
AD-A278 649imhmIhlIiil 151 Research Report
ISI/RS-93-367

January 1992

Two Processor Time Warp
Analysis: Capturing the Effects

of Message Queueing and
Rollback/State Saving Costs

Robert E. Felderman
Leonard Kleinrock

ISI/RS-93-367

January 1992

DTIC
ELECTE

S•APR2 81994U

vF D

Th~ ~Ehas bOJ a6 pproved University of Southern California

tot pubfic ae~eao •nd s it$
dstflltiofl , td Information Science Institute

4676 Admiralty Way, Marina del Rey, CA 90292-6695

310-822-1511

4 426 '107
94-12813

Two Processor Time Warp Analysis: Capturing the Effects of
Message Queueing and Rollback/State Saving Costs*

Robert E. Felderman Leonard Kleinrock
USC/Information Sciences Institute UCLA Computer Science Department

4676 Admiralty Way 3732L Boelter Hall

Marina del Rey, CA 90292-6695 Los Angeles, CA 90024-1596
feldy@isi.edu lk@cs.ucla.edu

January 1, 1992

Abstract

We present two new models and their exact analysis for the problem of two processors running the
Time Warp distributed simulation protocol. Our first model addresses the queueing of messages at each
processor while the second model adds costs for rollback and state saving. Both models provide insight into
the operation of freerunning systems synchronized by rollback.

Keywords: Discrete Event Simulation, Time Warp, Parallel Processing, Distributed Processing, Simula-
tion, Optimistic Simulation, Rollback, Speedup, Queueing, Performance Analysis, Markov Chain.

1 Introduction

The systems which we are able to create become larger and more complex every day. We have moved beyond
a point where one is able to predict the performance of a large system, be it a complex computer network
or a super-sonic airplane, by purely analytical means. Therefore, it has become necessary to simulate the
operation of proposed systems in order to better understand their behavior before huge investments are made
in their implementation. Additionally, simulation is a useful tool to examine events unlikely to occur in the
"real world", such as a nuclear attack. As the size of these simulations increase they demand more computing
time. Naturally then, one would like to utilize the recent advances in parallel computing technology to speed
up the execution of simulations. Unfortunately, it is a non-trivial task to efficiently implement a parallel
simulation system, though several techniques have been developed to do so. This paper presents analytical
models of the performance of one distributed simulation algorithm, Time Warp (TW) (Jef85].

1.1 Previous Work 0

Our research focuses on the analysis of the average case behavior of Time Warp when executing on exactly 0
two processors. In our own previous work IFK91] IKF92] [Kle89] we introduced a new model for the analysis
of two-processor Time Warp. That model did not address message queueing nor did it associate a cost

"This work was supported by the Defense Advanced Rt Projects Agency under Contract MDA 903-87-C0663, Parallel Systems ...
Laboratory.

tvddiability Codes
I Avail andjor

Dist Special

ýA-1

with rollback. Messages were only used for synchronization. This paper examines message queueing in our
first model (something which has not been addressed in any model) and rollback and state saving costs
in another model. These costs have not been adequately addressed in the previous work on two-processor
models. Lavenberg et al. [LMS83I and Mitra and Mitrani [MM841 have examined models similar to ours,
although messages were only used for synchronization in both those models. Lavenberg et al. derived an
approximation for speedup of two processors over one processor. Mitra and Mitrani, using a discrete time,
continuous state model, solved (as we do) for the distribution of the separation in virtual time between the
two processes. Mitra and Mitrani do introduce the concept of a cost for rollback and optimize the system
based on it. Their technique was to calculate the average forward progress of the system per unit of real time
(D), the average distance rolled back per unit of real time (R), create an objective function J = D- cR, then
optimize the system with respect to J. Unfortunately this is somewhat artificial. The rollback cost should
be an integral part of the model itself. When a process rolls back, it should be forced to pay a time penalty
for rollback. A second criticism is that the objective function utilizes a rollback cost that is proportional to
the distance rolled back. We believe that the cost is, at most, proportional t(, the log of the distance rolled
back and is probably best approximated by a constant time delay regardlc, of the distance rolled back.
Additionally, Mitra and Mitrani do go on to show how to allow for a different distribution for the size of the
advance in virtual time depending on whether there has been a rollback or not. We discussed in more detail
the relationship of the work of Lavenberg et al. and Mitra and Mitrani to our work in IFK911 and JKF92].

Lin and Lazowska JLL90a] have examined Time Warp and conservative methods by appealing to critical
path analysis. Also in ILL90b] they create a model to reduce the state saving overhead in Time Warp.
Though their work provides important insights, it generates different types of results than ours. Madis-
etti [Mad891 [MWM90 provides bounds on the performance of a two processor system where the processors
have different speeds of processing and move at constant rates, though again, messages are only used for
synchronization. Madisetti extends his model to multiple processors, something we do not address in this
work. Recently Nicol INic9lI [Nic90] has attacked the problem of understanding the behavior of massively
parallel simulations, both conservative and optimistic.

1.2 Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES) is generally accomplished by partitioning the simulation into
logical processes (LP) which simulate some physical process in the system. Each LP maintains an independent
local clock indicating how far forward in simulation time it has progressed. Processes interact by sending and
receiving timestamped messages. Each process operates autonomously by receiving messages, performing
internal computation and sending messages. A process will terminate once its local clock, the time of
receipt of the message currently being processed, has reached some user specified value. Certain simulations
only allow the LP to perform operations in response to messages (the messages carry the work), while other
simulations allow each LP to perform internal computations regardless of whether any messages have arrived.
For example, an LP which is simulating a single server queue only performs an operation in response to the
arrival of a message (customer). On the other hand, an LP which simulates a customer arrival process
operates without receiving any messages at all. Nicol INic9l] discusses these two types of logical processes
in more detail.

Each LP could be placed on its own processor, and one might hope that we could then gain speedup
proportional to the number of processors used. Unfortunately, this is often not the case as the system
being simulated may have only limited parallelism [Wag89]. Also, the PDES algorithms themselves limit
parallelism in their attempt to prevent the simulation from deadlocking and to ensure correctness. Several
competing techniques have been developed to address deadlocking and correctness [Mis861 (PWM79I. The
algorithm of interest for this paper is Time Warp [Jef85I an asynchronous approach which uses a rollback
mechanism invoked only when needed for synchronization. The essential problem to address when designing
an algorithm for distributed simulation is to maintain causality between events. In the physical system,

2

event A might have a direct causal effect on event B. When these two events are executed on two separate
processors, it is non-trivial to efficiently make sure that event A actually occurs before B in real time.
Time Warp maintains this causality by restoring a previous state and re-executing any operations it finds
to have violated causality. The next section describes the algorithm in more detail.

1.3 Time Warp

The basic idea behind Time Warp is to allow each LP to advance forward as fast as it can without regard
to the operation of the other LPs in the system. A TW process will choose the message with the minimum
timestamp in its input queue; set its local clock to the time on that message; process the message; then find
the next smallest message in the queue, etc. It is possible that a "straggler" message could arrive with a
timestamp less than the local clock time of the LP. When this happens, the process is forced to "roli back"
to a time before the timestamp of the arriving message This is able to be accomplished because the system
periodically saves the state of the LP. Any effects of having advanced too far (i.e. erroneous messages) are
canceled through an elegant technique called anti-messages JJef85[. Any possible gain from the aggressive
behavior of the Time Warp mechanism does not come without a cost. One of these costs is the overhead
associated with the aforementioned state saving. There are two performance tradeoffs to keep in mind when
choosing the frequency of state saving. If we save state very often, we pay a large time penalty in real time
for all the data saving operations. If we choose to save state less often, we run the risk of having to roll
back much further into the simulation time past than the time of the message causing the rollback, thus
paying the time cost of re-executing correct events. Lin and Lazowska [LL90b] address exactly this issue and
find an optimum state saving interval based on certain assumptions about the arrival of messages and state
saving costs etc. We don't examine this tradeoff in our work. Rather, we force each processor to save state
after the execution of every event so as to keep the model tractable. The other overhead of state saving is
the space required to save the history of the LP. Fortunately, we do not need to keep all state information
back to the beginning of the run. A concept called Global Virtual Time (GVT) [Jef85] allows the system to
periodically throw away obsolete information. GVT is defined as the minimum of all the local LP clocks and
the timestamps of all messages in transit. Since nothing in the system has a timestamp less than GVT, no
process could ever be forced to roll back to a time prior to GVT. Obviously GVT is a very difficult measure
to obtain, since we cannot take a "global" snapshot of this distributed system [Lam781. Algorithms have
been developed to calculate a lower bound on GVT [Bel901 which can be used as an estimate to free up
memory space.

2 Message Queueing Model

We now introduce our model for two processor TW which allows messages which arrive in the virtual time
future of a process to be queued. Additionally, the messages carry work for the receiving processor.

2.1 A Model for Two Time Warp Processes

Assume we have a job which is partitioned into two processes, each of which is executed on a separate
processor. A process at virtual time v operates by first executing any message in its input queue with
timestamp v and then executing any locally scheduled work. Once completing its local work at virtual time
v, a process advances its clock one unit and will then send a message to the other process with probability
q%. A process places its current virtual time on any message it sends. We will restrict the virtual times in
our system to have integer values (i.e. 0, 1,2,...). A process will schedule an event for itself at every point
in virtual time. This means that processes will have their own work to do at every point in virtual time, and
occasionally will have work sent to them from the other process. If a message arrives with a timestamp v

3

equal to or smaller than the local clock time of the receiving processor, that processor is forced to rollback
(discarding any work performed at a virtual time greater than or equal to v), execute the arriving message,
then proceed forward again from virtual time v. We show the execution sequence for each LP in Figure I
Let v be the local clock time kept by the LP and let t, be the timestamp on any arriving n;ssage.

I Set local clock (v) to 0.
2 Execute local events for v=O.
3 With probability q(i), send message stamped with 1.

REPEAT
4 Advance local clock to v=v+l.
5 Process message in queue with timestamp = v (if it exists).
6 Execute local events for time v.
7 With probability q(i), send message stamped with v+l.
UNTIL (v >= MAXTIME) 0

* If a message arrives at any time with a timestamp (tan <= v):

- set local clock to tm
- goto line 5 and continue from there

Figure 1: Code executed by each processor.

More formally, we define two processes each executing on a separate processor. As these processes are
executed, we consider that they visit the integers on the x-axis each beginning at x = 0 at time t - 0.
To process a queued message, each processor takes an exponentially distributed amount of time with mean
I//A- (i = 1,2). To process its locally generated work takes an exponentially distributed amount of time with
mean 1/Ai (i = 1,2). We assume that fi = f>, where 0 < f <_ o0. After process i makes an advance along
the axis, it will send a message to the other process with probability q% (i = 1, 2). This message carries the
a timestamp which is the time of the sender after making the advance. Upon receiving a message from the
other (sending) process, this (receiving) process will do the following:

1: If its position along the x-axis is behind the sending process, it queues the message.

2: If its position is equal to or ahead of the sending process, it will immediately move back (i.e., "rollback")
along the x-axis to the current position of the sending process and begin to process that message. All
work completed at virtual times greater than or equal to its current position is discarded and must be
re-executed.

Let F(t)= the position of the First process (process one) at time t and let S(t)= the position of the
Second process (process two) at time t. Further, let

D(t) = F(t) - S(t).

D(t) = 0 whenever Case 2 occurs (i.e., a rollback). We are interested in studying the Markov process D(t).
From our assumptions that F(0) = S(0) = 0, we have D(O) = 0. Clearly, D(t) can take on any integer value

4

Proc. 1

0 1 2 3..

I I I I I I I I I I I i

0 1 2 3 ooo

s(t1) F(t1) F4t2) S4t2)

D(tj) = F(t1) - S (tj) D(t2) = F(t2) - S(t 2)
(D(tj) > 0) (D(t2) < 0)

Figure 2: States of two processors at times tj and t2 .

(i.e., it certainly can go negative, see Figure 2 which shows the position of two processors at times t1 and
t 2). We will solve for

limPtD(t)=k] -oo < k <oo

namely, the equilibrium probability for the Markov chain D(t). In order to find the solution, we split the
chain into five regions.

Pk = lir P[D(t) = k and Processor 2 is not processing a msgj k > I
[-r s

Qk = lim P[D(t) = -k and Processor 2 is not processing a msgj k > 0
t-0o

Sk = lim P[D(t) = k and Processor 2 is processing a msg] k > 0

t-0ooRk = lira P[D(t) = -k and Processor I is processing a msg] k _> 0

No = lirn P[D(t) = 0 and neither is processing a msgj
t-00%

B0 = lir P[D(t) = 0 and both are processing a msgJ
t-00

Using our solution, we will go on to solve for some interesting performance measures including the average
rate of progress of the two-processor system.

There are some implicit assumptions in our description. Our model assumes that states are stored after
every event, otherwise a rollback would not necessarily send the processor back to the time of the tardy
message; rather it might have to rollback to a much earlier time, namely, that of the last saved state. When
process i causes the other process to rollback, process i immediately discards any messages it has queued in
its future. This is as if the rolled back processor is able to transmit anti-messages instantaneously. This is
not an unrealistic assumption in a shared-memory environment [Fuj89). Another implicit assumption is that
each process always schedules events for itself. We assume that communication between processors incurs
no delay from transmission to reception. Finally, the interaction between the processes is probabilistic.

5

(fo al (fomkn)))

Figure 3: State Diagram for the Message Queueing Model.
2.2 Analysis of the Message Queueing Model

In this section we provide the exact solution for the continuous time, discrete state model introduced in
Section 2.1. First, we provide some definitions.

A, = Rate at which Processor i processes local events

/•= f A, = Rate at which Processor t processes messages"a -

0 1 + A2

A = a+•f

B = a+af
q = Pf (processor sends a message after advancinga i

S= 1-qi

A state diagram for this system is shown in Figure 3.

6

Aj=Rt twicPreso i prcse loa evnt

The balance equations for our system are:

Ph = aPk-j + q 2q Pk+, + VI'aS k > 2 (1)

PI = aNo + aq2 "q P2 + 1fSi (2)

Qk = 'dQ,- I + a'qlq 2Qk+,1 + afRP k > 2 (3)

Q1 = dNo + a~1l2Q2 + afR, (4)

No = a-ql 42Q1 + -q2"41P, + afRo + af So (5)

00
cc

f Bo = "dql q2 PI + aq, q2 Q (6)
i=1 i=1

ASA = aSk-I +aq2qqPkl k >0 (7)

ASo = "qq2qj P1 + aq1-2 F Qj + af B,) (8)
i=l

BRk = -Rk-1 + a7qq2Qk+, k > 0 (9)

00

00

B Ro = a'l 2 1 + S 2qlZ P s~ (10)

i=1

I. P+ Q + S + (11)
s=1 :=l i--O ,--O

This system will have a steady-state solution if >, > 0, qj > 0 and f > 0. These are fairly straightforward
restrictions. The A, must be greater than 0 or the system makes no progress at all. The qj must be greater
than zero so that there is some probability that a processor will be rolled back once it gets ahead. Finally,
f must be greater than zero so that when a message is being processed the system will eventually complete
the operation.

We define the following z-transforms (note the different ranges on k):
00 00

P(z) = Pz' Q(z) = E QkZ,
k=1 k=l

00 00

S(z) = Skzk RW =) Rkzk.
k=O k=O

Using the above equations we can solve for P(z), Q(z), S(z) and R(z) by multiplying the appropriate
equation by zk and summing over the applicable range of k. To simplify the expressions we define the
following:

Fs = qý2P(1)+(I- q2)Q(1)
FR = aqlQ(1) + (I -aqj)P(I).

7

Solving for P(z) in terms of S(z) we get

z (- (AS(z)f) + Fsa-afql + Pi-a(A - aq1) 2 - ANoaz) (12)

A (O, 2 - z + az2)

and for S(z) in terms of P(z) +
S(z) =ql (P(z)-•42 + Fsaz) (13)

z (A - az)

Solving them simultaneously we arrive at

- z(- (Fsa2"df qiz) + Pi• (A - aqj) 42 (A - az) - ANoaz (A - az))
A(-(d (A - aql) 42) + (A + a~ql4 2) z - (1 + A)az2 + a2z 3)

_(Z P laq, (A - aqj) 2
2 - ANoa-aqlq 2 z + Fsaq, (d (A - aqI) 4 2 - Az + Aaz2)

SA (- (a (A - aqi) 42) + (A + a~q17 2) z - (1 + A) az2 + a2z 3)

The numerator polynomial, N(z), for P(z) is simply

N(z) = - (z (- (Fsa 2"dfqiz) + Pid (A- aqI)'•2 (A- az) - ANoaz (A- az))).

Moreover, the denominator polynomial, D(z), for P(z) may be factored as follows:

D(z) = Aa2 (z - ri) (z - r 2)(z - r 3).

where ri, r2 and r3 are the roots of the cubic polynomial in D(z).

1 + A - 2 V - A + A2 - 3a-qq1 -2 .cos(2,.• d)
ri = -3a

1±--1
r2= I + A - 2 - - A +3A 2 -3a -2 cos()

3a

r'3 =3a3

Symmetric roots (sl, s2, S3) for the denominator of Q(z) can be written down directly

i + B - 2vrl - B + B2 -3a 2 c•(k)
33-a

1 + B - 2 v/ -B+ B 2 - 3aaq-'q2 cos(-')
82

=

33-a

where

(,=((A- 2) (1 + A) (2A - 1)) + %3ý2 (-3A + 3aqi + (1 +A

0. = arcco(-((B - 2) (1 + B)(2B - 1)) + 9a-t (-3B + 3"q2 + (1 + B)-q)

8

See Appendix A for a derivation of the roots. It can be shown [Fel9lJ that rl, r2 and r3 are real and that
I r2 I< I while I r, 1, 1 r3 1> 1. Since P(z) is the z-transform of a probability distribution, it must be analytic
in the range I z 15 1, and we know that N(z) must go to zero at z = r2. We can use this fact to solve for
P1, yielding

ar2 (Fsa'fql + ANo(A - ar2))
a (A - aqj)'42 (A - ar2)

Substituting this value back into N(z) we may write

N(z) = Aaz (z - r2) (Fsa2fq1 + No (A - ar 2) (A - az))
A - ar2

and thus

P(Z) =z(Fsaifq, + No (A - ar 2) (A - az))
a (A - ar2)(r - z)(r3 - z) (14)

A similar procedure can be carried out on S(z) resulting in

S(z) = q, (No'•q2 + Fs (I - ar 2 - az))

a (ri - z) (r3 - z)

Moreover, Q(z) and R(z) are symmetric in (a, U), (qj, q2) and (31, A) to P(z) and S(z) so we can write them
down directly.

Q(Z) = z (FRa-afq2 + No (B- -'82) (B - "dz)) (16)-a(B -as2) (s, - z) (s3 - z)

R(z) = q2 (Noa7q + FR (I - s 2 - z)) (17)'d(s1 - Z) (S3 - Z)

Recalling that Fs and FR are functions of both P(1) and Q(l), we see that P(z) and Q(z) are functions
of P(1), Q(1) and No. We solve for P(1) and Q(1) by solving Equations 14 and 16 simultaneously with
Z = 1.

P(1) = CpNo Q(1) = CQNo

where

Cp = 1C + C OC^ -CpC•

I CpqCV - Cqq + CppCqq

CO. = - GppCq% + C^Cqp
I Cp, CpqCq -Cqq + CppCqq

and

a (r, - l) (r3 - l)

(r1 - 1)(A - ar 2)(r 3 - 1)

CP9l -dql (I - 4q2)
(r1 - 1)(A - ar 2)(r 3 -1)

Cqm af

I(Sl - 1)(s3 -(1)

=9 af(1 - aqj) q2

(s, - 1) (B - •S2) (s3 - 1)

Cqq a2 fql 92
(s1 - 1)(B -s82) (s8 - 0'

9

Noting that P(1) + Q(1) + S(1) + R(No+Bo=wesovefor N.

No= [1+ (CQ&+Cpd)q9q2

f
CFaufq, + if (A - at2) q, (Z2 + CFs (a - ar2))

+ a(ri - 1)(A - ar 2) (r 3 - 1) + a(r 1 - 1)(r 3 - 1)

+ CF,-aafqý +af(B-i32) + epj(a~l + CF. (a -3s2))]-(
U (s, - 1)(B-i12)(s 3 - 1) 3(31 - 1)093 -1)

Finally, by inverting the transforms we find the probability of being in any state (other than NO).

Pk = Ki + K2 k> 1 (19)

Q = K3 ()• +K4(I) k>1 (20)

Sk = K(+K6 (k>0 (21)

/* = K 7)" +Ks () k>0 (22)

Bo = No (CQa + Cpa) q q2 (23)f
where

No (CFsaifql + (A - arl) (A - ar 2))
a(A - ar 2)(r 3 - ri)

K2 No (CF, doafq + (A - ar2) (A - ar3))
a(A - ar 2)(ri - r3)

K3 = No (CF, af q2 + (B -Is1) (B -as2))
'(B - s 2) (s3 - s1)

K4 = No (CpFdafq2 + (B -as 2) (B -as3))
"" (B -1s 2) (s$ - 83)

Ks = Noqi (7R2 + CF, (I - ar 1 - a"2))

ar, (r3 - r1)

K6 = Noqi (Z2 + CF, (1 - ar2 - ars))
"a (r" - r3) r3

K7 = No9q (as1 +G (l(- -S1 aS2))

K Noq2 (a~1 + CF, (1 -1s 2 -5s 3))
i (s1 - ss) s3

CF, = CPiq+GQ (1- q2)

CF. = CQqW + Cp(1 -aql)

10
lO0

This completes our calculation of the explicit expressions for the equilibrium state probabilities of our chain.

2.3 Performance Measures

Using the solution to the Markov chain which was calculated above, we may solve for any performance
measure of interest. In the following sections we examine a few important ones.

2.3.1 State Buffer Use

When a processor completes its local processing it advances its clock by one time unit. Therefore, if a
processor is ahead by k units of virtual time (k units of distance on the axis), then it will need to have saved
k states. The expected number of buffers ('H,) needed to save state at each processor can be found from

00E = •(P + S.)

(KI + Ks)r+ (K 2 + K 6)r 3 (24)
(ri - 1)2 + (r3 1)2

00

R2= Zi(Q: + R.)
i=I

(K 3 + K 7)S$ (K 4 + K8)s3

(s, - 1)2 + (13) (25)

More interestingly, we find that the probability that a fixed size buffer of size b > 1 overflows at processor i
(E,,b) is

00

0,'b = (P. + So
i=b+l
00 b

S (P +Si)-_ E(pi +S,)
i=O i=0

(K 1 + Ks) (K2 + K6)
- rib(r, - 1) r 3b(ra - 1) (26)

02,b =) (Qt +1A)
i=b+l

00 b

= (Q + R.) - E(Q, +R,
i=0 i=O

(K 3 + K7) + (K 4 K8) (27)
-b(S1) 3 3 b(8 3 -

2.3.2 Message Queue Distribution

Messages which arrive in the virtual time future are queued until the processor completes all work with a
virtual time less than the arriving message. We define the size of the message queue as the number of messages
queued in the virtual time future of the processor, plus any message which is currently being processed. The
distribution of message queue length at each processor is found by summing over the appropriate ranges of
the state probabilities.

11

mi~k Pik msgs queued at Processor 1]

0k -k + 0 0 k >2ik~

Kn I~ksi K2 4 2i l Rqs ksq>k 2

En, k k-1 Q2 42~~+~B1
1 +B

K3q2si F K7s1 -I, K0q2 '3 8 s3 +K S

-Il Q'-2~- + +E2+ -+-BO

(S1 _ ý2)2 Sl - q2 (S3 _42)2 S3 -

rnI,o =P(l) +S(1) +No +ZQ~i42

=P(l) +S(l) +No + K 342 +K 47q2
Sj - 42 S3 - 2

rn2,k P[k msgs queued at Processor 21

M2,k = 0Pi(ql kq1 i-k + 00 - k> 2

Kiqikrl- KSqik-Ilr+ K2 q1 k3 + Keqi klIr3

(r _4)kl(r q ~)k (r3 _-4)*+ (r3 _ l)k

rn2,1 = Fjiqj 41'- + S3~1 ' + Bo

- llr F~~~1 K~r +-~l3+K + Bo

m2p = Q(1) +R(1) +No + iPq'

=Q(1)±R(1)+No+ K"' + K27qi
rj -q 1 r3 -q, 4

The mean number of message buffers needed at each processor is

00

~i7TI
i=0

_1 s(K30 +K7 (SI- 42)) +S3 (KOq2+ K8S3a-9 2))+B
(a, _1)2 +(S3 -1)2

W- = 00

= r (KI qi+ Ks (ri- 41)) +r3 (K2ql +K6 (r3 + Bo.
-(ri _1)2 + (r3 _1)2 +B

12

2.3.3 Normalized Rate of Progress

From the complete solution of the Markov chain we calculate the average rate of progress of the two processor
system. We define -t as the average rate of progress in virtual time of the two-processor system. This value
is simply the average "unfettered" rate of progress of the two processors minus the average rollback rate.

" "l = (i+A2) (Qk+No + EP

"0 000 00

+11E~ 12E R - AM EP(k- 1)-jjEQk(k- 1
k=O k=O k=1 k=1

(Al + A2) (-•K + K-2 + No + sK + K3'_---)

-rl -r 3 - lS+ -1 ,3-13

*-Ajqj (K 3 + (K 1)2 - A2 q2 (r 1)2 + (r3- 1)2) (28)

We can calculate a "normalized" rate of progress (F) by dividing the above equation by (A, + A2). We arrive
at

r K,1 + K2 K+No + (3 + K 4)
G1-I r3 -1I s-i1 $3 -I1

+a Ksrl K 6,-3 +~ (7sl K 8S3

r, - I r -- 1) 1 + - I S3- 1)

{2K + (K 2) -)aq (+ (K3 1)2)" (29)

It is interesting to note that as f --+ oo the message processing time approaches zero, therefore messages
are only used for synchronization and our system reduces to our original model [Kle891. In Figure 4 we show
the value for r when a = 1/2 and q, = q2 = q which we refer to as the Symmetric, Balanced case. The figure
shows F versus q for various values of f. We see that for the best performance we want q to be small and
f -* oc. This is the case where there is little interaction between the processors and it takes zero time to
process a message from the other processor. By setting f = 1 we can examine r versus q only. This plot is
shown in Figure 5 compared to the average rate of progress for the same system where messages are only
used for synchronization (f = 0o). We see that the system where messages carry work performs more poorly
than where they are only used for synchronization. This is no surprize since there is more work to do. It is
interesting to note that this system is not twice as bad as the synchronization-only system even at q = 1. In
fact, at q = I we can verify the I result for f = 1 by realizing that each processor will always have a message
to process. Therefore, the rate of progress at each step is governed by the maximum time it takes for the
two processors to each finish a message and local work. This is simply the expected value of the maximum
of two 2-stage Erlangs at rate A which is equal to A. Taking the reciprocal and dividing by A to find the
rate, we get F = 4/11 which is the value plotted in Figure 5.

13

0 | ,

1.0 Normalized Rate of Progress

(a la/2 ql q2 =q)

0.8

f= 10
0.6

f 2

0.4 f... fI

f= 3/4

f= 1/2

0.2-
f= 1/4

f= 0.1
f = 0.05

0.0 f f= 0.01

0.0 0.2 0.4 q 0.6 0.8 1.0

Figure 4: r versus f and q for the Symmetric, Balanced Case.

2.4 A Specific Example

To better understand the above results we explicitly calculate values of our performance measures for a

specific instance of the parameters of our system. The values chosen are given below.

11 \2= 9
11 9

20 20
a==

1 1

Note that processor one will move slightly faster than procesor two while the cost of processing a message is

the same as processing a locally generated event. Finally, processor one will send a message with probability

1/2 while processor 2 will send a message with probability 1/3 after advancing.

14

1.0 Normalized Rate of Progress(a-= 1/2, q1 = q2 = q, f = 1)

0.8

(f 1)
A0.4 -4/11

0.2 Msg. synch. only

Msg. carries work

0.0 - -- . - - I IT

0.0 0.2 0.4 q 0.6 0.8 1.0

Figure 5: r versus q for the Symmetric, Balanced Case.

2.4.1 State Probabilities and State Buffer Use

The resulting equations for the probability of being in any state are

No , 0.0781

Be • 0.0423

0 0.114 0.0359
PI c 1.2817 2.086* k_>

0.1385 0.0605
S 1.702O 2.4688 k 1

0.0452 0.0175
1.28 + 2.086 k -

0 0.0319 0.0203
1.702k + 2.468 0

These probabilities are plotted in Figure 6. As you would expect, Pk > Q; and Sk > Rk since processor one
is moving at a faster rate than processor two. The expected number of buffers needed to save state at each
processor (Wj) is given by

0 C
,= Zi(P, +S,)) 2.5489

s=1

i=1

15

0m m mnnmln U glllllllil ln i n[ili

0.08

0.06.

0.04

0.02

7 6 5 4 2 1 0 1 3 4 5 6 7 8 9 10

Rk)(S)

Figure 6: State probabilities.

From the values for 81,b and E2,b

0.5663 0.0169
1.281b 2.086b

0.2428 0.0273
1.702b 2 .4 68 b

we find that with probability > 0.99 processor one will not need more than seventeen buffers. A similar
value can be found for processor two.

P[Processor 1 needs > 17 state buffers] • 0.00841 < 0.01

P(Processor 2 needs > 6 state buffersi] 0.00988 < 0.01

16

0.8

0.6

S0.4, ii
S0.2 - mIk

I•0.0
0 1 2 3 4 5 6 7 8 9 10

k

Figure 7: Distribution of the number of messages queued at each processor.

2.4.2 Message Queue Distribution and Buffer Use

The distribution of messages at each processor is given below.

m1,0 • 0.7569

M*r,1 0.1805

MIA _ 00 I-2'-A+ 0.0319 0.0203 i(\
1 .702' 2.468') k- 1

00 1k2'- t 0.1385 0.0605 i k >2

Ffi i (1.(702' 2.468' Jk>

Mr2.o 0.4074

m2,1 0.2441
00 1' 0.04517 0.0175ý

E 2i 1.281' 2.086')k -1)
i=k-1

+ 00! 0.114 0.0359 (i) k> 2
E,2 1.281 2 k86'_2

The values of these functions are plotted in Figure 7. The mean number of message buffers needed at each

processor is

*-- 0.3346

M2- 1.5562.

17

0

As with the state buffers we can find the number of message buffers needed to store messages such that the
buffers will overflow with probability < 0.01.

P(Processor I needs > 3 message buffersi ; 0.0063 < 0.01

P[Processor 2 needs > 9 message buffersl : 0.0097 < 0.01

Finally, the value for the normalized rate of progress is r ; 0.5071.

2.5 Summary

We introduced and solved exactly a new model for two-processor Time Warp operation. The importance
of our new model is that it explicitly accounts for the work that must be performed by each processor in
response to the receipt of a message. Messages that arrive in the past cause rollbacks, while messages that
arrive in the future are queued until the LP moves forward in simulation time. In all cases the messages
create work for the LP.

With the complete Markov chain solution we calculated the normalized rate of progress of the two
processors, and the distribution of the number of messages queued at each processor. Further, we found the
expected number of buffers needed to save state and/or messages at each processor. Since we have the exact
solution to the complete Markov chain we can calculate nearly any parameter which might be of interest.

3 A Model for Rollback and State Saving Costs

If the costs for rollback and/or state saving are high, TW may perform poorly. The following sections
examine the two-processor system when we account for rollback and state saving costs. •

3.1 The Model
We use a model similar to the one introduced in Section 2.1, a continuous time, discrete state model where
each processor mait. s only single step state advances whenever it advances. Right after a processor is forced
to rollback, it pays a cost for restoring state by making the expected rate of forward progress smaller than
normal for one event. When processing the "rollback event" each processor moves at a rate A. = f)ý where
0 < f < 1. Once this event is completed, the processor moves again at its normal rate of %,. Note that when
f I there is no additional cost for rollback and this model reduces to the one in [Kle89]. We add a cost
for state saving in Section 3.3.2.

To solve the system we separate the Markov chain into five different regions again.
Pk = lim P[D(t) = k and Processor 2 is not in a rollback state] k > 1

t-0OO

Qk = lim PfD(t) = -k and Processor 1 is not in a rollback state] k > I

Sk = lim P[D(t) = k and Processor 2 is in a rollback state] k > 0
t-00o

R- = lim PID(t) = -k and Processor I is in a rollback state] k > 0
t9.o0

P0 = lir P[D(t) = 0 and neither is in a rollback state]

18

F r : t i m r l C ost Mdl.

(Froi n &Hk)W0 q 2q q

2 S2

3.2 Analysis of the Cost Model

In this section we find the exact solution for the model which addresses rollback and state saving costs. The
parameters of this system are

A, = Rate at which Processor i processes events
= fiAu = Rate at which Processor i processes after a rollback

A1

A1 + A2
0 = A2 _

A1 + A --
A = a+'af
B = "a+af

qi= P[jih processor sends a message after advancing]
* = l

A state diagram is shown in Figure 8. Note th ththe So and R0 states were duplicated to keep the figure from
being too cluttered with transition arcs. As with the previous model, this system will have an equilibrium

solution when A, > 0, q, > 0 and f > 0.

0
19

a0I+A

The balance equations for this new system are

(A +0)Sk = •Sk_, k > 1 (30)

00
00

(Al +/,2)SO = Al qzEQ.+31 qi R (31)
i=1 i=1 0

(A2 + i)R* = A2 Rk-j k > 1 (32)

(A2 + 3A)RD A2q2 E AP +,3q2 E S, (33)

i = l
i= l1

(Al + A2)Pk = AIPk-I + A2q 2 Pk+l + B24 2 Sk+l k > 2 (34)

(A1 + A 2)P1 = AlPo + A242P 2 +00 2 S2 +,3 1 Ro (35) 0
(A1 + A2)PO- = A1\4 1Q + A242P1 + 0141R, + ,322S, (36)
(A2 + AI)Qt = A2Qk-I + A1q1 Qk•+ +/3141 R*+l k > 2 (37)

(A2 + A1)QI = A,2PO + A\1 1Q2 + 014,R 2 +02SO (38)

0 01 00 000

= po+ZP,+ZQ,+ES,+ER, (39)
i=1 i=1 i=1 i=l

As before we define the following z-transforms (note, S(z) and R(z) are defined from k = 1 not k = 0 as
in the previous model):

00
00

P(z) = • •Pzk Q(z) = EQzk
k=1 k=1

00
00

S(z) = 1 Sk•k R(z) = Z Rkzk.
k=1 k=1

We proceed to find P(z), Q(z), S(z) and R(z) by multiplying the appropriate equation above by zlC and •
summing over the valid range of k. This leads to

- - (Aa (Po + &of) z2) -"Z 2 (AS(z)f - API z - Soafz)P(z) =(2 za 2
A (a'q-2 - z + aZ2)

Q(Z) = - (B- (Po + Sof) z2) - aq, (BR(z)f - BQIz - Rolfz)
B (a•, - z + adz2)

Soaz
S(z) = -az

B - -azR(z) = B-•z" •

Substituting the value for S(z) into the equation for P(z) we arrive at the following equation which
defines P(z).

(Z) = z (- (SoA 2d#z2) + APjZ 2 (A - az) - Aa (Po + Rof) z (A - az)) (40)
A (A - az) (Z2 - z + az2)

20

The denominator of P(z) can be factored into A(A - az)(z - r1)(z - r 2) and the denominator of Q(z) into
B(B - 7z)(z - si)(z - s2) where

1± 4-/1 -4a~q2(,r•, r'2) = r-Taq
2a

(s1 , s 2) = 1± 1 - aaq
2-a

It is simple to show that r, and r2 are real and that rl >, 1 while 0 < r 2 < 1 1KF921. Since P(z) must be
analytic in the region I z 1:_ 1 the numerator of P(z) must go to zero when z = r 2. Using this information
we solve for P,.

P, ar2 (Soa-fq2 + A (Po + Rof) (A - ar2))

A (-2 (A - ar2)

We substitute this value back into the equation for P(z) and arrive at

P(z) = z (Soadf-2 + (Po + Rof) (A - ar2)(A - az)) (41)
(A - ar 2) (ri - z) (A - az)

Similarly for Q(z) we find

Q(z) = z (Roa~fTqh + (Po + Sof) (B - Us2) (B - z)) (42)
(B - 3s2) (s3 - z) (B - -z)

Our task now is to find the values for the unknown constants Po, So and Ro. We can solve the equations
for S0 (31) and R0 (33) simultaneously to find

q, (a2 q2P(1) + BaQ(1))So =Baqq
A B - da~ql qý

q2 (AfP(l) + a2qlQ(1))
AB - d-aqjq2

The above values are substituted into the equations for P(z) and Q(z) and we find P(1) and Q(1) by solving
Equations 41 and 42 simultaneously with z = I to arrive at

P(1) CpPO Q(1) CqPO

where

S= CM + CpqCqp- CC9qq
I- Cp - CpqCgp - Cqq + cppCGq

= 1= C ,Cqp + Cqp. - CppCqp
I Cp qp - CCcq - Cq + Cppc

21

and

CPP -dq (Af A + da~qi42 - af Ar2)

CP=(AB- -a~qlq2) (r -1) (A -ar 2)

Cpq ~a 2q, (Afq 2 + SB-2 - afq~r2)

-(AB- -aiqq 2) (r,-l) (A -ar 2)

Cqp0

-a 'a2q (Bf qi + A7q, - a! q, 32)

(AB- -a~qjq2)(si - 1) (B -dS 2)

Cqq aq 1 (Bf B + a-q2ý-df BS2)
Cq-(AB - a-aqlq2) (sj - 1) (B - as2).

PO is derived from the fact that the probabilities must sum to 1.
Finally, the equations for P(z), Q(z), S(z) and R(z) can be inverted to find the complete solution to the

Markov chain.

Pkc (Po +Rof) (2) k(>A k1 (43)

S, S -a) k>O (44)

Q = (PO+SOf) (I)'+B. ((1)kq (~k) (45)

R = Ro(d)" k >0 (46)

so = GsIIPo
Ro = C&OPA

=S. qi (CQaB + Cp-i 2~)
AB- -a~qjq 2

C& (Cpý-A + Cqa2 qi) 92
CR4 AB - artqiq

I +(i ,+ S +Cs,,a + C&p_+ I +Cs. f +1I+Cpof
Uf a! (si -1) (ri-I1)

CS04 + C&ZR1) 1(7
+ (r1-T 1) (A -ar 2) (si - 1) (B- Z 2) (7

22

3.3 Performance Measures

3.3.1 State Buffer Use

Using the state probabilities we find the Lwerage state buffer occupancy at processors one and two.

S= Zi(P,+S,)
t=]

ASoa (Po + Rof) r+ Soa'f 2 f ri Aa(
= ---f2 (ri-i) 2 +(A-a-arl)('-A--ar 2) (ri 1)2 f (48)

00

2 = 9(Qi + R.)

BRo0 (Po + sO RoaOfql f 1 BSi-
-a2f 2 + (s 1)2 +(B-•sj)(B-•s2) F -- -f;2 (49)

As with the previous model we also find e,,b, the probability that a fixed sized buffer of size b > I
overflows.

oo

elb = (Pi+So
i=b+l

_Soa ~a)I (Po +Rof) + So a-f q2 (50)
eaf (r -+ (1)r-b j (A - (--r2) ((rl--i)rlb f A (50)

e)2b= • (Q,++R)
i=b+l

R o0a ((P o + S f) S nR o f q -I -d

= a + --- 81B + (B -dsS)(B -s2) I- 1)s16 ;f (B)

3.3.2 Speedup

From the complete solution of the Markov chain we calculate the speedup S of the two processor TW system
over an equivalent single processor. The speedup is simply the rate of the two processor system 62 divided
by the rate of progress for a single processor system 61. The rate of forward progress for one processor is
defined simply as the average rate of progress of the two processes

61 = A22

At this point we add an additional cost for state saving by allowing a single processor to move at a rate
which is C times faster than the TW processors. Thus, state saving increases the average execution time of
an event from 1/Aj to C/A, when running TW. The revised rate of progress for a single processor is

6 C(Al + A2)
2

23

while the rate of progress for the two-processor TW system is found from the following equation.

62 =(A + A2)P0 +(Al +j 2)SO +(A 2 + 13)RO
+(AI + A2)P(1 + G\2 + 1\1)Q(1 + (\I + 32)SM1 + (A2 + /3])R(1)

k=1 k=1

-)3MqE St(k - 1) - 3jqj1: Rk(k - 1)
k=1 k=1

Taking the ratio S 62/61 (i.e., the speedup) we arrive at

S= 2 (P BRo + A2+2 Ro02q, Soa 2q2

S af -f af "Uf

(Po + Rof So af-2 _ 1 a2 _

-aq 31 _ 1)2 +(H - Ust)(B - &2) '(Sl ~1)2 a212) (2

We note here that this measure S is different from the measure r used with the message queueing model
in Section 2.3.3. In that model we were unable to calculate the average rate of progress for a single processor
due to the effect of messages. Since mesages now carry work, it would be unfair to compare the two processor
TW system to a single processor system without messages. The TW system would be doing more work. On
the other hand, it was non-trivial to attempt to account for this extra work caused by messages and add
it to the single processor system. We finally settled on a measure which was a normalized rate of progress
by dividing the rate of progress for two processors by (Al + ,.2). For the rollback cost system the rate of
progress on a single processor is well defined and therefore, we use a speedup measure S.

For the Symmetric, Balanced case where A, = A2 = A and qj = q2 = q we get the following equation for
speedup.

S = 4f (f + fq-) (53)

C (2f +f (2+f) ,+ (2-f)fq±2(1 + f)qi)

We show a plot of this function in Figure 9 for C = I.
Using this simple formula for speedup we find the values of f, q, and C which allow two processors

running TW to progress faster than a single processor without TW. This is the region where S 1_ 1. We
solve Equation 53 for C when S Ž 1 resulting in the inequality

4f (f + Vr) (54)
(2P + f (2 + f) vq + (2 - f) fq + 2 (1 - f) q1)

Therefore, we find that C must lie below the surface plotted in Figure 9 for S > 1. It is clear for C > 2 that
TW on two processors is always slower than using a single processor without TW. Further, since C must be
greater than or equal to one (cost of state saving is > 0), there is a region in the q - f space where speedup
is not possible. That is the shaded region shown in Figure 10.

Since rollbacks can be costly (C > 1), there may be an advantage to slowing down or stopping the faster
processor when it gets ahead so as to avoid rollbacks. Mitra and Mitrani [MM84J, using their optimization
function J = D - cR (see Section 1.1), find regions of the parameter space where the maximum of the
function is found at the boundary where the processors have zero processing capacity (don't perform the

24

p2
0. 5

0.2 ./ .6

0.4 0.4 It

0.i o.8 0.2

1 0

Figure 9: Speedup versus q and f for the Symmetric, Balanced Case when C = 1.

task at all). Essentially, they found that Time Warp could perform poorly if the cost for rollback was high.
We, on the other hand, will look to improve TW by slowing down or stopping the processor which gets too
far ahead. Looking again at the Symmetric, Balanced case where A, = A2 = A and qj = q2 = q we find that
region of q - f space where it is better for a processor to stop processing when it gets exctly one step ahead.
The state diagram for such a system is shown in Figure 11. Each processor will stop when it gets exactly
one step ahead of the other processor. There will be no rollbacks and therefore no need for state saving.
When A, = A2 = A we find that P1 = Q, = Po = 1/3, and that speedup over the equivalent single processor
system is 4/3. Therefore, we can always get a speedup of 4/3 regardless of the values of f, q and C. For
general values of A, and A2 the speedup is

4(1 -a)a
I -a+a 2

which has its maximum of 4/3 at a = 1/2. For the Symmetric, Balanced case we show in Figure 10 the area
of the q - f plane where waiting at one step is better than rushing ahead when C = 1. Fbrtunately this
area includes all the area where we would not have been able to get speedup with two processors. Finally, in
Figure 12 we show the achievable speedup when C = 1. The shaded region is where a processor waits when
it gets one step ahead of the other. In the unshaded region, if C is less than the value plotted in the figure
we are able to gain at least some speedup over the equivalent single processor not running Time Warp.

Since it sometimes pays to stop a processor when it gets one step ahead, we might surmise that there
are ranges of the parameters where stopping a processor when it gets k (k > 1) steps ahead improves

25

__ipi i l] []ii l II l i i l ll I I II I

0. -

Better to waft when I step ahead

0.6 ~for C= 1.6

U /

S0.41 .2.5

0.2eeup not powible normally

(S < I for C- =I)

0.2 0.4 0.6 0.8
Interaction Parameter

(q)

Figure 10: Region of q - f space where speedup is possible.

performance. For our model, this turns out not to be the case. By examining the Markov chain for k 2 we
find that the speedup is never greater than the speedup gained by the standard algorithm. Therefore, it is
never practical to stop a processor once it gets more than one step ahead. The Markov chain in Figure 11 is
unique in the respect that at no point in time will a processor incur a cost for state saving or rollback. Once
we allow the processors to get more than one step out of synchronization, we must save state since roilbacks
are possible. Intuitively, the fact that we might only stop at one step ahead makes sense since a process at
virtual time v can only send a message to the other at time v + 1. By getting two or more steps ahead, a
rollback is already possible and we will incur a cost for rollback if a message is sent regardless of whether
we wait further down the line. Waiting now only causes the system to have a smaller speedup. In a more
general system where a processor may send a message at an arbitrary point in the future we may find that
there are regions of the parameter space where it pays to stop a processor when it gets further than one step
ahead. We are currently extending the rollback cost model so that the processors are able to make arbitrary
sized jumps when advancing (not restricted to single-steps). This model will give us a better opportunity to
examine the improvements we might gain by stopping or slowing down the lead processor when it gets more
than one step ahead.

26

Figure 11: State diagram when each processor stops when one step ahead.

3.4 Summary

Our second model incorporated costs for rollback and state saving. In addition to calculating the complete
solution to the Markov chain and the speedup over a single processor, we were able to find regions of the
parameter space where it was better to stop either processor when it was exactly one step ahead. We could
also show that stopping the lead processor when it was two or more steps ahead led to no performance gain.
As with our previous model, since we have the expct solution to the Markov chain, we are able to calculate
nearly any performance measure of interest.

4 Conclusions and Future Work

In this paper we presented two new models to extend our understanding of the Time Warp distributed
simulation protocol when it runs on two processors. Our first model allowed messages to be queued which had
not been previously addressed in any of the work on two-processor models. Our second model incorporated
costs for both rollback and state saving. In this second model we were able to find regions of the parameter
space where it was better to stop a processor when it got ahead of the other one rather than let it rush ahead
and potentially incur a cost for state saving and rollback. Both models have given us a clearer and more
thorough understanding of the operation of systems synchronized by rollback when run on two processors.

In addition to extending the rollback cost model to accommodate arbitrary sized state advances, our
future work should be in the area of extensions to multiple processors. Extending our Markov chain approach
has proven to be unwieldy, and we are curren'.ly pursuing approximations for multiple processors based on
our current work.

References

[Bel90 Steven Bellenot. "Global Virtual Time Algorithms." In Proceedings of the SCS Multiconference
on Distributed Simulation, volume 22,1, pp. 122-127. Society for Computer Simulation, January
1990.

[Bey87] William H. Beyer, editor. CRC handbook of mathematical sciences. CRC Press, 6th edition,
1987.

[Fel9l] Robert E. Felderman. Performance Analysis of Distributed Processing Synchronization Algo-
rithms. PhD thesis, University of California, Los Angeles, Computer Science Department, June
1991.

27

2!

01.6

1.2

1 0.6

0 f
0.20.

0.4

q o.6 0o.2

0.6

1

Figure 12: Achievable Speedup for C = 1.

[FK91 Robert E. Felderman and Leonard Kleinrock. "Two Processor Time Warp Analysis: Some Results
on a Unifying Approach." In Proceedings of the 5th Workshop on Parallel and Distributed
Simulation(PADS9I), volume 23,1, pp. 3-10. Society for Computer Simulation, January 1991.

[Fuj891 Richard M. Fujimoto. "Time Warp on a Shared Memory Multiprocessor." Technical Report
UUCS-88-021a, Computer Science Department, University of Utah, Salt Lake City, UT 84112,
January 1989.

[Jef85] David R. Jefferson. "Virtual Time." ACM T/ansactions on Programming Languages and Systems,
7(3):404-425, July 1985.

[KF92] Leonard Kleinrock and Robert E. Felderman. "Two Processor Time Warp Analysis: A Unifying
Approach." International Journal of Computer Simulation, 2(4), 1992.

[Kle89I Leonard Kleinrock. "On Distributed Systems Performance." In Proceedings of the 7th ITC
Specialist Seminar, Adelaide, Australia. ITC, September 1989. (Also published in "Computer
Networks and ISDN Systems" vol. 20, no.1-5, pp. 206-215, December 1990.).

(Lam78] L. Lamport. "Time, Clocks, and the Ordering of Events in a Distributed System." Communica-
tions of the ACM, 21(7):558-564, July 1978.

28

[LL90a] Yi-Bing Lin and Edward D. Lazowska. "Optimality Considerations for "Time Warp" Parallel
Simulation." In Proceedings of the SCS Multiconference on Distributed Simulation, volume 22,1,
pp. 29-34. Society for Computer Simulation, January 1990.

ILL90b] Yi-Bing Lin and Edward D. Lazowska. "Reducing the State Saving Overhead For Time Warp Par-
* allel Simulation." Technical Report 90-02-03, Department of Computer Science and Engineering,

University of Washington, February 1990.

[LMS83) Steven Lavenberg, Richard Muntz, and Behrokh Samadi. "Performance Analysis of a Rollback
Method for Distributed Simulation." In Performance '83, pp. 117-132. North-Holland, 1983.

[Mad89l Vijay Krishna Madisetti. "Self Synchronizing Concurrent Computing Systems." Technical Re-
port UCB/ERL M89/122, Electronics Research Laboratory, College of Engineering University of
California Berkeley, CA 94720, October 1989.

[Mis86] Jayadev Misra. "Distributed Discrete-Event Simulation." Computing Surveys, 18(1):39-65,
March 1986.

[MM84] Debasis Mitra and 1. Mitrani. "Analysis and Optimum Performance of Two Message-Passing
Parallel Processors Synchronized by Rollback." In Performance '84, pp. 35-50. North-Holland,
1984.

[MWM90] Vijay Madisetti, Jean Walrand, and David Messerschmitt. "Synchronization in Message-Passing
Computers: Models, Algorithms and Analysis." In Proceedings of the SCS Multiconference on
Distributed Simulation, volume 22,1, pp. 35-48. Society for Computer Simulation, January 1990.

(Nic90 D. M. Nicol. "The Cost of Conservative Synchronization in Parallel Discrete Event Simulations."
Technical Report 90-20, Institute for Computer Applications in Science and Engineering(ICASE),
May 1990.

[Nic9l] David M. Nicol. "Parallel Self-initiating Discrete-Event Simulations." Transactions on Modelling
and Computer Simulation, 1(1):24-50, January 1991.

[PWM79] J. Kent Peacock, J.W. Wong, and Eric G. Manning. "Distributed Simulation Using a Network
of Processors." Computer Networks, 3(1):44-56, 1979.

[Wag89] David B. Wagner. "Conservative Parallel Discrete-Event Simulation: Principles and Practice."
Technical Report 89-09-03, Department of Computer Science and Engineering, University of

* Washington, September 1989.

A Solution to the Cubic Equation

This material is taken directly from the CRC Handbook of Mathematical Sciences [Bey871.
A cubic equation, y3 + p1y

2 + qy + r, = 0 may be reduced to the form,

x,3 + azx + bý = 0

by substituting for y the value x - p./3. Here

(3 = - p,2) and b. = 7 (2pN - 9pvqy + 27r.)

29

The form x3 + ax + b 0 with ab 0 0 can always be solved by transforming it to the trigonometric
identity

4 cos 3(8) - 3 cos(O) - cos(30) - 0.

Let x = mcos(O), then

x3 +ax +b 0
- 3 cos 3(0) + am cos(O) + b

4cos3(a) - 3cos(a) - cos(30)

-0.

Hence 4 3 -cos(30)

am b

from which it follows that /-.-.._.3b

S= 2 , cos(30) = 3b
F- !3 am'

Any solution O0 which satisfies cos(30) = -, will also have the solutions

27r 47r
01 + T- and 01 +

The roots of the cubic x3 + ax + b = 0 are therefore

XI = mcos(8i+-)

x2 = mcos(01)

41rX3 = mcos(e1 + -)

For the denominator of P(z) we have

a2

A + A-qq 2

=y a

These values can then be substituted into the solutions given above to find rl, r2, and r 3 . The values for si
are symmetric in (a,') and (q1, q2) to the ri values.

30

| i |

