AD-A277 131
L

The Intelligent Monitoring System
Generic Database Interface (GDI)

User Manual

DTIC

Ft TOTE
MAR 16 1994

SPECIAL TECHNICAL REPORT
25 Februarv 1994
Baseline 21.1

Jean T. Anderson, Mari Mortell, Bonnie MacRitchie, Howard Turmer

Geophysical Systems Operation

This documant hes been appioved
for publiz :zlecs: and sale; ita
distribution 18 uniimited.

SAIC-93/1001 REV

WAl Iy

Jil
028L0-V6

i
I
I

il

<
%
>4

The views and conciusions contained in this document o those of the authors and shouid not be inferpeted as representing the offical
poiicies. either expressed or implied. of the Advanced Ressarch Projects Agency or the U.S. Govemment.

Sponsored by:

ADVANCED RESEARCH PROJECTS AGENCY
Nuclear Monitoring Research Office

ARPA Order Number 6266, Program Code No. 62714E
Issued by: DARPAXCMO

Contract No. MDA972-92-C-0026

94 3

Principal Investigator:
Dr. Thomas C. Bache
(619) 458-2531

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Pubist r@DOrting BurEEn 107 1y (OHECHON O :AIOIMPINN 3 FILABIES 10 S-01 3G | “OU’ DB/ *@IDOME, Ncluding IRe Lime for re e y Crrting 8318 20vr< ey
Faheriag and MENIBAING IRE §412 AELUEY 0D LOMDIENING 4ng review:ng INE (OleiOn OF inl0 Send ¢ + 16G8¢Ging LR13 uur G0N emate O any OtRer #10ect O Thiy
CONECUON OF INI0IMALION. JACUGING IWQPEILIONS 107 1ETu(INg tA L DUrGEn 10 WILAAQION *eadauariery Services Divectorate 1o informa1ion ODers1i0ns and Aeports. 1413 JetMerwon
Davit rnghway Suite 1104 Aringron va4 12102 4)02 and 10 the Oice 2 Mansqement 2ng Judqet Paperwort ARduction Progect (0704.0188). Wasningron, 0C 2030)
1. AGENCY USE ONLY (Leave blank) [2 REPORT DATE). REPORT TYPE AND DATES COVERED

3-Jan-94. pecial Technical 11/27/91-2/25/94
4. TITLE AND SUBTITLE T) -7 S. FUNDING NUMBERS

The Intelligent Monitoring Svstem
Generic Database Interface (GDI) User Manual MDA972-92-C-0026

6. AUTHOR(S)

Jean Anderson, Mari Mortell, Bonnie MacRitchie,
Howard Turner

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
Geophysical Systems Operation REPORT NUMBER
Science Applications International Corporation
10260 Campus Pt. Drive

San Diego, CA 92121 SAIC-93-1001REV

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Advanced Research Project Agency
3701 N. Fairfax Drive, #717
Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

P——
123. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION COODE

13. ABSTRACT (Maximum 200 words)

The Generic Database Interface (GDI) is a common application programmable
to multiple databases, providing two key capabilities: Database access and
data management. Database access routines allow an application to connect to
and query a database with the same GDI call whether the target database is
ORACLE, POSTGRES, or SYBASE. Data to and from the database are managed in
the native format of the application, making it possible to provide a seamless
integration of application and database.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Data Management, Relational Database, Generic Interface 140

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLA
SECUNITY € SECURITY CLA St Anstnctss'"““o" 20. LIMITATION OF ABSTRACT
Unclassified Unclassified Unclassified NONE
NSN 7540-01-280-5500 Standard Form 298 (Rev 2.89)

Prewcnibed by ANS S0 £)9.'8
199-102

GDI User Manual Tabie of Contents
Table of Contents
Part I: Introduction
1. OVBIVIBW ...coueerenenennesessssscsssssssssssessssnsssssssmssssssssssassassssssssasssnsssnssasssassans 1-1
1.1 Intended AUGIONCH.........cccccvrnniicininnecniisncensnissssnsnmsassasssssnssnessassossne 1-2
1.2 Document Organization eeeesesisesensneneasssssssnsnesenessaseraes 1-2
1.3 USBI FOOADACK..........cccrneereneenenarsenransneseseenennennesessessaanssssnssessassassssans 1-3
2. ATCRIBCIUFE.........ceeecereerererenssessessesnsasssasesssessssssss st assesssassesssssssassenses 2-1
2.1 BaSiC SBIVICES.........ccooniemnernnsnncsnsunicanuennenssssssssnsssnsnsnsassssasssnsssnsasssseses 2-2
2.2 Database Connector (dbConN)............cccenirerererrrresecseeneeseressenenens 2-2
2.3 Database Object (ADOD))ccceveeererernssrecnsscsseccsnsencsisnsnnsanniacasasens 2-3
2.4 Comparison to Previous Interfaces.............cccceceemreresnceccnccnrseennsnsnees 2-4
2.5 ROSHICHONS....ccocvivrrrnssnnssnisessstensensnseserasssssssasassassasassssssssssssseanssasens 25
Part ll: Generic Interface
1 SN 111 (e To (1o (T o NN sTUAOU 3-1
3.1 Location of GDI COMPONONLS............cccoveeureerarscresersesesereensesssasesenans 3-1
3.2 Sample Programs..........ccuuececcmsacnssessresssssssasasssssnsssssssasennensnsessense 32
3.3 Database-Specific NOtS.............ccuevmecnrnsnsinsnnenesssssassensarsesasssasens 33
3.3.1 ORACGLE.......coiticecninicncsirensarssssssessesstssssssessassasssnsssessassnsensens 33
3.3.2 POSTGRES.......c.cceeuiinnrncnvanceecssnesencsssessseessnssarsssessssssssnsssnesssees 34
3.3.3 SYBASEccccccrtnenntnrernserssnessanesasssasessseransessessasssrssssssssassssasessnes 3-4
4. Database Communications (dbConn)..........ccccccoeeceeemeurerrverneronnnne. 4-1

4.1 Connecting t0 & Database................cceeeerceeeenevirnencnssereesensaesesesnens 4-1

4.2 Managing Query Channels..................ccveevememercresssnsesesssssnescansessane 4-5
5. QUEIY EXBCULIONceceecererrerceennnesnnesssenssnesssssssssssesnsssssssssssesssssossens 5-1
6. Specialized Database FUNCLIONS................cccomecremnrcrecerssecssnnnn. 6-1
7. Data Management (dDOD)).................cccvrmeeerreeresmrenncemsnesnsessssssessann. 7-1

7.1 Tuple CONtAINGN..........cccvireecnineeerensarenssenrsssssssssssssasersssssnssssssssessnsans 7-4

7.2 Column Definitions .7-5

7.3 Tuple Constructor ER— 7-7

A-(

Baseline: 21.1

N2750858
ity Codes
and/or

acial

|

GDI User Manual Tabie of Contents

8. Ermor Handling...... esremasesRestR AR st s Ra e e e e A s ear st 8-1
8.1 User Ermor FUNCHONScccineenciecrncnnssecssesacsnnsnnseesessessessaesessesasans 8-2
8.2 Low-Level Error Functions... reestersseerassesensessresatsesaensnernen 8-3
8.3 Known Problems... . cetssessesnesaesareneaneeneeaeaeesaanasnren 8-4
9. Transaction Managementmnncnnensnessssesssnrassassens 9-1

Part lll: High-Level Interfaces

10. S-PLUS INBACEccereeerererssesscnnenssessenssenssssssmssanssssssessssassssosses 10-1
10.1 Stanrting S-PLUS........resnnnniinnnnsncainnessinsssenissssssnsonsssnas 10-2

10.2 Connecting to a Database ereseesesnsasssnensnensanannssrasasses 10-3

10.3 Executing Database QUEHEScceurerermissesseresesnseecsacesssnnenns 104

10.4 Plotting RBSUMSccccevereeerenernnriisisssnsssssssssnsasssnessasseesesnenss 10-5

10.5 Transaction Management. crsetesessensassntensrnseesesvensesenes 10-6

10.6 Exiting S-PLUS seresesesesssessasasnsssnsasnssranenee 10-6

10.7 Summary of S-PLUS Commands..........cccccermeemrnnersencrnesneseeseens 10-6

11. FORTRAN Interface cesensseesease s ss s sasenasaeessesaans 1141
11.1 Document Organization reessenernesanessesaane 11-1

11.2 Subroutine and Function Calls...........coccvvceveurnersnnencnrsrsasacsescseenenss 11-1

11.3 Connecting to a Database..........cccccevereruenirnsesncassrscseccncsessineescsnsanass 11-6

11.4 Executing QUBHBSccooveeccencsnsrsnsnsnssnsssesssssssasnssnsaesnensassssanens 11-8

11.4.1 Queries that Do Not Retum Datacccceeceeccncccccccnccccnenenennns 11-8

11.4.2 Queries That Return Data reeseeeanensaanears 11-9

11.5 Handling Errors L1111

11.6 Sample Programs............c.eeecescsssssnssnscscesssssssasssssesasssassnsssssssssssens 11-12

11.7 Troubleshooting TIPSccccrseierermmnnncenssensensasasesnansnansens 11-14

11.8 CUITENnt RBSEICHIONS..........cccccreerssennesasrannescensssesssseasnsasssassasencssssssses 11-15

Part IV: Reference Manual

Utilities:
Gdi_gON_ASITUCES(1) ...c.cccicruiniinnirannsississansansisssseesssessnssnesnsesnesnsssssessasnes 1
Generic API:
o Lo TIE=To 1o 14 (<) OO USSR 3
gdi_add_AmmayStrUCtS(3)cccceerrererrersesssenscnnesseessnsessnsesssessssssssessnnsessnsenes 4
0di_DOGIN_tran(3).....ccccciciicrrnrrrcreereniecsesiessnresssseessneresssssessasesssssassssenssssseses 6
gdi_channel_is_Open(3)........ccccceereuerecicreesercsescsanesneecssarssssssssssssssessseessseses 7
GAI_ClOSB(3)....c.ooieiiiieiiinerreeerareneraeseesasssssnnensesassssssnssnsssesssessesssesssssesssnes 8
gdi_close_channel(3)........c..cccceeevereerererserisenicniessnenseeessuessaressnesnsesssnsessens 9
Baseline: 21.1 ii

J———-———-

GDI User Manuasl

GAi_COMMIL(I)ocoerieniiiruiicintrrnrererseeseraensneesseresaresssresseeessssesasesessesrsnne 10
QAi_dBA(3)oovveieerireierieniiistictnnnrssenssessenesnesseesssessnesssessaesssesssasssresssssrenes 1"
QAi_BrTOr_flags(3).....coccrriinreriricnninnnnrecssninsnenseesseessesrnessessnessessssessnssnnnenes 12
GAi_OITON_QOL(3) ...cccveeeicerecnrerrerreeennnsetscssaessnenesneeesaneesanassasessssnssssessssensens 13
o 1o - Tg (o T 1111 () OO RS UURRR 14
BAI_BXI(B) .eeveeerereeeeeesenineenreeseaeserssnnessssnenasessseessnensessnessaessssssosssssssesssas 15
Lo To [0 (VT 1 (<) RO U OO P PO U SRS 16
gdi_get_account(3)ccccereiveiniuinniierinnininiessssneer e 17
gdi_get_ArmayStrUCES(3)cccereremercnenrssisseeseecunsrassnesnersansnsennesessnessssnsanes 18
gdi_get_COUMBI(3)......cc.cccriirnrcninsensnrissnnssnssscsssssaniossssssaneesseessnesassensene 21
gdi_get_database(3)ccccurrerrvsrnrnsrinsnnnnisiisinssssnissnsninnesaessesssessennes 24
0di_get_dbOPHON(3) ..cccccerriinresnississnsssisissessesssessanssssssssansnnensecnessanssnssennen 25
gdi_get_node(3).......ccocuerirrninnininnininnee e 27
gdi_get_vendors(3)cccccecererreniinisienieiinnensnnssnstesansssesasssnsesnesssessnes 28
GAI_INI(B) cveoreeernreninrninrncssnsseessascsnsosansnnsssnssssesansssassssssnsessasssnsrnsesnessasssses 29
GAi_INSOM(3) ...eeeenrernirimninrinririeiretinsstessstissseessssscstssssessnnrersssesseesssnsenses 30
Qdi_0Obj Create(3)ccccccciieenniciniceniiceisiicenessntiecsnstesssanessssnessssesessnnenanns 31
GAi_ODj_dEStrOY(3)ccvvecrnurersunraniissrnncsetincenssnresneesaseesssrssasaessnnassssessssennans 32
GAI_OPON(3) ..eceirerrrrininsniiensiesenisanissessissnnsssiossessnsensssonsassessassnnerssesssassens 33
gdi_open_channel(3)cccccccerecceersercrnneecrnecseresnesnresessessssessssnesssnnsssasens 35
gdi_print_coldefs(3).........ccccccerevveernnan Leesssessnsessensnessnnsesesnsresssasrerasanrresaanes 36
QAi_Print_CONN(3) ...ccceeeerecerecrecererreecrnereseessnssessnessasessnnesssssesssessssasssenens 37
gdi_print_dDODj(3)cccrrierrreeerrercnrernresenecrarernesssnressseessussssessssnesssessssasns 38
GAi_print_tUPIBS(3)cocceeermrirereecrnerreieersnessnrsnessessanesnssssesssesssessarassesens 39
Gdi_FOlIDACK(S)....ccerurererireresniecnnssannsnnsnnesnessneseeessanssnrassesssesssessasssseessnassensns 40
Gdi_SAVOPOIN(3)......ccorceierrcricsersrissansanersnrenernressecsasrssssssaessssssssssssrossssnnes 41
@di_set_dbOPtiON(B)cccecerrreerrerenmrrireenneesesnecsseressanessessssessesesssssessees 42
o o =TT oT (< OO OO OO 43
GAi_SUDMIL(3)coeieririiimncennnereeriennineesnnssnesesssessssessnsssesssessessessseosssesees 44
o Lo TR (- Ter- T (<) OO USRI 48
ORACLE-Specific Routines:
OFACIO_OPON(3) .cccceererecrenenrcrenieserereneessuresssessaressanerssesssssssasssessssneennesessnsesnns 49
Ora_SQICA_BITON(3)....cccceneeeerrcneccrreeresssersssnsaesssseresssssssssssnssesnnessesnnssesesanens 51
FORTRAN API:
GAI_ClIOSO(Bf).....coueeriiiiiiniiceteccnectenercneeeereessaeseeeeesee e ssenes s sasesassnnens 52
OAi_OITOI_GOL(3M) c.eeeeeeneeceeeneeereeerteecereseenerenrssssesssseessnsessanesessnssssnsessnnes 53
GAi_OPTOT_INI(3F)....ceeeeieciincneernrneeerenseeerneesssessesesnsosssesssesseeesenessessnssssnnennes 54
GAI_INI(3E) ceveereenieineriiinicertrecntireeaeeesneseeerssesseses e st s ers s nerneeseessanes 55
Baseline: 21.1 i

GAi_MAP(S) ...creiiriiieiiiniirieieineeeererassstnesanessessaesessessarsssserseesssssasssrnseesres 56
GAi_0PBN(3)eniiiiiitiirtrrcrnirtrersessseneeesnressneeessteesaseesene e s anesssnssessnasnnns 58
GAi_SUDMI(IT)oorieiiniiiiiiniirceesstisensnseseneseessnnesssnesasesaenesasessssnsnessanes 59
GAi_traco(31) ...cccciirriirrernrrerreirsnreecnsssesensentesenssesstnssensessnersssseessseesssneeranes 61
Part V: Appendices

Appendix A. Bibliography rearseesasasesnsssstsnsnsneassnsnsnenanses A-1

Appendix B. Data TYPOScccceumesrsssesisssssasmssseesesesnsmniscsssesessssasssssssssnsasnssssssenenssanss B-1

Baseline: 21.1 iv

Part I: Introduction

GDI User Manual Overview

1. Overview

The Generic Database Interface (GDI) is a common Appilication Programming Interface (API) to
multiple databases. The GDI provides two key capabilities:

1.

Database Access
An application connects to a database and executes a database query with the same GDI
calls whether the target database is ORACLE, POSTGRES, or SYBASE.

Data Management
Data to and from the database are managed in the native format of the application, mak-
ing it possible to provide a seamiess integration of application and database.

The GDI model consists of the components depicted in Figure 1. High-Level interfaces may be
added without having to modify lower level functionality.

S-PLUS ad hoc analysis Generic '"te’fa"e Application

|I : (High-Level lnterfaces’ : ‘ i

FORTRAN or Scheme

Il specific to a database

C Application - [] same for all databases

FIGURE 1. Generic Database Interface (GDI) Model

Working from the bottom of Figure 1 to the top, the GDI consists of:

Database Interface
Manages interaction with the target database.

Generic Interface
Provides a common API for C applications to access any database and manage data.

High-Level Interfaces
Support programming lanquages such as FORTRAN and Scheme, and third-party
products such as S-PLUS.

Baseline: 21.1 1-1

GDI User Manuasl Owverview

1.1 intended Audience

The GDI targets two types of users: the end-user and the application developer. Section 10
describes S-PLUS, an end-user application.

The end-user interactively accesses the database with a program created by an application
developer or a third party tool such as S-PLUS. End-users want a “hot link” between the applica-
tion and the target database so they can concentrate on research and analysis. They do not want
to be sidetracked by having to manually transter data, not even with the aid of data migration
tools.

The application developer writes programs that require database access. Application developers
want a consistent interface between the application and the target database so they can concen-
trate on a specific area of programming expertise, whether it be the design of sophisticated user
interfaces or complex scientific programs. They do not want to be sidetracked by having to leamn
how to access each database.

Neither user wants to become an expert for each database accessed. Both want application and
database to be transparently integrated. The GDI achieves that transparent integration.

This manual describes what each user must know to submit queries to a database and manage
data. The user needs to know:

« The database query language, which is a topic beyond the scope of this document.
Appendix A lists a few SQL references. POSTGRES documentation is available via
anonymous ftp from posigres.berkeley.edu.

* How to use the generic functions that execute queries and manage data. This is the
topic of this manual. |

The user does not need to know: |

- Database vendor-specific inplementation of Embedded SQL and/or the call interface. |
» Database vendor-specific data dictionary structure.

« Database vendor-specific error handling.

» Application-specific and database-specific data formats.

* Internal GDI data structures.

1.2 Document Organization

PART | introduces a high-level view of the GDI. Section 1 (this section), describes the GD! model.
Section 2 describes the GDI architecture.

PART Il introduces GDI routines to the application developer. Section 3 discusses naming con-
ventions, sample programs, and known problems. Section 4 discusses database communica-
tions. Section 5§ and Section 6 describe query execution and specialized database functions.

1. S-PLUS is a statistical and graphics program developed by StatSci that is basad on the S-Lan-
guage.

Baseline: 21.1 1-2

GDI User Manusi! Overview

Section 7 describes data management. Section 8 and Section 9 discuss error handling and
transaction management, respectively.

PART Il introduces the high-level intertaces to the end-user. Section 10 contains an S-PLUS
tutorial. Section 11 describes the FORTRAN intertace.

PART IV contains UNIX Section 1 man pages for GDI tools and Section 3 man pages for GD!I
routines. The most current man pages are available on-line.

PART V contains appendices. Appendix A is a bibliography of SQL language references. Appen-
dix B is a description of GDI data types.
1.3 User Feedback

The GD! development team welcomes comments. All bug reports and suggestions for improve-
ment should be sent to gdi@gso.saic.com.

Baseline: 21.1 1-3

GDI User Manuei Architecture

2. Architecture

Section 1 presented a high level viow of the GDI. This section describes the key components of
the GDI architecture:

« Basic Services: Database access routines.
« Database Connector (dbConn): Manages database queries.
« Database Object (dbObj): Manages data to and from the database.

Figure 2 depicts how an application uses the dbConn and dbObj to access a database. All que-
ries are executed on the dbConn that was established when the application connected to the
database. This is similar to a C program using a FILE pointer for reads and writes to a file opened
with fopen(). I a query returns data, the GD! returns a pointer to the dbObj containing the data. If
an application needs to insert data into the database, it can create a dbObj and populate it with
the data to be inserted.

User
Application

Generic API
Basic Services

query results

@ specific to a database [generic for all databases

FIGURE 2. Generic Database intertace Architecture

Baseline: 21.1 2-1

GDI User Manus! Architecture

2.1 Basic Services
GDI routines are organized into the following areas that provide:

1. Communications
Database opens and closes, query cancellation, and query tracing.

2. Ermor Handling
Consistent error reporting whether the actual error was a database error, a UNIX error, or

an application-specific error. The application can decide whether wamings should be
treated as tatal and a debug option automatically outputs errors to stderr to aid develop-

ers in debugging problems.
3. Transaction Management

Hooks for starting a multi-statement transaction (POSTGRES and SYBASE), and for
issuing commiits, rolibacks, and savepoints.

4. Data Dictionary Access
Consistent interface to each vendor’s data dictionary for commonly asked questions such
as ‘what is this object?”, “what is its structure?”, “who owns it?"

5. Canned Database Queries
Highly optimized database access for commonly required functionality. For example,
some vendor products have sequencing mechanisms while others do not. The gdi_get -
counter() routine provides a highly optimized, consistent mechanism for fetching unique
id’s regardiess of database.

6. Dynamic Queries
Support for dynamic queries.

7. Data Management
Data are managed in native application data format.

2.2 Database Connector (dbConn)

The Database Connector (dbConn) manages queries. When an application connects to the data-
base, the GDI creates a dbConn that keeps track of administrative information, such as:

« database vendor type (i.e., ORACLE, POSTGRES, SYBASE)
- database name, account, and node
« error information for the last query executed (specific database error code and string)

A single application can have multiple dbConn's, consisting of muitiple connections to the same
database or to a mixture of databases, as depicted in Figure 3.!

1. Only one connection to POSTGRES is allowed at this time, but an application may mix one POST-
GRES connection with many ORACLE and SYBASE connections.

Baseline: 21.1 2.2

GDI User Manuasl

User
Application

FIGURE 3. Database Connector (dbConn)
The dbConn also keeps track of the query channel, a communications “pipe” on which database
queries are managed and executed. A channel is a DBPROCESS for SYBASE, a cursor for

ORACLE, and a portal for POSTGRES. Each dbConn is initialized with at least one channel for
default query activity, but users may add as many channels as they like, as depicted in Figure 4.

o —>

FIGURE 4. Database Query Channels

2.3 Database Object (dbObj)

The Database Object (dbObj), depicted in Figure 5, manages data and is composed of the fol-
lowing internal structures:

» Tuple Container
Stores the data, which might be query results from a SELECT (outputs), or data to be
inserted into the database (inputs). By default, data are organized into rows and col-
umns, like a database table. The exact organization is controlled by the Tuple Con-
structor.

« Column Definitions
Describes each column in the tuple container, including name, data type, and length.

» Tuple Constructor
Specifies how to manage data in the tuple container. For example, S-PLUS operates
on columns and rows instead of on rows and columns. The S-PLUS custom interface,

Baseline: 21.1 2-3

GDI User Manual Architecture

described in Section 10, uses an S-PLUS tuple constructor instead of the default tuple
constructor. While the specific data format is intended to be transparent to the end-
user, Section 7.3 describes how programmers may create tuple constructors to fit a
particular application need.

« Query information
Retains query information, such as the database query string, whether or not the
query succeeded, and how many rows were affected. The dbObj retains general GDI
information with each result set, while the dbConn stores specific database error infor-
mation about the last query executed.

Tuple Container

Column Definitions
dbOb)

Query Iinformation

FIGURE 5. Database Object (dbObj)

The GDI provides functions and macros for accessing a dbObj. The user does not need to know
the internal structure.
2.4 Comparison to Previous Interfaces

SAIC has developed several database library interfaces. They supported the most basic data-
base services, the first five items discussed in Section 2.1. But none of them supported fully
dynamic queries and data management, resulting in two fundamental flaws:

« Libraries were Schema-Driven.
» Data structures were infiexible.

This section describes how the dbObj solved both these problems.

Schema-Driven Libraries

Fully dynamic database selects were difficuit to support because there was not a straight-forward
way to pass dynamic query results back to the calling application. instead, insert and fetch rou-
tines, with the corresponding C and FORTRAN program headers, were generated automatically

Baseline: 21.1 2.4

GOl User Manuas! Architecture

for each table based on its definition in the database. If the structure of the database changed,
the push of a button would regenerate the support library.

In essence, the database access library was hard-coded to the schema being accessed, an
approach that had serious limitations:

« Poor Support for New or Changing Database Structures
Applications could not access newly created tables until headers and routines had
been generated, the library remade and reinstalied, and the application recompiled.
Modifying existing tables required synchronizing changes to database tables, access
libraries, program headers, and the applications. The library became a weak link
between the application and the database.

* Inflexible SELECT Lists
Since the SELECT list was hard-coded to a single table, an application received all
fields in a table even if it wanted just one. More importantly, an appilication queried
one table at a time, even though it might need data from many tables. The application
had to select from each table separately, then merge the results. Because of this, the
number of application-specific routines grew, defeating one of the primary purposes of
a centralized library which is to reuse code.

The dbObj overcomes the problem of managing dynamically defined query results. Applications
may access new tables as soon they are created, access existing tables as they are changed,
and execute any database statement that is legal for the target database.

Inflexible Data Structures

Previous interfaces supported one data structure: an array of structures. If an application needed
a linked list, it constructed the list and copied the data into it. Likewise, data were copied to FOR-
TRAN storage. Loading data into S-PLUS required dumping results to a flat file, then manually
describing and loading the file into S-PLUS. Too many steps were required to migrate or copy
data into the application.

The dbObj reduces data copying by supporting the application structure directly.

2.5 Restrictions

While an application may attach to multiple databases simultaneously, no effort is made to trans-
late queries for the target database; the GDI passes the query straight through.

SQL Support

Commercial relational databases extend the ANSI SQL standard with features that are not guar-
anteed to work with other products. For example, a query containing the ORACLE outer join
operator (+) will fail if it is sent to a SYBASE database which uses the asterisks (*) as the outer
join operator.

The GDI passes database queries directly to the database. it does not parse nor translate que-
ries to another vendor's SQL dialect. Vendor-specific features should be avoided. Appendix A
notes which references describe ANSI SQL.

Baseline: 21.1 2.5

GDI User Manus! Archiecture

Transaction Management

Transaction management and query channels are handied differently by the various database
vendors. Some functions are only applicable to a subset of the supported databases. Other func-
tions have different effects depending on the target database.

Baseline: 21.1 2-6

Part ll: Generic Interface

GDI User Manual

3. Introduction

This part of the GDI User Manual describes the functions that provide the following capabilities to
an application developer: The application developer must know C and SQL.

« Database communications
* Query execution
- Specialized database functions, such as unique key assignment and data dictionary

access

» Transaction Management

» Error handling

3.1 Location of GDI Components

Table 1 summarizes the location of GDI components. INSTALL refers to the directory tree where
software is normally instalied for production access. L/IBSARC refers to the directory containing

library source code.
Table 1. Summary of Locations
Name Description Directory Location
User Manual FrameMaker' source organized into a book UBSRCAbgendb/doc/im/user_manual
named gdi.bk. A Postscript version is named
gdips.
man pages UNIX man pages describe each GDifunction | INSTALL/man
call.
libgdi.a, libgdiora.a GDI libraries linked in by an application INSTALLND
ibgdi.h, gdi_177.h Public GDI headers that applications include in | INSTALL/include
source code files.
gdi_gen_Astructs Header generator for ArrayStructs tuple con- INSTALL/DIN
structor; see gdi_gen_Astructs(1).
unit tests and sample Unit tests that exercise and demonstrate GDI | LIBSRC/Nibgendbnest
code functions.
FORTRAN unit tests Unit tests that exercise and demonstrate the LUBSRCibgendbnest
FORTRAN interface.
source code GDI functions. LIBSRCAbgendb/arc

1. Framemaker is a document publishing tool from Frame Technology Corporation

Baseline: 21.1

31

GDI User Menusi

3.2 Sample Programs

The programs in LIBSACNibgendbAest exercise GDI functions and constitute sample code that
demonstrate how to use the GDI. Table 2 summarizes the test programs.

Table 2. GDI Sample Programs

Program Description

tst_ArrayStructs_submit | Tests the ArrayStructs tuple construcior, which manages data in an array

tst_ArrayStructs_insert | of structures.

tst_conn Tests database connect functions.

tst_constr Tests constructor functions.

tst_create Creates a temporary tsbie in the database.

tst_dbobj Tests dbObj functions.

tst_get_counter Tests the gdi_get_counter() routine.

tst_get_dbcount Tests Oracle PRO*C hooks, requires database open with oracle_open().

tst_insert1 Feiches data from the database and inserts it into another table in the
database.

tst_insert2 Creates a dbObj and populates it with data that it then inserts into the
database.

tst_submit Tests the gdi_submit(} function.

tst_whatis Tests the gdi_what_is_object() tunction.

The programs use libpar.a, a public domain library from Caltech, to parse command line argu-
ments. The command line arguments can be included in a parameter file (e.g. par file) and the
name of the this file can be used on the command line. A par file for each test program resides in
LIBSRCANibgendb/test. Additional par files are in LIBSRCAbgendb/test/par. These par files access
project-specific databases used during GDI development and testing. They should be checked to
make sure accounts, passwords, database names and queries are appropriate for the local data-

base.

Baseline: 21.1

GDI User Manual introduction

Instructions for compiling and executing each test stub are based on the source code filename
(Table 3).

Table 3. Test Stub Instructions

General Instructions Example
Source Code | program_name.c tst_conn.c
Par File program_name.par tst_conn.par
To Compile make program_name make tst_oonn
To Execute PrOQram_name parsprogram_name.par tst_conn par=tst_conn.par

3.3 Database-Specific Notes

3.3.1 ORACLE

3.3.1.1 Compiling Applications

Applications must link lbgdi.a with an ORACLE-specific library, lbgdiora.a, and with ORACLE
libraries at revision 6.0.36.4 or higher because new Oracle Call Interface (OCI) functions used by
the GDI became available in that release. As of this writing, the following 6.0.36.4 libraries must
be linked (see the sample Maksfile in LIBSRCAibgendbiest):

libocii4c.a OCI routines

libsqli4.a PRO*C routines

libsqineta SQL'Net library

libora.a ORACLE RDBMS kemel routines

Once compiled with 6.0.36.4, the application may be used with ORACLE databases running an
earlier revision. It has been used extensively with 6.0.33.2 databases.

3.3.1.2 Support for PRO*C Routines

Currently, gai_open() establishes database connections with OCI. This allows multiple, concur-
rent connections for applications using the GDI or their own OCI functions. Applications may link
in their own PRO*C subroutine; but they must first establish a PRO*C database connection with
the GDI function oracle_open() (see oracie_open(3)). PRO*C subroutines must be executed on
that cranection. Due to a limitation of Oracle version 6, only one PRO*C connection may cur-
rently be opened at a time. However, additional OC! connections may be established with gdi_o-
pen(). A future enhancement will aliow muitipie PRO*C connections.

A low-level error handiing routine, ora_sqica_errory(), provides developers of PRO*C routines with
the ability to store SQLCA error information in the dbObj (see ora_sqica_error(3)). Example 1
shows sample calling syntax.

Baseline: 21.1 3-3

GDI User Manusi introduction

Example 1:
EXEC SQL OPEN my_cursor;
it (ora_sqica_error (conn, sqica, "my_cursor open: *) i= GDI_SUCCESS)
return (GDI_FAILURE);
ora_count.pc in LIBSRC/Nibgendb/test demonstrates the PRO°C capability. tst_get dbcount in
LIBSRCNibgendb/test exercises the PRO*C function.
3.3.1.3 Calculated Numbers are Doubles

Calculated columns will be retumed as doubles, even if the result is an integer. For example, the
following query will return count as a double:

select count(wfid) count from widisc where wiid > 50000

3.3.1.4 Fixed Date Format

The default ORACLE date format contains only the date (year, month, day); it does not include
time (hours, minutes, seconds). Version 6 does not allow setting a different default date format;
although, that capability will be available Version 7. Until Version 7 becomes widely avallable, the
following ORACLE date format will be expected throughout the GD!:

YYYYMMDD HH24:MI:SS
Later versions of the GD! will be able to support user-defined date formats.

3.3.1.5 Link System V

Developers can compile applications any way they like, but the final link must be System V rather
than BSD. If a segmentation fault occurs on a database select inside a lower level ORACLE rou-
tine, the appilication is probably resolving symbols from /usr/jitviibc.a instead of /usr/Slitviibe.a.

3.3.2 MONTAGE
Basic hooks are in place.

3.3.3 POSTGRES
Basic hooks are in place.

334 SYBASE
Basic hooks are in place.

Baseline: 21.1 3-4

GDI User Manual Detabase Communicstions (dbConn)

4. Database Communications (dbConn)
Table 4 summarizes the datbase communications functions.

Name Description Man Page

T | mkiakzetheGDllbrary | gdii®) |t
gdi_open Establishes a connection 1o the database. | gdi_open(3) ts1_conn.c
gdi_close Closes a connection 1o the database. gdi_cioes(3) tst_conn.c
gdi_exit Closes all database connections. odi_exit(3) tst_conn.c
pdi_dead Chaecks to see ¥ connection Is ive. gdi_dead(3)
gdi_print_conn Outputs contents of dbConn to stdout. gdi_print_conn(3) tst_conn.c
oracle_open Opens an Oracle PRO*C connection oracie_open(3) tst_get_dboount.c
gdi_open_channei Opens an additional query channel. odi_open_channei(3) tst_conn.c
gdi_close_channel Closes the specified query channel. gdi_close_channei(3) tst_conn.c
gdi_channel_is_open | Checks to see if channel is still open. gdi_channel_is_open(3)
gdi_abort Terminates the current command. gdi_abort(3)
odi_fiush Discards unprocessed query results. gdi_flush(3)

4.1 Connecting to a Database
gdi_init() initializes the GD! library. It takes two parameters:

appname Name of the executable.

gdihome Root directory of GDI instaliation. The GDI searches gdihome/lib for
shared objects it dynamically loads.

@di_init() should be called once by the application program before any other GDI functions are
called.

Example 2:
gdi_init (argv[0], “/prj/shared/lib®);

Baseline: 21.1 41

GO User Manus! Detabase Communicstions (dbConn)

9di_open() connects a process to a database and returns a dbConn structure. A NULL dbConn
means the connect failed. Table 5 summarizes which databases use each parameter.

Table S. gdi_open() Parameters

Parameter MONTAGE ORACLE POSTGRES SYBASE
vendor yes yes yes yes
account optional yes no yes
password optional optional no yes
database optional optional optional yes
server optional no optional yes
appname no no no yes

Example 3 shows how a program called SampleProgram might connect to an ORACLE data-
base.

Example 3.

dbConn *my_dbConni;

char *vendor="oracle";

char *sccounts="gcott";

char ‘password="tiger";

char ‘dbe"t:host!:dev"; f* ORACLE Version 6 SQL*Net TWO_TASK string */

it ((my_dbConn1 = gdi_open (vendor, account, password, db, NULL, NULL) == (dbConn *) NULL)

... handle error ...

}

The last two gdi_open() parameters are NULL because they are not used for connecting to ORA-
CLE. Also, it the account parameter contains the entire ORACLE connect string, the rest of the
parameters may be left NULL. Example 4 would create the same database login as Exampie 3.

Example 4:

dbConn *‘my_dbConn1;

char *vendors"oracle”;

char ‘accounta"gcottniger@t:host1:dev”;

if ((my_dbConn1 = gdi_open (vendor, account, NULL, NULL, NULL, NULL) == (dbConn *) NULL)

... handle error ...

}
At this point, SampleProgram is now connected to one database, as depicted in Figure 6.

Baseline: 21.1 4-2

GDI User Manusi Databsse Communicetions (dbConn)

SampleProgram my_dbConn1 “dev” on host1

FIGURE 6. SampleProgram Connected to one Database

An application may connect to more than one database simultaneously. Example 5 shows the
same process connecting to a POSTGRES database.

Example 5:

dbConn *my_dbConn2;

char ‘vendor="postgres”;
char *account=NULL;
char ‘passwordaNULL
char *db="gdidemo";
char ‘serversNULL;

char *app=NULL;

it ((my_dbConn2 = gdi_open (vendor, account, password, db, servar, app) == (dbConn *) NULL)

... handle error ...

}

The database host will be driven by the POSTGRES PGHOST environmental variable. Sam-
pleProgram is now connected to two databases, as depicted in Figure 7.

FIGURE 7. SampleProgram Connected to Two Databases

Baseline: 21.1 4-3

GDI User Manus! Detabsse Communicstions (dbConn)

Each dbConn keeps track of database login information, error information and some vendor-spe-
cific information. The contents of the dbConn may be output with gdi_print_conn(). Example 6
shows how the dbConn connections established by Exampile 4 and Example 5 could be output to
stdout.

Example 6:

gdi_print_conn (my_dbConn1);
gdi_print_conn (my_dbConn2);

The connection to the database couild be broken for a variety of reasons (network down or too
unreliable to sustain a connect, database down, database host crashed, just to name a few).
odi_dead() determines if a ddConn Is still alive. It is executed on a specific query channel, which
is described more in Section 4.2.

Example 7.
it (pdi_dead (my_dbConn1, channel) ==« TRUE)
{

... connection dropped, do something appropriate ...
}

gdi_close() closes a specific database connection. Example 8 closes my_dbConn1; but my_db-
Conn2 remains open.

Example 8:
gdi_close (my_dbConn1);
gdi_exit() closes all open connections. Example 9 closes both my_dbConn1 and my_dbConn2.

Example 9:
odi_exit ();

Basgline: 21.1 4-4

GDI User Manusl! Detabsse Communicstions (dbConn)

4.2 Managing Query Channels

In addition to storing login and error information, the dbConn also tracks query channels, “pipes”
on which database commands get executed.

Query channels are analogous to UNIX shells:

* UNIX shell
After logging into a UNIX workstation, a user executes UNIX commands in a shell.
The workstation might be running a window manager such as Motif that allows creat-
ing additional windows. Used together, multiple windows make the job at hand more
efficient. The UNIX login to the workstation keeps track of the shells. If the login goes
away, all the shelis disappear.

« Database query channel
After logging into a database, a process executes database commands on a query
channel. GDI functions allow the creation of additional channels. One channel might
be used to read a large amount of data from the database. A second channel might
update a table based on information read from the first. The dbConn keeps track of
the query channels. If the dbConn disappears, all the query channels disappear.

gdi_open() creates default query channels that are managed by GDI routines. if an application
uses just GDI routines, it does not need to do anything with query channels.

Applications that add database routines may need to know about query channels, information
provided by the rest of this section.

Each channel equates to an MI_CONNECTION for MONTAGE, a cursor for ORACLE, a portal
for POSTGRES (if a fetch is involved), and to a DBPROCESS for SYBASE. gdi_open() creates
two query channels with the loose notion that one is for reading, the other for writing. libgdi.h
defines aliases for accessing these two channels. The first channel may be used by specifying
GDI_DEFAULT_CHAN or GDI_SELECT_CHAN. The second may be used by specifying GDI_-
UPDATE_CHAN.

The GDI attempts to provide consistent handling across databases, but this is not always possi-
ble. Sometimes a query channel makes sense for one database but not another. For example,
ORACLE manages transactions at the dbConn level while SYBASE manages them at the chan-
nel level. Example 10 shows how variable handling may be accommodated in an application.

Example 10:

#itdet SYBASE

channo = GDI_DEFAULT_CHAN;
#else

channo = GDI_NOT_USED;
#eondif

it a query channel is specified for a function which operates at the connection level for that data-
base, such as gdi_roliback() or gdi_commit(), then the channel argument will be ignored and the
operation will be performed for the entire connection. This may cause confusion for applications
switching between different database back-ends, such as ORACLE and SYBASE.

Baseline: 21.1 4-5

GDI User Manus! Detabsse Communicstions (dbConn)

Example 11 creates an additional query channel. Note that the address of the new query channel
number should be passed to ga/ open_channel(). The GD! manages a list of channeis. The
channel will be created and a number assigned for accessing it.

Example 11:

int my_channel;

if (gdi_open_channel (my_dbConn, &my_channel) l« GDI_SUCCESS)
{

... handle error ...
}

Example 12 checks to see if the channel is still open.
Example 12:
it (gdi_channel_is_open (my_dbConn, my_channel) i« TRUE)

... handle error ...

}

Example 13 shows how gdi_flush() discards any unprocessed query results. For ORACLE, this
cancels a query after the desired number of rows have been fetched and frees any resources
associated with the cursor. For SYBASE, it cancels any rows pending in the DBPROCESS
results buffer if the user did not process all rows in the results set. For POSTGRES, this clears

the portal, if appropriate.
Example 13:
if (gdi_flush (my_dbConn, my_channel) I= GDI_SUCCESS)
{

... handle error ...

}

gdi_abort() terminates the currently executing command. For ORACLE, if no command is cur-
rently executing and the next command is a fetch, the fetch will be aborted. For SYBASE, all
commands in the current command batch are cancelled. This command has no effect for POST-
GRES.

Example 14 closes the query channel created in Example 11.

Example 14.
it (gdi_close_channe! (my_dbConn, my_channel) l« GDI_SUCCESS)

... handie error ...

Baseline: 21.1 4-6

GDI User Manual Query Execution

5. Query Execution
odi_submit() executes any database query. The basic sequence is:

1.

2.

5.

Connect to the database with gdi_open(). Queries will be submitted on the dbConn that is
retumed.

Populate a null-terminated string with an database query. For users accustomed to ORA-
CLE, the query should not have a terminating semi-colon (;).

Execute the query with gai_submit().

Handle any return results. if the database query is a SELECT (ORACLE and SYBASE) or
RETRIEVE (POSTGRES), a dbObj will contain the results. The dbObj is described in
Section 7.

Free the return results structure.

The test routine tst_submit.c has a complete example.

Baseline: 21.1 5-1

GDI User Manusl

Speciaiired Detabase Functions

6. Specialized Database Functions

Table 6 summarizes the specialized database functions.

Table 6. Summary of Specialized Database Functions

Name Description Man Page Sampie Code
gdi_get_counter Get a unique key id. gdi_get_counter(3) tst_get_counterc
gdi_what_is_object Retums what an object is and none yet tst_whatis.c

who owns &,
gdi_create_table Creates a database table based | none yet tst_create.c
on its dbObj definition.
Baseline: 21.1

6-1

GDI User Manusi Dets Mansgement (dbOb|)

7. Data Management (dbObj)

The Database Object (dbObj) manages data and is created whenever a database query is exe-
cuted. An application can also create a dbObj and store data in it, then use it to create and popu-
late a table in the database. its structure is defined in the /libgdi.h inciude file and depicted in
Figure 8.

gbObl
‘tuples Tuple Contalner I
n_tuples Number of tuples in the tuple container
**col_def Column Definitions I
n_columns Number of columns in the column definitions.

database query: i.e., “select * from messages where msgid=4"
Number of rows affected by query.

Command number in command batch (SYBASE only)

Are there more rows from a select that could be fetched?
Exit status (GDI_SUCCESS or GDI_FAILURE)

| Tupile Constructor I

A linked list of 's would be retumed, for example,
after executinga S command batch containing
more than one query. There would be one dbObj for
each command executed.

== [G

FIGURE 8. dbObj Structure

The dbObj consists of 4 basic parts:

* Tuple Container
Stores query results if the query is a SELECT (ORACLE and SYBASE) or RETRIEVE
(POSTGRES), or data to be inserted into the database if the query is an INSERT
(ORACLE and SYBASE) or APPEND (POSTGRES).

e Column Definitions
Describes each field in the rows stored in the tuple container, such as column name,
data type and size.

Baseline: 21.1 7-1

GDI User Manusi

Dets Management (dbOb))

* Query information

Several variables store miscellaneous information such as the text of the database
query, the number of rows affected, and whether the function succeeded or failed.

» Tuple Constructor

Controls the structure or format of the data in the tuple container.

A dbObj should never be accessed directly because the specific structure will likely change.
Instead, the macros and functions summarized in Table 7 should be used. The sample code ref-
erenced in the table is in LIBSRGIibgendb/test.

Table 7. Summary of dbObj Macros and Functions

Name Description Sample Code
dbObj Creation

GDI_OBJ_CMD_NUM

GDI_OBJ_MORE_ROWS

GDI_OBJ_STATUS

Command number (may be >1 for
SYBASE)

indicates there were more rows to
be had; i.e., the number of
records requested was less than
the actual query results.

Command status

gdi_obj create Creates a new dbObj and with the tst_create.c, tst_dbobj.c, tst_in-
specified constructor sert2.c
gdi_obj_destroy Frees a dbObj, deallocating all alio- | interact_submit.c, tst_constr.c,
cated fields. tst_create.c, tst_dbobij.c, tst_in-
serti.c, tst_insert2.c, tst_sub-
mit.c, tst_whatis.c
Tuple Container
GDI_OBJ_TUPLES Pointer to the tuple container
GDI_OBJ_NUM_TUPLES Number of tuples in the tuple con- interact_submit.c, tst_constr.c,
tainer. tst_dbobj.c, tst_insert2.c, tst_-
submit.c
Column Definltions
GDI_OBJ_COL_DEFS Pointer to an aray of column defini-
tions.
GDI_OBJ_NUM_COL UMNS Number of columns.
Query Status
GDI_OBJ_QUERY Database query. tst_inserti.c
GDI_OBJ_ROWS_AFFECTED Number of rows aftected by the data- | tst_dbobj.c, tst_insert1.c, tst_in-
base command. sernt2.c, tst_submit.c

Tuple Constructor

Baseline: 21.1

GODI User Manusi

Deta Management (dbOb])

Table 7. Summary of dbObj Macros and Functions

Name
GDI_OBJ_CONSTRUCTOR

Description
Pointer to the tuple constructor

Sample Code

Baseline: 21.1

7-3

ﬂ

GOl User Manual Desta Mansgement (dbObj)

7.1 Tuple Container

Programs do not need to know the actual structure of the tuples or of the tuple container. The
functions summarized in Table 8 provide data access regardiess of the actual structure.

Table 8. Summary of Tuple Container Macros and Functions

Name Description Sampie Code
gdi_obj container_create Creates a tuple container in the dbObj. tst_dbobj.c, tst_insert2.c
gdi_obj_container_destroy Destroys a tuple container.
gdi_obj tuple_create Creates a tuple. tst_dbobij.c, tst_insert2.c
gdi_obj_tuple_destroy Destroys a tuple. tat_dbobj.c, tst_insert2.c
gdi_obj tuple add Adds s tuple 10 a tuple container. tst_dbobij.c, tst_insert2.c
gdi_obj_tuple_retrieve Retrieves a tuple from a tuple container. :'_;o:strc, tst_dbobj.c, tst_in-
gdi_obj fill_data Inserts data into a tuple. tst_dbobj.c, tst_insert2.c
gdi_obj get_data Reads data from a tuple. tst_constr.c, tst_dbobij.c,

tst_insert2.c

Baseline: 21.1 7-4

GDI User Manuai

7.2 Column Definitions

The dbObj stores information about each column in an array of dbColDef structures, defined in
libgdi.h and depicted in Figure 9.

(
dbColDef
column name the : there could be
name duplicate msp%qeiﬂedmbym onqtlhgwmery
dbtype database data type (database-specific)
dbprecision database precision (ORACLE only)
dbscale database scale (ORACLE only)
ctype C data type
Size i s of the C data . For strings, th
length len:tt:' ot:yt tr?e string plus the NULL ?;minr?tsor. °
allow_null Flag indicating if the field aliows NULL.
dbtype_s A NULL-terminated string that would be used to
create or describe the column in the database.

FIGURE 9. dbColDef Structure

Baseline: 21.1 7.5

GDI User Manual

Date Management (dbOb))

Like the dbObj, the dbColDef should not be accessed directly. instead the functions and macros

listed in Table 9 should be used.

Table 9. Summary of dbColDef Macros and Functions

gdi_col_def_create

creates a new column definition

gdi_col_def_destroy destroys (dealiocates) a column defi-
nition.

gdi_col_def_add Adds a column definition created with | tst_creats.c, tst_dbobi.c,
odi_col_def_create()to a dbObj. tat_insert2.c

GDI_OBJ_COL_NAME Get the name of a column given a col- | tst_dbobj.c, tst_insert2.c
umn number.

GDI_OBJ_COL_CTYPE Get the C type of a column given a tst_constr.c, tst_dbobj.c,
column number. tst_insert2.c

GDI_OBJ_COL_PRECISION Get the precision of a column given & | tst_dbobj.c, tst_insert2.c
column number.

GDI_0OBJ_COL_SCALE Get the scale of the column given its | tst_dbobij.c, tst_insert2.c
column number.

GDI_OBJ_COL_LENGTH Get the length of the column. tst_dbobj.c, tst_insert2.c

GDI_OBJ_COL_DBTYPE Get the daiabase data type for acol- | tst_dbobj.c, tst_insert2.c
umn.

GDI_OBJ_COL_DBTYPE_S Get the databsse string for creating or | tst_dbobij.c, tst_insert2.c
describing a column.

GDI_O8J_COL_ALLOW_NULL

Get the aliow_null flag.

tst_dbobj.c, tst_insert2.c

Baseline: 21.1

GDI User Manual

Deta Mansgement (dbODb])

7.3 Tupie Constructor

The tuple constructor is specified at the time a dbObj is created. It stores pointers to the routines
that are actually invoked when the user application calls subsequent GDI routines, thus hiding

lower level data structures.

For example, when an application calls gdf obj get_data(), gdi def get data() is actually
invoked if the dbObj was created with GDI_DEFAULT, and gdi_sdi_get_data() is invoked if the

dbObj was created with GDI_SDI_CONSTR.

Default Constructor

[GDI Routines
gdi_obj container_destroy()
gdi_obj_container_create()
gdi_obj_tuple_add()
Qdi_obj_tuple_retrieve()
gdi_obj_tuple_destroy()
gdi_obj_tuple_create()
gdi_obj_fill_data()
gdi_obj_get_data()

S-PLUS Constructor

—>

4 GD!_DEFAULT
gdi_def_container_destroy()
gdi_def_container_create()
gdi_def_tuple_add()
gdi_def_tuple_retrieve()
gdi_def_tuple_destroy()

Qdi_def_tuple_create()
odi_def_fil_data()

odi_def_get_data()

(" Go1_sp1_CONSTR
gdi_sdi_array_destroy()
gdi_sdi_array_create()
gdi_sdi_tuple_add()
gdi_sdi_tuple_retrieve()
gdi_sdi_tuple_destroy()
gdi_sdi_tuple_create()
gdi_sdi_fill_data()

gdi_sdi_get_data()

FIGURE 10. Tuple Constructor

Baseline: 21.1

7-7

GDI User Manusl Error Handliing

8. Error Handling

Errors are managed on a connector by connector basis, each dbConn storing information for
activity on its channels. The status of a function, whether it succeeds or fails (GDI_SUCCESS or
GDI_FAILURE), is always recorded in the dbConn along with the specific error code and mes-
sage string. The dbConn stores information about the last command executed, overwriting previ-
ous statuses. For that reason, the dbObj also records the exit status.

Some functions, such as dbObj functions, do not have a dbConn. Also, an application does not
have a dbConn until a call to gdi_open() succeeds. For these cases, the error code and text are
stored in a global location accessed by specifying a NULL dbConn.

Figure 11 depicts how an error that may have occurred inside a GDI subroutine gets communi-
cated back to the user.

User calis
GDI tunction. ?

User retrieves emor
it GDI function failed.

GDI function stores GDI function
error status info. returns status.

Lower-Level

FIGURE 11. GDI Error Handling

Two sets of error handling functions, one for the user and one for the lower-level GD! functions,
provide error handling capabilities and are described in the following two sections.

Baseline: 21.1 8-1

GDI User Manus! Srror Handling

8.1 User Error Functions
This section discusses what the user must know to manage errors, including how to:

* Detect if a GDI function falled.

* Retrieve the error from the dbConn.

» Control whether database wamings retum GDI_SUCCESS or GDI_FAILURE.
* Debug problems.

A user detects failure by checking the retum status of a function. Most GDI functions returmn
GDI_SUCCESS or GDI_FAILURE. Information about the error is stored in the dbConn used in
the function call. For exampie:

Example 15:
it (gdi_commit (my_dbConn, channo) = GDI_SUCCESS)
{

gdi_error_get (my_dbConn, &errcode, errtext, maxtextien, &status, &severity);
tprintt (stderr, “%s\n®, errtext);
}

Functions that allocate structures, such as gdi_open(), retumn a pointer to the new dbConn struc-
ture. A NULL return pointer indicates that the routine has failed. The following gdi_openy() call
demonstrates both how to check for a NULL return and how to retrieve an error from the NULL
dbConn:

Example 16:

it ((my_dbConn = gdi_open (vendor, account, password, database, server, appname))
== (dbConn *) NULL)
{

gdi_error_get ((dbConn °) NULL, &errcode, errtext, maxtextien, &status, &severity);
fprintf (stderr, “%s\n", errtext);
}

Sometimes a database generates a waming which may or may not be important to an applica-
tion. For instance, ORACLE databases set a warning flag under the following conditions:

e A user updates or deletes a table without a where clause.
* A fetch truncates data in a column.

The user can instruct the GDI to treat such wamings as fatal by setting the gdi_error_init() argu-
ment, threshold, to GDI_WARNING. The threshold indicates the error level that is considered a
failure and which cause a GD! function to return GDI_FAILURE. The threshold may be changed
at any time and the current setting may be checked with a call to gdi_error_flags().

gdi_error_init() also has a debug flag. When set to GDI_DEBUG_ON, errors are automatically
output to stderr. When set to GDI_DEBUG_VERBOSE, additional debug messages are automat-
ically output to stder. These options are especially useful during the early stages of application
development, but should not be used as a replacement for actual error handling.

Baseline: 21.1 8-2

GDI User Manusi

Table 10 summarizes user error handling functions and macros.

Table 10. User Error Handling Functions and Macros

Name
gdi_ermor_ink

Description
Ogtional routine that sets debug and the severity threshold
level.

debug: default setting is GDI_DEBUG_OFF. GDI_DE-
BUG_ON outputs errors 10 stderr. GDI_DEBUG_VERBOSE
outputs any additional debug messages 1o siderr.

threshold: The default is GDI_WARNING, which means that
GDI_SUCCESS is returned if a waring occurs. if set 1o
GDI_FATAL, then wamings retum GDI_FAILURE.

Man Page

W

gdi_emor_ina(3)

gdi_error_get

Retrisves error code, error text, severity, and exit status from
the dbConn.

gdi_error_get(3)

gdi_error_flags

Retrieves the current setting of debug and threshold from
the dbConn.

gdi_error_flags(3)

gdi_trace

Flips vendor specific database tracing on or off.

none yet

GDI_OBJ_STATUS

The exit status in the dbObj (GDI_SUCCESS or GDI_FAIL-
URE).

8.2 Low-Level Error Functions

The low-level routines, summarized in Table 11, store errors in the dbConn. These functions
shouid not be called by user applications. Developers writing GD! functions that will be called by
user applications should be aware of these functions.

Table 11. Low-Level Error Setting Functions

Name Description Man Page
gdi_error_app Sets error code and text in the dbConn.
odi_waming_app Sets a GDI waming. K the threshold is set to higher than GDI_-
WARNING or ¥ the emor i code is GDI_NOERROR then the
dbConn status is set to GDI_SUCCESS. Otherwise the status is
set to GDI_FAILURE.
gdi_emor_unix Gets error code from Unix ermo and etror text from syserrorkist if
2 UNIX error occurred (for example, a maloc failed). Stores in
dbConn by caliing gdi_error_app().
ora_sgica_error ORACLE-specific routine that stores SQLCA efror information in | ora_sqica_error(3)
the dbObj. For use by PRO*C routines.

Baseline: 21.1

GO User Manual Ermror Hendling

8.3 Known Problems

Asynchronous Processing

Since errors are managed at the dbConn level, channels that execute commands asynchro-
nously should not belong to the same dbConn since they will overwrite each other's error status.
In this case, additional dbConn structures should be used.

ORACLE

ORACLE is signal-sensitive, using SIGINT for its network communications. Special ORACLE-
provided routines must be used to put alternate SIGINT handlers in place. For more information,
see your local ORACLE Database Administrator.

POSTGRES

Be aware that POSTGRES error-handling in the current baseline release is weak and is being
addressed in the next release.

Baseline: 21.1 8-4

GDI User Manual Transaction Management

9. Transaction Management

A transaction is a group of database statements that are treated as a single unit, /.e., the effects
are seen in their entirety or not at all. If queries executed inside a transaction change the data-
base, those changes do not become permanent until the transaction is committed. A rollback
negates all changes.

Each database manages transactions differently. By default, each POSTGRES and SYBASE
statement commits as soon as it has successfully completed; you must expilicitly begin a transac-
tion to group multiple statements together. gdi begin_tran() starts a transaction for POSTGRES
and SYBASE databases. No changes will become permanent until a gdi_commit() is executed.
All changes within the uncommitted transaction may be undone with gdi_rollback().

By default, ORACLE implicitly starts a transaction with the first database statament. No changes
become permanent until a gdi_commit() is executed, and all uncommitted changes may be
undone with gdi roliback(). gdi _auto_commit() puts ORACLE into a mode where every state-
ment commits automatically as soon as it completes.

Two conditions may automatically cause a commit, depending on the database:

» A DDL statement, such as create or drop, commits pending changes even if the state-
ment itself fails.

» gdi close() commits pending changes before terminating the database connection.

in general, it is better to explicitly commit or rollback by storing the proper statement in a query
string and executing it with gdi_submit() or by using one of the functions summarized in Table 12.

Table 12. Transaction Management Functions

Function Description Database
gdi_begin_tran Begin a multi-statement transaction POSTGRES, SYBASE
gdi_commit End a transaction, making all changes permanent. all
gdi_roliback End a transaction, discarding all changes. all
gdi_savepoint Set a savepoint. ORACLE, SYBASE
gdi_auto_commit Have each statement automatically commit if &t succeeds. | ORACLE

Part lll: High-Level Interfaces

P s

GOl User Manuai S-PLUS Detabase interface

10. S-PLUS Database Interface

The S-PLUS database interface lets a user interactively execute a database query at the S-
PLUS prompt, then transparently transfers database query results into S-PLUS where they may
be manipulated with S-PLUS functions. The databases currently supported inciude Montage,
Oracle, Postgres, and Sybase.

To use it, the user must know:

« The query language of the target database: SQL for Montage, Oracle and Sybase,
POSTQUEL for Postgres.

* The S Language.

* How to use the following functions described in this section:

libsdi Loads the S-PLUS Database Interface.
sdi.open Opens a connection to a database.
sdi.submit Executes a database query.

sdi.close Closes the database connection.

10.1 Starting S-PLUS

Figure 12 shows how to start S-PLUS and load the database intertace using the libsdi command,
which creates the three sdi functions (sdi.open, sdi.submit, and sdi.close) that are used for man-
aging a database connection and queries.

J A\ Splus

8~PLUS : Copyright (c) 1988, 1932 statistical Sciences, Inc.
S : Copyright ATAT.
lVersion 3.1 Release 1 for Sun SPARC, SumO8 4.x :@ 1992

Load Splus Database Interface by typing ’‘libsdi(vendor)’.

oracle® (default) or "montage
ing data will be in /home/gymer/jean/.Data
> 1libsdi("montage*)
...dynamically loading montage database interface...
type ’‘library(help=1ibsdi)’ for bhelp...

FIGURE 12. Loading S-PLUS Database Interface

Sites may be configured to automatically load the interface for a given database. Figure 12 is
from a site that uses Oracle and Montage; Oracle is set to the default, but in this case is being
overridden with the Jibsdi(*montage”) command.

On-line help is available by entering library(help=libsdi).

Baseline: 21.1 10-1

GDI User Manusi S-PLUS Detabase interface

10.2 Connecting to a Database

sdi.open() establishes a connection to the database and takes the following parameters:
vendor Name of the database vendor (montage, oracle, postgres, or sybase).
account Database account.
password Password string.
database Name of the database.
server Database server name.
appname Name of the application (Sybase only).

Some, or even all, of the parameters may be optional depending on the database. Figure 13
shows a user connecting to the nodc Montage database, using database defaults for all parame-
ters except the database name.

¢ Copyright ATET.
v.ruon 3.1 Release 1 for Sun SPARC, SunOS 4.x : 1992
Load Splus Database Interface by typing 'lﬂulli(nubt)'
“oracle” (dsfault) or "montage
Working data will be in Iho-.lgyn.t/joanl Data

> 1ibsdi({*“montage")
. ..dynamically loading montage database interface...
type ‘library(helps=libsdi)’ for help...

> sdi.open(“montage®, database=*nodc®)
completed successfully

>.

FIGURE 13. Connecting to a Database
Figure 14 shows how database errors are reported if the database connect fails.

S splus
S-PLUS : Copyright (c) 1988, 1992 statistical Sciences, Inc.
8 : Copyright ATET.
Version 3.1 Release 1 for Sum SPARC, Sun0OS 4.x : 1992
oad Splus Database Interface by typing 'ub:di(v.ndot)' .
*oracle” (default) or "montage
Working data will bo in /hn.lgy-:/joan/ Data

montage database interface..
ibnty(hlp-lﬂudl)’ for help..

> -di.op.n(‘nonhq. . database="lo_sSuch Database")

sdi_opends: Error 6: ’'gdi_open: XZ2Vi0:Fatal: database Mo_Such _Database does n
ot exist in data/base MI_LIB _USAGE: Can’t login to server’

opening database

> liludi(‘-ontar
dynamically oad

FIGURE 14. Bad Dsatabase Connection

Baseline: 21.1 10-2

GDI User Manuasl S-PLUS Detabese interface

103 Executing Database Queries
sdi.submit() executes database queries, taking the following parameters:

query String containing a complete database query.

maxrec Maximum number of records to fetch. If set to -1, all records will be
ratumed. If set to 0, up to 500 records will be retumed. Otherwise set it to
the maximum number of records you want.

verbose On by default, setting it to 0 will suppress status messages.

debug Off by defauit, allows setting several debug levels to help troubleshoot any
problems that might occur.

Figure 15 builds and executes a database query, requesting just the first 50 rows. It then lists the
query result attributes and row count.

> query <- “"select * from master"
> x <~ sdi.submit(query, 50)

sdi.sulmit: query completed successfully; 50 row(s)
; attributes(x)

*one_deg_sq" *cruise_id" “obs_year*
obs_day “obs_time* *data_type*
stream_source® “uflag “meds_sta*
latitude "1 itude” *q _pos*"
“up_date*® *bul_time*
*stream_ident" “qc_wversion®
data_avail “nparms* *asurfc*
am_hists “tuple.count®

> x$tuple.count
[1] 50
> i

FIGURE 15. Executing a database Query

Entering x at the S-PLUS prompt, partially shown in Figure 16, outputs the data loaded.

> x
$mkey:

{1]) 1300 1400 1500 1600 1700 1800 1%00 2000 2100 2200 2300 2400 2500 2600 2700
[16] 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200
[31] 4300 4400 4500 4600 4700 4800 49500 5000 5100 5200 5300 5400 5500 5600 5700
[46] 5800 5900 6000 6100 6200

$°one_deg_sq":

[1 ‘ng 6056 70580 7060 9068 15099 15099 15099 15099 15099 16083 16083
{13] 16083 16083 16089 16089 16089 16089 16089 16083 16089 16093 16093 16093
[25] 16093 16093 16093 16096 16096 16096 16096 17086 17006 17086 17086 17086
[i; ;?&: %;8:: 21056 23056 23140 24056 24093 24053 24093 25089 25089 25089
[

FIGURE 16. Displaying Data

Baseline: 21.1 10-3

11 s

GOl User Manuasl S-PLUS Databese interface

Any query legal for the target database may be executed. Figure 17 executes a more interesting
query involving a join query that selects two Montage array types. In this example, it selects all
available results (maxrec = -1).

> query <- “"select m2.Prof_Parm as temp, m2.Depth _Press as depth from master ml,
measurensnts »?2 where ml.MKey = m2.MKey -1 and Contains(Box(Pnt (10, -175), Pnt(
20,-165)), ml.Location)"

> % <- sdi.sulmit(query, -1)

sdi.sulmit: query completed successfully; 51 row(s)
> attributes(x)
$names:
(1] “temp* *“depth* *tuple.count*®

> i

FIGURE 17. Executing a JOIN Query

While any valid query may be executed, it is important to realize that the GDI passes queries
straight through to the target database. A query containing the Oracle outer join operator will fail
if sent o a Sybase database and vice versus. Likewise, the Contains spatial function in the query
in Figure 17 is specific to Montage and will not work if sent to Sybase or Oracle.

Baseline: 21.1 10-4

GDI User Manusl S-PLUS Database interface

10.4 Plotting Resuits

Database query results may be manipulated with S-PLUS commands. Figure 18 creates a motit
window and plots the first vector retumed from the query results in Figure 17.

“depth* “tuple.count*®

)
> plot (x$temp([1]]), -1 * x$depth[[1]], xlab="Temperature®, ylab="Depth°®)

FIGURE 18. Plotting Results

Figure 19 shows the results in the motif window.

FIGURE 19. S-PLUS Pilot (One Vector)

Baseline: 21.1 . 10-5

GDI User Manuasi S-PLUS Dstabase interface

Figure 20 and Figure 21 plot the first 10 vectors.

> motif()
> plot (x$templ[1]], -1 *» x$depth[[1l]), xlab="Temperature", ylabs="Depth®”)

par (mfrowsc(2,5))
> :::)(: in (1:10)) { plot (x$temp[([1]], -1 * x$depth([i]), xlabz="tamp", ylahs"d
p -

[

FIGURE 20. Plotting Muitiple Results

FIGURE 21. S-PLUS Plot (Ten Vectors)

Baseline: 21.1 10-6

-

GOI User Manusl S-PLUS Databese interface

10.5 Exiting S-PLUS

sdi.close() disconnects the S-PLUS session from the database. The commands in Figure 22 dis-
connect from the database and exit S-PLUS.

.) ’ o - !z!

> sdi.close()

database closed successsfully
> q()
v

FIGURE 22. Exiting S-PLUS

10.6 Transaction Management

Transaction management is implemented slightly differently in all the databases the S-PLUS
database interface supports. The most notable difference is between Oracle and the other three
databases (Montage, Postgres, and Sybase).

The first Oracle statement implicitly starts a transaction, which is not ended until a commit or roll-
back is executed. If queries executed by sdi.submit() change the database, those changes do not
become permanent until a commit occurs. A commit makes all changes permanent as does any
DDL statement such as create or drop. A rollback undoes all changes. sdi.close() commits all

pending changes.

A transaction in Montage, Postgres, and Sybase must be explicitly started using the conventions
of those databases.

Baseline: 21.1 10-7

|5

GON User Manusi FORTRAN Inierface

11. FORTRAN Interface

The GDI FORTRAN interface provides database access from FORTRAN 77 applications. To use
it, the user must know:

+ The query language of the target database.
+ The FORTRAN 77 Language.
» How to use the GDI functions and subroutines described in this section.

{ The software components listed below are referenced throughout this section. Contact your local
system or database administrator to determine the actual location on your system:

libraries The main GDI library is named libgdi.a. Each database has its own addi-
tional library, named lbgdipg.a for POSTGRES, kbgdiora.a for ORACLE,
and libgdisyb.a for SYBASE. Each database also has its own link file,
named pg_link.o for POSTGRES, ora_link.o for ORACLE, and syb_link.o
for SYBASE.

include filess The GDI FORTRAN include file is named gdi_f77.h and must be included
in all FORTRAN source code that executes GDI calls. It establishes a
labelled common that contains standard codes for data types and error
handling.

sample code Sample code is available in the GDI source code tree. For its exact loca-
tion, contact your local system or database administrator. The Makefiles in
this directory will be configured correctly for your installation.

11.1 Document Organization
This section is organized as follows:

Section 11.2 Summary of all GDI functions and subroutines
Section 11.3 Database connection

Section 11.4 Query execution

Section 11.5 Ermor handling

Section 11.6 Complete sample program

Section 11.7 Problem tracking

Section 11.8 Known problems and restrictions

11.2 Subroutine and Function Calls

This section summarizes the FORTRAN function and subroutine calls, sorted alphabetically by
name.

The data type of each argument is listed in the right hand column. Character variables are of an
arbitrary length.

Baseline: 21.1 11-1

GDI User Manual FORTRAN interfsce
Table 14. FORTRAN Data Types and Functions
Name Description Type
HEADER Variables These header variables are defined in gdi_f77.h.
GDI DATA TYPES:
GDI_INT2 integer
GDI_INT4 integer
GDI_REAL4 integer
GDI_REALS integer
GDI_CHAR integer
GDI_STRING integer
GDI_UNDEFINED integer
ERROR HANDLING & DEBUGGING:
GDI_SUCCESS integer
GDI_FAILURE integer
GDI_NOMAP integer
GDI_NOCONN integer
GDI_DEBUG_OFF integer
GDI_DEBUG_ON integer
GDI_DEBUG_VERBOSE integer

GDI_ADD_MAP_FIELD

INTEGER FUNCTION GDI_ADD_MAP_FIELD (DBCONN,
MAP_ID, DB_NAME, PGM_NAME,
DATA_TYPE, STR_LEN, ARRAY_LEN)

PLRPOSE: Execute a database query.

DBCONN Database connect ID (see GDI_OPEN).

MAP_ID Query map ID (see GDI_OPEN_MAP).
DB_NAME Name of the database column in the
retrieve/select list.

PGM_NAME Name of the FORTRAN variable.

DATA_TYPE GDI data type of PGM_NAME.

STR_LEN The length f DATA_TYPE is a
GDI_STRING.

ARRAY_LEN If DATA_TYPE is an armray, the number of
elements in the array. This will aways be
0 for ORACLE and SYBASE.

BETUBN; GDI_SUCCESS or GDI_FAILURE.

integer
integer
char

integer
integer

integer

integer

Baseline: 21.1

11-2

GOl User Manuai

Table 14. FORTRAN Data Types and Functions

GDI_CLOSE_MAP

GDI_DESTROY_MAP

PLIRPOSE. Close the specified database connection.

DBCONN Database connect ID (see GDI_OPEN). integer
BETURN: GDI_SUCCESS or GDI_FAILURE. integer
SUBROUTINE GDI_CLOSE_MAP (DBCONN, MAP_ID)

PURPOSE: Ends definition for a query mapping.

DECONN Database connect ID (see GDI_OPEN). integer

MAP_ID Query map ID (see GDI_OPEN_MAP). integer
SUBROUTINE GDI_DESTROY_MAP (DBCONN, MAP_ID)

PURPQSE: Destroys mapping.
DBCONN Database connect ID (see GDI_OPEN). integer
MAP_ID Query map (D (see GDI_OPEN_MAP). integer

GDI_ERROR_GET

PURPOSE;

DBCONN
MAXTEXT

ERRCODE
ERRTEXT
STATUS

SEVERITY

SUBROUTINE GDI_ERROR_GET (DBCONN, ERRCODE,

ERRTEXT, MAXTEXT, STATUS,

SEVERITY)

Retrieve the emror from the GDI error

handier.

Database connect ID (see GDI_OPEN). integer
Length of ERRTEXT variable. Database integer
message text longer than this will be

truncated.

Enor. code. integer
Error message. char
GDiI error status (GDI_SUCCESS or integer
GDI_FAILURE).

GDI severity level (GDI_NOERROR, integer

GDI_WARNING, or GDI_FATAL).

Baseline: 21.1

11-3

GOV User Manusi FORTRAN interface
Table 14. FORTRAN Data Types and Functions
Description Type
GDI_ERROR_INIT SUBROUTINE GDI_ERROR_INIT (DBCONN, DEBUG,
THRESHOLD, RESERVED!1,
RESERVED2)
PURPQSE: Initiakze error handling flags.
INPUT ARGUMENTS:
DBCONN Database connect ID (see GDI_OPEN). integer
DEBUG Default setting is GDI_DEBUG_OFF. integer
GDI_DEBUG_ON causes error messages
to be output 1o stdern.
GDI_DEBUG_VERBOSE may cause
additional messages 10 be output.
THRESHOLD Controis how severe an error must be in integer
order to cause fallure. The default setting
is GDI_WARNING, which means that
and fatal errors both retum
GDI_FAILURE 1o the calling routine. If set
to GDI_FATAL, then only fatal emrors
retum GDI_FAILURE; wamings returmn
GDI_SUCCESS.
RESERVED1 Currently not used. integer
RESERVED2 Currently not used. integer
GDI_INIT INTEGER FUNCTION GDI_INIT (APPNAME)
PURPOSE: initialize the GDI.
APPNAME: Program name. char
BETURN: GDI_SUCCESS or GDI_FAILURE integer
GDI_OPEN INTEGER FUNCTION GDI_OPEN (VENDOR, ACCOUNT,
PASSWORD, DATABASE, SERVER,
APPNAME)
PURPOSE: Open a connection to a database.
VENDOR Database vendor name; currently char
includes oracle or postgres.
ACCOUNT Database account or user hame. char
PASSWORD Password for the account. char
DATABASE Database name. char
SERVER Server name (Sybase & Postgres only). char
APPNAME Program name. char
BETURN: Database connection ID. GDI_NOCONN integer
means it failed.
Baseline: 21.1 11-4

GIN User Manual

GOI_OPEN_MAP INTEGER FUNCTION GDI_OPEN_MAP (DBCONN)
PLURPQSE: Establishes the relationship between
database query columns and FORTRAN
variables.
INPUT ARGUMENTS:
DBCONN Database connect 1D (see GDI_OPEN). integer
BEIUBN: Query map id. GDI_NOMAP means it integer
failed.
GDI_SuBMIT INTEGER FUNCTION GDI_SUBMIT (DBCONN, MAP_ID,
QUERY, MAXRECS, RETRIEVED,
AFFECTED, MORE_DATA)
PURPQSE: Execute a database query.
INPUT ARGUMENTS:
DBCONN Database connect ID (see GDI_OPEN). integer
MAP_ID Query map 1D (see GDI_OPEN_MAP). integer
QUERY Character string containing a complete char
database query.
MAXRECS Controls how many instances are integer
retrieved. Should be set to the maximum
number of records that can fit info the
FORTRAN variable.
RETRIEVED Records the number of records retrieved. | integer
AFFECTED Records the number of records affected integer
by the query.
MORE_DATA I[f the data available is greater than logical*4
MAXRECS, MORE_DATA will be set to
TRUE.
BETURBRN: GDI_SUCCESS or GDI_FAILURE. integer
GDI_TRACE SUBROUTINE GDI_TRACE (DBCONN, STATE, FILENAME)
PURPQSE: Tums database-specific debug on/off.
DBCONN Database connect ID (see GDI_OPEN). integer
STATE TRUE tums trace on, FALSE tums it off. integer
FILENAME Output filename (SYBASE only). char

Baseline: 21.1

11-5

GDI User Manual FORTRAN interface

11.3 Connecting to a Database

This section describes how to initialize the GDI with GD/_INIT(), connect to a database with
GDI|_OPEN() and disconnect from a database with GD/_CLOSE().

GDI_INIT() initializes the GDI to communicate with the database(s) to which a program will con-
nect. GDI_OPEN() establishes a connection to the database. GDI_OPEN() arguments were
described in detall in Section 11.2. But since not all databases use all arguments, Table 15 sum-
marizes which databases use each parameter.

Table 15. GDI_OPEN() Parameters

Parameter ORACLE POSTGRES SYBASE
vendor yes yes yes
account yes no yes
password optional no yes
database optional optional yes
server no optional yes
appname no no yos

Some GDI!_OPEN() parameters are optional.

For ORACLE, password is not applicable to ops$ logins (logins tied to operating system
accounts). Also the entire account/password connect string may be sent in via the account
parameter.

For POSTGRES, if database is not set, the connection will be set from the PGDATABASE envi-
ronmental variable. If serveris not set, it will be set from the PGHOST environmental variable.

GDI_OPEN() retumns an integer database connection handle that is used by other GDI calls; its
main purpose is to store error information. f it is equal to GDI_NOCONN, it means that the con-
nection failed. Example 17 initializes the GDI and establishes a connection to a POSTGRES data-
base.

Example 17:
o] === |nitialize the GDI and connect to POSTGRES database 'demo’ su=

include '../../include/gdi_{77.h
character*30 VENDOR, DBNAME, DBHOST, na
integer DBCONN, STATUS

c =u= |nitialize program variables se=

VENDOR = 'posigres’

DBNAME = 'demo’

DBHOST = 'heel.s2k.berkeley.edu’
NA - e

Baseline: 21.1 11-6

GDI User Manual FORTRAN interiace

C ses Iﬂ"i.uz. GD!| sun
STATUS = GDI_INIT ('sample’)
c waa OPEN DATABASE CONNECTION =s=s
DBCONN = GDI_OPEN (VENDOR, NA, NA, DBNAME, DBHOST, NA)
IF (DBCONN .EQ. GDI_NOCONN) THEN
... handle error, described in Section 11.5...
END IF

If the database and server parameters are set in the PGDATABASE and PGHOST environmental
variables, all parameters to GDI_OPEN(), except for vendor, can be blank.

GD/_CLOSE() disconnects an application from the database, demonstrated in Exampie 18.
Example 18:

(] ==a Disconnect from the database sue

STATUS = GDI_CLOSE (DBCONN)

Baseline: 21.1 11-7

GDI User Manuasi FORTRAN interface

11.4 Executing Queries

GDI_SUBMIT() executes a database query and returns GDI_SUCCESS if the query succeeded
and GDI_FAILURE if it did not.

The GDI distinguishes between queries that return data, as with a POSTQUEL retrieve or a SQL
select, and queries that do not retumn data. First we will look at queries that do not return data
resuits.

11.4.1 Querles that Do Not Return Data T
Example 19 creates two classes in a POSTGRES database.'

Example 19:

character'100 QUERY
C This is not a retrieve so set MAP_ID and MAXRECS to 0.
integer MAP_ID«0, MAXRECS=0
integer ROWS_RETRIEVED, ROWS_AFFECTED, MORE_DATA

C sSascssssas CREATE cn'i."ﬂ cuss srasasassEs

QUERY= ‘'create cnsierra (year=intd, juldaysintd4, precip=intd,’ //

& ‘tmaxsfioatd, 'tminafloat4, tmeanafioats)’
STATUS=GDI_SUBMIT (DBCONN, MAP_ID, QUERY, MAX_RECS,

& ROWS_RETRIEVED, ROWS_AFFECTED, MORE_DATA)

c OEONEERENS CREATE 'St cuss WEEESGNDEs

QUERY= ’create sst (lat=fioat4, long=floatd, time=fioats,’ //

& ‘tempa=float4[6)’
STATUS=GDI_SUBMIT (DBCONN, MAP_ID, QUERY, MAX_RECS,

& ROWS_RETRIEVED, ROWS_AFFECTED, MORE_DATA)

GD|_SUBMIT() executes any query. Example 20 loads data into cnsierra, then updates one of its
attributes.

Example 20:

QUERY= ‘copy cnsierra from /usr/data/cnsierra.dat’
STATUS=GDI_SUBMIT (DBCONN, MAP_ID, QUERY, MAX_RECS)

QUERY= ‘’replace cnsierra (cnsierra.precip= -9.99) ' //

& ‘'whare cnsierra.precip=0'
STATUS=GDI_SUBMIT (DBCONN, MAP_ID, QUERY, MAX_RECS,
& ROWS_RETRIEVED, ROWS_AFFECTED, MORE_DATA)

After an update, ROWS_AFFECTED should report the number of rows that were updated. Cur-
rently this does not work for POSTGRES databases.

1. Example queries are from the Introductory Guide to POSTGRES by Emelia C. Villaros-Bainto.

Baseline: 21.1 11-8

e

o

GDI User Manusi! FORTRAN interface

11.42 Queries That Return Data
A query that retums data from the database has two steps:

1. Map each column in the query's retrieve list to a FORTRAN variable.
2. Execute the query with GDI_SUBMITY().

GDI|_CREATE_MAR(), demonstrated in Example 21, aliocates & mapping to establish relation-
ships between a query column and FORTRAN variables. It retums a MAP_ID, which is used in
the other mapping calls.

Example 21:
C ssssssssssas Create a query m.pplno

INTEGER MAP_ID

MAP_ID = GDI_OPEN_MAP (DBCONN)

IF (MAP_ID .EQ. GDI_NOMAP) THEN
WRITE (6,") '"GDI_OPEN_MAP failed.’

END IF

GDI_ADD_MAP_FIELD(), demonstrated in Exampie 22, matches a database result column to a
FORTRAN variable. Each column in a query must have a corresponding mapped FORTRAN
variable.

Example 22:
C wnmnnsswess Map Database Columns to FORTRAN variables we=u=
REAL LATITUDE(100), TEMP(6,100)
REAL'8 TIME(100)
CHAR*80 AQUERY
QUERY = ‘retrieve s.latitude, s.temp, s.time) from s in sst’

STATUS = GDI_ADD_MAP_FIELD (DBCONN, MAP_ID, 'latitude’,

& LATITUDE, GDI_REAL4, 0, 0)

STATUS = GDI_ADD_MAP_FIELD (DBCONN, MAP_ID, ‘temp’,
& TEMP, GDI_REAL4, 0, 6)

STATUS « GDI_ADD_MAP_FIELD (DBCONN, MAP_ID, ‘time’,
& TIME, GDI_REALS, 0, 0)

Note that the temp attribute in Example 22 is a POSTGRES array attribute containing 6 values.
This syntax is only valid for POSTGRES databases. Currently array support is limited to 2 dimen-
sional arrays, and variables must be declared carefully. The size of the POSTGRES array must
be the first dimension, as in TEMP(6, 100). The number of rows is the second dimension.

GDI_CLOSE_MAP(), demonstrated in Example 23, ends the definition for a mapping.

Example 23:
C sssnu=n=s End Query Mapping

CALL GDI_CLOSE_MAP (MAP_ID)

Baseline: 21.1 11-9

GDI User Manus! FORTRAN intertace

GDI_DESTROY_MAPF(), demonstrated in Example 24, drops the mapping relationship, freeing
all local memory allocated.

Example 24.
C Drop Query Map
CALL GDI_DESTROY_MAP (DBCONN, MAP_ID)

The MAP_ID does not have 10 be destroyed after executing a query. it may be reused in subse-
quent queries so long as the number of columns do not change or the data types of the columns
do not change.

Once the mapping has been established, the query may be executed with GD/_SUBMIT(), dem-
onstrated in Example 25.

Example 25:
c Execute the Query
integer MAXRECS, ROWS_RETRIEVED, ROWS_AFFECTED, MORE_DATA
MAXRECS = 100
STATUS=GDI_SUBMIT (DBCONN, MAP_ID, QUERY, MAXRECS,
& ROWS_RETRIEVED, ROWS_AFFECTED, MORE_DATA)

MAXRECS indicates the maximum number of instances or rows of data that should be retumed.
It must not be set higher than the array lengths of the FORTRAN variables. The number of rows
actually retrieved will be stored in ROWS_RETRIEVED. if more data are available than
MAXRECS, the MORL _DATA flag will be set to TRUE.

Baseline: 21.1 11-10

GOV User Manusi FORTRAN interface

11.5 Handling Errors

Some GDI functions, such as GDI_OPEN() and GDI_OPEN_MAP() retum an integer handie that
should be greater than 0 if the call succeeded. All other GDI functions return GDI_SUCCESS or
GDI_FAILURE.

GDI_ERROR_GET() retrieves specific error information. Example 26 calls GDI_ERROR_GET()
after detecting an error.

Example 26:

character*80 ERRTXT
integer DBCONN, DBERR, SEVERITY

DBCONN = GDI_OPEN (VENDOR, na, na, DBNAME, na, na)
IF (DBCONN .EQ. GDI_NOCONN) THEN
CALL GDI_ERROR_GET (DBCONN, DBERR, ERRTXT, 80, STATUS,

& SEVERITY)
WRITE(0, *) ERRTXT
....... handle error
END IF

GDI!_ERROR_INIT() initializes two error handling flags, debug and threshold. debug and thresh-
old may be changed at any time. Example 27 sets debug to GDI_DEBUG_VERBOSE and
threshoikd to GDI_WARNING.

Example 27:
c === Output verbose debug messages & treat warnings as fatal ===

CALL GDI_ERROR_INIT (DBCONN, GDI_DEBUG_VERBOSE, GDI_WARNING)

GDI_TRACE() tums database vendor-specific tracing on and off and may be called at any time.
Example 28 tums trace on.

Example 28:

c === Turn database tracing on sus

CALL GDI_TRACE (DBCONN, TRUE, FILENAME)

Baseline: 21.1 1-11

GDI User Manual FORTRAN intesrface

11.6 Sampie Programs
This section includes complete sample FORTRAN programs. Example 29 is a POSTGRES

exampie.

Exampile 29:

c

sossssssse s.mpl‘ POSTGRES program

include '../../include/gdi_{77.0’

Cc define local variables
C asssseasss COnnect to database
CHARACTER*10 VENDOR, DATABASE, NA
CHARACTER*16 PRGNAM
INTEGER DBCONN
C ssass==asa Error handling var iables
CHARACTER'80 ERRTXT
INTEGER MAXTXT, STATUS, SEVERITY, ERRCDE
C sSesssassas Quory variables
INTEGER*4 MAP_ID
CHARACTER*80 QUERY
INTEGER MAXRECS, ROWS_RETRIEVED, ROWS_AFFECTED
INTEGER ROWS_LEFT
LOGICAL MORE_DATA
C soaassnssans Output Variables
REAL'8 TIME(20)
INTEGER NSAMP(20)
CHARACTER*16 STA(20)
INTEGER |
VENDOR = 'postgres’
DATABSE = 'geodemo’
PRGNAM = ‘gdi_{77_pg_test’
MAXRECS = 20
MAXTXT = 80
c Some GDI_OPEN arguments are Not Applicable (NA) to POSTGRES
NA - e
c Initialize the GDI
STATUS « GDI_INIT (PRGNAM)
IF (STATUS .NE. GDI_SUCCESS) THEN
WRITE (6.") 'GDI_INIT Failed. Program exiting.’
GOTO 999
END IF
Baseline: 21.1 11-12

Open a connection 10 the database.enesasncas

DBCONN « GDI_OPEN (VENDOR, NA, NA, DATABASE, NA, PRGNAM)
IF (DBCONN .EQ. GDI_NOCONN) THEN

CALL GDI_ERROR_GET (DBCONN, ERRCDE, ERRTXT, MAXTXT,

STATUS, SEVERITY)

WRITE (6,°) 'GDI_OPEN Falled: Error Code ', ERRCDE

WRITE (6.°) ERRTXT

GOTO 999
END IF

Setting GDI_DEBUG_ON prints errors to the screen.

CALL GDI_ERROR_INIT (DBCONN, GDI_DEBUG_ON,GDI_WARNING,
RESERVED1, RESERVED2)

Bulld a query
QUERY « 'retrieve (w.time, w.nsamp, w.sta) from w in widisc'

Create query mapping

MAP_ID = GDI_OPEN_MAP (DBCONN)

IF (MAP_ID .EQ. GDI_NOMAP) THEN
GOTO 999

END IF

=== Map each attribute being retrieved 1o a FORTRAN variable. ==e

STATUS = GDI_ADD_MAP_FIELD (DBCONN, MAP_ID,
‘time’, TIME, GDI_REALS, 0, 0)

IF (STATUS .NE. GDI_SUCCESS) THEN
GOTO 999

END IF

STATUS = GDI_ADD_MAP_FIELD (DBCONN, MAP_ID,
‘nsamp’, NSAMP, GDI_INT4, 0, 0)

IF (STATUS .NE. GDI_SUCCESS) THEN
GOTO 999

END IF

STATUS = GDI_ADD_MAP_FIELD (DBCONN, MAP_ID,
'sta’, STA, GDI_STRING, 16, 0)

IF (STATUS .NE. GDI_SUCCESS) THEN
GOTO 999

END IF

CALL GDI_CLOSE_MAP(DBCONN, MAP_ID)

Execute the query

STATUS « GDI_SUBMIT(DBCONN, MAP_ID, QUERY, MAXRECS,
ROWS_RETRIEVED, ROWS_AFFECTED, MORE_DATA)

IF (STATUS .NE. GDI_SUCCESS) THEN
GOTO 999

END IF

Baseline: 21.1

11-13

GDI User Manuel

Print out retrieved data.

WRITE (6,") ROWS_AFFECTED, ' rows satisfied the query.’
WRITE (6,°) ROWS_RETRIEVED, ' rows were retrieved.’
DO 101 = 1, ROWS_RETRIEVED

WRITE (6,°) STA(l), TIME(I), NSAMP(I)

10 CONTINUE
IF (MORE_DATA) THEN

ROWS_LEFT « ROWS_AFFECTED - ROWS_RETRIEVED
WRITE (6,') ROWS_LEFT, ' more rows ure available.’'

ELSE
WRITE (6.") 'No more data exists in the database.’
END IF
Cc Destroy query mapping.
CALL GDI_DESTROY_MAP (DBCONN, MAP_ID)
999 STATUS = GDI_CLOSE (DBCONN)

END

When run on a database containing seismic data, output looks like this:
% gdi_{77_pg_test

63 rows satisfied the query.
20 rows were successiully retrieved from the database.

KBA
ASAR
ASAR
NRAO
NRAO
GRF
GAR

636710425.00000 14280
636710766.05000 1180
636710786.05000 1180
636710786.05000 1180
636710849.49200 2400
636710849.49200 2400
636710887.89900 2400
636710887.89900 2400
636711023.70900 4797
636711023.70900 4800
636711827.00000 10320
636713180.00000 2400
636713559.00000 2400
636713564.00200 12000
636713609.66400 2400
636713609.66400 2400
636713630.60300 4792
636713630.60300 4800
636713920.00000 2400
836713921.69900 2400

43 more rows are available.

11.7 Troubleshooting Tips
Here are a few tips for when things do not work as expected:

Baseline: 21.1

1-14

GDI User Manusl FORTRAN inleriace

Test database queries interactively before putting them into a program.

GDI_ERROR_INIT with the debug flag set to GDI_DEBUG_ON outputs errors to the
screen.

GDI_ERROR_INIT with the debug flag set to GDI_DEBUG_VERBOSE outputs
debug messages to the screen.

GDI_TRACE set to TRUE outputs database-specific debugging messages.

11.8 Current Restrictions

POSTGRES

GDI_SUBMIT()
ROWS_AFFECTED will not be set unless the command was an APPEND.

Bulit-in Types
The following built-in types are not directly supported yet. The GDI will retum these
types as strings to the application.

large objects
types composed of a structure, such as box and polygon

User-Defined Types
The following SEQUIOA types are handied:

char2
char4
char8

Adding new types requires changing source code and recompiling. We are working
on a strategy to dynamically manage types.

Database Nulls
If a database attribute is NULL (/.e., it does not have a value), the output variable will
be assigned a value as follows:

GDIL_INT2, GDI_INT4: 0
GDI_REAL4, GDI_REALS: 0.0

GDI_STRING: blank padded to the size of the FORTRAN
variable

GDI_CHAR: blank

Named Columns
The GD! cannot deteninine the type of some named columns.

Instead of this: retrieve (my_name=p.name) from p in foo
Do this: retrieve(p.name) from p in foo

Baseline: 21.1 1-15

Part IV: Reference Manual

GDI_GEN_ASTRUCTS (1) USER COMMANDS GDI_GEN_ASTRUCTS (1)

NAME

gdi_gen_Astructs - tool to generate header files containing structure
declarations for the GDI's ArmayStructs constructor.

SYNOPSIS

gdi_gen_Astructs par=gdi_gea_Astructs.par

PAR PARAMETERS

account database account/password and connect string if required

veador database vendor name

query syntactically correct sql statement, NO where clause

structname name of the structure to be generated, first letter capitalized by coavention

DESCRIPTION

This wol creates data structures based on the columns resulting from a database query and outputs them
10 a header file. The structures usually correspond 0 a table structure but could be a sub or superset of
any combination of relations. Queries arc submitted with gdi submit). The ArrayStructs constructor
and the header generated by gdi_gea_Astructs emulate libdb30 style array fetches in that the tples are
returned in an array of structures. See gdi_submit() for a complete description of how w fetch data
with the GDI.

One of the data structures contains "NA" values for each attribute or column. These values are
obtained from the database table na_value. The na_value table has 2 fields, attribute and na_value.
Both are of type char(30). The not available value for a specific attribute can be stored in this table.
If the attribute does not exists in na_value or the table does not exist, default values are used. The
default for ints and floats are -1 and -999.0. The default for a string is a *-".

The select list of queries using the gencrated header file must correspond to that of the query used to
create the structures. Every column in the query must have a column of the same name and type in the
beader file. The columns in the select list may be a subset of the original list and may appear in any
order.

The header files may be used in conjunction with gdi add_ArrayStructsQ) and gdi_get ArrayStructs().
These functions provide a layer around gdi submit), gdi_insert), and the dbOb;.
gdi get ArrayStructs() submits the query and retricves the array of tuples from the dbObj. The dbObj
is freed by the function and the array of tuples is returned to the calling application. It is the responsi-
bility of the application to free the results. gdi_add_ArrayStructs() takes an array of tuples and inserts
them into a database table. The dbObj required by gdi_insert() is created by the function and destroyed
before the function retums. See @5t ArrayStructs submit and tst_ArrayStructs_insert in
libgendbytest for usage.
The sample parfile below would gencrate amrival_Astructs.h:

account="realtime/realtime@t:troll:dev6033"

vendor="aracle"

query="SELECT +* from arrival"

structname="Arrival"

DIAGNOSTICS

FILE

GDI_SUCCESS
No problem generating the header file.

GDI_FAILURE
An error occurred.

gdi_gen_ArrayStructs.c

Sun Release 4.1 Last change: 12/2793 (v20.2) 1

GDI_GEN_ASTRUCTS(1)

NOTES

USER COMMANDS

Not implemented for FORTRAN.

SEE ALSO

gdi_insert(3), gdi_submit(3),

array_fetch(3)
AUTHOR

gdi_add_ArrayStructs(3),

GDI_GEN_ASTRUCTS(1)

gdi_get ArrayStructs(3), libdb30:

Mari Mortell, SAIC Geophysical Systems Operation November 1991

Last change: 122793 (v20.2)

Sun Release 4.1

GDI_ABORT(3) " CLIBRARY FUNCTIONS GDI_ABORT(3)

NAME
gdi_abort - abort the curreat command

SYNOPSIS
#iaclude "Nbgdih”

int
gdi_abort (conn)
dbConn *conB; /+ (i) database connection ¢/

DESCRIPTION
gdi_abort() cancels gl query activity on a given dbCoann; however, behavior may be vendor dependent.
For ORACLE, if no command is currently executing and the next routine is a fetch, the fetch will be
asynchronously aborted. For SYBASE and MONTAGE, commands on all query channels associated
with the dbConn will be cancelled. gdi_aobrt() has no effect for POSTGRES.

ARGUMENTS
: comm The database connector for the connection which the channel was opened on.
DIAGNOSTICS
gdi_abort() returns one of the following staws values:
GDI_SUCCESS
Abort succeeded.
GDI_FAILURE
Abort failed; possibly the database connection dropped.
FILE
gdi_abort.c
SEE ALSO
gdi_Sush(3)
AUTHOR

Jean T. Anderson, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 12/28/93 (v20.3) 3

GDI_ADD_ARRAYSTRUCTS(3) C LIBRARY FUNCTIONS GDI_ADD_ARRAYSTRUCTS (3)

NAME
gdi_add_ArrayStructs - Insert an array of structures into a database tabic.
SYNOPSIS
#imclude “libgdih"
#imclude "<type>_Astructs.h”
int :
gdi_add_ArrayStructs (conn, table_name, array, atuple, type)
dbConn *comn; /* (i) database connection */
char stable_name; /¢ (i) database table ¢/
void *array; /* (i) amray of structs ¢/
int mtuple; /+ (i) number of tuples in the array +/
ArrayStructsArgs stype; /¢ (i) structure definition ¢/
DESCRIPTION
gdi_add_ArmrayStructs() inserts the data in an array of structures into a database table. Headers contain-
ing a structure definition with fields corresponding to the columns of the table are created with
gdi_gen_Astructs(1). Although the structure may only contain fields that correspond to columns in the
database table, the order of the fields in the structure need not match the order of the columns in the
table.
ARGUMENTS
coan The database connector.
table_name The database table into which the data is to be inserted.
array The array of structures containing the data to be inserted into the database.
Rtuple The number of tuples in the array.
type A description of the armay structure, the "NA" values and other information needed to
process the array for input. The description is contained in the "<type>_Astructs.h"
header.
EXAMPLE
The following example uses a header dumped by gdi_gen_Astructs(1) using the query, "select * from
arrival®. The structure definition in arrival_Astructs.h is shown below.
typedef struct arival {
char sta [7];
double time;
long arid;
long jdate;
long stassid;
long chanid;
char chan [9];
char iphase [9);
char stype {2];
double deltim;
double azimuth;
double delaz;
double slow;
double delslo;
double cma;
double rect
double amp;
4 Last change: 122793 (v20.2) Sun Release 4.1

e —

GDI_ADD_ARRAYSTRUCTS (3) C LIBRARY FUNCTIONS GDI_ADD_ARRAYSTRUCTS (3)

per;

logat;
clip [2]);
fm (3}

sor;

qual [2);
auth [16];
commid;
Mddate [18];

HIHT

} Arrival;
The following code segment inserts data into the database.

#include "libgdi.h"
#include "arrival_Astructs.h”

dbConn sconn; /+ database connector */

char stable = "arrival”;

Arrival stuples; /+ mray of tuples ¢/

int ntuples = 10; /* number of tuples in the array */
int err_code; /+ error handling variables ¢/

char err_text {200);

dbStatus status;

dbErrLev severity;

... initialize the GDI, open a database connection ...
... Create an array of tuples ...

J if (ntuples = gdi_add_ArrayStructs (conn, table, (void *) tuples, ntuples,
&ARRIVAL CONTAINER_DEF)) < 0)
{

gdi_error_get (conn, &err_code, err_text, sizeof (emtext),
&status, &severity);

DIAGNOSTICS
gdi_add_ArrayStructs() returns the number of tuples inserted if successful, otherwise it retuns -1. Error
codes and messages may be retrieved from the database connector with gdi_esror_get(3).

FILE
gdi_ArrayStructs.c, gdi_ArrayStructs.h
SEE ALSO
gdi_ervor_get(3), gdi_gen_Astructs(1), gdi_get_ArrayStructs(3)
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 12/2793 (v20.2) 5

GDI_AUTO_COMMIT(3) C LIBRARY FUNCTIONS GDI_AUTO_COMMIT (3)

NAME

gdi_auto_commit - Enable or disable auto commit mode
SYNOPSIS

#iaclude "libgdih"

int

gdi_auto_commit (conn, mode)

dbConn sconm; /* (i) databese connection ¢/

int mode; /+ (i) suto commit mode, TRUE or FALSE ¢/
DESCRIPTION

A database transaction is a statement, or siatements, treated as an atomic unit. If auto commit is
enabled, cach database statement is treated as a transaction and the results are sutomatically committed
when the statement is executed. The auto commit mode is controlled at the connector level (rather than
the channel level).

Note that the ability to enable or disable the auto commit mode is only implemented for ORACLE con-
nections. The auto commit default mode for ORACLE connections is OFF. SYBASE always commits
the results of each statement at execution time (essentially auto commit is ON) unless gdi_begin_tran(3)
has been called.

The state of the auto commit mode for a connection may be ascertained through the
GDI_AUTOCOM_ON(conn) macro.

ARGUMENTS
ocona The database connector.
mode The auto commit mode to be set. TRUE enables auto commit. FALSE disables auto
commit.
DIAGNOSTICS
gdi_auto_commit() returns one of the following status values:
GDI_SUCCESS
Operation succeeded.
GDI_FAILURE
Operation failed; possibly the connection dropped.
FILE
gdi_tranc
SEE ALSO
gdi_begin_tran(3), gdi_commit(3), gdi_roliback(3), gdi_savepoint(3)
AUTHOR

B. MacRitchie, SAIC Geophysicai Systems Operation, Open Systems Division

6 Last change: 12/2793 (v20.2) Sun Release 4.1

-

GDI_BEGIN_TRAN(3) C LIBRARY FUNCTIONS GDI_BEGIN_TRAN(3)
NAME
gdi_begin_tran - Explicitly begin a transaction
SYNOPSIS
#iaclude "lbgdik"
int
gdi_begin_tran (coun, channo, tran_name)
dbComn *CORR; /* (i) database connection */
int channo; /* (i) channel number +/
char stran_name; /+ (i) ransaction name */
DESCRIPTION

A dawbase transaction is a statement, or statements, treated as an atomic unit. gdi_begin_tran() expli-

citly begins a ransaction. The transaction is ended by a gdi_commit() or gdi_rollback(). A transaction

acquires locks on data as it querics or updates the database. The locks acquired during s transaction are

released at the next commit or rollback. Transactions should be as tight and small as possible so lock

resources needed by other database processes are released back to the system.

Transaction management is implemented slightly differently in all the databases the gdi supports.

gdi_begin_tran() currently has no affect on ORACLE databases since the first ORACLE statement

implicitly starts a transaction, which is not ended until a gdi_commit() or gdi_rollback() occurs.
ARGUMENTS

conm The database connector.

channo The channel number (SYBASE and MONTAGE). SYBASE transactions arc handled at
the DBPROCESS level. MONTAGE transactions are handled at the database coanection
level, but each gdi query channel maps (0 a separate database connection. The channel
argument is ignored for ORACLE and POSTGRES.

tran_name Transaction name of the transaction 0 be started. This argument is only valid for
SYBASE which allows nested, named transactions.

DIAGNOSTICS
gdi_begin_tran() retumns one of the following status values:
GDI_SUCCESS
Operation succeeded.
GDI_FAILURE
Operation failed; possibly the connection dropped.
FILE
gdi_tranc
NOTES
Not implemented in INGRES yet.
SEE ALSO
gdi_commit(3), gdi_get_dboption(3), gdi_roliback(3), gdi_savepoiat(3), gdi_set_dboption(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Sysiems Division

Sun Release 4.1 _ Last change: 122793 (v20.2) 7

+—

TP —

GDI_CHANNEL _IS_OPEN (3) C LIBRARY FUNCTIONS GDI_CHANNEL _IS_OPEN(3)
NAME
gdi_channel_is_open - is channel open?
SYNOPSIS
#iaclude "Hbgdih"
int
gdi_open_channel (conn, channo)
dbConn *COnn; /f+ (i) databese connection */
int channo; /* (i) channel number ¢/
DESCRIPTION
gdi_channel_is_open() retums TRUE if a given channel is open, or FALSE if it is not.
ARGUMENTS
coan The database connector for the connection the channel was opened on.
channo Channe!l number of the channel to be checked.
DIAGNOSTICS

gdi_channel_is_open() returns one of the following status values:
TRUE Channel is open.
FALSE Channel is not open.

FILE
gdi_channel.c
SEE ALSO
gdi_close_channel(3), gdi_open_channel(3)
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

8 Last change: 12/27/93 (v20.2) Sun Release 4.1

GDI_CLOSE(3) C LIBRARY FUNCTIONS GDI_CLOSE(3)

NAME

gdi_close - close the specified database connection
SYNOPSIS

#include "libgdik”

int

gdi_close (coan)

dbCoan sconn; /* (i) databsse connection ¢/
DESCRIPTION

gdi_close() closes a specific connection to the database and frees the dbConn structure.
ARGUMENTS

conn The database connector for the connection to be closed.
DIAGNOSTICS

gdi_close() returns one of the following status values:

GDI_SUCCESS

Connection successfully closed.
GDI_FAILURE
Not connected to database.

FILE

gdi_connc
SEE ALSO

gdi_open(3), gdi_dead(3), gdi_exit(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 9

GDI_CLOSE_CHANNEL (3) C LIBRARY FUNCTIONS GDI_CLOSE_CHANNEL (3)

NAME
gdi_close_channel — close a database channel
SYNOPSIS
#iaclude "Nbgdih"
int
gdi_close_channel (coan, channo)
dbConn *CcOnR; /* (i) database connection */
int channo; /* (i) channel number */
DESCRIPTION
gdi_close_channel() closes a specified channel
ARGUMENTS
coan The database connector for the connection the channel was opened on.
chamno Channel number of the channel to be closed.
DIAGNOSTICS
gdi_close_channel() rewrns one of the following status values:
GDI_SUCCESS
Succeeded in closing channel.
GDI_FAILURE
Could not close channel, possibly because the connection dropped.
FILE
gdi_channelc
SEE ALSO
gdi_cbannel is_open(3), gdi_open_channel(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

10 Last change: 12/2793 (v20.2) Sun Release 4.1

GDI_COMMIT(3) C LIBRARY FUNCTIONS GDI_COMMIT(3)
NAME

gdi_commit - commit current transaction
SYNOPSIS

#include "Ebgdih"

int
gdi_commit (coun, channo, tran_name)

dbCoan *CORR; /* (i) database connection */

int channo; /* (i) channel number */

char stran_name; /* (i) ransaction name ¢/
DESCRIPTION

A database transaction is a statement, or statements, treated as an atomic unit. gdi_commit() ends the
current transaction by applying all changes to the database.

ARGUMENTS
conm The database connector.

channo The channel number (SYBASE and MONTAGE). SYBASE transactions are handled at
the DBPROCESS level. MONTAGE transactions are handled at the database connection
level, but each gdi query channel maps © a scparate database connection. The channel
argument is ignored for ORACLE and POSTGRES.

tran_mame Transaction name of the transaction to be committed. This argument is only valid for
SYBASE which allows nested, named transactions.

DIAGNOSTICS
gdi_commit() returns one of the following status values:
GDI_SUCCESS
Commit succeeded.
GDI_FAILURE
Commit failed; possibly the connection dropped.
FILE
gdi_tranc
SEE ALSO
gdi_rollback(3), gdi_savepoint(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Sysiems Operation, Open Systems Division

Sun Release 4.1 Last change: 12/27/93 (v20.2) 11

GDI_DEAD(3) C LIBRARY FUNCTIONS GDI_DEAD(3)

NAME

gdi_dead - determines if a database connection is dead or live
SYNOPSIS

#imclude "Nbgdih"

int

gdi_dead (coan, channo)

dbConn SCORR; /+ (i) database connection */

int *channo; /* (i) database channel number ¢/
DESCRIPTION

gdi_dead() pings the databese 10 determine if a database connection is still established.
ARGUMENTS

coun The database connector for the connection (0 be tested.

chaano The database channel number for the channel 10 be tested.
DIAGNOSTICS

gdi_dead() returns one of the following status values.

GDI_SUCCESS

Connection to database is OK.
GDI_FAILURE
Not connected to database.

SEE ALSO

gdi_close(3), gdi_exit(3), gdi_open(3)
AUTHOR

Jean T. Anderson, SAIC Geophysical Systems Operation, Open Systems Division

12 Last change: 12/27/93 (v20.2) Sun Release 4.1

GDI_ERROR_FLAGS(3) C LIBRARY FUNCTIONS GDI_ERROR_FLAGS(3)
NAME
gdi_ermor_flags - retrieve debug and threshold settings
SYNOPSIS
#imclude "Nbgdih"
int
gdi_error_flags (coun, debug, threshold)
dbCoan *comm; I- (i) database connector ¢/
int sdebug; /+ (o) GDI_DEBUG_ON, GDI_DEBUG_OFF, or GDI_DEBUG_VERBOSE +/
int sthreshold; /* (0 GDI WARNING or GDI FATAL o/
DESCRIPTION

Errors are handled on a connection by connection basis. gdi_emror_flags() retrieves the current settings
of debug and threshold for a specified connection.

ARGUMENTS
conn The database connector. If NULL, gets global emor flags.
debug GDI_DEBUG_OFF by default, if set to GDI_DEBUG_ON, errors are output automati-

cally w0 suderr. GDI_DEBUG_VERBOSE causes numerous debug messages as well as
errors and warnings to be output to siderr.

threshold Controls the threshold at which an error or waming causes a GDI_FAILURE. A thres-
holdofGDlWARNmGuwmmmgsndmwbemwuedasfaﬂm A
threshold of GDI_FATAL causes only fatal errors to be interpreted as failures.

DIAGNOSTICS
gdi_ermror_flags() always returns GDI_SUCCESS.
FILE
gdi_emorc
SEE ALSO
gdi_error_get(3), gdi_error_imit(3)
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 13

P

GDI_ERROR_GET(3) C LIBRARY FUNCTIONS GDI_ERROR_GET(3)
NAME
gdi_emror_get — retrieve error information from the databsse connection
SYNOPSIS
#imclude "Nbgdih"
int
gdi_error_get (conn, errcode, errtext, maxtext, status, severity)
dbCoun scomn; /¢ (i) dstabase connection */
int serrcode; /* (0) specific error code ¢/
char serrtext; /* (o) error text ¢/
int maxtext; /+ (i) length of emtext variable*/
int *status; /¢ (o) general status +/
int sseverity; /¢ (0) severity */
DESCRIPTION
Errors are reported on a connection by connection basis. gdi_error_get() retrieves error information
from the database connector
ARGUMENTS
coma The database connector. If NULL, global error information is retrieved.

errcode Specific emmor code.
errtext Message text for the error code.
maxtext Size of the errtext string, controlling how much text may be copied into the user's errtext

variable.

status GDI_SUCCESS or GDI_FAILURE.

severity GDI_NOERROR, GDI_FATAL, or GDI_WARNING.
DIAGNOSTICS

gdi_error_get() always reurns GDI_SUCCESS.
FILE

gdi_emorc
SEE ALSO

gdi_error_Sags(3), gdi_error_init(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

14 Last change: 12/2793 (v20.2) Sun Release 4.1

GDI_ERROR _INIT(3) C LIBRARY FUNCTIONS GDI_ERROR INIT(3)

NAME
gdi_error_init - initialize emror handling flags
SYNOPSIS
#iaciude "Nbgdih"
int
gdi_error_init (coun, debug, threshold, reservedl, reserved2)
dbCoan SCORR; /+ (i) database connection */
int debug; /+ (i) GDI_DEBUG_OFF, GDI_DEBUG_ON, GDI_DEBUG_VERBOSE */
int threshold; /* (i) GDI_WARNING or GDI_FATAL ¢/
int reservedl; /* not used ¢/
int reserved2; /* not used */
DESCRIPTION

Errors are handled on a connection by connection basis. gdi_error_init() initializes the debug and thres-
hold flags for a database connector. debug countrols optional output of errors o stderr. threshold sets
the level of error or wamning that is treated as a failure by the GDI.

ARGUMENTS
conn The database connector. If NULL, sets global error flags and initializes global error indi-
cators.
debug GDI_DEBUG_OFF (FALSE) by defauit. If set 90 GDI_DEBUG_ON (TRUE), errors are
output ausomatically o stderr. If set 1o GDI_DEBUG_VERBOSE, non-etror debug mes-
sages are output automatically to stderr.

threshold Sets the threshold at which an error or warning canses a GDI_FAILURE. A threshold of
GDI_WARNING causes all wamings and esrors to be treated as failures. A threshold of
GDI_FATAL causes oaly fatal errors to be treated as failures.

reservedl Reserved for future use.
reserved2 Reserved for future use.
DIAGNOSTICS
gdi_emor_init() always returns GDI_SUCCESS.
FILE
gdi_emor.c
SEE ALSO
gdi_error_flags(3), gdi_error_get(3)
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 15

GDI_EXIT(3) C LIBRARY FUNCTIONS GDI_EXIT(3)

NAME
gdi_exit - close all open database connections
SYNOPSIS
#aciude "libgdih"
int
gdi_exit 0
DESCRIPTION
gdi_exit() closes all open database connections, freeing all database connection structures (dbConn).
DIAGNOSTICS
gdi_exit() always returns GDI_SUCCESS.
FILE
gdi_connc
SEE ALSO
gdi_close(3), gdi_dead(3), gdi_open(3)
AUTHOR
B. MxcRitchie, SAIC Geophysical Systems Operation, Open Systems Division

16 Last change: 12/27/93 (v20.2) Sun Release 4.1

GDI_FLUSH(3) C LIBRARY FUNCTIONS GDI_FLUSH(3)

NAME

gdi_flush - discard unprocessed query results
SYNOPSIS

#acude "libgdih"

int
gdi_flush (comn, channo)
dbConn . H /* (i) database connection */
int channo; /* (i) channel number ¢/

DESCRIPTION
gdi_flush() dumps any unprocessed query results from the most recently executed query. For ORACLE,
this cancels a query afier the desired number of rows have been fetched and frees any resources associ-
ated with the cursor. For SYBASE, it cancels any rows peading in the DBPROCESS results buffer in
case the user did not process all rows in the result set.

ARGUMENTS
conm The database connector for the connection the channe! was opened on.
channo Channel 10 flueh,
DIAGNOSTICS
gdi_flush() returns one of the following status values.
GDI_SUCCESS
Succeeded in flushing channel,
GDI_FAILURE
Flush failed; possibly the database connection dropped.
FILE
gdi_channel.c
SEE ALSO
gdi_abort(3)
AUTHOR

Jean T. Anderson, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 17

GDI_GET_ACCOUNT(3) C LIBRARY FUNCTIONS GDI_GET_ACCOUNT(3)

NAME
gdi_get_account - get database account name from database connector

SYNOPSIS

#include "libgdih"

int

gdi_get_sccount (comn, account, len)

dbConn sconm; /+ (i) database connection */

char *acCount; /* (0) account name */

int len; /* (i) length of account argument */
DESCRIPTION

gdi_get_accoumt() gets the database account name from the database connector.
ARGUMENTS

conm The database connector.

account Database account name is filled in by this routine.

len Length of the account argument.
DIAGNOSTICS

gdi_get_account() returns one of the following status values.

GDI_SUCCESS

Routine succeeded.
GDI_FAILURE
Not connected to database.

FILE

gdi_connc
SEE ALSO

gdi_get_database(3), gdi_get_mode(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division
18 Last change: 12/2783 (v20.2)

Sun Release 4.1

-

GDI_GET_ARRAYSTRUCTS(3) C LIBRARY FUNCTIONS GDI_GET_ARRAYSTRUCTS(3)
NAME
gdi_get ArrayStructs — Get the results of a query in an array of structures.
SYNOPSIS
#imclude "libgdih"
#include "<type>_Astructs.h”
int
gdi_get ArrayStructs (coan, query, array, maxrec, type)
dbComn SCOAR; /* (i) database connection */
char squery; /* (i) database query */
void »sgrray; /* (o) array of swructs */
int maxrec; /* (i) maximum number of records to retrieve »/
ArrayStructsArgs stype; /* (i) structure definition */
DESCRIPTION

gdi_get ArrayStructs() submits a query to a database and returns the results in an amray of structures.
The array of structures is allocated by gdi_get_ArrayStructs(). It is the responsibility of the application
to free the array. Headers containing a structure definition with fields matching the columns of the
query are created with gdi_gen_Astructs(1).

The structure must contain a field for each column in the query however the columns need not be in the
same order as the fields in the structure. The structure may contain more fields than those needed to
match the query columns. The additional fields will be filled with default or "NA" values.

Note that the structure genecrated by gdi_gen_Astructs(l) masches the columns of a query, not the
columns of a particular table. A query sclecting a single column from a table or a query selecting
columns from several tables may be used to generate the structure. The only restriction is that each
column must be identified by a unique name.

ARGUMENTS
conn

query
array

maxrec
type

EXAMPLE

The database connector.
The database query to be submitted 0 the database.

The address of the array pointer to receive the query results. The results are allocated by
gdi_get ArrayStructs(). Note: It is the responsibility of the application to free the struc-
ture.

The maximum number of records, or tuples, 10 be returned from the database.

A description of the array structure, the "NA” values and other information needed to
process the results for output. The description is contained in the "<type>_Astructs.h”
header.

The following example uses a header dumped by gdi_gen Astructs(l) using the query, "select * from

arrival®.

Sun Release 4.1

The structure definition in arrival_Astructs.h is shown below.

typedef struct asrival {

T

Last change: 122793 (v20.2) 19

I |

GDI_GET_ARRAYSTRUCTS(3) C LIBRARY FUNCTIONS GDI_GET_ARRAYSTRUCTS (3)
double deltim;
double azimuth;
double delaz;
double slow;
double delslo;
double ema;
double rect;
double amp;
double per;
double logat;
char clip {2];
char fm (3);
double ;f;
char qual (2]
char auth [16);
long commid;
char ddase {18];
) Arrival;
The following code segment retricves data from the database, displays the results, and then free's the
result structure.
#include “libgdi.h"
#include "arrival_Astructs.h”
dbConn *conn; /* database connector */
char squery = "sclect * from arrival™;
Arrival stuples; /+ wples from the database */
int maxtup = 10; /* maximum number of tuples to return */
int ntuples; /+ number of tuples returned */
int err_code; /+ error handling variables »/
char err_sext [200];

dbStatus status;

dbEmLev severity;

int i;

... initialize the GDI and open a datsbase connection ...

if (ntuples = gdi_get_ArrayStructs (conn, query, (void *) &tupies, maxtup,
&ARRIVAL_CONTAINER_DEF)) < 0)
(

gdi_emor_get (conn, &err_code, err_text, sizeof (errtext),
&siatus, &severity);
)

for (i = 0; i < ntuples; i++)
{
fprintf (stdout, "%6s %8s %.3f %10d %10.3f %s0,

tuples[i).sta, tuplesfi).chan, twples{il.time,
tuples{i].arid, tuples{i).azimuth, uples[i].ddste);

Last change: 12/27/93 (v20.2) Sun Release 4.1

GDI_GET_ARRAYSTRUCTS(3) C LIBRARY FUNCTIONS GDI_GET_ARRAYSTRUCTS (3)

free (tuples);

DIAGNOSTICS
gdi_get_ArrayStructs() returns the number of tuples retrieved if successful, otherwise it returns -1.
Error codes and messages may be retrieved from the database connector with gdi_error_get(3).

FILE
gdi_ArrayStructs.c, gdi_ArrayStructs.h
SEE ALSO
gdi_sdd_ArrayStructs(3), gdi_error_get(3), gdi_gen_Astructs(l)
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 21

r

GDI_GET_COUNTER(3) C LIBRARY FUNCTIONS GDI_GET_COUNTER(3)
NAME
gdi_get_counter — get unique database key(s)
SYNOPSIS
#include "libgdih"
int
|di_;¢t_conter (coan, tablemame, keyname, akeys, keyvalue)
scomm; (i) database connection
chr stablename; (i) name of key table
char skeyame; (i) name of key
int nkeys; (i) number of keys requested
lomg skeyvalue; (o) highest key value assigned
DESCRIPTION

gdi_get_counter() assigns unique sequential numbers to integer identifiers, called keys, in the database.
It manages key assignment in the named table, which stores the name of the key in (keyname) and the
last number assigned (keyvalue). Given the name of the key in keyname, gdi_get counter () retrieves
its value from the database, increments it by the amount in akeys, writes it back to the database, and

stores the result in keyvalue to be used by the calling application.

ARGUMENTS
coan The database connector.

tablename Name of the table used for dispensing key values.
keyname Name of the key.

nkeys Number of consecutive key values to assign.
keyvalue Highest unique key value requested.

C EXAMPLES
The following example gets one mesgid key from the lastid table accessible by the current account:

#include "libgdi.h"
dbConn sconn;

/+ varisbles for call o gdi_get counter ¢/
char stablename = "lastid”; / name of key table */
char skeyname = "mesgid”; /* name of key */

int nkeys; /* number of keys to get +/
int keyval; /+ unique key value */

/* esror handling variables */
int error_code, status, severity;

char ermror_string [GDI_ERROR_SIZE + 1];
.. open a database connection ...
keys=1;
if ((gdi_get_counter(conn, tablename, keyname, nkeys, &keyval)) l= GDI_SUCCESS)
{ gdi_ezror_get (conn, &error_code, esror_string, sizeof(error_string),
&status, &severity);

fprintf (stderr, "Error %d: "%s"a", error_code, error_string);
exit (GDI_FAILURE);

2 Last change: 12/2793 (v20.2) Sun Release 4.1

—

GDI_GET_COUNTER (3) C LIBRARY FUNCTIONS GDI_GET_COUNTER (3)

}
If no error cccurred, keyval now contains one unique value the application may use.
If nkeys was S, keyval would contain the highest of the 5 unique ids the application may use. For
example, if keyval is 10, the application may use keys 6 through 10.

If nkeys was 0, keyval would contain the last value assigned--and the calling application should not use
it since it was already used by another application.

DATABASE CONFIGURATION

The table must be created; for exampie:

SYBASE:
create table lastid (
keyname char(15) not null,
keyvalue int not null,
lddate datetime null)
ORACLE:
create table lastid (
keyname varchar(15) not null,
keyvalue number(8) not null,
lddate date);

The keyname field contains the name of an integer primary or foreign key such as mesgid. The key-
value field contains the last value which was used for the key in keyname. The lddate field contains the
last time keyname was updated.

The table must be populated with the appropriate keynames for the database installation. The following
examples demonstrate how to insert a new key and initialize it to 0:

SYBASE: insert into lastid (keyname, keyvalue, iddate) values ("mesgid’, 0, getdate ())
ORACLE: insert into lastid (keyname, keyvalue, lddate) values (‘arid’, 0, sysdate);

The lastid table should be accessible to all who need to acquire keys:
grant select, update on lastid to public

NOTES
gdi_get_counter() explicitly commits the transaction on success, or mils it back if an error occurs. Key
values should be acquired before starting an SQL work group since the gdi_get counter() is a work
group in and of itself,
Currently there is no mechanism for recovering lost keys. For example, if an application gets a key
value and the system goes down before the application has used the value, it will be lost.
DIAGNOSTICS
The following codes are returned from gdi_get counter() to the calling application:
GDI_SUCCESS
| This routine succeeded.
GDI_FAILURE
An ecror occurred. Specific emor code and message may be retrieved with
gdi_ermror_get().
FILE
gdi_get_counter.c
SEE ALSO

Sun Release 4.1 Last change: 122793 (v20.2) 23

GDI_GET_COUNTER(3) C LIBRARY FUNCTIONS GDI_GET_COUNTER (3)

8di_emor_get (3)
AUTHOR
Jean Anderson, SAIC Geophysical Sysiems Operation, Open Systems Division

A Last change: 12/2793 (v20.2) Sun Release 4.1

| R

GDI_GET_DATABASE(3) C LIBRARY FUNCTIONS GDI_GET_DATABASE(3)
NAME
~ gdi_get_database — get database name from database connector
SYNOPSIS
#iaclude "lbgdih"

int
gdi_get_database (comn, database, len)

dbConn scomn; /+ (i) databese connection ¢/

char sdatabase; /* (0) database name */

int len; /* (i) length of database argument */
DESCRIPTION

gdi_get database() gets the database name from the database connector.
ARGUMENTS

coam The database connector.

database Database name is filled in by this routine.

len Length of the database argument.
DIAGNOSTICS

gdi_get_database() returns one of the following status values.

GDI_SUCCESS

Routine succeeded.
GDI_FAILURE
Not connected (o database.

FILE

gdi_conn.c
SEE ALSO

gdi_get_account(3), gdi_get_mode(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division
Sun Release 4.1 Last change: 12/2793 (v20.2) 25

——

GDI_GET_DBOPTION(3) C LIBRARY FUNCTIONS GDI_GET_DBOPTION(3)

NAME
gdi_ga.dbopﬁm-ﬁudcmoflmm
SYNOPSIS
#include "Ebgdih"
int
gdi_get_dboption (comn, channo, option, setting)
dbConn scomm; /¢ (i) database connection */
int channo; /* (i) channel number */
dbOption option; /* (i) option 10 be set ¢/
char sgetting; /* (0) value of the option */
int int; /+ (i) length of ‘setting’ ¢/
DESCRIPTION

The state of various database options may be retricved by gdi_get dboption(). Some options are set at
the connection level, others at the channel level. Most options are specific 10 2 database vendor. If the
vduismqueuadfamopﬁmwhichismqﬂiaﬂewmm.misbﬁmm
A database option may be set through gdi_get_dboption(3). Some options, such as GDI_PROC_C, are
not settable but their states may still be retrieved.
ARGUMENTS
conn The database connector.
chaano ‘The channel number. channo is ignored by options that are set at the connector level.
option The option to be retrieved.
setting A char armay in which the setting string will be stored.
len - ‘The length of the setting array.
OPTIONS
The following options may be retrieved:
GDI_VERSION
The version number of the GDI library.
GDI_AUTO_COMMIT
Oracle. "1" if suto commit is on, "0" if off. Auto commit is off by defauit. If auto
commit is on, each databasc statement is automatically committed as soon as it is exe-
cuted. If auto commit is off, database statements are treated as part of a transaction
which is explicitly commited or rolled back with gdi_commit() or gdi_rollback(.
GDI_PRO_C
Oracle. "1" if Pro*C mode is enabled, otherwise "0". The option applies to the entire
connection. Pro*C is enabled by opening the connection using oracle_open(). The
option can not be changed afier the connection has been opened.
USAGE
The exampie below gets the sewting of GDI_AUTO_COMMIT.

dbConn sconn;

char egetting;
int len;
... initialize and open a connection ...

if (gdi_get_dboption (conn, GDI_DEFALUT_CHAN, GDI_AUTO_COMMIT,
&seuing, &len) 1= GDI_SUCCESS)

26 Last change: 12/2793 (v202) Sun Release 4.1

GDI_GET_DBOPTION(3) C LIBRARY FUNCTIONS GDI_GET_DBOPTION(3)

{
)
printf ("Auto Commit = %s0, setting);

DIAGNOSTICS
gdi_get_dboption() retums one of the following status values:
GDI_SUCCESS
Operation succeeded.
GDI_FAILURE
Operation failed; possibly the connection dropped.
FILE
gdi_option.c
SEE ALSO
gdi_commit(3), gdi_roliback(3), gdi_set_dboption(3), oracie_open(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 12/2793 (v20.2)

27

GDI_GET_NODE (3) C LIBRARY FUNCTIONS GDI_GET_NODE (3)

NAME

gdi_get_node - get database node name from database connector
SYNOPSIS

#iaclude "libgdih"

int

gdi_get_node (comn, node, len)

dbCoan *COoRR; /* (i) database connection */

char *node; /* (o) node name ¢/

int len; /+ (i) length of node argument ¢/
DESCRIPTION

gdi_get_node() gets the database node name from the database connector.
ARGUMENTS

coan The database connector.

node Database node name is filled in by this routine.

len Length of the node argument.
DIAGNOSTICS

gdi_get node() retums one of the following status values.

GDI_SUCCESS

Routine succeeded.
GDI_FAILURE
Not connected to database.

FILE

gdi_conn.c
SEE ALSO

gdi_get_account(3), gdi_get_database(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

28 Last change: 12/2793 (v20.2) Sun Release 4.1

GDI_INIT(3) C LIBRARY FUNCTIONS GDI_INIT (3)

NAME gdi_get_vendors - get a list of the vendors supported by GDI
SYNOPSIS

#include "libgdih"

char o*

gdi_get_veadors
DESCRIPTION

gdi_get_vendors() retums a NULL terminated array of strings containing the names of the database ven-
dors supported by the GDI.
SAMPLE CODE
char ssvendors;
int i

vendors = gdi_get vendors (;
fprintf (stdout, "The supported GDI vendors are:\n");

for (i = 0; vendors[i] != NULL; i++)
fprintf (stdout, “t%s\n", vendors(i]);
flush (swdout);
FILE
gdi_linkc
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 9/21/93 (v18.1) 29

GDI_INIT(3) C LIBRARY FUNCTIONS GDI_INIT (3)

NAME
gdi_init — initialize the GDI
SYNOPSIS
#iaclude "lbgdih"
int
gdi_init (appaame, gdihome)
char *appaame; /+ (i) application names+/
char sgdihome; /* (i) GDI home directory+/
DESCRIPTION
gdi_init(initializes the GDI.
ARGUMENTS

appaame Application name (actual name of the executabie).
gdihome Directory where GDI is installed. The GDI searches gdihome/lib for the GDI vendor
interface librarics 10 be dynamically located. If gdi_init) has not been called or if
gdihome is NULL or an empty string, “", then the GDI will use the environment vari-
able, GDIHOME.
DIAGNOSTICS
gdi_init() returns one of the following status values.
GDI_SUCCESS
GDI successfully initialized.
GDI_FAILURE
Failure in initialization, possibly the application name was invalid.
FILE
gdi_linkc
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

30 Last change: 12/2793 (v20.2) Sun Release 4.1

0

GDI_INSERT(3) C LIBRARY FUNCTIONS GDI_INSERT(3)
NAME

gdi_insert — Insert data into a database table
SYNOPSIS

#include "libgdik"

int
gdi_imsert (conn, table_name, datain)

dbCoaa *comn; /* (i) database connection */

char *table_mame; /+ (i) database table name */

dbObj *datain; /* (o) dbObj — data 10 be inserted ¢/
DESCRIPTION

gdi_insert() inserts data into a database table. The data is contained in the tuples of the dbObj. The
tuple coastructor is used (o access the data in the tuples. The column definitions in the dbObj are used
to identify the columns of the database that are to receive the data.

Data is inserted using the fasiest mode for the perticular database. In the case of ORACLE, data is
inserted using array insernts. SYBASE inserts use SYBASE's bulk copy mechanism.

ARGUMENTS
conn The database connector.
table_name The name of the table into which the data is to be inserted.
datain The dbObj containing the data to be inserted.
DIAGNOSTICS
gdi_insert() returns one of the following stats values:
GDI_SUCCESS
Insert executed successfully.
GDI_FAILURE
Not connected to database or error executing command.
FILE
gdi_insertc
SEE ALSO
gdi_submit(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 3

GDI_OBJ_CREATE(3) C LIBRARY FUNCTIONS GDI_OBJ_CREATE(3)

NAME

gdi_obj_create - allocate a new dbOb;j
SYNOPSIS

#include "Nbgdih"

dbObje
gdi_obj_create (constr)
dbComstr sconstr; /* (i) data constructor */
DESCRIPTION
gdi_obj_creaie() allocates a new dbObj. The constructor poinied to by constr is copied into the dbObj
coastructor field of the new dbObj. If gdi_obj_create() is successful, a pointer to the new dbObj is
returned. NULL is returned if an esror occurred.
The dbObj allocated should be accessed using the macros and functions provided by kibgdi.a. Examples
may be found in the test routine libsrc/libgendbitest/tst_dbobj.c.
ARGUMENTS
comstr This is the tuple "constructor™ which specifies pointers to functions that access the tuples
in the dbObj. A default constructors is provided in libgdi.h. The GDI_DEFAULT con-
structor can be used when calling gdi obj_create(), unless the user wants to specify a
different tple structure. Additional constructors include GDI_TURBO and GDI_SDI.
DIAGNOSTICS
gdi_obj_create() retuns a pointer to the new dbObj if successful, or NULL if an error occurred.
FILE
gdi_dbobj.c
SEE ALSO
gdi_obj_destray(3), gdi_submit(3)
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

32 Last change: 122793 (v20.2) Sun Release 4.1

»

GDI_OBJ_DESTROY(3) C LIBRARY FUNCTIONS GDI_OBJ_DESTROY(3)

NAME

gdi_obj_destroy - free memory allocated for a dbObj
SYNOPSIS

#acude "libgdik"

int
gdi_obj_destroy (ob))
dbObj *obj; /* (i) database object +/

DESCRIPTION
The dbObj is a generic structure containing database data, status and error information. A dbObj is
normally created when a user calls a database access function, such as gdi_submit(). After extracting
the information returned in the dbObj, the user should call gdi_obj_destroy() to free the memory allo-
cated to the structure,

ARGUMENTS
obj A database object structure containing status, errors and other results of a database com-
mand.
DIAGNOSTICS
gdi_obj_destroy() always returns GDI_SUCCESS.
FILE
gdi_dbobj.c
SEE ALSO
gdi_obj_create(3), gdi_submit(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v202) 33

F

GDI_OPEN(3) C LIBRARY FUNCTIONS GDI_OPEN(3)
NAME
gdi_open - establish a connection to the datsbase
SYNOPSIS
#include "Nbgdih"
dbCoumn *
.dl open (vendor, account, password, database, server, appaame)
sveador; /* (i) database vendor */
chr *aCCOuUnt; /* (i) datsbase account */
char *password; /* (i) account password ¢/
char sdatabase; /* (i) databese or machine */
char sgerver; /* (i) database server ¢/
char *gppuame; /* (i) spplication name ¢/

vendor Required parameter. NULL-terminated string containing the name of the database ven-
dor. libgdi.k includes string macros for each database supported (GDI_MONTAGE S,
GDI_ORACLE S, GDI_POSTGRES_S, GDI_SYBASE S). A GDI_ORACLE_PROC_S
vendor option is also available, which establishes a proec connection to ORACLE. This
allows programmers to link in pro*c routines.

account NULL-terminated string contsining the database account or user name. ORACLE
account ngmes may include the password or the entire ORACLE Version 6 database con-
nect string; for example, gdidemo/gdidemo ox gdidemo/gdidemo@t:skrymir:dev.

password NULL-terminated string containing the account password. May be NULL for ORACLE
if the account srgument includes the password. May be NULL for other databases if a
NULL password is allowed for the associated account

database NULL-terminated string containing the database name for MONTAGE, POSTGRES, or
SYBASE, or the SQL*Net connect string (i.e., tskrymir:dev) for ORACLE. May be
NULL for ORACLE if the connect string is included in the account argument, or if
cither the TWO_TASK or ORACLE_SID environment variables are set. If NULL for all
databases except ORACLE, the user’s default database is opened.

server Name of the database server. May be NULL.

appaame Application name (only used by SYBASE). May be NULL.
DIAGNOSTICS
If the attempt to open a connection fails, the dbConn returned will be NULL.

FILE
gdi_conn.c

SEE ALSO
.d'_M)' “‘_Mc)v 'di_m). 'di_'a_mm . .d' _'Q‘_m(a)o gdi_get_node(3),
gdi_get_vendors(3), gpdi_open_channel(3), oracle_open(3)

AUTHOR

K’} Last change: 12/2793 (v20.2) Sun Release 4.1

GDI_OPEN(3) C LIBRARY FUNCTIONS GDI_OPEN(3)

B. MacRitchie, SAIC Geophysical Sysiems Operation, Open Systems Division

Sun Release 4.1 Last change: 12/27/93 (v20.2) 35

e —

GDI_OPEN_CHANNEL (3) C LIBRARY FUNCTIONS GDI_OPEN_CHANNEL (3)

NAME
gdi_open_channel - open additional channel on a specified database connection

SYNOPSIS
#include “libgdi.h"

int
gdi_open_chaane! (conn, channo)
dbConn *CORR; /* (i) databese connection */
int chaamo; /* (0) channel number address *»/

DESCRIPTION
A connection (dbConn) to the datsbase may have multiple query chsnnels. A channel is an
MI_CONNECTION for MONTAGE, a cursor for ORACLE, a portal for POSTGRES, and a DBPRO-
CESS for SYBASE. For example, at the time an ORACLE connection is established, two channels
("cursors™) are automatically opened. gdi_open_channel() opens additional channels.

ARGUMENTS
coan The database connector for the connection on which t0 open the channel.
chanmo Channel number. The number gets filled in by this routine.
DIAGNOSTICS
gdi_open_channel() returns one of the following status values.
GDI_SUCCESS
Succeeded in opening channel.
GDI_FAILURE
Could not open channel.
FILE
gdi_channel.c
SEE ALSO
gdi_channel is open(3), gdi_close_channel(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

36 Last change: 122793 (v20.2) Sun Release 4.1

GDI_PRINT_COLDEFS(3) C LIBRARY FUNCTIONS GDI_PRINT_COLDEFS(3)

NAME

gdi_print_coldefs — output column definitions to stdout
SYNOPSIS

#iaclude "libgdih"

int
gdi_priat_coldefs (obj)
dbObj *0bj; /* (i) database data object */
DESCRIPTION
gdi_print_coldefs() prints the column definitions of the datsbase object, dbObj, to stdout. To print the
dbObj use gdi_print_dbobj(). To print the actual data use gdi_print_tuples().

Name column name.
Null? is a database Null allowed for this column? 1 if Null is permitted. 0 if not.
Ctype integer values representing "C" language data types as defined in the include file libgdi.h,

for example: M_INTEGER, M_STRING.
StrSize string length if column is a string type.
ArraySize amay leagth if column is an array type.
Scale database scale value.

Dbtype integer values representing database data types as defined in the libgdi.h. For ORACLE,
the conveantion GDI_ORA_CHAR, GDI_ORA_NUMBER, etc. is used.

DbtypeStr human readable representation of the database type.

ARGUMENTS
obj The database data object.
DIAGNOSTICS
gdi_print_coldefs() retuns one of the following status values.
GDI_SUCCESS
GDI_FAILURE
NULL dbObj passed in.
FILE
gdi pri
SEE ALSO
gdi_print_coan(3), gdi_priat_dbobj(3), gdi_print_tuples(3)
AUTHOR

Mari Mortell, SAIC Geophysical Sysiems Operation

Sun Release 4.1 Last change: 12/27/93 (v20.2) 37

B

GDI_PRINT_CONN(3) C LIBRARY FUNCTIONS GDI_PRINT_CONN(3)

NAME

gdi_print_conn - output the contents of the database connection structure o stdout
SYNOPSIS

#mclude "libgdi.h"

int
gdi_print_coan (coun)
dbCoan sconn; /* (i) datsbase connection ¢/
DESCRIPTION
gdi_print_coan() prints the contents of the database connection structure, dbConn, to stdout. If a con-
nection to a vendor has been made, the contents of the vendor specific connection are also printed.

ARGUMENTS
conn The database connector.
DIAGNOSTICS
gdi_print_coan() returns one of the following status values.
GDI_SUCCESS
No problem outputting dbConn.
GDI_FAILURE
NULL dbConn passed in.
FILE
gdi_printc
SEE ALSO
gdi_print_dbobj(3)
AUTHOR

B. MacRiichie, SAIC Geophysical Sysiems Operation, Open Systems Division

38 Last change: 12/27/93 (v20.2) Sun Release 4.1

GDI_PRINT_DBOBJ(3) C LIBRARY FUNCTIONS GDI_PRINT_DBOBJ(3)

NAME

gdi_print_dbobj - output dbObj coatents to stdout
SYNOPSIS

#iaclude "libgdih"

int
gdi_priat_dbobj (obj)
dbObj *obj; /* (i) obj */

DESCRIPTION
gdi_print_dbobj() outputs the contents of the database object, dbObj, to stdows. To print the column
definitions use gdi_print_coldefs(). To print the actual data use gdi_print_tuples().
dbObj attributes printed are:
Affected Rows The number of rows affected by the database statement.
Tuples The number of rows of data stored in the dbObj.
Columns The number of columns in each row.
Status The return status of the database statement.

More Rows gdi_submit() allows a limit 0 be specified on the number of rows returned. "More
Rows" is TRUE if more data exists in the database which satisfies the query than were

rewsmed.
Query The database statement.
ARGUMENTS
obj The database object.
DIAGNOSTICS
gdi_print_dbobj(returns one of the following status values.
GDI_SUCCESS
No problem outputting dbOb;.
GDI_FAILURE
NULL 4dbObj passed in.
FILE
gdi_print.c
SEE ALSO
gdi_print_coldefs(3), gdi_print_tuples(3)
AUTHOR

Mari Mortell, SAIC Geophysical Systems Operation

Sun Release 4.1 Last change: 122793 (v20.2) 39

W

GDI_PRINT_TUPLES(3) C LIBRARY FUNCTIONS GDI_PRINT_TUPLES (3)
NAME

gdi_print_tuples - print tuple data to stdout
SYNOPSIS

#include "libgdih"

int

gdi_print_tuples (dbobj, format, header)

dbObj *dbobj; /+ (i) database object ¢/

int format; /+ (i) GDI_FIXED_SPACE or GDI_DELIMITED ¢/

int header; /+ (i) TRUE for column name headings, FALSE for data only +/
DESCRIPTION

gdi_print_tuples() prints the tuple data in the database object, dbObj, W sidows. To print the dbObj use
gdi_print_dbobj). To print the column definitions use gdi_print _coldefs().

Specifying GDI_FIXED_SPACE causes the tuples 0 be printed in tabular form. Numbers are right
justified. Strings sre left justiied. GDI_DELIMITED, prints a comma without white space between
fields. Strings and chars are enclosed in double quotes. This output was intended to be a flat file for-
mat compatible with a number of database vendors. The column name headings can be enabled or dis-
abled.

ARGUMENTS
obj The database data object.

format GDI_FIXED_SPACE or GDI_DELIMITED.
header TRUE w enable the output of column name headings, FALSE for data only.

DIAGNOSTICS
gdi_print_wuples() returns one of the following status values.
GDI_SUCCESS

No problem outputting tuples.
GDI_FAILURE
NULL dbObj passed in.

FILE
gdi pri

SEE ALSO
gdi_print_coldefs(3), gdi_print_dbobj(3)

AUTHOR

Mari Mortell SAIC Geophysical Systems Operation

40 Last change: 122793 (v20.2) Sun Release 4.1

J

GDI_ROLLBACK (3) C LIBRARY FUNCTIONS GDI_ROLLBACK (3)

NAME
gdi_rollback - rollback current transaction
SYNOPSIS
#nclude "libgdih"
int
gdi_rollback (conn, channo, tran_name)
dbConn *comRE; /+ (i) database connection */
int channo; /+ (i) channel number ¢/
char stran_name; /* (i) transaction name */
DESCRIPTION

A database transaction is a statement, or statements, treated as an atomic unit. gdi_rollback() ends the
current transaction and cancels all peading changes 10 the database.
Note that transaction management is implemented slightly differeatly in all the databases the gdi sup-
ports.

ARGUMENTS
conn The database connector.

channo The channel number (SYBASE and MONTAGE). SYBASE transactions are handled at
the DBPROCESS level. MONTAGE transactions are handled at the database connection
level, but cach gdi query channel maps t0 a separate database connection. The channel
argument is ignored for ORACLE and POSTGRES.
tran_name The transaction name of the transaction ©o be rolled back. This argument is only valid
for SYBASE, which allows nested, named transactions.
DIAGNOSTICS
gdi_roliback() rewums one of the following status values.
GDI_SUCCESS
Rollback succeeded.
GDI_FAILURE
Rollback failed; possibly the connection dropped.
FILE
gdi_tranc
SKE ALSO
gdi_begin_tran(3), gdi_commit(3), gdi_savepoinat(3)
AUTHOR
B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 41

GDI_SAVEPOINT(3) C LIBRARY FUNCTIONS GDI_SAVEPOINT (3)
NAME
gdi_savepoint ~ set a savepoint
SYNOPSIS
#imclude "Nbgdih"
imt
gdi_savepoint (comn, channo, sname)
dbCoun *CORR; /*+ (i) database connection ¢/
int channo; /* (i) channel number ¢/
char sEaame; /* (i) ssvepoint name ¢/
DESCRIPTION

A databasc transaction is a statement, or staements, trested as an atomic unit. gdi_savepoint()

identifies a point in a transaction to which a process can later rollback with the rollback to savepoint

savepoint_name statement.

To roliback to a named savepoint, the process must build a text string containing the entire SQL state-

ment, then execuie the statement with a call to gdi_submit().

A call ©0 gdi_rollback(or gdi_commit() negates all savepoints.

Transaction management is implemented slightly differently in all the databases the gdi supports.

ARGUMENTS

conn The database connector

channo Setting a savepoint involves a SQL command that must be executed on a channel. For
SYBASE, it sets a savepoint only for activity on that channel since transactions are han-
dled at the DBPROCESS level, not the database connection level. For ORACLE it sets a

savepoint at the dbConn level because transactions are at the database connection level.
MONTAGE and POSTGRES currently do not support savepoints.

DIAGNOSTICS
gdi_savepoint() rewurns one of the following status values.
GDI_SUCCESS
Savepoint succeeded.
GDI_FAILURE
Savepoint failed; possibly the connection dropped.
FILE
gdi_tranc
SEE ALSO
gdi_commit(3), gdi_rollback(3), gdi_submit(3)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

42 Last change: 122793 (v20.2) Sun Release 4.1

J

O —

GDI_SET_DBOPTION(3) C LIBRARY FUNCTIONS GDI_SET_DBOPTION(3)
NAME
gdi_set_dboption - Set or clear a database option
SYNOPSIS
#imclude "libgdih”
int
gdi_set_dboption (conn, channo, option, setting)
dbCoan *conn; /* (i) database connection */
int channo; /* (i) channel number »/
dbOption option; /* (i) option o be set */
char sgetting; f* (i) value 10 set option to ¢/
DESCRIPTION

Various database options may be set by the application through gdi_set_dboption(). An ojtion may be
cleared or set 10 default be calling gdi_set_dboption() with a8 NULL seiting. Some options are settable
at the channel level.

Most options are specific to a database vendor. If an application attempts to set an option that is not
applicable to the database, a waming is issued but otherwise the action is ignored.

The state of a datsbase option may be ascertained through gdi_get dboption(3). Some options, such as
GDI_PRO_C, are not settable but their states may still be retrieved.

ARGUMENTS
conn The database connector.
channo The channel number. channo is ignored by options that are set at the connector level.
option The option to be set or cleared.

setting A string containing the value to set the option to. If sewing is a NULL or empty string,
the option is cleared or set to the default value.

OPTIONS

The following options may be set

GDI_AUTO_COMMIT
Oracle. Set auto commit on or off ("1" or "0"). Auto commit is off by default and is set
at the connection level. Setting auto commit on causes each database statement to be
automatically committed as soon as it is executed.

GDI_CONFIG
Montage, Postgres. Checks for existence of GDI database support objects. If set to
GDI_CONFIG_CHECK, retuns GDI_FAILURE if objects do not exist. If set to
GDI_CONFIG_INSTALL, tries to create the objects if they do not already exist. If set
to GDI_CONFIG_REMOVE, removes GDI objects.

DIAGNOSTICS
gdi_set_dboption() returns one of the following status values:
GDI_SUCCESS
Openation succeeded.
GDI_FAILURE
Operation failed; possibly the connection dropped.
FILE
gdi_option.c
SEE ALSO
Sun Release 4.1 Last change: 122793 (v20.3) 43

.-

GDI_SET_DBOPTION(3) C LIBRARY FUNCTIONS GDI_SET_DBOPTION(3)

odi_get_dboption(3)
AUTHOR
B. MacRitchic, SAIC Geophysical Sysiems Operation, Open Sysiems Division

44 Last change: 122793 (v20.3) Sun Release 4.1

GDI_SLEEP(3) C LIBRARY FUNCTIONS GDI_SLEEP(3)

NAME
gdi_sleep - sleep a random number of seconds
SYNOPSIS
#include "Nbgdik"
void
sdlsleep(-n _sleep)
max_sleep; f+ (i) maximum number of seconds to sleep */
DESCRIPTION
gdi_sleep() sleeps a random number of seconds that does not exceed max_sieep seconds. The sleep is
random so processes pinging the same resource will become de-synchronized and retry at different
times (used by gdi_get_counter(), for exampie).
ARGUMENTS
max _sleep The maximum number of seconds to ever sleep. If set to 0, does not sleep.
FILE
gdi_sleep.c
SEE ALSO
gdi_get_counter(3)
AUTHOR
Jean T. Anderson, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 45

GDI_SUBMIT(3) C LIBRARY FUNCTIONS GDI_SUBMIT(3)
NAME

gdi_submit — submit a database command
SYNOPSIS

#iaclude "Nbgdih"

int

gdi_submit (conn, cmd_batch, max_records, comstr, results)

dbCoan scons; /+ (i) database connection */

char *cmd_batch; /+ (i) dstabase commend(s) */

int max_records; /+ (i) maximum number of records to fetch +/

dbConstr scomstr; /+ (i) wple constructor ¢/

dbObj ssregults; /* (0) dbObj ~ status, errars, data */
DESCRIPTION

gdi_submit() sends a database command © the database t0 be executed. The results of the command,
mmmmandmpufuy.mnhemdmﬁenn&:m

The database commands must be written in the native language of the target database. The commands
must be complete and syniactically correct.

For ORACLE database connections, the types of commands that msy be executed include array fetches,
inserts, updates and deletes without bind varisbles. DDL commands such as create, drop or alter tabic,
commit, and rollback can also be done with gdi_submit(). Timeouts can occur while waiting for DDL
locks.

Sample commands allowed for ORACLE and SYBASE connections include:

"select * from arrival”

"select sta, chan from arrival”

"select 0.orid, a.arid, olat, oJon, o.depth, o.time, aphase,
artime, arazimuth, ar.slow from assoc a, arrival ar,
origin o where a.orid=0.0rid and a.arid=ar arid”

"select count(*) from origin, origerr”

"SELECT a.sta, atime, b.wfid, alddate
from aiable a, dyn b where a.sta = b.sta”

"select max(sta), max(time), min(arid) from arrival where arid in
(select arid from assoc where orid=3679)"

"update arrival set arid = S where arid = 77

"delete from arrival where arid = 1234"

"select * from arrival where 122" --> performs a describe

Sample ORACLE specific commands allowed include:

"select stddev(y) std_y from datamatrix®

"create table my_arrival as select + from srrival”

"insert into mytable (sta, time, wifid, lddase) values("NRAO’, 87654321.99, 1001,
TO_DATE("19920527 17:21:59°, 'YYYYMMDD HH24:M1L:SS’))"

Sample SYBASE specific comnmands allowed include:
"select ¢ into newtable from oldtable” /¢ create table ¢/
"insert into mytable (sta, time, wfid, iddase) values ('NRAO’, 87654321, 1001, getdate()"

“insert into mytable (Mddate) values (*Oct 15 1993 3:08:0°)"

46 Last change: 12/27/93 (v20.2) Sun Release 4.1

GDI_SUBMIT(3) C LIBRARY FUNCTIONS GDI_SUBMIT(3)

Calculated columns should be named for SYBASE or the column name will be NULL. for example:
"select max(keyvalue) ‘'max key’ from lastid"

For ORACLE Version 6 database connections, gdi_submit() automatically uses a default date mask,
'YYYYMMDD HH24:MI:SS’, for columns with database type "date”. For ORACLE Version 7, the
date mask may be specificd by the user. If a to_char() conversion is used for a date column, the
column’s datatype becomes "string” and is no longer recognized as a date.

After a command which changes the contents of the database completes successfully, ORACLE users
should call ORACLE gdi_commit() to commit the transaction. The user is also responsibie for calling
gdi_obj_destroy() to free the memory allocated for results.

SQL commands requiring bind variables are not implemented for ORACLE or SYBASE. For example:
delete from table where id = :e

Other SQL and SQL+Plus commands not implemented are:

define
describe
@sqlscript
spool

set timing on
column format
list

Although gdi_submit() does not execute the describe command, descriptions of the attributes may be
obtained in the column definitions of the dbObj structure resulting from the query below:

select * from table where 1=2

ARGUMENTS
CORR The database connector.

cmd_batch A NULL terminated string containing any database command or, for SYBASE and
MONTAGE, a batch of commands. For instance, insert commands of the form "insert
into tables (list of values)" may be submitted using this function. Commands that
select data from the database will be handled using array fetches for ORACLE. The
data will be rerned in the results argument.

max_records This specifies the maximum number of records that may be feiched from the database.
All records will be fetched if max_records is set w -1. If max_records = 0, the default
maximum MAXREC is returned. max_records only applies to fetches.

constr This is the tuple constructor, which specifies the functions that build the tuples for the
results argument. Default constructors are provided in libgdi.h. The GDI_DEFAULT
constructor can be used when calling gdi_submit(), unless the user wants to define
different functions. Additional constructors include GDI_TURBO and GDI_SDI.

results A dbObj stracture created by gdi_submit(). It contains status, emors and other results
of the database command. If the database command resulted in data being fesched
from the database, resuits also contains the database tuples. For SYBASE and MON-
| TAGE, results may be a linked list of dbObj’s, one for each command in the command
} batch.

Sun Release 4.1 Last change: 122793 (v20.2) 47

B

GDI_SUBMIT(3) C LIBRARY FUNCTIONS GDI_SUBMIT(3)

The fields in a 4bObj are described below:

tuples This field is the pointer to the structure containing data tuples, if any.

n_tuples n_tuples is the number of tuples.

col_def This field is a pointer w0 a mull terminated amay of dbColDef structures, containing
column definitions. There is one column definition structure for each column in the data-
base query.

query This is a null terminated string containing the database query or command.

rows_gffecied This is the number of damabase rows affected by the query or command. In the case of a
fetch, the number of rows affected is the same as the number of wples feiched.

cmd_num When a block of multiple commands is submitted 0 gdi_submit(), cmd_num is the
aumber of the command within the block. lmnnlly.odySYBASEcomectmnswnIhm
dle multiple commands.

more_rows If a database command results in more rows than were requested by the value specified
in max_records, this field indicates that additional data tuples are available.

constructor ‘The constructor comsists of function pointers and flags that specify the structure of the
tuples and the tuple container.

next_obj When a block of commands is submitied t0 the database, a dbObj is associated with each
command. next obj points to the dbObj comesponding to the next command in the

block.

prev_obj mobjpoimmmedwbjwmmdinglomemvmminammand

The information and fields in a dbObj should never be accessed directly. The GDI provides macros and

functions to access the data.

The following macros are provided:

GDI_OBJ_NUM_TUPLES Get the number of tuples in a dbObj.

GDI_OBJ_ROWS_AFFECTED Get the number of rows affected by the command in a dbObj.

GDI_OBJ_QUERY Get the database query in a dbObj.

GDI_OBJ_CMD_NUM Get the command number with the command batch.

GDI_OBJ_MORE_ROWS Get the more rows fiag from a dbObj.

GDI_OBJ_STATUS Get the command status from a dbObj.

GDI_OBJ_TUPLES Get the tuple container structure from a a dbObj.

GDI_OBJ_CONSTRUCTOR Get the pointer to the tuple constructor.

GDI_OBJ_COL_DEFS Get the pointer o the array of column definitions.

GDI_OBJ_COL_DEF Get the pointer to a specified column definition, giver the column
number in the command.

GDI_OBJ_COL_NAME Get the name of a column in a dbObj, given the column number
within the command.

GDI_OBJ_COL_CTYPE Get the C type of a column in a dbObj, given the column number
within the command.

GDI_OBJ_COL_PRECISION Get the database precision of a column in a dbObj, given the
column number within the command. Precision is only valid for
ORACLE data.

GDI_OBJ_COL_SCALE Get the database scale of a column in a dbObj, given the column
number within the command. Scale is only valid for ORACLE

48 Last change: 122793 (v20.2) Sun Release 4.1

L

GDI_SUBMIT(3) C LIBRARY FUNCTIONS GDI_SUBMIT(3)

data.

GDI_OBJ_COL_MAX_STRLEN Get the maximum length of a string column in a dbObj, given i.e
column number within the command.

GDI_OBJ_COL_MAX_ARRLEN Get the maximum length of an amay column in a dbObj, given the
column number within the command. Array columns are only
created by POSTGRES queries.

GDI_OBJ_COL_DBTYPE S Get the string representation of the database type of a column in a
dbObj, given the column number within the command.

GDI_OBJ_ALLOW_NULL Get the allow_null flag or a column, given the column number in

the command.
The functions provided include:
gdi_obj_mum_columns() Calculate the number of columns in a dbObj. Returns number of
columns if successful, -1 if failure.
gdi_obj_value() Return a pointer to a database value, given a dbObj, a tuple number
and a column number. The application must cast the pointer 10 the
correct C type to access the data.
gdi_obj_find_value Return a pointer t0 a database value, given a dbObj, a tuple number
and the column name instead of the column number.
gdi_obj_col_find_col_def) Return the number of a column in a dbObj, given the column
name.
gdi_obj_col_num() Return the definition of a column in a dbObj, given the column
name.
DIAGNOSTICS
gdi_submit() returns one of the following status values:
GDI_SUCCESS
Command executed successfully.
GDI_FAILURE
Not connected to database or error executing command.
FILE
gdi_submitc
NOTES

Multiple command baiches are not implemented yet for MONTAGE and SYBASE.
SEE ALSO

gdi_commit(3), gdi_obj_destroy(3), gdi_priat_coldefs(3), gdi_print_dbobj(3), gdi_print_tuples(3)
AUTHOR

B. MacRitchic, Mari Mortell, K. Garcia, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 49

ey~

GDI_TRACE(3) C LIBRARY FUNCTIONS GDI_TRACE (3)
NAME
gdi_trace — tum database tracing on or off
SYNOPSIS
#imclude "Nbgdih"
int
gdi_trace (dbcoan, state, filename)
dbComn *comnn /¢ (i) database connector */
int stase/* (i) TRUE or FALSE */
char sfilename/* (i) name of filc ¢/
DESCRIPTION

gdi_trace() enables or disables database tracing. If the database connection is 0 a SYBASE database,
the traces are dumped 10 a file specified by filename.

ARGUMENTS
conn The database connector.
state TRUE o tum tracing on, FALSE to tumn tracing off.
filename Output filename (SYBASE only). May be a null or empty string, "".
DIAGNOSTICS
gdi_trace() returns one of the following status values.
GDI_SUCCESS
Trace successfully enabled or disabled.
GDI_FAILURE
gdi_trace() failed; possibly the connection dropped.
FILE
gdi_trace.c
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

50 Last change: 12/27/93 (v202) Sun Release 4.1

ORA_SQLCA_ERROR(3) C LIBRARY FUNCTIONS ORA_SQLCA_ERROR(3)
NAME

ora_sqlca_error - stores SQLCA error in the database connector
SYNOPSIS

#iaclude "lbgdih"

#iaclude “ora_proC.h"

int

ora_sqica_error (coms, ptr_sqica, str)

dbCoun *cons; /¢ (i) databese connection ¢/

stractsqlea sptr_sqles; I+ () SQLCA +/

char . sgtr; /* custom string */
DESCRIPTICN

ora_sqica_esror() stores the status of 3 SQL statement executed by a PROC call based on the contents
of the SQL Communication arca (SQLCA). The database connection must be opened by oracle_open()

to execute PRO+C routines.
ARGUMENTS
COnR The database connector.
ptr_sqica Pointer 1o the SQLCA.
FILE
gdi_emorc
NOTES
Note that this is an ORACLE-specific routine highlighted here for users who wish to link their own
PRO+C routines with Libgdi.a.
SEE ALSO
oracle_opea(3)
AUTHOR

Jean T. Anderson, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 12/27/93 (v20.2) 51

*m

GDI_CLOSE (3f) MISC. REFERENCE MANUAL PAGES GDI_CLOSE(3f)

NAME
gdi_close - close the specified database connection

SYNOPSIS
#include "gdi (774"

integer function gdi_ciose (comn)
integer conm (i) database connection

DESCRIPTION
gdi_close(closes a connection 10 the database and frees the database comnection structure, dbConn,
associated with the conn parameter.

ARGUMENTS
coan The databsse connection handle of the connection t© be closed.
DIAGNOSTICS
gdi_close() returns one of the following status values.
GDI_SUCCESS
Connection successfully closed.
GDI_FAILURE
Not connected to database.
FILE
gdi_f77_coan.c
SEE ALSO
gdi_open(3), gdi_open(3f)
AUTHOR
H. Turner, SAIC Geophysical Systems Operation, Open Systems Division

52 Last change: 12/27/93 (v20.2) Sun Release 4.1

GDI_ERROR_GET (3f) MISC. REFERENCE MANUAL PAGES GDI_ERROR_GET (3f)

NAME

gdi_esror_get — retrieve error information from the database connection
SYNOPSIS

#include "gdi 770"

subroutine gdi_error_get (comm, ervcode, errtext, maxtext, status, severity)

integer coaa (i) database connection
integer errcode (0) specific error code
character errtext (o) ervor text
integer maxtext (i) length of emmext variable
integer status (o) general status
integer severity (0) scverity
DESCRIPTION
gdi_emor_get() retrieves error information from the database connector.
ARGUMENTS
CoRR The database connection handie. If the handle is set 0 DB_NOCONN, then global error
information is retrieved.

errcode Exror code.
errtext Messag= text for the emmor code.
maxtext Size of the errtext string, controls how much text may be copied into the user's errtext

variable.

status GDI_SUCCESS or GDI_FAILURE.

severity GDI_NOERROR, GDI_FATAL, or GDI_WARNING.
SAMPLE CODE

See test stubs in libsrc/libgendb/est/(oracle | postgres).
FILE

gdi_f77_error.c
SEE ALSO

gdi_error_get(3), gdi_error_init(30)
AUTHOR

H. Turner, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) 53

GDI_ERROR_INIT (3f) MISC. REFERENCE MANUAL PAGES GDI_ERROR_INIT (3f)

NAME

gdi_cwror_init - initialize efror handling flags

SYNOPSIS

tiaclude "gdi 770"

subroutine gdi_error_iait (dbcomn, debug, threshold, reservedl, reserved2)

integer
integer
integer
integer
integer
DESCRIPTION

dbConn (i) database connection

debug (i) GDI_DEBUG_OFF, GDI_DEBUG_ON, GDI_DEBUG_VERBOSE
threshold (i) GDI_WARNING or GDI_FATAL

reservedl (i) not used

reserved2 (i) not used

Errors are handled on a connection by connection basis. gdi emror_init() initializes the debug and thres-
hold flags for a database connector. debug controls optional output of errors w0 stderr. threshold sets
the level of error or waming that is treated as a failure by the GDL

ARGUMENTS
conn The database connection handle.
debug GDI_DEBUG_OFF (FALSE) by defauit. If set 0 GDI_DEBUG_ON (TRUE), errors are
output automatically o stderr. If set to GDI_DEBUG_VERBOSE, non-error debug mes-
sages are output automatically to szderr.
threshold Sets the threshold at which an error or waming causes a GDI_FAILURE. A threshold of
GDI_WARNING causes all wamings and errors to be treated as failures. A threshold of
GDI_FATAL causes only fatal errors to be treated as failures.
reservedl Reserved for future use.
reserved2 Reserved for future use.
FILE
gdi_f77_errorc
SEE ALSO

gdi_error_get(30), gdi_error_init(3)

AUTHOR

H. Turner, SAIC Geophysical Systems Operation, Open Systems Division

Last change: 12/2793 (v20.2) Sun Release 4.1

S

GDI_GET_ACOOUNT(3) C LIBRARY FUNCTIONS GDI_GET_ACCOUNT(3)

NAME
gdi_get_account - get database account name from database connector

SYNOPSIS
#iaclude "gdi_f77h"

int

gdi_get_account (coan, account)

dbConn scomm; /* (i) database connection */

char saccount; /+ (o) account name */
DESCRIPTION

gdi_get_account() gets the database account name from the databese connector.
ARGUMENTS

conn The database connection handie.

account Database account name is filled in by this routine.
DIAGNOSTICS

gdi_get_account() retums one of the following status valuves.

GDI_SUCCESS

Routine succeeded.
GDI_FAILURE
Not connected to database.

FILE

gdi_f77_conn.c
SEE ALSO

gdi_get_database(30), gdi_get_mode(30)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 122793 (v20.2) S5

m

GDI_GET_DATABASE(3) C LIBRARY FUNCTIONS GDI_GET_DATABASE (3)

NAME

gdi_get_database - get database name from database connector
SYNOPSIS

#include "gdi_f770"

int
gdi_get_database (comn, database)

dbCona *ConB; /* (i) database connection */

char *database; /* (o) database name ¢/
DESCRIPTION

gdi_get database() gets the database name from the database connector.
ARGUMENTS

oomm The database connection handle.

database Database name is filled in by this routine.
DIAGNOSTICS

gdi_get database() returns one of the following status values.

GDI_SUCCESS

Routine succeeded.
GDI_FAILURE
Not connected to database.

FILE

gdi_f77_conn.c
SEE ALSO

gdi_get_account(3f), gdi_get mode(3f)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systzms Division
56 Last change: 1227093 (v202) Sun Release 4.1

GDI_GET_NODE (3) C LIBRARY FUNCTIONS

NAME
gdi_get node - get database node name from database connector

SYNOPSIS
#include "gdi 774"

int

gdi_get_mode (conn, node)

dbConn *cons; /» (i) database connection */

char *node; /* (0) node name */
DESCRIPTION

gdi_get node() gets the database node name from the database connector.
ARGUMENTS

coun The database connection handle.

mode Database node name is filled in by this routine.
DIAGNOSTICS '

gdi_get_node() returns one of the following status values.

GDI_SUCCESS

Routine succeeded.
GDI_FAILURE
Not connected 1o database.

FILE

gdi_f77_conn.c
SEE ALSO

gdi_get_account(3f), gdi_get_database(3f)
AUTHOR

B. MacRitchie, SAIC Geophysical Systems Operation, Open Systems Division
Sun Release 4.1 Last change: 12/2793 (v20.2)

GDI_GET_NODE(3)

s7

GDI_INIT(3f) MISC. REFERENCE MANUAL PAGES GDI_INIT (3f)

NAME
gdi_init - initialize the GDI

SYNOPSIS
¥imclude "gdi 770"

integer function gdi_init (appaame, gdihome)

character appaame (i) application name
character gdihome; /* (i) GDI bome directory*/
DESCRIPTION
gdi_initQ initializes the GDI.
ARGUMENTS

appaame Application name (actual name of the executable).
gdihome Directory where GDI is instalied. The GDI searches gdihomeAid for the GD! vendor
interface libraries to be dynamically locsted. If gdi_init() has not been called or if
gdihome is an empty string, "", then the GDI will use the environment variable,
GDIHOME.
DIAGNOSTICS
gdi_init() returns one of the following status values.
GDI_SUCCESS
GDI successfully initialized
GDI_FAILURE
Failure in initialization, possibly the application name was invalid.
FILE
gdi_link.c
AUTHOR
H. Tumer, SAIC Geophysical Systiems Operation, Open Systems Division

58 Last change: 122793 (v20.2) Sun Release 4.1

I

GDI_MAP(3f)

NAME

gdi_map - manage relationships between FORTRAN data and gdi data

SYNOPSIS

]

MISC. REFERENCE MANUAL PAGES GDI_MAP(3f)

#iaclude “gdi_f774"

integer function gdi_opea_map (comn)

integer conn (i) database connection

subroutine gdi_close_map (comn, map)

integer coan (i) database connection

integer wmap_id (i) map w0 close

subroutine gdi_destroy_map (coan, map)

integer cona (i) database connection

integer map_id () map to dostroy

integer function gdi_add_wmap_field (conn, map, column_name, data_addr, data_type, string_len, array_len)
integer coma (i) database connection

integer map id (i) map o add column to.

character columa_name (i) name of the database column

integer data_addr (i) name of the destination FORTRAN array
integer data_type (i) data type of destination array

infeger string_les (i) length of destination string

integer array_len (i) length of destination array

DESCRIPTION

The GDI Map functions allow the application to build a Map which contains a description of the FOR-
TRAN output varisbles for the data retummed from a database query. Each column in the query is
mapped t0 2 FORTRAN amray on a one-to-one basis. The application builds a Map and then passes the
Map ID to gdi_submit() along with the database query. gdi_submit() fills the FORTRAN output arrays
as specified by the Map. Each query that retums daa requires a valid Map. Multiple maps may be
created. Maps may be reused by subsequent querics. When the Map is no longer needed, it may be
destroyed.

gdi_open_map() begins a mapping reference.

gdi_closc_map() ends a mapping reference.

gdi_destroy_map() deallocates the memory that the GDI allocated when the map was built. Data in the
FORTRAN arrays are not affected.

gdi_add_map field() adds an clement, a reference to a FORTRAN output array and a query column, to
a map.

ARGUMENTS

comR The database connection handle.

map id Identifies the map 10 use in the operation. Multiple maps may be defined.

colums_mame The name of the database column from which data will be read.

data_addr The FORTRAN variable which will hold the retrieved data.

data_type The data type that the data_addr variable is.

string_len Describes how long each string is (should the column be a string column). 1If the
data_type is not GDI_STRING, then this parameser should be zero (0).

array_len For ORACLE, this variable has no meaning and should always be zero (0). For
POSTGRES, this varisble indicates the number of rows in an array fetch.

Sun Release 4.1 Last change: 12/27/93 (v20.2) 59

GDI_MAP(3f)

GDI_MAP(3f) MISC. REFERENCE MANUAL PAGES
DIAGNOSTICS
The Map functions retumn one of the following status values:
GDI_SUCCESS
The requested operation was performed.
GDI_FAILURE
The requested operation could not be performed. Use gdi_error_get() 1o get error infor-
mation.
FILE
gdi_f77_mapc
SEE ALSO
gdi_ervor_get(3f)
AUTHOR
H. Tumer, SAIC Geophysical Systems Operation, Open Systems Division
60 Last change: 12/27/93 (v20.2)

Sun Release 4.1

J

GDI_OPEN(3f) MISC. REFERENCE MANUAL PAGES GDI_OPEN (3f)
NAME
gdi_open - establish a connection to the database
SYNOPSIS
#imclude “gdi_f77.5"
integer function gdi_open (vendor, account, password, database, server, appname)
character veador (i) database vendor
character account (i) database account
character password (i) account password
character database (i) database or machine
character server (i) database server
character appuame (i) application name
DESCRIPTION

gdi_open() opens a databasc connection to the specified database vendor. More than one connection
may be established, including a mix of database vendors.
ARGUMENTS

Many of these parameters may be NULL depending on the database vendor.

vendor Required parameter. Character string containing the name of the database vendor.
Curreatly supported vendors are "montage”, "oracle”, "posigres”, and "sybase”.

account Character string containing the database account or user name. ORACLE account names
may include the password or the eatire ORACLE Version 6 database connect string; for
example, gdidemo/gdidemo or gdidemo/gdidemo@1:skrymir dev.

password Character string containing the account password. May be an empty string, "", for ORA-
CLE if the account argument includes the password.

database Character string containing the database for MONTAGE, POSTGRES, or SYBASE or the
SQL+*Net connect string (i.e., tskrymir.dev) for ORACLE. May be an empty string, ™",
for ORACLE if the connect string is included in the account argument, or if either the
TWO_TASK or ORACLE_SID environment variables are set. If an empty string for all
databases but ORACLE, the user’s default database is opened.

server Name of the database server. Optional.
appname Application name (only used by SYBASE).

DIAGNOSTICS
If the attempt 10 open a connection fails, the database connection handle, conn, will be GDI NOCONN.
FILE
gdi_f77_conn.c
SEE ALSO
gdi_close(3f), gdi_opea(3)
AUTHOR
H. Turner, SAIC Geophysical Systems Operation, Open Systems Division

Sun Release 4.1 Last change: 9/7/93 (v17.1) 61

S

GDI_SUBMIT(3f) MISC. REFERENCE MANUAL PAGES GDI_SUBMIT (3f)

NAME
gdi_submit - submit a database command

SYNOPSIS
#iaclude "gdi 770"
integer
gdi_ ub-h(eon,up id, cmd_batch, max_records, rows_retrieved, rows_affected, more_data)
integer (n)dnnb-cconnecnon
integer -ap_kl (')mpid]
character cmd_baich (i) string contsining SQL. command(s)
integer max_records (i) maximom sumber of recards o fetch
integer row_retrieved (o) # of rows retrieved
integer row_affected (o) # of rows affeceed
logical more_data (o) signals more data in the database
DESCRIPTION

After a connection has been made 0 a database with gdi_open(), gdi_submit() sends a database com-
mand to the database t0 be executed. Data will be returned as described by the map_id.

For ORACLE database connections, the types of commands that may be executed include array fesches,
inserts, updates and deletes without bind variables. DDL commands such as create, drop or alter table,
commit, and rollback can also be done with gdi_submit(). Timeouts can occur while waiting for DDL
locks.

Sample commands allowed for ORACLE connections include:

"select * from arrival®
"select sta, chan from arrival”
"select o.arid, a.arid, o.lat, olon, odepth, o.time, a.phase,
artime, arazimuth, arslow from assoc a, arrival ar,
origin o where a.oridwo.orid and a.arid=ar arid”
"select stddev(y) std_y from datamatrix”
“select count(*) from origin, origers”
"SELECT a.sta, a.time, b.wfid, slddate
from atable g, dyn b where a.sta =bsta”
"select max(sta), max(time), min(arid) from arrival where arid in
(select arid from assoc where orid=3679)"
"create table my_arrival as select * from arrival”
"delete from arrival where arid = 1234"
"select ¢ from amrival where 1=2" --> performs a describe
For ORACLE Version 6 database connectiv:s, gdi_submit() automatically uses a default date mask,
'YYYYMMDD HH24:MI:SS’, for columns with database type "dste”. For ORACLE Version 7, the
date mask may be specified by the user. If a t0_char(Q) conversion is used for a date column, the
column’s datatype becomes "string” and is no longer recognized as a date.
After a command which changes the contents of the database completes successfully, the user should
call gdi_commit() to commit the transaction.
ARGUMENTS
coun The database connection handle, returned from gdi_open().

cmd_batch A character string containing a database command. Any data feiched from the data-
base will be placed in FORTRAN varisbles specified by the map_id. While the gdi C

62 Last change: 1227893 (v20.2) Sun Release 4.1

GDI_SUBMIT (3f)

max_records
map id
rows_affected
rows_retrieved
more_rows

DIAGNOSTICS

MISC. REFERENCE MANUAL PAGES GDI_SUBMIT (3f)

interface supports executing multiple commands in the cmd_baich, the FORTRAN
interface does not. It is up 0 the programmer to ensure that only one command is
executed at a time.

This specifies the maximum number of records that may be feiched from the database.
All records will be fetched if max_records is set to -1. If max_records = 0, the default
maximum MAXREC is returned. max_records oaly applies to feiches.

This identifies a description of the data variables in FORTRAN space.

This is the number of database rows affected by the query or command. In the case of
a feich, the number of rows affected is the same as the number of tuples fetched.

This is the number of database rows retrieved by the query or command. In the case
of a fetch, the number of rows affected is the same as the number of wples fetched.

If a database command results in more rows than were requesied by the value specified
in max_records, this field indicates that additional data tuples are available.

gdi_submit() returns onc of the following status values. Error codes and messages may be retrieved
with gdi_emor_get().

GDI_SUCCESS
Command executed successfully.
GDI_FAILURE
Not connected to database or error executing command.
FILE
gdi_f77_submit.c
SEE ALSO
gdi_error_get(30), gdi_map(3f), gdi_open(3f), gdi_submit(3)
AUTHOR
H. Tumner, SAIC Geophysical Systems Operation, Open Systems Division
Sun Release 4.1 Last change: 12/2793 (v20.2) 63

GDI_TRACE(3f) MISC. REFERENCE MANUAL PAGES GDI_TRACE (3f)
NAME
gdi_trace - turn database tracing on or off
SYNOPSIS
#iaclude "gdi_f77Ah"
subroutine gdi_trace (cons, state, flename)
integer coas (i) database connector
integer state (i) .TRUE. or FALSE.
character flename (i) name of file
DESCRIPTION

gdi_trace() enables or disables database tracing. If the dabase connection is t0 8 SYBASE database,
the traces are dumped to a file specified by filename.

ARGUMENTS
coan The database connection handle.
state TRUE 10 turn tracing on, FALSE 0 tum tracing off.
filename Output filename (SYBASE only). May be null, ie. *’.
SAMPLE CODE
See test stubs in libarc/libgendb/hest.
FILE
gdi_f77_trace.c
AUTHOR

H. Tumer, SAIC Geophysical Systems Operation, Open Systems Division

64 Last change: 12/27/93 (v20.2) Sun Release 4.1

O

Part V: Appendices

GDI User Manuasi

Appendix A. Bibliography
The following bibliography contains SQL references.

Emerson, Sandra L., Marcy Damovsky and Judith S. Bowman, The Practical SQL Handbook,
Reading, MA: Addison-Wesley Publishing Company, 1989.

This contains an excellent introduction to relational databases, relational database
design, and the SQL language, with an emphasis on Sybase Transact-SQL.

Hursch, Carolyn J. and Jack L. Hursch, SQL, The Structured Query Language, Blue Ridge
Summit, PA: TAB Books, inc., 1988.

This introduces SQL to the novice.

van der Lans, Rick. F., introduction to SQL, Reading, MA: Addison-Wesley Publishing Com-
pany, 1988.

This introduction to SQL is formulated around the creation of a sports club database. It is
geared for the novice with a focus on ANSI SQL standard queries.

van der Lans, Rick. F., The SQL Standard: A Complete Reference, Hertfordshire, England:
Prentice Hall International (UK) Ltd, 1988.

This reference Is a companion guide to van der Lans’ introduction to SQL. It is much
more readabile than the ANSI X3.135-1986 document.

Baseline: 21.1

GDI User Manual

Dests Types

Appendix B. Data Types

The intertace provides default conversions between database data types and C types. The
tables below show the defaults for database to C and for C to database conversions. The
defaults may be overridden by the application by manipulating the column definition in the Data-

base Object (col_def in dbObj).

Table 16. Default Data Conversion - Database Types to C Types

Oracle(p,s) Sybase ingres C Types

TINYINT integer
NUMBER(<=5) SMALLINT integer
NUMBER(>5) INT long
NUMBER(x,>0) double
NUMBER double
FLOAT(<=24) REAL float
FLOAT(>24) FLOAT double
VARCHAR VARCHAR string
CHAR(>1) CHAR (> 1) string
CHAR(1) CHAR (1) char
DATE DATETIME string

SMALLDATETIME string

MONEY double

SMALLMONEY fioat
ROWID long

TIMESTAMP

SYSNAME string

BIT integer
LONG

BINARY

VARBINARY
RAW TEXT string
LONG RAW IMAGE

Baseline: 21.1

B-1

GDI User Manual Dats Types

Table 17. Default Data Conversion - C Types to Database Types

C Types Oracie(p.s) Sybase ingres
long NUMBER (10) INT
float FLOAT (24) REAL
double FLOAT (53) FLOAT
string [x<=258] VARCHAR (x-1) VARCHAR (x-1)
string [x>256] TEXT (x-1)
char CHAR (1) CHAR (1)
Baseline: 21.1 B-2

DISTRIBUTION LIST

RECIPIENT NUMBER OF COPIES

DEPARTMENT OF DEFENSE

ARPA/NMRO 3
ATTN: Dr. R. Alewine, Dr. S. Bratt, and Dr. A. Ryall, Jr.

3701 North Fairfax Drive

Arlington, VA 22203-1714

ARPA, OASB/Library 1
3701 North Fairfax Drive
Arlington, VA 22203-1714

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

DEPARTMENT OF THE AIR FORCE

AFTAC/TT 3
ATTN: Dr. L. Himes, Dr. F. Pilotte, and Dr. D. Russell

130 South Highway A1A

Patrick AFB, FL 32925-3002

AFTAC/TT, Center for Seismic Studies 1
ATTN: Dr. R. Blandford

1300 North 17th Street, Suite 1450

Arlington, VA 22209-2308

Phillips Laboratory/GPEH 1
ATTN: Mr. J. Lewkowicz

29 Randolph Road

Hanscom AFB, MA 01731-3010

DEPARTMENT OF ENERGY

Department of Energy 1
ATTN: Dr. M. Denny

Office of Arms Control

Washington, D.C. 20585

Lawrence Livermore National Laboratory

ATTN: Dr. J. Hannon, Dr. K. Nakanishi, Dr. H. Patton,
and Dr. D. Springer

University of California

P.O. Box 808

Livermore, CA 94550

Los Alamos National Laboratory
ATTN: Dr. S. Taylor

P.O. Box 1663, Mail Stop C335
Los Alamos, NM 87545

Sandia National Laboratory

ATTN: Dr. E. Chael and Dr. M. Sharp
Division 9241

Albuquerque, NM 87185

OTHER GOVERNMENT AGENCIES

Central Intelligence Agency
ATTN: Dr. L. Turnbull
CIA-OSWR/NED
Washington, D.C. 20505

U.S. Geological Survey
ATTN: Dr. A. McGarr
Mail Stop 977

Menlo Park, CA 94025

U.S. Geological Survey
ATTN: Dr. W. Leith
Mail Stop 928

Reston, VA 22092

U.S. Geological Survey
ATTN: Dr. R. Masse
Denver Federal Building
Box 25046, Mail Stop 967
Denver, CO 80225

UNIVERSITIES

Boston College

ATTN: Dr. A. Kafka

Department of Geology and Geophysics
Chestnut Hill, MA 02167

Calitornia Institute of Technology
ATTN: Dr. D. Helmberger
Seismological Laboratory
Pasadena, CA 91125

Columbia University

ATTN: Dr. P. Richards and Dr. L. Sykes
Lamont-Doherty Geological Observatory
Palisades, NY 10964

Cornell University

ATTN: Dr. M. Barazangi

Institute for the Study of the Continent
Ithaca, NY 14853

IRIS, Inc.

ATTN: Dr. D. Simpson and Dr. G. van der Vink
1616 North Fort Myer Drive, Suite 1050
Arlington, VA 22209

Massachusetts Institute of Technology

ATTIN: Dr. T. Jordan

Department of Earth, Atmospheric and Planetary Sciences
Cambridge, MA 02139

Massachusetts Institute of Technology
ATTN: Dr. N. Toksoz

Earth Resources Laboratory

42 Carleton Street

Cambridge, MA 02142

MIT Lincoln Laboratory, M-200B
ATTN: Dr. R. Lacoss

P.O. Box 73

Lexington, MA 02173-0073

San Diego State University
ATTN: Dr. S. Day

Department of Geological Sciences
San Diego, CA 92182

Southern Methodist University

ATTN: Dr. E. Herrin and Dr. B. Stump
Institute for the Study of Earth and Man
Geophysical Laboratory

Dallas, TX 75275

Southern Methodist University
ATTN: Dr. Gary McCartor
Department of Physics

Dallas, TX 75275

State University of New York at Binghamton
ATTN: Dr. J. Barker and Dr. F. Wu
Department of Geological Sciences

Vestal, NY 13901

St. Louis University

ATTN: Dr. R. Herrmann and Dr. B. Mitchell
Department of Earth and Atmospheric Sciences
St. Louis, MO 63156

The Pennsylvania State University

ATTN: Dr. S. Alexander and Dr. C. Langston
Geosciences Department

403 Deike Building

University Park, PA 16802

University of Arizona

ATTN: Dr. T. Wallace

Department of Geosciences, Building #77
Tucson, AZ 85721

University of California, Berkeley

ATTN: Dr. L. Johnson and Dr. T. McEvilly
Seismographic Station

Berkeley, CA 94720

University of California, Davis
ATTN: Dr. R. Shumway
Division of Statistics

Davis, CA 95616

University of California, San Diego

ATTN: Dr. J. Berger, Dr. L. Burdick, Dr. H. Given, Dr. B. Minster,
and Dr. J. Orcutt

Scripps Institute of Oceanography, A-025

La Jolla, CA 92093

I

University of California, Santa Cruz
ATTN: Dr. T. Lay

Institute of Tectonics

Earth Science Board

Santa Cruz, CA 95064

University of Colorado

ATTN: Dr. C. Archambeau and Dr. D. Harvey
CIRES

Boulder, CO 80309

University of Connecticut

ATTN: V. Cormier

Department of Geology and Geophysics
U-45, Room 207

Storrs, CT 06268

University of Southern California
ATTN: Dr. K. Aki

Center for Earth Sciences
University Park

Los Angeles, CA 90089-0741

University of Wisconsin-Madison
ATTN: Dr. C. Thurber

Department of Geology and Geophysics
1215 West Dayton Street

Madison, WS 53706

DEPARTMENT OF DEFENSE CONTRACTORS

Center for Seismic Studies

ATTN: Dr. R. Bowman, Dr. J. Carter, and Dr. R. Gustafson
1300 North 17th Street, Suite 1450

Arlington, VA 22209

ENSCO, Inc.

ATTN: Dr. D. Baumgardt and Dr. Z. Der
5400 Port Royal Road

Springfield, VA 22151-2388

ENSCO, Inc.

ATTN: Dr. R. Kemerait and Dr. D. Taylor
445 Pineda Court

Melbourne, FL. 32940-7508

Mission Research Corporation
ATTN: Dr. M. Fisk

735 State Street

PO Drawer 719

Santa Barbara, CA 93102-0719

Radix Systems, Inc.
ATTN: Dr. J. Pulli
201 Perry Parkway
Gaithersburg, MD 20877

Science Horizons

ATTN: Dr. T. Cherry

710 Encinitas Blvd., Suite 200
Encinitas, CA 92024

S-CUBED,

A Division of Maxwell Laboratory

ATTN: Dr. T. Bennett and Mr. J. Murphy
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 22091

S-CUBED,

A Division of Maxwell Laboratory

ATTN: Dr. K. McLaughlin and Dr. J. Stevens
P.O. Box 1620

La Jolla, CA 92038-1620

SRI International

ATTN: Dr. A. Florence and Dr. S. Miller
333 Ravenswood Avenue, Box AF116
Menlo Park, CA 94025-3493

Teledyne Geotech

ATTN: Mr. W. Rivers

314 Montgomery Street
Alexandria, VA 22314-1581

TASC, Inc.

ATTN: Dr. R. Comer
55 Walkers Brook Drive
Reading, MA 01867

NON-US RECIPIENTS

Blacknest Seismological Center

ATTN: Dr. P. Marshall

UK Ministry of Defense

Blacknest, Brimpton

Reading FG7-FRS, UNITED KINGDOM

Institute for Geophysik
ATTN: Dr. H.-P. Harjes
Ruhr University/Bochum
P.O. Box 102148

4630 Bochum 1, GERMANY

NTNF/NORSAR

ATTN: Dr. S. Mykkeltveit and Dr. F. Ringdal
P.O. Box 51

N-2007 Kjeller, NORWAY

Societe Radiomana
ATTN: Dr. B. Massinon
27 Rue Claude Bernard
75005 Paris, FRANCE

University of Cambridge

ATTN: Dr. K. Priestley

Bullard Labs, Department of Earth Sciences
Madingley Rise, Madingley Road
Cambridge CB3, OEZ, ENGLAND

University of Toronto
ATTIN: Dr. K.-Y. Chun
Geophysics Division
Physics Department
Ontario, CANADA

