-Hiding modules.

Figure 2.4.2-1 illustrates the composition of the Behavior-Hiding Module.

B3EHAVIOR
HIDING

APPLICATION SHARED

DRIVER SERVICE

IACE EDITOR ADMNSTRATION I I PROCESSING CNR

SIMULATION TRAININGSTDN
ACTIVITY EVALUATION OBEVATIO

Figure 2.4.2-1. Behavior-Hiding Module and Submodules

2.4.3 Software Decision-Hiding Module

The Software Decision-Hiding module comprises modules that would need to be modified
if there are changes to designer-generated decisions. For example, the choice of a specific
algorithm not specified in the System Requirements Specification is a designer-generated decision.

The Software Decision-Hiding module is decomposed into three second-level modules: the
Scenario Interface module, the Database Utilities module, and the System Generation module.

The Scenario Interface module hides changes to the training scenario validation policies, the
translation process from the external scenario language used by the authors to the internal scenario
primitives, and the execution of those primitives. All algorithms to parse, validate, translate, and

-6-

execute the scenarios are hidden in these modules. These changes were allocated to Software
Decision-Hiding modules because the specific language implementation necessary to support
required training was designer-determined.

The Database Utilities module consists of software that needs to be modified if changes are
made to the database management system or to the internal storage, retrieval, or maintenance
policies. To insulate application modules from the underlying database management system, a
Virtual Database Interface module is provided. It provides the file management primitives
necessary to support indexed sequential access data retrieval. Any changes to the data access
policies are limited to this module. Target System, System Administration, Operational, and
Scenario Data modules provide the Application Programming Interface (API) services for
TRALAB databases. Knowledge of the physical representation of the TRALAB data was hidden
from consumer modules through these abstract interfaces.

The System Generation module hides the expected changes related to the software
processing environment and the underlying language. It hides the command structures necessary
to compile and link the software, values of system generation parameters that select different
implementations of a module, and specialized test software.

The Language Implementation module provides an area to discuss features unique to the
specific implementation chosen. Originally, the goal was to abstract out the underlying language
implementation. Since this was cost prohibitive, it provided an area to discuss the language
specific decisions that might affect program portability.

Figure 2.4.3-1 illustrates the composition of the Software Decision-Hiding Module.

DECISION

I II- 1 7-
INTEWACE UTILITIES GENERATION

SCNAIO SIULTIN VIRTUAL SCENARIO LANGUAGE SYSTEM
TRANSLATION DEIVERY DATABASE DATA IMPLEMENTATION ENVIRONMENT

TARETSYSEMOPERATOA
SYSTEM ADMINISTRATION DATA

DATA DATA

Figure 2.4.3-1 Software Decision-Hiding Module and Submodules

-7-

3.0 Data Analysis

3.1 Genera

TRALAB change data comprises developmental integration and test (I&T) data and post-
deployment software support (PDSS) data collected during two time periods. The first period was
from August 1988 to April 1989, and encompassed data on software design and code problems
found during Software I&T activity and System I&T activity of a major TRALAB upgrade. The
upgrade Jffort, which involved several thousand source lines of code and scenario/database
updates, preceded initial TRALAB deployment and essentially extended the initial TRALAB
development effort. All problems recorded during this period surfaced during the execution of
customer-approved test plans and procedures, targeted at verifying required system behavior as
documented in the Software Requirements Specification and the System Technical Specification.
As such, all change data collected during this period was problem-oriented, i.e., not related to
system enhancements or to discrepancies found in technical documentation. There were a total of
230 identified problems and proposed changes impacting software, scenarios, and databases for
this "I&T period". All were recorded in software problem reports (SPRs), reviewed, and resolved
under the direction of a contractor Configuration Control Board (CCB). The CCB met as needed
based on the recent number and severity of the changes and problems reported. Fourteen (6%) of
the problems were attributed to user error (i.e., were not considered system problems) and
summarily closed with the resolution that no modifications were required. The remaining 216
problems required rework to designs, databases, code, or scenario scripts. Although
documentation defects were not recorded with SPR forms, the effort recorded to close an SPR
included the updates to related technical and user documentation. Two hundred and one of the
remaining problems (93%), a surprisingly large proportion, were directly related to expected
system changes that were listed in the System Technical Specification and refined during initial
design.

The second time period was from August 1990 to May 1991, and encompassed data on
problems uncovered following initial deployment of the system. There were 39 SPRs generated
during this "PDSS period". Five (13%) of these were attributed to user error and summarily
closed. Four of the remaining problems (10%) were unresolved and remain open. The other 30
SPRs resulted in updates. Of these, eighteen (60%) were directly related to expected system
changes.

Unlike the I&T SPRs, PDSS SPRs included enhancements (i.e., 12) to existing TRALAB
functionality. Following an extensive period of operational use, desired TRALAB functionality
not originally specified in initial Software Requirement Specification was captured through the
configuration management (CM) process.

Figures 3.1-1 is a plot of the accumulation of the 250 SPRs that required, or may yet
require, TRALAB modifications. Figure 3.1-2 is a plot of the associated resolution/close-out
activity. Although all the SPRs were handled through a typical multi-step CCB process, Figure
3.1-1 indicates that for the majority of the I&T SPRs, there were no significant overall delays
between SPR submission and close-out (i.e., the final step during which the CCB verified
complete and accurate implementation of the required modifications).

Appendix A contains the TRALAB SPR forms used to document change data. SPRs could
be filled out by project engineers or by TRALAB system end users and submitted to the TRALAB
Configuration Manager. The Configuration Manager would log the SPR and schedule a CCB

-8-

38030

M - F~OTAL SM-1-390 a

175 - 7

75 To

35 n

45 NO 5AM APR DMAY

UIAMIUTEGRATION POST DIPLOYMM SOFTWARE SUPPORT

INS INS ISM IM

BY ST 060 DATE - - - BY CLOSE OUT DATE

Figure 3.1-1 SPR Accumulation

NNO VOTAIL CHAN INSN: S

.sm am tam
till 210

30010 WI

INS saw

INS5 ISM

NS 00 I I I I

AUG SEP OCT ROV SC mAeN MAR AD AG I OC!T NOV SIC JAN F12 MAM APR WAY
SOFTWARESTTU

01711WATIOM KilUo"A1 POST IEPLOTSINTSOFTWARIESUPPORT
AmSi TES *3 lST

Figure 3.1-2 Cumulative SPR Resolution Effort

-9-

meeting when a sufficient number of SPRs were collected or when the severity of a specific SPR
required immediate attention.

The CCB would validate the information on the SPR and determine a course of action. In
most cases, a software engineer would be assigned the responsibility for identifying and making
the necessary modifications to the software, databases, scenarios, and documentation, and
performing regression testing. Following successful regression testing, the Software Modification
Transmittal (SMT) form would be completed, logged, and submitted to the CCB for review and
SPR close-out.

The SMT form was tailored to collect the information necessary in determining the utility of
the SCR-based design decomposition approach and resulting module structure. For example:

"The TYPE OF CHANGE portion of the form contains entries that would indicate
where modifications were necessary (i.e., in SOFTWARE, SCENARIO,
DATABASE, DOCUMENTATION, and OTHER). TRALAB software designers
had tried to encapsulate several of the most likely expected changes as database or
scenario entries. Database editing and authoring tools were generated to facilitate
database and scenario updates. There was interest if this extra design effort paid
off.

" Number of software modules impacted by a change, and the lines of code required.
Since modifications to scenarios or database files were made with utilities and did
not require recompilation of code, such changes were designated as zero-module
impacts.

" The EFFORT field included the engineering staff hours necessary to complete
updates to the software, scenario and/or database files and to modify related
technical and user documentation.

"* The LABOR GRADE field allowed costs associated with SPR resolution to be
calculated.

Not all the elements of the SMT proved useful. It proved difficult for project personnel to
complete information on FAILURE CAUSE portion of the form. Accordingly, the following
analyses omit the subject of failure causes.

3.2 Analyses

The following analyses are based on the 246 SPRs that resulted in updates to code,
database entries, or scenario scripts. The I&T tables and graphs are based on 216 I&T SPRs; the
PDSS tables, 30 PDSS SPRs.

3.2.1 Areas of Cbang

Table 3.2. 1-1 is a summary of the total number of SPRs that required code modifications in
each of the major TRALAB functional areas. Any SPR that impacted more than one functional
area has been counted once for each area. SPRs that only required modifications to database
records or scenario script files are considered not to impact software and are not counted.

-10-

Table 3.2.1-1 SPRs Impacting Major Software Functional Areas

FUNCT7IONAL AREA NUMBER OF SPRs

Hardware-Hiding 10

Behavior-Hiding 105

Software Decision-Hiding 87

Twenty nine (12%) of the SPRs required modifications that spanned two or more
functional areas. Seventeen of these are I&T SPRs; twelve, PDSS SPRs. For both the I&T and
PDSS SPRs, most are changes that rippled across both the Behavior-Hiding submodule
Simulation Activity (SMA) and the Software-Decision submodule Simulation Delivery (SMD).
The SMA module hides the behavior of the collection and processing systems that are to be trained,
while the SMD module hides details of the simulation delivery mechanism. Unfortunately,
changes to the behavior of target systems generally required modifications to the simulation
delivery mechanism (SMD) as well as to the simulations of target system behavior (SMA).
Fortunately, modifications to the SMD module frequently were minor and related more to the
control mechanisms necessary to invoke the proper simulation activity function. A few of the 29
SPRs required modifications to the APIs of data-hiding modules in addition to modifications to
data structures used in module implementations. Changes to a module's APIs typically require
modifications to programs in other modules that use that API.

Table 3.2.1-2 is a summary of the total number of SPRs that required software
modifications in each TRALAB third-level software module. Any SPR that impacted more than
one module has been counted once for each impacted module.

There are no SPRs that required modifications spanning all three functional areas.

3.2.2 Changa Confinement

The TRALAB module structure was built around the following list of areas of expected
change, which were identified first in the System Technical Specification produced early in initial
TRALAB development.

- terminal interface (e.g., blinking approach, bolding approach, window addressing
scheme, keyboard drivers)

- underlying operating system
- networking environment (i.e., Ethernet, protocols to establish a circuit and to send and

receive messages)
- simulation messages and displays (e.g., target-system menus, queries, and prompts)
- simulation timing
- simulation commands
- student evaluation criteria and reports
- student monitoring formats
- authoring exchange necessary to create/modify scenarios

-11-

Table 3.2.1-2 SPRs Impacting Third-Level Modules

FUNCTIONAL AREA NUMBER OF SPRs
RARDWARE-HIDING

VIRTUAL OPERATING SYSTEM 3

VIRTUAL NETWORK 1

VIRTUAL TERMINAL 6

BEHAVIOR-HIDING
SCENARIO MAINTENANCE 12

DATA BASE EDITOR 8

SYSTEM ADMINISTRATION 6

SIMULATION ACTIVITY 45

TRAINING EVALUATION 8

STUDENT OBSERVATION 7

MENU PROCESSING 8

CONTROL 11

SOFTWARE DECISION-HIDING
SCENARIO TRANSLATION 12

SIMULATION DELIVERY 45

VIRTUAL DATABASE 3

SYSTEM DATA 6

TARGET DATA 9

SYSTEM ADMINISTRATION I
DATA

OPERATIONAL DATA 13

-12-

- specifications for key data structures (e.g., scenario data formats, target system display
formats, audit trail formats)

- access policies for key data structures
- mn-time environment (e.g., number of terminals, number of student errors before

instructors are alerted, standard duration for maintaining student audit trails)
- language implementation
- additional authors, students, and instructors
- additional classroom management tools (e.g., student roster generation support, student

performance trend reports)

The original TRALAB designers tried to minimize the potential ripple effect of carrying out such
changes. Table 3.2.2-1 lists the proportion of SPRs that impacted 0, 1, 2, and 3 or more
TRALAB "lowest-level" modules (i.e., third or fourth-level modules with no submodules). A
large percentage (82%) of the TRALAB SPRs impacted zero or one lowest-level modules (an SPR
resulting only in modifications to database records or scenario script files was considered to impact
zero modules). Only 3% impacted three or more modules.

Tables 3.2.2-2 and 3.2.2-3 break down the data for Table 3.2.2-1 in terms of I&T SPRs
and PDSS SPRs. No PDSS SPRs impacted zero modules. This is not surprising because by that
time the target systems to be trained were complete and stable, which was not the case during initial
TRALAB development. There is a much larger percentage of PDSS SPRs that impacted two
modules, but none resulted in modifications that rippled across three or more modules.

Table 3.2.2-1 SPRs and Modules Requiring Modification

PERCENT OF SPRs NUMBER OF MODULES IMPACTED

29 0
53 1
15 2
3 3+

Table 3.2.2-2 I&T SPRs and Modules Requiring Modification

PERCENT OF SPRs NUMBER OF MODULES IMPACTED

33 0
53 1
11 2
3 3+

-13-

Table 3.2.2-3 PDSS SPRs and Modules Requiring Modification

PERCENT OF SPRs NUMBER OF MODULES IMPACTED

0 0
59 1
41 2
0 3+

Figure 3.2.2-1 presents the same data used for table 3.2.2-1 over time. After November
1988 during the I&T period, the proportions of SPRs impacting 0, 1, and two or more lowest-
level modules remain relatively stable. After February 1991 during PDSS, there is modest overall
growth in the percentage of SPRs for which modifications ripple across two or more modules.

iW L 80 - 8

- -- 40

420

0 TA19

M O m M W mV W a MM e mAy
=%WWPWOSTOVWLOY"H OWMAM UMWPT

Amm tom logsti

Figure 3.2.2-1 SPRs Categorized By Number of Modules Changed

3.2.3 E

Table 3.2.3-1 shows the relationship between SPRs and ranges of required resolution
hours. A large percentage (82%) of TRALAB problem reports required a staff day or less (i.e., 8
staff hours or less) to complete. Table 3.2.3-2 shows an even larger percentage (90%) of I&T
problem reports were resolved in less than a staff day. Table 3.2.3-3 shows a much different
situation for PDSS SPRs. PDSS SPRs seem to require more effort to resolve on the average; only
23% were resolved in a staff day or less. One possible reason for this is that several we-- utility
enhancements, requiring several hundred NCLSLOC to complete. Examples of utility
enhancements include utilities to simplify database generation and to verify database integrity
following TRALAB upgrades.

-14-

Table 3.2.3-1 SPR resolution hours: all SPRs

RANGE OF HOURS CUMULATIVE PERCENT OF SPRs

[0, 1] 41

[0, 2] 56

[0, 3] 62

[0,8] 82

Table 3.2.3-2 SPR resolution hours: I&T SPRs

RANGE OF HOURS CUMULATWE PERCENT OF SPRs

[0, 1] 46

[0, 2] 63

[0, 3] 70

[09 8] 90

Table 3.2.3-3 SPR resolution hours: PDSS SPRs

RANGE OF HOURS CUMULATIVE PERCENT OF SPRs

[0, 1] 0

[0,2] 0

[0,3] 6

[0, 8] 23

Tables 3.2.3-4, 3.2.3-5, and 3.2.3-6 present the same data restricted to SPRs that were
related to expected types of changes (total is 219). Generally, a greater percentage of SPRs
involving changes that were anticipated by initial TRALAB software designers were easier than
unanticipated changes.

-15-

Table 3.2.3-4 SPR resolution hours: All expected change SPRs

RANGE OF HOURS CUMULATIVE PERCENT OF SPRs

[0, 1] 45

[0, 2] 61

[0, 3] 68

[0, 8] 90

Table 3.2.3-5 SPR resolution hours: I&T expected change SPRs

RANGE OF HOURS CUMULATIVE PERCENT OF SPRs

[0, 1] 49

[0,2] 67

[0, 3] 74

[0, 81 96

Table 3.2.3-6 SPR resolution hours: PDSS expected change SPRs

RANGE OF HOURS CUMULATIVE PERCENT OF SPRs

[0,1] 0

[0,2] 0

[0,3] 6

[0, 8] 27

Figures 3.2.3-1 and 3.2.3-2 present SPR resolution effort over time. By December 1989
the summary patterns found in Tables 3.2.3-1 through Table 3.2.3-6 were fairly well established.
During the January to May 1992 time frame the effects of the PDSS utility-oriented enhancements
increased the percentage of SPRs requiring more than one day to complete.

-16-

T~~lTOTA WNt ,.On

-

To 70

U:
U

TOTA

ToD.U
-

30 20

10 1 1,0 , E l I I I I I I- , P I I
AUG aSP OCT NOV WeC JAN M3 ARA AUG ISo OCT NOW weC JAN PON amA APR MAY

ECPiWAMI *YE1=
MITGRATION MTEIGIOW POST OEPLOVINffsT SOFWAM PPORT

AND TIST AND TIST

iMOtmuOrALESS HOUHOM 4DAY -. DAY

Figure 3.2.3-1 SPR Resolution Effort Categories

ISO IS

i ON

ISI ISS SS S

C 0

o- EHOUR DAA

Figure 3.2.3-2 SPR Resolution Effort Categories: Expected Changes Only

3.2.4 Module Size and SPR Occurrences

During initial TRALAB development, contractor management and a good number of the
development engineers were apprehensive over what appeared to be some rather large modules
(see Table 2.3-1). The concern was that such large entities would be defect prone. Table 3.2.4-1
shows the number of SPRs per 1000 NCLSLOC for third-level modules in different size
categories (while not all SPRs involve defects, the vast majority do). The data compares favorably

-17-

to typical industry data points [JONES 81] of 10-50 defects per 1000 NCLSLOC (average for
American-produced code). And, as of the middle of 1991, there is no clear relationship between
module size and error proneness. Card [85] and Conte [86] have observed similar results.

Table 3.2.4-1 Third-level modules and SPR rate: All SPRs

MODULE NCLSLOC SPRs per 1000 NCLSLOC
COUNT

[0, 999] 9.3

[1000, 1999] 3.8

[2000, 2999] 2.8

[3000, 3999] 8.3

[4000, 4999] 1.7

[5000+1 3.7

We do not have an answer as to why in general larger modules do not seem more error
prone. One reason may be that they were coded with more care and experienced more scrutiny
during the design reviews because of their size. A more pessimistic explanation may be that,
because test coverage tools were not used to support module-level testing, there may be numerous
undetected defects within the larger modules due to the scope of the testing required to fully
exercise all module paths. TRALAB module testing, however, was done with some care. For
example, black-box testing software was written and used to stimulate the external interfaces to
TRALAB third and fourth-level modules and compare actual with specified results.

We have a likely explanation for the small SPR/NCLSLOC value for TRALAB modules in
the NCLSLOC size category [4000,4999]. Actually, there is just one such module, the TRALAB
Menu Processing (TMP) module. Services provided by TMP are used extensively in the
implementations of other Behavior-Hiding modules; that is, TMP services are basic TRALAB
services. To avoid troublesome delays during I&T typically caused by flawed basic-service
software, TMP services were tested extensively at the module level using black-box techniques
before the module was baselined for actual use.

Table 3.2.4-2 shows the average NCLSLOC count change resulting from SPR
modifications for third-level modules in different size categories. As of the middle of 1991, there
is no clear relationship between module size and the magnitude of SPR impact on NCLSLOC
counts.

-18-

Table 3.2.4-2 Third-level modules and SPR NCLSLOC
impacts: All SPRs

MODULE NCLSLOC COUNT MAGNITUDE OF NCLSLOC COUNT
DELTAS / SPR

[0,999] 11.3

[1000, 1999] 9.4

[2000, 2999] 6.0

[3000, 3999] 17.1

[4000,4999] 7.0

[5000+] 23.2

3.2.5 Cumulative Resolution Effort

Figure 3.2.5-1 shows the cumulative average hours to resolve SPRs. There are separate
plots for all SPRs, all SPRs related to the expected changes, and all SPRs related to expected
changes that could be handled as database or scenario updates (i.e., zero-module updates). The
graphs tend to support that TRALAB engineers benefit by engineering for change, especially upon
entry into PDSS. In particular, they seem to benefit measurably from encapsulating specific
changes as database entries.

An important question is whether the differences seen in Figure 3.2.5-1 are significant
statistically. The population yielded greatly unequal sample sizes for the groups in question. There
are a very small number of unexpected changes (i.e., 27) in comparison to expected (219). The
number of expected changes that are handled as database updates (70) is somewhat small in
comparison to the remaining expected changes (149), and these two data sets exhibit some
different characteristics (e.g., spread). Unfortunately, no statistical arguments can be made at this
time.

3.2.6 Conclusions

The goals of the TRALAB program were to specify, design, and implement a system that
would promote the ability to control the:

- ripple effect when implementing expected system changes, and

- effort required to implement expected system changes.

To achieve this, initial TRALAB design engineers identified expected changes early in the
Slrequirements specification process and factored them explicitly into the identification of TRALAB

modules and the specification of abstract interfaces to these modules. Analysis of the TRALAB
* ; change data tP date continues to indicate informally that such an engineering approach controls the

" ripple of change modifications and the effort required to implement changes. Additionally,
.V.plying infor.aton hiding concepts in the definition of the module structure without regard to
6lt6mate'dule NCLSLOC sizes does not seem to negatively imct defect densies.

* 19/

:-'"- 19-

9A

Ui WAA

?A - S

1.Nu U 6A

L.4 .4L

U 6A3

4. 4ckoldget

W* Ueo

7.5ehooy oa c7l.eeomn8adwomd ti eotposbe ewol iet

7.e rda

TR-25

1.4 14

064 U.

Fiu 372-lfy.

WeUA 90 l ChMur .T ., who, ha t., and detenskntT. to E appl

thagkr.Keitre rr 3 - Ctware A eagn e Reluo Eaffrn:yi Cl O Deng Dt atier
to much into the data. This work was funded under Contract Number. N00014-90-C-2 168.

5.0 References

[BAUMERT 92] Baumert, J. H., and McWhinney, M.S. "Software
Measures and the Capability Maturity Model." Software
Engineering Institute Technical Report, CMU/SEI-92-
TR-25.

(BOEHM 73] Boehm, B.W. "Software and Its Impact: A Quantitative
Assessment." Datamation, May 1973, pp. 48-59.

[CARD 85] Card, D.N., Page, G.T., and McGarry, F.E., "Criteria For
Software Modularization." Proceedings of the Eighth
International Conference on Software Engineering, 1985,
pp 372-377.

[CHMURA 90] Chmura, L. J., Norcio, A. F., and Wicinski, T. J. "Evaluating
Software Design Processes by Analyzing Change Data Over
Time." IEEE Transactions on Software Engineering, Vol. 16, No.
7 (July 1990), pp. 729-740.

-20-

[CLEMENTS 831 Clements, P.C., Parnas, D.L., and Weiss, D.M. "Enhancing
Reusability with Information Hiding." Proceedings, Workshop
on Reusability in Programming pp. 251-257, September 1983.

[CLEMENTS 86] Clements, P.C., and Parnas, D.L. "A Rational Design Process:
How And Why To Fake It." IEEE Transactions on Software
Engineering, Vol. SE-12, No. 2 (February 1986), pp. 251-257.

[CONTE 86] Conte, S.D., Dunsmore, H.E., and Shen, V.Y. Software
Engineering Metrics and Models. Benjamin-Cummings, 1986.

[HAGER 88] Hager, J.A., and Chmura, L.J. Software Engineering Principles
Study Report, Naval Research Laboratory Technical Report, April
1988.

[HAGER 89] Hager, J.A. "Software Cost Reduction Methods in Practice."
IEEE Transactions on Software Engineering, Vol.15, No. 12
(December 1989), pp. 1638-1644.

[HAGER 91] Hager, J.A. "Software Cost Reduction Methods in Practice: A
Post-Mortem Analysis." Journal of Systems and Software, Vol.
14, No. 2 (February 1991), pp. 67-77.

[HENINGER 80] Heninger, K.L. "Specifying Software Requirements for Complex
Systems: New Techniques and their Application." IEEE
Transactions on Software Engineering, Vol SE-6, No. 1 (January
1980), pp 2-13.

[HESTER 81] Hester, S.D., Parnas, D.L., and Utter, D.F. "Using
Documentation as a Software Design Medium." The Bell System
Technical Journal, Vol. 60, No. 8 (October 1981), pp. 1941-
1977.

[JONES 81] Jones, T. C. "Program Quality and Programmer Productivity:
A Survey of the State of the Art." ACM Lectures, November
1981.

[LAMB 88] Lamb, D.A. Software Engineering: Planning For Change
Prentice Hall, 1988.

[PARNAS 72] Parnas, D.L. 'On the Criteria for Decomposing Systems into
Modules." Communications of the ACM, Vol. 15, No. 12
(December 1972) pp. 1053-1058.

[PARNAS 84] Parnas, D.L., Clements, P.C., and Weiss, D.M. "The Modular
Structure of Complex Systems." Proceedings of the 7th
International Conference on Software Engineering, pp. 408-417,
March 1984.

[WALLACE 87] Wallace, R.H., Stockenberg, J.E., and Charette, R.N. A Unified
Methodology For Developing Systems. McGraw Hill, 1987.

-21-

Appendix A. TRALAB Data Collection Forms

SPR NO.:
SOFTWARE PROBLEM REPORT I&T NO.:

SHEET __ OF
ORIGINATOR/ORG. EXT.:

DATE:
PROBLEM AREA: SOFTWARE HARDWARE

DOCUMENTATION-

INTERFACE OTHER

PROBLEM WITH: ROUTINE_ DATABASE_ DOCUMENT

SCENARIO_ TEST FILE_ OTHER

PROBLEM IDENTIFIED DURING: ANALYSIS- DESIGN_ OTHER

SOFTWARE TEST SYSTEM TEST
IF TEST: THREAD/CATEGORY CASE/SEGMENT_

BRIEF DESCRIPTION:

DETAILED DESCRIPTION:

PROBABLE CAUSE:

IMPACT:

RECOMMENDATIONS/REMARKS:

MODULES REQUIRED FOR FIX:

DOCUMENT UPDATES REQUIRED:

SETD APPROVAL: DATE:

**CM USE ONLY **

DATE LOGGED:_ PRIORITY:

ACTION ASSIGNEE: CMO:

CCB ACTION: DATE:
RESOLUTION DATE: SMT NO._ DOCS.UPDATED_

Figure A-I. Software Problem Report

-22-

SMT NO.:
DATE:

SOFTWARE MODIFICATION SHEET __ OF _

TRANSMITTAL SPR NO.:_
I&T NO.:

ORIGINATOR/ORG.: EXT.: DATE:

MODULE NAME: BASELINE ID:

CLASSIFICATION OF FILES:_
TYPE OF CHANGE SOFTWARE SCENARIO_ DATABASE

DOCUMENTATION OTHER_

SOFTWARE AFFECTED:

DIRECTORY/LOCATION:

SOURCE FILE NAMEIBRIEF CHANGED/ADDED NEW/LAST
DESCRIPTION OF CHANGE DELETED REVISION

DOCUMENTATION AFFECTED:
DOCUMENT ACCESSION #S DOCUMENT TITLE/VOLUME/DATE

FAILURE CAUSE TOTAL LABOR
CORRECTION TIME GRADE

09-ENG
-(1) REQUIREMENT CHANGE 1O-AE
-(2) MISINTERPRETATION OF REQUIREMENT 12-SE

(3) CHANGE TO TARGET SYSTEM i 4-PE
-(4) MISINTERPRETATION OF DOCUMENTATION

_(5) IMPROPER DESIGN TOTAL NUMBER OF:
-(6) IMPROPER IMPLEMENTATION OF DESIGN MODULES

CHANGED_
-(7) TIMING/SIZING LOCATION

CHANGED_
-(8) DATABASE ERROR
-(9) INTERFACE ERROR

-(10) OTHER

Figure A-2. Software Modification Transmittal

-23-

SMT NO.:
DATE:

SOFTWARE MODIFICATION SHEET __ OF
TRANSMITTAL SPR NO.:

I&T NO.:

ADDITIONAL COMMENTS:

FOLLOWING ITEMS UPDATED/DELIVERED:

SOURCE MDF/TDF
STS DATABASE
MIMPS TEST PROCEDURE
MINTS STREAMING TAPE
USER GUIDE OTHER:

* CM/SETD USE ONLY *

CCB APPROVAL: DATE:

CCB APPROVAL/RECORDED: DATE:

STATUS OF SOFTWARE CHANGES: OPEN:__
CLOSED

STATUS OF DOCUMENTATION CHANGES: OPEN:__
CLOSED-

INTEGRATION AND TEST: ACCEPTED: _ YES _ NO

I&T COMMENTS:

TEST BASELINE:
SETD APPROVAL:

DATE:
MASTER BASELINE UPDATED BY:

DATE"_____
"COMMENTS:

Figure A-2. Software Modification Transmittal (Concluded)

-24-

