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Theoretical investigation of single-electron tunneling phenomena in semi-

conductor heterostructures, and their application possibilities in the devel-

opment of ultradense logic and memory circuits.

Report Period Objectives:

P6 1. To design and model simple digital circuits based on capacitively

a •coupled single-electron transistors.

oi tl 2. To extend the "orthodox" theory of correlated single-electron tun-

2 neling to ultrasmall quantum dots.

S; ~.iAccomplishments:

0.. 1. Analysis of digital circuits based on capacitively-coupled

single-electron transistors - Prof. K. Likharev (Co-P.I.), R. Chen, A.

Korotkov.

We have analyzed the possibility of using capacitively-coupled single-

electron (SET) transistors to build logic and memory circuits. The analysis
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shows that while the potential density of such circuits is very high, up to

1010 cells/cm2 , their operating temperature is limited to about 1/100th of

the transistor charging energy. For 10-nm technology this confines possible

circuits to liquid helium temperatures. However, the physics of SET tran-

sistors perm the cells to be scaled down further, with a corresponding

increase in operation temperature and circuit density. The approach de-

veloped in our work enables us to calculate all relevant circuit parameters,

including switching delays, power dissipation, and noise margins.

2. Numerical analysis of quantum tunneling of charge in com-

plex single-electron circuits. - Prof. K. Likharev (Co-P.I.), L.

Fonseca, A. Korotkov.

One of the problems of single-electron circuits based on the controlled

transfer of electrons one-by-one is macroscopic quantum tunneling (mqt)

of charge. It leads to unwanted electron transition through the imposed

Coulomb energy barriers, and thus causes errors in devic, operation. Cal-

culation of the mqt rates in realistic circuits presents a complicated problem

that requires extensive numerical simulations. We have developed the soft-

ware package that performs such a simulation for arbitrary circuits with the

maximum mqt order 8-9. In future we plan to use this software extensively

for the design of single-electron circuits.

3. Extension of the "orthodox" theory of single-electron tun-

neling to ultrasmall quantum dots.

3.1 Tunneling in an arbitrary electromagnetic environment. - Prof. D.

Averin, H. Imam, A. Korotkov, V. Ponomarenko (visiting scientist).

We extended the standard theory of single-electron tunneling in two

directions making it applicable to ultrasmall quantum dots. Firstly, the

main feature of such dots that determines their electron transport prop-

erties is the formation of discrete zero-dimensional (OD) electron states.
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We developed a theory of electron tunneling via one non-degenerate OD

state localized in such a dot in the presence of an arbitrary electromagnetic

environment. One of the conclusions of this theory is that in sufficiently

resistive environment (the characteristic resistance larger than the so-called

resistance quantum equal to 13 KOhm) electron transfer between the OD

states has an irreversible character, and in principle can be used to design

single-electron circuits in complete analogy to circuits with larger dimen-

sions. This result removes the main potential limitation on caling down of

single-electron devices.

Another limitation of the orthodox theory is related to an assumption of

instantaneous electron tunneling. We have developed a theory of electron

tunneling with finite transversal time and arbitrary electromagnetic envi-

ronment. It shows that although there are quantitative corrections to the

orthodox theory the qualitative picture of single-electron tunneling remains

valid.

3.2 Numerical modeling of electron-electron interaction in a few-electron

quantum dots. - Prof. J.K. Jain (Co-P.I.), L. Belkhir.

The quantitative design of single-electron devices is based on the de-

scription of the charging energy in terms of the geometrical capacitances

C. Such a description is very accurate for relatively large metallic struc-

tures, but can not be, strictly speaking, justified for small semiconductor

heterostructures. We performed exact numerical simulations of electron-

electron interaction in few-electron quantum dots and showed that the clas-

sical expression for the charging energy should be semi-quantitatively (with

about 30% accuracy) valid even for quantum dots which contain as few as

five electrons. Accesion Fir \ -"
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POSSIBLE EXTREMELY-HIGH-DENSITY MEMORY BASED ON
SINGLE-ELECTRON TRANSISTORS

R. Chen, A.N. Korotkov, and K.K. Likharev

Department of Physics, State University of New York
Stony Brook, NY 11794-3800, 516-632-8159

Recently discovered effects of correlated single-electron tunneling (for reviews see, e.g.,
Refs. 1, 2) form the physical basis for a new generation of electronic devices, in
particular, very dense memories. Digital bits in these memories may be represented by
either single electrons or bundles of a few electrons. In this work we are suggesting a
static random-access memory (SRAM) of the latter type, where the number N of
electrons in the bundle (N-10) oscillates in time by 8N--±•-2. (Larger fluctuations of N,
implying digital errors, occur with vanishing probability.) In contrast to memory cells
based on the trapping of single electrons [2), the new approach implies somewhat higher
power consumption, but promises much higher speed and wider parameter margins.

The memory cell consists of two single-electron transistors (SETs) [1, 2] connected in a
positive-feedback loop. In each of two stable states of this symmetrical flip-flop, one
SET is open, while another is in the closed (Coulomb-blockade) state. Two additional
SETs enable write-0, write-1 and read-out operations, in a mode very similar to that of
the usual MOSFET SRAMs. The only substantial difference is the high output
impedance of the SETs, which makes it necessary to use at least a two-level hierarchy of
sense amplifiers (the first level should use SETs, while the next levels may be based on
usual FETs).

We have used the "orthodox" theory of single-electron tunneling, and its extension to co-
tunneling processes [2], to optimize the SET SRAM cell and calculate its parameter
tolerances, switching speed, and power consumption. These results have enabled us to
estimate the possible performance of the SET SRAMs for several levels of their
fabrication technology. For example, a 10-nm silicon-based technology should allow
implementation of this type of memory with density close to 10 Gb/cm2, cycle time of
-300 ps, and power consumption -3 W/cm2, operating at liquid helium temperatures (-4
K). It is important that the physics of SET transistors permits the memory cells to be
scaled down further, with a corresponding increase in cell density and operation
temperature.

The work was supported in part by AFOSR and ONR/ARPA.

1. D.V. Averin and K.K. Likharev, in: "Mesoscopic Phenomena in Solids", ed. by
B. Altshuler et al., Elsevier, 1991, pp. 173-271.

2. "Single Charge Tunneling", ed. by H. Grabert and M.H. Devoret, Plenum, 1992.
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Figure 1. Possible circuit diagram of the SET SRAM cell. Open rectangles
denote conducting electrodes, while gray rectangles show tunnel junction
barriers. 0.8 . ' . . . . . . . .
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Figure 2. Parameter window of the correct operation of the cell with Cc=2C,
CI>>C, and RI=1 OR, for several operation temperatures T (in units e2/kBC). Qo is
the background charge. One can see that the window closes rapidly at
temperatures above -0.01e 2/kBC.
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Coulomb blockade of resonant tunneling

H.T. Imam,() V.V. Ponomarenko,(1 ,2) and D.V.

Averin",3)

(0) Department of Physics, State University of New York, Stony Brook, NY 11794;

(2) A.F. Joffe Physical Technical Institute, 194021 St. Petersburg, Russia;

(3) Department of Physics, Moscow State University, Moscow 119899 GSP, Russia

We have considered the influence of electromagnetic fluctuations on electron tun-

neling via one non-degenerate resonant level, the problem that is relevant for electron

transport through quantum dots in the Coulomb blockade regime. We show that the

overall effect of such an influence depends on whether the electron bands in external

electrodes are empty or filled. In the empty band case, depending on the relation be-

tween the tunneling rate F and characteristic frequency Q of the fluctuations, the field

either simply shifts the conductance peak (for rapid tunneling, r >> ) or broadens

it (for IF < 11). In the latter case, the system can be in three different regimes for dif-

ferent values of the coupling g between electrons and the field. Increasing interaction

strength in the region g < 1 leads to gradual suppression of the conductance peak at

the bare energy of the resonant level Eo, while at g > 1 it leads to the formation of

a new peak of width El/g1/ 2 at the energy co + E,, where E, is a charging energy.

For intermediate values of g the conductance is non-vanishing in the entire energy

range from co to co + E,. These results provide a possible explanation for experimen-

tally observed extra width of the conductance resonances at low temperatures. For

filled bands the problem is essentially multi-electron in character. One consequence

of this is that, in contrast to the situation with the empty band, the fluctuations of



the resonant level do not suppress conductance at resonance for 9 < 1. At g = 1 a

phase transition occurs leading to the appearance of a Coulomb gap in the position

of the resonant level as a function of its bare energy, and results in the suppression

of conductance.

PACS numbers: 73.20.Dx, 73.40.Gk, 73.40.Kp
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II

I. INTRODUCTION

Several recent experiments [1]-[5] demonstrated resonant tunneling under

Coulomb blockade conditions, when the resonant level is localized in a mesoscopic

quantum dot and is affected by electron-electron interaction in the dot. The in-

teraction shifts the energy of th resonant level by an amount which is roughly

proportional to n, the number of electrons in the dot. This makes the effective

energy spectrum of the dot a nearly periodic function of n, with each period corre-

sponding to the addition of one electron to the dot. This periodicity leads to several

new phenomena which are attracting considerable interest.

The effect of the interaction has such a simple form of an energy shift only if

the response of electrons in the dot and/or external electrodes to the transfer of

an electron to or from the resonant level has a time scale which is incompatible

with the time scale of tunneling. Our aim in this work is to consider the situation

when such a condition is not satisfied and the characteristic response time can be

comparable to the tunneling time. Following the theory of electron tunneling in

small metallic tunnel junctions (see, e.g., [6]), one can model the electron-electron

interaction in this regime as the interaction of electrons with fluctuations of the

electromagnetic field in a given electromagnetic environment. Thus, we can reduce

the problem under consideration to one of inelastic resonant tunneling of electrons

coupled to bosonic degrees of freedom. The relation between the tunneling time

and characteristic frequency of the boson modes is important in this model because,

depending on whether the boson modes have enough time to adjust to the changing

charge of the resonant level or not, the effective energy of this level either coincides

with the bare energy co or is shifted by the charging energy E,.

This fact, together with the renormalization of the effective tunneling rate by the
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interaction, leads to several different regimes in the dynamics of tunneling through

the resonant level. Identification of various regimes of electron tunneling and cal-

culation of the current-voltage characteristics of the resonant level in these regimes

are the aims of this work.

The paper is organized as follows. In Sec. 2 we derive the general expression

for the current through the resonant level, and prove that in the large-bias limit

the current reaches an asymptotic value which is independent of interaction. In

Sec. 3 we simplify the general expression by adopting a one-electron approximation

which was originally developed in [71-[9], and establish limits on the validity of this

approximation. It is shown that the one-electron approximation is valid when the

electron band in at least one of external electrodes is empty and the rate of tunneling

into this electrode is much larger than the rate of tunneling into the other electrode.

Both of these conditions are typically satisfied in vertical resonant tunneling struc-

tures. In Sec. 4 we calculate the current-voltage characteristic of such a structure

in the one-electron approximation. In Sec. 5 we consider the situation (typical for

lateral quantum dots) when the bands in both external electrodes are filled and

the one-electron approximation is incorrect, and calculate the linear conductance

and the current within two approximation schemes, adiabatic approximation and

perturbation theory in tunneling. It is shown that if interaction with the bosonic

mode is strong enough and the bare tunneling rate is small, then, due to a strong

renormalization of the tunneling amplitude a Coulomb gap appears in the effective

position of the resonant level as a function of its bare energy . In Conclusion we

discuss the relation of our results to existing experiments on electron tunneling in

quantum dots, and also discuss them from the point of view of general approaches

to transport of interacting electrons.
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II. MODEL AND BASIC EXPRESSION FOR CURRENT

We consider tunneling of electrons between two bulk electrodes via a quantum

dot with a resonant non-degenerate state using a standard tunneling Hanmiltonian:

Ht = EZ ikcjC•i- + ECtc+• E(tjct c + h.c.). (1)
j,ki ilki

Here index j = 1,2 denotes, respectively, left and right electrode, and c0 is the

energy of the resonant level. The assumption of a non-degenerate level can be

justified in several situations. In particular, strong magnetic field applied to the dot

may result in the Zeeman splitting of the spin-degenerate levels. Another possibility

is a strong intrasite electron repulsion which may lead to significant splitting of the

initially degenerate levels when the Kondo resonance is destroyed by non-vanishing

temperature or bias voltage.

To describe the relevant low-energy properties of tunneling through the resonant

level, we need to take into account the interaction of the tunneling electron with

low-energy excitations in the quantum dot structure. In the mesoscopic structures,

the relevant excitations are low-frequency modes of the longitudinal electromagnetic

field associated with fluctuations of the total electric charge of electrodes (see, e.g.,

Ref. [6]). Using standard gauge transformation we can express the interaction with

these modes in the form of field-induced phases of the electron tunneling amplitudes

tij:

tj ---* tj ý(t) = e'jt,(2)

where • is the fluctuating voltage between the resonant level and jth external

electrode.

Below we consider a standard structure with two bias external electrodes and

one gate electrode (Fig. 1). In such a structure there are two types of 1ow-frequency
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modes, one associated with fluctuations of the bias voltage, and another one asso-

ciated with the fluctuations of the gate voltage. Adding the energy of these two

types of modes to the electron Hamiltonian (1) with tunneling amplitudes (2) we

get the total Hamiltonian of our model:

H = Hot + 'wata,, + Zwbb,b,. (3)

An important characteristic of the low-frequency photon modes is that tile spa-

tial distribution of the electric field in them is determined solely by the geometry

of the system and is frequency-independent. Hence, we can introduce frequency-

independent factors A, A1,2 which determine the distribution of the voltages in the

electrodes of the system and write the phases Oj as sums of the two terms corre-

sponding to fluctuations of the bias voltage and of the gate voltage:

0l=A v+A,4I 9 , 02 =-(1-A)qv+A 20g. (4)

Here A and A1 give, respectively, the fraction of the bias voltage and of the gate

voltage that drop between the dot and left external electrode; (1 - A) and A2 have

the same meanings for the dot and right external electrode.

The phases Obv and 0,9 can be directly expressed in terms of the photon modes

a and b:

Ov = E 71,(at + a,,), Og = E v,(bt, + bw). )
4JW

where the coupling constants q,, and v, together with the density of modes are

related to the effective impedances of the structure [6]:

172W ... -- 2 ... -.

Here spectral densities Fvg(w) = (e2 l2irh)ReZvg(w) are given by the real part of

impedances of the bias circuit and of the gate electrode - see Fig. 1.
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Below we will study in detail two specific examples of the spectral denrities

F(w). In the Ohmic case, the impedance is reduced to the frequency-independent

resistor R. Then

F(.) = g/(1 + (w/Q)2 ), (6)

where g = e2R/wr, and the cut-off frequency Q is determined by the finite capacitance

C between the electrodes, Q = 1/RC. Another example corresponds to an inductor

L in the external circuit which leads to a one-mode spectral density:

F(w) = gS2 •(w ±= f2), (7)

where Q = (LC)-'1 2 is the mode frequency, and g = (e 2/7r)(L/C)112 is the coupling

constant. Spectral densities (6), (7) satisfy the sum rule:

] dwF(w) = ' 2E,. (8)

which should be satisfied by arbitrary F(w) [6].

Although we have used, so far, the language appropriate specifically for the pho-

ton modes, the model is obviously valid for other bosonic modes. Moreover, to the

extent that the "bosonization" procedure is applicable to excitations of arbitrary

system, the model describes resonant tunneling of electrons interacting with arbi-

trary dissipative environment. As an example, one can note that the microscopic

model of Coulomb screening of the resonant level by a Fermi sea of electrons [10],

[11] can be reduced to the bosonic form considered in this work. In the microscopic

model an electron on the resonant level creates a self-consistent potential for elec-

trons in the Fermi sea, which gives rise to shift of scattering phases 'pj of these

electrons. Bosonization of electron-hole excitations of the Fermi sea reduces this

model to the one discussed above with

7



F =, (9)

where the exponential cut-off is commonly used for simplicity.

From a general point of view, the spectral density (6) corresponds to an environ-

ment with a relaxation-type response to charging of the resonant level characterized

by a single relaxation-time constant 9-1, while the spectral density (7) corresponds

to the environment with an oscillatory response and a single frequency Q.

Our aim is to calculate the dc current I through the resonant level which can

be expressed in terms of either left or right currents,

I = = 12,

where

I, = -2eIm• t,(ce' c) , 12 = 2eIm 1 t 2 (ck2 es2c). (10)
ki k2

Writing down the expansion of the averages in eq. (10) using perturbation theory

with respect to the tunneling terms in the Hamiltonian, and constructing the cor-

responding Dyson equation, we express the currents in terms of non-equilibrium

Green's functions of the resonant level. (A similar transformation was used in [12].)

For instance, the left current is:

I = -2e I t1 2 IM 1:1 e[G~l (e)Gt(e) - G' (,6)G< (e)],()

where G1(e) is the exact (i.e., calculated in presence of tunneling) Green's function

of the resonant level dressed by the phase ei'h, e.g.,

Jdte(tG)(t), G<(t) = i(cte-iI(o)ei~h(i)c(t)) ,

while Gkl (e) is a free Green's function of the left electrode. (Notations for G's in eq.

(11) are the same as in the book by Mahan [13], Sec. 2.9.) Using the fact that G>(e)
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and G<(c) are purely imaginary and ImGt (e) = [G>(e) + G<(e)]/2i, and plugging

expressions for Gkl, G' (c) = 2 7rifklb(e --kl), ImG11(c) = 7r(2fkl - 1)6(e --kl) in

eq. (11) we get finally:

I, =-f J de[f 1 (,)G>(,) + (1 - fI(e)) G(')]. (12)

Here r1 = 2w t1 t1L2 Ekl *( - Cki) is the rate of tunneling into the left electrode,

and fl(,) is Fermi distribution function in this electrode.

The current between the resonant level and the right electrode can be expressed

similarly:
2 e 2 f de[f&()G>(e) + (1 - f 2 (e))G<(e)j, (13)

/2=27r-'-J

where G2(-) is the Green's function of the resonant level dressed by the phase e'02.

Equations (12) and (13) will be the starting point of our calculations in the next

sections. They show, in particular, that in the large-bias limit the current reaches

a constant value that is independent of interaction. Indeed, in this limit fl(e) = 1

and f2(e) = 0 for all relevant energies, and we have from (12) and (13):

el1 r re2 tIl -ý-2.-Tr I ~cG> (E) = er, (1 - n) , 12 = 'r2•_ deaG'(e) = er•n, (14)

where n = (cWc) is the occupation probability of the resonant level. Since the left

and right currents should be equal, we get from eq. (14) that in the large-bias limit

both n and I are the same as in the non-interacting case:

___ Fi'l 2r 1 +r 2 ' I r+r 2  (15)

Using eqs. (12) and (13) we can in principle determine the current for arbitrary

bias voltage adopting various approximations for Green's functions of the resonant

level.
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III. ONE-ELECTRON APPROXIMATION

We begin by considering the one-electron approximation, which was originally

developed in [7] - [9]. The starting point of this approach is an assumption of free

evolution of the bosonic modes. With this assumption the dynamics of electron

operators can be determined straightforwardly. In order to obtain the limits on the

validity of this approximation we start with a complete set of equations of motion,

both for electron operators c and the bose fields Oj that follow from Hamiltonian

(1) with tunneling amplitudes (2):

iCti = ckjcki + tie i'c, i = 0c + E t~e-•"Ckj,

ili

Oj(t) ( 0() + 2AZ sj Ai0 doF(w)Lt drsin(w(t - r-))I,(-r)/e. (16)

Here 0o) denotes free bose field, and Il,2(r) are operators of the left and right

currents (10). Appropriate sum over the two spectral densities F,(w) and Fv(w)

is assumed in the last equation (16). Equations of motion for electron operators

can be solved explicitly provided that the density of states in external electrodes is

constant on the energy scale associated with tunneling:

c(t) = --i dre-(iC°+r)(t-T) Z tee-ic()(°). (17)

Here r = (r1 + r 2)/2 is the tunneling width of the resonant level, and c•°) are free

electron operators which determine the occupation of electron states in external

electrodes. Equation (17) gives for the Green's functions of the resonant level:

Gf(e) = t-tJ dteict 0 d7-dT'er(-r7+')eico(-r-r')aSe) ij tI, f 00"'[

G>e=-i t~idec d•-dr'er(7+7,)eizO(,r-1')
(cj )"(T . . ..(0) ( + t) , (18)

(e'i1(t) e-i4'(t+')c(°)(t + r)cj°)+(r,)ei4I(")e-tI (0)
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In the one-electron approximation, the evolution of the bose field in eq. (18) is taken

to be free. Under this assumption eq. (18) is reduced to:

Gfe = i die drTer7

e-ik,(+"- )(i4"•') -iJ(°eic~t~-i•'(+•) , (19)

G = i dte" L drdr'er(7+ 7')eico(T-") 12t 3 (1 fj(ekj))

0 0 j , k j
e-ieri( t+v-')(e i~l (t)~ -ijt 3r j2i (]' e-if3 (ek0)).

Combining eq. (19) with eq. (12) we find the current:

I erlr_2 Jdde'[f,(C)(1 - f 2(E'))P 12(c, I')- f2(-')(1 -f,())P2,(E', 6)]
27r

(20)

where P12(e,e') and P21(e, e') are transition probabilities from the state with the

energy e in one electrode to the state -' in another electrode. They can be written

as follows:

P12(6,E')= 1• Jdtei(`-')(A(t)At , P2 (',,s)= Jdte'-c')'(AtA(t)),

(21)

where A has the meaning of transition amplitude:

A = L drel'(-( (22)

Representation (21) shows straitforwardly that the left--right and the right--left

transitions are related by the detailed balance condition:

P12(e, e') = • '-P 21(61, 6). (23)

Due to this condition the terms that describe transition within one electrode drop

out from expression for the current (20). It should be noted that eq. (23) does not
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imply left+-+right symmetry of transition probabilities, and the current can be an

asymmetric function of the voltage if the resonant level is placed asymmetrically

with respect to the electrodes (i.e. A $ 1/2).

To understand why the assumption of free bosonic evolution constitutes one-

electron approximation one can note that deviations from free evolution are medi-

ating electron-electron interaction, since disturbance of the bosonic mode by one

electron affects other electrons. This interaction is disregarded, when the bosonic

evolution is assumed to be free.

In order to obtain conditions for the validity of the one-electron approximation,

the full evolution of the bose field p should be taken into account. Deviations of

W from (p(O) give rise to corrections in the expressions for G, (19) and the current

(20). In the first nonvanishing order in electron-boson coupling, correction to the

current contains the terms of the following structure:

Ai oc ri2 r Jf dEde'f,(')[(1 - f(e))f2(f) -(1 - f2(f))fl(f)][ ... ],

where [...] denotes a function of e, e' precise form of which is not relevant for

our argument. This expression shows that all corrections resulting from deviations

of the boson evolution from free evolution can be omitted when we can neglect

products of the type rifi(e), e.g. if the conduction band of the second electrode is

empty and transparency of the first barrier is much smaller than that of the second:

f 2 (e) = 0, r, << r 2 . (24)

In simple terms conditions (24) mean that the resonant level is practically empty, so

that electrons indeed tunnel independently. Another way to understand eq. (24) is

to note that in the one-electron approximation the tunneling width of the resonant

level is unaffected by interaction. However, it is obvious on simple physical grounds

that since the interaction changes the tunneling rates, the width r should also be
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modified. Thus, the conditions (24) mean that r is determined solely by the rate

of tunneling from the resonant level into the empty band which is really unaffected

by interaction.

If the conditions (24) are not satisfied, the one-electron approximation is valid

only for energies away from resonance, where we can neglect the width of the reso-

nant level altogether, and eq. (20) reduces basically to an expression for the current

that follows from the second order perturbation theory in tunneling (see Sec. 5).

Now we proceed with the calculation of transition rates (21). Since the phases

011, 2 are combinations of free boson operators, the averages of the four exponents

in eq. (19) can be evaluated directly (see, e.g., [13], Sec. 4.3). For instance:

(e'01(t) e-'02 ('+r'-')e-'(°)) = exp{((0 1(t) - 01(0))01(0) + (0 2(t + r -r')-

02(0))02(0) + ¢ 1 (t)(0 2 (t + r) - 0 2(r')) + ( 2(r') - q€2 (t + r)) (0)) . (25)

Together with expression for equilibrium phase correlators,

( 4¢ g.v ( i) 4 .v ( 0) ) = j d w F9 (w ) e -iw t
(O~gVw 1 -(O) e-A '

eq. (19) gives the finally:

P 12(-, 6') = 1 1 dte'(')t f drdr' er(T+ r')ei(E--o')(,r-,r')

ex J 1 - -[Fil(w)(-'wt - 1) + F 22(uw)(e-iw( t+.-r')t - 1) +

F12(w)(eitw- + e-''' - e-w(t-r') - i+.)]}. (26)

Here

F11(w) = AlF,(w) + A 2Fv(w), F22(w) = A2F 0 (w) + (1- A) 2Fv(w),

F12(W) = A•A 2F,(w) - A(1 - A)Fv(w).

For Fv(w) = 0 equation (26) coincides with the results of [7]-[9].
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IV. TUNNELING INTO AN EMPTY BAND

In this section we will deal with the case when the conditions (24) are satisfied

and the one-electron approximation (expressed by eqs. (20) and (26)) is valid for

all energies including those close to co. Under these conditions the expression for

the current can be simplified further. Making a change of variables in integral over

t in eq. (26), t --+ t - r + r' and integrating P12(E, ') over the final energy E' we get

(in this Section we will suppress indices 1,2 of P 12 and F11):

I = r def&(e)P(e), P(E) = Re dre1*0 -o)+r2/2J'eJ(')Wf f 0

dLF(cw.) eiw-r - 1 (7J(T) = Id 4  1-e-w (27

Equation (27) describes the current step as the current increases from 0, for

voltages below the resonance, to er, for voltages above the resonance. We limit

ourselves mostly to the calculation of the zero-temperature differential conductance

of the structure G = dI/dV which characterizes the shape of the current step and

coincides with the transition probability P(e):

G(c)= 2-1P(). (28)
7rhi

Substitution e = AeV in eq. (28) gives the conductance as a function of the bias

voltage V.

The shape of the conductance-versus-energy peak depends on the spectral den-

sity F(w) which characterizes the dissipative environment of the resonant level. In

the one-mode case (10) we get from eqs. (27), (28):

e2Arir 2 _o o0 9 1

G = 2h C' - ,.E ! (b•n_,•) 2 +, 2* (29)

where 6 =- e - eo0, and Y - r2/2. For large coupling constant g > max{1, (r22/f)2}

eq. (29) shows that the envelope of the system of elementary peaks is
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G2Ar, (6 - EC)2
S= �h(2-rE42)'/ 2 e•( 2EQ (30)

so that the total conductance peak is Gaussian and centered around co + E,.

However, when r 2 > max{1, g1/ 2 })f (i.e., response of the photon mode is much

slower than the tunneling rate), the peak becomes Lorentzian and has no fine struc-

ture. The conductance exhibits then the same peak as in the non-interacting case,

but with the peak position shifted to the energy E0 + Ec:

G = e2Ar, r 2  1 (31)

27rh (6 - Ec) 2 + j72

Equation (31) can be obtained at large r2 directly from the sum rule (8) and eq.

(27), and, hence, is valid for arbitrary frequency dependence of F(w). Thus, we see

that for the one-mode environment, the conductance peak evolves, as a function of

the coupling constant g (for fixed energy E, = gQ), from the Lorentzian at e = co

for g -- 0 to a similar peak centered at e = ro + E, for g > 1.

A similar transition takes place for the Ohmic environment (3). To follow this

transition we first consider the shape of G(-) at small energies, I C - C0 j< Q,

r 2 «< 1, and g < 1. In this case the conductance is determined by the long-time

asymptote of J(r) in eq. (27). Using the well-known expression for this asymptote

(see, e.g., [6]), we get:

G = e2Arl R dre[_i6+,],e-(i/2+-y)g e2Ar, e , 2 1- g) xG= Re] ~[6,~ (fh), =-

f12 0 r
sin[(1 - g)O1]( p2'+ - + tan-'(6/7), (32)

b2 + 7722

where -y is Euler's constant, and 1(1 - g) is the gamma function. Equation (32)

shows that for 6 >v 7 the conductance peak at E = - 0 is suppressed and turns into

a plato at g = 1:

G + e 2 e - tan--l( b) (33)

15 2
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For arbitrary g, the conductance can be calculated either numerically or ana-

lytically if the Lorentzian cut-off 1/(1 + (w/lf) 2 ) in the Ohmic spectrum is replaced

with the exponential cut-off e-4/0. The integrals in (27) can then be calculated

explicitly and give:
e2Ar1 - (62- + ri (34

G = --AImIzr( - g,z)} z-exp{-i} (6+2) (34)

where r(1 - g, z) is the incomplete gamma function. At low energies, I C - Co « fI ,

r 2 < n eq. (34) gives:

G =e , {r(1 - g) sin[(l - g)o1( 2 )(+-2)/2 + '7 (35)G= hil TF1-~i[1gO(2 +T (g -)2)11

Equation (35) generalizes eq. (32) to g > 1. It shows that as g is increased

further in the region g > 1 the conductance around co is suppressed stronger mid,

moreover, starts to grow as one goes away from the original resonance at -- =c.

This indicates that another conductance peak is formed at larger energies. The next

(after g = 1) change in the asymptotic behavior of conductance at low energies occur

at g = 2, when the first term in brackets in eq. (35) should be neglected and G is

dominated by the second term. This means that the point g = 2 can be viewed as

the starting point for the formation of the conductance peak at larger energies. To

describe this peak we can expand J(r) at small r in eq. (27) and get:

e2AGe'v e 2 X (36)

(27rzX)1/ 2 e X

We see that the new conductance peak is formed at the energy of the resonant

level shifted by the charging energy, - = co + E, and has a width g'/ 2Q. Hence, it

becomes well-defined at g > max{1,(r 2/11) 2}.

Figure 2 shows numerically calculated conductance of the resonant level coupled

to the Ohmic environment (without the approximation of exponential cutoff), which

exhibits transition from the peak at e = c0 to e = e0 + E, with increasing g. The
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formation of the new peak is described quantitatively by eq. (36), but is slightly

slower because of the divergence of X (36) for the Ohmic environment.

Another interesting aspect of the above results is that, for intermediate values

of g, the conductance is non-vanishing in the entire energy interval between - = 60

and e = 60 + E,. This means that the width of the current step in this regime is

determined by the charging energy Ec and can be much larger than the tunneling

width of the resonant level r 2 or temperature T. Carrying out the integration in

the first of eqs. (27) we get for the Ohmic environment:

- Tj d7-sn[( e)- + (,rg/2)(efT 1)) expjr2r/2 + Re[J(r)]}].

(0 =sinh[7rTr]

(37)

Figure 3 show the current (37) for several values of the temperature. At T <:z E,

the width of the current step saturates, and the current step becomes asymmetric.

At first the current rises sharply on the energy scale r 2 at - = e0 and then in-

creases monotonously and levels-off on the scale E, > r (in accordance with eq.

(33)). As will be discussed in the Conclusion, these features might be relevant for

interpretation of some aspects of experiments on resonant tunneling in quantum

dots.

V. FILLED BANDS

As we saw in the previous sections, the main characteristic feature of the one-

electron approximation is that the tunneling width of the resonant level is unaffected

by interaction. As a result, this approximation is only valid when the energy band

in at least one of the external electrodes is empty. In this section we turn to the

case when the energy bands in both electrodes are filled, so that the one-electron

approximation would give qualitatively incorrect results.

17



It will be shown below that renormalization of the tunneling width of the res-

onant level by interaction plays a crucial role in this case, and has two major

consequences. Firstly, at small coupling constants g, the value of conductance at

resonance is not suppressed by the interaction but the width of the resonance de-

creases with increasing g. The second consequence is that at sufficiently large g the

effective tunneling width r vanishes and a Coulomb gap is formed in the position

of resonant level as a function of its bare energy co. The Coulomb gap suppresses

the conductance.

We consider at first the situation when bosonic modes are coupled only to the

resonant level itself (i.e., Zv(w) = 0 and A1 = A2). A qualitative understanding

of this situation can be obtained from the relation between the zero-temperature

linear conductance G of the resonant level and its occupation probability 74 [14]:

e2 rIF2 2

G - 2 r, r2 sin27rn. (38)

Equation (38) shows that if n is a continuous function of energy eo of the resonant

level, then the conductance reaches at n = 1/2 the same maximum value as without

interaction. The fact that the resonant occupation probability is fixed at 1/2 is a

manifestation of the electron-hole synuetry of the problem. Conversely, eq. (38)

implies that the maximum value of the conductance can be suppressed only if n

becomes a discontinuous function of co, i.e. if a Coulomb gap appears in the effective

renormalized energy of the resonant level.

Quantitatively, we can first analyze the problem at small g when a direct per-

turbation calculation is possible. This calculation shows that suppression of the

linear conductance due to the suppression of the elastic transmission probability

P(e, e), which is a hallmark of the one-electron approximation (elastic transmission

probability is suppressed due to appearance of the inelastic chanmels), is precisely

18



compensated for by corrections arising from deviations of the boson evolution from

free evolution discussed in Sec. 3.

To go beyond the perturbation calculations we discuss at first the one-mode

environment with frequency fl that is larger than all frequencies associated with

electron tunneling: co, eV, T, r < n. In this case, the fast boson mode adjusts

itself instantly to the slow electron tunneling and we can employ the adiabatic

approximation and average the total Hamiltonian of the system over the fast motion

of the boson mode to obtain an effective electron Hamiltonian. As a result of such

averaging we get that the tunneling amplitudes (2) are renormalized as follows:

t- = (tie'' = te- 2 . (39)

This means that at low temperatures T < r*, conductance should exhibit the

same Lorentzian peak as in the noninteracting case but with renormalized width

e 2 rr :G A 1&2 (40)
2irh ( C - eo) 2 + (F*)2  (40)

where F• = rie-1. We see that in accordance with our qualitative discussion, the

conductance reaches a maximum value at e = c0 which is the same maximum as in

the non-interacting case.

Away from the resonance, when I -- 0>> » *, the conductance can be calculated

by perturbation theory in tunneling. If the Fermi levels in external electrodes

are below co, then the perturbation expansion should be performed starting with

the empty resonant level as the zero-order approximation. Following the standard

calculation of the second-order tunneling (see, e.g., [15]), we get, naturally, the same

eqs. (20)-(22) for the current, without the tunneling width r in the definition of

the transition amplitude A (22). However, when the Fermi levels are above co, the

perturbation expansion should be performed around occupied resonant level. The
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perturbation theory gives then the same expression for the current (without F), but

with the reversed sign of the energy difference c - co in the expression for A (22).

This change of sign reflects the fact that for E > co the tunneling is more naturally

interpreted as a tunneling of holes and not electrons (see the discussion below).

Expanding the exponent in eq. (26) and integrating each term of the series

over t we get that only the first term contributes to the zero-temperature linear

conductance G. Taking into account that for e e0 we should change the sign of

S- eo we get for G:

G(C) = e IF2  f/ drehI`0) 12, (41)

where J(r) is given by eq. (27) (note that for Zv(w) = 0 and A, = A2 all factors F

coincide, F11 = F2 2 = F1 2 - F). Taking the small-7- limit of J(r) in eq. (41) we get

an asymptotic expression for the conductance for I e - co I +E, >» Q:

G() 2 r, r2 (2
2irh (I e-eo I +E) 2  (42)

It is interesting to note that if we had directly applied one-electron approxima-

tion (expressed by eqs. (20) - (22)) both for e < c0 and e > co, we would get the

same eq. (42) but with co - c instead of oe - I . Equation (42) would imply then

that there is a resonant peak of the linear conductance at e = co + E,. Simple phys-

ical reasoning demonstrate why this conclusion is incorrect. To see this, notice that

one of the assumption behind the one-electron approximation is that the photon

modes are in equilibrium when the resonant level is empty, so that electron tun-

neling to the level displaces them out of equilibrium. Such a displacement results

in the shift of the effective resonant level energy from c0 to c0 + Ec. The correct

picture for e > co is, however, that the photon modes are in equilibrium when the

resonant level is occupied, and their displacement is caused by electron tunneling

from the level or, in other words, tunneling of holes to the level. Thus, at e > eo
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the tunneling holes experience the same influence of the interaction with photons

as electrons at e < e0 .

To complete our analysis of the one-mode environment we note that eq. (41) is

reduced in this case to:

291___n__ 2 ()_*Z'_~ e21'1  2G =Ge 2  E - 1 2= Goe .(r (Go(-( (43)
G- n z + n 27rhQ2 '

where z e -- 0 I /Q, and -y is another incomplete gamma function [16]. At g > 1

and I e - -o J> Ece-2- the sum in eq. (43) is dominated by the terms around n c- g

and eq. (43) coincides with eq. (42). At small energies I - - co j< Ece-29 the sum

is dominated by the first term (n = 0), so that G(e) = (e2/27rh)rr 2e 2J/(6 - 6o)2.

Since this expression coincides with the result (40) of adiabatic approximation in the

wide energy range, re- 29 <I E-co 1< E~e-29, we can conclude that the combination

of eqs. (40) and (43) gives the G(e) dependence that is valid for all energies.

These results show that in the limit g --+ oo eq. (42) becomes exact at all

energies and describes the Coulomb gap appearing in the renormalized energy of

the resonant level. Namely, eq. (42) implies that when the bare energy is above

the Fermi levels in the electrodes, eo --* +0 the renormalized energy is -o + E,,

but as soon as it is below the Fermi level, -0 --+ -0, the renormalized energy is

-(co + E,). The discontinuity of the renormalized energy at Co = 0 is a result of the

discontinuity of the occupation probability n of the resonant level at this energy.

For Ohmic environment, the renormalization of the tunneling width can be writ-

ten following (39) as r* = F(r/2)9/(1 9) if r < a It means that r is renormalized

to zero at g > 1. In this case the perturbation expression (41) will be valid at all

energies. With the exponential cutoff this expression gives for conductance:

2z2( 2l(-1)n zn .]
G = Goe z2 -,)r1(1 - g, z) = Goe"lr(1 - g)z-- 1 - E -( 12.

n=0 n! 1-9+n

(44)
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For Ohmic spectrum with Lorentzian cutoff we can use the asymptotic form of

J(,r) for r > n- I to find the conductance at small energy (z < 1), and g < 1:

G = Goe- 2"yr 2(1 - g)Z2 (9- 1). (45)

Equation (45) agrees with eq. (44) at z < 1, g < 1. At arbitrary energy and g,

the conductance can be calculated numerically, and is shown in Fig. 4. This figure

confirms that the evolution of the conductance with g has a transition point at

g = 1 (as indicated also by eqs. (44), (45)). For g < 1 the conductance has a peak

at :-- co, while for g > 1 the peak is completely suppressed. At the transition

point g = 1 we get from eq. (44):

G = Go(ln z +- Y)2 . (46)

For g > 1 the form of the conductance curves agrees qualitatively with (42) which

gives G = Go/(g - 1)2 at small z. At large g this expression also agrees with eq.

(42).

These results imply that in the case of Ohmic environment the Coulomb gap is

formed at finite g, namely, g = 1. The reason for this is the logarithmic divergence

of the bosonic correlators J(T) in this case. Thus, formation of the Coulomb gap for

Ohmic environment is a zero-temperature frst-order phase transition. The physical

picture of the Coulomb gap is the same as discussed above for the one-mode case.

The Coulomb gap provides a physical explanation of the low-energy singularity

obtained recently [17] in an impurity model similar to our model.

We now turn to the case of the bias voltage fluctuations (Zv(w) 0 0, Z9(w) = 0).

In this case the photon modes are coupled to the charge of the external electrodes,

and the picture of tunneling is much closer to the usual Coulomb blockade in small

tunnel junctions than in the case of the resonant level fluctuations. In the latter case

electron interact with the photon modes only when it occupies the resonant level
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during the tunneling, while the states of the modes before and after the tumneling

are the same. In contrast to this, in the case of voltage fluctuations initial and

final states of the photon modes are different because the tunneling changes the

charge of external electrodes. This leads to stronger suppression of conductance,

in particular, the linear conductance is completely suppressed at T = 0, and the

current-voltage characteristic has a power-law singularity at small voltages.

To calculate the current in the small-voltage limit we notice that in this limit

the relevant time scale for integration over t in eq. (26) is much larger than the

time scales for r and r'. (The small-voltage limit implies that e' - o - e I-)

Neglecting r and r' in comparison with t we obtain:

P(1, l) = Jdte'(e'-*eJ") 1 0 dreieo_~e_A(_A)J() 12, (47)

where J(r) is given by eq. (27) with F(w) - Fv(w).

We see that expression (47) for the transition rate factorizes at small voltages

in the two terms. One describes its voltage dependence (dependence on e - 6' in

eq. (47)) and coincides with the similar term for the first-order tunneling in small

tunnel junctions [6]. The second term has the meaning of the transition matrix

element and coincides with the transition element (41) in the case of the resonant

level fluctuations. Combining these two terms we get, for example, for Ohmic

environment:

- ehrr 2 e-Y(_9-2)r 2 (1 + §) I eV 1(1+)-
-(Y = 27r fp(9_2§)r(1 + g) e - eo 12(1+9) =A(1-A)g. (48)

We see that the term responsible for the voltage dependence of the current sup-

presses the current uniformly for all e, while the second term sharpens the reso-

nance suppressing the current for e away from c0. Thus, in contrast to the resonant

level fluctuations which suppress the resonance, fluctuations of the voltage make

the resonance sharper with increasing interaction strength.
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VI. CONCLUSION

In conclusion, we have considered resonant tunneling of electrons interacting

with fluctuations of electromagnetic field or some other dissipative environment.

Broadly speaking, interaction changes position and shape of the resonance. Our

calculations might be relevant for experiments on electron transport in quantum

dots. In particular, the one-electron approximation used in Sec. 3, is adequate for

vertical double-barrier heterostructures similar, e.g., to those studied in [1], [2], 14].

In such structures the current appears only at large bias voltages, at which both

conditions of applicability of the one-electron approximation are satisfied: first,

the relevant electron states in the collector electrode are empty, and second, trans-

parency of the collector barrier is much larger than that of the emitter barrier.

One interesting, and so far unexplained result of experiment [1] is the large low-

temperature width of the current step that corresponds to the tunneling through

the lowest OD state in the quantum dot. In this experiment conditions (24) of

applicability of the one-electron approximation were not, strictly speaking, satisfied:

the rate of tunneling through the emitter barrier r, was not always smaller than

the collector tunneling rate r2. However, the ratio ri /r2 was at most on the

order of one, so that one-electron approximation should be at least qualitatively

valid. Then the results obtained above in Sec. 3 are applicable and suggest that a

possible explanation of the extra width of the current step could lie in a moderately

strong (g • 1) interaction of electrons with some dissipative environment, since,

as was shown in Sec. 3, at g L 1 the width of the current step is expected to

be roughly equal to E, (i.e., much larger than the tunneling width r). In the

vertical double-barrier heterostructures, the most probable candidate for dissipative

environment interacting strongly with tunneling electrons are the charged dopants
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in the depletion layer of the collector electrode. For interaction with dopants in

the depletion layer the energy E, is the difference between resonant level energy

under the two conditions, when the charges in the depletion layer are frozen, and

when they are allowed to rearrange to screen the electron on the resonant level.

Qualitatively, the reason for the widening of the current step in this situation can

be understood as follows. The current appears at voltages at which electron can

tunnel through the resonant level when the level energy is lowered to E0 by the

rearrangement of the environment in response to the transfer of electron to the

level. However, the current saturates only at voltages when electron can tunnel

even if the environment is not responding to electron transfer so that the effective

energy cf the resonant level is e0 + E,. An additional argument in favor of such an

explanation is the asymmetric shape of the current step, with steeper rise of the

current at small voltage and more gradual leveling-off at larger voltages [1]. As was

discussed in Sec. 3, a similar shape of the current step results from the interaction

with environment with Ohmic spectral density of excitations.

Another aspect of our results is that they provide a specific example of the

situation when the calculation of conductance is a multi-electron problem despite

the fact that there is no direct electron-electron interaction in the Hamiltonian (3).

This implies that the frequently used ideology of the "generalized Landauer formula"

based on the solution of the one-electron problem for a given bosonic field [181, [191,

is not valid as a general approach, and establishing conditions of its validity is an

important problem.
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FIGURES

FIG. 1. Schematic diagram of the resonant tunneling structure considered in this work.

Z,(w) and Z(w) are effective impedances of the structure representing the density of the

photon modes responsible for fluctuations of the resonant level energy, and fluctuations of

the bias voltage V, respectively.

FIG. 2. Differential conductance of the resonant tunneling structure with the Ohmic

spectrum of photon modes in the one-electron approximation. G,,,, denotes the maximum

conductance in the non-interacting case, Gmax = (2e 2 Arl /irhl 2 ). The curves illustrate he

transition between low-energy and high-energy conductance peaks with increasing strength

of the coupling to photon modes.

FIG. 3. DC current through the resonant tunneling structure with the Ohmic spec-

trum of photon modes for several values of the temperature T and coupling constant g = 1

- see eq. (37). In the low-temperature limit the width of the current step is determined by

the charging energy E, and is much larger than the tunneling width of the resonant level.

FIG. 4. Linear conductance of the resonant tunneling structure with Ohmic spectrum

of the photon modes coupled to the resonant level. The plot shows suppression of the

resonance at e eo when the coupling strength is increased beyond g = 1. The conductance

scale Go is defined as in eq. (43).
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The existence of the image charge causes a modification of the

tunnel barrier shape which depends on the effective junction

capacitance C. The tunneling rate can be calculated using the

expression of the "orthodox" theory of single-electron tunneling,

with an additional prefactor of the order of exp(Te 2/hC) wheie T

is the traversal time of tunneling.



Correlated tunneling in systems of ultrasmall tunnel junctions 6

is a rapidly developing field of mesoscopic physics.1 3 The simple
"orthodox" theory of single-electron tunneling' provides the basis

for theoretical analysis of these processes. There are, however,

several effects not taken into account by "orthodox" theory. 3 In

particular, in Refs. 4-6 the influence of the finite traversal time

of tunneling T was considered (in the "orthodox" theory, T is

assumed to be infinitesimal). It was shown that the effect becomes

important when T is of the order of hC/e 2 , where C is the junction

capacitance.

The main focus of Refs. 4-6 was on the shape of the dc I-V

curve. In contrast, in the present paper we calculate the

multiplicative correction of the order of exp(Te 2/hC) to the

tunneling rate, which is independent (in our approximation) of the

dc voltage applied to the system. The origin of this correction is

the variation of the image charge at the edges of the tunnel

junction.

First, consider a tunnel junction biased by a fixed dc voltage

V>O. Assume that the temperature T is zero, then tunneling is

possible only in one direction (say, from left to right). The

effect of the image charge on the tunneling was considered in a

number of papers (see, e.g., Ref. 7 and references therein). In the

simplest model we assume that the image charge follows the position

of the electron inside the barrier as in the static case. This

so-called "static" image7 model is valid when the frequencies of

the surface plasmons are much larger than 1/T. If we also assume

that the Thomas-Fermi screening length in electrodes is much less

than the thickness of the barrier, the image charge can be
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calculated by a simple multiple reflection procedure (Fig. la), and

the effective barrier shape is the sum of the initial shape Uo(x)

and the correction UIM(x) due to image charges.

Note that in this case the total image charges Q1 at the left

side of the junction and Qr at the right side depend linearly on

the position x of the electron inside the barrier (measured, say,

from the surface of the left electrode)

Ql=(x/L-1)e, Qr=(-x/L)e, (1)

where L is the barrier thickness. In reality these charges are

located at the electrode surfaces and supplied by the voltage

source.

Now consider the same tunnel junction separated from the

voltage source. Let the initial voltage V be greater than e/2C

(after the tunneling of one electron this voltage becomes V-e/C).

In contrast to the fixed voltage case, now the total charge of each

electrode is fixed. Hence, in comparison with the previous case,

there are additional charges -Q1 -e, -Qr uniformly distributed along

the electrode surfaces (Fig. 1b). This leads to the additional

electric field E=(Qr-Q1 -e)/2CL=-xe/(CL 2 ) which depends on the

position of the electron. Hence, the effective barrier becomes

Uo(x)+UIH(x)+USET(X) where

U SET W)= -e JXE(x') dx' = (x2/L 2 )(e 2/2C). (2)
0

Let us emphasize that at the point x=L this additional energy

coincides with the change e2/2C of the electrostatic energy of the

3



system after the tunneling. Because of this fact (which is valid

only in the "static" image model), taking into account only the

linear part of USET'

ULIN(x) = (x/L)(e 2/2C), (3)

we would exactly reduce the case of the separated junction to the

case of the tunnel junction biased by the fixed voltage V-e/2C.

Then the tunneling rate r could be calculated using the expression

r - I(V-e/2C) (V>e/2C, T=O) (4)e

where I(V) is the I-V curve of the junction biased by a fixed

voltage. Equation 4 exactly coincides with the equation used in

the "orthodox" theory of single-electron tunneling.'1 3

The correction to Eq. 4 is caused by the remaining part of the

barrier modification

U COR(X) = USET - ULIN = -(x/L)(1-x/L)(e 2/2C). (5)

Assuming UcoRRUo+UIm and using the WKB approximation it is easy to

calculate the tunneling rate:

r = K I(V-e/2C) (6)e

L 2m) /
K=exp(- 1 (fo2X)+UIm(x )1/2 UCR(x) dx). (7)

The expression for the correction factor K depends on the

barrier shape and in the general case cannot be exactly expressed
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in terms of capacitance C and traversal time T. However, for an

estimate let us assume Uo(X)+UIM(x)=const. This gives a simple

expression

K = exp(e 2 T), T = L((Uo+UIM)/2m)- 1 / 2. (8)

Thus, similar to the nonlinear effects considered in Refs.

4-6, the correction is essential when the traversal time T is not

too small in comparison with e2/hC. In our approximation this

correction does not depend on the voltage.

Equations (5-8) can be easily extended to the case of a tunnel

junction inside an arbitrary single-electron circuit containing

other tunnel junctions, capacitances, voltage sources and

resistances, with the only restriction (usual for the "orthodox"

theory) that any resistance should be either much smaller or much

greater than t./e 2 and T/C (in the most interesting case the last

two values are of the same order). Then it is straightforward 3 to

introduce the effective capacitance Ceff of the tunnel junction and

the only change in Eqs. (5)-(8) is the substitution C--Ceff* The

effective capacitance is defined via the difference between the

voltage V1=V before tunneling and the voltage Vf after tunneling,

Ceff = e/(Vi-Vf). (9)

For example, in the system of two junctions connected in series

(the "single-electron transistor") the effective capacitance is the

sum of the junction capacitances, Ceff=c +C2C

The simple substitution C--)Ceff in Eqs. (5)-(8) is possible

5



only if the circuit size is much less than Tc (c is the speed of

light), so it will not be valid for too large circuits. In this

case as well as for arbitrary resistances in the circuit, a more

complicated theory based on the equations of Refs. 4-5 is

necessary.

Generalization to the case of finite temperature T is also

quite simple because the barrier change UCORR (x) does not depend on

the temperature. The general expression

r = K I(V )/(1-exp(-eV*/T)), (10)

V =V-e/2C -= (V +V) K =K(C
eff 1 f(eff

is similar to that of the "orthodox" theory; the only difference is

the prefactor K. The existence of this prefactor depending on the

effective capacitance of the junction is the main point of the

present paper.

Now let us discuss the possibility of observing the considered

effect in experiment. The simplest way is to compare the dc I-V

curve of the single tunnel junction biased by a fixed voltage and

the dc I-V curve of the double-junction system. At T-h(CI+C2 /e2

the current in the double-junction system should be larger than

that predicted by "orthodox" theory. The simplest check is to

compare the low-voltage resistance of one junction with the

differential resistance of the double-junction system at the

voltage just above the Coulomb blockade threshold. In "orthodox"

theory these two values coincide, if the background charge is not

close to zero and the temperature is low.
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Let us estimate possible experimental parameters. For the

tunnel junctions metal-insulator-metal the typical traversal time

T is about 3.10-15 s. The correction factor K in this case is

essential for e/C>0.3 V. Hence, in principle, the effect can be

observed using the scanning tunneling microscope. 1-3 However, in

this case it is practically impossible to prepare identical tunnel

junctions for single-junction and double-junction experiments.

The traversal time in semiconductor tunnel junctions can be

made much longer by the use of low tunnel barriers. For T long

enough the model of "static" image charge can be applicable" in

spite of the fact that the plasmon frequencies in semiconductors

are much lower than those in metals. In Ref. 8 tunnel junctions

having traversal time up to 3.10- 13 s were used. For our estimate,

let us take the more moderate value T=10-13 s. Then for observation

of the effect considered in the present paper, the typical voltage

e/C should be of the order of h/Te-7 mV. Hence, the typical

capacitance may be about 2.10-17 F. Note that the condition

T-hCeff /e 2 means that the typical voltage of the exponential

nonlinearity of the I-V curve should be of the order of Coulomb

blockade threshold.

In conclusion, we have found a correction to the tunneling

rate which is used in the "orthodox" theory of single-electron

tunneling. The correction is essential when Te2/hC>l. It leads, in

particular, to an increase of the current through the

double-junction system in comparison with that calculated using the

"orthodox" theory.
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Figure caption

Fig. 1. (a) Image charges for voltage biased tunnel junction and

(b) additional charges in the case of the separated

junction.
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Abstract

We calculate exactly, using finite size techniques, the quantum mechanical
and many-body effects to the self-capacitance of a spherical quantum dot in
the regime of extreme confinement, where the radius of the sphere is much
smaller than the effective Bohr radius. We find that the self capacitance os-
cillates as a function of the number of electrons close to its classical value.
We also find that the electrostatic energy as a function of the number of elec-
trons extrapolates to zero when N = 1, suggesting that the energy scales like
e2N(N - 1) instead of (N e) 2 . We also provide evidence that the main devi-
ations from the semiclassical description are due to the exchange interaction
between electrons. This establishes, at least for this configuration, that the
semiclassical description of Coulomb charging effects in terms of capacitances
holds to a good approximation even at very small scales.
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With the rapid advances in the fabrication of increasingly smaller quantum dots, ap-
proaching the atomic scale, the question of quantum and many-body effects on the essential
characteristics of these objects has become a central issue. The current stage of theoretical
understanding of quantum dots relies essentially on a semi-classical picture-,2, which makes
the assumption that the Coulomb charging effects can be described in terms of classical
capacitances, where the resonance energies can be separated in a single-particle confinement
energy, and a constant Coulomb charging energy terms. The subject has been further stud-
ied in many recent theoretical'- and experimental investigations"- 3 . The classical picture
of Coulomb blockade, however, has recently been questioned by Johnson and Payne"M who,
using a harmonic model interaction that is exactly solvable"5 , showed that, in presence of
magnetic field, the resonance energies could not be written as the sum of single-particle and
charging energies terms. They argued that the model interaction shows a behavior similar
to a Coulomb interaction with a cutoff' for a certain range of electron-electron separation.
On the other hand, however, the semiclassical description seems so far to provide a qual-
itatively correct picture, given that some experiments 17" 3, performed in the regime where
confinement and charging energies are of equal importance, can be well explained by this
model.
We investigate this issue further, using exact finite size calculations techniques. We consider
an isolated spherical quantum dot in zero magnetic field, and solve numerically the full
Coulomb interaction problem, for up to 30 electrons, in the regime where the quantum
effects are expected to be maximal, i.e when the radius of the dot is much smaller than the
effective Bohr radius (i.e R < ao). It is assumed that the added electrons move on the surface
of the sphere, which could be a reasonable model for a metallic sphere. It has recently been
shownis, in the framework of density-functional theory, that in most experimental situations
the main contribution to the capacitance of a quantum dot, in the presence of leads and
backgates, comes from the self-capacitance. The contributions of the leads and backgates
was found to be 30% at most. The results for an isolated dot are therefore not irrelevant to
actual experiments.
We do the calculation for both spin unpolarized and spin polarized cases. We find that:
(i) the interaction energy spectrum scales like N(N - 1)e2/2C, where N is the number of
electrons at the surface of the dot, and R its radius. This corroborates the semi-classical ex-
pression for the charging energy suggested recently by some authors' 9,20 , instead of the more
widely used expression (Ne) 2/2C. (ii) the resonance energies do separate into confinement
and charging energies to a good approximation; (iii) the self-capacitance of the isolated dot,
defined from the charging energy, oscillates as a function of N, around its classical value,
i.e R, and gets closer to R as N increases. (iv) The main deviation of the self-capacitance
from the classical value are due to the exchange interaction between electrons, which, in
agreement with Hund's first rule, tend to lower the ground state energy of the system, and
thus increase the value of the capacitance. This increase is however never greater than 25%
for N > 2.
Our Hamiltonian for an isolated spherical dot, is given by

I N e

2mR2 -- . '[ + - (1)

where Li = -ihR, x Vi and ri are the angular momentum and the position of the i-th

2
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a.

particle, and e the dielectric constant. The eigenvalues of ILlI are equal to l(l + 1) with 1
an integer. The kinetic energy of an electron in the shell 1 is e, = h2/(2m'R 2 ) 1(1 + 1). The
maximum number of electrons in a shell of angular momentum I is 21 + 1 and 2(21 + 1) for
a spin polarized and spin unpolarized cases respectively.
The dot contains N electrons, with an effective mass m*, and charge -fer. Notice the
absence of a confinement term, due to the use of a spherical geometry, where the electrons
are constrained to move on the surface of the sphere of constant radius R. Previous quantum
mechanical calculations of the capacitance of quantum dotss'1 s involved disc geometries with
parabolic confinement potential. It was found in those calculations that the effective size of
the dot increases with the number of electrons. in our case however, the size of the dot is
absolutely rigid, which will facilitate considerably the comparison of our calculations with
the classical results.
The Coulomb interaction between two electrons moving on the surface of a sphere with
radius R can be rewritten as

v(fl, (2= e 2  1R Ifil - 112

= 2 E( - ) Y'-, ()Y1((nl), (2)

In second quantization form, the interaction operator is given by

1
Vr = I F, ] dnZ1 dfl2 'I'Y(fl1) 2 (fl)V(fl1,rz 2 )1'I,2 (fl 2)Cj(I6 (L), (3)

where the Y• (!) are the usual spherical harmonics, and TI(h) = E,, Y1,• (f) at,,.
To carry out our numerical calculations, we choose the convenient single-particle basis states
defined by

< 1itro. >= Yj(Q•) Xv.. (4)

In this basis the two body interaction operator is given by

V 1: ~am 2 uavam1 V c~,~II, (5)
allindice2

where the matrix elements are given by

"= 1 (_1)11+'-12-13 [(21, + 1)(214 + 1)1 < 11,ml;L,M113,M3 > (6)LM 1(212+ 1)(213 +1) 1
< l1,O;L, 01l3, O >< 14,m 4;L, Ml12,rM2 > < 14,0;L, Ol 2,0 > (7)

where the terms < 1, m; 11, mi 112, m 2 > are the usual Clebsh-Gordon coefficients, which are
non zero only when m + mi - M2 = 0.
We also assume the limit of R -- 0, when the energy separation between successive angular
momentum shells is large compared to the Coulomb interaction energy, so that mixing
between shells can be neglected. This is equivalent to assuming that R < a0 , where

3



a0  is the effective Bohr radius, determined solely by the material's properties. In
GaAs quantum dots, ao = 10nm, and the confinement energy h2/(2m'R 2 ) is typically about
15/,meV, which for a spherical dot yields a radius R = 8nm. The strong confinement regime
could be attained by either reducing the size of the dots, or using materials with a higher
dielectric constant e, which would increase the effective Bohr radius no. The assumption of
R --, 0 drastically reduces the Hilbert size of the quantum system, since intershell transitions
can be completely ignored, which allows us to do the calculations for up to 30 electrons.
The calculation done in this limit is similar to the finite size calculations done in the context
of the fractional quantum Hall effect 21 , where the limit of infinite magnetic field is assumed
in order to ignore transitions to higher Landau levels.
We calculate the energy spectrum by exact diagonalization of the Hamiltonian. The calcu-
lation is done by filling the angular momentum shells by adding electrons one by one, and
calculating the ground state of the whole many-body system. In less than half-filled shell,
all electrons tend to have the same spin in order to gain the exchange energy in accordance
with Hunds' rule. As half-filling is reached, there is a sudden increase in the interaction
energy due to the fact that the additional electrons must have opposite spins, in order to
satisfy the Pauli principle, and thus lose the exchange energy. Our results for the ground
state interaction energy Ec(N) as a function of N, spin unpolarized case, are shown in figure
1. It shows an almost linear behavior, and extrapolates to 0 when N = 1, which is consistent
with the semiclassical expression N(N - 1)e2 /R.
We first define the chemical potential as

p(N) = Ec(N) - EC(N - 1) (8)

We define the self-capacitance of our dot as C = A Q/A V which can be readily obtained
from the chemical potential. For a single electron A Q = e and A V = [p(N + 1) - p(N)]/e.
Thus

Cdot(N) = e 2 [p(N + 1) - p(N)] (9)

In the case where tunneling occurs through the channel where the dot is at its ground state
before and after the event, the resonance energies are identical to the chemical potential.
Notice that the definition of the chemical potential is usually taken as the difference between
the total energies, rather than the interaction energies. In our case, both definitions are
identical for electrons in the same shell, since the kinetic energy within one shell is constant.
The only difference occurs when N electrons correspond to a state of completely filled shells,
and the (N + 1)th electron must occupy the next empty shell. The jump in the chemical
potential will then be incremented by the confinement energy, in addition to the charging
energy. Since we are choosing the confinement energy to be extremely large, we always
subtract it from the total energy to keep only the interaction part.
Figure (2a) and (2b) show the numerical results for the chemical potential, and the self-
capacitance as a function of N in units of R for a spin unpolarized electron system. We
see clearly that the capacitance is quite close to its classical value, modulo some quantum
fluctuations. The peaks observed are due to the sudden increase in energy that occurs at
half filling of each angular momentum shell. Notice also that, except for half filled shells, the
quantum and many-body effects tend to increase the capacitance only slightly. The average
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over all the 30 electrons, including the values at the peaks is 1.117R. Figure (3a) and (3b)
show the results for the chemical potential and the self-capacitance of the spin polarized case.
Observe now how the capacitance has became consistently greater than its classical value.
However the difference is not greater than 25% for all N < 30. The average capacitance for
the spin polarized case over N,., = 29 is 1.123R. Also notice that the deviation tends to
decrease asymptotically as N increases. This deviation is clearly due to the exchange energy
between electrons of same spin. However this exchange energy becomes smaller in higher
angular momentum shells, which explains the asymptotic behavior of the self-capacitance.
We also did the calculation for a system of spinless electrons (i.e no exchange interaction),
and found that the capacitance become then precisely centered around its classical value R.
In conclusion we have exact.ly calculated the energy spectrum and self-capacitance of a
spherical quantum dot in the strong confinement limit where quantum effects are expected
to be predominant. Remarkably, we have found that the semi-classical theory remains
valid on everage in this regime. We have also found that the main deviations from the
semi-cla ý.al result are due to the exchange interaction between electrons, but that theses
deviatkins do not exceed 25%.

We gratefully acknowledge insighteful conversations with J. K. Jain, and K. K. Likharev,
and T. Kawamura. This work was supported in part by the office of Naval Research under
grant No. N00014-93-1-0880
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FIGURES

FIG. 1. Ground state interaction energy E(N)/N as a function of N for the spin unpolarized
case. Notice that it extrapolates to 0 when N = 1.

FIG. 2. (a)The chemical potential and (b)the Self Capacitance of a spherical quantum dot as
"a function of N for the spin unpolarized electron system.

FIG. 3. (a)The chemical potential and (b)the Self Capacitance of a spherical quantum dot as
"a function of N for the spin polarized electron system.
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