NAVAL POSTGRADUATE SCHOOL
Monterey, California

itl

AD-A277 905

DTIC

A ELECTE
THESIS s APR11 1994D
G

A SIMPLE, LOW OVERHEAD DATA
COMPRESSION ALGORITHM FOR
CONVERTING LOSSY COMPRESSION
PROCESSES TO LOSSLESS

by
Walter D. Abbott, [II

December, 1993

Thesis Advisor: Ron J. Pieper

Approved for public release; distribution is unlimited.

94-1079

9 DTIC QUALIYY LI 8
[oX0 g
T 94 4 8 030

REPORT DOCUMENTATION PAGE

' Approved OMB No. 0704-018%

lic reporting burden for this coll of nfo " d to average | hour per resy luding the ume for reviewing mstruction, searchang existuig data sources. gatheruy
ing the data nesded. and completing and ing the coll of inf Send regarding this burden estumate or any other aspect of this collection of
ormauon, ncluding suggestions for reducing this burden. to Washington Headg Services. | tor Inf Up and Reporus. | 215 Jefferson Davis Hghway. Suite
204, Arlington, VA 22202-4302. and to the Oftfics of Management and Budget, Paperwork Reducuon Project {0704-0188) Washungton Du 20503
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1993. Master’s Thesis

4. TITLE AND SUBTITLE
A SIMPLE. LOW OVERHEAD DATA COMPRESSION ALGORITHM FOR
CONVERTING LOSSY COMPRESSION PROCESSES TO LOSSLESS.

6. AUTHOR(S)
Abbott, Walter D., 111

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

119. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not retlect the oflicial policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release: distribution is unlimited.

13. ABSTRACT (maximum 200 words)

In this thesis, a hybrid lossless compression model is tested which employs a combination of both a lossy compression method
d one or more lossless image compression methods to produce au overall lossless image compression. The hybrid model
mposes the original image into a browse and a residual image. The hybrid model is tested and evaluated using vanous
mbinations of lossy and lossless image compression methods. The lossy compression method used in the model is JPEG (Jomnt
hotographic Experts Giroup). The lossless compression methods used are Huffman, Anthmetic, LZW, lossless JPEG, and
iagonal coding. The compression results achieved using the hybrid compression model are compared to the compression
chieved using the corresponding direct lossless compression. Additionally, the hybrid model is evaluated as to the advantages

at the decomposition of the image into browse and residual images provide to the user.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Image Compression. Data Compression, Hybrid Compression. Lossless, Lossy, Browse, 94
Residual.

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION [20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 1L

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

DIICQULLLys & o oo

Approved for public release; distribution is unlimited.

A Simple, Low Overhead Data Compression Algorithm
for Converting Lossy Processes to Lossless

by

Walter D. Abbott, 111
Lieutenant, United States Navy
B.S., The Citadel. 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOQOL
December 1993

Author: W%‘

Walter D. Abbott, 11

Approved by: 7 ;ﬁ"'l/ 4 f»%l/r
esis Advisor

0 J Pieper

M—LWNSL

Murali Tummala, Second Reader

(M choel AN orsarr

Michael A. Morgan, CHefirman
Department of Electrical & Computer Engineering

il

ABSTRACT

In this thesis. a hybrid lossless compression model is tested which employs a
combination of both a lossy compression method and one or more lossless image
compression methods to produce an overall lossless image compression. The hybrid
model decomposes the original image into a browse and a residual image. The hybrid
model is tested and evaluated using various combinations of lossy and lossless image
compression methods. The lossy compression method used in the model is JPEG (Joint
Photographic Experts Group). The lossless compression methods used are Huffman,
Arithmetic, LZW, lossless JPEG, and Diagonal coding. The compression results
achieved using the hybrid compression model are compared to the compression achieved
using the corresponding direct lossless compression. Additionally, the hybrid model is

evaluated as to the advantages that the decomposition of the image into browse and

residual images provide to the user. Accesion For

NTIS CRA&i
DTIC TAB
Unannounced 0

Justification

By
Distribution |

Availability Codes

. Avail ardor
Dist Special

-/

iii

L.

118

IvV.

TABLE OF CONTENTS

INTRODUCTION. .o |
A REVIEW OF LITERATURE...........ccooooiiiiiiiiiiii i i
B. OVERVIEW OF THE THESIS............coooooiiiiii i 2
HYBRID LOSSLESS COMPRESSIONMODEL....................................... 4
COMPRESSION TECHNIQUES.o 8
A LOSSLESS AND LOSSY TECHNIQUES. ..o 8
B. HUFFMAN CODING. ...t 8
C. ARITHMETIC CODING............oociiiiiiiiiiieii e 11
D. LIMPEL-ZIV (LZ) COMPRESSION..........coocoiiiiiiiiiic e 14
E. RUN LENGTH ENCODING.........coiiiiiiiiiiii e 16
F. BIT PLANE ENCODING..........ccoooiiiiiiiiiiii e 17
G. PREDICTIVE ENCODING..........cocoiiimtiiiiieii e 18
H. JPEG oo 19
COMPARISON OF COMPRESSIONMETHODS.............coooiiiiiiee 27
A OVERVIEW. ..ottt 27
B. TESTIMAGES. ... s 27
C. LOSSY JPEG.... .ot 30
D. SECONDARY COMPRESSION.......ccoooiiiiiiiiiiiiite e 32
E. COMPARISON OF LOSSLESS COMPRESSION METHODS..............c......... 34
F. CONCLUSIONSttt 36
v

A INTRODUCTION. ..o 42
B RESIDUAL IMAGE HISTOGRAM..........coiiiiiiiiiec e 42
C. DIAGONAL CODING.........ccooiiiiiiiiiieeee e 44
D CONCLUSIONS ... 49
VL. HYBRID MODEL OPTIMIZATION.ccoocoiiiiiiiiiiiii oot 54
VIIL CONCLUSIONS. .. e, 60
APPENDIX AL oo e 63
APPENDIX B.o, 71
LISTOF REFERENCES ...t 86
INITIAL DISTRIBUTION LIST ...t 87
v

I. INTRODUCTION

A. REVIEW OF LITERATURE

Memory requirements to store, transmit. and display images have rapidly grown
as the need for higher resolution images has increased. As a result of this explosion of
data associated with images, various image compression algorithms have been
developed. These compression algorithms capitalize on the redundancies inherent in
images to reduce the number of bits required to represent them. This results in savings in
the memory needed for image storage or in the channel capacity required for image
transmission [1], [2], [3].

Image compression can be divided into two groups: lossy and lossless. Images
may be compressed using a lossy or lossless compression method depending on the
amount of compression and image resolution desired by the user. Lossy compression
methods achieve high compression but produce an image which is of lower resolution
than the original image. Lossless compression methods achieve low compression but
produce an exact replica of the original image.

Some of the standard lossless compression methods are Huffman [1], [2],
Arithmetic [1], [2], the Ziv and Lempel algorithms [2], [4], Predictive encoding {1}, [2],
Bit-plane encoding [1], [5], and Run-length encoding [6]. Each of these compression
methods have many variations which are reported in the literature. A non-standard

lossless compression method is Diagonal coding [7]. Lossy compression methods consist

primarily of the Joint Photographic Experts Group (JPEG) algorithm |1}, {2}, [&], |9] and
Fractal encoding [4}, [10).

Comparisons of the performance of lossy und lossless compression methods
reveal that some compression methods achieve better performance results in terms of
compression ratios and root mean square error than others {1 1].

Lossy and lossless methods may be combined together to produce a lossless
compressed image. Such an arrangement takes advantage of the high compression ratios
achieved by the lossy methods and the error-free compression of the lossless methods

{1} 110].

B. OVERVIEW OF THE THESIS

The current chapter introduces the literature used in the thesis and discusses the
structure of the thesis. The various methods of image compression are presented.

Chapter II describes the goal of the thesis and discusses the proposed hybrid
lossless compression model. The decomposition of an image into browse and residual
images is introduced. The evaluation criteria used to evaluate the hybrid model and the
lossless and lossy compression methods is defined.

Chapter III describes the lossy and lossless compression methods used to evaluate
the hybrid lossless compression model. The lossy algorithm used in the evaluation is the
lossy JPEG. The lossless algorithms used in the evaluation are Huffman, Arithmetic,

LZW, and lossless JPEG.

Chapter IV discusses the results of using secondary compression to compress the
lossy compressed image in the hybrid model. A comparative analysis of the compression
achieved using direct lossless compression and the compression achieved using the
hybrid lossless compression model is performed for each of the lossless compression
methods.

Chapter V introduces another lossless compression method called Diagonal
coding. It is compared to the other lossless compression methods evaluated in the hybrid
model.

The optimization of the model is discussed in Chapter VI with emphasis on the
combination of lossy and lossless compression methods that result in high overall
compression and a visually acceptable browse image.

Chapter VII contains the general conclusions reached from the comparative
analysis of Chapters [V, V, and VL

Appendix A contains the tabulated numeric data gathered during the research of
the thesis. The source code for the Diagonal coding compression algorithm (encoding

and decoding) is contained in Appendix B.

II. HYBRID LOSSLESS COMPRESSION MODEL

In many practical situations involving images, a small degree of error in the pixel
values can be tolerated without a significant effect on the display. This suggests that
there are advantages to a decomposition of images into a lossy component and an error
component. A hybrid compression model which employs the browse and residual
concept has recently appeared in the literature [7].

A hybrid image compression model was tested which utilizes both lossy and
lossless image compression techniques to produce an overall lossless image compression.
The model is tested and evaluated using the JPEG algorithm, the industry standard for
lossy image compression, and various popular lossless compression techniques. The total
compression achieved using the model is compared to the compression achieved using
standard lossless image compression techniques. Figure I1.1 displays a block diagram of
the hybrid lossless compression model.

The model was evaluated using 8-bit (256 levels), 256x256 (65536 bytes) pixel
grey-scale images in raw pixel grey map (rpgm) format. Three different images were
uscd in the tests. The images were all structurely different from cach other in order to
test the model over a broad range of images.

An image is first compressed using a lossy compression process. The lossy
compression technique used in the testing of the model is the Joint Photographic Expert
Group (JPEG) algorithm. After compression using JPEG, the compressed image is

further compressed (secondary compression) using a lossless compression method.

Scveral different lossless compression algorithms are tested and evaluated. The lossy

compressc.i image is decompressed and compared on a pixel by pixel basis to the original
im-_c. The decompressed image is termed the browse image data as it can be used for

browsing an image and preliminary analysis of the image. Browsing enables a user to

A Browse Image

Original Lossy Lusskess B: Residual Image
Image (ompression l Secondary
Compression
Appended
Decompression File

Lossless
Compression |

Figure I1.1: Hybrid Lossless Compression Model

determinc whether a lossless representation of the original image is required or if the
lossy browse image data is adequate for their needs. The difference between the original
image and the decompressed image 1s the error image or residual image. The residual
image is compressed with a lossless compression routine. Once again, several different
lossless compression algorithms are tested and evaluated. Lastly, the compressed browse
image file and the compressed residual image file are appended together into a single
file. Decoding consists of separating the appended file into the respective compressed

browse and residual image files and applying the appropriate decompression algorithm to

cach. Figure 11.2 displays a block diagram of the decoding process. Both the browse and
residual image files are first decompressed using the same lossless compression routines
which were used to compress them. The resulting browse image file s then
decompressed using the lossy JPEG algonthm. The residual image file 15 added on a
pixel by pixel basis to the decompressed browse image file to obtain the ongnal image.
The hybrid lossless compression model combines the inherent advantages of both
lossy and lossless compression algorithms to achieve the lossless result. The high
compression achieved by the lossy JPEG algorithm combined with the error-frec lossless
algorithms results in a significantly compressed image, which upon deccoding, 1s an cxact

replica of the original image.

Appended Secondary JPEG

File Decompression Decompression

Original
Image

Lossless
Decompression

Figure I1.2: Diagram of Decoding Process

Various combinations of the lossy JPEG and lossless algorithms were cvaluated

in the model and compared. The evaluation criteria used in the comparisons was the total

compression ratio (CR) achicved using a particular lossless compression algorithm 1n

combination with the JPEG lossy algorithm. Compression ratio is the percent

compression achieved as a result of compressing a file [2, p. 10]:
CR =(1 - (Compressed Image Size / Original Image Size)) x 100. (IL1)

A file whose file size does not change when compressed will have a compression ratio of
0 percent. A file which is compressed to one-third of its original size will have a
compression ratio of 67 percent. Therefore, perfect compression occurs at 100 percent.
A file whose compressed file size 1s greater than its original file size will have a negative
compression ratio. The overall compression ratio achieved by the hybrnd lossless
compression model 1s a combination of the compressed browse image CR and the
compressed residual image CR. Application of Equation II.1 to browse, residual, and

overall compression ratios leads to:

CRoverzﬂ = [CRbrowse - 50] + [CRreﬂdual - 50] (Hz)

where CR, ... and CR . are the compression ratios of the compressed browse and
residual images.

The overall compression ratios achieved using the model with different
combinations of lossless techniques and JPEG arc compared with each other and with the
compression ratios achieved using standard lossless compression techniques.
Additionally, the benefits of breaking up the image into browse and residual images are

evaluated and compared to the standard lossless compression methods.

Il. COMPRESSION TECHNIQUES

A. LOSSLESS AND LOSSY TECHNIQUES

Compression techniques can be divided into lossless and lossy methods. A
lossless method always produces a decompressed image that is identical, pixel-for-pixel,
to the original image. On the other hand, lossy methods produce a decompressed image
that is not identical to the original image. The degree of difference between the lossy
decompressed image and the original image depends upon the compression ratio desired.
The higher the compression ratio, the greater the difference between the decompressed
image and the original image. Lossless compression methods typically attain small
compression ratios of about 50% or less while lossy methods can achieve much higher

compression ratios.

B. HUFFMAN CODING

Huffman coding i1s a lossless compression method that assigns variable-length
codes to symbols based on the probability of each symbol's occurrence in a file. It is
based on the premisc that if the probability of symbols in a file are known, and the
probability distribution is a non-uniform distribution, variable-length codes can be
assigned to cach symbol which will result in compression of the file. When using this
type of coding, a symbol that has a very high probability of occurrence generates a code
with very few bits. A symbol with a low probability generates a code with a larger
number of bits. Generating codes that vary in length according to the probability of the

symbol they are encoding makes data compression possible. Each variable-length code

]

can be uniquely decoded. Huffman coding achicves the minimum amount of redundancy

possible in a fixed set of variable-length codes; however, this doesn't mean that Huffman
coding is an optimal coding method. It means that it provides the best approximation for
coding symbols when using fixed-length codes [2, p. 18].

A binary tree is constructed from the individual symbols in a file. Each svmbol is
a child node in the tree. A weight is assigned to each child node. The assigned weight is
either the frequency or the probability of the symbol occurring in the file. Therefore,
svmbols with a low probability of occurrence have lower weights assigned. The binary
tree is built by combining the two lowest weight child nodes, creating a parent node. and
assigning a weight to the parent node. The parent node's assigned weight is the sum of
the two child node weights. A bit value of 1 is assigned to the path taken from the parent
node to the child node with the lowest weight. The path from the parent node to the
other child node is assigned a bit value of 0. The process is repeated until only one node
is left. This node is designated the root of the binary tree. The variable-length codes are
generated by traversing the binary tree from the child node which represents the symbol
of interest to the root. The bits in the generated code are arranged in the order from root
to child node. Table II1.1 contains a list of five different symbols and their frequency of
occurrence in a file. The table also contains the unique variable-length Huffman codes
assigned to each symbol. Figure III.1 displays the Huffman binary tree for the file in
Table II1.1. Huffman codes have the unique prefix attribute, meaning that no code is a
prefix to another code. As a result, the codes can be correctly decoded despite being

variable length. Using Figure III.1, the Huffman code for 'MAZES' would be

1101001110101 or 13 bits long. If cach letter in '"MAZES' requires cight bits to represent
it, then a total of 40 bits would be required. In this case. Huffman coding produces a

compression ratio of 67.5%.

SYMBOL| FREQUENCY [CODE
A 8 100
E 15 0
M 4 110
S 5 101
Z 1 111

Table IL.1: Huffman Coding Example

Figure II1.1: The Huffman Binary Tree.

Huffman coding uses an integral number of bits for each code, which 1s usually
slightly less than optimal. Additionally, the compression program has to pass a complete

copy of the Huffman coding statistics with the compressed data. This effectively reduces

10

the amount of compression achieved. Huffman coding is not an optimal coding method,

but it is the best approximation that uses fixed codes with an integral number of bits.

C. ARITHMETIC CODING

Arithmetic coding is a lossless compression method that produces a single output
code for an entire message. Unlike Huffman coding, it does not produce a single code
for each symbol. Instead, arithmetic coding encodes a stream of input svmbols with a
single floating-point output number in the range from 0 to 1. Each symbol added to the
message incrementally modifies the output code. As in Huffman coding, each svmbol's
probability of occurrence in the file is first determined. Next, each symbol is assigned a
range, corresponding to its probability of occurrence, in the interval from 0 to 1. Table
I11.2 contains a file with five different symbols, their probability of occurrence, and the
range they occupy in the 0 to 1 interval. If the first symbol in the file is 'M', then the
encoded floating-point output number will be a number between 0.60 and 0.70. Each
new symbol to be encoded further restricts the range of the output number. If the next
symbol to be encoded is ‘A’ then the encoded output number will be a number between
0.60 and 0.62 since 'A' is assigned the range 0.00 to 0.20 in the 0.60 to 0.70 subrange
established by the symbol 'M'. The higher the probability of a symbol, the less it will
reduce the range and, therefore, add fewer bits to the code. The net effect of each input
symbol on the output code can be a fractional number of bits instcad of an integral
number since Arithmetic coding uses a fractional number of bits per code allowing it to

incrementally improve compression performance. Table II1.3 contains an example of the

11

Anthmetic encoding process resulting in the final low value, 0.61896, which will
uniquely encode the message 'MAZES'. The symbol probabilitics are taken from Table
I11.2. The number of bits required to represent the number 0.61896 can be determined

from:;

0.61896=2A,% (1IL1)
1

where A, 1s the ith bit of the binary representation of 0.61896, i is the index of the nth
bit, and x ts the minimum number of iterations necessary to repesent thc number in
binary. Selecting x to be a value of 20 cnsures that the left side of Equation II1.1 will
have sufficient resolution in order to represent 0.61896. Therefore, 0.61896 can be
represented in as few as 20 bits compared to the 40 bits required to represent the message
'MAZES' using cight bits per character. This results in a CR of 50%. A simple
algorithm can be applicd to Equation II1.1 in order to produce the sequence A, A,, ...A,,.
Simply multiply the left side of Equation III.1 by 2 repeatedly until an integer is
produced as a leading digit. Then subtract one and continue. For each 1 produced record

a one, otherwise record a zero [12, p. 9).

SYMBOL | PROBABILITY RANGE
A 2/10 0.00<R<0.20
E 4/10 0.20<R<0.60
M 1/10 0.60<R<0.70
S 2/10 0.70<R<0.90
Z 1/10 090<R<1.00

Table II1.2: Arithmetic Coding Symbol Range

12

Symbeol Low Value High Value
0.0 1.0
M 0.6 0.7
A 0.60 0.62
y4 0.618 0.620
E 0.6184 0.6192
S 0.61896 0.61912

Table IIL3: Arithmetic Encoding Example.

Decoding consists of determining which symbol falls within the range of the
encoded message. In the example in Table II1.3, the encoded message falls in the
interval between 0.6 and 0.7. Therefore, the first character in the message must be 'M'.
The next character is decoded by subtracting the low value of 'M' from the encoded
value, dividing by the width of the range of 'M' (0.1), and determining which character

falls within the new interval. Table II1.4 contains an example of the decoding process.

Encoded |Output Symbol Low High Range
Number
61896 M 0.6 0.7 0.1
0.1896 A 0.0 0.2 0.2
l0.948 z 0.9 1.0 0.1
lo.48 E 0.2 0.6 0.4
lo.7 S 0.7 0.9 0.2
0.0

Table Il.4: Arithmetic Decoding Example.

13

D. LIMPEL-ZIV (LZ) COMPRESSION

LZ compression is a lossless compression method based on the work of Jacob Ziv
and Abraham Lempel in 1977-1978 (2, p. 23]. It is a dictionarv-based method using an
adaptive dictionary to achieve compression. LZ compression is based on strings of
symbols instead of individual symbols thereby exploiting the interdependency between
symbols 1n a string. A table of strings is created from the input data and placed into a
string dictionary. As cach new string is input from the input data, the string dictionary is
searched for a string match. If a match is found, a code is output which represents the
string in the dictionary.

Ziv and Lempel's work resuited in two LZ compression methods, LZ77 and
LZ78. LZ77 uses a shding-window approach in constructing its dictionary. The
dictionary consists of all the strings in a window of the input data stream. For example,
if a 4K byte window is used as the dictionary, the LZ77 algorithm looks for matches with
strings found in the previous 4K bytes of data already read in. As new symbols of the
input data stream are read in, the 4K byte window slides so that the last 4K bytes of input
data is in the window, hence the term sliding-window. All string matches are encoded as
pointers to the string in the dictionary. The amount of compression depends on how long
the dictionary strings are and how large the sliding-window is. Figure [I.2 shows a
simple flowchart of the LZ77 compression process.

LZ78 differs from LZ77 in the way that it builds and maintains its dictionary.
Instead of having a limited-size window of the preceding input data, LZ78 builds its

dictionary out of all of the previously input symbols in the input data stream. The

14

-_—

dictionary of strings is built a single symbol at a time. The first symbol input from the

input data stream is stored in the dictionary and becomes the current prefix. FEach
subsequent symbol from the input is added to the current prefix before a search for a
match is made in the string dictionary. If a string match is found, a pointer code is
output which represents an offset into the string dictionary. If no match is found. the
stirng is added to the dictionary. Once a string is added to the dictionary, it is available
to the encoder at all times, not just for the next few thousand characters as in LZ77. This
incremental procedure works very well at isolating frequently used strings and adding
them to the dictionary. Conscquently, strings in LZ78 can be very long, resuiting in high
compression ratios.

Another variation of LZ compression is the LZW compression method,
devcloped by Terry Welch in 1984 [2, p. 285]. LZW is an extension of LZ78. LZW
differs from LZ78 in the way that it initially builds the dictionary. The dictionary is
wnitialized with single-symbol strings equal to the number of ASCII characters. In other
words, the first 256 entries in the dictionary are intialized with the byte values 0 to 255.
Thus, there is no symbol that cannot be immediately encoded even if it has not already
appeared in the input data stream. LZW uses a current prefix buffer and a current string
buffer like the LZ78 algorithm. The current string is defined as the current prefix plus
the next symbol input from the input data. A match is found for the first symbol. A
code is output, and the new string is added to the string table. The current string is added

to the current prefix. This process continues until the input data stream ends.

15

Initialize String

Table
v

Get Next String l(»

No N Yes
* Is String in L
e Table?
Insert String into Output Table Cod
'(Fan()il: Output to Qutput Stream
= End of Input
L___)i Stream? J(———J
Yes No

Figure IIL2: Flowchart of LZ77 Compression Process.

E. RUN LENGTH ENCODING

Run length encoding (RLE) is arguably the least complex and easiest to
implement lossless compression method. RLE capitalizes on the successive repetition of
characters in a binary bit stream or image. [t is effective only in applications involving
many repeated characters. Instead of repeating each character, run length encoding uses
a code which specifies how many consecutive characters arc in the particular run. [n the
casc of images, many consccutive grey-scale pixels having the same value are an
example in which run length encoding would produce some degree of compression. Run
length encoding may actually expand a file if the average length of consccutive

characters is less than the code used to specify them. Run length encoding can be

16

performed at the byte or the bit level depending on the application. [t is used most often

as a preprocessor for other compression algonthms [6, p. 37].

F. BIT PLANE ENCODING

Bit plane encoding is the process of grouping single bits from the same position
in a binary representation together to form a binary array. For example, an image
containing N x N pixels, each pixei represented by k bits, can be broken up into k
different N x N bit planes. The most significant bit (MSB) of each pixel binary
representation is grouped together with the MSB of the remaining pixels to form a bit
planc. Repeating this process for the other k-1 bits in each pixel results in k bit planes.
Hence, the original image is now represented by k, N x N bit planes. The advantages of
bit planc encoding arc twofold. First, each individual bit planc can be encoded
efficiently using a lossless compression routine. Secondly, bit plane encoding permits a
technique called progressive transmission to be implemented. In progressive
transmisston, bit planes are transmitted in a sequence starting with the MSB bit planc and
ending with the LSB bit planc. The transmitted bit planes arc progressively
reconstructed at the terminal end. The user may view an image as it is being
reconstructed and clect to terminate the transmission or procecd depending on the level
of quality desired [1, p. 194].

The most significant bit planes tend to contain a lot of redundancy and are highly

compressible. The least significant bit plancs contain less redundancy and exhibit the

17

behavior of random noisc. As a result, the least significant bit planes are less
compressible than the more significant bit planes {1. p. 54].

Bit planes may be combined together into subsets {5, p. 35]. Each subset may
then be compressed with a lossless compression method. Grouping the bit planes into
subsets may achieve higher compression ratios than performing lossless compression on
cach individual bit plane. The distributions of each bit plane or subset with respect to bit
values of onc and zero determines which optimum lossless compression technique to

utilize for compression.

G. PREDICTIVE ENCODING

Predictive encoding may be either a lossless or a lossy compression method. The
lossless predictive encoding method is discussed here. Images are typically highly
correlated from pixel to pixel, especially between adjacent pixels. This correlation
between pixel values can be exploited to achieve compression of the image by using
predictive encoding. Predictive encoding predicts the value of a given pixel based on the
values of the pixels surrounding it. Numerous combinations of pixels exist. After
predicting the value of the pixel, the predicted pixel value is subtracted from the actual
pixel value to form an error value. This process is continued for all of the pixels in the
image. The resulting error image will have a significantly different distribution or
histogram than the original image. If the predictor accurately predicts the pixel values,
the crror will be small and the error image histogram will be narrow and Laplacian in

nature [1, p. 62]. The error is encoded using a lossless compression method such as

18

Huffman or Anthmetic. The better the predictor i1s at predicting the pixel values, the
smaller the resulting error. The smaller error can be encoded more efficiently. resulting
in better overall compression of the image. The order of the predictor is determined by
the number of surrounding pixel values used to make the prediction. Generally, a higher

order predictor will outperform a lower order one [1, pp. 58-60).

H. JPEG

JPEG 15 a compression standard created by the Joint Photographic Experts Group
(JPEG). The JPEG compression standard has not vet been finalized but is currently in
the final stages of the standardizations process. The JPEG standard includes a
specification for both lossy and lossless compression of images. The Discrete Cosine
Transform (DCT) algorithm with quantization is used for lossy compression and a
predictive method is used for lossless compression. The JPEG encoder consists of three
stages: a transformation stage, a lossy quantization stage, and a lossless coding stage.
The advantages of the DCT over the Discrete Fourier Transform (DFT) lie in the
differences in their periodicitics [1, pp. 108-111]. The DCT transformation stage
converts the image to the frequency domain and concentrates the information energy into
the first few transform cocfficients, the quantization stage causes a controlled loss of
information, and the lossless stage further compresses the image data. Figure [I1.3
displays a block diagram of the JPEG encoder. The DCT equation for an NxN pixel

block is:

N=1 N~1 . .
X(i,j)=7_—3_2-h7C(i)C(j)m§ b) x(m,n)cos[(z'"z‘;v')i }cos[(zn ;A;)’“} (I11.2)

19

where: C(i), C(j) = "7‘ for ij =0, else C(1), CG) = 1.

Decoding consists of reversing the process and using the Inverse Discrete Cosine

Transform (IDCT) in place of the DCT. The IDCT equation is:

N-1 N-1 ' [uy
| [(2m+l)11qcos (2"“’/"! (111.3)

mn) = —— C(1)C()X(i,))cos

(m) = = 3 ZOHOGX(ij)oos| 57 feos| =g
The image is a three dimensional signal (graphical image) where the x and v axes

are the two dimensions of the screen, and the z axis is the amplitude or value of a pixel.

This is the spatial representation of a signal. The two dimensional DCT is obtained by

performing a one dimensional DCT on the columns followed by a one dimensional DCT

on the rows [2, pp. 356-357].

8x8 Pixel DCT . Lossless Comprcsscd
Blocks Transformation Quantizer Encoder Image

Figure ITL.3: Block Diagram of the JPEG Encoder.

20

The original image is first partitioned into 8x8 pixel blocks. Each block is
independently transformed using the DCT. Each 8x8 pixel block has video cnergy
distributed amongst its pixel elements. This video energy may be of low spatial
frequency (slowly varying) or of high spatial frequency (quickly varying) [9, p. 5]. The
DCT converts the spatial information into frequency or spectral information, with the x
and y axes representing frequencies of the signal in two different dimensions. The
transformed output of the 2-D DCT is an 8x8 array of 63 AC coefficients and 1 DC
coefficient. The DC coefficient is the mean value of the array and is located in the upper
left comer. The AC coefficients are ordered such that the lower frequency coefficients
are located near the DC coefficient with the higher frequency coefficients located away
from the DC coefficient. The DC coefficient always has the highest value of all the
coefficients. Most images are composed of low frequency information. This suggests
that the DC and lower frequency coefficients carry more useful information about the
image than the higher frequency coefficients. As a result, the ordering of the coefficients
in the array is significant. As we move farther away from the DC coefficient in the
array, we find that the coefficients have lower values and become far less important for
describing the image [2, p. 359]). An example of the effects of DCT processing on an
8x8 pixel block is shown in Figure 111.4.

The quantization stage of the JPEG encoder quantizes the coefficients of the DCT
transform array to reduce their magnitude and to increase the number of zero value
coefficients. Quantization is the lossy stage in the JPEG encoder. The degree of

quantization is controlled by a variable called the quality factor. The quality factor is a

21

number which changes the default quantization matrix by an effective multiplicative
factor of the quality factor. Each of the DCT coefficients is divided by the corresponding
quantizing value in the quantization matrix and rounded to the nearest integer. The
greater the number of high frequency (lower information content) AC coefficients
converted into zeros, the greater the compression achieved by the subsequent lossless
encoding stage. Consequently, a higher quality factor results in better compression while
a lower quality factor results in a better quality image upon decompression. A sample
quantization matrix is shown in Figure IIL.5. Figure II1.6 displavs a sample DCT
transformed image before and after quantization.

Prior to the final lossless encoding stage, the quantized DCT coefficients are
arranged in a zig-zag pattern (see Figure II1.7) with the lowest frequencies first and the
highest frequencies last. The numbers 1-64 in Figure II1.7 represent the sequence that
the pixels are placed in the output sequential bit stream. This type of pattern is used to
increase the number of consecutive zero coefficients in the 8x8 block. This allows for
further compression using a lossless method such as run length encoding, Huffman or
Anthmetic [8, p. xxui].

The lossless encoder encodes the 8x8 pixel block DC coefficients using
Differential Pulse Code Modulation (DPCM). DPCM encodes the difference between
the quantized DC coefficient of the current block and the quantized DC coefficient of the
previous block. The AC coefficients are coded using a combination of run length

encoding and Huffman.

22

lInpo.lt Pixel Values:

140 144 147 140 140
144 152 140 147 140
152 155 136 167 163
168 145 156 160 152
162 148 156 148 140
147 167 140 155 155
136 156 123 167 162
148 155 136 155 152

[Output Pixel Values:

186 -18 15 -9 23
21 -34 26 -9 -11
-10 -24 -2 6 -18
-8 -5 14 -15 -8

-3 10 8 1 -11
4 -2 -18 8 8
9 1 -3 4 -1

-8 -2 2 1

155
148
162
155
136
140
144
147

179
167
152
136
147
136
140
147

175
179
172
160
162
162
147
136

Figure II1.4: Sample Image Data before and after DCT

Processing [2, p. 363].

23

3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19
7 9 11 13 IS 17 19 21
9 11 13 15 17 19 21 23
11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31
Figure [I1.5: Sample Quantization Matrix {2, p. 367]

The JPEG compression standard also contains a lossless compression
specification based on predictive encoding and Huffman. This lossless mode of
operation is wholly independent of the DCT processing previously discussed. The
lossless JPEG predictive encoder has seven different predictors to choose from. The
seven different predictor models combine the values of up to three neighboring pixels (A,
B, and C) to predict the current pixel value (X) in Figure IT11.8. This prediction is then
subtracted from the actual pixel value, and the difference is encoded losslessly using
Huffman. Any one of the seven predictors (K =1 - 7) listed in Table III.5 can be used.
The K =1, 2, and 3 predictors are one dimensional predictors while the K=4. 5, 6, and 7

predictors are two dimensional predictors.

24

-84 62 I -18 3 4 -5

-52 -36 -10 14 -10 4 -2

-86 -40 49 -7 17 -6 -2

-62 65 -12 -2 3 -8 -2

-17 14 -36 17 -11 3 3

-54 32 -9 -9 22 1
DCT Matrix after Quantization:

90 0 -7 0 0 0 0
-35 -56 9 11 0 0 0
-84 54 0 -13 0 0 0
-45 -33 0 0 0 0 0
-77 -39 45 0 0 0 0
-52 60 0 0 0 0 0
-15 0 -19 0 0 0 0
-51 19 0 0 0 0 0

S L T U VN

w

=R = A = 2~ I = D = IR =

Figure I11.6: DCT Transformed Image before and after
Quantization [2, p. 368].

25

10
11
21
22
36

5

9

12
20
23
35
37

8
13
19
24
34
38
49

7
14
18
25
33
39
48
50

15 16 28
17 27 30
26 31 42
32 41 45
40 46 53
47 52 56
51 57 60
58 59 63

29
43

54
55
61
62

Figure I1L.7: Zig-zag Pattern.

!
vl

Figure ITL8: Sample Prediction

Pixel Neighbors.

Selection Value (K)

Predictor

1

A

B

C

A+B-C

A+(B-C)/2)

B+(A-C)/2)

NQlaajwnia Wi

(A+B)/2

Table IILS: Lossless JPEG Predictors.

26

IV COMPARISON OF COMPRESSION METHODS

A. OVERVIEW

A comparison of the compression ratios achieved by direct compression of three
test images using the standard lossless compression methods is performed. A comparison
of compression ratios is also performed when the standard lossless compression methods
are tested in the hybrid lossless compression model. Additionally, the hybrid model
compression results are compared to the direct compressions achieved by the standard

lossless methods.

B. TEST IMAGES

Three different 8-bit, 256x256 (65536 bytes) pixel grey-scale images in raw pixel
grey map format were used to evaluate the hybrid lossless compression model. The three
test images are displayed in Figure IV.1. The first image, LENA, is an image whose
pixel values range over most of the 256 possible grey-scale levels. The image contains
sharp contrasts and edges. The second image, SHUTTLE, has a range of pixel values
that is less than that of LENA. A small range of pixel values dominate the image. The
image contains large areas where the pixel values do not change significantly, such as the
plume from the rocket motors and the sky background. The third image,
FINGERPRINT, is dominated by a more narrow range of pixel values. The image
contains large arcas of whitespace. Pixel values that are contained in an image and their
frequency of occurence are plotted in a histogram. Histograms of each of the threc test

images is displayed in Figure [V.2. As expected, LENA contains a wide range of pixel

27

Figure IV.1: Three Test Images (a) LENA, (b) SHUTTLE,
(c) FINGERPRINT.

Histogrem of LENA

(a)

Histogram of SHUTTLE
Number of Oocurinces.

T T

B

1 3 o -4 a m (X] 1% m L a2 -
Puel Volues

(b)

Histogram of Fingerprint

Figure IV.2: Histograms of the Three Test Images (a) LENA, (b) SHUTTLE,
(c) FINGERPRINT.

29

values; SHUTTLE is dominated by a smaller range of pixel values; and FINGERPRINT

contains a very narrow range of dominant pixel values.

C. LOSSY JPEG

The lossy JPEG algorithm used in the model was developed bv Andy C. Hung at
the Portable Video Research Group (PVRG), Stanford Umiversity [9]). The quality factor
used when compressing an image determines the amount of compression achieved and
the resolution of the image when it is decompressed. The higher the quality factor, the
greater the compression and the less the resolution upon decompression. Figure [V.3
graphically displays the quality factor versus compression ratio achieved for the three test
images. The graph data is tabulated in Table A.1 in Appendix A. The measure of the
resolution of the decompressed image as compared to the original image is termed the
root mean square error (c.,.) and is a measure of the error between the two images (3. pp.

256-257]:

1[Nz) 0.5
e = x| & & |8(XY) - Aix.Y)| (IV.1)
=0 y=0

where, for NxN pixel images, f(x,y) is the array of pixel values for the original image
while g(x,y) is the array of pixel values for the decompressed image. Figure [V.4
graphically displays a plot of quality factor versus ¢_, for each of the three test images.
The graph data is tabulated in Table A.2 in Appendix A. As the quality factor is

increased, the ¢, of the decompressed image decreases as expected. The decompressed

30

(Quality Factor vs CR for Three Test Images

CR
120

100
a0
60
40

20 Y L 1 —) -1 o i 1 | L 1 L 1
1 5 10 15 20 25 30 40 S50 75 100250350500800
Quality Factor

—TrTTT T

Lena Shuttle Fingerprint

Figure IV.3: Comparison of Quality Factor vs CR for the Three Test
Images.

f Quality Factor vs RMS Error for Three Test images
RMS Ermor

0.2

i
015

01

¥

0.05

0 1 5§ 10 15 20 25 30 40 50 75 100250350500800

Quality Factor

Lena Shuttie Fingerprint
- RN ——

| Figure IV.4: Comparison of Quality Factor vs e, for the Three
Test Images.

31

test image LENA is displayed in Figure V.5 after compression at various quality factors.
Note that as the quality factor increases, the resolution of the decompressed image
decreases. At quality factors greater than 100, the decompressed image begins to exhibit

distinct blockiness due to the processing of 8x8 pixel blocks by the JPEG algorithm.

D. SECONDARY COMPRESSION

The hybrid lossless compression model was first evaluated by assessing 1if it is
feasible, in terms of compression overhead, to use secondary compression to achieve a
lossless process. In order for secondary compression to be feasible. it would have to
contribute some measurcable increase in the compression achieved after compressing an
image using lossy JPEG. The lossless compression methods used for secondary
compression are Huffman, Arithmetic, and LZW and the code is taken from Nelson [2].
Table V.1 contains the results of secondary compression on the three test images first
compressed using lossy JPEG at different quality factors. The results are expresscd as
the percent compression ratio (CR) achieved. The results show that secondary
compression does not significantly increase the compression of the three test images
used. In fact, in all but a few cases, secondary compression of the lossy JPEG
compressed image resulted in an expansion (i.e., negative CR) of the compressed image
file size instead of compression. Since secondary compression does not provide a
significant reduction in the compressed image file size, the hybrid lossless compression
model was modified accordingly. The modified hybnd lossless compression model is

displayed in Figure IV.6.

32

Figure IV.5: Decompressed LENA at Various Quality Factors (a)Original
}gag_e, -sgg Q=100, (c) Q=250, (d) Q=350, (e) Q=500,

33

1

LENA SHUTTLE FINGERPRINT
Q=5 | Q=50 {Q=500| Q=5 | Q=50 |{Q=500! Q=5 | Q=50 |Q=500
Huffman 0 -3 -4 -1 -5 -17 -2 -7
Arithmetic | 0 | 2 | 4 | o [a7 0 [] 6
LZW IR IR .

Table IV.1: Secondary Compression CR Results for the Three Test [mages.

Original
Image

Lossy
Compression

A: Browse Image
B: Residual Image

v

Decompressior

Lossless
Compression

Appended
File

Figure IV.6: Modified Hybnd Lossless Compression Model.

E. COMPARISON OF LOSSLESS COMPRESSION METHODS

The three test images were first compressed using standard lossless compression

methods in order to provide a reference to compare the compression results achieved by

the hybrid lossless compression model. Huffman, Arithmetic, LZW, and lossless JPEG

were the lossless compression methods used. Once again, the Huffman, Arithmetic, and

LZW algorithms are taken from Nelson [2]. The lossless JPEG algorithm is taken from

Andy C. Hung's PVRC-JPEG algorithm [9].

The direct lossless compression results

achieved are graphically displayed in Figure IV.7. All seven of the lossless JPEG

predictor algorithms were used in the compression test, but only the predictor algorithm

34

which achieved the best results is graphed in Figure IV.7. For all three test images,
lossless JPEG achieved greater compression than the other three lossless compression
methods used. Nonetheless, the lossless JPEG does not provide the convenience of a
browse and residual decomposition.

The hybrid lossless compression model (Figure [V.6) was first evaluated using
standard lossless compression techniques. Another lossless method, Diagonal coding,

recently reported in the literature, will be discussed in the context of the hybrid model in

Chapter V. Huffman, Anthmetic, LZW, and lossless JPEG were used to compress the
residual image ((B) shown in Figure IV.6). The results achieved after compressing the
three test images using the hybrid lossless compression model with Huffman, Arithmetic,
LZW, and the lossless JPEG methods are graphically displayed in Figures V.8, IV.9,
and [V.10 respectively. The test images were compressed at various quality factors. The
lossless JPEG predictor algorithm that achieved the greatest compression of each residual
image ts graphed. The second and third order predictor algorithms (K=4, 5" 6, 7)
predominantly achieved the greatest CR on the residual images and are 4Hidentified in
Table A.3 in Appendix A for each image.

A comparison between the compression results achieved by the direct lossless
compression methods and the hybrid lossless compression model is graphically displayed
in Figures IV.11, IV.12, and IV.13 for each of the three test images at various quality
factors. For ease of reading, it should be noted that the right-most 3-D bar in each
column represents the compression achieved compressing the image with that particular

direct lossless compression method (not using the hybrid lossless compression model).

35

F. CONCLUSIONS

The lossless JPEG algornithm achieves the greatest compression on each of the
three test tmages when compared to the other three direct lossless compression methods.
The lossless JPEG predictor algorithm which achieved the greatest compression was
K=2, K=6, and K=5 for the test images LENA, SHUTTLE, and FINGERPRINT,
respectively, and achieved compression ratios of 34%, 49%, and 27% (see Figure [V.7).
The highest compression ratio achicved by the other three direct lossless compression
methods for each of the three 1images was 8%, 18%, and 13% (see Figure IV.7).

The hybnid lossless compression model achieved its best compression results on
the test image LENA when the arithmetic method was used to compress the residual
image. The best overall compression was achieved using a quality factor of 100 to
compress the original image with lossy JPEG. A hybrid compression ratio of 31% was
achieved compared to direct Huffman (7%), Anthmetic (7%), LZW (-3%), and lossless
JPEG (34%) (sec Figure IV.8).

The hybrid model achieved its greatest compression on SHUTTLE when using a
quality factor of 50 to compress the original image using lossy JPEG and the arithmetic
method to compress the residual image. A hybrid compression ratio of 48% was
achieved using this combination compared to direct Huffman (16%), Arithmetic (16%),
LZW (18%), and lossless JPEG (49%) (see Figure [V.9).

The greatest compression was achieved on FINGERPRINT when using a quality

factor of 50 in combination with the arithmetic method. A hybrid compression ratio of

36

31% was achieved compared to direct Huffman (13%), Anrithmetic (13%), LZW (13%),

and lossless JPEG (27%) (see Figure [V.10).

In all cases, the hybrid lossless compression model achieved greater compression
ratios on all three test images than did the direct lossless compression methods with the
exception of the direct lossless JPEG method. Due to the wide diversity of images
compressed using the hybrid model, these results suggest that the hybrid model will
achieve similar favorable compression results on any grey-scale image. The hybnid
model achieved a lesser CR on LENA and SHUTTLE than did direct lossless JPEG;
however, the model did achieve a greater CR than direct lossless JPEG on
FINGERPRINT at quality factors of 50 and 100 (see Figure [V.10). The hybrid model
enjoys the advantage of producing a compressed browse image which is significantly
more compressed than the direct lossless JPEG compressed image. For instance, using a
quality factor of 100 to compress LENA produces a lossy compressed browse image with
a file size of 4823 bytes (compression ratio of 92%). The best lossless JPEG predictor
algorithm produces a direct lossless compressed file size of 43322 bytes (compression
ratio of 34%). Decompressing the lossy compressed LENA browse image produces an
image that is visually lossless with no visual distortions (see Figure IV.5 (b)). If a
lossless image is desired then the residual image of 40353 bytes can be transmitted and
added to the browse image to produce an exact replica of the original image.

In the next chapter, a recently discovered lossless method known as Diagonal
coding [7] is discussed and tested. Comparison to the results of this chapter will be

made.

37

/ Direct Lossless Compression of Three Test images
CR

60 [
50
40}
30}
20
10}
0.

_1 i L 1
0 Huffman Arithmetic LZW JPEG

Lossless Compression Methods

B LENA O SHUTTLE D FINGERPRINT

Figure IV.7: Comparison of Direct Lossless Compression on the
Three Test Images.

[Hybrid Lossless Compression of LENA
CR

40

30
20

Huffman Arithmetic LZW JPEG
Lossless Compression Methods

B Q-5 0 Q=50 £ Q=100 & Q=500

Figure IV.8: CR Achieved Using the Hybrid Lossless Compression

Model on LENA at Various Quality Factors.

38

Hybrid Lossless Compression of SHUTTLE

8'8'8'83\

201
107
0 Huffman Arithmetic LzZw JPEG
Lossless Compression Methods

B Q=5 0 Q=50 0 Q=100 & Q=500

Figure IV.9: CR Achieved Using the Hybrid Lossless Compression
Modeil on SHUTTLE at Various Quality Factors.

(Hybrid Lossless Compression of FINGERPRINT
CR

35
30
25
20
15
10

Huffman Arithmetic LZW JPEG
Lossless Compression Methods

B Q=5 0 Q=50 0J Q=100 B Q=500

Figure I'V.10: CR Achieved Using the Hybrid Lossless Compression

Model on FINGERPRINT ar Various Quality Factors.

39

f Comparison of Lossless Compression Methods

(LENA)
CR
40
!
30
20
10
0 o
-10 N . 1 - L |
Huffman Arithmetic LZwW JPEG
Lossless Compression Methods
.Q=5 Q-50{ |Q=100 | Q=500) | Direct

Figure IV.11: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
LENA at Various Quality Factors.

f Comparison of Lossless Compression Methods

(SHUTTLE)
CR

60
50
40
30
20
10

0

Huffman Arithmetic JPEG
Lossless Compression Methods

B co-s[Jo-s0[Ja-100

Figure IV.12: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
SHUTTLE at Various Quality Factors.

40

(Comparison of Lossless Compression Methods

(FINGERPRINT)
CR

35
30
25
20
15
10

5

0

Huffman Arithmetic LZW JPEG
Lossless Compression Methods

. Q=5 E] Q=50 D Q=100 Q=500 . l[.)gse:ltess

Figure IV.13: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
FINGERPRINT at Various Quality Factors.

41

V. DIAGONAL CODING

A, INTRODUCTION

Another lossless compression method is Diagonal coding. Although not a
standard compression method, it is nonctheless a simple, easy to implement compression
method which achieves good compression ratios when used to compress residual images
resulting from the compression of the original image at low quality factors. The
compression ratios achieved by Diagonal coding are compared to those attained by the

other standard lossless compression methods.

B. RESIDUAL IMAGE HISTOGRAM

The residual image resulting from the pixel by pixel differences in the original
image and the decompressed image exhibits a Laplacian distribution with a mean of zero.
The residual image distribution, or histogram, has a reduced variance compared to the
original image and is also significantly less correlated [1, p. 60]. The shape of the
residual image histogram is dependent upon the quality factor used to compress the
original image using lossy JPEG. As previously discussed in Chapter [V, the higher the
quality factor used, the more compression achicved; however, the decompressed image
will less resemble the original image. This results in a residual image containing a wider
range of pixel values. As a result, the residual image histogram will exhibit a wider
Laplacian distribution. Lossless compression routines which are designed to take
advantage of this type of image distribution will achicve significant compression results.

Figure V.1 displays residual image histograms of LENA for various quality factors. Note

42

Histogram of LEMA Residual image {Qe5)
Nt of Ocosssnoss.
a0
15000 -
0000
som0
0-127 105 L] « » a7 5 4 L) hl E) ns
Pl Values
(a)
Histogram ot LENA Residual image (Qa50)
Numbes of Ocasances
7.000
6000 |
5000 |
4000 |
3000 |
2000
1.000 |-
“z 108 « 4 » 7 H Z » Ll) "
Pixel Values
(b)

Histogram of LENA Residual image (Q=500)

Figure V.1: Residual Image Histograms of LENA (a) Q=5, (b) Q=50, (c) Q=500.

43

that as the quality factor used to compress the original image of LENA is increased, the

distribution of the corresponding residual image widens,

C. DIAGONAL CODING

Duc to the residual image cxhibiting a Laplacian distribution with a smaller
variance of pixel values than the original image, a lossless compression method that
employs variable length encoding should achieve significant compression of the data {7,
pp. 9-10]. Diagonal coding i1s a type of variable length encoding designed to take
advantage of the Laplacian distribution of the residual image. In Diagonal coding, cach
pixel value is represented by the number of zeros corresponding to that value, terminated
by a one. Since higher pixel values in the residual image data occur less frequently than
lower pixel values, the coding is optimal [7, p. 10]. As with other lossless compression
methods, there arc variations to Diagonal coding. One vanation is to group residual
image data values together into sets and assign a diagonal code to each set. For example,
a set may consist of the four values -1, 0, 1, and 2. This set may be called set 0 and
assigned the diagonal code of 1. An example of Diagonal coding using sets is displayed
in Table V.1. During encoding, the diagonal code representing cach set is followed by
two bits used to identify which valuc in the set is being encoded. For example, the
combination of two bits of 00, 01, 10, and 11 is used to identify the residual image data
values of -1, 0, 1, or 2 in set 0. Using Table V.1 as a reference, encoding the residual
image data values of -1, 3, -4, and 8 would result in the code of 100011000101000111.

Note that the length of a bit sequence associated with a particular residual data value (one

byte) will depend on its location in Table V.1. The C high-level language rcads and

writes bytes at a time. For efficient compacting of the coded bit stream, a special C
source code program was written that operates at the bit level. Operating at the bvte
level would destroy any advantages of this coding method. The source code for the
Diagonal coding (encoding and decoding) used in the thesis was written by the author
and 1s enclosed as Appendix B. A flowchart of the source code for encoding and

decoding is shown in Figures V.2 and V.3 respectively.

Set Range Diagonal Code
0 (-1,0,1,2) 1
1 (-3,-2,3.4) 01
2 (-5,-4.5,6) 001
3 (-7,-6,7,8) 0001
4 (-9,-8,9,10) 00001
5 (-11,-10,11,12) 000001
6 (-13,-12,13,14) 0000001
7 (-15,-14,15,16) 00000001
8 (-17,-16,17,18) 000000001
9 (-19,-18,19,20) 0000000001

Table V.1: Diagonal Coding Example.

Diagonal coding was first used in a direct compression role to compress the three
test images. A comparison of diagonal coding with the other four lossless compression
methods was performed. The results are graphically displayed in Figure V.4. The graph

data is tabulated in Table A.4 in Appendix A. Figure V.4 is the same as Figure IV.7 in

45

[i Read in Residual
Begin Image File
¥

Get Pixel Vuluﬂ(-—'

Determine what

Set Pixel Value
is in

¥

Output Diagonal
Code

'R

Qutput 2-Bit ID |
Code

Figure V.2: Flowchart for Diagonal Encoding.

K Read Eompressed
File
v
Increment . .
Counter -)lGet Bit from Fﬂjh

Yes
No

Get Next Two Output Residual
Bits (ID Code) 3 Image Pixel Valu

4

Figure V.3: Flowchart for Diagonal Decoding.

Chapter [V with the addition of the Diagonal codiag results. Diagonal coding produced

an expansion in the image file size after compression for all three of the test images. 1t is
clearly not a viable lossless compression method for images which do not exhibit a
narrow Laplacian distribution (histogram) with a mean of zero.

Next, Diagonal coding was used in the hybrnid lossless compression model to
compress the residual image. Each of the three test images were used and were
compressed at various quality factors. A comparison of Diagonal coding with the other
four lossless compression methods was performed. The results are graphically displayed
in Figures V.5, V.6, and V.7. It s observed that at low quality factors (i.c., low ¢) the
standard entropy based methods, Huffman and Arithmetic, are very competitive in the
hybrid model. At high quality factors (i.c., high ¢_), the lossless JPEG tends to be the
most competitive. It is noted that Diagonal coding is very inefficient at a quality factor
of 500. The graph data is tabulated in Tables A.5, A.6, and A.7 in Appendix A. These
three figures are the same as Figures IV.8, IV.9, and IV.10 in Chapter IV with the
addition of the Diagonal coding resuits.

A comparison between the compression results achieved using direct lossless
compression and the hybrid lossless compression model using Huffman, Arithmetic,
LZW, lossless JPEG, and Diagonal coding to compress the residual image 1s graphically
displayed in Figures V.8, V.9, and V.10. It 1s observed that, with the exception of
lossless JPEG, generally one or more of the hybrid compression schemes will achieve a

higher CR than its direct counterpart (see the fifth column for each method in Figures

47

V.8, V.9, and V.10). In the lossless JPEG case, the hybrid methods are fairly
competitive to the direct. lossless JPEG and even demonstrate a shght marginal CR
advantage in the case of FINGERPRINT (see Figure V.7). In most cases. LZW s not
competitve with the other lossless compression methods. The graph data 1s tabulated 1n
Table A.8, A.9, and A.10 in Appendix A. Once again, these three figures are the same as
Figures [V.11, IV.12, and V.13 in Chapter IV with the addition of the Diagonal coding
results.

Other vanations of Diagonal coding were tested and evaluated in an attempt to
achieve higher compression results when compressing the residual images. One vanation
consisted of altering the number of range values in each set and performing Run-length
cnc-oding on the longer diagonal codes. This varation achieved minimal compression
improvements and in most instances resulted in less compression than did the bascline
Diagonal coding method. Another variation consisted of breaking up the residual image
data into bit planes and performing Diagonal coding on them. For example, the six most
significant bit (MSB) bit planes were combined together, and the two least significant bit
(LSB) bit planes were combined together to form two separate data sets. Diagonal
coding was performed on each data set and the resulting compressed files were added
together to form an 8-bit compressed file. Different combinations of bit-planes were
tested and evaluated; however, none achieved the compression results attained by
performing Diagonal coding on the original 8-bit residual image file. The two LSB's in
the residual image are primarily noise and contnbute little to the quality of the original

image. If they are removed from the original image, no significant visual degradation

48

occurs to the image. Indeed. high compression ratios were achieved using Diagonal

coding to compress the six MSB's; however, the process is not a truly lossless one and
was therefore not included in the compression ratio comparisons. A representative
sample of data produced from each of the Diagonal coding variations s tabulated in

Tables A.11 and A.12 in Appendix A.

D. CONCLUSIONS

Diagonal coding is not as effective as Huffman, Anthmetic, and lossless JPEG in
compressing the residual image; however, Diagonal coding does achieve higher
compression of the residual image than does LZW in most cases. Diagonal coding
achieves close to the same compression results as Huffman, Arithmetic, and lossless
JPEG at some quality factors. As the quality factor used to compress the original image
1s increased, the compression achieved using Diagonal coding decreases. This is due to
the residual image distribution widening, thereby resulting in longer diagonal codes. At
some point, Diagonal coding will result in the expansion of the residual image file size.
Diagonal coding resulted in an expansion of the residual image size when used to
compress FINGERPRINT at a quality factor of 500 (see Figure V.7). The benefits of
using Diagonal coding is its case of implementation and non-complex nature. It is a
non-CPU intensive algorithm with minimal execution times as compared to Huffman and
Arithmetic. Additionally, it achieves comparable compression results at some quality

factors.

49

/ Direct Lossless Compression of Three Test Images
CR

100
50 —1 .
50+

-100 |

-150

-200

Huffman Arithmetic LZW JPEG Diagonal
Lossless Compression Methods

B LENA O SHUTTLE £J FINGERPRINT

Figure V.4: Direct Lossless Compression of Three Test Images.

50

/ Hybrid Lossless Compression of LENA
CR

40
20/
20}
10}
0
10— fiman Arith;netic sz JPIEG DiagLonaI
Lossless Compression Methods
B Q=5 0 Q=50 0 Q=100 § Q=500

Figure V.5: CR Achieved Using the Hybrid Lossless Compression
Model on LENA at Various Quality Factors.

(Hybrid Lossless Compression of SHUTTLE
CR

60
50
0 g
30
20 [
10

Huffman Arithmetic LZW JPEG Diagonal
Lossless Compression Methods

8 Q=5 0 Q=50 0 Q=100 8 Q=500

Figure V.6: CR Achieved Using the Hybrid Lossless Compression
Model on SHUTTLE at Various Quality Factors.

51

- /—//}////

/ Hybrid Lossless Compression of FINGERPRINT
CR

40
30 |

Huffman Arithmetic LZW JPEG Diagonal
Lossless Compression Methods

B Q=5 0 0=50 0 Q=100 B Q=500

Figure V.7: CR Achieved Using the Hybrid Lossless Compression
Model on FINGERPRINT at Various Quality Factors.

/

Comparison of Lossless Compression Methods
(LENA)

T

Huffman Arithmetic LZW JPEG Diagonal
Lossless Compression Methods

Q=500 § Eci)r:sﬁ}-zss

B o-s[Jo-s0[Ja-t00f

Figure V.8: Comparison of Hybrid Lossless Compression Model
with Standard Lossiess Compression Methods for
LENA at Various Quality Factors.

52

/ Comparison of Lossless Compression Methods
(SHUTTLE)

1 1 1 1 e —_—
(150) Huffman Arithmetic LZW JPEG Diagonal

Lossless Compression Methods

Figure V.9: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
SHUTTLE at Various Quality Factors.

K Comparison of Lossless Compression Methods

(FINGERPRINT)
CR

50 [
0 S
(50) |
(100)
(150)

(200) Huffman Arithmetic LZW JPEG Diagonal

Lossless Compression Methods

B o5 Jo-s0[]o-100

Figure V.10: Comparison of Hybrid Lossless Compression Model
with Standard Lossless Compression Methods for
FINGERPRINT at Various Quality Factors.

53

e

V1. HYBRID MODEL OPTIMIZATION

As discussed in section V.B, the quality factor will impact the Laplacian
distribution of the residual image. The results of this chapter will show that the

compressibility of both the browse and residual images depend on the quality factor. At

low quality factors, minimal compression 1s achieved on the browse image; however, the
residual image becomes highly compressible. As the quality factor is increased. the
browse image is more compressible, but the residual image compresses less. Since the
overall lossless image is the sum of the compressed browse and residual image data (sce
Equation [1.2), achieving maximum overall compression would ostensibly depend on
finding some optimal quality factor. In this chapter, we will examine this issue as well as
the sensitivity of the overall CR to the quality factor for the images chosen.

Figures V1.1, V1.2, and V1.3 display the overall CR achieved using the hybrid
lossless compression model with the three test images. These three figures are very
similar to Figures V.5, V.6, and V.7. The difference is in the way the data is displayed

~ and the number of quality factors used. The graphical data is tabulated in Tables A.13,
A.14, and A.15 in Appendix A. Note that the graphical results of using Diagonal coding
to compress FINGERPRINT in Figure V1.3 arc limited to a quality factor of 350. This is
due to the degree of expansion Diagonal coding produces at quality factors greater than
350 on FINGERPRINT. The quality factor used to compress the original image ranges
from a value of 5 to 1000 so that a wide range of browse and residual images are
produced and cvaluated. The three figures show that, for high quality factors, lossless

JPEG is the compression method which achieves the best CR on the test images. In most

54

instances, Huffman, Arithmetic, LZW, and Diagonal coding achieve decreasing

compression on cach of the images at the higher quality factors while the hvbrid lossless
JPEG achicves virtually the same CR at quality factors of 50 or higher. This signifies
that at higher quality factors, the hybrid model is relatively insensitive to the quality
factor provided that lossless JPEG is used to compress the residual image. I[n other
words, the correct choice for the quality factor is essentially dictated by conditions such
as browse image compression and browse image quality, not overall hybrid lossless CR.
The browse image becomes visually distorted and lossy at the higher quality factors. It is
left up to the user to determine what a good quality browse image is for the particular
application the hybrid model is being used.

At the lower quality factors, Huffman, Arithmetic, Diagonal, and lossless JPEG
achieve comparable compression ratios at different quality factors for the three images.
The choice of which lossless compression method to use depends on the user's
requircments for complexity and compression/decompression time. LZW does not
appear to be a wise choice for lossless compression in almost any case.

The advantage of decomposing the original image into a browse and residual
image is the reduced compressed browse image file size compared to the direct lossless
compressed image file size. Figures V1.4, V1.5, and V1.7 display the browse and residual
image compression ratios, and corresponding overall hybrid compression ratios, for the
three test images at various quality factors. The lossless compression method (Huffman,
Arnithmetic, LZW, lossless JPEG, or Diagonal coding) that produces the highest overall

hybrid CR is the one that is graphed. The best direct lossless JPEG compression ratio is

55

m

graphed for comparison. The graphical data is tabulated in Tables A.16, A.17, and A.18

in Appendix A. As the quality factor increases, the browse CR decreases and the residual

CR increases as expected. In all cases, the browse CR is significantly greater than the
direct lossless CR. At quality factors of 100 or less, all three test images are visually
lossless. A companison of the browse CR with the direct lossless JPEG CR for quality
factors of 100 or less (see Figures V1.4, VLS, and V1.6) demonstrates the advantage of
decomposing the original image into a browse and residual image (i.c.. a visually lossless
browse image is produced which has a significantly higher CR than the direct lossless
JPEG).

The highest overall hybrid CR was achieved using Arithmetic coding at quality
factors of 5, 50, and 100 for LENA in Figure V1.4. At quality factors of 500 and 800,
lossless JPEG was used to compress the residual image.

The highest overall hybrid CR was achieved using Arithmetic coding at quality
factors of 5 and 50 for SHUTTLE in Figure V1.5. Lossless JPEG was used to compress
the residual image at quality factors of 100, 500, and 800.

The highest overall hybrid CR was achieved using Arithmetic coding at quality
factors of 5, 50, and 100 for FINGERPRINT in Figure VI.6. At quality factors of 500

and 800, lossless JPEG was used to compress the residual image.

The results indicate that for low quality factors (<50) Arithmetic coding is the
best choice for lossless compression of the residual images while at higher quality factors

(>50), lossless JPEG is the best choice.

56

30
20
10

0

(20)

40

(10) |

5

50 100 250 350 500 600 700 800 1000
Quality Factor

& Hutfman O Arithmetic O LZw B JPEG O Diagonal

Figure VI.1: Hybrid Lossless Compression of LENA at Various

Quality Factors.

e

CR

Hybrid Lossless Compression of SHUTTLE

€0

0

50 -
40+
30f
20
10.~

5

E i i i i i ’ 3
50 100 250 350 500 600 700 800 1000
Quality Factor

W Huffman O Arithmetic S LZW B

JPEG M Diagonal

Figure V1.2: Hybrid Lossless Compression of SHUTTLE at Various

Quality Factors.

57

T

/ Hybrid Lossless Compression of FINGERPRINT
CR

40 L
20
|
(20)
(40)
(60) |
(80)

5 50 100 250 350 500 600 700 800 1000
Quality Factor

B Huffman O Arithmetic £ LZw B JPEG [Diagonal

Figure V1.3: Hybrid Lossless Compression of FINGERPRINT at
Various Quality Factors.

/

CR
120
100 |
80 |
60
40}
20

Browse and Residual CR Comparison
(LENA)

5 50 100 500 800
Quality Factor

- Browse D Residual Overall

Direct
Lossless

Figure V1.4: Browse and Residual CR Comparison with Direct
Lossless Compression for LENA.

58

(Browse and Residual CR Comparison

(SHUTTLE)
CR
120
100 |
80
60
40
20 , ‘, ‘
0 : - N i i
5 100 500 800
Quality Factor

- Browse D Residual Overall

Figure VLS: Browse and Residual CR Comparison with Direct
Lossless Compression for SHUTTLE.

(Browse and Residual CR Comparison
(FINGERPRINT)

5 100 500 800

Quality Factor
. Browse D Residual N\ Overall Direct

Figure VL.6: Browse and Residual CR Comparison with Direct
Lossless Compression for FINGERPRINT.

59

VIL. CONCLUSIONS

An analysis of the results of Chapters IV, V, and VI indicates that the proposed
hybrid lossless compression model has ment as a lossless image compression method.
With the exception of lossless JPEG, the substitution of the other lossless compression
methods (Huffman, Arnithmetic, LZW, and Diagonal coding) into the hybrid model
produce compression results that gencrally outperform their direct compression
counterparts. The decomposition of the original image into browse and residual images
gives an end-user the ability to browse an image and determine whether the residual
image should be transmitted and added to the browse image to reproduce the original
image. This feature is not available with any direct lossless compression method. The
quality of the browse image and the overall compression achieved are determined by the
quality factor used to compress the original image using lossy JPEG and is a user
controlled variable. The better the browse approximates the original data, the more
compressible is the residual image data. Thus, a better quality browse results in a
residual that can be compressed better in lossless mode. However. a better quality
browse results in a larger browse image file size. The key factors are to select a quality
factor which produces a visually acceptable browse image and a lossless compression
method that achieve the best overall compression.

The results show that LZW is not a lossless compression method which should be
used to compress the residual image. The residual images do not contain long repetitive
strings of pixel values which are necessary for LZW to achieve high compression results,

This is not surprising since the LZW method is designed primarily for compressing text,

60

not visual graphics [2, pp. 23-24]. Diagonal coding is a viable candidate for lossless
hybrid compression at lower quality factors. As the quality factor increases though,
Diagonal coding results in poor compression and eventually even expansion of the
residual image file size. Huffman and Arithmetic achieve comparable compression
results at all quality factors. At the lower quality factors, Huffman and Anithmetic do as
well as or better than lossless JPEG in most cascs; however, lossless JPEG is the prime
choice for lossless compression of the residual image at higher quality factors (i.c.. high
€...)- Under these conditions, the JPEG predictor is better able to accuratelyv predict pixel
values for all residual image distributions resulting in higher compression ratis. This
ostensibly is a result of a higher 2-D correlation of pixel values within the corresponding
residual images and, consequently, facilitates compression in the JPEG lossless method.

Future areas of rescarch include the classification of image types so that the
optimum or nearly optimum combination of quality factor and lossless compression
method may be selected which produces a visually acceptable browse image and the
greatest overall compression ratio. Unfortunately, quality factors or rms error parameters
are not perfect indicators of subjectively evaluated image quality. Until such an indicator
exists, it appears that producing a general guideline for selecting a lossless compression
method applicable to all images (in general) may not be possible.

Another option is to evaluate the hybrid lossless compression model using fractal
image compression as the lossy compression algorithm. This has been pursued using a

combination of lossy fractal compression and lossless LZW; however, other lossless

61

compression methods were not reported to have been tested in their hybnd model [4].
For the data presented, it appears that although the combination of lossy fractal and
lossless LZW compression produced a lossless replica of the oniginal image, the overall
CR achieved using the hybrid technique resulted in an expansion of the image file size.
Compression was achieved only when the number of grey-scale values was limited (i.c.,

representing pixels using less than 8 bats).

62

APPENDIX A

Quality Factor LENA SHUTTLE FINGERPRINT
1 33.0 48.5 35.7
5 539 69.4 55.9
10 68.4 80.2 67.1
15 75.0 84.8 72.7

20 78.9 87.3 75.7
25 82.1 39.4 78.1
30 83.8 90.5 79.5
40 86.4 92.1 81y
50 88.4 93.4 83.7
75 91.1 94.9 36.4
100 92.6 95.8 88.2
250 96.1 97.8 93.0
350 97.0 98.3 94.4
500 97.7 98.7 95.%
800 98.5 99.0 97.2

Table A.1: Comparison of Quality Factor vs CR for the Three Test Images.

63

h

Quality Factor LENA SHUTTLE FINGERPRINT
1 0.000 0.000 0.000
5 0014 0.009 0.006
10 0.023 0.012 0.010
15 0.029 0.015 0.014

20 0.034 0.017 0.017
25 0.038 0.019 0.020
30 0.041 0.021 0.021
40 0.04% 0.023 0.025
50 0.053 0.026 0.029
75 0.061 0.030 0.036
100 0.068 0.034 0.043
250 0.092 0.055 0.076
350 0.104 0.065 0.094
500 0.120 0.082 0.119
800 0.149 0.108 0.154

Table A.2: Comparison of Quality Factor vs e_ for the Three Test Images.

Test Image Q=5 Q=50 Q=100 Q=500
LENA 3 7 7 6
SHUTTLE 7 7 7 6
FINGERPRINT 7 7 7 6

Table A.3: Best JPEG Algorithm (K) for Test Images at Various Quality Factors.

64

Compression Type LENA SHUTTLE FINGERPRINT
Huffman 6.3 15.6 12.6
Arithmetic 7.0 159 12.6
LZW -2.9 17.5 12.1
JPEG 34.0 4%.9 26.5
Diagonal -75.9 -110.7 -144.5

Table A.4: Comparison of Lossless Compression Methods on the Three Test Images.

Compression Q= Q=50 Q=100 Q=500
Type
Huffman 17.6 30.4 30.6 243
Arithmetic 18.1 31.0 31.0 24.5
LZW 0.9 3.7 3.2 -1.3
JPEG 8.8 25.9 28.2 29.3
Diagonal 12.9 29.2 26.4 1.4

Table A.5: CR Achieved Using Hybrid Lossless Compression Model on LENA at
Various Quality Factors.

Compression Q=5 Q=50 Q=100 Q=500
Type
Huffman 38.5 47.8 45.5 32.7
Arithmetic 38.9 48.4 45.9 33.0
LZW 24.6 27.1 24.3 17.3
JPEG 30.0 46.2 46.6 46.2
Diagonal 30.2 47.4 45.7 21.5

Table A.6: CR Achieved Using Hybrid Lossless Compression Model on SHUTTLE at
Various Quality Factors.

65

[

Compression =5 Q=50 Q=100 Q=500
Type
Hutfman 25.5 30.2 279 19.5
Arithmetic 26.4 30.5 284 19.8
Lzw 13.4 8.3 6.0 7.5
JPEG 17.8 28.0 27.4 23.7
Diagonal 16.8 29.4 23.1 -26.9

Table A.7: CR Achieved Using Hybrid Lossless Compression Model on
FINGERPRINT at Various Quality Factors.

Compression Q= Q=50 Q=100 Q=500 Direct
Type Lossless
Huffman 17.6 30.4 30.6 24.3 6.3
Arithmetic 18.1 31.0 31.0 24.5 7.0
LZW 0.9 3.7 3.2 -1.3 -2.9
JPEG 8.8 25.9 28.2 29.3 33.8
Diagonal 12.9 29.2 26.4 1.4 -75.9

Table A.8: Comparison of Hybrid Lossless Compression Model with Standard
Lossless Compression Methods for LENA at Various Quality Factors.

Compression Q=5 Q=50 Q=100 Q=500 Direct
Type Lossless
Huffman 38.5 47.8 45.5 32.7 15.6
Arithmetic 38.9 43.4 45.9 33.0 15.9
LZW 24.6 27.1 24.3 17.3 17.5
JPEG 30.0 46.2 46.6 46.2 48.9
Diagonal 30.2 47.4 45.7 21.5 -110.7

Table A.9: Comparison of Hybrid Lossless Compression Model with Standard
Lossless Compression Models for SHUTTLE at Various Quality Factors.

66

Compression Q=5 Q=50 Q=100 Q=500 Direct
Type Lussless
Huffman 25.5 30.2 279 19.5 12.6
Arithmetic 26.4 30.5 28.4 19.8 12.6
LZW 13.4 8.3 6.0 7.5 12.1
JPEG 17.8 28.0 274 23.7 26.5
Diagonal 16.8 294 23.1 -26.9 -144.5

Table A.10: Comparison of Hybrid Lossless Compression Model with Standard
Lossless Compression Methods for FINGERPRINT at Various Quality

Factors.
Quality Factor LENA SHUTTLE FINGERPRINT
5 10.4 28.6 15.4
50 23.2 43.2 22.6
100 21.1 40.1 15.6
500 -72.0 13.4 -11.3
Table A.11: CR Achieved Using Diagonal Coding and RLE Variation in Hybrid
Model.
Quality Factor LENA SHUTTLE FINGERPRINT
5 -8.5 6.9 -6.5
50 234 30.6 19.7
100 26.2 325 220
500 23.7 30.3 16.3

Table A.12: CR Achieved Using Diagonal Bit Plane Coding Variation in Hybrid

Model.

67

T

Quality Huffman | Arithmetic LZW Lossless Diagonal
Factor JPEG
5 17.6 18.1 0.9 8.8 12,9
50 30.4 31.0 3.7 259 29.2
100 30.6 31.0 32 28.2 26.4
250 28.1 28.6 1.1 293 16.7
350 26.5 27.0 0.0 294 11.0
500 24.2 24.5 -1.3 29.3 1.4
600 23.1 234 -1.5 29.6 -3.3
700 21.%8 22.1 -1.6 29.8 -X.1
300 20.6 21.1 -1.8 29.9 14.2
1,000 20.1 20.6 -1.8 30.1 -16.3

Table A.13: Hybrid Lossless Compression of LENA at Various Quality Factors.

Quality Huffman | Arithmetic LZW Lossless Diagonal
Factor JPEG
5 38.5 38.9 24.6 30.0 30.2
50 47.8 48.4 27.1 46.2 474
100 45.5 459 243 46.6 45.7
250 39.3 39.8 20.0 46.3 374
350 36.3 36.8 - 18.7 46.2 322
500 32.7 33.0 17.3 46.2 21.5
600 30.7 30.9 16.7 46.0 14.7
700 28.7 29.0 16.8 46.0 8.7
800 28.2 28.5 17.3 46.2 7.5
1,000 21.7 28.0 17.6 46.5 5.9

Table A.14: Hybrid Lossless Compression of SHUTTLE at Various Quality Factors.

68

Quality Huffman | Arithmetic LZW Lossless Diagonal
Factor JPEG
5 25.5 26.4 13.4 17.8 16.8
50 30.2 30.5 8.3 28.0 294
100 279 28.4 6.0 27.4 23.1
250 227 23.2 5.6 25.6 0.2
350 219 22.1 6.9 24.8 -7.9
500 19.5 19.8 7.5 23.7 -26.9
600 18.5 18.9 8.1 23.7 -33.6
700 17.9 18.2 8.4 23.7 -34.5
800 17.0 17.3 8.7 23.6 -54.2
1.000 16.7 17.0 9.1 239 -57.5
Table A.15: Hybrid Lossless Compression of FINGERPRINT at Various Quality
Factors.
Quality Factor Browse Residual Hybrid Direct Lossless
5 53.9 65.0 18.1 33.8
50 88.4 43.0 31.0 33.8
100 92.6 39.0 31.0 33.8
500 97.7 31.5 293 33.8
800 98.5 314 29.9 33.8

Table A.16: Browse and Residual CR Comparison for LENA.

Quality Factor Browse Residual Hybrid Direct Lossless
5 69.4 70.0 38.9 48.9
50 93.4 56.0 48.4 48.9
100 95.8 50.8 46.6 489
500 98.7 474 46.2 48.9
800 99.0 47.2 46.2 48.9

Table A.17: Browse and Residual CR Comparison for SHUTTLE.

69

Quality Factor Browse Residual Hybrid Direct Lossless
5 559 71.0 26.4 26.5
50 83.7 47.0 30.5 26.5
100 88.2 41.0 28.4 26.5
500 95.8 27.8 23.7 26.5
800 97.2 26.4 23.6 26.5

Table A.18: Browse and Residual CR Comparison for FINGERPRINT.

70

This appendix contains the source code for the Diagonal coding lossless

compression method. The files Bitio.c, Bitio.h, Errhand.c, and Errhand.h are adapted
from Nelson's text source code. The files Browse-c.c and Browse-e.c are written by the
author. The programs are written in C and were compiled on a Sun Workstation with the
GNU C compiler. The command to compile and link the programs is:

gcc Browse-c.c Bitio.c Errhand.c -lm -0 Browse-c
This will result in a program called Browse-c which will encode an 8-bit 256x256
grayscale image using Diagonal coding. Substitute Browse-c.c into the compile
command to produce the program which will decode a Diagonal coded compressed

image file.

71

rf_______4444444444*--—-—-—-—-—-—-—-—-—-—-——4

Dec 10 05:40 1993 browse-c.c Page 1

/*tfﬁ*itt*t**'*ﬁi*tﬁit**ti*#tﬁttttt.ﬁ*ﬁ*t**t**iit*tti*itttt***tttt*tiitttﬁt*t**t

* browse-c.c: Program that performs Diagonal coding (encoding) on a 256x256 *

* To compile: gcc¢ browse-c.c bitio.c errhand.c -lm -0 browse-c *
* To run: browse-c [input image file] [output image file] o
* Author: Doug Abbott *

ti****iﬂ******t*tﬁ*****ttf***t*******tt*ﬁttititt*ttttiit*tttttttttt*ttttt/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "bitio.h"
#include "errhand.h"

#define ROWS 256
#define COLS 256

$ifdef __STDC__

void CompressFile(FILE *input, BIT _FILE *output);

void ReadinputFile(FILE *input, BIT _FILE *output_ file);
int OutputCode(BIT_FILE *output_file, int code);

void print_ratios(char *input, char *output);

long file_size(char *name);

#else

void CompressFile();
void ReadInputFile();
int OutputCode();
void print_ratios();
long file size();

#endif

main(argc, argv)

int argc;
char *argvi{};
{

FILE *input;
BIT FILE *output;

input = fopen(argvil], "rb");
if (input == NULL)
fatal_error("Error opening %s for input\n", argv{l]);

output = OpenOutputBitFile(argv(2]);
if (output == NULL)

fatal_error("Error opening %s for output\n", argv(2]);
CompressFile(input, output);
CloseOutputBitFile(output);
fclose(input);
print_ratios(argv(l], argv(2]);
return(0);

72

‘Dee 10°05:40 1993 browse-c.c Page 2

}

void CompressFile(input, output)
FILE *input;
BIT_FILE *output;

{

ReadInputFile(input, output);

}

void ReadInputFile(input, output_file)
FILE *input;
BIT_FILE *output_file;

{

int row;
int col;
int ¢, y;

/t

Read in the input file to be compressed. */

for (row = (; row < ROWS; row++) {

}
/*

}
/*

*
*

for (col = 0; col < COLS; col++) {
c = getc(input);
if (¢ == EQOF)
fatal_error("Error reading input grey scale file\n");
y = OutputCode(output_ file, c);
}

Purge the mask of any remaining bits. */

OutputBits(output_file, 257L, 1);

Function which determines which range set the pixel value is located in *
and its location within the range set. The appropriate diagonal code *
and identification value are output. *

int OutputCode(output_file, code)
BIT FILE *output_file;
int code;

{

/*

int top_of_range, bottom of_range;
int bit_count, count;

top_of_range = 127;

bottom of range = 128;

bit_count = 0;

count = 0;

Determine which range set the pixel value is located in. */

if (code > 127) {
while (code > top_of range) {

73

S

Dec 10 05:40 1993 browse-c.c Page 3

L bit_count++;

F count += 1 ;

- top of range = top_of_range + 2;
}

L }

if (code <= 127) {
while (code < bottom of range) ({
bit_count++;
count += 1 ;
bottom_of_ range = bottom of range - 2;
}

}
/* Output diagonal code. */
OutputBits(output_file, 1L, bit_count);

/* Determine the location of the pixel value within the range set and */
/* output the two identification bits. */

if (code <= 127) {
if (code == bottom of_range)
OutputBits(output_ file, 0L, 2);
else
OutputBits(output_file, 1L, 2);
}
if (code > 127) {
if (code == top_of_ range)
OutputBits(output_file, 3L, 2);
else
OutputBits(output_file, 2L, 2);
}
return (count);
}

/* Determine the size of the input and output files (in bytes). */

$ifndef SEEK_END
#define SEEK END 2
#endif

long file_size(name)
char *name;

{

long eof ftell;

FILE *file;

file = fopen(name, "r” };
if (file == NULL)

return(OL);
fseek(file, 0L, SEEK _END);
eof ftell = ftell(file);
fclose(file);
return(eof ftell);
}

74

" Deec 36 05:40 1993 browse-c.c Page 4

/* Compute the compression ratio achieved. */

void print_ratios(input, output)

char *input;

char *output;

{

long input_size;
long output_size;
int ratio;

input_size = file size(input);

if (input_size == 0)
input_size = 1;

output_size = file_size(output);

if (output_size == 0)
output size = 1;

ratio = 100 - (int) (output_size * 100L / input_size);

printf("\nInput bytes:
printf("Output bytes:
printf({ "Compression ratio:
}

%$1ld\n", input_size);
$1d\n", output_size);
$d%%\n", ratio);

75

r------.--.-'--...---l--II.-IIllIIllIlIlIlIIIII-III------r44

Dec 10 05:42 1993 browse-e.c Page 1

/****iittifﬁ*ii'*.*t*"iittﬁt’tﬁtit*t'*fit***f*"ﬁi'ﬁt**tttttitiﬁ*i’ttit*it*ttt*'t*

* browse-e.c: Program that performs decoding of a compressed image file *
* that has been encocded with Diagonal coding. *
* To compile: gcc browse—-e.c bitio.c errhand.c -lm -0 browse-e *
* To run: browse-e [input image file] [output image file; *
* Author: Doug Abbott *
* /

\A AL R AR RS AR RRARERRXRElSARRR R s R R R XX B R R R N T R AR £]

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "bitio.h"
#include "errhand.h"

#define ROWS 256
#define COLS 256

$ifdef __ STDC__

void ExpandFile(BIT FILE *input, FILE *output)};

void ReadInputFile(BIT_FILE *input, FILE *output_file);
int InputCode(BIT_ -ILE *input_file);

long file_size(char *name);

void print_filesize(char *input, char *output);

#else

void ExpandFile();
void ReadInputFile();
int InputCode();

long file_size();
void print_filesize();

#endif

main(argc, argv)
int argc;
char *argv{l];

FILE *output;
BIT FILE *input;

input = OpenInputBitFile(argv[l]);
if (input == NULL)
fatal_error("Error opening %s for input\n”", argv{l]);
output = fopen(argv(2], "wb");
if (output == NULL)
fatal error("Error opening %s for output\n", argvi{2]);
ExpandFile(input, output);
CloseInputBitFile(input);
fclose(output);
print_filesize(argv[l], argv(2]);
return(0);

}

76

Dec 10 05:42 1993 browse—e.c Page 2

void ExpandFile(input, output)
BIT_FILE *input;

FILE *output;

{

ReadInputFile(input, output);
}

void ReadInputFile(input, output_file)
BIT FILE *input;

FILE *output_ file;

{

int row;

int col;

unsigned char amplitude;

/* Read in tne input file to be decompressed. */
for (row = 0; row < ROWS; row++)
for (col = 0; col < COLS; col++) {
amplitude = InputCode(input);
putc(amplitude, output_file);

}

/* Function which decodes the compressed image file.

int InputCode(input_file)
BIT _FILE *input file;
{

int bit_count;

int result;
unsigned char amp;
int top_of_range;
int bottom of range;
int count;

top_of range = 0;
count = 1;

/* Get bits from input image file. */
bit_count = (int) InputBits(input_file, 1);
/* Looking for a bit "1’/. */
while (bit_count == 0) {

count++;

bit_count = (int) InputBits(input_file, 1);
}

*/

/* Determine what range set the decoded code belongs to.

top_of_range = 130 + ((count - 1) * 2);
bottom of range = 127 - ((count - 1) * 2);

77

*/

ﬁ

Dec 10 05:42 1993 browse-e.c Page 3

/* Get next two bits from the input data. These are the two identification */
/* Dbits. */

result = (int) InputBits(input_file, 2);

/* Determine what the decoded pixel value is. */

if (result > 1)

amp = (top_of range - 3) + result ;
else

amp = bottom _of range + result;
return(amp);
}

/* Determine the size of the input and output files (in bytes). */

#ifndef SEEK_END
#define SEEK_END 2
#endif

long file size(name)
char *name;

{

long eof_ftell;

FILE *file;

file = fopen(name, "r");
if (file == NULL)

return{(OL);
fseek(file, 0L, SEEK _END);
eof_ftell = ftell(file);
fclose(file);
return(eof ftell);
}

void print_filesize(input, output)
char *input;

char *output;

{

long input_size;

long output_size;

input_size = file_size(input);
if (input_size == 0)
input_size = 1;
output_size = file_size(output);
if (output_size == 0)
output_size = 1;
printf("\nInput bytes: %1d\n", input_size);
printf("Output bytes: %$1d\n", output_size);
}

78

Dec 10 05:17 1993 bitio.c Page 1

/*'ii**t**tﬁtﬁ*iﬁi***’.***** start Of BITIO.C kbbb kb kT r
*

* This utility file contains all of the routines needed to implement
* bit oriented routines under either ANSI or K&R C. It needs to be
* linked with every program used in the entire book.

”

*/
#include <stdio.h>
#include <stdlib.h>
#include "bitio.h"
#include "errhand.h"”

#define PACIFIER COUNT 2047

BIT FILE *OpenOutputBitFile(name)
char *name;
{

BIT _FILE *bit_file;

bit_file = (BIT FILE *) calloc(1, sizeof(BIT_FILE));
if (bit_file == NULL)
return(bit_file);
bit_file->file = fopen(name, "wb");
bit_file->rack = 0;
bit_file->mask = 0x80;
bit_file->pacifier_ counter = 0;
return(bit_file);
}

BIT_FILE *OpenInputBitFile(name)
char *name;
{

BIT FILE *bit_file;

bit_file = (BIT_FILE *) calloc(1, sizeof(BIT FILE));
if (bit_file == NULL)
return(bit_file);
bit _file->file = fopen(name, "rb");
bit_file->rack = 0;
bit_file->mask = 0x80;
bit_ file->pacifier_counter = 0;
return(bit_file);
}

void CloseOutputBitFile(bit_file)
BIT FILE *bhit_file;
{

if (bit_file->mask != 0x80)

if (putc(bit_file->rack, bit_file->file) != bit_file->rack)
fatal _error("Fatal error in CloseBitFile!\n");

fclose(bit_file->file);

free((char *) bit_file);
}

void CloselnputBitFile(bit_file)
BIT_FILE *bit_file;

79

|

Dec 10 05:17 1993 bitio.c Page 2

fclose(bit_file->file);
free((char *) bit_file);
}

void OutputBit(bit_file, bit)
BIT FILE *bit_file;

int bit;

{

if (bit)
bit_file->rack |= bit_file->mask;
bit_file->mask >>= 1;
if (bit_file->mask == 0) {
if (putc(bit_file->rack, bit_file->file) !'= bit_file~>rack)
fatal error("Fatal error in QutputBit!\n");
else
if ((bit_file->pacifier_counter++ & PACIFIER_COUNT) == 0)
putc(’.’, stdout);
bit_file->rack = (;
bit_file->mask = 0x80;

}

void OutputBits(bit_file, code, count)
BIT FILE *bit_file;

unsigned long code;

int count;

{
unsigned long mask;

mask = 1L << (count - 1);
if (code == 257)
putc(bit_file->rack, bit_file->file);
else {

while (mask != 0) {
if (mask & code)
bit_file->rack |= bit_file->mask;
bit_file~>mask >>= 1;
if { bit_file->mask == 0) {
if (putc(bit_file->rack, bit_file->file) != bit_file->rack)
fatal_error("Fatal error in OutputBit!\n");
else if ((bit_file->pacifier_ counter++ & PACIFIER COUNT) == 0)
putc(’.’, stdout);
bit_file->rack = 0;
bit_file->mask = 0x80;
1
mask >>= 1;

}
int InputBit(bit_file)

BIT_FILE *bit_file;

{
int value;

80

Dec 10 05:17 1993 bitio.c Page 3

}

if (bit_file->mask == 0x80) {
bit_file->rack = getc(bit_file->file);
if (bit_file->rack == EOF)
fatal_error("Fatal error in InputBit!\n");
if ((bit_file->pacifier_counter++ & PACIFIER COUNT) == 0)
putc(’.’, stdout);
}
value = bit_file->rack & bit_file->mask;
bit_file->mask >>= 1;
if (bit_file->mask == 0)
bit_file->mask = 0x80;
return(value ? 1 : 0);

unsigned long InputBits(bit_file, bit_count)
BIT_FILE *bit_file;
int bit_count;

{

/*

*/

unsigned long mask;
unsigned long return_value;

if (bit_count == 75) {
if (bit_file->mask == 0x80)
bit_file->mask = 0x02;
else
if (bit_file->mask == 0x40)
bit_file->mask = 0x01;
else
if (bit_file->mask <= 0x20)
bit_file->mask <<= 2;
if (bit_file->mask == 0x80)
flag = 1;
}

mask = 1L << (bit_count - 1);
return_value = 0;
while (mask != 0) {
if (bit_file->mask == 0x80) {
bit_file—>rack = getc(bit_file~>file);
if (bit_file->rack == EOF)
fatal error("Fatal error in InputBit!\n");
if ((bit_file->pacifier counter++ & PACIFIER COUNT) == 0)
putc(’.’, stdout); -
}
if (bit_file—>rack & bit_file->mask)
return_value |= mask;
mask >>= 1;
bit_file->mask >>= 1;
if (bit_file~>mask == 0)
bit_file—>mask = 0x80;
}
return(return_value);

81

r"""""-"""""""--'-""--"---'-IlllIlIlIII----------rff

Dec 10 05:17 1993 bitio.c Page 4

void FilePrintBinary(file, code, bits)
FILE *file;

unsigned int code;

int bits;

{ .
unsigned int mask;

mask = 1 << (bits - 1);
while (mask i= 0) {
if (code & mask)
fputc(*1’, file);
else
fputc(*0’, file);
mask >>= 1;

}

/****t*t******************** End of BITIO.C *****ﬁ****i****i**i*ttt***/

82

Dec 10 03:17 1993 bitio.h Page 1

/tttt*t*t**'tttt*tttw*t***ﬁ start Of BITIO.B t'ﬁitt**t**'tt*t'itttt**ii/

#ifndef BITIO H
#define BITIO H

#include <stdio.h>

typedef struct bit_file {

FILE *file;

unsigned char mask;

int rack;

int pacifier_counter;
} BIT FILE;

gifdef _ STDC__

BIT FILE *OpenInputBitFile(char *name);
BIT FILE *OpenOutputBitFile(char *name);
void CutputBit (BIT FILE *bit_file, int bit);
void OutputBits { BIT FILE *bit _file,
unsxgned long code, int count);
void OutTwoBits(BIT_FILE *bit_file,
unsigned long code, int count);
int InputBit (BIT FILE *bit_file);
unsigned long InputBits(BIT ' FILE *bit, _file, int bit_count);
void CloseInputBltFlle(BIT FILE *bit_file Y;
void CloseOutputBitFile(BIT FILE *bit _file);
void FilePrintBinary(FILE *file, unsxgned int code, int bits);

telse /* _ STDC__ */

BIT _FILE *OpenInputBitFile();
BIT_FILE *OpenOutputBitFile();
void OutputBit () ;

void OutputBits();

void OutTwoBits ();

int InputBit();

unsigned long InputBits();

void CloseInputBitFile();
void CloseQutputBitFile();
void FilePrintBinary();

fendif /* _ STDC__ */

$endif /* _BITIO B */

/************************f** End of BITIO.H ***i*********t************/

83

TII----------------------"-'-----'--F74

Dec 10 05:30 1993 errhand.c Page 1

/‘*iii*‘l*"**'ﬁ'iﬁt*&***i*'* start of ERRHAND.C (222222222222 RSl sl s Rl
*

* This is a general purpose error handler used with every program in
* the book.
*/

#include <stdio.h>

#include <stdlib.h>
#include <stdarg.h>
#include "errhand.h"

#ifdef _ STDC__
void fatal error(char *fmt, ...)
#else
#ifdef _ UNIX
void fatal error(fmt, va_alist)
char *fmt;
va_dcl
#else
void fatal_error(fmt)
char *fmt;
#endif
#endif
{
va_list argptr;

va_start(argptr, fmt);
printf("Fatal error: ");
vprintf(fmt, argptr);
va_end(argptr);
exit(-1);

}

/*************************i End of ERRHAND C *t*******t*i***t***'*****/
.

84

Dec 10 05:30 1993 errhand.h Page 1

/ﬁﬁ***ﬁﬁﬁt*ﬁﬁ*tiit’t*i'ti* start of ERRHAND.H t**ttt*t*'tttit'i*fﬁtit*/

#ifndef _ERRHAND_H
#define ERRHAND H

$ifdef _ STDC__

void fatal _error(char *fmt, ...);
telse /* _ STDC__ */

void fatal error();

#endif /* _ STDC__ */

——

#endif /* _ERRHAND H */

/***i*i***it**i************ End Of ERRHAND.H t*i****t*ﬁt*ittttt**l**i*/

85

(1]

(2]

(31

(4]

(6]

7]

(8]

(9]

LIST OF REFERENCES

Rabbani, M. and Jones, P.W., Digital Image Compression Techniques. SPIE Optical
Engincering Press, Bellingham, WA, 1991.

Nelson, M., The Data Compression Book, M&T Publishing, Inc., San Mateo, CA,
1992.

Gonzalez, R.C. and Wintz, P., Digital Image Processing, 2nd ed.. Addison-Wesley
Publishing Co., Inc., Reading, MA, 1987.

Hannah, S.J., 4 Hybrid Encoding Technique for Lossless Fractal Compression,
Master's Thesis, University of Alabama, September. 1993.

Takahashi, K. and Ohta, M., "Data Compression Coding of Gray-Scale [mages
using Bit Planes," Proceedings of ICC, v 2.3.1, pp. 34-41. 1985.

Weiss, J. and Schremp, D., "Putting Data on a Diet." JEEE Spectrum, pp. 36-39,
August, 1993.

Novik, D.A., Tilton, J.C., and Manohar, M., "Compression through Decomposition
into Browse and Residual Images," The 1993 Space and Earth Science Data
Compression Workshop, pp. 7-12, April, 1993.

Wallace, G. K., "The JPEG Stll Picture Compression Standard,” [EEE
Transactions on Consumer Electronics, v. 38, pp. xviii-xxxiv, February, 1992.

Hung, A.C., PVRG-JPEG Codec 1.1, (Computer Program Documentation),
Portable Video Rescarch Group, Stanford University, August, 1993.

[10] Jackson, J.J. and Hannah, S.J., "Comparative Analysis of Image Compression

Techniques," The 25th Southeastern Symposium on System Theory, pp. 513-517,
1993.

(11] Kay, R.T., A Comparison of some of the Most Current Methods of Image

Compression, Master's Thesis, Naval Postgraduate School, Monterey, CA June,
1993,

(12] Mowle, F.J., A Systematic Approach to Digital Logic Design, p. 9, Addison-Wesley

Publishing Co., Inc., Reading, MA, 1976.

86

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

(%}

2. Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

(%]

3. Chairman, Code EC I
Department of Electrical and Computer
Engineering
Naval Postgraduate School
Monterey, CA 93943

4. Professor Ron J. Pieper, Code EC/Pr
Department of Electrical and Computer
Engineering
Naval Postgraduate School
Monterey, CA 93943

tJ

5. Professor Murali Tummala, Code EC/Tu i
Department of Electrical and Computer
Engineering
Naval Postgraduate School
Monterey, CA 93943

6. Dan Jensen, Code EC/E1 1
Department of Electrical and Computer
Engineering
Naval Postgraduate School
Monterey, CA 93943

7. Walter D. Abbott I, LT, USN 2

805 Radcliff Drive
Lynn Haven, FL 32444

87

