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On the Computation of Simplicial Approximations
of Implicitly Defined Two-dimensional Manifolds *

Monica L. Brodzik and Werner C. Rheinboldt

Department of Mathematics and Statistics
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Abstract: A method is presented for the computation of a simplicial approxi-
mation covering a specified subset My of a two-dimensional manifold M in R"
defined implicitly as the solution set of a nonlinear system F(x) = 0 of n—2 equa-
tions in n unknowns. The given subset Mo C M is the intersection of M with
some polyhedral domain in R™ and is assumed to be bounded and non-empty.
The method represents an extension of a local simplicial approximation process
developed earlier by the second author.

1. Introduction

For nonlinear mappings F : R® - R™, n = m + d, d > 2, natural conditions exist
that guarantee the solution set

(1.1) M = {z € R";F(r) = 0}

to have the structure of a differentiable, d-dimensional manifold M in R". We present here
an algorithm for computing a simplicial approximation that covers an a priori specified
subset of such an implicitly defined, two-dimensional manifold.

In computer aided geometric design (CAGD) and related applications, manifolds are
often parametrically defined; that is, as the image set {r € R®;z = ®(u, v)} of some kn~wn
parametrization mapping ® : R* — R". In this case, various triangulation methods uave
been proposed, (see e.g. [C93] and the survey {BE92)) all of which represent, in essence,
extensions of techniques developed for the triangulation of flat spaces.

So far the case of implicitly defined manifolds (1.1) has not received as much attention.
The earliest papers appear to be [A584], [4585), and [AG87]; they use a piecewise linear,
combinatorial continuation algorithm to construct a simplicial complex in the ambient
space R” that encloses the implicitly given d-dimensional manifold. The barycenters of
appropriate faces of the enclosing simplices are then chosen to compute a global, piecewise
linear approximation to the manifold. However, since, in general, the resulting vertices do
not lie on the manifold, this does not represent a simplicial approximation in the standard
sense of combinatorial topology.

A first method for the direct computation of local pieces of a simplicial approximation
of the manifold M of (1.1) was presented in [R87|, [R88]. There standardized patches of
triangulations of the tangent spaces T, M of M are projected onto the manifold by smoothly
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varying projections constructed by a moving frame algorithm. The method is applicable
to manifolds of any dimension d > 2 but was used priucipally in the case d = 2. In {Ho91]
a modified version of this method for the case d = 2 was considered. It uses interpolating
polynomials to predict new points; but, before correcting them onto the manifold, a search
is conducted to determine whether the new points may cause a potential overlap with any
earlier computed, existing triangle. If such an overlap is detected, the predicted points are
identified with appropriate nearby existing vertices.

Two new methods were developed in [MM93] and [He93]. In both cases, interest
does not center on the explicit construction of a simplicial approximation of the implicitly
given, 2-dimensional manifold (1.1), but on tessellating it by a cell-complex. In [He93]
the manifold is covered by overlapping ellipsoidal cells each of which is obtained as the
projection of a suitable ellipse on some tangent space. In [MA93] a complex of non-
overlapping cells with piecewise curved boundaries is constructed by tracing a fish-scale
pattern of one-dimensional paths on the manifold. Both of these methods appear to be
intrinsicelly designed for 2-dimensional manifolds.

Here we present an extension of the original method given in (R88]. In particular,
the process is globalized to allow for the computation of a simplicial approximation that
covers a specified domain of the manifold. The algorithm is developed for the case d = 2
but our aim was to use tools that, in principle, can be generalized to higher dimensional
manifolds. For this purpose, the mentioned moving frame algorithm is replaced by a
careful consideration of the orientation of the triangles. This climinates the calculation of
d-dimensional singular value decompositions which can become costly when working with
manifolds of dimension higher than two.

In the original algorithm for the casc d = 2, the patch that is projected from the
tangent space T, M at r € M onto M always consists of a hexagonal neighborhood of
six triangles centered at z. This was feasible since the algorithm was only applied locally.
But, such a fixed patch is likely to cause local overlaps when the algorithm is applied to
larger domains of M. Thus in the new method the patches are constructed adaptively and
are allowed to have fewer than six triangles.

The algorithm works with an advancing front technique. We begin with a point
zp € M and add it to the database that stores the triangulation. Then, in analogy with
the original method, a first hexagonal neighborhood around z, is constructed in the tangent
space T;, M and its vertices are projected onto M and added to the data base. The starting
front of the process is formed by those of the six new vertices that are contained in the
interior of the given domain of M. The others are marked as exterior vertices. In general,
a step of the method consists in the selection of a point z. on the current front. Then
the existing triangles incident with z. are projected onto the tangent space T; M. This
results in a partial ncighborhood of z. with a gap that still has to be closed. If the gap
is too small, it is closed by identifying its two open edges, otherwise, it is divided into an
optimal number of triangles. The resulting new points in T, M are then projected onto
M and added to the data base. If these points belong to the given domain of M they
are also added to the front, otherwise they are tagged as exterior points. Finally the step
is completed by removing the current frontal point z. from the front, since it now has a
complete neighborhood of triangles. The process terminates when the front is empty.

The resulting simplicial approximation covers the given domain. It is not difficult
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to adjust all exterior points onto the boundary of the domain although this may result
in needle-like triangles. More advantageous is to use a local Delauney-type method to
effect the adjustment onto the boundary of the domain. More generally, such a Delauney
approach can serve also to improve the quality of the entire mesh. We shall not enter into
the details here. As noted earlier, our aim is to extend the method to implicitly defined
manifolds of dimension larger than two. This is the topic of ongoing work.

In Section 2 below we give a brief summary of some background material needed for
the development of the method. Then, Section 3 outlines the data structure used here,
and Section 4 presents a detailed description of the algorithm. Finally, Section 5 shows
several numerical examples.

2. Background

Throughout the paper F : D C R — R™, n =m +d, d = 2, is a given nonlinear
mapping of class C' on the open, connected domain D for which the first derivative DF(r)
has rank m for all 2 € D. Then is is well-known that the solution set

2.1 M ={z € D; F(z) =0},

is a two-dimensional C'-manifold in R® without boundary (see, e.g., [S79), [R86)). At any
z € M the tangent space T; M is identified with kerDF(z). :

For the definition of the subset of M that is to be triangulated we introduce the
hyperplanes

(2.2) Ho={xeR" bJ(z—px)=0}, k=1....n,

where by € R" is a unit normal vector of H; and py € R" a point in Hy. Then, with the
corresponding half-spaces

Se={z€ R b{(z-pe) 20}, k=1,..m,

the set S = NS, is a polyhedral domain in R®. The desired subsct of M will be the
intersection Mp = SN M. We assume always that M) is a bounded set with a non-empty
relative interior. Points in the relative interior of My will be called interior points of M,
while all others are designated as exterior points.

As in [R86] we introduce at any “current” point . € M a tangential local coordinate
system. For this, let the columns of U¢ € R"*? define an orthonormal basis of the tangent
space T;, M at z.. Then the implicit function theorem applied to the equation

(2.3) F(z.+ Uy + DF(z.)T2) =0, y€R, :z€R™,

guarantees the cxistence of open neighborhoods U, of the origin of R? and V. € R" of
1., respectively, such that for any y € U there exists exactly one solution z of (2.3) with
2.+ Uy + DF(2,)Tz € V. and that the mapping ¥ : U, — R™, (y) = z, is of class C*
on U,. Evidently, we have ¢(0) = 0 and Dy(0) = 0 and

®:U.—~ R, S(y)=z2.+Uy+DF(z)Tv(y), Vyel.. (24)
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is a diffeomorphism from U, onto M N V.. In other words, ™' is a chart of M at z. and
we call ¢ a tangential local coordinate map at z..

The evaluation of §(y) is equivalent to projecting the part z = (z. + U°y) € T, M
orthogonal to T; M onto M; that is, to solving the system

F(z)=0
(2.5) UT(z - (zc+ Uy)) = 0.

Thus in general we require, for any point z € R" sufficiently close to z., the capability
of projecting r onto M orthogonally to T, M. There are several ways of doing this. For
example, as in [R88], we may use the QR-factorization

(2.6) DF(z.)T = (Qan)(g)

where rge @ = kerDF(z .}, and set U° = Q;. Then the system in (2.5) can be solved by
using the chord Gauss-Newton method

Ti41 = 24 — DF(2.)T(DF(zc)DF(2.)") ' F(z4), k=12,..

The following algorithm incorporates two possibilities for providing z, namely, (i) z € R",
z # . is directly given, or (ii) y € R? is provided and z = z.+ Uy is still to be computed.
The two choices are passed to the algorithm via the input variable job, with job = 1 for
case (i), and job = 2 for (ii).

Proj: Input: z., z, v, R, @1, Q2, job;
if job=1" then z:=z else z:=z.+Qqy end
while ‘no convergence’
solve RTz = F(z) for z
z:=z-Qz
Output: z.

For all z sufficiently near z. the process converges to a unique z* € M, see e.g. [DH79).

3. Data Structure and Problem Definition

Any mesh generation algorithm depends critically on the data structure, for which
there are many choices. Since we restrict ourselves here to two-dimensional manifolds,
where the relationships between nodes and simplices is fairly straightforward, we chose
a simple data structure consisting of three two-dimensional arrays xnod, sim, and ned,
for the nodc -coordinates, the simplex/node incidences, and the node/simplex incidences,
respectively. Their organization is summarized in Table 3.1. In the i-th row of the sim
array, the indices of the three vertex nodes of the i-th simplex are stored in an order that
defines the simplex’s orientation. Any two consecutive simplices listed in the i-th row of
the nod array share an cdge.

2




Array Type Dimension Contents of row i
xnod Double maznod rows | xnod(i,j) = ;' coordinate of node i,
Precision | nvar columns j=1,...,nvar
sim Integer mazsim rows | sim(i,7) = index of j™* vertex
3 Columns of simplex s, y =1,...,3
nod Integer maznod rows | nod(1,j) =index of j'* simplex
7 columns incident withnode ¢, 7 =1,... k<6
nod(i,j)=0,;=k+1,...,6
nod(i, 7) = nodtyp (See later)

Table 3.1: Data Structure
The operations defined on the database are as follows:

Addnod(z, nodtyp):
Stores coordinates of a new point z in the next available row of xnod, and
enters the point's nodtyp in the next available row of nod.
Addsim(z,, 13, 73]
Adds a new simplex to the sim array, and updates the nod array by adding
the simplex’s index to the rows corresponding to the vertices r,,z3,13.
Equate(z, z,, 7,, Z]:
Identifies two computed points z;,z2, which are incident at z, by replacing z,
with the projected average % of z; and z3, removing r3, and then updating all
three tables of the data structure.
Neighbfz]:
Checks if the given point z is connected to a point which is exterior to Mp.

Note that in this data structure all the details about the actual data storage and ma-

nipulation had to be included in the software package. This is here not a great disadvan-
tage since for two-dimensional manifolds these details ase fairly simple, and our resulting
data manipulation software has shown to be acceptably fast. However, when generaliz-
ing our triangulation algorithm to higher-dimensional manifolds, we will use the relational
database management system SQL to keep track of all the details of the data storage, since
the relationships between nodes and simplices are then much more complicated.

The user is assumed to supply the following three subroutines defining the problem:

Fet[z, F(z)):
Defines the function F' in (2.1) and returns the componcnts of
F(z) evaluated at the given point z.

Dfct{z, DF(z)]:
Defines the Jacobian DF of F and returns the components of
DF(z) evaluated at the given point z.




Bnuds(z, &, by, pe}:
Defines the hyperplanes in (2.2) and returns the components
of the vectors b; and p; for a given k € {1,...,n4}.

For a given point z € R", the following algorithm Chkbnd determines whether or
not z belongs to the polyhedral domain §. In addition, it computes the distance dmin
between z and the nearsst hyperplane Hineqr.

Chkbnd: Input: z, number of hyperplanes n,;
fork=1,n,
{px,di} = Bnds[k] /*Get p) € H,, unit vector by normal to Hg.*/
d =b](z - pr) /*Compute signed Euclidean distance d from z to Hy.*/
ifd <0 then /*r does belongto S:*/
knear := k, dmin:=d

return
else
if k=1 then
knear := 1, dmin:=d /*Initialize.*/
else if d < dmin then
knear := k, dmin:=d
end
end
end

Output: knear, dmin.

4. The Triangulation Algorithm

The triangulation of the subset My = SN M of the manifold M begins with a user-
supplied starting point zo € R™ which need not be on M. The process calculates the
QR-factorization (2.6) of DF(z¢) and uses the routine Proj, with z := z¢ and job:=1, to
project Zg onto a point zm € My. If Proj fails, the user is requested to supply a different
starting point. Otherwise, each of the six vertices

(%5' %)' ©, k), (—hzﬁ‘ %), (-';‘/5. :,}), ©, —h), (ﬁg, ‘T")

of the hexagonal neighborhood of equilateral triangles around the origin in R? is mapped
onto the affine tangent space zm+T;,, M and then projected onto M, using again Proj. For
h either a user-supplied step size or a smaller one is used whichever guarantees successful
projection of the first of the six points onto M. (This first successful valuc of A is retained
as the constant step size throughout the remainder of the triangulation). The projected
points inherit the connectivity pattern of the original hexagonal neighborhood of equilateral
triangles in R,

Generally, as mentioned earlier, a point of nod is either an interior point (of M) or
an exterior point. This can be determined by means of Chkbnd. Any interior point is
identified as a frontal point if it does not yet have a completed simplicial neighborhood.
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Accordingly, each point of nod is classified by assigning it a node type as shown in Table
4.1. The node type is updated ss the triangulation progresses.

nadtyp | Definitio
-1 Frontal point still to be handled.

0 Interior point connected only to interior points.
1 Interior point connected to an exterior point.
2 Exterior point connected to an interior point.

Table 4.1: Types of nodes in M.

The frontal points, in their order in nod, form a queue. At each step of the process
the topmost point is removed from this queue and, when new points are computed new
frontal points may be added at the end. The process stops when the queue is empty.

Let z. denote the next frontal point taken from the queue. Note that, after the
correction of the starting point, z. is not equal to 2. By definition a portion of the
simplicial neighborhood of z, has already been calculated and stored. Figure 4.1 shows a
typical example of this cxisting part, and Figure 4.2 gives a view of its local representation
in R?. The main tasks are now to determine the gap in the simplicial neighborhood that
still needs to be closed, to decide how to close it, and finally to close it.

simplex ns _

open edges:
n®oa = is
simplex ns ne .. =l
FIGURE 4.1

From the data structure the two simpliccs nssey and ns.nqg are immediately known.
It is also fairly easy to find the edge-defining nodes z;,,...,2;,,, in the same order of
consecutive appearance around z. as the incident simplices appear in nod. Then the open
edges are simply nesey := ji and neend := jrs1. However, it is not immediately known
whether the incident simplices n,,...,ny (with n,, := nod(:,m}, m = 1,...,%) appear
clockwise, as in Figure 4.1, or counterclockwise around z, when projected back onto T; M.
Knowledge of this ordering around z. is essential in determining whether the gap is the
clockwise angle from nej., to ne.nq or its complement.




C kor = 1

FIGURE 4.2

Central to the determination of this ordering is the unit average direction vector
defined by

B «
a= m'z-;(zn —x), = Tl

The gap is then obtained as follows. For # and the normalized open edge directions

1= (zj, — z.) Ti4r = (z)'u-l —zc)
(=), - z Mzsines =zl ’

determine the local coordinates y; := Uz, yp:=UTZ, and y3 := UTzgyy in RE It
is expected that y, will point in a direction which is in the complement of the gap angle
between y; and yi3. (Sce Figure 4.2). The reference clockwise rotation angle a,.s of y3
into ¢ := (1,0)7 is calculated by the following Givens-type algorithm:

Angle: Input: vector (a,b);
nrm := ||(a,8)]] /* Euclidean norm of (a,b).*/
if nrm=0 then a:=0; return endif
if abs(a) 2 abs(b) then
if b=0 then ¢:=0 else ¢:=arctan(}) endif

if a>0 then
a:=¢
if b<0 then a:=2x—-¢ endif
else
a:=x—¢
if <0 then a:=7x+¢ endif
endif
else
if a=0 then

¢:=0




else
¢ := arctan($)
if a<0 then ¢:=-¢ endif
endif
if520 thena:=§-¢ else a:=3+¢ endif
end

Output: a, nrm.

Let A denote the 2x2 matrix which effects a clockwise rotation by a,.s. Then Ay, and
Ay, represent clockwise rotations by a..y, and the clockwise rotation angles §; and 5;
of the resulting vectors Ay, and Ay, into e,, respectively, are, effectively, the clockwise
rotation angles from y; and y; into y;. (See Figure 4.2). If 8; < 8, then the simplices
ny,...,n are arranged clockwise from n, to n, around the origin in the local coordinate
system. Hence the gap angle's magnitude is 2x — F;, and its orientation indicator kor is
defined to be 1. Otherwise if 53 > §,, then the simplices arc arranged counterclockwise,
the gap angle is §y, and we set kor = 2. The following algorithm implements this gap
determination process:

Agap: Input: center point z, tangent basis U = [u;, u3] at z;
Orderz;,,...,z;, /*Ordernodesincidentatz,soz,,,z, define open edges.*/
Nebeg i=J1, Neend :=jp [*Define indices of open cdges.*/
Find nsiey, nsend  /*Get indices of simplices containing open edges.*/
F=Y0_(z;y—x), z:=2/||2| /*Get unit average direction vector.*/
zy = (2, — 2)/lz;, —zll, k=1,p /*Normalize open edge directions.*/
w1 :=U%z;  /*Get the R? local coordinate vector of ,.*/
y2:=UT: /*Get the R? local coordinate vector of z.*/
ys :=UTz, /*Get the R? local coordinate vector of z,.*/
o :=Anglely;] /*Get clockwise rotation angle a of y; into e, := (1,0)7.%/

q:=( o8 sin a
: —sina cosa

v := Awx, k=1,2 /*Rotate y; and y; clockwise by a.*/
Bk :=Anglelys] /*Get clockwise rotation angle S of yx into ), k =1,2.*/
if 52 < By then
gap:=2x — B, [*Define gap angle which needs to be closed.*/
kor :=1 /*Define orientation kor of gap. */
else
gap := b
kor :=2
end
Output: gap, kor, a, nejey, necnd, NSheg, NSend-

Once the gap angle gap and its corresponding kor value have been determined, the
process of closing the gap depends on the magnitude of oap, the number of already existing
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simplices ngyq incident at z., and a fixed minimurm acceptable angle size ama. If the gap
is small; that is, if gap < ama, then the following merge algorithm closes the gap by
“identifying” the open edges j, and j,4, and then replacing the nodes defining these edges
in xnod by a projection of their average }(r,, + z,,,,) onto M.

Merge: Input: center point z; other endpoints z,, z; defining open edges;
#:= a1 +27)
im =Proj|z,7,#,R,Q1,j0b=1] /*Project I onto M .*/
Call Equate|z,z,,7;,7m] /*Replace r;, 73 with #,, in data structure.*/

If gap 2 amin 8nd nyyq already equals the maximum allowable value of 6, then the algo-
rithm stops with an error return. Otherwise,

Ruew ‘= md.t(l : g—‘:'gzanu‘n, 1_<_’$(6—no“)}

new simplices are added to close the gap at z. and hence to complete the neighborhood
of simplices around z.. If nyew = 1, then only one simplex is added, namely the one
defined by the already existing points z, z,,, and z,,,,. The indices of these points are
entered into the next row of the sim array in an order such that the orientation of the
new simplex agrees with that of its adjaccent simplex nseng. If npew > 1, then ng, — 1
new points are needed to define the new simplices that close the gap. In this casc, the
gap - angle is divided into ny,., equal angles, and the new points in the local coordinate
system are defined to be in the resulting directions and at a distance h from z.. Onc at a
time, in order of rotation from y; into the gap, these points in x. + T, M are constructed,
projected onto M by Proj, and added to the database by Addncd. As each new point on
M is found, Addsim adds to the database the simplex defined by the new point and the
endpoints of the open edge from which it was rotated. At the last new point z € M in the
gap, a second simplex is added, namely the one formed by z, ., and z;,. This simplex
completes the ncighborhood around z..

For some new direction t, Proj may fail to project the tangent point z. + ht onto M.
In this case, a simple continuation process is started along the direction t in the following
way. A temporarily smaller stepsize h := -2-“:, k = 1,2,... is chosen until either h gets
too small or Proj successfully projects the corresponding tangent point onto M. If A
gets to be smaller than some minimum acceptable stepsize, the algorithm stops with an
error return. Otherwise, once the first intermediate point r¢.m, € M is found, further
continuation steps are taken with the successful stepsize and in the same direction t until
a point z is reached where the sum of the steps exceeds the original value of h. This z
becomes the desired new point to be added to the database together with the simplex it
completes. Then h is reset to its original value.

The following algorithn summarizes the entire triangulation process.

PITMAN: Input: Start point 1, suggested step h, minimum gap angle amin,
total number of bounding hyperplanes n,;
DF(z4)T = (Q,,Q;)(g) /*Find the QR decomp. of DF(zg).*/
Zm :=Projlzo.z0,20. R, Q1,Q2,1] /*Project zo onto M .*/




dmin :=Chkbnd{zm,na] /*Check if 2 € Mo, ie. if dmin > 0.%/
if ‘dmin <0’ then ‘error return’ endif
nod(1,7) := -1  /*Label z,, as a frontal point.*/
Compute the neighborhood of six simplices of 7.
Remove z,, from the front.
while ‘Front is non-empty’
Get the next frontal point z..
DF(z )T = (Qth)(‘:) /*Find the QR decomp. of DF(z.).*/
Call Agap|z;,Q2] /*Find gap and open edges r,,r; at r..*/
if ‘gap < amin’' then
Call Merge[z.,z,,7;] /*Identify the open edges.*/
else
if 'z, already has 6 incident simplices’ then
‘error return’.
else
Find the optimum number of sectors k in gap.
if 'k = 1" then
Call Addsim(z.,zy,2,] /*Insert one simplex.*/
else
Insert k simplices into the gap.
endif
endif
endif
Remove z. from the list of frontal points.
end while
Output: Points and simplices which form a triangulation of Ay,

5. Numerical Experiments

The algorithm PITMAN described in the last scction has been implemented in Fortran
77. We present here some sample problems run with this code.

As first example we consider the intersection of the unit sphere in R3, defined implicitly
by

Fzy=2} +23 413 -1 =0,

with the half space
S={zeR| z;>-08 }.

Figure 5.1 shows a view of the triangulation computed by PITMAN using the stepsize
h = 0.3, with a rotation that indicates the truncating effect of the hyperplane. The
algorithm’s way of handling local overlap causes four “seams” of elongated triangles on
the sphere. This could be remedied by a Delaunay improvement, which is a topic of ongoing
work.
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FIGURE 5.1

The second example arises as a finite-element model of the deformation of a thin,
shallow circular arch. This test problem has been used by several authors and can be
traced back to [W69). We use the same model formulation as in [R86]. In an (r,6)-polar
coordinate system with the r-axis as vertical direction, the unloaded configuration of the
arch is repicscnted by the segment { (r,6) | r =10, —8; <0 < 8y =15°}. Let u and w
be the radial and axial displacements. For pinned ends, the dimensionless total potential
energy and associated boundary conditions are given by

' ,
./—o,“(w' - u)+a°("')2] +ay(u")? —azp“]dﬂ.
u(@®) = w(@)=u"(0) =0, 6&==6,

where the primes denote derivatives with respect to 6. Here p = p(9) is the dimensionless
radial load and oy, a;, az are dimensionless constants.

As in [R86] we use the finite element approximation consisting of a uniform mesh with
eight elements. The problem was run with the following load function

u-aplv—0)/8, if v—16 <8<y,
POY={ pu+apu(v—-0)/6, if v <8< v+l
0 otherwise,
considered already in [R88], where v and u are control parameters. In other words, the
load is a piccewise linear hat function which has the value u at 8 = v and is zero outside
the interval of width 0.58, centered at v.




FIGURE 5.2

Figure 5.2 shows the results obtained when the initial point, computed by the con-
tinuation code PITCON (see [RB83]) with v = 0, is a limit point with respect to u. Let
z° denote the dimensionless radial deformation at the center. The stepsize of the mapped
trisngles was h = 0.5, and the bounding hyperplanes were defined 0 as to restrict z€ to
the interval [1.1,2.4] and v to the interval [—0.008,0.006), respectively. The foldline in
the (v, u)-plane has the shape given in Figure 5.3. Figure 5.2, which shows the manifold
projected onto the (v, u)-plane, clearly shows a segment of this foldline that includes the
local maximum and minimum points with respect to v at v = 0 and about v = 0.16, respec-
tively. The two-dimensional simplicial approximation algorithm [R88] also captured these
two points, but due to the local nature of that code, two runs were needed to triangulate
the manifold separately in the neighborhood of each of these two points.

Hu
B

- vl Ia *o l 2
FIGURE 5.3

The third example has beeu used in {MAM93] to test the robustness of their two-
dimensional code. The manifold is defined as the subset

{(1.V,2)€R3| F(z.y,z):z(a’z’(b’—z’)—z’)+e=0 }

When ¢ = 0, the cross-section in the (z, z)-plane for any fixed value of y is the z-axis on
top of a figure-cight, which is symmetric with respect to the z-axis and intersects the z-axis
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at z = —b, 0, and b. As ¢ becomes positive, the solution set in the (z,z)-plane breaks
into two components: one below the z-axis and diffeomorphic to a circle, and the other
the cross-section of an inverted trough above the z-axis and diffeomorphic to the real line.
The size of ¢ determines the width of the trough opening, with larger values of ¢ giving
larger widths. When the variable y is added to the problem the result is a two-component
manifold, invariant in y, whose second component is an inverted trough which is above
the plane z = 0 and whose opening is parallel to the y-axis. A narrow trough opening is
challenging because the solver may jump across it without exploring the trough itself.

FIGURE 5.4

Figure 5.4 shows the results of the triangulation algorithm when a = 4.0, b = 0.25,
€ = 5.0 x 1073, the stepsize is h = 0.03, and the initial point (z,y,2) = (0,0,0.25). The
bounding hyperplanes were defined to restrict z to the interval [-0.15,0.15] and y to the
interval [-0.14,0.14]. PITMAN followed the curvature without falsely jumping across the
opening of the trough.
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