
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A278 033

SDTIC

ELECTE'

THESIS
MULTIPLE-VALUED PROGRAMMABLE

LOGIC ARRAY MINIMIZATION BY
SOLUTION SPACE SEARCH

by

Charles G. Wendt

December, 1993

Thesis Advisor: Jon T. Butler

Approved for public release; distribution is unlimited.

94-'10955 W94 4 11 067

I Fomn Apnproved

REPORT DOCUMENTATION PAGE [OM No. 04O I

P- NMJ wo Ilngbednq 60. thn& €• 1ino~ Of miffboe'oN• s et, st aedl to a,,..aqc I hot.. a. u•ome, w,~~d m tkNi he ts~s. in. reN 4~eU.Uleduile.s waac~lutew Ow.Ietq dm16U 10ue~t.
ga•eeu,9 ore £WRIOE, t@ da eta isa e. d rid, eUl tOhISqm d 0 a ncwInq te• h tOJ qtIe €m 06, • ,...lorqa.o $end (omme~nt; ..?audm thitudi (• e6ea,, 0 e ew i,, o0h,, aowett 06 Itw
ai•edO if iaWiOi,,, A. s.idfig Hq1 WI~ewi 601 V,dU,,9 the mbadge to wa,hieto.,M ,.e wu..I. ietv~qt. O,.'t-o.,.t ,a' hs*O,,,itg,, O Iore.,,,,,, d 6w,i s. tI0 a fe'i

Oown Migheawv. b5lee 1,04. £dinqwn. anIJNJdN t o t0hc OEfinw of Maaqhsgn -• UdItul. ptoib•ve id•ceon P•olact S10d4IU l ads.swton. DC 3050l.
1. AGENCY USE ONLY (Lealve blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREDO

December 1993 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

MULTIPLE-VALUED PROGRAMMABLE LOGIC ARRAY
MINIMIZATION BY SOLUTION SPACE SEARCH

!6. AUTHOR(S)

WENDT, Charles G.

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) O. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) to. SPOINSORIN•GIMONITORING
AGENCY REPORT NUMBER

41. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or
the US Government. __________

M a. DISTRIBUTION IAVAILABILITY STATEMENT IZb. DISTRIBUTION CODE

Approved for public release; distribution is
unlimited.

13. ABSTRACT (Maximum 200 words)

A minimal realization of a multiple-valued programmable logic array can only be achieved by exhaustive

search. However, an exhaustive search is unrealistic even with the high speed CPU's in use today. Heuristic
algorithms have been developed that provide near-minimal solutions, using significantly less Cpu time. This
thesis investigates a new type of heuristic that uses implicant operations (combine, reshape, and cut) to move

through the solution space. The choice of move is dynamically controlled by feedback from a queue of previous
moves, called a TABU queue. This new heuristic performs better than existing heuristics, in certain situations,
but requires more CPU time than direct cover methods.

In addition, this heuristic provides a unique capability to fix the move acceptance probabilities associated
eithl the basic implicant operations. Fixing move acceptance probabilities allows a study of the sofltion space

of multiple-valued logic functions under controlled conditions. F:or example, the results of a preliminary study
into the solution space of a four-valued, three variable special function (SF) are presented. This suggests that
the search space is not homogeneous; rather it suggests that the space is segmented with restrictive access between

segments. The results of such studies will be a basis for improving the performance of current and future
minimization heuristics.

14. SUBJECT TERMS IS. NUMBER OF PAGES
MVL (multiple-valued logic) minimization; PLA 60
(programmable logic array)o; HAMLET; Solution Space g i . PRICE CODE

Search _________

17. SECURITY CLASSIFICATION lB. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION i20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE I OF ABSTRACT
UNCLASSIFPIED I UNCLASS IFI ED IUNCLASS IFI ED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev i-89)

P,is~,cnbi Iy AM"lt $td tfl-I3

moes clld AB qeu. isnw euisicprfrm bttr hn xitig eritisincetinsiuaios

Approved for public release; distribution is unlimited.

Multiple-Valued Programmable

Logic Array Minimization By

Solution Space Search

by

Charles G. Wendt

Lieutenant Commander, United States Navy

B.S., United States Naval Academy

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

Author: ______

Charles G. Wendt

Approved by: /• _
Jo T Butler, Thesis Advisor

:•:• _••••David Erickson, Second Reader

•I•• , •I eO •Michael A. Morgan, Chairm/

Department of Electrical and Computer Engineering

~\

ABSTRACT

A minimal realization of a multiple-valued programmable logic array can only be

achieved by exhaustive search. However, an exhaustive search is unrealistic even with

the high speed CPU's in use today. Heuristic algorithms have been developed that

provide near-minimal solutions, using significantly less CPU time. This thesis

investigates a new type of heuristic that uses implicant operations (combine, reshape, and

cut) to move through the solution space. The choice of move is dynamically controlled

by feedback from a queue of previous moves, called a TABU queue. This new heuristic

performs better than existing heuristics, in certain situations, but requires more CPU time

than direct cover methods.

In addition, this heuristic provides a unique capability to fix the move acceptance

probabilities associated with the basic implicant operations. Fixing move acceptance

probabilities allows a study of the solution space of multiple-valued logic functions under

controlled conditions. For example, the results of a preliminary study into the solution

space of a four-valued, three variable special function (SF) are presented. This suggests

that the search space is not homogeneous; rather it suggests that the space is segmented

with restrictive access between segments. The results of such studies will be a basis for

improving the performance of current and future minimization heuristics.

iii • = UALITY -L ED 3

TABLE OF CONTENTS

I. INTRODUCTION I

A. MOTIVATION 1

B. BACKGROUND I

C. SIMULATED ANNEALING 2

II. A NEW HEURISTIC 4

A. BACKGROUND 4

B. ALGORITHM OVERVIEW 5

C. HEURISTIC MECHANICS 5

1. Com bine 5

2. Reshape 7

3. C ut . 8

4. TABU queue 8

5. Probability Control 9

a. Increases in cut probability 9

b. Decreases in cut probability 1 1

mI. PARAMETER OPTIMIZATION 13

iv

A. PARAMETERS 13

B. DEFAULT SETTINGS 14

IV. PERFORMANCE ANALYSIS 17

A. COMPARISON WITH OTHER MINIMIZATION HEURISTICS . . 17

B. SOLUTION SPACE EXPLORATION 20

C. RESTRICTIONS TO MOVEMENT 20

V. CONCLUSIONS 25

APPENDIX A - SOLUTION SPACE SEARCH CODE 27

LIST OF REFERENCES 49

BIBLIOGRAPHY 51

INITIAL DISTRIBUTION LIST 52

V

ACKNOWLEDGMENT

I would like to express my sincere appreciation to the United States Navy for providing

this exceptional educational opportunity. Special thanks go to Dr. Butler for his

indispensable assistance. I would also like to thank my wife, Cathy, and my children,

Hannah and Bobby, for their extreme patience and support.

vi

I. INTRODUCTION

A. MOTIVATION

The recent progress in very large scale integration (VLSI) technology has made the

manufacture of chips with millions of integrated circuits possible. However, with this

progress have come two major problems, interconnect and pinout.

In binary VLSI design, interconnect wiring takes up about 70% of the chip area.

In multiple-valued logic (MVL), there are usually more than two levels of logic.

Therefore, with MVL, fewer digits are needed than with binary to convey the same

information. With fewer digits, less area is required for interconnect and more area is

available for logic gates.

However, there is the question of implementing a multiple-valued system. Recent

applications of MVL in programmable logic arrays (PLA) implemented in charge-coupled

devices (CCD) [Ref. 1, 2] and current mode CMOS [Ref. 3, 4] have adequately shown

the feasibility of such a system. In fact, CCD circuits with 16 logic levels have been

fabricated [Ref. 14].

B. BACKGROUND

Circuit design is a complex problem. One way to bring order to this problem is

with a programmable logic array or PLA. PLA's are simple, regular circuit structures

that are easily reproducible in VLSI. As the name implies, PLA's are programmable,

which makes them flexible and useful. The physical size of a PLA is determined by the

size of the function to be implemented. Therefore, the more product terms (sum-of-

products form) in the function, the larger the PLA needed to implement the function.

Therefore, to reduce the size of the PLA, we want to reduce the number of product

terms.

MVL function minimization is a combinatorial optimization problem.

Combinatorial optimization often falls into the class of problems known as NP-hard. In

such problems, an exact solution is not likely to be achieved. Thus, we turn to heuristic

techniques for finding an optimal solution to a given problem.

Several heuristic algorithms have been developed for use with computer aided

design (CAD) and logic synthesis tools for multiple-valued PLA's [Refs. 5. 6, 7, 8, 9].

The majority of these heuristic algorithms are direct cover algorithms. Direct cover

heuristics operate by selecting a minterm and an implicant that covers that minterm.

This process is then repeated until the expression is covered.

C. SIMULATED ANNEALING

Simulated annealing (SA) is a heuristic technique that has only recently [Ref. 10]

been applied to the problem of combinatorial optimization. SA is a general purpose

algorithm. SA is modeled on the annealing process used on metals or glass, by which

the material is first heated to a molten, high energy state and then slowly cooled to a low

energy, crystalline state.

In MVL minimization by SA (MVLSA) [Ref. 51, the number of product terms in

the solution is analogous with the energy state and cost increasing moves are accepted

with probability P(AE) = e'A kBr, where k8 is the Boltzmann constant (set to I for

2

MVLSA), T is temperature, and AE is the increase in cost for a given move. Initially,

a high temperature is selected to "melt" the solution. Then, after a period of time (i.e.,

fixed number of moves attempted) for the solution to stabilize, the temperature is reduced

and the process repeated until the solution is "frozen." The process of reducing the

temperature is the annealing schedule. A slow reduction in temperature is critical to

attaining a global minimum, but requires more time.

The primary advantage of MVLSA is its potential for finding a minimal solution

every time and its ability to avoid purely local minima, a characteristic not shared by

direct cover. MVLSA has shown improvement over direct cover heuristics [Refs. 6, 7.

8, 9]. However, there are some apparent inefficiencies in MVLSA. For example.

MVLSA uses a fixed number of failed attempted moves as a stopping criterion [Ref. I I].

Additionally, MVLSA can visit the same solution many times. It is this time spent

(re)visiting the same state(s) that contributes to this inefficiency.

Proposed here is a new heuristic algorithm, solution space search (SSS), that uses

many basic operations of MVLSA, but incorporates a TABU Queue [Ref. 12] to improve

the efficiency of the algorithm through dynamic adjustment of move acceptance

probabilities. A review of the MVL PLA minimization problem follows. Then,

implementation of the SSS heuristic is presented.

3

IH. A NEW HEURISTIC

A. BACKGROUND

An r-valued function, f(x1, x2, . . x.), takes on a value {0, 1, 2, ... r- }, for

each assignment of values to the variables. The variables are also r-valued (i.e.. x, E

{0, 1. . . . r-1 }), where the radix, r, is the number of logic values in the function. The

literal function is

aiXbi = {r-1 if ai!ýx1 <bi
0 otherwise

and concatenation is the min function (i.e., xy = min(x, y)). Multiple-valued PLA's are

implemented using the truncated sum of the sum-of-products form of the function. The

truncated sum A +B is the arithmetic sum of A and B, with A and B viewed as integers,

unless that sum exceeds r-1, in which case, the arithmetic sum is truncated to r-1. For

example, the OR function in binary is the truncated sum. A product term or implicant

is expressed as

Cal bl a2 Q aS 3 W~ ... (1)
Cx1 X2 X3 n.x,

where c E {1, 2 r-I}, is a nonzero constant. In a PLA, circuit area is needed to

4

realize a product term. Thus, we seek the sum-of-products expression for f(x,, x,.,

.x) that has the fewest product terms.

B. ALGORITHM OVERVIEW

A flowchart for the solution space search heuristic is shown in Figure 1. This

heuristic employs the same basic operations used by MVLSA (combine, reshape, and

cut), but incorporates a TABU queue [Ref. 12) to control when cost increasing move

probability (cut_prob) is changed. The TABU queue as implemented provides "memory"

of previous moves vice previous states visited. This modification was necessary to

accommodate the data structure used by HAMLET. The entire expression is not stored

after each move because of the large amount of memory necessary to save even a few

moves. Instead, only the two implicants involved in a move are saved. By using a

different data structure for HAMLET, or by putting the input expression in a different

format, this compromise can be avoided.

C. HEURISTIC MECHANICS

While the total number of iterations is less than the maximum number of iterations,

two implicants are randomly chosen from the working expression. This step is repeated

until two adjacent implicants are found. These implicants are combined, if possible.

1. Combine

For simplicity, the flowchart treats all moves resulting in a reduction in the

number of implicants (i.e., a decrease in the cost function) as a combine operation.

5

CAM SRCPRP.TSolution Space Search

w.. 1
T4 " ý-_

S Q•Cf q mwe4_hM in=e

, YES M arl m OW"tVdk-nxM
WM N . dTmOPELPROB

hi e 7C T o mIfI: q _ ft

CP: Iomht

YES ./ ýMWIPEý Tt kAw

Zit ZER RESHAPE

kv= TRVR: VAMUýX3E -M K

SII CRE FAC IN ;CIEFAC ISR

"kc "~ CUTPRO13 z CUTPROIB

i . INCREFAC

bwM. bw 7MT - .

JN~ y VMm

nwb:

CUTRO CU RO

OHCCRE=AC

131 0

Figure 1. Solution Space Search flowchart

There are three types of moves that accomplish this; combine, bounds identical, and

absorb. The combine move occurs if both of the following conditions are satisfied:

0 the coefficients of the two implicants are identical

6

0 for an n variable function, the bounds are identical in n-I variables and the

bounds abut in the remaining variable (i.e., for a four-valued function, 0x,'

and 2x1
3)

The bounds identical move occurs if the bounds of the two implicants are the same for

all variables. The absorb move occurs if one implicant is saturated (i.e., the coefficient

= r-1) and the bounds of the other implicant are a subset of the bounds of the first.

If any one of these three moves can be made, then that move is made. When

none of these moves is possible, a random number w. is generated and compared to the

user-specified reshapeprob (reshape probability). If w > reshapeprob, then a reshape

move is performed.

2. Reshape

The reshape move performed is one of two possible types; zero-cost reshape

or variable-cost reshape. The user selects the reshape move type at the time the heuristic

is started. The selected reshape move type is then used exclusively during the program

execution. As the name implies, the zero-cost reshape move produces two implicants,

resulting in no net change in the number of implicants in the function (i.e., no change

in the cost function). In contrast, the variable-cost reshape move may produce two or

more implicants. The number of implicants produced is a function of the coefficient and

bounds of the two input implicants and the number of variables in the function.

If co < reshape_prob, a new random number q is generated and compared

to the user-specified cutprob (cut probability). If 7 >_ cut_prob, a cut is performed.

7

3. Cut

The cut move randomly selects one of the two implicants. The selected

implicant is then randomly cut in one of two ways; a coefficient cut or a bounds cut.

A coefficient cut is a simple random cut of the coefficient. Note that a saturated

coefficient cut provides the maximum number of ways of dividing the implicant because

of the many ways the truncated sum can form. A bounds cut randomly selects one of

the ni variables and performs a cut. All variables have equal probability of being

selected. If q < cut_prob, the heuristic returns to the start and begins another iteration.

4. TABU queue

After a combine, reshape, or cut is performed, the heuristic checks for the

existence of the TABU queue. The user can select whether or not the TABU queue is

used. Selecting zero (0) for the TABU queue length parameter overrides the control

function provided by the TABU queue. When the control function is overridden, the

heuristic runs are conducted with FIXED reshape and cut probabilities. Use of this

feature provides a unique capability for exploring the solution space of a given function.

For user-specified TABU queue lengths other than zero, the heuristic searches

the TABU queue for the implicant pair used in making the just completed move. If the

implicant pair is found in the TABU queue, a counter is incremented (queuehits_incre),

the algorithm returns to the start of the loop and another iteration is performed. If the

implicant pair is not found in the TABU queue, then the TABU queue is updated. In this

case, the current implicant pair is placed at the beginning of the queue and the implicant

pair at the end of the queue is removed (a first-in, first-out operation). At this point, a

8

move is deemed to have been made, in which case two counters are incremented, a

tot-moves (total moves) counter and a movesthisincre (moves made this increment)

counter. Movesthisincre is used to determine when the cut probability is to be

increased. Note that if the TABU queue does not exist (i.e., the user specified a zero

length TABU queue), a move would be deemed made after the combine, reshape, or cut

operation is completed.

5. Probability Control

Control is provided by changing the cut probability in response to (1)

feedback from the TABU queue as moves are rejected and (2) when the solution shows

signs of being trapped in a local minimum (i.e., number of terms in the function remains

constant as moves are made). Increases in the cut probability are performed to drive the

solution to a minimal state. Then, to prevent the solution from being trapped in a local

minimum, decreases in cut probability are performed.

a. Increases in cut probability.

Increases in cut probability are performed by comparing the ratio,

queue hits incre (tabu queue hits this increment) to movesthis incre (moves made this

increment), to the user-specified TABU queue hit rate (tq hit rate). If the former is

greater than latter, the cut probability is increased (i.e., the probability of a cut occurring

is decreased). Additionally, both the TABU queue hits this increment (queuehitsincre)

and moves made this increment (movesthisincre) counters are reset to zero. The ratio

of TABU queue hits this increment to moves made this increment was chosen based on

9

the following reasoning. After a function reaches the "equilibrium" number of terms for

a given reshape probability and cut probability, there will be more moves that result in

a TABU queue hit (i.e., the two implicants were used in a move recently) than do not.

Thus, as total moves in a given increment increase, the ratio of TABU queue hits to total

moves this increment increases.

A means is needed to determine the size of the incremental increases

in the cut probability. We do this by adding to the current cut probability a cut

probability increment. The first increment is Ca, the next is Ca2, etc. . where C is a

constant called the increment factor (increfac) and a is the user-specified steprate. The

resulting current cut probability approaches 1.0 as time increases. Thus.

cut..prob +CC a= 1.0. (2)

Recall [Ref. 131 that

eoa = __.,for a< 1. (3)

nO 1-a

The same expression starting from n=1 is

10

aan or (4)L " !~1 or
n-I 1-a 1-a

and, substituting Equation (4) into Equation (2),

cut..prob + - 1.0. (5)
1-a

Finally, we solve for C, the incre fac, which yields

C = (1.0 - cut.prob)(1 -a) (6)
a

Each time the cut probability is to be increased, the increment factor

(increfac) is multiplied by the user-specified step rate (step_rate). The result of the

operation is the new increment factor. This new increment factor is added to the cut

probability and saved for use in calculating the next cut probability increment. Each

successive increment factor is smaller than the previous one. Thus, the cut probability

increases by a smaller and smaller amount with each successive increment (approaching

1.0 in the limit)(i.e., no cuts performed).

b. Decreases in cut probability

As the cut probability approaches 1.0, fewer cuts occur. When very

few cuts occur, the number of combinable terms is quickly exhausted. At this point,

11

only zero cost reshape moves occur, and the total number of terms in the function

remains constant (i.e., no change in the total cost). This is a local minimum.

To escape the local minimum, the cut probability must be decreased to

allow cuts to occur (i.e., cost increasing moves). In the solution space search method,

the cut probability is decreased when the number of terms in the expression remains

constant for 20 moves. This number was chosen high enough to prevent premature

resetting of the cut probability, while low enough to minimize time spent in the local

minimum. The size of the decrease is a fixed percentage of the difference between the

user-specified cut probability and 1.0. Thus, the cut probability is decreased to a level

slightly higher than the initial cut probability, where cuts again occur and the heuristic

continues to move. The process repeats as often as the conditions dictate.

12

M. PARAMETER OPTIMIZATION

A. PARAMETERS

There are seven parameters that determine the performance of the algorithm: cut

probability, reshape probability, TABU queue length, increment step rate, TABU queue

hit rate, maximum iterations, and variable cost reshape.

Cut probability (optSSS cut prob) [0.0 < x < 1.0] sets the level that a random

number must exceed before a cut will be performed.

Reshape probability (optSSSreshape_prob) [0.0 < x < 1.01 sets the level that

a random number must exceed before a reshape will be performed.

TABU queue length (optSSStabuq_len) [0 . x f 10,000] sets the length of the

TABU queue. When set to zero, the TABU queue is bypassed and the cut probability

incrementing feature is disabled, thus providing a "fixed probability" analysis capability.

Increment step rate (optSSS step rate) [0.0 <_ x <_ 1.0] determines the size of

the cut probability increment.

TABU queue hit rate (optSSS tq hitrate) [0.0 _< x <_ 1.0] sets the threshold

level for incrementing the cut probability. The queue hit ratio

(queuehitsthis increment / moves-thisincrement) must exceed this threshold level

before a cut probability increment will occur.

Maximum iterations (opt SSS maxiterations) set the maximum number of

iterations the algorithm will perform.

13

Variable cost reshape (opt_SSS_method) is the flag that signals the heuristic to use

the variable-cost reshape move. The variable-cost reshape move allows for the formation

of multiple implicants (i.e., more than two implicants). Zero-cost reshape, the default

mode, allows only two implicants to be formed (i.e., net cost of zero). All data runs

performed for analysis in this thesis used the zero-cost reshape move. Further research

using the variable-cost reshape move is indicated.

B. DEFAULT SETTINGS

Table 1 contains the default settings for the solution space search algorithm. The

following parameter settings were used for initial testing of the algorithm and

determination of default settings:

"* Cut probability (0.975, 0.99, 0.995, 0.999, 0.9995)

"* Reshape probability (0.50, 0.75, 0.90, 0.99)

"* TABU queue length (0, 100, 500, 1000, 10000)

"* Increment step rate (0.15, 0.25, 0.50, 0.75, 0.90)

* TABU queue hit rate (0.01, 0.001, 0.0005, 0.0001. 0.00001)

* Maximum iterations (1,000,000; 5,000,000; 10,000,000; 15,000,000)

No attempt was made to test every possible combination of parameter values

because of the large number of such combinations. Instead, the following process was

used. Three test functions were generated using mvIt, the test function generation

module of HAMLET [Ref. 3]. These test functions were randomly generated as four-

valued, five variable functions consisting of 25, 100, and 200 terms. A sensitivity

14

analysis was conducted on each test function by choosing combinations of cut probability,

reshape probability, increment step rate, and TABU queue hit rate covering the full range

of parameter variability. This analysis was repeated for different TABU queue length

settings, including the fixed probability setting. The results of the sensitivity analysis

determined the default parameter values for the algorithm. It is important to note that

the listed parameter values should only be considered a starting point, and not optimum

values for every possible input function. The intent of the sensitivity analysis was to

establish default settings which would yield reasonable results over the range of

functions tested. Figure 2 is a example of data output produced by solution space

search. The input file for this example was the aforementioned randomly generated,

TABLE 1. DEFAULT PARAMETER SETTINGS

PARAMETER RANGE DEFAULT SETTING

Cut probability 0.0 < x < 1.0 0.99

Reshape probability 0.0 < x < 1.0 0.50

TABU queue length 0 < x < 10,000 1000

Increment step rate 0.0 < x < 1.0 0.90

TABU queue hit rate 0.0 :5 x < 1.0 0.0001

Maximum iterations 12,000,000

15

Solution Space Search
3 5 0 !...................

300 Input. File:..TEST3. (4-valued, 5-variable, 20.0 terms)
Iterations: 1 t,000,000 STEP_RATE: 0.90

250 TABUG.Length: ... 1000.... TQ._HIT._RATE:i 0.0001

CUTPROB: 0.99 RESHAPE_P:ROB: 0.50
2 0 0

0

0 :
0.

... ".................... "...................

Z l-1 0 ,
E

z, ;...................

1 0 :................... .:J

5 0

0 1 2 3 4 5
Number of moves made (tot-moves_made/5) x104

Figure 2. Sample plot of solution space search output data

four-valued, five variable, 200 term test file. For this example, default settings were

used for all user-specified parameters of the solution space search algorithm.

16

TV. PERFORMANCE ANALYSIS

A. COMPARISON WITH OTHER MINIMUZATION HEURISTICS

To present a fair comparison of solution space search with the other minimization

heuristics implemented in HAMLET [Ref. 3], nine test set ensembles of five test

expressions were analyzed. All test sets were generated using the mvlt module of

HAMLET. Each test set was created using a different random "seed" and consisted of

five expressions. The test expressions were all four-valued, five variables. Solution

space search used the zero cost reshape feature (the default) for these comparisons. All

other heuristics were run using their default parameter settings and no attempt was

made to "tune" any heuristic for this comparison.

A comparison of the performance of the selected heuristics is provided in Figure

3. Solution space search produced better results than all other heuristics for the 50-, 75-

and 100-term test sets. For test sets with 125-terms or greater, solution space search

performed better than Reshape and Cut & Combine [Ref. 5], but not as good as the other

heuristics.

CPU times for the test runs are shown in Figure 4. All test runs were performed

on the same SunSPARC 10 workstation. Actual times on different operating systems will

vary. However, the relative performance will be consistent and is the basis of this

comparison. Solution space search required less time, on average, than Reshape and Cut

& Combine but more time than the other (direct cover) heuristics. The test data shown

17

Heuristic Comparison
Average Number of Product Terms in Minimized Expression

250O

200

En +out~ +pc Sa

50

0
50 75 100 125 150 175 200 225 250

Input Expression (terms)

Figure 3. Heuristic comparison for test function ensembles

18

Heuristic Comparison
Average CPU Time Required to Minimize One Expression

6

Cn

Cu

0

*03

a)
'Times scaled down by factor of 10

E 2

... .. .:!i:liiiiiiii:i!i!i! !i•i•i :i ... : .. : ::i~ii~i i ii: ii ii• !:i ii :? !i• : !i i

50 75 100 125 150 175 200 225 250

Input Expression (terms)
Figure 4. CPU time comparison for test function ensembles

19

provides an indication that the initial goal of improving on the speed of simulated

annealing has been achieved.

B. SOLUTION SPACE EXPLORATION

Little is known about the solution space of MVL functions. Previous work has

centered on the minimization problem directly, with no investigation into the nature of

the MVL function solution space. However, we seek insights into the solution space of

MVL functions to improve the performance of the heuristics. It was with this objective

in mind that the fixed probability feature (i.e., setting TABUQ length to zero) of the

solution space search heuristic was developed.

Time constraints precluded a full investigation into the nature of the MVL function

solution space in this work. However, preliminary investigations have provided somL

valuable insight.

C. RESTRICTIONS TO MOVEMENT

Analysis of data from early testing of the solution space search algorithm led to an

investigation into the exact nature of the moves performed in transitioning between a

saturated expression and an oversummed expression. A saturated expression is one with

one or more minterms having coefficients equal to three (i.e., r-l). An oversummed

expression has one or more minterms whose coefficients are oversummed (i.e., sum to

greater than r). It has been generally held that no restrictions exist to movement between

saturated and oversummed expressions. To conduct this investigation, a four-valued,

three variable special function (SF) was constructed as illustrated in Figure 5. The SF

20

consists of implicants, with coefficient 1, placed along every edge. To study the onset

of production of oversummed mintenns, the cut probability and reshape probability were

varied over their fill range. To extract an oversummed minterm from a vertex, a

sequence of special cuts must occur. The probability of these cuts occurring is a

Special Function
Figure 5. Special Function

21

relatively straightforward exercise. As the coefficients of all implicants in the SF equal

i, and a bounds cut is equally likely to occur in any variable, every product term can be

cut in r-I ways. The SF is four-valued (i.e., r=4), so there are three different cuts

possible in each product term. Since the SF contains 12 product terms, there are a total

of 36 (3 x 12) separate cuts possible. To extract a specific comer, the probability. p, is

p = 1 (6)
36*35*34

Since there are eight comers in the SF, the overall probability of extracting a

comer is then,

= 8 1 (7)
35*35*34 5000

Note that the probability is a function of r and n (number of variables) and decreases

rapidly. For example, the probability for a four-valued, four-variable SF would be I in

approximately 50,000. The significance of this finding is that this oversumming process

is essential, in certain situations, to achieving a minimal solution. Thus, as r and n

increase, it is less likely that a minimal solution will be achieved.

Figure 6 is a plot of the expression produced by solution space search showing the

onset of saturation. Parameters used were: Maximum iterations = 100, cut probability

= 0.10 (i.e, lots of cuts occurring), reshape probability = 0.90 (i.e., very few reshapes

occurring), and zero TABU queue length (i.e., fixed probability mode). Figure 7 is

22

Onset of SATURATION
Figure 6. Plot of SF showing onset of saturation (cut prob = 0.10, reshape prob

= 0.90, TABUQ_len = 0)

another plot showing saturation with four comers showing oversummed minterms.

Parameter settings used: Maximum iterations = 1000, cut probability = 0.001, reshape

probability = 0.999 (i.e., very few reshapes occurring), and zero TABU queue length.

This plot clearly shows the oversumming which occurs and demonstrates the reformation

of product terms after saturated minterm formation. It is important to add that a similar

23

process must be repeated to transition back from a saturated solution to an unsaturated

solution.

S•-

..........

SATURATION with oversumming
Figure 7. Plot of SF showing saturation with oversumming (cutprob=0.001,
reshapeprob=0.999, TABUQ_Ien = 0)

24

V. CONCLUSIONS

The solution space search heuristic provides a means to produce optimal or near-

optimal MVL-PLA's. Analysis of test run results shows that the heuristic performs

better, in certain circumstances, than both direct-cover and simulated annealing. The

addition of a memory feature, while preventing repeated moves from the same state,

introduces overhead proportional to the length of TABU queue selected. This may be

the cause, at least with the present data structure, of some inefficiency. Employing a

data structure that can be searched more efficiently will alleviate this problem. Possible

schemes include using an array of minterms with pointers to adjacent minterms and

product terms or a sorted linked list and hash table. Additionally, manual optimization

of the C program code may yield further gains in efficiency.

Due to time considerations, no substantive testing was conducted using the variable-

cost reshape mode of the heuristic. This mode may prove effective because of the

unbalanced nature of the heuristic when using the variable-cost move. In particular,

when near or in a local minimum, the variable-cost has the capability to provide more

rapid movement than the zero-cost reshape move. On this basis, further research using

the variable-cost move is recommended.

The relative merit of a zero-cost reshape move has not been investigated. MVLSA

demonstrated improved performance using reshape over cut & combine, but functions

25

that demonstrate the weakness of reshape can be found. Time considerations precluded

a comparison of heuristic performance with and without a reshape move (i.e., setting

reshape probability equal to 1.0). However, this comparison is recommended to

ascertain the merits of the no-cost reshape move.

The fixed probability feature of the solution space search heuristic has provided

some valuable insight into the solution space of MVL functions. Preliminary analysis

of the special function demonstrated that restrictions to solution movement between

unsaturated and saturated compositions. The existence of this restriction was previously

unknown. Additionally, this restriction in movement becomes greater with increasing

radix and number of variables in the expression. Because the ramifications of this

discovery and others yet to be discovered, continued research using this mode of the

heuristic is strongly recommended.

26

APPENDIX A - SOLUTION SPACE SEARCH CODE

1. Enclosed in this appendix is the C code for the Solution Space Search algorithm
which runs as a module of HAMLET [Ref. 10].

static char
rcsid[] = "$Id: sss.c,v 1.0 1993/07/06 10:17:40 wendt Exp

wendt $";
/ ****************•************************l*********•*********

sss.c - This module implements the Solution Space Search
heuristic

* Copyright (c) 1993 by Naval Postgraduate School

* Permission to use, copy, modify, and distribute this
* software and its documentation for any purpose and
* without fee is hereby granted, provided that the above
* copyright notice appears in all copies and that both that
* copyright notice and this permission notice appear in
* supporting documentation, and that the name of Naval
* Postgraduate School not be used in advertising or
* publicity pertaining to distribution of the software
* without specific, written prior permission.

* Naval Postgraduate School makes no representations about
* the suitability of this software for any purpose. It is

* provided "as is" without expressed or implied warranty.

* The sale of any product based wholely or in part upon the

technology provided by HAMLET is strictly forbidden
* without specific, prior written permission from Naval
* Postgraduate School. HAMLET technology includes, but is
"* not limited to, the source code, executable binary files
"* and expression specification language.

/* $Log: sss.c,v $

27

"* Revision 1.0 1993/07/06 10:17:40 wendt
"* "modifications to original code of yurchak, earle/
* dueck and others"
*/

#include "defs.h"
#define MAXTABUQ 20000
/* NOTE: MAX length of TABUQ = MAXTABUQ / 2 1,/

static int better-found;

static Expression
E_save = { NULL,0,O,0,MAXINT },
E_previous = { NULL,0,0,0,MAX_tNT };

static struct sssstats {
int sssnterm;
long secs, tsecs;
} *SSSstats;

int tot-cuts,
tot-combines,
tot_reshapes;

void Soln_Space SrchO

function:
- Perform the Solution Space Search heuristic on the
input expression

:algorithm:
Start with a working copy E_work of the original
function E-orig;

While (total iterations less than max
iterations){
search the solution space}

:globals:
E_orig
optprint origexpr
optprintmap
optbequiet
sel heur

28

yyout
:side-effects:

STAT
HEUR
E work
E_fmal[]

:calledby:
mainO

:calls:
dealloc expr0
dupexpr(
printterms0
print mapo
printsource(

int i, numimpi, firstprof, queue-exists,
max nterm = 0,
tot-iterations = 0,
tot-moves made = 0,
moves this incre = 0,
move attempts = 0,
queuehits this incre = 0;

double cutjprob = opt_SSS cutjprob,
incre fac = (1.0-cut_prob)* ((l.O-optSSS steprate)

/optSSS step rate),
ratio = 0.0;

/* IncreFac is determined by taking the distance from
CutProb to 1.0 and multiplying by the ratio of
1-steprate/steprate

*/

Implicant TQ[MAX_TABUQ];

if (Efinal[SOLNSPACESRCH].I != NULL)
deallocexpr(&E final[SOLNSPACESRCH]);

ifdef KEEPSTATS
STAT = &DM stat;

endif

29

HEUR = SOLNSPACE SRCH;
dupexpr(&E-work,&E orig);
E final[HEURJ.nterm = 0;
E_final[HEURJ.radix E-orig.radix;
E_fmal[HEUR].nvar = E_orig.nvar;
E finaIIHEUTR].I = NULL;

ifdef ALEVEL_2
if (opt_print origexpr)

print terms(&Eorig);
if (opt_print map) {

printf(C Orig map (SSS): \n");
printmap(&E-work);

}
endif

better-found = optS to coverage;
num_impl = E-orig.nterm;

dup-expr(&(Efinal[SOLNSPACESRCH]),&Eorig);

resourceused(START);

if (SSS_stats = = NULL) {

SSSstats = (struct sssstats *)malloc(
(opt_SSS_maxiterations/10) * sizeof(struct
sssstats));

if (SSSstats = = NULL)
fatal("SolnSpaceSrch0: Out of memory

(SSSstats[])");

dupexpr(&E-save,&Eorig);

dupexpr(&E_previous, &E-work);

firstprof = 1;

queueexists = buildtabuq(&TQ[O]);

SSS_stats[tot moves made].sss nterm = E-work.nterm;

while (totiterations < opt SSSmaxiterations) {

30

int IIndx, 12_ndx;

if (!choose adjacent_pair(&E-work,&Ilndx,&12_ndx))
goto done;

tot iterations+ +;

if (combo = cancombine(&(Ework.I[Il ndxl),
&(Ework.I[I2_ndxJ)))

{
if (combo = = CANCOMBINE) {

ssscombine(&E.previous,&E_work.IIndx.12_ndx);
}
else if (combo = = BOUNDS_IDENT) {

dupexpr(&E_previous,&Ework);
csum = E work.I[I1_ndx].coeff +

E_work.I[12_ndx].coeff;
E_work.I[I1_ndx].coeff = min(radix-I, csum);
E_work.nterm--;
if (12_ndx < Ework.nterm)

copyimpl(&(E_work.I[I2_ndx]),
&(E work.I[E-work.nterm]));

I
tot-combines+ +;

else if (can absorb(&(E_work.I[I1lndx]),
&(Ework.I[I2_ndx])))

{
dupexpr(&Eprevious,&Ework);
E_work.nterm--;
if (12_ndx < Ework.nterm)

copyimpl(&(E~work.I[I2_ndx]),
&(Ework.I[E_work.nterm]));

tot-combines + +;

else if (canabsorb(&(Ework.I[12_ndx]),
&(Ework.I[I 1_ndx])))

{
dupexpr(&E_previous, &E_work);
E_work.nterm--;
if (Ilndx < Ework.nterm)

copy impl(&(E work.I[I1lndxj),
&(E~work.I[E_work. nterm]));

31

tot-combines + +;}
else if (

(((float)randomo/RANDMAX) > optSSSreshapeprob)
&& (optSSSmethod = - SSSZERORESHAPE)

if (reshapecost(&(Ework.I[lndx]),
&(E work.I[12_ndx])) = = 0)

{
sss reshape(&Eprevious,&Ework.

IIndx,12_ndx);
totreshapes + +;

}
else

continue:}
else if (

(((float)randomO/RAND_MAX) > optSSSreshape_prob)
&& (optSSSmethod = SSSVARIABLERESHAPE)

if (reshape cost(&(E_work.I[IIlndx])
,&(E_work.I[12 ndx])) < = 0) {

sssreshape(&Eprevious,
&E_work,IIndx,12_ndx);

tot_reshapes + +;
}
else {

continue;}
}
else if (((float) randomo/RANDMAX) > cut_prob) {

if (! sssrandomcut(&E_previous,&Ework,
(rrandom(l) = = 1)?Il_ndx:I2_ndx))

continue;
tot-cuts+ +;}

else {
continue;

}

32

if (queueexists) {

if (in tabu q(&TQ[0], &E_previous.
I1_ndx,I2_ndx)) {

dupexpr(&Ework,&Eprevious):
queue hits this incre+ +;
continue;}

else updatetabuq(&TQ[0],&E_previous.
II_ndx,12_ndx);

if (Ework.nterm < E save.nterm)
dupexpr(&E save,&Ework);

if (E_work.nterm > max_nterm)
maxnterm = Ework.nterm;

if (Ework.nterm < numimpl) {
num_impl = Ework.nterm;
better-found = 1;
dupexpr(&(En_fmal[SOLNSPACESRCH]), &Ework);}

if (tot_movesmade optSSS tabuq_len)
moves-this-incre = 0; /* re-zero counts after

TABUQ fills */

tot moves made+ +;
moves this incre+ +;

if (optSSS traceprofile) {
if (firstprof) {

printf("Max Iterations: % 10d\n",
optSSSmaxiterations);

printf("TABU Queue length: %3d\n",
optSSS_tabuq_len);

printf("Initial Cut Prob: %4f\n",
optSSScutprob);

printf("Reshape Prob: %4f~n",
optSSS_reshape_prob);

printfC'Step Rate: %3f~n",

33

opt SSSsteprate);
printf("TQ Hit Rate: %3f\n\n",

optSSS tq hit rate);
printf("Move Number Terms Total Iter's Combines Cuts

Reshapes Queue Hits Incre Moves\n");
firstprof = 0;

}
printf("%9d: %4d %10d %3d %3d %3d

%3d %4d\n",
tot moves made.
E_work.nterm,
totiterations,
totcombines,
totcuts,
totreshapes,
queue hitsthisincre,
movesthisincre);

/* if at equilibrium . . . increase cutprob! */
if ((float) queue hits this incre/moves this incre

> =optSSS_tq_hitrate) {

incre fac *= optSSSsteprate;
cutprob + = increfac ;
queuehitsthisincre = 0;
moves this incre = 0;

/* if in a local minimum... decrease cut-prob! */
if (queue exists) {

if (E~work.nterm Eprevious.nterm) {
same-count+ +;
if (samecount = = 20) {

cut_prob - = (1 -optSSS cutprob)*0.667;
increfac = (1.0-cut_prob)*

((1.0-optSSSsteprate) /opt_SSS_steprate);
same-count = 0;
queuehitsthisincre = 0;
moves this incre = 0;

34

}
else same-count = 0;

}m

if(
(totmoves made % 5 == 0) &&
(ofname[0()

fprintf(yyout," % d\n",Ework. nterm);

done:
resourceused(STOP);

fprintf(yyout,"\n %d %d %d %d %d %d %d\n",
num-impl,
maxnterm,
totmovesmade,
totcombines,
totcuts,
totreshapes,
queue hitsthisincre);

if (!verifyexpr(&(E_final[SOLNSPACESRCH])))
fatal("Intemal error; Solution Space Search

verification failure");

if (opt_SSS_show_stats) {
printf("Move Terms\n");
for (i=0; i < totmovesmade; i++) {

printf(" %5d: %5d\n",

SSSstats[i]. sss_nterm);
}

if (opt_SSStraceprofile)
printf("\nMin terms: %4d Max terms:

%4d\n",num impl,max_nterm);

ratio = ((double)numimpl/(double)Eorig.nterm);

35

ifdef ALEVELI
if (opLmvla && (is redir I I !opLbequiet)) {

if (!betterfound)
printf(" %-4d SSS: %4d/ %-4d %4.2f %61d: %3.31d\n",

exprseq,numimpl, num_impl,
0.0,secs_used0,tsecsusedo);

else
printf(" %-4d SSS: %4d/%-4d %4.2f %6d: %3.31d\n",

exprseq,num_impl,E-orig. nterm, ratio,
secs_used(,tsecs_usedO);

else if (!opt_bequiet) {
printf("Case: %-5d User: %d\n",exprseq,E_orig.nterm);
printf("Heur: SSS Perf: ");
if (better found)

printf(" % d\n\n", num_impi);
else

printf("no better\n\n");
fflush(stdout);}

endif

ifdef ALEVEL_2
if (optprint finalmexpr) {

if (queueexists)
print expr(&(E_f'mal[SOLNSPACESRCH]));

else
print expr(&E_work);

endif

dealloc-expr(&E work);
I

int build tabuq(T)
Implicant *T;

function:
- Allocate space for TABUQ of length MAXTABUQ/2

{
int i;

36

if (optSSStabuq_len ! 0) {

for (i = 0; i < (opt_SSS_tabuq_len * 2); i+ +) {

*(T+ i) = * aoc_implicant(NULL, 1, 1);

return(l);
}
else return(0);

void sss combine(P,E,I1_ndx,I2_ndx)
register Expression *P,*E;
register int IIndx,12_ndx;

function:
- Combines 12 INTO II and updates E appropriately.
A copy of unmodified E is made to P for TABUQ entry
if required.

DANGER: Note the side effects on E and P

{
register Bound *B1,*B2;
register int i;

dupexpr(P,E);

BI = E->I[IIndx].B;
B2 = E->I[I2_ndx].B;
for (i=0; i < nvar; i++) {

BI [i].lower = min(B 1 [i]. lower,B2[i]. lower);
BI [i].upper = max(B1 [i] .upper,B2[i] .upper);

}
E- > nterm--;
if (12_ndx < E- > nterm)

copyimpl(&(E- > I[I2_ndx]),&(E- > I[E- > nterm]));

void sss_reshape(P,E,Il_ndx,12_ndx)

37

register Expression *P,*E;
int Il_ndx,12_ndx;

function:
- Reshape 2 implicants. The resulting implicants
are added to Ework and a copy of unmodified E is
made to P for TABUQ entry as required.

{
static Implicant

cons impinterimp;
Implicant *11,*12;
register int cost,dist,added;
int differ;

dupexpr(P,E);

if (cons imp.B = = NULL)
cons imp.B = aloc_boundo;

if (inter imp.B = = NULL)
inter imp.B aboc_boundo;

II = &(E->IfIIndx]);
12 = &(E->I[I2_ndx]);

dist = distance(I1,12,&differ);
if(dist == 1)

consensus(I 1,12, &cons-imp, differ);
else if (dist = = 0)

consensusinter(I1 ,I2,&consimp);
else

fatal(" reshapeo: Implicants are not adjacent");

consensusinter(l1,&consimp,&inter imp);
inter imp.coeff = min(I1- > coeff,consimp.coeff);
cost = sharpcost(II,&inter imp);
added = 0;

if (cost = = 0){
added = 1;
copyimpl(I 1,&cons imp);

}
else {

38

random_sharp(E,I _ndx,&interimp,cost);

/* CAUTION: Below this line, pointers 11,12 may be defunct */

12 = &(E- >I[12_ndx]);
consensusinter(12,&cons-imp,&interimp);
inter imp.coeff = min(12- > coeffcons-imp.coeff):
cost = sharp cost(12,&inter imp);

if (cost = = 0){
added = 1;
copy impl(12, &cons imp);

else {
randomsharp(E,12_ndx, &interimp,cost);

}
/* CAUTION: Below this line, pointers 11,12 may be defunct */

if (!added){
E- >I = aloc implicant(E- > I,consimp.coeff. + +(E-> nterm));
copy impl(&(E- >I[E- > nterm-1]),&cons imp);

}

int sssrandom cut(P,E,I_ndx)
Expression *P,*E;
int Indx;

function:
- Perform random cut of Implicant. A copy of
unmodified E is made to P for TABUQ entry as
required.

static struct coeff struct {
short a,b;

}*coeff tab = NULL;

static int ncoeffoldradix = 0;
register Implicant *I;
register int ij;
register int bound cuts,coeff cuts,r_cut,maxcoeff;
bound-cuts = 0;

dupexpr(P,E);

39

I = &(E- > I[I_ndxl);

for (i=0; i < nvar; i++)
boundcuts + = (I- > B[i]. upper - I- > B[i]. lower);

if (I- > coeff = = (radix - 1)) {
if ((coeff tab = = NULL) I (radix oldradix)) { old radix = radix;

maxcoeff = (((radix+ 1)/2)*((radix+2)/2))-1;
if (coefftab != NULL)

free(coefftab);
coeff tab = (struct coeff struct *)

malloc(sizeof(struct coeffstruct) *

maxcoeff);
if (coefftab = = NULL)

fatal(" randomcutO: Out of memory\n");
ncoeff = 0;
for (i=l; i < radix; i++) {

for(j = max((radix-I)-i,i); j <radix; j++) {
if (ncoeff > maxcoeff)

fatal(" randomcuto: coeff table
overflow");

coeff tab[ncoeffl.a = i;
coefftab[ncoeff+ +I.b =j;

coeff cuts = ncoeff;
}
else {

coeff cuts = I-> coeff - 1;
I

/* If no cuts are possible ... */

if (!(coeffcuts I bound-cuts)) {
return(0);

}
r-cut = rrandom(boundcuts + coeffcuts) + 1;

if (rcut < = bound cuts) {
/* Cut bounds */
for (i=O; (I->B[i].upper - I->B[i].lower)<r rcut;

i++)
r cut- = (I- > B[i].upper - I- > B[i]. lower);

40

cut(E,Indx,i,I- > B[i]. lower + (r_cut-1));}
else if (I->coeff =- (radix - 1)) {

/* Cut coefficients */
i = (rcut - bound_cuts) - 1;
cut coeff(E,Indx,coeff tab[i].a,coefftab[i].b);

}
else {

r_cut-= boundcuts;
cut coeff(E,Indx,I- > coeff-rcut,r_cut);

}
return(1);

int intabuq(T,E,I1_ndx,12_ndx)
register Implicant *T;
register Expression *E;
int IIndx. 12_ndx;

function:
- search TABUQ for implicant pair

{
register Implicant *11 ,*12, *TE, *TE2, *Temp;
int i, j, a, b, boundsgood = 1;
static int tqscnt = 0;

I1 = &(E->I[II_ndx]);

12 = &(E- > I[12_ndx]);

if (tqscnt < optSSStabuq_ien){

tqscnt + +;
return(0);

for (i=0; i < opt SSS tabuq_len; i++) {

TEl = &T[2*i];
TE2 = &T[2*i+ 1];

/* order implicants by coeff *I

41

if (I 1- > coeff > 12- > coeff) {
Temp =I l;
II = 12;
12 = Temp;}

if (
(TEI->coeff == II->coeff) &&
(TE2- > coeff = = 12- > coeff)

for (j=0;j < nvar;j++){

if (
(TEl- > B01].lower = = II- > BU].lower) &&
(TEI - > BU]. upper = = I 1- > B[j]. upper)

if (
(TE2- > Bj]. lower = = 12- > B[j]. lower) &&
(TE2- > B[U]. upper = = 12- > BU]. upper))f
continue;

bounds-good = 0;
break;

}
bounds-good = 0;
break;

}
if (boundsgood) retum(l);
}

}
return(0);

void update tabu q(T,E,IIndx,12_ndx)
Implicant *T;
Expression *E;
int II_ndx, 12_ndx;

function:

42

- add implicant pair to TABUQ

NOTE: TABUQ is a FIFO queue

{
register Implicant*TE 1, *TE2,*I1,*12, *temp;
static int qudcnt = 0;
int i;

i = qudcnt % optSSS tabuqen;

qudcnt + = 1;

TEl = &T[2*i];
TE2 = &T[2*i+l];

II = &(E->I[I_ndx]);
12 = &(E->I[12_ndx]);

/* order implicants by coeff */
if (Il->coeff > 12->coeff) {

temp = II;
II = 12;
12 = temp;

}
copyimpl(TEl ,I1);
copy impl(TE2 ,I2);

2. Other HAMLET files modified or use with SSS: config.c, main.c and defs.h.
Major additions are listed below:

a. config.c:

(1) SSS help panel:

static char *SSS-help_] = {
" -ZSlx - Set the TABU queue length to x (default = 1Q00)",

"[MAX LENGTH = 10000]",
"-ZScx - Set the Cut Probability to x (default = 0.99)",
"-ZSrx - Set the Reshape Probability to x (default = 0.50)",
"-ZSsx - Set the Step Rate to x (default = 0.90)",
"-ZSqx - Set the TABU queue hit rate to x (default = 0.0001)",

43

"-ZSix - Set Max Iterations to x (default = 12000000)",
"-ZSoFile - Output data for SSS to \"File*N,
"-ZSv - Select Variable Cost Reshape move (default is",

"Zero Cost Reshape)",
"-Zc - Show the heuristic's performance even if the",

"user's input could not be bettered (default is",
give up)",

"-Zs - Show statistics",
"-Zt - Trace the SSS profile",

NULL

(2) SSS global variables/initialization:

/* Globals for Soln Space Srch */
int

optSSS tabuq_len = SSS_INITIALTABUQ_LEN,
optSSSmaxiterations = SSSMAXITERATIONS,
optSSS_method = SSSZERORESHAPE,
optSSStraceprofile = 0,
optSSSshowstats = 0;

double
optSSS cut prob = SSS_CUT_PROB,

optSSS_reshapeprob = SSSRESHAPEPROB,
opt SSSsteprate = SSSSTEPRATE,
optSSS_tq hitrate = SSSTQHT_RATE;

(3) Code for parsing SSS command line options:

char *SSS-options(arg,p)
char *arg,*p;
{

register i;

if (!p[O])
retum(p);

if (*p = = '-1) {
printf("\n % s\n % s" ,version, usage);
printf("\nSolution Space Search options:\n");
for (i=O; SSS help[i]; i++)

printf(" % s\n", SSS_help[i]);

44

exit(O);
}

if(*p++ ==Z')

while (*p) {
switch (*p+ +) {
case V':

opt S to coverage+ +;
break:

case s
optSSSshowstats+ +;
break:

case t':
optSSS traceprofile+ +;
break;

case 'S':
if (*p == 'c') {

P+ +;

if (!(isdigit(*p) I (*p = ".))) {
erroption(arg,p, "positive float

expected after -ZSc");
}
sscanf(p," %lf",&optSSS cutjprob);
if (

(optSSS cutprob < 0.0) 1
(optSSS cutprob > 0.99999)

erroption(arg,p, "Cut Prob. must be:
0.0 < c < 1.0");

}
*p= \0,;

}
else if (*p ==)

P+ +;

if (!(isdigit(*p) I I (*P = '.'))) {
erroption(arg,p, "positive float

expected after -ZSr");
}
sscanf(p," % If",&opt_SSS_reshape_prob);
if (

(optSSS_reshapeprob < 0.0) I
(optSSS_reshape_prob > 0.99999)

45

erroption(arg,p, "Reshape Prob.
must be: 0.0 < r < 1.0");

}
*p =\';

}
else if (*p == s') {

P+ +;

if (!(isdigit(*p) ii (*p '-'))) {
erroption(arg,p, "positive float

expected after -ZSs");
}
sscanf(p," %f"',&opt_SSSstep_rate);
if (

(optSSS steprate < 0.0) 1
(optSSSstep rate > 0.99999)

erroption(arg,p, "Step Rate must be:
0.0 < s < 1.0");

}
*p='o'

}
else if (*p 'q') {

p++;
if (!(isdigit(*p) (*p == '.'))) {

erroption(arg,p, "positive float
expected after -ZSq");}

sscanf(p," %If", &opt_SSStqhitrate);
if (

(optSS tq_hit rate < 0.0)
(optSSS tq hit rate > 0.99999)

erroption(arg,p,"TQ Hit Rate must
be: 0.0 < s < 1.0");

}
= \0,

}
else if (*p = T) {

p++;
if (!isdigit(*p)) {

erroption(arg,p, "positive integer
expected after -ZSr");

46

sscanf(p," %d", &opt_SSS tabuq_len);
*p= \0,;=

else if (*p == *i') {
p++;
if (!isdigit(*p)) {

err option(arg,p, "positive integer
expected after -ZSi");

}
sscanf(p," %d",&opt_SSSmax iterations):
if (optSSS max iterations < 1) {

err_option(arg,p,
"max iterations must be > 0");

}
*p= \0,;}

else if (*p == 'o') {
p+ +;

strcpy(sss of name,p);
if ((yyout=fopen(sss of name,"w")) = =

NULL) {
fprintf(stderr,"SSS: Can't open

%s\n",sss of-name);
exit(l);
I*p = \0';=

else if (*p == 'v') {
opt_SSSmethod =

SSSVARIABLERESHAPE:
= \0,

else
err_option(arg, p,"illegal option after

-ZS");

break;
default:

err option(arg, p-1, "illegal option after -Z");
}

else
err option(arg, p, "unknown option");

47

return(p);

}

b. main.c:

(1) Case option for SSS:

case SOLNSPACESRCH:
Soin_Space_Srcho;
FINAL = SOLNSPACESRCH:
break;

c. defs.h:

(1) SSS definitions:

#define SOLNSPACESRCH 13
#define SSSINITIALTABUQLEN 1000
#define SSS MAXITERATIONS 12000000
#define SSSZERORESHAPE 0
#define SSSVARIABLERESHAPE 1
#define SSSCUTPROB 0.99
#define SSS RESHAPEPROB 0.50
#define SSS STEPRATE 0.90
#define SSS_TQ_HITI_RATE 0.0001

(2) SSS global variable definition:

/* Globals for Soln Space Srch */

extern int
optSSStabuq_len,
optSSS_maxiterations,
optSSS_method,
optSSStracejprofile,

optSSS_showstats;

extern double
optSSS cut_prob,
optSSSreshape_prob,
optSSSsteprate,
optSSS_tq_hit_rate;

48

LIST OF REFERENCES

I. Kerkhoff, H. G., "Theory and design of multiple-valued logic CCD's," Computer
Science and Multiple-Valued Logic (ed. D. C. Rine), pp. 502-537, North Holland,
New York, 1984.

2. Butler, J. T. and Kerkhoff, H. G., "Multiple-Valued CCD Circuits," IEEE
Computer, pp. 58-69, March 1988.

3. Yurchak, J. M. and Butler, J. T., "HAMLET - An Expression
Compiler/Optimizer for the Implementation of Heuristics to Minimize Multiple-
Valued Programmable Logic Arrays," Proceedings of the 20th International
Symposium on Multiple-Valued Logic, pp. 144-152, May 1990.

4. Naval Postgraduate School Technical Report NPS-6290-015. HAMLET user
reference manual, J. M. Yurchak and J. T. Butler, July 1990.

5. Dueck, G. W., Earle, R. C., Tirumalai, P. P., and Butler, J. T., "Multiple-Valued
Programmable Logic Array Minimization by Simulated Annealing," Proceedings
of the 22nd International Symposium on Multiple- Valued Logic, pp. 66-74, May
1992.

6. Dueck. G. W. and Miller, D. M., "A direct cover MVL minimization using the
truncated sum," Proceedings of the 17th International Symposium on Multiple-
Valued Logic, pp. 221-227, May 1987.

7. Pomper, G. and Armstrong, J. A., "Representation of Multivalued functions using
the direct cover method," IEEE transactions on Computing, pp. 674-679,
September 1981.

8. Yang, C. and Wang, Y.-M., "A neighborhood decoupling algorithm for truncated
sum minimization," Proceedings of the 20th International Symposium on Multiple-
Valued Logic, pp. 153-160, May 1990.

9. Besslich, P. W., "Heuristic minimization of MVL functions: A direct cover
approach," IEEE Transactions on Computing, pp. 134-144, February 1986.

10. Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P., "Optimization by Simulated
Annealing," SCIENCE, Vol. 220, No. 4598, pp. 671-680, 13 May 1983.

49

11. Collins, N. E., Eglese, R. W., and Golden, B. L., "Simulated Annealing - An
Annotated Bibliography," American Journal of Mathematical and Management
Science, Vol. 8, Nos. 3 and 4, pp. 209-307, 1988.

12. Song, L. and Vannelli, A., "A VLSI Placement Method Using TABU Search."
Canadian Conference on VLSI, August 1991.

13. Finney, R. L., and Thomas, G. B., Jr., Calculus, 1st ed., p. 615, Addison-Wesley
Publishing Co., 1990.

14. Kerkhoff, H. G., and Butler, J. T., "Design of a high-radix programmable logic
array using profiled peristaltic charge-coupled devices," Proceedings of the 16th
International Symposium on Multiple-Valued Logic. pp. 100-103. May 1986.

50

BIBLIOGRAPHY

1. Tirumalai, P. P. and Butler, J. T., "Prime and Non-Prime Implicants in the
Minimization of Multiple-Valued Logic Functions," Proceedings of the 19th
International Symposium on Multiple-Valued Logic, May 1989.

2. VanLaarhoven, P. J. M. and Aarts, E. H. L., Simulated Annealing: Theory and
Applications, D. Reidel Publishing Company, 1987.

3. Otten, R. H. J. M. and van Giancken, L. P. P. P., The Annealing Algorithm,
Kluwer Academic Publishers, 1989.

4. Lam, J. and Delosme, J.-M., "Logic Minimization Using Simulated Annealing,"
Proceedings of the IEEE International Conference on Computer Aided Design, pp.
348-351, November 1986.

5. Yao, X. and Liu, C. L., "PLA Logic Minimization by Simulated Annealing,"
INTEGRATION, the VLSI Journal 9, pp. 243-257.

51

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey CA 93943-5101

3. Chairman, Code EC
Department of Electrical
and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Jon T. Butler, Code EC/Bu
Department of Electrical
and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Visiting Assistant Professor David Erickson, Code CS/Er
Department of Computer Science
Naval Postgraduate S x•ool
Monterey, CA 93943-5118

6. Professor Chyan Yang
National Chiao Tung University
Inst. of Management Sci. and
Inst. of Information Sci.
Hsinchu, TAIWAN
Republic of Taiwan

52

7. Dr. George Abraham, Code 1005
Office of Research and Technology
Naval Research Laboratories
4555 Overlook Ave., N.W.
Washington, DC 20375

8. Dr. Robert Williams
Naval Air Development Center, Code 5005
Warminister, PA 18974-5000

9. Dr. James Gault
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

10. Dr. Andre van Tilborg
Office of Naval Research, Code 1133
800 N. Quincy St.
Arlington. VA 22217-5000

11. Dr. Clifford Lau
Office of Naval Research
1030 E. Green St.
Pasadena, CA 91106-2485

12. LCDR John M. Yurchak, USN
JWC-OR
Hurlburt Field, FL 32544-5000

13. LCDR Charles G. Wendt, USN
3 Frank Hunt Court
Poquoson, VA 23662-1943

53

