DD ansda

REPORT 1245

ANALYSIS AND CALCULATION BY INTEGRAL
METHODS OF LAMIN.iR COMPRESSIBLE
BOUNDARY LAYER WITH HEAT TRANSFER
AND WITH AND WITHOU"" PRESSURE GRADIENT

By MORRIS MCRDUCHOW

Polytechnic Institize of Brooklyn

Jdgusgaien For

{NTIS GRARL (@
! prIc TAR 0

! Unantaeanecd O

i Justiiiculton. .
| By .

Distri.avton/ )
[ Avoianility Codes |
! [T~ and/or T
:Dist j Spouaial ]

ML

,i5.lllIlIlIIIIlIIIlIllllIIl-llllllllllllllllllllllf3llllllllIlHIIllllllllllllIIllllllIllllllllllllllllll.‘..ﬁ



ERRATA
NACA REPORT 1245

By Morris Morduchow
1955

Page 14, column 2, paragraph 2 of section entitled "Separation," line 6
should read:

"both xsep (eq. (63)) and Ag(¢) (eq. (64)). However, numerical"

g Page 19, table II: The values 2,390 and 381 in the bottom row should

be realined to indicate that the multiplying factor "x 10°" in the
first row applies alsoc to them. Thus, the table should appear as

; follows:
, Rm,cr for Mew of -
Flow
0 1

Uy fu, = 1 - & 330 x 107 | 104 x 107
(adverse pressure gradient; data from ref. 2)

ul/uw =1 2,390 381
(zero pressure gradient; data from ref. 1)

Page 19, table III: The minus sign in the subtitle of part (b) should
be an equal sign, so that this subtitle should read:

(b) Values over flat plate; £€' = £ = 0.8
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REPORT 1245

ANALYSIS AND CALCULATION BY INTEGRAL METHODS OF LAMINAR COMPRESSIBLE BOUND-
ARY LAYER WITH HEAT TRANSFER AND WITH AND WITHOUT PRESSURE GRADIENT

By Mornis Mount cnow

SUMMARY

A osurvey of Tuteyral methods in lamivar-boundary-layer
analysis s first given. A simple and sufficiently aceurate
method  Jor practical  purposes of ealeulating the  propertios
(ineluding stabilityy of the laminar conpressible  bowndary
layer in an arial pressure gradient with heat transfer at the
wall is then presented.  For flow orer a flat plate. the method
is applicable  for an arbitrarily  preseribed distribution of
temperature alony the surface and for any gieen constant
Prandtl wnnder close to ity For flow in a pressure gradient,
the method is based on a Prandtl mwider of wity and ¢ uniform
wall temperature. .\ simple and aceurate method of deternin-
ing the separation point in @ compressible flow with an adverse
pressire gradient orer a surface at a giren wniforncwall fem per-
ature is dereloped.  The analysis is based on an ertension of
the Kdrman-Pohlhansen method to the momentum awd thermal
eneoqy equations inconjunction with fourth- and expeeially
Figher 4](-{/1'((/ reloerty and .\'/tl_llmlffnn—tnf/ul//)y profiles. From
the equations derived here, conelusions regarding the effect of
pressire qradient, Macl wumber, and wall temperature on the
boundary-layer characteristics are derived and illustrated.  fn
particular the effects v skin-friction, heat-transfer cocflicient,
se paration point in an adeerse pressure gradient. and stability
of the laminar boundary layer are analyzed,

INTRODUCTION

The purpose of the present report is to present a compre-
hensive summary of theoretical investigations of compres-
sible laminar boundary lavers which have been carried out
since 1949 at the Polyvtechnic Institute of Brooklyn under
the sponsorship and with the financial assistance of the
National Advisory Committee for Acronauties.  The results
of these investigations are contained primarily in refereneces
1to7.!

Briefly, refecence tis an investigation of the relative merits
of various types of integral methods for the analvsis of
laminar boundary layvers. It is concluded that the one-
parameter method based on the Kirnnin momentum integral
equation in conjunction with sixth-degree velocity profiles
appears, on the whole, to be the most promising method for
analvzing laminar boundary Iayers in general.  On the basis
of this conclusion, a simple method of caleulating compres-
sible-boundary-lay er - eharacteristios, including  separation
point and stability characteristies, in flow with a pressure

gindient without heat wansfer at the wall is developed in | ture.
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reference 2. Tt is further shown in reference 2 that fourthi-
degree profiles are preferable for analvzing stagnation flows,
while the separation point in an adverse pressure gradient
can be stll more acenrately predicted with seventh-degree
veloeity profiles. In reference 3, it is further verified, by
considering the flow over a flat plate with heat transfer,
that sixth=degree profiles vield results of sufficient aceuracy
for stability calculations.  In the course of such caleulations,
certain modifications in the approximate stability eriterin of
reference 8 were made, and these are shown briefly in refer-
ences 3 to A, which are essentially a summary of an anpub-
lished report by Professor M. Bloom of the Polvtechnie
Institute of Brooklyn entitled Caleulation of Stability of
Constant-Pressure Boundary Lavers on Isothermal Surfaees
With an Integral-NMethod Mean-Flow Solution.” "T'his repor
ix available Tor loan or reference i the Division of Researeh
Information, National Advisory Committee for Aeronauties,
Washington, D. €. In referenee 6, a method of caleulating
the compressible Taminar boundary layer in a pressure gra-
dient with heat transfer is developed. This relerence ineludes
the caleulation of the boundary laver over a flut plate (zero
pressure gradient) with a nonuniform wall temperature. Ref-
erence 7, finally, applies the equations developed in reference
6 to a general study of the effeet of pressure gradient, wall
temperature, and Mach number on the skin-friction. heat-
transfer. separation, and stability characteristies of laminar
boundary lavers. .\ method of ealeulating the separation
point in an adverse pressure gradient with heat transfer is
included there.  Numerieal examples are also ineluded in
reference 7 to illustrate in detatl the conclusions reached
there.  The methods of references 6 and 7 are extensions of
the corvesponding methods of reference 2 to ecases of heat
transfer at the wall.

The emphasis in the present report will be on the develop-
ment of methods of caleulation of laminar-compressible-
houndary-layer characteristics.  In particular. & method of
caleulating the boundary layer over a flat plate with a non-
isothermal surface, that is, with a given distribution of
temperature along the wall, will be presented.  The Prandd
number, although constant, is left arbitrary but must be of the
order of magnitude of unity.  For flow in a pressure gradient,
a method is given of ealculating the boundary layer for a given
distribution of velocity outside the boundary layer, a given
referenee Mach number, and a given unilform wall tewmpera-
The Prandtl number is now assumed to be unity. A

ENinee ench of these references contains appreeiable material of fnterest not eontained in the present report, the lattor does not actually supersede any of these references,
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method of ealenlating the sepaeation point in compressible
flow with an adverse pressure gradient over a surface at a
given uniform wall temperature is also presented.  The
mathematical analysis on which these medhods are based will
be given in suthicient detail to show elearly the logical develop-
ment of the methods and the main approximating assump-
tions which are made as well as the range of applicability of
the methods,

In addition to the methods of ealculation, the implications
of the equations developed here regarding the various char-
acteristies of laminar boundary layers as they are affected
by parameters such as the pressure gradient, wall tempera-
ture, and Mach number will be discussed.  The discussion
will include stability characteristics. A variety of numerical
examples will also be discussed, and details of a few of these
will be presented here. Further details of these examples
can be found in references 1 to 7.

[t may be remarked that, as is well known, the literature
on laminar boundary layers and related problems is exten-
sive and rich.  Indeed, wherever pertinent, referenee will
be included in this report to recent work which has appeared
cither more or less simultancously with, or since, references
I to 7. The advantage of the methods of caleulation devel-
oped in this report is that they combine the merits of ade-
quate accuracy and relative ecase of ealeulation.  (An ordi-
nary desk calculator will be found to be more than adequate
for all of the caleulations.  In fact, a large number of the
caleulations may ceven be performed by a standard slide
rule.y  The mathematiea) analysis will Hkewise entatl prae-
tieally the minimum number of approximating assumptions
required to retain both simplicity and adequate accuracy,

With respeet to the pertinent Literature, it will suffice, at
this point, to mention briefly theoretieal investigations on
the general ease of the compressible laminar boundary layer
with pressure gradient and heat transfer. Only w2 very
limited number of exact solutions, that is, solutions (which
may be numerieal) based on solving direetly the original
partial differential equations of the boundary layer essen-
tally without any mathematical approximations, appear to
have been obtained thus far. Such exaet solutions are
restricted to particular types of flows.  For low-speed (zero
Mach number), but nevertheless compressible, flows with
heat transfer, numerical solutions for “wedge flows”
flows in which the velocity outside the boundary laver is
proportional to a power of the axial distance, have been
developed in references 9 to 11, These solutions include a
small normal mass flow at the wall.  Such solutions have
been recently extended for nonnegligible Mach numbers to
cases in which the loeal Mach number outside of the bound-
ary laver is proportional to a power of the axial distance (ref.
12). A class of similar solutions (refs. 13 to 15) for high-
speed (1. ., nonzero Mach number) flows has been reeently
derived, under certain conditions, and ealenlated with the
aid of electronic computors,

or

In addition to references 6 and 7, several approximate
analyses of laminar compressible boundary layvers with pres-
sure gradient and heat transfer have been made.  An analy-
sis, for example, based on a type of approximation used by
Lighthill has been recently made in reference 16, with empha-
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sis- on separation. A method based on “internal™ and
“external™ solutions of the  compressible-boundary-laver
cquations, previously introduced by Karmidn and Millikan
in an analvsis for incompressible flow, is developed in refer-
Referenee 18 presents a method based on solutions
which have been obtained for wedge flows,  Referenees 19
to 21 develop methods based onan extension of the Kirmidn-
Pohlhausen method (with fourth-degree veloeity and stag-
nation-enthalpy profiles) to the thermal-cnergy, as well as
the momentum, partial differential equation.  (Refs, 18, 20,
and 21 include the case of a small normal mass flow at (he
wall.)  Further analyses based on integral methods are
given in references 22 to 24, the latter being a study of the
heat-insulating properties of the laminar boundary laver, A
small-perturbation type of analysis is developed in reference
. It may be noted that all of the foregoing approximate
analyses, with the exception of references 16 to 18 and 25,
are based on integral methods.

The analysis in the present report is, for simplicity, based
on the usual assumption of constant specific heats. A means
of taking into account variable specitic heat with tempera-
ture, at least for flow over a flat plate, is discussed, for
example, in references 26 and 27, As has already been
stated, it 1= further assumed in this report that for flow with
An approxi-

enee 17,

a pressure gradient the Prandt]l number is 1.
mate means, for the case of zero heat transfer, of taking into
account a Prandtl number different from unity ix discussed in
reference 28 and applied in reference 29, In the case of heat
transfer at the wall, an approximate means of taking o
account a Prandtl number other than 1 would be to multiply
the Nusselt number (i. ¢, heat-transfer coefficient) obtained
in accordance with the method given here by the cube root
of the Prandtl number (ef., oo g, refs. 30 and 311, Such a
correction, however, may be considerably inaccurate at very
high Mach numbers (ref. 12). A further assumption in the
present analysis of flow with a pressurc gradient 1= that the
wall temperature is uniform.* A summary of investigations
on flow over a nonisothermal surface in a pressure gradient

(as well as over a flat plate) is given in reference 32, Further
information can also be obtained in reference 33, Finally,

it must be noted that the present investigation is based
on the assumption that the coefficient of viscosity is pro-
portional to the absolute temperature, with the proportion-
ality factor determined so that Sutherland’s relation is
exactly satisfied at the wall. This is an assumption com-
monly made (cf. ref. 34) to simplify the analysis and yet
retain the main actual influenee of the dependence of the
viscosity coefficient on temperature, at least for Mach
numbers below 5.

The present report is divided into five main sections. The
first section discusses coneisely the various main types of
integral methods in laminar-boundary-layer analysis and
their relative merits. The second seetion develops the
basic equations to be used in the present analysis.  These
equations are valid for an arbitrary constant Prandtl number
(close to unity) and a nonuniform wall temperature.  In the

2 The reneral equations, however, developed in the <eetion * Bavie Equations,” which per-
tain to flows with or without a pressure gradient, are valid also {or nonuriform wall
temperature.,
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third section, these equations are apphed to present a
method for the caleulation of the boundary layer over a
flat plate with a preseribed distribution of wall temperature
while the Prandtl number is kept arbitrary.  In the fourth
section, the basie equations are used to yvield a method of
caleulating the boundary layer in a given pressure gradient
over a surface at a prescribed uniform wall temperature.
Here the Prandtl number s assumed as unity.  The caleula-
tion of the separation point in an adverse pressure gradient
is included in this section.  The fifth section, finally, dis-
cusses the various general conelusions on the boundary-layer
characteristies which are of physical interest and follow from
the analysis presented herein.

SYMBOLS

a, coefficient of 7 in veloeity  profile
(eq. (150

given by equation (48)

a. constant average value of a,

b positive constant used in reference 2

h. coeflicient of 77 in stagnation-enthalpy
profile (eq. (16))

b, coeflicient in thermal profile not deter-
mined in advanee by boundary
conditions

b, constant average value of b,

' proportionality factor in temperature-
viscosity relation (eqs. (8) and (7))
« constant average value of €7

( average skin-friction  coctheient  for
length L (eq. (35))

(' loeal skin-friction coefficient (eq. (56))

Coly specific heats at constant pressure and
constant volume, respectively

FFF, integrals defined by equations (11}

F, constant average value of F

F,. constant replacing Fy for determination

of separation point
(o G (6).G,(5).G(5)  parameters defined by equations (319,
(34b). and (40b)

1 stagnation enthalpy, (#?/2)+¢,T
h ratio of stagnation enthalpy at wall to

staghation enthalpy at outer edge of
boundary laver, IT, /[ (§): for Pr=1,
=T, T, (¢f. also eq. (25))

b value of & for zero heat transfer at wall
k coefficient of heat conductivity
L charaeteristic length
M Mach number
m.jl constants defined by equations (55h)
Nu Nusselt number
Pr Prandtl number, uc,/k
1 q local rate of heat transfer at wall
Iy Revnolds number based on L, pou, L/u,,
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Y

B8

Y
8.9,

7
A=1.(58, L)
A(8)

I T

Subseripts:
a
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minimuim  critical Reyoolds mnnber
based on conditions at point b -
mediately behind  shoek wave
leading edge of aicfoil. gl .

minimum  eritical Revnolds  noinber
based on remote free-stream condi-
tions in supersonie How over thin
airfoil

ratio of focal skin friction to Nussclt
number defined in cquation (6N

Sutherland constant: S 216 R for
air (ef. eq. (T

absolute temperature

cquilibrinm wall temperature for zero
heat transfer

transformation  variable, defined by
cquation (N)

veloeity components in - and y-diree-
tions, respeetively

coordinates  parallel and  normal o
sticface, respectively

constant defined by equation (34h)

ratioof specificheats.e, ¢,0y Tt foranr

boundarv-laver thicknesses in oy and
of planes, respeetively

recovery factor (eq. (411

solution for Mg 10 be used i deter-
mining separation point (eq. (641

cocflicient of viscosity

dimensionfess distance along wall, o [,

mass density

ditnensionless variable, 1§,

constant defined by equation (33)

constant replacing ¢ i determining
separation point

region at which adverse pressure gradi-
ent starts

value at point outside of boundary
layerimmediately hehind shoek wave
at leading edge of supersonic airfoil

value at wall

value used for determining separvation
potut

value at separation point

local value at outer edge of houndary
laver

value at suitable reference point out-
side boundary layer; in numerical
examples, denotes value in undis-
turbed (remote) free stream

A prime denotes differentiation with respeet to &

COMPARISON OF INTEGRAL METHODS FOR
LAMINAR-BOUNDARY-LAYER ANALYSIS

Since the development in 1921 of the boundary-layer
momentum integral equation by Von Kirnun (ref. 35) and
its first application by Pohlhausen (ref. 36), the Kirmain-
Pohlhausen method has probably been the most widely
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applied and fruitful of the approximate methods used for
theoretical analyses of boundary Inyers.

The Kirman integral equation ean be regarded physically
as o momentum balance over a fluid element extending across
the entire boundary-layer thickness.  Mathematically, the
equation can be regarded as an integration of the original
momentum partial differential equation over the boundary-
layver thickness. The advantage of this integral equation
for theoretical calculations is that if certain definite forms
are assumed for the velocity profiles a- functions of the nor-
mal distance from the surface then an ordinary differential
equation is obtained with axial distance along the surface
as independent variable and essentially the boundarv-layer
thickness as the unknown.

The Kérman-Pohlhausen method in its original form is
based on the use of fourth-degree velocity profiles satisfying
certain conditions at the wall and at the outer edge of the
boundary laver. By means of this particular method a
considerable variety of useful results for laminar boundary
lavers has been obtained. even for cases of a normal mass
flow (fluid suction or injection) at the wall with or without
heat transfer and pressure gradient (ef., ez, refs. 30, 37 to
39, and 19 to 22). It has been found, however, that this
method has at least two distinet disadvantages in practieal
cases. It fails to prediet accurately the separation point
in an adverse pressure gradient, and it often does not yield
sufficiently aceurate results for derivatives of the profiles
for use in laminar-boundary-layer-stability calculations.  In
view of such limitations, various refinements in the Kdrmidn-
Pohihausen method have been made, and a number of what
appeared to be the most important tvpes of refinements
were studied and compared in reference 1.

REFINEMENTS OF KARMAN-POHLHAUSEN METHOD

In discussing refinements of the Karmin-Pohlhausen
method. it should be first observed that the Kdrmdin mo-
mentum integral equation is not actually equivalent to the
original partial differential equation. It is, in fact, essen-
tially only an average of this equation over the boundary-
Iaver thickness, Thus, any solution of the partial differ-
ential equation will necessarily satisfv the momentum integral
equation but not viee-versa. 'This basie limitation of the
integral equation is, however, to some extent overcome in
the Kdrmin-Pohlhausen method by the fact that the velocity
profiles which are assumed in this equation are not chosen
quite arbitrarily but are chosen as well-behaved funetions
(namely, fourth-degree polynomials) satisfyving the boundary
conditions and ecertain additional conditions which an exact
solution of the governing partial differential  equations
would necessarily satisfv.

There are two main types of methods of refining the
Karmdn-Pohlhausen method.  One method consists in using
integral equations in addition to the Kdrmdn momentum
integral obtained by multiplving the original momentum
partial differential equation by the axial velocity u or powers
of u (e. g., refs. 40, 41, and 29) or by the normal distance
or powers of y (ref. 42) and then by integrating the resulting
equations over the boundary-layer thickness. In this type
of method, additional unknown parameters as functions of

the axinl distance # are introduced into the assumed velocity
profiles, and these are determined by the additional resulting
ordinary differential equations.  In most actual applications.
only one integral equation in addition to the Kidrmdn
momentam integral equation is introduced. and, henee, only
two ordinary differential  equations for two  parameters
result.  Suel methods. in fact. are therefore sometimes
called “two-parameter” methods, A detailed diseussion of
stich methods ix given in referenee 1.

The second main type of refinement of the Karmdn-
Pohlhausen method is the use of onlyv the Kdrmdn imtegral
equation, but in conjunction with profiles of higher dearee
than the fourth. satisfving additional conditions ar the wall
and at the boundary-layer edge which wn exact solution of
the partial differential equations woul I necessarly satisfy.
In most applications of this type. veloeity profiles of the <ixth
degree (vefs 43,44, 1 o 3, 6.7, 23, and 240 are nsed. How-
ever, veloeity profiles of higher degree than the sixth have
also been used (refs. 41 and 2310 Seventh-degree veloeiny
profiles have heen found particularly suitable for caleulation
of the separation pomnt in an adverse pressure uradicent
(refs. 45. 2, and 7). One-parameter methods with velocity
profiles of higher than fourth degrece
detail in reference 1,

are discussed 1n =ome

COMPARISON OF METHODS

In view of the variety of specific means of refining the
Kidrman-Pohlhausen method, a theoretical investigation of
the relative merits of these methods was made in reference 1.
The methods were compared on the basis of both aceuracy
and case of computation, The method of compartson was
posteriori. .\ relatively simple flow, namely. the incom-
pressible and compressible tlow for a Prandtl number of unity
In a zero pressure gradient over a surface at a uniform tem-
perature, was ecalculated on the basis of a number of the
foregoing methods, and the results were compared with the
accurate method of analysis of refercnee 34 for flow over a
flat plate.  The two-parameter methods considered were
based on (in addition to the Kidrmdn momentum integrah
the integral of the momentum partial differential equation
multiplied by » in conjunetion with fourth- and fifth-
degree veloeity profiles.  The one-parameter methods were,
of course, based on the Kirnkin momentum integral equa-
tion and were applied in conjunction with fourth- (Kdrmdin-
Pohlhausen methaod), fifth-, and sixth-degree veloeity pro-
files. The comparisons were made, in particular, on the
basis of ealeulated skin-friction and heat-transfer coeflicients.
first and second derivatives of the profiles throughout the
boundary-laver thickness, and minimum eritical Reynolds
numbers for laminar-boundarv-layer instability according
to the criteria of Lin and Lees (refs, 46 and 810 Tt is well
known that the latter eriteria are sensitive to first and second
derivatives of the profiles.

The boundary conditions satisfied by the various profiles
as well as the detailed comparison of the results of the various
methods can be found in reference 1. The results, in brief,
indicated that skin-friction and heat-transfer coeflicients
were predicted with substantially satisfactory aceuracy by all
of the methods.  Moreover, the overall profile shapes oh-
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tained by all of the methods were qualitatively correct. How-
ever, quantitative differences in the first and especially second
derivatives of the profiles were obtained, with corresponding
differences in the calculated values of the minimum eritical
Reynolds numbers. It was concluded that, on the whole, the
one-parameter method with sixth-degree profiles gave the
most accurate results for the profile derivatives, as well as for
the minimum eritical Reynolds numbers. In reference 1 the
stability calculations were carried out for the case of zero
heat transfer at the wall. Subsequent calculations (ref. 3)
indicated that reliable results for stability caleulations by the
one-parameter sixth-degree-profile method are obtainable
also for the case of heat transfer at the surface of the flat
plate.

In addition to being capable of yielding results of adequate
aceuracy, it is usually also quite desirable that a method of
calculation be simple.  In this connection, it must be ob-
served that the one-parameter methods, in general, involve
considerably simpler caleulations than the two-parameter
methods. This advantage of the one-parameter methods
may not he very pronounced in the case of flow over a flat
plate: however, it becomes quite pronounced for the general
case of flow in a pressure gradient with heat transfer. In this
case, the thermal-energy partial differential equation must be
integrated to vield an integral equation in addition to the
momentum integral equation. Consequently, there will be
at least two parameters to determine. If, however, both the
momentum  and the thermal-energy  partial  differential
cquations are multiplied, for example, by u and integrated
over the boundary-layer thickness, then a total of four
ordinary differential equations in four unknown parameters
will be obtained. Thus, the so-called two-parameter method
would in this case really become a four-parameter method.
(The one-parameter method in this general case similarly
becomes a two-parameter method.) It s noteworthy, in
fact, that in any of the foregoing applications of the two-
parameter method only the less general cases of zero pressure
gradient, or pressure gradient with zero heat transfer at the
wall, have been treated. 1If it is desired to develop a unified
method to be applicable in the more general as well as in the
simpler cases, then this would have to be considered a dis-
advantage of the two-parameter methods.

In view of the foregoing results and considerations, it was
concluded in reference 1 that the most promising integral
method for laminar-boundary-laver study appeared to be
that based on the Kdrmdn integral equation, in conjunction
with sixth-degree velocity profiles, This is essentially the
method of analysis to be applied in the present report. It
should be observed, however, that cases exist in which profiles
of other degrees are preferable. In particular, stagnation
flows are more satisfactorily treated by fourth-degree profiles
(ref. 2), while the separation point in an adverse pressure
aradient appears to be determined more accurately by
seventh-degree profiles (ref. 2). The latter case will be
treated in some detail in the present report.

[t may be asked why, in the one-parameter method,
profiles of higher degree than the sixth were not considered
in the comparison study of reference 1. The reason is that
the sixth-degree profiles, as distinguished from fourth-
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degree profiles, are chosen to satisfy an additional condition
at the wall (as well as the outer boundaryv-layver edgey,  This
condition is obtained by differentiating the partial differestial
momentum equation with respect to r. If a velocity protile
of higher degree than the sixth is assumed, then the only
means of obtaining a further condition at the wall which
would be satisfied by an exaet solution of the partial differ-
ential equations is to differentiate the momentum partial
differential equation twice with respeet to 7 (or y for in-
compressible flows). and then take values at the wall. This,
however, will be found to yield a condition involving partial
derivatives with respect to o sueh as [0%u(a ) o Oyl andd
this condition then becomes  essentially an additional
ordinary differential equation.  Since the sixth-degree pro-
files have apparently led to satisfactory results, it has not
seemed worthwhile to introduce such complications into the
analysis by using higher degree velocity profiles® It s
noteworthy, in this regard. that although polynomials of a<
high a degree as the eleventh were applied in reference 41,
they satisfied only the same conditions at the wall asx the
sixth-degree profiles to be used in the present report,

BASIC EQUATIONS

The following equations  deseribe  the  steady, two-

dimensional, laminar-boundary-laver flow of a compressible
gas along a slightly curved wall:

u ou duy O ou
- ()J'+pl O]/“plul 4I.I'+O!/(#(5‘I/) (i
Olpu) |, Olpr) _ o
or + oy =4 =)
o'p T T ()
orT T duy 0 g, 0T o'y’
pue, a£+p1('p Oy«—umul i +()y (‘A o )—}—#(o”)
(4)

Equations (1), (2), and (4) are the momentum, continuity,
and energy equations, respeetively.  Equation ¢3) follows
from the ideal-gas law and the assumption that the pressure
is constant across the boundary-laver thickness. It will be
assumed here that the specifie heats ¢, and ¢, as well as the
Prandtl number Prare constants. By multiplying equation
(1) by x and adding the resulting equation to equation (43,
the following form of the energy equation is obtained for a
constant Prandtl number:

L OH, DI\ D[ O
(5)

It will be assumed in the present analysis that the viscosity-
temperature relation can be approximated in the form (ef.
refs, 34 and 6)

T
K g
e T,
5 When seventh-degree velocity profiles are userd here for ealeulation of the separation point
in an adverse pressure gradient, the additional econdition satisfied st the wall is chosen to be

(6)

exactly valid only at the separation point.
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where
, T.+ 8
C= (T, T L (T
AN
It is convenient, in this compressible-flow analysis, to
replace the normal distance coordinate y by the Dorodnitzyn
variable ¢ defined by

vt
y==| (1"T)dt (8)

0
By integrating equations (1) and (3) with respect to £ over
the boundaryv-layver thickness =0 to t—=§, and using the
houndary conditions w—r=-0 at ¢ 0 together with smooth
transition of the veloeity and temperature profiles to their
local main-stream values, the following integrodifferential

equations are obtained:

, . Y .. Y—1 W\ ge
(hi))\-«»x{lq +F, ‘211“3]( [1',+(1+ ) Jll-‘)['_;]}

Clp, pyu, m)(T, 'l',)[o»»(u u,):] (9)
or

RN Froops Pl, {lli
(Fy 25\ x[ s f‘(\pﬁu,)

Sl e, m)('/‘.v'/{_m«1',‘)[(;1(11 /1,)] (10)
where
*

Fr=1 Geu) [ =00upldr

0

v—

3
F_,:J (] L) — (e )2 e (an

3
F:,:J (ui) (1= (L) e
0

J

atud
N=(8,/L)y*(p,u . Lin,) (12)

Here M) is essentially the nondimensional squared boundary-
fayer-thickness parameter in the ot plane.

The quantities p,/p_ and A in equations (9) and (10) are
related to wu, which is a function of & preseribed by the
potential flow about the body in question.  Thus, in aceord-
ance with the usual isentropic-flow relations,

1 1
prp. = (TVT )yt {1+ (=) (M A2 1 =G fu L= (3)

M= u )M (T,T )" (14)

In deriving equations (9) and (10) a single boundary thick-
ness has been assumed.  This is an alternative to the intro-
duction of two boundaryv-laver thicknesses, namely, a ve-
locity, or dvnamical, and a stagnation-enthalpy, or thermal,
bhoundary-layer thickness (¢f. refs. 19 to 21 and 23). The
assumption of a single boundary-laver thickness appears
feasible for fluids with Prandtl numbers close to unity, sinee
in that ease analyses involving both a dynamical and a
thermal boundary-layer thickness usually imply that both
thicknesses are approximately equal (see, e. g., refs. 30. 20,

and 2104 Norcover, as explained in reference 6. the use of o
single boundary-laver thickness does not necessartly mipose
any undue restrictions on the thermal profites. sinee the
latter have here been permitted to contain an additional co-
efficient not determined in advanee by the boundary condi-
tions.  This coeflicient, 1o be taken here as by replace< the
thermal boundarv-layver thickness as the =econd unknown to
be determined by equations (9) and (1. A <ingle boundary -
laver thickness has also been used in reference 22
Equations () and (10) can be converted into ordinaey
differential equations by assuming the veloeity and <tagna-
tion enthalpy as definite functions of the normal distanee
variable 7.
“Comparison of Integral Methods for Laminar-Boundary-
Layer Analysis,”
sixth-degree polynomials.
will similarly be chosen as polyvnomials but of one degree

For this purpose. as explained in the section

the velocity profiles will be chosen s
The stagnation-enthalpy profiles

higher, namely, seventh degree.
Thus, it will be assumed that

TS DA ANy
sos It

AL 25 b Y
0=t

The following boundary conditions nuust he satistied:
At r=0,

o= 0
17
I i, kg )
where /(&) is considered ax a preseribed funetion,
At 7=1.
w10 H, -
(18

Ou0r=0ll0r-0

In addition to these conditions, the following conditions will
also be satisfied (ef. vef. 6):

At r==0,
T, T) OO;._,(IL’N,) ~Npyp V[ (=DM 200w Y
(it
oF O u uy) ol 11y ,
) == 20
o) ="g" "o, =0
()‘.'

4 (y—1)M, LI~ (—Pry(y— DM [O“’ ""]’

£
HJ OT OT

(20

G nPr(en s ) O Y o T { O 1y
or or

:;(1—1’1-)(7—1).\1,*O(gr"‘) ‘)‘g';}“’ [Iff—(V—]).\llzl‘l]} (22)

At r=1,

2 o ¥ , ) o2 _— O ‘ B o
o (n/uy) oy (u,rul)AoT.—_, ([//][,)—VOT:‘ (I H ) =0 (23

4 In the enge of flow Denr A stagnation point, however, it ix inicrestinge to nute that even tor
a Prandt] number of 1 the thermal boundary-layer thickness in the o plane may be around
25 pereent greater than the dy namical boundary-layer thickness (ref. 200,
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Conditions (19 to 22) follow from equations (11 to 4 and
differentintion of each of equations (11 and (41 onee with
respeet to r, taking values at the wall and taking conditions
17vinto necount.  Conditions 123 follow from differentiation
of cquations (1 and 4y once and twice with respect to 7,
taking values at the local outer boundary-laver edge and
taking condition= (181 into account,

After the coellicients a, and b, have been determined from
conditions {171 to (251 in terms of &, (or N and b, equations
oand A0 hecome ordinary differential equations to
determine Ngroand bjd For any given ease. the flow
outside the boundary layer, as defined by wy 7w (5 and
M s considered as preseribed. Moveover, the tempera-
vure distribution along the snrface, as detined by Argois also
considered as preseribed here.

The temperature profiles are velated, in general, 10 the
stagnation enthalpy and the veloeny profiles in accordanee
with the relation

,’ =[llli (75 )=, ") 24

Fquation (24 follows from the definition of the stagnation
enthalpy 71, From equation (240 it follows that the wall
temperature  distribution iz related o the
enthalpy distribution hcg at the wall, in accordanee with

st snation-

the relation

,;,"‘15) /.rS)( l—ij._, ! AV (.
Profiles in the of plane can, tf desired be transformed into
profilex i the physical oy plune by determining 4 as a
function of = and £ in accordance with equation (87
Equation (85 can be expressed, in general, in the following
nondimensional form:

j"('r Tl s
u Je

6 ’\ T Tds

(264

where 8¢ is the phyvsical bonndarv-laver thickness determined
by

(T T

D

126h)

NV TR ‘

e

4 n

In the suceceeding two sections, it will be shown how the
equations thus far developed ean be used 1o lead to a simple
and usually sufliciently acenrate method of ealenlating the
laminar-boundary-layer characteristies for certain general
tyvpes of flows,

FLOW WITHOUT AN AXIAL PRESSURE GRADIENT WITH
ARBITRARY CONSTANT: PRANDTL NUMBER AND
VARIABLE WALL TEMPERATURE

In this seetion, based on the equations thus far derived.
a simple and aceurate method for ealeulating the Taminar-
boundary-layer characteristies of the flow in a zero pressure
sradient, such as the flow over a flat plate at zero angle of
is i« not neeessary it i< desired to determine only properties sieh as skin frietion, heat

sl separiation peint which depetsd onty on valstes at the wall,

KNMUNYEESCARSE

WHTH B AT TRANSERER O AND PRESSURL oRABIEN

-

attack, i~ developed. The Prandtl mmber s considered
arbitrary but constant and of the ander of macnitude o
unnty . while the wall temperatore may vary alony the tlow:

that =, 71, Tosorh /w‘;"
GENERAL SOLUTION

For flow withom a pressive gradient, that <0 07 ¢
white M M T

cquations (4oand (100 beeome

2N A l,[OHI ,"‘] i
Jr

¢ [orll 1/

Caned o so Torth che mrestodiforeniald

N F O
b I Jr

The <ixth-degree velocity prodile <atislyving bondan

conditions (17 10 23 1t this case I

I

The zeventh-degree <tagration-enthulpy prodile <anstune

these conditions in this case 1~ oiven by cquation 16
where ©

he 1111 s )

b, 20

b, 205\

by 3501 by 2000 NG N 200 > a0

h. [ WO R RIS 11T FORN ST M5 N et

by TOCL L B06G. NOUN B6h,

h. 2001 b NG 200N0 - T0h, J
where

o 0 Per DM

|+(7 ) ! Al

J

and G is thus a preseribed constant. while 600 m general o

given function of & From cquations (11 1 conjunction

with equations (247 and 30y it s fonnd that

083 w000

31 053 302 N2
: —_ (l'v) — (',,,._ ’)1
o ! h) 1050 TN 000 T 00

K
J

With F, as given by equation (321, the solution of equation
(27) for X&) with the condition M) =0 ix
oA E, (33

8 The syinbol € ot referenees 6 aned T8 replaced Here by the samew it e aporopeiate
sytihol komised also inrefs, 20 and "1
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Moreover, with Foo Fooand N ax given by equations 325 and
33, the <olution of equation 2% with the condition of
finite by at &

1215

where

0, 18

b ()7 ’ N('l”(r"(E» d (e
where
2 NG o 46 ’. A
g2 - (U832 46300 20
GUE) 12002 8200031 252008 fo e b s 126y
(:34hy

TR 295503 2y (0T ]

AL 290550000 (LT IS D000 )

From equations Gd4ay and  G34b) with any preseribed
temperature distribution b at the wall, by b can be
readily determined by a single quadrature (for whieh, e, ..
numerical integration may he used).  From equations (300
the remaining b, coetlicients can then be fornd as funetions
of & ond the veloeny and stagnation-enhalpy profiles in
the &7 plane are then determined by equations (29 and (1670,
The temperature profiles follow from cquation 24y The
profiles can be transformed in1o the physieal oy plane by
means of cquation (81 or (267,

The average skin-friction cocflicient for the fength 1.
acearding to equations 290 and G330 will be

7
' tuQu ()_:/),,4/.1'

( " 1.322  —
Lam o, v , ( (3D
L 02 u” N Voo )
where
—_ M
()= ’ (" dt (36)
Jo

The Nusselt number, which 15 a nondimensional measure
of the rate of heat transfer at the wall, ean in this ease be
detined as

Nu=ql b T, T, (37)
where

q (koT oy, 380

and 7, 1s the equilibrium wall temperature for zero heat
transfer, thatis, for ¢ 0. Itis appropriate in the determina-
tion of heat-transfer rates to replace the temperature param-
eter & by the parameter 7, 7. which is the physically
significant temperature parameter in high-speed flows with
heat transfer.  An expression for the Nusselt number in
terms of T, T, can be obtained by first finding the value of
I 1o be denoted as h,) for zero heat transfer at the wall, By
<abstituting b~ h, into equation (34h), assuming b, constant,
and setting G- 0 (for zero heat transfer, or b 0) the follow-
ing value of h, in terms of 6, is obtained:

252 151
=" ., BT
he=1 31 7 9.000 " (39)
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bl el

cidby and also substtiting expres<ion 390 jor Ao teris of

Substituting now cygoc 200 o cquaton,

Gooit s found, with O replaced by an average constant value

O for simplicity, that equations Gibo, 350 and 47 Vield
the following expression for the Nusselt number:
\ 297 1 I c oo i E 2 NPT
N 0207 (l-— 7 ) < VI [FaES o
where
(P § Y AR A N AT IR TR IR I T A% E B AR

(40,026 1532 68000 T, toh

7

FFor any preseribed distribution of the wall temperature a-
given by 7 T 6y, the local Nusselt number can be readily
from equations 4ty and  4oby The
heat-transfer rate at the wall G anits sueh a< Bro per <econd

obtained actual
per square foot) can then be obrained immediately by <olving
for ¢ in terms of N v aceordance with equation 37

The equilibrium adiabatic wall temperatare 17 aceordine

to cquations 1348, 31, and 25008

ror [w("__, A, ] Y

where g0 known as the temperature vecovery factor, s foind
to he

no0 0272010 12
An exact analysis (oo g rel 300 sho s that for flov withour
pressure gradient over an impermeable sorfaee @ very sood
approximation for g (to be denoted here as g0 is

n. I s

For I’y
42 vields 72200924 instead of the aceurate value 5, -
(ref. 34,
cquations used here, however, will not necessarilyv atleet the
accuracy of equation (40a) for the Nusselt number. sinee the

0.72, which is essentially the vadue for aie, equation
0N
This inaceuracy i the value of n imphied by the

derivation of this equation was actually made imdependently
of the particular value of 7, 4. ¢,
This is Turther verified by the agreement

independently of eq. 131
and, henee, of 5.7
obtained with certain exact =olutions, to he diseussed ~ub-
sequently. Thus, in applving equations (40a) and 137 for
the caleulation of heat-transfer rates, the actual value of 7.
as determined either by experiment or by equations (41 and
(43), should be used.

It should be observed that the use of the cquations de-
veloped here s not restricted to any particular tvpe of tem-
perature distribution £(£) along the wall,  Thus, it is not
necesaary, i applving the method of caleulation deseribed
here, that the temperature distribution be expressed as a
polynomial in & (unlike ref. 34) or as a power of & funlike refl.
47).  In the special ease, however, in which 7, s expressed
as a polyvnomial in &, the calenlations indicatea by the present
method, ineluding the transformation from the o plave 1o

I nevertheless desired, o practieal and very situple means of medifying the present equn-
tions in order virtually to limipate the implicit diserepaney between g amd e Gor 10 near
unity) wonld be nrerely to muliiply the value of G2 as given by equation 31 by 20 Equations
cie and cwhe weonld remain unchanged by <ueh a eoricetion,
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the physieal 2y plane, can be carried out direetly without any
quadeatures by using the results given in the appendix and

figures 4 and 5 of reference 6.
COMPARISON WITH EXACT SOLUTIONS

As a cheek on the aceuracy of the vesults obtamed here,
compurison has been made with certain known exaet solu-
tions,

For the special case of a uniform wall temperature and a
Prandtl number of unity, it is well known that the energy
partial differential equation (4) or (3) reduces exactly to a
single quadratie relation between the temperature and the
veloeit, throughout the bhoundary laver. This relation can
he expressed in the form

T, - (")

1,]" ", (44)

By putting f==Constant and ’r- -1 into cquations (31) and
£34h) the solution for b ax given by equation (34a) s found

to be

b= 201 =M (45)
Substitution into equations (30) for values of b, and compari-
<on of the resulting stagnation-enthalpy profiles with the
velocity profiles (204 then show that relation (44) is exactly
<atisliedd. Thus, the equations used bere reduce to the exaet
integral of the energy partial differential equation in this
<pecial case. A= already indieated in the seetion “Compari-
<on of Integral Methods for Laminar-Boundary-Layer Analy-
it has been found ef. 1) morcover, that the skin-
friction and heat-transfer coeflicients obtained by the present
method in this case agree almost exactly with those obtained
by the exact method of reference 34, The present method
has alzo been found to vield results of satisfactory accuraey

EEL
=i,

for stability ealeulations in this ease (refs. 1 and 3.

To cheek the results of the present method for the more
veneral case of P31 and variable wall temperature, ealenla-
tion= were carried out for the case

Thix ix the case ealeulated i reference 34 by the exact
method of analysis there.  The loeal Nusselt number for
this ense was ealeulated by means of equations (401 and
t40b). In addition, temperature and velocity profiles were
calenlated by means of the present equations.  The agree-
ment between the results thus obtained and those in refer-
ence 34 was found to be quite close (see ref. 6 for details of
the caleulations and results),

It is interesting to note that by setting €= 0 and solving
the resulting differential equation for T, T,(&) it is found tha
zero heat transfer along the wall ean be obtained for a non-
uniform (as well as a uniform) wall temperature distribution,
This result. in Met, generalizes o result of reference 47 (ef,
ref. 6 for details).

From a practical point of view, it should be Kept in mind
that the solutions developed here are based on the viscosity-
tempernture relations (6) and (7), which are an approxima-
tion to the actual relation for air.  Beeause of relations (6)
and (7). the results obtained here, namely, equations (35)

LAY ER

WITH HENT TRANSFER AND PRESSUKE GEADIEN 9
and (40a), indicate that, for a fixed wall temperature. the
skin-friction and the Nusselt humber
imdependent of Maclh namber. For the Sutherland
cosity-temperature relation. however. this will not he gune

valid (ef ref. 485,

coetlicient will he

V-

FLOW WITH PRESSURE GRADIENT, PRANDTL NUMBER Pr 1.
AND UNIFORM WALL TEMPERATURE h CONSTANT

From the cquations derived i the section = Basic Fgua-
tions,”" a relatively simple and suflicientdy accoeace o thaod
for most practical purposes of calenlating laminar honndary -
laver characteristics i a pressure gradient with heat transfer
wil be developed.  For this purpose it will be assimed thin
the Prandtl number of the flaid s anity and that the wall
temperature uniform.
simplify the mathematical analysis (ef el g
(22)1.

A lurther advantage of assuming /7
case it follows from the energy partial differential cquation
(51 that for zero heat transfer . e for (97T 0y, 0 und
honee, (1 0y, =0v - Constant regavdless of the pressure
This vields the following well-known value of

1= These restrictions  considerably

s 1210 and

I bere 1s that s

gradient.
the equilibrinm adiabatic wall temperatnre 7 for a Pranddd
numberof 1:

=1 (147, ) (17, ) e
Consequently,
1. e, 7. I _
ll '—~II!’— . ", ’I., *44
L I! T

Thus. the parameter & s in this ease the phvsically significant
ratio of the actual wall temperature to the equilibrium
adiabatic wall temperature. It follows from this that for
zero heat teansfer o<1 T owill (el (450,
(3501, and (53bn that this condition ix exactly satistied by
the approximate cquations and soliutions wsed here.

A brief discussion of methods for cases of Pr=#t and or

he seen oS,

nonuniform wall temperature has been given in the intro-
duction.  The development given liere will he essentially

the same as that in references 6 and 7.
GENERAL APPROXIMATE SOLUTION

With /2 1 and /& constant, while v 185 1= arbitrary,
the cocllicient= a, and b, in equations (151 and (161, by virtue
of boundary conditions (19 to (235, ean all be expressed in
terms of a, and b, where by remains arbitrary, while o, 1=
given by:

LA

VT o ¥ —1 )
, = oy 1 M) (48
o, '_’('(I, ) ("m)ll(\ + 9 \, '
The profiles in terms of w; and by are then:
" . - I ST
{27 87V Ort 2 - (ay D) =2 A MR e 1O Bt
", i )
thy 6In( — 7+ 107%-=2071 -+ 157 47" (4th
;; =l (= fo@art - S4rTe T088 20171
' - -
hy(7 - 2000 - 4577 -367% - 1079 (50
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With profiles (49) and (301 the following explicit expressions
for £, F,. and F;. are obtained:

Fooo0.10893 - 0.00211a,  D.000622a.° - h
G000412(has b -0.00000050ha. h)F
0.000153(ha” b

Fooo0395—050001-- k) - 0.107h, -

> (Dl

0.0212a,— 0.00062¢." + 0.0028(by. hy -
0.00015(bas” by - 0.00000953(ba, I)*

Fy (0 =0[0246 - 0.015a: 000181 (haa, 1] -

b 0L0683 - 0.00324a.- - 0.0004 1 (b,a, 1] J

With expressions (49, (301, and (51) inserted in equations
(9 and (10), two ordinary diferential cquations for Ag) and
b5 are obtained. Although these can be solved numerically
for a given disteibution of wy v (&, the process may be
tedious. A relatively simple general approximate solution
of these equations will, therefore, be derived.

Equation (th ean be solved approximately for X by assum-
ing that Fy and F. can be replaced there by constant “aver-
age’ values Fyoand Fooover the distance & This is justified
by the fact that the variable terms there, which are propor-
tional 1o« and b are relotively small (¢f. eqs. (510, This
= cquivalent to replacing «, and b, by constant average
values @, and 8, for this prrpose. With equation (49 for the
veloeity profile and equation (480 for a., equation (% then

beeomes the following linear ordinary differential equation

, - : =
vy "[}[\flﬁl“ " Mg 1'1)]} -

in A:

o - )\{F,lp,' o -

2000 ptTVT Vi w52
where ¢ is a constant given by
e 05k - 0,0905h, 000435+ 0.02325, 0.001247.° -
L0838 -— O0.00L38T, 17D, 30k) (53)

With relations (13) and (14, the solution of equation (521
0 or a finite value (if w0 al
0 1= found to be:

<atisfving the condition A

& 01 at the leading edge &

'~(u, u )
A 7—",)!"

-1 -

l” =
(1T )y 77 bt

=

(o

Sl

Tyt T

-y

=t

(IR

Equation (54) is similar in form to equations obtained for
zero heat transfer in references 2 and 49 and to those ob-
tained for heat transfer, but with fourth-degree profiles and
two boundary-layer thicknesses, in references 19 to 21, It is
interesting to observe that for zero heat transfer it is possible
to derive forms like equation (34) (ef. refs. 29 and 49) by
applyving the Stewartson-lllingworth  transformation (refs.
50 and 51). However, by the present (approximate) method
of analysis, it is seen that with the use of only the Dorodnitsyn
transformation (8) such a form can be straightforwardly
derived even for the case of heat transfer, but uniform
temperature, along the wall (¢f. also ref. 20).
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A general approximate solution for g can be obraned
a comparatively =imple manner by eliminacing A froa
differential cquations (4 and (Hh i conjunetion with 1he
same type of simplifving approxinutions concerning the o
terms as made i deriving equation (530 1See pef 6 Tor
details) A guadratie equation in hoas thereby obtained.

with the soluton

. N 2 / e
Lo Joy o P
& 2m ( 2 ) " AR

where

i I . . o, X h
i W O 65,90 4 496, 4+ /.'2,4',.) 0. 20960

d )

. R7E
J 024602 - 007917 0003868 ST
. f

[~ IS0 (422260 2.06Ta0a, (T 006 0 90RG ';] > oAb
’
) N Y .
[ =201 J)to.24602 u.nlrlsuw_.;i N A
!
030 - a 002116 n,mum-_’um;.]}
J J

The physically appropriate root i equation aas will, i
general, be that which is closer to the value 201 4.

After A&y has been obtained by means of equation 51
the coeflicient (&) follows fram equation (451 and big. ean
then be direetly ealealated by means of equations (350
For objects with sharp leading edges, for which X 0at g 0.
it will ordinarily be found that an approximate value of 5
according to equations (551 iz that given by equation 15,
which is valid exactly for the ease ay=0. This i illustrated
i detail in refevence T hy numerieal example for the super-
=onie flow over a thin biconvex airfoil.

The general approximate solutions given by equations (531
and (53) are quite convenient for actual caleulations and
mvolve, at most, numerical integration.  These solutions
will be approximately valid as long as the a, terms in expres-
sions (51 are indeed relatively small cither individually or
collectively.
In cases for which the a, terms become relativels

Such is expected to be ordinarily the case in
practice.
large, however, the ordinary differential equations (4 and
(10) may have to be solved numerieally.

In evaluating 7, and ¢, @ reasonable average value 7 for
a; for any @iven w81 b and M, can usually be obtained
by considering equation (48) for (a0 ANy and equation (54
for X €7 A satisfactory average value b, for b, in evaluating
Foand ¢ will ordinarily be that given by equation (43).

In reference 20 numerieal examples based on the ease
W, == 1--bg (where b is a positive constanty for M, 0, 1.
and 3 and zero heat transfer at the wall (h—=1) were earried
out to determine the aceuracy of approximate solution (341
of ordinary differential equation (52).  Comparison of
the solutions obtained by means of equation (54) was made
with numerical solutions of differential equation (52) with-
out the use of any of the approximating assumptions made
in deriving equation (54).  The comparison indicated, on
the whole, satisfactory agreement for practical purposes
(including  stability  ealeulations) between the results of
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equation (34) and the numerical solution of equation (52},
Details are given in Similar comparisons
have also been carrted out in reference 21 for the cases w e, -
1 - bg with heat transfer at the wall.  The agreement hetween
the type of approximate solution given by equation (54) and
the numerteal solution of the original ordinary differential
equation was, again, found to be on the whole satisfactory

reference 2.

SKIN FRICTION, HEAT TRANSFER, VELOCITY, AND TEMPERATURE
PROFILES

With ME and b(&) determined,  the
characteristies ean all be straightforwardly caleulated.
local skin-frietion coetlicient will be

boundary-layver
The

c ou oy,

( tt= 1
s P U
U e 30 thyet 6OI] (O NN T oGe w3 R, T (Bt

The Nusselt number giving local heat-transfer properties
at the wall will be
Nu =

=C NN =T T Ry,

(,1 o —f/),,‘L (57)

kool Ty

The veloeity and temperature profiles follow from cquations
A0y A0 and 24 in econjunetion with equation () for
transforming to the physical plane. For zero heat transfer
at the wall, an explicit expression for y as a function of
i terms of g, is given in appendix A of reference 2. This
expression ean be conveniently written in the form
e ¥--1 . "
' 5 "’T+( 9 )A‘[l_ e (r) e aeaalr) - aiedn))

!

where g, ¢, and gg are definite functions (polynomials) of
= only which remain the same for all cases, These functions
can, if desired. be evaluated and plotted onee for all. A
stmilar expression can be obtained for the case of heat
transfer at the wall, except that additional terms, such
as those proportional to a.b k. will be neluded.  The uni-
versal funetions of = thus obtained ean, if desired, also he
evaluated onee for all. For a given value of & 4 or 45
(ef. eq=. (260) and (26Db) ) can then, in any given ease, be
found «quite straightforwardly for values of ¢+ from 7-=0
tor I

A numerical example to cheek the accuracy of the results
obtained by the equations developed in this section was
carried out in reference 20 This example, as previously
indieated, was the ease of flow with a linearly decreasing
veloeity outside of the boundary layer.  Veloeity profiles,
local skin-frietion coeflicient, and minimum eritical Reynolds
numbers for laminar instability were caleulated by this
means, and the results for incompressible flow (h=1 and
M- 0) thus obtained were compared with those based on
the series solution in reference 52 of the original partial
differential equation (1). The agreement was in all cases
found to be satisfactorv for practieal purposes.  (Details
are given in ref. 2))

The solutions presented here require some modification

* Inrelerenee 21, the analysis was based on fourth-degree profiles in conjunetion with borh o
thermal and a fynamicsl boundary-layer thickness,  An equation quite analogous to cqua-
tion (34 for M), however, was obtained by analogous approximsting sssumptions,

LAYER
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in two important speciul cases: no Flow near o forward
stagnation point and (b calealation of the <eparation poin
i an adverse pressure gradient.
STAGNATION FLOWS
The case

"y n ht ON.

where b is a positive constant represents physicaliy the tHow
in the vicimity of a forward stagnation point, ~uch a~ the
subsonie flow over the leading edge of a blunt object. For
zero Mach number, an exact =olution of the ordinary difTer-
ential equations (9) and (10) twith uniform wall tempera-
ture) ean be obtained in the form A Constant and 4

Constant.  Equations ¢ and ¢l then become algehraic
cquations for N and b For the special case of zera hemt
transfer (0 -1 0,
found (refs. 43 and 2) that these cquations will not viekd
any physically significant real roots. In reference 2 it
shown that an approximate solution can <till bhe obtained
in this case by writing the algebraie equation as X0 0
and taking the value of X for which /ix) has a leeal maxininm
value relatively close to the A-uxis. The root X b4
thus obtained.  This solution. however, i unsatisfactor

and b however, it has already heen

MW

Wi~

in principle. Consequently, the use of fourth-degree, instead
of sixth-degree, veloeity profilex for this case was jnvesti-
gated i reference 2.0 The profiles were eliosen 1o <atisfy
the Karm:n-Pohlhausen A phyvsieally
signifiecant real root, namely. X 70520 was now obtaimned.
and the aceuraey of the rvesulting solution was conmpared
with the results of an exact solution (ref. 530, In particular.
<kin friction, velocity profiles. and minimum eritieal Reyvnolds
number were compared. The comparizon indieated that the
results obtained by the use of the fourth-degree profiles led
on the whole to results of satisfactory accuracy, It

usual conditions,

Wis
therefore concluded that the boundarv-laver characteristies
in flow near a forward stagnation point ean be determined
with satisfactory  accuracy by the
method with fourth-degree profiles.

Karman-Pohlhausen

To caleulate the boundary layer near a forward stagnation
point for the more general ease of heat transfer at the wall,
in particular for a preseribed uniform wall-temperature ratio

Ior T,°T_ . the method of reference 2 can be generalized by

introducing fourth-degree stagnation-enthalpy, as -~ oll as
veloeity, profiles. This has been carvied out in reference 20

with the introduetion of a thermal. in addition to a dynamieal.
boundary-layer thickness.  Two algebraie equations in essen-
tially the two (constant) boundarv-laver thicknesses are ob-
tained.  These equations can, i general, be solved either
numerically for a given b or by using the values in figures
and 2 of reference 200 Although referenee 200 is based on
flow over a sweat-cooled surface and, henee, includes a nor-
mal mass flow at the wall (r==r, at 7= ), the results there
can also be used for an impermeable wall by simply putting
(=0 and letting & be arbitrary. (This €71 not to be con-
fused with the temperature-viscosity factor used in the pres-
ent paper.)  An example of low-speed (M _=0) flow in a
favorable pressure gradient with a stagnation point  at
£-:0, representing subsonic flow over a turbine blade, was
carried out in reference 20 on the basis of the method pre-
sented there.

D
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An alternative method of caleulating flows near a forward
stagnation point, based on the use of a single boundary-layer
thickness, is given in referenee 22,
CALCULATION OF SEPARATION POINT

The equations thus far developed in this section can be
used to ealeulate the laminar separation point in an adverse
pressure gradient. The results thus obtained will generally
be more aceurate than those obtained by the use of fourth-
degree profiles. By an analysis for incompressible flow for
the ease of a linearly diminishing velocity outside the bound-
ary layer, it was found (ref. 43). however, that still greater
accuracy for the location of the separation point is obtainable
by the speetal use, for this purpose, of seventh-degree veloeity
profiles satisfving an additional condition involving the
fourth derivative of the velocity at the wall at the separation
point.  This condition would necessarily be satisfied by an
exact solution of the original partial differential equations.
This method of caleulating the separation peint was suh-
sequently extended  to compressible flow with zero heat
transfer in reference 2 and to compressible flow with heat
transfer in reference 7. The method of analvsis to be pre-
sented here s essentially that of reference 7.

It may be mentioned that a considerable number of
methods of caleulating the laminar separation point have
been developed. No attempt will be made here to summarize
or evaluate all of these methods.  For incompressible flow,
a method which has been found to vield results of satisfuc-
tory aceuracy in addition to that of reference 45 is that of
reference 54, For compressible flow with zero heat transfer
(which. of course, ineludes incompressible flow) recent meth-
ods=, in addition 1o that of reference 2, are those of references
20, 50, 55, and 56, For compressible flow with heat transfer,
the only studies of Jaminar separation which appear to have
been made, in addition to that of reference 7, are those of
references 13 to 16, The advantage of the method to be
presented here is, onee again, not only that it appears to
vield results of adequate aceuraey but that the analysis is
kept relatively simple, although it is based on a minimum of
what might be termed mathematically “arbitrary™ assump-
tions,  The method of analysis developed here is indeed
sufficiently simple and flexible to be applicable 1o a wide
variety of conditions.  (The method has, in fact, been quite
recently extended to the case of compressible flow over a
transpiration-cooled surface (ref. 57).)  The caleulations to
be performed according to the method presented here will
be relatively simple and will involve, at most, numerieal
integration,

By differentiating  the momentum  partial  differential
cquation (1) it can be shown (ref. 7), under the present
assumption of a Prandl number of 1 and a linear viscosity-
temperature relation, that, at the separation point, with or
without heat transfer at the wall,

@'/t ,=0 (59)
The seventh-degree velocity profile satisfyving condition
(59) in addition to conditions (17) to (23) is ¢
? ‘Thix seventh-degree proflle Is to be tsed only for ealeulation of the separation point.  For

other purposes, the sixth-degree profile teq. () should be used, even in an adverse pressure
eradient fef, ref, 21,
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where a, 15 given by equation (45 Separation ocenrs

where (0 0y), 0 and. henee, where £0u Ori, 0. There-
fore, according to equation (60), separation will ocennr where
ax (&) has the value tdenoted by a,

350

2 il

h+ ]__ h,

From cquations (43) and (61 1t follows that the value x|
of X at the separation point will, in general, be
oo, G !
A, T
, Y . 2
(T, MEY by

A satisfactory approximation for by in equation (623 will,
in general, be that given by equation (450 (ef . also ref. 70
With this expression for b, equation (62) hecomes

a7y o) |
Y- AN TLE - 4
9 -\If)

A, o 105

(u,':l,)(l—}—

By inserting profile (60) into differential equation 191 and
assuming, as in the foregoing analvsis, that the o, and 5
terms in Fy and F, may be replaced by constant values, an
ordinary ditferential equation of the same form as cquation
(52) is obtained, except that the explicit expresstions for F)

and ¢, (to be denoted now as F | and ¢, are moditied. while
the factor 2 on the right side of cquation (32) is replaced by
7 4. Comparison, accordingly, with the solution teq. (541
of cquation (32) vields the followig =olution for X&) tde-
noted now as A,
e 2 EI

J Ly i )(F’ o) T ! -
( Jo

9

A& = th4

£y

Gt

= -

T T T

I~
Taking the constant value of @, as that at the separation
point (as in
found to be

refs. 2 and 7). the espressions for 7. and ¢, are
Fro=0.1159 + 0.002525a., -0.001454a, ? )
0.0000572(byas. 1) —-0.000574(ba.” I -
0.000887 (b, 'h)
> (45)
1= 0250 40,0437 4-0.0738b, -+ 0.03480, -
0.00291¢, 2 4-0.00773(biaa 1) — 0001147 (hya, 2 I -
0.0001145(hya., 'h)? J

where @y, and b, are given by equations (61) and (43), re-
speetively.  The quantities Fy, and ¢ arve funetions of h only
and are shown in figure 1.




ANALYSIS OF LAMINAR COMPRENSIBLE BOUNDARY LAYER
[ . . ' | . . '
| !
t
5 ’~ ‘
|
4
Pis 3
2 \ i 1"
I Fis
i M s
| i
i | 10
| 5
I
o L
{ “ l‘ L
Q 4 .8 1.2 1.6 20

FFreere 1.0 -Fp, and ¢, as functions of A,

For any given reference Mach number M and uniform
wall temperature ratio A, the separation point in a region of
given adverse pressure gradient, as specified by wyu (8,
will be the station ¢ at which the eight sides of equations
{63) and (64) are equal.  Thus, it s necessary, in general,
ouly to plot X versus £ in the anticipated vieinity of separa-
tion, in accordance with both equations (63) and (64) and to
determine the peint of intersection of these two curves,
The separation point will evidently be independent of (' so
that for the purpose of determining the separation point
one may set (=1,

In case the region of adverse pressure gradient starts at
some point £= £, downstream of the leading edge, equation
{64) can still be applied direetly in ealealating the separation
point.  Greater accuracy, however. might be obtained in
such a ease by applyving equation (64) only for the region of
adverse pressure gradient.  For this purpose, equation (64)
must be modified to satisfy the boundary condition A=\, at
t=§, Thus,

2 -1 vy,

Kon=Renct ] [ (1) (7 )’_'_T'",/e

o, T
where (66)
T f-l_ Cla

2
I(g)= (u./uw)T'u'P“ (’I',/'l'x)”‘_l ¥,

and where A, can be obtained as the value of A at £=¢, based
on equation (34) for the region 05¢5¢, of favorable pressure
gradient.

For purposes of calculating the separation point for
various values of the temperature ratio 7,/7- and of the
reference Mach number M=, equation (63) may be replaced
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by the following cquivalent equation for the value of A ad

the separation point:

orr o,

N -1 T 3 0SM lw’ u oy

- 10507 Ny
Equation (67) follows from cquation (637 by inserting rela-
tions (13), (14, (46, and (47 there, with v 1.4
Numerical examples for tlow with a linearly decrea<ing
veloeity at the outer edge of the boundary layver are illustrated
in detail in reference 7, and these will he diseussed briefly i
the following section.
flow followed by an adverse pressure gradient is also diseussed
in detail in referenee 7.

An example based on o stagnation

For the case of a linearly decreasime
velocity outside of the boundary laver with zero heat trans-
fer at the wall the separation point was calealan-d by the

method presented here for Mach numbers M from
010 10, These results are compared in table | < of
reference 50, and the agreement iz seen to nely

('l()s('A

It may be recalled that the method of ealeutating the
separation point presented here is based on the assumption
of a lincar viscositv-temperature relation poc 7
Prandtl number Pr of unity. It s noteworthy, in this
connection, that it has been concluded in a recent anal -

and of «

(ref. A6y that for pec 7% and  w< 1. the separation point o
Pr>0.7 occurs at roughly the same posttion as for e« ).

DISCUSSION OF SKIN-FRICTION. HEAT-TRANSFER, SEPARA-
TION, AND STABILITY CHARACTERISTICS])

To conelude this report. a summary will be given i this
section of the implications of the equations developed here
regarding the effect of wall temperature, Mach number, and
pressure gradient on the laminar-boundarv-laver eharacter-
isties.  These conclusions have been derived and illustrated
in detail especially in reference 7.

SKIN-FRICTION AND HEAT-TRANSFER COEFFICIENTS

The effect of wall temperature on the skin-friction and
heat-transfer coeflicients will depend on the nature (favorable
or adverse) of the pressure gradient. This follows from the
fact that in ordinary differential equation (52) and i expres-
sion (48) for a, the temperature paramcter b appears pri-
marily in a form multiplicd by the veloeity gradient n,”.
The effect of the wall temperature on the skin-friction
coefficient arising from the (u,'h) term in «wy is particularly
important. Thus, equations (56) and (48) show that,
without the effect of the temperature-viscosity factor €,
lowering the wall temperature tends to diminish the local
skin friction in a favorable pressure gradient (negative w’)
and to inerease it in an adverse pressure gradient. [t can
bhe shown (rel. 7) that a similar, but much smaller. effeey
on the Nusselt number will .. 1end to oceur.

Sinee the veloeity gradient " in the equations developed
here (ef., especially, eqs. (48), (52), and (53)) appears in a
form multiplied by the wall-temperature ratio b, it ean be
inferred that a lowering of the wall temperature has a tend-
encey to diminish the direet effeet of a given pressure gradient,
that is, the effeet of u,” as such, on the boundary-layer prop-
This is explainable physically by the increased

’

erties,
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importance of the inertin forees relative o the pressure
eradient because of the inercase of the fluid density when
the wall temperature is decreased . A elear llustration
of this will he seen subsequentiy in the analysis of laminar
separation. 1t must be observed, however, that the effect
of a pressure gradient also appears indirectly, namely, in the
varition of wy . and 77 T with & For Maech nuwmbers
above 1oin faet, the TV 7T, terms in X (eq. (540 may become
narticularly important, so that in such a case the net efleet
of the pressure gradient may actually he inereased by a
lowering of the wall temperature. This is illustrated in
detail in referenee 7 by a numerieal example for the super-
=onte tlow over a thin aivfoil (especially at M- 3).

From equations (361 and (371 it follows that the ratio of
local skin friction to Nusselt number can be expressed in
the form

g N Mﬂl(l*'/l) e b N
! z.\'u( ", ) I b, I:l—..) ( ]+l'_’/4 ):| (HN)

O, and b, 200 —hy).
For tlow in a pressure
eradient. however, sinee ordinavily by =201 =/, it follows
from equations (68) and (48) that #>2 along the flow 1 a

For flow along a Hat plate (wy w1, as
cquation (651 imphies that =2,

favorable pressure gradient (a0}, and r< 2 0 an adverse
pressure gradient (<01 Moreover, it also follows from
these equations that lowering the wall-temperature parameter
Iowill tend to bring 7 eloser 1o its value for flow without a
pressure gradient.  This illustrates the diminution of the
direet effeet of a pressure gradient by cooling of the wall.

From equations (341, (361, and (57) 1t follows that both
the skin friction and Nu=selt number will be proportional to
VO Thus, an effeet of wall temperature on the skin-
friction and heat-transfer coeficients follows from the vis-
cositv-temperature cocfficient ¢ arising from the particular
viscosttv-temperature relation (egs. (61 and (7)) assumed
here,  This effect is independent of the pressure gradient.
From equation (7) it follows that if., ax will ordinarily be
the case, 7,080 that s, T,73-216° R, then a lowering of the
ratio T, 7T, will inerease €', and Nu.  For a fixed ratio
ot T, T, it follows from equation (25) that a Mach number
effeet will also appear in . Thus, if 7.2>8. then for a
fixed value of h an inerease of Mach number M, will diminish
¢ and henee will tend, as far as €7 ix concerned. to diminish
both the skin-friction and heat-transfer coeflicients in pro-
portion to (",

From equation (54), as has already heen noted, it will he
found that in the presence of a pressure gradient M€ may be
appreciably affected by the Maeh number beeause of the
values of 7 T_(8). Consequently, it can be inferred that a
pressure gradient will, in general, tend to enhanee the effect
of Mach number on both the skin-friction and heat-transfer
coeflicients.  This effeet will depend on the nature of (he
pressure gradient.  For a favorable pressure gradient. for
example, for which w/u_>1 and henee 7/T,<1, an
imerease of Mach number will tend to inerease N and,

#This conelusion s the foresning conclustons on the etfeet of will tomperature on skin
friction have been simblarly derived in reference 210 It is noteworthy, moreover, that sneh
eonchisions have also been derived in referenees 12 to 16 by constderably different methods of

analysis. “The physieal explanation for the lessened effeet of a pressure gradient by con'ing
of the watl has been given independently in referenees 2t and (6,

henee, to decrease both the skin-feetion cocllicnent wad e
Nusseli mumber,

Sinee A will ovdinandy be only hietle atfeered by the wall
temperature, equation (26 unplies that cooling of the walt
will, in general. tend to diminish the pliv<ieal boundar-
laver thickness 6. However, for a aiven value of 707}
the boundarv-laver thickness 5 will tend to merease with
Mach number, especiatly ina favorable pressive cradient

SEPARATION
ont~tde 1l

For a fixed distethwiion wow

boundary layer and a fixed Mach number 3/

\‘('lm'il.\
Cchimimishony
the wall temperature will tend 1o delay <eparation by mov e
the =eparation point downstream.  This can he <een partien-
larly from cquation (631, according 1o which the value of X
required for separation A, will erease ax Ao diminished
This ix u further illusteation of the dimmition of he divea
effeet ol a pressure gradient cin this case. an adverse pressure
eradient) by cooling of the wall.

The effeet of Mach number on the <eparation point for a
lixeddistributionol w, w (& and eitheralixed valueoid T 7T
or afixed value of 7, 7 cannot be <o readily predicted from
the equations developed liere, since an inerease of Much
number in the adverse pressure gradient will tend 1o decrease
both A, (eq. (63 and X, (8 teq. 63 However, numerical
examples carried out for the case w, ]
that for a fixed ratio & of wall temperature 1o equilibrinm
adiabatic wall temperature, including the ease of an insulated
wall (A==1). an inercase of Mach number tends to enhanee
separation by moving the separation point upstream (ef
table T and refls. 2, 210 16, and 30, Lowering the tlixed.
value of 4. however, tends to diminish this unfavorable
effect of Mach number on =separation (ef. ref. 21,

It the ratio 7,07, of wall temperature o free-stream or
reference temperature instead of that of wall temperature 1o
equilibrium adiabatic wall temperature b ois kept fixed, the
effect of Naech number on the separation point is changed.
This is essentially due to the fact that for a fixed value of
T./T . the temperature ratio fi deercases with Mach number
(ef. eq. (253 and henee N, , will no longer tend to be so greatly
decreased by an inerease in M (el eq. (671, Consequently.
the effect of an inerease in Mach number is, in general, much

& have mdieated

less unfavorable in this case and may, i certain cases, move
the separation point downstream. especially at high fixed
values of 7, 7T, .
Figure 2 shows the separation point for the ease uy n

I —¢& as a function of the wall-temperature vatio 7, 7 for
M_—0. The favorable effect of cooling of the wall is
clearly seen here. Figure 3 shows the separation point as a
function of Mach number for a fixed ratio of wall to free-
stream reference temperature 7,720 An
Mach number is seen in this ease actually to move the sepa-
ration point downstream, in contrast with its efivet. also
shown in figure 3, at zero heat transfer. Figures 2 and 3
are based on the equations developed here, and further details
of the ealeulations can be found in reference 7.

increase of

STABILITY CHARACTERISTICS

It has already been pointed out that the methods developed
here may be expeeted to yield sufficiently aceurate results
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Frovee 2.—Separation point as a function of wall temperature.  In-
compressible flow: wy w, =1 -8 M_=0.
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Fiorre 3.—Separation point a= a function of Mach number.
g =1--§.

for laminar-boundary-layer stability caleulations. In fact,
although stability calculations and their results are shown
to some extent in references 1 and 2, the chief purpose of
these caleulations was to show that the results obtained by
the approximate methods presented here compare sufficiently
closely with those obtained by known exact solutions.  Such
was also, at first, the purpose of reference 3. Thus, it was
found that for compressible flow without a pressure gradient,
such as flow over a flat plate, the minimum critical Reynolds
numbers for various Mach numbers at zero heat transfer,
as well as at various uniform wall temperatures, were pre-
dicted with satisfactory accuracy by the solutions obtained
by the methods presented here. Moreover, it was shown

that the maximum wall temperntures ito be ealled here e
“eritical temperatures™) required to stabiize the flow com-
pletely were also caleulated as funetions of the Much num-
ber with satisfactory aceuraey on the hasts of Uhese methiods
{presented i the section “Flow Withont an Axial Pressure
Gradient With Arbitrary (Constant) Prandtd Number an'l
Variable Wall Temperature” ). The mintmum critieal Roy-
nolds number for incompressible ow in the vieinity of a for-
ward stagnation point as caleulated by the Kirnnin-Pohl-
hausen method (ef. the subsection “Stagnation Flows"™ iq
the section “Flow With Pressure Gradient, Prandt) Number
Pr=1,and Uniform Wall Temperature o
found to agree well with that calenluted by the exact solution
of referenee 33, Finally, for incompressible flow with «
Iinearly diminishing veloeity outside the boundary Taver, the
present method of caleulation cof. the section “Flow With
Pressure Gradient, Prandt! Namber 72 210 and Uniform
Wall Temperature (4
minimum  eritical Revnolds number in satisfactory agree-
me it with that ealeulated from the solution in referciee 52,

Constant” was

Constant:™" wax found to lead 1o a

Most of the stability caleulations which hiave been carried
out in this country have been based on the analyvsis and
eniteria developed by Lin (ref. 58) for incompressible flow
and subsequently extended by Lin and Lees (refs. 8 and 46
to compressible flow.  In reference S, simplified approximate
two-dimensional stability eriteria for compressible flow have
been developed. whereby, without much difficuliy, 3t s
possible to caleulate, for a given type of flow, the minimum
eritical Revnolds numbers as well as the wall temperature
required for infinite minimum eritieal Revnolds number,
As will be explained  subsequently, these eriterin have
recenty been modified.  The minimum eritical Reyvoolds
number 1, ., s the minimum Revuolds number necessary
for the possibility that very small disturbanees in the bound-
ary Iaver may be amplified with time; that is, 2, . is the
minimum Revaolds number required for instability of the
laminar boundary layer with respect to small disturbanees
of at least certain wavelengths.  The wall temperature for
mfinite vafues of 2, is then usually mterpreted as the
highest temperature for which the (compressibley laminar
boundary layer will he completely stable for all Revnolds
numbers.  The analyses in references 58, 46, and R and
subsequent analyses based on them are of practieal interest,
sinece under the condition of a sufliciently low free-stream
turbulence a necessary (though not sufficient) condition for
transition from a laminar to a turbulent boundary laver
appears to be an instability of the laminar layer. A survey
(as of 1952) of theoretical and experimental investigations
on laminar-boundary-layer stability ean be found v reference
a9,

The purpose of the present subseetion is to summarize the
theoretical investigations on laminar-boundary-layer stability
performed at the Polytechnie Institute of Brooklyn by using
the mean-flow (or steady-state) solutions obtained by the
methads presented in this report.  In an unpublished report
entitled  “Caleulation of Stability  of Constant-Pressure
Boundary Layers on Isothermal Surfaces With an Integral-
Method Mean-Flow Solution” Professor Martin Bloom de-
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veloped certain modifications of Lecs’ approximate stability
eriteria (ref. R) and applied these to the caleulation of the
stability of the laminar boundary layer over a flat plate at
uniform wall temperature. This report is available for loan
or reference in the Division of Research Information, Na-
tional Advisory Committee for Acronautics, Washington,
D. . This work is summarized i references 3 to 5.
Minimum critical Reynolds numbers for given wall tempera-
tures and Mach numbers were calculated.  Moreover, the
wall temperature required to stabilize the flow completely
was also caleulated as a function of the Mach number.
Similar types of calculations with similar results were carried
out independently by Van Driest (ref. 60), and these are now
well known.!'  Briefly, the results indicate the stabilizing
effect of cooling of the wall by increasing the minimum
critical Revnolds number for a given Mach number.  More-
over, for a Prandtl number 7 of 1, it is found that the
houndary Iayer can be completely stabilized by sufficiently
low wall-temperature ratios 7,/T_ for Mach numbers M
between 1 and approximately 5. (For I’»=0.72, this can be
theoretically  accomplished for 1<CM_<(9). At higher
Mach numbers, particularly in the hypersonic range, the
validity of the theoretical approach has not been established.

The stability of the laminar compressible boundary layer
in a pressure gradient has been analyvzed in reference 44 for
zero heat transfer at the wall. Calculations there for the
supersonic flow over a thin biconvex airfoil indicated the
stabilizing influence of the favorable pressure gradient.
This stabilizing influence, however, was found to be con-
siderably diminished at higher free-stream Mach numbers
M_=4. The stabilizing influence of a favorable pressure
gradient can also be clearly illustrated by comparing the
minimum critical Reynolds number R..., (namely, R, .=
2.40> 10" (ref. 2)) for the incompressible flow w/u_=¢ in
the vicinity of a forward stagnation point with the much
smaller value R, .. £=7.3X10* (ref. 1) for incompressible
flow over a flat plate. The destabilizing effect, in the case
of zero heat transfer, of an adverse pressure gradient is
readily illustrated by considering the case u,/u, =1—¢ (ref.
2). The minimum critical Reynolds numbers for this case
for M/ =0 and 1 are compared, in table II, with the larger
values for flow over a flat plate taken from reference 1.

For compressible flows with heat transfer and pressure
gradient, the only stability calculations which appear to have
been made thus far are those in references 7 and 62. In
both of these references only Mach numbers of 3 or lower
were considered. (Cf. footnote 11.) In reference 62, the
small-perturbation solutions of reference 25 are used, while

7 uses solutions based on the methods of analysis

reference 7
presented in the present report. Reference 62 shows that

B Bloom’s first ealentarions (refs. 3 and 4; gave rosults quite similar to the well-known re-
sults of Van Driest (ref. 60),  Further modifications of the stability criteris, however, led to
rather complicated curves with severa! hranches of eritieal temperature ratto versus Mach
number (ref. 5. These were apparently due to large values of the stability parameter A not
retated to the Aof the pregent report) as defined in reference %, for large valites of My or small
valies of 7o/T'w . Dunn and Lin (ref. 611, however, have quite recently made basie refine-
ments in the analysis of reference 46 and have developed a more acenrate set of both two-
limensional and three-limensional stability eriterin.  Calculations for low over a flat plate
hased on this set yielded results quite similar to thoge of Van Driest or of Bloom’s first caleula-
tions.  Aceording to the Dunn-Lin eriteria, the valites of A (now redefined) remained quite
small for flow over a tlat plate even at hich Mach nnumbers. The new two-dimensional
eriteria do not appear to yiejd results appreciably different from those of Bloom or Levs for
Mach numbers below approximately 3,
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the eritical wall temperatures required to stabilize the lami-
nar boundary laver completely are, for a given Mach num-
ber, increased by a favorable pressure gradient and decreased
by an adverse pressure gradient. Further calculations also
indicate the greater amount of cooling required to stabilize
completely the flows with adverse pressure gradients than
that required for those with favorable pressure gradients.
This illustrates in a further fashion the stabilizing influence
of a favorable, and the destabilizing influence of an adverse,
pressure gradient. In reference 7, eritical wall temperatures
have been determined for the supersonie flow over a thin
biconvex airfoil at two given stations along the flow, and
these have been compared with the corresponding results
for flow over a flat plate. The results are shown in figure 4,
wherein it is seen that higher critical temperature ratios
T,/ T, are obtained for the flow with the favorable pressure
gradient than for the flow over a flat plate. It may be ob-
served, in this connection, that for a given reference tem-
perature T, at a point immediately behind the shock wave
at the leading edge of the supersonic airfoil, the critical wall
temperature may, at the higher Mach numbers, be greater
for the favorable-pressure-gradient case than for the flat-
plate case. This is due simply to the fact that the local
temperature 7T, outside the boundary layver over the airfoil
diminishes along the flow (see ref. 7 for details).
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A second type of stability caleulation carried out in ref-
erence 7 was the determination of minimum eritical Rey-
nolds numbers for the laminar boundary laver at a given
station of the supersonic airfoil for various values of the
(uniform) wall temperature and free-stream Mach number.
The results are shown in table III and figure 5, where com-
parison is also made with the flow over a flat plate. The
stabilizing effect of cooling of the wall and of the favorable
(negative) pressure gradient here can be elearly seen.

From table 111 and figure 5, the effect of Mach number on
the stability characteristics is seen to depend on the pressure
gradient and whether the ratio h=7,/T, of wall tempera-
ture to equilibrium adiabatic wall temperature or the ratio
T,/ T, of wall temperature to reference temperature is held
fixed. From figure 5 it is seen that for a fixed & an increase
of Mach number from 1.5 to 2.0 destabilizes the boundary
layer both over a flat plate and over the airfoil. This effect
is seen, in fact, to be enhanced by the negative pressure
gradient here. For a fixed value of the ratio 7,/T,, how-
ever, an increase of Mach number is now seen, from figure
5, to have a stabilizing influence on the flow without a
pressure gradient, especially at the lower wall tempera-
tures. For the flow over the airfoil, however, figure 5 (cf.
also table 11I(a)) now indicates that an increase of Mach
number has a stabilizing effect only at wall temperatures

LAMINAR COMPRESSIBLE BOUNDARY LAYER WITIHL HEAT
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close to the eritical temperature and that for dined highoer
wali-temperature ratios of T, 7 an increase of Mach num-
ber has a elear destabilizing effect similar to the case of
fixed A.

CONCLUSIONS

From the analysis of compressible laminar bhoundary
lavers with heat transfer and with and without pressure
gradient presented herein under the assumption of a lincar
temperature-viscosity  relation,
can be drawn:

1. For flow without a pressure gradient. such as flow over
a flat plate, the boundary-laver characteristies can he easily
determined from the equations developed here for a given
constant  Prandtl number (of the order of magnitude of
unity), a given Mach number, and a given wall-temperatore
distribution.

2. For flow with a pressure gradient, the boundary-layver
characteristics can also be easily  determined from  the
equations developed here, provided the Prandtl number is
unity and the wall temperature is uniform.  Here, the ve-
locity distribution outside the boundary laver and the free-

the following  coneclusions

stream Mach number, as well as the wall temperature, are
considered as prescribed.  The equations are also valid for
zero heat transfer at the wall (/=1 where & s the ratio of
stagnation enthalpy at the wall to stagnation enthalpy at
the outer edge of the boundary layver).

3. Arelatively simple method of caleulating the separation
point in a given subsonic or supersonic adverse pressure
gradient over a wall at any specified uniform temperature
has been developed here. This method is also applicable for
zero heat transfer (A=1).

4. A comparison of the results of the methods in con-
clusions 1, 2, and 3 with known exact solutions for various
types of flows indieates that the methods of caleulation
developed here may be expeeted, in general, to vield results
of sufficient accuracy for practical purposes, imcluding sta-
bility calculations.

5. From the equations developed here, it ean be shown
that cooling of the wall tends to diminish the Nusselt number
and especially the skin-friction coefficient in a favorable
(negative) pressure gradient and to inerease the coeificients
in an adverse pressure gradient. Because of the propor-
tionality factor in the viscosity-temperature relation assumed
here, it also follows that lowering the ratio of wall to free-
stream temperature will, independently of the pressure
gradient, ordinarily tend to inerease both the Nusselt number
and the skin-friction coeflicient.

6. The equations developed here further imply that cool-
ing of the wall tends, in general, to diminish the direct effect
of a pressure gradient, while heating tends to enhance it.
A particularly clear example of this is the delay of separation
in an adverse pressure gradient by cooling of the wall.

7. The results of a numerical example for a fixed lnearly
decreasing velocity outside the boundary layer indicate, in
addition to the delaying of separation by cooling of the wall,
that for a fixed ratio A of wall temperature to cquilibrium
adiabatic wall temperature an inercase of free-stream Mach
number ‘moves the separation point upstream, while for a
fixed ratio of wall temperature to free-stream temperature
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(T, an inerease of Mach number has, in general, a less

unfavorable effect and in the case T,/7, = 2 actually moves
the separation point downstream,

8. While cooling of the wall tends, in general, to stabilize

the laminar boundary layer, it is shown theoretically that at
rderate supersonic Mach numbers suflicient cooling may

completely stabilize the boundary layer.

At higher Mach

numbers, particularly in the hypersonie range, the validity
of the theoretical approach has not been established. A
favorable pressure gradient has, in general, a stabilizing
effect on the laminar boundary layer, while an adverse

pressure gradient has a destabilizing effect.

A numerieal

example for supersonie tlow over a thin airfoil illustrates in
detail these and other effects of NMach number, wall tem-
perature, and pressure gradient on the stability of the
laminar boundary layer.

PoLyrecu~ic Institere or BrookLyy,

3.

10.

Brookry~, N. Y, AApril 12, 1955,
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