
APR I81994. AD-A278 132'Y IIEEEIItUNJlmll~l~ll

Technical Report feMA-94-187

ON THE COMPUTATION OF
SIMPLICAL APPROXIMATIONS

OF IMPLICITLY DEFINED
TWO-DIMENSIONAL MANIFOLDS

by

Monica L. Brodzik
and

"Werner C. Rheinboldt

94-11555.• ' L113 11 I 1II 13Iii H 131IIIIII

April, 1994

ICMA Department of Mathematics and Statistics
University of Pittsburgh

Pittsburgh, PA 15260

4.)- -

On the Computation of Simplicial Approximations

of Implicitly Defined Two-dimensional Manifolds

Monica L. Brodzik and Werner C. Rheinboldt

Department of Mathematics and Statistics
University of Pittsburgh, Pittsburgh, PA 15260

Abstract: A method is presented for the computation of a simplicial approxi-
mation covering a specified subset M0 of a two-dimensional manifold A1 in R"
defined implicitly as the solution set of a nonlinear system F(x) = 0 of n -2 equa-
tions in n unknowns. The given subset Mo C M is the intersection of MA with
some polyhedral domain in R" and is assumed to be bounded and non-empty.
The method represents an extension of a local simplicial approximation process
developed earlier by the second author.

1. Introduction

For nonlinear mappings F : R" -- R1, n = m + d, d > 2, natural conditions exist
that guarantee the solution set

(1.1) M = (x E Rl;F(x) = 0)

to have the structure of a differentiable, d-dimensional manifold M in R". We present here
an algorithm for computing a simplicial approximation that covers an a priori specified
subset of such an implicitly defined, two-dimensional manifold.

In computer aided geometric design (CAGD) and related applications, manifolds are
often parametrically defined; that is, as the image set {r E R";x = 4'(u, v)) of some kr'-Vwn
parametrization mapping P : R2

-- R". In this case, various triangulation methods itave
been proposed, (see e.g. [C93] and the survey [BE921) all of which represent, in essence,
extensions of techniques developed for the triangulation of flat spaces.

So far the case of implicitly defined manifolds (1.1) has not received as much attention.
The earliest papers appear to be (ASS41, [AS851, and [AG871; they use a piecewise linear,
combinatorial continuation algorithm to construct a simplicial complex in the ambient
space R" that encloses the implicitly given d-dimensional manifold. The harycenters of
appropriate faces of the enclosing simplices are then chosen to compute a global, piecewise
linear approximation to the manifold. However, since, in general, the resulting vertices do
not lie on the manifold, this does -tot represent a simplicial approximation in the standard
sense of combinatorial topology.

A first method for the direct computation of local pieces of a simplicial approximation
of the manifold M of (1.1) was presented in (R871, [R881. There standardized patches of
triangulations of the tangent spaces TM of M are projected onto the manifold by smoothly

* This work was supported in part by ONR-grant N-00014-90-3-1025, and NSF-grant

CCR-9203488

2

varying projections constructed by a moving frame algorithm. The method is applicable
to manifolds of any dimension d Ž 2 but was used principally in the case d = 2. In [Ho91l
a modified version of this method for the case d = 2 was considered. It uses interpolating
polynomials to predict new points; but, before correcting them onto the manifold, a search
is conducted to determine whether the new points may cause a potential overlap with any
earlier computed, existing triangle. If such an overlap is detected, the predicted points are
identified with appropriate nearby existing vertices.

Two new methods were developed in [MM93] and [He93]. In both cases, interest
does not center on the explicit construction of a simplicial approximation of the implicitly
given, 2-dimensional manifold (1.1), but on tessellating it by a cell-complex. In [He93]
the manifold is covered by overlapping ellipsoidal cells each of which is obtained as the
projection of a suitable ellipse on some tangent space. In [MM931 a complex of non-
overlapping cells with piecewise curved boundaries is constructed by tracing a fish-scale
pattern of one-dimensional paths on the manifold. Both of these methods appear to be
intrinsically designed for 2-dimensional manifolds.

Here we present an extension of the original method given in 1R881. In particular,
the process is globalized to allow for the computation of a simplicial approximation that
covers a specified domain of the manifold. The algorithm is developed for the case d = 2
but our aim was to use tools that, in principle, can be generalized to higher dimensional
manifolds. For this purpose, the mentioned moving frame algorithm is replaced by a
careful consideration of the orientation of the triangles. This eliminates the calculation of
d-dimensional singular value decompositions which can become costly when working with
manifolds of dimension higher than two.

In the original algorithm for the casc d = 2, the patch that is projected from the
tangent space T.M at x E M onto M always consists of a hexagonal neighborhood of
six triangles centered at x. This was feasible since the algorithm was only applied locally.
But, such a fixed patch is likely to cause local overlaps when the algorithm is applied to
larger domains of M. Thus in the new method the patches are constructed adaptively and
are allowed to have fewer than six triangles.

The algorithm works with an advancing front technique. We begin with a point
z0 E M and add it to the database that stores the triangulation. Then, in analogy with
the original method, a first hexagonal neighborhood around z0 is constructed in the tangent
space T,0M and its vertices are projected onto M and added to the data base. The starting
front of the process is formed by those of the six new vertices that are contained in the -

interior of the given domain of M. The others are marked as exterior vertices. In general,
a step of the method consists in the selection of a point x. on the current front. Then
the existing triangles incident with x. are projected onto the tangent space TZ,M. This
results in a partial neighborhood of x, with a gap that still has to be closed. If the gap
is too small, it is closed by identifying its two open edges, otherwise, it is divided into an
optimal number of triangles. The resulting new points in T,,M are then projected onto
M and added to the data base. If these points belong to the given domain of M they -
are also added to the front, otherwise they are tagged as exterior points. Finally the step
is completed by removing the current frontal point z. from the front, since it now has a
complete neighborhood of triangles. The process terminates when the front is empty.

The resulting simplicial approximation covers the given domain. It is not difficult

II

3

to adjust all exterior points onto the boundary of the domain although this may result
in needle-like triangles. More advantageous is to use a local Delauney-type method to
effect the adjustment onto the boundary of the domain. More generally, such a DrIlaney
approach can serve also to improve the quality of the entire mesh. We shall not enter into
the details here. As noted earlier, our aim is to extend the method to implicitly defined
manifolds of dimension larger than two. This is the topic of ongoing work.

In Section 2 below we give a brief summary of some background material needed for
the development of the method. Then, Section 3 outlines the data structure used here,
and Section 4 presents a detailed description of the algorithm. Finally, Section 5 shows
several numerical examples.

2. Background
Throughout the paper F : V C R" - R', n = to + d, d = 2, is a given nonlinear

mapping of class C' on the open, connected domain V for which the first derivative DF(.r)
has rank to for all r E V. Then is is well-known that the solution set

(2.1) M = Ix E); F(x) = 0),

is a two-dimensional C'-manifold in R" without boundary (see, e.g., [S79], IflR61). At any
r E M the tangent space TUM is identified with kcrDF(z).

For the definition of the subset of M that is to be triangulated we introduce the
hyperplanes

(2.2) Hi ={xER"; bT(x--pk)=O), k=l nh,

where bk E R" is a unit normal vector of Hk and pk E R" a point in Hk. Then, with the
corresponding half-spaces

Sk ={xER";bf(x-pk)_>0), k=. 1.... nh,

the set S = nSi is a polyhedral domain in R". The desired subset of Al will be the
intersection M0 = S nl M. We assume always that MO is a bounded set with a non-empty
relative interior. Points in the relative interior of Ms will be called interior points of M0
while all others are designated as exterior points.

As in [R861 we introduce at any "current" point x, E Al a tangential local coordinate
system. For this, let the columns of U' E R""2 define an orthonormal basis of the tangent
space T.,M at x,. Then the implicit function theorem applied to the equation

(2.3) F(x, + UWy + DF(X,)Tz) = 0, E A2, z ER,

guarantees the existence of open neighborhoods U, of the origin of RI and V, E R" of
x,, respectively, such that for any y E U, there exists exactly one solution z of (2.3) with
x, + UWy + DF(x,)Tz E 1V and that the mapping ,' : U, - R', €'(y) = :, is of class C'
on U,. Evidently, we have 0b(0) = 0 and Dmk(0) = 0 and

0 : U, - R", 0(y) = + Uy + DF(lx,)Thk(y), Vy E U, (2.4)

4

is a diffeomorphism from U, onto M n Vc. In other words, 0' is a chart of M at xc and
we call t a tangential local coordinate map at zc.

The evaluation of *(y) is equivalent to projecting the part z = (x, + Ucy) E T, M
orthogonal to T. M onto M; that is, to solving the system

F(z) = 0

(2.5) UcT(x - (z• + UV)) = 0.

Thus in general we require, for any point z E R" sufficiently close to rc, the capability
of projecting x onto M orthogonally to Tf.M. There are several ways of doing this. For
example, as in [R881, we may use the QR-factorization

(2.6) DF(z=)T (QQ2)(Ro)

where rgeQ 2 = kerDF(z,), and set U' ý Q2. Then the system in (2.5) can be solved by

using the chord Gauss-Newton method

-&+1 = zA - DF(z,)T(DF(x,)DF(x,)T)- F(zs), k =1,2,...

The following algorithm incorporates two possibilities for providing x, namely, (i) z E R",
x 1 x, is directly given, or (ii) Y E R2 is provided and z = xc + U'y is still to be computed.
The two choices are passed to the algorithm via the input variable job, with job = 1 for
case (i), and job = 2 for (ii).

Proj: Input: mc, z, y, R, Q1, Q2, job;
if 'job=1' then z:=z else z:=zc+Q 2 y end
while 'no convergence'

solve RTz = F(x) for z

S:-X - Qz
Output: X.

For all x sufficiently near z, the process converges to a unique z° E M, see e.g. [DH79].

3. Data Structure and Problem Definition

Any mesh generation algorithm depends critically on the data structure, for which
there are many choices. Since we restrict ourselves here to two-dimensional manifolds,
where the relationships between nodes and simplices is fairly straightforward, we chose
a simple data structure consisting of three two-dimensional arrays xnod, Sim, and nod,
for the node -coordinates, the simplex/node incidences, and the node/simplex incidences,
respectively. Their organization is summarized in Table 3.1. In the i-th row of the sim
array, the indices of the three vertex nodes of the i-th simplex are stored in an order that
defines the simplex's orientation. Any two consecutive simplices listed in the i-th row of
the nod array share an edge.

Array Type Dimension Contents of row i
xnod Double maxnod rows xnod(i,j) = j"• coordinate of node i,

Precision nvar columns j = 1,... nuvar
aim Integer maxsim rows sim(i,j) = index of jlr vertex

3 Columns of simplex i, j = 1,... ,3
nod Integer maxnod rows nod(i,j) =index of j'5 simplex

7 columns incident with node i, j = I._ k < 6
nod(i,j) = 0, j = k + 1 ... ,G
nod(i, 7) = nodtyp (See later)

Table 3.1: Data Structure

The operations defined oin the database are as follows:

Addnod[z, nodtyp]:
Stores coordinates of a new point z in the next available row of xnod, and
enters the point's nodtyp in the next available row of nod.

Addsim[x1 , X2, X3 1:

Adds a new simplex to the aim array, and updates the nod array by adding
the simplex's index to the rows corresponding to the vertices x1, X2 , X3.

Equatefx, x1 , x2,z]:
Identifies two computed points X1 ,X2, which are incident at x, by replacing xI
with the projected average ! of x, and X2, removing x2, and then updating all
three tables of the data structure.

Neighb[x]:
Checks if the given point x is connected to a point which is exterior to MO.

Note that in this data structure all the details about the actual data storage and ma-
nipulation had to be included in the software package. This is here not a great disadvan-
tage since for two-dimensional manifolds these details axe fairly simple, and our resulting
data manipulation software has shown to be acceptably fast. However, when generaliz-
ing our triangulation algorithm to higher-dimensional manifolds, we will use the relational
database management system SQL to keep track of all the details of the data storage, since
the relationships between nodes and simplices are then much more complicated.

The user is assumed to supply the following three subroutines defining the problem:

Fct[x, F(x)]:
Defines the function F in (2.1) and returns the components of
F(x) evaluated at the given point x.

Dfct[x, DF(x)]:
Defines the Jacobian DF of F and returns the components of
DF(z) evaluated at the given point x.

6

Bndsuz, k, bk, ph]:
Defines the hyperplanes in (2.2) and returns the components
of the vectors b& andph for a given k E (1..n}.

For a given point z E R", the following algorithm Chkbnd determines whether or
not z belongs to the polyhedral domain S. In addition, it computes the distance drain
between z and the nearest hyperplane Hk.,.,.

Chkbnd: Input: z, number of hyperplanes nh;
for k = 1,na

{p*,dk) = Buds[k] /*Get ph E Hk, unit vector bh normal to Hk.*/
d = bTk(z - ph) /*Compute signed Euclidean distance d from x to Hs.*/
if d < 0 then /*x does belong to S:*/

knear :=k, dmin :=d
return

else
if k = 1 then

knear := 1, dmin d /*lnitialize.*/
else if d < drnin then

knear := k, drain d
end

end
end
Output: knear, dmin.

4. The Triangulation Algorithm

The triangulation of the subset Ma = S n M of the manifold M begins with a user-
supplied starting point zo E R" which need not be on M. The process calculates the
QR-factorization (2.6) of DF(zo) and uses the routine Proj, with x := z0 and job:= 1, to
projcct z0 onto a point z_ E Mo. If Proj fails, the user is requested to supply a different
starting point. Otherwise, each of the six vertices

(0~ Pa , (V h (-hr3v -h, 0, -) (.15'/ -h)

of the hexagonal neighborhood of equilateral triangles around the origin in R1 is mapped
onto the afline tangent space x,-+T.,M and then projected onto M, using again Proj. For
h either a user-supplied step size or a smaller one is used whichever guarantees successful
projection of the first of the six points onto M. (This first successful valuc of h is retained
as the constant step size throughout the remainder of the triangulation). The projected
points inherit the connectivity pattern of the original hexagonal neighborhood of equilateral
triangles in R2.

Generally, as mentioned earlier, a point of nod is either an interior point (of Mo0) or
an exterior point. This can be determined by means of Chkbnd. Any interior point is
identified as a frontal point if it does not yet have a completed simplicial neighborhood.

7

Accordingly, each point of nod is classified by assigning it a node type as shown in Table
4.1. The node type is updated as the triangulation progresses.

nodtyp Definitio,

-1 Frontal point still to be handled.
0 Interior point connected only to interior points.
1 Interior point connected to an exterior point.

2 Exterior point connected to an interior point.

Table 4.1: Types of nodes in M.

The frontal points, in their order in nod, form a queue. At each step of the process
the topmost point is removed from this queue and, when new points are computed new

frontal points may be added at the end. The process stops whcn the queue is empty.
Let xc denote the next frontal point taken from the queue. Note that, after the

correction of the starting point, z, is not equal to z0. By definition a portion of the
simplicial neighborhood of xc has already been calculated and stored. Figure 4.1 shows a

typical example of this existing part, and Figure 4.2 gives a view of its local representation
in R'. The main tasks are now to determine the gap in the simplicial neighborhood that
still needs to be closed, to decide how to close it, and finally to close it.

hlmph~xns~n , X. 14

FIGURE 4.1

Fr-om the data structure the two simnphices ?IS•,e and ns.%,j are. immediately known.
It is also fairly easy to find the edge-defining nodes xi,,..., .,+ in the same order of
consecutive appearance around xc as the incident simplices appear in nod. Then the open
edges are simply ne~5 5 := j1 and neen :-- jk+i. However, it is not immediately known
whether the incident simphes nl. n-,n (with n, :- nod(i,m), m 4..) appear

clockwise, as in Figure 4.1, or counterclockwise around xc when projected back onto T•,M.
Knowledge of this ordering around zc is essential in determining whether the gap is the
clockwise angle from neje 5 to ne,,ij or its complement.

8

"C kOr=I

FIGURE 4.2

Central to the determination of this ordering is the unit average direction vector
defined by

i-d

The gap is then obtained as follows. For i• and the normalized open edge directions

(z€=,1 - x•) (z.,-)---l(, -)II=(, -

determine the local coordinates yl : UT x,, 112 := UTi, and • : UTxz&+i in R2. It
is expected that 112 will point in a dire.ction which is in the complement of the gap angle
between yi and ga3. (See Fig'ure 4.2). The reference clockwise rotation angle 0

r.,! of yl3
into e1 : (1,0)T is calculated by the following Givens-type algorithm:

Angse Input: vector (a,eb);
nm = oII(a,b)l /* Euclidean norm of (a,b).,/

if nrm=O0 then a 0=; return endif
if abs(a) Ž• ab~s(b) then

if b=O then 4,:=O else 4:=arctan(•) endif
if a Ž 0 then

if b<O then a:=2•r-• endif
else

if b<0 then a:=•r+4' endif
endif

else
if a = 0 then

a =0

9

else
* arctan(f)
if a<O then 0:=-0 endif

endif
if b_?0 then a: -- else a'=11+0 endif

end
Output: a, nrm.

Let A denote the 2x2 matrix which effects a clockwise rotation by ar,. Then Ay, and
Ay3 represent clockwise rotations by a,,q, and the clockwise rotation angles $1 and /#z
of the resulting vectors AM, and Ay. into el, respectively, are, effectively, the clockwise
rotation angles from yI and 12 into Y3. (See Figure 4.2). If #2 < 01, then the simplices
as,...,nt are arranged clockwise from n1 to nt around the origin in the local coordinate
system. Hence the gap angle's magnitude is 2r - 01, and its orientation indicator kor is
defined to be 1. Otherwise if 2 > 01, then the simplices are arranged counterclockwise,
the gap angle is 01, and we set kor = 2. The following algorithm implements this gap
determination process:

Agap: Input: center point z, tangent basis U = [ul,u 21 at x;
Order x. ,,..., zT, /*Order nodes incident at 1, so x2,, - 1 , define open edges.*/
net,, :=ji, ne,,d :=j, /*Define indices of open edges.*/
Find nsh.,, ns.,d /*Get indices of simplices containing open edges.*/

-- ~ ~�=•(�3 -), • ±x:= /*Get unit average direction vector.*/
z: (X'h - x)/Ilz,. - 11, k = 1,p /*Normalize open edge directions.*/

U xi /*Get the V2 local coordinate vector of xi. * /
Y1 := UTZ /*Get the R2 local coordinate vector of i.*1
Y3 UTZ, /*Get the R2 local coordinate vector of z,.*/
o :=Angle[y3 l /*Get clockwise rotation angle a of y3 into el (1,)".*/

-sin a cos

Yk := Ay&, k = 1,2 /*Rotate y: and Y2 clockwise by a.*/
Ph :=Angle(yl] /*Get clockwise rotation angle #O of yk into e1 , k = 1, 2.*/
if#2 <#I then

gap := 27r - #I /*Define gap angle which needs to he closed.*/
kor := 1 /*Define orientation kor of gap. */

else
gap := 1
kor:= 2

end
Output: gap, kor, a, nebt,, neend, nsby,, nSend.

Once the gap angle gap and its corresponding kor value have been determined, the
process of closing the gap depends on the magnitude of Pap, the number of already existing

10

simplices nij incident at x., and a fixed minimum acceptable angle size a,,,., If the gap
is small; that is, if gap < a.,, then the following merge algorithm closes the gap by
"identifying" the open edges j, amd j&+1 and then replacing the nodes defining these edges
in xnod by a projection of their average ½(x, + z,,,,) onto M.

Merge: Input: center point z; other endpoints z1 , x2 defining open edges;
i =(XI + X2)
k. =Proj[l,!,.,R, Ql,job = 1] /*Project i onto M.*/
Call Equate~zx1,zr,•,.f. /*Replace Z1 ,X2 with x.m in data structure.*/

If gap ? a,.,. and no., already equals the maximum allowable value of 6, then the algo-
rithm stops with an error return. Otherwise,

n,.,. := max lap:-. > 1.,, I_ i S (6 - n.1d)}

new simplices are added to close the gap at x, and hence to complete the neighborhood
of simplices around zc. If n5 e, = 1, then only one simplex is added, namely the one
defined by the already existing points x_, z,,, and x,,.. The indices of these points are
entered into the next row of the sim array in an order such that the orientation of the
new simplex agrees with that of its adjacent simplex ns-,d. If nnw., > 1, then n.,, - 1
new points are needed to define the new simplices that close the gap. In this case, the
gap - angle is divided into n,,n equal angles, and the new points in the local coordinate
system are defined to be in the resulting directions and at a distance h from x,. One at a
time, in order of rotation from Y3 into the gap, these points in xr + T. AM are constructed,
projected onto M by Proj, and added to the database by Addncd. As each new point on
M is found, Addsim adds to the database the simplex defined by the new point and the
endpoints of the open edge from which it was rotated. At the last new point x E AM in the
gap, a second simplex is added, namely the one formed by x, xe, and x,,. This simplex
completes the neighborhood around r•.

For some new direction t, Proj may fail to project the tangent point xc + ht onto M.
In this case, a simple continuation process is started along the direction t in the following
way. A temporarily smaller stepsize h := 2-, k = 1,2,... is chosen until either h gets
too small or Proj successfully projects the corresponding tangent point onto M. If h
gets to be smaller than some minimum acceptable stepsize, the algorithm stops with an
error return. Otherwise, once the first intermediate point rtp E M is found, further
continuation steps are taken with the successful stepsize and in the same direction t until
a point x is reached where the sum of the steps exceeds the original value of h. This x
becomes the desired new point to be added to the database together with the simplex it
completes. Then h is reset to its original value.

The following algorithm summarizes the entire triangulation process.

PITMAN: Input: Start point to, suggested step h, minimum gap angle amin,
total number of bounding hyperplanes ni;

DF(z0)T = (Qj,Q2)(0) /'Find the QR decomp. of DF(xo).*/
z. :=Proj[zo,to,to,R, Q1,Q 2 ,11 /*Project to onto M.*/

11

drain :=Chkbndlzm.,ns /*Check if X. E Mo, i.e. if dnain > 0.*/
if 'dinrn < 0' then 'error return' endif
nod(l, 7) := -I /*Label z. as a frontal point.*/
Compute the neighborhood of six simplices of x,.
Remove z, from the front.
while 'Front is no0-empty'

Get the next frontal point x,.
DF(xc)T = (Q,,Q2)(R) /*Find the QR decomp. of DF(x,).*/
Call Agap[zc,Qsj /*Find gap and open edges XhX2 at Xc.*/
if'gap < anbin' then

Call Merge[xc,rl,x2 j /*Identify the open edges.*/
else

if 'zc already has 6 incident simplices' then
'error return'.

else
Find the optimum number of sectors k in gap.
if 'k = 1' then

Call Addsim(zxxl,x.z] /*Inert one simplex.*/
else

Insert k simplices into the gap.
endif

endif
endif
Remove z, from the list of frontal points.

end while
Output: Points and simplices which form a triangulation of A-0 .

5. Numerical Experiments

The algorithm PITMAN described in the last section has been implemented in Fortran
77. We present here some sample problems run with this code.

As first example we consider the intersection of the unit sphere in R', defined implicitly
by

F(x) = X2 + X2 + X2 - I = 0,

with the half space

S=X•R 3I 13>-0.8 }.

Figure 5.1 shows a view of the triangulation computed by PITMAN using the stepsize
h = 0.3, with a rotation that indicates the truncating effect of the hyperplane. The
algorithm's way of handling local overlap causes four "seams" of elongated triangles on
the sphere. This could be remedied by a Delaunay improvement, which is a topic of ongoing
work.

12

FIGURE 5.1

The second example arises as a finite-element model of the deformation of a thin,
shallow circular arch. This test problem has been used by several authors and can be
traced hack to (W69]. We use the same model formulation as in [R86]. In an (r, 9)-polar
coordinate system with the r-axis as vertical direction, the unloaded configuration of the
arch is repsentcd by the segment { (r,O) I r = 10, -0o _ 69 < Oe = 15*}. Let u and to
be the radial and axial displacements. For pinned ends, the dimensionless total potential
energy and associated boundary conditions are given by

10[W, - U) +ao(nD)2]I +a, (U")2 - a2 PU1 d*,

u(1) = w(6) = u'(8) = 0, 0 = +80,

where the primes denote derivatives with respect to 0. Here p = p(O) is the dimensionless
radial load and &0, &J, a2 are dimensionless constants.

As in JR86] we use the finite element approximation consisting of a uniform mesh with
eight elements. The problem was run with the following load function

u-J 4(v-O)/Oo, if v-¼4o < 9• < v;
p(O) = u + 4,(v -O)/Oo, if t, < O_ :sV+ 180

10 otherwise,

considered already in [R881, where v and u are control parameters. In other words, the
load is a piecewise linear hat function which has the value p at 0 = v and is zero outside
the interval of width 0.50o centered at v.

13

FIGURE 5.2

Figure 5.2 shows the results obtained when the initial point, computed by the con-
tinuation code PITCON (see [RBS3]) with zY = 0, is a limit point with respect to u. Let
x' denote the dimensionless radial deformation at the center. The stepsize of the mapped
triangles was h = 0.5, and the bounding hypcrplanes were defined so as to restrict zx to
the interval [1.1,2.4] and v to the interval 1-0.008,0.006], respectively. The foldline in
the (v, p)-plane has the shape given in Figure 5.3. Figure 5.2, which shows the manifold
projected onto the (P, p)-plane, clearly shows a segment of this foldline that includes the
local maximum and minimum points with respect to v at v - 0 and about v = 0.16, resprc-
tively. The two-dimensional simplicial approximation algorithm [1188] also captured these
two points, but due to the local nature of that code, two runs were needed to triangulate
the manifold separately in the neighborhood of each of these two points.

12

FIGURE 5.3
The third example has been used in [MM931 to test the robustness of their two-

dimensional code. The manifold is defined as the subset

{ (,Y,z) ER 3 I F(.,y,z)=z(a2 z2(b 2 -z2)-x 2)+3)e- }.

When • = 0, the cross-section in the (z, z)-plane for any fixed value of y is the z-axis on
top of a figure-eight, which is symmetric with respect to the z-axis and intersects the z-axis

14

at z = -b, 0, and b. As e becomes positive, the solution set in the (r,z)-plane breaks
into two components: one below the x-axis and diffeomorphic to a circle, and the other
the cross-Rection of an inverted trough above the x-axis and diffeomorphic to the real line.
The size of e determines the width of the trough opening, with larger values of e giving
larger widths. When the variable y is added to the problem the result is a two-component
manifold, invariant in y, whose second component is an inverted trough which is above
the plane z = 0 aid whose opening is parallel to the y-axis. A narrow trough opening is
challenging because the solver may jump across it without exploring the trough itself.

FIGURE 5.4

Figure 5.4 shows the results of the triangulation algorithm when a = 4.0, b = 0.25,
S= 5.0 x 10-5, the stepsize is h = 0.03, and the initial point (z,y,z) = (0,0,0.25). The
bounding hyperplanes were defined to restrict x to the interval [-0.15,0.151 andy to the
interval (-0.14,0.14]. PITMAN followed the curvature without falsely jumping across the
opening of the trough.

References
[AS84] Allgower, E. L. and Schmidt, P. H.: Piecewise-linear Approximation of Solution

Manifolds for Nonlinear Systems of Equations, in Lecture Notes in Econ. and
Math. Systems, Vol 226, Springer Verlag, Heidelberg 1984, pp 339-347

JAS85] Ailgower, E. L. and Schmidt, P. H.: An Algorithm for Piecewise-linear Approx-
imation of an Implicitly Defined Manifold, SIAM J. Num. Anal. 22, (1985),
322-346

JAS871 Allgower, E. L. and Gnutzmann, S.: An Algorithm for Piecewise-linear Approxi-
mation of Implicitly Defined Two-dimensional Surfaces, SIAM J. Num. Anal. 24,
(1987), 452-469

15

IBE92] Bern, M. and Eppstein, D.: Mesh Generation and Optimal Triangulation, in
"Computing in Euclidean Geometry" ed. by F. K. Hwang and D.-Z. Du, World
Scientific Publ., 1992

JC931 Chew, L. P.: Guaranteed-Quality Mesh Generation for Curved Surfaces, in "Proc.
Ninth Annual ACM Symp. on Comp. Geometry - 1993", to appear

[DH791 Deuflhard, P. and Heindl, G.: Afline Invariant Convergence Theorems for Newton's
Method and Extensions to Related Methods, SIAM J. Num. Anal. 16, (1979),
1-10

[He931 Henderson, M. E.: Computing Implicitly Defined Surfaces: Two Parameter Con-
tinuation, Research Report RC 18777 (82115), IBM T. J. Watson Research Center,
Yorktown Heights, NY, March, 1993

(Ho9lI Hohmann, A.: An Adaptive Continuation Method for Implicitly Defined Surfaces,
Research Report SC 91-20, Konrad-Zuse-Zentrum, Berlin, December, 1991

[MM94] Melville, R. and Mackey, S.: A New Algorithm for Two-dimensional Nnmerical
Continuation, Preprint 1994, to be published

[RB83] Rheinboldt, W. C. and Burkhardt, J. V.: A Locally Parametrized Continuation
Process, ACM Trans. Math. Software 9, (1983), 221-237

[R86] Rheinboldt, W. C.: Numerical Analysis of Parametrized Nonlinear Equations, J.
Wiley and Sons, New York 1986

[R871 Rheinboldt, W. C.: On a Moving Frame Algorithm and the Triangulation of Equi-
librium Manifolds, in "Bifurcation: Analysis, Algorithms, Applications" ed. by T.
Kuepper, R. Seydel, R. Troger, ISNM Vol 79, Birkhauser, Basel 1987, pp 256-267

JR881 Rheinboldt, W. C.: On the Computation of Multi-Dimensional Solution Manifolds
of Parametrized Equations, Numer. Math. 53 (1988) 165-181

(S791 Spivak, M.: A Comprehensive Introduction to Differential Geometry, Five Vol-
umes, Second Edition, Publish or Perish, Berkeley, CA 1979

(W691 Walker, A. C.: A Nonlinear Finite Element Analysis of Shallow Circular Arches,
Int. J. Solids Struct. 5 (1969) 97-107

REPORT DOCUMENTATION PAGE oe AAVV,"

4-4-94 TECHNICAL REPORT

& W1•1. AND SUIlta -. pUoImU mim1s

ON THE COMPUTATION OF SIMPLICAL APPROXIMATIONS ONR-N-00014-90-J-1025
OF IMPLICITLY DEFINED TWO-DIMENSIONAL MANIFOLDS NSF-CCR-9203488

L AUTHMS)

Monica L. Brodzik
Werner C. Rheinboldt

7. PB 1 O1U4AWAM MUMMfs AMi AOOUS(IU) L NWAS6 0U4AIVATIO

Department of Mathematics and Statistics

University of Pittsburgh

I. WSOSO•NINUwMTOin A61CY AUt(Sl AMD ADOM0ss5s . SPONsom16=mtolmG '
OaGNC AK APOAT aIBE

NSF

It. SUPPUMINTAY NOTES

12c. O1STMITIOW AVALAM4TY SIATMENT 1b IN. OISTIUTIOW €oo

Approved for public release; distribution unlimited

13. A"S•CT (Ma.im 200werd4

A method is presented for the computation of a simplicial approxi-

mation covering a specified subset Mo of a two-dimensional manifold M in R"

defined impiicidty as the solution set of& nonlinear system F(s) = 0 ofn-2 equa-

tions in n unknowns. The given subset Mo C M is the intersection of M with

some polyhedral domain in R
m

and is assumed to be bounded and non-empty.

The method represents an extension of a local simplicial approximation process

developed earlier by the second author.

I11. SUWEC TEEAS I1S. NUMMER Of PAGES

nonlinear equation, manifold, slmplical approximation

OF6 TH. '"
uI[C GASCl I" SSIACAIIOW . SWICATIOSI 20. tmAIIOU ncAlEST-

X" ?S -O11n•sll•0 stsm• Form M (Rev 249)

