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I State of Knowledge at the Start of Project

By 1990, the time of the writing of the proposal for this grant, some aspects of failure
of quasi-brittle materials were already understood. But the continuum description of
solids with statistically nonuniform crack arrays was not understood. The mathematical
approaches were semi-empirical, phenomenological and descriptive rather than predictive.
The lacked theoretical foundation in micromechanics.

a) Initial Nonlocal Damage Concept and Localization Limiter

Quasibrittle materials are characterized by development of large zones of distributed crack-
ing damage before the final fracture. Prior to 1976, the distributed damage was simplyv
ignored and structures were analyzed according to elasticity with a strength (or allowable
stress) limit, plastic limit analysis, or fracture mechanics of distinct cracks. In the 1970's.
various constitutive models with the so-called strain softening (that is, a decrease of stress
with increasing strain) were proposed to handle distributed cracking. Examples were the
continuum damage mechanics, endochronic theory, or plasticity with a degrading yield
limit.

It was soon realized, however, that strain softening has a basic fault: the material
is inherently unstable. This leads to spurious excessive localization of damage. In finite
element analysis, this is manifested by the so-called spurious mesh sensitivity, which
is caused by the fact that the damage front tends to localize into the smallest volume
possible. This causes that, upon refining the element size to zero, the energy required
to fail the structure tends also to zero, which is of course physically impossible. At the
beginning of 1980’s, it was proposed to cope with these problems by introducing some
sort of a localization limiter. This concept was formulated first in the form of the so-called
crack band model, and then in the more general form of a nonlocal damage continuum (to
be distinguished from the classical nonlocal concept of Eringen, which dealt with nonlocal
elasticity).

In the nonlocal formulation, the increments of damage (or cracking strain) were cal-
culated from the average strain taken over the neighborhood of a given point. The size of
this neighborhood had to be specified. This was done by introducing a material property
called the characteristic length. The volume over which the averaging was carried out was
called the characteristic volume.

The nonlocal approach did overcome the aforementioned mathematical difficulties.
The boundary value problem with strain softening was regularized, the paradoxical phe-
nomenon of imaginary wave speed (non-existence of wave propagation) was eliminated,
excessive (unrestricted) damage localization was prevented and, in finite element calcula-
tions, the spurious mesh sensitivity was avoided. It was also demonstrated that the finite
element calculations could be made to match many experimental results quite well.

The critical test results were those concerned with the size effect, that is, the de-
pendence of the nominal strength (maximum load divided by characteristic structure
dimension and thickness) on the characteristic dimension (size) of the structure. Individ-
ually, these results were described quite successfully with the nonlocal damage concepts.

3
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In particular, the finite element results were shown to agree with the approximate size
effect law representing a transition from plastic limit analysis at very small structure sizes
to linear elastic fracture mechanics at very large structure sizes. The largest amount of
test results were gathered for concrete, but many test results were also assembled for rock.
and some for ice and wood. It was also shown that from the measurements of the size
effect is should be possible to calibrate the nonlocal continuum models, and particularly
to determine the characteristic length of the material.

However, a fundamental problem was recognized at the end of the 1980’s: The nonlocal
concept was purely empirical. Although it was felt it had to do with the coarseness of
the microstructure and with the size and spacing of the microcracks, no physically based
micromechanical theory for the nonlocal continuum concept was available. The spatial
averaging was entirely a phenomenological concept. It was not known what the tensorial
and directional character of the averaging should be. So it was taken simply as scalar and
directionally isotropic, for no other reason than lack of knowledge.

By fitting of numerous test data with finite element codes, it was also discovered that
different types of problems required using different characteristic lengths, for the same
material. Thus, the nonlocal models did not have predictive capability, except for each
narrow range of problems for which they were calibrated. Also, the size effect and scaling
laws were tied to a particular geometry and could not be translated from one type of
structure to another.

[t thus became obvious that a serious micromechanical analysis had to be undertaken
to put the nonlocal continuum concept on a sound physical foundation. To do that was
taken in 1990 as the principal objective of the proposal for the present project.

With regard to the size effect, another gap was in the role of interfacial slip and
interfacial fracture, for example along the interfaces of fibers and matrix in composites.
A further gap was the nonexistence of broad-range experimental data on the size effect in
geometrically scaled specimens of fiber composites. Only such results can clearly reveal
the inapplicability of strength theories or plastic-type limit analysis.

Furthermore, the test results were limited to tensile dominated failures. There was
scarcely any information on the role of distributed cracking and the inherent size effect
in compression failure of quasi-brittle materials.

b) Weibull’s Theory of Random Strength

There were also misconceptions. There was a competing and much older theory of the size
effect, proposed by Weibull in 1939. This theory, in which the size effect was explained
by the randomness of the material strength, ignored the large stress redistributions that
are caused by damage growth prior to failure. It also ignored the fact that the release of
stored energy from the structure, which is larger in a larger structure, is itself a source of
a strong deterministic size effect.

It thus became clear that Weibull's statistical theory of size effect could apply only
to those structures which fail at the initiation of macroscopic cracking, that is at the
moment the microscopic flaws cease to be microscopic. This approximation is of course
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good enough for many structures, part.;ularly metallic structures, which typically fail (or
must be considered to fail) when a crack exceeds about 1% of the cross section dimension.
for which the stress redistributions and energy release aspects are still macroscopicallv
insignificant. However, such a situation is blatantly untrue for concrete. Reinforced
concrete structures typically develop, in a stable manner, large cracks, typically reaching
over 50 to 90% of the cross section dimension. Likewise, design of good composites or
toughened ceramics requires that there is large stable crack growth before the maximum
load is reached.

The assumptions of Weibull’s theory also do not hold for fiber composites and modern
toughened ceramics. In fact, the basic principle in designing stronger and tougher com-
posites and ceramics is to force the damage to remain broadly distributed, thus blunting
and shielding potential large cracks—in other words, achieve concrete-like behavior.

c) Rate Effect and Fatigue

Another crucial aspect was insufficiently understood and unquantified—the rate effect or
time dependence in the development of distributed damage. It was obvious that time
plays at least some role in every type of failure. But physically justified formulations for
distributed damage were lacking.

Numerical analysts recognized in the early 1980’s that introduction of rate dependence
in the failure development has the effect of regularizing the boundary value problem of
strain softening and preventing spurious mesh sensitivity. Later, however, it was found
that the regularization, which precluded waves of imaginary velocity, is short-lived. Spuri-
ous excessive damage localization and spurious mesh sensitivity develop gradually in time.
The problem is not regularized asymptotically, for infinite times. This showed that de-
spite of taking time dependence in the evolution of damage into consideration, it was still
necessary to use some sort of a nonlocal model, with a characteristic length. Various ways
of throwing viscosity into the stress-strain relations of plasticity with a degrading vield
limit or other constitutive models were attempted and showed some desirable features.
But there was no physical foundation, no true predictive capability.

Related to the time effect is fatigue. The fatigue behavior of quasi-brittle materials
is quite different from metals. They are less sensitive to fatigue, by virtue of blunting
and shielding of potential distinct cracks by large damage zones. But fatigue cannot be
ignored. Yet it was not known how the concept of distributed damage, and the fact that
it inevitably involves a size effect, should impinge on fatigue.

d) Micromechanics of Crack Systems

Finally, as for micromechanics of crack systems, major advances have of course been
achieved between 1975 and 1990. However, they were limited to the elastic properties
of bodies with macroscopically uniform random systems of distributed cracks or various
types of oriented systems. They did not clarify the effect of growth of cracks during
loading, nor the effect of spatial localization of the cracks, which makes the macroscopic
fields nonuniform.
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For example, the well-known solutions of Budianski and O’Connel, or Budianski and
Hoenig, Kachanov, Ju and others, considered only cracks of fixed length (i.e.. not allowed
to grow), distributed spatially uniformly over an infinite body. These solutions used var-
ious homogenization methods such as the methods of periodic cells, the self-consistent
method of Hill, the Mori-Tanaka method and other methods for composites. in order to
determine the macroscopic tensor of effective elastic moduli. In the diagram of stress
versus strain, this meant that these previous solutions provided only the secant elastic
moduli. They were incapable of providing information on the tangent elastic moduli,
which can yield a negative softening slope (corresponding to a non-positive definite ma-
terial stiffness matrix).

Thus, there was a serious gap of knowledge: How should the difference between the
secant elastic moculi and the tangent elastic moduli, caused by the growth of cracks during
loading, be determined?. This difference determines the inelastic stress increments — the
basic characteristic of the macroscopic stress-strain relation for damage.

As for crack interactions, they were taken into account in some of the solutions. how-
ever, only for the case of spatially uniformly distributed cracks. In that case the interac-
tions are simple: they basically cancel each other. The crack interactions in large crack
systems that become macroscopically nonuniform, that is, localize, were not considered
in previous studies. Yet, these are essential for the properties limiting localization of
damage.

Making progress in the foregoing gaps of knowledge, with a thrust on the micro-macro,
was adopted as the goal of the present project.

IT Objective of Research Effort

The basic overall objective of the research effort was to develop fundamental understand-

ing of the macro-micro correlation in the phenomena of distributed damage. In detail, the

objectives (which were slightly updated as the research was advancing), were as follows:

1. Principal Objective:

(a) Analyze interactions among growing cracks in large microcrack systems and deduce
a continuum approximation of the discrete relations for the interacting cracks.

2. Further Objectives:

(b) Formulate compression failure of a quasi-brittle material as the propagation of a band
of splitting microcracks.

(c) Determine the macroscopic consequences of softening slip or interface fracture be-
tween fiber and matrix in composites.

(d) Analyze the effect of inclusions such as aggregate pieces or fibers (in the transverse
cross section of a composite) on the microcrack interactions.
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(e) Determine the consequences of the rate-process theory for bond ruptures. governed
by activation energy and Maxwell energy distribution, for the macroscopic rate-
dependent damage or fracture model.

(f) Analyze the effect of distributed cracking in a boundary layer, affecting the strength
and size effect in the bending of beams or plates.

(g) ldentify in mathematical terms the limitations of Weibull probabilistic theory of size
effect and damage for the case of quasi-brittle materials, determine the macroscopic
consequences for a probabilistic failure theory, and deduce a rational nonlocal gen-
eralization of the Weibull concept.

(h) Determine the size effect in fatigue of a quasi-brittle material, caused by the existence
of a large zone of distributed cracking.

III Summary of Accomplishments

1. Principal Accomplishment

The principal accomplishment of the project has been the development of a nonlocal
damage model based on micromechanics of crack interactions, described in [1] and applied
to localization analysis in [2] (the idea first presented in [34]).!

Compared to the situation before, this model appears to represent a major break-
through in the continuum modeling of distributed damage. The model considers not only
stationary cracks but cracks that grow with the process of loading. It relates the growth
of these cracks to the macroscopic continuum stress-strain relation for cracking damage
with strain softening (such as continuum damage mechanics, or plasticity with degrading
yield limit).

The model is based on the discrete matrix relations for the superposition method for
interacting cracks, and utilizes its simplified version due to Kachanov. The classical ho-
mogenization methods could not be used (as they apply only to macroscopically uniform
states of deformation and stress, while main concern is the localizing, nonuniform, and
nonhomogeneous states). So, a new concept for the micro-macro transition had to he
formulated: Find a continuum field equation whose possible discrete approximation co-
incides with the matrix equation governing a system of interacting microcracks. Such a
discrete approximation can be obtained for nonuniform states, which makes the continuum
transition possible.

The result is a new type of nonlocal continuum, described by a Fredholm integral
equation for the unknown nonlocal inelastic stress increments. In contrast to the previous,
heuristic nonlocal formulations, there are two spatial integrals instead of one. One integral,
which is similar to that used in the previous formulations, ensues from the fact that crack
interactions are governed by the average stress over the crack length (rather than the

1The references are listed at the end and the main ones are attached.




value of the macroscopic stress field at the crack center). This integral can be regarded
as a short-range averaging of the inelastic macro-stresses.

The second integral describes long-range crack interactions. Its kernel is a crack influ-
ence function which has directional and tensorial properties, in contrast to the previous
nonlocal formulations. This influence function is a second-rank tensor and varies with a
directional angle, i.e., is anisotropic. Thus it exhibits sectors of shielding and amplification
(which were missing from previous formulations).

A rather interesting property came out theoretically: for long distances of two in-
teracting cracks, the influence function decays as the inverse square of distance in two
dimensions and as the inverse cube of distance in three dimensions. This decay is of course
similar to long-range interactions in many other physical laws (although in previous for-
mulations the kernel of the spatial integral was assumed to decay as an exponential).
This type of decay implies some interesting properties: The influence function is not in-
tegrable over an infinite space or infinite plane. This means that it is impossible to cause
a homogeneous growth of strain softening damage over an infinite space.

Effective application in finite element codes is made possible by formulating the so-
lution of the discretized integral equation in terms of the Gauss-Seidel iterative method.
The advantage is that this type of solution can be conveniently combined with the normal
iterations of each loading step in a nonlinear finite element code. This greatly simplifies
the handling of the nonlinearity, by allowing the nonlocal inelastic stress increments to be
calculated from the local once explicitly. The calculation of the nonlocal inelastic stress
increments involves evaluation of an integral over the finite elements of the structure,
which contains the crack influence function. For the crack influence function, simplified
closed-form expressions which have asymptotically exact properties for an infinite space
as well as for close-range interactions, are derived.

An appealing feature of the new nonlocal formulation is that the constitutive law
becomes strictly local. This avoids difficulties with the unloading criterion or with the
continuity condition of plasticity, which were encountered in previous nonlocal formula-
tions in which the nonlocal spatial integral was part of the constitutive law.

The aforementioned superposition method for interacting cracks is based on decom-
posing a loading step, for example in a finite element program, into two substeps: In the
first step, the cracks are imagined to be temporarily frozen (or glued), that is, prevented
from opening and growing. In the second substeps, these cracks are imagined unfrozen or
unglued. This means that the stress increments transmitted across the previously frozen
cracks must be applied as loads on the crack surfaces, in two opposite directions.

The properties of this new, micromechanically justified nonlocal formulation have been
studied by analyzing localization of strain-softening damage into a planar band [2]. To
some extent, they have been explored in finite element calculations (however, this work is
still continuing and a paper has not yet been written). It is found that the new nonlocal
model predicts localization to begin as soon as the local constitutive law deviates from
linearity, which can be already before the peak of the stress-strain diagram. This is a
major difference from the previous models, which indicated localization to occur only
after a certain negative post-peak slope has been exceeded and allowed no localization in




the pre-peak hardening regime. It was also shown that bifurcations of the equilibrium
path can occur, according to the new formulation, even in the regime of local hardening.
and even in the absence of geometric nonlinearities of buckling.

Although some new interesting questions have arisen and further studies will be neces-
sary, the development of the new nonlocal model appears to represent a major advance in
the understanding and description of the micro-macro correlation of the processes involved
in distributed softening damage due to cracking.

2 Further Accomplishments

2.1 Distributed damage. interface fracture and size effect in aerospace fiber composites.

The damage in fiber composites, which are important for aerospace applications. has
some particular characteristics due to the anisotropic nature of the material and the
role played by interface fracture. For this reason, tests of geometrically similar notched
specimens of isotropic and cross-ply laminates of carbon fiber-epoxy composites, made
from unidirectionally reinforced plies, were tested for the size effect [3]. As might have
been expected from the distributed nature of damage, the size effect is found to be quite
significant and follows approximately the general size effect law for quasi-brittle materials.
The size effect tests yield the basic fracture characteristics, particularly the fracture energy
of the material and the effective length of the fracture process zone {(which is related to the
characteristic length of the nonlocal continuum). These results mean that the aerospace
composites should be analyzed as quasi-brittle materials and that size effects due to
distributed damage should be taken into account.

Furthermore, a simplified anal ‘tical solution has been obtained for the pullout of a fiber
from a matrix [4, 19]. It was assumed that the interface stress-slip relationship exhibits
post-peak softening and terminates with a final frictional plateau. This assumption is
commonly made in the analysis of interface behavior in composites, both for fibers in
laminates and for reinforcing bars in concrete. It turned out [4] that the softening interface
slip alone produces a size effect, again approximately following the size effect law for
quasi-brittle materials. From this size effect, the interface stress-slip characteristics can
be identified more easily than from other methods. This is made possible by the simplicity
of the analytical solution, which can be inverted [4].

To exploit this solution, further tests have been conducted on pullout of reinforcing
bars from concrete [5|. In contrast to previous pullout tests, the specimens have been
engineered in such a way that the failure would occur due to interface slip exclusively.
with no cracking around the bar. From such tests [5], the interface stress-slip softening
characteristics have been identified. This is a new method of identifying the interface
properties from experiments. In the limit for very large sizes, obtained by extrapolation
of the test results, the theory makes it also possible to determine the interface fracture
energy.




2.2 Propagation of a band of splitting microcracks as a mechanism of compression falure

In a homogeneous field of uniaxial compressive stress, cracks parallel to the stress
vector release no energy. Yet they are tvpically seen to form in that manner. Obvi-
ously there must be other mechanisms which provide transverse tensile stresses on the
microscale. These are no doubt the inhomogeneity of the material and local buckling of
damaged material on the microscale.

A theory of compression failure due to the propagation of a band of splitting microc-
racks has been formulated, taking into account local buckling of microslabs of the material
between adjacent splitting cracks [6]. This concept has been applied to the analvsis of
failure of circular cavities in a compressive stress field—a problem of importance in many
applications such as boreholes in rock or openings in structural parts. It was shown that in
contrast to the strength-based analysis of compression failures (or plastic limit analvsis).
the theory always exhibits a size effect. In the simplest form, the size effect for the failure
stress of a circular opening decreases as the inverse 2/5 power of the opening diameter
[6]. The theory has also been applied to the calculation of size effect in the failure of
concrete columns (which would similarly be applicable to the failure of rock walls). The
failure mechanism, according to experiments, has been considered to involve a push-out of
a triangular region limited by an inclined band of splitting microcracks {7]. The predicted
size effect was confirmed experimentally {8] by size effect tests of reduced-scale reinforced
concrete columns. (The current methods, embodied in standards, do not consider any
size effect in compression failures of concrete.)

The foregoing models consider interacting cracks in a homogeneous material. This is
good enough for graphite epoxy or similar composites. but is a simplification in the case of
concrete, due to the presence of inclusions in the form of hard aggregate pieces. Therefore,
the problem of a body containing both microcracks and inclusions has been analyzed [9].
The analysis has been numerical, using the superposition method for cracks systems,
which was extended to inclusions. It was shown that the inclusions play a signifcant
role, but they do not alter the qualitative nature of crack interactions. The main rci of
aggregate is to decide the dominant spacing of the microcracks.

2.3  Identification of macro-fracture characteristics by random particle simulation of
microsiructure

The quasi-brittle material behavior can be easily simulated by random particle systems
(discrete element method) in which the interparticle force-displacement relationship ex-
hibits softening. Such a particle system can approximate the microstructure of a material
such as concrete or fiber composite in the transverse cross section. An efficient numerical
scheme has been developed and used to study the correlation of the macroscopic fracture
characteristics to the characteristics of the microstructure, particularly the mean and co-
efficient of variation of interparticle strength, and the mean and coefficient of variation
of microductility (displacement at which the interparticle force is reduced to zero). It
was shown that the macrofracture characteristics can be identified by simulating geomet-
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rically similar specimens of different sizes and exploiting the calculated size effect {10).
Furthermore, it was shown that regular lattices of particles always exhibit directional bias
for fracture, even if the strength values are randomized. A method to efficiently generate
random particle systems of prescribed particle size distribution has been formulated [10}.

2.4 Nonlocal generalization of probabilistic Weibull theory of random strength

For reasons mentioned before, Weibull probabilistic theory of random strength has
been generalized to a nonlocal form that can be applied to quasi-brittle materials (11, 12].
The classical assumption that the material failure probability is determined, according
to Weibull probability distribution, by the local tensile stress has been replaced by the
assumption that it is determined by the average of strain in the neighborhood of a given
point.

It was found that, for small structure sizes, this leads to the same size effect as the
classical Weibull theory, but for large structure sizes the size effect is different and ap-
proaches the deterministic size effect of linear elastic fracture mechanics. The approach
to a deterministic size effect for large sizes is explained by the fact that the size of the
fracture process zone tends to be independent of the structure size when the specimens
are large.

2.6 Rate effect in evolution of damage and fracture

For reasons explained in Section I, modeling of the rate effect and understanding of
its micromechanics is of paramount importance. In order to eliminate the difficult and
complicating effects of wave propagation, tests have been conducted in the static range,
at loading rates varied over 5 orders of magnitude [13, 14]. The interrelationship of the
loading rate effect and size effect has been experimentally studied for rocks [15] (whose
behavior is similar to ceramics) and concrete.

Aside from the well-known dependence of strength and fracture energy on the loading
rate, several new effects have been found. The fracture specimens of concrete in the post-
peak range exhibit load relaxation, but those of rock do not [13-15]. This means that
creep of concrete plays a role in the rate effect. Loading concrete at a faster rate causes
a shift of the size effect closer to linear elastic fracture mechanics, that is, toward a more
brittle behavior. The slower the loading, the higher the brittleness [13-15], which at first
seemed surprising. This is micromechanically explained by relaxation of the stress in the
vicinity of the fracture or damage front, which occurs in concrete due to creep (but not in
rocks, in which this phenomenon is not observed). Another new phenomenon that came
out from experiments was the reversal of softening response to hardening response by a
sudden increase of the loading rate [16]. This is a dramatic effect which can cause that
the second peak is even higher than the previous peak under the previous loading rate
(16).

These phenomena have first been modeled by a simple rate-dependent generalization
of the R-curve approach to quasi-brittle fracture, in which the creep in the specimen was
also taken into account [17]. To obtain a more realistic model based on micromechanics,
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the rupture of bonds in the fracture process zone was analyzed according to the rate-
process theory for thermally activated processes governed by activation energy [13. 18].
Based on Maxwell distribution of kinetic energies of atoms or molecules, a rate-dependent
generalization of the stress-displacement relationship of the cohesive crack model has
been obtained (an equivalent form for the crack band model for distributed cracking then
also follows). This rate-dependent formulation was also applied in a crack-band finite
element analysis of concrete, and it was shown that the aforementioned experimentally
observed phenomena can be simulated [18|. The generalization of the cohesive crack model
to rate dependence has been formulated in a general way on the basis of compliance
influence functions (Green's functions) [20]. Finally, it was shown that the size effect
curves according to the cohesive crack model can be directly calculated based on eigenvalue
analysis of the maximum load, making integration of the solution for the increase of the
load from zero to the maximum unnecessary. It was shown that the structure size for
which a given relative crack length corresponds to the maximum load is an eigenvalue of
a certain integral equation [20).

As an alternative to the cohesive crack model, a novel approach to simulating fracture
with a crack-tip blunting zone has been formulated by assuming that the cohesive crack is
a superposition of infinitely many linear elastic cracks with infinitely densely distributed
tips and with infinitely small stress intensity factors |21]. This approach is sometimes
advantageous, since it allows exploiting the known solutions of linear elastic fracture
mechanics. The rate effect and creep have also been incorporated in this approach. It
was shown that fracture simulation by such a model can reproduce the size effect observed
in quasi-brittle materials as well as the effects of loading rate [21].

2.7  Fatigue aspects of quasi-brittle fracture

Tests of size effect under fatigue loading have been conducted for geometrically similar
specimens of different sizes, using both normal and high-strength concretes [22, 23]. It
was found that fatigue failures also exhibit a size effect, but of a type that deviates from
the well known Paris law for the growth of cracks under cyclic loading, which is known
to apply to metals. The size effect is again found to be transitional, approaching Paris
law for very large sizes. It was also shown that for high-strength concretes the fatigue
behavior is more brittle, with a stronger size effect than for normal concretes.

2.8 Boundary-layer size effect

As pointed out in Section I, in some situations quasi-brittle structures fail at the
initiation of fracture growth from the surface. In that case, the microcracking is not yet
localized at the moment of failure, but it still engenders size effect. This type of size
effect is of a different nature. A simple analytical formulation for this type of size effect,
as manifested in the tests of modulus of rupture for bending, has been formulated and
calibrated by test results [24].
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2.9 Refinements of microplane model for strain-softening constitutive relations

This constitutive model for damage, developed under a previous AFOSR grant, was
further extended and refined. A new concept of geometric damage was formulated [25].
This made it possible to separate the effect of a reduction of the effective load-bearing
cross section on planes of various orientations within the material from the stress-strain
relationship for the true stress (stress in the undamaged part of the cross section). This
analysis also provided a rational expression for the damage tensor, as a fourth-rank ten-
sor. Compression failures and cyclic loading failures of concrete have been simulated by
extensions of this model [26, 27].

2.10 Analysis of bifurcations that lead to localization of damage

It was shown that, in direct tensile tests. the tensile strain-softening damage due to
cracking leads to a bifurcation of the equilibrium path such that the specimen must flex
to the side |28, 29].

2.11 Some further related works

Several other studies of localization, nonlocal damage, size effect and other aspects
related to the present project have also been carried out [30-40].

Concluding Remarks

The foregoing diverse results complement the principal accomplishment outlined in Sec-
tion 1. Their common theme is the micro-macro correlation of damage and fracture.
Several types of phenomena arise on the microscale, including microcracking, influence of
inclusions, rate effects in the microcrack growth, probabilistic aspects of the microstruc-
ture, etc. They all need to be taken into account in order to obtain a fully realistic model
based on micromechanics.

IV. Professional Personnel Associated with the Re-
search Effort

1. Personnel

1. Zdenék P. Bazant (Principal Investigator)
Issac Daniel (Faculty Advisor)
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o N
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Appendix 1.

Copies of Transparencies from a Lecture
Explaining the Principal Accomplishment

(Section III-1, Ref. [1], [2], [34])




CONTINUUM MODEL FOR
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Properties of Smoothed Crack Influence Function
Localization in a Layer

Size Effect and Applications in Finite Element Analysis
with Microplane Model




STRAIN-SOFTENING

e e kE TIONS
—2 i-egl OBSERVA
e w2 Coustic emissions

Rashid 1967 Scanlan 1972 1973

Distributed cracking :

At first — controversial ... dismissed for violation of
Drucker's postulate, Hadamard's

condition (wave velocity real)

PROBLEMS:
)
— Mesh objectivity (spurious mesh sensitivity)
p = small

Lo, =

' W h= element rive
— Energy dissipation converges to zero y
|

— Spurious localization of damage to a zero volume

— Loss of ellipticity of static problem
" hyperbolicity of wave problem

Same kind of problem occurs for: Nonassociated flow rule
(lack of normality)




' 4
N

a) False remedy (sidetracking the problem)
— continuum damage mechanics

0.K. {er
o=(I- w) T )’ no Joflerimyg
T=.f(8) w , . Ol\l_!] .

"true" stress ¢

b) Partial remedy: Regularization by means of
VISCOSITY (artificial or real)
— does not work asymptotically

fort > o0

c) The only general remedy '
— some type of NONLOCAL concept

1.  Limit the crack band width, Ay, (or element size)

... crack band model
1976, 1979, 1983

2. Nonlocal continuum damage
1984, 1987

-no[ Ijt’ht(n' (‘"nyL '

a) Averaging model (1984) (Nonlocal integral)
b) Gradient models (micropolar plasticity, etc.)
— related (result of Taylor series expansion)

Physical Justification of Nonlocality?

— microcracks - but how?
— inclusions, grains? - No




CURRENT STATUS OF MICROMECHANICS -
OF SOFTENING DAMAGE DUE TO
g MICROCRACKING OF MATERIALS

Stage 1. Effective (Secant) Elastic Moduli of Microcracked Solid

— easier, nearly all the studies have so far been limited to this (see €.g. a
review by M. Kachanov, Appl. Mech. Rev. 45(8), 1992, 304-335), but
is less important.

TOPICS STUDIED:
Crack density tensor — anisotropy due to ,
cracks - crack friction and slip - fluid-
filled cracks - interacting but
statistically uniformly distributed cracks
(no localization) ~ (secant) elastic )
moduli with or without crack interactions
~ self-consistent method, Mori-Tanaka
method, method of effective field —
differential scheme - periodic crack R
arrays of various geometries, with
shielding and amplification

5 — configurations - variational bounds on
- — effective moduli. )

— | ASSUMED THAT:
— — — | 1. Cracks do not propagatc during
} deformation increment. ’
2. Cracks remain statistically uniform on
the macroscale.

»rﬁ!umform\ ,1\6

LIMITATION: | ’
— This can yield only the sccant moduli E,

(but one needs mainly the tangent moduli

E,).




Stage 2. Tangent Elastic Moduli at Propagating Microcracks

- hardfer, studied very
A6 | little but is much more

/ important.
/  durto crack ‘)
; X ASSUMED:
propagation: Cracks do not localize
due to crack
interactions.

—~ yields only the local
moduli, without the

effect of crack
interactions.

Stage 3. Tangent Stiffness at Propagating Interacting
Microcracks with Localization

—~  very hard, not studied
so far
but required for realistic

solution!

Interactions of
ropagating cracks
cause a change of
stiffness from its local
value to a certain
nonlocal value

governing localization
of cracking.
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LOCAL AND NONLOCAL MACROSCOPIC
1 { STRESS-STRAIN RELATIONS .

a) Local form:
Ac=FE:(Ae—A")=E:Aec— AS
Ac=E:Ae- AS
where AS = inelastic stress increment tensor

b) Previous nonlocal damage model
. (Pijaudier-Cabot & Bazant):

Ao =F:Ae— AS

spatial averaging:
AS(z) = J, a(z,£)AS(€) dV(§)
/V a(m,§) dV(E) =1

malized).

1 -

(3)

AS is the nonlocal inelastic stress mcrement; defined by

(4)
()

kernel a(z,§) = nonlocal weight function of mean 1(nor-




.~ NONLOCALITY CAUSED BY INTERACTION OF
¥ GROWING MICROCRACKS: Two substeps:

I. Cracks frozen, stresses due to loads solved.

I1. Cracks unfrozen, stresses due to crack tractions solved.

SUPERPOSITION

METHOD FoR CRACKS. .
- . | ).
- e =
¢ AH:.(Q) "4 ?AP‘L 4
y Se| X4 N
A ' _
Ipt -* o o %A K
T Y4 AS
e R e
AF relaxations (re),2,..)
s cee 1
X vy Iy gz L . K
Al = E:as¢ IR X‘l’ o e
- T 5, | JaEe ] A
Ap, rh o
Au..(b)\g" Lo ‘%’ +

g v q—--|_--"""“-.‘, v
RUke ) |1 ool P




» Normal surface traction due to unfreezing of a crack: |
W .
Ap, =n,AS,n, (6) ’

g
)

Superposition method (Collins 1963, Datsyshin and Savruk .
1973, Gross 1982, Chudnovsky and Kachanov 1983, Chud-
novsky et al. 1987, Chen 1984, and Horii and Nemat-
Nasser 1985)—Kachanov’s (1987) simplification:

| N
Ap, = (Ap,) + V)_.__Zl ApAp,| v=1,.N (7)

- in which (..) = averaging operator over crack surface;
o« Aw = crack influence coefficients.

L g
le—=—> NONLOCAL cTREY
';Al
>
!

.

e :
le— B> | LOCAL CONST. LAW

change fo be selved From
wrack inferechions




» Simplifying hypothesis: Consider at each point only the
¥ dominant microcrack oriention, coinciding with the max-
imum principal inelastic macro-stress AS™) (i.e., Mode

I). Denote: .
Agf‘l) = A(nuSyuny) = [nuSunylnew — [nuSunulolg (8)

In terms of macro-stresses:
A3Y - £ 4,430 = (ASD) (9)

v=1

®© &




P NONLOCAL CON TIN UUM—Fredholm integral equa- ,

AZY(z) - f, Az, £)AZD(€)dV (¢) = (AsW(=)) | (10) |

E\ i ; :aj | | ’
where: (ASY(z)) = f, ASN(&)a(z,£)dV(E) (11)
A(z,,&,) = crack influence function. ~ .

IMJP"" cmgf!d il sh fFueos ¢1hcfv'nu ((’lu:l. Vof FEN
] o ,
ra | "

'® ( ) J“ﬁvt—th;e Geer1aging , AR a.ru'yl'ls fo(dV =/

@ New - [m:g-um’t cnack cikvac/cbu.r, /A av = 0
- Direchsnal y tensorial

Note:~The tonhiraim 0 not ofteceed by Aomugensiadion.

Retor ;| Sied covhrane tqnabion whave
| Alsorcde forn e e meatviy crech
&Jovadi ™ equation >

— The emshtnhve low ar m(y Locat !
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Gauss-Seidel Iteration Method (discrete):

AP = (AsD) + z: A, ASO (p=1,2,..N)
'\ (14)

(rel)*® Locae, r & Herofion

Method of successivegapproximations (continuum):
ABD(z) — (4SO () + f, Az, §)ATV(€) AV(€) (15)
NALY” . a-

IDEA: Combire if witl fhe ileratons

’ W eadd brad .r'kpof&fuu/f.

ele went code .

Alternative Forrms:

Bepine: {(S >} [ ,,]{s,,}

e )
| wline ['C [‘f "A »d (%9l

Contivum counte rport-

5V f C(x As"’(k) dV(k)
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CRACK INFLUENCE FUNCTION A (x,3)

~ statistical (mmeept
T S nwmer teal infegration ,tmlx
3::533;1113::55??/ of At Lements
A BaE — sompling prwwts for tha-
creachs
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r‘? ‘.-” 01 $ = Mmeam W\mf'
¢ - - crouh :pm'-,
+_ ‘ QL 9 _qr crodh candey (Bam Orcear
-+ - anywvheore (ncedl (x5 )




r =/(x—§)"+(y-1)2 ?sqnfan'i% ; .)
() erege ove ~
-Ale, r)= <E[o’ G2, b )] ) 5 s T

nmfh u,ndahan — cemberof source crask
Qies Myumg wn cel

S wrs

2s/2 (.,
d (r -.") } —x)dx ll; da

Ue:fwjaanl'.r fo lutc'n..(-hr crack pressure €=/ in Inf hdy)
&MPlCY ’ob\foal. N Z =

Jzi-a

R
N

\e
Shim
|

6“

’ ("y dz

"
«
?9




-

Kernel: CRACK INFLUENCE FUNCTION Alhz)
1 | ~ direckional / awisetreacc),
with ampbhicahon and
hileing Seclov:

~ demsorvial

Long- Ramye
ﬂ':t’ n-.pf'ol‘fc. Freld

e Comprewiom Jplitting:
AR e Shiclding Secler» shord
‘ 3 disleucs inferackiomeny »

Disknguick D@ @ kir) = -2 .
O . y
hgg{%%goul 4'; YO
..!..' ;; 2l A“; i ~ J
. R b efo e YRA B i HN' "n ‘l I _,_,,_‘ ’
3 1 [) amphtiaten A e Tk T2
o T : I “dor - ‘fs,o.w; ’i nkvadhon i
‘y 8 3 '

—




4

CRACK INFLUENCE FUNCTION IN TWO DIMEN-
SIONS:

Scpuakd Form

I A(g,g) = ’;(;) [ cos 20 + cos 2y + cos 2(0 + ) ]

y ¥
3\;\ «9‘ Y;% where IT(,.) — (rznﬁrp)i—l (17)
X 4

Expod-: lﬂt’—rqage inkrat}:'qu:‘wc'// be preserved

..f/\or‘-f-r&ago inferachans wnll caw eed eacd
ofher

(16)

ktr) ~ r% . asymptote
3 for r > 1
\ » kirl = 0 ... agmpfpfc
v r({l
1 asymtotes
r&gmud.

s 2 o

intuckive infermediate. f&ax&h‘m

char. lngth of e tramsition




?D Strzsr Field m‘ a P&m\y Sl'\aped Crack

14 : (after Fabrikant )
. SNitReay o = N1~ Rea _Ima,
zz 2 ) yy — 2 ’ fw = 2 2
Tes = Rer,, Tys = Imr, A
2 2
o, = _"(B -D), o= —}[(l +20)B + D] of| ¥
z
o = 2“5 20 al 13 1-2 + 22[02(613 - 21? + p2) - 51;, /
x l’l‘ G
ro= —eit 2 111102(413-21’2)“?]13 , ,
X 1214 2 X
24 4 ,2(9a2 2_1a,3 a
B = al2 _ arcsin &, p=% (1} + a2(24 + 22 .3p )] N
. - )
ll = L2 9 Ll ’ l? = L1 ; L‘ ’ 13 = lg - a29 14 = lg - l%

Ly = Ja=p*+2%,  Li=\[(a+p)?+2

* LONG-RANGE ASYMPTOT!C FIELD

d
Opp = ak(r) (1 + 2v) (sm 6 - -;-) +(1-2v - E’)c_oz;2 6)sin’ 0, )
04 = ok(r) (1 + ) (\siﬂx;‘flﬂ - 5) -(1-2v -'-’—5795 8)sin” 01 |
0 = ok(r) (sin=o - g’.) P '
'L Tp: = —ak(r) sin20(4 -:5sin20), : Opp =09, =0 o

k(r) = 03/(1”‘3)

*

k# replace by: — = tr \3 | '
(ame asymphhc frrme~ k{r) = :(: r'lz)
but wokle v clase rau«)-) T+ _
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- | . ! rerrh
s¥or cracking in all directions: 1J  caviesion
g . coordenates |

ASn(z) — (ASu(@) |
+ Jy X Riu(© L (=, )A5(€)av (e[12)

Admissibility of uniform stress fields requires (for 2D):
B Mz, ©)dv(E) = Jim [F(f" Az, £)rdg)dr = 0
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NEW NONLOCAL DAMAGE CONCEPT: 7
MICROMECHANIES OF CRACK
- INTERACTIONS

1. Ma,croscoplca.lly W (statistically nonhomo-

geneous) system of jpteracting and growing microcracks-
Kachanov’s simplification of superposition method.

2. Continuum counterpart: Fredholm integral equation

for poplecaldadlastic steasinargments, with fwo.ip-
SR

e Saint- Vena,nt principle: ghortranee averaging.
* Kernel = Jopeaiansealackalaflicncs.duncion: 1)

zero mean, 2) second-rank tensor, 3) directional
dependence, 3) shielding and amplification sectors.

* I ARl il i 2D, " 10 3D
oo—space: uniform cracking is nonintegrable'

3. Qﬁmﬁmmfm Nonlocal inelastic stress in-

crements in finite element code solved by iterations
in load steps.

4. Cg%m\%gv_v-lggal — no problem with unloading
criterion and continuity condition!
9. Localization into a band within a layer: 1) bifurcates

well before load-deflection peak, 2) load-deflection
. peak occurs before stress-strain peak.

6. Nonlocal microplane ana.lysis of fractures dominated
by: mode I, shear & compression—same characteris-
tic length. .
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NONLOCAL DAMAGE CONCEPT BASED ON
MICROMECHANICS OF CRACK INTERACTIONS

ZDENEK P. BaZanTt!, FELtow, ASCE

ABSTRACT: A nonlocal continuum model for strain-softening damage is derived by micromechanics
analysis of a macroscopically nonhomogeneous (nonuniform) system of interacting and growing mi-
crocracks, using Kachanov's simplified version of the superposition method. The continuum model is
obtained by seeking a continuum field equation whose possible discrete approximation coincides with
the matrix equation governing a system of interacting microcracks. The result is a Fredholm integral
equation for the unknown nonlocal inelastic stress increments, which involves two spatial integrals.
One integral, which ensues from the fact that crack interactions are governed by the average stress
over the crack length rather than the crack center stress, represents short-range averaging of inelastic
macro-stresses. The kernel of the second integral is the long-range crack influence function which is a
second-rank tensor and varies with directional angle (i.e., is anisotropic), exhibiting sectors of shielding
and amplification. For long distances r, the weight function decays as r=2 in two dimensions and as
r~3 in three dimensions. Application of the Gauss-Seidel iteration method, which can conveniently be
combined with iterations in each loading step of a nonlinear finite element code, simplifies the handling
of the nonlocality by allowing the nonlocal inelastic stress increments to be calculated from the local
ones explicitly. This involves evaluation of an integral containing the crack influence function, for which
closed-form expressions are derived. Because the constitutive law is strictly local, no difficulties arise

with the unloading criterion or the continuity condition of plasticity.

INTRODUCTION

T he nonlocal continuum—a concept introduced in elasticity by Eringen (1965, 1966), Kroner (1967)
and others (see BaZant, 1986)—is a continuum in which the stress at a given point depends not
only on the strain at that point but on the deformation of a certain neighborhood. As is now
generally accepted, finite element analysis of distributed strain-softening damage, including its final
localization into sharp fracture, requires the use of some type of nonlocal continuum (BazZant, 1984;
BaZant, Belytschko and Chang, 1984; Bazant, 1986). An effective type is the nonlocal damage
concept, in which the local damage or fracturing strain figuring in the incremental stress-strain
relation is replaced by its spatial average (Pijaudier-Cabot and BaZant, 1987; BaZant and Pijaudier
Cabot, 1988; Bazant and Lin, 1988a,b; Bazant and Ozbolt, 1990, 1992a, 1992b).

! Walter P. Murphy Professor of Civil Engineering, Northwestern University, Evanston, lllinois 60208
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The argument for the nonlocal damage concept has been mainly computational—the need to
limit localization of strain-softening damage to zones of nonzero volume. The physical explanation,
on the other hand, has been mainly phenomenologic and empirical. Intuitively, it has been expected
that the main source of nonlocality must be the interactions among adjacent microcracks. Certain
micromechanics arguments based on a system of microcracks have been shown to lead to the
nonlocal damage concept (Bazant, 1987, 1991). However, interpretation of these arguments for the
purpose of finite element analysis has not been clear. The interactions among the microcracks with
simultaneous crack growth during the loading steps have not been taken into account, and the form
of the spatial integral characterizing the nonlocal continuum has not been physically justified. The
crack interactions have recently been analyzed by Pijaudier-Cabot and BaZant (1991), and Bazant
and Tabbara (1992). However, the problem of determining the nonlocal continuum approximation
has not been addressed in that context. It will be in this paper (the contents of which have been
summarized at a recent conference; Bazant1992).

A special case of nonlocal continuum models for strain softening, which will not be studied here,
are the gradient models, which can be obtained from a Taylor series expansion of the nonlocal spatial
integral (Bazant, 1984). Much attention has recently been devoted to gradient-dependent plasticity
of micropolar (or Cosserat) type (de Borst, 1990, 1991; de Borst and Sluys, 1991; Miihlhaus and
Aifantis, 1991; Vardoulakis, 1989; Sluys, 1992; and Dietsche and Willam, 1992). These models,
however, have so far been justified by the need to regularize the boundary value problem, while a
physical justification from micromechanics is still lacking. Some microstructural physical arguments
for micropolarity have been offered for sand, but they have been vague and inconclusive.

Important contributions to micromechanics of cracking and damage have been made by Kachanov
(1985, 1990), Chudnovsky et al. (1987), Ju and Lee (1991), Lee and Ju (1991), Ju (1990, 1991),
Krajcinovic and Fonseka (1981), Benveniste et al. (1989) and others; see also the review in Bazant
(1986). Most studies have so far been limited to the special problem of determining the effective
elastic moduli of randomly micrﬁcracked solids that are on the macroscale in a statistically homo-
geneous state (for an excellent review, see Kachanov, 1992). For this special problem, it has been
possible to apply the homogenization methods for composites, such as Hill’s self-consistent model,
methods of periodic cells, methods of composite cylinders or composite spheres, variationally-based
bounds such as Hashin-Shtrickman bounds, statistical models for macro-homogeneous crack arrays,
etc.

However, homogenization is not the principal, most difficult issue. Rather, it is the continuum
smearing of damage that is spatially nonuniform (statistically nonhomogeneous). The smearing

must preserve the essential interactions of cracks or other micro-defects that govern localization




of strain. This issue cannot be handled by homogenization methods because they apply only
to macroscopically uniform fields. A different type of continuum model is required to handle
localization. Such a model will be proposed in this paper.

Numerical studies with a finite element program are beyond the scope of this paper, but are
already in progress (in collaboration with J. Ozbolt, using the microplane constitutive law). The
results ‘indicate that structural failures dominated by tension, shear or compression can all be
modeled using the same nonlocal material characteristics, especially the same characteristic length.

This has not been possible with the previous nonlocal models.
LOCAL AND NONLOCAL MACROSCOPIC STRESS-STRAIN RELATIONS

Finite element analysis of inelastic solids is generally carried out in small loading steps. For each

of them the local constitutive law may be written in the incremental form
Ao =E:(Ae-A€e’)= E:Ae- AS (1)

Here A, A€ = increments of the stress and strain tensors, E = fourth-rank tensor of elastic moduli
of uncracked material, Ae” = inelastic strain increment tensor, and AS = inelastic stress increment

tensor. In a nonlocal continuum formulation, Eq. (1) is replaced by
Ao =E:Ae- AS | (2)

AS is the nonlocal inelastic stress increment tensor, which has been defined in recent works by the
spatial averaging integral:
A3(2) = [ a(2,045(6) V(©) 3)

V = volume of the body; #,£ = coordinate vectors; and a(z, &) = given nonlocal weight function.
When AS(z) is a uniform field, AS(z) = AS(z) must represent a possible solution. Hence the
normalizing condition

A a(z,£) dV(§) =1 (4)

NONLOCALITY CAUSED BY INTERACTION OF GROWING MICROCRACKS

The main source of post-peak strain-softening is the gradual spread of distributed microcracking.
Accordingly, consider an increment of prescribed loads or boundary displacements for an elastic
solid that contains, at the beginning of the load step, many microcracks numbered as u = 1,...N.
On the macroscale, the microcracks are considered to be smeared, as required by a continuum
model. Exploiting the principle of superposition, we may decompose the loading step into two

substeps:




L. In the first substep, the cracks (already opened) are imagined temporarily “frozen™ (or “filled
with a glue”), that is, they can neither grow and open wider nor close and shorten. Also,
no new cracks can nucleate. The stress increments, caused by strain increments A€ and
transmitted across the temporarily frozen (or glued) cracks (I in Fig. 2), are then simply
given by E : Ae. This is represented by the line segment 13 (Fig. 1) having the slope of the

initial elastic modulus E.

II. In the second substep, the prescribed boundary displacements and loads are held constant,
the cracks are “unfrozen” (or “unglued™), and the stresses transmitted across the cracks are
relaxed. This is equivalent to applying pressures (surface tractions) on the crack faces (II in
Fig. 2). In response to this pressure, the cracks are now allowed to open wider and grow
(remaining critical according to the crack propagation criterion), or to close and shorten.

Also, new cracks are now allowed to nucleate.

If no cracks grew or closed (nor new cracks nucleated), the unfreezing (or nﬁglueing) at prescribed
increments of loads or boundary displacements that cause macro-strain increment Ae would en-
gender the stress drop 34 down to poiut 4 on the secant line 01 (Fig. 1). The change of state of the
solid would then be calculated by applying the opposite of this stress drop onto the crack surfaces.
However, when the cracks propagate (and new cracks nucleate), a larger stress drop defined by the
local strain-softening constitutive law and represented by the segment AS = 32 in Fig. 1 takes

place. Thus, the normal surface tractions
Ap, =n,AS,n, (3)

representing the normal component of tensor AS,, must be considered in the second substep as
loads Ap,, that are applied onto the crack surfaces (Fig. 2), the unit normals of which are denoted
as n, (a product with no product sign denotes here a product of tensors contracted on one index;
often it is written as the dot product, but here we omit the dot). Note also that for mode II or
III cracks, a similar equation could in general be written for the tangential tractions on the crack
faces.

Now we introduce two simplifying hypotheses:

1. Although the stress transmitted across each temporarily frozen crack varies along the crack, we
consider only its average, i.e., Ap, is constant along each crack (Fig. 3a). This approximation,
which is crucial for our formulation, was introduced by Kachanov (1985, 1987). He discovered
by numerical calculations that the error is negligible except for the rare case when the distance

between two crack tips is at least an order of magnitude less than their size.
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2. We consider only Mode I crack openings, i.e. neglect the shear modes (modes IT and III).
This is often justified, for instance in materials such as concrete, by a high surface roughness
which prevents any significant relative slip of the microcrack faces (the mode II or III relative
displacements that can occur on a macroscopic crack are mainly the result of Mode [ openings

of microcracks that are inclined with respect to the macrocrack).

A simple-minded kind of superposition method would be to unfreeze all the cracks, load by
pressure only one crack at a time, and then superpose all the cases (Fig. 2a). In this approach,
the pressure on each crack, Ap,, would be known. But one would still have to solve a body with
many cracks.

A better kind of superposition method is that adopted by Kachanov (1985, 1987), which was
also used by Datsyshin and Savruk (1973), Gross (1982), Chudnovsky and Kachanov (1983), Chud-
novsky et al. (1987), Chen (1984), and Horii and Nemat-Nasser(1985), and in a displacement
version was introduced already by Collins, 1963. In this kind of superposition, one needs to have
the solution of the given body for the case of only one crack, with all the other cracks considered
frozen (Fig. 2a). The cost to pay for this advantage is that the pressures to be applied at the
cracks are unknown in advance and must be solved. By virtue of Kachanov’s approximation, we
apply this kind of superposition to the average crack pressures only. The opening and the stress
intensity factor of crack u are approximately characterized by the uniform (average) crack pressure
Ap, that acts on a single crack within the given solid that has elastic moduli E and contains no

other crack. This pressure is solved from the superposition relation:

N
AP, = (Bpu) + ) A AP, p=1,.N (6)

v=1l

(...) is the averaging operator over the crack length; A,, are the crack influence coefficients rep-
resenting the average pressure (Fig. 3a) at the frozen crack p caused by a unit uniform pressure
applied on unfrozen crack v, with all the other cracks being frozen (Fig. 3b); and A, = 0 because
the summation in (6) must skip v = u. The reason for the notation for AP, with an overbar instead
of the operator (...) is that the unknown crack pressure is uniform and thus its distribution over the
crack area never needs to be calculated and no averaging of pressure actually needs to be carried
out.

Note that the exact solution requires considering pressures Ap,(z’) and Ap,(z') that vary
with coordinate z’ along each crack. In numerical analysis, the crack must then be subdivided into
maany intervals. This could hardly be reflected on the macroscopic continuum level, but is doubtless

unimportant at that level.




Substituting (5) into (6), we obtain

N
A(n,Sun,) = (A(n,S,m,)) + ) Awld(n,S,n,) (7)

vl
The values of AS, are graphically represented in Fig. 1 by the segment AS = 33. This segment
can be smaller or larger than segment 32.

Now we adopt a third simplifying hypothesis: In each loading step, the influence of the microc-
racks at macro-continuum point of coordinate vector £ upon the microcracks at macro-continuum
point of coordinate vector z is determined only by the dominant microcrack orientation. This
orientation is normal to the unit vector n, of the maximum principal inelastic macro-stress tensor

AS'(” at the location of the center of microcrack u. We use the definition:
Agﬂ” = A(n,S,n,) = ["ugu"'u]new - [nu—s.u"u]old (8)

The subscripts ‘new’ and ‘old’ denote the values at the beginning and ead of the loading step,
respectively. According to this hypothesis, the dominant crack orieatation generally rotates from

one loading step to the next. Eq. (7) may now be written as:

N
a3% - 3 A.a3 = (as) » (9)

v=1

Alternatively, one might assume n, to approximately coincide with the direction of the maxi-
mum principal strain. Such an approximation is simpler to use in finite element programs. It might
be realistic enough, especially when the elastic strains are relatively small.

When the principal directions of the inelastic stress tensor S do not rotate, the increment
operators A can of course be moved inside each product in (7),i.e. A(n,S,n,) = n,AS,n,, etc.
One might wonder whether this should not be done even when these directions rotate (i.e. when n,
varies), which would correspond to crack orientations being fixed when the cracks begin to form.
But according to the experience with the so-called rotating crack model, empirically verified for
concrete, it is more realistic to assume that the orientation of the dominant cracks rotates with the
principal direction of S.

It might seem we should have taken in the foregoing equations only the positive part of AS,,.

But this is not necessary since the unloading criterion prevents AS, from being negative.
FIELD EQUATION FOR NONLOCAL CONTINUUM

Now comes the most difficult step. We need to determine the nonlocal field equation for the

macroscopic continuum which represents the continuum counterpart of (9). The homogenization




theories as known are inapplicable, because they apply only to macroscopically uniform fields while
the nonuniformity of the macroscopic field is the most important aspect for handling localization
problems. The following simple concept is proposed:

The continuum field equation we seek is an equation whose discrete approzimation can be written
in the form of the matriz crack interaction relation (9).

This concept leads us to propose the following field equation for the continuum approximation

of microcrack interactions:
a3 (z) - / Az, £ a5V (€)dv(€) = (asM)(2)) (10)
v

because an approximation of the integral by a sum over the continuum variable values at the crack
centers yields (9). Here we denoted A(z,,£,) = £(A,)/Ve = crack influence function, V. is a
constant that may be interpreted roughly as the volume per crack, and £ is a statistical averaging
operator which yields the average (moving average) over a certain appropriate neighborhood of point
z or §. Such statistical averaging is implied in the macro-continuum smoothing and is inevitable
because in a random crack array the characteristics of the individual cracks must be expected to
exhibit enormous random scatter.

It must be admitted that the sum in (9) is an unorthodox approximation of the integral from
(10) because the values of the continuum variable are not sampled at certain predetermined points
such as the chosen mesh nodes but are distributed at random, that is, at the microcrack centers.
Another point to note is that (9) is only one of various possible discrete approximations of (10).
Since this approximation is not unique, the uniqueness of (10) as a continuum approximation is
not proven. Therefore, acceptability of (10) will also depend on computational experience (which
has so far been favorable).

When (10) is approximated by finite elements, it is again converted to a matrix form similar
to {9). However, the sum then runs over the integration points of the finite elements. This means
the crack pressures (or openings) that are translated into the inelastic stress increments are only
sampled at these integration points, in the sense of their density, instead of being represented
individually as in (9). Obviously, such a sampling can preserve only the long-range interactions of
the cracks and the averaging. The individual short-range crack interactions will be lost, but they
are so random and vast in number that aspiring to represent them in any detail would be futile
anyway.

For macroscopic continuum smearing, the averaging operator (...) over the crack length now
needs reinterpretation. Because of the randomness of the microcrack distribution, the macro-

continuum variable at point = should represent the spatial average of the effects of all the possible
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microcrack realizations within a neighborhood of point z whose size is roughly equal to the spacing ¢

of the dominant microcracks (which is in concrete approximately determined by the spacing of the

largest aggregates); hence,
(asM2) = [ As(Ea(z aV(6) (1)

The weight function a(z,£) is analogous to that in (3). It should vanish everywhere outside a
domain of a diameter roughly equal to ¢. For computational reasons, it seems preferable that
a have a smooth bell shape. Because of randomness of the microcrack distribution, function
a{z,§) may be considered as rotationally symmetric (i.e., same in all directions, or isotropic).
Strictly speaking, the macroscopic averaging domain could be a line segment in the direction of
the dominant microcrack (that is, normal to AS(})(x)), or an elongated roughly elliptical domain.
However, using a line segment seems insufficient for preventing damage localization into a line in
the case of a homogeneous uniaxial tension field, and it would also be at variance with the energy
release argument for nonlocality of damage presented in BaZant (1987, 1991).

Equation (10) represents a Fredholm integral equation (i.e., an integral equation of the second
kind with a square-integrable kernel) for the unknown Az (=), which corresponds in Fig. 1 to
the segment 35. The inelastic strain increment tensors AS(Y)(z) on the right-hand side, which
correspond in Fig. 1 to the segment 32, are calculated from the strain increments using the given
local constitutive law ( for example the microplane model, continuum damage theory, plastic-

fracturing theory, or plasticity with yield limit degradation).
SOME ALTERNATIVE FORMS AND PROPERTIES OF THE CONTINUUM MODEL

The solution of (10) can be written as:
83%(z) = (A5%(2)) - [ K(z.)ASDENAV(E) (12)

in which function K(z,£) is the resolvent of the kernel A(z,£). (This resolvent could be calculated
numerically in advance of the nonlocal finite element analysis, but it would not allow a simple

physical interpretation and a closed-form expression.) With the notation
v, = 6uv -Au (13)

where §,, = Kronecker delta, Eq. (9) can be transformed to

Y w430 = (ash) (14)




The macro-continuum counterpart of this discrete matrix relation is

/ Wz, ATV(OAV(E) = (A5V(z) (15)
v

/V ASM(E)a(z, E)AV(E)

which represents an integral equation of the first kind for the unknown function A?‘l)(f). Obvi-
ously,

¥(z,6) = 8(z - §) - A=, §) (16)
where §(z — §) = Dirac delta function in two or three dimensions; indeed, substitution of this
expression into Eq. (13) yields Eq. (10).

Defining the inverse square matrix:
[Bu] = [¥,.]7" (17)
we may write the solution of the equation system (14) as
A =Y Ba(ast) =S cnas. Cu=) Buan. (18)
v A v
with a,\ = a(z,,§,). The macro-continuum counterpart of the last equation is
83%(z) = [ B(e,0(a59€)V () = [ Cla.0a5DEV(E) (19)

where B(2,,§,) = £(By.)/V. and C(=,€) = [, B(=,€)a(§,z)dV(E). The kernel B(z,§) repre-

sents the resolvent of the kernel ¥(z, £) of (15). Furthermore,
B(z,§) = é(z - §) - K(=,§) (20)

because substitution of this equation into Eq. (19) furnishes Eq. (12). With (19) we have reduced
the nonlocal formulation to the same form as (3) for the previous nonlocal damage formulation
(Pijaudier-Cabot and BazZant, 1987; Bazant and Pijaudier-Cabot, 1989; Bazant and Ozbolt, 1990,
1991, 1992). However, the presence of the Dirac delta function in the last equation makes Eq. (19)
inconvenient for computations. Aside from that, it seems inconvenient to calculate in finite element
codes function B(z, §). Another difference is that the weight function (i.e., the kernel) is anisotropic
(and, in the present simplification, associated solely with the principal inelastic stresses).

Note also that if we would set A(z,§) = 0, the present model would become identical to the
aforementioned previous nonlocal damage model. But this would not be realistic. The interactions
characterized by A(z, £) appear to be essential.




N

Because the nonlocal integral in (22) is additive to the local stress AS, the present nonlocal
model can be imagined as an overlay of two solids that are forced to have equal displacements
at all points: (i) The given solid with all the damage due to cracks, but local behavior (no crack
interactions); and (ii) an overlaid solid that describes crack interactions only. The nonlocal stress
AS represents the sum of the stresses from both solids. It is the stress that is to be used in
formulating the differential equilibrium equations for the solid.

For the sake of simplicity, we have so far assumed that the influence of point £ on point =
depends only on the orientation of the maximum principal inelastic stress at £. Since at § there
might be cracks normal to all the three principal stresses (denoted now by superscripts 1 = 1,2,3
in parentheses), it might be more realistic to consider that each of them separately influences point

z. In that case, Eqs. (9) and (10) can be generalized as follows:

. “v 3 - . i
AZY -3 S AAzY = (ast) (21)

v=l =1

. 3 .
A3Y2) - / Y Az, a3 edvie) = (AsY(=) (=123 (22
via

Similar generalizations can be made in the subsequent equations, too. Note that when the body
is infinite, all the summations or integrations in this paper are assumed to follow a special path
labeled by ©, which will be defined in the next section.

The heterogeneity of the material, such as the aggregate in concrete, is not specifically taken
into account in our equations. Although the heterogeneity obviously must influence the nonlo-
cal properties (e.g. Pijaudier-Cabot and Bazant, 1991), this influence is probably secondary to
that of microcracking. The reason is that the pre-peak (hardening) inelastic behavior, in which
microcracking is much less pronounced than after the peak while the heterogeneity is the same,
can be adequately described by a local continuum. The main effect of heterogeneity (such as the
aggregates in concrete, or grains in ceramics) is indirect; it determines the spacing, orientations

and configurations of the microcracks.
ADMISSIBILITY OF UNIFORM INELASTIC STRESS FIELDS

In the previous nonlocal formulations, the requirement that a field of uniform inelastic stress
and damage must represent at least one possible solution led to the normalizing condition (4).
Similarly, we must now require that the homogeneous stress field Az = (ASM) satisfy (9) and
(10) identically. This yields the conditions that the integral of A(z,£) or the sum of A,, over an
infinite body vanish. However, the asymptotic behavior of A(z, £) for r — oo which will be discussed

later causes this integral or sum to be divergent. Therefore, the conditions must be imposed in a
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special form—the integral in polar coordinates is required to vanish only for a special path, labeled
by ©, in which the angular integration is completed before the limit r — oo is calculated, that is,

0 (for 2D)

34
1]

/VQ A(z,§)dV (&) = Ali'li_r’n‘=° /OR ( A(z,{)rddb) dr

/v ° Az, €6)dV(€) = dim /o ? ( /o i /o ’ A(z, €)r?sin 0d0d¢) dr

r,¢ are polar coordinates, 7,0, ¢ are spherical coordinates. Furthermore, labeling again by ©

0 (for 3D) (23)

a similar summation path (or sequence) over all the cracks v in an infinite body, the following

discrete condition needs to be also imposed:
?
> Au=0 (24)

This condition applies only to an array of infinitely many microcracks that are, on the macroscale,
perfectly random and distributed statistically uniformly over an infinite body (or are periodic). By

the same reasoning, for an infinite body we must also have

/ ® K(2,)dV(€) = 0 (25)

® 0] ®
/ U, £)AV(E) = / B(z, £)dV(£) = / Clz, £)AV(E) = 1; (26)
v Vv \ 4

and in the discrete form

@ 1°) @ @
Z‘I’ut':Eauu:ZBuv:zC‘w:l (27)
v v v v

For integration paths in which the radial integration up to r — oo is carried out before the angular
integration, the foregoing integrals and sums are divergent.

GAUSS-SEIDEL ITERATION APPLIED TO NONLOCAL AVERAGING

For the purpose of finite element analysis, we will now assume that subscripts ;4 and v label the
numerical integration points of finite elements, rather than the individual microcracks. This means
that the microcracks are represented by their mean statistical characteristics sampled only at the
numerical integration points.

In finite element programs, nonlinearity is typically handled by iterations of the loading steps.
Let us, therefore, examine the iterative solution of (9) or (14), which represents a system of N
linear algebraic equations for N unknowns Agf}) if ASf.u are given. The matrix of ¥,, is in
general nonsymmetric (because the influence of a large crack on a small crack is not the same as the

influence of a small crack on a large crack). This nonsymmetry seems disturbing until one realizes
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that this is so only because of our choice of variables AST) and (AS,(.”), which do not represent
thermodynamically conjugate pairs of generalized forces and generalized displacements. If (AS,(.I))
were expressed in terms of the average crack openings W, , then the equation system resulting from
(9) or (14) would have a matrix which would have to be symmetric (because of Betti’s theorem), and
also positive definite (if the body is stable). These are the attributes mathematically required for
convergence of the iterative solution by Gauss-Seidel method (e.g., Rektorys, 1969; Collatz, 1960;
Korn and Korn, 1968; Varga, 1962; Fox, 1965; Strang, 1980). Aside from that, convergence of the
iterative solution of (9) or (14) must also be expected on physical grounds (because it is mechanically
equivalent to the relaxation method, which always converges for stable elastic systems).

In the r-th iteration, the new, improved values of the unknowns, labeled by superscripts (r + 1],

are calculated from the previous values, labeled by supescript [r], either according to the recursive

relations:
N
A = (A + D ALARY] (28)
v=1
N
AT = ast)+ Y awas (=1,2,..N) (29)
v=1

or according to the recursive relations:

u-1 N
A#;‘H] = (Ap“) + z AuvAﬁg“] + Z A‘“’Aﬁr} (” =12, N) (30)

v=1 v=utl
u=1 N
Az o (as®) + 34,83 L 5 ALAaTPT (w=12,.0) (31)
v=1 v=u+l
Equation (29), also known as the Gauss method or Jacobi method, is normally slightly less efficient
than (31), in which the latest approximations are always used. The values of AS,(,I) may be used
as the initial values of AS‘Y) U1 in the first iteration.

It is possible to derive Eq. (28) more directly, rather than from (6). To this end, we note that
the sequence of iterations is identical to a solution by the relaxation method in which one crack after
another is relaxed (i.e. its pressure reduced to zero) while all the other cracks are frozen (which is
a problem with one crack only), as illustrated in Fig. 2b. Each relaxation produces pressure on the
previously relaxed cracks. After relaxing, one by one, all the cracks, the cycle through all the cracks
is repeated again and again. This kind of relaxations is known in mechanics to converge in general
(this was numerically demonstrated for a system of cracks and inclusions by Pijaudier-Cabot and
Bazant, 1991). The solution to which the relaxation process converges is obviously that defined
by Eq. (9). Note also that this relaxation argument in fact represents a simple way to prove the
superposition equation (6).
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For structural engineers, it is interesting to note the similarity with the Cross method (moment
distribution method) for elastic frames. Relaxing the pressure at one crack while all the other
microcracks are frozen (glued) is analogous to relaxing one joint in a frame while all the other joints
are held fixed. Repeating this for each joint, and then repeating the cycles of such relaxations of
all the joints, eventually converges to the exact solution of the frame.

The macro-continuum counterpart of the Gauss-Seidel iterative method, which converges to the
solution of the Fredholm integral equation (10), is analogous to (29) and is given by the following

relation for successive approximations (iterations):
83V (z) = (as0(2)) + [ A= 02T av(e) (32)
v

The discrete approximation of the last relation is the equation that ought to be used in finite
element programs with iterations in each step. We see that the form of averaging is different from
that currently used, given by (3). There are now two additive spatial integrals, one for close-range
averaging of the inelastic stresses from the local constitutive relation and one for long-range crack
interactions based on the latest iterates of the inelastic stresses.

In programming, the old iterates need not be stored in the computer memory. So the subscripts
(r] and [r + 1] may be dropped and equations (31) and (32) and may be replaced by the following

assignment statements:

N

A3Y — (asMy+ Y ALazY (b=1,2,..N) (33)
v=1

ATV(z) ~ (ASY(z))+ L A=z, ©)a3M(€) dv(g) (34)

A strict implementation of Gauss-Seidel iterations suggests programming one iteration loop
for (33) to be contained within another loop for the iterations of the loading step in which the
displacement and strain increments in the structure are solved. However, one common iteration
loop, which is computationally much more efficient, can serve both purposes. Then, of course, the
iteration solution is not exactly the Gauss-Seidel method because the strains are also being updated
during each iteration. There is already some computational experience showing that convergence
can still be achieved.

The common iteration loop has the advantage that it permits the use of the explicit load-
step algorithm for structural analysis. In a loading step of this algorithm, one evaluates in each
iteration at each integration point the elastic stress increments E : A€ and the local inelastic stress
increments AS from fixed strains Ae; then one uses (33) to calculate from AS the nonlocal inelastic

stress increments AS for all the integration points, and solves new nodal displacements and strains
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by elastic structural analysis.

CRACK INFLUENCE FUNCTION

N

Cracks Far from Boundary in Two-Dimensional Body

By virtue of applying the Gauss-Seidel iterative method, coefficients A,, can be obtained from the
stress field of only one pressurized crack in the given elastic solid. In practice, this solid is finite,
and then A, should in principle be calculated taking into account the geometry of the body. This
means that for every different body shape and size and every different crack location, a new set of
coefficients A,, would have to be calculated. This would be a preposterous task.

A simplification is suggested, however, by the decay of stresses with the distance from a pres-
surized crack. For practical purposes, the distance of most cracks from the boundary is such that
the interference of the boundary with the stress field of the crack is negligible. So, except for points
near the boundary, this field can be approximately calculated as if the crack were embedded in an
infinite elastic solid.

For the purpose of macro-continuum representation, some aspects of the stress field in an infinite
body underlying the crack influence function A must be preserved while others must be simplified.
Preserved must be the long-range asymptotic form of this field, because the long-range contributions

¢ to the integral that come from the neighborhood of a remote point § come to point & from nearly

the same direction and nearly the same distance (Fig. 3c). How to handle the close-range fields
of the microcracks is a much more difficult question. Certain aspects must obviously be simplified:

First, it is impossible to represent on the macro-scale the microcracks as finite in size, having (in

two dimensions) two distinct crack tips, and second, the singularities of the stress fields near the ’
crack tips must be smeared at the macro-level as a nonsingular, bounded field. The fi- -ondition
is met by taking the long-range asymptotic field of a crack in infinite elastic solid. This is easy
to derive, as follows. >
Consider now a crack in an infinite solid, subjected to uniform pressure & (Fig. 3b,e). According
to Westergaard'’s solution (e.g. Broek, 1987; Hellan, 1984),
0zz =ReZ ~yIm Z' -0, 0,9 = ReZ + yIm Z' -0, tTyy=-yRelZ (35) ’
in which 0,; and oy, are the normal stresses, 7, is the shear stress, and
Z =0z (2% - a®)"V/2, z=re® (36) .

Here 2a = crack length, i? = 1, Z’ = dZ/dz, and r, ¢ = polar coordinates with origin at the crack
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center and angle ¢ measured from the crack direction z. For r » a we have the approximation:

a? ~1/2 a® _jie a?
Z:a(lﬁr—z—;;lr:) =U(l+§‘r—ze +...)= 0(1"'52—2"'...) (37)
From this, we calculate
3
ReZ = ¢ (1 + -é?r—z cos 2¢ + ) , Z'=o(~a%z73 +..)
yIm Z' = oga®r sing Im (—r~%~3%) = —ga?r~? sin ¢ (~ sin 3¢) (38)

Substituting this into (35) and using the formulas for products of trigonometric functions, we

get the following simple result for the long-range (v > @) asymptotic field:

Ozz = ok(r) co;4¢, Oyy = ok(r) (cos 2¢ - cos24¢)
ey = ok(r) sm4d>-2-sm‘2¢ (39)

where k(r) = a/r?. Subscripts z,y refer to cartesian coordinates with origin at point § coinciding
with the crack center and axis y normal to the crack; oz and oy, are the normal stresses, 7, is
the shear stress; and ¢ are polar coordinates with origin at the crack center, with the polar angle
¢ measured from axis z. The principal stresses o(!) and o(?) and the first principal stress direction

#'1) are given by:

o™ = ok(r) (°°‘°‘ 2% | sin ¢) 6@ = k() (°°‘22¢ — sin ¢) (40)

2
tan2¢{!) = —cot3¢

The foregoing expressions describe the long-range form of function A(z, £). It does not matter
that they have a r~? singularity at the crack center, because they are invalid for not too large r.
Note that the average of each expression over the circle r = constant is zero, which is in fact a
necessary property.

Function A(z, §) can also be easily determined for small r. As intuitively suggested by Fig. 3d,
the short-range interactions go in all directions and should cancel each other. That this is indeed
so is confirmed by Kachanov’s (1992) numerical studies of interactions of randomly generated crack
systems that are uniform over a large body. He found that for such systems the classical assumption
of noninteracting cracks is very good, which means that all the interactions mutually cancel. It
follows that for r — @, the function A(z,£) should approach the asymptote A = 0 (Fig. 3g).

For intermediate r, calculation of A(x,€) would need to take into account statistical interac-
tions, which seems very difficult. Therefore, we propose to use a smooth empirical function that

approaches for r — oo and for r — 0 the two asymptotic curves we established, as shown in Fig.
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3g. We also know the function must be bounded. The simplest expression to have these properties,

which replaces a?/r? in the foregoing expressions, is

K(r) = (;21‘_:?2.)’ (41)
Here £ is an empirical constant that represents the distance to the peak in Fig. 3g. It may be
identified with what has been called the characteristic length of the nonlocal continuum. Probably
its value reflects the dominant spacing of the microcracks, which in turn is determined by size
and spacing of the dominant inhomogeneities such as aggregates in concrete, or grain or crystal
size in ice, ceramics and rocks. It may perhaps be taken equal to the larger of the crack size and
the maximum inhomogeneity (aggregate) size. x is an empirical constant such that x{ roughly
represents the average or effective crack size a for the macro-continuum (in theory, it seems this
value should be increased during the loading process since the cracks grow).

In the formalism we introduced previously, A(z,€) is a scalar. All the information on the
relative crack orientations is embedded in the values of this function. The principal stress direction
at point §, which can be regarded as the dominant crack direction at that location (Fig. 3e), is
all the directional information needed to calculate the stress components at point x; see (40), in
which r = ||z — || = distance between points  and §. The value of A(=, §), needed for (32) or (9),
may be determined as the projection of the stress tensor produced at point z onto the principal
inelastic stress direction at that point. According to Mohr circle: 2A(z,€) = (0zr + 0yy) + (022 —
Oyy) €05 2(1h — ) — 272, sin 2( — 0) in which 0, ¥ = angles of the principal inelastic stress directions
at points §, z, respectively, with the line connecting these two points (i.e. with the vector z — §).
Substituting here for o.., etc., the expressions from (39), one obtains a trigonometric expression

which (as Planas, 1992, pointed out), can be brought by trigonometric transformations to the form:

A(z,§) = - %’l) [ cos 28 + cos 2% + cos 2(6 + ¢) ] (42)

where § = 90° — ¢. Note that the function A(z,§) is symmetric. This is of course a necessary
consequence of the fact that the body is elastic.

Two properties contrasting with the previous nonlocal formulations should be noted: (1) the
crack influence function is not axisymmetric (isotropic) but depends on the polar angle (i.e. is
anisotropic), and (2) it exhibits a shielding sector and an amplification sector. We may define
the amplification sector as the sector in which o,, (the same stress component as that applied at
the crack faces) is positive, and the shielding sector as the sector in which o,, is negative. The

amplification sector o, > 0 is, according to (39), given by ¢ < ¢ where

& = 55.740° (43)
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The sector in which the volumetric stress ., +a,, (first stress invariant) is positive is ¢ < 45°. The
sector in which ., > 0is ¢ < 22.5° and ¢ > 67.5°. The sector in which 27max = 0z — 9,y 2 0 is
¢ < 45°. The maximum principal stress o(!) is positive for all angles ¢, and the minimum principal
stress o(?) is positive for ¢ < 21.471°.

The consequence of the anisotropic nature of the crack influence function is that interactions
between adjacent cracks depend on the direction of damage propagation with respect to the ori-
entation of the maximum principal inelastic stress. In a cracking band that is macroscopically of
mode I (Fig. 4a), propagating in the dominant direction of the microcracks, the microcracks assist
each other in growing because they lie in each other’s amplification sectors. In a cracking band that
is macroscopically of mode II (Fig. 4b), the microcracks are mutually in the transition between
their amplification and shielding sectors, and thus interact little. Under compression, a band of
axial splitting cracks may propagate sideways (Fig. 4c), and in that case the microcracks inhibit
each other’s growth because they lie in each other’s shielding sectors. Different interactions of this
kind probably explain why good fitting of test data with the previous nonlocal microplane model
required using a different material characteristic length for different type of problems (e.g., mode I

fracture specimens versus diagonal shear failure of reinforced beam).
Cracks Far from Boundary in Three-Dimensional Body

The case of three dimensions (3D) is not difficult when the cracks are penny-shaped and the bound-
ary is remote. The stresses around such cracks have been expressed as integrals of Bessel functions
(Sneddon and Lowengrub. 1969; Kassir and Sih, 1975), which are cumbersome for calculations.
Recently, however, Fabrikant (1990) ingeniously derived the following closed-form expressions:

01+R,edg UI—R.CUQ [ma,
e = Ty w=T g Tw= g
T:: = Rer,, Tyzs = Im 7, (44)
in which
g, = 2—0(3 - D), o= grz[(l + 2V)B + D]
20 al}l z%[a3(613 - 212 + p?) - 514)
2i 3 P
o, = e¥* 12112 (1 2+ - l‘l’ )
20 zl la2(412 - 5p2) + 14U
= —el® 1 12°3
al3 a az?[l} + a?(2a? + 222 - 3p?)]
B = %3- = 2
7 arcsin — I’ D 80

Lg—L L2+L
ho= 257 b= beyi-ah L=y
L= V- pra, ,=v@?7FT?
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in which @ = crack radius (Fig. 3f); r,0,¢ are the spherical coordinates attached to cartesian
coordinates z, y, z at point £, with angle § measured from axis z which is normal to the crack at
point §; r = distance between points 2 and §; and p, ¢, z are the cylindrical coordinates with origin
at the crack center and p, ¢ as polar coordinates in the crack plane, angle ¢ being measured from
axis z.

Since the long-range asymptotic form of the foregoing stress field has not been given, we need
to derive it. For this purpose, one needs to note that, for large r, L, = r — asinf, L, = r + asinf
(see the meaning of Ly and L; in Fig. 3f), !; = asin8,l; = r and, for r » a, arcsin(a/l;) =
(1 + (a?/613)]a/lz, /T2 = a? = r[l — (a®/2r%)]. The result is the following long-range asymptotic
field:

G0 = ak(r) [(1 + 2v) (sinze - %) + (1 - 2v - 5cos? 8) sin? 0]
Ops = ak(r) [(1 +2v) (sin20~ ;) -(1-2- 5cos’0)sin’a]

0:: = ak(r) (sin’O—%) (46)

0, = - ok(r)sin20(4 - 5sin?9), Opp =092 =0

in which, for three dimensions, k(r) = a3/(xr3). For the same reasons as those that led to Eq. (41),
this expression may be replaced by
3
k=3 (7555) (47)
The crack influence function based on (46) satisfies again the condition that its spatial average over
every surface r = constant be zero.

It is important to note that, asymptotically for large distances r, the crack influence function
in three dimensions decays as r~3, whereas in two dimensions it decays as r~2. Again, in contrast
to the previous formulations, the weight function (crack influence function) is not axisymmetric
(isotropic) but depends on the polar or spherical angles (i.e. is anisotropic).

Note again that one can distinguish a shielding sector and an amplification sector. According
to the change of sign of o,; in

Eq. (46), the boundary of these sectors is given by the angle

8y = arcsin /2/3 = 54.736° (48)

or 90° — 6, = 35.264°. Thus, the amplification sector # > 8, is significantly narrower in three than

in two dimensions.
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In the case of a field translationally symmetric in z, one might wonder whether integration over
z might yield the two-dimensional crack influence function. However, this cannot occur because the
two-dimensional crack influence function corresponds in three dimensions to a field of strip cracks

aligned in th z direction, which cannot yield the same properties as the penny-shaped cracks.
Cracks Near Boundary

When the boundary is near, the crack influence function should be obtained by solving the stress
field of a pressurized crack located at a certain distance d from the boundary; Fig. 4d. Obviously,
the function will depend on d as a parameter, i.e., A(2,§,d). Functions A will be different for a
free boundary, fixed boundary (Fig. 4e), sliding boundary, and elastically supported boundary or
interface with another solid. When the crack is near a boundary corner (Fig. 4f), A represents the
solution of the stress field of a pressurized crack in the wedge, and will depend on the distances
form both boundary planes of the wedge. These solutions will be much more complicated than
for a crack in infinite body, and simplifications will be needed. On the other hand, because of the
statistical nature of the crack system, exact solutions of these problems are not needed. Only their
essential feature are.

A crude but simple approach to the boundary effect is to consider the same weight function as
for an infinite solid, protruding outside the given finite body. In the previous nonlccal formulations,
based on the idea of spatial averaging, the same weight function as for the infinite solid has been
used in the spatial integral and the weight function has simply been scaled up (renormalized), so
that the integral of the weight function over the reduced domain would remain 1. In the present
formulation, such scaling would have to be applied to all the weight functions whose integral should
be 1, i.e. a,%,B,C. For those weight functions whose integral should vanish, a different scaling
would be needed to take the proximity of the boundary into account; for example, the values at
the boundary should be scaled up so that the spatial integral would always vanish, as indicated in
(23). As a reasonable simplification, this might perhaps be done by replacing the A,, values for
the integration points §, of the boundary finite elements by kyA,, where the multiplicative factor
ky is determined from the condition that ™% A,, = 0 (with the summation carried over all the

points in the given finite body);

k== A,“,/ Y A (49)

interior v boundary v

LONG-RANGE DECAY AND INTEGRABILITY

Consider now an infinite two-dimensional elastic solid in which the stress, strain and cracking are
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macroscopically uniform. All the microcracks are of the same size a, and the area per crack is s2.
The stress o applied on each microcrack is the same. From (39) we calculate the contribution to
the nonlocal integral from domain V) outside of a circle of radius R, that is sufficiently large for

permitting the approximation k(r) = a?/r%;

Y14 2
/ (Oee + 0yy)dV = hm / / oa? cos 2¢‘> rd¢dr L / / cos 2¢d¢dr (50)
Vi =R, 23 =R, Jo=

Now an important observation, to which we already alluded: The last expression is an improper

integral which is divergent (because it is divergent when the integrand is replaced by its absolute
value; see e.g. Rektorys, 1969). This also means that the value of the integral depends on the
integration path. For some path the integral may be convergent, and that path, shown in (50), has
been labeled by ©®. So we must conclude that a homogeneous AS field, that is, a field of uniform
length increment of all the cracks in an infinite body that is initially in a statistically uniform state,
is impossible.

But this is not all that surprising. As is known from analysis of bifurcation and stable equilib-
rium path, strain-softening damage (which is due to microcrack growth) must localize (e.g. Bazant
and Cedolin, 1991). So in practice the domain of the integrals such as the last one must not be
infinite in two directions. It can only be finite or infinite in one direction only, as is the case for a
localization band. The basic reason for this situation is that the asymptotic decay r—2, which we
have obtained, is relatively weak—much weaker than the exponential decay assumed in previous
works (for an exponential decay, the integration domain could be infinite in all directions without
causing this kind of problem).

A similar analysis of uniform damage can be carried out for an infinite three-dimensional solid,
and the conclusion is that the integration domain, that is, the zone of growing microcracks, can
only be finite or infinite in two directions only (a localization layer), but not in three.

A similar divergence of the integral over infinite space has been known to occur in other problems
of physics, for example, in calculation of the stresses from periodically distributed inclusions, or
the light received from infinitely many statistically uniformly distributed stars. For a perspicacious
mathematical study of this type of problem, see Furuhashi, Kinoshita and Mura (1981).

GENERAL FORMULATION: TENSORIAL CRACK INFLUENCE FUNCTION

In Eq. 10, the principal stress orientations at points  and £ are reflected in the values of the
scalar function A(z,§). For the purpose of general analysis, however, it seems more convenient

to use a tensorial crack influence function referred to common structural cartesian coordinates

X = X\,Y = X3,Z = X3, and transform all the inelastic stress tensor components to X,Y, Z.
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The local cartesian coordinates z = z,,y = 73,z = z3 at point £ are chosen so that axis y coincide
with the direction of the maximum principal value of the inelastic stress tensor S(£), and axes z
and z coincide with the other two principal directions (Fig. 4). Equations (33) and (34) may be

rewritten in common structural coordinates as follows:

N 3 .
a3, — (a5,,)+ 2 Y B)LADLASY  w=12.Mi=123) (Y

L) T 14 11
v=l =1

ATi(z) ~ (ASu(=)+ /v 23: RO (OAN(= 0830 @ave)  (=123) (52)
i=1

in which, similarly to (22), we included the influence of the dominant cracks normal to all the
principal stress direction at each point; R(,';}H(E) or Rf.')m = cxrciy = fourth-rank coordinate
rotation tensor (programmed as a square matrix when the stress tensors are programmed as column
matrices) at point § or §,; ckr, 1y = coefficients of rotation transformation of coordinate axes
(direction cosines of new axes) from local coordinates z; at point § (having in general a different
orientation at each £) to common structural coordinates X (exs = cos(zk, X1), X1 = ck1Zk. 015 =
CkIC1JOkl) ; subscripts I, J or k, [ refer to cartesian components in the common structural coordinates
or in the local coordinates at &; and Affz,,, or ;\f:)(::,f) = components of a tensorial discrete or
continuous nonlocal weight function (crack influence function, replacing the scalar function A),
which are equal to £~? times the cartesian stress components o4 for o = 1 as defined by (39) for
two dimensions, or £~3 times such cartesian components as defined by (46) for three dimensions

(with r = [}z - £]])-
CONSTITUTIVE RELATION AND GRADIENT APPROXIMATION

As is clear from the foregoing exposition, the constitutive relation is defined only locally. It
yields the inelastic stress increment (AS(!)(z)), illustrated by segment 32 shown in Fig. 1. This
contrasts with the previous nonlocal formulations, in which the nonlocal inelastic strain, stress
or damage was part of the constitutive relation. This caused conceptual difficulties as well as
continuity problems with formulating the unloading criterion. Furthermore, in the case of nonlocal
plasticity, this also caused difficulties with the consistency condition for the subsequent loading
surfaces.

Here these difficulties do not arise, because the nonlocal spatial integral is separate from the
constitutive relation. Thus the unloading criterion can, and must, be defined strictly locally. If
plasticity is used to define the local stress-strain relation, the consistency condition of plasticity is
also local.

Recently there has been much interest in limiting localization of cracking by means of the so-
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called gradient models. These models can be looked at as approximations of the nonlocal integral-
type models, and can be obtained by expanding the nonlocal integral in Taylor series (Bazant, 1984).
Unlike the present model, there have been only scant and vague attempts at physical justifications
for the gradient models, especially for aggregate-matrix composites such as concrete. It seems that
the physical justification for the gradient models of such materials must come indirectly, through
the integral-type model. However, if that is the case, the present conclusions signal a problem. If
the spatial integral in (10) were expanded into Taylor series and truncated, the long-range decay of
the type r=2 or r=3 could not be preserved. Yet it seems that this decay is for microcrack systems

important. If so, then the gradient approximations are physically unjustified.
CONCLUSIONS

1. The inelastic stress increments correspond to the stresses that the load increment would pro-
duce on the cracks if they were temporarily “frozen” (or “glued”), i.e., prevented from opening and
growing. The nonlocality arises from two sources: (1) crack interactions, which means that appli-
cation of the pressure on the crack surfaces that corresponds to the “unfreezing” (or “unglueing”)
of one crack produces stresses on all the other frozen cracks; and (2) averaging of the stresses due to
unfreezing over the crack surface, which is needed because crack interactions depend primarily on
the stress average over the crack surface (or the stress resultant) rather than the stress at the crack
center. The crack interactions (source 1) can be solved by Kachanov’s (1987) simplified version of
the superposition method, in which only the average crack pressures are considered.

2. The resulting nonlocal continuum model involves two spatial integrals: One integral, which
corresponds to source (1) and has been absent from previo.us nonlocal models, is long-range and
has a weight function whose spatial integral is 0; it repregents interactions with remote cracks and
is based on the long-range asymptotic form of the stress field caused by pressurizing one crack
while all the other cracks are frozen. Another integral, corresponding to source (2), is short-range,
involves a weight function whose spatial integral is 1, and represents spatial averaging of the local
inelastic stresses over a domain whose diameter is roughly equal to the spacing of major microcracks
(which is roughly equal to the spacing of large aggregates in concrete).

3. As an approach to continuum smoothing when the macroscopic field is nonuniform, one may
seek a continuum field equation whose possible discrete approximation coincides with the matrix
equation governing a system of interacting microcracks.

4. The long-range asymptotic weight function of the nonlocal integral representing crack in-
teractions (source 1) has a separated form which is calculated as the remote stress field of a crack

in infinite body. It decays with distance r from the crack as r=? in two dimensions and r~3 in
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three dimensions. This long-range decay is much weaker than assumed in previous nonlocal mod-
els. In consequence, the long-range integral diverges when the damage growth in an infinite body
is assumed to be uniform. This means that only the localized growth of damage zones can be
modeled.

3. In contrast to the previous nonlocal formulations, the weight function (crack influence func-
tion) in the long-range integral is a tensor and is not axisymmetric (isotropic). Rather, it depends
on the polar or spherical angle (i.e. is anisotropic), exhibiting sectors of shielding and amplification.

6. When an iterative solution of crack interactions according to the Gauss-Seidel iterative
method is considered, the long-range nonlocal integral based on the crack influence function yields
the nonlocal inelastic stress increments explicitly. This explicit form is suitable for iterative solutions
of the loading steps in nonlinear finite element programs. The nonlocal inelastic stress increments
represent a solution of a tensorial Fredholm integral equation in space, to which the iterations
converge.

7. The constitutive law, in this new formulation, is strictly local. This is a major advantage,
eliminating difficulties with formulating the unloading criterion and the continuity condition, ex-
perienced in the previous nonlocal models in which nonlocal inelastic stresses or strains have been

part of the constitutive relation.
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FIGURE CAPTIONS
Fig. 1 Local and Nonlocal Inelastic Stress Increments During the Loading Step.
Fig. 2 Superposition Method for a Solid with Many Cracks (a,d — two alternatives).

Fig. 3 Crack Interactions of Various Types, Their Radial and Angular Dependences, and Coordi-

nates.

Fig. 4 Cracks Near Boundary and Crack Bands. >
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NONLOCAL DAMAGE THEORY BASED ON
MICROMECHANICS OF CRACK INTERACTIONS!

By ZDENEK P. BAZANT?, F.ASCE

Errata and Addendum

Errata:

o In the sentence preceding (12), replace the word ‘subscript’ by the word ‘superscript’.
e In equation (35b), replace 0., by oy,

¢ In the last sentence of the second paragraph after (40), replace r — oo by r — 0.

Addendum: A rigorous mathematical definition of the continuum crack influence function
A has not been given in the paper. It can be given as folows. Function A(0, £) represents the
influence of a source crack at z = 0 on a target crack at £. At the macro-continuum point
z = 0 there may or may not be a crack. To idealize the random two-dimensional arrangement
of cracks, we may imagine that the center of the source crack influencing some target crack
can occur randomly, with equal probability, anywhere within the square s x s centered at point
z = 0; s represents the typical spacing of the dominant cracks of length 2a near point z = 0
(in a material such as concrete, s = spacing of the largest aggregate pieces. The macroscopic
crack influence function can describe the influence of the source crack only in the average sense.
Therefore, A(0, £) is defined as the mathematical expectation, £, with regard to all the possible
realizations of the source crack center within the square s x s; A(0,£) = (E[oM (€ ~ 2,7 — y)))
where the operator ( ) represents averaging over length 2a of the target crack at &, and
(6 — z,n7 — y) = r = vector from the center z = (z, y) of a source crack to the center £ = (£,7)
of the target crack. In detail, chosing axis y to be normal to the source crack, we have

1 1 re/2 o2
== [ W —z,n— ‘
A0 =5 | = /_ 2 /_ Jy2¥ &~ =0 - y)dzdyda (53)

where (1) is the principal str ¢ = (€,n) caused by a unit uniform pressure applied on the
faces of a crack of length 2a cenicied at z = (z,y), as given by equation (40). The last integral,
gives the precise mathematical definition of A. However, the integral seems difficult to evaluate
and unnecessarily complicated. The simple approximation given in the paper on the basis of
the asymptotic properties of this integral appears to be preferable for practical computations.

1J. of Engrg. Mech. ASCE, 120 (3), March 1994, .
?Walter P. Murphy Professor of Civil Engineering and Materials Science, Northwestern University, Evanston,
Minois 60208.
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LOCALIZATION ANALYSIS

OF NONLOCAL MODEL
BASED ON CRACK INTERACTIONS

MiLAN JIRASEK! AND ZDENEK P. BAZANT?, FELLOoW ASCE

ABSTRACT.— The conventional nonlocal model, often used as a localization
limiter for continuum-based constitutive laws with strain-softening, has been based
on an isotropic averaging function. It has recently been shown that this type of non-
local averaging leads to a model which cannot satisfactorily reproduce experimental
results for very different test geometries without modifying the value of the char-
acteristic length depending on geometry. A micromechanically based enrichment
of the nonlocal operator by a term taking into account the directional dependence
of crack interactions can be expected to improve the performance of the nonlocal
model. The aim of this paper is to examine this new model in the context of a simple
localization problem reducible to a one-dimensional description. Strain localization
in an infinite layer under plane stress is studied using both the old and the new
nonlocal formulations. The importance of a renormalization of the averaging func-
tion in the proximity of a boundary is demonstrated and the differences between
the localization sensitivity of the old and new model are pointed out. In addition
to the detection of bifurcations from an initially uniform state, the stable branch of
the load-displacement diagram is followed using an incremental procedure.

Introduction

As is now widely accepted, continuum modeling of progressive cracking in quasib-
rittle materials such as concrete, rock, tough ceramics or ice, requires constitutive
models that exhibit strain-softening. In the context of standard local constitutive
models (in which the stress-strain relationship at one point is not influenced by the
evolution of stress and strain at other points), the presence of strain-softening leads
to serious theoretical as well as numerical deficiencies. The governing differential
equations lose ellipticity (in a static formulation) or hyperbolicity (in a dynamic
formulation) and the problem ceases to be well-posed. These deficiencies manifest
themselves in numerical calculations by spurious mesh sensitivity—strain usually

!Postdoctoral Research Fellow, Northwestern University, Evanston, Illinois 60208; currently
Assistant Professor, Faculty of Civil Engrg., Czech Technical University, Thiakurova 7, 166 29
Prague, Czech Republic.

2Walter P. Murphy Professor of Civil Engineering, Northwestern University, Evanston, [llinois
60208.
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localizes into a narrow band whose width depends on the size of finite elements in
the mesh and converges to zero as the mesh is refined. The corresponding load-
displacement diagram always exhibits snapback for a sufficiently fine mesh and the
total energy dissipated by fracture converges to zero.

To remedy the situation, a device called the localization limiter must be intro-
duced to enforce a finite width of the localization band and a finite energy dissipa-
tion. The localization width is closely related to the so-called characteristic length of
the material determined by the microstructure, e.g., by the size of inhomogeneities.

Several types of localization limiters have been proposed. A wide class of lo-
calization limiters is represented by the nonlocal continuum concept, which was
introduced into continuum mechanics by Eringen (1965, 1966), Kroéner (1967),
Eringen and Edelen (1972) and others, and was proposed as a localization lim-
iter by BaZant, Belytschko and Chang (1984). An effective nonlocal damage model
was developed by Pijaudier-Cabot and Bazant (1987) and Bazant and Lin (1988).
It bears some resemblance to the crack band model (Bazant and Oh, 1983) and
to the mesh-dependent softening modulus of Pietruszczak and Mréz (1981). A
differential form of the nonlocal concept (Bazant, 1984) was exploited in various
gradient-dependent models (Schreyer and Chen, 1986; Lasry and Belytschko, 1988;
de Borst and Miihlhaus, 1991). A more refined limiter of this type is the micropolar
continuum (Cosserat and Cosserat, 1909), which was extended to strain-softening
problems by Miihlhaus and Vardoulakis (1987). A computational model for the
elastoplastic Cosserat continuum was formulated by de Borst and Sluys (1991).
Viscoplastic regularization (Needleman, 1987) limits localization by adding rate-
dependent terms to the constitutive equations.

New Approach to Nonlocal Averaging

One of the most powerful and computationally effective localization limiters is the
concept of nonlocal averaging, first used in strain-softening analysis by BaZant
(1984) and Bazant, Belytschko and Chang (1984).

The original version of the nonlocal approach, which was dealing with nonlocal
total strain, led to certain numerical difficulties and resulted into a cumbersome
imbricate structure of the finite element approximation. A substantial increase of
computational efficiency was achieved by later improvements based on the idea that
only the quantities directly associated with strain-softening, such as the damage,
the damage energy release rate or the accumulated plastic strain, should be treated
as nonlocal, while the elastic part of the behavior should remain local. Nonlocal
versions of several constitutive models were successfully implemented into finite el-
ement codes and applied to a variety of problems by BaZant and Pijaudier-Cabot
(1988), Bazant and Lin (1988) and Bazant and Ozbolt (1990). The nonlocal version
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(Bazant and Ozbolt, 1990) of the microplane model (Bazant and Prat, 1988) proved
to be particularly efficient for the computer analysis of structures made of quasib-
rittle materials such as concrete. However, it also became clear that the classical
nonlocal concept based on an isotropic weight function has its limitations and does
not allow formulating a model universally applicable to the same material under
different loading conditions. More specifically, it turned out that the values of the
characteristic length required to fit experimental data for very different test geome-
tries are significantly different and therefore cannot be regarded as a true material
parameter. Moreover, the physical meaning of nonlocal averaging was not clear
and theoretically supported, and so the nonlocal concept appeared as an artifice
dictated merely by the need to regularize the governing differential equations.

To overcome these difficulties, a micromechanically based derivation of the non-
local operator has recently been presented (Bazant, 1992). This led to certain
modifications of the original approach. Both the original and the new approaches
start from the incremental form of a local constitutive law

Ao = Ct Ae (1)

where Ao, A¢ are the increments of the stress and strain tensor and C, is the
fourth-rank tangential stiffness tensor of the material. The total stress increment is
decomposed into the elastic and inelastic part:

Ao =C,: (Ae— A") =C, : Ac — AS (2)

Here, C, denotes the stiffness tensor for unloading, A¢” is the increment of the
inelastic strain tensor and AS the increment of the local inelastic stress tensor.
Equations (1) and (2) can be combined to yield the law relating the local inelastic
stress increment to the strain increment:

AS = (C, -C,): Ac (3)

In the nonlocal formulation, the elastic stress increment remains unchanged
while the inelastic stress increment AS is replaced by its nonlocal value AS. The
constitutive law is now given by

Ao =C,: Ae — AS (4)

where the nonlocal inelastic stress increment is to be computed by applying a certain
nonlocal operator on the local inelastic stress increment derived from the strain in-
crement according to (3). In the previously used nonlocal formulation, this operator
represents weighted averaging over a certain neighborhood:

AS(x) = [ ®(x,£)a8(¢)d (5)
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The scalar weight function ®(x.£) depends only on the distance r = ||x — £|| be-
tween the “source point” £ and the “effect point” x, and on a parameter called
the characteristic length ! of the nonlocal continuum. The usual form of ®(x, §)
has been either a Gaussian distribution function or a bell-shaped function with a
compact support ®(x,£) = ®g[l — (r/1)%|%(r < I) where &, is a normalizing factor
such that [ &(x,£)dE = 1.

Based on analysis of the equations describing the interaction among microc-
racks in an elastic medium, the following generalization of the nonlocal concept has
recently been derived (Bazant, 1992):

3
AS9(x) = /V ®(x,£)ASD(€)de + A 3 AD(x, £)aS9) (¢)de (6)
ij=1

where AS® i = 1,2, 3, are the increments of the principal inelastic stresses and
A (x, £) is the so-called crack influence function. Superscripts @ at AG9 indicate
that the value of this function depends not only on the locations of the source point
and the effect point, but also on the orientation of the principal directions at these
points. Analysis of the stress fields in two- and three-dimensional infinite bodies
with a single crack provides us with the asymptotic form of the crack influence
function and shows that this function is decaying as r=2 in two dimensions and r 3
in three dimensions, in contrast to the much faster decay of the aforementioned av-
eraging function ®(x, £). Furthermore, the crack influence function is not isotropic,
l.e. it cannot be reduced to a function of the distance r only. The behavior of A
for small values of r is a statistical problem, cannot be easily derived, and has to
be reasonably approximated. The following form of the crack influence function for
two-dimensional problems has been derived after certain simplifications (Bazant,
1992):

A(x,§) = ——%[cos 20 + cos 2y + cos2(6 + y)] (N

where
E(r) — klr 2 8
(r) = (m) (8)

The angles § and ¥ characterize the orientations of two interacting cracks as shown
in Fig. 1a, and « is a nondimensional parameter roughly equal to the ratio of the
average crack size and the characteristic length. The orientations  and ¥ depend
on stress state at each point.

A substantial simplification of Equation (6) can be obtained by taking into
account only the interactions between dominant cracks forming in the planes per-
pendicular to the maximum principal stress;

A8V (x) = /V ®(x, §)ASM (e)de + /V AUD(x, £)ASM (€)dg (9)

4




‘N

The superscripts (1) and (!!) will further be omitted to simplify the notation. Note
that in the continuum description a crack is considered at every point. This is of
course only the continuum smearing. The cracks are in reality discrete (in more
detail, see Bazant, 1992).

Simplified One-Dimensional Problem

Behavior of the new nonlocal model in general multidimensional problems can
hardly be treated analytically. It is feasible after implementation in a finite ele-
ment program, but this will be the subject of another paper (Ozbolt and Bazant).
The present paper will focus on the basic properties of the new model, which must
be examined first. The most basic property is one-dimensional localization of dam-
age into a straight band, taking place inside an infinite layer of thickness L (Fig. 1b).
For the case of a local continuum in which the localization limiter is introduced as a
lower limit on the band width, as in the crack band model, this problem was treated
in BaZant (1988a) and BaZant and Lin (1989) (see also BaZant and Cedolin, 1991,
Sec. 13.3). To make use of the simple expression for the crack influence function
A(x, £) in two dimensions (in contrast to the much more complicated form for a 3-D
continuum), we will consider a plane stress situation—the dimension of the layer
in the z-direction is assumed to be so smali that the corresponding normal stress
g, is negligible. On the other hand, the dimension of the layer in the y-direction is
very large and the corresponding normal strain ¢, is negligible. The layer is loaded
by enforcing a uniform displacement in the z-direction at one of the fixed bound-
aries, which causes an increase of strain ¢; and a change of stress o,. To simplify
the notation, the subscripts at o, and ¢, as well as at the corresponding stiffness
coefficients will be dropped. The stiffness coefficients C,, C; and C, (to be defined
later) are to be understood as the components C;1y; (or Cy;) of the stiffness tensors
C., Ct, C,, resp., in a local constitutive law describing a plane stress problem.

As the shear strains and stresses are zero, equilibrium in the z-direction requires
0, to be constant, but ¢, can in general vary as a function of z. Of course, for a
local continuum with a one-to-one relationship between stress and strain, ¢, would
have to be a constant, too, but the existence of a softening part in the stress-strain
law can lead to strain localization and loss of uniqueness. In a local formulation.
localization would occur right at peak stress and there would be no lower limit
on the width of the possible localization band. As will be shown later, in the
present nonlocal formulation the strain can cease to be constant even before the
peak stress, but a true localization band forms only after the peak and its width
cannot decrease below a certain minimum depending on the ratio of the layer width
and the characteristic length of the model, as well as on the tangential modulus.

With the assumption that all the quantities depend only on one spatial variable




z and that the total stress (and thus also the stress increment) is independent of z,
we can set y = 0 in the basic equations (3), (4) and (9) and rewrite them as

AS(z) = [Cu(z) — Ci(z)|Ae(x) (10)
Ac = Cy(z)Ae(z) — AS(z) (11)

AS(z) = /: /: ®(z,0,€,7)AS(€)dédn + /Z /_:A(z.o,c.n)As‘<e)dedn=
= [ éaoasee+ [ A oaseux (12)

where
b6 = [ e@ogmin Ao = [ A@O&min (1)

The term that is additional in (9) compared to (5) should vanish in a state of
uniform strain when the local and nonlocal inelastic stresses are identical. It might
therefore be expected that A JZ A(x, £)dg = 0 for any value of x. If the integral is
formally transformed to polar coordinates, the integrand is given by a product of a
periodic function of the angular coordinate with zero mean and another function of
the radius, and on this basis the foregoing condition seems to be satisfied. A careful
examination of the definition of A(x, £) however reveals taat for large values of 7, A
behaves asymptotically as =2 in two dimensions and r~3 in three dimensions, and
so the integral [ [A(z,y, £, n)dnd€ is not absolutely convergent. Such a problem
with integrability is common to many physical problems formulated in an infinite
domain and is not easy to overcome. Fortunately it disappears when dealing with
real-life finite bodies or with semiinfinite bodies bounded at least in some direction.
This is also the case for the layer studied in this chapter. The limits of integration
in the z-direction are finite and, with this modification, the integral converges but
is not equal to zero.

In the simple situation considered, the directions of the maximum principal
inelastic stress at all points are aligned (Fig. 1b), which implies that § = ¢. With
the notation { = (z — £)/!, the one-dimensional crack influence function can i -
expressed as

A(z,€) = - 4¢? (14)

! (1+¢%)32
A surprising fact is that the resulting function is positive for all values of its argu-
ments (Fig. 1c), which contradicts the intuitively expected property [>°_ A(z, £)d¢ =
0. This is a consequence of the lack of absolute integrability of the original two-
dimensional crack influence function. By some tedious algebraic manipulations
it can be shown that the function in the brackets in (14) decays for large { as
%C -3 + 0(¢~%), and so the one-dimensional crack influence function is integrable.

K2 [4(6 +6¢*+1.5¢2+0.25
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Bifurcation Analysis of Post-Peak Behavior

Formulation of the Problem

Having developed the basic framework of a one-dimensional localization problem,
we now focus on the analysis of a possible bifurcation of the equilibrium path after
reaching the peak stress and entering the softening regime. The local stress-strain
law is assumed to be linear up to the peak, with a constant slope Cy, and then to
start decaying with an initial slope Cj.

Up to the peak, the tangential stiffness C'; and the unloading stiffness (', are
identical and equal to Cp, and thus the local inelastic stress increments given by
(10) vanish at all points of the layer. The basic equation (12) has a trivial solution
AS(z) = 0 and (11) then implies Ae(z) = Ao/Cy = const., which means that the
strains remain uniform up to the peak. The picture dramatically changes after the
peak stress is reached. A part of the layer can experience further strain increase
accompanied by softening while the rest unloads in an elastic way. The unloading
modu s C,, is still equal to Cj at all points of the layer, but the tangential modulus
C, remains equa’ to Cj only in the unloading part (denoted by U/) and jumps to
in the softening region (denoted by S). Equations (10) and (11) can be substituted
into (12) to get a single integral equation for the unknown strain increment Ae(z):

Cole(z) — Ao = / ‘: &(z,€)(Co — Col€)) Ae(€)de

+ [7 M@ )(Conele) - Ao)e (15
So far, we have kept the integration limits at minus and plus infinity. The region
outside the layer can be thought of to be fixed to perfectly rigid clamps which repre-
sent a continuation of the body. So it seems to be natural to set the corresponding
strain and stress increments equal to zero. Moreover, the difference Co — C,(€) is
zero for € lying in the unloading region U/ and the integrand in the first integral van-

ishes outside the softening region S. After dividing by Cj and rearranging, equation
(15) reads

- L,
k[ 8 a0 + [ Az o0 - ac) = S 0@ -1 (19)

where p = 1 - C,/Cp , AM(z) = foL A(z,€)dé. The parameter p characterizes the
local constitutive law. It is always positive; its values between 0 and 1 indicate
hardening, 4 = 1 corresponds to a horizontal yield plateau, and g > 1 to softening.
On the other hand, the type of the global load-displacement diagram is determined
by the sign of the stress increment Ao. Naturally, Ag > 0 means global hardening,




Ao < 0 global softening and Ao = 0 implies a horizontal yield plateau in the
load-displacement diagram.

In addition to equation (16), an acceptable solution of the problem must satisfv
the loading-unloading criterion

Ae(z) > 0if z € S, Ae(z) <0ifz €U (17)

This additional condition is exploited to determine the extent of the softening and
unloading region.

When studying the bifurcation problem, the increments of stress and strain are
infinitesimal and A¢(z) can change proportionally to Ao. As this study focuses pri-
marily on the softening behavior, we can look for a strain increment per a unit stress
decrement and normalize it by the initial elastic modulus Cy to get a nondimen-
sional quantity e(z) = —CoAe(zr)/Ao. In terms of this unknown function, equation
(16) can be rewritten as

. L
u/SQ(z,E)e(E)dE +/0 Az, §)e(§)dE — e(z) = 1 — A(z) (18)

If we look for solutions that cane exhibit global hardening, we can replace the
definition of e(z) by e(z) = CyAe(z)/Ac and the right hand side of (18) changes
its sign. Finally, the case of no stress change (resulting into a plateau in the load-
displacement diagram) can be treated by setting e(z) = Ae(z) and replacing the
right hand side of (18) by zero. The loading-unloading condition is the same for all
the above-mentioned cases:

-

e(z) > 0ifz € S, e(z) <0ifzeU (19)

Discretization of the Problem

To solve equation (18) numerically, one can look for the values eg, e}, €2, ... ex of
the unknown function e(z) at a finite number of points 7o = 0,z,,zs,...2§8 =
L. The upknowns can be collected to form a vector (column matrix), e. After
approximating the integrals by sums, the integral equation (18) can be replaced by

a matrix equation
(uF+L-TNe=i-1 (20)

where F and L are square matrices, 1 is a vector, 1 stands for the unit square matrix
and i for the vector with all components equal to 1. The matrix counterpart of the
loading-unloading criterion (17) is then

Se > 0, Ue<0 (21)
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where the diagonal incidence matrices S and U = I — S have zero and unit diagonal
elements indicating whether the corresponding point lies in the softening or unload-
ing region. To evaluate the vector | and the matrices F and L in (20), a numerical
quadrature rule must be applied to the integrals in (18).

Solution Strategies

As the solution of (20) is subject to (21), it must be constructed in an iterative way.
In a parameter study, when one wants to explore the effect of 4 on the post-peak
behavior, the softening region S can be chosen in advance and one can then look
for the corresponding value of u:

Given S and U, compute the matrices L and F and the vector 1.
Make an initial estimate of the parameter u.

Assemble (uF + L —1I) and i ~ 1.

Solve the system of linear equations (20).

S W -

Check if the solution e satisfies conditions (21). If it does, output the solution
and stop. If it does not, modify u and go to step 3.

[t can be expected that softening will tend to concentrate in a band either
inside the layer or at its boundary. The former situation can be denoted as U-S-U
(unloading band - softening band - unloading band), the latter by S-U (softening
band - unloading band). Another possibility is that all the material softens (denoted
simply by S) or that there ex: -t several separate localization bands, e.g. S-U-S or
S-U-S-U.

Method of Analysis and Solution for Old Nonlocal Model

Now we need to explain how to construct an admissible solution for a given value
of parameter u, discuss the meaning of the eigenvalues and the character of the
solutions for different localization modes. The computational procedure can be
best illustrated by a simple example. The parameter « is first set to zero, which
means that the two-dimensional crack influence function A(x, ¢) defined by (7), (8),
as well as its one-dimensional counterpart A(z, ¢) defined by (14), is identically zero
and the old nonlocal formulation is recovered. The matrix L and vector 1 then
disappear from the equations and (20) takes a special, simpler form

(uF —TDe =i (22)

Fig. 2a shows the strain increment profiles for an assumed localization pattern U-S-
U with the total length of the layer L = 20! and the assumed length of the softening
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region h = 10/. The profiles were constructed for a sequence of u values between 0.99
and 1.03 and the loading-unloading criterion was tested for each of them. A solution
satisfies the loading-unloading criterion if it is positive for z/! € (5, 15) and negative
everywhere else. Fig. 2a indicates that for ¢ = 0.99 and x4 = 1.00, the solution is
negative over the whole layer and it decreases as u grows. Between u = 1.00 and
4 = 1.01, the solution jumps to large positive values and then decreases again. The
interval on which it is positive shrinks and at x4 = 1.02 it only slightly exceeds
the assumed softening interval S = (5, 15). When u reaches 1.03, the interval with
positive strain increments is already inside S. As this transition is continuous, there
must be a value of u between 1.02 and 1.03 for which the loading-unloading criterion
is exactly satisfied. If a function f(u) is defined by assigning to each u the value of
the strain increment at z = 5, a necessary condition to satisfy the loading-unloading
criterion is f(u) = 0. This nonlinear equation can be solved by one of the standard
techniques, e.g. by the secant method or by the Newton method. In the latter
case, the derivative of f is computed numerically using a difference formula. The
graph of f(u) is shown in Fig. 2b and it is clear that once the interval containing
the root and no singularities is located, the iteration process converges without any
problems.

The singular points of f(u) correspond to the values of x4 for which the coefficient
matrix (uF — I) is singular, or, equivalently, to the eigenvalues of F~'. When
increasing p from zero, the first singular value is reached approximately at 4, =
1.006. At this point, the strain increments jump from large negative to large positive
values (see Fig. 2a). For u < f,, the function f(u) has only negative values and
the corresponding solutions are not admissible. The first root of f(u) can be found
at u, = 1.0237 and the corresponding solution is really admissible (it satisfies the
loading-unloading criterion). After the second singular value i, is passed, another
root can be detected at uo = 1.0990, but the corresponding solution drops below
zero in a small interval in the middle of the softening band and therefore is not
admissible.

The iterative procedure can be repeated for different sizes of the softening region
and each of the calculations yields one possible post-peak branch for a particular
value of the paramete- u. Several such solutions are depicted in Fig. 3a. More
localized solutions require a higher value of y, i.e. a steeper slope of the descending
part of the local constitutive law. Solutions with a larger softening zone are possible
for smaller values of u, however, u must always be larger than 1, which means that
the local law must exhibit softening (and not hardening or a horizontal plateau).

Other sets of solutions can be constructed for other localization patterns. It
turns out, however, that, for the old nonlocal model with x = (), the solutions are
invariant with respect to a shift along the z-axis and therefore the S-U localization
profiles have the same shape as the U-S-U profiles and are only shifted to the
boundary. Similarly, the S-U-S profiles can be obtained by moving two identical
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U-S-U profiles to both boundaries (Fig. 3b). This seems to be a deficiency, because
the presence of boundaries would no doubt affect the shape of the localization
profiles and the corresponding values of . The behavior of the present model can
be understood if one realizes that the softening region is not affected by anything
outside it, because the local inelastic stress increments in the unloading region are
zero and thus they do not contribute to the nonlocal inelastic stress increments.
which can be evaluated from the strain displacements in the softening zone only.
That is why the position of the softening region does not make any difference and
the only important thing is its length. At the same time, the strain increment
profiles evaluated under the assumption of loading only (the S type of localization
pattern) are highly nonuniform, with strain concentration in the middle of the layer
(Fig. 3c). This means that the boundaries repel strain localization.

Renormalized Averaging Function

The picture substantially changes if the averaging function ®(z, ¢) is renormalized
in the vicinity of the boundaries. The normalizing condition [%_ ®(z,£) d = 1
ensures that a uniform local quantity in an infinite body leads to a uniform nonlocal
quantity with the same value. If this property is to be preserved in a finite body,
the integration domain must be changed to the domain of the body V and, instead
of the original averaging function in an infinite body ®(x, &) = ®o[l — (r/1)*]°, a
normalized function

®(x,€) -

B(x,£) =
8= e

must be used. .

When the normalized averaging function is implemented, the model is able to
exactly reproduce uniform strain increments and also the shape of the S-U and S-
U-S localization patterns becomes more reasonable (Fig. 3d,e). This formulation is
therefore adopted for the subsequent development.

Due to renormalization, the matrix F assembled under the assumption of loading
everywhere has the property that the sum of its elements in every row is equal to
1 (this is the discrete analog of the integral normalizing condition). This can be
written a8 Fi = i where i is the previously defined vector with all components equal
to 1. As of course also Ii = i, equation (22) has a solution e = i/(p — 1) for
any u # 1. If u > 1, this solution is admissible and it represents uniform strain
increment profiles associated with stress decrements. The corresponding post-peak
branch in the global load-displacement diagram has the same slope as the post-peak
branch in the local constitutive law. If 4 < 1, the solution is not admissible under
the assumption that stress decreases, however, it is admissible if one assumes that
stress increases. Again, the slope of the global load-displacement diagram is the
same as the slope of the local constitutive law (both are positive and hardening
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occurs). The transition from hardening to softening is given by u = 1 when the
coefficient matrix in (22) becomes singular. But this is perfectly consistent with
the fact that the unknown function e(z) defined by e(z) = —CoAe(z)/Ao can be
introduced only if the stress change is not zero. If Ao = 0, equation (22) can be
used only if e(z) is replaced directly by Ae(z) and the right hand side is set to zero.
The homogeneous set of equations with the singular coefficient matrix F — I has
infinitely many solutions, all of them multiples of the eigenvector i. The physical
meaning is that for a local constitutive law with a horizontal plateau, the strain
increments are uniform and arbitrarily large while the stress does not change at all.

Besides the uniform solution, scveral other admissible solutions may exist for
the same value of the parameter y, i.e. for the same post-peak slope of the local
constitutive law. It can be proven (Bazant, 1988b) that the branch that will be
actually followed by the real system is the one with the steepest descent. All other
branches are unstable in the sense that they can never be followed spontaneously,
unless an additional restriction is imposed on the system (despite the fact that the
points on these branches might be stable states). Stability of different branches
of the global response existing for a given local constitutive law can be evaluated
by introducing a parameter related to the post-peak slope of the load-displacement
diagram. To avoid difficulties with a discontinuity at snapback, the negative inverse
value of the post-peak slope is used as such parameter rather than the slope itself.
[t is convenient to introduce a nondimensional compliance parameter

Colé
Ao

whose values are positive for post-peak softening and negative if snapback occurs;
s = 0 corresponds to a vertical drop in the global load-displacement diagram indi-
cating a loss of stability under displacement control.

It follows from the definition of the compliance parameter s that the actual
branch is that which minimizes s. To study the effect of u on the localization
pattern and on the post-peak slope, the compliance parameter was evaluated for
various types of solutions and plotted against u. Fig. 4 shows such a plot for
k = 0,L = 20! and a renormalized averaging function ®,. It is clear that the
pattern S-U dominates in all situations covered by this plot. This means that the
strain tends to localize into a band at one boundary (the S-U pattern) rather than
into a band in the middle (the U-S-U pattern) or into two symmetric bands at both
boundaries (the S-U-S pattern). The decrease of s with an increasing p indicates
that the post-peak slope of the load-displacement diagram is getting steeper as
the slope of the local constitutive law becomes steeper. At u = 1.14, s becomes
negative, which corresponds to the occurrence of a snapback. Beyond this limit,
the test cannot be performed in a stable manner by controlling only the relative
displacement of the boundaries.

_ Gy gt _1/t .
_ _LAUA Ae(z)dz = Z/o e(z)dz (24)
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It is interesting to check whether localization would occur for all values of 1 > 1,
i.e., whenever the local constitutive law exhibits softening. It turns out that the
localization threshold lies slightly above 1. This threshold is determined by the
solution of the S-U type with the maximum possible localization width h = L =
20l. At this extreme width, the S-U localization pattern is in fact identical with
the S pattern denoting loading only. However, the corresponding solutions are
distinct, because the S solutions are uniform while the S-U solution must satisfv
the degenerated loading-unloading condition Ae¢(L) = 0 (the unloading region U
shrinks to one point). As the matrix F is uniquely determined by the assumption
of loading everywhere, the governing equation

(uF ~De =i (25)

is the same for both cases. To get two distinct solutions, the coefficient matrix
uF — I must be singular and p is therefore the reciprocal of an eigenvalue of F. As
explained before, the matrix F assembled under the assumption of loading only has
always 4.51 = 1 as its eigenvalue (and it turns out to be the largest eigenvalue). The
corresponding i, = 1 /JS, is also equal to 1 but then equation (25) has no solution.
This means that for a local constitutive law with a horizontal plateau, the global
response does not exhibit softening. The second largest eigenvalue ¢ of F is smaller
than 1 and its inverse value jig = 1/, is the critical value of s for which localization
starts. As det(ioF — I) = 0, solutions of (25) can be written as

i+ aeq (26)

e ==
e —1
where &; is the eigenvector of F corresponding to the eigenvalue ¢7 and « is an
arbitrary constant. Only solutions with all components nonnegative are admissible
and the one with the last component equal to 0 is the initial solution of the S-U
type. When u is increased, the softening band S ceases to extend over the whole
layer and starts shrinking.

A similar analysis has been performed for other widths of the layer and the effect
of the layer width L as an additional parameter has been investigated. As expected,
narrow layers are less susceptible to localization than wide ones, and higher values
of 1 are needed to produce results similar to those for wide layers. Three important
characteristics of the localization sensitivity can be defined:

e iy =1 .. transition from global softening to global hardening,
® jio ... onset of localization,

® 4, ... snapback, loss of stability.

The values of 1), fi; can be determined by an eigenvalue analysis of the matrix
F while u, must be solved for by iteratively looking for the value of u causing the
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compliance parameter s to be zero. The characteristic values ji;, ji2, 4, are plotted
against the ratio L/! in Fig. 5. Depending on the layer width and the slope of the
local constitutive law, four types of behavior can be distinguished and graphically
represented as four regions in Fig. 5:

A - global hardening,
e B - global softening without localization, strain increments remain uniform,

e C - localization into a softening band, stable during displacement control,

D - snapback in the global load-displacement diagram immediately after peak.

" Analysis of the New Model

So far, all analyses and considerations have been concerned with the old localization
model characterized by the absence of the additional term based on the crack influ-
ence function. How will the results be affected by the presence of this term in the
integral equation (16) or its matrix counterpart (20)? The first striking difference
is that uniform strain increments are no longer possible. This can be easily proven
by substituting Ae(z) = Ae = const. into (16), which leads to

Ao Ao
(k= Dac+ Z = \) (50' - Ae) 27)
As the function A(z) is not constant (due to boundary effect), this equation can
be satisfied only if the expression Ao /Cy — Ae (multiplying A(z) on the right hand
side) is zero, but then (27) reduces to uAe = 0, which can hold only if 4 = 0 or
Ae = 0. The latter case represents no change at all and can be excluded. Uniform
strain increments are therefore possible only if u = 0, which happens if the local
constitutive law has a linear elastic part. As soon as any nonlinearity occurs, strain
increments become nonuniform. Fig. 6a shows several solutions derived under the
assumption of loading only for x = 0.1 and p ranging from 0.979 to 0.985 while
Fig. 6b shows such solutions for u ranging from 1.002 to 1.008.
Again, the roots of the characteristic equation

det(uF +L—1) =0 (28)

mark important points where the number of admissible solutions or the character of
the solution change. The first characteristic value i, corresponds to the transition
from global hardening to global softening. Between j; and jio, there is only one
admissible solution for each value of . This solution is nonuniform but all the points
are softening. At jig, solutions of the S-U type start existing and as their compliance
parameter s is smaller than that of the S type solutions, the actual response follows
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the localized branch. In contrast to the old nonlocal model with x = 0, the S
type solution ceases to be admissible at some value of z and it changes into a U-
S-U solution. However, the S type solution is “reborn” at the third characteristic
value ji; along with an S-U-S solution and at some higher value of u it changes
its character again. The compliance parameter is plotted against the parameter
u for the most important localization patterns in Fig. 7. The figure reveals that
the actual solution is of the S-U type for all values of u > 4,. This was the case
for the old nonlocal model, too, but an important difference can be noticed: The
generalized nonlocal model allows strain localization even for u < 1, i.e. even when
the local constitutive law exhibits hardening rather than softening. The hardening
slope must, however, be sufficiently small. This is demonstrated in Fig. 8 (similar
to Fig. 5 for the old model), showing the four different regions as discussed at the
end of the preceding subsection.

Incremental Analysis of the Loading Process

Formulation of the Problem

The previous section was devoted to the analysis of the initial directions of the
post-peak branches, assuming a linear behavior up to the peak. Let us proceed to a
more complicated problem—an incremental analysis of the entire stable post-peak
branch, i.e. the branch starting with the lowest value of the compliance parameter
defined previously. Recall that the basic integral equation (18) was derived under
the assumption that the unloading modulus C,(z) be everywhere equal to the initial
modulus Cj and the tangential modulus C¢(z) be equal to the softening modulus C,
in the softening region S and to the initial modulus Cj in the unioading region (/.
But this is the case only in a uniform state with no damage. After a finite nonuni-
form increment is applied, the values of C,(z) and C,(z) in general change, except
for one situation—the bilinear local constitutive law with unloading as in plasticity
(by which we mean unloading with the initial slope Cy). In this special case, strain
increments grow proportionally to the decreasing stress until the local stress drops
down to zero at the first point of the body. All the other local constitutive laws
require a generalization of equation (18).

The derivation can follow the same line as for the bifurcation analysis but the
moduli must be treated as functions rather than constants. Introducing two auxil-
iary functions
Cu(z ) - Ct(z )

Co '

v(z) = &) (20)

p(z) = C.
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the integral equation governing the problem under consideration can be derived:

- L
[ 8@ ou@e)de + [ Az Ou@1e()de - viEde() = 1= 2z)  (30)
The matrix counterpart of (30) can be written in a form similar to (20):
(F,+L,~N,)e=i—1 (31)

Subscripts , and , emphasize that the matrices depend on the current values of
the functions u(z), v(z), which are in turn determined by the total strain profile
¢(z), the profile of the maximum previously reached strain ema-(z) and the local
constitutive law. Note that ?? is a generalized form of (20) but describes the
problem on a different level — as an evolution equation characterizing an entire
branch of the equilibrium path rather than a bifurcation from a given state.

Bilinear Local Constitutive Law

As an example, consider a bilinear local constitutive law with damage (unloading to
the origin); Fig. 9a. Let ¢, be the strain at peak stress and ¢, the strain at complete
failure. Given the current strain ¢ and the maximum previously reached strain €,,;.
the parameters u, v at the given material point can be evaluated as follows:

1) Virgin loading (€maz < €p): u =0, v=1
2) Softening (ep < €maz < €f): u= t;_z’ ;1;’ v= 67‘_‘_’;— (t—:: - l)
3) Complete fracture (€5 < €maz): p=0, v=_0

Note that the unloading region is excluded from the integral containing u(z) and
therefore it is not necessary to make a difference between softening and unloading-
reloading after previous damage (v is the same for both cases).

Typical load-displacement diagrams start by a linear elastic part which exactly
corresponds to the local constitutive law, because in the absence of inelastic stress
increments, the local and nonlocal stress is the same. The load-displacement dia-
gram bifurcates right at peak and, according to the results presented in the previous
section, the actual branch is that which represents localization into a softening band
at one boundary. As the loading continues, the localization band becomes narrower
(Fig. 9d) and the load-displacement diagram becomes steeper (Fig. 10) until a snap-
back occurs.

The global response was followed up to the snapback or even beyond it for layers
of different sizes and for local constitutive laws with different post-peak slopes. As
expected, the global response is more brittle for steeper local post-peak slopes char-
acterized by the ratio C,/Cy (Fig. 10a) and for larger relative sizes L /! (Fig. 10b).
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Nonlinear Local Constitutive Laws

All the load-displacement diagrams constructea in the previous subsection tend to
snap back, even for small sizes and for small post-peak slopes in the local constitutive
law. The reason is that, as the strain increases, the tangential modulus C, = C,
remains constant while the unloading modulus C, decreases to zero and so the
parameter 1 — C,/C, grows without any bounds. To model long tails in the load-
displacement diagram with a progressively decreasing slope, the local constitutive
law must exhibit a similar type of behavior. One of the simplest examples is given
by a law linear up to the peak with a subsequent exponential decay (Fig. 9d):

4 4

a=f£— if € < €p, a:fexp[—k(ei—l)] ife>e¢, (32)

where k is a nondimensional constant controlling the initial post-peak slope. Large
values of k indicate a steep post-peak slope. Unloading is assumed to follow the
initial slope. This type of a local constitutive law resulits into a progressive increase
of the width of the localization band (Fig. 9¢) and the corresponding global load-
displacement diagrams are quite reasonable (Fig. 11a).

As the most complex example, let us consider a case when the local constitutive

law is nonlinear even before the peak stress. A simple law of this type is given by
(Fig. 9c¢):

o = Coe exp (__e_) (33)

€p
This can be again combined either with unloading to the origin (damage) or unload-
ing with the initial slope (plasticity). The former case is studied here. The incre-
mental solution must begin with zero stress and displacement, and the normalized
load-displacement diagram starts slightly deviating from the local constitutive law
even in the pre-peak range (Fig. 11b). The evolution of the total strain profiles is
depicted in (Fig. 9e) (for the law with damage). It is clear that, in the pre-peak
range, the strain at all the points is increasing but not uniformly. Soon after the
peak stress, the solution bifurcates to a stable branch corresponding to localization
in a band at one boundary. The width of the localization band then progressively
increases.

Conclusions

The performance of a new nonlocal model recently proposed by Bazant (1992) has
been tested on the problem of strain localization in a semiinfinite layer, which can
be reduced to an integral equation for a single unknown function of one variable,
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with an additional loading-unloading condition. The following conclusions about
the localization properties of the model can be drawn:

1. The conventional nonlocal model with an isotropic averaging function without
renormalization cannot capture strain localization at the boundaries. Local-
ized strain profiles are invariant with respect to a shift and not affected by
the proximity of the boundary.

2. With a renormalized averaging function, the conventional nonlocal model
leads to uniform strain increments in the hardening regime and in the soften-
ing regime with a very small post-peak slope. The strain increments localize
into a band at one boundary if the post-peak slope of the local constitutive
law exceeds a certain minimum value, which depends on the size of the layer.
Large post-peak slopes of the local constitutive law result into a snapback.

3. The new nonlocal model, which contains an integral describing the effect of
orientation-dependent crack interactions leads to nonuniform strain profiles
as soon as the local constitutive law deviates from linearity. The global load-
displacement diagram can start softening even before the peak in the local
constitutive law is reached. Similarly, the solution can bifurcate already in
the (locally) hardening regime.

4. The present method of analysis has been used to trace the entire loading
process and study the evolution of the localized strain profiles. Several lo-
cal constitutive laws leading to reasonable shapes of the load-displacement
diagram have been presented.
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Figure 1: a) Orientation angles § and ¥, b) geometry of the infinite layer, c) one-
dimensional crack influence function A(r), d) nonlocal averaging function ®(r).

Figure 2: a) Solutions for different values of u, b) graph of the function f(u)

Figure 3: Admissible solutions: a) U-S-U, b) S-U-S, ¢) S, d) S-U with renormaliza-
tion, e) S-U-S with renormalization

Figure 4: Compliance parameter for different localization patterns

Figure 5: Critical values of u depending on the layer width: a) global picture, b)
magnified

Figure 6: Nonuniform solutions of the S type

Figure 7: Compliance parameter for different localization patterns

Figure 8: Critical values of 4 depending on the layer width

Figure 9: a) Bilinear law, b) linear-exponential law, c) exponential law, evolution of
the total strain profile for d) bilinear law, e) linear-exponential law, f) exponential
law

Figure 10: Load-displacement diagrams a) for different local post-peak slopes, b)
for different sizes

Figure 11: Load-displacement diagram: a) linear-exponential law, b) exponential
law
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Size Effect and Fracture Characterist :s
of Fiber Composite Laminates

Zdenik P. Bazant!, Zhengzhi Li? and Isaac M. Daniel®

ABSTRACT. — Measurements of the size effect on the nominal strength of notched
geometrically similar specimens of fiber composite laminates are reported. Teste were made on
graphite-epoxy laminates made of 0.127 mm thick plies, unidirectionally reinforced by carbon
fibers and bonded together by high pressure hot curing. The specimens were rectangular
strips of widths 0.25, 0.5, 1 and 2 in. and lengths 1, 2, 4 and 8 in. One set of specimens had
double-edge notches and cross-ply [0/90;], arrangement, and another set of specimens had a
single-sided edge notch and a quasi-isotropic {0/ +45/90], arrangement. It is found that there
is a significant size effect. It approximately agrees with the size effect law proposed by BaZant,
according to which the curve of the logarithm of nominal strength versus the logarithm of
size represents a smooth transition from a horizontal asymptote corresponding to the strength
criterion (plastic limit analysis) to an inclined asymptote of slope —0.5 corresponding to linear
elastic fracture mechanics. Optimum fits of the test results by the size effect law are obtained,
and the size effect law parameters are then used to identify the material fracture characteristics,
particularly the fracture energy and the effective length of the fracture process zone. Finally,
the R-curves are also identified on the basis of the maximum load data. The results show that
design situations with notches or large initial traction-free cracks require the size effect on the
nominal strength of fiber composite laminates to be taken into account.

1 Introduction

Fiber composites such as graphite-epoxy laminates made by bonding a number of plies re-
inforced by unidirectional paralle] fibers have become an important material in aerospace
and other industries. However the laws governing their failure are far from completely
understood. The material failure criteria used in practice are expressed in terms of the
maximum stress (strength criterion), maximum strain or maximum deviatoric strain en-
ergy (Jones, 1975). However, in mechanics it is now generally well understood that such
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criteria could be adequate only if the material failure were plastic. If the failure process
involves fracturing, the material failure criteria expressed in terms of stresses and strains
must be supplemented by an energy criterion, involving the energy release rate. In other
words, fracture mechanics must be applied.

The necessity of using fracture mechanics is documented by the fact that the load-
displacement diagram in the failure of fiber composite laminates does not exhibit a plastic
yield plateau but a gradual decline of the load with increasing deflection after the peak
load. Such a post-peak decline can be caused only by one of two phenomena: the geomet-
rically nonlinear effects of buckling and the fracture effects. Since the post-peak decline
is observed even in the absence of the former, the latter must be taking place.

If the material failure criterion involves energy, there are some important consequences.
The most important one is the size effect, that is, effect of the characteristic dimension D
of the structure on the nominal strength o, provided that geometrically similar structures
of different sizes are compared.

The size effect caused by fracture has recently come to the forefront of attention in the
studies of concrete, rocks, ceramics and other so-called quasibrittle materials, which are
characterized by the existence of a sizable fracture process zone at the tip of a macroscopic
crack. It has been found (BaZant, 1984, 1993; BaZant and Kazemi, 1990) that in such
materials the size effect is transitional between plasticity (for which there is no size effect)
and linear elastic fracture mechanics (for which the size effect is as strong as possible).
Thus the plot of log o versus log D is a smooth curve approaching at very small sizes
a horizontal asymptote corresponding to plasticity and at very large sizes an inclined
asymptote of slope —0.5 corresponding to linear elastic fracture mechanics. Such a size
effect must generally occur whenever the load-deflection diagram does not have a yield
plateau after the maximum load is reached, provided that the geometrically nonlinear
effects of buckling are absent. Therefore, a size effect of this type should be expected
also for fiber composite laminates. The purpose of this paper is to verify this proposition,
describe the size effect quantitatively and exploit measurements of the size effect for
determining the material fracture characteristics.

Fracture of fiber composite laminates has already been studied and some important
results have been obtained: see for example Cruse (1973). He attempted to predict the
fracture energy of a multi-ply laminate, Gy, as the sum of the fracture energies G of all the
individual angle-plies, that is, G4k = T, G, h; where h = thickness of the laminate, h; =
thicknesses of the individual plies. An equivalent summation of the squares of the stress




intensity factors has also been proposed by Mandell et al. (1975). Based on linear elastic
fracture mechanics, Whitney and Nuismer (1974) proposed two fracture criteria for fiber
composi.e laminates, formulated in terms of stress and utilizing the energy release rate
calculated by anisotropic elasticity. They called these criteria the equivalent point stress
and the average stress criteria. To take into account the effect of a finite fracture pro-
cess zone, they replaced the actual crack length by an extended equivalent crack length,
which is an approach also used for other materials such as concrete (Nallathambi and
Karihaloo, 1986). They found that a constant crack length extension allowed good fits of
all their data for different crack lengths (however, for other materials such a simplifica-
tion was found to be inadequate). They also translated their test results into an R-curve
(resistance curve), describing the dependence of the apparent stress intensity factor on
the crack length. Mandell et al. (1975) observed the damage zone at the crack tip in
fiber composite laminates and found that the microcracks (also called the subcracks) in
this damage zone (fracture process zone) extend parallel to the fibers in each ply or cause
delamination between the plies. They found that the intensity of this microcracking is
linearly proportional to the square of the stress intensity factor, which means propor-
tional to the fracture energy, for a given composite lay-up configuration and ply stacking
arrangement. Mandell et al. correctly pointed out that the microcracking zone plays
the same role as plastic flow in metals, relaxing the high local stress concentrations and
absorbing the energy release due to fracture propagation. They also observed some cracks
to extend through the whole laminate thickness just before failure.

Daniel (1978, 1982, 1985) investigated cracks in typical aerospace graphite-epoxy lam-
inates and found the size of the damage zone at the tip of the notch or at a small hole to
be about 3 to 5 mm. These observations revealed the existence of a characteristic length
in this composite material. Daniel then applied the concept of equivalent crack length
and obtained a good fit of his experimental results with a modified crack length, with the
apparent stress intensity factor being almost constant, for the range of his data. However,
based on analogy with extensive studies of concrete fracture (ACI Committee 446, 1992),
a good description of a very broad range of test data requires not only replacing the
actual crack length with some equivalent extended crack length but also considering the
critical energy release rate to depend on this equivalent crack length, that is introduce an
R-curve.

From the studies of Daniel (1982) and others it became clear that failure of a fiber
composite laminate involves a combination of several microscopic failure mechanisms,
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including microcracking (subcracks), delamination, matrix splitting, fiber pullout and
fiber breakage. Thus a detailed theoretical macroscopic fractuie model would have to be
based on fracture mechanics.

2 Fracture Tests of Composite Laminates

The composite consisted of sheets of epoxy unidirectionally reinforced with graphite (IM7)
fibers. The laminate was produced from commercially available sheets (the individual
plies) by the procedure described by Daniel et al. (1993). The temperature and pressure
history used in curing of the laminate is described in Fig. 1. The cross section of one
unidirectionally reinforced sheet (ply) is shown in Fig. 2. (where the white circle is
the cross-section of fiber which is about 0.004 mm in diameter). Each unidirectionally
reinforced ply has the following properties: Young’s modulus E, in fiber direction =
24,500 ksi (168.9 GPa), Young’s modulus E; in transverse direction = 1,360 ksi (9.38
GPa), tensile strength in fiber direction Fj; = 321 ksi (2.21 GPa), transverse tensile
strength F; = 9.4 ksi (0.0648 GPa), Poisson ratio v;2= 0.30, elastic shear modulus G,; =
1,400 ksi ( 9.65 GPa), thickness of a single ply A= 0.005 in. (0.127 mm), and fiber-volume
ratio Fy= 0.65.

Two sets of specimens were prepared, with different lay-ups: [0/90,], (cross-ply) and
[0/ £ 45/90], (quasi-isotropic). Each set involved geometrically similar rectangular speci-
mens of four different sizes: 0.25in. x 1in., 0.5in. X 2in.,1in. x 4in.,and 2in. x 8 in.,
and thus the size ratio was 1:2:4:8. All the specimens were prepared with glass-fiber tabs
of 1.5 in at each end (Fig. 3). The total thickness of the cross-ply laminates was 0.03 in.
(0.762 mm), and that of quasi-isotropic laminates was 0.04 in. (1.02 mm). For the first
set of specimens, representing cross-ply laminates, two geometrically similar edge notches,
with lengths a and 2a/D = 1/8, were cut (Fig. 3). In the second set of specimens, made
of quasi-isotropic laminates, edge notches of a/D = 1/5 were cut from only one side (Fig.
3).

The notched laminate specimens were tested under direct tension. The tests were
carried out in the Instron 8500 testing machine (Fig. 2c). The tests were controlled
to a constant displacement rate, by the machine stroke for the double edge notched
specimens, and by the crack opening displacement for the single edge notched specimens.
The displacement rate in the tests was set to different values to make the strain rate
= 0.2%/min. and to reach the peak load within about 10 min. for all sizes. Fig. 4
shows some typical load displacement curves for specimens of various sizes. For the large
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specimen size, they are almost straight up to the failure, which indicates high brittleness.
For the small specimen sizes, there is a significant nonlinear segment before the peak,
which indicates hardening inelastic behavior and lower brittleness (or higher ductility).
This behavior agrees with the fact that the size effect law represents a transition from
ductile response for small sizes to brittle response for large sizes.

The machine stiffness and controls were not sufficient to control the test in the post-
peak regime of descending load, even when the crack opening displacement was controled
(a stable post-peak test might possibly be obtained for notched bending specimens, Wis-
nom, 1992; but such tests are harder to carry out for thin laminates). The failures of the
specimens were catastrophic (dynamic), and occurred shortly after the peak load. Growth
of damage consisting of subcracks in layers and delamination between layers before failure
was observed in the tests (in agreement with the observations of Mandell et al., 1975).
The typical appearance of the specimens after failure is shown in Fig. 5, where the mi-
crocracking damage can be detected. For the quasi-isotropic specimens, some fractures
run at 45° inclination to the notch and there are 45° subcracks.

The test results for the double-edge and single-edge notched specimens are summarized
in Table 1, in which the nominal strength is defined as the average stress in an unnotched
cross section, o = Puax/hD; D = characteristic dimension (0.5—2.0 in.), and h =
laminate thickness (0.03 in. for the cross-ply laminate and 0.04 in. for the quasi-isotropic
laminate, respectively).

It may be noted that the double-edge notched specimen has one undesirable feature:
the response path exhibits a bifurcation after which only one of the two curves can prop-
agate (Bazant and Tabbara, 1990), and the response thus becomes nonsymmetric. This
property however does not invalidate the foregoing procedure because the bifurcation
happens only after the peak load. Nevertheless, the post-peak data from such tests are
difficult to interpret. It was for this reason that the second series of tests used single-edge
notched specimens. In that kind of specimen there is no bifurcation of the response path
and the response is nonsymmetric from the beginning.

3 Observed Size Effect

The effect of structure size D on the nominal strength on in quasibrittle materials gen-
erally follows the approximate size effect law (Bazant, 1984, 1993):

on = Bf.(1+ B)*7, B=D/D, (1)




in which 8 = relative size, f, = reference strength of the material, introduced for the
convenience of dimensionality, and B, Dy = constants. B characterizes the solution ac-
cording to plastic limit analysis based on the strength concept. The curves in Fig. 6-
7 show the plots of (1) in double logarithmic scales. These size effect plots represent a
transition from the strength criterion (plastic limit analysis), representing a horizontal
left-side asymptote, to an asymptote of slope —0.5, representing linear elastic fracture
mechanics (LEFM). Intersection of the two asymptotes corresponds to D = D, called
the transitional size.

The size effect law (1) has been verified by numerous tests, especially for concrete,
but also for rocks, toughened ceramics and ice. The formula (1) has been derived, under
certain reasonable simplifying assumptions, by dimensional analysis and similitude argu-
ments, and for some simple specimen shapes also by energy release analysis. It has also
been shown that (1) represents the limiting case of a more general statistical Weibull-type
theory for the size effect, in which the material failure probability is considered to depend
on the average strain of a certain characteristic volume of the material rather than the
stress at the same point (Bazant and Xi, 1991c). It has been shown that the predictions
of finite element codes with a nonlinear fracture model (such as the cohesive crack model)
or with a nonlocal damage material model agree well with (1). Furthermore, fracture
simulations by random particle models also agree with this law.

In regard to the statistical approach to the size effect, the recent study by Jackson et al.
(1992) of the size effect in tensile and flexural tests of graphite-epoxy composites deserves
mention. Geometrically similar specimens of sizes 1:2:3:4 were used and the results were
analyzed on the basis of Weibull’s statistical theory of random material strength. Good
agreement with the test data was obtained. However, it should be pointed out that
Weibull statistical theory can be applied only to failures that occur at crack initiation.
The reason is that, in the classical form of this theory, the failure probability is considered »
to depend on the local stress, calculated from elasticity, and the stress redistributions and

stress concentrations caused by prior fracture growth are disregarded. These phenomena
make Weibull-type theories inapplicable to failures that occur after a large stable crack
growth, which is in the present case simulated by the geometrically similar notches (see >
Bazant, Xi and Reid, 1991b). In that case, the aforementioned nonlocal generalization of
the Weibull approach is required, and in the limit this leads to (1).

Comparisons of the present tests results to the size effect law for the cross-ply and
quasi-isotropic laminates are shown in Figs. 6-7. The circular points represent the results . >




<,

for the nominal strength in the individual tests. The top of each figure shows a linear
regression plot of Y versus X, based on the relations

Y=A+CX, Y=(/on)?, X=D, Bf,=1/VA, Do=A/C

By means of this linear regression, the parameters of the size effect can be easily identified
from the slope C and the vertical intercept A. The resulting size effect plots of log on
versus log D are plotted in Figs. 6-7. The parameters for these plots are Dy = 1.223 in.
(31 mm), Bf, = 127.1 ksi (0.876 GPa) for the cross-ply laminates, and Dy = 4.16 in.
(105.6 mm) and Bf, = 84,3 ksi (0.581 GPa) for the quasi-isotropic laminates.

To sum up, the test results in Figs. 6-7 show that: (1) the failure of fiber composite
laminates containing traction-free cracks (or notches) exhibits a significant size effect,
and that (2) the size effect represents a gradual transition with increasing size from the
strength criterion to linear elastic fracture mechanics, as described by the size effect (1).
The scatter of the test results is of course significant, but is normal for this kind of
heterogeneous material. The foregoing conclusions are verified on the average, as the
mean statistical trend. These conclusions ought to be taken into account in all design
situations and safety evaluations where a large traction-free crack can grow in a stable
manner prior to the failure. Especially, these conclusions are important for extrapolation
from small-scale laboratory tests to real size aerospace or other structures. The strength
theory, which has no size effect, is for these applications inadequate.

4 Identification of Material Fracture Characteristics from
Measured Size Effect

The size effect law (1) for quasibrittle fracture can also be expressed in terms of the
nondimensionalized energy release rate g(«a);

_ E'G, 2
ow = (oo 70) @

Here c; is a constant representing the effective length of the fracture process zone defined

for extrapolation to infinite size, ag is teh initial value of a when a = ap, and ¢, =
coefficient introduced for convenience, in order to make on coincide with the actual stress
at the desired point of the specimen; g(a) = G(a)(EDh/P)*/b (where G(a) = energy
release rate per unit width of crack front edge, P = external load, E = Young’s modulus,
h = thickness, D = specimen width, & = a/b, b = D for single-edge-notch specimen, and
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b = D/2 for double-edge-notch specimen), see Bazant et al. (1991).. By matching (2)
and (1), one obtains (BaZant and Kazemi, 1990, 1991; BaZant et al., 1991):

A 1 ®

The fracture energy is here defined as the energy required for fracture propagation in
a specimen of theoretically infinite size (Bazant and Pfeiffer 1987). According to this
definition, the fracture energy is independent of both the shape and size of the specimen
because in a specimen of infinite size the fracture process zone occupies an infinitely small
portion of the specimen volume and can be considered as a point, which means that linear
elastic fracture mechanics applies.

To determine the material fracture characteristic on the basis of (3), the expressions
for the stress intensity factor K available for isotropic specimens (e.g. Tada, 1985) have
been used. The assumption of isotropy is quite good for the quasi-isotropic laminates, but

may involve a larger error for the cross-ply laminates (this should be checked in subsequent
study). According to LEFM,

K; = ov/xbaF(a), a=afb (4)

where ¢ = g§ = average stress in the laminate strip and F is a function of variable a.

The cross-ply laminate is not isotropic but orthotropic. The energy release rate and
the stress intensity factor for orthotropic specimens of the present geometry have recently
been solved by Bao et al. (1991). Their solution uses elastic parameters:

_y E:E, E,

p= g Ve A=F (5)

where E,, E,, Gy, Vzy, Vy: are the elastic constants of the orthotropic material, which can

be calculated from the lamina properties (Jones, 1975). The stress intensity factor can .
be written as:

Ki = oVrbaY(p)F(a), (6)
2 n(l+p -1
where Y(p) = [1+0.1(p— 1) — 0.016(p — 1)* + 0.002(p — 1)°] (—2—)

F(a) is the same function of the relative crack length a = a/b as for isotropic materials.
Y(p) is a material constant. The energy release rate for orthotropic material is:

- | 1te g2 |
Gla) = \J 9E,E, /A Ki @ -
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Bringing (7) into (7), one can write G(a) in the same form as for the isotropic materials:

2
Gla) = XL _ e gy - (P L) ®

. 1 2E.E,v/\
Where 7 = [Y(p)]‘J 1+p

and g(a) is the nondimensionalized energy release rate defined before. By virtue of (9), we

can treat the orthotropic material fracture characteristics in the same way as the isotropic
ones if we replace E by the equivalent Young’s modulus E* (E* = 6983 ksi =48.15 GPa
for the cross-ply specimen tested).

For the double-edge-notched specimen (Tada, 1985):

_ ooy [T
F(a)—(1+0.122 cos 2) — tan 3 9)

and for the single-edge notched specimen:
F(a) = 1.122 - 0.231a + 10.55a% — 21.71a® + 30.38a* (10)

Noting that K? = GE where G = energy release rate and E = Young’s elastic modulus,
we have g(a) = xa[F(a)]?. So we have, for the double-edge-notched specimen

2

gla) = 2 (1 +0.122 cos* ”—;—) atan %9- (11)
2

gla) = [(l + tan? l;) (1 + 0.122 cos* %’-) — 0.244sin’ 7a (1 + 0.122 cos* ;)]

where, for a = 0.125, ¢(0.125) = 0.492716, and ¢’(0.125) = 3.91995. For the single-edge
notched specimens:

gla) = =afl.122 - 0.231c + 10.55a° — 21.71a> + 30.38a*]? (12)
g(a) = =#[1.259 — 1.037a + 71.18a® — 214.4a° + 947.5a"|

where, for a = 0.2, we have g(0.2) = 1.184,¢'(0.2) = 11.624. Thus, the for double-edge
notched cross-ply laminates we obtain from (3) the effective fracture characteristics:

Gy =139 ksi x in. =0.243 MJ/m’? ¢;=0.154in. =391 mm  (13)

Because of orthotropic, these values apply only for fracture in the z-direction of or-
thotropy. For the singe-edge notched quasiisotropic laminates we obtain:

Gy =367ksi x in. =0.642 MJ/m’, ¢;=0424in. =10.76 mm  (14)

9




It is noteworthy that the effective length of the process zone, c;, found from these size effect
measurements is quite close to that experimentally derived by Daniel (1985) (the present
values are a little larger, which is not surprising considering that Daniel’s procedure did
not consider extrapolation to infinite size).

Based on the size effect law, the R-curve can be determined as the envelope of the
fracture equilibrium curves for geometrically similar specimens of different sizes. This
leads to the equations

Lo d@ e e dloo) (sle)
Re) =G ae & = olao) (g'(a) ot ) (13)

in which R(c) represents the R-curve. These two equations define the R-curve parametri-
cally; for any chosen value of relative crack length a, one first evaluates the crack extension
from the notch, ¢, and then the R-value. The R-curve calculated from the present test
results is shown in Fig. 8 for both the cross-ply laminate and the quasi-isotropic laminate.

5 Conclusions

1. The present tests show that the nominal strength of fiber composite laminate speci-
mens that are geometrically similar and have geometrically similar notches or initial
traction-free cracks exhibits a significant size effect.

2. The size effect agrees with the size effect law proposed by Bazant, according to
which the curve of the logarithm of nominal strength versus the logarithm of char-
acteristic dimension (size) exhibits a smooth transition from a horizontal asymptote
corresponding to the strength criterion (plastic limit analysis) to an inclined asymp-
tote of slope —0.5, corresponding to linear elastic fracture mechanics.

3. Measurements of the size effect on the nominal strength can be exploited for de-
termining the fracture characteristics of fiber composite laminates, including their
fracture energy and the effective length of the fracture process zone. From these
characteristics, the R-curve can be also calculated. The size effect method of mea-
suring the fracture characteristics is easier to implement than other methods be-
cause only peak load measurements are necessary (the post-peak behavior, crack
tip displacement measurement and optical measurement of crack tip location are
not needed, and even a soft testing machine without servo-control can be used).

10

*

O S ST

by



7N

4. The orthotropic properties of fiber composite laminates can and must be taken
into consideration while analyzing the fracture characteristics. Replacing Young’s
modulus by Bao-Suo-Fan’s equivalent Young's modulus, the formulas of the size
effect method previously derived for isotropic materials can be generalized for the
orthotropic materials. This makes it possible to determine size and shape inde-
pendent values of the fracture energy, effective fracture process zone length, and
R-curve for cross-ply laminates.
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Table 1: Results of Tensile Tests of Notched Composite Laminates of Different Sizes and
Different Notches (1 Ib. = 4.4482 N, 1 ksi = 1000 psi = 6.8947 MPa).

length x width double-edge notch single-edge notch
(in?) Max. load (Ib) | on (ksi) | Max. load (Ib) | on (kst)

1 x 0.25 862 114.9 748 74.8

1 x 0.25 880 1173 819 81.9

1 x 0.25 807 80.7

2x05 1720 114.7 1575 78.8

2 x 0.5 1714 1143 1513 75.7

2 x 0.5 1696 113.1 1553 71.7

4 x1.0 2675 89.2 3368 84.2

4x1.0 2782 92.7 2939 73.5

4x1.0 2512 83.7 2979 74.5

8 x 2.0 4934 82.2 5207 65.1

8 x 2.0 5042 84.0 6140 76.8

8 x 2.0 4425 73.8 5315 66.4
)
3

14




Figure 1: History of temperature and pressure used in curing of the specimens.

Figure 2: (a) Enlarged typical cross section of a single-ply with multidirectional carbon
fibers; (b) Geometrically similar test specimens of four different sizes of ratio 1:2:4:8,
before the cutting of notches; (c) Test arrangement in the Instron 8500 Testing Machine.

Figure 3: Geometry of test specimens; left: double-edge notches, right: single-edge
notches.

Figure 4: Typical measured load-deflection diagrams of quasiisotropic and crossply spec-
imens of various sizes and different notches, showing an increase of nonlinearity with a
decrease of size.

Figure 5: Failure patterns as seen on quasi-isotropic test specimens after the test.

Figure 6: Size effect measured for cross-ply specimens with double-edge notches.

Figure 7: Size effect measured on quasi-isotropic specimens with single-edge notches.

Figure 8: Normalized R-curves for cross-ply and quasi-isotropic composites, deduced from
size effect measurements.
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Size Effect in Fiber or Bar Pullout with
Interface Fracture and Softening Slip

by ZDENEK P. BAZANT,! Fellow ASCE, and RODRIGUE DESMORAT 2

ABSTRACT.— The paper analyzes the size effect, which is an inevitable consequence of post-
peak softening in the relation of interface shear stress and slip displacement between a fiber or
reinforcing bar and the surrounding matrix. To make a closed-form analytical solution feasible,
the problem is simplified as one-dimensional. Solutions of pull-pull and push-pull failures are
obtained for a linear softening stress-slip law with residual strength, and for an exponential
law without residual strength. It is shown that the post-peak softening leads to localization
of slip and interface shear fracture. The interface fracture process zone has a finite length.
It propagates along the interface during the loading process, causing the distribution of the
interface shear stress to become strongly nonuniform. The larger the bar or fiber size, the
stronger the nonuniformity. The size effect in geometrically similar pullout tests of different
sizes is found to represent a smooth transition between two simple asymptotic cases: (1) The
case of no size effect, which occurs for very small sizes and is characteristic of plastic failure,
and (2) the case of a size effect of the same type as in linear elastic fracture mechanics, in which
the difference of the pullout stress in the fiber and the residual pullout stress corresponding to
the residual interface shear stress is proportional to the inverse square root of the fiber or bar
diameter. An analytical expression for the transitional size effect is obtained. This expression is
found to approximately agree with the generalized form of the size effect law proposed earlier
by BaZant. The shape of the size effect curve is shown to be related to the shape of the
softening stress-slip law for the interface. Finally, it is shown how measurements of the size

effect can be used for identifying the interface properties, and a numerical example is given.
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1 Introduction

The shear stress in the interface between fibers and matrix in composites or between
steel bars and concrete is related to the slip displacement in the inteface. This relation
is known to exhibit a post-peak softening. When softening occurs, analysis of the failure
load according to plasticity becomes invalid. One must take into account localization
of softening damage along the interface and consider fracture mechanics aspects of the
problem. By analogy with studies of strain-softening damage, one must also expect a
size effect on the nominal strength of geometrically similar structures of different sizes,
which represents the most important practical consequence of the localization of softening
damage. The objective of this paper is to analyze this size effect.

The problem of pullout of fibers or bars from the surrounding matrix has received
considerable attention in recent years and many important results have been achieved;
see e.g. Lawrence (1972), Freund (1992), Fuller et al. (1990), Gao et al. (1988), Leung
and Li (1990 a,b), Li et al. (1991), Shah and Ouyang (1991), Stang et al. (1990), Steif and
Hoysan (1986), Wang et al. (1988), Beaumond and Alezka (1978); Bowling and Groves
(1979); and Gray (1984 a,b). An excellent review of the pullout test analysis has recently
been presented by Shah and Ouyang (1991). Further light on the interface slip has been
shed by studies of slip at interfaces of other types, including relative slip of rough crack
surfaces (e.g. Bazant and Gambarova, 1980; Divakar et al., 1987; Feenstra et al., 1991).

Most interface models consider the shear stress at the interface to be a function of
the slip displacement (e.g. BaZant and Gambarova, 1980; or Divakar et al., 1987). To
make analytical solutions feasible, many previous authors have simplified the complex
three-dimensional behavior at interface as one-dimensional (e.g. Gao et al., 1988; or
Freund, 1992). In the one-dimensional solution, the influence of the normal pressure
across the interface can be taken into account as long as this pressure is known. But if
this pressure is unknown, a more general solution which takes into account the interface
dilatancy, i.e. the normal relative displacement across the crack, is required. In the
simplified one-dimensional analysis, the interface dilatancy can be approximately taken
into account by adjusting the values of the parameters in the functional relationship 7(v)

linking the interface shear stress T to the relative slip displacement v; see e.g. Lawrence




et al. (1972), Bowling and Groves (1979), Hutchinson, and Jensen (1990). Stang et
al. (1990) considered the stress-slip relation to consist of an elastic part followed by a
sudden stress drop and a residual constant friction (Fig. 1a). However, it is no doubt
more realistic to consider a gradual softening as shown in Fig. 1(b, ¢) (for a sufficiently
large fiber size, the sudden stress drop with an increased strength limit but the same
area under the curve giving the fracture energy must nevertheless give approximately
equivalent results). As for the rising initial linear stress-displacement relation shown in
Fig. 2a, it cannot be an interface property but must refer to the deformation in the layers
of the matrix adjacent to the interface. For this reason, we will omit the rising linear
part. As for the post-peak softening, we will consider it to be linear (Fig. 1c), in order
to make a simple analytical solution feasible, although the real behavior is no doubt a
smooth curve.

The size effect in the problem of fiber or bar pullout has apparently not yet been studied
theoretically. However, its existence has already been demonstrated experimentally for
the case of bar pullout from concrete (BaZant and Sener, 1988). In this paper, we will
focus on the analysis of the size effect, considering a situation with a two-way debonding
similar to that of Leung and Li (1990). We will deduce closed-form analytical formulas
for the size effect, consider the asymptotic cases, and finally show how knowledge of the
size effect can be exploited for determining the interfacial material properties solely from
measurements of the maximum pullout forces.

Because we will simplify the problem as one-dimensional, we will be unable to make a
distinction between fibers in composites and reinforcing bars in concrete, except in terms
of the effective values of material parameters (such as the bond strength or the residual
bond stress). Fibers and bars differ in fracture patterns, dilatancy and pressure sensitivity.

But these phenomena can be specifically described only in a three-dimensional analysis.

2 Idealization of the Problem and Assumptions

For the sake of simplicity, our analysis will be one-dimensional. A cylindrical fiber or bar
of diameter d is assumed to be embedded in an outer cylinder of diameter D representing

the matrix of a composite material (Fig. 2). The cross sections of the fiber or bar and
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of the outer cylinder are assumed to remain planar, but relative slip at the interface is
possible. The stresses within the fiber as well as the matrix are uniform in each cross
section. The interfacial debonding is characterized by the diagram of interface (bond)
shear stress 7 versus relative stress displacement v shown in Fig. lc, where 7, = initial
bond strength (initial cohesion), 74 = residual bond stress at sliding interface, and vo =
critical slip determining the slope of the r(v) diagram, which is assumed to be linear.
The fiber and matrix are elastic, characterized by Young's elastic moduli £y and En.
Although in reality 7, and 74 are pressure dependent, in a one-dimensional model they

must be assumed to be constant. The interface shear stress at the softening portion is

r=r,(1-£';) (1)

The cross-hatched area in Fig. 1c represents the bond fracture energy, which is expressed
as: \
Gy = %T,vo (1 - ?) @)
Let z be the longitudinal coordinate. The fiber has a free end at z = —I. We will
study two types of test: (1) Pull-pull, in which the cylinder representing the matrix has
a free end at z = 0 and is supported at the opposite end (Fig. 2a), and (2) pull-push, in
which the matrix cylinder is supported at z = 0 (Fig. 2b). First we consider the pull-pull
test and leave consideration of the pull-push test to the end.
Equilibrium of a small element of the fiber, of length 8z, requires that 6o (xd2/4) =

7(nd)§z which yields

do 4t
Friairy )

where 0 = normal stress in the fiber. Equilibrium in the cross sections of fiber and matrix

requires that 0 Ay + OmAm = 0aAy, which yields
Om = —¢(0g —0) (4)

where 0, = applied pull-out stress (¢, = P/A; where P is the pull-out load), o, = normal
stress in the matrix cylinder, ¢ = AfE;/AmEm, Ay = 7d?, and Ap, = (D% - d?).

Noting that the difference between the strains in the fiber and the matrix is dv/dz,
we have dv/dz = 0 /Ey ~ om/Em, which yields

v _1+¢,_ 2, (5)




The displacement at the end of embedment (Fig. 2), z = 0, is:

- g _ v(0) + ¢v(~L) $0,L
5"’”("[‘)"'/_0:,3,"" 1+e @ (+9)E, (6)

For the case of softening slip, the differential equation for the fiber stresses ensues by

differentiating (5) and substituting (3) and (1):

F;% + w20' = -——-—1 i¢ w20 (7)

in which
W2 = 4(1 + ¢)7,
Efvod

At the cross sections with no interface slip (no shear crack), the strains in the fiber

(8)

and the matrix cylinder are equal, i.e. 0/Ef = 0m/Enm; this yields

Oa (9)

1+¢
3 Analysis of Pull-Pull Test

In the pull-pull case, two interface cracks grow from both ends of the fiber until they
join. At that moment the maximum applied stress 0, = o, representing the nominal
strength, is reached. If the load is controlled, failure occurs at that moment. The post-
peak softening is observable only when the fiber displacement at the end is controlled,
except when the response diagram exhibits a snapback. The snapback, as we will see,
occurs for sufficiently large sizes.

Because of the discontinuities at the beginning of slip and at the attainment of residual
bond shear strength, several stages must be distinguished in the solution. The number
of states to consider is reduced in the case that ¢ = 1 (Fig. 3). Therefore we restrict
attention to this case, although the general conclusions and implications for the size effect
are the same for any ¢. For ¢ = 1, we have w?® = 81,/ Equod. The stages we must

distinguish are as follows:

1. The initial stage, in which there are two separate cracks emanating from the ends

of the fiber and the shear stress is everywhere larger than the residual strength 74;




2. The final stage, in which the two cracks have joined into one and the residual
~ strength 74 has been reached at both ends;

3. The intermediate stage, in which one must distinguish two cases:

(a) The two cracks join before T reaches r4 at the ends, or

(b) the shear stress 74 is reached before the cracks join.

Initial Stage

In the middle portion of the fiber there is no slip and the shear stress 7 = 0. The maximum
T occurs at the fracture tips z = —;, at which 7 = 7,; i = 1,2 refer to the right and left

parts. From (7), for parts I and II,
Ti = Ty cosw(z + ;) (10)
From (1), the interface slip is
v=1yg [1 —cosw(z + )] (11)

The slip increases from the crack tip to the end of the crack. The distances I; of the tips
from the right end of the fiber (2 = 0) are |, = a and l; = L — a, where a = length of
each crack,

1 . fwd
a = —arcsin (E a.) (12)

Between the cracks, the stress in the fiber is 0 = 0,/2. From the crack tips to the crack

ends, the stress in the fiber increases as

o; = 9a (1 + ?Ln_u_l(_Z_il‘_)) (13)
2 sinwa
The displacement of the end increases with o,, and the diagram of g,(8) is given, in the
first stage, by
_ Lo, Waq.d 2
6




The diagram of o, vs. § has a negative curvature. The transition to the intermediate

stage occurs when g, reaches a critical value that is the smaller of the following two values:

. 871, . wl w _ 87, 3
ao—:}-;smT, % = — =2 (15)

The critical value is o] if wL is small enough and ¢;° if wi is large enough.

Intermediate stage

Case (1) of the intermediate stage, already defined (Fig. 3b), occursif wL < 2 arccos (74/7,).
Otherwise case (2) occurs.
In case (1), the cracks have already joined and the interface shear stress is everywhere

smaller than 7,, but slightly larger than 4. According to (1),

wd cosw(z + &)
= 2 16
T=%% SSinwé (16)

The stress in the fiber (Fig. 2) increases from the left end (z = —L) to the right end
(z=0)and is

; L
U=_”2_°(1+s_m_“iz_*£_z.)_) (17)

smw§

The displacement § of the end of the fiber is, for the first case of the intermediate stage,

Lo, 2 wlL
= —~ e Ot —— 8
621 U°+2Ef [l cho 2] (18)
The stress in the fiber varies from o} to
ol = 874 tan vl (19)

wd 2

for which the residual interface shear stress 74 is reached at the end. Because wl <
2 arccos(74/7,), ol is always smaller than o3, and so the failure occurs at 0, = oy = 0.
The equilibrium path of the structure exhibits snapback if L is sufficiently largé or T4 is
sufficiently small. Precisely, the condition of snapback is
929 < wl < 2arccos£‘-’- (20)
 J

in which zg is the root of zotan zp = 1, i.e. zo = 0.8603.

7




In case (2) of the intermediate stage, i.e. for wL > 2arccos (74/7,), there are two
cracks (Fig. 3b). The interface fracture process zone exhibits linear softening and its
length is c;. The fracture process zone of length ¢, is at constant residual interface shear
stress T = Ty;

r

1 d d .
Cr = u—)-arccos :r-", Cd = g;_;(da — 0, ) (21)

anda =) = L =l = ¢y + cq. With G defined by (2) and w by (8), the fracture process
zone length is ¢; = x1v/Tod in which &) = (7/4)\/Ey/Em and lg = EmGy¢/7? when 74 = 0.
In the general case, x, depends on both the fiber proportion in the matrix and the elastic

moduli;

4 E,

2V 2(1 + 4)Em
The expression for the normal stress in the portion of the fiber that has a linearly varying

(22)

K =

interface shear stress is the same as for the initial stage. For the portion of the fiber
that has a constant interface shear stress, the normal stress is linear in z if 74 = 0, and
otherwise it is constant. The end displacement § increases with 0,4, and the diagram of
04 vs. § has a positive curvature;

Lda Td d 2 2
6 = _ e —_
2 + v (1 T’) + ToraE; (0% - 02?) (23)

Failure occurs when 0, = oy = a,{’ , which is always larger than 0;*;

4
oll =g + ;1-;-’ (wL — 2arccos -:—':—) (24)

Final stage

The softening zone is now localized in the middle of the specimen (Fig. 3c). Its length
AL gradually decreases to 0. The length of the fracture zone, in which 7 = 74, is ¢4 =
(L — AL)/2. For a given applied stress o,, AL is the solution of

,:ﬂ(L_AHZm“—’A—L (25)
w 2 5
Displacement § at the end of the fiber is
Lo, ( Td) Oa 4cqTd
83 = 1- — —_— 26
2 2E’+”0 Ts +cd(Ef dEf) (26)
8




Note that do,/d(AL) is always positive, and d(AL) = —2dcy is always negative. There-
fore, do, is negative, and the equilibrium path decreases with the applied stress. There-
fore, failure occurs in this case before the final stage is reached.

The condition of snapback is

w(L + 2¢q) tan wAL

5 7 1>0 (27)

At L/d = constant, wL « vd when 0 < wAL/2 < arccos(r4/7,), and so snapback must

occur for sufficiently large sizes.

4 Size Effect

The scaling law is the most important attribute of any physical theory. In the classical
theories of elasticity or plasticity, the problem of scaling law has not received much at-
tention because the law is very simple—the nominal strength is independent of structure
size. In the mechanics of damage and nonlinear fracture mechanics, the problem of scaling
or size effect has received major attention in recent years, principally because there is a
strong effect of size on the nominal strength and the scaling law is more complex, repre-
senting a transition from elasticity (or plasticity) to linear elastic fracture mechanics, in
which the nominal strength is inversely proportional to the square root of the structure
size (Bazant, 1984; Bazant and Cedolin, 1991).

The size effect can be defined only for structures with similar geometries and similar
cracks. Therefore, we consider the ratios D/d and L/d to be constant and choose the
fiber diameter d to play the role of characteristic dimension of the structure. We note
that, in this case, wd and wL are both proportional to vd. The applied pullout stress g,
at maximum load may be employed as the nominal strength ox. The value of on can be
calculated from (15) if wL < 2arccos74/7,, and otherwise from (24).

For numerical examples, we consider the material properties 7, = 31MPa, 74 =
3MPa, vy = 0.021 mm and E; = 200 GPa, and run the calculations for sizes d =
1,2.9,6.4 and 12.7 mm at constant ratio L/d = 4. The results are plotted in Fig. 4.
It is apparent that the maximum pullout stress decreases with increasing size. Further-

more, the type of the load-displacement diagram changes; for the smallest size we have a
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gradual post-peak softening, for the next size we have a nearly vertical stress drop, and
for the largest two sizes we have snapback instability right after the peak. This behavior
is typical of the size effect in all structures exhibiting damage localization or nonlinear
fracture. The size effect is caused by increasing localization of the softening regions along
the fiber length as d increases. The softening region at maximum load, which represents
the fracture process zone and is characterized by stress values between 7, and 74 (Fig. 1),
extends in small specimens over a large portion of the fiber length and in large specimens
over a small portion of the fiber length. This behavior is similar to all other failures due
to damage growth or nonlinear fracture.

The size effect obtained for our example is shown in Fig. 5 by the diagram of log(oy —
oo) vs. log d, where 0 is the residual fiber strength corresponding to the residual interface
bond stress 74.

Let us now examine the asymptotic behavior. In the limit of small sizes, d — 0, we
obtain

L
oy =05 = 4T,"d— = constant (28)
In the limit of the large sizes, d — oo, we obtain

8r Erv 2
II J s Yo Td Td Td
ON = Ua = J9 f (J TE’ T. arccos T,) ( )

in which og is the residual pullout stress of the fiber when the interface is completely
debonded and softened to 74,

Op = 4Td-fji (30)
According to (29), the basic form of the size effect for the large sizes is
on-0 x — (31)
N 0 \/E

Except for the presence of gy, this represents the size effect characteristic of linear elastic
fracture mechanics. In the plot of Fig. 5, it corresponds to the inclined straight-line
asymptote of slope —1/2.

The size effect obtained by the present analysis and shown in Fig. 5 agrees with the
general size effect of damage mechanics or nonlinear fracture. Under the hypothesis that

the energy dissipated at failure is a smooth function of both the specimen (or structure)
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size and the fracture process zone size, with the latter being a material property, it was
shown (BaZant, 1985) by dimensional analysis an similitude arguments that, in general,

]—1/2m

on =B [E(1+ €7+ A2+ A6+ ) £=d/d)™ (3

Here f{ is the tensile strength of the material, introduced strictly for convenience, and
m, B,dg, A, Ay, ... are positive empirical coefficients. Eq. (32) represents an asymptotic
series expansion with respect to an infinitely large specimen. It was further shown (Bazant,
1987) that for size ranges up to about 1:20, the asymptotic series can be truncated after
the linear term and that, for most applications to concrete and rock, one can take m = 1.
Thus (32) reduces to the size effect law (Bazant, 1984):
Bf!
= \/Tf+_tB b= do

For materials with a residual strength, represented here by 74, on must be replaced

(33)

in the foregoing equations with ox — g9 where 09 is the residual nominal strength. Thus,

truncation of (32) after the linear term yields the law:
on — a9 = Bfi(1+ ™)™ (34)

and the simple size effect law (m = 1) in (33) is generalized as

g gy = Bft’
N 0= ,—-—B-1+

It is obvious that, for d 3 do, (33)-(35) reduce to oy — gg x d~V/2, which is the form of
size effect exhibited by every formula of linear elastic fracture mechanics. For d < do, (33)

(35)

or (35) reduces to oy = constant (no size effect), which is characteristic of elasticity or
plasticity. For the intermediate values of size d, (33) or (35) describes a gradual transition
between these two asymptotic cases.

Matching the asymptotes to those calculated for fiber pullout, the simple size effect
law in (33) gives in Fig. 5 the plot shown by the solid curve (B f; = 500 MPa, d¢ = 4.2
mm).

The presently calculated size effect law may be rewritten for 09 = 74 = 0 as follows:

’ 2
on = %—%sin\/; i A< (36)

11
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' 2
a~=% if ﬂ>a— (37)

These results are exact for the pull-push problem for any ¢, as we will see in the next
section.

Equation (35) is not identical to (36)-(37), but it can be made nearly identical for a
certain value of m. This value can be estimated by requiring (34) and (36) to coincide for
d = dg or 8 = 1. This yields :

_ In2

= —m)- =2009 = 2 (38)

For m = 2, the agreement of (36)-(37) with (35) becomes virtually perfect.

For tensile fracture, the value of exponent m is known to be related to the shape of
the strain-softening diagram (BaZant, 1985). Striving for the simplest analytical solution
possible, we have assumed this diagram to be linear (Fig. 1c). For tensile fracture, it
was shown that a softening diagram with a progressively decreasing slope and a long tail
yields a more gradual transition in the size effect plot. It may be expected that if Fig.
1c were replaced by such a softening diagram, the calculated size effect could be made to
match the dashed curve in Fig. 5, corresponding to the simple size effect law in (35). It
remains to be seen whether the actual behavior of interfaces corresponds to the simple
case m = 1 (as it approximately does for tensile fracture of concrete), or an m—value
very different from 1 needs to be used. To illuminate this question, the simple nonlinear
softening law 7 = 7, exp (—bv) (Fig. 1d) will be considered next.

5 Size Effect Law for a Nonlinear Softening Inter-
face Behavior

The pullout equations (3) and (5), complemented by the general nonlinear law 7 = T(v)
lead to the general nonlinear differential equation for v(z):

d?y . 4(1+¢)
Ei = kT(U), with k= Efd (39)

which is valid for both the pull-pull and pull-push tests. The axial stress in the fiber is
given by o(z) = Ep(1 + ¢)71v'(z) + ¢(1 + ¢)~'o, for the pull-pull test and by o(z) =

12




E¢(1+ ¢)~''(2) for the pull-push test. The boundary conditions are v’ = 0 at the tip of
interface crack (v =0), 0 =g, at 2 = 0, and 0 = 0 at z = ~L. For simplicity, as before,
the pull-pull case will be studied for ¢ = 1, and the pull-push case for any ¢.

The general solution of (39) is:

/ 7-?-:3%)7; = (V2R)z (40)

To make integration easy, we will consider :
7(v) = T, exp (—bv) (41)

The residual shear stress 7, is here taken equal to zero, and b is related to the fracture
energy Gy by b = 7,/G;. From (40):

v= %m [cosh (, /2kG ,f’i"—;'—”—))] (42)

The axial stress for the pull-pull case (¢ = 1) is:

Eyy/ 2kG, b(z + L) O
g = ——T—— tanh [‘/21&70}——2———] + —= (43)

2

and for the pull-push case:

%G
= Eﬂﬁzmh [,/21;0 ,’-’-(57*—9] (44)

1+¢

The stress at failure is reached when the interface is debonded along all of its length.

The size effect law for pullout with exponential softening and no residual stress may
now be written as (§ = d/dy) :

on = -’%" tanh /8 (45)

where B f; = 41,L/d, dg = 16E4G;/(Bf])? for the pull-pull test with ¢ = 1, and do =
8E;Gy(1 + ¢)"1/(Bf;)? for the pull-push test.

Again, to match (34) closely to (45), we require them to coincide for 8 = 1(d = do).
This condition yields -
In2

-mm ~1.25 (46)

m =
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As might have been expected, m is now found to be much closer to 1 than for the linear
softening. This confirms the dependence of m on the shape of the interface stress-slip
law. The corresponding size effect curves are plotted in Fig. 5b. We see the theoretical
curve agrees almost perfectly with the size effect law with additional parameter (34) and
is quite close to the simple size effect law (35).

The foregoing analysis with a softening exponential stress-slip law does not take in
account the residual strength oo of the interface. For its effect one must refer to our
solution for linear softening.

The general conclusion of our nonlinear analysis is that the influence of the shape of
the shear stress-slip curve on the size effect is appreciable only for the transitional sizes.
For a softening stress-slip law of declining slope, the size effect is closer to the simple
formula (33) than for a stress-slip linear law. The asymptotes of the size effect curve in a
log-log plot remain the same; the interface strength 7, governs the failure for very small
sizes, and the interface fracture energy G the failure for very large sizes.

According to (40), closed-form analytical solutions could be obtained also for stress-slip
laws other than (1) or (41).

6 Identification of Interface Properties from Size
Effect Measured in Push-Pull Tests

In the mechanics of tensile fracture, the measured size effect can be exploited to determine
the material fracture characteristics (Bazant, 1987; BaZant and Pfeiffer, 1987; Bazant and
Kazemi, 1990). The same must be possible for fiber pullout.

Indeed, after calculating the asymptotes of the size effect plot, the size effect param-
eters for linear softening can be identified by matching these asymptote with equations
(28) and (29). This yields

L
Bfy =4(rs - Ta)7 (47)
87,E ? :
= 2TaZs% -4 _ W T4
do = (BJI)? ( 1 72 . arccos T') , (48)
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When the size effect law is to be matched to experimental data on oy, parameters
of the (33) can be easily identified by linear regression Y = AX + C where X =d,Y =
1/(on —00)?, Bf! = 1/VC, and dy = C/A. A similar linear regression is possible for (34).

As an example, we will use the test data of Bazant and Sener (1988) (the circled points
in Fig. 5). These data are for pullout of reinforcing bars from concrete cubes. We use
these data only to illustrate the procedure while being fully aware that the failure mode
observed in these tests did not fit the assumptions of the present analysis. The failure
started by radial splitting cracks emanating from the bar. These cracks, which were
caused mainly by lugs on the reinforcing bars, cannot be described by a one-dimensional
model. Had smooth rather than deformed bars been used, the failure would have been
due only to interface slip, and then the present example would represent the reality rather
than just a mere illustration of the procedure.

Deformed reinforcing bars of yield strength 414 MPa and diameters 2.9, 6.4 and 12.7
mm were used. In each cube, there was one bar parallel to one edge of the cube and
sticking out at the center of one face. The embedment length of the bar was L = 4d. The
size effect law parameters, identified previously (BaZant and Sener, 1988) were B f, = 500
MPa, dp = 2.1 mm and g9 = 0.

For the purpose of analyzing these data, the solution for the pull-push test has also
been derived:

for wl < arccos2: oy = —sinwl (49)
Ts wd

4 2
for wL > arccos T i ON = Og+ pall] (, ’ 1- % - arccos :‘-) (50)
T‘ wd T. T‘ T,

in which w is given by (8) and 0o = 474L/d, ¢ = A;E;/AmEn,. Knowing the exponent m,
which is here taken as m = 1 (same as Bazant and Sener, 1988), we can use the aforemen-
tioned linear regression plot Y = AX + C to determine the size effect law parameters B f{
and dg. Matching of the asymptotes, we get the following expressions for the interface

properties:
d

= ZEBfg' +7a (51)

Ts
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n2 2
vy = 1+¢ (Bf) do - -T-% ~ 2 arccos ¢ (52)
4 n,E, TS Ts Ts

Thén, using the size effect law parameters obtained by Bazant and Sener (1988), we get
from (51) and (52) the following interface properties

7,=31MPa, v =2110"%mm, G,=2325J/m’ (53)

The value of 74 has been neglected in these calculations. The optimum fit by the size effect
law given by (33) is shown by the dashed curve in Fig. 6a, and the fit based on (49) and
(50) with the values in (53) is given by the solid curve. Assuming progressively increasing
values 74 = 0,1, 2,3 MPa, one obtains from (49) and (50) the solid curves shown in Fig.
6b, ¢, d. Unfortunately, the scatter of the data is insufficient to decide which of these
curves is more correct. To avoid such ambiguity and obtain better estimates of interface
properties, tests of a broader size range (1:10) would be necessary. The required breadth
of range is generally proportional to the coefficient variation of the statistical scatter.

It is planned to carry out size effect tests of pullout in which the failure occurs by slip
alone (without radial cracks). Then it will be possible to give an example that is more

than just an illustration of the procedure.

Conclusions

1. The one-dimensional simplification of the fiber (or bar) pullout problems allows a
simple analytical solution yielding closed form expressions for the stress-displacement

diagram as well as the size effect.

2. The solution shows that, for geometrically similar situations: (1) the maximum
pullout stress decreases with increasing size (characterized for example by the fiber
diameter), (2) the post-peak slope of the load—deflection diagram becomes steeper
as the size increases, and (3) for a sufficient'y large size, snapback failure is obtained.

3. An inevitable consequence of softening in the relation of interfacial shear stress ver-

sus slip displacement is localization of the fracture process zone along the interface,
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with a gradual approach to interface shear fracture. Due to localization, the distribu-
tion of the interface shear stress along the fiber or bar becomes strongly nonuniform,
and the nonuniformity gets stronger as the size increases. The localization is the

cause of size effect.

4. The solution confirms that the size effect is transitional between the case of elasticity
or plasticity, for which there is no size effect, and the case of linear elastic fracture
mechanics, for which the difference of the interface strength and the residual stress
is inversely proportional to the square root of the size. This transitional size effect
can be described by the approximate size effect law proposed by BaZant (1984) or

! its subsequent generalization with parameter m controlling the shape of the size

effect curve.

5. The transitional size effect is shown to depend of the shape of the interface stress-
slip law. A declining slope of the stress-slip law leads to a more gradual and more

extended transition in the size effect plot.

6. Measurements of the size effect in fiber pullout can be exploited for determining the

interface properties.
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1 Various assumptions about the interface properties characterized in terms of in-

terface shear stress and relative displacement.
2 Geometry of the fiber or bar pullout tests.

3 Fracture process zones and zones of residual stress along the fiber for various

stages of loading.

4 Diagrams of pullout stress versus displacement for tests of similar geometry and

different sizes.

5(a) Size effect law proposed by BaZant (1984), and (b) comparison of calculated

size effect to the general forms of size effect law for quasibrittle fracture.

6 Test data for bar pullout, used as an illustrative example, and comparisons with
the present solution (solid curves) and with the simple form of the size effect law
(dashed curve).
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Identification of Stress-Slip Law for Fiber or Bar
Pullout from Size Effect Tests
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ABSTRACT. — Test results on the size effect in pullout strength of reinforcing bars embedded
in concrete are presented. Attention is focused on failures due soley to interface slip, with
no cracking in the surrounding concrete. This type of failure is achieved by using smooth
round bars and a sufficiently large ratio of bar diameter to embedment length. Elimination
of cracking in the surrounding concrete makes it possible to study the characteristics of the
interfacial shear fracture between steel and concrete. The results of tests of geometrically
similar specimens show that interfacial shear fracture causes a size effect on the nominal
strength in pullout. The size effect is found to be transitional between plastic failure (the
current approach of concrete design codes, for which there is no size effect) and linear elastic
fracture mechanics (for which the size effect is the maximum possible). This transitional size
effect can be approximately described by the size effect law proposed by BaZant for quasibrittle
failures in general. By fitting a theoretical formula obtained in the previous study to the size
effect data, the basic material characteristics of the stress-slip law for interface fracture are
determined. These include the interfacial fracture energy, the shear bond strength (debonding
shear stress), the residual frictional shear stress, and the length of the shear fracture process
zone. The same method could be used for identifying the interfacial fracture characteristics
of other materials, e.g., fibers in composites.

1 Introduction

The problem of pullout of reinforcing bars from concrete or fibers from the matrix of a
composite material has been studied intensely and many significant results have already
been achieved. Two concepts have been used as the criterion of pullout failure: (1) The
interface shear strength criterion (Lawrence, 1972; Takaru and Arridge, 1973; Yue and
Cheung, 1992a, 1992b; and Hsueh, 1991a, 1991b, 1990a, 1990b); and (2) the fracture
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mechanics criterion of critical energy release rate (Guerney and Hunt, 1967; Outwater
and Murphy, 1969; and Stang and Shah, 1986), which was in some works combined with
the consideration of friction between the debonded fiber and the matrix (Gao et al., 1988;
and Hutchinson and Jensen, 1990).

More realistic is a generalized fracture mechanics appraoch which combines both con-
cepts. It is based on a relation of the interfacial shear stress 7, (bond stress) to the
interfacial slip, in short, the stress-slip law. This law involves the strength limit as well
as the fracture energy. It may involve a rising linear part simulating the elastic shear
deformation of a thin layer of matrix adjacent to the interface.

The stress-slip law is characterized by post-peak softening, which is sometimes consid-
ered as a sudden stress drop but is more realistically modeled as a progressive softening.
Because of the softening, the interfacial slip represents shear fracture. Normally the
stress-slip law possesses residual shear strength, 17, which can be regarded as friction (the
dynamic friction). From the fracture mechanics viewpoint, the area under the stress-slip
curve and above the friction limit represents the shear fracture energy of the interface,
Gy, which is a basic interface property. The values of the shear strength, fracture energy
and frictional stress can in general depend on the confining pressure from the surroundmg
matrix (the normal stress across the interface).

While the stress-slip law for the interface is a basic material characteristic, it is dif-
ficult to measure it directly. It must be deduced indirectly from some other types of
observations. In a preceeding study (BaZant and Desmorat, 1994), it was shown that
the stress-slip law can be identified from measurements of the size effect on the pullout
strength when geometrically similar specimens of different sizes are tested. A simplified
method of identification was proposed and illustrated by a numerical example, but prac-
tical application has not been given for lack of test data. The objective of the present
paper is to report tests of size effect in pullout and identify from them the stress-slip law
for the steel-concrete interface.

The identification problem requires a sufficiently simple solution, which is preferably
in a closed form and is such that it can be inverted. Such a simple soluti n has been
obtained in a preceeding study (BaZant and Desmorat, 1994), in which the pullout problem
was simplified as one-dimensional, with the matrix represented as an elastic bar or tube
surrounding the pulled bar or fiber. Although the one-dimensional simplification is no
doubt too crude for some purposes, it is no worse than the assumption of elastic Winkler
foundation as a replacement of an elastic half space. Of course, the equivalent elastic




stiffness of the surrounding bar that models the matrix must be properly determined,
either by a more sophisticated analysis or by tests.

It is now well understood that softening material properties always engender size effect.
Normally the size effect in pullout failures arises from two sources: (1) The fracturing of
the matrix surrounding the fiber or bar, and (2) the softening in the stress-slip law,
as already described. Obviously, to determine the stress-slip law, one must conceive a
special type of pullout test in which there is no fracturing in the matrix, only the slip in
the interface. This is the basic idea of the present experiments. As will be seen, pullout
failure of reinforcing bars due to exclusively to interface slip can be obtained if a smooth
round bar (without any lugs) is used and the embedment length of the bar or fiber is
sufficiently short.

It may be noted that the pullout failures of reinforcing bars in concrete or fibers
in composites exhibit some different characteristics. However, these differences are due
mainly to the fracturing of the matrix surrounding the bar or fiber (for example the frac-
ture induced by lugs on the reinforcing bars in concrete). These differences are probably
small if the failure is due to the interfacial slip alone, which is the case here. Anyway,
because the pullout problem is simplified as one-dimensional, it is impossible to make a
distinction between fibers and bars (except in terms of the effective values of the material
interface parameters).

2 Test of Pullout Due to Interfacial Slip Alone

The specimens tested, shown in Fig. 1, were concrete cubes of sides L = 1.5,3,6 and 12
in. (38.1, 76.2, 154.4 and 304.8 mm), in which steel bars of diameters D = 0.125,0.25,0.5
and 1 in. were embedded. In this manner, perfect geometric similarity of the specimens of
different sizes was preserved. The bars were smooth, in order to achieve that the pullout
failure be caused solely by interfacial slip, with no fracturing in the surrounding concrete.
This mode of failure was borne out by the tests. It may be noted that the round smooth
rods were slightly rusty at the time of casting, however, this condition is not undesirable
since some rusting is normally present in practice. Based on the expected average bond
strength (Naaman, 1991), the bar size was chosen so that yielding of the steel could not
occur before the pullout failure of the interface, and this was also borne out by the tests.
The part of the steel bars that was sticking out of the concrete cube was 10 in. long for
each size.

The cubes were made of concrete of standard cylindrical strength f. = 7,290 psi
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(50.26 MPa) for normally cured specimens and f. = 5.220 psi (36.0 MPa) for the con-
crete cured in an accelerated manner (tested on cylinders of diameter 3 in. or 76.2 mm,
at the time of the tests). The Young's elastic modulus of concrete was 4.31 x10° psi
(29.7 GPa), determined as the mean initial stress-strain slope from a set of the stan-
dard cylindrical compression tests for the same batch of concrete. The Young’s modulus
of the steel bars was 30.5 x10° psi (210.0 GPa). For both sets, the companion cylin-
ders for the test of strength had the same curing history. In the concrete mix, the ratio
water:cement:sand:gravel was 0.6:1:2:2, by weight. The aggregate consisted of granite,
quartz etc. gravel and quartz sand of maximum grain sizes 3/8 in. (9.6 mm) and 0.132
in. (3.35 mm) respectively. Both were washed and air dried for 40 or 48 hours prior to
mixing. Portland cement of ASTM type I, without any admixtures, was used. Two sets
of specimens of all sizes, each from one batch of concrete, were cast in wooden moulds
(Fig. 1a). The steel bars were vertical during casting. The specimens were unmoulded

~ one day after casting. The first set of specimens was then stored in a fog room at nearly

100% relative humidity and 20° C temperature for 28 days, and then tested. The second
set of specimens was cured in water for seven days at 50° C, so as to achieve accelerated
curing. In the second set of specimens cured in water, the largest cube of 12 in. side was
omitted because of the limited size of the heated chamber. Despite the lower strength of
the specimens cured in accelerated manner, the bond strength was about the same as for
the specimens cured in the standard manner.

The specimens were tested immediately after the curing. So the specimen bulk was
still wet during the test, and thus no microcracking due to drying could have occurred in
the specimens. All the specimens were tested in a 20 kip (89.0 kN) closed-loop controlled
MTS testing machine. All the tests were displacement controlled. The displacement rate
was kept constant during each test and was chosen so that the maximum load for the
specimens of each size would occur in about 10 min. (for the 6 in. cubes the displacement
rate was 0.003 in./min. or 0.076 mm/min.; for the 12 in. cubes it was slightly Higher, and
for the 1.5 in. cubes it was slightly smaller). The strain of the steel bar outside the cube
was recorded by a MTS extensometer. The displacement was measured on the steel bar
as close to the face of the cube as possible, that is, right above the steel plate providing
the reaction (Fig. 1b).




3 Test Results and Size Effect Observed

All the specimens of both series failed by pure interfacial slip, in contrast to the previous
pullout tests of Bazant and Sener (1988). No visible cracking occurred in the concrete
cubes, this means that the objective of avoiding the fracturing of concrete around the bars
has been achieved and the observed post-peak softening and size effect must be attributed
strictly to the interface fracture. Some typical load-deflection diagrams observed are
shown in Fig 3 (the initial increase of the slope is due to the gradual seating of the
reaction plate). As seen in Fig. 3, the larger the specimen, the steeper the post-peak
descent. This property is characteristic of all structures undergoing damage localization.

The test results for standard and accelerated curing are shown in Table 1. It was
intended to test four specimens for each size in each set, however, a few tests did not
work out.

Dividing the maximum load by the embedded steel surface area, one obtains the
average shear bond strength, which is taken as on. Its value for the present tests ranged
from 189 to 429 psi (1.30 to 2.96 MPa), for both sets of specimens. It may be noted that
this value is considerably smaller than that predicted by the formulas of Orangun et al.
(1977) or ACI (1983). However, these formulas are not intended for smooth bars, but for
deformed bars whose failure causes severe cracking of concrete.

Because the load-deflection diagram exhibits post-peak softening, and the softening is
not caused by geometrically nonlinear effects of buckling, one must expect a size effect
which is approximately described by the size effect law (BaZant, 1984, 1991):

on — ap = Bf}(1 + B)~1/? (1)

in which 8 = D/Do = relative size, D = characteristic size taken as the bar_diameter,
oo = residual frictional strength, f{ = direct tensile strength of concrete (introduced solely
for convenience); and B, D, = two constants to be determined by regression of test data.
The direct teasile strength was estimated from the ACI formula f/ = 6,/ (where both
f! and f{ are in psi). The residual frictional strength is determined from the final plateau
of the load-displacement diagram, as the final load value divided by the interface area.
From the present tests, oo = 3,310 psi (22.8 MPa).

As shown before, (BaZant, 1990) (1) can be converted to a linear regression plot
Y = AX 4 Cin which

Y=fNon-00)? X=D (2)
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The measured data are shown as the circled points in the plot of Y versus X in Fig. 5a for
the set of specimens cured in the standard manner and in Fig. 5b for the set of specimens
cured in an accelerated manner. The regression lines Y = AX +C are also shown in these
plots. The constants of the size effect law (1) can then be obtained as B = C~'/? and
Do = C/A, in which A is the slope of the regression line and C is the vertical intercept.
In this manner, it has been found that B = 2.18 and Dy = 0.297 in. (7.54 mm) for the
case of standard curing, and B = 3.05 and Dy = 0.198 in. (5.03 mm) for the case of
accelerated curing. The size effect plots corresponding to these parameters are shown as
the curves in Fig. 4a,b. The curve of the size effect represents a gradual transition from
a horizontal asymptote representing the strength criterion to an asymptote of slope —0.5,
representing the size effect of linear elastic fracture mechanics.

The scatter of the test data in Fig. 4 and 5 is quite large. However, large scatter
has generally been typical of bond strength measurements in the past. Despite the large
scatter, it is clear that the size effect is present and that the mean slope of the size effect
plot in Fig. 4 is intermediate between the strength criterion and the linear elastic fracture
mechanics, as expected. It cannot be claimed that the test results validate the use of the

size effect law, however, they are not in disagreement with this law.

4 Identification of Interface Characteristics from Size Effect

In a previous study, Bazant and Desmorat (1994), assumed that the stress-slip law, that is.
the relationship of the shear stress r at the interface to the relative slip v at the interface,
has the form shown in Fig. 6. The softening is considered to be linear, starting from
the shear bond strength 7,4, and there is a terminal shear stress 7;, representing friction.
The area under the softening diagram above the frictional plateau (cross-hatched in Fig.
6) represents the interfacial fracture energy G; per unit area of the interface: Its value
determines the softening slope in Fig. 1a. ,

In the previous analysis the interaction of the reinforcing bar (or fiber) with the sur-
rounding matrix was simplified as a one-dimensional problem. This means that the con-
crete surrounding the steel bar is treated as a bar in which the cross sections remain
plain. Under this simplification, it was possible to obtain for the size effect an analytical
solution that was sufficiently simple for the purposes of identification of interface material
characteristics 74,7, and G;. It was possible to solve these characteristics explicitly in
terms of the parameters of the size effect law (1).

Two cases had to be distinguished in the previous solution: (1) The interface slip




cracks join before 7; is reached (Fig. 7, left), and the (2) r; is reached before the cracks
join (Fig. 7, right). The following equations have been obtained for these two cases:

8, wl T
I _2d s *2 < i
Tim =~ S0 for wL < 2arccos T (3)

8, r?  4r T T
i _ 87 l i __L( - _/) I
Tim = —5 1 = + =D wlL — 2arccos ™ for wL > 2arccos " (4)

The superscripts I and I/ label the first and second cases; a4, is the maximum axial stress
in the bar; w? = 4(1 + ¢)74/ EjvoD with ¢ = AjE;fApEn where Ay = xD?/4,A,, =
x(d® — D?)/4; vg is the critical slip shown in Fig. 6; D = reinforcing bar diameter; and
d = outer diameter of the effective cross section area of the concrete (matrix) surrounding
the steel bar.

When geometrically similar specimens are considered, L/D and d/D are constants.
From Eqgs. (3) and (4) one can plot the size effect curve of log o4m versus log D. This
curve has the same asymptotes as the size effect law (1) plotted in (4). By matching
these asymptotes to the horizontal and inclined asymptotes of the size effect law (1), it
has been shown that

D
T4 = 4—LBf; + 7y ‘ (5)
~2
_1+¢(Bf) 7o Ty
v =3 E; Dy 4|1 ey arccos T (6)

These equations make it possible to determine the values of the interface fracture charac-
teristics. However, before these equations are evaluated, one must determine the residual
frictional shear stress, which is simply given by

D
Ty = szo . (7)

The interfacial fracture energy can then be calculated as

. _zy
Gt = 2 Td ( 4 (8)

Eqgs. (6)-(8) have been applied to the size effect parameters obtained fromn: the present
test results. The resulting values of the interface fracture characteristics for the specimens
cured in standard manner and in accelerated manner are listed in Table 2. The values of

the debonding stress r, (interface shear strength) and the residual frictional shear stress
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7, are similar for both methods of curing. however, the interfacial fracture energies are
quite different and the post-peak softening is steeper for the accelerated curing tests.

The present test data, however, are too limited and their scatter is too high for de-
termining the precise shape of the stress-slip law for the steel-concrete interface. The
softening curve of the stress-slip law may of course be a smooth curve and may be more
complicated than that in Fig. 6. The characteristics of the stress-slip law in Fig. 6 that
have been identified from the test data should be regarded as merely approximate.

5 Conclusions

1. Slip and shear fracture at the steel-concrete interface engender a size effect on the
nominal strength of structure, even if no fracture takes place in concrete. This
implies that the interfacial stress-slip curve must exhibit post-peak softening.

2. The size effect caused by interface slip is transitional between plastic limit analysis
and linear elastic fracture mechanics and is in agreement with the general size effect
law proposed by Bazant (1984) on the basis of energy release analysis or dimensional
analysis with similitude arguments.

3. The interface fracture characteristics, including the interface fracture energy, inter-
face shear bond strength and a residual frictional strength, can be identified from the
results of tests of the size effect in bar i)ullout from geometrically similar specimens
of different sizes.

4. To be able to identify the interfacial shear fracture characteristics from the size
effect tests, it is necessary to design the tests in such a manner that the failure is
due exclusively to interfacial slip, with no cracking in the surrounding concrete. In
the case of reinforced concrete, this car be achieved by using smooth round bars
(with no lugs) of a sufficiently large rate of bar diameter to embedment length for
interface slip analysis.
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Table 1: Test Results for Standard and Accelerated Curing Specimens

B Standard Curiri Accelerated Curing
Diam. | Cube | Max. Load | o4n | Diam. | Cube | Max. Load | o4n

D Side (Ib) (psi) D Side (Ib) (psi)

(in) (in) (in) (in)

1.5 1/8 253 16297 1.5 1/8 230 18742
1.5 1/8 171 18229 1.5 1/8 175 14260
1.5 1/8 224 13957 | 1.5 1/8 201 16379
1.5 | 1/8 200 20616 | 3 1/4 613 12488
3 1/4 561 11429 | 3 1/4 588 11979
6 1/2 3605 18360 3 1/4 859 17499
6 1/2 3500 17825 | 3 1/4 763 15544
6 1/2 2700 13751 6 1/2 1781 9070
12 1 10300 13114 6 1/2 3750 19098
12 1 8009 10117 6 1/2 2249 11454
12 1 - 7754 9872 6 1/2 3247 16537

Table 2: Fracture Characteristics Identified from Tests

28-day standard curing accelerated curing :
77 | 68.9 psi (0.47 MPa) 87.1 psi (0.59 MPa) 4
400.3 psi (2.76 MPa) 429.3 psi (2.96 MPa) :

2.9 x 10-3 in. (75.4 x 10~ mm) | 1.4 x 10~3 in. (35.6 x 103 mm)
72 J/m? 34 J/m?

Ns 2




“N

Figure 1: (a) Geometry of pullout tests specimens, (b) loading frame and test arrange-
ment.

Figure 2: Set of test specimens of various sizes (before testing) and of the test setup for
the 6 in. specimen.

anure 3: Typical load deflection diagrams for specunens of various sizes (for standard
curing and for accelerated curing).

Figure 4: Size effect plots of the test results in double logarithmic scales and their optimum
fit by the size effect law; (a) for standard curing, (b) for accelerated curing.

Figure 5: Linear regressions of the test data according to the size effect law; (a) for
standard curing, and (b) for accelerated curing. -

Figure 6: Stress-slip law for the steel-concrete interface.

Figure 7: Two types of interface shear stress distribution at maximum load.
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SUMMARY

The paper presents a simple approximate analytical solution of the remote stresses that cause the collapse of
a borehole or other circular cylindrical cavity in an infinite elastic space. Regions of parallel equidistant
splitting cracks are assumed to form on the sides of the cavity. Their boundary is assumed to be an ellipse of
a growing horizonal axis, the other axis remaining equal to the borehole diameter. The slabs of rock
between the splitting cracks are assumed to buckie as slender columns, and their post-critical stress is
considered as the residual stress in the cracked rock. The buckling of these slab columns is assumed to be
resisted not only by their elastic bending stiffness but also shear stresses produced on rough crack faces by
relative shear displacements. The energy release from the infinite medium caused by the growth of the
elliptical cracking region is evaluated according to Eschelby’s theorem. This release is set equal to the energy
dissipated by the formation of all the splitting cracks, which is calculated under the assumption of constant
fracture energy. This yields the collapse stress as a function of the elastic moduli, fracture energy, ratio of the
remote principal stresses, crack shear resistance characteristic and borehole diameter. The collapse stress as
a function of crack spacing is found to have a minimum, and the correct crack spacing is determined from
this minimum. For small enough diameters, the crack spacing increases as the (4/5;-power of the borehole
diameter, while for large enough diameters a constant spacing is approached. In contrast 1o plastic solutions,
the breakout stress exhibits a size effect, such that for small enough diameters the breakout stress decreases
as the ( — 2/5)-power of the borehole diameter, while for large enough diameters a constant limiting value is
approached. Finally, some numerical estimates are given and the validity of various simplifying assumptions
made is discussed.

1. INTRODUCTION

The sudden catastrophic collapse of boreholes in rock, called the breakout, as well as the collapse
{such as rock burst) of various other types of cavities due to high compressive stresses in the rock
mass, has been studied extensively and various important results have been obtained.!~%?
However, most studies have been based on the theory of plasticity, which does not give
a sufficiently realistic description of the inelastic behaviour of rock, except at very high confining

¢ Walter P. Murphy Professor.
' Assistant Professor.
! Professor and Director.

0363-9061/93/010001-14$12.00 Received 3 October 1991
© 1993 by John Wiley & Sons, Ltd. Revised 9 April 1992

3ot




2 ZDENEK P BAZANT ET AL

pressures. Such pressures, however. never exist near the sides of cavities. Cavities usually appear
to fail due to fracture of rock. and the failure process is described by fracture mechanics better
than plasticity. A fully realisuc description would no doubt require a combination of both
theories, but the analysis would then become rather complicated.

The most important practical consequence of fracture mechanics is that it predicts size effect.
that is. the remote compressive stress that causes-a borehole to fail must decrease as the borehole
size increases. On the other hand. according to plasticity (or any other failure theory expressed in
terms of stress and strain), there is no size effect. But the existence of the size effect has been
detected experimentally (e.g. References 19, 23, 24).

Fracture mechanics has so far been well developed only for tensile fractures, and to some extent
shear fractures: their microscopic mechanism, however, still usually consists of tensile cracks.
Compressive fractures are not very well understood at present, although it is clear that their
mechanism involves, in one way or another, some form of tensile cracking depending on the
structure geometry. The purpose of this study is to formulate appropriate simplifying assump-
tions and use fracture mechanics concepts to obtain an analytical solution of borehole collapse
that reveals the size effect and is sufficiently simple to be clearly understood—one benefit that
numerical solutions cannot provide. The plasticity aspects of failure will have to be neglected to
make an analytical solution feasibie. The reality may be expected to be somewhere between the
solutions of plasticity and fracture mechanics, but probably in most situations much closer to the
latter.

2. ENERGY RELEASE DUE TO GROWTH OF ELLIPTICAL CAVITY

Consider a circular cylindrical borehole of radius R and horizontal axis z in an infinite elastic
space that is in a state of plane strain (Figure 1a) and is subjected at infinities to uniform
compressive stresses o, and g, in the directions of Cartesian co-ordinates x and y. We will
assume that failure tends to enlarge the circular cavity into an ellipse of horizontal axis a > R,
with the vertical axis remaining equal to R.

Based on Eshelby’s solution of the stress field and using the superposition method, explained in
detail for example by Mura,?* one can calculate the loss of the potential energy (per unit
thickness in the z-direction) of an infinite, initially uniformly stressed elastic space caused by
cutting out an eliliptical hole

All, = — 2—"‘:,-,[(‘: + 2R)Ra2, + (2a + R)ao?, — 2aR0, . 0,. ] 1)

where E' = E/(1 — v?), E = Young’s elastic modulus of the rock, v = Poisson's ratio, and
v = v/(1 — v). All, represents the sum of the work of the stresses on the strain changes outside the
ellipse, which are non-uniformly distributed and decay with the distance from the ellipse, and the
work of the stresses on the strain changes inside the removed elliptical cutout, which are,
according to the famous Eshelby’s theorem, uniformly distributed within the ellipse.

Equation (1) gives the potential energy change when the stresses within the elliptical region are
reduced to zero. Later we will need also the potential energy change A1’ when the initial vertical
stress o,,, is reduced to a certain finite critical stress o., rather than to zero. In that case the
calculations according to Eshelby’s theorem yield

ATl = — %[(a + 2R)Ro2, + (2a + R)ac?, — 2aR6, 0, — 2a°03, @

Equation (1) may be checked by considering the limiting case R — 0, for which the elliptical hole
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Figure 1. (8) Growth of an elliptical cracking region from a circular borehole, and (b) limit case of a crack

becomes a horizontal crack (Figure 1b). In that case Equation (1) reduces to:

Al = — %ai,a’ )

This coincides with the expression for the energy loss of an infinite space due to creating a crack of

length 2a. Indeed, as is well-known (e.g. References 26 and 27), the energy release rate per crack tip

is K¢/E' where K, = 0,../(na) = stress intensity factor, and by integrating one has, for both ’
crack tips combined, ATl = 2f(K/E’)da, which is the same result as equation (3).

Proof of equation (2). Consider an infinite elastic body subjected at infinity to a uniform
é applied stresses ¢, let a uniform eigenstrain €* be applied to an ellipsoidal domain  contained
in this infinite body. The values of the eigenstrain ¢* are such that the stress is zero every where in
the ellipsoid after ¢* is applied. This means that (if the infinite body is free from any external force) >
the stress in the ellipsoid induced by ¢® will be — e,,. Because the stress is zero everywhere in the
ellipsoid, the ellipsoid can be cut out from the infinite body without affecting its stresses and
deformation. Thus, the change of potential energy of the infinite body caused by the applied
cigenstrain is the same as the loss of potential energy caused by cutting out the ellipsoid from the
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4 ZDENEK P BA2ANT ET 4L
infinite body. This potential energy loss can be calculated as follows (c.g. Reference 25):
4
Al = -1 e's*dV - | ¢fstdr = — —0"¢® - Veit* 4)
2)a a 2
where ¥ is the volume of the ellipsoid; €, and @ are the stress vectors in the ellipsoid when the
infinite body is subjected to external forces alone or cigenstrain ¢* alone, respectively.

If plane-strain cases are considered, the ellipsoid becomes an elliptic cylinder and the relation-
ship between eigenstrain ¢* and the stress induced in the elliptic cylinder is:?*

U R? + 4R R 1., u R? R .
= 2t GeR? TarR|S T @R avR|®

——¢’ =0, (5)

2 2
M a* + 2aR a o u a a .
1- 2+(a+R)’+a+R]£’+l-—v(a+R)’ a+ R[>

v R
R 6
l—va+R*"7 ©)

-2uv a 2uv R 2u

c.
1—v a+R*

TT—vasRT T e ™

where u and v are the Lamé constants; a and R are the axes of the ellipse in the x- and y-directions.
If the applied stress components at infinity are o,, and o,., the stress component in the

z-direction is v(6,, + 0, ). Substituting — 0,,, — 0, and — ¥@,, + 0,,)for0,,0,and 0, in
the above three equations and solving them, we obtain the eigenstrain components

(v—1)a + 2R) | Y
s B ————————— — B et B
€x 3 (—0:) + % (= 0ye) (8)
1-v (v—-1)(2a+ R)
. - _
5, 2“ ( axc) + Z}JR ( a,a) (9)

with ¢ = 0. The energy loss AIl per unit thickness in the z-direction can now be calculated from
substituting the above expressions into Equation (Al).

v
Al =~ 5(—al)e* — Valet = — calet =~ 2Ry _co s Oyty)
2 2 2
=— %[(c +2R)o, + (2a + R)ac?, — 2aRo,.0,. ] (10)

where E = 2(1 + v)jpand E’ = E/(1 — v?).

Now consider the loss of potertial energy when a uniformly stressed infinite body is cut by an
elliptic cylinder whose surface tractions along the surface of the elliptic hole corresponding to the
uniform stress state o, = g,,- with other components being zero. The loss of potential energy for
this case is expressed similarly to equation (4), except that one term must be added as follows:

Al = — ;c’z‘ — Vols® — ;(c +a))e (1
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Here the last term represents the elastic strain energy stored in the elliptic cylinder when both the
external forces at infinity are applied and the eigenstrain £* occurs; e is the elastic strain vector in
the elliptic cylinder. Substitution of the expressions for @. ;. €* and ¢ into equation {11) finally
yields
v [ [ 4 [ * ' Ier
All = - 5[ — Oz &y + (- Oy + acr)cy ] - ‘[axxcx + artcy] - Ea“? (12)
Substitution of equations (8) and (9) then proves equation (2). QED
Equation (1) gives the potential energy change from the case of no cavity to the case of an
elliptical cavity. By setting in equation (1) @ = R, we get the potential energy change from the case
of no cavity to the case of circular cavity of radius R (Figure 1a):
RZ
Ally = — n—(3o’§x + 30}, - 20,.0,.) (13)

2F
Subtracting equation (13) from equation (2), we obtain the potential energy change when the
stress in the regions between the original circle and the circumscribed ellipse is reduced from
g,. t0 G,

Al = ATl — Al = — (@R — R¥)g?, + (2a*> + Ra — 3RY) e},

n
25 L
+ 2R(R - a)0, .0, — 2a*0l] (14)

3. RESIDUAL STRAIN ENERGY AFTER COMPRESSION FRACTURING

If 6., = 0, the foregoing expression includes the release of all the strain energy onginally stored in
the zone between the ellipse and the original circle (Figure 1¢). However, it is a particular feature
of compression fracturing that this zone cannot be assumed unloaded to zero stress. Compression
fracture in quasibrittle microinhomogencous materials such as most rocks initiates as a system of
parallel, roughly equidistant, splitting cracks having the direction of the minimum principal stress
(in our case 0,,). These vertical splitting cracks (which initially cause exfoliation at borehole
surface and later extensive slabbing??:24-2%); may eventually get organized to form inclined
bands, equivalent to shear bands (Bazant and OZbolt??), which in our case may be imagined to
form along the contour of the ellipse. This aspect, however, does not seem to be essential for
calculating the residual strain energy.

Now what is the mechanism that dictates the residual vertical stress o.,? If the spacing of the
vertical cracks is relatively small, the stress that can be carried by the thin slabs of the material
between the adjacent vertical splitting cracks must obviously be limited by elastic buckling?® (this
is a discrete version of the idea proposed, for an elastic continuum weakened by smeared parallel
cracks, in Reference 31; see also Section 11.7 in Reference 32). So we will consider that these slabs
(Figure 1), of thickness h, buckle in the manner of fixed-end columns of a certain length 2L, equal
to the crack length.

It is now useful to recall the initial post-critical behaviour of a perfect elastic column (e.g.
Section 1.9 in the textbook of BaZzant and Cedolin®?). The diagram of the axial load P of such
a column versus the axial load-point displacement u becomes nearly horizontal upon reaching the
critical load, i.c. the Euler bifurcation load (the post-critical siope is still positive, equal to P, /2L,
but this is negligible compared to the precritical slope) see Figure 2. According to this idea, the
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Figure 2. (a) Diagram of axial load vs. axial load-point displacement for columa buckling, (b) simultaneous buckling of
rock siabs between parallel cracks, and (c) crack shear stresses

vertical compressive stress in the paralle! slab-columns of thickness h will not be zero but
nt E'l x? E'W
=R T2
where | = h?/12 = csatroidal moment of inertia of the cross-section of the slab (per unit
thickness in the :-direction), h = spacing of the equidistant splitting cracks, and L = average
(effective) half-length of the vertical cracks at the moment of failure.
We will now assume the deformation fields at the moment of failure of small and large

boreholes (i.e. the modes of failure) to be geometrically similar, proportional to the borehole
radius R. This means we assume that

(15)

L=kR (16)

where k = empirical positive constant < 1. (Ths assumption is supported by the following
argument: if L were not proportional to R, then we would have L = kR", where n = constant
# 1; but then, for increasing R, the ratio L/R would tend either to infinity or to zero, that is, the
mechanism of collapse would change, which seems irrational.)

In contrast to tensile cracks, the compression splitting cracks have one particular prop-
erty—their opening displacement is, according to the present model of simultaneously buckling
parallel slab-columns (Figure 2b), zero. At the same time, the cracks in rock are rough and
transmit shear stresses t when the opposite faces are subjected to shear. Now, to accomodate the
buckling deflections of the adjacent slabs, relative shear displacements A between the contacting
crack faces must inevitably arise (Figure 2c); A = w'(y)A, where w(y) = deflection curve of each

¢)
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Figure 3. Calkulated dependence of remote effective stress causing borehole collapse on the borehole radius

slab-column. The shear stress transmitted across the crack due to surface roughness (Figure 3)
may be approximately assumed to be proportional to A; thus, t = Gy, Where yc = Aiz = w'h 4
G = elastic shear modulus of rock and /. = empirical length = material property representing the
thickness of an intact rock layer whose elastic shear relative displacement due to unit shear stress
is the same at that between the crack faces. The shear stresses acting from both sheared cracks
exert on the slab-column a distributed moment m = rh(Figure 2¢c). The moment differential
equation of equilibrium of the slab-column is M' + Pw' + m' = — V, where M = bending mo-
ment, V = shear force and P = — o,h = axial compression force. Therefore, the differential
equation for the deflection curve is E'Iw™ + (P — Gh*/i)w” = 0, where I = h?/12. The lowest
critical stress for fixed-end boundary conditions is then easily found to be
nE'h® h
120 i
The work of shear stress t is not included in the strain energy since crack shear is inelastic,
irreversible (this work might be included in the dissipated energy expression, but it is negligible at
the start of buckling.
The residual strain energy (per unit thickness in the z-direction) contained between the cllipse

and the initial circle is given by the bending energy of all the slab-columns, which may now be
approximately expressed as

G, = — (17)

(18)

_ : zgg,_gnk(a—k) nE'n h 2
., = (naR - nR )25, 2E 12k2R2+J.G

4. ENERGY DISSIPATED BY FRACTURING AND ENERGY BALANCE

The energy dissipated by fracturing of the rock is the sum of the energies dissipated by all the
vertical splitting cracks, i.c.

AW, = (naR - nR’)% (19)

(per unit thickness in the z-direction), in which G/h is the energy dissipated per unit volume of the
rock and G is the fracture energy of the rock (G, = Ki/E’, where K. = fracture toughness of the
rock).

The net energy loss due to passing from a circular borehole in intact rock to an elliptical
damage zone with vertical splitting cracks now is, instead of equation (14),

All = All; - Allp + I, (20)
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The energy balance (principle of conservation of energy) requires that — Al = AW,. Assuming
the parallel cracks to form progressively. one after another, we need to differentiate equation (14)
with respect to a. Thus, we get the incremental energy balance condition:

_B(An)aé(W,)

da da @n

which yields
2 rRe? 2 _ —da0? =P L2 e
ZE‘[RG“ + (4a + R)aj, — 2Ro,.0,, — 4aol,] SE\ TR +3 + (22)

h
We are interested in the start of borehole breakout, which occurs when a = R. Substituting this
value of g into the last equation, we obtain

nR (n’E'h’ ha)z 7RG,

/z2E'h* h_\* 2EG
2 2 _ 2 | e ____f 2
Oxn + Saym 20::;011 MG' klezkz + AG) h ( 3)
Now, introducing the following definition of the effective applied stress:
20, 0is \'?
o = ﬂ',¢ (l - Sd’m + 56,20) (24)
and denoting
=*E'h* h_\* 2E'G,
e n (g + 19) + T @)
Equation (13) may now be written simply in the form
o%& = F(R k) (26)

where F is a function of R and h.

The question now is how to estimate the spacing h of the vertical splitting cracks. In this regard,
it is interesting to note that F(R, h) as a function of h possesses 2 minimum. From this, a new,
simpie concept comes to mind.>® The spacing A that will occur is that which minimizes the
applied effective stress o,¢. In other words, the splitting cracks will occur at the lowest compres-
sive stress they can (this concept could be proven on the basis of the Gibbs’ statement of the
second law of thermodynamics in the manner shown in Chapter 10 of the textbook of BaZant and
Cedolin).*? The necessary condition of minimum is that

CF(R, h)
oh

After substituting equation (25) for F(R, k) and differentiating, we obtain

5x*E'2 , 1x*E'G,, 5G* , ,
R g ek T EG=0 (@)
This is an algebraic equation of fifth degree for A. Although a numerical solution would be easy,
a closed-form solution of h is not possible. However, it will suffice to examine the asymptotic
cases.
For sufficiently small R, the terms with A* and h® become negligible compared to the term with
h*, and the solution then is

=0 27

72k* G,
Sn*E’

s
h = C,R%* C,= ( ) (small R) 29)
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From this result® we see that the spacing of the splitting cracks should increase with the borehole
diameter. This property has been observed by Cook** and co-workers.

On the other hand, for sufficiently large R. the first two terms of equation (28) may be neglected.
and the solution is

5G?

If we substitute equation (29) into equation (26) and take the asymptotic approximation of
equation (26) for small R, we obtain

r s2\ 1)
h= (E Ged ) = constant (large R) (30)

1(25' 2 1:3
gq=C, R %3, C, =(48k2 E'JGIZ> (small R) 3
while, if we substitute equation (30) into equation (26) and take the asymptotic approximation of
equation (26) for large R, we obtain

’ 13
Oy = 3(2_%) = C, = constant strength (large R) (32)

For the intermediate values of R we cannot get a closed-form expression. However, the
following combination of equations (31) and (32) has the right asymptotic properties for both
small and large R and is probably a good approximation that should suffice for practical

purposes.
O =~ Cl R~ ¥+ Co (33)

5. DISCUSSION OF SIZE EFFECT AND NUMERICAL ESTIMATES

Equation (19) indicates that there is a size effect, which is understood as the dependence of the
nominal stress at failure (nominal strength, in our case coincident with ¢,) on the size—in our
case the borehole radius R, provided that geometrically similar situations are compared. A basic
property of plasticity, as well as all other theories with failure criteria expressed in terms of stress
and strain tensors, is that there is no size effect (see e.g. Reference 32, Chapters 12 and 13; and
References 34-36). Linear elastic fracture mechanics (LEFM) exhibits in general the strongest
possible (deterministic) size effect—the nominal strength decreases as size ™ '/2,

Since the foregoing analysis used LEFM, it is. thus, interesting to realize why the size exponent
in equation (31) is — 2/5 rather than — 1/2. The reason is that, instead of localizing into a single
dominant crack, fracture has been assumed to be distributed over a large zone with an area
proportional to the diameter of the borehole. If we assumed a single splitting crack with a length
proportional to the borehole diameter, the exponent in equation (31) would have come out as

— 1/2. On the other hand, the exponent would have come out as O (i.e. we would have no size

effect even for small R) if we assumed the crack spacing h to be the same for every borehole
diameter, with the cracking zone area proportional to the diameter (in this case the energy
dissipation due to fracture per unit volume would be constant, independent of the borehole
diameter, same as in plasticity). It is because of the theory of elastic buckling (and because
L increases with R) that we found the crack spacing to increase with the borehole diameter less
than proportionally. It is for this reason that the size effect exponent in equation (31) has come out
to be intermediate between — 1/2 and 0, that is, intermediate between the exponents for
single-crack LEFM and for plasticity.
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The fact that the compressive stress that causes borehole breakout exhibits a size effect has
been observed experimentally® 2> and has been also predicted by finite element models of
non-local type, for example models with couple stresses.® 3’

The foregoing analysis tacitly implied the assumption that the failure mode of the borehole is
symmetric. Based on the experience with certain other fracture problems (Reference 32, Section
12.5 and Reference 38), one may expect that the loading path might exhibit a bifurcation. after
which the failure process proceeds along a non-symmetric secondary path. corresponding to
a borehole coilapsing non-symmetrically, only on one side of the cavity. Unfortunaltely. the
non-symmetric collapse mode does not seem amenable to a simple analytical solution. The
present symmetric solution should represent an upper bound on the actual critical stress for
collapse. It may also be pointed out that the symmetric and non-symmetric response paths
probably give the same type of size eflect and dependence on other basic parameters. Thus, it may
well be possible to use the present solution at least qualitatively. even if the actual collapse is
non-symmetric.

Another important simplification has been our use of LEFM. The fracture of rock, of course,
shows significant departures from LEFM (¢.g. References 35 and 39). This may be approximately
described by assuming the energy release rate required for fracture growth to be variable (rather
than being equal to constant G;) and to increase with the crack length a according to a given
function R(a) called the R-curve (resistence curve). If an increasing R-curve were introduced into
the present type of analysis, the resulting size effect would become weaker. However, measure-
ments of the R-curve for the present type of situation are lacking. It is debatable whether any
increase of R(a) is appropriate at all when many parallel closely spaced cracks propagate
simultaneously, or when the cracks are much longer than the size of the inhomogeneities in rock.

Related to possible R-curve behaviour, the splitting cracks in rock may be discontinuous,
capable of transmitting some reduced transverse tensile stresses as well as shear stresses.
Capability of shear stress transmission must further arise from the fact that these cracks are no
doubt rather tortuous, permitting interlock of the asperities opposing relative slip of the crack
surfaces which must take place during buckling. These properties, which have been neglected.
would increase the value of o,

A further simplification has been the geometry of the cracking region. Experimental observa-
tions of borehole breakout show that the cracking regions on the sides of the borehole tend to
have a roughly triangular shape and generally a smaller height than the length of the vertical
cross-sections of the ellipse (Figure 4). But for such geometry a simple analytical solution would
probably be impossible. Moreover, implicit to our assumption of an elliptical cracking region has
been the hypothesis that the cracking regions for boreholes of different diameters are geomet-
rically similar and their size is proportional to the borehole diameter. If the ratio of the average
length of the splitting cracks to the borehole diameter decreased with increasing borehole

Figure 4. More realistic shape of cracking regions on the sides of a borehole
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diameter (i.c. the cracking localized), then the size effect would be stronger than we have
calculated.

Let us now consider rock properties typical of limestone; G; = 31 J/m?, E' = 30 GPa and
G = 11:25 GPa. To estimate 4, we exploit the similarity of rock to concrete , for which extensive
crack shear tests have been conducted. Taking the results of Paulay and Loeber's*? tests plotted
in Figure 2 of Ba2ant and Gambarova.*' we have. for crack opening displacement
4, = 0-125 mm, v/A = 40 N‘mm?, which yields for 2 the value of 0-25 m. No results seem to be
available for 4, = 0, however, we may use Paulay and Loeber’s tests for 4, = 0-25 and 0-50 mm to
approximately extrapolate to 0; this leads to the crude estimate 2 = 0:1 m, which we will use.
Nevertheless, there is enormous uncertainty about the value of 4, especially for the small initial
displacements that matter for initial buckling.

From equation (32), for very large R we have o, = 82:7 MPa (12,000 psi). This means that
a sufficiently large borehole would break out at the depth of about 3000 m below the carth
surface. This is certainly a reasonable estimate, as an order of magnitude. However, the corres-
ponding value obtained for the spacing of the splitting cracks, which is obtained from equation
(30) as 0-25 mm, does not seem reasonable, since at such a small spacing LEFM ceases to be
valid and the aforementioned Ge-value, obtained on laboratory samples, is probably inappli-
cable. But the aforementioned differential equation for buckling degenerates to the form w” = 0,
i.e. the slab-columns do not bend at all, which signifies that the idea of buckling makes no sense in
the limit case R — co. Probably, the constant C, in equation (32) should be interpreted merely as
an empirical large-scale compression strength limit, rather than a theoretical value derived by
slab buckling analysis.

Next consider a borehole of radius R = 0-2 m and assume that k = 0-25. Equation (31) then
yields o, = 21-7 MPa (3140 psi), which is the stress at the depth of about 740 m. From this result
we observe that, if the crack shear resistance were neglected, the predicted breakout stress would
be, compared to experience, much too low, by an order of magnitude. This shows that some other
mechanism, which we proposed to be the crack shear resistance, must serve to elevate the
breakout stress by an order of magnitude. Together with the foregoing value associated with
crack shear, equation (33} yields the estimate o, = 104-4 MPa (15,140 psi), which corresponds to
depth 3740 m. The thickness and length of the slab-columns are obtained as h = 2-6 mm and
L = 50 mm. For such a close spacing, the cracks are more likely to be discontinuous rows of
microcracks than continuous cracks, and the crack tortuosity due to heterogeneous microstruc-
ture is likely to cause significant local weakening of the slab-columns. In that case, the formula for
buckling of a perfect column of a uniform cross-section might be too far from reality and
imperfections might have to be introduced into the buckling analysis. Nevertheless, the aspect
ratio of the slab columns, L/h = 19-2, is certainly just right within the range where the carrying
capacity is indeed governed by the theory of buckling of slender columns.

In the preceding numerical estimation, the size-independent part due to crack shear resistance,
Co. dwarfs the size-dependent part due to bending stiffness, C,h~%*. One must be aware,
though, of the strong speculative nature of the foregoing estimates. Particularly, the value we used
for A is highly uncertain, and so is the value of k. Consequently, the values of C, and C; could be
quite different, and the magnitude of the size-dependent term could be relatively much more
significant than in the foregoing calculation. Experimental studies are needed.

The preceding analysis of crack shear ignored the volume expansion which is always caused by
the slip of rough cracks. This expansion is partially prevented by the surrounding rock, which
causes hydrostatic compressive stress to develop in the cracking zone. When the volume
expansion is not opposed, as in prismatic test specimens with lubricated ends (Appendix 1), the
crack shear stiffness may be very low, and when it is completely prevented, very high. In addition
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to this, the energy of hydrostatic compression needs to be subtracted from the energy that is
released from the surrounding rock, which means that less energy is available to create the
splitting cracks. This may well be another reason why the collapse stress estimate from the
slab-column buckling analysis seems much too low.

6. SUMMARY AND CONCLUSIONS
The basic simplifying hypotheses of the present solution may be summarized as follows:

1. The compression failure of rock on the side of the borehole is caused by densely distributed
parallel splitting cracks in the direction of the minimum principal stress, rather than by
plastic yielding.

2. The zones of parallel splitting cracks for boreholes of vanous diameters are geometrically
similar and the length of these cracks is proportional to the borehole diameter.

3. For estimating the energy release. the inner boundary of the infinite elastic solid may be
considered to expand during failure from a circle to an ellipse.

4. After uniformly spaced splitting cracks parallel to the minimum pnincipal stress develop. the
region between the ellipse and the original circle retains a certain residual stress governed by
post-critical buckling behaviour of the rock slabs between the cracks.

5. The residual stress value is governed by buckling of rock slabs between the splitting cracks.

6. The buckling stress can be approximately calculated from the average length of the splitting
cracks, which is assumed to be proportional to the borchole diameter.

7. Buckling of the slab-columns is resisted not only by their elastic bending stiffness but also by
shear stresses produced at the rough crack faces by crack shear.

8. The energy (per unit area) required for crack growth in rock is constant, i.e. independent of
the crack length and spacing. .

The following basic observations and conclusions can be made:

1. Considering the boundary of the cracking region in borehole breakout to be symmetric and
elliptical, and assuming the energy that drives the parallel compression splitting cracks to be
released due to buckling of the slabs of rock between the cracks, one can obtain a simple
analytical solution for the collapse stress.

2. The dependence of the collapse stress on the spacing of the splitting cracks exhibits
a minimum, and the actual crack spacing may be considered to correspond to this
minimum.

3. Borehole breakout exhibits a size effect such that, for sufficiently small diameters, the
cffective breakout stress decreases as the ( — 2/5) power of the borehole diameter. For
sufficiently large diameters, the size dependence disappears.

4. For sufficiently small diameters, the spacing of splitting cracks increases as the (4/5)-power
of the borehole diameter, while for sufficiently large diameters a constant spacing is
approached.

5. The energy release calculation for a growing ellipse according to Eschelby's theorem also
predicts the effect of stress triaxiality, i.e. of the ratio of the remote principal stresses
[equation (24)] (which is different from the result obtained by plastic analysis).
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APPENDIX I: COMPRESSION STRENGTH OF A PRISMATIC SPECIMEN

The present use of buckling analysis has been inspired by a similar previous analysis of
a prismatic specimen of length L and width b;%° see Figure 2(b). We assume that compression
failure is caused by the formation of a band of vertical splitting cracks of length a and spacing
h and is accompanied by buckling of the slabs between the cracks which behave as fixed-end
columns. The initial longitudinal stress oo, in each slab is reduced by buckiing to
0. = — (E'h?/3)n?/a*. The total energy loss due to buckling is — AIl = Lb(s? — 02)/2E". The
number of cracks is b/h and the energy dissipated by fracture is AW, = aG;b/h. Energy balance
requires that — AIl = AW,. From this, the stress required for the formation of the band of
splitting cracks is

; _2E'Gea + n*E?
=T LY o
We see that this expression has a minimum as a function of the crack spacing h. From the
necessary condition of a minimum, 3(ed)/ ok = 0, we find that

h* (34)

a [ 9G, s s
h= z(ﬁ) L 39
Substituting this into equation (21), we conclude that the specimen fails at the stress
6o =C L5, with C, =(/21n2E>G})"3 (36)

This size effect is the same as found for a borehole. Note also that g, is independent of band width
a, which means there is no tendency for the band width to localize.

T e P e —— YT gl $% e~ a1 - v -~ = - ~—urs - - - madiet od A IR R




r27)

-

JCI International Workshop on

Size Effect in Concrete Structures
Oct. 31 - Nov. 2, 1993

Sendai, Japan

PREPRINTS




Size Effect in Tensile and Compressive
Quasibrittle Failures

ZDENEK P. BaZanT
Walter P. Murphy Professor of Civil Eng., Northwestern University, Evanston, Hlinois
60208, USA.

Abstract

The lecture consists of two parts. The first part presents a rigorous mathematical analysis
of scaling in various basic types of failure. First it is shown that the scaling law is a power
law if, and only if, a characteristic dimension is absent. For all the theories in which the
failure condition is expressed in terms of stress or strain only, including elasticity with a
strength limit, plasticity, and continuum damage mechanics, the nominal strength of the
structure is shown to be independent of its size. For linear elastic fracture mechanics, in
which the failure criterion is expressed in terms of energy per unit area, the scaling law
for the nominal strength is shown to be (size)~/2, provided that the cracks in structures
of different sizes are geometrically similar. When the failure condition involves both the
stress (or strain) and the energy per unit area, which is typical of quasi-brittle materi-
als, the scaling law represents a gradual transition between asymptotes corresponding to
the strength theory and LEFM. The size effect described by Weibull statistical theory
of random material strength is also considered and the reasons for its inapplicability to
quasi-brittle materials are explained. The second part of the lecture focuses attention
on compression failures, particularly the failures of reinforced concrete columns, in which
the size effect has recently been observed experimentally. This size effect is explained
by energy release due to lateral propagation of a band of axial splitting cracks, taking
into account buckling of compressed slabs of the material between adjacent axial splitting
cracks and their postcritical deflections.

Keywords: Fracture Mechanics, Size Effect, Scaling Laws, Quasibrittle Materials, Con-
crete Structures, Compression Failure, Columns, Damage Mechanics, Plasticity.

Introduction

The problem of scaling is the most fundamental aspect of every physical theory. If the
question of scaling is not understood, the problem itself is not understood, there is no
theory. Questions of scaling have historically been the driving force of advances in physics.
When the classical Newtonian mechanics failed at very large scales, the theory of rela-
tivity had to be invented, and when it failed at very small scales, the theory of quantum
mechanics had to be invented. The questions of scaling played a dominant role in the




evolution of fluid mechanics; recall for example the Reynolds number and other numbers
characterizing fluid flows at different scales.

In structural mechanics the questions of scaling have for a long time been neglected.
From the practical viewpoint, this is perhaps not too serious for mechanical and aerospace
engineers, who can test all their structures and components a full size, and for whom the
main question is extrapolation in time rather than in size. For civil engineers, however,
the question of scaling is paramount. Many civil engineering structures cannot be tested
at full size, and the engineer must inevitably extrapolate from reduced scale laboratory
tests to much larger structure sizes.

The reason that the questions of scaling have been neglected is that the classical
theories of failure, in which the failure is determined by stress or strain at a critical
point of the structure or is characterized by a constitutive law in terms of stresses and
strains, exhibit no size effect. However, beginning with Griffith, it has been recognized
that rational analysis of failure must take into account the energy release caused by failure
and its balance with the energy needed to produce fracture or damage zones. Any theory
in which the failure depends on the energy release inevitably leads to a size effect.

In quasibrittle materials such as concrete, the size effect is more complicated than it is
for linear elastic fracture mechanics. The size effect for tensile failures (which includes also
shear failures) has been studied for various kinds of concrete structures. An approximate
size effect law which agrees with experiments as well as certain theoretical deductions
has been developed. There is no doubt that the size effect needs to be introduced into
the provisions of the design codes for concrete structures which deal with diagonal shear
failure of beams, punching shear failure of slabs, torsional failures, pullout of bars and
anchors, failure of splices, etc. However, although the principles appear to be clear,
further work is needed to develop detailed formulas for various situations and calibrate
them experimentally.

Recently, it has further been recognized that the size effect also occurs in compression
failures of quasibrittle materials. Compressive fracture is a formidably complex problem
which has been already intensely studied. However, despite many useful results, the global
mechanics of compressive failure has not been sufficiently illuminated and the size effect
has not been determined.

The purpose of the present lecture is two-fold. First, the general scaling laws of the
mechanics of failure will be reviewed, considering the elementary scaling for theories such
as elasticity, plasticity and linear elastic fracture mechanics, and then the more com-
plicated scaling for quasibrittle materials. Second, the global mechanics of compression
fracture in quasibrittle columns will be analyzed in an approximate manner, which is
however believed the capture the principal phenomena. The fracture analysis of com-
pressive quasibrittle failures, and the corresponding size effect which will be presented,
should eventually be introduced into the design code provisions for reinforced concrete
columns and possibly also prestressed structures in which compressive failure is promoted
by prestress. The analysis outlined in the first part of this lecture will appear in detail in
a forthcoming journal article (Bazant, 1993).




1 Basic Scaling Laws

1.1 Power Scaling for Structures Lacking Characteristic Length

The size effect is defined by comparing geometrically similar structures of different sizes.
We denote as Y the response quantity whose size dependence is to be determined—for
example, the nominal strength, the maximum deflection or the maximum sirain. In this
paper, our interest is in comparing the nominal strength (or nominal stress at failure),
Y = on, which is defined as

oN = cN (for 2D) or oN =CN (for 2D} (mn

b
D?
in which P, = maximum (ultimate) load, b = structure thickness in the case of two-
dimensional similarity, D = characteristic dimension (or characteristic size), which can
be chosen arbitrarily (for instance, as the depth of beam, the span, the half span, the
notch depth, etc.), and ¢y = coefficient introduced for convenience if one desires oy to
correspond to some commonly used stress formulae.

Let us first consider those theories in which there is no characteristic length. This
means that the scaling ratio Y /Y of the corresponding responses Y and Y depends only
on the size ratio A = D/D of two different sizes D and D but is independent of the
choice of the reference size D. Plasticity, elasticity with a strength limit, continuum
damage mechanics (without nonlocal concepts), and also linear elastic fracture mechanics
(LEFM) belong to this class of theories, and so do many other theories in physics. As is
well known, the scaling law for all these theories is a power law. We will now show it by
adapting an argument used in fluid mechanics (Barenblatt, 1979, 1987). Let the scaling
law be f(A), that is

=) @)

where f is an unknown function that we want to find. Considering another structure size
D = uD with the corresponding response ¥, we have

-;; = f(n) 3

Now, because there exists no characteristic size, the size D can alternatively be chosen as
the reference size. In that case Eq.(2) implies that

Y _,(n
7=/(%) O
Substituting now the ratio of Egs. (2) and (3) into Eq. (4), we obtain
py _ f(p)
f (X) ) (5)

This is a functional equation from which the function f(A) can be soived. To this end,
we differentiate Eq. (5) with respect to u and then set u = A;
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in which f’ is the derivative of function f. The last equation is a differential equation for
the unknown function f, which can be easily solved by separation of variables. With the ol
notation f'(1) = m = constant, the integral is In f(A) = mIn A + C, and determining the
integration constant C from the condition C = In f(1) = 0 for A = 1, we have f(1) = 1.
So we finally conclude that function f must be a power function,

fQA)=2a" (7

The power scaling law we obtained must hold for every physical system in which
there is no characteristic dimension. This includes plasticity or elasticity with a strength
limit. Further this includes LEFM. This is so despite the fact that the tensile strength
f{, Young’s elastic modulus E and fracture energy G, can be combined to give a length
quantity, lo = EGy/ f{* (which has often been called the characteristic length, but is better »
called the characteristic process zone size because the former term means something else
in the previously established terminology of nonlocal continuum theory). The reason that
the presence of lp in LEFM does not destroy the validity of the power law scaling (as will
also be shown by another approach later) is that, in LEFM, the fracture process zone
is treated as a point, and that there is no change in failure mechanism associated with »
lo (this is in contrast to nonlinear fracture mechanics, e.g., the crack band model or the
cohesive crack model).

Proving the converse, i.e., that there is no characteristic size if the scaling law is a
power law, is obvious and trivial.

Note that the Weibull-type statistical strength theory in which the spatial density of

¢ the material failure probability is given by a power law with a zero threshold leads to a

power-type size effect. This implies that there is no characteristic length. It follows that
this theory is unrealistic for structures where a characteristic length is obviously provided
by the material inhomogeneities or the size of the fracture process zone (this conclusion
was reached in a different manner in Bazant and Xi, 1991).

1.2 Boundary Value Problem of Continuum Mechanics

Geometrically similar structures of different sizes are related by the affine transformation
(affinity), which is the transformation of change of scale:

;= Ax; (8)

where z; are the Cartesian coordinates for the reference structure of characteristic di-
mension (size) D, and Z; are the coordinates for a geometrically similar scaled structure
(Fig. 1) and A = D/D where D is the characteristic dimension of the scaled structure.
The primes are used to label the quantities referring to the scaled structure. For the sake »
of brevity, we will denote 8/9z; = ;, 8/0%; = ;. From the chain rule of differentiation,
3 = 23;, 8, =179,
For the reference structure of size D and the similar scaled structure of size D, the
field equations and the boundary conditions are
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Figure 1: (a-b) Geometrical scaling of structures and affinity, (c) size effect plot, and (d)
geometrically similar structures with very small cracks whose size is a2 material property.




For D: For D:
Bjoi; + fi=0 8j&ij + fi=0 (9)
gij = (0jui+0;u;)/2 & = (5,'1-4.' + 5.'17,')/2 (10)
oijn; = o onT, diif; = P onT, (11)
4 = U onT, % = U; onl; (12)

in which o;; and ¢;; are the stresses and strains in Cartesian coordinate z; (the strains are
assumed to be small), u; = displacements of material points, I'; and I'; are the portions of
the boundary with prescribed surface tractions p; and with prescribed displacements U;;
fi = prescribed volume forces; and n; = #i; = direction cosines of unit outward normals
on the stress boundary.

From equation (7) we already know that the scaling law must be a power function.
Let us now assume that the displacements are related by the scaling law

i; = A™Hy; (13)

where m is an unknown exponent. Substituting this into the differential equations and
boundary conditions (9)-(12), we find £;; = A™(0;u; + 3iu;)/2. Then according to (10)
and assuming further that the stresses and strains obey the same scaling law, the following
transformation rules ensue:

£j = &;A", 8ij =0yA™, Gy = oNAT (14)
pi piA™, fi= fd™7, @ = wAmt

These rules indicate how a solution for one size can be transformed to a solution for
another size. However, the value of m is indeterminate. To determine it, we cannot
ignore the constitutive law and the failure condition. Next we consider in this regard two
important special cases.

1.2.1 Elastic-plastic constitutive law

The constitutive relation and the condition of no failure (either the yield condition or the
condition of allowable stress) have the general form:

oij = Fij(exm),  H(0ij 6ij) < 0o (15)

in which F;; are tensor-valued functions or functionals of a tensorial argument (satisfying
proper tensorial invariance restrictions), ¢ is a nonlinear scalar function of tensorial ar-
guments, and o is the material yield limit or allowable stress limit. After transformation
of scale, (15) takes the form &;; = F;;(ixm), #(3ij,€ij) < do. Since at least function ¢
(and possibly also function F) is nonlinear (and nonhomogenous), this is possible only
if 3;; = 0;; and &4m = €im, Which means that m = 0. The transformation rules from
Eqs. (13) and (15) then become

8 = Ay, &=¢5, &j=o; (16)
Bi = pi fi=fi/) wi=wl




Also y =onN (17)

that is, the nominal stress at failure does not depend on the structure size. We say in this
case that there is no size effect. This is characteristic for all failure analyses according to
elasticity with allowable stress limit, plasticity and classical continuum damage mechanics
(as well as viscoelasticity and viscoplasticity, because time has no effect on this analysis).

1.2.2 Linear elastic fracture mechanics

a) J-integral
In this case, the constitutive relation and the condition of no failure can be written as

0ij = Dijkméim, J <Gy (18)

in which D;jkm is the fourth-order tensor of elastic constants, Gy is the fracture energy
(considered as a material property), and J is the J-integral;

J = f (%a.-je;,-dy —dgjnja]‘u,‘ds) » (19)

(e.g., Kanninen and Popelar, 1985; Knott, 1973). Using the transformation rules in (13)-
(15), we find that the J-integral transforms as

J = f [%(,\"‘a,-j)(,\"‘s,-j)kdy- ,\’"a.-,-n,v\“ax(z\"'“ui)z\ds]
= ,\2m+l f (%ag,-e.-,'dy - a‘-jnjalu,‘ds) = A2m+lJ : (20)

Since both J and J must satisfy the same inequality, that is, J < G; and J < Gy in all
cases, it is obviously necessary and sufficient that 2m 4+ 1 = 0, that is,

m=-1/2 (21)

Thus, according to (14) and (15), the transformation laws for linear elastic fracture me-
chanics are

i = wV & =¢&/VA, 8 =0i/VA (22)
pi/‘/xs fl = ]i’\-3/2’ ﬁi = Ut\/x

3i [

(23)

Qi

SI2

N =

where A = D/D. So the nominal stress at failure depends on the structure size D,on ~

1/vD or

log on = constant — %log D. (24)

In the plot of log o versus log D, the linear elastic fracture mechanics failures are rep-
resented by a straight line of slope —%, while all stress- or strain-based failure criteria
correspond to a horizontal line (Fig. 2).

The foregoing argument can be generalized to nonlinear elastic behavior, to which the
J-integral is also applicable.




b) Work of stresses during separation

For the case of LEFM, the same result can alternatively be obtained in a more elementary
manner. The energy release rate can be calculated by imagining a small crack advance of
length A to happen in the following manner: 1) A slit of length & is cut ahead of the crack
but is held closed. 2) The normal stresses o, acting across the slit are then gradually
reduced in proportion to (1 — r) where 7 is a parameter growing from 0 to 1. 3) At the
same time, because the body is linear elastic, opening displacements of the crack faces
grow in proportion to 7 until they reach the final opening displacements of a crack with
the tip advanced by h. The work of o, on u, at both crack faces gives the energy release
per length A which must be consumed by the fracture process. Because fol (1-7)dr =1/2
and the stresses o, work on both crack faces, the work per unit crack advance, i.e., the
energy release rate, is

h
G = lim 2 /o o, uyde (25)

(e.g., Eq. 4.5.2 in Knott, 1973, or Eq. 12.1.7 in Bazant and Cedolin, 1991) where z is the
coordinate in the crack direction. Using the foregoing transformation rules, we find that
for the scaled structure the energy release rate is

1 fh
¢ = ’ltlg})z/o (A™a, Y (A", )dz

h

A3+ i L / oyu,dz = A*"Hg (26)
A~0 h 0

which must be the same as the energy release rate given by the preceding equation.

Consequently, A>™*! =1 orm = -1/2.

1.3 Alternative derivation: dimensional analysis

In an alternative way which is shorter but more abstract, and thus to a novice less
convincing, the size effect can be determined by dimensional analysis. When the structure
is elastic-plastic, its failure is governed by the yield stress g, whose metric dimension is
N/m?. The failure also depends on the nominal stress o, whose metric dimension is also
N/m3. Further, it depends on the characteristic structure size dimension D and other
dimensions such as span L, notch length e and various other geometric characteristics all
of which have the metric dimension of m.

The number of nondimensional variables governing the problem can be determined
from Buckingham’s I theorem of dimensional analysis (Buckingham 1914, 1915; see also
Bridgman, 1922; Porter, 1933; Giles, 1962; Streeter and Wylie, 1975; Barenblatt, 1979,
1987; Iyanaga and Kawada, 1980). This theorem states that the number of nondimension-
al variables governing any physical problem is equal to the total number of variables (in
these cases five or more) minus the number of parameters with independent dimensions
(in these cases two). Thus, it turns out that the failure condition must have the form

¢("" L a )=o (27)
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where & is a function. Since 7y is a constant, and for geometrically similar structures
also L/D,a/D,... are constants, it follows that the nominal stress at failure, oy, must
be proportional to 7o, and therefore a constant when the structure size D is varied.

In linear elastic fracture mechanics, the failure is determined by the value of the
critical stress intensity factor Kr,, the metric dimension of which is ¥ m~3/2, The other
quantities determining failure are the same as before, including on, D, L, a, etc. Again,
the number of nondimensional variables on which the failure can depend follows from
Buckingham’s II theorem and it turns out that the failure condition must now have the

form
onVD L a _
Q( K, ,D,D,...)-O (28)

Since Ky, is a material constant, and since the ratios L/D,a/D,... are all constant for
geometrically similar structures, it follows that onV D must also be constant. Hence,
on ~ D~'/2 which agrees with what we have already shown (e.g. Bazant, 1983, 1984;
Carpinteri 1984, 1986).

1.4 Scaling Laws for Structures with Characteristic Dimension

1.4.1 Transitional Scaling for Nonlinear Fracture Mechanics or Quasibrittle
Behavior

In nonlinear fracture mechanics, the criterion of crack propagation is characterized by
both an energy quantity (the fracture energy G;) and a stress quantity (strength f; or
yield stress f,). At first one might think that the size effect would be a power law with a
constant exponent intermediate between 0 and —1/2. However, this is not true. Because
the ratio G/ f{ has the dimension of length (in the metric system, it is N/m divided
by N/m?), a characteristic length is present in the problem, and so the assumptions
underlying equation (7) are invalid. Hence, the scaling law cannot be a power law.

Previous studies (Bazant, 1983, 1984; BaZant, 1987; Bazant and Pfeiffer, 1987; BaZant
and Kazemi, 1990; etc.) have shown that the scaling law represents a gradual transition
from the strength theory to LEFM. This transition has the shape of the curve plotted
in Fig. lc, which was experimentally obtained for notched three-point-bend specimens
already by Walsh (1979). This curve approaches asymptotically the horizontal line for
the strength theory when the size is becoming very small, and the inclined straight line
for LEFM when the size is becoming very large. A general exact expression for this curve
cannot be obtained. However, under certain simplifying assumptions, on can derive the
following approximate size effect law (Bazant, 1983, 1984): an = Co(1 + B)~1/? with
B = D/Dy where 8 = relative size and Co, Do = positive constants (see the curve in Fig.
1¢).

The simple size effect law proposed by Bazant(1983, 1984), whose applicability range
is surprisingly broad, albeit not unlimited, has been extensively experimentally verified
and applied for quasi-brittle materials such as concrete, rocks, ice, tough ceramics and
composites, in which the fracture process zone has a non-negligible size and consists of
distributed microcracking. This law has been shown to describe well the typical brittle
failures of concrete structures, particularly the diagonal shear failure of beams, torsional
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failure of beams, punching shear failure of slabs, pullout of bars and anchors, failure of
bar splices, certain types of compressions failures, failure of short and slender columns,
and beam and ring failures of pipes. It has also been shown that this law can be used
for unambiguous definition of material fracture characteristics, especially the fracture
energy (or fracture toughness) and the effective length of the fracture process zone, and
for their determination from the peak loads measured on similar specimens of different
sizes (e.g.Bazant and Kazemi, 1990).

1.5 Weibull Theory for Structures with Critical Crack Size Independent
of Structure Size

There is a fundamental difference between the classical applications of fracture mechanics
to metallic structures and the modern applications to quasi-brittle structures such as
concrete structures:

e In the former, the maximum load occurs (or failure must be assumed to occur) while
the crack size is still negligible compared to the structural dimensions (Fig. 1d) and
is determined by material characteristics such as the spacing of major defects, the
grain size, or the ratio of fracture energy to yield stress.

¢ In the latter, there is large stable crack growth (with distributed damage) before the
maximum load is reached, and the maximum load occurs when the crack extends
over a significant portion of the cross section (in concrete structures it is typically
50% to 90%). '

Consider now geometrically similar metallic structures of different sizes, made of the
same material. The cracks at maximum load are, in each of them, roughly of the same
size, and they are so small that the disturbance of the stress field caused by the crack
is negligible and the energy release caused by the crack is much smaller than the strain
energy stored in the structure. In that case, the energy release rate G can be approximately
determined from the stress ¢ (maximum principal stress) that is calculated for the crack
location as if no crack existed. Then, considering for example a crack of length 2a in two
dimensions, the stress intensity factor (obtained from the energy release as Ky = vEC )
is approximately calculated from the formula K; = o/7a which is exact for a crack in a
homogeneously stressed infinite solid. The condition of no failure is written as Ky < K.
where K, is the given fracture toughness of the material. Obviously, this condition of no
failure is equivalent to

o< fu with  f, = K (xa)"/? (29)

This is the same as the strength criterior, with f, regarded as the strength of the material.
In some other situations, the crack size at maximum load is not negligible but is
independent of the structure size. Then again the fracture mechanics failure criterion is
equivalent to the strength criterion, which means that the scaling law is such that there
is no size effect on the nominal strength.
In the situations just discussed, in which the critical craci size is independent of the
structure size, there can be size effect on the nominal strength, but it is not deterministic.



Rather, it is caused by randomness of material strength, as described by Weibull-type
statistical theories (Weibull, 1939; Freudenthal, 1968; Bolotin, 1969; Elishakoff, 1983).

The Weibull law for the spatial density of material failure probability in general in-
volves a stress threshold below which the failure probability is zero. In practical applica-
tions this threshold is almost always taken as zero because the test data can be matched
by this law also almost equally well with very different threshold values. It is interesting
to note that, for a zero threshold, the size effect predicted by the Weibull theory is a
power law (e.g., Bazant Xi and Reid, 1991). It follows that, according to (7), the Weibull
theory for a zero threshold implies that no characteristic structure dimension exists. But
this implies Weibull theory cannot apply to structures in which the fracture process zone
size has a certain nonnegligible characteristic dimension. Indeed, the statistical size effect
is significant only when the structure fails while the crack is still very small, such that the
stress redistribution caused by the crack is globally insignificant and the energy release
caused by the crack is negligible compared to the total energy in the structure.

Randomness of the material strength is of course an inevitable property of materials
and its influence is never exactly zero. In quasi-brittle structures, however, the Weibull-
type statistical size effect is overshadowed by the size effect due to energy release and gets
completely suppressed as the size approaches infinity. Proposing a nonlocal adaptation
of Weibull theory in which the material failure probability depends on the strain average
over a certain characteristic neighborhood of the point rather than on the local stress,
Bazant and Xi (1991) derived the following approximate formula:

on = Co (8™ + 8)~12, 8=D/Dy (30)

in which Cg, Dg, m and n are positive constants; n is the number of dimensions (1, 2
or 3) and m is the Weibull modulus of the material. Normally the exponent 2n/m is
much less than 1. According to this formula, the classical Weibull-type statistical size
effect oy o« D?"/™ js approached asymptotically for sufficiently small structures (3 — 0).
But the available test results show this asymptotic behavior to apply, in theory, only to
structure sizes that are less than the smallest practical size. In other words, the material
strength is random but causes no significant size effect, for any size range. For large
structures (3 — oo), the last equation indicates that on « D~1/2, that is, the statistical
size effect asymptotically disappears. The reason, briefly, is that a significant contribution
to the Weibull-type probability integral comes only from the fracture process zone which
is large but for structures of different sizes has roughly the same size.

2 Theory of Size Effect in Quasibrittle Compressive Failure

Theoretically it is clear that a non-statistical size effect must also exist in quasibrittle
compression failures. The reasons are as follows:

¢ Quasibrittle materials such as concrete, rock and most advanced composites are
not elasto- plastic in compression because the stress gradually decreases after the
peak and the load-deflection diagram exhibits post-peak gradual softening instead
of terminating with a long plastic plateau.

¢ The failure is a fracture process, in which the energy release matters.
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e The coarse microstructure of quasibrittle materials indicates that there must be a
characteristic dimension. This excludes the scaling according to a power law, and
in particular the case of zero exponent corresponding to the absence of size effect.

That quasibrittle compressive failures exhibit size effect has been confirmed experi-
mentally. For example, Bazant and Kwon (1992, 1993) conducted tests of geometrically
similar tied reinforced columns made from microconcrete with reduced size aggregate
(maximum size 1/8 in.), and found a significant size effect. This size effect is contradicted
by the existing design codes, which all predict no size effect as they are based on elasticity
and plasticity. The columns in these tests were geometrically similar, and the reinforce-
ment was of course scaled, too. The cross sections were squares of sides 0.5 in., 1 in., and
2 in., and the slendernesses were 19, 36 and 53.

Compression fracture is a formidable problem, more complex than tensile fracture.
Many results have already been obtained (Bazant, 1967; Biot, 1965; Horii and Nemat-
Nasser, 1985, 1986; Kendall, 1978; Sammis and Ashby, 1986; Shetty et al., 1986; Batto and
Schulson, 1993; and others). However, most studies were actually solving the problem of
initiation of compression fracture from various types of defects, such as wedging inclusion
configurations or the spread of wing-tip cracks from an inclined microcrack, which govern
the initial behavior long before the maximum load is approached. The maximum load is
determined by a global mechanism, which has not been adequately illuminated, although
it is clear that internal instability of the damaged material must play a dominant role
(Biot, 1985; Bazant, 1987).

In the second part of this lecture, we will now concisely outline a new mathematical
model characterized by (1) energy release analysis, and (2) instability with post-critical
buckling of microslabs of the material between adjacent splitting cracks. The detailed
analysis will be presented in Bazant and Xiang (1993).

2.1 Stocky Columns

Consider a column (a beam) shown in Fig. 2a, having length L, width D (characteristic
dimension) and unit thickness &6 = 1. One end cross section is fixed. The other is
subjected to axial displacement u and rotation 8 and is loaded by axial compressive force
P of eccentricity e. The initial normal stress in the cross sections before any fracturing is

oo(z) = —-% [u+0(§-z)] (31)

where E = Young’s elastic modulus, and z = transverse coordinate measured from the
compressed face (Fig. 2a). We now assume that, a certain moment of loading, axial cracks
of spacing s and length A, forming a band as shown in Fig. 2a,b,c, suddenly appear and
the slabs of the material between the axial cracks, behaving as beams of depth s, lose
stability and buckle. This can happen in any one of the three mechanisms shown in
Fig. 2a,b,c, and for all of them the mathematics turns out to be identical. If the length
of the cracks in the two inclined bands in Fig. 2c is denoted as h/2. The critical stress
for the microslab buckling shown in Fig. 2a,b,c is, in all cases,

_ ®}E&?
=g

(32)
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Figure 2: (a-c) Splitting cracks, buckling of microslabs and stress relief zone, (d-e)
stress-strain diagrams with an without buckling and areas representing strain energy
changes, (f) size effect deduced for compression failures




The key idea is now the calculation of the change in stored strain energy caused by
buckling. On the side of the crack band, there is obviously a zone in which the initial stress
0o is reduced. For the sake of simplified analysis we assume that the stress in the shaded
triangle areas of Fig. 2a,b,c is reduced all the way to o, and outside these areas the initial
stress does not change. The triangular areas are limited by the so-called “stress diffusion
lines” of slope k, whose magnitude is close to 1 but can be reliably determined only
by experiment or by accurate solution of the two-dimensional boundary value problem.
For the analysis of size effect, however, the only important fact is that k is a constant
if geometrically similar columns are considered. In these shaded triangular stress-relief
zones, the strain energy density before and after fracture is indicated by triangles 0120
and 0340 in Fig. 2d, and so the loss of strain energy density on a vertical line of coordinate
zis

2 2
& - o5(z) o5 (z)
all, 2E 2F (33)

The situation is more complicated in the crack band. The microslabs buckle, and
the energy associated with the postbuckling behavior must be taken into account, which
is a key idea proposed in this lecture. The strain energy density before buckling of the
microslabs is given by the area 0120 in Fig. 2e. The analysis of postbuckling behavior
of columns (Bazant and Cedolin, 1991, Sec. 1.9 and 5.9) indicates that the stress in the
axis of the microslab follows after the attainment of the critical load the straight line 35
which has a very small positive slope (precisely equal to o.,/2). This slope is far smaller
than the slope E before buckling and can therefore be neglected. So the postbuckling
behavior is approximately a horizontal plateau 35 in Fig. 2e, however, is not the same as
plastic behavior because unloading proceeds along the path 530. Because the microslabs
remain elastic during buckling, the stress-strain diagram 035 is fully reversible and the
energy under this diagram is the stored elastic strain energy. The triangular area 0340 in
Fig. 2e represents the axial strain energy density of the microslabs and the rectangular
area 35643 represents the bending energy density. The change in strain energy density in
the microslabs is the difference of areas 0120 and 03560 in Fig. 2e, that is,

2 2
af. =22 [ac,(z)ec(z) - Zeln) (34)
where ¢, is the axial strain of the microslabs in the crack band after buckling (it is
important that it is generally not equal to 04 or 02 in Fig. 2e).

Integration of (33) and (34) yields the total loss of potential energy at constant u and
o:

a 2 2
Afll = /o (Z% - ”;—}(;)) 2%(a - z)dz (35)

s ( g3(z) a2 (z)
+ /0 {—;1,— ac,.(z)ec(z)--————2E ]}hdz

where a = horizontal length of the crack band (Fig. 2a,b,c). This energy must be equal
to the energy consumed by the formation of the surfaces of all the axial splitting cracks.
Thus, the energy balance criterion of fracture mechanics may be written as:

oAl 0 a h
- ]o‘u = % (G,h;) = ;Gf (36)

da




where G is the fracture energy of the axial splitting cracks, assumed to be a material
property.

The axial strain in the crack band can be determined from the compatibility condition.
Because the end cross sections are assumed to be fixed during buckling (i.e., u,8 =
constant), the stress in the blank areas of the column in Fig. 2a,b,c remains constant,
and so the line segment GJ in Fig. 2a at any * does not change length. Expressing the
change of length of this segment on the basis of 0., €. and o and setting this change to
zero, one obtains the following compatibility condition

ag;) [h + 2k(a - z)] - 2h—k(a - I)ac,éz)

The length h of the axial cracks, representing the width of the crack band in Fig. 2a,b
or double the crack band width in Fig. 2¢c, is an important parameter that must be
determined. The critical stress according to (32) would decrease with increasing h, and so
the largest energy release would be obtained for A — oo. Since the largest energy release is
what must happen (because of thermodynamic considerations; Bazant and Cedolin, 1991,
chapters 10 and 12) the prediction would be o, = 0, which is however unreasonable. In
a recent study of the role of axial splitting cracks in borehole breakout (Bazant, Lin, and
Lippmann, 1993), the microslab buckling was assumed to be opposed by shear stresses on
the microcracks taken as proportional to the slip on the microcracks. That assumption
leads to a more complicated formula for ¢, than before, and it is noteworthy that the
minimum o, is now obtained for a certain finite value of h. Furthermore, in reinforced
concrete columns the crack length is no doubt strongly influenced by the elastic stiffness
and spacing of the ties or the pitch of the spiral.

In this preliminary exposition, we prefer to keep only the essential ingredients of the
analysis necessary to illustrate the idea, and so we will simply assume that A is a given
constant (the problem will explored deeper in Bazant and Xiang, 1993).

We must now substitute Eqs. (31) - (34) and (36) into (36) and integrate. Although
it is no problem to calculate the integral exactly, the resulting expression is lengthy and
in view of the approximate nature of the entire analysis we prefer to evaluate the integral
approximately, taking the value of the integrand at the centroid of the triangles, z = a/3
and multiplying it by length L. This yields

e(z) = (37)

All a% (g% - 1;5)—':‘) (38)
b (k- {3 (+ ) v ) - o )
Substituting this into the energy criterion of crack band propagation, we get
83—" aD (%iﬁ - :—;ETZ:i) +s {%3 + ”;ﬁ:sz [ZEQ (1 + 2’;';0) (39)
VD] 9P o (e 4)

It is also helpful to relate stress oo at z = a/3 to the nominal stress o defined as the
maximum stress in the beam just before fracturing;

-1
on = ~knog ky = (1 + %ﬁ) [1 + % (1 - Ea—)] (40)
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Now, ky is a constant when geometrically similar columns with similar cracks are con-
" sidered, and so is a. So Eq. (40) can be written as

C103D + C203 + C300D + Co00+CsD + Ce = 0 (41)

in which @ = a/D and C,,...C¢ are constants if geometrically similar columns with
geometrically similar crack bands are considered. From this equation we have

C203 + Ci00+Cs _ Co(dq — on)(p — oN)

D=- =
a(C1a3 + C300 + Cs) (05— on)(on - 0;)

(42)

Co = constant; o,, o, are the larger and smaller roots of the quadratic polynomial in
the denominator of (42), and oy, 0, are the larger and smaller roots of the quadratic
polynomial in the numerator of (42). For physical reasons, we expect the roots to be real
and such that o; > o, > 0, and 0y > 0.

Eq. (42) yields the size effect plot sketched in Fig. 2f. This plot represents a tran-
sition from the plastic limit o, approached for D — 0 to the residual nominal stress
o, approached for D — oo. So the conclusion from our analysis is that compression
failure caused by lateral propagation of bands of axial splitting cracks and buckling of the
microslabs between the cracks ought to exhibit a size effect.

It is interesting to note that the foregoing result is similar to the generalization of
the size effect law proposed in Bazant (1987) for the compression failure in the Brazilian
split-tensile test, which reads

D -1/2

an = (0p — 0y) (1 + D—) + o, (43)
o

where Do = constant (transitional size). The plot of this equation has a same shape as

Fig. 2f. Inverting this equation, one has

0% + 20,0, + 0p(20, — 0p)

D = D
0 012\,—20,0”+a,?

(44)

It is interesting to note the analogy to (42), although both equations do not coincide.

2.2 Slenderness Effect

In the experiments of BaZant and Kwon (1993) it was observed that the size effect in
columns becomes more pronounced with increasing slenderness. The foregoing solution
of size effect, given by (42), corresponds to small slenderness L/Dy. The size effect that
this equation describes may be denoted as oy = f(D) where f is the function implicitly
defined by (42).

If the column is slender, one must take into account the release of potential energy
from the deflected column. An easy way to calculate it is to imagine the end cross sections
of the column segment that undergo relative displacement u and relative rotation 6 and
are distance L apart (Fig. 2) to be right next to the stress relief zone and assume that
L < 1. To determine the energy release from the column, we assume that during the
advance of crack length, da, the values of u and # remain constant. This means that
the applied load, P, the load-point displacement at the end of the column, u,, and the




midspan deflection u all change. In this case, the change of stresses and deformations
due to column buckling does not interfere with the triangular energy release zones we
considered earlier (Fig. 2). We could of course calculate the energy release at fixed
load-point displacement or at a fixed load, but in that case the strains and stresses in
the unshaded area in Fig. 2 would not remain constant, but would change, which would
invalidate our preceding calculation. This is a basic idea of the present approach.

Consider the column to be hinged and take the deflection curve approximately as
z ~ wsin(ry/l) where w = midheight deflection, y= longitudinal coordinate. The change
in the axial force and moment at midlength can be calculated from the change of the
stress distribution due to the extension of the band of splitting cracks by da:

dP = [0.r — 00(a)]da, dM = [0, — 0o(a)] (—2}: - a) da (45)

where o is the critical stress in the microslabs. Load P is assumed to have a con-
stant eccentricity e at the ends of column, and so M = P(e + w) or w = (M/P) —e.
Differentiating, we have

dw = —;;[dM — (e + w)dP] (46)
The axial shortening due to deflections w is u, = fol (2)%dy/2 = m®w?/4¢, and so the

work of the axial load during da is

2
%wdw - (47)

The change of stored bending energy during dais dU = d f(f EI(z")*dy/2 = d(x*ETw?/4¢3),
that is

dU = x*ElTwdw/263 (48)

dW = Pdug = P

where I = moment of inertia of the cross section of column.

The change of potential energy due to axial elastic strains is dIl, = ~dII; =
—d(P?¢/2EA) where A = cross section area of column and II] is the complementary
energy due to axial deformations. Now the change of potential energy during da due to
column deformation is dIl = dU — dW + dIl,, and the additional energy release due to
column deformation, which needs to be added to that calculated before in Eq. (36), is
given by

2
dll = Gyda = —;7 (P — P) wdw - -E%PdP (49)
In this equation P, = #2EI/I? = first critical load of hinged column.

It may be now be noted that if the column is axially very stiff and P = P, there is
no energy release due to column deformation, which might have been expected. When
P, > P, there is a positive energy release because dw and PdP are negative during crack
band extension. The additional energy release must obviously promote fracture, and thus
it must intensify the size effect. It remains to study the foregoing results numerically,
which will be done in Bazant and Xiang (1993).
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2.3 Alternative Simpler Approach to Slenderness

The influence of column slenderness on the size effect can also be approximately described
by a simpler alternative calculation based on matching the midheight maximum stress
from column buckling with the stress associated with crack band growth. The effect of
slenderness is to cause lateral deflection, which is in the mid-span of the column approx-
imately equal to ue where u is the magnification factor y = (1 - (P/ P, )]'1; Py, is
the first critical load of the column, whose value decreases with increasing slenderness
D/L. Writing now the same definit’on of the nominal stress as for small slenderness and
imposing the condition that the stress given by the size effect law be the maximum stress
in the deflected slender column, we have:

-1
a~=.§.(1+%‘), -g[uﬁpf(l—,{—) ]=f(D) (50)

The size effect plot of on versus D is the solution of these two equations, in which Pis a
parameter to be eliminated. Obviously, the size effect will be more pronounced for higher
slenderness.

2.4 Borehole Break-out

A size effect has also been deduced for borehole breakout in rock under certain simplifying
hypotheses. In an infinite elastic space that is initially under uniform triaxial stress with
minimum principal stress o, a cylindrical borehole of diameter D is drilled. This causes a
zone of parallel splitting cracks to form at the sides of the borehole. For various borehole
diameters D, these zones are considered to be similar and have elliptical shapes. The
growth of the cracking zone causes a release of the stored energy which must be equal
to the energy consumed by the growth of the cracks. Using this condition and assuming
the splitting cracks to follow LEFM, Bajant, Lin and Lippmann (1991) showed that
on «x D~3/5, The reason that the exponent in not —1/2 is twofold: (1) There is not one
but many cracks, and (2) the spacing s of the cracks is not proportional to D but to D*/5,
which results from the analysis of buckling of the intact rock slabs between the parallel
cracks.

3 Conclusions

The scaling law for nominal stress at failure is a power law if and only if there is no
characteristic dimension of the structure. This applies to elasticity, plasticity, continuum
damage mechanics and linear elastic fracture mechanics. In quasibrittle or nonlinear
fracture, the scaling law is a transition between asymptotes representing plasticity and
linear elastic fracture mechanics, provided that the fractures at the maximum load are
geometrically similar. When a structure fails at the crack initiation from a flaw whose
size is a material property, independent of the structure size, there is no deterministic
size effect, but a size effect is obtained as a consequence of the randomness of strength, as
described by Weibull-type statistical theory. The size effect in compressive failure, which
has been brought to light by recent experiments, can be theoretically explained by lateral
propagation of a band of axial splitting cracks and buckling of microslabs of the material




between the adjacent cracks. Analysis of the fracture energy release in this mechanism
must take into account the postcritical deflections of the microslabs. This theory leads
to a transitional size effect law terminating with a finite residual stress. An increase of
column slenderness intensifies the size effect.
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. CRACKS INTERACTING WITH PARTICLES OR FIBERS
IN COMPOSITE MATERIALS

By Gilles Pijaudier-Cabot.' Associate Member. ASCE,
and Zdenék P. Bazant,’ Fellow. ASCE

AssTRaCT: Micromechanics analysis of damage 1n heterogeneous media and
composites cannot 1gnore the interactions among cracks as well as between cracks
and inclusions or voids. Previous investigators can to thas conclusion upon tinding
that states of distributed (diffuse) cracking (damage) cannot be mathematically rep-
resented merely as crack systems in a homogencous medium, cven though stable
states with distributed damage have been experimentally observed 1n heterogencous
materials such as concrete. This paper presents a method for modeling interactions
between a crack and many inclusions. Based on the Duhamel-Neuman analogy.
the effect of the inclusions is equivalent to unbalanced forces acting on the contour
of each inclusion in an infinite homogeneous solid. The problem s solved by su-
perposition: it is decomposed into several standard problems of elasticity for which
well-known solutions are available. The problem is finally reduced to a system of
linear algebraic cquations similar to those obtained by Kachanov for a system of
interacting cracks without inclusions. The calculated estimates of the stress inten-
sity factors differ from some known exact solutions by less than 10% provided the
cracks or the inclusions are not very close to each other. Approximately. the prob-
lem can be treated as crack propagation in an equivalent homogeneous macroscopic
continuum for which the apparent fracture toughness increases or decreases as a
function of the crack length. Such variations arc calculated for staggered inclu-
sions. They are analogous to R-curves in nonlincar fracture mechanics. They de-
pend on the volume fraction of the inclusions, their spatial distribution and the
difference between the clastic propertics of the inclusions and the matnix. Large
variations (of the order of 100%) are found depending on the location of the crack
and its propagation direction with respect to the inclusions.

INTRODUCTION

Most particulate or fiber-reinforced composites do not fail by propagation
of a single microcrack. Typically, these matcrials are capable of sustaining
significant loads whilc multiplc microcracks propagate. In concrete loaded
in uniaxial tcnsion or compression, acoustic cmission analyscs (Legendre
1984; Maji ct al. 1990) and X-ray microscopic obscrvations (Darwin and
Dewey 1989) show that distributed microcracks and damage localization ex-
ist in the matcrial prior to failurc. In these brittle hetcrogeneous composites,
cracks are often initiated at the interface between the matrix and the aggre-
gate pieces, and thcy propagate into the matrix cventually. Distributed crack-
ing is also observed in fiber composites, the bchavior of which in the plancs
normal to the fibers is similar to a two-dimensional particulatc composite
(Highsmith and Rcifsnider 1982).

The key problem in developing a thcory cxplaining such obscrvations is
how to take into account thc effect of the heterogeneitics. Pijaudicr-Cabot
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and Dvorak (1990) recently proposed an approximation method for csti-
mating the variation of the stress intensity factor and the inherent toughening
cffect at the tip of a crack that touches the interface between two clastic
matenals. In the case of concretc-like materials. which are the main moti-
vation for this paper. most studics considcred that the interactions among
cracks or between aggregate picces and cracks could rcasonably be ne-
glected, cxcept in some special cascs.

Zaitsev (1985) developed a rather comprehensive model in which the in-
clusion-crack interaction is ncglccted and cach crack may interact only with
its closest neighbor. However, the postpeak softcning a response of concrete
specimens could not bc obtained with this method. More recently, Huang
and Li (1989) and Hu ct al. (1986) uscd similar ideas and proposed modecls
in which the toughening (i.e., crack arrest) cffect of the inclusions was in-
corporated. Although the mechanical interaction effects were still lacking,
crack deflection mechanisms were rcpresented statistically (Faber et al. 1983;
Evans and Faber 1983). The effect of crack-inclusion interaction on dynamic
crack propagation was studied by Sih and Chen (1980).

The effect of crack interaction has recently been considered in the studics
of micromechanics of damage in concrete or ceramics (Horii ct al. 1989;
Ortiz 1988; BaZant et al. 1989; Kazemi and Pijaudier-Cabot 1989), and scv-
eral approximation schecmes for cstimating crack-interaction cffects have been
proposed [sce c.g., Kachanov (1987). Horii and Nemat-Nasser (1985)]. In
particular, the importance of crack interaction at the onset of damage lo-
calization has becen proven to be a fundamental aspect that justifics partial
nonlocality of the constitutive relations at the macroscopic level. i.c., for
the homogenized damaged medium (Pijaudicr-Cabot and Berthaud 1990).

Some investigations have led to a striking conclusion: according to ther-
modynamics and stability analyscs, most rcgular crack systems such as par-
allel equidistant cracks. periodic arrays of cracks and some colinear crack
systems cannot be reachcd by a stable path under usual load or displaccment
control conditions (BaZant 1989; Bazant and Cedolin 1991: Bazant 1987b;
BaZant and Tabbara 1989). Such modcls incorrectly predict that only a singlc
crack ought to propagate. Thus, stable states of diffusc damage consisting
of a system of tensile microcracks cannot exist according to these mathe-
matical models in the first place, although they have been observed experi-
mentally. Furthermore, the predicted shape of the softening postpeak load-
displacement curve does not agree with experience and snap-back instability
is predicted to occur carlier than scen in tests (Bazant 1987a). These dis-
crepancies suggest that the mechanical cffect of inhomogeneitics cannot be
ignored in modeling the evolution of damage and its progressive localization
in concrete-like materials. This provided the motivation for the present study.

Solutions for some cases of the interaction between a crack and an inclu-
sion in an elastic matrix cxist [see c.g., Kunin and Gommerstadt (1985);
Erodogan ct al. (1974)]. They are based on a system of singular intcgral
equations, which, however, appears to be intractable in the cases where scv-
eral inclusions interact with the crack. Mura’s equivalent inclusion method
(Furuhashi et al. 1981) poses similar problems as it requires computation of
integrals that may not converge absolutcly when the inclusions are period-
ically distributed in an infinitc medium.

In this paper [which is based on a conference paper by Pijaudicr-Cabot ct
al. (1990)], we present an approximation scheme for solving the problem of
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interaction between cracks and inclusions. The mecthod can be viewed as an
cxtension of Kachanov's superposition scheme (1987) for an interacting crack
system without inclusions. Similar cxtensions could be made using the method
of pseudotractions (Horit and Nemat-Nasscr 1985).

The paper is organized as follows. First, the approximation method is
developed. considering the simple casc of one crack interacting with an in-
clusion, and verificd by comparisons with solutions available in the litera-
turc. Sccond. an cxtension of this technique to the situation in which onc
crack intcracts with several periodically distributed inclusions is carricd out.
Finally, the cffect of the inclusions on crack propagation is interpreted in
terms of an apparcnt fracturc toughness of thc homogenized compositc. The
uitimatc objective is to develop a rcalistic modcl for the fracturc process
zone in composites.

The study is restricted to cases in which the bond between the matrix and
the inclusion is perfect. Partial debonding and interfacial cracking will not
be considered. This simplification is rcalistic especially for composites such
as high-strength concrete or light-weight concrete.

INTERACTION BETWEEN CRACK AND INCLUSION

Consider an infinitc two-dimensional solid subjected to remote uniform
boundary tractions producing a uniform stress ficld .. The solid is madc
of a linear clastic material of stiffness matrix D,,. It contains a crack of length
2c and an clastic circular inclusion (inhomogencity) of radius R and stiffncss
matrix D, |Fig. 1(a)]. The crack ccnter is located at distance b from the
center of the inclusion. The crack oricntation is arbitrary. For such a solid,
we scck an cstimate of the stress intensity factors at the crack tips denoted
as points A and B. For the sake of simplicity, we restrict attention to the
case of circular inclusions, although the method we are going to develop ts
gencral and can, in principle. be cxtendced to inclusions of arbitrary (smooth)
shapes.

The stress and displaccment ficlds for this problem can be solved by su-
perposing the solutions of two simpler problems [Fig. 1(a)}:

* Subproblem I: The solution for the infinite solid without any crack con-
taining the given inclusion and loaded by the remote tractions correspond-
ing to o.

* Subproblem II: The solution for the infinitc cracked solid loaded by dis-
tributed normal and tangential forces p(x) on the crack faces I, that cancel
the stresses on the crack line obtained in 1.

By superposition. the equilibrium condition for the crack surfacc may be
written as

oenx)+px) =0 on [ ... .. .. .. (1)

in which o denotes the stress field solution of subproblem 1 calculated at
the imaginary crack surface I'. and n(x) is thc outward normal to I'. at a
point with cartesian coordinates x. Ideally, (1) should be satisfied exactly at
cvery point of I', and superposition would then yicld an exact result. For
the sake of simplicity, we assume that (1) is satisficd only approximatcly,
in the average sense. that is
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o Subproblem | Subprobiem 11
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HETEROGENEOUS HOMOGENEOUS

(© I

FIG. 1. Crack interacting with inciusion: (a) Superposition Scheme: (b) Duhamei-
Neuman Ansilogy; (c) Superposition in Subproblem Il

(@-m(x) + PX)) = 0. e (2)

in which the brackets ( ) denote the averaging over I',. This simplification
is inspired by Kachanov's (1987) approximation scheme for intcracting crack
systems in homogcneous solids without inclusions, which has been showed
to be satisfactory in most situations. In Kachanov's scheme as well as here,
the averaging is justificd by thc St. Venant principle: the crrors represent a
self-equilibrated stress ficld that must be decaying very rapidly with the dis-
tance from the crack and is. therefore, ncgligible for a sufficicnt scparation
of the crack and inclusion. Morcover, cven if the crack tip is close, its K|
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valuc depends on the energy release rate trom the cntire structure rather than
just the stresses in the vicinity.

Subproblem |

For the sake of simplicity. attention 1s restricted to plane clasticity. The
perturbation stress duc to the presence of one inclusion 1s given by the well-
known Eshelby’s solution {see ¢.g.. Mura (1987)]. Since we intend to deal
with many inclusions as well as interacting cracks. it appears preterable to
devise a simpler. iterative. solution. From the stress ficld . which 1s a
solution of subproblem I, we can calculate the unbalanced stress ticld Ao
inside the inclusion of contour I,

Ao =D, —De. ... .. (3a)
with
€= D (3b)

while in the matrix outside |°,. the stresses Ao vanish. The unbalanced stresses
A can be cquilibrated by applying tractions Ae. n, on intertace I',. Since
thesc tractions do not cxist in reality. the opposite unbalanced interface trac-
tions must act on the interface I, in the composite

P. = —do-n, onl, ... . (4)

in which n, is the unit outward normal of the boundary curve [°, of the
inclusion. and € and o arc the strain and stress tensor inside the inclusion.
The stress ficld in subproblem | may be written as

o outside U, . .. (Sa)

o
c=a* Fle nside D, .. . (5b)

in which ¢* = an cquilibrium stress ficld when stitfaess D, ot the inclusion
is changed to D,,, i.c.. when the propertics of the infinite solid are uniform.
Egs. (3)=(5) can also be obtained from the Duhamel-Neuman analogy [sce
¢.g.. Lin (1968); Muhkclishvili (1953)], which is widely used in thermovis-
coclasticity and creep and is illustrated in Fig. 1(b). This analogy transtorms
a problem of clasticity of a heterogencous solid into an cquivalent problem
of a homogcencous solid that can be decomposcd into a superposition of stan-
dard problcms for which analytical solutions (¢.g.. complex potentials) exist.
Obviously, the unbalanced stress ficld Aer is the unknown in the equivalent
problem. Its dctcrmination calls for an itcrative procedure.

1. The starting solution is ¢* = ¢, cverywhere. It gives the first estimate of
P, according to (4). The curve I', is subdivided into scgments of length ds and
the tractions p, arc replaced by concentrated forces py(s) ds acting at the center
points of coordinatc s of the segments. Then one may usc the well-known two-
dimensional solution for a concentrated force p applied at point s of an infinite
homogencous clastic space denoted as fip(s)); sce e.g.. Timoshenko and Goodicr
(1970) or Mukhelishvili (1953). The normal and shcar components of the stress
tensor f with respect to the rotated cartesian axes (x'.v') at a point ol cartestan
coordinate (x.v) arc

fi=pll = v =21 ~ v)sin“(8)] cos (O} 4mr) {Continued |
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fi=pl=3 = v =21 + v)sin(0)] cos (O} d7r)
fo==pll —v+ 2 + vicos (B sin(8Wdmry L (6)
in which r = distance between points (v, v) and s; axis +° coincides with the
direction of p; and 8 = the angular deviation of the line connecting points (x,v)
and s from the dircction of p Superposition of these solutions yiclds the stress
@, causcd by tractions p,(s) in an infinitc homogencous clastic space:

4
o, =f (PSS . (7N
.

-

A ncw stress field o* inside I, is obtained as:

2. The new unbalanced pressures p, are then recalculated from (3)-(4). Eq.
(7) yields the new field @,

3. Step 2 is itcrated until the change p,'' — p, of thc unbalanced interface
tractions from itcration bccomes small cnough. This is determined on the basis
of the norm |p,(s)l = {. Ip.(s)lds where |p,(s)| is the length of vector p,(s). The
convergencc criterion is that

lpatsill'*"
fipa(s)ll

in which ¢ = a given small tolcrance: ¢ = (.01 was uscd in computations and
usually lcss than five itcrations were needed. The convergence is very tast. and
for small cnough ¢ this itcrative procedurc can approximatc the cxact solution
(for uniform p) as closely as desired. It can be shown that the iterates of P, form
a geometric progression.

i T~ (9)

Subproblem I1

Consider now that there is a crack in the matrix ncar the inhomogencity
and that the crack faces I', are loaded by a uniform pressurc distribution
(p(x)). The boundary at infinity is stress frce. Again, we can apply the Du-
hamel-Ncuman analogy in order to compute the interaction stress ficld duc
to the presence of the inclusion. and subsequently the distribution of internal
pressure on the crack faces. For this, we use the superposition scheme de-
picted in Fig. 1(c).

First. the body without the inclusion is loaded by an unknown avcrage
pressurc (p.(x)). This causes interface tractions —A@, ' n, on thc imagincd
contour of the inclusion as given by (4).

Next, we consider the uncracked heterogencous body loaded by these un-
balanced pressures on [*,. From subproblem I we can get the solution stress
field and the pressure distribution on the imagined contour of the crack
pi(x):

pi(x) = {j l'l—Ac,~n,,(s)lds} 3 | T (10)
Ta
Superposition yiclds
(P =pAx) +pix)y onl, ... . (n
1616




Notc that this supcrposition method. with the average pressurc approxi-
mation on the crack surtace. 15 similar to Kachanov's (1987) approximate
solution for interacting cracks cxcept that instcad of two cracks we decal with
onc crack and onc inciusion. In (11), the nght-hand side terms arc not con-
stant. If we restrict the present analysis to contigurations in which the in-
tcractions arc small. the superposition cquation may be approximated by:

P =Px) + @) onl, ..o (12)

Undcr these two assumptions, the superposition cquation [(11)] has a single
vector unknown (p.(X)):

P) =1+ A)PAX)) .. (13)
with
1
As(pux)) = z‘ f {f ﬂ-Ac,.-n“(s)]ds} ‘mdx .. (14)
" I I'a

in which 1 is the 2 x 2 identity matrix, and A, is a full 2 X 2 matrix which

couples the modc I crack opening and the mode I crack opening. It can be

regarded as a transmission factor that represents the average influcnce of the

incluston on the crack. Notc at this point that if ¢, is not computed from

the constant pressure distribution (p.(x)). the unknown in the problem would

need to be solved iteratively (as in subproblem 1) as A, depends on p,(x).
Substitution of (13) into (2) yiclds:

Px) = —(L+A) "“@m) ... (15)

The stress distribution on I', is also computed using the right-hand side of
(11) and. for cxample. the stress intensity factors for mode | crack opening
are:

1 " [ ¢
K(z¢)=—— PAXddx ... (16)
Vre /. cFx

As an cxample, Fig. 2 shows the results for the mode I stress intensity
factors for a crack in an cpoxy matrix located ncar a metallic inclusion. The
remotc loading is uniaxial tension paraliel to the crack faces and planc strain
is assumcd. For simplicity, we analyzc cases where (1) The crack is radial
to the inclusion {Fig. 2(a)}; and (2) the crack is tangential to the inclusion
IFig. 2(b)]. In both situations the average tangential pressure distribution is
zero and (15) has a scalar unknown. The radius of the inclusion is such that
R/c¢ = 2 and the matcrial properties are £,/E,, = 23. v, = 0.3, v,, = 0.35
where £,, E, and v,, v,, are the Young's moduli and Poisson’s ratios of the
inclusion and matrix, respectively. In the figures, K, is normalized with re-
spect to the stress intensity factor K, for a crack in an infinitc homogencous
solid. which is K,, = 0. Vmc. The approximation is compared to the an-
alytical solution of Erdogan ct al. (1974). For a radial crack [Fig. 2(a)|. thc
approximation turns out to be very accuratc. The crror is only a few percent
except if the crack and the inclusion arc very close. When the crack is tan-
gential to an inclusion [Fig. 2(b)] the present averaged superposition cqua-
tions become rather inaccurate if the crack is close to the inclusion (a/c <
4). The rcason is that the stress ficlds in subproblems | and Il have a large
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FIG. 2. Stress intensity Factor for Crack in Epoxy nesr inclusion: (s) Radial Crack;
= (b) Tangential Crack

variation over the imagined crack length.

Fig. 3 shows the results for a crack in an cpoxy matrix located ncar a
void. The same two configurations as in Fig. 2 arc considcred and the ma-
terial stiffncss of cpoxy is cqual to that in Fig. 2. Again. the quality of the
approximation is quitc acccptable unless crack and void become very closc.
Compared to the results in Fig. 2. the variation of stress intensity tactors is
the oppositc. When the crack tip A approaches the void [Fig. 3(a)]. the stress
intensity factor K, incrcases and tends to infinity, but when the up ap-
proaches a stiffer inclusion. K, decrcases. The same remark holds when the
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FIG. 3. Stress Intensity Factor for Crack in Epoxy near Void: (a) Radial Crack;
(b) Tangential Crack

crack is tangential to the void or inclusion, although the stress intensity fac-
tors remain finitc.

INTERACTION BETWEEN CRACK AND SEVERAL INCLUSIONS

We look now at an clastic solid that contains N clastic inclusions and one
crack. The inclusions are arbitrarily distributed in thc matnx. The inclusion
contours are denoted as I, (i = |, ..., N) and for the sake of simplicity all
the inclusions arc assumecd to be made of the same material of stittness D,
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b oto-t |
Subproblem I Subproblem II

FIG. 4. Crack Interacting with Periodic Array of inclusions: Superposition Scheme

The superposition method is now applied as follows (see Fig. 4).

First in subproblem I. we solve again for the stress ficld in the composite
without the crack loaded by tractions corresponding to «.. Then. in sub-
probiem II. the compositc is free from the remote boundary tractions and it
is loaded by an unknown intemal pressure p(x) on the crack contour I',. The
superposition cquation [(2)] is again applicd in the average scnsc.

Subproblem |

When the uncracked composite contains scveral inclusions, the intcrac-
tions are an important factor in thc cvaluation of the local stress and strain
ficlds. As we will sce. the Duhamcl-Ncuman analogy is also casy to im-
plement.
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Sincc the problem remains clastic. the ctfect of cach inclusion can be
superposcd as a first approximation ncglecting the interactions. The tollow-
ing itcrative procedurc. similar to that described before. yields the cffect of
the intcractions on the local stress ticld in the matrix.

1. The imitial stress ficld is

“‘

in which the @, = the stress duc to the presence of inclusion 7 alone in the matrix
(Eshclby's solution). The unbalanced pressurcs p, on the contour 1, of cach in-
clusion i arc calculated from o* according to (4)—(5). The stress @, due to p, is
then calculated as if cach inclusion i werc alonc in the infinite solid. i.c.

s =J PSS . . (18)
.

A new total stress ficld is computed from (17) using superposition.

2. From & (5). thc unbalanced pressurcs p, on cach contour I, are recalculated
using (4). Then again the stress @, due to p, is calculated from (18) as if the
inclusions were alonc, and by superposing .. the new total stress ficld obtained
from (17).

3. Step 2 is itcrated until the unbalanced tractions p; (¢ = 1, ... N) resulting
from @ in itcration number / diffcr negligibly from those at itcration number /
= 1. This is determined according to the convergence criterion in (9).

The foregoing algorithm converges quite rapidly. Normally. convergence
is rcached in less than five itcrations provided the inclusions arc not too stiff
comparcd to thc matrix (E,/F,, -~ 7) (but for perfectly rigid inclusions the
present itcrative method docs not work). When the inclusions are periodi-
cally distributed. the unbalanced pressures p, should be identical on cach
contour I, (i = 1, ..., N), and in that case the convergence criterion docs
not nced to be applied for cach inclusion.

Fig. 5 gives an cxample of the calculated stress distribution of stress in a
two-dimensional composite with periodically spaced circular inclusions of
radius R. The remote loading is a unit uniaxial tension in the y-dircction.
The inclusion centers are located on a squarc grid of spacing b, = b, = 3R.
The material propertics arc £,/E,, << 3 and v, = v, = ().2. Planc stress is
assumcd and thc central inclusion is assumed to intcract only with its 48
closest ncighbors. The stresses o, and o,, arc computed along the axis of
symmctry of two adjacent inclusions, and obviously «,, = 0. Convergence
was achicved in 3 iterations, with tolcrance ¢ = (0.01. The results arc graph-
ically undistinguishable from thosc obtaincd by the equivalent inclusion method
(Furuhashi et ai 1981).

Subprobiem 11
The crack is loaded by a uniform intermal pressure p(x) on its contour I,
From superposition,

N
P(xX) = puAx) + 2 PdX) O L (19)
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F1G. 5. Local Stress Field in Composite with Periodically Distributed inclusions

In this cquation, which is similar to (11). p, = the distribution of the internal
pressure applicd on I'., and p,, (k = 1. ..., N) = the intcraction tcrms due
to the presence of the inclusions. p,, is computed at the imagined location
of the crack as if the composite were uncracked. Again. there are two types
of contributing terms in p;,.

The first type of contribution ariscs from the cffect of the loading p, on
the inclusion k& which is assumed to be alonc in the matrix with the crack
(same as in the previous scction of the paper). This term denoted as py is
computcd according to (10):

p: = {j I'I—Ao,-n.(s)lds}-n ................................... (20)
T

in which @, = the stress field duc to the crack loaded by p.(x). calculated
tor the infinite solid without inclusions: Ae,. = thc unbalanced stresses com-
puted on thc imagined contour I, of the inclusion &; and n, = the outward
unit normal vector of [;.

The second type of contribution is the interaction between the inclusion
J(Jj # k) and inclusion k, and its influcnce on the crack faces. Each inclusion
in the composite is subjected to the stress o, The valuc of p; can be com-
puted in thc samc manncr as in subproblem [ but the stress ficlds o, is
substituted to the remote ficld .. From (17) and (18) we obtain:

pf(x) = {f ﬂ—Ac,-n.(s)lds}-n ................................. «21)
"

]




in which Ao, = the stress ficld duc to the unbalanced pressure p, acting on
contour 1, of normal vector n;:

o= f fl-de cnS)ldy . 2
I

Superposition yiclds:

P(X) = px) + 2 z PrX) (24)

We assume again that (24) nceds to be satisfied only in the average sensc:

(px) = [l £y Af] PRI oo (25)

[ |

in which \; = the transmission factor due to inclusion & considered to be
alonc with the crack: and A} = the transmission factor due to interaction
between inclusion & and inclusion .

If @ 1s the stress ficld due to the crack alone subjected to the uniform
intcrnal pressurc {(p.(x)). (25) is lincar in (p.(x)) and has a single vector
unknown. According to this assumption. the transmission factors do not de-
pend on the shape of the distribution of p,(x). This simplifying assumption
is acceptable if the distances between any two inclusions are not too smail,
as we will see next in comparisons with the results from the literature.,

Fig. 6 shows an cxample of the calculated variation of the mode | stress
intensity factor K, at the tip of a crack located between two circular voids
as a function of the crack length and of the spacing between the voids. The
remote loading is umaxial tension perpendicular to the crack. The center of
the crack is cquidistant from the centers of the adjacent voids. The results
arc comparcd with the known analytical solution given in Tada ct al. (1985).

If the distance between the voids is large compared to their radius. the
approximation is scen to be adequate (crror less than 10%). However, when
the crack length increases, the cffect of the voids becomes localized in a
small scgment of the crack surface I, and the agreement with the analvtical
solution is lcss than satisfactory. This discrepancy is mainly duc to the two
successive averagings of the distributions of internal pressures on the crack
faces [averaging of p(x) first and of p.(x) sccond]. Another limitation 1s that
the approximation loses its accuracy when the voids get too close to cach
other.

The cxample in Fig. 7 shows the variation of K, for a crack propagating
in a composite containing a squarc array of identical circular inclusions (b,
= b,). The center of the crack is at cqual distances from two neighbor in-
clusions along the v-axis and the crack propagates in the x-direction due o0
tensile stress o, (sce Fig. 5). Plane stress is considered. with v, = v, = 0.2
and E,/E., = 3. The spacings between the inclusions are cqual. b, = b,

1623

,,.4
e AN




/ /i b
’ ,/ ——calculated

g " —=Tada et al.
-7 1985
yd
—" d /R =2

0.0 0.2 0.4 0.6 0.8 1.0

¢/ (c + R)

FIG. 6. Stress Intensity Factor for Crack Interacting with Two Circular Voids
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FIG. 7. Stress intensity Factor at Tip of Crack Propagating in Composite with
Square Array of inclusions for Two Different Volume Fractions of inclusions

1624

N LR
st i, ) %




Two volumc fractions V, of inclusions arc chosen: V, = 0.195: b, /R = 4.
and V. = 0.35: b,/R = 3. Dcnoting K, = stress intensity factor if there were
no inclusions, we sec that the ctfect of the inclusions is to cause the ratio
K,/K,. to decrcasc with the crack length ¢. ¢xcept when the spacing b, is
too small. This means that thc apparcnt stress intensity factor increases dur-
ing crack propagation. So the compositc behaves as if the crack followed
an R-curve. Furthcrmore. the stress intensity factor incrcases with the vol-
ume fraction of inclusions. According to this result. crucks in a densely packed
compositc must occur carlicr than in a loosely packed compositc. Finally.
we can sce that even for a low-volume fraction of inclusions. the amplifi-
cation of the stress intensity factor compared to K, is quite important.

The present approximate mcthod could no doubt be combined with Ka-
chanov’s method (1987) and thus be generalized for a system of cracks in
a composite. However, programming the computation of the various trans-
misston cocfficients scems to be too tedious.

APPARENT FRACTURE TOUGHNESS OF COMPOSITE

As we have observed from Fig. 7, inclusions may causc the composite to
behave as a homogencous solid with a rising R-curve. The knowledge of
such an apparcnt R-curve would permit a much simpler calculation of frac-
turc 1in composites. In such an approach. the interaction between cracks is
uncoupled from the interaction between the cracks and the inclusions. Sim-
ilar assumptions have been made by Mori ct al. (1988) and Gao and Rice
(1988). who used a perturbation mecthod to analyzc fiber-reinforced com-
posites in which the values of the clastic moduli of the matrix and the in-
clusions are sufficiently close. Morc preciscly let K., be the fracturc tough-
ness of the matrix. According to Griffith's critcrion, crack propagation occurs
when K, = K.,,.. For a crack length ¢ in a macrohomogencous composite
loaded with tensile stress ¢., we may write K, = K,, F(¢) where K, = o,
V7. and where F(c) is a certain amplification function that is computed
from the crack-inclusions interaction. The cstimation of K, yiclds the ap-
parcnt tracture toughness K, of the composite

In most studies [see e.g., Zaitsev (1985) and Zaitsev ct al. (1986)]. F(c)
was assumed to remain constant or to change only when the crack touches
an inclusion (Huang and Li 1989). Fig. 8 presents the approximate variation
of fracture toughness for a crack propagating symmetrically in a composite
madc of rcgular staggered circular inclusions cmbedded in an clastic matrix.
The radii of the inclusions are cqual and denoted as R (R = 1). The volume
fraction of inhomogeneities is V, = 0.7. Plane stress is assumed with E,/E.,
= 3 and v, = v, = 0.2. The rcmote boundary traction is uniaxial tcnsion
perpendicular to the crack faces (mode I crack opening).

Three configurations have been analyzed [Fig. 8(a)]. In configuration 1.
the crack propagates toward the centers of two inclusions. In configuration
3. the center of the crack is at cqual distances from two rows of inclusions.
Configuration 2 is intcrmediate between configurations | and 3.

Fig. 8(h) shows the variation of the apparcent fracturc toughness with the
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FiG. 8. Apparent Fracture Toughness of Composite with Staggered iInclusions:
(s) Contigurations Analyzed; (b) Fracture Toughness versus Crack Length

crack length according to (26). We sce that these variations may be radically
different depending on the configurations analyzed. Configurations 1 and 3
give the highest and lowest values of the apparcent mode | fracture toughness.
respectively. The more drastic variation is obtaincd when the crack propa-
gates toward an inclusion; this corresponds to the maximum possible tough-
cning.

These vanations of apparent tracture toughness have a great influcnce on
stability of intcractive crack systcms. As we sce. the mechanical ctfect of
the inclusions cannot be neglected in crack propagation studics as the frac-
ture toughness of the cquivalent medium may vary by as much as 100%. It
should be stressed that these curves arc valid only if the crack does not touch
the inclusions. Otherwisc. the singular stress field at the tips of the crack
would neced to be modificd.

To excmplify the influcnce of the spatial distribution of the inclusions at
a constant volume fraction. Fig. 9 shows the vaniation of apparcnt toughness
for a regular (h, = b, = 3IR) staggered distribution of inclusions and a non-
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regular staggered distribution of inclusions (b, = 4R. b, = 2.25R). The in-
clusion spacings arc such that the volumc fraction 1s the same, V, = 0.7.
Configuration | is choscn with thc samc matcnal properties as in Fig. ¥.
Again. there 18 a large diffcrence between the two cases. The nonarcgular
staggered distribution (dashed curve) provides the lowest apparent fracture
toughness. This suggests that inclusions that are radial to the crack have the
largest influence since b, has been incrcased. The toughening cffect. which
is important for the regular distribution, is dclayed as the tips of the crack
are morc distant from thc inclusions.

The ctfect of the variation of the ratio £,/E., of the clastic moduli ot the
inclusion and thc matnix is shown in Fig. 10. The apparent fracturc tough-
ness of thc compositc has been computed for the crack length 2¢ = R, with
Vo = v, = 0.2. The composite contains a rcgular staggered distribution of
inclusions with V, = 0.7. The solid line corresponds to configuration | and
the dashed linc corresponds to configuration 3 [sce Fig. 8(a)]. We obtain
the upper and lower bounds of variation of toughncss for a crack opencd
under modc | as a function of the ratio £,/E,,. For configuration | this curve
is ccrtainly not lincar. It should be pointed out that tor large values of E,/
E.. convergence could not be rcached in subproblem | (E,/E. > 7). The
rangc of vanation of E,/E,, showed in Fig. 10 corrcsponds to the usual val-
ues for concrcte.

From thc present analysis one might get the impression that the length of
crack extension nceded to rcach the asymptotic valuc of an R-curve is about
as long as thc inclusion spacing. No doubt this can be truc only for peniodic
inclusion arrays. For random arrays. this length could be much longer.

CONCLUSIONS

1. The intcraction between a crack and scveral inclusions can be analyzed by
superposing known solutions of standard problems of clasticity. The method usces
first Duhamci-Ncuman analogy in order to transtorm the problem into a problem
of clasticity of a homogencous body in which the inclusions are replaced by the
matrix and thc boundary conditions are modificd. A superposition scheme 1s
proposcd. similar to Kachanov's method for interacting cracks. The solution of
the problem of intcraction of onc crack with many inclusions is reduced to the
solution of a linear algebraic cquation with transmission factors charactenizing
the interactions of the crack with each inclusion and of any two inclusions. Com-
parisons with exact results from the literaturc show that in most cases the method
is sufficicntly accurate for practical purposes (with an crror better than 10%)
when the inclusions and the crack are not too close to cach other.

2. The vanation of the apparent fracturc toughness of the equivalent homo-
geneous medium (representing the inverse of the calculated vanation of the mode
I stress intensity factor at the tip of a crack propagating in the compositc) is
analogous to the R-curve in nonlincar fracture mechanics. Calculations show that
the apparent fracturc toughness depends on the volume traction of the inclusions,
on their spatial distribution, and finally on the clastic propertics of the constit-
uents of the compositec. The largest (mode 1) toughness is obtained when the
crack propagates toward an inclusion and the lowest toughness corresponds to a
crack propagating between two inclusions. The diffcrence between these two
cases can be of the order of 100%.

3. Finally. the results show that. for a given composite and for a fixed crack
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configuration. thc mechanical cffect of the interaction between the crack and the
inclusions is not ncgligible. This cffect 1s important for explaining stability ot
simultancous propagation of many intcracting cracks in a hcterogencous me-
dium. as well as tor detcrmining the conditions under which stable states of
diffusc damage can cxist.
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FRACTURE OF ROCK: EFFECT OF LOADING RATE

ZDENEK P. BA2ANT. SHANG-PING BAl and RAVINDRA GETTU
Center for Advanced Cement-Based Materials, Northwestern University, Evanston, IL 60208, US.A.

" Abstract—Fracture parameters of limestone at loading rates ranging over four orders of magnitude in the
static regime are determined using the size effect method. Three sizes of three-point bend noiched
specimens were tested under crack-mouth opening displacement coantrol. The fracture toughness and
nominal strength decrease slightly with a decrease in rate, but the fracture process zone length and the
brittieness of failure are practically unaffected. The effect of material creep on the fracture of limestone
is negligible in the time range studied here. However, the methodology developed for charactenzing rate
effects in static fracture can be easily applied to other brittle-heterogeneous materials. The decrease of
fracture toughness as a function of the crack propagation velocity is descnbed with a power law. A
formula for the size- and rate-dependence of the nominal strength is also presented.

INTRODUCTION

BOND RUPTURE is a rate process governed by Maxwell distribution of molecular thermal energies
and characterized by activation energy. Therefore, fracture in all materials is rate-sensitive. This
has been experimentally demonstrated for rock in the dynamic range, but not in the static range.
However, knowledge of this rate effect is very important for may practical applications in mining,
geotechnical engineering and geology. The present paper reports new experimental results on the
static fracture of limestone at loading rates ranging over four orders of magnitude. The
corresponding times to failure range from about 2 sec to almost | day.

_EXPERIMENTAL DETAILS

All specimens were cut from the same block of Indiana (Bedford) limestone. Three sizes of
three-point bend (single-edge-notched) fracture specimens (Fig. 1) were tested. The depths, d, of
the beams were 25, 51 and 102 mm (1, 2 and 4 in.), and the thickness, b, of each was 13 mm (0.5 in.).
The specimens were cut such that the bending plane of the rock was normal to the load. Notches
of 1.3 mm (0.05 in.) width were cut with a steel saw blade. Aluminum bearing plates of length equal
to half the beam depth were epoxied at the ends to provide support. The fracture tests were
conducted under constant crack-mouth opening displacement (CMOD) rates in a 89 kN (20 kip)
closed-loop controlled machine with a load cell operating in the 890 N (200 Ib) range. The CMOD
was monitored with a transducer (LVDT of 0.127 mm range) mounted across the notch. Four series
of tests were performed; each series consisted of six specimens, two in each size (see Table 1). The
CMOD rates were chosen so that all specimens in a series reached their peak load in about the
same time, f,. The average ¢, values were 2.3, 213, 21,420 and 82.500 sec for the different series.
The typical load-CMOD curves for each size are shown in Fig. 2. From the initial slopes of these
curves, the initial elastic modulus E, of the rock was calculated, for each test, using linear elastic
fracture mechanics (LEFM) formulas [1]; see Table 1.

IDENTIFICATION OF FRACTURE PARAMETERS

The size effect method [2] is used to determine the material fracture parameters from the test
data. The method has previously been verified for the fracture of limestone (3], as well as other
rocks and concrete (4, 5]. Recently, it has also been used in a study of the effect of loading rate
on the fracture of concrete [6]. The method is based on the size effect law (7], which is:

B, d
N R ®
393
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d = thickness
Fig. 1. Fracture specimen geometry.

where oy = P, /bd = maximum nominal stresses of geometrically similar fracture specimens,
P, = maximum load, d = characteristic dimension (chosen here as the beam depth), b = specimen
thickness (constant, for two-dimensional similarity), Bf, and d, = empirical parameters, and
B = brittleness number. When f is very small (e.g. # €0.1), o is almost independent of size,
as in plastic limit analysis. When B is large (e.8. § » 10), the size-dependence follows LEFM
(i.e. oyl /ﬂ). In the transition zone, nonlinear fracture mechanics needs to be applied.

For determining the parameters from o data, eq. (1) can be transformed to Y = AX + C,
where X =d and Y = 1/¢}. Then, Bf, = I/JE' and d, = C/A [4). By linear regression analysis of
the data for the four series of tests, the parameters and coefficients of variation of errors, wy,y, have
been computed and are listed in Table 2. The data and the fits [eq. (1)} are shown in Fig. 3. It can
be seen that the size effect law represents the trend reasonably well, at all the loading rates. It is
clear that the data cannot be represented by either LEFM (a straight line with a slope of ~1/2)
or strength criteria (horizontal line o, = Bf,).

Using the values of Bf, and d,, fracture parameters can be calculated as follows [4, 5, 7}:

bg(®%) . _Ki
g@)’ ' E

Ky = Bf../(dog (%)), ¢;= )

Table 1. Test data

Dimensionst CMOD rate Peak load Time to peak Et
Series (mm x mm x mm) (10-* mm/sec) N (sec) (GPa)
457 x 102 x 13 15,900 445 2.1 40
15.900 472 22 2
Fast 229 x St x 13 10,600 281 2.0 38
10,600 291 24 4
114 x 25 x 13 $770 178 24 3s
5§7170 165 22 s
457 % 102 x 13 159 436 176 kx}
141 414 194 30
Usual 229 x St x 13 106 269 237 30
106 M 210 30
114 x 28 x 13 51.7 153 ‘248 29
63.5 165 218 30
457 x 102 x 13 1.42 394 23,178 30
1.42 383 16,875 2
Slow 29 x 5t x 13 0978 245 26,000 23
0978 240 20,475 25
114 x28x 13 0.706 147 15,750 2
0.508 153 26,250 M
457 x 102 x 13 0.353 385 81,900 7
0.318 '387 79,000 k
Very slow 229 x 51 x 13 0.236 262 $7,800 k7]
0.236 268 82,350 27
114 x28x 13 0.160 140 72,000 26
0.160 136 92.000 25
tLength x depth x thickness.

$lnitial modulus from load-CMOD compliance.
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Fig. 2. Typical load-CMOD curves for each specimen size.

where K, = fracture toughness, ¢, = effective length of the fracture process zone, and G, = fracture
energy. Function g(«) is the non-dimensionalized energy release rate defined by the LEFM relation
G = Pg(a)/E’'b*d, where G = energy release rate of the specimen, P =load, a = a/d = relative
crack length, g’(a) = dg(a)/da, a = crack length, a, = a,/d, a, = notch length of traction-free crack
length, E' = E for plane stress, £’ = E/(1 — v?) for plane strain, E = Young’s modulus, and
v = Poisson’s ratio. Function g(x) can be obtained from handbooks (¢.g. [l]) or from LEFM
analysis.

Fracture parameters are defined here for the limiting case of an infinitely large specimen at
failure. Then, an infinite-size extrapolation of eq. (1) provides material parameters [eq. (2)! that
are practically size- and shape-independent [S]. Using the values g(a,) = 62.84 and g'(z,) = 347.7
(from [1]), and assuming plane stress conditions, the fracture parameters for the four series can
be computed; see Table 2, in which the average values of K|, and ¢, as well as their coefficients of
variation are listed. The E-value for each series is taken as the average initial modulus E,, and
is used in eq. (2) for computing G, (see Table 2).

VARIATION OF FRACTURE PARAMETERS

The test results show that as the time to peak load, ¢,, increases, the fracture toughness K,
decreases. Since the fracture energy G is proportional to Ki., its decrease with slower loading rates
is even stronger. The same trends have also been observed in similar materials, such as hardened
cement paste [8], concrete (6], and ceramics at high temperatures [9].

To describe the influence of loading rate, we follow several other investigators by adopting
a power function of crack velocity v:

K.,-xo(i)', 3)

—
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Table 2. Fracture parameters

74

Avg.t, B, d Avg. Avg Avg. E, G,
Series {ssc) (MPa) (mm) @y (MPa_/mm) @ (mm) ) (GPa) (N/m)
Fast 23 0.9 36.2 0.07 Nl 0.13 6.5 0.19 335 327
Usual 213 0.645 36.3 0.07 8 0.12 6.6 0.19 3.3 3
Slow 21,400 0.614 319 004 21.5 0.08 58 0.12 3.2 250
Very slow 82,500 0.589 363 0.1 282 0.19 6.6 028 2.5 2719

w = coefficient of variation.

where X, is the fracture toughness corresponding to a reference velocity, v,, chosen here as
vo = 0.01 mmy/sec. Since the effective (LEFM) crack tip is roughly at a distance ¢, from the notch
tip at the peak load, we use the approximation

v =, 0

Then, by fitting the test results with eq. (3) (see Fig. 4), we obtain n=0.0173 and
K, = 30.0 MPa, /Imm Note that, alternatively, beam deflection or crack opening rates have
been used instead of v in other studies.

In similar tests of concrete [6], it was found that, with an increase in time to failure, the group
of data for the three sizes of specimens shifts to the right, i.e. toward the LEFM asymptote, when
plotted as in Fig. 3. This implies that, for higher 1,, the process zone length ¢, decreases and the
brittleness of failure, characterized by 8 [eq. (1)}, increases.

Rather interestingly, no such trend is observed from the present results of limestone. For all
t,, the data remain within the same part of the size effect curve. This is reflected by the fact that
* ¢, is practically constant (¢, ~ 6 mm; Table 2), implying that the brittleness of fracture in limestone
is rate-independent within the time range studied here. This difference in the behavior (for the
present load durations) from concrete may be explained by the lack of significant creep [10].
Concrete exhibits marked viscoelastic creep in the bulk of the test specimen, as well as high
nonlinear creep in and near the fracture process zone.

-8 -0
t, = 213 sec

-4, 4 -0.1 4
< -
o -2 D ~e.24
3 N
J o
h-3 K3
8-as] 81, = 0.693 MPa o] 8f, = 0.645 MPa

de = 36.2 mm de = 36.3 mm
e s Tk Y] vy re.y e m— vy ey ren) rt
log 8 log #
-0.8 -4
(¢) f, = 21400 sec

—~ (¢
&
’.7'-0.1< % g-c.u
3 3
U
“
2. 81, = 0.614 WPa 3. Bf, = 0.589 MPo
de = 31.9 mm de = 36.5 mm
-84 > -4
Y™ Y™y .00 2 ode (%, ) .50 YT “n o.ds .58 oh
log log#

Fig. 3. Size effect curves at different times to peak losd.
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Fig. 4. Variation of fracture toughness with crack velocity.  Fig. . Influence of specimen size and time to failure on
nominal strength.

EFFECT OF RATE ON STRENGTH AND YOUNG'S MODULUS 4

Several investigators have demonstrated that the strength of rock generally increases with an
increase in the loading rate (e.g. (11, 12]). This is also observed here from Table 1. When the loading
rate slows by four orders of magnitude, the maximum nominal stress decreases by more than 16%.
This phenomenon, which is similar to the change in K, has also been observed in other
materials [13]. It may be attributed to the statistical nature of the failure of molecular bonds Y
(particularly the activation energy theory and the Maxwell distribution of thermal energies).

The strength of a quasi-brittle heterogeneous material is generally difficuit to measure
objectively because of its dependence on specimen size and shape, and because failure does not
occur simultaneously at all points but is progressive. However, strength (or failure stress) is
correlated to the fracture toughness since failure occurs by unstable crack propagation: higher

¢ toughness implies higher resistance against failure. »

Equations (1) and (2) can be combined to give the size effect on the nominal strength

(maximum nominal stress) in terms of the material fracture parameters [S]:

ch
V& @)+ 8(2)d)

Substituting for K, from eq. (3), and ¢, from eq. (4), one obtains a relation for the dependence [
of the nominal strength on the failure time:

&)

On=

K, & )
oy = - . 6
e i ©
Since ¢, is not systematically affected by the loading rate, the average value of 6.4 mm is considered.
Equation (6) may then be plotted, along with the test data, for the different sizes tested (Fig. ). |
The agreement is acceptable.
The test results also indicate that the average initial elastic modulus decreases slightly with an
increase in the time to peak load (Table 2). Such an effect has been observed for several rocks in

the dynamic range [14].

CONCLUSIONS

(1) For times to peak load ranging from 2 to 80,000 sec, the measured nominal strengths of fracture
specimens of limestone agree with the size effect law.
(2) The fracture toughness and failure stress decrease with increasing failure time. However, the
fracture process zone size and the brittleness of failure appear to be unaffected by the loading >
rate.
(3) Since there is insignificant creep outside the process zone of limestone in the time range studied.
the effective process zone size does not change as the loading rate is varied.
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Title no. 89-M49

Rate Effects and Load Relaxation in Static Fracture of Concrete

X

by Zdenék P. BaZzant and Ravindra Gettu

Reports an experimental study of the fracture of concrete at various
crack mouth opening displacement (CMOD) rates with time to peak
loads ranging from about | sec to 3 days (over five orders of magni-
tude). Tests were conducted on three-point bend specimens of three
sizes in the ratio 1:2:4. Quasi-elastic fracture analysis, based on the
effective modulus from creep theory, is used to evaluate the results
according to the size ¢ffect method. The fracture toughness is found
to decrease in agreement with the trend known for the dynamic range.
The effective length of the frocture process zone is found to decrease
with increasing rate, which implies increasing brittleness and a shift
toward linear elastic fracture mechanics behavior for slow loading.
Load relaxation at constant CMOD in the prepeak and posi-peak
stages of fracture tests was also investigated. The response tends to a
straight line in the logarithm of elapsed time, and the post-peak re-
laxation is nearly twice as strong as the linear viscoelastic relaxation
of unnotched specimens. The difference beiween these two relaxa-
tions must be caused by time-dependent processes in the fracture
zone. The results reveal that in concrete there is a strong interaction
berween fracture and creep, which might cause the load-carrying ca-
pacity of structures with cracks to decrease significantly with load
duration. However, extrapolations to loads beyond several days of
duration would be speculative.

Keywerds: beams (supports); coucretes; crackiag (fracturing); creep properties;
loads (forces); relaxation (mechanics).

In all materials, even those that do not exhibit signif-
icant creep, fracture is rate-sensitive. That is, the effec-
tive fracture properties depend on the crack growth
rate, which is determined by the loading rate. This is
due to the fact that the rupture of interatomic or inter-
molecular bonds is a thermally activated process. The
probability that the thermal vibration energy of an
atom or molecule (depending on the load) would ex-
ceed the activation energy barrier of the bond increases
with the number of oscillations. It is (according to the
Maxwell distribution of thermal energies) equal to zero
for an infinitely short time interval. In a material such
as concrete, the rate sensitivity is expected to be partic-
ularly marked due to creep of the material in the frac-
ture process zone, as well as in the entire structure.
Studies by Shah and Chandra,' Wittmann and Zaitsev,?
Liu et al.,’ and others have suggested that fracture is
affected by creep. Yet a detailed investigation of this
effect has not been conducted. Substantial studies
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(Mindess and Shah‘) have been carried out under very
high (dynamic) rates of loading, in which the maxi-
mum load is reached under 1 s. Since the creep effect
in this range is weak, a comprehensive understanding of
rate effects can be obtained without accounting for
creep. However, for slower rates, the contribution of
creep becomes significant. Fracture, with rates that
correspond to reaching maximum load within any-
where between an hour and several years, is of great
interest for predicting the long-term cracking and fail-
ure of many types of concrete structures. For example,
as is now widely accepted, the failure of dams should
be analyzed according to fracture mechanics, but cer-
tain types of fracture in dams develop gradually over a
period of many years. Without any test data, one can-
not but speculate about the effective fracture proper-
ties to be used under such slow rates.

This paper presents the results of fracture tests of
concrete at various loading rates in the static range,
with the time to peak load ranging from 1 s to 2.5 days,
and the results of complementary tests of load relaxa-
tion in fracture specimens. (A preliminary report was
made ecarlier at two conferences.*¢) The size effect
method, combined with the assumption of a quasi-elas-
tic effective modulus representation of concrete creep,
is used to determine the fracture energy, fracture
toughness, effective length of the process zone, and ef-
fective crack-tip opening displacement at various load-
ing rates.

REVIEW OF RATE PROCESSES IN CONCRETE
FRACTURE
The significance of rate effects may be illustrated by
comparing the results of two tests on identical three-
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Fig. 1 — Three-point bend fracture specimen

point bend (3PB) fracture specimens (see Fig. 1: b = 38
mm, d = 76 mm, f] = 37 MPa, age = 150 days), at
very different crack mouth opening displacement
(CMOD) rates. The peak load of one specimen was
reached in 1.2 s, and that of the other in about 20,000
s (5.6 hr). The load versus CMOD and load-versus-
load-line displacement curves are shown in Fig. 2(a)
and (b). The peak load of the faster test is more than
25 percent higher than that of the slower test. A similar
increase in the failure stress or ‘‘strength’’ has been ob-
served previously in the static range by several investi-
gators.” A similar trend exists under dynamic or impact
loading.*’

Comparison of the post-peak response is also very
interesting. While the load-CMOD plots [Fig. 2(a)] for
both specimens are quite similar, the load-displacement
plots [Fig. 2(b)] differ significantly. For the faster test,
the load-displacement curve descends steeply, whereas
in the slower test the drop is gradual and closer to duc-
tile behavior. This difference can be attributed to creep
in the bulk of the specimen, since the load-line dis-
placement reflects the cumulative response of the entire
specimen, whereas CMOD is affected primarily by the
deformations of the crack and the fracture process
zone. It is therefore important that the effect of creep
outside the process zone be separated from the rate
process producing fracture. It also appears that
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Fig. 2 — Rate effects on (a) load-CMOD response and
(b) load-deflection response

CMOD-controlled tests are more relevant for studying
fracture properties than deflection-controlled tests.

It has been suggested that the cause for the increase
in concrete strength under fast loading is the change in
crack path with rate. At very high (dynamic) loading
rates, it has been observed (e.g., from compressive im-
pact tests of Hughes and Watson') that cracks tend to
be less tortuous, and often pass through the aggregates
instead of following the aggregate-mortar interfaces.
Since aggregates, in normal concrete, are stronger than
both the mortar and the interfaces, a crack passing
through the aggregates will encounter a higher resis-
tance than one following the interfaces. To investigate
whether this change in mechanism occurs in the static
regime, the fractured surfaces of two 3PB specimens
(see Fig. 1: b = 38 mm, d = 76 mm, age = 45 days)
— one with time to peak load ¢, = 0.5 s (and peak load
= 4000 N), and the other with ¢, = 30,000 s (and peak
load = 2340 N) — were studied. It can be seen, from
Fig. 3, that a few more aggregates were fractured in the
faster case than in the slower, but no significant change
in the fracture mechanism is apparent.

The straightening of the crack path could also have
an opposite effect — strength decrease due to the
higher stress intensity of planar cracks. Crack bridging
and deflection by the aggregates increase the overall
fracture resistance. To check for difference in tortuos-
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ity, the fractured areas of the specimens mentioned
previously were approximately determined. After com-
plete fracture, the cracked surfaces were covered with
2.4-mm (0.094-in.) wide tape, and the crack area was
calculated from the length of the tape used. Although
this method is not very accurate, it seems to suffice for
the present purpose. The crack area for the faster frac-
ture was 2900 mm?’ (4.5 in.?) and for the slower one,
3000 mm? (4.7 in.?). (The crack-plane areas were 2420
mm? (3.75 in.%) for both.) This difference is insignifi-
cant. Therefore, it seems that the same mechanisms
dominate fracture in this range. (A similar observation
was made from tests of certain ceramics by Suresh et
al."; they showed that fracture initiation in alumina
was predominantly intergranular for both dynamic and
static rates.)

Several micromechanical processes could give rise to
rate effects, as, for example, the presence of moisture
at the crack tip. As is well known, wet surfaces require
less energy to form than dry surfaces, i.e., the fracture
energy decreases in the presence of moisture. Water
corrosion and disjoining pressure mechanisms that
weaken the bonds at the fracture front may also be in-
volved.'? Such effects could explain the lowering of
fracture energy and strength in rock'’ and concrete.'
The detrimental effect of moisture is more significant at
slower rates and tends to increase the crack velocity. It
has even been suggested that the water in concrete is the
primary source of rate effects.*"

Creep dominates the response of cracked as well as
uncracked concrete under slow and sustained loading.
It may considerably decrease the strength and the ef-
fective modulus as loading rate becomes siower. The
effects of creep on fracture, however, may be compli-
cated.”? One effect may be a decrease in fracture resis-
tance, and another effect may be relaxation at the crack
tip, which removes part of the stress concentration.
However, the second effect would also reduce the ex-
tent of microcrack initiation ahead of a propagating
crack.'” Since the microcracked zone causes crack
blunting or toughening, a smaller zone implies more
brittle fracture.
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Table 1 — Fracture test data

Specimea| CMOD | Timeto | Ageat |Peak

deptn, rate, peak ¢,, | loading, | load

Series mm mm/s sec days N

Fast 8 (L1x10°? 09| 28 2228

84 x 10’ 221 28 1300

[ = 3.6 MPa 11 x10° 1.1 28 |1890

w = 13percent T T e x 10 ¢ 13] 28 | 3628

1.4 x 10? 22| 28 |39e0

1.4 x 10" 1.3 28 {3025

152 2.1 x 10 13/ 28 6180

21 x10° 1.1] 28 |$940

21 x 10 1.4] 28 |s428

Usual 38 [18x10° 595 8 | 1828

18 x 10" 59§ 28 1780

/' = 36.5 MPa 24x10° 570 28 | 1648

w=6lpercent T T Toy % 10| 460 28 | 3070
36 x10° 520 28 12

43 x 10" 505 28 | 2760

152 (71 x10° 495 28 | 502

74 x 10" 360 28 [ 4228

71 % 10° 420 28 | 4200

Slow 38 (7.1 x 10 °| 10,350 @ (25

7.1 x 10} 17,100 38 | 1938

' = 31.2MPa 7.1 x 10"{ 13,500 39 (2180

w = S.Spercent I 11 0 x 10| 10,625 % | 3580

9.4 x 10| 17,5%0 2 3815

1.1 x 10-*] 11,900 30 | 3180

is2 (1.4 x 10°*] 15,300 32 4270

1.4 x 10*]| 14,85 38 |80

1.7 x 10-*| 14,600 31 | 5295

Very slow 38 [3.8 x 10-*]| 266,500 120 |2138

I = 36.9 MPa 76 7.4 x 10-*| 255,500 108 3180

w=44percent| 152 [1.3 x 10-7] 236,000 90 |4s80

[ = 28-day compressive sirength of 76 x 152-mm cylinders.
« = coeffliciens of variation of /..
1MPa = 145.04 psi; I N = 0.2248 [b.

Even at dynamic strain rates, it is not clear whether
a slower rate causes more or less brittleness. Assuming
the behavior to be analogous to that of a plastic mate-
rial with coalescing voids, Reinhardt'* proposed that
when the crack velocity is comparable in magnitude to
the wave speed near the crack tip, the fracture process
zone becomes larger than usual. To a certain extent,
this hypothesis is supported by tests. Impact tests show
more distributed cracking and more fragmentation at
higher strain rates.>” These resuits further imply that
faster fracture is more ductile, since it dissipates more
energy in a larger zone.® On the other hand, since the
nonlinearity of the prepeak load-deformation relation-
ship decreases with an increase in loading rate, several
investigators have argued that fracture becomes more
brittle.” That argument applies only when the nonli-
nearity is primarily due to the fracture process, and the
effects of time-dependent phenomena outside the frac-
ture zone are negligible. It is also possible that differ-
ent trends could exist due to a change in fracture mech-
anisms, for example, fracture through or around ag-
gregates and inertia effects. Reversals suggesting such
explanations have been documented for failure strain®
and fracture parameters.? The present study is limited
to static rates, and, therefore, will not attempt to an-
swer these questions for fracture in the dynamic range.
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Fig. 4 — Typical load-CMOD curves (e —n means x 10™")

TEST SPECIMENS

Three-point (single-edge notched) bending specimens
(Fig. 1) were used with concrete of cement:sand:
gravel:water ratio 1:2:2:0.6, Type I cement, crushed
limestone gravel (maximum grain size = 13 mm), and
standard No. 2 sand (maximum grain size = 5 mm).
The beams were cast with the notch face at the bottom.
The thickness of the specimens was 38 mm (1.5 in.),
and the notch length was % of the beam depth. The
notches, cut with a diamond band saw, were 1.8 mm
(0.07 in.) wide. All the specimens were cured under wa-
ter until testing, and had their surfaces sealed with sili-
conized acrylic latex during testing to prevent loss of
moisture. The fracture tests were conducted under
CMOD control in a 89-kN (20-kip) load frame with a
load cell operating in the 8.9-kN (2000-1b) range. Com-
panion cylinders of 76-mm (3-in.) diameter and 152-
mm (6-in.) length were used to determine the compres-
sive strength /7 28 days after casting. The cylinders were
capped with a sulfur compound, and tested in a 534-kN
(120-kip) load frame under stroke control such that
failure occurred in about 10 min.

SIZE EFFECT TESTS AT VARIOUS CMOD RATES
Four series of tests, each with specimens that were
geometrically similar in two dimensions and of three
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sizes [d = 38, 76, ana 152 mm (1.5, 3, and 6 in.)], were
conducted. The measured peak loads and other details
are listed in Table 1. The typical measured load-CMOD
curves are presented in Fig. 4. The CMOD rates were
chosen to give almost the same ¢, for all the sizes in
each series (Table 1). The range of CMOD rates, or /,,
exceeds five orders of magnitude (1:10°).

In choosing the loading rates at different sizes, one
must realize that the same displacement rate used for
soecimens of different sizes will result in different rates
of deformation of the fracture process zone. Assuming
linear viscoelastic behavior through the whole volume
of the spgcimen, one could calculate the load-point dis-
placessent gates that give the same rate K, of the stress
intensity factor K, for specimens of different sizes (this
is achieved for dP/dt = Jd x const.). But due to non-
linear behavior and the presence of a large fracture
process zone, this does not achieve the same rates of
deformation of the fracture process zone, which is the
condition for which the results for large and small
specimens can be legitimately compared. To calculate
the CMOD rates that meet this condition, one would
need & priori 2 good mathematical model for the rate
effect in fracture. But such a model is unavailable.
Among various simple possibilities, the condition of
equal rates of deformation of the fracture process zone
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is probably best achieved by rates that give approxi-
mately the same time 1, to peak load. This conditon at
the same time insures that the relative creep deforma-
tions outside the process zone at time ¢, are about the
same — another conditon desired for comparability of
different sizes. The rates to achieve equal ¢, were se-
lected on the basis of prior experimentation, and the
condition of equal ¢, has of course been achieved only
approximately. The coiresponding CMOD rates for
various specimen sizes were not equal, but they were of
the same order of magnitude (Table 1). However, once
the test results are translated into a mathematical
maodel, the loading rate selection should in the future be
done by calculations.

The purpose of using specimens of different sizes was
to apply the size effect method for determining frac-
ture parameters. The method is based on the size effect
law,” which in its simplest form reads (Fig. 5)

__B. .4
an‘mpﬁ"do ¢}

where oy = P,/bd = nominal strength (maximum
nominal stress), P, = peak (maximum) load, d =
characteristic dimension of specimen (here, chosen as
the specimen depth), b = thickness, 8 = brittleness
number, Bf, and d, are the parameters of the model,
and £, is some estimate of the material strength. When
the size is very small, i.e., B <€ 1, oy is not significantly
affected by size, and the behavior is then governed by

Table 2 — Material fracture parameters

strength limit (or allowable stress) criteria. This implies
that energy is dissipated during failure in a relatively
large region. When 8 is large, § » 1, the behavior fol-
lows linear elastic fracture mechanics (LEFM), and o,
a« 1/Jd. In this case, energy is dissipated in a region of
infinitesimal size at the crack tip. The transition zone
(taken as 0.1 < 8 < 10), in which the test results usu-
ally lie, is the nonlinear fracture regime.

Eq. (1) has been extensively verified for the fracture
of concrete and extended to determine fracture param-
eters and material brittleness.* The method has also
been used 1o determine the change in fracture proper-
ties with temperature’ and strength.® However, all the
tests have so far been conducted at conventional load-
ing rates, i.e., with 7, between 5 and 10 min. Applica-
bility of the method at various rates is to be experimen-
tally validated. For Eq. (1) to apply, specimens of each
size should attain the peak load in about the same time,
for reasons already explained (differences up to 50 per-
cent are probably not serious, but differences in orders
of magnitude certainly would be). The reason is that,
for all sizes, the fracture process zone should be de-
formed at about the same rate, and the relative creep
deformations outside the process zone should be about
the same.

To determine the size effect parameters in Eq. (1)
from o,-data, this study used nonlinear regression
analysis in which the sum of the squared errors in g, is
minimized. The optimized values of Bf, and d,, ob-
tained by means of the Marquardt-Levenberg algo-
rithm (available in standard computer libraries), are
listed in Table 2 for each series of tests. The curves in
Fig. 6 are the optimum fits of the data points by Eq.
(1). The coefficients of variation of the deviations of g,
from the fits are also given. The results demonstrate
that the size effect is significant at all the rates used,
and that Eq. (1) fits the data reasonably well through
the entire time range.

The applicability of Eq. (1) might be questioned,
since its theoretical derivation assumes the behavior
outside the process zone to be elastic. There are, nev-
ertheless, two justifications: 1) according to the double
power creep law,” the ratio of creep strain to the true
instantaneous strain, at 28 days, is about 0.9 for?, = 8
min (the usual static test), about 0.4 for ¢, = 1 s, and
about 1.9 for 1, = 2.5 days. If elastic analysis is ac-
ceptable for the ratio 0.9, it should also be acceptable
in the range 0.4 through 1.9, provided, of course, the
duration of the loading is the same for all the sizes; 2)

Average A..g *1 d, K. o | E G, 8
Series | ‘n.sec | days MEs | MBa | o | MPavEm | om | oFa | N |
{ Fast 1.4 28 | 160 |1025[010] 395 [17.2] 360 | 43.4 | 0.0146
Usual 500 28 | 168 | 413|006 263 69| 28.6 | 24.1 | 0.0077
Slow | 13,650 8 |294] 133]009] 261 22| 24.1 | 28.4 | 0.0052
. X;r'y 253,000 106 |347| 85 |001| 246 1.4 | 2.4 | 26.9 | 0.0042
@ = coefTicient of variation of the deviations of the fit from test data. ]
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due to linearity of creep and the rapidly decaying na-
ture of the creep curve of concrete (for stresses up to
about half the strength), quasi-elastic analysis based on
the effective modulus is a reasonable approximation to
the viscoelastic solution.”

SHIFT IN BRITTLENESS

Since the test results for all the rates agree reasona-
bly well with the size effect law, they can be combined
into one plot, as in Fig. 7. Such a combined plot was
used previously to show the increase in the brittleness
of concrete with imcreasing strength.” This clarifies the
effect of rate on the brittleness number. In each series
ther? are three sets of data. In each set, the most brittle
(largest S) are the largest specimens, and the least brit-
tle are the smallest. Now, the interesting aspect is that
there is a significant shift of the data sets toward the
right (toward LEFM, i.c., ideal brittle failure) as ¢, in-
creases. This means that fracture becomes more brittle
as the loading becomes slower; i.c., the intensity of the
crack-tip shielding mechanism decreases as the loading
rate becomes slower. The damage and energy dissipa-
tion are more distributed for higher rates. It should be
emphasized, however, that even though the present
quasi-clastic approximation approaches LEFM for very
slow loading rates, consideration of creep in the analy-
sis of structural response becomes more important.
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This result is similar to that of BaZant and Prat,"
who applied the size effect method to tests of fracture
specimens at different temperatures. From their data it
can be seen that the brittleness of concrete increases
with temperature. The effect of time on fracture is
analogous to the effect of high temperature, since a
higher temperature means higher creep. This similarity
reinforces the present conclusion.

Another extrapolation ¢ the effect of creep on brit-
tieness could be made to the failure of early-strength
concrete. Since creep mechanisms are more dominant at
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Table 3 — Fracture parameters corrected for 28

Series | £, GPa | K., MPaJvmm [ c,mm | G, N/m | 8, mm
Fast 36.0 9.5 17.2 Qa4 | 00146
Usual | 286 26.3 69 4.1 | 0.00m
Slow 29 28.3 2.2 2. 0.0052
Very 18.2 P> R 1.3 282 | 0.0047
slow

younger ages, one could infer from this study that
fracture is more brittle in concrete at earlier ages. The
data of Wong and Miller® on fracture tests at different
ages (1, = 5 to 10 min) support this inference.

FRACTURE PARAMETERS OBTAINED BY THE
SIZE EFFECT METHOD

The steepness of post-peak load-deflection curves, or
the amount of distributed cracking in unnotched speci-
mens, have previously been interpreted as indicators of
material brittieness. Though valid in certain cases, such
indicators are not size-independent and general meas-
ures. Rather, objective measures must be based on
fracture mechanics. In the present study, the size of the
fracture process zone is taken as the measure of brittle-
ness; a material with a smaller process zone is more
brittle. The structural brittleness, on the other hand,
may be generally characterized by the brittleness num-
ber 8 = Eq. (1). Another important fracture parameter
is the fracture toughness; higher fracture toughness im-
plies higher resistance against failure. These quantities
are also necessary for nonlinear fracture mechanics
analysis of concrete structures.

Since specimen size and shape could have a strong
effect on the measurements of fracture parameters, ex-
trapolation to an infinitely large size has been proposed
for obtaining unambiguous values.” It has also been
shown that parameters obtained in this manner are
practically independent of specimen geometry.* Based
on the infinite size extrapolation of Eq. (1), simple ex-
pressions for fracture energy G,, fracture toughness X,
effective length of the fracture process zone c,, and ef-
fective critical crack-tip opening displacement &, have
been derived”-®-* (see also RILEM recommendation®)

G, = 5 (BfFdg(ad @

K. = Bf.Jdg(ad) ®)
s

o= @

8K |
a,-E,J; D)

where function g(a) is the nondimensionalized energy
release rate defined by the LEFM relation G = Pg(a)/
E'b’d, G = the actual energy release rate, P = load,
a = (crack length)/d = relative crack length, oy = ay/
d, a, = notch or traction-free crack length, E' = E for
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plane stress, E' = E/(1 -~ »%) for plane strain, £ =
Young's modulus, » = Poisson’s ratio, and g'(a) =
dg(a)/da. The function g(a) can be obtained from
handbooks* or from LEFM analysis.

Parameter ¢, lumps together the effect of all the
toughening mechanisms in concrete, including the de-
flection and bridging of the crack by aggregates, and
microcracking ahead of the crack tip. Note also that the
crack tip is defined here as the point where the trac-
tion-free crack ends.

For the present specimen geometry, finite element
analysis provided the values g(ap) = 5.927 and g’ (a,)
= 35.24. The values of Bf, and d, obtained earlier (Ta-
ble 2) can then be used in Eq. (3) and (4) to caiculate
K, and c,; see Table 2. (Note that the calculated values
of K, and ¢, can have coefficients of variation up to 0.3
and 0.5, respectively.)

In view of the preceding comments, the validity of
Eq. (2) through (5) may be extended to linear viscoelas-
tic creep, which occurs in most of the specimens except
in (and very near) the fracture process zone. This is
done by replacing E with the effective modulus E,, (in-
verse of the compliance function) corresponding to load
duration ¢,. To determine E,, the BP model for the
prediction of concrete creep”* was used. Only the ba-
sic creep was considered, since the specimens were
sealed to prevent moisture loss. In applying the BP
model, the asymptotic modulus was modified such that
the effective modulus for the loading time of 10 min
would coincide with the ACI code formula £ =
4735Jf7, in MPa (or E = $7,000Jf7, in psi). The E-
values for the various test series are listed in Table 2.
Using the effective moduli in Eq. (2) and (5), the values
of G, and §, are computed and listed in Table 2.

Since two series of tests were conducted at ages other
than the standard 28 days, the fracture parameters ob-
tained from them should be corrected before compari-
sons are made. The following formulas were used for
this purpose: f’ = 0.50 Jf (ACI); f1 () = f: (28) t/(4
+ 0.85¢) (ACI); and G, « (2.72 + 3.103 f} ) f*d,/E,
(Reference 34), where f is the tensile strength; f/, 1/,
and E are in MPa; d, is the maximum aggregate size in
mm; G, is in N/mm; ¢ is the age in days; and E,, is ob-
tained from the BP model, as before. It was also as-
sumed that the parameter Bf, varies linearly with f,.
(Possible errors in these formulas cannot be important,
since the corrections are small.) The adjusted 28-day
values of all the parameters are listed in Table 3.

DISCUSSION OF TRENDS OBSERVED IN
CONSTANT-RATE TESTS

From Table 3, it is clear that the fracture toughness
K, tends to decrease with increase in ¢,. This agrees
with the well-known reduction in concrete strength as
the loading rate becomes slower. The trend agrees with
those obtained by other methods for mortar and ce-
ment paste.”

A new result from the present tests is the significant
decrease in the fracture process zone ¢, as the loading
rates decrease. This implies that the material brittle-
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ness, and consequently the brittleness of structural
failure, increases due to creep. The decrease in ¢, is
probably due to the relaxation of the high stresses in
the material ahead of the crack tip, causing the stress
drop to be more concentrated. The trend can be ap-
proximately described by the formula {see Fig. 8(a))

el e

where ¢, is the reference value of time to peak and c, is
the corresponding value of ¢, n = 0.22; and for ¢, =
600 s (about the conventional testing time), ¢, = 5.04
mm.

Along with X, and ¢, §,, is found to also decrease
for slower loading. This trend agrees with that ob-
served by Wittmann et al.,? who, however, concluded
that for very slow loading, the trend reverses. The trend
may also be different in the dynamic range.*

The variation of the fracture toughness of mortar
and cement paste with loading rate has been described
by means of a power function® K, = K,v*, where K,
and m are parameters determined experimentally, and
v is the rate of change of deflection, crack length, or
stress. Similarly, the present test results have been fit-
ted (Fig. 8(b)] by the equation

K. =K, (1> ™

Vo

where v & §,/1,, v, is the chosen reference deformation
rate, and K, = K, for v = v,. From the present data,
m = 0.041, and forv, = 5§ x 10~°* mm/s, K, = 30.4
MPaymm. '

For loading rates faster than the usual static test, the
fracture energy G, has previously been found to in-
crease significantly with an increase in rate.** How-
ever, at low rates, this trend is not obvious from the
present resulits. This may be because G, is strongly af-
fected by the decrease in the effective modulus due to
creep. Wittmann et al.? proposed that fracture energy
increases under very slow loading due to the influence
of creep. The present variation tends to agree with their
conclusion, but the scatter of the present results for G,
is too high to draw a firm conclusion. If linear elastic
fracture mechanics were applicable, then one coul:* use
the relation G, = K}/E to determine that the scatter is
due to E, but the relation of G, and K|, is more compli-
cated.

RELAXATION TESTS OF UNNOTCHED BEAMS

To determine the creep or relaxation behavior of the
concrete used, four unnotched beams, with b = 38 mm
(1.5in.), d = 76 mm (3 in.), and span = 191 mm (7.5
in.), were tested under three-point loading. A trans-
ducer (LVDT of 0.127-mm range) fixed on the beams
measured the deformation over a gage length of 25.4
mm (1 in.) centered along the tension face. A com-
puter-based data acquisition system monitored the load
and deformation. Test details are listed in Table 4. Us-
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Fig. 8 — Effect of time to peak load on (a) fracture
process zone size and (bj fracture toughness

Table 4 — Detalls of relaxation tests of
unnotched beams

Pl *

Specimen Age, days N
Ul M 990
u2 39 3420
U3 31 3760
U4 30 4580

P, = load at which relaxation started.
Approximate peak load = 5600 N at IS days.

Strain rate during loading = 3.6 x 10" */sec.

f; = 28.1 MPa (4076 psi); coefficient of variation = 0.023.

ing the beam theory, the maximum bending stress and
strain were calculated as a function of time. The initial
load P, was applied at a rate of maximum strain equal
to 3.6 x 10-*/s, which corresponds to the time to peak
t, & 1 s. After time ¢, at which the desired P, was
reached, the deformation was held constant, and the
specimen was allowed to relax the load. The tests were
conducted with different P,-values. The measured re-
laxation curves of maximum bending stress ¢ versus
elapsed time (¢ — ¢,) are shown in Fig. 9(a). It so hap-
pened after that some time the tests could not be con-
trolled, since the transducer started to slip; only the
data for the duration of proper control are shown.
The relaxation is strongest in Specimen U4, which
had the highest P,-value. It appears that U4 is in the
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nonlinear creep rangs where relative creep is stress-de-

pendent. This is the case if an initial maximum bending
stress greater than about 60 percemt of the strength is
imposed. At lower stresses, the relative creep or relax-
ation is generally linear, i.e., independent of stress.”

CREEP PROPERTIES OF CONCRETE
To interpret the relaxation tests of fracture speci-
mens (discussed later), one must first know the relaxa-
tion properties of the concrete outside the process zone,
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characterized by the relaxatioa function R (1,7)), where
¢ = current time and ¢, = age at the start of relaxa-
tion. The appropriate expression for R (1,1,) may be de-
duced from the compliance function J (4,/,) for creep.
The log-double power law” for the creep of concrete
gives a good approximation: R (1,7,) & 1/J (1,1,). Here,
J@e) =E'(1 + §and § = alnfl + bt - 1)),
where E,, a, b, and n = empirical constants. For rela-
tively short-term relaxation (hours rather than years), ¢
is small. Then 1/(1 + §) & 1 - {. This leads to the
approximation

i =R, 1) = Efl —ainfl + bt - 1y} B

where ¢ = current bending stress, ¢, = Strain during
relaxation, and E, = instantaneous modulus, i.c.,
modulus for extremely fast load application. This
modulus is typically 1.5 to 2 times larger than the con-
ventional elastic modulus £ that corresponds to the in-
itial slope of the stress-strain diagram in a typical static
test (the reason is that loads of several minutes dura-
tion suffice to produce considerable creep).®

The relaxation tests that were in the linear range (U1,
U2, U3) were fitted with Eq. (8) using nonlinear optim-
ization with the Marquardt-Levenberg algorithm. The
parameters obtained were n = 0.36, 2 = 0.063, and b
= |.52, with 7 and ¢, in sec. Fig. 9%(b) shows the fit and
the data sets. The coefficient of variation was w =
0.053. The average E, was 54,000 MPa (7.83 x 10* psi),
with coefficient of variation 0.1.

For the nonlinear (high-stress) range of relaxation,
the values for Specimen U4 [see Fig. 9(c)] were E, =
56,000 MPa (8.12 x 10* psi), n = 0.69, a = 0.056, and
b = 5.91, with w = 0.019.

RELAXATION TESTS OF FRACTURE
SPECIMENS

To gain further insight into the rate effect, time-de-
pendent tests of a different type are desirable. Creep
tests are not feasible in the post-peak stage, since the
load cannot be held constant. But load relaxation tests
are possible, as the deformation (e.g., CMOD in frac-
ture tests) can be held constant. In this study, two se-
ries of relaxation tests were conducted on 3PB fracture
specimens (Fig. 1) with d = 76 mm (3 in.). In the first
series, the beams were loaded at several CMOD rates
into the post-peak stage and relaxation was initiated at
about 80 percent of the peak load. In the second series
(described later), the same CMOD rate was used for all
specimens but relaxation was initiated at different
loads.

The beams NA1, NA2, NA3, and NA4 (first series)
were loaded at constant CMOD rates [see Fig. 10(a)
and Table 5, where P, = peak load), until a load P,
(= 0.8 P_) was reached at time #,. Subsequently, the
CMOD was held constant, and the relaxation of load
with elapsed time ¢ — ¢, was then recorded. The meas-
ured curves of load versus elapsed time are shown in
Fig. 10(b). It is obvious that not only the maximum
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Table 5 — Detalls of fracture relaxstion tests

I Age, | CMOD rate,*

Specimen | MPa | days mm/sc PuN | P.N
NAI’ 136 8.5 x 10" 3690 3370
NAZ' 33.7 138 8.5 x 10° 3670 3030
NAY ' 140 85 x10° 3290 2530
NAS 136 8.5 x10° 2710 2250
NBI* k! ] 3600 3460
NB2 » 31870 3680
NBs | asz| 3] ssxiov | 300 | W
NBS$: s1 M 3430
NBé 4) - 2390

*Loading rate before relaxation.

‘Relaxation initiated in post- peak stage.
‘Refaxation initiated neas pesk load
‘Relaxation initiated in prepeak su.e
1 MPa = 145.04 psi.

load but also the relaxation is strongly influenced by
the loading rate. Initially, the rate of relaxation is
higher for specimens that are loaded faster, but the fi-
nal slopes are almost the same regardless of the rate of
initial loading. This was expected for two reasons: 1)
according to the hereditary aspect of linear viscoelas-
ticity, the initial stress relaxation is higher for a speci-
men loaded faster, as indicated by the superposition
integral over the past stress history;”” and 2) when a
specimen is loaded at a higher rate, there is more dam-
age (larger fracture process zone), and higher stresses
near the crack tip. After some time, the delayed linear
viscoelastic effect of the early loading history becomes
negligible, and the stresses in the process zone relax to
about the same values. Therefore, the relaxation rate
eventually becomes the same for all specimens.

For the load relaxation after time ¢,, the expression
for linear stress relaxation [Eq. (8)] may be used as

PW/P, = 1 — Aln{l + B¢t - t) 9

but the values of the empirical parameters 4, B, and N
are expected to differ from g, b, and n. For short times
t - ¢, this equation can be approximated by P(f)/P, =
1 - AB(t-t,)", and for long times ¢ - ¢,, by P(¢)/P,
= (1 — AlnB) - AN n(t-1t). Thus, the product
AN represents the final slope of the plot P{¢)/P, versus
1 n(t-1)), and Parameter B engenders a horizontal shift
representing acceleration or retardation.

The data of Specimens NA1, NA2, NA3, and NA4
were fitted with Eq. (9) by optimizing P(#)/P, [see Fig.
10(c)j. In the fitting, the final slope (Parameters 4 and
N) was taken to be the same for all four specimens,
while B varied. The trends are modeled reasonably well.
The parameters and the coefficient of variation w of the
fit are listed in Table 6.

The effects of load and loading stage on relaxation
were investigated in the second test series. Six speci-
mens were tested: four in the post-peak stage, one near
the peak, and one in the prepeak stage [see Table § and
Fig. 11(a) and (b)]. (Note that Specimen NBS, loaded
until the estimated peak was reached, could lie in either
the prepeak or post-peak stage.) The CMOD rate be-
fore relaxation was 8.5 x 10-! mm/s for all these spec-
imens. The load relaxation plots are shown in Fig.
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Table 6 — Parameters of relaxation function

Specimen A B N w

NAI, NA2 0.032 2.8 0.87$

NA3 0.032 2.25 0.875 0.020
NA4 0.032 0.338 0.875

NBI, NB2, 0.036 1.8 0.864 0.032
NBS' 0.034 238 0.770 0.018
NBS 0.034 9.42 0.683 0.008
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tion

11(c). One interesting result is that the relaxation in the
post-peak state appears unaffected by the load P, at
which the relaxation begins. In other words, irrespec-
tive of where relaxation is initiated after the peak, P(t)/
P, is the same.

The data of Specimens NB1, NB2, NB3, and NB4
(post-peak state) were fitted by Eq. (9) with B = 23.8,
which was the value obtained for the same CMOD rate
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Fig. 12 — Fits of specimen relaxation with model: (a)
response in post-peak stage, and (b) response at differ-
ent levels of loading compared with unnotched beams

when Specimens NA1 and NA2 of the first series were
fitted [see Tables 5 and 6, and Fig. 12(a)]. The values
obtained for N and A4 are about the same. The data for
relaxation near the peak (NBS) and in the prepeak stage
(NB6) were also fitted with Eq. (9). For NBS, due to
lack of sufficient data, the value B = 23.8 (from post-
peak fits) was used. The fits are shown in Fig. 12(b),
and the parameters in Table 6. For comparison, the fits
of the post-peak data [from Fig. 12(a)] and linear re-
laxation {unnotched beams from Fig. 9(b)} are also
shown.

It is important to note that the relative relaxation in
the post-peak regime is significantly greater than linear
relative relaxation. The difference between these two
relaxations must be entirely attributed to time-depend-
ent behavior of the fracture process zone.

The responses at the peak and in the prepeak stage lie
between the post-peak and linear responses. The basic
finding is that, in the time range of these tests, relaxa-
tion coincides with the linear behavior at low initial
loads before the peak, later increases as the initial load
increases towards the peak and, most importantly, re-
mains constant through the post-peak range. Also,
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there seems to be an acceleration in relaxation with in-
crease of initial load before the peak. This is similar to
the acceleration due to increase in the loading rate [see
Fig. 10(c)], and can be explained similarly. To under-
stand these results, it can be hypothesized that the
process zone size increases monotonically with the load
in the prepeak range, but propagates without much
change in size during the post-peak stage (until it gets
too close to the end of the ligament); see References §,
8, 30, and also 39. The delayed linear viscoelastic effect
in the post-peak range does not change if the initial
loading rate remains the same. Thus, a dependence of
the load relaxation on the damage or process zone size
can explain the observed trends.

It appears that when a large crack is present in a
concrete specimen or structure, the effects of creep are
much more significant than without such a crack. Vice
versa, creep decreases the load-carrying capacity of the
cracked structure considerably. Thus, the interaction of
creep and fracture is very important for calculating the
response, and eventually for determining the servicea-
bility of structures. This is crucial because long-term
creep deformations in concrete structures are consider-
ably larger than the instantaneous deformations.

CONCLUSIONS

1. The size effect law proposed by BaZant agrees with
concrete fracture test results over a wide range of load-
ing rates, with times to peak ranging from 1 s to
250,000 s.

2. The test results also show that a decrease of load-
ing rate in this range causes a shift to the right in the
size effect plot, i.e., toward higher brittleness and lin-
ear elastic fracture mecharics behavior.

3. The fracture toughness, effective length of the
fracture process zone, and effective critical crack-tip
opening decrease with an increase in the time to peak
load. These material fracture parameters were obtained
through the size effect method by quasi-elastic analysis
based on the effective modulus for creep. An explana-
tion for the decrease in process zone size might be the
relaxation of high stresses in the fracture process zone.

4. For the fracture specimen type and time range
studied, there is strong load relaxation at constant
CMOD in the post-peak regime. The post-peak relaxa-
tion is about 1.7 times stronger than that of unnotched
specimens. This significant difference may be attrib-
uted to 1) additional creep in the fracture process zone,
and 2) time-dependent crack growth.

S. The load-relaxation curves tend to a straight line
in the logarithm of the elapsed time.

6. There is a strong interaction between fracture and
creep in concrete, which is very important for both
failure and serviceability analyses of structures. Analy-
sis of long-term fracture propagation in concrete must
take this interaction into account.
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SOFTENING REVERSAL AND OTHER EFFECTS OF A
CHANGE IN LOADING RATE ON FRACTURE OF
CONCRETE

Zdenék P. Bazant, Wei-Hwa Gu, and K.T. Faber !

Abstract

The time-dependence of concrete fracture, and particularly the effect of loading rate, has so far
been studied mainly in the dynamic range. The present study extends a preceding investigation of
the rate effect in the static range which covered times to peak from 1 s to 300,000 s. Geometrically
similar three-point-bend specimens of three different sizes are subjected to either a sudden 1000-fold )
increase of the loading rate or a 10—fold sudden decrease of the loading rate. It is found that the
post-peak softening can be reversed to hardening, followed by a second load peak which can be either
higher or lower than the previous load peak. The rise to the second peak depends on the previous
post-peak load drop from the first peak load. A sudden decrease in the loading rate causes initially
a steeper softening slope. The source of these time-dependent effects appears to be not only the )
thermally activated nature of the process of bond ruptures in the fracture process zone but also the
effect of creep, both a nonlinear creep in the fracture process zone and a linear creep in the bulk of the
specimen. The results of this study and a previous study suggest that there is a significant difference
in fracture behavior for short-time and long-time loads. The phenomena observed are of interest, for
example, for the analysis of concrete dams with cracks that evolve over many years.. Mathematical
modeling of the present test results is left for a subsequent study.

Introduction

Understanding of fracture mechanics of concrete is necessary for improving the design of concrete )
structures against various type of brittle failure, and particularly for taking into account the size
effect and ductility limitations. Although the classical fracture mechanics is a rate-independent (time-
indenendent) theory, the fracture properties of all materials depend upon the loading rate. One source
of the rate sensitivity is the process of rupture of interatomic or intermolecular bonds at the tips of
microcracks, which represents a thermally activated process governed by a certain activation energy.
The rate sensitivity is explained by the fact that the probability that the thermal vibration energy
of an atom or molecule would exceed the activation energy barrier of the bond increases with the
superimposed potential due to applied stress or load.

A second source of rate sensitivity is creep (or stress relaxation) in the fracture process zone,
as well as in the bulk of the specimen. The creep effect is negligible at very fast, dynamic loading
rates, but inertia (¢r wave propagation) effects complicate dynamic fracture. The creep effect becomes »
important only at sufficiently slow loading rates, complicating the fracture theory, while the inertia
effects vanish. Whereas Wittmann and Zaitsev (1972), Shah and Chandra (1970), Liu et al. (1989)
and others have already suggested that concrete fracture is affected by creep, a detailed investigation
of this effect has not been conducted. On the other hand, the rate effect in concrete fracture has been
extensively investigated in the dynamic range of loading, in which the maximum load is reached in 'Y
less than one second; see Mindess and Shah (1986). In a material such as concrete, which exhibits
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pronounced creep under long-time loading, the rate effect in the static range and the contribution of
creep to it may be expected to be particularly strong.

For this reason, a preceding study by BaZzant and Gettu (1992) investigated the rate effect in
the static range experimentally, using crack mouth opening displacement (CMOD) rates with times
to peak load ranging from 1 s to 300,000 s (3.5 days). The size effect method, coupled with the
effective modulus approximation of creep, has been used to determine the rate dependence of fracture
properties. The fracture toughness was found to decrease with a decreasing rate, as a continuation
of the trend previously known for the dynamic range. As a new, surprising result, the effective
length of the fracture process zone was found to decrease with decreasing rate, which implies that for
slow loading the brittleness number increases and the response shifts closer to linear elastic fracture
mechanics (LEFM). Load relaxation at constant CMOD in the post-peak regime was also investigated
and found to be very pronounced. The time curves of relaxing load where found to be approximately
straight lines in the logarithm of the elapsed time, and the load drop to be several times larger thau
for a linearly viscoelastic relaxation of unnotched specimens for the same relaxation duration. The
difference between these two relaxations has been attributed to time-dependent processes, principally
creep, in the fracture process zone.

From Bazant and Gettu's (1992) study it became clear that there is a strong interaction between
fracture and creep, which must be taken into account in predicting the long-term load-carrying capacity
of structures with cracks. This is particularly important for analyzing the failure of concrete dams. in
which large fractures often develop gradually over a period of many years.

As far as materials other than concrete are concerned, the effects of loading rate in the static range
were recently investigated by BaZant, Bai and Gettu (1991) on limestone. The effect of the loading
rate was found to be significant, but less pronounced than for concrete, and no shift of brittleness with
a decreasing loading rate has been observed. This is no doubt explained by the fact that limestone
does not exhibit any significant creep, so that most of the rate effect must be due to the thermally
activated process of bond ruptures.

The preceding study of BaZzant and Gettu (1992) was limited to constant loading rates. The
purpose of the present study, on which preliminary reports were made in several conference papers
by Bazant and Gettu (1989, 1990, 1992), is to present the experimental results on the effect of a
sudden change of loading rate. Knowledge of this effect is essential for formulating a time-dependent
mathematical model for the fracture process zone, which will be the subject of a subsequent study.
By adopting the R-curve (resistance curve) model for nonlinear fracture, the effect of the constant
loading rate has already been successfully described in three brief conference papers (Bazant and
Gettu, 1989; Bazant, 1990; and BaZant and Jirasek, 1992), and it may be expected that an extension
of this approach would work also in the case of sudden changes of the loading rate.

Material, Test Specimens and Test Procedure

The material studied was plain concrete, with a mix ratio of cement : sand : gravel : water =
1:2:2:0.6, by weight. ASTM Type I Portland cement was used. The aggregate consisted of crushed
limestone gravel of maximum grain size 13 mm (0.5 in.) and siliceous sand passing standard sieve No.
2, corresponding to maximum grain size 5 mm. The average standard 28-day cylinder strength of the
concrete was f! = 37 MPa (5370 psi).

The specimens were three-point-bent notched beams shown in Fig. 1. Specimens of three sizes.
characterized by beam depths ¢ = 38,76, and 152 mm (1.5, 3 and 6 in.), were tested (labeled as
S-small, M-middle, L-large). The specimens of different sizes were geometrically similar in two-
dimensions and the beam thickness b = 38 mm (1.5 in.) was constant for specimens of all the sizes.
The beam length was 8d/3, the span was 2.5d, and the notch length was d/6. The specimens were
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~..st with the notch face at the bottom. The notches were cut with a diamond band saw, and were 1.4
mm (0.07 in.) wide.

The specimens were cured in water for 65 days, at which time they were tested (within a few hours
after retrieval from the water bath). During the tests, the specimens had their surfaces sealed with »
siliconized acrylic latex to prevent moisture loss. The specimens and their material were the same as
in the preceding study by BaZant and Gettu (1992).

The specimens were tested at controlled CMOD rates. To bring the effects of the loading rate to
light, the loading rate must change by several orders of magnitude, and the change of loading rate
must be sudden, almost instantaneous. This can be achieved only in a computer controlled closed- N
loop testing machine. The testing frame must also be sufficiently stiff and the pumps sufficiently
powerful to make such a sudden change of loading rate possible. These conditions were met by using
an MTS closed-loop testing machine (MTS model 318.10, 20 kip load frame using test star digital
controls—MTS Corp. Minneapolis, MN).

Fig. 2(a,b) shows, as an example, the record of the CMOD time history produced by the loading
equipment. It is seen from Fig. 2(a) that, compared to the previous history, the loading rate changes ’
practically instantaneously since the time curve becomes immediately an almost vertical line. In Fig.

2(b) the time scale is greatly expanded to show the detail of the CMOD history at the time of the
rate change. Here one can discern some imperfections (such as load oscillations just before the steep
rise), however, these imperfections are insignificant compared to the duration of the test.

Effect of Sudden Increase or Decrease of Loading Rate

For a sufficiently large increase of the loading rate, the results shown in Fig. 3 reveal that the
post-peak softening can be reversed to hardening which is followed by a second peak, after which a
new post-peak softening branch begins. The second peak can be higher or lower than the first peak at [
the previous slow rate of loading, depending on the ratio of rate increase and on the magnitude of the
load decrease prior to the increase of rate. A typical response is seen in Fig. 3(c), in which the initial
loading rate was 1075 mm/s, (CMOD rate) and, relatively soon after the peak load P,, the loading
rate was suddenly increased a 1000-times to 10~2 mm/s, at the moment when the load had dropped
to 97% of Py. The second peak P, occurs at 3725 N (837 Ibf.). For loading histories of this type, the »
second peak P, generally occurs at the load of about 110% — 135% of the first peak P,,.

The test results obtained on various individual specimens are given in Table 1. The respounse
diagrams of load vs. CMOD are shown in Fig. 3(a-f) for specimens of three sizes {small, wedium.
large) and for different values of the load drop from the previous peak at which the rate was chosen
to be suddenly increased.

Some load-CMOD diagrams exhibit small pseudo-peaks (S5, L2, L4 in Fig. 3(b), (e) (f)) before
the first peak is reached. In some specimens one can see a relatively flat region (M2 and L2) (Fig.
3(c) and (e)) occurring after the first peak . These two phenomena are probably not systematic and
are caused by random effects, specimen microstructural heterogeneity and similar influences.

In another test series, the faster rate started after a much greater load drop, namely from P, to
0.65%P,. The second peak still ocurred, however it was lower, only about 0.75% P,; see Table 2 and »
Fig. 4(a—c).

No second peak was found when the faster rate started after a much greater load drop, from P,
to 0.26% P, (Fig. 5).

In a second group of tests, the specimens were loaded at the fast rate and, in the post-peak regime.
the loading rate was suddenly decreased 10-times, from 10~% mm/s to 105 mm/s. The results are »
shown in Fig. 6(a—) and also given in Table 3. The sudden decrease in loading rate was always
accompanied by an almost instantaneous drop in load followed by a conventional post-peak softening
repouse.




Discussion of Results and Conclusions

Tes:ing several identical specimens at the same loading history reveals that there can be substan-
tial scatter. This is exemplified by specimens MA1 and MA2 (Fig. 6(b) and (c)). In future extensions
of this program, it would therefore be desirable to test a larger number of specimens and conduct
their statistical evaluation. Nevertheless, despite the limited scope of the presently reported tests,
the results show overall a coherent picture. Similar effects are seen for different but similar loading
histories and certain trends are clearly discernible. From these overall trends, the following conclusions
may be drawn.

1. An increase of the loading rate in the post-peak regime causes a stiffening of the response. and
if the rate increase is sufficiently large (several orders of magnitude), the post-peak softening is
reversed to hardening and is followed by second peak.

2. The second peak may be larger or lower than the first peak under the previous constant rate of »
loading. The greater the post-peak load drop prior to the rate increase, the smaller is the rise
to the second peak.

3. After a decrease of the loading rate, the descending post-peak slope first becomes steeper but
later the previous slope is resumed again. ‘

4. The effects of the loading rate change are similar for specimens of various sizes (the data for
specimens of various siz+s will be needed for developing a mathematical model).

It is also interesting to compare the present results to the results of relaxation tests from Bazant
and Gettu (1992). The relaxation tests correspond to a decrease of the loading rate to zero. The
present results show that the response to a decrease of the loading rate gradually approaches the »
relaxation tests.
On the basis of this study as well as the previous study by Bazant and Gettu (1992), one may
infer that by a certain sudden change of the loading rate it is possible to produce any of the loading
slopes shown by arrows in Fig. 7.
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Figure Captions

Fig. 1 Geometry of the three-point-bend fracture specimens tested.
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2 Typical recorded time histories of CMOD and load achieved by the controls of the test equip-
ment used. Part (b) is an expanded version of (a).

3(a-f) Measured responses for a 1000-fold rate increase after a load drop to 90-95% P, (S-small,
M-medium, L-large specimen).

4 (a—c) Measured responses for a 1000-fold rate increase after a load drop to 65%P, (S-small,
M-medium, L-large specimen).

5 Measured responses for a 1000—fold rate increase after a load drop to 26%P,.
6 (a—c) Measured responses for a 10-fold rate decrease. (S-small, M-medium)

7 Load deflection slopes accessible by changing the loading rate in the post-peak softening
regime.
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Table. 1

S(d=38 mm), M(d=76mm), L(d=152 mm)

Socc 1 Age| IstRate | istPeak | Rate | 2nd Rate | 2nd Peak |
Pe¢ | (day)] (mm/sec) Pu Change | (mm/sec) Pu’
31 66 [0.7x10 1575 N (91% Pu) [0.7x102  [(110% Pu) |
20 pm 1428 N 1726 N
2940 sec 23 um 27 pm
3350 sec _ 3355 sec
8 | 66 |0.9x10° 1468 N (95% Pu) |0.9x10:2 [(112% Pu) |
21 um 1388 N 1646 N
2730 sec 26 um 37 um
3070 sec. 3076 sec
S 66 |0.95x10° |1486N (93% Pu) [0.95x10¢ |(107% Pu)
15 um 1379N 1588 N
1700 sec 20 ym 24 um
. _ 2145 sec 2150 sec |
M2 | & |[1.0xi0~ 2758N (87% Pu) |1.0x102 (135% Pu) |
8 ym 2669N 3725N
800 sec 10 pm 20 um
1000 sec 1001 sec_
M3 | 64 |1.0x105 |3292N (91% Pu) [1.0x102 [(116% Pu)
15.6 ym 3003 N 3803 N
1560 sec 16.2 ym 27.0 pym
_ 1680 sec 1687sec |
L1 | 67 |1.4x10° 4279N (91% Pu) |1.4x102 (103% Puw)
356um |3374N 4408 N
2516sec  |53.0 um 64.2 um
3785 sec _ 3789.9 sec
12 67 |1.8x10% 4248 N (90% Pu) [1.8x10-2 (102% Pu)
30.4um |3817TN 4319N
1690 sec 442 ym 49.4 pm
2450.4 sec 2453.9 sec
T4 1 6 118x105 4163N (8% Pu) |1.8x102 (107% Pu) |
359um |3701N 4469N
2020.4sec {3983 ym 60.6um .
1 2235.4 sec 2242.3 sec
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Table 2.

“N

S(d=38 mm), M(d=76mm), L(d=152 mm)

[spec. | Age | IstRate T lstPeak "~ Rate 2nd Rate | 2nd Peak
PeS |(day)| (mm/sec) Pu Change | (mm/sec) | Pu'
() % 110x105 |1600N (63% Pu) [1.0x102 [(71% Pu) |
12 um 1001 N 114N
1150 sec 45 pm 51 uym
4520 sec 4527 sec
M5* | 5% |1.0x105 |4404N (66% Pu) | 1.0x102 |(75% Pu) |
15 um 2891 N 334N
1500 sec 30.5 ym 37 um
3115 s8¢ 3119 sec
I3 | 67 |1.8x105 |3345N (64% Pu) [1.8x102 |[(717% Pu)
259 um  |2148N 2562N .
1420 sec 91.7 pm 134 ym
5115 sec
6 12.0x105 |1824N (26% Pu)  |50x102 - |NO2nd |
16 ym 467N Peak
1105.4 sec | 144 ym
7060.3 sec




Table 3.

S(d=1.5 in), M(d=3 in)

oo [Age| 1stRate | TstPeak | FRate | ZndRate
pec. (day)] (mm/sec) Pu Change | (mm/sec)
SAl 1.0x105 (213N (82% Pu) |1.0x10%
27 um 177N
2778 sec 43 um
4444 sec
SA2 | 68 |5.0x104 2259 N (81% Pu) [5.0x10%
26 pm 1828N
53 sec 53 um
108 sec
3] 68 [1.0x10¢ [2028N (70% Pu) | 1.0x105
19 um 1419N
182 sec 35 ym
’ . 344 sec |
Al] & [1.0x104 [2268N (74% Pu) [10x1085 |
33 um 1668 N
321 sec 82 um
789 sec
MA2| 68 |1.0x10+4 2820N (64% Pu) |1.0x105
14 ym 1806 N
132 sec 52 ym
537 sec
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R-curve modeling of rate and size effects in quasibrittle fracture
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Abstract. The equivalent linear elastic fracture model based on an R-curve (a curve characterizing the variation of the
critical energy release rate with the crack propagation length) is generalized to describe both the rate effect and size
effect observed in concrete, rock or other quasibrittle materials. It is assumed that the crack propagation velocity
depends on the ratio of the stress intensity factor to its critical value based on the R-curve and that this dependence
has the form of a power function with an exponent much larger than 1. The shape of the R-curve is determined as the
envelope of the [racture equilibrium curves corresponding to the maximum load values for geometrically similar
specimens of different sizes. The creep in the bulk of a concrete specimen must be taken into account, which is done by
replacing the elastic constants in the linear elastic fracture mechanics (LEFM) formulas with a linear viscoelastic
operator in time (for rocks, which do not creep, this is omitted). The experimental observation that the brittleness of
concrete increases as the loading rate decreases (i.e. the response shifts in the size effect plot closer to LEFM) can be
approximately described by assuming that stress relaxation causes the effective process zone length in the R-curve
expression to decrease with a decreasing loading rate. Another power [unction is used to describe this. Good fits of test
data for which the times to peak range from 1 sec to 250000 sec are demonstrated. Furthermore, the theory also
describes the recently conducted relaxation tests, as well as the recently observed response to a sudden change of loading
rate (both increase and decrease), and particularly the fact that a sufficient rate increase in the post-peak range can
produce a load-displacement response of positive slope leading to a second peak.

1. Introduction

The rate of loading as well as the load duration is known to exert a strong influence on the
fracture behavior of concrete. Much has been learned in the previous studies of Shah and
Chandra [1]; Wittmann and Zaitsev [2]; Hughes and Watson [3]; Mindess [4]; Reinhardt [5];
Wittmann [6]; Darwin and Attiogbe [7]; Reinhardt [8]; Liu et al. [9]; Ross and Kuennen [10]
and Harsh et al. [11]; in particular, it has been well established that the strength as well as the
fracture energy or fracture toughness increases with increasing rate of loading, roughly as a
power function of the loading rate. The previous studies, however, focused mainly on the size
effect under dynamic loading, at which the loading rates are very high. At such high rates, the
rate effect is mainly due to the thermally activated process of bond ruptures, arising from the
effect of stress on the Maxwell-Boltzmann distribution of thermal energies of atoms and
molecules.

In this study, we focus on the rate effect at static loading rates at which the creep properties
of a material such as concrete begin to play also a significant role, aside from the thermal
activation of bond ruptures. The rate effect at such low rates, which is no doubt closely related
to the effect of load duration, needs to be known for the design of civil engineering structures
carrying high permanent loads or subjected to long time thermal or shrinkage stresses. For such
conditions (which are, for example, important for the fracture of dams), the rate effect in concrete

'Walter P. Murphy Professor of Civil Engineering.
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fracture has been essentially unexplored until the recent experimental studies of Bazant and
Gettu [12-15].

The difficulty for materials such as concrete (which also includes rocks and tough ceramics)
is that a nonhnear fracture model taking into account the existence of a large fracture process
zone is required. Such matenals, nowadays widely called quasibrittle, exhibit a transitional size
effect in terms of their nominal strength; for small sizes, the behavior is close to plasticity, for
which there is no size effect, while for very large sizes the behavior approaches linear elastic
fracture mechanics (LEFM), for which the size effect is the strongest possible. As recently
discovered (Bazant and Gettu [12 -15]), the size effect plot. i.e. the plot of the nominal strength
versus the characteristic structure size, is significantly influenced by the loading rate or loading
duration. Generally, the loading rate or duration significantly influence the brittleness. Mathe-
matical modeling of this phenomenon is the principal aim of this study.

In previous work, the effect of loading rate on the size effect has been approximately
described by quasielastic analysis, in which the behavior at each loading rate for all the
specimen sizes is described according to LEFM with an elastic modulus that in effect
represents the well-known effective modulus for creep. Such analysis brought to light the
changes of brittleness; it, however, cannot be used as a general model if, e.g., the loading rate
would vary with time.

In this study, we will attempt a more general and fundamental model, which can be readily
generalized to arbitrary loading histories. The model will represent an adaptation of quasi-
linear elastic fracture analysis by means of the so-called R-curves. The general principles of this
approach, without any experimental verification, have already been suggested in Bazant
[16.17]. In the present study we refine and extend this mathematical model and compare it to
test data.

The most general and fundamental approach for capturing both the size and rate effects in the
fracture of concrete and other quasibrittle materials is of course a constitutive model for the
evolution of damage in the fracture process zone, with an appropriate localization limiter. Such
a model, which will be required for general finite element codes, should be the objective of future
investigations.

2. Basic equations

The R-curve (resistance curve) approach represents an attempt to describe the nonlinearity
of the law of crack propagation in quasibrittle materials using an approximately equi-
valent linear model in which the fracture energy is considered to depend on the length of an
equivalent linear elastic crack. This equivalent crack is defined as a crack in a linear elastic
material having the same compliance as the actual specimen with a large nonlinear fracture
process zone (Fig. 1).

Let us denote the initial crack length by a, and the current crack length by a. It is often more
convenient to work with nondimensional quantities %, = ao/d and 2 = a/d, where d is the total
length of the ligament (Fig. 1). According to LEFM, an applied load P causes a load-point
displacement :

P _
u=ﬂC(1), (n
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Fig. 1. 3PB specimen with (a) a nonlinear process zone, (b) an equivalent elastic crack.

a crack-mouth opening displacement (CMOD)

o
P
A= ﬂ(’(l)‘ (2)
and a stress singularity described by the stress intensity factor
p ®
K = ——=ktx), (3)
by d
where E' = E for plane stress, E' = L,(! — v?) for plane strain (E and v are Young's modulus
and Poisson’s ratio, respectively), b is thickness of the specimen and Cla), &(x), k(x) are
nondimensional functions depending on geometry. It can be shown (c.g. Bazant and Cedolin L4
[16]) that C(x) and k() are related by
Cla) = C(0) + 2 J Ki(3) da, @
o]
. . : . . ®
where C(0) is the compliance of the same specimen without any crack. For a three-point-bend
(3PB) specimen with span-to-depth ratio /:d = 2.5:1 we have (Bazant and Kazemi [19]
- P33+
=— 4+ ———— = 5406 + 1.5v,
C(0) 4d3+ 52 5 + 1.5y (5
o
k(x) = 3.75/na(l — 0> *(1 — 2.52 + 4.492% — 3.982> + 1.33a%), (6)
o) = 14.12[0.76 — 2.28x + 3.872% — 2.04a> + 0.66(1 — 2)~2]. (7
The graphs of nondimensional functions k(x) and &(x) are shown in Fig. 2a,b.
The Griffith criterion for crack propagation in perfectly brittle materials states that the crack ®
can propagate if the energy needed to create a new free surface is balanced by the elastic energy
release from the structure. This condition is equivalent to K = K., where K is the actual stress
intensity factor and K, its critical value, called fracture toughness.
The usual rate-independent version of the R-curve model for crack propagation in quasi-
brittle materials is based on the assumption that the energy needed to propagate the crack is not ®
constant, but increases due to growth of the nonlinear fracture process zone with increasing
crack length. According to this assumption, K, is replaced by the function,
1
Kglc) = (JE'Rlc), (8) 14
.
i
]
|
® ° ° ® ° L ]
" P - i ki atiatesticus WO o el
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Fig. 2. Graphs of (a) k(a), (b) &a), (c) p(y), (d} f(K, Kp).

which depends on the crack propagation distance ¢ = a — ao. The resistance function R(c),
whose graph is called the R-curve, can be determined solely from maximum loads of similar
specimens of different sizes, using the size effect method described in Bazant, Gettu and Kazemi
{20]. Aside from geometry, R(c) depends on two material constants G, and c, representing the
fracture energy and the fracture process zone length at the peak load for an infinitely large
specimen. Based on the size effect law (see [18], Sec. 12.3 and 13.9), it has becn shown (BaZant
and Kazemi (19, 207) that the shape of the R-curve is determined by the equations

R ¢ q@

R_cg@ 9

G, = ¢ g0 ®
and

¢ gl g'(ap)

L8 _ g120) 10

py [g’(a) “+“°] #l50) (10

where g(x) = k*(@) = nondimensional function depending only on geometry. Choosing a se-
quence of a-values, one calculates for each of them the value of ¢/c, and the corresponding
R/G,.
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Obviously, the relation between R/G, and c/c, depends only on the shape (geometry) of the
structure. It is therefore convenient to separate the effects of geometry from the material
properties and write

R@) =G,ply) 7= -:7 (1)

where p is the normalized resistance function depending on geometry only. Its graph (the
normalized R-curve) for a three-point bend (3PB) specimen with span-to-depth ratio 2.5:1 is
shown in Fig. 2c.

Combining (8) and (11), we get

Krlc) = VE'G; /py) = K;/P0)), (12)

where K is the fracture toughness for an infinitely large specimen.
To capture the effects of the loading rate, we assume that the crack propagation rate
a = da/dt depends on the current values of K and Kg:

a = f(K, Kg). (13

Since K = \/E’'G(a), Kgr = \/E'R(c), this is equivalent to assuming that 4 is a function of G(a)
and R(c) where G(a) is the energy release rate. It is clear that ¢ should increase with increasing K
and with decreasing Kg. But what should be the actual form of the crack growth rate function
S(K, Kg)? Experimental evidence indicates that changing the loading rate by several orders of
magnitude causes the peak loads to change only by a factor less than 2 [14, 15, 26]. Therefore,
the crack growth rate function should allow for a very large variation of @ with only moderate
changes of its arguments. This can be achieved by tting

fIK, Ke) = x(—,?) . (14)
R

where k and n are constants. It is expected that n » 1, so that a4 varies with K as indicated in

Fig. 2d.

Equations (1) and (2) have been based on the assumption of linear elasticity. Under loading
rates spanning over several orders of magnitude, creep effects can play an important role. Creep
in the bulk of the specimen can be taken into account by replacing 1/E’ by an appropriate
compliance operator, which yields

=L f UNSL ()] "

l t
Alt) = 5 J J(, ) d[P()o(')]. (19

0
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J(t,t') is the compliance function, which must be determined in advance by measuring or
estimating the creep properties of the material. The geometric compliances C, & are time
dependent because they vary with the relative crack length o, which increases as the crack
propagates.

Experiments performed under load control become unstable after the peak load has
been reached. To study the descending part of the load-displacement curve, displacement
control must be adopted. The available experiments [14, 15, 21] have been performed under a
constant CMOD rate. In such a case, the time history of CMOD is described by a linear
function

Alt) = r(t — 1), a7

where t, is the time at the beginning of the experiment and constant r is the prescribed
CMOD rate. The unknown functions P(t) and x(t) describing the variation of the applied load
and evolution of the crack length can be determined by solving the crack propagation
equation (13) along with (16). Using relations (3), (12), (17) and a = ad, we can rewrite the
basic equations as

. 1 P(t) f d
at) = p f(b_j_; k[«)], K, P[(“(f) - 10);])» (18)

bA(t) = f Jie, v') [P )E)] (19

0

where the function f is defined by (14). The CMOD history A(r) is specified as input, to simulate
the present tests. Alternatively, the load point deflection history u(t) can be specified as input. As
still another alternative, the load history P(t) may be specified as input and then, first, (18) is
solved for x(t) and. second, A(t) is evaluated from (19). The initial conditions are

2(to) = %6, Pltg) =0, Altg)=0. (20)

3. Numerical solution

To solve the problem numerically, we divide time into equal intervals {t;,t;,,>,i =0,1,2, ..., N,
with ¢; = t, + iAt. Suppose that we have already computed approximate values «; = aft;),
P;=Pt)fori=10,1,2,..., jand we want to proceed to %;. 1, P;. . Equations (18), (19) can be
discretized in {t;,t;,,) as follows:

Ajry — X 1 Pj+1+Pj aj+l+1j a,-+,+1,- d V
=5 k ) A T - s
At df[ W/d 7 JKeyP 2 y @

j t,+ + tl' o
bA;,, = Z J(fjn,—l'i—")[}’ino(“in) - Pd(x)). 22)
i=0
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where A;,, = Alt;. ;) = r(j + 1) At for tests with a constant CMOD rate. For convenience let us
denote

v + 1
Jji= J(t,w 1s 12 ), (23)
i = &x), (24)
-1
Sj—l = Jj.i(Pi+léi+l - Pi‘si)~ (25)

i=0

Equations (21), (22) are two nonlinear equations for unknowns P;.,,2;,,. Noting that (22) is
linear with respect to P;,,, we can express P;,, as

bA;,, — S;_ 1
P\ = -J*—‘—’—l+P,-5-]f——, 26
i [ Jij ! LTy (20

and substitute this expression into (21). We end up with a nonlinear equation with only one
unknown x;, ,. As the right-hand side of (21) is highly nonlinear, a robust numerical procedure
must be choscn to aussure convergence. After some experimentation, an algorithm based on a
secant rather than tangent formula has been adopted.

Special treatment is necessary in the first few time steps when the process zone is very
small and K is therefore close to zero. In fact, at time ¢, we have Kz = 0, K = 0 and the ratio
K/Kg is not defined. Even though we do not need to evaluate this ratio at ¢, but only at
to + (At/2), 2 is at the beginning of crack propagation very close to 2, and numerical
problems arise due to strong sensitivity of the high power (K/Kg)" to even very small changes
of a.

To overcome these difficulties, we need to make use of an approximate analytical solution,
which can be derived under the simplifying assumptions that 2 — a; < 1 and that P is a linear
function of time

P(e) = Pt — to), @7
where P is a constant to be determined later. For small values of a — 2, k(x) can be replaced by

ko = k(o) and pl{x — zoM/c;] by pla — ap)d/c;, where p = p'(0). Equation (14) can now be
transformed to

. k{KY I—1o u
g==]—1] = Co|l —— s 28
*=a (Kn> o(\/a—ao) @8

where
K Pko\/(,—f. )n
Co=—| ——=]. (29
°d (b‘”(f\/l_3 )
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Solving the approximate crack propagation equation (28) by separation of variables, we
get

a=ag + Cl(l - 10)‘2'”’2)/("*2)’ (30)
where
n+2\¥r?
Cl = (Co 27;—5) (31)

It is interesting to note that if n is large, a — a, is approximately proportional to (t — t,)>.

Except for P, all the quantities in expressions (29) and (31) defining C, are known. P can be
determined from the load-CMQOD relation (16). If « — 2y < 1, we can treat &a(t)) as approxi-
mately equal to 3o = &a,). Using P = P(t — to) and A = r(t — t,), (16) can be simplified to
br(t — to) = Pdyf! J(t,t')dt’, from which

brit — tp)

P apenar )
The fact that the right-hand side of (32) depends on time contradicts the assumption
P = const., but we can think of each time instant ¢ = t; separately, approximating the history
of P(t) in the interval (tq,t;> by a linear function whose slope depends on the time instant
under consideration. The analytical solution (30) is used only in the first few steps. We exploit
it to initialize the crack propagation and get a reasonable estimate for the initial crack
propagation rate. In fact we need only an order-of-magnitude estimate as the initial approxi-
mation for the previously described numerical procedure. The rates of crack propagation at
the very beginning have nearly no influence on the later stages of the process and they are
needed only as the approximations to start with. Therefore, the present simplifications are
Jjustified.

It has been observed experimentally [20] that after the peak load R(c) ceases increasing but
remains constant. The explanation is that after the peak load the process zone length ceases
growing and travels across the ligament approximately as a rigid body.

4. Comparison of theory to constant CMOD rate tests

Performance of the proposed model has been compared with the experimental results reported
{14], [15], [21] and [26].

Bazant and Gettu investigated simultaneous rate and size effect for three-point-bend concrete
specimens. Each experiment was performed under a constant CMOD rate. They tested
specimens of three different sizes (d = 38 mm, 76 mm, 152 mm) and applied the CMOD rates
ranging from 4 x 107 !* m/s to 10~ m/s, with the corresponding times to peak ranging from 3
days to | second. Table | shows the peak loads recorded for each test. Most of the specimen
were tested at 28 days after casting, but some of them were much older (up to 120 days). To get
comparable data, the measured peak loads have been adjusted to the same age (28 days) using a
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Table 1. Experimental resuits by Ba2ant and Gettu [14]

Depth CMOD rate Age Peak load
{mm] [m/s] [days] [N]
38 111073 28 217
38 111073 28 1883
38 8410°% 28 1794
38 241078 28 1639
38 181078 28 1774
38 181078 28 1818
38 7110710 40 2256
38 7110710 38 1891
38 711071 39 2128
38 3810~ 120 2007
76 141073 28 3612
76 1.410°% 28 3946
76 141073 28 3014
76 531078 28 3059
76 43108 28 2750
76 361078 28 2790
76 TR {1 30 3153
76 1.010°° 46 3465
76 9410710 42 3417
76 741071 108 2995
152 211073 28 6158
152 211073 28 5919
152 211073 28 5406
152 711078 28 5007
152 711078 28 4210
152 711078 28 4185
152 1.7107° 3t 5239
152 1410°° 32 4216
152 1410°° 38 4085
152 131071 90 4332

simple approximate empirical formula

' 4
Ppeak.28 = Ppeak‘to 0.86 + ;"s (33)
(4]

where ¢, is the age at testing in days, Pye.,, is the measured peak load and P, ;s is the
corrected peak load. The creep compliance function J(t,t’) has been approximated by the
well-known double-power law (see [18], Sec. 9.4).

Jitt)= Elo [1+ ¢’ ™+ afe —t')Y]). (34)

In agreement with the data from [14], the parameters of this law were set as follows:
Eo = 484GPa, ¢, = 393, m = 0.306, n = 0.133, « = 0.00325.

It is clear from Table 1 and Fig. 3a that the experimentally determined values of the peak
foad suffer from considerable scatter, which can be explained by the fact that the specimens

e
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Fig. 3. Comparison with experiments for concrete: (a) three point bending, (b) wedge splitting.

were cast from several batches of concrete. Nevertheless, some general trends can still be
observed:

The peak loads increase with increasing rate of loading.

The rate dependence of peak loads is stronger for large specimens than for small ones.

The nominal strength decreases with increasing size, approximately following the size effect
law proposed by Bazant [24].

The size effect on peak loads is stronger for slow loading rates than for fast ones.

It may be somewhat surprising that the size effect and the rate effect in concrete appear to be
mutually dependent. In terms of size effect, a decreasing rate of loading causes a shift towards
more brittle behaviour. The same phenomenon can be described in terms of rate effect as an
increase of rate sensitivity with increasing size.

In contrast to concrete, no interaction of size and rate effect could be observed for lime-
stone [15]. This could probably be explained by absence of creep in limestone, both within the
bulk of the specimen and within the fracture process zone. This means that the rate effect in
limestone is due solely to the thermally activated process of bond ruptures, producing the crack
surfaces.

In an attempt to fit the aforementioned experimental data by the proposed rate-dependent
R-curve model, it has been discovered that the originally proposed version does not exhibit any
shift of brittleness. It was therefore not difficult to get a reasonable agreement between theory
and experiments for limestone (Fig. 4), while for concrete (Fig. 3a) it was impossible to get a
good agreement for all the rates and all the sizes at the same time.

It is nevertheless encouraging that the model can capture both the size effect and the rate
effect, although not their mutual interaction. Let us briefly describe the role of free parameters,
whose values can be adjusted to get the best fit of experimental data:

o Parameters x and K, are mutually dependent, so that only one of them can be regarded as a
free parameter. By increasing K ; or decreasing k, the peak loads are increased for all the rates
and sizes in the same ratio.
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Fig. 4. Comparison with experiments for limestone. Fig. 5. Graph of f for different ratios n/2m.

e Parameter n affects mainly the rate sensitivity (for all the sizes in the same manner). By
increasing n, one can decrease the slope of the rate effect curve, which is indicated by
experiments to be roughly linear when the CMOD rate is plotted in a logarithmic scale.

¢ Parameter ¢, affects brittleness, and does so for all the rates in roughly the same manner.
Increasing ¢, causes a shift toward the left on the size effect curve, i.e. to a more ductile
behaviour.

To decrease the rate sensitivity of the model to realistic values, a very large exponent n is
needed. For example to fit the data on 3PB experiments on concrete [14], n had to be set equal
to 38 (Fig. 3a), and for similar experiments on limestone [15] even to 55 (Fig. 4)!

The rate dependent R-curve model has also been used to model wedge-splitting tests on
concrete reported in [21]. Due to considerable scatter in these large-scale tests, it is impossible
to make any quantitative conclusions. However, similar trends as in 3PB tests can be observed
(Fig. 3b). The value of the exponent n came out to be 35, which is about the same as for the
aforementioned 3PB experiments.

5. A generalization: rate-dependent process zone length

The original version of the rate-dependent R-curve model presented in the foregoing suffers by a
serious drawback: It is not capable of modeling the rate-dependent shift of brittleness observed
experimentally by Bazant and Gettu [14]. In an attempt to increase flexibility of our model, we
may replace the constant value of ¢, (process zone length at peak load for an infinitely iarge
specimen) by a rate-dependent function c,(d). The rate-dependence of ¢, is not illogical. Stress
relaxation in the fracture process zone may be expected to cause the stress profile along the
crack extension line to develop a steeper drop to zero, spanning a shorter length, which means
that the effective fracture process zone length should be smaller at slower crack propagation.
As explained in Section 3, ¢, is the basic parameter affecting brittleness. Because brittleness is
seen to decrease with increasing rate, ¢, should be an increasing function of 4. However, ¢,
should vary only by a factor of 10 while the rate of loading (and therefore also the rate of crack
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propagation) varies over five orders of magnitude. It is therefore reasonable to usc a power
function with a low exponent

d 1/m
C/=Cfo(d*o> . (35)

where m » 1. For the sake of dimensionality we have introduced here, in addition to m, two
more parameters ¢y, do. but only one of them is independent. The other one can be preset to
any (positive) fixed value without any loss of generality.

With ¢, dependent on 4, the crack propagation equation (13) now becomes an implicit law for
the crack propagation rate 4. If the model is to be physically reasonable, there must exist a
unique nonnegative solution a for any possible situation. This condition imposes a serious
restriction on the value of m. A simple analysis of this restriction can be performed if we
approximate p(c/c,) by a piecewise linear function

p(i)=i if <1, p(i>=1 if <> (36)
Cy Cs Cs Cr Cr

The function f defined by (14) can now be written as

) Pk L] ¢ ~nj2 _ _L_ ~n/2
JUKKa) = h(b\/‘}Kf) [p(cf(d))] —fo[p<"f(d))] . 7

Suppose that the current values of P, k, ¢ are given and we want to solve (14) for unknown 4.
Denote by d, the value of d for which ¢ (@) = c. If 0 < 4 < a4, then ¢(4) < ¢, plc/c(d)) = 1 and
MK, Kg) = fo. If d > a., then c(d) > ¢, plc/cs(d)) = c/c (d) and

-n/2 s\n/2Zm
f(K.KR)=fo[——f———] =fo(.3) : (38)

Cfold/do)”m a.

The right hand side of (38) is graphically presented in Fig. 5 for three different cases. It is
clear that if n/2m < 1, equation a = f(K, Ky) has a unique positive solution for any values of f,
and d,. However, if n/2m > |, the equation has no solution or two solutions depending on
whether f; > d, or f, < a.. Thus, to ensure a proper formulation of the crack propagation
equation, the parameter m in (35) must be larger than n/2, n being the exponent in (14). This
condition has been derived under the simplifying assumption (36), but numerical calculations
reveal that the method indeed does not converge if m < n/2 and sometimes even if m is only
slightly above n/2.

It has been mentioned in Section 4 that, in order to ensure realistic rate sensitivity, n must
assume very large values, typically between 30 and 40. On the other hand, m should not be too
large if we want to get a substantial shift of brittleness. Unfortunately, m > n/2 must hold,
otherwise the problem of crack propagation is not well-posed. The best fit of experimental results
that could be constructed with rate-dependent ¢ is still underestimating the measured peak
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Fig. 6. Generalized model with variable ¢, (a) rate effect. (b) experimental size effect, (c) numerical size effect.
loads for small specimens under slow loading rates (Fig. 6a). In terms of the size effect, this °

means that the parameter d, in the size effect law (24]

UN=“—B—L- (39
hed
do ®

does not change with rate as much as it should, according to the tests of concrete (see Fig. 6b, c).

The theoretical curves in Fig. 6a correspond to the following set of parameters:
k=8x10"%m/s, K; =9 x 10°Nm~ Y2, n =29, cro = 0014m, do = 0.0l m/s, m = 17. Let us
emphasize again that only four of these six parameters are independent.
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6. Comparison to tests with 2 sudden rate change

Anot*er set of experiments on rate effect in concrete fracture was performed by Bazant. Gu and
Faber [25]. who studied the effect of a sudden change of loading rate. In their tests on 3PB notched
specimens, the initial CMOD rate was held constant in the prepeak range and in a part of the post-
peak range. After the load decreased from its peak value P, to some lower value P, the CMOD rate
was suddenly * . rcased or decreased by several orders of magnitude and the test continued with the
new valv~ -7 a constant CMOD rate. This resulted into a sudden change of slope in the
load-C*'OD diagram. For a sufficiently large increase of the loading rate, the load started
increasing again and a second peak P, could be observed (Fig. 7a). On the other hand. a decrease of
the loading rate was followed by a fast drop of the load-CMOD curve (Fig. 7b). The rate-dependent
R-curve model exhibits qualitatively the same behavior (Fig. 7c). The tests suggest that, after a rate
change, the curve for the new rate asymptotically approaches the curve for a constant rate test with
a rate equal to the new rate. The theory agrees with this behavior also (Fig. Tc).

load (a) load (b)

CMOD CMOD

Relative

(c) load ‘;P ornogt::

. 10°

AN 10°
10’
10°
107"

>
CMOD

Fig. 7. Load-CMOD curves: (a) experimental curve (rate increased). (b} experimental curve {rate decreased). (¢}
theoretical curves.




R-curre modeling 369

Py/Py (%) (a)

140+ . Theory:
large
1201 —medium
1001 “~smali
80
601 Experiments:
404 00000 large
aaoot medium
201 00000 small
0

0 20 40 60 80 100
PC/IP1 (%\

Py/Pi (%) (b) P./Pi (%) (c)

- -12 -8 ;
140; Inntml' rate 107°-10 ”;‘/S 140 Relative rate chonge:/4 10t
1204 Relative rote change 10 120 ~_10°
] 2
1001 1001 10
1
801 801 10
60 601
401 401
201 20
0 ' v v v 0 v rrrrrreeery very y
0O 20 40 60 80 100 O 20 40 60 80 100
Pe/Py (%) Pe/P1 (%)

Fig. 8. Second peak versus load at rate change: (a) effect of size. (b} effect of initial rate, (c) effect of relative rate change.

Quantitative agreement between theory and experiments can be verified by plotting the ratio
P, P, versus P, P, for all available results. The points marked by different symbols in Fig. 8a
correspond to tests on specimens with three sizes (d = 38 mm, 76 mm, 152 mm) in which the rate
increased by three orders of magnitude (on the average from 10~ % m/s to 10™° m/s). The results
seem to be independent of size.

The relationship between the two nondimensional ratios P,/P, and P,/P, can be calculated
using the rate-dependent R-curve model described in previous sections. Instead of trying to
adjust the parameters so as to fit the experimental data, their values were taken from the best
fit of tests by Bazant and Gettu [14] constructed in Section 5. It is gratifying that these
parameter values lead to a satisfactory agreement with measurements by BaZzant, Gu and
Faber [25].

The theoretical curves are only slightly dependent on size (Fig. 8a) and almost independent of
the initial rate (for the same relative rate change— Fig. 8b). But, as expected, they are sensitive to
the relative rate change (Fig. 8c).
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7. Comparison to relaxation tests
The paper by Bazant and Gettu [14] reported still another type of experiment on the rate effect

in concrete fracture — relaxation tests. The CMOD rate was initially held constant and after
some time (usually in the post-peak range) suddenly decreased to zero. This type of test can be

P/P,
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““. . - ) .
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0.6 CMOD rate: 8.4 .84 .084
(um/s)

0.01 0.1 1 10 100 1000
t—t. (sec)

Fig. 9. Relaxation curves for different initial rates: (a) experimental, (b} theoretical.
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Fig. 10. Relaxation curves for different loads at relaxation start: (a) experimental, (b) theoretical.

regarded as a limit case of the experiments with a sudden change of rate. All tests were
performed on medium size 3PB specimens (d = 76 mm).

In the first series of experiments, the initial rates were different and relaxation started in the
post-peak range at about 85 percent of the peak load. Denoting the time at which relaxation
started by 1. and the corresponding ioad by P., one can plot the relaxation curves P(t)/P, versus
t ~— t.. The experimental and theoretical relaxation curves are shown in Fig. 9. A qualitative
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agreement can be observed - the curves corresponding to different initial rates have the same
final slope in a logarithmic plot and are shifted with respect to each other. However, the slope of
the theoretical curve: is much steeper than of the experimental ones.

The second series of experiments was conducted with the same initial rate (r = 8.5 x
10~ my/s) but relaxation started at different stages - in the prepeak range, at peak, and at
different load levels in the post-peak range. Figure 10c reveals again only a qualitative
agreement - the relaxation curves starting in the post-peak range lie below the curve starting
approximately at peak, which in turn lies below the curve starting in the pre-peak range. The
theoretical curves are again steeper than the experimental ones.

8. Conclusions

1. The equivalent linear elastic fracture model based on an R-curve (a curve characterizing the
variation of critical energy release rate with crack propagation length) can be generalized to
the rate effect if the crack propagation velocity is assumed to depend either on the ratio of
the stress intensity factor to its critical value based on the R-curve, or on the difference
between these two variables. This dependence may be assumed in the form of an increasing
power function with a large exponent.
2. The creep in the bulk of a concrete specimen must also be taken into account, which can be
done by replacing the elastic constants in the LEFM formulas with a linear viscoelastic
operator in time. For rocks, which do not creep, this is not necessary.
3. The experimental observation that the brittleness of concrete increases with a decreasing
loading rate (i.e. the response shifts in the size effect plot closer to linear elastic fracture
mechanics) can be at least approximately modeled by assuming the effective fracture process
zone length in the R-curve expression to decrease with a decreasing rate. This dependence
may again be described by a power function.
4. Good agreement with the previous test results for concrete and limestone, recently measured
at very different loading rates, with times to peak ranging from 1 second to 250000 seconds,
is achieved.
5. The model can also predict the following phenomena recently observed in the laboratory:
(a) When the loading rate is suddenly increased, the slope of the load-displacement diagram
suddenly increases. For a sufficient rate increase, the slope becomes positive even in the
post-peak range, and later in the test a second peak, lower or higher than the first peak, is
observed.

(b) When the rate suddenly decreases, the slope suddenly decreases and the response
approaches the load-displacement curve for the lower rate.

(c) When the displacement is arrested, relaxation causes a drop of load, approximately
following a logarithmic time curve.
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Fatigue Fracture of High-Strength Concrete and Size Effect

e

by Zdenék P. BaZzant and William F. Schell

Results of an experimenial stud of fatigue fracture of geometrically similar
Righ-strength concrete specimens of very differen: sizes are reported and
analvied. Three-point bend notched beams 1.5. 4.24. and 12 in. deep were
subjected to cvclic loading with a lower load limit of 0.07P, and an upper
limit berween 0.73 and 0.84 P.. where P, = maximum load in monotonic
loading. The number of cxcles 10 failure ranged from 200 10 41.000. h is
found that the Paris law for the crack length increment per cycle as a func-
tion of the stress intensiry facior. which was previousiy verified for normal
concrete. is also applicable 10 high-strength concrete. However, for speci-
mens of differen: sizes. an adjusimens for the size effect needs 10 be intro-
duced. of a similar rype as previously introduced for normal concrete. This
3ize adjustment represents a gradual 1ransition from crack growth governed
by siress amplitude to crack growth governed by stress intensity factor am-
pinude. The structure size for which this transition occurs is found to be
about an arder of magniiude smaller for high-sirength concrese than for
normal concrete. which means that the fracture process :one under cyclic
loading is much smaller and the behavior is much closer (o linear elastic frac-
ture mechanics (LEFM). A linear regression plot estimating the size-od-
Justed parameters is derived. An LEFM-rxpe calculation of the deflections
under cxclic loading on the busis of the size-adjusted Paris law vields cor-
rect values for the iermunal phase but grossiv underpredicts the initial de-
flections. Overall, the results underscore the importance of considering fa-
ngue fracture growth in the case of high-sirength concrete structures sub-
Jjected 10 large. repeated loads. and 1aking into account the very high brir-
tleness under fatigue loading.

Keywerds: deflection: fatigee (materisls): fracture propertiss: high-sirength con-
cretes.

Due to its more homogeneous microstructure, high-
strength concrete is more brittle than normal strength con-
crete. This is most apparent from size effect tests, which
showed that the response of typical fracture specimens made
of high-strength concrete is very close to linear elastic frac-
ture mechanics.!

The fracture properties of high-strength concrete have been
studied for monotonic loading:2!? however, no information
appears to exist for fatigue loading. Such loading is very im-
ponant for bridges, offshore structures, and structures sub-
jected to heavy wind loads or machinery. Cyclic loading
causes cracks to grow, which results in a growth of deflec-
tions and, after a centain number of cycles. may cause failure.
Fatigue fracture has previously been experimentally studied
for normal strength concrete.¢ It has been found that the
well-known Paris law giving the crack length increment per
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cycle as a function of the amplitude of the stress intensity
factor is invalid for concrete. although it has been widely used
for metals. However, after an adjustment for the size effect,’
fatigue fracture of normal =te can be described very
well. The purpose of this « 10 determine the laws that
describe the fatigue fracture .. ..ugh-strength concrete. Such
laws are needed for predicting the growth of cracks in con-
crete structures under Jarge repeated loads due to traffic. » nd,
thermal cycles. etc.

EXPERIMENTAL INVESTIGATION

The test specimens were made of a h:gh-strength concrete
that is typical for the Chicago area. The concrete mix was de-
signed for compressive strength exceeding 12,000 psi. The ra-
tios of the mix components to cement. by weight, were as fol-
lows: portland cement: 1.00, water: 0.316, fly ash: 0.132,
silica fume: 0.0507, *-in. maximum-diameter crushed ag-
gregate: 2.18, siliceous sand: 1.51. retarder: 0.00190, and su-
perplasticizer: 0.00951.

Three fracture specimens of varying size were cast from the
same batch of concrete. The specimens were three-point bend
fracture specimens shown in Fig. 1. Specimens of different
sizes were geometrically similar in two dimensions. having
the same thickness b equal to 38.1 mm (1.5 in.) (as explained
in previous works, it is preferable to keep the thickness con-
stant, because this minimizes the differences in hydration heat
and drying effects, as well as in the so-called wall effect and
effect of curvature of the fracture front throughout the thick-
ness). The beam depths were D = 38.1, 107.8, and 304.8 mm
(1.50, 4.24, and 12.00 in.), and the ratio of the sizes was
1: 8 :8. The span L was 2.5D, where D is the beam depth.
The notch, cut by a band saw, had the length a, = D/6. Also,
six companion cylinders with diameter 101.6 mm (4 in.) and
length 203.2 mm (8 in.) were cast from the same batch. All
the specimens were compacted, removed from the mold after
48 hr, and stored in a moist-curing room at 26 C for 56 days.
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Fig. 1—Specimen geometry

The fatigue tests were conducted in a closed-loop. digitally
controlled machine (MTS) with a 89,600 N (10 t) load ca-
pacity. The crack-mouth opening displacement (CMOD) was
measured by an MTS extensometer. Data acquisition for both
load and CMOD was performed by the computer controlling
the test. The control variable was the load P.

The overall experimental setup for the largest specimen is
shown in Fig. 2. To fit the largest beam in the testing frame,
a stiff steel beam is used as the base. A photo of the frame
with the medium specimen and configuration of the instru-
ments is shown in Fig. 3.

The median age of the specimens at the time of test was 70
days. chosen higher than the usual 28 days to minimize the
strength gain due to aging during the testing. All the tests
were done within a span of 2 weeks. Companion cylinders
tested just before and after the fatigue testing revealed a
strength gain of only 3 percent, which was neglected in eval-
uating the tests.

Fatigue testing was preceded by compliance calibration of
the fracture specimens. The compliance calibration method.
verified for concrete in Reference 7, was used to determine
the crack length during the loading cycles, because determi-
nation of the effective crack length by optical measurements
is virtually impossible due to diffused cracking at the fracture
front. as well as the curvilinear shape of the crack front
through the specimen thickness, revealed by dye penetration
tests. The compliance calibration method was shown to work
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Fig¢. 3—Overull test urrangement and instrumentation of
medium specimen
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Fig. 5—Compliance calibration curve

for a/D < 0.5, which is sufficient for the present tests. The
compliance calibration was done on the actual fatigue spec-
imens, one calibration test for each size. The initial notch
length, a, = D¥6, was the same as for the actual fracture spec-
imens. Subsequently, making cuts with a band saw, the notch
length was incremented. Each increment was assumed to re-
move the previously formed fracture process zone, which was
rather small due to the small loads applied (the Joad was less
than 20 percent of the maximum load). From such measure-
ments, 3 plot of the load values versus crack-mouth opening
displacement (CMOD) was obtained (Fig. 4) and a regres-
sion line was passed. The slope of the regression line is the
compliance for the given crack length (actually it is not a com-
pliance coefficient in the sense of an off-diagonal term of the
compliance matrix, since the load P is not associated by work
474

Tabile 1 — Peak loads and fatigue resuits

P
Size PN | percem® N " log ¢
Senall 2040 i} 33,409 864 | 0963
2887 { ¥] $30 605 | —49.44
s 212 g4 | 6822
Medium 5707 n 7430 999 | -76%0
6120 " 854 887 | 61.%
Large 11.738 ” 40,867 10.01 -2.77
112N 8 1348 9.61 -75.74

*P s I8 percentage of ulumate load.

N = number of cycles 10 falure

with CMOD). Repeating the tests shown in Fig. 4 for a range
of crack lengths, the compliance calibration curve (shown in
Fig. 5 for depth D = 107.8 mm = 4.24 in.) was obtained. one
for each specimen size D. The elastic modulus values in the
theoretical expression for the compliance curve are adjusted
1o obtain the best fit. as shown by the solid curve in Fig. 5.
This curve is then used to estimate the corresponding crack
Jength from the measured compliance during the fatigue test.

Prior to fatigue tests, monotonic load-coatrolled tests were
carried out to determine the maximum loads of the specimens.
These tests were used to determine the material fracture pa-
rameters according to the size effect method® and decide the
load values to be used in the fatigue experiments. The mea-
sured peak loads P, in monotcnic tests are given in Table 1.
A typical load-CMOD curve for D=76.2 mm (3 in.) is shown
in Fig. 6 for the high-strength concrete used in the current ex-
periments.

The Young's modulus of high-strength concrete was esti-
mated from the approximate empirical formulas: £=3320f’
+ 6900 = 38,300 MPa (5550 ksi) and the tensile strength f, =
£=094 [ f =8.9MPa (1290 psi). in which f.’ must be given
in MPa. The compressive strength f.” was determined by
testing the companion cylinders according 1o ASTM stan-
dards: its average value at the beginning of the fatigue tests
was 90.3 MPa (13,100 psi). The fracture parameters, obtained
by the size effect method from the ultimate loads of specimens
of various sizes measured under monotonic loading. were:
fracture toughness Kir = 44.7 N mm-32; fracture energy G;=
52.1 N/m; transitional size in the size effect law Dy = 31.8
mm; and effective length of the fracture process zone in an
infinitely large specimen ¢;= 7.6 mm = 0.8 d,, where d, is the
maximum aggregate size = % in. (note that the value of ¢/ is
relatively small, which is the reason for the high degree of
brittleness of high-strength concrete).

The fatigue tests were conducted at two different values of
the upper load limit Pue:, equal to 0.75P, and 0.85P,. The
minimum load limit was approximately 0.07P, in all the tests
(it was necessary to maintain a nonzero load to avoid sepa-
ration between the specimen and the loading fixture). Max-
imum and minimum load limits were constant during the fa-
tigue tests. The chosen was 10 Hz. This is much
higher than the frequency of 0.04 Hz used by Ba’%ant and Xu.$
but it appears that the frequency has a secondary influence
compared to the influence of the number of cycles (although
this might not be true for cycle periods stretching over months
and years). Despite the high frequency. no measurement or
stability problems were encountered during the test. The com-
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puter data acquisition system recorded the load. CMOD,
stroke. and cycle number for every peak and valley of the
load history.

ANALYSIS OF RESULTS

The results of the fatigue tests are given in Table [. The
tests also include different load levels ranging from 73 to 84
percent of P, (ultimate load in monotonic loading). It is seen
from Table | that even such relatively small differences in
the upper load limit lead to enormous differences in number
of cycles to failure (ranging from 200 to 41,000). The loading
system was not capable, at the fast rate of loading, to produce
exactly the desired load limit in the cycle Pua: set at the con-
wrols. This is why the recorded P values are slightly dif-
ferent. The evaluation was, of course, based on the actual
measured P

A typical plot of the relative crack length & = a/D versus
the number of cycles N for the middle-size specimen is pre-
sented in Fig. 7(a). Considerable random differences among
the results were encountered for the largest specimens; Fig.
7(b) shows that in one specimen the crack virtually did not
grow until close to failure, while in another specimen the
crack grew almost uniformly throughout the duration of the
test (but the failure occurred after approximately the same
number of cycles). Probably these differences are due to er-
rors of control and measurement. Nevertheless. the mean
trend described by these scattered results matches the other
tests and agrees with the present theory. However, since only
five specimens were tested for the two different upper load
limits, more extensive testing is desirable in the future.

For many materials, the crack length increment per cycle
approximately follows the empirical Paris law,?!? which is
normally written as Aa/AN = Co (AKi)* (Co replaces Paris’
notation C to avoid any confusion with compliance). This law
can be rewritten in the nondimensional form as*

ke
in which x = CoK7; AK; is the amplitude of the stress inten-
sity factor for the current crack length a; x or C, and n =em-
pirical constants; and K, fracture toughness for monotonic
loading = a critical value of X; for monotonic loading, which
is introduced for the convenience of dimensionality. The
stress intensity factor is calculated from the applied load P,

using the well-known formula of linear elastic fracture me-
chanics

A
K ;:/—-Dz- (2)

in which a = a/D = relative crack length; for the present three-
point bend specimen. fa) = 6.647a’(l - 2.5a + 4.49? -
3.98a3 + 1.33a*)(1 ~ @32 (which was obtained by curve-fit-
ting of finite element results).! For other specimen geome-
tries, function fict) can be found in fracture textbooks and
handbooks.!!-12 Using ), one has § C; = Dag(0)/g (0o)
where g(a) = f(@).

The validity of the Paris law (Eq. (1)] has been extensively
verified for metals, and recently it has also been shown ap-
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-

plicable to normal concrete.s However, it has been found that.
in contrast to the previous experience with metals. the value
of Ki. cannot be kept the same for very different specimen
sizes. It appeared that a good agreement with the test results
for different sizes can be obtained if the value of K. is con-
sidered to be a function of the specimen size and the Jaw gov-
erning K. is taken to0 be the same as that ensuing from the size
effect law for ultimate loads in monotonic tests, as proposed
in References 13 through 15. This previously derived law has

the following form
Ki = K”‘/T*'—iﬂ 3

in which B = D/D, = relative specimen size (also called the
brittieness number since it determines the proximity to linear
elastic fracture mechanics) and Ky = a constant which repre-
sents the asymptotic value of fracture toughness for an infi-
nitely large specimen coinciding with the asymptotic value of
the R-curve. D, is an empirical constant that may be inter-
preted as the size in the middle of the transition between the
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Fig. 8(a)—Linear regression according 10 original Paris Law
(data poinss refer 10 individual specimens)
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Fig. 8(b)—Linear regression according to size-adjusted Paris
law (data include two specimens per size)

strength theory and linear elastic fracture mechanics. For D
! Do (B ! 1), Eq. (1) is equivalent to crack growth being pro-
portional to the nth power of the nominal stress amplitude
[Eq. (10), Reference 5), while for D@ D, (P @ 1), the crack
growth per cycle according to Eq. (1) depends only on the
amplitude of the stress intensity factor, as in the classical Paris
law (which is asympeotically approached for sufficiently large
sizes).

The size-adjusted Paris law (Eq. (3)] has been verified for
normal concrete but not, however, for high-strength concrete.
Eq. (1) can be reduced to a linear regression plot by plotting
log (Aa/AN) versus log(AK), as a means of size adjustment,
versus log(AK/K:c). The slope of the regression lines in all the
figures is the same (taken as the average value of the regres-
sion slopes for individual sizes); the slope is n = 8.6, which
is a sliginly smaller value than that obtained from normal con-
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Fig. 8(c)—Linear regression with optimal fit (data include
two specimens per size)

crete, which was n = 10.6. Fig. 8(a) shows the piot of the pres-
ent test results for all specimen sizes when the value of K is
replaced by Kiy= 1.0, as in the original (unadjusted) Paris law
[Eq. (1)]: the regression lines represent the optimal fits ob-
tained separately for each specimen size. The fact that these
regression lines do not coincide and are not even close indi-
cates that the original Paris law is not valid.

When the size adjustment according to Eq. (1) is intro-
duced and the value of D, equal to the monotonic value (31.8
mm) obtained from the size effect method is used, one obtains
the plot shown in Fig. 8(b) in which Kic = Ky{B/(1 + B)}’ =
relative values of K- from Eq. (3) (note that two of the three
straight lines nearly coincide). The fact that the regression
lines for different sizes are now very close to each other con-
firms that the size-adjusted Paris law (Eq. (1)] is valid. Fur-
thermore, Fig. 8(c) shows the plot when all the results are
fitted by the same regression line, for which D, = 1.5d. where
d, is the value for monotonic loading.!s For normal strength
concrete, the value of D, = 10d, was found.> Since D, is pro-
portional to the length of the fracture process zone from the
size effect method, it can be concluded that the fracture
process zone is much smaller in high-strength concrete than
in normal concrete during fatigue loading.

_ Note that Eq. (1) and (3) yield

AK = x,,(% —:T",)% 1—23 (4)

This equation can further be algebraically rearranged to the
linear regression plot

Y=A+BX (5)
in which
A 2
Y= —a_ " 2 =_.l
(AN) AKX=— (6)
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2 2
A=xKy? B =x:KiDs &)
Passing a regression line of measured Y-points versus X, one
obtains the values of slope B1 and Y-intercept A, from which
one can evaluate

: B
= AZK® B ——
x=AKY, Dy 8)

The result is D, = 1.424,, which is close to the value 1.5d,
found from nonlinear optimization. This linear regression is
an alternative to the direct nonlinear optimization in the plot
of the Paris law in Fig. 8(c). which is nonlinear. However,
with a nonlinear optimization subroutine such as the Mar-
quardt-Levenberg algorithm, direct determination of D, and
X is also quite easy.

DEFLECTION CURVE

Comparison of the caiculated and measured deflection
curve is the easiest and most unambiguous check of the frac-
ture formulation for monotonic loading. For the special case
of rate-independemt elastic behavior and monotonic loading,
the curve of load P versus load-point deflection u of a frac-
tured specimen is given by the following well-known rela-
tions!¢

PEara=2
= EC(Q),G = D (9)
Ca)=C, + %Q(a) (10)
o) = [[f(@)Pda’ (11)
0
P=bJD 12
J_ f(a) 12)

in which C(a) is the unit load-point compliance (i.e., com-
pliance for unit value of elastic modulus E) and C, is the ini-
tial unit compliance at a = a,. To determine the monotonic
load-deflection curve, one chooses a series of values of the
crack length a, and calculates u from Eq. (10) and (11) and P
from Eq. (12). Thus, Eq. (10) through (12) define the load-
deflection curve parametrically.

For fatigue loading, the losd-deflection curve may be cal-
culated similarly to Eq. (10) through (12). From Eq. (1), we
express AN as a function of Act and substitute the expression
AK; = APfay D . Integration then yields

N) = ‘( K"b‘m) I (f(@)}da’ (13)
Eq. (10) can be rewritten in the form
. Pp[dC(a)

Bu= = [——da }m (14)
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Fig. 9—Measured and calculated load-point displacements
Jfor medium-size specimen

Thus Eq. (13) and (14) define the load-deflection curve for
cyclic loading. Choosing a sequence of values of a, one can
calculate from Eq. (13) the number of cycles to reach this
value and the corresponding displacement value from Eq.
(14).

The load-point deflection curve calculated in this manner
is shown in Fig. 9. For comparison, the experimental curve
is aiso plotted. At the end there is a good agreement, but at
the beginning of the test there is a large discrepancy. To elim-
inate this discrepancy is probably beyond the capability of
the present theory, which represents a generalization of LEFM
to fatigue. Probably it will be necessary to make generaliza-
tions akin to the R-curve for monotonic loading that take into
account in a simplified manner the growth of the apparent
fracture toughness associated with the gtowth of the process
zone size.!?

CONCLUSIONS

1. As previously shown for normal concrete, the Paris law
is also applicable to high-strength concrete, but only if the
specimen sizes do not vary significantly.

2. For a broad range of specimen or structure sizes, the
Paris law needs to be adjusted in the same manner as previ-
ously proposed for normal concrete. The classical, unadjusted
Paris law is approached asymptotically for large specimen
sizes.

3. The transitional size D, of the size adjustment of the
Paris law has a value rather close to that for monotonic frac-
ture, while previous investigations of normal concrete indi-
cated this value to be an order of magnitude higher. This
means that the behavior of typical laboratory fracture speci-
mens of high-strength concrete under cyclic loading is quite
close to linear elastic fracture mechanics, while that of normal
concrete was previously found roughly in the middle of the
transition between the strength theory and linear elastic frac-
ture mechanics. This further implies that the fracture process
zone under cyclic loading is in high-strength concrete about
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an order of magnitude smaller than in normal concrete, and
that the classical Paris law, unadjusted for size, is asymptot-
ically approached for smaller specimen sizes than those for
normal concrete.

4. The determination of the parameters governing the size
adjustment of the Paris law can be reduced to a linear re-
gression plot. From this plot, the necessary size adjustment
for fatigue can be determined without direct fitting of the Paris
law by nonlinear optimization.

3. The size-adjusted Paris law shows good agreement with
test data for the entire range of the number of cycles to failure,
which was from 200 to 41,000 at various levels of the upper
load limit.

6. The size adjustment of the Paris law approximately
agrees with the terminal deflection measurements when the
deflections are calculated according to linear elastic fracture
mechanics. However, the early deflection history is grossly
underpredicted in this manner.
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