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"Abstract

Knowledge about the imaging geometry and acquisition parameters provides usefui geometric constraints

for the analysis and extraction of man-made features in aerial imagery, particularly in oblique views. In
this paper, we discuss the identification of horizontal and vertical lines in the scene using image
orientation information, vanishing point calculations, and the calculation of their dimensions. The vertical
and horizontLi attributions are used to constrain the set of possible building hypotheses. Vertical lines are
extracted at comers to estimate structure height and permit the generation of three-dimensional building
models from monocular views. Results of these techniques are presented for nadir and oblique imagery
and evaluated against manually generated 3D ground truth building models.
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1. INTRODUCTION

Building extraction is a fundamental problem in automated cartography" 2, 3. 4. 5. 6. 7.8. Systems
implemented to date have had basic similarities: all have used vertical aerial imagery, assumed
simplified imaging geometry in their calculations, and all have used intensity features as the basic cues
for feature extraction. Several have made use of shadow geometry for hypothesis generation and
verification. Low level boundary determination is usually region-based or based upon geometric
analysis of lines found in the image.

Many of these techniques exhibit poor performance when building structures are composed of complex
shapes, when there is poor contrast between object and background, and when viewing geometry,
building height, and building density cause occlusions and partial views or views of surfaces other than
the building roof. As a result, even in the case of nominally nadir imagery, the three-dimensional nature
of the world can not be ignored. In the case of non-traditional mapping photography, particularly
oblique views used in aerial photo interpretation, there is a greater need to explicitly model the viewing
geometry; such modeling needs to be performed within the context of a rigorous photogrammetric
calculation in order to take advantage of all geometric information available9 .

Our current experiments have been focused on the modification of BABE (Builtup Area Building
Extraction) 6 , a building detection system based on a line-corner analysis method. In brief, BABE
proceeds through four major phases to incrementally generate building hypotheses. The first phase
constructs corners from lines, under the assumption that buildings can be modeled by straight line
segments linked by (nearly) right-angled corners. The second phase constructs chains of edges which
are linked by corners, to serve as partial structural hypotheses. The third phase uses these line-corner
structures to hypothesize boxes, parallelopipeds which may delineate man-made features in the scene.
The fourth phase evaluates the boxes in terms of size and line intensity constraints, and the best boxes
for each chain are kept, subject to shadow intensity constraints similar to those proposed inI and 2. In
addition, the boxes produced by the third phase of analysis are directly used as sources of building
hypotheses for other modules that perform grouping, shadow analysis, and stereo matching.

Our experiments have focused on the inclusion of geometric constraints derived from knowledge of the
full camera position and orientation. Our initial modifications to the BABE system include the use of a
rigorous photogrammetric camera model, the use of world and image geometry as an additional cue for
the building hypothesis construction process, and the substitution of exact metric calculations for
distances and angles instead of approximations based upon image scale and near-nadir orientation. This
paper describes the current status of the BABE system, starting with an overview of vanishing point
geometry as used for the extraction of horizontal and vertical edges and a brief description of the BABE
system. The current integration of the line orientation information into BABE is outlined and
quantitative performance evaluations against manually-generated ground truth are given, for both image
space and object space.

2. IDENTIFICATION OF VERTICAL AND HORIZONTAL LINES
Given the orientation of the image, we can make inferences about the geometry of the scene. In this
section we discuss the identification of vertical and horizontal lines using projective geometry and
photogrammetric techniques. These line attributions are exploited in later sections to constrain the
search for corners and the generation of building hypotheses.

2.1. Vertical lines
As is well known from projective geometry10 , parallel lines (in this case, vertical lines) in a scene meet
at a common point in an image of the scene. This point is known as the vanishing point, since it is the
image of a point at infinity on the parallel lines. In a standard nadir-looking aeri•', mapping image
vertical lines in the scene meet at the vertical vanishing point, traditionally referred to as the nadir point
because it is directly below the perspective center of the image.

This apparent convergence of parallel lines gives important cues to the orientation of the image and to
the structure of objects within the scene. Previous work has used vanishing points to determine imagle
orientation 10 and to determine the structure of objects within the sceneI. 12.
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However, most previous work using vanishing point geometry has been done with robotics imagery
from standard video cameras viewing objects at close range. The applicability of vanishing point
analysis is obvious; perspective effects are strong due to the wide angle lenses, close objects, and often
oblique viewing angles. Image !.dges corresponding to hallways, doors, and structures are numerous,
long and usually have high contrast, allowing good solutions for vanishing points and image
orientations.

Aerial imagery presents different problems. The standard vertical viewpoint lessens perspective effects,
while individual objects cover a much smaller proportion of the image. Vertical lines in particular are
less prominent, typically only a few pixels long. Edge contrast may be lessened due to illumination and
atmospheric conditions. It is well known that standard edge detectors have problems extracting such
short, weak edges, often distorting their geometry or mistakenly combining them with intersecting
edges.

Further, in cartographic applications it is assumed that the aircra'f position and orientation in space is
fairly well known, and camera properties such as focal length, distortion and sensor type, film, scanning
array, etc., are quite well modeled. For these reasons, our approach starts with the assumption that the
orientation of the aerial image is known beforehand. Instead of using the vanishing points to determine
image orientation, we focus on using the vanishing point geometry to assist in extracting buildings.
Given strong enough vanishing point information from the image the orientation can be refined, but in
this work no refinement was attempted.

2.1.1. Calculation of the vertical vanishing point

image

vertical
vector

image of vertical
line

".• vanishing pt

vertical
line

Figure 1: Vertical vanishing point geometry.

The image orientation is specified by a 3 by 3 matrix M which rotates the ground coordinate system into
the image coordinate system. This matrix is determined by three independent orientation angles or
parameters, e.g., roll, pitch, and yaw 13.

The vertical vector in object space ~Tý is [0, 0, 11 (Figure I); it is transformed into the image coordinate
system by multiplication with the ground-to-image orientation matrix M.

Vi = M Vo
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When the vector vi is placed at the perspective center of the image (coordinates 0,0,f, where f is the
focal length), it pierces the image plane z = 0 at

x= f
m33

y=m23f
m33

Since this vector is vertical it is parallel to all other vertical lines in the scene and its image must pass
through the vertical vanishing point. However, its image, where the vector pierces the image plane, is
only a point; its image must therefore be the vertical vanishing point.

2.1.2. Identification of vertical lines
In order to find vertical lines in the scene each edge in the image is fit to a line constrained to pass
through the vanishing point, leaving only the slope of the line to be determined. If the root-mean-square
error of the residuals exceeds 2.0 pixels, the edge is eliminated. Since extremely short edges will have
small residuals for any orientation of line fit, edges below a minimum length are eliminated. As a
further test, a line not constrained to pass through the vanishing point is also fitted to accepted edges and
the slope of that line compared to the direction from the centroid of the edge to the vanishing point. If
the slopes do not agree within an angular tolerance of 0.2 radians, the line is eliminated.

"" 9- . -,.,, , "
'Vi

Figure 2: Fort Hood test area RADT9WOB. Figure 3: Edges for test area RADT9WOB.

The same resection that produces the image orientation used to calculate the vertical vanishing point
also calculates the precision of the orientation angles, from which the precision of the vanishing point
location can be determined and used to set the acceptance criteria for slopes and lirn, fitting. For oblique
imagery, where the vanishing point is usually outside the image area itself, the precision has a small
effect. For vertical images, however, the vertical vanishing point is near the center of the frame and is
close to the edges being tested. Error in its location can change the slope of the test line significantly
and should be taken into account in the line fitting procedure.
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2.2. Horizontal edge extraction
In earlier versions of this work we applied a variant of the Gaussian sphere technique' t () 14 Co identifyhorizontal vanishing points within the image15. By histogramming the intersection points of edges inthe ima,,e= with the horizon on the Gaussiani sphere., we idfentified the vanishing points associated withthe most common sets of perpendicular lines. For reasons of algorithmic simplicity and computationaleconomy we now directly calculate object-space azimuths for each edge in the ima,;e. assuming that theedge is hiorizontal in the scene. These calculated azimuths are accumulated in a histoegram.
Under the assumption that man-made structures are defined by perpendicular sets of parallel lines, weexamine the azimuth histogram for mutually supportive sets of perpendicular lines. Instead of selectingzthe ,,ingle bin with the maximum score. we add the score of each bin to the scores of the binsrepresenting, directions perpendicular to it. The maximum of this sum indicates the directions of thestrongest mutually perpendi"cular sets of parallel lines in the scene. In areas where buildin,,s and roadsare all on a common grid. this is sufficient; in areas where buildings are oriented in several direction,,.secondary maxima can be examined or separate histograms done in subareas of the scene.
Figure 2 shows an oblique image of a barracks area within Fort Hood. Texas. Such ,,cenes are typical otmilitary bases or. with some architectural modifications, houses in a suburban development. Figure 3shows the ednes extracted by an implementation of the Nevatia-Babu line finder1 lb. while candidatehorizontal and" vertical ed,,zes are shown in Figures 4 and 5. Some edges are labeled as both horizontaland vertical due to the viewing angle of the image, which happened to align many of the horizontaledges with the vertical vanishing point. In such ambiguous cases. external information or other views
must be used to decide between these labels.

3. HORIZONTAL AND VERTICAL LINE VERIFICATION
Given a single view anQt only: geometric, information, the inherent ambiguities• o f pers pective proiection.prevent an absolute determination of whether a ,.ziven line is horizontal or vertical. False posit.veidentifications due to accidental alignments are unavoidable. Since these false positives increase thenumber of edges ["lagged for later analysis, and hence the computational effort required to address theni.
we would like to eliminate as many as possible.
A first step is filterin g a gainst a minimum leng.th• or height• threshold. H-ig.hlv• textured areas produce a
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large number of short, randomly oriented edges, some of which will align with the vanishing point of
interest. Using the assumed horizontal or vertical orientation for the line, we can calculate an
approximate length or height and compare it to the minimum values we would expect to see. For
example, if we are looking for buildings, heights will typically be greater than 3 meters and lengths
greater than 10 meters. Such constraints can be easily modified by world knowledge to search for a
specific set of buildings within a range of heights or volumes. Currently we view this process as one of
filtering rather than selection. Each edge segment that passes these filters is given an attribution as
either horizontal or vertical. The entire collection of edges can then be used in a variety of ways to
construct plausible building hypotheses. In the following section we describe the use of attributed edge
segments to detect and construct possible building corners.

If multiple views of the scene are available, we can use epipolar geometry to verify the consistency of
edges across images. For each edge in the image, we calculate the epipolar plane through its midpoint
and determine which edges, if any, are intersected by the epipolar line on the other image. We can also
compare calculated dimensions, either length or height, and also calculated orientations in object space
for horizontal lines.

4. CORNER DETECTION WITH LINE ATTRIBUTIONS
The vanishing-point geometry of a scene can provide important additional cues for feature extraction.
Under the assumption that man-made features in aerial photography can be modeled by parallelopipedsjoined at edges, horizontal and vertical edge segment attributions are useful cues in assembling building
hypotheses. We illustrate the utility of these attributions in the context of a building extraction system,
BABE, originally designed for analysis of mapping photography having nadir and near-nadir acquisition
geometries.

BABE begins processing by generating intensity edges for an image, using a Nevatia-Babu edge findert 6

It next applies a range search to locate and connect collinear edges whose endpoints are in close
proximity, to address the possibility of fragmented edges. These edges are then used as the basis for
corner detection.

BABE performs another range search on the edges, to locate edges which meet at approximately right
angles. The intersections of these edges represent the corner points. These comer points are then used
to link sequences of edges such that the direction of rotation along a sequence is either clockwise or
counterclockwise, but not both, since building structure is assumed to be well modeled by
parallelopipeds.

Even when a building can be modeled perfectly by a rectangle, the chain of edges representing it may
not be a closed structure, due to extraneous or missing corners in the chain. BABE addresses this
problem by generating building hypotheses, i.e., boxes, for every subchain of edges in a chain. This is
accomplished by taking every subchain of at least two edges and completing them to four-sided boxes.
Typically, only about 10% of the boxes generated for a scene correspond to buildings. BABE's
verification phase selects building candidates from the boxes generated in the previous phase. It
performs this task by examining the boxes for indications of a shadow region along the shadow casting
edges.

Under an oblique viewing geometry, BABE's model first breaks down in the corner detection phase
where right-angled corners in the scene may not translate to right-angled comers in the ;m-1se. In fact,
the actual angle depends not only on the obliquity of the viewing geometry, but on the r%.,.,, e position
and orientation of the building in the scene.

Using the horizontal and vertical line identification techniques described in Section 2. we can assign
attributions to each edge prior to corner generation. We can then make use of a simple building model.
outlined in Figure 6. This model presents two simple and common classes of buildings, those with tlat
roofs and those with peaked roots. The two types of buildings are shown from various viewpoints
(symmetric cases are omitted for brevity).

Each distinct line segment in the diagram has been assigned a label, indicating whether it is a vertical or
horizontal line in object space, or whether it is neither. In object space, we observe that for flat-roof
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fiat roof peaked roof
h h h

nadir h O h h T h

h hh

v h vhh vh

side h h h h h h

v h Vhh vh
h NN

front h h h h

V V AVV

h h

Vh Nh

oblique Vh N ý L

V h V h h

h - horizontal line
v - vertical line
N - unclassified line (neither horizontal nor vertical)

Figure 6: Simple building model.

structures, side and front facets of buildings are instances of rectangles composed of alternating
horizontal and vertical segments, and roof facets are instances of rectangles formed by four horizontal
segments. For peaked-roof structures, each side facet is again represented by a rectangle of alternating
horizontal and vertical segments; roof facets are now instances of rectangles of alternating horizontal
and unlabeled segments. A front facet of a peaked-roof structure is a pentagon, composed of two
unlabeled segments, two verticals, and a horizontal segment.

It is worth noting that BABE does not explicitly use this simple model in its processing phases; there is
nothing in principle that prohibits an extension to BABE tor constructing more complex shapes by
joining these rectangular or pentagonal facets. The model is useful, however, for visualizing the
relationships between horizontal, vertical, and unlabeled lines in typical man-made structures.

These properties of building facets suggest the following set of heuristics for corner detection:

"* Two intersecting verticals never form a valid corner in object space.

"* A horizontal-vertical intersection is allowed to form a comer.

"* Two intersecting horizontals are allowed to form a comer, if their intersection in object space forms a
right angle.

o An unlabeled line intersecting with a labeled line is allowed as a corner, since it is potentially part of a
peaked roof.

e Two intersecting unlabeled lines are allowed to form a comer, as they may be part of a pentagonal
facet; it should be noted, however, that the current version of BABE will not generate pentagonal
descriptions. We intend to pursue more general shape constructions in future work.
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These heuristics must take into account the fact that a given line may be labeled as both horizontal and
vertical, if the imaging geometry is such that the direction of the horizontal vanishing point for some set
of lines is the same as the vertical vanishing point. They do so by allowing such lines to be regarded as
both horizontal and vertical lines during corner formation.

5. IMAGE SPACE BUILDING HYPOTHESIS GENERATION
Given the ability to $enerate corners in oblique imagery, BABE can be used to generate structural
hypotheses, boxes which delineate structure in the scene. In the original implementation of BABE, the
only geometric constraint applied during line-corner linking and box formation was the right-angle
constraint on corners. In the new implementation, we can apply our simple building model at this stage
to prune geometrically inconsistent hypotheses.

For each box generated by BABE, we examine the horizontal and vertical line attributions assigned to
each line segment of the box. If the four attributions are consistent with the labelings of any building
facet in the building model, the box is accepted. For example, a facet with alternating horizontal and
vertical lines is consistent with a side facet of a building and would be accepted. If the four attributions
do not match any of the allowable building facets, the box is rejected as being geometrically
inconsistent, such as a box comprised of four vertical lines.

flpAi •: 4,7,i. so,

.........................

*56 /1.

W N#ý 4 4
~4

44 44*4- 4 , ..

Figure 7: BABE hypotheses. RADT9WOB. Figure 8: Geometrically consistent hypotheses.

Figure 7 shows the complete set of boxes generated by BABE prior to the application of ,.eometric
labeling constraints; in this case, there are 3459 boxes. Figure 8 shows the set o' '746 boxes let~i after the
labeling constraints have been exercised. As the figures show, the labeling constraints alone provide a
strong constraint on the permissible hypothesis geometries.

After the application of the labeling constraints, the boxes are passed through BABE's verification phase.
which estimates shadow intensity and sun illumination direction and uses this knowledge to score each
hypothesis based on its conformance with these parameters. At this time, the verification phase makes
no use of the photogrammetric information, and hence theats all hypotheses as though they represented
features in a nadir-acquisition geometry. We intend to address this shortcoming in future work.

After verification, we are left with a set of hypotheses which are presumed to be geometrically
consistent, in that they are composed of corners exhibiting valid angles in image space and that they
possess valid labelings with respect to our simple building model, and which arc presumed to b
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photometrically consistent, in that they exhibit a combination of strong intensity gradient across edge
oundaries and are adjacent to dark regions in the image which could plausibly be the shadows of the

hypothesized structures.

Given these presumptions, it is reasonable to regard these hypotheses as verified facets of three-
dimensional structure in the scene. Using the scene geometry in conjunction with our building model, it
becomes possible to extrapolate these partial delineations of building structure into more complete
building models. We consider one such extrapolation here, that of completing partially peaked roofs to
cover the entire roof. Using our model, we know that facets with alternating unlabeled and horizontal
lines must be peaked roof facets; we can detect these facets by examining the line labelings and applying
geometric constraints to extrapolate the other peaked roof facet in the pair.

hypothesized
facet

g x

Figure 9: Peaked roof projection.

Figure 9 illustrates the situation at hand. The hypothesized facet represents a BABE hypothesis which we
wish to use as a guide for hypothesizing the other half of the rooftop. We begin by computing the line
perpendicular to the horizontal line R in object space, and projecting this perpendicular into image space
(line C). Next, we intersect that line with the line drawn through the roof peak point p and the vertical
vanishing point vp, to obtain a point x. In object space, the distance between x and e is equal to the
distance between x and n; we assume that these distances are equal in image space as well, and complete
the new building facet by using the roof peak point p, points n andf, and the application of symmetry to
generate g.

Figure 10 shows the original BABE results for the scene; Figure II illustrates the final image space
results generated by our current extensions. The major improvement apparent from the figures is due to
the peak projection technique, which has improved the modeling of peaked structures, correctly
hypothesizing roof facets that were either lost in the shadow evaluation phase of BABE, or were never
generated due to a lack of edge information.

There are still problems; our current extensions to BABE produce many more hypotheses than the basic
BABE system, due to the necessity of considering all possible corners in image space. Combined with
the current lack of true object-space verification techniques, more.false hypotheses remain in the final
output, which can be seen in Figure 1i.

The problems just described arise primarily from issues in modeling and hypothesis generation. In a full
implementation of a general viewpoint BABE, it would be desirable to maintain the generate-and-test
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Figure 10: Original BABE results. Figure 11: New BABE results.

aradigm used in the original version of BABE. During the line-corner chain forming phase, one would
ike to construct full three-dimensional structural models in object space. rather than two-dimensional

models in image space. These models would then be subjected to a verification process similar in spirit
to the shadow constraint algorithms BABE now employs. but with the added information provided by
scene geometry and illumination constraints on adjacent planar surfaces of similar materials. This point
will be discussed again in the final section.

6. OBJECT SPACE BUILDING HYPOTHESIS GENERATION

In this section, we consider the problem of determining the height of 2D building hypotheses from a
monocular view. Previous research in this area has typically involved some form of shadow
mensuration, by associating dark regions in the image with building hypotheses and measuring their
lengths in image space 4. Such measurements have typically used approximations to the sun elevation
anale in order to estimate structure height from shadow length. again producing a height estimate in
terms of image space units.

Image space-based shadow mensuration techniques encounter difficulties in the oblique domain. In
nadir photography, shadows are adjacent to the structures casting them. making the association of
shadow regions with building hypotheses a relatively casy task. Under widc angles of obliquity.
however, it is difficult to correctly associate shadow regions with roof regions without a boundary'
estimate of the wall to link the two, which is essentially what we seek when attempting to derive roof
height.

These techniques also encounter difficulties that are independent of the acquisition geometry.
Approximations of the sun elevation anglc can introduce substantial error in height estimates. dependirng
on sun location at the time of ima,,e acquisition. Difficulties also arise in measuring the len,,th of a
shadow in image space: the dark shadow regions often have noisy boundaries, which could be due to
noise in the image, occluding objects on the ground, or changes in ground elevation.

An alternative approach is possible under photogrammetric control, using our simple huilding model.
Given roof hypotheses, we can search for vcrtical lines in image space at roof corner points, and
measure the heights of these verticals in obiect space to obtain heigtht estimates for the roof. In the next
two sections, we discuss issues in reliable location of vertical lines a( corner points and methods for
using these lines to measure heights for flat and peaked roof buildings.
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6.1. Vertical line location
The goal of vertical line location is to find a vertical edge in image space which emanates from a
specific point. In our case, we wish to find vertical lines at roof corner points, under the assumption that
such lines must constitute the edges where building walls meet.

A simple way to find such verticals would be to return to the original edge data and use the corner points
as a basis for range search to find edges with vertical labels. This approach, however, is susceptible to
the quality of the edge data, which can be poor for vertical edges. While template-based edge detectors
perform reasonably well on long straight lines in aerial photography, they tend to round edges at
corners, and often do not locate the vertical edges, which are typically much shorter. This means that
potential vertical edges are often mislabeled as horizontals or neither" edges due to the rounding at
corners, which can alter the computed orientation of the edge, or the potential vertical segments are not
separated from other edges due to their shortness, instead being misinterpreted as noise at the end of an
edge segment.

To avoid these difficulties, we instead focus processing attention on the comer points, which are likely
starting points for any vertical lines, and we use oriented edge-finding techniques to maximize the
likelihood of finding short edges. We now outline the vertical line finding strategy we have developed,
which performs well in finding short vertical edges.

We utilize an imperfect sequence finding technique 17 to locate a line of pixels, beginning at a corner
point and oriented in the direction of the vertical vanishing point, which have gradient higher than a
certain threshold in the direction perpendicular to the line. Starting with the corner pixel, each pixel is
tested to see if it has sufficient gradient support in the direction perpendicular to the line to be labeled an
edge point.

This labeling process produces a binary sequence of points, which are either labeled as edge points or
non-edge points. The imperfect sequence finder is used to locate the terminating point of this sequence,
which will be the other endpoint of the vertical line. The sequence finding technique is used tor two
reasons; first, to tolerate noise along the potential vertical line, and second, to handle the potentially
noisy gradient values in the immediate vicinity of corners, where many edges may meet.

The edge/non-edge determination for each pixel is carried out by locating gradient extrema inside a
window around the pixel, fitting a line to these extrema, and computing the residual error of this line
with respect to the extrema points. A confidence score, weighting in the residual error of the fitted line
and its slope with respect to the vertical vanishing point line is computed, and if this confidence score
passes a threshold, the pixel is labeled an edge point; otherwise, it is labeled a non-edge pixel. This
scheme allows correctly oriented lines with noisy gradient to be tolerated, since the slope of these lines
will be close to that of the vanishing point line; it also allows for slight orientation errors to be tolerated
if gradient support is high, when a line fits the gradient extrema well.

In practice, given a corner point, the vertical line finding process is invoked from each pixel in a
window around the corner point, to produce a set of possible verticals for each corner. This is done to
alleviate the problem of corner localization; due to edge noise or line fitting errors, corners are not
always well localized at the corner points. To select the best vertical from the set, a confidence score is
computed for each vertical line in the same fashion as the confidence computation for pixels, except that
the evaluation window covers the entire line. The vertical with the largest product of length and
confidence is then selected as the most likely vertical for the corner point.

Figure 12 shows the final set of verticals produced by the vertical line finding process for the
RADT9WOB scene. Comparing this result with the original vertical line detection result in Figure 5, it is
clear that guided edge extraction from seed comer points provides an improved method tor locating
vertical lines. The area surrounded by the black square in this figure is shown in closer detail in Figure
13. This example shows the set of verticals grown from points in a I-pixel radius around the coner
point of a peaked roof facet; roof facet line labelings are denoted by H for horizontal lines and N forneither" lines. The black vertical is the one ultimately selected from the set as the best vertical, based
on the length and confidence scoring.
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Figure 12: All verticals. Figure 13: Vertical findingz at one corner.

6.2. Height estimation

Pt, D P2

D)3

Figure 14: [leight estimation geometry.

[f we assume that a given edge represents a vertical line in the scene and that the elevation at the bottom
of the line isknown, we can calculate its heig-ht usinue similar trianglecs, as shown in Fiue14. We first
calculate the coordinates of the hottomn point. P,, aind the top point as it' it were at the same elevation aN
the bottom, P.. D) is then the distance hetween points P and P- and 1) is th ditnefom the image

to P-. D, the ground distance between the P, and the point directly below the image. is then calculated

using D, and H, the height of the image above the elevation ofP,.
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D = &-

The height of the object h is then, from similar triangles,
h=H 1 t

T3

After applying the vertical line finder to each corner point of every 2D building hypothesis, we measure
each vertical line in object space to obtain a height value, producing height estimates at every corner of
ever hypothesis. Corners with verticals contained within the 2D hypothesis boundary are not used for
height estimation, since these vertical lines would not be visible in the image, and are hence artifacts of
the vertical line finding process. Many of the verticals in Figure 12 fall into this category.

Of the remaining verticals for each hypotheses, one is chosen with the largest product of length and
confidence score, and the height associated with this vertical is used as the height for the entire structure.
Since vertical edges are typically extracted shorter than they really are, the longest strong vertical is
expected to be the most reliable. For flat roof buildings, this nearly completes the 3D hypothesis
process; all that remains is to project the 2D hypothesis into object space using the height estimate, and
to construct a 3D wireframe model by dropping points from the 2D boundary points. Ground elevation,
of course, must be derived by some other means; for our experiments, we indexed into a DEM of the
Fort Hood site to obtain the local ground elevation for each 3D structure.

A similar process is used for peaked roof buildings to obtain the height of the flat portion of the peaked
structure. It remains, however, to compute the height of the peak above the imaginary flat roof line.
This can easily be performed by using information extracted during the peaked roof extrapolation phase.
Returning to Figure 9, we note that p and x form a vertical line, which we measure in object space to
obtain the height of the peaked portion of the structure. The absolute height of the peak is then
computed by adding the flat height estimate to this peak height estimate.

With object space measurements of each building structure, we perform a pruning step to weed away
implausible buildings. Currently, any structure less than two meters in length, width, or height is
pruned, but these can of course be modified to suit the typical buildings expected in the scene. In
previous implementations, pruning mechanisms such as these were based on ad-hoc image space
thresholds, which could be related to actual object space properties only through implicit assumptions
about image scale and acquisition geometry.

Figure 15 shows the object space models generated by this technique for RADT9WOB, projected back
into image space. Figure 16 shows a perspective rendering of these models, and illustrates the three-
dimensional capabilities of this extraction system. The structures shown here have heights ranging from
2 meters, the pruning threshold, to 13.8 meters. These heights are qualitatively comparable to those
measured manually. We discuss quantitative performance in the next section.

We note that while shadow analysis was not used for height estimation in this work, it still constitutes a
valuable source of information. In future work, we hope to integrate shadow analysis and vertical line
finding to provide more reliable estimation of structure height; by using verticals to guide the search for
shadows, the difficulties mentioned earlier can be alleviated.

7. HYPOTHESIS EVALUATION
In the following sections, we discuss our strategy for quantitative evaluation of the performance of these
building detection techniques. In Section 7.1, we describe our approach for generating ground truth
models of the test scenes, for image space and object space comparisons; we also define evaluation
metrics for capturing system performance. In Section 7.2, we present results for five test scenes in two
nadir and two oblique images of the Fort Hood site, and analyze the results.
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Figure 15: Object space results. Figure 16: Perspective view.

7.1. Evaluation methodology
Evaluation of the test results was done agzainst a manually-generated model of the building.,, in each test
scene, using monocular measurements of building corner points in aill imagzes covering thc scene. A
simultaneous photogrammetric bundle adjustment was done for each test scene which included the
measured. p~oints, on. each. building. , the original• control points., and ..all four i ma,,cs .of the. scene. As\, Iart

40

of the solution, building points were constrained to tit the specified type ot huildine model (flat or
peaked roof-). The use of a simultaneous adjustment incorporating the building geome-tric constraints,
insures that the most consistent and accurate buildingz estimates are obtained.

The imagery, used was provided as part of the RADIUS program: a complication in the adjustment and in
the later processing was the fact that it was geometrically processed to simulate an unspecified sensor.
We approximated the unknown sensor using a frame camera model, which provided a rea.,onable fit
across the image but had residual parallax in some of the test areas. To prevent this unusual situation
from biasing the processing and evaluation we treated the bundle adjustment of each scene as, dealinz
with separate images, and used the orientation information from the adjustment for each scene in
processing that scene. In effect, this approximated the geometry of e; vh processed image with
piecewise frame imag~es.

For evaluation purposes. we use scene-wide metrics which analyze ihe degree of overlap between the
automated results and the manually-gcneratcd models. These tnetrics allow. us to treat extraction errors
of all types in a uniform way, and provide an unbiased measure of system performance. These, metrics
also have the advantage of being applicable in both 2D and 3D. allowing quantitative comparisons of 2D
building detection and delineation performance with the height estimation performance in 3D.

In image space. we regard an automated extraction result as a classification of each pixel in the image as
either building or non-building. An overlap comparison is then suimply a pixel-hv-pixcl comparison ot
the 2D projections of the results of the automated system against thei 2D projcttion of the manually-
generated building models. Measurements in image space allow us to i•ssess the delineation capabilities
oft the system.

In object space, we regard an extraction result as a classification of regions of space as either building or
non-building. An overlap comparison in this domain can he implemented as a voxel-tv-voxel
comparison of the 3D models generated by the automated system and the 3D manually-generatedmodels. Measurements in object space allow us to assess the hei1ht es tieon capabilitis of the

system.
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Each overlap comparison produces a count of true positives (both manual and automated results detect
building), false positives (the automated result shows a building, while the manual result does not), and
true negatives (the manual result shows a building, while the automated result does not). We define four
metrics from these pixel/voxel counts:

* detection percentage = (IOOxTP)I(TP+TN). This metric measures the percentage of building
pixels/voxels in the manual results which were actually detected by the automated system.

* branch factor = FPITP. This metric, proposed in7, measures the degree to which the automated
system "over-hypothesizes" building structure.

0 miss factor = TNITP. This metric, the counterpart of branch factor, measures the degree to which the
automated system fails to hypothesize existing building structure.

* quality percentage = (IOOxTP)I(TP+FP+TN). This metric summarizes overall system performance.
Any false positives or true negatives are reflected in this score, and will lower the quality percentage.

Before proceeding to the quantitative evaluations of the automated results, we note that all 3D overlap
comparisons were done by first discretizing object space into voxels at 0.5m resolution, and then
comparing the manual and automated results at each voxel in object space. This is approximately the
ground sample distance of the Fort Hood imagery and was deemed sufficient to provide reliable
quantitative evaluation.

7.2. Experimental results
Our experimentation has been limited to five test areas visible in each of four images of Fort Hood.
Two ot the images have near-nadir geometry, while two are oblique. The scenes contain a variety of
building structures, ranging from simple flat roof and peaked roof buildings, to L-shaped structures and
buildings composed of multiple rectangular volumes.

The results of this experimentation are shown in the form of one test area per page, showing the four
views of the test area (nadir views in the top row, oblique views in the bottom row), along with a table
for each test area which gives the performance statistics described in the previous section for each of the
four views. Each table is broken down into two sections; the first four numbers for each view are
computed in image space using pixel overlap, and the second four numbers are computed in object space
using voxel overlap.

For brevity, we will only consider one test area in detail, the RADT5 scene. Figures 17 and 18 show
RADT5 and RADT5S, two near-nadir views of barracks in Fort Hood. Figures 19 and 20 show two views
of the same barracks at varying degrees of obliquity. Superimposed on all four images are the final
results of the building extraction process, the 3D models generated in object space and projected back
into image space.

We first consider the image space overlap statistics in Table 1, presented in the first four columns of the
table. The building detection percentages for RADT5 and RADT5OB are quite high. indicating that much
of the building structure was detected. For the other two scenes, the percentages are much lower, due to
failures in different processing phases. In RADT5S, the initial set of hypothesized boxes cover most
buildings in the scene, but the scene is closer to the vertical vanishing point than RADT5. This fact
combined with the lack of contrast leads to poor vertical finding, even with the application of the
oriented line finding technique described in Section 6. 1. Hence, many of the boxes have very low
computed heights, and are pruned away.
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Figure 17: RADT5 results. Figure 18: R \DT5S results.
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Figure 19: RADT50B results. F~igure 20: RADT5NNOi3 results.

Scee %Bid Image space Object space ____

See %Bd Br Miss Quality 1` Bid Br MISS [Quality
Detected Factor Factor 'I Detected Factor Factor c(

RADT5 84.4 0.621 0.184 55.4 41.5 2.628 1.410 19.8

RADT5S 43.3 0.446 1.312 36.3 18.4 1.632 4.445 14.1

RADT50B 84.6 0.748 0.182 -51.8 51.4 1.821 0.944 26. 2

RADT5WOB 26.4 0.621 2.793 22.7 10.9 1.835 8.7 9.

Table 1: Evaluauion statistics I-or scene RAI)T5
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Figure 21: RADT60 results. Figure 22: RADT6\V0 results.

RADT6 26.1 Q1.90t9 2.825_ ______ Qu18.77t.68j.

RADT6S 17.5 1.809 4.718 13.3 4.5 18.962 21.256 21.4

RADT60B 31.0 2.859 2.228 16.4 9.9 8.857 0,088

R.\DT6WOB 5.7 1.425 16.401 5.3 1 2.4 2.254 4 0.93,7 2.

Table 2: Evaluation statistics for scene Ri~m)r6
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Figure 27: RADT90B results. Figure 28: RADT9WOB reSUlts.

Image space Object space

Scene % Bid Br Miss Quality % Bid Br Miss Quality
Detected Factor Factor % Detected Factor Factor c"

RADT9 64.3 0.750 0.555 43.4 41.4 3.908 1.418 15.8

RADT9S 47.8 0.701 1.093 35.8 29.7 4.877 2.370 12.1

RADT90B 53.7 0.648 0.863 39.8 26.1 1.691 .8() 8.

RADT9WOB 72.2 0.776 0.384 46.3 33.8 2.896 1.956 1.

Table 3: Evaluation statistics for scene RADTt)
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Figure 29: RADT 10 results. Figure 30: R.\DTIOS results.
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Figure 31: RADTIOOB results. Figure 32: RADTIOW()B resUlts.

Image space Object space

Scene Bid Br Miss T %'t Bid Br Miss Qualitv
Detected Factor Factor Detected Factor Factor

RA DTI10 63.9 0.864 0.565 41.2 3 0.9 4.44 2.2 I-,.0
48 69- 20. 14o

RADTIOS 37.1 2.7 105 161 29 141 14. 585 i 0.111 4.6

RA. ,T. I lo [1 62. .1oo 0.592 31.2 41.2 I_..<ý 1.429 -57

RADTIOWOB [ 38.1 1.039 1.623 27.3 24.0 -'.M 2 31-72

Trahle 4: Evaluauion statistics Cor scene R.*DTIO
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Figure 33: RADTI I results. Figure 34: RADTI IS results.
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Figure 35: RADTI 1013 results. Figure 36: RADTI I WOB results.

Image space Object space

Scene % Bid Br Miss Quality % Bid Br M Iss Qual ityDetected Factor Factor IT Detected Factor FacLtor

RADTI11 3.4 16.979 28.258 2.2 2.6 46.041 36.846 1.2

RADTI IS 75.5 0.607 0.325 51.8 34.0 6.820 1.939 10.2
RADT I10B 31.9 3.889 2.130 14.2 20.1 7.354 3.968 8.1

RADT1I IWOB 61.3 1.403 0.630 33.0 19.2 5.389 4.19)5 9.4

Table 5: Evaluation statistics for scene RADTI I

In RADT5WOB, the few boxes that are correctly delineated in image space obtain good height estilniaes
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from the vertical line location process. In most cases, however, the boxes generated by BABE are either
poorly delineated, due to missing edges along the road behind the barracks- or they are false hypotheses,
formed by alignments with road horizontals and roof horizontals. The 2D verification process currently
performed by BABE rejects many of the poorly delineated boxes, even though they do cover many
peaked roof facets.

The image space statistics reflect this performance; the miss factors for RADT5 and RADT5OB are low,
indicating good performance in locating building structure. The branch factors for both of these scenes
are higher, indicating that more false positive structures were hypothesized for these scenes as well. The
miss factors for RADT5S and RADT5WOB show that much building structure is missed in these scenes, in
the latter case, almost three times as much structure is missed than is detected.

The object space overlap statistics present a similar performance picture, although the relative scores in
the four metrics are noticeably worse. This is to be expected, since heights are derived from typically
short vertical lines, and errors in vertical line extent on the order of a pixel can translate into height
errors of a meter or more in object space. Nonetheless, the same performance trends can still be
observed in object space; in RADT5 and RADT5OB, the miss factors are relatively low. The lowest miss
factor is produced by RADT-OB, which illustrates the improvement in height estimation when strong
verticals are present in the image at object comers.

In both image space and object space evaluations, the quality scores are low, despite the good qualitative
performance on RADT5 and RADT5OB. This is to be expected as well; the quality metric treats true
negatives and false positives with the same weighting as true positives, and is thus very sensitive to
error. From a pixel classification standpoint, such a metric may be regarded as overly harsh: in fact, if
we count the number of correctly classified pixels in the image and divide by the total number of pixels
in the image, we find that the four scenes have classification rates of 85% to 91%. We believe,
however, that this type of classification metric is inadequate, due to its insensitivity to error. Many
urban and suburban scenes are composed of small fractions of building pixels: a system that
hypothesized no structure whatsoever in these scenes would receive a high classitication score, although
its qualitative performance in building detection would be poor. The quality metric does not suffer from
this flaw.

Figures 21-36 show results for the remaining four test scenes, and Tables 2-5 present performance
statistics for these scenes. Similar performance trends can be observed throughout these test areas;
when vertical lines are prominent and boxes are reliably hypothesized in image space, building
extraction performance is relatively good, as in RADT9WOB (Figure 28). In other cases, such as
RADT6WOB (Figure 24), a combination of complex building shapes and poor contrast at building edges
causes substantial difficulties for the box hypothesis mechanism, and final performance is very poor.
Most of these difficulties, however, rest in the image space hypothesis generation and verification
phases, which remain topics of current work.

We conclude our analysis with a detailed discussion of two example buildings in the RADT5WOB and
RADTII scenes, both of which exhibited poor quantitative and qualitative performance. The examples
we present here show common causes of detection failures, and many of the failures seen in Figures
17-36 are due to the problems we describe below.

In Section 5, we discussed the need for hypothesis verification in object space rather than in image
space. The current system employs an image space shadow verification algorithm, which assumes only
flat roof buildings and a nadir acquisition geometry. Although the algorithms we ha ie described often
perform well when these assumptions are violated, in many situations the result is the rejection of many
valid roof facet hypotheses. We turn to one such example from RADT5WOB, in which many peaked roof
buildings were undetected.

Figure 37 shows one of the peaked roof buildings in RADT5WOB, along with the boxes generated by
BABE for this piece of image. These boxes passed the geometric consistency phase: i.e.. the labelings
assigned to them by vertical and horizontal analysis were consistent with the allowable facets for
building models. We will focus our analysis on boxes A and B in the picture. Figure 38 shows the
boxes remaining after image space shadow verification; neither A nor B were verified.
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Box A failed verification because of a violation of the nadir-acquisition assumption. The image space
verifier treated A as a flat roof, and examined the expected shadow casting edge for a transition from
light to dark, indicating a possible shadow region. It found a lighter region on the expected shadow
casting edge, and rejected A, when in fact this lighter region was a wall of the structure and was adjacent
to the true shadow region.

Box B failed verification in a more indirect fashion, but one which still highlights the need for true
object space modeling and verification. The image space verifier computes a shadow threshold by
sampling intensities near supposed shadow-casting edges for all boxes, histo~ramming these values, and
adaptively selecting a threshold which cuts off at the darkest peak in the histogram. B does have the
expected light to dark transition on its expected shadow-casting edge, but the intensity inside this region
(which is really Box A) is not in the darkest peak of the histogram, which corresponded to shadows
associated with structures which were correctly detected in RADT5WOB.

Figure 37: Initial box hypotheses. Figure 38: Verification failure.

These examples clearly demonstrate the necessity of true three-dimensional object verification which
takes into account scene geometry and illumination. In these cases, the low-level facet generation
phases provided reasonable seeds for further processing, which were not exploited due to faulty
assumptions in verification. In many other situations, however, the low-level facet generation
algorithms are the root of detection failures. We now turn to an example in RADTI I which illustrates
several low-level failures which must ultimately be addressed in future work.

Figure 39 shows an L-shaped building in RADTI I, with the edges extracted for this portion of the scene.
Figure-ground contrast is good for this building; however, the garage entrances on the vertical wall with
upper edge C cause severe fragmentation in the edges extracted by the edge finder. Problems of this
nature occur in images acquired at nadir, but they are worsened in oblique views since walls often have
entrances, windows, and other textural features which can cause increased fragmentation effects.

9

Figure 40 shows the line-corner graph generated by BABE for this scene, with the only two boxes (D and
E) actually generated for the underlying L-shaped structure. Other boxes generated outside the building
were omitted for clarity. Given the lines seen here, BABE would be expected to generate two boxes, one
for each wing of the building, since it is based on creating boxes from corners, and does not attempt to
model composite shapes. Instead, even though some of the lines (notably the shadow-side lines) were
extracted with little fragmentation, the box generation heuristics fail to generate boxes which comrietely



PROJECTIVE AND OBJECT SPACE GEOMETRY FOR MONOCULAR BUILDING EXTRACTION 22

cover both wings. These heuristics are designed to start at a comer in the graph and find the closest
right angle in the graph to create a box. Both D and E are closed prematurely due to this heuristic. D is
closed midway down the wing due to a dark feature on the ground which forms an accidental corner; E
is closed immediately due to the extensive fragmentation along C, which produces many false comers.
These problems, common in many test images, demand more robust heuristics and techniques for box
generation, independently of the verification and object modeling problems outlined earlier.

V, '

Figure 39: Fragmented edges. Figure 40: Line grouping errors.

These examples illustrate the need for true three-dimensional modeling of object structure. Ideally, the
generation and verification algorithms would work with three-dimensional models in object space,
rather than 2D boxes in image space. This strategy would allow all feasible models to reach
verification, where precise geometric information permits rigorous testing of illumination constraints
across adjacent planar surfaces, prediction and verification of cast shadows4 . and the application of
stereoscopic information for consistency constraints across multiple views. Understanding these issues
and the development of ligorous techniques to address these problems, as well as improving the
performance of low-level hypothesis generation algorithms are the subjects of current research.

8. CONCLUSIONS AND FUTURE WORK
Preliminary results from the inclusion of geometric and metric knowledge into the building extraction
system have been promising, although the)y have highlighted the limitations of the current implicit
building models within the BABE system. We believe that these limitations are typical of other building
extraction research based upon nadir view assumptions. In the future, we expect to continue refining
and validating our research on a wider set of imagery. Some specific observations regarding our work
are as follows:

* The height estimates for the candidate vertical lines are good refinement and information fusion cues,
since the object-space measurements can be directly compared with other sources of height information.
such as shadows. A next step is to incorporate precision information on the measurements into an
information fusion framework to allow for relative weighting of the measurements.

9 A small catalog of structural formation constraints (Figure 6) can be a powerful tool for pruning
hypotheses.
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o Verification of horizontal and vertical lines across multiple views can reduce the number of

hypotheses for later processing stages, thereby increasing efficiency. A future step is to perform
multiple view verification of corners, which should also decrease the number of hypotheses and
improve their quality.

o Although BABE has been designed as a monoscopic system, the capability of precisely combining
multiple views using the photogrammetric information allows the hypothesis generation and verification
to take place completely in object space. These advantages derive from the ability to tie images
together with rigorous camera models, especially required for oblique imagery.

* The BABE model can also be extended to handle illumination constraints on the building facets (such
as variation across peaked roofs of uniform material, given the sun angle), more rigorous shadow
detection and verification, and stereo disparity. We note, however, that the techniques described in this
work can estimate structure height in object space, without recourse to stereo analysis. Shadow
information can provide another monocular estimate of structure height to refine the vertical line height
estimates.

We have described experiments in incorporating photogrammetric calculations in an existing building
detection system, analyzed the results on a small set of nadir and oblique aerial images, and raised
several issues of modeling, hypothesis generation, and hypothesis verification that must ultimately be
addressed in a complete implementation of a photogrammetrically rigorous feature extractor. We have
presented qualitative and quantitative results for nadir and oblique imagery which show that the
combination of precise camera modeling and geometric information with existing feature extraction
algorithms provides a powerful approach for increasing the performance of building detectors on
complex aenal imagery.
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1. age, veteran status sexual
orientation or in vocation of federal, state or local !aws. or executive orders

Inquiries concemrn g aop'tcat~oni of these statements should be directed to the Provost Carnegie
Mellon University 5000 Forbes Avenue. Pittsburgh PA 15213 telephone (4 12) 268-6684 or the V-ce
President for Enrollment. Carnegie Mellon University. 5000 Forbes Avenue. Pittsburgh. PA 15213.
telephone (412) 268-2056


