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Abstract

A 0, ±1 matrix is balanced if, in every square submatrix with two nonzero
entries per row and column, the sum of the entries is a multiple of four.
This paper extends the decomposition of balanced 0, 1 matrices obtained by
Conforti, Cornuejols and Rao to the class of balanced 0, ±1 matrices. As a
consequence, we obtain a polynomial time algorithm for recognizing balanced
0, ±1 matrices.
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1 Introduction
A 0, 1 matrix is balanced if it does not contain a square submatrix of odd
order with two ones per row and column. This notion was introduced by
Berge [1] and extended to 0, ±1 matrices by Truemper [19].

A 0, ±1 matrix is balanced if, in every square submatrix with two nonzero
entries per row and column, the sum of the entries is a multiple of four.
This paper extends the decomposition of balanced 0, 1 matrices obtained by
Conforti, Cornuejols and Rao [7] to the class of balanced 0, ±1 matrices. As a
consequence, we obtain a polynomial time algorithm for recognizing balanced
0, ±1 matrices. This algorithm extends the algorithm in [7] for recognizing
balanced 0, 1 matrices. It is discussed in a sequel paper.

The class of balanced 0, ±1 matrices properly includes totally unimodular
0, ±1 matrices. (A matrix is totally unimodular if every square submatrix has
determinant equal to 0, ±1.) The fact that every totally unimodular matrix is
balanced is implied, for example, by Camion's theorem [3] which states that
a 0, ±1 matrix is totally unimodular if and only if, in every square submatrix
with an even number of nonzero entries per row and column, the sum of the
entries is a multiple of four. Therefore our work can also be viewed as an
extension of Seymour's decomposition and recognition of totally unimodular
matrices [18].

In Section 3 we show that, to understand the structure of balanced 0, ±1
matrices, it is sufficient to understand the structure of the zero-nonzero pat-
tern i.e. the 0, 1 matrices that can be signed to be balanced. Such 0, 1
matrices are said to be balanceable. Clearly balanced 0, 1 matrices are bal-

anceable but the converse is not true: 1 0 1 is balanceable but not
(0 1 1

balanced. Section 4 describes the cutsets used in our decomposition theorem
and Section 5 states the theorem and outlines its proof. In Section 6, we
relate our result to Seymour's [18] decomposition theorem for totally uni-
modular matrices. The proofs are given in Sections 8 - 13. The necessary
definitions and notation are introduced in Section 7.

Interestingly, a number of polyhedral results known for balanced 0,1 ma-
trices and totally unimodular matrices can be generalized to balanced 0, ±1
matrices. It follows that several problems in propositional logic can be solved
in polynomial time by linear programming when the underlying clauses are



"balanced". These results are reviewed in Section 2.

2 Bicoloring, Polyhedra and Propositional
Logic

Berge [1] introduced the following notion. A 0, 1 matrix is bicolorable if its
columns can be partitioned into blue and red columns in such a way that
every row with two or more l's contains a 1 in a blue column and a 1 in a
red column. This notion provides the following characterization of balanced
0, 1 matrices.

Theorem 2.1 (Berge [11) A 0, 1 matrix A is balanced if and only if every
submatrix of A is bicolorable.

Ghouila-Houri [161 introduced the notion of equitable bicoloring for a 0, ±1
matrix A as follows. The columns of A are partitioned into blue columns and
red columns in such a way that, for every row of A, the sum of the entries in
the blue columns differs from the sum of the entries in the red columns by
at most one.

Theorem 2.2 (Ghouila-Houri [16]) A 0, ±1 matrix A is totally unimodular
if and only if every submatrix of A has an equitable bicoloring.

A 0, ±1 matrix A is bicolorable if its columns can be partitioned into blue
columns and red columns in such a way that every row with two or more
nonzero entries either contains two entries of opposite sign in columns of the
same color, or contains two entries of the same sign in columns of different
colors. For a 0,1 matrix, this definition coincides with Berge's notion of
bicoloring. Clearly, if a 0, ±1 matrix has an equitable bicoloring as defined
by Ghouila-Houri, then it is bicolorable.

Theorem 2.3 (Conforti, Cornuejols [6]) A 0, ±1 matrix A is balanced if and
only if every submatrix of A is bicolorable.

Balanced 0, 1 matrices are important in integer programming due to the
fact that several polytopes, such as the set covering, packing and partitioning
polytopes, only have integral extreme points when the constraint matrix is
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balanced. Such integrality results were first observed by Berge [2] and then
expanded upon by Fulkerson, Hoffman and Oppenheim [141. In the case of
balanced 0, ±1 matrices, similar integrality results were proved by Conforti
and Cornuejols [6] for the generalized set covering, packing and partitioning
polytopes.

Given a 0, ±1 matrix A, let n(A) denote the column vector whose ilh

component is the number of -l's in the ith row of matrix A.

Theorem 2.4 (Conforti, Cornu6jols [6]) Let M be a 0, +1 matrix. Then
the following statements are equivalent:
(i) M is balanced.
(ii) For each submatrix A of M, the generalized set covering polytope {x
Ax > 1 - n(A), 0 < x < 1} is integral.
(iii) For each submatrix A of M, the generalized set packing polytope {x
Ax < 1 - n(A), 0 < x < 1} is integral.
(iv) For each submatrix A of M, the generalized set partitioning polytope
{x: Ax= 1-n(A), O<x < 1} is integral.

Several problems in propositional logic can be written as generalized set
covering problems. For example, the satisfiability problem in conjunctive
normal form (SAT) is to find whether the formula

A(V xv V -xj)
iES jEPi jENi

is true. This is the case if and only if the system of inequalities

Exj- X (1- xj) lfor all i ES
jEPi jENi

has a 0, 1 solution vector x. This is a generalized set covering problem

Ax > 1 - n(A)
x E {0,1} .

Given a set of clauses VjE, Xi VVjVENS -Xi with weights wi, MAXSAT consists
of finding a truth assignment which satisfies a maximum weight set of clauses.
MAXSAT can be formulated as the integer program
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Min E'n= wisi
Ax+s > 1 -n(A)
xE{, 1}",sE {o,1}m.

Similarly, the inference problem in propositional logic can be formulated
as

min {cx: Ax > 1 - n(A), x E {0, i1}n.
The above three problems are NP-hard in general but SAT and logical

inference can be solved efficiently for Horn clauses, clauses with at most two
literals and several related classes [4],[20]. MAXSAN' remains NP-hard for
Horn clauses with at most two literals [15]. A consequence of Theorem 2.4
is the following.

Corollary 2.5 SAT, MAXSAT and logical inference can be solved in poly-
nomial time by linear programming when the corresponding 0, ±1 matrix A
is balanced.

In fact SAT and logical inference can be solved by repeated application
of unit resolution when the underlying 0, ±-1 matrix A is balanced [5].

3 Balanceable 0, 1 Matrices

In this section, we consider the following question: given a 0, 1 matrix, is it
possible to turn some of the l's into -Il's in order to obtain a balanced 0, ±1
matrix? A 0, 1 matrix for which such a signing exists is called a balanceable
matrix. It turns out that in order to understand the structure of balanced
0, ±1 matrices, it is sufficient to concentrate on the zero-nonzero pattern,
i.e. it is sufficient to understand the structure of the 0, 1 matrices that are
balanceable. In fact, if a 0, 1 matrix is balanceable, there is a simple algorithm
(which we state later) to perform the signing into a balanced 0, ±1 matrix.
So, in effect, the problem of recognizing whether a 0, 1 matrix is balanceable
is equivalent to the problem of recognizing whether a given 0, ±1 matrix is
balanced.

Given a 0, 1 matrix A, the bipartite graph representation of A is the bi-
partite graph G having a node in Vr for every row of A, a node in Vc for
every column of A and an edge ij joining nodes i E Vr and j E VC if and
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only if the entry aij of A equals 1. The sets Vr and Vc are the sides of the
bipartition. We say that G is balanced if A is.

A signed graph G is a graph together with an assignment of weights + 1, -1
to the edges of G. To a 0, ±+1 matrix corresponds its signed bipartite graph
representation. A signed bipartite graph G is balanced if it is the .igned
bipartite graph representation of a balanced 0, ±1 matrix. Thus a signed
bipartite graph G is balanced if and only if, in every hole H of G, the sum
of the weights of the edges in H is a multiple of four. (A hole in a graph is
a chordless cycle).

A bipartite graph G is balanceable if there exists a signing of its edges so
that the resulting signed graph is balanced.

Remark 3.1 Since cuts and cycles of a graph G have even intersection, it
follows that, if a signed bipartite graph G is balanced, then the signed bipartite
graph G', obtained by switching signs on the edges of a cut, is also balanced.

For every edge uv of a spanning tree, there is a cut containing uv and no
other edge of the tree (such cuts are known as fundamental cuts), and every
cut is a symmetric difference of fundamental cuts. Thus, if G is a balanceable
bipartite graph, its signing into a balanced bipartite graph is unique up to
the (arbitrary) signing of a spanning tree of G. This was already observed
by Camion [3] in the context of 0, 1 matrices that can be signed to be totally
unimodular. So Remark 3.1 implies that a bipartite graph G is balanceable
if and only if the following signing algorithm produces a balanced signed
bipartite graph:

Signing Algorithm

Choose a spanning tree of G, sign its edges arbitrarily and recursively choose
an edge uv which closes a hole H of G with the previously chosen edges, and
sign uv so that the sum of the weights of the edges in H is a multiple of four.

Note that, in the signing algorithm, the edge uv can be chosen to close
the smallest length hole with the previously chosen edges. Such a hole H is
also a hole in G, else a chord of H in G contradicts the choice of uv.

It follows from this signing algorithm, and the uniqueness of the sign-
ing (up to the signing of a spanning tree), that the problem of recognizing
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Figure 1: Odd wheel and 3-path configuration

whether a bipartite graph is balanceable is equivalent to the problem of rec-
ognizing whether a signed bipartite graph is balanced.

Let G be a bipartite graph. Let u, v be two nonadjacent nodes in opposite
sides of the bipartition. A 3-path configuration connecting u and v, denoted
by 3PC(u, v), is defined by three chordless paths P1, P2, P3 connecting u
and v, having no common intermediate nodes and such that the subgraph
induced by the nodes of these three paths contains no other edges than those
of the paths (see Figure 1). Since paths P1 , P2, P3 of a 3-path configuration
are of length one or three modulo four, the sum of the weights of the edges
in each path is also one or three modulo four. It follows that two of the three
paths induce a hole of weight two modulo four. So a bipartite graph which
contains a 3-path configuration as an induced subgraph is not balanceable.

A wheel, denoted by (H, x), is defined by a hole H and a node x V V(H)
having at least three neighbors in H, say X1 , X2,... , X,. If n is even, the wheel
is an even wheel, otherwise it is an odd wheel (see Figure 1). An edge xxi is
a spoke. A subpath of H connecting xi and xi is called a sector if it contains
no intermediate node x1, 1 < 1 < n. Consider a wheel which is signed to
be balanced. By Remark 3.1, all spokes of the wheel can be assumed to be
signed positive. This implies that the sum of the weights of the edges in each
sector is two modulo four. Hence the wheel must be an even wheel.

So, balanceable bipartite graphs contain neither odd wheels nor 3-path
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configurations. This fact is extensively used in our proofs in this paper. The
following important theorem of Truemper [19] states that the converse is also
true.

Theorem 3.2 (Truemper [19]) A bipartite graph is balanceable if and only
if it does not contain an odd wheel or a 3-path configuration.

4 Cutsets

In this section we introduce the operations needed for our decomposition
result. A set S of nodes (edges) of a connected graph G is a node (edge)
cutset if the subgraph G \ S, obtained from G by removing the nodes (edges)
in S, is disconnected.

Extended Star Cutsets

A biclique is a complete bipartite graph containing at least one node from
each side of the bipartition and it is denoted by KBD where B and D are the
sets of nodes in the two sides of the bipartition.

For a node x, let N(x) denote the set of all neighbors of x. In a bipartite
graph G, an extended star (x; T; A; N) is defined by disjoint subsets T, A, N
of V(G) and a node x E T such that

(i) A U N CN (x),

(ii) the node set T U A induces a biclique (with node set T on one side of
the bipartition and node set A on the other),

(iii) if ITI > 2, then IAI > 2.

This concept was introduced in [7]. An extended star cutset is one where
T U A U N is a node cutset.

Joins

Let KBD be a biclique with the property that its edge set E(KBD) is a
cutset of the connected bipartite graph G and no connected component of
G \ E(KBD) contains both a node of B and a node of D. Let GB be the
union of the components of G \ E(KBD) containing a node of B. Similarily,
let GD be the union of the components of G \ E(KBD) containing a node of
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D. The set E(KBD) is a 1-join if the graphs GB and GD each contains at
least two nodes. This concept was introduced by Cunningham and Edmonds
[12].

Let KBD and KEF be two bicliques of a connected bipartite graph G,
where B, D, E, F are disjoint node sets and neither E(KBD) nor E(KEF) is
a 1-join in G. Further assume that no connected component of G\ E(KBD) U
E(KEF) has a node in B and one in D, or a node in E and one in F. Then,
- can assume that every component of G \ E(KBD) U E(KEF) contains

either a node of B and a node of E or a node of D and a node of F. Let GBE
be the union of the components of G \ E(KBD) U E(KEF) containing a node
of B and a node of E. Similarily, let GDF be the union of the components
in G \ E(KBD) U E(KEF) containing a node of D and a node of F. The set

E(KBD) U E(KEF) is a 2-join if neither of the graphs GBE and GDF is a
chordless path with all its intermediate nodes in V(G) \ B U D U E U F. This
concept was introduced by Cornu6jols and Cunningham [11].

In a connected bipartite graph G, let Ai, i = 1,... , 6 be disjoint nonempty
node sets such that, for each i, every node in Ai is adjacent to every node
in Ai- 1 U Ai+1 (indices are taken modulo 6), and these are the only edges
in the subgraph A induced by the node set Uý Ai. Assume that E(A) is
an edge cutset but that no subset of its edges forms a 1-join or a 2-join.
Furthermore assume that no connected component of G \ E(A) contains a
node in A1 U A3 U A5 and a node in A2 U A4 U A6 . Let G 1,3,5 be the union of
the components of G \ E(A) containing a node in A1 U A3 U A5 and G2,4,6 be
the union of components containing a node in A2 U A4 U A6 . The set E(A)
constitutes a 6-join if the graphs G1,3,5 and G2,4,6 each contains at least four
nodes (see Figure 2). This concept is new.

5 The Main Theorem

A bipartite graph is restricted balanceable if its edges can be signed so that the
sum of the weights in each cycle is a multiple of four. Restricted balanceable
bipartite graphs can be recognized in polynomial time [9], [22]. Rio is the
balanceable bipartite graph defined by the cycle X1,..., x10, x, of length 10
with chords xixi+5 , 1 < i < 5 (see Figure 3).

We can now state the decomposition theorem for balanceable bipartite
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graphs:

Theorem 5.1 A balanceable bipartite graph that is not restricted balanceable
is either RID or contains a 2-join, a 6-join or an extended star cutset.

The key idea in the proof of Theorem 5.1 is that if a balanceable bipartite
graph G is not restricted balanceable, then one of the three following cases
occurs: (i) the graph G contains Rio or (ii) it contains a certain induced
subgraph which forces a 6-join or an extended star cutset of G, or (iii) an
earlier result of Conforti, Cornu6jols and Rao [7] applies.
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Connected 6-Holes

A triad consists of three internally node-disjoint paths t,..., u; t,. .. , v and
t,... , w, where t, u, v, w are distinct nodes and u, v, w belong to the same
side of the bipartition. Furthermore, the graph induced by the nodes of the
triad contains no other edges than those of the three paths. Nodes u, v and
w are called the attachments and t is called the meet of the triad.

A fan consists of a chordless path x,..., y together with a node z adjacent
to at least one node of the path, where x, y and z are distinct nodes all
belonging to the same side of the bipartition. Nodes x, y and z are called
the attachments of the fan and z is the center. A spoke is an edge connecting
z to a node of the fan.

A connected 6-hole E is a bipartite graph induced by two disjoint node sets
T(E) and B(E) such that each induces either a triad or a fan, the attachments
of B(E) and T(E) induce a 6-hole and there are no other adjacencies between
the nodes of T(E) and B(E) (see Figure 4). T(E) and B(E) are the sides of
E, T(E) is the top and B(E) the bottom.

Theorem 5.2 A balanceable bipartite graph containing RIO as a proper in-
duced subgraph has a biclique articulation.

Theorem 5.3 A balanceable bipartite graph that contains a connected 6-hole
as an induced subgraph has an extended star cutset or a 6-join.

Theorem 5.4 [7] A balanceable bipartite graph not containing RIO or a con-
nected 6-hole as induced subgraphs either is restricted balanceable or contains
a 2-join or an extended star cutset.

Now Theorem 5.1 follows from Theorems 5.2, 5.3 and 5.4.

6 Connection with Seymour's Decomposi-
tion of Totally Unimodular Matrices

Seymour [18] discovered a decomposition theorem for 0, 1 matrices that can
be signed to be totally unimodular. The decompositions involved in his
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theorem are 1-separations, 2-separations and 3-separations. A matrix B has
a k-separation if its rows and columns can be partitioned so that

B= ( A'D 
)

where r(D 1 ) + r(D 2) = k- I and the number of rows plus number of columns
of A' is at least k, for i = 1, 2. (here r(C) denotes the GF(2)-rank of 0, 1
matrix C).

For a 1-separation r(D1 ) + r(D2 ) = 0. Thus both D1 and D2 are iden-
tically zero. The bipartite graph corresponding to the matrix B is discon-
nected.

For the 2-separation r(D1 ) + r(D 2 ) = 1, thus w.l.o.g. D2 has rank zero
and is identically zero. Since r(D 1 ) = 1, after permutation of rows and

columns, D = (0 E ), where E is a matrix all of whose entries are 1.(0 0 '
The 2-separation in the bipartite graph representation of B corresponds to
a 1-join.

For the 3-separation r(D1 ) + r(D 2 ) = 2. If both D' and D2 have rank 1
then, after permutation of rows and columns,

Dl( 0E0), D = E 2 g)
where E1 and E2 are matrices whose entries are all 1. This 3-separation in
the bipartite graph representation of B corresponds to a 2-join.

When r(D1 ) = 2 or r(D2 ) = 2, it can be shown that the resulting 3-
separation corresponds to a 2-join, a 6-join or to one of two other decompo-
sitions which each contain an extended star cutset.

In order to prove his decomposition theorem, Seymour used matroid the-
ory. A matroid is regular if it is binary and its partial representations can be
signed to be totally unimodular (see [211 for relevant definitions in matroid
theory). The elementary families in Seymour's decomposition theorem con-
sist of graphic matroids, cographic matroids and a 10-element matroid called
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Figure 5: Representations of Rio

RIO. lZIo has exactly two partial representations

10011 11100
1100 1111 0 0

0 1 1 01 and 0 1 1 1 0
0 0111 00111
11 1 1 1 1 1 0 0 1 1

The bipartite graph representations are shown in Figure 5.

Theorem 6.1 (Seymour [18]) A regular matroid is either graphic, cographic,
the 10-element matroid RIo, or it contains a 1-, 2- or 3-separation.

In order to prove Theorem 6.1, Seymour first showed that a regular ma-
troid which is not graphic or cographic either contains a 1- or 2-separation or
contains an oZ10 Or an R 12 minor, where 1Z12 is a 12-element matroid having
the following matrix as one of its partial representations.

110100
011100
110010
101011
011001
000011

13--- ~~~~~~~~ 1--- -- 1-• 0-- 00unm mmnmmn u i•I



Note that the bipartite graph representation of this matrix is a connected
6-hole where both sides are fans. So, this first part in Seymour's proof
has some similarity with Theorem 5.4 stated above for balanceable bipartite
graphs.

Then Seymour showed that, if a regular matroid contains an Z1o minor,
either it is IR10 itself or it contains a 1-separation or a 2-separation. We
show in Section 8 that if a balanceable bipartite graph contains an Rio as an
induced subgraph, either it is R10 itself or it contains a biclique cutset.

Seymour completed his proof by showing that, for a regular matroid which
contains an IZ12 minor, the 3-separation of IZ12 induces a 3-separation for the
matroid. We show in Sections 9 - 13 that, for a balanceable bipartite graph
which contains a connected 6-hole as an induced subgraph, either the 6-join
of the connected 6-hole induces a 6-join of the whole graph or there is an
extended star cutset.

Our proof differs significantly from Seymour's for the following reason.
A regular matroid may have a large number of partial representations which
lead to nonisomorphic bipartite graphs. This is the case for 7Z12. All these
partial representations are related through pivoting. In the case of 0,1 bal-
anceable matrices there is no underlying matroid, so pivoting cannot help
reduce the number of cases. Since our proof is broken down differently from
Seymour's, we do not consider all these cases explicitly either.

7 Definitions and Notation

Let G be a bipartite graph where the two sides of the bipartition are V" and
VC. We say that G contains a graph E if E is an induced subgraph of G.
A node v V V(E) is strongly adjacent to E if IN(v) n V(E)I >_ 2. We say
that a strongly adjacent node v is a twin of a node z E V(E) relative to E if
N(v) n v(c) = N(x) n V(c).

A path P is a sequence of distinct nodes X1 , X2, ... , Xn, n > 1 such that
xixi+l is an edge, for all 1 < i < n. Let xi and x1 be two nodes of P,
where I > i. The path xi, xi+,... , xi is called the xixz-subpath of P and
is denoted by Pi.,,. We write P = zl,...,xi-,P.ix1, X+l,...,x, or P =

X1,...,xi, PiXJ,. • •,zX. A cycle C is a sequence of nodes x1,X 2,.. .X, X1,

n > 3, such that the nodes X1 ,X 2,. . , X form a path and xlXn is an edge.
The node set of a path or a cycle Q is denoted by V(Q).
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Let A, B, C be three disjoint node sets such that no node of A is adjacent
to a node of B. A path P = xi, x2,... , x,, connects A and B if one of the two
endnodes of P is adjacent to at least one node in A and the other is adjacent
to at least one node in B. The path P is a direct connection between A and B
if, in the subgraph induced by the node set V(P) U A U B, no path connecting
A and B is shorter than P. A direct connection P between A and B avoids
C if V(P) n C = 0. The direct connection P is said to be from A to B if x,
is adjacent to some node in A and Xn to some node in B.

For S C V(G), N(S) denotes the set of nodes in V(G) \ S which are
adjacent to at least one node in S.

8 Splitter Theorem for R10

An extended RIO is a bipartite graph induced by ten nonempty pairwise
disjoint node sets T1,... , 7'10 such that for every 1 < i < 10, the node sets
T. U Ti-I, Ti U T+1, and T, U Yi+5 all induce bicliques and these are the only
edges in the graph. Throughout this section all the indices are taken modulo
10.

We consider a balanceable bipartite graph G which contains a node in-
duced subgraph R isomorphic to RIO. We denote its node set by {1,...,10}
and for each i = 1,...,10, node i is adjacent to nodes i - 1,i + 1 and
i + 5 (mod 10).

The first step in the proof of the splitter theorem for R10 is to study the
structure of the strongly adjacent nodes to R.

Theorem 8.1 Let R be an R10 of G. If w is a strongly adjacent node to R,
then w is a twin of a node in V(R) relative to R.

Proof: First assume that w has exactly two neighbors in R. If the neigh-
bors of w in R are nodes 1 and 3, the hole w, 1, 6, 7, 8, 3, w induces an odd
wheel with center 2. If the neighbors of w in R are nodes 1 and 5, the hole
w, 1,2,7,8,9,4,5, w is an odd wheel with center 10. The other cases where
w has two neighbors in R are isomorphic.

We now assume that node w is adjacent to at least three nodes in R. If
node w is adjacent to nodes i, i + 2, i + 4, then there exists an odd wheel
i,i + 1,i + 2,i + 3,i + 4,i + 5,i with center w. So w is adjacent to exact'
three nodes i, i + 2, i + 6, showing that w is a twin of i + 1. 0
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Definition 8.2 Let R be an RIO of G. For 1 < i < 10, let Ti(R) be the set
of nodes comprising node i in R and all the twins of node i relative to R. Let
R' be the graph induced by the node set U!0ITi(R).

Lemma 8.3 R" is an extended RIO.

Proof. Let u E Ti(R) and v E Tj(R), where 1 < i,j < 10. Let K' be the
Rio obtained from R by substituting node u for node i. Now by Theorem
8.1, node v is twin of node j in ff. Hence nodes u and v are adjacent if and
only if nodes i and j are adjacent. 0

Theorem 8.4 R* satisfies the following two properties:
(i) If node w is strongly adjacent to R* then for some 1 < i < 10, N(w) n
V(R*) C T,(R).
(ii) If k is an Rio induced by the node set {xi,. .. ,xIO} where x, E T,(R)
for 1 < i < 10, then T,(R') = Ti(R).

Proof: To prove (i), assume that w is adjacent to wi E Ti(R) and w, E
Tj(R), i 6 j. Let RP, 0, be an Ri0 obtained from R by replacing node i with
wi and node j with wi. Node w is now strongly adjacent to Rw, ,, so by
Theorem 8.1 node w is a twin of a node in P Hence w is adjacent to
a node k of R. Let P, be an RIO obtained from R by replacing node i by
wi. Since w is adjacent to k and wi, it is strongly adjacent to RP,, hence
by Theorem 8.1 w is adjacent to a node 1 0 k of R. Now w is a strongly
adjacent node of R and by Theorem 8.1 must be a twin of a node of R. Hence
w E V(R*), which contradicts our choice of w.

To prove (ii), note that Lemma 8.3 implies T2(R) C Ti(R), so it is enough
to show that T,(R?') _ T,(R). Let u E Ti(if) and suppose that u ý T1(R).
Then node u is strongly adjacent to R* and by (i) we have a contradiction.
0

Remark 8.5 Considering Theorem 8.4 we can simplify the notation by re-
placing Ti(R) by Ti.

Definition 8.6 For 1 < i < 10, let Ki be the complete bipartite graph in-
duced by the node set T/-.1 U Ti U Ti+ U Ti+s.

We now study the structure of paths between the nodes of R*.
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Lemma 8.7 If P = xi,.. ., z,, is a direct connection from Ti to V(R*) \ Ti
in G\ E(Ki), then the neighbors of z, in R* belong to a unique set Ti, where
j=i-l,i+l ori+5.

Proof: Assume w.l.o.g. that x, is adjacent to node i. By Theorem 8.4 (i),
n > 1 and node x, has neighbors in exactly one Ti. Assume that for some
j 0 {i - 1, i + 1, i + 5}, zX is adjacent to a node v, E Ti.

If i = i + 2 then the hole i, X1, P, X,, vi+ 2, i + 7,i+ 6, i + 5, i induces an odd
wheel with center i + 1. Ifj = i +3 then the paths P, = i, XP, PX, vi+3 ; P2 =

i, i+ 1, i+2, vi+3 and P3 = i, i- 1, i +4, vi+3 induce a 3PC(i, vi+3 ). Ifj = i +4
then the hole i, Z1 ,P,X,,,vi+4 ,i + 3, i + 8,i + 7,i + 6,i + 1,i induces an odd
wheel with center i + 2. This completes the proof since the remaining cases
axe isomorphic to the above three. 01

Lemma 8.8 There cannot exist a path P = Z1,... ,x,, with nodes belonging
to V(G) \ V(R*) such that Zx is adjacent to a node vi E Ti and Z, is adjacent
to a node vj E Tj, where i # j and vi and vi are not adjacent.

Proof: Let P be a shortest path contradicting the lemma. Hence P does
not contain an intermediate node adjacent to a node in Ti U Ti. If no node
x, of P, 2 < I < n - 1, is adjacent to a node in V(R*) then P is a direct
connection from Ti to V(R*) \ Ti in G \ E(Ki) contradicting Lemma 8.7.

Let xZ be the node of P, with the smallest index, adjacent to a node in
V(R*) \ (T7 UT3), say Zx is adjacent to w E Tk. By Lemma 8.7 and symmetry,
we can assume w.l.o.g. that k = i + 1 or i + 5. No node in V(R*) \ Tk can
be adjacent to an intermediate node of P, otherwise P is not a shortest path
contradicting the lemma. Let xZ be the node of P with highest index which
is adjacent to a node vk E Tk.

Case 1: k=i+l. Lemma 8.7 applied to Z,, .... Xn and the minimality of P
show that j = i +2 or i +6.

Cases 1.1: j=i+2. Let H1 = vi, X1 , P, z,,, vi+2, i + 3, i + 4, i - 1, vi and/H2 =

Vi, X1 , P, X., vi+2, i + 7, i + 6, i + 5, vi. Now either H1 or H 2 induces an
odd wheel with center i + 1.

Case 1.2: j=i+6. The hole vi, X1, P, Xn, vi+ 6 , i + 7, i + 2, i + 3, i + 4, i - 1, vi
induces an odd wheel with center i + 5.
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Case 2: k = i+5. Lemma 8.7 applied to xm,..., x,, and the minimality of
P show that j = i + '*. Now the hole vi,xI,P,x,,vi+4,i + 3, i + 8, i +
7, i + 6, i + 1, vi induces an odd wheel with center i + 2.

0

Theorem 8.9 If a balanceable bipartite graph G contains RIO then either G
is RIO itself or G contains a biclique cutset.

Proof: Let R be an R10 of G. By Lemma 8.3, R* is an extended RI0.
Assume that V(G) 5 V(R*). Let w be a node in V(G) \ V(R*) adjacent to a
node in T1. If the biclique K1 is not a cutset of G, seperating w from V(R*),
then a path contradicting Lemma 8.8 exists. Hence V(G) = V(R*). If G is
not R10, then at least one of the node sets T1(R) has cardinality greater than
one. W.l.o.g. let u and v be two nodes in TI(R). Now {u} U N(u) is a star
cutset seperating v from the rest of the graph. 01

9 Decomposition of Connected Six-holes

In the remaining sections, we assume that G is a balanceable bipartite graph
and E is a connected 6-hole induced by T(E) and B(E). We prove that either
G contains an extended star cutset or it has a 6-join which separates the top
and the bottom of E.

We denote by H = hl, h2 , h3, h4 , hs, h6 , h, the 6-hole of E induced by the
attachments of T(E) and B(E) and we assume that hi, h3 , h5 E T(E) and
h2 ,h 4, h6 E B(Z). We also assume hl,h 3 , hs E Vc and h2,h 4 , h6 E Vr. It
will be convenient to define the index of hj modulo 6. If T(E) is a triad,
the three paths defining it are denoted by P1, P2 and P3 and the meet is
denoted by t. For connected 6-hole V', EJ" and Ek, we denote the respective
6-holes by H'= h',h', hhh' ,h, H1  " ,, I ad=k h3, h:, Il h Ig h 7h hie
Hk h= h• ~,hk hk ~k.,

Remark 9.1 Let X be one of the sides of a balanceable connected 6-hole E.
If X is a triad, its meet belongs to the same side of the bipartition as its
attachments, else X contains a 3-path configuration. If X is a fan, its center
has a positive even number of neighbors on the path of the fan connecting the
other two attachments, else X contains an odd wheel. Hence X cannot be
both a triad and a fan.

18



Remark 9.2 Let hi and hi be two distinct attachments of a side X of E.
There is a unique chordless path in X, connecting hi and h,. This path is
denoted by Pij. For any pair of nodes x and y in V(E), there exists a hole
containing x and y whose node set is included in V(E).

We use the following theorems, proved in [71 Part VI, about the structure
of strongly adjacent nodes to an even wheel. We first introduce the relevant
notation. Two sectors of a wheel are adjacent if they have a common endnode.
A bicoloring of a wheel is an assignment of colors to the intermediate nodes
of its sectors so that the nodes in the same sector have the same color and
nodes of adjacent sectors have distinct colors. The endnodes of sectors are
left unpainted. Note that a wheel is bicolorable if and only if it is even.

Theorem 9.3 Let (W, v), v E Vr, be an even wheel in a balanceable bipartite
graph, and let u E VC\N(v) be a node with neighbors in at least two distinct
sectors of the wheel (W, v). Then u satisfies one of the following properties:

Type a Node u has exactly two neighbors in W and these neighbors belong
to two distinct sectors having the same color.

Type b There exists one sector, say Sj with endnodes vi and vk, such that
u has a positive even number of neighbors in Si and has exactly two
neighbors in V(W) \ V(Sj), adjacent to vi and vk respectively.

Theorem 9.4 Let (W, v), v E Vr, be an even wheel in a balanceable bipartite
graph, and let u E VC fl N(v) be a node which is strongly adjacent to (W, v).
Then u satisfies one of the following properties:

Type a Node u has exactly one neighbor in W.

Type b Node u is not of Type a and in each sector of (W, v), u has either
0 or an odd number of neighbors. It follows that u has neighbors in
an even number of sectors and that the number of consecutive sectors
without neighbors of u, between two sectors with neighbors of u, is even.

Classification 9.5 A node u E Vr, strongly adjacent to an even wheel
(W, v), v E Vr, is classified as follows:

Type a There exists a sector of (W, v) containing all the nodes of N(u) nW.
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Type b Node u is not of Type a and all its neighbors in W are unpainted.
Note that, in particular, the center v of the wheel is of Type b.

Type c Node u is not of Types a or b and all its painted neighbors in W
have the same color.

Type d Node u has painted neighbors of both colors.

10 Strongly Adjacent Nodes to a Connected
6-Hole

The first step in our decomposition of a connected 6-hole E is the study of
the strongly adjacent nodes. We use notation introduced in Section 9.

Lemma 10.1 If T(E) is a triad and w is adjacent to its meet t, then all
nodes of N(w) n T(E) are contained in a unique path Pi of the triad, where
j= 1,3 or5.

Proof: Assume not. Then w.l.o.g. w has neighbors in/P, \ {t} andP3 \ I{t}.

Since the hole h2, P1, P3 , h2 induces a wheel with center w, the node w has
a positive even number of neighbors in one of the paths P1, P3 and an odd
number (greater than one) of neighbors in the other. Let H1 = h6 , P1, P5, h6

and 112 = h4, P3 , P5 , h4 . Now either (HI, w) or (1H2, w) induces an odd wheel.
0

10.1 Strongly Adjacent Nodes Having Neighbors Both
in T(E) and B(E)

In this section, w denotes a strongly adjacent node to E and we assume
w.l.o.g. that w is in Vr.

Theorem 10.2 If w E Vr has neighbors both in T(E) and B(E), then
N(w) nT(E) = {hi, h ,}, i 6 j, i,j = 1,3 or5.

To prove this theorem, we need the following lemmas:

Lemma 10.3 If T(E) is a triad and w E V' has neighbors both in T(E) and
B(E), then N(w) n T(2) = {hi, hi}, i : j, where i, j = 1,3 or5.
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Proof: First we show that the neighbors of w in T(E) cannot all be
contained in the same path of T(YE). Assume the contrary i.e. assume that
for some j = 1,3 or 5, N(w) n T(E) _ Pj. Then since w E V' is not
adjacent to h2, h4, h6 E Vr but has at least one neighbor in B(E), there is
a 3PC(t, h,+3 ) where t is the meet of T(E). Node w is not adjacent to the
meet t, since otherwise by Lemma 10.1 the neighbors of w in T(E) would
all be contained in the same path of T(E). Then node w has neighbors in
at most two paths of T(E), since otherwise there is a 3PC(w, t). Therefore
node w has neighbors in exactly two distinct paths of T(E), say P1 and P 3.

Let w1 E P1 and w3 E P3 be neighbors of w. Assume w.l.o.g. that W3 5 h3 .
Now there is a 3PC(w, t) where the intermediate nodes of the three paths
are included respectively in V(P 1),V(P3 ) and V(P 5 ) U (B(E) \ {h 2 , h6 }).
Therefore N(w) fn T(E) = {hi, h3 }. -0

We now study the case where T(E) is a fan and we assume w.l.o.g. that
h3 is the center node of the fan.

Lemma 10.4 If T(E) is a fan and w E V" has neighbors both in T(E) and
B(E) but w is not adjacent to h3, then N(w) n T(2) = {hl, hs}.

Proof: Let H15 be the hole induced by the paths P15 in T(E) and P24 in
B(E). We first show the following claim:

Claim 1: Node w has more than one neighbor in T(E).

Proof of Claim 1: Assume not and let w, be the unique neighbor of w in
T(E). If w, belongs to a sector of (H15 , h3 ) having either h2 or h4 as endnode,
there is an odd wheel with center h3. Otherwise there is a 3PC(wi, h6). This
proves Claim 1.

So w is not adjacent to h3 and is strongly adjacent to H15 and therefore
w is of Type a or b[9.3] relative to (H15 , h3).

If w is of Type a[9.3] with neighbors w, and w2 in H15, Claim 1 shows
W1 , W2 E T(E). Hence w has a neighbor in B(E) \ V(His). Now w1 , w2 must
coincide with hl, hs, else there is a 3PC(w, h3).

So w is of Type b[9.31. If all the neighbors of w in H15 belong to T(E),
there is a 3PC(w, h3). If all but one of the neighbors of w belong to T(E),
there is an odd wheel with center w. The structure of a Type b[9.31 node
shows that the only remaining possibility is that the neighbors in T(E) of w
are hl, hs, completing the proof of the lemma. 0
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Lemma 10.5 If T(E) is a Jan, w E Vr has neighbors both in T(E) and
B(E) and w is adjacent to h3 , then N(w) n T(E) = {h1, h3} or {h3, h5 }.

Proof. If w has no neighbor in T(E) \ {h 3} then, since w has a neighbor
in B(E), there is a 3PC(h3 , h6).

So w is strongly adjacent to (H15 , h3) and satisfies Theorem 9.4, where
H15 denotes the hole induced by the paths P15 in T(E) and P24 in B(E). We
first show that w has a unique neighbor in T(F) \ {h 3 }.

This is clearly the case if node w is of Type a[9.41, so assume node w is
of Type b[9.4]. If w is adjacent to a node in the sector B(E) n V(H,5 ) of
(HIS, h 3 ), then Theorem 9.4 shows that w has an odd number of neighbors in
T(E) \ {h3 }. Hence w has exactly one neighbor in T(E) \ {h3}, else this node
set together with node h6 induces an odd wheel with center w. If w is not
adjacent to B(E) n V(H1 s) and it has a unique neighbor w, in B(E) \ V(H1 5 ),
then there is a 3PC(wi, h2) or a 3PC(wi, h4). Finally, if w is not adjacent
to B(E) fl V(H1 s) and it has at least two neighbors in B(E) \ V(H1 s), then
there is a 3PC(w, hi) or a 3PC(w, hs).

Let w, be the unique neighbor of w in T(E2) \ {h 3 }. If wl is distinct from
h, and h5, then there is a 3PC(wi, h6 ). 0

Proof of Theorem 10.2: The proof of the theorem follows from Lemmas
10.3, 10.4 and 10.5. 03

10.2 Strongly Adjacent Nodes Having Neighbors Only
in One Side of E

In this section we assume w.l.o.g. that the strongly adjacent node w has no
neighbor in B(E).

Theorem 10.6 If T(E) is a triad, then w is one of the following types, see
Figure 6 :

Type a N(w) n T(E) C V(Pi) for i = 1,3 or 5.

Type b w E Vc has at least one neighbor in each path P1, P3 and P5 .

Type c w E Vc has neighbors in exactly two of the paths P1 , P3 and Ps.
Furthermore w either has an even number of neighbors in each of the
two paths or has one neighbor in each path and both neighbors are
adjacent to the meet t.
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Type c

Type c

eType d

Figure 6: Strongly adjacent nodes with all neighbors in a triad T(E)

Type d w E Vr is not adjacent to the meet t and has two neighbors in T(E)
which belong to distinct paths of T(E).

Proof: If some path of T(E) contains all the nodes in N(w) n T(E), then
we have Type a. If w E Vc has neighbors in all three paths, we have Type b.

Assume now that w E Vc has neighbors in exactly two paths, say P1 and
P3 . Then w cannot have an even number of neighbors in one path and an
odd number in the other, else there is an odd wheel with center w. If w has
an odd number, greater than one, of neighbors in one of the paths, then P5
closes an odd wheel with center w. Let w, be the unique neighbor of w in
P1 and let w2 be the unique neighbor of w in P3. Then w, is adjacent to t,
else there is a 3PC(wi, t). Similarily W2 is adjacent to t. This yields Type c.

Finally assume that w E Vr is not of Type a. Lemma 10.1 shows that w
is not adjacent to t. If w has neighbors in all three paths of T(E), there is a
3PC(w, t). So w has neighbors in exactly two paths and if w has more than
two neighbors in T(EJ) there is a 3PC(w, t). 0

Remark 10.7 Let E be a connected 6-hole whose top is a fan with center
h3 and let H15 be the hole induced by paths P15 and P24 . A node w strongly
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adjacent to E but with no neighbor in B(E) can be of any of the types described
in Theorems 9.3, 9.4, 9.5 relative to (H15, h3).

Theorem 10.8 If w is a strongly adjacent node to E, with no neighbor in
B(E), then either w belongs to a connected 6-hole with top contained in
T(E) U { w}, bottom B(E) and 6-hole H or one of the following holds:

"* T(E) is a triad and w is of Type c[10.6] with exactly two neighbors in
T(2).

"* T(E) is a triad and w is of Type d[10.6] adjacent to two nodes of the
6-hole.

"* T(2) is a fan, say with center h3, and w is of Type a[9.4] relative to
(H1 5, h3).

Proof: If T(IE) is a triad, t'e proof follows from Theorem 10.6 by in-
spection. Now assume T(E) is a fan with center h3 anDl let H 15 be the hole
induced by paths P15 and P24 . If w is adjacent to h3 , then w is strongly
adjacent to the wheel (H15 , h3) and the theorem follows from Remark 10.7.
If w is not adjacent to h3 , let Q be the shortest path between h, and h5
containing w, in T(E) U {w} \ {h 3 }.

If h3 is adjacent to a node of Q, then V(Q) U {h 3 } induces a fan with
attachments hl, h3, hs.

If h3 is not adjacent to a node of Q, let R be a direct connection between
h3 and V(Q), using nodes of T(E). Then V(Q) U V(R) U {h3 } induces a
triad with attachments hl, h3 and hs which, together with B(E), induces a
connected 6-hole. 01

Classification 10.9 Theorems 10.2 and 10.8 partition the strongly adjacent
nodes w to E into the following classes:

Type a Node w belongs to a connected 6-hole with nodes in V(E) U {w}.

Type b Node w is adjacent to exactly two nodes of E and these two nodes
belong to the 6-hole of E. Such a node w is called a fork.

Type c Node w has exactly two neighbors in E, both belonging to the same
side which is a triad and both neighbors are adjacent to the meet of the
triad.
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Type d N-de w has exactly two neighbors in E, both belonging to the same
side which ie a fan, say with center hi, and w is adjacent to hi and one
other node which is not an attachment of the fan.

11 Direct Connections from Top to Bottom
Lemma 11.1 Every direct connection P = x 1,. . . ,x ,x between T(E) and

B(E) in G \ E(H) is of one of the following types:

"* n = I and x, is a strongly adjacent node satisfying Theorem 10.2.

"• One endnode of P is a fork, adjacent to hi-1 and hi+1 and the other
endnode of P is adjacent to a node of V(E) \ V(H)

"* Bridge of Type a Nodes x, and xn are not strongly adjacent to E
and their unique neighbors in E are two adjacent nodes of the
6-hole of E.

Bridge of Type bI One endnode of P is a fork, say x, is adjacent
t& hz and h3 , and x: has a unique neighbor in E which is h2.

Bridge of Type cl Node x, is a fork, say adjacent to h, and h3 , and
Zn is also a fork, adjacent to h2 and either h4 or h6.

Proof: If n = 1, x, is a strongly adjacent rode with neighbors both in
T(E) and B(E) and this possibility is described in Theorem 10.2. So we
assume n > 1, x, has no neighbors in B(E) and xn has no neighbors in
T(E.).

Case 1: Neither x, nor X, is a fork of E.
Case 1.1: Nodes x, and xn are either not strongly adjacent to E or they

are of Type a[10.9].
Assume x, is a strongly adjacent node. Let V be a connected 6-hole

containing x, and having node set included in V(E) U {Zl}. Node Zx does
not belong to the 6-hole of V', since x, has no neighbor in B(E). This shows
n > 2, otherwise Xn is a strongly adjacent node with neighbors both in the
top and bottom of V', and since xn is not a fork of E this violates Theorem
10.2. Therefore, after possibly modifying P and E appropriately, we can
assume w.l.o.g. that both x, and Zn are not strongly adjacent to E. Let y
and z be the unique neighbors of x, and X, in E, respectively.
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If y and z belong to the same side of the bipartition, assume w.l.o.g. that
y E VT, y E V(P 15) and y is not adjacent to hl. There exists a 3PC(hl, y)
using P and the hole induced by V(P15) U {h6}, unless z coincides with h4

or h6. Assume z = h6 . Then there is a 3PC(h3 , h6) unless y is adjacent
to h5. But then there is an odd wheel with center h5 and hole induced by
V(P) U V(P 35 \ {hs}) U V(P 46 ). Assume z = h4. Then there is a 3PC(y, h5 )
unless y is adjacent to hs. But then there is an odd wheel with center h5 and
hole induced by V(P) U V(P15 \ {hs}) U V(P 4 6).

By Remark 9.2, y and z belong to a hole H with node set included in
V(E). If y and z belong to opposite sides of the bipartition and they are not
adjacent, the path P together with H induces a 3PC(y, z). If y and z are
adjacent, then they belong to the 6-hole of E and P is a bridge of Type a.
Note that, in this case, P and E were not modified.

Case 1.2: Node xr is of Type c[10.9].
Then T(E) is a triad. Assume w.l.o.g. that the neighbors of x, belong to

the paths P1 and P3. If x,, is adjacent to a node in B(E) \ {h4 , h6 }, there is
a 3PC(xl, h2). If x,, is adjacent to h6 only, there is a 3PC(xi, h6). If x" is
adjacent to h4 only, there is a 3PC(xi, h4). Since x, is not a fork, Case 1.2
cannot occur.

Case 1.3: Node x, is of Type d[10.9].
Then T(E) is a fan, say with center h3 and x, is adjacent to h3 and one

other node of the fan, say y, distinct from h, and hs. If x, is adjacent to a
node in B(E) \ {h2 , h4 }, there is a 3PC(y, h6 ). If x, is adjacent to h2 only,
there is a 3PC(y, h2). If x, is adjacent to h4 only, there is a 3PC(y, h4).
Since x,, is not a fork, Case 1.3 cannot occur.

Case 2: Either x, or x,, is a fork of E, but not both.
W.l.o.g. assume x, is a fork adjacent to h, and h3. If x, is not adjacent

to a node of V(E) \ V(H) then x,, has a unique neighbor y in E, where
y = h2,h 4 or h6. If y = h2, we have a bridge of Type bl. If Y = h4 or h6,
say h4, the hole induced by V(P) U V(P 24 ) U {h 1} forms an odd wheel with
center h3.

Case 3: Both x, an x, are forks of E.
We have a bridge of Type cl, unless x, is adjacent to, say h, and h3 , and

x, is adjacent to h4 and h6. But, in this case, there is a 3PC(xl, x,) if x, is
not adjacent to x,,, and an odd wheel with center x, if x, is adjacent to x,.
0
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Lemma 11.2 Every direct connection P = xl,. .,x, from T(E) \ {hl} to
B(E) avoiding {hl} in G\E(H) is either one of the types described in Lemma
11.1 or n > 1, there exists a node xi, 1 < i < n , adjacent to h, and P
satisfies one of the following alternatives:

"* Node x, is adjacent to at least one node in T(E) \ {hl, h3, h5 } and xn
is a fork adjacent to h2 and h6 .

"• Bridge of Type b2 Node X, is adjacent either to h2 or h6, say h2
and to no other node of E. Node zx is adjacent to h3 , possibly h,
and to no other node of E.

Bridge of Type c2 Node Xn is a fork adjacent to h2 and h6 . Node
x, is adjacent to either h3 or h5 but not both, possibly h, and to
no other node of E.

Proof: If no node xi, 1 < i < n, is adjacent to hi, then P is also a direct
connection from T(E2) to B(E) in G \ E(H). Hence P satisfies Lemma 11.1.

Let xj, 1 < j < n, be the node of highest index which is adjacent to hl.
The subpath PZ of P is a direct connection from T(E) to B(E) satisfying
Lemma 11.1. Since xj is adjacent to h, only, P•., is a bridge of Type a or
b [11.1].

Assume that P.,. is a bridge of Type a [11.1]. Then Xn is adjacent to
either h2 or hB, say h2 . If x,1 has a neighbor in T(E)\{hi, h3 }, then there exists
a chordless path Q connecting x, to h5 whose intermediate nodes belong to
T(E) \ {hi, h3}. Now one of the two holes formed by the nodes of P, Q and
either P26 or P24 contains an odd number of neighbors of hl. So the neighbors
of x, in T(E) are contained in {hl, h3} and x, is adjacent to h3 . This yields
a bridge of Type b2 [11.2].

Assume now that P~,,,1, is a bridge of Type bl [11.1]. Then Xn is ad-
jacent to h2 and h6 . If x, has a neighbor in T(E) \ {hi, h3, hs}, then the
first possibility of Lemma 11.2 holds. So the neighbors of x, in T(E) are
contained in {h 1 , h3, h5 }. If x, is a fork, adjacent to h3 and hs, then there is
a 3PC(xl,x,). This yields a bridge of Type c2 [11.21. 0

Lemma 11.3 Every direct connection P = X1 ,. . ., ,X from T(Q) \ {h1 , h3}
to B(E) avoiding {hi, h3} in G \ E(H) is either described in Lemma 11.92,
or P satisfies the following two conditions:
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"* There exist nodes xi and Xk, 1 < j, k < n, of P adjacent to h, and h3

respectively (possibly j = k).

"* Let xj, j < n be the node of highest index adjacent to h, or h3, say hi.
Then zn is a fork of E adjacent to hi- 1 and hi+l.

Proof: If no node xi of P, 1 < j < n is adjacent to h3, then P is also a
direct connection from T(E) \ {h 1 } to B(E) avoiding {hl} in G \ E(H) and
is described in Lemma 11.2. By symmetry, a similar conclusion holds if no
node xj, 1 < j < n is adjacent to hi. Hence the first condition of the lemma
holds. Let xj be the node of highest index adjacent to h, or h3 , say h3 , such
.t'at there exists at least one xZk, k > j adjacent to h, but no node xt, I > j
is adjacent to h3 . Then the subpath P.,. of P is a direct connection from
T(E) \ {h 1 } to B(E) avoiding {h 1 } in G \ E(H).

Claim 1: Node Xn has at most two neighbors in E, which are h2 and
possibly either h4 or h6.

Proof of Claim 1: Let Zt be a node of P adjacent to h, and having
highest index. (Obviously 1 > j). Then the subpath P11'n of Pli-n is a
direct connection from T(E) to B(E2) in G \ E(H). If 1 > j then xt has
hi as unique neighbor in E and by Lemma 11.1 the claim holds. If 1 = j
then the neighbors of xt in E are hi and h3 and by Lemma 11.1, P•,•.

is either a bridge of Type bl or cl, in which case the claim holds, or X,

has a neighbor in B(E) \ {h2, h4, h6 }. Let P' be a direct connection using
nodes of B(E) between Zn and h6 and avoiding {h2, h4 } and P" be a direct
connection using nodes of B(E) between Xn and h4 and avoiding {h2 , h6 }.

Let P* be a direct connection using nodes of T(E) between Zx and hS and
avoiding {h 1 , h3 } and consider the holes H' = Zl, P*, hs, h6, P', XZ, P, xl and
H" = xi, P*, h5, h4, P", Zn, P, x1. Then if P has more than one neighbor of
hl, either (H', hl) or (H", hl) is an odd wheel. Otherwise, if h, has a unique
neighbor, say h* in P, there is a 3PC(h*, hs). This completes the proof of
Claim 1.

Finally assume that Xn has h2 as unique neighbor in E. Let Q be a
direct connection between h5 and h2 avoiding {hl, h3 } and using nodes of
T(E) U V(P) and let C' = h5, Q, h2,P 26 , h6 , h5, C" = hs, Q, h2 , P24, h4, hs.
Then either (C', hl) or (C", hl) is an odd wheel. 13
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12 Expanding the 6-Hole

Definition 12.1 A fork zi of E adjacent to nodes hi-I and hi+,, i odd,
is attache in E if there exists a direct connection P = x1,... , x,n, zi from
T(E) \ {hi, hi} to B(E) avoiding {hi, h,} in G \ E(H) where j = i - 2 or
i + 2 and x, is adjacent to at least one node in T(E) \ {hl, h3, h5 }. The path
xI,... ,xT is an attachment of zi to E. If i is even, an attached fork is defined
accordingly.

We will maintain the convention that if P = X1,..., X, is an attachment of
zi to E, then X, is adjacent to zi and x, to at least one node in E\{h1,..., h6}.

Definition 12.2 Let Hi(E) be the set of attached forks, adjacent to hi- 1 and
hi+1 together with the nodes adjacent to hi- 1 and hi+1 and having neighbors
in both sides of E. Note that hi E Hi(E).

Lemma 12.3 For every node zi E Hi(E), say i odd, there exists a connected
6-hole V' having the following properties:

"* B(E') = B(E2)

"* If zi is a strongly adjacent node, with neighbors in both sides of E,
T(>2') C (T(E) U {zi}) \ {hi}.

If zi is a fork of E, with attachment P, T(V') 9 (T(E) U {zi} U V(P)) \
{hi} and V(P) _ T(E').

Proof: Assume w.l.o.g. i = 1 and let P35 be the path of T(E) connecting
h3 and h5.

Case 1: z, is a strongly adjacent node with neighbors in top and bottom
of E.

If z, is adjacent to a Lode in P35, then {z1} U V(P 35 ) induces a fan top
of V2. (Hence z, has more than one neighbor in P35). If zl is adjacent to a
node in T(>2) \ V(P35 ) but to no node in P35, let Q be a direct connection in
T(E) between z, and V(P3) \ {h 3 , h5} avoiding {hi, h3, h5 }. First note that
the endnode of Q adjacent to P35 has a unique neighbor in V(P 35 ). Now if
V(Q) U V(P3 5 ) U {z1} does not induce a triad then either h3 or hs must have
a neighbor in Q. By construction not both h3 and h5 have a neighbor in Q.
Hence V' has a fan top with center h3 or h5 .
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Case 2: Node z, is a fork of E, with attachment P = X1,... , XT.

Case 2.1: Either h3 or h5 is adjacent to a node in V(P) \ {J 1}.
Assume w.l.o.g. that h3 is adjacent to a node in V(P) \ {xl}. Let R be a

direct connection in T(E) U V(P) U {zi } between z, and h5 avoiding { h 1 , h3 }.
Then V(P) _ V(R), hence h3 has a neighbor in R, and so R induces a fan
top with center h3.

Case 2.2: Neither h3 nor h 5 is adjacent to a node in V(P) \ {x 1 }.
Then the path induced by the node set {z1} U V(P) satisfies either the

second alternative of Lemma 11.1 or the first alternative of Lemma 11.2.
Assume first that zx has a neighbor in V(P 35). If x1 is strongly adjacent to
P3%, we can shorten P and modify P35 accordingly. If z1 becomes adjacent
to a node in V(P3) the argument of Case 1 holds. Now consider the case
where x, has a unique neighbor y in P3s. If y is adjacent to h3 or h5, there is
an odd wheel with center h3 or h5 . Otherwise V(P 35) U V(P) U {z1} induces
a triad.

If xz has no neighbors in P35, let Q be a direct connection in T(E) U V(P)
between z1 and V(P35) \ { h3, h5} avoiding { hi, h3 , h5}. Then by construction
V(P) _ V(Q) and Q cannot have both a neighbor of h3 and h5 . Hence
V(P 35 ) U V(Q) induces a fan or a triad top. 0

Definition 12.4 A connected 6-hole V2 satisfying Lemma 12.3 is said to be
obtained from E by substituting node zi (with attachment Pi,) for hi. If i is
even, T(Y2) = T(E') and zi is said to be substituted in the bottom. If i is odd,
B(E) = B(E') and zi is said to be substituted in the top.

Lemma 12.5 Let V' be a connected 6-hole obtained from F by substituting
node zi E Hi(E) for hi. Then Hi(E) = Hj(E') for j E {i- 1,i + 1,i + 3}.

Proof: Assume w.l.o.g. i = 1. Let zi E HI(E), and if zl is a fork of E, let
P. = zl,... , X, be an attachment of z, to E. Assume w.l.o.g. that h5 is not
adjacent to a node of V(P-1 ) \ {xl}. Let zi E Hi(E), where j is even. If zi is
a fork of E, let Pzj = yi,... , y,. be an attachment of zi to E. Let E" be the
connected 6-hole obtained from E by substituting node zj (with attachment
P.,) for node hi.

Claim 1: No node Xk, 1 < k < n, is adjacent to or coincident with a
node in V(P2,) U { zj}.

Proof of Claim 1: Suppose not. Let Xk be the node of P., with the
lowest index adjacent to or coincident with a node of V(P,,) U {zi}. First
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note that x, cannot coincide with a node of V(Pz,) U {zj}, because x, is
adjacent to a node of T(E) \ {h1 ,h 3, h5 }. If Xk is adjacent to a node of
V(Pz,) then the path xl,•.•, xk is a direct connection from T(E") \ {h-, h,3'"
to B(E") avoiding {h"', h)} in G\ E(H"). This path contradicts Lemma 11.3
because both endnodes of this path are adjacent to a node of V(E") \ V(H").
Similarily, if node xk, k > 1, is coincident with a node of V(P2 ,), then the
path X1 ,.. . , Xk-1 contradicts Lemma 11.3 in E2". If Xk is adjacent to zj, then
the path xl,...,xk contradicts Lemma 11.3 in E" since x, is adjacent to a
node of T(E") \ {h4', h", h"} and xk is not adjacent to any node of { h2, h4, 461,

so it cannot be a fork of E". If node xk, k > 1, is coincident with y,m+x then
the path X1,..., Xk-1 contradicts Lemma 11.3. This completes the proof of
Claim 1.

Claim 2: Node z, is not adjacent to or coincident with a node in V(Pz,).
Proof of Claim 2: Suppose not. Let yl, 1 < 1 < m, be the node of the

lowest index adjacent to or coincident with the node z1. If z, is adjacent to
yp then the path xl,..., xi, zl is a direct connection from T(E") \ {4h•, h"} to
B(Y2") avoiding {h", h"} in G \ E(H"). This path contradicts Lemma 11.3
because both z1 and z, are adjacent to a node of V(E") \ V(H"). Similarly,
if z, is a fork of E coincident with yi, then the path xl,... ,x, contradicts
Lemma 11.3. Finally if z, is strongly adjacent to E with neighbors in both
sides of E then it cannot coincide with y, because E" is a connected 6-hole.
This completes the proof of Claim 2.

Claim 3: Node z, is adjacent to zi if and only if j = 2 or 6.
Proof of Claim 3: Consider the graph G* induced by the nodes in T(E') U

B(E").

If j = 4 and zj is adjacent to zi, then G* is a connected 6-hole plus
the additional edge zIz 4. If T(E') is a triad with meet t, then there is a
3PC(z4,t). If T(E') is a fan T(E') U {z4} induces an odd wheel.

Ifj = 2 or 6, sayj = 2, and zj is not adjacent to zi, then G* is a connected
6-hole minus the edge zIz 2 . Let P, 3 be the chordless path between z, and
h3 in V' and let P2'6 be the chordless path between z2 and h6 in E". Then
there is a 3PC(h3, h6) unless hs has a neighbor in P.3 or h4 has a neighbor
in P2"6 . However in this case there is an odd wheel with center h5 or h4 . This
completes the proof of Claim 3.

So Claims 1, 2 and 3 show zj E Hj(E') completing the proof of the lemma.
03
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Corollary 12.6 Given zi E Hi(E), i even, let E,, be a connected 6-hole'
obtained from E by substituting zi for hi. Similarly, given zj E H1(E), j odd,
let Ez, be a connected 6-hole obtained from E by substituting zi for hA. Then
zi can be substituted for hi in EX, and zi can be substituted for hi in EZ,.

Definition 12.7 Let T*(E) be the set of nodes comprising:

"* T()

" UOi oddHi(E) together with all the attachments of forks in Ui 0ddHi(E).

The set B*(YZ) is defined similarily.

An immediate consequence of Lemma 12.5 is the following:

Remark 12.8 T* and B* satisfy the following properties:

(i) No node of T*(E) coincides with a node of B*(E).

(ii) Node w E T*(F2) is adjacent to node z E B*(E) if and only if w E Hi(>2)
and z E H,(E), for j = i - 1 or i + 1. Hence for every node set
{zI,... ,z 6 } where zi E Hi(E), i = 1,.. .,6, zl,... ,z 6,z1 is a 6-hole.

Property 12.9 Given nonempty node sets A 1, ... , A6, that are pairwise dis-

joint, and node sets OT and OB such that Ui oddAi _ OT and Ui .. Ai _ EB,
we consider a graph O(ET, OB, A 1,..., A6) induced by the node set OT U OB

that satisfies the following property:

(1) Every node u in OTUOB is contained in some connected 6-hole E2, such
that T(E) ! OT, B(E) C E)B and hi E Ai for i = 1,...,6. Furthermore
if u E Ai, then u = hi.

(2) Let Ft be any triad or fan with attachments ai E Ai, i = 1, 3, 5 such
that V(F t ) C EJT. Let Fb be any triad or fan with attachments ai E Ai,
i = 2,4,6 such that V(Fb) C EB. Then V(Ft) U V(Fb) induces a
connected 6-hole.

Remark 12.10 If 0(eT, eB, A&,..., As) satisfies Property 12.9, then it sat-
isfies the following additional properties:
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(1) Let u be a node in OT and v be a node in OB. Then 0 contains a
connected 6-hole E such that u E T(E) 9 OT, v E B(E) 9 0 and
hi E Ai, for i = 1,...,6. Furthermore, if u E Ai for some odd index i,
then u = hi. If v E Aj for some even index j, then v = hi.

(2) For every node set {ai E Ai, i = 1,... ,6}, a1,a 2,a 3 ,a 4,a 5 ,a6 ,a1 is a
6-hole.

The following procedure constructs a graph, that we will show satisfies
Property 12.9.

Initialization: Set j = 1. Let E' be an arbitrary connected 6-hole of G
with 6-hole H1 h=, h',. .2. - h', h,. Let 01. = T*(E-), 0 = B-(E1 ), A; -

Hi(E) for i = 1,.. ., 6. Let 0(0 A,, A)) be the graph induced by
the node set 01 U 0E. Let j = 1 and repeat the following:

Iterative Step: If G contains no connected 6-hole E satisfying:

* hi E Ai fori =1,...,6,

o E is distinct from all E', 1 < k < j, and one of the following two
conditions holds:

(i) B(E,) = B(E,) for some 1 < k <_ j, and no node of T(E) \
{h 1 , h3 , hs} is adjacent to or coincident with a node of 0j,

(ii) T(E) = T(Ek) for some 1 < k < j, and no node of B(E) \
{h2, h4 , h6} is adjacent to or coincident with a node of (T.,

then stop. Otherwise, let Ej+1 be such a connected 6-hole E. Denote the
6-hole of Ej+1 by Hj+1 = h'+' hj+1 ,... ,hj+1  . Let 0'.+1 =e jT U
T*- (++), &3l - 0'j U B-(ry+ 1), A'i+' = Aa U H,(Vd+ 1 ) for i = 1,... ,6.

Le +1 E J+1  1 V ... ') be the graph induced by the node set
0 1 U 011. Increment j by 1, and repeat the Iterative Step.

Let w be the index when the above procedure terminates.
To illustrate the procedure, we now apply it to the graph in Figure 7
Let El be the connected 6-hole induced by the node set {a, ... , h, 1,..., 6}.

No node is attached to El, so T = ({a, b, c, d, 1, 3,5}, 0 1 - {e, f,g,h,2,4,6},
A! = {i} for i= 1,..,36.
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In the second iteration we can choose V2 such that B(E2) = B(E1 ) and
T(r 2) - {i,j,k, 1,3,5}. e2 = E)' U {i,j,k,l,m,o} and E2 = O1. The set

now becomes {1, l,m}, A2 is {5,o}. A? = A! for i = 2,3,4,6.
The subsequent iterations will enumerate all distinct connected 6-holes

with B(E1 ) as bottom and top {a 1,3,as, i,j,k} where ai E A2 and as E A .

The sets OT,, OB, A?, i = 1,... ,6 remain unchanged in the subsequent
iterations. Note that a different choice of E2, namely one having the same
top as V, would yield different sets A?.

The following lemmas will be used in the proof of the main theorem of
this section.

Theorem 12.11 The graph Ow satisfies Property 12.9.

Definition 12.12 Assume that for some 1 < n < w, O'n satisfies Property
12.9. Then for every 1 < iJ < n, the graph induced by the node set T(Ei) U
B(VJ) is a connected 6-hole. We denote this connected 6-hole having top
T(V~) and bottom B(VY) by ETBi.

Note that the algorithm labels every possible connected 6-hole ETiB-, as
E' for some k < w.

Lemma 12.13 Assume that for some 1 < n < w, On' satisfies Property 12.9.
Then O(OU T(E"+l), enU B(E,+ ), An'. .. , A) satisfies Property 12.9 and
for every k < n, the graphs induced by T(En+l)UB(Ek) and T(Ek)UB( En+1)
are the connected 6-holes ETn+lBk and ETkBu+1.

Proof: The first statement follows from the conditions imposed on En+1

by the procedure. The second statement follows from the first and Remark
12.10. 0

Lemma 12.14 Let E and V' be connected 6-holes such that T(E) = T(V)
and h2 = h'2 . Let z1 E Ha(E).

(i) If z, is not a fork of E, then zi E H1 (E').

(ii) If z, is a fork of E, let P.. = X1,..., X, be an attachment of z, to E.
If h5 is not adjacent to a node of V(P.,) \ {xl}, then zi E H1 (E') and
P_1 is an attachment of z, in V'.
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Proof: Let zi E HI(E) and, if z, is a fork of E with attachment P.,
xl,...,x,,, assume that h5 is not adjacent to a node of V(P,2 ) \ {xl}. We
divide the proof into the following two claims:

Claim 1: No node of P.. is adjacent to or coincident with a node of
B(EY).

Proof of Claim 1: Assume not. Let xz be the node of P.. with the
lowest index that is adjacent to or coincident with a node of B(E'). First
note that x, cannot coincide with a node of B(E') \ {h', h', h'} because
x, is adjacent to a node of T(E) \ {h3, h 5,h}. If node xk is adjacent to
a node of B(EY) \ {h',h', }, then xl,. . . ,xk is a direct connection from
T(E')\{ h', h'3} to B(E') avoiding { h', h'} in G\E(H'). This path contradicts
Lemma 11.3 because both endnodes of this path are adjacent to a node
of V(Z') \ V(H'). Similarily, if node xk, k > 1, is coincident with a node
of B(E') \ {h',hi, h'} then the path xk-1 contradicts Lemma 11.3.
Node xk is not adjacent to or coincident with h' since h' = h2 and P,, is an
attachment of z, to E. Node Xk is not coincident with h' or h/, otherwise Zk

is adjacent to h5. Thus node xk must be adjacent to a node in {h', h'}. But
now X1,..., Xk is a direct connection from T(Y') \ {h', h'} to B(E') avoiding
{h', h'} in G \ E(H'), so by Lemma 11.3 node xk must be a fork of E',
adjacent to both h' and h'. Hence xk E H5(E'). Let E' be the connected
6-hole obtained from E' by substituting node xk for the node h5 . If h, and
h3 are not adjacent to any node of Xk+l, . . ,x then Xk+ 1 ,. .. ,x , z1 is a
direct connection between T(E'2 h) and B(Ek) \ {h'•,h/ avoiding {h', h}
in G \{h'h'2 , h 2h'h 3, hh', h'Xk, ' zkh, ''hl} and it violates Lemma 11.3. Now

assume that h, or h3 is adjacent to some node of Xk,... , X,, and let x, be
the node of Xk,... , x, with the lowest index adjacent to h, or h3 . Assume

w.l.o.g. that x,,, is adjacent to hl. Let zx, k < I < m be the node of highest
index adjacent to h'. Then xi,..., I,, is a direct connection from T(E')
to B(I') \ {fh} avoiding {/h} in G \ E(H'), violating Lemma 11.2. This
completes the proof of Claim 1.

Claim 2: Node z, is not adjacent to or coincident with a node of B(Y') \
{h'2, h'}.

Proof of Claim 2: Node z1 is not adjacent to h', because otherwise the
node set {hl, h2, h3 , h•, h5, h6} induces an odd wheel with center z1. If z1 is
strongly adjacent to E, with neighbors in B(E) and T(E), then z1 is also
strongly adjacent to V with neighbors in B(E') and T(EY) = T(E). So by
Theorem 10.2 zi is adjacent to h', h' but no other node of B(E'). Now
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assume z, is a fork of E. Then z, is not coincident with a node of B(E'), else
node x,, contradicts Claim 1. Now assume that z1 is adjacent to a node of
B( I') \ {h,, h',}. Then, by Claim 1, xl,..., x,,, z, is a direct connection
from T(V') \ {h', hM} to B(E') avoiding {h', h'3}, in G\ E(H') which violates
Lemma 11.3. This completes the proof of Claim 2.

Now by Claim 1 and Claim 2, if z, is not adjacent to h', then z1 ý HI(E'),
so the path xl,... , x,,, z, contradicts Lemma 11.3 applied to E'. Hence z1 E
H1 (E') and if z1 is a fork of E, P,, is an attachment of z, to E'. 0

Lemma 12.15 Assume that for some m, < w, the graph emn-I satisfies Prop-
erty 12.9. Let zi E Hi(Zm ), i odd, and if zi is a fork of E-, let P2, be an
attachment of zi to E'. Then zi E Hi(2T-mB) and if zi is a fork of E', Pz,
is an attachment of zi to ETBl.

Proof : Assume w.l.o.g. i = 1.
Claim 1: Assume that for some 1 < k 5 m, zi E HI(ETmBk). If z1 is a

fork of ,TmB, let P_ be an attachment of z, to ETmBk. Then there exists
some j < k such that zi E HI(ET-Bu) and P. is an attachment of z, to
rT•nBj .

Proof of Claim 1: By construction hk E Ak- 1 and h' E A"-, and hence
there exists i,j < k such that hk E H2(Vj) and hk E H6(r/). Let 2jk be

the connected 6-hole obtained from V by substituting h" for 1'. Let 2i' be
the connected 6-hole obtained fromli V by substituting hk for h'. Since by
the definition of attachment, not both h- and h4 are adjacent to a node of
V(P, )\{ x}, applying Lemma 12.14 either with E = ET- Bk and V' = E2T-Bk
or with E = ET-Bk and V' = ZET-B we have that zi E HI (ET-B1k) or

zi E HI(ETy•Bi) and P,, is an attachment of z, to one of the two connected
6-holes. Assume w.l.o.g. that z1 E HI(ETmBih) and P,, is an attachment of
z, to ET-Bik. Applying again Lemma 12.14 to E = ETBik and V ' - Bi

we have that Y1 E H1 (ET-BwB) and P. is an attachment of z1 to 2T-B,. This
completes the proof of Claim 1.

Now the lemma follows by repeated applications of Claim 1, starting with
EM= ETnaB. 0j

Lemma 12.16 Le- E and E' be connected 6-holes such that T(E) = T(V2)
and h2 = h'. Let zl E 11 (E).

(i) If z, is not a fork of E then zi E
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(i) If z, is a fork of E, let Pz, be an attachment of z, to E. If no node of
P.1 is adjacent to or coincident with h' or h' then zi E HI(E') and P,,
is an attachment of z1 to V'.

Proof: Let zi E HI(E) and if z1 is a fork of E then let P,1 = X1,...,X,

be an attachment of z, to E. Suppose that P,. satisfies the conditions of the
lemma. Assume w.l.o.g. that h5 is not adjacent to a node of V(P2 1 ) \ {xl}.

Claim 1: No node of P.. is adjacent to or coincident with a node of
B(E').

Proof of Claim 1: Assume not. Let xk be the node of P,1 with the lowest
index that is adjacent to or coincident with a node of B(E'). First note
that x, cannot coincide with a node of B(E') \ {h, h4, h'} because x, is
adjacent to a node of T(E) \ {hl, h3 , h5}. If node zk is adjacent to a node of
B(E')\{hl, h', h'}, then x.,... , xk is a direct connection from T(E')\ { h', h'}
to B(a') avoiding {h', h3} in G \ E(H'). This path contradicts Lemma 11.3
because both endnodes of this path are adjacent to a node of V(E') \ V(H').
Similarily, if node xk, k > 1, is coincident with a node of B(E') \ {h', h', h'}
then the path Xl,... , Xk-1 contradicts Lemma 11.3. Node Xk is not adjacent
to or coincident with h' since h' = h2 and P_, is an attachment of z, to E.
This completes the proof of Claim 1.

Claim 2: Node z, is not adjacent to or coincident with a node of B(E') \
{2h, h'}.

Proof of Claim 2: Identical to proof of Claim 2 in Lemma 12.14.
Now by Claim 1 and Claim 2, if z1 is not adjacent to h', then z, V H, (E'),

so the path xi,..., x,,, z, contradicts Lemma 11.3 applied to V'. Hence z1 E
H,(E'). 0

Proof of Theorem 12.11: Let n be the smallest index for which EO does
not satisfy Property 12.9. Lemma 12.5 and Corollary 12.6 show that E1

satisfies Property 12.9. Hence n > 1. Furthermore Lemma 12.13 shows thatn-e rn TE), E•n-1 -
E)(0~ U T( , U B(En), A!, i = 1..., 6) satisfies Property 12.9.
By construction of e) and by Lemma 12.5 applied to every ET.Bk, k < n,
Property 12.9 holds for () if the following holds:

Let zi E Hi(En), i odd, and if zi is a fork of E", let P, be an attachment
of z, to En. Let zi E Hj(E'), where j is even and k < n. If zi is a fork of
Ek, let P., be an attachment of zi to ]2k. Then zi E Hf(iTnBk) and P., is an
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attachment of z, to kTnSk and z, E HR(.TnB? ) and P,3 is an attachment of
z, to ETnB,.

The next two claims prove the above statement.
Claim 1: Let zi E Hi(Ek),where j is even and k < n. If zj is a fork of

Ek, let P., be an attachment of zj to V'. Then zj E Hj(ETnBk ) and P_., is
an attachment of zj to ETBk.

Proof of Claim 1: If k = n the claim follows from Corollary 4.6. If k < n,
then zi together with V(P2 ,) belongs to ()-1. hence the claim follows by
construction of En. This completes the proof of Claim 1.

Claim 2: Let zi E Hi(En), i odd, and if zi is a fork of En, let P•, be an
attachment of zi to En. Then for every k < n, zi E H,(ETnB*) and P,, is an
attachment of zi to •Y•.Bk

Proof of Claim 2: Assume w.l.o.g. that i = 1. Let k < n be the smallest
index for which z1 V Hi(ETnBk). Then by Lemma 12.15, k > 1. By construc-
tion, hk in Ak-1. Hence there exists a j <_ k-1 such that hk E H2(VJ). Then,
by the choice of k, z1 E HI(ET•R•) and by Claim 1, hk E H 2((E•nB). Now

Lemma 12.5 applied to ETI2Bi shows that z, is adjacent to h2 and no node of
P_. is adjacent to or coincident with hk. The same argument shows that z, is
adjacent to h k but not to hk and no node of P_. is adjacent to or coincident
with hk of hk. Let Eik be the connected 6-hole obtained by substituting h'
for h' in V. Consider the connected 6-hole ETuBjk. Now by Lemma 12.16
applied to E = ETUnB and E' = >2TfBsk, we have that z1 E Hff(ETnB.k) and P,
is an attachment of z, in ET,-Bj. Applying again Lemma 12.16 to E = Ern ,'

and ,' = ETnSk we have that zi E HI(ETTBk ) and P,1 is an attachment of
z1 in rTnBk. This completes the proof of Claim 2. 03

Corollary 12.17 If E is a connected 6-hole such that T(E) g E-, B(E) C
B•, and hi E AT for i = 1,...,6, then E coincides with E, for some

1<k<w.

Proof: Suppose that E does not coincide with any Di, i = 1,..., w. First
we show that for some 1 < k < w, T(E) = T(Ek). Suppose not. Then since
by Theorem 12.11 O( satisfies Property 12.9 (2), E' such that T(E') = T(E)
and B(E') = B(E1 ) is a connected 6-hole satisfying the rules of construction.
Hence for some 1 < k < w, E' coincides with Ek. Now E is such that
T(E) = T(Ek) and no node of B(E) \ {h 2 , h4 , h6} is adjacent to or coincident
with a node of G'. Hence it is possible to define E'+', which contradicts the
maximality of w. 0
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Corollary 12.18 If u E 0' and v E %•, then for some 1 <•k < w, nodes
u and v are contained in E2k.

Proof: Follows from Theorem 12.11, Remark 12.10 (1) and Corollary
12.17. 0

13 Extended Star Cutset

Definition 13.1 Let A be the graph induced by the node set U?_ 1Aw.

Lemma 13.2 If the removal of the edge set E(A) disconnects the graph G,
then G contains a 6-join.

Proof: Assume that the edge set E(A) disconnects the graph G. By
Theorem 12.11, Ow satisfies Property 12.9. Now by Remark 12.10 (2), E(A)
is a 6-join of G. 0

In this section we prove the following theorem.

Theorem 13.3 G contains a 6-join or an extended star cutset.

Lemma 13.4 If P = zX,..., X,, is a direct connection from E) \ (A' U Ag')
to E) avoiding A' U A'4 in G \ E(A), then N(xi) n V(Ow) _ Aw U AA U A,
N(xi) fn A' # 0 and N(xn) n"V(0) C A' U Aw U A'.

Proof: If x, is adjacent to a node v E E), then n = 1, and let u be any
neighbor of x, in 0'. By Corollary 12.18, for some 1 < k < w, nodes u
and v are contained in Ek. Node x, is now strongly adjacent to Ek, with
neighbors in both sides of k. Hence for some i E {1,...,6}, xi E H,(Ek). By
construction of 0Y", xi E V(19') which contradicts our choice of P. Therefore
N(xi) fl V(E)-) C 0'. Now suppose that x, is adjacent to a node u E

•\ (Aw U A' U Aw). Let v be any neighbor of Xn in E0. By Corollary 12.18,

for some 1 < k < w, nodes u and v are contained in V. Now by Lemma
11.3 and Definition 12.1, zX is an attached node with respect to Ek. By
construction of Ow, xn E Ow which contradicts our choice of P. Therefore
N(x1 ) n V(e-) _ Aw U 4A U A4. Similarily N(x,,) n V(O'w) 9 A' U Aw U A'.

0
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Definition 13.5 A bridge of Type c with respect to a connected 6-hole E, is
a configuration C satisfying the following properties:

"* C is connected.

"* There exist nodes hi- 1, hi, hi+,, hi+2 of E that are adjacent to at least
one node of C. No other node of E is adjacent to a node of C.

"* C is minimal with the above two properties.

Note that bridges of Type cl and Type c2 defined in Lemma 11.1 and
Lemma 11.2 are bridges of Type c.

Lemma 13.6 Let C be a bridge of Type c. Then C satisfies the following
property:

"* C induces a path P = X1,... ,xn which is a direct connection between
hi- 1 and hi+2 in C.

"* P contains at least one node adjacent to hi and at least one node adja-
cent to hi+,.

Proof: Assume w.l.o.g. that i = 1. Let P be a direct connection in C
between h3 and h6. If P satisfies the second property of the lemma, then by
minimality of C, P and C coincide. If P has no node adjacent to h2, then
P is a direct connection between T(E) \ {hi} and B(E) avoiding {hiI in
G \ E(H) violating Lemma 11.2. If P has no node adjacent to hi, the proof
is identical. 01

Figure 8 depicts possible bridges of Type c.

Lemma 13.7 Let P be a bridge of Type c with respect to Ek, for some
1< k <w containing nodes adjacent to h', hkh', h . If no node of P is
adjacent to any node in V(Ew) \ V(A), then every node in Aw U A"' has a
neighbor on P.

Proof: Let Vk and P satisfy the conditions of the lemma. It suffices to
prove the result for A'.

Claim 1: For 1 < m < w, if some node x E H2(En) has a neighbor on
P, then every node in H 2(E') has a neighbor on P.
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Proof of Claim 1: Let y E H2 (Em ), and suppose that y is not adjacent to
any node of P. Let E' (resp. E') be a connected 6-hole obtained from En
by substituting node x (resp. y) for h'.

If there exists a chordless path Q from h' to y using only nodes in (E- \
(A' U A' U Ar)) U {hk, y}, then there exists a 3PC(h', h') using P, Q and
a path connecting hk and h' in T(Ek). So assume that no such path exists.
In particular h* is not adjacent to any node in B(Em) U B(E'). Now note
that V(P) U {hk, h , h, h} induces a fan top attached to h , h , h , with
center h', which is node disjoint from B(E) and has no adjacencies to
B(I') \ {y,n h, }. Let E be the connected 6-hole induced by the node set
V(P) U {h•, h", hk, h"} U B(E). The 6-hole of E is hl, y, h,, h' , h , hm h.

U 4 5' 6' 1
Since both x,y E H 2(Fm ), by Lemma 12.5 x E H2(E). If x has neighbors
in both sides of Ern then x is adjacent to a node in B(E) \ {y,h ,h, }.

By assumption x is adjacent to P. Hence I is a strongly adjacent node
to E which violates Theorem 10.2. If I is a fork of E, let Xl,...,x7 be
an attachment of I to En. We can assume w.l.o.g. that x1,... ,,,I is a
direct connection from B(E') \ {y, h} to T(Em) avoiding {y, hm} in G \
{h'y, yh Ih, hmhmhmhm~h m h'h/}. Hence I, is adjacent to B(E') \1Y• 3• 3 4 4556

{y, h4 , hm}. By assumption x has a neighbor on P, hence X1,..., I ,xis
a direct connection from B(E) \ {y, h-} to T(E) avoiding {y, h'} in G \
{hly,yhkm,h h hhk ,hk ' hh}, violating Lemma 11.3. This completes
the proof of Claim 1.

Claim 2: If for some 1 < n < w, every node in H 2(En) has a neighbor
on P, then there exists 1 < m < n such that every node in H2(E') has a
neighbor on P.

Proof of Claim 2: Assume that 1 < n < w, and every node in H2 (F, )
has a neighbor on P. In particular hn is adjacent to a node of P. But by
construction hn E A - 1 , thus there exists 1 < m < n such that hlz E H2 (Em ).
Now by Claim 1, every node in H 2(Em ) has a neighbor on P. This completes
the proof of Claim 2.

Now we show that for every 1 < n < w, every node in A2 has a neighbor
on P, by induction on n. By Claim 1 every node in H2(E') has a neighbor
on P, so by repeated application of Claim 2, every node in H2 (E1 ) = A' has
a neighbor on P, hence the base case holds. Now assume that for 1 < n < w,
every node in An has a neighbor on P. By construction hn+1 E An, hence
by Claim 1 every node in H2 (En+1 ) has a neighbor on P. Thus every node
in A +1 has a neighbor on P. This completes the proof of the lemma. 0
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Lemma 13.8 Let P = xl,., ,, be a direct connection from E'\ (A' U A'•)
to 0- \ (A- U A4') avoiding A' U A' U A' U A' in G \ E(A). If for some

1 < k < w, Ek is such that x, is adjacent to a node of T( Ek) \ {hk,h k} and
z, is adjacent to a node of B(Ek) \ {hk,hh}, then P is a bridge of Type c
with respect to Ek, with nodes h•, h•, h', hk adjacent to at least one node in
P or nodes hI hk, hk, h, adjacent to P.

Proof: Let E = Ek and P satisfy the conditions of the lemma. Let xi be
the node of P with the lowest index that is adjacent to a node in 0'. Then
P.1. is a direct connection from E) \ (A-' U Aw') to 0' avoiding Aw U A' in

G \ E(A), so by Lemma 13.4 N(xi) n V(Oe) C A' U A•' U A•'. In particular
x, is adjacent to h3. Similarily N(x,,) n V(01) _ A' U Aw' U A' and x,, is
adjacent to h6 . Let xi be the node of lowest index adjacent to B(E). Then
the path P,,_ is a direct connection from T(E) \ {hi, h5 } to B(E) avoiding
{h, h5} in G \ E(H), so by Lemma 11.3, node xi is adjacent to some node
in { h2, h4 }. Similarily some node in {hl, h5 } is adjacent to a node of P.

In the following claim we prove the lemma, with the restriction that no
node in one of the sets A', A', A' or A•' has a neighbor on P.

Claim: If no node in one of the sets Av', AW', Aw or Aw' has a neighbor
on P, then P is a bridge of Type c with respect to E.

Proof of Claim: Assume w.l.o.g. that no node in Aw' has a neighbor in
V(P). First suppose that V(P) does not contain neighbors of both h2 and
h4. If h4 is adjacent to a node of P, then some subpath of P is a direct
connection from B(E) to T(E) \ {hl} avoiding {hl} in G \ E(H) which
contradicts Lemma 11.2. Thus P must contain nodes adjacent to h, and h2,
and no node adjacent to h4 and hs. Hence P is a bridge of Type c with
respect to E.

We now show that P cannot have neighbors from both h2 and h4. Assume
the contrary. Let Zj be the node of highest index in P adjacent to a node in
Aw UAw'. Let Zj be adjacent to node h' in Aw'UAw'. By Corollary 12.18, let V2
be a connected 6-hole of Ow containing nodes h' and h' = h6 . By Corollary
12.17 we can assume that B(E') = B(F2). Node h' must have a neighbor on
P since h4 = h'. If P-,, has a neighbor of h', then h' = h', since h' can only
be adjacent to node x, on P. Let xp E V(P~,~,) be the node of highest index
adjacent to h'. Now some subpath of T,,,, is a direct connection between
T(E') and B(E') \ {h'} avoiding {h'} in G \ E(H') which violates Lemma
11.2. So h' must have a neighbor on P•,,. Let Zp E V(P•,) be the node of
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lowest index adjacent to h'. Now Pr,, is a direct connection between T(E')
and B(EY) \ {h2} avoiding {fh} in G \ E(H'). By Lemma 11.2, xi must be a
fork of V' adjacent to h' and h'. But h' can only be adjacent to x, on P. So
j = 1 and no node of A' is adjacent to a node of P12- . Now let Xk be the
node of highest index in P adjacent to a node in {h2, h4 }. If xk is adjacent
to h4 then let x1 be the node of highest index adjacent to h2. The subpath
P.,-, has no neighbors of A- U A•', thus the node set {f2, h4 , h6, X1,. . . , x.}
induces a fan bottom with center h4, which contradicts the maximality of w.
Similarily if Xk is adjacent to h2 then we can obtain a fan bottom with center
h2 . This completes the proof of Claim.

If one of the node sets A', A', A', A•' has no node adjacent to P then
we are done by the Claim above. So assume all four node sets have at least
one node adjacent to a node in V(P). Let Xk be the node of highest index
adjacent to a node in Aw U Aw'. Assume w.l.o.g. it is adjacent to h' E Aw'.
Notice that k > 1 since otherwise x, is adjacent to al E At', a3 E A' and
as E Aw' and so we have an odd wheel with center x1.

First we show that no node of A' is adjacent to P2,1z. Assume not and
let x, be the node of P•,, with the highest index adjacent to a node in Aw'.
Let h" be the node of Aw' adjacent to xt. Let x.. be the node of Pz with the
lowest index adjacent to a node in Aw', and let h'" be that node. By Corollary
12.18 let E" be a connected 6-hole of Ew containing nodes h" and h"'. Now
P.X,,, is a direct connection from Ow \ (A' U As') to EO \ (A' U Aw') avoiding
A-' U A-' U Aw' U AW in G \ E(A). Also E" is such that xm is adjacent to h",
X1 is adjacent to h" and no node of Awj is adjacent to a node in V(P=i,,)

(since the only node of P that can have a neighbor in Aw is x1). Now by the
Claim, P.,,. is a bridge of Type c with respect to E2", with neighbors from
h" and h". But the only neighbor h" can have on P is x,, hence we have a
contradiction. Therefore no node of Aw is adjacent to P_-,..

Let x1 be the node of PxkZ, with the lowest index adjacent to some node
A'4, and let h4 be that node. By Corollary 12.18 let V' be a connected 6-
hole of Ow containing nodes h' and h'. PxkZ is a direct connection from
Ow \ (A•' U Asw) to EO \ (A' U Ar) avoiding Aw U A' U Aw U A' in G \ E(A).

Also ' is such that Xk is adjacent to h', x, is adjacent to h' and no node
of Aj' is adjacent to a node in V(PZAZ,) (since the only node of P that can
have a neighbor in Aw' is x, and k > 1). Now by the Claim, Pzkz must be
a bridge of Type c with respect to V', with neighbors from h' and h' and
no neighbor of h' and h'. By Lemma 13.7 every node in Aw' is adjacent to
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a node in P,,_.. By our choice of xk all nodes in Aw must be adjacent to
xk. Also since h' is adjacent to P,,., we must have 1 = n. If any node in
A' is adjacent to a node of Pzr then let xp be the node of PXk•n of lowest
index adjacent to a node in Aw', say h". Note that p < n. By Corollary 12.18
let E" be a connected 6-hole of Ow containing h" and h" = h'. Now P
is a direct connection from T(E") to B(E") in G \ E(H") which contradicts
Lemma 11.1 since p < n and so h' and h' are not adjacent to xp. Thus no
node of Aw is adjacent to a node of Pk,..

Now since some node of Aw must be adjacent to a node of P, this node
ist be in P Let xp be the node of P.,,, with the highest index adjacent
some node in A•' and let that node be h". Let xq be the node of lowest

index in P=,=, adjacent to a node in Aw and let that node be h". Notice
that such a node must exist since every node in A' is adjacent to Xk. By
Corollary 12.18, let E" be a connected 6-hole of E)- containing h' and h".
Now P~p=q is a direct connection from 0- \ (A' U A4) to EO \ (Aw' U A•')

avoiding A' U Aw' U Aw U AU' in G \ E(A). Also E" is such that zp is adjacent
to h", Xq is adjacent to h" and no node of Aw is adjacent to a node of Px,,,
(since the only neighbor that a node in Aw' can have on P is x1 ). But now
by the Claim, PzP.., is a bridge of Type c with respect to E", with neighbors
from h"' and h". But the only neighbor that h" can have on P is x,", hence
we have a contradiction. But then A•' does not have any node adjacent to a
node of P, which contradicts our assumption. 0

Lemma 13.9 Let P = xl,...,x• be a bridge of Type c with respect to Vk,
for 1 < k < w, with adjacencies to k hk, h4 and h', where x, is adjacent
to h'. Then Aw U A- U A- U N(hk) is an extended star cutset seperating x,
from 0W.

Proof: Let P and E satisfy the conditions of the lemma. Let R = A4' U
A' U Aw U N(h 2 ) and suppose that R is not an extended star cutset. Let
Q = yl,. . ., y,• be a direct connection from x, to Ow \ R in G\ R. By Lemma
13.4, y, cannot have neighbors in both E) and OE. Let Q' = yo, y1,... ,y,
where yo = x1.

Case 1: N(ym) n V(ew) 9_
Some subpath of Q' is a direct connection from Ow to 0' \ (Aw U A')

avoiding Aw' U Aw' in G \ E(A) or a direct connection from Ow to OE \
(A4 U 4) avoiding A4 U Aw in G \ E(A). In either case, by Lemma 13.4,
N(yn) n V(Gw) _ Aw U AA U A4. Hence yn is adjacent to a node in A U A4.
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Suppose that y.. is adjacent to a node x E A4'. Let yi be the node
of Q' with highest index adjacent to a node in Ax'. Then Q, is a direct
connection from eO\(A'UA') to E)'\(A'UA') avoiding A'UA'UA'UA'

in G\E(A). By Corollary 12.18, let V' be a connected 6-hole of E) containing
node x and a node of Aw' that is adjacent to yi. By Lemma 13.8 applied to
Q, and VQ', , is a bridge of Type c with respect to V'. Since Q'
is not adjacent to any node in A•', Q',,, is adjacent to h' and h'. Now by
Lemma 13.7 every node in A' has a neighbor on Q, Y. In particular h2 is
adjacent to Q, contradicting our choice of Q. Therefore yn is not adjacent
to any node in A4.

Now suppose that y,,r is adjacent to a node x E A-'. First we will show
that no node of A•' is adjacent to a node of Q'. Assume not and let yi be
the node of Q' with the highest index adjacent to a node in Aw. Then Q',,m
is a direct connection from EO \ (A' U Av') to 0- \ (A' U A-) avoiding

(A' U A' U A'U A') in G \ E(A). By Corollary 12.18, let F' be a connected
6-hole of Ow containing node x and a node of Aw adjacent to yi. Then by
Lemma 13.8, Q' is a bridge of Type c with respect to V'. Since Q is not
adjacent to any node in Aw', h' is adjacent to Q'm, and by Lemma 13.7
every node of Aw' has a neighbor on Q. In particular h2 is adjacent to Q,
which contradicts our choice of Q. Therefore no node of Aj' is adjacent to a
node of Q'.

Now let xi be the node of P with the lowest index adjacent to a node of
Aw. Let yi be the node of Q' of highest index adjacent to a node of P,,,.
Let xl be the node of P with highest index adjacent to yi. By the same
argument as above, the path induced by the node set V(P~,) U V(Q )
must have a neighbor of h2 and a neighbor of h3 on it. By construction of
Q the neighbor of h2 is on P3,,,. Let xo be the neighbor of hz2 on P,, with
the lowest index. By construction of P, h3 has no neighbors on P By
Corollary 12.17, let V' be a connected 6-hole of E'W with h' = x. Let Y be
the path connecting h' and x in V'. If there exists a chordless path X from
x to h2 using nodes in E0) only then there are two wheels with center h3:
x,,... ,X1,yi,... Yrn, X,X8 and xi,.. ., x, yi,. .. , ym, Y, hi, Zj. One of these
wheels must be odd, thus we have a contradiction. Otherwise, if no such path
X exists, x has no neighbors in B(E). Now the path x ,.... X•,yi,... ,ym,X
is a direct connection from B(E) to T(E) \ {hi, h3} avoiding {hi, h3} in
G \ E(H). Since x is adjacent to h3 and h5, by Lemma 11.3 x. is adjacent
to h 4, which contradicts our choice of P.
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Case 2: N(ym) n v(ew) c_
If some node of A' has a neighbor on Q, let yi be the node of highest

index adjacent to some node in A', and let Y = Q,. Otherwise let xi be
the node of P with the lowest index adjacent to some node in A-, and let
Y be the path induced by the node set V(Q) U V(P•,,,). Then Y is a direct
connection from 0- \ (A0' U Aw') to 0) avoiding A' U A' in G \ E(A). By

Corollary 13.4 N(ym) n V(E'w) _ A' U A' U AU . Hence ym is adjacent to
some node x E A'5.

Let xi be the node of P with lowest index adjacent to a node of A"'.
Let y be a node of A4 adjacent to x3 . Path X induced by the node set
V(P• . ,) U V(Q) is a direct connection from O0 \ (A' U Aw) to 0' \ (Al' U A')
avoiding A' U A' U A' U Aw in G \ E(A). By Corollary 12.18, let V' be a
connected 6-hole of Ew containing nodes x and y. By Lemma 13.8, X is a
bridge of Type c with respect to V'. Since no node of A•' is adjacent to any
node in V(P) U V(Q), h' must be adjacent to xj, and by Lemma 13.7 every
node in Aw' has a neighbor in X. In particular h6 is adjacent to X, hence

= n. Therefore no node of V(P) U V(Q) \ {x,} is adjacent to any node
in 0'. Let Y be a chordless path from h, to x in V(P) U V(Q) \ {xJ. If
h3 is adjacent to Y, then Y induces a fan top with center h3 contradicting
the maximality of w. Else let X be a direct connection from h3 to Y in the
graph induced by V(P) U V(Q) \ {lX}. If X has a neighbor of h, or x, then
there is a fan top with center h, or x contradicting the maximality of w.
Otherwise some subset of V(X) U V(Y) induces a triad top contradicting the
maximality of w. 0

Proof of Theorem 13.3: If the edge set E(A) does not disconnect Ow from
Ow then the subgraph G obtained by removing the nodes V(Ot) contains a
connected component S having at least one node adjacent to a node in EO
and at least one node adjacent to a node in Ow. Let N(S) be the set of
nodes of V(Ow) adjacent to at least one node in S.

Claim: N(S) n (Aw U A )# U Aw) # 0 and N(S) n (Aw U A' U Aw') 5# .

Proof of Claim: Suppose that N(S)A(Aw'UAw'UA') = q. Then S contains
a path P = xl,..., x,, which is a direct connection from eO \ (Aw' U Aw') to
ew avoiding A4 U A4 in G \ E(A), such that x, is adjacent to a node of
Ow \ (A4 U Aw U A4). This contradicts Lemma 13.4. Hence N(S) n (A4 U

A- U A-) $ €. Similarily N(S) n (Aw U A4 U A) # €. This completes the
proof of the Claim.
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So we only need to consider the following two cases.
Case 1: For every u E A' U A•' U A•' and v E A•' U A' U A•' such that

u, v E N(S), uv is an edge.
Then for some i E {1,...,6}, V(A) nN(S) _ A 1,U A-'U Aw 1 . W.l.o.g.

assume i = 2. By Theorem 12.11 the node set K = A' U Aw U Aw induces
a biclique. Now we show that K is a biclique articulation seperating S from
8W. Suppose not. Then S contains a path P = xl,. .. ,, Xn such that either
P is a direct connection between Ow \ (A' U Aw') and Ow avoiding Aw U A'

in G \ E(A) and x, is adjacent to a node of 0- \ (Aw' U A•' U A4), or P is
a direct connection between 8) \ (Aw' U 4) and Ow avoiding Aw U A4 in
G \ E(A) and Xn is adjacent to a node of Ow \ (Aw' U Aw U Au). In either
case P contradicts Lemma 13.4.

Case 2: There are nodes u E A' U Aw U Aw and v E Aw U A' U Aw such

that u, v E N(S) and uv is not an edge.
W.lo.g. assume that N(S)nA' - € and N(S)nA'' # 0. Then there exists

a path P = x 1,..., X,, which is a direct connection from 01 \ (Aj' U A') to
Ow\(AwUA') avoiding A''UA'UA'UAw in G\E(A). Let p E 8•\(Aw'UA-')

be adjacent to x, and q E E) \ (A' U Aw) be adjacent to x.. By Corollary
12.18, let E be a connected 6-hole of 0' containing p and q. By Lemma 13.8
P is a bridge of Type c with respect to E. W.l.o.g. assume P is adjacent to
nodes hl, h2, h3 and h6 . Now by Lemma 13.9 Aw' U Aw' U Aw' U N(h2) is an
extended star cutset seperating x, from Ow. 0
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