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Abstract

The results of an experimental study on the steody growth condition of a
segregated ice layer under various applied pressures were presented in Port
1. Using the data obkained, we evaluate the accuracy of the model M;, and
the predicted steady growth condition is found fo be in good ogreement with
the condition found empirically. The concept of segregation potential infro-
duced by Konrad and Morgenstem in the early 1980s is examined based on
M;. M, is found to be consistent with the empirical data that were used fo

support their segregation potential theory.
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Cover: Apparatus for festing ice growih in soils under applied foads. (Pholo by
K. Takedo.)

For conversion of S metric units fo U.S./British customary unifs of measurement
consult Standard Practice for Use of the Infernational System of Unifs (SI), ASTM
Standard E380-890, published by the American Soclely for Testing and Mater-
ials, 1916 Race St., Philadelpiia, Pa. 19103.




CRREL Report 94-1

US Army Corps
of Engineers

Cold Regions Research &
Engineering Laboratory

Growth Condition of an Ice Layer

in Frozen Soils Under Applied Loads
2. Analysis

Yoshisuke Nakano and Kazuo Takeda

January 1994
Accesion Far
NTIS CRA& a
DTIC TAB
Unan’n0unced a
Justification
By
Dist, ibution )
Availability Codes
Avail and/or
Dist Special

DTIC QU.
Prepared for QUALITY INSPECTED 3
OFFICE OF THE CHIEF OF ENGINEERS

Approved for public retease; distribution is uniimited.




PREFACE

This report was prepared by Dr. Yoshisuke Nakano, Chemical Engineer, of the Applied
Research Branch, Experimental Engineering Division, U. S. Army Cold Regions Research
and Engineering Laboratory, and by Dr. Kazuo Takeda of the Technical Research Institute,
Konoike Construction Co., Ltd., Konohana, Osaka, Japan. Funding for Dr. Nakano’s re-
search was provided by DA Project 4A161102AT24, Research in Snow, Ice and Frozen Ground,
Task SC, Work Unit F01, Physical Processes in Frozen Soil. Dr. Takeda’s experimental work was
funded by Konoike Construction Company.

The authors thank Dr. Virgil Lunardini and Dr. Y.C. Yen of CRREL for their technical
review of this report.

The contents of this report are not to be used for advertising or promotional purposes.
Citation of brand names does not constitute an official endorsement or approval of the use
of such commercial products.




CONTENTS
Preface

Nomenclature

Introduction

Properties of M,

Model M; and segregation potential

Results of data analysis

1. Steady growth condition

2. Dependence of y* on T{

3. Dependence of T} on fip

Discussion and conclusions

Literature cited

Abstract

ILLUSTRATIONS
Figure

1. A steadily growing ice layer in a freezing soil

2. An essential frozen fringe Ry,

3. Temperature gradients a; and o

4. Trajectories a(t) that approximately describe the condition of freezing at the

formation of the final ice lens

5. Values of SP, vs. the values of the average temperature gradient
6. Values of y* vs. o under various applied pressures ¢

7. Average valuesy; vs.o

8. Values of y* vs. the temperature -T{ under various applied pressures ¢

---------------

9. Values of -'L'; vs. the mass flux of water f3; under various applied pressures o ....

10. Values of ~T; vs. the flux f3} under various applied pressures ¢

TABLES
Table

1. Calculated values ¥* and the average measured values ¥ under various applied

pressures ¢

2. Summary of data analysis with o = 48.7 kPa

Page

iv

1
11
13
15
17
18
19

N =

10
12
12
14
15
17

12
13




NOMENCLATURE
a  function defined by eq 11a

a, function defined by eq 27f

a; constant wherei=0,1,..3

4, function defined by eq 25d and 25e, where i = 0, 1

A  constant

b  function defined by eq 11b

b, constant wherei=12.

B, ith constituent of the mixture. Subscriptsi = 1,2, and 3 are used to denote unfrozen water, ice
and soil minerals, respectively

¢; heat capacity of the ith constituent

d  unit of time (day)

d; density of the ith constituent

e  void ratio

f;  mass flux of the ith constituent relative to that of soil minerals wherei=1,2
fio  mass flux of water in the unfrozen part of the soil

I  function defined by eq 16b

k  thermal conductivity of a frozen fringe defined by eq 9a

k, thermal conductivity of the unfrozen part of the soil

k; thermal conductivity of an ice layer

ky, limiting value of k defined by eq 9¢

K, hydraulic conductivity in the unfrozen part of the soil

K; empirical function defined by eq 4a wherei=1,2

K;; limiting value of K; as x approaches n; while xisin Ry, i =1,2

K,y limiting value of K; as x approaches ny while xisin R,,i = 1,2

L  latent heat of fusion of water, 334 ] g-!

m  location of the free end of the column

M, name of amodel wherei=1,2,3

n  boundaryin R,

n;  boundary with i = 0, 1 where n, denotes the boundary where T = 0°C and n, the interface
between an ice layer and a frozen fringe

n,y boundary between R,y and R,

po  gravity term, 0.098 [kPa/cm]

P, pressure of the ith constituent wherei=1,2
P,y value of P, atn,

Py, valueof P;atn

P,; valueof P, atn,
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rate of heave

unfrozen part of the soil

frozen fringe

part of the soil bounded by ny and n,,

essential frozen fringe

ice layer

region in the diagram of temperature gradients where an ice layer melts

region in the diagram of temperature gradients where the steady growth of an ice layer occurs
boundary between R, and R, ’

boundary between R, and R,

region in the diagram of temperature gradients where the steady growth of an ice layer does
not occur

property of a given soil

segregation potential defined by eq 2a

time

temperature

temperature at n;

defined by eq 41

calculated value of T, from the measured temperature profile in R,
empirically determined value of T

temperature at n, when eq 1 holds true

constant

average temperature gradient in R,

defined by eq 3c

spatial coordinate

variable defined by eq 17¢

variable defined by eq 38b

variable defined by eq 3a

trajectory [0y(t), 0p(t)] in the diagram of temperature gradients
absolute value of the temperature gradient at n,

absolute value of the limiting temperature gradient as x approaches n, while x is in R,, defined
byeq6

absolute value of the temperature gradient near n, in R,
absolute value of the temperature gradient near ny in R,
defined by eq 11c

constant, 1.12 MPa °C-1

defined by eq 24b

thickness of a frozen fringe

defined by eq 27b

thickness of an essential frozen fringe defined by eq 27a
defined by eq 13¢
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defined by eq 9b

composition of the soil

bulk density of the ith constituent

effective pressure defined by eq 1 and 16c

empirical function of T defined by eq 14a

valueof gatT=T,

empirical function of T defined by eq 14b

valueof ¢, atT=T,

variable defined by eq 21b

variable defined by eq 25f

dimensionless quantity defined by eq.18a through 18d wherei =0, 1, ..., 3

subscript denotes the ith constituent of the mixture consisting of unfrozen water (i = 1), ice (i
= 2) and soil minerals (i = 3)

superscript used to indicate the value of any variable evaluated when a point (a;, o) in the
diagram of temperature gradients is on R¢

superscript used to indicate the value of any variable evaluated when a point (a;, o) in the
diagram of temperature gradients is on Rs*
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Growth Condition of an Ice Layer in
Freezing Soils Under Applied Loads
2. Analysis

YOSHISUKE NAKANO AND KAZUO TAKEDA

INTRODUCTION

In this report we will consider the one-directional steady growth of an ice layer. Let the freezing
process advance from the top down and the coordinate x be positive upwards, with its origin fixed
at some point in the unfrozen part of the soil. A freezing soil in this problem may be considered to
consistof three parts: the unfrozen part R, the frozen fringe R, and theice layer R,, asshownin Figure
1. The physical properties of parts Ry and R, are well understood but our knowledge on the physical
properties and the dynamic behavior of part R; does not appear sufficient for engineering applica-
tions.

It has been shown empirically (Radd and Oertle 1973, Takashi et al. 1981) that there is a unique
temperature T * atn, for a given pressure of ice P, at n, and a given pressure of water P, in Rywhen
anexisting ice layer neither grows nor melts and the mass flux of water f, in R, vanishes. This temper-
ature Ty'* at the phase equilibrium of water is given as

6= Py-Pi=-yT7", if fi=0 (3)

where yis a constant with the value of 1.12MPa °C-1,and

¢ and P,, are often referred to as the effective pressure m

and the overburden pressure, respectively. Equation 1 is

often called the generalized Clausius-Clapeyron equa-

tion, whichisattributed toEdlefsenand Anderson (1943). Rz
Konrad and Morgenstern (1980, 1981, 1982) empiri-

cally found that the rate of water intake f;q at the forma- ny T=T,

tion of the final ice lens is proportional to the average

temperature gradient (T"), in the frozen fringe. This may

be written as A R,

fio==-SP(T), (2a) no T=Ty=0C

where a prime denotes differentiation with respect to x.
The positive proportionality factor SPyis termed theseg- O~ Ro
regation potential, which is a property of a given soil.
Konrad and Morgenstern also found empirically that
SP, is a decreasing function of both the applied pressure
o and the suction of water (-Pyg) at 15 We will write this Figure 1. Schematic of a steadily growing
dependence as ice layer in a freezing soil.
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erally depend on the temperature T and the composition of the soil. We will describe such functional
dependence of K; (i = 1,2) as

K, = Ky(T, p) (4d)
K, = K(T. p) (4e)

where p symbolically denotes the composition of the soil that is uniquely determined by the bulk
densities of unfrozen water p,, ice p, and soil minerals p,.

Nakano (1990) obtained the exact mathematical solution to the problem of a steadily growing ice
layer based on the model M,. Analyzing the behavior of this solution, we showed that M, is
consistent with eq 1 (Nakano 1990) and eq 3b (Nakano and Takeda 1991). We also showed (Nakano
and Takeda 1991) that M, can accurately describe the steady growth condition of an ice layer under
negligible applied pressures.

Thesteady growth condition of anice layer with
orwithoutapplied pressureis the region R,bound-
ed by acurve R? and a straight line R$* in the dia-
gram of temperature gradients as shown in Figure
3. The region R, is defined as

(k1/ ko) > g > ky (kg + LbKZ )1 oy (5)

where k, and kj are the thermal conductivities of R,
and R, respectively, a, is the absolute value of the
temperature gradient at n, and o, is the limiting
value of the temperature gradient at n,; in R; de-
fined as

o) = - lim T'(%). (6) a,
x-m
xinR2 Figure 3. Temperature gradients a,; and oy,

In eq5, L is the latent heat of fusion of water, bis a
function of the thickness § of R, defined by eq 73c and 73e in Nakano (1990), and K, is the limiting
value of K, as xapproaches n, when x is in R, and an asterisk denotes that K3, is the value of K;; when
a point (a,,0,) is on R? in the diagram of temperature gradients.

In Figure 3 we will refer to the region as R,,, where 0> (k;/ ko)t , fip <0 and an ice layer is melting.
The boundary R23* is given as

oo = (k1 /ko) 011 on R3*. (7a)

An existing ice layer neither grows no melts, f;o vanishes and eq 1 holds true on R2* . The boundary
3 is given as

oo =kilko+ LbKZ)'as  onR:. (7b)

It is easy to see from eq 5 that the steady growth condition of a given soil is uniquely determined by
o, and a. Nakano (1990) showed that all physical variables such as f,q, T}, §, etc., are also uniquely
determined by o, and oy for given hydraulic conditions, and applied pressure 6. The hydraulic con-
dition in our tests is specified by the distance §, between ny and n where the pressure Py, of water
is kept at the atmospheric pressure. Therefore, any point in R, is uniquely specified by o,; and o for
given &y, Py, and o. We will write this as




R,=R,(a), g & Py, 0). (8a)

Since a, and oy are related by eq 7b on R?, any point on R} is uniquely specified by either a, or o
for given §y, P1, and o as

: =R (og wa P, O} (8b)

The main objective of this work is to show that M, is consistent with the data under various applied
pressures that were presented in Part . We will also show that M, is consistent with the reported
empirical equations such as eq 2a—c and 3b-c. Furthermore, we will evaluate the concept of seg-
regation potential introduced by Konrad and Morgenstern (1980, 1981, 1982) based on M, and
experimental data.

PROPERTIES OF M,

Treating a given soil as a mixture of water in liquid phase By, ice B, and soil minerals B,, Nakano
(1990) obtained the exact mathematical solution to the problem of a steadily growing ice layer based
on themodel M, under the following assumptions. The density of each constituent remains constant,
the dry density of R, remains constant, the part R, is kept saturated with water at all times and the
pressure of water P1, atsomeboundary n fixed in Ryremains constant. The thermal conductivity k(x)
in R, is assumed to be a nondecreasing linear function of x given as

k(x) = ko[1 + n(x - np)), m>x2n (9a)
N = (ko - ko)/ (8ko) (9b)
ljﬂ.k =ka S ky (%)
xinRy

S=n,-n, (9d)

The temperature T in R, satisfies the equation given as (Nakano, 1990)

k)T’ = ¢, f1o T = - ko0t - (10a)
The solution of eq 10a is approximately given as

T(%) = -ao[(x -no) + %(Bo -n){x- noY] (10b)

Ty = - aga(®) (10¢)

T'(mf) = - cgb() (10d)

where T'(n} )is the limiting value of T"(x) as xapproaches n, whilexisin R, and 4, band Byare defined
as

a®) =3+ (1/2) (By—m)2 + ... (11a)
@) =(1+nd)1[1+B,5+...] (11b)




Bo = crho/ko- (11¢)
We derived the following equation of heat balance in R, given as
kyoy = koot + (L - c;Th)fo 12)
The mass flux of water f), satisfies the equations (Nakano 1990) given as

Pyo =Py~ {(f10/ Ko} + Poldy (13a)

m n

K{ldx - ] K KaTdx (13b)

no

P21 = Py - fw]

no

where Py = Py(ng), Py, = Py(n)
n = some point in R,
Ky = the hydraulic conductivity in R,
Ppo = gravity term, density d, x gravitational acceleration

Sg=ny~-n20. (13¢)
In order to reduce eq 13b to a simpler form, we introduced (Nakano and Takeda 1991) the following
two dimensionless quantities:

T

(N =T" [ (K10 /K1) (K2 /K20 ) 4T (14a)

0

T

(T =T I (K10 /K1) (k/ko) AT (14b)

0

where K, and Ky are the limiting values of K; and K;, respectively, as x approaches n, while x is in
R,. We obtained (Nakano and Takeda 1991) the following equations given as

Ky=Kyg (15a)
¥=Kn/Kq (15b)
¢n=1  iffo=0 (15¢)
-T1= (o+8Ks'fuo) /1 (16a)
I= 700 ~Ko' yén (16b)
6= Py-Py, (16c)
where ¢, §;; and y are defined as
o1 = (Ty) (17a)




o1 =6(Ty) (17b)

Yy = ho/ o (17¢)

Equation 15a holds true because the composition of the freezing soil is continuous at 1, and eq 15b
and c follow from eq 4b.

For thesake of convenience we will reduce eq 16a toa formsimilar toeq 3b. First, we will introduce
the following four dimensionless quantities:

0, i =0
@y = T’ (18a)
(- T{'T‘J [1-kyk0JdT, T3* <0
0
1, Ii= T‘1"
T1
= g 18b
™ (- AT)"I [(KoKz)(Kle)I] dT, Ti<Ti"* (180)
Tl'
o, 7" =0
o, = LTt (18¢)
) I [1-kKfkoK)]dT, Ti* <0
0
ll Tl = 'rl.‘
T
= 1
= \_ar? J kKo(koKy) 1dT, Ti<T}* (18d)
ol
Using eq 18a-d, we will write ¢;, and ¢,, as
Too =Ti (1 + 0g) - ;AT (19a)
Tid1 = T1° (1 + ©)) - @3AT. (19b)

According to M; the mass flux of water f;, in a neighborhood of », in R, is given as (Nakano and
Takeda 1991)

fio = = Kyy Pi(ni*) + bKy 0 (20)

where Ky, and P;(n{) are the limiting values of K, and P;, respectively, as x approaches n, while x
is in R,. We will rewrite eq 20 as

y=Ku® (21a)

90 =b - Ky P{(ni*) (@oKn )™ (21b)

]
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We found (Nakano and Takeda 1991) that P;(n;*) is positive in R, and vanishes on R¢; namely
P{{n})>0 in R, (22a)
P{(n¥)=0 on R:. (22b)

From eq 22a, 22b and 21b we obtain

Po=b on R: (23a)
b>q@>0 in R (23b)
@=0 on R:*. (23¢)

Using eq 21a, we will reduce eq 16b to

1= - "1PoO11) (24a)
where v, is defined as
yi= Kz Ka. (24b)

Substituting ¢y, and ¢, in eq 24a by eq 19a and b and using eq 1, we will reduce eq 24a to

-T1l = o1 + @0 - Y190(1 + ©2)] + Y[®1- Y1Qo@3] AT. (25a)
Combining eq 25a with 16a, we obtain

80Ko' fio +[¥190(1 + 02) —09] 6= Y[01 - V19003 ] AT. (25b)
Now we will reduce eq 25b to a form similar to eq 3b as

AT =ado+ &1f0 (25¢)

where 40 and 2; are defined as

o =[y190(1 + ©2) - @] o(yp1)? (25d)
a, = &yKoen)™? (25¢)
1= W1 - V1P 03. (25f)

We will examine eq 25c¢ for a special case where f)g is very small. It follows from eq 21a that ¢,
vanishes as f;, vanishes. We find from eq 18a that ay, vanishes because of eq 4b as fo vanishes. It
follows from eq 1 that T, approaches T1"; hence, o, approaches one as f;, approaches zero. Hence,
@0 approaches zero and a1 approaches 8,(yKo)! as f; approaches zero. Therefore, when f, is very
small, eq 25c may be approximately given as

AT = aifo. (26)




Since fyy is the growth rate of the ice layer, eq 26 states that the growth rate of the ice layer is
proportional to the degree of supercooling and that the rate coefficient (2] depends on the
hydraulic properties of Ryand R,, namely theavailability of unfrozen water. Equation 26 is consistent
with the theory of crystal growth in supercooled liquid (Chalmers 1964).

We will define the thicknesses 3, of R;, and §** of Ry, (Fig. 2) as

8o =ny-nyo (27a)
8" =nyp-ny. (27b)

Then the thickness § of R, is obviously given as

3=38"+3,. (27¢)
Using eq 10c, we obtain
T3" = - aoa (5**) (27d)

Using eq 10c and 11a, we obtain

AT = o, (27¢)
where a, is defined as

a, = a(8) - a(5*) (279)

=8,+J£ (Bo-7)(8e +25**) 8e + ... . (27g)

Using eq 27e, we will reduce eq 26 to

de =1y (28a)
where @, may be written as

a1 = So(yKoJ? ((m - Kz}}(osy)q. (28b)
When f,, is small, y and . are also small and eq 28a and b are reduced to

8 =dy ()

a1 = 8o (YKom ). (29b)
From eq 29a and b we find that the thickness of the essential frozen fringe is proportional to y and
that the essential frozen fringe vanishes as f;, vanishes. In other words, whenfyis very small, we may

state that the appearance of an essential frozen fringe is induced by the flow of unfrozen water
regardless of 0. This implies that an essential frozen fringe appears only under a dynamic condition.

MODEL M, AND SEGREGATION POTENTIAL

We will show below thatM, is consistent with eq 2a, which was found empirically by Konrad and
Morgenstern (1980, 1981) and was confirmed by Ishizaki and Nishio (1985). In a typical experiment




Figure 4. Schematic of trajectories odt) that
approximately describe the condition of freez-
ing at the formation of the final ice lens.

by Konrad and Morgenstern (1981), the temperature field in the system changes rapidly at the start
of the experiment. However, as time elapses, the rate of the change slows down so that the transient
freezing may be accurately approximated by a series of successive steady states. Hence, the later part
of the experiment can be approximately represented by trajectory 1 in Figure 4, consisting of points
oft) = {oy(t), og(t)) for ty 2 £ 2 4.

A point oto) is in R, where frozen soil without any visible ice layer grows. As o, decreases and
0y increases, the trajectory approaches the vicinity of a point a(t,) in R,,. As we described previously
(Takeda and Nakano 1990) the pattern of ice-rich frozensoil grownin this vicinity evidently depends
onthesoil type and the magnitude of &, (or o). The results of tests on Kanto loam, for instance, clearly
indicate that the pattern of rhythmicicebanding is formed at the small values of o; whilesoil particles
or small aggregates of soil particles are evenly dispersed at the greater values of a,.

When a(t) reaches the point a(f;) on R¢, the final ice layer emerges. While a(f) moves toward the
point a(t;) on R¢*, the growth of the final ice layer continues with the decreasing growth rate until
a(t) reaches the point a(t,) on R#* where the ice layer stops growing. It should be noted that a line
of constant f, is nearly parallel to R¢* because of eq 12. From eq 20 and 22b we obtain on R

fo=y*oo=Kjiboo  onR2. (30)

It follows from eq 30 that the water intake flux, f35, at the formation of the final ice layer is proportional
to the temperature gradient, boy, at nf . Comparing eq 30 with 2a, we find that SPyand (T"), ineq 2a
correspond to K3, and - boy in eq 30, respectively. Since the temperature gradient in R, does not vary
significantly, the segregation potential SP, is nothing but K3, (the limiting value of the transport
function K; as x approaches n, while x is in R, at the formation of the final ice layer), when a point
oft) is on R# in the diagram of temperature gradients, namely

SPo= K} = y*b-L. (1)

Wehave shown that M, is consistent with eq 2a. It is clear from eq 20 that eq 30 holds true on R¢ but
does not hold in R, because of eq 22a. In other words, the value of y defined by eq 17c is equal to bK3;
on Ry . However, the value of y in R, depends on a specific trajectory aft). For instance, on trajectory
1in Figure 4 the value of y decreases from bK3, as a(t) moves toward the point a(t,) from the point
ot;) and vanishes at the point o(t,). On this trajectory f, decreases with the increasing o, However,
it is easy to see that f; decreases with the decreasing 0y on trajectory 2 for t, > ¢ > t;. Therefore, M,
is also consistent with the empirical finding by Ishizaki and Nishio (1985) that the value of y, varies

9




widely and that f;, may either increase or decrease with the increasing oy depending on a given
specific trajectory. This finding by Ishizaki and Nishio (1985) was empirically confirmed (Nakano
and Takeda 1991) when 6 = 0.

According to our definition K3, is the value of K, evaluated on R¢. Since any point on R¢ is

uniquely specified by eq 8b, we may write K3, as
K3 = K$i(aq & Py, 0) (32)

We studied (Nakano and Takeda 1991) the dependence of K3, on o, for a special case where 8, = 2.0

cm, Py, =0.1 MPa and 6 =0 for three types of soils. It was found that K7, isnearly constantfora g’

soil if oy is greater than 2.0 (°C cm-1). However, K3} tends to increase with decreasing oy in the .

of o with 2.0 (°C cm-1) > oty > 0 for the two types of soils, Tomakomai silt and Fujinomori .

Unfortunately, we were unable to confirm behavior similar to this of K3, for Kanto loam because of

alack of data. Using the additional data newly obtained, we will show such behavior for Kanto loam

below.

Konrad and Morgenstern (1980, 1981, 1982) empirically found eq 2b that is equivalent to the
following equation given as

K= K3(P o) (33)
where an asterisk for Py, is used to emphasize that the value of P, is evaluated when a point aft) is
on R¢ . Since their hydraulic conditions were not specified in the same manner as in our experiments,
we will reduce eq 33 to the form appropriate to our system. In our system Py, is given by eq 13a.
Hence, we obtain

Pio = P~ [(fo /Ko ) + po] &0 (39
where f7 is the value of f;y on R¢ and is uniquely determined by o (eq 8b) if &y, P1, and 6 are given.
Therefore, Py in eq 33 can be replaced by oy, 8, and P1,, so that eq 33 is reduced to eq 32. We have
shown that M, is consistent with eq 2b, which was found empirically by Konrad and Morgenstern
(1980, 1981, 1982).

Konrad and Morgenstern (1981) empirically 15 T
found that SP; is a monotonically decreasing
function of —Pjp when ¢ = 0. Since Py, repre-
sents the combined effects of ag, &, and P1,, in 6o Se
order to find the effect of the temperature gra-
dient, we plotted the data of SP; vs. (-T"),
obtained by Konrad and Morgenstern (1981)in P, 8e
Figure 5, where the number assigned to each
data point corresponds to the test number of 7e
their E series experiments. The data points E4 0.5}
through 7 were obtained for a single layer of 9e
Devon silt under various temperature condi-
tions. Thesedata pointsclearly indicate that SP,
tends to increase with the decreasing tempera- N
ture gradient. This tendency is consistent with 0 035 7.0
our empirical findings. Tests E8 and E9 were L
both two-layer systems in which thehydraulic  Fieyre 5. Values of SP, [g(cm °C d)-1] vs. the values

1.0— —

&

conductivities K, of the unfrozen bottom layers
were, respectively, higher and lower than that

of the average temperature gradient (-T’), (°C cm-1)
obtained by Konrad and Morgenstern (1981).
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of the unfrozen Devon silt. Since the temperature gradients in these two tests were not equal, the
effects of hydraulic conditions alone on SP; are difficult to assess.

RESULTS OF DATA ANALYSIS

Steady growth condition

We will examine the validity of the model M, under the applied pressure by using the experimen-
tal data presented in Part I (Takeda and Nakano 1993). We found empirically that the steady growth
region R,(c) under a given applied pressure ¢ is approximately described as

O = Ao, kiky' > A > S(0) (35)

where o, = absolute value of the temperature gradient near ny in R,
oy = absolute value of the temperature gradient near n, in R,
S = property of a given soil that depends on the applied pressure .

The temperature profiles in the frozen and the unfrozen parts are not exactly linear when the
steady growth of an ice layer is taking place because of the convective heat transport. However, the
amount of heat transported by convection is much less than that transported by conduction. The
differencebetween a, (or o) and o (or ;) is negligibly small as shown empirically and theoretically
in Nakano and Takeda (1991). Therefore, eq 35 is nearly equivalent to

oo = Aoy, —kikg > A > S(0). (36)
We will no longer discriminate &, (or o) from o (or @) in the following discussion.

According to M, the steady growth region R,(0) under a given applied pressure 6 is given by eq
5. Using y*, we will reduce eq 5 to a form similar to eq 36 as

- | * -1

oo= Aoy, kikg >A> kl(ko +Ly ) . 37)
Comparing eq 37 with 36, we find that M, is consistent with the experimental data if the following
relation holds:

1

() 2 kilko + Ly*(0)] . (38a)
We will define y* as

5(0) =ki[ko + Lg*(0)]" (38b)

Then, it is easy to see that eq 38a is equivalent to the following relation:
y*(c) 2y*(0). o (38)

We will examine the validity of eq 38¢ below.

For agiven o the value of y*(0) canbe calculated by using the calcylated value of fiobased oneither
the measured rate of heave r or the measured rate of water intake, and the measured value of oy at
each data point (o, ag) on R7. The calculated values of y*(c) are plotted vs. &y with ¢ being a
parameter in Figure 6. The mass flux of water f;, decreases by the order of 10-2 as ¢ increases from
zero to 195 kPa. As the result the accuracy of measuring f;, tends to decrease with increasing ¢ and
the variability of data points becomes more pronounced with increasing ¢, as shown in Figure 6.
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Figure 6. Values of y* [g{cm °C d)!] vs. &g under various applied
pressures o (kPa).

Because of such variability and the limited numbers of data under 6 = 390 kPa, we decided not to use
the data taken under ¢ = 390 kPa in our analysis. From Figure 6 we find the general trend that y*
decreases with increasing 6 and that y* increases with the decreasing oy in the range of 05 <2.0°C
cm-1. The latter trend was also observed (Nakano and Takeda 1991) in the experiments with
Tomakomai silt and Fujinomari clay under null applied pressure.

We calculated the values of y* (o) from the values of 5(c) that were presented in Table 2 of Part
I(Takeda and Nakano 1993). We also calculated the average of y*(0) over all the data points obtained
foreach 6. The values of y* () and the average values ya *(0) of y*(0) for each G are presented in Table
1. It is clear from Table 1 that eq 38c does not hold for every o, particularly for greater values of o.
However, the average values . * (0) do not differ significantly from those of y*(6). We may conclude
that the model M, is consistent with the experimental data regardless of and that the steady growth
region of an ice layer under various applied pressures can be described by eq 37.

In order to find the dependence of ya*on o, we plotted ya*in the logarithmic scale against o in
Figure 7. It is clear from the figure that ya*is a decreasing function of 6. Assuming that b is nearly
equal to one, we may conclude that K3, (or SP,) is a decreasing function of o, wnich was found

50 T T
[-]
o
(-]
Table1. Calculated values§" [g(cm °Cd)-1] Y] .
and the average measured values y; under Ya
various applied pressures ¢ (kPa). oslk —
Applied pressures (o) °
00 812 162 487 978 195
¥ 234 212 L4 112 072 056
ya 286 198 161 097 045 035 0.1 1 1
) 0 20 300

Figure 7. Average values y3 [g(cm Cd)1] vs. ©
(kPa) wherea solid line is the empirically determined
relationship for Devon silt obtained by Konrad and
Morgenstern (1982).
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empirically by Konrad and Morgenstern (1982). Their data with Devon silt were presented in the
functional form given as

SPy = a, exp(—a;0). (39)

When we use the same units of SP, and ¢ as those of y,*and ¢ in Figure 7, the values of the constants
a; and a, are 1.04 and 8.95 x 10-3, respectively, and eq 39 is presented by the straight line in Figure
7. Because of the limited number of data points it is not certain that our data can be presented in the
same functional form as eq 39. However, the important point is that K3, is a decreasing function of
0. The reason for such dependence will be discussed below.

Dependence of y* on T}
Combining eq 30 with eq 32, we obtain

y* = bK3 (05 8o Py, 0). (40a)
For a special case such as our experiments where 8, and P,, are specified, we may reduce eq 40a to:
y* =bKy (aa 0). (40b)

On the other hand K3, is the value of K3 when a point (&, o) is on R¢. From eq 4e we obtain
K3 = Ki(T1, p) (40c)

where T} is the temperature at n; when a point (o, o) is on R¢ . It is clear from eq 40b and c that T}
and the composition p generally depend on o, and 6. We will study empirically the relationship
between y* and T} below.

Using the set of data obtained under the applied pressure of 48.7 kPa as an example, we will
describe how we obtained the empirically determined value of T{ from the data. The results of our
data analysis are presented in Table 2, where n, is the observed location of the interface between R,
and R,, while n, is the location of the 0°C isotherm calculated by using the measured temperature
profile in R, The values of § in the table are calculated simply from eq 9d and vary between 0.91 and
1.5 mm. We have found that the value of § increases with the increasing o and that the maximum
value of § in the range of 6 < 195 kPa is 4.8 mm under the condition of oy = 0.80 and ¢ = 195 kPa.

The valueof T{ canbecalculated from either the measured temperature profile in Ry or thatin R,.
Aswediscussed in Part I (Takeda and Nakano 1993), the temperature measurements in Ry are more
accurate than those in R,. Therefore, it is desirable to determine T from the profile in R, However,
the thermal conductivity k(x) in R, is unknownbecause the composition of R, is unknown. According
to the model M,, T, is given by eq 10c and 11a. Hence, when the variation of k in R, is small, T7 is
nearly equal to T, defined as

Table 2. Summary of data analysis with o = 48.7 kPa.

A®
] fl'o y' m Ny 3 -To -y -h
Exp. (Com?) (g om?dl) [g(em*Cd)yl] (cm) (m) (m) (C)  (C) (O
1 0.642 0.968 151 067 055 012 0076 0.174 0.125
2 1.29 1.59 123 025 0099 015 0192 0.198 0.195
3 1.62 1.60 0.988 028 013 0.15 0239 0211 0225
4 2.76 213 0.770 018 008 009 0260 0245 0.255
5 3.29 265 0.804 020 0080 0.12 0378 0320 0.349
6 5.85 297 0.507 013 0039 0.091 0535 0467 0501
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Tyo= - 0gb. (41a)

It is clear from eq 10c and 11a that Ty is accurately approximated also by T,, when § is very small.
The calculated values of T, are listed in Table 2. When ¢ is negligible, Nakano and Takeda (1991)
found that k(x) tends to increase with x in R;. Therefore, T}, would be a lower bound of T, namely

7 2 The. (41b)

Wealso calculated the value of Ty from the measured profile in R,. The calculated values, which are
referred to as T,,, are listed in Table 2. We find from Table 2 that T, tends to be less than T ;. A ten-
dency similar to this was also found in all other cases of different applied pressures. Under these

arcumstances wedecided tochoosetheaverage of T;yand T, tobe theempirically determined value
T; of Tt defined as

?1‘ =0.5(Tw0 + Tn). (42)

The values of T are listed in Table 2.

The values of y* are plotted against -T1 with the logarithmic scale under various applied pres-
sures ¢ in Figure 8. Despite some scatter, it is clear that the relation between y* and Tr is nearly one
to one. The solid line in Figure 8 is the best linear approximation to the data points given as

To<T<0 (43a)

y*=Kx= - ~
* ke Forr)? T<% (43b)

where b is assumed to be one, Ky is the limiting value of K; as x approaches n, while x is in R, and
is equal to 1.98 x 103 g(cm d °C)-! (Nakano and Takeda 1991), To=-1.5x 104°C and b, = 1.039. As
we showed (Nakano and Takeda 1991), Ky satisfies the equation given as

Ky =Ko 44)

where K, is the hydraulic conductivity in Ry, It is easy to see that y* becomes infinite as T approaches
zero in eq 43b. Although eq 43b is the best approximation to the data points, eq 43a is needed to fit
the data points in a neighborhood of T = 0°C.
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According toeq40c, y* generally depends on Ty and the composition p. However;we have found
empirically that y* depends mainly on T7 . This implies that the composition in a neighborhood of
n,inR,isnot sngmﬁcantly affected by 6and oy (or f;g). Since T, variesbetween0and -1.0°Cin Figure
8, we may conclude ( .at the composition of the essential frozen fringe R,; depends mainly on the
temperature regardless of 6 and f;. There is another interpretation of Figure 8: that the transport
function K, does not depend on the composition. Recently Nakano and Tice (1990) found empirically
that K; in unsaturated frozen clay strongly depends on the composition, particularly the content of
ice. Their empirical finding supports the former interpretation.

Figure 8 shows that the range of T+ fora given o'shifts toward the lower temperature as g increas-
es. The segregation potential K3, evidently depends primarily on the temperature Ty at n, and is an
increasing function of T; because the applied pressure in the range of 6 < 195 kPa does not affect sig-
nificantly the composition of the essential frozen fringe R,;. This is the reason why the segregation
potential K3, is generally a decreasing function of c.

Dependence of T, on fh

The values of -Ty are plotted against fio under various applied pressures ¢ in Figure 9. Figure 9
shows that the relationship between Tr and fio is approximately linear for a given o, which is con-
sistent with the empirical relation (eq 3b and c) found by Ishizaki and Nishio (1985). It is clear from
Figure 9 that the constants 4, and 4, strongly depend on 6. An important question is whether we can
describe the behavior of data points in Figure 9 by eq 25c derived based on M,. We are not able to
show that eq 25c¢ is consistent with the data because we have no data on the transport function X;.
However, we will show below that eq 25¢ is consistent with the data if the function K, is properly
chosen.

The model M, is defined as the frozen fringe where ice may exist but does not grow, and the mass
flux of water f; is given by eq 4a with the condition of eq 4b and c. When 6 > 0, the essential frozen
fringe R;, vanishes as f, vanishes but R,, does not. From eq 4b we obtain:

Ky/Ky =7 inRypiff; =0. (45)

When the steady growth of an ice layer occurs, f; remains constant at f; throughout Ry, R;gand Ry;.
An important question arises: whether or not eq 45 holds true when f;; does not vanish. In other

T 1 1 T T 1
N M o _
v 50
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[
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v “ v 195
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v
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Figure 9. Values of =T (°C) vs. the mass N . a _
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words, is the composition of R, significantly affected by f,,? As we described above, our data indi-
cate that neither o nor f, significantly affects the composition of the essential frozen fringe. There-
fore, it is probable that the effect of fy; on the composition of R,y is negligible. We will assume that
eq 45 holds true regardless of f,,, namely

Ky/Ky =7 in Ry (46)

When eq 46 holds true, the dimensionless quantity w, defined by eq 18a vanishes. Hence, eq 25d is
reduced to

do="7190(1 + @3) o (YP1) - 47)

Now we will calculate Ty as a function of f1o by eq 25c as follows. Since T; is the value of T, on RS,
Py is equal to b by eq 23a. We will assume that b = 1, or equivalently k(x) = ky in R;. We also assume
that K;(T) is equal to Kz,(T) given by eq 43a and b. The value of T; * is calculated by eq 1 for a given
o. Horiguchi and Miller (1983) found empirically that the transport functions K(T) of various soils
can accurately be represented in the same functional form as eq 43b. We will assume that K,(T) is
given as

xn = |50 To< T<O 8)

Ko(To/T. )h T<To

where K, is the hydraulic conductivity in Ry and is 1.77 x 103 g(cm d MPa)-! (Nakano and Takeda
1991). The value of Tois the same as used in eq 43a and b. A constant b, is an unknown parameter
to be determined.

As we described in Part I (Takeda and Nakano 1993), the applied pressure ¢ affects the void ratio
e of a specimen. Although the variation of ¢ itself is negligibly small, the hydraulic conductivity K,
may beaffected significantly. Therefore, we determined empirically the relationship between K;and
G given as

Ky(0) = 1.77 x 103 5 -0.1068 49)

where the units of K, and o are g(cm d MPa)-! and kPa, respectively. The value of K is reduced to
about one-half according to eq 49 when ¢ is increased from zero to 195 kPa. The functional form of
eq 49 is consistent with the data obtained by Fukushima and Ishii (1986). In our calculations of T
for 6 > 0 we used Ky(0) given by eq 49 instead of the value of K, at 6 = 0.

Now we can calculate Ty (fio) with b, being a parameter. Calculating T,(f;o) in the wide range of
by, wefind thatthe calculated curves Ty (fio) fit the data well if b, is about one-half of b,. The calculated
curves with b, =0.52 are presented in Figure 10 together with the data. If b, is decreased (orincreased)
from this value, then the gradients of these curves, d(- T1 )/dfq, increase (or decrease). We have
shown that eq 25¢ is consistent with the data if the function K| is given by eq 48 with b; = 0.52.

DISCUSSION AND CONCLUSIONS

Many models of frostheave have been proposed in the past (Nakano 1990). However, the model
proposed by Konrad and Morgenstern (1982) is one of few that were built on an empirical base. Their
segregation potential theory was easily adapted to solve engineering problems in the past. As our
quantitative understanding on the subject is increased, their model can be improved or refined
without sacrificing its easy adaptability to engineering problems.

Konrad and Morgenstern (1981) proposed an equation similar to eq 4a where the mass flux of
water f, is given as the sum of two terms, namely, a pressure-related term and a temperature related

16




08 T T T T
v/0o=196

Q

®o

975

SE25

0.6

qrae PO
-
.3

Figure 10. Values of =T (°C) vs. the flux £3,[g
(cm-2d-1)] where solid curves are predicted re-
lationships between these two variables by eq
25c¢ under various applied pressures & (kPa).

flo

term. However, curiously enough, they dropped the pressure term in their later publications. Since
the pressure term in eq 4a is generally negative according to M;, the omission of this term leads to
overestimating f;. Therefore, their model certainly predicts an upper bound of frost heave as they
claim (Konrad and Morgenstern 1982). However, some serious criticisms against their model cannot
be refuted unless the pressure term is restored, as we will explain below.

When the pressure term is neglected, it is clear from eq 4a thatf, isnonnegative. This is the reason
why Konrad and Morgenstem (1982) could not provide a satisfactory explanation for the expulsion
of water from freezing soils. Takashi et al. (1978) conducted a series of frost heave tests in which the
temperature in the unfrozen part Ry was kept constant at 0.2-0.3°C higher than the freezing point of
specimens. In other words, the positive temperature term of eq 4a was kept small in their tests.

The absolute value of the negative pressure term of eq 4a is small when the applied pressure g is
small. Hence, f; can be positive when ¢ is small. However, the pressure term decreases with the in-
creasing o and f; vanishes at certain values of sbecause the two terms of eq 4a cancel out. As g increas-
es beyond this value, f; becomes negative; that is, the expulsion of water from freezing soils takes
place. Takashi et al. (1978) found empirically what we described above.

Another serious criticism of the segregation potential theory was raised by Ishizaki and Nishio
(1985) that the value of y, defined by eq 3a is constant strictly at the instant when the final ice lens
emerges, but except for this instant, y, varies widely during the growth period of the final ice lens.
As we explained earlier, the pressure term of eq 4a vanishes at the formation of the final ice lens, but
the negative pressure term varies depending on a specific trajectory in the diagram of temperature
gradients when the final ice lens is growing. The empirical finding by Ishizaki and Nishio (1985) can
be explained if the pressure term is restored. Assuming that the temperature T7 (6)at the formation
of the final ice lens depends mainly on the property of a given soil alone, Konrad and Morgenstern
(1982) termed T (0)as the “segregation freezing temperature.” However, we have found empirical-
ly (Fig. 9) that T; (o) depends strongly on the mass flux fjo.

Using the data obtained in Part I (Takeda and Nakano 1993), we evaluated the accuracy of M,. We
found that the predicted steady growth condition of an ice layer under various applied pressures is
in good agreement with that found empirically. We also found that M, is consistent with the data
obtained by Konrad and Morgenstern (1980, 1981, 1982) that were used to support their segregation
potential theory. Their method of frost heave prediction is a sound and useful tool for engineering
problems that consistently provides an upper bound of frost heave. However, the accuracy of their
method can be significantly improved and some of the serious criti-cisms against it can be refuted
if the pressure term in the equation of water flow is restored as we discussed above.
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