

UNCLASSIFIED

IDA Log No. HQ 93-044756

#### **DEFINITIONS**

ICA publishes the following documponts to report the results of its work.

#### Reports

.7

Reports are the most authoritative and most carefully considered products IDA public ٩. They sermally embedy results of major projects which (a) have a direct bearing on decisions affecting major programs, (b) address issues of significant concern to the Executive Branch, the Congress and/or the public, or (c) address issues that have significant economic implications. IDA Reports are reviewed by outside panels of experts to ensure their high quality and relevance to the problems studied, and they are released by the President of IDA.

#### **Group Reports**

Group Reports record the findings and results of IDA established working groups and panels composed of sunior individuals addressing major issues which otherwise would be the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals responsible for the project and others as solected by IDA to ensure their high quality and relevance to the problems stadied, and are released by the President of IDA.

#### Papers

Papers, also authoritative and carefully considered products of IDA, address studies that are narrower in scape than these covered in Reports. IDA Papers are reviewed to ensure that they meet the high standards expected of referred papers in protessional journals or formal Agency reports.

#### **Documents**

TDA Decements are used for the convenience of the sponsors or the analysis (a) to record substantive work done in quick reaction studies, (b) to record the proceedings of conferences and meetings, (c) to make evaluable preliminary and tentative results of aualyses, (d) to record data developed in the course of an investigation, or (e) to forward Internation that is essentially unaasilyzed and unevaluated. The review of IDA Decoments is sailed to their content and intended use.

The work reported in this document was conducted under contract MDA 963 89 C 9063 for the Department of Defense. The publication of this IDA document does not indicate idersement by the Department of Defense, nor should the contents be construed as reflecting the efficial position of that Agency.

#### © 1994 Institute for Defence Analyses

The Government of the United States is granted an unlimited license to reproduce this document.

| KEPOKT DOC                                                                                                                                                                                             | CUMENTATIO                                                                                                                                                                                         | IN PAGE                                                                                                                            |                                                                                                      | Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| blic separting burden for this collection of<br>Storing and maintaining the data merchel, a<br>Marian of Information, Including suggestion<br>win Highway, Salto 1204, Arlington, VA 2                 | information is attinuated to average 1 is<br>an completing and reviewing the collect<br>ms for reducing this burden, to Washing<br>2202-4302, and to the Office of Manag                           | eur per response, includi<br>nice of information. See<br>pen Henriquertere Servic<br>sement and Budget, Pape                       | ing the time for r<br>of companie reg<br>ms, Directorate fo<br>grootk Reduction                      | orioving Instructions, associating extinting data associating this burden estimate or any other aspect of t<br>or Information Operations and Reparts, 1215 Jeffert<br>n Project (0704-0188), Washington, DC 20503.                                                                                                              |
| AGENCY USE ONLY (Leave blank                                                                                                                                                                           | 2. REPORT DATE<br>January 1994                                                                                                                                                                     | <u></u>                                                                                                                            | 3. REPORT<br>Final                                                                                   | TYPE AND DATES COVERED                                                                                                                                                                                                                                                                                                          |
| TITLE AND SUBTITLE<br>Investment Strategy for De<br>Supporting Data                                                                                                                                    | DD Automatic Test System                                                                                                                                                                           | ms. Volume II:                                                                                                                     | s                                                                                                    | 5. FUNDING NUMBERS<br>MDA 903 89 C 0003<br>Task T-B5-490                                                                                                                                                                                                                                                                        |
| AUTHOR(S)<br>Robert M. Rolfe, Herbert 1                                                                                                                                                                | R. Brown                                                                                                                                                                                           |                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                 |
| PERFORMING ORGANIZATION                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                    | 8                                                                                                    | . PERFORMING ORGANIZATION REPOR                                                                                                                                                                                                                                                                                                 |
| Institute for Defense A<br>1801 N. Beauregard S<br>Alexandria, VA 22311                                                                                                                                | it.                                                                                                                                                                                                |                                                                                                                                    |                                                                                                      | IDA Paper P-2917                                                                                                                                                                                                                                                                                                                |
| SPONSORING/MONITORING AC<br>OASD(ES) WSIG<br>The Pentagon, Room 2B3<br>Washington, DC 20301-8                                                                                                          | 22                                                                                                                                                                                                 | SS(ES)                                                                                                                             | 1                                                                                                    | 0. SPONSORING/MONITORING AGENC<br>REPORT NUMBER                                                                                                                                                                                                                                                                                 |
| 2a. DISTRIBUTION/AVAILABILIT<br>Approved for public rele                                                                                                                                               |                                                                                                                                                                                                    | n: March 28, 19                                                                                                                    |                                                                                                      | 126. DISTRIBUTION CODE<br>A                                                                                                                                                                                                                                                                                                     |
| 3. ABSTRACT (Maximum 200 word                                                                                                                                                                          | •                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                 |
| systems (ATS). The study<br>and was conducted by a D<br>vice Executive Steering (<br>tailed technical analyses<br>representative of Defense<br>evaluated for technical ca<br>ing data provided a basel | y was chartered by the A<br>boD and IDA team under a<br>Group. This paper docum<br>conducted in conjunction<br>wide programs for in-d<br>pabilities and their ability<br>ine for characterizing De | ssistant Secreta<br>the guidance of<br>ments the results<br>with this effor<br>epth ATS data<br>y to meet multip<br>efense ATS acq | ary of Defe<br>an Office of<br>s, methodo<br>rt. Fifteen<br>collection<br>ple weapon<br>juisition co | strategies for DoD automatic test<br>ense for Production and Logistic<br>of Secretary of Defense/Joint Ser<br>ology, and conclusions of the de<br>weapon systems were selected a<br>and analysis. Selected ATS were<br>in system applications. The result<br>osts and investment focus. Futur<br>sent ATS acquisition approache |
| used by the Services. The                                                                                                                                                                              | e study concluded that De<br>tic testing needs at the low                                                                                                                                          | efense-wide use<br>west possible co<br>the supporting da                                                                           | e of standar<br>ost. Volum<br>ata.                                                                   | rd ATS families provides the beau<br>e I contains a summary and high                                                                                                                                                                                                                                                            |
| 4. SUBJECT TERMS                                                                                                                                                                                       |                                                                                                                                                                                                    |                                                                                                                                    | TIC QUA                                                                                              | hery inspected 8                                                                                                                                                                                                                                                                                                                |
| A subject terms<br>Automatic Test Systems (<br>Set (TPS), Weapon System                                                                                                                                | ATS), Automatic Test Econs, Acquisition.                                                                                                                                                           | uipment (ATE)                                                                                                                      | ), Test Proj                                                                                         | gram 15. NUMBER OF PAGES<br>390<br>16. PRICE CODE                                                                                                                                                                                                                                                                               |
| 7. SECURITY CLASSIFICATION<br>OF REPORT<br>Unclassified                                                                                                                                                | 18. SECURITY CLASSIFICATIO<br>OF THIS PAGE<br>Unclassified                                                                                                                                         | N 19. SECURITY<br>OF ABSTR<br>Unclassi                                                                                             | ACT                                                                                                  | TION 20. LIMITATION OF ABSTRAC<br>SAR                                                                                                                                                                                                                                                                                           |
| 8N 7540-01-280-5500                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                      | Standard Form 298 (Rev. 2-89)<br>Prescribed by ANSI Std. Z39-18<br>298-102                                                                                                                                                                                                                                                      |

# UNCLASSIFIED

IDA PAPER P-2917

# INVESTMENT STRATEGY FOR DoD AUTOMATIC TEST SYSTEMS

Volume II: Supporting Data

Robert M. Rolfe, Task Leader

Accesion For NTIS CRA&I

DTIC TAB U..announced

Justification

By Dirt ibution /

Dist

Availability Codes

Special

名

Herbert R. Brown

January 1994

Approved for public release, unlimited distribution: March 28, 1994.



INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003 Task T-B5-490

UNCLASSIFIED

# PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) under the Task Order, Integrated Diagnostics, and fulfills an objective of the task, to "provide analytic support for a DoD sponsored forum to develop an implementation approach for an investment strategy for DoD automatic test systems." The work was sponsored by the Director of the Weapon Support Improvement Group (WSIG), Office of the Assistant Secretary of Defense for Production and Logistics (ASD(P&L)).

This paper comprises two volumes: Volume I, Summary and Analyses, and Volume II, Supporting Data.

## **REPORT ORGANIZATION**

This report is arranged as four major sections (Parts I, II, III, and IV) which have been divided into two volumes. The first three sections are in Volume I, and the last section, along with the references, bibliography and List of Acronyms are in Volume II.

## **Volume I: Summary and Analyses**

- a. Part I: *Introduction* provides a very brief introduction including purpose, report organization, glossary, and background.
- b. Part II: Conclusions provides a short summary list of the primary conclusions and follows with a more detailed discussion of each.
- c. Part III: Analyses provides summaries of data collected during the study and analyses that support the primary conclusions presented in Part II. Secondary findings and conclusions are also documented within sections that discuss the following:
  - baseline data analysis,
  - ATS investment strategy option case study analysis,
  - DoD ATS investment analysis,
  - analysis of DoD and Service ATS management policies and organizations,
  - assessment of ATS requirements and applications, and
  - assessment of ATS technology development and evolution.

#### **Volume II: Supporting Data**

d. Part IV includes weapon system profiles, ATS baseline data summaries, summaries of selected ATE comparisons, definitions of ATS investment strategy options, and lists of study participants.

# VOLUME II SUPPORTING DATA

(More detailed tables of contents are provided at the front of

Appendices B, C, D and E.)

| APPENDIX A. DATA REQUEST FORMATS AND   | DETAILS A-1         |
|----------------------------------------|---------------------|
| APPENDIX B. WEAPON SYSTEM PROFILES     | B-1                 |
| APPENDIX C. ATS INVESTMENT STRATEGY O  | PTIONSC-1           |
| APPENDIX D. ATE COMPARISONS            | D-1                 |
| APPENDIX E. ATS DATA SUMMARIES         | E-1                 |
| APPENDIX F. ATS INVESTMENT STRATEGY ST | UDY PARTICIPANTSF-1 |
| REFERENCES                             |                     |
| BIBLIOGRAPHY                           | BB-1                |
| LIST OF ACRONYMS                       | ACRON-1             |

# **Appendix A. Data Request Formats and Details**

At the onset of the study, the Exe cutive Steering Group (ESG) asked the study team to use existing data and formats to the maximum extent practical. However, there was recognition that definitive DoD baselines of current automatic test systems (ATS) inventories, current and future equipment requirements, and future operational testing needs did not exist. The lack of definitive baselines was not viewed as prejudicial, but rather a factor of earlier acquisition and support environments and priorities. Therefore a set of view graphs were developed that summarized the type and range of data needed to evaluate potential DoD ATS investment strategies.

To help manage the study work load and scope, the ESG selected 15 weapon systems as representative of Defense-wide programs for ATS data collection and in-depth analysis. The study team was asked to focus new data collection around the 15 selected weapon systems shown in Figure A-1. The ESG identified systems within this group as most representative of current DoD ATS needs. These systems are marked with an asterisk, and the study team attempted to obtain in depth historical data as well as detailed projected ATS requirements for each.

| • Abrams *                           | • Avenger *            | • F-16   |
|--------------------------------------|------------------------|----------|
| • ACM                                | • AX (A-12) *          | • F-18 * |
| • AMRAAM *                           | • Bradley *            | • F-22 * |
| • AN/SQQ-89                          | • C-17 *               | • MK-50  |
| <ul> <li>Apache/Longbow *</li> </ul> | • F-15 *               | • MLRS   |
| * In                                 | Depth History/Projecti | on       |

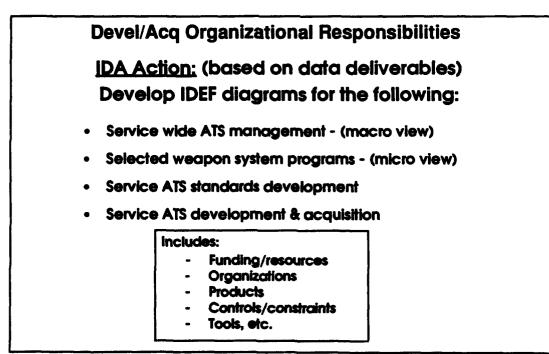
Figure A-1. Weapon System List for ATS Study

A series of technical interchange meetings (TIMs) were conducted to present the data requirements and to support the data collection. The Service representatives at these meetings were asked to coordinate the collection and delivery of detailed information on specific ATS types used or planned for each of the designated weapon systems. Figures A-2 through A-7 present copies of view graphs used to identify the baseline data requirements at the TIMs.

The purpose of these charts was to identify the type, range, and depth of information needed. Because of the desire to use existing information to the maximum extent practical, assembled data was not always in these specified formats. In other situations, the specific information either was not available or did not appropriately fall within the context of individual data sheets.

- a. The Weapon System ATS Data Sheet (Figure A-2) was intended to identify needed ATS information for each of the 15 designated weapon systems.
- b. The Data Sheet for Specific ATS (Figure A-3) was intended to identify additional needed information for the ATS by weapon system (and already identified by the Weapon System Data Sheets) which was used on other systems/applications.
- c. The ATS History Data Sheets (Figure A-4) were intended to identify desired historical and background information on each of the ATS identified for the designated weapon systems.
- d. The Service Development & Acquisition Organizational Data Sheets (Figure A-5) were intended to identify information needed to build ATS acquisition process charts for each of the Services.
- e. The Weapon System Maintenance Concept Data Sheets (Figure A-6) were intended to identify the environment under which the Specific ATS were used.
- f. The Factory and Depot ATS Data Sheets (Figure A-7) were intended to identify factory and depot ATS information for each of the designated weapon systems.

| <b>(</b> ).                               | Annual             | Support  | MS          | (The annual software related support costs for peculiar, common, and<br>augmenting TPS software used on ATS)                                                                                                                                                     |                                                                                                                                                                                                                             |
|-------------------------------------------|--------------------|----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (with freed                               | Ani<br>Ani         |          | МН          | (The annual ATS hardware and operating system software related support<br>costs for peculiar, common, and augmenting hardware)                                                                                                                                   | tc.<br>L D).                                                                                                                                                                                                                |
| Peculiar & Common Costs (with funding yr) | 5                  |          | Production  | (Production and acquisition costs for peculiar, common and<br>augmentation ATS equipment, including hardware and operating<br>software, to test components through subsystems on the specific weapon<br>system)                                                  | ion, staffing, e<br>epair levels (O                                                                                                                                                                                         |
| Peculiar &                                | ATS                | R&D &    | Development | (R&D and test system development costs for peculiar, common and<br>augmentation ATS equipment to test components through subsystems on<br>the specific weapon system)                                                                                            | related sustaining engineering, contractor support, training, technical manual, calibration, staffing, etc.<br>ATS used in the factory manufacturing or end-item inspection as well as the service repair levels (0, 1, D). |
| Size                                      |                    | Μ        | Vol         | (The size of the ATS and auxiliary equipment in terms of both weight and volume as deployed - provide assumptions)                                                                                                                                               | g. technical<br>ction as we                                                                                                                                                                                                 |
| % UtiHzation                              |                    | Based on | 24 Hr Clock | (Summarize the percent utilization of each ATS unit at a typical shop<br>location/ category, base the percentage on a potential of the full 24 hours<br>- i.e., if used for 8 hours per day, this will by 33%)                                                   | support, trainin<br>end-item inspec                                                                                                                                                                                         |
| sted                                      |                    | Costs    | Acq         | (The average cost (Recurring Eng.) to acquire the TPSs, including ITDs -<br>Label with a "C" or "M")                                                                                                                                                             | intractor                                                                                                                                                                                                                   |
| dules Te                                  |                    | Sd.I.    | Devel       | (The average cost (Non Recurring Eng.) to develop the card or module<br>level TPSs - Label with a "C" or "M")                                                                                                                                                    | ring, co<br>anufact                                                                                                                                                                                                         |
| Number of Cards/Modules Tested            |                    |          | TPS         | (The number of different operational TPSs (may include several test<br>programs if acquired as a package) needed at the different location types -<br>If some TPSs are common across locations, indicate that numbers in<br>parentheses & label with "C" or "M") | ining enginee<br>the factory m                                                                                                                                                                                              |
| Vumb                                      |                    |          | Types       | (The number of card (SRA/ SRU) or module (WRA/LRU/LRM) types<br>tested at the different location types - Label the card types with a "C" and<br>the module types with an "M")                                                                                    | related sust<br>ATS used in                                                                                                                                                                                                 |
| <b>E g</b>                                | 0, I, D)           |          | 4 ^ #       | (The average number of specific ATS units at each location type)                                                                                                                                                                                                 | is a                                                                                                                                                                                                                        |
| Application<br>Location                   | (i.e. Factory, O,  |          | Type        | (The type of location(s) where the ATS are needed or used, potential categories include factory, O-, I-, D-level maintenance facilities, etc.)                                                                                                                   | Support Costs include any AT<br>Application Categories includ                                                                                                                                                               |
| ATS                                       | (Specific Station) |          | Total #     | (beitinebi STA sitiseqs of the specific AT)                                                                                                                                                                                                                      | Support (<br>Application                                                                                                                                                                                                    |
| ×                                         | (Specific          |          | Name        | (Name (and designation when applicable) of specific ATS used to manufacture, operate, or support components through subsystems on the specific weapon system)                                                                                                    |                                                                                                                                                                                                                             |


| Costs            | Planned<br>P <sup>3</sup> I | (The anticipated costs of any Pre-Planned Product Improvements<br>for the designated ATS - If ATS capabilities will be common to<br>several weapon systems, show protated share for each weapon<br>system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Operations &<br>Support     | (The annual hardware and software related operations and support<br>costs for the designated ATS - If ATS capabilities are common to<br>several weapon systems, show prorated share for each weapon<br>system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | Production                  | (Production and acquisition costs, including both hardware and<br>operating system software, for the designated ATS - If ATS<br>capabilities are common to several weapon systems, show prorated<br>share for each weapon system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | R&D /<br>Development        | (R&D and test system development costs, including both hardware<br>and operating system software, for the designated ATS - If ATS<br>capabilities are common to several weapon systems, show prorated<br>share for each weapon system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total Number of  | TPSs Types Per<br>Location  | (The number of different/unique TPSs used on each specific ATS for each specific location type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Ouantity   | Per Location                | (Number of specific ATS types used at each location type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tune I creations | Used                        | (Identify the specific shop category/type locations where the designated by a location of the designated by the specific spectrum of the spect |
| Name             |                             | (Name and nomenclature of specific designated ATS used to manufacture, operate, or support weapon system/components at any of the shop categories/location types)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

**ATS Data Summary Sheet** 

# Figure A-3. Data Sheet for Specific ATS

Other comments:

Figure A-4. ATS History Data Sheets





## Weapon System Maintenance Concept (Current & Planned)

Weapon System: \_\_\_\_\_

(Note if the concept applies to entire system or major subsystems & describe)

Summary of Current Maintenance Concept

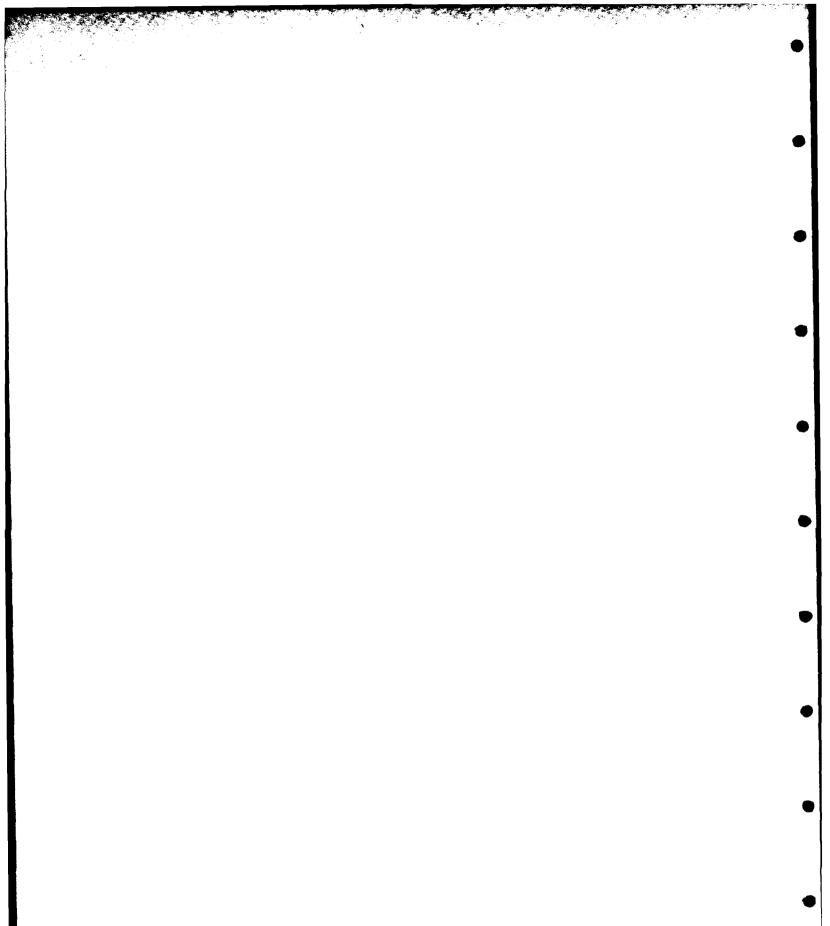
(BIT/BITE, LORA, basing concepts, etc.):

Describe the impact on ATS design and fielding concepts:

Summarize any planned changes to the maintenance concept, and describe potential impacts to the ATS:

Figure A-6. Weapon System Maintenance Concept Data Sheets

## **Factory & Depot ATS investments**


Factory Test Systems

- Rationale behind design/requirements
  - Total cost estimate: \_\_\_\_
    - % Program peculiar
    - % Commercial equipment
    - % GFE or ATE common to other DoD applications
- Applicability to other DoD requirements (low, med., high)
- Depot Test Systems
  - Rationale behind design/requirements
  - Commonality with original factory ATS
  - % commonality with I-Level
  - % commonality with other depot/I-Level ATS
  - Total cost estimate: \_\_\_\_
    - % Program peculiar
    - % Commercial equipment
    - % GFE or ATE common to other DoD applications
  - Applicability to other DoD requirements (low, med., high)

Figure A-7. Factory and Depot ATS Data Sheets

## **APPENDIX B. WEAPON SYSTEM PROFILES**

Selected Army, Navy and Air Force weapon system profiles and general discussions of the automatic test systems used to support these systems are presented in this appendix. The profiles were prepared and submitted by Service representatives. The study team did not attempt to edit the Service submittals other than introducing minor format changes for consistency. This data is intended as background materiel and is provided for information purposes.



# Table of Contents

| B.1. CASS PROFILE                                              | <b>B</b> -18 |
|----------------------------------------------------------------|--------------|
| B.1.1 CASS System Background                                   | 10 1 Q       |
| B.1.1.1 Description                                            |              |
| B.1.1.2 Design Baseline                                        |              |
| B.1.1.3 Justification                                          |              |
| B.1.2 CASS Acquisition and Management/P3I Approach             |              |
| B.1.2.1 Policies/Regulations                                   |              |
| B.1.2.2 Common ATS Management Organization                     |              |
| B.1.2.3 Relationship to Weapon System Management Organizations |              |
| B.1.2.4 Controls over Common ATS/Peculiar Weapon System        | D-23         |
| Requirements                                                   | P 24         |
| B.1.3 CASS Deployment Concepts                                 |              |
| B.1.3.1 Navy Implementation                                    |              |
| B.1.3.2 Joint Operations                                       |              |
| B.1.3.3 ATS Workloading                                        |              |
| B.1.3.4 CASS Support plans                                     |              |
| B.1.3.4.1 CASS Maintenance Concept                             |              |
| B.1.3.4.2 Life Cycle                                           |              |
| B.1.3.4.3 TPS Development Learning Curves                      |              |
| B.1.4 CASS Inventory                                           |              |
| B.1.5 Specific CASS Technical Capabilities                     |              |
| B.1.5.1 Mainframe CASS                                         |              |
| B.1.5.1.1 Operating Software                                   |              |
| B.1.5.1.2 TPS Development Environment                          |              |
| B.1.5.1.3 Ancillary Equipment                                  |              |
| B.1.5.1.4 Environmental Requirements and Tested Capabilities   |              |
| B.1.5.2 CASS Missile Test Station (MTS)                        |              |
| B.1.5.2.1 Operating Software                                   |              |
| B.1.5.2.2 Environmental Requirements and Tested Capabilities   |              |
| B.1.6 CASS Upgrade and/or Off-load Plans                       |              |
| B.1.6.1 CASS P3I Program                                       |              |
| B.1.6.2 Existing ATE Off-load Plans                            | B-32         |
| B.1.7 Factory/Depot Use                                        | B_33         |
|                                                                | 10-33        |
| B.2. F/A-18                                                    | <b>B-34</b>  |
|                                                                |              |
| B.2.1 F/A-18 Weapon System Background                          | <b>B</b> -34 |
| B.2.1.1 Program Overview                                       | <b>B-34</b>  |
| B.2.2 F/A-18 Program Execution Status                          | B-34         |
| B.2.2.1 Current Program                                        | <b>B</b> -34 |
| B.2.2.2 F/A-18 E/F                                             | <b>B-3</b> 6 |
| B.2.2.3 Engine                                                 | <b>B-38</b>  |

٩,

| B.2.3 F/A-18 AT                                                                                                                      | S Acquisition and Management                                                                    | B-39          |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------|
| B.2.3.1 Acqu                                                                                                                         | isition and Management Flow Charts and Text                                                     | <b>B-39</b>   |
|                                                                                                                                      | al Policies or Regulations                                                                      |               |
| B.2.4 F/A-18 We                                                                                                                      | apon System Mainframe Concept                                                                   | <b>B-40</b>   |
|                                                                                                                                      | apon System ATS Inventory                                                                       |               |
|                                                                                                                                      | Quantities, Types, Locations                                                                    |               |
|                                                                                                                                      | AN/USM-470(V)1 Mini-VAST (MV)                                                                   |               |
|                                                                                                                                      | AN/USM-446 Radar System Test Set (RSTS)                                                         |               |
|                                                                                                                                      | AN/ASM-686 Intermediate Automatic Test Set (IATS)                                               |               |
|                                                                                                                                      | AN/USM-629 Electro-Optical Test Set (EOTS)                                                      | <b>B-44</b>   |
| <b>B.2.5.1.5</b>                                                                                                                     | AN/ASM-608(v) Inertial Measuring Unit Test Set                                                  |               |
|                                                                                                                                      | (IMUTS II)                                                                                      |               |
|                                                                                                                                      | AN/USM-484 Hybrid Test Set (HTS)                                                                |               |
|                                                                                                                                      | AN/USM-458C New Electronic Warfare Test Set (NEWTS).                                            |               |
|                                                                                                                                      | AN/USM-392B Digital Modular Test Set (DMTS)                                                     |               |
|                                                                                                                                      | CASS                                                                                            | <b>B-48</b>   |
| <b>B</b> .2.5.                                                                                                                       | 1.9.1 New Development Avionics/Weapon System                                                    |               |
| _                                                                                                                                    | Upgrades                                                                                        |               |
|                                                                                                                                      | 2.5.1.9.2.0 Existing ATS Off-loaded to CASS                                                     |               |
|                                                                                                                                      | JSM-470(V)1 Mini-VAST (MV)                                                                      |               |
|                                                                                                                                      | Test Instructions, Standard Procedures                                                          |               |
|                                                                                                                                      | Sensor/Measurement Interfaces/Auxiliary                                                         |               |
|                                                                                                                                      | Architecture                                                                                    |               |
|                                                                                                                                      | TPS Environment and Support                                                                     |               |
|                                                                                                                                      | SM-446 Radar System Test Set (RSTS)                                                             |               |
|                                                                                                                                      | Test Instructions, Standard Procedures                                                          |               |
|                                                                                                                                      | Sensor/Measurement Interfaces                                                                   |               |
|                                                                                                                                      | Auxiliary equipment, power supplies                                                             |               |
|                                                                                                                                      | Architecture                                                                                    |               |
|                                                                                                                                      | TPS environment and support                                                                     |               |
|                                                                                                                                      | SM-686 Intermediate Automatic Test Set (IATS)                                                   |               |
|                                                                                                                                      | Test Instructions, standard procedures                                                          |               |
|                                                                                                                                      | Sensor/measurement interfaces                                                                   |               |
| D.2.J.4.J<br>D 7 5 / /                                                                                                               | Auxiliary Equipment, Power Supplies                                                             | B-33          |
| D.2.J.4.4<br>D 2 5 1 5                                                                                                               | Architecture                                                                                    | D-33          |
|                                                                                                                                      | TPS environment and support<br>SM-629 Electro-Optical Test Set (EOTS)                           |               |
|                                                                                                                                      | Test Instructions, Standard Procedures                                                          |               |
|                                                                                                                                      | Sensor/Measurement Interfaces                                                                   |               |
|                                                                                                                                      | Auxiliary Equipment, Power Supplies                                                             |               |
| R 2 5 5 4                                                                                                                            | Architecture                                                                                    | D-J4<br>D. 54 |
| <u>ה.ב.כ.ל.</u><br>ביבולים ביבולים ב | TPS Environment and Support                                                                     | D-J4<br>D 55  |
|                                                                                                                                      |                                                                                                 |               |
| R 2 5 6 1                                                                                                                            | SM-608(V) Inertial Measuring Unit Test Set (IMUTS II)<br>Test Instructions, Standard Procedures | 0-33<br>5 3   |
| D.2.J.U.1<br>P 2 5 6 2                                                                                                               | Sensor/Measurement Interfaces                                                                   | D)<br>D-∈∈    |
| D.2.J.V.Z                                                                                                                            | JENSULANCASMENTEIN INCLUACES                                                                    | כנ-מ          |

| B.2.5.6.3 Auxiliary Equipment, Power Supplies                  | B-55          |
|----------------------------------------------------------------|---------------|
| B.2.5.6.4 Architecture                                         |               |
| B.2.5.6.5 TPS Environment and Support                          |               |
| ••                                                             |               |
| B.2.6 AN/USM-484 Hybrid Test Set (HTS)                         |               |
| B.2.6.1 Test Instructions, Standard Procedures                 |               |
| B.2.6.2 Sensor/Measurement Interfaces                          |               |
| B.2.6.3 Auxiliary Equipment, Power Supplies                    |               |
| B.2.6.4 Architecture                                           |               |
| B.2.6.5 TPS Environment and Support                            |               |
| B.2.7 AN/USM-458C New Electronic Warfare Test Set (NEWTS)      |               |
| B.2.7.1 Test Instructions, Standard Procedures                 |               |
| B.2.7.2 Sensor/Measurement Interfaces                          |               |
| B.2.7.3 Architecture                                           |               |
| B.2.7.4 TPS Environment and Support                            | . <b>B-58</b> |
| B.2.8 AN/USM-392B Digital Modular Test Set (DMTS)              |               |
| B.2.8.1 Test Instructions, Standard Procedures                 |               |
| B.2.8.2 Sensor/Measurement Interfaces                          |               |
| B.2.8.3 Architecture                                           |               |
| B.2.8.4 TPS Environment and Support                            |               |
| B.2.9 CASS                                                     | . <b>B-59</b> |
| B.2.9.1 Mainframe CASS                                         |               |
| B.2.9.1.1 Operating Software                                   |               |
| B.2.9.2 TPS Development Environment                            | <b>B-60</b>   |
| B.2.9.3 Ancillary Equipment                                    | <b>B-61</b>   |
| B.2.9.4 Environmental Requirements and Tested Capabilities     | <b>B-61</b>   |
| B.2.10 F/A-18 ATS Upgrade and/or Off-load                      | <b>B-62</b>   |
| B.2.10.1 CASS P3I Program                                      | <b>B-62</b>   |
| B.2.11 Factory/Depot Use                                       | <b>B-62</b>   |
|                                                                |               |
| B.3. A-12                                                      | <b>B-64</b>   |
|                                                                |               |
| B.3.1 A-12 Weapon System Background                            |               |
| B.3.1.1 Program Objective                                      | <b>B-64</b>   |
| B.3.1.2 Program Execution Status                               |               |
| B.3.2 A-12 ATS Acquisition and Management                      | <b>B-65</b>   |
| B.3.2.1 Special Policies or Regulations                        | <b>B-66</b>   |
| B.3.3 A-12 Weapon System and ATS Deployment Concepts           | <b>B-68</b>   |
| B.3.3.1 Weapon System Maintenance Concept                      |               |
| B.3.3.2 Plans to achieve concepts                              | <b>B-69</b>   |
| B.3.3.3 Supporting plans - personnel training, support for ATS | <b>B-69</b>   |
| B.3.4 A-12 Weapon System ATS Inventory                         | <b>B-72</b>   |
| B.3.4.1 ATS Quantities, Types, and Locations                   | <b>B-72</b>   |
| B.3.4.1.1 CASS                                                 |               |
| B.3.5 Specific A-12 ATS Technical Capabilities                 | B-73          |
| B.3.5.1 AN/ASM-686 Intermediate Automatic Test Set (IATS)      |               |

| B.3.5.1.1 Sensor/Measurement Interfaces                        |                |
|----------------------------------------------------------------|----------------|
| B.3.5.1.2 Auxiliary Equipment, Power Supplies                  |                |
| B.3.5.1.3 Architecture                                         | . <b>B-73</b>  |
| B.3.5.1.4 TPS Environment and Support                          | . <b>B-73</b>  |
| B.3.5.2 CASS                                                   |                |
| B.3.5.2.1 Operating Software                                   | . <b>B-74</b>  |
| B.3.5.2.2 TPS Development Environment                          |                |
| B.3.6 A-12 ATS Upgrade and/or Off-load                         |                |
| B.3.6.1 CASS P3I Program                                       | . <b>B-7</b> 6 |
| B.4. APACHE LONGBOW                                            | . <b>B-</b> 78 |
| B.4.1 Weapon System Background                                 | . <b>B-7</b> 8 |
| B.4.1.1 Description                                            |                |
| B.4.1.2 Performance and Effectiveness Indicators               |                |
| B.4.1.3 Status of System and Performance                       |                |
| B.4.2 ATS Acquisition and Management                           |                |
| B.4.2.1 Army Regulation 750-43                                 |                |
| B.4.2.2 HQ, Material Command memorandum, AMC-M 750-1           |                |
| B.4.2.3 Army Pamphlet 750-43                                   |                |
| B.4.3 Weapon System and ATS Deployment Concepts                |                |
| B.4.3.1 Weapon System Fielding                                 |                |
| B.4.3.2 Maintenance Concept                                    |                |
| B.4.3.2.1 Recurring Maintenance                                |                |
| B.4.3.2.2 Contract Maintenance                                 |                |
| B.4.3.2.3 Warranty/Special Support                             |                |
| B.4.3.3 Support for ATS                                        |                |
| B.4.4 Weapon System ATS Inventory                              |                |
| B.4.5 Specific ATS Technical Capabilities                      |                |
| B.4.5.1 EETF                                                   |                |
| B.4.5.2 Other ATE                                              |                |
|                                                                | 20.            |
| B.5. Multiple Launch Rocket Systems (MLRS)                     | <b>B-86</b>    |
| B.5.1 MLRS Weapon System Background                            | <b>B-86</b>    |
| B.5.1.1 Description                                            | <b>B-86</b>    |
| B.5.1.2 Mission                                                | B-86           |
| B.5.1.3 Characteristics                                        |                |
| B.5.1.4 Status of System                                       |                |
| B.5.2 MLRS ATS Acquisition and Management/ATS Upgrade Planning | _ 00           |
| Approach                                                       | <b>B-</b> 87   |
| B.5.3 MLRS Weapon System and ATS Deployment Concepts           | B-88           |
| B.5.3.1 Fielding                                               | R-88           |
| B.5.3.1.1 FORSCOM, TRADOC, USAREUR, and EUSA have              | 00-00          |
| achieved first unit equipped (FUE) status                      | B-88           |

| B.5.3.2 Maintenance Concept                                |              |
|------------------------------------------------------------|--------------|
| B.5.3.3 Support for ATS                                    | B-89         |
| B.5.4 MLRS Weapons System ATS Inventory                    |              |
| B.5.5 Specific ATS Technical Capabilities                  | B-89         |
| B.5.5.1 MSM-105                                            | B-89         |
| B.5.5.2 AN/USM-410(V)3                                     | B-90         |
| B.5.5.3 CTS                                                | B-91         |
| B.5.5.4 Base Shop Test Facility (IFTE) Characteristics     | B-92         |
| B.5.5.5 DIT-MCO                                            | B-94         |
| B.5.6 ATS Upgrade and/or Off-load Plans                    | B-95         |
| B.5.7 Factory/Depot Use                                    | B-95         |
| B.6. ABRAMS                                                | B-96         |
| B.6.1 Abrams Weapon System Background                      | B-96         |
| B.6.1.1 Description                                        |              |
| B.6.1.2 Mission                                            |              |
| B.6.1.3 Characteristics                                    |              |
| B.6.1.4 Planned Systems Improvements                       |              |
| B.6.2 Abrams ATS Acquisition and Management/ATS Upgrade    |              |
| Planning Approach                                          | B-98         |
| B.6.2.1 Flow charts and text                               |              |
| B.6.2.2 Preliminary Plans                                  |              |
| B.6.3 Special Policies and Regulations                     |              |
| B.6.4 ATE Abrams Weapon System and ATS Deployment Concepts |              |
| B.6.4.1 Maintenance Concepts                               |              |
| B.6.4.2 Influence on Fielding                              |              |
| B.6.4.3 Fielding                                           |              |
| B.6.4.4 Support for ATS                                    |              |
| B.6.5 Abrams Weapon System ATS Inventory                   |              |
| B.6.6 Abrams Specific ATS Technical Capabilities           | B-103        |
| B.6.6.1 AN/USM-410(V)                                      |              |
| B.6.7 DSESTS                                               | B-107        |
| B.6.7.1 Specifications                                     |              |
| B.6.7.2 STE-M1/FVS                                         |              |
| B.6.7.2.1 DIT-MCO                                          |              |
| B.6.8 ATS Upgrade and/or Off-load Plans                    | B-111        |
| B.6.9 Abrams Factory/Depot                                 | B-111        |
| B.7. IFTE                                                  |              |
| <b>B71</b> JETE System Background                          | <b>D 114</b> |
| B.7.1 IFTE System Background                               |              |
| B.7.1.1 Description<br>B.7.1.2 Design Receive              |              |
| B.7.1.2 Design Baseline                                    | B-115        |
| B.7.1.3 Justification                                      | В-115        |

| B 7.2 IFTE Acquisition and Management/B3I Approach                                 | P 116         |
|------------------------------------------------------------------------------------|---------------|
| B.7.2 IFTE Acquisition and Management/P3I Approach<br>B.7.2.1 Policies/Regulations |               |
| B.7.2.2 Common ATS Management Organization                                         |               |
| B.7.2 Common ATS Management Organization<br>B.7.3 Common ATS Deployment Concept    |               |
|                                                                                    |               |
| B.7.4 Cross Service Test Requirements Analysis                                     |               |
| B.7.5 Common ATS Upgrade                                                           |               |
| B.8. BRADLEY FIGHTING VEHICLE SYSTEM (BFVS)                                        | <b>B</b> -120 |
| B.8.1 BFVS Weapon System Background                                                | B-120         |
| B.8.1.1 Description                                                                |               |
| B.8.1.2 Mission                                                                    |               |
| B.8.1.3 Characteristics                                                            |               |
| B.8.1.4 Status of System                                                           |               |
| B.8.2 ATS Acquisition and Management/ATS Upgrade Planning Approx                   |               |
| B.8.2.1 Policy and Regulations                                                     |               |
| B.8.2.2 Upgrade Planning                                                           |               |
| B.8.3 BFVS Weapon System and ATS Deployment Concepts                               |               |
| B.8.3.1 Weapon System Fielding                                                     |               |
| B.8.3.2 Maintenance Concept                                                        |               |
| B.8.4 Support for ATS                                                              |               |
| B.8.5 Weapon System ATS Inventory                                                  | B-124         |
| B.8.6 Specific ATS Technical Capabilities                                          |               |
| B.8.6.1 The AN/USM-410                                                             |               |
| B.8.6.2 DSETS                                                                      |               |
| B.8.6.2.1 GPIA                                                                     |               |
| B.8.6.3 STE-M1/FVS                                                                 |               |
|                                                                                    |               |
| B.9. AVENGER                                                                       | <b>B</b> -136 |
| B.9.1 Weapon System Background                                                     | B-136         |
| B.9.1.1 Description                                                                |               |
| B.9.1.2 Mission                                                                    | B-136         |
| B.9.1.3 Characteristics                                                            |               |
| B.9.1.4 Status of System                                                           |               |
| B.9.2 ATS Acquisition and Management/ATS Upgrade Planning                          |               |
| Approach                                                                           | B-138         |
| B.9.2.1 Policy and Regulations                                                     |               |
| B.9.2.2 Upgrade Plans                                                              | B-138         |
| B.9.3 Weapon System and ATS Deployment Concepts                                    |               |
| B.9.3.1 Weapon System Fielding                                                     | B-139         |
| B.9.3.2 Maintenance Concept                                                        | B-139         |
| B.9.3.3 Support for ATS                                                            |               |
| B.9.4 Weapons System ATS Inventory.                                                | B-142         |
| B.9.5 Specific ATS Technical Capabilities                                          |               |

| B.9.5.1 IFTE                                                      | B-142 |
|-------------------------------------------------------------------|-------|
| B.9.5.2 Characteristics                                           |       |
| B.9.5.3 Commercial Equivalent Equipment (CEE) Characteristics     |       |
| B.9.5.4 Base Shop Test Facility (BSTF) Characteristics            |       |
|                                                                   |       |
| B.10. MATE PROFILE                                                | B-148 |
|                                                                   |       |
| B.10.1 Common ATS System Background                               |       |
| B.10.1.1 Description                                              |       |
| B.10.1.2 Design Baseline                                          |       |
| B.10.1.3 ATS Derivation                                           |       |
| B.10.2 Justification                                              |       |
| B.10.3 Common ATS Acquisition and Management                      |       |
| B.10.3.1 Policies/Regulations                                     |       |
| B.10.3.2 Common ATS Management Organization                       |       |
| B.10.3.3 Relationship to weapon system management organizations . | B-151 |
| B.10.3.4 Controls over common ATS/peculiar weapon system          |       |
| requirements                                                      |       |
| B.10.4 Common ATS Deployment Concepts                             |       |
| B.10.4.1 Summary of MATE ATS Inventories                          | B-152 |
| B.10.5 Specific Common ATS Technical Capabilities                 |       |
| B.10.5.1 Operating Software                                       |       |
| B.10.5.2 TPS Development environment                              |       |
| B.10.6 Common ATS Upgrade and/or Off-load Plans                   |       |
| B.10.7 Factory/Depot Use                                          | B-153 |
| B.10.8 Specific MATE Weapon System ATS                            | B-154 |
| B.10.8.1 Advanced Deport Inertial Navigation Test System          |       |
| (ADINTS)                                                          | B-154 |
| B.10.8.1.1 Description                                            | B-154 |
| B.10.8.2 Design Baseline                                          |       |
| B.10.8.3 IATS                                                     | B-155 |
| B.10.8.3.1 Description                                            |       |
| B.10.8.3.2 Design Baseline                                        |       |
| B.10.8.4 MIDATS                                                   | B-155 |
| B.10.8.4.1 Description                                            | B-155 |
| B.10.8.4.2 Design Baseline                                        | B-155 |
| B.10.8.5 SCADC                                                    | B-155 |
| B.11. F-15                                                        | B-156 |
|                                                                   |       |
| B.11.1 Weapon System Background                                   | B-156 |
| B.11.2 ATS Acquisition and Management                             | B-157 |
| B.11.3 Weapon System and ATS Deployment Concepts                  | B-158 |
| B.11.3.1 Weapon system maintenance concepts                       | B-158 |
| B.11.3.2 Mainttenance concepts                                    | B-158 |

| D 11 2 2 Impact on Golding                                                                                                                                                                                                                                                                                                                                                                          | D 169                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B.11.3.3 Impact on fielding                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |
| B.11.3.4 Plans to achieve concepts                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |
| B.11.3.5 Supporting plans                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |
| B.11.4 Weapon System ATS Inventory                                                                                                                                                                                                                                                                                                                                                                  | B-139                                                                                                    |
| B.11.5 Specific ATS Technical Capabilities                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |
| B.11.5.1 F-15 AIS                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |
| B.11.5.1.1 Design Baseline for F-15 A/B/C/D AIS                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |
| B.11.5.1.2 Design Baseline for F-15 E AIS                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |
| B.11.5.1.3 Known advantages/disadvantages                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |
| B.11.6 ATS Upgrade and/or Off-load Plans                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |
| B.11.7 Factory/Depot Use                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |
| B.11.7.1 Factory Use                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |
| B.11.8 Depot Test Systems                                                                                                                                                                                                                                                                                                                                                                           | B-165                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                     | D 1//                                                                                                    |
| B.12. F-16                                                                                                                                                                                                                                                                                                                                                                                          | <b>B</b> -100                                                                                            |
| D 12 1 Weenen Sustem Background                                                                                                                                                                                                                                                                                                                                                                     | D 166                                                                                                    |
| B.12.1 Weapon System Background                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |
| B.12.2 ATS Acquisition and Management<br>B.12.3 Wesser System and ATS Deployment Concentry                                                                                                                                                                                                                                                                                                          |                                                                                                          |
| B.12.3 Weapon System and ATS Deployment Concepts                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |
| B.12.3.1 Weapon system maintenance concepts                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |
| B.12.3.1.1 Maintenance concepts                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |
| B.12.3.1.2 Impact on ATS design and fielding concepts                                                                                                                                                                                                                                                                                                                                               | <b>D</b> -106                                                                                            |
| B.12.3.1.3 Planned changes to the maintenance concept and                                                                                                                                                                                                                                                                                                                                           | D 169                                                                                                    |
| potential impacts to the ATS                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| B.12.3.2 Plans to achieve concepts                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |
| B.12.3.3 Supporting plans                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |
| B.12.4 Weapon System ATS Inventory                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |
| B.12.5 General ATS Technical Capabilities                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |
| B.12.5.1 Intermediate-Level Test Equipment                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |
| B.12.5.1.1 C/I.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |
| B.12.5.1.2 D/I.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |
| B.12.5.1.3 P/P                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                     | R_177                                                                                                    |
| B.12.5.1.4 RF                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |
| B.12.5.1.5 IAIS                                                                                                                                                                                                                                                                                                                                                                                     | B-174                                                                                                    |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment                                                                                                                                                                                                                                                                                                                                                | B-174<br>B-175                                                                                           |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment<br>B.12.6.1 AISs                                                                                                                                                                                                                                                                                                                               | B-174<br>B-175<br>B-175                                                                                  |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment<br>B.12.6.1 AISs<br>B.12.6.2 TI Digital Module Test Station                                                                                                                                                                                                                                                                                    | B-174<br>B-175<br>B-175<br>B-175<br>B-175                                                                |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment<br>B.12.6.1 AISs<br>B.12.6.2 TI Digital Module Test Station<br>B.12.6.3 Analog Test Station                                                                                                                                                                                                                                                    | B-174<br>B-175<br>B-175<br>B-175<br>B-175<br>B-175                                                       |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment<br>B.12.6.1 AISs<br>B.12.6.2 TI Digital Module Test Station<br>B.12.6.3 Analog Test Station<br>B.12.6.4 Microwave Test Station                                                                                                                                                                                                                 | B-174<br>B-175<br>B-175<br>B-175<br>B-175<br>B-175<br>B-176                                              |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment<br>B.12.6.1 AISs<br>B.12.6.2 TI Digital Module Test Station<br>B.12.6.3 Analog Test Station<br>B.12.6.4 Microwave Test Station<br>B.12.6.5 Honeywell Digital Module Test Station                                                                                                                                                               | B-174<br>B-175<br>B-175<br>B-175<br>B-175<br>B-175<br>B-176<br>B-176                                     |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment<br>B.12.6.1 AISs<br>B.12.6.2 TI Digital Module Test Station<br>B.12.6.3 Analog Test Station<br>B.12.6.4 Microwave Test Station<br>B.12.6.5 Honeywell Digital Module Test Station<br>B.12.6.6 FACT II                                                                                                                                           | B-174<br>B-175<br>B-175<br>B-175<br>B-175<br>B-175<br>B-176<br>B-176<br>B-176                            |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment<br>B.12.6.1 AISs<br>B.12.6.2 TI Digital Module Test Station<br>B.12.6.3 Analog Test Station<br>B.12.6.4 Microwave Test Station<br>B.12.6.5 Honeywell Digital Module Test Station<br>B.12.6.6 FACT II<br>B.12.7 ATS Upgrade and/or Off-load Plans                                                                                               | B-174<br>B-175<br>B-175<br>B-175<br>B-175<br>B-175<br>B-176<br>B-176<br>B-176<br>B-176                   |
| <ul> <li>B.12.5.1.5 IAIS</li> <li>B.12.6 Depot-level Test Equipment</li> <li>B.12.6.1 AISs</li> <li>B.12.6.2 TI Digital Module Test Station</li> <li>B.12.6.3 Analog Test Station</li> <li>B.12.6.4 Microwave Test Station</li> <li>B.12.6.5 Honeywell Digital Module Test Station</li> <li>B.12.6.6 FACT II</li> <li>B.12.7 ATS Upgrade and/or Off-load Plans</li> <li>B.12.7.1 C/D AIS</li> </ul> | B-174<br>B-175<br>B-175<br>B-175<br>B-175<br>B-176<br>B-176<br>B-176<br>B-176<br>B-176<br>B-176          |
| B.12.5.1.5 IAIS<br>B.12.6 Depot-level Test Equipment<br>B.12.6.1 AISs<br>B.12.6.2 TI Digital Module Test Station<br>B.12.6.3 Analog Test Station<br>B.12.6.4 Microwave Test Station<br>B.12.6.5 Honeywell Digital Module Test Station<br>B.12.6.6 FACT II<br>B.12.7 ATS Upgrade and/or Off-load Plans                                                                                               | B-174<br>B-175<br>B-175<br>B-175<br>B-175<br>B-176<br>B-176<br>B-176<br>B-176<br>B-176<br>B-176<br>B-177 |

| B.12.7.2.2 Scan TechnologyB-                                              | 177 |
|---------------------------------------------------------------------------|-----|
| B.12.7.2.3 VXI                                                            |     |
| B.12.7.2.4 Ada/ABETB-                                                     | 177 |
| B.12.8 Factory/Depot                                                      |     |
| o                                                                         |     |
| B.13. F-22B-                                                              | 180 |
| B.13.1 Weapon System Background and Management                            | 180 |
| B.13.2 ATS Acquisition and Management                                     |     |
| B.13.3 Weapon System and ATS Deployment Concepts                          | 181 |
| B.13.3.1 Weapon system maintenance concepts                               |     |
| B.13.3.1.1 Maintenance conceptsB-                                         |     |
| B.13.3.1.2 Impact on fielding                                             | 181 |
| B.13.3.2 Plans to achieve concepts                                        | 181 |
| B.13.4 Weapon System ATS Inventory                                        |     |
| B.13.5 Specific ATS Technical Capabilities                                |     |
| B.13.6 Factory/Depot UseB-                                                |     |
| B.13.6.1 Factory Use                                                      |     |
| B.13.6.2 Depot Test SystemsB-                                             |     |
| B.14. C-17                                                                | 184 |
| B.14.1 Weapon System BackgroundB-                                         | 184 |
| B.14.2 ATS Acquisition and ManagementB-1                                  |     |
| B.14.3 Weapon System and ATS Deployment Concepts                          | 185 |
| B.14.3.1 Weapon system maintenance concepts                               |     |
| B.14.3.1.1 Maintenance concepts                                           |     |
| B.14.3.1.2 Impact on fielding                                             |     |
| B.14.3.2 Plans to achieve concepts                                        |     |
| B.14.3.3 Supporting plans - personnel, training, support for ATS, etc B-1 |     |
| B.14.4 Weapon System ATS Inventory                                        |     |
| B.14.5 Specific ATS Technical Capabilities                                | 187 |
| B.14.5.1 Design Baseline                                                  |     |
| B.14.5.2 Design source/derivation                                         | 187 |
| B.14.5.3 Known advantages/disadvantagesB-1                                |     |
| B.14.5.4 Factory/Depot UseB-1                                             | 188 |
| B.15. ADVANCED CRUISE MISSILE                                             | 190 |
| B.15.1 Weapon System BackgroundB-1                                        | 190 |
| B.15.1.1 Weapon system description                                        |     |
| B.15.1.1.1 Acquisition Strategy                                           | 90  |
| B.15.1.1.2 Strategy for Engineering and Manufacturing                     |     |
| Development (EMD)                                                         |     |
| B.15.1.1.3 Strategy for Production                                        | 101 |
| B.15.2 Weapon System and ATS Deployment Concepts                          |     |

)

ł

| B.15.2.1 Weapon system maintenance concepts                    | <b>B</b> -191 |
|----------------------------------------------------------------|---------------|
| B.15.2.1.1 Organizational maintenance                          | B-191         |
| B.15.2.1.2 Intermediate maintenance                            | B-192         |
| B.15.2.1.3 MOB maintenance requirements                        |               |
| B.15.2.1.4 Ground operations/maintenance scenario              |               |
| B.15.2.1.5 Pylon building                                      |               |
| B.15.2.1.6 Depot maintenance                                   |               |
| B.15.2.2 Plans to achieve concepts (historical as appropriate) | <b>B</b> -193 |
| B.16. AMRAAM                                                   | B-196         |
|                                                                |               |
| B.16.1 Weapon System Background                                |               |
| B.16.2 ATS Acquisition and Management                          |               |
| B.16.2.1 Flow charts and text                                  |               |
| B.16.2.2 Any special policies or regulations, etc.             |               |
| B.16.3 Weapon System and ATS Deployment Concepts               |               |
| B.16.3.1 Weapon system maintenance concept                     |               |
| B.16.3.1.1 Maintenance concepts                                |               |
| B.16.3.1.1.1 Air Force                                         |               |
| B.16.3.1.1.2 Organizational                                    |               |
| B.16.3.1.1.3 Intermediate                                      |               |
| B.16.3.1.2 Navy                                                | B-198         |
| B.16.3.1.2.1 Fleet Level Maintenance                           |               |
| B.16.3.1.2.2 NAVWPNSTA/NAWMU Maintenance                       |               |
| B.16.3.2 Joint Services depot                                  |               |
| B.16.3.2.1 AUR Receipt/Handling                                |               |
| B.16.3.2.2 AUR Repair                                          |               |
| B.16.3.3 Section/Component Maintenance                         |               |
| B.16.3.3.1 Designated Overhaul Points                          |               |
| B.16.3.3.2 Electrical/Electronic Components                    | B-202         |
| B.16.3.3.3 Explosive Components                                | B-202         |
| B.16.3.3.4 Mechanical Components                               | B-202         |
| B.16.4 Specific ATS Technical Capabilities                     |               |
| B.16.5 Mainframe CASS                                          | B-202         |
| B.16.5.1 Operating Software                                    | B-202         |
| B.16.5.2 TPS Development environment                           | B-203         |
| B.16.5.3 Ancillary equipment                                   | B-204         |
| B.16.5.4 Environmental requirements and tested capabilities    | B-204         |
| B.16.6 CASS MTS                                                | B-204         |
| B.16.6.1 Operating Software                                    | B-204         |
| B.16.6.2 Environmental requirements and tested capabilities    | B-205         |
| B.16.7 Factory/Depot Use                                       | B-205         |

Sector Sec

# List of Figures

| Figure B-1. | Existing Checks and Balances Process         | B-23  |
|-------------|----------------------------------------------|-------|
| Figure B-2. | SE PMA Concept of Operation                  | B-24  |
| Figure B-3. | F/A-18 Acquisition and Management Flow Chart | B-39  |
| Figure B-4. | A-12 Acquisition and Management Flow Chart   | B-66  |
| Figure B-5. | ATE Waiver Processing Flowchart              | B-98  |
| Figure B-6. | Flow for F-16 AIS Planning and Beddown       | B-167 |

# List of Tables

| Table B-1.  | CASS Site Activation Planning Numbers                                  | <b>B-2</b> 6   |
|-------------|------------------------------------------------------------------------|----------------|
| Table B-2.  | Estimates of Navy-wide CASS Arrival O&S Costs                          | . <b>B-2</b> 8 |
| Table B-3.  | Projected CASS-Needed Savings                                          | . <b>B-2</b> 8 |
| Table B-4.  | F/A-18 Development Milestones                                          | . <b>B-35</b>  |
| Table B-5.  | F/A-18 E/F Planned Events                                              | . <b>B-37</b>  |
| Table B-6.  | Projected F/A-18 E/F Program Decisions                                 | .B-38          |
| Table B-7.  | Projected Events Leading To Full Qualification Of F/A-18 E/F<br>Engine | <b>B-3</b> 8   |
| Table B-8.  | Station Quantities                                                     | . <b>B-4</b> 1 |
| Table B-9.  | Typical MV Deployment Quantities                                       | .B-42          |
| Table B-10. | Typical RSTS Deployment Quantities                                     | . <b>B-42</b>  |
| Table B-11. | Typical IATS Deployment Quantities                                     | .B-44          |
| Table B-12. | Typical EOTS Deployment Quantities                                     | . <b>B-44</b>  |
| Table B-13. | Typical IMUTS II Deployment Quantities                                 | B-45           |
| Table B-14. | HTS Station Quantities                                                 | <b>B-4</b> 6   |
| Table B-15. | Typical HTS Deployment Quantities                                      | <b>B-4</b> 6   |
| Table B-16. | Typical NEWTS Deployment Quantities                                    | . <b>B-4</b> 7 |
| Table B-17. | Typical DMTS Deployment Quantities                                     | .B-48          |
| Table B-18. | Programmed CASS Off-loads                                              | .B-49          |
| Table B-19. | A-12 Aircraft Development Milestones                                   | . <b>B-65</b>  |
| Table B-20. | A-12 ATE Milestones                                                    | . <b>B-65</b>  |
| Table B-21. | Listing of Identified Requirements for Operations TPSs by WRA          | <b>. B-7</b> 0 |
| Table B-22. | Appache Longbow ATS                                                    | <b>. B-83</b>  |
| Table B-23. | MLRS ATS                                                               | . <b>B-8</b> 9 |
| Table B-24. | AN/USM-410 Measurement Capabilities                                    | . <b>B-9</b> 1 |
| Table B-25. | BSTF and CEE Measurement Capabilities                                  | <b>B-9</b> 2   |
| Table B-26. | BSTF and CEE Digital Characteristics                                   | <b>B-9</b> 3   |
| Table B-27. | BSTF and CEE Stimuli Characteristics                                   | <b>B-9</b> 3   |
| Table B-28. | Abrams ATE Resources by Maintenance Level                              | <b>B-101</b>   |
| Table B-29. | Summary ATS Used with the ABRAMS                                       | <b>B-103</b>   |

| Table B-30. | AN/USM-410 Measurement Capabilities                  | <b>B-1</b> 04   |
|-------------|------------------------------------------------------|-----------------|
| Table B-31. | AN/USM-410 Stimulus Capabilities                     | <b>B-105</b>    |
| Table B-32. | AN/USM-410 Synchro Stimulus                          | <b>B-105</b>    |
| Table B-33. | AN/USM-410 Digital Stimulus/Response                 | <b>B-106</b>    |
| Table B-34. | AN/USM-410 Power Stimulus Capabilities               | <b>B-106</b>    |
| Table B-35. | Summary of DIT-MCO Specifications & Capabilities     | . <b>B-112</b>  |
| Table B-36. | IFTE Procurement                                     | . <b>B-119</b>  |
| Table B-37. | IFTE R&D                                             | . <b>B</b> -119 |
| Table B-38. | Summary of BFVS characteristics                      | .B-121          |
| Table B-39. | BFVS ATS Summary                                     | <b>.B-123</b>   |
| Table B-40. | BFVS ATS Inventory                                   | .B-125          |
| Table B-41. | AN/USM-410 Measurement Capabilities                  | .B-126          |
| Table B-42. | AN/USM-410 Stimulus Capabilities                     | .B-127          |
| Table B-43. | AN/USM-410 Synchro Stimulus                          | . <b>B-127</b>  |
| Table B-44. | AN/USM-410 Digitial Stimulus/Response                | .B-128          |
| Table B-45. | AN/USM-410 Power Stimulus Capabilities               | .B-128          |
| Table B-46. | AN/USM-410 RF Station Stimulus                       | . <b>B-129</b>  |
| Table B-47. | AN/USM-410 RF Station Measurement                    | . <b>B-13</b> 0 |
| Table B-48. | Avenger ATS                                          | . <b>B-14</b> 0 |
| Table B-49. | Avenger ATS Inventory                                | .B-142          |
| Table B-50. | CEE System Characteristics                           | .B-144          |
| Table B-51. | CEE Measurement Characteristics                      | .B-145          |
| Table B-52. | CEE Stimuli Characteristics                          | .B-146          |
| Table B-53. | CEE Digital Characteristics                          | . <b>B-147</b>  |
| Table B-54. | MATE System Baseline                                 | .B-148          |
| Table B-55. | Percent Commonality of ATS with MATE System Baseline | . <b>B-149</b>  |
| Table B-56. | ATS Derived from MATE Standards by Location          | .B-152          |
| Table B-57. | Depot Test Systems Derived from MATE Standards       | .B-154          |
| Table B-58. | F-15 Automatic Test Stations by Maintenance Levels   | . <b>B-15</b> 9 |
| Table B-59. | F-15 A-B Intermediate Automatic Test Systems         | . <b>B-16</b> 0 |
| Table B-60. | F-15 C-D Intermediate Automatic Test Systems         | <b>. B-16</b> 0 |

| Table B-61. | F-15 E Intermediate Automatic Test Systems                 | B-161         |
|-------------|------------------------------------------------------------|---------------|
| Table B-62. | F-15 A/B Depot Automatic Systems                           | B-161         |
| Table B-63. | F-15 C/D Depot Automatic Test Systems                      | B-162         |
| Table B-64. | Specifice ATS Technical Capabilities                       | B-162         |
| Table B-65. | F-15 Downsized Tester and TPS Acquisition Planning         | B-164         |
| Table B-66. | F-16 ATS Quantities by Location (Intermediate - Level AIS) | B-171         |
| Table B-67. | AIS Test Program Sets by Location and Types                | B-172         |
| Table B-68. | Depot-Level ATE and Test Program Sets                      | B-172         |
| Table B-69. | C/I Station LRUs                                           | B-173         |
| Table B-70. | D/I Station LRUs                                           | B-173         |
| Table B-71. | P/P Station LRUs                                           | B-174         |
| Table B-72. | RF Station LRUs                                            | B-174         |
| Table B-73. | IAIS LRUs                                                  | <b>B</b> -175 |
| Table B-74. | F-22 Factory Test Systems                                  | B-182         |
| Table B-75. | C-17 ATS Quantities by Location                            | B-187         |
| Table B-76. | CASS System Software Modules                               | B-203         |

## NAVY PROFILES

## **B.1. CASS PROFILE**

### B.1.1 CASS System Background

#### **B.1.1.1 Description**

The Consolidated Automated Support System (CASS), together with its system software, will provide a comprehensive electronics test capability to support the operational requirements of Navy weapon systems. CASS is being developed for the Naval Air Systems Command (NAVAIR), the Naval Sea Systems Command (NAVSEA), and the Space and Naval Warfare Systems Command (SPAWAR) to meet electronic testing requirements.

The overall CASS objective is the development of an Automatic Test Equipment (ATE) system that will improve weapon system readiness at reduced life cycle cost. CASS goals are to:

- Provide an integrated system to support automatic testing of Navy electronics for the 1990 —2010 time frame with application not only at the intermediate level, but at the depot and factory (weapon system and electronic system production facilities) levels.
- Develop a workable architecture which will enable the Navy to develop configurations of CASS to maintain a broad spectrum of electronic technologies, while also providing for future growth.
- Establish a CASS support system that will be fully responsive to both the CASS mission requirements, yet be consistent with the overall concept.

The overall CASS project includes the tasks of developing, acquiring, managing and deploying a set of assets that can be configured to meet the performance and workload range required by prime weapon systems emerging in the 1990—2010 time frame. CASS hardware and software improvements will be capable of being easily incorporated within CASS without any major modifications or integration efforts. All CASS hardware and software assets will be fully supportable.

CASS will include management tools and procedures for selecting the proper CASS configuration needed at a particular site. Shop management procedures will be designed to enable the Intermediate Maintenance Activity (IMA) to operate in the most effective manner to maximize ATE throughput. The primary emphasis at the time of CASS initial deployment will be in support of avionics at the intermediate level. Additionally, CASS assets will meet the testing requirements of the Navy at depots and factories. (CASS Computer Resources Life Cycle Management Plan (CRLCMP))

#### **B.1.1.2 Design Baseline**

The CASS program is currently in the Engineering/Manufacturing Development (EMD) Phase. The first Low Rate Initial Production (LRIP) for 74 stations was awarded in FY90, with first delivery to commence in July 1992. The second LRIP for an additional 60 stations is currently being negotiated with contract award pending a successful Defense Acquisition Board (DAB) review. Baseline will be established following completion of the Physical Configuration Audit scheduled for the summer of fiscal year (FY) 1992.

CASS is a new development program with no predecessors upon which the design was based.

#### **B.1.1.3** Justification

The CASS program was initiated due to Fleet and CINC concerns about increasing ATE deficiencies and the proliferation of unique test equipment. In 1976 an ASN (R&D) study addressing the state of ATE identified 20 major problem areas. NDCP W-0852-SL for this program was approved 27 August 1980. Between 1 January 1982 and 30 August 1983 a Phase I System Definition for the CASS was conducted. In March 1983, the scope of the CASS was expanded from test support for five selected avionics weapon systems to include all major TACAIR systems. In October 1983, ASN (RE&S) directed that the competition initiated in Phase I be continued into Full Scale Development (FSD) and production. By a March 1984 CNO letter, NAVAIR was directed to provide CASS as the support equipment for the A-6F, F-14D and the F/A-18 electro-optics with other weapons systems

support to be transitioned to CASS as existing ATE is are phased out. In a March 1985 Program Decision Memorandum, the Secretary of the Navy directed the following: (1) expansion of CASS to provide support for all Navy electronics weapon systems and establishment of CASS as the standard Navy ATE, (2) upgrade of the program to ACAT II-S, and (3) continuation of industry competition in development and production. Source selection for a preliminary FSD phase was completed in August 1985, and competitive contracts were awarded to General Electric (GE) Company and Grumman Aerospace Corporation.

To avoid ATE acquisition and ownership costs, which are projected to increase significantly, and to correct existing ATE deficiencies, limitations and proliferation, major improvements in ATE capability are required. These improvements will provide technically capable and cost effective support for all current and future Department of the Navy (DON) weapon systems over the next 20 years. To improve fleet capability in sustaining high tempo operations, the following objectives should be met: (1) the throughput capability for Units Under Test (UUTs) should at least meet wartime surge capacity; (2) significantly improve ATE reliability and maintainability (R&M); (3) reduce Aircraft Carrier (CV) ATE space requirements; and (4) substantially decrease manpower, training and Life Cycle Costs (LCC). The users involved will be all aviation intermediate and depot level maintenance activities and those repair sites designated by NAVSEA and SPAWAR. (CASS NDCP)

## B.1.2 CASS Acquisition and Management/P<sup>3</sup>I Approach

#### **B.1.2.1** Policies/Regulations

The introduction of CASS to the Navy is governed by two major policy statements;

- a. NAVAIR Instruction 13630.2A, Introducing the Consolidated Automated Support System to Naval Aviation Maintenance, 22 March 1991.
- b. SECNAV Instruction 3960.6, Department of the Navy Policy and Responsibility for Test, Measurement, Monitoring, Diagnostic Equipment and Systems, and Metrology and Calibration (METCAL), 12 October 1990.

In addition there are several supporting military standards;

- c. MIL-STD-2076, Unit Under Test Compatibility with Automatic Test Equipment; General Requirements for
- d. MIL-STD-2165, Testability Program for Electronic Systems and Equipment.

e. MIL-STD-2084, General Requirements for Maintainability of Avionic and Electronic Systems and Equipment.

NAVAIRINST 13630.2A defines policies, procedures and responsibilities for introducing CASS to Naval Aviation. This instruction defines the following policy:

- Electronic weapon systems/systems be designed for ease of testing and compatibility with CASS through the application of [MIL-STD's (3), (4) and (5)].
- (2) CASS or CASS compatible equipment be specified as the factory test equipment required at a development/manufacturing facility.
- (3) CASS be the target system for all intermediate and depot level ATE requirements.
- (4) Waiver approval be required if instances arise where CASS is determined not to be the optimum ATE support solution.

SECNAVINST 3960.6 applies to all components of the DON responsible for (1) design, acquisition, operation, and logistic support of weapons platforms, weapon systems, operational systems and associated support systems; and (2) design, acquisition, use and logistic support of test, measurement, calibration, monitoring, and diagnostic equipment and systems. The instruction states that it is DON policy to be responsible for the following:

Ensure that diagnostic capabilities, including built-in-test (BIT), for each level of maintenance are consistent with the operational mission and intended use of the applicable systems. General purpose test equipment shall be used where possible. Commercially available test equipment and systems shall be used if they meet environmental requirements imposed by the operational mission and can be logistically supported. Automatic Test Equipment (ATE) should be standardized as much as possible. The Consolidated Automated Support System (CASS) is being developed as the Navy's standard ATE. Systems acquisition managers (program managers) will study and determine if and when it is economically practical to transition to CASS. Until then, they will continue to use their present test equipment. In the future, use of non-CASS ATE will require Assistant Secretary of the Navy for Research, Development, and Acquisition ASN (RD&A) approval. New ATE shall not be acquired if the requirements can be satisfied by CASS. Acquisition and life cycle costs must be considered during the design and acquisition process and in performing diagnostic capability tradeoffs. Test Program Set (TPS) development and distribution costs shall be included in the life cycle cost of ATE for acquisition planning.

#### **B.1.2.2** Common ATS Management Organization

Within the Naval Air Systems Command, program management responsibilities reside with PMA-260. PMA-260 does not report to a Program Executive Office (PEO), but to the Deputy Commander for Acquisition and Operations, AIR-01. PMA-260 currently receives technical and logistic support from a matrix organization technical support from the Support Equipment Division (AIR-552), and logistics support from the Support Systems and Logistics Management Division (AIR-417). This relationship provides a control in the acquisition process to prevent the procurement of non-CASS ATS since AIR-552 provides a centralized acquisition function to all NAVAIR program offices. In addition to these acquisition responsibilities, AIR-552 is provides representation on each weapon system's Integrated Logistics Support Management Team and Systems Engineering Support Team. This centralized position provides visibility to all NAVAIR ATS requirements and facilitates the prevention of peculiar support solutions (see Figure B-1).

NAVAIR is currently in the process of decentralizing this function to field activities as part of its overall downsizing plan. In the future, field activity support will be directly funded by individual program offices to assess support equipment solutions and make procurements. A separate Support Equipment (SE) Program Management, Aircraft (PMA) will be responsible for oversight of the acquisition process. Since AIR-552 will no longer be allocated funding for peculiar support equipment, the control function will be provided through oversight of this process and communication between field activity personnel directly supporting weapon system program offices and the SE PMA (see Figure B-2). Further details of this reorganization and this process are currently unavailable.

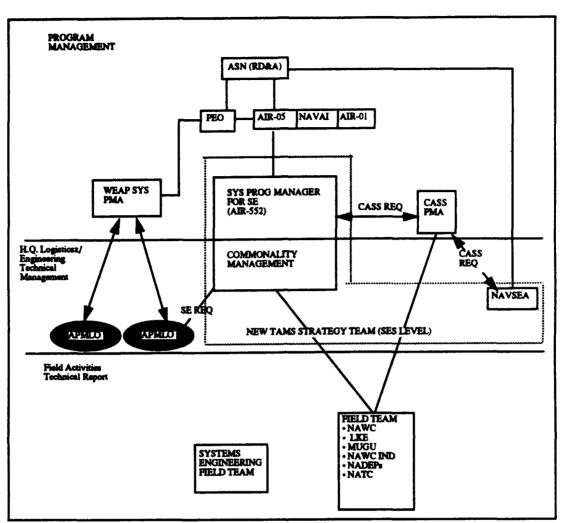



Figure B-1. Existing Checks and Balances Process

### **B.1.2.3 Relationship to Weapon System Management Organizations**

6

For ATE procurement PMA-260 interfaces with AIR-01 for those weapon systems still managed within NAVAIR and the PEO organization for those programs outside NAVAIR. The TPS procurement function is being transferred to field activities who directly support the individual program offices.

#### **B.1.2.4** Controls over Common ATS/Peculiar Weapon System Requirements

In addition to the waiver process defined by SECNAVINST 3960.6, PMA-260 has a mandatory review of all Acquisition Plans and Procurement Requests processed through NAVAIR. This review is used to ensure that the proper planning has been performed to ensure peculiar test equipment requirements are not generated

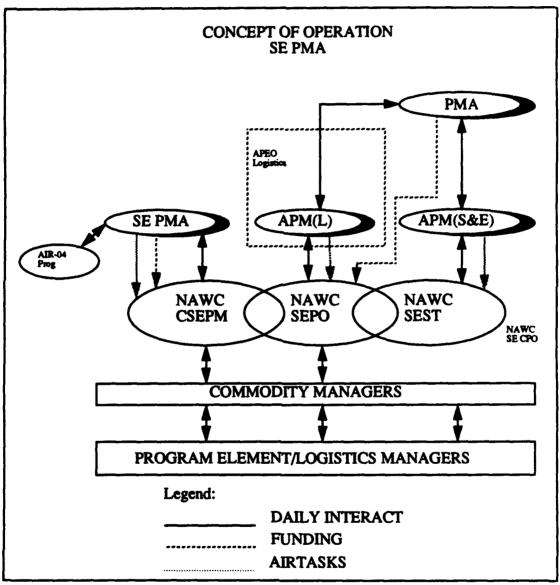



Figure B-2. SE PMA Concept of Operation

# **B.1.3** CASS Deployment Concepts

### **B.1.3.1** Navy Implementation

The Naval Air Systems Command (AIR-552) is responsible for consolidating the Naval Aviation community's requirements for CASS stations and allocating station deliveries to meet these requirements. AIR-552 documents this planning data in the CASS Introduction Plan (CIP). The latest revision to this plan is the 15 August 1991 version. The CIP provides an overview of each CASS TPS development program and CASS deliveries by program and site in detail for the present Future Year Defence Plan (FYDP) as well as projections for the subsequent FYDP. According to the latest planning data available from AIR-552, the following weapon systems are currently planning to be supported on or transitioned to CASS:

| AIWS                | F014D CFE WRA   | AIS                        |
|---------------------|-----------------|----------------------------|
| AMRAAM              | GPWS/HELO       | F-14D CFE SRAs             |
| AN/AAS-33A          | GPWS/TRANSPORT  | AAM-60 A-6                 |
| AN/ALE-47           | HARM            | AAM-60 S-3                 |
| AN/ALE-50           | HARPOON/SLAM    | ASM-614 EA-6B              |
| AN/ALQ-126B RF SRAs | IRSTS           | ASM-614 S-3                |
| AN/ALQ-156          | JTIDS           | ASM-614 SH-60              |
| AN/ALQ-165          | MIDS            | HATS S-3                   |
| AN/ALQ-165 SRAs     | MINI-DAMA       | TMV F-14B                  |
| AN/ALR-67 ASR       | MMR/ARN-138     | VAST F-14                  |
| AN/APG-73 (F/A-18)  | PHOENIX         | VAST S-3                   |
| AN/APN-217 (V) 5    | SAHRS           | USM-470(V) MINI VAST       |
| AN//APS-137         | SCS             | USM-446 RSTS               |
| AN/ARC-210 I/D      | SH-60B BLOCK II | USM-392B                   |
| CAINS II            | SH-60F/ALS      | USM-458C NEWTS             |
| EA-6B AIP           | F/A-18E/F       | USM-604 EETS               |
| EA-6B AN/ALQ-149    |                 | USM-484 HTS (ARBS<br>ONLY) |

EA-6B RPG

CASS mainframes are currently slated for deployment in aircraft carrier and Naval Air Station Aircraft Intermediate Maintenance Departments (AIMD), Mobile Maintenance Facilities (vans), Depots, Product Support Directorates (PSDs), WQECs & MAWMUs (Missiles), Naval Maintenance Training Group Detachments (NAMTRAGRUDET) and eventually LHA/LHDs. CASS MTS are scheduled to go to WQECs, Depot's, Naval Weapon Stations, and MAWMU's. For detailed site activation data for the above weapon systems, please refer to the CIP. The average deployment quantities per site currently in the CIP are as follows:

| SITE             | CASS | MTS |  |
|------------------|------|-----|--|
| CV/CVN           | 12   | 0   |  |
| Shore-based AIMD | 18   | 0   |  |
| Depots/PSDs      | 10   | 17  |  |
| NAMTRAGRUDET     | 6    | 1   |  |
| Marine           | 17   | 0   |  |
| WQEC             | 17   | 1-5 |  |
| NWS              | 0    | 14  |  |
| MAWMU            | 0    | 6   |  |

 Table B-1.
 CASS Site Activation Planning Numbers

## **B.1.3.2** Joint Operations

With the issuance and the effective implementation of SECNAVINST 3960 of 12 October 1990, which mandates CASS across Navy Systems Command and its, there will be an increasing number of weapon systems from NAVSEA and SPAWAR that will be supported on CASS as well as more joint- programs. As a result of this movement to a common, Navy-wide support solution, there will be benefits to the Battle Group Intermediate Maintenance Activity (BGIMA) concept. While there are several joint Service programs that are planning to use CASS, the Army is in the process of integrating the CASS EO Sub-System into its IFTE. All of these trends will increase operational effectiveness in the maintenance community during joint operations.

A list of joint Service/command weapon systems currently planning to use CASS is as follows:

| JTIDS  | MINI-DAMA | ALE-47 |
|--------|-----------|--------|
| AMRAAM | AIWS      | ATARS  |
| MIDS   |           |        |

# **B.1.3.3 ATS Workloading**

CASS consists of a five-rack "hybrid" core and three specific configurations Radio Frequency (RF), Communications/ Navigation/ Identification (CNI), and Electro-Optics (EO). CASS is constructed by attaching one additional rack to the core. The hybrid is common across each configuration. In addition, there are ancillary equipment for unique requirements such as pneumatics and inertial navigation. As a result, CASS affords the operator with a great deal of TPS transportability (any TPS built for a hybrid can run on any other CASS configuration). With this capability, the AIMD officer is given a great deal of flexibility in scheduling workload. A valuable tool that will augment this capability is the Operations Management System (OMS). The OMS is hosted on a stand-alone computer and is on-line with all CASS in the AIMD via ethernet. From this system, the work center manager is provided the capability to monitor the availability and usage status of each tester and therefore schedule workload effectively and efficiently.

#### B.1.3.4 CASS Support plans

#### B.1.3.4.1 CASS Maintenance Concept

CASS will utilize a two level maintenance concept as follows. At the intermediate level the Shop Replaceable Assemblies (SRA) will be fault isolated using the system's internal built-in-test, called background self-maintenance (SMAT), and calibration TPSs. The faulty SRA is removed and replaced. Off-line from the tester, all new development SRAs will be fault isolated to the failed component using support of support TPSs. Faulty components will be removed and replaced via microminiature repair. At the depot level select SRAs will be fault isolated using support of support TPSs and repaired via microminiature repair. Commercial Test Equipment will be supported by a combination of organic and vendor repair, based upon economic and technical feasibility which is yet to be determined.

#### B.1.3.4.2 Life Cycle

The annual operations and support (O&S) costs estimated for CASS by NAMO level off between FY 2005 and 2011 at the following (\$M):

| APPROPRIATION                  | FUNDING (\$M)       |  |
|--------------------------------|---------------------|--|
| MILPERS<br>O&MN<br>Procurement | 30.6<br>63.0<br>3.1 |  |
| Total                          | 96.7                |  |

Table B-2. Estimates of Navy-wide CASS Arrival O&S Costs

These costs are in current (FY92) dollars and are based on the 556 CASS stations out of the total inventory objective of 720 that are planned to go to operational vice-contractor sites. With respect to the training aspect of the MILPERS cost, the Navy is currently planning to spend \$8.523M to train Navy personnel in FY93 on the existing family of Navy testers. With CASS, the numerous NEC codes that account for this high training cost are reduced to merely two with a training cost of \$1.764 million (Operator/Maintainer & Technician billets). The O&MN and procurement costs were consolidated into one number, \$66.1 million. MILPERS were excluded from this comparison. (NAMO Life Cycle Cost Estimate of 1 October 1991)

Based upon the reductions in Table B-3, the projected savings associated with CASS in a Carrier environment are \$8,000 million.

|                           | EXISTING | CASS      |  |
|---------------------------|----------|-----------|--|
| Avionics Maint. Personnel | 250      | 150       |  |
| Training Courses          | 185      | 4         |  |
| Test Equipment Types      | 93       | 6         |  |
| Facilities (Square Feet)  | 15,000   | 10,000    |  |
| Spares (Line Item)        | 30,000   | 3,800     |  |
| Tech Pubs (Volumes)       | 634      | 4 (disks) |  |

Table B-3. Projected CASS-Needed Savings

## B.1.3.4.3 TPS Development Leading Curves

An additional benefit associated with the CASS system will manifest itself in several years as industry proceeds down the learning curve associated with the system itself and the standard TPS Red Team procurement package being used by the Navy for TPS development and acquisition. With increased industry acceptance of the CASS and its migration to the factory floor, the cost of TPSs should decrease while their quality and logistics supportability will increase.

# **B.1.4** CASS Inventory

The CASS inventory objective is 720 testers. The allocation of stations is documented in the CASS Introduction Plan of 15 August 1991. This document contains allocations in detail through FY 1996 with projections through FY 2002. For detailed information the CIP should be referenced.

### **B.1.5** Specific CASS Technical Capabilities

# **B.1.5.1 Mainframe CASS**

### **B.1.5.1.1** Operating Software

CASS is based on top of Digital Equipment Corporation's VMS Version 5.2 Operating System. The CASS software system is composed of three main computer software configuration items (CSCI), which are the Station Control Software, the Support Software, and the Intermediate Maintenance Operations Management. The following is a list of the components contained in the CASS CSCIs:

Station Control Software:

- Test Executive
- Virtual Instrument Handlers
- Instrument Personality Interfaces
- Operator Interface
- Automated Technical Information
- Communication Handler
- Asset Allocation
- General Asset Monitor
- Kernal Asset Monitor
- Functional Extension Program
- IEEE 488 Translators
- Self Maintenance

Support Software:

ATLAS Compiler

**B-29** 

- IPTESTER
- Test Program Set Development Software
- Test Executive Simulator

Intermediate Maintenance Operations Management:

- BIT Test
- Data Processing
- Network
- Post Processing
- Pretest
- Station Management

# **B.1.5.1.2** TPS Development Environment

It is intended that CASS TPS development is done off-line on a VAX with a VMS operating system. The following products have been developed to facilitate this process.:

- a. TE SIM (AGE product. It simulates all of CASS's functions, except for those of the Teradyne L200 Series DTU.)
- b. DICONS (an optional, but extremely useful tool. It allows the operator to access and program CASS instruments directly.)
- c. IEEE 716 ATLAS Compiler
- d. L200 Series Compiler (Teradyne)
- e. Fortran Compiler

This off-line TPS Development Process allows the implementation of another costsaving measure, the use of Test Integration Facilities (TIF). The three Navy TIFs are located at Norfolk, VA; Jacksonville, FL; and San Diego, CA. After the TPS developer has completed his development and debugging (except for TPSs which utilize the L200, which can only be debugged at the CASS station), he schedules time at the TIF for integration of his TPS with CASS.

While the use of off-line development reduces the numbers of CASS required, there are some special cases of TPS development in which it is more cost effective to provide a CASS to the developer.

### **B.1.5.1.3** Ancillary Equipment

- a. Pneumatics Function Generator
- b. Inertial Navigation System Interface
  - AR 57 Bus
- c. Advanced Communication Bus Interface
  - 2 Asset Controllers
  - 1 RS-485 Bus (Manchester/Harpoon Bus)
  - 1 FODB (Fiber Optic Data Bus)
  - 1 HSDB (High Speed Data Bus) Bus Spec 86EZ00614
- d. MS1397 Bus (MIL-STD-1397)
- e. Video
- f. Miscellaneous
  - Support of Support-Operational TPSs
    - Holding Fixtures (UUTs)
    - Load Sets

# **B.1.5.1.4** Environmental Requirements and Tested Capabilities

The four CASS configurations (the Hybrid, RF, EO, and CNI) are all required by the CASS contract to be environmentally tested to modified limits of MIL-T-28800C and MIL-STD-167.

To date all configurations have passed environmental testing with the exception of some isolated assets in rack 5 and the SSMD 1 and 2 assets which will be tested in the future.

### **B.1.5.2** CASS Missile Test Station (MTS)

The MTS will be a new development effort that will be based upon the core CASS configuration. As a result, the specifics about its technical capabilities are yet to be defined.

#### **B.1.5.2.1** Operating Software

This is yet to be determined. The additional equipment that will be used to augment the core CASS will dictate the specifics of the operating software.

# **B.1.5.2.2** Environmental Requirements and Tested Capabilities

As with the four existing CASS configurations, the MTS will be environmentally tested to modified limits of MIL-STD-28800C and MIL-STD-167. The MTS, however, will probably not have the same shock and vibration requirements since it will not be utilized in a carrier environment.

# B.1.6 CASS Upgrade and/or Off-load Plans

# B.1.6.1 CASS P<sup>3</sup>I Program

The CASS program has budgeted \$11.0 million per year beginning in FY95 for P<sup>3</sup>I. Candidates for technology insertion are identified by the Navy using the System Synthesis Model (SSM). Part of the CASS Introduction program requires each candidate program provide SSM data sheets which document specific testing requirements. The SSM is an automated tool which compares these testing requirements to the capabilities of CASS. The technical deficiencies identified in CASS by this process, along with the planned inventory of the technology, are used by NAVAIR to set priorities on technology insertion candidates. Using this process to plan and program a structured Pre-Planned Product Improvement (P<sup>3</sup>I) program will enable CASS to support emerging technology, and thereby minimize program risk and the potential for Peculiar Support Equipment (PSE) proliferation.

# **B.1.6.2 Existing ATE Off-load Plans**

The Naval Air Systems Command (AIR-552) has implemented a structured ATE off-load program. Naval Aviation Depots Norfolk and Jacksonville provide technical and management support in this effort. The off-load process begins with a regular assessment of existing ATE capabilities, support costs, obsolescence issues, AIMD space requirements, and Fleet personnel concerns to identify a prioritized list of candidates. Once the candidates have been identified, a revised Level of Repair Analysis (LORA) is performed using actual failure data from the Navy's 3M system. The objective of this process is to only off-load to CASS those UUTs whose demonstrated reliability dictate intermediate-level maintenance. The potentially reduced UUT candidate list output from this effort is then used in a Cost/Benefit Analysis to identify projected quantitative and qualitative returns on investment to the Navy. This information is factored into an internal Support Equipment Decision (SED) process. Decision milestones, which require division director approval, include authority for program definition (SED I), development/pre-production (SED II).

are documented in Support Equipment Program Instruction 3-90 of 23 February 1990. NAVAIR is in the process of executing the following programs that been granted authority to proceed into SED phase II:

> AN/USM-247 VAST AN/USM-470(V)2 Tailored MINI-VAST (F-14 only) AN/AAM-60(V)4/6 EOSTS AN/USM-403 HATS AN/ASM-614B/C ESTS

This program encompasses 100 WRAs and 138 SRAs. In addition to these programs, NAVAIR 552 is in the process of assessing the following candidate testers for an SED I milestone brief:

> AN/USM-446 RSTS AN/USM-470(V)1 MINI-VAST AN/USM-604 EETS AN/USM-484 HTS (AV-8B only) AN/USM-458C NEWTS AN/USM-392B DMTS

# **B.1.7 Factory/Depot Use**

SECNAVINST 3960.6 of 12 October 1990 defines the Navy policy that CASS shall be used in the factory during weapon system development programs to minimize Factory Test Equipment (FTE) costs and maximize the potential benefits of TPS vertical transportability. At the present time no programs have identified a requirement for CASS as FTE. Also, the Navy plans to maximize the use of CASS at both the intermediate and depot levels of maintenance, where practical.

# **B.2.** F/A-18

# B.2.1 F/A-18 Weapon System Background

# **B.2.1.1 Program Overview**

The F/A-18 Hornet is a multi-mission capable, carrier-based aircraft flown by the U.S. Navy and U.S. Marine Corps. In its fighter role, it provides cover for tactical air projection and complements fleet air defense systems. In its attack role, it flies interdiction, close air support, defense suppression, and conventional/nuclear strike mission against land-and-sea based targets.

The F/A-18 is the Navy's lead platform for the incorporation of more than 20 weapons and avionics systems. The F/A-18 C/D Night Attack aircraft will reach its growth limit within the next five years. No further capability can be added without structural modifications to accommodate increased fuel volume and gross weights. The upgraded F/A-18 has been designed as the F/A-18 E/F. Various configurations of systems improvements were considered for this program.

The objective of the F/A-18 E/F program is to develop, test, produce, and deploy an upgraded F/A-18 with increased mission range, increased aircraft carrier recovery payload, additional growth, and enhanced survivability. The F/A-18 E/F program encompasses an airframe upgrade to the F/A-18 C/D Night Attack aircraft, limited avionics modifications to the C/D weapon system, and the development of an engine based on the F412 core in the 22,000 pound thrust class.

# B.2.2 F/A-18 Program Execution Status

# **B.2.2.1** Current Program

In 1975, the Navy selected an aircraft capable variant of the Northrop YF-17 to satisfy its multi-mission strike fighter requirement. Full-Scale Development (FSD) contracts were awarded to McDonnell Douglass Aircraft (MCAIR) (with Northrop as principle subcontractor) for the airframe and General Electric (GE) for the engine. First Flight occurred in November 1978. The F/A-18 A/B entered Phase III, production, upon completion of development milestones listed in Table B-4. Specifically, the low-rate production go-ahead was based upon successful completion of DSARC IIIA in April 1980. Full rate production was approved in November 1980.

| MILESTONE                                               | ACTUAL |
|---------------------------------------------------------|--------|
| Prototyped Aircraft Contract Award                      | 04/72  |
| Prototyped Engine                                       | 04/72  |
| Prototyped Fire-Control Radar Contract Award            | 01/76  |
| First Flight Prototype                                  | 06/74  |
| Engine FSD Contract Award                               | 11/75  |
| DSARC II                                                | 12/75  |
| System FSD Contract Award                               | 12/75  |
| Fire-Control Radar FSD Contract Award                   | 08/76  |
| Preliminary Design Review                               | 10/76  |
| Critical Design Review                                  | 04/77  |
| Production Go-Ahead (Long-lead release)                 | 12/77  |
| Start Avionics Suite Bench Test                         | 06/78  |
| Engine Preliminary Flight Rating Test                   | 06/78  |
| First Flight/Development Test & Evaluation (DT&E) Start | 04/79  |
| Initial Operational Test and Evaluation (IOT&E) Start   | 04/79  |
| First Flight/Avionics Suite Test Aircraft               | 06/79  |
| Engine Model Qualifications Test                        | 07/79  |
| Production Readiness Review                             | 02/80  |
| DSARC IIIA (Low Rate Production)                        | 04/80  |
| Engine Accelerated Mission Test                         | 08/80  |
| Complete IOT&E                                          | 02/81  |
| Physical Configuration Audit                            | 06/81  |
| DSARC IIIB (Full-Rate Production, Fighter)              | 06/81  |
| Initial Operating Capability                            | 03/82  |

| Table B-4. 🛛 | A-18 Develo | pment Milestones |
|--------------|-------------|------------------|
|--------------|-------------|------------------|

Subsequent configuration changes have been accomplished by means of Engineering Change Proposals (ECPs) incorporated as part of the production program. Major aircraft changes were subject to Service-level and DoD-level review and approved by the acquisition regulations of the time. ECP 87-8 for the F/A-18 A/B models to C/D, beginning with the FY86 aircraft procurement.

The first major upgrade and versions of the F/A-18, the F/A-18C (single seat) and F/A-18D (dual seat) began delivery in October 1987. This aircraft contained provisions for the Airborne Self Protection Jammer (ASPJ), the Advanced Medium Range Air-to-Air Missile (AIM- 120 AMRAAM), and the infrared Imaging Maverick Air-to-Ground Missile

(AGM-65F). The F/A-18 C/D aircraft were delivered in October 1989 and subsequently were configured with an improved night attack capability featuring a Navigation Forward-Looking Infrared (NAVFLIR) pod, a raster head-up display, special cockpit lighting compatible with night vision devices, a digital color moving map and an independent multipurpose color display.

In July 1987, the Secretary of Defense issued a memorandum to the Secretaries of the Navy and the Air Force, directing them to begin studying advanced versions of the F/A-18 and F-16 aircraft. In response, the Assistant Chief of Naval Operations for Air Warfare initiated an upgrade study to evaluate various F/A-18 alternatives for the year 2000 and beyond. This study resulted in the F/A-18 aircraft concept from which the F/A-18 E/F is currently evolving.

The F/A-18 E/F program is scheduled for a Milestone IV/II Defense Acquisition  $f = -\frac{1}{2}$  (DAB) review in second quarter FY92. A planning meeting was held on July 11, with the OSD staff and U.S. Navy representatives to identify key macro issues that should be addressed during the DAB program review. The primary objective of the Milestone IV/II review will be determined if the major upgrade to the F/A-18 is warranted, and to establish an approved acquisition strategy and baseline.

## B.2.2.2 F/A-18 E/F

The F/A-18 E/F will be the second major model upgrade since F/A-18 aircraft program inception. The F/A-18E (single seat) and the F/A-18 F (two seat) will be a high performance twin engine, mid-wing, multi-mission tactical aircraft designed primarily to meet current Navy and Marine Corps fighter escort and interdiction mission requirements, and to maintain additional F/A-18 fleet air defense and close-air support roles. Enhancements will include the increased range and improved carrier suitability required for the F/A-18 to continue its key strike fighter role against the advanced threat of the late 1990s and beyond. This Integrated Program Summary (IPS) covers the Engineering and Manufacturing Development (EMD) of the F/A-18 E/F aircraft and integration of the F414 engine. The Mission Element Need Statement of the F/A-18A/B is still applicable as the Mission Need Statement of the F/A-18E/F. The Operational Requirement (OR) for F/A 18E/F Upgrade is #281-05-92, approved 27 February 1991. The Document is currently in the approval cycle. (Acquisition Category ID, Program Element 0204136N, Project No. W1662)

The F/A-18 E/F program plans to award E&MD Sole Source Cost Plus Incentive Fee/Award (CPIF/AF) contracts to MCAIR and GE after the Milestone Decision Authority

grants the authority to proceed in second quarter FY92, following a successful DAB review. Airframe and engine development will be contracted independently. Integration of the engine to the airframe will occur in FY95 following engine Preliminary Flight Qualification (PFQ). Successful completion of OPEVAL, in third quarter FY99, is required to proceed with the transition to program Phase III and Full-Rate Production. Prior to Milestone III (MS III) there will be three Low-Rate Initial Production (LRIP) lots of 12, 30, and 48 aircraft, under separate contracts authorized by individual Navy Program Decision Meeting (NPDMs). Full Rate Production (FRP) will start in second quarter FY00.

Airframe EMD will begin with a letter contract award in the second quarter of FY92 following acquisition MSIV approval. During E&MD, the contractor will develop an F/A-18 E/F production engineering change proposal and the proposed F/A-18 E/F production detail specification. The F/A-18 E/F detail specification will be developed through changes to the Lot XII F/A-18 C/D Night Attack specification (SD-565-2). During this stage, the contractor will design, develop, and build and test up to seven E&MD flight test F/A-18 E/F aircraft, and three ground test articles. The following events in Table B-5 are planned for airframe EMD.

| EVENT                                                    | DATE          |
|----------------------------------------------------------|---------------|
| Request for Proposal (RFP)                               | 2nd Qtr. FY92 |
| Proposal Received                                        | 2nd Qtr. FY92 |
| Contract Award                                           | 2nd Qtr. FY92 |
| Initial Design Review (PDR)                              | 3rd Qtr. FY92 |
| Contract Definitization                                  | 4th Qtr. FY92 |
| Preliminary Flight Qualification                         | 3rd Qtr. FY93 |
| Critical Design Review (CDR) Production Readiness Review | 2nd Qtr. FY94 |
| (PRR)                                                    | 3rd Qtr. FY95 |

Table B-5. F/A-18 E/F Planned Events

NPDMs will be conducted to ensure adequate progress is being made in EMD for the authorization of airframe and engine Advance Acquisition Contracts (AAC) and the definitization of those contracts for LRIP and FRP as depicted in Table B-6.

| EVENT    | DATE         | AUTHORIZATION                     | QUANTITY                      |
|----------|--------------|-----------------------------------|-------------------------------|
| NPDM I   | 1st Qtr FY96 | AAC for LRIP I                    | Long Lead Only                |
| NPDM II  | 1st Qtr FY97 | LRIP I Start<br>AAC for LRIP II   | 12 Aircraft<br>Long Lead Only |
| NPDM III | 1st Qtr FY98 | LRIP II Start<br>AAC for LRIP III | 30 Aircraft<br>Long Lead Only |
| NPDM IV  | 1st Qtr FY99 | LRIP III Start<br>AAC for FRP     | 48 Aircraft<br>Long Lead Only |
| MS III   | 1st Qtr FY00 | FRP Start                         | Full Production               |

# Table B-6. Projected F/A-18 E/F Program Decisions

# B.2.2.3 Engine

Engine development and qualification will begin with a letter contract award in second quarter FY92 and continue through full production qualification in fourth quarter FY97/first quarter FY98. Major events leading to full production qualifications are depicted in Table B-7.

| Table B-7. Project | ted Events Leading | g To Full ( | <b>Jualification</b> | Of F/A | -18 E/F Engine |
|--------------------|--------------------|-------------|----------------------|--------|----------------|
|--------------------|--------------------|-------------|----------------------|--------|----------------|

| EVENT                            | DATE                        |
|----------------------------------|-----------------------------|
| Request for Proposal             | 2nd Qtr, FY92               |
| Proposal Received                | 2nd Qtr, FY92               |
| Contract Award                   | 2nd Qtr, FY92               |
| Contract Definitization          | 4th Qtr, FY92               |
| First Engine to Test             | 2nd Qtr, FY93               |
| Preliminary Flight Qualification | 2nd Qtr, FY95               |
| Limited Production Qualification | 4th Qtr, FY96/1st Qtr, FY97 |
| Full Production Qualification    | 4th Qtr, FY97/1st Qtr, FY98 |

Source : Inside the Navy, Vol 5, No.17, April 27, 1992)

# **B.2.3** F/A-18 ATS Acquisition and Management

### **B.2.3.1** Acquisition and Management Flow Charts and Text

Within the Naval Air Systems Command, Program Manager, Aircraft (PMA) 265, is the acquisition manager of the F/A-18 aircraft. PMA-265 receives engineering support from the Assistant Program Manager for Systems and Engineering (APMS&E) or "Class Desk" in AIR-511, and logistic support from the Assistant Program Manager for Logistics (APML) in AIR-04. The APML is responsible for ensuring all aspects of the aircraft are supported, including support equipment. The responsibility for this function is delegated to the support equipment division (AIR-552), within which a Support Equipment Project Officer (SEPO) is specifically assigned to the F/A-18. The SEPO plans, programs, budgets, and procures all support equipment required for a given weapon system including avionics, engines, airframe and weapons.

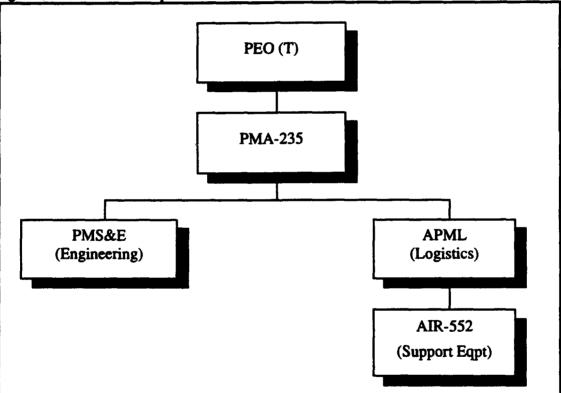



Figure B-3. F/A-18 Acquisition and Management Flow Chart

## **B.2.3.2** Special Policies or Regulations

The F/A-18, as all weapon systems within the Naval Air Systems Command, are subject to the following policies and regulations specifically established to minimize both the proliferation of peculiar support equipment and the life cycle cost of weapon systems:

- a. NAVAIR Instruction 13630.2A, Introducing the Consolidated Automated Support System to Naval Aviation Maintenance, 22 March 1991.
- b. SECNAV Instruction 3960.6, Department of the Navy Policy and Responsibility for Test, Measurement, Monitoring, Diagnostic Equipment and Systems, and Metrology and Calibration (METCAL), 12 October 1990.
- c. MIL-STD-2076 (AS), Unit Under Test Compatibility with Automatic Test Equipment; General Requirements for,
- d. MIL-STD-2165, Testability Program for Electronic Systems and Equipment,
- e. MIL-STD-2084, General Requirements for Maintainability of Avionic and Electronic Systems and Equipment,

NAVAIRINST 13630.2A defines policies, procedures and responsibilities for introducing CASS to Naval Aviation while SECNAVINST 3960.6 performs the same function for the Department of the Navy (DON). The above Military Standards are supporting documents which ensure the development of maintainable systems compatible with CASS. For a further discussion of these documents please refer to the CASS Profile.

#### **B.2.4** F/A-18 Weapon System Mainframe Concept

The baseline maintenance concept for the F/A-18E/F weapon system is to achieve full organic maintenance capability at the three levels of maintenance in accordance with OPNAVINST 4790.2. Initial planning is directed at achieving full organizational ("O") level and limited Intermediate ("I") level to the Weapon Replacement Assembly (WRA), organic maintenance capability by operational Evaluation (OPEVAL), full "I" level to the Shop Replacement Assembly (SRA) by IOC, and total organic maintenance capability by the scheduled Navy Support Date (NSD). However, an "O" to Depot ("D") level maintenance concept will be pursued for justification proven high reliability equipment/components. For example, repair of selected high reliability components would be performed at the "D" level, with an "I" level capability being pursued/established if analysis of fleet usage data indicates "I" level repair is necessary to meet and sustain operational/readiness requirements. Those systems/components demonstrating high reliability coupled with an effective Built-in-Test (BIT)/fault isolation capability, as applicable, and where sustained supportability/readiness requirement are achieved, will be retained at the "D" level. This approach/maintenance concept will be directed at minimizing support system cost (i.e., reduction of "I" level Automatic Test Equipment (ATE) requirement for land-based and shipboard sites) while sustaining operational/readiness objectives. Chapter 2 of the ILS-

DS-30A-252 details both the maintenance and support concepts for the F/A-18E/F weapon system. (Source: F/A-18E/F "DRAFT" ILSP)

# B.2.5 F/A-18 Weapon System ATS Inventory

# **B.2.5.1** ATS Quantities, Types, Locations

#### B.2.5.1.1 AN/USM-470(V)1 Mini-VAST (MV)

The MV is an update and re-design of the AN/USM-247 Versatile Automated Shop Tester (VAST) that was undertaken because of the increase in testing requirements demanded by the F/A-18. The MV is used at I and D levels of maintenance. F/A-18 is the sole user of MV, with 27 TPS. The MV is a general purpose parametric tester.

The MV was developed by Harris Corporation in Syosset, NY, during FY79 and 80. Fifty-nine stations were built, as depicted in Table B-8.

| YEAR    | STATION S/N |
|---------|-------------|
| FY79-80 | 1-12        |
| FY81    | 13-19       |
| FY82    | 20-24       |
| FY83    | 25-32       |
| FY84    | 33-35       |
| FY85    | 36-45       |
| FY86    | 46-59       |

**Table B-8. Station Quantities** 

Stations 1-12 were constructed as ILASS stations, (ILASS being the interim acronym) and 2-12 were later re-built as MV stations. Serial number 1 was considered to be past its useful life and consequently not re-built.

There was Foreign Military Sales (FMS) participation in MV development. The Royal Australian Air Force and Royal Canadian Air Force both use MV stations for F/A-18 support. Typical deployment for MV stations depicted in Table B-9.

| SITE          | # STATIONS               |
|---------------|--------------------------|
| CV/CVN        | 1                        |
| LAND SITE     | 1-3 (3 FOR LARGER SITES) |
| MARINE        | 2                        |
| TPS DEVELOPER | 4                        |
| TRAINING      | 1-2                      |
| DEPOT         | 1                        |

 Table B-9. Typical MV Deployment Quantities

Marine Corps MV use consists of van-installed MV stations that can be deployed via air or sea transport to a forward area.

Off-load to CASS is currently scheduled. TPS development is to begin in FY94, with instead deployment scheduled for FY99. (NAEC Report MISC-52-0952)

# B.2.5.1.2 AN/USM-446 Radar System Test Set (RSTS)

The Radar System Test Set (RSTS) was developed by Emerson Electric in St. Louis, MO, as a tester for the F/A-18 AN/APG-65 Radar System. It was developed because the advanced requirements of the APG-65 could not be supported on existing Navy test equipment. The RSTS is used at the I and D Levels of maintenance. The F/A-18 is the sole user of RSTS, with 27 TPS. The RSTS is a general purpose parametric tester.

The RSTS was developed in FY83. Fifty-five stations were built. Typical deployment for RSTS stations is depicted in Table B-10.

| SITE          | # STATIONS               |
|---------------|--------------------------|
| CV/CVN        | 1                        |
| LAND SITE     | 1-3 (3 FOR LARGER SITES) |
| MARINE        | 2                        |
| TPS DEVELOPER | 4                        |
| TRAINING      | 1-2                      |
| DEPOT         | 1                        |

 Table B-10. Typical RSTS Deployment Quantities

Marine Corps RSTS utilization consists of van-installed RSTS stations that can be deployed via air or sea transport to a forward area.

The APG-65 Radar system is in the process of being upgraded to the APG-73 configuration. This upgrade will replace three of the five existing WRAs while using the existing APG-65 antenna and transmitter. In lieu of a costly modification to the RSTS to test this new system, the APG-73 will be supported on CASS. As a result, the transition of the APG-65 antenna and transmitter to CASS has become a necessity to prevent the requirement for two testers to support the APG-73. In addition, the transition of the three nonupgraded APG-65 WRAs from RSTS to CASS is also planned to eliminate the requirement for two testers to support co-located squadrons of F/A-18s with each radar.

# B.2.5.1.3 AN/ASM-686 Intermediate Automatic Test Set (IATS)

The Intermediate Automatic Test Set (IATS) was developed by MCAIR, and produced jointly by MCAIR and Harris Corp. The F/A-18 is the sole user of IATS, with 27 TPS. The IATS is a single purpose, functional tester.

Development of the IATS is somewhat peculiar. It was originally developed from the Intermediate Avionics Fault Tree Analyzer (IAFTA), which consisted of an "O"-level tester (the Avionics Fault Tree Analyzer (AFTA)) used to interrogate the F/A-18 fault-tree system, and an additional rack of equipment to mimic the airframe called the AIRSIM. The IAFTA was developed from F/A-18 factory test equipment, and provided an expansion of the original go/no go tester with fault isolation added. The IATS was developed as a permanent "I"-level tester from the IAFTA due to great fleet demand for a relatively simple tester for F/A-18 avionics to complement the AN/USM-470(v)1 MV.

The IATS was developed in FY86, and upgraded and retrofitted to test the F/A-18 Night Attack system during FY90 and 91. Thirty-one testers were built. Typical deployment for IATS stations is depicted in Table B-11.

| SITE          | # STATIONS |
|---------------|------------|
| CV/CVN        | 1          |
| LAND SITE     | 1          |
| MARINE        | 1          |
| TPS DEVELOPER | 1          |
| TRAINING      | 1          |
| DEPOT         | 1          |

**Table B-11. Typical IATS Deployment Quantities** 

Marine Corps IATS use consists of van-installed IATS stations that can be deployed via air or sea transport to a forward area. (NAEC Report MISC-52-0952)

Off-load to CASS is currently unscheduled.

### B.2.5.1.4 AN/USM-629 Electro-Optical Test Set (EOTS)

The Electro-Optical Test Set (EOTS) was developed by MCAIR. to support the F/ A-18 EO test requirements for AAS-38, AAR-50, and ASQ-173. The F/A-18 is the sole user of EOTS, with 11 TPS. The EOTS is a general purpose parametric tester.

EOTS was developed for F/A-18 C/D support in FY89 because insufficient EO test capability was available using existing Navy ATE, and CASS would not be available in time for AAS-38, AAR-50, and ASQ-173 deployment. Thirty-four EOTS stations were built. Typical deployment for EOTS stations is depicted in Table B-12.

| SITE          | # STATIONS |
|---------------|------------|
| CV/CVN        | 1          |
| LAND SITE     | 1          |
| MARINE        | 1          |
| TPS DEVELOPER | 2          |
| TRAINING      | 1          |
| DEPOT         | 1          |

**Table B-12. Typical EOTS Deployment Quantities** 

Marine Corps EOTS use consists of van-installed EOTS stations that can be deployed via air or sea transport to a forward area.

Off-load to CASS is currently unscheduled.

#### **B.2.5.1.5** AN/ASM-608(v) Inertial Measuring Unit Test Set (IMUTS II)

The Inertial Measuring Unit Test Set (IMUTS II) was developed by Litton Guidance and Control Systems in Woodland Hills, CA, to test the CV-1263/ASN-92 Inertial Measuring Unit (IMU) and the AN/ASN-130A Inertial Navigation Unit (INU). The IMUTS II also supports F-14, E-2, S-3, F-4, A-6, EA-6, and AV-8 aircraft with 3 TPS. The IMUTS II is a purpose-built parametric tester. The F/A-18 represents approximately 50% of the IMUTS workload.

IMUTS was developed in FY75 and updated/upgraded to IMUTS II configuration in FY85. Ninety-eight IMUTS II stations were built. Typical deployment for IMUTS II stations is depicted in Table B-13.

| SITE          | # STATIONS |
|---------------|------------|
| CV/CVN        | 1          |
| LAND SITE     | 1-2        |
| MARINE        | 1-4        |
| TPS DEVELOPER | 1-5        |
| TRAINING      | 2          |
| DEPOT         | 1-2        |

**Table B-13. Typical IMUTS II Deployment Quantities** 

Marine Corps IMUTS II utilization consists of van-installed IMUTS II stations that can be deployed via air or sea transport to a forward area.

Off-load to CASS is currently unscheduled due to the Navy's plans to transition from the existing IMU and INU systems to the Carrier Aircraft Inertial Navigation System (CAINS II). CAINS II maintenance concept is "O"- to "D"-level, with no I-level supportable items, due to the high reliability associated with ring-laser gyro technology. As a result, the requirement for the IMUTS II will be eliminated before any transition to CASS can be fielded. CASS will be the "D"-level support for CAINS II.

# B.2.5.1.6 AN/USM-484 Hybrid Test Set (HTS)

The Hybrid Test Set HTS was developed by Harris Corp. in Syosset, NY, to test analog and hybrid modules. The HTS also supports F-14, E-2, S-3, F-4, A-4, A-6, EA-6, SH-60, and AV-8 aircraft, as well as the AN/USM-470(v)1 MV and AN/USM-470(v)2 TMV via the Maintenance Test Equipment (MTE) Adapter. The MTE adapter is a roll-up cart containing related equipment and interfaces that allows the HTS to test components from other ATE. The F/A-18 is supported by 45 TPS and represents approximately 50% of the workload on HTS. The HTS is a general-purpose parametric tester.

HTS was developed in FY80. Approximately 20% of HTS is common with MV and TMV, although HTS was not developed as an outgrowth of either of these stations. Two hundred and twelve HTS stations were built as depicted in Table B-14.

| YEAR | STATION S/N |
|------|-------------|
| FY80 | 1-34        |
| FY83 | 35-48       |
| FY84 | 49-75       |
| FY85 | 76-119      |
| FY86 | 120-153     |
| FY87 | 154-201     |
| FY88 | 202-212     |

Table B-14. HTS Station Quantities

Typical deployment for HTS stations id depicted in Table B-15.

| SITE          | (F/A-18)<br># STATIONS | (TOTAL)<br># STATIONS |
|---------------|------------------------|-----------------------|
| CV/CVN        | 2                      | 4                     |
| LAND SITE     | 2-4                    | 2-6                   |
| MARINE        | 1-4                    | 1-6                   |
| TPS DEVELOPER | 2-4                    | 2-8                   |
| TRAINING      | 2                      | 4                     |
| DEPOT         | 1-2                    | 1-6                   |

 Table B-15. Typical HTS Deployment Quantities

Marine Corps HTS use consists of van-installed HTS stations that can be deployed via air or sea transport to a forward area.

Off-load to CASS is not currently scheduled for F/A-18 peculiar systems; however, a program is being developed to transition AV-8B workload on the HTS to CASS.

# **B.2.5.1.7** AN/USM-458C New Electronic Warfare Test Set (NEWTS)

The New Electronic Warfare Test Set (NEWTS) was developed by Sanders Association in Nashua, NH, as an electronic warfare (EW) test station designed to test EW avionics common to the F/A-18, EA-6, F-14, A-7, and F-4 aircraft. The F/A-18 is supported by 7 TPS for the ALR-67 and ALQ-126B which represents approximately 60% of the NEWTS workload. NEWTS is a purpose-built parametric tester.

The AN/USM-458C Test Set is an upgrade of the AN/USM-458B Test Set. This upgrade was a result of Engineering Change Proposal (ECP) number Q003 of 7 July 1987. Approximately 70% of C is common with A and B. Forty-seven NEWTS stations were built. Typical deployment for NEWTS stations is depicted in Table B-16.

| SITE          | # STATIONS |
|---------------|------------|
| CV/CVN        | 1          |
| LAND SITE     | 1          |
| MARINE        | 1          |
| TPS DEVELOPER | 2          |
| TRAINING      | 2          |
| DEPOT         | 1-2        |

 Table B-16.
 Typical NEWTS Deployment Quantities.

Marine Corps NEWTS use consists of van-installed NEWTS stations that can be deployed via air or sea transport to a forward area.

With the support of new development EW systems on the CASS, such as the ALQ-165, ALQ-126B RF SRAs, ALE-47, ALE-50 and ALR-67 Advanced Special Receiver (ASR), it is operationally beneficial to transition existing EW systems currently on the USM-458C to CASS as well. Due to funding constraints, however, the transition of this tester to CASS is not currently scheduled. (Electronic Warfare Support Equipment, Reference Data Guide, Revision D, November 1991 & NAEC Report MISC-52-0952)

### B.2.5.1.8 AN/USM-392B Digital Modular Test Set (DMTS)

The Digital Modular Test Set (DMTS) was developed as suitcase test system for ALQ-126B and ALR-67 pod systems. The F/A-18 is supported by 18 TPS which represents approximately 60% of the tester's workload. DMTS is a purpose-built tester. The DMTS performs functional testing, fault isolation, and repair verification to the component level of SRAs. The test set is portable, and requires either a three phase, 115V, 400Hz power source, or single phase, 115V, 60Hz power source.

DMTS was developed in FY83. Twenty-four DMTS's were built. Typical deployment for DMTS stations is depicted in Table B-17.

| SITE          | # STATIONS |
|---------------|------------|
| CV/CVN        | 2          |
| LAND SITE     | 2          |
| MARINE        | 2          |
| TPS DEVELOPER | 2          |
| TRAINING      | 2          |
| DEPOT         | 1          |

Table B-17. Typical DMTS Deployment Quantities

As with the USM-458C, with all new development EW systems being supported on CASS, it becomes beneficial to transition the support of existing EW system SRAs to CASS. Funding constraints, however, have forced a delay in this offload. (Electronic War-fare Support Equipment, Reference Data Guide, Revision D, November 1991)

### **B.2.5.1.9** CASS

CASS supports the F/A-18 as a result of two program evolutions: the emergence of new development avionics and the off-load of existing, obsolete testers.

# **B.2.5.1.9.1** New Development Avionics/Weapon System Upgrades

As mandated by NAVAIR Instruction 13630.2A of 22 March 1991 and SECNAV Instruction 3960.6 of 12 October 1990, the following new development avionics (both peculiar and common to the F/A-18) are scheduled for support on CASS:

| AN/ALQ-126B RF SRAs | AN/ALQ-165, ASPJ |
|---------------------|------------------|
| AN/ALE-47           | AN/ALR-67 ASR    |
| AN/APG-73           | AN/ARC-210 Depot |
| CAINS II Depot      | SAHRS Depot      |

In addition to the above individual programs, any new systems in the avionics suite of the F/A-18 E/F will also be supported on CASS. (CASS Introduction Plan of 15 August 1991).

### **B.2.5.1.9.2.0** Existing ATS Off-loaded to CASS

Beyond targeting new weapon system developments for CASS implementation, NAVAIR (Code AIR-5522) has instituted a program to replace aging, obsolete test equipment with CASS. The objective of the off-load program is to both take advantage of the life cycle savings associated with a new tester while creating space within existing AIMD spaces by consolidating support on CASS. NAVAIR Code AIR-5522 is currently studying the testers depicted in Table B-18, which support the F/A-18 as candidates for the second phase of this program:

| TESTER             | PROGRAM INITIATION |
|--------------------|--------------------|
| AN/USM-446 RSTS    | FY93-94            |
| AN/USM-470(V) 1 MV | FY95-96            |
| AN/USM-458C NEWTS  | FY9X               |
| AN/USM-392B DMTS   | FY9X               |

Table B-18. Programmed CASS Off-loads

### B.2.5.2 AN/USM-470(V)1 Mini-VAST (MV)

# **B.2.5.2.1** Test Instructions, Standard Procedures

Automatic testing is implemented through a Harris Corporation H-100 computer with a number of peripheral devices such as a terminal, keyboard, disk drive, thermal printer, and CRT. TPSs are written to minimize operator interaction during testing. Normally, test program instructions (TPI), a part of the TPS, inform the operator how to set up the hardware (UUT and TPS hardware) and how to start running the TPS program. The TPS program then instructs the operator what operator actions are required to perform proper testing. Operator actions include connecting/disconnecting cables to the UUT, toggling switches on the UUT, and verifying measurements displayed by MV assets or the UUT.

# **B.2.5.2.2** Sensor/Measurement Interfaces/Auxiliary

UUTs are connected to the MV station via the portion of a TPS known as the interface device (ID). ID's are attached to MV stations at the ID panel, which contains hundreds of pins that are used for stimulus and measurement signals. All MV TPSs, with the exception of several MV station self-test programs, require IDs.

Auxiliary equipment for the MV is limited to roll-up system calibration equipment. No known auxiliary equipment is required for TPS execution

#### B.2.5.2.3 Architecture

MV stations fit into the "rack and stack" category. These stations contain three types of stimulus and measurement assets (commercial off-the-shelf equipment; assets common with the VAST tester, and newly designed equipment), which are mounted in racks. The newly designed equipment was needed to meet the high speed, F/A-18 digital testing requirements that could not be met by the VAST station.

### **B.2.5.2.4 TPS Environment and Support**

The underlying operating system software for the MV is VULCAN, a variation of a commercial operating system designed by Harris Corp.

The software program that both controls the operation of the MV assets and runs TPSs is called the Test Executive (TE). The TE provides a means for powering up and powering down station assets. In addition, the TE provides operators with a flexible and powerful, interactive environment for the execution of TPSs. For example, MV operators can repeat a test or a series of tests, pause testing, override the results of a test, and manually issue commands to certain station assets. The TE also provides a wide range of printing options to document testing results.

MV TPSs are developed and maintained using both the MV station and a Program Development Station (PDS). PDSs contain many of the same hardware components found on MVs. Some of the common hardware components are the 24-bit computer, the 20Mbyte disk drive (10-Mbytes fixed and 10-Mbytes removable), a "smart" terminal, and a thermal printer. To assist with TPS development, PDS's are also equipped with a larger mass storage device (a 300- Mbyte disk drive), a magnetic tape drive, additional terminals, and a high speed printer.

PDSs host many of the same software components as the MV. They both use the "VULCAN" operating system software, the same ATLAS compiler, and several software utilities and tools such as the Automatic Partition Collection and Ordering (APCO) program. In addition, the PDS hosts a number of software development tools, such as the Automatic Test Program Generator (ATPG) Pre-processor, a Fortran compiler, an assembler, and a test executive simulator.

The ATLAS compiler and a file editor are resident on the MV. These provide TPS development and maintenance personnel with the capability to make changes to a TPS on station rather than forcing them to use a software development station. This reduces the time required to maintain or develop TPSs.

# B.2.5.3 AN/USM-446 Radar System Test Set (RSTS)

#### **B.2.5.3.1** Test Instructions, Standard Procedures

Automatic testing is implemented through a computer and a number of its peripheral devices. TPSs are written to minimize operator interaction during testing. Normally, the TPI instructs the operator how to set up the UUT and TPS hardware, as well as how to start running the TPS program. The TPS program then informs the operator what operator actions are required to perform proper testing. Operator actions include connecting and disconnecting cables to the UUT, toggling switches on the UUT, or verifying measurements displayed by RSTS assets or the UUT. All RSTS TPSs are menu driven. Operators use the touch screen to input commands to the computer.

# **B.2.5.3.2** Sensor/Measurement Interfaces

UUTs are connected to the RSTS via IDs and electrical cables. IDs are attached to RSTS stations at the ID panel, which contains a large number of pins that can be used for stimulus and measurement signals.

### **B.2.5.3.3** Auxiliary equipment, power supplies

No known ancillary equipment is needed during RSTS TPS execution. However, some pieces of ancillary equipment, such as a HP8902 option E04 Attenuator/calibrator and a Fluke 5102B calibrator, are required during station calibration.

### B.2.5.3.4 Architecture

RSTS stations fit into the "rack and stack" category. Approximately 70% of the stimulus and measurement equipment in the RSTS is commercial off-the-shelf. The remaining 30% is special purpose equipment built by Emerson Electric Company. All of this equipment is mounted in racks. The special purpose equipment was needed to meet RF requirements that could not be met by any other Navy tester. Several of these unique requirements are liquid cooling capability, RF load requirements, direct current (DC) load requirements, and the use of a vector voltmeter.

## **B.2.5.3.5** TPS environment and support

The RSTS uses RSX-11M-PLUS, a standard Digital Equipment Corporation (DEC) operating system. The RSTS operating system software environment, like the environments of the ATS(V)1, is flexible, powerful, and interactive with the station operator. For example, RSTS operators can repeat a test or a series of tests, pause testing, override the results of a test, and execute a TPS in single step mode. Although operators can also manually enter commands to certain station assets using the operating system software, the software that performs this function is not user friendly.

RSTS TPSs are developed and maintained using only the RSTS. No separate software development station is used.

The station uses a PDP-11/44 DEC modified computer with a Winchester disk drive, a cassette deck, additional serial ports for extra terminals, and a number of software packages. The RSX-11M-PLUS operating system hosts an editor and three compilers for TPS source code processing. The compilers are for Fortran 77, ATLAS, and Digit.

Since the compilers and a file editor are resident on the RSTS, station operators have the capability to make changes to a TPS when the TPS source code is available. This reduces TPS maintenance and development costs.

### **B.2.5.4** AN/ASM-686 Intermediate Automatic Test Set (IATS)

# **B.2.5.4.1** Test Instructions, standard procedures

Automatic testing is implemented through a computer and its peripheral devices. TPSs are written to minimize operator interaction during testing. The IATS Computer Operations Manual instructs the operator how to set up the UUT and the TPS hardware, as well as how to start running the TPS program. The TPS program then informs the operator what operator actions are required to perform proper testing. Operator actions include connecting cables to the UUT, toggling switches on the UUT, and verifying measurements displayed by station assets or the UUT.

### **B.2.5.4.2** Sensor/measurement interfaces

Unlike many other test stations, the IATS does not use "normal" interface devices. During testing, UUTs are attached to the stations using only cables, which may have one or more relatively passive boxes built into them. The cables are attached to the IATS at general purpose cable connector points.

### **B.2.5.4.3** Auxiliary Equipment, Power Supplies

A number of pieces of auxiliary equipment are used to execute IATS TPSs. Several examples are a photometer, a chrominance meter, a convergence meter, an oscilloscope, and the TTU-205 pressure generator.

### B.2.5.4.4 Architecture

Most of the stimulus and measurement equipment in the IATS are special purpose equipment, such as digital and analog circuit boards, built by MCAIR. Few of the components are commercial off-the-shelf. All of the equipment is mounted in racks. The IATS was original built by MCAIR for temporary use as a factory tester. The AN/USM-470(V) (MV) was scheduled to be used, but the MV program was behind schedule and the tester was overworked. The IATS eventually became a permanent solution.

# **B.2.5.4.5 TPS environment and support**

The computer within IATS uses the Versatile Real-Time operating system (VRTX) commercially produced by Ready Systems. TPSs are executed using an test written in Ada by Alsys Corporation. The IATS software is somewhat flexible. Operators can begin testing at various entry points in the test programs and can cycle tests. However, older IATS TPSs were written with few, if any, entry points. This severely limited operator options. Newer TPSs are more flexible with more entry points.

IATS TPSs are developed and maintained on International Business Machine (IBM) compatible personal computers (PC) with at least an Intel 80286 processor. Standard IBM PC compatible operating system software is used during TPS development and maintenance. In addition, compilers for an assembly language, the Fault Tree Interpreter (FTI) language, and PLM (a language similar to "C") are used to process TPS source code prior to loading the software onto an IATS. FTI is a "if-then-else" type language that was developed by MCAIR.

# B.2.5.5 AN/USM-629 Electro-Optical Test Set (EOTS)

### **B.2.5.5.1** Test Instructions, Standard Procedures

Automatic testing is implemented through a PC with a number of peripheral devices, including a touch screen. TPSs are written to minimize operator interaction during testing. Normally, the TPI informs the operator which assets are required to use the TPS and how to start running the TPS program. The TPS program then instructs the operator what operator actions are required to perform proper testing. Operator actions include connecting cables to the UUT, toggling switches on the UUT, and verifying measurements displayed by EOTS assets or the UUT.

All EOTS TPS's are menu driven. Operators use the touch screen to input commands to the computer.

#### **B.2.5.5.2** Sensor/Measurement Interfaces

In the case of UUTs that require optical testing, UUTs are connected to the EOTS via IDs and fixtures. IDs are attached to EOTS stations at the ID panel, which contains a large number of pins that can be used for stimulus and measurement signals.

### **B.2.5.5.3** Auxiliary Equipment, Power Supplies

There is no known auxiliary equipment for EOTS.

# B.2.5.5.4 Architecture

The EOTS stations fit into the "rack and stack" category. Most of the stimulus and measurement equipment in the EOTS is commercial, off-the-shelf. The remaining equipment, which includes power distribution units and circuit card assemblies, is special purpose gear built by MCAIR. All of this equipment is mounted within the test bench. The special purpose equipment was needed to meet the EO testing requirements of the F/A-18 AAS-38, AAR-50, and ASQ-173 systems. EOTS was developed in FY89 because insufficient EO test capability was available in existing Navy ATE, and CASS would not be available in time for weapon system deployment.

### **B.2.5.5.5 TPS Environment and Support**

The EOTS uses a version of the commercial VMS operating system to control the VAX computer within EOTS. TPS's are executed via a test executive written in Ada.

EOTS TPSs are developed and maintained on VAX computers using VMS operating systems, standard text editors, and a compiler for FTI language. All EOTS TPSs are written in FTI.

# B.2.5.6 AN/ASM-608(V) Inertial Measuring Unit Test Set (IMUTS II)

### **B.2.5.6.1** Test Instructions, Standard Procedures

Automatic testing is implemented through a computer and its peripheral devices. TPSs are written to minimize operator interaction during testing. Normally, the TPI instructs the operator how to set up the TPS and UUT, as well as how to start running the TPS program. The TPS program then informs the operator what operator actions are required to perform proper testing. Operator actions include connecting cables to the UUT, toggling switches on the UUT, and verifying measurements displayed by HTS assets or the UUT.

# **B.2.5.6.2** Sensor/Measurement Interfaces

UUT's are connected to the IMUTS via ID's. IDs are attached to IMUTS stations at the ID panel, which contains approximately 1200 pins that can be used for stimulus and measurement signals.

### **B.2.5.6.3** Auxiliary Equipment, Power Supplies

The only ancillary equipment associated with the IMUTS is a pressure generator type unit that is used to puge and fill UUTs with a gas during the testing and repair of the UUTs.

### B.2.5.6.4 Architecture

The IMUTS fits into the "rack and stack" category. Some of the stimulus and measurement equipment in the IMUTS is commercial off-the-shelf. The remaining equipment, which includes gimbal calibration and repair-related equipment, is special purpose gear built by Litton Guidance and Control Systems. All of this equipment is mounted in the test bench. The special purpose equipment, which was needed to repair and calibrate inertial measuring units and inertial navigation units, was not available on existing Navy ATE.

# B.2.5.6.5 TPS Environment and Support

The operating system software for the IMUTS is the Real Time Operating System (RTOS) version RTOS.E. It is the proprietary property of Litton Guidance and Control Systems. RTOS performs the test executive functions and a limited number of basic operating system software functions.

The station software provides operators with a some what flexible environment for executing TPSs. The software has the ability to run in "automatic" mode or "semi-automatic" mode, which permits sections of a TPS to be executed rather than the executing the program end-to-end. In addition, the operator can halt testing at any point in the program. can repeat tests, and can choose between print options.

IMUTS TPSs are developed and maintained using a DEC VAX computer system and a software development station.

The VAX computer uses the VAX/VMS operating system and hosts a number of software packages, such as test editor, a compiler for a subset of Fortran, and an ATLAS compiler.

The software development station is used to duplicate disks and load tapes. A special program called a "tape loader" is used to transfer software between tapes and disks.

# B.2.6 AN/USM-484 Hybrid Test Set (HTS)

# **B.2.6.1** Test Instructions, Standard Procedures

Automatic testing is implemented through a Harris Corp. H-100 computer with a number of peripheral devices such as a terminal, keyboard, disk drive, thermal printer, and CRT. TPSs are written to minimize operator interaction during testing. Normally, the TPI informs the operator which assets are required to use the TPS and how to start running the TPS program. The TPS program then instructs the operator what operator actions are required to perform proper testing. Operator actions include connecting cables to the UUT, toggling switches on the UUT, and verifying measurements displayed on HTS assets or on the UUT.

# **B.2.6.2** Sensor/Measurement Interfaces

UUTs are connected to HTS stations via IDs. IDs are attached to HTS stations at the ID panel, which contains hundreds of pins that can be used for stimulus and measurement signals. All HTS TPSs, with the exception of several station self-test programs, require IDs.

### **B.2.6.3** Auxiliary Equipment, Power Supplies

Ancillary equipment for the HTS is used to calibrate the HTS and to execute certain TPSs. For example, roll-up equipment (containing a frequency synthesizer, a synchro/ resolver angle indicator, a true RMS VAC meter, and a meter calibrator) is required to calibrate the HTS. Certain TPSs require the use of complex electronic equipmen and components, such as a high-resolution oscilloscope, in addition to the interface device.

#### **B.2.6.4** Architecture

HTS stations fit into the "rack and stack" category. These stations contain both commercial off-the-shelf equipment and special purpose equipment, all of which is mounted in racks. The special purpose gear, which includes the digital word generator and the Manchester unit, was designed to allow the testing of the digital portions of hybrid circuit card assemblies.

### **B.2.6.5** TPS Environment and Support

The HTS operating software is almost identical to that of the MV. The differences between them are insignificant.

TPSs for the HTS are developed on a PDS using software similar or identical to the software used to develop MV TPSs.

# B.2.7 AN/USM-458C New Electronic Warfare Test Set (NEWTS)

#### **B.2.7.1** Test Instructions, Standard Procedures

Automatic testing is implemented through a computer and its peripheral devices, such as a terminal, keyboard, removable disk drive, and CRT. TPSs are written to minimize

operator interaction during testing. Normally, the TPI informs the operator how to set up and start running the TPS program. The TPS program then instructs the operator what operator actions are required to perform proper testing. Operator actions include connecting and disconnecting cables to the UUT, toggling switches on the UUT, and verifying measurements displayed by NEWTS assets or the UUT.

### **B.2.7.2** Sensor/Measurement Interfaces

UUTs are connected to HTS stations via interconnecting boxes (IB). IBs are connected to NEWTS stations via cables that attach to non-military standard connectors. All NEWTS TPS's require the use of an IB.

### **B.2.7.3** Architecture

NEWTS stations fit into the "rack and stack" category. These stations contain approximately 70% COTS equipment and approximately 30% special purpose equipment, all of which is mounted in racks.

#### **B.2.7.4 TPS Environment and Support**

The underlying operating system software on the NEWTS is DOS 3.1. The software that runs TPSs is a group of software programs written in the "C" language. TPSs can be developed and maintained on station or on any IBM-compatible PC with DOS system software and any text editor. TPSs are written in "C", in assembly code, or in SCRIPT. SCRIPT is a language developed by Sanders Associates.

The station software provides operators with some degree of flexibility when running TPSs. For example, operators have the ability to re-run tests, override test results, pause testing, start testing at designated entry points, and print test results. Compilers for C and SCRIPT are used to process TPSs written in code other than assembly language. Assemblers for 8086, 8088, and 68020 are used to process TPSs written in assembly languages.

### B.2.8 AN/USM-392B Digital Modular Test Set (DMTS)

#### **B.2.8.1** Test Instructions, Standard Procedures

Automatic testing is implemented through a computer and its peripheral devices, such as a terminal, keyboard, and CRT. Execution of DMTS TPSs require relatively large numbers of operator interactions. Normally, test program instructions (TPI) inform the operator how to set up and start running the TPS program. The TPS program then instructs the operator what operator actions are required to perform proper testing. Operator actions include connecting and disconnecting cables to the UUT, toggling switches on the UUT, and using the probe.

### **B.2.8.2** Sensor/Measurement Interfaces

UUTs are connected to DMTS stations via IDs. IDs are attached to DMTS stations at the ID panel, which contains hundreds of pins that can be used for stimulus and measurement signals. All DMTS TPSs, with the exception several station self-test programs, require IDs.

### **B.2.8.3** Architecture

The DMTS contains no COTS equipment; all test equipment was special purpose.

#### **B.2.8.4** TPS Environment and Support

The operating system for the DMTS is a software package developed to operate on 8086 processors. It was written in the English Language Programming (ELP) language. This operating system has relatively limited capabilities. Operators are limited to running DMTS TPSs either end-to-end with no pauses or by single step. No other options are available and test results cannot be printed out.

All DMTS TPSs are digital oriented and were developed with the use of Digital Automatic Test Program Generators (DATPG). The development work involving DATPGs was performed on commercial computers such as a DEC VAX. The remaining TPS development work was done on the DMTS station using compilers and an editor.

# B.2.9 CASS

#### **B.2.9.1 Mainframe CASS**

#### **B.2.9.1.1** Operating Software

The CASS system is based around DEC's VMS Version 5.2 operating system. The CASS software system is composed of three main CSCIs, which are the Station Control Software, Support Software, and Intermediate Maintenance Operations Management The following is a list of the components contained in the CASS CSCIs:

Station Control Software:

- Test Executive
- Virtual Instrument Handlers

- Instrument Personality Interfaces
- Operator Interface
- Automated Technical Information
- Communication Handler
- Asset Allocation
- General Asset Monitor
- Kernal Asset Monitor
- Functional Extension Program
- IEEE 488 Translators
- Self Maintenance

#### Support Software:

- ATLAS Compiler
- IPTESTER
- Test Program Set Development Software
- Test Executive Simulator

Intermediate Maintenance Operations Management:

- Buitl-In-Test
- Data Processing
- Network
- Post Processing
- Pretest
- Station Management

# **B.2.9.2 TPS Development Environment**

CASS TPS development is done off-line on a VAX with a VMS operating system. Products have been developed to facilitate this process. The TPS development products are:

- a. TESIM (A G.E. product. It simulates all of CASS's functions except for those of the Teradyne L200 Series DTU.)
- b. DICONS It allows the operator to access and program CASS instruments directly.)

- c. IEEE 716 ATLAS compiler
- d. L200 Series compiler (Teradyne)
- e. Fortran compiler

This off-line TPS Development Process allows the implementation of another cost saving measure, the use of Test Integration Facilities (TIF). The 3 three Navy TIFs are located at Norfolk, VA, Jacksonville, FL, and San Diego, CA. After the TPS developer has completed his development and debugging (except for TPSs which utilize the L200, which can only be debugged at the CASS station), he schedules time at the TIF for integration of his TPS with CASS.

While the use of off-line development reduces the numbers of CASS required, there are some special cases of TPS development in which it is more cost effective to provide a CASS to the developer.

#### **B.2.9.3** Ancillary Equipment

- a. Pneumatics Function Generator
- b. Inertial Navigation System Interface
  - AR 57 Bus
- c. Advanced Communication Bus Interface
  - 2 Asset Controllers
  - 1 RS-485 Bus (Manchester/Harpoon Bus)
  - 1 FODB (Fiber Optic Data Bus)
  - 1 HSDB (High Speed Data Bus) Bus Spec 86EZ00614
- d. MS1397 Bus (MIL-STD-1397)
- e. Video
- f. Miscellaneous
  - SOS OTPS
  - Holding Fixtures (UUTs)
  - Load Sets

#### **B.2.9.4** Environmental Requirements and Tested Capabilities

The four CASS configurations, Hybrid, RF, CNI, and EO are all required by the CASS contract to be environmentally tested to modified limits of MIL-T-28800C and MIL-STD-167.

To date all configurations have passed environmental testing with the exception of some isolated assets in rack 5 and the SSMD 1 and 2 assets which will be tested in the future.

#### B.2.10 F/A-18 ATS Upgrade and/or Off-load

There are no plans to upgrade any of the existing non-CASS ATS. Several testers are currently being assessed for their off-load to CASS, with the earliest potential start date being FY93 for the RSTS. The EOTS and the IATS are much earlier in their life cycle than those being considered for off-load and are currently expected to be utilized into the next century. The IMUTS II, on the other hand, will not be transitioned to CASS since the weap-on systems it supports are being replaced by the CAINS II in a time frame that would not make such a program cost beneficial. The CAINS II has an "O"-to-"D" maintenance concept in which CASS is the depot ATS.

## B.2.10.1 CASS P<sup>3</sup>I Program

The CASS program has budgeted \$11.0 million per year beginning in FY95 for P<sup>3</sup>I. Candidates for technology insertion are identified by the Navy using the System Synthesis Model (SSM). Part of the CASS Introduction program includes the requirement for each candidate program to provided SSM data sheets which document specific testing requirements. The SSM is an automated tool which compares these testing requirements to the capabilities of CASS. The technical deficiencies identified in CASS by this process along with the planned inventory of the technology are used by NAVAIR to set priorities for technology insertion candidates. Use of this process to plan and program a structured P<sup>3</sup>I program will enable CASS to support emerging technology and thereby minimize program risk and the potential for PSE proliferation.

#### **B.2.11** Factory/Depot Use

The total cost of Factory Test Equipment (FTE), as well as the actual items bought, for the F/A-18 program could not be determined for this study. What was compiled were the FTE costs of a representative F/A-18 system, the AN/APG-73. From the Engineering Change Proposal (ECP) to upgrade the AN/APG-65 to the AN/APG-73, a total of \$163 million (FY91) was paid for FTE. In addition, two hot bench test set C11M/Tester were bought for \$22 million for interim support. Each hot bench included a radar system (\$7 million) and a test stand (\$4 million).

## **B.3.** A-12

## B.3.1 A-12 Weapon System Background

The Advanced Tactical Aircraft (ATA), designated the A-12, was designed by the team of General Dynamics and McDonnell Douglas as a replacement for the A-6 Intruder. The A-12 mission was a carrier-based, long-range, all-weather strike aircraft which incorporated major performance and survivability gains over the A-6. Its crew consisted of a pilot and a bombardier/navigator.

#### **B.3.1.1 Program** Objective

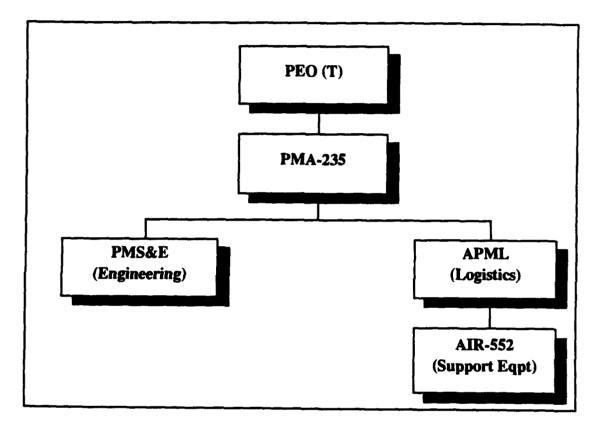
The intention of the program was to procure sufficient quantities of aircraft to provide the Navy with a fully capable carrier-based medium attack strike force. Since a replacement is under development, exact production figures will not be discussed.

## **B.3.1.2 Program Execution Status**

The A-12 contract for the team General Dynamics-McDonnell Douglas was terminated in FY 1991 due to various programmatic difficulties. Milestones (projected and realized) as of the end of the program are presented in Table B-19. This data is provided to help illustrate the technical currency of CASS.

| First Flight                          | First Quarter 1992  |
|---------------------------------------|---------------------|
| FSD                                   | First Quarter 1992  |
| Milestone IIIA (Low Rate Production)  | Fourth Quarter 1993 |
| Lot 1 Delivery                        | First Quarter 1994  |
| TECHEVAL Start                        | Third Quarter 1994  |
| PCA                                   | Fourth Quarter 1994 |
| Lot 2 Delivery                        | Fourth Quarter 1994 |
| RFT                                   | Second Quarter 1995 |
| TECHEVAL End                          | Third Quarter 1995  |
| OPEVAL Start                          | Third Quarter 1995  |
| IOC                                   | First Quarter 1996  |
| Milestone IIIB (Full Rate Production) | Second Quarter 1996 |
| Lot 4 Delivery                        | Fourth Quarter 1996 |
| Lot 5 Delivery                        | Fourth Quarter 1997 |
| Lot 6 Delivery                        | Fourth Quarter 1998 |

Table B-19. A-12 Aircraft Development Milestones


Avionics ATE-related milestones are depicted in Table B-20.

| IATS Development Start               | First Quarter 1989  |
|--------------------------------------|---------------------|
| CASS Development Start               | Third Quarter 1990  |
| CASS TPS Development "Full Go Ahead" | Second Quarter 1991 |
| IATS and TPS Delivery                | Second Quarter 1991 |
| Production (IATS) Support            | Second Quarter 1991 |
| CASS and TPS Delivery                | Second Quarter 1994 |
| First Navy Site Stand-Up             | Third Quarter 1994  |
| First CASS Site Stand-Up             | Fourth Quarter 1994 |
| Production (CASS) Support            | Third Quarter 1995  |

Table B-20. A-12 ATE Milestones

## B.3.2 A-12 ATS Acquisition and Management

The acquisition manager of the A-12 aircraft was within the Naval Air Systems Command (NAVAIR), Program Manager, Aircraft (PMA) 235. PMA-235 receives engineering support from the Assistant Program Manager for Systems and Engineering (APMS&E) or "Class Desk" in AIR-511 and logistic support from the Assistant Program Manager for Logistics (APML) in AIR-04. The APML is responsible for ensuring all aspects of the aircraft are supported, including support equipment. The responsibility for this function is delegated to the support equipment division (AIR-552), within which a Support Equipment Project Officer (SEPO) was specifically assigned to the A-12. The SEPO plans, programs, budgets, and procures all support equipment required for a given weapon system, including avionics, engines, airframe, and weapons. (See Figure B-4):



## Figure B-4. A-12 Acquisition and Management Flow Chart

## **B.3.2.1** Special Policies or Regulations

6

The A-12, as all weapon systems within the NAVAIR is subject to the following policies and regulations specifically established to minimize both the proliferation of peculiar support equipment and the life cycle cost of weapon systems:

a. NAVAIR Instruction 13630.2A, Introducing the Consolidated Automated Support System to Naval Aviation Maintenance, 22 March 1991.

- b. SECNAV Instruction 3960.6, Department of the Navy Policy and Responsibility for Test, Measurement, Monitoring, Diagnostic Equipment and Systems, and Metrology and Calibration (METCAL), 12 October 1990.
- c. MIL-STD-2076 (AS), Unit Under Test Compatibility with Automatic Test Equipment; General Requirements for, DATE
- d. MIL-STD-2165, Testability Program for Electronic Systems and Equipment, DATE.
- e. MIL-STD-2084, General Requirements for Maintainability of Avionic and Electronic Systems and Equipment, DATE.

NAVAIRINST 13630.2A defines policies, procedures and responsibilities for introducing Consolidated Automated Support System (CASS) to Naval Aviation, while SEC-NAVINST 3960.6 performs the same function for the Department of the Navy (DON). These Military Standards are supporting documents which ensure the development of maintainable systems compatible with CASS.

NAVAIRINST 13630.2A defines the following policy:

- a. Electronic weapon systems/systems are designed for ease of testing and compatibility with CASS through the application of MIL-STDs (3), (4) and (5);
- b. CASS or CASS-compatible equipment is specified as the factory test equipment required at a development, manufacturing facility.
- c. CASS is the target system for all intermediate and depot level ATE requirements.
- d. Waiver approval is required if instances arise where CASS is determined not to be the optimum ATE support solution.

SECNAVINST 3960.6 applies to all components of the DON responsible for (a) design, acquisition, operation, and logistic support of weapons platforms, weapon systems, operational systems, and associated support systems; and (b) design, acquisition, use and logistic support of test, measurement, calibration, monitoring, diagnostic equipment and systems. The instruction states that it is DON policy to:

Ensure that diagnostic capabilities, including built-in-test (BIT), for each level of maintenance are consistent with the operational mission and intended use of the applicable systems. General purpose test equipment shall be used where possible. Commercially available test equipment and systems shall be used if they meet environmental requirements imposed by the operational mission and can be logistically supported. Automatic Test Equipment (ATE) should be standardized as much as possible. The Consolidated Automated Support System (CASS) is being developed as the Navy's standard ATE. Systems acquisition managers (program managers) will study and determine if and when it is economically practical to transition to CASS. Until then, they will continue to use their present test equipment. In the future, use of non-CASS ATE will require Assistant Secretary of the Navy for Research, Development, and Acquisition ASN (RD&A) approval. New ATE shall not be acquired if the requirements can be satisfied by CASS. Acquisition and life cycle costs must be considered during the design and acquisition process and in performing diagnostic capability tradeoffs. Test Program Set (TPS) development and distribution costs shall be included in the life cycle cost of ATE for acquisition planning.

## **B.3.3** A-12 Weapon System and ATS Deployment Concepts

#### **B.3.3.1 Weapon System Maintenance Concept**

The baseline maintenance concept for the A-12 weapon system is to achieve full organic maintenance capability at the three levels of maintenance in accordance with OPNAVINST 4790.2. Initial planning was directed at achieving the following:

- full organizational ("O") level and limited Intermediate ("I") level to the Weapon Replacement Assembly (WRA) organic maintenance capability by Operational Evaluation (OPEVAL),
- full "I" level to the Shop Replacement Assembly (SRA) by IOC, and total organic maintenance capability by the scheduled Navy Support Date (NSD).

However, an "O" to Depot ("D") level maintenance concept would be pursued for justified/proven high reliability equipment/components. For example, repair of selected high reliability components would be performed at the "D" level, with an "I" level capability being pursued/established if analysis of fleet usage data indicates "I" level repair is necessary to meet and sustain operational/readiness requirements. Those systems or components demonstrating high reliability coupled with an effective Built-In-Test (BIT)/ fault isolation capability, as applicable, and where sustained supportability/readiness requirement is achieved, will be retained at the "D" level. This approach/maintenance concept would be directed at minimizing support system cost (i.e., reduction of "I" level ATE requirement for land-based and shipboard sites) while sustaining operational/readiness objectives. The maintenance concept envisioned for the A-12 was similar to other Navy aircraft. At the aircraft squadron organizational or "O" level, maintenance personnel remove and replace weapons replaceable assemblies, also known as WRAs or "black boxes." These defective units are then forwarded to the Intermediate or "I" level of maintenance, where the WRAs would be tested on ATE that indicate which Shop Replaceable Assembly (SRA) is defective. The SRA is replaced, then the WRA is re-tested to confirm proper function, and returned to the supply system. The ATE used initially would have been an AN/ ASM-686 Intermediate Automatic Test Set (IATS) as interim support until the AN/USM-636V CASS was available (in FY 1995). As interim support, most A-12 avionics testing on IATS would have been at the "D" Level. The defective SRA (usually a circuit card) would be forwarded to the depot or "D" level for repair. Once CASS was available, most WRAs and many SRAs would be repaired at the "I" level.

WRAs and SRAs that cannot be repaired by the "I" level would be returned to the cognizant depot, or "D" level for repair or salvage. Planning for this aircraft included a fully capable organic "D" level support in FY 1996, timed to coincide with IOC. Initial support was to be via Navy and contractor using IATS. The A-12 was planned as the first aircraft to use CASS exclusively for primary avionics ATE support.

#### **B.3.3.2 Plans to achieve concepts**

The A-12 program developed two potential scenarios for avionics support. One was to use existing ATE as much as possible. This approach would use testers such as the AN/USM-467 (RADCOM) and the AN/ASM-686 (IATS) with modifications as well as "rack and stack" type equipment Hewlett Packard test equipment (to be developed) to provide support. The directives of SECNAVINST 3960.6,12 October 1990 and NAVAIRINST 3630.2A, 22 March 1991, eliminated this option.

The option selected for avionic support was to utilize the AN/ASM- 686 IATS for interim support until CASS was available. This option caused a slight increase in support costs because of some repeated TPS development efforts, but would provide operational savings through the life of the aircraft.

## **B.3.3.3** Supporting plans - personnel training, support for ATS.

A-12 avionics identified as requiring support are depicted in Table B-21

| WRA NAME                     | OTPS | COMPLEXITY   | ID REQD? |
|------------------------------|------|--------------|----------|
| ACTIVE COUPLER *             | 1    | SIMPLE       | NO       |
| AIRSPEED ALTITUDE INDICATOR  | 2    | SIMPLE       | NO       |
| EXPENDABLES COUNTER          | 2    | SIMPLE       | NO       |
| GPS                          | 2    | AVERAGE      | NO       |
| DIGITAL MEMORY UNIT          | 3    | AVERAGE      | YES      |
| DIGITAL MAP COMPUTER         | 3    | COMPLEX      | NO       |
| DISPLAY PROCESSOR            | 4    | VERY COMPLEX | NO       |
| DATA STORAGE UNIT **         | 5    | SIMPLE       | YES      |
| ENGINE CONTROL UNIT          | 6    | VERY COMPLEX | NO       |
| FLIGHT CONTROL COMPUTER      | 7    | VERY COMPLEX | NO       |
| INTEG INERT SENSOR           | 7    | COMPLEX      | YES      |
| SIGNAL DATA COMPUTER         | 8    | COMPLEX      | YES      |
| FLIGHT DATA RECORDER         | 8    | SIMPLE       | NO       |
| ALIGNMENT ACCEL MODULE *     | 9    | SIMPLE       | YES      |
| HEAD UP DISPLAY              | 9    | VERY COMPLEX | YES      |
| STATION DECORDER UNIT*       | 10   | AVERAGE      | NO       |
| WEAPON BAY DOOR CONTROL      | 10   | AVERAGE      | NO       |
| INTEGRATED CONTROL PANEL *   | 10   | AVERAGE      | YES      |
| INLET ICE DETECTOR *         | 11   | SIMPLE       | NO       |
| MULTIFUNCTION DISPLAY        | 12   | COMPLEX      | YES      |
| TACTICAL SITUATION DISPLAY   | 12   | COMPLEX      | YES      |
| MISSION CONTROL COMPUTER     | 13   | COMPLEX      | YES      |
| SATCOM XCVR                  | 14   | VERY COMPLEX | NO       |
| SATCOM POWER AMPLIFIER       | 15   | COMPLEX      | NO       |
| THROTTLE QUADRANT *          | 16   | SIMPLE       | YES      |
| PRIMARY FLIGHT CONTROLLER *  | 16   | SIMPLE       | YES      |
| LANDING GEAR CONTROL UNIT    | 17   | SIMPLE       | NO       |
| BRAKE ANTI-SKID CONTROLLER * | 17   | AVERAGE      | NO       |
| REMOTE INTERTFACE UNIT       | 17   | SIMPLE       | NO       |
| INTERIOR LIGHT CONTROLLER *  | 18   | SIMPLE       | NO       |
| EXTERIOR LIGHT CONTROLLER *  | 18   | SIMPLE       | NO       |
| FIRE DETECTOR CONTROLLER     | 1    | SIMPLE       | NO       |
| UADC                         | 1    | AVERAGE      | NO       |
| USDC SENSOR                  | 1    | AVERAGE      | NO       |
| UHF DATA LINK RT/PR          | 2    | AVERAGE      | NO       |

# Table B-21. Listing of Identified Requirements for Operations TPSs by WRA

|                          |    | AVEDACE      | YES      |
|--------------------------|----|--------------|----------|
| UHF RADIO R/T            | 2  | AVERAGE      |          |
| AIMS ANT SELECTOR        | 3  | SIMPLE       | YES      |
| AIMS RESOURCE CONTROLLER | 3  | SIMPLE       | YES      |
| INTERCOM AMP *           | 26 | SIMPLE       | NO       |
| IFF                      | 4  | AVERAGE      | NO       |
| TACAN R/T                | 4  | SIMPLE       | NO       |
| LOWER ANTENNA ELEC UNIT  | 5  | AVERAGE      | YES      |
| UPPER ANTENNA ELEC UNIT  | 5  | AVERAGE      | YES      |
| GPS RCVR/PROC            | 6  | AVERAGE      | NO       |
| RADAR ALT R/T *          | 7  | AVERAGE      | NO       |
| NAVFLIR POWER SUPPLY     | 8  | AVERAGE      | NO       |
| ESMS POWER SUPPLY        | 8  | SIMPLE       | YES      |
| NAVFLIR SENSOR HEAD      | 9  | VERY COMPLEX | YES      |
| RADAR ANTENNA RECEIVER   | 24 | COMPLEX      | YES      |
| RADAR BEAM STEER         | 25 | COMPLEX      | YES      |
| RADAR TRANSMITTER        | 10 | COMPLEX      | YES      |
| RADAR RCVR STALO         | 11 | COMPLEX      | YES      |
| RADAR PSP                | 12 | COMPLEX      | YES      |
| RADAR ANTENNA            | 13 | COMPLEX      | YES      |
| APU CONTROLLER           | 14 | AVERAGE      | NO       |
| ECS CONTROLLER           | 14 | AVERAGE      | NO       |
| CFF SENSOR HEAD          | 15 | VERY COMPLEX | YES      |
| CFF HEAD CONTROLLER      | 16 | VERY COMPLEX | NO       |
| CFF PROCESSOR            | 17 | COMPLEX      | NO       |
| CFF HEAD VIDEO PROCESSOR | 18 | VERY COMPLEX | NO       |
| ESMS BAND 3 RCVR         | 19 | COMPLEX      | NO       |
| ESMS WB CHANNELIZER      | 20 | VERY COMPLEX | YES      |
| ESMS IF PROCESSOR        | 21 | VERY COMPLEX | YES      |
| ESMS DIGITAL PROCESSOR   | 22 | VERY COMPLEX | YES      |
| MWS PROCESSOR            | 23 | AVERAGE      | NO       |
| MWS SENSOR               | 23 | COMPLEX      | YES      |
| WDL RF NETWORK           | 27 | COMPLEX      | NO       |
|                          |    |              | <u> </u> |

Table B-21. Listing of Identified Requirements for Operations TPSs by WRA

\* Probable "D" Level Support Only

\*\* I-Level Support already exists in the fleet

ATE TPS development "should cost" estimates were generated for the WRAs listed in this table and provided the funding projections used in this study.

#### B.3.4 A-12 Weapon System ATS Inventory

#### **B.3.4.1** ATS Quantities, Types, and Locations

Avionics support equipment identified for the A-12 was the AN/ASM-686 Intermediate Automatic Test System (IATS).

The IATS was developed by McDonnell-Douglas Aircraft Corp. (MCAIR), and produced jointly by McAir and Harris Corp. It was developed as peculiar support equipment for the F/A-18 aircraft; however, the IATS capabilities were sufficient for use as an interim tester for A-12 avionics until CASS was available. The IATS is a functional tester that performs functional analysis of digital, analog, and hybrid WRAs using aircraft avionics simulation equipment and computer control.

Development of the IATS is somewhat peculiar. It was originally developed from the IAFTA, which consisted of an F/A-18 O-level tester (the AFTA) used to interrogate the F/A-18 fault-tree system, and an additional rack of equipment of equipment to mimic the airframe called the AIRSIM. The IAFTA was developed from F/A-18 factory test equipment, and provided an expansion of the original go/no-go tester with fault isolation added. The IATS was developed as a permanent I-level tester from the IAFTA due to great fleet demand for a relatively simple tester for F/A-18. The A-12 program intended to procure additional IATS stations for interim production support during FY 91-96. CASS would start production support in FY 95.

The IATS was developed in FY 86, and upgraded and retrofitted to test the F/A-18 C/D Night Attack system during FY 90 and 91. Thirty-one testers were built, all for F/A-18 support.

## B.3.4.1.1 CASS

CASS will be the avionics tester of the future (per SECNAVINST 3960.6, dated 12 October 1990, and NAVAIRINST 3630.2A, 22 March 1991.

CASS consists of a hybrid core, with add-on racks and equipment to test radio frequency (RF), electro-optical (EO), and communications and navigation (CNI) equipment. CASS tests digital, analog, and hybrid WRAs and SRAs.

The CASS inventory objective is 720 testers. The allocation of stations is documented in the CASS Introduction Plan (CIP) of 15 August 1991. This document contains allocations in detail through FY 1996, with projections through FY 2002. For detailed information the CIP should be referenced.

#### **B.3.5** Specific A-12 ATS Technical Capabilities

#### **B.3.5.1** AN/ASM-686 Intermediate Automatic Test Set (IATS)

Automatic testing is implemented through a computer and its peripheral devices. TPSs are written to minimize operator interaction during testing. The IATS Computer Operations Manual instructs the operator how to set up the UUT and the TPS hardware, as well as how to start running the TPS program. The TPS program then informs the operator what operator actions are required to perform proper testing. Operator actions include connecting cables to the UUT, toggling switches on the UUT, and verifying measurements displayed by station assets or the UUT.

#### **B.3.5.1.1** Sensor/Measurement Interfaces

Unlike many other test stations, the IATS does not use "normal" interface devices. During testing, UUTs are attached to the stations using only cables, which may have one or more relatively passive boxes built into them. The cables are attached to the IATS at general purpose cable connector points.

#### **B.3.5.1.2** Auxiliary Equipment, Power Supplies

A number of pieces of auxiliary equipment are used to execute IATS TPSs. Examples are a photometer, a chrominance meter, a convergence meter, an oscilloscope, and the TTU-205 pressure generator.

#### B.3.5.1.3 Architecture

Most of the stimulus and measurement equipment in the IATS are special purpose equipment, such as digital and analog circuit boards, built by McDonnell Aircraft Company. Few of the components are commercial off- the-shelff (COTS). All of the equipment is mounted in racks.

#### **B.3.5.1.4** TPS Environment and Support

The computer within IATS uses the Versatile Real-Time operating system (VRTX) commercially produced by Ready Systems,. TPSs are executed using an executive written in Ada by Alsys Corporation. The IATS software is somewhat flexible. Operators can begin testing at various entry points in the test programs and can cycle tests. However, older IATS TPSs were written with few, if any, entry points. This severely limited operator options. Newer TPSs are more flexible with more entry points.

LATS TPSs are developed and maintained on International Business Machine (IBM)-compatible personal computers (PC) with at least an Intel 80286 processor. Standard IBM PC compatible operating system software is used during TPS development and maintenance. In addition, compilers for an assembly language, the Fault Tree Interpreter (FTI) language, and PLM (a language similar to C) are used to process TPS source code prior to loading the software onto an IATS. FTI is a "if-then-else" type of language that was developed by McDonnell Douglas Corporation.

## **B.3.5.2** CASS

## **B.3.5.2.1** Operating Software

The CASS system is based around Digital Equipment Corporation's VMS Version 5.2 operating system. The CASS software system is composed of three main computer software configuration items (CSCIs), which are the Station Control Software, the Support Software, and the Intermediate Maintenance Operations Management. The following is a list of the components contained in the CASS CSCIs:

Station Control Software:

- Test Executive
- Virtual Instrument Handlers
- Instrument Personality Interfaces
- Operator Interface
- Automated Technical Information
- Communication Handler
- Asset Allocation
- General Asset Monitor
- Kernal Asset Monitor
- Functional Extension Program
- IEEE 488 Translators
- Self Maintenance

Support Software:

- ATLAS Compiler
- IPTESTER
- Test Program Set Development Software
- Test Executive Simulator

Intermediate Maintenance Operations Management:

- Built-In-Test
- Data Processing
- Network
- Post Processing
- Pretest
- Station Management

#### **B.3.5.2.2 TPS Development Environment**

It is intended that CASS TPS development is done off-line on a VAX with a VMS operating system. Products have been developed to facilitate this process. The TPS development products are:

- a. TE SIM (AGE product. It simulates all of CASSs functions except for those of the Teradyne L200 Series DTU.)
- b. DICONS (n optional but extremely useful tool. It allows the operator to access and program CASS instruments directly.)
- c. IEEE 716 ATLAS compiler
- d. L200 Series compiler (Teradyne)
- e. FORTRAN compiler

This off-line TPS Development Process allows the implementation of another cost saving measure, the use of Test Integration Facilities (TIF). The three Navy TIFs are located at Norfolk, VA; Jacksonville, FL; and San Diego, CA. After the TPS developer has completed his development and debugging (except for TPSs which utilize the L200, which can only be debugged at the CASS station), he schedules time at the TIF for integration of his TPS with CASS. While the use of off-line development reduces the numbers of CASS required, there are some special cases of TPS development in which it is more cost effective to provide a CASS to the developer.

#### B.3.6 A-12 ATS Upgrade and/or Off-load

The A-12 was a newly-designed aircraft; with no upgrades in the planning stage before the program was terminated. Therefore, no ATS upgrades were driven by weapon system upgrades. For CASS to be capable of A-12 support, it needed an upgrade to its testing capability. This upgrade consisted of an additional asset to be built into CASS that would allow the station to address the fiber optic bus incorporated in the A-12. Since this bus is a new requirement for the Navy, it was considered for  $P^3I$  for CASS, to be funded by either the A-12 or CASS program. Research, development, and prototyping the required cards to accommodate this bus had been completed.

# B.3.6.1 CASS P<sup>3</sup>I Program

The CASS program has budgeted \$11.0 million per year beginning in FY 1995 for  $P^3I$ . Candidates for technology insertion are identified by the Navy using the System Synthesis Model (SSM). Part of the CIP includes the requirement for each candidate program to provided SSM data sheets which document specific testing requirements. The SSM is an automated tool which compares these testing requirements to the capabilities of CASS. The technical deficiencies identified in CASS by this process along with the planned inventory of the technology are used by NAVAIR to set priorities for technology insertion candidates. Using this process to plan and program a structured  $P^3I$  program will enable CASS to support emerging technology, and thereby minimize program risk and the potential for PSE proliferation.

## **ARMY PROFILES**

## **B.4. APACHE LONGBOW**

#### B.4.1 Weapon System Background

#### **B.4.1.1 Description**

The Apache Helicopter is a single main rotor, twin engine, tandem seat attack helicopter armed with the Hellfire antitank missile, Hydra 70 (2.75-inch) rockets, and a 30mm chain gun. It is capable of defeating armor in day, night, and adverse weather. A target acquisition designation system (TADS) is housed in a turret on the nose of the helicopter and consists of a TV, forward-looking infrared radar (FLIR), direct view optics, laser designator/rangefinder, and spot tracker. The aircraft is equipped with a pilot night vision sensor (PNVS) which is a FLIR that allows map of the earth operations at night by the pilot independent of the co-pilot gunner's FLIR.

Longbow is a development and acquisition program for an air/ground targeting radar capable of being used day or night in adverse weather and with battlefield obscurants. The Longbow system is being developed for integration into the Apache attack helicopter and the Comanche armed reconnaissance helicopter. Longbow consists of a mast mounted millimeter-wave Fire Control Radar (FCR), a Radio Frequency Interferometer (RFI), and a radio frequency fire-and-forget Hellfire Missile. The FCR detects ground or air targets, and the RFI identifies active emitters. The central processor then classifies the target, establishes priority for engagement, and passes target information to the missile seeker. The pilot may then engage the targets with significantly reduced decision and exposure times. Longbow is being planned for integration into eleven pure Longbow Apache Battalions in Force Package 1, and into one third of the Comanche fleet.

The AH-64 Apache is the Army's primary attack helicopter. It is a quick-reacting, airborne antitank weapon system. Terrain limitations and the unknown placement of numerically superior enemy armor dictate the need for a system that can deploy quickly to the heaviest enemy penetration and destroy, disrupt, or delay the attack long enough for friendly ground maneuver units to reach the scene. The Apache is designed to fight and survive at day, night, and in adverse weather throughout the world. It is equipped with a

Target Acquisition Designation Sight and Pilot Night Vision Sensor (TADS/PNVS) which permit its two-man crew to navigate and attack in darkness and in adverse weather conditions. The Apache has a full range of aircraft survivability equipment and has the ability to withstand hits from rounds up to 23mm in critical areas. The processors for the radar are located in the aircraft's avionics bays. The Longbow Apache consists of the AH-64 aircraft modified with changes necessary to integrate the Longbow radar and missile. Changes are additional power, expanded avionics bays, additional cooling, upgraded processors, integrated avionics, and a MANPRINT crew station.

## **B.4.1.2 Performance and Effectiveness Indicators**

A brief summary of performance and effectiveness indicators is provided below.

| Mission Gross Weight: | 14,770 lbs.                                                 |
|-----------------------|-------------------------------------------------------------|
| Cruise Speed:         | 145 knots                                                   |
| Crew:                 | 2                                                           |
| Armament:             | Hellfire Missiles, Hydra 70 rockets and 30mm M230 chain gun |

#### **B.4.1.3** Status of System and Performance

Apache production began in FY82 and the first unit was deployed in FY86. As of December 1991, 705 Apaches were delivered to the Army. The last Army Apache delivery is scheduled for February 1995. Twenty-five attack battalions are deployed and ready for combat. The Army is procuring a total of 811 Apaches to support a force structure of 40 battalions (26 Active, 2 Reserve; 12 National Guard). The Apache has been sold to Israel, Egypt, Saudi Arabia, the UAE, and Greece.

The Apache Longbow System entered Full-Scale Development in December 1990 following a successful Proof of Principle (POP) Phase. Technical success during POP culminated with the live firing of nine missiles against a wide variety of targets, moving and stationary, through smoke and obscurants. The current program objective calls for 227 Longbow Apache aircraft with first flight of the integrated radar commencing in 1993.

## **B.4.2** ATS Acquisition and Management

The Longbow system will require a significant number of TPSs at Depot level. There are 4 LRUs, 26 Shop Replacement Units (SRUs), and 45 LRMs for the FCR and 1 LRU and 34 SRUs for the RF Seeker. Acquisition and concept of the ATS is in accordance with the following.

#### B.4.2.1 Army Regulation 750-43

Army Regulation 750-43, Army Test, Measurement, and Diagnostic Equipment Program, 29 September 1989, establishes Army wide policy for ATE and TPS. The following criteria will be used for ATS selection:

- a. Non-standard ATE will not be used in lieu of designed standard ATE without appropriate economic analysis.
- b. System developers in coordination with Program Manager for Test, Measurement, and Diagnostic Equipment (PM TMDE), USATA, and TRADOC will determine their ATE requirements.
- c. Once ATE requirements have been identified, system developer will perform the following:
  - Determine if designed standard ATE will fulfill requirements and where they do not.
  - Determine feasibility of expanding capabilities of standard ATE, and if neither of the above are feasible, then submit waiver request documenting the case for a nonstandard ATE

#### B.4.2.2 HQ, Material Command memorandum, AMC-M 750-1

HQ, Material Command memorandum, AMC-M 750-1, Automatic Test Equipment Policy, 6 August 1991, ensures that ATE development and fielding is according to Army Regulation 750-43. ACM-M 750-1 also designates the Integrated Family of Test Equipment (IFTE) to be the Army standard ATE that will be used for the following:

- All new systems as well as currently fielded systems undergoing  $P^{3}1$ .
- Systems requiring but currently lacking ATE.
- Systems to be in service after FY 94.

A waiver process requires that Army-wide cost and effectiveness considerations be made according to Army Regulation 750-43, and the PM TMDE is responsible for logistic support of ATE and embedded software. Major Subordinate Material Development Commands identify TPS requirements not later than Milestone II of prime system.

#### **B.4.2.3** Army Pamphlet 750-43

Army Pamphlet 750-43, 28 February 1992, Army Test Program Set Procedures provides guidance for applying requirements, acquisition, development and life cycle management of TPS in support of Army Material Command systems.

#### **B.4.3 Weapon System and ATS Deployment Concepts**

#### **B.4.3.1 Weapon System Fielding**

TRADOC, FORSCOM, USAREUR, and NGB currently process the Apache. EUSA will receive the Apache in FY92. The USAR is scheduled for FY 93-95.

#### **B.4.3.2 Maintenance Concept**

The maintenance concept is given in AR 750-1, chapter 5, section V, except for printed circuit board (PCB) repair. Test facility electronic equipment, OQ290(2)/MSM, is located at non-divisional and divisional AVIM for line replaceable unit (LRU) repair. CONUS and selected OCONUS PCB repair is accomplished at depot. When economically and operationally feasible, the OQ290(2)/MSM will be replaced with IFTE.

The maintenance concept for the Longbow is two level maintenance (AVUM and Depot). The on-aircraft BIT is designed to detect at least 95% of all failures and 98% of mission-affecting failures. BIT is designed to isolate 95% of the detected failures to a single LRU or LRM with a Retest OK rate that will not exceed 9%. Use of the IFTE CEE is planned at depot level.

Apache is supported by ATS at AVIM (Aviation Intermediate Maintenance) and Depot/Factory.

- Level of Maintenance: AVUM TMDE (ATE): None.
- Level of Maintenance: OQ290(V)2/MSM, electronic equipment test facility.
- Level of Maintenance: Mainz Army Depot only TMDE (ATE): AN/USM 410(V)3 with Apache, augmentation electronic equipment test station.

Transitioning to IFTE will be influenced by cost and scheduling constraints.

#### **B.4.3.2.1** Recurring Maintenance

AVUM is 2,184 hours and AVIM is 936 hours based on 20 flying hours per month. These hours are expected maximums based on specification maintenance man-hour per ground hour (MMH/GH) (100,000) hour maturity goal. Current maintenance man-hour per flying hour (MMH/FH) is 8/13.

#### **B.4.3.2.2** Contract Maintenance

Contract maintenance below depot level is not applicable for support of Apache operational units. AVIM maintenance of all training base aircraft is accomplished by con-

**B-81** 

tract and budgeted by TRADOC. Transition to war status will require multi-shift operations for civilian performed maintenance.

#### **B.4.3.2.3 Warranty/Special Support**

The warranty for the Apache program covers the target acquisition designation system/pilot night vision sensor (TADS/PNVS) and Apache airframe.

#### **B.4.3.3 Support for ATS**

Maintenance support involves both calibration and repair. The U.S. Army Test, Measurement, and Diagnostic Equipment Support Group (USATSG), a subordinate element of the U.S. Army Test Measurement and Diagnostic Activity, is responsible for total TMDE support (i.e., calibration and repair) Army wide. Support is provided by way of mobile teams and fixed-station laboratories/repair facilities. Mobile teams provide DS level repair and transfer level calibration on site. Fixed facilities are strategically deployed primarily to support the mobile teams. Calibration is done on a cyclic basis in accordance with schedules and provisions of TB 43-180. Repairs are performed as required. The entire program is established and maintenance is performed according to directions contained in Chapter 6, AR 750-43.

The program was developed and implemented to ensure maximum availability of accurate, fully mission-capable TMDE for Army Weapon System diagnostic applications. This fundamental objective is applicable to TMDE in general and ATS in particular. It is managed, directed and controlled by the CG, AMC and implemented, both in the continental United States (CONUS) and outside CONUS (OCONUS), by the USATSG. The TMDE support normally will be based on the concept that repair should be performed by the element designation in TB 43-180 as being responsible for calibration support. Calibration and Rep for TMDE not listed in TB 43-180 will be provided by USATSG based on the specific support requirement as identified by the owner or user organization. TMDE support will be as follows:

- a. All TMDE owners or users will perform organizational maintenance on organic TMDE.
- b. TMDE support activities will provide calibration and Rep for all TMDE, General Purpose and TMDE, Special Purpose designated in TB 43-180 as being the support responsibility of the Area TMDE Support Center or Area TMDE Support Team (Mobile Team).

- c. Normally, calibration of TMDE will be provided on a first-come, first-served basis unless extenuating circumstances dictate that support be provided according to the priorities established under paragraph 6.25 of the AR 750-43.
- d. TMDE repair will be provide on a priority basis according to the maintenance priority designators outlined in AR 750-1.
- e. DS/GS maintenance and AVIM units will provide support service for organic and supported units TMDE, Special Purpose designated in TB 43-180 as requiring DS/GS maintenance or AVIM unit calibration and/or repair.
- f. Special Purpose TMDE may need calibration and repair to be performed by both a TMDE support activity and an DS/GS maintenance or AVIM unit on a coordinated basis. For example, a large TMDE, Special Purpose console may include some TMDE, General Purpose that normally would be serviced by a TMDE support activity. The remaining components of the console are TMDE, Special Purpose, and require a person with weapon system training to do the repair work. In these cases, the TMDE, General Purpose and DS/GS or AVIM unit personnel will work together to complete the required calibration and Rep. (This will be accomplished through a local agreement.)

## B.4.4 Weapon System ATS Inventory

Table B-22 summarizes the Appache Longbow ATS requirements by location and quantity.

| ATS                        | QTY | LOCATION | <b># PER LOC</b> |
|----------------------------|-----|----------|------------------|
| EETF                       | 22  | I, D     | 1                |
| Digital Signal Processor   | 5   | F        | 5                |
| RF Test Set                | 5   | F        | 5                |
| Radar Systems Bench        | 5   | F        | 5                |
| Processing Test Set        | 5   | F        | 5                |
| Assembly Test Set          | 5   | F        | 5                |
| IFTE (CTS) - Outyear plans | -   | -        | -                |

| Table B-22. A | Appache Longbow | ATS |
|---------------|-----------------|-----|
|---------------|-----------------|-----|

#### **B.4.5** Specific ATS Technical Capabilities

ATS resources include the Electronic Equipment Test Facility (EETF), four preproduction test sets, a system bench and the IFTE-based contact test set (CTS). The EETF is also referred to as the OQ290(V)2/MSM.

#### **B.4.5.1** EETF

The EETF assembly consists of an expansible air-ride, 35-ft. semi-trailer van housing the ATE AN/USM-410(V)5, and a 35-ft. support van (modified XM991E1) housing the AVIM TPS for the AH-64A helicopter and other auxiliary items. The two semi-trailers capable of road, air, and sea transport and perform the test facility mission on the world wide military environment as specified in DRC-P-H501405B. The EETF is mobile and provides stimuli measurements and control functions to automatically test and fault isolate AVIM level LRUS and SRUS. The ATE operating in the expansible van consists of the core subsystem, AN/USM-410(V)4, (P/N B0421363); and the AH-64A peculiar subsystem (P/N 7-3651000001). The ATE core subsystem provides the capability to prepare, edit, compile, and execute test programs and test program instructions (TPI) in the equate atlas software language. The AH-64A peculiar subsystem and the E/O subsystem shall interface with and be controlled by the core subsystem.

## B.4.5.2 Other ATE

Other ATE are the Digital Signal Processor (DSP) Test Set, Low Power Radio Frequency (LPRF) Test Set, Fire Control Radar (FCR) System Bench, Programmable Signal Processor (PSP) Test Set, and Mast Mounted Assembly (MMA) Test Set. All of these are being used for pre-production engineering test of developmental weapons subsystem. Longbow test equipment has been used since the Proof-of-Principles (POP) phase. Many of these items will be transferred to the FSD contract to avoid negative cost and schedule impacts. Furthermore, both contractors, Westinghouse Electric Corporation (WEC) and Martin Marietta Corporation (MMC), have significant quantities of existing software in their R&D facilities. A depot study is being accomplished during the FSD contract to look at the use of the IFTE. Outyear plans for using the IFTE Contact Test Set (CTS) currently are being considered.

## **B.5.** Multiple Launch Rocket Systems (MLRS)

#### B.5.1 MLRS Weapon System Background

#### **B.5.1.1** Description

The Multiple Launch Rocket System (MLRS) consists of a 12-round rocket launcher mounted on a highly mobile, tracked vehicle that is equipped with a man-rated cab and on-board computerized fire control system. The official nomenclature of the tracked vehicle is the Armored Vehicle Mounted Rocket Launcher, M270. Each MLRS battery employs nine M270s.

#### B.5.1.2 Mission

The primary missions of MLRS are counter fire and suppression of enemy air defenses, light material and personnel targets. The MLRS is a free-flight, area fire, artillery rocket system which supplements cannon artillery fires by delivering large volumes of fire-power in a short time against critical, time-sensitive targets. The basic warhead carries improved conventual submunitions. A growth program is underway to add the Sense and Destroy Armor (SADARM) warhead to improve counter battery fires. The MLRS M270 launcher is being updated to accommodate launching a new MLRS family of munitions (MFOM), including the Army Tactical Missile System (ATACMS).

#### **B.5.1.3** Characteristics

| Length: 6.8       | Cruising Range: 483 km | Rocket Range: 32 km |
|-------------------|------------------------|---------------------|
| Width: 3 m        | Average speed: 40 kph  | Crew: 3             |
| Weight: 24,756 kg | Maximum speed: 56 kph  |                     |

#### B.5.1.4 Status of System

The second multiyear procurement contract for FY89-93 was awarded in July 1989 for MLRS. The U.S. initial operational capability for MLRS was achieved in 1983. Starting in FY89, MLRS has been coproduced by the United States, United Kingdom, Germany, France, and Italy. As of 5 December 1991, a total of 406 units have been fielded. Potential improvements to the system include the improved fire control system (FCS). The IFCS will mitigate electronic obsolescence currently existing in the fire control system (FCS) and will accommodate the needs of the MFOM weapon systems under development and provide growth for future weapon systems.

MLRS performed extremely well in Operation Desert Storm (ODS). Significant numbers of MLRS launchers were deployed. The new upgrade MLRS (Deep Attack Launcher) also demonstrated its capability during the first operational firings of the longer range ATACMS.

## B.5.2 MLRS ATS Acquisition and Management/ATS Upgrade Planning Approach

Army Regulation 750-43, 29 September 1989, Army Test, Measurement, and Diagnostic Equipment Program Establishes Army wide policy for ATE and TPS. The following criteria is used for ATS selection. Non-standard ATE will not be used in lieu of designed standard ATE without appropriate economic analysis

System developers in coordination with Program Manager for Test, Measurement, and Diagnostic Equipment (PM TMDE), USATA, and TRADOC will determine their ATE requirements. Once ATE requirements have been identified, system developer will:

- Determine if designed standard ATE will fulfill requirements and where they do not,
- Determine feasibility of expanding capabilities of standard ATE, and if neither of the above are feasible,
- Submit waiver request documenting the case for a non-standard ATE

HQ, Army Material Command memorandum, AMC-M 750-1, 6 August 1991, Automatic Test equipment Policy: Ensures that ATE development and fielding is per Army Regulation 750-43. AMC-M-750-1 also designates the Integrated Family of Test Equipment (IFTE) to be the Army standard ATE that will be used for:

- All new systems as well as currently fielded systems undergoing  $P^{3}$
- Systems requiring, but currently lacking ATE.
- Systems to be in service after FY 94.

A waiver process requires that Army wide cost and effectiveness considerations be made as per Army Regulation 750-43 and the PM TMDE responsible for logistic support of ATE and embedded software. Major Subordinate Material Development Commands identify TPS requirements not later than milestone II of prime system.

Army Pamphlet 75-43, 28 February 1992, Army Test Program Set Procedures: provide guidance for applying requirements, acquisition, development, and life cycle management of TPS in support of Army Material Command systems.

The MLRS is a fielded system undergoing a material change that will upgrade the system to the "Deep Attack" configuration. The MLRS Deep Attack will deploy several new munitions. MLRS is converting to the Integrated Family of Test Equipment (IFTE). Contracts have been awarded for the Test Program Sets (TPS). The TPSs are scheduled for fielding third quarter FY94. Thirty four TPSs are identified to support the MLRS including the Deep Attack version. There will be eight Line Replaceable Units (LRU) TPS, 22 Shop Replaceable Units (SRU) TPS, and four TPSs for the power supply. The built in test/built in test equipment (BIT/BITE) is falling short of the requirement. Plan is to redesign the fire control system and go to a data bus. The Contact Test Set will be used to read the data bus. The redesign is scheduled to begin in FY94.

## **B.5.3 MLRS Weapon System and ATS Deployment Concepts**

#### B.5.3.1 Fielding

# B.5.3.1.1 FORSCOM, TRADOC, USAREUR, and EUSA have achieved first unit equipped (FUE) status

406 tactical units fielded worldwide; 26 units are located at schools. There are no ATS at operator/organizational maintenance level. Common TMDE and BIT/BITE used at direct support. AN/USM-105(V)1 is used at general support. AN/USM-410 used at depot. MLRS will be transitioning to IFTE. Contracts have been awarded to develop TPS and are scheduled for fielding by third quarter FY94.

#### **B.5.3.2 Maintenance Concept**

Although future maintenance for MLRS will transition to the IFTE ATS the basic concept will encompass standard Army maintenance systems. The entire system is designated for ease of maintenance. Most on-site repair of electronic assemblies is done by replacement of line replaceable units (LRUs) (modules/components) by the MLRS organizational mechanics (MOS 13M10S8) or by the DS maintenance (MOS 27M) contact teams. The faulty component is isolated using BITE (built-in test equipment) and evacuated to the appropriate maintenance level for repair. GS repairs components by isolating and replacing

printed circuit boards (PCB). Piece part repair of PCBs is done at depot. Standard test equipment-internal combustion engine (STE-ICE) is used to isolate faults in the engine and its major components.

#### **B.5.3.3** Support for ATS

Maintenance support involves both calibration and repair. The U.S. Army test, Measurement, and Diagnostic Equipment Support Group USATSG a subordinate element of the U.S. Army Test Measurement and Diagnostic Activity, is responsible for total TMDE support (i.e., calibration and repair) Army-Wide. Support is provided by way of mobile teams and fixed-station laboratories/repair facilities. Mobile teams provide DS level repair and transfer level calibration on- site. Fixed facilities are strategically deployed primarily to support the mobile teams. Calibration is done on a cyclic basis in accordance with schedules and provisions of TB 43-180. Repairs are performed as required. The entire program is established and maintenance according to directions contained in Chapter 6, AR 750-43.

#### **B.5.4 MLRS Weapons System ATS Inventory**

The following table summarizes the quantity and type of ATS required to support the MLRS.

| NAME       | QTY Factory O/I/D | # per loc  | Tested Item |      |          |
|------------|-------------------|------------|-------------|------|----------|
|            |                   |            |             | Qty. | Type (1) |
| MSM-105    | 1.65              | I Level    | 1           | 12   | LRU      |
| AN/USM-410 | 0.15              | D Level    | 1           | 25   | LRU/SRU  |
| BSTF       | 9.4               | I Level    | 1           | 10   | LRU/SRU  |
| CEE        | 1                 | D, F Level | 1           | 35   | LRU/SRU  |
| DIT-MCO    | 2                 | D Level    | 1           | 16   | Cables   |
| Cumulative | 14.2              |            |             | 98   |          |

Table B-23. MLRS ATS

#### **B.5.5** Specific ATS Technical Capabilities

The following paragraphs summarize the capabilities of the following ATS: MSM-105, AN/USM-410, BSTF, CEE, and DIT-MCO.

## B.5.5.1 MSM-105

The MSM-105 is an automatic test facility for performance, diagnostic, and fault isolation testing of various analog, digital, and hybrid electronic equipments. It contains the

AN/USM- 410(V)2 Test Station, AN/USM-465A Test Set, MK-2046/MSM Power Protect Kit, V-516(V) 1/MSM Van, and various items of manual TMDE. The system requires a controlled environment, which is provided in the field by an air conditioned, air suspension XM-995 Semi-trailer Van. The test facility is used with the AN/MJQ-12A Power Plant and the OA-8991/MSM Electronic Equipment Repair Facility (NSN: 6625-01-070-4404).

#### B.5.5.2 AN/USM-410(V)3

The AN/USM-410(V)3 is an automatic test station for performance, diagnostic, and fault isolation testing of various analog, digital, and hybrid electronic equipment. The system has an on-line compiler and automatic optical meter/dial reader; an automatic UUT control driver and the capability to generate all test signals (SINEWAVE, TRIANGLE, SERVO. SQUARE, PULSE TTY, and Digital) by synthesis. The testing is accomplished by an analog to digital converter, a digital voltmeter circuit and fairer analysis of the resultant voltage time relationship. The reverse is used to create any desired signal. The system has the capability for: (1) read only memory UUT program, (2) program preparation online, (3) actual value of UUT parameters plus a go/no-go indication, (4) central control and display, (5) automatic system selfcheck, (6) automatic antenna simulation, (7) dynamic digital testing, analog testing, and hybrid circuit testing. The 410 interface is programmable to the extend that it can accommodate differing analog/digital UUTs whose functional requirements are within the TMDE capabilities. The ATE is a third generation, individual rack system with a S/130 computer (32K bytes min to 256K bytes max), 8 to 76 input/output channels and a 0.2 USEC instruction cycle time. Type of readouts include: digital recorder, paper tape punch, magnetic tape, printer, and CRT. The Government has unlimited rights to technical data and computer software. The standard test program language is EQUATE-ATLAS. Software is available to government users that can make an HP-2100 compiler emulate a 410 for off-line TPS software development. The system requires a controlled environment and is designed for fixed facility installation.

| MEASUREMENT CAPABILITIES         |                |                 |  |  |  |
|----------------------------------|----------------|-----------------|--|--|--|
| FUNCTION PARAMETER 1 PARAMETER 2 |                |                 |  |  |  |
| DC - Voltage                     | 0-200 VDC      | N/A             |  |  |  |
| Scaled AC                        | 0-141 VRMS     | 01+50KHz        |  |  |  |
| TRMS                             | 0-141 VRMS     | 01KHz - 500 MHz |  |  |  |
| VP, VP-P                         | 0-200 VP       | 01KHz - 500 MHz |  |  |  |
| Pulsed - DC VP, VP-P             | 0-200 VP       | 01KHz - 500 MHz |  |  |  |
| Resistance                       | 0-10 M Ohms    | 1-10 Volts      |  |  |  |
| Complex Impedance                | 0-100 M Phms   | 05KHz - 7KHz    |  |  |  |
| Harmonic Distortion              | 10Hz - 100mHz  | 0-141 VRMS      |  |  |  |
| Harmonic Analysis                | 2Hz - 100MHz   | 0-141 VRMS      |  |  |  |
| DC Current                       | 0-25 Amps      | N/A             |  |  |  |
| AC Current                       | 0-10 Amps      | .01KHz - 50KHz  |  |  |  |
| AM Modulation                    | 50KHz - 500KHz | 0-30dBm         |  |  |  |
| FM Modulation                    | 10KHz Max      | -10 to + 30dBm  |  |  |  |
| Measure Sample                   | .1-141 VRMS    | 10KHz - 500MHz  |  |  |  |
| Frequency                        | 500MHz Max     | .05-141 VRMS    |  |  |  |
| Time Interval                    | 10MHz Max      | .05-141 VRMS    |  |  |  |
| Phase                            | 10MHz Max      | .05-141 VRMS    |  |  |  |

The following table summarizes the AN/USM-410 test capabilities.

# Table B-24. AN/USM-410 Measurement Capabilities

## B.5.5.3 CTS

Contact test set (CTS). The CTS is a two-box, man portable tester deployed at DS level for use by maintenance contact support teams. It augments system BIT/BITE and identifies failed LRUs in weapon systems. The CTS may be reconfigured to support specific systems using plug-in, pull-out modules. The CTS assembly case measures approximately 14.5 inches high, 10.8 inches wide, and 16.9 inches long. It weighs 35.6 pounds.

## **B.5.5.4** Base Shop Test Facility (IFTE) Characteristics

The BSTF is a tactical version of the CEE. The BSTF consists of the Base Shop Test Station (BSTF), in a 5-ton truck mounted S-280 Shelter, plus another 5-ton truck mounted S-280 shelter for Test Program Sets (TPS) storage powered by 60KW generator sets. The characteristics of the BSTF and CEE are listed in the following table.

| MEASUREMENT CHARACTERISTICS                 |                                                                                                                                             |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| FUNCTION PARAMETERS                         |                                                                                                                                             |  |
| RF MEASUREMENT                              |                                                                                                                                             |  |
| * Power Meter<br>(HP-438A)                  | Power Range 44 to -70dBM<br>Frequency: 100KHz-26.5 GHz                                                                                      |  |
| * Spectrum Analyzer<br>(HP 70000 Series)    | Frequency: 50 KHz-22GHz<br>Input Power Sensitivity to -132 dBM                                                                              |  |
| ANALOG MEASUREMENT                          |                                                                                                                                             |  |
| Digital Multimeter<br>(HP-3457A)            | DC Volts - 5uV-303 V<br>AC Volts - 0-303 VRMS<br>DC Current 0-1.5 A<br>AC Current 0-1A<br>Resistance 0-3.G ohm<br>Reading Rate 1350/sec max |  |
| * Counter-Timer<br>(RACAL-DANA 1995)        | Frequency: DC-200 MHz<br>Period 5 nsec to 10**7 sec<br>Time Interval-2 nsec to 10**7 sec<br>Rise/Fall nsec to 25 msec                       |  |
| Synchro/Resolver Indicator<br>(DDC HSR 203) | Angle 0-359.99 degrees<br>Frequency: 47 Hz to 1KHz<br>Volts 6.8 to 90 V                                                                     |  |
| VIDEO MEASUREMENT                           | Bandwidth Sampling:                                                                                                                         |  |
| Waveform Digitizer<br>(HP 54201A)           | Real-timec - 50 MHZ<br>Repetitivedc - 300 MHz<br>Range - 40mV to 16 V                                                                       |  |
| HIGH POWER LOAD                             |                                                                                                                                             |  |
| (Transistor Devices SPS3102-1)              | 8 Programmable Channels<br>Power Dissipation<br>Max 3000 Watts<br>Single Channel 750 Watts                                                  |  |

| Table B-25. | BSTF and | CEE Measurement | Capabilities |
|-------------|----------|-----------------|--------------|
|-------------|----------|-----------------|--------------|

| DIGITAL CHARACTERISTICS                  |                                                                                                                                                                                                                |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FUNCTION                                 | PARAMETERS                                                                                                                                                                                                     |  |
| DIGITAL TESTING                          |                                                                                                                                                                                                                |  |
| Dig Word Generator<br>(Grumman peculiar) | I/O Pins - 192, increments of 16<br>Logic Levels:<br>+30 to -30 V below 10 MHz<br>+10 to -10 V above 10 MHz<br>Frequency:<br>Static to 50 Megabits/sec<br>Resolution: 20 nsec<br>Clock Period: 20 n to 20 msec |  |

## Table B-26. BSTF and CEE Digital Characteristics

## Table B-27. BSTF and CEE Stimuli Characteristics

2

•

| STIMULI CHARACTERISTICS                       |                                                                                                                                                                                                        |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FUNCTION                                      | PARAMETERS                                                                                                                                                                                             |  |
| ANALOG STIMULI                                |                                                                                                                                                                                                        |  |
| * Function Generator<br>(HP-3314A)            | Waveforms - Sine, Square, Ramp, Triangle, Pulsed<br>DC<br>Frequency: .001 Hz-19.99 MHz<br>Amplitude: 0 to 10 V p-p<br>Resolution 3 1/2 digits<br>Angle: 0-359.99 degrees<br>Frequency: 47 Hz to 11 KHz |  |
| Synchro/Resolver Simulator<br>(DDC SIM 31201) |                                                                                                                                                                                                        |  |

| RF STIMULI                                                                                        |                                                                                                                     |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| *RF Generator #1<br>(Gigatronics 900)                                                             | Frequency: 50 MHz to 26 GHz<br>Resolution: 1 KHz<br>Max Level Output + 5 dBm<br>Pulse/Square Wave Modulation        |
| RF Generator #2<br>(COMSTRON 7100D)                                                               | Frequency: 100 KHz to 1.3 GHz<br>Resolution: 1 Hz<br>Output Level +20 tp -140 dBm<br>AM/FM/Phase Modulation         |
| VIDEO STIMULI                                                                                     |                                                                                                                     |
| Video Generator<br>(Grumman peculiar)<br>POWER STIMULI                                            | High Resolution Graphics Gen<br>4096 Data Points/Channel<br>Full Range of Color/B+W                                 |
| DC Power Supply<br>(Superior 884-1,<br>LAMBDA LGS5A10VR<br>LAMBDA LGS6A280VR<br>Superior 893-900) | 8 Programmable Power Supplies<br>0-150 V (100W) each<br>Fixed 28 V Supply<br>Voltage: 0 -135 V 10A<br>0 - 270 V 5 A |
| AC Power Supply<br>(Behiman KBT3-75D)                                                             | Frequency: 45-5000 Hz                                                                                               |

#### Table B-27. BSTF and CEE Stimuli Characteristics

#### B.5.5.5 DIT-MCO

The DIT-MCO 9500 Series has the capacity to test: aircraft cable and harness assembles, avionics racks and radio racks; cockpit wiring and interconnections, cable and wiring boards, 1553 bus systems and coax, triax and twisted pair conductors. It also has the ability to test circuits with active components - lights, relays, solenoids, motors. System consists of IBM PC/XT/AT or compatible computer, LPT-9 line printer, and DCS-III digital comparator system. Wiring Analyzer Graphics program displays tested circuit and shows the most probable location of the error. Graphics program permits automatic generation of schematics from wire lists and users symbol library.

## **B.5.6** ATS Upgrade and/or Off-load Plans

Army regulation 750-43 requires material developers/users to submit a waiver request and get the request approved prior to any  $P^3I$  related upgrades to existing ATE, unless the existing ATE happens to be a member of the IFTE family. IFTE is the Army Standard ATE. MLRS test requirements are to be transitioned to the IFTE family, beginning FY 94.

#### B.5.7 Factory/Depot Use

MLRS will be supported at Depot and Factory level by a commercialized version of the BSTF (CEE). The previously used ATS, AN/USM410, MSM-105 and the DIT-MCO will be replaced by IFTE. The BIT/BITE system now used at organizational level will be augmented or replaced by the CTS.

## **B.6. ABRAMS**

#### B.6.1 Abrams Weapon System Background

## **B.6.1.1** Description

The M1 Abrams Tank is a full-tracked, armored vehicle capable of sustained offensive and defensive operations. It is designed to close with and destroy enemy forces using shock action, firepower, and mobility in coordination with supporting ground and air systems under all battlefield conditions and levels of combat.

#### B.6.1.2 Mission

The mission of the Abrams tank is to close with and destroy enemy forces on the integrated battlefield using mobility, firepower and shock effect. The 105mm main gun on the M1 and IPM1 and the 120mm main gun on the M1A1 combined with the powerful 1500 HP turbine engine and special armor make the Abrams particularly suitable for attacking or defending against large concentrations of heavy armor forces on a highly lethal battlefield. Additional features of the M1A1 are increased armor protection, suspension improvements and a Nuclear Biological and Chemical (NBC) protection system which provides additional survivability in a contaminated environment. The M1A2 development program builds on the M1A1 to provide an Abrams tank with the necessary improvements in lethality, survivability, and fightability required to defeat the threat of the mid nineties. Improvements being developed for the M1A2 include a Commanders Independent Thermal Viewer, and Independent Commanders Weapon Station, Position Navigation equipment, and a distribution data and power architecture.

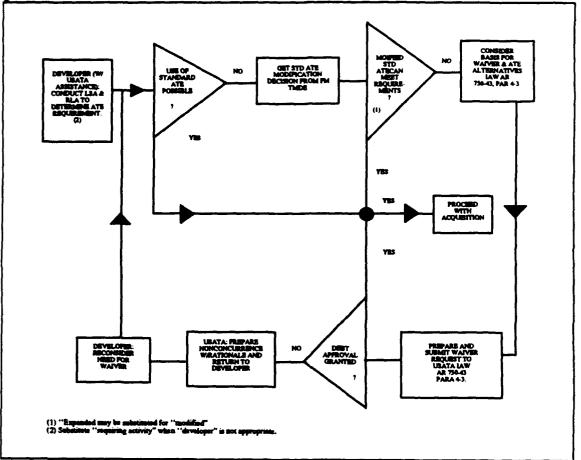
#### **B.6.1.3** Characteristics

Principal ones are noted in the following list:

- Combat weight loaded: 61.5 tons
- Length with gun forward: 384.5 inches
- Length with gun rearward: 353. 2 inches
- Reducible height: 96 + or -0.5 inches (top of turret)

- Reducible width: 144.125 inches
- Hull center ground clearance: 19 inches
- Ground pressure: 13.3 pounds per square inch
- Engine: 1,500-horsepower, air-cooled turbine
- Horsepower to ton ratio: 24.4 to 1
- Acceleration: 0 to 20 miles per hour in 7 seconds
- Maximum speed: 45 miles per hour (governed)
- Cross country speed: 30 miles per hour
- Speed on 10% slope: 20 miles per hour
- Speed on 60% slope: 4.5 miles per hour
- Main armament: M68E1, 105mm rifled cannon
- Coaxial weapon: M240, 7.62mm machine gun
- Loader's weapon: M240, 7.62mm machine gun
- Commander's weapon: M2, 50 caliber machine gun
- Sight stabilization: Elevation turret azimuth
- Night vision: Thermal imaging
- Computer: Digital solid state
- Range finder: Neodymium YAG laser
- Main gun basic load: 55 rounds
- Fuel: DF-2 (primary), DF-1, or DFA Capacity: 505 gallons
- Usable capacity: 498 gallons
- Refueling rate: 50 gallons per minute
- Cruising range: 310 miles at 29 miles per hour on level paved roads
- Operational range: 130 miles
- Crew: Four soldiers
- Obstacle crossing: Vertical, 49 inches and trench, 9 feet

#### **B.6.1.4** Planned Systems Improvements


The Block II (M1A2) improvements over the M1A1 are to include a drivers integrated display, a navigational interface with the Global Positioning Systems (GPS) and a commander's independent thermal viewer. Testability improvements provide for the use of bus technology for diagnostics.

The Block III tank is a next-generation weapon system that is to include significant enhancements over the M1A2 with respect to lethality, rate-of-fire, survivability, mobility and shock effect.

## B.6.2 Abrams ATS Acquisition and Management/ATS Upgrade Planning Approach

## **B.6.2.1** Flow charts and text

Army Policy (AR 750-43) requires that IFTE be considered for ATE support of any upgraded weapon system targeted for subsequent deployment. Outyear upgrade plans include the Abrams Block II and Block III programs. The process is sketched in the diagram below.





## **B.6.2.2 Preliminary Plans**

Preliminary plans call for the IFTE BSTF to be deployed in support of M1 systems beginning around outyear 2000. However, CTS support is expected to be initialized during FY94.

#### **B.6.3** Special Policies and Regulations

Army Management guidance for ATE is contained in AR 750-43, DA PAM 750-43 and AMC-M 750-1. The basic regulation is AR 750-1. The DA Pamphlet addresses TPS requirements and AMC-M 750-1 deals primarily with requirements tester. Briefly, IFTE is required for any new or updated system which requires ATE support. The requirement must be recognized and complied with, unless a waiver is granted. Waiver processing procedures are explained in paragraph 4 of the AR. Documentation requirements are impacted by the waiver request classification. Either of four predefined classes may be considered: General, Technical, Cost, or Nonstandard Augmentation. The basis for the waiver must be explicitly identified and tailored to the class deemed most appropriate for the request being submitted.

- a. General: Decisions must be based on HQDA or HQ AMC policy decisions or directives preclude use of the designated ATE standard. A copy of the decision document or directive precluding use of the designated ATE standard.
- b. Technical: Decisions must be based on analysis that shows the use of the designated ATE standard to meet support weapon system ATE requirements is not technically feasible without obviously uneconomical major modifications or the use of the designated ATE standard would impose unrealistic program and/ or technical obstacles. Documentation must include lists of the system test requirements in a side-by-side comparison with designated standard ATE capabilities and the proposed alternative and must demonstrate conclusively that the designated standard ATE fails to meet requirements. Examples of unmatched requirements to capabilities include engineering analysis estimates of modifications required to make the designated ATE standard compatibile. To qualify for technical exclusion, the comparison and analysis must unambiguously show that the standard ATE is not a viable alternative (otherwise an economic analysis is required).
- c. Cost: Decisions must be based on analysis that shows the use of the designated standard is clearly not the most cost effective ATE alternative for the Army.

A copy of a cost/economic analysis reflecting use of the designated ATE standard versus use of the proposed ATE alternative is required. The analysis will be prepared according to AR 11-28 and DA Pams 11-2 through 5 and validated by the local comptroller. Critical cost differences will be highlighted and discussed in detail. The analysis must show

that use of designated ATE standard is not cost effective for the Army. The analysis will be supported by the following:

- (1) An assessment of the LSA (or a copy of the LSAR) that substantiates use of ATE in the material system maintenance concept. This assessment will address the trade-off among ATE, contractor support, and other test capability (including throwaway) with respect to the specific supported end item LRUs and printed circuit boards.
- (2) An assessment of operational and readiness benefits to be derived if the proposed ATE alternative is approved. This assessment will also address whether the proposed ATE alternative can perform ATE workloads of other type end items in lieu of the designated ATE standard.
- (3) Direct consideration of acquisition, operation, and support costs; TPS costs; deployment constraints; ATE workload requirements; and asset availability. When considering asset availability, the analysis will address the capability of existing and programmed designated ATE standard assets to accomplish the workload requirement through shared utilization as based on prorated costs.
- d. Nonstandard Augmentation: Decisions must be based on analysis that shows the use of system peculiar ATE with the designated ATE standard is necessary to reduce the workload of the designated ATE standard. Documentation must include a copy of a cost/economic analysis reflecting use of existing, programmed, and additional designated ATE standard assets versus use of existing and programmed designated ATE standard assets with system peculiar

## **B.6.4** ATE Abrams Weapon System and ATS Deployment Concepts

## **B.6.4.1** Maintenance Concepts

To maximize combat effectiveness, the Abrams maintenance concept attempts to fix a problem as far forward as possible with repair on site preferred. During offense, disabled vehicles remain in place until contact teams moving with the maneuver elements repair or pass these to follow-on maintenance elements for repair/evacuation. During defense, the crew attempts repair. If unable to repair, the vehicle is evacuated, or destroyed if the position is in jeopardy; however, destruction should be the last resort. The Abrams fixed forward concept is supported by a four-level maintenance structure: organizational (0), Direct Support (DS), General Support (GS) and depot. The fielding of supporting ATS resources is significantly influenced by requirements related to this structure.

## B.6.4.2 Influence on Fielding

Abrams is supported by ATE at O, DS, GS and depot levels. Resources and maintenance echelons are identified in the following table.

| Maintenance Level |                  |                             |                            |       |            |  |  |  |  |  |
|-------------------|------------------|-----------------------------|----------------------------|-------|------------|--|--|--|--|--|
|                   | CTS <sup>a</sup> | STE-MI/<br>FVS <sup>b</sup> | DSESTS-M1/FVS <sup>c</sup> | ADADS | EQUAT<br>E |  |  |  |  |  |
| UL (0)            | X                | X                           |                            |       |            |  |  |  |  |  |
| DS<br>GS          | X                | X                           | X                          |       |            |  |  |  |  |  |
| GS                |                  | X                           | X                          |       |            |  |  |  |  |  |
| Depot             |                  | X                           | X                          | X     | X          |  |  |  |  |  |

| Table B-28. | Abrams | ATE | <b>Resources</b> t | by | Maintenance Lev | eł |
|-------------|--------|-----|--------------------|----|-----------------|----|
|-------------|--------|-----|--------------------|----|-----------------|----|

a. Will repace STE-M1/FUS in early to mid 90s.

b. Primarily a unit level tester.

c. Primarily DS/GS ATE

d. Obsolete system. No longer supported.

#### B.6.4.3 Fielding

The Abrams tank is in its eleventh year of production. Over 7,000 tanks are in the field as of the beginning of 1992. By the end of FY92 all active component armor units will be equipped with the M1A1 or M1. Reserve Component Roundout units are also receiving the Abrams tank. The M1A2 has begun Technical and Operational testing and is expected to enter low rate production in 1992. Except for the IFTE CTS, supporting ATE has also been fielded. Fielding for the CTS is expected to commence in FY94.

#### **B.6.4.4 Support for ATS**

Maintenance support involves both calibration and repair. The U.S. Army Test, Measurement, and Diagnostic Equipment Support Group USATSG a subordinate element of the U.S. Army Test Measurement and Diagnostic Activity, is responsible for total TMDE support (i.e., calibration and repair) Army-Wide. Support is provided by way of mobile teams and fixed-station laboratories/repair facilities. Mobile teams provide DS level repair and transfer level calibration on- site. Fixed facilities are strategically deployed primarily to support the mobile teams. Calibration is done on a cyclic basis in accordance with schedules and provisions of TB 43-180. Repairs are performed as required. The entire program is established and maintenance according to directions contained in Chapter 6, AR 750-43.

The program was developed and implemented to ensure maximum availability of accurate, fully mission-capable TMDE for Army Weapon System diagnostic applications. This fundamental objective applicable to TMDE in general and ATS in particular. The program is managed, directed and controlled by the CG, AMC and implemented, both in the continental United States (CONUS) and outside CONUS (OCO-NUS), by the USATSG.

The TMDE support normally will be based on the concept that repair should be performed by the element designation in TB 43-180 as being responsible for calibration support. Calibration and Repair for TMDE not listed in TB 43-180 will be provided by USATSG based on the specific support requirement as identified by the owner or user organization. TMDE support will be as follows:

- a. All TMDE owners or users will perform organizational maintenance on organic TMDE.
- b. TMDE Support Activities will provide Calibration and Rep for all TMDE, General Purpose and TMDE, Special Purpose designated in TB 43-180 as being the support responsibility of the Area TMDE Support Center or Area TMDE Support Team (Mobile Team).
- c. Normally, calibration of TMDE will be provided on a first-come- first-served basis unless extenuating circumstances dictate that support be provided according to the priorities established under paragraph 6.25 (AR 750-43).
- d. TMDE repair will be provide on a priority basis according to the maintenance priority designators outlined in AR 750-1.
- e. DS/GS maintenance and AVIM units will provide support service for organic and supported units TMDE, Special Purpose designated in TB 43-180 as requiring DS/GS maintenance or AVIM unit calibration and/or repair.
- f. Certain TMDE, Special Purpose may require Calibration and Rep to be performed by both a TMDE Support Activity and an DS/GS maintenance or AVIM unit on a coordinated basis. For example: A large TMDE, Special Purpose console may include some TMDE, General Purpose that normally would be serviced by a TMDE Support Activity. The remaining components of the console are TMDE, Special Purpose and require a person with weapon system training to do the repair work. In these cases, the TMDE, General

Purpose and DS/GS or AVIM unit personnel will work together to complete the required Calibration and Rep. (This will be accomplished through a local agreement.)

### B.6.5 Abrams Weapon System ATS Inventory

The Abrams M1 currently is supported by an array of ATS systems. The particular systems, along with some associated support specifics are identified in the following table:

|            |          |               | 1       | rps      |
|------------|----------|---------------|---------|----------|
| System     | Quantity | Support Level | Туре    | Quantity |
| USM-410    | 2        | D             | LRU/SRU | 34       |
| DSESTS     | 198      | I,D           | LRU/SRU | 34       |
| STE M1/FUS | 737      | 0             | LRU/SRU | 1        |
| DIT-MCO    | 1        | D             | Cables  | 92       |

 Table B-29.
 Summary ATS Used with the ABRAMS.

Members of the IFTE family are designed to adequately satisfy Abrams test requirements now being supported by the above systems. Requirements off-load is scheduled to begin in FY94.

## **B.6.6** Abrams Specific ATS Technical Capabilities

The following ATS are discussed in this section: USM-410 DSESTS, STE M1/FUS and DIT-MCO.

#### **B.6.6.1** AN/USM-410(V)

The AN/USM-410(V)3 is an automatic test station for performance, diagnostic, and fault isolation testing of various analog, digital, and hybrid electronic equipment. The system has an on-line compiler and automatic optical meter/dial reader; an automatic UUT control driver and possesses the capability to generate all test signals (SINEWAVE, TRI-ANGLE, SERVO, SQUARE, PULSE TTY, and Digital) by synthesis. Testing is accomplished by an analog to digital converter, a digital voltmeter circuit and fourier analysis of the resultant voltage time relationship. The reverse is used to create any desired signal. The system has the capability for: (1) read only memory UUT program, (2) program preparation on-line, (3) actual value of UUT parameters plus a go/no-go indication, (4) central control and display, (5) automatic system selfcheck, (6) automatic antenna simulation, (7) dynamic digital testing, analog testing, and hybrid circuit testing.

The 410 interface is programmable to the extend that it can accommodate differing analog/digital UUTs whose functional requirements are within the TMDE capabilities. The ATE is a third generation, individual rack system with a S/130 computer (32K bytes min to 256K bytes max), 8 to 76 input/output channels and a 0.2 USEC instruction cycle time. Type of readouts include: digital recorder, paper tape punch, magnetic tape, printer, and CRT.

The Government has unlimited rights to technical data and computer software. The standard test program language is EQUATE-ATLAS. Software is available to government users that can make an HP-2100 compiler emulate a 410 for offline TPS software development. The system requires a controlled environment and is designed for fixed ferminate lation.

Specifications for the AN/USM-410(v) are summarized in Table B-30 though B-34.

| MEASUREMENT CAPABILITIES |              |                |  |  |  |  |
|--------------------------|--------------|----------------|--|--|--|--|
| FUNCTION                 | PARAMETER 1  | PARAMETER 2    |  |  |  |  |
| DC - Voltage             | 0-200 VDC    | N/A            |  |  |  |  |
| Scaled AC                | 0-141 VRMS   | 01+50KHz       |  |  |  |  |
| TRMS                     | 0-141 VRMS   | 01KHz - 500MHz |  |  |  |  |
| VP, VP-P                 | 0-200 VP     | 01KHz -500MHz  |  |  |  |  |
| Pulsed-DC VP, VP-P       | 0-200 VP     | 01KHz-500MHz   |  |  |  |  |
| Resistance               | 0-10 M Ohms  | 1-10 Volts     |  |  |  |  |
| Complex Impedance        | 0-100 K Ohms | 05KHz-7KHz     |  |  |  |  |
| Harmonic Distortion      | 10Hz-100mHz  | 0-141 VRMS     |  |  |  |  |
| Harmonic Analysis        | 2Hz-100MHz   | 0-141 VRMS     |  |  |  |  |
| DC Current               | 0-25 Amps    | N/A            |  |  |  |  |
| AC Current               | 0-10 Amps    | .01KHz-50KHz   |  |  |  |  |
| AM Modulation            | 50KHz-500KHz | 0-30dBm        |  |  |  |  |
| FM Modulation            | 10KHz Max    | -10 to +30dBm  |  |  |  |  |
| Measure Sample           | .1-141 VRMS  | 10KHz-500MHz   |  |  |  |  |
| Frequency                | 500MHz Max   | .05-141 VRMS   |  |  |  |  |
| Time Interval            | 10MHz Max    | .05-141 VRMS   |  |  |  |  |
| Phase                    | 10MHz Max    | .05-141 VRMS   |  |  |  |  |

Table B-30. AN/USM-410 Measurement Capabilities

| FUNCTION                    | FREQ/PERIOD            | MAGNITUDE              |
|-----------------------------|------------------------|------------------------|
| Sine Wave                   | 0.015Hz-6.4MHz         | 0 to 20 Vpp            |
| Square Wave                 | 0.15Hz-3.2MHz          | (1)                    |
| Triangle Wave               | 0.15Hz-3.2MHz          |                        |
| Ramp Wave                   | 0.15Hz-3.2MHz          |                        |
| Complex Wave                | 0.15Hz-200KHz          |                        |
| Main Pulse<br>Delayed Pulse | 100 ns to<br>1310. 72s | 0 to +/-9.9vp          |
| CW                          | 60KHz-500MHz           | -117dBm to 6dBm        |
| АМ                          | 30Hz-100KHz            | % Modulation<br>5%-90% |
| FM                          | 100Hz-100KHz           | (2)                    |
| PM                          | 0.001Hz-10KHz          | 100%                   |

# Table B-31. AN/USM-410 Stimulus Capabilities

# Table B-32. AN/USM-410 Synchro Stimulus

.

•

•

•

| SYNCHRO STIMULUS    |                  |  |  |  |  |  |  |
|---------------------|------------------|--|--|--|--|--|--|
| CHARACTERISTIC      | RANGE            |  |  |  |  |  |  |
| Synchro Angle       | 0.359.98 degrees |  |  |  |  |  |  |
| Synchro Output      | 11.8 VRMS Max    |  |  |  |  |  |  |
| Reference Voltage   | 26 VRMS          |  |  |  |  |  |  |
| Reference Frequency | 400Hz            |  |  |  |  |  |  |

| DIGITAL STIM                                                      | TULUS/RESPONSE                 |
|-------------------------------------------------------------------|--------------------------------|
| DIGITAL CHARACTERISTICS                                           | PARAMETERS                     |
| Date Type                                                         | Parallel or Serial             |
| Data Format                                                       | RZ or NRZ                      |
| Digital Interface<br>For Stim or Resp<br>Additional for Resp Only | 1-128 Pins<br>1-128 Pins       |
| Word Length                                                       | 1-128 Bits                     |
| Message Length                                                    | 1-32,767 words                 |
| Data Rate                                                         | 0-2 M words/sec                |
| Logic Levels<br>Stimulus<br>Response                              | -20 to +20 V<br>-200 to +200 V |
| Stimulus<br>Output Current                                        | 0-100 MA per pin               |
| Stimulus<br>Output Impedance                                      | 6-875 ohms                     |
| Response Delay                                                    | 0.2 use 6.5s                   |

# Table B-33. AN/USM-410 Digital Stimulus/Response

# Table B-34. AN/USM-410 Power Stimulus Capabilities

| PO                                                                | WER STIN               | <b>IULUS CAPAI</b>          | BILITIES                                                           |
|-------------------------------------------------------------------|------------------------|-----------------------------|--------------------------------------------------------------------|
| <b>FUNCTION &amp; QTY</b>                                         | VOLTS                  | AMPS                        | REMARKS                                                            |
| DC Power Supply (3)                                               | 0-36                   | 25 Mar                      | 2 supplies have a max of 9 amps.                                   |
| DC Power Supply (2)<br>DC Power Supply (1)<br>DC Power Supply (1) | 0-60<br>0-490<br>0-990 | 4 Max<br>0.4 Max<br>0.2 Max | 2 A Max available at the<br>program mobile interface unit<br>(PIU) |
| Fixed DC Power<br>Supply (1)                                      | 28                     | 5 Max                       |                                                                    |
| DC Standard                                                       | 0-200                  | 0-110<br>milli              |                                                                    |
| AC Standard                                                       | 1 milli<br>-120        | 50 MA Max                   | Frequency<br>10HZ-1MHZ                                             |

#### **B.6.7 DSESTS**

The Direct Support Electrical Systems Test Set (DSESTS) is a microprocessorbased automatic test system used to provide direct support test capability for the M1 Tank, M2 IFV, and M3 CFV systems. Two (2) memory modules with a capability of storing 512K bytes of data each are accommodated in the lid. The operator interface consists of a 60character display and three (3) switches, YES/NO/STOP, for responding to instructions from DSESTS. Test cables are required for reach LRU. Additional or unusual stimulus and measurement requirements may be accommodated by external interfacing. Built-in-Test (BIT) verifies that the test sets computer and stimulus/measurement interface is fully operational with a confidence level of better than 98 percent. The system can be used in a fixed shop or mobile shop van.

The following list summarizes the DSETS Specifications.

#### **B.6.7.1** Specifications

a. Voltage Measuring Capabilities

DC range - +/-40V, +/-10V, +/-4V, +/-0.4V

• Accuracy - 0.2% FS reading

DC impedance - Single ended - 250 Kohms +/-2%, 10pF

- Differential 30 X 100 ohms, 30pF
- AC ranges 400, 100, and 0.4V ranges
  - Accuracy 0.5% of FS reading
- AC impedance Single ended 250 kohms +/-2%, 10pF
- Differential 30 X 100 ohms, 30 pF
- Filters available DC to 8Hz, greater than 5Hz,

- greater than 100Hz.

- b. Frequency Measuring Capabilities:
  - Analog channels 0-17KHz, resolution +/-1H
  - Logic Input Channels 0-900KHz, resolution +/-1Hz
- c. Stimulus Capabilities:
  - (1) Active Termination Function

Pull-up to 24Vdc through 3.30 Kohms Resistor

- Pull-up to 5Vdc through 100 ohms Resistor
- Pull-down to ground
- (2) Digital Driver Functions

**B-107** 

- 5V TTL logic output, 0/5Vdc, 30mA
- (3) Linear Output Functions
  - 10Vdc through +/-10Vdc, +1-12mA
- (4) Frequency Output Functions
  - Sinewave, 0.05 0000Hz, 0.2 20Vpp, 12mA
  - Sawtooth, 0.05 000Hz, 0.2 20Vpp, 12mA
  - Ramp, 0.05 0000Hz, 0.2 20Vpp, 12mA
  - Squarewave, 2KHz 512KHz, 0.2 20Vpp, 12mA
- (5) Relay Driver Functions
  - Relay Drive Up (RDU), Open/22Vdc, 1.
  - Relay Drive Down (RDD), Open/2Vdc, 1.5A
- (6) Logic Functions
  - 64 bit serial TTL transmission capability
  - Transmitting capability 1MHz bit rate
  - 16 bit/word
  - input or output
  - 32 bit parallel input
- (7) Test Probe

DSESTS also has a hand-held test probe that the operator can use to measure DC voltage, AC voltage or frequency at points that are internal and not accessible at an LRU output connector. This feature is very useful in fault isolation of the defective LRU component.

(8) Signal Conditioning

Any special interface functions required by the LRU under test are resident on signal conditioning cards designed for that purpose. DSESTS has ten (10) card slots available for this application.

The General Purpose Interface Assembly (GPIA) is a modular assembly which is being added to the core DSESTS. It is a general purpose bus oriented system specifically designed to provide a testing capability for data bus communication system, electro-optical systems, and thermal imaging systems. It is planned that all DSESTS will be configured to include the GPIA. The GPIA does not have a stand alone test capability, requiring an additional controller (DSESTS & Operator Interface Unit (OIU). The DSETS & GPIA configuration enables testing of the M1 tank series and BFVS TIS components, and is planned to support BFCS digital LRU's and M1 Block Modernization programs. The core GPIA (without cabling or memory costs \$44K). With cables and memory modules the GPIA cost is substantially more.

## SPECIFICATIONS:

- (1) Wideband Voltage Measurement
  - Input ranges:  $\pm 0.4, \pm 1, \pm 4.0$ , volts, scale & expanded with
  - Programmable +5 volt offset
  - Accuracy: ±0.5% or range ±20mV
  - Sample rate: 0-10 MHz asynchronous
  - 0-20 MHz synchronous
  - Input butter size: 4096 samples
- (2) Frequency Measurement
  - Frequency/event 0-30 MHz
  - Period/A&B delay 2sec-1000sec
  - Input levels:
  - Digital: TTL, CMOS, ECI
  - Analog
  - Programmable threshold, ±10volts
- (3) Digital Inputs
  - Single-ended TTL, CMOS, ECU
  - Differential TTL
  - DC-20MHz
  - Parallel trace capability
  - 4096 word input butter
  - 10 MHz data clock
- (4) Stimulus Capabilities
  - ANALOG OUTPUTS:
  - Table driven waveform generator
  - 12-bit resolution, 1MHz clock

- 8-bit resolution, 10MHz clock
- Available waveform
  - -- Sine
  - -- Square
  - -- Triangle/ramp
  - -- Pulse & 12n sec
  - -- Complex (4096 segments per cycle)
- Digitally based static outputs
  - -- +10 volts; 5mv resolution
  - -- +2ma; 1.0 A resolution
- (5) DIGITAL OUTPUTS
  - Single-ended or differential TTL
  - Synthesized 20 MHz clock, differential
  - Table & driven pattern generator
    - -- 4096-bit serial transmission
    - -- 10 MHz transmission rate

## **B.6.7.2** STE-M1/FVS

The STE-M1-FVS was developed for use at the organization level of maintenance on the BFVS and M1 tank. It will perform on-vehicle troubleshooting, Line Replaceable Unit (LRU), fault isolation and system validation following repair. The STE-M1/FVS (sometimes called STE-T), consists of three unique TO&E line items and is configured to the unit mission by the MTO&E. The three segments of STE-M1/FVS are: (1) Common Core (4910-01-135-4389): 3 cases, consisting of the actual microprocessor driven test set and common cables/adapters/transducers: (2) M1 Peculiar Hardware (4910-01-142- 2640): 4 cases, consisting or adapter/simulators/transducers/cables which are used to test the M1 tank and, (3) FVS Peculiar Hardware (4910- 01-135-4379): 3 cases, consisting of adapters/ simulators/transducers/cables which are used to test the M2/M3 BFVs. (See Figure 1).

### В.6.7.2.1 DIT-МСО

The DIT-MCO 9500 Series has the capacity to test: aircraft cable and harness assembles, avionics racks and radio racks; cockpit wiring and interconnections, cable and wiring boards, 1553 bus systems and coax, triax and twisted pair conductors. It also has the ability to test circuits with active components - lights, relays, solenoids, motors. The system consists of an IBM PC/XT/AT or compatible computer, LPT-9 line printer, and DCS-III

digital comparator system. The Wiring Analyzer Graphics program displays tested circuits and shows the most probable location of the error. The graphics program permits automatic generation of schematics from wire lists and user symbol libraries.

The DIT-MCO system consists of commercial off-the-shelf equipment, and can satisfy test requirements across commodity lines. Table B-35 summarizes the DIT-MCO Specification and Characteristics.

## B.6.8 ATS Upgrade and/or Off-load Plans

Army regulation 750-43 requires material developers/users to submit a waiver request and get the request approved prior to any P<sup>3</sup>I related upgrades to existing ATE, unless the existing ATE happens to be a member of the IFTE family. IFTE is the Army Standard ATE. Abrams test requirements at the organizational maintenance level are to be off-loaded to the Contact Test Set (CTS), a member of the IFTE family, during FY 94, EO requirements include. The CTS EO capability exists in the CTS Elector-Optics Augmentation. About \$24.5M has been programmed for IFTE P<sup>3</sup>I through FY99.

## **B.6.9** Abrams Factory/Depot

Abrams is support at the factory by a commercialized version of DSESTS. The factory version is referred to as FACTS. FACTS uses repackaged hardware and some additional software (other that normally provided with the nonfactory version) for Quality Assurance (QA) type support. The QA software is used the check LRU before installation. Additional factory support is provided by the IFTE BSIF Commercial Equivalent Equipment (CEE). The CEE is being used to handle test requirements related to M1A2 development.

At the various Army depots, Abrams ATE requirement are satisfied with previously introduced DIT-MCO, AN/USM-410, DSESTS and semiautomatic testers for optics.

| ITEM                                                                | SPECIFICATIONS/CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Computer                                                        | IBM PC/XT/AT or compatible                                                                                                                                                                                                                                                                                                                                                                                    |
| (2) Available Instrumentation                                       | DCS-III Digital Comparator System<br>System accuracy Continuity +/- 1%<br>System accuracy Insulation +/- 3%<br>Programmable continuity voltage and current<br>DC Voltage measurement<br>AC Voltage (RMS) measurement from 50Hz to<br>10KHz<br>DC Dielectric current from 0.5 ma to 2.5 ma<br>Simultaneous Insulation and high potential testing<br>Remote diagnostic capability<br>Completely floating design |
| <ul><li>(3) DCS-III Options</li><li>(4) CCS-1 Capacitance</li></ul> | Auto-calibration<br>Internal Calibration Standards                                                                                                                                                                                                                                                                                                                                                            |
| Comparator                                                          | Accuracy: 100pf - 999.9 pf                                                                                                                                                                                                                                                                                                                                                                                    |
| System Option                                                       | +/- 10%<br>Inf - 9.9.nf<br>+/- 5%<br>.01uf - 0.999uf<br>+/- 1%<br>Self calibrating before each test sequence                                                                                                                                                                                                                                                                                                  |
| (5) Other Options                                                   | AC Dielectric, Impedance comparator, dynamic and functional 1553 bus testing                                                                                                                                                                                                                                                                                                                                  |
| (6) Bus Interface                                                   | IEEE STE 488 GPIB                                                                                                                                                                                                                                                                                                                                                                                             |
| (7) Environmental                                                   | Temperature Operating Range 60 to 90 degrees F                                                                                                                                                                                                                                                                                                                                                                |
| (8) Weight                                                          | Approximate weight: 1485 lbs (115 VAC) (1545 lbs other VAC)                                                                                                                                                                                                                                                                                                                                                   |
| (9) Recommended Operating<br>Space                                  | 9 Ft. X 10.5 Ft.                                                                                                                                                                                                                                                                                                                                                                                              |
| (10) Power Requirements                                             | 115VAC/20A 1 phase, 3 wire (Model 9501) 60 Hz<br>+/- 1%<br>208VAC/30A 3 phase, 5 wire (All others) 50 Hz +/-<br>1%<br>(Transformer may be strapped for following input<br>voltages: 100, 105, 110, 115, 120, 125, 200, 210,<br>230, 240, 250, VAC)                                                                                                                                                            |

# Table B-35. Summary of DIT-MCO Specifications & Capabilities

## **B.7. IFTE**

#### B.7.1 IFTE System Background

### **B.7.1.1** Description

IFTE is a modular Test, Measurement and Diagnostic Equipment (TMDE) system which consists of four interrelated systems that provide generic Automatic Test Equipment (ATE) capability through all levels of the Army maintenance structure. Two tactical systems, the Contact Test Set (CTS) and the Base Shop Test Facility (BSTF), are capable of electronic ATE support. Electronic Technical Manuals (ETM), and Electro-Optical (EO) capability will be fielded in FY94. The CTS is man-portable ATE that augments supported systems BIT/BITE and isolates weapon systems failure to the appropriate LRU. The BSTF consists of the Base Shop Test Station (BSTS), in a truck-mounted S-280 shelter, plus another truck-mounted S-280 shelter for Test Program Sets (TPS) storage. The system is powered by 60KW generator sets and is to be positioned at DS/GS levels to fault diagnose evacuated LRUs to the Shop Replaceable Unit (SRU) level. The TPS includes the following: The software program, the Interface Connecting Device (ICD) that connects the UUT to the BSTS or Commercial Equivalent Equipment (CEE), and the documentation an operator uses to perform test operations. The non-tactical systems (the Army TPS Support Environment (ATSE) and the CEE) feature software that operates on Sun workstations and develops 65% of the software portion of the TPS. The CEE is a non-ruggedized equivalent of the BSTF and is used in special repair activities and depots to fault isolate and repair SRUs.

The Associated Support Items of Equipment (ASIOE) include: 50-60 Hz air conditioner, 400 Hz air conditioner, AN/ASM-147 electrical auxiliary shelter, PU 707 (HAWK) electrical power plant, AN/PSM-45 digital multimeter, AN/MJQ-10A electrical power plant, TA-312A/PT telephone set, M-923 cargo truck, M-927 or M-927A1 (HAWK) cargo truck, ES-19/9415/M-93 CME filter, and ES-19-9417 integrated external entrance. In addition, the BSTF is designed to operate within an NBC environment. The BSTF and CTS are planned for field use. The CEE is planned for factory environment, test program set development, and potential use at Army depots.

#### **B.7.1.2 Design Baseline**

The IFTE program was officially initiated in February 1982 when the Department of the Army granted approval to enter into a two-phase system development program. Phase One was for concept definition and commenced with the award of five Advanced Development contracts in June 1983. Under this effort, contractors were required to develop system specifications, design plans, reliability data and other information which would form the basis of their second phase proposal. Although competition for the Phase Two Engineering Development contract was open to all five Phase One contractors, only Grumman and RCA submitted proposals in response to the Government RFP. Award of the firm fixed-price engineering development contract was eventually made to Grumman in September 1985.

The 32-month Engineering Development program concluded in May 1988. During this period, Grumman developed prototypes, in addition to completing documentation requirements necessary to allow for the transition to production.

The Integrated Family of Test Equipment (IFTE) was designed to meet the required operating capabilities for Automatic Test Equipment (ATE) at the Direct Support (DS) and Organizational maintenance level as stated in the IFTE Required Operational Capability (ROC) dated December 1983 and updated August 1989.

## **B.7.1.3** Justification

An urgent requirement exists for Automatic Test Equipment (ATE) at Intermediate Forward (IF), Aviation Intermediate Maintenance (AVIM) and operational units with IF missions to support highly complex communications, other electronics commodity equipment, missile, aircraft and combat vehicles, and replace the Land Combat Support System (LCSS) which is technologically obsolete and difficult to support. The IFTE will consist of three subsystems: Base Shop Test Facility (BSTF), Contact Test Set (CTS), and Electro-Optical Test Facility (EOTF).

State-of-the-art in weapon and support system electronic circuitry has rapidly out placed the capability of the Army's present inventory of Test Measurement and Diagnostic Equipment (TMDE), causing widespread proliferation of TMDE and ATE at the IF main-tenance level, which adversely affects IF maintenance unit capabilities to support emerging

weapon systems. To meet required operational readiness standards in sophisticated systems, a state-of-the-art, modular, reconfigurable ATE system tailorable to If commodity workloads has become an essential requirement with the intent to satisfy the largest possible number of test requirements across each commodity area.

## B.7.2 IFTE Acquisition and Management/P<sup>3</sup>I Approach

#### **B.7.2.1** Policies/Regulations

Army Regulation 750-43, 29 September 1989, Army Test Measurement, and Diagnostic Equipment Program, established the Army-wide policy for ATE and TPSs. Nonstandard ATE will not be used in lieu of designated standard ATE without appropriate economic analysis and waivers. System developers, in coordination with the Program Manager for Test, Measurement, and Diagnostic Equipment (PM TMDE), USATA, and TRADOC will determine ATE requirements. Once the ATE requirements have been identified, the system developer in coordination with the PM-TMDE will determine if the designated standard ATE will fulfill requirements and where it does not determine feasibility of expanding capabilities of standard ATE, and if neither is feasible, submit a waiver request documenting the case for a non-standard ATE. HQ, Army Material Command Memorandum, AMC-M 750-1, 6 August 1991, Automatic Test Equipment Policy, ensures that ATE development and fielding is per Army Regulation 750-43. Memorandum AMC-M 750-1 designates IFTE to be the Army standard ATE that will be used for all new systems as well as currently fielded systems undergoing Pre-Planned Product Improvement P<sup>3</sup>I, system requiring, but currently lacking ATE, and systems to be in service after FY94. The waiver process requires that Army wide cost and effectiveness considerations be made as per Army Regulation 750-43.

#### **B.7.2.2** Common ATS Management Organization

The PM TMDE is responsible for the development and acquisition of ATE and embedded software. Major subordinate Material Development Commands identify TPS requirements not later than milestone II of the prime systems. Army Pamphlet 750-43, 28 February 1992, Army Test Program Set Procedures, provides guidance for applying requirements, acquisition, development, and life cycle management of TPSs in support of Army Systems.

The weapon system management organizations are directed to use IFTE in lieu of system peculiar ATE as set forth in Army Regulation 750-43. Controls over common and

peculiar weapon system requirements related to the ATS are set forth in Army Regulation 750-43. Proliferation of peculiar ATS is discouraged by Army Regulation 750-43, Army Pamphlet 750-43, and AMC-M 750-1.

## **B.7.3** Common ATS Deployment Concept

The BSTF will be used at AVIM and DS/GS maintenance units. (IFTE ROC, 375EE). The CTS will be used by AVIM/AVUM, DS/GS, and Unit level maintenance personnel (IFTE ROC, 375EE). The CEE will be used principally in depots and contractor facilities. It will be used for both TPS development and maintenance support (CEE Handbook).

The BSTF requirements were determined using the following methodology. Supported system failure data is provided by the CASCOM RAM Cell resident at OMMCS. The data at issue contain the number of electronic (EL), electro-optic (EO), and radio frequency (RF) Units Under Test (UUT) per system per day. Supported system density, fielding schedule, and Test Program Set (TPS) availability date from the AMC PM or the TPS Center is applied to the force structure and proponent school maintenance concept to provide the battlefield location and requirement year. Additional data elements, including EL, EO, and RF DS UUT runtime and IFTE available hours, are provided by the appropriate AMC PM. The system density, multiplied by the failure data, multiplied by the UUT runtime, results in the number of hours required to run the failed UUTs on the BSTF. Dividing this time by the BSTF availability in hours results in the number of BSTF's required for that system.

Overlaying these requirements on the projected force structure and TPS availability data results in the number of BSTFs required by year at all maintenance locations. This data is then compiled into POM year requirements and presented to the PM-TMDE as user BSTF requirements. The essence of the process is captured in the following relationship.

BSTF Requirement = (# UUTs/System/day) (# of Systems)

(Available BSTF Hrs)/(UUT Runtime Hrs)

CTS requirements are predicated on the maintenance concept and allocation rules provided by the proponent schools of the supported systems. Overlaying the proponent school CTS requirements, force structure and the TPS availability for each supported system results in POM year requirements which are presented to the PM-TMDE as user CTS requirements. For the CTS, Interim Contractor Support (ICS) will be required for two years, starting with the first fielding. Total organic support will be established after the ICS period for all cost effective items. The maintenance strategy for CTS will be four levels of maintenance: Organizational, Direct Support, General Support and Depot. CTS will contain Builtin-test, which will be a GO-NO-GO check. At DS level, Diagnostic Tests will isolate to replaceable items such as display, PCBs, power supply, etc. Repair of the CTS is by replacement of defective parts. At GS levels, Diagnostics will include calibration of and isolation to replaceable items that are not accomplished at DS level and verification of replaceable items (such as processor failure, memory failure, etc.) prior to shipping the defective part.

The maintenance strategy for the BSTF will have four levels of maintenance: Organization, Direct Support, General Support and Depot. The BSTF operator has a DS Military Occupational Specialty (MOS) and serves as a DS level maintainer for his designated systems. The BSTF has a comprehensive self test that will fault isolate to an off the shelf Non-Developmental Item (NDI) resource, a virtual instrument card, or a removable module within the NDI resource. The system has been designed for maintainability of a "fix-forward" repair-by-replacement maintenance philosophy. The design objective is to unambiguously fault isolate to the failed item (SRU) using the self-test or simple manual troubleshooting procedures. Once a failed SRU has been removed, it will be sent through normal supply channels to either a DS or GS repair facility (e.g. TMDE Support Group) or a Depot Repair Activity, depending on support equipment and skill level requirements. A Direct Support Contact Team will provide an on-site repair capability for system failures beyond the operators ability. Repair and maintenance of the BSTS hardware and software will be performed through contractor support both on-site and in-house at the contractor's plant. Interim Contractor Support (ICS) will be used for the BSTS hardware for the first three years, then Depot support will take over at Tobyhanna Army Depot. The CECOM Center for Software Engineering will perform software maintenance for the life of the system. (Source: Army Acquisition Plans for IFTE and CTS.)

## **B.7.4** Cross Service Test Requirements Analysis

The Army provided Cross Service Test Requirements analysis on the F-18 Radar Set Receiver-Exciter and the Radar Target Data Processor to determine if they are testable on the IFTE BSTF or the CEE. Each Test Requirements Document (TRD) was analyzed to determine power, stimulus, and measurement requirements. The test envelope of both the Receiver-Exciter and the Radar Target Data Processor are within the capabilities of the CEE and BSTF. The determination that these items are testable on the CEE or BSTF was based solely on the data available in the F-18 TRDs. (Source: Army Memo 6 April - Joseph M. Rivamonte).

## B.7.5 Common ATS Upgrade

Plans include advanced electro-optic test capabilities, spread spectrum capability and further downsizing. Future plans for the CTS include an open architecture using industry standards (VXI), the Army Common Hardware System Laptop Computer and a flexible instrumentation set for application driven requirements. The software capability within the CTS includes a standard Army Presentation System for the presentation of Interactive Electronic Technical Manuals (IETM).

IFTE FUNDING PROFILE FY90-FY99 (\$ in millions) (as of April 92)

| PROCUREMENT |        |        |         |        |        |        |        |        |        |        |         |
|-------------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|---------|
|             | 90**   | 91**   | 92**    | 93     | 94     | 95     | 96     | 97     | 98     | 99     | Total   |
| BSTF        | 43.611 | 29.028 | 40.085  | 21.636 | 40.917 | 43.031 | 42.950 | 42.869 | 44.262 | 44.174 | 392.563 |
| CTS         | 2.817  | 4.559  | 21.343  | 17.429 | 24.011 | 24.730 | 24.684 | 24.637 | 24.590 | 24.541 | 193.341 |
| EOA         | -      | -      | •       | -      | 4.794  | 7.914  | 9.874  | 9.855  | 9.836  | 18.429 | 60.702  |
| TOTAL       | 46.428 | 33.587 | 61.428* | 39.065 | 69.722 | 75.675 | 77.508 | 77.361 | 78.688 | 87.144 | 646.606 |
| INITIAL     | -      | 1.     | 1 -     | 1.566  | 12.509 | 14.838 | 14.810 | 14.782 | 9.836  | 9.816  | 78.157  |
| SPARES      |        |        |         |        |        |        |        |        |        |        |         |

Table B-36. IFTE Procurement

Table B-37.IFTE R&D

| RDTE                                |       |       |               |       |        |        |       |       |       |       |         |
|-------------------------------------|-------|-------|---------------|-------|--------|--------|-------|-------|-------|-------|---------|
|                                     | 90**  | 91**  | 92**          | 93    | 94     | 95     | 96    | 97    | 98    | 99    | Total   |
| D537 (IFTE)                         | 1.517 | 0.902 | 1.372         | 2.114 | 3.732  | 2.996  | 2.973 | 2.968 | 2.962 | 2.956 | 24.492  |
| DL10<br>(ELECTRO-<br>OPTICS)        | 1.665 | 2.974 | 5.882         | 2.664 | 7.513  | 6.000  | 2.922 | 1.978 | 1.975 | 1.971 | 35.544  |
| DL59 (DIAG.<br>EXP SYS<br>DEV - TPS | 4.119 | 2.616 | 10.674*<br>** | 3.863 | 3.873  | 3.949  | 3.916 | 2.473 | 2.468 | 2.463 | 40.234  |
| TOTAL                               | 7.301 | 6.492 | 17.928        | 8.461 | 15.118 | 12.945 | 9.811 | 7.419 | 7.405 | 7.390 | 100.270 |

\* includes \$14M plus-up taken from FY93

\*\* FY90-FY92 are actuals. FY93-FY99 are taken from DR POM File as of 04/17/92

\*\*\* \$6.851M Congressional plus-up for TPS development

## **B.8. BRADLEY FIGHTING VEHICLE SYSTEM (BFVS)**

## B.8.1 BFVS Weapon System Background

### **B.8.1.1** Description

The BFVS is a lightly armored, full-track fighting vehicle consisting of the Infantry Fighting Vehicle (IFV), M2/M2A1/M2A3, and the Cavalry Fighting Vehicle (CFV), M3/M3A1/M3A2.

Primary armament is the 25mm M242 automatic gun and mounts a two-tube TOW 2 missile system. The M23OC, 7.62mm, coax machine gun provides close-in suppressive fires. The 5.56mm M231 firing port weapons are installed on the IFV only. The IFV and CFV are the same vehicle with only minor internal modifications to optimize each vehicle for its primary mission. All A1 models will be upgraded to A2 models.

The BFVS Block I Improvement Program (M2/M3A1) changes the basic M2 with addition of TOW subsystem, 3-man gas particulate filter unit with ventilated facepiece, improved weapons interlock system, restowage and other minor improvements. M3A1 adds TOW2, 5 MANGAS particulate filter unit with ventilated facepiece, improved weapons interlock system, redesign rear cargo hatch to improve scouts visibility, restowage and other minor product improvements.

BFVS High Survivability Improvements (HS) Program (M2/M3A2) improvements are a modification to the M2A1/M3A1 BFVS and consist of additional passive armor; reactive armor; kevlar spall liner in the crew compartment; restowage of BII, ammo and TOE items; and vehicle changes to accommodate them. All M2A1/M3A1 vehicles will be modified, but there are no current plans to update the basic M2/M3 vehicles. A new 600 HP engine and transmission will be cut into production starting with May 89 deliveries.

#### B.8.1.2 Mission

The BFVS provides cross-country mobility, mounted firepower, and protection from artillery and small-arms fire to mounted infantry and cavalry combat operations and support to dismounted combat operations.

#### **B.8.1.3** Characteristics

| Weight:                | 60,000 lbs (M2/M3A2 W/O Armor Tiles) | Crew:        | 3       |
|------------------------|--------------------------------------|--------------|---------|
| Length:                | 21.5 ft.                             | Power Train: | 600 Hp  |
| Height:                | 9.75 ft.                             | Range:       | 300 Mi  |
| Width:                 | 10.5 ft                              | Road Speed:  | 38 Mph  |
| Main Armament:         | 25mm Cannon                          | Swim Speed:  | 4.4 Mph |
| Secondary<br>Armament: | TOW, 7.62 Coaxial MG                 |              |         |

 Table B-38.
 Summary of BFVS characteristics

#### **B.8.1.4** Status of System

At the end of the latest contract with FMC in FY94, the Army will have produced a total of 6724 Bradleys, 4641 in the M2 or Infantry configuration and 2083 in the M3 or Cavalry configuration. Both the M2 and M3 were produced in three versions: the Army initially purchased 2300 basic or AO Bradleys; then 1371 vehicles in the A1 configuration which incorporates the TOW 2 Subsystem: and currently 3053 vehicles in the A2 High Survivability configuration. The Army is also in the process of converting all A1's to the A2 configuration at Mainz and Red River Army Depots. The BFVS exceeded expectations in lethality, mobility and operational readiness.

## **B.8.2** ATS Acquisition and Management/ATS Upgrade Planning Approach

### **B.8.2.1** Policy and Regulations

Army Regulation 750-43, 29 September 1989, Army Test, Measurement, and Diagnostic Equipment Program establishes Army wide policy for ATE and TPS. The following criteria will be utilized for ATS selection. Non-standard ATE will not be used in lieu of designed standard ATE without appropriate economic analysis. System developers in coordination with Program Manager for Test, Measurement, and Diagnostic Equipment (PM TMDE), USATA, and TRADOC will determine their ATE requirements. Once ATE requirements have been identified, system developer will:

- Determine if designed standard ATE will fulfill requirements and where they do not,
- Determine feasibility of expanding capabilities of standard ATE, and if neither of the above are feasible,

• Submit waiver request documenting the case for a nonstandard ATE

HQ, Army Material Command memorandum, AMC-M 750-1, 6 August 1991, Automatic Test equipment Policy: Ensures that ATE development and fielding is per Army Regulation 750-43. AMC-M 750-1 also designates the Integrated Family of Test Equipment (IFTE) to be the Army standard ATE that will be used for:

- All new systems as well as currently fielded systems undergoing P31;
- Systems requiring, but currently lacking ATE.
- Systems to be in service after FY94.

A waiver process requires that Army wide cost and effectiveness considerations be made as per Army Regulation 750-43. The PM TMDE is responsible for logistic support of ATE and embedded software. Major Subordinate Material Development Commands identify TPS requirements not later than milestone II of prime system.

Army Pamphlet 750-43, 28 February 1992, outlines procedures and provides guidance for applying requirements, acquisition, development and life cycle management of TPS in support of Army Material Command systems.

#### **B.8.2.2 Upgrade Planning**

The field has low confidence in STE-M1/FVS ability to diagnose faults. Bulky and hard to handle equipment along with lengthy diagnostic procedures hinder field usability of the STE-M1/FVS. CTSIII is scheduled to replace the STE-M1/FVS. PM TMDE is evaluating the utilization of CTSIII to simplify tests routines on the M1/M1/M3.

## **B.8.3 BFVS Weapon System and ATS Deployment Concepts**

## **B.8.3.1** Weapon System Fielding

- a. FORSCOM first unit equipped March 1983, initial operating capability M2/ M3, 15 January, 1984 (1-41 Infantry 2 AD) and M2/M3A1, 12 October 1987 (3-15 Infantry, 24 ID).
- b. USAREUR, first unit equipped January 1988, initial operating capability M2/ M3A2, 3rd Quarter FY89 (3AD).
- NGB, first unit equipped February 1987, initial operating capability M2/M3A1, 30 July 1988 (1-121 Infantry, 48th Infantry Brigade).

#### **B.8.3.2** Maintenance Concept

The BFVS conforms to the standard Army maintenance concept for tracked vehicles described in AR 750-1. The IFV/CFV is designed to make maximum use of repair by replacement of modules and quick disconnect techniques to facilitate emphasis on "repair forward."

The following table lists the ATS used to support the BFVS.

|                               |                 | Level of Maintenance |       |       |
|-------------------------------|-----------------|----------------------|-------|-------|
| Nomenclature/Type/Description | TPS<br>Quantity | UL                   | DS/GS | Depot |
| STE/M1/FVS *                  |                 | X                    | X     | x     |
| DSETS                         |                 |                      | x     | x     |
| EQUATE (AN/USM-410)           | 46              | 1                    |       | x     |
| ADADS                         | 2               |                      |       | x     |
| TSS-SE                        |                 | x                    |       | x     |

 Table B-39.
 BFVS ATS Summary

\* STE/MI/FVS essentially is Unit Level (UL) ATE.

#### **B.8.4** Support for ATS

Maintenance support involves both calibration and repair. The U. S. Army Test, Measurement, and Diagnostic Equipment Support Group (USATSG) a subordinate element of the U. S. Army Test Measurement and Diagnostic Activity, is responsible for total TMDE support (i.e., calibration and repair) Army-Wide. Support is provided by way of mobile teams and fixed- station laboratories/repair facilities. Mobile teams provide DS level repair and transfer level calibration on-site. Fixed facilities are strategically deployed primarily to support the mobile teams. Calibration is done on a cyclic basis in accordance with schedules and provisions of TB 43-180. Repairs are performed as required. The entire program is established and maintenance according to directions contained in Chapter 6, AR 750-43.

The program was developed and implemented to ensure maximum availability of accurate, fully mission-capable TMDE for Army Weapon System diagnostic application. This fundamental objective applicable to TMDE in general and ATS in particular.

The program is managed, directed and controlled by the CG, AMC and implemented, both in the continental United States (CONUS) and outside CONUS (OCO-NUS), by the USATSG.

The TMDE support normally will be based on the concept that repair should be performed by the element designation in TB 43-180 as being responsible for calibration support. Calibration and Rep for TMDE not listed in TB 43-180 will be provided by USATSG based on the specific support requirement as identified by the owner or user organization. TMDE support will be as follows:

- a. All TMDE owners or users will perform organizational maintenance on organic TMDE.
- b. Purpose and TMDE, Special Purpose designated in TB 43-180 as being the support responsibility of the Area TMDE Support Center or Area TMDE Support Team (Mobile Team)
- c. Normally, calibration of TMDE will be provided on a first-come-first-served basis unless extenuation circumstances dictate that support be provided according to the priorities established under paragraph 6.25 (AR 750-43).
- d. TMDE repair will be provided on a priority basis according to the maintenance priority designators outlined in AR 750-1.
- e. DS/GS maintenance and AVIM units will provide support service for organic and supported units TMDE, Special Purpose designated in TB 43-180 as requiring DS/GS maintenance or AVIM unit calibration and/or repair.
- f. Certain TMDE, Special Purpose may require Calibration and Rep to be performed by both a TMDE Support Activity and an DS/GS maintenance or AVIM unit on a coordinated basis. For example: A large TMDE, Special Purpose console may include some TMDE, General Purpose that normally would be serviced by a TMDE Support Activity. The remaining components of the console are TMDE, Special Purpose and require a person with weapon system training to do the repair work. In these cases, the TMDE, General Purpose and DS/GS or AVIM unit personnel will work together to complete the required Calibration and Rep. (This will be accomplished through a local agreement.)

## **B.8.5 Weapon System ATS Inventory**

Summary of BFVS ATS advantages are provided in the following table.

**B-124** 

| ATS QTY    | Factory O/I/D | #per loc.  | Tested Items |      |         |
|------------|---------------|------------|--------------|------|---------|
|            |               |            |              | Qty. | Туре    |
| AN/USM-410 | 3             | D, Level   | 1            | 46   | LRU/SRU |
| DSETS      | 227           | I, D Level | 2            | 29   | LRU/SRU |
| STE M1/FVS | 842           | O, Level   |              | 1    | LRU     |
| CTS        | 1390          | O, I Level |              | 1    | LRU/SRU |
| Cumulative | 2462          |            |              | 77   |         |

#### Table B-40. BFVS ATS Inventory

### **B.8.6** Specific ATS Technical Capabilities

#### **B.8.6.1** The AN/USM-410

The AN/USM-410 contains analog, digital, RF and synchro test capabilities with an on-line compiler and automatic optical meter/dial reader; an automatic UUT control driver and the capability to generate all test signals (SINEWAVE, TRIANGLE, SERVO, SQUARE, PULSE, TTY AND DIGITAL) by synthesis. The testing is accomplished by an analog to digital converter, a digital voltmeter circuit and fourier analysis of the resultant voltage time relationship. The reverse is used to create any desired signal. The system has the capability for: (1) read only memory UUT programs, (2) program preparation on-line, (3) actual value of UUT parameters plus a go/no-go indication, (4) central control and display, (5) automatic system self-check, (6) automatic antennae simulation, (7) dynamic digital testing, analog testing, and hybrid circuit testing.

The 410 interface is programmable to the extend that it can accommodate differing RF/analog/digital UUTs whose functional requirements are within the TMDE capabilities. The ATE is a third generation, individual rack system with a S/130 computer (32K bytes min to 256K bytes max), 0 to 76 input/output channels and a 0.2 USEC instruction cycle time. Type of readouts include: digital recorder, paper tape punch, magnetic tape, printer, and CRT.

The Government has unlimited rights to technical data and computer software. The standard test program language is EQUATE-ATLAS. There is available to government users software that can make an HP-2100 compiler emulate a 410 for off line TPS software development.

| MEASUREMENT CAPABILITIES |              |                |  |
|--------------------------|--------------|----------------|--|
| FUNCTION                 | PARAMETER 1  | PARAMETER 2    |  |
| DC - Voltage             | 0-200 VDC    | N/A            |  |
| Scaled AC                | 0-141 VRMS   | 01+50KHz       |  |
| TRMS                     | 0-141 VRMS   | 01KHz - 500MHz |  |
| VP, VP-P                 | 0-200 VP     | 01KHz -500MHz  |  |
| Pulsed-DC VP, VP-P       | 0-200 VP     | 01KHz-500MHz   |  |
| Resistance               | 0-10 M Ohms  | 1-10 Volts     |  |
| Complex Impedance        | 0-100 K Ohms | 05KHz-7KHz     |  |
| Harmonic Distortion      | 10Hz-100mHz  | 0-141 VRMS     |  |
| Harmonic Analysis        | 2Hz-100MHz   | 0-141 VRMS     |  |
| DC Current               | 0-25 Amps    | N/A            |  |
| AC Current               | 0-10 Amps    | .01KHz-50KHz   |  |
| AM Modulation            | 50KHz-500KHz | 0-30dBm        |  |
| FM Modulation            | 10KHz Max    | -10 to +30dBm  |  |
| Measure Sample           | .1-141 VRMS  | 10KHz-500MHz   |  |
| Frequency                | 500MHz Max   | .05-141 VRMS   |  |
| Time Interval            | 10MHz Max    | .05-141 VRMS   |  |
| Phase                    | 10MHz Max    | .05-141 VRMS   |  |

## Table B-41. AN/USM-410 Measurement Capabilities

| FREQ/PERIOD           0.015Hz-6.4MHz           0.15Hz-3.2MHz           0.15Hz-3.2MHz           0.15Hz-3.2MHz           0.15Hz-3.2MHz           0.15Hz-3.2MHz | MAGNITUDE 0 to 20 Vpp (1)                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 0.15Hz-3.2MHz<br>0.15Hz-3.2MHz                                                                                                                               |                                                          |
| 0.15Hz-3.2MHz                                                                                                                                                |                                                          |
|                                                                                                                                                              |                                                          |
| 0.15Hz-200KHz                                                                                                                                                |                                                          |
|                                                                                                                                                              |                                                          |
| 100 ns to                                                                                                                                                    | C to +/-9.9vp                                            |
| 1310. 72s                                                                                                                                                    |                                                          |
| 60KHz-500MHz                                                                                                                                                 | -117dBm to 6dBm                                          |
| 30Hz-100KHz                                                                                                                                                  | % Modulation                                             |
|                                                                                                                                                              | 5%-90%                                                   |
| 100Hz-100KHz                                                                                                                                                 | (2)                                                      |
| 0.001Hz-10KHz                                                                                                                                                | 100%                                                     |
|                                                                                                                                                              | 1310. 72s<br>60KHz-500MHz<br>30Hz-100KHz<br>100Hz-100KHz |

# Table B-42. AN/USM-410 Stimulus Capabilities

| Table B-43. | AN/USM-410 Synchro Stimulus |
|-------------|-----------------------------|
|-------------|-----------------------------|

| SYNCHRO STIMULUS     |                  |  |  |
|----------------------|------------------|--|--|
| CHARACTERISTIC RANGE |                  |  |  |
| Synchro Angle        | 0.359.98 degrees |  |  |
| Synchro Output       | 11.8 VRMS Max    |  |  |
| Reference Voltage    | 26 VRMS          |  |  |
| Reference Frequency  | 400Hz            |  |  |

| DIGITAL STIMULUS/RESPONSE                                         |                                |  |  |
|-------------------------------------------------------------------|--------------------------------|--|--|
| DIGITAL CHARACTERISTICS                                           | PARAMETERS                     |  |  |
| Date Type                                                         | Parallel or Serial             |  |  |
| Data Format                                                       | RZ or NRZ                      |  |  |
| Digital Interface<br>For Stim or Resp<br>Additional for Resp Only | 1-128 Pins<br>1-128 Pins       |  |  |
| Word Length                                                       | 1-128 Bits                     |  |  |
| Message Length                                                    | 1-32,767 words                 |  |  |
| Data Rate                                                         | 0-2 M words/sec                |  |  |
| Logic Levels<br>Stimulus<br>Response                              | -20 to +20 V<br>-200 to +200 V |  |  |
| Stimulus<br>Output Current                                        | 0-100 MA per pin               |  |  |
| Stimulus<br>Output Impedance                                      | 6-875 ohms                     |  |  |
| Response Delay                                                    | 0.2 use6.5s                    |  |  |

# Table B-44. AN/USM-410 Digitial Stimulus/Response

us greger and

# Table B-45. AN/USM-410 Power Stimulus Capabilities

| POWER STIMULUS CAPABILITIES                                       |                        |                             |                                                                  |  |
|-------------------------------------------------------------------|------------------------|-----------------------------|------------------------------------------------------------------|--|
| FUNCTION & QTY                                                    | VOLTS                  | AMPS                        | REMARKS                                                          |  |
| DC Power Supply (3)                                               | 0-36                   | 25 Max                      | 2 supplies have a max of 9 amps.                                 |  |
| DC Power Supply (2)<br>DC Power Supply (1)<br>DC Power Supply (1) | 0-60<br>0-490<br>0-990 | 4 Max<br>0.4 Max<br>0.2 Max | 2 A Max available at the<br>programmable interface<br>unit (PIU) |  |
| Fixed DC Power<br>Supply (1)                                      | 28                     | 5 Max                       |                                                                  |  |
| DC Standard                                                       | 0-200                  | 0-110<br>milli              |                                                                  |  |
| AC Standard                                                       | 1 milli<br>-120        | 50 MA Max                   | Frequency 10HZ-1MHZ                                              |  |

| FUNCTION | PARAMETER    | REMARKS             |
|----------|--------------|---------------------|
| CW       | 60KHZ-18GHZ  | Two (2) Sources     |
|          |              | >500MHz             |
| AM       | 30KH-100KHz  | Max 20KHz for Carr  |
|          |              | >500MHz             |
| PM PRF   | 10 K pps Max |                     |
| PM PW    | 1 us Min     |                     |
| FM       | 10KHz-100KHz | Sinewave Modulation |
|          |              | 10% of Carr Max Mod |
|          |              | for Freq <1MHz      |
| RF ATTEN | 0-127dB      | 1 & 10dB increments |

# Table B-46. AN/USM-410 RF Station Stimulus

(

# Table B-47. AN/USM-410 RF Station Measurement

| FUNCTION             | PARAMETER   | REMARKS                                |
|----------------------|-------------|----------------------------------------|
| RF/Microwave Counter | 10KH - 1GHz | Max Resolution 1-1 KHz<br>respectively |
|                      |             | Max Input Power 1 w                    |

| FUNCTION             | CARRIER FREQ   | MOD FREQ      |
|----------------------|----------------|---------------|
| AM                   | 50KHz - 18GHz  | 50Hz - 25MHz  |
| AM Spectrum Analysis | 20MHz - 18GHz  | 10KHz - 25MHz |
| AM Distortion        | 500KHz - 18HHz | 30Hz - 10KHz  |

| FUNCTION             | <b>CARRIER FREQ</b> | MOD FREQ       | DEV RANGE     |
|----------------------|---------------------|----------------|---------------|
| FM Deviation         | 10MHz - 18 GHz      | 30Hz - 49KHz   | 2KHz - 100KHz |
| FM Distortion        | 10MHz - 18 GHz      | 30Hz - 10KHz   | 5KHz - 100KHz |
| FM Spectrum Analysis | 1MHz - 18 GHz       | 100KHz - 10MHz |               |

| FUNCTION                             | <b>CARRIER FREQ</b> | PULSE REP RATE | PW        | RISE/FALL |  |  |
|--------------------------------------|---------------------|----------------|-----------|-----------|--|--|
| РМ                                   | 1- 18 GHz           | 10,000 pps max | 300ns min | 30ns min  |  |  |
| Peak Power (Input) - 15dBm to +30dBm |                     |                |           |           |  |  |

| FUNCTION      | FREQ RANGE   | LEVEL            |
|---------------|--------------|------------------|
| Average Power | 10Hz - 18GHz | -25dBm to +30dBm |

| TRANSMISSION   |            |  |  |  |
|----------------|------------|--|--|--|
| FUNCTION       | PARAMETER  |  |  |  |
| Insertion Loss | 0 to -50dB |  |  |  |
| Insertion Gain | 0 to -50dB |  |  |  |

| TRANSMISSION |                 |                                               |  |  |  |
|--------------|-----------------|-----------------------------------------------|--|--|--|
| FUNCTION     | PARAMETER       | REMARKS                                       |  |  |  |
| Frequency    | 20MHz - 18GHz   |                                               |  |  |  |
| Bandwidth    | 10MHz           |                                               |  |  |  |
| Sensivity    | -112 to -67 dBm | Inverse to carrier<br>frequency and bandwidth |  |  |  |

#### **B.8.6.2 DSETS**

The Direct Support Electrical Systems Test Set (DSESTS) is a microprocessorbased automatic test system used to provide direct support test capability for the M1 Tank, M2 IFV, and M3 CFV systems. Two (2) memory modules with a capability of storing 512K bytes of data each are accommodated in the lid. The operator interface consists of a 60character display and three (3) switches, YES/NO/STOP, for responding to instructions from DSESTS. Test cables are required for reach LRU.

Additional or unusual stimulus and measurement requirements may be accommodated by external interfacing. Built-in-Test (BIT) verifies that the test sets computer and stimulus/measurement interface is fully operational with a confidence level of better than 98 percent. The system can be used in a fixed shop or mobile shop van.

DSESTS also has a hand-held test probe that the operator can use to measure DC voltage, AC voltage or frequency at points that are internal and not accessible at an LRU output connector. This feature is very useful in fault isolation of the defective LRU component.

Any special interface functions required by the LRU under test are resident on signal conditioning cards designed for that purpose. DSESTS has ten (10) card slots available for this application.

The following summarizes selected capabilities

- a. Voltage Measuring Capabilities:
  - DC range +/-40V, +/-10V, +/-4V, +/-0.4V
  - Accuracy 0.2% FS reading
  - DC impedance Single ended 250 Kohms +/-2%, 10pF
    - Differential 30 X 108 ohms, 30pF
  - AC ranges 40V, 10V, and 0.4V ranges
    - Accuracy 0.5% of FS reading
  - AC impedance Single ended 250 kohms +/-2%, 10pF
    - Differential 30 X 108 ohms, 30 pF
  - Filters available DC to 8Hz, greater than 5Hz, greater than 100Hz.
- b. Frequency Measuring Capabilities:
  - Analog channels 0-17KHz, resolution +/-1Hz
  - Logic Input Channels 0-900KHz, resolution +/-1Hz
- c. Stimulus Capabilities

- Active Termination Functions
  - Pull-up to 24Vdc through 3.30 Kohms Resistor
  - Pull-up to 5Vdc through 100 ohms Resistor
  - Pull-down to ground
- Digital Driver Functions
  - 5V TTL logic output, 0/5Vdc, 30mA
- Linear Output Functions
  - 10Vdc through +/-10Vdc, +1-12mA
- d. Frequency Output Functions
  - Sinewave, 0.05 8000Hz, 0.2 20Vpp, 12mA
  - Sawtooth, 0.05 800Hz, 0.2 20Vpp, 12mA
  - Ramp, 0.05 8000Hz, 0.2 20Vpp, 12mA
  - Squarewave, 2KHz 512KHz, 0.2 20Vpp, 12mA
- e. Relay Driver Functions
  - Relay Drive Up (RDU), Open/22Vdc, 1.5A
  - Relay Drive Down (RDD), Open/2Vdc, 1.5A
- f. Logic Functions
  - 64 bit serial TTL transmission capability
  - Transmitting capability 1MHz bit rate
  - 16 bit/word
  - Input or output
  - 32 bit parallel input

#### **B.8.6.2.1** GPIA

The GPIA is a modular assembly which is being added to the core DSESTS. It is a general purpose bus oriented system specifically designed to provide a testing capability for data bus communication systems, electro-optical systems, and thermal imaging systems. It is planned that all DSESTS will be configured to include the GPIA. The GPIA does not have a stand alone test capability, requiring an additional controller (DSESTS-Operator Interface Unit (OIU). The DSESTS-GPIA configuration enables testing of the M1 tank series and BFVS TIS components, and is planned to support BFVS digital LRU's and M1 Block Modernization programs. The core GPIA (without cabling or memory modules) costs \$44K.

The following list summarizes the capacity introduced with the GPIA.

a. Wideband Voltage Measurement

• Input ranges:  $\pm 0.4, \pm 1, 0, \pm 4.0$ , volts, scale & expanded with programmable  $\pm 5$  volt offset

- Accuracy: ±0.5% or range ±20mV
- Sample rate: 0-10 MHz asynchronous
  - 0-20 MHz synchronous
- Input buffer size: 4096 samples
- b. Frequency Measurement
  - Frequency/event 0-30 MHz
  - Period/A&B delay 2sec-1000sec
  - Input levels:
    - Digital: TTL, CMOS, ECI
    - Analog: Programmable threshold, ±10volts
- c. Digital Inputs
  - Single-ended TTL, CMOS, ECU
    - Differential TTL
    - DC-20MHz
    - Parallel trace capability
    - -- 4096 word input buffer
    - -- 10 MHz data clock
- d. Stimulus Capabilities

#### ANALOG OUTPUTS:

- Table driven waveform generator
  - 12-bit resolution, 1MHz clock
  - 8-bit resolution, 10MHz clock
  - Available waveforms
  - -- Sine
  - -- Square
  - -- Triangle/ramp
  - -- Pulse 12nsec
  - -- Complex (4096 segments per cycle)
  - -- Video-system sweep signals
  - Digitally based static outputs
    - +10 volts; 5mv resolution

- +2ma; 1.0 A resolution

## e. DIGITAL OUTPUTS

- Single-ended or differential TTL
- Synthesized 20 MHz clock, differential
- Table & driven pattern generator
  - 4096-bit serial transmission
  - 10 MHz transmission rate
- f. UUT POWER
  - AC 26/115 VAC, 400Hz, single phase
  - DC:
    - 5 to 45 VDC
    - 18 to 30 VDC, 30 amps
- g. SIGNAL CONDITIONING
  - Hardware scaling and digitizing
  - Software signal processing
    - RMS
    - Average
    - Peak-peak
    - Filtering
    - Video pattern analysis
  - Synchronized analog/digital processing
    - Burst mode
    - Video frame
- h. MISCELLANEOUS
  - MIL-STD 28800 style C portable
  - 16-bit microprocessor controlled
  - 1 megabyte internal memory capacity
  - TPS stored externally or internally
  - ATLAS/QUETOL/Assembly TPS development capability
  - 1 MHz serial control interface
  - Comprehensive BIT
  - Self calibrating to internal voltage/frequency standard
  - Sample rate to 100 MHz-future development
  - Expandable 30-40%, card slots available

#### **B.8.6.3** STE-M1/FVS

The STE-M1-FVS was developed for use at the organization level of maintenance on the BFVS and M1 tank. It will perform on-vehicle troubleshooting, Line Replaceable Unit (LRU), fault isolation and system validation following repair. The STE-M1/FVS (sometimes called STE-T), consists of three unique TO&E line items and is configured to the unit mission by the MTO&E. The three segments of STE-M1/FVS are: (1) Common Core (4910-01-135-4389): 3 cases, consisting of the actual microprocessor driven test set and common cables/adapters/transducers: (2) M1 Peculiar Hardware (4910-01-142-2640): 4 cases, consisting or adapter/simulators/transducers/cables which are used to test the M1 tank and, (3) FVS Peculiar Hardware (4910-01-135-4379): 3 cases, consisting of adapters/ simulators/transducers/cables which are used to test the M2/M3 BFVs.

# **B.9. AVENGER**

## B.9.1 Weapon System Background

## **B.9.1.1** Description

The Avenger is a light-weight, highly mobile and transportable, surface-to-air missile/.50 caliber machine gun system mounted on a HMMWV. It is operated by a two-man crew against low altitude helicopters and fixed-wing aircraft in all light and weather conditions. The fire unit has an operator's position with controls, displays, fire control electronics, and two standard vehicle mounted launchers (SVML) to support and to launch up to eight Stinger missiles.

## B.9.1.2 Mission

To provide air defense support in all divisions, armored cavalry regiments, separate heavy brigades, and corps air defense brigades. Avenger is designed to counter hostile lowflying, high-speed, fixed-wing aircraft and helicopters attacking or transiting the division. Avenger fills the Line of Sight-Rear (LOS-R) portion of the Forward Area Air Defense System (FAADS).

## **B.9.1.3** Characteristics

This integrated system provides all the necessary functions to perform day/night and adverse weather target detection, acquisition, tracking, target ranging and friend or foe aircraft identification with either missile or machine gun. The Avenger's Standard Vehicle Mounted Launchers (SVMLs) interface and function with standard unmodified Basic Stinger, Stinger-POST and Stinger RMP missile rounds.

- (1) Crew: 2
- (2) Sensors: FLIR/Laser/Optical
- (3) Fire Control: Digital Fire control
- computer/gyro-stabilized electronic turret
  - (4) Chassis: Modified HMMWV

- (5) Physical
  - Length: 195 inches
  - Width: 87 inches
  - Height: 104 inches
  - Gross vehicle weight: 8,535 pounds
  - Transportation weight: 7,880 pounds with missiles, ammunition, crew, TA-50, and identification friend or foe (IFF).
  - Range of operation: 300 miles
  - Speed: 60 miles per hour.
  - Transportability
  - Two systems with a C-130 aircraft.
  - Six systems with a C-141 aircraft
  - One system with a CH-47 helicopter.
  - One demated fire unit with a UH-60 helicopter (one load required for the pedestal and for the HMMWV).
  - Operational

-- Carries eight ready missiles and 200 rounds of .50 caliber ammunition.

- -- Converts to man-portable (MANPAD) weapon operation.
- -- Reload of missile pod in less than 4 minutes.

-- Traverses 360 degrees, elevates +60 degrees, and depresses - 10 degrees.

- -- Automates critical tasks
- -- Allows operation in mission-oriented protective posture (MOPP) IV gear.

-- Capable of 24-hour operation.

#### **B.9.1.4** Status of System

The initial production contract for Avenger was awarded competitively to the Boeing Aerospace Company in August 1987. The Secretary of the Army approved the Avenger system for Type Classification - Standard in February 1990. The Avenger went into fullscale production in April 1990. In 1991, a five year multiyear procurement to buy units for the U.S. Army and the Marine Corps began.

Avenger was deployed during Operation Desert Shield/Storm and performed exceptionally.

## **B.9.2** ATS Acquisition and Management/ATS Upgrade Planning Approach

#### **B.9.2.1** Policy and Regulations

Army Regulation 750-43, 29 September 1989, Army Test, Measurement, and Diagnostic Equipment Program Establishes Army wide policy for ATE and TPS. The following criteria is used for ATS selection. Non-standard ATE will not be used in lieu of designed standard ATE without appropriate economic analysis. System developers in coordination with Program Manager for Test, Measurement, and Diagnostic Equipment (PM TMDE), USATA, and TRADOC will determine their ATE requirements. Once ATE requirements have been identified, system developer will (1) determine if designed standard ATE will fulfill requirements and where they do not; (2) determine feasibility of expanding capabilities of standard ATE, and, if neither of the above are feasible, (3) submit waiver request documenting the case for a non-standard ATE.

HQ, Army Material Command memorandum, AMC-M 750-1, 6 August 1991, Automatic Test equipment Policy: Ensures that ATE development and fielding is per Army Regulation 750-43. AMC-M-750-1also designates the Integrated Family of Test Equipment (IFTE) to be the Army standard ATE that will be used for:

- All new systems as well as currently fielded systems undergoing P31;
- Systems requiring, but currently lacking ATE.
- Systems to be in service after FY 94.

A waiver process requires that Army wide cost and effectiveness considerations be made as per Army Regulation 750-43 and the PM TMDE responsible for logistic support of ATE and embedded software. Major Subordinate Material Development Commands identify TPS requirements not later than milestone II of prime system.

Army Pamphlet 750-43, 28 February 1992, Army Test Program Set Procedures outlines guidance for applying requirements, acquisition, development, and life cycle management of TPS in support of Army Material Command systems.

# **B.9.2.2 Upgrade Plans**

The Avenger is to be supported by IFTE. The CEE will be used at Depot and Factory level. The BSTF, EOB (BSTF), CTS, EOA (CTS) will be used at intermediate level and the CTS and EOA (CTS) will be used at organizational level. Initial procurement of the CEE and BSTF is scheduled for FY92, the CTS for FY93 and the EOB(BSTF) and EOA (CTS) for FY94.

# **B.9.3** Weapon System and ATS Deployment Concepts

# **B.9.3.1 Weapon System Fielding**

- a. Weapon System Fielding:
- b. FORSCOM, first unit equipped 3rd Qtr. FY89
- c. TRADOC, first unit equipped 1st Qtr. FY90
- d. USAREUR, first unit equipped FY92
- e. EUSA, first unit equipped FY91
- f. ARNG, first unit equipped FY94
- g. ESTCOM, first unit equipped FY94

## **B.9.3.2** Maintenance Concept

The Avenger conforms to the standard Army maintenance concept for each of the component subsystems. Logistics support analysis (LSA) process reliability-centered maintenance concepts are used to identify maintenance tasks, skills, tools, TMDE, and support equipment required to sustain the Avenger weapon system at the required level of readiness. The MANPADS equipment that is used with the Avenger weapon system will be obtained from assets issued to MANPADS units and will be supported by the current Stinger maintenance concept. The captive flight trainer will be supported in a like manner. The HMMWV will be supported within the existing HMMWV maintenance structure using existing resources and facilities.

Unit maintenance will isolate to defective component using BIT/BIT. The Intermediate level maintenance is delayed until August 92 and the contractor will perform maintenance until organic support is available. The Avenger program is developing TPS for IFTE. Once developed Direct/general support will use IFTE-BSTF. Depot will use IFTE-CEE The following table lists the ATS that will support the Avenger.

|                                | Level of Main |       |               |
|--------------------------------|---------------|-------|---------------|
| Nomenclature/type/ description | UL            | DS/GS | Depot/Factory |
| CTS                            | X             | X     |               |
| EOA (CTS)                      | X             | X     |               |
| BSTF                           |               | X     |               |
| EOB (BSTF)                     |               | X     |               |
| CEE                            |               |       | x             |

Table B-48. Avenger ATS

## **B.9.3.3** Support for ATS

Maintenance support involves both calibration and repair. The U.S. Army test, Measurement, and Diagnostic Equipment Support Group USATSG a subordinate element of the U.S. Army Test Measurement and Diagnostic Activity, is a responsible for total TMDE support (i.e., calibration and repair) Army-Wide. Support is provided by way of mobile teams and fixed—station laboratories/repair facilities. Mobile teams provide DS level repair and transfer level calibration on-site. Fixed facilities are strategically deployed primarily to support the mobile teams. Calibration is done on a cyclic basis in accordance with schedules and provisions of TB 43-180. Repairs are performed as required. The entire program is established and maintenance according to directions contained in Chapter 6, AR 750-43.

The program was developed and implemented to ensure maximum availability of accurate, fully mission-capable TMDE for Army Weapon System diagnostic applications. This fundamental objective applicable to TMDE in general and ATS in particular.

The program is managed, directed and controlled by the CG, AMC and implemented, both in the continental United States (CONUS) and outside CONUS (OCO-NUS), by the USATSG.

The TMDE support normally will be based on the concept that repair should be performed by the element designation in TB 43-180 as being responsible for calibration support. Calibration and Rep for TMDE not listed in TB 43-180 will be provided by USATSG based on the specific support requirement as identified by the owner or user organization. TMDE support will be as follows:

- a. All TMDE owners or users will perform organizational maintenance on organic TMDE.
- b. TMDE Support Activities will provide Calibration and Rep for all TMDE, General Purpose and TMDE, Special Purpose designated in TB 43-189 as being the support responsibility of the Area TMDE Support Center or Area TMDE Support Team (Mobile Team).
- c. Normally, calibration of TMDE will be provided on a first-come-first-served basis unless extenuating circumstances dictate that support be provided according to the priorities established under paragraph 6.25 (AR 750-43).
- d. TMDE repair will be provided on a priority basis according to the maintenance priority designators outlined in AR 750-1.
- e. DS/GS maintenance and AVIM units will provide support service for organic and supported units TMDE, Special Purpose designated in TB 43-180 as requiring DS/GS maintenance or AVIM unit calibration and/or repair.
- f. Certain TMDE, Special Purpose may require Calibration and Rep to be performed by both a TMDE Support Activity and an DS/GS maintenance or AVIM unit on a coordinated basis. For example: A large TMDE, Special Purpose console may include some TMDE, General Purpose that normally would be serviced by a TMDE Support Activity. The remaining components of the console are TMDE, Special Purpose and require a person with weapon system training to do the repair work. In these cases, the TMDE, General Purpose and DS/GS or AVIM unit personnel will work together to complete the required Calibration and Rep. (This will be accomplished through a local agreement.)

ļ

# **B.9.4** Weapons System ATS Inventory.

Summary of the Avenger ATS quantities are provided in the following table.

| Tested Items |       |               |           |      |         |
|--------------|-------|---------------|-----------|------|---------|
| ATS          | Qty.  | Factory O/I/D | # Per Loc | Qty. | Туре    |
| CEE          | 2     | D, F Level    | 1         | 29   | LRU/SRU |
| BSTF         | 33    | I             | 6         | 7    | LRU/SRU |
| EOB (BSTF)   | 13.2  | I             | 4         | 0    | LRU/SRU |
| CTS          | 191   | O, I Level    | 1         | 2    | LRU/SRU |
| EOA (CTS)    | 191   | O, I Level    | 0         | 2    | LTU/SRU |
| Cumulative   | 430.2 | 0             | 0         | 0    | 0       |

Table B-49. Avenger ATS Inventory

# **B.9.5** Specific ATS Technical Capabilities

## **B.9.5.1 IFTE**

1. U.

IFTE is a modular Test, Measurement and Diagnostic Equipment (TMDE) system which consists of four interrelated systems that provide generic Automatic Test Equipment (ATE) capability through all levels of the Army maintenance structure. Two tactical systems: the Contact Test Set (CTS) and the Base Shop Test Facility (BSTF) are capable of electronic ATE support, Electronic Technical Manuals (ETM), and Electro-Optical (EO) capability will be fielded in FY94). The CTS is a man portable ATE system that augments supported systems DIT/BITE and isolates weapon systems failure to the appropriate LIUs. The BSTF consists of the Base Shop Test Station (BSTS), in a 5-ton truck mounted S-280 shelter, plus another 5-ton truck mounted S-280 shelter for Test Program Sets (TPS) storage powered by 60KW generator sets. It will be positioned at DS/GS levels to fault diagnose evacuated LRUs to the Shop Replaceable Line Unit (SRU) level. The TPS is the software program the Interface Connecting Device (ICD to connect the UUT to the BSTS or Commercial Equivalent Equipment (CEE), and the documentation an operator uses to perform test operations. The non-tactical systems: the Automatic Test Set Support Environment (ATSE) and the CEE texture the software system that operates on Sun workstations and develop 65% of the software portion of the TPS. The CEE is a non-ruggedized equivalent of the BSTE that is used in Special Repair Activity (SRA)/depots.

# **B.9.5.2** Characteristics

- (1) Base shop test facility and station. The BSTF is an S-280 shelter that contains either a single-port or a dual-port base shop test station (BSTS). It is powered by a standard Army 50/60 cycle, 400 Hz generator and is deployed at the DS maintenance level. The BSTS is capable of digital, hybrid, and radio frequency stimulus and measurement. It is a modular system that supports repair of line replaceable units (LRU) either by shop replaceable units (SRU) and modules or by screening and evacuating these to higher levels of maintenance. Variants will be designed to support specific weapon systems or commodities such as the HAWK missile identified in table 103-2.
- (2) Contact test set (CTS). The CTS is a two-box, man portable tester deployed at DS level for use by maintenance contact support teams. It augments system BIT/BITE and identifies failed LRUs in weapon systems. The CTS may be reconfigured to support specific systems using plug-in, pull-out modules. The CTS assembly case measures approximately 14.5 inches high, 10.8 inches wide, and 16.9 inches long. It weighs 35.6 pounds.
- (3) Commercial equivalent equipment (CEE). CEE is used at echelons above corps (EAC) and depot to repair and maintain equipment for which test program sets (TPS) have been developed. A TPS consists of a software program, an interface connection device (ICD), and supporting paper and electronic documentation. CEE is configured to duplicate the functions of the BSTS and assists with TPS design, integration, and testing.
- (4) Electro-optic test facility (EOTF). The EOTF is a standard S-280 shelter that contains a configured BSTS and an electro-optic bench (EOB) that together form an electro-optic test station (EOTS). The EOTF test thermal imaging devices, laser range finders/designators, television cameras/ displays, image intensifier devices, trackers, and day optic devices. Electro-optic LRUs may be replaced or the SRU aligned and/or replaced using this equipment and system-unique TPS.

# **B.9.5.3** Commercial Equivalent Equipment (CEE ) Characteristics

The CEE characteristics are summarized in tables B-50 through B-53.

| SYSTEM CHARACTERISTICS                  |                                                                                                             |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| FUNCTION                                | PARAMETERS                                                                                                  |  |
| SYSTEMS CONTROL                         |                                                                                                             |  |
| Computer                                | Originally targeted to the Motorola 68020<br>with 2 M Byte Memory. Other controllers<br>can be substituted. |  |
| Disk Drive<br>(AMCODYNE 7130S)          | 20 M Bytes Fixed<br>80 M Bytes Removable                                                                    |  |
| Bubble Memory<br>(Fujitsu #FBM-GRC-602) | 2 Cassettes 1 M Bytes Each                                                                                  |  |
| OPERATOR INTERFACE                      |                                                                                                             |  |
| Terminal<br>(TEK 4208)                  | 13 inch Color Monitor<br>Full Graphics and Edit<br>Standard Keyboard<br>ATE Functions and Controls          |  |
| Line Printer<br>(HP 2225D)              | 80 columns<br>150 characters/sec                                                                            |  |

# Table B-50. CEE System Characteristics

| MEASUREMENT CHARACTERTICS                   |                                                                                                                                                           |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FUNCTION                                    | PARAMETERS                                                                                                                                                |  |
| RF MEASUREMENT                              |                                                                                                                                                           |  |
| * Power Meter (HP-438A)                     | Power Range: 44 to -70 dBm<br>Frequency: 100 KHz-26.5 GHz                                                                                                 |  |
| *Spectrum Analyzer<br>(HP 70000 Series)     | Frequency: 50 KHz-22GHz<br>Input Power<br>Sensitivity to - 132 dBm                                                                                        |  |
| ANALOG MEASUREMENT                          |                                                                                                                                                           |  |
| Digital Multimeter (HP-3457A)               | DC Volts - 5 uV - 303 V<br>AC Volts - 0-303 VRMS<br>DC Current - 0-1.5A<br>AC Current - 0-1A<br>Resistance - 0-3.0 G ohm<br>Reading Rate - 1350 / sec max |  |
| * Counter-Timer<br>(RACAL-DANA 1995)        | Frequency: DC-200 MHz<br>Period - 5 nsec to 10**7 sec<br>Time Interval - 2 nsec to 10**7 sec<br>Rise/Fall - 5 nsec to 25 msec                             |  |
| Synchro/Resolver Indicator<br>(DDC HSR 203) | Angle - 0-359.99 degrees<br>Frequency: 47 Hz to 1 KHz<br>Volts 6.8 to 90 V                                                                                |  |
| VIDEO MEASUREMENT                           | Bandwidth Sampling:<br>Real-time C - 50MHz                                                                                                                |  |
| Waveform Digitizer                          | Repetitive DC -300 MHz<br>Range - 40mV to 16 V                                                                                                            |  |
| (HP 54201 A)                                |                                                                                                                                                           |  |
| HIGH POWER LOAD                             | 8 Programmable Channels<br>Power Dissipation                                                                                                              |  |
| (Transistor Devices SPS3102-1)              | Max 30000 Watts<br>Single Channel 750 Watts                                                                                                               |  |

# Table B-51. CEE Measurement Characteristics

(

(

1

1

1

| STIMULI CHARACTERISTICS                                                                                                   |                                                                                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| FUNCTION                                                                                                                  | PARAMETERS                                                                                                                                 |  |
| ANALOG STIMULI                                                                                                            |                                                                                                                                            |  |
| * Function Generator<br>(HP-3314A)                                                                                        | Waveforms - Since, Square, Ramp, Trian-<br>gle,<br>Pulsed DC<br>Freq001 Hz-19.99 MHz<br>Amplitude 0 to 10 V p-p<br>Resolution 3 1/2 digits |  |
| Synchro/Resolver Simulator<br>(DDC SIM 31201)                                                                             | Angle 0-359.99 degrees<br>Freq 47 Hz to 11 KHz                                                                                             |  |
| RF STIMULI                                                                                                                |                                                                                                                                            |  |
| * RF Generator #1<br>(Gigatronics 900)                                                                                    | Freq 50 MHz to 26 GHz<br>Resolution - 1 KHz<br>Max Leveled Output + 5 dBm<br>Pulse/Square Wave Moldulation                                 |  |
| RF Generator #2<br>(COMSTRON 7100D)                                                                                       | Freq 100 KHz to 1.3 GHz<br>Resolution - 1 Hz<br>Output Level +20 to -140 dBm<br>AM/FM/Phase Modulation                                     |  |
| VIDEO STIMULI                                                                                                             |                                                                                                                                            |  |
| Video Generator<br>(Grumman peculiar)                                                                                     | High Resolution Graphics Gen<br>4096 Data Points/Chanel<br>Full Range of Color/B+W                                                         |  |
| POWER STIMULI                                                                                                             |                                                                                                                                            |  |
| DC Power Supply<br>(Superior 884-1,<br>LAMBDA LGS5A150VR,<br>LAMBDA LRS-54-24, LAMBDA<br>LGS6A280VR,<br>Superior 893-900) | 8 Programmable Power Supplies<br>0-150 V (100 W) each<br>Fixed 28 V supply                                                                 |  |
| AC Power Supply<br>(Behlman KBT3-75D)                                                                                     | Voltage - 0-135 V 10A<br>0-270 V 5A<br>Freq 45-5000 Hz                                                                                     |  |

# Table B-52. CEE Stimuli Characteristics

| FUNCTION                                 | PARAMETERS                                                                                                                                                                                                      |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIGITAL TESTING                          |                                                                                                                                                                                                                 |
| Dig Word Generator<br>(Grumman peculiar) | I/O Pins-192, increments of 16<br>Logical Levels:<br>+30 to -30 V below 10 MHz<br>+10 to -10 V above 10 MHz<br>Frequency:<br>Static to 50 Megabits/sec<br>Resolution - 20 nsec<br>Clock Period: 20 n to 20 msec |

# Table B-53. CEE Digital Characteristics

# **B.9.5.4** Base Shop Test Facility (BSTF) Characteristics

.

The BSTF is a tactical version of the CEE. The BSTF consists of the Base Shop Test Station (BSTS), in a 5-ton truck mounted S-280 Shelter, plus another 5-ton truck mounted S-280 shelter for Test Program Sets (TPS) storage; powered by 60KW generator sets. The characteristics are those listed for the CEE.

# **AIR FORCE PROFILES**

# **B.10. MATE PROFILE**

# B.10.1 Common ATS System Background

## **B.10.1.1 Description**

Modular Automatic Test Equipment (MATE) is an evolutionary process for managing the acquisition, development, upgrade or replacement of automatic test systems (ATS). MATE provides four elements: 1) an acquisition management process, 2) a series of ATS architecture standards, 3) a set of software products, and 4) user support.

# B.10.1.2 Design Baseline

The MATE system design baseline is depicted in Table B-54.

| Component                                 | Previous (pre-Oct 91)              | Current                          |
|-------------------------------------------|------------------------------------|----------------------------------|
| Test Program                              | IEEE ATLAS 1985                    | IEEE ATLAS 1985                  |
| Control Computer                          | 1750A Architecture                 | Program Choice                   |
| Operating System                          | MATE Operating<br>System Version 5 | Program Choice                   |
| TPS Compiler                              | MATE ATLAS<br>Compiler Version 5   | MATE ATLAS Compiler<br>Version 6 |
| Test Executive                            | MATE Test Executive<br>Version 5   | MATE Test Executive<br>Version 6 |
| Editor                                    | MATE On-Line Editor                | Program Choice                   |
| Computer/Test<br>Instrument S/W Interface | MATE-STD-CIL                       | MATE-STD-CIL                     |
| Computer/Test<br>Instrument H/W Interface | IEEE 488 Buss or VXI               | IEEE 488 Buss or VXI             |

## Table B-54. MATE System Baseline

# **B.10.1.3** ATS Derivation

The original development was accomplished by Sperry Corporation/Unisys. Since the initial development, numerous ATS have been designed according to the MATE system architecture. The following table provides a summary of the ATS which have been developed using the MATE architecture and common instrument modules and the percentage of commonality within each system.

| ATS            | % Commonality with<br>MATE System Baseline |
|----------------|--------------------------------------------|
| ADINTS         | 80                                         |
| ALCC           | 80                                         |
| AN/ALQ-122     |                                            |
| AN/ALQ-131     |                                            |
| ARTS           | 1                                          |
| ASE (AGM- 130) | 70                                         |
| ASE (GBU-15)   | 70                                         |
| AWADS          |                                            |
| CAST           | 65                                         |
| DATSA GPATS    | 80                                         |
| DATSA B-1B     | 80                                         |
| DECATS         | 65                                         |
| DUST           | 80                                         |
| GATS           | 70                                         |
| GE-129 DRTS    | 50                                         |
| IATS (A-10)    | 90                                         |
| IATS (C-17)    |                                            |
| LANTIRN        | 80                                         |
| MIDATS         | 80                                         |
| MILSTAR (DL-1) | 75                                         |
| MILSTAR (IL-1) | 75                                         |
| OTH-B WCRS     | 80                                         |
| SCADC<br>TISS  | 75<br>65                                   |
| USM-607        | 50                                         |
|                |                                            |

| Table B-55. | Percent Commonality | y of ATS with MATE System Baseline |
|-------------|---------------------|------------------------------------|
|-------------|---------------------|------------------------------------|

NOTE: The percentage allocation for the ATS elements are as follows:

| Control Computer Architecture     | 20 percent |
|-----------------------------------|------------|
| Control Software                  | 15 percent |
| Support Software                  | 15 percent |
| Computer/Instrument S/W Interface | 5 percent  |
| Computer/Instrument H/W Interface | 5 percent  |
| Instruments                       | 35 percent |
| Interface Connector Assembly      | 5 percent  |

#### **B.10.2** Justification

The MATE approach costs 28% less than non-MATE approach during an ATS development. This information is derived from <u>MATE Effectiveness Evaluation Report</u>. 30 November 1990, SofTech. The report was reviewed and analyzed for reasonableness, completeness, and accuracy by the USAF Cost Center.

Although in most cases life cycle cost savings will be realized by using the MATE standards, there are instances when this is not true. MATE allows alternate solutions for such instances using a waiver procedure outlined in AFSC/AFLC Regulation 800-23, <u>Policy for Modular Automatic Test Equipment</u>, 25 January 1984. Waivers can be granted for technical impracticalities, cost benefits, or schedule constraints.

#### **B.10.3** Common ATS Acquisition and Management

## **B.10.3.1** Policies/Regulations

The MATE program was established by 24 May 1977 Program Management Directive (PMD) R-P7098 (1) 63247F: "to develop and demonstrate the use of a cost effective blend of state of the art technologies and management techniques to satisfy operational testing requirements." The goals and objectives of MATE are "to improve combat capability and reduce life cycle cost on weapon system support". AFSC/AFLCR 800-23 implemented the MATE program. AFSC/AFLCR 800-23 also defines the MATE process and all organizational responsibilities. In addition, an 18 February 1992 SAF/AQK Action Memorandum requires programs to use either MATE Control and Support Software (MCSS) version 6.0 or higher or Ada Based Environment for Test (ABET) as the software system for all future Air Force ATS acquisitions.

#### **B.10.3.2 Common ATS Management Organization**

There is no specific common ATS management function within the Air Force. The responsibility is separated into three distinct areas of responsibility. The MATE program office (ASD/SMGB) is responsible for the acquisition and development of the MATE product and standards. The MATE Operations Center (SA-ALC/LDAT) is responsible for the maintenance and support of the MCSS and supporting customers in their application of the MATE standards. The individual weapon system program offices are responsible for acquisition, development and support of the ATS for their program. Program offices are encouraged to communicate with both the MATE program office and the MATE Operations

Center and involve these agencies in resolving any concerns regarding the application of MATE to their systems.

#### **B.10.3.3 Relationship to weapon system management organizations**

The MATE program office and the MATE Operations Center work with weapon system program office through a memorandum of agreement (MOA). Generally, these MOAs detail the level of involvement the MATE program will perform in the development of the ATS. There are no regulatory requirements for MATE program office involvement, although it is encouraged.

#### B.10.3.4 Controls over common ATS/peculiar weapon system requirements

This does not apply to MATE in general because MATE is a system of standards, not a specific hardware system. MATE provides a common specification set as a section of the MATE Handbooks. These specifications provide control over specific interfaces. Weapon system program managers design and acquire ATS to meet weapon system requirements and use the MATE standards to develop standard interfaces for the ATS. Refer to specific weapon system programs for these requirements.

#### **B.10.4** Common ATS Deployment Concepts

Unique common ATS fielding/laydown policies and plans, workload and utilization constraints or drivers. ATS support plans are developed in conjunction with the primary system. These separate categories do not apply to MATE in general because MATE is a system of standards, not a specific hardware system. Refer to specific weapon system programs for specific ATS requirements in each of these areas.

#### **B.10.4.1 Summary of MATE ATS Inventories**

| ATS            | Location Used | Quantity | TPS Types |
|----------------|---------------|----------|-----------|
| ADINTS         | D             | 30       | LRU       |
| ALCC           | I/D           | 5        | LRU/SRU   |
| AN/ALQ-122     | D             | 3        | SRU       |
| AN/ALQ-131     | I/D           | 6        | LRU/SRU   |
| ARTS           | D             | 1        | SRU       |
| ASE (AGM- 130) | I             |          | LRU       |
| ASE (GBU-15)   | I             | 30       | LRU       |
| AWADS          | D             | 1        | SRU       |
| CAST           | I/D           | 32       | LRU/SRU   |
| DATSA GPATS    | D             | 13       | LRU/SRU   |
| DATSA B-1      | D             | 30       | LRU/SRU   |
| DECATS         | D             | 6        | LRU/SRU   |
| DUST           | D             | 8        | LRU/SRU   |
| GATS           | D             | 1        | LRU/SRU   |
| GE-129 DRTS    | D             | 4        | LRU/SRU   |
| LATS (A-10)    | I/D           | 27       | LRU       |
| LATS (C-17)    | I             | 3        | LRU       |
| LANTIRN        | I/D           | 28       | LRU/SRU   |
| MIDATS         | I/D           | 25       | LRU       |
| MILSTAR (DL-1) | D             | 1        | SRU       |
| MILSTAR (IL-1) | I             | 6        | LRU       |
| OTH-B WCRS     | D             | 2        | LRU/SRU   |
| SCADC          | D             | 3        | LRU/SRU   |
| TISS           | I/D           | 13       | LRU       |
| USM-607        | I             | 13       | LRU       |

# Table B-56. ATS Derived from MATE Standards by Location

# **B.10.5** Specific Common ATS Technical Capabilities

#### **B.10.5.1** Operating Software

The MATE Control and Support Software (MCSS) is the operating system used with ATS developed using the MATE concepts. There are four components of the MCSS: the MATE Operating System, the MATE ATLAS Compiler, the MATE Test Executive, and the MATE On-Line Editor. These four elements are required when using an ISA-1750A architecture system. To date, an ISA-1750A system can use only MCSS  $5 \text{ tor}^{-1}$ ower.

The most recent release of the MCSS is version 6.1. This version eliminates the requirement for using an ISA-1750A computer and the MATE Operating System and

MATE On-Line Editor. There are three components of MCSS 6.1: the MATE ATLAS Compiler, the MATE Test Executive, and a small user-developed operating system interface shell. Using version 6.0, a developer chooses the CPU architecture which fits his requirements; he chooses the operating system which fits his requirements; and he chooses the system utilities (including a text editor) he needs to fit his requirements.

# **B.10.5.2 TPS Development environment**

Programs have two choices when developing TPS under the MATE system: develop TPS on the ATS itself using the MCSS or develop TPS off-line using the MATE TPS High Volume Toolset. The MATE TPS High Volume Toolset consists for three elements: the MATE TPS Test Executive, the MATE TPS ATLAS Compiler, and the MATE TPS On-Line Editor. These product are virtual identical to the normal MCSS Products except they have been designed to operate on a VAX using the VMS operating system. This provides developers the opportunity to develop and debug all TPS on an off-line VAX and then port the TPS to the test station with no code changes required. It also provides developer the opportunity to design test stations with VAX computers as the central processor instead of ISA-1750A computers.

# **B.10.6 Common ATS Upgrade and/or Off-load Plans**

This does not apply to MATE in general because MATE is a system of standards, not a specific hardware system. The individual weapon system program offices are responsible for planning and funding for any upgrades to the ATS for their program. Program offices are encouraged to communicate with both the MATE program office and the MATE Operations Center and involve these agencies in resolving any concerns during the upgrade process on their systems. Refer to specific weapon system programs for upgrade and offload planning.

## B.10.7 Factory/Depot Use

MATE has not been injected into the factory because the Air Force has no policy of placing requirements on contractors for their factory test equipment. Depot use of MATE is detailed in the following chart.

| ATS            | Quantity |
|----------------|----------|
| ADINTS         | 30       |
| ALCC           | 5        |
| AN/ALQ-122     | 3        |
| AN/ALQ-131     | 6        |
| ARTS           | 1        |
| AWADS          | 1        |
| CAST           | 32       |
| DATSA GPATS    | 13       |
| DATSA B-1      | 30       |
| DECATS         | 6        |
| DUST           | 8        |
| GATS           | 1        |
| GE-129 DRTS    | 4        |
| IATS (A-10)    | 27       |
| LANTIRN        | 28       |
| MIDATS         | 25       |
| MILSTAR (DL-1) | 1        |
| OTH-B WCRS     | 2        |
| SCADC          | 3        |
| TISS           | 13       |

# Table B-57. Depot Test Systems Derived from MATE Standards

The MATE policy outlined in AFSC/AFLCR 800-23 does not differentiate among O, I, or D level testing and requires the policy to applied through all levels of Air Force test equipment.

# B.10.8 Specific MATE Weapon System ATS

## **B.10.8.1** Advanced Deport Inertial Navigation Test System (ADINTS)

#### B.10.8.1.1 Description

ADINTS is a new ATS developed for the B-1B and Advanced Cruise Missile (ACM) Inertial Navigation System (INS) and also a replacement ATS for existing ATS in support of F-16, F-4, A-7 & Short Range Attack Missile (SRAM). Besides being generic to multiple weapon systems, the single configuration ADINTS tests four levels of INS (INV, Platform, Gyro & Accelerometer) which have always required different testers.

#### **B.10.8.2** Design Baseline

ADINTS is MATE compliant depot level tester consisting of 80% commercial test replaceable units (TRU) and three non-developmental engineering (NDE) TRUs. The ADINTS uses MCSS version 5.0 tailored for ADINTS/Inertial Navigation System Testing application.

# B.10.8.3 IATS

#### B.10.8.3.1 Description

The A-10 Intermediate Automatic Test Station (IATS) provides the capability to test and maintain A-10 LRUs. The IATS will be used to test & fault isolate defective LRUs. It will also be used to verify LRU operability after maintenance actions.

#### B.10.8.3.2 Design Baseline

The A-10 IATS is the first test system to use utilizing the MATE system. It employs the MATE Operating System, the MATE ATLAS compiler, the MATE Test Executive and the MATE On-Line Editor. All the other elements comply with MATE standards.

## **B.10.8.4 MIDATS**

## B.10.8.4.1 Description

The MATE Intermediate/Depot Automatic Test Systems (MIDATS) is a five bay test station, designed to support the B-52 digital and analog capability. It has been slightly modified for use on three additional programs: the Glide Bomb Unit-15 (GBU-15), Airborne Launch Control Center (ALCC) and the Over-the-Horizon Backscatter Radar (OTH-B).

#### B.10.8.4.2 Design Baseline

MIDATS is a MATE-compliant intermediate and depot level tester consisting of 80% commercial test replacement units (TRU). The MIDATS uses MCSS version 5.0 tailored for the MIDATS testing application.

#### **B.10.8.5 SCADC**

The SCADC test station is the standards D-level support equipment system for the Standard Control Air Data Computer (SCADC) being used on over 38 Air Force and Navy aircraft variants.

# **B.11. F-15**

#### B.11.1 Weapon System Background

The F-15 was fielded in the early 1970s as an air superiority fighter. As of 19 May 1992, 710 of 874 A/B/C/D aircraft delivered remain in Air Force service; 68 have transferred to foreign military sales; 73 have attrited, and 23 have been retired. 156 of 209 F-15 E have been delivered. Numerous upgrades to the installed avionics and supporting automatic test equipment (ATE) have been accomplished to counter threat development and increase force effectiveness.

Automatic test systems (ATS) were procured to support a three level maintenance concept. Intermediate equipment is designed to be deployed within 30 days of the aircraft. The Air Force is currently reviewing the maintenance concept with a view toward minimizing I-level maintenance.

The Bendix Avionics Intermediate Shop (AIS), consisting of 3 automatic and 4 manual consoles, supports squadrons of 18 to 24 air. aft. This avionics equipment is complemented by one Tactical Electronic Warfare Systems (TEWS) Intermediate Support System (TISS). The TISS (a 1986 vintage station still in production) replaces the TEWS Intermediate Test Equipment (TTTE) fielded with the aircraft in the early 70s. Full wings currently have an average of three of each of these test sets. Improvements to the test equipment have kept pace with avionics updates and technology advances in ATS systems to the maximum extent possible. The large mobility footprint, long test times for some of the more complex line replaceable units (LRU), and high maintenance costs are the primary drawbacks of the AIS.

San Antonio Air Logistics Center (SA-ALC) is pursuing the acquisition of a downsized tester (DST) to assure long term F-15 supportability and reduce airlift requirements during mobility. The increased emphasis on two-levels of maintenance will also minimize the number of test program sets (TPS) developed to support field maintenance.

The avionics depot uses primarily the Honeywell Avionics Depot Test System (ADTS) family consisting of three types of testers (digital, analog, RF/IF/video). Testing

of newer systems (for example, the APG-70 Radar) is accomplished on the Teradyne L293 commercial digital test set or the specially developed Radar Module Test Station (for RF modules.) Sets of I-level equipment are maintained at the depot to repair LRUs returned by the field (approximately 15%) because they can't be repaired on site.

The TEWS depot uses the ALM-205 and ALM-206 for module repair. The TISS and TITE are used to repair returned LRUs and to test some of the more complex modules.

## **B.11.2** ATS Acquisition and Management

The requirement for changes and updates to the family of F-15 ATS falls into two general categories: mission-driven changes, and updates to preclude technological obsolescence. Historically, technological updates have been accomplished concurrently with mission-driven changes to lower the overall acquisition cost.

Mission-driven changes to ATS are identified either by the user, Air Combat Command (ACC), or through the systems engineering process in the program office itself. When a new capability is required by ACC, an Operational Requirements Document (ORD) is normally generated followed by formal direction in the Program Management Directive (PMD). Options for satisfying the requirement are generated and weighed, and an acquisition baseline is developed and jointly approved by the F-15 Integrated Weapon System Management Office (IWSMO) and ACC. Acquisition strategy is reviewed by the F-15 Business Management Board prior to any request for proposal release. Once an acquisition has begun, monthly reviews of baseline cost, schedule and performance parameters are conducted. Anticipated breaches and actual breaches of any critical parameter are reported directly to the F-15 program director.

The F-15 program office maintains a strong systems engineering approach both inhouse and at the prime contractor facility. All additions and modifications to the avionics and weapons on the F-15 are closely scrutinized for impact to the ATS. Changes to the ATS, however minor, are never made without the coordination and approval of the user. HQ ACC representation is a constant on the F-15 Business Management Board and Configuration Control Board.

Whenever mission changes drive updates to the ATS, opportunities to reduce life cycle cost through technological upgrades are examined. As the existing stations become obsolete, the cost and availability of spare parts often threaten system supportability. Technology updates are accomplished concurrently with mission changes when the economic payback justifies the update.

# **B.11.3 Weapon System and ATS Deployment Concepts**

## **B.11.3.1 Weapon system maintenance concepts**

#### **B.11.3.2 Mainttenance concepts**

The F-15 aircraft is currently being supported by a three-level maintenance approach (organizational, intermediate, and depot). Pilot reported discrepancies (PRD) are fault isolated to the LRU using a combination of aircraft built-in-test and technical data/ troubleshooting procedures. Faulty LRUs are sent to the intermediate shop for fault isolation down to the defective shop replaceable unit (SRU). The SRUs are replaced and the LRU is returned immediately to service. Failed SRUs are sent to depot for repair and return to the supply system.

#### **B.11.3.3 Impact on fielding**

The F-15 has a rigorous mobility commitment, including bare-base taskings. The I-level ATS must be designed for transportability, ruggedness, and high reliability. As aircraft LRUs are upgraded to meet changing threats and improve performance, ATS improvements are accomplished to maintain compatibility and preclude technological obsolescence.

#### **B.11.3.4 Plans to achieve concepts**

Two major changes are worth noting. For the F-15 E, three large I-level testers, the Communications, Navigation, Identification (CNI), the Indicators/Controls (I&C), and the Computer Test Station (CTS) were replaced by a single small tester. The Mobile Electronic Test Set (METS) is light, highly reliable, and easily deployable. High failure rate A-D LRUs and new E model LRUs from all three testers were hosted on the METS. Those LRUs previously run on the CNI, I & C, or CTS that had high reliabilities were changed to a two-level maintenance concept.

Most recently, HQ ACC has proposed the elimination of the CNI, I & C, and CTS for the F-15 A-D fleet. This will create a substantial two-level depot maintenance requirement and reduce manning at the I-level by about 35 percent.

#### **B.11.3.5** Supporting plans

Support for the F-15 suite of ATS is best described in two categories: repair support and technical (engineering) support. The ATS maintenance and repair strategy is contained in the F-15 Integrated Logistics Support Plan (ILSP). Engineering support for the ATS is outlined by the F-15 Post-Production Support (PPS) Management Plan.

The F-15 ILSP, Volume 4, establishes the Air Force plan for achieving organic repair capability at various depots for the airframe, avionics, and radar. The ILSP is managed and updated by the Depot Maintenance Activation Working Group (DMAWG). The DMAWG is a middle management-level group with representation from the F-15 Program Office and all Air Force Air Logistics Centers. For ATS, a similar group has been assembled — the Support Equipment Depot Activation Working Group (SEDAWG). Both groups formally meet each quarter to ensure progress towards organic repair capability is continuing on schedule. The DMAWG is the parent group managing depot activation, and provides oversight of SEDAWG activity. All activations are detailed in program baseline briefings, and are reviewed for approval by the F-15 Program Director. The size and scope of the SEDAWG effort is generating a separate volume, number 5, to the ILSP to ensure dedicated coverage and planning for ATS.

The F-15 Post-Production Support Plan outlines the requirement for ATS sustaining engineering and technical support. Management oversight is provided by the PPS Executive Steering Committee, with senior-level representation from the F-15 Program Office, each Air Logistics Center, and Air Combat Command. Sustaining engineering in past years has been reviewed, adjusted, and contracted for under the annual aircraft purchase contract. With anticipated F-15 production coming to a close, life cycle management of ATS technical support is being transferred to the Post-Production Support arena.

#### **B.11.4 Weapon System ATS Inventory**

The following tables provide summaries of F-15 ATS inventories.

 Table B-58.
 F-15 Automatic Test Stations by Maintenance Levels

|              | A/B | C/D | E  |
|--------------|-----|-----|----|
| Intermediate | 141 | 110 | 49 |
| Depot        | 21  | 31  | 31 |
| Total        | 162 | 141 | 80 |

Note: There are a total of 41 depot testers for the F-15. The A/B, C/D and E models use the number of testers listed in Table B-58 out of this total.

| Tester      | Quantity | LRUs Tested | TPS |
|-------------|----------|-------------|-----|
| Antenna A&B | 14       | 3           | 3   |
| CNI         | 19       | 15          | 15  |
| I&C         | 21       | 20          | 20  |
| Computer    | 26       | 29          | 29  |
| Display     | 25       | 14          | 14  |
| Microwave   | 18       | 5           | 5   |
| TISS        | 2        | 23          | 14  |
| TITE        | 16       | 22          | 18  |
| Totals      | 141      | 131         | 118 |

Table B-59. F-15 A-B Intermediate Automatic Test Systems

 Table B-60.
 F-15 C-D Intermediate Automatic Test Systems

| Tester           | Quantity | LRUs Tested | TPS |
|------------------|----------|-------------|-----|
| Antenna A&B      | 12       | 3           | 3   |
| Antenna A&B MSIP | 1        | 3           | 3   |
| CNI              | 13       | 15          | 15  |
| I&C              | 13       | 23          | 23  |
| Computer         | 15       | 29          | 29  |
| Display          | 15       | 20          | 20  |
| Microwave        | 15       | 7           | 7   |
| MTS              | 1        | 9           | 9   |
| TISS             | 14       | 23          | 14  |
| TITE             | 11       | 22          | 18  |
| Totals           | 110      | 154         | 141 |

| Tester    | Quantity | LRUs Tested | TPS |  |
|-----------|----------|-------------|-----|--|
| ARTS      | 6        | 3           | 3   |  |
| METS      | 12       | 22          | 11  |  |
| Display   | 12       | 14          | 14  |  |
| Microwave | 12       | 5           | 5   |  |
| TISS      | 7        | 23          | 14  |  |
| Totals    | 49       | 67          | 47  |  |

 Table B-61.
 F-15 E Intermediate Automatic Test Systems

Table B-62. F-15 A/B Depot Automatic Systems

| Tester         | Quantity | SRUs Tested | TPS |
|----------------|----------|-------------|-----|
| TEWS           |          |             |     |
| ALM-205        | 3        | 39          | 39  |
| ALM-206        | 2        | 21          | 21  |
| ALM-205A       | 3        | 88          | 88  |
| ALM-206A       | 2        | 49          | 49  |
| Microwave ADTS | 3        | 20          | 16  |
| Digital ADTS   | 3        | 57          | 46  |
| Analog ADTS    | 5        | 160         | 105 |
| Totals         | 21       | 434         | 364 |

| Tester                                     | Quantity | SRUs Tested | TPS |
|--------------------------------------------|----------|-------------|-----|
| TEWS                                       |          |             |     |
| ALM-205B                                   | 8        | 78          | 78  |
| ALM-206B                                   | 1        | 13          | 13  |
| Color Generating Dis-<br>play Test System- |          |             |     |
| 70 (CGDTS)                                 | 5        | 48          | 40  |
| Microwave ADTS                             | 3        | 20          | 16  |
| Digital ADTS                               | 3        | 57          | 46  |
| Analog ADTS                                | 5        | 330         | 105 |
| Memory Module Test                         |          |             |     |
| Station (MMTS)                             | 3        | 26          | 21  |
| Depot ARTS                                 | 3        | 21          | 8   |
| Totals                                     | 31       | 593         | 327 |

 Table B-63.
 F-15 C/D Depot Automatic Test Systems

Table B-64. Specifice ATS Technical Capabilities

| Tester         | Quantity | SRUs Tested | TPS |  |
|----------------|----------|-------------|-----|--|
| TEWS           |          |             |     |  |
| ALM-205B       | 8        | 92          | 92  |  |
| ALM-206B       | 1        | 13          | 13  |  |
| CGDTS-70       | 5        | 62          | 54  |  |
| Microwave ADTS | 3        | 20          | 16  |  |
| Digital ADTS   | 3        | 57          | 46  |  |
| Analog ADTS    | 5        | 398         | 166 |  |
| MMTS           | 3        | 63          | 55  |  |
| Depot ARTS     | 3        | 21          | 8   |  |
| Totals         | 31       | 726         | 450 |  |

# **B.11.5** Specific ATS Technical Capabilities

# B.11.5.1 F-15 AIS

The F-15 AIS contract was awarded in 1970. Although technological upgrades have been accomplished through the years to accommodate the F-15 C/D, Multi-stage Improvement Program (MSIP) and E model aircraft, most of the original AIS remains in service to

this day. The F-15 AIS was designed to function in a classic three-level maintenance environment. In addition to performing the intermediate level function, the AIS ATS is also in place at the depot to fix LRUs not repairable at the base level. There are two basic configurations of F-15 AIS: the F-15 A/B/C/D and the F-15 E.

# B.11.5.1.1 Design Baseline for F-15 A/B/C/D AIS

The original AIS suite consisted of seven testers, fielded in the early 1970s to test the full complement of F-15 avionics, radar, and electronic warfare systems. As system improvements and additions were made to the aircraft, additional TPS were developed to host the new LRUs on existing ATS. A mid-life update was accomplished in the early 1980s to replace some of the 1960s technology used in the ATS. The only major change to the original AIS was the addition of the TISS. The TISS replaced the aging TITE system that was no longer capable of testing the improved radar warning receiver (ALR-56C).

#### **B.11.5.1.2 Design Baseline for F-15 E AIS**

The major change to the F-15 AIS for the E fleet was the replacement of three large multi-bay testers with the smaller, man portable METS. The METS hosted the new LRUs brought on by the E model and also the high failure rate LRUs tested on the three older, replaced stations. The high reliability LRUs were not rehosted; the maintenance concept was changed to the two level (organizational and depot) approach. The METS was designed from an existing Navy tester, the Electronic Equipment Test Set (EETS). Commonality was approximately 80 percent with the EETS, and development costs were correspondingly reduced. A lesser change to the AIS was the development and production of the Aircraft Radar Test Station (ARTS). The ARTS was required to keep pace with the huge advance in radar technology from 1970 to 1990.

#### B.11.5.1.3 *x* wn advantages/disadvantages

The advantages of maintaining maximum possible commonality through the years are reduced development cost and schedule risk for TPS additions, and stability in our operational fleet (logistics, deployment plans, training).

The disadvantages include technological obsolescence and mobility. The older stations are becoming increasingly hard to support because industry has moved onto newer technologies. The older systems are very large, heavy and relatively difficult to mobilize.

#### B.11.6 ATS Upgrade and/or Off-load Plans

SA-ALC is currently in a source selection for procuring an F-15 Downsized Tester. This acquisition is expected to procure 61 testers and 62 TPS for 97 LRUs. The current plan is a four phased acquisition, with only the first two phases currently funded. The following chart shows the proposed phases, the testers per phase, the LRUs and the TPS.

| Phase  | Testers<br>Bought | LRUs<br>Tested | TPS<br>Bought | Comments                           |
|--------|-------------------|----------------|---------------|------------------------------------|
| I      | 24                | 54             | 34            |                                    |
| II     | 31                | 11             | 6             |                                    |
| Ш      | 0                 | 24             | 16            | Not currently funded               |
| IV     | 0                 | 8              | 6             | Not currently funded               |
| Depot  | 6                 | 0              | 0             | Depot TPS included in Phases I-III |
| Totals | 61                | 97             | 62            |                                    |

Table B-65. F-15 Downsized Tester and TPS Acquisition Planning

#### B.11.7 Factory/Depot Use

#### B.11.7.1 Factory Use

McDonnell Aircraft (MCAIR) is the prime aircraft developer but manufactures none of the avionics. They use no avionics ATE on their production line, instead "hot mock-up" benches are used for acceptance testing and trouble shooting of subsystems. Numerous vendors (Hughes, Honeywell, Kaiser, etc.) manufacture avionics. Determining the extent of the subcontractor ATS resources and procedures would require an additional study, contracted through MCAIR. MCAIR would need approximately 60 days after contract award to address this issue. Taskings to MCAIR for new ATS and TPS requirements include instructions to utilize existing factory equipment if feasible.

When the avionics subsystems were selected in the early 70s there was no organized plan to minimize factory equipment types or assure its transportability to depot use. Several factory test set ups were examined to determine if they would be suitable for depot use. The APG-63 radar is the largest, most complex weapon system in the F-15 A-D. Hughes, the APG-63 manufacturer, proposed that the Air Force copy their factory equipment. This proposal was rejected because most of the equipment was manual and final test required installation in the next high assembly. Factory equipment for some less complex avionics, for example the Head-Up Display (HUD) and Horizontal Situation Indicator (HSI), was found to be adequate for depot support even though it was non-ATE technology. Copies of this equipment were procured for recurring cost only and are still in use at the depot.

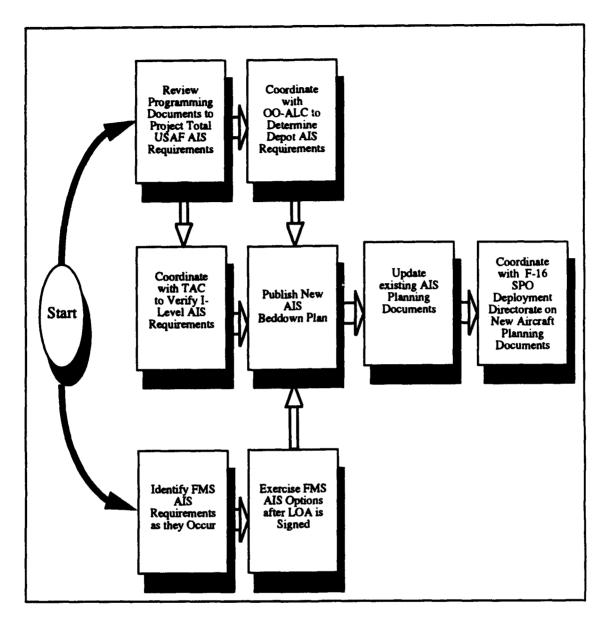
In the early 70s when the F-15 avionics systems were being developed, most vendors used equipment from previous programs and ATE was not prevalent. Low production rates for the aircraft and the cost benefits of using on-hand equipment were deterrents to development of factory ATE. Today, most F-15 A-D avionics systems are out of production and the test equipment (which was mostly non-ATE) has been retired or disbursed. Applicability of any of this equipment to other programs at any level would be very low.

## **B.11.8 Depot Test Systems**

The depot requirements are driven by the need to quickly and accurately primarily test SRUs in support of the three-level F-15 maintenance concept. Sets of I-level equipment are also necessary at depot to test the approximately 15 percent of LRUs the field is unable to repair on site. A wide spectrum of technologies (for example, microwave, digital, analog, high voltage/high power) require support.

The commonality with original factory ATS is less than 10%. Most factory equipment was non-ATS when the F-15 was developed, but the depot concept was geared toward ATS. The commonality with the I-level equipment is very low — less than 5 percent if the I-level equipment used at the depot to test LRUs returned by the field is discounted. This ratio will change considerably once two-level maintenance initiatives are implemented. Commonality with other depot/I-level ATS is also low; the F-16 adopted the analog ADTS for their depot but none of the TPS are common.

The applicability of the F-15 AIS to other DoD requirements is low for F-15 A-D ATS because of the age of the technology within the F-15.


# **B.12. F-16**

## B.12.1 Weapon System Background

The General Dynamics F-16 Fighting Falcon is the cornerstone of the USAF fighter aircraft force. Over 1700 are in use in the USAF today, and over 900 are in use by foreign countries. The two basic types of aircraft are the F-16A/B and the F-16C/D. The "B" and "D" designations indicate two seat versions (approximately 260 produced) that, in addition to performing all assigned combat missions, are used for pilot proficiency and checkout events. The difference in designation between F-16A/B and F-16C/D represents an "order of magnitude" improvement in weapons capabilities, reliability, and maintainability. The growth of the aircraft was not restricted to the change in series. The entire production of the aircraft was under the auspices of a multi-staged improvement program (MSIP); system capabilities were improved between production blocks and within the blocks themselves. The aircraft is capable of performing strategic aerospace defense, counter air, air interdiction and close air support missions. The aircraft would normally be deployed as squadrons (18-24 aircraft) with accompanying aviation packages ("organizational") accompanying the aircraft immediately. If the tasked squadron is designated "independent", follow-on support packages, including automatic test equipment, follow later. "Dependent" squadrons must collocate with intermediate support (from host or an independent deploying squadron).

# **B.12.2** ATS Acquisition and Management

Figure B-6 summarizes the flow for F-16 AIS planning process and beddown implementation.





## **B.12.3 Weapon System and ATS Deployment Concepts**

#### **B.12.3.1 Weapon system maintenance concepts**

1

#### **B.12.3.1.1** Maintenance concepts

F-16 avionics maintenance has traditionally been three-level. The F-16 Avionics Intermediate Shop (AIS) is used at the intermediate and depot levels. Suspected defective LRUs are removed from the aircraft, and returned to the I-level AIS shop. A performance test is then run on the LRU to determine if a fault exists. If the LRU passes performance testing, it is referred to as "bench-checked serviceable" and returned to base supply. LRUs that fail performance testing are then subjected to diagnostic testing to fault isolate to a single or group of suspected defective SRUs. Those SRUs are then removed and replaced, and the LRU undergoes performance testing again. If it passes performance testing, the LRU is returned to supply, and the defective components are returned to the depot for repair. In cases where the LRU repeatedly fails performance testing, or when an LRU retests okay (RTOKs) three times for the same on-aircraft failure, it is returned to the depot for repair. To ensure vertical testability, the depot uses the same AIS that field units have. The basis of issue for AIS allocation at the I-level has been 1 for 18-47 primary aircraft authorized (PAA), 2 for 48-95 PAA, and 3 for units with 96 or larger PAA. Although there is no difference in AIS assignment criteria for active, guard, and reserve units, guard and reserve units typically have 18-24 PAA, thus guard and reserve shops normally have 1 AIS, while active units have 2-3 AISs. The quantity of depot level shops is periodically adjusted based on projected LRU loading studies.

#### **B.12.3.1.2** Impact on ATS design and fielding concepts

The AISs were designed to operate in a deployed environment as well as in a shop environment. For example, the AIS system specification required operations in ambient air from 50°F to 95°F, and 5 to 80% non-condensing relative humidity, at up to 6000 feet above sea level. The AIS was also designed with detachable front panels that serve as shipping containers for the test stations during transit. After early Harvest Bare tests using the AIS, a mobile shelter program was established. The shelter management office at ESD developed a mobile shelter that consisted of 12 8'x8'x20' isocontainers that held the AIS, ITAs, ESS, TOs, and support equipment. This set-up was fully deployable, however, it took three C-141B loads to transport it. This was one reason the F-16 SPO then developed the Improved AIS (IAIS). The IAIS was designed to be two-man portable, and fit completely on one 463L pallet. It currently is planned to host 22 of the highest usage LRUs, although other LRUs could be hosted if necessary.

# **B.12.3.1.3** Planned changes to the maintenance concept and potential impacts to the ATS

The most significant planned change to the maintenance concept is, of course, the move to two levels of maintenance. Because of the findings of the Coronet Deuce study, the Air Force is currently planning how to implement a two-level of maintenance structure

for the F-16. Although no definitive plans have been established for avionics repair, it is envisioned that a number of the existing field AISs would be returned to Ogden ALC (OO-ALC) to support LRU repair. If the Air Force in fact decides to centralize F-16 LRU I-level repair at the depot, some quantity of AISs will probably become excess to Air Force requirements. The specific quantity depends on the degree to which the Air Force removes AISs from base-level shops. The full implementation of the two-level concept will also probably cause the IAIS to be used in an O-Level capacity as a go/no go tester. This could increase the total number of IAISs required. Another change envisioned is that the mobile shelter program will be phased down. If the full sized AISs are centralized at the depot, there will no longer be a mobility commitment that requires the use of mobile shelters. Instead, IAISs will assume the mobility commitment, and they require no special facilities.

#### **B.12.3.2** Plans to achieve concepts

As illustrated in Section 2, the F-16 SPO determines AIS beddown requirements using an integrated planning approach. AIS planning is based on reviewing aircraft beddown plan support requirements with the various user functions (I-level, depot, training, etc.), and optimizing the allocation of available AIS assets among all those users.

The F-16 aircraft beddown plan is periodically updated at the Air Staff level based on the POM, BES, and President's Budget submissions. When these updated aircraft beddowns are provided to the SPO, the AIS program office analyzes them to project AIS requirements from present through the next five years. Available and projected AIS assets are then reallocated among all users based on need dates and unit priorities. The SPO then provides feedback on AIS supportability impacts of the aircraft beddown to the F-16 community in forums such as the F-16 Worldwide Beddown Conference and the F-16 AIS Supportability Reviews. The need to provide high level visibility into AIS supportability became apparent during the mid-1980s when the Air Force started to replace F-16./B aircraft in TAC units with newer C/D models. Until that time, AIS requirements had been determined by the total projected TAC force, which was comprised primarily of 72 PAA operational wings. Based on AIS station loading models, each of these 72 PAA TAC sites required 2 AISs for support. However, as the A/B aircraft were reassigned from TAC to reserve and guard units, they were broken down into smaller packages of 18 PAA (for the guard) and 24 PAA (for the reserves). Since each of these smaller units required their own AIS, total F-16A/B avionics support requirements in essence doubled. This necessitated the acquisition of AISs to support the increasing number of 18-24 PAA units, in addition to the normal AIS buy that was needed to support the C/D program. By 1985 it became apparent that there were an insufficient number of A/B AISs within the USAF to support all the projected A/B sites. Several A/B sites would have to be supported by C/D version test stations. This was possible because the C/D AIS was developed to be fully backward compatible with the A/B aircraft. The Advanced Computer AIS is also fully backward compatible, however, A/B peculiar TPSs are no longer being procured, since adequate numbers were procured under the A/B and C/D AIS programs to support the entire A/B aircraft inventory.

In 1990, the F-16 SPO developed the Support Equipment Scheduling and Tracking System (SESATS) model, an automated AIS and support equipment beddown model. Through the use of a declassified version of the aircraft beddown plan, SESATS permits the SPO to optimize the allocation of existing and planned AIS and support equipment assets for all F-16 users. While the allocation algorithm is based on the same ground rules and priorities that were used to manually develop earlier AIS beddown plans, the time required to generate a new beddown is measured in hours instead of days. This model also calculates total support equipment requirements by part number, identifies existing equipment, and projects future buy requirements so the appropriate program manager can act lead-time away.

#### **B.12.3.3 Supporting plans**

The AIS program constituted the single largest cost element of the F-16 support equipment budget. It was also the most technically complex support equipment system procured. For these reasons, the SPO created a separate division within the logistics directorate for AIS acquisition management. During the earlier, AIS critical development years, ATS engineers were co-located with the logistics and acquisition program managers, in an arrangement suggestive of an integrated product development team. As the AIS procurement effort neared completion, the size of the AIS organization decreased appropriately. Today, the F-16 SPO AIS program is managed as a separate branch under the Support Equipment Division (ASD/YPLS).

Formal F-16 A/B and Advanced Computer AIS training programs for entry level technicians are conducted at Lowry Technical Training Center (LTTC). No C/D AIS training program exists because the C/D version AIS will be upgraded to the Advanced Computer configuration under ECP 1611 (See para 7.0). The AIS training development efforts were managed by HQ ATC/TTYR, however, the SPO provided the AISs and maintenance

trainers that are used. In addition to having an A/B and Advanced Computer AIS, LTTC also has a complement of LT-2 and LT-12 AIS trainers that are used during classes.

# **B.12.4 Weapon System ATS Inventory**

 Table B-66.
 F-16 ATS Quantities by Location (Intermediate - Level AIS)

| TYPE<br>LOCATION | A/B                                                                                       | C/D <sup>(7)</sup>                      | Advanced<br>Computer<br>C/D <sup>(6)</sup>                                                 | IAIS <sup>(6)</sup> |
|------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|---------------------|
| Factory          | 6 <sup>(1,3,4)</sup>                                                                      |                                         |                                                                                            | 1                   |
| Depot            | 3                                                                                         |                                         | 4                                                                                          | 1                   |
| Intermediate     | $\begin{array}{c} \text{Active} = 0\\ \text{Reserve} = 3\\ \text{Guard} = 15 \end{array}$ | Active = 0<br>Reserve = 4<br>Guard = 13 | $\begin{array}{l} \text{Active} = 22\\ \text{Reserve} = 1\\ \text{Guard} = 11 \end{array}$ | Active = 14         |
| Training         | 1                                                                                         |                                         | 1                                                                                          |                     |
| FMS              | 15 <sup>(2)</sup>                                                                         | 2                                       | 12                                                                                         |                     |
| Other            |                                                                                           |                                         | 2 <sup>(5)</sup>                                                                           |                     |
| Total            | 43                                                                                        | 19                                      | 53                                                                                         | 16                  |

Notes:

<sup>1</sup>Includes 3 pre-production version A/B shops.

<sup>2</sup>Includes 1 pre-production version A/B shop.

<sup>3</sup>Includes 1 shop set (set #22) which was upgraded to the C/D configuration.

<sup>4</sup>Includes 1 shop set (set #37) upgraded to the Advanced Computer configuration.

<sup>5</sup>One set is at the Air Force Flight Test Center at Edwards, the other is at the 3246 Test Wing at Eglin.

<sup>6</sup>Locations are based on F-16 AIS Beddown Plan 92-1. Twelve Advanced Computer and all 16 IAISs have not been delivered.

<sup>7</sup>CCP 1611 will upgrade all C/D version AISs to the Advanced Computer configuration. This upgrade will be completed by Apr 94.

|              | A/B | C/D | Adv<br>Comp | IAIS |
|--------------|-----|-----|-------------|------|
| Factory      | 52  | 70  | 75          | 22   |
| Depot        | 52  | 70  | 75          | 22   |
| Intermediate | 40  | 58  | 46          | 22   |

 Table B-67. AIS Test Program Sets by Location and Types

# Table B-68. Depot-Level ATE and Test Program Sets

|                              | TI<br>Digital | Analog | Microwave | Honeywell<br>Digital | FACT<br>II | DUST |
|------------------------------|---------------|--------|-----------|----------------------|------------|------|
| Quantity at Depot            | 5             | 11     | 9         | 2                    | 1          | 6    |
| Quantity at Factory          | 1             | 2      | 2         | 3                    |            |      |
| Number of TPS per<br>Station | 224           | 216    | 42        | 107                  | 116        | 46   |

# **B.12.5 General ATS Technical Capabilities**

# **B.12.5.1 Intermediate-Level Test Equipment**

The A/B, C/D, and Advanced Computer AISs all consist of four functionally separate stations: the Computer/Inertial (C/I), Display/Indicator (D/I), Processor/Pneumatic (P/ P), and Radio Frequency (RF). These stations are comprised of programmable instrumentation which automatically provides required stimulus and measurement functions for checkout and fault isolation of assigned LRUs. Automatic testing is implemented through the computer and disk units using high level 416-ATLAS language test programs. Operator intervention is required only to change or verify set-up, observe specific measurement results, or close out testing. The control/display assembly provides operator interface to the station, furnishing mode indication and displaying all operator instructions during the course of testing. Required operator responses are made at either the keyboard or a remote control unit.

The IAIS is a down-sized version of the earlier AISs. It consists of 14 interconnected two-man portable modules that contain the operator console and display, instrumentation units, power supplies and controls, microwave measurement and stimulus units, frequency converter, and refrigeration and blower units. LRUs are tested by connecting them to inactive interface test adapters which mount on the IAIS via a pinless connector system. A majority of the LRU test software was transported directly from the AIS. Following is a general technical specification for each of the Advanced Computer AIS stations, as well as the IAIS.

## B.12.5.1.1 C/L

The C/I test station primarily supports the flight control system, inertial guidance system, and the fire control system's computer. The following LRUs are supported by the C/I station:

| Rate gyro assembly                  | Accelerometer Assembly                  |
|-------------------------------------|-----------------------------------------|
| Inertial navigation unit            | Fire control navigation panel           |
| Fire control computer               | Flight control computer (FLCC)          |
| Flight control panel                | Converter-multiplexer                   |
| HUD rate sensor                     | Rudder pedal assembly                   |
| Manual trim panel assembly          | Flight control system data recorder     |
| Pilot stick sensor assembly         | Digital flight control computer (DFLCC) |
| Rate senor unit                     | Enhanced fire control computer (EFCC)   |
| General avionics computer (GAC)     | Data transfer unit (DTU)                |
| Data transfer cartridge             | Expanded data transfer cartridge (XDTC) |
| Electronic Cartridge assembly (ECA) |                                         |

 Table B-69.
 C/I Station LRUs

## B.12.5.1.2 D/L

The D/I test station tests the displays, indicators and optics. It includes a separate photometric bench. The following LRUs are supported by the D/I station.:

 Table B-70.
 D/I Station LRUs

| HUD electronic unit          | HUD display unit                     |  |
|------------------------------|--------------------------------------|--|
| Indicator unit assembly      | Radar electro/optical EU             |  |
| ADI                          | HSI                                  |  |
| Generator control unit       | Instrument mode select coupler       |  |
| Radar control panel          | Radar EO                             |  |
| Multi-function display (MFD) | Programmable display generator (PDG) |  |
| WAC HUD DO                   | WAC HUD DU                           |  |
| Azimuth indicator            | Generator control unit               |  |

#### B.12.5.1.3 P/P

The P/P station tests LRUs in the stores management, threat conditioning, air flow sensing, video synchronization, high voltage/current, digital signal processor graphics, video blanking, and high speed data bus systems. The following LRUs are supported by the P/P station:

| Central air data computer                  | Pneumatic sensor assembly           |
|--------------------------------------------|-------------------------------------|
| Digital signal processor                   | Radar computer                      |
| Stores control panel                       | Programmable signal processor (PSP) |
| Central interface units (ACIU/ECIU)        | Remote interface units              |
| Signal processor transmission line coupler |                                     |
| Interference blanker unit                  |                                     |

| Table B-71. | <b>P/P Station</b> | LRUs |
|-------------|--------------------|------|
|-------------|--------------------|------|

#### B.12.5.1.4 RF

The special purpose radio frequency test subsystems provide RF stimulus and measurement capability for testing specific RF type LRUs used for radar, communications, threat warning, and navigation systems. These RF requirements are beyond the capability of the general purpose core subsystems, and is not available on the other AIS stations. The special purpose subsystems consist of the RF stimulus, RF measurement, and pressure test systems. The LRUs tested on the RF station are as follows:

 Table B-72.
 RF Station LRUs

| Radar transmitter                 | Radar antenna               |
|-----------------------------------|-----------------------------|
| Low power RF (LPRF/MLPRF)         | UHF receiver/transmitter    |
| IFF receiver/transmitter (IFF/RT) | Amplitude detector          |
| FSRS                              | Receiver controller         |
| ILS receiver                      | Channel frequency indicator |
| Dual mode transmitter (DMT)       |                             |

#### B.12.5.1.5 IAIS

The IAIS was designed to operate in a field environment with no special facility or power requirements. It exceeded the requirements specified in the High Mobility Tester (HIMOT) SON for weight, power, cooling air, and facilities. In addition to the 14 interconnected modules, the IAIS also uses an optical test bench for display LRUs. Following is the list of high failure LRUs are currently being hosted on the IAISs. The group number refers to the order in which the TPSs are being developed. Group I TPSs are being developed first, followed by Group IIA and then Group IIB.

| Group I       | Group IIA | Group IIB |
|---------------|-----------|-----------|
| ACIU/ECIU     | DMT       | IFF R/T   |
| MLPRF         | PDG       | EFCC      |
| PSP           | DFLCC     | WAC/DO DU |
| GAC           | FLCC      | WAC/DO EU |
| MFD           | ECA       | ALR-69 SP |
| DTU/XDTC      |           | EXDEEU    |
| Radar Antenna |           |           |

Table B-73. IAIS LRUs

## **B.12.6 Depot-level Test Equipment**

## B.12.6.1 AISs

As shown in Table B-66, the depot has seven full sized AISs, and is scheduled to receive one IAIS. The AISs at the depot are the same configuration as those used at I-level locations. This was done to ensure vertical testability and minimize ATS development costs. Similarly, the IAIS, when delivered, will be same as those IAISs used in the field. The depot also uses the same TPSs the field does, however, on the full sized AISs there are 12 depot unique TPSs. There are no depot unique TPSs on the IAIS.

## **B.12.6.2 TI Digital Module Test Station**

This is a Texas Instruments TI-960 tester that is used for testing digital type circuit card assemblies (CCAs) from A/B aircraft LRUs and the A/B AIS.

## **B.12.6.3** Analog Test Station

This Honeywell 2600 station (P/N UG2600MA01) tests analog type CCAs from A/ B and C/D aircraft and the A/B, C/D, and Advanced Computer AISs.

#### **B.12.6.4** Microwave Test Station

This a General Dynamics modified HP9231C tester (P/N 16U80800-3). It tests microwave type CCAs from the A/B and C/D aircraft and the A/B, C/D, and Advanced Computer AISs.

## **B.12.6.5 Honeywell Digital Module Test Station**

This is a Honeywell 3500 station (P/N UG3500AY03) that is used only for testing digital type CCAs from the C/D aircraft, and the C/D and Advanced Computer AISs.

#### В.12.6.6 FACT II

This is a Hughes F-800-5 Flexible Automatic Circuit Tester. Its test capabilities include continuity, leakage, voltage, resistance, load, and phasing measurements; fault flag, elapsed time, and digital indicator operations; and circuit component integrity verification. The FACT II, which uses punched Mylar tape as test media, is becoming unsupportable. It is envisioned they will be replaced in the near future with FACT 4100 testers.

## **B.12.7** ATS Upgrade and/or Off-load Plans

#### B.12.7.1 C/D AIS

Although there are currently four configurations of F-16 AIS, the SPO is in the process of eliminating the C/D version AIS by upgrading it to the Advanced Computer configuration. The C/D version AIS was developed to support Block 25 and earlier aircraft by increasing the stimulus measurement and test instrument capability of the original A/B version AIS. However, by 1986 it became apparent that a number of the systems in the A/B and C/D AISs were increasingly difficult to support logistically. In particular, the HP1000 computer system, disk drive, terminal and display system had been out of production for several years, and there were a decreasing number of vendors willing to keep the existing systems going for an extended period. When the Advanced Computer AIS was developed, these systems were replaced; however, that did not resolve the C/D's impending support problems.

In 1987, the SPO had a cost-tradeoff study conducted to determine whether it would be more cost effective to upgrade the C/D AIS to the Advanced Computer configuration, or keep the current configuration. The analysis showed there would be a \$40M (FY86\$) cost avoidance by accomplishing the upgrade. Based on that finding, and user recommendations, the SPO elected to upgrade the C/D AISs. That upgrade is being accomplished under ECP 1611, and is scheduled to be completed by 1994.

## **B.12.7.2 IAIS**

Several P<sup>3</sup>I-type efforts are in work for the IAIS.

## B.12.7.2.1 Advanced Bus Emulator

The IAIS was initially developed with an advanced bus emulator (ABE) capability to increase digital test capability. The ABE capability allows the IAIS to test a wide range of components by modifying test protocols with software. Although the F-16 SPO does not have a current requirement for it, GDE left the capability to add a fourth ABE card if future test technology would require it. Additionally, under an independent research and development (IRAD) effort, GDE is developing an advanced digital bus emulator that will allow digital simulation of both digital and analog test signals. It will be physically smaller and operate faster than the current ABE. This capability could be incorporated into the IAIS for future weapon system applications, since the F-16 SPO believes future technology will drive Scan Technology completely digital test systems.

#### B.12.7.2.2 Scan Technology

Although primarily designed as an I-level tester, in November 1991, the IAIS demonstrated the ability to successfully diagnose and fault isolate a defective SRU using scan technology. The test was done on a GAC CPU, one of the F-16GAC's circuit cards. GDE has another IRAD project to develop a LASAR post processor capability that could be incorporated in the IAIS. Similar in function to an automatic test program generator, this post processor, in conjunction with the existing scan capability on the IAIS, will provide future capability for combined I-level and D-level testing on a single system.

## B.12.7.2.3 VXI

VXI technology was not mature when the IAIS was first developed, therefore, it was not designed into the IAIS. GDE is now, however, developing their own measurement system for VXI. When completed, this system could be added to the IAIS to allow flexibility to use other VXI instruments and make better utilization of COTS.

#### **B.12.7.2.4** Ada/ABET

The IAIS, like all other F-16 AISs, uses an F-16 version of 416-ATLAS. As part of a capability demonstration, GDE developed an Ada version of an existing F-16 LRU test

program and ran it on the IAIS. An optical disk was prepared that contained an ATLAS version performance test on one side, and an Ada version of the same performance test on the other. Both programs were able to successfully complete LRU performance testing. This showed the flexibility of the IAIS to use existing test languages, as well as future test software that may be developed under ABET.

## B.12.8 Factory/Depot

Use F-16 factory use of production version ATS is limited. General Dynamics (GD) does use several modified pre-production version A/B AISs to support aircraft production. However, almost all of the LRUs that are used in the F-16 are provided by other vendors to General Dynamics/Fort Worth (GD/FW). If an LRU is found to be defective, GD returns it to the vendor for repair. The LRU vendors then use their own peculiar factory test equipment to repair the LRU.

The F-16 SPO and OO-ALC are on contract with GD/FW to provide sustaining engineering support for the A/B, C/D, and the Advanced Computer AIS. To provide this support, the SPO has provided GD/FW with one AIS of each configuration that remains in the Fort Worth facility. At the same time, the Air Force is attempting to become hardware and software organic on the F-16 AIS. To achieve that goal, one station of each configuration is located at OO-ALC in the Avionics Software Integration Facility (ASIF). Additionally, there are a number of AIS stations used in the depot maintenance facility for LRU support.

## **B.13. F-22**

## B.13.1 Weapon System Background and Management

The F-22 is the Air Force's (USAF) air non-superiorty fighter currently under development. The F-22 design characteristics are a blend of critical operational capabilities. The F-22 will incorporate very low observable design. The F-22 also is capable of cruising at supersonic speeds without using an afterburner. Coupled with increased maneuverability the F-22 will out-perform all current as well as projected threats. The F-22 accommodates a diverse complement of weapons, an internal load of AIM-120 Advanced Medium Range Air-to-Air Missiles (AMRAAM), AIM-9 Sidewinders, and an internal gun. The F-22 also incorporates a highly reliable integrated avionics suite, providing pilots with a complete picture of the surrounding air battle. Lastly, specificiations requirements for supportability of the F-22 exceed those of the F-15. Specific requirements include a 40% reduction in maintenance personnel, 53% reduction in C-141B airlift, and a 60% increase in sorties flown between major maintenance.

#### **B.13.2** ATS Acquisition and Management

F-22 has developed a Common Automatic Test System (CATS) approach. CATS is based on current industry trend toward standard ATS architecture/interfaces and software. CATS includes a preferred commercial instrument list, common controller and station software, all developed and written in Ada. CATS leverages is intended to the large commercial ATS market to minimize F-22 research and development (R&D) investment and access widely available/current technology ATS components. CATS has been placed on contract with all F-22 Engineering and Manufacturing Development (EMD) subcontractors. The approach allows each subcontractor to tailor or configure ATS components to specific test requirements. Standardizing across the weapon system program is a new paradigm for ATS hardware and software development. The avionics and ATS design efforts are integrated and significant reuse of ATS hardware and software is expected at each program phase. The competitive commercial marketplace is driving instrument vendors to adopt industry standards and to provide maximum backward compatibility of new ATS products. This will allow F-22 to upgrade with minimum impact as the programs evolves from EMD to production and depot support. This evolutionary approach is intended to provide a mature support capability earlier with fewer vertical testability problems.

The F-22 program is employing a total weapon system, integrated product development approach. Integrated diagnostics and logistics support analysis (LSA) processes start early on to insure cost effective support and ATS selection. Emphasis on built-in-test (BIT), vertical testability and rapid deployment is driving ATS. The F-22 EMD program includes a pilot program for factory test equipment (FTE) for test software. The FTE is contractually controlled through the prime contractor to ensure the proper achievement of pilot program.

### **B.13.3 Weapon System and ATS Deployment Concepts**

#### **B.13.3.1 Weapon system maintenance concepts**

#### **B.13.3.1.1** Maintenance concepts

There are three distinct maintenance concepts being planned for the F-22. The first is a Main Operating Base (MOB) located in the continental United States. In this scenario, there is one wing with 72 aircraft, responsible for performing all O and I level maintenance. The second scenario is an operating base located in a NATO country or a third-world arena. In this instance, 24 aircraft would be deployed for 30 days. This location may not have F-22 peculiar automatic test equipment. Airlift would be required to support the 30 day operation. The last scenario is an unimproved location in a third world country. This would entail six dispersed aircraft with limited maintenance and deployed airlift capability for a six day operation.

#### B.13.3.1.2 Impact on fielding

The mobility requirements necessary to perform the F-22 missions are the principal impact on the ATS design. These mobility requirements preclude using a large Avionics Intermediate Shop (AIS), like the previous generation F-15 and F-16 aircraft. To date, no requirements have been identified for intermediate level ATS.

#### **B.13.3.2** Plans to achieve concepts

The ATS pilot program is a total quality management (TQM) approach for integrated product development and concurrent engineering to determine affordable and timely support, mitigate risks and mature concepts and diagnostics. Recent advances in BIT effectiveness and avionics reliability will allow F-22 to be all or nearly all two-level maintenance. There is no O-level nor I-level ATS planned at this time. If intermediate is determined to be cost effective, regional maintenance approaches will be considered. One of the results of the EMD phase of acquisition is to document the most cost-effective ATS and then determine the proper selection/production of that ATS.

## B.13.4 Weapon System ATS Inventory

None developed or procured at this time, although there are plans for factory test equipment (EMD and production). Table B-74 lists ATS that will be used across the many F-22 subcontractors during EMD.

| Function            | Testers | TPS |
|---------------------|---------|-----|
| Digital             | 50      | 75  |
| Power Supply/Analog | 9       | 75  |
| RF/Digital          | 42      | 36  |
| RF/Microwave        | 27      | 47  |
| Electro-optics      | 20      | 14  |
| System              | 2       | 6   |
| Totals              | 150     | 253 |

Table B-74. F-22 Factory Test Systems

## **B.13.5** Specific ATS Technical Capabilities

The F-22 program office is planning to support seven basic test functions at the factory: digital, RF, microwave, power supply, analog, electro-optic, and system level testing (flexibility of CATS interface standards and preferred instrument list will allow further tailoring to individual subcontractor requirements). The test strategy is to employ integrated avionics and exercise built-in test via a Joint Test Advisory Group (JTAG) interface.

## B.13.6 Factory/Depot Use

#### B.13.6.1 Factory Use

CATS factory (EMD and production) test equipment is based upon commercial equipment and standards. Since the EMD program is a pilot program for production, significant reuse of the EMD ATS is likely.

#### **B.13.6.2** Depot Test Systems

One of the key strategies of CATS is that factory test strategies and implementations will migrate to the depot. A high degree of equipment commonality with the factory and significant reuse of evolving test software is expected — minimizes cost and provides mature diagnostics capability earlier. A key task in the F-22 EMD program is to gain experience with CATS and use that information to define specific depot ATS requirements. Such requirements will determine commonality with factory ATS. Identification of depot test requirements is an LSA task in the EMD program.

Specific cost estimates for F-22 depot ATS do not exist. Only an overall peculiar support equipment cost was estimated (by a factored approach based on historical data) and, as such, there is no specific depot support equipment breakout.

## **B.14.** C-17

#### B.14.1 Weapon System Background

The C-17 is a four-engine turbofan direct delivery aircraft capable of airlifting large payloads over intercontinental ranges without refueling. It has nearly the same wing span as the C-141 but can carry twice the payload. It can also transport the same outsized equipment as the C-5 to small austere airfields that were previously restricted to C-130s.

The C-17 mission is to provide worldwide airlift capability for U.S. combat forces, equipment and supplies. It will fly its cargo and troops for airland or airdrop delivery, aeromedical airlift and low altitude parachutes extraction system (LAPES). The C-17 has the capability to land on austere airfields as short as 3000 feet with payloads up to 172,200 lbs. allowing delivery of supplies and combat equipment directly to forward areas without intermediate transshipment.

The primary benefit of direct delivery is reduction in time required to deliver combat units to the battle zone. Direct delivery also eliminates the majority of the need for transshipment and thereby avoids the time, personnel and support equipment required for ground handling and transportation from off-load airfields to final destination. By eliminating the intermediate transshipment locations, aircraft and cargo vulnerability to attack as well as ground congestion is greatly reduced.

## **B.14.2** ATS Acquisition and Management

The C-17 uses the Support Equipment by Capability concept to acquire its automatic test systems (ATS). The support equipment by capability concept was conceived to incorporate systems supportability in the contractor's C-17 concepts. Each proposal included a costed support equipment package and was evaluated under competition. Funding for all support equipment and associated technical orders to support the C-17 aircraft was then negotiated up front and dispersed under a separate contract line item number. The contractor acquired total system support responsibility to identify and ultimately provide that contractor furnished equipment (CFE) which meets the system specification and the support equipment general specification. Support equipment that is ultimately necessary to support the C-17 aircraft is within the scope of the existing Engineering and Manufacturing Development (EMD) effort.

The contractor also identifies all organizational and intermediate level government furnished support equipment (GFE) in support of 16 aircraft at the initial base. Items and quantities of organizational and intermediate (O & I) level CFE and GFE support equipment shall be in accordance with all applicable Tables of Allowances mutually established by the government and the contractor based on the O & I Support Equipment Capability demonstration results. Following a successful systems evaluation of the support equipment and technical orders, the government will then establish a product baseline for the C-17 O & I support equipment.

#### **B.14.3 Weapon System and ATS Deployment Concepts**

#### **B.14.3.1 Weapon system maintenance concepts**

#### **B.14.3.1.1** Maintenance concepts

5.7

The C-17 weapon system was originally conceived under a three-level maintenance concept requirement. This strategy has been tempered somewhat with the advent of regional maintenance centers (RMC) in lieu of a fully-configured, I-level shop at each main operating base (MOB). Each of the three RMCs will have two digital analog video (DAV) stations developed for the B-1B program and a photobench modified from the F-16 program. Additionally, three DAV stations and two photobenches will be provided to San Antonio Air Logistics Center (SA-ALC) and one DAV station to Warner-Robbins Air Logistics Center (WR-ALC) to support depot maintenance activities. Air Training Command (ATC) will also be provided a DAV station and photobench to support line replaceable unit (LRU) maintenance training operations.

The maintenance concept generally incorporates, to the maximum extent possible, two levels of maintenance (organizational and depot) to minimize the need for special test facilities, skills, tools or equipment at base level. Since the ATS is existing equipment that is currently fielded, the support structure is in place

The C-17 is currently in the EMD phase of acquisition and so the current maintenance concept is really the planned concept. The aircraft will be located at four MOBs, all in the continental United States (CONUS). The planned maintenance concept is a modified three-level approach using three regional maintenance centers. The Air Force plans to locate one regional center on the east coast, one on the west coast and the third in a central location. Avionics LRUs that exhibit in-flight or ground test failures at the MOBs will be fault isolated using a combination of built-in-test, portable testers and break-out boxes, and manual techniques. Once the faulty LRU is identified, it will be sent to the closest regional maintenance center. At the regional center, the LRU will be placed on a DAV ATS, originally designed for the B-1B with the appropriate test program set (TPS) and further tested to identify the defective shop replaceable unit (SRU). The SRU is then removed and sent to the depot. For LRUs with optical test requirements, a derivative of an F-16 Optical Bench will be used in conjunction with the DAV test station. The original F-16 bench design had to be augmented to add color capability.

The DAV ATS is scheduled for fielding at three main operating bases, one ATC location and at depot locations for LRU testing. The DAV stations were bought in 1989 to support a Military Airlift Command (MAC) requirement for regional maintenance centers, before the Air Force decided to explore the two-level maintenance concept.

#### B.14.3.1.2 Impact on fielding

The C-17 does not have a mobility requirement. The ATS will be permanently located in the regional centers. The C-17 fielding concepts had nothing to do with the initial ATS design since it was built for other weapon systems whose requirements, in general, equal or exceed those of the C-17.

#### **B.14.3.2** Plans to achieve concepts

The maintenance concept generally incorporates, to the maximum extent possible, two levels of maintenance (organizational and depot) to minimize the need for special test facilities, skills, tools or equipment at base level. Since the ATS is existing equipment that is currently fielded, the support structure is in place. The item manager is in place, and additional spares are being identified to cover the new ATS procured for the C-17. In addition, other logistics elements are in place such as Technical Orders (T.O.s.). Any nonstandard facilities, tools and equipment or personnel must be justified by a separate life cycle cost analysis.

#### **B.14.3.3** Supporting plans - personnel, training, support for ATS, etc.

The C-17 ATS training will be accomplished through the Field Training Detachment (FTD) concept. There will be two courses to train personnel in the maintenance and operation of the ATS. The C-17 ATE Operator and LRU Repair Course will use an ATE, additional support equipment and a representative number of TPS. The course will train and demonstrate the functions of the DAV station and the aspects of LRU repair on the ATS. The C-17 ATE Repair Course will use an ATS and a computer-aided visual simulator to train station repair, alignment and calibration procedures. The simulator will allow individual ATE troubleshooting training with self-paced instruction. Development of the FTD course is underway at Charleston AFB. Necessary equipment for the FTD has been procured and is being delivered with only minor schedule perturbations.

#### **B.14.4 Weapon System ATS Inventory**

|              | Testers | Photobench | LRUs Tested | TPS |
|--------------|---------|------------|-------------|-----|
| Depot        | 4       | 2          | 356         | 356 |
| Intermediate | 6       | 3          | 38          | 38  |
| Training     | 1       | 1          | 38          | 38  |
| Total        | 11      | 6          |             |     |

 Table B-75.
 C-17 ATS Quantities by Location

#### **B.14.5** Specific ATS Technical Capabilities

The DAV is the same as the B-1B DAV station. It consists of five equipment racks and one table which supports a graphic terminal and printer. Major components are the power and control module, video module, pneumatic module, sub-instrumental module (SIM), self-test adapter, I/O devices (keyboard, display, printer).

#### **B.14.5.1 Design Baseline**

The DAV station is a computer controlled unit consisting of rack mounted, tester replaceable units (TRUs), external peripheral equipment and accessories. When station is used in conjunction with station operating control software and TPS, it will test the C-17 LRUs.

#### **B.14.5.2 Design source/derivation**

The C-17 DAV was derived from the B-1B DAV ATS, itself a derivative of the F-16 Avionics Intermediate Shop (AIS). The hardware and software for the C-17 DAV are identical to the B-1B Intermediate Automatic Test Equipment (IATE) DAV station. Some additional self-test software was added to test the pneumatic function controller and the C-17 photobench. The photometric bench is a 60% modification to an F-16 AIS display/indicators (D/I) station adding a multi-color testing function to the photometry to accommodate the C-17 color multi-function displays (MFD) test capability. Some additional design to accommodate the C-17 head-up display (HUD) LRU was also accomplished.

## B.14.5.3 Known advantages/disadvantages

Estimated \$60 million savings to the government since very little nonrecurring development was incurred. Since depot support for the DAV is in place, there is an additional estimated \$28 million savings in depot support.

## **B.14.5.4 Factory/Depot Use**

No factory test systems identified yet for use in this program. There is no depot information available at this time because no decision has been made as of yet on which systems will be used for depot testing.

## **B.15. ADVANCED CRUISE MISSILE**

#### **B.15.1 Weapon System Background**

#### **B.15.1.1 Weapon system description**

The Advanced Cruise Missile (ACM) system is designed to satisfy Strategic Air Command (SAC) requirements for a cruise missile having increased range, improved survivability and increased accuracy/flexibility. The ACM program is intended to enhance the capabilities of the air breathing leg of the strategic TRIAD. The Advanced Cruise Missile, AGM-129 is a turbofan powered missile which is designed to deliver a nuclear warhead in an air-to-ground mode to a preplanned target following deployment from a B-52H. Although there is no operational requirement to employ the ACM on the B-1B, the system will maintain, to the extent possible at no further cost, the level of partial integration previously demonstrated within the Strategic Arms Reduction Treaty constraints.

#### **B.15.1.1.1** Acquisition Strategy

The Presidentially mandated Initial Operating Capability (IOC) required from the outset that ACM be a highly accelerated program. The compressed schedule and special security provisions required this program to receive intense high level management attention. To achieve ACM objectives, an acquisition strategy that balances technical risk with government fiscal commitment has been adopted.

# B.15.1.1.2 Strategy for Engineering and Manufacturing Development (EMD)

A competitive contract was award to General Dynamics/Convair Division (GD/C) for development of the ACM. Sole source contracts were awarded for B-52 and B-1B integration and engines to the Boeing Military Airplane Company, Rockwell International and Williams International, respectively. All contracts are fixed price (firm and incentive). Contract features and provisions include economic price adjustment (EPA), award fee, missile incentive warranty, total system responsibility, associate contractor, not-to-exceed price production options and rapid change procedures.

#### **B.15.1.1.3** Strategy for Production

The initial production contracts, Lots I - IV were fixed price incentive and included provisions for demonstration milestones, the statutory warranty, SECAF data rights clause, spare parts and support equipment pricing as required by current guidelines. Should Cost was accomplished on the Lot III buy. Separate annual buy contracts are planned for Lots V and VI with directed quantities to GD/C and McDonnell Douglas Missile System Company. A competitive source selection with a split buy in Lot VII was planned, followed by a down selection to one producer for Lots VIII - X. As a result of the 1992 President's State of the Union Address to Congress, the ACM program has been limited to a total purchase of 640 missiles. The Program Management Directive (PMD) truncated production at the end of the FY92 production buy.

#### **B.15.2 Weapon System and ATS Deployment Concepts**

Deployment to the first main operating base (MOB) at K.I. Sawyer AFB MI has commenced, with plans for deployment to the second MOB at Fairchild AFB WA in the near future. At each MOB there will be two levels of maintenance performed, organizational and intermediate. The weapon system can be deployed to dispersal base locations. Dispersed Emergency War Orders (EWO) sorties will be supported by MOB resources with dispersed base maintenance limited to organizational flight line tasks.

#### **B.15.2.1** Weapon system maintenance concepts

The ACM weapon system will be supported by the three levels of maintenance (organization, intermediate, and depot). Organizational and intermediate level maintenance is the responsibility of the Munitions Maintenance Squadron. Depot level maintenance is organically provided in consonance with AF policy requiring such support of mission essential weapon systems. For all levels of maintenance, maximum use is made of existing and programmed organic resources.

### **B.15.2.1.1** Organizational maintenance

Organization maintenance will occur at both the flight line and the Weapon Storage Area (WSA), which includes the Intermediate Maintenance Facility (IMF). Organizational level missile maintenance will be performed at the IMF. Support and test equipment for organizational level repair was identified through the Logistics Support Analyses (LSA) processes during EMD.

#### **B.15.2.1.2** Intermediate maintenance

Intermediate level maintenance will be performed at IMF and in the Maintenance and Inspection (M&I) Facility. Intermediate level maintenance will include repair of support equipment, component receipt and inspection, carrier aircraft equipment (CAE) and repair and replacement of warhead limited life components.

#### **B.15.2.1.3 MOB maintenance requirements**

Missiles will be uploaded on pylons and launchers in an all-up-round (AUR) configuration, including payload and will either be placed in storage igloos or loaded on aircraft for alert. The loaded pylons and launchers will tested annually to verify the operational readiness of the system. An empty launcher and pylon test will also be required every 20 months. The storage-to-alert-to-storage cycle with periodic testing will continue until either a malfunction is detected or limited-life components require replacement. The operations maintenance scenarios are nearly identical to the air-launched cruise missile (ALCM).

#### **B.15.2.1.4** Ground operations/maintenance scenario

The ACM production vehicle will be fueled and certified to be mission- capable at the GD/C manufacturing facility, packaged in a reusable shipping container and transported to the appropriate SAC base. Upon arrival at the SAC MOB, the missile will be moved to the unarmed weapons storage facility, where it will be removed from the container and placed on a munitions handling trailer and transported to the IMF. As part of a receiving inspection, a Level I test will be performed using the Electronic System Test Set (ESTS). Any discrepancies found during the test will be corrected before weapon buildup.

### B.15.2.1.5 Pylon building

The missile is built up to an EWO configuration by installing the warhead and mating the missile to the pylon. When the pylon or launcher is loaded with the prescribed number of missiles, a loaded launcher/pylon test is performed to validate the missile, launcher or pylon, attached avionics equipment and all interfaces among the assembled components.

#### **B.15.2.1.6** Depot maintenance

Depot level maintenance will be performed at an Air Logistics Center or appropriate Technical Repair Center. Equipment designated for depot level repair was identified through Optimum Repair Level Analysis (ORLA) and maintenance requirements identified by the LSA process during EMD. Automatic test equipment (ATE) will be required at the depot for fault isolation of the more complex avionics components. With the exception of the engine recertification, there are no regularly scheduled depot maintenance requirements for the ACM.

#### **B.15.2.2** Plans to achieve concepts (historical as appropriate)

The Advanced Cruise Missile program was directed by the PMD to use ALCM support equipment to the maximum extent possible. In the PMD, the program was specifically directed to use the ESTS for the intermediate level maintenance of the ACM. To determine the requirements for the depot level maintenance, the Director of Logistics performed an ORLA which showed certain line replaceable units (LRU) should be repaired at the depot. These LRUs are the Aft Avionics Unit (AAU), the Forward Avionics Unit (FAU), the Electro-Pneumatic Distribution Box (EPDB), the Laser Doppler Velocimeter (LDV) and the Navigation Control Assembly (NCA). In accordance with the Statement of Work and the Support Subsystem Specification, the contractor submitted Support Equipment Recommendation Data (SERDs) that recommended support equipment to test these LRUs at the depot. The Support Subsystem Specification required the contractor to consider existing equipment first, modified equipment second and new equipment last. As a result of this requirement, the recommended a piece of special test equipment (STE) that they were using in their factory to test the avionics boxes (the AAU, FAU, EPDB), a piece of STE that the LDV subcontractor was using in house to test the LDV and the Automatic Depot Inertial Navigation Test System (ADINTS) that San Antonio Air Logistics Center (SA-ALC) is developing to support the NAC.

SA-ALC determined that the piece of STE recommended to support the avionics boxes was not supportable. The ACM System Program Office (SPO) directed the contractor to update the STE into the AN/GSM-348 Guided Missile Test Set (GMTS) Configuration. At the same time, the SPO had the contractor request that the LDV subcontractor bid the cost of documenting the design of the System Acceptance Test Equipment (SATE), the Sensor Test software and the Transceiver Test Software. The effort was put on contract. The contractor will deliver the SATE station that was residual material from the LDV second source contract. The ACM SPO had SA-ALC modify the ADINTS contract to add two test stations, a test program set for the NCA and a test program set the Platform (a shop replaceable unit in the NCA) for the ACM. In its present form, the GMTS is also capable of testing the Circuit Card Assemblies of the avionics boxes. The SPO has a Memorandum of Agreement with Ogden Air Logistics Center (who will be supporting the avionics boxes) to develop test programs for the circuit cards using the GMTS.

## **B.16. AMRAAM**

#### **B.16.1 Weapon System Background**

The Advanced Medium-Range Air-to-Air Missile (AMRAAM) is being jointly developed and acquired by the Air Force and Navy. It is intended as a replacement for the AIM-7 Sparrow Missile. It will provide all weather capability for the F-15, F-16, F-14, and F-18 aircraft.

The AMRAAM has an interial mid-course guidance and active radar terminal homing that provides launch and maneuver capacity.

#### **B.16.2** ATS Acquisition and Management

#### **B.16.2.1** Flow charts and text

The original automatic test system (ATS) strategy for AMRAAM included the Air Force Modular Automatic Test Equipment (MATE) concept. The maintenance interservice study subsequently resulted in the assignment of depot repair to the Navy at Alameda Naval Air Station. As a result of this assignment, the ATS strategy was changed to the Navy Consolidated Automated Support System (CASS). Finally, a later DDMC decision designated Letterkenny Army Depot as the technical repair center. This decision, however, did not change the ATS strategy of using the CASS.

#### **B.16.2.2** Any special policies or regulations, etc.

The AMRAAM program, through a USAF/USN memorandum of agreement (MOA) dated December 1988, chose CASS as its depot ATS. Because of this, the AMRAAM program office is governed by two major policy statements in addition to several supporting military standards for the CASS:

a. NAVAIR Instruction 13630.2A, Introducing the Consolidated Automated Support System to Naval Aviation Maintenance, 22 March 1991

- b. SECNAV Instruction 3960.6 Department of the Navy Policy and Responsibility for Test, Measurement, Monitoring, Diagnostic Equipment and Systems, and Metrology and Calibration (METCAL), 12 October 1990
- c. MIL-STD-2076 (AS), Unit Under Test Compatibility with Automatic Test Equipment; General Requirements for
- d. MIL-STD-2165, Testability Program for Electronic Systems and Equipment
- e. MIL-STD-2084, General Requirements for Maintainability of Avionic and Electronic Systems and Equipment.

NAVAIRINST 13630.2A defines policies, procedures and responsibilities for introducing CASS to Naval aviation, while SECNAVINST 3960.6 defines similar guidance for the Navy as a whole. The three MIL-STDs listed above are intended for application to weapon system development contracts to ensure testable designs and CASS compatibility.

## **B.16.3 Weapon System and ATS Deployment Concepts**

#### **B.16.3.1 Weapon system maintenance concept**

#### **B.16.3.1.1** Maintenance concepts

#### **B.16.3.1.1.1** Air Force

The basing requirements for the AMRAAM are consistent with present Air Force air-to-air missile systems. This includes Main Operating Base, Forward Operating Location, Collocated Operating Base, and Bare Base (remote sites). Field level facilities will vary from well-developed complexes at Main Operating Bases to little more than temporary shelters at remote sites. All associated logistics operations will occur over a wide spectrum of climatic extremes. Two levels of maintenance exist in the Air Force - Field and Depot. Field level consists of intermediate and organizational maintenance.

## **B.16.3.1.1.2 Organizational**

The ATM-120A missile is delivered to and stored by the Air Force in a containerized, assembled AUR configuration. The wings, fins and buffer connectors are stowed separately within the container. The Air Force will use the CNU-431/E container which accommodates four missiles. Missiles are delivered to the flight line in the container or on MHU-141 trailers out of the container, for loading directly to the aircraft with no intermediate steps using the One Step Loading Adapter (OSLA). Operational system verification is accomplished using the BIT capability of the missile and the aircraft weapons control system. No missile tests are required prior to aircraft loading. Organizational maintenance consists of loading, unloading, BIT, and removal/replacement of wings, wing saddles, loose screws, fins and buffer connectors.

#### B.16.3.1.1.3 Intermediate

Missiles failing BIT are checked at the Intermediate level using the Guided Missile Circuitry Test Set (TS-4108/G), commonly known as the Missile BIT Test Set (MBTS), to verify the failure. Additional maintenance at the Intermediate level is limited to removal/ replacement of selected components, cleaning, painting and corrosion control. Maintenance that does not involve assembly or disassembly and application of electrical power may be performed at any location, providing the missile is properly grounded. Assembly and disassembly of the AIM-120A at the Intermediate maintenance level involves the removal/replacement of the harness cover, boattail, suspension lug, launching shoe, fin actuator leaf spring retainer, fin actuator leaf springs, fin lock release lever, and wing quick release pin. Upon BIT failure verification using the MBTS, defective missiles will be shipped as AURS to the Joint Services Depot facility after organic capability is established.

The Load Training/Captive Carry Missile (LT/CCM) will be maintained at the field level. There are no explosive or electronic components associated with the LT/CCM and maintenance consist primarily of corrosion control, section removal/replacement, fin repair, and minor structural repair. Faulty sections are repaired or condemned within the field level maintenance activity.

Field level maintenance of the Air Force AUR Container consists of the removal/ replacement of cushions, pressure value, latch assembly and desiccant. Container pressure testing, using common hardware, is also performed at this level. Major structural repair is accomplished at the JSD discussed in paragraph 2.3.1.

#### B.16.3.1.2 Navy

AMRAAM will be used in a manner consistent with existing Air-to-Air missiles. The maintenance plan allocates maintenance functions to the Fleet Organizational level (modified F-14 and F/A-18 squadrons), Fleet Intermediate level (Aircraft Carrier ships company), Naval Air Stations and Marine Corps Air Stations, (NAS/MCAS) and Depot level.

#### **B.16.3.1.2.1 Fleet Level Maintenance**

Fleet Organizational maintenance will be limited to aircraft loading/unloading, Built-in-Test and removal/replacement of wings, fins and buffer connector. The Navy at all activities and the Marine Corps aboard aircraft carriers will hand load missiles to the aircraft. The Marines will use mechanical loading equipment at the Marine Corps Air Stations. No missile tests will be required before loading on aircraft. Aircraft testing using the build-in test capability of the missile and the aircraft weapons control system will be used at the fleet organizational level to verify operability of the weapon system. No test equipment is authorized at the fleet level for failure verification. Failed missiles will be returned to the fleet intermediate level for shipment to the designated NAVWPNSTA/ NAWMU.

The AMRAAM will be delivered to and stored by Navy fleet activities in a containerized, assembled AUR configuration using the CNU-415/E container (4-pack). The missile wings, fins, and buffer connector are stowed separately within the container. The fleet intermediate level receives containerized AUR missiles from the NAVWPNSTA/NAWMU and provides handling and storage functions for deep stored and non-flight ready storage missiles. Visual inspections, minor corrosion control functions, and minor mechanical repair of wings and fins will be accomplished. The fleet intermediate level will containerize/decontainerize AURs and provide transportation to the flight line and flight ready storage areas. No assembly or disassembly of AURs is authorized at this maintenance level. Defective AURS will be returned to the NAVWPNSTA/NAWMU,

The LT/CCM will be fully maintained at the ashore fleet level (NAS/MCAS). There are no explosive or electronic components associated with the LT/CCM and maintenance will consist primarily of corrosion control, section removal/replacement and minor structural repair. The faulty section will be repaired or condemned within the NAS/MCAS fleet level maintenance activity.

Fleet level maintenance of the Navy AUR container consists of the removal/ replacement of accessible hardware, cleaning and corrosion control, and replacement of desiccant. Container pressure testing, using common hardware, is performed at this level. Major structural repair is accomplished at the NAVWPHSTA/NAWMU.

## B.16.3.1.2.2 NAVWPNSTA/NAWMU Maintenance

The NAVWPNSTA/NAWMU will receive and inspect containerized new production Navy AUR missiles from the contractor and containerized AUR missiles returned from the fleet. These assets will be inspected and tested as necessary at the AUR level. The NAVWPNSTA/NAWMU will also provide fleet issue and long-term deep storage for stockpiled containerized Navy missiles.

The NAVWPPHSTA/NAWMU will perform functional testing and fault isolation of AUR missiles. Electro-mechanical testing of the AUR missile will include approximately 95 percent test thoroughness. AUR testing includes full power RF testing to verify operability of the active radar system and motion testing sufficient to verify operability of the electro-mechanical portions of the missile system. Fault diagnosis will be to the major section level. The NAVWPNSTA/NAWMU will have the capability to verify the integrity of: (1) the Guidance section battery squib circuits and pressure seal; (2) the Propulsion section Arm/Fire device (includes capability of arming the AFD); and (3) the Control section battery squib circuits.

Fleet returned missiles will be decontainerized, inspected, tested, and repaired by removal and replacement of defective sections or accessible AUR components. This includes the Filter/Rectifier, Rear Data Link, Wiring Harness Cover, Boattail, Suspension Lug, nutplates, and Armament Section Safety/Arming Device. Major corrosion control and painting will also be accomplished at this level. Wings and fins will be repaired at the NAVWPNSTA/NAWMU.

Missiles will be configured as training rounds (telemetry Equipped) or tactical rounds (warhead installed). The test equipment developed for the NAVWPNSTA/NAW-MU test equipment will include the capability to test and verify operability of the telemetry configured missile to the same extent and depth as the tactical (warhead) configured missile.

Maintenance of the Navy AUR container at the NAVWPNSTA/NAWMU will consist of the same efforts as the fleet level plus the accomplishment of major structural repair. All maintenance of the reusable section containers is performed at this level. The containers are: (1) CNU-402/E, Control Section; (2) CNU-403/E, Warhead Section; CNU-463/E, Guidance Section; and (4) CNU-464/E, Propulsion Section. The CNU-452/E Wing/Fin Container and containers for the Arming, Firing Safety Device and Thermal Initiated Venting System may be added if required. Pressure testing will be performed at this level.

#### **B.16.3.2** Joint Services depot

The basis for depot level maintenance is to accomplish those tasks which are beyond the capability of the field or fleet units. These tasks result from the need for personnel skills, support equipment, or facilities that are not available to the fleet or field units due to operational or economic considerations. Depot planning for AMRAAM must consider the unique requirements of the two services. The AMRAAM Joint Services Depot has been assigned to Letterkenny Army Depot by a Joint Depot Maintenance Activity Group (JDMAG) recommendation and a Memorandum of Agreement between the Air Force and the Navy.

To support the Air Force AUR depot level maintenance requirement, the Navy depot will use the AUR capabilities of the NAVWPNSTA's.

#### B.16.3.2.1 AUR Receipt/Handling

The NAVWFNSTA will perform functional testing and fault isolation of AUR missiles.

#### B.16.3.2.2 AUR Repair

Air Force and Navy returned missiles will be repaired by removal and replacement of defective sections or accessible AUR components at the NAVWPNSTA. Major corrosion control and painting at the section and AUR level will be accomplished. AUR repair may also involve removal/replacement of accessible AUR/section components such as the Filter/Rectifier Assembly, Rear Data Link, Wiring Harness, Wiring Harness Cover, Boattail, Suspension Lug, Nutplates, and Armament Section Safety/Arming Device.

## **B.16.3.3 Section/Component Maintenance**

#### **B.16.3.3.1 Designated Overhaul Points**

The Navy is implementing the depot level repair capabilities at the appropriate Designated Overhaul Points (DOPs) within the Navy maintenance system. This approach takes full advantage of existing capabilities. The electrical/electronic repair of major sections and subassemblies has been assigned to the NAVAVNDEPOT, Alameda. The Naval Ordnance Station, Indian Head (NOSIH) will provide the necessary repair functions for the Propulsion and Armament sections. The NAVWPNSTA, Concord and Yorktown, are the DOPs for mechanical items such as the boattails, wiring harnesses, harness covers, wings fins, and containers.

#### **B.16.3.3.2** Electrical/Electronic Components

NAVAVNDEPOT, Alameda will provide all fault isolation, repair and test of the guidance section, control section, filter rectifier assembly, rear data link and the components of these assemblies. The items will be received from the NAVWPNSTA and subjected to an incoming inspection and electrical test to verify failure and to fault-isolate to next lower assembly/component. Major assemblies will be repaired through replacement of faulty subassemblies/components, tested, and returned to the NAVWPNSTA to support AUR repair. The faculty subassemblies/components are also repaired, tested and returned to stock to support future repairs.

#### **B.16.3.3.3** Explosive Components

The NOSIH has been designated as the depot repair facility for the Armament and Propulsion Sections. The predicted failure rates for both of these items are low and the failure modes are such that major repair is generally not required. At this time, no facilities for repair are planned for this activity. NOSTE is participating in the development of the depot planning. Planning for facilities/equipment to support major repair of explosives, such as removal/replacement of the Propulsion section Arm/Fire Device, regraining of the rocket motor, and replacing the explosive charge in the warhead will be instituted if future requirements warrant.

## **B.16.3.3.4** Mechanical Components

The NAVWPHNSTA perform major repair of the missile wings, fins, boattail, harness cover and containers. (Source: AMRAAM Navy/Joint Service ILSP).

#### **B.16.4** Specific ATS Technical Capabilities

## **B.16.5** Mainframe CASS

#### **B.16.5.1** Operating Software

The CASS system is based around Digital Equipment Corporations VMS Version 5.2 Operating system. The CASS software system is comprised of three main CSCIs, which are the Station Control Software. The following is a list of the components contained in the CASS CSCIs:

| Station Control Software      | Support Software         | Intermediate<br>Maintenance Operations<br>Management |
|-------------------------------|--------------------------|------------------------------------------------------|
| Test Executive                | ATLAS Compiler           | BIT Test                                             |
| Virtual Instrument Handlers   | IPTESTER                 | Data Processing                                      |
| Instrument Personality Inter- | TPS Development Software | Network                                              |
| faces                         | Test Executive Simulator | Post Processing                                      |
| Operator Interface            |                          | Pretest                                              |
| Automated Technical Informa-  |                          | Station Management                                   |
| tion                          |                          | -                                                    |
| Communication Handler         |                          |                                                      |
| Asset Allocation              |                          |                                                      |
| General Asset Monitor         |                          |                                                      |
| Kernal Asset Monitor          |                          |                                                      |
| Functional Extension Program  |                          |                                                      |
| IEEE 488 Translators          |                          |                                                      |
| Self Maintenance              |                          |                                                      |

#### Table B-76. CASS System Software Modules

## **B.16.5.2 TPS Development environment**

The Navy intends to perform CASS TPS development oft-line on a VAX with a VMS operating system. Products have been developed to facilitate this process. The TPS development products are:

- a. TE SIM (AGE product. It simulates all of CASSs functions, except for those of the Teradyne L200 Series DTU.)
- b. DICONS (An optical, but extremely useful tool. It allows the operator to access and program CASS instruments directly.)
- c. IEEE 716 ATLAS Compiler
- d. L200 Series Compiler (Teradyne)
- e. FORTRAN Compiler

This off-line TPS Development Process allows the implementation of another cost saving measure, the use of Test Integration Facilities (TIF). The three Navy TIFs are located at Norfolk, VA, Jacksonville, FL, and San Diego, CA. After the TPS developer has completed his development and debugging (except for TPSs which utilize the L200, which can only be debugged at the CASS station), he schedules time at the TIF for integration of his TPS with CASS.

While the use of off-line development reduces the numbers of CASS required, there are some special cases of TPS development in which it is more cost effective to provide a CASS to the developer.

#### **B.16.5.3** Ancillary equipment

- a. Pneumatics Function Generator
- b. Inertial Navigation System Interface
  - AR 57 Bus
- c. Advanced Communication Bus Interface
  - 2 Asset Controllers
  - 1 RS-485 Bus (Manchester/Harpoon Bus)
  - 1 FODB (Fiber Optic Data Bus)
  - 1 HSDB (High Speed Data Bus) Bus Spec 86EZ00614
- d. MS1397 Bus (MIL-STD-1397)
- e. Video
- f. Miscellaneous
  - SOS OTPS
  - Holding Fixtures (UUTs)
  - Load Sets

## **B.16.5.4** Environmental requirements and tested capabilities

The four CASS configurations, Hybrid, RF, CNI, and EO are all required by the CASS contract to be environmentally tested to modified limits of MIL-T-28800C and MIL-STD-167. To date all configurations have passed environmental testing with the exception of some isolated assets in rack 5 and the SSMD 1 and 2 assets which will be tested in the future.

## **B.16.6** CASS MTS

The MTS will be a new development effort that will be based upon the core CASS configuration. As a result, the specifics about its technical capabilities are yet to be defined.

## **B.16.6.1 Operating Software**

This is yet to be determined. The additional equipment that will be used to augment the core CASS will dictate the specifics of the operating software.

#### **B.16.6.2** Environmental requirements and tested capabilities

As with the four existing CASS configurations, the MTS will be environmentally tested to modified limits of MIL-STD-28800C and MIL-STD-167. The MTS, however, will probably not have the same shock and vibration requirements since it will not be utilized in a carrier environment.

## B.16.7 Factory/Depot Use

In addition to the AMRAAM program's total FTE requirements, the Navy is in the process of procuring one guidance control test set at a cost of \$6.5M (FY92) from the vendor for interim support at Letterkenny Army Depot. A combination of mainframe and MTS CASS is being used at the depot to support AUR, Sectional and lower level (WRA/SRA) testing requirements.

## **Appendix C. ATS Investment Strategy Options**

Five ATS investment strategy options were defined and used for analyses. The following present the detailed definitions as they were used and discussed in this report.

## **Contents of Appendix C**

| Paragraph C-1. OPTION I: NO CHANGE TO CURRENT PRACTICES | Page C-2 |
|---------------------------------------------------------|----------|
| Paragraph C-2. OPTION II: ADOPT EXISTING COMMON         |          |
| FAMILY(IES)                                             | Page C-3 |
| Paragraph C-3. OPTION III: ADOPT A COMMON ATS           |          |
| SPECIFICATION SET                                       | Page C-4 |
| Paragraph C-4. OPTION IV: DEVELOP A COMMON SOFTWARE     |          |
| ENVIRONMENT [Long Term Option]                          | Page C-5 |
| Paragraph C-5. OPTION V: ADOPT A WEAPON SYSTEM,         |          |
| COMMERCIAL-BASED TEST APPROACH                          | Page C-6 |

## C - 1. OPTION I: NO CHANGE TO CURRENT PRACTICES

#### C - 1.1 BASIC DEFINITION:

No unified or coordinated DOD policy, strategy, or investments. Some minimal coordination in ATE test language area.

Army, Navy, and Air Force continue current policies, programs, organizations, and funding lines.

CASS and IFTE continue as planned, that is, current budgeted dollars, associated quantities, and funded fielding plans

AF continues MATE process until the end of FY92. Current MATE system maintenance will be performed by SA-ALC.

Factory, depot, and field ATS generally continue to be specified and acquired independently. In the Navy and Army there are current policy requirements to use CASS and IFTE respectively in the field and depot.

No change to current waiver processes.

#### C - 1.2 P3I/TECHNOLOGY CURRENCY:

P3I will occur within CASS and IFTE programs in accordance with existing plans and currently budgeted levels.

AF R&D dollars for continued program technological currency unclear at this time. (Although the AF has no requirements process for new AF-wide technology test needs identification, there is current work underway to develop a process.)

## C - 1.3 DoD COMMONALITY:

Commonality will be carried out at existing Service level and as dictated by Service unique instructions/directions. Joint depot inter-Servicing at the DoD level may also drive commonality at the depot level.

#### C - 2. OPTION II: ADOPT EXISTING COMMON ATS FAMILY(IES)

#### C - 2.1 BASIC DEFINITION:

A DoD wide policy, strategy, and related investments to apply common ATS families(y).

A common family of ATS addresses multiple weapon systems test needs. ATS family core capabilities are extended and/or new modules added when new capabilities are needed. Extensions tend to be applied across the board, but may be weapon unique for highly specialized instances. Families would have common core hardware and software and a range of additional modules to address a variety of test needs. DoD could have multiple families to address particular sets of similar test needs for different mission requirements. CASS and IFTE are examples of existing Service ATS common families.

Strategy adoption implies some revision to current policies, practices, organizations, investments, and waivers relating to the acquisition approach.

#### C - 2.2 P3I/TECHNOLOGY CURRENCY:

P3I/new technology R&D would be performed as purposeful, cross-Service coordinated investments to keep family(ies) capabilities current.

#### C - 2.3 DoD COMMONALITY:

Family implies a high% of in-family DoD internal hardware and/or software commonality to provide both cost and logistics support benefits. This common ATS family approach could be implemented immediately. However, because of current infrastructure, DoD adoption of such a strategy would entail a rate of increased commonality growth over time, rather than an abrupt goal.

## C - 3. OPTION III: ADOPT A COMMON ATS SPECIFICATION SET

#### C - 3.1 BASIC DEFINITION:

A DOD wide policy, strategy, and related investments to apply a common ATS specification set. A common specification set is defined by selected hardware and software standards, some key software pieces, and possibly some hardware pieces. A common specification set would build upon existing DoD and commercial standards or pieces. A minimum set of standards and pieces would be selected as essential for DoD desired ATS cost and quality control; other elements might be provided as a library of preferred and proven pieces. MATE is an example of a common ATS specification set.

This option entails a lead-time before implementation could occur, that is, approximately one year would be required to define and select the correct DoD common specification set.

Strategy adoption implies some revision to current policies, practices, organizations, investments, and waivers relating to the ATS acquisition approach.

#### C - 3.2 P3I/ TECHNOLOGY CURRENCY:

P3I/new technology R&D would be performed as purposeful cross-Service coordinated investments. Since the emphasis in this approach is upon application of commercial standards and pieces, P3I would focus on moving with the commercial technology changes, while maintaining pieces of continued need to DoD.

#### C - 3.3 DoD COMMONALITY:

A common specification set implies DoD internal commonality or commonality of key DoD chosen elements or at key chosen interface points. This approach assumes that the elements chosen for specification are those deemed to be most useful to ensuring DoD cost control. Like Option II, this approach would increase certain aspects of DoD internal commonality over time, rather than with abrupt change; however this approach leaves the choice of commonality of unspecified hardware and software pieces to the developer.

## C - 4. OPTION IV: DEVELOP A COMMON SOFTWARE ENVIRONMENT [Long Term Option]

## C - 4.1 BASIC DEFINITION:

A DOD wide policy, strategy, and related investments to apply a common software environment. A common software environment here is a DoD defined ATS information and software reference architecture which fully elaborates all interfaces and other control points of interest to DoD in developing, implementing, and maintaining high quality, costcontrolled testing. This environment includes not only the architecture but a family of standards which are applied to carry out interfaces and to allow access and use of the full range of needed test software and information. The environment also includes libraries of reusable, proven practices and procedures. The environment would not impose or require a specific set of test hardware, but would allow reuse of software building blocks when hardware changes were needed.

Since this common software environment does not exist today, this is a long term strategy option. It must be considered in conjunction with one of the options earlier described.

## C - 4.2 P3I/TECHNOLOGY CURRENCY:

This environment does not exist and would require significant R&D investment to develop. Once accomplished, the environment would incorporate a flexible architecture and set of updatable libraries to enhance movement with hardware technology over time.

**C-4** 

R&D would be performed as purposeful continued investment to keep the environment current.

## C - 4.3 DoD COMMONALITY:

DoD internal commonality in this approach is achieved through test software piece/ library element reusability, standard interfaces, and standard architecture use. This allows maximum use of commercial test hardware capability. This approach assumes that test software and information costs are the largest portion and highest risk of the ATS cost elements today. This approach, would permit use of common hardware or commercial test hardware as desired.

## C - 5. OPTION V: ADOPT A WEAPON SYSTEM, COMMERCIAL-BASED TEST APPROACH

#### C-5.1 BASIC DEFINITION:

A DOD wide policy, strategy, and related investments for testability based on a weapon system engineering approach.

The ATS selection process will be structured to allow weapon system managers to select an optimum mix of new or current testers to meet system needs. Development of DOD peculiar ATS hardware and software will be pursued if acceptable commercial products or inventoried DOD testers are either not available or won't satisfy system requirements cost effectively. For austere environments, existing commercial hardware products will be repackaged for environmental protection, and peculiar designs will be developed only if repackaging is not advantageous.

## C - 5.2 P3I/TECHNOLOGY CURRENCY:

Since this approach is based on use of commercial standards and products and since industry competition is fostering R&D and new technology faster than DoD, P3I/ technology currency will be provided by advances in the marketplace. DoD will influence commercial advances by participating in key industry standardization efforts.

#### C - 5.3 DOD COMMONALITY:

No specific objective or central control to achieve DoD wide internal commonality is envisioned; commonality will be achieved by use of commercial industry products. Three levels of commonality are envisioned:

- a. a family of commercial ATS to accommodate requirements common across multiple systems
- b. compatibility of ATS software, hardware, and interfaces resulting from use of ATS commercial standards
- c. use of common reuseable software components, commercial standard interfaces, and standard architecture (long term)

#### **APPENDIX D. ATE COMPARISONS**

This appendix includes four sets of Tables. Table D-1, D-2, and D-3 summarize and compare ATS specifications for the CASS and IFTE, CATS and METS, and the F-16 AIS and the IAIS. The structure of the tables are the same in each Therefore, due to specific ATS design differences some of the data fields may be blank. Since the row numbers correspond in each table, comparison between each of the testers is possible.

Table D-4 provides additional specification summaries for the F-16 Electro-Optics testing requirements as designed into the AIS and IAIS testers.

These ATE specifications were extracted from published documents for each system by Navy personnel at Naval Air Warfare Center, Lakehurst N.J. Subsequently, each manufacturer was asked to review the data and offer any corrections to the summaries needed to reflect current system specification baselines. GE ATE Department (recently acquired by Martin Marietta), Grumman, and GDE Systems (recently separated from GD) reviewed and corrected their respective specifications. Comments or revisions were not received from Lockheed Sanders for the CATS and from ESCO for the METS. The data reported herein reflects information received through March 19, 1993.

#### **Contents of Appendix D**

| Table D-1. SPECIFICATION SUMMARIES FOR CASS AND IFTE Pa                      | ige D-2   |
|------------------------------------------------------------------------------|-----------|
| Table D-2. SPECIFICATION SUMMARIES FOR CATS AND METS Pa                      | ige D-41  |
| Table D-3. SPECIFICATION SUMMARIES FOR F-16 ATE (AIS & IAIS) Pa              | ige D-74  |
| Table D-4. SPECIFICATION SUMMARY OF F-16 ELECTRO OPTICS (EO)         TESTING | ige D-112 |

Table D-1. - Specification Summaries for CASS and IFTE

| ROW<br># | ATE SPECIFICATION<br>ITEM | CASS                                                                                                                                                            | IFTE (BSTF)                    | IFTE (EXTENDED)                                                           |
|----------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------|
| 1        | STATION INFORMATION       |                                                                                                                                                                 |                                |                                                                           |
| 2        | Station Configurations:   | Hybrid (Core)<br>EO (Electro-Optical)<br>CNI (Comm-Nav-Identif)<br>RF (Radio Frequency)<br>MTS (Missle Test System)<br>(proposed)<br>CPTS (portable) (proposed) | BSTF (Base Shop Test Facility) | Possible extensions based on<br>current capability provided by<br>Grumman |
| 3        | SYSTEM CONTROL            |                                                                                                                                                                 |                                |                                                                           |
| 4        | OPERATING SYSTEM:         |                                                                                                                                                                 |                                |                                                                           |
| 5        | operating environment     | VAX/VMS                                                                                                                                                         | NIX                            | XINU                                                                      |
| 9        | TPS software environment: |                                                                                                                                                                 |                                |                                                                           |
| 7        | ATLAS                     | Y                                                                                                                                                               | γ                              | Y                                                                         |
| 80       | ADA                       | N                                                                                                                                                               | Ν                              | lfq                                                                       |
| 6        | COMPUTER                  |                                                                                                                                                                 |                                |                                                                           |
| 10       | Computer Type:            | DEC uVAX-III - 3800/3900 Series                                                                                                                                 | M68020 processor               | SPARC 10                                                                  |
| =        | address/data bits         | 32                                                                                                                                                              | 32                             | 32                                                                        |
| 12       | mips                      | 4 to 5                                                                                                                                                          | 2                              | 86                                                                        |
| 13       | clock speed (Mhz)         | 33                                                                                                                                                              | 10                             | 36                                                                        |
| 14       | main memory - Mbytes      | 32                                                                                                                                                              | 4                              | 32                                                                        |
| 15       | mass storage - Mbytes:    |                                                                                                                                                                 |                                |                                                                           |

P

| #0W | ATE SPECIFICATION<br>ITEM | CASS                                                                                           | IFTE (BSTF)         | IFTE (EXTENDED)     |
|-----|---------------------------|------------------------------------------------------------------------------------------------|---------------------|---------------------|
| 16  | permanent                 | 385 / 16 MBITS/sec                                                                             | 209                 | 424                 |
| 17  | transfer rate             | 16 Mbits/sec                                                                                   |                     |                     |
| 18  | removable                 | 625 (optical disk)                                                                             | 600 (Optical disk)  | 600 (Optical disk)  |
| 19  | transfer rate             | 2.25 Mbits/sec                                                                                 | >300K bytes/sec     | > 2 Meg Bytes/sec   |
| 20  | punched tape reader:      |                                                                                                | z                   | Z                   |
| 21  | magnetic tape reader:     | N                                                                                              | z                   | Z                   |
| 22  | I/O ports:                |                                                                                                |                     |                     |
| 23  | IEE' 802.3 Ethernet       | Y (2)                                                                                          | Y (1)               | Y (I)               |
| 24  | RS-232                    | Y (4) (also RS-423 compatible)                                                                 | Y (up to 5V levels) | Y (up to SV levels) |
| 25  | IEEE-488                  | Y (2)                                                                                          | Y (4)               | Y (4)               |
| 26  | HP-IB (enhanced IEEE-488) | Y                                                                                              | Y (optional)        | Y (optional)        |
| 27  | SCSI                      | Ν                                                                                              | Y (1)               | Y (I)               |
| 28  | RS-422                    | Υ                                                                                              |                     | Y (optional)        |
| 29  | RS-423                    | Y (see RS-232)                                                                                 | Y (4)               | Y (4)               |
| 30  | VME                       | N (Internal - no external conn)                                                                | Y (1)               | Y (I)               |
| 31  | VXI                       | N (installation in planning stages)                                                            | Ν                   | p <sup>3</sup> l    |
| 32  | Printer:                  | Y                                                                                              | Y                   | Y                   |
| 33  | characters/sec            | 240 char/sec - draft mode<br>80 char/sec - near letter quality<br>40 char/sec - letter quality | 150 char/sec        | 150 char/sec        |
|     |                           |                                                                                                |                     |                     |

| e          |
|------------|
| Me         |
| ntin       |
| Ð          |
| TE (       |
|            |
| pue        |
| <b>NSS</b> |
| 3          |
| for        |
| E.         |
| ar<br>Tar  |
| Ē          |
| S          |
| <u>io</u>  |
| Cat        |
| <b>Cif</b> |
| Sp         |
| •          |
| Ξ.         |
| le l       |
|            |
|            |

| mud d |                             |                                |                   |                   |
|-------|-----------------------------|--------------------------------|-------------------|-------------------|
| 40¥   | ALESTEURION                 | CASS                           | IFTE (BSTF)       | IFTE (EXTENDED)   |
| 34    | <b>OPERATOR INTERFACE</b>   |                                |                   |                   |
| 35    | CRT:                        |                                |                   |                   |
| 36    | screen size                 | approx 14 inch diagonal        | 13 inch           | 14 inch           |
| 37    | colors - number             | monochrome                     | 2                 | 256               |
| 38    | resolution                  | pixels 864 x 1024              | pixels: 480 x 640 | pixels 1152 x 900 |
| 39    | type                        | electroluminescent             |                   |                   |
| 40    | Input Devices:              |                                |                   |                   |
| 41    | keyboard                    | Y keys: 105                    | Y keys: 79        | Y keys: 79        |
| 42    | trackball                   | Y (RS-232-C port)              | Ν                 | Y (optional)      |
| 43    | mouse                       | Z                              | N                 | Y (optional)      |
| 44    | bar code reader             | Z                              | Ν                 | Y (optional)      |
| 45    | touchscreen                 | Z                              | Y                 | γ                 |
| 46    | hand-held terminal          | Z                              | N                 | N                 |
| 47    | <b>UUT/SYSTEM INTERFACE</b> |                                |                   |                   |
| 48    | I/O Pins:                   | Standard Patch Panel           | Gold Dot          | Gold Dot          |
| 49    | quantity                    | 1486 (total) (expandable)      | 3200              | 3200              |
| 50    | volts/pin                   | up to 200 V (1500 V breakdown) | 200 V             | 200 V             |
| 51    | power paths                 | 152                            | 400               | 400               |
| 52    | signal paths                | 1334                           | 2800              | 2800              |
| 53    | Feedthroughs:               |                                |                   |                   |

1

| #0W | ATE SPECIFICATION<br>ITEM | CASS                                     | IFTE (BSTF)                  | IFTE (EXTENDED)              |
|-----|---------------------------|------------------------------------------|------------------------------|------------------------------|
| 54  | low frequency:            |                                          |                              |                              |
| 55  | no. of pins               | 210                                      |                              |                              |
| 56  | max current               | 3 Amps                                   |                              |                              |
| 57  | frequency range           | DC to 10 MHz                             |                              |                              |
| 58  | power:                    |                                          |                              |                              |
| 59  | no. of pins               | 76                                       | 68                           | 68                           |
| 60  | max current               | 25 Amps                                  | 30A                          | 30A                          |
| 61  | frequency range           | DC to 1 kHz                              | DC - 5KHz                    | DC - 5KHz                    |
| 62  | Coax (RF):                |                                          |                              |                              |
| 63  | no. of pins               | 64                                       |                              |                              |
| 2   | max current               | 500 mA                                   |                              |                              |
| 65  | frequency range           | DC to 2 GHz                              |                              |                              |
| 86  | Digital Test Unit:        |                                          |                              |                              |
| 67  | no. of pins               | 448                                      | 224 (expandable to 480)      | 224 (expandable to 480)      |
| 68  | no. of channels           | 336 (expandable to 432)                  | 14                           | 14                           |
| 69  | data rate                 | 0 to 20 Mb/sec, 40 Mb/sec<br>interleaved | SOMBits/sec                  | 50MBits/sec                  |
| 70  | logic levels              | -5.0 to +15.0 V                          | Programmable; -30 to +30v    | Programmable; -30 to +30v    |
| 71  | compatibility:            | TTL/CMOS/ECL/DCL/DTL/RTL/<br>HTL/MOS/CMS | TTL, CMOS, ECL, analog, etc. | TTL, CMOS, ECL, analog, etc. |
| 72  | Switching:                |                                          |                              |                              |
|     |                           |                                          |                              |                              |

Ζ,

| ROW<br>#  | ATE SPECIFICATION<br>ITEM  | CASS                                                                                                                                                                                                                     | IFTE (BSTF)                       | IFTE (EXTENDED)                   |
|-----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|
| 73        | low frequency switch:      |                                                                                                                                                                                                                          |                                   |                                   |
| 74        | no. of pins                | 420                                                                                                                                                                                                                      | 130 univ., 144EP, 32 Form C = 306 | 130 univ., 144EP, 32 Form C = 306 |
| 75        | max current                | l Amp                                                                                                                                                                                                                    | ١٨                                | IA                                |
| 76        | relay matrices:            | 42 1X4 and 70 1X2                                                                                                                                                                                                        | Qty. 32, 1X2                      | Qty. 32, 1X2                      |
| 11        | frequency range            | DC to 1 MHz                                                                                                                                                                                                              | DC to 100 MHz                     | DC to 100 MHz                     |
| 78        | coax switch:               |                                                                                                                                                                                                                          |                                   |                                   |
| 62        | no. of pins                | 192                                                                                                                                                                                                                      | 13                                | 13                                |
| <b>08</b> | relay matrices :           | 33 each 1X4<br>9 each 1X2                                                                                                                                                                                                | 1 cach 4X9                        | 1 cach 4X9                        |
| 81        | frequency range            | DC to 1 GHz                                                                                                                                                                                                              | DC to 22 GHz to 10 Watts          | DC to 22 GHz to 10 Watts          |
| 82        | power switch:              |                                                                                                                                                                                                                          |                                   |                                   |
| 83        | no. of pins                | 76                                                                                                                                                                                                                       | 36                                | 36                                |
| 8         | relay matrices:            | <ul> <li>5 1X4 (high current @ 18.75 amps)</li> <li>1 1x2 (high current - 18.75 amps)</li> <li>2 1X2 (ganged high current - 18.75 amps)</li> <li>6 1X2 (low current - 9 amps) DC to 1 kHz</li> <li>DC to 1kHz</li> </ul> | Qty 12, 1x3                       | Qty 12, 1x3                       |
| 85        | Universal I/O:             |                                                                                                                                                                                                                          |                                   |                                   |
| 86        | number of pins             |                                                                                                                                                                                                                          | 130                               | 130                               |
| 87        | number of instrument ports |                                                                                                                                                                                                                          | 48                                | 48                                |
| 88        | maximum current            |                                                                                                                                                                                                                          | 1 Amp (at 28VDC)                  | 1 Amp (at 28VDC)                  |

| 80         frequency range         DC to 40 MHz, 4/: 30b         DC to 40 MHz, 4/: 30b         DC to 40 MHz, 4/: 30b           90         Extended Performance JO::         144         144           91         number of pinst         144         144           92         number of instrument ports         144         144           93         maxinum current         1         140         144           94         frequency renge         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b           94         frequency renge         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b           95         pignal/Analog Converters:         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b           96         quantity         Import of pinst         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b           97         pignal/Analog Converters:         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b           98         quantity         PC to 200 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b           97         pignal/Analog Converters:         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b         DC to 100 MHz, 4/: 30b           98         quantity         pignal// pignal         DC to 200 MJZ | ROW<br># | ATE SPECIFICATION<br>ITEM  | CASS                | IFTE (BSTF)            | IFTE (EXTENDED)        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|---------------------|------------------------|------------------------|
| Extended Performance I/O:Ittended Performance I/O:Immber of pins144number of pins144number of instrument ports48number of instrument ports1 Amp (az 38 VDC)frequency range2 Evoto 100 Mitz, 4/- 3dbDigital/Analog Converters:9upantity9post1 Amp (az 38 VDC)Digital/Analog Converters:1 Amp (az 38 VDC)Digital/Analog Converters:9upantity1 Amp (az 38 VDC)Digital/Analog Converters:1 Amp (az 38 VDC)upantity1 Amp (az 38 VDC)nampling common1 Amp (az 38 VDC)nampling converters:1 Amp (az 38 VDC)nampling rate1 Amp (az 38 VDC)synchro-resolver channel1 Do mAnampling rate2 Cexpandable to 6)Number of Channels2 Cexpandable to 6)MIL-STD-1353 AB2 Cexpandable to 6)MIL-STD-1353 AB2 Cexpandable to 6)MIL-STD-1373 AB2 Cexpandable to 6)MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-13742MIL-STD-1374<                                                                                                                                                                                                                                                                                                                                                        | 89       | frequency range            |                     | DC to 40 MHz, +/- 3db  | DC to 40 MHz, +/- 3db  |
| number of pins144number of instrument ports148number of instrument ports48maximum current1 Amp (at 28VDC)frequency rangeEcto 100 MHz, +/- 3dbDigital/Analog Converters:Ecto 100 MHz, +/- 400Digital/Analog Converters:Ecto 100 MHz, +/                              | 90       | Extended Performance I/O:  |                     |                        |                        |
| number of instrument ports48maximum current1 Amp (a. 28 VDC)frequency renge1 Amp (a. 28 VDC)frequency rengeDC to 100 MHz, +J- 3dbDigital/Analog Converters:9Digital/Analog Converters:100 mHz, +J- 3dbvoltage100 mbvoltage100 mAmax current100 mAmax current100 mAmax current100 mAmax current12 bitssampling rate12 bitssynchro-resolver channel1synchro-resolver channel2Number of Channels2 (expandable to 6)MIL-STD-1573 AB2 (expandable to 6)MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91       | number of pins             |                     | 144                    | 144                    |
| maximum currenti Amp(at 28VDC)frequency rangeDetermineDeterminefrequency rangeDetermineDetermineDigital/Analog Converters:DetermineDetermineprequantityEntermineReconverters:quantityEntermineReconverters:voltageProtocoldReconverters:max currentEntermineReconverters:max currentEntermineReconverters:max currentEntermineReconverters:max currentReconverters:Reconverters:max currentReconverters:Reconverters:muters:Reconverters:Reconverters:Muters:Reconverters:Reconverters:Muters:Reconverters:Reconverters:Reconverters:Reconverters:Reconverters:Reconverters:Reconverters:Reconverters:Reconverters:Reconverters:Reconverters:Reconverters: <td< td=""><td>92</td><td>number of instrument ports</td><td></td><td>48</td><td>48</td></td<>                                                                                                                                                                                                   | 92       | number of instrument ports |                     | 48                     | 48                     |
| frequency rengeDC to 100 MHz, +/- 3dbDigital/Analog Converters:Pigital/Analog Converters:Digital/Analog Converters:RquantityRquantityRnumberUoltagenumberIDV to +10VnumberIDV to +10V <trr>numb</trr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93       | maximum current            |                     | 1 Amp (at 28VDC)       | 1 Amp (at 28VDC)       |
| Digital/Analog Convecters:Digital/Analog Convecters:quantityguantityquantity8voltage-10V to-10Vnax current100 mAmax current100 mAresolution12 bitssampling rate12 bitssynchro-resolver channel12 bitsNumber of Channels2Number of Channels2Protocols Avaitable:2ML-STD-1553 AB2ML-STD-1553 AB2ML-STD-1553 AB2ML-STD-1553 AB2ML-STD-1553 AB2ML-STD-1553 AB2ELARS-232-C2BLARS-232-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94       | frequency range            |                     | DC to 100 MHz, +/- 3db | DC to 100 MHz, +/- 3db |
| quantity8voltage $-10V to +10V$ nax current $-10V to +10V$ max current $100 mA$ max current $12 bits$ resolution $12 bits$ sampling rate $12 bits$ synchro-resolver channel $1 contextrentsynchro-resolver channel1 contextrentNumber of Channels1 contextrentNumber of Channels2 contextrentProtocols Available:2 (expandable to 6)ML-STD-1553 A/B2 (expandable to 6)ML-STD-17732 contextrentML-STD-17732 contextrent$                                                                                                                                                                                                                                                                                                                                               | 95       | Digital/Analog Converters: |                     |                        |                        |
| voltage-10V to+10Vmax current100 mAresolution100 mAresolution12 bitssampling rate12 bitssynchro-resolver channel1voltage1Number of Channels1Munber of Channels2Munber of Channels3Munber of Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96       | quantity                   |                     | 8                      | 8                      |
| max currentI00 mAresolutionresolutionresolution12 bitssampling rate1synchro-resolver channel1synchro-resolver channel1Number of Channels2Number of Channels2Protocols Available:2ML-STD-1553 A/B2<(expandable to 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67       | voltage                    |                     | -10V to +10V           | -10V to +10V           |
| resolutionI2 bitssampling rate12 bitssynchro-resolver channel1synchro-resolver channel1Number of Channels2Number of Channels2Protocols Available:2MLL-STD-1553 A/B2 (expandable to 6)MLL-STD-1573 A/B2MLL-STD-1397A2MLL-STD-1397A2EIA RS-232-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98       | max current                |                     | 100 mA                 | 100 mA                 |
| sampling ratesampling ratesynchro-resolver channel1synchro-resolver channel1Number of Channels2Number of Channels2Protocols Available:2ML-STD-1533 A/B2 (expandable to 6)ML-STD-17732ML-STD-17732ML-STD-17732ML-STD-17732EIA RS-232-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66       | resolution                 |                     | 12 bits                | 12 bits                |
| synchroresolver channel1BUSSES1BUSSES1Number of Channels2Number of Channels2Protocols Available:2MIL-STD-1553 A/B2 (expandable to 6)MIL-STD-17732MIL-STD-17732MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2MIL-STD-137A2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100      | sampling rate              |                     |                        |                        |
| BUSSESBUSSESNumber of Channels2Protocols Available:2Protocols Available:7MLSTD-1553 A/B2 (expandable to 6)MLSTD-1553 A/B2 (expandable to 6)MLSTD-17732MLSTD-17732MLSTD-17732EIA RS-232-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101      | synchro-resolver channel   |                     | l                      |                        |
| Number of Channels2Protocols Available:2ML-STD-1553 A/B2 (expandable to 6)ML-STD-1733 A/B2ML-STD-17732ML-STD-17732ML-STD-17732EIA RS-232-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102      | BUSSES                     |                     |                        |                        |
| Protocols Available:Example (1)ML-STD-1553 A/B2 (expandable to 6)YML-STD-17732NML-STD-17732NML-STD-1397A2NEIA RS-232-C2Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103      | Number of Channels         |                     | 2                      | 2                      |
| MIL-STD-1553 A/B         2 (expandable to 6)         Y           MIL-STD-1773         2         N           MIL-STD-1773         2         N           MIL-STD-1773         2         N           EIA RS-232-C         2         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104      | Protocols Available:       |                     |                        |                        |
| MIL-STD-1773         2         N           MIL-STD-1397A         2         N           EIA RS-232-C         2         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105      | MIL-STD-1553 A/B           | 2 (expandable to 6) | Y                      | Υ                      |
| MIL-STD-1397A         2         N           EIA RS-232-C         2         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106      | MIL-STD-1773               | 2                   | N                      | Yes with transceiver   |
| EIA RS-232-C 2 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107      | MIL-STD-1397A              | 2                   | N                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108      | EIA RS-232-C               | 2                   | γ                      | Y                      |

a Calendar

4

| ROW<br># | ATE SPECIFICATION<br>ITEM  | CASS | IFTE (BSTF)                                | IFTE (EXTENDED)                            |
|----------|----------------------------|------|--------------------------------------------|--------------------------------------------|
| 129      | ASPJ status bus            | N    |                                            |                                            |
| 130      | MCAIR 3818A                | 2    |                                            |                                            |
| 131      | Frequency range:           |      | DC to 70 MHz<br>-10 to +10 volts p-p       | DC to 1 MHz<br>-10 to +10 volts p-p        |
| 132      | VIDEO                      |      |                                            |                                            |
| 133      | Video Signal Generation:   |      |                                            |                                            |
| 134      | horizontal timing          |      | .01 to 1000 msec                           | .01 to 1000 msec                           |
| 135      | horizontal resolution      |      | 0.00005 msec                               | 0.00005 msec                               |
| 136      | vertical timing            |      | 2 to 4096 horiz half-lines                 | 2 to 4096 horiz half-lines                 |
| 137      | vertical timing resolution |      | 1 half-line                                | 1 half-line                                |
| 138      | synch format               |      | All Video Formats, Comp,<br>Separate, etc. | All Video Formats, Comp,<br>Separate, etc. |
| 139      | video data                 |      |                                            |                                            |
| 140      | video output modes:        |      |                                            |                                            |
| 141      | output 1                   |      | 0 to 4 V (pp) with 20 MHz BW               | 0 to 4 V (pp) with 20 MHz                  |
| 142      | output 2                   |      | Y, 20 MHz                                  | Y, 20 MHz                                  |
| 143      | output 3                   |      | Y, 20 MHz                                  | Y, 20 MHz                                  |
| 144      | output 4                   |      | N                                          | if needed                                  |
| 145      | output 5                   |      | Z                                          | if needed                                  |
| 146      | output 6                   |      | N                                          | if needed                                  |
|          |                            |      |                                            |                                            |

| #OW | ATE SPECIFICATION<br>ITEM    | CASS | IFTE (BSTF)                                                                                                                                                                                                                                                                                                            | IFTE (EXTENDED)                                                                                                                                                                                                                                                                                                              |
|-----|------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 147 | output 7                     |      |                                                                                                                                                                                                                                                                                                                        | if needed                                                                                                                                                                                                                                                                                                                    |
| 148 |                              |      | Display Analyzer                                                                                                                                                                                                                                                                                                       | Display Analyzer                                                                                                                                                                                                                                                                                                             |
| 149 | Display Measurement:         |      | Composite Image Acquisition                                                                                                                                                                                                                                                                                            | Composite Image Acquisition                                                                                                                                                                                                                                                                                                  |
| 150 | placement                    |      | - Full Frame Aquisition                                                                                                                                                                                                                                                                                                | - Full Frame Aquisition                                                                                                                                                                                                                                                                                                      |
| 151 |                              |      | - Pixel Resolution = 4 bits                                                                                                                                                                                                                                                                                            | - Pixel Resolution = 4 bits                                                                                                                                                                                                                                                                                                  |
| 152 | resolution                   |      | - Max. Pixel/Line = 2048                                                                                                                                                                                                                                                                                               | - Max. Pixel/Line = 2048                                                                                                                                                                                                                                                                                                     |
| 153 | intensity                    |      | - Max. Digitizing Rate = 40MHz                                                                                                                                                                                                                                                                                         | - Max. Digitizing Rate = 40MHz                                                                                                                                                                                                                                                                                               |
| 154 | intensity variation          |      | - Digitizing Accuracy = +/- 1/4<br>LSB                                                                                                                                                                                                                                                                                 | - Digitizing Accuracy = +/- 1/4<br>LSB                                                                                                                                                                                                                                                                                       |
| 155 | Field Of View                |      | - Auto Lock on Video Line<br>Frequency Between 4.5KHz -<br>45KHz                                                                                                                                                                                                                                                       | - Auto Lock on Video Line<br>Frequency Between 4.5KHz -<br>45KHz                                                                                                                                                                                                                                                             |
| 156 | modulation transfer function |      | - Software Target Image Display                                                                                                                                                                                                                                                                                        | - Software Target Image Display                                                                                                                                                                                                                                                                                              |
| 157 |                              |      | <ul> <li>Raster/Stroke Image Acquisition</li> <li>Captures Rectilinear Raster, Polar<br/>Raster and Stroke Video"</li> <li>Normalized Image Written into<br/>X-Y-Z Array of 256 x 1</li> <li>Max. Digitizing Rate = 20 MHz</li> <li>Digitizing Accuracy: +/- 1 LSB<br/>for X and Y</li> <li>+/- 1/8 LSB for</li> </ul> | <ul> <li>Raster/Stroke Image Acquisition</li> <li>Captures Rectilinear Raster, Polar<br/>Raster and Stroke Video"</li> <li>Normalized Image Written into<br/>X-Y-Z Array of 256 x 256 x 16</li> <li>Max. Digitizing Rate = 20MHz</li> <li>Digitizing Accuracy: +/- 1 LSB<br/>for X and Y</li> <li>+/- 1/8 LSB for</li> </ul> |
| 158 | DIGITAL TESTING              |      |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |
| 159 | Pattern Rate - Patterns/Sec  |      |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |
|     |                              |      |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |

| ROW<br># | ATE SPECIFICATION<br>ITEM   | CASS                               | IFTE (BSTF)                               | IFTE (EXTENDED)                           |
|----------|-----------------------------|------------------------------------|-------------------------------------------|-------------------------------------------|
| 160      | test rates:                 | see digital test unit section      |                                           |                                           |
| 161      | minimum                     | see digital test unit section      | static                                    | static                                    |
| 162      | maximum                     | see digital test unit section      | 50 million patterns/sec                   | 50 million patterns/sec                   |
| 163      | I/O pins                    | see digital test unit section      | 192 (expandable to 480)                   | 192 (expandable to 480)                   |
| 164      | memory depth / pin          | 16 kbits/pin                       | 4 Kbits/pin (16 Kbits/pin @ 20-<br>50MHz) | 4 Kbits/pin (16 Kbits/pin @ 20-<br>50MHz) |
| 165      | EEPROM programming<br>pulse | Z                                  | Y                                         | Y                                         |
| 166      | Digital Test Unit:          |                                    |                                           |                                           |
| 167      | Bit Rate                    | 0 to 20 MHz; to 40 MHz interleaved | 0 to 50 MHz                               | 0 to 50 MHz                               |
| 168      | pin interface               | 336 (168 in interleaved mode)      | 192 to 20MHz, 48 to 50MHZ                 | 192 to 20MHz, 48 to 50MHZ                 |
| 169      | voltage ranges              | -5 to +15 V                        | -10 to +10v (+/-30v @ 0-10MHz)            | -10 to +10v (+/-30v @ 0-10MHz)            |
| 170      | clock speed                 | 16 kHz to 20 MHz                   | 50 MHz                                    | 50 MHz                                    |
| 171      | Diagnostic Probe: (digital) |                                    |                                           |                                           |
| 172      | voltage range               | -5 v to +15 v                      | -30 v to +30 v                            | -30 v to +30 v                            |
| 173      | input data rate (max)       | 20 MHz                             | 50 MHz                                    | 50 MHz                                    |
| 174      | resolution                  | 10 mV                              | 4.88 millivolts                           | 4.88 millivolts                           |
| 175      | compatibility               | TTL/CMOS/ECL/discrete              | TTL, CMOS, ECL, Analog, etc.              | TTL, CMOS, ECL, Analog, etc.              |
| 176      | propagation delay           | 50 nsec maximum                    |                                           |                                           |
| 177      | logic threshold             | -4.00 V to +10.24 V                | -30v to +30v                              | -30v to +30v                              |
| 178      | pulse detection             | 20 nsec                            | 20 ns, min.                               | 20 ns, min.                               |
|          |                             |                                    |                                           |                                           |

| ROW<br>*    | ATE SPECIFICATION<br>ITEM  | CASS                                                  | IFTE (BSTF)                                                            | IFTE (EXTENDED)                                                        |
|-------------|----------------------------|-------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| 179         | input impedance            | 500 kohms in parallel with 20 pF                      | 10 M ohm                                                               | 10 M ohm                                                               |
| <b>18</b> 0 | output impedance           |                                                       | 22 ohm                                                                 | 22 ohm                                                                 |
| 181         | Timing Generation:         |                                                       |                                                                        |                                                                        |
| 182         | frequency range            | 16 kHz to 20 MHz                                      | 11 MHz -220 MHz                                                        | 11 MHz -220 MHz                                                        |
| 183         | pulse width range          | 25 nsec to 62.5 usec                                  | 2.27ns - 45.45ns                                                       | 2.27ns - 45.45ns                                                       |
| 184         | Time Interval Measurement: | available using frequency/time<br>interval counter or |                                                                        |                                                                        |
| 185         | period                     | waveform digitizer                                    | Y                                                                      | Y                                                                      |
| 186         | pulse characteristics      |                                                       | Y                                                                      | Y                                                                      |
| 187         | range                      |                                                       | 100ns to 10,000 sec.                                                   | 100ns to 10,000 sec.                                                   |
| 188         | ANALOG SWITCHING           |                                                       |                                                                        |                                                                        |
| 189         |                            |                                                       |                                                                        |                                                                        |
| 190         | number signal paths        | see switching section                                 | 30 Univ.,144 EP, 32 Form C = 306                                       | 130 Univ., 144 EP, 32 Form C = 306                                     |
| 191         | bandwidth at voltage       |                                                       | 100 MHz, +/- 3db                                                       | 100 MHz, +/- 3db                                                       |
| 192         | LOADS                      |                                                       |                                                                        |                                                                        |
| 193         | Programmable Loads:        | 1 to 5000 ohms +/- 5%                                 | 80                                                                     | 8                                                                      |
| 194         | max power dissipation      | 500 Watts                                             | Max 3000w Total = 750w, 300w,<br>300w, 750w, 750w, 750w, 750w,<br>750w | Max 3000w Total = 750w, 300w,<br>300w, 750w, 750w, 750w,<br>750w, 750w |
| 195         | max voltage                | 500 Volts                                             | 50v, 50v, 50v, 50v, 130v, 130v,<br>130v, 250v                          | 50v, 50v, 50v, 50v, 130v, 130v,<br>130v, 250v                          |

2. M. F.

1 N

૾ૺૢ૾ૢઙ

| ROW<br># | ATE SPECIFICATION<br>ITEM           | CASS                            | IFTE (BSTF)                                                                           | IFTE (EXTENDED)                                                                      |
|----------|-------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 196      | max current                         | 20 amps +/- 100mA               | 30, 15A, 15A, 30A, 15A, 15A,<br>15A, 5A                                               | 30, 15A, 15A, 30A, 15A, 15A,<br>15A, 5A                                              |
| 197      | Programmable Precision<br>Resistor: |                                 |                                                                                       |                                                                                      |
| 198      | range                               |                                 |                                                                                       |                                                                                      |
| 199      | accuracy                            | +/- 0.25 %                      |                                                                                       |                                                                                      |
| 200      | Fixed Resistance:                   | see calibration signals section |                                                                                       |                                                                                      |
| 201      | quantity                            |                                 | 10                                                                                    | 10                                                                                   |
| 202      | values                              |                                 | 50 ohm (qty2), 75 ohm (qty2),<br>100 ohm (qty 2), 500 ohm<br>(qty2),1000 ohm (qty 2)" | 50 ohm (qty2), 75 ohm (qty2),<br>100 ohm (qty2), 500 ohm (qty2),<br>1000 ohm (qty2)" |
| 203      | <b>ANALOG STIMULI</b>               |                                 |                                                                                       |                                                                                      |
| 204      | Arb Funct/Wave Gen:                 |                                 |                                                                                       |                                                                                      |
| 205      | channels                            | 2                               | 4                                                                                     | 4                                                                                    |
| 206      | amplitude                           | -5 V to +5 V                    | 50 mv to 10v p-p                                                                      | 50 mv to 10v p-p                                                                     |
| 207      | amplitude resolution                | 0.5% (ch A); 0.03%(ch B)        | 0.50%                                                                                 | 0.50%                                                                                |
| 208      | sine waveform                       | Y                               | Υ                                                                                     | γ                                                                                    |
| 209      | square waveform                     | Y                               | Υ                                                                                     | Y                                                                                    |
| 210      | pulsed DC waveform                  | Υ                               | Υ                                                                                     | γ                                                                                    |
| 211      | ramp waveform                       | Y                               | Y                                                                                     | Υ                                                                                    |
| 212      | arbitrary waveform                  | Y                               | Υ                                                                                     | γ                                                                                    |
| 213      | DC level waveform                   | Y (using arbitrary waveform)    | γ                                                                                     | ۲                                                                                    |
|          |                                     |                                 |                                                                                       |                                                                                      |

.

. 5

|                          | ITEM                             | CASS                         | IFTE (BSTF)                               | IFTE (EXTENDED)                           |
|--------------------------|----------------------------------|------------------------------|-------------------------------------------|-------------------------------------------|
|                          |                                  | ~                            |                                           |                                           |
|                          |                                  |                              | I                                         | ł                                         |
|                          |                                  | Y (using arbitrary waveform) |                                           | Υ                                         |
|                          | ise                              | Y (using arbitrary waveform) |                                           | Y                                         |
|                          |                                  | Y (using arbitrary waveform) |                                           | Y                                         |
|                          | ä                                |                              |                                           |                                           |
| 99<br>92                 | pulsed DC and square wave        | 0.01 Hz to 25 MHz            | 0.005Hz to 25 MHz                         | 0.005Hz to 25 MHz                         |
|                          |                                  | 0.01 Hz to 25 MHz            | 0.02Hz to 2 MHz                           | 0.02Hz to 2 MHz                           |
| 089<br>22                | triangle and sawtooth wave       | 0.01 Hz to 25 MHz            | 0.2 MHz to 2 MHz                          | 0.2 MHz to 2 MHz                          |
| 05 U                     | ave                              | 48 Hz to 200 MHz clock rate  | 0.006 to 12.5 MHz                         | 0.006 to 12.5 MHz                         |
|                          |                                  | 10 mV to 80 mV               | 20 nsec                                   | 20 nsec                                   |
|                          | pulsed DC and square wave        | 0.1% of frequency            | 20 nsec                                   | 20 nsec                                   |
|                          |                                  | 0.008 Hz to 0.1 Hz           | 20 nsec                                   | 20 nsec                                   |
|                          |                                  | 0.1% of frequency            | 20 nsec                                   | 20 nsec                                   |
|                          |                                  | 0.1% of freq                 | 20 nsec                                   | 20 risec                                  |
| 228 point genera<br>wave | point generation for arb<br>wave | 5 nsec maximum               | 20 nsec                                   | 20 nsec                                   |
| 229 max. point g         | max. point generation rate       | 200 Mpoints/sec              | 50 Million/sec.                           | 50 Million/sec.                           |
| 230 available mo         | available modes of operation     | TACAN, ILS, VOR              | Continuous, burst, triggered(int/<br>ext) | Continuous, burst, triggered(int/<br>ext) |
| 231 dual phase mode      |                                  | γ                            | Y                                         | Y                                         |
| 232 Discrete Generator:  | tor:                             |                              |                                           |                                           |

D-14

٢

1

)

)

)

)

)

J

)

)

ļ

)

|       | ATE SPECIFICATION<br>ITEM | CASS                                                                                     | IFTE (BSTF)                     | IFTE (EXTENDED)                 |
|-------|---------------------------|------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| 233 1 | Pulse Generator:          |                                                                                          |                                 |                                 |
| 234   | quantity                  | 2                                                                                        | 4                               | 4                               |
| 235   | period range              | 4 nsec to 99.9 msec                                                                      | 40 nsec to 20 sec               | 40 nsec to 20 sec               |
| 236   | pulse width               | 2 nsec to 89.9 sec                                                                       | 20 nsec to 39.995 nsec          | 20 nsec to 39.995 nsec          |
| 237   | accuracy                  | +/-5%                                                                                    | +/-(.001% of programmed value)  | +/-(.001% of programmed value)  |
| 238   | amplitude                 | -5V to +5V                                                                               | 50 mv to 10 v                   | 50 mv to 10 v                   |
| 239   | delay                     | 0 to 89.9 msec                                                                           | 10.0 nsec to 19.995 sec.        | 10.0 nsec to 19.995 sec.        |
| 240   | double pulse              | 6 nsec to 89.9 msec                                                                      |                                 |                                 |
| 241   | pulse burst count         | 1 to <u>9999</u>                                                                         |                                 |                                 |
| 242   | Counter/Timer Stimulus:   | Available via Arbitrary Waveform<br>Generator or RF Synthesizer or<br>Synchro Generation |                                 |                                 |
| 243   | voltage levels            |                                                                                          | 50 mv to 100 v                  | 50 mv to 100 v                  |
| 244   | frequency range           |                                                                                          | 0.005 Hz to 100 MHz             | 0.005 Hz to 100 MHz             |
| 245   | duty cycle                |                                                                                          | 0.1% to 99.9%                   | 0.1% to 99.9%                   |
| 246   | time delays               |                                                                                          | 100 nsec to 10,000 sec.         | 100 nsec to 10,000 sec.         |
| 247   | resolution of delay       |                                                                                          | 10 nsec                         | 10 nsec                         |
| 248   | accuracy of delay         |                                                                                          | <b>%100</b> .                   | .001%                           |
| 249   | pulse width               |                                                                                          | 20 nsec to 39.995 sec.          | 20 nsec to 39.995 sec.          |
| 250   | resolution of pulse width |                                                                                          | 20 nsec                         | 20 nsec                         |
| 251   | accuracy of pulse width   |                                                                                          | +/-(0.001% of programmed value) | +/-(0.001% of programmed value) |

| ROW<br># | ATE SPECIFICATION<br>ITEM     | CASS                                          | IFTE (BSTF)                                                                                    | IFTE (EXTENDED)                                                                                |
|----------|-------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 252      | digital to synchro generation |                                               |                                                                                                |                                                                                                |
| 253      | voltage level                 |                                               | 11.8/90 Vims                                                                                   | 11.8/90 Vrms                                                                                   |
| 254      | accuracy                      |                                               | 0.12 degree no load/0.36 degrees<br>full load<br>0.02 degree @ 60 Hz/0.01 degree<br>@ 400-1KHz | 0.12 degree no load/0.36 degrees<br>full load<br>0.02 degree @ 60 Hz/0.01 degree<br>@ 400-1KHz |
| 255      | power                         |                                               | 1.5 VA                                                                                         | 1.5 VA                                                                                         |
| 256      | Synchro Generation:           |                                               |                                                                                                |                                                                                                |
| 257      | quantity                      | 3                                             |                                                                                                |                                                                                                |
| 258      | angular range                 | 0 to 360 degree                               | 0 to 359.98 degrees                                                                            | 0 to 359.98 degrees                                                                            |
| 259      | resolution                    | 0.01 degree                                   | 0.02 degree @ 60 Hz/0.01 degree<br>@ 400-1KHz                                                  | 0.02 degree @ 60 Hz/0.01 degree<br>@ 400-1KHz                                                  |
| 260      | angular rate                  | -100 to +100 deg/sec                          | 140 degrees/Sec Max                                                                            | 140 degrees/Sec Max                                                                            |
| 261      | index ref position            |                                               | 0 degrees                                                                                      | 0 degrees                                                                                      |
| 262      | reference voltage             | 115 Vrms or 26 Vrms                           | 26/115 Vrms                                                                                    | 26/115 Vrms                                                                                    |
| 263      | voltage (synchro)             | 11.8 Vrms, 26 Vrms, or 90 Vrms                | 11.8/90 Vrms                                                                                   | 11.8/90 Vrms                                                                                   |
| 264      | reference frequency           | 47 Hz to 1 kHz                                | 60 Hz - 1 KHz                                                                                  | 60 Hz - 1 KHz                                                                                  |
| 265      | frequency range               | 47 Hz to 1 kHz                                | 60 Hz - 1 KHz                                                                                  | 60 Hz - 1 KHz                                                                                  |
| 266      | Function Generator:           | available via arbitrary waveform<br>generator |                                                                                                |                                                                                                |
| 267      | quantity                      |                                               | 4                                                                                              | 4                                                                                              |
| 268      | amplitude                     |                                               | 50 mv to 10 Vp-p                                                                               | 50 mv to 10 Vp-p                                                                               |

| Table D-1                                                 |  |
|-----------------------------------------------------------|--|
| D-1 Specification Summaries for CASS and IFTE (Continued) |  |
| TE (Continued)                                            |  |

6

| ROW<br># | ATE SPECIFICATION<br>ITEM       | CASS                                                             | IFTE (BSTF)                                                | IFTE (EXTENDED)                                            |
|----------|---------------------------------|------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| 269      | slew rate                       |                                                                  | 500,000 V/msec                                             | 500,000 V/msec                                             |
| 270      | rise time                       |                                                                  | < 50 nsec or < 5.0 c (exp -11) ms                          | < 50 nsec or < 5.0 c (exp -11) ms                          |
| 271      | waveforms available:            |                                                                  |                                                            |                                                            |
| 272      | sine wave                       |                                                                  | Y                                                          | Y                                                          |
| 273      | square wave                     |                                                                  | Y                                                          | Y                                                          |
| 274      | ramp (sawtooth) wave            |                                                                  | Y                                                          | Y                                                          |
| 275      | triangle                        |                                                                  | Y                                                          | Y                                                          |
| 276      | pulse                           |                                                                  | Y                                                          | Y                                                          |
| 277      | frequency range                 |                                                                  | 0.02 Hz to 25 MHz                                          | 0.02 Hz to 25 MHz                                          |
| 278      | arbitrary function              |                                                                  | 4096 points                                                | 4096 points                                                |
| 279      | special capabilities            |                                                                  | (Int, Burst Mode, Triggered (Int/<br>Ext), dual phase mode | (Int, Burst Mode, Triggered (Int/<br>Ext), dual phase mode |
| 280      | Square Wave Output:             | available via arbitrary waveform<br>generator or pulse generator |                                                            |                                                            |
| 281      | frequency range                 |                                                                  | .005 Hz to 25 MHz                                          | .005 Hz to 25 MHz                                          |
| 282      | frequency accuracy              |                                                                  | +/- 0.001% PV                                              | +/- 0.001% PV                                              |
| 283      | frequency resolution            |                                                                  | .005 Hz                                                    | .005 Hz                                                    |
| 284      | phase shift range               |                                                                  | +/- 180 degrees                                            | +/- 180 degrees                                            |
| 285      | duty cycle                      |                                                                  | 0.1% to 99.9%                                              | 0.1% to 99.9%                                              |
| 286      | amplitude                       |                                                                  | 50 mv to 10 Vp-p                                           | 50 mv to 10 Vp-p                                           |
| 287      | AC Line of Sight Seeker (Loss): |                                                                  |                                                            |                                                            |
|          |                                 |                                                                  |                                                            |                                                            |

D-17

| ROW<br># | ATE SPECIFICATION<br>ITEM           | CASS                                                        | IFTE (BSTF)                    | IFTE (EXTENDED)                |
|----------|-------------------------------------|-------------------------------------------------------------|--------------------------------|--------------------------------|
| 288      | amplitude                           |                                                             |                                |                                |
| 289      | phase                               |                                                             |                                |                                |
| 290      | frequency                           |                                                             |                                |                                |
| 291      | ANALOG MEASUREMENT                  |                                                             |                                |                                |
| 292      | Digital Multi-Meter:                |                                                             |                                |                                |
| 293      | DC range                            | 0 to 1000 V (200 V direct, up to<br>1000 V w/ probe)        | 0.1V to 200V                   | 0.1V to 200V                   |
| 294      | DC resolution                       | 1 uV to 100 mV (range dependent)                            | 1 uV to 10mV (range dependent) | 1 uV to 10mV (range dependent) |
| 295      | AC range                            | 0 to 700 Vrms (200 V direct, up to<br>700 V w/ probe)       | 0.1 V to 300V                  | 0.1 V to 300V                  |
| 296      | AC resolution                       | 1 uV to 100 mV (range dependent)                            | 1 uV to 10mV (range dependent) | 1 uV to 10mV (range dependent) |
| 297      | current range                       | 0 to 2 A DC or AC                                           |                                |                                |
| 298      | current resolution                  | 100 pA to 100 uA DC / 10nA to<br>100uA AC (range dependent) |                                |                                |
| 299      | resistance range                    | 0 to 30 Mohm                                                | 1 ohm to 10 Mohm               | 1 ohm to 10 Mohm               |
| 300      | AC Voltage Ratio                    | calculated                                                  |                                |                                |
| 301      | DC Voltage Ratio                    | calculated                                                  |                                |                                |
| 302      | Frequency/Time Interval<br>Counter: |                                                             |                                |                                |
| 303      | frequency range                     | 0.001 Hz to 200 MHz                                         | DC to 100MHz                   | DC to 100MHz                   |
| 304      | time interval range                 | 4 nsec to 15000 sec                                         | 100nsec to 10E3 sec            | 100nsec to 10E3 sec            |
|          |                                     |                                                             |                                |                                |

| #<br># | ATE SPECIFICATION<br>ITEM      | CASS                                                                 | IFTE (BSTF)                                 | IFTE (EXTENDED)                                |
|--------|--------------------------------|----------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|
| 305    | input voltage range            | 100 mVpp to 10 Vpp                                                   | 100 mV to 200 V (1 Meg Ohm input impedance) | 100 mV to 200 V (1 Meg Ohm<br>input impedance) |
| 306    | count events                   | 0 to 10E12-1                                                         | 100 mV to 7 V (50 Ohm input<br>impeddance)  | 100 mV to 7 V (50 Ohm input<br>impeddance)     |
| 307    | Microwave Counter:             | Y                                                                    |                                             | Z                                              |
| 308    | Frequency Response<br>Analyzer | available via microwave transition<br>analyzer or spectrum analyzer  |                                             | Y                                              |
| 309    | Vector Voltmeter:              | available via microwave transition<br>analyzer                       |                                             | Y (option)                                     |
| 310    | Sampling Signal Analyzer:      | available via microwave transition<br>analyzer                       |                                             |                                                |
| 311    | resolution                     |                                                                      |                                             | 12 bits                                        |
| 312    | rate                           |                                                                      |                                             | to 100MHz                                      |
| 313    | resolution                     |                                                                      |                                             | 10 nsec                                        |
| 314    | Waveform Digitizer:            |                                                                      |                                             |                                                |
| 315    | channels                       | 4                                                                    | 2                                           | 2                                              |
| 316    | input voltage range            | +/- 4 mV to +/- 200 V (1 Mohm/50<br>ohm) 450V with external probe    | +/- 100mV to +/- 100V                       | +/- 100mV to +/- 100V                          |
| 317    | frequency response             | DC to 500 MHz                                                        | DC to 50MHz                                 | DC to 50MHz                                    |
| 318    | amplitude resolution           | 8 bits (10 bits averaging) (+/- 0.1%)                                | 12 bits up to 2MHz, 8 bits up to<br>100MHz  | 12 bits up to 2MHz, 8 bits up to<br>100MHz     |
| 319    | sampling interval              | 25 usec to 50 sec (2 nsec interleaved resolution, real time 50 nsec) | 10nsec to 42.9 sec (10 nsec inter-<br>vals) | 10nsec to 42.9 sec (10 nsec<br>intervals)      |
|        |                                |                                                                      |                                             |                                                |

| ROW<br># | ATE SPECIFICATION<br>ITEM | CASS                             | IFTE (BSTF)                                      | IFTE (EXTENDED)                                  |
|----------|---------------------------|----------------------------------|--------------------------------------------------|--------------------------------------------------|
| 320      | storage depth             | 1024 points/channel              | 1001 samples (max)                               | 4096 Samples, Max                                |
| 321      | sampling/conversion rate  | 30 Hz to 20 MHz                  | SOMH <sub>2</sub> BW                             | SOMHz BW                                         |
| 322      | Synchro-Resolver:         | 3                                |                                                  |                                                  |
| 323      | angular range             | 0 to 360 degrees                 | 0 to 359.98 degrees                              | 0 to 359.98 degrees                              |
| 324      | resolution                | 0.00035 degree (fine/36X)        | 0.02 degrees @ 60Hz/0.01 degrees<br>@ 400-1KHz   | 0.02 degrees @ 60Hz/0.01 degrees<br>@ 400-1KHz   |
| 325      | angular rate (max)        | 720 deg/sec                      | 140 degrees/sec<br>110 deg/sec @ 60 Hz           | 140 degrees/sec                                  |
| 326      | reference voltage         | 10 to 130 Vrms                   | 10 to 100 Vrms                                   | 10 to 100 Vrms                                   |
| 327      | voltage (synchro)         | 11.8 Vrms, 26 Vrms or 90 Vrms    |                                                  |                                                  |
| 328      | reference frequency       | 47 Hz to 1 KHz                   | 47 Hz to 1 KHz                                   | 47 Hz to 1 KHz                                   |
| 329      | accuracy                  | +/- 0.005 deg                    | +/- 0.1 degrees                                  | +/- 0.1 degrees                                  |
| 330      | resolution                |                                  | 0.02 degrees @ 60Hz/0.01 degrees<br>@ 400Hz-1KHz | 0.02 degrees @ 60Hz/0.01 degrees<br>@ 400Hz-1KHz |
| 331      | frequency range           | 47 Hz to 1 kHz                   | 60Hz - 1KHz                                      | 60Hz - IKHz                                      |
| 332      | index reference position  |                                  | 0 degrees                                        | 0 degrees                                        |
| 333      | Oscilloscope:             | available via waveform digitizer |                                                  | Option                                           |
| 334      | traces                    |                                  |                                                  |                                                  |
| 335      | bandwidth                 |                                  |                                                  |                                                  |
| 336      | DC POWER                  |                                  |                                                  |                                                  |
| 337      | PROGRAMMABLE:             |                                  |                                                  |                                                  |

| ROW<br># | ATE SPECIFICATION<br>ITEM | CASS                                | IFTE (BSTF)                          | IFTE (EXTENDED)                      |
|----------|---------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| 338      | Low Voltage:              | 0-32V(8);0-100V(1); 0-450V(2)       | 0-7V(2); 0-16V(2); 0-36V(1) **       | 0-7V(2); 0-16V(2); 0-36V(1) **       |
| 339      | quantity                  | 11 (expandable)                     | 12                                   | 12                                   |
| 340      | max. watts per supply     | 900 Watts                           | 150                                  | 150                                  |
| 341      | max. voltage              | 450 V                               | 7V; 16V; 36V                         | 7V; 16V; 36V                         |
| 342      | max. current              | 25 A 32 V @ 125 A when in parallel) | 20.5A; 9.1A, 4.1A                    | 20.5A; 9.1A, 4.1A                    |
| 343      | High Voltage:             |                                     | 0.55V(2); 0-100V(1); 0-200V(4)<br>** | 0.55V(2); 0-100V(1); 0-200V(4)<br>** |
| 344      | quantity                  |                                     | 0                                    | 0                                    |
| 345      | voltage range             |                                     | 0-55V; 0-100V; 0-200V                | 0-55V; 0-100V; 0-200V                |
| 346      | max. current              |                                     | 2.5A; 15A; 0.75A                     | 2.5A; 15A; 0.75A                     |
| 347      | Current Source:           | see calibration signals section     |                                      |                                      |
| 348      | unit 1: amplitude         |                                     | 0-20.5A(2); 0-9.1A(2); 0-4.1A(2)     | 0-20.5A(2); 0-9.1A(2); 0-4.1A(2)     |
| 349      | resolution                |                                     | 10mA; 10mA; 10mA                     | 10mA; 10mA; 10mA                     |
| 350      | unit 2-6: amplitude       |                                     | 0-2.5A(2); 0-1.5A(2); 0-0.75A(2)     | 0-2.5A(2); 0-1.5A(2); 0-0.75A(2)     |
| 351      | resolution                |                                     | 10mA; 10mA; 10mA                     | 10mA; 10mA; 10mA                     |
| 352      | FIXED:                    | 0                                   |                                      |                                      |
| 353      | quantity                  |                                     |                                      |                                      |
| 354      | volts                     |                                     | 28 VDC                               | 28 VDC                               |
| 355      | amperes                   |                                     | 22.5 A                               | 22.5 A                               |
| 356      | waits                     |                                     | 630 Watts                            | 630 Watts                            |
|          |                           |                                     |                                      |                                      |

| ROW<br># | ATE SPECIFICATION<br>ITEM    | CASS                                                             | IFTE (BSTF)                  | IFTE (EXTENDED)              |
|----------|------------------------------|------------------------------------------------------------------|------------------------------|------------------------------|
| 357      | REFERENCE:                   | see calibration signals section                                  |                              |                              |
| 358      | quantity                     |                                                                  | ∞                            | 8                            |
| 359      | voltage range                |                                                                  | +i0 V to -10 V               | +10 V to -10 V               |
| 360      | current                      |                                                                  | 100 mA                       | 100 mA                       |
| 361      | AC POWER                     |                                                                  |                              |                              |
| 362      | PROGRAMMABLE:                |                                                                  |                              |                              |
| 363      | number of phases             | 1, 2 or 3                                                        | 1, 2, and 3                  | 1, 2, and 3                  |
| 364      | frequency                    | 55 to 1200 Hz                                                    | 45-5000 Hz                   | 45-5000 Hz                   |
| 365      | voltage                      | 1 to 135 Vrms                                                    | 0 - 270 Vrms                 | 0 - 270 Vrms                 |
| 366      | current                      | 5 amps                                                           | 10 A                         | 10 <b>A</b>                  |
| 367      | power                        | 675 Watts                                                        | 2250VA cont, 4500VA Max      | 2250VA cont, 4500VA Max      |
| 368      | FIXED:                       |                                                                  |                              |                              |
| 369      | Facility Power Feed-Through: | 115/200 V, 400 Hz, 3 ph<br>(DOD-STD-1399B)<br>0 to 30 amps/phase | 115V, 60Hz,1 phase           | 115V, 60Hz,1 phase           |
| 370      | Pulsed Signal:               |                                                                  |                              |                              |
| 371      | Stimulus Power for UUTs:     | available via facility power or from power supplies              | Dc to 22GHz to 10 watts      | Dc to 22GHz to 10 watts      |
| 372      | RF STIMULI                   |                                                                  |                              |                              |
| 373      | SYNTHESIZERS                 |                                                                  |                              |                              |
| 374      | Synthesizer 1:               |                                                                  | 2 identical synths available | 2 identical synths available |

**D-22** 

3

वहः (व

| ROW<br># | ATE SPECIFICATION<br>ITEM | CASS                                                              | IFTE (BSTF)                     | IFTE (EXTENDED)     |
|----------|---------------------------|-------------------------------------------------------------------|---------------------------------|---------------------|
| 375      | frequency range           | 10 MHz to 40 GHz                                                  | 10 KHz to 1.3 GHz               | 10 KHz to 1.3 GHz   |
| 376      | frequency resolution      | 0.4 Hz                                                            | 1 Hz                            | 1 Hz                |
| 377      | power range:              |                                                                   |                                 |                     |
| 378      | w/o amplifier             | +10 dBm to -100 dBm if < 2.3GHZ,<br>0 dBm to -100 dBm if > 2.3GHZ | +17 dBm to -120 dBm             | +17 dBm to -120 dBm |
| 379      | w/ amplificr              |                                                                   | +38 dBm to -50 dBm              | +38 dBm to -50 dBm  |
| 380      | PM:                       |                                                                   |                                 |                     |
| 381      | on/off ratio              | 80 dB                                                             | >or = 55 dB                     | > or = to 55 dB     |
| 382      | rise/fall time            | 50 nsec                                                           | <or><li>or = 400 nsec</li></or> | < or = to 400 nsec  |
| 383      | min. pulse width          | 1 usec                                                            | 2 usec                          | 2 usec              |
| 384      | max. frequency            | 5 MHz                                                             | 100 KHz                         | 100 KHz             |
| 385      | pulse on pulse modulation |                                                                   |                                 |                     |
| 386      | AM:                       |                                                                   |                                 |                     |
| 387      | frequency rate            |                                                                   | DC-100KHz                       | DC-100KHz           |
| 388      | modulation depth          |                                                                   | 0 to 99.9%                      | 0 to 99.9%          |
| 389      | FM:                       |                                                                   |                                 |                     |
| 390      | frequency rate            | 100 kHz to 10 MHz                                                 | 20Hz-200KHz                     | 20Hz-200KHz         |
| 391      | Phase Modulation:         |                                                                   |                                 |                     |
| 392      | frequency rate            |                                                                   | 20Hz - 15 KHz                   | 20Hz - 15 KHz       |
| 393      | deviation                 |                                                                   | 0 to 300 deg                    | 0 to 300 deg        |
|          |                           |                                                                   |                                 |                     |

Table D-1. - Specification Summaries for  $CAS^{\mathfrak{C}}$  and IFTE (Continued)

| ROW<br># | ATE SPECIFICATION<br>ITEM   | CASS                                        | IFTE (BSTF)        | IFTE (EXTENDED)    |
|----------|-----------------------------|---------------------------------------------|--------------------|--------------------|
| 394      | lff:                        |                                             |                    |                    |
| 395      | frequency rate              |                                             | 100KHz Max         | 100KHz Max         |
| 396      | CW:                         |                                             | Y                  | Υ                  |
| 397      | Synthesizer 2:              | High Power Synthesizer                      |                    |                    |
| 398      | frequency range             | 3 MHz to 20 GHz                             | 50 MHz to 22 GHz   | 50 MHz to 22 GHz   |
| 399      | power range:                |                                             |                    |                    |
| 400      | w/o amplifier               | +18 dBm to -100 dBm                         | -3 dBm to -100 dBm | -3 dBm to -100 dBm |
| 401      | w/ amplifier                |                                             | +35 dBm to -50 dBm | +35 dBm to -50 dBm |
| 402      | PM:                         |                                             |                    |                    |
| 403      | on/off ratio                | 80 dB                                       | > or = 50dB        | > or = SodB        |
| 404      | rise/fall time              | 50 nsec                                     | <25 nsec           | <25 nsec           |
| 405      | min. pulse width            | 1 usec                                      | 100 Nsec           | 100 Nsec           |
| 406      | max. frequency              | 5 MHz                                       | 50 KHz             | S0 KHz             |
| 407      | AM:                         |                                             |                    |                    |
| 408      | frequency rate              | DC to 100 kHz                               | 0-20Khz            | 0-20Khz            |
| 409      | modulation depth            | 90% (20 dB) or 99.7% (50 dB) above<br>10 Hz | 06 ot 0            | 0 to 90 %          |
| 410      | FM:                         |                                             |                    |                    |
| 411      | max rate                    | 100 kHz to 10 MHz                           |                    |                    |
| 412      | Fast Switching Synthesizer: |                                             |                    |                    |
|          |                             |                                             |                    |                    |

| ROW<br># | ATE SPECIFICATION<br>ITEM                 | CASS                              | IFTE (BSTF)                                                             | IFTE (EXTENDED)                                                         |
|----------|-------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 413      | frequency range                           | 10 MHz to 18.4 GHz                |                                                                         | 1 - 2300MHz                                                             |
| 414      | power range                               | +9 dBm to -100 dBm                |                                                                         | 0 to -121 dBm                                                           |
| 415      | frequency switching time                  | 1 usec                            |                                                                         | < 1 Msec                                                                |
| 416      | FM:                                       |                                   |                                                                         |                                                                         |
| 417      | rate                                      | DC to 5 MHz                       |                                                                         |                                                                         |
| 418      | deviation                                 | 1 MHz to 120 MHz (freq dependent) |                                                                         |                                                                         |
| 419      | AM:                                       |                                   |                                                                         |                                                                         |
| 420      | rate                                      |                                   |                                                                         |                                                                         |
| 421      | depth                                     |                                   |                                                                         |                                                                         |
| 422      | Spread Spectrum Modulator/<br>Demodulator |                                   | Available via Virtual Microwave<br>System (VMS) modification to<br>IFTE | Available via Virtual Microwave<br>System (VMS) modification to<br>IFTE |
| 423      | Modulation Signals:                       |                                   |                                                                         |                                                                         |
| 424      | high accuracy AM                          | Υ                                 |                                                                         | Y                                                                       |
| 425      | (ILS and VOR)                             | Y                                 |                                                                         | Y                                                                       |
| 426      | TACAN                                     | Y                                 |                                                                         | Υ                                                                       |
| 427      | linear pulse                              | Y                                 | Υ                                                                       | Y                                                                       |
| 428      | FSK                                       | Y                                 | Υ                                                                       | Y                                                                       |
| 429      | MSK                                       | Y                                 | Υ                                                                       | Y                                                                       |
| 430      | BPSK                                      | Y                                 | Υ                                                                       | Υ                                                                       |
| 431      | QPSK                                      | Y                                 | ٨                                                                       | ٢                                                                       |
|          |                                           |                                   |                                                                         |                                                                         |

1

| ROW<br># | ATE SPECIFICATION<br>ITEM    | CASS                                                                                 | IFTE (BSTF)      | IFTE (EXTENDED)                                     |
|----------|------------------------------|--------------------------------------------------------------------------------------|------------------|-----------------------------------------------------|
| 432      | OQPSK (GPS)                  | Y                                                                                    | Y                | Y                                                   |
| 433      | Broadband Noise Source:      |                                                                                      |                  | (Option)                                            |
| 434      | frequency range              | 10 MHz to 26.5 GHz<br>12 to 17 dB (10 MHz to 12 GHz<br>14 to 17 dB (12 GHz to 26.5 G |                  | 10MHz - 26.5GHz                                     |
| 435      | excess noise ratio           |                                                                                      |                  | 12 - 17dB                                           |
| 436      | Phase Noise:                 |                                                                                      |                  |                                                     |
| 437      | pulsed                       |                                                                                      | ٢                | Y                                                   |
| 438      | continuous wave (CW)         |                                                                                      | Y                | Y                                                   |
| 439      | bandwidth                    |                                                                                      | 5 Hz to 18.1 Ghz | 10MHz - 18GHz, 10Hz - 10MHz<br>RF Freq Range Offset |
| 440      | Stabilized Local Oscillator: |                                                                                      | 10 MHz (+/02Hz)  | 10 MHz (+/02Hz)                                     |
| 441      | RF MEASUREMENT               |                                                                                      |                  |                                                     |
| 442      | Spectrum Analyzer 1:         |                                                                                      |                  |                                                     |
| 443      | frequency range              | 100 Hz to 22 GHz                                                                     | 100Hz to 22GHz   | 100Hz to 22GHz                                      |
| 444      | with ext. mixers             | 18 GHz to 220 GHz                                                                    |                  | 22GHz to 100GHz                                     |
| 445      | resolution bandwidth         | 10 Hz to 3 MHz                                                                       | 10Hz to 3MHz     | 10Hz to 3MHz                                        |
| 446      | video bandwidth              | 3 Hz to 3 MHz                                                                        | 3Hz to 3MHz      | 3Hz to 3MHz                                         |
| 447      | input amplitude:             |                                                                                      |                  |                                                     |
| 448      | log                          | +30 dBm to -140 dBm                                                                  | -100 to 40dBm    | -100 to 40dBm                                       |
| 449      | linear                       | 7.07 V to 22 nV                                                                      | 0 to 22.4V       | 0 to 22.4V                                          |

....

| ROW<br># | ATE SPECIFICATION<br>ITEM | CASS                                  | IFTE (BSTF)              | IFTE (EXTENDED)          |
|----------|---------------------------|---------------------------------------|--------------------------|--------------------------|
| 450      | Spectrum Analyzer 2:      |                                       |                          | (Option) FFT             |
| 451      | frequency range           |                                       |                          | 64MHz - 100KHz           |
| 452      | with ext. mixers          |                                       |                          |                          |
| 453      | resolution bandwidth      |                                       |                          | 25.6MHz - 12.5KHz        |
| 454      | video bandwidth           |                                       |                          | 25.6MHz - 12.5KHz        |
| 455      | input amplitude:          |                                       |                          |                          |
| 456      | log                       |                                       |                          | 3.99mVp - 31.7Vp         |
| 457      | linear                    |                                       |                          | 3.99mVp - 31.7p          |
| 458      | Detection:                |                                       |                          |                          |
| 459      | Puíse                     | Y                                     | Y                        | Y                        |
| 460      | АМ                        | Y                                     | Y                        | Y                        |
| 461      | FM                        | γ                                     | Y                        | Y                        |
| 462      | Attenuation (dB)          | Υ                                     | 0 to 100dB in 10dB steps | 0 to 100dB in 10dB steps |
| 463      | Millivolt Meter:          |                                       |                          |                          |
| 464      | voltage range             | λ                                     | 200uV to 3 Volts         | 200uV to 3 Volts         |
| 465      | bandwidth                 |                                       | Up to 1.2Ghz             | Up to 1.2Ghz             |
| 466      | Power bandwidth (MHZ)     | Υ                                     | 100Hz to 22GHz           | 100Hz to 22GHz           |
| 467      | RF Power Meter:           |                                       |                          |                          |
| 468      | power range               | -70 dBm to +44 dBm (sensor dependent) | -70 to +40dBm            | -70 to +40dBm            |
|          |                           |                                       |                          |                          |

| ROW<br># | ATE SPECIFICATION<br>ITEM | CASS                                    | IFTE (BSTF)   | IFTE (EXTENDED) |
|----------|---------------------------|-----------------------------------------|---------------|-----------------|
| 469      | frequency range           | 100 kHz to 50 GHz (sensor<br>dependent) | 8MHz - 22GHz  | 8MHz - 22GHz    |
| 470      | CW Power Meter:           |                                         |               |                 |
| 471      | power tange               | -70 dBm to +44 dBm (sensor dependent)   | -70 to +40dBm | -70 to +40dBm   |
| 472      | frequency range           | 100 kHz to 50 GHz (sensor<br>dependent) | 8MHz to 22GHz | 8MHz to 22GHz   |
| 473      | Noise Figure Meter:       |                                         |               | (Option)        |
| 474      | noise figure range        |                                         |               | 0 to 30dB       |
| 475      | noise figure resolution   |                                         |               | +/- 0.1dB       |
| 476      | frequency range           |                                         |               | 10MHz to 22GHz  |
| 477      | frequency resolution      |                                         |               | lHz             |
| 478      | Carrier Noise Tester:     |                                         |               | Option          |
| 479      | frequency range           |                                         |               | 10MHz to 18GHz  |
| 480      | amplitude                 |                                         |               | -15dBm to 20dBm |
| 481      | IF output bandwidth       |                                         |               | 5 to 1200MHz    |
| 482      | IF output level           |                                         |               | +7dBm           |
| 483      | Sampling Signal Analyzer: | aka Microwave Transition Anlyzer        |               |                 |
| 484      | SWR meas. range           | 10 MHz to 26.5 GHz ratio<br>calculation |               | 45MHz - 26GHz   |
| 485      | vector voltmeter:         |                                         |               |                 |
| 486      | frequency range           | 10 Hz to 1 GHz                          |               | 45MHz - 26GHz   |
|          |                           |                                         |               |                 |

)

)

)

1

ŀ

| ROW<br># | ATE SPECIFICATION<br>ITEM                   | CASS                               | IFTE (BSTF)           | IFTE (EXTENDED)       |
|----------|---------------------------------------------|------------------------------------|-----------------------|-----------------------|
| 487      | phase range                                 | -180 deg to +180 deg               |                       | 0 to 360 degrees      |
| 488      | peak power meter:                           |                                    |                       |                       |
| 489      | frequency range                             | 30 kHz to 26.5 GHz                 |                       | 100Hz - 22GHz         |
| 490      | power range                                 | -60 dBm to 0 dBm                   |                       | -100 to +40dBm        |
| 491      | Vector Network Analyzer:                    |                                    |                       | (Option)              |
| 492      | Network Analysis:                           |                                    |                       |                       |
| 493      | frequency range                             | 10 MHz to 26.5 GHz                 | Υ                     | γ                     |
| 494      | time                                        | Y (pulse rise, fall, period, etc.) | Y                     | γ                     |
| 495      | bandwdith                                   |                                    | 45Mhz to 26.5 Ghz     | 45Mhz to 26.5 Ghz     |
| 496      | max input                                   | 0 dBm                              |                       | +14dBm                |
| 497      | noise level                                 | -44 dBm                            |                       | -115dBm               |
| 498      | (complex/fundamental<br>signal measurement) |                                    |                       | 801, 4 S-parameters   |
| 499      | IF bandwidth                                |                                    |                       | 20MHz                 |
| 500      | sweep time                                  |                                    |                       | 100ns to 4000 sec     |
| 501      | Frequency Counter/<br>Measurement:          |                                    |                       |                       |
| 502      | frequency counter:                          | see spectrum analyzer              |                       |                       |
| 503      | frequency range                             | and spread spectrum sections       | 100Hz to 22GHz        | 100Hz to 22GHz        |
| 504      | accuracy                                    |                                    | .00000025% (at 22GHz) | .00000025% (at 22GHz) |
| 505      | resolution                                  |                                    | IHz                   | IHz                   |
|          |                                             |                                    |                       |                       |

|        | ATTE CRECIER ATTON        |                               |                |                 |
|--------|---------------------------|-------------------------------|----------------|-----------------|
| *<br>* | ALE SFECIFICATION<br>FTEM | CASS                          | IFTE (BSTF)    | IFTE (EXTENDED) |
| 506    | RF pulse width            |                               | 100ns to CW    | 100ns to CW     |
| 507    | RF power level            |                               | -100 to +40dBm | -100 to +40dBm  |
| 508    | sensitivity               |                               | -100dBm        | -100dBm         |
| 509    | input power range         |                               | -100 to +40dBm | -100 to +40dBm  |
| 510    | Modulation Evaluation:    | see spectrum analyzer section |                |                 |
| 511    | Pulse Modulation:         |                               |                |                 |
| 512    | frequency range           |                               | 100Hz - 22GHz  | 100Hz - 22GHz   |
| 513    | pulse width               |                               | 100ns to CW    | 100ns to CW     |
| 514    | rise/fall time            |                               | 10 nsec        | 10 nsec         |
| 515    | dynamic range             |                               | 100dB          | 100dB           |
| 516    | sensitivity               |                               | -100dBm        | -100dBm         |
| 517    | PRF                       |                               |                |                 |
| 518    | Amplitude Modulation:     |                               |                |                 |
| 519    | frequency range           |                               | 100Hz - 22GHz  | 100Hz - 22GHz   |
| 520    | modulation, frequency     |                               | 0 - 20MHz      | 0 - 20MHz       |
| 521    | sensitivity, valley       |                               | -100dBm        | -100dBm         |
| 522    | accuracy                  |                               | +/- 0.5dB      | +/- 0.5dB       |
| 523    | Frequency Modulation      |                               |                |                 |
| 524    | frequency range           |                               | 100Hz - 22GHz  | 100Hz - 22GHz   |
| 525    | modulation frequency      |                               | 0-20MHz        | 0-20MHz         |

System (VMS) modification to IFTE Available via Virtual Microwave **IFTE (EXTENDED)** -100 to +40dBm 100Hz - 22GHz 100Hz - 22GHz DC to 20 Mega 0 to 100,000 0 - 20MHz 1 to 2300 50 Ohm 1.3:1 Z > ≻ ≻ ≻ > System (VMS) modification to IFTE Available via Virtual Microwave IFTE (BSTF) -100 to +40dBm 100Hz - 22GHz 100Hz - 22GHz DC to 20 Mega 0 to 100,000 0 - 20MHz l to 2300 50 Ohm 1.3:1 > Z > > > > 10.00 MHz (other codes) 10.23 MHz (GPS codes) CASS 10 MHz to 2 GHz 100,000 hops/sec (CNI only) ≻ ≻ ≻ ≻ 7 amplitude modulation (AM) frequency modulation (FM) ATE SPECIFICATION pulse on pulse modulation SPREAD SPECTRUM Modulation / Demodulation: pulse modulation (PM) **RF Input Characteristics:** Frequency range (Mhz) Code rate (chips/sec) ITEM frequency range Hop rate (hops/sec) precision AM wideband FM input power impedance distortion spectrum VSWR ROW # 526 529 530 540 527 528 531 532 533 534 535 536 538 539 542 543 537 541

Table D-1. - Specification Summaries for CASS and IFTE (Continued)

SICS .

| ROW | ATE SPECIFICATION                            |                      |             |                               |
|-----|----------------------------------------------|----------------------|-------------|-------------------------------|
| *   | ITEM                                         | CASS                 | IFTE (BSTF) | IFTE (EXTENDED)               |
| 544 | narrowband FM                                | Y                    | Y           | Y                             |
| 545 | frequency-shift keying<br>(FSK)              | Y                    | Y           | ٨                             |
| 546 | binary phase shift keying<br>(BPSK)          | Y (demodulator only) | Y           | Y                             |
| 547 | continuous phase shift<br>modulation (CPSM)  |                      | Y           | Y                             |
| 548 | quadrature phase shift<br>keying (QPSK)      | Z                    | Y           | Y                             |
| 549 | offset quadrature phase shift keying (OQPSK) | Z                    | Y           | Y                             |
| 550 | Modulo-2                                     | Y                    | Υ           | Y                             |
| 551 | JTTIDS:                                      | Y                    |             |                               |
| 552 | TACAN                                        | ۲                    | Y           | Υ                             |
| 553 | VOR                                          | Y                    | Υ           | Υ                             |
| 554 | ILS                                          | Y                    | Y           | Υ                             |
| 555 | MSK                                          | Y                    | Y           | γ                             |
| 556 | GPS                                          | Y                    | Υ           | Υ                             |
| 557 | <b>OPTICAL TESTING</b>                       |                      |             |                               |
| 558 | LASER                                        |                      |             |                               |
| 559 | Transmitter.                                 |                      |             |                               |
| 560 | aperture                                     | 0.5 to 5.0 inches    |             | 0.5 inch to 5.0 inch diameter |

| ROW<br># | ATE SPECIFICATION<br>ITEM           | CASS                                             | IFTE (BSTF) | IFTE (EXTENDED)                                       |
|----------|-------------------------------------|--------------------------------------------------|-------------|-------------------------------------------------------|
| 561      | field of view                       | 20 to 500 mrad in a 30 deg circular<br>field     |             | 30 degrees Circular, Max                              |
| 562      | Pulse Repetition Frequency<br>(PRF) | single shot, 8 to 20 Hz                          |             | 8 - 20Hz                                              |
| 563      | Divergence                          | 200 to 820 uradians                              |             | 200 to 820 Mrads                                      |
| 564      | Range (kM)                          |                                                  |             | 250 to 12.5Km                                         |
| 565      | resolution (meters)                 |                                                  |             | 50 Meters                                             |
| 566      | energy input                        | 30 to 300 mJoules                                |             | <b>30 - 300 mjoules</b>                               |
| 567      | power density<br>(measurement)      |                                                  |             | 40 m (exp w)/CM (exp 2)                               |
| 568      | power density (stimulus)            | 40 MW/cm2                                        |             | 0.5 x 10 (exp -10) to 0.5 x 10 (exp -<br>6) w/cm      |
| 569      | Wavelength                          | 1.064 +/-0.01 um (0.53, 10.6, 1.54<br>growth)    |             | 1.064 micro meters (0.53, 10.6,<br>1.54 Growth)       |
| 570      | Spectral Bandwidth                  |                                                  |             | See wave length                                       |
| 571      | Angle of regard                     | 0 to 10 mradians (relative to TPS ref<br>mirror) |             | 1 - 10 mrađ                                           |
| 572      | Polarization                        | insensitive to polarization                      |             | Unpolarized to Linear Polarized,<br>any angle         |
| 573      | beam alignment range                | 0 to 10 mradians                                 |             | 1 - 10 mrad                                           |
| 574      | Receiver:                           |                                                  |             |                                                       |
| 575      | sensitivity ranges                  | 5E-10 to 5E-6 W/cm2                              |             | 0.5 x 10 (exp -10) to 5 x 10 (exp -6)<br>w/cm (exp 2) |

D-33

| ROW<br># | ATE SPECIFICATION<br>ITEM    | CASS                               | IFTE (BSTF) | IFTE (EXTENDED)                                                       |
|----------|------------------------------|------------------------------------|-------------|-----------------------------------------------------------------------|
| 576      | range gate                   | 0.5 to 10 km                       |             | 250 to 12.5KM                                                         |
| 577      | Field-Of-View (FOV):         | 20 to 500 mradians                 |             | 20 to 500 mrads                                                       |
| 578      | apertures                    | 0.5 to 5 inches in diameter        |             | 0.5 inch to 5.0 inch diameter                                         |
| 579      | FOV coincidence              | +/-10 mradians to +/-400 mradians  |             | +/- 100 to +/- 400 mrad                                               |
| 580      | coaxial                      | +/-100 uradians to +/- 10 mradians |             | +/- 100 to +/- 400 mrad                                               |
| 581      | wavelength                   | 1.064 um +/- 0.01 um               |             | 1.064 micro meters +/- 0.01 micro<br>meters                           |
| 582      | acceptance PRF               | single shot, 8 to 20 Hz            |             | Single shot, 8Hz to 20Hz                                              |
| 583      | fiber optic types            |                                    |             |                                                                       |
| 584      | separate aperture on coaxial | Y                                  |             |                                                                       |
| 585      | Tracker:                     |                                    |             |                                                                       |
| 586      | sensitivity ranges           | 5E-10 to 5E-6 W/sqcm               |             | 5 x 10 (exp -10) to 5 x 10 (exp -6)<br>w/cm (exp 2)                   |
| 587      | range gate                   | 0.5 to 10 km                       |             | 250 to 12.5Km                                                         |
| 588      | Field-Of-View (FOV):         | 30 deg circular maximum            |             | 30 degrees circular max                                               |
| 589      | apertures                    | 0.5 to 5 inches in diameter        |             | 0.5 inch to 5.0 inch diameter                                         |
| 590      | coaxial                      |                                    |             |                                                                       |
| 591      | wavelength                   | 1.064 um +/- 0.01 um               |             | 1.064 micro meters +/- 0.01 micro<br>meters (0.53, 10.6, 1.54 Growth) |
| 592      | acceptance PRF               | single shot, 8 to 20 Hz            |             | Single shot, 8Hz to 20Hz                                              |

| ()                                                    | IFTE (EXTENDED)           |          | 4 square, Icorner, 4 4-bar | -10 degrees to 40 degrees C | 0.01                   | 10 inch max | 30 degrees x 40 degrees max | 0.5 degrees x 0.5 degrees max | 0.2 to 5.0 c/mrad         | 7 to 12 micro meters | RS - 343, RS -170, A6DRS, Raw<br>Video | 280 to 340K        |        | 4 square, 1 corner, 1 USAF Res. | (apeture) 10 inch max |
|-------------------------------------------------------|---------------------------|----------|----------------------------|-----------------------------|------------------------|-------------|-----------------------------|-------------------------------|---------------------------|----------------------|----------------------------------------|--------------------|--------|---------------------------------|-----------------------|
| Specification Summaries for CASS and IFTE (Continued) | IFTE (BSTF)               |          |                            |                             |                        |             |                             |                               |                           |                      |                                        |                    |        |                                 |                       |
| •                                                     | CASS                      |          | 9                          | -10 to +40 deg C            |                        | 10 in (max) | 30 by 40 Degrees            |                               | 0.2 to 5.3 cycles/mradian | 7 to 12 um           | RS343, RS170, A6DRS, raw video         | 280 to 340 deg K   |        |                                 | 1 by 1 inch maximum   |
| Table D-1                                             | ATE SPECIFICATION<br>ITEM | INFRARED | Number of targets          | Range (degrees C)           | Resolution (degress C) | Aperture    | Field of View (max)         | Field of View (min)           | Source Spacial Freq.      | Spectral Bands       | Video Output                           | Source temperature | AISUAL | Number of targets               | Size                  |
|                                                       | ROW<br>#                  | 593      | 594                        | 595                         | 596                    | 597         | 598                         | 599                           | 600                       | 601                  | 602                                    | 603                | 604    | 605                             | 909                   |

3.2 x 10 (exp 2) to 3.2 x 10 (exp 4) cd/m (exp 2)

320 to 32000 Candela/m2

Effect. Source Lumin. @ TPS Entrance Aperture

**INERTIAL TESTING** 

610

Stimulus:

611

capability available

RS343,RS170, raw video

0.6 to 1.1 um

Spectral Band Video output

607

608

**6**9

Option

0.6 to 1.1 micro meters

RS - 343, RS - 170

3

I

| ROW<br>* | ATE SPECIFICATION<br>ITEM | CASS                      | IFTE (BSTF) | IFTE (EXTENDED)                                        |
|----------|---------------------------|---------------------------|-------------|--------------------------------------------------------|
| 612      | static load               |                           |             | 100                                                    |
| 613      | raic                      |                           |             | 0 to 1000                                              |
| 614      | acceleration              |                           |             | 3000                                                   |
| 615      | torque                    |                           |             | 0.8 (at stall)                                         |
| 616      | positional accuracy       |                           |             | 10 Arc-Minutes Leveling                                |
| 617      | AUDIO TESTING             |                           |             | Option                                                 |
| 618      | Frequency Range           | availble via other assets |             | DC-1MHz                                                |
| 619      | Resolution                |                           |             | 1Hz                                                    |
| 620      | Display Range             |                           |             | 0dB - 72dB                                             |
| 621      | Modes:                    |                           |             | Freq. Volt, Pwr, Sinad, Sig/Noise,<br>Audio Distortion |
| 622      | PRESSURE/PNEUMATICS       |                           |             | Option                                                 |
| 623      | Stimutus:                 |                           |             |                                                        |
| 624      | Pressure:                 |                           |             |                                                        |
| 625      | static                    | 0.6 to 100 in Hg          |             | 0.3 - 36                                               |
| 626      | total                     | 0.6 to 100 in Hg          |             | 0.3 - 100                                              |
| 627      | differential              |                           |             | 0 to 100                                               |
| 628      | rate                      | 0 to 50,000 ft/min        |             | 120                                                    |
| 629      | MAINTENANCE<br>SOFTWARE   |                           |             |                                                        |
| 630      | Built in test (BIT)       | Y                         | Y           | γ                                                      |

с. ў

| ROW<br># | ATE SPECIFICATION<br>ITEM  | CASS                               | IFTE (BSTF)                                                                                  | IFTE (EXTENDED)                                                                              |
|----------|----------------------------|------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 631      | Confidence test(s)         | Y                                  | Y                                                                                            | Y                                                                                            |
| 632      | Self-calibration           | ٢                                  | Y                                                                                            | Y                                                                                            |
| 633      | OAFI                       |                                    |                                                                                              |                                                                                              |
| 634      | <b>CALIBRATION SIGNALS</b> |                                    |                                                                                              |                                                                                              |
| 635      | DC voltage source          | 0 to 200 V                         | 90mV (+/- 6.84mV) .9V (+/-<br>68.4mV), 9.0V (+/- 68.4mV),<br>18.0VDC (+/-mV)                 | 90mV (+/- 6.84mV), .9V (+/-<br>68.4mV), 9.0V (+/-68.4mV),<br>18.0VDC (+/- 1mV)               |
| 636      | resolution                 | 0.01 uV to 10 uV (range dependent) |                                                                                              |                                                                                              |
| 637      | AC voltage source          | 0.022 Vrms to 220 Vrms             | 1.0V (+/- 600mV), 10.0V (+/-<br>6mV)                                                         | 1.0V (+/- 600mV), 10.0V (+/-<br>6mV)                                                         |
| 638      | resolution                 | 8 uV to 220 uV                     | freq: 10 Hz to 1 MHz                                                                         |                                                                                              |
| 639      | DC current                 | 0 to 2.2 A                         |                                                                                              |                                                                                              |
| 640      | resolution                 | 0.1 nA to 1.0 uA                   |                                                                                              |                                                                                              |
| 641      | AC current:                | 0.9 to 2.2 A                       |                                                                                              |                                                                                              |
| 642      | resolution                 | 1.0 nA to 1.0 uA                   |                                                                                              |                                                                                              |
| 643      | resistance                 | 1 ohm to 190 kohms                 | 100 Ohm (+/005), 1K Ohm (+/-<br>.05), 10K Ohm (+/55), 100K<br>Ohm (+/- 5.5), 1M Ohm (+/- 55) | 100 Ohm (+/005), 1K Ohm (+/-<br>.05), 10K Ohm (+/55), 100K<br>Ohm (+/- 5.5), 1M Ohm (+/- 55) |
| 644      | resolution                 | 0.06 % to 6.0 %                    |                                                                                              |                                                                                              |
| 645      | current capacity           | 10 mA maximum                      |                                                                                              |                                                                                              |
| 646      | ATS CHARACTERISTICS        |                                    |                                                                                              |                                                                                              |
| 647      | Special Design Equipment:  |                                    |                                                                                              |                                                                                              |
|          |                            |                                    |                                                                                              |                                                                                              |

| ROW<br># | ATE SPECIFICATION<br>ITEM                          | CASS                                | IFTE (BSTF)                                                                                                          | IFTE (EXTENDED)                                                                                                    |
|----------|----------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 648      | Transportibility:                                  | Van Installation Available          | Self-Contained \$280 Shelter, 5 Ton<br>Truck, Helicopter, Cargo Air-<br>craft (C130), Rail, Ship, Dolly<br>Mobilizer | Self-Contained \$280 Shelter, 5 Ton<br>Truck, Helicopter, Cargo<br>Aircraft (C130), Rail, Ship,<br>Dolly Mobilizer |
| 649      | Internal Cooling:                                  |                                     |                                                                                                                      |                                                                                                                    |
| 650      | Threat Simulators:                                 |                                     |                                                                                                                      |                                                                                                                    |
| 651      | type threats                                       |                                     |                                                                                                                      | Y                                                                                                                  |
| 652      | quantity                                           |                                     |                                                                                                                      | 12                                                                                                                 |
| 653      | output:                                            |                                     |                                                                                                                      |                                                                                                                    |
| 654      | voltage                                            |                                     |                                                                                                                      | IF, RF: -100 to +38dBm/Video: +/-<br>10V                                                                           |
| 655      | current                                            |                                     |                                                                                                                      | /Video: 200mA                                                                                                      |
| 656      | bandwidth                                          |                                     |                                                                                                                      | 10KHz to 22GHz                                                                                                     |
| 657      | coded waveforms                                    |                                     |                                                                                                                      | Barker, PN                                                                                                         |
| 658      | DEPLOYMENT DATA                                    |                                     |                                                                                                                      |                                                                                                                    |
| 629      | Size/Weight:                                       | 1                                   |                                                                                                                      |                                                                                                                    |
| 660      | number of 463L pallets (air<br>transportable gear) | 5 racks (Hybrid Core)               | 1 HCU-6/E patiet                                                                                                     | 1 HCU-6/E pallet                                                                                                   |
| 661      | size/configuration (fixed<br>gear)                 | 4304 lbs (Hybrid Core)              | 2S-280 shelters, 1 generator                                                                                         | 25-280 shelters, 1 generator                                                                                       |
| 662      | weight (lbs)                                       | 128.09 x 63.88 inches (Hybrid Core) | 35,000 lbs (IFTE + LRU spares +<br>Generator)                                                                        | 35,000 lbs (IFTE + L.R.U spares +<br>Generator)                                                                    |
| 663      | footprint .                                        |                                     |                                                                                                                      |                                                                                                                    |
|          |                                                    |                                     |                                                                                                                      |                                                                                                                    |

| ROW<br># | ATE SPECIFICATION<br>ITEM        | CASS                                                             | IFTE (BSTF)              | IFTE (EXTENDED)           |
|----------|----------------------------------|------------------------------------------------------------------|--------------------------|---------------------------|
| 664      | ENVIROMENTAL DATA                |                                                                  |                          |                           |
| 665      | Ambient Temp (for operation)     | 18 to 27 deg C                                                   |                          |                           |
| 666      | Humidity                         | 35 to 95 %                                                       |                          |                           |
| 667      | external cooling source required | chilled air required for EO console<br>UUT requires external A/C | not required             | not required              |
| 668      | heat generation                  | 40,000 BTU (nominal)                                             |                          |                           |
| 699      | Internal Refrigeration Unit:     |                                                                  |                          |                           |
| 670      | use                              |                                                                  | station and UUT          | station and UUT           |
| 671      | air temperature                  |                                                                  |                          |                           |
| 672      | shock tested                     | MIL-T-28800C                                                     | Meets MIL-M-8090 Class V | Meets Mill-M-8090 Class V |
| 673      | vibration tested                 | modified MIL-STD-167A                                            |                          |                           |
| 674      | water resistance tested          | N (nominally drip-proof)                                         |                          |                           |
| 675      | Input Power Requirements:        |                                                                  |                          |                           |
| 676      | 60 Hertz                         | multiple options (480, 440, 380, 115/<br>200 Vrms, 3-ph)         |                          |                           |
| 677      | 400 Hertz                        | 115/200 Vrms up to 30 amps/phase<br>(for UUT only)               |                          |                           |
| 678      | DC                               |                                                                  |                          |                           |
| 679      | current load                     | 13 kW (nominal)                                                  | 15 KVA                   | 15 KVA                    |

- \* Capability can be provided with a software extension to the digital waveform generator.
- \*\* The power supplies can be put in parallel or services to obtain higher voltage, power, or current ranges.

Table D-2. - Specification Summaries for CATS and METS

200 (10 C + A + C +

1, 142 A. 1

|    | ATE SPECIFICATION ITEM    | CATS (F22 FACTORY/DEPOT?)                              | METS (F15E)                                                        |
|----|---------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| 1  | STATION INFORMATION       |                                                        |                                                                    |
| 2  | Station Configurations:   | Utilizes VXI chassis built by Racal-Dana               | METS (Mobile Electronic Test Set)<br>RFMETS (Radio Frequency METS) |
| 3  | SYSTEM CONTROL            |                                                        |                                                                    |
| 4  | OPERATING SYSTEM:         |                                                        |                                                                    |
| 5  | Operating Environment     | NIX                                                    | derived RMX-86                                                     |
| 6  | TPS software environment: |                                                        |                                                                    |
| 7  | ATLAS                     | Z                                                      | Y                                                                  |
| 8  | ADA                       | X                                                      | Z                                                                  |
| 6  | COMPUTER                  |                                                        |                                                                    |
| 10 | Computer Type:            | Intel 80486 w/Natl Inst 776370-02 Bus<br>Interface Kit | Intel 8086 based                                                   |
| 11 | address/data bits         | 32                                                     | 16                                                                 |
| 12 | mips                      |                                                        |                                                                    |
| 13 | clock speed (Mhz)         | 25 to 50 MHz                                           | 5                                                                  |
| 14 | main memory - Mbytes      |                                                        | I                                                                  |
| 15 | mass storage - Mbytes:    |                                                        |                                                                    |
| 16 | permanent                 | TBD (various commercial types available)               | 1 (bubble memory)                                                  |
| 17 | transfer rate             |                                                        |                                                                    |
| 18 | removable                 | TBD (various commercial types available)               | 5                                                                  |
|    |                           |                                                        |                                                                    |

7

D-41

|    | ATE SPECIFICATION ITEM    | CATS (F22 FACTORY/DEPOT?)       | METS (F15E)         |
|----|---------------------------|---------------------------------|---------------------|
| 61 | transfer rate             | TBD                             |                     |
| 20 | punched tape reader:      | Z                               | Z                   |
| 21 | magnetic tape reader:     | Z                               | Z                   |
| 22 | 1/O ports:                | via Talon BE-64 bus emulator    |                     |
| 23 | IEEE-802.3 Ethernet       | Y (via programmable bus)        | z                   |
| 24 | RS-232                    | Y (via programmable bus)        | Y                   |
| 25 | IEEE-488                  | Y (via programmable bus)        | Y                   |
| 26 | HP-IB (enhanced IEEE-488) | Y (via programmable bus)        |                     |
| 27 | scsi                      | Y (via programmable bus)        |                     |
| 28 | RS-422                    | Y (via programmable bus)        |                     |
| 29 | RS-423                    | Y (via programmable bus)        |                     |
| 30 | VME                       | Y (via programmable bus)        |                     |
| 31 | VXI                       | Y (via programmable bus)        |                     |
| 32 | Printer                   | TBD                             | Y                   |
| 33 | characters/sec            | TBD                             | 150 char/sec        |
| 34 | <b>OPERATOR INTERFACE</b> |                                 |                     |
| 35 | CRT:                      |                                 |                     |
| 36 | screen size               | 15 or 21 inch diagonal          | 13 inch diagonal    |
| 37 | colors - number           | multiple                        | monochrome          |
| 38 | resolution                | pixels: 640 X 480 to 1024 X 768 | pixels: 921H x 739V |
| 39 | type                      |                                 |                     |

)

)

b

B

**S**. 

|    | ATE SPECIFICATION ITEM | CATS (F22 FACTORY/DEPOT?) | METS (FISE) |
|----|------------------------|---------------------------|-------------|
| 40 | Input Devices:         |                           |             |
| 41 | keyboard               | Y keys: 101               | Y           |
| 42 | trackball              | Y                         | z           |
| 43 | mouse                  | Å                         | Z           |
| 4  | bar code reader        | Å                         | Z           |
| 45 | touchscreen            | Z                         | Y           |
| 46 | hand-held terminal     | Z                         | z           |
| 47 | UUT/SYSTEM INTERFACE   |                           |             |
| 48 | I/O Pins:              | UUT - System interface    |             |
| 49 | quantity               | is not yet defined        |             |
| 50 | volts/pin              |                           | 45          |
| 51 | power paths            |                           | 24          |
| 52 | signal paths           | MAC panel Hypertac        | 21          |
| 53 | Feedthroughs:          | TBD                       |             |
| 54 | low frequency:         |                           |             |
| 55 | no. of pins            |                           |             |
| 56 | max current            |                           |             |
| 57 | frequency range        |                           |             |
| 58 | power:                 | TBD                       |             |
| 59 | no. of pins            |                           | 24          |
| 8  | max current            |                           |             |

×.

2

METS (F15E) CATS (F22 FACTORY/DEPOT?) Racal-Dana 1277 series DC to 20 MHz Undefined 4 **TBD** Q **DB 2A ATE SPECIFICATION ITEM** low frequency switch: frequency range frequency range frequency range frequency range no. of channels Digital Test Unit: max current logic levels max current no. of pins no. of pins relay matrices : no. of pins no. of pins relay matrices: compatibility: data rate coax switch: COAX (RF): Switching: 62 63 2 65 8 63 69 2 2 76 8 1 13 78 5 74 75 11 62 80 81

.

|     | ATE SPECIFICATION ITEM     | CATS (F22 FACTORY/DEPOT?)     | METS (F15E)                  |
|-----|----------------------------|-------------------------------|------------------------------|
| 82  | power switch:              | Racal-Dana 1277 series        |                              |
| 83  | no. of pins                | Undefined                     |                              |
| 84  | relay matrices:            | 10 A                          |                              |
| 85  | Universal I/O:             | MAC Panel series 75 interface |                              |
| 86  | number of pins             |                               |                              |
| 87  | number of instrument ports |                               |                              |
| 88  | maximum current            |                               |                              |
| 89  | frequency range            |                               |                              |
| 90  | Extended Performance I/O:  | Undefined                     |                              |
| 16  | number of pins             |                               |                              |
| 92  | number of instrument ports |                               |                              |
| 93  | maximum current            |                               |                              |
| 94  | frequency range            |                               |                              |
| 95  | Digital/Analog Converters: | CDS 73A-256                   |                              |
| 96  | quantity                   | 12 channels                   | 2                            |
| 97  | voltage                    | +/- 16.4 V                    | +/- 0.3 V, +/- 3 V, +/- 10 V |
| 98  | max current                | 60 mA                         |                              |
| 66  | resolution                 | 16 bits                       | 10 bits                      |
| 100 | sampling rate              | 3000 conversions/sec          | 20 M (max)                   |
| 101 | synchro-resolver channel   |                               |                              |
|     |                            |                               |                              |

D-45

|     | ATE SPECIFICATION ITEM   | CATS (F22 FACTORY/DEPOT?)  | METS (FISE) |
|-----|--------------------------|----------------------------|-------------|
| 102 | BUSSES                   | Bus Emulator (Talon BE-64) |             |
| 103 | Number of Channels       | 2                          |             |
| 104 | Protocols Available:     |                            |             |
| 105 | MIL-STD-1553 A/B         | Y (via programmable bus)   | Y           |
| 106 | MIL-STD-1773             | Z                          | Z           |
| 101 | MIL-STD-1397A            | Y (via programmable bus)   | Z           |
| 108 | EIA RS-232-C             | Y (via programmable bus)   | Z           |
| 109 | EIA RS-422-A             | Y (via programmable bus)   | Y           |
| 110 | RS-485                   | Y (via programmable bus)   | Z           |
| 111 | AR-57A                   | Y (via programmable bus)   | Z           |
| 112 | IEEE-488                 | Y (via programmable bus)   | Y           |
| 113 | IEEE-802.3 (ethernet)    | Y (via programmable bus)   | Z           |
| 114 | Arinc-429                | Y (via programmable bus)   | Z           |
| 115 | H009                     | Y (via programmable bus)   | Y           |
| 116 | F-16 AIS (Manchester)    | Y (via programmable bus)   | Z           |
| 117 | PSP-RC                   | Y (via programmable bus)   | Z           |
| 118 | 1750A processor bus      | Y (via programmable bus)   | Z           |
| 119 | 8088 microprocessor bus  | Y (via programmable bus)   | Z           |
| 120 | 80x86 microprocessor bus | Y (via programmable bus)   | Z           |
| 121 | UART                     | Y (via programmable bus)   | Y           |
| 122 | AIM-9 interface          | Y (via programmable bus)   |             |
| l   |                          |                            |             |

| ATE SPECIFICATION ITEM     CATS (F22 PACTORY/DEPOT?)       HSDB (high speed data bus)     HSDB (high speed data bus)       FODB (fiber optic data bus)     FODB (fiber optic data bus)       RTDB     MWG       RTDB     MWG       MWG     HSDB (hiber optic data bus)       MWG     MWG       MWG     MWG       MWG     HSDB       MWG     ASP1 jam bus       ASP1 jam bus     HSDB       MCARR 3818A     HSDB       MOD 1     HSDB       MOD 1     HSDB </th <th></th> <th></th> <th></th> <th></th>                                                                |     |                             |                           |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|---------------------------|-------------|
| HSDB (high speed data bus)         FODB (fiber optic data bus)         RTDB         RTDB         MWG         MWG         EMC         ASPI jam bus         ASPI jam bus         ASPI status bus         MCAIR 3818A         Frequency range         VIDEO         VIDEO         Video Signal Generation:         horizontal timing         horizontal resolution         vertical timing         video data         video data         video output modes:         output 1         output 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | ATE SPECIFICATION ITEM      | CATS (F22 FACTORY/DEPOT?) | METS (F15E) |
| FODB (fiber optic data bus)         RTDB         MWG         EMC         MWG         EMC         ASPJ jam bus         ASPJ status bus         MCAIR 3818A         Frequency range         MCAIR 3818A         Frequency range         NCAIR 3818A         Frequency range         MCAIR 3818A         Frequency range         NCAIR 3818A         Frequency range         Notizontal timing         Nideo Signal Generation:         horizontal training         vertical timing         video output         video output         video output         video output         vi                                                                                                                                              | 123 | HSDB (high speed data bus)  |                           |             |
| RTDB         MWG         MWG         EMC         EMC         ASPJ jam bus         ASPJ jam bus         ASPJ status bus         MCAIR 3818A         Frequency range         Video Signal Generation:         Induct of Signal Generation:         Induct output modes:         Induct 1         Output 3                                                                                                                                                                                                                                                                                                                                                  | 124 | FODB (fiber optic data bus) |                           |             |
| MWG         EMC         EMC         ASPI jam bus         ASPI status bus         MCAIR 3818A         ASPI status bus         MCAIR 3818A         Frequency range         Video Signal Generation:         horizontal timing         horizontal timing         vertical timing resolution         video output modes:         video output format         video output modes:         output 2         output 3                                                                                                                                                                                                                                                                   | 125 | RTDB                        |                           |             |
| EMC         ASPJ jam bus         ASPJ status bus         ASPJ status bus         MCAIR 3818A         Frequency range         MCAIR 3818A         Frequency range         VIDEO         Video Signal Generation:         Inder Solution         Inder Solution <tr< td=""><td>126</td><td>DWM</td><td></td><td></td></tr<> | 126 | DWM                         |                           |             |
| ASPI jam bus         ASPI status bus         ASPI status bus         MCAIR 3818A         MCAIR 3818A         Frequency range         VIDEO         Video Signal Generation:         horizontal timing         horizontal timing         horizontal timing         horizontal timing         vertical timing         video output                                                                                                 | 127 | EMC                         |                           |             |
| ASPJ status bus         MCAIR 3818A         MCAIR 3818A         Frequency range         Frequency range         Video Signal Generation:         horizontal timing         horizontal timing         horizontal timing         horizontal resolution         vertical timing         ve                                                                                          | 128 | ASPJ jam bus                |                           |             |
| MCAIR 3818A         Frequency range         Frequency range         Video Signal Generation:         Video Signal Generation:         horizontal timing         horizontal timing         horizontal resolution         vertical timing         vertical timing resolution         video data         video output         video output         video output         output 1         output 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129 | ASPJ status bus             |                           |             |
| Frequency range         Video Signal Generation:         Video Signal Generation:         horizontal timing         horizontal timing         horizontal resolution         vertical timing         vertical timing <t< td=""><td>130</td><td>MCAIR 3818A</td><td></td><td></td></t<>                    | 130 | MCAIR 3818A                 |                           |             |
| Vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 131 | Frequency range             | to 50 MHz                 |             |
| Vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 132 | VIDEO                       |                           |             |
| vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 133 | Video Signal Generation:    |                           |             |
| vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134 | horizontal timing           |                           |             |
| vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 135 | horizontal resolution       |                           |             |
| vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 136 | vertical timing             |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137 | vertical timing resolution  |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 138 | synch format                |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 139 | video data                  |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140 | video output modes:         |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 141 | output 1                    |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 142 | output 2                    |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143 | output 3                    |                           |             |

D-47

|     | ATE SPECIFICATION ITEM       | CATS (F22 FACTORY/DEPOT?) | METS (F15E) |
|-----|------------------------------|---------------------------|-------------|
| 144 | output 4                     |                           |             |
| 145 | output 5                     |                           |             |
| 146 | output 6                     |                           |             |
| 147 | output 7                     |                           |             |
| 148 |                              |                           |             |
| 149 | display measurement:         |                           |             |
| 150 | placement                    |                           |             |
| 151 |                              |                           |             |
| 152 | resolution                   |                           |             |
| 153 | intensity                    |                           |             |
| 154 | intensity variation          |                           |             |
| 155 | field of view                |                           |             |
| 156 | modulation transfer function |                           |             |
| 157 |                              |                           |             |
| 158 | DIGITAL TESTING              |                           |             |
| 159 | Pattern Rate - Patterns/Sec  | Undefined                 |             |
| 160 | test rates:                  |                           |             |
| 161 | minimum                      |                           |             |
| 162 | maximum                      |                           |             |
| 163 | 1/O pins                     | Undefined                 |             |
| 164 | memory depth / pin           |                           |             |
|     |                              |                           |             |

|          | ATE SPECIFICATION ITEM      | CATS (F22 FACTORY/DEPOT?)    | METS (FISE)     |
|----------|-----------------------------|------------------------------|-----------------|
| 165      | EEPROM programming pulse    |                              |                 |
| <u>8</u> | Digital Test Unit:          | Undefined (under evaluation) | HP 70700A       |
| 167      | Bit Rate                    |                              | 1 Hz to 10 MMHz |
| 168      | pin interface               |                              |                 |
| 169      | voltage ranges              |                              | -10 V to +10V   |
| 170      | clock speed                 |                              |                 |
| 171      | Diagnostic Probe: (digital) | UNK                          |                 |
| 172      | voltage range               |                              |                 |
| 173      | input data rate (max)       |                              |                 |
| 174      | resolution                  |                              |                 |
| 175      | compatibility               |                              |                 |
| 176      | propagation delay           |                              |                 |
| 177      | logic threshold             |                              |                 |
| 178      | pulse detection             |                              |                 |
| 179      | input impedance             |                              |                 |
| 180      | output impedance            |                              |                 |
| 181      | Timing Generation:          | UNK                          |                 |
| 182      | frequency range             |                              |                 |
| 183      | pulse width range           |                              |                 |
| 184      | Time Interval Measurement:  | UNK                          |                 |
| 185      | period                      |                              |                 |
|          |                             |                              |                 |

D-49

|            | ATE SPECIFICATION ITEM           | CATS (F22 FACTORY/DEPOT?) | METS (FISE) |
|------------|----------------------------------|---------------------------|-------------|
| 186        | pulse characteristics            |                           |             |
| 187        | range                            |                           |             |
| 188        | ANALOG SWITCHING                 |                           |             |
| 189        |                                  | Racal-Dana 1277 series    |             |
| <b>190</b> | number signal paths              | UNK                       |             |
| 161        | bandwidth at voltage             |                           |             |
| 192        | roads                            |                           |             |
| 193        | Programmable Loads:              | Elgar (exact config TBD)  |             |
| 194        | max power dissipation            |                           |             |
| 195        | max voltage                      |                           |             |
| 196        | max current                      |                           |             |
| 197        | Programmable Precision Resistor: |                           |             |
| 198        | range                            |                           |             |
| 199        | accuracy                         |                           |             |
| 200        | Fixed Resistance:                |                           |             |
| 201        | quantity                         |                           |             |
| 202        | values                           |                           |             |
| 203        | ANALOG STIMULI                   |                           |             |
| 204        | Arb Funct/Wave Gen:              | WAVETEK 1395              |             |
| 205        | channeis                         |                           |             |
| 206        | amplitude                        | 15 mV to +/- 30 V p-p     |             |
|            |                                  |                           |             |

|     | ATE SPECIFICATION ITEM     | CATS (F22 FACTORY/DEPOT?)     | METS (FISE) |
|-----|----------------------------|-------------------------------|-------------|
| 207 | amplitude resolution       | +/- 1.0%                      |             |
| 208 | sine waveform              | Y                             |             |
| 209 | square waveform            | Y                             |             |
| 210 | pulsed DC waveform         | Y                             |             |
| 211 | ramp waveform              | Y                             |             |
| 212 | arbitrary waveform         | Y                             |             |
| 213 | DC level waveform          | Y                             |             |
| 214 | triangle waveform          | Y                             |             |
| 215 | haversine                  | Y                             |             |
| 216 | random noise               | Y                             |             |
| 217 | (sin x)/x                  | Y                             |             |
| 218 | Frequency Ranges:          |                               |             |
| 219 | pulsed DC and square wave  | 1 uHz to 25 MHz               |             |
| 220 | sine wave                  | 1 uHz to 20 MHz               |             |
| 221 | triangle and sawtooth wave | 1 uHz to 2 MHz                |             |
| 222 | arbitrary wave             | 0.1 Hz to 50 MHz              |             |
| 223 | Resolution:                |                               |             |
| 224 | pulsed DC and square wave  | 8 digits (limited by 1 uHz)   |             |
| 225 | sine wave                  | 8 digits (limited by 1 uHz)   |             |
| 226 | ramp wave                  | 8 digits (limited by 1 uHz)   |             |
| 227 | arbitrary wave             | 5 digits (limited by 0.1 uHz) |             |
|     |                            |                               |             |

D-51

|     | ATE SPECIFICATION ITEM        | CATS (F22 FACTORY/DEPOT?)           | METS (FISE)         |
|-----|-------------------------------|-------------------------------------|---------------------|
| 228 | point generation for arb wave | 32 Kpoints                          |                     |
| 229 | max. point generation rate    | 4096 points                         |                     |
| 230 | available modes of operation  | multiple                            |                     |
| 231 | dual phase mode               | N (external h/w required)           |                     |
| 232 | Discrete Generator:           | CDS 73A-411                         |                     |
| 233 | Pulse Generator:              | CDS 73A-270 Pulse/Pattern Generator |                     |
| 234 | quantity                      | 2 channel                           |                     |
| 235 | period range                  | 100 nsec to 100 sec                 |                     |
| 236 | pulse width                   | 100 nsec to 100 sec                 |                     |
| 237 | accuracy                      |                                     |                     |
| 238 | amplitude                     | +/-17.4 V                           |                     |
| 239 | delay                         | UNK                                 |                     |
| 240 | double pulse                  | Y - programable                     |                     |
| 241 | pulse burst count             |                                     |                     |
| 242 | Counter/Timer Stimulus:       | Racal-Dana 2251 Opt 41              |                     |
| 243 | voltage levels                |                                     | TTL compatible      |
| 244 | frequency range               |                                     | 0.01 Hz to 2.5 MHz  |
| 245 | duty cycle                    |                                     | 0 to 100%           |
| 246 | time delays                   |                                     | 800 nsec to 500 sec |
| 247 | resolution of delay           |                                     | 200 nsec            |
| 248 | accuracy of delay             |                                     | 0.005 percent       |
|     |                               |                                     |                     |

|     | ATE SPECIFICATION ITEM        | CATS (F22 FACTORY/DEPOT?) | METS (FISE)         |
|-----|-------------------------------|---------------------------|---------------------|
| 249 | pulse width                   |                           | 400 nsec to 500 sec |
| 250 | resolution of pulse width     |                           | 200 nsec            |
| 251 | accuracy of pulse width       |                           | 0.01 percent        |
| 252 | digital to synchro generation |                           |                     |
| 253 | voltage level                 |                           |                     |
| 254 | accuracy                      |                           |                     |
| 255 | power                         |                           |                     |
| 256 | Synchro Generation:           |                           |                     |
| 257 | quantity                      |                           | (synchro stimulus)  |
| 258 | angular range                 |                           | 0 to 359.95 degree  |
| 259 | resolution                    |                           | 0.022 degree        |
| 260 | angular rate                  |                           | 0 to 3600 deg/sec   |
| 261 | index ref position            |                           | 0 or 180 degree     |
| 262 | reference voltage             |                           | 26 Vrms             |
| 263 | voltage (synchro)             |                           | 11.8 Vrms           |
| 264 | reference frequency           |                           | 400 Hz (only)       |
| 265 | frequency range               |                           | 400 Hz (only)       |
| 266 | Function Generator:           | TEK VX4750                |                     |
| 267 | quantity                      |                           |                     |
| 268 | amplitude                     | up to 20 V p-p            |                     |
| 269 | slew rate                     |                           |                     |
|     |                               |                           |                     |

D-53

|     | ATE SPECIFICATION ITEM          | CATS (F22 FACTORY/DEPOT?)  | METS (FISE)                                           |
|-----|---------------------------------|----------------------------|-------------------------------------------------------|
| 270 | rise time                       | <10 nsec                   |                                                       |
| 271 | Waveforms Available:            |                            |                                                       |
| 272 | sine wave                       | Y                          |                                                       |
| 273 | square wave                     | Y                          |                                                       |
| 274 | ramp (sawtooth) wave            | Y                          |                                                       |
| 275 | triangle                        | Y                          |                                                       |
| 276 | pulse                           | Y                          |                                                       |
| 277 | frequency range                 | up to 25 MHz               |                                                       |
| 278 | arbitrary function              | up to 40% points, 12 bits  |                                                       |
| 279 | special capabilities            | modulation modes available |                                                       |
| 280 | Square Wave Output:             | via Function Generator     |                                                       |
| 281 | frequency range                 |                            | 0 Hz to 20 MHz                                        |
| 282 | frequency accuracy              |                            | 0.01 percent                                          |
| 283 | frequency resolution            |                            | 0.00233 Hz                                            |
| 284 | phase shift range               |                            | 0 to 360 degrees                                      |
| 285 | duty cycle                      |                            | 50 % with 100ns jitter at the logic level crossing pt |
| 286 | amplitude                       |                            | TTL compatible into 50 ohms                           |
| 287 | AC Line of Sight Seeker (Loss): |                            |                                                       |
| 288 | amplitude                       |                            |                                                       |
| 289 | phase                           |                            |                                                       |
| 1   |                                 |                            |                                                       |

METS (F15E) 0 to 100 Kohm (not a DMM) CATS (F22 FACTORY/DEPOT?) HP E1410A (6 1/2 digit) Racal-Dana 2251 /opt41 2 nsec to 800,000 sec Schlumberger 1270 DC to 1.3 GHz **EIP 1231A** HP 8508B **ATE SPECIFICATION ITEM** ANALOG MEASUREMENT Frequency Response Analyzer Frequency/Time Interval Counter: Sampling Signal Analyzer: input voltage range time interval range DC Voltage Ratio AC Voltage Ratio current resolution frequency range resistance range **Digital Multi-Meter:** Microwave Counter: DC resolution AC resolution current range count events Vector Voltmeter: AC range DC range Irequency 290 296 292 293 294 295 297 298 299 300 291 301 302 303 304 305 306 307 308 309 310

### Table D-2. - Specification Summaries for CATS and METS (Continued)

1.5.7

|     | ATE SPECIFICATION ITEM   | CATS (F22 FACTORY/DEPOT?) | METS (F15E)           |
|-----|--------------------------|---------------------------|-----------------------|
| 311 | resolution               |                           |                       |
| 312 | rate                     |                           |                       |
| 313 | resolution               |                           |                       |
| 314 | Waveform Digitizer:      | HP E1428A                 |                       |
| 315 | channels                 |                           |                       |
| 316 | input voltage range      |                           |                       |
| 317 | frequency response       |                           |                       |
| 318 | amplitude resolution     |                           |                       |
| 319 | sampling interval        |                           |                       |
| 320 | storage depth            |                           |                       |
| 321 | sampling/conversion rate |                           |                       |
| 322 | Synchro-Resolver:        |                           | (synchro measurement) |
| 323 | angular range            |                           | 0 to 359.95 degrees   |
| 324 | resolution               |                           | 0.022 degree          |
| 325 | angular rate (max)       |                           | 3600 deg/sec          |
| 326 | reference voltage        |                           | 26.0 Vrms             |
| 327 | voltage (synchro)        |                           | 11.8 Virms L-L, 400Hz |
| 328 | reference frequency      |                           | 400 Hz                |
| 329 | accuracy                 |                           | +/- 4 arc-minutes     |
| 330 | resolution               |                           | 0.022 degree          |
| 331 | frequency range          |                           | 400 Hz (only)         |
|     |                          |                           |                       |

ł

e(s.

|     | ATE SPECIFICATION ITEM   | CATS (F22 FACTORY/DEPOT?) | METS (F1SE)      |
|-----|--------------------------|---------------------------|------------------|
| 332 | index reference position |                           | 0 or 180 degrees |
| 333 | Oscilloscope:            |                           |                  |
| 334 | traces                   |                           |                  |
| 335 | bandwidth                |                           |                  |
| 336 | DC POWER                 |                           |                  |
| 337 | PROGRAMMABLE:            | Elgar VXP-1000 controller |                  |
| 338 | Low Voltage:             | Elgar VXP-D7V0x           |                  |
| 339 | quantity                 | 6                         |                  |
| 340 | max. watts per supply    | 80 Watts                  |                  |
| 341 | max. voltage             | 50 VDC                    |                  |
| 342 | max. current             | V 01                      |                  |
| 343 | High Voltage:            | EMI 35030                 |                  |
| 344 | quantity                 | UNK                       |                  |
| 345 | voltage range            |                           |                  |
| 346 | max current              |                           |                  |
| 347 | Current Source:          |                           |                  |
| 348 | unit 1: amplitude        |                           |                  |
| 349 | resolution               |                           |                  |
| 350 | unit 2-6: amplitude      |                           |                  |
| 351 | resolution               |                           |                  |

97**4** -

|     | ATE SPECIFICATION ITEM       | CATS (F22 FACTORY/DEPOT?) | METS (PISE)             |
|-----|------------------------------|---------------------------|-------------------------|
| 352 | FIXED.                       |                           |                         |
|     |                              |                           |                         |
| 353 | quantity                     |                           | 4                       |
| 354 | volts                        |                           | 5/-15/15/28             |
| 355 | amperes                      |                           | /unk/6.5/6.5/10-20      |
| 356 | watts                        |                           | 200/200/200/100         |
| 357 | REFERENCE:                   | -IP-6621A and HP-6627A    |                         |
| 358 | quantity                     | TBD                       |                         |
| 359 | voltage range                | 0 to 50 VDC               |                         |
| 360 | current                      | 50 Watts                  |                         |
| 361 | AC POWER                     |                           |                         |
| 362 | PROGRAMMABLE:                | Pulizzi Power Controller  |                         |
| 363 | number of phases             | 1 to 3                    |                         |
| 364 | frequency                    | TBD                       |                         |
| 365 | voltage                      | TBD                       |                         |
| 366 | current                      | TBD                       |                         |
| 367 | power                        | TBD                       |                         |
| 368 | FIXED:                       | UNK                       |                         |
| 369 | Facility Power Feed-Through: |                           | 115/200 V, 400 Hz, 3 ph |
| 370 | Pulsed Signal:               | UNK                       |                         |
| 371 | Stimulus Power for UUTs:     | UNK                       |                         |
| 372 | RF STIMULI                   |                           |                         |
|     |                              |                           |                         |

|     | ATE SPECIFICATION ITEM    | CATS (F22 FACTORY/DEPOT?) | METS (FISE)      |
|-----|---------------------------|---------------------------|------------------|
| 373 | SYNTHESIZERS              |                           |                  |
| 374 | Synthesizer 1:            | HP 8662A                  | Wiltron 6747B-20 |
| 375 | frequency range           | 10 KHz to 1.28 GHz        | 10 MHz to 20 GHz |
| 376 | frequency resolution      | 0.1 Hz                    | 1 KHz            |
| 377 | power range:              |                           |                  |
| 378 | w/o amplifier             |                           | +10 to -112 dBm  |
| 379 | w/ amplifier              |                           |                  |
| 380 | PM:                       | Z                         |                  |
| 381 | on/off ratio              |                           | 80 dB            |
| 382 | rise/fall time            |                           | 10 nsec          |
| 383 | min. pulse width          |                           | 100 nsec         |
| 384 | max. frequency            |                           |                  |
| 385 | pulse on pulse modulation |                           | Y                |
| 386 | AM:                       | Y                         | Y                |
| 387 | frequency rate            | 400 Hz or 1 KHz           |                  |
| 388 | modulation depth          |                           |                  |
| 389 | FM:                       | Y                         | Y                |
| 390 | frequency rate            | 400 Hz or 1 KHz           |                  |
| 391 | Phase Modulation:         | N                         | Z                |
| 392 | frequency rate            |                           |                  |
| 393 | deviation                 |                           |                  |
|     |                           |                           |                  |

|     | ALE SPECIFICATION ITEM      | CATS (F22 FACTORY/DEPOT?)            | METS (F15E) |
|-----|-----------------------------|--------------------------------------|-------------|
| 394 | IFF:                        | Z                                    |             |
| 395 | frequency rate              |                                      |             |
| 396 | CW:                         | Z                                    | Y           |
| 397 | Synthesizer 2:              | HP 83623A (w/8347 or 8349 amplifier) |             |
| 398 | frequency range             | 10 MHz to 8.5 GHz                    |             |
| 399 | power range:                |                                      |             |
| 400 | w/o amplifier               |                                      |             |
| 401 | w/ amplifi <del>cr</del>    | +20 dBm                              |             |
| 402 | PM:                         |                                      |             |
| 403 | on/off ratio                |                                      |             |
| 404 | rise/fall time              |                                      |             |
| 405 | min. pulse width            |                                      |             |
| 406 | max. frequency              |                                      |             |
| 407 | AM:                         |                                      |             |
| 408 | frequency rate              |                                      |             |
| 409 | modulation depth            |                                      |             |
| 410 | FM:                         |                                      |             |
| 411 | max rate                    |                                      |             |
| 412 | Fast Switching Synthesizer: |                                      |             |
| 413 | frequency range             |                                      |             |
| 414 | power range                 |                                      |             |
|     |                             |                                      |             |

SQ 8

|     | ATE SPECIFICATION ITEM                | CATS (F22 FACTORY/DEPOT?) | METS (F15E) |
|-----|---------------------------------------|---------------------------|-------------|
| 415 | frequency switching time              |                           |             |
| 416 | FM:                                   |                           |             |
| 417 | rate                                  |                           |             |
| 418 | deviation                             |                           |             |
| 419 | AM:                                   |                           |             |
| 420 | rate                                  |                           |             |
| 421 | depth                                 |                           |             |
| 422 | Spread Spectrum Modulator/Demodulator | UNK                       |             |
| 423 | Modulation Signals:                   |                           |             |
| 424 | high accuracy AM                      |                           |             |
| 425 | (ILS and VOR)                         |                           |             |
| 426 | TACAN                                 |                           |             |
| 427 | linear pulse                          |                           |             |
| 428 | FSK                                   |                           |             |
| 429 | MSK                                   |                           |             |
| 430 | BPSK                                  |                           |             |
| 431 | QPSK                                  |                           |             |
| 432 | OQPSK (GPS)                           |                           |             |
| 433 | Broadband Noise Source:               | UNK                       |             |
| 434 | frequency range                       |                           |             |
| 435 | excess noise ratio                    |                           |             |
|     |                                       |                           |             |

**D-61** 

METS (F15E) 50 KHz to 22 GHz -132 to +30 dBm 3 Hz to 300 KHz A X09707 AH CATS (F22 FACTORY/DEPOT?) HP 3585B (RF Noise Analizer) +30 dBm to -134 dBm +30 dBm to -137 dBm 20 Hz to 40.1 MHz 100 Hz to 22 GHz 10 Hz to 3 MHz 1 Hz to 30 KHz 3 Hz to 30 KHz 1 Hz to 3 MHz to 325 GHz HP 8566B **NK ATE SPECIFICATION ITEM RF MEASUREMENT** continuous wave (CW) Stabilized Local Oscillator: with ext. mixers resolution bandwidth resolution bandwidth with ext. mixers Spectrum Analyzer 1: Spectrum Analyzer 2: video bandwidth frequency range frequency range video bandwidth input amplitude: input amplitude: bandwidth linear <u>log</u> Phase Noise: log pulsed 436 437 438 439 **4**0 42 **45** 41 **4**3 4 **4** 447 448 449 450 456 452 453 454 455 451

÷

|     | ATE SPECIFICATION ITEM  | CATS (F22 FACTORY/DEPOT?) | METS (FISE)      |
|-----|-------------------------|---------------------------|------------------|
| 457 | linear                  | 7.08 Vrms to 31 mVrms     |                  |
| 458 | Detection:              |                           |                  |
| 459 | Pulse                   | Y                         |                  |
| 460 | AM                      | Y                         |                  |
| 461 | FM                      | Y                         |                  |
| 462 | Attenuation (dB)        | UNK                       |                  |
| 463 | Millivolt Meter:        |                           |                  |
| 464 | voltage range           |                           |                  |
| 465 | bandwidth               |                           |                  |
| 466 | Power bandwidth (MHZ)   |                           |                  |
| 467 | RF Power Meter.         | WAVETEK 1342 and 80340    | HP 70100A        |
| 468 | power range             | -70 dBm to +20 dBm        | -70 to +20 dBm   |
| 469 | frequency range         | 10 MHz too 40 GH          | 10 MHz to 18 GHz |
| 470 | CW Power Meter:         | WAVETEK 1342 and 80300    |                  |
| 471 | power range             | 10 MHz too 40 GH          |                  |
| 472 | frequency range         | -70 dBm to +20 dBm        |                  |
| 473 | Noise Figure Meter:     | HP 8970B w/HP 246C        |                  |
| 474 | noise figure range      | 0 to 30 dB                |                  |
| 475 | noise figure resolution | 0.001 dB                  |                  |
| 476 | frequency range         | 10 MHz to 1.6 GHz         |                  |
| 477 | frequency resolution    | 1 MHz                     |                  |
|     |                         |                           |                  |

D-63

| Carri               | lyzer:<br>e                              | HP 11729C<br>1.28 to 18 GHz                     |  |
|---------------------|------------------------------------------|-------------------------------------------------|--|
|                     | idth<br>Lyzer:                           | HP 11729C<br>1.28 to 18 GHz<br>-74Bm to 18 Abov |  |
|                     |                                          | 1.28 to 18 GHz<br>17ABm to 118 ABm              |  |
|                     |                                          | -74Bm to ±18 4Bm                                |  |
|                     |                                          |                                                 |  |
|                     |                                          | 5 to 1280 MHz                                   |  |
|                     |                                          | +7 dBm                                          |  |
|                     | 9                                        | HP 3577A                                        |  |
|                     |                                          |                                                 |  |
|                     |                                          | HP 8508A                                        |  |
|                     |                                          | 100 KHz to 16 GHz                               |  |
|                     |                                          | -180 deg to +180 deg                            |  |
|                     |                                          |                                                 |  |
|                     | ge                                       |                                                 |  |
|                     |                                          |                                                 |  |
| Net                 |                                          | HP 8501B w/HP 8515                              |  |
|                     |                                          | HP 3577A/B                                      |  |
|                     |                                          | 45 MHz to 50 GHz                                |  |
|                     |                                          |                                                 |  |
|                     |                                          |                                                 |  |
| 496 max input       | +                                        | +15 dBm                                         |  |
| 497 noise level     |                                          |                                                 |  |
| 498 (complex/fundar | (complex/fundamental signal measurement) |                                                 |  |

\$ j

|     | ALE SPECIFICATION ILEM         | CAIS (FZZ FACTORY/DEPOT7) | METS (F15E) |
|-----|--------------------------------|---------------------------|-------------|
| 499 | IF bandwidth                   |                           |             |
| 500 | sweep time                     | 100 msec to 6553 sec/scan |             |
| 501 | Frequency Counter/Measurement: | Racal-Dana 2251 opt41     |             |
| 502 | frequency counter:             |                           |             |
| 503 | frequency range                | 25 MHz to 20 GHz          |             |
| 504 | accuracy                       |                           |             |
| 505 | resolution                     | 10 nsec                   |             |
| 506 | RF pulse width                 | 50 nsec                   |             |
| 507 | RF power level                 | +7 dBm                    |             |
| 508 | sensitivity                    | -15 dBm to -20 dBm        |             |
| 509 | input power range              | -20 dBm to +7 dBm         |             |
| 510 | Modulation Evaluation:         |                           |             |
| 511 | Pulse Modulation               | Υ                         |             |
| 512 | frequency range                |                           |             |
| 513 | pulse width                    |                           |             |
| 514 | rise/fall time                 |                           |             |
| 515 | dynamic range                  |                           |             |
| 516 | sensitivity                    |                           |             |
| 517 | PRF                            |                           |             |
| 518 | Amplitude Modulation           | Y                         |             |
| 519 | frequency range                |                           |             |
|     |                                |                           |             |

|     | ALE SPECIFICATION ILEM     | CAIS (F22 FACTORY/DEPOT7) | METS (FISE) |
|-----|----------------------------|---------------------------|-------------|
| 520 | modulation frequency       |                           |             |
| 521 | sensitivity, valley        |                           |             |
| 522 | accuracy                   |                           |             |
| 523 | Frequency Modulation       |                           |             |
| 524 | frequency range            |                           |             |
| 525 | modulation frequency       |                           |             |
| 526 | distortion                 |                           |             |
| 527 | spectrum                   |                           |             |
| 528 | RF Input Characteristics:  | Y                         |             |
| 529 | frequency range            |                           |             |
| 530 | input power                |                           |             |
| 531 | impedance                  |                           |             |
| 532 | vswr                       |                           |             |
| 533 | SPREAD SPECTRUM            |                           |             |
| 534 | Frequency range (Mhz)      | UNK                       |             |
| 535 | Hop rate (hops/sec)        | UNK                       |             |
| 536 | Code rate (chips/sec)      | UNK                       |             |
| 537 | Modulation / Demodulation: | UNK                       |             |
| 538 | amplitude modulation (AM)  |                           |             |
| 539 | precision AM               |                           |             |
| 540 | pulse modulation (PM)      |                           |             |
|     |                            |                           |             |

|     | ATE SPECIFICATION ITEM                          | CATS (F22 FACTORY/DEPOT?)                               | METS (FISE) |
|-----|-------------------------------------------------|---------------------------------------------------------|-------------|
| 541 | pulse on pulse modulation                       |                                                         |             |
| 542 | frequency modulation (FM)                       |                                                         |             |
| 543 | wideband FM                                     |                                                         |             |
| 544 | narrowband FM                                   |                                                         |             |
| 545 | frequency-shift keying (FSK)                    |                                                         |             |
| 546 | binary phase shift keying (BPSK)                |                                                         |             |
| 547 | continuous phase shift modulation (CPSM)        |                                                         |             |
| 548 | quadrature phase shift keying (QPSK)            |                                                         |             |
| 549 | offset quadrature phase shift keying<br>(OQPSK) |                                                         |             |
| 550 | Modulo-2                                        |                                                         |             |
| 551 | :SQITL                                          |                                                         |             |
| 552 | TACAN                                           |                                                         |             |
| 553 | VOR                                             |                                                         |             |
| 554 | ILS                                             |                                                         |             |
| 555 | MSK                                             |                                                         |             |
| 556 | GPS                                             |                                                         |             |
| 557 | <b>OPTICAL TESTING</b>                          |                                                         |             |
| 558 | LASER                                           |                                                         |             |
| 559 | Transmitter:                                    | HP 81551mm and 81552sm (optical attenuator<br>HP 8158B) |             |
| 560 | aperture                                        |                                                         |             |
|     |                                                 |                                                         |             |

|            | ATE SPECIFICATION FTEM           | CATS (F22 FACTORY/DEPOT?)                                                                              | METS (F15E) |
|------------|----------------------------------|--------------------------------------------------------------------------------------------------------|-------------|
| <b>S61</b> | field of view                    |                                                                                                        |             |
| 562        | Pulse Repetition Frequency (PRF) |                                                                                                        |             |
| 563        | Divergence                       |                                                                                                        |             |
| 564        | Range (kM)                       |                                                                                                        |             |
| 565        | resolution (meters)              |                                                                                                        |             |
| <b>S66</b> | energy input                     |                                                                                                        |             |
| <b>567</b> | power density (measurement)      | > -2 dBm                                                                                               |             |
| 568        | power density (stimulus)         |                                                                                                        |             |
| <b>569</b> | Wavelength                       | center freq 850 nm +/-10                                                                               |             |
| 570        | Spectral Bandwidth               | <1.5 nm                                                                                                |             |
| 571        | Angle of regard                  |                                                                                                        |             |
| 572        | Polarization                     |                                                                                                        |             |
| 573        | beam alignment range             |                                                                                                        |             |
| 574        | Receiver:                        | Lightwave Multimeter, EIP 1231A<br>Optical Power Meter HP-8153A with 81520A<br>and 81521V optical head |             |
| 575        | sensitivity ranges               | +10 to -100 dBm                                                                                        |             |
| 576        | range gate                       |                                                                                                        |             |
| 577        | Field-Of-View (FOV):             |                                                                                                        |             |
| 578        | apertures                        |                                                                                                        |             |
| 579        | FOV coincidence:                 |                                                                                                        |             |
| 580        | coaxial                          |                                                                                                        |             |
|            |                                  |                                                                                                        |             |

|     | ATE SPECIFICATION ITEM       | CATS (F22 FACTORY/DEPOT?)          | METS (F15E) |
|-----|------------------------------|------------------------------------|-------------|
| 581 | wavelength                   | 450 nm to 1700 nm                  |             |
| 582 | acceptance PRF               |                                    |             |
| 583 | fiber optic types            | parallel beam, 9/125 to 100/140 um |             |
| 584 | separate aperture on coaxial |                                    |             |
| 585 | Tracker:                     | UNK                                |             |
| 586 | sensitivity ranges           |                                    |             |
| 587 | range gate                   |                                    |             |
| 588 | Field-Of-View (FOV):         |                                    |             |
| 589 | apertures                    |                                    |             |
| 590 | coaxial                      |                                    |             |
| 591 | wavelength                   |                                    |             |
| 592 | acceptance PRF               |                                    |             |
| 593 | INFRARED                     |                                    |             |
| 594 | Number of targets            |                                    |             |
| 595 | Range (degrees C)            |                                    |             |
| 596 | Resolution (degress C)       |                                    |             |
| 597 | Aperture                     |                                    |             |
| 598 | Field of View (max)          |                                    |             |
| 599 | Field of View (min)          |                                    |             |
| 600 | Source Spacial Freq.         |                                    |             |
| 601 | Spectral Bands               |                                    |             |
|     |                              |                                    |             |

|     | ATE SPECIFICATION ITEM                           | CATS (F22 FACTORY/DEPOT?) | METS (F15E)       |
|-----|--------------------------------------------------|---------------------------|-------------------|
| 602 | Video Output                                     |                           |                   |
| 603 | Source temperature                               |                           |                   |
| 604 | NISUAL                                           |                           |                   |
| 605 | Number of targets                                |                           |                   |
| 606 | Size                                             |                           |                   |
| 607 | Spectral Band                                    |                           |                   |
| 608 | Video output                                     |                           |                   |
| 609 | Effect. Source Lumin. @ TPS Entrance<br>Aperture |                           |                   |
| 610 | INERTIAL TESTING                                 |                           |                   |
| 611 | Stimulus:                                        |                           | Genisco H342B     |
| 612 | static load                                      |                           |                   |
| 613 | rate                                             |                           | 0 to 2000 deg/sec |
| 614 | acceleration                                     |                           |                   |
| 615 | torque                                           |                           |                   |
| 616 | positional accuracy                              |                           | +/1 deg           |
| 617 | AUDIO TESTING                                    | HP 8903B                  |                   |
| 618 | Frequency Range                                  | 20 Hz to 100 KHz          |                   |
| 619 | Resolution                                       | 0.3 percent               |                   |
| 620 | Display Range                                    | 0 to 99.99 dB             |                   |
| 621 | Modes:                                           | normal; sinad; distortion |                   |

|     | ATE SPECIFICATION ITEM | CATS (F22 FACTORY/DEPOT?) | METS (F15E)         |
|-----|------------------------|---------------------------|---------------------|
| 622 | PRESSURE/PNEUMATICS    |                           |                     |
| 623 | Stimulus:              |                           |                     |
| 624 | Pressure:              |                           |                     |
| 625 | static                 |                           | 0.5 TO 32 in Hg     |
| 626 | total                  |                           |                     |
| 627 | differential           |                           | 0 to 74 in Hg       |
| 628 | rate                   |                           | "0 to 90,000 ft/min |
| 629 | MAINTENANCE SOFTWARE   |                           |                     |
| 630 | Built in Test (BIT)    | UNK                       | some                |
| 631 | Confidence test(s)     | UNK                       |                     |
| 632 | Self-calibration       | UNK                       |                     |
| 633 | OAFI                   |                           |                     |
| 634 | CALIBRATION SIGNALS    | UNK                       |                     |
| 635 | DC voltage source:     |                           |                     |
| 636 | resolution             |                           |                     |
| 637 | AC voltage source      |                           |                     |
| 638 | resolution             |                           |                     |
| 639 | DC current             |                           |                     |
| 640 | resolution             |                           |                     |
| 641 | AC current             |                           |                     |
| 642 | resolution             |                           |                     |

. Yuğu

**D-7**1

Þ

| 643<br>644 |                                                    | CAIS (F22 FACIUKY/DEPUL?)              |                                                    |
|------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------|
| 644        | resistance                                         |                                        |                                                    |
|            | resolution                                         |                                        |                                                    |
| 645        | current capacity                                   |                                        |                                                    |
| 646        | ATS CHARACTERISTICS                                |                                        |                                                    |
| 647        | Special Design Equipment:                          | First MATE Tester                      | Personality Module<br>Display Monitor              |
| 648        | Transportibility:                                  | UNK                                    | Two Man Portable                                   |
| 649        | Internal Cooling:                                  | Lockheed LRM Liquid/Air Heat Exchanger | Internal, station controlled lower unit for<br>UUT |
| 650        | Threat Simulators:                                 |                                        |                                                    |
| 651        | type threats                                       |                                        |                                                    |
| 652        | quantity                                           |                                        |                                                    |
| 653        | output:                                            |                                        |                                                    |
| 654        | voltage                                            |                                        |                                                    |
| 655        | current                                            |                                        |                                                    |
| 656        | bandwidth                                          |                                        |                                                    |
| 657        | coded waveforms                                    |                                        |                                                    |
| 658        | DEPLOYMENT DATA                                    |                                        |                                                    |
| 639        | Size/Weight:                                       | UNK                                    |                                                    |
| 660        | number of 463L pallets (air transportable<br>gear) | UNK                                    |                                                    |
| 661        | size/configuration (fixed gear)                    | UNK                                    |                                                    |

Table D-2. - Specification Summaries for CATS and METS (Continued)

|     | ATE SPECIFICATION ITEM           | CATS (F22 FACTORY/DEPOT?) | METS (F15E)                   |
|-----|----------------------------------|---------------------------|-------------------------------|
| 662 | weight (lbs)                     | UNK                       | 2685                          |
| 663 | footprint                        | UNK                       |                               |
| 664 | ENVIROMENTAL DATA                |                           |                               |
| 665 | Ambient Temp (for operation)     | UNK                       | 0 to 55 deg Centigrade        |
| 666 | Humidity                         |                           |                               |
| 667 | external cooling source required | required for UUT          | not required                  |
| 668 | heat generation                  |                           |                               |
| 699 | Internal Refrigeration Unit:     |                           |                               |
| 670 | use                              |                           | for UUT only                  |
| 671 | air temperature                  |                           |                               |
| 672 | shock tested                     | UNK                       | 20 G, 18 inch to 24 inch drop |
| 673 | vibration tested                 | UNK                       | 5 Hz to 55Hz                  |
| 674 | water resistance tested          | UNK                       | Y                             |
| 675 | Input Power Requirements:        | UNK                       |                               |
| 676 | 60 Hertz                         |                           |                               |
| 677 | 400 Hertz                        |                           |                               |
| 678 | DC                               |                           |                               |
| 619 | current load                     |                           |                               |
|     |                                  |                           |                               |

Chi Print - A

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                                                                          | IAIS (F16 DOWNSIZE)                                                                                                    | IAIS w//EXTENDED<br>CAPABILITY                                                                                           |
|----------|---------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1        | STATION INFORMATION       |                                                                                  |                                                                                                                        |                                                                                                                          |
| 3        | Station Configurations:   | Computer/Inertial<br>Radio Frequency<br>Display/Indicator<br>Processor/Pneumatic | 1 STATION CONFIGURATION<br>with Computer/Radio<br>Frequency/Display/Indicator<br>and Processor Testing<br>Capabilities | 1 STATION CONFIGURATION<br>with Computer/Radio<br>Frequency/Display/Indicator/<br>Processor/Pneumatics andINS<br>Testing |
| 3        | SYSTEM CONTROL            |                                                                                  |                                                                                                                        |                                                                                                                          |
| 4        | OPERATING SYSTEM:         | GDE SYSTEMS; designed                                                            | GDE SYSTEMS; designed                                                                                                  | GDE SYSTEMS; designed                                                                                                    |
| 5        | operating environment     | Modified HP Operating System                                                     | Modified HP Operating System                                                                                           | Modified HP Operating System                                                                                             |
| 9        | TPS software environment: |                                                                                  |                                                                                                                        |                                                                                                                          |
| 7        | ATLAS                     | Y                                                                                | Y                                                                                                                      | Y                                                                                                                        |
| 8        | ADA                       |                                                                                  |                                                                                                                        |                                                                                                                          |
| 6        | COMPUTER                  |                                                                                  |                                                                                                                        |                                                                                                                          |
| 10       | Computer Type:            | HP 900 series                                                                    | HP A990 (HP12990C processor)                                                                                           | HP A990 (HP12990C processor)                                                                                             |
| 11       | address/data bits         | 16                                                                               | 16                                                                                                                     | 16                                                                                                                       |
| 12       | mips                      | 3                                                                                | 15                                                                                                                     | 15                                                                                                                       |
| 13       | clock speed (Mhz)         | 7.5 MHz                                                                          | 12.5 MHz                                                                                                               | 12.5 MHz                                                                                                                 |
| 14       | main memory - Mbytes      | 1.5                                                                              | 80                                                                                                                     | 8                                                                                                                        |
| 15       | mass storage - Mbytes:    |                                                                                  |                                                                                                                        |                                                                                                                          |
| 16       | permanent                 | 40                                                                               | 0                                                                                                                      | 0                                                                                                                        |
|          |                           |                                                                                  |                                                                                                                        |                                                                                                                          |

Chemistry .

16 A [

|          | 1801e D-3 0               | pectication summaries lor F | lable D-3 Specification Summaries for F-10 AI E (AIS & IAIS) (Continued) | uea)                                                      |
|----------|---------------------------|-----------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|
| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                     | IAIS (F16 DOWNSIZE)                                                      | IAIS w//EXTENDED<br>CAPABILITY                            |
| 17       | transfer rate             | 4.4 Mbits/sec               |                                                                          |                                                           |
| 18       | removable                 | (2)20 (Magnetic media)      | (2) 594 formatted (Optical disks)                                        | (2) 594 formatted (Optical disks)                         |
| 19       | transfer rate             |                             | >4.4 Mbits/sec                                                           | >4.4 Mbits/sec                                            |
| 20       | punched tape reader       | Y                           | N                                                                        | Υ                                                         |
| 21       | magnetic tape reader      | Υ                           | γ                                                                        | Υ                                                         |
| 22       | I/O ports:                |                             |                                                                          |                                                           |
| 23       | IEEE-802.3 Ethernet       | N                           | Z                                                                        | Υ                                                         |
| 24       | RS-232                    | Y(2)                        | Y (7 total) 4 accesible & 3 reserve                                      | Y 29 total                                                |
| 25       | IEEE-488                  | Y(2)                        | Y (2)                                                                    | Y (5)                                                     |
| 26       | HP-IB (enhanced IEEE-488) | Y(2)                        | Y (2)                                                                    | Y (5)                                                     |
| 27       | SCSI                      | N                           | Y                                                                        | γ                                                         |
| 28       | RS-422                    | N                           | Y                                                                        | Υ                                                         |
| 29       | RS-423                    | N                           | Z                                                                        | γ                                                         |
| 30       | VME                       | Z                           | N                                                                        | Υ                                                         |
| 31       | VXI                       | N                           | N                                                                        | Υ                                                         |
| 32       | Printer:                  | Y                           | Υ                                                                        | γ                                                         |
| 33       | characters/sec            | >80 char/sec                | >80 char/sec<br>Port & Software for high speed<br>printer                | >80 char/sec<br>Port & Software for high speed<br>printer |
| 34       | <b>OPERATOR INTERFACE</b> |                             |                                                                          |                                                           |
| 35       | CRT:                      |                             |                                                                          |                                                           |

| ROW<br># | ATE SPECIFICATION<br>ITEM   | F16 AIS                                          | IAIS (F16 DOWNSIZE)                                  | IAIS w//EXTENDED<br>CAPABILITY                       |
|----------|-----------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 36       | screen size                 | 15 inch                                          | 9 inch                                               | 9 inch                                               |
| 37       | colors - number             | monochrome                                       | monochrome                                           | monochrome                                           |
| 38       | resolution                  | 25 lines by 80 characters                        | 640 by 400 resolution (25 lines by<br>80 characters) | 640 by 400 resolution (25 lines by<br>80 characters) |
| 39       | type                        |                                                  |                                                      |                                                      |
| 40       | Input Devices:              |                                                  |                                                      |                                                      |
| 41       | keyboard                    | Y                                                | Y                                                    | Y                                                    |
| 42       | trackball                   | Z                                                | N (Capability for H/W exists - S/W required)         | Y(S/W driver required)                               |
| 43       | mouse                       | N                                                | N (Capability for H/W exists - S/W<br>required)      | Y(S/W driver required)                               |
| 44       | bar code reader             | N                                                | N (Capability for H/W exists - S/W required)         | Y(S/W driver required)                               |
| 45       | touchscreen                 | N                                                | Y (80 by 25 Touchpoints)                             | Y (80 by 25 Touchpoints)                             |
| 46       | hand-held terminal          | N                                                | Y (MIL-STD-810 compliant)                            | Y (MIL-STD-810 compliant)                            |
| 47       | <b>UUT/SYSTEM INTERFACE</b> |                                                  |                                                      |                                                      |
| 48       | I/O Pins:                   | Pin Interface                                    | Densely-Packed Leaf Spring<br>(pinless interface)    | Densely-Packed Leaf Spring<br>(pintess interface)    |
| 49       | quantity                    | 2500                                             | 2500                                                 | 2500                                                 |
| 50       | volts/pin                   | up to 512 VDC                                    | up to 500 VDC                                        | up to 500 VDC                                        |
| 51       | power paths                 | limited only by space for connec-<br>tors on ITA | limited only by space for connec-<br>tors on ITA     | limited only by space for connec-<br>tors on ITA     |
|          |                             |                                                  |                                                      |                                                      |

Τ.

|           |                           | pectivation summaries for F- | Table D-3 Specification Summaries for F-10 ALE (ALS & LALS) (Continued)                           | nen)                                                                                              |
|-----------|---------------------------|------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| ROW<br>#  | ATE SPECIFICATION<br>ITEM | F16 AIS                      | IAIS (F16 DOWNSIZE)                                                                               | IAIS w//EXTENDED<br>CAPABILITY                                                                    |
| 52        | signal paths              |                              | Up to 100MHz sinewave                                                                             | Up to 100MHz sinewave                                                                             |
| 53        | Feedthroughs:             |                              |                                                                                                   |                                                                                                   |
| \$        | low frequency:            |                              |                                                                                                   |                                                                                                   |
| 55        | no. of pins               | 250                          | 180                                                                                               | 450                                                                                               |
| 56        | max current               | 5 amp (max), 1 amp (typ)     | 3 amp (max), 1 amp (typ)                                                                          | 3 amp (max), 1 amp (typ)                                                                          |
| 57        | frequency range           | >2 MHz squarewave            | 100 MHz                                                                                           | 100 MHz                                                                                           |
| 58        | power:                    |                              |                                                                                                   |                                                                                                   |
| 29        | no. of pins               |                              | 48 output pins, Input pwr pins<br>from LRU limited only by the<br>space on the ITA for connectors | 48 output pins, Input pwr pins<br>from LRU limited only by the<br>space on the ITA for connectors |
| 60        | max current               | 35A                          | 15A                                                                                               | 15A                                                                                               |
| 61        | frequency range           | 800Hz                        | DC, 400 Hz, 800 Hz                                                                                | DC, 400 HZ, 800 Hz & program-<br>mable AC fre to 8000Hz                                           |
| 62        | coax (RF):                |                              |                                                                                                   |                                                                                                   |
| 63        | no. of pins               | Station dependent            | 8 type N                                                                                          | 8 type N/ 36 to 108 pins                                                                          |
| 64        | max current               |                              |                                                                                                   |                                                                                                   |
| 65        | frequency range           |                              | DC to 18.5GHz                                                                                     | DC to 18.5GHz / DC to 1GHz                                                                        |
| <b>66</b> | Digital Test Unit:        |                              |                                                                                                   |                                                                                                   |
| 67        | no. of pins               | 208                          | 697                                                                                               | 961                                                                                               |
| 68        | no. of channels           | 40                           | 192 single ended, 96 differential                                                                 | Expandable to 288 single ended,<br>144 differential                                               |

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                  | IAIS (F16 DOWNSIZE)                                                        | IAIS #//EXTENDED<br>CAPABILITY                                              |
|----------|---------------------------|--------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 69       | data rate                 |                          | 10Hz to 16MHz and 40MHz                                                    | 10Hz to 16P.1Hz and 40MHz                                                   |
| 70       | logic levels              | TTL differential         | TTL single-ended/differential/<br>ECL/CMOS                                 | TTL. single-ended/tifferential/<br>ECL/CMOS                                 |
| 11       | compatibility:            | See busses               | See busses                                                                 | See busses                                                                  |
| 72       | Switching:                | 90 form C relays         |                                                                            |                                                                             |
| 73       | low frequency switch:     |                          | 180 relays                                                                 | 300 relays                                                                  |
| 74       | no. of pins               |                          | 258                                                                        | 498                                                                         |
| 75       | max current               | 30 (5 A) and 60 (1 A)    | 60 (1 A)                                                                   | 150 (1 A)                                                                   |
| 76       | relay matrices:           | Y                        | Y (12)1 x 5 and (2) 2 x 8                                                  | Y (24)1 x 5 and (5) 2 x 8                                                   |
| 77       | frequency range           |                          | (160) restricted BW driver depen-<br>dent, (80) DC-1MHz, (18) DC-<br>10MHz | (499) restricted BW driver depen-<br>dent, (200) DC-1MHz, (72) DC-<br>10MHz |
| 78       | coax switch:              |                          |                                                                            |                                                                             |
| 62       | no. of pins               | 32                       | None (pinless interface does not require coax)                             | None (pinless interface does not require coax)                              |
| 80       | relay matrices :          | 4 each 1X5<br>6 each 1X2 |                                                                            |                                                                             |
| 81       | frequency range           |                          |                                                                            |                                                                             |
| 82       | power switch:             |                          |                                                                            |                                                                             |
| 83       | no. of pins               |                          | 60                                                                         | 150                                                                         |

2 1X2 (ganged high current - 18.75 (12) 2.5 mv step, (8) 10v or 100v Exensive capability using MMS, VXI, and VME (5) IEEE-488/(29) RS232/ (29) (5) IEEE-488/(29) RS232/ (29) RS422/RS423 IAIS w//EXTENDED 1 1X2 (high current @ 18.75 5 1X4 (high current @ 18.75 CAPABILITY 150 1x2 power or signal **RS422/RS423** 20ma max DC to 1 kHz amps) amps) 100MHz amps) 3 amps 450 2 1X2 (ganged high current - 18.75 (12) 2.5 mv step, (8) 10v or 100v **IAIS (F16 DOWNSIZE)** amps) 1 1X2 (high current @ 18.75 5 1X4 (high current @ 18.75 (2) IEEE-488/(7) RS232 (2) IEEE-488/(7) RS232 60 1x2 power or signal DC to 1 kHz 20ma max 100MHz amps) amps) 100MHz 3 amps 3 amps 180 30 60 1X2 power or signal F16 AIS 8 1X2 Form C Relays 6 1X2 15 Amp 30 1X2 5 Amp Ň ATE SPECIFICATION number of instrument ports number of instrument ports Extended Performance I/O: Digital/Analog Converters: maximum current maximum current ITEM frequency range frequency range number of pins number of pins Universal I/O: relay matrices: quantity ROW 88 2 85 87 88 89 8 6 8 33 8 95 8

24

م**ار**انکینند م

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                | IAIS (F16 DOWNSIZE)                            | IAIS w//EXTENDED<br>CAPABILITY                 |
|----------|---------------------------|------------------------|------------------------------------------------|------------------------------------------------|
| 67       | voltage                   | +/- 10 V and +/- 100 V | +/- 10 V, +/-10V and +/- 100 V, in/<br>ext ref | +/- 10 V, +/-10V and +/- 100 V, in/<br>ext ref |
| 98       | max current               |                        | 20 ma                                          | 20 ma                                          |
| 66       | resolution                | 14 bits                | 12 Bits & 16 bits                              | 12 Bits & 16 bits                              |
| 100      | sampling rate             |                        | DC - SKHz                                      | DC - SKHz                                      |
| 101      | synchro-resolver channel  |                        | 3 channels (9 pins)                            | 3 channels (9 pins)                            |
| 102      | BUSSES                    |                        |                                                |                                                |
| 103      | Number of Channels        |                        |                                                |                                                |
| 104      | Protocols Available:      |                        | (Advanced Bus Emulator)                        | (Advanced Bus Emulator)                        |
| 105      | MIL-STD-1553 A/B          | Y                      | Y                                              | Y                                              |
| 106      | MIL-STD-1773              | Y with I/O translators | Y with I/O translators                         | Y with I/O translators                         |
| 107      | MIL-STD-1397A             | Y                      | Y                                              | Y                                              |
| 108      | EIA RS-232-C              | Y                      | Y                                              | Y                                              |
| 109      | EIA RS-422-A              | Y                      | Y                                              | Y                                              |
| 110      | RS-485                    | Υ                      | Y                                              | Y                                              |
| 111      | AR-57A                    |                        |                                                |                                                |
| 112      | IEEE-488                  | Υ                      | Y                                              | Y                                              |
| 113      | IEEE-802.3 (ethemet)      | N                      | Z                                              | Y                                              |
| 114      | Arinc-429                 | Υ                      | Y                                              | Y                                              |
| 115      | H009                      |                        |                                                |                                                |
|          |                           |                        |                                                |                                                |

| ROW<br># | ATE SPECIFICATION<br>ITEM   | F16 AIS                | IAIS (F16 DOWNSIZE)       | IAIS w//EXTENDED<br>CAPABILITY |
|----------|-----------------------------|------------------------|---------------------------|--------------------------------|
| 116      | F-16 AIS (Manchester)       | Y                      | Y                         | Y                              |
| 117      | PSP-RC                      | Y                      | γ                         | γ                              |
| 118      | 1750A processor bus         | Y 7MHz (Max)           | ۲                         | ٨                              |
| 119      | 8088 microprocessor bus     | ٨                      | Y                         | γ                              |
| 120      | 80x86 microprocessor bus    | Y 7MHz (Max)           | Y                         | Y                              |
| 121      | UART                        |                        |                           |                                |
| 122      | AIM-9 interface             |                        |                           |                                |
| 123      | HSDB (high speed data bus)  | Y                      | Y                         | Y                              |
| 124      | FODB (fiber optic data bus) | Y with I/O translators | Y with I/O translators    | Y with I/O translators         |
| 125      | RTDB                        | Υ                      | Υ .                       | γ                              |
| 126      | MWG                         | γ                      | Υ                         | Y                              |
| 127      | EMC                         | Υ                      | Υ                         | Υ                              |
| 128      | ASPJ jam bus                | Υ                      | Υ                         | Y                              |
| 129      | ASPJ status bus             | Υ                      | Υ                         | Υ                              |
| 130      | MCAIR 3818A                 |                        |                           |                                |
| 131      | Frequency range             | 10Hz to 7MHz           | 10 Hz to 16 MHz AND 40MHZ | 10 Hz to 16 MHz AND 40MHZ      |
| 132      | VIDEO                       |                        |                           |                                |
| 133      | Video Signal Generation:    |                        |                           |                                |
| 134      | horizontal timing           | Per RS-170 and RS-343  | Per RS-170 and RS-343     | Per RS-170 and RS-343          |
| 135      | horizontal resolution       | Per RS-170 and RS-343  | Per RS-170 and RS-343     | Per RS-170 and RS-343          |

IAIS w//EXTENDED CAPABILITY Per RS-170 and RS-343 Per RS-170 and RS-343 Per RS-170 and RS-343 8 shades of gray RS-170) **RS-343** HOBO **IAIS (FI6 DOWNSIZE)** Per RS-170 and RS-343 Per RS-170 and RS-343 Per RS-170 and RS-343 8 shades of gray **RS-170 RS-343** HOBO Per RS-170 and RS-343 Per RS-170 and RS-343 Per RS-170 and RS-343 F16 AIS RS-170 (mod) (raster) 6 shades of gray RS-343 (raster) HOBO ATE SPECIFICATION vertical timing resolution ITEM video output modes: vertical timing synch format video data output 2 output 3 output 1 ROW 136 139 140 137 138 142 143 141

Table D-3. - Specification Summaries for F-16 ATE (AIS & IAIS) (Continued)

and the second sec

D-82

output 5 output 6

146

output 7

147

148

output 4

**4 5** 

symbology stimulus (cursive) HUD display (special cursive)

symbology stimulus (cursive) HUD display (special cursive)

HUD display (special cursive)

symbology stimulus (cursive)

MAVERICK

Special Raster Video Stimuli

See F-16 EO Table

See F-16 EO Table

resolution

intensity

153 153

See F-16 EO Table

See F-16 EO Table

display measurement:

149

placement

150

151

See F-16 EO Table

See F-16 EO Table

intensity variation

field of view

See F-16 EO Table

See F-16 EO Table

See F-16 EO Table

See F-16 EO Table

MAVERICK

MAVERICK

Special Raster Video Stimuli

| ROW<br># | ATE SPECIFICATION<br>ITEM    | F16 AIS           | IAIS (F16 DOWNSIZE)                        | IAIS W//EXTENDED<br>CAPABILITY             |
|----------|------------------------------|-------------------|--------------------------------------------|--------------------------------------------|
| 156      | modulation transfer function | See F-16 EO Table | See F-16 EO Table                          |                                            |
| 157      |                              |                   |                                            |                                            |
| 158      | DIGITAL TESTING              |                   |                                            |                                            |
| 159      | Pattern Rate - Patterns/Sec  |                   |                                            |                                            |
| 160      | test rates;                  |                   |                                            |                                            |
| 161      | minimum                      | 10 Hz             | 10 Hz                                      | 10 Hz                                      |
| 162      | maximum                      | 7 MHz             | 16 MHz TO 40MHZ                            | 16 MHz TO 40MHZ                            |
| 163      | I/O pins                     | 208               | 697                                        | 961                                        |
| 164      | memory depth / pin           | 32 K              | 128 K X 16 bits OR 64 K X 32 bits          | 128 K X 16 bits OR 64 K X 32 bits          |
| 165      | EEPROM programming pulse     | ٢                 | γ                                          | ۲                                          |
| 166      | Digital Test Unit:           |                   |                                            |                                            |
| 167      | Bit Rate                     | 7 MHz             | 10Hz to 16MHz and 40MHz                    | 10Hz to 16MHz and 40MHz                    |
| 168      | pin interface                | Y                 | Y                                          | ٢                                          |
| 169      | voltage ranges               | ш                 | TTL single-ended/differential/<br>ECL/CMOS | TTL single-ended/differential/<br>ECL/CMOS |
| 170      | clock speed                  | 10 MHz            | 10Hz to 16MHz and 40MHz                    | 10Hz to 16MHz and 40MHz                    |
| 171      | Diagnostic Probe: (digital)  | None              | None                                       | None                                       |
| 172      | voltage range                |                   |                                            |                                            |
| 173      | input data rate (max)        |                   |                                            |                                            |
| 174      | resolution                   |                   |                                            |                                            |

| compatibility         compatibility           propagation delay         heige threshold           logic threshold         heige threshold           noppic detection         imput impedance           imput impedance         heige threshold           nimput impedance         heige threshold           rimput impedance         heige threshold           rimpit fineteration:         hoige threshold           rimpit fineteration:         hoige threshold           rimpit fineteration:         filterential (DC:500 Hz)           ringe         hoige threshold         hoige threshold           ringe         hoige threshold         hoige threshold           ringe         hoige threshold         hoige threshold           ringe         hoige t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROW<br># | ATE SPECIFICATION<br>ITEM  | F16 AIS                     | IAIS (F16 DOWNSIZE)                                                               | IAIS W//EXTENDED<br>CAPABILITY                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|-----------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| propagation delay         propagation delay         posite threshold         posite threshold           input impodance         puble detection         posite detection         posite detection           Timing Ceneration:         propagation delay         propagation delay         propagation           Timing Ceneration:         propertion         propagation         propagation           Timing Ceneration:         propagation         propagation         propagation           Timing Ceneration:         postector 25 sec         50 nsec to 25 sec         propagation           Time Interval Measurement:         postec to 25 sec         40 nsec to 64 sec         propage           properiod         properiod         do nsec to 64 sec         40 nsec to 64 sec         properiod           properiod         properiod         sec - 40 nsec resolution         properiod         properiod           range         prove to 64 sec         do nsec to 64 sec         do nsec to 64 sec         do nsec to 64 sec           properiod         properiod         sec - 40 nsec resolution         frequeriat (DC - 500 Hz)         proper of 48 sec           range         number signal paths         prove to 23 v/DC - 10MHz)         go 17 (DC - 10MHz)         hV differentiat (DC - 500 Hz)           promber signal paths         prove to 23 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175      | compatibility              |                             |                                                                                   |                                                                                    |
| logic thresholdlogic thresholdmodelicepulse detectioninput impedanceinput impedanceunput impedanceunput impedanceImput impedanceImp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 176      | propagation delay          |                             |                                                                                   |                                                                                    |
| pulse detection       pulse detection         input impedance       couput impedance         Timing Generation:       D0 Hz to 10 MHz         Timing Generation:       10 Hz to 10 MHz         Time Interval Measurement:       00 Hz to 10 MHz         Publse vidth range       90 nsec to 25 sec         Time Interval Measurement:       10 Hz to 10 MHz         Time Interval Measurement:       10 nsec to 64 sec         Publse characteristics       5 nsec - 40 nsec resolution         S nsec in 64 sec       40 nsec to 64 sec         Publse characteristics       5 nsec - 40 nsec resolution         Inside       AnALOG SWITCHING         Inside       16 HV 500V Max (DC-20KHz)         Inside       16 HV 500V Max (DC-20KHz)         Inside       16 HV 600V max) DC-10MHz)         Inside       18 LV (0-32V)(DC-10MHz)         Inside       18 LV (0-32V)(DC-10MHz)         Inside       18 LV (0-32V)(DC-10MHz)         Inside       16 LOADS         Inside       16 LOADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177      | logic threshold            |                             |                                                                                   |                                                                                    |
| input impedanceinput impedance1output impedance1Timing Generation:1Timing Generation:1Imput impedance1frequency range1frequency range1frequency range1frequency range1frequency range1frequency range1frequency range1frequency range1frequency range1frequency range2gonsec to 25 sec1gonsec to 25 sec1mel literval Measurement:2gonsec to 25 sec1gonsec to 25 sec2gonsec to 25 sec2gonsec to 64 sec <td>178</td> <td>pulse detection</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178      | pulse detection            |                             |                                                                                   |                                                                                    |
| output impedance     ID Hz to 10 MHz       Timing Generation:     10 Hz to 10 MHz       frequency range     10 Hz to 10 MHz       pulse width range     50 nsec to 25 sec       Time Interval Measurement:     50 nsec to 25 sec       Time Interval Measurement:     60 nsec to 25 sec       Time Interval Measurement:     60 nsec to 25 sec       Time Interval Measurement:     70 nsec to 25 sec       Time Interval Measurement:     80 nsec to 25 sec       Time Interval Measurement:     70 nsec to 25 sec       Time Interval Measurement:     80 nsec to 25 sec       Time Interval Measurement:     70 nsec to 26 sec       Interval Measurement:     70 nsec to 26 sec       Interval Measi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 179      | input impedance            |                             |                                                                                   |                                                                                    |
| Timing Generation:IO Hz to 10 MHzIO Hz to 40 MHzfrequency range $10 Hz$ to 10 MHz $10 Hz$ to 40 MHzpulse width range $50 nsec to 25 sec50 nsec to 25 secTime Interval Measurement:50 nsec to 25 sec50 nsec to 25 secTime Interval Measurement:50 nsec to 25 sec50 nsec to 25 secTime Interval Measurement:50 nsec to 64 sec40 nsec to 64 secPulse characteristics5 nsec \cdot 40 nsec resolution5 nsec \cdot 40 nsec resolutionrange7 nsec40 nsec to 64 sec40 nsec to 64 secnange7 nsec \cdot 40 nsec resolution5 nsec \cdot 40 nsec resolutionnumber characteristics5 nsec \cdot 40 nsec resolution5 nsec \cdot 40 nsec resolutionnumber signal paths16 HV 500V Max (DC-20 KHz)4 HV differential (DC-500 Hz)number signal paths18 LV (0-32V)(DC-10 MHz)160 LV (Restricted BW)number signal paths18 LV (0-32V)(DC-10 MHz)160 LV (Restricted BW)number signal paths18 LV (0-32V)(DC-10 MHz)18 LV (0-32V)(DC-10 MHz)number signal paths18 LV (DC-10 MHz)18 LV (DC-10 MHz)number signal paths18 LV (DC-10 MHz)18 LV (DC-10 MHz)number signal pa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180      | output impedance           |                             |                                                                                   |                                                                                    |
| frequency range10 Hz to 10 MHz10 Hz to 40 MHzpulse width range50 nsec to 25 sec50 nsec to 25 secTime Interval Measurement:80 nsec to 25 sec50 nsec to 25 secperiod40 nsec to 64 sec40 nsec to 64 secpulse characteristics5 nsec - 40 nsec to 64 sec40 nsec to 64 secrange7 not control5 nsec - 40 nsec to 64 secrange7 number characteristics5 nsec - 40 nsec to 64 secnumber characteristics5 nsec - 40 nsec resolutionrange7 number signal paths16 HV 500V Max (DC-20KHz)humber signal paths240 LV (DC-10MHz)80 LV (DC-10MHz)handwidth at voltage18 LV (0-32V)(DC-10MHz)160 LV (Restricted BW)humber signal paths18 LV (0-32V)(DC-10MHz)18 LV (10-32V) (DC-10MHz)hordwidth at voltage18 LV (DC-10MHz)18 LV (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 181      | Timing Generation:         |                             |                                                                                   |                                                                                    |
| pulse width range50 nsec to 25 sec50 nsec to 25 secTime Interval Measurement:Fine Interval Measurement:50 nsec to 25 secperiod40 nsec to 64 sec40 nsec to 64 secpulse characteristics5 nsec - 40 nsec to 64 sec5 nsec - 40 nsec resolutionrange5 nsec - 40 nsec resolution5 nsec - 40 nsec resolutionrange16 HV 500V Max (DC-20KHz)4 HV differential (DC-500 Hz)number signal paths240 LV (DC-10MHz)80 LV (DC-10MHz)bandwidth at voltage18 LV (0-32V)(DC-10MHz)160 LV (Restricted BW)hotzambel Loads:NNProgrammable Loads:NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 182      | frequency range            |                             | 10 Hz to 40 MHz                                                                   | 10 Hz to 40 MHz                                                                    |
| Time Interval Measurement:Time Interval Measurement:period40 nsec to 64 secpulse characteristics5 nsec - 40 nsec to 64 secpulse characteristics5 nsec - 40 nsec resolutionrange5 nsec - 40 nsec resolutionrange7 nonenumber16 HV 500V Max (DC-20KHz)humber signal paths240 LV (DC-10MHz)bandwidth at voltage18 LV (0-32V)(DC-10MHz)humber signal paths18 LV (0-32V)(DC-10MHz)humber signal paths18 LV (0-32V)(DC-10MHz)humber signal paths18 LV (0-32V)(DC-10MHz)humber loades18 LV (0-32V)(DC-10MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 183      | pulse width range          | 50 nsec to 25 sec           | 50 nsec to 25 sec                                                                 | 50 nsec to 25 sec                                                                  |
| period40 nsec to 64 sec40 nsec to 64 secpulse characteristics5 nsec - 40 nsec resolution5 nsec - 40 nsec resolutionrangerange5 nsec - 40 nsec resolution5 nsec - 40 nsec resolutionrangerangerange16 HV 500V Max (DC-20KHz)4 HV differential (DC-500 Hz)number signal paths240 LV (DC-1MHz)80 LV (DC-1MHz)160 LV (Restricted BW)bandwidth at voltage18 LV (0-32V)(DC-10MHz)160 LV (Restricted BW)hoorableLOADS18 LV (0-32V)(DC-10MHz)160 LV (Restricted BW)Programmable Loads:NNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 184      | Time Interval Measurement: |                             |                                                                                   |                                                                                    |
| pulse characteristics5 nscc - 40 nscc resolutionrange5 nscc - 40 nscc resolutionrangerangenumberANALOG SWITCHINGHV 500V Max (DC-20KHz)4 HV differential (DC-500 Hz)number signal paths240 LV (DC-10MHz)bandwidth at voltage18 LV (0-32V)(DC-100MHz)bandwidth at voltage18 LV (0-32V)(DC-100MHz)LOADS18 LV (0-32V)(DC-100MHz)Programmable Loads:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 185      | period                     |                             | 40 nsec to 64 sec                                                                 | 40 nsec to 64 sec                                                                  |
| rangerangeANALOG SWITCHINGI6 HV 500V Max (DC-20KHz)ANALOG SWITCHING16 HV 500V Max (DC-20KHz)In number signal paths240 LV (DC-1MHz)In number signal paths240 LV (DC-1MHz)In number signal paths240 LV (DC-10MHz)In number signal paths18 LV (0-32V)(DC-10MHz)In number signal paths18 LV (0-32V)(DC-10MHz)In number signal paths18 LV (0-32V)(DC-10MHz)In number signal paths18 LV (10-32V) (DC-10 MHz)In number bandwidth at voltage18 LV (10-32V) (DC-10 MHz)In number bandwidth bandble Loads:NIn number bandwidth bandble Loads:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 186      | pulse characteristics      | 5 nsec - 40 nsec resolution | 5 nsec - 40 nsec resolution                                                       | 5 nsec - 40 nsec resolution                                                        |
| ANALOG SWITCHINGI6 HV 500V Max (DC-20KHz)4 HV differential (DC-500 Hz)number signal paths240 LV (DC-1MHz)80 LV (DC-1MHz)bandwidth at voltage18 LV (0-32V)(DC-10MHz)160 LV (Restricted BW)humber signal paths18 LV (0-32V)(DC-10MHz)160 LV (Restricted BW)LOADSLOADS18 LV (10-32V) (DC-10 MHz)Programmable Loads:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 187      | range                      |                             |                                                                                   |                                                                                    |
| I6 HV 500V Max (DC-20KHz)4 HV differential (DC-500 Hz)number signal paths240 LV (DC-1MHz)80 LV (DC-1MHz)bandwidth at voltage18 LV (0-32V)(DC-10MHz)160 LV (Restricted BW)HV (500 V max) DC-20KHz18 LV (10-32V) (DC-10 MHz)LOADS18 LV (10-32V) (DC-10 MHz)Programmable Loads:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188      | ANALOG SWITCHING           |                             |                                                                                   |                                                                                    |
| number signal paths     240 LV (DC-1MHz)     80 LV (DC-1MHz)       bandwidth at voltage     18 LV (0-32V)(DC-10MHz)     160 LV (Restricted BW)       http://doctrom.com/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctrom/doctr | 189      |                            | 16 HV 500V Max (DC-20KHz)   | 4 HV differential (DC-500 Hz)                                                     | 10 HV differential (DC-500 Hz)                                                     |
| bandwidth at voltage     18 LV (0-32V)(DC-10MHz)     160 LV (Restricted BW)       A HV (500 V max) DC-20KHz     18 LV (10-32V) (DC-10 MHz)       I B LV (10-32V) (DC-10 MHz)     18 LV (10-32V) (DC-10 MHz)       Programmable Loads:     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190      | number signal paths        | 240 LV (DC-1MHz)            | 80 LV (DC-1MHz)                                                                   | 200 LV (DC-1MHz)                                                                   |
| LOADS<br>Programmable Loads: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 161      | bandwidth at voltage       |                             | 160 LV (Restricted BW)<br>4 HV (500 V max) DC-20KHz<br>18 LV (10-32V) (DC-10 MHz) | 400 LV (Restricted BW)<br>10 HV (500 V max) DC-20KHz<br>72 LV (10-32V) (DC-10 MHz) |
| Programmable Loads:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 192      | LOADS                      |                             |                                                                                   |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 193      | Programmable Loads:        |                             | Z                                                                                 | Y                                                                                  |

50, (11) 93 and (6) 500 ohms loads IAIS w//EXTENDED CAPABILITY 50, 93 and 500 ohms loads 0 V to +/- 20 mV 0 V to +/- 10 V **4800 Watts** 60 amps 200 V ≻ ≻ ≻ ≻ 7 > 5 50, (5) 93 and (3) 500 ohms loads **IAIS (F16 DOWNSIZE)** 50, 93 and 500 ohms loads 0 V to +/- 20 mV 0 V to +/- 10 V Z ≻ ≻ > > ≻ 3 5.6 Ohms; 14 Ohms; 28 Ohm; 56 Ohms; 140 Ohms FI6 AIS 0 V to +/- 20 mV 0 V to +/- 10 V +/-0.050 ohms 30 - 100 ohms ≻ ŝ Q > ≻ 7 ≻ ProgrammablePrecision Resistor: ATE SPECIFICATION **ANALOG STIMULI** max power dissipation pulsed DC waveform amplitude resolution arbitrary waveform ITEM Arb Funct/Wave Gen: square waveform ramp waveform sine waveform Fixed Resistance: max current max voltage amplitude channels accuracy quantity values range ROW \* <u>1</u> 195 196 198 197 199 200 201 202 203 205 206 210 204 209 212 207 208 211

Table D-3. - Specification Summaries for F-16 ATE (AIS & IAIS) (Continued)

2. 2.93.

| ROW<br># | ATE SPECIFICATION<br>ITEM     | F16 AIS                                           | IAIS (F16 DOWNSIZE)                               | IAIS w//EXTENDED<br>CAPABILITY                    |
|----------|-------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 213      | DC level waveform             | ٨                                                 | Y                                                 | Y                                                 |
| 214      | triangle waveform             | ۲                                                 | Y                                                 | Y                                                 |
| 215      | haversine                     | Y                                                 | Y                                                 | Y                                                 |
| 216      | random noise                  | Y                                                 | Y                                                 | Y                                                 |
| 217      | (sin x)/x                     | Y                                                 | Y                                                 | Y                                                 |
| 218      | Frequency Ranges:             |                                                   |                                                   |                                                   |
| 219      | pulsed DC and square wave     | 0.01 Hz to 2 MHz                                  | 0.01 Hz to 2 MHz                                  | 0.01 Hz to 2 MHz                                  |
| 220      | sine wave                     | 0.01 Hz to 2 MHz                                  | 0.01 Hz to 2 MHz                                  | 0.01 Hz to 2 MHz                                  |
| 221      | triangle and sawtooth wave    | 0.01 Hz to 140 KHz                                | 0.01 Hz to 140 KHz                                | 0.01 Hz to 140 KHz                                |
| 222      | arbitrary wave                | 9 Hz to 16 MHz                                    | 0.01 Hz to 2 MHz                                  | 0.01 Hz to 2 MHz                                  |
| 223      | Resolution:                   |                                                   |                                                   |                                                   |
| 224      | pulsed DC and square wave     | 0.05 percent                                      | 0.05 percent                                      | 0.05 percent                                      |
| 225      | sine wave                     | % \$0.0                                           | 0.05 %                                            | 0.05 %                                            |
| 226      | ramp wave                     | 0.05 %                                            | 0.05 %                                            | 0.05 %                                            |
| 227      | arbitrary wave                | 0.05 %                                            | 0.05 %                                            | 0.05 %                                            |
| 228      | point generation for arb wave | 8 to 1024 points                                  | 8 to 1024 points                                  | 8 to 1024 points                                  |
| 229      | max. point generation rate    | 16 MHz                                            | 16 MHz                                            | 16 MHz                                            |
| 230      | available modes of operation  | AM: 0 to 100% modulation                          | AM: 0 to 100% modulation                          | AM: 0 to 100% modulation                          |
| 231      | dual phase mode               | YES - programmable thru 360 deg<br>, up to 250KHz | YES - programmable thru 360 deg<br>, up to 250KHz | YES - programmable thru 360 deg<br>, up to 250KHz |
|          |                               |                                                   |                                                   |                                                   |

|          | Table D-3 §               | Table D-3 Specification Summaries for F-16 ATE (AIS & IAIS) (Continued) | -16 ATE (AIS & IAIS) (Contin | ued)                           |
|----------|---------------------------|-------------------------------------------------------------------------|------------------------------|--------------------------------|
| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                                                                 | IAIS (F16 DOWNSIZE)          | IAIS w//EXTENDED<br>CAPABILITY |
| 232      | Discrete Generator:       |                                                                         |                              |                                |
| 233      | Pulse Generator:          |                                                                         |                              |                                |
| 234      | quantity                  | 6                                                                       | 1                            | 9                              |
| 235      | period range              | 250 nsec to 100 seconds                                                 | 250 nsec to 100 seconds      | 250 nsec to 100 seconds        |
| 236      | pulse width               | 200 nsec to 25 seconds                                                  | 200 nsec to 25 seconds       | 200 nsec to 25 seconds         |
| 237      | accuracy                  | 1 msec                                                                  | 1 msec                       | 1 msec                         |
| 238      | amplitude                 | +/- 0.15 V to 25 V (93 ohms)                                            | +/- 0.15 V to 25 V (93 ohms) | +/- 0.15 V to 25 V (93 ohms)   |
| 239      | delay                     | 100 nsec to 25 seconds                                                  | 100 nsec to 25 seconds       | 100 nsec to 25 seconds         |
| 240      | double pulse              | N                                                                       | S/W Programmable             | S/W Programmable               |
| 241      | pulse burst count         |                                                                         | 1022                         | 1022                           |
| 242      | Counter/Timer Stimulus:   |                                                                         |                              |                                |
| 243      | voltage leveis            | 0 to 100 V                                                              | 0 to 100 V                   | 0 to 100 V                     |
| 244      | frequency range           | DC to 10 MHz                                                            | DC to 10 MHz                 | DC to 10 MHz                   |
| 245      | duty cycle                | 0 to 99%                                                                | %66 01 0                     | 0 to 99%                       |
| 246      | time delays               |                                                                         | 40 ns to 30 sec              | 40 ns to 30 sec                |
| 247      | resolution of delay       |                                                                         |                              |                                |
| 248      | accuracy of delay         |                                                                         |                              |                                |
| 249      | pulse width               |                                                                         | 20ns min                     | 20ns min                       |
| 250      | resolution of pulse width |                                                                         |                              |                                |
| 251      | accuracy of pulse width   |                                                                         |                              |                                |

Cak,

| ROW<br># | ATE SPECIFICATION<br>ITEM     | F16 AIS                                    | IAIS (F16 DOWNSIZE)                        | IAIS w//EXTENDED<br>CAPABILITY             |
|----------|-------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| 252      | digital to synchro generation | 4                                          | 1                                          | 1                                          |
| 253      | voltage level                 | 11.8 Vims                                  | 11.8 Vrms                                  | 11.8 Vrms                                  |
| 254      | accuracy                      | Accuracy: 0.07 deg<br>Resolution: 0.02 deg | Accuracy: 0.07 deg<br>Resolution: 0.02 deg | Accuracy: 0.07 deg<br>Resolution: 0.02 deg |
| 255      | power                         | 1.25 VA (max)                              | 1.0 VA                                     | 1.0 VA                                     |
| 256      | Synchro Generation:           |                                            |                                            |                                            |
| 257      | quantity                      | 4                                          | 1                                          | 10                                         |
| 258      | angular range                 | 0 to 360 deg                               | 0 to 360 deg                               | 0 to 360 deg                               |
| 259      | resolution                    | 1.31 arc min.                              | 1.31 arc min.                              | 1.31 arc min.                              |
| 260      | angular rate                  | 0 to 1080 degrees/sec                      | 0 to 17%0 degrees/sec                      | 0 to 1080 degrees/sec                      |
| 261      | index ref position            |                                            | 0 deg                                      | 0 deg                                      |
| 262      | reference voltage             | 26 Vac                                     | 26 Vac                                     | 26 Vac                                     |
| 263      | voltage (synchro)             | 11.8 Vrms                                  | 11.8 Vrms                                  | 11.8 Vms                                   |
| 264      | reference frequency           | 400 Hz                                     | 400 Hz                                     | 400 Hz                                     |
| 265      | frequency range               | 400 Hz                                     | 400 Hz                                     | 400 Hz                                     |
| 266      | Function Generator:           |                                            |                                            |                                            |
| 267      | quantity                      | 6                                          | 2                                          | 5                                          |
| 268      | amplitude                     | 0 to +/- 10 V                              | 0 to +/- 10 V                              | 0 to +/- 10 V                              |
| 269      | slew rate                     | 500 V/usec                                 | 500 V/usec                                 | 500 V/usec                                 |
| 270      | rise time                     | 60 nsec                                    | 60 nsec                                    | 60 nsec                                    |
|          |                               |                                            |                                            |                                            |

S. 8.

| ROW<br># | ATE SPECIFICATION<br>ITEM      | F16 AIS                     | IAIS (F16 DOWNSIZE)         | IAIS W//EXTENDED<br>CAPABILITY |
|----------|--------------------------------|-----------------------------|-----------------------------|--------------------------------|
| 271      | waveforms available:           |                             |                             |                                |
| 272      | sine wave                      | Y                           | Y                           | Υ                              |
| 273      | square wave                    | Y                           | Y                           | Y                              |
| 274      | ramp (sawtooth) wave           | Y                           | Y                           | Y                              |
| 275      | triangle                       | Y                           | Y                           | Υ                              |
| 276      | pulse                          | Υ                           | Y                           | Y                              |
| 277      | frequency range                | 0.01 Hz to 2 MHz            | 0.01 Hz to 2 MHz            | 0.01 Hz to 2 MHz               |
| 278      | arbitrary function             | 8 to 1024 points            | 8 to 1024 points            | 8 to 1024 points               |
| 279      | special capabilities           | dual phase mode             |                             |                                |
| 280      | Square Wave Output             |                             |                             |                                |
| 281      | frequency range                | See Pulse Generator Section | See Pulse Generator Section | See Pulse Generator Section    |
| 282      | frequency accuracy             | See Pulse Generator Section | See Pulse Generator Section | See Pulse Generator Section    |
| 283      | frequency resolution           | See Pulse Generator Section | See Pulse Generator Section | See Pulse Generator Section    |
| 284      | phase shift range              | See Pulse Generator Section | See Pulse Generator Section | See Pulse Generator Section    |
| 285      | duty cycle                     | See Pulse Generator Section | See Pulse Generator Section | See Pulse Generator Section    |
| 286      | amplitude                      | See Pulse Generator Section | See Pulse Generator Section | See Pulse Generator Section    |
| 287      | AC Line of Sight Seeker (Loss) |                             |                             |                                |
| 288      | amplitude                      | 50 mVrms to 4 Vrms          | 50 mVrms to 4 Vrms          | 50 mVrms to 4 Vrms             |
| 289      | phase                          | -180 to +180 deg            | -180 to +180 deg            | -180 to +180 deg               |
| 290      | frequency                      | 50 Hz to 150 Hz             | 50 Hz to 150 Hz             | 50 Hz to 150 Hz                |
|          |                                |                             |                             |                                |

| ROW<br># | ATE SPECIFICATION<br>ITEM        | F16 AIS                                 | IAIS (F16 DOWNSIZE)                     | IAIS w//EXTENDED<br>CAPABILITY          |
|----------|----------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| 291      | ANALOG MEASUREMENT               |                                         |                                         |                                         |
| 292      | Digital Multi-Meter:             |                                         |                                         |                                         |
| 293      | DC range                         | 0.0625 V to 512 V                       | +/- 0.0625 V to +/-500 V                | +/- 0.0625 V to +/-500 V                |
| 294      | DC resolution                    | +/- 0.05%                               | +/- 0.05%                               | +/- 0.05%                               |
| 295      | AC range                         | 0.0625 V to 512 V                       | +/- 0.0625 V to +/-500 V                | +/- 0.0625 V to +/-500 V                |
| 296      | AC resolution                    | <=100 uv                                | <=100 uv                                | <=100 uv                                |
| 297      | current range                    |                                         | Z                                       | 0 to 60 amp                             |
| 298      | current resolution               |                                         | Z                                       | 0.03% of FS                             |
| 299      | resistance range                 | 0 to 10 Mohm                            | 0 to 10 Mohm                            | 0 to 10 Mohm                            |
| 300      | AC Voltage Ratio                 | 1.5 to 6.0 percent                      | 1.5 to 6.0 percent                      | 1.5 to 6.0 percent                      |
| 301      | DC Voltage Ratio                 | to 1000:1                               | to 1000:1                               | to 1000:1                               |
| 302      | Frequency/Time Interval Counter. |                                         |                                         |                                         |
| 303      | frequency range                  | 2 Hz to 10 MHz                          | 2 Hz to 10 MHz                          | 2 Hz to 10 MHz                          |
| 304      | time interval range              | up to 64 sec                            | 50 nsec to 64 sec                       | 50 nsec to 64 sec                       |
| 305      | input voltage range              | up to 64 sec                            | 50 nsec to 64 sec                       | 50 nsec to 64 sec                       |
| 306      | count events                     |                                         |                                         |                                         |
| 307      | Microwave Counter:               | See RF Measurement                      | See RF Measurement                      | See RF Measurement                      |
| 308      | Frequency Response Analyzer      | accomplished thru measurement<br>system | accomplished thru measurement<br>system | accomplished thru measurement<br>system |
| 309      | Vector Voltmeter:                |                                         | Y                                       | Y                                       |
|          |                                  |                                         |                                         |                                         |

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                                 | IAIS (F16 DOWNSIZE)                          | IAIS w//EXTENDED<br>CAPABILITY            |
|----------|---------------------------|-----------------------------------------|----------------------------------------------|-------------------------------------------|
| 310      | Sampling Signal Analyzer: |                                         |                                              |                                           |
| 311      | resolution                | 15 bit                                  | 15 bit                                       | 15 bit                                    |
| 312      | rate                      | to 200 KHz                              | to 200 KHz                                   | to 200 KHz                                |
| 313      | resolution                | 5 usec                                  | 5 usec                                       | 5 usec                                    |
| 314      | Waveform Digitizer:       | accomplished thru measurement<br>system | Y                                            | Y                                         |
| 315      | channels                  |                                         | 2                                            | 2                                         |
| 316      | input voltage range       |                                         | +/- 500V                                     | +/- 500V                                  |
| 317      | frequency response        |                                         | DC to 10MHz                                  | DC to 10MHz                               |
| 318      | amplitude resolution      |                                         | 15 bits + sign bit                           | 15 bits + sign bit                        |
| 319      | sampling interval         |                                         | lusec to 68.7 secs                           | lusec to 68.7 secs                        |
| 320      | storage depth             |                                         | 1024                                         | 1024                                      |
| 321      | sampling/conversion rate  |                                         | 1 GHz repetitive mode/330KHz<br>single event | 1 GHz repetitive mode/330KHz single event |
| 322      | Synchro-Resolver:         |                                         |                                              |                                           |
| 323      | angular range             | 0 to 360 deg                            | 0 to 360 deg                                 | 0 to 360 deg                              |
| 324      | resolution                | 0.33 ininute                            | 0.33 minute                                  | 0.33 minute                               |
| 325      | angular rate (max)        | 0 to 360 deg/sec                        | 0 to 360 deg/sec                             | 0 to 360 deg/sec                          |
| 326      | reference voltage         | 26 Vms +/- 5%                           | 26 Vms +/- 5%                                | 26 Vms +/- 5%                             |
| 327      | voltage (synchro)         | 11.8 Vrms                               | 11.8 Vrms                                    | 11.8 Vrms                                 |
| 328      | reference frequency       | 400 Hz                                  | 400 Hz                                       | 400 Hz                                    |
|          |                           |                                         |                                              |                                           |

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                                      | IAIS (F16 DOWNSIZE)            | IAIS W//EXTENDED<br>CAPABILITY |
|----------|---------------------------|----------------------------------------------|--------------------------------|--------------------------------|
| 329      | accutacy                  | +/- 1.5 min                                  | +/- 1.5 min                    | +/- 1.5 min                    |
| 330      | resolution                |                                              | 16 bits                        | 16 bits                        |
| 331      | frequency range           | 400 Hz                                       | 400 Hz                         | 400 Hz                         |
| 332      | index reference position  |                                              | 0 deg                          | 0 deg                          |
| 333      | Oscilloscope:             |                                              |                                |                                |
| 334      | traces                    | 2                                            | See Video Section              | See Video Section              |
| 335      | bandwidth                 | DC to 25 MHz 4 wire bus                      | See Video Section 4 wire bus   | See Video Section 4 wire bus   |
| 336      | DC POWER                  |                                              |                                |                                |
| 337      | PROGRAMMABLE:             |                                              |                                |                                |
| 338      | Low Voltage:              |                                              |                                |                                |
| 339      | quantity                  | 7 supplies max complement depends on station | 6 [(4) 40V 10 A, (2) 40V 15 A] | 6 [(4) 40V 10 A, (2) 40V 15 A] |
| 340      | max. watts per supply     | 1225 Watts                                   | (4) 400W, (2) 360 W            | (4) 400W. (2) 360 W            |
| 341      | max. voltage              | Programmable to 35V                          | Programmable to 40 V           | Programmable to 40 V           |
| 342      | max. current              | Programmable to 35 A                         | Programmable to 15 A           | Programmable to 15 A           |
| 343      | High Voltage:             |                                              |                                |                                |
| 344      | quantity                  | 3                                            | 2 (150V 2A)                    | 2 (150V 2A)                    |
| 345      | voltage range             | 90 V                                         | programmable to 150 V          | programmable to 150 V          |
| 346      | max current               | 35 A                                         | programmable to 2A             | programmable to 2A             |
| 347      | Current Source:           |                                              | Y                              | Y                              |
|          |                           |                                              |                                |                                |

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                                                     | IAIS (F16 DOWNSIZE)                             | IAIS w//EXTENDED<br>CAPABILITY                  |
|----------|---------------------------|-------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| 348      | unit 1: amplitude         | -300 uA to +300 uA                                          | DC supplies are designed for<br>Current source  | DC supplies are designed for<br>Current source  |
| 349      | resolution                | 1 uA                                                        | capability using programmable                   | capability using programmable                   |
| 350      | unit 2-6: amplitude       | -1 A to +1 A                                                | constant current mode                           | constant current mode                           |
| 351      | resolution                | 32 uA                                                       |                                                 |                                                 |
| 352      | FIXED:                    |                                                             |                                                 |                                                 |
| 353      | quantity                  | 1 supply with 5 outputs                                     | 1 supply with 5 outputs                         | 1 supply with 5 outputs                         |
| 354      | volts                     | +5, +15, -15, +120 ,-120 VDC                                | +5, +15, -15, +120 ,-120 VDC                    | +5, +15, -15, +120 ,-120 VDC                    |
| 355      | amperes                   | <ia< td=""><td><!--A</td--><td><!--A</td--></td></td></ia<> | A</td <td><!--A</td--></td>                     | A</td                                           |
| 356      | waits                     |                                                             |                                                 |                                                 |
| 357      | REFERENCE:                |                                                             |                                                 |                                                 |
| 358      | quantity                  |                                                             |                                                 |                                                 |
| 359      | voltage range             |                                                             |                                                 |                                                 |
| 360      | current                   |                                                             |                                                 |                                                 |
| 361      | AC POWER                  |                                                             |                                                 |                                                 |
| 362      | PROGRAMMABLE:             |                                                             |                                                 |                                                 |
| 363      | number of phases          | 1 and 3                                                     | 1 and 3                                         | 1 and 3, and varable up to 8 out-<br>puts       |
| 364      | frequency                 |                                                             | 400 and 800 Hz                                  | progarammable eq (up to 8000Hz)<br>& amps800 Hz |
| 365      | voltage                   | 0-240 Vrms                                                  | 5, (3ph.)115,@ 400Hz; (4 outputs)<br>26 @ 800Hz | 5, (3ph.)115,@ 400Hz; (4 outputs)<br>26 @ 800Hz |

| ROW<br># | ATE SPECIFICATION<br>ITEM    | F16 AIS                                                                                                                                                                                                                                                                                  | IAIS (F16 DOWNSIZE)                                                                                                                                                    | IAIS w//EXTENDED<br>CAPABILITY                                                                                                                                                                                         |
|----------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 366      | current                      |                                                                                                                                                                                                                                                                                          | 2A.15 A/Phase, and 2.125 A/<br>output                                                                                                                                  | 2A,15 A/Phase, and 2.125 A/<br>output                                                                                                                                                                                  |
| 367      | power                        |                                                                                                                                                                                                                                                                                          | 5432 Watts total power (including fixed 26V 400 Hz)                                                                                                                    | 5432 Watts total power (including fixed 26V 400 Hz)                                                                                                                                                                    |
| 368      | FIXED:                       |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                        |
| 369      | Facility Power Feed-Through: | 115/200 V, 400 Hz, 3 ph                                                                                                                                                                                                                                                                  | None required<br>115 Vac 60 Hz or 230 Vac 50 Hz<br>(facility pwr dpdnt)                                                                                                | None required<br>115 Vac 60 Hz or 230 Vac 50 Hz<br>(facility pwr dpdnt)                                                                                                                                                |
| 370      | Pulsed Signal:               |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                        |
| 371      | Stinulus Power for UUTs:     | 26 Vrms, 400 Hz, 1 phase<br>0-185 Vrms, 300-500 Hz, 4 VA, 3<br>ph.<br>0-144 Vrms, 400Hz+/-20 300VA, 3<br>ph.<br>0-26 Vrms, 400Hz+/-20, 1A, 1ph.<br>26 Vrms, 800 Hz, 1.5 VA<br>40-85 Vrms, 5600 Hz, 1 A<br>11.8 Vrms, 400 Hz, prog phase<br>11.8 Vrms, 400 Hz, prog rate of ph.<br>change | 26 Vrms, 400 Hz, 1 phase,1 A<br>5 Vrms, 400 Hz, 1 phase, 2 A<br>115 Vrms, 400 Hz, Phase A, B, and<br>C 15A/phase<br>26 Vrms, 800 Hz, (4 outputs) 1ph.<br>2.125A/output | 26 Vrms, 400 Hz, 1 phase,1 A<br>5 Vrms, 400 Hz, 1 phase, 2 A<br>115 Vrms, 400 Hz, Phase A, B, and<br>C 15A/phase<br>26 Vrms, 800 Hz, (4 outputs) 1ph,<br>2.125A/output<br>varable voltage 0-115 VAC from<br>400-8000Hz |
| 372      | RF STIMULI                   |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                        |
| 373      | SYNTHESIZERS:                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                        |
| 374      | Synthesizer 1:               |                                                                                                                                                                                                                                                                                          | multiple ports                                                                                                                                                         | multiple ports                                                                                                                                                                                                         |
| 375      | frequency range              | 10 MHz to 18 GHz                                                                                                                                                                                                                                                                         | 30 MHz to 18.5 GHz                                                                                                                                                     | 30 MHz to 18.5 GHz                                                                                                                                                                                                     |
| 376      | frequency resolution         | 10 Hz to 30 Hz                                                                                                                                                                                                                                                                           | 10 Hz to 30 Hz                                                                                                                                                         | 10 Hz to 30 Hz                                                                                                                                                                                                         |
| 377      | power range:                 |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                        |

×.

್ಟಿಂಗ್

|          | Table D-3 5               | Iable D-3 Specification Summaries for F-10 ALE (AIS & IAIS) (Continued) | 10 ALE (ALS & LALS) (CONUN                     | nea)                                           |
|----------|---------------------------|-------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                                                                 | IAIS (F16 DOWNSIZE)                            | LAIS w//EXTENDED<br>CAPABILITY                 |
| 378      | w/o amplifier             | +28.5 to -121 dBm (x-band for<br>+28.5)                                 | +5dBm 3GHz to 18.5GHz/<br>+16dBm .4GHz to 3GHz | +5dBm 3GHz to 18.5GHz/<br>+16dBm .4GHz to 3GHz |
| 379      | w/ amplifier              |                                                                         |                                                |                                                |
| 380      | PM:                       | Y (500 MHz to 18.5 GHz)                                                 | Y (500 MHz to 18.5 GHz)                        | Y (500 MHz to 18.5 GHz)                        |
| 381      | on/off ratio              | 60 dB (minimum)                                                         | 60 dB (minimum)                                | 60 dB (minimum)                                |
| 382      | rise/fall time            | 25 nsec (minimum)                                                       | 25 nsec (minimum)                              | 25 nsec (minimum)                              |
| 383      | min. pulse width          | 100 nsec                                                                | 100 nsec                                       | 100 nsec                                       |
| 384      | max. frequency            | 10 Hz to 1 MHz                                                          | 10 Hz to 1 MHz                                 | 10 Hz to 1 MHz                                 |
| 385      | pulse on pulse modulation | Ν                                                                       | Y                                              | Y                                              |
| 386      | AM:                       | Y (30 MHz to 500 MHz)                                                   | Y (30 MHz to 500 MHz)                          | Y (30 MHz to 500 MHz)                          |
| 387      | frequency rate            | 10 Hz to 25 KHz                                                         | 10 Hz to 25 KHz                                | 10 Hz to 25 KHz                                |
| 388      | modulation depth          | 0 to 95 %                                                               | 0 to 95 %                                      | 0 to 95 %                                      |
| 389      | FM:                       | N                                                                       | N                                              | Υ                                              |
| 390      | frequency rate            |                                                                         |                                                | 200KHz                                         |
| 391      | Phase Modulation:         | N                                                                       | N                                              | γ                                              |
| 392      | frequency rate            |                                                                         |                                                | 1 MHz                                          |
| 393      | deviation                 |                                                                         |                                                | 20 deg                                         |
| 394      | lfF:                      | Υ                                                                       | Y                                              | Υ                                              |
| 395      | frequency rate            | 1 GHz to 1.05 GHz                                                       | 1 GHz to 1.05 GHz                              | 1 GHz to 1.05 GHz                              |
| 396      | CW:                       |                                                                         |                                                |                                                |

| ROW<br># | ATE SPECIFICATION<br>ITEM   | F16 AIS | IAIS (F16 DOWNSIZE)                                                                        | IAIS w//EXTENDED<br>CAPABILITY |
|----------|-----------------------------|---------|--------------------------------------------------------------------------------------------|--------------------------------|
| 397      | Synthesizer 2:              |         | Same characteristics as above this synethizer is located in MMU and is used as a reference |                                |
| 398      | frequency range             |         |                                                                                            | 0.01 to 20GHz                  |
| 399      | power range:                |         |                                                                                            |                                |
| 400      | w/o amplificr               |         |                                                                                            | +10 to -90dBm                  |
| 401      | w/ amplificr                |         |                                                                                            |                                |
| 402      | PM:                         |         |                                                                                            |                                |
| 403      | on/off ratio                |         |                                                                                            | >80 dB                         |
| 404      | rise/fall time              |         |                                                                                            | <10msec                        |
| 405      | min. pulse width            |         |                                                                                            | 25nsec min                     |
| 406      | max. frequency              |         |                                                                                            |                                |
| 407      | AM:                         |         |                                                                                            |                                |
| 408      | frequency rate              |         |                                                                                            | 10Hz to 100KHz                 |
| 409      | modulation depth            |         |                                                                                            | 0-60 dB                        |
| 410      | FM:                         |         |                                                                                            |                                |
| 411      | max rate                    |         |                                                                                            | 1 MHz                          |
| 412      | Fast Switching Synthesizer: |         | Z                                                                                          |                                |
| 413      | frequency range             |         |                                                                                            | 0.05GHz to 18GHz               |
| 414      | power range                 |         |                                                                                            | +10 to -107 dBm                |
| 415      | frequency switching time    |         |                                                                                            | <100nsec                       |
|          |                             |         |                                                                                            |                                |

| ROW<br># | ATE SPECIFICATION<br>ITEM                 | F16 AIS | IAIS (F16 DOWNSIZE) | IAIS w//EXTENDED<br>CAPABILITY |
|----------|-------------------------------------------|---------|---------------------|--------------------------------|
| 416      | FM:                                       |         |                     |                                |
| 417      | rate                                      |         |                     | 0.0625hz to 10 Mhz             |
| 418      | deviation                                 |         |                     | 0.125Hz to 20 MHz              |
| 419      | AM:                                       |         |                     |                                |
| 420      | raic                                      |         |                     | 0.0625Hz to 20 Mhz             |
| 421      | depth                                     |         |                     | %66 <b>.</b> 66                |
| 422      | Spread Spectrum Modulator/<br>Demodulator |         | Z                   |                                |
| 423      | Modulation Signals:                       |         |                     |                                |
| 424      | high accuracy AM                          |         |                     | Y                              |
| 425      | (ILS and VOR)                             |         |                     | Y                              |
| 426      | TACAN                                     |         |                     | γ                              |
| 427      | linear pulse                              |         |                     | γ                              |
| 428      | FSK                                       |         |                     | Υ                              |
| 429      | MSK                                       |         |                     | Υ                              |
| 430      | BPSK                                      |         |                     | ۲                              |
| 431      | QPSK                                      |         |                     | γ                              |
| 432      | OQPSK (GPS)                               |         |                     | Υ                              |
| 433      | Broadband Noise Source:                   |         | Z                   | γ                              |
| 434      | frequency range                           |         |                     | 10MHz to 26.5GHz               |

1 - S.V.

| ROW<br># | ATE SPECIFICATION<br>ITEM    | F16 AIS            | IAIS (F16 DOWNSIZE)                                                        | IAIS w//EXTENDED<br>CAPABILITY                                             |
|----------|------------------------------|--------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 435      | excess noise ratio           |                    |                                                                            | 12-16 dB                                                                   |
| 436      | Phase Noise:                 |                    | Z                                                                          | Y                                                                          |
| 437      | pulsed                       |                    |                                                                            | x-Band                                                                     |
| 438      | continuous wave (CW)         |                    |                                                                            | UHF, VHF, x-Band                                                           |
| 439      | bandwidth                    |                    |                                                                            | 100Khz                                                                     |
| 440      | Stabilized Local Oscillator: | 10 MHz             | 10 MHz                                                                     | 10 MHz                                                                     |
| 441      | RF MEASUREMENT               |                    |                                                                            |                                                                            |
| 442      | Spectrum Analyzer 1:         |                    | Limited capabilities accomplished via                                      | Y                                                                          |
| 443      | frequency range              | 10 MHz to 18.5 GHz | Microwave Measurement Unit                                                 | 30Mhz to 18.5 GHz                                                          |
| 444      | with ext. mixers             |                    |                                                                            |                                                                            |
| 445      | resolution bandwidth         | 10 Hz to 6 MHz     |                                                                            |                                                                            |
| 446      | video bandwidth              |                    |                                                                            |                                                                            |
| 447      | input amplitude:             |                    |                                                                            |                                                                            |
| 448      | log                          |                    | -50dB (30Mhz - 2Ghz)<br>-544dB (2Ghzhz - 12Ghz)<br>-38dB (12Ghz - 18.5Ghz) | -50dB (30Mhz - 2Ghz)<br>-544dB (2Ghzhz - 12Ghz)<br>-38dB (12Ghz - 18.5Ghz) |
| 449      | linear                       |                    |                                                                            |                                                                            |
| 450      | Spectrum Analyzer 2:         |                    | Z                                                                          | Y                                                                          |
| 451      | frequency range              |                    |                                                                            |                                                                            |
| 452      | with ext. mixers             |                    |                                                                            | 100Hz to 26.5 GHz                                                          |

| $\frown$                           |
|------------------------------------|
| 13                                 |
| ā                                  |
| Ĕ.                                 |
| <b>—</b>                           |
|                                    |
| ÷.                                 |
|                                    |
| 0                                  |
| $\mathbf{O}$                       |
| Ξ.                                 |
| -                                  |
|                                    |
| <u> </u>                           |
|                                    |
|                                    |
|                                    |
| -34                                |
| -                                  |
| 20                                 |
| 2                                  |
| A                                  |
|                                    |
| $\mathbf{\tilde{\mathbf{u}}}$      |
| ( <del>_</del>                     |
|                                    |
|                                    |
| <                                  |
|                                    |
| 9                                  |
| -                                  |
|                                    |
|                                    |
| <b>L</b>                           |
| Ö                                  |
|                                    |
| ies for F-16 ATE (AIS & IAIS) (Con |
| e                                  |
| · –                                |
|                                    |
| 2                                  |
|                                    |
| Ē                                  |
|                                    |
| 3                                  |
| Ū.                                 |
|                                    |
| 5                                  |
| •                                  |
| <u>ت</u>                           |
|                                    |
|                                    |
| Ē                                  |
| lical                              |
| ificat                             |
| cificat                            |
| ecificat                           |
| pecificat                          |
| Specificat                         |
| - Specificat                       |
| - Specifical                       |
| 3 Specificat                       |
| -3 Specificat                      |
| <b>D-3 Specifica</b>               |
| D-3 Specificat                     |
| e D-3 Specificat                   |
| ole D-3 Specificat                 |
| ible D-3 Specificat                |
| lable D-3 Specificat               |

•

•

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                                         | LAIS (F16 DOWNSIZE)                             | LAIS w//EXTENDED<br>CAPABILITY                 |
|----------|---------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|
| 453      | resolution bandwidth      |                                                 |                                                 | 1Hz to 3Mhz                                    |
| 454      | video bandwidth           |                                                 |                                                 | -134 to +30 dBm                                |
| 455      | input amplitude:          |                                                 |                                                 |                                                |
| 456      | log                       |                                                 |                                                 |                                                |
| 457      | linear                    |                                                 |                                                 |                                                |
| 458      | Detection:                |                                                 |                                                 |                                                |
| 459      | Pulse                     | Y                                               | Y                                               | Y                                              |
| 460      | AM                        | Y                                               | Y                                               | Y                                              |
| 461      | FM                        | N                                               | Z                                               | Y                                              |
| 462      | Attenuation (dB)          | Y (0-121dB)                                     | Y (0-121dB)                                     | Y (0-121dB)                                    |
| 463      | Millivolt Meter:          | Accomplished thru MMU and<br>Measurement system | Accomplished thru MMU and<br>Measurement system | Accomplished thm MMU and<br>Measurement system |
| 464      | voltage range             |                                                 |                                                 |                                                |
| 465      | bandwidth                 |                                                 |                                                 |                                                |
| 466      | Power bandwidth (MHZ):    |                                                 |                                                 |                                                |
| 467      | RF Power Meter:           |                                                 | dual channel                                    | dual channel                                   |
| 468      | power range               | +30 to -70 dBm                                  | +44 to -70 dBm                                  | +44 to -70 dBm                                 |
| 469      | frequency range           | 10 MHz to 18.5 GHz                              | 100KHz to 18.5 GHz                              | 100KHz to 18.5 GHz                             |
| 470      | CW Power Meter:           |                                                 |                                                 |                                                |
| 471      | power range               | 10 MHz to 18.5 GHz                              | 10 MHz to 18.5 GHz                              | 10 MHz to 18.5 GHz                             |
|          |                           |                                                 |                                                 |                                                |

| ROW<br>* | ATE SPECIFICATION<br>ITEM | F16 AIS                                | IAIS (F16 DOWNSIZE)                    | IAIS w//EXTENDED<br>CAPABILITY         |
|----------|---------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| 472      | frequency range           | +35 to -70 dBm                         | +44 to -70 dBm                         | +44 to -70 dBm                         |
| 473      | Noise Figure Meter:       |                                        | Z                                      | Y                                      |
| 474      | noise figure range        |                                        |                                        | 0 to 30dB                              |
| 475      | noise figure resolution   |                                        |                                        | 0.01 dB                                |
| 476      | frequency range           |                                        |                                        | 10 to 1600 MHz                         |
| 477      | frequency resolution      |                                        |                                        | 1 Mhz                                  |
| 478      | Carrier Noise Tester:     | Y (Phase noise)                        | Z                                      | Y                                      |
| 479      | frequency range           | x-band                                 |                                        | UHF, VHF, x-Band                       |
| 480      | amplitude                 |                                        |                                        |                                        |
| 481      | IF output bandwidth       |                                        |                                        | 10001zKhzz                             |
| 482      | IF output level           |                                        |                                        | 2V max                                 |
| 483      | Sampling Signal Analyzer: | γ                                      | Υ                                      | Y                                      |
| 484      | SWR meas. range           | Automatic 1.5:1<br>Semiautomatic 1.2:1 | Automatic 1.5:1<br>Semiautomatic 1.2:1 | Automatic 1.5:1<br>Semiautomatic 1.2:1 |
| 485      | vector voltmeter:         |                                        | Z                                      | Y                                      |
| 486      | frequency range           |                                        |                                        | 100 KHz to 233 GHz                     |
| 487      | phase range               |                                        |                                        | 0 +/- 180 degrees                      |
| 488      | peak power meter.         |                                        | Z                                      | Υ                                      |
| 489      | frequency range           |                                        |                                        | 50 MHz to 40 GHz                       |
| 490      | power range               |                                        |                                        | -32 to + 20 dBm                        |
|          |                           |                                        |                                        |                                        |

|     | Table D-3 Spe                            | pecification Summaries for F-                                                                                                       | ecification Summaries for F-16 ATE (AIS & IAIS) (Continued)                                                                         | ued)                                                                                                                                |
|-----|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| #0W | ATE SPECIFICATION<br>ITEM                | F16 AIS                                                                                                                             | IAIS (F16 DOWNSIZE)                                                                                                                 | IAIS w//EXTENDED<br>CAPABILITY                                                                                                      |
| 491 | Vector Network Analyzer:                 |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |
| 492 | Network Analysis:                        |                                                                                                                                     | Z                                                                                                                                   | Y                                                                                                                                   |
| 493 | frequency range                          |                                                                                                                                     |                                                                                                                                     | 50 MHz to 20 GHz                                                                                                                    |
| 494 | time                                     |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |
| 495 | bandwdith                                |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |
| 496 | max input                                |                                                                                                                                     |                                                                                                                                     | +20 dBm                                                                                                                             |
| 497 | noise level                              |                                                                                                                                     |                                                                                                                                     | -93 dBm                                                                                                                             |
| 498 | (complex/fundamental signal measurement) |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |
| 499 | IF bandwidth                             |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |
| 500 | sweep time                               |                                                                                                                                     |                                                                                                                                     | <5mSec/point (2 port)                                                                                                               |
| 501 | Frequency Counter/Measurement:           |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |
| 502 | frequency counter:                       |                                                                                                                                     | Y                                                                                                                                   | γ                                                                                                                                   |
| 503 | frequency range                          | 10 MHz to 18 GHz                                                                                                                    | 30 MHz to 18.5 GHz                                                                                                                  | 30 MHz to 18.5 GHz                                                                                                                  |
| 504 | accuracy                                 | +/- 0.0001%<br>+/- 10% @ 0.1 usec pulse<br>+/- 0.1% @ 0.4 usec pulse<br>+/- 0.01% @ 1 usec pulse<br>+/- 0.01% @ 10 - 100 usec pulse | +/- 0.0001%<br>+/- 10% @ 0.1 usec pulse<br>+/- 0.1% @ 0.4 usec pulse<br>+/- 0.01% @ 1 usec pulse<br>+/- 0.01% @ 10 - 100 usec pulse | +/- 0.0001%<br>+/- 10% @ 0.1 usec pulse<br>+/- 0.1% @ 0.4 usec pulse<br>+/- 0.01% @ 1 usec pulse<br>+/- 0.01% @ 10 - 100 usec pulse |
| 505 | resolution                               | 10 Hz (min)                                                                                                                         | 10 Hz (min)                                                                                                                         | 10 Hz (min)                                                                                                                         |
| 506 | RF pulse width                           | 0.1 usec (min) to 100 msec                                                                                                          | 0.1 usec (min) to 100 msec                                                                                                          | 0.1 usec (min) to 100 msec                                                                                                          |
| 507 | RF power level                           | -70 to +30 dBm                                                                                                                      | -20 to +33dBm                                                                                                                       | -20 to +33 dBm                                                                                                                      |

٤ Table

| ROW<br>#   | ATE SPECIFICATION<br>ITEM | F16 AIS                         | IAIS (F16 DOWNSIZE) | LAIS W//EXTENDED<br>CAPABILITY |
|------------|---------------------------|---------------------------------|---------------------|--------------------------------|
| 508        | sensitivity               | -44 to 70 dBm (range dependent) | -20 dBm             | -20 dBm                        |
| <b>S09</b> | input power range         | -20 to 33 dBm                   | -20 to 33 dBm       | -20 to 33 dBm                  |
| 510        | Modulation Evaluation:    |                                 |                     |                                |
| 511        | Pulse Modulation          |                                 |                     |                                |
| 512        | frequency range           | 500 MHz to 18.5 GHz             | 500 MHz to 18.5 GHz | 500 MHz to 18.5 GHz            |
| 513        | pulse width               | 100 usec minimum                | 100 usec minimum    | 100 usec minimum               |
| 514        | rise/fall time            | 10 nsec                         | 10 nsec             | 10 nsec                        |
| 515        | dynamic range             | 60 dB                           | 60 dB               | 60 dB                          |
| 516        | sensitivity               | -20 dBm                         | -20 dBm             | -20 dBm                        |
| 517        | PRF                       | 200 Hz to 1 MHz                 | 200 Hz to 1 MHz     | 200 Hz to 1 MHz                |
| 518        | Amplitude Modulation      |                                 |                     |                                |
| 519        | frequency range           | 30 MHz to 500 MHz               | 30 MHz to 18.5GHz   | 30 MHz to 18.5GHz              |
| 520        | modulation frequency      | 10 Hz to 25 KHz                 | 10 Hz to 25 KHz     | 10 Hz to 25 KHz                |
| 521        | sensitivity, valley       | -40 dBm                         | -40 dBm             | -40 dBm                        |
| 522        | accuracy                  | +/- 1 dB or 5%                  | +/- 1 dB or 5%      | +/- 1 dB or 5%                 |
| 523        | Frequency Modulation      | Z                               | N                   | Y                              |
| 524        | frequency range           |                                 |                     | 30Mhz to 18.5Ghz               |
| 525        | modulation, frequency     |                                 |                     |                                |
| 526        | distortion                |                                 |                     |                                |
| 527        | spectrum                  |                                 |                     |                                |

|          | Table D-3 S                         | pecification Summaries for F-                | Table D-3 Specification Summaries for F-16 ATE (AIS & IAIS) (Continued) | ued)                                         |
|----------|-------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|
| ROW<br># | ATE SPECIFICATION<br>ITEM           | F16 AIS                                      | IAIS (F16 DOWNSIZE)                                                     | IAIS w//EXTENDED<br>CAPABILITY               |
| 528      | RF Input Characteristics:           |                                              |                                                                         |                                              |
| 529      | frequency range                     | 10 MHz to 18.5 GHz                           | 10 MHz to 18.5 GHz                                                      | 10 MHz to 18.5 GHz                           |
| 530      | input power                         | 1-2 Watt average (100 peak {10<br>usec max}) | 1-2 Watt average (100 peak {10<br>usec max})                            | 1-2 Watt average (100 peak {10<br>usec max}) |
| 531      | impedance                           | 50 ohms (nom.)                               | 50 ohms (nom.)                                                          | 50 ohms (nom.)                               |
| 532      | VSWR                                | 1.35:1 to 1.7:1 (freq dependent)             | 1.35:1 to 1.7:1 (freq dependent)                                        | 1.35:1 to 1.7:1 (freq dependent)             |
| 533      | SPREAD SPECTRUM                     |                                              |                                                                         |                                              |
| 534      | Frequency range (Mhz)               | Z                                            | N                                                                       | N                                            |
| 535      | Hop rate (hops/sec)                 | Z                                            | Ν                                                                       | N                                            |
| 536      | Code rate (chips/sec)               | N                                            | Ν                                                                       | N                                            |
| 537      | Modulation/Demodulation:            |                                              |                                                                         |                                              |
| 538      | amplitude modulation (AM)           | Y                                            | Υ                                                                       | γ                                            |
| 539      | precision AM                        | γ                                            | γ                                                                       | Υ                                            |
| 540      | pulse modulation (PM)               | Υ                                            | γ                                                                       | Υ                                            |
| 541      | pulse on pulse modulation           |                                              | Υ                                                                       | γ                                            |
| 542      | frequency modulation (FM)           | N                                            | N                                                                       | Z                                            |
| 543      | wideband FM                         |                                              |                                                                         |                                              |
| 544      | narrowband FM                       |                                              |                                                                         |                                              |
| 545      | frequency-shift keying (FSK)        | N                                            | Z                                                                       | Z                                            |
| 546      | binary phase shift keying<br>(BPSK) | Z                                            | Z                                                                       | ٢                                            |

ATTE (ATC & TATE) (C. Ċ Tahla D.3

1

| ROW<br>* | ATE SPECIFICATION<br>ITEM                    | F16 AIS            | IAIS (F16 DOWNSIZE) | LAIS W//EXTENDED<br>CAPABILITY |
|----------|----------------------------------------------|--------------------|---------------------|--------------------------------|
| 547      | continuous phase shift<br>modulation (CPSM)  | z                  | Z                   | z                              |
| 548      | quadrature phase shift keying<br>(QPSK)      | z                  | z                   | Z                              |
| 549      | offset quadrature phase shift keying (OQPSK) | Z                  | Z                   | Z                              |
| 550      | Modulo-2                                     | Z                  | Z                   | Z                              |
| 551      | JTTDS:                                       | Z                  | Z                   | Z                              |
| 552      | TACAN                                        |                    | Z                   | Y                              |
| 553      | VOR                                          |                    | Z                   | Y                              |
| 554      | ILS                                          | Y (not with JTIDS) | Y (not with JTIDS)  | Y (not with JTIDS)             |
| 555      | MSK                                          |                    |                     |                                |
| 556      | GPS                                          | Z                  | N                   | γ                              |
| 557      | OPTICAL TESTING                              | See F-16 EO Table  | See F-16 EO Table   | See F-16 EO Table              |
| 558      | LASER                                        |                    |                     |                                |
| 559      | Transmitter:                                 |                    | Ν                   | Υ                              |
| 560      | aperture                                     |                    |                     | 6" to 10" dia collimator       |
| 561      | field of view                                |                    |                     | 50 milleradians                |
| 562      | Pulse Repetition Frequency<br>(PRF)          |                    |                     | 5 to 25 Hz                     |
| 563      | Divergence                                   |                    |                     | 50 to 1000 microradianss       |
| 564      | Range (kM)                                   |                    |                     | +/- 5 meters                   |
|          |                                              |                    |                     |                                |

0.01 to 1.0 millijoules/sqr cm for 8" collimator FLIR/Laser 200 uradains, FLIR/ TV 20 uradians 10e-17 to 10e-12 joules/sqr cm IAIS w//EXTENDED 10e-11 to 10e-12 joules/sqr cm I" to 6" dia receiver aperature +/- 2 deg of pointing direction CAPABILITY separate on FLIR and TV 20 to 500 milliradians 0.5 to 10Kilometers 3 to 300 millijoules +/-0.01 microns no restriction 1.06 microns 1.0 microns +/- 5 meters 90 to nadir 5 to 25 Hz ≻ **IAIS (F16 DOWNSIZE)** Z F16 AIS power density (measurement) ATE SPECIFICATION power density (stimulus) beam alignment range Spectral Bandwidth resolution (meters) Field-Of-View (FOV): ITEM sensitivity ranges FOV coincidence acceptance PRF Angle of regard energy input wavelength Wavelength Polarization range gate apertures coaxial Receiver: ROW 565 566 569 570 576 567 568 571 572 573 574 575 578 579 580 582 577 581

| NOA | ATE SPECIFICATION            |         |                     | UAUNALAA//~ SIVI                                         |
|-----|------------------------------|---------|---------------------|----------------------------------------------------------|
| *   | ITEM                         | F16 AIS | IAIS (F16 DOWNSIZE) | CAPABILITY                                               |
| 583 | fiber optic types            |         |                     | 50-100us dia core and cladding on<br>plastic clad silica |
| 584 | separate aperture on coaxial |         |                     | separate on FLIUR and TV                                 |
| 585 | Tracker:                     |         | Z                   | Y                                                        |
| 586 | sensitivity ranges           |         |                     | 5.10-10 to 5.10-6 watts/sqr cm                           |
| 587 | range gate                   |         |                     | 0.5 to 10 kilometers                                     |
| 588 | Field-Of-View (FOV):         |         |                     | 30 deg circulær                                          |
| 589 | apertures                    |         |                     | 0.5 to 5.0 inches dia                                    |
| 590 | coaxial                      |         |                     | laser input                                              |
| 591 | wavelength                   |         |                     | 1.06 microns                                             |
| 592 | acceptance PRF               |         |                     | 5 to 25 Hz                                               |
| 593 | INFRARED                     |         | Z                   | γ                                                        |
| 594 | Number of targets:           |         |                     | 12                                                       |
| 595 | Range (degrees C)            |         |                     | 10 deg C to 60 deg C                                     |
| 596 | Resolution (degress C)       |         |                     | 0.01 deg C                                               |
| 597 | Aperture                     |         |                     | 6" to 10" dia collimator                                 |
| 598 | Field of View (max)          |         |                     | 3.4 deg                                                  |
| 599 | Field of View (min)          |         |                     | 4 microns (40-60 urad), 10<br>microns (100-160 urad)     |
| 600 | Source Spacial Freq.         |         |                     | 3 to 14 microns                                          |
|     |                              |         |                     |                                                          |

| ROW<br># | ATE SPECIFICATION<br>ITEM                        | F16 AIS             | IAIS (F16 DOWNSIZE) | IAIS w//EXTENDED<br>CAPABILITY |
|----------|--------------------------------------------------|---------------------|---------------------|--------------------------------|
| 601      | Spectral Bands                                   |                     |                     | RS-170                         |
| 602      | Video Output                                     |                     |                     | 10 to 60 deg C                 |
| 603      | Source temperature                               |                     |                     |                                |
| 604      | TVNSIA                                           | See F-16 EO Table   | See F-16 EO Table   | Y                              |
| 605      | Number of targets                                |                     |                     | 12                             |
| 909      | Size                                             |                     |                     | 1" dia typ                     |
| 607      | Spectral Band                                    |                     |                     | 0.4 to 1.1 micron              |
| 608      | Video output                                     |                     |                     | RS-170 typ                     |
| 609      | Effect. Source Lumin. @ TPS<br>Entrance Aperture |                     |                     | 0.1 to 10,000 footlamberts typ |
| 610      | INERTIAL TESTING                                 |                     |                     |                                |
| 611      | Stimułus:                                        |                     | N                   | γ                              |
| 612      | static load                                      | 100 lbs             |                     | 100 lbs                        |
| 613      | rate                                             | 0 to 300 deg/sec    |                     | 0 to 300 deg/sec               |
| 614      | acceleration                                     | 0-10 deg/sec        |                     | 0-10 deg/sec                   |
| 615      | torque                                           | 3.6 ft-lbs          |                     | 3.6 ft-lbs                     |
| 616      | positional accuracy                              | (+/- 30) sec of arc |                     | (+/- 30) sec of arc            |
| 617      | AUDIO TESTING                                    |                     |                     |                                |
| 618      | Frequency Range                                  | .01 Hz to 100 KHz   | .01 Hz to 100 KHz   | .01 Hz to 100 KHz              |
| 619      | Resolution                                       | .001 Hz             | .001 Hz             | .001 Hz                        |

 1

1.97

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                  | IAIS (F16 DOWNSIZE)            | IAIS w//EXTENDED<br>CAPABILITY |
|----------|---------------------------|--------------------------|--------------------------------|--------------------------------|
| 620      | Display Range             | Same as Frequency        | Same as Frequency              | Same as Frequency              |
| 621      | Modes:                    | AFSK, FSK                | AFSK, FSK                      | AFSK, FSK                      |
| 622      | PRESSURE/PNEUMATICS       |                          |                                |                                |
| 623      | Stimutus:                 |                          |                                |                                |
| 624      | Pressure:                 |                          |                                |                                |
| 625      | static                    | 0.5 to 34 in HG          |                                | 0.5 to 34 in HG                |
| 626      | total                     | 0.5 to 99.99 in HG       |                                | 0.5 to 99.99 in HG             |
| 627      | differential              | -30 to +30 in HG         |                                | -30 to +30 in HG               |
| 628      | rate                      | 0.1 to 40000ft/min       |                                | 0.1 to 40000ft/min             |
| 629      | MAINTENANCE SOFTWARE      |                          |                                |                                |
| 630      | Built in test (BIT)       | N                        | Υ                              | Y                              |
| 631      | Confidence test(s)        | Υ                        | Y                              | Υ                              |
| 632      | Self-calibration          | Y - Via Calibration Cart | Y - On station via Cal Adapter | Y - On station via Cal Adapter |
| 633      | OAFI                      | Y                        | Y                              | γ                              |
| 634      | CALIBRATION SIGNALS       |                          |                                |                                |
| 635      | DC voltage source:        |                          | +/- 2V, +/-10 V, =/-100 V      | +/- 2V, +/-10 V, =/-100 V      |
| 636      | resolution                |                          | +/-0.47uv, +/-2.4uv, +/-24.8uv | +/-0.47uv, +/-2.4uv, +/-24.8uv |
| 637      | AC voltage source:        |                          | 32mVrms - 64 Vrms              | 32mVrrns - 64 Vrms             |
| 638      | resolution                |                          |                                |                                |
| 639      | DC current:               |                          |                                |                                |

See.

1.46 . . . . U

Table D-3. - Specification Summaries for F-16 ATE (AIS & IAIS) (Continued)

)

)

)

)

)

| ROW | ATE SPECIFICATION         | F16 AIS                    | IAIS (FIG DOWNSIZE)                                                                                     | IAIS w//EXTENDED                                                                                        |
|-----|---------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| ¥   | ITEM                      |                            |                                                                                                         | CAPABILITY                                                                                              |
| 640 | resolution                |                            |                                                                                                         |                                                                                                         |
| 641 | AC current:               |                            | AC drives 10 kohms or greater<br>impedance                                                              | AC drives 10 kohms or greater<br>impedance                                                              |
| 642 | resolution                |                            |                                                                                                         |                                                                                                         |
| 643 | resistance                |                            | 100 ohm, 500, 5k, 50k, 500k, 5M<br>ohms                                                                 | 100 ohm, 500, 5k, 50k, 500k, 5M<br>ohms                                                                 |
| 644 | resolution                |                            | accuracy = 0.01%                                                                                        | accuracy = 0.01%                                                                                        |
| 645 | current capacity          |                            |                                                                                                         |                                                                                                         |
| 646 | ATS CHARACTERISTICS       |                            |                                                                                                         |                                                                                                         |
| 647 | Special Design Equipment: |                            | Interlock system in Interface,<br>LRU DC & AC Power<br>Supplies, & LRU cooling units to<br>protect LRUs | Interlock system in Interface,<br>LRU DC & AC Power<br>Supplies, & LRU cooling units to<br>protect LRUs |
| 648 | Transportibility:         | Van Installation Available | Two Man Portable                                                                                        | Two Man Portable                                                                                        |
| 649 | Internal Cooling:         |                            | Internal, station controlled blower<br>& refrigeration units for UUTs                                   | Internal, station controlled blower<br>& refrigeration units for UUTs                                   |
| 650 | Threat Simulators:        |                            |                                                                                                         |                                                                                                         |
| 651 | type threats              | programmable               | programmable                                                                                            | programmable                                                                                            |
| 652 | quantity                  | 4                          | 4                                                                                                       | 4                                                                                                       |
| 653 | output:                   |                            |                                                                                                         |                                                                                                         |
| 654 | voltage                   | +/- 10 V                   | 0 +/- 5 V                                                                                               | 0 +/- 5 V                                                                                               |
| 655 | current                   | +/- 0.2 Amp/channel        | +/- 0.1 A(max)/channel                                                                                  | +/- 0.1 A(max)/channel                                                                                  |

D-109

Table D-3. • Specification Summaries for F-16 ATE (AIS & IAIS) (Continued)

| ROW<br>* | ATE SPECIFICATION<br>ITEM                          | F16 AIS                                          | IAIS (F16 DOWNSIZE)                                                   | LAIS w//EXTENDED<br>CAPABILITY                                        |
|----------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| 656      | bandwidth                                          | 0.01 Hz to 1 MHz                                 | 0.01 Hz to 1 MHz                                                      | 0.01 Hz to 1 MHz                                                      |
| 657      | coded waveforms                                    | multiple                                         | multiple                                                              | multiple                                                              |
| 658      | DEPLOYMENT DATA                                    |                                                  |                                                                       |                                                                       |
| 639      | Size/Weight:                                       |                                                  |                                                                       |                                                                       |
| 660      | number of 463L pallets (air<br>transportable gear) | 80                                               | 1                                                                     | 1                                                                     |
| 661      | size/configuration (fixed gear)                    | 247 sq-ft per shipping configura-<br>tion        | 66 sq-ft per shipping configuration                                   | dependent on station config                                           |
| 662      | weight (lbs)                                       | 5108 to 6707 lbs (config depen-<br>dent)         | approx 2700 lbs                                                       | dependent on station config                                           |
| 663      | footprint                                          | 281 sq-ft (does not include opera-<br>tor areas) | 279 sq-ft including operator & maintenance space                      | dependent on station config                                           |
| 664      | ENVIROMENTAL DATA                                  |                                                  |                                                                       |                                                                       |
| 665      | Ambient Temp (for operation)                       | 10 to 35 deg Centigrade                          | Oper: 5-40 deg C, Tested -5-45 deg<br>C, Storage 40 to +65 C          | Oper: 5-40 deg C, Tested -5-45 deg<br>C, Storage -40 to +65 C         |
| 666      | Humidity                                           | 20 % to 65 %                                     | Oper: 0 to 95% non-condensing<br>(MIL-STD 210); Storage: 0 to<br>100% | Oper: 0 to 95% non-condensing<br>(MIL-STD 210); Storage: 0 to<br>100% |
| 667      | external cooling source<br>required                | 35 psig @ 50 scfm                                | None required                                                         | None required                                                         |
| 668      | heat generation                                    | 45,631 BTU/hr (max)                              |                                                                       |                                                                       |
| 699      | Internal Refrigeration Unit:                       |                                                  |                                                                       |                                                                       |
| 670      | use                                                | for UUT only                                     | for UUT only                                                          | for UUT only                                                          |

Sec. 2. March

÷.

**D-110** 

| ROW<br># | ATE SPECIFICATION<br>ITEM | F16 AIS                                                   | IAIS (F16 DOWNSIZE)                                                                                               | IAIS #//EXTENDED<br>CAPABILITY                                                                                 |
|----------|---------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 671      | air temperature           |                                                           | 27 deg C, +5 to -10 deg range                                                                                     | 27 deg C, +5 to -10 deg range                                                                                  |
| 672      | shock tested              | MIL-STD-810                                               | Υ                                                                                                                 | Y                                                                                                              |
| 673      | vibration tested          | 16PS003, para 3.2.3.4                                     | γ                                                                                                                 | Y                                                                                                              |
| 674      | water resistance tested   |                                                           | Y                                                                                                                 | Υ                                                                                                              |
| 675      | Input Power Requirements: |                                                           | Any one of the following options:<br>230V +/-15% 50Hz+/-3 or<br>208V +/-10% 60Hz+/-6 or<br>200V +/-10% 400+/-40Hz | Any one of the following options:<br>230V+/-15% 50Hz+/-3 or<br>208V+/-10% 60Hz+/-6 or<br>200V+/-10% 400+/-40Hz |
| 676      | 60 Hertz                  | 120/208V, +5%, -10%                                       | 60Hz is not required                                                                                              | 60Hz is not required                                                                                           |
| 677      | 400 Hertz                 | 115/200V                                                  | 400Hz is not required                                                                                             | 400Hz is not required                                                                                          |
| 678      | Я                         | No DC is required                                         | No DC is required                                                                                                 | No DC is required                                                                                              |
| 679      | current load              | 22 KVA (max) 115/200V 400Hz, 7<br>KVA (max) 120/208V 60Hz | 18 KVA (max)                                                                                                      | 18 KVA (max)                                                                                                   |

Table D-3. - Specification Summaries for F-16 ATE (AIS & IAIS) (Continued)

Table D-4. -Specification Summary F-16 Electro Optics (EO) Testing

| ROW<br># | ATE SPECIFICATION ITEM                                                         | F16 AIS  | IAIS (F16 DOWNSIZE) |
|----------|--------------------------------------------------------------------------------|----------|---------------------|
| 1        | Special F16 AIS Capabilities                                                   |          |                     |
| 2        | Optical/Video Testing Capabilities                                             |          |                     |
| 3        | Placement Accuracy                                                             |          |                     |
| 4        | Measuring Point Circle                                                         | Accuracy | Accuracy            |
| 5        | 0 degrees                                                                      | ++- 1,   | ++- 1.              |
| 6        | 4.5 degrees                                                                    | +/- 1.5' | +/- 1.5'            |
| 1        | 10 degrees                                                                     | ++- 3'   | +/- 3'              |
| 8        | 14 degrees                                                                     | +/- 4'   | +/- 4'              |
| 6        | Raster Brightness (day)                                                        |          |                     |
| 10       | Shades of Grey Verified                                                        | 9        | 8                   |
| 11       | Contrast Ratio Peak White                                                      |          |                     |
| 12       | To 50 foot lamberts, (fL)                                                      | >8:1     | >8.1                |
| 13       | Raster Brightness (night)                                                      |          |                     |
| 14       | Shades of Grey Verified with Peak White adjusted to 0.5 $f_{\rm L}$ +/- 0.1 fL | 9        | 80                  |
| 15       | Raster Resolution (verified)                                                   | >=10%    | ≫=10%               |
| 16       | Symbol Line Brightness                                                         |          |                     |
| 17       | Average                                                                        | >1600 fL | >1600 fL            |
| 18       | Variation                                                                      |          |                     |

D-112

Table D-4. -Specification Summary F-16 Electro Optics (EO) Testing (Continued)

| #         #           19         10 deg           20         Total             21         Parallax           22         Accep | ATE SPECIFICATION ITEM<br>10 degree Circle | F16 AIS                            | TAIS (FIG DOWNSIZE)                |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|------------------------------------|
| Fara                                                                                                                          | gree Circle<br>Giald of Viene              |                                    |                                    |
| Fara                                                                                                                          | Eiald of Viam                              | +/-20%                             | +/-20%                             |
| Para                                                                                                                          |                                            | +/-40%                             | +/-40%                             |
|                                                                                                                               |                                            |                                    |                                    |
|                                                                                                                               | Acceptable Range                           | 0 to 20mv                          | 0 to 20mv                          |
| 23 Accuracy                                                                                                                   | racy                                       | Converging +/-0.1mv (+/-20arc sec) | Converging +/-0.1mv (+/-20arc sec) |
| 24 Display M                                                                                                                  | Display Measurements                       |                                    |                                    |
| 25 Lumir                                                                                                                      | Luminance                                  | 0.02 - 10,000 fL                   | 0.02 - 10,000 fL                   |
| 26 Range                                                                                                                      | U                                          | +/-10%                             | +/-10%                             |
| 27 Accuracy                                                                                                                   | racy                                       | +/- 7%                             | +/- 1%                             |

D-113

# **APPENDIX E. ATS DATA SUMMARIES**

Tables E-1, E-2, and E-3 provied detailed data summaries for the 15 Army, Navy, and Air Force selected weapon systems respectively. Table E-4 a listing of the escalative indices by fiscal year (FY) used throughout this study to convert all amounts to consistent FY 1993 dollars [Indices 1992].

## **Contents of Appendix E**

|           | Table E-1. DETAILED ATS DATA SUMMARIES FOR SELECTED ARMY<br>WEAPON SYSTEMS |
|-----------|----------------------------------------------------------------------------|
| •         | Table E-2. DETAILED ATS DATA SUMMARIES FOR SELECTED NAVY                   |
|           | WEAPON SYSTEMS                                                             |
|           | Table E-3. DETAILED ATS DATA SUMMARIES FOR SELECTED AIR FORCE              |
| Page E-7  | WEAPON SYSTEMS                                                             |
| LL        | Table E-4. FISCAL YEAR (FY) - ESCALATION INDICES USED IN ALL               |
| Page E-13 | ANALYSES [INDICES 1992]                                                    |

Table E-1: Detailed ATS Data Summaries for Selected Army Weapon Systems.

|      | ATS                       |      | Application   | TEST | TESTED ITEMS | ATE (<br>(FY9 | ATE COSTS<br>(FY93 \$M) | TPS<br>(FY | rps costs<br>(FY93 \$M) |
|------|---------------------------|------|---------------|------|--------------|---------------|-------------------------|------------|-------------------------|
|      | NAME                      | оту• |               | QТУ  | Type         | R&D           | Production              | R&D        | Production              |
|      | AN/USM 410                | 2    | D Level       | 34   | LRU/SRU      | 0.652         | 3.199                   | 6.785      | 1.378                   |
| S    | DSESTS                    | 198  | I, D Level    | 34   | LRU/SRU      | 8.413         | 179.342                 | 5.141      | 30.294                  |
| MAS  | DIT-MCO                   | 1    | D Level       | 92   | Cables       | 0             | 0.176                   | 0          | 0.230                   |
| ABA  | LASER RANGE<br>TELESCPOPE | 1    | D Level       |      |              |               |                         |            |                         |
|      | Cummulative               | 202  |               | 160  |              | 9.065         | 182.717                 | 11.926     | 31.902                  |
| Ъ    | AN/USM-410                | 3    | D Level       | 46   | LRU/SRU      | 0.978         | 4.800                   | 9.180      | 2.800                   |
| זסר  | DSESTS                    | 227  | I, D Level    | 29   | LRU/SRU      | 9.615         | 204.962                 | 4.385      | 29.624                  |
| BR   | Cummulative               | 230  |               | 75   |              | 10.593        | 209.762                 | 13.565     | 32.424                  |
|      | EETF                      | 22   | I, D, F Level | 52   | LRU/SRU      | 26.690        | 219.21                  | 14.980     | 33.429                  |
|      | Ditigial Signal           | 5    | F Level       |      |              |               | 4.131                   |            |                         |
| HE   | Low Power RF              | 5    | F Level       |      |              |               | 4.131                   |            |                         |
| 1DA9 | Radar Systems             | 5    | F Level       |      |              |               | 4.131                   |            |                         |
| ₽₽   | Processor Test Set        | 5    | F Level       |      |              |               | 4.131                   |            |                         |
|      | Assembly Test Set         | 5    | F Level       |      |              |               | 4.131                   |            |                         |
|      | Cummulative               | 47   |               | 75   |              | 26.690        | 239.865                 | 14.980     | 33.429                  |

41

|      | ATS         |      | Application | TEST | TESTED ITEMS | ATE (<br>(FY9 | ATE COSTS<br>(FY93 \$M) | TPS<br>(FY | IPS COSTS<br>(FY93 \$M) |
|------|-------------|------|-------------|------|--------------|---------------|-------------------------|------------|-------------------------|
|      | NAME        | QTY* |             | QТҮ  | Type         | R&D           | Production              | R&D        | Production              |
|      | MSM-105     | 1.65 | I Level     | 12   | LRU          | 0.538         | 2.634                   | 2.395      | 0.402                   |
|      | AN/USM-410  | 0.15 | D Level     | 25   | LRU/SRU      | 0.049         | 0.239                   | 4.989      | 0.076                   |
| SA   | BSTF        | 9.4  | I Level     | 10   | LRU/SRU      | 2.540         | 20.680                  | 2.582      | 4.700                   |
| M    | CEE         | 1    | D, F Level  | 35   | LRU/SRU      | 0.270         | 1.860                   | 9.036      | 0.175                   |
|      | DIT-MCO     | 2    | D Level     | 16   | Cables       | 0.000         | 0.352                   | 0.000      | 080.0                   |
|      | Cummulative | 14.2 |             | 86   |              | 3.397         | 25.764                  | 19.002     | 5.433                   |
|      | CEE         | 2    | D, F Level  | 29   | LRU/SRU      | 0.540         | 3.881                   | 7.468      | 0:309                   |
| NER. | BSTF        | 33   | I Level     | L    | LRU/SRU      | 8.910         | 74.977                  | 1.803      | 1.224                   |
| ENC  | EOB (BSTF)  | 13.2 | I Level     | 0    | LRU/SRU      | 7.792         | 29.99                   | 0          | 0                       |
| ٨₩   | Cummulative | 48.2 |             | 36   |              | 17.242        | 108.848                 | 9.271      | 1.533                   |
|      |             |      |             |      |              |               |                         |            |                         |

\* A fractional quantity indicates that the identified ATS is used in support of another weapon system. The quantity stated reflects the service estimate of the prorated work load share assigned to the respective ATS.

Table E-2: Detailed ATS Data Summaries for Selected Navy Weapon Systems

| Į     |                            |       |             |                            |          | •          |                         |                   |                         |
|-------|----------------------------|-------|-------------|----------------------------|----------|------------|-------------------------|-------------------|-------------------------|
|       | ATS                        |       | Application | TESTED ITEMS               | TEMS     | ATE<br>(FY | ATE COSTS<br>(FY93 \$M) | TPS<br>(FY)       | TPS COSTS<br>(FY93 \$M) |
|       | NAME                       | QТҮ*  |             | QTY **                     | UI/VII   | R&D        | Production              | R&D               | Production              |
| 21-12 | AN/USM-636 CASS            | 62    | I & D Level | 80 M<br>435 C              | 40<br>87 | 24.771     | 155.210                 | 59.581<br>123.725 | 95.098<br>1.371         |
| ¥     | Cummulative                | 62    |             | 515                        | 127      | 24.771     | 155.210                 | 183.576           | 96.469                  |
| MA    | AN/USM-636 CASS RF/<br>HYB | 14    | I & D Level | 16 M<br>20 C               |          | 4.178      | 26.180                  | 49.128            | 18.122                  |
| ASIM  | AN/USM-636 CASS<br>MTS     | 13    | l & D Level | 1 (Missile)<br>1 (Section) |          | 6.140      | 32.189                  | 13.646            |                         |
| ¥     | Cummulative                | 27    |             | 39                         |          | 13,760     | 58.369                  | 62.772            | 18.122                  |
|       | AN/USM-470(V) 1 MV         | 58    | I & D Level | 43 M                       | 27       | 39.296     | 290.757                 | 25.768            | 21.852                  |
|       | AN/USM-446 RSTS            | 55    | I & D Level | 6 M; 21 C                  | 27       | 10.000     | 130.789                 | 19.970            | 35.349                  |
|       | AN/ASM-686 LATS            | 31    | I & D Level | 27 M                       | 27       | 11.337     | 30.384                  | 32.913            | 16.003                  |
|       | AN/USM-629 EOTS            | 34    | I & D Level | 11 M                       | 11       | 21.459     | 49.985                  | 5.646             | 12.446                  |
| 81    | AN/USM-392B DMTS           | 14.4  | I & D Level | 18 C                       | 18       | 10.668     | 5.553                   | 4.100             | 1.105                   |
| A\J   | AN/ASM-608V IMUTS<br>II    | 49    | I & D Level | 3 M                        | 3        | 4.020      | 22.759                  | 5.000             | 3.986                   |
|       | AN/USM-458C NEWTS          | 28.2  | I & D Level | 7 M                        | 7        | 14.291     | 14.393                  | 6.936             | 7.367                   |
|       | AN/USM-484 HTS             | 88    | I & D Level | 1 M; 44 C                  | 39       | 3.332      | 45.718                  | 8.053             | 22.962                  |
|       | AN/USM-636 CASS RF         | 31    | I & D Level | 16 M; 106 C                | 21       | 9.252      | 59.808                  | 41.086            | 28.120                  |
|       | Cummulative                | 388.6 |             | 303                        | 180      | 123.655    | 650.146                 | 149.471           | 149.190                 |

|                         | ŝ          | 18.202             | 14.365          | 16.585            | 5.068            | 54.220      |                        |             |                      |                                |                                 |                               | <u> </u>           |                                                             |
|-------------------------|------------|--------------------|-----------------|-------------------|------------------|-------------|------------------------|-------------|----------------------|--------------------------------|---------------------------------|-------------------------------|--------------------|-------------------------------------------------------------|
| IPS COSTS<br>(FY93 \$M) | Production | 18                 | 14              | 16                | S                | 3           |                        |             |                      |                                |                                 |                               |                    |                                                             |
| TPS<br>(FY)             | R&D        | 18.240             | 16.851          | 12.624            | 8.345            | 56.060      |                        |             | 0.015                |                                |                                 |                               | 0.015              |                                                             |
| ATE COSTS<br>(FY93 \$M) | Production | 41.571             | 63.953          | 2.063             | 2.063            | 109.650     | 19.661                 | 19.61       | 0.500                |                                |                                 |                               | 1.000              |                                                             |
| ATE<br>(FY              | R&D        | 9.252              | 9.252           | 0.298             | 0.298            | 19.100      | 17.350                 | 17.350      |                      |                                |                                 |                               |                    |                                                             |
| rems                    | ITA/ID     | 6                  | ∞               | 4                 | 4                |             | 12                     | 12          | 82                   |                                |                                 |                               | 14<br>19           |                                                             |
| TESTED ITEMS            | QTY.       | 15 M; 3 C          | 5 M; 21 C       | 8 M               | 18 C             | 70          | 30 M                   | 30          | 8M<br>2C             |                                |                                 |                               | 14 M<br>19 C       |                                                             |
| Application             |            | I & D Level        | I & D Level     | I & D Level       | I & D Level      |             | I & D Level            |             | D Level,<br>Factory  | Factory                        | Factory                         | Factory                       | D Level<br>Factory | Factory                                                     |
|                         | QТҮ        | 31                 | 31              | 1                 | 1                | 64          | 10                     | 10          | e                    |                                |                                 |                               |                    |                                                             |
| ATS                     | NAME       | AN/USM-470(V) 1 MV | AN/USM-446 RSTS | AN/USM-458C NEWTS | AN/USM-392B DMTS | Cummulative | MK 664 System Test Set | Cummulative | Tektronics S3270 ATS | HP 3060 Board Test Sys-<br>tem | HP 3065 AT Board Test<br>System | GENRAD 2272 Test Sta-<br>tion | Teradyne L210 ATE  | Martin Marietta C902268<br>Telemetry Drive Module<br>Tester |
|                         |            | av                 | <b>1</b> 07     | <b>T</b> 10       | 81               | A\J         | 05                     | MK          |                      | Mat                            | SAS M                           | SV (A                         | <b>56-8</b> 3(     | os                                                          |

| TPS COSTS<br>(FY93 \$M) |                                                                 |                                                              |                                                       |                   |                                            |                                     | 0.028<br>0.028               | 0.012<br>0.012                                 | 0.030    | 0.170       |
|-------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-------------------|--------------------------------------------|-------------------------------------|------------------------------|------------------------------------------------|----------|-------------|
| ATE COSTS<br>(FY93 \$M) |                                                                 |                                                              |                                                       |                   |                                            |                                     |                              | 0.185                                          |          | 1.685       |
| ATE<br>(FY              |                                                                 |                                                              |                                                       |                   |                                            |                                     |                              |                                                |          |             |
| ITEMS                   |                                                                 |                                                              |                                                       |                   |                                            |                                     |                              | <b>6</b> 4                                     | 8        | 18          |
| TESTED ITEMS            |                                                                 |                                                              |                                                       |                   |                                            |                                     | ICM<br>ICM                   | 6M<br>4 C                                      | 8 M      | 63          |
| Application             | Factory                                                         | Factory                                                      | Factory                                               | Factory           | Factory                                    | Factory                             | D Level                      | D Level                                        | D Level  |             |
|                         |                                                                 |                                                              |                                                       |                   |                                            |                                     | 1                            | 9                                              | 4        | 14          |
| ATS                     | Martin Marietta C902188<br>Acoustic Module Com-<br>puter Tester | Martin Marietta C902249<br>HDG Depth Temp Mod-<br>ule Tester | RSSD TS 3042 Auto-<br>mated Analog Module<br>Test Set | DIT-MCO 8213/9100 | 3H Ind PT 900 Power<br>Supply Test Station | Loral 87003 Exciter Test<br>Console | HP Model 80 Analog<br>Tester | AN/USM192 TAT Trans-<br>portable Analog Tester | AN/GOM-4 | Cummulative |
|                         |                                                                 | (1,                                                          | noo) Ma'                                              | LSX               | s Ms                                       | 4 (V)6                              | 8-005                        | •                                              | •        |             |

\* A fractional quantity indicates that the identified ATS is used in support of another weapon system. The quantity stated reflects the service estimate of the prorated workload share assigned to the respective ATS.

\*\* C stands for cards or SRAs, M stands for modules or WRAs.

|             |                                                        | ſ        |                     |                |         |        | 00000                  |         |            |
|-------------|--------------------------------------------------------|----------|---------------------|----------------|---------|--------|------------------------|---------|------------|
|             | ATS                                                    |          | Application         | TESTED ITEMS   | ITEMS   | ALE U  | ALE CUSIS<br>(FY93 SM) | (FY9    | (FY93 \$M) |
|             | NAME                                                   | QТҮ<br>* |                     | QTY/<br>TYPE** | ITA/ID  | R&D    | Production             | R&D     | Production |
|             | GSM-348 Guided Missile Test Set                        | 2        | D Level             | 3 M<br>10 C    | 3<br>10 | 4.560  | 3.193                  | 10.271  | 1. 141     |
|             | System Acceptance Test Equipment (SATE                 | -        | D Level             | 2 M            | 2       | 2.850  | 2.825                  | 3.078   | .342       |
| ACM         | Automatic Depot Inertial Navigatiion Test Sta-<br>tion | 2        | D Level             | 1 M<br>1 C     |         | 3.534  | 4.674                  | 8.209   | .912       |
|             | Electronic Systems Test Set (ESTS)<br>AN/GSM-263F      | 6<br>5   | D Level<br>I Level  | 2 M<br>4 C     | 4       | 5.385  | 1.228                  | 5.815   | 2.736      |
|             | Cummulative                                            | 16       |                     | 23             | 23      | 16.330 | 11.921                 | 27.373  | 5.132      |
| ۷-          | Intermediate                                           | 9        | I Level<br>Training | 38 M<br>9 M    |         |        | 50.111                 | 18.423  | 3.402      |
| <u>110</u>  | Depot                                                  | 6        | D Level             | 356 C          |         |        |                        | 116.499 | 29.125     |
|             | Cummulative                                            | 12       |                     | 394            |         |        | 50.111                 | 134.922 | 32.527     |
|             | ALM 205                                                | 3        | D Level             | 39 C           | 39      | 17.014 | 15.058                 | 16.307  | 4.892      |
| <u>S</u> ,  | ALM 206                                                | 2        | D Level             | 21 C           | 21      | 5.671  | 4.014                  | 6.380   | 2.634      |
| <u>LA 1</u> | ALM 205A                                               | 3        | D Level             | 88 C           | 88      | 9.446  | 11.939                 | 30.786  | 5.779      |
| odə         | ALM 206A                                               | 2        | D Level             | 49 C           | 49      | 3.149  | 3.439                  | 12.034  | 3.218      |
| <u>'B</u>   | MADTS                                                  | 3        | D Level             | 20 C           | 16      | 2.980  | 16.004                 | 2°090   | 1.316      |
| V SI        | DADTS                                                  | 3        | D Level             | <i>51</i> C    | 46<br>8 | 3.725  | 15.337                 | 17.363  | 2.454      |
| <u>-</u> J  | AADTS                                                  | 5        | D Level             | 160 C          | 105     | 13.658 | 72.238                 | 42.536  | 3.091      |
|             | Sub-totals                                             | 21       |                     | 434            | 364     | 55.643 | 138.023                | 131.367 | 23.363     |

|              | ATS                                          |          | Application | TESTED ITEMS   | ITEMS  | ATE C<br>(FY93 | ATE COSTS<br>(FY93 \$M) | TPS (<br>(FY9 | TPS COSTS<br>(FY93 \$M) |
|--------------|----------------------------------------------|----------|-------------|----------------|--------|----------------|-------------------------|---------------|-------------------------|
|              | NAME                                         | QTY<br>* |             | QTY/<br>Түре++ | ITA/ID | R&D            | Production              | R&D           | Production              |
|              | ALM 205B                                     | œ        | D Level     | 78 C           | 78     | 9.656          | 43.661                  | 20.957        | 6.549                   |
|              | ALM 206B                                     | -        | D Level     | 13 C           | 13     | 1.371          | 2.519                   | 3.493         | 1.092                   |
| SL           | CGDTS-70                                     | 5        | D Level     | 48 C           | 40     | 4.044          | 41.360                  | 161.6         | 1.168                   |
| Y 200        | MADTS                                        | 3        | D Level     | 20 C           | 16     | 0.000          | 0.000                   | 0.000         | 0.000                   |
| Det          | DADTS                                        | 3        | D Level     | <i>\$1</i> C   | 46     | 0.000          | 0.000                   | 0000          | 0.000                   |
| C/D          | AADTS                                        | S        | DLevel      | 330 C          | 105    | 0.000          | 0:000                   | 30.906        | 3.270                   |
| <b>SI-</b> 3 | Memory Module Test Stations (L293-10)        | 3        | DLevel      | 26 C           | 21     | 1.419          | 30.869                  | 8.271         | 1.167                   |
| I            | Depot Avionics Radar Test Stations (ASM-467) | 3        | D Level     | 21 C           | 8      | 15.967         | 37.256                  | 22.599        | 2.456                   |
|              | Sub-totals                                   | 31       |             | 593            | 327    | 32.4S7         | 155.665                 | 95.417        | 15.702                  |
|              | ALM 205B                                     | ∞        | D Level     | 92 C           | 92     | 0.000          | 0000                    | 3.179         | 1.915                   |
|              | ALM 206B                                     | -        | D Level     | 13 C           | 13     | 0000           | 0000                    | 0:00          | 0.000                   |
| S            | CGDTS-70                                     | S        | D Level     | 62 C           | \$     | 0.000          | 0:00                    | 1.926         | 0.095                   |
| [1]          | MADTS                                        | 3        | D Level     | 20 C           | 16     | 0.000          | 0000                    | 0.000         | 0.000                   |
| odə(         | DADTS                                        | 3        | D Level     | 57 C           | 46     | 0000           | 0:000                   | 0.000         | 0.000                   |
| I IS         | AADTS                                        | 5        | D Level     | 398 C          | 166    | 0:000          | 0:000                   | 13.058        | 1.713                   |
| 1-3          | Memory Module Test Station (L293-10)         | <b>6</b> | D Level     | 63 C           | 55     | 0.000          | 0.000                   | 10.880        | 1.793                   |
|              | Depot Avionics Radar Test Stations (ASM-4)   | 3        | D Level     | 21 C           | 8      | 0.000          | 0.000                   | 0.000         | 0.000                   |
|              | Sub-totals                                   | 31       |             | 726            | 450    | 0.000          | 0.000                   | 29.043        | 5.517                   |

|              |                                                  |          |             | A DESIGNARY OF DESCRIPTION OF A DESCRIPT |         |                 |                        | 194               |                        |
|--------------|--------------------------------------------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|------------------------|-------------------|------------------------|
|              | ATS                                              |          | Application | TESTED ITEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ITEMS   | ATE C(<br>(FY93 | ATE COSTS<br>(FY93 SM) | TPS (<br>FY9      | rps costs<br>(FY93 SM) |
|              | NAME                                             | QТУ<br>* |             | QTY/<br>TYPE**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITA/ID  | R&D             | Production             | R&D               | Production             |
|              | Atenna A&B (AN/GSM-228)                          | 14       | I Level     | 3 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3       | 7.538           | 48.978                 | 3.000             | 19.740                 |
|              | CNI (Comm/NAV/IFF (AN/GSM-230)                   | 19       | I Level     | 15 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15      | 6.154           | 44.338                 | 5.700             | 17.100                 |
|              | I&C (Indicators & Controls (AN/GSM-229)          | 21       | I Level     | 20M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20      | 5.385           | 38.688                 | 7.000             | 25.200                 |
| SIV          | Computer (AN/GSM-231)                            | 26       | I Level     | 24 M<br>5 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24<br>5 | 3.846           | 89.413                 | 19.108<br>3.981   | 10.672                 |
| 8/V          | Display (AN/GSM-232)                             | 25       | I Level     | 14 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14      | 10.577          | 95.185                 | 86.154            | 17.850                 |
| <b>SI-</b> 2 | Microwave (AN/GSM-233)                           | 18       | I Level     | SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5       | 3.846           | 48.637                 | 14.000            | 12.060                 |
| 1            | TISS (AN/ALM-246)                                | 2        | I Level     | 23 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14      | 0000            | 9.460                  | 0.000             | 3.563                  |
|              | TITE (AN/ALM-173)                                | 16       | I Level     | 9 M<br>13 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 6     | 14.231          | 110.769                | 107.308<br>31.154 | 12.295<br>5.538        |
|              | Sub-totals                                       | 141      |             | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118     | 51.577          | 485.468                | 277.404           | 125.056                |
|              | Antenna A&B (AN/GSM-228)                         | 12       | I Level     | 3 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3       | 0000            | 36.846                 | 0.000             | 16.920                 |
|              | Antenna A&B - Multi-stage Improvement<br>Program | 1        | I Level     | 3 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3       | 7.880           | 3.070                  | 0.000             | 0.528                  |
| _            | CNI (COMM/NAV/IFF) (AN/GSM-230)                  | 13       | I Levei     | IS M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15      | 0.000           | 30.337                 | 0000              | 10.500                 |
|              | I&C (Indicators & Controls (AN/GSM-229)          | 13       | I Level     | 23 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23      | 0.000           | 23.950                 | 0.359             | 2.100                  |
| SIV 0/3      | Computer (AN/GSM-231)                            | 15       | I Level     | 24 M<br>5 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24<br>5 | 0000            | 51.584                 | 000.0             | 6.157<br>1.283         |
| ) SI         | Display (AN/GSM-232)                             | 15       | I Level     | 20 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20      | 0.000           | 57.111                 | 12.608            | 15.300                 |
| .q           | Microwave (AN/GSM-233)                           | 15       | l Level     | 7 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1       | 0.000           | 40.531                 | 0.683             | 17.100                 |
| ·            | MTS (85 MSIP)                                    | 1        | l Level     | W 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6       | 0.000           | 2.948                  | 3.546             | 1.371                  |
|              | TISS (AN/ALM-246)                                | 14       | l Level     | 23 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14      | 12.087          | 66.219                 | 70.133            | 24.944                 |
| :            | TITE (AN/ALM-173)                                | 11       | I Level     | 9 M<br>13 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6       | 0000            | 76.154                 | 0000              | 8.453<br>3.808         |
| /            | Sub-totals                                       | 110      |             | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141     | 19.967          | 388.750                | 87.329            | 108.463                |

8

0

**7**. 50 s.

|        | والمتعاد والمتعادية والمتعادية المتعاومة المتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية |          |                     |                |        |             |                         |             |                         |
|--------|----------------------------------------------------------------------------------------------------------------------|----------|---------------------|----------------|--------|-------------|-------------------------|-------------|-------------------------|
|        | ATS                                                                                                                  |          | Application         | TESTED ITEMS   | ITEMS  | ATE<br>(FY9 | ATE COSTS<br>(FY93 \$M) | 67'A)<br>PP | TPS COSTS<br>(PY93 \$M) |
|        | NAME                                                                                                                 | QTY<br>* |                     | QTY/<br>TYPE** | UI/VLI | R&D         | Production              | R&D         | Production              |
|        | Aircraft Radar Test Station                                                                                          | 9        | i Level             | 3 M            | 3      | 10.853      | 24.837                  | 0.131       | 0.852                   |
| SI     | Mobile Electronic Test Set (METS) (AN/USM-<br>617)                                                                   | 12       | l Level             | 22 M           | 12     | 0.409       | 10.039                  | 0.600       | 13.204                  |
| A SI S | Display (AN/GSM-233)                                                                                                 | 12       | I Level             | 14 M           | 14     | 0.000       | 32.424                  | 0.000       | 8.040                   |
| i1-3   | Microwave (AN/GSM-232)                                                                                               | 12       | I Level             | 5 M            | 5      | 0.000       | 45.689                  | 0.000       | 8.568                   |
|        | TISS - (AN/ALM-246)                                                                                                  | 7        | I Level             | 23 M           | 14     | 0.000       | 33.110                  | 0.000       | 12.472                  |
|        | Sub-totals                                                                                                           | 49       |                     | 67             | 48     | 11.262      | 146.099                 | 0.731       | 43.136                  |
| કા-મ   | Down Sized Tester (DST) - estimated                                                                                  | 61       | I-Level             | M79            | 62     | 2.000       | 84.900                  | 82.300      | 45.400                  |
| F-15   | CUMMULATIVE                                                                                                          | 402      |                     |                |        | 172.906     | 1,398.905               | 703.560     | 366.657                 |
|        | TI Digitial Test Station                                                                                             | 6        | Factory,<br>D Level | 224 C          | 132    | 1.063       | 5.305                   | 25.464      | 5.766                   |
| S.     | Analog Test Station                                                                                                  | 13       | Factory,<br>D Level | 218 C          | 125    | 17.147      | 2.862                   | 33.165      | 5.574                   |
| LA Joq | Micro Wave Test Station                                                                                              | 11       | Factory,<br>D Level | 42 C           | 27     | 6.657       | 21.499                  | 12.099      | 3.018                   |
| -1e De | HI Digital Test Station                                                                                              | S        | Factory,<br>D Level | 107 C          | 36     | 11.513      | 11.797                  | 22.561      | 1.872                   |
| 4      | FACT II                                                                                                              | 1        | D Level             | 116 C          | 54     | 0.000       | 0.206                   | 4.142       | 0.266                   |
|        | DUST                                                                                                                 | 8        | D Level             | 46 C           | 46     | 0.120       | 2.154                   | 0.710       | 1.248                   |
|        | Cummulative                                                                                                          | 4        |                     | 753            | 420    | 36.501      | 43.822                  | 98.142      | 17.74                   |

259.122 7.402 11.979 56.962 61.770 112.857 27.533 (FY93 \$M) 12.078 17.769 10.990 19.208 17.490 89.019 6.643 9.773 6.316 6.044 10.564 1.370 2.250 42.960 20.814 41.300 153.767 11.484 71.229 20.423 5.029 24.518 3.678 0.445 102.365 2.968 0.754 4.688 19.587 235.923 33.711 31.253 4.965 5.057 1,030.860 33.099 130.577 267.477 425.096 ATE COSTS (FY93 SM) 129.693 89.371 395.383 25.000 3.750 146.929 29.389 253 253 164 75 75 75 22 8 4 **TESTED ITEMS** <u>8</u> 8 8 8 4 4 9 4 Ś 282 484 2 4 2 75 M 75 M 36 M 47 M 14 M 75 M 75 M 36 M 47 M 14 M 69 M 58 M 69 M 76 M 46 M 76 M 22 M 22 Z 22 M 52 M 40 M 52 M 6 M 253 6 M 253 219 Application F Level Factory I Level D Level Factory I Level D Level Factory I Level D Level F Level F Level F Level F Level Factory I Level D Level F Level DEV DEV DEV DEV DEV DEV 3 8 8 8 Ş 20 8 4 4 ຊ 22 2 20 6 53 2 6 51 2 ATS Advanced Computer **RF/Microwave RF/Microwave** Cummulative Sub Totals Sub Totals PS/Analog **RF/Digital** PS/Analog **RF/Digital** A/B AIS C/D AIS Digital Digital System System IAIS BO B F-16 I-Level ATS E-22 CATS EMD F-22 FACTORY

|       | STA          |     | Application | TESTED ITEMS    | TEMS   | ATE<br>(PY9 | ATE COSTS<br>(FY93 \$M) | SAL            | TPS COSTS<br>(PY93 \$M) |
|-------|--------------|-----|-------------|-----------------|--------|-------------|-------------------------|----------------|-------------------------|
|       | NAME         | QTY |             | QTY./<br>TYPE** | ITA/ID | R&D         | Production              | RAD            | Predection              |
|       | RF/Microwave |     |             |                 |        |             |                         |                |                         |
| 22-2  | EO           |     |             |                 |        |             |                         |                |                         |
| 1     | Sub Totals   | 20  |             | 15              | 15     | 5.500       | 35.752                  | 5.509          | 6,665                   |
|       | Digital      | 3   | D Level     | 75 M            | 75     |             | 2.284                   | 1.812          |                         |
|       | PS/Analog    | 3   | D Level     | 75 M            | 75     |             | 1.928                   | 2.665          |                         |
| TO    | RF/Digital   | 3   | D Level     | 36 M            | 36     |             | 2.769                   | 1.723          |                         |
| DEI   | RF/Microwave | 3   | D Level     | 47 M            | 47     |             | 3.993                   | 1.648          |                         |
| 22-33 | EO           | 3   | D Level     | 14 M            | 14     |             | 4.229                   | 2.881          |                         |
| í     | System       | 3   | D Level     | 6 M             | 9      |             | 5.120                   | 0.374<br>2.250 |                         |
|       | Sub Totals   | 18  |             | 253             | 253    | 5.000       | 52E.02                  | 13.353         | 25.166                  |
| F-22  | Cummulative  | 338 |             | 774             | 774    | 39.250      | 206.239                 | 166.021        | 51.212                  |

\* C Stands for cards or SRU's, M Stands Modules or LRUs

| FY   | Escalation Indices |
|------|--------------------|
| 1969 | 3.970              |
| 1970 | 3.833              |
| 1971 | 3.61               |
| 1972 | 3.398              |
| 1973 | 3.126              |
| 1974 | 2.917              |
| 1975 | 2.682              |
| 1976 | 2.483              |
| 1977 | 2.223              |
| 1978 | 2.025              |
| 1979 | 1.838              |
| 1980 | 1.673              |
| 1981 | 1.549              |
| 1982 | 1.460              |
| 1983 | 1.399              |
| 1984 | 1.354              |
| 1985 | 1.313              |
| 1986 | 1.272              |
| 1987 | 1.228              |
| 1988 | 1.183              |
| 1989 | 1.140              |
| 1990 | 1.102              |
| 1991 | 1.066              |
| 1992 | 1.033              |
| 1993 | 1.000              |
| 1994 | 0.969              |
| 1995 | 0.938              |
| 1996 | 0.909              |
| 1997 | 0.881              |

#### Table E-4 : Fiscal Year (FY) - Escalation Indices used in All Analyses [Indices 1992]

)

1

1

Ì

)

)

# Appendix F. ATS Investment Strategy Study Participants

## OSD / Service Executive Steering Group (ESG)

### OSD

| Mr. Martin Meth (Chair) | Dir, Weapopn Support Improvement<br>Group                             | OASD (P&L)          |
|-------------------------|-----------------------------------------------------------------------|---------------------|
| Dr. John Morgan         | Dir, Force and Infrastructure Cost<br>Analysis Div.                   | OASD (PA&E)         |
| Mr. Robert Mason        | Dir, Maintenance Policy                                               | OASD (P&L)          |
| ARMY                    |                                                                       |                     |
| BGEN John Longhouser    | Assist. Deputy for System Mgmnt                                       | DASA (Plans & Prog) |
| Mr Robert Dubois        | Executive Director, Test,<br>Measurement, and Diagnostic<br>Equipment | AMXTM               |
| NAVY                    |                                                                       |                     |
| RADM J. Calvert         | Dir, Fleet Support and Field<br>Activity Management                   | NavAir 04           |
| RADM Don Eaton          | Dir, Fleet Support and Field<br>Activity Management                   | NavAir 04           |
| CAPT M. Najarian        | Dir, Naval Aviation Maint. Prog Div.                                  | <b>OP-NAV-051</b>   |
| CAPT Tom Hancock        | Dir, Naval Aviation Maint. Prog Div.                                  | <b>OP-NAV-051</b>   |
| AIR FORCE               |                                                                       |                     |
| Mr. Oscar Goldfarb      | Associate Deputy Assist. Secretary of the Air Force (Logistics)       | SAF/AQK             |
| Mr. Alan Olsen          | Associate Dircetor of Maintenance                                     | AF/LGM              |

## ATS Study Team

| NAME                          | ORG                                       |
|-------------------------------|-------------------------------------------|
| Mr. Michael Bloom*            | IDA                                       |
| Mr. Herbert Brown*            | IDA                                       |
| Mr. Bill Darling              | NAWC(AD)                                  |
| Ms. Christine Fisher*         | OASD(P&L) WSIG SS&T                       |
| Mr. Steven Freschi            | NAVAIR-55223C                             |
| CMSGT Terry Lambert           | SAALC/LDA                                 |
| Mr. Jonathan MacMillian       | NAWC(AD)                                  |
| Mr. Wesley McElveen           | AMXTM-MP                                  |
| Ms. Kate O'Sullivan           | SAALC/LDAT                                |
| Dr. Robert Rolfe*             | IDA                                       |
| Mr. Bill Ross                 | NAVAIR-55223                              |
| CDR Gus Scalia*               | OASD(P&L) WSIG                            |
| LCDR Jim Seveney              | NAVAIR/PMA-260                            |
| Mr. Howard Sterling*          | OASD(P&L)WSIG                             |
| Maj Steve Topper              | ASD/SMGB                                  |
| Mr. Perry Trolinger           | AMXTM-MP                                  |
| * Study Team Members that par | rticipated in detailed follow-on analyses |

beyond 2 November 1992.

# **DoD ATS Study Participants**

| NAME                     | ORG             |
|--------------------------|-----------------|
| Lt Col Randy Adams       | HQ USAF/LGMM    |
| Mr. Dennis Albrecht      | NAVAIR-55223    |
| Mr. Clyde Alexander, Jr. | Army TMDE       |
| Mr. Tom Andrews          | ASD/YF(SE)      |
| Mr. Albert Baca          | AFMC/XRCE       |
| Mr. Brod Bourque         | WRALC/LNPCA     |
| Mr. Mark Cain            | OOALC/TISEA     |
| Mr. Gien Cotabish        | Army DESCOM     |
| Col Steve Dasher         | PM, TMDE        |
| Col William Deegan       | SAALC/LDA       |
| Mr. Don Desilets         | NVWC NPT (8314) |
| Mr. W. Devers            | IDA             |
| Lt Col Easley            | HQ USAF (SOF)   |
| Mr. Brit Frank           | OOALC/TISADC    |
| Mr. Don Fromm            | NAVSEA-04D52    |
| Mr. Greg Garcia          | HQ USAF/LGMM    |
| LW04 W. Gibson           | NAVAIR-41025B   |
| Lt Col Lance Gilmore     | OASD(PA&E)      |
| Mr. Edward Grabousky     | Army TOAD       |
| Mr. John Hargis          | Amy TMDE        |
| CAPT Ed Holder           | NAVAIR-55223    |
| Mr. Tom Ingram           | NAVSEA          |
| Mr. John Knecht          | NAWCADLKE       |
| Mr. Ed Kunay             | ASD/YF          |
| Mr. Dan Levine           | IDA             |
| Mr. Terry Lindermann     | ASD/ENEME       |
| Mr. Joe Lombardi         | NAWCADLKE       |
| Mr. Dan Losh             | SAF/AQKL        |

6

0

| NAME                | ORG                   |
|---------------------|-----------------------|
| Mr. Donald McComb   | WRALC/LNPC            |
| Mr. Tom McGrath     | NAWC Lakehurst NJ     |
| Mr. Harry McGuckin  | NAWCADLKE (PD21)      |
| LT R. McLaughlin    | NAVAIR-41025B         |
| Maj Chris Mendez    | HQMC, ASL-34          |
| CAPT Dean Merrill   | NAVAIR PMA-260H       |
| Mr. Tom Messina     | NAVAIR                |
| Mr. Claire Mosely   | WRALC/LYPCA           |
| Mr. Luke Nutt       | OASD(P&L) L/MP        |
| Mr. Clark Parkerson | WRALC/LNPC            |
| Mr Elmer Perry      | ASC/SMG               |
| Mr. Richard Pidgeon | Naval Aviation, Depot |
| Mr. Jerry Schmidt   | AFLC/XRC              |
| Mr. Dave Schulte    | NAVSEA (NSWC Crane)   |
| Mr. Joel Seko       | SAALC/LDA             |
| Mr. Patrick Stevens | PM-TMDE               |
| CDR Don Tison       | OASD(PA&E)            |
| CAPT Lee Thomsen    | NAVAIR-552 SPM SE     |
| Mr. Dennis Urban    | Army DESCOM           |
| Mr Dan Utech        | IDA                   |
| Mr. Robert Vaugh    | OOALC/TISEA           |
| Mr. Craig Wall      | ASC/SMG               |
| Mr. Frank Willis    | OOALC/TISADC          |
| LCDR Patrick Witt   | NAWCADLKE             |

## **DoD ATS Study Participants (cont.)**

F-4

| COMPANY                      | NAME                    |
|------------------------------|-------------------------|
| ATI                          | Dr. Mike Kelly          |
|                              |                         |
| Boeing Co                    | Mr. Larry Stockwell     |
|                              | Mr. Roger Williams      |
|                              |                         |
| General Dynamics             | Mr. Flynn               |
| (now GDE, Inc.)              | Mr. Roger Rawls         |
|                              | Mr. David Staley        |
|                              | Mr. Pete Williamson     |
|                              |                         |
| General Electric Co          | Mr. Mark Alexander      |
|                              | Mr. Karl Neeb           |
|                              |                         |
| Hewlett-Packard Corp         | Mr. Greg Andreson       |
|                              | Mr. Tom Burrell         |
|                              | Mr. Anthony Constantino |
|                              | Mr. Joe Gattuso         |
|                              | Mr. Bob Stem            |
|                              |                         |
| Lockheed                     | Mr. Jim Gallagher       |
|                              |                         |
| National Cash Register (NCR) | Mr. Peter Lord          |
|                              |                         |
| Northrop                     | Mr. George Hammontree   |
|                              | Mr. Mark Lopez          |
|                              |                         |

## Industry Participants (Briefings and Interviews)

| NAME                |
|---------------------|
| Mr. Ted Nietzold    |
| Mr. Jewell Toney    |
| Mr. Malcom Levy     |
| Mr. John Archabault |
| Mr. Bob Hiebert     |
| Ms. Marilyn Miner   |
| Mr. Mike Baglino    |
| Mr. Fred Graham     |
| Mr. John Schneider  |
| Mr. Joe Wrin        |
| Mr. Chris Mseibov   |
| Mr. Hank Podobinski |
| Mr. Dave Haworth    |
| Mr. Sam Strang      |
| Mr. Butch Hilliard  |
|                     |

## Industry Participants (Briefings and Interviews) (cont.)

## REFERENCES

| [AF Depot]             | Air Force. Action Item Response. WR-ALC ATE (Partial Listing),<br>McCranie, Rodney, 25 June 1992; OO-ALC Testers. Undated; and<br>SM-ALC ATE equipment. Hanson, Jeff. Undated. Depot ATS at<br>SM-ALC that is non-weapon Specific. Lawson, Dave. |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [AMRAAM 1992]          | Simmons, Don. Air Force. Generic Factory STE Acquisition & Depot Planning. 20 April 1992.                                                                                                                                                        |
| [APACHE 1991]          | Cost/Benefit Analysis of the AH-64 Helicopter ATE.<br>September 1991.                                                                                                                                                                            |
| [Apache/F-16 AIS 1992] | General Dynamics. F-16 AIS vs. Apache. 28 April 1992.                                                                                                                                                                                            |
| [Army Depot 1992]      | Army. HQ DESCOM TMDE/ATE Branch. Army Depot ATE and Utilization Data (-1 and-2). 23 March 1992.                                                                                                                                                  |
| [ATE 1976]             | ATE Ad Hoc Working Group. Report on Navy Issues Concerning<br>Automatic Test Monitoring and Diagnosing System and<br>Equipment. 13 February 1976.                                                                                                |
| [ATE History]          | General Dynamics. Briefing Charts AF ATE History. Submitted by AF, TIM. Undated.                                                                                                                                                                 |
| [CAIG]                 | OASD, CAIG. F-16 A/B Avionics Intermediate Shop Cost Analysis Study. Undated.                                                                                                                                                                    |
| [CASS 1992]            | NAVAIR Briefing. ATE/CASS P <sup>3</sup> I Planning. 25 March 1992.                                                                                                                                                                              |
| [CATS 1992]            | Air Force. Tim Action Item Response. CATS Manufactures<br>Equipment Listing. 9 June 1992.                                                                                                                                                        |
| [CECOM Dec 1983]       | Army TMDE. Army Digital Test Requirements Report.<br>CECOM-80-0520-2. December 1983.                                                                                                                                                             |
| [CECOM Jul 1983]       | Army TMDE. Army Digital Test Requirements Analytic Report.<br>CECOM-80-0520-1. July 1983.                                                                                                                                                        |
| [CIP]                  | Navy. CASS Introduction Plan (CIP), Air 552. 30 April 1993.                                                                                                                                                                                      |
| [Evanovich]            | Evanovich, Peter J. Center of Naval Analysis. Avionics Support (Briefing). Undated.                                                                                                                                                              |

| [F/A-18 1992]   | Navy. Review of TRDS for the F/A-18 Radar Set. TIM Action Item Response. 5 May 1992.                                                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| [FAR 1992]      | Federal Acquisition Regulation Part 45 Definitions & Policy.<br>11 June 1992.                                                              |
| [Frost 1983]    | Frost & Sullivan, Inc. The Military Test Equipment Market in the U.S. A1213. August 1983.                                                  |
| [Frost 1990]    | Frost & Sullivan, Inc. The U.S. Market for Military Test<br>Equipment, Winter 1990/1991. A2375. 1990.                                      |
| [GFE ATE 1991]  | Army. Special Tools and Test Equipped AT Factories SSEDS<br>MICOM, AVSCOM. MICOM, AV SCOM, TA COM, Factory<br>Test Equipment, 4 June 1992. |
| [IFTE 1989]     | TRADOC. IFTE Cost and Operational Effectiveness Analysis.<br>January 1989                                                                  |
| [Indices 1992]  | OASD (PA&E). DoD Escalation Indices. 16 March 1992.                                                                                        |
| [JIAWG 1992]    | CASS Compatibility Analysis of JIAWG Components. Navy.<br>18 May 1992.                                                                     |
| [Koto 1989]     | Lockheed Corp. F-22 Support Briefing by Tairo Koto, to R. Rolfe and C. Fisher, 1989.                                                       |
| [MATE 1990]     | ASD/Softech. MATE Effectiveness Evaluation Report.<br>90-1001-0630. 30 November 1990.                                                      |
| [McComb 1992]   | McComb, Donald. WP-ALC. Air Force. Background Paper on Air<br>Force Depot Use of Factory Test Equipment (FTE).                             |
| [Merrill]       | Merrill Captain. CASS Program Office. CASS Briefing. Undated.                                                                              |
| [Mosemann 1992] | Mosemann, L.K. AF: Policy for Use of Ada & ATLAS for<br>Automatic Test Systems. 18 February 1992.                                          |
| [NAEC 1982]     | Naval Air Engineering Center, Lakehurst N.J. 1982, Test Require-<br>ment Analyses. NAEC-MICS-82-01-479.                                    |
| [Najarian 1991] | Najarian Captain. Driving Down the Cost of Support (Aviation Log Officer's Conference). 19 November 1991.                                  |
| [Navy Report]   | Navy. Action Item Response. Percent Common Report ATE.<br>Undated.                                                                         |

w An Inde Tank

| [STERN 1992]     | Private Communicate between Dr. R. Rolfe (IDA) and<br>Mr. B. Stern (Hewlett Packard). October 1992.                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------|
| [TADS/PNUS 1992] | Air Force Tim Action Item Response. TADS/PNUS Targeting<br>and Night-Vision System Test Requirement Review. 1 May 1992. |
| [TPS-DEVEL 1992] | Navy, NAVAIR. TPS Development Cycle, Action Item.<br>13 March 1992.                                                     |
| [Vertical 1992]  | Navy. Factory Testing/Vertical Testability Navy Viewpoint.<br>10 April 1992.                                            |
| [VXI 1992]       | Willis, Wayne. VXI Journal. Vol. 3. No. 3, Fall 1992, P.7 "VXI, 5 years Later".                                         |

(

(

•

(

### **BIBLIOGRAPHY**

Air Force. Action Item Response. ACM Maintenance Concept (FAX) 9 April 1992.

Air Force. Action Item Response. Ada Based Environment for Test (ABET) (Briefing). 25 March 1992.

Air Force. Action Item Response. CATS-WA/ATIF (Briefing) 22 January 1992.

Air Force. Air Force Guide Specification, Integrated Diagnostics. AFBS-87256. 30 April 1991

- Air Force. AFSC/AFLC Policy Memorandum. Policy on a Preferred Architecture for Automatic Test Equipment. 16 May 1990.
- Air Force. AF/SA/ALC/LDAT ATS Baseline Survey Analysis (Interim Report). Project Status Briefing. September 1991.
- Air Force AFSC/LDAT. Joint Command Commercial off-the-shelf (COTS) Supportability Working Group (CSGW) Final Report. 4 October 1991.
- Air Force. Appleton, Gary. Minutes of Testability and Diagnostics Session #3 (Air Force Logistics Visions Workshop) 27 May 1992.
- Air Force. ASD/AEG. Tompkins Colonial. JLC Automatic Testing Panel MATE/CSS/IFTE Analysis Presentation (Briefing). 9 April 1985.
- Air Force. ASD/ALX Letter. F-15 E Nuclear Encoder/Decoder (E/D) and Power Supply (PS) Depot MATE Application Baseline Review (Letter). 21 July 1988.
- Air Force. ASD Brief/ATS (CATS Program Requirements). 22 January 1992.
- Air Force. ASD/ENE. Weapon System Maintenance Concept, Weapon System: C-17 (FAX). 2 April 1992.
- Air Force. ASD/YPLS Action Item Response. Department of Defense ATS Investment Strategy Study F-16 Intermediate Level AIS. 2 April 1992.

Air Force. Automatic Test System (ATS) Acquisition - IDEFO Process. 6 March 1992

Air Force. Automatic Test Equipment Integrated Commodation Management Compared pt of Operations plan for the F-15 Downsized Tester Program (unsigned). December 1991

Air Force. ASD/AEG Letter. Waiver Request AN/ALQ-117/172 Depot Tester. 21 January 1986.

Air Force. ASD/ENEME Letter. Information Foreclosure of Action Item 1, Tim #\$. 12 May 1992.

Air Force. ESD/EN Letter. Embedded Computer Resource Personnel Survey. 5 March 1992.

Air Force. ESB/EN Letter. Embedded Computer Resource Survey. 5 May 1992.

Air Force. F/A-18 Program Update for ILSMT. 7 April 1992.

Air Force. F-15 Avionics Intermediate shop Obsolete Component Analysis (C&CNI Test). Undated.

Air Force, F-16 AIS Support System Alterative Study Find Briefing. 31 May 1989.

- Air Force. F-111 Digital Flight Control Computer (DFCC) Depot Automatic Test Equipment Selection and Cost Assessment Study. 6 July 1990.
- Air Force. Integrated Weapon Systems Management Concept of Operations Plan for ATE. 27 January 1992.
- Air Force. Kunay, Ed. F-22 Automatic Test Systems. 10 April 1992.
- Air Force. Lambert SmSgt. Action Item Response. Air Force ATE Acquisition Current Process.
- Air Force. MATTOPPU, ASD/AEGB. TIM Presentation. Modular Automatic Test Equipment Program and Policies Briefing 13 March 1992.
- 'Air Force. McComb, Donald. WRALC/LNPC. Test Program Sets TPS Development Environment. 30 April 1992.
- Air Force. Modular Automatic Test Equipment (MATE) Waiver for the Battle (BMS). 31 March 1987.
- Air Force. Paper on Air Force Depot ATE Standardization Undated.
- Air Force. Request for MATE Waiver for the Radar Module Test Station (RMTS). 3 June 1987.
- Air Force. SAALC/MMTM Letter. SOF Common Intermediate Level Support Equipment. 21 March 1988
- Air Force. SAF/AQ. Memorandum. Direction for the Development and Acquisition of Automatic Test Systems (ATS). 30 July 1992.
- Air Force. Simmons, Don. Tim Action Item Response. AMRAAM Factory Test Equipment. 15 April 1992.

- Air Force. SMALC/MAITD Letter. Update to ATE Survey of November 1986 for ESD/TCRL. 3 March 1988.
- Air Force. Smith, O.T., McComb, Donald. Air Force Depot ATS Requirements & Strategies. Report LNPC 92-001. 20 April 1992.
- Air Force. Smith, O.T. Depot View DOD ATS Investment Strategy Study (Briefing). 21 April 1992.
- Air Force. SOF RF METS (Briefing). Undated.
- Air Force. Statement of Operational Need (Son) Modular Automatic Test Equipment (MATE) II. AFLC 003-89. Undated.
- Air Force. Talking Paper on the ATS Acquisition Process. 1 November 1989.
- Air Force. Test program Sets TPS Development Environment. Report LNPC 92-004. 30 April 1992.
- Air Force. Tim Action Item Response. AFMC(I)/EN Letter. Embedded Computer Resource. Personnel Survey. 18 February 1992.
- Air Force. Tim Action Item Response. CATS Test Program Sets. 3 November 1991.
- Air Force. Tim Action Item Response. CATS-WGAT IF (Briefing). 22 January 1992.
- Air Force. Tim Action Item Response. Factory ATS Cost (CATS, CASS, EFTE Cost Assessment). Undated.
- Air Force. Tim Action Item Response. F-16 Weapon System Profile.
- Air Force. Tim Action Item Response. WR-ALC/CNT Letter. Embedded Computer Resource Personnel Survey. 31 March 1992.

Air Force. Topper Major. Memorandum for Record. F-22 Cost Data. 9 June 1992.

Air Force. USAF Early Risk Reduction Phase I CASS VS MATE Study Final Report. 86 PR 1254.

Air Force. USAF/LGXX Point Paper. Objective Wing/Composite Wing. 27 May 1992.

- Air Force. USAF Scientific Advisory Board Final Report Briefings to Gen. McDonald. 22 October 1990.
- Air Force. WRALC/LYPBC. Automatic Test Equipment Software Support Environment (ATESSE). Undated.

- Air Force. WRALC/LNPCA. Test Program Set (TPS) Rehosting. Report LNPC 92-003. 30 April 1992.
- Air Force. WR-ALC/LNPC. IFTE Upgrade to meet the GPS. Report IFTE-91-002. 12 December 1991.
- Air Force. WRALC/LNPC. TPS Impact of DATSA Digital Upgrade (Briefing). Undated.
- Air Force. WRALC/LNPC. TPS Impact Results from DATSA Digital Upgrade. 30 April 1992.
- Air Force. WR ALC/MAITC. How to Buy a MATE Tester for Less Million Interservice. Report MAG 88-011-01. 17 April 1989.
- ALC AFSC/AFLC 800-23. Policy for Modular Automatic Test Equipment. 25 January 1994.
- Army. 1988 Go Forth and Develop an IFTE Battlefield Laydown (Briefing). Undated.
- Army. Action Item Response. Army ATE Acquisition. Current Process. 11 May 1992.
- Army. Action Item Response. Summary of Cost/Economic Analysis for Various Options for ASAS Maintenance 10 year life-cylce. Undated.
- Army. Air-55212G. A-12 Weapon System Support Equipment Program Management Review (Briefing). 2 April 1990.
- Army. AMC Automatic Test Equipment Policy. AMC-M750-1 6 August 1991.
- Army. AMCPM. M1A2 DSESTS Waiver to the 1986 AMC ATE Policy. 9 May 1989
- Army. AMCPM-TMDE Memorandum. ATE Programs of the Three Services. 4 November 1988.
- Army. AMCPM-TMDE-T. Update TPS Semi-Annual Fielding and Availability Report. 23 January 1992.
- Army. AMCPP-M Memorandum. Approved Acquisition Plans for the Integrated Family of Test Equipment IFTE. 19 December 1990.
- Army. AMSMC-MAE-ET. Test Program Set (TPS) Fielding and Availability Report. 22 January 1992
- Army. AMSMI-LC-ME-XP Memorandum. Information Relevant to Depot Level ATG Waiver for BFUS/TOW. 28 February 1989.
- Army. AMSDS-EN-D, Point Paper. Competitiveness of Department of Defense (DOD) Service Depots. 17 April 1992.

- Army. AMSDS-EN-DT. Point Paper Automatic Test Equipment (ATE) Exemption from Federal Information Resource Management Regulation (FIRMR). 16 April 1992.
- Army. AMSDS-EN-DT, Point Paper. Depot Level Comments on ATE Standard Language. 20 April 1992.
- Army. AM XTM-RF-P Memorandum. Integrated Family of Test Equipment (IFTE) to CASS Conversion. 1 May 1992.

Army. Apache TRD for TADS Night Sensor Assembly. Drawing No. 13231181. 14 August 1989.

- Army. Approved Acquisition Plans for the Integrated Family of Test Equipment IFTE. 19 December 1990.
- Army. Army Test Program Set Procedures. Pamphlet 750-43. 28 February 1992.
- Army. Army Test, Measurement, and Diagnostic Equipment Program. Army Regulation 750-43. 29 September 1989.
- Army. ATCD-SL memorandum. DA Form 2028 Changes to the IFTE Required Operational Capability. 27 September 1990.
- Army. Bosco Mr. Navy. NAEC 5232. A-12 All Weather Attack Aircraft Program Review Avionics Support (Briefing) Undated

(Briefing). Undated.

- Army. PM TMDE Quarterly Review Part I ATSS (Briefing). 19 May 1992.
- Army. Testability Program for Systems and Equipment. MIL-STD 2165A. 26 January 1985
- Army. Tim Action Item Response. Army Automated Test Equipment (ATE) Development, Acquisition, & support (point paper). Undated.
- Army. Tim Action Item Response. Depot Test (Briefing). Undated.
- Army. Tim Action Response. Technology Base Strategy (Briefing). 25 March 1992.
- Army. Tim Action Response. The Electronics Maintenance Company Concept (Briefing). Undated.

Army. Tim Action Item Response. Translation Cost to HP 3070 (Briefing). Undated.

Army. Tim Presentation. TMDE Overview Briefing. 13 March 1992.

Army. Tim Presentation. Army ATE: Policies, Procedures and Organization Briefing. 13 March 1992 Army. The Key to Combat Readiness/IFTE Status Briefing. 23 March 1992.

- Army. TMDE Acting. Optics Test (Bradley Tow / Tow 2) BSA Test station Approaches. 16 April 1992.
- Army. TMDE. Electro-Optical Program Concept Formulation Package. 8 November 1990.
- Army. TMDE. BSTF/BSTS Program, Revised Draft Baseline Cost Estimate (BCE). 10 June 1991.
- Army. TMDE, Contact Test Set (CTS) Program Baseline Cost Estimate (BCE) (Volume1). 23 October 1991.
- Army. TMDE. Contact Test Set (CTS) Program Baseline Cost Estimate (BCE) (Volume 2). 23 October 1991.
- Army. TMDE. Contact Test Set (CTS) Program Baseline Cost Estimate (BCE) (Volume 3). 23 October 1991.
- Army. TMDE. Electro-Optical Program (EOP) Baseline Cost Estimate (BCE) Executive Summary. 2 August 1990
- Army. TMDE. TMDE Technology Base Program. TMDE. 1 May 1991.

Army. TMDE. PM-TMDE Quarterly Review PT1 ATSS. 25 February 1992.

Army. Tobyhanna Army Depot Test Program Sets Development Environments (Briefing). Undated.

Army. TRD for PNVS Night Sensor Assembly. Drawing No. 13083805.

Army. TRD for Day Sensor Assembly (LESS LRU's). Drawing No. 13231268. 6 June 1991.

Army. TRD for PNVS Electronic Unit Assembly. Drawing 13231198. 28 March 1991.

Arrny. Use of Commercial Test Capability (Briefing). 26 March 1992.

Army. Waggoner, Larry. In Process Review Cost/Benefit Analysis of AH-64 Apache Automated Test Equipment (Briefing). Undated.

ASD/AEGB. MATE Application Program Status System (MAPSS) (computer listing). 4 February 1991.

ASD/AEBG. MATE Payoffs-Backup Information (Briefing). Undated.

ASD/AEGG. MATE Development & Material Management (position paper). 26 February 1985.

- A Team Corp. Test program Reusability Report. Contract F33657-88C-2159/60. 28 December 1990.
- A Team Corp. Wilkinson, Kenneth. Letter with althoughts that Provides Summary of Historical Relationship for MATE/CASS/IFTE. 28 October 1988.
- ATS Full Report. Approved MATE Baselines. 23 March 1992.
- ATS Option Report MATE Report. 23 March 1992
- Automatic TFS Subcommittee. Test Program Vertical Transportability. Task No. 90.3. Undated.
- Boeing. CATS System Software Training. 16 April 1992.
- Cassady, Patrick, Miller, Dennis. IFTE Electro-Optical Program Cost-Benefit Analysis TRAC-WSMR-CBA-90-040. December 1990.
- Coulter, Bruce. USATA. DSESTS-IFTE Decision Briefing. Undated.
- DASD (PR) Memorandum. AMRAAM ADM Action Item #3. Core Maintenance Requirements Economic Analysis. 10 February 1992.
- Defense Analysis and Studies Office. Software Maintenance in DOD. 12 December 1988.
- Defense Depot Maintenance Council Cost Comparability Committee cost Comparability Handbook. 23 January 1992.
- Department of Defense Inspector General. DODIG Audit Report. #92-037. 23 January 1992
- Department of Defense Inspector General. DODIG Audit Report. #92-022. 17 December 1991.
- DoD. DoD Directive Maintenance of Military Materiel. DODD 4151.18. 12 August 1992.
- General Dynamics. Automatic Test Systems Discussion Mr. Marty Meth. (Briefing). 31 March 1992.
- General Dynamics Electronics Division. F-16 AIS Family of ATE and Derivative ATE Commonality Benefits. 15 April 92.
- General Dynamics. F-16 AIS Family of ATE and Derivative ATE Commonality Benefits. 15 April 1992.
- General Dynamics. F-16 AIS Support System Alternatives Study. F33657-84-C-0247- P00401 CDRL No. 3400. 31 May 1989.

- General Dynamics. Letter to Mr. Meth. Dehost of the F-16 IAIS Support System Study. 8 April 1992.
- General Dynamics. Open Discussions with Mr. Marty Meth (Briefing by General Dynamics). 31 March 1992.
- General Dynamics. Testability/Built-in Test (BIT), Generic Integrated Maintenance Diagnostics (GIMDS) Final Tech Report. CDRL 1017. Control No. F33657-86C-0193. FZM-7545-3-8 TG3. 14 June 1991.

General Electric Company. CASS/ABET/XVI (Briefing). 6 February 1992.

General Electric. Aerospace. Consolidated Automated Support System (Briefing) JPCG. Depot Maintenance Executive Group Decision for Tactical Missiles. DoD Tactical Missile Study. 18 January 1991.

General Electric. High Level CASS Station Overview. July 1992.

General Electric. Neeb, Karl and Alexander, Marc. VXI/MMS Presentations. 10 November 1992.

Grumman. IFTE Mobility (Briefing). undated.

- Grumman. IFTE Prime Item Product Fabrication Specification. IFTE89P200202-01. 14 October 1991.
- Grumman. Intermediate Forward Test Equipment (IFTE) Commercial Equivalent Equipment CEE Handbook. IFTE85E03A1-00. 1 September 1987.
- Hewlett Packard. Gattuse, Joe. R&D, Manufacturing and Diagnostic Support Equipment for Defense Electronics Programs. January 1992.

Hewlett Packard. Letter to Christine Fisher from Hewlett-Packard Company. 14 May 1992.

Hewlett Packard. VXI and MMS Slides Briefing.

Hewlett Packard. Why Multiple Platform (VXI & MMS Briefing). Undated.

Hurley. Marcus Major General. Objective Wing Conference (Briefing). september 1991.

ICAF. Nodine Colonial. Standardization in Department of Defense Acquisition Programs, from Principles to Prospects. 1991-1992 Research Paper.

IFTE (CEE) Test JIAWG. 5 May 1992

Integrated Wespon System Management (IWSM) CONOPS Plan for ATE. 18 March 1992.

- Joint service Regulation. Logistics Depot Maintenance Interservicing. OPNAV INST 4790.14. 1 June 1988.
- Lambert, SmSgt. AF-SA-ALC/LDA. Integrated Weapon System Management for Automatic Test Equipment (Briefing).
- Martin Marietta. Apache (CMRS) Calibration Investment Requirements Summary. 31 January 1989.
- MATE, CSS, IFTE, HITS and DFT Programs Analysis Report. 20 February 1985. Undated.
- MATE Program Office. MATE Standard (Human Factors Standard). MATE-STD-HF. 1 August 1989.
- MATE Program Office. MATE Standard (MATE Instrument on a Card). MTE-STD-IAC-A. 1 August 1989
- MATE Program Office. MATE Standard (MATE Program Managers Handbook). MATEHDK-ACQ. 1 August 1989
- MATE Program Office. MATE Standard (System Control Interface). MATE-STD-CIL. 1 August 1989.
- MATE Program Office. MATE Applications Baseline Worksheet. 1 August 1990.
- MATE Program Office. MATE Guidance for Down Sized Tester Acquisition. 9 October 1990.
- MATE 1992 ATE Program Office. MATE Control and Support Software and MATE Products Distribution. 19 February 1992
- McDonnell Aircraft Company. Factory Support Plan F/A-18E/F (Briefing). 7 April 1992.
- Merrill, Captain. CASS Program Office. CASS Point Paper (CASS Performance Threshold Changes). 6 November 1991

Merrill, Captain. CASS Program Office. CASS EO - Briefing with Northrop. 13 February 1992.

Mills, Mick. MATE SCADC Briefing from (MATE Users Group). Undated.

Navy. Action Item Response. Candidates for Review for Potential Future CASS Support. 6 April 1992

Navy. AIR 41025B. Modeling Proof on Concept (IDSS Briefing). 22 April 1992.

Navy. AIR 5522. CASS TPS Planning & Acquisition (Briefing). 30 March 1992

Navy. AIR 55223. Study CASS Off-load Program. 5 May 1992.

- Navy. ATI Automated Test International Limited Partnership (Commercial CASS-Briefing). 7 May 1992.
- Naval Aviation Depot. Cost/Benefit Study. ATE Service Life Extension Program (SLEP) & Off-load to CASS TPS Support Alternatives. 15 September 1989
- Naval Aviation Depot. Generating Test Development Data from Logistic Support Analysis Records Feasibility Report.
- Navy. CNO. CASS Decision Memorandum. 15 March 1985
- Navy. Consolidated Automated Support System. CASS.
- Navy. Engineering and Manufacturing Development (EMD) of the Advanced Air-to-Air Missile. 16 December 1991.

Navy. F-14D. Alternatives to CASS Briefing and Script. 24 May 1990.

Navy. Integrated Diagnostics Support System (IDSS) (Briefing).

- Navy. Life Cycle Management of Test Measurement and Diagnostic Equipment (TMDE). NAVSEA Instruction 9028. 12 September 1991.
- Navy. Maintenance Concepts, Levels, and Types. OPNAV INST 4790.2E. 1 June 1990
- Navy. Maintenance of Surface Ship Electronic Equipment. OPNAVINST 4790.13. 11 September 1987.

Navy. McGockin, Harry. Navy Test Development Environments (Briefing). Undated.

Navy. NADEP. Action Item Response. Depot Automatic Test Equipment (ATE). 4 March 1992.

Navy. NAVAIR. Desert Shield/Storm Briefing. 12 November 1991

- Navy. NAVAIR. Introducing CAS to Naval Aviation Maintenance. NAVAIR INST 13630.2A. 22 March 1991
- Navy. NAVAIR 5522. Naval Air Systems Command Support Equipment Selection Guide. 17 June 1981.
- Navy. NAVAIR Policy Letter. Policy for Maintenance/Support of Commercial Test Equipment Embedded as a Unit of Longer Test/Support Equipment System. 16 January 1987.

Navy, NAVAIR. Utilization of the Consolidated Automated Support System as Factory Test Equipment. 12 November 1991.

Navy. Navy ATS Fielding Concepts (Briefing). 21 April 1992

Navy. Navy Policy and Responsibility for Test, Measurement, Diagnostic Equipment and Systems & Metrology & Calibration. SECNAVINST 3960.6. 12 October 1990

Navy. NAVSEA. CASS. Policy Paper 87-13. 26 May 1987.

- Navy. NAVSEA-04DS Ketter, Nubuatyre.nucrinubuatyre (2M) Electronic Repair/Automatic Test Equipment. 4 May 1992.
- Navy, NAVSEA. Test, Measurement, monitoring, Diagnostic Equipment and Systems and Metrology and Calibration (Policy Memorandum). 28 January 1991.

Navy. NAVSEA. Weapon & Combat Systems Maintenance. INST 4700.1. 26 May 1987.

Navy. NAWC-P2353 MTS Software Support Estimated (FAX). 1 Apr 1992.

- Navy. MWSC. Miniature/Microminiature (2M) Workload & Cost Benefit Analysis (Draft). January 1992.
- Navy. Pidgeon, Richard. DATA: Before, During & After TPS Development (Briefing). 5 May 1992.

Navy. Tim Action Item Response. F-16 SPO Sustaining and Service Reports.

Navy. Tim Action Item Response. OSS Costs for NON-CASS ATE. 30 June 1992.

Navy. Tim Action Response. TPS Cost Drivers. 13 March 1992.

- Navy. Tim Action Response. Vertical Testability Objective (FAX). 9 April 1992.
- Navy. Test and Monitoring Systems Program Office, SPAWAR Automatic Test Equipment Inventory Survey. 30 September 1985
- Nessbaien, Sam, Podobinski, Hank, and Anderson, Greg. Reducing ATE Size through Effective RF Asset Utilization (Paper). Undated.

Northrop. Making Technology Work (Electro-Optics Briefing Slides).

Novta, F., Ward, K. Logistics Management Institute. Test Equipment Management. January 1985.

NSIA. National Security Industrial Association, atic Testing Committee Statement.

**BIB-11** 

25 March 1992

- OSD. Action Item Response. CAIG Cost Information (Summaries for Multiple System F-16, F-15, F-22, C-17). OASD (PA&E) provided by Gilmore. Undated.
- Payne, David. Economic Analysis of the AH-64 (APACHE) Automated Test Equipment (Briefing). Undated.
- PM-TRADE. Integrated Program Summary Milestone Decision Review IIb (IFTE-BSTF & CTS). 10 January 1992

Prime System Full Report. Prime System Report-Completed. 23 March 1992.

- Prospective Computer Analysts (PCA) Inc. Cost Benefits Analysis (CBA) for the CASS and ATE Alternatives; Control No. N00140-86-C-9146. 31 August 1987
- Prospective Computer Analysts (PCA) Inc. The Consolidate Automated Support System (CASS) and ATE Alternatives Assessment: Control No. N00140-86-C-9146. 31 August 1987.

Racal - Dana Instruments (Briefing presented to IDA). Undated.

Raytheon Company. Archambault, John. Automatic Test Equipment (ATE) for Hawk Missile System Factory Test (Briefing). 9 April 1992.

Ross, Bill. Navy. TIM Presentation. Navy ATS Policies and Processes Briefing. 13 March 1992.

SA/ALC. Notes From F-15 AIS Road Map Meeting. 1-2 March 1990.

SA-ALC/MMI. F/FB-111 Avionics Intermediate Shop Test Stations. 4 December 1979.

SA-ALC/MMT.F-15 M Electronic Test Set (F-15A-D Rehost Study) (Briefing). Undated.

Softech and SEMCO. Final Report BIB Depot Test Station Supportability. Contract F33657-86 -D-0298/0006. February 1992.

TASC. A-7 Cast LCC Management Support Project Review. SP-5520-A-1. 11 May 1988.

TASC. A-7 CAST Supportability Analysis. TR-5522-3-1. 15 June 1990.

TASC. Life-Cycle Cost Based Methodology for ATE Procurement. SP-10147. 29 March 1989.

Tektronix. Hebert, Bob. Commercial Standards for Downsized Military ATE (Briefing).

Tektronix. Letter from Richard McBee of Tektronix to Dr. Rolfe of IDA. Charts and Annual Report. 17 May 1992. Teradyne. Teradyne Assembly Test Group (Briefing). 10 November 1992.

Teradyne. Teradyne Dynamic Digital Test Systems (Briefing). 29 May 1992.

- Term Technology, Inc. An Instrument Manufacture's Experience with the Modular Measurement (Briefing). 10 November 1992.
- Trinkle, John. NAVAIR. ATS(V), BB Workload Factors FA-18 WRA, ATS only tested. 19 March 1992
- Uliano, Colonel. IFTE Program Office. IFTE MSIIB (Production Decision) in Process Review -(Briefing). 12 February 1992
- US Army TRADOC. IFTE Cost and Operational Effectiveness Analysis) COEA) Update (MSIIIB Report). January 1992

VXI Consortion. VXI (VXE Bus Extensions for Instrumentation) Briefing.

Wall, Craig. ASD/ENEM. F-22 Automatic Test System Study - Final Report Briefing.

Walsh, D.P. F-14D CASS Support Briefing. 16 May 1991

Westinghouse. Westinghouse Test Facilities (Briefing). 9 April 1992.

Westinghouse. Hilliod, Milton. Westinghouse Factory of the Future (Briefing

#### LIST OF ACRONYMS

| Α         | Amps                                                        |
|-----------|-------------------------------------------------------------|
| ABBET     | A Broad Based Environment for Test                          |
| AC        | Alternating Current                                         |
| ACBI      | Advanced Communications Bus Interface                       |
| ACM       | Advanced Cruise Missile                                     |
| AF        | Air Force                                                   |
| AFAE      | Air Force Acquisition Executive                             |
| AFLC      | Air Force Logistics Command                                 |
| AFMC      | Air Force Materiel Command                                  |
| AFSC      | Air Force Systems Command                                   |
| AIS       | Avionics Intermediate Shop                                  |
| ALC       | Air Logistics Center                                        |
| AM        | Amplitude Modulation                                        |
| AMC       | Army Materiel Command                                       |
| AMRAAM    | Advanced Medium Range Air-to-Air Missile                    |
| APM       | Army Program Manager                                        |
| ASD (P&L) | Assistant Secretary of Defense for Production and Logistics |
| ATE       | Automatic Test Equipment                                    |
| ATLAS     | Abbreviated Test Language for All Systems                   |
| ATSE      | Army Test Support Equipment                                 |
| ATS       | Automatic Test Systems                                      |
| BIT       | Built-In-Test                                               |
| BSTF      | IFTE) Base Shop Test Facility                               |
| CAE       | Computer-Aided Engineering                                  |
| CASS      | Consolidated Automated Support System                       |
| CATS      | Common Automatic Test System                                |

ACRON-1

| СВА   | Cost Benefit Analysis                           |
|-------|-------------------------------------------------|
| CEE   | Commercial Equivalent Equipment (for BSTF)      |
| CIP   | CASS Introduction Plan                          |
| CLIN  | Contract Line Item Number                       |
| CNA   | Center for Naval Analyses                       |
| CND   | Cannot Duplicate                                |
| CNI   | Communications, Navigation, Identification      |
| COEA  | Cost and Operational Effectiveness Analysis     |
| COTS  | Commercial off the Shelf                        |
| CSE   | Common Support Equipment                        |
| CTS   | Contact Test Set                                |
| DAC   | Designated Acquisition Commander                |
| DB    | Decibel                                         |
| DC    | Direct Current                                  |
| DST   | Downsized Tester                                |
| DTU   | Digital Test Unit                               |
| DoD   | Department of Defense                           |
| EMC   | Electro-Magnetic Compatibility                  |
| EMD   | Engineering and Manufacturing Development       |
| EO    | Electro-Optical                                 |
| EOA   | Electro-Optical Assembly                        |
| ESG   | Executive Steering Group                        |
| EW    | Electronic Warfare                              |
| FAR   | Federal Acquisition Regulation                  |
| FMECA | Failure Mode, Effects, and Criticality Analysis |
| FLIR  | Forward-Looking Infrared Radar                  |
| FY    | Fiscal Year                                     |
| FYDP  | Five Year Defense Plan                          |
| GAO   | (U.S.) Government Accounting Office             |
| GD    | General Dynamics                                |
| GE    | General Electric                                |

1000

2

X

5 37

ACRON-2

| GFE     | Government-Furnished Equipment                             |
|---------|------------------------------------------------------------|
| GHZ     | Giga Hertz                                                 |
| GPIB    | General Purpose Instrument Bus                             |
| GPS     | Global Positioning System                                  |
| HAC     | House Armed Services Committee                             |
| Hg      | Mercury                                                    |
| HW      | Hardware                                                   |
| HZ      | Hertz (cycles per second)                                  |
| I&C     | Indicators and Controls                                    |
| I/O     | Input/Output                                               |
| IAIS    | Improved Avionics Intermediate Station                     |
| D       | Interface Device                                           |
| IDA     | Institute for Defense Analyses                             |
| IEEE    | Institute for Electronics and Electronical Engineers       |
| IFTE    | Integrated Family of Test Equipment                        |
| IG      | Inspector General                                          |
| I-Level | Intermediate Level                                         |
| ILS     | Integrated Logistics Support                               |
| INS     | Inertial Navigation System                                 |
| IOC     | Initial Operational Capability                             |
| IR      | Infrared                                                   |
| ITA     | Interface Test Adapter                                     |
| IWSM    | Integrated Weapon System Management                        |
| ЛАWG    | Joint Integrated Avionics Working Group                    |
| K       | Thousand                                                   |
| LRM     | Line Replaceable Module                                    |
| LRU     | Line Replaceable Unit                                      |
| LSA     | Logistics Support Analyses                                 |
| LASAR   | Digital circuit simulator used for test program generation |
| MAM     | Maintenance Assist Module                                  |
| MATE    | Modular Automatic Test Equipment                           |
|         |                                                            |

| METS             | Mobile electronic Test Set                                  |
|------------------|-------------------------------------------------------------|
| MHZ              | Mega Hertz                                                  |
| MLRS             | Multiple Launch Rocket System                               |
| MMS              | Modular Measurement System                                  |
| NAVAIR           | Naval Air Systems Command                                   |
| NATSF            | Naval Aviation Technical Services Facility                  |
| NEOF             | No Evidence of Failure                                      |
| NTP              | Navy Training Plan                                          |
| O&S              | Operations and Support                                      |
| OASD(P&L)        | Office of the Assistant Secretary of Defense for Production |
|                  | and Logistics                                               |
| OSD              | Office of the Secretary of Defense                          |
| PEO              | Program Executive Office                                    |
| PFG              | Pneumatic Function Generator                                |
| PGM              | Product Group Manager                                       |
| PH               | Phase                                                       |
| P <sup>3</sup> I | Pre-Planned Product Improvement                             |
| PM               | Program Manager                                             |
| PMA              | Program Management Activity                                 |
| PMRT             | Program Management Responsibility Transfer                  |
| PM TMDE          | Program Manager, Test Measurement, and Diagnostic Equipment |
| PNVS             | Pilot Night Vision System                                   |
| POM              | Program Objective Memorandum                                |
| PSE              | Peculiar Support Equipment                                  |
| QPL              | Qualified Parts List                                        |
| R&D              | Research and Development                                    |
| RF               | Radio Frequency                                             |
| RLA              | Repair Level Analysis                                       |
| RTOK             | Review Test O.K                                             |
| SR               | Service Reports                                             |
| SRA              | Shop Replaceable Assembly                                   |
|                  |                                                             |

ACRON-4

| SRU    | Ship Replaceable Unit                       |
|--------|---------------------------------------------|
| SPO    | System Program Office                       |
| SOS    | Support-of-Support                          |
| SPD    | System Program Director                     |
| SSM    | System Synthesis Model                      |
| STE    | Special Test Equipment                      |
| SW     | Software                                    |
| TADS   | Target Acquisition and Designation System   |
| тсто   | Technical Change Technical Order            |
| TIM    | Technical Interchange Meeting               |
| TISSS  | Tester Independent Support Software System  |
| TMDE   | Test, Measurement, and Diagnostic Equipment |
| TPS    | Test Program Set                            |
| TRADOC | Training and Doctrine Command               |
| TRD    | Test Requirements Document                  |
| ТҮ     | Then-Year                                   |
| uM     | Micro-Meter                                 |
| uRAD   | Micro-Radian                                |
| UUT    | Unit Under Test                             |
| V      | Volt                                        |
| VAC    | Volts AC                                    |
| VAST   | Versatile Avionics Shop Tester              |
| VHDL   | VHSIC Hardware Description Language         |
| VHSIC  | Very High Speed Integrated Circuits         |
| VME    | Versa Module European (or VMEbus)           |
| VXI    | VME Extended for Instruments                |
| Vrms   | Volts, root-mean-square                     |
| WAVES  | Wave-form and Vector Exchange Specification |
| WCTV   | Weapons Carrier/Tracked Vehicle             |
| WRA    | Weapon Replaceable Assembly                 |
| W      | Watt                                        |

(

1