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Abstract

A 0,%1 matrix is balanced if, in every square submatrix with two nonzero
entries per row and column, the sum of the entries is a multiple of four.
This paper extends the decomposition of balanced 0,1 matrices obtained by
Conforti, Cornuéjols and Rao to the class of balanced 0,41 matrices. As a
consequence, we obtain a polynomial time algorithm for recognizing balanced
0,+1 matrices.
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1 Introduction

A 0,1 matrix is balanced if it does not contain a square submatrix of odd
order with two ones per row and column. This notion was introduced by
Berge [1] and extended to 0,31 matrices by Truemper [19].

A 0, 1 matrix is balanced if, in every square submatrix with two nonzero
entries per row and column, the sum of the entries is a multiple of four.
This paper extends the decomposition of balanced 0,1 matrices obtained by
Conforti, Cornuéjols and Rao [7) to the class of balanced 0, 1 matrices. As a
consequence, we obtain a polynomial time algorithm for recognizing balanced
0,1 matrices. This algorithm extends the algorithm in [7] for recognizing
balanced 0,1 matrices. It is discussed in a sequel paper.

The class of balanced 0, +£1 matrices properly includes totally unimodular
0, 1 matrices. (A matrix is totally unimodular if every square submatrix has
determinant equal to 0, k1.) The fact that every totally unimodular matrix is
balanced is implied, for example, by Camion’s theorem [3] which states that
a 0, &1 matrix is totally unimodular if and only if, in every square submatrix
with an even number of nonzero entries per row and column, the sum of the
entries is a multiple of four. Therefore our work can also be viewed as an
extension of Seymour’s decomposition and recognition of totally unimodular
matrices [18].

In Section 3 we show that, to understand the structure of balanced 0, +1
matrices, it is sufficient to understand the structure of the zero-nonzero pat-
tern i.e. the 0,1 matrices that can be signed to be balanced. Such 0,1
matrices are said to be balanceable. Clearly balanced 0,1 matrices are bal-
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anceable but the converse is not true: | 1 0 1 | is balanceable but not
011
balanced. Section 4 describes the cutsets used in our decomposition theorem
and Section 5 states the theorem and outlines its proof. In Section 6, we
relate our result to Seymour’s [18] decomposition theorem for totally uni-
modular matrices. The proofs are given in Sections 8 - 13. The necessary
definitions and notation are introduced in Section 7.

Interestingly, a number of polyhedral results known for balanced 0,1 ma-
trices and totally unimodular matrices can be generalized to balanced 0, +1
matrices. It follows that several problems in propositional logic can be solved
in polynomial time by linear programming when the underlying clauses are




“balanced”. These results are reviewed in Section 2.

2 Bicoloring, Polyhedra and Propositional
Logic

Berge [1] introduced the following notion. A 0,1 matrix is bicolorable if its
columns can be partitioned into blue and red columns in such a way that
every row with two or more 1’s contains a 1 in a blue column and a 1 in a
red column. This notion provides the following characterization of balanced
0,1 matrices.

Theorem 2.1 (Berge [1]) A 0,1 matriz A is balanced if and only if every
submatriz of A is bicolorable.

Ghouila-Houri {16] introduced the notion of equitable bicoloring for a 0, +1
matrix A as follows. The columns of A are partitioned into blue columns and
red columns in such a way that, for every row of A, the sum of the entries in
the blue columns differs from the sum of the entries in the red columns by
at most one.

Theorem 2.2 (Ghouila-Houri [16]) A 0, %1 matriz A is totally unimodular
if and only if every submatriz of A has an equitable bicoloring.

A 0, +1 matrix A is bicolorable if its columns can be partitioned into blue
columns and red columns in such a way that every row with two or more
nonzero entries either contains two entries of opposite sign in columns of the
same color, or contains two entries of the same sign in columns of different
colors. For a 0,1 matrix, this definition coincides with Berge’s notion of
bicoloring. Clearly, if a 0, £1 matrix has an equitable bicoloring as defined
by Ghouila-Houri, then it is bicolorable.

Theorem 2.3 (Conforti, Cornuéjols [6]) A 0, +1 matriz A is balanced if and
only if every submatriz of A is bicolorable.

Balanced 0,1 matrices are important in integer programming due to the
fact that several polytopes, such as the set covering, packing and partitioning
polytopes, only have integral extreme points when the constraint matrix is
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balanced. Such integrality results were first observed by Berge [2] and then
expanded upon by Fulkerson, Hoffman and Oppenheim [14]. In the case of
balanced 0, +1 matrices, similar integrality results were proved by Conforti
and Cornuéjols [6] for the generalized set covering, packing and partitioning
polytopes.

Given a 0,+1 matrix A, let n(A) denote the column vector whose i*
component is the number of —1’s in the i** row of matrix A.

h

Theorem 2.4 (Conforti, Cornuéjols [6]) Let M be a 0,%1 matriz. Then
the following statements are equivalent:

(i) M is balanced.

(ii) For each submatriz A of M, the generalized set covering polytope {z :
Az > 1-n(A), 0 <z <1} is integral.

(iii) For each submatriz A of M, the generalized set packing polytope {z :
Az <1-n(A), 0 <z <1} is integral.

(iv) For each submatriz A of M, the generalized set partitioning polytope
{z: Az =1 -n(A), 0 <z <1} is integral.

Several problems in propositional logic can be written as generalized set
covering problems. For example, the satisfiability problem in conjunctive
normal form (SAT) is to find whether the formula

ACV z;v V —z))

i€S jeP; JEN;
is true. This is the case if and only if the system of inequalities

dzi— Y (1-z;)>1forallie S
JEP; JEN;
has a 0,1 solution vector z. This is a generalized set covering problem
Az > 1 —n(A)
z € {0,1}".
Given a set of clauses V,ep, Z;VVjen, ~2; with weights w;, MAXSAT consists

of finding a truth assignment which satisfies a maximum weight set of clauses.
MAXSAT can be formulated as the integer program




Min 377, wis;
Az +s>1—n(A)
z € {0,1}",s € {0,1}™.

Similarly, the inference problem in propositional logic can be formulated

as
min {cz : Az > 1 —n(A), z € {0,1}"}.

The above three problems are NP-hard in general but SAT and logical
inference can be solved efficiently for Horn clauses, clauses with at most two
literals and several related classes [4],[20]. MAXSAT remains NP-hard for
Horn clauses with at most two literals [15]. A consequence of Theorem 2.4
is the following.

Corollary 2.5 SAT, MAXSAT and logical inference can be solved in poly-
nomial time by linear programming when the corresponding 0,+1 matriz A
is balanced.

In fact SAT and logical inference can be solved by repeated application
of unit resolution when the underlying 0, +£1 matrix A is balanced [5].

3 Balanceable 0,1 Matrices

In this section, we consider the following question: given a 0,1 matrix, is it
possible to turn some of the 1’s into —1’s in order to obtain a balanced 0, +1
matrix? A 0,1 matrix for which such a signing exists is called a balanceable
matrix. It turns out that in order to understand the structure of balanced
0,£1 matrices, it is sufficient to concentrate on the zero-nonzero pattern,
i.e. it is sufficient to understand the structure of the 0,1 matrices that are
balanceable. In fact, if a 0,1 matrix is balanceable, there is a simple algorithm
(which we state later) to perform the signing into a balanced 0,+1 matrix.
So, in effect, the problem of recognizing whether a 0,1 matrix is balanceable
is equivalent to the problem of recognizing whether a given 0,+1 matrix is
balanced.

Given a 0,1 matrix A, the bipartite graph representation of A is the bi-
partite graph G having a node in V" for every row of A, a node in V¢ for
every column of A and an edge ¢j joining nodes : € V" and j € V* if and
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only if the entry a;; of A equals 1. The sets V" and V¢ are the sides of the
bipartition. We say that G is balanced if A is.

A signed graph G is a graph together with an assignment of weights +1, —1
to the edges of G. To a 0, +1 matrix corresponds its signed bipartite graph
representation. A signed bipartite graph G is balanced if it is the signed
bipartite graph representation of a balanced 0,%1 matrix. Thus a signed
bipartite graph G is balanced if and only if, in every hole H of G, the sum
of the weights of the edges in H is a multiple of four. (A hole in a graph is
a chordless cycle).

A bipartite graph G is balanceable if there exists a signing of its edges so
that the resulting signed graph is balanced.

Remark 3.1 Since cuts and cycles of a graph G have even intersection, it
follows that, if a signed bipartite graph G is balanced, then the signed bipartite
graph G', obtained by switching signs on the edges of a cut, is also balanced.

For every edge uv of a spanning tree, there is a cut containing uv and no
other edge of the tree (such cuts are known as fundamental cuts), and every
cut is a symmetric difference of fundamental cuts. Thus, if G is a balanceable
bipartite graph, its signing into a balanced bipartite graph is unique up to
the (arbitrary) signing of a spanning tree of G. This was already observed
by Camion [3] in the context of 0,1 matrices that can be signed to be totally
unimodular. So Remark 3.1 implies that a bipartite graph G is balanceable
if and only if the following signing algorithm produces a balanced signed
bipartite graph:

Signing Algorithm

Choose a spanning tree of G, sign its edges arbitrarily and recursively choose
an edge uv which closes a hole H of G with the previously chosen edges, and
sign uv so that the sum of the weights of the edges in H is a multiple of four.

Note that, in the signing algorithm, the edge uv can be chosen to close
the smallest length hole with the previously chosen edges. Such a hole H is
also a hole in G, else a chord of H in G contradicts the choice of uv.

It follows from this signing algorithm, and the uniqueness of the sign-
ing (up to the signing of a spanning tree), that the problem of recognizing




Figure 1: Odd wheel and 3-path configuration

whether a bipartite graph is balanceable is equivalent to the problem of rec-
ognizing whether a signed bipartite graph is balanced.

Let G be a bipartite graph. Let u, v be two nonadjacent nodes in opposite
sides of the bipartition. A 3-path configuration connecting u and v, denoted
by 3PC(u,v), is defined by three chordless paths Py, P, P; connecting u
and v, having no common intermediate nodes and such that the subgraph
induced by the nodes of these three paths contains no other edges than those
of the paths (see Figure 1). Since paths Py, P,, P; of a 3-path configuration
are of length one or three modulo four, the sum of the weights of the edges
in each path is also one or three modulo four. It follows that two of the three
paths induce a hole of weight two modulo four. So a bipartite graph which
contains a 3-path configuration as an induced subgraph is not balanceable.

A wheel, denoted by (H,z), is defined by a hole H and a node = ¢ V(H)
having at least three neighbors in H, say z,, z,,...,Z,. If nis even, the wheel
is an even wheel, otherwise it is an odd wheel (see Figure 1). An edge zz; is
a spoke. A subpath of H connecting z; and z; is called a sector if it contains
no intermediate node z;, 1 < | < n. Consider a wheel which is signed to
be balanced. By Remark 3.1, all spokes of the wheel can be assumed to be
signed positive. This implies that the sum of the weights of the edges in each
sector is two modulo four. Hence the wheel must be an even wheel.

So, balanceable bipartite graphs contain neither odd wheels nor 3-path




configurations. This fact is extensively used in our proofs in this paper. The
following important theorem of Truemper {19] states that the converse is also
true.

Theorem 3.2 (Truemper ([19]) A bipartite graph is balanceable if and only
if it does not contain an odd wheel or a 3-path configuration.

4 Cutsets

In this section we introduce the operations needed for our decomposition
result. A set S of nodes (edges) of a connected graph G is a node (edge)
cutset if the subgraph G\ S, obtained from G by removing the nodes (edges)
in S, is disconnected.

Extended Star Cutsets

A biclique is a complete bipartite graph containing at least one node from
each side of the bipartition and it is denoted by Kgp where B and D are the
sets of nodes in the two sides of the bipartition.

For a node z, let N(z) denote the set of all neighbors of z. In a bipartite
graph G, an eztended star (z;T; A; N) is defined by disjoint subsets T', A, N
of V(@) and a node z € T such that

(i) AUN C N(z),

(ii) the node set T U A induces a biclique (with node set T on one side of
the bipartition and node set A on the other),

(iii) if |T| > 2, then |4] > 2.

This concept was introduced in [7]. An eztended star cutset is one where
TUAUN is a node cutset.

Joins

Let Kpp be a biclique with the property that its edge set E(Kpgp) is a
cutset of the connected bipartite graph G and no connected component of
G \ E(Kpp) contains both a node of B and a node of D. Let Gg be the
union of the components of G \ E(Kpp) containing a node of B. Similarily,
let Gp be the union of the components of G\ E(Kpp) containing a node of
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D. The set E(Kpgp) is a I-join if the graphs Gg and Gp each contains at
least two nodes. This concept was introduced by Cunningham and Edmonds
[12].

Let Kgp and Kgr be two bicliques of a connected bipartite graph G,
where B, D, E, F are disjoint node sets and neither E(Kgp) nor E(KEgr) is
a 1-join in G. Further assume that no connected component of G\ E(Kpp)U
E(KgF) has a node in B and one in D, or a node in E and one in F. Then,
w~ can assume that every component of G \ E(Kgp) U E(KEgF) contains
either a node of B and a node of E or a node of D and a node of F. Let Ggg
be the union of the components of G\ E(Kgp)U E{Kgr) containing a node
of B and a node of E. Similarily, let Gpr be the union of the components
in G\ E(Kpp) VU E(KgF) containing a node of D and a node of F. The set
E(Kpp) U E(KgF) is a 2-join if neither of the graphs Gpe and Gpr is a
chordless path with all its intermediate nodes in V(G)\ BUDUEUF'. This
concept was introduced by Cornuéjols and Cunningham [11].

In a connected bipartite graph G, let A, = 1,...,6 be disjoint nonempty
node sets such that, for each i, every node in A; is adjacent to every node
in Ai-y U Aiy1 (indices are taken modulo 6), and these are the only edges
in the subgraph A induced by the node set U_, A;. Assume that E(A) is
an edge cutset but that no subset of its edges forms a 1-join or a 2-join.
Furthermore assume that no connected component of G \ E(A) contains a
node in A; U A3 U As and a node in A; U A4 U Ag. Let Gy 35 be the union of
the components of G \ E(A) containing a node in A; U A3U A5 and G 46 be
the union of components containing a node in A; U A4 U Ag. The set E(A)
constitutes a 6-join if the graphs G) 35 and G, 46 each contains at least four
nodes (see Figure 2). This concept is new.

5 The Main Theorem

A bipartite graph is restricted balanceable if its edges can be signed so that the
sum of the weights in each cycle is a multiple of four. Restricted balanceable
bipartite graphs can be recognized in polynomial time [9], [22]. Rio is the
balanceable bipartite graph defined by the cycle zi,...,Z10, 21 of length 10
with chords z;z;45, 1 <t < 5 (see Figure 3).

We can now state the decomposition theorem for balanceable bipartite
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Figure 4: Four kinds of Connected 6-holes

graphs:

Theorem 5.1 A balanceable bipartite graph that is not restricted balanceable
is either Ryp or contains a 2-join, a 6-join or an extended star cutset.

The key idea in the proof of Theorem 5.1 is that if a balanceable bipartite
graph G is not restricted balanceable, then one of the three following cases
occurs: (i) the graph G contains Ry or (ii) it contains a certain induced
subgraph which forces a 6-join or an extended star cutset of G, or (iii) an
earlier result of Conforti, Cornuéjols and Rao (7] applies.
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Connected 6-Holes

A triad consists of three internally node-disjoint paths ¢,...,u; ¢,...,v and
t,...,w, where t, u, v, w are distinct nodes and u, v, w belong to the same
side of the bipartition. Furthermore, the graph induced by the nodes of the
triad contains no other edges than those of the three paths. Nodes u, v and
w are called the attachments and ¢ is called the meet of the triad.

A fan consists of a chordless path z, ...,y together with a node z adjacent
to at least one node of the path, where z, y and z are distinct nodes all
belonging to the same side of the bipartition. Nodes z, y and 2 are called
the attachments of the fan and z is the center. A spoke is an edge connecting
z to a node of the fan.

A connected 6-hole T is a bipartite graph induced by two disjoint node sets
T(X) and B(X) such that each induces either a triad or a fan, the attachments
of B(X) and T'(X) induce a 6-hole and there are no other adjacencies between
the nodes of T'(X) and B(X) (see Figure 4). T(X) and B(X) are the sides of
L, T(X) is the top and B(X) the bottom.

Theorem 5.2 A balanceable bipartite graph containing Rig as a proper in-
duced subgraph has a biclique articulation.

Theorem 5.3 A balanceable bipartite graph that contains a connected 6-hole
as an induced subgraph has an ertended star cutset or a 6-join.

Theorem 5.4 [7] A balanceable bipartite graph not containing Ryo or a con-
nected 6-hole as induced subgraphs either is restricted balanceable or contains
a 2-join or an extended star cutset.

Now Theorem 5.1 follows from Theorems 5.2, 5.3 and 5.4.

6 Connection with Seymour’s Decomposi-
tion of Totally Unimodular Matrices

Seymour [18] discovered a decomposition theorem for 0,1 matrices that can
be signed to be totally unimodular. The decompositions involved in his
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theorem are 1-separations, 2-separations and 3-separations. A matrix B has
a k-separation if its rows and columns can be partitioned so that

Al D?
o-(b %)
where r(D')+r(D?) = k—1 and the number of rows plus number of columns
of A'is at least k, for i = 1,2. (here r(C) denotes the GF(2)-rank of 0,1
matrix C).

For a 1-separation r(D') + r(D?) = 0. Thus both D! and D? are iden-
tically zero. The bipartite graph corresponding to the matrix B is discon-
nected.

For the 2-separation r(D') + r(D?) = 1, thus w.l.o.g. D? has rank zero
and is identically zero. Since r(D!) = 1, after permutation of rows and
columns, D! = g ﬁ‘ , where E is a matrix all of whose entries are 1.
The 2-separation in the bipartite graph representation of B corresponds to
a 1-join.

For the 3-separation r(D!) + r(D?) = 2. If both D! and D? have rank 1
then, after permutation of rows and columns,

. (0B ., (00
D‘(oo » D=1 g o

where E' and E? are matrices whose entries are all 1. This 3-separation in
the bipartite graph representation of B corresponds to a 2-join.

When r(D') = 2 or r(D?) = 2, it can be shown that the resulting 3-
separation corresponds to a 2-join, a 6-join or to one of two other decompo-
sitions which each contain an extended star cutset.

In order to prove his decomposition theorem, Seymour used matroid the-
ory. A matroid is regular if it is binary and its partial representations can be
signed to be totally unimodular (see [21] for relevant definitions in matroid
theory). The elementary families in Seymour’s decomposition theorem con-
sist of graphic matroids, cographic matroids and a 10-element matroid called

12
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Figure 5: Representations of R,o

Rio- Rio has exactly two partial representations

10011 11001
11001 11100
01101}and ] 01110
00111 00111
11111 10011

The bipartite graph representations are shown in Figure 5.

Theorem 6.1 (Seymour [18]) A regular matroid is either graphic, cographic,
the 10-element matroid Ry, or it contains a 1-, 2- or 3-separation.

In order to prove Theorem 6.1, Seymour first showed that a regular ma-
troid which is not graphic or cographic either contains a 1- or 2-separation or
contains an R, or an R;; minor, where R;; is a 12-element matroid having
the following matrix as one of its partial representations.

110100
011100
110010
101011
011001
000011
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Note that the bipartite graph representation of this matrix is a connected
6-hole where both sides are fans. So, this first part in Seymour’s proof
has some similarity with Theorem 5.4 stated above for balanceable bipartite
graphs.

Then Seymour showed that, if a regular matroid contains an R;¢ minor,
either it is Ryo itself or it contains a l-separation or a 2-separation. We
show in Section 8 that if a balanceable bipartite graph contains an R as an
induced subgraph, either it is Ry itself or it contains a biclique cutset.

Seymour completed his proof by showing that, for a regular matroid which
contains an R, minor, the 3-separation of R,3 induces a 3-separation for the
matroid. We show in Sections 9 - 13 that, for a balanceable bipartite graph
which contains a connected 6-hole as an induced subgraph, either the 6-join
of the connected 6-hole induces a 6-join of the whole graph or there is an
extended star cutset.

Our proof differs significantly from Seymour’s for the following reason.
A regular matroid may have a large number of partial representations which
lead to nonisomorphic bipartite graphs. This is the case for R;,. All these
partial representations are related through pivoting. In the case of 0,1 bal-
anceable matrices there is no underlying matroid, so pivoting cannot help
reduce the number of cases. Since our proof is broken down differently from
Seymour’s, we do not consider all these cases explicitly either.

7 Definitions and Notation

Let G be a bipartite graph where the two sides of the bipartition are V" and
Ve. We say that G contains a graph ¥ if ¥ is an induced subgraph of G.
A node v ¢ V(X) is strongly adjacent to X if |[N(v) N V(Z)| > 2. We say
that a strongly adjacent node v is a twin of a node z € V(X) relative to X if
N(@)nV(Z) = N(z)n V().

A path P is a sequence of distinct nodes z;,z3,...,Z,, n > 1 such that
Z;x;yy is an edge, for all 1 < ¢ < n. Let z; and z; be two nodes of P,
where [ > i. The path z;,z;41,...,7; is called the ;z;-subpath of P and
is denoted by Py,;,. We write P = zy,...,%i-1, Pr;z;, Ti41,. .. ,Tn OF P =
Zyy ..oy Tiy Prizyy Ty - . .y T, A cycle C is a sequence of nodes z,, 3, ..., Zn, Z1,
n > 3, such that the nodes z,,z3,...,z, form a path and z;z, is an edge.
The node set of a path or a cycle Q is denoted by V(Q).

14




Let A, B, C be three disjoint node sets such that no node of A is adjacent
to a node of B. A path P = z4,z,,...,z, connects A and B if one of the two
endnodes of P is adjacent to at least one node in A and the other is adjacent
to at least one node in B. The path P is a direct connection between A and B
if, in the subgraph induced by the node set V(P)U AU B, no path connecting
A and B is shorter than P. A direct connection P between A and B avoids
C if V(P)NC = ¢. The direct connection P is said to be from A to B if r,
is adjacent to some node in A and z, to some node in B.

For § C V(G), N(S) denotes the set of nodes in V(G) \ S which are
adjacent to at least one node in S.

8 Splitter Theorem for Ry

An eztended Ry is a bipartite graph induced by ten nonempty pairwise
disjoint node sets T3, ..., T}o such that for every 1 < i < 10, the node sets
T; UT;,, T; UT;y; and T; U T;y5 all induce bicliques and these are the only
edges in the graph. Throughout this section all the indices are taken modulo
10.

We consider a balanceable bipartite graph G which contains a node in-
duced subgraph R isomorphic to Ryo. We denote its node set by {1,...,10}
and for each ¢ = 1,...,10, node ? is adjacent to nodes : — 1,z + 1 and
i+5 (mod 10).

The first step in the proof of the splitter theorem for Ryg is to study the
structure of the strongly adjacent nodes to R.

Theorem 8.1 Let R be an Ryo of G. If w is a strongly adjacent node to R,
then w s a twin of a node in V(R) relative to R.

Proof: First assume that w has exactly two neighbors in R. If the neigh-
bors of w in R are nodes 1 and 3, the hole w,1,6,7,8,3,w induces an odd
wheel with center 2. If the neighbors of w in R are nodes 1 and 5, the hole
w,1,2,7,8,9,4,5,w is an odd wheel with center 10. The other cases where
w has two neighbors in R are isomorphic.

We now assume that node w is adjacent to at least three nodes in R. If
node w is adjacent to nodes 7,7 + 2,7 + 4, then there exists an odd wheel
i+ 1,14+ 2,:4+3,i +4,i + 5,7 with center w. So w is adjacent to exact’
three nodes 7,7 + 2,7 + 6, showing that wis a twinof: +1. O
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Definition 8.2 Let R be an Ry of G. For 1 < i <10, let T;(R) be the set
of nodes comprising node i in R and all the twins of node i relative to R. Let
R® be the graph induced by the node set U2, Ti(R).

Lemma 8.3 R* is an extended Ryo.

Proof: Let u € T;(R) and v € T;(R), where 1 <i,5 < 10. Let R’ be the
R\ obtained from R by substituting node u for node :. Now by Theorem
8.1, node v is twin of node j in R'. Hence nodes u and v are adjacent if and
only if nodes i and j are adjacent. O

Theorem 8.4 R satisfies the following two properties:

(1) If node w is strongly adjacent to R* then for some 1 < i < 10, N(w) N
V(R*) C T(R).

(i1) If R' is an Ryo induced by the node set {z,,...,z10} where z; € T;(R)
for1 <i <10, then T;(R') = Ti(R).

Proof: To prove (i), assume that w is adjacent to w; € T;(R) and w; €
Ti(R), i # j. Let Ry, be an Ryo obtained from R by replacing node ¢ with
w; and node j with w;. Node w is now strongly adjacent to Ry,.,, so by
Theorem 8.1 node w is a twin of a node in R,,.,. Hence w is adjacent to
a node k of R. Let R,, be an R,y obtained from R by replacing node i by
w;. Since w is adjacent to k and wj, it is strongly adjacent to R,,, hence
by Theorem 8.1 w is adjacent to a node ! # k of R. Now w is a strongly
adjacent node of R and by Theorem 8.1 must be a twin of a node of R. Hence
w € V(R*), which contradicts our choice of w.

To prove (ii), note that Lemma 8.3 implies T;( R) C T;(R'), so it is enough
to show that T;(R') C Ti(R). Let u € T;(R') and suppose that u & T;(R).
Then node u is strongly adjacent to R* and by (i) we have a contradiction.
a

Remark 8.5 Considering Theorem 8.4 we can simplify the notation by re-
placing T;(R) by T.

Definition 8.6 For 1 < : < 10, let K; be the complete bipartite graph in-
duced by the node set T;_y UT; U Ty UTiys.

We now study the structure of paths between the nodes of R*.
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Lemma 8.7 If P = z,,...,z, is a direct connection from T; to V(R*)\ T;
in G\ E(K;), then the neighbors of . in R* belong to a unique set T;, where
j=i—1,i+1ori+5.

Proof: Assume w.l.o.g. that z, is adjacent to node ;. By Theorem 8.4 (i),
n > 1 and node z, has neighbors in exactly one T;. Assume that for some
J€{i—-1,i+1,i+5}, z, is adjacent to a node v; € T;.

If j = ¢+2 then the hole i, z;, P, z,,, vi42,t + 7,1+ 6,7+ 5,1 induces an odd
wheel with center 1+ 1. If j = 1+ 3 then the paths P, = 1,2y, P, 25, viy3; P2 =
t,0+1,i4+2,v;43 and Py = ¢,i— 1,44, v;y3 induce a IPC(i,vi43). If j =1 +4
then the hole ¢, z;, P, z,,Vi44,t + 3,1 + 8,4 + 7, + 6,7 + 1,7 induces an odd
wheel with center ¢ + 2. This completes the proof since the remaining cases
are isomorphic to the above three. O

Lemma 8.8 There cannot ezist a path P = z,,...,z, with nodes belonging
to V(G)\V(R*) such that z, is adjacent to a node v; € T; and z,, is adjacent
to a node v; € T;, where i # j and v; and v; are not adjacent.

Proof: Let P be a shortest path contradicting the lemma. Hence P does
not contain an intermediate node adjacent to a node in T; U Tj. If no node
z;of P,2 <1< n-1,is adjacent to a node in V(R*) then P is a direct
connection from T; to V(R*)\ T; in G\ E(K;) contradicting Lemma 8.7.

Let z; be the node of P, with the smallest index, adjacent to a node in
V(R*)\(T;UT;), say z, is adjacent to w € T;. By Lemma 8.7 and symmetry,
we can assume w.l.o.g. that k =i+ 1 or i + 5. No node in V(R*) \ T} can
be adjacent to an intermediate node of P, otherwise P is not a shortest path
contradicting the lemma. Let z,, be the node of P with highest index which
is adjacent to a node v; € T}.

Case 1: k=i+1. Lemma 8.7 applied to z,,,...,z, and the minimality of P
show that j =¢+2or: +6.

Cases 1.1: j=i+2. Let H; = v;, 23, P, 25, vi42,t +3,t + 4,2 —1,v; and H, =
v;, T1, P, Zp, vig2,t + 7,1 + 6, 4+ 5,v;. Now either H; or H; induces an
odd wheel with center : + 1.

Case 1.2: j=i+6. The hole v;, 21, P,z,,vi36,t + 7,0 + 2,2 4+ 3,2 + 4,2 — 1, v;
induces an odd wheel with center : 4 5.
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Case 2: k = i+5. Lemma 8.7 applied to z,,,...,z, and the minimality of
P show that j = ¢ + 4. Now the hole v;,z,, P,z,,vi44,1 + 3,2 + 8,2 +
7,74 6,7 + 1, v; induces an odd wheel with center ¢ + 2.

o

Theorem 8.9 If a balanceable bipartite graph G contains Ryq then either G
ts Ry itself or G contains a biclique cutset.

Proof: Let R be an Ryo of G. By Lemma 8.3, R* is an extended R,,.
Assume that V(G) # V(R*). Let w be a node in V(G)\ V(R*) adjacent to a
node in T;. If the biclique K] is not a cutset of G, seperating w from V(R*),
then a path contradicting Lemma 8.8 exists. Hence V(G) = V(R*). f G is
not Ry, then at least one of the node sets T;(R) has cardinality greater than
one. W.l.o.g. let u and v be two nodes in T3(R). Now {u} U N(u) is a star
cutset seperating v from the rest of the graph. O

9 Decomposition of Connected Six-holes

In the remaining sections, we assume that G is a balanceable bipartite graph
and X is a connected 6-hole induced by T(X) and B(X). We prove that either
G contains an extended star cutset or it has a 6-join which separates the top
and the bottom of X.

We denote by H = hy, hy, ks, hy, hs, he, by the 6-hole of ¥ induced by the
attachments of T(X) and B(X) and we assume that hy,h3,hs € T(X) and
hz, h4, hs € B(E) We also assume hl,h3, hs € V¢ and hz, h4,h6 eV. It
will be convenient to define the index of k; modulo 6. If T(X) is a triad,
the three paths defining it are denoted by Py, P, and P; and the meet is
denoted by t. For connected 6-hole ¥/, £” and £*, we denote the respective
6-holes by H’ = hi, k), kY, kY, AL, kG, by, H” = hY, kY, kY, kY, kY, kg, kY, and
H* = hk h% hE R RE RE RE.

Remark 9.1 Let X be one of the sides of a balanceable connected 6-hole ¥.
If X is a triad, its meet belongs to the same side of the bipartition as its
attachments, else X contains a 3-path configuration. If X is a fan, its center
has a positive even number of neighbors on the path of the fan connecting the
other two attachments, else X contains an odd wheel. Hence X cannot be
both a triad and a fan.
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Remark 9.2 Let h; and h; be two distinct attachments of a side X of L.
There is a unique chordless path in X, connecting h; and h;. This path is
denoted by P;;. For any pair of nodes z and y in V(X), there ezists a hole
containing r and y whose node set is included in V(L).

We use the following theorems, proved in [7] Part VI, about the structure
of strongly adjacent nodes to an even wheel. We first introduce the relevant
notation. Two sectors of a wheel are adjacent if they have a common endnode.
A bicoloring of a wheel is an assignment of colors to the intermediate nodes
of its sectors so that the nodes in the same sector have the same color and
nodes of adjacent sectors have distinct colors. The endnodes of sectors are
left unpainted. Note that a wheel is bicolorable if and only if it is even.

Theorem 9.3 Let (W,v), v € V", be an even wheel in a balanceable bipartite
graph, and let u € V°\N(v) be a node with neighbors in at least two distinct
sectors of the wheel (W,v). Then u satisfies one of the following properties:

Type a Node u has exactly two neighbors in W and these neighbors belong
to two distinct sectors having the same color.

Type b There ezists one sector, say S; with endnodes v; and v, such that
u has e positive even number of neighbors in S; and has ezactly two
neighbors in V(W) \ V(S;), adjacent to v; and vi respectively.

Theorem 9.4 Let (W,v), v € V', be an even wheel in a balanceable bipartite
graph, and let u € VN N(v) be a node which is strongly adjacent to (W,v).
Then u satisfies one of the following properties:

Type a Node u has ezactly one neighbor in W.

Type b Node u is not of Type a and in each sector of (W,v), u has either
0 or an odd number of neighbors. It follows that u has neighbors in
an even number of sectors and that the number of consecutive sectors
without neighbors of u, between two sectors with neighbors of u, is even.

Classification 9.5 A node u € V7, strongly adjacent to an even wheel
(W,v), v € V", is classified as follows:

Type a There ezists a sector of (W, v) containing all the nodes of N(u)NW.
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Type b Node u is not of Type a and all its neighbors in W are unpainted.
Note that, in particular, the center v of the wheel is of Type b.

Type ¢ Node u is not of Types a or b and all its painted neighbors in W
have the same color.

Type d Node u has painted neighbors of both colors.

10 Strongly Adjacent Nodes to a Connected
6-Hole

The first step in our decomposition of a connected 6-hole ¥ is the study of
the strongly adjacent nodes. We use notation introduced in Section 9.

Lemma 10.1 If T(X) is a triad and w is adjacent to its meet t, then all
nodes of N(w) N T(X) are contained tn a unique path P; of the triad, where
J =13 orb.

Proof: Assume not. Then w.l.o.g. w has neighbors in P\ {t} and Ps\ {t}.
Since the hole hy, Py, Ps, h; induces a wheel with center w, the node w has
a positive even number of neighbors in one of the paths P,, P; and an odd
number (greater than one) of neighbors in the other. Let Hy = hg, P1, Ps, he
and H; = hy, Ps, P;, hy. Now either (H;, w) or (Hz,w) induces an odd wheel.
a

10.1 Strongly Adjacent Nodes Having Neighbors Both
in T(X) and B(X)

In this section, w denotes a strongly adjacent node to £ and we assume
w.l.o.g. that wisin V".

Theorem 10.2 If w € V' has neighbors both in T(X) and B(X), then
N(w)NT(E) = {hi,h;}, i #j,4,j =1,3 or 5.

To prove this theorem, we need the following lemmas:

Lemma 10.3 IfT(X) is a triad and w € V" has neighbors both in T(X) and
B(X), then N(w) NT(Z) = {hi, hj}, i # j, wherei,j =1,3 or 5.
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Proof: First we show that the neighbors of w in T(X) cannot all be
contained in the same path of T(X). Assume the contrary i.e. assume that
for some j = 1,3 or 5, N(w) N T(X) € P;. Then since w € V" is not
adjacent to hj, hy,he € V™ but has at least one neighbor in B(X), there is
a 3PC(t, h;y3) where t is the meet of T(X). Node w is not adjacent to the
meet t, since otherwise by Lemma 10.1 the neighbors of w in T(¥) would
all be contained in the same path of 7(X). Then node w has neighbors in
at most two paths of T'(X), since otherwise there is a 3PC(w,t). Therefore
node w has neighbors in exactly two distinct paths of T(X), say P, and Ps.
Let w; € P, and ws € P; be neighbors of w. Assume w.l.o.g. that w3 # ha.
Now there is a 3PC(w,t) where the intermediate nodes of the three paths
are included respectively in V(P,),V(P;) and V(P;) U (B(Z) \ {ha2, he}).
Therefore N(w) N T(X) = {h1, h3}. O

We now study the case where T'(X) is a fan and we assume w.l.o.g. that
h3 is the center node of the fan.

Lemma 10.4 IfT(X) is a fan and w € V" has neighbors both in T(X) and
B(X) but w is not adjacent to hz, then N(w) N T(X) = {hy, hs}.

Proof: Let Hys be the hole induced by the paths Pi5 in T(X) and Py in
B(X). We first show the following claim:

Claim 1: Node w has more than one neighbor in T'(X).

Proof of Claim 1: Assume not and let w; be the unique neighbor of w in
T(X). If w, belongs to a sector of (Hys, h3) having either k; or h4 as endnode,
there is an odd wheel with center h3. Otherwise there is a 3PC(wy, he). This
proves Claim 1.

So w is not adjacent to k3 and is strongly adjacent to H;s and therefore
w is of Type a or b[9.3] relative to (H;s, k3).

If w is of Type a[9.3] with neighbors w, and w; in Hys, Claim 1 shows
wy, wy € T(X). Hence w has a neighbor in B(X) \ V(H;s). Now w;, w; must
coincide with Ay, hs, else there is a 3PC(w, h3).

So w is of Type b[9.3]. If all the neighbors of w in H;s belong to T'(X),
there is a 3PC(w, h3). If all but one of the neighbors of w belong to T'(X),
there is an odd wheel with center w. The structure of a Type b[9.3] node
shows that the only remaining possibility is that the neighbors in T'(X) of w
are h,, hs, completing the proof of the lemma. O
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Lemma 10.5 If T(X) is a fan, w € V" has neighbors both in T(X) and
B(X) and w is adjacent tc bz, then N(w) N T(X) = {h1,hs} or {hs, hs}.

Proof: If w has no neighbor in T(X) \ {A3} then, since w has a neighbor
in B(X), there is a 3PC/(h3, h¢)-

So w is strongly adjacent to (Hs,k3) and satisfies Theorem 9.4, where
Hs denotes the hole induced by the paths Pjs in T(X) and P4 in B(X). We
first show that w has a unique neighbor in T'(X) \ {ks}.

This is clearly the case if node w is of Type a[9.4], so assume node w is
of Type b[9.4]. If w is adjacent to a node in the sector B(X) N V(H;s) of
(H;s, h3), then Theorem 9.4 shows that w has an odd number of neighbors in
T(X)\ {k3}. Hence w has exactly one neighbor in T'(X)\ {3}, else this node
set together with node hg induces an odd wheel with center w. If w is not
adjacent to B(X)NV(H,5) and it has a unique neighbor w, in B(X)\ V(His),
then there is a 3PC(w,, hy) or a 3PC(wy, hy). Finally, if w is not adjacent
to B(X) N V(H;s) and it has at least two neighbors in B(X) \ V(H;s), then
there is a 3PC(w, h,) or a 3PC(w, hs).

Let w; be the unique neighbor of w in T(X) \ {h3}. If w, is distinct from
h] and hs, then there is a 3PC(‘U)1, he) a

Proof of Theorem 10.2: The proof of the theorem follows from Lemmas
10.3, 10.4 and 10.5. O

10.2 Strongly Adjacent Nodes Having Neighbors Only
in One Side of ¥

In this section we assume w.l.o.g. that the strongly adjacent node w has no
neighbor in B(X).

Theorem 10.6 If T(X) is a triad, then w is one of the following types, see
Figure 6 :

Type a N(w)NT(X) CV(P) fori=1,3 orb.
Type b w € V¢ has at least one neighbor in each path Py, P; and P;.

Type ¢ w € V¢ has neighbors in exactly two of the paths P,, P and P;.
Furthermore w either has an even number of neighbors in each of the
two paths or has one neighbor in each path and both neighbors are
adjacent to the meet t.
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Type ¢

Typec

Figure 6: Strongly adjacent nodes with all neighbors in a triad T'(Z)

Type d w € V" is not adjacent to the meet t and has two neighbors in T(X)
which belong to distinct paths of T(X).

Proof: If some path of T(X) contains all the nodes in N(w) N T(X), then
we have Type a. If w € V* has neighbors in all three paths, we have Type b.

Assume now that w € V* has neighbors in exactly two paths, say P, and
P;. Then w cannot have an even number of neighbors in one path and an
odd number in the other, else there is an odd wheel with center w. If w has
an odd number, greater than one, of neighbors in one of the paths, then P;
closes an odd wheel with center w. Let w; be the unique neighbor of w in
P, and let w; be the unique neighbor of w in P;. Then w, is adjacent to ¢,
else there is a 3PC(w;,t). Similarily w; is adjacent to ¢. This yields Type c.

Finally assume that w € V" is not of Type a. Lemma 10.1 shows that w
is not adjacent to ¢. If w has neighbors in all three paths of T(X), there is a
3PC(w,t). So w has neighbors in exactly two paths and if w has more than
two neighbors in T'(X) there is a 3PC(w,t). O

Remark 10.7 Let ¥ be a connected 6-hole whose top is a fan with center
hs and let Hys be the hole induced by paths Pys and Poy. A node w strongly
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adjacent to T but with no neighbor in B(X) can be of any of the types described
in Theorems 9.8, 9.4, 9.5 relative to (H,s, h3).

Theorem 10.8 If w is a strongly adjacent node to L, with no neighbor in
B(X), then either w belongs to a connected 6-hole with top contained in
T(Z) U {w}, bottom B(X) and 6-hole H or one of the following holds:

o T(X) is a triad and w is of Type c[10.6] with ezactly two neighbors in
T(%).

o T(X) is a triad and w is of Type d[10.6] adjacent to two nodes of the
6-hole.

o T(X) is a fan, say with center hs, and w is of Type af9.4] relative to
(H157 h3)

Proof: 1If T(X) is a triad, tize proof follows from Theorem 10.6 by in-
spection. Now assume T'(X) is a fan with center k3 an- let H;s be the hole
induced by paths Pis and Pa4. If w is adjacent to hs, then w is strongly
adjacent to the wheel (Hys, h3) and the theorem follows from Remark 10.7.
If w is not adjacent to hs, let @ be the shortest path between h; and hs
containing w, in T(Z} U {w} \ {hs}.

If hs is adjacent to a node of @, then V(Q) U {h3} induces a fan with
attachments hy, ks, hs.

If A3 is not adjacent to a node of @, let R be a direct connection between
hs and V(Q), using nodes of T(X). Then V(Q) U V(R) U {hs} induces a
triad with attachments h;, A3 and ks which, together with B(X), induces a
connected 6-hole. O

Classification 10.9 Theorems 10.2 and 10.8 partition the strongly adjacent
nodes w to X into the following classes:

Type a Node w belongs to a connected 6-hole with nodes in V(X) U {w}.

Type b Node w is adjacent to exactly two nodes of L and these two nodes
belong to the 6-hole of ©. Such a node w is called a fork.

Type ¢ Node w has ezactly two neighbors in L, both belonging to the same
side which is a triad and both neighbors are adjacent to the meet of the
triad.
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Type d Node w has ezactly two neighbors in L, both belonging to the same
side which is a fan, say with center h;, and w is adjacent to h; and one
other node which is not an attachment of the fan.

11 Direct Connections from Top to Bottom

Lemma 11.1 Every direct connection P = zy,...,z, between T(X) and
B(X) in G\ E(H) is of one of the following types:

e n =1 and z, ts a strongly adjacent node satisfying Theorem 10.2.

e One endnode of P is a fork, adjacent to h;,_y and hiy, and the other
endnode of P is adjacent to a node of V() \ V(H)

e Bridge of Type a Nodes z, and z, are not strongly adjacent to L
and their unique neighbors in ¥ are two adjacent nodes of the
6-hole of T.

Bridge of Type bl One endnode of P is a fork, say z, is adjacent
to »y and hs, and z, has a unique neighbor in ¥ which is h,.

Bridge of Type cl Node z, is a fork, say adjacent to hy and hs, and
z, 15 also a fork, adjacent to h; and either hy or hg.

Proof: If n = 1, z, is a strongly adjacent node with neighbors both in
T(X) and B(X) and this possibility is described in Theorem 10.2. So we
assume n > 1, z; has no neighbors in B(X) and z, has no neighbors in
T(%).

Case 1: Neither z; nor z,, is a fork of X.

Case 1.1: Nodes z; and z,, are either not strongly adjacent to I or they
are of Type a[10.9].

Assume z, is a strongly adjacent node. Let ¥’ be a connected 6-hole
containing z; and having node set included in V(X) U {z,}. Node z;, does
not belong to the 6-hole of X', since z; has no neighbor in B(X). This shows
n > 2, otherwise z, is a strongly adjacent node with neighbors both in the
top and bottom of ¥’, and since z, is not a fork of ¥ this violates Theorem
10.2. Therefore, after possibly modifying P and ¥ appropriately, we can
assume w.l.o.g. that both z, and z, are not strongly adjacent to £. Let y
and z be the unique neighbors of z; and z, in I, respectively.
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If y and 2 belong to the same side of the bipartition, assume w.l.o.g. that
y € V', y € V(Pis) and y is not adjacent to h;. There exists a 3PC(h,,y)
using P and the hole induced by V(Py5) U {he}, unless z coincides with hy
or he. Assume z = hg. Then there is a 3PC(hs, h) unless y is adjacent
to hs. But then there is an odd wheel with center hs and hole induced by
V(P)U V(Pss \ {hs}) U V(Ps). Assume z = hy. Then there is a 3PC(y, hs)
unless y is adjacent to ks. But then there is an odd wheel with center s and
hole induced by V(P) U V(Pys5 \ {hs}) U V(Pys).

By Remark 9.2, y and z belong to a hole H with node set included in
V(Z). If y and z belong to opposite sides of the bipartition and they are not
adjacent, the path P together with H induces a 3PC(y,2). If y and z are
adjacent, then they belong to tke 6-hole of ¥ and P is a bridge of Type a.
Note that, in this case, P and ¥ were not modified.

Case 1.2: Node z, is of Type c[10.9].

Then T'(X) is a triad. Assume w.l.o.g. that the neighbors of z, belong to
the paths P, and Ps. If z, is adjacent to a node in B(X) \ {4, he}, there is
a 3PC(z1, hy). If z, is adjacent to he only, there is a 3PC(z1, he). If z, is
adjacent to hy4 only, there is a 3PC(z,, h4). Since z,, is not a fork, Case 1.2
cannot occur.

Case 1.3: Node z; is of Type d[10.9].

Then T(X) is a fan, say with center k3 and z, is adjacent to k3 and one
other node of the fan, say y, distinct from k, and hs. If z,, is adjacent to a
node in B(X) \ {hz, hs}, there is a 3PC(y, he). If z,, is adjacent to h; only,
there is a 3PC(y, h;). If z, is adjacent to hy only, there is a 3PC(y, hy).
Since z,, is not a fork, Case 1.3 cannot occur.

Case 2: Either z; or z, is a fork of ¥, but not both.

W.l.o.g. assume z; is a fork adjacent to h; and hj. If z, is not adjacent
to a node of V(X) \ V(H) then z, has a unique neighbor y in ¥, where
y = hy,hq or he. If y = hy, we have a bridge of Type bl. If y = h4 or hg,
say hg4, the hole induced by V(P) U V(Pa4) U {h,} forms an odd wheel with
center hs.

Case 3: Both z, an z,, are forks of X.

We have a bridge of Type cl, unless z; is adjacent to, say h; and hs, and
. is adjacent to hy and he. But, in this case, there is a 3PC(z1,z,) if z1 is
not adjacent to z,, and an odd wheel with center z, if z, is adjacent to z,.
a
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Lemma 11.2 Every direct connection P = z,,. .,z, from T(X)\ {h1} to
B(Z) avoiding {h,} in G\ E(H) is either one of the types described in Lemma
11.1 or n > 1, there exists a node z;, 1 < t < n , adjacent to hy, and P
satisfies one of the following alternatives:

e Node z, is adjacent to at least one node in T(X) \ {hy, h3, hs} and z,
is a fork adjacent to hy and he.

¢ Bridge of Type b2 Node z, is adjacent either to h, or he, say h,
and to no other node of . Node z, is adjacent to hj, possibly h,
and to no other node of X.

Bridge of Type ¢2 Node z, is a fork adjacent to h,; and he. Node
z, is adjacent to either hy or hs but not both, possibly hy and to
no other node of X..

Proof: If no node z;, 1 < i < n, is adjacent to h;, then P is also a direct
connection from T'(X) to B(Z) in G\ E(H). Hence P satisfies Lemma 11.1.

Let z;, 1 < j < n, be the node of highest index which is adjacent to h;.
The subpath P;;,, of P is a direct connection from T'(X) to B(X) satisfying
Lemma 11.1. Since z; is adjacent to A, only, P, is a bridge of Type a or
b [11.1).

Assume that P, is a bridge of Type a [11.1]. Then z, is adjacent to
either h; or hg, say hs. If z; has a neighbor in T'(£)\ {4, hs}, then there exists
a chordless path @) connecting z; to hs whose intermediate nodes beleng to
T(X)\ {h1,h3}. Now one of the two holes formed by the nodes of P, @ and
either Pyg or P24 contains an odd number of neighbors of k. So the neighbors
of z, in T(X) are contained in {k,, k3} and z; is adjacent to k3. This yields
a bridge of Type b2 [11.2].

Assume now that P; ., is a bridge of Type bl [11.1]. Then z, is ad-
jacent to hg and he. If z; has a neighbor in T'(X) \ {A, ks, hs}, then the
first possibility of Lemma 11.2 holds. So the neighbors of z;, in T'(X) are
contained in {hi, h3, hs}. If z, is a fork, adjacent to hz and hs, then there is
a 3PC(z;,z,). This yields a bridge of Type c2 [11.2]. O

Lemma 11.3 Every direct connection P = z,,...,z, from T(Z) \ {h1,h3}

to B(X) avoiding {hy,hs} in G\ E(H) is either described in Lemma 11.2,
or P satisfies the following two conditions:
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o There ezist nodes z; and z¢, 1 < j, k < n, of P adjacent to h, and h3
respectively (possibly j = k).

o Let z;, 7 < n be the node of highest indez adjacent to hy or hs, say h;.
Then z,, is a fork of ¥ adjacent to h;_; and hiy,.

Proof: 1If no node z; of P, 1 < j < n is adjacent to hs, then P is also a
direct connection from T'(X) \ {h1} to B(X) avoiding {h:} in G\ E(H) and
is described in Lemma 11.2. By symmetry, a similar conclusion holds if no
node z;, 1 < j < n is adjacent to h,. Hence the first condition of the lemma
holds. Let z; be the node of highest index adjacent to h; or hs, say ha, such
shat there exists at least one zx, k > j adjacent to h; but no node z;, [ > 3
is adjacent to h3. Then the subpath P; ., of P is a direct connection from
T(X)\ {h1} to B(X) avoiding {k,} in G\ E(H).

Claim 1: Node z, has at most two neighbors in ¥, which are h; and
possibly either k4 or hg.

Proof of Claim 1: Let z; be a node of P adjacent to h; and having
highest index. (Obviously I > j). Then the subpath P, of Py, is a
direct connection from T(X) to B(X) in G\ E(H). If | > j then z; has
hy as unique neighbor in ¥ and by Lemma 11.1 the claim holds. If | = j
then the neighbors of z; in ¥ are h, and h3; and by Lemma 11.1, P;.,
is either a bridge of Type bl or cl, in which case the claim holds, or z,
has a neighbor in B(X) \ {ha, k4, he¢}. Let P’ be a direct connection using
nodes of B(X) between z, and he¢ and avoiding {hs, hs} and P” be a direct
connection using nodes of B(X) between z, and hs and avoiding {h;, he}.
Let P* be a direct connection using nodes of T'(X) between z; and ks and
avoiding {hi,h3} and consider the holes H' = z1, P*, hs, hg, P', 25, P,z and
H" = zy,P*, hs, hy, P",z,,, P,z;. Then if P has more than one neighbor of
hy, either (H', hy) or (H”,hy) is an odd wheel. Otherwise, if h; has a unique
neighbor, say h* in P, there is a 3PC(h*, hs). This completes the proof of
Claim 1.

Finally assume that z, has h; as unique neighbor in £. Let @ be a
direct connection between hs and h; avoiding {hq,h3} and using nodes of
T(E) U V(P) and let C' = hs, Q, hz, Pze, he, hs, C” = h5,Q, hz, P24, h4, h5.
Then either (C’, k) or (C”, h,) is an odd wheel. O
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12 Expanding the 6-Hole

Definition 12.1 A fork z; of ¥ adjacent to nodes h;_, and hiy1, i odd,
is attached in ¥ if there exists a direct connection P = z,,...,z,,2; from
T(Z) \ {hi, k;} to B(X) avoiding {hi,k;} in G\ E(H) where j =i —2 or
i +2 and z, is adjacent to at least one node in T(X)\ {h1, ha, hs}. The path
Zy,..., Ty, is an gltachment of z; to X. Ifi is even, an attached fork is defined
accordingly.

We will maintain the convention that if P = z4,..., z, is an attachment of
2; to I, then z,, is adjacent to 2; and z; to at least one node in £\ {Ay,..., he}-

Definition 12.2 Let H;(X) be the set of attached forks, adjacent to h;_, and
hiyy together with the nodes adjacent to h;., and h;y, and having neighbors
in both sides of £. Note that h; € H;(T).

Lemma 12.3 For every node 2; € Hi(X), say: odd, there ezxists a connected
6-hole X' having the following properties:

e B(Y') = B(Y)

o If z; is a strongly adjacent node, with neighbors in both sides of ¥,
T(Z) € (T(E)u{z})\ {h:}.
If 2; is a fork of X, with attachment P, T(X') C (T(Z)U {z:} UV (P)\
{h:} and V(P) C T(T').

Proof: Assume w.l.o.g. ¢ =1 and let P35 be the path of T(X) connecting
h3 and h5.

Case 1: 2, is a strongly adjacent node with neighbors in top and bottom
of X.

If 2, is adjacent to a w.ode in Pss, then {21} U V(Ps5) induces a fan top
of ¥’. (Hence z, has more than one neighbor in Ps5). If z is adjacent to a
node in T(X) \ V(Pss) but to no node in Pss, let Q be a direct connection in
T(X) between z; and V(Ps5) \ {hs, hs} avoiding {ki, h3, hs}. First note that
the endnode of @ adjacent to P35 has a unique neighbor in V(Pss). Now if
V(Q)U V(Pss)U {21} does not induce a triad then either a3 or ks must have
a neighbor in . By construction not both h3 and ks have a neighbor in Q.
Hence ¥’ has a fan top with center A3 or hs.
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Case 2: Node 2, is a fork of X, with attachment P = z,,...,z,.

Case 2.1: Either ;3 or A5 is adjacent to a node in V(P) \ {z:}.

Assume w.l.o.g. that hj; is adjacent to a node in V(P)\ {z,}. Let Rbe a
direct connection in T(EZ)UV(P)U{z } between 2, and ks avoiding {h,, h3}.
Then V(P) C V(R), hence h3 has a neighbor in R, and so R induces a fan
top with center kj.

Case 2.2: Neither h; nor hjs is adjacent to a node in V(P) \ {z:1}.

Then the path induced by the node set {z;} U V(P) satisfies either the
second alternative of Lemma 11.1 or the first alternative of Lemma 11.2.
Assume first that z; has a neighbor in V(Ps;5). If z; is strongly adjacent to
P35, we can shorten P and modify Pss accordingly. If z; becomes adjacent
to a node in V(Py5) the argument of Case 1 holds. Now consider the case
where z, has a unique neighbor y in Pss. If y is adjacent to A3 or ks, there is
an odd wheel with center k3 or hs. Otherwise V(Pss)U V(P)U {2;} induces
a triad.

If z; has no neighbors in Pss, let Q be a direct connection in T(E)UV(P)
between 2, and V(Pss) \ {hs, hs} avoiding {h1, k3, hs}. Then by construction
V(P) C V(Q) and Q cannot have both a neighbor of h; and hs. Hence
V(Pss) U V(Q) induces a fan or a triad top. O

Definition 12.4 A connected 6-hole ¥’ satisfying Lemma 12.3 is said to be
obtained from T by substituting node z; (with attachment P, ) for h;. If i is
even, T(X) = T(X') and z; is said to be substituted in the bottom. If i is odd,
B(Z) = B(X') and z; is said to be substituted in the top.

Lemma 12.5 Let X' be a connected 6-hole obtained from T by substituting
node z; € H;(X) for h;. Then H;(X) = H;(¥') forj € {1 —1,¢+ 1,1+ 3}.

Proof: Assume w.l.o.g. i = 1. Let z; € H1(X), and if 2, is a fork of I, let
P, = z,,...,z, be an attachment of z; to X. Assume w.l.o.g. that ks is not
adjacent to a node of V(P,,)\ {z1}. Let z; € H;(X), where j is even. If z; is
a fork of X, let P;; = 41,...,ym be an attachment of z; to . Let £” be the
connected 6-hole obtained from ¥ by substituting node z; (with attachment
P,;) for node k;.

Claim 1: No node 4, 1 < k < n, is adjacent to or coincident with a
node in V(P,;) U {2;}.

Proof of Claim 1: Suppose not. Let zx be the node of P, with the
lowest index adjacent to or coincident with a node of V(P,,) U {2;}. First
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note that z; cannot coincide with a node of V(P,,) U {z,}, because z, is
adjacent to a node of T(X) \ {h;, hs,hs}. If zx is adjacent to a node of
V(P,,) then the path z1,...,24 is a direct connection from T(X") \ {h], h3}
to B(X") avoiding {hY, h3} in G\ E(H"). This path contradicts Lemma 11.3
because both endnodes of this path are adjacent to a node of V(X")\ V(H").
Similarily, if node z¢, k > 1, is coincident with a node of V(FP, ), then the
path z;,..., 71 contradicts Lemma 11.3 in £". If z; is adjacent to z;, then
the path z,,...,7; contradicts Lemma 11.3 in ¥ since z, is adjacent to a
node of T'(E")\ {hY, k3, h§} and = is not adjacent to any node of {h3, hq, he},
so it cannot be a fork of £”. If node zi, k¥ > 1, is coincident with ym,4+; then
the path z,,...,z¢.; contradicts Lemma 11.3. This completes the proof of
Claim 1.

Claim 2: Node z, is not adjacent to or coincident with a node in V(F,,).

Proof of Claim 2: Suppose not. Let y;, 1 < ! < m, be the node of the
lowest index adjacent to or coincident with the node z,. If z; is adjacent to
y: then the path z,,...,Z,,2; is a direct connection from T'(£”)\ {A{, 5} to
B(X") avoiding {k},k3} in G\ E(H"). This path contradicts Lemma 11.3
because both z; and 2; are adjacent to a node of V(X") \ V(H"). Similarly,
if z; is a fork of ¥ coincident with y;, then the path z,,...,z, contradicts
Lemma 11.3. Finally if z, is strongly adjacent to ¥ with neighbors in both
sides of ¥ then it cannot coincide with y; because ¥” is a connected 6-hole.
This completes the proof of Claim 2.

Claim 3: Node z is adjacent to z; if and only if j = 2 or 6.

Proof of Claim 3: Consider the graph G* induced by the nodes in T'(X')U
B(Z").

If j = 4 and 2; is adjacent to z;, then G* is a connected 6-hole plus
the additional edge 21z4. If T(X') is a triad with meet t, then there is a
3PC(24,t). £ T(X') is a fan T(X') U {24} induces an odd wheel.

If j = 2o0r 6, say j = 2, and z; is not adjacent to 2;, then G* is a connected
6-hole minus the edge z;z;. Let Pj; be the chordless path between z; and
hs in ¥’ and let Pjg be the chordless path between z; and hg in £”. Then
there is a 3PC/(hs, hg) unless hs has a neighbor in Pj; or k4 has a neighbor
in Pj;. However in this case there is an odd wheel with center A5 or k4. This
completes the proof of Claim 3.

So Claims 1, 2 and 3 show z; € H;(X') completing the proof of the lemma.
O

31




Corollary 12.6 Given z; € Hi(X), i even, let £, be a connected 6-hole’
obtained from ¥ by substituting z; for h;. Similerly, given z; € H;(X), 7 odd,
let T,, be a connected 6-hole obtained from T by substituting z; for h;. Then
z; can be substituted for hj in ., and z; can be substituted for h; in E,,.

Definition 12.7 Let T*(X) be the set of nodes comprising:
o T(Y)
o U; caaH;(T) together with all the attachments of forks in U; ,aa Hi(X).
The set B*(X) is defined similarily.

An immediate consequence of Lemma 12.5 is the following:

Remark 12.8 T* and B* satisfy the following properties:
(i) No node of T*(X) coincides with a node of B*(X).

(ii) Nodew € T*(X) is adjacent to node z € B*(X) if and only ifw € Hy(¥)
and z € H;(X), for j = it —1 or i+ 1. Hence for every node set
{z1,...,2¢} where z; € Hi(X), i =1,...,6, z1,..., 26,21 15 a 6-hole.

Property 12.9 Given nonempty node sets A,,..., As, that are pairwise dis-
joint, and node sets Or and Op such that U; ,4A; C Or and U; cyen A; C Op,
we consider a graph ©(071,0p, A;,. .., Ag) induced by the node set O7 U Op
that satisfies the following property:

(1) Every node u in OrUOp is contained in some connected 6-hole L, such
that T(X) C Or, B(X) C Op and h; € A; fori =1,...,6. Furthermore
ifu € A, then u = h;.

(2) Let F* be any triad or fan with attachments a; € A;, i = 1,3,5 such
that V(F*) C Or. Let F® be any triad or fen with attachments a; € A;,
i = 2,4,6 such that V(F*) C ©p. Then V(F*) U V(F®) induces a
connected 6-hole.

Remark 12.10 If©(0r,0p, Ay, ..., As) satisfies Property 12.9, then it sat-
isfies the following additional properties:
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(1) Let u be a node in O and v be a node in Op. Then O contains a
connected 6-hole £ such that v € T(X) C Or, v € B(X) C Op and
h; € A;, fori =1,...,6. Furthermore, if u € A; for some odd indez i,
then u = h;. If v € A; for some even indez j, then v = h;.

(2) For every node set {a; € A;, i = 1,...,6}, a1,a3,0a3,084,0a5,a6,a1 15 a
6-hole.

The following procedure constructs a graph, that we will show satisfies
Property 12.9.

Initialization: Set j = 1. Let ! be an arbitrary connected 6-hole of G
with 6-hole HY = h,h), ... kL BL. Let O} = T*(E1),0} = B*(T!), Al =
H;(X!) fori=1,...,6. Let ©(OL,0}, Al,..., A}) be the graph induced by
the node set ©F U O}. Let j = 1 and repeat the following:

Iterative Step: If G contains no connected 6-hole ¥ satisfying:

o h;c Al fori=1,...,6,

o ¥ is distinct from all £%, 1 < k < j, and one of the following two
conditions holds:

(i) B(Z) = B(X*) for some 1 < k < j, and no node of T(T) \
{h1, ha, hs} is adjacent to or coincident with a node of ©%,

(i) T(Z) = T(Z*) for some 1 < k < j, and no node of B(X) \
{ha, k4, he} is adjacent to or coincident with a node of O,

then stop. Otherwise, let 7! be such a connected 6-hole £. Denote the
6-hole of T+ by Hitl = RIY' BT, BRIV BT, Let 03 = O U
T+(£i*1), 5" = 05 U B*(Z'*), AI*' = Al U Hy(Z) fori = 1,...,6.
Let @1 (04, 057, A1M, ..., Al*") be the graph induced by the node set
O3 U O3, Increment j by 1, and repeat the Iterative Step.

Let w be the index when the above procedure terminates.

To illustrate the procedure, we now apply it to the graph in Figure 7

Let X! be the connected 6-hole induced by the node set {a,...,A,1,...,6}.
No node is attached to X!, so O = {a,b,¢,d,1,3,5}, ©L = {e, f, 9, k,2,4,6},
Al = {i}fori =1,...,6.
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In the second iteration we can choose £? such that B(X?) = B(X!) and
T(Z?) = {i,5,k,1,3,5}. ©% = O} U {i,j,k,l,m,0} and ©4 = OL. The set
A? now becomes {1,1,m}, A? is {5,0}. A? = A} for:=2,3,4,6.

The subsequent iterations will enumerate all distinct connected 6-holes
with B(Z!) as bottom and top {a1,3,as,1, 7, k} where a; € A? and a5 € AZ.
The sets 0%, 0%, A? i = 1,...,6 remain unchanged in the subsequent
iterations. Note that a different choice of £?, namely one having the same
top as ©!, would yield different sets A2.

The following lemmas will be used in the proof of the main theorem of
this section.

Theorem 12.11 The graph O" satisfies Property 12.9 .

Definition 12.12 Assume that for some 1 < n < w, O" satisfies Property
12.9. Then for every 1 <i,j < n, the graph induced by the node set T(X') U

B(X') is a connected 6-hole. We denote this connected 6-hole having top
T(Z') and bottom B(X) by LB,

Note that the algorithm labels every possible connected 6-hole L7+8i as
T* for some k < w.

Lemma 12.13 Assume that for some 1 < n < w, O™ satisfies Property 12.9.
Then ©(O3UT(Z"), 03 UB(Z™1), AT, ..., AD) satisfies Property 12.9 and
for every k < n, the graphs induced by T(E"*')U B(Z*) and T(Z*)UB(Z")
are the connected 6-holes TTn+18x gnd $TeBns1,

Proof: The first statement follows from the conditions imposed on X"*!
by the procedure. The second statement follows from the first and Remark
12.10. O

Lemma 12.14 Let ¥ and X' be connected 6-holes such that T(X) = T (')
and hy = hy. Let zy € Hy(X).

(1) If z1 is not a fork of T, then z;, € Hy(X').

(i) If z, is a fork of X, let P,, = z4,...,z, be an attachment of z; to X.
If hs is not adjacent to a node of V(P,,) \ {z1}, then 2, € H,(X') and
P, is an attachment of z; in ¥'.
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Proof: Let z; € H (X) and, if z; is a fork of ¥ with attachment P,, =
Ty,...,Tn, assume that ks is not adjacent to a node of V(P,,) \ {z:1}. We
divide the proof into the following two claims:

Claim 1: No node of P, is adjacent to or coincident with a node of
B(Y).

Proof of Claim 1: Assume not. Let z; be the node of P, with the
lowest index that is adjacent to or coincident with a node of B(X’). First
note that z; cannot coincide with a node of B(X') \ {h}, hy, hg} because
z, is adjacent to a node of T(X) \ {h;, hs, hs}. If node z; is adjacent to
a node of B(Y') \ {kj, kY, hg}, then z,,...,z, is a direct connection from
T(Z')\{h}, h3} to B(X') avoiding {h}, A3} in G\ E(H'). This path contradicts
Lemma 11.3 because both endnodes of this path are adjacent to a node
of V(¥')\ V(H'). Similarily, if node zx,k > 1, is coincident with a node
of B(X')\ {h%, A}, hg} then the path z,,...,zi; contradicts Lemma 11.3.
Node z; is not adjacent to or coincident with h’, since h} = h; and P, is an
attachment of z; to X. Node z; is not coincident with A} or kg, otherwise z;
is adjacent to hs. Thus node z; must be adjacent to a node in {hj}, hg}. But
now zi,...,Zx is a direct connection from T(X')\ {h}, b3} to B(¥') avoiding
{h{,Rhs} in G\ E(H'), so by Lemma 11.3 node z; must be a fork of ¥/,
adjacent to both hj and hg. Hence zx € Hs(X'). Let I}, be the connected
6-hole obtained from ¥’ by substituting node z; for the node k5. If k; and
hs are not adjacent to any node of zx1,...,%, then ziy1,...,Zq,21 is a
direct connection between T(X. ) and B(X],) \ {hj, hg} avoiding {h{, hg}
in G \ {hyhy, R3hG, Rk, Ryze, Tihg, hghi} and it violates Lemma 11.3. Now
assume that h, or hj is adjacent to some node of zy,...,z,, and let z,, be
the node of zi,...,z, with the lowest index adjacent to h, or hs. Assume
w.l.o.g. that z,, is adjacent to ;. Let z;, £ <! < m be the node of highest
index adjacent to k). Then z,...,z,, is a direct connection from T(X')
to B(X') \ {h§} avoiding {hg} in G\ E(H'), violating Lemma 11.2. This
completes the proof of Claim 1.

Claim 2: Node z, is not adjacent to or coincident with a node of B(X')\
(B, hi}.

Proof of Claim 2: Node z, is not adjacent to hj}, because otherwise the
node set {hy, hy, h3, b}, hs, h¢} induces an odd wheel with center z;,. If 2 is
strongly adjacent to X, with neighbors in B(X) and T'(X), then 2, is also
strongly adjacent to ¥’ with neighbors in B(X’) and T(X’) = T(X). So by
Theorem 10.2 z, is adjacent to hj, kg but no other node of B(X'). Now
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assume 2; is a fork of L. Then z, is not coincident with a node of B(¥'), else
node z,, contradicts Claim 1. Now assume that 2z, is adjacent to a node of
B(X') \ {h%, kg, h3}. Then, by Claim 1, z,...,2Zn,2; is a direct connection
from T'(T')\ {k}, A} to B(X') avoiding {h}, 3}, in G\ E(H’) which violates
Lemma 11.3. This completes the proof of Claim 2.

Now by Claim 1 and Claim 2, if z; is not adjacent to hg, then 2, ¢ H;(¥’),
so the path z,,...,z,,2; contradicts Lemma 11.3 applied to £’. Hence z;, €
Hy(¥'") and if 2, is a fork of £, P,, is an attachment of z; to ¥'. O

Lemma 12.15 Assume that for some m < w, the graph ©™~! satisfies Prop-
erty 12.9. Let z; € H;(X™), i odd, and if z; is a fork of ™, let P,; be an
attachment of z; to X™. Then z; € H.-(ZT"'B‘) and if z; is a fork of ¥™, P,
is an attachment of z; to XTmB1,

Proof : Assume w.l.o.g. : = 1.

Claim 1: Assume that for some 1 < k < m, z; € Hy(E™B*). If z; is a
fork of £TmBx_ let P,, be an attachment of z; to £T=Bx, Then there exists
some j < k such that 2, € Hl(ET"'BJ') and P, is an attachment of 2; to
ET".B,"

Proof of Claim 1: By construction hf € A5™! and hf € A%~?, and hence
there exists 4,5 < k such that k¥ € Hp(X?) and kf € Hg(Z'). Let T7* be
the connected 6-hole obtained from £’ by substituting A% for hj. Let £** be
the connected 6-hole obtained from X* by substituting h% for h{. Since by
the definition of attachment, not both A7 and AZ* are adjacent to a node of
V(P,,)\{z1}, applying Lemma 12.14 either with & = 7Bk and £’ = £TmBs
or with & = %8B and ¥’ = £TmBi we have that z;, € H,(ET™5*) or
z; € Hy(ETBi*) and P,, is an attachment of z; to one of the two connected
6-holes. Assume w.l.o.g. that z; € Hy(E™Pit) and P, is an attachment of
2 to XT»Bix Applying again Lemma 12.14 to £ = ZTBst and &' = TTmB;
we have that 7, € Hy(ETP5) and P,, is an attachment of z; to 27Bi. This
completes the proof of Claim 1.

Now the lemma follows by repeated applications of Claim 1, starting with
rm = ET"'B"'. 0

Lemma 12.16 Le* T and X' be connected 6-holes such that T(X) = T(X')
and hy = h}. Let z, € Hi(X).

(1) If z1 is not a fork of T then z, € Hy(¥').
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(i) If z, is a fork of L, let P,, be an attachment of zy to . If no node of
P,, is adjacent to or coincident with k), or hy then zy € H1(¥') and P,
is an attachment of zy to ¥'.

Proof: Let z; € Hy(X) and if z; is a fork of ¥ then let P,) = zy,...,2,
be an attachment of z; to X. Suppose that P, satisfies the conditions of the
lemma. Assume w.l.o.g. that ks is not adjacent to a node of V(P,,)\ {z1}.

Claim 1: No node of P, is adjacent to or coincident with a node of
B(¥").

Proof of Claim [: Assume not. Let z; be the node of P,, with the lowest
index that is adjacent to or coincident with a node of B(¥’). First note
that z; cannot coincide with a node of B(¥’) \ {h}, A}, hg} because z; is
adjacent to a node of T'(X) \ {hi, ks, hs}. If node zj is adjacent to a node of
B(Z)\{h;. b}, hg}, then z4, .. .,z is a direct connection from T'(X')\ {h}, k% }
to B(X') avoiding {h{,h%} in G\ E(H'). This path contradicts Lemma 11.3
because both endnodes of this path are adjacent to a node of V(X')\ V(H’).
Similarily, if node zx, k > 1, is coincident with a node of B(¥') \ {h, h}, hg}
then the path z;,...,2;_; contradicts Lemma 11.3. Node z; is not adjacent
to or coincident with h} since h}, = h; and P,, is an attachment of 2; to Z.
This completes the proof of Claim 1.

Claim 2: Node z; is not adjacent to or coincident with a node of B(X')\
(R, hi}.

Proof of Claim 2: Identical to proof of Claim 2 in Lemma 12.14.

Now by Claim 1 and Claim 2, if z; is not adjacent to kg, then z; & H,(¥'),
so the path z;,...,z,, z; contradicts Lemma 11.3 applied to ¥'. Hence z; €
Hy(¥'). O

Proof of Theorem 12.11: Let n be the smallest index for which ©™ does
not satisfy Property 12.9. Lemma 12.5 and Corollary 12.6 show that ©!
satisfies Property 12.9. Hence n > 1. Furthermore Lemma 12.13 shows that
(03 ' uT(E"),0% ! U B(Z"), A, i =1...,6) satisfies Property 12.9.
By construction of ©" and by Lemma 12.5 applied to every £TBx k < n,
Property 12.9 holds for O™ if the following holds:

Let z; € H;(X"), 1 odd, and if 2; is a fork of X", let P,; be an attachment
of z; to £". Let z; € H;(X¥), where j is even and k < n. If 2; is a fork of
Tk, let P,; be an attachment of z; to T¥. Then z; € H{(ST"8"Y and P,, is an

38




attachment of z; to £TB* and z; € H;(ET"B*) and P, is an attachment of
z; to PRLLN

The next two claims prove the above statement.

Claim 1: Let z; € H;(X*),where j is even and k < n. If z; is a fork of
T*, let P,, be an attachment of z; to £*. Then z; € H;(£T"8") and P, is
an attachment of z; to £75%,

Proof of Claim 1: If k = n the claim follows from Corollary 4.6. If k < n,
then z; together with V(P,;) belongs to ©F'. hence the claim follows by
construction of ¥*. This completes the proof of Claim 1.

Claim 2: Let z; € H;(X"), 7 odd, and if 2; is a fork of £", let P,, be an
attachment of z; to £". Then for every k < n, z; € H;(£7"8") and P,, is an
attachment of z; to ZT»Bx,

Proof of Claim 2: Assume w.l.o.g. that : = 1. Let k < n be the smallest
index for which z, ¢ Hy(X£7B*). Ther by Lemma 12.15, k > 1. By construc-
tion, k% in A5~!. Hence there exists a j < k—1 such that k% € Hy(X?). Then,
by the choice of k, z; € H;(X™Bs) and by Claim 1, k% € Hy(XTB:). Now
Lemma 12.5 applied to 785 shows that z, is adjacent to A% and no node of
P,, is adjacent to or coincident with A%. The same argument shows that z; is
adjacent to hf but not to hf and no node of P,, is adjacent to or coincident
with h% of ht. Let £ be the connected 6-hole obtained by substituting k%
for hJ in X7. Consider the connected 6-hole £™*Bi*, Now by Lemma 12.16
applied to £ = XT»B; and &' = £TBik we have that z; € Hy(X™Fs*) and P,
is an attachment of z; in £7Bs*, Applying again Lemma 12.16 to £ = £7»8x
and ¥’ = E%Bx we have that z; € Hy(X™B*) and P, is an attachment of
z; in ET»Bx This completes the proof of Claim 2. O

Corollary 12.17 If X is a connected 6-hole such that T(X) C O%, B(X) C
OF, and h; € AY for i = 1,...,6, then ¥ coincides with k for some
1<k<w.

Proof: Suppose that ¥ does not coincide with any &%, i = 1,...,w. First
we show that for some 1 < k < w, T'(X) = T(Z*). Suppose not. Then since
by Theorem 12.11 O satisfies Property 12.9 (2), X' such that T(X') = T'(X)
and B(X') = B(X!) is a connected 6-hole satisfying the rules of construction.
Hence for some 1 < k < w, ¥ coincides with ©*. Now I is such that
T(XZ) = T(X*) and no node of B(X)\ {ks, k4, he} is adjacent to or coincident
with a node of ©%. Hence it is possible to define £**!, which contradicts the
maximality of w. O
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Corollary 12.18 Ifu € OF and v € O}, then for some 1 < k < w, nodes
u and v are contained in T*.

Proof: Follows from Theorem 12.11, Remark 12.10 (1) and Corollary
12.17. O

13 Extended Star Cutset
Definition 13.1 Let A be the graph induced by the node set US_, AY.

Lemma 13.2 If the removal of the edge set E(A) disconnects the graph G,
then G contains a 6-join.

Proof: Assume that the edge set E(A) disconnects the graph G. By
Theorem 12.11, ©Y satisfies Property 12.9. Now by Remark 12.10 (2), E(A)
is a 6-join of G. O

In this section we prove the following theorem.

Theorem 13.3 G contains a 6-join or an extended star cutset.

Lemma 13.4 If P = z,,...,2, is a direct connection from ©% \ (AY U AY)
to ©F avoiding AY U AY in G\ E(A), then N(z,)NV(O¥) C AYU AY U AY,
N(z1)N AP #0 and N(z,) NV(O¥) C AY U AY U AY.

Proof: If z; is adjacent to a node v € ©F, then n = 1, and let u be any
neighbor of z; in ©%. By Corollary 12.18, for some 1 < k¥ < w, nodes u
and v are contained in £*. Node z, is now strongly adjacent to £*, with
neighbors in both sides of £*. Hence for somei € {1,...,6}, z; € H;(Z*). By
construction of O¥, z; € V(©") which contradicts our choice of P. Therefore
N(z,) N V(O¥) C OF. Now suppose that z, is adjacent to a node u €

¥\ (AYUAY U AY). Let v be any neighbor of z, in ©F. By Corollary 12.18,
for some 1 < k < w, nodes u and v are contained in £*. Now by Lemma
11.3 and Definition 12.1, z, is an attached node with respect to X*. By
construction of ©¥, z, € OF which contradicts our choice of P. Therefore
N(z,)nV(OY) C AYU AU AY. Similarily N(z,)NV(0¥) C AYU Ay U AY.
a
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Definition 13.5 A bridge of Type c with respect to a connected 6-hole ¥, is
a configuration C salisfying the following properties:

e C is connected.

o There ezist nodes hi-y, hi, hiy1, hiy2 of £ that are adjacent to at least
one node of C. No other node of ¥ is adjacent to a node of C.

e C is minimal with the above two properties.

Note that bridges of Type cl and Type c2 defined in Lemma 11.1 and
Lemma 11.2 are bridges of Type c.

Lemma 13.6 Let C be a bridge of Type c. Then C satisfies the following
property:

e C induces a path P = 1,,...,z, which is a direct connection between
h,'_l and h,‘+2 in C.

o P contains at least one node adjacent to k; and at least one node adja-
cent to hiyy.

Proof: Assume w.l.o.g. that i = 1. Let P be a direct connection in C
between k3 and he. If P satisfies the second property of the lemma, then by
minimality of C, P and C coincide. If P has no node adjacent to h;, then
P is a direct connection between T(X) \ {1} and B(X) avoiding {4} in
G\ E(H) violating Lemma 11.2. If P has no node adjacent to h;, the proof
is identical. O

Figure 8 depicts possible bridges of Type c.

Lemma 13.7 Let P be a bridge of Type c with respect to T*, for some
1 < k < w, containing nodes adjacent to h¥, h% h% hE. If no node of P is
adjacent to any node in V(Ov) \ V(A), then every node in AY U A} has a
neighbor on P.

Proof: Let ©* and P satisfy the conditions of the lemma. It suffices to
prove the result for A}.

Claim 1: For 1 < m < w, if some node z € H>(X™) has a neighbor on
P, then every node in H,(X™) has a neighbor on P.
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Proof of Claim 1: Let y € Hy(X™), and suppose that y is not adjacent to
any node of P. Let L' (resp. L7') be a connected 6-hole obtained from X™
by substituting node z (resp. y) for AJ.

If there exists a chordless path Q from k% to y using only nodes in (0% \
(A¥ U AY U A2)) U {hE, ), then there exists a 3PC(h%, hY) using P, Q and
a path connecting h% and k% in T(Z*). So assume that no such path exists.
In particular hf is not adjacent to any node in B(XT) U B(E™). Now note
that V(P) U {hE, k%, k%, hE} induces a fan top attached to hj,h%, A%, with
center hf, which is node disjoint from B(X7') and has no adjacencies to
B(Z7)\{y, h3, k3 }. Let X be the connected 6-hole induced by the node set
V(P) U {hE, ¥, k%, hE} U B(Z7). The 6-hole of T is hf,y, kS, AT, hE, AT, hS.
Since both z,y € Hy(X™), by Lemma 12.5 z € Hz(Z7'). If z has neighbors
in both sides of I7* then z is adjacent to a node in B(X}') \ {y, kg, h7'}.
By assumption z is adjacent to P. Hence z is a strongly adjacent node
to ¥ which violates Theorem 10.2. If z is a fork of L7, let z4,...,z, be
an attachment of z to £J'. We can assume w.l.o.g. that z,,...,z4,2 15 a
direct connection from B(Z7') \ {y,kg'} to T(X}') avoiding {y, kg'} in G \
{7y, yhT, RFRT, RPRT  RTAT, RTRT ). Hence z; is adjacent to B(XT') \
{y,hT,hT}. By assumption z has a neighbor on P, hence zi,...,z,,z is
a direct connection from B(Z) \ {y, 2} to T(X) avoiding {y,hZ'} in G \
{h¥y,yh%, RERT, AT RE RERT, BT hF}, violating Lemma 11.3. This completes
the proof of Claim 1.

Claim 2: If for some 1 < n < w, every node in H(X") has a neighbor
on P, then there exists 1 < m < n such that every node in Hy(X™) has a
neighbor on P.

Proof of Claim 2: Assume that 1 < n < w, and every node in Hp(X")
has a neighbor on P. In particular A} is adjacent to a node of P. But by
construction k} € A7"!, thus there exists 1 < m < n such that A2 € Hy(E™).
Now by Claim 1, every node in Hz(X™) has a neighbor on P. This completes
the proof of Claim 2.

Now we show that for every 1 < n < w, every node in A} has a neighbor
on P, by induction on n. By Claim 1 every node in H,(Z¥) has a neighbor
on P, so by repeated application of Claim 2, every node in Hy(X') = Al has
a neighbor on P, hence the base case holds. Now assume that for 1 < n < w,
every node in A? has a neighbor on P. By construction hj*! € A%, hence
by Claim 1 every node in H,(X"*!) has a neighbor on P. Thus every node
in A2*! has a neighbor on P. This completes the proof of the lemma. O
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Lemma 13.8 Let P = z,,...,z, be a direct connection from O%\ (AY U AY)
to Of \ (AY U AY) avoiding Ay U AY U AY U AY in G\ E(A). If for some
1 < k < w, X* is such that z, is adjacent to a node of T(XZ¥)\ {h%, ht} and
T, is adjacent to a node of B(X*) \ {h%, h%}, then P is a bridge of Type c
with respect to £F, with nodes h%, k%, hE k% adjacent to at least one node in
P or nodes h, h%, k%, h% adjacent to P.

Proof: Let £ = £* and P satisfy the conditions of the lemma. Let z; be
the node of P with the lowest index that is adjacent to a node in ©F. Then
Py, ., is a direct connection from ©% \ (A} U A¥) to OF avoiding AY U AY in
G\ E(A), so by Lemma 13.4 N(z,) NV (O¥) C A} U Ay U AY. In particular
r, is adjacent to hs. Similarily N(z,) NV (0¥) C AY U Ay U A¥ and z, is
adjacent to he. Let z; be the node of lowest index adjacent to B(X). Then
the path P;,., is a direct connection from T'(X) \ {k1, As} to B(X) avoiding
{h1,hs} in G\ E(H), so by Lemma 11.3, node z; is adjacent to some node
in {h2, h4}. Similarily some node in {k;, s} is adjacent to a node of P.

In the following claim we prove the lemma, with the restriction that no
node in one of the sets Ay, Ay, Ay or A} has a neighbor on P.

Claim: If no node in one of the sets Ay, Ay, Ay or AY has a neighbor
on P, then P is a bridge of Type ¢ with respect to .

Proof of Claim: Assume w.l.o.g. that no node in A¥ has a neighbor in
V(P). First suppose that V(P) does not contain neighbors of both h; and
hs. If hy is adjacent to a node of P, then some subpath of P is a direct
connection from B(X) to T(X) \ {k;} avoiding {h,} in G\ E(H) which
contradicts Lemma 11.2. Thus P must contain nodes adjacent to ky and A3,
and no node adjacent to hy and hs. Hence P is a bridge of Type ¢ with
respect to X.

We now show that P cannot have neighbors from both k3 and h4. Assume
the contrary. Let x; be the node of highest index in P adjacent to a node in
AYUAY. Let z; be adjacent to node A’ in AYUAY. By Corollary 12.18, let ¥’
be a connected 6-hole of ©" containing nodes k' and hg = hg. By Corollary
12.17 we can assume that B(X') = B(X). Node h} must have a neighbor on
P since hy = hy. If P;, -, has a neighbor of kj, then A’ = h{, since k5 can only
be adjacent to node z; on P. Let z, € V(Fr,,;) be the node of highest index
adjacent to hj. Now some subpath of P; ., is a direct connection between
T(X') and B(X') \ {h}} avoiding {h3} in G \ E(H’) which violates Lemma
11.2. So h} must have a neighbor on P; .. Let z, € V(F;,.,) be the node of
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lowest index adjacent to hy. Now P; ., is a direct connection between T'(L')
and B(X')\ {h}} avoiding {A3} in G\ E(H'). By Lemma 11.2, z; must be a
fork of X’ adjacent to A} and hj. But hj can only be adjacent to z; on P. So
j = 1 and no node of A} is adjacent to a node of P;,;,. Now let z; be the
node of highest index in P adjacent to a node in {hq, he}. If z is adjacent
to h4 then let z; be the node of highest index adjacent to h;. The subpath
P:,z,, has no neighbors of AY U AY, thus the node set {hs, hy, he,zi,...,Tn}
induces a fan bottom with center k4, which contradicts the maximality of w.
Similarily if z, is adjacent to h; then we can obtain a fan bottom with center
h,. This completes the proof of Claim.

If one of the node sets A}, AY, AY, AY has no node adjacent to P then
we are done by the Claim above. So assume all four node sets have at least
one node adjacent to a node in V(P). Let z; be the node of highest index
adjacent to a node in A} U AY. Assume w.l.o.g. it is adjacent to h} € AY.
Notice that k£ > 1 since otherwise r, is adjacent to a; € AY, a3 € AY and
as € AY and so we have an oud wheel with center z,.

First we show that no node of A} is adjacent to P;,;,. Assume not and
let z; be the node of P, with the highest index adjacent to a node in AY.
Let hj be the node of A} adjacent to z;. Let z,, be the node of P;,,, with the
lowest index adjacent to a node in A}, and let h] be that node. By Corollary
12.18 let £” be a connected 6-hole of ©¥ containing nodes k§ and hy. Now
P,,;,. is a direct connection from O} \ (Ay U AY) to ©%\ (A U AY) avoiding
AYUAY U AY U AY in G\ E(A). Also X" is such that z,, is adjacent to A,
z; is adjacent to hj and no node of A} is adjacent to a node in V(P,,,,,)
(since the only node of P that can have a neighbor in AY is ;). Now by the
Claim, P,,,,, is a bridge of Type c with respect to £”, with neighbors from
ki and h{. But the only neighbor A¢ can have on P is z,, hence we have a
contradiction. Therefore no node of Ay is adjacent to P,,.

Let z; be the node of P,,,, with the lowest index adjacent to some node
AY, and let hj be that node. By Corollary 12.18 let ¥’ be a connected 6-
hele of ©¥ containing nodes A} and h}. P, is a direct connection from

¥\ (AY U AY) to OF \ (AY U AY) avoiding AY U Ay UAY U AY in G\ E(A).
Also ¥’ is such that z; is adjacent to A}, z; is adjacent to A} and no node
of AY is adjacent to a node in V(F,,.,) (since the only node of P that can
have a neighbor in AY is z; and k > 1). Now by the Claim, P;,,, must be
a bridge of Type c with respect to ', with neighbors from h{ and hg and
no neighbor of &) and hj. By Lemma 13.7 every node in A} is adjacent to
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a node in P;,,,. By our choice of z; all nodes in Ay must be adjacent to
zx. Also since hy is adjacent to P:,;, we must have | = n. If any node in
AY is adjacent to a node of P;,., then let r, be the node of P, ., of lowest
index adjacent to a node in AY, say ;. Note that p < n. By Corollary 12.18
let £” be a connected 6-hole of ©* containing hj and kY = k. Now P .,
is a direct connection from T'(X") to B(X") in G \ E(H") which contradicts
Lemma 11.1 since p < n and so hj and hg are not adjacent to r,. Thus no
node of A} is adjacent to a node of Py, ,,.
Now since some node of A} must be adjacent to a node of P, this node
ast be in Py, ;,. Let z, be the node of P, with the highest index adjacent
» some node in Ay and let that node be hj. Let z, be the node of lowest
index in P;,;, adjacent to a node in Ay and let that node be h{. Notice
that such a node must exist since every node in A} is adjacent to zx. By
Corollary 12.18, let £” be a connected 6-hole of ©% containing A and AJ.
Now P, is a direct connection from ©% \ (Ay U AY) to ©% \ (A7 U AY)
avoiding AY U Ay UAY U AY in G\ E(A). Also £ is such that z, is adjacent
to hY, r, is adjacent to kY and no node of A7 is adjacent to a node of F;,.,
(since the only neighbor that a node in Aj can bave on P is z;). But now
by the Claim, P; ., is a bridge of Type ¢ with respect to £", with neighbors
from hy and hg. But the only neighbor that A¢ can have on P is z,, hence
we have a contradiction. But then AY does not have any node adjacent to a
node of P, which contradicts our assumption. O

Lemma 13.9 Let P = z,,...,z, be a bridge of Type ¢ with respect to T*,
Jor 1 < k < w, with adjacencies to h¥, k%, hY and h%, where z; is adjacent
to hY. Then AY U AY U AY U N(h%) is an extended star cutset seperating z,
from v,

Proof: Let P and ¥ satisfy the conditions of the lemma. Let R = Ay U
Ay U A7 U N(h;) and suppose that R is not an extended star cutset. Let
Q = w,.-.,Ym be a direct connection from z; to ©¥\ R in G\ R. By Lemma
13.4, y,» cannot have neighbors in both ©% and ©%. Let Q' = yo,¥1,.-.,Ym
where yo = z,.

Case 1: N(ym)NV(O¥) C 0F

Some subpath of Q' is a direct connection from O% to ©F \ (A U AY)
avoiding AY U AY in G \ E(A) or a direct connection from ©% to O% \
(A¥ U AZ) avoiding AY U AY in G \ E(A). In either case, by Lemma 13.4,
N(ym)NV(O¥) C A7UAY U AY. Hence ynm is adjacent to a node in AYU AY¥.
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Suppose that y,, is adjacent to a node z € Af. Let y; be the node
of Q' with highest index adjacent to a node in Ay. Then @, is a direct
connection from OF \ (AYUAY) to O\ (AyUAY) avoiding AYUAYUAYUAY
in G\ E(A). By Corollary 12.18, let ¥’ be a connected 6-hole of O containing
node z and a node of AY that is adjacent to y;. By Lemma 13.8 applied to

Y a0d T, QL is a bridge of Type c with respect to £'. Since @,
is not adjacent to any node in AY, Q.. is adjacent to k] and h}. Now by

Lemma 13.7 every node in A} has a gg‘ghbor on Q... In particular h; is
adjacent to @, contradicting our choice of Q). Therefore y,, is not adjacent
to any node in Ay

Now suppose that y,, is adjacent to a node z € AY. First we will show
that no node of A} is adjacent to a node of Q'. Assume not and let y; be
the node of Q' with the highest index adjacent to a node in Ay. Then @, ,
is a direct connection from ©% \ (A¥ U AY) to Of \ (A U A) avoiding
(A¥ U AY U AY U AY) in G\ E(A). By Corollary 12.18, let X' be a connected
6-hole of O containing node r and a node of A} adjacent to y;. Then by
Lemma 13.8, @, is a bridge of Type c with respect to ¥'. Since @ is not
adjacent to any node in Ay, hj is adjacent to @, , and by Lemma 13.7
every node of AY has a neighbor on (). In particular A, is adjacent to @,
which contradicts our choice of Q. Therefore no node of A} is adjacent to a
node of Q’.

Now let z; be the node of P with the lowest index adjacent to a node of
AY. Let y; be the node of Q' of highest index adjacent to a node of P,.,.
Let z; be the node of F;,;; with highest index adjacent to y;. By the same
argument as above, the path induced by the node set V(P,,;,) U V(Q;,,..)
must have a neighbor of h; and a neighbor of k3 on it. By construction of
@ the neighbor of A; is on Py ;. Let z, be the neighbor of A; on Py, with
the lowest index. By construction of P, h; has no neighbors on P;,;;. By
Corollary 12.17, let £’ be a connected 6-hole of @¥ with k) = z. Let Y be
the path connecting hg and z in ¥'. If there exists a chordless path X from
z to h, using nodes in ©F only then there are two wheels with center hj:
ToyeeosThyYise ooy Ymy Xs T, a0d Tjy.. oy T Yiy- -3 Ym, Y, h1,Z;. One of these
wheels must be odd, thus we have a contradiction. Otherwise, if no such path
X exists, z has no neighbors in B(X). Now the path z,,...,z,,¥i,-..,Ym, 2
is a direct connection from B(X) to T(X) \ {hk1,h3} avoiding {hy,hs} in
G\ E(H). Since z is adjacent to h3 and ks, by Lemma 11.3 z, is adjacent
to hy4, which contradicts our choice of P.
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Case 2: N(yn)NV(O¥) C O%

If some node of A} has a neighbor on @, let y; be the node of highest
index adjacent to some node in A}, and let Y = Q,,,,.. Otherwise let z; be
the node of P with the lowest index adjacent to some node in AY, and let
Y be the path induced by the node set V(Q)U V(Pz,z,)- Then Y is a direct
connection from O% \ (AY U AY) to ©F avoiding Ay U AY in G\ E(A). By
Corollary 13.4 N(y.) N V(O¥) C AY U Ay U AY. Hence y,, is adjacent to
some node = € Ay

Let z; be the node of P with lowest index adjacent to a node of AY.
Let y be a node of A} adjacent to z;. Path X induced by the node set
V(P:,z;)UV(Q) is a direct connection from OF \ (AY U AY) to OF\ (AY U AY)
avoiding AY U Ay U Ay U A¢ in G \ E(A). By Corollary 12.18, let £’ be a
connected 6-hole of ©% containing nodes z and y. By Lemma 13.8, X is a
bridge of Type ¢ with respect to L'. Since no node of A} is adjacent to any
node in V(P) UV(Q), hg must be adjacent to z;, and by Lemma 13.7 every
node in A¥ has a neighbor in X. In particular he is adjacent to X, hence
j = n. Therefore no node of V(P)U V(Q) \ {2z} is adjacent to any node
in ©%. Let Y be a chordless path from h; to z in V(P)U V(Q)\ {z.}. If
hs is adjacent to Y, then Y induces a fan top with center h3 contradicting
the maximality of w. Else let X be a direct connection from h3 to Y in the
graph induced by V(P)U V(Q)\ {z.}. If X has a neighbor of A; or z, then
there is a fan top with center h; or z contradicting the maximality of w.
Otherwise some subset of V(X)UV(Y) induces a triad top contradicting the
maximality of w. O

Proof of Theorem 13.3: If the edge set E(A) does not disconnect O% from
OF then the subgraph G obtained by removing the nodes V(©") contains a
connected component S having at least one node adjacent to a node in ©%
and at least one node adjacent to a node in ©F. Let N(S) be the set of
nodes of V(0Ov) adjacent to at least one node in S.

Claim: N(S)N(AY U A U AY) # ¢ and N(S) N (A7 U AY U AY) # ¢.

Proof of Claim: Suppose that N(S)N(AYUAYUAY) = ¢. Then S contains
a path P = z,,...,z, which is a direct connection from 0% \ (A¥ U AY) to

% avoiding Ay U AY in G\ E(A), such that z, is adjacent to a node of
O% \ (AY U Ay U AY). This contradicts Lemma 13.4. Hence N(S) N (Ay U
AY U AY) # ¢. Similarily N(S) N (Ay U Ay U AY) # ¢. This completes the
proof of the Claim.
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So we only need to consider the following two cases.

Case 1: For every u € AY U Ay U AY and v € Ay U A} U AY such that
u,v € N(S), uv is an edge.

Then for some i € {1,...,6}, V(A)NN(S) C A", U AY U AY,,. W.log.
assume ¢ = 2. By Theorem 12.11 the node set K = Ay U Ay U AY induces
a biclique. Now we show that K is a biclique articulation seperating S from
©v. Suppose not. Then S contains a path P = z;,...,Z, such that either
P is a direct connection between ©% \ (AY U AY) and OF avoiding A} U A3
in G\ E(A) and z; is adjacent to a node of % \ (AY U Ay U AY), or P is
a direct connection between 0% \ (Ay U Ag) and OF avoiding Ay U A in
G\ E(A) and z, is adjacent to a node of OF \ (A5 U Ay U AY). In either
case P contradicts Lemma 13.4.

Case 2: There are nodes u € AY U Ay U AY and v € A} U A} U Ay such
that u,v € N(S) and uv is not an edge.

W.lo.g. assume that N(S)NAY # ¢ and N(S)NAg # ¢. Then there exists
a path P = z,,...,z, which is a direct connection from 0% \ (A} U Ay') to

v\ (AYUAY) avoiding AYUAYUAYUAY in G\ E(A). Let p € O\ (AYUAY)
be adjacent to z; and ¢ € OF \ (A7 U AY) be adjacent to z,. By Corollary
12.18, let £ be a connected 6-hole of ©* containing p and ¢q. By Lemma 13.8
P is a bridge of Type c with respect to . W.l.o.g. assume P is adjacent to
nodes hy, hs, hs and hg. Now by Lemma 13.9 AY U AY U AY U N(h2) is an
extended star cutset seperating z; from ©¥. O
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