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It is a common generalisation that it is impractical to experiment 4

with large complex real life systems such as airbases to determine how they

are likely to perform under a range of conditions. Simulation models are

often called upon to represent as faithfully as possible how the real system

responds to various sets of input conditions, but as the system becomes

more complex, so too does the simulation model. A point may be reached at

which the simulation model itself is either too complex, or too resource

intensive to be practically used for day to day analysis. At this point we

turn to a second level of modeling, and produce an analytic model of the

simulation input-output relationship, known as a metamodel.

This study follows previous research by Lt Col David A. Diener,

USAF, who used a simulation model to represent the sortie generation

capability of an airbase, and then developed metamodels from the

simulation results. This study does not address the simulation issues, but

examines instead the possibility of finding alternate metamodels to

represent the behaviour of the airbase system. Several aspects of the model

development process are also examined.

Several people deserve recognition for the completion of this project.

Lt Col Diener provided the germ of an idea for this research, made his data

available, and was always ready to provide guidance and assistance as the

research progressed. He also instilled in me an ongoing interest in
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simulation, and for his contribution to both my education and this project, I

am very grateful. I also wish to thank Lt Col Phillip E. Miller, USAF for

his insights and assistance with this research, particularly in providing

direction and encouragement when the path ahead was not at all clear.

My deepest thanks, though, are reserved for my family, particularly

my wife Kim, who, far from home and with a new baby, gave me all the

love, support and encouragement I could have asked, and certainly more

than I deserved. Without her holding our family together while I worked,

this thesis would not have been completed.

I wish to dedicate this work to my children, Lachlan and Cameron, in

the hope that in their world of the future, the things that we research now

are never tested.

Alistair Dally
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Abstract

This study is an exploratory investigation into the development of

metamodels of a particular Theater Simulation of Airbase Resources (TSAR)

imulation model. Techniques applicable to the development of metamodels

from a simulation using an orthogonal two-level fractional factorial

experimental design are discussed. The experimental design is found to

limit the metamodel form to polynomial linear least squares regression

models, and also to greatly simplify the process of building regression

models. Using the simulation results from previous research, alternate

metamodels are proposed for both the prediction of sorties generated by the

airbase system, as modeled by the simulation; and to assist in

understanding and explaining the relationships between airbase resource

levels, their interactions, and sorties generated. The metamodels developed

for prediction are found to be substantially different from the metamodels

for explanation. While unable to develop metamodels for explanation

significantly different from the metamodels from the previous research, this

research confirms that the existing metamodels are the best possible models

that meet the chosen selection criteria. Several lessons pertaining to the

metamodeling process for large scale simulations using similar experimental

designs are proposed. A flexible manual alternative to computerised model

reduction techniques is also proposed.
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AN INVESTIGATION OF ALTERNATIVE METAMODELS FOR THE

THEATER SIMULATION OF AIRBASE RESOURCES MODEL

1. Introduction

1.1 Air Base Operability

Air base operability is the ability of an air base, whether under attack

or not, to generate aircraft sorties over a period of time during conflict.

There are many factors which influence the rate at which sorties can be

generated. Some of the major factors are the number of aircraft on the

base; the availability of replacement aircraft; the stocking level and

replenishment policies for fuel, weapons and spare parts; the availability of

maintenance facilities, including specialised test equipment; the numbers of

support personnel, including various specialists; the availability of ground

support equipment; and the level of attrition the aircraft experience (Diener,

1989:2). These interactive factors may be analysed in a scenario where the

base itself either comes under attack, or does not. It is not feasible,

however, to carry out the desired analysis by experimenting directly with

such a large scale system, so we turn to representing the behaviour of the

system with some form of model. Large scale complex systems such as an

airbase are often portrayed by simulation models.



1-1.1 A System Simulation Model. Of the factors listed above, all but

the aircraft attrition rate are controllable through the setting of resource

and logistics policies. Clearly, determining the appropriate levels of the

factors listed is a difficult and complex task, particularly when the

significant potential for interaction or interdependency between many of the

factors is considered. Unfortunately, many studies look at the effect on

operability of only one variable in isolation. The Theater Simulation of

Airbase Resources (TSAR) model is a simulation model designed to evaluate

Air Base Operability (ABO) from a total system viewpoint (Diener, 1989:3).

However, to achieve the ability to take a total system viewpoint, the TSAR

model is extremely complicated. To illustrate this complexity, when

determining aircraft availability on an F-15 base the model considers the

possible failure of 81 aircraft systems and subsystems, as well as including

all the other factors mentioned above. (Diener, 1989:68).

1.2 Previous Research

In his 1989 dissertation, Diener used the TSAR model to simulate the

operability of a European F-15 base. In that research, he used a one/eighth

fractional factorial experimental design for ten factors that were considered

important inputs into the TSAR model. The fractional design reduced the

number of treatments; ie, the combinations of the input factors, from 1024,

which would be required for a full factorial design, to 128. Even with an

efficient experimental design, to apply all 128 treatments to each of 30 days
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operation under a no-attack and an attack scenario required a total of 14

hours processing time on a Gould NP-1 supercomputer (Diener, 1989:72),

plus the time required to input each treatment. Clearly, the cost in both

time and money of making multiple runs of the simulation to evaluate

changes in individual factors is very high.

1.3 Simulation Disadvantaes

One of the major limitations of any simulation model is that it does

not provide an optimal solution, but rather evaluates an outcome or

response only for the particular situation represented by the input variables

(Schriber, 1991:9). Even running multiple simulations is not a guarantee of

finding an optimal solution: the best that can be said is that a good solution

has been found. Related to the problem of non-optimisation is the fact that

the results from a simulation run generally do not have external validity;

that is, the results can not be generalised for conditions other than those

specifically simulated (Schriber, 1991:9). For example, Diener's simulation

applies specifically to an F-15 base in Europe, and his results should not be

generalised as applicable to, say, F-16 bases in the United States.

1.4 Introduction to Metamodels

The limitations of a simulation model described above can be partially

overcome by developing a mathematical model of the simulation response to

the input variables. Within the range of conditions simulated, the
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mathematical model allows the estimation of relationships between varying

inputs and their corresponding outputs which may not have been actually

simulated. Additionally, at least over a limited range, the mathematical

model may allow inferences to be made about optimal solutions (Schriber,

1991:9). Such a model is known as a metamodel. Kleijnen (1987:148) and

Sargent (1991:888) both show metamodels in a hierarchical relationship,

with a simulation model as a representation of reality, and a metamodel as

a representation of the simulation model. Kleijnen articulates the concept

of a metamodel as follows:

From the "mess" of reality we proceed to a well structured simulation
model, and next we model the relationship between the inputs and
outputs of this simulation model with a regression model. (Kleinen,
1987:148)

In a similar definition, Friedman suggests that:

The simulation model, although simpler than the real world system,
is still a very complex way of relating input to output. Since one of
the aims of most simulations must be to gain an understanding of
this relationship, an even simpler model may be used in addition to
the simulation model. When a model is used as a device to better
understand and explore a more complex model, the simpler, auxiliary
model is frequently referred to as a metamodel. (Friedman, 1983:28)

A more succinct definition by Kleijnen is that the metamodel or regression

equation is "a model of the input/output behavior of the simulation

computer program" (Kleijnen, 1992:1165).

The metamodel is developed from the output of the simulation model

using regression techniques, and once validated, may be used to analyse
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and predict the behaviour of the simulation model; that is, "what if"

analysis, among other things, becomes both practical and inexpensive.

1.4.1 Prediction and Explanation. Although the terms are often used

together, the purposes of explanation and prediction should be

distinguished. The two purposes are not mutually exclusive, but different

aspects of developing the regression metamodel may need to be more or less

emphasised depending on the particular purpose for which the metamodel is

intended. 'Nhen prediction is the primary purpose of the model, the aim is

to estimate with as much accuracy and precision as possible the likely value

of the response to a given set of values for the independent variables

(Miller, 1990:2; Neter et al., 1989:436). On the other hand, when

explanation is the primary purpose, the emphasis changes towards

discovering which of the variables have important significant effects on the

response, and then estimating those effects. In the context of this and

Diener's research, an explanatory model seeks to identify a relatively small

number of factors that have the most impact on the sortie generation

capability of the airbase, so that those factors can be emphasised when

resource level and logistics policies are set. A predictive model, on the other

hand, could be used to estimate the likely capability of the airbase given an

existing policy. Because an existing resource profile represents only one

alternative to enumerate, the predictive model can be more complex without

losing its usefulness. The issue of how many variables to include in both

predictive and explanatory models will be further addressed in Chapter III.
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1.5 Exfisting Metamodeis

The most common form of metamodel is a linear regression model.

Diener (1989) developed linear regression models to estimate the response of

the TSAR simulation model for each day of a thirty-day period. Each model

potentially consists of 63 terms, comprising the constant or intercept term, a

term for each of the ten main factors, and a term for each of the 45 two-way

interactions between the main factors, and (included in all models) seven

terms which represent the effect of the blocking used in the experimental

design. One metamodel was calculated for each day of the period simulated,

for both the attack and no-attack cases, resulting in a total of sixty

metamodels. Each metamodel is an analytic representation of the ability of

the airbase to generate sorties on that day, given the level of the input

factors that existed on the first day. The model reduction technique used

resulted in metamodels generally containing about 20 terms (excluding the

blocking terms), with the remainder of the terms insignificant at the 0.10

level.

1.6 Problem Statement

The large number of terms remaining in the daily metamodels makes

meaningful analysis difficult, particularly if the aim is to explain the

behaviour of the model as distinct from predicting the number of sorties on

a given day. Additionally, although the linear regression models developed

were valuable in understanding and predicting the behaviour of the
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simulation, significant amounts of the total variance in the response were

unexplained. Finally, the behaviour of the airbase over time is not

explicitly represented, because each metamodel represents only a daily

snapshot of the airbase performance.

1.7 Research uestions

The primary question to be answered in this research is whether

alternative metamodels can be developed to assist in the analysis and

prediction of the response of the TSAR simulation as carried out by Diener

in his 1989 doctoral research.

A secondary question to be answered is whether alternative

approaches to the experimental design used by Diener could facilitate the

development of useful metamodels.

1.8 Research Objectives

The primary objective of this research is to investigate whether

alternative metamodels other than those derived by Diener can be used to

effectively represent the results of Diener's simulation. To achieve this

objective the following questions require answers:

1. What is the purpose of the metamodel? For example, is

understanding general relationships in the system as simulated the

primary goal, or do we wish to make predictions about the response of
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the simulation under different conditions? Do different goals require

different models?

2. What are the important criteria in determining the suitability of a

metamodel? For example, is the overall fit of the model the primary

criterion, or are there other important factors to consider?

3. How does the nature of the output data, and the experimental design

on which it is based, limit or restrict the types of metamodels that

can be developed?

The scope of this research is specifically limited by the existing

database developed by Diener during his doctoral research. The database

comprises the design matrix for the experimental design, which allowed

estimation of ten main effects and their two-way interactions, and the thirty

daily simulated responses to the design inputs for both the attack and no-

attack cases.

1.10 Research Plan

In Chapter II, a more detailed treatment of the background to the

present study is presented. A review of the literature relating to

metamodeling and the relevant aspects of simulation and experimental

design is also presented.
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Chapter IH describes the investigation of the current metamodels,

and the exploration of techniques to develop possible new models and model

forms. Chapter IV summarises the lessons learned from the exploration,

presents conclusions, recommendations, and possible directions for further

research.

This chapter provided a brief introduction to the simulation of

Airbase Operability carried out in previous research by Diener. The concept

of metamodels as an adjunct to simulation analysis was also introduced.

Both the previous research and simulation metamodels in general are

presented in more detail in the next chapter.
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MI Bkground and Literature Review

02.1 Introduction

As this study relies on the results of previous research, the first part

#of this chapter examines some of the key points of that research. The key

points relate to the experimental design used previously, which determined

the data available for this study, and the form of the metamodels developed

by Diener. Taking a more general view, some applications of simulation

metamodels and some of the current research issues in simulation

metamodeling are discussed, followed by a review of some of the literature

pertaining to regression and regression model building techniques.

2.2 Previous Research Key Points

2.2.1 Diener's Research Obectives. The research objectives of

Diener's study were as follows:

1) Efficiently apply an experimental design that will reduce
variance due to the inherent randomness of the TSAR and
TSARINA simulation models;

2) Estimate metamodels, with significant main effects and two-
way interactions, from large scale simulation experiments so
that sorties flown can be predicted based on input factors;

3) Evaluate the impact of air base attacks on sorties flown; and

4) Identify key resources and/or interactions over a thirty-day
time period with and without air base attacks. (Diener, 1989:9)

2.1



This study is most closely aligned with the second and fourth of Diener's

objectives, although the experimental design resulting from Diener's first

objective dictates the form of the data available for this research. The

metamodels estimated by Diener in achieving his second objective provide

the baseline for the comparison of any alternate models developed If

alternate models can be developed, their interpretation may lead to the

identification of key resources different from those identified as Diener's

fourth objective.

2-2-2 EZprimenJt Design. Diener assumed that higher than two-

way interactions were insignificant, and therefore chose a 1/8 fractional-

factorial experimental design (2'° Resolution V), resulting in 128 input

combinations or treatments (Diener, 1989:44). The 1/8 fractional-factorial

design is able to measure the individual, or main, effect of each variable and

all their two-way interactions without confounding between those effects.

The effects of possible third and higher order interactions cannot be

discriminated, and if present, will appear to contribute to the residual

variance. To isolate the effect of attacks on the base, each treatment was

applied in both the no-attack and the attack case, thus requiring a total of

256 different simulation runs (Diener, 1989:46). It is also important to note

that each of the 128 design points or treatments evaluated represents

specific resource levels and logistics policies (eg. fuel resupply schedule) in

effect at the airbase on the first day of the simulation.
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2.2.3 Reduction of Variance and Blocking. In an effort to reduce the

variance in the simulation output, Diener used blocking based on pseudo-

random number streams. Blocking in this case is the grouping of several

treatments together, and then running the simulation with the same

starting point of the pseudo-random number stream for each treatment

within the block (Diener, 1989:46-47). For the attack case, one specific

version of the TSARINA attacks was applied within each block. The 128

design points in the experiment were divided into eight blocks of sixteen

treatments each. The effect of the blocking on the experimental results is

that block effect terms must be included in all the metamodels, as outlined

in the next section.

2.2.4 Exist ng Metamodels. The form of metamodel chosen by Diener

to represent the simulation output was a multiple linear regression model

which considered the main effects and two-way interactions of the factors,

and the effect of the blocking. The models were calculated from the

simulation results using ordinary least squares regression. For the no-

attack case, the metamodels are:

Si = 0o(i) + B11(i) + ; jjfi)XV + Z; Z, Pp(i)XVX, + Ei) (2.1)

where S is the number of sorties generated on day i;

Xj and Xlk are the level of factor j and k in effect on the first day, for

j--O,..,9, k=j+l;
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B11(i) reflects the random effect on day i due to the random number streams

in TSAR, (block effects) where B11(i) - N(0,eB); and e(i) reflects the

experimental error, where e(i) - N(0,a').

For the attack case, the metamodels are:

ffi= O(i) + B;1(i) + My ;*(O)xV + My I-; P(i)XljJY + ef(i) (2.2)

where S; is the number of sorties generated on day i,

Xj and Xlk are the level of factor j and k in effect on the first day, for

j=O,..,9, k=j+l;

B*1 (i) reflects the random effect on day i due to the random number streams

in TSAR and TSARINA, (block effects) where B1,(i) - N(O,aB2); and

e*(i) reflects the experimental error, where A*(i) - N(0,e*).

The eventual metamodels include only the terms that have a significant

effect, with the exception of the blocking terms which are included in all

models regardless of significance (Diener, 1989:50-51).

In interpreting the no-attack case metamodels, the intercept

parameters j0(i) represent the number of sorties flown on the ith day when

all factors are at their low level on day one; the main effect parameters 0p(i)

represent the change in the number of sorties flown on the ith day when the

jth factor is changed from its low level on day one to its high level; and the

interaction effect parameters 16(i) represent the change in the number of

sorties flown on the ith day when the interaction term changes from a low

to a high level on day one. The same analysis holds for the starred

parameters in the attack case (Diener, 1989:75,102).
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2.2.5 Demiqr Coding, In developing the design matrix for his

analysis, Diener originally coded the low level of factor Y. as 0, and the high

olevel as 1 but has since reaccomplished the analysis with low factor levels

coded as -1 and high levels as 1. Many regression texts refer to (0,1) coding

*for two level qualitative variables, but several authors including Kleijnen et

al. (1979:53), Smith and Mauro (1984:254), and Kleijnen (1992:1165)

suggest that qualitative variables should be coded as (-1,1). This research

will adopt the (-1,1) coding for further metamodel development and

analysis.

2.2.6 Assumntions Require. The metamodels above require three

major assumptions to be made. The first assumption is that there is a

linear relationship between the level of the factors and the response, the

number of sorties flown. The second assumption, a requirement of using

linear least squares technique, is that for each model the variance of the

error term is constant for all values of the response, i.e. homoscedasticity

'rdsts. The final assumption is that the error terms must be normally

distributed (Neter et al., 1989:Ch 4). For the first, fifth, and last day of the

simulation, Diener tested his results for homoscedasticity both within the

attack and no-attack cases and between the cases. Within each case, the

#hypothesis of homoscedasticity was not rejected at the ca=0.05 level, but was

rejected when comparing between cases (Diener, 1989:56-58; 86). Analysis

of residuals using stem-and-leaf plots, box plots, and normal probability

plots suggested that assuming normality in the error terms was also
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reasonable (Diener, 1989:Appendices C and D). No analysis of residuals

against the dependent or independent variables was carried out. The

validity of these assumptions is further discussed in the next chapter.

2.3 -mltnnMetamo.dingr Literature

The literature dealing with simulation metamodeling can be readily

divided into two categories. The first category reports applications of

simulation metamodeling, while the second deals with research issues and

theoretical aspects. Neither category could be described as extensive, and

no literature that relates closely to the current study has been found. This

research is atypical for two reasons. First, it has many independent

variables, all of which are qualitative while other studies contain fewer

quantitative variables. Second, the TSAR model is a highly complex

logistics system model, while most reported applications of metamodeling

deal with some variation of a queuing problem. Possibly the most unusual

feature of this research, however, is the generation of a time series of 30

daily responses for each input treatment.

The regression literature is also of little help, as most authors

concentrate on observational rather than designed experiments, with

apparently little emphasis on models as complex as in this research. The

lack of applicability to this research of the regression and model building

techniques used in observational experiments are further discussed in the

next chapter.
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Several reported applications of simulation metamodeling are

reviewed, followed by a review of some current research issues in this field.

2.3.1 Flexible Manufacturing System Case Study, Kleijnen and

Standridge (1988:257-261) describe a case study of a flexible manufacturing

system, concentrating on the issues of experimental design, and the form of

the metamodel chosen. Although their study involved a deterministic

simulation, and only four factors were involved, several important points

are made. First, experimental design and therefore the input combinations

modeled determine the possible form of a metamodel. For example, if

interactive effects are assumed to be non-existent, fewer input combinations

are required than if the interactions are present (Kleijnen and Standridge,

1988:259). The reverse case is also true, and affects the present research in

that the experimental design used limits the analysis to main effects and

first order interactions only. Second, the authors propose a technique for

validation of a proposed metamodel whereby a simulation run is deleted and

the metamodels recalculated from the remaining data. They state that "the

significant effects should remain stable upon run deletion," and show two

ways to determine the stability (Klejinen and Standridge, 1988:260). The

first technique involves a qualitative comparison of the metamodels

resulting from the deletion of each run; while the second compares the

predicted response of the model obtained using all runs with the predicted

response of the model obtained when one less run is used. The run deletion

technique has limited applicability to the current research because 128
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design points are involved for each of 30 daily metamodels, for both the

attack and non-attack cases. The required 7680 recalculations to

investigate the stability of 60 metamodels is prohibitive in both computer

and researcher time, so other validation techniques must be used. Third,

the authors contrast two of the purposes of metamodeling prediction and

explanation (Keijnen and Standridge, 1988:260-261). When their aim was

explanation, the authors considered validation of the model by examining

whether the coefficients remained stable as runs were deleted; while for the

prediction criterion, only the stability of the predicted value of the response

is considered. The implication is that when prediction is emphasised, there

is relatively less interest in which coefficients are present in the model and

the values they take as long as their combined effects result in good

predictions.

2.3.2 Eurone Container Terminu. Kleijnen, van den Burg, and van

der Ham (1979:50-64) report an application of metamodeling which relates

most closely to this research. The authors note that at the time of their

report they were unaware of any other real-life study where simulation,

experimental design, regresiioi and analysis of variance techniques had

been combined, that is, their study was one of the first practical

applications of metamodeling (Kleinen et al., 1979:63). A queuing

simulation was used to model the required container stacking capacity at

the Europe Container Terminus (ECT) in Rotterdam. Metamodels were

then derived from the simulation results to identify the factors and/or their.
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interactions which were most useful in explaining the behaviour of the

simulation. Several similarities exist between the ECT study and Diener's

research. Both studies involved fractional factorial experimental designs,

although the ECT study only required six variables and sixteen runs, and

both studies drew on prior research to identify the pool of potentially

important variables (Diener, 1989:19-21; Klejinen et al., 1979:57). Another

striking similarity between the studies is that both simulations generated a

time series as the result of each design point. In Diener's study, the time

series is the number of sorties generated on day one through day thirty,

while for the ECT study, the time series is the required container stacking

capacity measured each eight hours as the simulation progresses (Kleijnen

et al., 1979:53). The total duration of the simulation was not explicitly

reported, but appears to have been one year. The time series are handled

very differently. Kleijnen et al. determine the frequency at which a given

capacity is required, and calculate the mean capacity required, as well as

the 90th, 95th, and 100th percentiles of the distribution. Any of the four

measures can then be used as the equivalent of a single dependent variable

to characterise the time series generated by a single treatment (1979:51,53).

Such an approach is typical in describing queuing systems, where aggregate

measures are used to describe performance rather than, for example, the

queue contents at a series of specific moments. In contrast, Diener

developed a set of thirty metamodels, each of which represents the

important effects on each day of the simulated period, and is calculated
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using the simulated responses from each of the 128 treatments. The two

approaches to handling time series data represent clear opposites. The ECT

study implicitly disregards to some extent the importance of behaviour over

time by wrapping up each time series into one variable, while Diener's daily

models when considered together clearly show the varying behaviour of the

airbase system over time but are unable to represent that behaviour over

the time dimension, as each model is a separate daily snapshot.

2.3.3 Spectral Analysis and Flexible Functional Forms. Starbird

(1990:321-338) reports an application of metamodeling that differs greatly

from those already discussed. The simulation model of a tomato processing

plant appears relatively simple, with only three independent variables

considered, but the experimental design and the development and form of

the metamodels is based on a methodology completely different from the

fractional factorial experiments and least squares linear regression

considered so far. Starbird used the Schruben-Cogliano response surface

methodology, which "uses frequency domain experiments to identify the

significance of particular polynomial terms in a metamodel." The

metamodels developed were the generalised Leontief form, which Starbird

states is a "special polynomial form often used for the modeling of cost

relationships" (Starbird, 1990:327). In a frequency domain experiment the

input factors are oscillated at carefully chosen frequencies and their

importance estimated from analysis of the spectrum of the response

(Starbird, 1990:323). Starbird's work shows that there are techniques other
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than those based on regression to develop metamodels, but it is clear that

the techniques described by Starbird are neither applicable to the current

research as a different form of metamodel, nor would they be applicable as a

modification of Diener's original experiment. Frequency domain

experiments require quantitative variables with some distribution of values

over which they can be oscillated, and the flexible metamodel form is most

applicable to cost functions with relatively few variables (Starbird,

1990:327,328), neither of which criteria are met by the ABO problem.

2.3.4 Multiple Resuonse E•eriments. Friedman suggests that "it is

a rare system simulation which outputs only a single measure of

effectiveness for analysis," and proposes multivariate statistical techniques

for the analysis of simulations with multiple responses (1983:1-2). It could

be considered that Diener's experiment falls into the category of a multiple

response experiment, with the number of sorties generated on each day

separate measures of effectiveness of the airbase system, but there is at

least one compelling reason why this conclusion should not be drawn. The

reason is that the daily sortie rates are part of an overall time series with

each day's result the same measure of effectiveness as all the others, but at

a different point in time. From this perspective a multiple response might

"include additional measures such as total hours flown per day and/or enemy

aircraft destroyed. These hypothetical measures would also form a time

series if the results were reported on a daily basis, so that multiple

responses would only exist across time series, not within them. Although
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Friedman's multivariate techniques are therefore not useful for this

research, it is worthwhile to note that in developing metamodels to relate

the multiple responses of her simulation of an MIM/s queuing to the input

factors, Friedman calculated a separate metamodel for each of the responses

(1983:78-79;85). Thus, although Friedman was able to test the models

using multivariate techniques, having to develop three separate metamodels

meant that "the dynamic interrelationships among the response variables

were not used directly in the analysis" (1983:85). The main analogy

between Friedman's research and Diener's is that both studies resulted in

individual metamodels for each dependent variable, rather than a single

model simultaneously relating all the responses to all the independent

variables. The similar result from the two studies suggests that such

simultaneous analysis of more than one response with all the input

variables is a particularly difficult task.

2.3.5 Apulication Summry. Of the literature reviewed, the Europe

Container Terminal study has the most similarity and applicability to

Diener's. The only real similarity in the other research is that simulations

were carried out, and some form of metamodel developed. The features of

Diener's research that distinguish it from the ECT study are the complexity

in number of variables, the qualitative nature of all the variables, and the

difficulty in finding single measures to characterise a time series response.

The magnitude of the difference in complexity can be appreciated by

considering the number of variables and their possible interactions. For
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models with three variables, only three interaction terms are possible. For

the six variables in the ECT study, fifteen interactions are possible,

although prior experimentation had reduced the pool to only six interactions

so that a total of twelve coefficients had to be estimated. For the ten

variables included in Diener's study, 45 interactions are possible, none of

which could be discounted a priori, resulting in a total of 55 coefficients to

be estimated. Reducing the large number of candidate terms to only the

important terms forms a large part of the rest of this research.

2.3.6 Metamodeling Research Issues. There is some recent literature

that deals with important research issues in metamodeling. Sargent

(1991:889;892) provides lists of 1) properties that metamodels exhibit,

including the purpose of the model, whether it has single or multiple

responses, whether the responses are deterministic or random, and how

many and what type of variables are considered; and 2) some of the

decisions that must be made in developing metamodels; including the type

of metamodel to use, what criteria to use for evaluation of the model,

whether screening experiments should be carried out, the type of

experimental design to be used, whether the metamodel is sufficiently

accurate, and whether the metamodel is valid with respect to both the

simulation model and the real system. Several of the decisions that Sargent

lists are particularly relevant to this research, while others have already

been made in the previous research. Decisions to be made in this research

include the form of the model, and whether the form should change for
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different purposes, how well the model fits, and whether it is sufficiently

accurate. Decisions that have already been made are the experimental

design, the stochastic response, and the identification and type of possible

variables. Also, this research is unable to examine the validity of the

models against the real system. Sargent also provides some examples to

illustrate some of the issues such as functional form and goodness of fit.

However, he only considers a single independent variable queuing model,

which has limited relevance to the multiple regression problem in this

research (Sargent, 1991:889-891).

2.3.7 Alternative RegMession Model Forms. Barton (1992; 1993)

discusses some of the advantages and limitations of polynomial regression

models, which are the type developed by Diener, and makes some useful

observations. First, polynomial models are relatively easy to interpret and

therefore "the general behavior of the metamodel is easy to predict from the

coefficients of the polynomial" (Barton, 1993:12). Because a primary aim of

developing metamodels for the ABO problem is explanation of the behaviour

of the airbase system, ease of understanding and interpretation should not

be underestimated in the choice of model form. As a disadvantage of

polynomials, Barton (1993:12) states that "polynomial metamodels ... are

relatively inflexible for fitting general non-linear response functions." Such

a disadvantage will only become a consideration in this research if

alternative non-linear forms become candidates for comparison with the

existing forms. Barton also reviews seven different types of models as
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alternatives to the polynomial form, comprising Taguchi models, generalised

linear models (distinct from general linear models), spline methods, radial

basis functions, kernel smoothing, spatial correlation models, and frequency

domain approximations (Barton, 1992:290). Taguchi models require a

specialised experimental design, and so are excluded from further

consideration. Generalised linear models allow error terms to come from

"any exponential family other than the Normal/Gaussian," and may be

useful, but as Diener's existing residual analysis supported normality, the

additional complexity and specialised analysis techniques required do not

justify use of this form for the existing data (Barton, 1992:292). Spline

models, radial basis functions, kernel smoothing methods, and spatial

correlation models require independent variables that are continuous.

Frequency domain models were previously shown to be inapplicable to the

existing data.

2.4 &mmUD

This chapter examined some of the key issues relevant to this

research of Diener's Air Base Operability study, including Diener's research

objectives, his experimental design, and the form and assumptions behind

the metamodels he developed. Several reported applications of simulation

metamodeling were reviewed, as well as some research issues and some

possible alternate forms for metamodels. The application literature was

found to have few direct parallels with Diener's study, while the data
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inherited from Diener were found to constrain many of the choices that

could otherwise be made. The next chapter describes the available data, the

analysis of the existing models, and the investigation into alternate models.
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TI. ExWloration

3.1 Introduction

This research is a largely exploratory study into 1) the techniques

relevant to the development of regression metamodels from the existing

data; and 2) the development of alternative metamodels to those derived by

Diener (1989), with the aim of both interpreting the behaviour of the TSAR

airbase operability simulation model, and predicting the response of the

model to a set of input conditions. Because of the wide ranging exploratory

nature of this research, no one methodology as such is identified: rather

several methodologies are used and evaluated, and the applicability of each

discussed. The exploration is divided into two phases.

In the first phase the existing data are presented and limitations on

the research caused by the form of the data and the experimental design

from which it derives are discussed. Further analysis of the original

metamodels developed by Diener (1989) is carried out.

The second phase examines techniques for developing new

metamodels, including backward elimination, forward selection, and

stepwise selection. All possible regressions cannot be calculated due to the

large number of possible variables and interaction terms; however, best

subsets methods are considered, using Mallow's Cp and adjusted R as model

"selection criteria. A preliminary evaluation of model building techniques

and selection criteria is carried out, leading to a revision of the techniques
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initially proposed. Finally, new models are developed and evaluated using

both explanation and prediction as assessment criteria.

3.2 The Existing Database

As stated in Chapter I, the existing database comprising Diener's

experimental design and the results of his simulations forms the basis for

this research. Awareness of how the data was produced and how it is

structured is a prerequisite to understanding the existing models and

developing subsequent models.

3.2.1 Data Generation. The 2"' fractional factorial experimental

design discussed in Chapter H contains 128 design points, each of which

represents a unique combination of the ten input variables and defines the

initial settings for a run of the simulation model over a thirty-day period.

The simulation records the number of sorties flown on each day of the

thirty-day period, so that each of the 128 design points, or treatments,

produces thirty data points. All 128 treatments are applied twice, once with

attacks on the base modeled by the simulation and once without attacks,

and the data from the attack and no-attack cases are analysed separately as

two sub-experiments (Diener, 1989:46).

3.2.2 Data Structure. The data may be arranged in several ways,

but the most compact form for each case is a matrix of 128 rows and 47

columns. The first 30 columns contain the response variable, sorties flown,

for day one through thirty; and the last seventeen contain the design
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matrix, with ten columns for the independent variables, and seven columns

for variables representing the blocking effects. The 128 rows in the matrix

represent each of the treatments required by the design. Figure 3.1 lists

the variables that appear in the design matrix, while Figure 3.2 graphically

shows the data structure. Diener (1989:27-42) provides detailed information

about the factors and their levels. Interaction terms are developed

automatically during the regression process by creating 45 new variables,

the values of which are the product of the appropriate main effect values.

Factor

A Level of attrition experienced

B Availability of filler (replacement) aircraft

C Aircraft battle damage repair (ABDR) capability

D Recovery capability from air base attack

E Maintenance personnel numbers

F Avionics Intermediate Test Stations (AIS)

G Support equipment

H Spare parts stocking levels

J Missile stocks, components and deliveries

K Fuel initial stocks and resupply schedule

(Diener, 1989:30

Figure 3.1 Design Matrix Factors
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Sorties Variables Block Terms

Treatment Dayl Day30 abcde f ghj k B1 B7

1 226 45 -1-1-1-1-1-1-1-1-1-1 1 0 0 0 0 0 0

..... ~~..4... ....

128 187 68 1-1 1 1 1 1-1-1-1 1 -1-1-1-1-1-1-1

Figure 3.2 Data Structure Summary

Two points are apparent from the structure of the data. First,

looking across the matrix, each of the 128 treatments results in a 30 day

time series of sorties flown; and second, looking down the columns, for each

day 128 responses are available to estimate the effects of the factors applied

differently in each treatment. Diener's analysis took the second viewpoint

in estimating important factors and their effects in thirty daily metamodels

(Diener, 1989:50). This research will initially take the same viewpoint as

Diener. To take the first viewpoint and estimate the factor effects across

time is a significantly different problem, and is beyond the scope of this

research.

3.3 Model Form and Experimental Design

3.3.1 Linear and Non-Linear Models. As a term in fairly common

use, linear regression can be somewhat misleading. The word linear applies

strictly to the parameters, or coefficients of the model. For example, both
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the following models are linear regression models because the parameters

are neither multiplied together, nor raised to a power other than one.

Yi = J30 + PI + N.2X + Ei (3.1)

Yi = PO + PAI + P + PAI + PAU + PsXM + e (3.2)

Even though the second model, (3.2), contains quadratic and interaction

terms for the independent variables, while the parameters remain linear,

and an additive error term is included, the model meets linearity

requirements. The exponential model below is non-linear, because the

parameter y appears as an exponent.

S= yo + yzexp(y]) + e, (Neter et al., 1985:468). (3.3)

The exponential form of model is unsuitable for the data from Diener's

research because it provides for only one independent variable.

3.3.2 Eerimental Design Limitations on Model Form- The

experimental design used by Diener, previously discussed in Chapter II,

imposes some limits on the form of metamodels that can be developed from

the experimental results. Curvature (quadratic and higher) terms are

precluded because the experimental design makes the de facto assumption

that there is a linear relationship between each independent variable and

the model response. The linearity assumption is a result of the

experimental design allowing only two levels for each independent variable,

so that a linear relationship is all that can be deduced from the data. As

Kleijnen points out, "a second-order model with pure quadratic effects

requires three or more levels" (Kleinen, 1987:334). The relationship can be
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visualised by considering the extreme case of just one data point at each

level. It is clear that the two responses can only form the ends of a straight

line, as there are no intermediate points to indicate curvature. The

regression equation also shows that curvature information cannot be

obtained from the model. Consider a variable x1, which takes the levels -1

and 1 in the design matrix. If we try to include a quadratic term x1
2 in the

model, its value is always 1, the same as the high level of the linear term

x1, and therefore no additional information is provided.

3.3.3 Exnerimental De*imi and Interactions. Higher than two-way

interactions cannot be included in the metamodels because, in the chosen

fractional factorial design, the higher interactions are confounded with each

other, as discussed in Chapter II. The previous researcher did not consider

the inability to include higher order interactions to be a serious restriction,

and points out that limiting the analysis to main effects and two-way

interactions is common practice, as the interpretation of higher order

interactions is very difficult (Diener, 1989:44; 1993).

3.4 The Exsing Metlamodels

3.4.1 Cod n* of the Desin Matrix. In developing the existing

metamedels, Diener originally coded the design matrix so that the low level

of a factor was represented by a 0 and the high level by a 1. For example, if

the first treatment required factors A, C, and E at their low level, with all

other factors high, the first row of the design matrix was coded as
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0 10 10 1 1111. Using (-1,1) coding, the first treatment in the example

above is now coded -1 1 -1 1 -1 1 1 1 1 1. To determine whether the use of

(-1,1) coding has a significant effect on the resulting models, metamodels

are calculated using the same technique used by Diener, i.e. backward

elimination, with variables retained in the model at a significance level of

0.10, but with the design matrix modified for (-1,1) coding. The resulting

models are compared with the existing models for significant variables

included, goodness of fit, and estimation of sorties generated. Figures 3.3

and 3.4 show, for the attack and no attack cases, the variables included in

the metamodels in increasing order of partial R2, which is the marginal

contribution to the explanation of variance by a variable, given that all

others are included in the model (Neter et al., 1989:285). Table 3.1 lists the

adjusted RW for each model, and Table 3.2 and 3.3 compare the predicted

values of sorties generated for all factors at their low level and all factors at

their high level.

3.4.2 Significant Variables Included. Attack Case. For the attack

case, except for the first day, the two coding methods never result in

identical models, and none of the models is a subset of its counterpart. The

most striking difference is that although the (0,1) models generally contain

more terms, the terms most frequently omitted in the (0,1) models are main

effects that are consistently the most important in the (-1,1) models. For

example, variable B (filler aircraft) is the most significant factor in 24 of the

30 (-1,1) models, yet does not appear in eight of the (0,1) models for the
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appropriate days. Variable G (support equipment), which is the second

most important variable on twenty days when coded (-1,1) is also omitted

eight times, while variable H (spares stocking levels), which is at least the

fourth most important on fifteen days when coded (-1,1), is omitted on

eleven of those days, and on four other occasions. Particularly in the last

twelve days, the (0,1) models appear to capture the effect of variables B and

H, by including their interaction term BH as the most important effect.

3.4.3 Significant Variables Included. No-Attack Case. As for the

attack case, no-attack case models derived from the (0,1) design matrix

generally contain more terms than their counterparts. The tendency to

ignore a main term significant in the (-1,1) models, and include an

interaction term containing that variable is also apparent. For example,

BH is often included as an important term in the (0,1) models on days when

the (-1,1) models include both B and H. Finally, the (-1,1) models generally

contain fewer interaction effects that are present without at least one of the

relevant main effects, and on average contain more main effects relative to

interaction effects.

3.4.4 Comparison of Adjusted R?. It is apparent from Table 3.1 that

the models derived from the (0,1) design matrix generally achieve slightly

higher values of adjusted 12, with the greatest differences usually occurring

when the (0,1) model has at least three terms more included than the (-1,1)

model. As the maximum difference in W2 for all days across both cases is

only 0.05, with an average difference of 0.014, both sets of models can be
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Variables Included Variables Included
Day with (03) Coding with (-1,1) Coding

I d d
2 dj~qjc~bbhWhjce~hjb,ek dcbh~ceJ~ag~be
3 dhb~bh~be~c~j d~bhj~e
4 d~bh~egbhkjk~e~kj d~bb~g"h,gjk cfc
5 bb~dA~ebc~j~kj b~dbhg~ehk~hjce
6 &b.Wbkj~fgejU, gbbe ,f
7 bgAecbejitWghk~ef b4bkWAbhj~bC
8 b~gka~ce~edjcjAk bAk~g~cee,qjsf
9 b~g,eh~aeakag~e~ak bge~Ah~Ae,ak~ag
10 bg~bj",,e~k~g~AbA b~gAb,bj,e,4
11 b~g~q,&adejk1khk~ahdgbhAk b~gakJk,q,e,h~c~k,&
12 bjk"efAk,bd~kcJ~ehk~a bgkAhkA,bh~efjk
13 b~gbl2,aej~kjk,ak b~gjkejak~bh
14 bgbh~jj,cd,&cgefddhah~c b~g~hf,ah~ejcg
15 b~gbakN,*ej~ajk~tkcwa b~gak,ej~hlcjk~kac
16 bgbhb,tk,O~~j,ef bg~hAf,ak,ejjklk,c~bh
17 bhjgbkak,cjg~ejdkhjkhk,*Akeg b,9,akAk~~hfge9,bkAh
18 bi~fdgkbh,&,dbh~hbkc bgA&,ejbhk,cdjkj
19 bhabajej,cWhj-gk fzA kce bgjLbhej~&j
20 *A eg tk &,akgk bgjk~hAece A
21 bb ~acbj~gj~qka& k~jkebehbcfl ce
22 bhg~ejbgkthcg~fgeg~beakjk~bkagbhk, bgb~ej~Ak~fgkjkh,c~hk,eg~bh

23 bhkAbfbA9ej bAkjfAk
24 bbgbk~,k-f~,k gk~egce bgbge~kc~gfd
26 bh*,ej~gkqbj1 ~agk~fg bA&)iejbh~gkbhkjk
26 bbhghkj'k,ce~eg~kejc bgbhbejAk~jk,ceAh,eg
27 bhi~bAk~ceAtkLeg~ejak,eh~cdhWh,bk, b~gbhej~&bbcegkjkhbkf*c,bk~eg

dg
28 bhcbkA&AakaeejAth J,bg~fg bA~ejgjkgce~hkbg
29 bhbk$,ej~bk~& ak,dbhce~gfg~dg bAt~bejgjk4*,ce~hkfbgý~g
30 id~,kfg~~jbe~bgc b~ejgfg~bh~jkbe~bgce~hk

Figure 3.3 Comparison of Variables, Attack Case Reduced Models
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Varia~ee Included aiesIcud
Day with (0,I) Coding wt -,)Cdn

1 a,960g 4aac bd~dfg wc~g~jagcd4,a
2 e~Akj e.bbdd Mbjd e,dWehkbj~bdk,
3 eAMk~dfj.hAb), e*A~kAkddAbkWb(,egabW
4 ebj~jkj.k~df~cjehW* e~bj~j~cci
5 e*,bI~bckefb~k.1%d flh Ae~b~ibh~g edbqef
6 bebmbka4k&,c f4bg, eb~j,&jakjs -c-adh efbeab

7 bj~ek~bdbcj~d~kA~jcbg~ag. b~eej~ceag
8 bj~be~ejbg~ghdf~ehh~j-,anitd j~bjejjgheh~b,bg~fag
9 bj~e~b,.j~eg~hk~d.,cfAeakAh& j,ej~hj~e~egA",4
10 b~ej~jf~ef~agjgb~fg~eg~kabek bjiebifagegefgoAc~fg
11 b~h~~k"k;j~ack~ab b~hjeNh~ka
12 b~heg~dgaf&ghjghW bhgde~gh~eg~aedg~afac,dh
13 b~ch~fbtcewaae,dk"g~g,h bji~edk,ceAth~jcd,acj
14 b~hbe~bd~dhc b~hbe~e~bdh
15. b~~be~jl,,da~dbjae d,k"bj~ehbf
16 b~bhjcxbe~ce~ej*b -fb gk kc~dfg bAhbcAj~dk~ce~abjbhbe&ek
17 bgh,(ce,&,glkjcg~ dj bAhWbAi~bfeN,l&4d~,cgg
1S b~bfefA ~ehd&f gb, bbeb4f~bgdAhefbkgh,d*eh

19 bb ~ kAk~eg~bde~ce4, b~ejMLbkjbkej,Wwdk~gjek~c~ceh,
gjj'k~b h

20 bk~bd,ej,deaced~cj,dg,&,hacjkbg~b bkj~cedbd~djk~de~ej,efk~bjGbg
21 b~blbkAbefA,c abeW~ik~fg, bA~behkAebhh,ehfbj~ghjk~Ae

be,eb'd,ad
22 b~bkh~bg~hj*,bcehjhk~ce bhhjiWk,bg~bkAkg~bceg~eh
23 b~bbek~gj~cde~bcMf~~egjk,dh~ac bj)e~bh~cek~kfgAbc~eg
24 b~ek~abfehcdqj~eje,ag~Ahbd b~efjkagqcjAj~Ah~ab~hek~ac
25 b~be~bjck~ac~ch~edh,ae b~eAc~bj~aekjbe~dh
26 b~bebhc ,fkdie~d hk~dk~gh4a b~ebe,bh~cj,bckhqj~dk
27 be~bk~bbef~d~bjc~ce~de bk~e~ik,dejj~cagqcj~hjfgh~ce
28 be~hkjlbh cj~Afdtck,bchjdag bk*,bIk~e)~afbg~dfbc
29 k b~kb~k&dk~jag~Ad~qbj~ck~f bk~bk1bh~Ag~e~dk1hj~j~c
30 ,kbbbk~ekd,bjWh k~bk,hjk,Ij,kdbhj,e,ek

- ~~~~(Diener, 18.4-7

Figure 3.4 Comparison of Variables, No-Attack Case Reduced Models
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considered as equivalent in explaining variance. Adjusted R2 was chosen as

the criterion for comparison because it considers the loss in degrees of

freedom as additional variables are added to a model, thus increasing R2,

but possibly not adding any useful information. The usefulness of the

adjusted R2 value is somewhat reduced; however, because with so many

terms (56 including two-way interactions) available for inclusion, the

addition of extra terms with only marginal contributions to R2 results in

little adjusted W2 penalty because the relative change in degrees of freedom

is small.

3-4.5 Estimated Values of Sorties Generated. For the attack and no-

attack cases respectively, Tables 3.2 and 3.3 show for five arbitrarily

selected days that the number of sorties estimated is not consistent between

the two schemes. The difference in estimated sorties is not unexpected

given the differences between the models in variables included. The effect

of the blocking terms has been disregarded because their effect is constant

across both cases and both coding schemes.

3a4.6 Variance of Estimated Sorties Generated. Depending upon the

coding scheme used, there are important differences in the calculation of the

variance of the estimated value. If the covariance matrix of the parameter

estimates is calculated for the (-1,1) coding scheme, all covariances are

found to be zero except between the blocking terms. Also, all estimators
including the intercept have equal variance, and all seven blocking terms
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Table 3.1 Adjusted R2 Values for (0,1) and (-1,1) Design Matrices

Attack Attack No-Attack No-Attack
Day (0,1) (-1,1) (0,1) (-1,1)

1 0.69 0.69 0.49 0.47
2 0.92 0.92 0.52 0.52
3 0.76 0.76 0.54 0.544 0.56 0.56 0.42 0.39
5 0.56 0.56 0.46 0.44

6 0.39 0.40 0.67 0.63
7 0.48 0.47 0.42 0.39
8 0.40 0.40 0.43 0.42
9 0.47 0.47 0.69 0.67

10 0.46 0.46 0.73 0.73
11 0.56 0.53 0.71 0.70
12 0.60 0.58 0.70 0.70
13 0.57 0.57 0.75 0.74
14 0.57 0.54 0.65 0.64
15 0.56 0.55 0.71 0.70
16 0.55 0.57 0.75 0.74
17 0.57 0.54 0.78 0.76
18 0.55 0.51 0.77 0.77
19 0.54 0.50 0.60 0.58
20 0.60 0.56 0.64 0.63
21 0.63 0.59 0.75 0.72
22 0.60 0.57 0.67 0.68
23 0.52 0.50 0.73 0.71
24 0.60 0.58 0.68 0.68
25 0.60 0.57 0.58 0.57
26 0.57 0.56 0.55 0.50
27 0.66 0.64 0.40 0.39
28 0.59 0.58 0.56 0.53
29 0.57 0.55 0.64 0.61
30 0.57 0.57 0.62 0.61

(Diener, 19893247-276; 307-336
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Table 3.2 Comparison of Estimated Sorties, Attack Case

(0,1) Design (-1,1) Design (0,1) Design (-1,1) Design
All Factors All Factors All Factors All Factors

Day Low Low High High

1 78 78 102 102
5 72 88 131 116
10 108 109 175 156
20 59 48 116 110
30 23 32 58 54

Table 3.3 Comparison of Estimated Sorties, No-Attack Case

(0,1) Design (-1,1) Design (0,1) Design (-1,1) Design
All Factors All Factors All Factors All Factors

Day Low Low High High

1 264 268 259 260
5 177 

181 
216 

215

10 140 131 199 205
20 98 57 131 131
30 63 28 58 63

have equal variance. The variance of the estimated value, using a two

variable example for simplicity, is calculated as shown by equation 3.4.

Y (That) = s(b + X1Y(b) +

+ 2XAs(bOb) + 2X~s(bbd) + 2XXAs(b1 ,b2,) (3.4)

where s'(Yhat) is the variance of the estimate for sorties generat 2 (bo) is

the variance of the intercept parameter estimate; s'(bl) and sA(b2) are e

variances of the other parameter estimates (including one blocking term);

and s(bo,b1), s(bo,b2), and s(b,,b2) are the covariances between the estimates
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(Neter et al., 1989:259). Extending the example to consider the multiple

variables in this study, we see that with all covariances either zero or

disregarded, all X values either -1 or 1 (so that all X2 are also 1), and all

estimator variances equal:

sP(Yhat) = 4BE) + (p+1)sP(b) (3.5)

where p is the number of predictors in the model (not including the

intercept); s(b) is their common variance; and s2(B) is the variance of the

blocking term. Note that the variance of the intercept term and the

variances of the predictors are all equal. Because a given combination of

inputs can only come from one block, only one variance term need be

included, and the covariance between the blocking terms can be

disregarded. There is no covariance between the blocking terms and the

predictors. The value of sA(Yhat) does not change regardless of the

combination of input levels chosen.

In contrast, models developed using (0,1) coding show covariance

between all variables, greatly complicating the calculation of variance for

the estimated value of sorties generated, except when all variables are at

their low level, i.e. zero, when reference to equation 3.1 shows that the

variance of the estimated response collapses to the variance of the intercept

estimate plus the variance of a single blocking term. Thus s?(Yhat) is

different depending upon the particular set of factor levels in which we are

interested. An exhaustive comparison of actual variances was not carried

out, but examination of the parameter estimate standard errors for all
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models shows that the (-1,1) model standard errors are approximately half

those of the (0,1) models, although the (0,1) models may have lower

variance totals for the all factors low situation because only the intercept

and one blocking term are considered. At other design points it is likely

that the (-1,1) models will have lower overall variance.

3.4.7 Prediction and Estimation. For simplicity, the preceding

discussion of variance has considered estimation of sorties generated. More

rigorously, the estimation is a point estimate of the expected value, i.e. the

mean, of the distribution of sorties flown under a chosen set of initial

conditions. For the linear regression models used, we assume that the

distribution is normal. Calculation of the variance of the estimated value

allows confidence intervals to be formed for the point estimate of the

expected value of sorties flown. When predicting a new value for sorties

flown, however, we must consider that we are predicting a single value

drawn from a distribution, the mean of which we are already estimating by

a confidence interval. The variance of a predicted value is therefore greater

than the variance of the expected value, and is calculated as follows:

sP(Y•) = MSE + se(Yhat) (3.6)

where Y.. is the new prediction of sorties flown, and MSE is the mean

square error of sorties flown (Neter et al., 1989:79-83). Examination of the

regression results shows that MSE is the dominant term in equation 3.6,
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and that there are only small differences between MSE for equivalent (0,1)

and (-1,1) models.

3.5 phase One %=mm=ry

We have seen that the nature of the available data limits our analysis

to polynomial least squares regression models. Comparison of the two sets

of models highlights the issue of prediction versus explanation discussed in

Chapter I. From the point of view of trying to explain the behaviour of the

simulation, the two coding schemes produce different results. The greater

number of variables included in the (0,1) models, and the frequent inclusion

of an interaction term at the expense of either or both of the relevant main

effects makes the (0,1) models more difficult to interpret, and in some cases

leads to different conclusions about important effects. From a prediction

point of view, however, the two schemes produce broadly equivalent results,

at least for the two extreme design points evaluated. Comparison of the two

coding schemes has shown that the (-1,1) design matrix is, as suggested in

Chapter IH, more appropriate because it results in models that are easier to

understand and interpret, and have more easily calculable estimation and

prediction variances. Therefore, the models developed using the (-1,1) coded

design matrix and backward elimination at a significance level of 0.10

become the baseline for development cf new models in the second phase of

this exploration.
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3.6 Considerations for the Development of New Models

In this section, some of the considerations that are important in the

development of regression models are discussed. Initially, the assumption

that interaction terms are important is examined, because the task is

greatly simplified if interaction terms can be discounted. The process of

reducing the variables in a model from all potential predictors to a subset

that best achieves the aim of the model is discussed, including the rationale

for variable reduction, the impact of variable reduction on variance and

bias, several model reduction techniques, and variable selection criteria.

3.6.1 Test of Main Effects Only Against Two-Way Interactions. An

underlying assumption of Diener's research is that interactions between the

factors that affect ABO are very important in the analysis of the sortie

generation problem from a system viewpoint. A relatively simple approach

to testing this assumption is to calculate daily metamodels with all main

effects and interactions forced into the model, and then to test the

significance of this full model against a reduced model containing only main

effects using the general linear test (GLT). The null hypothesis H0 is that

all interaction term parameters equal zero, or, referring to equations 2.1

and 2.2, that on day i, all 45 k(i) for the no-attack case and all 45 Ik(i) for

the attack case equal zero. The test statistic F* generated by the GLT is

calculated as follows:

F3 it- W8 F÷ (3.7)

a- 4*, '#.,
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where SSER is the error sum of squares for the fitted model using only

blocking and main effects (the reduced model); SSEF is the error sum of

squares for the fitted model using all effects including interactions (the full

model), and dfR and dfU are the degrees of freedom for the respective error

sums of squares. The decision rule for the GLT is to not reject H0 at

significance level a if P":5 F(1 - a; dfR - dfp, dfU) (Neter et al., 1989:98-99).

Tables 3.4 and 3.5 provide the results of the tests for the first six

days. On five out of six days, for both the attack and no-attack case, the

test fails to reject HO. Given our prior knowledge of the existing

metamodels, many of which include interaction terms among the most

significant, failure to reject Ho is surprising until we consider the relative

numbers of main and interaction effects. All 45 interaction effects are

tested against just ten main effects, a few of which regularly contribute the

most to the explanation of variance. The GLT assesses the significance of a

group of predictors by the increase in error sum of squares (SSE) relative to

the increase in degrees of freedom when the predictors are removed from

the full model. The very large increase in degrees of freedom of the reduced

model is likely to mask the effect of a few important terms among the many

which are insignificant, and unless many interaction terms are significant,

or a few are very significant, we can expect not to reject Ho. Tests for

subsequent days are not carried out because the example of the first six

days adequately illustrates the disproportionate effect on degrees of freedom
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of the very large pool of interaction terms when compared to a much

smaller number of main terms.

Table 3.4 General Linear Test for Interaction Terms, Attack Case

Day Reduced Full Reduced Full F* p-value Decision
SSE SS df df afi0.10

1 11727.22 10535.72 110 68 0.1634 1 Do not reject Ho

2 60329.88 23474.38 110 65 2.2678 0.0013 Reject Ho

3 102875 59517.75 110 65 1.0522 0.4200 Do not reject Ho

4 56199.44 32977.03 110 65 1.0172 0.4687 Do not reject Ho

5 75615.55 51088.38 110 65 0.6935 0.9022 Do not reject Ho

6 133235.7 87235.51 110 65 0.7617 0.8321 Do not reject Ho

Table 3.5 General Linear Test for Interaction Terms, No-Attack Case

Day Reduced Full Reduced Full F* p-value Decision
SSE SSE df df a=0.10

1 3124.734 1865.01 110 65 0.9757 0.5290 Do not reject Ho

2 23604.17 14753.2 110 65 0.8666 0.6918 Do not reject Ho

3 18090.36 10431.2 110 65 1.0606 0.4088 Do not reject Ho

4 19856.42 12645.76 110 65 0.8236 0.7528 Do not reject Ho

5 22207.86 14086.2 110 65 0.8328 0.7401 Do not reject Ho

6 15461.59 6518.31 110 65 1.9818 0.0088 Reject Ho

3.6.2 Purpose of Variable Reduction. As we have already pointed

out, each daily metamodel potentially contains 62 variables and an intercept

term. If we disregard the seven blocking terms because they are forced into
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all models, 65 candidate variables remain for possible inclusion into each

daily metamodel. It should be intuitively clear that not all 55 variables can

be equally significant in helping to explain the behaviour of the simulation

model, and indeed some variables may be entirely insignificant. Even a

brief glance at preliminary models containing all possible variables strongly

supports this intuition, as some variables or interactions affect the number

of sorties flown by twenty to forty sorties, while many others have an effect

of much less than one sortie. The high p-values (probability of the reported

value of the F statistic for that variable occurring by chance) associated

with many of the variables also indicate that those variables are

insignificant. Obviously then, we are able to reduce each metamodel from a

model containing all variables to a model containing fewer more significant

variables. Such a reduction is desirable for several reasons. First, the

fewer variables overall that appear -u an explanatory model, the easier it is

to understand the relationships between sorties generated, the independent

variables, and their interactions. Second, as more interactive terms are

included, the occurrence of effects interacting significantly with more than

one other effect increases, further complicating the analysis. Third, as

Hocking (1976:7) states, a "motivation for variable elimination is that

smaller variance is achieved with a subset model, although at the expense

of some bias in the estimate." Variable reduction is therefore important for

both the ex-,lanation and prediction purposes of a metamodel. For

explanation we seek to eliminate variables so that the drivers of airbase

3.20



performance stand out, allowing resource allocation to be concentrated

where it will have the most effect; and for prediction we also seek to

eliminate variables so that we can estimate the sorties flown with greater

precsion.

3.6.3 Variance for Prediction and Eatimatimn Miller (1990:4-6)

shows that the variance of the response decreases with fewer predictors

included, and that bias in the estimator for the response increases, but

points out that "if a variable has no predictive power, then adding that

variable merely increases the variance." The dear implication is that if a

variable has little effect on the value of the response, it should be removed

to reduce the variance of the estimate. The difficulty is in finding the right

tradeoff between the number of variables, variance, and bias. Miller's

remarks are made in the context of estimating the expected value of a

response, so the only component of variance is the variance of the

predictors. The tradeoff is complicated, however, if instead of confidence

intervals for the expected value of the response, prediction intervals for a

single predicted value are desired. Equation 3.6 showed that for prediction,

MSE must be added to the sum of the variances of the predictors. For the

present data, MSE is substantially larger than the sum of the variances of

the predictors, and does not continue to decrease as more variables are

removed from a model. Table 3.6 illustrates the differences in MSE,

prediction variance (s2(Y0,)), and estimation variance (s2(Yhat)) for the ful

model and two reduced models on days five, ten, and twenty for the no-
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attack case. The first reduced model includes variables significant at the

0.10 level, and the second includes variables significant at the 0.05 level.

Similar results are observed for all other days across both cases. The table

shows that while MSE for the larger reduced model is always less than for

the full model, MSE then increases when more variables are removed. The

table also shows that for the reduced models MSE is dominant in the

calculation of variance for a new prediction, so that the decrease in variance

due to fewer predictors is more than offset by the increase in MSE.

Table 3.6 MSE, Estimation Variance, and Prediction Variance

Full Model Reduced Model, 10% Reduced Model, 5%
(56 Terms)

Day h=81 s~a Terms MSE st Of Terms .8 5 2

(Yhat) (Y,.,) (Yhat) (Y.) (Yhat) (Y3,)

5 786 387 1173 10 590 78 668 6 636 65 701

10 943 464 1407 7 746 73 819 5 778 73 851

20 535 263 798 13 426 66 492 9 478 59 537

3.6.4 Variable Reduction and Bias. Neter et al. (1989:412) point out

that it is sometimes preferable to have a small amount of bias if the

variance can be reduced enough that the probability of a biased estimate

being closer to the true value is higher than the same probability for an

unbiased but much higher variance estimate. To illustrate this concept

consider the data for day ten in Table 3.6. We assume under some set of
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inputs that the full model produces an unbiased estimate of the expected

value of sorties flown, i.e. Yhatn, which we shall assume to be 140 sorties,

with a variance s(Yhat,,a) of 464 (from Table 3.6), and a normal

distribution. Assume that under the same input conditions the 10%

significance reduced model estimates only 135 sorties, i.e. Yhati. = 135, for

a bias of five sorties. The reduced model estimate also has a normal

distribution, but its variance s(Yhat•) is only 73 (also from Table 3.6).

Both distributions are plotted in Figure 3.5, with the lower curve the

distribution for the full model. From Figure 3.5, the area under the

respective curves between the vertical lines represents the probability that

an estimate from that distribution will fall with the range of the true value

indicated by the lines. In the example above, the probability of the

unbiased estimate falling within plus or minus ten of the assumed true

value of 140 is 0.358, while the probability of the biased estimate falling

within the same range is 0.681. The biased estimator in this case is

preferable because it is more likely to estimate the true value of sorties

flown. The difficulties in applying this concept are in deciding how much

bias is acceptable, and how precisely we need to estimate the true value of

sorties flown. The issue of bias for reduced models is further addressed

when alternate models are evaluated.

3.6.5 Automated Selection of Variables. One of the most difficult

decisions when developing regression models from a set of independent

variables and their interaction terms is the selection of which terms to
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include in the model and which to exclude (Neter at al, 1989:437). A

number of automated computer selection procedures are available, including

the backward elimination used by Diener to derive the original models. The

backward procedure starts with all possible predictors included, and drops

predictors that make less than a minimum contribution to the explanation

of the total variance. Diener's criterion was a significance level of 0.10

(Diener, 1989:74). Another automatic method is forward selection, a

technique generally favoured by Neter et al. (1989:458). The forward

procedure starts with no predictors included, and adds only those predictors
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that make more than a minimum contribution to the explanation of

variance (Neter et al., 1989:453,458). A third automatic procedure is

stepwise regression, which combines both forward selection and backward

elmination by examinin the significance of the variables included in the

model after the addition of each variable, and removing any variable which

no longer satisfies a minimum signifcance criterion. For all techniques the

setting of significance levels is a subjective assessment which will be further

discussed shortly.

3.6.6 Maximum R". An automatic technique that differs from the

previous three is the maximum R2 improvement technique, which builds

models by comparing the variables included within a model of a given size

with those not in the model, and switches them until the model with

nmaxi~mum R for the given size is obtained. The procedure is repeated for

all sized models, resulting in the one variable, two variable, etc models with

maximum ir. The SAS User's Guide: Statistics (SAS Institute, 1985:765)

states that the maximum Ri improvement technique "is considered superior

to the stepwise technique and almost as good as all possible regressions."

3.6.7 Selection of gnificance Level for Stedwise Regreions. In

stepwise regression, the inclusion or removal of variables is a series of

partial F tests at the chosen significance I vel. The SAS Users Guide:

Statistics (SAS Institute, 1985:765) points out that "when many significance

tests are performed, each at a level of, say 5%, the overall probability of

rejecting at least one true null hypothesis is much larger than 5%." The
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null hypothesis in each case is that the value of the parameter for the

variable under consideration is zero, so the consequence of rejecting a true

null hypothesis (Type I error) is the inclusion of an additional variable that

is not actually significant. This observation is highly relevant to this

research because over the first six days, for both attack and no-attack cases,

an average of 41 terms is rejected during the backward elimination, i.e. 41

Significance tests are carried out. Forward selection should be less prone to

such error because for the same significance level we expect fewer steps to

be carried out. The implication of the higher than expected probability of

Type I error is that we "should specify a very small significance level" (SAS

Institute, 1985:765). The decision on what constitutes a "very small

significance level," however, is left to the researcher. For this research, 5%

and 1% will be examined as small significance levels. As an alternative to

basing inclusion or exclusion of a predictor on significance level, Neter et al.

suggest a technique whereby variables are considered in terms of their

marginal contribution to error reduction. For example, if in the forward

stepwise procedure the value of the F statistic required for a variable to

enter the model is set at 2.0, the effect is that "the marginal error reduction

associated with the added variable" is "at least twice as great as the

remaining error mean square once that variable has been added" (Neter et

al., 1989:457). Although the SAS software does not use the value of F for

variable selection, the value of F for each variable included is reported in
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the output of the automatic procedures, so an assessment of marginal error

reduction can be readily made.

3.6.8 Best Subsets Techniques. Only one model results when

stepwise regression techniques are used to automatically select the terms to

be included in a regression model, but it is important to recognise that this

model is only one of many possible models that could have been derived. A

different technique is to develop all the possible models and select from that

set the preferred model. In practice, only a subset of models that meet

certain criteria are developed and examined. The criteria can be to include

just the n best models regardless of size, or, more commonly, to include the

m best models for a range of model sizes, i.e. number of predictors included.

The algorithms used to produce the subsets are known as "best subsets

algorithms" (Neter et al., 1989:452), and an example is the RSQUARE

procedure provided by SAS (SAS Institute, 1985:711-724). Without such

algorithms, the technique becomes unworkable as the number of

independent variables increases. For example, to examine all possible

regression models for the data used in this research would entail examining

approximately 3.6 x 1016 models (ten independent variables leads to 45

interaction terms, for a total of 55 candidate terms, and therefore 2e = 3.6 x

1016 possible regression models). Even with an efficient algorithm, which

uses branch and bound methods to evaluate only a fraction of the possible

"models, an inordinate amount of computing time may be required. Also, in

considering a model of such complexity as this, distinguishing between
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alternatives offered in a best subset may be impractical. The main

advantage, however, of using a best subset approach instead of proceeding

directly to a stepwise regression is that the subset may include a range of V

models that differ greatly, but have similar values for RW. This allows the

modeler to more easily use some judgement in balancing goodness of fit and

the level of significance desired of a model with the simplicity and ease of

understanding of the model. A similar result could possibly be achieved by

carrying out many stepwise regressions, but subtle differences between

possible models could be missed unless the criteria for each stepwise

regression were very similar.

3.6.9 Choice of Models from a Subset. When a best subsets

technique yields several models from which to choose, the selection of the

preferred model is still far from straightforward. Several criteria can be

used, including WI, adjusted RW, and Mallow's C, statistic.

3.6.9.1 RW Criterion. By selecting all p - 1 predictors that are

significant at the chosen level, forward selection implicitly maimises RU,

calculated as follows:

-1 - (3.8)

where SSEP is the residual (or error) sum of squares remaining when p - 1

predictors (and the intercept, for a total of p parameters) are included in the

model, and SSTO is the total sum of squares (Neter et al., 1989:444). When
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selecting possible models from a subset, le can also explicitly be used as a

selection criterion. An important characteristic of W2, however, is that it

0 reaches its maximum only when all predictors are included in a model, so

some degree of subjective evaluation is required when using this criterion.

A balance between small marginal increases in W2 and the inclusion of

additional variables must be found (Neter et al., 1989:444-445).

3.6.9.2 Adjusted R' Criterion. The adjusted W2 criterion

attempts to make more objective the assessment of whether to include extra

variables which may have no real predictive or explanative power in order

to increase W by a small amount. Adjusted W2 takes into account the loss

in degrees of freedom as additional terms are added to the model, and

unlike RW, can reach a maximum and decline as extra terms are added 6hat

do not make a sufficient contribution to the explanation of the overall

variance to offset the fewer degrees of freedom. The selection criterion is

therefore to maximise adjusted W2. Adjusted'R2 (R!) is calculated as follows:

S-1 -( 12-1) S E (3.9)
n -p )ssTo

where n is the number of observations in the data set and p the number of

parameters included in the model (Neter et al., 1989:446). We have already

seen, however, that the large total degrees of freedom that exist in models

derived from the data set can mask effects that would be obvious if fewer

variables were possible candidates.
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3.6.9.3 Mallow's C, Statistic. Mallow's C. statistic can also be

used to assist in the process of model reduction, and has the desirable

property of suggesting the choice of subset models that are relatively

unbiased. The C, statistic considers mean squared error, which measures

the combined effect of sampling variance and bias in an estimator of a

parameter (Neter et al., 1989:412). CP is calculated as follows:

P -- E - (n - 2p) (3.10)
AWSE

where SSEP is the error sum of squares for the subset model with p

parameters, MSE is the mean square error for the full model, and n is the

number of observations. A subset model is considered a likely candidate for

acceptance when C, approaches p.

3.6.10 Yates' Algorithm. Yates' algorithm (Box et al., 1978:323) is an

alternate technique to least squares regression for deriving a regression

model, but applies specifically to full factorial experiments, and is therefore

not applicable in this research.

a.6.11 Transformations. When the relative difference between the

smallest and largest values of the response is large, Box et al. suggest that

a transformation of the response may be appropriate (1978:334). Such

transformations may involve taking the inverse of the response, the natural

or base 10 logarithms of the results, or the square root of the results (Neter

et al., 1985:138). Two problems exist with transforming the response for
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this data set. First, the experimental design presupposes a linear

relationship between the independent variables and the response; and

second, the occurrence of zero values for the response precludes inverse or

logarithmic transformations. A brief examination of a logarithmic

4 transformation, achieved by setting zero responses to small positive values,

confirmed that such a transformation is inappropriate. Although reasonable

models appeared to result, examination of the residuals showed serious

departures from normality, and strong patterns in the residual plots.

Transformations are therefore not given further consideration.

3.7 Applicabilitv of Regression Techniques

This section presents the initial results of applying to Diener's data

set the techniques and considerations outlined in the previous section.

Some unexpected results are observed, and the reasons for the results and

their impact on model development are discussed.

3.7.1 Compaison of Automated Techniques. To provide a baseline

for comparison, a set of metamodels was developed for both the attack and

no-attack cases using the same criteria specified in Diener's research, that

is, backward elimination of variables, with variables retained in the model

at a significance level of 0.10. SAS Version 6.07 was used in developing

these and all other models. For initial comparisons, only the first six daily

models were calculated. Models were then calculated using both forward

selection, at a significance level of 0.10, and stepwise selection, with
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variables entering the model at 0.10 significance, and remaining in the

model also at 0.10 significance. Comparison of the new sets of models with

the baseline models provided the first unexpectdd result in that each set

was identical, regardless of the technique used. Overall model significance,

SSE, and individual parameter significance were also identical for

equivalent models. Further analysis of the regression results showed that

for the stepwise regression, none of the variables was removed from any

model after entering.

3.7.2 Exnected Results. The results described in the previous

paragraph are surprising because the regression texts consulted create the

expectation that different regression techniques will lead to different

models, and that it is common for variables to leave a model as other

combinations of variables are able to explain more of the variance. Neter et

al. (1989:454-457) provide an example where the first variable that entered

was eventually dropped. Devore (1991:550) summarises the usual approach

by stating that "a single variable may be more strongly related to y than

either of two or more other variables individually, but the combination of

these variables may make the single variable subsequently redundant."

3.7.3 Comnarison Aginst Oriina1 Design Matrix. As a check that

the regressions had been carried out correctly, the forward and stepwise

techniques were applied to the same data set, but with the original (0,1)

coded design matrix restored. Identical total sums of squares using either

design matrix indicated that no data points had been omitted or changed;
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however, using the original design matrix gave regression results more in

line with expectation, with different regression techniques resulting in

different models. For example, on day six of the attack case, the first

variable selected (and therefore retained) by the forward selection technique

was also first selected by the stepwise technique, but subsequently dropped.

The same variable was also dropped by the backward elimination technique,

which returned a model the same as in Diener's original work, thus

confirming that the data had not been altered. The reason for the

unexpected results was found in an examination of the various types of

sums of squares that arise during multiple regression.

3.7.4 TPres of Sums of Squares. Freund and Little (1985:103-105)

outline the different sums of squares (SS) that are relevant in analysis of

variance, describing Type I, Type 11, Type MI, and Type IV sums of squares.

Neter et al. (1989:271-280) provide a similar analysis, referring to extra

sums of squares, but Freund and Little's description is preferred because

their terminology relates directly to SAS outputs. Type I, or sequential SS

are the sums of squares for each predictor that result when predictors are

added sequentially to a model, and can be considered as the reduction in

SSE when a predictor is added, given that all previous predictors are

already in the model. Type I SS are therefore dependent upon the order in

which terms are added to a model. Type II SS for a given variable are

"calculated considering the effect of all other predictors in the model that do

not contain the effect of that variable. Type HI SS are referred to as partial
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sums of squares, and represent the reduction in SSE due to a predictor

given that all other predictors being considered are already present in the

model. Type IV SS are intended for analysis when the design matrix has

empty cells.

3.7.5 Eperimental Design and Sums of Sqao-res. The experimental

design chosen by Diener is characterised by just one observation at each

design point. For example, the low level of factor D, and the high level of

all other factors occurs once in the design matrix, as do all the other 127

factor combinations modeled (Diener, 1989:45). Freund and Little

(1985:106) refer to this data structure as equal cell frequencies, and state

that with such a data structure, all types of sums of squares (SS) will be

equal for any predictor, whether a main effect or an interaction. Use of the

SAS General Linear Models procedure confirmed that for (-1,1) coding, each

predictor (including the interaction terms) has all four types of SS equal to

each other. To understand the effect on regression of having predictors with

equal Type I and Type Mlt SS, consider a model with only three possible

predictors: XI, X2, and X.. Assume also that the predictors will be entered

in numeric order. Referring to the previous paragraph, the Type I SS for X1

is the reduction in SSE due to X1 alone, as no other predictors have yet been

added. The Type IIm SS for X,, however, is the reduction in SSE due to X1,

given that X and Xs are already in the model. If the Type I and III SS are

equal, having X2 and X. already in the model has no effect on the

contribution that X, makes. To summarise, if the Type I and 5I SS are
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equal for each predictor, then it is clear that each predictor makes a

contribution to the reduction of SSE completely independently of its order of

entry and the presence of any other predictors.

3.7.6 ]- tion of REgMseion Results. The equivalence of forwarcf

"selection, backward elimination, and stepwise selection in developing models

is readily explained once we realise that the contribution to the explanation

of variance that a variable makes does not vary depending upon whether it

is the only variable in a model or the last of many. Stepwise selection

becomes equivalent to forward selection because the introduction of

subsequent variables does not change the sum of squares contribution of a

variable already in the model. If their sums of squares do not reduce, their

significance levels will not reduce, so no variables will ever be eliminated.

Forward and backward selection are equivalent because the variables can

be ordered by their contribution to the model, and the order does not change

as the model size changes. Therefore the same subset of variables

significant at a given level will result whether we start with the most

important variable and add variables, or start with all variables and delete

the least significant. An interesting observation is that when a variable is

added to a model, the significance of variables already in the model usually

increases because the Type II SS for variables in the model remains

constant, but the overall SSE and therefore MSE reduce, so that F (equal to

Type II SS/MSE) increases. This observation holds as long as the variable
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beng added reduces SSE enough to offset the loss of a degree of freedom,

and thus reduces MSE.

3.7.7 Other Unexnected Results. Comparison of the full models and

reduced models used to carry out the General Linear Tests revealed that,

for both the full and reduced models, the value of the intercept estimate

remained equal to the mean number of sorties generated by the 128

treatments for any given day even though 55 interaction terms were not

included in the reduced models. Additionally, the parameter estimates of

the main terms remaining in the reduced models were the same as for the

main terms in the full models. Comparing the baseline 10% significance

models with the full and main effects model gave the same result, that is,

the estimate for a particular parameter in any given model does not change,

regardless of the number or combination of the other terms in that model.

The extreme example is the first daily model in the attack case. Figure 3.6

contains part of the analysis of variance table for the full model on day one,

with all the interaction terms omitted for clarity, and Figure 3.7 contains

the full analysis of variance table for the 10% significance model on day one.

Comparison of the two figures shows that the intercept and variable D

estimates are identical for both the reduced and full models, even though

the full model contains all 55 variables, and the 10% significance model

contains just one variable. The independence of parameter estimates with

regard to other variables in the model is a similar effect to the

independence of each variable's contribution to sums of squares explained
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earlier. An analogy with simple linear regression shows why the intercept

estimate does not change, while examination of some of the properties of the

design matrix helps explain why the parameter estimates are independent

of each other, and also provides the underlying reason for the equality of

the different types of sums of squares.

Full Model Attack Case

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 62 30882.75000 498.10887 3.073 0.0001
Error 65 10535.71875 162.08798
C Total 127 41418.46875

Root MSE 12.73138 R-square 0.7456
Dep Mean 89.60938 AdJ R-sq 0.5030
C.V. 14.20764

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 89.609375 1.12530545 79.631 0.0001
Bl 1 -10.171875 2.97727836 -3.417 0.0011
B2 1 3.453125 2.97727836 1.160 0.2504
B3 1 -13.359375 2.97727836 -4.487 0.0001
B4 1 2.828125 2.97727836 0.950 0.3457
B5 1 16.828125 2.97727836 5.652 0.0001
B6 1 8.703125 2.97727836 2.923 0.0048
B7 1 -2.609375 2.97727836 -0.876 0.3840
A 1 -0.125000 1.12530545 -0.111 0.9119
B 1 -0.203125 1.12530545 -0.181 0.8573
C 1 0.203125 1.12530545 0.181 0.8573
D 1 11.953125 1.12530545 10.622 0.0001
E 1 0.750000 1.12530545 0.666 0.5075
F 1 0.109375 1.12530545 0.097 0.9229
G 1 0.062500 1.12530545 0.056 0.9559
H 1 0.421875 1.12530545 0.375 0.7090
J 1 -0.843750 1.12530545 -0.750 0.4561
K 1 0.218750 1.12530545 0.194 0.8465

JK 1 -0.953125 1.12530545 -0.847 0.4001

Fignire 3.6 Analysis of Variance, Day One Attack Case, Full Model,
with Coefficients and Statistics for Interaction Terms Omitted
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Attack Case, 10 Day 1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 8 29484.62500 3685.57813 36.751 0.0001
Error 119 11933.84375 100.28440
C Total 127 41418.46875

Root MS1 10.01421 R-square 0.7119
Dep Mean 89.60938 AdJ R-sq 0.6925
C.V. 11.17540

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 89.609375 0.88513947 101.238 0.0001
B1 1 -10.171875 2.34185892 -4.344 0.0001
82 1 3.453125 2.34185892 1.475 0.1430
83 1 -13.359375 2.34185892 -5.705 0.0001
B4 1 2.828125 2.34185892 1.208 0.2296
B5 1 16.828125 2.34185892 7.186 0.0001
86 1 8.703125 2.34185892 3.716 0.0003
B7 1 -2.609375 2.34185892 -1.114 0.2674
D 1 11.953125 0.88513947 13.504 0.0001

Figure 3.7 Analysis of Variance, Day One Attack Case,
10% Significance Reduced Model

3.7.8 Cstant Interept Estimate. A characteristic of fractional

factorial designs is that each column of the design matrix has an equal

number of plus and minus ones (Box and Meyer, 1993:94). As each column

represents a single variable, consider simple linear regression with just one

independent variable X, which takes the values -1 and +1, and assume that

there are an equal number of observations of the dependent variable Y for

each level of X. If there is no relationship between X and Y, the regression

line will be horizontal, passing through the mean of Y. If there is some

linear relationship, the regression line will have a slope, but the intercept
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will remain the mean of Y because there are equal numbers of observations

at both levels of X, i.e. the mean of X is 0.

4 3.7.9 Design Matrix Pronerties. Reynolds (1993) states that when a

design matrix is orthogonal, that is, there is no relationship between the

independent variables, the effects of the independent variables can be

considered separately in a regression model. Neter et al., while not

addressing orthogonality as such, state that

"in general, when two or more independent variables are
uncorrelated, the marginal contribution of one independent variable
in reducing the error sum of squares when the other independent
variables are in the model is exactly the same as when this
independent variable is in the model alone." (Neter et al., 1989:298)

To test for orthogonality, the transpose of the design matrix is multiplied by

the design matrix. If the resulting matrix is diagonal, that is, all elements

except on the main diagonal are zero, then the design matrix is orthogonal

(Reynolds, 1993). Both the (-1,1) and (0,1) matrices were tested, and the

(-1,1) matrix proved to be orthogonal, while the (0,1) matrix did not. Tests

of correlation among the independent variables showed no correlation for

either matrix. Considering that Neter et al. specify a first order model

(1989:297), a possible reason for the models derived using the (0,1) design

not behaving in the same way as the (-1,1) models, even though none of the

independent variables are correlated, is the inclusion of interaction terms in

the models. If the (0,1) design matrix was expanded to include interactions,

the four interactions between two variables ((high,high); (high,low);

(low,high); (lowlow)) would introduce three zeros into the matrix for every
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one, thus unbalancing the number of ones and zeros. For the (-1,1) matrix,

the interaction terms introduce an even number of plus and minus ones. It

is sufficient for this research that the (-1,1) matrix produces results that are

expected. Further investigation of the properties of the (0,1) design is

beyond the scope of this research.

3.7.10 Resolution of Unexetdo Results. Because the effects

observed in deriving models from the (-1,1) design matrix can be explained

with reference to the sums of squares of the variables, the lack of

correlation of the variables, and the orthogonality of the design matrix, the

models are accepted as valid, and we now examine the effect on the

development of new models of the results discussed in the preceding

paragraphs.

3.7-11 Implications for Automatsd TQehniaun.R Because forward

selection, backward elimination, and stepwise selection all result in the

same model for a chosen significance level, the preferred technique is

forward selection. In general, many more terms are left out of a model than

are included so forward selection is substantially faster than backward

elimination. Also, under the circumstances existing for this data set, the

order of entry into a model developed by forward selection is an indication

of the relative importance of the variables to the explanation of variance. A

particularly important consequence of order independence of selection is

that the automated techniques will be fully effective at finding, for the

chosen significance level, the model yielding the highest value for R2. Miller
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(1990:48-53; 70-75) points out that this is frequently not the case when the

different types of sums of squares are not equal and provides several

examples in which automated selection procedures failed to find the best

fitting subsets of varying sizes. The overall implications for this research

are that we can be confident of finding the "best" model (based on W2 and

SSE) at a given significance level using forward selection; and that any

automatically produced model containing a given number of terms will have

the highest RW of all models containing that number of terms.

3.7,12 Tmplicatins for Maximum R' Selection. The models

developed by using the maximum W1 automatic technique will reflect the

order of entry of variables into a model developed by forward selection. For

example, the best five variable model found using maximum W2 will contain

the first five variables chosen during forward selection. Because the

relative importance of the variables never changes, maximum W2 will not

find any "unusual" combination of n variables that result in a higher R2

than the first n variables ordered by their contribution to sum of squares.

The maximum RW technique is still useful, however, if we wish to compare a

set of models containing, say, 8, 9 and 10 variables.

37,.13 Implications for Best Subsets Techniques. The implications

for best subsets techniques of variables having independent effects are

similar to the implications for maximum RW technique. The best subset of

"size n will always contain the first n variables chosen by forward selection,

and the next best subset will include the n - I most significant variables,
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and the n + lth most significant. For example, if the three best subsets of

four variables are requested, the best subset will contain the first four

variables ordered by significance, the second best subset will contain the

first three and the fifth variables ordered by significance, while the third

best subset will contain the first three and the sixth variables ordered by

significance. Clearly, there is little to be gained by requesting other than

the single best subset of each size because all subsets of each size will differ

only in the last variable, assuming that the number of subsets examined is

smaller than the number of variables not included. If only the single best

subset for a range of model sizes variables is desired, then the maximum R2

technique is preferable because both techniques will return the same result,

but the maximum R2 technique is faster and is able to crpe with many more

variables.

3.7.14 SAS RSIUARE Procedure for Best Subsets. The RSQUARE

procedure provided in SAS for finding best subsets is unable to handle all

55 variables and interactions that are possible candidates in this research.

However, for each day we know that the 55 - n least significant variables

when ordered by their sums of squares will never enter a model of size n, so

we can safely reduce the pool of variables considered by RSQUARE if we

have some idea of the maximum size of model to be considered.

Examination of the 10% significance models, and the terms not included in

those models suggests that a conservative maximum model size is 35 terms

(the largest 10% model contains 17 terms). If the twenty least significant
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variables are deleted from the pool, the RSQUARE procedure is able to

produce for all thirty days a single best subset of each model size specified

in only a few minutes processing time on a VAX Model 6000-420, compared

to over 24 hours when three subsets were requested and the 48 most

significant variables were considered. An undesirable consequence of

trIMcatng the variable pool to use RSQUARE is that the values reported

for C. are not the same as those obtained using forward selection. The

reason is that the SAS procedure uses the full model MSE to estimate

variance, and reducing the variable -ool changes the full model as seen by

RSQUARE (SAS Institute, 1985:715,765). For the situation in this

research, the RSQUARE procedure for best subsets is most applicable for

efficiently presenting RW and adjusted RW values for a range of model sizes.

3.7.15 Model Selection Criteria. The preliminary use of the

techniques above strongly suggests that Mallow's Cp is of no practical use in

selecting models from a subset of candidate models because C, frequently

takes negative values. When CP is negative the recommended plot of Cp

against p, where p is the number of predictors in the model, is meaningless.

The reason for negative Cp values has not been fully determined, but study

of Equation 3.10 indicates that the large number of observations (128)

relative to the number of variables generally included in the models (1-17)

outweighs the ratio of SSE, to MSE. Adjusted RW may be of limited
usefulness in developing explanatory models because it very rarely reaches

a maximum until more than 20 terms are included. However, maxmum
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adjusted RW is equivalent to minimum MSE (Neter et al., 1989:446), and

may well be useful for finding models that are most suitable for prediction

because we saw earlier that MSE was dominant in the expression for the

variance of a new prediction.

3.7.16 Selection Bias. Miller (1990:Ch 5) devotes a chapter to the

issue of what he terms "selection bias," which is bias in the predicted value

of the response resulting from using the same set of data for both the

selection of a subset of predictor variables, and the estimation of the value

of the regression coefficients for those predictors. According to Miller

(1990:12), the bias results from the fact that the regression coefficients of a

subset of predictors are conditional on the subset chosen. That is, the

regression coefficients of the variables included in a reduced model will be

different from the coefficients of the same variables in the full model. In

the ideal case, he suggests that

an independent sample should be obtained to test the adequacy of the
prediction equation. Alternatively the data set may be divided into
three parts; one part to be used for model selection, the second for the
calibration of parameters in the chosen model, and the last part for
testing the adequacy of the predictions. (Miller, 1990:13)

In the current research we are unable to split the data as Miller suggests,

and carrying out additional simulation runs to gather more data is well

beyond the scope of this research. We have seen, however, that for this

data set the regression coefficients in a reduced model do not depend on

how the model was selected, so selection bias can be discounted.
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3.8 Revised Model Buildin, Techniques

The results of the preliminary exploration of model building

techniques discussed in the previous two sections suggest that some revision

is required of the techniques initially outlined.

3.8.1 Automated Technioues. We have seen that the orthogonality of

the design matrix and the absence of correlation between the independent

variables results in regression models in which each variable can be

considered independently of the others. If we wish to develop models at a

given significance level, then forward selection is the most efficient method

to use, and we know that the best fitting model at that significance level

will be chosen.

3.8.2 Exgloratorv Techniques. If we wish to explore a range of

possible models with no specific significance level required, a number of

alternatives are available. The RSQUARE procedure can be used to develop

a set of models for each day up to a specified size, or a manual technique

can be used to search for appropriate models. The main advantage over

forward selection of examining models containing varying numbers of terms

is that there may be several potential terms which have significance levels

only slightly above or below the selection criterion set for the automatic

method. For example, the forward selection approach at a-0.10 significance

will exclude a term significant at a=0.099, and include a term significant at

a=-0.101, when there is no practical difference in significance between the

two. Ideally, we would like to find some clear division between the
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significance of the last term included and the significance of the terms

excluded.

3.8.3 Manual Search. The independent effect of the variables means

that prior to building a reduced regression model, we can examine the

contribution that each variable could make to such a model and determine

in what order the variables will enter the model. As a preliminary step, a

full model containing all possible variables is calculated to provide a list of

the sum of squares for all variables. If the variables are then sorted in

decreasing order of their sums of squares, we have ranked the variables in

the order that they will enter a model (or reverse order that they will

leave), regardless of the regression technique used. We can also assess the

overall importance of the variables by calculating a partial W1 for each

variable. A manual search is feasible only because the variables always

enter a model in order of their significance in a full model. The benefit of

using a manual procedure to search for appropriate models is that it is

practical, once the variables are sorted, to calculate both partial RW and

model RW for each size model, so that distinctions between more and less

significant groups of variables are apparent. A disadvantage, which also

applies to the RSQUARE technique, is that once a model has been chosen

another procedure, such as the REG procedure (SAS Institute, 1985:655-

710), must be used to obtain the detailed analysis of variance information

for that model.
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3.9 Development of New Models

In developing potential new models, the two aims of a metamodel,

explanation and prediction, are addressed by initially developing separate

models for each aim. We then examine the different models to determine

whether an all-purpose model is an acceptable compromise for both

explanation and prediction.

3.10 Models for Prediction

The first models to be developed are designed for prediction, so that

the specific characteristics desired in such models are accuracy in predicting

the number of sorties flown, and precision, which in this case can be

interpreted as the width of a confidence interval containing a prediction.

Accuracy is equivalent to lack of bias, and precision is directly proportional

to variance. Variance can be readily assessed from the regression statistics

of a model, but bias is much more difficult to determine. Bias may be

defined as a consistent overestimation or underestimation of a true value,

which is unknown in a probabilistic simulation experiment such as Diener's

(1989). The best that we can do is to assume that a full model containing

all terms does not contain any inherent bias. Such an assumption is a

consequence of the classical assumptions for regression analysis, which

include zero expected value for the error term in a model. We could

therefore avoid the issue of bias altogether by using a full model, but as

Table 3.6 and Figure 3.5 showed, the variance in the estimates and
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predictions of a full model are very high relative to a reduced model, so a

full model is unable to satisfy ox'r desire for precision. By deliberately

removing terms from a full model to produce a reduced model, we recognise

that some bias is introduced, but hopefully the terms removed make such a

small contribution to the model that the bias is negligible. The reduction in

variance, however, can be substantial, as even the least significant term

makes the same contribution to model variance as the most significant. To

assess the bias introduced into a reduced model, the number of sorties

predicted by a reduced model is compared with the number of sorties

predicted by the full model at each of two design points: all factors at their

low level, and all at their high level. A possible weakness of testing for bias

in this way is that all the interaction terms have the same effect on the

predicted response whether all factors are high, or all are low, but the use

of other factor combinations is impractical because the large number of

interaction terms leads to an overwhelming number of choices that could be

tested. In most models assessed, however, the dominant terms are main

effects, which do lead to a change in predictions at the two factor levels.

3.10.1 Model Building. Four sets of models were developed and

evaluated for their suitability for prediction. The first set of models is the

baseline set, calculated using forward selection, with terms in the models

significant at the 0.10 level. A second set of models was also calculated

using forward selection, but at a significance level of 0.05. For the third set

of models, the SAS RSQUARE procedure was used to find the subset of
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variables for each day that returned the highest value of adjusted RW and

therefore minimum MSE, and then those variables were forced into models

calculated by the SAS REG procedure. Developing the fourth set of models

involved an assessment of the marginal reduction in MSE as terms were

added to the models. Evaluation of the mninimum MSE models showed that

the last few terms added to the model produced decreases in MSE much

smaller than the increase in estimation variance resulting from the

inclusion of an additional predictor. Equations 3.5 and 3.6 show that when

a term is added to a model, if MSE reduces by less than the variance of that

term, the overall prediction variance will increase. The decision rule for

inclusion of terms involved examining the variance of the predictors in the

models with maximum W2, and then including only the predictors that

reduced MSE by at least a minimum amount. The number of models to

evaluate, and the small change in predictor variance as further terms are

added dictated using an average value as the minimum acceptable reduction

iii MSE. A value of 1.8 was chosen for the attack case, and 1.2 for the no-

attack case. Applying the decision rule to the variable subsets generally

revealed a distinct cutoff in MSE reduction at around the values chosen,

with the variables excluded making a substantially smaller reduction in

MSE. In some cases the difference between the minimum MSE and the

near minimum MSE models proved to be only two or three terms, while in

other cases, the difference was ten or more variables.
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3.10.2 Msdel Asssment. Table 3.7 and Table 3.8 present a

comparison of the sorties predicted for the attack case with all factors high

and all factors low respectively while Tables 3.9 and 3.10 present the same

comparisons for the no-attack case. The column labeled 'Bias" in each table

represents the difference between sorties predicted by the reduced model

and sorties predicted by the full model. As an indicators of the overall

accuracy of each model, the mean absolute deviation from the full model

prediction and the mean absolute percentage deviation appear at the bottom

of each table. Absolute deviation is measured because positive and negative

deviations could cancel, so that their mean would understate the true

amount of inaccuracy present. The variances for estimation of the expected

value of sorties flown are presented in Table 3.11, and the variances for the

prediction of sorties flown are presented in Table 3.12.

3.10.2.1 Bias. Several points are evident from Tables 3.7

through 3.10. First, for both the attack and no-attack case, the performance

of the models containing terms significant at the 0.05 level is worse than all

other models. Such a result is expected because these models contain the

fewest terms. The particularly poor performance of the 5% models at the

low factor level in the attack case suggests that they are not suitable for

prediction, so they are excluded from further consideration. Second, with

the exception of the 10% significance models for predicting sorties when all

factors are low in the attack case, all three remaining sets of models make
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reasonably accurate predictions compared to the fill models, with relative

errors typically less than 5 percent.

Table 3.7 Comparison of Sorties Predicted, Attack Case, All Factors High

Full 10% Significance 5% Significance Minimum MSE Near Min MSE
Model Reduced Model Reduced Model Reduced Model Reduced Model

Day Sorties Sorties Bias Sorties Bias Sorties Bias Sorties Bias

1 101 102 1 102 1 101 0 102 1
2 122 126 4 121 -1 132 10 132 10
3 129 140 11 136 7 135 6 135 6
4 97 91 -6 103 7 93 -3 97 1
5 103 116 13 123 20 106 2 106 2
6 158 187 29 176 19 151 -7 154 -4
7 148 154 6 163 15 155 7 153 5
8 160 160 0 160 0 155 -5 152 -8
9 158 149 -8 165 8 145 -13 147 -10

10 148 156 8 156 8 145 -3 145 -3
11 164 150 -14 147 -17 162 -1 158 -6
12 147 143 -5 146 -1 148 1 146 -1
13 142 143 1 139 -3 142 0 142 0
14 135 139 4 143 8 134 -1 139 4
15 140 134 -6 134 -6 143 3 143 3
16 128 129 1 126 -2 134 5 134 6
17 119 106 -14 105 -14 119 0 119 0
18 119 113 -6 110 -9 116 -3 116 -3
19 119 123 4 123 4 121 2 125 6
20 117 110 -7 106 -11 116 -2 116 -2
21 i11 107 -4 110 -1 108 -4 108 -4
22 99 98 -0 96 -3 97 -1 93 -6
23 93 87 -6 90 -3 93 -0 96 3
24 93 99 6 103 10 99 6 94 1
25 81 90 9 90 9 86 5 79 -2
26 74 80 6 85 12 78 4 85 11
27 78 84 5 78 0 78 0 87 9
28 65 69 4 69 4 71 6 71 6
29 64 63 -1 65 2 65 1 66 3
30 63 54 -8 63 1 59 -4 60 -3

Mean
I Error I 6.6 6.9 3.5 4.3

MAPE 5.9% 6.0% 3.2% 4.0%
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Table 3.8 Comparison of Sorties Predicted, Attack Case, All Factors Low

Full 10% Significance 5% Significance Minimum MSE Near Min MSE
Model Reduced Model Reduced Model Reduced Model Reduced Model

Day Sorties Sorties Bias Sorties Bias Sorties Bias Sorties Bias

1 75 78 2 78 2 77 1 78 2
2 34 45 11 40 6 39 5 43 9
3 78 88 10 92 14 83 5 88 10
4 57 71 14 85 28 59 2 66 10
5 40 67 27 82 42 44 4 44 4
6 107 132 25 155 48 88 -19 91 -16
7 85 107 22 124 39 100 15 98 13
8 93 108 15 118 25 103 10 100 8
9 81 93 12 109 28 66 -15 68 13

10 77 99 21 108 30 80 3 80 3
11 79 84 5 96 17 83 4 78 -1
12 68 82 15 86 18 76 8 78 10
13 67 90 23 86 19 77 10 77 10
14 67 84 17 88 21 63 -4 72 5
15 59 70 11 78 19 69 10 73 14
16 61 70 10 74 14 71 11 75 15
17 58 57 -1 57 -1 61 3 61 3
18 62 59 -3 62 0 56 -6 56 -6
19 57 68 11 68 11 62 5 70 13
20 58 66 8 69 11 56 -2 56 -2
21 55 56 0 58 3 54 -1 50 -5
22 43 49 7 52 10 44 1 39 -4
23 43 46 2 49 6 43 -1 46 3
24 38 52 14 60 22 43 5 42 3
25 32 50 18 50 18 32 0 25 -7
26 29 42 13 47 19 31 2 37 9
27 31 34 3 39 8 28 -3 37 6
28 26 29 3 34 8 28 2 31 5
29 28 33 6 36 8 29 1 29 2
30 29 24 -5 33 4 25 -4 26 -3

Mean
I Error i 11.3 17.0 5.4 7.1

MAPE 20.9% 30.3% 9.0% 13.2%
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Table 3.9 Comparison of Sorties Predicted, No-Attacks, All Factors High

Full 10% Significance 5% Significance Minimum MSE Near Min MSE
Model Reduced Model Reduced Model Reduced Model Reduced Model

Day Sorties Sorties Bias Sorties Bias Sorties Bias Sorties Bias

1 258 260 2 262 4 260 1 259 1
2 207 221 14 221 14 210 3 216 9
3 220 224 4 225 6 232 13 228 9
4 210 210 -1 214 3 211 1 214 4
5 216 215 -1 209 -7 218 1 219 3
6 221 217 -4 217 -4 221 -0 216 -5
7 206 201 -4 199 -6 200 -6 201 -4
8 202 204 3 198 -4 201 -1 204 2
9 209 203 -6 203 -6 204 -5 204 -5

10 203 205 2 205 3 202 -1 205 2
11 196 189 -6 191 -3 193 -2 189 -6
12 203 199 -3 196 -8 201 -1 203 0
13 196 196 0 196 -0 196 0 201 5
14 183 185 1 184 1 187 4 186 2
15 179 173 -5 176 -3 175 -3 172 -7
16 186 184 -3 177 -9 183 -4 180 -6
17 171 168 -3 164 -7 168 -3 168 -3
18 162 158 -3 153 -9 159 -2 160 -2
19 131 146 16 148 17 133 2 138 8
20 134 131 -3 126 -7 133 -1 136 3
21 149 137 -12 137 -12 146 -3 148 -1
22 132 127 -5 121 -11 126 -5 128 -4
23 127 114 -13 117 -10 122 -5 122 -5
24 ill 107 -4 98 -12 113 2 109 -2
25 96 103 7 103 8 99 3 103 7
26 66 71 5 66 0 65 -0 68 3
27 58 61 3 64 6 61 3 64 7
28 67 66 -0 73 6 62 -4 '61 -6
29 69 66 -4 59 -10 71 2 71 2
30 67 63 -4 65 -2 64 -3 69 2

Mean
I Error I 4.7 6.6 2.9 4.2

MAPE 3.5% 4.9% 2.2% 3.2%
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Table 3.10 Comparison of Sorties Predicted, No-Attacks, All Factors Low

Full 10% Significance 5% Significance Minimum MSE Near Min MSE
Model Reduced Model Reduced Model Reduced Model Reduced Model

Day Sorties Sorties Bias Sorties Bias Sorties Bias Sorties Bias

1 260 264 4 266 5 261 1 263 3
2 169 188 19 197 28 177 8 183 14
3 201 204 4 206 6 210 10 206 5
4 187 189 2 188 1 186 -1 190 3
5 180 183 3 176 -4 181 1 179 -0
6 179 173 -6 173 -6 179 -1 172 -8
7 173 175 1 173 -1 173 -1 174 0
8 171 169 -1 169 -1 169 -1 169 -2
9 162 164 2 165 2 163 1 159 -3

10 147 148 1 152 5 144 -3 148 1
11 151 147 -4 150 -1 151 0 147 -4
12 145 144 -1 145 -1 142 -3 144 -1
13 140 144 4 140 -0 140 1 145 6
14 129 131 3 131 2 131 2 129 1
15 131 126 -5 124 -7 126 -6 124 -7
16 127 129 1 127 -1 125 -3 122 -5
17 111 il1 0 ill 0 112 1 114 3
18 116 i11 -4 106 -10 114 -1 112 -2
19 122 130 8 137 16 121 -0 127 5
20 103 109 6 104 1 104 0 107 4
21 100 93 -6 89 -11 96 -5 97 -3
22 97 88 -9 82 -14 92 -4 89 -7
23 84 81 -4 79 -5 84 -0 81 -3
24 79 79 -1 83 3 82 3 80 1
25 82 88 7 88 7 85 3 91 10
26 76 75 -1 70 -6 73 -3 73 -3
27 68 76 8 60 -8 76 8 80 12
28 69 69 0 69 0 62 -7 60 -9
29 77 71 -6 60 -16 76 -0 73 -4
30 72 66 -6 69 -3 66 -6 68 -4

Mean
I Error I 4.2 5.7 2.8 4.4

MAPE 3.7% 5.1% 2.7% 4.1%

3.10.2.2 Variance. Tables 3.11 and 3.12 clearly highlight the

reason for rejecting the full model for either estimation or prediction, that

is, the much higher variance than the reduced models. As explained earlier,

3.54



the full models contain many terms that add to the variance without

significantly affecting the predictive power of the model. The choice

between the reduced models is not as clear because they all achieve similar

results in terms of overall variance for prediction. Variance for estimation,

on the other hand, is a function of number of terms in the model, and the

10% significance models always achieve the best result measured by

estimation variance, although, as we saw in Tables 3.7 through 3.10, at the

expense of generally higher bias. The differences in variance are relatively

small when we consider that prediction intervals are based on the square

root of variance, so the three sets of reduced models can be considered

practically equivalent in achieving low values for prediction variance.

3.10.3 Assessment of Modified Selection Technique. The models

selected by choosing terms with a minimum marginal contribution to MSE

(near minimum MSE) were successful in achieving the aim of the lowest

prediction variance, but the difference between their variance and that of

the other models is not as great as was hoped for. Such a selection

technique does however warrant consideration, because it strikes a balance

between models selected without regard to variance (stepwise or forward

selection), and the minimum MSE/maximum adjusted R2 technique, which

does not consider the marginal change in overall variance as terms are

added. The modified technique should be generally applicable to models

where there are many possible terms to be included and the ratio of MSE to

the sum of the predictor variances is relatively low. For this data set the
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ratio is typically five to one, which implies that the predictor variances are

important in determining the overall variance.

Table 3.11 Prediction Model Variances, Attack Case

Nos: red a variane of a ew prsdia Nha - variace of etmate of ezpcted value of oties flow; p . no
of term. in model.. dh d tnt.

Ponl Momd 10% Reduced Modal Mizdmum MBE Near Min ME

Day Prod Ent WE p Pred Na ]S p Pred FAt MS p Pred ot MWE

1 242 80 162 2 107 7.1 100 5 109 9.3 100 2 107 7.1 100
2 539 178 361 8 301 31.6 269 19 303 51.1 252 15 298 43.7 254
a 1366 451 916 5 687 588 628 13 704 96.1 609 11 695 85. 610
4 757 250 507 10 467 54.6 412 24 465 90.6 374 20 457 79.8 377
5 1173 387 786 10 668 78.1 590 22 675 124.4 551 18 666 109.1 557
6 2003 661 1342 11 1145 141.1 1004 20 1180 205.6 974 17 1160 182.9 978
7 1211 399 811 8 795 83.5 711 26 786 161.2 625 23 773 146A 626
81589 524 1065 8 954 100.0 854 21 976 175.1 801 18 956 152.2 804
9 1268 418 850 8 763 80.0 683 25 772 154.8 618 22 760 140.4 620

10 1408 464 943 7 819 81.5 746 21 841 150.7 690 17 823 130.2 693
11 1133 374 759 11 710 87.7 623 22 696 129.0 568 20 690 120.2 570
12 1037 342 696 10 62272.9 549 20614 107.0 507 17 606 95. 510
13 1076 355 721 76809680.0549 19 618104.1 514 15 605 88.8 516
14 1105 36 741 8 671 70.5 600 24 682 132.9 550 18 661 106.1 558
15 121 396 805 10 663 77.8 585 19 671 183.5 557 15 660 95.3 555
16 m 293 596 11 547 67A 480 275 74 120.2 453 17 54986.7 462
17 1025 338 687 11615 75.7 5m 20 603 1043 496 208603104.9 498
18 937 309628 10 5684 68.6 515 23572 108.3 464 23572 106. 464
19 986 325 681 9 607 67.3 540 24 612 119.1 493 16 587 89.3 496
20 798 263 535 13 493 68.4 426 24 486 94.8 391 22 483 88.9 394
21 602 228 464 14 444 62.8 382 28 438 94.1 344 24 431 84.3 347
22 577 190 386 14 376 53.1 823 28 377 80.9 296 21 367 65.6 301
23 697 230 467 10 484 50.9 383 26 436 89.7 347 20 422 73.5 348
24 596 198 399 14 375 53.0 322 23 364 69.2 294 20 359 62.4 296
25 574 189 385 10 366 42.9 323 27 356 74.5 281 21 348 62.2 286
26 580 191 389 12 348 45.0 303 24 348 67.9 280 18 341 55.6 286
27 407 134 272 15 262 38.4 224 27 264 55.7 208 19 257 43.3 214
28 475 157 318 12 287 37.1 249 21 288 51.7 236 15 284 41.8 242
29 432 142 289 14 266 37.7 229 27 273 574 215 18 263 42.9 220
30 387 126 259 13 227 30.7 196 21 225 40.4 186 16 223 33.7 189

Mean 90 1298.J 607 10.2 540 62.8 478 22.3 544 101.1 442 17.9 533 87.6 448
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Table 3.12 Prediction Model Variances, No-Attack Case

Note: Prod = variance of a new prediction; Eat = variance of estimate of expected value of sorties flown; p = no
of terms in made including intercept.

Full Model 10% Reduced Model Minimum MSE Ner Min MSE

Day Pred lgt 1M61 p Pred Zot MS p Prod A WME p Prod EIt ME

1 48 14 29 8 252.6 22 19 25 4.2 20 9 24 2.7 22
2 SW 112 227 8 198 20.8 178 19 197 83.2 164 13 192 26.0 166
S 239 79 160 13 146 19.6 125 22 144 26.7 118 16 142 21.7 121
4 290 96 196 7 172 16.9 15 23 178 83.7 144 14 170 24.0 146
5 828 107 217 9 197 21.9 175 22 198 8.8 159 17 191 30.1 161
6 150 49 100 16 107 16.3 91 30 102 23.0 79 21 103 18.4 84
7 846 114 232 6 219 20.3 199 23 215 41.0 174 16 209 32.0 177
8 810 267 543 10 505 59.4446 26 506 108.5 403 24 502 98.1 404
9 998 328 668 8 682 71.4 11 27 64 135.9 510 23 632 120.0 512

10 240 79 161 14 147 20.6 126 23 147 27.7 119 16 145 22.1 123
11 899 132 267 8 222 23A 199 19 225 38.0 187 14 219 30.5 188
12 381 126 255 12 231 29.8 201 23 233 44.0 189 16 229 34.8 194
18 274 90 184 11 177 21.8 158 24 176 34.2 141 16 171 25.9 145
14 425 140 285 7 236 23.3 218 19 243 41.3 202 14 237 33.4 204
15 325 107 218 11 190 23.4 167 21 195 35.1 160 14 190 26A 163
16 334 110 224 12 210 27.3 183 24 210 41.0 169 18 207 33.7 173
17 255 84 171 12 185 23.9 161 34 182 44." 138 20 178 31.0 147
18 228 75 153 17 149 23.5 125 27 149 31.3 117 20 147 25.5 122
19 602 199 404 18 397 64.8 832 30 395 88.8 307 23 385 73.0 312
20 335 110 224 18 232 379 194 30 231 51. 179 23 224 42.5 181
21 291 96 195 16 211 32.1 179 33 206 49.2 15 24 201 39.5 161
22 298 96 196 12 184 23.8 160 25 182 30.6 145 17 179 28.4 151
28 280 92 187 18 189 25.5 163 27 182 38.2 144 21 179 32.1 147
24 265 87 178 14 186 26.3 160 32 187 43.8 144 19 182 30.5 152
25 847 115 233 10 216 25.3 191 22 214 39.7 175 18 212 34.7 177
26 441 145 25 12 29 388 25 29 291 63.8 227 21 283 50.9 232
27 698 230 468 14 47166.4 404 30 477107.0 370 26 467 95.5 371
28 638 210 427 14 417 58.7 359 27 415 87.1 328 24 411 80.3 331
29 504 166 338 12 831 42.8 288 27 326 68.5 258 23 323 61.3 261
30 541 178 362 12 334 4.33 291 22 336 61.92 274 17 330 51.9 278

ME 3 881286 0W 1LS 12493 1.7 217 15.32 50.3 197 18.6 242 41.9 20o

3.10.4 Selection of Prediction Models. For this data set, when the

purpose of the metamodel is prediction the preferred models are those

developed using minimum MSE (and thus maximum adjusted R2) as the

criterion for selecting variables. The consistently low bias exhibited by

these models outweighs the marginally higher variances compared to the

other models. The low bias, relative to the full models, is a function of
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including more terms than the other models, which is further reason to

recommend these models, given that testing for bias was accomplished at

only two design points. The most conservative approach is to include as

many terms as possible, without excessively inflating variance and the

minimum MSE models achieve this goal better than all the others.

3.10.5 The Prediction Models. The models chosen for prediction are

presented in Appendix A and Appendix B for the attack and no-attack cases

respectively. The minimum F value is 4.5 for the attack models is and 3.8

for the no-attack models, with corresponding probabilities of achieving those

values of F by chance of no more than 0.0001. Many of the terms in the

models would be considered insignificant in an explanatory model, with

values of t clore to 1, and significance levels for the least significant variable

typically 0.3, but we have seen that the terms are important in controlling

bias without contributing to excess variance. Finally, residual analysis

revealed nothing to suggest that the residuals are other than normally

distributed with expected value zero.

3•10.6 Validation of the Models. To better validate the prediction

models, comparisons should be made between the predicted values and the

results of simulation runs carried out at design points other than those used

in the original simulation. This is a task that is outside the scope of this

research.
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3.11 Models for Exnlanation

3.11.1 Overview. Developing models to explain the behaviour of the

airbase system, based on the results of a simulation experiment, is a much

more subjective task than developing models for prediction. In general, we

are seeking models with as few terms as will adequately identify the most

important factors in airbase operability. In practical terms, it is important

that we find the terms that have the greatest effect on the performance of

the base because it is unlikely that there will ever be sufficient resources to

optimise the level of all the factors. It is also important that we know how

large an effect that the chosen factors have on sortie generation so that

policy makers can relate the cost of resource allocations to the additional

level of capability provided. For example, the factor that has the most

impact on number of sorties generated may be prohibitively expensive to

provide at its high level, while several less important factors may provide

worthwhile gains relative to their cost. The form of regression metamodel

proposed by Diener (1989:42-43) effectively provides the information

required. The magnitudes of the regression coefficients indicate both the

effect that a resource has on sortie generation, and, when compared to the

other coefficients, the relative importance of that factor. Relative

" importance can also be assessed by examining the contribution that a factor

makes to the explanation of variance in a model, that is, the partial R2 for

that factor. Study of the partial R2 is useful because the regression

coefficients tend to understate the differences in relative importance
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between the factors. For example, the most important terms commonly

have a regression coefficient less than double that of the next most

important term, but contribute three or more times as much to the

explanation of variance as measured by partial R2.

3.12 Usin 'g Soificance Levelh to Develop Exlanatorv Models

One approach to developing explanatory models is to presuppose a

minimum significance level for the variables to be included in a model, and

then use some form of stepwise regression technique to find the model that

meets the significance criterion. We have already seen that because the

variables in this data set have completely independent effects on a model,

forward selection is the most efficient technique, and is certain to find the

1best' subset of variables which are significant at the specified level, where

'best' implies the subset with the highest RW value. A corollary to the

previous observation is that models developed using a low significance level

(a) will always be subsets of models with higher significance levels, thus

implying that a variable that is not included in a model at, for example, the

0.10 level will never appear in models with terms significant at less than

a=0.10.

3.12.1 Forward Selection. By setting a significance level at which a

term is able to enter a model, we are testing the null hypothesis Ho that the

true value of the coefficient for that term is zero. The chosen significance

level a represents the probability of Type I error in the test, that is, the

3.60



probability of including a term in the model when in fact it has no effect.

For our purpose of identifying the important factors affecting sortie

generation, a relatively low significance level would appear to be

appropriate so that we can concentrate on factors that are highly unlikely to

be in a model by chance alone. We already have models that were

developed with a significance level of 0.10, so appropriate levels of a for

further investigation are 0.05 and 0.01. Lower significance levels than used

for the existing models are chosen for two reasons. First, as we observed in

Chapter I, the existing models contain so many terms that analysis and

explanation are difficult; and second, lower significance levels reduce the

risk of rejecting true null hypotheses when many tests are carried out. At

lower significance levels fewer terms will be included and hopefully a

clearer relationship between the variables and sorties generated will

emerge. The compromise we make, however, is that our measure of fit, R1,

reduces as variables are removed. To illustrate the effect of reducing the

significance level, Tables 3.13, 3.14, and 3.15 present the main effects

included in the metamodels for the attack case with terms significant at the

0.10, 0.05, and 0.01 levels respectively. The complete metamodels are

presented in Appendix C, Tables C.1, C.2, and C.3. Tables D.1, D.2, and

D.3 in Appendix D contain complete metamodels for the no-attack case at

the same three significance levels used in the attack case. Tables 3.16 and

3.17 compare the number of terms included and the R2 value for each model

for the attack case and no-attack case respectively. The unadjusted R2 is
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tabulated to show how much of the total explainable variance a reduced

model captures, with the full model showing the maximum that can be

explained for any day.

Table 3.13 Daily Metamodels, Attack Case, Alpha = 0.10

Main Effects
DAY Intercept Attrit Fill ABDR Recov Pen AIS Spt Eq Spares Miss Fuel

A B C D E F G H J K
1 89.6 12.0
2 83.2 40.6
3 104.3 22.3 3.8
4 92.3 -3.1 9.5 3.5
5 102.1 8.7 6.9 4.1 4.8
6 166.2 10.8 5.4 11.3
7 148.6 10.6 9.0 3.9
8 145.7 15.3 4.9 5.9
9 137.3 12.2 6.8 9.1

10 132.3 14.2 4.6 10.1.
11 127.1 15.8 3.9 9.7 3.8
12 121.2 16.0 8.9 5.3
13 116.5 16.8 9.7
14 110.3 14.1 8.5 5.3
15 106.8 15.6 4.3 7.8 4.6
16 100.0 13.4 3.4 7.7 4.7
17 95.9 12.7 6.8 4.6
18 89.0 11.2 7.3 5.2 3.7
19 86.5 12.4 6.0 5.1 4.1
20 79.2 11.3 7.1 3.6
21 74.5 10.3 3.6 6.1 5.8
22 69.6 8.9 3.0 7.7 4.8
23 65.7 9.6 6.2 4.8
24 62.1 10.4 2.8 5.5 5.2
25 59.0 9.9 4.5 5.1
26 55.6 8.8 5.5 4.8
27 51.6 9.6 2.5 2.5 5.6 3.8
28 48.7 8.6 2.6 3.9 4.8
29 46.6 7.8 3.5 3.5
30 42.9 7.6 3.3 4.2
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Table 3.14 Daily Metamodels, Attack Case, Alpha = 0.05

Main Effects
DAY Intercepi Attrit Fill ABDR Recov Pets AIS Spt Eq Spares Miss Fuel

A B C D E F G H J K
1 89.6 12.0
2 83.2 40.6

& 3 104.3 22.3
4 92.3 9.5
5 102.1 8.7 6.9 4.8
6 166.2 10.8 11.3
7 148.6 10.6 9.0
8 145.7 15.3 5.9
9 137.3 12.2 6.8 9.1

10 132.3 14.2 10.1
11 127.1 15.8 9.7
12 121.2 16.0 8.9 5.3
13 116.5 16.8 9.7
14 110.3 14.1 8.5 5.3
15 106.8 15.6 7.8 4.6
16 100.0 13.4 7.7 4.7
17 95.9 12.7 6.8 4.6
18 89.0 11.2 7.3 5.2
19 86.5 12.4 6.0 5.1 4.1
20 79.2 11.3 7.1
21 74.5 10.3 3.6 6.1 5.8
22 69.6 8.9 7.7 4.8
23 65.7 9.6 6.2 4.8
24 62.1 10.4 5.5 5.2
25 59.0 9.9 4.5 5.1
26 55.6 8.8 5.5 4.8
27 51.6 9.6 5.6 4.7
28 48.7 8.6 3.9 4.8
29 46.6 7.8 3.5 3.5
30 42.9 7.6 3.3 4.2
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Table 3.15 Daily Metamodels, Attack Case, Alpha = 0.01

Main Effects
DAY Intercep Attrit Fill ABDR Recov Pers AIS Spt Eq Spares Miss Fuel

A B C D E F G H J K
1 89.6 12.0
2 83.2 40.6
3 104.3 22.3
4 92.3 9.5
5 102.1 8.7 6.9
6 166.2 10.8 11.3
7 148.6 10.6 9.0
8 145.7 15.3
9 137.3 12.2 6.8 9.1

10 132.3 14.2 10.1
11 127.1 15.8 9.7
12 121.2 16.0 8.9
13 116.5 16.8 9.7
14 110.3 14.1 8.5
15 106.8 15.6 7.8
16 100.0 13.4 7.7
17 95.9 12.7 6.8
18 89.0 11.2 7.3
19 86.5 12.4 6.0
20 79.2 11.3 7.1
21 74.5 10.3 6.1 5.8
22 69.6 8.9 7.7 4.8
23 65.7 9.6 6.2
24 62.1 10.4 5.5 5.2
25 59.0 9.9 5.1
26 55.6 8.8 5.5 4.8
27 51.6 9.6 4.7
28 48.7 8.6 4.8
29 46.6 7.8
30 42.9 7.6 4.2
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3.12.2 Assessment of Models. Attack Case, The models developed

using a significance level of 5% show the important variables and their

interactions more clearly than the baseline 10% models. Comparison of

Table C.1 with Table C.2 shows that in general, the terms that the 5%

models exclude appear only in isolated instances in the 10% models.

Although a few terms still appear on only one or two days, there are far

fewer isolated occurrences of variables. The more consistent inclusion of

variables makes the determination of the important factors and their

interactions easier. The 5% models clearly show that there are relatively

few important factors and interactions, and that most of the significant

interactions only have effects in the second half of the thirty-day period.

The notable exception is the interaction between spares and filler aircraft,

which shows a strong reinforcing effect during the six day attack period.

Table C.3 shows that the models with terms significant at 1% exclude terms

that appear consistently in the 5% and 10% models. For example, all the

missiles and fuel and spares and fuel interactions, and most of the

personnel and missiles and AIS and fuel interactions are excluded.

Although we can be more certain at a significance level of 1% that the terms

included in a model are truly significant, the risk of Type II error, that is,

the risk of rejecting terms that should be included, is higher than for

a = 0.05 or a = 0.10. Although no measure of the Type II error was

calculated, the wholesale elimination in the 1% models of terms consistently
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important in both the larger models suggests that the risk of Type II error

is unacceptably high.

Table 3.16 Comparison of R2 Values for Attack Case Models

R Full RW 10% Rl 5% WI 1%
Day Model Sigpificance Terms Sinifance Terms Significance Terms

1 0.75 0.71 2 0.71 2 0.71 1
2 0.94 0.93 8 0.92 4 0.92 3
3 0.82 0.78 5 0.77 4 0.76 2
4 0.72 0.61 10 0.54 4 0.52 2
5 0.70 0.62 10 0.57 6 0.52 2
6 0.59 0.48 11 0.37 4 0.34 2
7 0.69 0.53 8 0.48 4 0.46 2
8 0.62 0.47 8 0.41 4 0.35 1
9 0.66 0.53 8 0.48 4 0.48 3

10 0.65 0.51 7 0.48 5 0.44 2
11 0.71 0.60 11 0.54 6 0.48 2
12 0.73 0.63 10 0.59 7 0.52 2
13 0.71 0.61 7 0.58 4 0.56 2
14 0.71 0.59 8 0.55 5 0.51 2
15 0.68 0.61 10 0.56 6 0.52 3
16 0.72 0.62 11 0.59 8 0.50 2
17 0.70 0.60 11 0.57 9 0.45 2
18 0.69 0.57 10 0.56 9 0.42 2
19 0.69 0.56 9 0.56 9 0.43 2
20 0.72 0.63 13 0.56 9 0.44 2
21 0.74 0.65 14 0.64 13 0.51 4
22 0.74 0.64 14 0.58 9 0.48 3
23 0.69 0.56 10 0.52 7 0.44 2
24 0.74 0.65 14 0.60 9 0.50 3
25 0.74 0.62 10 0.62 10 0.48 3
26 0.71 0.62 12 0.60 10 0.54 6
27 0.77 0.70 15 0.67 11 0.57 5
28 0.72 0.64 12 0.62 10 0.52 4
29 0.71 0.62 14 0.58 11 0.43 2
30 0.71 0.63 13 0.59 9 0.50 4

Mean 0.72 0.62 10.2 0.58 7.1 0.51 2.5

3.12.3 Comparison of RW Values. Attack Case. Table 3.16 shows that

for all but a few days, the 5% models achieve RW values nearly as high as
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the larger 10% models. The 5% models average 81% of the full model R2,

compared to 86% for the 10% models and 71% for the 1% models. The table

also shows during the first fifteen days the 1% models also achieve R2

values closely comparable with the 10% models, but in the last fifteen days,

the performance of the 1% models declines markedly. The lower R2 values

for the 1% models in the last half of the period correspond well with the

rejection of most of the interaction terms significant in the larger models.

3.12.4 Recommended Models. Attack Case. For the attack case, the

models with terms significant at a level of 0.05 are considered to be the best

compromise for identifying the most important factors and interactions,

while still capturing most of the explainable variance in the models. The

minimum value of F for any of the 5% models is 6.8, with a corresponding

probability of F or higher of no more than 0.0001. Analysis of the residuals

for the 5% models included normal probability plots, and plots of residuals

against fitted values. With the exception of the plot of residuals against

fitted values for the first day, no indications were found to suggest that the

models are invalid. The unusual residual plot for the first day is attributed

to the inclusion of only one variable, besides the blocking terms, in the

model for that day. The plot is included in Appendix J.

3.12.5 Assessment of Models. No-Attack Case. The assessment of the

no-attack case models is not as straightforward as for the attack case

models. Table D.1 shows that the generally consistent appearance of factors

over time observed in the attack case models is less pronounced in the
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Table 3.17 Comparison of RW Values for No-Attack Case Models

RWFull 2 10% R 5% R2 1%
Day Model Significance Terms Significance Terms Significance Terms

1 0.65 0.53 0.49 0.47 3
2 0.68 0.57 0.52 0.48 2
3 0.70 0.61 0.50 0.48 2
4 0.61 0.45 0.42 0.40 3
5 0.64 0.50 0.46 0.38 2
6 0.79 0.69 0.65 0.57 6
7 0.64 0.45 0.43 0.38 2
8 0.64 0.50 0.47 0.36 3
9 0.82 0.71 0.69 0.67 4
10 0.82 0.77 0.74 0.71 6
11 0.79 0.73 0.73 0.69 3
12 0.81 0.74 0.67 0.66 2
13 0.85 0.78 0.75 0.72 3
14 0.76 0.68 0.66 0.65 3
15 0.80 0.74 0.70 0.66 2
16 0.84 0.78 0.76 0.69 2
17 0.87 0.80 0.76 0.73 2
18 0.86 0.81 0.78 0.69 3
19 0.74 0.66 0.60 0.44 5
20 0.78 0.70 0.68 0.50 5
21 0.84 0.77 0.71 0.65 3
22 0.80 0.72 0.70 0.65 4
23 0.83 0.74 0.71 0.64 2
24 0.82 0.73 0.66 0.60 2
25 0.73 0.62 0.60 0.57 5
26 0.70 0.57 0.52 0.45 4
27 0.64 0.50 0.36 0.30 4
28 0.71 0.60 0.55 3.41 3
29 0.76 0.67 0.61 0.56 4
30 0.75 0.67 0.66 0.55 4

Mean 0.76 0.66 0.62 0.56 3.3

no-attack models, with terms in the 10% models often included for a day or

two, and then reappearing several days later. Determining what effects are

important is less clear cut. For example, is a factor that appears

sporadically on six or seven occasions important compared to a factor that

appears on five consecutive days? Reducing the significance level to 5%
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tends to remove more of the terms that occur sporadically, while retaining

intact most of the consecutive groups. Though not as clear as the 5%

models in the attack case, the 5% models in the no-attack case are easier to

analyse than the 10% models and do not mask any factors or interactions

that are apparently important. Also, the 5% models do not seriously distort

when the factors are important during the thirty days. The 1% models,

however, remove so many terms that if not for the magnitude of the

interaction coefficients included, particularly for the fillers and fuel

interaction during the last four days, we could conclude that interactions

are not important in the no-attack case. If, using the 1% models, we decide

that a factor is important if it appears on several consecutive days, we

would reach conclusions as to the important factors similar to conclusions

based on the larger models, with the exception of the fillers and fuel

interaction. We would not, however, notice to the same extent that some

main factors and interactions are more or less important depending upon

when during the thirty days we observe their effect.

3.12.6 Comnarison of R' Values. No-Attack Case. The 5% models

achieve on average 82% of the full model R2, compared to 87% for the 10%

models. Reducing the significance level to 1% results in a more substantial

drop in RW, with the 1% models averaging only 74% of the full model R2.

The relatively large drop in RW for the 1% models suggests that they do not

fit the data particularly well.
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3.12.7 Recommlnded Models. No-Attack Case. A significance level of

5% again results in the best compromise between model fit and ease of

interpretation. The 5% models are all highly significant, with a minimum F

value of 4.9, and all p-values no more than 0.0001. Analysis of the

residuals shows no serious departures from normality, and plots of the

residuals against the fitted values also indicate no serious shortcomings in

the models, except possibly for the last three days. Some of the residuals

fall along a straight line angled through the origin, although the majority

are randomly scattered. The straight line marks a boundary, beyond which

no residuals are observed. The reason for the boundary, which also appears

in the residual plots for the 10% models, was not established. The plots for

the last three days for both significance levels are included in Appendix J.

3-12.8 Statistical Comparisons of Models. Both Cases. We have

already noted that models with lower significance levels are subsets of

models with higher significance levels, so it is possible to test the smaller

models against the larger using a general linear test (GLT), with the aim of

determining whether or not the terms not in the smaller model are

significantly different from zero. For the purposes of the test, the larger

model is equivalent to a full model, and the smaller model is the reduced or

constrained model. Setting a null hypothesis that the coefficients of the

terms not included in the smaller model were equal to zero and testing the

5% significance models against the 10% models resulted in much higher

than expected values of P. Because both numerator and denominator
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degrees of freedom are different in most models, p-values were calculated,

resulting in a maximum p-value for the F statistic of 0.09 for both the

attack and no-attack case, and an average value of 0.02 over the thirty

models in each case. Such low p-values would lead to rejection of the null

hypothesis with a = 0.05 on all but three days in the attack case, and all

but four days in the no-attack case. Although an initial conclusion might be

that the 5% models are inadequate, further examination of the variables

being excluded and the nature of the GLT reveals that the low p-values are

what we would expect to see, and that the GLT is of relatively little use in

comparing the models.

3.12.9 Limitations of the General Linear Test. The first point to note

is that the p-value exceeds 0.05 only when the larger and smaller models

differ by only one variable. Also, for those seven days, the significance level

of the last term in the larger model is equal to the calculated p-value for the

GLT. The GLT therefore is able to accurately measure the effect of a single

variable, but when the difference between models is more than one variable,

we are testing the combined effect of all the variables not included in the

smaller model. It is also important to note that the variables being tested

by the GLT have similar sums of squares, and that because they were

included in the larger model, must have been significant at between 10%

and approximately 5%. If their significance level had been appreciably less

than 5% in the larger model, they would have been included in the smaller

model, and would not be the subject of our test. The GLT considers the
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relative difference in SSE between the models, and the change in degrees of

freedom, so that two or more variables, which must have substantial sums

of squares to have been in the larger model in the first place, will have a

large effect on SSE, for a very small change in degrees of freedom compared

to the denominator degrees of freedom. For example, on day ten in the

attack case, the last two variables that appear in the 10% model are

excluded from the 5% model. Their significance levels in the 10% model are

0.0613 and 0.0668, and their sums of squares are 2664 and 2556. The sum

of squares of the last variable included in the 5% model is 3301, so the

combined effect of the two excluded variables relative to variables that are

included is sufficient for the GLT to return a low p-value of 0.03. In

hindsight, the GLT is inappropriate to compare models developed using

significance levels. For a single variable not included in a smaller model,

we already know that it is not significant at a given level, or it would have

been included. For groups of variables, we already know that they are all

individually not significant in the smaller model, and testing as a group

cannot add additional information, and in fact may be misleading because of

the combined effects of several moderately significant variables.

3.13 An Alternate Auproach to Model Develoument

An alternate approach to developing explanatory models is to take

advantage of the independence of the variables and examine their effect and

importance individually. Because the variables act independently we know

3.72



that the most significant variable in a full model will always be the most

significant in a reduced model, and similarly for the second most significant

and subsequent variables. To illustrate, if we wish to examine a model with

two terms, we simply rank the terms that appear in a full model by their

sum of squares contribution, and choose the first two, knowing that their

significances will not reduce when combined, and conversely, that none of

the 53 terms excluded could increase in significance if combined either with

the selected terms or each other. As an approach to model reduction,

knowing the order in which terms will enter a model and the contribution

that they will make allows all model sizes to be very quickly evaluated

without having to carry out any computer runs except an initial full model

regression. A significant advantage to evaluating all the variables based on

their contribution to a model is that any distinct groups of variables making

similar contributions can be readily identified, and either included or

excluded as a group, instead of being possibly split by a technique based on

significance level.

3.13.1 Outline of Technique. Before outlining this alternative to

stepwise regression we stress that this technique is only applicable when

the variables make independent contributions to a regression model, that is

the Type I and Type IT[ sums of squares are equal for all variables. A key

point for the use of this procedure is to recognise that of the thousands of

variable combinations possible, only 55 practically useful models exist,

because it is counterproductive in terms of RW to add variables to a model in
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other than their sorted sequence. For example, a six variable model

containing the first five variables and the seventh will not fit as well as the

model containing the first six variables. If useful models must contain

terms in their sorted sequence, then the number of models to consider

reduces to the total number of available terms, that is 55. The starting

point for this technique is to produce a full model to obtain analysis of

variance information, sums of squares for each variable, an intercept

parameter estimate, and parameter estimates for all the variables. The

SAS REG procedure is capable of producing all the necessary output. The

next step is to sort the output in decreasing order of the sum of squares for

each variable. This sorted output now represents the order in which the

variables would be selected by an automatic forward selection procedure. A

model therefore comprises the last term considered, and all the previous

terms in the sorted list. Given that the total sum of squares for any model

(SSTO) is a constant, it is a simple matter to calculate partial RW for every

variable. The cumulative total of the partial sum of squares, starting with

the most significant variable and ending with the last variable for that

model size is thus the model W2. Adjusted BW, CP, and MSE for each model

size may be readily calculated, as well as the value of the t statistic for the

last, that is, least significant variable to enter the model. Recalling that we

found the variances for each predictor to be equal in any model, the common

value for the variance of the predictors in each size model may also be

calculated. An example of the tabulated data for the first twenty models for
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the first day of the no-attack case is provided in Table E.1 in Appendix E.

Note that in Table E.1, the Type I and Type II sums of squares for the

blocking terms are not equal. This does not affect the analysis, because the

blocking terms are always the first seven terms forced into any model.

3.13.2 Appliction of tha Techniau_ Once the variables are sorted

and their contributions to the model tabulated, the relative importance of

each variable is quickly apparent. Decision rules for selection of variables

may then be applied. For example, a simplistic decision rule could be to

include only the first five variables in a model, regardless of significance.

Another rule could be to only include variables explaining at least one

percent of the overall variance. Any number of decision rules can be

formulated: the point is that the modeler has some additional flexibility in

specifying the model, and better knowledge of how the variables relate to

that model. An additional application is that models produced using

stepwise methods can be quickly compared to the sorted list to ensure that

no overly arbitrary divisions among the variables have occurred.

3.13.3 Limitations. The technique described in the preceding

paragraphs is specifically intended to assist in the process of deciding which

variables to include in a model and does not provide all the information of a

computer generated regression model, particularly F and t values and their

associated probabilities. Once the variables have been selected, however,

running a computer regression with those variables selected will provide the

required details.
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3.13.4 Decision Rule. The technique described above was used to

choose variables which were then forced into regression models. The

decision rule used to choose variables involved some degree of subjectivity,

because the full models are all very different. The basic rule was to look for

a reasonably clear division between the most significant variables and the

less significant remainder, but some modifications were required. Where

one variable was dominant in the model, the next most important variable

(or group of variables) was also included if it was distinct from the

remainder. Where no particularly clear break was evident, a cutoff of

approximately one percent difference between successive partial R2 values

was used. In some cases, the decision rule caused a substantial reduction in

R2, but was clearly able to identify the most important variables. The

resulting model for the attack case are presented in Table F.1 in Appendix

F. Table G.1 in Appendix G contains the models for the no-attack case.

Comparisons of R2 for these models, the full models (maximum possible R2),

and the 1% significance models are included in Table 3.18.

3.13.5 Graphical Summary of Potential Mode13. A graphical

summary of the sorted variables is included in Appendices H and I. The

graphs contain the twenty most significant variables for each day, and show

both partial R2 and the regression coefficient for each variable. As the

largest model developed using significance levels contains seventeen

variables, twenty variables were included to ensure that all useful model

3.76



Table 3.18 Comparison of W2 Values, Subjective Selection

R2, Attack Case R2, No-Attack Case

Full 1% Subjective Full 1% Subjective
Day Model Significance Selection Model Significance Selection

1 0.75 0.71 0.71 0.65 0.47 0.47
2 0.94 0.92 0.92 0.68 0.48 0.44
3 0.82 0.76 0.77 0.70 0.48 0.48
4 0.72 0.52 0.54 0.61 0.40 0.40
5 0.70 0.52 0.57 0.64 0.38 0.41
6 0.59 0.34 0.41 0.79 0.57 0.51
7 0.69 0.46 0.48 0.64 0.38 0.43
8 0.62 0.35 0.41 0.64 0.36 0.36
9 0.66 0.48 0.48 0.82 0.67 0.67
10 0.65 0.44 0.48 0.82 0.71 0.64
11 0.71 0.48 0.48 0.79 0.69 0.69
12 0.73 0.52 0.52 0.81 0.66 0.63
13 0.71 0.56 0.56 0.85 0.72 0.66
14 0.71 0.51 0.51 0.76 0.65 0.62
15 0.68 0.52 0.49 0.80 0.66 0.66
16 0.72 0.50 0.50 0.84 0.69 0.67
17 0.70 0.45 0.45 0.87 0.73 0.73
18 0.69 0.42 0.42 0.86 0.69 0.64
19 0.69 0.43 0.43 0.74 0.44 0.44
20 0.72 0.44 0.44 0.78 0.50 0.50
21 0.74 0.51 0.51 0.84 0.65 0.63
22 0.74 0.48 0.45 0.80 0.65 0.62
23 0.69 0.44 0.47 0.83 0.64 0.64
24 0.74 0.50 0.50 0.82 0.60 0.60
25 0.74 0.48 0.48 0.73 0.57 0.57
26 0.71 0.54 0.41 0.70 0.45 0.50
27 0.77 0.57 0.57 0.64 0.30 0.36
28 0.72 0.52 0.52 0.71 0.41 0.38
29 0.71 0.43 0.43 0.76 0.56 0.58
30 0.71 0.50 0.50 0.75 0.55 0.55

sizes can be estimated. Models may be estimated from the graphs by

including the desired number of variables, starting with the variable closest

to the origin and progressively adding variables. The regression coefficients

can be read from the graphs because we showed earlier that each variable

has the same coefficient in a model regardless of the other terms included.
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The intercept values, which are always the mean of the observed values,

are presented in Table H. 1 and Table 1.1, at the end of Appendix H and

Appendix I respectively. The graphs contain the essential information

presented in a sorted list of the variables, and allow an immediate

assessment of which variables are important on a given day, and how much

they affect the sorties generated. Although partial R2 is shown for each

variable, model R2 cannot be estimated from the graphs because the effect of

the blocking variables is not included. The regression coefficients and

partial R2 share a common scale, where regression coefficients are in units,

and partial R2 is expressed as a percentage.

3.13.6 Model Assessment. It is clear from the tables that the models

developed using a subjective assessment of the sorted variables are

practically identical to the models developed using a significance level of

1%, with respect to both the terms appearing in the models, and the R2

values for the models. Such a result is not unexpected, because the decision

rule chooses the few variables that are clearly more important than the

remainder. The decision rule ensures that we do not make any artificial

divisions between variables of practically equal importance, but in doing so

it is somewhat biased towards choosing a small number of variables with

high relative importance, without considering that some of the less

relatively important variables may well be important in the absolute sense.

We have already determined that the 1% significance models were

inadequate in explaining the behaviour of the system, and the same
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conclusion must apply to these subjectively selected models. However, if

our purpose was to screen the variables originally proposed prior to further

experimentation, a selection technique such as this which is able to quickly

and easily determine the most important factors would be highly useful.

3.14 Secific PuMose versus All-PurpMse Models

In developing models thus far, we have specified either prediction or

explanation as the purpose for the models, and have not considered whether

the resulting models could adequately serve both purposes. The first point

to note is that neither of the specialised sets of models is suitable for other

than its intended purpose. The prediction models, for example, contain on

average over three times as many terms as the models recommended for

explanation. Such a large number of terms, some of which are not

significant even at the 30% level, would make an explanatory model

excessively complex, and greatly hinder meaningful analysis. The 5%

significance models were quickly rejected as possible prediction models

because of their large prediction errors relative to the full models. The

remaining sets of models examined are the 10% significance models and the

near minimum MSE models. The 10% models, although reasonably well

suited for explanation are not suitable for prediction because of the 21%

mean absolute percentage error observed in Table 3.8 for all factors low in

the attack case. The near minimum MSE models were found to be almost

as capable for prediction as the preferred minimum MSE models, but
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average over twice as many terms as the explanatory models, and

frequently contain terms not significant at the 20% level, and are therefore

also unsuitable for the purpose of explanation. Given the extent of the

difference between the specialised models, it is unlikely that a good

compromise could be found between the model sizes considered, and we

therefore conclude that for this data, the purposes of prediction and

explanation are incompatible, and specialised models are required for each

purpose.

3.15 &nMUM=

This chapter has completed the exploration of alternative metamodels

for the airbase operability simulation and a brief summary of the main

points in the chapter is provided below. In the next chapter, the lessons

learned from the exploration are presented, followed by conclusions, and

recommendations for future research.

3.15.1 Existing Database and Experimental Design. The database

and the experimental design from the previous research were found to

restrict the development of new models to the same polynomial linear

regression form used in the previous research.

3.15.2 Unexnected Regression Results. Preliminary analysis of the

original models revealed unexpected results in the equivalence of different

regression techniques, and the constancy of the intercept and regression

coefficients between models containing different numbers of variables. The

3.80



results are attributable to the orthogonal experimental design, and although

the behaviour is documented, it receives little more than a passing mention

in the literature consulted.

3.15.3 DesiWk Tmplications. The orthogonality of the experimental

design was found to greatly narrow the possibilities in developing new

models. The techniques generally recommended to find the best

combination of variables to include in a model were found to be largely

inapplicable because the variables all have independent effects. Stepwise

regression, specifically forward selection, was determined to be completely

effective in finding the best subset of variables for any significance level,

while adapted best subsets techniques were shown to be practical for

exploratory model development.

315.4 Prediction Models. Two sets of models for prediction were

developed and compared with both the full models and the baseline 10%

significance models. The best models for prediction were found to contain

substantially more terms than the baseline models, and were shown to have

less bias when compared with the full models, and less variance. The full

models, while completely unbiased, were shown to be unsuitable for

prediction because of the excess variance caused by the inclusion of

numerous insignificant terms.

3.15.5 Explanatory Models., Two techniques were proposed for

developing explanatory models: one based on the significance level of the

variables included in the models; and another based on a subjective
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assessment of the relative importance of the candidate variables. Forward

stepwise selection was used to develop models with terms significant at the

5% and the 1% levels. Comparison with the baseline models suggested that

the 1% significance level was too low, and that too much information was

lost. The 5% significance models, however, were considered to contain

substantially the same information as the 10% models, but with fewer

spurious terms to complicate the analysis. The 5% models are therefore

recommended for the purpose of explanation. Models developed using an

assessment of the relative importance of the variables proved to be

practically identical to the 1% significance models, and were also rejected

for explanation purposes.
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IV. Conclusions. Lessons Learned. and Recommendations

4.1 Introduction

This chapter presents conclusions regarding the exploratory research

into alternative metamodels for Diener's airbase operability simulation

(1989). The lessons learned during the exploration are also presented, and

are mainly concerned with what can be expected in developing metamodels

from a large scale simulation experiment, what techniques are appropriate

and work well, and what techniques are of less use and should be avoided.

Also included in this chapter are recommendations for further research.

4.2 Condlusion

In this section, the research objectives stated in Chapter I are

addressed and overall conclusions regarding the research are presented.

4.2.1 Research Objective. The research objective stated in Chapter I

was to investigate whether alternative metamodels other than those derived

by Diener can be used to effectively represent the results of Diener's

simulation. To achieve the objective, three questions were posed.

4.2.1.1 Question One. What is the purpose of the metamodel?

For example, is understanding general relationships in the system as

simulated the primary goal, or do we wish to make predictions about the

response of the simulation under different conditions? Do different goals

require different models?

4.1



4.2.1.2 question Two. What are the important criteria in

determining the suitability of a metamodel? For example, is the overall fit

of the model the primary criterion, or are there other important factors to

consider?

4.2.1.3 Question Three. How does the nature of the output

data, and the experimental design on which it is based, limit or restrict the

types of metamodels that can be developed?

4.2.2 Conclusions - Question One. The investigation showed that for

large scale simulations such as Diener's airbase operability simulation, the

purpose of a metamodel is of critical importance to the development of a

metamodel and the choice of variables for inclusion in the model. Separate

models were developed for explanation and prediction, and neither was

found to be suitable for the other purpose. Single all-purpose models were

considered, but found to be a poor compromise for the specialised models.

4.2.3 Conclusions - Question Two. The important criteria for

determining the suitability of a metamodel were found to depend upon the

purpose for which the model was developed. Explanatory models

concentrate on finding the least number of variables which are best able to

explain the important relationships in the system. The criteria for

accepting such models may be reasonably objective, for example,

predetermining a significance level for the model and accepting the

outcome, or may be more subjective, whereby the analyst may compare

several models and make a judgement about which makes the best
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compromise between simplicity and thorough explanation. Goodness of fit,

measured by R2, is used less as a criterion for suitability than as a measure

of performance. Judging the suitability of predictive models, on the other

hand, can be done more objectively. Predictive models seek a balance

between low bias and low variance of a prediction, both of which may be

calculated. Although a compromise must be made because bias and

variance reach their minima in different sized models, comparison with

acceptable tolerances can make the compromise more objective. Goodness of

fit will be better than for explanatory models, and may prove to be a useful

criterion for suitability if the adjusted RW measure is maximised.

4.2.4 Conclusions - Question Three. The existing database and the

experimental design on which it is based was found to be very restrictive,

more so than had been expected, on the form of metamodel possible and the

techniques available to derive the models. The metamodel form was limited

to the same polynomial form proposed by Diener, and linear least squares

regression was found to be the only appropriate technique for deriving the

models.

4.2.5 Conclusions - Research Objective Overall. Only partial success

can be claimed in developing alternative metamodels for the airbase

operability simulation. The models developed for prediction, while of the

same functional form as the existing models, are significantly different in

the number of terms included, and can be shown to achieve better results in

predicting the response of the simulation, both in terms of bias and the
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variance of the response. The models suggested for explanation, however,

do not differ greatly from the existing models, and without deeper

knowledge of the airbase operability problem it is inappropriate to suggest

that the preferred models in this research are a better alternative to the

existing models. An important positive aspect of the similarity between the

new and existing models is that this research has shown that there are no

unusual models not discovered in the original research that could upset the

findings of that research.

4.2.6 Other Achievements. Although the goal of developing

alternative metamodels was only partially achieved, the exploration process

has provided a number of lessons which it is hoped will be of use to

researchers working on similar problems. The lessons learned are

presented in the following sections.

4.3 Lessons Related to Ex erimental Desien

Several important lessons learned in this research are related to the

experimental design chosen in the previous research. Understanding the

design and its properties is essential if metamodels are to be successfully

developed.

4.3.1 Model Form. The experimental design was found to limit the

model form to polynomial linear regression models. This limitation will

apply generally to any design that uses qualitative, or indicator, variables

at only two levels. The two levels of the variables cannot define any other
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than linear relationships between the dependent variable and the

independent variables, so that quadratic or higher terms are meaningless.

The inclusion of interaction terms is another aspect of model form that is

dependent on the experimental design. When a fractional factorial design is

used, the resolution of the design dictates whether or not interaction effects

are confounded with other interaction effects or even main effects. The

Resolution V design used in the prior research did not confound any main

effects or their first order (two-way) interactions, but we need to be aware of

the capabilities of an experimental design to ensure that an inappropriate

model form is not specified.

4.3.2 Design Matrix Properties. A particularly important lesson from

this research is that the properties of the design matrix depend upon how it

is coded. However, before examining the properties of the design matrix,

the experimental design and the design matrix should be distinguished.

The experimental design determines the number of simulation runs

required, and the combination of input factors for each run. For example,

Diener's experimental design requires 128 different runs, with the first

simulation run to be carried out with all factors at their low level (1989:45).

The design matrix allows us to numerically represent the level of each

variable for each run, so that we have a value of each independent variable

for regression analysis. The coding of the design matrix is the numerical

value we assign to the low and high levels of the variables, but the

underlying experimental design is the same, regardless of how the variables
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are coded. The properties of the design matrix in which we are interested

are correlation between the independent variables, and whether or not the

matrix is orthogonal. For the data in this research, when the low level is

coded as 0 and the high level as 1, there is no correlation between the

independent variables, and the design matrix is not orthogonal. When the

low level code is changed to -1, however, there is still no correlation between

the variables, but the design matrix is now orthogonal. The effects of

orthogonality and why it is highly desirable will be discussed shortly. This

lesson is important because coding the design matrix is a choice usually left

to the researcher, and in the absence of clear guidance we may well choose

a (0,1) coding scheme because model analysis can be simpler. For example,

variables effectively drop out of a (0,1) coded model when set to their low

level. The key point is that before choosing a coding scheme, the properties

of the design matrix with that scheme should be confirmed. As the only

practical choices of coding scheme for a two level design are (0,1) and (-1,1),

checking the properties of the design matrix for both schemes is feasible. A

design matrix, X, is orthogonal if XýX is a diagonal matrix, that is, all terms

except on the main diagonal are zero. For an orthogonal (-1,1) coded design

matrix, the terms -n the main diagonal will all be equal to the number of

rows, that is, design points, in the design matrix.

4.3.3 Design Matrix Effect on Regression Analysis. A lesson related

to the properties of the design matrix is the effect that those properties

have on the regression analysis used to develop metamodels. An orthogonal
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design matrix is highly desirable because it ensures that every variable

makes a completely independent contribution to the explanation of variance

in the model, thus greatly simplifying the development and analysis of the

regression models. Analysis is simplified because with no correlation

between the variables, there is also no covariance, and the calculation of

model variance reduces to the sum of the predictor variances. Additionally,

because the terms on the diagonal of the Xf matrix are all equal, the

predictor variances are also all equal. Finally, because the variables each

have an independent effect on the model, the coefficients of variables that

are in a model will not change as other variables are added to or removed

from the model.

4.3.4 An Initial Stratery. From the discussion above, a first step

prior to starting regression is to confirm the properties of the chosen design

matrix. A useful second step is to ensure that the data will behave as

suggested by the properties of the design matrix by examining the four

types of sums of squares described in Chapter IH. Such an examination can

be readily accomplished using the SAS GLM procedure, and requesting as

an option all four types of sums of squares.

"4.4 Regression Model Develonment

Several lessons in regression model development arise from the

independent and constant effect that variables have when the design matrix

is orthogonal. We find that automated techniques are affected, and that a
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manual technique for selecting models may in fact be preferable to a range

of automated techniques.

4.4.1 Automated Model Selection Techniques. The first lesson

relating to model development is that a simple forward selection process

will always find the best model for a given significance level. The forward

selection process begins with no variables in the model and adds the most

significant variable not in the model, continuing until none of the remaining

variables are significant at the chosen level. It is stressed that this lesson

applies to a designed experiment with an orthogonal design matrix and

uncorrelated independent variables. The second lesson is that for a

particular selection criterion, the same model will result regardless of the

regression technique used. Both these lessons can make a significant

difference to the way the regression analysis of a large scale experiment is

carried out. First, conventional wisdom usually suggests that using

automatic model selection techniques carries the risk that some unusual

combination of variables might not be detected, and that the unusual

combination could greatly influence our results. When we know that such a

risk is absent, we can rely on the efficiency and convenience of an automatic

search and be confident that the resulting models are valid. Second, if all

automatic techniques are equally effective, then the most efficient should be

used. In selecting from a large number of possible variables it will usually

be the case that relatively few will be included, so a forward selection

technique is preferable to backward elimination because forward selection
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requires fewer steps, and thus takes less time and produces less output to

analyse. As we saw in this research, the difference can be very substantial

with one example where forward selection was complete after one step,

while backward elimination took 54 steps to reach the same conclusion. A

stepwise procedure which both selects and eliminates variables reduces to a

forward selection, because terms will never be eliminated once they have

been added, so again, the simple forward selection technique is preferred.

4.4.2 Other Computerised Model Selection Techniques. Although

forward selection will be effective in finding a model for a specific

significance level we have already seen that the commonly used significance

levels can be arbitrary. Also, evaluation of a range of model sizes is

cumbersome. Two techniques, only one of which proved to be useful, were

used in an attempt to avoid the limitations of forward selection when

searching for models based on criteria other than significance level. Both

techniques were applied based on the premise that for this type of data,

there is no benefit in considering other than the best model of a particular

size.

4.4.2.1 The SAS RSQUARE Procedure. The technique found

to be useful is the SAS RSQUARE procedure, which is able to provide a

selection of statistics on the desired range of model sizes in an easily

comparable form. RSQUARE was most useful in finding the models with

maximum adjusted RW. Important considerations for the use of the

RSQUARE procedure are that onlv the single best subset model of a given
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size should be requested; and that the maximum number of variables that

the procedure can accept appears to be approximately fifty. The size

limitation was avoided in this research by not including the least significant

variables in the pool of variables for selection, as the model sizes considered

would never include these variables. A shortcoming, however, of reducing

the pool of variables so that the RSQUARE procedure can be used is that

some statistics, notably Mallow's C,, are reported incorrectly because the

procedure incorrectly assumes that the full model is the truncated pool of

variables. Although, for reasons that will be discussed shortly, Mallow's Cp

was found to be of no use in this research, it is possible that in other cases

C. could be useful and therefore reducing the pool of variables would be

unacceptable.

4.4.2.2 The SAS MaWimum R2 Procedure. The SAS Maximum

Rs procedure, although capable of quickly finding the best model for all

model sizes, was not found to be particularly useful in this research because

its unwieldy standard output made comparisons between different models

difficult. Maximum RW is designed to overcome the limitations of stepwise

regression when unusual variable combinations affect the regression results,

but in a dataset such as this, the procedure's capabilities are not required.

The manual search technique described in the previous chapter can provide

the same information as maximum RI, but in a more convenient form.
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4.5 MAnual Search IJWTehnia

A common problem with regression analysis involving many variables

is that the number of possible models grows exponentially as the number of

variables increases, so that for the data in this research, 2V, or

approximately 3.6 x 1016 different models could be formed from the ten

independent variables and their 45 interactions. Obviously an exhaustive

search of so many models is impossible. A very useful lesson from this

research is that when the variables make an independent contribution to a

model, the number of models that are of practical interest reduces to just

the number of variables, including interactions. An exhaustive search of,

for this research, 55 models is a much more practical proposition, especially

if the information about those models can be presented in a readily

comparable fashion. The manual search technique introduced in the

previous chapter achieves this goal because it provides in a single worksheet

nearly all the information required to choose the variables to include in a

model. The only additional information required is the probability

associated with the value of the t statistic. As software or tables are readily

available to calculate the probabilities, which represent the significance

level of the last variable to enter the model, all the information to select a

model is available. A sample worksheet and the corresponding p-values are

provided in Appendix E, in Tables E.1 and E.2 respectively.

4.5.1 Model Selection. Models can be selected on the basis of

significance by choosing the largest model with a probability for the t
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statistic less than or equal to the desired significance level. Other selection

methods that are easily used include selection of a fixed number of

variables, subjective selections as used in the previous chapter, or selection

of variables with regard to mamimum adjusted R2, which is equivalent to

minimulm SEL. Although this particular lesson was learned too late to

greatly assist the present research, we can see that when the data behaves

in a fashion similar to the data in this research, the model selection process

can be reduced to choosing the model that satisfies the desired criteria from

a spreadsheet table.

4.5.2 Advantages. Some advantages of using this technique are that

all models of practical interest can be assessed simultaneously, that several

selection criteria can be applied together, and that the chosen model's

performance on other than the selection criterion can be evaluated. Possibly

the greatest advantages, however, are that the analyst's judgement can

replace the inflexibility of a computerised technique, and that numerous

computer runs and the subsequent analysis of their output can be avoided

altogether. The only computer runs required are the initial regression of

the full model to provide the data for the table, and a final run with the

selected model to provide residual data, and to present the model and its

analysis of variance table in more conventional form. Other aspects of this

manual technique that could prove useful are the ease of producing visual

aids to regression analysis from the sorted data. The graphs in Appendices

H and I showing regression coefficients and partial RW for models with up to
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twenty variables are one example. Plots of adjusted R2 or C. against the

number of predictors, both of which are often recommended for model

selection, are other visual aids that could be easily produced from the

spreadsheet.

4.5.3 Disadvantags. The main disadvantage of using the manual

search technique is the overhead in importing and sorting the full model

information and setting up worksheets. For simple analysis where the

criterion for model selection is well defined, and only a single model needs

to be produced, the overhead is probably not justified. A minor

disadvantage is the requirement for a spreadsheet with reasonably powerful

data importing and sorting capabilities.

4.6 Model Selection Criteria

A number of problems were encountered with the application of

several model selection criteria, specifically adjusted WI and Mallow's Cp

statistic. Without another dataset for comparison, it is considered likely but

not certain that these problems stem from the very large number of

observations relative to the number of variables included in the models.

4.6.1 Adjusted R?. Adjusted R proved to be useful only for selecting

models for prediction purposes, as the statistic did not reach a maximum

until variables were significant at typically the 30% level. From Equation

3.9 we see that when n is large relative to p, only small reductions in SSE

are needed for adjusted R2 to continue increasing. We can therefore expect
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that in an experiment with many observations, the use of adjusted RW as a

model selection criterion will result in models with 'elatively many terms,

some of which will be largely insignificant.

4.6.2 Mallow's C.. Mallow's C. statistic was found to be of no use in

this research because, for the model sizes of interest, the statistic often took

a negative value, a possibility not mentioned in the literature on the topic.

The reason for this behaviour is not as clear as for adjusted RW, nor can we

generalise about the behaviour of Cp in other experiments. From Equation

3.10 the large number of observations relative to model size has a major

influence in reducing Cp below zero, but the ratio of SSE to MSE depends

strongly on the individual data. The best we can do is point out that it is

possible for Cp to be negative when there are many observations but

relatively few terms in a model.

4.7 Purmose of the Metamodels

On a number of occasions during this research, we have highlighted

the difference between the two main purposes of simulation metamodels;

that is, use of the metamodels to predict the response of the simulation to a

particular set of input conditions; and use of the metamodels to understand

and explain the primary relationships between the simulation response and

the independent variables. Indeed, we have shown that for the data in this

research, the two purposes are not compatible, and require distinctly

different models. While it may not necessarily be the case in all situations
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that different models are required for the two purposes, it is more likely

that the forms of the models will diverge as the number of variables and

interactions that are considered increase. Several lessons that emerge from

the distinction between the purposes are discussed below.

4.7.1 Prediction, When developing models for prediction, the

primary consideration is finding a model which results in an accurate

prediction with minimal variance. Thus, the specific terms that are

included in a predictive model are of much less concern than their aggregate

effect on the prediction. The first lesson to arise is that because variance as

well as bias must be considered it is likely that the full model, which is

unbiased, will not be useful for prediction because of the large variance

involved. This observation should hold for most experiments where a

relatively large number of variables make very small predictive

contributions to their models while still adding variance. The implication,

therefore, is that a tradeoff is required between the amount of bias in a

reduced model and its prediction variance. The acceptable level of bias and

the desired precision of a prediction will be different in every experiment,

and cannot be generalised. The second lesson is that calculation of the

variance is surprisingly straightforward when the design is orthogonal. We

saw in Chapter IT[ that no covariance is present, so summing the individual

variances provides an estimate for the variance of the expected value of the

response. Adding MSE to the sum of the variances provides an estimate for

the variance of a new prediction. Because the two aspects of prediction,
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that is, predicting a new response, or estimating the expected value of the

response, have different variance calculations, it is possible that different

models could be appropriate depending upon the specific purpose. In either

case, an understanding of the behaviour of the individual predictor

variances, their sum, and MSE as the number of terms in a model varies is

essential to developing good predictive models.

4.7.2 Ex lanation. The key lesson in developing models for

explanation is the degree of subjective assessment required in striking a

balance between parsimony and ensuring that all important effects have

been captured. Unlike predictive models, we are highly interested in

individual variables, the exclusion or inclusion of which could make a large

difference to our interpretation of the model. To reduce the impact of

subjectivity, it is recommended that a range of models be developed and

compared before choosing a final explanatory model.

4.8 Lessons Learned Summary

The lessons described above highlight various aspects of developing

regression metamodels that are likely to confront a researcher. None of the

lessons are particularly profound, but taken as a whole, they have the

potential to ease the model development and analysis task for similar data.

An underlying theme of the lessons learned in this research has been the

effect of an orthogonal design matrix on the analysis of large multiple

regression models, and it must be stressed that these lessons are applicable
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only to data meeting the dual requirements of an orthogonal design matrix,

and no correlation among the independent variables.

4.9 Recommendations for Further Research

Several areas for possible further research are evident, including

examination of similar data to the data used in this research, some

experimental design issues, and the time dependent aspect of the

metamodels.

4.9.1 Examination of Similar Data. The techniques proposed during

this research and highlighted in the lessons learned depend to a large

extent on the independent behaviour of the variables in a regression model.

Further research is required to establish that the behaviour of the variables

in this research is common to other large scale designed experiments using

similar orthogonal designs. A related issue is to establish whether the

manual search technique outlined in this research has practical application

to other problems.

4.9.2 Experimental Design Isnes. This research found that the

existing experimental design was limiting with regard to model form and

model development techniques. Future research could examine the

alternate experimental designs, with the aim of possibly finding an

alternate functional form for the models. Clearly, such future research is a

major undertaking, because the simulations would have to be repeated

under the new designs. An extension to the current design would be to
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introduce a third level for the variables identified as important in the

existing models, and then use response surface methodology to derive

metamodels, while a completely different form of design such as the

frequency domain experiments described by Starbird (1990) may be a

possibility. It is likely that any alternative experimental design would be

more complex than the two level design used by Diener, so the number of

variables considered in Diener's original research could become

unmanageable. A possible solution could be to consider the existing

research as a screening experiment in which the existing metamodels have

identified the important variables and interactions which thus merit further

attention in more complex designs.

4.9.3 Time Dependent Aspects. It is clear from the metamodels that

the effects that some variables have on sortie generation vary from day to

day, but we are unable to represent this time dependent behaviour in the

existing models. We saw in Chapter Id that other research with time series

output used a single value to characterise the time series (Kleijnen et al.,

1979). Such an approach was briefly considered for the data in this

research, but seems inadequate for a relatively short time series in which

each element is important. Using a single value for each time series has

the effect of collapsing all thirty metamodels into one model, but still does

not tell us anything about the effect of a variable at a given time.

Incorporating the time dimension into some sort of model is clearly a highly
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challenging problem which unfortunately this researcher is only able to

highlight, without offering any additional assistance.
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AMndi&& A.: Daily Metamodels for Prediction. Attack Case

Attack Case Max Adj Rsqr Day 1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 11 29849.96875 2713.63352 27.210 0.0001
Error 116 11568.50000 99.72845
C Total 127 41418.46875

Root MSE 9.98641 R-square 0.7207
Dep Mean 89.60938 AdJ R-sq 0.6942
C.V. 11.14438

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 89.609375 0.88268256 101.519 0.0001
B1 1 -10.171875 2.33535854 -4.356 0.0001
B2 1 3.453125 2.33535854 1.479 0.1420
B3 1 -13.359375 2.33535854 -5.720 0.0001
B4 1 2.828125 2.33535854 1.211 0.2284
B5 1 16.828125 2.33535854 7.206 0.0001
B6 1 8.703125 2.33535854 3.727 0.0003
B7 1 -2.609375 2.33535854 -1.117 0.2662
D 1 11.953125 0.88268256 13.542 0.0001
BH 1 1.046875 0.88268256 1.186 0.2380
JK 1 -0.953125 0.88268256 -1.080 0.2825
GK 1 -0.921875 0.88268256 -1.044 0.2985
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Attack Case Max Adj Rsqr Day 2

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 25 381325.25000 15253.01000 60.428 0.0001
Error 102 25746.62500 252.41789
C Total 127 407071.87500

Root MSE 15.88766 R-square 0.9368
Dep Mean 83.21875 AdJ R-sq 0.9212
C.V. 19.09145

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 83.218750 1.40428444 59.261 0.0001
Bi 1 -6.531250 3.71538739 -1.758 0.0818
82 1 57.281250 3.71538739 15.417 0.0001
B3 1 -29.406250 3.71538739 -7.915 0.0001
B4 1 6.031250 3.71538739 1.623 0.1076
85 1 46.406250 3.71538739 12.490 0.0001
B6 1 -16.593750 3.71538739 -4.466 0.0001
B7 1 -35.406250 3.71538739 -9.530 0.0001
D 1 40.578125 1.40428444 28.896 0.0001
CJ 1 -11.812500 1.40428444 -8.412 0.0001
BH 1 8.875000 1.40428444 6.320 0.0001
CE 1 2.828125 1.40428444 2.014 0.0467
HJ 1 -2.812500 1.40428444 -2.003 0.0479
AG 1 2.765625 1.40428444 1.969 0.0516
BE 1 2.484375 1.40428444 1.769 0.0799
E 1 2.203125 1.40428444 1.569 0.1198
ER 1 -2.125000 1.40428444 -1.513 0.1333
EJ 1 2.015625 1.40428444 1.435 0.1542
F 1 1.937500 1.40428444 1.380 0.1707
DE 1 1.906250 1.40428444 1.357 0.1776
EH 1 1.796875 1.40428444 1.280 0.2036
DG 1 -1.781250 1.40428444 -1.268 0.2075
HK 1 -1.640625 1.40428444 -1.168 0.2454
C 1 1.562500 1.40428444 1.113 0.2685
AB 1 -1.500000 1.40428444 -1.068 0.2880
AJ 1 1.468750 1.40428444 1.046 0.2981
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Attack Cane Max Adj Rsqr Day 3

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 19 263118.75000 13848.35526 22.749 0.0001

Error 108 65744.75000 608.74769
C Total 127 328863.50000

Root MSE 24.67281 R-square 0.8001
Dop Mean 104.31250 Adj R-sq 0.7649
C.V. 23.65279

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 104.312500 2.18078914 47.832 0.0001

a1 1 -9.750000 5.76982574 -1.690 0.0939
B2 1 20.312500 5.76982574 3.520 0.0006
83 1 -23.625000 5.76982574 -4.095 0.0001

B4 1 28.312500 5.76982574 4.907 0.0001

B5 1 7.125000 5.76982574 1.235 0.2196
B6 1 63.875000 5.76982574 11.071 0.0001
B7 1 -34.375000 5.76982574 -5.958 0.0001

D 1 22.328125 2.18078914 10.239 0.0001

BH 1 14.968750 2.18078914 6.864 0.0001
CJ 1 -5.390625 2.18078914 -2.472 0.0150
E 1 3.812500 2.18078914 1.748 0.0833
AC 1 -2.953125 2.18078914 -1.354 0.1785
FJ 1 2.890625 2.18078914 1.325 0.1878
BE 1 2.750000 2.18078914 1.261 0.2100
BJ 1 -2.625000 2.18078914 -1.204 0.2313
AE 1 -2.625000 2.18078914 -1.204 0.2313
B 1 -2.593750 2.18078914 -1.189 0.2369
AK 1 -2.312500 2.18078914 -1.060 0.2913
A 1 2.250000 2.18078914 1.032 0.3045
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Attack Case Max Adj Rsqr Day 4

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 30 81833.56250 2727.78542 7.292 0.0001
Error 97 36286.65625 374.08924
C Total 127 118120.21875

Root MSE 19.34139 R-square 0.6928

Dep Mean 92.32813 Adj R-sq 0.5978
C.V. 20.94853

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-O Prob > ITI

INTERCEP 1 92.328125 1.70955321 54.007 0.0001
B1 1 3.734375 4.52305265 0.826 0.4110
B2 1 0.296875 4.52305265 0.066 0.9478
B3 1 29.671875 4.52305265 6.560 0.0001
B4 1 9.359375 4.52305265 2.069 0.0412
B5 1 17.109375 4.52305265 3.783 0.0003
B6 1 -12.828125 4.52305265 -2.836 0.0056
87 1 -12.890625 4.52305265 -2.850 0.0053
D 1 9.484375 1.70955321 5.548 0.0001
BH 1 6.390625 1.70955321 3.738 0.0003
EG 1 -4.703125 1.70955321 -2.751 0.0071
HK 1 -3.500000 1.70955321 -2.047 0.0433
G 1 3.453125 1.70955321 2.020 0.0462

JK 1 -3.421875 1.70955321 -2.002 0.0481
AF 1 -3.062500 1.70955321 -1.791 0.0763
C 1 -3.062500 1.70955321 -1.791 0.0763
CF 1 -2.984375 1.70955321 -1.746 0.0840
E 1 2.828125 1.70955321 1.654 0.1013
FG 1 2.812500 1.70955321 1.645 0.1032
a 1 2.687500 1.70955321 1.572 0.1192
BD 1 2.593750 1.70955321 1.517 0.1325
CJ 1 -2.531250 1.70955321 -1.481 0.1419
DG 1 -2.328125 1.70955321 -1.362 0.1764
BJ 1 2.218750 1.70955321 1.298 0.1974
FH 1 2.171875 1.70955321 1.270 0.2070
DF 1 -2.062500 1.70955321 -1.206 0.2306
HJ 1 -2.031250 1.70955321 -1.188 0.2377
CG 1 -1.968750 1.70955321 -1.152 0.2523
CH 1 -1.953125 1.70955321 -1.142 0.2561
AG 1 -1.796875 1.70955321 -1.051 0.2958
F 1 1.781250 1.70955321 1.042 0.3000
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Attack Came Max Adj Rsqr Day 5

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 28 117481.53125 4195.76897 7.617 0.0001
Error 99 54533.08594 550.83925
C Total 127 172014.61719

Root MSE 23.46996 R-square 0.6830
Dep Mean 102.05469 Adj R-sq 0.5933
C.V.' 22.99744

Parameter Estimates

Parameter Standard T for HO:
Variable DF EstimateO Error Parameter-0 Prob > ITI

INTERCEP 1 102.054688 2.07447142 49.196 0.0001
B1 1 7.132812 5.48853547 1.300 0.1968
B2 1 -22.367188 5.48853547 -4.075 0.0001
B3 1 53.257813 5.48853547 9.703 0.0001
B4 1 4.820312 5.48853547 0.878 0.3819
85 1 -1.804688 5.48853547 -0.329 0.7430
B6 1 2.695312 5.48853547 0.491 0.6245
B7 1 -11.804688 5.48853547 -2.151 0.0339
B 1 8.726563 2.07447142 4.207 0.0001
D 1 6.945313 2.07447142 3.348 0.0012
BH 1 5.414063 2.07447142 2.610 0.0105
G 1 4.789063 2.07447142 2.309 0.0230
BF 1 -4.757813 2.07447142 -2.294 0.0239
E 1 4.148438 2.07447142 2.000 0.0483
HK 1 -3.945313 2.07447142 -1.902 0.0601
HJ 1 -3.835938 2.07447142 -1.849 0.0674
CE 1 -3.632813 2.07447142 -1.751 0.0830
AH 1 -3.335938 2.07447142 -1.608 0.1110
AG 1 -3.257813 2.07447142 -1.570 0.1195
K 1 2.867188 2.07447142 1.382 0.1700
J 1 2.695313 2.07447142 1.299 0.1969
CH 1 -2.695313 2.07447142 -1.299 0.1969
BE 1 -2.585938 2.07447142 -1.247 0.2155
AK 1 -2.492188 2.07447142 -1.201 0.2325
FJ 1 -2.414063 2.07447142 -1.164 0.2473
BC 1 2.382813 2.07447142 1.149 0.2535
DJ 1 -2.382813 2.07447142 -1.149 0.2535
CG 1 -2.335938 2.07447142 -1.126 0.2629
FG 1 2.304688 2.07447142 1.111 0.2693
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Attack Case Max AdJ Rsqr Day 6

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 26 115118.26563 4427.62560 4.544 0.0001
Error 101 98422.16406 974.47687
C Total 127 213540.42969

Root MSE 31.21661 R-square 0.5391
Dep Mean 166.22656 Adj R-sq 0.4204
C.V. 18.77956

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 166.226563 2.75918476 60.245 0.0001
Bi 1 -30.851563 7.30011671 -4.226 0.0001
B2 1 9.710938 7.30011671 1.330 0.1864
B3 1 15.960938 7.30011671 2.186 0.0311
B4 1 11.335938 7.30011671 1.553 0.1236
B5 1 14.835938 7.30011671 2.032 0.0447
B6 1 -8.476563 7.30011671 -1.161 0.2483
B7 1 -26.601563 7.30011671 -3.644 0.0004
G 1 11.304688 2.75918476 4.097 0.0001
B 1 10.789063 2.75918476 3.910 0.0002
HJ 1 -6.539063 2.75918476 -2.370 0.0197
BH 1 5.835938 2.75918476 2.115 0.0369
E 1 5.445313 2.75918476 1.974 0.0512
HR 1 -5.273438 2.75918476 -1.911 0.0588
JK 1 -5.226563 2.75918476 -1.894 0.0611
FJ 1 -5.101563 2.75918476 -1.849 0.0674
FG 1 4.757813 2.75918476 1.724 0.0877
BK 1 4.742188 2.75918476 1.719 0.0887
CG 1 -3.648438 2.75918476 -1.322 0.1891
A 1 3.632813 2.75918476 1.317 0.1909
DG 1 -3.554688 2.75918476 -1.288 0.2006
CE 1 -3.195313 2.75918476 -1.158 0.2496
FK 1 -3.148438 2.75918476 -1.141 0.2565
BJ 1 3.070313 2.75918476 1.113 0.2685
DE 1 -2.945313 2.75918476 -1.067 0.2883
AJ 1 2.914063 2.75918476 1.056 0.2934
AK 1 -2.851563 2.75918476 -1.033 0.3038
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Attack Case Max Adj Rsqr Day 7

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 32 112545.68750 3517.05273 5.627 0.0001
Error 95 59375.92969 625.00979
C Total 127 171921.61719

Root MSE 25.00020 R-square 0.6546
Dep Mean 148.55469 Adj R-sq 0.5383
C.V. 16.82895

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 148.554688 2.20972599 67.228 0.0001
B1 1 -26.742188 5.84638544 -4.574 0.0001
B2 1 5.320313 5.84638544 0.910 0.3651
B3 1 23.007813 5.84638544 3.935 0.0002
B4 1 8.507813 5.84638544 1.455 0.1489
B5 1 17.382813 5.84638544 2.973 0.0037
B6 1 -6.117187 5.84638544 -1.046 0.2981
B7 1 -37.929688 5.84638544 -6.488 0.0001
B 1 10.554688 2.20972599 4.776 0.0001
G 1 8.960938 2.20972599 4.055 0.0001
HK 1 -5.351563 2.20972599 -2.422 0.0173
HJ 1 -4.570313 2.20972599 -2.068 0.0413
AR 1 -4.304688 2.20972599 -1.948 0.0544
H 1 3.945313 2.20972599 1.785 0.0774
BC 1 -3.914063 2.20972599 -1.771 0.0797
CJ 1 3.851563 2.20972599 1.743 0.0846
A 1 3.835938 2.20972599 1.736 0.0858
AK 1 -3.804688- 2.20972599 -1.722 0.0884
EF 1 -3.226563 2.20972599 -1.460 0.1475
GJ 1 3.164063 2.20972599 1.432 0.1555
AD 1 3.148438 2.20972599 1.425 0.1575
CE 1 -3.101563 2.20972599 -1.404 0.1637
JK 1 -3.007813 2.20972599 -1.361 0.1767
BG 1 2.992188 2.20972599 1.354 0.1789
FG 1 2.992188 2.20972599 1.354 0.1789
AB 1 2.773438 2.20972599 1.255 0.2125
DK 1 -2.773438 2.20972599 -1.255 0.2125
GH 1 -2.742188 2.20972599 -1.241 0.2177
CG 1 -2.726563 2.20972599 -1.234 0.2203
AJ 1 -2.648438 2.20972599 -1.199 0.2337
FH 1 2.351563 2.20972599 1.064 0.2899
CH 1 2.257813 2.20972599 1.022 0.3095
AE 1 -2.226563 2.20972599 -1.008 0.3162
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Attack Case Max Adj Rsqr Day 8

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 27 100693.96094 3729.40596 4.657 0.0001
Error 100 80079.90625 800.79906
C Total 127 180773.86719

Root MSE 28.29839 R-square 0.5570
Dep Mean 145.67969 AdJ R-sq 0.4374
C.V. 19.42508

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 145.679688 2.50124822 58.243 0.0001
B1 1 -22.179688 6.61768077 -3.352 0.0011
92 1 -0.054687 6.61768077 -0.008 0.9934
93 1 14.507813 6.61768077 2.192 0.0307
B4 1 5.757813 6.61768077 0.870 0.3863
B5 1 14.507813 6.61768077 2.192 0.0307
B6 1 -7.804687 6.61768077 -1.179 0.2410
B7 1 -24.929688 6.61768077 -3.767 0.0003
B 1 15.335938 2.50124822 6.131 0.0001
AK 1 -6.914063 2.50124822 -2.764 0.0068
G 1 5.898438 2.50124822 2.358 0.0203
CE 1 -4.929688 2.50124822 -1.971 0.0515
E 1 4.898438 2.50124822 1.958 0.0530
CJ 1 4.351563 2.50124822 1.740 0.0850
EF 1 -4.304688 2.50124822 -1.721 0.0883
HK 1 -3.914063 2.50124822 -1.565 0.1208
BC 1 -3.804688 2.50124822 -1.521 0.1314
HJ 1 -3.460938 2.50124822 -1.384 0.1695
CH 1 3.273438 2.50124822 1.309 - 0.1936
D 1 -3.226563 2.50124822 -1.290 0.2000
AB 1 3.132813 2.50124822 1.252 0.2133
BH 1 3.039063 2.50124822 1.215 0.2272
AH 1 -3.007813 2.50124822 -1.203 0.2320
K 1 2.914063 2.50124822 1.165 0.2468
AC 1 -2.851563 2.50124822 -1.140 0.2570
GK 1 2.695313 2.50124822 1.078 0.2838
DE 1 2.617188 2.50124822 1.046 0.2979
AG 1 -2.617188 2.50124822 -1.046 0.2979

A
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Attack Case Max Jdj Rsqr Day 9

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 31 103707.96875 3345.41835 5.416 0.0001
Error 96 59293.90625 617.64486
C Total 127 163001.87500

Root MSE 24.85246 R-square 0.6362
Dep Mean 137.28125 Adj R-sq 0.5188
C.V. 18.10332

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 137.281250 2.19666803 62.495 0.0001
B1 1 -21.531250 5.81183733 -3.705 0.0004
92 1 -0.531250 5.81183733 -0.091 0.9274
B3 1 17.531250 5.81183733 3.016 0.0033
B4 1 11.468750 5.81183733 1.973 0.0513
B5 1 16.156250 5.81183733 2.780 0.0065
B6 1 -11.656250 5.81183733 -2.006 0.0477
B7 1 -30.968750 5.81183733 -5.329 0.0001
B 1 12.156250 2.19666803 5.534 0.0001
G 1 9.093750 2.19666803 4.140 0.0001
E 1 6.765625 2.19666803 3.080 0.0027
AIR 1 -4.234375 2.19666803 -1.928 0.0569
AE 1 -4.000000 2.19666803 -1.821 0.0717
AK 1 -3.937500 2.19666803 -1.792 0.0762
AG 1 -3.890625 2.19666803 -1.771 0.0797
BC 1 -3.640625 2.19666803 -1.657 0.1007
HX 1 -3.578125 2.19666803 -1.629 0.1066
FJ 1 -3.546875 2.19666803 -1.615 0.1097
H 1 3.343750 2.19666803 1.522 0.1312
CE 1 -2.937500 2.19666803 -1.337 0.1843
J 1 2.906250 2.19666803 1.323 0.1890
DJ 1 -2.890625 2.19666803 -1.316 0.1913
A 1 2.703125 2.19666803 1.231 0.2215
EH 1 2.703125 2.19666803 1.231 0.2215
K 1 2.671875 2.19666803 1.216 0.2268
FG 1 2.640625 2.19666803 1.202 0.2323
BH 1 2.593750 2.19666803 1.181 0.2406
CG 1 -2.484375 2.19666803 -1.131 0.2609
BF 1 -2.484375 2.19666803 -1.131 0.2609
AS 1 2.359375 2.19666803 1.074 0.2855
DG 1 -2.328125 2.19666803 -1.060 0.2919
EF 1 -2.312500 2.19666803 -1.053 0.2951

A-9



Attack Case Max AdJ Rsqr Day 10

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 27 105628.00000 3912.14815 5.669 0.0001
Error 100 69009.50000 690.09500
C Total 127 174637.50000

Root MSE 26.26966 R-square 0.6048
Dep Mean 132.31250 AdJ R-sq 0.4981
C.V. 19.85425

Parameter Estimates

Paramater Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 132.312500 2.32193178 56.984 0.0001
01 1 -20.000000 6.14325405 -3.256 0.0015
B2 1 2.437500 6.14325405 0.397 0.6924
B3 1 21.500000 6.14325405 3.500 0.0007
B4 1 4.312500 6.14325405 0.702 0.4843
95 1 14.312500 6.14325405 2.330 0.0218
86 1 -6.000000 6.14325405 -0.977 0.3311
07 1 -32.125000 6.14325405 -5.229 0.0001
B 1 14.156250 2.32193178 6.097 0.0001
G 1 10.062500 2.32193178 4.334 0.0001
HK 1 -5.609375 2.32193178 -2.416 0.0175
BJ 1 5.078125 2.32193178 2.187 0.0311
E 1 4.562500 2.32193178 1.965 0.0522
FJ 1 -4.468750 2.32193178 -1.925 0.0571
AH 1 -3.609375 2.32193178 -1.554 0.1232
R 1 3.562500 2.32193178 1.534 0.1281
CJ 1 3.515625 2.32193178 1.514 0.1332
JK 1 -3.281250 2.32193178 -1.413 0.1607
AK 1 -3.218750 2.32193178 -1.386 0.1688
BG 1 3.093750 2.32193178 1.332 0.1858
CE 1 -3.093750 2.32193178 -1.332 0.1858
HJ 1 -2.796875 2.32193178 -1.205 u.2312
BC 1 -2.781250 2.32193178 -1.198 0.2338
DF 1 -2.703125 2.32193178 -1.164 0.2471
CD 1 2.531250 2.32193178 1.090 0.2783
BF 1 -2.453125 2.32193178 -1.057 0.2933
AD 1 2.453125 2.32193178 1.057 0.2933
CG 1 -2.375000 2.32193178 -1.023 0.3088
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Attack Case Max AdJ Rsqr Day 11

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 28 113769.56250 4063.19866 7.160 0.0001
Error 99 56182.43750 567.49937
C Total 127 169952.00000

Root MSE 23.82225 R-square 0.6694
Dep Mean 127.12500 Adj R-sq 0.5759
C.V. 18.73923

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 127.125000 2.10560889 60.374 0.0001
81 1 -16.250000 5.57091749 -2.917 0.0044
B2 1 -1.187500 5.57091749 -0.213 0.8316
B3 1 14.375000 5.57091749 2.580 0.0113
B4 1 1.625000 5.57091749 0.292 0.7711
B5 1 17.125000 5.57091749 3.074 0.0027
B6 1 -9.062500 5.57091749 -1.627 0.1070
87 1 -30.187500 5.57091749 -5.419 0.0001
B 1 15.765625 2.10560889 7.487 0.0001
G 1 9.718750 2.10560889 4.616 0.0001
AK 1 -5.437500 2.10560889 -2.582 0.0113
JK 1 -5.203125 2.10560889 -2.471 0.0152
CJ 1 4.937500 2.10560889 2.345 0.0210
EF 1 -4.453125 2.10560889 -2.115 0.0370
HK 1 -3.890625 2.10560889 -1.848 0.0676
C 1 3.890625 2.10560889 1.848 0.0676
K 1 3.843750 2.10560889 1.825 0.0709
FK 1 3.781250 2.10560889 1.796 0.0756
AH 1 -3.609375 2.10560889 -1.714 0.0896
DG 1 -3.562500 2.10560889 -1.692 0.0938
E 1 3.390625 2.10560889 1.610 0.1105
H 1 3.328125 2.10560889 1.581 0.1172
DE 1 3.078125 2.10560889 1.462 0.1469
BK 1 2.765625 2.10560889 1.313 0.1921
BD 1 -2.703125 2.10560889 -1.284 0.2022
DH 1 2.640625 2.10560889 1.254 0.2128
CD 1 2.421875 2.10560889 1.150 0.2528
CF 1 2.328125 2.10560889 1.106 0.2715
AD 1 2.250000 2.10560889 1.069 0.2879

A
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Attack Case Max Adj Rsqr Day 12

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 26 113489.00000 4364.96154 8.604 0.0001
Error 101 51241.87500 507.34530
C Total 127 164730.87500

Root MSE 22.52433 R-square 0.6889
Dep Mean 121.15625 AdJ R-sq 0.6089
C.V. 18.59114

Parazmter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 121.156250 1.99088803 60.855 0.0001
Bi 1 -16.906250 5.26739461 -3.210 0.0018
82 1 -2.906250 5.26739461 -0.552 0.5823
B3 1 17.843750 5.26739461 3.388 0.0010
B4 1 2.031250 5.26739461 0.386 0.7006
B5 1 16.156250 5.26739461 3.067 0.0028
B6 1 -8.718750 5.26739461 -1.655 0.1010
B7 1 -33.093750 5.26739461 -6.283 0.0001
B 1 16.000000 1.99088803 8.037 0.0001
G 1 8.859375 1.99088803 4.450 0.0001
H 1 5.281250 1.99088803 2.653 0.0093
AK 1 -5.000000 1.99088803 -2.511 0.0136
RK 1 -4.515625 1.99088803 -2.268 0.0254
FK 1 4.359375 1.99088803 2.190 0.0309
SH 1 4.062500 1.99088803 2.041 0.0439
EF 1 -3.828125 1.99088803 -1.923 0.0573
JK 1 -3.812500 1.99088803 -1.915 0.0583
E 1 3.359375 1.99088803 1.687 0.0946
C 1 3.250000 1.99088803 1.632 0.1057
BD 1 -3.062500 1.99088803 -1.538 0.1271
AH 1 -2.921875 1.99088803 -1.468 0.1453
DR 1 2.812500 1.99088803 1.413 0.1608
D 1 -2.718750 1.99088803 -1.366 0.1751
FH 1 2.593750 1.99088803 1.303 0.1956
GJ 1 2.250000 1.99088803 1.130 0.2611
A 1 2.171875 1.99088803 1.091 0.2779
CE 1 -2.140625 1.99088803 -1.075 0.2848
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Attack Case Max Adj Rsqr Day 13

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 25 109012.57031 4360.50281 8.484 0.0001
Error 102 52425.42188 513.97472
C Total 127 161437.99219

Root MSE 22.67101 R-square 0.6753
Dep Mean 116.49219 AdJ R-sq 0.5957
C.V. 19.46140

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 116.492188 2.00385317 58.134 0.0001
B1 1 -18.804688 5.30169716 -3.547 0.0006
B2 1 3.132812 5.30169716 0.591 0.5559
B3 1 15.632813 5.30169716 2.949 0.0040
B4 1 6.257813 5.30169716 1.180 0.2406
B5 1 13.007813 5.30169716 2.454 0.0158
B6 1 -4.179687 5.30169716 -0.788 0.4323
B7 1 -36.679687 5.30169716 -6.918 0.0001
B 1 16.820313 2.00385317 8.394 0.0001
G 1 9.726563 2.00385317 4.854 0.0001
JK 1 -4.367188 2.00385317 -2.179 0.0316
EJ 1 4.132813 2.00385317 2.062 0.0417
AK 1 -3.835938 2.00385317 -1.914 0.0584
BH 1 3.664063 2.00385317 1.829 0.0704
H 1 3.210938 2.00385317 1.602 0.1122
AH 1 -3.148438 2.00385317 -1.571 0.1192
BF 1 -3.132813 2.00385317 -1.563 0.1211
HK 1 -2.726563 2.00385317 -1.361 0.1766
C 1 2.554688 2.00385317 1.275 0.2052
FK 1 2.476563 2.00385317 1.236 0.2193
DH 1 2.351563 2.00385317 1.174 0.2433
EF 1 -2.335938 2.00385317 -1.166 0.2464
CG 1 -2.210938 2.00385317 -1.103 0.2725
AD 1 2.210938 2.00385317 1.103 0.2725
EG 1 -2.054688 2.00385317 -1.025 0.3076
GJ 1 1.960938 2.00385317 0.979 0.3301
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Attack Case Max Adj Rsqr Day 14

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 30 110732.59375 3691.08646 6.717 0.0001
Error 97 53302.90625 549.51450
C Total 127 164035.50000

Root MSE 23.44173 R-square 0.6751
Dep Mean 110.31250 Adj R-sq 0.5746
C.V. 21.25029

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 110.312500 2.07197539 53.240 0.0001
B1 1 -18.125000 5.48193160 -3.306 0.0013
B2 1 -0.500000 5.48193160 -0.091 0.9275
83 1 17.000000 5.48193160 3.101 0.0025
84 1 10.250000 5.48193160 1.870 0.0645
85 1 16.187500 5.48193160 2.953 0.0039
86 1 -10.437500 5.48193160 -1.904 0.0599
B7 1 -37.312500 5.48193160 -6.806 0.0001
B 1 14.093750 2.07197539 6.802 0.0001
G 1 8.546875 2.07197539 4.125 0.0001
H 1 5.250000 2.07197539 2.534 0.0129
FK 1 5.156250 2.07197539 2.489 0.0145
AH 1 -4.265625 2.07197539 -2.059 0.0422
EJ 1 4.062500 2.07197539 1.961 0.0528
CG 1 -3.843750 2.07197539 -1.855 0.0666
DH 1 3.406250 2.07197539 1.644 0.1034
EF 1 -3.359375 2.07197539 -1.621 0.1082
HK 1 -3.218750 2.07197539 -1.553 0.1236
E 1 3.078125 2.07197539 1.486 0.1406
JK 1 -2.859375 2.07197539 -1.380 0.1708
CD 1 -2.765625 2.07197539 -1.335 0.1851
AK 1 -2.640625 2.07197539 -1.274 0.2055
BH 1 2.593750 2.07197539 1.252 0.2136
AB 1 2.578125 2.07197539 1.244 0.2164
C 1 2.453125 2.07197539 1.184 0.2393
GJ 1 2.343750 2.07197539 1.131 0.2608
FJ 1 -2.265625 2.07197539 -1.093 0.2769
AG 1 -2.125000 2.07197539 -1.026 0.3076
CE 1 -2.125000 2.07197539 -1.026 0.3076
F 1 2.093750 2.07197539 1.011 0.3148
DG 1 -2.078125 2.07197539 -1.003 0.3184
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Attack Case Max Adj Raqr Day 15

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 25 108842.03125 4353.68125 7.816 0.0001
Error 102 56817.84375 557.03768
C Total 127 165659.87500

Root MSE 23.60165 R-square 0.6570
Dep Mean 106.78125 Adj R-sq 0.5730
C.V. 22.10280

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 106.781250 2.08611047 51.187 0.0001
B1 1 -19.843750 5.51932952 -3.595 0.0005
B2 1 2.406250 5.51932952 0.436 0.6638
B3 1 12.031250 5.51932952 2.180 0.0316
84 1 12.781250 5.51932952 2.316 0.0226
B5 1 19.218750 5.51932952 3.482 0.0007
36 1 -10.781250 5.51932952 -1.953 0.0535
B7 1 -34.031250 5.51932952 -6.166 0.0001
B 1 15.578125 2.08611047 7.468 0.0001
G 1 7.796875 2.08611047 3.738 0.0003
AK 1 -6.062500 2.08611047 -2.906 0.0045
EJ 1 5.015625 2.08611047 2.404 0.0180
H 1 4.609375 2.08611047 2.210 0.0294
C 1 4.265625 2.08611047 2.045 0.0435
JK 1 -4.234375 2.08611047 -2.030 0.0450
FK 1 3.953125 2.08611047 1.895 0.0609
AC 1 -3.578125 2.08611047 -1.715 0.0893
BH 1 3.500000 2.08611047 1.678 0.0965
AG 1 -3.421875 2.08611047 -1.640 0.1040
GK 1 3.3593"5 2.08611047 1.610 0.1104
F 1 2.609375 2.08611047 1.251 0.2139
CF 1 2.437500 2.08611047 1.168 0.2454
AD 1 2.187500 2.08611047 1.049 0.2968
CE 1 -2.046875 2.08611047 -0.981 0.3288
E 1 1.937500 2.08611047 0.929 0.3552
EF 1 -1.734375 2.08611047 -0.831 0.4077

4
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Attack Came Max Adj Rsqr Day 16

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 33 97796.69531 2963.53622 6.536 0.0001
Error 94 42620.10938 453.40542
C Total 127 140416.80469

Root Mgt 21.29332 R-square 0.6965
Dep Mean 100.03906 Adj R-sq 0.5899
C.V. 21.28500

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-O Prob > ITI

INTERCEP 1 100.039063 1.88208125 53.153 0.0001
B1 1 -22.101563 4.97951894 -4.438 0.0001
82 1 0.023437 4.97951894 0.005 0.9963
B3 1 11.023438 4.97951894 2.214 0.0293
B4 1 10.898438 4.97951894 2.189 0.0311
85 1 18.523438 4.97951894 3.720 0.0003
B6 1 -7.914063 4.97951894 -1.589 0.1153
87 1 -30.914063 4.97951894 -6.208 0.0001
B 1 13.429688 1.88208125 7.136 0.0001
G 1 7.695313 1.88208125 4.089 0.0001
H 1 4.742188 1.88208125 2.520 0.0134
FK 1 4.554688 1.88208125 2.420 0.0174
AX 1 -4.398438 1.88208125 -2.337 0.0216

ExJ 1 4.070313 1.88208125 2.163 0.0331
JK 1 -3.992188 1.88208125 -2.121 0.0365
HK 1 -3.757813 1.88208125 -1.997 0.0488
C 1 3.429688 1.88208125 1.822 0.0716
BH 1 3.257813 1.88208125 1.731 0.0867
FH 1 2.695313 1.88208125 1.432 0.1554
FJ 1 -2.664063 1.88208125 -1.415 0.1602
CF 1 2.539063 1.88208125 1.349 0.1806
AG 1 -2.335938 1.88208125 -1.241 0.2176
EX 1 2.320313 1.88208125 1.233 0.2207
CJ 1 2.304688 1.88208125 1.225 0.2238
AC 1 -2.195313 1.88208125 -1.166 0.2464
EH 1 -2.164063 1.88208125 -1.150 0.2531
GJ 1 2.164063 1.88208125 1.150 0.2531
BK 1 2.085938 1.88208125 1.108 0.2706
CE 1 -2.070313 1.88208125 -1.100 0.2741
EF 1 -2.070313 1.88208125 -1.100 0.2741
GK 1 2.007813 1.88208125 1.067 0.2888
DH 1 1.945313 1.88208125 1.034 0.3040
CG 1 -1.945313 1.88208125 -1.034 0.3040

1 1.898438 1.88208125 1.009 0.3157
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Attack Case Max Adj Rsqr Day 17

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 26 97814.32813 3762.08954 7.559 0.0001
Error 101 50267.85156 497.70150
C Total 127 148082.17969

Root MS8 22.30922 R-square 0.6605
Dep Mean 95.85156 Adj R-sq 0.5732
C.V. 23.27476

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 95.851563 1.97187550 48.609 0.0001
B1 1 -17.351563 5.21709218 -3.326 0.0012
B2 1 1.148437 5.21709218 0.220 0.8262
B3 1 10.023438 5.21709218 1.921 0.0575
84 1 8.523438 5.21709218 1.634 0.1054
B5 1 18.960938 5.21709218 3.634 0.0004
06 1 -5.539062 5.21709218 -1.062 0.2909
B7 1 -35.601562 5.21709218 -6.824 0.0001
B 1 12.710938 1.97187550 6.446 0.0001
G 1 6.820313 1.97187550 3.459 0.0008
A•K 1 -5.507813 1.97187550 -2.793 0.0062
JK 1 -5.070313 1.97187550 -2.571 0.0116
FK 1 4.664063 1.97187550 2.365 0.0199
H 1 4.601563 1.97187550 2.334 0.0216
FG 1 -4.554688 1.97187550 -2.310 0.0229
EG 1 -4.351563 1.97187550 -2.207 0.0296
BK 1 3.929688 1.97187550 1.993 0.0490
HK 1 -3.929688 1.97187550 -1.993 0.0490
EJ 1 3.070313 1.97187550 1.557 0.1226
GK 1 3.070313 1.97187550 1.557 0.1226
SH 1 2.898438 1.97187550 1.470 0.1447
CE 1 -2.882813 1.97187550 -1.462 0.1469
CJ 1 2.867188 1.97187550 1.454 0.1490
J 1 2.710938 1.97187550 1.375 0.1722
C 1 2.601563 1.97187550 1.319 0.1900
CD 1 -2.570313 1.97187550 -1.303 0.1954
HJ 1 2.492188 1.97187550 1.264 0.2092
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Attack Case Max AdJ Raqr Day 18

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 29 87353.00000 3012.17241 6.498 0.0001
Error 98 45424.87500 463.51913
C Total 127 132777.87500

Root MS8 21.52949 R-square 0.6579
Dep Mean 89.03125 Adj R-sq 0.5567
C.V. 24.18195

Par ameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 89.031250 1.90295644 46.786 0.0001
B1 1 -19.906250 5.03474950 -3.954 0.0001
92 1 0.531250 5.03474950 0.106 0.9162
B3 1 6.656250 5.03474950 1.322 0.1892
B4 1 4.656250 5.03474950 0.925 0.3573
B5 1 14.968750 5.03474950 2.973 0.0037
96 1 -6.093750 5.03474950 -1.210 0.2291
B7 1 -26.281250 5.03474950 -5.220 0.0001
B 1 11.187500 1.90295644 5.879 0.0001
G 1 7.328125 1.90295644 3.851 0.0002
H 1 5.156250 1.90295644 2.710 0.0080
GK 1 5.156250 1.90295644 2.710 0.0080
EJ 1 5.140625 1.90295644 2.701 0.0081
HK 1 -5.015625 1.90295644 -2.636 0.0098
CD 1 -4.328125 1.90295644 -2.274 0.0251
,.K 1 -4.031250 1.90295644 -2.118 0.0367
J 1 3.734375 1.90295644 1.962 0.0526
FK 1 3.078125 1.90295644 1.618 0.1090
AK 1 -3.046875 1.90295644 -1.601 0.1126
EF 1 -3.031250 1.90295644 -1.593 0.1144
FH 1 2.968750 1.90295644 1.560 0.1220
CE 1 -2.828125 1.90295644 -1.486 0.1404
GJ 1 2.656250 1.90295644 1.396 0.1659
BR 1 2.562500 1.90295644 1.347 0.1812
AE 1 2.531250 1.90295644 1.330 0.1866
C 1 2.453125 1.90295644 1.289 0.2004
EG 1 -2.453125 1.90295644 -1.289 0.2004
CF 1 2.265625 1.90295644 1.191 0.2367
FG 1 -2.265625 1.90295644 -1.191 0.2367
BE 1 -2.218750 1.90295644 -1.166 0.2465
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Attack Case Max Mi Raqr Day 19

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 30 88597.48437 2953.24948 5.994 0.0001
Error 97 47792.44531 492.70562
C Total 127 136389.92969

Root MSE 22.19697 R-square 0.6496
Dep Mean 86.52344 Adj R-sq 0.5412
C.V. 25.65429

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 86.523438 1.96195379 44.101 0.0001
Bi 1 -19.210938 5.19084181 -3.701 0.0004
B2 1 -2.085938 5.19084181 -0.402 0.6887
83 1 10.289063 5.19084181 1.982 0.0503
84 1 7.914063 5.19084181 1.525 0.1306
B5 1 17.164063 5.19084181 3.307 0.0013
96 1 -5.648437 5.19084181 -1.088 0.2792
B7 1 -29.085938 5.19084181 -5.603 0.0001
B 1 12.429688 1.96195379 6.335 0.0001
G 1 5.992188 1.96195379 3.054 0.0029
JK 1 -5.164063 1.96195379 -2.632 0.0099
H 1 5.085938 1.96195379 2.592 0.0110
BR 1 4.898438 1.96195379 2.497 0.0142
EJ 1 4.710938 1.96195379 2.401 0.0182
FrK 1 4.398438 1.96195379 2.242 0.0272
J 1 4.117188 1.96195379 2.099 0.0385
FG 1 -3.320313 1.96195379 -1.692 0.0938
GK 1 3.304688 1.96195379 1.684 0.0953
HR 1 -3.195313 1.96195379 -1.629 0.1066
DH 1 2.914063 1.96195379 1.485 0.1407
CE 1 -2.820313 1.96195379 -1.438 0.1538
FH 1 2.804688 1.96195379 1.430 0.1561
HJ 1 2.804688 1.96195379 1.430 0.1561
AK 1 -2.257813 1.96195379 -1.151 0.2526
CD 1 -2.148438 1.96195379 -1.095 0.2762
DG 1 -2.117188 1.96195379 -1.079 0.2832
DK 1 2.070313 1.96195379 1.055 0.2939
FJ 1 -2.039063 1.96195379 -1.039 0.3012
F 1 2.023438 1.96195379 1.031 0.3049
CH 1 -2.007813 1.96195379 -1.023 0.3087
AE 1 1.992188 1.96195379 1.015 0.3124

4
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Attack Case Max Adj Rsqr Day 20

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 30 84977.31250 2832.57708 7.243 0.0001
Error 97 37936.90625 391.10213
C Total 127 122914.21875

Root MSE 19.77630 R-square 0.6914
Dep Mean 79.17188 Adj R-aq 0.5959
C.V. 24.97895

Parameter Estimates

Parameter Standard T for HO:
Variable OF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 79.171875 1.74799467 45.293 0.0001
91 1 -20.921875 4.62475919 -4.524 0.0001
B2 1 -0.921875 4.62475919 -0.199 0.8424
93 1 11.078125 4.62475919 2.395 0.0185
B4 1 7.578125 4.62475919 1.639 0.1045
B5 1 14.953125 4.62475919 3.233 0.0017
96 1 -1.734375 4.62475919 -0.375 0.7085
B7 1 -27.921875 4.62475919 -6.037 0.0001
B 1 11.265625 1.74799467 6.445 0.0001
G 1 7.109375 1.74799467 4.067 0.0001
JK 1 -5.062500 1.74799467 -2.896 0.0047
FK 1 4.750000 1.74799467 2.717 0.0078
NJ 1 4.671875 1.74799467 2.673 0.0088
BK 1 4.312500 1.74799467 2.467 0.0154
AK 1 -4.109375 1.74799467 -2.351 0.0208
35 1 4.031250 1.74799467 2.306 0.0232
GK 1 3.718750 1.74799467 2.127 0.0359
R 1 3.562500 1.74799467 2.038 0.0443
FH 1 3.531250 1.74799467 2.020 0.0461
CE 1 -3.515625 1.74799467 -2.011 0.0471
FG 1 -3.203125 1.74799467 -1.832 0.0700
J 1 2.953125 1.74799467 1.689 0.0943
EG 1 -2.796875 1.74799467 -1.600 0.1128
F 1 2.546875 1.74799467 1.457 0.1483
C 1 2.484375 1.74799467 1.421 0.1584
CG 1 2.453125 1.74799467 1.403 0.1637
HK 1 -2.390625 1.74799467 -1.368 0.1746
CF 1 2.328125 1.74799467 1.332 0.1860
BE 1 -2.265625 1.74799467 -1.296 0.1980
HJ 1 2.093750 1.74799467 1.198 0.2339
PJ 1 -2.015625 1.74799467 -1.153 0.2517
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Attack Case Max Adj Rsqr Day 21

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 34 85198.57813 2505.84053 7.294 0.0001
Error 93 31949.35156 343.54141
C Total 127 117147.92969

Root MSE 18.53487 R-square 0.7273
Dep Mean 74.47656 Adj R-sq 0.6276
C.V. 24.88685

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 74.476563 1.63826655 45.461 0.0001
Bi 1 -20.476563 4.33444588 -4.724 0.0001
B2 1 1.335937 4.33444588 0.308 0.7586
03 1 11.398438 4.33444588 2.630 0.0100
B4 1 9.023438 4.33444588 2.082 0.0401
B5 1 12.710938 4.33444588 2.933 0.0042
B6 1 -4.539063 4.33444588 -1.047 0.2977
B7 1 -29.351563 4.33444588 -6.772 0.0001
B 1 10.320313 1.63826655 6.300 0.0001
G 1 6.132813 1.63826655 3.743 0.0003
H 1 5.789063 1.63826655 3.534 0.0006
GK 1 5.523438 1.63826655 3.372 0.0011
EJ 1 4.398438 1.63826655 2.685 0.0086
*FK 1 4.179688 1.63826655 2.551 0.0124

AK 1 -4.023438 1.63826655 -2.456 0.0159
JK 1 -3.851563 1.63826655 -2.351 0.0208
BE 1 -3.726563 1.63826655 -2.275 0.0252
BH 1 3.726563 1.63826655 2.275 0.0252
C 1 3.601563 1.63826655 2.198 0.0304
FH 1 3.476563 1.63826655 2.122 0.0365
CE 1 -2.914063 1.63826655 -1.779 0.0785
CG 1 2.820313 1.63826655 1.722 0.0885
F 1 2.601563 1.63826655 1.588 0.1157
EG 1 -2.570313 1.63826655 -1.569 0.1201
J 1 2.414063 1.63826655 1.474 0.1440
FG 1 -2.273438 1.63826655 -1.388 0.1685
FJ 1 -2.273438 1.63826655 -1.388 0.1685
DG 1 -2.164063 1.63826655 -1.321 0.1898
A 1 -2.164063 1.63826655 -1.321 0.1898
GJ 1 2.101563 1.63826655 1.283 0.2028
DH 1 2.085938 1.63826655 1.273 0.2061
HK 1 -1.945313 1.63826655 -1.187 0.2381
AE 1 1.882813 1.63826655 1.149 0.2534
E 1 -1.789063 1.63826655 -1.092 0.2776
AJ 1 1.773438 1.63826655 1.083 0.2818
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Attack Case Max Adj Rsqr Day 22

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 34 67651.37500 1989.74632 6.729 0.0001
Error 93 27500.62500 295.70565
C Total 127 95152.00000

Root MS8 17.19609 R-square 0.7110
Dep Mean 69.62500 AdJ R-sq 0.6053
C.V. 24.69816

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 69.625000 1.51993433 45.808 0.0001
BI 1 -18.000000 4.02136823 -4.476 0.0001
B2 1 -1.562500 4.02136823 -0.389 0.6985
B3 1 11.125000 4.02136823 2.766 0.0068
B4 1 10.500000 4.02136823 2.611 0.0105
B5 1 8.312500 4.02136823 2.067 0.0415
B6 1 -3.312500 4.02136823 -0.824 0.4122
87 1 -24.812500 4.02136823 -6.170 0.0001
B 1 8.937500 1.51993433 5.880 0.0001
G 1 7.718750 1.51993433 5.078 0.0001
H 1 4.765625 1.51993433 3.135 0.0023
EJ 1 4.406250 1.51993433 2.899 0.0047
AK 1 -4.203125 1.51993433 -2.765 0.0069
FK 1 3.750000 1.51993433 2.467 0.0154
GK 1 3.437500 1.51993433 2.262 0.0261
JK 1 -3.312500 1.51993433 -2.179 0.0318
FH 1 3.015625 1.51993433 1.984 0.0502
C 1 3.015625 1.51993433 1.984 0.0502
HK 1 -2.765625 1.51993433 -1.820 0.0720
EG 1 -2.750000 1.51993433 -1.809 0.0736
BRH 1 2.671875 1.51993433 1.758 0.0821
BK 1 2.562500 1.51993433 1.686 0.0952
J 1 2.343750 1.51993433 1.542 0.1265
DG 1 -2.281250 1.51993433 -1.501 0.1368
FG 1 -2.218750 1.51993433 -1.460 0.1477
BE 1 -2.093750 1.51993433 -1.378 0.1717
CE 1 -2.046875 1.51993433 -1.347 0.1814
BD 1 -2.031250 1.51993433 -1.336 0.1847
GH 1 -1.859375 1.51993433 -1.223 0.2243
CK 1 1.828125 1.51993433 1.203 0.2321
CG 1 1.734375 1.51993433 1.141 0.2568
E 1 -1.718750 1.51993433 -1.131 0.2610
AG 1 1.703125 1.51993433 1.121 0.2654
DH 1 1.578125 1.51993433 1.038 0.3018
F 1 1.562500 1.51993433 1.028 0.3066
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Attack Case Max AdJ Rsqr Day 23

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 32 64739.06250 2023.09570 5.834 0.0001
Error 95 32943.42969 346.77294
C Total 127 97682.49219

Root MSE 18.62184 R-square 0.6627
Dep Mean 65.74219 Adj R-sq 0.5491
C.V. 28.32556

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 65.742188 1.64595371 39.942 0.0001
B1 1 -21.054688 4.35478419 -4.835 0.0001
B2 1 -0.554688 4.35478419 -0.127 0.8989
83 1 10.695313 4.35478419 2.456 0.0159
B4 1 7.320313 4.35478419 1.681 0.0961
a5 1 12.570313 4.35478419 2.887 0.0048
B6 1 -4.054688 4.35478419 -0.931 0.3542
B7 1 -22.867188 4.35478419 -5.251 0.0001
B 1 9.570313 1.64595371 5.814 0.0001
G 1 6.179688 1.64595371 3.754 0.0003
H 1 4.804688 1.64595371 2.919 0.0044
GE 1 3.929688 1.64595371 2.387 0.0189
EJ 1 3.648438 1.64595371 2.217 0.0290
FG 1 -3.570313 1.64595371 -2.169 0.0326
HKI 1 -3.351563 1.64595371 -2.036 0.0445
AK 1 -3.335938 1.64595371 -2.027 0.0455
FE 1 3.242188 1.64595371 1.970 0.0518
BE 1 -2.632813 1.64595371 -1.600 0.1130
BH 1 2.539063 1.64595371 1.543 0.1263
EG 1 -2.523438 1.64595371 -1.533 0.1286
CK 1 2.460938 1.64595371 1.495 0.1382
FH 1 2.460938 1.64595371 1.495 0.1382
CG 1 2.398438 1.64595371 1.457 0.1484
BK 1 2.289063 1.64595371 1.391 0.1676
CE 1 -2.210938 1.64595371 -1.343 0.1824
F 1 2.210938 1.64595371 1.343 0.1824
C 1 2.148438 1.64595371 1.305 0.1949
JK 1 -1.804688 1.64595371 -1.096 0.2757
DH 1 1.726563 1.64595371 1.049 0.2969
CH 1 -1.695313 1.64595371 -1.030 0.3056
CD 1 -1.679688 1.64595371 -1.020 0.3101
BF 1 1.664063 1.64595371 1.011 0.3146
DG 1 -1.648438 1.64595371 -1.002 0.3191
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Attack Case Has Adj Rsqr Day 24

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 29 69350.00000 23-1.37931 8.123 0.0001
Error 98 28849.46875 294.38233
C Total 127 98199.46875

Root MSE 17.15757 R-square 0.7062
Dep Mean 62.14063 Adj R-sq 0.6193
C.V. 27.61088

Par ameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 62.140625 1.51652959 40.976 0.0001
a1 1 -18.703125 4.01236014 -4.661 0.0001
B2 1 -6.203125 4.01236014 -1.546 0.1253
B3 1 17.109375 4.01236014 4.264 0.0001
B4 1 8.671875 4.01236014 2.161 0.0331
B5 1 10.046875 4.01236014 2.504 0.0139
B6 1 -4.328125 4.01236014 -1.079 0.2834
87 1 -23.515625 4.01236014 -5.861 0.0001
B 1 10.406250 1.51652959 6.862 0.0001
G 1 5.500000 1.51652959 3.627 0.0005
H 1 5.218750 1.51652959 3.441 0.0009
9H 1 4.609375 1.51652959 3.039 0.0030
GK 1 4.000000 1.51652959 2.638 0.0097
EJ 1 3.843750 1.51652959 2.535 0.0128
FK 1 3.640625 1.51652959 2.401 0.0183
Ba 1 3.375000 1.51652959 2.225 0.0283
CE 1 -3.109375 1.51652959 -2.050 0.0430
EG 1 -2.984375 1.51652959 -1.968 0.0519
F 1 2.765625 1.51652959 1.824 0.0713
FH 1 2.750000 1.51652959 1.813 0.0728
DG 1 -2.718750 1.51652959 -1.793 0.0761
AX 1 -2.609375 1.51652959 -1.721 0.0885
J 1 2.515625 1.51652959 1.659 0.1004
HK 1 -2.468750 1.51652959 -1.628 0.1068
FG 1 -2.437500 1.51652959 -1.607 0.1112
JK 1 -2.265625 1.51652959 -1.494 0.1384
CK 1 2.250000 1.51652959 1.484 0.1411
C 1 1.781250 1.51652959 1.175 0.2430
DH 1 1.656250 1.51652959 1.092 0.2775
CG 1 1.578125 1.51652959 1.041 0.3006
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Attack Case Max Adj Rsqr Day 25

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 33 67907.13281 2057.79190 7.321 0.0001

Error 94 26421.67188 281.08162
C Total 127 94328.80469

Root MSE 16.76549 R-square 0.7199
Dep Mean 58.96094 AdJ R-sq 0.6216
C.V. 28.43491

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 58.960938 1.48187386 39.788 0.0001
B1 1 -17.335938 3.92066970 -4.422 0.0001
B2 1 -4.148438 3.92066970 -1.058 0.2927
B3 1 11.289063 3.92066970 2.879 0.0049
B4 1 11.601563 3.92066970 2.959 0.0039
B5 1 10.976563 3.92066970 2.800 0.0062
B6 1 -4.273438 3.92066970 -1.090 0.2785
B7 1 -24.710938 3.92066970 -6.303 0.0001
B 1 9.945313 1.48187386 6.711 0.0001

FK 1 5.195313 1.48187386 3.506 0.0007
H 1 5.132813 1.48187386 3.464 0.0008
EJ 1 4.585938 1.48187386 3.095 0.0026

G 1 4.492188 1.48187386 3.031 0.0031
BH 1 4.398438 1.48187386 2.968 0.0038

GK 1 4.101563 1.48187386 2.768 0.0068
HK 1 -3.695313 1.48187386 -2.494 0.0144
JK 1 -3.601563 1.48187386 -2.430 0.0170
EG 1 -2.585938 1.48187386 -1.745 0.0842
J 1 2.570313 1.48187386 1.735 0.0861
FG 1 -2.476563 1.48187386 -1.671 0.0980
CE 1 -2.460938 1.48187386 -1.661 0.1001
C 1 2.398438 1.48187386 1.619 0.1089
F 1 2.273438 1.48187386 1.534 0.1283
AK 1 -2.179688 1.48187386 -1.471 0.1447
GH 1 -2.117188 1.48187386 -1.429 0.1564
BG 1 -1.992188 1.48187386 -1.344 0.1821
EF 1 -1.929688 1.48187386 -1.302 0.1960
BE 1 -1.914063 1.48187386 -1.292 0.1996
FH 1 1.726563 1.48187386 1.165 0.2469
DE 1 1.710938 1.48187386 1.155 0.2512
AG 1 1.679688 1.48187386 1.133 0.2599
BK 1 1.679688 1.48187386 1.133 0.2599
DG 1 -1.617188 1.48187386 -1.091 0.2779

DH 1 1.585938 1.48187386 1.070 0.2873
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Attack Case Max Adj Rsqr Day 26

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 30 59810.46875 1993.68229 7.108 0.0001
Error 97 27206.40625 280.47841
C Total 127 87016.87500

Root MSE 16.74749 R-square 0.6873
Dep Mean 55.59375 Adj R-sq 0.5906
C.V. 30.12477

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 55.593750 1.48028295 37.556 0.0001
B1 1 -19.656250 3.91646056 -5.019 0.0001
B2 1 -0.968750 3.91646056 -0.247 0.8052
83 1 12.531250 3.91646056 3.200 0.0019
B4 1 9.718750 3.91646056 2.482 0.0148
B5 1 12.031250 3.91646056 3.072 0.0028
B6 1 -2.531250 3.91646056 -0.646 0.5196
B7 1 -21.968750 3.91646056 -5.609 0.0001
B 1 8.750000 1.48028295 5.911 0.0001
G 1 5.546875 1.48028295 3.747 0.0003
BH 1 5.156250 1.48028295 3.483 0.0007
H 1 4.781250 1.48028295 3.230 0.0017
EJ 1 4.515625 1.48028295 3.051 0.0029
FrK 1 4.406250 1.48028295 2.977 0.0037
GK 1 3.640625 1.48028295 2.459 0.0157
JK 1 -3.578125 1.48028295 -2.417 0.0175
CE 1 -3.312500 1.48028295 -2.238 0.0275
HK 1 -2.812500 1.48028295 -1.900 0.0604
EG 1 -2.578125 1.48028295 -1.742 0.0847
C 1 2.437500 1.48028295 1.647 0.1029
F 1 2.218750 1.48028295 1.499 0.1372
DE 1 2.187500 1.48028295 1.478 0.1427
DG 1 -2.078125 1.48028295 -1.404 0.1636
BK 1 2.031250 1.48028295 1.372 0.1732
EF 1 -1.937500 1.48028295 -1.309 0.1937
BJ 1 -1.828125 1.48028295 -1.235 0.2198
EK 1 -1.718750 1.48028295 -1.161 0.2485
AG 1 1.703125 1.48028295 1.151 0.2527
GH 1 -1.703125 1.48028295 -1.151 0.2527
BG 1 -1.640625 1.48028295 -1.108 0.2705
FG 1 -1.640625 1.48028295 -1.108 0.2705
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Attack Case Max Adj Rsqr Day 27

Analysis of Variance

Sum of Mean
Source DF Squares Square F Valde Prob>F

Model 33 59023.87500 1788.60227 8.582 0.0001
Error 94 19591.62500 2A8.42154
C Total 127 78615.50000

Root MSE 14.43681 R-6quare 0.7508
Dep Mean 51.56250 Adj R-sq 0.6633
C.V. 27.99867

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 51.562500 1.27604596 40.408 0.0001
81 1 -19.250000 3.37610028 -5.702 0.0001
B2 1 -1.437500 3.37610028 -0.426 0.6712
B3 1 12.812500 3.37610028 3.795 0.0003
B4 1 10.125000 3.37610028 2.999 0.0035
B5 1 7.625000 3.37610028 2.259 0.0262
B6 1 1.125000 3.37610028 0.333 0.7397
B7 1 -22.187500 3.37610028 -6.572 0.0001
B 1 9.562500 1.27604596 7.494 0.0001
G 1 5.625000 1.27604596 4.408 0.0001
H 1 4.718750 1.27604596 3.698 0.0004
EJ 1 4.656250 1.27604596 3.649 0.0004
FK 1 4.578125 1.27604596 3.588 0.0005
BH 1 3.843750 1.27604596 3.012 0.0033
CE 1 -3.421875 1.27604596 -2.682 0.0087
GK 1 3.109375 1.27604596 2.437 0.0167
JK 1 -3.031250 1.27604596 -2.376 0.0196
HK 1 -2.796875 1.27604596 -2.192 0.0309
F 1 2.531250 1.27604596 1.984 0.0502
C 1 2.468750 1.27604596 1.935 0.0560
BK 1 2.390625 1.27604596 1.873 0.0641
EG 1 -2.265625 1.27604596 -1.776 0.0791
AK 1 -2.171875 1.27604596 -1.702 0.0921
DR 1 1.921875 1.27604596 1.506 0.1354
EH 1 1.828125 1.27604596 1.433 0.1553
AG 1 1.750000 1.27604596 1.371 0.1735
J 1 1.609375 1.27604596 1.261 0.2104
BG 1 -1.562500 1.27604596 -1.224 0.2238
DG 1 -1.546875 1.27604596 -1.212 0.2285
FG 1 -1.468750 1.27604596 -1.151 0.2526
FJ 1 -1.453125 1.27604596 -1.139 0.2577
A 1 -1.437500 1.27604596 -1.127 0.2628
GH 1 -1.343750 1.27604596 -1.053 0.2950
EK 1 -1.312500 1.27604596 -1.029 0.3063
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Attack Case Max Adj Rsqr Day 28

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 27 51507.59375 1907.68866 8.073 0.0001
Error 100 23630.28125 236.30281
C Total 127 75137.87500

Root MSE 15.37214 R-square 0.6855
Dep Mean 48.71875 AdJ R-sq 0.6006
C.V. 31.55283

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 48.718750 1.35871841 35.856 0.0001
91 1 -18.968750 3.59483102 -5.277 0.0001
B2 1 -0.656250 3.59483102 -0.183 0.8555
B3 1 10.343750 3.59483102 2.877 0.0049
84 1 6.531250 3.59483102 1.817 0.0722
B5 1 7.343750 3.59483102 2.043 0.0437
B6 1 2.031250 3.59483102 0.565 0.5733
B7 1 -21.718750 3.59483102 -6.042 0.0001
B 1 8.640625 1.35871841 6.359 0.0001
FK 1 4.859375 1.35871841 3.576 0.0005
H 1 4.843750 1.35871841 3.565 0.0006
EJ 1 4.796875 1.35871841 3.530 0.0006
G 1 3.859375 1.35871841 2.840 0.0055
JK 1 -3.843750 1.35871841 -2.829 0.0056
GK 1 3.265625 1.35871841 2.403 0.0181
CE 1 -3.031250 1.35871841 -2.231 0.0279
HK 1 -3.000000 1.35871841 -2.208 0.0295
F 1 2.640625 1.35871841 1.943 0.0548
BG 1 -2.437500 1.35871841 -1.794 0.0758
FH 1 2.046875 1.35871841 1.506 0.1351
FG 1 -1.968750 1.35871841 -1.449 0.1505
BH 1 1.890625 1.35871841 1.391 0.1672
AG 1 1.750000 1.35871841 1.288 0.2007
EG 1 -1.718750 1.35871841 -1.265 0.2088
DH 1 1.671875 1.35871841 1.230 0.2214
AK 1 -1.640625 1.35871841 -1.207 0.2301
C 1 1.546875 1.35871841 1.138 0.2576
EF 1 -1.500000 1.35871841 -1.104 0.2723
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Attack Case Max Adj Rsqr Day 29

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 33 43646.25781 1322.61387 6.146 0.0001
Error - 94 20228.79688 215.19997
C Total 127 63875.05469

Root MSE 14.66970 R-square 0.6833
Dep Mean 46.58594 Adj R-sq 0.5721
C.V. 31.48954

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 46.585938 1.29663015 35.928 0.0001
B1 1 -17.398438 3.43056091 -5.072 0.0001
B2 1 -1.023438 3.43056091 -0.298 0.7661
B3 1 8.414063 3.43056091 2.453 0.0160
B4 1 9.664063 3.43056091 2.817 0.0059
B5 1 7.976563 3.43056091 2.325 0.0222
B6 1 0.789062 3.43056091 0.230 0.8186
B7 1 -20.085938 3.43056091 -5.855 0.0001
a 1 7.804688 1.29663015 6.019 0.0001
EJ 1 4.210938 1.29663015 3.248 0.0016
G 1 3.507813 1.29663015 2.705 0.0081
H 1 3.507813 1.29663015 2.705 0.0081
JK 1 -3.289063 1.29663015 -2.537 0.0128
FK 1 3.179688 1.29663015 2.452 0.0160
CE 1 -3.054688 1.29663015 -2.356 0.0206
BH 1 2.820313 1.29663015 2.175 0.0321
GK 1 2.820313 1.29663015 2.175 0.0321
HK 1 -2.742188 1.29663015 -2.115 0.0371
DG 1 -2.492188 1.29663015 -1.922 0.0576
BK 1 2.367188 1.29663015 1.826 0.0711
FG 1 -2.242188 1.29663015 -1.729 0.0870
BG 1 -2.023438 1.29663015 -1.561 0.1220
C 1 1.882813 1.29663015 1.452 0.1498
F 1 1.835938 1.29663015 1.416 0.1601
DH 1 1.789063 1.29663015 1.380 0.1709
A 1 -1.726563 1.29663015 -1.332 0.1862
AG 1 1.632813 1.29663015 1.259 0.2110
FH 1 1.507813 1.29663015 1.163 0.2478
BJ 1 -1.476563 1.29663015 -1.139 0.2577
J 1 1.398438 1.29663015 1.079 0.2836
AK 1 -1.351563 1.29663015 -1.042 0.2999
EK 1 -1.320313 1.29663015 -1.018 0.3112
AF 1 1.304688 1.29663015 1.006 0.3169
EG 1 -1.304688 1.29663015 -1.006 0.3169
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Attack Case Max Adj Rsqr Day 30

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 27 39235.83594 1453.17911 7.856 0.0001
Error 100 18498.21875 184.98219
C Total 127 57734.05469

Root MSE 13.60082 R-square 0.6796
Dep Mean 42.91406 Adj R-sq 0.5931
C.V. 31.69314

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-O Prob > ITI

INTERCEP 1 42.914063 1.20215363 35.698 0.0001
a1 1 -16.476563 3.18059953 -5.180 0.0001
92 1 -1.726563 3.18059953 -0.543 0.5884
B3 1 9.585938 3.18059953 3.014 0.0033
B4 1 8.210938 3.18059953 2.582 0.0113
B5 1 8.335938 3.18059953 2.621 0.0101
B6 1 -2.226563 3.18059953 -0.700 0.4855
B7 1 -17.101563 3.18059953 -5.377 0.0001
B 1 7.554688 1.20215363 6.284 0.0001
FRK 1 4.585938 1.20215363 3.815 0.0002
H 1 4.195313 1.20215363 3.490 0.0007
EJ 1 3.804688 1.20215363 3.165 0.0021
G 1 3.320313 1.20215363 2.762 0.0068
FG 1 -3.195313 1.20215363 -2.658 0.0092
BH 1 2.992188 1.20215363 2.489 0.0145
JK 1 -2.976563 1.20215363 -2.476 0.0150
BE 1 -2.382813 1.20215363 -1.982 0'.0502
BG 1 -2.320313 1.20215363 -1.930 0.0564
CE 1 -2.148438 1.20215363 -1.787 0.0769
HK 1 -2.054688 1.20215363 -1.709 0.0905
C 1 2.007813 1.20215363 1.670 0.0980
BR 1 1.929688 1.20215363 1.605 0.1116
GK 1 1.726563 1.20215363 1.436 0.1541
DR 1 1.664063 1.20215363 1.384 0.1694
EG 1 -1.554688 1.20215363 -1.293 0.1989
EK 1 -1.367188 1.20215363 -1.137 0.2581
AR 1 1.320313 1.20215363 1.098 0.2747
AK 1 -1.242188 1.20215363 -1.033 0.3040
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AMBndixU B: Dailv Metamidels for Prediction. No-Atta•k Came

No-Attack Case Max AdJ Rsqr Day 1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 25 3270.13281 130.80531 6.423 0.0001
Error 102 2077.17188 20.36443
C Total 127 5347.30469

Root MSE 4.51270 R-square 0.6115
Dep Mean 264.21094 AdJ R-sq 0.5163
C.V. 1.70799

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > IT[

INTERCEP 1 264.210938 0.39886979 662.399 0.0001
a1 1 -1.210938 1.05531027 -1.147 0.2539
32 1 -0.335938 1.05531027 -0.318 0.7509
B3 1 -0.710938 1.05531027 -0.674 0.5020
B4 1 -6.148438 1.05531027 -5.826 0.0001
B5 1 8.289063 1.05531027 7.855 0.0001
B6 1 -1.460937 1.05531027 -1.384 0.1693
B7 1 1.664063 1.05531027 1.577 0.1179
AC 1 1.492188 0.39886979 3.741 0.0003
FG 1 -1.304688 0.39886979 -3.271 0.0015
J 1 -1.210938 0.39886979 -3.036 0.0030
AG 1 -0.898438 0.39886979 -2.252 0.0264
CD 1 -0.835938 0,39886979 -2.096 0.0386
CF 1 -0.820313 0.39886979 -2.057 0.0423
A 1 -0.695313 0.39886979 -1.743 0.0843
CJ 1 -0.679688 0.39886979 -1.704 0.0914
BF 1 -0.632813 0.39886979 -1.587 0.1157
H 1 0.632813 0.39886979 1.587 0.1157
BD 1 0.601563 0.39886979 1.508 0.1346
FK 1 0.585938 0.39886979 1.469 0.1449
E 1 0.570313 0.39886979 1.430 0.1558
CK 1 -0.476563 0.39886979 -1.195 0.2349
F 1 -0.476563 0.39886979 -1.195 0.2349
DG 1 -0.445313 0.39886979 -1.116 0.2669
FJ 1 -0.429688 0.39886979 -1.077 0.2839
G 1 0.414063 0.39886979 1.038 0.3017
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No-Attack Case Max Adj Rsqr Day 2

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 25 28873.00781 1154.92031 7.049 0.0001
Error 102 16711.73438 163.84053
C Total 127 45584.74219

Root uSE 12.80002 R-square 0.6334
Dep Mean 212.86719 Adj R-sq 0.5435
C.V. 6.01315

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 212.867188 1.13137269 188.149 0.0001
B1 1 -1.367188 2.99333078 -0.457 0.6488
82 1 5.382813 2.99333078 1.798 0.0751
83 1 -0.304688 2.99333078 -0.102 0.9191
84 1 -2.867188 2.99333078 -0.958 0.3404
B5 1 -4.179688 2.99333078 -1.396 0.1656
86 1 -1.617188 2.99333078 -0.540 0.5902
87 1 4.007813 2.99333078 1.339 0.1836
E 1 12.195313 1.13137269 10.779 0.0001
DJ 1 -3.523438 1.13137269 -3.114 0.0024
GJ 1 -2.960938 1.13137269 -2.617 0.0102
EH 1 2.492188 1.13137269 2.203 0.0299
BJ 1 -2.273438 1.131372E9 -2.009 0.0471
BD 1 -2.226563 1.13137269 -1.968 0.0518
K 1 2.164063 1.13137269 1.913 0.0586
A 1 2.039063 1.13137269 1.802 0.0745
FH 1 -1.773438 1.13137269 -1.568 0.1201
AE 1 -1.726563 1.13137269 -1.526 0.1301
EG 1 -1.585938 1.13137269 -1.402 0.1640
BF 1 -1.570313 1.13137269 -1.388 0.1682
DE 1 -1.398438 1.13137269 -1.236 0.2193
AC 1 -1.320313 1.13137269 -1.167 0.2459
AD 1 -1.304688 1.13137269 -1.153 0.2515
AK 1 1.273438 1.13137269 1.126 0.2630
AJ 1 -1.257813 1.13137269 -1.112 0.2689
CD 1 -1.117188 1.13137269 -0.987 0.3258

B-2



No-Attack Case Max Adj Rsqr Day 3

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 28 22869.09375 816.75335 6.936 0.0001
Error 99 11657.89844 117.75655
C Total 127 34526.99219

Root MSE 10.85157 R-square 0.6624
Dep Mean 210.00781 Adj R-sq 0.5669
C.V. 5.16722

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 210.007813 0.95915225 218.951 0.0001
31 1 2.804688 2.53767833 1.105 0.2717
B2 1 6.554688 2.53767833 2.583 0.0113
B3 1 5.179688 2.53767833 2.041 0.0439
B4 1 3.242188 2.53767833 1.278 0.2044
B5 1 -5.445313 2.53767833 -2.146 0.0343
B6 1 -8.320312 2.53767833 -3.279 0.0014
B7 1 -4.132813 2.53767833 -1.629 0.1066
E 1 9.585938 0.95915225 9.994 0.0001
HK 1 3.304688 0.95915225 3.445 0.0008
AK 1 2.289063 0.95915225 2.387 0.0189
DH 1 -2.085938 0.95915225 -2.175 0.0320
DJ 1 1.914063 0.95915225 1.996 0.0487
D 1 1.914063 0.95915225 1.996 0.0487
A 1 -1.914063 0.95915225 -1.996 0.0487
BK 1 1.867188 0.95915225 1.947 0.0544
BF 1 -1.726563 0.95915225 -1.800 0.0749
EG 1 1.710938 0.95915225 1.784 0.0775
AB 1 -1.695313 0.95915225 -1.768 0.0802
BJ 1 -1.648438 0.95915225 -1.719 0.0888
H 1 1.601563 0.95915225 1.670 0.0981
BH 1 1.445313 0.95915225 1.507 0.1350
HJ 1 1.445313 0.95915225 1.507 0.1350
AR 1 1.335938 0.95915225 1.393 0.1668
DG 1 -1.242188 0.95915225 -1.295 0.1983
DF 1 1.148438 0.95915225 1.197 0.2340
DK 1 1.117188 0.95915225 1.165 0.2469
AE 1 1.070313 0.95915225 1.116 0.2672
CD 1 0.992188 0.95915225 1.034 0.3034
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No-Attack Case Max Adj Raqr Day 4

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 29 18263.22656 629.76643 4.316 0.0001
Error 98 14103.20313 143.91024
C Total 127 32366.42969

Root MS5 11.99626 R-square 0.5643
Dep Mean 205.22656 Adj R-sq 0.4353
•.V. 5.84537

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 205.226563 1.06032953 193.550 0.0001
B1 1 0.148437 2.80536825 0.053 0.9579
B2 1 -3.351563 2.80536825 -1.195 0.2351
83 1 0.085937 2.80536825 0.031 0.9756
B4 1 1.773438 2.80536825 0.632 0.5288
B5 1 -8.164063 2.80536825 -2.910 0.0045
B6 1 -6.226563 2.80536825 -2.220 0.0288
B7 1 7.960938 2.80536825 2.838 0.0055
E 1 5.820313 1.06032953 5.489 0.0001
B 1 4.273438 1.06032953 4.030 0.0001
JK 1 -4.179688 1.06032953 -3.942 0.0002
J 1 2.507813 1.06032953 2.365 0.0200
C 1 -2.085938 1.06032953 -1.967 0.0520
CJ 1 -1.992188 1.06032953 -1.879 0.0632

BJ 1 1.742188 1.06032953 1.643 0.1036

D 1 1.710918 1.06032953 1.614 0.1098

GK 1 1.554688 1.06032953 1.466 0.1458
EH 1 -1.507813 1.06032953 -1.422 0.1582
AG 1 -1.429688 1.06032953 -1.348 0.1807
DF 1 1.429688 1.06032953 1.348 0.1807
EJ 1 1.257813 1.06032953 1.186 0.2384
AD 1 -1.210938 1.06032953 -1.142 0.2562
HJ 1 1.210938 1.06032953 1.142 0.2562
AC 1 -1.195313 1.06032953 -1.127 0.2624
DE 1 -1.195313 1.06032953 -1.127 0.2624
EK 1 1.101563 1.06032953 1.039 0.3014
CE 1 -1.085938 1.06032953 -1024 0.3083
FK 1 -1.085938 1.06032953 -1.024 0.3083
As 1 -1.085938 1.06032953 -1.024 0.3083
BH 1 1.070313 1.06032953 1.009 0.3153



No-Attack Case Max AdJ Rsqr Day 5

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 28 23635.90625 844.13951 5.315 0.0001
Error 99 15724.83594 158.83673
.C Total 127 39360.74219

* Root MSE 12.60304 R-square 0.6005
Dep Mean 198.13281 Adj R-sq 0.4875
C.V. 6.36091

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 198.132813 1.11396226 177.863 0.0001
B1 1 -3.445313 2.94726712 -1.169 0.2452
B2 1 -3.382813 2.94726712 -1.148 0.2538
B3 1 4.054688 2.94726712 1.376 0.1720
94 1 9.429688 2.94726712 3.199 0.0019
B5 1 -1.695313 2.94726712 -0.575 0.5665
B6 1 -0.445313 2.94726712 -0.151 0.8802
B7 1 2.429688 2.94726712 0.824 0.4117
E 1 7.492188 1.11396226 6.726 0.0001
a 1 6.242188 1.11396226 5.604 0.0001
BH 1 -3.023438 1.11396226 -2.714 0.0078
CG 1 -2.585938 1.11396226 -2.321 0.0223
H 1 2.554688 1.11396226 2.293 0.0239
BJ 1 2.242188 1.11396226 2.013 0.0469
KJ 1 2.117188 1.11396226 1.901 0.0603
Er 1 2.023438 1.11396226 1.816 0.0723
AK 1 1.757813 1.11396226 1.578 0.1178
CK 1 1.742188 1.11396226 1.564 0.1210
C 1 1.742188 1.11396226 1.564 0.1210
BK 1 -1.726563 1.11396226 -1.550 0.1243
J 1 1.726563 1.11396226 1.550 0.1243
AC 1 1.648438 1.11396226 1.480 0.1421
FH 1 -1.570313 1.11396226 -1.410 0.1618
CE 1 -1.523438 1.11396226 -1.368 0.1745
D 1 -1.445313 1.11396226 -1.297 0.1975
GH 1 -1.242188 1.11396226 -1.115 0.2675
HJ 1 1.210938 1.11396226 1.087 0.2797
AJ 1 1.164063 1.11396226 1.045 0.2986
AD 1 -1.132813 1.11396226 -1.017 0.3117
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No-Attack Case Max Adj Rsqr Day 6

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 36 23821.65625 661.71267 8.361 0.0001
Error 91 7202.34375 79.14663
C Total 127 31024.00000

Root MSE 8.89644 R-squaro 0.7678
Dep Mean 188.50000 Adj R-sq 0.6760
C.V. 4.71960

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 188.500000 0.78634158 239.718 0.0001
B1 1 -1.125000 2.08046427 -0.541 0.5900
B2 1 0.437500 2.08046427 0.210 0.8339
B3 1 5.500000 2.08046427 2.644 0.0097
B4 1 0.062500 2.08046427 0.030 0.9761

B5 1 0.500000 2.08046427 0.240 0.8106
B6 1 0.937500 2.08046427 0.451 0.6533
B7 1 -0.375000 2.08046427 -0.180 0.8574
E 1 7.640625 0.78634158 9.717 0.0001
B 1 5.843750 0.78634158 7.432 0.0001
BJ 1 3.359375 0.78634158 4.272 0.0001
CJ 1 -3.234375 0.78634158 -4.113 0.0001
H 1 2.796875 0.78634158 3.557 0.0006
FrK 1 2.718750 0.78634158 3.457 0.0008
J 1 2.234375 0.78634158 2.841 0.0055
AK 1 2.234375 0.78634158 2.841 0.0055
A 1 1.828125 0.78634158 2.325 0.0223
C 1 1.781250 0.78634158 2.265 0.0259
AD 1 -1.750000 0.78634158 -2.225 0.0285
HK 1 1.671875 0.78634158 2.126 0.0362
EF 1 1.609375 0.78634158 2.047 0.0436

BE 1 1.546875 0.78634158 1.967 0.0522
AS 1 -1.546875 0.78634158 -1.967 0.0522
CF 1 -1.375000 0.78634158 -1.749 0.0837
BC 1 1.343750 0.78634158 1.709 0.0909
BG 1 -1.312500 0.78634158 -1.669 0.0985
BD 1 1.296875 0.78634158 1.649 0.1025
CE 1 -1.265625 0.78634158 -1.610 0.1110
GK 1 1.250000 0.78634158 1.590 0.1154

CH 1 -1.171875 0.78634158 -1.490 0.1396

EG 1 1.171875 0.78634158 1.490 0.1396
EK 1 1.109375 0.78634158 1.411 0.1617
AR 1 1.062500 0.78634158 1.351 0.1800
AR 1 0.906250 0.78634158 1.152 0.2521
AG 1 0.859375 0.78634158 1.093 0.2773
K 1 -0.843750 0.78634158 -1.073 0.2861
CK 1 0.843750 0.78634158 1.073 0.2861
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No-Attack Case Max Adj Raqr Day 7

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 29 24463.53906 843.57031 4.838 0.0001
Error 98 17086.39063 174.35092
C Total 127 41549.92969

* Root MSE 13.20420 R-square 0.5888
Dep Mean 185.52344 Adj R-sq 0.4671
C.V. 7.11727

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 185.523438 1.16709751 158.961 0.0001
B1 1 0.226562 3.08784977 0.073 0.9417
B2 1 8.976563 3.08784977 2.907 0.0045
B3 1 -4.960938 3.08784977 -1.607 0.1114
84 1 5.601563 3.08784977 1.814 0.0727
B5 1 -1.773438 3.08784977 -0.574 0.5671
B6 1 -10.835938 3.08784977 -3.509 0.0007
B7 1 2.914063 3.08784977 0.944 0.3476
B 1 7.882813 1.16709751 6.754 0.0001
E 1 5.273438 1.16709751 4.518 0.0001
EJ 1 3.132813 1.16709751 2.684 0.0085
CE 1 -2.835938 1.16709751 -2.430 0.0169
AG 1 2.148438 1.16709751 1.841 0.0687
H 1 1.960938 1.16709751 1.680 0.0961
DK 1 -1.945313 1.16709751 -1.667 0.0987
EH 1 -1.945313 1.16709751 -1.667 0.0987
AF 1 -1.898438 1.16709751 -1.627 0.1070
CH 1 -1.898438 1.16709751 -1.627 0.1070
BD 1 1.882813 1.16709751 1.613 0.1099
BG 1 1.804688 1.16709751 1.546 0.1253
EK 1 1.773438 1.16709751 1.520 0.1318
HJ 1 1.601563 1.16709751 1.372 0.1731
G 1 -1.554688 1.16709751 -1.332 0.1859
BJ 1 1.398438 1.16709751 1.198 0.2337
AE 1 -1.398438 1.16709751 -1.198 0.2337
AK 1 1.382813 1.16709751 1.185 0.2389
DH 1 -1.351563 1.16709751 -1.158 0.2497
AJ 1 -1.226563 1.16709751 -1.051 0.2959
EF 1 1.179688 1.16709751 1.011 0.3146
EG 1 -1.179688 1.16709751 -1.011 0,3146
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No-Attack Case Max Adj Raqr Day 8

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 32 60094.15625 1877.94238 4.660 0.0001
Error 95 38282.71875 402.97599
C Total 127 98376.87500

Root MSE 20.07426 R-square 0.6109
Dep Mean 171.40625 Adj R-sq 0.4798
C.V. 11.71151

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 171.406250 1.77433083 96.603 0.0001
a1 1 -1.281250 4.69443812 -0.273 0.7855
82 1 -0.968750 4. 9443812 -0.206 0.8370
B3 1 -2.968750 4.09443812 -0.632 0.5286
B4 1 12.843750 4.69443812 2.736 0.0074
B5 1 -3.906250 4.69443812 -0.832 0.4074
86 1 -6.406250 4.69443812 -1.365 0.1756
B7 1 -0.468750 4.69443812 -0.100 0.9207
J 1 9.687500 1.77433083 5.460 0.0001
BJ 1 9.406250 1.77433083 5.301 0.0001
EJ 1 8.187500 1.77433083 4.614 0.0001
GH 1 -4.703125 1.77433083 -2.651 0.0094
EN 1 -4.656250 1.77433083 -2.624 0.0101
B 1 4.593750 1.77433083 2.589 0.0111
BG 1 4.015625 1.77433083 2.263 0.0259
F 1 3.281250 1.77433083 1.849 0.0675
AG 1 3.250000 1.77433083 1.832 0.0701
BC 1 -2.796875 1.77433083 -1.576 0.1183
DH 1 2.765625 1.77433083 1.559 0.1224
BE 1 -2.656250 1.77433083 -1.497 0.1377
CE 1 -2.609375 1.77433083 -1.471 0.1447
DF 1 2.515625 1.77433083 1.418 0.1595
AK 1 2.500000 1.77433083 1.409 0.1621
HK 1 -2.390625 1.77433083 -1.347 0.1811
AJ 1 2.359375 1.77433083 1.330 0.1868
BF 1 2.187500 1.77433083 1.233 0.2207
BK 1 2.171875 1.77433083 1.224 0.2240
JK 1 -2.140625 1.77433083 -1.206 0.2306
D 1 -2.140625 1.77433083 -1.206 0.2306
G 1 2.109375 1.77433083 1.189 0.2375
FJ 1 -2.031250 1.77433083 -1.145 0.2552
E 1 -1.906250 1.77433083 -1.074 0.2854
DE 1 -1.828125 1.77433083 -1.030 0.3055
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No-Attack Case Max AdJ Rsqr Day 9

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 33 186442.28125 5649.76610 11.082 0.0001
Error 94 47921.21875 509.80020
C Total 127 234363.50000

Root MSE 22.57876 R-square 0.7955
Dep Mean 151.06250 AdJ R-sq 0.7237
C.V. 14.94663

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 151.062500 1.99569889 75.694 0.0001
Bi 1 0.312500 5.28012295 0.059 0.9529
B2 1 0.062500 5.28012295 0.012 0.9906
B3 1 0.562500 5.28012295 0.107 0.9154
B4 1 6.375V00 5.28012295 1 207 0.2303
B5 1 -10.312500 5.28012295 -1.953 0.0538
B6 1 1.753000 5.28012295 0.331 0.7411
B7 1 5.500000 5.28012295 1.042 0.3002
J 1 27.609375 1.99569889 13.834 0.0001
EJ 1 14.656250 1.99569889 7.344 0.0001
BJ 1 12.531250 1.99569889 6.279 0.0001
E 1 -8.296875 1.99569889 -4.157 0.0001
EG 1 5.671875 1.99569889 2.842 0.0055
HK 1 -4.171875 1.99569889 -2.090 0.0393
DJ 1 3.812500 1.99569889 1.910 0.0591
AE 1 -3.578125 1.99569889 -1.793 0.0762
FG 1 -3.578125 1.99569889 -1.793 0.0762
AC 1 3.562500 1.99569889 1.785 0.0775
DE 1 -3.531250 1.99569889 -1.769 0.0801
AK 1 3.500000 1.99569889 1.754 0.0827
GH 1 -3.359375 1.99569889 -1.683 0.0956
GK 1 -3.281250 1.99569889 -1.644 0.1035
CF 1 3.171875 1.99569889 1.589 0.1153
H 1 2.984375 1.99569889 1.495 0.1382
AH 1 2.921875 1.99569889 1.464 0.1465
AB 1 2.890625 1.99569889 1.448 0.1508
EH 1 -2.750000 1.99569889 -1.378 0.1715
BG 1 -2.640625 1.99569889 -1.323 0.1890
AF 1 2.453125 1.99569889 1.229 0.2221
AD 1 2.359375 1.99569889 1.182 0.2401
FK 1 -2.203125 1.99569889 -1.104 0.2724
D 1 -2.109375 1.99569889 -1.057 0.2932
FH 1 2.062500 1.99569889 1.033 0.3040
BK 1 2.015625 1.99569889 1.010 0.3151
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No-Attack Case Max Adj Rsqr Day 10

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 29 47393.41406 1634.25566 13.715 0.0001
Error 98 11677.39062 1,L9.15705
C Total 127 59070.80469

Root MSE 10.91591 R-square 0.8023
Dep Mean 168.03906 AdJ R-sq 0.7438
C.V. 6.49605

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 168.039063 0.96483907 174.163 0.0001
a1 1 -1.039063 2.55272423 -0.407 0.6849
92 1 -0.601563 2.55272423 -0.236 0.8142
B3 1 -3.726563 2.55272423 -1.460 0.1475
B4 1 4.398438 2.55272423 1.723 0.0880
B5 1 1.148438 2.55272423 0.450 0.6538
B6 1 -1.039063 2.55272423 -0.407 0.6849
B7 1 6.398438 2.55272423 2.507 0.0138
B 1 15.257813 0.96483907 15.814 0.0001
J 1 5.179688 0.96483907 5.368 0.0001
EJ 1 4.835938 0.96483907 5.012 0.0001
H 1 3.367188 0.96483907 3.490 0.0007

BJ 1 3.117188 '.96483907 3.231 0.0017
F 1 3.039063 0.96483907 3.150 0.0022
AG 1 2.539063 0.96483907 2.632 0.0099
EG 1 2.179688 0.96483907 2.259 0.0261
EF 1 -2.117188 0.96483907 -2.194 0.0306
GH 1 -1.992188 0.96483907 -2.065 0.0416
E 1 1.820313 0.96483907 1.887 0.0622
AC 1 1.757813 0.96483907 1.822 0.0715
FG 1 -1.726563 0.96483907 -1.789 0.0766
AB 1 -1.601563 0.96483907 -1.660 0.1001
FK 1 1.476563 0.96483907 1.530 0.1291
EK 1 -1.304688 0.96483907 -1.352 0.1794
DE 1 -1.257813 0.96483907 -1.304 0.1954
GK 1 1.210938 0.96483907 1.255 0.2124
AH 1 -1.179688 0.96483907 -1.223 0.2244
CG 1 -1.117188 0.96483907 -1.158 0.2497

HJ 1 1.101563 0.96483907 1.142 0.2564
BE 1 -0.992188 0.96483907 -1.028 0.3063
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No-Attack Case Max Adj Rsqr Day 11

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 25 65487.21875 2619.48875 14.037 0.0001
Error 102 19034.50000 186.61275
C Total 127 64521.71875

Root MSE 13.66063 R-square 0.7748
Dep Mean 173.54688 Adj R-sq 0.7196
C.V. 7.87143

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 173.546875 1.20744030 143.731 0.0001
Bl 1 4.203125 3.19458675 1.316 0.1912
B2 1 1.328125 3.19458675 0.416 0.6785
63 1 -0.734375 3.19458675 -0.230 0.8186
84 1 -2.484375 3.19458675 -0.778 0.4386
85 1 2.203125 3.19458675 0.690 0.4920
86 1 0.015625 3.19458675 0.005 0.9961
B7 1 1.015625 3.19458675 0.318 0.7512
B 1 19.781250 1.20744030 16.383 0.0001
H 1 5.296875 1.20744030 4.387 0.0001
J 1 -5.031250 1.20744030 -4.167 0.0001
E 1 3.296875 1.20744030 2.730 0.0075
HJ 1 -3.062500 1.20744030 -2.536 0.0127
K 1 -2.515625 1.20744030 -2.083 0.0397
AB 1 -2.343750 1.20744030 -1.941 0.0550
CK 1 1.875000 1.20744030 1.553 0.1236
AC 1 -1.843750 1.20744030 -1.527 0.1299
CJ 1 -1.734375 1.20744030 -1.436 0.1539
BH 1 -1.718750 1.20744030 -1.423 0.1577
GJ 1 1'.718750 1.20744030 1.423 0.1577
BD 1 1.593750 1.20744030 1.320 0.1898
EK 1 1.515625 1.20744030 1.255 0.2123
BC 1 1.484375 1.20744030 1.229 0.2218
CD 1 1.218750 1.20744030 1.009 0.3152
FH 1 1.171875 1.20744030 0.971 0.3341
DE 1 -1.140625 1.20744030 -0.945 0.3471



No-Attack Case Max Adj Rsqr Day 12

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 29 67332.09375 2321.79634 12.305 0.0001
Error 98 18491.78125 188.69165
C Total 127 85823.87500

Root MSE 13.73651 R-square 0.7845
Dep Mean 166.78125 Adj R-sq 0.7208
C.V. 8.23624

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 166.781250 1.21414722 137.365 0.0001
Bi 1 0.468750 3.21233161 0.146 0.8843
02 1 4.593750 3.21233161 1.430 0.1559
B3 1 2.093750 3.21233161 0.652 0.5161
B4 1 -3.593750 3.21233161 -1.119 0.2660
B5 1 -1.906250 3.21233161 -0.593 0.5543
B6 1 -0.093750 3.21233161 -0.029 0.9768
B7 1 4.406250 3.21233161 1.372 0.1733
B 1 20.265625 1.21414722 16.691 0.0001
H 1 4.656250 1.21414722 3.835 0.0002
GJ 1 2.796875 1.21414722 2.304 0.0234
E 1 2.609375 1.21414722 2.149 0.0341
GH 1 2.531250 1.21414722 2.085 0.0397
EG 1 2.515625 1.21414722 2.072 0.0409
AE 1 -2.468750 1.21414722 -2.033 0.0447
DX 1 -2.437500 1.21414722 -2.008 0.0474
AF 1 2.296875 1.21414722 1.892 0.0615
AC 1 -2.281250 1.21414722 -1.879 0.0632
DH 1 2.156250 1.21414722 1.776 0.0788
F 1 1.843750 1.21414722 1.519 0.1321
FG 1 -1.843750 1.21414722 -1.519 0.1321
FK 1 1.703125 1.21414722 1.403 0.1639
HK 1 1.671875 1.21414722 1.377 0.1717
AD 1 -1.546875 1.21414722 -1.274 0.2057
CJ 1 -1.531250 1.21414722 -1.261 0.2102
G 1 -1.531250 1.21414722 -1.261 0.2102
A 1 1.515625 1.21414722 1.248 0.2149
BJ 1 1.312500 1.21414722 1.081 0.2823
HJ 1 -1.296875 1.21414722 -1.068 0.2881
DJ 1 1.296875 1.21414722 1.068 0.2881
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No-Attack Case Max Adj Rsqr Day 13

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 30 64144.60938 2138.15365 15.118 0.0001
Error 97 13718.44531 141.42727
C Total 127 77863.05469

Root MSE 11.89232 R-square 0.8238
Dep Mean 160.41406 Adj R-sq 0.7693
C.V. 7.41351

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 160.414063 1.05114250 152.609 0.0001
91 1 1.148437 2.78106165 0.413 0.6806
B2 1 1.460937 2.78106165 0.525 0.6006
B3 1 -1.039063 2.78106165 -0.374 0.7095
B4 1 -0.539063 2.78106165 -0.194 0.8467
B5 1 1.898438 2.78106165 0.683 0.4965
86 1 -7.351563 2.78106165 -2.643 0.0096
87 1 7.710938 2.78106165 2.773 0.0067
B 1 19.679688 1.05114250 18.722 0.0001
H 1 4.539063 1.05114250 4.318 0.0001
E 1 3.898438 1.05114250 3.709 0.0003
DK 1 2.585938 1.05114250 2.460 0.0157
CE 1 2.367188 1.05114250 2.252 0.0266
FH 1 2.304688 1.05114250 2.193 0.0307
AJ 1 2.210938 1.05114250 2.103 0.0380
CD 1 2.164063 1.05114250 2.059 0.0422
AC 1 -2.101563 1.05114250 -1.999 0.0484
J 1 -1.929688 1.05114250 -1.836 0.0695
C 1 1.789063 1.05114250 1.702 0.0920
CH 1 1.757813 1.05114250 1.672 0.0977
GH 1 1.710938 1.05114250 1.628 0.1068
DE 1 -1.632813 1.05114250 -1.553 0.1236
AE 1 1.476563 1.05114250 1.405 0.1633
zJ 1 -1.382813 1.05114250 -1.316 0.1914
BK 1 -1.335938 1.05114250 -1.271 0.2068
BE 1 1.257813 1.05114250 1.197 0.2344
HJ 1 -1.242188 1.05114250 -1.182 0.2402
GK 1 -1.179688 1.05114250 -1.122 0.2645
BH 1 -1.164063 1.05114250 -1.107 0.2708
BD 1 1.148438 1.05114250 1.093 0.2773
DH 1 -1.085938 1.05114250 -1.033 0.3043

B-13



No-Attack Case Max AdJ Rsqr Day 14

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 25 55373.63281 2214.94531 10.956 0.0001
Error 102 20621.23437 202.16896
C Total 127 75994.86719

Root MSE 14.21861 R-square 0.7286
Dep Mean 153.82031 Adj R-sq 0.6621
C.V. 9.24365

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 153.820313 1.25675974 122.394 0.0001
91 1 7.617188 3.32507372 2.291 0.0240
B2 1 -1.695313 3.32507372 -0.510 0.6113
B3 1 -2.695313 3.32507372 -0.811 0.4195
B4 1 -0.195313 3.32507372 -0.059 0.9533
B5 1 0.179688 3.32507372 0.054 0.9570
B6 1 -3.445313 3.32507372 -1.036 0.3026
B7 1 -3.382813 3.32507372 -1.017 0.3114
B 1 17.945313 1.25675974 14.279 0.0001
H 1 5.867188 1.25675974 4.669 0.0001
BE 1 3.820313 1.25675974 3.040 0.0030
E 1 2.914063 1.25675974 2.319 0.0224
BD 1 2.507813 1.25675974 1.995 0.0487
DR 1 -2.289063. 1.25675974 -1.821 0.0715
CJ 1 -1.929688 1.25675974 -1.535 0.1278
NJ 1 -1.773438 1.25675974 -1.411 0.1613
DE 1 1.664063 1.25675974 1.324 0.1884
AG 1 1.648438 1.25675974 1.312 0.1926
AF 1 -1.554688 1.25675974 -1.237 0.2189
GH 1 1.507813 1.25675974 1.200 0.2330
F 1 1.445313 1.25675974 1.150 0.2528
JK 1 1.429688 1.25675974 1.138 0.2580
CH 1 -1.414063 1.25675974 -1.125 0.2632
CD 1 1.382813 1.25675974 1.100 0.2738
EK 1 1.304688 1.25675974 1.038 0.3017
HJ 1 -1.289063 1.25675974 -1.026 0.3075
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No-Attack Case Max Adj Rsqr Day 15

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 27 55465.58594 2054.28096 12.834 0.0001
Error 100 16006.28125 160.06281
C Total 127 71471.86719

Root MSE 12.65159 R-square 0.7760
Dep Mean 144.32031 Adj R-sq 0.7156
C.V. 8.76633

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-O Prob > ITI

INTERCEP 1 144.320313 1.11825343 129.059 0.0001
B1 1 -5.445313 2.95862047 -1.840 0.0687
B2 1 -0.132813 2.95862047 -0.045 0.9643
B3 1 -4.570313 2.95862047 -1.545 0.1256
B4 1 2.054688 2.95862047 0.694 0.4890
85 1 -0.195313 2.95862047 -0.066 0.9475
B6 1 0.804688 2.95862047 0.272 0.7862
B7 1 0.304688 2.95862047 0.103 0.9182
B 1 18.132813 1.11825343 16.215 0.0001
H 1 5.085938 1.11825343 4.548 0.0001
AE 1 2.945313 1.11825343 2.634 0.0098
A 1 2.757813 1.11825343 2.466 0.0154
AB 1 2.726563 1.11825343 2.438 0.0165
CD 1 -2.304688 1.11825343 -2.061 0.0419
K 1 -2.257813 1.11825343 -2.019 0.0462
BJ 1 2.132813 1.11825343 1.907 0.0594
EH 1 -2.101563 1.11825343 -1.879 0.0631
BF 1 1.945313 1.11825343 1.740 0.0850
GK 1 -1.617188 1.11825343 -1.446 0.1513
FK 1 -1.507813 1.11825343 -1.348 0.1806
BH 1 1.460938 1.11825343 1.306 0.1944
BD 1 1.445313 1.11825343 1.292 0.1992
EK 1 -1.382813 1.11825343 -1.237 0.2191
DE 1 1.257813 1.11825343 1.125 0.2634
BC 1 1.226563 1.11825343 1.097 0.2753
DF 1 -1.210938 1.11825343 -1.083 0.2815
J 1 1.195313 1.11825343 1.069 0.2877
CK 1 1.179688 1.11825343 1.055 0.2940



No-Attack Case Max Adj Rsqr Day 16

Analysis of Var 4 ance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 30 73586.54687 2452.88490 14.521 0.0001
Error 97 16384.75781 168.91503
C Total 127 69971.30469

Root MSE 12.99673 R-squaro 0.8179
Dep mean 140.21094 Adj R-sq 0.7616
C.V. 9.26941

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 140.210938 1.14875962 122.054 0.0001
Bi 1 4.601563 3.03933227 1.514 0.1333
82 1 -5.523438 3.03933227 -1.817 0.0723
B3 1 -2.585938 3.03933227 -0.851 0.3970
B4 1 -0.960938 3.03933227 -0.316 0.7526
B5 1 2.539063 3.03933227 0.835 0.4055
B6 1 -0.085937 3.03933227 -0.028 0.9775
B7 1 0.726563 3.03933227 0.239 0.8116
B 1 21.523438 1.14875962 18.736 0.0001
H 1 3.804688 1.14875962 3.312 0.0013
BC 1 3.445313 1.14875962 2.999 0.0034
AJ 1 3.085938 1.14875962 2.686 0.0085
DK 1 2.648438 1.14875962 2.305 0.0233
CE 1 2.539063 1.14875962 2.210 0.0294
AS 1 -2.507813 1.14875962 -2.183 0.0314
5H 1 2.492188 1.14875962 2.169 0.0325
DE 1 2.148438 1.14875962 1.870 0.0645
G 1 2.117188 1.14875962 1.843 0.0684
EX 1 2.085938 1.14875962 1.816 0.0725
GK 1 -1.757813 1.14875962 -1.530 0.1292
E 1 1.679688 1.14875962 1.462 0.1469
FG 1 -1.679688 1.14875962 -1.462 0.1469
FH 1 1.632813 1.14875962 1.421 0.1584
HJ 1 -1.570313 1.14875962 -1.367 0.1748
FJ 1 -1.554688 1.14875962 -1.353 0.1791
DJ 1 1.460938 1.14875962 1.272 0.2065
CF 1 -1.445313 1.14875962 -1.258 0.2114
EJ 1 -1.445313 1.14875962 -1.258 0.2114
BD 1 1.335938 1.14875962 1.163 0.2477
CD 1 1.320313 1.14875962 1.149 0.2532
CG 1 1.320313 1.14875962 1.149 0.2532
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No-Attack Case Max Adj Rsqr Day 17

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 40 74098.93750 1852.47344 13.442 0.0001
Error 87 11989.61719 137.81169
C Total 127 86088.55469

Root MSE 11.73932 R-square 0.8607
Dep Mean 135.33594 AdJ R-sq 0.7967
C.V. 8.67421

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 135.335938 1.03761931 130.429 0.0001
B1 1 8.101563 2.74528266 2.951 0.0041
B2 1 2.164063 2.74528266 0.788 0.4327
B3 - 2.226563 2.74528266 0.811 0.4196
B4 1 -8.710938 2.74528266 -3.173 0.0021
85 1 -6.585938 2.74528266 -2.399 0.0186
B6 1 0.351563 2.74528266 0.128 0.8984
B7 1 0.789063 2.74528266 0.287 0.7745
B 1 20.960938 1.03761931 20.201 0.0001
H 1 5.476563 1.03761931 5.278 0.0001
BJ 1 -2.539063 1.03761931 -2.447 0.0164
FH 1 2.382813 1.03761931 2.296 0.0241
BF 1 2.367188 1.03761931 2.281 0.0250
CE 1 2.054688 1.03761931 1.980 0.0508
HJ 1 -2.023438 1.03761931 -1.950 0.0544
DH 1 2.023438 1.03761931 1.950 0.0544
.DJ 1 1.945313 -1.03761931 1.875 0.0642

CG 1 -1.914063 1.03761931 -1.845 0.0685
G 1 1.898438 1.03761931 1.830 0.0707
EG 1 -1.820313 1.03761931 -1.754 0.0829
JK 1 1.820313 1.03761931 1.754 0.0829
AH 1 -1.632813 1.03761931 -1.574 0.1192
BE 1 1.585938 1.03761931 1.528 0.1300
J 1 -1.539063 1.03761931 -1.483 0.1416
AF 1 -1.523438 1.03761931 -1.468 0.1457
GH 1 1.507813 1.03761931 1.453 0.1498
BG 1 1.492188 1.03761931 1.438 0.1540
BH 1 1.445313 1.03761931 1.393 0.1672
EJ 1 -1.414063 1.03761931 -1.363 0.1765
DK 1 1.398438 1.03761931 1.348 0.1812
FJ 1 -1.382813 1.03761931 -1.333 0.1861
EK 1 1.351563 1.03761931 1.303 0.1962
CD 1 -1.304688 1.03761931 -1.257 0.2120
AJ 1 -1.273438 1.03761931 -1.227 0.2230
F 1 1.273438 1.03761931 1.227 0.2230
FK 1 -1.273438 1.03761931 -1.227 0.2230
AE 1 1.164063 1.03761931 1.122 0.2650
GK 1 -1.148438 1.03761931 -1.107 0.2714
GJ 1 1.117188 1.03761931 1.077 0.2846
AB 1 -1.117188 1.03761931 -1.077 0.2846
EH 1 1.039063 1.03761931 1.001 0.3194
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No-Attack Case Max Adj Rsqr Day 18

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 33 59024.25781 1788.61387 15.233 0.0001
Error 94 11037.23438 117.41739
C Total 127 70061.49219

Root MSE 10.83593 R-square 0.8425
Dep Mean 126.24219 AdJ R-sq 0.7872
C.V. 8.58345

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 126.242188 0.95776998 131.808 0.0001
a1 1 9.320313 2.53402118 3.678 0.0004
B2 1 -2.929688 2.53402118 -1.156 0.2506
B3 1 -2.492188 2.53402118 -0.983 0.3279
B4 1 -3.117188 2.53402118 -1.230 0.2217
B5 1 -2.179688 2.53402118 -0.860 0.3919
B6 1 0.007813 2.53402118 0.003 0.9975
B7 1 0.070313 2.53402118 0.028 0.9779
B 1 18.273438 0.95776998 19.079 0.0001
BE 1 3.976563 0.95776998 4.152 0.0001
BC 1 3.304688 0.95776998 3.450 0.0008
CF 1 -2.898438 0.95776998 -3.026 0.0032
F 1 2.820313 0.95776998 2.945 0.0041
H 1 2.726563 0.95776998 2.847 0.0054
BF 1 2.601563 0.95776998 2.716 0.0079
GJ 1 2.523438 0.95776998 2.635 0.0098
FK 1 -2.382813 0.95776998 -2.488 0.0146
HJ 1 -2.304688 0.95776998 -2.406 0.0181
EF 1 -2.195313 0.95776998 -2.292 0.0241
BG 1 2.023438 0.95776998 2.113 0.0373
AE 1 1.914063 0.95776998 1.998 0.0486
CK 1 -1.867188 0.95776998 -1.950 0.0542
GH 1 1.757813 0.95776998 1.835 0.0696
EH 1 1.742188 0.95776998 1.819 0.0721
AK 1 1.601563 0.95776998 1.672 0.0978
BD 1 1.554688 0.95776998 1.623 0.1079
AD 1 -1.382813 0.95776998 -1.444 0.1521
J 1 -1.226563 0.95776998 -1.281 0.2035
JK 1 1.226563 0.95776998 1.281 0.2035
DK 1 1.195313 0.95776998 1.248 0.2151
DE 1 -1.148438 0.95776998 -1.199 0.2335
AJ 1 1.023438 0.95776998 1.069 0.2880
EG 1 -0.992188 0.95776998 -1.036 0.3029
CJ 1 -0.976563 0.95776998 -1.020 0.3105
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No-Attack Case Max Adj Raqr Day 19

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 36 72925.03125 2025.69531 6.608 0.0001
Error 91 27895.43750 306.54327
C Total 127 100820.46875

Root MSE 17.50838 R-square 0.7233
Dep Mean 115.10938 AdJ R-aq 0.6139
C.V. 15.21021

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 115.109375 1.54753652 74.382 0.0001
B1 1 11.640625 4.09439679 2.843 0.0055
B2 1 -5.546875 4.09439679 -1.355 0.1789
B3 1 3.203125 4.09439679 0.782 0.4361
B4 1 -12.609375 4.09439679 -3.080 0.0027
B5 1 8.390625 4.09439679 2.049 0.0433
B6 1 -2.296875 4.09439679 -0.561 0.5762
B7 1 -4.921875 4.09439679 -1.202 0.2324
B 1 12.656250 1.54753652 8.178 0.0001
E 1 -6.031250 1.54753652 -3.897 0.0002
J 1 -5.640625 1.54753652 -3.645 0.0Mj4
BK 1 5.593750 1.54753652 3.615 0.0005
HK 1 5.421875 1.54753652 3.504 0.0007
JK 1 4.60937.5 1.54753652 2.979 0.0037
EJ 1 -4.562500 1.54753652 -2.948 0.0041
BC 1 4.328125 1.54753652 2.797 0.0063
K 1 4.265625 1.54753652 2.756 0.0071
CE 1 4.234375 1.54753652 2.736 0.0075
DK 1 4.062500 1.54753652 2.625 0.0102
GJ 1 3.937500 1.54753652 2.544 0.0126
EK 1 3.718750 1.54753652 2.403 0.0183
C 1 3.093750 1.54753652 1.999 0.0486
CK 1 -2.968750 1.54753652 -1.918 0.0582
EH 1 -2.750000 1.54753652 -1.777 0.0789
HJ 1 -2.734375 1.54753652 -1.767 0.0806
AC 1 -2.640625 1.54753652 -1.706 0.0914
D 1 -2.625000 1.54753652 -1.696 0.0933
BJ 1 -2.375000 1.54753652 -1.535 0.1283
DH 1 -2.375000 1.54753652 -1.535 0.1283
GK 1 1.843750 1.54753652 1.191 0.2366
DE 1 -1.828125 1.54753652 -1.181 0.2406
AG 1 -1.796875 1.54753652 -1.161 0.2486
CF 1 1.796875 1.54753652 1.161 0.2486
EG 1 -1.734375 1.54753652 -1.121 0.2654
BE 1 -1.703125 1.54753652 -1.101 0.2740
BH 1 -1.625000 1.54753652 -1.050 0.2965
BF 1 1.609375 1.54753652 1.040 0.3011
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No-Attack Case Max Adj Rsqr Day 20

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 36 50581.93750 1405.05382 7.845 0.0001
Error 91 16298.03125 179.09924
C Total 127 66879.96875

Root MSE 13.38280 R-square 0.7563
Dep Mean 109.01563 Adj R-sq 0.6599
C.V. 12.27604

Paraamter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 109.015625 1.18288328 92.161 0.0001
B1 1 1.421875 3.12961498 0.454 0.6507
B2 1 4.109375 3.12961498 1.313 0.1925
B3 1 1.546875 3.12961498 0.494 0.6223
B4 1 -7.640625 3.12961498 -2.441 0.0166
B5 1 7.171875 3.12961498 2.292 0.0242
B6 1 -1.203125 3.12961498 -0.384 0.7016
87 1 -8.140625 3.12961498 -2.601 0.0108
B 1 12.062500 1.18288328 10.198 0.0001
K 1 5.218750 1.18288328 4.412 0.0001
BK 1 4.765625 1.18288328 4.029 0.0001
CE 1 4.578125 1.18288328 3.870 0.0002
J 1 -4.156250 1.18288328 -3.514 0.0007
DG 1 -3.656250 1.18288328 -3.091 0.0026
BD 1 3.515625 1.18288328 2.972 0.0038
D 1 3.312500 1.18288328 2.800 0.0062
JK 1 3.171875 1.18288328 2.681 0.0087
DE 1 -3.171875 1.18288328 -2.681 0.0087
EJ 1 -3.109375 1.18288328 -2.629 0.0101
E 1 -2.875000 1.18288328 -2.431 0.0170
F 1 -2.750000 1.18288328 -2.325 0.0223
EK 1 2.703125 1.18288328 2.285 0.0246
BJ 1 -2.515625 1.18288328 -2.127 0.0362
FJ 1 2.390625 1.18288328 2.021 0.0462
BG 1 2.281250 1.18288328 1.929 0.0569
H 1 2.000000 1.18288328 1.691 0.0943
AC 1 1.968750 1.18288328 1.664 0.0995
FH 1 -1.921875 1.18288328 -1.625 0.1077
GH 1 1.718750 1.18288328 1.453 0.1497
A 1 1.671875 1.18288328 1.413 0.1610
CG 1 1.343750 1.18288328 1.136 0.2589
CK 1 -1.328125 1.18288328 -1.123 0.2645
FG 1 -1.312500 1.18288328 -1.110 0.2701
AE 1 1.281250 1.18288328 1.083 0.2816
BH 1 -1.265625 1.18288328 -1.070 0.2875
DF 1 -1.234375 1.18288328 -1.044 0.2995
FK 1 -1.203125 1.18288328 -1.017 0.3118
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No-Attack Case Max Adj Rsqr Day 21

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 39 66789.99219 1712.56390 10.945 0.0001
Error 88 13769.50000 156.47159
C Total 127 80559.49219

Root MSE 12.50886 R-square 0.8291
Dep Mean 110.24219 AdJ R-sq 0.7533
C.V. 11.34671

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 110.242188 1.10563751 99.709 0.0001
B1 1 1.507813 2.92524189 0.515 0.6075
B2 1 4.570313 2.92524189 1.562 0.1218
B3 1 -3.304688 2.92524189 -1.130 0.2617
B4 1 -9.304688 2.92524189 -3.181 0.0020
B5 1 -2.054688 2.92524189 -0.702 0.4843
B6 1 3.445313 2.92524189 1.178 0.2421
B7 1 2.007813 2.92524189 0.686 0.4943
B 1 18.679688 1.10563751 16.895 0.0001
H 1 5.351563 1.10563751 4.840 0.0001
BE 1 3.695313 1.10563751 3.342 0.0012
FJ 1 -3.304688 1.10563751 -2.989 0.0036
BK 1 -3.023438 1.10563751 -2.735 0.0076
FH 1 2.914063 1.10563751 2.636 0.0099
BH 1 2.632813 1.10563751 2.381 0.0194
K 1 -2.273438 1.10563751 -2.056 0.0427
HK 1 -2.257813 1.10563751 -2.042 0.0441
EH 1 2.210938 1.10563751 2.000 0.0486
CF 1 -2.179688 1.10563751 -1.971 0.0518
HJ 1 -2.132813 1.10563751 -1.929 0.0569
GH 1 2.070313 1.10563751 1.873 0.0645
JR 1 2.054688 1.10563751 1.858 0.0665
AE 1 2.023438 1.10563751 1.830 0.0706
GJ 1 1.882813 1.10563751 1.703 0.0921
G 1 1.867188 1.10563751 1.689 0.0948
BC 1 1.789063 1.10563751 1.618 0.1092
DJ 1 1.789063 1.10563751 1.618 0.1092
BD 1 1.773438 1.10563751 1.604 0.1123
D 1 1.679688 1.10563751 1.519 0.1323
DG 1 1.617188 1.10563751 1.463 0.1471
EK 1 -1.570313 1.10563751 -1.420 0.1591
FG 1 -1.414063 1.10563751 -1.279 0.2043
FK 1 -1.398438 1.10563751 -1.265 0.2093
AD 1 -1.367188 1.10563751 -1.237 0.2195
DE 1 -1.304688 1.10563751 -1.180 0.2412
DH 1 1.257813 1.10563751 1.138 0.2584
EF 1 1.257813 1.10563751 1.138 0.2584
C 1 -1.210938 1.10563751 -1.095 0.2764
F 1 1.148438 1.10563751 1.039 0.3018
AJ 1 1.117188 1.10563751 1.010 0.3151
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No-Attack Case Max AdJ Raqr Day 22

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 31 49053.92969 1582.38483 10.881 0.0001

Error 96 13960.68750 145.42383
C Total 127 63014.61719

Root MSE 12.05918 R-square 0.7785
Dep Mean 102.94531 Adj R-sq 0.7069
C.V. 11.71416

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 102.945313 1.06589102 96.581 0.0001

B1 1 0.117188 2.82008255 0.042 0.9669

B2 1 1.117188 2.82008255 0.396 0.6929
83 1 -1.132813 2.82008255 -0.402 0.6888
B4 1 -1.820313 2.82008255 -0.645 0.5202
B5 1 -2.320313 2.82008255 -0.823 0.4127
B6 1 1.617188 2.82008255 0.573 0.5677
B7 1 0.742188 2.82008255 0.263 0.7930
B 1 16.476563 1.06589102 15.458 0.0001

H 1 4.117188 1.06589102 3.863 0.0002
HJ 1 -3.789063 1.06589102 -3.555 0.0006
K 1 -3.664063 1.06589102 -3.438 0.0009

BG 1 2.648438 1.06589102 2.485 0.0147
BK 1 -2.632813 1.06589102 -2.470 0.0153
AK 1 2.507813 1.06589102 2.353 0.0207
G 1 2.460938 1.06589102 2.309 0.0231
BC 1 1.960938 1.06589102 1.840 0.0689

EG 1 1.945313 1.06589102 1.825 0.0711

EH 1 1.882813 1.06589102 1.766 0.0805
HK 1 -1.773438 1.06589102 -1.664 0.0994
FK 1 -1.726563 1.06589102 -1.620 0.1085
GH 1 1.695313 1.06589102 1.591 0.1150
BH 1 1.585938 1.06589102 1.488 0.1401
BD 1 1.570313 1.06589102 1.473 0.1440
CG 1 1.476563 1.06589102 1.385 0.1692
FG 1 -1.476563 1.06589102 -1.385 0.1692
BF 1 1.445313 1.06589102 1.356 0.1783
AB 1 1.335938 1.06589102 1.253 0.2131
C 1 -1.257813 1.06589102 -1.180 0.2409

E 1 -1.101563 1.06589102 -1.033 0.3040
AF 1 -1.101563 1.06589102 -1.033 0.3040
BJ 1 -1.085938 1.06589102 -1.019 0.3109
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No-Attack Case Max Adj Rsqr Day 23

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 33 56804.19531 1721.33925 11.971 0.0001
Error 94 13516.92188 143.79704
C Total 127 70321.11719

Root MSE 11.99154 R-square 0.8078
Dep Mean 97.30469 AdJ R-sq 0.7403
C.V. 12.32370

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 97.304688 1.05991244 91.804 0.0001
a1 1 1.820313 2.80426473 0.649 0.5178
B2 1 4.382813 2.80426473 1.563 0.1214
B3 1 -6.179688 2.80426473 -2.204 0.0300
B4 1 -2.304688 2.80426473 -0.822 0.4132
B5 1 1.820313 2.80426473 0.649 0.5178
B6 1 -0.054687 2.80426473 -0.020 0.9845
B7 1 2.5C7813 2.30426473 0.894 0.3735
B 1 18.00/813 1.05991244 16.990 0.0001
H 1 3.960938 1.05991244 3.737 0.0003
E 1 -3.007813 1.05991244 -2.838 0.0056
BH 1 2.882813 1.05991244 2.720 0.0078
AC 1 2.820313 1.05991244 2.661 0.0092"
HJ 1 -2.789063 1.05991244 -2.631 0.0099
EK 1 -2.460938 1.05991244 -2.322 0.0224
K 1 -2.242188 1.05991244 -2.115 0.0370
FG 1 -2.195313 1.05991244 -2.071 0.0411
FJ 1 -2.179688 1.05991244 -2.056 0.0425
BC 1 1.992188 1.05991244 1.880 0.0633
EG 1 1.976563 1.05991244 1.865 0.0653
JK 1 1.851563 1.05991244 1.747 0.0839
BG 1 1.835938 1.05991244 1.732 0.0865
GJ 1 1.820313 1.05991244 1.717 0.0892
G 1 1.757813 1.05991244 1.658 0.1006
AE 1 1.710938 1.05991244 1.614 0.1098
F 1 1.570313 1.05991244 1.482 0.1418
AF 1 -1.554688 1.05991244 -1.467 0.1458
DE 1 -1.476563 1.05991244 -1.393 0.1669
FH 1 1.382813 1.05991244 1.305 0.1952
EF 1 -1.304688 1.05991244 -1.231 0.2214
ER 1 1.242188 1.05991244 1.172 0.2442
C 1 -1.179688 1.05991244 -1.113 0.2685
FK 1 -1.164063 1.05991244 -1.098 0.2749
DG 1 1.070313 1.05991244 1.010 0.3152

B-23



No-Attack Case Max Adj Rsqr Day 24

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 38 50329.18750 1324.45230 9.226 0.0001
Error 89 12776.31250 143.55407
C Total 127 63105.50000

Root MSE 11.98141 R-square 0.7975
Dep Mean 91.18750 AdJ R-sq 0.7111
C.V. 13.13931

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 91.187500 1.05901662 86.106 0.0001
81 1 -2.000000 2.80189460 -0.714 0.4772
82 1 8.062500 2.80189460 2.878 0.0050
B3 1 -7.562500 2.80189460 -2.699 0.0083
B4 1 -6.000000 2.80189460 -2.141 0.0350
B5 1 -4.250000 2.80189460 -1.517 0.1329
B6 1 4.250000 2.80189460 1.517 0.1329
B7 1 4.312500 2.80189460 1.539 0.1273
a 1 15.718750 1.05901662 14.843 0.0001
E 1 -4.750000 1.05901662 -4.485 0.0001
FJ 1 -3.265625 1.05901662 -3.084 0.0027
K 1 -3.187500 1.05901662 -3.010 0.0034
AG 1 2.484375 1.05901662 2.346 0.0212
CJ 1 2.281250 1.05901662 2.154 0.0339
A 1 2.218750 1.05901662 2.095 0.0390
J 1 2.125000 1.05901662 2.007 0.0478
AR 1 -2.109375 1.05901662 -1.992 0.0495
AB 1 2.093750 1.05901662 1.977 0.0511
H 1 2.015625 1.05901662 1.903 0.0602
EK 1 -1.875000 1.05901662 -1.771 0.0801
AC 1 1.875000 1.05901662 1.771 0.0801
EH 1 1.734375 1.05901662 1.638 0.1050
EG 1 1.578125 1.05901662 1.490 0.1397
AJ 1 -1.562500 1.05901662 -1.475 0.1436
BH 1 1.515625 1.05901662 1.431 0.1559
HJ 1 -1.515625 1.05901662 -1.431 0.1559
EJ 1 1.468750 1.05901662 1.387 0.1689
JK 1 1.468750 1.05901662 1.387 0.1689
CD 1 -1.375000 1.05901662 -1.298 0.1975
AE 1 1.375000 1.05901662 1.298 0.1975
GK 1 1.328125 1.05901662 1.254 0.2131
F 1 1.296875 1.05901662 1.225 0.2240
BG 1 -1.265625 1.05901662 -1.195 0.2352
FR 1 1.187500 1.05901662 1.121 0.2652
BD 1 1.187500 1.05901662 1.121 0.2652
FK 1 -1.171875 1.05901662 -1.107 0.2715
DG 1 1.171875 1.05901662 1.107 0.2715
CH 1 -1.109375 1.05901662 -1.048 0.2977
GH 1 -1.062500 1.05901662 -1.003 0.3184
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No-Attack Case Max Adj Raqr Day 25

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 29 39123.66406 1349.09186 7.724 0.0001
Error 98 17117.70313 174.67044
C Total 127 56241.36719

Root MSE 13.21629 R-square 0.6956
Dep Mean 84.57031 AdJ R-sq 0.6056
C.V. 15.62758

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 84.570313 1.16816643 72.396 0.0001
Bi 1 -3.882813 3.09067787 -1.256 0.2120
B2 1 0.867188 3.09067787 0.281 0.7796
B3 1 -1.695313 3.09067787 -0.549 0.5846
B4 1 1.179688 3.09067787 0.382 0.7035
B5 1 -5.007813 3.09067787 -1.620 0.1084
B6 1 7.867187 3.09067787 2.545 0.0125
B7 1 0.617188 3.09067787 0.200 0.8421
B 1 12.960938 1.16816643 11.095 0.0001
E 1 -5.039063 1.16816643 -4.314 0.0001
AC 1 4.179688 1.16816643 3.578 0.0005
BJ 1 3.507813 1.16816643 3.003 0.0034
AE 1 3.445313 1.16816643 2.949 0.0040
K 1 -3.117188 1.16816643 -2.668 0.0089
J 1 2.617188 1.16816643 2.240 0.0273
BE 1 -2.148438 1.16816643 -1.839 0.0689
DH 1 2.085938 1.16816643 1.786 0.0772
FJ 1 -1.945313 1.16816643 -1.665 0.0991
CG 1 1.757813 1.16816643 1.505 0.1356
HJ 1 1.742188 1.16816643 1.491 0.1391
EJ 1 1.664063 1.16816643 1.425 0.1575
BK 1 -1.664063 1.16816643 -1.425 0.1575
CK 1 -1.617188 1.16816643 -1.384 0.1694
C 1 -1.585938 1.16816643 -1.358 0.1777
CJ 1 1.585938 1.16816643 1.358 0.1777
EK 1 -1.507813 1.16816643 -1.291 0.1998
BH 1 -1.320313 1.16816643 -1.130 0.2611
DJ 1 -1.273438 1.16816643 -1.090 0.2783
CH 1 -1.242188 1.16816643 -1.063 0.2902
A 1 1.179688 1.16816643 1.010 0.3150
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No-Attack Case Max Adj Raqr Day 26

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 35 44069.59375 1259.13125 5.539 0.0001
Error 92 20912.37500 227.30842
C Total 127 64981.96875

Root MSE 15.07675 R-square 0.6782
Dep Mean 76.98438 AdJ R-sq 0.5558
C.V. 19.58417

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 76.984375 1.33260912 57.770 0.0001
Bi 1 -1.546875 3.52575232 -0.439 0.6619
B2 1 7.140625 3.52575232 2.025 0.0457
83 1 -5.609375 3.52575232 -1.591 0.1150
B4 1 -1.984375 3.52575232 -0.563 0.5749
B5 1 -3.609375 3.52575232 -1.024 0.3087
B6 1 6.015625 3.52575232 1.706 0.0913
B7 1 6.015625 3.52575232 1.706 0.0913
B 1 9.593750 1.33260912 7.199 0.0001
E 1 -8.125000 1.33260912 -6.097 0.0001
BE 1 -5.140625 1.33260912 -3.858 0.0002
BH 1 -4.187500 1.33260912 -3.142 0.0023
C 1 -3.781250 1.33260912 -2.837 0.0056
BJ 1 3.453125 1.33260912 2.591 0.0111
BC 1 -2.953125 1.33260912 -2.216 0.0292
H 1 -2.546875 1.33260912 -1.911 0.0591
CJ 1 2.453125 1.33260912 1.841 0.0689
J 1 2.406250 1.33260912 1.806 0.0742
DK 1 2.390625 1.33260912 1.794 0.0761
GH 1 -2.281250 1.33260912 -1.712 0.0903
AK 1 2.234375 1.33260912 1.677 0.0970
FG 1 2.140625 1.33260912 1.606 0.1116
BK 1 2.125000 1.33260912 1.595 0.1142
DJ 1 -2.125000 1.33260912 -1.595 0.1142
AJ 1 -2.062500 1.33260912 -1.548 0.1251
CD 1 -1.937500 1.33260912 -1.454 0.1494
DE 1 -1.875000 1.33260912 -1.407 0.1628
AE 1 1.718750 1.33260912 1.290 0.2004
BD 1 -1.656250 1.33260912 -1.243 0.2171
AC 1 1.625000 1.33260912 1.219 0.2258
EF 1 -1.609375 1.33260912 -1.208 0.2303
BG 1 -1.546875 1.33260912 -1.161 0.2487
EJ 1 1.453125 1.33260912 1.090 0.2784
D 1 -1.390625 1.33260912 -1.044 0.2994
AG 1 -1.375000 1.33260912 -1.032 0.3049
JK 1 1.343750 1.33260912 1.008 0.3159
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No-Attack Case Max Adj Rsqr Day 27

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 36 50841.21875 1412.25608 3.819 0.0001
Error 91 33653.65625 -369.82040
C Total 127 84494.87500

Root MSE 19.23071 R-square 0.6017
Dep Mean 64.90625 AdJ R-sq 0.4441
C.V. 29.62845

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 64.906250 1.69977112 38.185 0.0001
Bi 1 -6.781250 4.49717167 -1.508 0.1350
B2 1 1.406250 4.49717167 0.313 0.7552
B3 1 0.593750 4.49717167 0.132 0.8953
B4 1 2.968750 4.49717167 0.660 0.5108
B5 1 -2.656250 4.49717167 -0.591 0.5562
B6 1 4.968750 4.49717167 1.105 0.2721
B7 1 4.843750 4.49717167 1.077 0.2843
BK 1 7.671875 1.69977112 4.513 0.0001
E 1 -7.500000 1.69977112 -4.412 0.0001
BH 1 -6.328125 1.69977112 -3.723 0.0003
K 1 5.281250 1.69977112 3.107 0.0025
DE 1 -4.187500 1.69977112 -2.464 0.0156
J 1 4.171875 1.69977112 2.454 0.0160
BJ 1 3.406250 1.69977112 2.004 0.0480
C 1 -3.281250 1.69977112 -1.930 0.0567
AG 1 -3.281250 1.69977112 -1.930 0.0567
CJ 1 3.265625 1.69977112 1.921 0.0578
H 1 -3.218750 1.69977112 -1.894 0.0615
HJ 1 3.203125 1.69977112 1.884 0.0627
F 1 -3.171875 1.69977112 -1.866 0.0653
GH 1 -3.078125 1.69977112 -1.811 0.0735
CE 1 3.000000 1.69977112 1.765 0.0809
BE 1 -2.828125 1.69977112 -1.664 0.0996
AE 1 2.796875 1.69977112 1.645 0.1033
EF 1 -2.640625 1.69977112 -1.554 0.1238
AK 1 2.609375 1.69977112 1.535 0.1282
GJ 1 -2.468750 1.69977112 -1.452 0.1498
CG 1 2.078125 1.69977112 1.223 0.2246
AC 1 2.015625 1.69977112 1.186 0.2388
CF 1 1.984375 1.69977112 1.167 0.2461
DF 1 1.984375 1.69977112 1.167 0.2461
FH 1 -1.984375 1.69977112 -1.167 0.2461
BF 1 -1.843750 1.69977112 -1.085 0.2809
JK 1 1.796875 1.69977112 1.057 0.2933
BC 1 -1.765625 1.69977112 -1.039 0.3017
DJ 1 -1.734375 1.69977112 -1.020 0.3103
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No-Attack Case Max Adj Rsqr Day 28

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 33 65266.31250 1977.76705 6.025 0.0001

Error 94 306-54.56250 328.24003

C Total 127 96120.67500

Root MSE 18.11740 R-square 0.6790

Dep Mean 54.59375 Adj R-sq 0.5663

C.V. 33.18584

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Para ter-O Prob > ITI

INTERCEP 1 54.593750 1.60136667 34.092 0.0001

Bi 1 -6.531250 4.23681796 -1.542 0.1265

82 1 4.843750 4.23681796 1.143 0.2558

B3 1 0.468750 4.23681796 0.111 0.9121

84 1 1.906250 4.23681796 0.450 0.6538

85 1 1.718750 4.23681796 0.406 0.6859

86 1 -1.968750 4.23681796 -0.465 0.6432

87 1 2.718750 4.23681796 0.642 0.5226

SK 1 12.265625 1.60136667 7.659 0.0001

K 1 11.015625 1.60136667 6.879 0.0001

13 1 -5.187500 1.60136667 -3.239 0.0017

JK 1 4.937500 1.60136667 3.083 0.0027

RK 1 -4.515625 1.60236667 -2.820 0.0059

E 1 -3.690625 1.60136667 -2.430 0.0170

Hi 1 3.812500 1.60136667 2.381 0.0193

AF 1 -3.562500 1.60136667 -2.225 0.0285

Ci 1 3.546875 1.60136667 2.215 0.0292

R 1 -3.421875 1.60136667 -2.137 0.0352

AG 1 -3.328125 1.60136667 -2.079 0.0404

DF 1 3.078125 1.60136667 1.922 0.0576

13C 1 -2.968750 1.60136667 -1.854 0.0669

EK 1 -2.593750 1.60136667 -1.620 0.1086

ER 1 -2.437500 1.60136667 -1.522 0.1313

GH 1 -2.328125 1.60136667 -1.454 0.1493

Gi 1 -2.296875 1.60136667 -1.434 0.1548

CK 1 -2.265625 1.60136667 -1.415 0.1604

FK 1 2.156250 1.60136667 1.347 0.1814

CE 1 2.078125 1.60136667 1.298 0.1976

G 1 -2.031250 1.60136667 -1.268 0.2078

1 1 1.953125 1.60136667 1.220 0.2256

A 1 1.921875 1.60136667 1.200 0.2331

AH 1 1.875000 1.60136667 1.171 0.2446

FH 1 -1.781250 1.60136667 -1.122 0.2689

AE 1 1.687500 1.60136667 1.054 0.2947
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No-Attack Case Max AdJ Rsqr Day 29

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 33 68514.88281 2076.20857 8.060 0.0001
Error 94 24213.35937 257.58893
C Total 127 92728.24219

Root MSE 16.04958 R-square 0.7389
Dep Mean 49.38281 AdJ R-sq 0.6472
C.V. 32.50033

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 49.382813 1.41859561 34.811 0.0001
a1 1 -7.570313 3.75325120 -2.017 0.0465
B2 1 1.929688 3.75325120 0.514 0.6084
B3 1 -0.070313 3.75325120 -0.019 0.9851
B4 1 3.304688 3.75325120 0.880 0.3808
B5 1 7.429688 3.75325120 1.980 0.0507
B6 1 -1.132813 3.75325120 -0.302 0.7635
B7 1 -0.445313 3.75325120 -0.119 0.9058
BK 1 12.179688 1.41859561 8.586 0.0001
K 1 11.539063 1.41859561 8.134 0.0001
B 1 -8.570313 1.41859561 -6.041 0.0001
JK 1 5.539063 1.41859561 3.905 0.0002
BH 1 -3.804688 1.41859561 -2.682 0.0086
AG 1 -3.445313 1.41859561 -2.429 0.0171
E 1 -3.414063 1.41859561 -2.407 0.0181
FK 1 2.804688 1.41859561 1.977 0.0510
DK 1 2.710938 1.41859561 1.911 0.0591
HJ 1 2.679688 1.41859561 1.889 0.0620
H 1 -2.632813 1.41859561 -1.856 0.0666
J 1 2.570313 1.41859561 1.812 0.0732
C 1 -2.523438 1.41859561 -1.779 0.0785
EK 1 -2.320313 1.41859561 -1.636 0.1053
CJ 1 2.257813 1.41859561 1.592 0.1148
A 1 2.210938 1.41859561 1.559 0.1225
CK 1 -2.148438 1.41859561 -1.514 0.1333
B9 1 2.148438 1.41859561 1.514 0.1333
AD 1 2.101563 1.41859561 1.481 0.1418
BC 1 -2.007813 1.41859561 -1.415 0.1603
DF 1 1.976563 1.41859561 1.393 0.1668
CG 1 1.945313 1.41859561 1.371 0.1735
AH 1 1.726563 1.41859561 1.217 0.2266
DE 1 1.695313 1.41859561 1.195 0.2351
G 1 -1.648438 1.41859561 -1.162 0.2482
DG 1 -1.570313 1.41859561 -1.107 0.2711
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No-Attack Case Max Aj Rsqr Day 30

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 28 67797.15625 2421.32701 8.837 0.0001
Error 99 27127.27344 274.01286
C Total 127 94924.42969

Root MSE 16.55333 R-square 0.7142
Dep Mean 45.22656 Adj R-sq 0.6334
C.V. 36.60091

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-0 Prob > ITI

INTERCEP 1 45.226563 1.46312183 30.911 0.0001

B1 1 -5.289063 3.87105650 -1.366 0.1749
B2 1 -1.039063 3.87105650 -0.268 0.7889
B3 1 0.648438 3.87105650 0.168 0.8673
B4 1 5.085938 3.87105650 1.314 0.1919
B5 1 7.023438 3.87105650 1.814 0.0727
B6 1 -1.226562 3.87105650 -0.317 0.7520
B7 1 -1.476563 3.87105650 -0.381 0.7037
K 1 11.617188 1.46312183 7.940 0.0001
BK 1 11.085938 1.46312183 7.577 0.0001
a 1 -9.617188 1.46312183 -6.573 0.0001
JK 1 6.617188 1.46312183 4.523 0.0001
H 1 -4.023438 1.46312183 -2.750 0.0071

HJ 1 3.820313 1.46312183 2.611 0.0104
9J 1 3.726563 1.46312183 2.547 0.0124
BH 1 -3.429688 1.46312183 -2.344 0.0211
J 1 3.414063 1.46312183 2.333 0.0216
E 1 -3.132813 1.46312183 -2.141 0.0347
EK 1 -2.585938 1.46312183 -1.767 0.0802
A 1 2.367188 1.46312183 1.618 0.1089
FK 1 2.164063 1.46312183 1.479 0.1423
CG 1 1.992188 1.46312183 1.362 0.1764
CJ 1 1.992188 1.46312183 1.362 0.1764
BF 1 -1.945313 1.46312183 -1.330 0.1867
GJ 1 -1.773438 1.46312183 -1.212 0.2284
G 1 -1.742188 1.46312183 -1.191 0.2366
10 1 -1.695313 1.46312183 -1.159 0.2494
BD 1 -1.554688 1.46312183 -1.063 0.2906
GH 1 1.476563 1.46312183 1.009 0.3153
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ADvendix C: Daily Metamodels. Attack Case
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Table C.4 Blocking Effects, All Attack Case Models

Day B1 B2 B3 B4 B5 B6 B7

1 -10.2 3.5 -13.4 2.8 16.8 8.7 -2.6
2 -6.5 57.3 -29.4 6.0 46.4 -16.6 -35.4
3 -9.8 20.3 -23.6 28.3 7.1 63.9 -34.4
4 3.7 0.3 29.7 9.4 17.1 -12.8 -12.9
5 7.1 -22.4 53.3 4.8 -1.8 2.7 -11.8
6 -30.9 9.7 16.0 11.3 14.8 -8.5 -26.6
7 -26.7 5.3 23.0 8.5 17.4 -6.1 -37.9
8 -22.2 -0.1 14.5 5.8 14.5 -7.8 -24.9
9 -21.5 -0.5 17.5 11.5 16.2 -11.7 -31.0

10 -20.0 2.4 21.5 4.3 14.3 -6.0 -32.1
11 -16.3 -1.2 14.4 1.6 17.1 -9.1 -30.2
12 -16.9 -2.9 17.8 2.0 16.2 -8.7 -33.1
13 -18.8 3.1 15.6 6.3 13.0 -4.2 -36.7
14 -18.1 -0.5 17.0 10.3 16.2 -10.4 -37.3
15 -19.8 2.4 12.0 12.8 19.2 -10.8 -34.0
16 -22.1 0.0 11.0 10.9 18.5 -7.9 -30.9
17 -17.4 1.1 10.0 8.5 19.0 -5.5 -35.6
18 -19.9 0.5 6.7 4.7 15.0 -6.1 -26.3
19 -19.2 -2.1 10.3 7.9 17.2 -5.6 -29.1
20 -20.9 -0.9 11.1 7.6 15.0 -1.7 -27.9
21 -20.5 1.3 11.4 9.0 12.7 -4.5 -29.4
22 -18.0 -1.6 11.1 10.5 8.3 -3.3 -24.8
23 -21.1 -0.6 10.7 7.3 12.6 -4.1 -22.9
24 -18.7 -6.2 17.1 8.7 10.0 -4.3 -23.5
25 -17.3 -4.1 11.3 11.6 11.0 -4.3 -24.7
26 -19.7 -1.0 12.5 9.7 12.0 -2.5 -22.0
27 -19.3 -1.4 12.8 10.1 7.6 1.1 -22.2
28 -19.0 -0.7 10.3 6.5 7.3 2.0 -21.7
29 -17.4 -1.0 8.4 9.7 8.0 0.8 -20.1
30 -16.5 -1.7 9.6 8.2 8.3 -2.2 -17.1
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ADipendix D: Daily Metamodels. No-Attack Case
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Table D.4 Blocking Effects, All No-Attack Case Models

Day B1 B2 B3 B4 B5 B6 B7

1 -1.2 -0.3 -0.7 -6.1 8.3 -1.5 1.7
2 -1.4 5.4 -0.3 -2.9 -4.2 -1.6 4.0
3 2.8 6.6 5.2 3.2 -5.4 -8.3 -4.1
4 0.1 -3.4 0.1 1.8 -8.2 -6.2 8.0
5 -3.4 -3.4 4.1 9.4 -1.7 -0.4 2.4
6 -1.1 0.4 5.5 0.1 0.5 0.9 -0.4
7 0.2 9.0 -5.0 5.6 -1.8 -10.8 2.9
8 -1.3 -1.0 -3.0 12.8 -3.9 -6.4 -0.5
9 0.3 0.1 0.6 6.4 -10.3 1.8 5.5

10 -1.0 -0.6 -3.7 4.4 1.1 -1.0 6.4
11 4.2 1.3 -0.7 -2.5 2.2 0.0 1.0
12 0.5 4.6 2.1 -3.6 -1.9 -0.1 4.4
13 7.6 -1.7 -2.7 -0.2 0.2 -3.4 -3.4
14 7.6 -1.7 -2.7 -0.2 0.2 -3.4 -3.4
15 -5.4 -0.1 -4.6 2.1 -0.2 0.8 0.3
16 4.6 -5.5 -2.6 -1.0 2.5 -0.1 0.7
17 8.1 2.2 2.2 -8.7 -6.6 0.4 0.8
18 9.3 -2.9 -2.5 -3.1 -2.2 0.0 0.1
19 11.6 -5.5 3.2 -12.6 8.4 -2.3 -4.9
20 1.4 4.1 1.5 -7.6 7.2 -1.2. -8.1
21 1.5 4.6 -3.3 -9.3 -2.1 3.4 2.0
22 0.1 1.1 -1.1 -1.8 -2.3 1.6 0.7
23 1.8 4.4 -6.2 -2.3 1.8 -0.1 2.5
24 -2.0 8.1 -7.6 -6.0 4.3 4.3 4.3
25 -3.9 0.9 -1.7 1.2 -5.0 7.9 0.6
26 -1.5 7.1 -5.6 -2.0 -3.6 6.0 6.0
27 -6.8 1.4 0.6 3.0 -2.7 5.0 4.8
28 -6.5 4.8 0.5 1.9 1.7 -2.0 2.7
29 -7.6 1.9 -0.1 3.3 7.4 -1.1 -0.4
30 -5.3 -1.0 0.6 5.1 7.0 -1.2 -1.5
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Apnodix R: Sample Worksheet for Manual Model Selection
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Table E.2 Probabilities for t Statistic, Day One, No-Attack

Number of Variables I TI Probability > I T I
in Model

8 3.2323 0.00159
9 2.9138 0.00427
10 2.7804 0.00633
11 2.0925 0.03857
12 1.9710 0.05113
13 1.9578 0.05270
14 1.6725 0.09719
15 1.6473 0.10230
16 1.5431 0.12565
17 1.5529 0.12332
18 1.4842 0.14064
19 1.4530 0.14912
20 1.4210 0.15822
21 1.1897 0.23682
22 1.1920 0.23595
23 1.1152 0.26734
24 1.0769 0.28404
25 1.0381 0.30168
26 0.9594 0.33965
27 0.9195 0.36005
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AR~endix G: Dailt Metamodels. No-Attack Case. Subective Selection
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A pendix H: Partial R&SQAnrd and Rgremon Coefficients. Attaek Case
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Attac Case, Day 3
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Attack Case, Day 5
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Attack Case, Day 6
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Attack Case, Day 7

12

8: -- -------------------------- -- .- -
48

Ia-

B G HKHJAH H BCCJ A AKEFGJADCEJKBGFGABDKGH

PuI R-Squu ED Reg-sion CosfideM

H-7



Attack Case, Day 8
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Attack Case, Day 9
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Attack Case, Day 10
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Attack Case, Day 11
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Attack Case, Day 12
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Attack Case, Day 13
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Attack Case, Day 14
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Attack Case, Day 15
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Attack Case, Day 17
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Attack Case, Day 18
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Attack Case, Day 19
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Attack Case, Day 20
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Attack Case, Day 21
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Attack Case, Day 22
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Attack Case, Day 23
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Attack Case, Day 24
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Attack Case, Day 25

15

CL 00

I. Iq

0-5

B FK H EJ G BHGKHKJKEG J FGCE C F AKGHBGEFBE

ftP~ R-E Roege"-on Co25ef

H-25



AtMa Case, Day 26
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Attack Case, Day 27
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Attack Case, Day 28
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Attack Case, Day 29
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Attack Case, Day 30
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Table H.1 Intercept Parameters, Attack Case

Day Intercept Parameter

1 89.6
2 83.2
3 104.3

* 4 92.3
5 102.1
6 166.2
7 148.6
8 145.7
9 137.3
10 132.3
11 127.1
12 121.2
13 116.5
14 110.3
15 106.8
16 100.0
17 95.9
18 89.0
19 86.5
20 79.2
21 74.5
22 69.6
23 65.7
24 62.1
25 59.0
26 55.6
27 51.6
28 48.7
29 46.6
30 42.9
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AppndiX I: Parell dR-Sq&ard and Renssion Coefficients. No-Aattak Case
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No-Attack Case, Day 5
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No-Attack Case, Day 9
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No-Attack Case, Day 10
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No-Attack Case, Day 12
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No-Attack Case, Day 13
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No-Attack Case, Day 14
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Table 1.1 Intercept Parameters, No-Attack Case

Day Intercept Parameter

S1 264.2
2 212.9
3 210.0
4 205.2
5 198.1
6 188.5
7 185.5
8 171.4
9 151.1
10 168.0
11 173.5
12 166.8
13 160.4
14 153.8
15 144.3
16 140.2
17 135.3
18 126.2
19 115.1
20 LJ9.0
21 110.2
22 102.9
23 97.3
24 91.2
25 84.6
26 77.0
27 64.9
28 54.6
29 49.4
30 45.2

r
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Appendix J: Selected Residual Plots
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