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Preface

It is a common generalisation that it is impractical to experiment
with large complex real life systems such as airbases to determine how they
are likely to perform under a range of conditions. Simulation models are
often called upon to represent as faithfully as possible how the real system
responds to various sets of input conditions, but as the system becomes
more complex, so too does the simulation model. A point may be reached at
which the simulation model itself is either too complex, or too resource
intensive to be practically used for day to day analysis. At this point we
turn to a second level of modeling, and produce an analytic model of the
simulation input-outﬁut relationship, known as a metamodel.

This study follows previous research by Lt Col David A. Diener,
USAF, who used a simulation model to represent the sortie generation
capability of an airbase, and then developed metamodels from the
simulation results. This study does not address the simulation issues, but
examines instead the possibility of finding alternate metamodels to
represent the behaviour of the airbase system. Several aspects of the model
development process are also examined.

Several people deserve recognition for the completion of this project.
Lt Col Diener provided the germ of an idea for this research, made his data
available, and was always ready to provide guidance and assistance as the

research progressed. He also instilled in me an ongoing interest in




simulation, and for his contribution to both my education and this project, I
am very grateful. I also wish to thank Lt Col Phillip E. Miller, USAF for
his insights and assistance with this research, particularly in providing
direction and encouragement when the path ahead was not at all clear.

My deepest thanks, though, are reserved for my family, particularly
my wife Kim, who, far from home and with a new baby, gave me all the
love, support and encouragement I could have asked, and certainly more
than I deserved. Without her holding our family together while I worked,
this thesis would not have been completed.

I wish to dedicate this work to my children, Lachlan and Cameron, in
the hope that in their world of the future, the things that we research now

are never tested.

Alistair Dally
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Abstract

This study is an exploratory investigation into the development of
metamodels of a particular Theater Simulation of Airbase Resources (TSAR) .
simulation model. Techniques applicable to the development of metamodels
from a simulation using an orthogonal two-level fractional factorial
experimental design are discussed. The experimental design is found to
limit the metamodel form to polynomial linear least squares regression
models, and also to greatly simplify the process of building regression
models. Using the simulation results from previous research, alternate
metamodels are proposed for both the prediction of sorties generated by the
airbase sysfem, as modeled by the simulation; and to assist in
understanding and explaining the relationships between airbase resource
levels, their interactions, and sorties generated. The metamodels developed
for prediction are found to be substantially different from the metamodels
for explanation. While unable to develop metamodels for explanation
significantly different from the metamodels from the previous research, this
research confirms that the existing metamodels are the best possible models
that meet the chosen selection criteria. Several lessons pertaining to the o
metamodeling process for large scale simulations using similar experimental
designs are proposed. A flexible manual alternative to computerised model i
reduction techniques is also proposed.




AN INVESTIGATION OF ALTERNATIVE METAMODELS FOR THE
THEATER SIMULATION OF AIRBASE RESOURCES MODEL

11 Air Base Operabilit
Air base operability is the ability of an air base, whether under attack

or not, to generate aircraft sorties over a period of time during conflict.
There are many factors which influence the rate at which sorﬁes'can be
generated. Some of the major factors are the number of aircraft on the

base; the availability of replacement aircraft; the stocking level and
replenishment policies for fuel, weapons and spare parts; the availability of
maintenance facilities, including specialised test equipment; the numbers of
support personnel, including various specialists; the availability of ground
support equipment; and the level of attrition the aircraft experience (Diener,
1989:2). These interactive factors may be analysed in a scenario where the
base itself either comes under attack, or does not. It is not feasible,
however, to carry out the desired analysis by experimenting directly with
such a large scale system, so we turn to representing the behaviour of the
system with some form of model. Large scale complex systems such as an

airbase are often portrayed by simulation models.




111 A System Simulation Model, Of the factors listed above, all but
the aircraft attrition rate are controllable through the setting of resource
and logistics policies. Clearly, determining the appropriate levels of the
factors listed is a difficult and complex task, particularly when the
significant potential for interaction or interdependency between many of the
factors is considered. Unfortunately, many studies look at the effect on
operability of only one variable in isolation. The Theater Simulation of
Airbase Resources (TSAR) model is a simulation model designed to evaluate
Air Base Operability (ABO) from a total system viewpoint (Diener, 1989:3).
However, to achieve the ability to take a total system viewpoint, the TSAR
model is extremely complicated. To illustrate this complexity, when
determining aircraft availability on an F-15 base the model considers the
~ possible failure of 81 aircraft systems and subsystems, as well as including
all the other factors mentioned above. (Diener, 1989:68).

1.2 Previous Research

In his 1989 dissertation, Diener used the TSAR model to simulate the
operability of a European F-15 base. In that research, he used a one/eighth
fractional factorial experimental design for ten factors that were considered
important inputs into the TSAR model. The fractional design reduced the
number of treatments; ie, the combinations of the input factors, from 1024,
which would be required for a full factorial design, to 128. Even with an

efficient experimental design, to apply all 128 treatments to each of 30 days
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operation under a no-attack and an attack scenario required a total of 14
hours processing time on a Gould NP-1 supercomputer (Diener, 1989:72),
plus the time required to input each treatment. Clearly, the cost in both.
time and money of making multiple runs of the simulation to evaluate

changes in individual factors is very high.

1.3 Simulation Disadvant
One of the major limitations of any simulation model is that it does
not provide an optimal solution, but rather evaluates an outcome or “
response only for the particular situation represented by the input variables
(Schriber, 1991:9). Even running multiple simulations is not a guarantee of
finding an optimal solution: the best that can be said is that a good solution
has been found. Related to the problem of non-optimisation is the fact that
the results from a simulation run generally do not have external validity;
that is, the results can not be generalised for conditions other than those
specifically simulated (Schriber, 1991:9). For example, Diener's simulation
- applies specifically to an F-15 base in Europe, and his results should not be

generalised as applicable to, say, F-16 bases in the United States.

1.4 Introduction to Metamodels
The limitations of a simulation model described above can be partially
overcome by developing a mathematical model of the simulation response to

the input variables. Within the range of conditions simulated, the
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mathematical model allows the estimation of relationships between varying
ihputs and their c;m'esponding outputs which may not have been actually
simulated. Additionally, at least over a limited range, the mathematical
model may allow inferences to be made about optimal solutions (Schriber,
1991:9). Such a model is known as a metamodel. Kleijnen (1987:148) and
Sargent (1991:888) both show metamodels in a hierarchical relationship,
with a simulation model as a representation of reality, and a metamodel as
a representation of the simulation model. Kleijnen articulates the concept
of a metamodel as follows: ”
From the "mess" of reality we proceed to a well structured simulation
model, and next we model the relationship between the inputs and
outputs of this simulation model with a regression model. (Kleijnen,
1987:148)
In a similar definition, Friedman suggests that:
The simulation model, although simpler than the real world system,
is still a very complex way of relating input to output. Since one of
the aims of most simulations must be to gain an understanding of
this relationship, an even simpler model may be used in addition to
the simulation model. When a model is used as a device to better
understand and explore a more complex model, the simpler, auxiliary
model is frequently referred to as a metamodel. (Friedman, 1983:28)
A more succinct definition by Kleijnen .is that the metamodel or regression
equation is "a model of the input/output behavior of the simulation
computer program” (Kleijnen, 1992:1165).
The metamodel is developed from the output of the simulation model

using regression techniques, and once validated, may be used to analyse
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and predict the behaviour of the simulation model; that is, "what if"
analysis, among other things, becomes both practical and inexpensive.

1.4.1 Prediction and Explanation., Although the terms are often used
together, the purpos;as of explanation and prediction should be
distinguished. The two purposes are not mutually exclusive, but different
aspects of developing the regression metamodel may need to be more or less
emphasised depending on the particular purpose for which the metamodel is
intended. "When prediction is the primary purpose of the model, the aim is
to estimate with as much accuracy and precision as possible the likely value
of the response to a given set of values for the independent variables
(Miller, 1990:2; Neter et al., 1989:436). On the other hand, when
explanation is the primary purpose, the emphasis changes towards
discovering which of the variables have important significant effects on the
response, and then estimating thosé effects. In the context of this and
Diener's research, an explanatory model seeks to identify a relatively small
number of factors that have the most impact on the sortie generation
capability of the airbase, so that those factors can be emphasised when
resource level and logistics policies are set. A predictive model, on the other
hand, could be used to estimate the likely capability of the airbase given an
existing policy. Because an existing resource profile represents only one
alternative to enumerate, the predictive model can be more complex without
losing its usefulness. The issue of how many variables to include in both

predictive and explanatory models will be further addressed in Chapter III.
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1.5 Existing Me il
The most common form of metamodel is a linear regression model.
Diener (1989) developed linear regression models to estimate the response of
the TSAR simulation model for sach day of a thirty-day period. Each model
potentially consists of 63 terms, comprising the constant or intercept term, a
term for each of the ten main factors, and a term for each of the 45 two-way
interactions between the main factors, and (included in all models) seven
terms which represent the effect of the blocking used in the experimental
design. One metamodel was calculated for each day of the period simulated,
for both the attack and no-attack cases, resulting in a total of sixty
metamodels. Each metamodel is an analytic representation of the ability of
the airbase to generate sorties on that day, given the level of the input
factors that existed on ;he first day. The model reduction technique used
resulted in metamodels generally containing about 20 terms (excluding the |
blocking terms), with the remainder of the terms insignificant at the 0.10

level.

1.6 Problem Statement

The large number of terms remaining in the daily metamodels makes
meaningful analysis difficult, particularly if the aim is to explain the
behaviour of the model as distinct from predicting the number of sorties on
a given day. Additionally, although the linear regression models developed

were valuable in understanding and predicting the behaviour of the
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simulation, significant amounts of the total variance in the response were
unexplained. Finally, the behaviour of the airbase over time is not
explicitly represented, because each metamodel represents only a daily
snapshot of the alrbase performance.
1.7 Research Questions

The primary question to be answered in this research is whether
alternative metamodels can be developed to assist in the analysis and
prediction of the response of the TSAR simulation as carried out by Diener
in his 1989 doctoral research.

A secondary question to be answered is whether alternative _
approaches to the experimental design used by Diener could facilitate the

development of useful metamodels.

18 R h Obiecti
The primary objective of this research is to investigate whether

alternative metamodels other than those derived by Diener can be used to

effectively represent the results of Diener's simulation. To achieve this

objective the following questions require answers:

1. What is the purpose of the metamodel? For example, is
understanding general relationships in the system as simulated the

primary goal, or do we wish to make predictions about the response of
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the simulation under different conditions? Do different goals require
different models?

2. What are the important criteria in determining the suitability of a
metamodel? For example, is the overall fit of the model the primary
criterion, or are there other important factors to consider?

3. How does the nature of the output data, and the experimental design
on which it is based, limit or restrict the types of metamodels that
can be developed?

1.9 Scope

The scope of this research is specifically hmted by the_ existing
database developed by Diener during his doctoral research. The database
comprises the design matrix for the experimental design, which allowed
estimation of ten main effects and their two-way interactions, and the thirty
daily simulated responses to the design inputs for both the attack and no-

attack cases.

1.10 Research Plan

In Chapter II, a more detailed treatment of the background to the
present study is presented. A review of the literature relating to
metamodeling and the relevant aspects of simulation and experimental

design is also presented.
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Chapter III describes the investigation of the current metamodels,
and the exploration of techniques to develop possible new models and model
forms. Chapter IV summarises the lessons learned from the exploration,

presents conclusions, recommendations, and possible directions for further

research.

111 Summary

This chapter provided a brief introduction to the simulation of
Airbase Operability carried out in previous research by Diener. The concept
of metamodels as an adjunct to simulation analysis wﬁs also introduced.
Both the previous research and simulation metamodels in general are

presented in more detail in the next chapter.
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»2.1 Introduction
As this study relies on the results of previous research, the first part
eof this chapter examines some of the key points of that research. The key
points relate to the experimental design used previously, which determined
the data available for this study, and the form of the metamodels developed
by Diener. Taking a more general view, some applications of simulation
metamodels and some of the current research issues in simulation
metamodeling are discussed, followed by a review of some of the literature

pertaining to regression and regression model building techniques.

2.2.1 Diener's Research Objectives, The research objectives of

Diener's study were as follows:

1) Efficiently apply an experimental design that will reduce
variance due to the inherent randomness of the TSAR and
TSARINA simulation models;

2) Estimate metamodels, with significant main effects and two-
way interactions, from large scale simulation experiments so
that sorties flown can be predicted based on input factors;

- 3) Evaluate the impact of air base attacks on sorties flown; and

4) Identify key resources and/or interactions over a thirty-day
time period with and without air base attacks. (Diener, 1989:9)
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This study is most closely aligned with the second and fourth of Diener's
objectives, although the experimental design resulting from Diener's first
objective dictates the form of the data available for this research. The

'metamodels estimated by Diener in achieving his second objective provide
the baseline for the comparison of any alternate models developed. If
alternate models can be developed, their interpretation may lead to the
identification of key resources different from those identified as Diener's
fourth objective.

2.2.2 Experimental Design, Diener assumed that higher than two-
way interactions were insignificant, and therefore chose a 1/8 fractional-
factorial experimental design (2!>* Resolution V), resulting in 128 input
combinations or treatments (Diener, 1989:44). The 1/8 fractional-factorial
design is able to measure the individual, or main, effect of each variable and
all their two-way interactions without confounding between those effects.
The effects of possible third and higher order intaractions cannot be
discriminated, and if present, will appear to contribute to the residual
variance. To isolate the effect of attacks on the base, each treatment was
applied in both the no-attack and the attack case, thus requiring a total of
256 different simulation runs (Diener, 1989:46). It is also important to note
that each of the 128 design points or treatments evaluated represents
specific resource levels and logistics policies (eg. fuel resupply schedule) in

effect at the airbase on the first day of the simulation.
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2.2.3 Reduction of Variance and Blocking, In an effort to reduce the
variance in the simulation output, Diener used blocking based on pseudo-
random number streams. Blocking in this case is the grouping of several
treatments together, and then running the simulation with the same
starting point of the pseudo-random number stream for each treatment
within the block (Diener, 1989:46-47). For the attack case, one specific
version of the TSARINA attacks was applied within each block. The 128
design points in the experiment were divided into eight blocks of sixteen
treatments each. The effect of the blocking on the experimental results is
that block effect terms must be included in all the metamodels, as outlined
in the next section.

2.2.4 Existing Metamodels. The form of metamodel chosen by Diener
to represent the simulation output was a multiple linear regression model
which considered the main effects and two-way interactions of the factors,
and the effect of the blocking. The models were calculated from the
simulation results using ordinary least squares regression. For the no-
attack case, the metamodels are:

S, = Bo(i) + By, (i) + I, B(OX); + Z, Z, Ba(D)X X, + (i) (2.1)
where S, is the number of sorties generated on day i;
X,; and X,, are the level of factor j and k in effect on the first day, for

j=0,..,9, k=j+1;
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B,,(i) reflects the random effect on day i due to the random number streams
in TSAR, (block effects) where B,,(i) ~ N(0,62); and &(i) reflects the
experimental error, where e(i) ~ N(0,0%).

For the attack case, the metamodels are:

S} = By(i) + By, (i) + I, Bj(X,; + L, L, BuDX X, + €'(0) (2.2)
where S is the number of sorties generated on day i,

X, and X,, are the level of factor j and k in effect on the first day, for
j=0,..,9, k=j+1;

B;,(i) reflects the random effect on day i due to the random number streams
in TSAR and TSARINA, (block effects) where B;,(i) ~ N(0,03+); and

€'(i) reflects the experimental error, where £'(i) ~ N(0,6%).

The eventual metamodels include only the terms that have a significant
effect, with the exception of the blocking terms which are included in all
models regardless of significance (Diener, 1989:50-51).

In interpreting the no-attack case metamodels, the intercept
parameters B,(i) represent the number of sorties flown on the ith day when
all factors are at their low level on day one; the main effect parameters (i)
represent the change in the number of sorties flown on the ith day when the
jth factor is changed from its low level on day one to its high level; and the
interaction effect parameters f,(i) represent the change in the number of
gorties flown on the ith day when the interaction term changes from a low
to a high level on day one. The same analysis holds for the starred

parameters in the attack case (Diener, 1989:75,102).
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225 Design Coding, In developing the design matrix for his

analysis, Diener originally coded the low level of factor X, as 0, and the high

Jevel as 1 but has since reaccomplished the analysis with low factor levels
coded as -1 and high levels as 1. Many regression texts refer to (0,1) coding

+for two level qualitative variables, but severzl authors including Kleijnen et
al. (1979:53), Smith and Mauro (1984:254), and Kleijnen (1992:1.165)
suggest that qualitative variables should be coded as (-1,1). This research
will adopt the (-1,1) coding for further metamodel development and
analysis.

2.2.6 Assumptions Required, The metamodels above require three

major assumptions to be made. The first assumption is that there is a
linear relationship between the level _of the factors and the response, the
number of sorties flown. The second assumption, a requirement (_)f using
linear least squares technique, is that for each model the variance of the
error term is constant for ‘all values of the response, i.e. homosoedasticity
ciists. The final assumption is that the eﬁor terms must be normally
distributed (Neter et al., 1989:Ch 4). For the first, fifth, and last day of the
simulation, Diener testec_l his results for homoscedasticity both within the

- attack and no-attack cases and between the cases. Within each case, the

» hypothesis of homoscedasticity was not rejected at the «=0.05 level, but was
rejected when comparing between cases (Diener, 1989:56-58; 86). Analysis

* of residuals using stem-and-leaf plots, box plots, and normal probability -

plots suggested that assuming normality in the error terms was also
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reasonable (Diener, 1989:Appendices C and D). No analysis of residuals
against the dependent or independent variables was carried out. The

validity of these assumptions is further discussed in the next chapter.

The literature dealing with simulation metamodeling can be readily
divided into two categories. The first category reports applications of
simulation metamodeling, while the second deals with research issues and
theoretical aspects. Neither category could be described as extensive, and
no literature that relates closely to the current stﬁdy has been found. This
research is atypical for two reasons. First, it has many independent
variables, all of which are qualitative while other studies contain fewer
quantitative variables. Second, the TSAR model is a highly complex
logistics system model, while most reported .applications of metamodeling
deal‘ with some vﬁriation of a queuing problem. Possibly the most unusual
feature of this researéh, however, is the generation of a time series of 30
daily responses for each input treatment.

' The regression literature is also of little help, as most authors
concentrate on observational rather than designed experiments, with
apparently little emphasis on mode}s as complex as in this research. The
lack of applicability to this research of the regression and model building
techniques used in observational experiments are further discussed in the

next chapter.
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Several repi)rted applications of simulation metamodeling are
reviewed, followed by a review of some current research issues in this field.

2.3.1 Flexible Manufacturing System Case Study. Kleijnen and
Standridge (1988:257-261) describe a case study of a flexible manufacturing
system, concentrating on the issues of experimental design, and the form of
the metamodel chosen. Although their study involved a deterministic
simulation, and only four factors were involved, several important points
are made. First, experimental design and therefore the input combinations
modeled determine the possible form of a metamodel. For example, if
interactive effects are assumed to be non-existent, fewer input combinations
are required than if the interactions are present (Kleijnen and Standridge,
1988:259). The reverse case is also true, and affects the preéent research in
that the experimental design used limits the analysis to main effects and
first 01_'der interactions only. Second, the authors propose a technique for
validation of a proposed metamodel whereby a simulation run is deleted and
the metamodels recalculated from the remaining data. They state that "the
significant effects should remain stable upon run deletion,” and show two
ways to determine the stability (Kleijnen and Standridge, 1988:260). The
first technique ihvolves a qualitative comparison of the metamodels
resulting from the deletion of each run; while the second compares the
predicted response of the model obtained using all runs with the prgdicted
response of the model obtained when one less run is used. The run deletion

technique has limited applicability to the current research because 128
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design points are involved for each of 30 daily metamodels, for both the
attack and non-attack cases. The required 7680 recalculations to |
investigate the stability of 60 metamodels is prohibitive in both computer .
and researcher time, so other validation techniques must be used. Third,
the authors contrast two of the purposes of metamodeling: prediction and v
explaﬁation (Kleijnen and Standridge, 1988:260-261). When their aim was
explanation, the authors considered validation of the model by examining
whether the coefficients remained stable as runs were deleted; while for the
prediction criterion, only the stability of the predicted value of the response |
is considered. The implication is that when prediction is emphasised, there
is relatively less interest in which coefficients are present in the model and
ﬁhe values they take as long as their combined eﬂ‘ects result in good
predictions.
2.3.2 Europe Container Terminus. Kleijnen, van den Burg, and van
der Ham (1979:50-64) report an application of metamodeling which relates
most closely to this research. The authors note that at the time of their
report they were unaware of any other real-life study where simulation,
experimental design, regres:ion. and analysis of variance techniques had
been combined, that is, their study was one of the first practical
applications of metamodeling (Kleijnen et al., 1979:63). A queuing .
simulation was used to model the required container stgcking capacity at
the Europe Container Terminus (ECT) in Rotterdam. Met#models were .

then derived from the simulation results to identify the factors and/or their
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interactions which were most useful in explaining the behaviour of the
simulation. Several similarities exist between the ECT study and Diener's
research. Both studies involved fractional factorial experimental designs,
although the ECT study only required six variables and sixteen runs, and
both studies drew on prior research to identify the pool of potentially
important variables (Diener, 1989:19-21; Kleijnen et al., 1979:57). Another
striking similarity between the studies is that both simulations generated a
time series as the result of each design point. In Diener's study, the time
series is the number of sorties generated on day one through day thirty,
while for the ECT study, the time series is the required container stacking
capacity measured each eight hours as the simulation progresses (Kleijnen
et al., 1979:53). The total duration of the simulation was not explicitly
reported, but appears to have been one year. The time series are handled
very differently. Kleijnen et al. determine the frequency at which a given
capacity is required, and calculate the mean capacity required, as well as
the 90th, 95th, and 100th percentiles of the distribution. Any of the four
measures can then be used as the equivalent of a single dependent variable
to characterise the time series generated by a single treatment (1979:51,53).
Such an approach is typical in describing queuing systems, where aggregate
measures are used to describe performance rather than, for example, the
queue contents at a series of specific moments. In contrast, Diener
developed a set of thirty metamodels, each of which represents the

important ei_fects on each day of the simulated period, and is calculated
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using the simulated responses from each of the 128 treatments. The two
approaches to handling time series data represent clear opposites. The ECT
study implicitly disregards to some extent the importance of behaviour over
time by wrapping up each time series into one variable, while Diener's daily
models when considered together clearly show the varying behaviour of the
airbase system over time but are unable to represent that behaviour over
the time dimension, as each model is a separate daily snapshot.

2.3.3 Spectral Analysis and Flexible Functional Forms, Starbird
(1990:321-338) reports an application of metamodeling that differs greatly
from those already discussed. The simulation model of a tomato processing
plant appears relatively simple, with only three independent variables
considered, but the experimental design and the development and form of
the metamodels is based on a methodology completely different from the
fractional factorial experiments and least squares linear regression
considered so far. Starbird used the Schruben-Cogliano response surface
methodology, which "uses frequency domain experiments to identify the
significance of particular polynomial terms in a metamodel." The
metamodels developed were the generalised Leontief form, which Starbird
states is a "special polynomial form often used for the modeling of cost
relationships” (Starbird, 1990:327). In a frequency domain experiment the
input factors are oscillated at carefully chosen frequencies and their
importance estimated from analysis of the spectrum of the response
(Starbird, 1990:323). Starbird's work shows that there are techniques other

2.10




than those based on regression to develop metamodels, but it is clear that

the techniques described by Starbird are neither applicable to the current

research as a different form of metamodel, nor would they be applicable as a

modification of Diener's original experiment. Frequency domain
experiments require quantitative variables with some distribution of values
over which they can be oscillated, and the flexible metamodel form is most
applicable to cost functions with relatively few variables (Starbird,
1990:327,328), neither of which criteria are met by the ABO problem.

2.3.4 Multiple Response Experiments. Friedman suggests that "it is
a rare system simulation which outputs only a single measure of
effectiveness for analysis," and proposes multivariate statistical techniques
for the analysis of simulations with multiple responses (1983:1-2). It could
be considered that Diener's experiment falls into the category of a multiple
~ Tesponse experiment, with the number of sorties generated on each day
separate measures of effectiveness of the airbase system, but there is at
least one compelling reason why this conclusion should not be drawn. The
reason is that the daily sortie rates are part of an overall time series with
each day's result the same measure of effectiveness as all the others, but at
a different point in time. From this perspective a multiple response might
include additional measures such as total hours flown per day and/or enemy
aircraft destroyed. These hypothetical measures would also form a time
series if the results were reported on a daily basis, so that multiple

responses would only exist across time series, not within them. Although
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Friedman's multivariate techniques are therefore not useful for this
research, it is worthwhile to note that in developing metamodels to relate
the multiple responses of her simulation of an M/M/s queuing to the input
factors, Friedman calculated a separate metamodel for each of the responses
(1983:78-79;85). Thus, although Friedman was able to test the models
using multivariate techniques, having to develop three separate metamodels
meant that “the dynamic interrelationships among the response variables
were not used directly in the analysis" (1983:85). The main analogy
between Friedman's research and Diener's is that both studies resulted in
individual metamodels for each dependent variable, rather than a single
model simultaneously relating all the responses to all the independent
variables. The similar result from the two studies suggests that such
simultaneous analysis of more than orie response with all the input
variables is a particularly difficult task.

2.3.5 Application Summary, Of the literature reviewed, the Europe
Container Terminal study has the most similarity and applicability to
Diener's. The only real similarity in the other research is that simulations
were carried out, and some form of metamodei developed. The features of
" Diener's research that distinguish it from the ECT study are the complexity
in number of variables, the qualitative nature of all the variables, and the
difficulty in finding single measures to characterise a timé series response.
The magnitude of the difference in complexity can be appreciated by

considering the number of variables and their possible interactions. For
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models with three variables, only three interaction terms are possible. For
the six variables in the ECT study, fifteen interactions are possible,
although prior experimentation had reduced the pool to only six interactions
o0 that a total of twelve coefficients had to be estimated. For the ten
variables included in Diener's study, 45 interactions are possible, none of
which could be discounted a priori, resulting in a total of 55 coefficients to
be estimated. Reducing the large number of candidate terms to only the
important terms forms a large part of the rest of this research.

2.3.6 Metamodeling Research Issues. There is some recent literature
that deals with important research issues in metamodeling. Sargent
(1991:889;892) provides lists of 1) properties that metamodels exhibit,
including the purpose of the model, whether it has single or multiple
responses, whether the responses are deterministic or random, and how
many and what type of variables are considered; and 2) some of the
decisions that ﬁxust be made in developing metamodels; including the type
of metamodel to use, what criteria to use for evaluation of the model,
whether screening experiments should be carried out, the type of
experimental design to be used, whether the metamodel is sufficiently
accurate, and whether the metamodel is valid with respect to both the
simulation model and the real system. Several of the decisions that Sargent
lists are particularly relevant to this research, while others have already
been made in the previous research. Decisions to be made in this research

include the form of the model, and whether the form should change for
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different purpbses, how well the model fits, and whether it is sufficiently
accurate. Decisions that have already been made are the experimental
design, the stochastic response, and the identification and type of possible
variables. Also, this research is unable to examine the validity of the
models against the real system. Sargent also provides some examples to
illustrate some of the issues such as functional form and goodness of fit.
However, he only considers a single independent variable queuing model,
which has limited relevance to the multiple regression problem in this
research (Sargent, 1991:889-891).

2.3.7 Alternative Regression Model Forms, Barton (1992; 1993)
discusses some of the advantages and limitations of polynomial regression
models, which are the type developed by Diener, and makes some useful
observations. First, polynomial models are relatively easy to interpret and
thgrefore "the general behavior of the metamodel is easy to predict from the
coefficients of the polynomial” (Barton, 1993:12). Because a primary aim of
" developing metamodels for the ABO problem is explanation of the behaviour
of the airbase system, ease of understanding and interpretation should not
be underestimated in the choice of model form. As a disadvantage of
polynomials, Barton (1993:12) states that "polynomial metamodels ... are
relatively inflexible for fitting general non-linear response functions.” Such
a disadvantage will only become a consideration in this researc_h if
alternative non-linear forms become candidates for comparison thh the

existing forms. Barton also reviews seven different types of models as

2.14




alternatives to the polynomial form, comprising Taguchi models, generalised
linear models (distinct from geneial linear models), spline methods, radial
basis functions, kernel smoothing, spatial correlation models, and frequency
domain approximations (Barton, 1992:290). Taguchi models require a
specialised experimental design, and so are excluded from further
consideration. Generalised linear models allow error terms to come from
"any exponential family other than the Normal/Gaussian,” and may be
useful, but as Diener's existing residual analysis supported normality, the
additional complexity and specialised analysis techniques required do not
justify use of this form for the existing data (Barton, 1992:292). Spline
models, radial basis functions, kernel smoothing methods, and spatial
correlation modéls require independent variables that are continuous.
Freqﬁency domain models were previously shown to be inapplicable to the
existing data.

2.4 Summary

This chapter examined some of the key issues relevant to this
research of Diener's Air Base Operability study, including Diener's research |
objectives, his experimental design, and the form and assumptions behind
the metamodels he developed. Several reported applications of simulation
metamodeling were reviewed, as well as some research issues and some
possible alternate forms for metamodels. The application literature was

found to have few direct parallels with Diener's study, while the data
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inherited from Diener were found to constrain many of the choices that
could otherwise be made. The next chapter describes the available data, the

analysis of the existing models, and the investigation into alternate models.
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4.1 Introduction

This research is a largely exploratory study into 1) the techniques
relevant to the development of regression metamodels from the existing
data; and 2) the development of alternative metamodels to those derived by
Diener (1989), with the aim of both interpreting the behaviour of the TSAR
airbase operability simulation model, and predicting the response of the
model to a set of input conditions. Because of the wide ranging exploratory
nature of this research, no one methodology as such is identified: rather
several methodologies are used and evaluated, and the applicability of each
discussed. The exploration is divided into two phases.

In the first phase the existing data are presented and limitations on
" the research caused by the form of the data and the experimental design
from whicﬁ it dérives are discussed. Further analysis of the original
metamodels developed by Diener (1989) is carried out.

The second phase examines techniques for developing new
metamodels, including backward elimination, forward selection, and
stepwise selection. All possible regressions cannot be calculated due to the
large number of possible variables and interaction terms; however, best
subsets methods are considered, using Mallow's C, and adjusted R? as model
selection criteria. A preliminary evaluation of model building techniques

and selection criteria is carried out, leading to a revision of the techniques
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initially proposed. Finally, new models are developed and evaluated using

both explanation and prediction as assessment criteria.

3.2 The Existing Datal

As stated in Chapter I, the existing database comprising Diener's
experimental design and the results of his simulations forms the basis for
this research. Awareness of how the data was produced and how it is
structured is a prerequisite to understanding the existing models and
developing subsequent models.

3.2.1 Data Genperation, The 2'y? fractional factorial experimental
design discussed in Chapter II contains 128 design points, each of which
represents a unique combination of the ten input variables and defines the
initial setﬁngs for a run of the simulation model over a thirty-day period.
The simulation records the number of sorties flown on each day of the
thirty-day period, so that each of the 128 design points, or treatments,
produces thirty data points. All 128 treatments are applied twice, once with
attacks on the base modeled by the simulation and once without attacks,
and the data from the attack and no-attack cases are analysed separately as
two sub-experiments (Diener, 1989:46).

3.2.2 Data Structure, The data may be arranged in several ways,
but the most compact form for each case is a matrix of 128 rows And 47
columns. The first 30 columns contain the response variable, sorties flown,

for day one through thirty; and the last seventeen contain the design
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matrix, with ten columns for the independent variables, and seven columns
for variables representing the blocking effects. The 128 rows in the matrix
represent each of the treatments required by the design. Figure 3.1 lists
the variables that appear in the design matrix, while Figure 3.2 graphically
shows the data structure. Diener (1989:27-42) provides detailed information
about the factors and their levels. Interaction terms are developed

automatically during the regression process by creating 45 new variables,

the values of which are the product of the appropriate main effect values.

Missile stocks, components and deliveries

A Level of attrition experienced

B Availability of filler (replacement) aircraft

C Aircraft battle damage repair (ABDR) capability
D Recovery capability from air base attack

E Maintenance personnel numbers

F Avionics Intermediate Test Stations (AIS)

G Support equipment

H Spare parts stocking levels

Jd

K

Fuel initial stocks and resupply schedule

Figure 3.1 Design Matrix Factors
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Sorties Variables Block Terms

Treatment | Day1 Day30| abcde fghjk |Bl B7
1 226 45 -1-1-1~1-1-1-1-1-1-11000000“
128 | 187 68/1-11111-1-1-11¢}1-1-1-1-1-1-1

Figure 3.2 Data Structure Summary

Two points are apparent from the structure of the data. First,
looking across the matrix, each of the 128 treatments results in a 30 day
time series of sorties flown; and second, looking down the columns, for each
day 128 responses are available to estimate the effects of the factors applied
differently in each treatment. Dienér's analysis took the second viewpoint
in estimating important factors and their effects in thirty daily metamodels
(Diener, 1989:50). This research will initially take the same viewpoint as
Diener. To take the first viewpoint and estimate the factor effects across
time i8 a significantly different problem, and is beyond the scope of this
research.

3.3 Model F {E . tal Desi
d4.3.1 Linear and Non-Linear Models, As a term in fairly common
use, linear regression can be somewhat misleading. The word linear applies

strictly to the parameters, or coefficients of the model. For example, both
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the following models are linear regression models because the parameters
are neither multiplied together, nor raised to a power other than one.
Y, =8, + BX,; + BX; + i 3.1)
Y, = By + Biis + BaXis + BoXly + Bl + BoXX, + & 3.2)
Even though the second model, (3.2), contains quadratic and interaction
terms for the independent variables, while the parameters remain linear,
and an additive error term is included, the model meets linearity
requirements. The exponential model below is non-linear, because the
parameter vy, appears as an exponent.
Y, = + v,exp(v,X,) + € (Neter et al., 1985:468). (3.3
The exponential form of model is unsuitable for the data from Diener's

research because it providés for only one independent variable.

experimental design used by Diener, previously discussed in Chapter II,
imposes some limits on the form of metamodels that can be developed from
the experimental results. Curvature (quadratic and higher) terms are
precluded because the experimental design makes the de facto assumption
that there is a linear relationship between each independent variable and
the model response. The linearity assumption is a result of the
experimental design allowing only two levels for each independent variable,
so that a linear relationship is all that can be deduced from the data. As
Kleijnen points out, "a second-order model with pure quadratic effects

requires three or more levels" (Kleijnen, 1987:334). The relationship can be
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visualised by considering the extreme case of just one data point at each
level. It is clear that the two responses can only form the ends of a straight
line, as there are no intermediate points to indicate curvature. The
regression equation also shows that curvature information cannot be
obtained from the model. Consider a variable x,, which takes the levels -1
and 1 in the design matrix. If wé try to include a quadratic term x,? in the
model, its value is always 1, the same as the high level of the linear term
X,, and therefore no additional information is provided.

3.3.3 Experimental Design and Interactions, Higher than two-way
interactions cannot be included in the metamodels because, in the chosen
fractional factorial design, the higher interactions are confounded with each
other, as dascussed in Chapter II. The previous researcher did not consider
the inability to include higher order interactions to be a serious restriction,
and points out that limiting the analysis to main effects and two-way
interactions is common practice, as the interpretation of higher order

interactions is very difficult (Diener, 1989:44; 1993).

3.4 The Existing Mef el

3.4.1 Coding of the Design Matrix., In developing the existing
metamodels, Diener originally coded the design matrix so that the low level
of a factor was represented by a 0 and the high level by a 1. For example, if
- the first treatment required fgctors A, C, and E at their low level, with all

other factors high, the first row of the design matrix was coded as
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0101011111 Using(-1,1) coding, the first treatment in the example
above is now coded -11-11-111111 Todetermine whether the use of
(-1,1) coding has a significant effect on the resulting models, metamodels
are calculated using the same technique used by Diener, i.e. backward
elimination, with variables retained in the model at a signiﬁcanée level of
0.10, but with the design matrix modified for (-1,1) coding. The resulting
models are compared with the existing models for significant variables
included, goodness of fit, and estimation of sorties generated. Figures 3.3
and 3.4 show, for the attack and no attack cases, the variables included in
the metamodels in increasing order of partial R?, which is the marginal
contribution to the explanation of variance by a variable, given that all
others are included in the model (Neter et al., 1989:285). Table 3.1 lists the
adjusted R? for each model, and Table 3.2 and 3.3 compare the predicted
values of sorties generated for all factors at their low level and all factors at
their high level.

3.4.2 Significant Variables Included, Attack Case, For the attack
case, except for the first day, the two coding methods never result in
identical models, and none of the models is a subset of its counterpart. The
most striking difference is that although the (0,1) models generally contain
more terms, the terms most frequently omitted in the (0,1) models are main
effects that are consistently the most important in the (-1,1) models. For
example, variable B (filler aircraft) is the most significant factor in 24 of the

30 (-1,1) models, yet does not appear in eight of the (0,1) models for the
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appropriate days. Variable G (support equipment), which is the second
most important variable on twenty days when coded (-1,1) is also omitted
eight times, while variable H (spares stocking levels), which is at least the
fourth most impor;ant on fifteen days when coded (-1,1), is omitted on
eleven of those days, and on four other occasions. Pﬁrticularly in the last
twelve days, the (0,1) models appear to capture the effect of variables B and
H, by including their interaction term BH as the most important effect.

3.4.3 Significant Variables Included. No-Attack Case. As for the
attack case, no-attack case models derived from the (0,1) design matrix
generally contain more terms than their counterparts. The tendency to
ignore a main term significant in the (-1,1) models, and include an
interaction term containing that variable is also apparent. For example,
BH is often included as an important term in the (0,1) models on days when
the (-1,1) models include both B and H. Finally, the (-1,1) models generally
contain fewer interaction effects that are present without at least one of the
relevant main effects, and on average contain more main effects relative to
interaction effects.

3.44 Comparison of Adjusted R3, It is apparent from Table 3.1 that
the models derived from the (0,1) design matrix generally achieve slightly
higher values of adjusted R?, with the greatest differences usually occurring
when the (0,1) model has at least three terms more included than the (-1,1)
model. As the maximum difference in R? for all days across both cases is

only 0.05, with an average difference of 0.014, both sets of models can be
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Variables Included
with (0,1) Coding

Variables Included
with (-1,1) Coding

ESBR JIRESR 5&85555;;55:‘5‘@@4@0«*&».-“

d

d.j,q,c,b,bh,hj,ce,h,be,ek
d,h,b,bh.be,c.f,¢j
d,bhfg,cf eghk ke kj

bh,d hk.g,ce,e,be hj k. j

g.bhhj,bk j.fg,ejk,§
bg.ab.k,cj,e,b.hj.fg bk ef
b,gk,a,ce,e,dj,¢j,ak
b,g,eh,ae,ak,ag,e.ak
bg,bj,fh,fj,e.k.g,ab,hk
b,g,¢j.fk,a,dejk k hk,ah,dg,h.ak
b,g,fh,jk,ef,ak,bd,fk,cj,e.k,hk,a
b.g,bh.a,¢j k jk,ak
b,g,bh,jk,ej,cd,fk,cg,ef,dh,ah,c
b,gk,bh,ak,ej,a,jk,fk,c,ac
b,g,bh.ik,cjjk,ej,ef
bh,g,bk,ak,cj,fig,ej,fk,hj,jk,hk gk .eg
b,gj.fh,ef.gk,ej,jk,cd,bh,fk,dh hk,c
bh,b.g,ej,¢,hj,fk,gk.fg.hk,jk,ce
bh,g,bk,eg,hk jk,th.fg,¢j,fk.a,ak.gk,ce
bh,gk,ak.b,th.ej,cg.jk.eg.fg.gi.fk
bh,g,ej,b.gk,fh,cg.fg,eg,be,ak jk,bk,ag hk,
fk

bh,gk,b,cg hk,th,be.fk,fg,ej jk
bh,g,th,bk,hk k,fg,fk,ck,gk,eg,ce
bh,bk,ce,gk,ej jk.fk,h,ag,b,c,ak.fg
bh,g,hk jk,gk,ce,eg,fk,ej,c
bh,g,b,ak,ce.fkjk,eg,ej,gk,eh,c,dh,hk,bk,
dg
bh,¢,b,fk.g.jk,ak.gk,ce,ej,fh,hk,be.fg
bh,c,hk gk jk,ej,bk fk,ak,dh,ce g fg,dg
bh,g,b,fk.fg,jk,ej,be,bg,c

d

d,cj,bh,ce,hj,ag,be

d,bh,cj.e

d,bh,eg hk g jk,af,c.cf
b,d,bh.g,bf,e,hk,hj,ce
&b,hj,bh,e,hk jkf,fg,bk

b,g,hk hj,ahh,be
b,ak,g,ce,e,cj,ef
b,g,e,ah,ae,ak,ag

b,g,hk,bj,e.f
b,g,akjk,cj.ef,hk,c,k,ﬂx
b,g,h,ak,hk,fk,bh,ef,jk
b,g,jk,ej,ak,bh

b,gh,fk,ah,ej,cg
b.g,ak,ej,h,c,jk,fk,ac
b,g,h.fk,ak,ej,jk,hk,c,bh
b,g,ak,jk,fk h.fg,eg,bk,hk
b,g,h.gk,ej,hk,cd jk j
b,g.jk,h,bh,ej,fk.j
b,g,jk.fk,ej,bk,ak,bh gk h.fh.ce,fg
b.g,h.gk,ej.fk.ak,jk,be,bh,c,fh,ce
b,g,h,ej,ak,fk,gk,jk,th,c hk,eg,bh

b,g,h,gk,ej,fg,hk,ak fk
b,g,h,bh,gk,ej,fk,bk,ce,eg f,fh,dg
b,fk,h,ej,g,bh,gk,hk jk
b,g,bh.h,ej,fk,gk,jk,ce,hk,eg
b,g,h,ej,fk,bh,ce,gk,jk,hk f,c,bk,eg

b,fk,h,ej,g,jk.gk,ce,hk,f,bg
b,fk.h,ej,g jk.gk,ce,hk,fbg,th,fg
b,flch,ej,g,fg,bh,jk,be,bg,ce,hk

[ ner, ON J:

Figure 3.3 Comparison of Variables, Attack Case Reduced Models
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Variables Included Variables Included

Day | with (0,1) Coding with (-1,1) Coding

1 |aqcfgfag.acbd,cd,blfg acfgJj,ag,cd,cf.a

2 | e,ak,jg,eh,b,bd,d.g,bj,dj e,dj.gj,eh,bj,bd k,a

3 | ehk,hj,ak,dj,df k,dh,a,bk,bf,bh e,hk,ak,dh,dj,d,a,bk,bf,eg,ab,bj

4 | ey jk,j,ek,df,cj,eh,bh e,b,jk,j.c.cj

8 | e,bbhbjh,ck.efbk,adfhah e,b,bh,cg,h,.bj,ej,ef

6 | be,bj,ae,ef.ab.k.ad,cf ah.hk fk,be,cjc.f,bg, | ebbj,ch,fk,j,ak.a,c.adhk,ef,be,ab
eg,bd,ek,ak

7 | bi,ek,bd,be,j,dk,ej,ce,bg,ag.g b,e,ej,ce,ag

8  |bj,be,ejbg.gh,df.eh,hj,a,ag,d j»bi,ej.gh,eh,b,bg.fag

9 | bj,e,b,qj,eghk,de,c,cf,ae,8k.h.fg irej.bj,e,eg,hk,dj

10 | b,ej,h.bj.fef,ag.gh,fg,eg.fk,ab,ek bj.ej,h.bj.f.ag.eg.ef gh.e,acfg

11 | b,hj,h,ek.k,qj,a,ck,ab b,h,j,e,hj.k,ab

12 | b,dh,eg,dg,af,g,hj,gh.gi b,h.gj,e.gh,eg,ae,dg,af ac,dh

§ 13 | b,ch,fh,ce,ac,ae,dk,gh.gk hj b,h,e,dk,ce,.fh,aj,cd,ac,j

14 | b)h,be,bd,dh,c) b,h,be,e,bd,dh

15. | bh,ab,eh,bj,bf fk,cd,ae,bd b,h,ae,a,ab,cd k,bj,eh,bf

16 | b,bh,be,be,ce,ej,aj,ab,g,th.gk,dk,c,d.fg b,h,be,aj,dk,ce,ab,bh,be,g,ek

17 | b,fh,gh,bj,dh,d,bf bgjk.f,cg,ce,fk,hj,dj b,h,bj,fh,bf,ce.hj,dh,dj,cg.g

18 | bbf,e,cfgh.hj,be.efbegeh,ad fkfbghbd, | b,be,be,of fhbfgfkhjefbgaeck.gheh
ak.gj : -

19 | bk,ej,be,dh,eh,ck k,ek hk,dk,eg,bj,de,ce,bj, | b,e,j,bk,hk,jk,ej,bck,ce,dk,gjek,c,ck,eh,
giJk,b h

20 | bk,bd,ej,de,ce,d,c,bj,dg.fk.gh,ac,jk,bg,b b/k,bk,ce,j,dg,bd,d,jk,de,ej,e,f,ek,bj,f,bg

21 | b,bh,bk,fh,e.f,cf,gh,bd jk,ae,behjgjhk,fg, |bh,befbkfhbhkhk.eh.cfhjghjk.ae }
be,eh,f,dj,ad

22 | bbk,h,bghj,j,be,ak,ehhk,ce b,h,hj,k,bg,bk,ak,g,be,eg,eh

23 | b)bh,ek,gj,c,af de,be.fgf,hjeg,jk,.dh.f.ac b,h,e,bh,ac,hj,ek k. fg.f,beeg

24 | b,ek,abf,bh,eh,cd,cj,ej.e,ag,2h,6,bd b,e.fj.k.ag,cj,a,j,ah,abh,ek,ac

25 | b,be,bj,ck,ac,a,ch.e,dh,ae b,e,ac,bj,ae .k j,be,dh

26 | b,be,bh,be,bj,ef ak,dj,fig,cj,cd k,hk,dk,gh,aj | b,e,be,bh,¢,bj,be,h,cj,j,dk

27 | be,bk,bj,bh,ef,d,hj,c.gj,ce,de bk,e,bh,k,de,j,bj,c,ag,ci,h,hj f.gh,ce

28 | b,bk,eh,ek,jk,a,bh,cjj,af,df,ck,behj,ag bk,k,b,jk,bh,e,hj,af,cj,h,ag,df b

29 | k,bh,jk,be,ek,fk,dk,hj,ag.ad,d,cj,b,j,ck,f bk.k,b.jk,bh,ag,e,fk,dk hj,h,j,c

30 | jk,b,bh,bk,ek,gj,bj,hj,h.j k,bk,b,jk,h,hj,bj,bh,j,e,ek

Diener, 1989:24'7-

Figure 3.4 Comparison of Variables, No-Attack Case Reduced Models
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considered as equivalent in explaining variance. Adjusted R? was chosen as
the criterion for comparison because it considers the loss in degrees of
freedom as additional variables are added to a model, thus increasing R?,
but possibly not adding any useful information. The usefulness of the
adjusted R? value is somewhat reduced; however, because with so many
terms (55 including two-way interactions) available for inclusion, the
addition of extra terms with only marginal contributions to R? results in
little adjusted R? penalty because the relative change in degrees of freedom
is small.

1.4.5 Estimated Values of Sorties Generated. For the attack and no-
attack cases respectively, Tables 3.2 and 3.3 show for five arbitrarily
selected days that the number of sorties estimated is not consistent between
the two schemes. The difference in estimated sorties is not unexpected
given the differences between the models in variables included. The effect
of the blocking terms has been ﬁsWﬁ because their effect is constant
across both cases and both coding schemes.

3.4.6 Variance of Estimated Sorties Geperated, Depending upon the
coding scheme used, there are impgrtant differences in the calculation of the
variance of the estimated value. If the covariance matrix of the parameter
estimates is calculated for the (-1,1) coding scheme, all covariances.'are
found to be zero except between the blocking terms. Also, all estimators

including the intercept have equal variance, and all seven blocking terms
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Table 3.1 Adjusted R? Values for (0,1) and (-1,1) Design Matrices

|
Attack Attack No-Attack No-Attack 1
Day (0)1) (‘1,1) (0’1) ('1)1) ;
1 0.69 0.69 0.49 0.47
2 0.92 0.92 0.52 0.52
3 0.76 0.76 0.54 0.54
4 0.56 0.56 0.42 - 0.39
5 0.56 0.56 0.46 0.44
6 0.39 0.40 0.67 0.63
7 0.48 0.47 0.42 0.39
8 0.40 0.40 0.43 0.42
9 0.47 0.47 0.69 0.67 ;
10 0.46 0.46 0.73 0.73 f
11 0.56 0.53 0.71 0.70
12 0.60 0.58 0.70 0.70
13 0.57 0.57 0.75 0.74 |
14 0.57 0.54 0.65 " 0.64 *
15 0.56 0.55 0.71 0.70
16 0.55 0.57 0.75 0.74
17 0.57 0.54 0.78 0.76
18 0.55 0.51 0.77 0.77
19 0.54 0.50 0.60 0.58
20 0.60 0.56 0.64 . 0.63
21 0.63 0.59 0.75 0.72
22 0.60 0.57 0.67 0.68 :
23 0.52 0.50 0.73 0.71 ;
24 0.60 0.58 0.68 0.68 1
25 0.60 0.57 0.58 0.57 |
26 0.57 0.56 0.55 0.50 |
27 0.66 0.64 - 0.40 0.39 |
28 0.59 0.58 0.56 0.53 :
29 0.57 0.55 0.64 0.61 |
30 0.57 0.57 0.62 0.61 |
nener, 1989:247-276; 307-336
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Table 3.2 Comparison of Estimated Sorties, Attack Case

(0,1) Design
All Factors
Low

(-1,1) Design

All Factors
Low

(0,1) Design

All Factors
High

(-1,1) Design
All Factors
High

78
72
108
59
23

78
88
109
48

32

102
131
176
116
58

102
116
156
110

54

Table 3.3 Comparison of Estimated Sorties, No-Attack Case

(-1,1) Design

All Factors
Low

(0,1) Design

All Factors
High

(-1,1) Design
All Factors !
High

268
181
131
57
28

259
216
199
131
58

260
215
206

have equal variance. The variance of the estimated value, using a two

variable example for simplicity, is calculated as shown by equation 3.4.
S£(Yhat) = (b)) + X’s’(b) + X;s°(b,)

+ 2X,3(by b)) + 2X,;8(b,by) + 2X X,8(b,,b,) 3.4)
where s’(Yhat) is the variance of the estimate for sorties generatad; s’(b,) is
the variance of the intercept parameter estimate; s(b,) and s%b,) are the
variances of the other parameter estimates (including one blocking term);

and s(b,,b,), s(b,,b,), and s(b,,b,) are the covariances between the estimates
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(Neter et al., 1989:259). Extending the example to consider the multiple
variables in this study, we see that with all covariances either zero or
disregarded, all X values either -1 or 1 (so that all X* are also 1),-and all
estimator variances equal:
8(Yhat) = £(B) + (p+1)s*(b) | (3.5) .
where p is the number of predictors in the model (not including the
intercept); s*(b) is their common variance; and s*B) is the variance of the
blocking term. Note that the variance of the intercept term and the
variances of the predictors are all equal. Because a given combination of
inputs can only come from one block, only one variance term need be
included, and the covariance between the blocking terms can be
disregarded. There is no covariance between the blocking terms and the
predictors. The value of s*(Yhat) does not change regardless of the
combination of input levels chosen. |
In contrast, models developed using (0,1) coding show covariance
between all variables, greatly complicating the calculation of variance for
the estimated value of sorties generated, except when all variables are at
their low level, i.e. zero, when reference to equation 3.1 shows that the
variance of the estimated response collapses to the variance of the intercept
estimate plus the variance of a single blocking term. Thus s*(Yhat) is .
different depending upon the particular set of factor levels in which we are
interested. An exhaustive comparison of actual variances was not carried ’

out, but examination of the parameter estimate standard errors for all
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models shows that the (-1,1) model standard errors are approximately half
those of the (0,1) models, although the (0,1) models may have lower
variance totals for the all factors low situation because only the intercept
and one blocking term are considered. At other design points it is likely
that the (-1,1) models will have lower overall variance.

3.4.7 Prediction and Estimation. For simplicity, the preceding
discussion of variance has considered estimation of sorties generated. More
rigorously, the estimation is a point estimate of the expected value, i.e. the
mean, of the distribution of sorties flown under a chosen set of initial
conditions. For the linear regression models used, we assume that the
distribution is normal. Calculation of the variance of the estimated value
allows confidence intervals to be formed for the point estimate of the
expected value of sorties flown. When predicting a new value for sorties
flown, however, we must consider that we are predicting a single value
drawn from a distribution, the mean of which we are already estimating by
a confidence interval. The variance of a predicted value is therefore greater
than the variance of the expected value, and is calculated as follows:

$(Y,.) = MSE + &(Yhat) (3.6)
where Y, is the new prediction of sorties flown, and MSE is the mean
square error of sorties flown (Neter et al., 1989:79-83). Examination of the

regression results shows that MSE is the dominant term in equation 3.6,
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and that there are only small differences between MSE for equivalent (0,1)
and (-1,1) models.

3.5 Phase Ope Summary
We have seen that the nature of the available data limits our analysis

to polynomial least squares regression models. Comparison of the two sets
of models highlights the issue of prediction versus explanation discussed in
Chapter I. From the point of view of trying to explain the behaviour of the
simulation, the two coding schemes produce different resuits. The greater
number of variables included in the (0,1) models, and the frequent inclusion
of an interaction term at the expense of either or both of the relevant main
effects makes the (0,1) models more difficult to interpret, and in some cases
leads to different conclusions about important effects. From a prediction
point of view, however, the two schemes produce broadly equivalent results,
at least for the two extreme design points evaluated. Comparison of the two
coding schemes has shown that the (-1,1) design matrix is, as suggested in
Chapter II, more appropriate because it results in models that are easier to
understand and interpret, and have more easily calculable estimation and
prediction variances. Therefore, the models developed using the (-1,1) coded
design matrix and backward elimination at a significance level of 0.10
become the baseline for development ¢f new models in the second phase of

this exploration.
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In this section, some of the considerations that are important in the
development of regression models are discussed. Initially, the assumption
that interaction terms are important is examined, because the task is
greatly simplified if interaction terms can be discounted. The process of
reducing the variables in a model from all potential predictors to a subset
that best achieves the aim of the model is discussed, including the rationale
for variable reduction, the impact of variable reduction on variance and

bias, several model reduction techniques, and variable selection criteria.

underlying assumption of Diener's research is that interactions between the
factors that affect ABO are very important in the analy_sis of the sortie
generation problem from a system viewpoint. A relatively simple approach
to testing this assumption is to calculate daily metamodels with all main
effects and interactions forced into the mode;l, and then to test the
significance of this full model against a reduced model contaihing only main
effects using the general linear test (GLT). The null hypothesis H, is that
all interaction term parameters equal zero, or, referring to equations 2.1
and 2.2, that on day i, all 45 B,(i) for the no-attack case and all 45 B;,(i) for
the attack case equal zero. The test statistic /* generated by the GLT is )
calculated as follows:

,_SSE,— SSE,+ SSE,
‘fx' #I #r

F

3.7
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where SSE; is the error sum of squares for the fitted model using only
blocking and main effects (the reduced model); SSE; is the error sum of
squares for the fitted model using all effects including interactions (the full
model), and df; and df; are the degrees of freedom for the respective error
sums of squares. The decision rule for the GLT is to not reject H, at
significance level a if F* < F(1 - o; df;; - dfy, df;) (Neter et al., 1989:98-99).
Tables 3.4 and 3.5 provide the results of the tests for the first six
days. On five out of six days, for both the attack and no-attack case, the
test fails to reject H,. Given our prior knowledge of the existing
metamodels, many of which include interaction terms among the most
significant, failure to reject H, is surprising until we consider the relative
numbers of main and interaction effects. All 45 interaction effects are
tested against just ten main effects, a few of which regularly contribute the
most to the explanation of variance. The GLT assesses the signiﬁcance. of a
group of predictors by the increz;\se in error sum of squares (SSE) relative to
the increase in degrees of freedom when the predictors are removed from
the full model. The very large increase in degrees of freedom of the reduced
model is likely to mask the eﬁ'gct of a few important terms among the many
which are insignificant, and unless many interaction terms are significant,
or a few are very significant, we can expect not to reject H,. Tgsts for
subsequent days are not carried out because the example of the first six

days adequately illustrates the disproportionate effect on degrees of freedom
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of the very large pool of interaction terms when compared to a much

smaller number of main terms.

11727.22

105635.72

Table 3.4 General Linear Test for Interaction Terms, Attack Case

Do not reject Ho

60329.88

23474.38

Reject Ho

102875

59517.75

Do not reject Ho |

56199.44

32977.03

Do not reject Ho |

75615.56

51088.38

Do not reject Ho |

133236.7

87235.51

Do not reject Ho |

Table 3.5 General Linear Test for Interaction Terms, No-Attack Case

p-value

Decision
a=010

Do not reject Ho |

1

2 | 23604.17 | 14753.2 110 | 65 | 0.8666 | 0.6918 | Do not reject Ho |
3 | 18090.36 | 10431.2 110 | 65 | 1.0606 | 04088 | Do not reject Ho

4 | 19856.42 | 12645.76 120 | 65 | 08236 | 0.7528 | Do not reject Ho

5 | 22207.86 | 140862 110 | 65 | 08328 | 0.7401 | Do not reject Ho

6 65

Reject Ho

3.6.2 Purpose of Variable Reduction, As we have already pointed
out, each daily metamodel potentially contains 62 variables and an intercept

term. If we disregard the seven blocking terms because they are forced into
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all models, 55 candidate variables remain for possible inclusion into each
daily metamodel. It should be intuitively clear that not all 55 variables can
be equally significant in helping to explain the behaviour of the simulation
model, and indeed some variables may be entirely insignificant. Even a
brief glance at preliminary models containing all possible variables strongly
supports this intuition, as some variables or interactions affect the number
of sorties flown by twenty to forty sorties, while many others have an effect
of much less than one sortie. The high p-values (probability of the reported
value of the F statistic for that variable occurring by chance) associated
with many of the variables also indicate that those variables are
insignificant. Obviously then, we are able to reduce each metamodel from a
model containing all variablés to a model containing fewer mere significant |
variables. Such a reduction is desirable for several reasons. First, the
fewer variables overall that appear ‘un an explanatory model, the easier it is
to understand the relationships between sorties generated, the independent
variables, and their interactions. Second, as more interactive terms are
included, the occurrence of effects interacting significantly with more than
one other effect increases, further complicating the analysis. Third, as
Hocking (1976:7) states, a "motivation for variable elimination is that
smaller variance is achieved with a subset model, although at the expense
of some bias in the estimate." Variable reduction is therefore important for
both the ex Jlanation and prediction purposes of a metamodel. For

explanation we seek to eliminate variables so that the drivers of airbase
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performance stand out, allowing resource allocation to be concentrated
where it will have the most effect; and for prediction we also seek to

eliminate variables so that we can estimate the sorties flown with greater

precision.

' Miller (1990:4-6)
shows that the variance of the response decreases with fewer predictors
included, and that bias in the estimator for the response increases, but
points out that "if a variable has no predictive power, then adding that
variable merely increases the variance." The clear implication is that if a
variable has little effect on the value of the response, it should be removed
to reduce the variance of the estimate. The difficulty is in finding the right
tradeoff between the number of variables, variance, and bias. Miller's
remarks are made in the context of estimating the expected value of a
response, so the only component of variance is the variance of the
predictors. The tradeoff is complicated, ho;vever, if instead of confidence
intervals for the expected value of the response, prediction intervals for a
single predicted value are desired. Equation 3.6 showed that for prediction,
MSE must be added to the sum of the variances of the predictors. For the
present data, MSE is substantially larger than the sum of the variances of
the predictors, and does not continue to decrease as more variables are
removed from a model. Table 3.6 illustrates the differences in MSE,
prediction variance (s*(Y_.,)), and estimation variance (s*(Yhat)) for the full

model and two reduced models on dgys five, ten, and twenty for the no-
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attack case. The first reduced model includes variables significant at the
0.10 level, and the second includes variables significant at the 0.05 level.
Similar results are observed for all other days across both cases. The table
shows that while MSE for the larger reduced model is always less than for
the full model, MSE then increases when more variables are removed. The
table also shows that for the reduced models MSE is dominant in the
calculation of variance for a new prediction, so that the decrease in variance

due to fewer predictors is more than offset by the increase in MSE.

Table 3.6 MSE, Estimation Variance, and Prediction Variance

Reduced Model, 10% Reduced Model, 5%

Day |[MSE| « 8 |Terms|MSE| s* 8° |[Terms| MSE | &° s
(Yhat)| (Y,,..) (Yhat)| (Y,,.) (Yhat)| (Y,,.)

387 |1173| 10 | 590 | 78 668 6 636 | 66 701

786
10 | 943 | 464 | 1407 7 746 | T3 819 5 778 73 851
635

66 59 537

3.6.4 Variable Reduction and Bias, Neter et al. (1989:412) point out
that it is sometimes preferable to have a small amount of bias if the

variance can be reduced enough that the probability of a biased estimate
being closer to the true value is higher than the same probability for an
unbiased but much higher variance estimate. To illustrate this concept

consider the data for day ten in Table 3.6. We assume under some set of
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inputs that the full model produces an unbiased estimate of the expected
value of sorties flown, i.e. Yhat,;, which we shall assume to be 140 sorties,
with a variance s*(Yhat,,) of 464 (from Table 3.6), and a normal
distribution. Assume that under the same input conditions the 10%
significance reduced model estimates only 135 sorties, i.e. Yhat,,,, = 135, for
a bias of five sorties. The reduced model estimate also has a normal
distribution, but its variance s*(Yhat,,,,) is only 73 (also from Table 3.6).
Both distributions are plotted in Figure 3.5, with the lower curve the
distribution for the full model. From Figure 3.5, the area under the
respective curves between the vertical lines represents the probability that
an estimate from that distribution will fall with the range of the true value
indicated by the lines. In the example above, the probability of the
unbiased estimate falling within plus or minus ten of the assumed true
value of 140 is 0.358, while the probability of the biased estimate falling
within the same range is 0.681. The biased estimator in this case is
preferable because it is more likely to estimate the true value of sorties
flown. The difficulties in applying this concept are in deciding how much
bias is acceptable, and how precisely we need to estimate the true value of
sorties flown. The issue of bias for reduced models is further addressed
when alternate models are evaluated.

3.6.5 Automated Selection of Variables. One of the most diﬂicult
decisions when developing regression models from a set of independent

variables and their interaction terms is the selection of which terms to
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Figure 3.5 Typical Distribution of Expected Value of Sorties Flown

includg in the model and which to exclude (Neter at al, 1989:437). A
number of automated computer selection procedures are available, including
the backward elimination used by Diener to derive the original models. The
backward procedure starts with all possible predictors included, and drops
predictors that make less than a minimum contribution to the explanation
of the total variance. Diener's criterion was a significance level of 0.10
(Diener, 1989:74). Another automatic method is forward selection, a
technique generally favoured by Neter et al. (1989:458). The forward
procedure starts with no predictors included, and adds only those predictors
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that make more than a minimum contribution to the explanéﬁon of
variance (Neter et al., 1989:4563,458). A third automatic procedure is
stepwise regression, which combines both forward selection and backward
elimination by examining the significance of the variables included in the
model after the addition of each variable, and removing any variable which
no longer satisfies a minimum significance criterion. For all techniques the
setting of significance levels is a subjective assessment which will be further
discussed shortly.

3.6.6 Maximum R? An automatic technique that differs from the
previous three is the maximum R? improvement technique, which builds
models by comparing the variablés included within a model of a given size
with those not in the model, and switches them until the model with
maximum R? for the given size is obtained. The procedure is repeated for
all sized models, resulting in tl;e one variable, two variable, etc models with
maximum R?. The SAS User's Guide: Statistics (SAS Institute, 1985:765)
states that the maximum R? improvement technique "is considered superior

to the stepwise technique and almost as good as all possible regressions.”

stepwise regression, the inclusion or removal of variables is a series of
partial F tests at the chosen significance ' vel. The SAS Users Guide:
Statistics (SAS Institute, 1985:765) points out that "when many significance
tests are performed, each at a level of, say 5%, the overall probability of

rejecting at least one true null hypothesis is much larger than 5%." The
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null hypothesis in each case is that the value of the parameter for the
variable under consideration is zero, so the consequence of rejecting a true
null hypothesis (Type I error) is the inclusion of an additional variable that
is not actually significant. This observation is highly relevant to this
research because over the first six days, for both attack and no-attack cases,
an average of 41 terms is rejected during the backward elimination, i.e. 41
significance tests are carried out. Forward selection should be less prone to
such error because for the same significance level we expect fewer steps to
be carried out. The implication of the higher than expected probability of
Type I error is that we "should specify a very small significance level” (SAS
Institute, 1985:765). The decision on what constitutes a "very small
significance level," however, is left to the researcher. For this research, 5%
and 1% will be examined as small significance levels. As an alternative to
basing inclﬁsion or exclusion of a predictor on significance level, Neter et al.
suggest a technique whereby 'variables are considered in terms of their
marginal contribution to error reduction. For example, if in the forward
stepwise procedure the value of the F statistic required for a variable to
enter the model is set at 2.0, the effect is that "the marginal error reduction
associated with the added variable” is "at least twice as great as the
remaining error mean square once that variable has been added” (Neter et
al., 1989:457). Although the SAS software does not use the value of F for

variable selection, the value of F for each variable included is reported in
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the output of the automatic procedures, so an assessment of marginal error
reduction can be readily made. |

3.6.8 Best Subsets Techniques. Only one model results when
stepwise regression techniques are used to automatically select the terms to
be included in a regression model, but it is important to recognise that this
model is only one of many possible models that could have been derived. A
different technique is to develop all the possible models and select from that
set the preferred model. In practice, only a subset of models that meet
certain criteria are developed and examined. The criteria can be to include
just the n best models regardless of size, or, more commonly, to include the
m best models for a range of model sizes, i.e. number of predictors included.
The algorithms used to produce the subsets are known as "best subsets
algorithms" (Neter et al., 1989:452), and an example is the RSQUARE
procedure provided by SAS (SAS Institute, 1985:711-724). Without such
algorithms, the technique becomes unworkable as the number of
independent variables increases. For example, to examine all possible
regression models for the data used in this research would entail examining
approximately 3.6 x 10'® models (ten independent variables leads to 45
interaction terms, for a total of 55 candidate terms, and therefore 2% = 3.6 x
10'® possible regression models). Even with an efficient algorithm, which
uses branch and bound methods to evaluate only a fraction of the possible
models, an inordinate amount of computing time may be required. Also, in

considering a model of such complexity as this, distinguishing between
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alternatives offered in a best subset may be impractical. The main
advantage, however, of using a best subset app@m instead of proceeding
directly to a stepwise regression is that the subset may include a range of
models that differ greatly, but have similar values for R®. This allows the
modeler to more easily use some judgement in balancing goodness of fit and
the level of significance desired of a model with the simplicity and ease of
understanding of the model. A similar result could possibly be achieved by
carrying out many stepwise regressions, but subtle differences between
possible models could be missed unless the criteria for each stepwise
regression were very similar.

3.69 Choice of Models from a Subset, When a best subsets
technique yields several models from which to choose, the selection of the
preferred model is still far from straightforward. Seversl criteria can be
used, induding R?, adjusted R? and Mallow’s C, statistic.

3.6.9.1 R? Criterion. By selecting all p - 1 predictors that are
significant at the chosen level, forward selection implicitly maximises R,?,
calculated as follows: |

B-1-35 3.8)

where SSE, is the residual (or error) sum of squares remaining when p - 1
predictors (and the intercept, for a total of p parameters) are included in the

vmodel, and SSTO is the total sum of squares (Neter et al., 1989:444). When
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selecting possible models from a subset, R? can also explicitly be used as a
selection criterion. An important characteristic of R?, however, is that it
reaches its maximum only when all predictors are included in a model, so
some degree of subjective evaluation is required when using this criterion.
A balance between small marginal increases in R? and the inclusion of
additional variables must be found (Neter et al., 1989:444-445).

3.6.9.2 Adjusted R? Criterion. The adjusted R? criterion
attempts to make more objective the assessment of whether to include extra
variables which may have no real predictive or explanative power in order
to increase R? by a small amount. Adjusted R? takes into account the loss
in degrees of freedom as additional terms are added to the model, and
unlike R? can reach a maximum and decline as extra terms are addec. ihat
do not make a sufficient contribution to the explanation of the overall
variance to offset the fewér degrees of freedom. The selection criterion is

therefore to maximise adjusted R?. Adjusted R? (R?) is calculated as follows:

R-1- (ﬂ)ﬂ (3.9
n-p) SSTO

where n is the number of observations in the data set and p the number of
parameters included in the model (Neter et al., 1989:446). We have already
seen, however, that the large total degrees of freedom that exist in models
derived from the data set can mask effects that would be obvious if fewer

variables were possible candidates.
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3.6.9.3 Mallow’s C_ Statistic. Mallow’s C, statistic can also be

used to assist in the process of model reduction, and has the desirable
property of suggesting the choice of subset models that are relatively
unbiased. The C, statistic considers mean squared error, which measures
the combined effect of sampling variance and bias in an estimator of a

parameter (Neter et al., 1989:412). C, is calculated as follows:

SSE
Cp-—ﬁé - (n - 2p) (310)

where SSE, is the error sum of squares for the subset model with p
parameters, MSE is the mean square error for the full model, and n is the
number of observations. A subset model is considered a likely candidate for
acceptance when C, approaches p.

3.6.10 Yates’ Algorithm. Yates’ algorithm (Box et al., 1978:323) is an
alternate technique to least squares regression for deriving a regression
model, but applies specifically to full factorial experiments, and is therefore
not applicable in this research.

3.6.11 Transformations. When the relative difference between the
smallest and largest values of the response is large, Box et al. suggest that
a transformation of the response may be appropriate (1978:334). Such
transformations may involve taking the inverse of the response, the natural
or base 10 logarithms of the results, or the square root of the results (Neter

et al., 1985:138). Two problems exist with transforming the response for
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this data set. First, the experimental design presupposes a linear
relationship between the independent variables and the response; and
second, the occurrence of zero values for the response precludes inverse or
logarithmic transformations. A brief examination of a logarithmic
transformation, achieved by setting zero responses to small positive values,
confirmed that such a transformation is inappropriate. Although reasonable
models appeared to result, examination of the residuals showed serious
departures from normality, and strong patterns in the residual plots.

Transformations are therefore not given further consideration.

3.7 Apnlicability of R ion Techni

This section presents the initial results of applying to Diener's data
set the techniques and considerations outlined in the previous section.
Some unexpected results are observed, and the reasoﬁs for the results and
their impact on model development are discussed.

3.7.1 Comparison of Automated Techniques. To provide a baseline
for comparison, a set of metamodels was developed for both the attack and
no-attack cases using the same criteria specified in Diener's research, that
is, backward elimination of variables, with variables retained in the model
at a significance level of 0.10. SAS Version 6.07 was used in developing
these and all other models. For initial comparisons, only the first six daily
models were calculated. Models were then calculated using both forward

selection, at a significance level of 0.10, and stepwise selection, with
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variables entering the model at 0.10 significance, and remaining in the
model also at 0.10 significance. Comparison of the new sets of models with
the baseline models provided the first unexpected result in that each set
was identical, regardless of the technique used. Overall model significance,
SSE, and individual parameter significance were also identical for
equivalent models. Further analysis of the regression results showed that
for the stepwise regression, none of the variables was removed from any
model after entering.

3.7.2 Expected Results, The results described in the previous
paragraph are surprising because the regression texts consulted create the
expectation that different regression techniques will lead to different
models, and that it is common for variables to leave a model as other
combinaﬁons of variables are able to explain more of the variance. Neter et
al. (1989:454-457) provide an example wﬁere the first variable that entered
was eventually dropped. Devore (1991:550) summarises the usual approach
by stating that "a single variable may be more strongly related to y than
either of two or more other variables individually, but the combination of
these variables may make the single variable subsequently redundant.”

As a check that

the regressions had been carried out correctly, the forward and stepwise
techniques were applied to the same data set, but with the original (0,1)
coded design matrix restored. Identical total sums of squares using either

design matrix indicated that no data points had been omitted or changed;
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however, using the original design matrix gave regression results more in
line with expectation, with different regression techniques resulting in
different models. For example, on day six of the attack case, the first
variable selected (and therefore retained) by the forward selection technique
was also first selected by the stepwise technique, but subsequently dropped.
The same variable was also dropped by the backward elimination technique,
which returned a model the same as in Diener's original work, thus
confirming that the data had not been altered. The reason for the
unexpected results was found in an examination of the various types of
sums of squares that arise during multiple regression.

3.7.4 Types of Sums of Squares. Freund and Little (1985:103-105)
outline the different sums of squares (SS) that are relevant in analysis of
variance, describing Type I, Type II, Type III, and Type IV sums of squares.
Neter et al. (1989:271-280) provide a similar analysis, referring to extra
sums of squares, but Freund and Little's description is preferred because
their terminology relates directly to SAS outputs. Type I, or sequential SS
are the sums of squares for each predictor that result when predictors are
added sequentially to a model, and can be considered as the reduction in
SSE when a predictor is added, given that all previous predictors are
already in the model. Type I SS are therefore dependent upon the order in
which terms are added to a model. Type II SS for a given variable are
calculated considering the effect of all other predictors in the model that do

not contain the effect of that variable. Type III SS are referred to as partial
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sums of squares, and represent the reduction in SSE due to a predictor
given that all other predictors being considered are alreédy present in the
model. Type IV SS are intended for analysis when the design matrix has

design chosen by Diener is characterised by just one observation at each
design point. For example, the low level of factor D, and the high level of
all other factors occurs once in the design matrix, as do all the other 127
factor combinations modeled (Diener, 1989:45). Freund and Little
(1985:106) refer to this data structure as equal cell frequencies, and state
that with such a data structure, all types of sums of squares (SS) will be
equal for any predictor, whether a mainl effect or an interaction. Use of the
SAS General Linear Models procedure confirmed that for (-1,1) coding, each
predictor (including the interaction terms) has all four types of SS equal to
each other. To understand the effect on regression of having predictors with
equal Type I and Type III SS, consider a model with only three possible
predictors: X;, X,, and X;. Assume also that the predictors will be entered
in numeric order. Referring to the previous paragraph, the Type I SS for X,
is the reduction in SSE due to X, alone, as no other predictors have yet been
added. The Type III SS for X,, however, is the reduction in SSE due to X,
given that X, and X, are already in the model. If the Type I and III SS are
equal, having X, and X, already in the model has no effect on the
contribution that X, makes. To summarise, if the Type I and III SS are
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equal for each predictor, then it is clear that each predictor makes a
contribuh’oﬁ to the reduction of SSE completely independently of its order of
entry and the presence of any other predictors.

3.7.6 Explanation of Regression Results. The equivalence of forward
selection, backward elimination, and stepwise selection in developing models
is readily explained once we realise that the contribution to the explanation
of variance that a variable makes does not vary depending upon whether it
is the only variable in a model or the last of many. Stepwise selection
becomes equivalent to forward selection because the introduction of
subsequent variables does not change the sum of squares contribution of a
variable already in the model. If their sums of squares do not reduce, their
significance levels will not reduce, 80 no variables will ever be eliminated.
Forward and backward selection are equivalent because the variables can
be ordered by their contribution to the model, and the order does not change
as the model size changes. Therefore the same subset of variables

~ significant at a given level will result whether we start with the most

important variable and add variables, or start with all variables and delete
the least significant. An interesting observation is that when a variable is
added to a model, the significance of variables already in the model usually
increases because the Type II SS for variables in the model remains
constant, but the overall SSE and therefore MSE reduce, so that F (equal to
Type II SS/MSE) increases. This observation holds as long as the variable
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being added reduces SSE enough to offset the loss of a degree of freedom,
| and thus reduces MSE.

3.1.7_Other Unexpected Results, Comparison of the full models and
reduced models used to carry out the General Linear Tests revealed that,
for both the full and reduced models, the value of the intercept estimate
remained equal to the mean number of sorties generated by the 128
treatments for any given day even though 55 interaction terms were not
included in the reduced models. Additionally, the parameter estimates of
the main terms remaining in the reduced models were the same as for the
main terms in the full models. Comparing the baseline 10% significance
models with the full and main effects model gave the same result, that is,
the estimate for a particular parameter in any given model does not change,
regardless of the number or combination of the other terms in that model.
The extreme example is the first daily model in the attack case. Figure 3.6
contains part of the analysis of variance table for the full model on day one,
with all the interaction terms omitted for clarity, and Figure 3.7 contains
the full analysis of variance table for the 10% significance model on day one.
Comparison of the two figures shows that the intercept and variable D
estimates are identical for both the reduced and full models, even though
the full model contains all 55 variables, and the 10% significance model
contains just one variable. The independence of parameter estimates with
regard to other variables in the model is a similar effect to the

independence of each variable's contribution to sums of squares explained
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earlier. An analogy with simple linear regression shows why the intercept
estimate does not change, while examination of some of the properties of the
design matrix helps explain why the parameter estimates are independent
of each other, and also provides the underlying reason for the equality of

the different types of sums of squares.

Full Model Attack Case

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 62 30882.75000 498.10887 3.073 0.0001
Exrror 65 10535.71875 162.08798
C Total 127 41418.46875
Root MSE 12.73138 R-square . 0.7456
Dep Mean 89.60938 Adj R-sq 0.5030
c.V. 14.20764

Parameter Estimates

: Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > T}
INTERCEP 1 89.609375 1.12530545 79.631 0.0001
Bl 1 -10.171875 2.97727836 -3.417 0.0011
B2 1l 3.453125 2.97727836 1.160 0.2504
B3 1 =13.359375 2.97727836 -4.487 0.0001
B4 1 2.828125 2.97727836 0.950 0.3457
. BS 1 16.828125 2.97727836 $5.652 0.0001

B6 1 8.703125 2.97727836 2.923 0.0048
B7 1 ~-2.609375 2.97727836 -0.876 0.3840
A 1 -0.125000 1.12530545 -0.111 0.9119
B 1 -0.203125 1.12530545 -0.181 0.8573
Lod 1 0.203125 1.12530545 0.181 0.8573
D 1 11.953125 1.12530545 10.622 0.0001
E 1 0.750000 1.12530545 0.666 0.5075
F 1 0.109375 1.12530545 0.097 0.9229
G 1 0.062500 1.12530545 0.056 0.9559
H 1 0.421875 1.12530545 0.375 0.7090
J 1 -0.843750 1.12530545 ~-0.750 0.4561
K 1 0.218750 1.12530545 0.194 0.8465
JK 1 -0.953125 1.12530545 -0.847 0.4001

Figure 3.6 Analysis of Variance, Day One Attack Case, Full Model,
with Coefficients and Statistics for Interaction Terms Omitted
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Attack Case, 10% Day 1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 8 29484.62500 3685.57813 36.751 0.0001 *
Error 119 11933.84375 100.28440
C Total 127 41418.4687S
Root MSE 10.01421 R-saquare 0.7119
Dep Mean 89.60938 Adj R-sq 0.6925 .
Cc.V. 11.17540
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Erxror Parameter=0 Prob > |T|
INTERCEP 1 89.609375 0.88513947 101.238 0.0001
Bl 1 -10.171875 2.34185892 -4.344 0.0001
B2 1 3.453125 2.34185892 1.475 0.1430
B3 1 ~13.359375 2.34185892 -5.705 0.0001
B4 1 2.828125 2.34185892 1.208 0.2296
BS 1 16.828125 2.34185892 7.186 0.0001
B6 1l 8.703125 2.34185892 3.716 0.0003
B7 1 -2.609375 2.34185892 -1.114 0.2674
D 1l 11.953125 -0.88513947 13.504 0.0001
Figure 3.7 Analysis of Variance, Day One Attack Case,
10% Significance Reduced Model

3.7.8 Constant Intercept Estimate, A characteristic of fractional
factorial designs is that each column of the design matrix has an equal
number of plus and minus ones (Box and Meyer, 1993:94). As each column
represents a single variable, consider simple linear regression with just one
independent variable X, which takes the values -1 and +1, and assume that
there are an equal number of observations of the dependent variable Y for
each level of X. If there is no relationship between X and Y, the regression
line will be horizontal, passing through the mean of Y. If there is some

linear relationship, the regression line will have a slope, but the intercept
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will remain the mean of Y because there are equal numbers of observations
at both levels of X, i.e. the mean of X is 0.

3.1.9 Design Matrix Properties. Reynolds (1993) states that when a
design matrix is orthogonal, that is, there is no relationship between the
independent variables, the effects of the independent variables can be
considered separately in a regression model. Neter et al., while not
addressing orthogonality as such, state that

"in general, when two or more independent variables are

uncorrelated, the marginal contribution of one independent variable

in reducing the error sum of squares when the other independent
variables are in the model is exactly the same as when this

independent variable is in the model alone." (Neter et al., 1989:298)
To test for orthogonality, the transpose of the design matrix is multiplied by
the design matrix. If the resulting matrix is diagonal, that is, all elements‘
except on the main diagonal are zero, then the design matrix is orthogonal
(Reynolds, 1993). Both the (-1,1) and (0,1) matrices were tested, and the
(-1,1) matrix proved to be orthogonal, while the (0,1) matrix did not. Tests
of correlation among the independent variables showed no correlation for
either matrix. Considering that Neter et al. specify a first order model
(1989:297), a possible reason for the models derived using the '(0,1) design
not behaving in the same way as the (-1,1) models, even though none of the
independent variables are correlated, is the inclusion of interaction terms in
the models. If the (0,1) design matrix was expanded to include interactions,
the four interactions between two variables ((high,high); (high,low);

(low,high); (low,low)) would introduce three zeros into the matrix for every

3.39




one, thus unbalancing the number of ones and zeros. For the (-1,1) matrix,
the interaction terms introduce an even number of plus and minus ones. It
is sufficient for this research that the (-1,1) matrix produces results that are
expected. Further investigation of the properties of the (0,1) design is
beyond the scope of this research.

3.2.10 Resolution of Unexpected Results, Because the effects
observed in deriving models from the (-1,1) design matrix can be explained
with reference to the sums of squares of the variables, the lack of
correlation of the variables, and the orthogonality of the design matrix, the
models are accepted as valid, and we now examine the effect on the
development of new models of the results discussed in the preceding
paragraphs.

3.7.11 Implications for Automated Techniques, Because forward
selection, backward elimination, and stepwise selection all result in the

same model for a chosen significance level, the preferred technique is
forward selection. In general, many more terms are left out of a model than
are included so forward selection is substantially faster than backward
elimination. Also, under the circumstances existing for this data set, the
order of entry into a model developed by forward selection is an indication
of the relative importance of the variables to the explanation of variance. A
particularly important consequence of order independence of selection is
that the automated techniques will be fully effective at finding, for the

chosen significance level, the model yielding the highest value for R%. Miller
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(1990:48-53; 70-75) points out that this is frequently not the case when the
different types of suﬁns of squares are not equal and provides several
examples in which automated selection procedures failed to find the best
fitting subsets of varying sizes. The overall implications for this research
are that we can be confident of finding the "best” model (based on R? and
SSE) at a given significance level using forward selection; and that any
automatically produced mode! containing a given number of terms will have
the highest R? of all models containing that number of terms.

3.7.12 Implications for Maximum R’ Selection, The models
developed by using the maximum R? automatic technique will reflect the
order of entry of variables into a model developed by forward selection. For
example, the best five variable model found using maximum R? will contain
the first five variables chosen during forward selection. Because the
relative importance of the variables never changes, maximum R? will not
find any "unusual” combination of n variables that result in a higher R?
than the first n variables ordered by their contribution to sum of squares.
The maximum R? technique is still useful, however, if we wish to compare a
set of models containing, say, 8, 9 and 10 variables.

3.7.13 Implications for Best Subsets Techniques, The implications
for best subsets techniques of variables having independent effects are
similar to the implications for maximum R? technique. The best subset of
dzé n ﬂl always contain the first n variables chosen by forward selection,

and the next best subset will include the n - 1 most significant variables,
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and the n + I1th most significant. For example, if the three best subsets of
four vﬁables are requested, the best subset will contain the first four
variables ordered by significance, the second best subset will contain the
first three and the fifth variables ordered by significance, while the third
best subset will contain the first three and the sixth variables ordered by
significance. Clearly, there is little to be gained by requesting other than
the single best subset of each size because all subsets of each size will differ
only in the last variable, assuming that the number of subsets examined is
smaller than the number of variables not included. If only the single best
subset for a range of model sizes variables is desired, then the maximum R?
technique is preferable because both techniques will return the same result,
but the maximum R? technique is faster and is able to cope with many more
variables.

3.7.14 SAS RSQUARE Procedure for Best Subsets,. The RSQUARE
procedure provided in SAS for finding best subsets is unable to handle all
55 variables and interactions that are possible candidates in this research.
However, for each day we know that the 55 - n least significant variables
when ordered by their sums of squares will never enter a model of size n, so
we can safely reduce the pool of variables considered by RSQUARE if we
have some idea of the maximum size of model to be considered.
Examination of the 10% significance models, and the terms not included in
those models suggests that a conservative maximum model size is 35 terms

(the largest 10% model contains 17 terms). If the twenty least significant
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variables are deleted from the pool, the RSQUARE procedure is able to
produce for all thirty days a single best subset of each model size specified
in only a few minutes processing time on a VAX Model 6000-420, compared
to over 24 hours when three subsets were requested and the 48 most
significant variables were considered. An undesirable consequence of
truncating the variable pool to use RSQUARE is that the values reported
for C, are not the same as those obtained using forward selection. The
reason is that the SAS procedure uses the full model MSE to estimate
variance, and reducing the variable ~ool changes the full model as seen by
RSQUARE (SAS Institute, 1985:715,765). For the situation in this
research, the RSQUARE procedure for best subsets is most applicable for
efficiently presenting R? and adjusted R? values for a range of model sizes.
3.7.16 Model Selection Criteria, The preliminary use of the
techniques above strongly suggests that Mallow's C, is of no practical use in
selecting models from a subset of candidate models because C, frequently
takes negative values. When C, is negative the recommended plot of C,
against p, where p is the number of predictors in the model, is meaningless.
The reason for negative C, values has not been fully determined, but study
of Equation 3.10 indicates that the large number of observations (128)
relative to the number of variables generally included in the models (1-17)
outweighs the ratio of SSE, to MSE. Adjusted R* may be of limited
usefulness in developing explanatory models because it very rarely reaches

a maximum until more than 20 terms are included. However, maximum
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adjusted R? is equivalent to minimum MSE (Neter et al., 1989:446), and
may well be useful for finding models that are most suitable for prediction
Wuse we saw earlier that MSE was dominant in the expression for the
variance of a new prediction.

3.7.16 Selection Bias, Miller (1990:Ch 5) devotes a chapter to the
issue of what he terms "selection bias,” which is bias in the predicted value
of the response resulting from using the same set of data for both the
selection of a subset of predictor variables, and the estimation of the value
of the regression coefficients for those predictors. According to Miller
(1990:12), the bias results from the fact that the regression coefficients of a
subset of predictors are conditional on the subset chosen. That is, the
regression coefficients of the variables included in a reduced model will be
different from the coefficients of the same variables in the full model. In
the ideal case, he suggests that .

an independent sample should be obtained to test the adequacy of the

prediction equation. Alternatively the data set may be divided into

three parts; one part to be used for model selection, the second for the
calibration of parameters in the chosen model, and the last part for

testing the adequacy of the predictions. (Miller, 1990:13)

In the current research we are unable to split the data as Miller suggests,
and carrying out additional simulation runs to gather more data is well
beyond the scope of this research. We have seen, however, that for this
data set the regression coefficients in a reduced model do not depend on

how the model was selected, so selection bias can be discounted.

3.44




3.8 Revised Model Building Techni

The results of the preliminary exploration of model building
techniques discussed in the previous two sections suggest that some revision
is required of the techniques initially outlined.

3.8.1 Automated Techniques, We have seen that the orthogonality of
the design matrix and the absence of correlation between the independent
variables results in regression models in which each variable can be
considered independently of the others. If we wish to develop models at a
given significance level, then forward selection is the most efficient method
to use, and we know that the best fitting model at that significance level
will be chosen.

3.8.2 Exploratory Techniques, If we wish to explore a range of
possible models with no specific significance level required, a number of
alternatives are available. The RSQUARE procedure can be used to develop
a set of models for each day up to a specified size, or a manual technique
can be used to search for appropriate models. The main advantage over
forward selection of examining models containing varying numbers of terms
is that there may be several potential terms which have significance levels
only slightly above or below the selection criterion set for the automatic
method. For example, the forward selection approach at a=0.10 significance
will exclude a term significant at a=0.099, and include a term significant at
0a=0.101, when there is no practical difference in significance between the

two. Ideally, we would like to find some clear division between the
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significance of the last term included and the significance of the terms
excluded.

3.8.3 Manual Search., The independent effect of the variables means
that prior to building a reduced regression model, we can examine the
contribution that each variable could make to such a model and determine
in what order the variables will enter the model. As a preliminary step, a
full model containing all possible variables is calculated to provide a list of
the sum of squares for all variables. If the variables are then sorted in
decreasing order of their sums of squares, we have ranked the variables in
the order that they will enter a model (or reverse order that they will
leave), regardless of the regression technique used. We can also assess the
overall importance of the variables by calculating a partial R? for each |
variable. A manual search is feasible only because the variables always
enter a model in order of their significance in a full model. The benefit of
using a manual procedure to search for appropriate models ~is that it .is
practical, once the variables are sorted, to calculate both partial R? and
model R? for each size model, so that distinctions between more and less
significant groups of variables are apparent. A disadvantgge, which also
applies to the RSQUARE technique, is that once a model has been chosen
another procedure, such as the REG procedure (SAS Institute, 1985:655-
710), must be used to obtain the detailed analysis of variance information
for that model.
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3.9 Development of New Models

In developing potential new models, the two aims of a metamodel,
explanation and prediction, are addressed by initially developing separate
models for each aim. We then examine the different models to determine
whether an all-purpose model is an acceptable compromise for both

explanation and prediction.

3.10 Models for Predicti
The first models to be developed are designed for prediction, so that
the specific characteristics desired in such models are accuracy in predicting
the number of sorl;ies flown, and precision, which in this case can be
interpreted as the width of a confidence interval containing a prediction.
Accuracy is equivalent to lack of bias, and precision is directly proportional
to variance. Variance can be readily assessed from the regression statistics
of a model, but bias is much more difficult to determine. Bias may be
defined as a consistent overestimation or underestimation of a true value,
which is unknown in a probabilistic simulation experiment such as Diener's
(1989). The best that we can do is to assume that a full model containing
all terms does not contain any inherent bias. Such an assumption is a
consequence of the classical assumptions for regression analysis, which
include zero expected value for the error term in a model. We could
therefore avoid the issue of bias altogether by using a full model, but as

Table 3.6 and Figure 3.5 showed, the variance in the estimates and
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predictions of a full model are very high relative to a reduced model, 8o a
full model is unable to satisfy ovr desire for precision. By deliberately
removing terms from a full model to produce a reduced model, we recognise
that some bias is introduced, but hopefully the terms removed make such a
small contribution to the model that the bias is negligible. The reduction in
variance, however, can be substantial, as even the least significant term
makes the same contribution to model variance as the most significant. To
assess the bias introduced into a reduced model, the number of sorties
predicted by a reduced model is compared with the number of sorties
predicted by the full model at each of two design points: all factors at their
low leyel, and all at their high level. A possibie weakness of testing for bias
in this way is that all the interaction terms have the same effect on the
predicted response whéther all factors are high, or all are low, but the use
of other factor combinations is {mpmcﬁcal because the large number of
interaction terms leads to an overwhelming number of choices that could be
tested. In most models assessed, however, the dominant terms are main
effects, which do lead to a change in predictions at the two factor levels.

3.10.1 Model Building, Four sets of models were developed and
evaluated for their suitability for prediction. The first set of models is the
baseline set, calculated using forward selection, with terms in the models
significant at the 0.10 level. A second set of models was also calculated
using forward selection, but at a significance level of 0.05. For the third set
of models, the SAS RSQUARE procedure was used to find the subset of
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variables for each day that returned the highest value of adjusted R? and
therefore minimum MSE, and then those variables were forced into models
calculated by the SAS REG procedure. Developing the fourth set of models
involved an assessment of the marginal reduction in MSE as terms were
added to the models. Evaluation of the minimum MSE models showed that
the last few terms added to the model produced decreases in MSE much
smaller than the increase in estimation variance resulting from the
inclusion of an additional predictor. Equations 3.5 and 3.6 show that when
a term is added to a lﬁodel, if MSE reduces by less than the variance of that
term, the overall prediction variance will increase. The decision rule for
inclusion of terms involved examining the variance of the predictors in the
models with maximum R?, and then including only the predictors that
reduced MSE by at least a minimum amount. The number of models to
evaluate, and the small change in predictor variance as further terms are
added dictated using an average value as the minimum acceptable reduction
in MSE. A value of 1.8 was chosen for the attack case, and 1.2 for the no-
attack case. Applying the decision rule to the variable subsets generally
revealed a distinct cutoff in MSE reduction at around the values chosen,
with the variables excluded making a substantially smaller reduction in
MSE. In some cases the difference between the minimum MSE and the
near minimum MSE models proved to be only two or three terms, while in

other cases, the difference was ten or more variables.
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3.10.2 Model Assessment, Table 3.7 and Table 3.8 present a
comparison of the sorties predicted for the attack case with all factors high
and all factors low respectively while Tables 3.9 and 3.10 present the same
comparisons for the no-attack case. The column labeled "Bias" in each table
represents the difference between sorties predicted by the reduced model
and sorties predicted by the full model. As an indicators of the overall
accuracy of each model, the mean absolute deviation from the full model
prediction and the mean absolute percentage deviation appear at the bottom
of each table. Absolute deviation is measured because positive and negative
deviations could cancel, so that their mean would understate the true
amount of inaccuracy present. The variances for estimation of the expected
value of sorties flown are presented in Table 3.11, and the variances for the
prediction of sorties flown are pre.sented in Table 3.12.

3.10.2.1 Bias. Several points are evident from Tables 3.7
through 3.10. First, for both the attack and no-attack case, the performance
of the models containing terms significant at the 0.05 level is worse than all
other models. Such a result is expected because these models contain the
~ fewest terms. The particularly poor performance of the 5% models at the
low factor level in the attack case suggests that they are not suitable for
prediction, so they are excluded from further consideration. Second, with
the exception of the 10% significance models for predicting sorties when all

factors are low in the attack case, all three remaining sets of models make
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reasonably accurate predictions compared to the full models, with relative
errors typically less than 5 percent.

Table 3.7 Comparison of Sorties Predicted, Attack Case, All Factors High
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Table 3.8 Comparison of Sorties Predicted, Attack Case, All Factors Low
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Table 3.9 Comparison of Sorties Predicted, No-Attacks, All Factors High

10% Significance

5% Significance

Minimum MSE

Near Min MSE

Full
Model | Reduced Model | Reduced Model |Reduced Model | Reduced Model |
|
Day | Sorties | Sorties Bias | Sorties Bias | Sorties | Bias | Sorties | Bias |
1] 258] 260 2 262 4| 260 1 259 1}
2| 207 221 14 221 14| 210 3] 216 9
3| 220| 224 4 225 6| 232 13| 228 9
4| 210] 210 1 214 3] 21 1 214 4
s| 216} 215 1 209 2| 218 1] 219 3]
6| 221 217 4 217 4| 221 0] 216 -5
71 208| 201 4 199 6| 200 6 201 4|
8| 202] 204 3 198 4| 20 1 204 2]
9| 209| 203 ] 203 6| 204 5 204 5 |
10| 203 205 2 206 3| 202 1 205 2|
11 195 189 ] 191 3 193 2 189 6|
12| 203 199 3 196 8| 20 1 203 0f
13 196 196 0 196 0| 19 of 201 5|
14 183 185 1 184 1 187 4 186 2]
15 179 173 5 176 -3 175 -3 172 7}
16 186 184 3 171 9| 183 4 180 6 |
17 17 168 3 164 1 168 -3 168 3]
18 162 158 3 153 9| 189 -2 160 2
19| 131 146 16 148 17 133 2 138 8 |
20| 134 131 3 126 1 133 -1 136 3
21| 149 137 .12 137 12| 146 -3 148 1]
2| 132 127 i 121 11| 128 5 128 4|
23| 127 114 13 117 10| 122 5] 12 5
24| 1 107 4 98 12 113 2 109 2]
25 96 103 7 103 8 99 3 103 71
26 66 7 5 66 0 65 -0 68 3
27 58 61 3 64 6 61 3 64 71
28 67 66 0 13 6 62 4 - 61 r
29 69 65 4 59 -10 71 2 71 2|
30 67 63 4 65 2 64 3 69 2|
|
Mean !
| Exrror| 417 6.6 2.9 42|
|
MAPE 3.5% 4.9% 2.2% 3.2% 5
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Minimum MSE

10% Significance
Reduced Model Reduced Model |Reduced Mode! | Reduced Model
Day | Sorties | Sorties Bias | Sorties Bias | Sorties | Bias | Sorties Bias I
1 260 264 4 265 5 261 1 263 3
2 169 188 | 19 197 28 17 8 183 14
3 201 204 4 206 6 210 10 206 5
4 187 189 2 188 1 186 -1 190 3
5 180 183 3 176 -4 181 1 179 0
é 179 173 -8 173 6 179 -1 172 -8
7 173 178 1 173 -1 173 -1 174 0
8 1711 169 -1 169 -1 169 -1 169 2
9 162 164 2 165 2 163 1 159 3
10 147 148 1 152 5 144 -3 148 1
11 151 147 -4 150 -1 151 0 147 -4
12 145 144 -1 145 -1 142 -3 144 -1
13 140 144 4 140 0 140 1 145 6
14 129 131 3 131 2 131 2 129 1
15 131 126 -5 124 -7 126 -6 124 -7
16 127 129 1 127 -1 125 -3 122 -5
17 111 111 0 11 0 112 1 114 3
18 115 111 -4 105 -10 114 -1 112 -2
19 122 130 8 137 16 121 0 127 5
20 103 109 6 104 1 104 0 107 4
21 100 93 6 89 -11 95 5 97 3
22 97 88 9 82 -14 92 4 89 1
23 84 81 4 9 -5 84 0 81 3
24 79 79 -1 83 3 82 3 80 1
25 82 88 7 88 7 85 3 91 10
26 76 75 -1 70 -6 73 -3 73 3
27 68 76 8 60 8 76 8 80 12
28 69 69 0 69 0 62 1 60 9
29 m p! -6 60 -16 76 0 73 4
30 72 66 -6 69 -3 66 -6 68 4
Mean
| Errorl 4.2 6.7 2.8 4.4
MAPE

3.10.2.2 Variance, Tables 3.11 and 3.12 clearly highlight the

reason for rejecting the full model for either estimation or prediction, that

is, the much higher variance than the reduced models. As explained earlier,
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the full models contain many terms that add to the variance without
significantly affecting the predictive power of the model. The choice
between the reduced models is not as clear because they all achieve similar
results in terms of overall variance for prediction. Variance for estimation,
on the other hand, is a function of number of terms in the model, and the
iO% significance models always achieve the best result measured by
estimation variance, although, as we saw in Tables 3.7 through 3.10, at the
expense of generally higher bias. The differences in variance are relatively
small when we consider that prediction intervals are based on the square
root of variance, so the three sets of reduced models can be considered
practically equivalent in achieving low values for prediction variance.
2.10.3 Assessment of Modified Selection Technique, The models
selected by choosing terms with a minimum marginal contribution to MSE
(near minimum MSE) were successful in achieving the aim of the lowest
prediction variance, but the difference between their variance and that of
the other models is not as great as was hoped for. Such a selection
technique does however warrant consideration, because it strikes a balance
between models selected without regard to variance (stepwise or forward
selection), and the minimum MSE/maximum adjusted R? technique, which
does not consider the marginal change in overall variance as terms are
added. The modified technique should be generally applicable to models
where there are many possible terms to be included and the ratio of MSE to

the sum of the predictor variances is relatively low. For this data set the
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ratio is typically five to one, which implies that the predictor variances are

important in determining the overall variance.

Table 3.11 Prediction Model Variances, Attack Case

Day Est | MSE P

1] 242 80| 1682 2| 107 71] 100 5] 109 93 100 2] 107 1.1 100

21 539} 178] 361 8] 3011 316]| 269 19| S03 | 61.1 | 252 16| 298 | 43.7 254

3)]1368] 451 ] 916 5] 687 588} 628] 13} 704] 95.1] 609 11| 695 )] 868} 610

4] 67| 260} 507, 10| 467 ] 546 | 412| 24| 465 | 906 | 374 20 ] 457 | 798 377

5|1173| 387| 786| 10| 668 78.1] 890 22} 675 ]1244 | 551 18| 666 ]1109.1 567

612003 661 13421 11]1145[141.1 [1004] 20| 1180 {2066 | 974 17 | 1160 (1829 978

711211] 399 811 81 796 835] 711] 26| 786 |161.2] 625 23| 773 |1466 626

81589 | 524 ] 1085 8] 954 §1000| 854} 21] 976 |175.1 | 801 18| 966 {1522 | 804

911268} 418| 880 8] 7631 800 | 683 | 26| 772 |15648 | 618 221 760 (1404 620
101408 | 464 ] 943 T] 819} 8185 ] 746 | 21| 841)150.7| 690 17| 8283|1802 693
11]1138) 374 ] 759 11) 710)] 87.7] 623] 22| 696 1290 ] 568 20 ] 6901202 570
1211087 342 685| 10| 622| 729 | 549 ] 20| 614 |1070| 507 171 606 ] 9569 510
1311076} 3881 721 7] 609] 600| 549 | 19| 618 j104.1 | 514 16| 605 888 516
14 11106 | 365 741 81 71| 705} 600| 24| 68213291 550 181 661 [108.1 553
161201} 306] 806| 10| 683| 778 5856| 19] 671 1185 | 557 16| 650} 953 | 555
16] 888 203] 598 11| 547] 676! 480] 27| 874 11202 | 483 17| 549 | 88.7 462
1711025 | 338 | 687 | 11| 618 76.7] 539| 20| 608 [1049 | 498 20| 603 [1049 | 498
18] 937] 309| 628| 10] 884 | 688 | 515 28] 5721083 | 464 23| 5721083 ] 484
19] 986 328 ] e61 9] 607 673} B540] 24 ) 612]119.1] 488 16| 587 ) 893 ] 498
20] 798] 263 | 635| 13| 493] 664 | 426] 241 4868 | 948 | 391 22| 483 | 889 394
21| 692 228 464 ] 14| 444 | 628 | 382} 28| 4381 94.1 | 344 24| 431 843 347
221 877 190§ 386 14| 876 533.1{ 828 28 877 809 | 296 21{ 367 656 301
23| 697] 230 467 10 434] 509 ] 983] 26| 438}] 89.7| 347 201 422] 735 | 348
24| 595| 196 399| 14| 378 | 53.0| 922| 23| 364 | 692 294 20| 359| 624 | 296
25) 574 189 385| 10| 366] 429 ] 823| 27| 856 | 745 | 281 211 348 622 286
26 ] 580 191 389 | 12| 948 450 03| 24§ S48 679 | 280 18| 841 | 65586 286
27) 407 ] 134 272] 15| 262] 884} 224 | 27| 264 ] 55.7] 208 19 ] 257 ] 433 214
28] 475] 157] 318 | 12} 287 87.1] 249 21} 288 51.7| 236 15| 2841 418 242
29] 432 142] 289 14| 266 | 8771 229% 27] 2713 574 215 18| 2683 | 429 220
30 387 128§ 259 | 13| 227 307 196 21| 228| 404 | 185 16| 228 88.7| 188

Mean 607 540 .3
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Table 3.12 Prediction Model Variances, No-Attack Case

Note: Pred = variance of a new prediction; Est = variance of estimate of expected value of sorties flown; p = no

Pred

43

339

29

290 23

323 107 | 217 8] 197 218} 175| 22| 195| 358 159 17| 191] 301 161
1560 49] 100} 16) 107} 183 811 30] 102} 230 79 21] 103 ) 184 84
346 114§ 232 6] 219} 203 | 199} 23| 215| 410 174 16| 209 320 177
810 267| 543 10| 505 | 594 | 446 26| 506 |103.5| 403 24| 502 ] 98.1 404
988 | 328 | 665 8} 6821 714 611 | 27| 646 1359 | 810 23| 632 (1200 512
10| 240 ™| 161 | 14} 147} 208} 126] 23] 147 2717 119 161 145 22.1 123
11| 899 132§ 267 8| 222] 234 | 199 19| 2251 38.0 187 14| 219 | 305 188
12 881 ]| 126] 255 | 12| 231 | 208 201 | 23} 233 | 440 | 189 16| 229 | 348 194
13| 274 90| 184§ 11] 177 218 185 24| 176 ] 342 141 16| 171 | 259 145
141 426§ 140 285 71 2361 2331 2137 19] 243 413} 202 14 237] 334 204
16| 325§ 107} 218 11| 190| 234 1671 21| 195] 35.1 160 141 190| 268 163
16} 334 110] 224 12| 210| 273 183] 24| 210| 410 169 181 207 | 38.7 173
17 ] 288 84| 171| 12| 186] 239 ) 161} 34{ 182| 443 138 201 178 | 310 147
18| 228 ] 1563) 17 149 235 125 27| 149 | 3138 117 20| 147} 255 122
19| 602] 199 404 | 18| 397] 648 ] 332} SO| 395 | 888 | 307 23| 385 | 780 312
20] 335 110] 2241 18| 2821 379 ] 194] 30| 231| 5186 179 23| 224 | 425 181
21| 291 96| 195| 16| 211 321 ] 179] 38| 206 ] 492 166 24| 2017 395 161
22) 208| 96| 196| 12| 184| 238 160 25] 182} 366 | 145 17| 179] 284 | 151
231 280 92| 187 13| 189| 265 | 163 | 27| 182 ] 882 144 211 179} 32.1 147
4] 265 87 178] 14) 186| 263 ] 160; 32| 187 | 438 144 19} 1821 805 152
26| 3471 115] 238] 10| 216] 268 191} 22| 214 | 39.7 178 18] 2121 34.7 177
20| 441 ] 145 208 12] 206] 389 ] 2581 29| 291} 638 ] 227 21| 283 ) 509 232
27] 688 | 230 | 468 14| 471 | 6864 | 404 | 30| 477}1070)] 370 26| 467 ] 955 371
28| 638 210| 427] 14] 417 58.7| 359 | 27| 415 871 | 328 24| 411] 803 331
29| 504) 166} 3381 12 331| 428 | 288 | 271 326| 685 | 258 23] 323 613 261
S0 541] 178 962 | 12| 334 143383 201{ 22| 386 {6192 274 171 330§ 519 278

Mean | 388

3.10.4 Selection of Prediction Models, For this data set, when the

purpose of the metamodel is prediction the preferred models are those

developed using minimum MSE (and thus maximum adjusted R?) as the
criterion for selecting variables. The consistently low bias exhibited by
these models outweighs the marginally higher variances compared to the

other models. The low bias, relative to the full models, is a function of
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including more terms than the other models, which is further reason to
recommend these models, given that testing for bias was accomplished at
only two design points. The most conservative approach is to include as
many terms as possible, without excessively inflating variance and the
minimum MSE models achieve this goal better than all the others.

3.10.5 The Prediction Models. The models chosen for prediction are
presented in Appendix A and Appendix B for the attack and no-attack cases
respectively. The minimum F value is 4.5 for the attack models is and 3.8
for the no-attack models, with corresponding probabilities of achieving those
values of F by chance of no more than 0.0001. Many of the terms in the
models would be considered insignificant in an explanatory model, with
values of ¢ clore to 1, and significance levels for the least significant variable
typically 0.3, but we have seen that the terms are important in controlling
bias without contributing to excess variance. Finally, residual analysis
revealed nothing to suggest that the residuals aré othér than normally
distributed with expected value zero.

3.10.6 Validation of the Models. To better validate the prediction
models, comparisons should be made between the predicted values and the
results of simulation runs carried out at design points other than those used
in the original simulation. This is a task that is outside the scope of this

research.
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3.11 Models for Explanation

3.11.1 Overview, Developing models to explain the behaviour of the
airbase system, based on the results of a simulation experiment, is a much
more subjective task than developing models for prediction. In general, we
are seeking models with as few terms as will adequately identify the most
important factors in airbase operability. In practical terms, it is important
that we find the terms that have the greatest effect on the performance of
the base because it is unlikely that there will ever be sufficient resources to
optimise the level of all the factors. It is also important that we know how
large an effect that the chosen factors have on sortie generation so that
policy makers can relate the cost of resource allocations to the additional
level of capability provided. For example, the factor that has the most
irhpact on number of sorties generated may be prdhibitively expensive to
provide at its high level, while several less important factors may provide
worthwhile gains relative to their cost. The form of regression metamodel
proposed by Diener (1989:42-43) effectively provides the information
required. The magnitudes of the regression coefficients indicate both the
effect that a resource has on sortie generation, and, when compared to the
other coefficients, the relative importance of that factor. Relative
importance can also be assessed by examining the contribution that a factor
makes to the explanation of variance in a model, that is, the partial R? for
that factor. Study of the partial R? is useful because the regression

coefficients tend to understate the differences in relative importance
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between the factors. For example, the most important terms commonly
have a regression coefficient less than double that of the next most

important term, but contribute three or more times as much to the

explanation of variance as measured by partial R?.

One approach to developing explanatory models is to presuppose a
minimum significance level for the variables to be included in a model, and
then use some form of stepwise regression technique to find the model that
meets the significance criterion. We have already seen that because the
variables in this data set have completely independent effects on a model,
forward selection is the most efficient technique, and is certain to find the
‘best’ subset of variables which are sfgniﬁcant at the specified level, where
'best’ implies the subset with the highest R? value. A corollary to thé
previous observation is that models developed using a low significance level
(o) will always be subsets of models with higher significance levels, thus
implying that a variable that is not included in a model at, for example, the
0.10 level will never appear in models with terms significant at less than
a = 0.10.

3.12.1 Forward Selection., By setting a significance level at which a
term is able to enter a model, we are testing the null hypothesis H, that the
true value of the coefficient for that term is zero. The chosen significance

level o represents the probability of Type I error in the test, that is, the
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probability of including a term in the model when in fact it has no effect.
For our purpose of identifying the important factors affecting sortie
generation, a relatively low significance level would appear to be
appropriate so that we can concentrate on factors that are highly unlikely to
be in a model by chance alone. We already have models that were
developed with a significance level of 0.10, so appropriate levels of a for
further investigation are 0.05 and 0.01. Lower significance levels than used
for the existing models are chosen for two reasons. First, as we observed in
Chapter I, the existing models contain so many terms that analysis and
explanation are diﬁicult; and second, lower significance levels reduce the
risk of rejecting true null hypotheses when many tests are carried out. At
lower significance levels fewer terms will be included and hopefully a
clearer relationship between the variables and sorties generated will '
emerge. ﬁe compromise we make, however, is that our measure of fit, R?,
reduces as variables are removed. To illustrate the effect of reducing the
significance level, Tables 3.13, 3.14, and 3.15 present the main effects
included in the metamodels for the attack case with terms signiﬁgant at the
0.10, 0.05, and 0.01 levels respectively. The complete metamodels are
presented in Appendix C, Tables C.1, C.2, and C.3. Tables D.1, D.2, and
D.3 in Appendix D contain complete metamodels for the no-attack case at
the' same three significance levels used in the attack case. Tables 3.16 and
3.17 compare the number of terms included and the R? value for each model

for the attack case and no-attack case respectively. The unadjusted R? is
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tabulated to show how much of the total explainable variance a reduced

model captures, with the full model showing the maximum that can be

explained for any day.

Table 3.13 Daily Metamodels, Attack Case, Alpha = 0.10

Main Effects
DAY Intercept‘ Attrit Fil ABDR Recov Pers AIS SptEq Spares Miss Fuel
A B C D E F G H J K

1 89.6 12.0

2 83.2 40.6

31 104.3 223 3.8

4 92.3 -3.1 9.5 3.5

5| 102.1 8.7 69 4.1 4.8

6] 166.2 10.8 5.4 11.3

7 148.6 10.6 9.0 3.9

8| 145.7 15.3 49 59

91 1373 12.2 6.8 9.1

10{ 132.3 14.2 4.6 10.1.

11} 127.1 15.8 3.9 9.7 3.8
12| 121.2 16.0 8.9 5.3

13| 1165 16.8 9.7

14 1103 14.1 8.5 5.3

15| 106.8 15.6 4.3 7.8 4.6

16| 100.0 13.4 3.4 7.7 4.7

17 95.9 12.7 6.8 4.6

18 89.0 11.2 7.3 5.2 3.7
19 86.5 124 6.0 51 4.1
20 79.2 11.3 7.1 3.6

21 74.5 10.3 3.6 6.1 5.8

22 69.6 89 3.0 7.7 4.8

23 65.7 9.6 6.2 4.8

24 62.1 10.4 2.8 5.5 5.2

25 59.0 9.9 45 5.1

26 55.6 8.8 5.5 4.8

27 51.6 9.6 2.5 2.5 5.6 3.8

28 48.7 8.6 2.6 3.9 4.8

29 46.6 7.8 3.5 3.5

30 42.9 7.6 3.3 4.2
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Table 3.14 Daily Metamodels, Attack Case, Alpha = 0.05

Main Effects
- DAY |Intercep{ Attrit Fill ABDR Recov Pers AIS SptEq Spares Miss Fuel
A B C D E F G H J K

1| 89.6 12.0
2] 832 40.6

s 3 104.3 22.3
4| 923 9.5
5] 102.1 8.7 6.9 48
6| 166.2 10.8 11.3 *
71 148.6 10.6 9.0
8| 145.7 15.3 59
91 1373 12.2 6.8 9.1
10} 1323 14.2 10.1
11] 127.1 15.8 9.7
12{ 121.2 16.0 8.9 5.3
13| 116.5 16.8 9.7
14| 110.3 14.1 8.5 53
15| 106.8| . 15.6 7.8 4.6
16] 100.0 13.4 7.7 4.7
17] 95.9 12.7 6.8 4.6
18{ 89.0 11.2 7.3 5.2
19| 86.5 12.4 6.0 51 4.1
20 79.2 11.3 7.1
21 74.5 10.3 3.6 6.1 5.8
22! 69.6 8.9 7.9 4.8
23| 65.7 9.6 6.2 4.8
24| 62.1 104 5.5 5.2
25 59.0 9.9 45 5.1
26| 55.6 8.8 5.5 4.8
27 51.6 9.6 5.6 4.7
28| 48.7 8.6 3.9 4.8
29| 46.6 7.8 3.5 3.5
30] 42.9 7.6 3.3 4.2




Table 3.15 Daily Metamodels, Attack Case, Alpha = 0.01

Main Effects
DAY |Intercep{ Attrit Fill ABDR Recov Pers AIS SptEq Spares Miss Fuel
A B C D E F G H Jd K
1} 89.6 12.0
2| 832 40.6
3| 104.3 22.3
4| 923 9.5
5| 102.1 8.7 6.9
6] 166.2 10.8 11.3
7] 148.6 10.6. 9.0
8| 145.7 15.3
91 1373 12.2 6.8 9.1
10| 1323 14.2 10.1
11 127.1 15.8 9.7
12] 121.2 16.0 8.9
13| 116.5 16.8 9.7
14} 1103 14.1 8.5
15| 106.8 15.6 7.8
16| 100.0 13.4 7.7
17f 95.9 12.7 6.8
18| 89.0 11.2 7.3
19] 86.5 124 6.0
20| 79.2 11.3 71
211 745 10.3 6.1 5.8
22| 69.6 8.9 7.7 4.8
23| 65.7| 9.6 6.2
24| 62.1 10.4 5.5 5.2
25| 59.0 9.9 5.1
26} 55.6 8.8 5.5 4.8
27| 51.6 9.6 47
28] 48.7 8.6 4.8
29| 46.6 7.8
30| 42.9 7.6 4.2
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2.12.2 Assessment of Models, Attack Case, The models developed
using a significance level of 5% show the important variables and their
interactions more clearly than the baseline 10% models. Comparison of
Table C.1 with Table C.2 shows that in general, the terms that the 5%
models exclude appear only in isolated instances in the 10% models.
Although a few terms still appear on only one or two days, there are far
fewer isolated occurrences of variables. The more consistent inclusion of
variables makes the determination of the important factors and their
interactions easier. The 5% models clearly show that there are relatively
few important factors and interactions, and that most of the significant
interactions only have effects in the second half of the thirty-day period.
The notable exception is the interaction between spares and filler aircraft,
which shows a strong reinforcing effect during the six day attack period.
Table C.3 shows that the models with terms significant at 1% exclude terms
that appear consistently in the 5% and 10% models. For example, all the
missiles and fuel and spares and fuel interactions, and most of the
personnel and missiles and AIS and fuel interactions are excluded.
Although we can be more certain at a significance level of 1% that the terms
included in a model are truly significant, the risk of Type II error, that is,
- the risk of rejecting terms that should be included, is higher than for
a = 0.05 or a = 0.10. Although no measure of the Type II error was

calculated, the wholesale elimination in the 1% models of terms consistently
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important in both the larger models suggests that the risk of Type II error

is unacceptably high.

Table 3.16 Comparison of R? Values for Attack Case Models

NN WWNWANNNNNGWNDNNNDNNNDWERERNDNNDNDNGCGWDW -

U-Rol ~Sod 3R -RRR"-F i -X-R-X-X XN R R N R L

Day
1
2
3
4
5
6
1
8
9

i 10
11
1 12
13
§ 14
15
16
17
18
i 19
{ 20
21
| 22
| 23
§ 24
1§ 25
I 26
27
28
29
30
Mean

g
Py

3.12.3 Comparison of R? Values, Attack Case, Table 3.16 shows that

for all but a few days, the 5% models achieve R? values nearly as high as
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the larger 10% models. The 5% models average 81% of the full model R?,
compared to 86% for the 10% models and 71% for the 1% models. The table
also shows during the first fifteen days the 1% models also achieve R?
values closely comparable with the 10% models, but in the last fifteen days,
the performance of the 1% models declines markedly. The lower R? values
for the 1% models in the last half of the period correspond well with the
rejection of most of the interaction terms significant in the larger models.

3.12.4 Recommended Models, Attack Case. For the attack case, the
models with terms significant at a level of 0.05 are considered to be the best
compromise for identifying the most important factors and interactions,
while still capturing most of the explainable variance in the models. The
minimum value of F for any of the 5% models is 6.8, with a corresponding
probability of F or higher of no more than 0.0001. Analysis of the residuals
for the 5% models included normal probability plots, and plots of residuals
against fitted values. With the exception of the plot of residuals against
fitted values for the first day, no indications were found to suggest that the
models are invalid. The unusual residual plot for the first day is attributed
to the inclusion of only one variable, besides the blocking terms, in the
model for that day. The plot is includéd in Appendix J.

2.12.5 Assessment of Models, No-Attack Case. The assessment of the
no-attack case models is not as straightforward as for the attack case
models. Table D.1 shows that the generally consistent appearance of factors

over time observed in the attack case models is less pronounced in the
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Table 3.17 Comparison of R? Values for No-Attack Case Models

R?® 5% R? 1%

Day Significance | Terms | Significance | Terms
1 0.65 0.563 0.49 0.47 3
2 0.68 0.57 0.52 0.48 2
3 0.70 0.61 0.50 0.48 2
4 0.61 0.45 0.42 0.40 3
5 0.64 0.50 0.46 0.38 2
6 0.79 0.69 0.65 0.57 6
7 0.64 0.45 043 0.38 2
8 0.64 0.50 0.47 0.36 3
9 0.82 0.1 0.69 0.67 4
10 0.82 0.77 0.74 0.71 6
11 0.79 0.73 0.73 0.69 3
12 0.81 0.74 0.67 0.66 2
13 0.85 0.78 0.76 0.72 3
14 0.76 0.68 0.66 0.65 3
156 0.80 0.74 0.70 0.66 2
16 0.84 0.78 0.76 0.69 2
17 0.87 0.80 0.76 0.73 2
18 0.86 0.81 0.78 0.69 3
19 0.74 0.66 0.60 0.44 5
20 0.78 0.70 0.68 0.50 5

21 0.84 0.77 0.71 0.65 3
22 0.80 0.72 0.70 0.65 4
23 0.83 0.74 0.71 0.64 2
24 0.82 0.73 0.66 0.60 2
25 0.73 0.62 0.60 0.57 5
26 0.70 0.57 0.52 045 4
27 0.64 0.50 0.36 0.30 4
28 071 0.60 0.55 0.41 3
29 0.76 0.67 0.61 0.56 4
30 0.76 0.67 0.66 0.55 4
33

no-attack models, with terms in the 10% models often included for a day or

two, and then reappearing several days later. Determining what effects are

important is less clear cut. For example, is a factor that appears

sporadically on six or seven occasions important compared to a factor that

appears on five consecutive days? Reducing the significance level to 5%
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tends to remove more of the terms that occur sporadically, while retaining
intact most of the consecutive groups. Thougﬁ not as clear as the 5%
models in the attack case, the 5% models in the no-attack case are easier to
analyse than the 10% models and do not mask any factors or interactions
that are apparently important. Also, the 5% models do not seriously distort
when the factors are important during the thirty days. The 1% models,
however, remove 80 many terms that if not for the magnitude of the
interaction coefficients included, particularly for the fillers and fuel
interaction during the last four days, we could conclude that interactions
are not important in the no-attack case. If, using the 1% models, we decide
that a factor is important if it appears on several consecutive days, we
would reach conclusions as to the important factors similar to conclusions
based on the larger models, with the exception of the fillers and fuel
interaction. We would not, however, notice to the same extent that some
main factors and interactions are more or less important depending upon
when during the thirty days we observe their effect.

3.12.6 Comparison of R’ Values, No-Attack Case, The 5% models
achieve on average 82% of the full model R?, compared to 87% for the 10%
models. Reducing the significance level to 1% results in a more substantial
drop in R?, with the 1% models averaging only 74% of the full model R>.
The relatively large drop in R? for the 1% models suggests that they do not

fit the data particularly well.
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A significance level of
5% again results in the best compl;omise between model fit and ease of
interpretation. The 5% models are all highly significant, with a minimum F
value of 4.9, and all p-values no more than 0.0001. Analysis of the
residuals shows no serious departures from normality, and plots of the
residuals against the fitted values also indicate no serious shortcomings in
the models, except possibly for the last three days. Some of the residuals
fall along a straight line angled through the origin, although the majority
are randomly scattered. The straight line marks a boundary, beyond which
no residuals are observed. The reason for the boundary, which also appears
in the residual plots for the 10% models, was not established. The plots for
the last three days for both significance levels are included in Appendix J.
We have

already noted that models with lower significance levels are subsets of
models with higher significance levels, so it is possible to test the smaller
models against the larger using a general linear test (GLT), with the aim of
determining whether or not the terms not in the smaller model are
significantly different from zero. For the purposes of the test, the larger
model is equivalent to a full model, and the smaller model is the reduced or
constrained model. Setting a null hypothesis that the coefficients of the
terms not included m the smaller model were equal to zero and testing the
5% significance models against the 10% models resulted in much higher

than expected values of F*. Because both numerator and denominator
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degrees of freedom are different in most models, p-values were calculated,
resulting in a maximum p-value for the F statistic of 0.09 for both the
attack and no-attack case, and an averagé value of 0.02 over the thirty
models in each case. Such low p-values would lead to rejection of the null
hypothesis with a = 0.05 on all but three days in the attack case, and all
but four days in the no-attack case. Although an initial conclusion might be
that the 5% models are inadequate, further examination of the variables
being excluded and the nature of the GLT reveals that the low p-values are
what we would expect to see, and that thé GLT is of relatively little use in
comparing the models.

3.12.9 Limitations of the General Linear Test, The first point to note
is that the p-value exceeds 0.05 only when the larger and smaller models
differ by only one variable. Also, for those seven days, the significance level
of the last term in the larger model is equal to the calculated p-value for the
GLT. The GLT therefore is able to accurately measure the effect of a single
variable, but when the difference between models is more than one variable,
we are testing the combined effect of all the variables not included in the
smaller model. It is also impdrtant to note that the variables being tested
by the GLT have similar sums of squares, and that because they were
included in the larger model, must have been significant at between 10%
and approximately 5%. If their significance level had been appreciably less
than 5% in the larger model, they would have been included in the smaller

model, and would not be the subject of our test. The GLT considers the
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relative difference in SSE between the models, and the change in degrees of
freedom, so that two or more variables, which must have substantial sums
of squares to have been in the larger model in the first place, will have a
large effect on SSE, for a very small change in degrees of freedom compared
to the denominator degrees of freedom. For example, on day ten in the
attack case, the last two variables that appear in the 10% model are
excluded from the 5% model. Their significance levels in the 10% model are
0.0613 and 0.0668, and their sums of squares are 2664 and 2556. The sum
of squares of the last variablé included in the 5% model is 3301, so the
combined effect of the two excluded variables relative to variables that are
included is sufficient for the GLT to return a low p-value of 0.03. In
hindsight, the GLT is inappropriate to compare models developed using
significance levels. For a single variable not included in a smaller model,
we already know that it is not significant at a given level, or it would have
been included. For groups of variables, we already know that they are all
individually not significant in the smaller model, and testing as a group
cannot add additional information, and in fact may be misleading because of

the combined effects of several moderately significant variables.

213 An Alternate Approach to Mode] Development
An alternate approach to developing explanatory models is to take

advantage of the independence of the variables and examine their effect and

importance individually. Because the variables act independently we know
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that the most significant variable in a full model will always be the most
significant in a reduced model, and similarly for the second most significant
and subsequent variables. To illustrate, if we wish to examine a model with
two terms, we simply rank the terms that appear in a full model by their
sum of squares contribution, and choose the first two, knowing that their
significances will not reduce when combined, and conversely, that none of
the 53 terms excluded could increase m significance if combined either with
the selected terms or each other. As an approach to model reduction,
knowing the order in which terms will enter a model and the contribution
that they will make allows all model sizes to be very quickly evaluated
without having to carry out any computer runs except an initial full model
regression. A significant advantage to evaluating all the variables based on
their contribution to a model is that any distinct groups of variables making
similar contributions can be readily identified, and either included or
excluded as a group, instead of being possibly split by a technique based on
significance level.

3.13.1 Outline of Technique, Before outlining this alternative to
stepwise regression we stress that this technique is only applicable when
the variables make independent contributions to a regression model, that is
the Type I and Type III sums of squares are equal for all variables. A key
_ point for the use of this procedure is to recognise that of the thousands of
variable combinations possible, only 55 practically useful models exist,

because it is counterproductive in terms of R? to add variables to a model in
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other than their sorted sequence. For example, a six variable model
containing the first five variables and the seventh will not fit as well as the
model containing the first six variables. If useful models must contain
terms in their sorted sequence, then the number of models to consider
reduces to the total number of available terms, that is 55. The starting
point for this technique is to produce a full model to obtain analysis of
variance information, sums of squares for each variable, an intercept
parameter estimate, and parameter estimates for all the variables. The
SAS REG procedure is capable of producing all the necessary output. The
next step is to sort the output in decreasing order of the sum of squares for
each variable. This sorted output now represents the order in which the
variables would be selected by an automatic forward selection procedure. A
‘'model therefore comprises the last term considered, and all the previous
terms in the sorted list. Given that the total sum of squares for any model
(SSTO) is a constant, it is a simple matter to calculate partial R? for every
variable. The cumulative total of the partial sum of squares, starting with
the most significant variable and ending with the last variable for that
model size is thus the model R’. Adjusted R?, C,, and MSE for each model
size may be readily calculated, as well as the value of the ¢ statistic for the
last, that is, least gigniﬁcant variable to enter the model. Recalling that we
found the variances for each predictor to be equal in any model, the common
value for the variance of the predictors in each size model may also be

calculated. An example of the tabulated data for the first twenty models for
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the first day of the no-attack case is provided in Table E.1 in Appendix E.
Note that in Table E.1, the Type I and Type II sums of squares for the
blocking terms are not equal. This does not affect the analysis, because the
blocking terms are always the first seven terms forced into any model. |

3.13.2 Application of the Technique. Once the variables are sorted
and their contributions to the model tabulated, the relative importance of
each variable is quickly apparent. Decision rules for selection of variables
may then be applied. For example, a simplistic decision rule could be to
include only the first five variables in a model, regardless of significance.
Another rule could be to only include variables explaining at least one
percent of the overall variance. Any number of decision rules can be
formulated: the point is that the mpdeler has some additional flexibility in
specifying the model, and better knowledge of how the variables relate to
that model. An additional application is that models produced using |
stepwise methods can be quickly compared to the sorted list to ensure that
no overly arbitrary divisions among the variables have occurred.

3.13.3 Limitations. The technique described in the preceding
paragraphs is specifically intended to assist in the process of deciding which
variables to include in a model and does not provide all the information of a
computer generated regression model, particularly F and ¢ values and their
associated probabilities. Once the variables have been selected, however,
running a computer regression with those variables selected will provide the
required details.
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3.13.4 Decision Rule., The technique described above was used to
choose variables which were then forced into regression models. The
decision rule used to choose variables involved some degree of subjectivity,
because the full models are all very different. The basic rule was to look for
a reasonably clear division between the most significant variables and the
less significant remainder, but some modifications were required. Where
one variable was dominant in the model, the next most important variable
(or group of variables) was also included if it was distinct from the
remainder. Where no particularly clear break was evident, a cutoff of
approximately one percent difference between successive partial R? values
was used. In some cases, the decision rule caused a substantial reduction in
R?, but was clearly able to identify the most important variables. The
resulting model for the attack case are presented in Table F.1 in Appendix
F. Table G.1 in Appendix G contains the models for the no-attack case.
Comparisons of R? for these models, the full models (maximum possible R?),
and the 1% significance models are included in Table 3.18.

2.13.5 Graphical Summary of Potential Models. A graphical
summary of the sorted variables is included in Appendices H and I. The
graphs contain the twenty most significant variables for each day, and show
both partial R? and the regression coefficient for each variable. As the
largest model developed using significance levels contains seventeen

variables, twenty variables were included to ensure that all useful model
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Table 3.18 Comparison of R? Values, Subjective Selection

R?, Attack Case R? No-Attack Case
Full 1% Subjective Full 1% Subjective
Day Model | Significance Selection Model Significance Selection
] 1 0.75 0.71 0.71 0.65 0.47 047
2 0.94 0.92 0.92 0.68 0.48 0.44
B3 0.82 0.76 0.77 0.70 048 0.48
4 0.72 0.52 0.54 0.61 0.40 0.40
5 0.70 0.52 0.57 0.64 0.38 0.41
6 0.59 0.4 0.41 0.79 0.57 0.51
17 0.69 0.46 0.48 0.64 0.38 0.43
8 0.62 0.35 0.41 0.64 0.36 0.36
9 0.66 0.48 0.48 0.82 0.67 0.67
10 0.656 0.44 0.48 0.82 . 0.711 0.64 |
11 0.71 0.48 0.48 0.79 0.69 0.69
i 12 0.73 0.52 0.52 0.81 0.66 0.63
t 13 0.71 0.56 0.56 0.85 0.72 0.66
i 14 0.71 0.51 0.51 0.76 0.65 0.62
1 15 0.68 0.62 0.49 0.80 0.66 0.66
16 0.72 0.50 0.50 0.84 0.69 067 |
17 0.70 0.45 0.45 0.87 0.73 0.73
118 0.69 - 042 0.42 0.86 0.69 0.64
19 0.69 0.43 043 0.74 0.44 0.44
20 0.72 0.44 0.44 0.78 0.50 0.50
21 0.74 0.51 0.51 0.84 0.65 0.63
22 0.74 0.48 0.45 0.80 0.656 0.62 |
23 0.69 0.44 0.47 0.83 0.64 0.64
| 24 0.74 0.50 0.50 0.82 0.60 0.60
1 25 0.74 0.48 0.48 0.73 0.57 0.57
1 26 0.71 0.54 041 0.70 0.45 0.50
] 27 0.77 0.57 0.57 0.64 0.30 0.36
28 0.72 0.52 0.52 0.71 041 0.38
29 0.71 0.43 0.43 0.76 0.56 0.58
30 0.71 0.50 . 0.50 0.7 0.55 0.556

sizes can be estimated. Models may be estimated from the graphs by
including the desired number of variables, starting with the variable closest
to the origin and progressively adding variables. The regression coefficients
can be read from the graphs because we showed earlier that each variable
has the same coefficient in a model regardless of the other terms included.
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The intercept values, which are always the mean of the observed values,
are presented in Table H.1 and Table 1.1, at the end of Appendix H and
Appendix I respectively. The graphs contain the essential information
presented in a sorted list of the variables, and allow an immediate
assessment of which variables are important on a given day, and how much
they affect the sorties generated. Although partial R? is shown for each
variable, model R? cannot be estimated from the graphs because the effect of
the blocking variables is not included. The regression coefficients and
partial R? share a common scale, whe;'e regression coefficients are in units,
and partial R? is expressed as a percentage.

3.13.6 Model Assessment. It is clear from the tables that the models
developed using a subjective assessment of the sorted variables are
practically identical to the models developed using a significance level of
1%, with respect to both the terms appearing in the models, and the R?
values for the models. Such a result is not unexpected, because the decision
rule chooses the few variables that are clearly more important than the
remainder. The decision rule ensures that we do not make any artificial
divisions between variables of practically equal importance, but in doing so
it is somewhat biased towards choosing a small number of variables with
high relative importance, without considering that some of the less
relatively important variables may well be important in the absolute sense.
We have already determined that the 1% significance models were

inadequate in explaining the behaviour of the system, and the same
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conclusion must apply to these subjectively selected models. However, if
our purpose was to screen the variables originally proposed prior to further
experimentation, a selection technique such as this which is able to quickly

and easily determine the most important factors would be highly useful.

In developing models thus far, we have specified either prediction or
explanation as the purpose for the models, and have not considered whether
the resulting models could adequately serve both purposes. The first point
to note is that neither of the specialised sets of models is suitable for other
than its intended purpose. The prediction models, for example, contain on
average over three times as many terms as the models recommended for
explanation. Such a large number of terms, some of which are not
significant even .at the 30% level, would make an explanatory model '
excessively complex, and greatly hinder meaningful analysis. The 5%
significance models were quickly rejected as possible prediction models
because of their large prediction errors relative to the full models. The
remaining sets of models examined are the 10% significance models and the
near minimum MSE models. The 10% models, although reasonably well
suited for explanation are not suitable for prediction because of the 21%
mean absolute percentage error observed in Table 3.8 for ail factors low in
the attack case. The near minimum MSE models were found to be almost

as capable for prediction as the preferred minimum MSE models, but
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average over twice as many terms as the explanatory models, and
frequently contain terms not significant at the 20% level, and are therefore
also unsuitable for the purpose of explanation. Given the extent of the
difference between the specialised models, it is unlikely that a good
compr;)mise could be found between the model sizes considered, and we
therefore conclude that for this data, the purposes of prediction and
explanation are incompatible, and specialised models are required for each

purpose.

3.15 Summary

This chapter has completed the exploration of alternative metamodels
for the airbase operability simulation and a brief summary of the main
points in the chapter is provided below. In the next chapter, the lessons
learhed from the exploration are presented, followed by conclusions, and

recommendations for future research.

The database

and the experimental design from the previous research were found to
restrict the development of new models to the same polynomial linear
regression form used in the previous research.

3.15.2 Unexpected Regression Results. Preliminary analysis of the
original models revealed unexpected results in the equivalence of different
regression techniques, and the constancy of the intercept and regression

coefficients between models containing different numbers of variables. The
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results are attributable to the orthogonal experimental design, and although
the behaviour is documented, it receives little more than a passing mention
in the literature consulted.

3.153 Design Implications. The orthogonality of the experimental
design was found to greatly narrow the possibilities in developing new
models. The techniques generally recommended to find the best
combination of variables to include in a model were found to be largely
inapplicable because the variables all have independent effects. Stepwise
regression, specifically forward selection, was determined to be completely
effective in finding the best subset of variables for any significance level,
while adapted best subsets techniques were shown to be practical for
exploratory model development.

&lﬁ.LEmhm.Mﬂ.dﬂlﬂ. Two sets of models for prediction were
developed and compared with both the full models and the baseline 10%
significance models. The best models for prediction were found to contain
substantially more terms than the baseline models, and were shown to have
less bias when compared with the full models, and less variance. The full
models, while completely unbiased, were shown to be unsuitable for
prediction because of the excess variance caused by the inclusion of
numerous insignificant terms.

3.15.5 Explanatory Models, Two techniques were proposed for
developing explanatory models: one based on the significance level of the

variables included in the models; and another based on a subjective
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assessment of the relative importance of the candidate variables. Forward
stepwise selection was used to develop models with terms significant at the
5% and the 1% levels. Comparison with the baseline models suggested that
the 1% significance level was too low, and that too much information was
lost. The 5% significance models, however, were considered to contain
substantially the same information as the 10% models, but with fewer
spurious terms to complicate the analysis. The 5% models are therefore
recommended for the purpose of explanation. Models developed using an
assessment of the relative importance of the variables proved to be
practically identical to the 1% significance models, and were also rejected

for explanation purposes.
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This chapter presents conclusions regarding the exploratory research
into alternative metamodels for Diener's airbase operability simulation
(1989). The lessons learned during the exploration are also presented, and
are mainly concerned with what can be expected in developing metamodels
from a large scale simulation experiment, what techniques are appropriate
and work well, and what techniques are of less use and should be avoided.

Also included in this chapter are recommendations for further research.

4.2 Conclusions

In this section, the research objectives stated in Chapter I are
addressed and overall conclusions regarding the research are presented.

4.2.1 Research Objective, The research objective stated in Chapter I
was to investigate whether alternative metamodels other-than those derived
by Diener can be used to effectively represent the results of Diener's
simulation. To achieve the objective, three questions were posed.

4.2.1.1 Question One. What is the purpose of the metamodel?

For example, is understanding general relationships in the system as
simulated the primary goal, or do we wish to make predictions about the
response of the simulation under different conditions? Do different goals

require different models?
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4.2.1.2 Question Two, What are the important criteria in
determining the suitability of a metamodel? For example, is the overall fit
of the model the primary criterion, or are there other important factors to
consider?

4.2.1.3 Question Three, How does the nature of the output
data, and the experimental design on which it is based, limit or restrict the
types of metamodels that can be developéd?

4.2.2 Conclusions - Question One, The investigation showed that for
large scale simulations such as Diener's airbase operability simulation, the
purpose of a metamodel is of critical importance to the development of a
metamodel and the choice of variables for inclusion in the model. Separate
models were developed for explanation and prediction, and neither was
found to be suitable for the other purpose. Single all-purpose models were
considered, but found to be a poor compromise for tﬁe specialised models.

4.2.3 Conclusions - Question Two, The important criteria for
determining the suitability of a metamodel were found to depend upon the
purpose for which the model was developed. Explanatory models
concentrate on finding the least number of variables which are best able to
explain the important relationships in the system. The criteria for
accepting such models may be reasonably objective, for example,
predetermining a significance level for the model and accepting the
outcome, or may be more subjective, whereby the analyst may compare

several models and make a judgement about which makes the best
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compromise between simplicity and thorough explanation. Goodness of fit,
measured by R?, is used less as a criterion for suitability than as a measure
of performance. Judging the suitability of predictive models, on the other
hand, can be done more objectively. Predictive models seek a balance
between low bias and low variance of a prediction, both of which may be
calculated. Although a comipromise must be made because bias and
variance reach their minima in different sized models, comparison with
acceptable tolerances can make the compromise more objective. Goodness of
fit will be better than for explanatory models, and may prove to be a useful
.criterion for suitability if the adjusted R? measure is maximised. |

424 Conclusions - Question Three, The existing database and the
experimental design on which it is based was found to be very réstrictive,
more 80 than had been expected, on the form of metamodel possible and the
techniques available to derive the models. The metamodel form was limited
to the same polynomial form proposed by Diener, and linear least squares
regression was found to be the only appropriate technique for deriving the
models.

4.2.5 Conclusions - Research Objective Overall, Only partial success
can be claimed in developing alternative metamodels for the airbase
operability simulation. The models developed for prediction, while of the
same functional form as the existing models, are significantly different in
the number of terms included, and can be shown to achieve better results in

predicting the response of the simulation, both in terms of bias and the
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variance of the response. The models suggested for explanation, however,
do not differ greatly from the existing models, and without deeper
knowledge of the airbase operability problem it is inappropriate to suggest
that the preferred models in this research are a better alternative to the
existing models. An important positive aspect of the similarity between the
new and existing models is that this research has shown that there are no
unusual models not discovered in the original research that could upset the
findings of that research.

4.2.6 Other Achievements, Although the goal of developing
alternative metamodels was only partially achieved, the exploration process
has provided a number of lessons which it is hoped will be of use to

researchers working on similar problems. The lessons learned are

presented in the following sections.

Several important lessons learned in this research are related to the
experimental design chosen in the previous research. Understanding the
design and its properties is essential if metamodels are to be successfully
developed.

4.3.1 Model Form. The experimental design was found to limit the
model form to polynomial linear regression models. This limitation will
apply generally to any design that uses qualitative, or indicator, variables

at only two levels. The two levels of the variables cannot define any other
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than linear relationships between the dependent variable and the
independent variableé, so that quadratic or higher terms are meaningless.
The inclusion of interaction terms is another aspect of model form that is
dependent on the experimental design. When a fractional factorial design is
used, the resolution of the design dictates whether or not interaction effects
are confounded with other interaction effects or even main effects. The
Resolution V design used in the prior research did not confound any main
effects or their first order (two-way) interactions, but we need to be aware of
the capabilities of an experimental design to ensure that an inappropriate
model form is not specified.

4.3.2 Design Matrix Properties. A particularly important lesson from
this research is that the properties of the design matrix depend upon how it
is coded. However, before examining the properties of the design matrix,
the experimental design and the design matrix should be distinguished.

The experimental design determines the number of simulation runs
required, and the combination of input factors for each run. For example,
Diener's experimental design requires 128 different runs, with the first
simulation run to be carried out with all factors at their low level (1989:45).
The design matrix allows us to numerically represent the level of each
variable for each run, so that we have a value of each independent variable
for regression analysis. The coding of the design matrix is the numerical
value v?e assign to the low and high levels of the variables, but the

underlying experimental design is the same, regardless of how the variables
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are coded. The properties of the design matrix in which we are interested
are correl.ation between the independent variables, and whether or not the
matrix is orthogonal. For the data in this research, when the low level is
coded as 0 and the high level as 1, there is no correlation between the
independent variables, and the design matrix is not orthogonal. When the
low level code is changed to -1, however, there is still no correlation between
the variables, but the design matrix is now orthogonal. The effects of
orthogonality and why it is highly desirable will be discussed shortly. This
lesson is important because coding the design matrix is a choice usually left
to the researcher, and in the absence of clear guidance we may well choose
a (0,1) coding scheme because model analysis can be simpler. For example,
variables effectively drop out of a (0,1) coded model when set to their low
level. The key point is that before choosing a coding scheme, the properties
of the design matrix with that scheme should be confirmed. As the only
practical choices of coding scheme for a two level design are (0,1) and (-1,1),
checking the properties of the design matrix for both schemes is feasible. A
design matrix, X, is orthogonal if XX is a diagonal matrix, that is, all terms
except on the main diagonal are zero. For an orthogonal (-1,1) coded design
matrix, the terms »» the main diagonal will all be equal to the number of
rows, that is, design points, in the design matrix.

A lesson related

to the properties of the design matrix is the effect that those properties

have on the regression analysis used to develop metamodels. An orthogonal
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design matrix is highly desirable because it ensures that every variable
makes a completely independent contribution to the explanation of variance
in the model, thus greatly simplifying the development and analysis of the
regression models. Analysis is simplified because with no correlation
between the variables, there is also no covariance, and the calculation of
model variance reduces to the sum of the predictor variances. Additionally,
because the terms on the diagonal of the XX matrix are all equal, the
predictor variances are also all equal. Finally, because the variables each
have an independent effect on the model, the coefficients of variables that
are in a model will not change as other variables are added to or removed
from the model.

4.3.4 An Initial Strategy, From the discussion above, a first step
prior to starting regression is to conﬁrm. the properties of the chosen design
matrix. A useful second step is to ensure that the data will behave as |
suggested by the properties of the design matrix by examining the four
types of sums of squares described in Chapter III. Such an examination can
be readily accomplished using the SAS GLM procedure, and requesting as

an option all four types of sums of squares.

4.4 Regression Model Development
Several lessons in regression model development arise from the
independent and constant effect that variables have when the design matrix

is orthogonal. We find that automated techniques are affected, and that a
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manual technique for selecting models may in fact be preferable to a range
of automated techniques.

44.1 Automated Model Selection Techniques, The first lesson
relating to model development is that a simple forward selection process
will always find the best model for a given significance level. The forward
selection process begins with no variables in the model and adds the most
significant variable not in the model, continuing until none of the remaining
variables are significant at the chosen level. It is stressed that this lesson
applies to a designed experiment with an orthogonal design matrix and
uncorrelated independent variables. The second lesson is that for a
particular selection criterion, the same model will result regardless of the
regression technique used. Both these lessons can make a significant
difference to the way the mgression analysis of a large scale experiment is
carried out. First, conventional wisdom usually suggests th‘at using |
automatic model selection techniques carries the risk that some unusual
combination of variables might not be detected, and that the unusual
combination could greatly influence our results. When we know that such a
risk is absent, we can rely on the efficiency and convenience of an automatic
search and be confident that the resulting models are valid. Second, if all
automatic techniques are equally effective, then the most efficient should be
used. In selecting from a large number of possible variables it will usually
be the case that relatively few will be included, so a forward selection

technique is preferable to backward elimination because forward selection
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requires fewer steps, and thus takes less time and produces less output to
analyse. As we saw in this research, the difference can be very substantial
with one example where forward selection was complete after one step,
while backward elimination took 54 steps to reach the same conclusion. A
stepwise procedure which both selects and eliminates variables reduces to a
forward selection, because terms will never be eliminated once they have
been added, so again, the simple forward selection technique is preferred.

4.4.2 Other Computerised Model Selection Techniques, Although
forward selection will be effective in finding a model for a specific
significance level we have already seen that the commonly used significance
levels can be arbitrary. Also, evaluation of a range of model sizes is
cumbersome. Two techniques, only one of which proved to be useful, were
used in an attempt to avoid the limitations of forward selection when
searching for models based on criteria other than significance level. Both
techniques were applied based on the premise that for this type of data, ‘
there is no benefit in considering other than the best model of a particular
size.

4421 The SAS RSQUARE Procedure, The technigue found
to be useful is the SAS RSQUARE procedure, which is able to provide a |
selection of statistics on the desired range of model sizes in an easily
compérable form. RSQUARE was most useful in finding the models with
maximum adjusted R?. Important considerations for the use of the
RSQUARE procedure are that only the single best subset model of a given

49 -




size should be requested; and that the maximum number of variables that
the procedure can accept appears to be approximately fifty. The size
limitation was avoided in this research by not including the least significant
variables in the pool of variables for selection, as the model sizes considered
would never include these variables. A shortcoming, however, of reducing
the pool of variables so that the RSQUARE procedure can be used is that
some statistics, notably Mallow's C,, are reported incorrectly because the
procedure incorrectly assumes that the full model is the truncated pool of
variables. Although, for reasons that will be discussed shortly., Mallow's C,
was found to be of no use in this research, it is possible that in other cases
C, could be useful and therefore reducing the pool of variables would be
unacceptable.

4422 The SAS Maximum R’ Procedure, The SAS Maximum
R? procedure, although capable of quickly finding the best model for all
model sizes, was not found to be particularly useful in this reéearch because
its unwieldy standard output made comparisons between different models
difficult. Maximum R? is designed to overcome the limitations of stepwise
regression when unusual variable combinations affect the regression results,
but in a dataset such as this, the procedure's capabilities are not required.
The manual search technique described in the previous chapter can provide

the same information as maximum R?, but in a more convenient form.
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4.5 Manual Search Technique

A common problem with fegression analysis involving many variables
is that the number of possible models grows exponentially as the number of
variables increases, so that for the data in this research, 2%, or
approximately 3.6 x 10'® different models could be formed from the ten
independent variables and their 45 interactions. Obviously an exhaustive
search of so many models is impossible. A very useful lesson from this
research is that when the variables make an independent contribution to a
model, the number of models that are of practical interest reduces to just
the number of variables, including interactions. An exhaustive search of,
for this research, 55 models is a much more practical proposition, especially
if the information about those models can be presented in a readily
comparable fashion. The manual search technique introduced in the
previous chapter achieves this goal because it provides in a single worksheet
nearly all the information required to choose the variables to include in a
model. The only additional information required is the probability
associated with the value of the ¢ statistic. As software or tables are readily
available to calculate the probabilities, which represent the significance
level of the last variable to enter the model, all the information to select a
model is available. A sample worksheet and the corresponding p-values are
provided in Appendix E, in Tables E.1 and E.2 respectively.

A.&.l_MgdgLSglm Models can be selected on the basis of
significance by choosing the largest model with a probability for the ¢
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statistic less than or equal to the desired significance level. Other selection
methods that aré easily used include selection of a fixed number of
variables, subjective selections as used in the previous chapter, or selection
of variables with regard to maximum adjusted R? which is equivalent to
minimum MSE. Although this particular lesson was learned too late to
greatly assist the present research, we can see that when the data behaves
in a fashion similar to the data in this research, the model selection process
can be reduced to choosing the model that satisfies the desired criteria from
a spreadsheet table.

4.5.2 Advantages., Some advantages of using this technique are that
all models of practical interest can be assessed simultaneously, that several
selection criteria can be applied together, and that the chosen model's
performance on other than the selection criterion can be evaluated. Possibly
the greatest advantages, however, are that the analyst's judgement can
replace the inflexibility of a computerised technique, and that numerous
computer runs and the subsequent analysis of their output can be avoided
altogether. The only computer runs required are the initial regression of
the full model to provide the data for the table, and a final run with the
selected model to provide residual data, and to present the model and its

analysis of variance table in more conventional form. Other aspects of this

manual technique that could prove useful are the ease of producing visual

aids to regression analysis from the sorted data. The graphs in Appendices

H and I showing regression coefficients and partial R? for models with up to
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twenty variables are one example. Plots of adjusted R? or C, against the
number of predictors, both of which are often recommended for model
selection, are other visual aids that could be easily produced from the
spreadsheet.

4.5.3 Disadvantages. The main disadvantage of using the manual
search technique is the overhead in importing and sorting the full model
information and setting up worksheets. For simple analysis where the
criterion for model selection is well defined, and only a single model needs
to be produced, the overilead is probably not justified. A minor
disadvantage is the requirement for a spreadsheet with reasonably powerful
data importing and sorting capabilities.

16 Model Selection Criteri
A number of problems were encountered with the application of
several model selection criteria, specifically adjusted R? and Mallow's C,
statistic. Without another dataset for comparison, it is considered likely but
not certain that these problems stem from the very large number of
observations relative to the number of variables included in the models.
4.6.1 Adijusted R?. Adjusted R? proved to be useful only for selecting
models for prediction purposes, as the statistic did not reach a maximum
until variables were significant at typically the 30% level. From Equation
3.9 we see that when n is large relative to p, only small reductions in SSE

are needed for adjusted R? to continue increasing. We can therefore expect
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that in an experiment with many observations, the use of adjusted R? as a
model selection criterion will result in models with velatively many terms,
some of which will be largely insignificant.

462 Mallow's C, Mallow's C, statistic was found to be of no use in
this research because, for the model sizes of interest, the statistic often took
a negative value, a possibility not mentioned in the literature on the topic.
The reason for this behaviour is not as clear as for adjusted R?, nor can we
generalise about the behaviour of C, in other experiments. From Equation
3.10 the larée number of observations relative to model size has a major
influence in reducing C, below zero, but the ratio of SSE to MSE depends
strongly on the individual data. The best we can do is point out that it is
possible for C, to be negative when there are many observations but

relatively few terms in a model.

4.7 Purpose of the Metamodels

On a number of occasions during this research, we have highlighted
the difference between the two main purposes of simulation metamodels;
that is, use of the metamodels to predict the response of the simulation to a
particular set of input conditions; and use of the metamodels to understand
and explain the primary relationships between the simulation response and
the independent variables. Indeed, we have shown that for the data in this
research, the two purposes are not compatible, and require distinctly

different models. While it may not necessarily be the case in all situations
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that different models are required for the two purposes, it is more likely
that the forms of the models will diverge as the number of variables and
interactions that are considered increase. Several lessons that emerge from
the distinction between the purposes are discussed below.

4.7.1 Prediction, When developing models for prediction, the
primary consideration is finding a model which results in an accurate
prediction with minimal variance. Thus, the specific terms that are
included in a predictive model are of much less concern than their aggregate
effect on the prediction. The first lesson to arise is that because variance as
well as bias must be considered it is likely that the full model, which is
unbiased, will not be useful for prediction because of the large variance
involved. This observation should hold for most experiments where a
relatively large number of variables make very small predictive
contributions to their models while still adding variance. The implication,
therefore, is that a tradeoff is required between the amount of bias in a
reduced model and its prediction variance. The acceptable level of bias and
the desired precision of a prediction will be different in every experiment,
and cannot be generalised. The second lesson is that calculation of the
variance is surprisingly straightforward when the design is orthogonal. We
saw in Chapter III that no covariance is present, so summing the individual
variances prdvides an estimate for the variance of the expected value of the
response. Adding MSE to the sum of the variances provides an estimate for

the variance of a new prediction. Because the two aspects of prediction,
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that is, predicting a new response, or estimating the expected value of the
response, have different variance calculations, it is possible that different
models could be appropriate depending upon the specific purpose. In either
case, an understanding of the behaviour of the individual predictor
variances, their sum, and MSE as the number of terms in a model varies is
essential to developing good predictive models.

4.7.2 Explanation. The key lesson in developing models for
explanation is the degree of subjective assessment required in striking a
balance between parsimony and ensuring that all important effects have
been captured. Unlike predictive models, we are highly interested in
individual variables, the exclusion or inclusion of which could make a large
difference to our interpretation of the model. To reduce the impact of
subjectivity, it is recommended that a range of models be developed and

compared before choosing a final explanatory model.

4.8 Lessons Learned Summary

The lessons described above highlight various aspects of developing
regression metamodels that are likely to confront a researcher. None of the
lessons are particularly profound, but taken as a whole, they have tl.le
potential to ease the model development and analysis task for similar data.
An underlying theme of the lessons learned in this research has been the
effect of an orthogonal design matrix on the analysis of large multiple

regression models, and it must be stressed that these lessons are applicable
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only to data meeting the dual requirements of an orthogonal design matrix,

and no correlation among the independent variables.

Several areas for possible further research are evident, including
examination of similar data to the data used in this research, some
experimental design issues, and the time dependent aspect of the
metamodels.

49.1 Examination of Similar Data, The techniques proposed during
this research and highlighted in the lessons learned depend to a large
extent on the independent behaviour of the variables in a regression model.
Further research is required to establish that the behaviour of the variables
in this research is common to other large seaie designed experiments using
similar orthogonal designs. A related issue is to estabﬁsh whether the
manual search technique outlined in this research has practical application
to other problems.

4.9.2 Experimental Design Issues. This research found that the
existing experimental design was limiting with regard to model form and
model development techniques. Future research could examine the
alternate experimental designs, with the aim of possibly finding an
alternate functional form for the models. Clearly, such future research is a
major undertaking, because the simulations would have to be repeated

under the new designs. An extension to the current design would be to
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introduce a third level for the variables identified as important in the
existing models, and then use response surface methodology to derive
metamodels, while a completely different form of design such as the
frequency domain experiments described by Starbird (1990) may be a
possibility. It is likely that any alternative experimental design would be
more complex than the two level design used by Diener, so the number of
variables considered in Diener's original research could become
unmanageable. A possible solution could be to consider the existing
research as a screening experiment in which the existing metamodels have
identified the import#nt variables and interactions which thus merit further
attention in more complex designs.

. 493 Time Dependent Aspects, It is clear from the metamodels that
the effects that some variables héve on sortie generation vary from day to
day, but we are unable to represent this hme dependent behaviour in the
existing models. We saw in Chapter II that other research ﬁm time series
output used a single value to characterise the time series (Kleijnen et al.,
1979). Such an approach was briefly considered for the data in this
research, but seems inadequate for a relatively short time series in which
each element is important. Using a single value for each time series has
the effect of collapsing all thirty metamodels into one model, but still does
not tell us anything about the effect of a variable at a given time.

Incorporating the time dimension into some sort of model is clearly a highly
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challenging problem which unfortunately this researcher is only able to

highlight, without offering any additional assistance.
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Attack Case Max Adj Rsqr Day 1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 11 29849.96875 2713.63352 27.210 0.0001
Error 116 11568.50000 99.72845
C Total 127 41418.46875
Root MSE 9.98641 R~-square 0.7207
Dep Mean 89.60938 Adj R-sq 0.6942
c.vV. 11.14438
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |[T|
INTERCEP 1 89.609375 0.88268256 101.519 0.0001
Bl 1 -10.171875 2.33535854 -4.356 0.0001
B2 1 3.453125 2.33535854 1.479 0.1420
B3 1 -13.359375 2.33535854 -5.720 0.0001
B4 1 2.828125 2.33535854 1.211 0.2284
BS 1 16.828125 2.33535854 7.206 0.0001
B6 1 8.703125 2.33535854 3.727 0.0003
B7 1 -2.609375 2.33535854 -1.117 0.2662
D 1 11.953125 0.88268256 13.542 0.0001
BH 1 1.046875 0.88268256 1.186 0.2380
JK 1 -0.953125 0.88268256 -1.080 0.2825
GK 1l -0.921875 0.88268256 0.2985

-1.044
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Attack Case Max Adj Rsqr Day 2

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 25 381325.25000 15253.01000 60.428 0.0001
Error 102 25746.62500 252.41789
C Total 127 407071.87500
Root MSE 15.8876¢6 R-square 0.9368
Dep Mean 83.21875 Ad]) R-sq 0.9212
Cc.V. 19.0914S5
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exror Parameter=0 Prob > |T|
INTERCEP 1 83.218750 1.40428444 59.261 0.0001
Bl 1 -6.531250 3.71538739 -1.758 0.0818
B2 1 57.281250 3.71538739 15.417 0.0001
B3 1 -29.406250 3.71538739 -7.915 0.0001
B4 1 6.031250 3.71538739 1.623 0.1076
BS i 46.406250 3.71538739 12.49%0 0.0001
B6 1 -16.593750 3.71538739 ~4.466 0.0001
B7 1 -35.406250 3.71538739 ~-9.530 0.0001
D 1 40.578125 1.40428444 28.896 0.0001
cJ 1 -11.812500 1.40428444 -8.412 0.0001
BH 1 8.875000 1.40428444 6.320 0.0001
CE 1 2.828125 1.40428444 2.014 0.0467
HT 1 -2.812500 1.40428444 -2.003 0.0479
AG 1 - 2.765625% 1.40428444 1.969 0.0516
BE 1 2.484375 1.40428444 1.769 0.0799
B 1 2.203125 1.40428444 1.569 0.1198
EK 1 -2.125000 1.40428444 -1.513 0.1333
EJ 1 2.015625 1.40428444 1.4358 0.1542
F 1 1.937500 1.40428444 "1.380 0.1707
DE 1 1.906250 1.40428444 1.357 0.1776
EH 1 1.796875 1.40428444 1.280 0.2036
DG 1 -1.781250 1.40428444 -1.268 0.2075
HK 1 -1.640625 1.40428444 ~-1.168 0.2454
o] 1 1.562500 1.40428444 1.113 0.2685
AB 1 -1.500000 1.40428444 -1.068 0.2880
AJ 1 1.468750 1.40428444 1.046 0.2981
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Attack Case Max Adj Rsqr Day 3

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 19 263118.75000 13848.35526 22.749 0.0001
Exrror 108 6€5744.75000 608.74769
C Total 127 328863.50000
Root MSE 24.67281 R-square 0.8001
Dep Mean 104.31250 Adj R-sq 0.7649
c.V. 23.65279
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exror Parameter=0 Prob > |T|
INTERCEP 1 104.312500 2.18078914 47.832 0.0001
Bl 1 -9,.750000 5.76982574 -1.690 0.0939
B2 1l 20.312500 5.76982574 3.520 0.0006
B3 1 =23.625000 5.76982574 ~-4.095 0.0001
B4 1 28.312500 5.76982574 4.907 0.0001
BS 1 7.125000 5.76982574 1.235 0.2196
B6 1 63.875000 5.76982574 11.071 0.0001
B7 b -34.375000 5.76982574 -5.958 0.0001
D 1 22.328125 2.18078914 10.239 0.0001
BH 1 14.968750 2.18078914 6.864 0.0001
cJ 1 -5.390625 2.18078914 -2.472 0.0150
E 1 3.812500 2.18078914 1.748 0.0833
AC 1 ~2.953125 2.18078914 ~-1.354 0.1785
FJ 1l 2.890625 2.18078914 1.325 0.1878
BE 1 2.750000 2.18078914 1.261 0.2100
BJ 1 -2.625000 2.18078914 -1.204 0.2313
AE 1 -2.625000 2.18078914 -1.204 0.2313
B 1 -2.593750 2.18078914 -1.189 0.2369
AK 1l -2.312500 2.18078914 ~1.060 0.2913
A 1l 2.250000 2.18078914 1.032 0.3045
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Attack Case Max Adj Rsqr Day 4

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 30 81833.56250 2727.78542 7.292 0.0001
EBrror 97 36286.65625 374.08924
C Total 127 118120.21875
Root MSE 19.34139 R-square 0.6928
Dep Mean 92.32813 Ad3l R-sq 0.5978
c.V. 20.94853
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exror Parameter=0 Prob > |T|
INTERCEP 1 92.328125 1.70955321 54.007 0.0001
Bl 1 3.734375 4.52305265 0.826 0.4110
B2 1 0.296875 4.52305265 0.066 0.9478
B3 1 29.671875 4.52305265 6.560 0.0001
B4 1 9.359375 4.52305265 2.069 0.0412
BS 1 17.109375 4.52305265 3.783 0.0003
B6 1 -12.828125 4.52305265 -2.836 0.0056
B7 1 -12.890625 4.52305265 -2.850 0.0053
D 1 9.484375 1.70955321 5.548 0.0001
BH 1l 6.390625 1.70958321 3.738 0.0003
EG 1 -4.703125 1.7095%321 -2.751 0.0071
HK 1 -3.500000 1.70955321 -2.047 0.0433
G 1 3.453125 1.70955321 2.020 0.0462
JK 1 -3.421875 1.70955321 -2.002 0.0481
AF 1 -3.062500 1.70955321 -1.791 0.0763
(] 1 -3.062500 1.70955321 " =1.791 0.0763
CF 1 -2.984375 1.70955321 -1.746 0.0840
E 1 2.828125 1.70955321 1.654 0.1013
FG 1 2.812500 1.70955321 1.645 0.1032
B 1 2.687500 1.70955321 1.572 0.1192
BD 1 2.593750 1.70955321 1.517 0.1325
cJ 1 -2.531250 1.70955321 -1.481 . 0.1419
DG 1 -2.328125 1.70955321 ~1.362 0.1764
BJ 1 2.218750 1.70955321 1.298 0.1974
FH 1 2.171875 1.70955321 1.270 0.2070
DF 1 -2.062500 1.70955321 -1.206 0.2306
BHJ 1 -2.031250 1.70955321 -1.188 0.2377
cG 1 -1.968750 1.70955321 -1.152 0.2523
CH 1 -1.953125 1.70955321 -1.142 0.2561
AG 1 -1.796875 1.70955321 -1.051 0.2958
F 1 1.781250 1.70955321 1.042 0.3000
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Attack Case Max Adj Rsqr Day S

Analysis of Variance

Sum of Mean
. Source DF Squares Square F Value Prob>F

Model 28 117481.53125 4195.76897 7.617 0.0001

Exrror 99 54533.08594 550.83925

C Total 127 172014.61719

- Root MSE 23.46996 R-square 0.6830
Dep Mean 102.05%469 Adj R-sq 0.5933
C.V. 22.99744
Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate® Error Parameter=0 Prob > |T|
INTERCEP 1 102.054688 2.07447142 49.196 0.0001
Bl 1 7.132812 5.48853547 1.300 0.1968
B2 1 -22.367188 5.48853547 -4.075 0.0001
B3 1 53.257813 5.48853547 9.703 0.0001
B4 1 " 4.820312 5.48853547 0.878 0.3819
BS 1 -1.804688 5.48853547 -0.329 0.7430
B6 1 2.695312 5.48853547 0.491 0.6245
B7 1 -11.804688 5.48853547 -2.151 0.0339
B 1 8.726563 2.07447142 4.207 0.0001
D 1 6.945313 2.07447142 3.348 0.0012
BH 1 5.414063 2.07447142 2.610 0.0105
G 1 4.789063 2.07447142 2.309 0.0230
BF 1 -4.757813 2.07447142 -2.294 0.0239
E 1 4.148438 2.07447142 2.000 0.0483
HK 1 -3.945313 2.07447142 -1.902 0.0601
HJ 1 -3.835938 2.07447142 -1.849 0.0674
CE i -3.632813 2.07447142 -1.751 0.0830
AH 1 -3.335938 2.07447142 -1.608 0.1110
AG -1 -3.257813 2.07447142 -1.570 0.1195
K 1 2.867188 2.07447142 1.382 0.1700
J 1 2.695313 2.07447142 1.299 0.1969
CH 1 ~-2.695313 2.07447142 -1.299 0.1969
BE 1 -2.585938 2.07447142 -1.247 0.2155
AK 1 -2.492188 2.07447142 -1.201 0.2325
FJ 1 -2.414063 2.07447142 -1.164 0.2473
BC 1 2.382813 2.07447142 1.149 0.2535
DJ 1 -2.382813 2.07447142 -~-1.149 0.2535
cG 1 -2.335938 2.07447142 -1.126 0.2629
FG 1 2.304688 2.07447142 1.111 0.2693




Attack Case Max Adj Rsqr Day 6

Analysis of Variance

- B6

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 26 115118.26563 4427.62560 4.544 0.0001
Exror 101 98422.16406 974.47687
C Total 127 213540.42969
Root MSE 31.21661 R-square 0.5391
Dep Mean 166.22656 Adj R-sq 0.4204
c.V. 18.77956
Parameter Estimates
Paramster Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 166.226563 2.75918476 60.245 0.0001
Bl 1 -30.851563 7.30011671 -4.226 0.0001
B2 1 9.710938 7.30011671 1.330 0.1864
B3 1 15.960938 7.30011671 2.186 0.0311
B4 1 11.335938 7.30011671 1.553 0.1236
BS 1 14.835938 7.30011671 2.032 0.0447
1 -8.476563 7.30011671 -1.161 0.2483
B7 1 -26.601563 7.30011671 -3.644 0.0004
G 1 11.304688 2.75918476 4.097 0.0001
B 1 10.789063 2.75918476 3.910 0.0002
HJ 1 -6.539063 2.75918476 -2.370 0.0197
BH 1 5.835938 2.75918476 2.115 0.0369
E 1 5.445313 2.75918476 1.974 0.0512
HK 1 -5.273438 2.7591847¢6 -1.911 0.0588
JK 1 -5.226563 2.75918476 -1.894 0.0611
) 1 -5.101563 2.75918476 -1.849 0.0674
FG 1 4.757813 2.75918476 1.724 0.0877
BK 1 4.742188 2.75918476 1.719 0.0887
CcG 1 ~-3.648438 2.75918476 -1.322 0.1891
A 1 3.632813 2.75918476 1.317 0.1909
DG 1 -3.554688 2.75918476 ~1.288 0.2006
CE 1 -3.195313 2.75918476 -~1.158 0.2496
FK 1 -3.148438 2.75918476 -1.141 0.2565
BJ 1 3.070313 2.75918476 1.113 0.2685
DE 1 -2.945313 2.75918476 ~1.067 0.2883
AJ 1 2.914063 2.75918476 1.056 0.2934
AK 1 -2.851563 2.75918476 -1.033 0.3038




Attack Case Max Adj Rsqr Day 7

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 32 112545.68750 3517.05273 5.627 0.0001
Error 95 59375.92969 625.00979
~ C Total 127 171921.61719
Root MSE 25.00020 R-square 0.6546
Dep Mean 148.55469 Adj R-sq 0.5383
c.V. 16.82895
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 148.554688 2.20972599 67.228 0.0001
Bl 1l -26.742188 5.84638544 -4.574 0.0001
B2 1 5.320313 5.84638544 0.910 0.3651
B3 1 23.007813 $.84638544 3.935 0.0002
B4 1 8.507813 5.84638544 1.455 0.1489
BS 1 17.382813 5.84638544 2.973 0.0037
B6 1 -6.117187 5.84638544 -1.046 0.2981
B7 1 -37.929688 5.84638544 -6.488 0.0001
B 1 10.554688 2.20972599 4.776 0.0001
G 1 8.960938 2.20972599 4.055 0.0001
HK 1 -5.351563 2.20972599 -2.422 0.0173
HJ 1 -4.570313 2.20972599 -2.068 0.0413
AH 1 -4.304688 2.20972599 ~1.948 0.0544
H 1 3.945313 2.20972599 1.785 0.0774
BC 1 -3.914063 2.20972599 -1.771 0.0797
CJ 1 3.851563 2.20972599 1.743 0.0846
A 1 3.835938 2.20972599 1.736 0.0858
AK 1 -3.804688 . 2.20972599 -1.722 0.0884
EF 1 -3.226563 2.20972599 ~1.460 0.1475
GJ 1 3.164063 2.20972599 1.432 - 0.1555
AD 1 3.148438 2.20972599 1.425 0.1575
CE 1 -3.101563 2.20972599 -1.404 0.1637
JK 1 -3.007813 2.20972599 -1.361 0.1767
BG 1 2.992188 2.20972599 1.354 0.1789
FG 1 2.992188 2.20972599 1.354 0.1789
AB 1 2.773438 2.20972599 1.255 0.2125
DK 1 -2.773438 2.20972599 -1.255 0.2125
GH 1 -2.742188 2.20972599 ~-1.241 0.2177
cG 1 -2.726563 2.20972599 -1.234 0.2203
AJ 1 -2.648438 2.20972599 -1.199 0.2337
FH 1 2.351563 2.20972599 1.064 0.2899
CH 1 2.257813 2.20972599 1.022 0.3095
AE 1 -2.226563 2.20972599 -1.008 0.3162
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Attack Case Max Adj Raqr Day 8

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 27 100693.96094 3729.40596 4.657 0.0001
Exrror 100 80079.90625 800.79906
C Total 127 180773.86719
Root MSE 28.29839 R-square 0.5570
Dep Mean 145.67969 Adj R-aq 0.4374
c.V. 19.42508
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Errox Parameter=0 Prob > |T|
INTERCEP 1 145.679688 2.50124822 58.243 0.0001
Bl 1 -22.179688 6.61768077 -3.352 0.0011
B2 1 -0.054687 6.61768077 -0.008 0.9934
B3 1 14.507813 6.61768077 2.192 0.0307
B4 1 5.757813 6.61768077 0.870 0.3863
BS 1 14.507813 6.61768077 2.192 0.0307
B6 1 -7.804687 6.61768077 -1.179 0.2410
B7 1 -24.929688 6.61768077 -3.767 0.0003
B 1 15.335938 2.50124822 6.131 0.0001
AK 1l -6.914063 2.50124822 -2.764 0.0068
G 1 5.898438 2.50124822 2.358 0.0203
CE 1 -4.929688 2.50124822 -1.971 0.0515
E 1 4.898438 2.50124822 1.958 0.0530
cJ 1l 4.351563 2.50124822 1.740 0.0850
EF 1 -4.304688 2.50124822 -1.721 0.0883
HK 1 -3.914063 2.50124822 -1.565 0.1208
BC 1 -3.804688 2.50124822 -1.521 0.1314
HJ 1 -3.460938 2.50124822 -1.384 0.1695
CH 1 3.273438 2.50124822 1.309 " 0.1936
D 1 ~3.226563 2.50124822 -1.290 0.2000
AB 1 3.132813 2.50124822 1.252 0.2133
BR 1 3.039063 2.50124822 1.215 0.2272
AH 1 -3.007813 2.50124822 -1.203 0.2320
K 1 2.914063 2.50124822 1.165 0.2468
AC 1 ~-2.851563 2.50124822 -1.140 0.2570
GK 1l 2.695313 2.50124822 1.078 0.2838
DE 1 2.617188 2.50124822 1.046 0.2979
AG 1 -2.617188 2.50124822 -1.046 0.2979
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Attack Case Max Adj Rsqr Day 9

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 31 103707.96875 3345.41835 5.416 0.0001
Exror 96 59293.90625 617.64486
C Total 127 163001.87500
Root MSE 24.8524¢6 R-square 0.6362
Dep Mean 137.28125 M3 R-sq 0.5188
c.V. 18.10332
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |TI
INTERCEP 1 137.281250 2.19666803 62.495 0.0001
Bl 1 -21.531250 5.81183733 -3.708 0.0004
B2 1 -0.531250 5.81183733 -0.091 0.9274
B3 1 17.531250 5.81183733 3.016 0.0033
B4 1 11.468750 5.81183733 1.973 0.0513
BS 1 16.156250 5.81183733 2.780 0.0065
B6 1 -11.656250 5.81183733 -2.006 0.0477
B7 1 -30.968750 5.81183733 -5.329 0.0001
B 1 12.156250 2.19666803 5.534 0.0001
G 1 9.093750 2.19666803 4.140 0.0001
E 1 6.765625 2.19666803 3.080 0.0027
AH 1 -4.234375 2.19666803 -1.928 0.0569
AE 1 -4.000000 2.19666803 -1.821 0.0717
AK 1 -3.937500 2.19666803 -1.792 0.0762
AG 1 -3.890625 2.19666803 -1.771 0.0797
BC 1 -3.640625 2.19666803 -1.657 0.1007
HK 1 -3.578125 2.19666803 -1.629 0.1066
FJ 1 -3.516875 2.19666803 -1.615 0.1097
H 1 3.343750 2.19666803 1.522 0.1312
CE 1 -2.937500 2.19666803 -1.337 0.1843
J 1 2.906250 2.19666803 1.323 0.1890
DJ 1 -2.890625 2.19666803 -1.316 0.1913
A 1 2.703128 2.19666803 1.231 0.2215
EH 1 2.703125 2.19666803 1.231 0.2215
K 1 2.671875 2.19666803 1.216 0.2268
FG 1 2.64062S 2.19666803 1.202 0.2323
BH 1 2.593750 2.19666803 1.181 0.2406
CcG 1 -2.484375 2.19666803 -1.131 0.2609
BF 1 -2.484375 2.19666803 -1.131 0.2609
AB 1 2.359375 2.19666803 1.074 0.2855
DG 1 -2.328125 2.19666803 -1.060 0.2919
EF 1 -2.312500 2.19666803 -1.053 0.2951
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Attack Case Max Adj Rsqr Day 10

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 27 105628.00000 3912.14815 5.669 0.0001
Error 100 69009.50000 690,.09500
C Total 127 174637.50000
Root MSE 26.26966 R-square 0.6048
Dep Mean 132.31250 Adj R-sq 0.4981
c.V. 19.85425
Parameter Estimates
Paramater Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 132.312500 2.32193178 56.984 0.0001
Bl 1 =20.000000 6.14325405 -3.256 0.0015
B2 1 2.437500 6.14325405 0.397 0.6924
B3 1 21.500000 6.14325405 3.500 0.0007
B4 1l 4.312500 6.14325405 0.702 0.4843
BS 1 14.312500 6.14325405 2.330 0.0218
B6 1 -6.000000 6.14325405 -0.977 0.3311
B7 1 -32.125000 6.14325405 -5.229 0.0001
B 1 14.156250 2.32193178 6.097 0.0001
G 1 10.062500 2.32193178 4.334 0.0001
HK 1 -5.609375 2.32193178 -2.416 0.0175
BJ 1 5.078125 2.32193178 2.187 0.0311
E 1 4.562500 2.32193178 1.965 0.0522
FJ 1 -4.468750 2.321931798 -1.925 0.0571
AH 1 -3.609375 2.32193178 -1.554 0.1232
H 1 3.562500 2.32193178 1.534 0.1281
cJ 1 3.515625 2.32193178 1.514 0.1332
JK 1 -3.281250 2.32193178 -1.413 0.1607
AK 1 -3.218750 2.32193178 -1.386 0.1688
BG 1 3.093750 2.32193178 1.332 0.1858
CE 1 -3.093750 2.32193178 -1.332 0.1858
HJ 1 -2.796875 2.32193178 -1.205 v.2312
BC 1 -2.781250 2.32193178 -1.198 0.2338
DF 1 -2.703125 2.32193178 -1.164 0.2471
CDh 1 2.531250 2.32193178 1.090 0.2783
BF 1 -2.453125 2.32193178 -1.087 0.2933
AD 1 2.453125 2.32193178 1.057 0.2933
cG 1 -2.375000 2.32193178 -1.023 0.3088
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Attack Case Max Adj Rsqr Day 11

Anaiysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 28 113769.56250 4063.19866 7.160 0.0001
Error 99 56182.43750 567.49937
C Total 127 169952.00000
Root MSE 23.82225 R-square 0.6694
Dep Mean 127.12500 Adj R~sq 0.5759
c.v. 18.73923
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 127.125000 2.10560889 60.374 0.0001
Bl 1 -16.250000 $.57091749 -2.917 0.0044
B2 1 -1.187500 5.57091749 -0.213 0.8316
B3 1 14.375000 5.57091749 2.580 0.0113
B4 1 1.625000 - 5.57091749 0.292 0.7711
BS 1 17.125000 $5.57091749 3.074 0.0027
B6 1 -9.062500 5.57091749 ~1.627 0.1070
B7 1 -30.187500 5.57091749 -5.419 0.0001
B i 15.765625 2.10560889 7.487 0.0001
G 1 9.718750 2.10560889 4.6l1¢ 0.0001
AK 1 -5.437500 2.10560889 -2.582 0.0113
JK 1 -5.203125 2.10560889 -2.471 0.0152
cJ 1 4,.937500 2.10560889 2.345 0.0210
EF 1 ~-4.453125 2.10560889 -2.115 0.0370
HK 1 -3.890625 2.10560889 -1.848 0.0676
C 1 3.890625 2.10560889 1.848 0.0676
K 1 3.843750 2.10560889 1.825 0.0709
FK 1 3.781250 2.10560889 1.796 0.0756
AH 1 -3.609375 2.10560889 -1.714 0.089¢6
DG 1 ~3.562500 2.10560889 -1.692 0.0938
E 1 3.390625 2.10560889 1.610 0.1105
H 1 3.328125 2.10560889 1.581 0.1172
DE 1 3.078125 2.10560889 1.462 0.1469
BK 1 2.765625 2.10560889 1.313 0.1921
BD 1 -2.703125 2.10560889 -1.284 0.2022
DH 1 2.640625 2.10560889 1.254 0.2128
CD 1 2.421875 2.10560889 1.150 0.2528
CF 1l 2.328125 2.10560889 1.106 0.2715
AD 1 2.250000 2.10560889 1.069 0.2879
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Attack Case Max Adj Rsqr Day 12

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 26 113489.00000 4364.96154 8.604 0.0001
Exrror 101 51241.87500 507.34530
C Total 127 164730.87500
Root MSE 22.52433 R-square 0.6889
Dep Mean 121.1562% Adj R-aq 0.6089
c.V. 18.59114
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exrror Parameter=0 Prob > |TI
INTERCEP 1 121.156250 1.99088803 60.855 0.0001
Bl 1 -16.906250 5.26739461 -3.210 0.0018
B2 1 -2.906250 5.26739461 -0.552 0.5823
B3 1 17.843750 5.26739461 3.388 0.0010
B4 1 2.031250 5.26739461 0.386 0.7006
BS 1 16.156250 5.26739461 3.067 0.0028
B6 1 -8.718750 5.26739461 -1.655 0.1010
B? 1 -33.093750 5.26739461 -6.283 0.0001
B 1 16.000000 1.99088803 8.037 0.0001
G 1 8.859375 1.99088803 4.450 0.0001
H 1l 5.281250 1.99088803 2.653 0.0093
AK 1 -5.000000 1.99088803 -2.511 0.0136
HK 1 ~4.515625 1.99088803 -2.268 0.0254
FK 1 4.359375 1.99088803 2.190 0.0309
BH 1 4.062500 1.99088803 2.041 0.0439
EF 1 -3.828125 1.99088803 -1.923 0.0573
JK 1 -3.812500 1.99088803 -1.915 0.0583
E 1 3.359375 1.99088803 1.687 0.0946
Lo} 1 3.250000 1.99088803 1.632 0.1057
BD 1 -3.062500 1.99088803 -1.538 0.1271
AH 1 ~2.921875 1.99088803 -1.468 0.1453
DH 1 2.812500 1.99088803 1.413 0.1608
D 1 -2.718750 1.99088803 -1.366 0.1751
FH 1 2.593750 1.99088803 1.303 0.1956
GJ 1 2.250000 1.99088803 1.130 0.2611
A 1 2.171875 1.99088803 1.091 0.2779
CE 1 -2.140625 1.99088803 -1.075 0.2848
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Attack Case Max Adj Raqr Day 13

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 25 109012.57031 4360.50281 8.484 0.0001
Exror 102 52425.42188 513.97472
C Total 127 161437.99219
Root MSE 22.67101 R-square 0.6753
Dep Mean 116.49219 Adj R-sq 0.5957
C.V. 19.46140
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exrror Parameter=0 Prob > |T]|
INTERCEP 1 116.492188 2.00385317 58.134 0.0001
Bl 1 -18.804688 5.30169716 -3.547 0.0006
B2 1 3.132812 5.30169716 0.591 0.5559
B3 1 15.632813 5.30169716 2.949 0.0040
B4 1 6.257813 5.30169716 1.180 0.2406
BS 1 13.007813 5.30169716 2.454 0.0158
Bé 1 ~-4.179687 5.30169716 -0.788 0.4323
B7 1l -36.679687 5.30169716 -6.918 0.0001
B 1 16.820313 2.00385317 8.394 0.0001
G 1 9.726563 2.00385317 4.854 0.0001
JK 1 -4.367188 2.00385317 -2.179 0.0316
EJ 1 4.132813 2.00385317 2.062 0.0417
AK 1 -3.835938 2.00385317 -1.914 0.0584
BH 1 3.664063 2.00385317 1.829 0.0704
H 1 3.210938 2.00385317 1.602 0.1122
AH 1 -3.148438 2.00385317 -1.571 0.1192
BF 1 -3.132813 2.00385317 -1.563 0.1211
HK 1l -2.726563 2.00385317 -1.361 0.1766
(o] 1 2.554688 2.00385317 1.275 0.2052
FK 1 2.476563 2.00385317 1.236 0.2193
DH 1 2.351563 2.00385317 1.174 0.2433
EF 1 -2.335938 2.00385317 -1.166 0.2464
cG 1 -2.210938 2.00385317 -1.103 0.2725
AD 1 2.210938 2.00385317 1.103 0.2725
EG 1 -2.054688 2.00385317 -1.025 0.3076
GJ 1 1.960938 2.00385317 0.979 0.3301
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Attack Case Max Adj Rsqr Day 14

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 30 110732.59375 3691.08646 6.717 0.0001
Exrrorx 97 53302.90625 549.51450
C Total 127 164035.50000
Root MSE 23.44173 R-square 0.6751
Dep Mean 110.31250 Adj R-sq 0.5746
C.V. 21.25029
Parameter Estimates
Paramster Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 110.312500 2.07197539 53.240 0.0001
Bl 1 -18.125000 5.48193160 -3.306 0.0013
B2 1 -0.500000 $.48193160 -0.091 0.9275
B3 1 17.000000 5.48193160 3.101 0.0025
B4 1 10.250000 5.48193160 1.870 0.0645
BS 1 16.187500 5.48193160 2.953 0.0039
B6 1 -10.437500 5.48193160 -1.904 0.0599
B7 1 -37.312500 5.48193160 ~6.806 0.0001
B 1 14.093750 2.07197539 6.802 0.0001
G 1 8.546875 2.07197539 4.125 0.0001
H 1 5.250000 2.07197539 2.534 0.0129
FK 1 5.156250 2.07197539 2.489 0.0145
AR 1 -4.265625 2.07197539 -2.059 0.0422
EJ 1 4.062500 2.07197539 1.961 0.0528
CcG 1 -3.843750 2.07197539 -1.855% 0.0666
DH 1 3.406250 2.07197539 1.644 0.1034
EF 1 '=3.359375 2.07197539 -1.621 0.1082
HK 1 -3.218750 2.07197539 -1.553 0.1236
E 1 3.078125 2.07197539 1.486 0.1406
JK 1 -2.859375 2.07197539 -1.380 0.1708
cDh 1 -2.765625 2.07197539 -1.335 0.1851
AK 1 -2.640625 2.07197539 -1.274 0.2055
BH 1 2.593750 2.07197539 1.252 0.2136
AB 1 2.578125 2.07197539 1.244 0.2164
Lo} 1 2.453125 2.07197539 1.184 0.2393
GJ 1 2.343750 2.07197539 1.131 0.2608
FJ 1 -2.265625 2.07197539 -1.093 0.2769
AG 1 -2.125000 2.07197539 ~1.026 0.3076
CE 1l -2.125000 2.07197539 -1.026 0.3076
F 1 2.093750 2.07197539 1.011 0.3148
DG 1 -2.078125 2.07197539 -1.003 0.3184
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Attack Case Max Adj Rsqr Day 15
Analysia of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 25 108842.03125 4353.68125 7.816 0.0001
Error 102 56817.84375 557.03768
C Total 127 165659.87500
Root MSE 23.60165 R-square 0.6570
Dep Mean 106.78125 Adj R-aq 0.5730
c.V. 22.10280
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Errorx Parameter=0 Prob > |T|
INTERCEP 1 106.781250 2.08611047 51.187 0.0001
Bl 1 -19.843750 5.51932952 -3.595 0.0005
B2 1 2.406250 5.51932952 0.436 0.6638
B3 1 12.031250 5.51932952 2.180 0.0316
B4 1 12.781250 5.51932952 2.316 0.0226
BS 1 19.218750 5.51932952 3.482 0.0007
B6 1 -10.781250 5.51932952 -1.953 0.0535
B7 1 -34.031250 5.51932952 -6.166 0.0001
B 1 15.578128 2.08611047 7.468 0.0001
G 1 7.796875 2.08611047 3.738 0.0003
AK 1 -6.062500 2.08611047 -2.906 0.0045
EJ 1 5.015625 2.08611047 2.404 0.0180
B 1 4.609375 2.08611047 2.210 0.0294
c 1 4.265625 2.08611047 - 2.045 0.0435
JK 1 -4.234375 2.08611047 -2.030 0.0450
FK 1 3.953125 2.08611047 1.895 0.0609
AC 1 -3.578125 2.,08611047 -1.71S5 0.0893
BH 1 3.500000 2.08611047 1.678 0.0965
AG 1 -3.421875 2.08611047 ~1.640 0.1040
GK 1 3.3593 5 2.08611047 1.610 0.1104
F 1 2.609375 2.08611047 1.251 0.2139
CF 1 2.437500 2.08611047 1.168 0.2454
AD 1l 2.187500 2.08611047 1.049 0.2968
CE 1 -2.046875 2.08611047 -0.981 0.3288
E 1 1.937500 2.08611047 0.929 0.3552
EF 1 -1.734375 2.08611047 -0.831 0.4077
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Attack Case Max Adj Rsqr Day 16

Analysis of Variance

A-16

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 33 97796.69531 2963.53622 6.536 0.0001
Errorx 94 42620.10938 453.40542
C Total 127 140416.80469
Root MSE 21.29332 R-square 0.6965
Dep Mean 100.03906 Ad]j R-3q 0.5899
c.V. 21.28500
Parameter Estimates
Paramster Standard T for HO:
Variable DF Estimate Exror Parameter=0 Prob > |T|
INTERCEP 1 100.039063 1.88208125 $3.153 0.0001
Bl 1 -22.101563 4.97951894 -4.438 0.0001
B2 1 0.023437 4.97951894 0.00S 0.9963
B3 1 11.023438 4.97951894 2.214 0.0293
B4 1 10.898438 4.97951894 2.189 0.0311
BS 1 18.523438 4.97951894 3.720 0.0003
B6 1 -7.914063 4.97951894 ~-1.589 0.1153
B7 1 -30.914063 4.97951894 -6.208 0.0001
B 1 13.429688 1.88208125 7.136 0.0001
G 1 7.695313 1.8820812S5 4.089 0.0001
H 1 4.742188 1.88208125 2.520 0.0134
FK 1 4.554688 1.88208125 2.420 0.0174
AK 1 -4.398438 1.88208128 -2.337 0.0216
-BJ 1 4.070313 1.88208125 2.163 0.0331
JK 1 -3.992188 1.88208125 -2.121 0.0365
HK 1 -3.757813 1.88208125 -1.997 0.0488
(od 1 3.429688 1.88208125 1.822 0.0716
BH 1 3.257813 1.88208125 1.731 0.0867
FH 1 2.695313 1.88208125 1.432 0.1554
FJ 1 -2.664063 1.88208125 -1.415 0.1602
CF 1 2.539063 1.88208125 1.349 0.1806
AG 1 -2.335938 1.88208125 -1.241 0.2176
EK 1 2.320313 1.88208125 1.233 0.2207
cJ 1 2.304688 1.88208125 1.225 0.2238
AC 1 -2.195313 1.88208125 -1.166 0.2464
EH 1 -2.164063 1.88208125 ~1.150 0.2531
GJ 1 2.164063 1.88208125 1.150 0.2531
BK 1 2.085938 1.88208125 1.108 0.2706
CE 1 -2.070313 1.88208125 -1.100 0.2741
EF 1 -2.070313 1.88208125 ~1.100 0.2741
GK 1 2.007813 1.88208125 1.067 0.2888
DH 1 1.945313 1.88208125 1.034 0.3040
cG 1 -1.945313 1.88208125 -1.034 0.3040
F 1 1.898438 1.8820812S8 1.009 0.3157




Attack Case Max Adj Rsqr Day 17

Analysis of Variance

Sum of Mean
. Source DF Squares Square F Value

Model 26 97814.32813 3762.08954 7.559

Error 101 50267.85156 497.70150

C Total 127 148082.17969

. Root MSE 22.30922 R-aquare 0.660S
Dep Mean 95.851S56 Adj R-sq 0.5732
c.V. 23.27476
Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > |TI|
INTERCEP 1 95.851563 1.97187550 48.609 0.0001
Bl 1 -17.351563 $.21709218 -3.326 0.0012
B2 1 1.148437 5.21709218 0.220 0.8262
B3 1 10.023438 5.21709218 1.921 0.0575
B4 1 8.523438 $.21709218 1.634 0.1054
BS 1 18.960938 5.21709218 3.634 0.0004
B6 1 -5.539062 $.21709218 ~-1.062 0.2909
B7 1 -35.601562 5.21709218 -6.824 0.0001
B 1 12.710938 1.97187550 6.446 0.0001
G 1 6.820313 1.97187550 3.459 0.0008
AK 1 -5.507813 1.97187550 -2.793 0.0062
JK 1 -5.070313 1.97187550 -2.5N 0.0116
FK 1 4.664063 1.97187550 2.365 0.0199
R - 1. 4.601563 1.97187550 2.334 0.0216
FG 1 -4.554688 1.97187550 ~2.310 0.0229
EG 1 -4,351563 1.97187550 -2.207 0.0296
BK 1 3.929688 1.97187550 1.993 0.0490
HK 1 -3.929688 1.97187550 -1.993 0.0490
EJ 1 3.070313 1.97187550 1.557 0.1226
GK 1 3.070313 1.97187550 1.557 0.1226
BH 1 2.898438 1.97187550 1.470 0.1447
CE 1 -2.882813 1.97187550 -1.462 0.1469
CJ 1 2.867188 1.97187550 1.454 0.149%0
J 1 2.710938 1.97187550 1.375 0.1722
Cc 1 2.601563 1.97187550 1.319 0.1900
CcDh 1 -2.570313 1.97187550 -1.303 0.1954
RJ 1 2.492188 1.97187550 1.264 0.2092

Prob>F

0.0001




Attack Case Max Ad) Raqr Day 18

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 29 87353.00000 3012.17241 6.498 0.0001
Error 98 45424.87500 463.51913
C Total 127 132777.87500
Root MSE 21.52949 R-square 0.6579
Dep Mean 89.03123% Adj} R-aq 0.5567
Cc.V. 24.18195
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 89.031250 1.90295644 46.786 0.0001
Bl 1 ~19.906250 5.03474950 -3.954 0.0001
B2 1 0.531250 5.03474950 0.106 0.9162
B3 1 6.656250 5.03474950 1.322 0.1892
B4 1 4.656250 5.03474950 0.925 0.3573
BS 1 14.968750 5.03474950 2.973 0.0037
B6 1l -6.093750 $.03474950 -1.210 0.2291
B?7 1 -26.281250 5.03474950 -5.220 0.0001
B 1 11.187500 1.90295644 5.879 0.0001
G 1 7.328125 1.90295644 3.851 0.0002
H 1 5.156250 1.90295644 2.710 0.0080
GK 1 $5.156250 1.90295644 2.710 0.0080
EJ 1 $5.140625 1.90295644 2.701 0.0081
HK 1 -5.015625 1.90295644 -2.636 0.0098
(o0} 1 -4.328125 1.90295644 -2.274 0.0251
JK 1 -4.031250 1.90295644 -2.118 0.0367
J 1 3.734375 1.90295644 1.962 0.0526
FK 1 3.078125 1.90295644 1.618 0.1090
AK 1 -3.046875 1.90295644 -1.601 0.1126
EF 1 -3.031250 1.90295644 -1.593 0.1144
FH 1 2.968750 1.90295644 - 1.560 0.1220
CE 1 -2.828125 1.90295644 ~1.486 0.1404
GJ 1 2.656250 1.90295644 1.396 0.1659
BH 1 2.562500 1.90295644 1.347 0.1812
AE 1 2.531250 1.90295644 1.330 0.1866
c 1 2.453125 1.90295644 1.289 0.2004
EG 1 -2.453125 1.90295644 -1.289 0.2004
CF 1 2.265625 1.90295644 1.191 0.2367
FG 1 -2.265625 1.90295644 -1.191 0.2367
BE 8 ~-2.218750 1.90295644 -1.166 0.2465
A-18




Attack Case Max Ad3} Raqr Day 19

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 30 88597.48437 2953.24948 5.994 0.0001
Error 97 47792.44531 492.70562
C Total 127 136389.92969

Root MSE 22.19697 R-square 0.6496

Dep Mean 86.52344 Adj R-sq 0.5412

C.v. 25.65429

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Exror Parameter=0 Prob > |TI
INTERCEP 1 86.523438 1.96195379 44.101 0.0001
Bl 1 -19.210938 $.19084181 -3.701 0.0004
B2 1 -2.085938 5.19084181 -0.402 0.6887
B3 1 10.289063 $5.19084181 1.982 0.0503
B4 1 7.914063 $.19084181 1.525 0.1306
BS 1l 17.164063 5.19084181 3.307 0.0013
B6 1 -5.648437 5.19084181 -1.088 0.2792
B7 1 -29.085938 $.19084181 -5.603 0.0001
B 1 12.429688 1.96195379 6.335 0.0001
G 1 5.992188 1.96195379 3.054 0.0029
JK 1 -5.164063 1.96195379 -2.632 0.0099
H 1 5.085938 1.96195379 2.592 0.0110

1 4.898438 1.96195379 2.497 0.0142
EJ 1 4.710938 1.96195379 2.401 0.0182
FK 1l 4.398438 1.96195379 2.242 0.0272
J 1 4.117188 1.96195379 2.099 0.0385
FG 1 -3.320313 1.96195379 ~1.692 0.0938
GK 1 3.304688 1.96195379 1.684 0.0953
HK 1 ~-3.195313 1.96195379 -1.629 0.1066
DH 1 2.914063 1.96195379 1.485 0.1407
CE 1 -2.820313 1.96195379 -1.438 0.1538
FH 1 2.804688 1.96195379 1.430 0.1561
RJ 1 2.804688 1.96195379 1.430 0.1561
AK 1 -2.257813 1.96195379 - -1.151 0.2526
Cch 1l -2.148438 1.96195379 -1.095 0.2762
DG 1 -2.117188 1.96195379 -1.079 0.2832
DK 1 2.070313 1.96195379 1.055 0.2939
FJ 1 -2.039063 1.96195379 -1.039 0.3012
F 1 2.023438 1.96195379 1.031 0.3049
CH 1 -2.007813 1.96195379 -1.023 0.3087
AE 1 1.992188 1.96195379 1.015 0.3124

A-19




Attack Case Max Adj Rsqr Day 20

Analysis of Variarmnce

A-20

sum of Mean
Source DF Squares Square F Value Prob>F
Model 30 84977.31250 2832.57708 7.243 0.0001
Error 97 37936.90625 391.10213
C Total 127 122914.21875
Root MSE 19.77630 R-square 0.6914
Dep Mean 79.17188 Adj R-aq 0.5959
c.V. 24.97895
Parameter Estimates
Paramster Standard T for HO:
Variable DF Estimate Exrror Parameter=0 Prob > |TI
INTERCEP 1 79.17187S 1.74799467 45.293 0.0001
Bl 1 -20.921875 4.62475919 -4.524 0.0001
B2 1 -0.92187S 4.62475919 -0.199 0.8424
B3 1 11.078125 4.62475919 2.395 0.0185
B4 1 7.578125 4.62475919 1.639 0.1045
BS 1 14.9531258 4.62475919 3.233 0.0017
B6 1 -1.734375 4.62475919 -0.375 0.7085
B? 1 -27.921875 4.62475919 -6.037 0.0001
B 1 11.265625 1.74799467 6.445 0.0001
G 1 7.109375 1.74799467 4.067 0.0001
JK 1 -5.062500 1.74799467 -2.896 0.0047
FK 1 4.750000 1.74799467 2.717 0.0078
EJ 1 4.671875 1.74799467 2.673 0.0088
- BK 1 4.312500 1.74799467 2.467 0.0154
AK 1 -4.109375 1.74799467 -2.351 0.0208
BH 1 4.031250 1.74799467 2.306 0.0232
GK 1 3.718750 1.74799467 2.127 0.0359
R 1 3.562500 1.74799467 2.038 0.0443
FH 1 3.531250 1.74799467 2.020 0.0461
CE 1 -3.515€625% 1.74799467 -2.011 0.0471
FG 1 -3.203125 1.74799467 -1.832 0.0700
J 1 2.953125 1.74799467 1.689 0.0943
EG 1 -2.796875 1.74799467 -1.600 0.1128
F 1 2.546875 1.74799467 1.457 0.1483
(od 1 2.484375 1.74799467 1.421 0.1584
CG 1 2.453125 1.74799467 1.403 0.1637
HK 1 -2.39062S5 1.74799467 -1.368 0.1746
CF 1 2.328125 1.74799467 1.332 0.1860
BE 1 -2.265625 1.74799467 -1.296 0.1980
HT 1 2.093750 1.74799467 1.198 0.2339
FJ 1 -2.015625 1.74799467 -1.153 0.2517




Attack Case Max Adj Rsqr Day 21

Analysis of Variance

A-21

Sum of Mean
Source DF Squares Square F Value Prob>F
Model - 34 85198.57813 2505.84053 7.294 0.0001
Error 93 31949.35156 343.54141
C Total 127 117147.92969
Root MSE 18.53487 R~-square 0.7273
Dep Mean 74.47656 Adj R-sq 0.6276
Cc.V. 24.88685
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exrror Parameter=0 Prob > |T|
INTERCEP 1 74.476563 1.63826655 45.461 0.0001
Bl 1 -20.476563 4.33444588 -4.724 0.0001
B2 1 1.335937 4.33444588 0.308 0.7586
B3 1l 11.398438 4.33444588 2.630 0.0100
B4 1l 9.023438 4.33444588 2.082 0.0401
BS 1 12.710938 4.33444588 2.933 0.0042
B6 1 -4.539063 4.33444588 -1.047 0.2977
B?7 1 -29.351563 4.33444588 -6.772 0.0001
B 1 10.320313 1.63826655 6.300 0.0001
G 1 6.132813 1.63826655 3.743 0.0003
H 1 5.789063 1.63826655 3.534 0.0006
GK 1 5.523438 1.63826655 3.372 0.0011
EJ 1 4.398438 1.63826655 2.685 0.0086
- FK 1l 4.179688 1.63826655 2.551 0.0124
AK 1 -4.023438 1.63826655 -2.456 0.0159
JK 1 -3.851563 1.63826655 -2.351 0.0208
BE 1 -3.726563 1.63826655 -2.275 0.0252
BH 1 3.726563 1.63826655 2.275 0.0252
(o] 1 3.601563 1.63826655 2.198 0.0304
FH 1 3.476563 1.63826655 2.122 0.0365
CE 1 -2.914063 1.63826655 -1.779 0.0785
CcG 1l 2.820313 1.63826655 1.722 0.0885
F 1 2.601563 1.63826655 1.588 0.1157
EG 1 -2.570313 1.63826655 -1.569 0.1201
J 1 2.414063 1.63826655 1.474 0.1440
FG 1 -2.273438 1.63826655 ~-1.388 0.1685
FJ 1 -2.273438 1.63826655 -1.388 0.1685
DG 1 -2.164063 1.63826655 -1.321 0.1898
A 1 -2.164063 1.63826655 -1.321 0.1898
GJ 1 2.101563 1.63826655 1.283 0.2028
DH 1 2.085938 1.63826655 1.273 0.2061
HK 1 -1.945313 1.63826655 -1.187 0.2381
AE 1 1.882813 1.6382665S 1.149 0.2534
‘B 1 -1.789063 1.63826655 -1.092 0.2776
AJ 1 1.773438 1.63826655 1.083 0.2818




Attack Case Max Ad) Rsqr Day 22

Analysis of Variance

Sum of Mean
Source DF Squares ) Square F Value Prob>F
Model 34 67651.37500 1989.74632 6.729 0.0001
Exxorx 93 27500.62500 295.70565
¢ Total 127 95152.00000
Root MSE 17.19609 R~-square 0.7110
Dep Mean 69.62500 Adj R-sq 0.60S3
c.V. 24.69816
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 69.625000 1.51993433 45.808 0.0001
Bl 1 -18.000000 4.02136823 -4.476 0.0001
B2 1 -1.562500 4.02136823 -0.389 0.6985
B3 1 11.125000 4.02136823 2.766 0.0068
B4 1 10.500000 4.02136823 2.611 0.0105
BS 1l 8.312500 4.02136823 2.067 0.0415
Bé 1 -3.312500 4.02136823 -0.824 0.4122
B? 1 -24.812500 4.02136823 -6.170 0.0001
B 1 8.937500 1.51993433 5.880 0.0001
G : § 7.718750 1.51993433 5.078 0.0001
H 1 4.765625 1.51993433 3.135 0.0023
EJ 1 4.406250 1.51993433 2.899 0.0047
AK 1 -4.203125 1.51993433 -2.765 0.0069%
FK 1 3.750000 1.51993433 2.467 0.0154
GK 1 3.437500 1.51993433 2.262 0.0261
JK 1l -3.312500 1.51993433 -2.179 0.0318
FH 1 3.015625 1.51993433 1.984 0.0502
Lod 1 3.015625 1.51993433 1.984 0.0502
BK 1 -2.765625 1.51993433 -1.820 0.0720
EG 1 -2.750000 1.51993433 -1.809 0.0736
BH 1 2.671875 1.51993433 1.758 0.0821
BK 1 2.562500 1.51993433 1.686 0.0952
J 1 2.34375%0 1.51993433 1.542 0.1265
DG 1 -2.281250 1.51993433 -1.501 0.1368
FG 1 -2.218750 1.51993433 -1.460 0.1477
BE 1 -2.093750 1.51993433 -1.378 0.1717
CE 1 -2.046875 1.51993433 -1.347 0.1814
BD 1 «-2.031250 1.51993433 -1.336 0.1847
GH 1 -1.859375 1.51993433 -1.223 0.2243
CK 1 1.828125 1.51993433 1.203 0.2321
cG 1 1.73437S 1.51993433 1.141 0.2568
B 1 -1.718750 1.51993433 -1.131 0.2610
AG 1 1.703125 1.51993433 1.121 0.2654
DH 1 1.578125 1.51993433 1.038 0.3018
F 1 1.562500 1.51993433 1.028 0.3066
A-22




Attack Case Max Adj} Rsqr Day 23

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 32 64739.06250 2023.09570 5.834 0.0001
Error 95 32943.42969 346.77294
C Total 127 97682.49219
Root MSE 18.621984 R~aquare 0.6627
Dep Mean 65.74219 Adj R~sq 0.5491
c.V. 28.32556
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 65.742188 1.64595371 39.942 0.0001
Bl 1 -21.054688 4.35478419 ~-4.835 0.0001
B2 1 -0.554688 4.35478419 -0.127 0.8989
B3 1 10.695313 4.35478419 2.456 0.0159
B4 1 7.320313 4.35478419 1.681 0.0961
BS 1 12.570313 4.35478419 2.887 0.0048
Bé 1 -4.054688 4.35478419 -0.931 0.3542
B7 1 -22.867188 4.35478419 -5.251 0.0001
B 1 9.570313 1.64595371 5.814 0.0001
G 1 6.179688 1.64595371 3.754 0.0003
H 1 4.804688 1.64595371 2.919 0.0044
GK 1 3.929688 1.64595371 2.387 0.90189
EJ 1 3.648438 1.64595371 2.217 0.0290
FG 1 -3.570313 1.64595371 -2.169 0.0326
HK 1 -3.351563 1.64595371 -2.036 0.0445
AK 1 -3.335938 1.64595371 -2.027 0.0455
FK 1 3.242188 1.64595371 1.970 0.0518
BE 1 -2.632813 1.64595371 -1.600 0.1130
BH 1 2.539063 1.64595371 1.543 0.1263
EG 1 -2.523438 1.64595371 -1.533 0.1286
CK 1 2.460938 1.64595371 1.495 0.1382
FH 1 2.460938 1.64595371 1.495 0.1382
CcG 1 2.398438 1.64595371 1.457 0.1484
BK 1 2.289063 1.64595371 1.391 0.1676
CE 1 -2.210938 1.64595371 -1.343 0.1824
F 1 2.210938 1.64595371 1.343 0.1824
(o 1 2.148438 1.64595371 1.305 0.1949
JK 1 -1.8046898 1.64595371 -1.096 0.2757
DH 1 1.726563 1.64595371 1.049 0.2969
CH 1 -1.695313 1.64595371 -1.030 0.3056
cDh 1 -1.679688 1.64595371 -1.020 0.3101
BF 1 1.664063 1.64595371 1.011 0.3146
DG 1 -1.648438 1.64595371 -1.002 0.3191

A-23




Attack Case Max Adj Raqr Day 24

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 29 69350.00000 2331.37931 8.123 0.0001
Errorx 98 28849.46875 294.38233
C Total 127 98199.46875
Root MSE 17.15757 R-square 0.7062
Dep Mesan 62.14063 Adj R-sq 0.6193
Cc.V. 27.61088
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 62.140625 1.51652959 40.976 0.0001
Bl 1 -18.703125 4.01236014 ~-4.661 0.0001
B2 1 -6.203125 4.01236014 -1.546 0.1253
B3 1 17.109375 4.01236014 4.264 0.0001
B4 1 8.67187S5 4.01236014 2.161 0.0331
BS 1 10.046875 4.01236014 2.504 0.0139
B6 1l -4.328125% 4.01236014 -1.079 0.2834
B7 1 -23.515625 4.01236014 -5.861 0.0001
B 1 10.406250 1.51652959 6.862 0.0001
G 1 5.500000 1.51652959 3.627 0.0005
H 1 5.218750 1.51652959 3.441 2.0009
BH 1 4.609375 1.51652959 3.039 0.0030
GK 1 4.000000 1.516529%9 2.638 0.0097
EJ- 1 3.843750 1.51652959 2.535 0.0128
FK 1 3.640625 1.516529%9 2.401 0.0183
BK 1 3.375%000 1.51652959 2.225 0.0283
CE 1 -3.109375 1.51652959 -2.050 0.0430
EG 1 -2.98437S 1.51652959 -1.968 0.0519
F 1l 2.765625 1.51652959 1.824 0.0713
FH 1 2.750000 1.51652959 1.813 0.0728
DG i -2.718750 1.51652959 -1.793 0.0761
AK 1 ~2.609375 1.51652959 -1.721 0.0885
J 1 2.515625 1.51652959 1.659 0.1004
HK 1 -2.468750 1.51652959 -1.628 0.1068
FG 1 -2.437500 1.51652959 -1.607 0.1112
JK 1 -2.265625 1.51652959 -1.494 0.1384
CK 1 2.250000 1.51652959 1.484 0.1411
(o] 1 1.78125%50 1.51652959 1.175 0.2430
DH 1 1.656250 1.51652959 1.092 0.2775
CcG 1 1.578125 1.51652959 1.041 0.3006




Attack Case Max Adj Rsqr Day 25

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 33 67907.13281 2057.79190 7.321 0.0001
Error 94 26421.67188 281.08162
C Total 127 94328.80469

Root MSE 16.76549 R-square 0.7199

Dep Mean 5$8.96094 Adj R-sq 0.6216

C.V. 28.43491

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 58.960938 1.48187386 39.788 0.0001
Bl 1 -17.335938 3.92066970 -4.422 0.0001
B2 1 ~-4.148438 3.92066970 -1.058 0.2927
B3 1 11.289063 3.92066970 2.879 0.0049
B4 1l 11.601563 3.92066970 2.959 0.0039
BS 1 10.976563 3.92066970 2.800 0.0062
B6 1 -4.273438 3.92066970 -1.090 0.2785
B7 1 -24.710938 3.92066970 -6.303 0.0001
B 1 9.945313 1.48187386 6.711 0.0001
FK 1 5.195313 1.48187386 3.506 0.0007
H 1 5.132813 1.48187386 3.464 0.0008
EJ 1 4.585938 1.48187386 3.095 0.0026
G 1l 4.,492188 1.48187386 - 3.031 0.0031
BH 1 4.398438 1.48187386 2.968 0.0038
GK 1 4.101563 1.48187386 2.768 0.0068
HK 1 -3.695313 1.48187386 -2.494 0.0144
JK 1 -3.601563 1.48187386 -2.430 0.0170
EG 1 -2.585938 1.48187386 =-1.745 0.0842
J 1 2.570313 1.48187386 1.735 0.0861
FG 1l -2.476563 1.48187386 -1.671 0.0980
CE 1 -2.460938 1.48187386 -1.661 0.1001
lod 1l 2.398438 1.48187386 1.619 0.1089
F 1 2.273438 1.48187386 1.534 0.1283
AK 1 -2.179688 1.48187386 -1.471 0.1447
GH 1 -2.117188 1.48187386 -1.429 0.1564
BG 1 -1.992188 1.48187386 -1.344 0.1821
EF 1 -1.929688 1.48187386 -1.302 0.1960
BE 1l -1.914063 1.48187386 -1.292 0.1996
FH 1l 1.726563 1.48187386 1.165 0.2469
DE 1 1.710938 1.48187386 1.155 0.2512
AG 1 1.679688 1.48187386 1.133 0.2599
BK 1 1.679688 1.48187386 1.133 0.2599
DG 1 -1.617188 1.48187386 =-1.091 0.2779
DH 1 1.585938 1.48187386 1.070 0.2873
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Attack Case Max Adj Rsqr Day 26

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 30 59810.46875 1993.68229 7.108 0.0001
Error 97 27206.40625 280.47841
C Total 127 87016.87500
Root MSE 16.74749 R-square 0.6873
Dep Mean $5.59375 Adj R-sq 0.5906
c.V. 30.12477
Parameter Estimates
Parameter Standarxd T for HO:
Variable DF Estimate Error Parameter=0 Prob > |TI
INTERCEP 1 55.593750 1.48028295 37.556 0.0001
Bl 1 -19.656250 3.91646056 -5.019 0.0001
B2 1 -0.968750 3.91646056 -0.247 0.8052
B3 1 12.531250 3.91646056 3.200 0.0019
B4 1 9.718750 3.91646056 2.482 0.0148
BS 1 12.031250 3.91646056 3.072 0.0028
B6 1 -2.531250 3.91646056 -0.646 0.5196
B? 1 -21.968750 3.91646056 -5.609 0.0001
B 1 8.750000 1.48028295 5.911 0.0001
G 1 5.546875 1.48028295 . 3.747 0.0003
BH 1 5.156250 1.48028295 3.483 0.0007
H 1 4.781250 1.48028295 3.230 0.0017
EJ 1 4.515625 1.48028295 3.051 0.0029
FK 1 4.406250 1.48028295 2.977 0.0037
GK 1 3.640625 1.48028295 2.459 0.0157
JK 1 -3.578125 1.48028295 -2.417 0.0175
CE 1 -3.312500 1.48028295 -2.238 0.0275
HK 1 -2.812500 1.48028295 -1.900 0.0604
EG 1 -2.578125 1.48028295 -1.742 0.0847
c 1 2.437500 1.48028295 1.647 0.1029
F 1 2.218750 1.48028295 1.499 0.1372
DE 1 2.187500 1.48028295 1.478 0.1427
DG 1 -2.078125 1.48028295 -1.404 0.1636
BK 1 2.031250 1.48028295 1.372 0.1732
EF 1 -1.937500 1.48028295 -1.309 0.1937
BJ 1l -1.828128 1.48028295 -1.235 0.2198
EK 1 -1.718750 1.48028295 -1.161 0.2485
AG 1 1.703125 1.48028295 1.151 0.2527
GH 1 -1.703125 1.48028295 -1.151 0.2527
BG 1 -1.640625 1.48028295 -1.108 0.2705
FG 1 -1.640625 1.48028295 -1.108 0.2705
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Attack Case Max Adj Rsqr Day 27

Analysis of Variance

Sum of Mean
Source DF Squares Square F Valde Prob>F
Model 33 59023.87500 1788.60227 8.582 0.0001
Error 94 19591.62500 208.42154
C Total 127 78615.50000
Root MSE 14.43681 R-square 0.7508
Dep Mean 51.%56250 Adj R-sq 0.6633
C.V. 27.99867
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 51.562500 1.27604596 40.408 0.0001
Bl 1 ~19.250000 3.37610028 -5.702 0.0001
B2 1 -1.437500 3.37610028 -0.426 0.6712
B3 1 12.812500 3.37610028 3.795% 0.0003
B4 1 10.125000 3.37610028 2.999 0.0035
BS 1 7.625000 3.37610028 2.259 0.0262
B6é 1 1.125000 3.37610028 0.333 0.7397
B7 1 -22.187500 3.37610028 -6.572 0.0001
B 1 9.562500 1.27604596 7.494 0.0001
G 1 5.625000 1.2760459¢ 4.408 0.0001
H 1 4.718750 1.27604596 3.698 0.0004
EJ 1 4.656250 1.27604596 3.649 0.0004
FK 1 4.578125 1.27604596 3.588 0.0005
BH 1 3.843750 1.27604596 3.012 0.0033
CE 1 -3.421875 1.27604596 -2.682 0.0087
GK 1 3.109375 1.27604596 2.437 0.0167
JK 1 -3.031250 1.27604596 -2.376 0.0196
HK 1 -2.796875 1.27604596 -2.192 0.0309
F 1 2.531250 1.27604596 1.984 0.0502
c 1 2.468750 1.27604596 1.93s 0.0560
BK 1 2.390625 1.27604596 1.873 0.0641
EG 1 -2.265625 1.27604596 -1.776 0.0791
AK 1 -2.171875 1.27604596 -1.702 0.0921
DH 1 1.921875 1.27604596 1.506 0.1354
EH 1 1.828125 1.27604596 1.433 0.1553
AG 1 1.750000 1.27604596 1.371 0.1735
J 1 1.609375 1.27604596 1.261 0.2104
BG 1 -1.562500 1.27604596 -1.224 0.2238
DG 1 -1.546875 1.27604596 -1.212 0.2285
FG 1 -1.468750 1.27604596 -1.151 0.2526
FJ 1 -1.453125 1.27604596 -1.139 0.2577
A 1 -1.437500 1.27604596 -1.127 0.2628
GH 1 -1.343750 1.27604596 -1.053 ¢.2950
EK 1 -1.312500 1.27604596 -1.029 0.3063
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Attack Case Max Ad} Rsqr Day 28
Analysis of Variance

Sum of Mean
Source DF Squares Squate F Value Prob>F
Model 27 51507.59375 1907.68866 8.073 0.0001
Error 100 23630.28125 236.30281
C Total 127 75137.87500
Root MSE 15.37214 R-square 0.6855
Dep Mean 48.7187S% Adj R-sq 0.6006
c.V. 31.55283
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exror Parameter=0 Prob > |T|
INTERCEP 1 48.718750 1.35871841 35.856 0.0001
Bl 1 -18.968750 3.59483102 -5.277 0.0001
B2 1 -0.656250 3.59483102 -0.183 0.8555
B3 1 10.343750 3.59483102 2.877 0.0049
B4 1 6.53125%0 3.59483102 1.817 0.0722
BS 1 7.343750 3.59483102 2.043 0.0437
B6 1 2.031250 3.59483102 0.565 0.5733
B7 1 -21.718750 3.59483102 -6.042 0.0001
B 1 8.640625 1.35871841 6.359 0.0001
FK 1 4.859375 1.35871841 3.576 0.000S
H 1 4.843750 1.35871841 3.565 0.0006
EJ 1 4.796875 1.35871841 3.530 0.0006
G 1 3.859375 1.35871841 2.840 0.0055
JK 1 -3.843750 1.35871841 -2.829 0.0056
GK 1 3.265625 1.35871841 2.403 0.0181
CE 1 -3.031250 1.35871841 -2.231 0.0279
HK 1 -3,000000 1.35871841 -2.208 0.0295
F 1 2.640625 1.35871841 1.943 0.0548
.BG 1 -2.437500 1.35871841 -1.794 0.0758
FH 1 2.046875 1.35871841 1.506 0.1351
FG 1 -1.968750 1.35871841 -1.449 0.1505
BH 1 1.890625 1.35871841 1.391 0.1672
AG 1l 1.750000 1.35871841 1.288 0.2007
EG 1 -1.718750 1.35871841 -1.265 0.2088
DH 1 1.671875 1.35871841 1.230 0.2214
AK 1 -1.640625 1.35871841 -1.207 0.2301
C 1 1.546875 1.35871841 1.138 0.2576
EF 1 -1.500000 1.35871841 -1.104 0.2723




Attack Case Max Ad) Raqr Day 29

Analysis of Variance

A-29

Sum of Mean
- Sourxce DF Squares Square F Value Prob>F

Model 33 43646.25781 1322.61387 6.146 0.0001

Exrror - 94 20228.79688 215.19997

C Total 127 63875.05469

- Root MSE 14.66970 R-square 0.6833
Dep Mean 46.58594 Adj R-aq 0.5721
c.V. 31.48954
Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 46.585938 1.29663015 35.928 0.0001
Bl 1 -17.398438 3.43056091 -5.072 0.0001
B2 1 -1.023438 3.43056091 -0.298 0.7661
B3 1 8.414063 3.43056091 2.453 0.0160
B4 1 9.664063 3.43056091 2.817 0.0059
BS 1 7.976563 3.43056091 2.325 0.0222
B6 1 0.789062 3.43056091 0.230 0.8186
B? 1 -20.085938 3.43056091 -5.855 0.0001
B 1l 7.804688 1.29663015 6.019 0.0001
EJ 1 4.210938 1.29663015 3.248 0.0016
G 1 3.507813 1.29663015 2.705 0.0081
H 1 3.507813 1.29663015 2.705 0.0081
JK b § -3.289063 1.29663015 -2.537 0.0128
FK 1 3.179688 1.29663015 2.452 0.0160
CE 1 -3.054688 1.29663015 -2.356 0.0206
BH 1 2.820313 1.29663015 2.175 0.0321
GK 1 2.820313 1.29663015 2.175 0.0321
HK 1 -2.742188 1.29663015 -2.115 0.0371
DG 1 -2.492188 1.2966301S -1.922 0.0576
BK 1 2.367188 1.29663015 1.826 0.0711
FG 1 -2.242188 1.2966301S5 -1.729 0.0870
BG 1 -2.023438 1.2966301S5 -1.561 0.1220
(o] 1 1.882813 1.29663015 1.452 0.1498
F 1 1.835938 1.29663015 1.416 0.1601
DH 1 1.789063 1.29663015 1.380 0.1709
A 1 -1.726563 1.29663015 -1.332 0.1862
AG 1 1.632813 1.29663015 1.259 0.2110
FH 1 1.507813 1.29663015 1.163 0.2478
BJ 1 -1.476563 1.29663015 -1.139 0.2577
J 1 1.398438 1.29663015 1.079 0.2836
AK 1 -1.351563 1.29663015 -1.042 0.2999
EK 1 -1.320313 1.2966301S -1.018 0.3112
AF 1 1.304688 1.29663015 1.006 0.3169
EG 1 -1.304688 1.29663015 -1.006 0.3169




Attack Case Max Adj Rsqr Day 30

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 27 39235.8359%4 1453.17911 7.856 0.0001
Error 100 18498.21875 184.98219
C Total 127 57734.05469
Root MSE 13.60082 R-square 0.6796
Dep Mean 42.91406 Adj R-sq 0.5931
c.v. 31.69314
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exrror Parameter=0 Prob > |T|
INTERCEP 1 42.914063 1.20215363 35.698 0.0001
Bl 1 -16.476563 3.18059953 -5.180 0.0001
B2 1 -1.726563 3.18059953 -0.543 0.5884
B3 1 9.585938 3.18059953 3.014 0.0033
B4 1 8.210938 3.18059953 2.582 0.0113
BS 1 8.335938 3.18059953 2.621 0.0101
B6 1 -2.226563 3.18059953 -0.700 0.4855
B7 1 -17.101563 3.18059953 -5.377 0.0001
B 1 7.554688 1.20215363 6.284 0.0001
FK 1 4.585938 1.20215363 3.815 0.0002
H 1 4.195313 1.20215363 3.490 0.0007
EJ 1 3.804688 1.20215363 3.165 0.0021
G 1 3.320313 1.20215363 2.762 0.0068
FG 1l -3.195313 1.20215363 -2.658 0.0092
BH 1 2.992188 1.20215363 2.489 0.0145
JK 1. -2.976563 1.20215363 -2.476 0.0150
BE 1 -2.382813 1.20215363 -1.982 0.0802
BG 1 -2.320313 1.20215363 ~-1.930 0.0564
CE 1 -2.148438 1.20215363 -1.787 0.0769
HK 1 -2.054688 1.20215363 -1.709 0.0905 -
(] 1 2.007813 1.20215363 1.670 0.0980
BK 1 1.929688 1.20215363 1.605 0.1116
GK 1 1.726563 1.20215363 1.436 0.1541
DH 1 1.664063 1.20215363 1.384 0.1694
EG 1 -1.554688 1.20215363 -1.293 0.1989
EK 1 -1.367188 1.20215363 -1.137 0.2581
AH 1l 1.320313 1.20215363 1.098 0.2747
AK 1 -1.242188 1.20215363 -1.033 0.3040
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No-Attack Case Max Adj Rsqr Day 1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 25 3270.13281 130.80531 6.423 0.0001
Error 102 2077.17188 20.36443
C Total 127 $347.30469
Root MSE 4.51270 R-square 0.6115
Dep Mean 264.21094 Adj R-sq 0.5163
Cc.V. 1.70799
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > IT|
INTERCEP 1 264.210938 0.39886979 662.399 0.0001
Bl 1 -1.210938 1.05531027 -1.147 0.2539
B2 1 -0.335938 1.05531027 -0.318 0.7509
B3 1 -0.710938 1.05531027 -0.674 0.5020
B4 1 -6.148438 1.05531027 -5.826 0.0001
BS 1 8.289063 1.05531027 7.855 0.0001
B6 1 -1.460937 1.05531027 ~1.384 0.1693
B7 1 1.664063 1.05531027 1.577 0.1179
AC 1 1.492188 0.39886979 3.741 0.0003
FG 1l -1.304688 0.39886979 -3.271 0.0015
J 1 -1.210938 0.39886979 -3.036 0.0030
AG : 1 -0.898438 0.39886979 -2.252 0.0264
cD 1 -0.835938 0.39886979 -2.096 0.0386
CF 1 -0.820313 0.39886979 -2.057 0.0423
A 1l -0.695313 0.39886979 -1.743 0.0843
CcJ 1l -0.679688 0.39886979 -1.704 0.0914
BF 1 -0.632813 0.39886979 -1.587 0.1157
H 1l 0.632813 0.39886979 1.587 0.1157
BD 1 0.601563 0.39886979 1.508 0.1346
FK 1 0.585938 0.39886979 1.469 0.1449
E 1 0.570313 0.39886979 1.430 0.1558
CK 1 -0.476563 0.39886979 -1.195 0.2349
F 1 -0.476563 0.39886979 ~1.195 0.2349
DG 1 ~-0.445313 0.39886979 -1.116 0.2669
FJ 1 -0.429688 0.39886979 -1.077 0.2839
G 1 0.414063 0.39886979 1.038 0.3017
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No-Attack Case Max Adj Rsqr Day 2

Analysis of Variance

Sum of Mean
DF Squares Square F Value
25 28873.00781 1154.92031 7.049
102 16711.73438 163.84053
127 45584.74219
12.80002 R-square 0.6334
212.86719 Adj R-sq 0.5435
6.01315
Paramster Estimates
Parameter Standard T for HO:
Estimate Exrror Parameter=Q Prob > |T|
212.867188 1.13137269 188.149 0.0001
-1.367188 2.99333078 -0.457 0.6488
5.382813 2.99333078 1.798 0.0751
-0.304688 2.99333078 ~0.102 0.9191
-2.867188 2.99333078 -0.958 0.3404
~-4.179688 2.99333078 -1.396 0.1656
-1.617188 2.99333078 -0.540 0.5902
4.007813 2.99333078 1.339 0.1836
12.195313 1.13137269 10.779 0.0001
-3.523438 1.13137269 -3.114 0.0024
-2.960938 1.13137269 -2.617 0.0102
2.492188 1.13137269 2.203 0.0299
-2.273438 1.131372%69 -2.009 0.0471
-2.226563 1.13137269 -1.968 0.0518
" 2.164063 1.13137269 1.913 0.0586
2.039063 1.13137269 1.802 0.0745
~1.773438 1.13137269 -1.568 0.1201
-1.726563 1.13137269 -1.526 0.1301
-1.585938 1.13137269 -1.402 0.1640
-1.570313 1.13137269 -1.388 0.1682
-1.398438 1.13137269 -1.236 0.2193
-1.320313 1.13137269 -1.167 0.2459
-1.304688 1.13137269 ~-1.153 0.2515
1.273438 1.13137269 1.126 0.2630
-1.257813 1.13137269 -1.112 0.2689
-1.117188 1.13137269 ~0.987 0.3258
B-2
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B-3

No-Attack Case Max Adj Rsqr Day 3
Analysis of Variance
Sum of Mean
a Source DF Squares Square F Value Prob>F
Model 28 22869.0937S 816.75335 6.936 0.0001
Exror 99 11657.89844 117.75655
C Total 127 34526.99219
- Root MSE 10.85157 R-square 0.6624
Dep Mean 210.00781 Adj R-3q 0.5669
c.V. 5.16722 ’
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Errox Parameter=0 Prob > |T|
INTERCEP 1 210.007813 0.95915225 218.951 0.0001
Bl 1 2.804688 2.53767833 1.105 0.2717
B2 1 6.554688 2.53767833 2.583 0.0113
B3 1 5.179688 2.53767833 2.041 0.0439
B4 1 3.242188 2.53767833 1.278 0.2044
BS 1 -5.445313 2.53767833 -2.146 0.0343
Bé6 1 -8.320312 2.53767833 -3.279 0.0014
B7 1 -4.132813 2.53767833 ~-1.629 0.1066
E 1 9.585938 0.95915225 9.994 0.0001
HK 1 3.304688 0.95915225 3.445 0.0008
AK 1 2.289063 0.95915225 2.387 0.0189
DH 1 -2.085938 0.95915225 -2.175 0.0320
DJ "1 1.914063 0.95915225 1.996 0.0487
D 1 1.914063 0.95915225 1.996 0.0487
A 1 -1.914063 0.95915225 -1.996 0.0487
BK 1 1.867188 0.95915225 1.947 0.0544
BF 1 -1.726563 0.95915225 -1.800 0.0749
EG 1 1.710938 0.95915225 1.784 0.0775
" AB 1 -1.695313 0.95915225 -1.768 0.0802
BJ 1 ~1.648438 0.95915225 -1.719 0.0888
H 1 1.601563 0.95915225 1.670 0.0981
BH 1 1.445313 0.95915225 1.507 0.1350
HJ 1 1.445313 0.95915225 1.507 0.1350
AH 1 1.335938 0.95915225 1.393 0.1668
DG 1 ~-1.242188 0.95915225 ~1.295 0.1983
DF 1 1.148438 0.95915225 1.197 0.2340
DK 1 1.117188 0.95915225 1.165 0.2469
AE 1 1.070313 0.95915225 1.116 0.2672
Ccb 1 0.992188 0.95915225 1.034 0.3034




No-Attack Case Max Ad) Rsqr Day 4

Analysis of Variance

Sum of Mean
Sourxce DF Squares Square F Value Prob>F
Model 29 18263.22656 629.76643 4.376 0.0001
Error 98 14103.20313 143.91024
C Total 127 32366.429%69
Root MSE 11.99626 R-aquare 0.5643
Dep Mean 205.22656 Ad} R-aq 0.4353
~n.V. $.84537
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 205.226563 1.06032953 193.550 0.0001
Bl 1 0.148437 2.80536825 0.053 0.9579
B2 1 ~-3.351563 2.80536825 -1.195 0.2351
B3 1 0.085937 2.80536825 0.031 0.9756
B4 1 1.773438 2.80536825 0.632 0.5288
BS 1 ~8.164063 2.80536825 -2.910 0.0045
Bé 1 -6.226563 2.80536825 -2.220 0.0288
B? 1 7.960938 2.80536825 2.838 0.0055
E 1 5.820313 1.06032953 5.489 0.0001
B 1 4.273438 1.06032953 4.030 0.0001
JK 1 -4.179688 1.06032953 -3.942 0.0002
J 1 2.507813 1.06032953 2.365 0.0200
(o] 1 -2.085938 1.06032953 -1.967 0.0520
cJ 1l -1.992188 1.06032953 -1.879 0.0632
BJ 1 1.742188 1.06032953 1.643 0.1036
D 1 1.710938 1.06032953 1.614 0.1098
GK l 1.554688 1.06032953 1.466 0.1458
EH 1 -1.507813 1.06032953 -1.422 0.1582
AG 1 -1.429688 1.06032953 -1.348 0.1807
DF 1 1.429688 1.06032953 1.348 0.1807
EJ 1 1.257813 1.06032953 1.186 0.2384
AD 1 -1.210938 1.06032953 -1.142 0.2562
RJ b 1.210938 1.06032953 1.142 0.2562
AC 1 -1.195313 1.06032953 -1.127 0.2624
DE 1 -1.195313 1.06032953 -1.127 0.2624
EK 1 1.101563 1.06032953 1.039 0.3014
CE 1 -1,085938 1.06032953 -1.024 0.3083
FK 1 -~1.085938 1.06032953 -1.024 0.3083
AB 1 -1.085938 1.06032953 -1.024 0.3083
BH 1 1.070313 1.06032953 1.009 0.3153
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No-Attack Case Max Adj Rsqr Day S

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 28 23635.90625 844.13951 5.315 0.0001
Error 99 15724.83594 158.83673
.C Total 127 39360.74219
Root MSE 12.60304 R-square 0.6005
Dep Mean 198.13281 Adj R-aq 0.4875
c.vV. 6.36091
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |TI
INTERCEP 1 198.132813 1.11396226 177.863 0.0001
Bl 1 -3.445313 2.94726712 ~1.169 0.2452
B2 1 -3.382813 2.94726712 -1.148 0.2538
B3 1 4.054688 2.94726712 1.376 0.1720
B4 1 9.429688 2.94726712 3.199 0.0019
BS 1 -1.695313 2.94726712 -0.575 0.5665
B6 1 -0.445313 2.94726712 -0.151 0.8802
B? 1 2.429688 2.94726712 0.824 0.4117
E 1 7.492188 1.11396226 6.726 0.0001
B 1 6.242188 1.11396226 5.604 0.0001
BH 1 -3.023438 1.11396226 -2.714 0.0078
cG 1 -2.585938 1.11396226 -2.321 0.0223
H 1 2.554688 1.11396226 2.293 0.0239
BJ 1 2.242188 1.11396226 2.013 - 0.0469
EJ 1 2.117188 1.11396226 1.901 0.0603
EF 1 2.023438 1.11396226 1.816 0.0723
AK 1 1.757813 1.11396226 1.578 0.1178
CK 1 1.742188 1.11396226 1.564 0.1210
Cc 1 1.742188 1.11396226 1.564 0.1210
BK 1 -1.726563 1.11396226 -1.550 0.1243
J 1 1.726563 1.11396226 1.550 0.1243
AC 1 1.648438 1.11396226 1.480 0.1421
FH 1 -1.570313 1.11396226 -1.410 0.1618
CE 1 -1.523438 1.11396226 ~1.368 0.1745
D 1 -1.445313 1.11396226 -1.297 0.1975
GH 1 -1.242188 1.11396226 -1.115 0.2675
HJ 1 1.210938 1.11396226 1.087 0.2797
AJ 1 1.164063 1.11396226 1.045 0.2986
AD 1 -1.132813 1.11396226 -1.017 0.3117
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No-Attack Case Max Ad] Raqr Day 6

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 36 23821.65625 661.71267 8.361 0.0001
BExrrot 91 7202.34375 79.14663
C Total 127 31024.00000
Root MSE 8.89644 R-square 0.7678
Dep Mean 188.50000 Adj R-sq 0.6760
c.V. 4.71960
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 188.500000 0.78634158 239.718 0.0001
Bl 1 -1.125000 2.08046427 -0.541 0.5900
B2 1 0.437500 2.08046427 0.210 0.8339
B3 1 5.500000 2.08046427 2.644 0.0097
B4 1 0.062500 2.08046427 0.030 0.9761
BS 1 0.500000 2.08046427 0.240 0.8106
B6 1 0.937500 2.08046427 0.451 0.6533
B7 1 -0.375000 2.08046427 -0.180 0.8574
E 1 7.640625 0.78634158 9.717 0.0001
B 1 5.843750 0.78634158 7.432 0.0001
BJ 1 3.359375 0.78634158 4.272 0.0001
CcJ 1 ~3.234375 0.78634158 -4.113 0.0001
H 1 2.796875 0.78634158 3.557 0.0006
FK 1 2.718750 0.78634158 3.457 0.0008
J 1 2.234375 0.78634158 2.841 0.0055
AK 1 2.234375 0.78634158 2.841 0.0055
A 1 1.828125 0.78634158 2.325 0.0223
C b § 1.781250 0.78634158 2.265 0.0259
AD 1 -1.750000 0.78634158 -2.225 0.0285
HK 1 1.671875 0.78634158 2.126 0.0362
EF 1 1.609375 0.78634158 2.047 0.0436
BE 1 1.546875 0.78634158 1.967 0.0522
AB 1 -1.546875 0.78634158 -1.967 0.0522
CF 1 -1.375000 0.78634158 -1.749 0.0837
BC 1 1.343750 0.78634158 1.709 0.0909
BG 1 -1.312500 0.78634158 -1.669 0.098S
BD 1 1.296875 0.78634158 1.649 0.1025
CE 1 -1.265625 0.78634158 -1.610 0.1110
GK 1 1.250000 0.78634158 1.590 0.1154
CH 1 -1.171875 0.78634158 -1.490 0.1396
EG 1 1.171875 0.78634158 1.49¢C 0.1396
EK 1 1.109375 0.78634158 1.411 0.1617
AE 1 1.062500 0.78634158 1.351 0.1800
AR 1 0.906250 0.78634158 1.152 0.2521
AG 1 0.859378 0.78634158 1.093 0.2773
K 1 «0.843750 0.78634158 -1.073 0.2861
CK 1l 0.843750 0.78634158 1.073 0.2861
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No-Attack Case Max Adj Rsqr Day 7

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 29 24463.53906 843.57031 4.838 0.0001
Error 98 17086.39063 174.35092
C Total 127 41549.92969
Root MSE 13.20420 R-square 0.5888
Dep Mean 185.52344 Adj R-sq 0.4671
c.V. 7.11727
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 185.523438 1.16709751 158.961 0.0001
Bl 1 0.226562 3.08784977 0.073 0.9417
B2 1 8.976563 3.08784977 2.907 0.0045
B3 1 -4.960938 3.08784977 -1.607 0.1114
B4 1 5.601563 3.08784977 1.814 0.0727
BS 1 -1.773438 3.08784977 -0.574 0.5671
B6 1 -10.835938 3.08784977 -3.509 0.0007
B7 1 2.914063 3.08784977 0.944 0.3476
B 1 7.882813 1.16709751 6.754 0.0001
E 1 5.273438 1.16709751 4.518 0.0001
EJ 1 3.132813 1.16709751 2.684 0.0085
CE 1 -2.835938 1.16709751 -2.430 0.0169
AG 1 2.148438 1.16709751 1.841 0.0687
H 1 1.960938 1.16709751 1.680 0.0961
DK 1 -1.945313 1.16709751 -1.667 0.0987
EH 1 -1.945313 1.16709751 -1.667 0.0987
AF 1 -1.898438 1.16709751 ~1.627 0.1070
CH 1 -1.898438 1.16709751 -1.627 0.1070
BD 1 1.882813 1.16709751 1.613 0.1099
BG 1 1.804688 1.16709751 1.546 0.1253
EK 1 1.773438 1.16709751 1.520 0.1318
HJ 1 1.601563 1.16709751 1.372 0.1731
G 1 -1.554688 1.16709751 -1.332 0.1859
BJ 1 1.398438 1.16709751 1.198 0.2337
AR 1 -1.398438 1.16709751 -1.198 0.2337
AK 1 1.382813 1.16709751 1.185 0.2389
DH 1 -1.351563 1.16709751 -1.158 0.2497
AJ 1 -1.226563 1.16709751 -1.051 0.2959
EF 1 1.179688 1.16709751 1.011 0.3146
EG 1 -1.179688 1.16709751 -1.011 0.3146
»
4
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No-Attack Case Max Ad)} Raqr Day 8

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 32 60094.15625 1877.94238 4.660 0.0001
Exrror 9% 38282.71875 402.97599
C Total 127 98376.87500
Root MSE 20.07426 R-square 0.6109
Dep Mean 171.40625 Adj R-sq 0.4798
c.V. 11.71151
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ITI
INTERCEP 1l 171.406250 1.77433083 96.603 0.0001
Bl 1 -1.281250 4.69443812 -0.273 0.7855
B2 1 -0.968750 4. ‘9443812 -0.206 0.8370
B3 1 -2.968750 4.59443812 -0.632 0.5286
B4 1 12.843750 4.69443812 2.736 0.0074
BS 1 -3.906250 4.69443812 -0.832 0.4074
B6 1 -6.406250 4.69443812 -1.365 0.1756
B7 1 -0.468750 4.69443812 -0.100 0.9207
J 1 9.687500 1.77433083 5.460 0.0001
BJ 1 9.406250 1.77433083 $.301 0.0001
EJ 1 8.187500 1.77433083 4.614 0.0001
GH 1 -4.703125 1.77433083 ~-2.651 0.0094
EH 1 -4.656250 1.77433083 -2.624 0.0101
B 1 4.593750 1.77433083 2.589 0.0111
BG 1 4.015625 1.77433083 2.263 0.0259
F b | 3.281250 1.77433083 1.849 0.0675
AG 1 3.250000 1.77433083 1.832 0.0701
BC 1 -2.796875 1.77433083 -1.576 0.1183
DH 1 2.765625 1.77433083 1.559 0.1224
BE 1 -2.656250 1.77433083 -1.497 0.1377
CE 1 -2.609375 1.77433083 -1.471 0.1447
DF 1 2.515625 1.77433083 1.418 0.1595
AK 1 2.500000 1.77433083 1.409 0.1621
HK 1 -2.390625 1.77433083 -1.347 0.1811
AJ 1 2.35937% 1.77433083 1.330 0.1868
BF 1 2.187500 1.77433083 1.233 0.2207
BK 1 2.171875 1.77433083 1.224 0.2240
JK 1 -2.140625 1.77433083 ~1.206 0.2306
D 1 -2.140625 1.77433083 ~-1.206 0.2306
G 1 2.10937S 1.77433083 1.189 0.2375
FJ 1 -2.031250 1.77433083 -1.145 0.2552
E 1 -~1.906250 1.77433083 -1.074 0.2854
DE 1 -1.828125 1.77433083 -1.030 0.3055%




Source

Model
Exror
C Total

Root MSE
Dep Mean

Cc.v.

Variable DF

INTERCEP

1l
1
1l
1
1
1
1
1
1
1l
1
1
1
1
1l
1
1
1
1
1
1
1l
1
1
1
1
1
1
1
1
1
1
1
1

No-Attack Case Max Adj Rsqr Day 9

Analysis of Variance

Sum of Mean
DF Squares Square F Value Prob>F
33 186442.28125 5649.76610 11.082 0.0001
94 47921.21875 $09.80020
127 234363.50000
22.57876 R-square 0.7955
151.06250 Ad) R-sq 0.7237
14.94663
Parameter Estimates
Parameter Standard T for HO:
Estimate Error Parameter=0 Prob > |T|
151.062500 1.99569889 75.694 0.0001
0.312500 5.28012295 0.059 0.9529
0.062500 5.28012295 0.012 0.9906
0.562%00 5.28012295 0.107 0.9154
6.375¢00 5.28012295 1.207 0.2303
-10.312500 5.28012295 -1.953 0.0538
1.753000 5.28012295 0.331 0.7411
$.500000 5.28012295 1.042 0.3002
27.609375 1.99569889 13.834 0.0001
14.6586250 1.99569889 7.344 0.0001
12.531250 1.99569889 6.279 0.0001
-8.296875 1.99569889 -4.157 0.0001
"5.671875 1.99569889 2.842 0.0055
-4.171875 1.99569889 -2.090 0.0393
3.812500 1.99569889 1.910 0.0591
-3.578125 1.99569889 -1.793 0.0762
-3.578125 1.99569889 -1.793 0.0762
3.562500 1.99569889 1.785 0.0775
-3.531250 1.99569889 -1.769 0.0801
3.500000 1.99569889 1.754 0.0827
-3.359375 1.99569889 =1.683 0.0956
-3.281250 1.99569889 -1.644 0.1035
3.171875 1.99569889 1.589 0.1153
2.984375 1.99569889 1.495 0.1382
2.921875 1.99569889 1.464 0.1465
2.890625 1.99569889 1.448 0.1508
-2.750000 1.99569889 -1.378 0.1715
-2.640625 1.99569889 ~1.323 0.1890
2.453125 1.99569889 1.229 0.2221
2.359375 1.99569889 1.182 0.2401
-2.203125 1.99569889 -1.104 0.2724
-2.109375 1.99569889 -1.057 0.2932
2.062500 1.99569889 1.033 0.3040
2.015625 1.010 0.3151

1.99569889
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No-Attack Case Max Adj Raqr Day 10

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 29 47393.41406 1634.25566 13.715 0.0001
Error 98 11677.39062 1.9.15705
C Total 127 59070.80469
Root MSE 10.91591 R-square 0.8023
Dep Mean 168.03906 Adj R-aq 0.7438
Cc.V. 6.49605 '
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > {T|
INTERCEP 1 168.039063 0.96483907 174.163 0.0001
Bl 1 -1.039063 2.55272423 -0.407 0.6849
B2 1 -0.601563 2.55272423 -0.236 0.8142
B3 1 =3.726563 2.55272423 -1.460 0.1475
B4 1 4.398438 2.55272423 1.723 0.0880
BS 1 1.148438 2.55272423 0.4590 0.6538
Bé 1 -1.039063 2.55272423 -0.407 0.6849
B7 1l 6.3984398 2.55272423 2.507 0.0138
B 1 15.257813 0.96483907 15.814 0.0001
J 1 $5.179688 0.964839%07 5.368 0.0001
EJ 1 4.835938 0.96483907 5.012 0.0001
R 1 3.367188 0.96483907 3.490 0.0007
BJ 1 3.117188 n.96483907 3.231 0.0017
F 1 3.039063 0.96483907 3.150 0.0022
AG 1 2.539063 0.96483907 2.632 0.0099
EG 1 2.179688 0.96483907 2.259 0.0261
EF 1 -2.117188 0.96483907 -2.194 0.0306
GH 1 -1.992188 0.96483907 -2.065 0.0416
E 1 1.820313 0.96483907 1.887 0.0622
AC 1 1.757813 0.96483907 1.822 0.0715
FG 1 -1.726563 0.96483907 -1.789 0.0766
AB 1 =1.601563 0.96483907 ~1.660 0.1001
FK 1 1.476563 0.96483907 1.530 0.1291
EK 1 -1.304688 0.96483907 ~1.352 0.1794
DE 1 - =1.257813 0.96483907 -1.304 0.1954
GK 1 1.210938 0.96483907 1.255 0.2124
AH 1 -1.179688 0.96483907 -1.223 0.2244
cG 1l -1.117188 0.96483907 -1.158 0.2497
HJ 1 1.101563 0.96483907 1.142 0.2564
BE 1 -0.992188 0.96483907 -1.028 0.3063
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No-Attack Case Max Adj Rsqr Day 11

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 25 65487.21875 2619.48875 14.037 0.0001
Error 102 19034.50000 186.61275
C Total 127 84521.71875
Root MSE 13.66063 R-square 0.7748
Dep Mean 173.54688 Adj R-sq 0.7196
c.V. 7.87143
Parameter Estimates
Paramster Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 173.546875 1.20744030 143.731 0.0001
Bl 1 4.203125 3.19458675 1.316 0.1912
B2 1 1.328125 3.19458675 0.416 0.6785
B3 1 -0.734375 3.19458675 -0.230 0.8186
B4 1 -2.484375 3.19458675 -0.778 0.4386
BS b 2.20312S5 3.19458675 0.690 0.4920
Bé 1 0.015625 3.19458675 0.005 0.9961
B? 1 1.015625 3.19458675 0.318 0.7512
B 1 19.781250 1.20744030 16.383 0.0001
H 1 5.296875 1.20744030 4.387 0.0001
J 1 ~-5.031250 1.20744030 =4.167 0.0001
E 1 3.296875 1.20744030 2.730 0.0075
HJ 1 -3.062500 1.20744030 -2.536 0.0127
K 1 -2.515625 1.20744030 -2.083 0.0397
AB 1 -2.343750 1.20744030 -1.941 0.0550
CK 1 1.875000 1.20744030 1.553 0.1236
AC 1 ~1.843750 1.20744030 -1.527 0.1299
cJ 1 -1.734375 1.20744030 ~1.436 0.1539
BH 1 -1.718750 1.20744030 -1.423 0.1577
GJ 1 1.718750 1.20744030 1.423 0.1577
BD 1 1.593750 1.20744030 1.320 0.1898
EK 1 1.515625 1.20744030 1.255 0.2123
BC 1 1.484375 1.20744030 1.229 0.2218
CcDh 1 1.218750 1.20744030 1.009 0.3152
FH 1 1.171875 1.20744030 0.971 0.3341
DE 1 -1.140625 1.20744030 -0.945 0.3471

B-11




No-Attack Case Max Adj Raqr Day 12

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 29 67332.09375 2321.79634 12.305 0.0001
Error 98 18491.7812S5 188.69165
C Total 127 85823.87500
Root MSE 13.73651 R-square 0.7845
Dep Mean 166.78125 Ad) R-aq 0.7208
c.V. 8.23624
Paramster Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 166.781250 1.21414722 137.365 0.0001
Bl 1 0.468750 3.21233161 0.146 0.8843
B2 1 4.593750 3.21233161 1.430 0.1559
B3 1 2.093750 3.21233161 0.652 0.5161
B4 1 -3.593750 3.21233161 -1.119 0.2660
BS 1 -1.906250 3.21233161 -0.593 0.5543
B6 1 ~0.093750 3.21233161 -0.029 0.9768
B7 1 4.406250 3.21233161 1.372 0.1733
B 1 20.265625 1.21414722 16.691 0.0001
H 1 4.656250 1.21414722 3.835 0.0002
GJ 1 2.796875 1.21414722 2.304 0.0234
E 1 2.609375 1.21414722 2.149 0.0341
GH 1 2.531250 1.21414722 2.085 0.0397
EG 1 2.515625 1.21414722 2.072 0.0409
AE 1 -2.468750 1.21414722 -2.033 0.0447
DG 1 -2.437500 1.21414722 -2.008 0.0474
AF 1 2.296875 1.21414722 1.892 0.061S
AC 1 -2.281250 1.21414722 -1.879 0.0632
DH 1 2.156250 1.21414722 1.776 0.0788
F 1 1.843750 1.21414722 1.519 0.1321
FG 1 -1.843750 1.21414722 -1.519 0.1321
FK 1l 1.703125 1.21414722 1.403 0.1639
HK 1 1.671875 1.21414722 1.377 0.1717
AD 1 -1.546875 1.21414722 -1.274 0.2057
cJ 1 -1.531250 1.21414722 -1.261 0.2102
G 1 -1.531250 1.21414722 -1.261 0.2102
A 1 1.515625 1.21414722 1.248 0.2149
BJ 1 1.312500 1.21414722 1.081 0.2823
RJ 1 -1.296875 1.21414722 -1.068 0.2881
DJ 1 1.296875 1.21414722 1.068 0.2881
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Source
Model
Error
C Total
Root MSE

Dep Mean
C.V.

Variable DF

INTERCEP

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

\
No-Attack Case Max Adj Rsqr Day 13
Analysis of Variance
Sum of Mean

DF Squares Square F Value

30 64144.60938 2138.15365 15.118

97 13718.44531 141.42727

127 77863.05469

11.89232 R-square 0.8238
160.41406 Adj R-sq 0.7693
7.41351
Parameter Estimates

Parameter Standard T for HO:

Estimate Error Parameter=0 Prob > [Tl
160.414063 1.05114250 152.609 0.0001

1.148437 2.78106165 0.413 0.6806

1.460937 2.78106165 0.525 0.6006
-1.039063 2.78106165 -0.374 0.7095
-0.539063 2.78106165 -0.194 0.8467

1.898438 2.78106165 0.683 0.4965
-7.351563 2.78106165 -2.643 0.0096

7.710938 2.78106165 2.773 0.0067
19.679688 1.05114250 18.722 0.0001

4.539063 1.05114250 4.318 0.0001

3.898438 1.05114250 3.709 0.0003

2.585938 1.05114250 2.460 0.0157

2.367188 1.05114250 2.252 0.0266

2.304688 1.05114250 2.193 0.0307

2.210938 1.05114250 2.103 0.0380

2.164063 1.05114250 2.059 0.0422
-2.101563 1.05114250 -1.999 0.0484
-1.929688 1.05114250 -1.836 0.0695

1.789063 1.05114250 1.702 0.0920

1.757813 1.05114250 1.672 0.0977

1.710938 1.05114250 1.628 0.1068
-1.632813 1.05114250 -1.553 0.1236

1.476563 1.05114250 1.405 0.1633
-1.382813 1.05114250 -1.316 0.1914
-1.335938 1.05114250 -1.271 0.2068

1.257813 1.05114250 1.197 0.2344
-1.242188 1.05114250 -1.182 0.2402
~-1.179688 1.05114250 -1.122 0.2645
-1.164063 1.05114250 -1.107 0.2708

1.148438 1.05114250 1.093 0.2773
-1.085938 1.05114250 ~1.033 0.3041
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No-Attack Case Max Adj Rsqr Day 14

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 25 55373.63281 2214.94531 10.956 0.0001
Error 102 20621.23437 202.16896
C Total 127 75994.86719
Root MSE 14.21861 R-square 0.7286
Dep Mean 153.82031 Adj R-aq 0.6621
c.V. 9.24365
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 153.820313 1.25675974 122.394 0.0001
Bl 1 7.617188 3.32507372 2.291 0.0240
B2 1 -1.695313 3.32507372 -0.510 0.6113
B3 1 -2.695313 3.32507372 -0.811 0.4195
B4 1 -0.195313 3.32507372 -0.059 0.9533
BS 1 0.179688 3.32507372 0.054 0.9570
B6 1 -3.445313 3.32507372 -1.036 0.3026
B7 1 -3.382813 3.32507372 -1.017 0.3114
B 1 17.945313 1.25675974 14.279 0.0001
H 1 5.867188 1.25675974 4.669 0.09201
BE 1 3.820313 1.25675974 3.040 0.0030
E 1 2.914063 1.25675974 2.319 0.0224
BD 1 2.507813 1.25675974 1.995 0.0487
DH 1 ~2.289063. 1.25675974 -1.821 0.0715
CcJ 1 ~-1.929688 1.25675974 -1.535 0.1278
EJ 1 =1.773438 1.25675974 -1.411 0.1613
DE 1 1.664063 1.25675974 1.324 0.1884
AG 1 1.648438 1.25675974 1.312 0.1926
AF 1 -1.554688 1.25675974 -1.237 0.2189
GH 1 1.507813 1.25675974 1.200 0.2330
F 1 1.445313 1.25675974 1.150 0.2528
JK 1 1.429688 1.25675974 . 1.138 0.2580
CH 1 -1.414063 1.25675974 -1.125% 0.2632
b 1 1.382813 1.25675974 1.100 0.2738
EK 1 1.304688 1.25675974 1.038 0.3017
HJ 1 -1.289063 1.25675974 ~-1.026 0.3075
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No-Attack Case Max Adj Rsqr Day 15

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 27 55465.58594 2054.28096 12.834 0.0001
Exror 100 16006.28125 160.06281
C Total 127 71471.86719
Root MSE 12.65159 R-square 0.7760
Dep Mean 144.32031 Adj R-sq 0.7156
c.V. 8.76633
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 144.320313 1.11825343 129.059 0.0001
Bl 1 -5.445313 2.95862047 -1.840 0.0687
B2 1 -0.132813 2.95862047 -0.045 0.9643
B3 1l -4.,570313 2.95862047 -1.545 0.1256
B4 1 2.054688 2.95862047 0.694 0.4890
BS 1 -0.195313 2.95862047 -0.066 0.9475
B6 1 0.804688 2.95862047 0.272 0.7862
B7 1 0.304688 2.95862047 0.103 0.9182
B 1 18.132813 1.11825343 16.215 0.0001
H 1 5.085938 1.11825343 4.548 0.0001
AE 1 2.945313 1.11825343 2.634 0.0098
A 1 2.757813 1.11825343 2.466 0.0154
AB 1 2.726563 1.11825343 2.438 0.0165
cDh 1 -2.304688 1.11825343 -2.061 0.0419
K 1 -2.257813 1.11825343 -2.019 0.0462
BJ 1 2.132813 1.11825343 1.907 0.0594
EH 1 -2.101563 1.11825343 -1.879 0.0631
BF 1 1.945313 1.11825343 1.740 0.0850
GK 1 -1.617188 1.11825343 -1.446 0.1513
FK 1 -1.507813 1.11825343 -1.348 0.1806
BH 1 1.460938 1.11825343 1.306 0.1944
BD 1 1.445313 1.11825343 1.292 0.1992
EK 1 -1.382813 1.11825343 -1.237 0.2191
DE 1 1.257813 1.11825343 1.125 0.2634
BC 1 1.226563 1.11825343 1.097 0.2753
DF 1 -1.210938 1.11825343 ~1.083 0.2815
J 1 1.195313 1.11825343 1.069 0.2877
CK 1 1.179688 1.11825343 1.055 0.2940
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No-Attack Case Max Adj Raqr Day 16

Analysis of Vazriance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 30 73586.54687 2452.88490 14.521 0.0001
Error 97 16384.75781 168.91503
C Total 127 89971.30469
Root MSE 12.99673 R-square 0.8179
Dep Mean 140.21094 Adj R-sq 0.7616
c.V. 9.26941
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP i 140.210938 1.14875962 122.054 0.0001
Bl 1 4.601563 3.03933227 1.514 0.1333
B2 1 -$5.523438 3.03933227 -1.817 0.0723
B3 1 -2.585938 3.03933227 -0.851 0.3970
B4 1 -0.960938 3.03933227 -0.316 0.7526
B5 1 2.539063 3.03933227 0.835 0.4055
B6 1 -0.085937 3.03933227 -0.028 0.9778
B7 1 0.726563 3.03933227 0.239 0.8116
B 1 21.523438 1.14875962 18.736 0.0001
H 1 3.804688 1.14875962 3.312 0.0013
BC 1 3.445313 1.14875962 2.999 0.0034
AJ 1 3.085938 1.14875962 2.686 0.0085
DK 1 2.648438 1.14875962 2.305 0.0233
CE 1 2.539063 . 1.14875962 2.210 0.0294
AB 1 -2.507813 1.14875962 -2.183 0.0314
BH 1 2.492188 1.14875962 2.169 0.0325
BE 1 2.148438 1.14875962 1.870 0.0645
G 1 2.117188 1.14875962 1.843 0.0684
EK 1 2.085938 1.14875962 1.816 0.0725
GK 1 -1.757813 1.14875962 -1.530 0.1292
E 1 1.679688 1.14875962 1.462 0.1469
FG 1 -1.679688 1.14875962 -1.462 0.1469
FR 1 1.632813 1.14875962 1.421 0.1584
HJ 1 -1.570313 1.14875962 -1.367 0.1748
FJ 1 -1.554688 1.14875962 -1.353 0.1791
DJ 1 1.460938 1.14875962 1.272 0.2065
CF 1 -1.445313 1.14875962 ~1.258 0.2114
EJ 1 -1.445313 1.14875962 -1.258 0.2114
BD 1 1.335938 1.14875962 1.163 0.2477
cD 1 1.320313 1.14875962 1.149 0.2532
cG 1 1.320313 1.14875962 1.149 0.2532
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' No-Attack Case Max Adj Rsqr Day 17

Analysis of Variance

B-17

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 40 74098.93750 1852.47344 13.442 0.0001
Errorx 87 11969.61719 137.81169
C Total 127 86088.55469
Root MSE 11.73932 R-square 0.8607
Dep Mean 135.3359%4 Adj R-aq 0.7967
Cc.vV. 8.67421
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 135.335938 1.03761931 130.429 0.0001
Bl 1 8.101563 2.74528266 2.951 0.0041
B2 1 2.164063 2.74528266 0.788 0.4327
B3 i 2.226563 2.74528266 0.811 0.4196
B4 1 -8.710938 2.74528266 -3.173 0.0021
BS 1 -6.585938 2.74528266 -2.399 0.0186
B6 1 0.351563 2.74528266 0.128 0.8984
B? 1 0.789063 2.74528266 0.287 0.7745
B 1 20.960938 1.03761931 20.201 0.0001
H 1 5.476563 1.03761931 5.278 0.0001
BJ 1 -2.539063 1.03761931 -2.447 0.0164
FR 1 2.382813 1.03761931 2.296 0.0241
BF 1 2.367188 1.03761931 2.281 0.0250
CE b 2.054688 1.03761931 1.980 0.0508
HJ 1 -2.023438 1.03761931 -1.950 0.0544
DH 1 2.023438 1.03761931 1.950 0.0544
. DJ 1 1.945313 .1.03761931 1.875 0.0642
cG 1 -1.914063 1.03761931 -1.845 0.0685
G 1 1.898438 1.03761931 1.830 0.0707
EG 1 -1.820313 1.03761931 -1.754 0.0829
JK 1 1.820313 1.03761931 1.754 0.0829
AH 1 -1.632813 1.03761931 -1.574 0.1192
BE 1 1.585938 1.03761931 1.528 0.1300
J 1 -1.539063 1.03761931 -1.483 0.1416
AF 1l -1.523438 1.03761931 -1.468 0.1457
GH 1 1.507813 1.03761931 1.453 0.1498
BG 1 1.492188 1.03761931 1.438 0.1540
BH 1 1.445313 1.03761931 1.393 0.1672
EJ 1 -1.414063 1.03761931 -1.363 0.1765
DK 1 1.398438 1.03761931 1.348 0.1812
FJ 1 -1.382813 1.03761931 -1.333 0.1861
EK 1 1.351563 1.03761931 1.303 0.1962
i )) 1 -1.304688 1.03761931 -1.257 0.2120
AJ 1 -1.273438 1.03761931 -1.227 0.2230
F 1 1.273438 1.03761931 1.227 0.2230
FK 1 -1.273438 1.03761931 -1.227 0.2230
AR 1 1.164063 1.03761931 1.122 0.2650
GK 1 ~1.148438 1.03761931 -1.107 0.2714
GJ 1 1.117188 1.03761931 1.077 0.2846
AB 1 -1.117188 1.03761931 -1.077 0.2846
EH 1 1.039063 1.03761931 1.001 0.3194




No-Attack Case Max Ad)j Rsqr Day 18

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 33 59024.25781 1788.61387 15.233 0.0001
Exrror 94 11037.23438 117.41739
C Total 127 70061.49219
Root MSE 10.83593 R-square 0.8425
Dep Mean 126.24219 Adj R-sq 0.7872
c.V. 8.58345
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 126.242188 0.95776998 131.808 0.0001
Bl 1 9.320313 2.53402118 3.678 0.0004
B2 1 -2.929688 2.53402118 -1.156 0.2506
B3 1 ~-2.492188 2.53402118 -0.983 0.3279
B4 1 -3.117188 2.53402118 -1.230 0.2217
BS 1 -2.179688 2.53402118 -0.860 0.3919
Bé 1 0.007813 2.53402118 0.003 0.9975
B7 1 0.070313 2.53402118 0.028 0.9779
B 1 18.273438 0.95776998 19.079 0.0001
BE 1 3.976563 0.95776998 4.152 0.0001
BC 1 3.304688 0.95776998 3.450 0.0008
CF 1 ~-2.898438 0.95776998 -3.026 0.0032
F 1 2.820313 0.95776998 2.945 0.0041
H 1l 2.726563 0.95776998 2.847 0.0054
BF 1 2.601563 0.95776998 2.716 0.0079
GJ 1 2.523438 0.95776998 2.635 0.0098
FK 1 ~2.382813 0.95776998 -2.488 0.0146
HJ 1 -2.304688 0.95776998 -2.406 0.0181
EF 1 -2.195313 0.95776998 -2.292 0.0241
BG 1 2.023438 0.95776598 2.113 0.0373
AE 1 1.914063 0.95776998 1.998 0.0486
CK 1 -1.867188 0.95776998 -1.950 0.0542
GH 1 1.757813 0.95776998 1.835 0.0696
EH 1 1.742188 0.95776998 1.819 0.0721
AK 1 1.601563 0.95776998 1.672 0.0978
BD 1 1.554688 0.95776998 1.623 0.1079
AD 1 -1.382813 0.95776998 -1.444 0.i521
J 1 -1.226563 0.95776998 -1.281 0.2035
JK 1 1.226563 0.95776998 1.281 0.2035
DK 1 1.195313 0.95776998 1.248 0.2151
DE 1 -1.148438 0.95776998 -1.199 0.2335
AJ 1 1.023438 0.95776998 1.069 0.2880
EG 1 -0.992188 0.95776998 -1.036 0.3029
cJ 1 -0.976563 0.95776998 -1.020 0.3105
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No-Attack Case Max Adj Rsqr Day 19

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 36 72925.03125 2025.69531 6.608 0.0001
Error 91 27895.43750 306.54327
C Total 127 100820.46875
Root MSE 17.50838 R-square 0.7233
Dep Mean 115.10938 Adj R-sq 0.6139
C.V. 15.21021
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |TI
INTERCEP 1 115.109375 1.54753652 74.382 0.0001
Bl 1 11.640625 4.09439679 2.843 0.00S5
B2 1 -5.546875 4.09439679 -1.355 0.1789
B3 1 3.203125 4.09439679 0.782 0.4361
B4 1 -12.609375 4.09439679 -3.080 0.0027
BS 1 8.390625 4.09439679 2.049 0.0433
B6 1 -2.296875 4.09439679 -0.561 0.5762
B7 1 -4.921875 4.09439679 -1.202 0.2324
B 1 12.656250 1.54753652 8.178 0.0001
E 1 -6.031250 1.54753652 -3.897 0.0002
J 1 -5.640625 1.54753652 -3.645 0.0004
BK 1 5.593750 1.54753652 3.615 0.0005
HK 1 5.421875% 1.54753652 3.504 0.0007
JK 1l 4.609375 1.54753652 2.979 0.0037
EJ 1 -4.562500 1.54753652 -2.948 0.0041
BC 1 4.328125 1.54753652 2.797 0.0063
K 1 4,265625 1.54753652 2.756 0.0071
CE 1 4.234375 1.54753652 2.736 0.007S
DK 1 4.062500 1.54753652 2.625 0.0102
GJ 1 3.937500 1.54753652 2.544 0.0126
EK 1 3.718750 1.54753652 2.403 0.0183
C 1 3.093750 1.54753652 1.999 0.0486
CK 1l -2.968750 1.54753652 -1.918 0.0582
EH 1 -2.750000 1.54753652 -1.777 0.0789
HJ 1 -2.734375 1.54753652 -1.767 0.0806
AC 1l -2.640625 1.54753652 -1.706 0.0914
D 1 -2.625000 1.54753652 -1.696 0.0933
BJ 1 -2.375000 1.54753652 -1.535 0.1283
DH 1 -2.375000 1.54753652 -1.535 0.1283
GK 1 1.843750 1.54753652 1.191 0.2366
DE 1 -1.828125 1.54753652 -1.181 0.2406
AG 1 -1.796875 1.54753652 -1.161 0.2486
CF 1 1.796875 1.54753652 1.161 0.2486
EG 1 -1.734375 1.54753652 -1.121 0.2654
BE 1l -1.703125 1.54753652 -1.101 0.2740
BH 1 -1.625000 1.54753652 -1.050 0.2965
BF 1 1.609375 1.54753652 1.040 0.3011
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No-Attack Case Max Adj] Rsqr Day 20

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 36 50581.93750 1405.05382 7.845 0.0001
Error 91 16298.03125 179.09924
C Total 127 66879.96875
Root MSE 13.38280 R-square 0.7563
Dep Mean 109.01563 Adj R-aq 0.6599
c.V. 12.27604
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 109.015625 1.18288328 92.161 0.0001
Bl 1 1.421875 3.12961498 0.454 0.6507
B2 1 4.109375 3.12961498 1.313 0.1925
B3 1 1.546875 3.12961498 0.494 0.6223
B4 1 -7.640625 3.12961498 -2.441 0.0166
BS 1 7.171875 3.12961498 2.292 0.0242
B6 1 -1.203125 3.12961498 -0.384 0.7016
B7 1 -8.140625 3.12961498 -2.601 0.0108
B 1 12.062500 1.18288328 10.198 0.0001
K 1 $.218750 1.18288328 4.412 0.0001
BK 1 4.765625 1.18288328 4.029 0.0001
CE 1 4.578125 1.18288328 3.870 0.0002
J 1 -4.156250 1.18288328 -3.514 0.0007
DG 1 -3.656250 1.18288328 -3.091 0.0026
BD 1 3.515625 1.18288328 2.972 0.0038
D 1 3.312500 1.18288328 2.800 0.0062
JK 1 3.171875 1.18288328 2.681 0.0087
DE 1 -3.171875 1.18288328 -2.681 0.9087
EJ 1 -3.109375 1.18288328 -2.629 0.0101
E 1 -2.875000 1.18288328 -2.431 0.0170
F 1 -2.750000 1.18288328 -2.325 0.0223
EK 1 2.703125 1.18288328 2.285 0.0246
BJ 1l -2.515625 1.18288328 -2.127 0.0362
FJ 1 2.390625 1.18288328 2.021 0.0462
BG 1 2.281250 1.18288328 1.929 0.0569
H 1 2.000000 1.18288328 1.691 0.0943
AC 1 1.968750 1.18288328 1.664 0.0995
FH 1 -1.921875 1.18288328 -1.625 0.1077
GH 1 1.718750 1.18288328 1.453 0.1497
A 1 1.671875 1.18288328 1.413 0.1610
cG 1 1.343759 1.12288328 1.136 0.2589
CK 1 -1.328125 1.18288328 -1.123 0.2645
FG 1 -1.312500 1.18288328 -1.110 0.2701
AE 1 1.281250 1.18288328 1.083 0.2816
BH 1 -1.265625 1.18288328 -1.070 0.2875
DF 1 =1.234375 1.18288328 -1.044 0.2995
FK 1 -1.203125 1.18288328 -1.017 0.3118
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Source

Model
Exrror
C Total

Root MSE
Dep Mean

Cc.V.

Variable DF

INTERCEP
Bl
B2
B3
B4
BS
B6
B?
B
H
BE
FJ
BK
FH
BH
K
HK
EH
CF

HJ
GH

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

No-Attack Case Max Adj Rsqr Day 21

Analysis of Variance

Sum of Mean
DF Squares Square F Value
39 66789.99219 1712.56390 10.945
88 13769.50000 156.47159
127 80559.49219
12.50886 R-square 0.8291
110.24219 Adj R-sq 0.7533
11.34671
Parameter Estimates
Parameter Standard T for HO:
Estimate Error Parameter=0 Prob > |T{
110.242188 1.10563751 99.709 0.0001
1.507813 2.92524189 0.515 0.6075
4.570313 2.92524189 1.562 0.1218
-3.304688 2.92524189 -1.130 0.2617
-9.304688 2.92524189 -3.181 0.0020
-2.054688 2.92524189 -0.702 0.4843
3.445313 2.92524189 1.178 0.2421
2.007813 2.92524189 0.686 0.4943
18.679688 1.10563751 16.895 0.0001
5.351563 1.10563751 4.840 0.0001
3.695313 1.10563751 3.342 0.0012
-3.304688 1.10563751 -2.989 0.0036
-3.023438 1.10563751 -2.735 0.0076
2.914063 1.10563751 2.636 0.0099
2.632813 1.10563751 2.381 0.0194
-2.273438 1.10563751 -2.056 0.0427
-2.257813 1.10563751 -2.042 0.0441
2.210938 1.10563751 2.000 0.0486
-2.179688 1.10563751 -1.971 0.0518
-2.132813 1.10563751 -1.929 0.0569
2.070313 1.10563751 1.873 0.0645
2.054688 1.10563751 1.858 0.0665
2.023438 1.10563751 1.830 0.0706
1.882813 1.10563751 1.703 0.0921
1.867188 1.10563751 1.689 0.0948
1.789063 1.10563751 1.618 0.1092
1.789063 1.10563751 1.618 0.1092
1.773438 1.10563751 1.604 0.1123
1.679688 1.10563751 1.519 0.1323
1.617188 1.10563751 1.463 0.1471
-1.570313 1.10563751 -1.420 0.1591
~1.414063 1.10563751 -1.279 0.2043
-1.398438 1.10563751 -1.265 0.2093
-1.367188 1.10563751 -1.237 0.2195
-1.304688 1.10563751 -1.180 0.2412
1.257813 1.10563751 1.138 0.2584
1.257813 1.10563751 1.138 0.2584
-1.210938 1.10563751 -1.095 0.2764
1.148438 1.10563751 1.039 0.3018
1.117188 1.10563751 1.010 0.3151
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No-Attack Case Max Adj Rasqr Day 22

Analysis of Variance

Sum of Mean
Socurce DF Squares Square F Value Prob>F
Model 31 49053.92969 1582.38483 10.881 0.0001
Error 96 13960.68750 145.42383
C Total 127 63014.61719
Root MSE 12.05918 R-square 0.7785
Dep Mean 102.94531 Adj R-sq 0.7069
Cc.V. 11.71416
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ITI
INTERCEP 1 102.945313 1.06589102 96.581 0.0001
Bl 1 0.117188 2.82008255 0.042 0.9669
B2 1 1.117188 2.82008255 0.396 0.6929
B3 1 -1.132813 2.82008255 -0.402 0.6888
B4 1 -1.820313 2.8200825S ~0.645 0.5202
BS 1 ~2.320313 2.82008255 ~-0.823 0.4127
B6 1 1.617188 2.82008255 0.573 0.5677
B7 1 0.742188 2.82008255 0.263 0.7930
B 1l 16.476563 1.06589102 15.458 0.0001
H 1 4.117188 1.06589102 3.863 0.0002
HJ 1 -3.789063 1.06589102 ~-3.555 0.0006
K 1 -3.664063 1.06589102 ~3.438 0.0009
BG 1 2.648438 1.06589102 2.485 0.0147
BK 1 -2.632813 1.06589102 -2.470 0.0153
AK 1 2.507813 1.06589102 2.353 0.0207
G 1 2.460938 1.06589102 2.309 0.0231
BC 1 1.960938 1.06589102 1.840 0.0689
EG 1 1.945313 1.06589102 1.825 0.0711
EH 1 1.882813 1.06589102 1.766 0.0805
HK 1 -1.773438 1.06589102 ~1.664 0.0994
FK 1 -1.726563 1.06589102 -1.620 0.1085
GH 1 1.695313 1.06589102 1.591 0.1150
BR 1 1.585938 1.06589102 1.488 0.1401
BD 1l 1.570313 1.06589102 1.473 0.1440
cG 1 1.476563 1.06589102 1.385 0.1692
FG 1 ~1.476563 1.06589102 ~1.385 0.1692
BF 1 1.445313 1.06589102 1.356 0.1783
AB 1l 1.335938 1.06589102 1.253 0.2131
C 1 -1.257813 1.06589102 -1.180 0.2409
E 1 -1.101563 1.06589102 -1.033 0.3040
AF 1 -1.101563 1.06589102 ~-1.033 0.3040
BJ 1 -1.085938 1.06589102 -1.019 0.3109
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No-Attack Case Max Adj Raqr Day 23

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 33 56804.19531 1721.33925 11.971 0.0001
Error 94 13516.92188 143.79704
C Total 127 70321.11719
Root MSE 11.99154 R-square 0.8078
Dep Mean 97.30469 Adj R-sq 0.7403
c.V. 12.32370
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 97.304688 1.05991244 91.804 0.0001
Bl 1 1.820313 2.80426473 0.649 0.5178
B2 1 4.382813 2.80426473 1.563 0.1214
B3 1 -6.179688 2.80426473 -2.204 0.0300
B4 1 -2.304688 2.80426473 -0.822 0.4132
BS 1 1.820313 2.80426473 0.649 0.5178
Bé 1 -0.054687 2.80426473 -0.020 0.9845
B7 1 2.5C7813 2.30426473 0.894 0.3735
B 1 18.00/813 1.05991244 16.990 0.0001
H 1 3.960938 1.05991244 3.737 0.0003
E 1l -3.007813 1.05991244 -2.838 0.0056
BH 1 2.882813 1.05991244 2.720 0.0078
AC 1 2.820313 1.05991244 2.661 0.0092°
HJ 1 -2.789063 1.05991244 -2.631 0.0099
EK 1 -2.460938 1.05991244 -2.322 0.0224
K 1 -2.242188 1.05991244 -2.115 0.0370
FG 1 -2.195313 1.05991244 -2.071 0.0411
FJ 1 -2.179688 1.05991244 -2.056 0.0425
BC 1 1.992188 1.05991244 1.880 0.0633
EG 1l 1.976563 1.05991244 1.865 0.0653
JK 1 1.851563 1.05991244 1.747 0.0839
BG 1 1.835938 1.05991244 1.732 0.0865
GJ 1 1.820313 1.05991244 1.717 0.0892
G 1 1.757813 1.05991244 1.658 0.1006
AE 1 1.710938 1.05991244 1.614 0.1098
F 1 1.570313 1.05991244 1.482 0.1418
AF 1 ~1.554688 1.05991244 -1.467 0.1458
DE 1 +=1.476563 1.05991244 -1.393 0.1669
FH 1 1.382813 1.05991244 1.305 0.1952
EF 1 -1.304688 1.05991244 -1.231 0.2214
EH 1 1.242188 1.05991244 1.172 0.2442
(o} 1 -1.179688 1.05991244 -1.113 0.2685
FK 1 -1.164063 1.05991244 -1.098 0.2749
DG 1 1.070313 1.05991244 1.010 0.3152
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No-Attack Case Max Adj Rsqr Day 24

Analysis of Variance

Sum of Mean

Scurce DF Squares Square F Value Prob>F

Model 38 50329.18750 1324.45230 9.226 0.0001

Error 89 12776.31250 143.55407

C Total 127 63105.50000

- Root MSE 11.98141 R-square 0.7975

Dep Mean 91.18750 Adj R-sq 0.7111
c.V. 13.13931
Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Exrror Parameter=0 Prob > |T|
INTERCEP 1 91.187500 1.05901662 86.106 0.0001
Bl 1 -2.000000 2.80189460 -0.714 0.4772
B2 1 8.062500 2.80189460 2.878 0.0050
B3 1 -7.562500 2.80189460 -2.699 0.0083
B4 1 -6.000000 2.80189460 -2.141 0.0350
BS 1 -4.250000 2.80189460 -1.517 0.1329
B6 1 4.250000 2.80189460 1.517 0.1329
B7 1 4.312500 2.80189460 1.539 0.1273
B 1 15.718750 1.05901662 14.843 0.0001
E 1 ~4.750000 1.05901662 -4.485 0.0001
FJ 1 -3.265625 1.05901662 -3.084 0.0027
K 1 -3.187500 1.05901662 -3.010 0.0034
AG 1 2.484375 1.05901662 2.346 0.0212
cJ 1 2.281250 1.05901662 - 2.154 0.0339
A 1l 2.218750 1.05901662 2.095 0.0390
J 1 2.125000 1.05901662 2.007 0.0478
AH 1 -2.109375 1.05901662 -1.992 0.0495
AB 1 2.093750 1.05901662 1.977 0.0511
H 1 2.015625 1.05901662 1.903 0.0602
EK 1 -1.875000 1.05901662 -1.771 0.0801
AC 1 1.875000 1.05901662 1.771 0.0801
EH 1 1.734375 1.05901662 1.638 0.1050
EG 1 1.578125 1.05901662 1.490 0.1397
AJ 1 -1.562500 1.05901662 -1.475 0.1436
BH 1 1.515625 1.05901662 1.431 0.1559
HJ 1 -1.515625 1.05901662 -1.431 0.1559
EJ 1 1.468750 1.05901662 1.387 0.1689
JK 1 1.468750 1.05901662 1.387 0.1689
CcD 1 -1.375000 1.05901662 -1.298 0.1975%
AE 1 1.375000 1.05901662 1.298 0.1975
GK 1 1.328125 1.05901662 1.254 0.2131
F 1 1.296875 1.05901662 1.225 0.2240
BG 1 -1.265625 1.05901662 -1.195 0.2352
FH 1 1.187500 1.05901662 1.121 0.2652
BD 1 1.187500 1.05901662 1.121 0.2652
FK 1 -1.171875 1.05901662 -1.107 0.2715
DG 1l 1.171875 1.05901662 1.107 0.2715
CH 1 -1.109375 1.05901662 -1.048 0.2977
GH 1 -1.062500 1.05901662 -1.003 0.3184
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No-Attack Case Max Adj Rsqr Day 25

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 29 39123.66406 1349.09186 7.724 0.0001
Exrror 98 17117.70313 174.67044
C Total 127 56241.36719
Root MSE 13.21629 R-square 0.6956
Dep Mean 84.57031 Adj R-sq 0.6056
c.V. 15.62758
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1l 84.570313 1.16816643 72.396 0.0001
Bl 1 -3.882813 3.09067787 -1.256 0.2120
B2 1 0.867188 3.09067787 0.281 0.7796
B3 1 -1.695313 3.09067787 -0.549 0.5846
B4 1 1.179688 3.09067787 0.382 0.7035
BS 1 -5.007813 3.09067787 -1.620 0.1084
Bé6 1 7.867187 3.09067787 2.545 0.0125
B7 1 0.617188 3.09067787 0.200 0.8421
B 1l 12.960938 1.16816643 11.095 0.0001
E 1 -5.039063 1.16816643 -4.314 0.0001
AC 1 4.179688 1.16816643 3.578 0.0005
BJ 1 3.507813 1.16816643 3.003 0.0034
AE 1 3.445313 1.16816643 2.949 0.0040
K - 1 -3.117188 1.16816643 -2.668 0.0089
J 1 2.617188 1.16816643 2.240 0.0273
BE 1 -2.148438 1.16816643 -1.839 0.0689
DH 1 2.085938 1.16816643 1.786 0.0772
FJ 1 -1.945313 1.16816643 -1.665 0.0991
CcG 1l 1.757813 1.16816643 1.505 0.1356
HJ 1 1.742188 1.16816643 1.491 0.1391
EJ 1 1.664063 1.16816643 1.425 0.1575
BK 1 -1.664063 1.16816643 -1.425 0.1575
CK 1 -1.617188 1.16816643 -1.384 0.1694
c 1 -1.585938 1.16816643 -1.358 0.1777
CJ 1 1.585938 1.16816643 1.358 0.1777
EK 1 -1.507813 1.16816643 -1.291 0.1998
BH 1 -1.320313 1.16816643 -1.130 0.2611
DJ 1 -1.273438 1.16816643 -1.090 0.2783
CH 1 -1.242188 1.16816643 -1.063 0.2902
A 1 1.179688 1.16816643 1.010 0.3150
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No-Attack Case Max Adj Rsqr Day 26

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 35 44069.59375 1259.13125 5.539 0.0001
Exrror 92 20912.37500 227.30842
C Total 127 64981.96875
Root MSE 15.07675 R~square 0.6782
Dep Mean 76.98438 Adj R-sq 0.5558
c.V. 19.58417
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 76.984375 1.33260912 57.770 0.0001
Bl 1 -1.546875 3.52575232 -0.439 0.6619
B2 1 7.140625 3.52575232 2.025 0.0457
B3 1 ~-5.609375 3.52575232 -1.591 0.1150
B4 1 -1.984375 3.52575232 ~0.563 0.5749
BS 1 -3.609375 3.52575232 -1.024 0.3087
Bé 1 6.015625 3.52575232 1.706 0.0913
B? 1 6.015625 3.52575232 1.706 0.0913
B 1 9.593750 1.33260912 7.199 0.0001
E 1 -8.125000 1.33260912 -6.097 0.0001
BE" 1 ~5.140625 1.33260912 -3.858 0.0002
BH 1 ~-4.187500 1.33260912 - =-3.142 0.0023
Lod 1 -3.7812590 1.33260912 -2.837 0.0056
BJ 1 3.453125 1.33260912 2.591 0.0111
BC 1 -2.953125 1.33260912 -2.216 0.0292
H 1 -2.546875 1.33260912 -1.911 0.0591
cJ 1l 2.453125 1.33260912 1.841 0.0689
J 1 2.406250 1.33260912 1.806 0.0742
DK 1l 2.390625 1.33260912 1.794 0.0761
GH 1 -2.281250 1.33260912 -1.712 0.0903
AK 1 2.234375 1.33260912 1.677 0.0970
FG 1 2.14062S 1.33260912 1.606 0.1116
BK 1 2.125000 1.33260912 1.595 0.1142
DJ 1 -2.125000 1.33260912 -1.595 0.1142
AJ 1 -2.062500 1.33260912 -1.548 0.1251
CcD 1 -1.937500 1.33260912 -1.454 0.1494
DE 1 -1.875000 1.33260912 -1.407 0.1628
AE 1 1.718750 1.33260912 1.290 0.2004
BD 1 ~1.656250 1.33260912 -1.243 0.2171
AC 1 1.625000 1.33260912 1.219 0.2258
EF 1 -1.609375 1.33260912 -1.208 0.2303
BG 1 ~-1.546875 1.33260912 -1.161 0.2487
EJ 1 1.453125 1.33260912 1.090 0.2784
D 1 -1.390625 1.33260912 -1.044 0.2994
AG 1 =-1.375000 1.33260912 -1.032 0.3049
JK 1 1.343750 1.33260912 1.008 0.3159
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No-Attack Case Max Adj Rsqr Day 27

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 36 50841.21875 1412.25608 3.819 0.0001
Error 91 33653.65625 " 369.82040
C Total 127 84494.87500
Root MSE 19.23071 R-square 0.6017
Dep Mean 64.90625 Adj R-sq 0.4441
c.V. 29.62845
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Exror Parameter=0 Prob > [T|
INTERCEP 1 64.906250 1.69977112 38.185 0.0001
Bl 1 -6.781250 4.49717167 -1.508 0.1350
B2 1 1.406250 4.49717167 0.313 0.7552
B3 1 0.593750 4.49717167 0.132 0.8953
B4 1 2.968750 4.49717167 0.660 0.5108
BS 1 -2.656250 4.49717167 -0.591 0.5562
Bé 1 4.968750 4.49717167 1.105 0.2721
B7 1 4.843750 4.49717167 1.077 0.2843
BK 1 7.671875 1.69977112 4.513 0.0001
E 1 -7.500000 1.69977112 -4.412 0.0001
BH 1 -6.328125 1.69977112 -3.723 0.0003
K 1 5.281250 1.69977112 3.107 0.0025
DE 1 -4.187500 1.69977112 -2.464 0.0156
J 1 4.171875 1.69977112 2.454 0.0160
BJ 1 3.406250 1.69977112 2.004 0.0480
(o] 1 -3.281250 1.69977112 -1.930 0.0567
AG 1 -3.281250 1.69977112 -1.930 0.0567
cJ 1 3.265625 1.69977112 1.921 0.0578
H 1 -3.218750 1.69977112 -1.894 0.0615
HJ 1 3.203125 1.69977112 1.884 0.0627
F 1 -3.171875 1.69977112 -1.866 0.0653
GH 1 -3.078125 1.69977112 -1.811 0.0735
CE 1 3.000000 1.69977112 1.765 0.0809
BE 1 -2.828125 1.69977112 -1.664 0.093%6
AE 1 2.796875 1.69977112 1.645 0.1033
EF 1 -2.640625 1.69977112 -1.554 0.1238
AK 1 2.609375 1.69977112 1.535 0.1282
GJ 1 -2.468750 1.69977112 -1.452 0.1498
cG 1 2.078125 1.69977112 1.223 0.2246
AC 1 2.015625 1.69977112 1.186 0.2388
CF 1 1.984375 1.69977112 1.167 0.2461
DF 1 1.984375 1.69977112 1.167 0.2461
FR 1 -1.984375 1.69977112 -1.167 0.2461
BF 1l -1.843750 1.69977112 -1.085 0.2809
JK 1 1.796875 1.69977112 1.057 0.2933
BC 1 -1.765625 1.69977112 -1.039 0.3017
DJ 1 -1.734375 1.69977112 -1.020 0.3103
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No-Attack Case Max Adj Rsqr Day 28

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 33 65266.31250 1977.7670S 6.025 0.0001
Error 94 30854.56250 328.24003
C Total 127 96120.87500
Root MSE 18.11740 R-square 0.6790
Dep Mean 54.59375 Adj R-sq 0.5663
c.V. 33.18584
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 54.593750 1.60136667 34.092 0.0001
Bl 1 -6.531250 4.23681796 -1.542 0.1265
B2 1 4.843750 4.23681796 1.143 0.2558
B3 1 0.468750 4.23681796 0.111 0.9121
B4 1 1.906250 4.23681796 0.450 0.6538
BS 1 1.718750 4.23681796 0.406 0.6859
Bé 1 -1.968750 4.23681796 -0.465 0.6432
B7 1 2.718750 4.23681796 0.642 0.522¢
BK 1 12.265625 1.60136667 7.659 0.0001
K 1 11.015625 1.60136667 6.879 0.0001
B 1 -5.187500 1.60136667 -3.239 0.0017
JK 1 4.937500 1.60136667 3.083 0.0027
BH 1 -4.515625 1.60136667 -2.820 0.0059
E 1 -3.890625 1.60136667 -2.430 0.0170
BJ 1 3.812500 1.60136667 2.381 0.0193
AF 1 -3.562500 1.60136667 -2.225 0.0285
CcJ 1 3.546875 1.60136667 2.215 0.0292
H 1 -3.421875 1.60136667 -2.137 0.0352
AG 1 -3.328125 1.60136667 -2.078 0.0404
DF 1 3.078125 1.60136667 1.922 0.0576
BC 1 -2.968750 1.60136667 -1.854 0.0669
EK 1 -2.593750 1.60136667 -1.620 0.1086
EH 1 -2.437500 1.60136667 -1.522 0.1313
GH 1 -2.328125 1.60136667 -1.454 0.1493
GJ 1 -2.296875 1.60136667 -1.434 0.1548
CK 1 -2.265625 1.60136667 -1.415 0.1604
FK 1 2.156250 1.60136667 1.347 0.1814
CE 1 2.078125 1.60136667 1.298 0.1976
G 1 -2.031250 1.60136667 -1.268 0.2078
J 1 1.953125 1.60136667 1.220 0.2256
A 1 1.921875 1.60136667 1.200 0.2331
AH 1 1.875000 1.60136667 1.171 0.2446
FH 1 -1.781250 1.60136667 -1.112 0.2689
AE 1 1.687500 1.60136667 1.054 0.2947
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No-Attack Case Max Adj Rsqr Day 29

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 33 68514.88281 2076.20857 8.060 0.0001
Error 94 24213.35937 257.58893
C Total 127 92728.24219
Root MSE 16.04958 R-aquare 0.7389
Dep Mean 49.38281 Adj R-sq 0.6472
c.V. 32.50033
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |TI
INTERCEP 1 49.382813 1.41859561 34.811 0.0001
Bl 1 -7.570313 3.75325120 ~-2.017 0.046S
B2 1 1.929688 3.75325120 0.514 0.6084
B3 1 -0.070313 3.75325120 ~0.019 0.9851
B4 1 3.304688 3.75325120 0.880 0.3808
B5 1 7.429688 3.75325120 1.980 0.0507
B6 1 ~1.132813 3.75325120 ~0.302 0.7635
B7 1 -0.445313 3.75325120 ~0.119 0.9058
BK 1 12.179688 1.41859561 8.586 0.0001
K 1 11.53906€3 1.41859561 8.134 0.0001
B 1 -8.570313 1.41859561 -6.041 0.0001
JK 1 5.539063 1.41859561 3.905 0.0002
BH 1 -3.804688 1.41859561 ~2.682 0.0086
AG 1 -3.445313 1.41859561 -2.429 0.0171
E 1 -3.414063 1.41859561 ~-2.407 0.0181
FK 1 2.804688 1.41859561 1.977 0.0510
DK 1 2.710938 1.41859561 1.911 0.0591
HJ 1 2.679688 1.41859561 1.889 0.0620
H 1 -2.632813 1.41859561 ~-1.856 0.0666
J 1 2.570313 1.41859561 1.812 0.0732
C 1 -2.523438 1.41859561 -1.779 0.0785
EK 1 -2.320313 1.41859561 -1.636 0.1053
CcJ 1 " 2.257813 1.41859561 1.592 0.1148
A 1 2.210938 1.41859561 1.559 0.1225
CK 1 -2.148438 1.41859561 -1.514 0.1333
BJ 1 2.148438 1.41859561 1.514 0.1333
AD 1 2.101563 1.41859561 1.481 0.1418
BC 1 -2.007813 1.41859561 -1.415 0.1603
DF 1 1.976563 1.41859561 1.393 0.1668
cG 1 1.945312 1.41859561 1.371 0.1735
AR 1 1.726563 1.41859561 1.217 0.2266
DE 1 1.695313 1.41859561 1.195 0.2351
G 1l -1.648438 1.41859561 -1.162 0.2482
DG 1 -1.570313 1.41859561 -1.107 0.2711
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No-Attack Case Max Adj Rsqr Day 30

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 28 67797.15625 2421.32701 8.837 0.0001
Error 99 27127.27344 274.01286
< Total 127 94924.42969
Root MSE 16.55333 R-square 0.7142
Dep Mean 45.22656 Ad3j R~-sq 0.6334
Cc.V. 36.60091
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 45.226563 1.46312183 30.911 0.0001
Bl 1 -5.289063 3.87105650 ~1.366 0.1749
B2 1 =1.039063 3.87105650 -0.268 0.7889
B3 1 0.648438 3.87105650 0.168 0.8673
B4 1 5.085938 3.87105650 1.314 0.1919
B5 1 7.023438 3.87105650 1.814 0.0727
B6 1 -1.226562 3.87105650 -0.317 0.7520
B7 1 =1.476563 3.87105650 -0.381 0.7037
K 1 11.617188 1.46312183 7.940 0.0001
BK 1 11.085938 1.46312183 7.577 0.0001
B 1 -9.617188 1.46312183 -6.573 0.0001
JK 1 6.617188 1.46312183 4.523 0.0001
) | 1 -4.023438 1.46312183 -2.750 0.0071
HJ 1 3.820313 1.46312183 2,611 0.0104
BJ 1 3.726563 1.46312183 2.547 0.0124
BH 1 -3.429688 1.46312183 -2.344 0.0211
J 1 3.414063 1.46312183 2.333 0.0216
E 1 -3.132813 1.46312183 -2.141 0.0347
EK 1 ~-2.585938 1.46312183 -1.767 0.0802
A 1 2.367188 1.46312183 1.618 0.1089
FK 1 2.164063 1.46312183 1.479 0.1423
cG 1 1.992188 1.46312183 1.362 0.1764
CcJ 1 1.992188 1.46312183 1.362 0.1764
BF 1 ~1.945313 1.46312183 -1.330 0.1867
GJ 1 -1.773438 1.46312183 -1.212 0.2284
G 1 -1.742188 1.46312183 ~-1.191 0.2366
k3 1 -1.695313 1.46312183 -1.159 0.2494
BD 1 -1.554688 1.46312183 -1.063 0.2906
GH 1 1.476563 1.46312183 1.009 0.3153
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Daily Metamodels, Attack Case
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Table C.4 Blocking Effects, All Attack Case Models

C-10




Daily Metamodels, No-Attack Case

D

A

911 ¥E OV T'e 96~ PA 4 0e
ve- 91T 9¢ 9% Ve 9% 9% 1414 63
£e 9¢ 01t ¥'e- 66 29 9'%9 8%
£¢- €9 ¢¥ Tt c¢ 9L £e- 679 L2
¥Z 9% 18- g'e- 96 0LL 92
¥'e (A 4 1t~ 9% 0'9- 0'el 9'y8 92
1% 9% 61 1% |28 1% 0¢ 8y L1 22 (216 (4
8% A oy 0¢- 08t £L6 €2
9% Le Iy 9¢ 991 6201 |%e
0% £'e ¥9 L8t ¢o1T 113
¢9 3V 82 6% £¢ 121 0601 |03
ey 99 0'9- e L3l 1911 |61
61 LS 8% €81 ¢921 |81
e 61 012 €981 |LT
1e 9 8¢ 1T 912 oy |91
67 L'e |€% 19 181 8¢ |E€¥FT |91
69 6% 6Ll 8691 |¥1
(&4 171G 61- 9% 6t L'61 ¥091T |€E1
e 9% £ L'y 9% €02 8991 |21
€% |9% 09 €9 £e 861 eLT 1T
9% 81 29 ¥¢ 0e 81 g9t 0891 |01
9'LS £'8- 191 |6
€t L6 £e '3 4 VILT |8
| &4 £'q 6L g8t |L
(&4 81 91 2 8% 9L 8T €9 871 (9881 |9
9% 9L (4 1861 |9
9T 89 1% €% 2902 |¥
£e L1 96 671 6'1- |001IZ |
(44 (A4 02 |631% |2
60" 91 21 L0 |1T¥9C |1
MV fV HV DV AV 3V Qv OV gV | X P H 9 4 T dd O d9 V
Prd sy saawdgbgidg gIv sod Acoey YAAY (M | Pnd sy sawdg bR dg gIv sied A0dey HAAV UM NV |deaumuf |Ava
1PIM UorRBISUT JUNY %04 UK

01°0 =8yd[V ‘@88)) }0eNy-ON ‘s[opowrelsy h:an_ T'd °1qelL

D-1




[ ] \4 b (]
Tty L's ve 0t
L2 (XA} 8¢ 6¢
1€ Qe 1A - 0 |82
‘A . £t 0¢ 'L ¥e €9 LZ
e 9% 9 TV 19 0t |92
12 g9¢ 1'e 92
£e 1 (4
62 0% |t2
9T 92 0% 132
TT : {18l 97 L'e 12
L'g- z¢- 9y 8y 9% €% q'e 02
1 %4 0'¢- (4 4 99 . e |61
61 6°C 0 92 0¥y £¢ |81
61 02 61 1% 9T Ve AL
97 9T 9% 1% ve |9t
o A | &4 i § a1
£'e 8¢ 97 148
9% ¥ 2¢ gl
¢C VT (4}
11
1t ot
8¢ 9zl 6
1 4] oy 8
8¢ L
A e 91 9
9 ¢ 0¢ ]
02 4
61 17T 61 9T Lt g
ge €T 2T (4
8°0- 8°0- 1
Mdd f/d Hd D0 40 dd[dD0 O HO DO 40 @D ad |9 rd HY HDd 49 34 dd Od (Aed
Py ey sanwdg b dg gl sisd | ong ey sanudg bywdg gy weg  Aosey | [end s sawdg bidg gIV  misd  Aodey HAAV
I UOTIRINU] ACORY A uoneIul Yaav s voyReInuy (it

penunuo) 1'( e[qeL

D-2




9'9 8¢ 92 oe
99 L'e 872 63
6y 8¢ 82
(4 ¢ Le

93

92

£e 61- ¥e

8°C- (A Al cC |9C 0% €T

8¢ 61 61 (A

1% {83 1% | &4 €€ 67 A4 18
(4] | &4 LS Tt 174
9% _|¥9 LT 6'¢ L' 9% 83 61
£ gz 81 (¥ye L1 2% |91

0e ¥e JA |

12 91

1 qt

14

£ 141

8% 9% 92 et

1€ 11

0% Lt 8y ¢C 1% 01

A Lyl L'e 6

Ly 8 Ly 8

1€ L

L1 L'e 9T |9

' 1e 02 {9

(4 o ¥

1'% L1 13

oe 92 ']

g1 1
A |dH FH |MD M HOIMd 4 HI HI|NT rA HA DA J9 |Aeq

P jond g | ond sy sauwdg] eng  weiy seuwdg b adg| ang iy seawdg bz dg g1v
i | ‘Wim seredg him uoppwanu by Wg ‘M ORI g GV ApIM UOIPBINU| 810

penunuo) 1'q oqeL

D-3



911 ¥E OV 1e 96- 29 |0E

143 911 Ve 98- 1414 6%

9'g- 011 6¢- 29 9%9 82

€9 TPy QL- 6'%9 X4

18- 8- 96 O'LL 93

ye (44 1¢- 9% 09 0'ct 978 92

92 Z¢- 8y Lqr Z16 44

872 (184 o€ 0’8t e'L6 €2

9% Le Iy 92 991 6601 |32
¥9 L8t o1t |18

29 TV 8% 6% ¢£¢ 131 0'601 |02

gy 99 09 _Lal 1911 |61

L' 8% €81 2921 (81

q'9 013 €981 |LT

1e Q7 8t 912 201 |91
6% L'e 18 I'ST 8¢ |E¥PP1 |[ST

6'9 63 6Ll 89l ¥

¥ 6'¢ WA y091 |€1

Ly 14174 8991 (21

g% 09 €9 €t 861 geLY |11

9T 29 ¥¢e 0t £91 0891 |01

9L £'8- 1'1ST |6

L'e 9y ViLl |8

£9 _6L gas8t L

A4 81 2¢ 87 9L 8T 89 81 9881 |9
9% 9L 29 - JUeet |9

9% 8'g i 4 2'%0%2Z ¥

96 . 0012 |©

231 621 |2

60 91 (AN gy |1

X% fV HV DV 4v 3V Qv Dv avl X ff H P 4 ® d D d9 V .
Py s sawdg bug @IV sed A0y ¥AgV (I | eod  esik seawdg bpidg IV mied Acooy HAAY i NV | Wdeaumur JAva

I UoppRINIUY TLNY Pl UK

0°0 = eyd[y ‘ese)) }oey-oN ‘s[epowreioy A[req z'( o[98




D-5

T'lT L'Ee ¥¢- 0¢
(44" 8'¢- 63
ge £3gl gy 82
(4 Ll €9 L2
¢ TV 1g- 0e 192
9¢ 9¢
11
6¢ €2
92 9% (44
0¢ 9% L't 12
Le (A B 4 8y 9% q9'e 02
'y (A4 99 g% |61
6¢ 92 0% £e¢ |81
qc 1 &1 L1
97 9T 9T ve (ot
g1
8¢ 148
92 ¥e g1
a
11
| ot
i EA 6
¥'6 L1 4 1)
8¢ L
R ¥e 9
9C oe- g
1 4
14
qe- 4
. . 1
Ad M HO DA 4d FA MDD O HDO DO 40 3D a@|yd rd HAd D9 J9 HWd agd 04 |Leq
png sy soedg byydg gIY wieg [ ong ey sawdg byadg gly siad Acey | 9nd  msyy seawdg bgadg gy sisd  Acvey ¥AHV
Y1 UOII0SINUY Ay Pl uopeINu] yagav M uoyoRIouy (114

penunuog Z'q °l4eL




9’9 8t oe
99 6%
6y g8t 74
Lg

92

9¢

£e- ve

8¢ 9'Z €3¢

8¢ [+

£ 67 12

(4 Lre T1e 02
9y ¥9 6'¢ Le 9% 61
e 9T Ve cC |81

¥e LI

91

Q1

¥

£ £l

, 8T (48

1'¢- 11

3 4 2% 1% |01

L'l L9 6

L'y c8 L'V 8

1'e L

L' 9

g

4 4

£ €

0e- ) 97 (]

el 1
MP [MH FPH XD M HO[(Md £ HAd DI |Nd rA HI DI JT [Aeqd

Png lwnd e | vnd sy sawdg| ng s seawdg b ydg) png sy seaedg by g g1V
wN| s soaedg him vorpwamug by 1dg I vorRRINU] STV 1M UOIORINNUY BA0g

penunuo) Z'(J olqeL,




911 9°6- 29y |og
11 98- ver |62
011 9 %3 8¢
€9 gL 6'¥%9 Lz
18- 9'6 oLL 92
(4 4 0'9- 0'tl 9'¥8 92
8y L9t (A (] e
oy 0’81 £'L6 £e
L'e- Ty 991 6'C01 |%%
¥9 L8t | 011 |13
29 181 0601 |07
9'9- 09 L3l 1911 |6t
£81 921 |81
99 012 £eer (L1
8t 912 Z0¥1L |91
19 181 18 4 4 S [+1 ¢
6'9 6LT 8’691 ¥t
9y 8t X y091 |€t
Ly £02 8991 |21
09 €9 8’61 9eLT 1
29 ¥e 0¢ €91 0891 01
9Le €8 1191 |6
L6 3 4 ¥VILL |8
€9 6L 9981 |L
8% 9L 89 88T |9
oL Z9 1861 |9
8'9 14 4 %z ¥
96 0012 |&
F A4S 67TIe |
91 (A cyie |1
&V £V HV DV 4V 3V aQv DV avi MY ¢ H P 4 T a D2 g€ vV
Pnd sy suwdg byidg GIV  s19g A0y YAHY U | P4 eepy swwdg bgwdg SV sed Acey gadv 4 v | Weoanu [xva

YN VIR LY

00)3 Ui

10°0 = eyd[v ‘es8)) Jovny-oN ‘s[opowreisjy £jreq €'q °lqul



T 0¢
(A 62

€21 82

L't €9 L2

1a Te- 92

gg gg

Ve

€2

%

L'e 12

o'y 8'¥ 0z

9'g |61

0F £e |8t

L

91

. q1

8¢ gt

g1

A

1

1§ ot

921 6

6 8

L

TE Ve 9
g

¥

¢

ge- z
1
Wd rd HA DA 4d A4 |¥0 0 HO DO 40 @0 4O |%d rd HA Dd 44 @d ad od |Aed

[ong sy souwdg b g g1V sied

“qIIM uopIRIRIUY ACORY

P s sauwdg byydg GV weg A0y

‘i uorpesau] Yaayv

Pag sy sawdg byidg SIV w9d A0y YAAV

M UopoRING} [i1g

penunuo) g °Iqel,

D-8




(=4
(]

99 65
82
LZ
92
14
¢4
4
g8'e- 22
| ¢4
02
¥'q 61
81
L
91
qt
41
el
41
1
12 4 18
Ly 6
28 8
L
L'g 9
g
(A o 1 4
£t 5
4
1
P (MH FH (M9 M HOIJd 4 HI DI [Nd rA HA DA J9 [Aeq
P | ong sy | ong sy soasdg] engd  sepy seawdg b idg) reng sy sawdg by g g1V
i) s saaedg| i asug by Wg Yim vorpRINU] STV UMM UOIPRINIUY Sdag

penuyuo) g °Iq8L

D-9




Table D.4 Blocking Effects, All No-Attack Case Models

-1.2
-14
2.8
0.1
-3.4
-1.1
0.2
-1.3
0.3
-1.0
4.2
0.5
7.6
7.6
5.4
4.6
8.1
9.3
11.6
14
1.5
0.1
1.8
-2.0
-3.9
-1.5
-6.8
-6.5

-0.3
5.4
6.6

-3.4

-3.4
0.4
9.0

-1.0
0.1

-0.6
1.3
4.6

-1.7

-1.7

-0.1

-5.5
2.2

-2.9

-5.5
4.1
4.6
11
44
8.1
0.9
71
14
4.8

-0.7
-0.3
5.2
0.1
4.1
5.5
-5.0
-3.0
0.6
-3.7
-0.7
2.1
-2.7
-2.7
-4.6
-2.6
2.2
-2.5
3.2
1.5
-3.3
-1.1
-6.2
-1.6
-1.7
-5.6
0.6
0.5

12.8

-12.6
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m
B5 B6 B7 ﬂ
8.3 -1.5 1.7
-4.2 -1.6 4.0
-5.4 -8.3 4.1
-8.2 -6.2 8.0
-1.7 -0.4 24
0.5 0.9 0.4
-1.8 -10.8 29
-3.9 -6.4 -0.5
10.3 1.8 5.5
1.1 -1.0 6.4
2.2 0.0 1.0
-1.9 -0.1 4.4
0.2 -3.4 -3.4
0.2 -3.4 -3.4
-0.2 0.8 0.3
2.5 -0.1 0.7
-6.6 0.4 0.8
-2.2 0.0 0.1
8.4 -2.3 -4.9
7.2 -1.2 . -8.1
-2.1 3.4 2.0
-2.3 1.6 0.7
1.8 -0.1 2.5
-4.3 4.3 4.3
-5.0 7.9 0.6
-3.6 6.0 6.0
-2.7 5.0 4.8
1.7 -2.0 2.7
7.4 -1.1
7.0 -1.2
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Table E.2 Probabilities for ¢ Statistic, Day One, No-Attack

Number of Variables
in Model

Probability > ITI

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27 -

0.00159
0.00427
0.00633
0.03857
0.06113
0.06270
0.09719
0.10230
0.12565
0.12332
0.14064
0.14912
0.15822
0.23682
0.23595
0.26734
0.28404
0.30168
0.33965
0.36006
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Attack Case, Day 24
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Table H.1 Interceﬁt Parameters, Attack Case

Intercept Parameter

Day

1 89.6

2 83.2

3 104.3

4 - 92.3

5 102.1

6 166.2

7 148.6

8 145.7

9 137.3

10 132.3

11 127.1

12 121.2 ;
13 116.5 |
14 110.3 |
15 106.8 ‘
16 100.0
17 95.9 |
18 89.0 |
19 86.5 |
20 79.2

21 74.5

22 69.6

23 65.7

24 62.1

25 59.0

26 55.6

27 51.6

28 48.7

29 46.6

30
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Table 1.1 Intercept Parameters, No-Attack Case

Day Intercept Parameter
« 1 264.2
2 212.9
3 210.0
. 4 205.2
5 198.1
6 188.5
7 185.5
8 1714 |
9 151.1
10 168.0
11 173.5
12 166.8
13 160.4
14 153.8
15 144.3
16 140.2
17 135.3
18 126.2 |
19 115.1
20 109.0
21 110.2
22 102.9
23 97.3
24 91.2
25 84.6
26 77.0
27 64.9
28 54.6
29 494
30 45.2

~

I-31




Attack Case, 5%, Day1
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No-Attack Case, 5%, Day28
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No-Attack Case, 5%, Day29
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No-Attack Case, 5%, Day30
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No-Attack Case, 10%, Day28
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No-Attack Case, 10%, Day29
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