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NOMENCLATURE

a function defined by eq lla

ae function defined by eq 27f

ai constant where i = 0,1, ... 3

ai function defined by eq 25d and 25e, where i =0, 1

A constant

b function defined by eq 1lb

h, constant where i = 1,2.

Bi ith constituent of the mixture. Subscripts i = 1, 2, and 3 are used to denote unfrozen water, ice
and soil minerals, respectively

c, heat capacity of the ith constituent

d unit of time (day)

di density of the ith constituent

e void ratio

f, mass flux of the ith constituent relative to that of soil minerals where i 1, 2

flo mass flux of water in the unfrozen part of the soil

I function defined by eq 16b

k thermal conductivity of a frozen fringe defined by eq 9a

k0  thermal conductivity of the unfrozen part of the soil

k, thermal conductivity of an ice layer

kf) limiting value of k defined by eq 9c

/C hydraulic conductivity in the unfrozen part of the soil

/Ki empirical function defined by eq 4a where i = 1, 2

K1i limiting value of Ki as x approaches n, while x is in RI, i = 1,2

K1o limiting value of Ki as x approaches no while x is in RI, i = 1,2

L latent heat of fusion of water, 334 J g-4

m location of the free end of the column

M4 name of a model where i = 1, 2,3

n boundary in Ro

t% boundary with i = 0, 1 where no denotes the boundary where T = 0°C and n1 the interface
between an ice layer and a frozen fringe

n10  boundary between RIO and R1,

Po gravity term, 0.098 [kPa/cm]

Pi pressure of the ith constituent where i = 1, 2

P10 value of P1 at no

P1. value of P1 at n

P21  value of P2 at n,
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r rate of heave

R0  unfrozen part of the soil

R, frozen fringe

RI0 part of the soil bounded by no and n10
RI, essential frozen fringe

R2 ice layer
Rm region in the diagram of temperature gradients where an ice layer melts

R, region in the diagram of temperature gradients where the steady growth of an ice layer occurs

Ra boundary between R, and R.

Rs* boundary between Rm and R,
Ru region in the diagram of temperature gradients where the steady growth of an ice layer does

not occur

S property of a given soil

SP0 segregation potential defined by eq 2a
t time

T temperature

T1  temperature at n,
T10  defined by eq 41

TI, calculated value of T1 from the measured temperature profile in R2

T1* empirically determined value of Tj

T1* temperature at n, when eq i holds true

To constant

(T')a average temperature gradient in R1

AiT defined by eq 3c

x spatial coordinate
y variable defined by eq 17c
Y variable defined by eq 38b

y. variable defined by eq 3a

a(t) trajectory [a1(t), %(t)] in the diagram of temperature gradients
or0  absolute value of the temperature gradient at no

at, absolute value of the limiting temperature gradient as x approaches n, while x is in R2, defined
by eq6

af absolute value of the temperature gradient near n, in R2

ot. absolute value of the temperature gradient near no in Ro

P defined by eq 11c

Y constant, 1.12 MPa OC-1
y, defined by eq 24b
8 thickness of a frozen fringe

8* defined by eq 27b

Se thickness of an essential frozen fringe defined by eq 27a
80 defined by eq 13c
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n defined by eq 9b

p composition of the soil
p, bulk density of the ith constituent

a effective pressure defined by eq I and 16c
% empirical function of T defined by eq 14a

%0i valueof• at T= T,
*• empirical function of T defined by eq 14b

*,1 value of *1 at T = T1

p variable defined by eq 21b

4p, variable defined by eq 25f
o) dimensionless quantity defined by eq.18a throiugh 18d where i =0, L..., 3
i subscript denotes the ith constituent of the mixture consisting of unfrozen water (i f 1), ice (i

= 2) and soil minerals (i = 3)
* superscript used to indicate the value of any variable evaluated when a point (ap, or) in the

diagram of temperature gradients is on Rs
superscript used to indicate the value of any variable evaluated when a point (at, %) in the
diagram of temperature gradients is on Rs *
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Growth Condition of an Ice Layer in
Freezing Soils Under Applied Loads

2. Analysis

YOSHISUKE NAKANO AND KAZUO TAKEDA

INTRODUCTION

In this report we will consider the one-directional steady growth of an ice layer. Let the freezing

process advance from the top down and the coordinate x be positive upwards, with its origin fixed
at some point in the unfrozen part of the soil. A freezing soil in this problem may be considered to
consist of three parts: the unfrozen partRe, the frozen fringeR1 and the ice layer R2, as shown in Figure
1. The physical properties of parts Re and R2 are well understood but our knowledge on the physical
properties and the dynamic behavior of part R, does not appear sufficient for engineering applica-
tions.

It has been shown empirically (Radd and Oertle 1973, Takashi et al. 1981) that there is a unique
temperature Tj* at n1 for a given pressure of ice P21 at n1 and a given pressure of water P1 in Re when
an existing ice layer neither grows nor melts and the mass flux of waterf1 in R1 vanishes. This temper-
ature Tj** at the phase equilibrium of water is given as

a = P21 - Pi = - YTj'*, if f,=O (1)

where yis a constant with the value of 1.12 MPa °C-1, and
a and P 21 are often referred to as the effective pressure m
and the overburden pressure, respectively. Equation 1 is
often called the generalized Clausius-Clapeyron equa-
tion, whichis attributed to Edlefsen and Anderson (1943). 2

Konrad and Morgenstem (1980, 1981, 1982) empiri-
cally found that the rate of water intakeflo at the forma- n T=T1
tion of the final ice lens is proportional to the average
temperature gradient (T'). in the frozen fringe. This may
be written as R,

x

flo -SPO(V). (2a) n T=TTo=0-

where a prime denotes differentiation with respect to x.
The positive proportionality factor SP0 is termed the seg- 0 Ro

regation potential, which is a property of a given soil.
Konrad and Morgenstem also found empirically that n
SP0 is a decreasing function of both the applied pressure
F and the suction of water (-P10) at no. We will write this Figure 1. Schematic of a steadily growing

dependence as ice layer in a freezing soil.



erally depend on the temperature Tand the composition of the soil. We will describe such functional

dependence of /• (i = 1,2) as

KI = KI(T, p) (4d)

K2 = K2(T, p) (4e)

where p symbolically denotes the composition of the soil that is uniquely determined by the bulk
densities of unfrozen water Pl, ice P2 and soil minerals P3.

Nakano (1990) obtained the exact mathematical solution to the problem of a steadily growing ice
layer based on the model MI. Analyzing the behavior of this solution, we showed that M, is
consistent with eq 1 (Nakano 1990) and eq 3b (Nakano and Takeda 1991). We also showed (Nakano
and Takeda 1991) that M, can accurately describe the steady growth condition of an ice layer under
negligible applied pressures.

The steady growth condition of an ice layer with
or without applied pressure is the region &~bound-
ed by a curve R* and a straight line R** in the dia-
gram of temperature gradients as shown in Figure R-
3. The region & is defined as

(k1/hk)cIt > a3 > k, (k0 .+ LbK2z))-! a, (5) EO

where k, and ko are the thermal conductivities of R2
and Ro, respectively, oh is the absolute value of the
temperature gradient at no and a, is the limiting
value of the temperature gradient at n, in R2 de-
fined as

al =-limr(x). (6) al
x-+n1
x in R2 Figure 3. Temperature gradients a, and or

In eq 5, L is the latent heat of fusion of water, b is a
function of the thickness 6 of R1 defined by eq 73c and 73e in Nakano (1990), and K21 is the limiting
value of K2 asxapproaches n, when x is in R1 and an asterisk denotes that K* is the value of K21 when
a point (a1 ,oa) is on R* in the diagram of temperature gradients.

In Figure 3 we will refer to the region as R. where %X > (k1/ko)CXj'o <0 and an ice layer is melting.
The boundary R * is given as

ao = (ku/ko)a I on R**. (7a)

An existing ice layer neither grows no meltsf 0 vanishes and eq I holds true on Rt *. The boundary
R* is given as

ao = ki(ko + LbKl*,)4,a on R*. (7b)

It is easy to see from eq 5 that the steady growth condition of a given soil is uniquely determined by
a, and %. Nakano (1990) showed that all physical variables such asf1 0, TI, 6, etc., are also uniquely
determined by 1 and %0 for given hydraulic conditions, and applied pressure o. The hydraulic con-
dition in our tests is specified by the distance 80 between no and n where the pressure Pu of water
is kept at the atmospheric pressure. Therefore, any point in Rs is uniquely specified by a, and o% for
given 0 , PU and o. We will write this as
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0

&.=e(av, UO; A& P16, 6). (8a)

Since a, and %I are related by eq 7b on R*, any point on R* is uniquely specified by either a or N
for given 6, PU and oas

Rt = Rs((ao; u, P•,,). (8b)

The main objective of this work is to show that M, is consistent with the data under various applied
pressures that were presented in Part I. We will also show that M, is consistent with the reported
empirical equations such as eq 2a-c and 3b-c. Furthermore, we will evaluate the concept of seg-
regation potential introduced by Konrad and Morgenstern (1980, 1981, 1982) based on M1 and
experimental data.

PROPERTIES OF M!

Treating a given soil as a mixture of water in liquid phase B1, ice B2 and soil minerals E6 Nakano
(1990) obtained the exact mathematical solution to the problem of a steadily growing ice layer based
on the model M1 under the following assumptions. The density of each constituent remains constant,
the dry density of Re remains constant, the part R0 is kept saturated with water at all times and the
pressure ofwater Pi,, at some boundary n fixed in Re remains constant. The thermal conductivityk(x)
in R, is assumed to be a nondecreasing linear function of x given as

k(x) = kO[1 + Tl(x- no)], nj > x t no (9a)

Tj = (ko - o)/(Rko) (9b)

lim k = ko0 1  k• (9c)
X-.-l1
xmRl

8 = nj - no. (9d)

The temperature T in R, satisfies the equation given as (Nakano, 1990)

k(x)T'- c1f1o T = - koco . (loa)

The solution of eq 10a is approximately given as

T ~ x --a[xno) + I(Do - 1) (x -no?] (10b)

T, = - oroa(8) (10c)

T(n= = - axb(8) (10d)

where T'(nt )is the limiting value of T7(x) asxapproaches nj whilexis in RI, anda, band Naredefined
as

a(8) = 8 + (1/2) (00 -n)82 + ... (11a)

b(8) = (1 +n)-l [1 + N8 +... (11b)
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Po = cjolko. (11c)

We derived the following equation of heat balance in R, given as

k1a = k0%t + (L - c2T1)f1o (12)

The mass flux of waterflo satisfies the equations (Nakano 1990) given as

P10 = P - [(fol Ko) + p0180 (13a)

P2i = P10 -/1) KI' dx -1 KI IK2 rdx (13b)

where P10 = P1(n0), PI, = PI(n)
n = some point in R0

K& = the hydraulic conductivity in Ro
po = gravity term, density d, x gravitational acceleration

80 = no- n > 0. (13c)

In order to reduce eq 13b to a simpler form, we introduced (Nakano and Takeda 1991) the following
two dimensionless quantities:

*o(7 = r" fo (Kin/KI ) (K22/K2o ) dT (14a)

#,(7) = T-1 (Kir/Ki ) (k/ko) dT (14b)

where K10 and K20 are the limiting values of K, and K2, respectively, as x approaches no while x is in
R1.We obtained (Nakano and Takeda 1991) the following equations given as

Ko = K10 (15a)

y= K20oKo (15b)

#M 1, iff1o = 0 (15c)

-TI= (or+ 80 Yj/,o)/I (16a)

1 ym- Ke *j3 (16b)

o= P21 - PU (16c)

where #m, 41 and y are defined as

#M= #(T1 ) (17a)
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* = *1(T1) (17b)

Y =A1%o. (17c)

Equation 15a holds true because the composition of the freezing soil is continuous at no, and eq 15b
and c follow from eq 4b.

For the sake of convenience we will reduce eq 16a to a form similar to eq 3b. First, we will introduce
the following four dimensionless quantities:

10 •, • =0

1 -_ 7 .r. T, d< 0(18a)

[I-k k[1--]dr, r < 0

AT)= _IAT , J kKo(koK o).4 dT, T1 < *(18)

Using eq 18a-d, we will write Cm and f as

T~o1 = T•*(1 + o)- w1AT (19a)

Tn= T(1 + -o2) - o 3Ar. (19b)

According to M1 the mass flux of waterf1 0 in a neighborhood of n1 in R1 is given as (Nakano and
Takeda 1991)

0=-K1 P(n++ bK21 o (20)

where KOb and P(nt) are the limiting values of K1 and P, respectively, as x approaches n1 while x

is in R1. We will rewrite eq 20 as

y = K 71 * (21a)

o= b-K 1 Pj'(nt) ( 0 K21 -. (21b)

6



We found (Nakano and Takeda 1991) that P (n+ is positive in R, and vanishes on R*; namely

P•(nt+ ) > in R, (22a)

P•(nl+) = 0 on R:. (22b)

From eq 22a, 22b and 21b we obtain

qbo= b on R* (23a)

b> 4po>O in Rs (23b)

PO=0 on R:*. (23c)

Using eq 21a, we will reduce eq 16b to

I = 00o1 - Y1Po *11) (24a)

where y¥ is defined as

"Y-= Kn21Kj. (24b)

Substituting ko and 011 in eq 24a by eq 19a and b and using eq 1, we will reduce eq 24a to

- TI = a[l + WOo - YIq o(l + ()2)] + T[O)I- Ylq'oCo3] AT. (25a)

Combining eq 25a with 16a, we obtain

SOKo'fIO +[Y VO( + (02 )-0o0 1= [1OI- YIuPow 3 ]AT. (25b)

Now we will reduce eq 25b to a form similar to eq 3b as

AT = a-o + -a ho (25c)

where a0 and aI are defined as

ao = [y Io(l + W2) - o)o] o(wI)-' (25d)

a = o,(yKoTq1)- (25e)

91 = 0)o - Yio¢03. (25f)

We will examine eq 25c for a special case wheref1o is very small. It follows from eq 21a that 4p0
vanishes asfjo vanishes. We find from eq 18a that oo vanishes because of eq 4b asfjo vanishes. It
follows from eq 1 that T1 approaches Ti* ; hence, o) approaches one asf1 o approaches zero. Hence,
ao approaches zero and a1 approaches 80(yK/)-I asf1 o approaches zero. Therefore, whenfl0 is very
small, eq 25c may be approximately given as

AT= a"fto. (26)
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Since fl0 is the growth rate of the ice layer, eq 26 states that the growth rate of the ice layer is
proportional to the degree of supercooling and that the rate coefficient (;&' depends on the
hydraulic properties of R1 and R1, namely the availability of unfrozen water. Equation 26 is consistent
with the theory of crystal growth in supercooled liquid (Chalmers 1964).

We will define the thicknesses 8, of R11 and 86* of RIO (Fig. 2) as

8e = n, - n1 0  (27a)

6"* = n1 0 - no. (27b)

Then the thickness 8 of R, is obviously given as

8 = 86*+ 8e. (27c)

Using eq 10c, we obtain

*= - oa (8* *. (27d)

Using eq 10c and Ila, we obtain

AT = (bq, (27e)

where ae is defined as

a. a(8) - a(8**) (270

=e+ 1 (Po0-n)((e + 28"*) 8e+.... (27g)
2

Using eq 27e, we will reduce eq 26 to

ae = aiy (28a)

where ^a may be written as

a= 8o(TKOr1(O)1- Kjc- 3 YYI. (28b)

Whenfl0 is small, y and 8e are also small and eq 28a and b are reduced to

e a^ y (29a)

ai = 8o(yKowi)-. (29b)

From eq 29a and b we find that the thickness of the essential frozen fringe is proportional to y and
that the essential frozen fringe vanishes asf10 vanishes. In other words, whenflo is very small, we may
state that the appearance of an essential frozen fringe is induced by the flow of unfrozen water
regardless of a. This implies that an essential frozen fringe appears only under a dynamic condition.

MODEL M1 AND SEGREGATION POTENTIAL

We will show below thatM1 is consistent with eq 2a, which was found empirically by Konrad and
Morgenstern (1980,1981) and was confirmed by Ishizaki and Nishio (1985). In a typical experiment

8



Rt(t2)

R,,a (tao)

t to RU Figure 4. Schematic of trajectories a(t) that
approximately describe the condition offreez-
ing at the formation of thefinal ice lens.

0

by Konrad and Morgenstern (1981), the temperature field in the system changes rapidly at the start
of the experiment. However, as time elapses, the rate of the change slows down so that the transient
freezing may be accurately approximated by a series of successive steady states. Hence, the later part
of the experiment can be approximately represented by trajectory 1 in Figure 4, consisting of points
a(t) = {OZ(t), cx0(t)) for t2 > t 2 t0.

A point a(to) is in R. where frozen soil without any visible ice layer grows. As a, decreases and
a0 increases, the trajectory approaches the vicinity of a point a(tl) in Rk. As we described previously
(Takeda and Nakano 1990) the pattern of ice-rich frozen soil grown in this vicinity evidently depends
on the soil type and themagnitude of oc (or %r0). The results of tests on Kanto loam, forinstance, clearly
indicate that the pattern of rhythmic ice banding is formed at the small values of a, while soil particles
or small aggregates of soil particles are evenly dispersed at the greater values of a,.

When a(t) reaches the point a(tl) on R:, the final ice layer emerges. While a(t) moves toward the
point a(t2) on Rs**, the growth of the final ice layer continues with the decreasing growth rate until
a(t) reaches the point a(t2) on R* * where the ice layer stops growing. It should be noted that a line
of constantflo is nearly parallel to R** because of eq 12. From eq 20 and 22b we obtain on RI

r, = y*ao = K bo m cR*. (30)

It follows from eq30 that the water intake flux, f0, at the formation of the final ice layeris proportional
to the temperature gradient, b% at nt. Comparing eq 30 with 2a, we find that SP0 and (T). in eq 2a
correspond to Kj and - box0 in eq 30, respectively. Since the temperature gradient in R, does not vary
significantly, the segregation potential SPo is nothing but Kj* (the limiting value of the transport
function K2 as x approaches n, while x is in R, at the formation of the final ice layer), when a point
x(t) is on RI in the diagram of temperature gradients, namely

SPo = K2j = y*b- 1. (31)

We have shown that M, is consistent with eq 2a. It is clear from eq 20 that eq 30 holds true on Rt but
does not hold in R. because of eq 22a. In other words, the value of y defined by eq 17c is equal to b K21
on RI. However, the value of y in R. depends on a specific trajectory a(t). For instance, on trajectory
I in Figure 4 the value of y decreases from bK2* as ax(t) moves toward the point cx(to) from the point
a(tl) and vanishes at the point a(t2). On this trajectoryflo decreases with the increasing %. However,
it is easy to see thatf1 0 decreases with the decreasing a0 on trajectory 2 for t2 > t > t1.Therefore, M,
is also consistent with the empirical finding by Ishizaki and Nishio (1985) that the val te of y. varies

9



widely and that fl may either increase or decrease with the increasing % depending on a given
specific trajectory. This finding by Ishizaki and Nishio (1985) was empirically confirmed (Nakano
and Takeda 1991) when o = 0.

According to our definition K2j is the value of K21 evaluated on R:. Since any point on R: is
uniquely specified by eq 8b, we may write Kj1 as

K* = K2A(uo; 8& PI., 4) (32)

We studied (Nakano and Takeda 1991) the dependence of Kii on ao for a special case where 80 = 2.0
cm, P1 n = 0.1 MPa and a = 0 for three types of soils. It was found that K21 is nearly constant for a g
soil if a0 is greater than 2.0 (°C cm-1). However, K2* tends to increase with decreasing a0 in the
of a0 with 2.0 (°C cm-l) > ao > 0 for the two types of soils, Tomakomai silt and Fujinomori
Unfortunately, we were unable to confirm behavior similar to this of K2I for Kanto loam because of
a lack of data. Using the additional data newly obtained, we will show such behavior for Kanto loam
below.

Konrad and Morgenstem (1980, 1981, 1982) empirically found eq 2b that is equivalent to the
following equation given as

K = Kj,(Pj'o, a) (33)

where an asterisk for P10 is used to emphasize that the value of P10 is evaluated when a point a(t) is
on R*. Since their hydraulic conditions were not specified in the same manner as in our experiments,
we will reduce eq 33 to the form appropriate to our system. In our system P10 is given by eq 13a.
Hence, we obtain

Pro = P - [(&I /Ko) + po] 8o (34)

where r0o is the value off1o on R3 and is uniquely determined by a0 (eq 8b) if 80, P1, and 0 are given.
Therefore, P1*0 in eq 33 can be replaced by ao, 80 and P1i so that eq 33 is reduced to eq 32. We have
shown that M, is consistent with eq 2b, which was found empirically by Konrad and Morgenstem
(1980,1981,1982).

Konrad and Morgenstem (1981) empirically 1.5

found that SPo is a monotonically decreasing
function of -Pi'0 when Y = 0. Since Pj*0 repre-
sents the combined effects of o 80 and Pi, in 6 5 o.

order to find the effect of the temperature gra- 1.0
dient, we plotted the data of SPo vs. (-T')a
obtained by Konrad and Morgenstern (1981) in SPo 8o

Figure 5, where the number assigned to each
data point corresponds to the test number of 7o

their E series experiments. The data points E4 0.54

through 7 were obtained for a single layer of 90

Devon silt under various temperature condi-
tions. These data points clearly indicate that SP0
tends to increase with the decreasing tempera-
ture gradient. This tendency is consistent with o 0.5 1.0

our empirical findings. Tests E8 and E9 were (-T') ,

both two-layer systems in which the hydraulic Figure 5. Values of SPo [g(cm IC d)-11 vs. the values
conductivities Ko of the unfrozen bottom layers of the average temperature gradient (-T'). (OC cm- 1)
were, respectively, higher and lower than that obtained by Konrad and Morgenstern (1981).
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of the unfrozen Devon silt. Since the temperature gradients in these two tests were not equal, the
effects of hydraulic conditions alone on SP0 are difficult to assess.

RESULTS OF DATA ANALYSIS

Steady growth condition
We will examine the validity of the model M, under the applied pressure by using the experimen-

tal data presented in Part I (Takeda and Nakano 1993). We found empirically that the steady growth
region R,(a) under a given applied pressure u is approximately described as

au = Aaf, ki koI > A > S(a) (35)

where %, = absolute value of the temperature gradient near no in R0

of = absolute value of the temperature gradient near n, in R 2

S = property of a given soil that depends on the applied pressure a.

The temperature profiles in the frozen and the unfrozen parts are not exactly linear when the
steady growth of an ice layer is taking place because of the convective heat transport. However, the
amount of heat transported by convection is much less than that transported by conduction. The
difference between cau (or af) and c (or a,) is negligibly small as shown empirically and theoretically
in Nakano and Takeda (1991). Therefore, eq 35 is nearly equivalent to

co = Aai, - ki k-0 > A > S(a). (36)

We will no longer discriminate cc. (or of) from ct (or a,) in the following discussion.
According to M1 the steady growth region R,(u) under a given applied pressure a is given by eq

5. Using y*, we will reduce eq 5 to a form similar to eq 36 as

cco= Aai, kiko' > A > ki(ko+ Ly*). (37)

Compa'ring eq 37 with 36, we find that M, is consistent with the experimental data if the following
relation holds:

S(ar) a k1i[ko + Ly*(a)V. (38a)

We will define Y* as

s(a) = k [k0 + Ly*(a) (38b)

Then, it is easy to see that eq 38a is equivalent to the following relation:

Yo(o) a Y*(o'). (38c)

We will examine the validity of eq 38c below.
Fora giveno the value ofy *(aF) canbecalculatedbyusing thecalctlated valueofflobased oneither

the measured rate of heave r or the measured rate of water intake, and the measured value of N at
each data point (cc2, ci) on R*. The calculated values of y*(q) are plotted vs. o with a being a
parameter in Figure 6. The mass flux of water!f0 decreases by the order of 10-2 as a increases from
zero to 195 kPa. As the result the accuracy of measuringfro tends to decrease with increasing a and
the variability of data points becomes more pronounced with increasing a, as shown in Figure 6.
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Figure 6. Values of y* g(cm "C d)-') vs. %b under various applied
pressures a (kPa).

Because of such variability and the limited numbers of data under a = 390 kPa, we decided not to use
the data taken under a = 390 kPa in our analysis. From Figure 6 we find the general trend that y*
decreases with increasing a and that y* increases with the decreasing % in the range of N0 < 2.0 °C
cm-1. The latter trend was also observed (Nakano and Takeda 1991) in the experiments with
Tomakomai silt and Fujinomari clay under null applied pressure.

We calculated the values of Y* (a) from the values of S(c) that were presented in Table 2 of Part
I (Takeda and Nakano 1993). We also calculated theaverage ofy*(a) over all the data points obtained
for each a. The values of Y* (a) and the average values y* (u) of y*(a) for each care presented in Table
1. It is clear from Table 1 that eq 38c does not hold for every a, particularly for greater values of a.
However, the average values y* (c) do not differ significantly from those of y*(a). We may conclude
that the model M1 is consistent with the experimental data regardless ofo and that the steady growth
region of an ice layer under various applied pressures can be described by eq 37.

In order to find the dependence of y,*on a, we plotted ya*in the logarithmic scale against a in
Figure 7. It is clear from the figure that y,*is a decreasing function of a. Assuming that b is nearly
equal to one, we may conclude that K21 (or SPo) is a decreasing function of a, which was found

5.0

0

TableLCalculatedvaluesy" [I(cm °Cd-ll 1.0 _ •o

and the average measured values y.* under Y*a
various applied pressures a (kPa). 0.5

Aplied ptm56, (a)
0.0 8.12 16.2 48.7 97.8 195

y 2.34 2.12 1.14 1.12 0.72 0.56

S2.86 1.98 1.61 0.97 0.45 0.35 0.11 I
0100 200 3W0

Figure 7. Averzge values y lg(cm 9C d)-11 vs. a
(kPa) wherea solid lineis their;allydetermined
relationship for Devon silt obtained by Konrad and
Morgenstern (1982).
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empirically by Konrad and Morgenstern (1982). Their data with Devon silt were presented in the

functional form given as

SP0 = a2 exp(- a3a). (39)

When we use the same units of SPo and a as those of yaand a in Figure 7, the values of the constants
a2 and a3 are 1.04 and 8.95 x 10-3, respectively, and eq 39 is presented by the straight line in Figure
7. Because of the limited number of data points it is not certain that our data can be presented in the
same functional form as eq 39. However, the important point is that K2I is a decreasing function of
Y. The reason for such dependence will be discussed below.

Dependence of y* on Tj'

Combining eq 30 with eq 32, we obtain

y* = bK2 (ax & Pi., ). (40a)

For a special case such as our experiments where 80 and P10 are specified, we may reduce eq 40a to:

Sy* = bK (ao, a). (40b)

On the other hand K2j is the value of K21 when a point (ar1, or0) is on R*. From eq 4e we obtain

Kj* = KXj(Tj', p) (40c)

where Ti' is the temperature at n, when a point (ap1, %0 ) is on R*. It is clear from eq 40b and c that T•
and the composition p generally depend on % and Y. We will study empirically the relationship
between y* and T• below.

Using the set of data obtained under the applied pressure of 48.7 kPa as an example, we will
describe how we obtained the empirically determined value of T• from the data. The results of our
data analysis are presented in Table 2, where ni is the observed location of the interface between R1
and R2, while no is the location of the 00C isotherm calculated by using the measured temperature
profile in Re. The values of 8 in the table are calculated simply from eq 9d and vary between 0.91 and
1.5 mm. We have found that the value of 8 increases with the increasing a and that the maximum
value of 8 in the range of a:5 195 kPa is 4.8 mm under the condition of %0 = 0.80 and a = 195 kPa.

The value of Ti' can be calculated from either the measured temperature profile in Re or that in R2.
As we discussed in Part I (Takeda and Nakano 1993), the temperature measurements in R0 are more
accurate than those in R2. Therefore, it is desirable to determine T• from the profile in Re. However,
the thermal conductivity k(x) in R1 is unknownbecause the composition of R1 is unknown. According
to the model M1, T, is given by eq 10c and 11a. Hence, when the variation of k in R1 is small, Ti' is
nearly equal to TIe defined as

Table 2. Summary of data analysis with a = 48.7 kPa.
A'6o 0o ynl no -T8 o -T,_ -T"

Exp. X'Ccm-1) Qg cm-2 d-1) IS (cm OC d)kl (cm) (cm) (cm) (00) (CC (00)

1 0.642 0.968 1.51 0.67 0.55 0.12 0.076 0.174 0.125
2 1.29 1.59 1.23 0.25 0.099 0.15 0.192 0.198 0.195
3 1.62 1.60 0.988 0.28 0.13 0.15 0.239 0.211 0.225
4 2.76 2.13 0.770 0.18 0.086 0.094 0.260 0.245 0.255
5 3.29 Z65 0.804 0.20 0.080 0.12 0.378 0.320 0.349
6 5.85 2.97 0.507 0.13 0.039 0.091 0.535 0.467 0.501
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TIo= - c. (41a)

It is clear from eq 10c and Ila that T• is accurately approximated also by T10 when 8 is very small.
The calculated values of T10 are listed in Table 2. When a is negligible, Nakano and Takeda (1991)
found that k(x) tends to increase with x in R1.Therefore, 1"10 would be a lower bound of T•, namely

T1* a TIO. (41b)

We also calculated the value of T• from the measured profile in R2.The calculated values, which are
referred to as T11, are listed in Table 2. We find from Table 2 that T10 tends to be less than T11.A ten-
dency similar to this was also found in all other cases of different applied pressures. Under these
circumstances we decided to choose the average of T1o and T11 tobe the empirically determined value
Tf' of Tj' defined as

fi = 0.5 (Tio + Ti). (42)

The values of Ti* are listed in Table 2.
The values of y* are plotted against -Ti with the logarithmic scale under various applied pres-

sures a in Figure 8. Despite some scatter, it is clear that the relation between y* and Ti* is nearly one
to one. The solid line in Figure 8 is the best linear approximation to the data points given as

Y'Kj1 =_K20  To < T5 <0 (43a){K24TOITj2 T:5 To (43b)

where b is assumed to be one, K2o is the limiting value of K2 asx approaches no while x is in R1 and
is equal to 1.98 x 103 g(cm d C)Q- (Nakano and Takeda 1991), To = - 1.5 x 10-4 °C and b2 = 1.039. As
we showed (Nakano and Takeda 1991), K20 satisfies the equation given as

K20 = yKo (44)

where K0 is the hydraulic conductivity in R0.It is easy to see thaty* becomes infinite as Tapproaches
zero in eq 43b. Although eq 43b is the best approximation to the data points, eq 43a is needed to fit
the data points in a neighborhood of T = 0°C.

101
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Figure 8. Values ofy*(g(cm ICd)-llvs. the temper-

0.5 A ature -i (MC) under various applied pressures a
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According toeq 40c, y* generally depends on Ti and the composition p. Howeverjwe have found
empirically that y* depends mainly on T .This implies that the composition in a neighborhood of
n in R, is not significantly affected by o and %0 (orf!0). Since T1 varies between 0 and -1.0'C in Figure
8, we may conclude t.-at the composition of the essential frozen fringe RI1 depends mainly on the
temperature regardless of u and flo. There is another interpretation of Figure 8: that the transport
function K2 does not depend on the composition. Recently Nakano and Tice (1990) found empirically
that K(2 in unsaturated frozen clay strongly depends on the composition, particularly the content of
ice. Their empirical finding supports the former interpretation.

Figure 8 shows that the range of T1 for a given a shifts toward the lower temperature as ; increas-
es. The segregation potential K21 evidently depends primarily on the temperature Ti' at n1 and is an
increasing function of Tj* because the applied pressure in the range of a 195 kPa does not affect sig-
nificantly the composition of the essential frozen fringe R11.This is the reason why the segregation
potential K2*1 is generally a decreasing function of a.

Dependence of T1* on frj
The values of -Tl* are plotted against rj0 under various applied pressures a in Figure 9. Figure 9

shows that the relationship between TI and r0 is approximately linear for a given a, which is con-
sistent with the empirical relation (eq 3b and c) found by Ishizaki and Nishio (1985). It is clear from
Figure 9 that the constants a0 and a, strongly depend on a. An important question is whether we can
describe the behavior of data points in Figure 9 by eq 25c derived based on M1.We are not able to
show that eq 25c is consistent with the data because we have no data on the transport function K1.
However, we will show below that eq 25c is consistent with the data if the function K1 is properly
chosen.

The model M1 is defined as the frozen fringe where ice may exist but does not grow, and the mass
flux of waterf1 is given by eq 4a with the condition of eq 4b and c. When a > 0, the essential frozen
fringe R11 vanishes asf1 vanishes but RI0 does not. From eq 4b we obtain:

K2/K 1 = y in RIo iff1 = O. (45)

When the steady growth of an ice layer occurs,f1 remains constant atflo throughout R0, RI0 and RII.
An important question arises: whether or not eq 45 holds true whenflo does not vanish. In other

0.8 i
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A 97.5
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words, is the composition of R10 significantly affected byf10? As we described above, our data indi-
cate that neither a norflo significantly affects the composition of the essential frozen fringe. There-
fore, it is probable that the effect offlo on the composition of RI0 is negligible. We will assume that
eq 45 holds true regardless off0, namely

K2/ 1 = y in R. (46)

When eq 46 holds true, the dimensionless quantity ft defined by eq 18a vanishes. Hence, eq 25d is
reduced to

ao = y, qpo(1 + o2) a (yl)-r. (47)

Now we will calculate T* as a function of ri0 by eq 25c as follows. Since Ti' is the value of T1 on R*,
f% is equal to b by eq 23a. We will assume that b = 1, or equivalently k(x) = ko in R1 .We also assume
that K2(7) is equal to K21(T) given by eq 43a and b. The value of Ti* is calculated by eq 1 for a given
a. Horiguchi and Miller (1983) found empirically that the transport functions KI(7) of various soils
can accurately be represented in the same functional form as eq 43b. We will assume that KI(T) is
given as

KIM) - Ko To<T=0 (48)

Ko(ToTP T5 To

where Ko is the hydraulic conductivity in Ro and is 1.77 x 103 g(cm d MPa)-I (Nakano and Takeda
1991). The value of Tois the same as used in eq 43a and b. A constant b, is an unknown parameter
to be determined.

As we described in Part I (Takeda and Nakano 1993), the applied pressure a affects the void ratio
e of a specimen. Although the variation of e itself is negligibly small, the hydraulic conductivity 4
maybe affected significantly. Therefore, we determined empirically the relationship between Koand
a given as

K0(a) = 1.77 x 103 a-0.10 (49)

where the units of K0 and a are g(cm d MPa)-l and kPa, respectively. The value of K0 is reduced to
about one-half according to eq 49 when a is increased from zero to 195 kPa. The functional form of
eq 49 is consistent with the data obtained by Fukushima and Ishii (1986). In our calculations of Tj'
for a > 0 we used Q(a) given by eq 49 instead of the value of 4 at a = 0.

Now we can calculate Tj(flo) with b, being a parameter. Calculating T1(f4) in the wide range of
bl, we find that the calculated curves Tj'(fio) fit the data well if b, is about one-half of b2.The calculated
curves with b1 = 0.52 are presented in Figure 10 together with the data. IfbI is decreased (or increased)
from this value, then the gradients of these curves, d(- Tr )/dfo, increase (or decrease). We have
shown that eq 25c is consistent with the data if the function K1 is given by eq 48 with b1 = 0.52.

DISCUSSION AND CONCLUSIONS

Many models of frost heave have been proposed in the past (Nakano 1990). However, the model
proposed by Konrad and Morgenstern (1982) is one of few that were built on an empirical base. Their
segregation potential theory was easily adapted to solve engineering problems in the past. As our
quantitative understanding on the subject is increased, their model can be improved or refined
without sacrificing its easy adaptability to engineering problems.

Konrad and Morgenstern (1981) proposed an equation similar to eq 4a where the mass flux of
waterf1 is given as the sum of two terms, namely, a pressure-related term and a temperature related
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term. However, curiously enough, they dropped the pressure term in their later publications. Since
the pressure term in eq 4a is generally negative according to M1, the omission of this term leads to
overestimatingf 1.Therefore, their model certainly predicts an upper bound of frost heave as they
claim (Konrad and Morgenstem 1982). However, some serious criticisms against their model cannot
be refuted unless the pressure term is restored, as we will explain below.

When the pressure term is neglected, it is clear from eq 4a thatf1 is nonnegative. This is the reason
why Konrad and Morgenstern (1982) could not provide a satisfactory explanation for the expulsion
of water from freezing soils. Takashi et al. (1978) conducted a series of frost heave tests in which the
temperature in the unfrozen part R0 was kept constant at 0.2-0.30C higher than the freezing point of
specimens. In other words, the positive temperature term of eq 4a was kept small in their tests.

The absolute value of the negative pressure term of eq 4a is small when the applied pressure a is
small. Hence,f1 can be positive when a is small. However, the pressure term decreases with the in-
creasinga andf1 vanishes at certain values ofabecause the two terms of eq4a cancel out. As aincreas-
es beyond this value,fJ becomes negative; that is, the expulsion of water from freezing soils takes
place. Takashi et al. (1978) found empirically what we described above.

Another serious criticism of the segregation potential theory was raised by Ishizaki and Nishio
(1985) that the value of Ya defined by eq 3a is constant strictly at the instant when the final ice lens
emerges, but except for this instant, y, varies widely during the growth period of the final ice lens.
As we explained earlier, the pressure term of eq14a vanishes at the formation of the final ice lens, but
the negative pressure term varies depending on a specific trajectory in the diagram of temperature
gradients when the final ice lens is growing. The empirical finding by Ishizaki and Nishio (1985) can
be explained if the pressure term is restored. Assuming that the temperature Tl(a) at the formation
of the final ice lens depends mainly on the property of a given soil alone, Konrad and Morgenstern
(1982) termed Tr*(a)as the "segregation freezing temperature." However, we have found empirical-
ly (Fig. 9) that TjI(a) depends strongly on the mass flux r•a'

Using the data obtained in Part I (Takeda and Nakano 1993), we evaluated the accuracy of M1 .We
found that the predicted steady growth condition of an ice layer under various applied pressures is
in good agreement with that found empirically. We also found that M, is consistent with the data
obtained by Konrad and Morgenstem (1980,1981,1982) that were used to support their segregation
potential theory. Their method of frost heave prediction is a sound and useful tool for engineering
problems that consistently provides an upper bound of frost heave. However, the accuracy of their
method can be significantly improved and some of the serious criti-cisms against it can be refuted
if the pressure term in the equation of water flow is restored as we discussed above.
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