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ABSTRACT

In this thesis, a hybrid lossless compression model is tested which employs a

combination of both a lossy compression method and one or more lossless image

compression methods to produce an overall lossless image compression. The hybrid

model decomposes the original image into a browse and a residual image. The hybrid

model is tested and evaluated using various combinations of lossy and lossless image

compression methods. The lossy compression method used in the model is JPEG (Joint

Photographic Experts Group). The lossless compression methods used are Huffman,

Arithmetic, LZW, lossless JPEG, and Diagonal coding. The compression results

achieved using the hybrid compression model are compared to the compression achieved

using the corresponding direct lossless compression. Additionally, the hybrid model is

evaluated as to the advantages that the decomposition of the image into browse and

residual images provide to the user. Accesion For
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1. INTRODUCTION

A. REVIEW OF LITERATURE

Memory requirements to store, transmit, and display images have rapidly grown

as the need for higher resolution images has increased. As a result of this explosion of

data associated with images, various image compression algorithms have been

developed. These compression algorithms capitalize on the redundancies inherent in

images to reduce the number of bits required to represent them. This results in savings in

the memory needed for image storage or in the channel capacity required for image

transmission [1], [2], [3].

Image compression can be divided into two groups: lossy and lossless. Images

may be compressed using a lossy or lossless compression method depending on the

amount of compression and image resolution desired by the user. Lossy compression

methods achieve high compression but produce an image which is of lower resolution

than the original image. Lossless compression methods achieve low compression but

produce an exact replica of the original image.

Some of the standard lossless compression methods are Huffman [I], [2],

Arithmetic [11, [21, the Ziv and Lempel algorithms [2], [4], Predictive encoding [1], [2],

Bit-plane encoding [1], [5], and Run-length encoding [6]. Each of these compression

methods have many variations which are i'eported in the literature. A non-standard

lossless compression method is Diagonal coding [7]. Lossy compression methods consist
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primarily of the Joint Photographic Experts Group (JPEG) algorithm 11, 121, 1I1, 191 and

Fractal encoding [41, [ 10].

Comparisons of the performance of lossy and lossless compression methods

reveal that some compression methods achieve better performance results in terms of

compression ratios and root mean square error than others 1 1 11.

Lossy and lossless methods may be combined together to produce a lossless

compressed image. Such an arrangement takes advantage of the high compression ratios

achieved by the lossy methods and the error-free compression of the lossless methods

[II, 110].

B. OVERVIEW OF THE THESIS

The current chapter introduces the literature used in the thesis and discusses the

structure of the thesis. The various methods of image compression are presented.

Chapter [I describes the goal of the thesis and discusses the proposed hybrid

lossless compression model. The decomposition of an image into browse and residual

images is introduced. The evaluation criteria used to evaluate the hybrid model and the

lossless and lossy compression methods is defined.

Chapter HI describes the lossy and lossless compression methods used to evaluate

the hybrid lossless compression model. The lossy algorithm used in the evaluation is the

lossy JPEG. The lossless algorithms used in the evaluation are Huffman, Arithmetic,

LZW, and lossless JPEG.

2



Chapter IV discusses the results of using secondary compression to compress the

lossy compressed image in the hybrid model. A comparative analysis of the compression

achieved using direct lossless compression and the compression achieved using the

hybrid lossless compression model is performed for each of the lossless compression

methods.

Chapter V introduces another lossless compression method called Diagonal

coding. It is compared to the other lossless compression methods evaluated in the hybrid

model.

The optimization of the model is discussed in Chapter VI with emphasis on the

combination of lossy and lossless compression methods that result in high overall

compression and a visually acceptable browse image.

Chapter VII contains the general conclusions reached from the comparative

analysis of Chapters IV, V, and VI.

Appendix A contains the tabulated numeric data gathered during the research of

the thesis. The source code for the Diagonal coding compression algorithm (encoding

and decoding) is contained in Appendix B.
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IL HYBRID LOSSLESS COMPRESSION MODEL

In many practical situations involving images, a small degree of error in the pixel

values can be tolerated without a significant effect on the display. This suggests that

there are advantages to a decomposition of images into a lossy component and an error

component. A hybrid compression model which employs the browse and residual

concept has recently appeared in the literature [7].

A hybrid image compression model was tested which utilizes both lossv and

lossless image compression techniques to produce an overall losslcss image compression.

The model is tested and evaluated using the JPEG algorithm, the industry standard for

lossy image compression, and various popular lossless compression techniques. The total

compression achieved using the model is compared to the compression achieved using

standard lossless image compression techniques. Figure 11. 1 displays a block diagram of

the hybrid lossless compression model.

The model was evaluated using 8-bit (256 levels), 256x256 (65536 bytes) pixel

grey-scale images in raw pixel grey map (rpgm) format. Three different images were

used in the tests. The images were all structurely different from each other in order to

test the model over a broad range of images.

An image is first compressed using a lossy compression process. The lossy

compression technique used in the testing of the model is the Joint Photographic Expert

Group (JPEG) algorithm. After compression using JPEG, the compressed image is

further compressed (secondary compression) using a lossless compression method.

4
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Several different lossless compression algorithms are tested and evaluated. The lossy

compressci image is decompressed and compared on a pixel by pixel basis to the original

ira,. The decompressed image is termed the browse image data as it can be uscd for

browsing an image and preliminary analysis of the image. Browsing enables a user to

A: lirewsc I[mage

Imatge Co .)presshon ( "•mprysh~

W )-cmrc't 0•'•• File/

Figure 11.: Hybrid Lossless Compression Model

determine whether a lossless representation of the original image is required or if the

lossy browse image data is adequate for their needs. The difference between the original

image and the decompressed image is the error image or residual image. The residual

image is compressed with a lossless compression routine. Once again, several different

lossless compression algorithms are tested and evaluated. Lastly, the compressed browse

image file and the compressed residual image file are appended together into a single

file. Decoding consists of separating the appended file into the respective compressed

browse and residual image files and applying the appropriate decompression algorithm to

5



each. Figure 11.2 displays a block diagram of the decoding process. Both the browse and

residual image files are first decompressed using the same lossless compression routines

which were used to compress them. The resulting browse image 1ile is then

decompressed using the lossy JPEG algorithm. The residual image file is added on a

pixel by pixel basis to the decompressed browse image file to obtain the original image.

The hybrid lossless compression model combines the inherent advantages ot bo)th

lossy and lossless compression algorithms to achieve the lossless result. The high

compression achieved by the lossy JPEG algorithm combined with the error-free lossless

algorithms results in a significantly compressed image, which upon decoding, is an exact

replica of the original image.

FieDecon ressito• Deco~mpressit~n [

ULssless
Decompression

Figure 11.2: Diagram of Decoding Process

Various combinations of the lossy JPEG and lossless algorithms were evaluated

in the model and compared. The evaluation criteria used in the comparisons was the total

6
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compression ratio (CR) achieved using a particular losslcss compression algorithm in

combination with the JPEG lossy algorithm. Compression ratio is the percent

compression achieved as a result of compressing a file [2, p. 10]:

CR = (I - (Compressed Image Size / Original Image Size)) x 100. (H1. 1)

A file whose file size does not change when compressed will have a compression ratio of

0 percent. A file which is compressed to one-third of its original size will have a

compression ratio of 67 percent. Therefore, perfect compression occurs at 100 percent.

A file whose compressed file size is greater than its original file size will have a negative

compression ratio. The overall compression ratio achieved by the hybrid lossless

compression model is a combination of the compressed browse image CR and the

compressed residual image CR Application of Equation I1. 1 to browse, residual, and

overall compression ratios leads to:

CRe,.H = [CRQVc - 50] + [CRidum - 50] ([1.2)

where CRl,,m,, and CR,,.d are the compression ratios of the compressed browse and

residual images.

The overall compression ratios achieved using the model with different

combinations of lossless techniques and JPEG are compared with each other and with the

compression ratios achieved using standard lossless compression techniques.

Additionally, the benefits of breaking up the image into browse and residual images are

evaluated and compared to the standard lossless compression methods.

7



III. COMPRESSION TECHNIQUES

A. LOSSLESS AND LOSSY TECHNIQUES

Compression techniques can be divided into lossless and lossy methods. A

lossless method always produces a decompressed image that is identical, pixel-for-pixel,

to the original image. On the other hand, lossy methods produce a decompressed image

that is not identical to the original image. The degree of difference between the lossy

decompressed image and the original image depends upon the compression ratio dcsired.

The higher the compression ratio, the greater the difference between the decompressed

image and the original image. Lossless compression methods typically attain small

compression ratios of about 50% or less while lossy methods can achieve much higher

compression ratios.

B. HUFFMAN CODING

Huffman coding is a lossless compression method that assigns variable-lcngth

codes to symbols based on the probability of each symbol's occurrence in a file. It is

based on the premise that if the probability of symbols in a file are known, and the

probability distribution is a non-uniform distribution, variable-length codes can be

assigned to each symbol which will result in compression of the file. When using this

type of coding, a symbol that has a very high probability of occurrence generates a code

with very few bits. A symbol with a low probability generates a code with a larger

number of bits. Generating codes that -vary in length according to the probability of the

symbol they are encoding makes data compression possible. Each variable-length code

8



can be uniquely decoded. Huffman coding achieves the minimum amount of redundancy

possible in a fixed set of variable-length codes; however, this doesn't mean that Huffman

coding is an optimal coding method. It means that it provides the best approximation for

coding symbols when using fixed-length codes [2, p. 18].

A binary tree is constructed from the individual symbols in a file. Each symbol is

a child node in the tree. A weight is assigned to each child node. The assigned weight is

either the frequency or the probability of the symbol occurring in the file. Therefore,

symbols with a low probability of occurrence have lower weights assigned. The binary

tree is built by combining the two lowest weight child nodes, creating a parent node, and

assigning a weight to the parent node. The parent node's assigned weight is the sum of

the two child node weights. A bit value of I is assigned to the path taken from the parent

node to the child node with the lowest weight. The path from the parent node to the

other child node is assigned a bit value of 0. The process is repeated until only one node

is left. This node is designated the root of the binary tree. The variable-length codes are

generated by traversing the binary tree from the child node which represents the symbol

of interest to the root. The bits in the generated code are arranged in the order from root

to child node. Table 111.1 contains a list of five different symbols and their frequency of

occurrence in a file. The table also contains the unique variable-length Huffman codes

assigned to each symbol. Figure II. 1 displays the Huffman binary tree for the file in

Table III.1. Huffman codes have the unique prefix attribute, meaning that no code is a

prefix to another code. As a result, the codes can be correctly decoded despite being

variable length. Using Figure 111.l, the Huffman code for 'MAZES' would be

9



1101001110101 or 13 bits long. If each letter in 'MAZES' requires eight bits to represent

it. then a total of 40 bits would be required. In this case. Huffman coding produces a

compression ratio of 67.5%.

SYMBOL FREQUENCY CODE

A 8 100

E 15 0

M 4 110

S 5 101

Z I III

Table 11.1: Huffman Coding Example

ROOT

0 11

0 1 1

1 '3 I 1
15 8 5 4 1

E A S M Z

Figure 11.1: The Huffman Binary Tree.

Huffman coding uses an integral number of bits for each code, which is usually

slightly less than optimal. Additionally, the compression program has to pass a complete

copy of the Huffman coding statistics with the compressed data. This effectively reduces

10
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the amount of compression achieved. Huffman coding is not an optimal coding method,

but it is the best approximation that uses fixed codes with an integral number of bits.

C. ARITHMETIC CODING

Arithmetic coding is a lossless compression method that produces a single output

code for an entire message. Unlike Huffman coding, it does not produce a single code

for each symbol. Instead, arithmetic coding encodes a stream of input symbols with a

single floating-point output number in the range from 0 to 1. Each symbol added to the

message incrementally modifies the output code. As in Huffman coding, each svmbal's

probability of occurrence in the file is first determined. Next, each symbol is assigned a

range, corresponding to its probability of occurrence, in the interval from 0 to i. Table

111.2 contains a file with five different symbols, their probability of occurrence, and the

range they occupy in the 0 to I interval. If the first symbol in the file is 'M', then the

encoded floating-point output number will be a number between 0.60 and 0.70. Each

new symbol to be encoded further restricts the range of the output number. If the next

symbol to be encoded is 'A', then the encoded output number will be a number between

0.60 and 0.62 since 'A' is assigned the range 0.00 to 0.20 in the 0.60 to 0.70 subrange

established by the symbol 'M'. The higher the probability of a symbol, the less it will

reduce the range and, therefore, add fewer bits to the code. The net effect of each input

symbol on the output code can be a fractional number of bits instead of an integral

number since Arithmetic coding uses a fractional number of bits per code allowing it to

incrementally improve compression performance. Table 111.3 contains an example of the

II



Arithmetic encoding process resulting in the final low value, 0.61896, which will

uniquely encode the message 'MAZES'. The symbol probabilities are taken from Table

111.2. The number of bits required to represent the number 0.61896 can be determined

from:

x
0.61896-= A, (111.1)

2'

where Ai is the ith bit of the binary representation of 0.61896, i is the index of the nth

bit, and x is the minimum number of iterations necessary to repescnt the number in

binary. Selecting x to be a value of 20 ensures that the left side of Equation Il1. 1 will

have sufficient resolution in order to represent 0.61896. Therefore, 0.61896 can be

represented in as few as 20 bits compared to the 40 bits required to represent the message

'MAZES' using eight bits per character. This results in a CR of 50%. A simple

algorithm can be applied to Equation IIl.1 in order to produce the sequence A1, A,, .. A,,.

Simply multiply the left side of Equation 111.1 by 2 repeatedly until an integer is

produced as a leading digit. Then subtract one and continue. For each I produced record

a one, otherwise record a zero [12, p. 9].

SYMBOL PROBABILITY RANGE

A 2/10 0.00•< R < 0.20

E 4/10 0.20:< R < 0.60

M 1/10 0.60:< R < 0.70

S 2/10 0.70•5 R < 0.90

Z 1/10 0.90•5 R < 1.00

Table 1.2: Arithmetic Coding Symbol Range

12



Symbol Low Value High Value

0.0 1.0

M 0.6 0.7

A 0.60 0.62

Z 0.618 0.620

E 0.6184 0.6192

S 0.61896 0.61912

Table m.3: Arithmetic Encoding Example.

Decoding consists of determining which symbol falls within the range of the

encoded message. In the example in Table [11.3, the encoded message falls in the

interval between 0.6 and 0.7. Therefore, the first character in the message must be 'M'.

The next character is decoded by subtracting the low value of 'M' from the encoded

value, dividing by the width of the range of 'M' (0.1), and determining which character

falls within the new interval. Table 1.4 contains an example of the decoding process.

Encoded Output Symbol Low High Range
Number

0.61896 M 0.6 0.7 0.1

0.1896 A 0,f 0.2 0.2

0.948 Z 0.9 1.0 0.1

0.48 E 0.2 0.6 0.4

0.7 S 0.7 0.9 0.2

0.0 1 1 1 _1

Table 111.4: Arithmetic Decoding Example.
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D. LIMPEL-ZIV (LZ) COMPRESSION

LZ compression is a lossless compression method based on the work of Jacob Ziv

and Abraham Lempel in 1977-1978 [2, p. 23]. It is a dictionary-based method using an

adaptive dictionary to achieve compression. LZ compression is based on strings of

symbols instead of individual symbols thereby exploiting the interdependency between

symbols in a string. A table of strings is created from the input data and placed into a

string dictionary. As each new string is input from the input data, the string dictionary is

searched for a string match. If a match is found, a code is output which represents the

string in the dictionary.

Ziv and Lempel's work resulted in two LZ compression methods, LZ77 and

LZ78. LZ77 uses a sliding-window approach in constructing its dictionary. The

dictionary consists of all the strings in a window of the input data stream. For example,

if a 4K byte window is used as the dictionary, the LZ77 algorithm looks for matches with

strings found in the previous 4K bytes of data already read in. As new symbols of the

input data stream are read in, the 4K byte window slides so that the last 4K bytes of input

data is in the window, hence the term sliding-window. All string matches are encoded as

pointers to the string in the dictionary. The amount of compression depends on how long

the dictionary strings are and how large the sliding-window is. Figure [11.2 shows a

simple flowchart of the LZ77 compression process.

LZ78 differs from LZ77 in the way that it builds and maintains its dictionary.

Instead of having a limited-size window of the preceding input data, LZ78 builds its

dictionary out of all of the previously input symbols in the input data stream. The

14



dictionary of strings is built a single symbol at a tine. The first symbol input from the

input data stream is stored in the dictionary and becomes the current prefix. Each

subsequent symbol from the input is added to the current prefix before a search for a

match is made in the string dictionary. If a string match is found, a pointer code is

output which represents an offset into the string dictionary. If no match is fbund. the

stirng is added to the dictionary. Once a string is added to the dictionary, it is available

to the encoder at all times, not just for the next few thousand characters as in LZ77. This

incremental procedure works very well at isolating frequently used strings and adding

them to the dictionary. Consequently, strings in LZ78 can be very long, resulting in high

compression ratios.

Another variation of LZ compression is the LZW compression method,

devcloped by Terry Welch in 1984 [2, p. 285]. LZW is an extension of LZ78. LZW

differs from LZ78 in the way that it initially builds the dictionary. The dictionary is

initialized with single-symbol strings equal to the number of ASCII characters. In other

words, the first 256 entries in the dictionary are intialized with the byte values 0 to 255.

Thus, there is no symbol that cannot be immediately encoded even if it has not already

appeared in the input data stream. LZW uses a current prefix buffer and a current string

buffer like the LZ78 algorithm. The current string is defined as the current prefix plus

the next symbol input from the input data. A match is found for the first symbol. A

code is output, and the new string is added to the string table. The current string is added

to the current prefix. This process continues until the input data stream ends.

15



Be-gin Initialize String
lTable

(let Next String

Table. Output to• Output Strewn]
C'odeEnd of Input

Stream'?

Figure 111.2: Flowchart of LZ77 Compression Process.

E. RUN LENGTH ENCODING

Run length encoding (RLE) is arguably the least complex and easiest to

implement lossless compression method. RLE capitalizes on the successive repetition of

characters in a binary bit stream or image. It is effective only in applications involving

many repeated characters. Instead of repeating each character, run length encoding uses

a code which specifies how many consecutive characters are in the particular run. In the

case of images, many consecutive grey-scale pixels having the same value are an

example in which run length encoding would produce some degree of compression. Run

length encoding may actually expand a file if the average length of consecutive

characters is less than the code used to specify them. Run length encoding can be

16
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performed at the byte or the bit level depending on the application. It is used most often

as a preprocessor for other compression algorithms [6, p. 37].

F. BIT PLANE ENCODING

Bit plane encoding is the process of grouping single bits from the same position

in a binary representation together to form a binary array. For example, an image

containing N x N pixels, each pixei represented by k bits, can be broken up into k

different N x N bit planes. The most significant bit (MSB) of each pixel binary

representation is grouped together with the MSB of the remaining pixels to form a bit

plane. Repeating this process for the other k-I bits in each pixel results in k bit planes.

Hence, the original image is now represented by k, N x N bit planes. The advantages of

bit plane encoding are twofold. First, each individual bit plane can be encoded

efficiently using a lossless compression routine. Secondly, bit plane encoding permits a

technique called progressive transmission to be implemented. In progressive

transmission, bit planes are transmitted in a sequence starting with the MSB bit plane and

ending with the LSB bit plane. The transmitted bit planes are progressively

reconstructed at the terminal end. The user may view an image as it is being

reconstructed and elect to terminate the transmission or proceed depending on the level

of quality desired [1, p. 194].

The most significant bit planes tend to contain a lot of redundancy and are highly

compressible. The least significant bit planes contain less redundancy and exhibit the

17



behavior of random noise. As a result, the least significant bit planes are less

compressible than the more significant bit planes [1, p. 54].

Bit planes may be combined together into subsets [5, p. 35]. Elach subset may

then be compressed with a lossless compression method. Grouping the bit planes into

subsets may achieve higher compression ratios than performing lossless compression on

each individual bit plane. The distributions of each bit plane or subset with respect to bit

values of one and zero determines which optimum lossless compression technique to

utilize for compression.

G. PREDICTIVE ENCODING

Predictive encoding may be either a lossless or a lossy compression method. The

lossless predictive encoding method is discussed here. Images are typically highly

correlated from pixel to pixel, especially between adjacent pixels. This correlation

between pixel values can be exploited to achieve compression of the image by using

predictive encoding. Predictive encoding predicts the value of a given pixel based on the

values of the pixels surrounding it. Numerous combinations of pixels exist. After

predicting the value of the pixel, the predicted pixel value is subtracted from the actual

pixel value to form an error value. This process is continued for all of the pixels in the

image. The resulting error image will have a significantly different distribution or

histogram than the original image. If the predictor accurately predicts the pixel values,

the error will be small and the error image histogram will be narrow and Laplacian in

nature [1, p. 62]. The error is encoded using a lossless compression method such as
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Huffman or Arithnmtic. The better the predictor is at predicting the pixel values, the

smaller the resulting error. The smaller error can be encoded more efficiently. resulting

in better overall compression of the image. The order of the predictor is determined by

the number of surrounding pixel values used to make the prediction. Generally, a higher

order predictor will outperform a lower order one [1, pp. 58-60).

H. JPEG

JPEG is a compression standard created by the Joint Photographic Experts Group

(JPEG). The JPEG compression standard has not yet been finalized but is currently in

the final stages of the standardizations process. The JPEG standard includes a

specification for both lossy and losslcss compression of images. The Discrete Cosine

Transform (DCT) algorithm with quantization is used for lossy compression and a

predictive method is used for losslcss compression. The JPEG encoder consists of three

stages: a transformation stage, a lossy quantization stage, and a lossless coding stage.

The advantages of the DCT over the Discrete Fourier Transform (DFT) lie in the

differences in their periodicities [1, pp. 108-111). The DCT transformation stage

converts the image to the frequency domain and concentrates the information energy into

the first few transform coefficients, the quantization stage causes a controlled loss of

information, and the lossicss stage further compresses the image data. Figure [11.3

displays a block diagram of the JPEG encoder. The DCT equation for an NxN pixel

block is:

M-1*M-1 (2m+l)ix- Co [(2n + Qjrl
X(ij)=L-C(i)CO)o I x(m,n)cos[( l2NJcos --- (111.2)
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where: C(t), CO) = - for i,j = 0, else C(i), CO) 1.

Decoding consists of reversing the process and using the Inverse Discrete Cosine

Transform (IDCT) in place of the DCT. The IDCT equation is:

(mn) v C(i)C(j)X(ij)cos Cos - (11.3)xon =0 J ,0 Ic2N 2N

The image is a three dimensional signal (graphical image) where the x and v axes

are the two dimensions of the screen, and the z axis is the amplitude or value of a pixel.

This is the spatial representation of a signal. The two dimensional DCT is obtained by

performing a one dimensional DCT on the columns followed by a one dimensional DCT

on the rows (2, pp. 356-357].

Wx Pixel DCT Ounir Lossiess Copese
Blocks Transformation Euantizcr EImode

Figure m.3: Block Diagram of the JPEG Encoder.
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The original image is first partitioned into 8x8 pixel blocks. Each block is

independently transformed using the DCT. Each 8x8 pixel block has video energy

distributed amongst its pixel elements. This video energy may be of low spatial

frequency (slowly varying) or of high spatial frequency (quickly varying) [9, p. 5]. The

DCT converts the spatial information into frequency or spectral information, with the x

and y axes representing frequencies of the signal in two different dimensions. The

transformed output of the 2-D DCT is an 8x8 array of 63 AC coefficients and I DC

coefficient. The DC coefficient is the mean value of the array and is located in the upper

left comer. The AC coefficients are ordered such that the lower frequency coefficients

are located near the DC coefficient with the higher frequency coefficients located away

from the DC coefficient. The DC coefficient always has the highest value of all the

coefficients. Most images are composed of low frequency information. This suggests

that the DC and lower frequency coefficients carry more useful information about the

image than the higher frequency coefficients. As a result, the ordering of the coefficients

in the array is significant. As we move farther away from the DC coefficient in the

array, we find that the coefficients have lower values and become far less important for

describing the image [2, p. 359]. An example of the effects of DCT processing on an

8x8 pixel block is shown in Figure III.4.

The quantization stage of the JPEG encoder quantizes the coefficients of the DCT

transform array to reduce their magnitude and to increase the number of zero value

coefficients. Quantization is the lossy stage in the JPEG encoder. The degree of

quantization is controlled by a variable called the quality factor. The quality factor is a
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number which changes the default quantization matrix by an effective multiplicative

factor of the quality factor. Each of the DCT coefficients is divided by the corresponding

quantizing value in the quantization matrix and rounded to the nearest integer. The

greater the number of high frequency (lower information content) AC coefficients

converted into zeros, the greater the compression achieved by the subsequent lossless

encoding stage. Consequently, a higher quality factor results in better compression while

a lower quality factor results in a better quality image upon decompression. A sample

quantization matrix is shown in Figure [11.5. Figure I[1.6 displays a sample DCT

transformed image before and after quantization.

Prior to the final lossless encoding stage, the quantized DCT coefficients arc

arranged in a zig-zag pattern (see Figure 111.7) with the lowest frequencies first and the

highest frequencies last. The numbers 1-64 in Figure 111.7 represent the sequence that

the pixels are placed in the output sequential bit stream. This type of pattern is used to

increase the number of consecutive zero coefficients in the 8x8 block. This allows for

further compression using a lossless method such as run length encoding, Huffman or

Arithmetic [8, p. xxiii].

The lossless encoder encodes the 8x8 pixel block DC coefficients using

Differential Pulse Code Modulation (DPCM). DPCM encodes the difference between

the quantized DC coefficient of the current block and the quantized DC coefficient of the

previous block. The AC coefficients are coded using a combination of run length

encoding and Huffran.
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Input Pixel Values:

140 144 147 140 140 155 179 175

144 152 140 147 140 148 167 179

152 155 136 167 163 162 152 172

168 145 156 160 152 155 136 160

162 148 156 148 140 136 147 162

147 167 140 155 155 140 136 162

136 156 123 167 162 144 140 147

148 155 136 155 152 147 147 136

Output Pixel Values:

186 -18 15 -9 23 -9 -14 19

21 -34 26 -9 -11 11 14 7
-1l0 -24 -2 6 -18 3 -20 -1l

-8 -5 14 -15 -8 -3 -3 8

-3 10 8 1 -11 18 18 15

4 -2 -18 8 8 -4 1 -7

9 1 -3 4 -1 -7 -1 -2

0 -8 -2 2 1 4 -6 0

Figure 11.4: Sample Image Data before and after DCT
Processing (2, p. 363].
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3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

Figure [e.5: Sample Quantization Matrix [2, p. 367]

The JPEG compression standard also contains a lossless compression

specification based on predictive encoding and Huffman. This lossless mode of

operation is wholly independent of the DCT processing previously discussed. The

lossless JPEG predictive encoder has seven different predictors to choose from. The

seven different predictor models combine the values of up to three neighboring pixels (A,

B, and C) to predict the current pixel value (X) in Figure 111.8. This prediction is then

subtracted from the actual pixel value, and the difference is encoded losslessly using

Huffman. Any one of the seven predictors (K = I - 7) listed in Table 111.5 can be used.

The K = 1, 2, and 3 predictors are one dimensional predictors while the K = 4. 5, 6, and 7

predictors are two dimensional predictors.
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DCT Matni before Quatzation:

92 3 -9 -7 3 - 1 0 2

-39 -58 12 17 -2 2 4 2

-84 62 1 -18 3 4 -5 5

-52 -36 -10 14 -10 4 -2 0
-86 -40 49 -7 17 -6 -2 5

-62 65 -12 -2 3 -8 -2 0

-17 14 -36 17 -11 3 3 -!

-54 32 -9 -9 22 0 1 3

DCT Matrix after Quantization:

90 0 -7 0 0 0 0 0

-35 -56 9 11 0 0 0 0

-84 54 0 -13 0 0 0 0

-45 -33 0 0 0 0 0 0
-77 -39 45 0 0 0 0 0

-52 60 0 0 0 0 0 0

-15 0 -19 0 0 0 0 0

-51 19 0 0 0 0 0 0

Figure m.6: DCT Transformed Image before and after
Quantization [2, p. 368].
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1 2 6 7 15 16 28 29

3 5 8 14 17 27 30 43

4 9 13 18 26 31 42 44

10 12 19 25 32 41 45 54

I1 20 24 33 40 46 53 55

21 23 34 39 47 52 56 61

22 35 38 48 51 57 60 62

36 37 49 50 58 59 63 64

Figure m.7: Zig-zag Pattern.

C B

A X

Figure 11.8: Sample Prediction
Pixel Neighbors.

Selection Value (K) Predictor

I A

2 B

3 C

4 A+B-C

5 A+((B-C)/2)

6 B+((A- C)/2)

7 (A + B) / 2

Table m1.5: Lossless JPEG Predictors.
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IV COMPARISON OF COMPRESSION METHODS

A. OVERVIEW

A comparison of the compression ratios achieved by direct compression of three

test images using the standard lossless compression methods is performed. A comparison

of compression ratios is also performed when the standard lossless compression methods

are tested in the hybrid lossless compression model. Additionally, the hybrid model

compression results are compared to the direct compressions achieved by the standard

Jossless methods.

B. TEST IMAGES

Three different 8-bit, 256x256 (65536 bytes) pixel grey-scale images in raw pixel

grey map format were used to evaluate the hybrid lossless compression model. The three

test images are displayed in Figure IV.I. The first image, LENA, is an image whose

pixel values range over most of the 256 possible grey-scale levels. The image contains

sharp contrasts and edges. The second image, SHUTTLE, has a range of pixel values

that is less than that of LENA. A small range of pixel values dominate the image. The

image contains large areas where the pixel values do not change significantly, such as the

plume from the rocket motors and the sky background. The third image,

FINGERPRINT, is dominated by a more narrow range of pixel values. The image

contains large areas of whitespace. Pixel values that are contained in an image and their

frequency of occurence are plotted in a histogram. Histograms of each of the three test

images is displayed in Figure IV.2. As expected, LENA contains a wide range of pixel
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Figure IVA: Three Test Images (a) LENA, (b) SHUTTLE,
(c) FINGERPRINT.
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Figure IV.2: Histograms of the Three Test Images (a) LENA, (b) SHUTTgLE.

(c) FINGERPRINT.
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values; SHUTTLE is dominated by a smaller range of pixel values; and FINGERPRINT

contains a very narrow range of dominant pixel values.

C. LOSSY JPEG

The lossy JPEG algorithm used in the model was developed by Andy C. I lung at

the Portable Video Research Group (PVRG), Stanford University [9]. The quality factor

used when compressing an image determines the amount of compression achieved and

the resolution of the image when it is decompressed. The higher the quality factor, the

greater the compression and the less the resolution upon decompression. Figure IV.3

graphically displays the quality factor versus compression ratio achieved for the three test

images. The graph data is tabulated in Table A. I in Appendix A. The measure of the

resolution of the decompressed image as compared to the original image is termed the

root mean square error (e.) and is a measure of the error between the two images [3, pp.

256-257]:

,, 1 jg(xy) - f(xY)2].

where, for NxN pixel images, f(x,y) is the array of pixel values for the original image

while g(xy) is the array of pixel values for the decompressed image. Figure IV.4

graphically displays a plot of quality factor versus e. for each of the three test images.

The graph data is tabulated in Table A.2 in Appendix A. As the quality factor is

increased, the em of the decompressed image decreases as expected. The decompressed
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OLaity Factor vs CR for Three Test Images
CR
120

100- -

80.

60

40
20 . . .

5 10 15 20 25 30 40 50 75 100250350500800
Quality Factor

Lena Shuttle Fingerprint

Figure IV.3: Comparison of Quality Factor vs CR for the Three Test
Images.

Quality Factor vs RMS Error for Three Test Images
RMS Error

0.2

0.15

0.1

0.05

0
1 5 10 15202530 40 50 75 100250350500800

Quality Factor

Lena Shuttle Fingerprint

Figure IV.4: Comparison of Quality Factor vs e, for the Three
Test Images.
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test image LENA is displayed in Figure IV.5 after compression at various quality factors.

Note that as the quality factor increases, the resolution of the decompressed image

decreases. At quality factors greater than 100, the decompressed image begins to exhibit

distinct blockiness due to the processing of 8x8 pixel blocks by the JPEG algorithm.

D. SECONDARY COMPRESSION

The hybrid lossless compression model was first evaluated by assessing if it is

feasible, in terms of compression overhead, to use secondary compression to achieve a

lossless process. In order for secondary compression to be feasible, it would have to

contribute some measureable increase in the compression achieved after compressing an

image using lossy JPEG. The lossless compression methods used for secondary

compression are Huffman, Arithmetic, and LZW and the code is taken from Nelson [2].

Table IV. 1 contains the results of secondary compression on the three test images first

compressed using lossy JPEG at different quality factors. The results are expressed as

the percent compression ratio (CR) achieved. The results show that secondary

compression does not significantly increase the compression of the three test images

used. In fact, in all but a few cases, secondary compression of the lossy JPEG

compressed image resulted in an expansion (i.e., negative CR) of the compressed image

file size instead of compression. Since secondary compression does not provide a

significant reduction in the compressed image file size, the hybrid lossless compression

model was modified accordingly. The modified hybrid lossless compression model is

displayed in Figure IV.6.
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Figure IV.S: D=mpased LENA at Vanous Quaity Factors (a)Original
Image, (b) Q--100, (c) Q=-250, (d) Q=-350, (e) Q--500,
(M Q=---s.
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LENA SHUTTLE FINGERPRINT

Q=5 Q=50 Q=500 Q=5 Q=50 Q=500 1 Q-5 1Q=50 Q=500
Huffman 0 -3 -4 -1 -5 -1 7 0 -2 --77Anthmetic 0 -2 -4 1_0 -4 -17 0 -1 -6

LZW -11 1_-!i -|_ -Il -11 1 -i1 } -10 -8

Table IV.i: Secondary Compression CR Results for the Three Test Images.

Original [ASSy B: Residual Image
Image C ompression

B Lossless
Compression

Figure IV.6: Modified Hybrid Lossless Compression Model.

E. COMPARISON OF LOSSLESS COMPRESSION METHODS

The three test images were first compressed using standard lossless compression

methods in order to provide a reference to compare the compression results achieved by

the hybrid lossless compression model. Huffman, Arithmetic, LZW, and lossless JPEG

were the lossless compression methods used. Once again, the Huffman, Arithmetic, and

LZW algorithms are taken from Nelson [2]. The lossless J-PEG algorithm is taken from

Andy C. Hung's PVRC-JPEG algorithm [9]. The direct lossless compression results

achieved are graphically displayed in Figure IV.7. All seven of the lossless JPEG

predictor algorithms were used in the compression test, but only the predictor algorithm
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which achieved the best results is graphed in Figure IV.7. For all three test images,

lossless JPEG achieved greater compression than the other three lossless compression

methods used. Nonetheless, the lossless JPEG does not provide the convenience of a

browse and residual decomposition.

The hybrid lossiess compression model (Figure IV.6) was first evaluated using

standard lossless compression techniques. Another lossless method, Diagonal coding,

recently reported in the literature, will be discussed in the context of the hybrid modcl in

Chapter V. Huffman, Arithmetic, LZW, and lossless JPEG were used to compress the

residual image ((B) shown in Figure IV.6). The results achieved after compressing the

three test images using the hybrid lossless compression model with Huffman, Arithmetic,

LZW, and the lossless JPEG methods are graphically displayed in Figures IV.8, [V.9,

and IV. 10 respectively. The test images were compressed at various quality factors. The

lossless JPEG predictor algorithm that achieved the greatest compression of each residual

image is graphed. The second and third order predictor algorithms (K=4, 5, 6, 7)

predominantly achieved the greatest CR on the residual images and are 4Hidentified in

Table A.3 in Appendix A for each image.

A comparison between the compression results achieved by the direct lossless

compression methods and the hybrid lossless compression model is graphically displayed

in Figures IV.l 1, IV. 12, and IV.13 for each of the three test images at various quality

factors. For ease of reading, it should be noted that the right-most 3-D bar in each

column represents the compression achieved compressing the image with that particular

direct lossless compression method (not using the hybrid lossless compression model).
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F. CONCLUSIONS

The lossless JPEG algorithm achieves the greatest compression on each of the

three test images when compared to the other three direct lossless compression methods.

The lossless JPEG predictor algorithm which achieved the greatest compression was

K=2, K=6, and K=5 for the test images LENA, SHUTTLE, and FINGERPRINT,

respectively, and achieved compression ratios of 34%, 49%, and 27% (see Figure IV.7).

The highest compression ratio achieved by the other three direct lossless compression

methods for each of the three images was 8%, 18%. and 13% (see Figure IV.7).

The hybrid lossless compression model achieved its best compression results on

the test image LENA when the arithmetic method was used to compress the residual

image. The best overall compression was achieved using a quality factor of 100 to

compress the original image with lossy JPEG. A hybrid compression ratio of 31% was

achieved compared to direct Huffman (7%), Arithmetic (7%), LZW (-3%), and lossless

JPEG (34%) (see Figure IV.8).

The hybrid model achieved its greatest compression on SHUTTLE when using a

quality factor of 50 to compress the original image using lossy JPEG and the arithmetic

method to compress the residual image. A hybrid compression ratio of 48% was

achieved using this combination compared to direct Huffman (16%), Arithmetic (16%),

LZW (18%), and lossless JPEG (49%) (see Figure IV.9).

The greatest compression was achieved on FINGERPRINT when using a quality

factor of 50 in combination with the arithmetic method. A hybrid compression ratio of

36



31% was achieved compared to direct Huffman (13%), Arithmetic (13%), LZW (13%),

and lossless JPEG (27%) (see Figure IV. 10).

In all cases, the hybrid lossless compression model achieved greater compression

ratios on all three test images than did the direct lossless compression methods with the

exception of the direct lossless JPEG method. Due to the wide diversity of images

compressed using the hybrid model, these results suggest that the hybrid model will

achieve similar favorable compression results on any grey-scale image. The hybrid

model achieved a lesser CR on LENA and SHUTTLE than did direct lossless JPEG:

however, the model did achieve a greater CR than direct lossless JPEG on

FINGERPRINT at quality factors of 50 and 100 (see Figure IV.10). The hybrid model

enjoys the advantage of producing a compressed browse image which is significantly

more compressed than the direct lossless JPEG compressed image. For instance, using a

quality factor of 100 to compress LENA produces a lossy compressed browse image with

a file size of 4823 bytes (compression ratio of 92%). The best lossless JPEG predictor

algorithm produces a direct lossless compressed file size of 43322 bytes (compression

ratio of 34%). Decompressing the lossy compressed LENA browse image produces an

image that is visually lossless with no visual distortions (see Figure IV.5 (b)). If a

lossless image is desired then the residual image of 40353 bytes can be transmitted and

added to the browse image to produce an exact replica of the original image.

In the next chapter, a recently discovered lossless method known as Diagonal

coding [7] is discussed and tested. Comparison to the results of this chapter will be

made.
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Direct Lossless Compression of Three Test Images
CR
60
50
40
30-
20
10
0

-10
Huffman Arithmetic LZW JPEG

Lossiess Compression Methods

U LENA 0 SHUTTLE 0 FINGERPRINT

Figure IV.7: Comparison of Direct Lossless Compression on the
Three Test Images.

Hybrid Lossless Compression of LENA
CR

40

30

20

10

0

-10
Huffman Arthmetic LZW JPEG

Lossless Compression Methods

0 0=5 0- Q=50 01 0=100 WE 0=500

Figure IV.8: CR Achieved Using the Hybrid Lossless Compression
Model on LENA at Various Quality Factors.
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Hybrtd Lossless Conpresslon of SHUTTLE
CR

60

50

40

30
20

10

Huffman Arithmetic LZW JPEG
Lossless Compression Methods

EQ=05 0 0-50 r 0-1 0070:Q7-500]

Figure IV.9: CR Achieved Using the Hybrid Lossless Compression
Model on SHUTTLE at Various Quality Factors.

Hybrid Lossless Compression of FINGERPRINT
CR
35
30
25

20-
15
10

5

Huffman Arithmetic LZW JPEG
Lossiess Compression Methods

S0Q=5 0 0-50 00 O-1 00 I 0-500

Figure EV.10: CR Achieved Using the Hybrid Lossless Compression
Model on FINGERPRINT at Various Quality Factors.
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Comparison of Lossless Compression Methods
(LENA)

CR
40

30

20

10

0

-10
Huffman Arithmetic LZW JPEG

Lossiess Compression Methods

C65 Q= 5-oZo 0 0=1o00 M 0.500

Figure IV.i 1: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
LENA at Various Quality Factors.

Comparison of Lossless Compression Methods
(SHUTTLE)

CR

60
50
40
30
20
10
0

Huffman Arithmetic LZW JPEG
Lossless Comprussion Methods

El~ 0 D ]Q-5oE] m100o 0.500

Figure IV.12: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
SHUTTLE at Various Quality Factors.
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Comparison of Losuless Compession Methods
(FINGERPRINT)

CR
35
30
25
20
15
10
5
0 f

Huffman Arithmetic LZW JPEG
Lossess Compression Methods

0-5W 050 []0-100 E 0-500 Direct

Figure IV.13: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
FINGERPRINT at Various Quality Factors.
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V. DIAGONAL CODING

A. INTRODUCTION

Another lossless compression method is Diagonal coding. Although not a

standard compression method, it is nonetheless a simple, easy to implement compression

method which achieves good compression ratios when used to compress residual images

resulting from the compression of the original image at low quality factors. The

compression ratios achieved by Diagonal coding are compared to those attained by the

other standard lossless compression methods.

B. RESIDUAL IMAGE HISTOGRAM

The residual image resulting from the pixel by pixel differences in the original

image and the decompressed image exhibits a Laplacian distribution with a mean of zero.

The residual image distribution, or histogram, has a reduced variance compared to the

original image and is also significantly less correlated [1, p. 60]. The shape of the

residual image histogram is dependent upon the quality factor used to compress the

original image using lossy JPEG. As previously discussed in Chapter IV, the higher the

quality factor used, the more compression achieved; however, the decompressed image

will less resemble the original image. This results in a residual image containing a wider

range of pixel values. As a result, the residual image histogram will exhibit a wider

Laplacian distribution. Lossless compression routines which are designed to take

advantage of this type of image distribution will achieve significant compression results.

Figure V. 1 displays residual image histograms of LENA for various quality factors. Note

42



S• • , • •r¸•i• • ' -•: .• ••>
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Hlosgram of LENA Remu Image 10-50)
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(b)

Histogram of LENA Residual Image (0-500)
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(c)

Figure V.1: Residual Image Histograms oLN LENA (a) Q=5, (b) Q=50, (c) Q=500.
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that as the quality factor used to compress the original image of LENA is increased, the

distribution of the corresponding residual image widens.

C. DIAGONAL CODING

Due to the residual image exhibiting a Laplacian distribution with a smaller

variance of pixel values than the original image, a lossless compression method that

employs variable length encoding should achieve significant compression of the data (7,

pp. 9-10]. Diagonal coding is a type of variable length encoding designed to take

advantage of the Laplacian distribution of the residual image. In Diagonal coding, each

pixel value is represented by the number of zeros corresponding to that value, terminated

by a one. Since higher pixel values in the residual image data occur less frequently than

lower pixel values, the coding is optimal (7, p. 10]. As with other lossless compression

methods, there are variations to Diagonal coding. One variation is to group residual

image data values together into sets and assign a diagonal code to each set. For example,

a set may consist of the four values -1, 0, 1, and 2. This set may be called set 0 and

assigned the diagonal code of 1. An example of Diagonal coding using sets is displayed

in Table V.1. During encoding, the diagonal code representing each set is followed by

two bits used to identify which value in the set is being encoded. For example, the

combination of two bits of 00, 01, 10, and 11 is used to identify the residual image data

values of -1, 0, 1, or 2 in set 0. Using Table V. I as a reference, encoding the residual

image data values of-I, 3, -4, and 8 would result in the code of 100011000101000111.

Note that the length of a bit sequence associated with a particular residual data value (one
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byte) will depend on its location in Table V.1. The C high-level language reads and

writes bytes at a time. For efficient compacting of the coded bit stream, a special C

source code program was written that operates at the bit level. Operating at the byte

level would destroy any advantages of this coding method. The source code for the

Diagonal coding (encoding and decoding) used in the thesis was written by the author

and is enclosed as Appendix B. A flowchart of the source code for encoding and

decoding is shown in Figures V.2 and V.3 respectively.

Set Range Diagonal Code
0 (-1,0,1,2) 1

1 (-3,-2,3,4) 01

2 (-5,-4,5,6) 001
3 (-7,-6,7,8) 0001

4 (-9,-8,9,10) 00001

5 (-11,-10,11,12) 000001

6 (-13,-12,13,14) 0000001

7 (-15,-14,15,16) 00000001

8 (-17,-16,17,18) 000000001

9 (-19,-18,19,20) 0000000001

Table V.I: Diagonal Coding Example.

Diagonal coding was first used in a direct compression role to compress the three

test images. A comparison of diagonal coding with the other four lossless compression

methods was performed. The results are graphically displayed in Figure V.4. The graph

data is tabulated in Table A.4 in Appendix A. Figure V.4 is the same as Figure [V.7 in
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Figure V.2: Flowchart for Diagonal Encoding.

•~Read Compress
Begin Residual Imaggei

Incrment Get Bit from File

Bit an '

I ?Resdu-

Got Next Two Output Rsda
Bits (D Code) Image PxlValut

SIII III

Figure V-3: Flowchart for Diagonal Decoding.
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Chapter [V with the addition of the, Diagonal coding results. Diagonal coding produced

an expansion in the image file size after compression for all three of the test images. It is

clearly not a viable lossless compression method for images which do not exhibit a

narrow Laplacian distribution (histogram) with a mean of zero.

Next, Diagonal coding was used in the hybrid lossless compression model to

compress the residual image. Each of the three test images were used and were

compressed at various quality factors. A comparison of Diagonal coding with the other

four lossless compression methods was performed. The results are graphically displayed

in Figures V.5, V.6, and V.7. It is observed that at low quality factors (i.e., low e,,,) the

standard entropy based methods, Huffman and Arithmetic, are very competitive in the

hybrid model. At high quality factors (i.e., high e.), the lossless JPEG tends to be the

most competitive. It is noted that Diagonal coding is very inefficient at a quality factor

of 500. The graph data is tabulated in Tables A.5, A.6, and A.7 in Appendix A. These

three figures are the same as Figures IV.8, IV.9, and IV. O in Chapter IV with the

addition of the Diagonal coding results.

A comparison between the compression results achieved using direct lossless

compression and the hybrid lossless compression model using Huffman, Arithmetic,

LZW, lossless JPEG, and Diagonal coding to compress the residual image is graphically

displayed in Figures V.8, V.9, and V.10. It is observed that, with the exception of

lossless JPEG, generally one or more of the hybrid compression schemes will achieve a

higher CR than its direct counterpart (see the fifth column for each method in Figures
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V.8, V.9, and V. 10). In the lossless JPEG case, the hybrid methods are fairly

competitive to the direct. lossless JPEG and even demonstrate a slight marginal CR

advantage in the case of FINGERPRINT (see Figure V.7). In most cases, LZW is not

competitve with the other lossless compression methods. The graph data is tabulated in

Table A.8, A.9, and A. 10 in Appendix A. Once again, these three figures are the same as

Figures W1.It, IV.12, and IV.13 in Chapter IV with the addition of the Diagonal coding

results.

Other variations of Diagonal coding were tested and evaluated in an attempt to

achieve higher compression results when compressing the residual images. One variation

consisted of altering the number of range values in each set and performing Run-length

encoding on the longer diagonal codes. This variation achieved minimal compression

improvements and in most instances resulted in less compression than did the baseline

Diagonal coding method. Another variation consisted of breaking up the residual image

data into bit planes and performing Diagonal coding on them. For example, the six most

significant bit (MSB) bit planes were combined together, and the two least significant bit

(LSB) bit planes were combined together to form two separate data sets. Diagonal

coding was performed on each data set and the resulting compressed files were added

together to form an 8-bit compressed file. Different combinations of bit-planes were

tested and evaluated; however, none achieved the compression results attained by

performing Diagonal coding on the original 8-bit residual image file. The two LSB's in

the residual image are primarily noise and contribute little to the quality of the original

image. If they are removed from the original image, no significant visual degradation
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occurs to the image. Indeed, high compression ratios were achieved using Diagonal

coding to compress the six MSB's; however, the process is not a truly lossless one and

was therefore not included in the compression ratio comparisons. A represcntativc

sample of data produced from each of the Diagonal coding variations is tabulated in

Tables A. 11 and A. 12 in Appendix A.

D. CONCLUSIONS

Diagonal coding is not as effective as Huffman, Arithmetic, and lossless JPEG in

compressing the residual image; however, Diagonal coding does achieve higher

compression of the residual image than does LZW in most cases. Diagonal coding

achieves close to the same compression results as Huffman, Arithmetic, and lossless

JPEG at some quality factors. As the quality factor used to compress the original image

is increased, the compression achieved using Diagonal coding decreases. This is due to

the residual image distribution widening, thereby resulting in longer diagonal codes. At

some point, Diagonal coding will result in the expansion of the residual image file size.

Diagonal coding resulted in an expansion of the residual image size when used to

compress FINGERPRINT at a quality factor of 500 (see Figure V.7). The benefits of

using Diagonal coding is its ease of implementation and non-complex nature. It is a

non-CPU intensive algorithm with minimal execution times as compared to Huffman and

Arithmetic. Additionally, it achieves comparable compression results at some quality

factors.
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Direct Lossless Compression of Three Test Images
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Figure V.4: Direct Lossiess Compression of Three Test Images.
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Hybrid Lossless Compression of LENA
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Figure V.5: CR Achieved Using the Hybrid Lossless Compression
Model on LENA at Various Quality Factors.
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Figure V.6: CR Achieved Using the Hybrid Lossless Compression
Model on SHUTTLE at Various Quality Factors.
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Hybrid Lossiess Compression of FINGERPRINT
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Figure V.7: CR Achieved Using the Hybrid Lossless Compression
Model on FINGERPRINT at Various Quality Factors.
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Figure V.8: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
LENA at Various Quality Factors.
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Comperison of Lossless Compmsslon Methods
(SHUTTLE)
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Figure V.9: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
SHUTTLE at Various Quality Factors.
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Figure V.10: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
FINGERPRINT at Various Quality Factors.
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VI. HYBRID MODEL OPTIMIZATION

As discussed in section V.B, the quality factor will impact the Laplacian

distribution of Ue residual image. The results of this chapter will show that the

compressibility of both the browse and residual images depend on the quality factor. At

low quality factors, minimal compression is achieved on the browse image; however, the

residual image becomes highly compressible. As the quality factor is increased, the

browse image is more compressible, but the residual image compresses less. Since the

overall lossless image is the sum of the compressed browse and residual image data (see

Equation 11.2), achieving maximum overall compression would ostensibly depend on

finding some optimal quality factor. In this chapter, we will examine this issue as well as

the sensitivity of the overall CR to the quality factor for the images chosen.

Figures VI.1, VI.2, and VI.3 display the overall CR achieved using the hybrid

lossless compression model with the three test images. These three figures are very

similar to Figures V.5, V.6, and V.7. The difference is in the way the data is displayed

and the number of quality factors used. The graphical data is tabulated in Tables A. 13,

A. 14, and A. 15 in Appendix A. Note that the graphical results of using Diagonal coding

to compress FINGERPRINT in Figure VI.3 are limited to a quality factor of 350. This is

due to the degree of expansion Diagonal coding produces at quality factors greater than

350 on FINGERPRINT. The quality factor used to compress the original image ranges

from a value of 5 to 1000 so that a wide range of browse and residual images are

produced and evaluated. The three figures show that, for high quality factors, lossless

JPEG is the compression method which achieves the best CR on the test images. In most
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instances, Huffman, Arithmetic, LZW, and Diagonal coding achieve decreasing

compression on each of the images at the higher quality factors while the hybrid lossless

JPEG achieves virtually the same CR at quality factors of 50 or higher. This signifies

that at higher quality factors, the hybrid model is relatively insensitive to the quality

factor provided that lossless JPEG is used to compress the residual image. In other

words, the correct choice for the quality factor is essentially dictated by conditions such

as browse image compression and browse image quality, not overall hybrid lossless CR.

The browse image becomes visually distorted and lossy at the higher quality factors. It is

left up to the user to determine what a good quality browse image is for the particular

application the hybrid model is being used.

At the lower quality factors, Huffman, Arithmetic, Diagonal, and lossless JPEG

achieve comparable compression ratios at different quality factors for the three images.

The choice of which lossless compression method to use depends on the user's

requirements for complexity and compression/decompression time. LZW does not

appear to be a wise choice for lossless compression in almost any case.

The advantage of decomposing the original image into a browse and residual

image is the reduced compressed browse image file size compared to the direct lossless

compressed image file size. Figures VI.4, VI.5, and VI.7 display the browse and residual

image compression ratios, and corresponding overall hybrid compression ratios, for the

three test images at various quality factors. The lossless compression method (Huffman,

Arithmetic, LZW, lossless JPEG, or Diagonal coding) that produces the highest overall

hybrid CR is the one that is graphed. The best direct lossless JPEG compression ratio is
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graphed for comparison. The graphical data is tabulated in Tables A.16, A.17, and A.18

in Appendix A. As the quality factor increases, the browse CR decreases and the residual

CR increases as expected. In all cases, the browse CR is significantly greater than the

direct lossless CR. At quality factors of 100 or less, all three test images are visually

lossless. A comparison of the browse CR with the direct lossless JPEG CR for quality

factors of 100 or less (see Figures VIA, VI.5, and VI.6) demonstrates the advantage of

decomposing the original image into a browse and residual image (i.e., a visually lossless

browse image is produced which has a significantly higher CR than the direct lossless

JPEG).

The highest overall hybrid CR was achieved using Arithmetic coding at quality

factors of 5, 50, and 100 for LENA in Figure VIA. At quality factors of 500 and 800,

lossless JPEG was used to compress the residual image.

The highest overall hybrid CR was achieved using Arithmetic coding at quality

factors of 5 and 50 for SHUTTLE in Figure VI.5. Lossless JPEG was used to compress

the residual image at quality factors of 100, 500, and 800.

The highest overall hybrid CR was achieved using Arithmetic coding at quality

factors of 5, 50, and 100 for FINGERPRINT in Figure VI.6. At quality factors of 500

and 800, lossless JPEG was used to compress the residual image.

The results indicate that for low quality factors (550) Arithmetic coding is the

best choice for lossless compression of the residual images while at higher quality factors

(>50), lossless JPEG is the best choice.
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Figure V1.1: Hybrid Lossless Compression of LENA at Various
Quality Factors.
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Figure V1.2: Hybrid Lossless Compression of SHUTTLE at Various
Quality Factors.
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Hybrid Lossless Compression of FINGERPRINT
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Figure VL3: Hybrid Lossless Compression of FINGERPRINT at
Various Quality Factors.
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Figure VIA: Browse and Residual CR Comparison with Direct
Lossless Compression for LENA.
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Browse and Residual CR Comparison
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Figure VI.5: Browse and Residual CR Comparison with Direct
Lossicss Compression for SHUTTLE.
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Figure VIL6: Browse and Residual CR Comparison with Direct
Lossless Compression for FINGERPRINT.
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VII. CONCLUSIONS

An analysis of the results of Chapters IV, V, and VI indicates that the proposed

hybrid lossless compression model has merit as a lossless image compression method.

With the exception of lossless JPEG, the substitution of the other lossless compression

methods (Huffman, Arithmetic, LZW, and Diagonal coding) into the hybrid model

produce compression results that generally outperform their direct compression

counterparts. The decomposition of the original image into browse and residual images

gives an end-user the ability to browse an image and determine whether the residual

image should be transmitted and added to the browse image to reproduce the original

image. This feature is not available with any direct lossless compression method. The

quality of the browse image and the overall compression achieved are determined by the

quality factor used to compress the original image using lossy JPEG and is a user

controlled variable. The better the browse approximates the original data, the more

compressible is the residual image data. Thus, a better quality browse results in a

residual that can be compressed better in lossless mode. However. a better quality

browse results in a larger browse image file size. The key factors are to select a quality

factor which produces a visually acceptable browse image and a lossless compression

method that achieve the best overall compression.

The results show that LZW is not a lossless compression method which should be

used to compress the residual image. The residual images do not contain long repetitive

strings of pixel values which are necessary for LZW to achieve high compression results.

This is not surprising since the LZW method is designed primarily for compressing text,
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not visual graphics [2, pp. 23-24]. Diagonal coding is a viable candidate for lossless

hybrid compression at lower quality factors. As the quality factor increases though,

Diagonal coding results in poor compression and eventually even expansion of the

residual image file size. Huffman and Arithnmtic achieve comparable compression

results at all quality factors. At the lower quality factors, Huffman and Arithmetic do as

well as or better than lossless JPEG in most cases; however, lossless JPEG is the prime

choice for lossless compression of the residual image at higher quality factors (i.c., high

e.,). Under these conditions, the JPEG predictor is better able to accurately predict pixel

values for all residual image distributions resulting in higher compression ratios. This

ostensibly is a result of a higher 2-D correlation of pixel values within the corresponding

residual images and, consequently, facilitates compression in the JPEG lossless method.

Future areas of research include the classification of image types so that the

optimum or nearly optimum combination of quality factor and lossless compression

method may be selected which produces a visually acceptable browse image and the

greatest overall compression ratio. Unfortunately, quality factors or rms error parameters

are not perfect indicators of subjectively evaluated image quality. Until such an indicator

exists, it appears that producing a general guideline for selecting a lossless compression

method applicable to all images (in general) may not be possible.

Another option is to evaluate the hybrid lossless compression model using fractal

image compression as the iossy compression algorithm. This has been pursued using a

combination of lossy fractal compression and lossless LZW; however, other lossless
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compression methods were not reported to have been tested in their hybrid model [4].

For the data presented, it appears that although the combination of |ossy fractal and

lossless LZW compression produced a lossless replica of the original image, the overall

CR achieved using the hybrid technique resulted in an expansion of the image file size.

Compression was achieved only when the number of grey-scale values was limited (i.e.,

representing pixels using less than 8 bits).
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APPENDIX A

Quality Factor LENA SHUTTLE FINGERPRINT

133.0 48.5 35.7

5 53.9 69.4 55.9

I(0 68.4 80.2 67.1

15 75.0) 84.8 72.7

20 78.9 87.3 75.7

25 82.1 89.4 78.1

30 83.8 90.5 79.5

40 86.4 92.1 N 1.9

50 88.4 93.4 83.7

75 91.1 94.9 86.4

100 92.6 95.8 88.2

250 96.1 97.8 93.0

350 97.0 98.3 94.4

500 97.7 98.7 95.8

1 800 1 98.5 1 99.0(1 97.2

Table A.I1: Comparison of Quality Factor vs CR for the Three Test Images.
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Quality Factor LENA SHUTTLE FIN(GERPRINT

1 0.000 0.000) ().(XJ0

5 0.014 0.009 0.006

10 0.023 0.012 0)0 10)

15 01.029 0.015 0.014

20 0.034 0.017 0.017

25 0.038 0.019 0.02(0

30 0.041 0.021 0.021

40 0.048 0.023 0.025

50 0.053 0.026 0).029

75 0.061 0.030 0.036

100 0.068 0.034 0.043

250 0.092 0.055 0.076

350 0.104 0.065 0.094

500 0.120 0.082 (0.119

800 0.149 0.108 0.154

Table A.2: Comparison of Quality Factor vs er for the Three Test Images.

Test Image Q=5 Q=50 Q=100 Q=500

LENA 3 7 7 6

SHUTTLE 7 7 7 6

FINGERPRINT 7 7 7 6

Table A.3: Best JPEG Algorithm (K) for Test Images at Various Quality Factors.
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Compression Type LENA SHUTTLE FINGERPRINT

Huffman 6.3 15.6 12.6

Arithmetic 7.0 15.9 12.6

LZW -2.9 17.5 12.1

JPEG 34.0 48.9 26.5

Diagonal -75.9 -110.7 -144.5

Table A.4: Comparison of Lossless Compression Methods on the Three Test Images.

Compression Q=5 Q=50 Q=100 Q=5IH)
Type

Huffman 17.6 30.4 30.6 24.3

Arithmetic 18.1 31.0 31.0 24.5

LZW 0.9 3.7 3.2 -1.3

JPEG 8.8 25.9 28.2 29.3

Diagonal 12.9 29.2 26.4 1.4

Table A.5: CR Achieved Using Hybrid Lossless Compression Model on LENA at
Various Quality Factors.

Compression Q=5 Q=50 Q=100 Q=500
Type

Huffman 38.5 47.8 45.5 32.7

Arithmetic 38.9 48.4 45.9 33.0

LZW 24.6 27.1 24.3 17.3

JPEG 30.0 46.2 46.6 46.2

Diagonal 30.2 47.4 45.7 21.5

Table A.6: CR Achieved Using Hybrid Lossless Compression Model on SHU'ITLE at
Various Quality Factors.

65



Compression Q=5 Q=50 Q=1O0 Q=500
Type

Huffman 25.5 30.2 27.9 19.5

Arithmetic 26.4 30.5 28.4 19.x

LZW 13.4 8.3 6.0) 7.5

JPEG 17.8 28.0 27.4 23.7

Diagonal 16.8 29.4 23.1 -26.9

Table A.7: CR Achieved Using Hybrid Lossless Compression Model on
FINGERPRINT at Various Quality Factors.

Compression Q=5 Q=50 Q= I O Q=500 Direct
Type Lossless

Huffman 17.6 30.4 30.6 24.3 6.3

Arithmetic 18.1 31.0 31.0 24.5 7.0

LZW 0.9 3.7 3.2 -1.3 -2.9

JPEG 8.8 25.9 28.2 29.3 33.8

Diagonal 12.9 29.2 26.4 1.4 -75.9

Table A.8: Comparison of Hybrid Lossless Compression Model with Standard
Lossless Compression Methods for LENA at Various Quality Factors.

Compression Q=5 Q=50 Q=I00 Q=500 Direct
Type Lossless

Huffman 38.5 47.8 45.5 32.7 15.6

Arithmetic 38.9 48.4 45.9 33.0 15.9

LZW 24.6 27.1 24.3 17.3 17.5

JPEG 30.0 46.2 46.6 46.2 48.9

Diagonal 30.2 47.4 45.7 21.5 -110.7

Table A.9: Comparison of Hybrid Lossless Compression Model with Standard
Lossless Compression Models for SHUTTLE at Various Quality Factors.
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Compression Q=5 Q--50 Q=100 Q=500 Direct
Type Lossless

Huffman 25.5 30.2 27.9 19.5 12.6

Arithmetic 26.4 30.5 28.4 19.8 12.6

LZW 13.4 8.3 6.0 7.5 12.1

JPEG 17.8 28.0 27.4 23.7 26.5

Diagonal 16.8 29.4 23.1 -26.9 -144.5

Table A.10: Comparison of Hybrid Lossless Compression Model with Standard
Lossless Compression Methods for FINGERPRINT at Various Quality
Factors.

Quality Factor LENA SHUTTLE FINGERPRINT

5 10.4 28.6 15.4

50 23.2 43.2 22.6

100 21.1 40.1 15.6

500 -72.0 13.4 -11.3
Table A.1 1: CR Achieved Using Diagonal Coding and RLE Variation in Hybrid

Model.

Quality Factor LENA SHUTTLE FINGERPRINT
5 -8.5 6.9 -6.5

50 23.4 30.6 19.7

100 26.2 32.5 22.0

500 23.7 30.3 16.3

Table A.12: CR Achieved Using Diagonal Bit Plane Coding Variation in Hybrid
Model.
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Quality Huffman Arithmetic LZW Lossless Diagonal
Factor JPEG

5 17.6 18.1 0.9 8.8 12.9

50 30.4 31.0 3.7 25.9 29.2

100 30.6 31.0 3.2 28.2 26.4

250 28.1 28.6 1.1 29.3 16.7

350 26.5 27.0 0.0 29.4 11.0

500 24.2 24.5 -1.3 29.3 1.4

600 23.1 23.4 -1.5 29.6 -3.3

700 21.8 22.1 -1.6 29.8 -8.1

800 20.6 21.1 -1.8 29.9 14.2

1,000 20.1 20.6 -1.8 30.1 -16.3

Table A.13: Hybrid Lossless Compression of LENA at Various Quality Factors.

Quality Huffman Arithmetic LZW Lossless Diagonal
Factor JPEG _

5 38.5 38.9 24.6 30.0 30.2

50 47.8 48.4 27.1 46.2 47.4

100 45.5 45.9 24.3 46.6 45.7

250 39.3 39.8 20.0 46.3 37.4

350 36.3 36.8 18.7 46.2 32.2

500 32.7 33.0 17.3 46.2 21.5

600 30.7 30.9 16.7 46.0 14.7

700 28.7 29.0 16.8 46.0 8.7

800 28.2 28.5 17.3 46.2 7.5

1,000 27.7 28.0 17.6 46.5 5.9

Table A.14: Hybrid Lossless Compression of SHUTTLE at Various Quality Factors.
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Quality Huffman Arithmetic LZW Lossless Diagonal
Factor JPEG

5 25.5 26.4 13.4 17.8 16.8

50 30.2 30.5 8.3 28.0 29.4

!() 27.9 28.4 6.0 27.4 23.1

250 22.7 23.2 5.6 25.6 0.2

350 21.9 22.1 6.9 24.8 -7.9

5(W) 19.5 19.8 7.5 23.7 -26.9

6(X) 18.5 18.9 8.1 23.7 -33.6

700 17.9 18.2 8.4 23.7 -34.5

800 17.0 17.3 8.7 23.6 -54.2

1.000 16.7 17.0 9.1 23.9 -57.5

Table A.15: Hybrid Lossless Compression of FINGERPRINT at Various Quality
Factors.

Quality Factor Browse Residual Hybrid Direct Lossless
5 53.9 65.0 18.1 33.8

50 88.4 43.0 31.0 33.8

100 92.6 39.0 31.0 33.8

500 97.7 31.5 29.3 33.8

800 98.5 31.4 29.9 33.8

Table A.16: Browse and Residual CR Comparison for LENA.

Quality Factor Browse Residual Hybrid Direct Lossless

5 69.4 70.0 38.9 48.9

50 93.4 56.0 48.4 48.9

100 95.8 50.8 46.6 48.9

500 98.7 47.4 46.2 48.9

800 99.0 47.2 46.2 48.9

Table A.17: Browse and Residual CR Comparison for SHUTTLE.
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Quality Factor Browse Residual Hybrid Direct Lossless

5 55.9 71.0 26.4 26.5

50 83.7 47.0 30.5 26.5

100 88.2 41.0 28.4 26.5

500 95.8 27.8 23.7 26.5

800 97.2 26.4 23.6 26.5

Table A.18: Browse and Residual CR Comparison for FINGERPRINT.
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APPENDIX B

This appendix contains the source code for the Diagonal coding lossless

compression method. The files Bitio.c, Bitio.h. Efrhand.c. and Errhand.h are adapted

from Nelson's text source code. The files Browse-c.c and Browse-e.c are written by the

author. The programs are written in C and were compiled on a Sun Workstation with the

GNU C compiler. The command to compile and link the programs is:

gcc Browse-c.c Bitio.c Errhand.c -Im -o Browse-c

This will result in a program called Browse-c which will encode an 8-bit 256x256

grayscale image using Diagonal coding. Substitute Browse-e.c into the compile

command to produce the program which will decode a Diagonal coded compressed

image file.
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Dec 10 05:40 1993 browse-c.c Page 1

"* browse-c.c: Program that performs Diagonal coding (encoding) on a 256x256 *
"* To compile: gcc browse-c.c bitio.c errhand.c -im -o browse-c *
"* To run: browse-c [input image file] [output image file) *
"* Author: Doug Abbott *

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "bitio.h"
#include "errhand.h"

#define ROWS 256
#define COLS 256

#ifdef _STDC_

void CompressFile( FILE *input, BIT FILE *output );
void ReadInputFile( FILE *input, BIT FILE *output_file );
int OutputCode( BIT FILE *outputfile, int code );
void print_ratios( char *input, char *output );
long file size( char *name );

#else

void CompressFile(0;
void ReadInputFileo;
int OutputCode();
void printratios();
long file size);

#endif

main( argc, argv

int argc;
char *argv[];
(

FILE *input;
BIT FILE *output;

input - fopen( argv[1], "rb" );
if ( input - NULL )

fatalerror( "Error opening %s for input\n", argv[l] );
output - OpenOutputBitFile( argv[2] );
if ( output -- NULL )

fatal-error( "Error opening %s for output\n", argv[2] );
CompressFile( input, output );
CloseOutputBitFile( output );
fclose( input );
printratios( argv[1], argv[2] );
return( 0 );
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I

void CompressFile( input, output
FILE *input;
BIT-FILE *output;

IReadInputrile( input, output )

void ReadlnputFile( input, output-file
FILE *input;
BIT-FILE *outputfile;
f

int row;
int col;
int c, y;

/* Read in the input file to be compressed. */

for ( row - 0; row < ROWS; row++ ) {
for ( col - 0; col < COLS; col++ ) {

c - getc( input );
if ( c -- EOF )

fatal error( "Error reading input grey scale file\n" );
y - OutputCode( output_file, c );

1

/* Purge the mask of any remaining bits. *1

OutputBits( output file, 257L, 1 );I

/* Function which determines which range set the pixel value is located in *
• and its location within the range set. The appropriate diagonal code *
• and identification value are output. *

int OutputCode( outputfile, code
BITFILE *output_file;
int code;
{

int top_of range, bottom of_range;
int bitcount, count;

top of_range - 127;
bottom of range - 128;
bit count - 0;
count - 0;

/* Determine which range set the pixel value is located in. *1

if ( code > 127 ) {
while ( code > topof range )
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bit count++;
count +- 1 ;
topofrange - top_of range + 2;

if ( code <- 127 1
while ( code < bottom-ofrange

bit count++;
count +- 1 ;
bottom ofrange - bottom ofrange - 2;

}
I

/* Output diagonal code. */

OutputBits( outputfile, 1L, bitcount );

/* Determine the location of the pixel value within the range set and */
/* output the two identification bits. */

if ( code <- 127 ) f
if ( code -- bottom-of range

OutputBits( outputfile, OL, 2 );
else

OutputBits( output file, UL, 2 );
}
if ( code > 127) {

if ( code -- top_of_range )
OutputBits( outputfile, 3L, 2 );

else
OutputBits( outputfile, 2L, 2 );

}
return ( count );

/* Determine the size of the input and output files (in bytes).

#ifndef SEEK END
#define SEEKEND 2
#endif

long file-size( name )
char *name;
{
long eofftell;
FILE *file;

file - fopen( name, "r" );
if ( file -- NULL )

return( OL );
fseek( file, OL, SEEK END );
eof ftell - ftell( file );
fclose( file );
return( eof ftell );

7
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/" Comute the compression ratio achieved. */

void print_ratios( input, output
char *input;
char *output;
f
long input_size;
long output size;
int ratio;

input-size - file-size( input );
if ( input_size -- 0

inputsize - 1;
outputsize - file size( output );
if ( outputsize - 0 )

output size - 1;
ratio - 100 - (int) ( outputsize * 1OOL / input_size );
printf( "\nInput bytes: %ld\n", input size );
printf( "Output bytes: %ld\n", outputsize );
printf( "Compression ratio: %d%%\n", ratio );

7
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* browse-e.c: Program that performs decoding of a compressed image file *
* that has been encoded with Diagonal coding. -
* To compile: gcc browse-e.c bitio.c errhand.c -1m -o browse-e *
* To run: browse-e (input image file] (output image filej *
* Author: Doug Abbott *

#include <stdio.h>
#include <stdlib.h>

#include <math.h>
#include "bitio.h"
#include "errhand.h"

#define ROWS 256
#define COLS 256

#ifdef _STDC_

void ExpandFile( BIT FILE *input, FILE *output );
void ReadInputFile( BIT FILE *input, FILE *output_file );
int InputCode( BIT .'ILE *inputfile );
long filesize( char *name );
void printfilesize( char *input, char *output );

#else

void ExpandFileo;
void ReadInputFile );
int InputCode();
long file sizeo;
void print_filesize(;

#endif

main( argc, argv
int argc;
char *argv[];
f

FILE *output;
BITFILE *input;

input - OpenlnputBitFile( argv[l] );
if ( input =- NULL )

fatalerror( "Error opening %s for input\n", argv(l] );
output - fopen( argv[21, "wb" );
if ( output =- NULL )

fatal error( "Error opening %s for output\n", argv[2] );
ExpandFile( input, output );
CloseInputBitFile( input );
fclose( output );
print filesize( argv[1], argv[2] );
return( 0 );
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void ExpandFile( input, output
BIT FILE *input;
FILE *output;

ReadInputFile( input, output );
}

void ReadInputFile( input, output-file
B:T FILE *input;
FILE *outputfile;
{
int row;
int col;
unsigned char amplitude;

/* Read in tae input file to be decompressed. */

for ( row = 0; row < ROWS; row++ )
for ( col = 0; col < COLS; col++

amplitude = InputCode( input );
putc( amplitude, outputfile );

}

/* Function which decodes the compressed image file. */

int InputCode( input_file
BITFILE *input-file;
{

int bit count;
int result;
unsigned char amp;
int top of range;
int bottom of range;
int count;

topof range = 0;
count = 1;

/* Get bits from input image file. */

bitcount = (int) InputBits( inputfile, 1 );

/* Looking for a bit '1'. */

while ( bit count =- 0
count++;
bitcount = (int) InputBits( input_file, 1 );
I

/* Determine what range set the decoded code belongs to. */

top of range - 130 + ((count-) * 2 );
bottomof range - 127 - (( count - 1 ) * 2 );
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/* Get next two bits from the input data. These are the two identification */

/* bits.

result = (int) InputBits( inputfile, 2 );

/* Determine what the decoded pixel value is. */

if ( result > 1 )
amp = ( topofrange - 3 ) + result ;

else
amp = bottom of range + result;

return( amp );
I

/* Determine the size of the input and output files (in bytes).

#ifndef SEEK END
#define SEEKEND 2
#endif

long file size( name
char *name;
i
long eof ftell;
FILE *file;

file - fopen( name, "r" );
if ( file -- NULL

return( OL );
fseek( file, OL, SEEK END );
eof ftell = ftell( file );
fclose( file );
return( eof ftell );
}

void print_filesize( input, output
char *input;
char *output;
l
long input_size;
long output-size;

input size - file_size( input );
if ( inputsize -- 0

input-size - 1;
outputsize - file size( output );
if ( output size -Z 0 )

output size - 1;
printf( "\nlnput bytes: %ld\n", input size );
printf( "Output bytes: %ld\n", output size );

78



Dec 10 05:17 1993 bitio.c Page 1

S************************** Start of BITIO.C *

"* This utility file contains all of the routines needed to implement
"* bit oriented routines under either ANSI or K&R C. It needs to be
"* linked with every program used in the entire book.
*/

#include <stdio.h>
#include <stdlib.h>
#include "bitio.h"
#include "errhand.h"

#define PACIFIERCOUNT 2047

BIT FILE *OpenOutputBitFile( name
char *name;

BITFILE *bitfile;

bit file - (BIT FILE *) calloc( 1, sizeof( BITFILE ) );
if T bit file -- NULL )

return( bit file );
bit file->file = fopen( name, "wb" );
bit file->rack 0;
bit file->mask Wx80;
bit-file->pacifier counter = 0;
return( bit file );

BIT FILE *OpenInputBitFile( name
char *name;
{

BITFILE *bit-file;

bit file - (BIT FILE *) calloc( 1, sizeof( BITFILE ) );
if T bit file - NULL )

return( bit file );
bit file->file - fopen( name, "rb" );
bit-file->rack - 0;
bit file->mask - 0x80;
bit-file->pacifier counter = 0;
return( bit-file );

void CloseOutputBitFile( bit-file
BITFILE *bit-file;
{

if ( bit file->mask !- 0x80
if (putc( bit file->rack, bit file->file ) !- bit file->rack

fatal error( "Fatal error in CloseBitFile!\n" );
fclose( bit file->file );
free( (char *) bit-file );}

void CloselnputBitFile( bit-file
BITFILE *bitfile;
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1
fclose( bit file->file );
free( (char *) bit file );

void OutputBit( bit file, bit )
BIT FILE *bit-file;
int bit;
{

if ( bit
bit file->rack I- bit file->mask;

bit fil-e->mask >>- 1;
if ( bit file->mask -- 0 ) f

if (-putc( bit file->rack, bit file->file ) != bit file->rack
fatal-error( "Fatal error in OutputBit!\n" );

else
if ( ( bit file->pacifiercounter++ & PACIFIER-COUNT ) == 0

putc( I.I, stdout );
bit file->rack - 0;
bit file->mask - 0x80;

void OutputBits( bitfile, code, count
BIT FILE *bit-file;
unsigned long code;
int count;

unsigned long mask;

mask = 1L << ( count - 1 );
if ( code -= 257 )

putc( bitfile->rack, bitfile->file );
else

while ( mask != 0)
if ( mask & code )

bit file->rack I- bit file->mask;
bit file->mask >>- 1;
if T bitfile->mask -- 0

if ( putc( bit file->rack, bit file->file ) != bitfile->rack
fatal error( "Fatal error in OutputBit!\n" );

else if ( ( bit-file->pacifiercounter++ & PACIFIERCOUNT ) = 0
putc( '.', stdout );

bit file->rack - 0;
bit-file->mask - 0x80;

mask >>- 1;
I

int InputBit( bitfile
BITFILE *bit-file;
{

int value;
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if ( bit file->mask -- 0x80
bit file->rack - getc( bit file->file );
if T bit file->rack -- EOF-)

fata7lerror( "Fatal error in InputBit!\n" );
if ( ( bit file->pacifier counter++ & PACIFIERCOUNT ) == 0

putc( '.', stdout );
I
value - bit file->rack & bit file->mask;
bit file->mask >>- 1;
if ( bit file->mask =- 0

bit file->mask - 0x80;
return( value ? 1 :0 );

unsigned long InputBits( bitfile, bit count
BITFILE *bit file;
int bit-count;

unsigned long mask;
unsigned long returnvalue;

/* if (bit count == 75 ) {
if ( bit file->mask == 0x80

bit file->mask = 0x02;
else
if ( bit file->mask == 0x40

bit file->mask = OxOl;
else
if ( bit file->mask <= 0x20

bit file->mask <<- 2;
if ( bit file->mask -= 0x80

flag = 1;
I

*/
mask = iL << ( bit-count - 1 );
return value = 0;
while (mask != 0) {

if ( bit file->mask == 0x80
bit file->rack = getc( bit file->file );
if ( bit file->rack == EOF )

fatal error( "Fatal error in InputBit!\n" );
if ( ( bit_file->pacifiercounter++ & PACIFIERCOUNT ) =- 0

putc( '.', stdout );
I
if ( bit file->rack & bit file->mask

return-value I- mask;
mask >>- 1;
bit file->mask >>- 1;
if ( bit file->mask -- 0

bit file->mask - 0x80;

return( return value );
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void FilePrintBinary( file, code, bits
FILE *file;
unsigned int code;
int bits;
{

unsigned int mask;

mask - 1 << ( bits - 1 );
while ( mask !- 0 ) {

if ( code & mask
fputc( '1', file );

else
fputc( '0,, file );

mask >>- 1;
I

/*************************** End of BITIO.C *
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/*********~**************** Start of BITIO.H *

#ifndef _BITIOH
#define -BITIO-H

#include <stdio.h>

typedef struct bit-file {
FILE *file;
unsigned char mask;
int rack;
int pacifier-counter;

} BITFILE;

#ifdef _STDC_

BITFILE *OpenInputBitFile( char *name );
BITFILE *OpenOutputBitFile( char *name );
void OutputBit( BIT FILE *bit file, int bit );
void OutputBits( BITFILE *bitfile,

unsigned long code, int count );
void OutTwoBits( BITFILE *bit file,

unsigned long code, int count );
int InputBit( BIT FILE *bit file );
unsigned long InputBits( BIT_FILE *bitfile, int bitcount );
void CloseInputBitFile( BIT FILE *bit file );
void CloseOutputBitFile( BITFILE *bit- file );
void FilePrintBinary( FILE *file, unsigned int code, int bits );

#else /* _STDC_ */

BITFILE *OpenInputBitFileo;
BITFILE *OpenOutputBitFile);
void OutputBit•;
void OutputBits ();
void OutTwoBits);
int InputBit 0;
unsigned long InputBits 0;
void CloseInputBitFile 0;
void CloseOutputBitFileo;
void FilePrintBinary);

#endif /* _STDC_ *1

#endif ** _BITIOH */

*****************~********** End of BITIO.H *

83



Dec 10 05:30 1993 errhand.c Page 1

I************************* Start of ERRHAND.C *

"* This is a general purpose error handler used with every program in
"* the book.
*#

#include <stdiob.h>
#include <stdlib.h>
#include <stdarg.h>
#include "errhand.h"

#ifdef _STDC_
void fatal_error( char *fmt,
#else
#ifdef -UNIX-
void fatal_error( fmt, va alist
char *fmt;
va dcl
#else
void fatal error( fmt
char *fmt;
#endif
#endif
{

va list argptr;

va start( argptr, fmt );
printf( "Fatal error: "

vprintf( fmt, argptr );
va end( argptr );
exit( -1 );

*************************** End of ERRHAND.C ************************/
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~*****************~~****** Start of ERRHAND.H *

#ifndef ERRHMDH

#define _ERREANDH

#ifdef STDC

void fatal-error( char *fmt,

Pelse /* _STDC_ /

void fatal erroro;

#endif /* _STDC */

#endif 1* _ERRHAND H *1

* * *** End of ERRHAND.H *
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