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ABSTRACT

The overall software structure of the Naval Postgraduate School Autonomous

Underwater Vehicle (NPS AUV) is the Rational Behavior Model (RBM), a tri-level,

multilingual software architecture which is based on three levels of abstraction called the

Strategic, Tactical, and Execution level. In this study, interests were focussed on the

implementation of the Strategic level in CLIPS such that it exhibits the same behavior as

the already existing implemenation written in Prolog.

As a tool for translating a backward chaining version of the Strategic level software

(like Prolog) to a forward chaining one (like CLIPS), the State Transition Diagram With

Path Priority (STDWP) was introduced in this study. Specifically, STDWP allows

graphical translation between backward and forward chaining versions of the Strategic

level.

This research shows empirically that the translation is always possible and that the two

versions hold logical and behavioral equivalence. Thus, STDWP bridges two approaches

in robot control which are based on forward and backward chaining.
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L INTRODUCTION

A. BACKGROUND

The link between intelligent behavior and mission planning and control of

autonomous vehicles is one of the major issues in research efforts of artificial intelligence

and robotics. It is apparent that the creation and incorporation of "intelligence" for truly

autonomous vehicles that are able to conduct a mission fully independently requires serious

considerations about the software architecture. One solution is the Rational Behavior

Model (RBM), a multi-paradigm, tri-level architecture for the control of autonomous

vehicles [Ref. I]. The attribute "tri-level" is based on the three levels of abstraction, namely

the strategic (top), tactical (middle), and execution (bottom) level. "Multi-paradigm", on

the other hand, describes the utilization of different programming languages in order to

exploit their strengths and to avoid their weaknesses wherever it is appropriate.

The RBM architecture has been implemented for the Naval Postgraduate School

Autonomous Underwater Vehicle Model II (NPS AUV II) and has been successfully run in

simulation using one workstation for each level and being connected via ethernet.

Initially, the three levels of RBM hav, been implemented in Prolog (strategic level),

Classic-Ada (tactical level), and C (execution level). The hardware onboard the NPS AUV

currently consists of two Gespac computers with an 80386/MS-DOS and a 68030/OS-9

processor. Unfortunately, there does not exist a PC-version for Prolog that provides an

appropriate interface to Classic-Ada. The study presented here provides one solution for

this problem. This is, as a major part of this study, the translation from Prolog to CLIPS has

been accomplished for the strategic level. The translated CLIPS implementation of the

strategic level now works with a tactical level which has been completed in Ada in another

study [Ref. 2].



B. OBJECTIVES

In this thesis, interests were focused on the implementation of the strategic level by

rule-based programnming languages and on the investigation of a translation between two

programming languages whose production systems are based on backward and forward

chaining, respectively, will exhibit the same behavior on mission control and execution of

robust vehicles, such as the NPS AUV U. In other words, is it possible to achieve both

logical and behavioral equivalence of two different chaining implementations for the

strategic level?

C. SCOPE

This study was specifically focussed on three major tasks:

(1) Discussing the graphical representations of rule based programming languages; in

particular, AND/OR goal trees for a language with a backward chaining inference engine

and State Transition Diagrams With Path Priority (STDWP) for a language with a forward

chaining inference engine. The main emphasis is put on the discussion of STDWP since it

was introduced newly in (Ref. 3].

(2) Applying both graphical representations as tools for the implementation in the

corresponding programming language.

(3) Investigating the logical and behavioral equivalence of the example programs and

the CLIPS implementation for the RBM's strategic level for the NPS AUV.

D. ORGANIZATION

This study contains two major parts:

The first part covering Chapters II and Ill, discusses state diagrams and state tables in

general and the background of STDWP's. The STDWP is introduced and presented as a

tool for graphical representation of a forward chaining rule-based system. Its terminology

and definitions are explained as well in this context.

The second part covering Chapter IV, applies the STDWP as a means of translating

backward and forward chaining implementations from basic to more complicated
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examples. Finally, the translation of the RBM's strategic level for the NPS AUV from a

backward to a forward chaining implementation is presented.

The summary and conclusions are made in Chapter V, where also an outlook on the

STDWP's general applicability is ventured and where challenges on future research are

discussed.



IL STATE TABLES AND STATE DIAGRAMS IN GENERAL

State tables and state diagrams have been mostly used in switching theory and for logic

design to represent sequential systems, such as logic circuits. Therefore, a brief overview

of logic circuits and of available tools for designing such circuits are presented in the

following sections. State tables and state diagrams will be discussed in particular since they

constitute the background for "State Transition Diagrams with Path Priority" as will be

shown in Chapter IlI.

A. OVERVIEW

Logic circuits are basically classified into two groups, namely combinational and

sequential circuits. [Ref. 2] [Ref. 3]

A combinatorial circuit is defined as a circuit whose output at any time is a function

of its input signals without regard to previous inputs; i.e., a domestic lighting circuit

controlled by an ordinary tumbler switch turns the light "on" if the switch is up, it turns it

"off' if the switch is down. 1

A sequential circuit is defined as a circuit whose output at any given time is determined

by the order in which the input signals are applied; i.e., a lighting circuit controlled by a

cord-pull. The effect of pulling the cord depends on the state the circuit is currently in; if

the light is "on" then pulling the cord will turn it "off', if the light is "off', the light will be

turned "on".

Sequential circuits are further classified into

(1) event-driven,

(2) clock-driven, and

(3) pulse-driven circuits,

1. Combinational circuits are not further discussed in this study.
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ewch of which can be determined in more detail as a cyclic or an non-cyclic circuit

depending on the fact whether the circuit returns to its initial state or not.2

Several methods are available to design and to describe sequential circuits:

(1) Verbally, by the means of word statements,

(2) Diagrammatically, by the means of state diagrams,

(3) Tabularily, by the means of state tables, and

(4) Algebraically, by the means of Boolean statements, loosely referred to

as sequential equations. [Ref. 3]

Verbal statements are subject to misinterpretation and that is why they tendentiously

cause ambiguity. So verbal statements are not a recommendable tool. A state diagram, on

the other hand, is free of ambiguities and can be easily understood because of its clear

representation. State tables are in general utilized to depict the sequence (also the time

sequence) of a circuit's input and output. They can also be helpful to reduce the size of a

circuit when such a reduction is possible. Sequential equations are mostly use2, for

engineering purposes before the circuit is actually implemented. 3

B. STATE TABLES

The form and features of state tables vary throughout the relevant literature. State

tables are usually applied and modified to certain requirements. However, according to

[Ref. 3], [Ref. 4], and [Ref. 5] most state tables have the following features in common.

A state table has as many rows as states and as many columns as possible input signals

(or states). In each square of the table, the next state is entered as result of the column's

input applied to the state of this row.4 If there is no next state the intersection in the table is

left blank.

2. For more details it is referred to [Ref. 3]. [Ref. 4], and [Ref. 5].
3. Tool (1) and (4) will not be discussed in more detail since they are not useful for the objectives of
this study.
4. Therefore, state tables are sometimes called "next-state tables" [Ref. 2]

5



A simple example of a state table is given in TABLE I.

TABLE 1: AN EXAMPLE STATE TABLE

Input

States X, X2 X3 X4

A B D

B D B

C C A

D D C

The circuit depicted by the state table in TABLE I issues four states, namely "A", "B",
"C", and "DW. Possible inputs are "XI", "X2", "X 3", and "X4". For example, state "A"

transitions either to state "B" if input "X 2" is existent, or to state "D" if input "X 3" is

existent. No transitions are made from "A" if the input "X1" or "X4" occurs, so there are

no next-states in these cases.

Additional data, such as an initial state, a final or accepting state, or a certain output

after a transition, may be built in a state table as well. For this study, however, the discussed

features are satisfactory.

C. STATE DIAGRAMS

The information available in a state table is graphically represented in a state diagram.

A state diagram in general consists of nodes, directed lines5 , and input / conditions. The

nodes represent states. The arrows link the nodes and represent the interstate transitions. An

arrow connecting a node with itself indicates that no change of state occurs. The input /

conditions are usually inserted above or below the arrow representing the corresponding

transition.

5. In the following, a directed line is referred to as an "arrow".
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The example given in TABLE I is graphically displayed as a state diagram in Figure 1.

2X X

X, X

Figure 1:.State diagram derived from the state table in TABLE I

There is no difference between a state table and a state diagram, except for the

different representation. A state diagram follows directly from a state table and gives a

pictorial view of the state transitions and is very suitable for human interpretation. By the

same token, state diagrams are often used as initial design specification of sequential

circuits, machines, or systems [Ref. 6].

7



IIL. THE STATE TRANSITION DIAGRAM WITH PATH PRIORITY
(STDWP)

A. INTRODUCTION

A state transition diagram (STD) is a modeling tool for describing a time dependant

behavior of a system. It is represented as a graph that consists of nodes, each representing

one of the possible states of the system, and of arrows which represent the valid state

transition among the states. A state iransition occurs only in case of a detected specific

condition. A state is defined as a set of attributes which characterizes the system at a given

time. No knowledge of past inputs is needed at this moment to determine the further

behavior of the system.

The ordinary STD is extensively used as a tool of switching theory and logical design.

In this chapter, a new extended STD is introduced which is called a State Transition

Diagram With Path Priority (STDWP)

B. DEFINITIONS AND EXAMPLES

The notation used for conventional STD's requires that responses, in the form of state

transitions, are identified for all possible conditions. This may lead to states which have two

or more successor states. To avoid nondeterminism, the conditions for each transition path

must be mutually exclusive. For example, if a set of condition ot is needed to trigger a

transition from state "A" to state "B", and another set of condition j0 causes a transition

from state "A" to state "C", then it must be true that a n (3 = 0.

Unfortunately, the approach adopted by conventional STD's, in order to avoid

nondeterminism, limits its applicability to real world problems. In [Ref. 7], Kwak et alteri

presented a new approach to relieve this limitation. It is called a State Transition Diagram

With Path Priority (STDWP). A STDWP has all the characteristics of a conventional STD.

However, unlike a STD, a STDWP allows a state to have two or more successor states

with non-mutually exclusive state transition conditions. For example, if a set of condition

a is needed to trigger a transition from state "A" to state "B", and another set of condition
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13 causes a transition from state "A" to state "C", then either a r 1 = 0 or a r 13*•0 is

allowed. The latter case is an unique characteristic of a STDWP. Additionally, in a

STDWP, nondeterminism c.aused by a n P * 0, is taken care of by priorities among

possible non-unique state transition paths. That is, if a specific condition makes multiple

state transition paths eligible, then only one state transition path with the highest path

priority will be selected and the corresponding state transition will be made.

Definiton (1): A State Transition Diagram With Path Priority (STDWP) has the

characteristics of a conventional STD and allows for each state two or more successor states

with non-mutually exclusive state transition conditions. Non-mutually exclusive state

transitions issue path priorities, such that only one transition will actually be made.

A portion of a STDWP is shown in Figure 2. There are four states, "A", "B", "C", and

"D". Suppose, "A" is the current state, then "B", "C", and "D" are successor states. The

state transition conditions are shown as combinations of "X", "Y", and "Z". The path

priority for the appropriate state transition conditions is also shown with numerical values

for "p", namely "p=l ", "p=2", and "p=3 " where a bigger number means a higher priority.

For example, the state transition conditions from "A" to "D" are "X" or "Y" with path

priority "p=2". Therefore, there are three state transition paths which have non-mutually

exclusive state transition conditions. For example, if condition "X" is currently met, all

three state transition paths become eligible. However, only one state transition path is

actually made from "A" to "C", that is the path with the highest path priority, in this case

9



the transition from "A" to "C". This fact is documented by a competing arc which connects

the relevant state transition arrows.

Definiton (2): If a state in a STDWP has multiple successor states with non-mutually

exclusive state transition conditions, then a competing arc indicates the competing

relationship among these successor states.

XY; p=c

Figure 2: A portion of a State Transition Diagram With Path Priority

Therefore, a state transition in a STDWP is composed of two stages of operation:

First, activate possible state transition paths. In the previous example, all three state

transition paths were activated with condition "X".

Second, execute the state transition which has the highest path priority among

activated sta-. transition paths. This sequence of two stages is called the activation stage

and execution stage, respectively.

In Table 2, for all possible combinations of "X", "Y", and "Z" conditions, the

corresponding state transitions are tabulated with the two state operations. The numerical

entries in the left column indicate if the corresponding condition(s) exist(s) or not. "0"

means absence of the corresponding condition, and "1" means its existence. The alphabetic

entries in the other columns show either activated state transitions (see center column) or

10



executed state transitions (see right column); i.e., "AB" in the right column means an actual

state transition from "A" to "B" if the condition combinations "X" or "XZ" are existent.

TABLE 2: Transition Table for STDWP in Figure 2

Condition XYZ Activated Transition Executed Transition

000 - °

001 - -

010 - -

011 - -

100 AB AB

101 AB AB

110 AB, AD AD

111 AB,AC,AD AC

Another major difference to conventional STD's is an implicit backtracking feature

built in a STDWP. In other words, if the available input does not satisfy any of the explicit

state transition conditions from the current state, then backtracking will be initiated. That

is, the current state is changed to that previous state which has multiple successor states and

is closest to the current state. This discovery leads to the following definitions.

Definiton (3): A branching state is a state with multiple successor states. If a

branching state is the first state that can be arrived by traversing against the normal state

transition direction, then it is called a closest previous branching state. However, a

branching state itself cannot be a closest previous branching state.

Definiton (4): A branching state may have a competing arc and/or path priorities if

there is a non-disjoint state transition condition.

11



Definiton (5): A state with multiple previous states is called a merging state and has

no closest previous branching state. Successor states of a merging state also have no closesi

previous branching state unless one of the successor states becomes a branching state. A

starting state is treated as a merging state.

Therefore, if any condition of all possible state transitions cannot be met, then the state

changes to the closest previous branching state. This transition is called backtracking

For example, Figure 3 shows a STDWP with six different states. Note, that the

STDWP in this figure has disjoint state transition conditions. Thus, there are no competing

arc and no path priorities. "A" is the closest previous branching state for state "B", "C",

"D", and "E". "F', however, does not have a closest previous branching state since it is a

Figure 3: A STDWP with six states

12



merging state. The backtracking paths for each state may be explicitly drawn in a STDWP

as shown in Figure 4, but are preferably not included to keep the drawing simple.

Figure 4: A STDWP showing implicit backtracking paths

One possible scenario of state transitions is shown in Table 3. Since the required state

transition condition is available at the right time a sequence of state transitions from "A" to

"F' via "B" and "C" can be conducted without any backtracking.

TABLE 3: Scenario without backtracking

Time Current State Input Next State

tIA xI B

t2 B 2 C

Cx3 F

Another scenario is shown in Table 4. After the state transition from "A" to "B" and

from "B" to "C" are carried out, input x3 is not available at time t3. At this moment, rather

than stopping and waiting for an external input indefinitely, backackcking is started to the

closest previous branching state, which is state "A". Fortunately, the external input Ys is

available. Thus, the state transition to "D" is possible and the path eventually arrives at "F".

13



However, if the external input yl were not available, then no further state transition would

be done and state "F' would never be reached.

TABLE 4: Scenario with backtracking

rune Current State Input Next State

tI A xI B

t2 B x2  C

t3 C Yi A

4 A Yl D

t5 D Y2 E

.t6 E Y3 F

In the above discussion, only one state transition condition was utilized for each state,

and all state transition conditions were unique. This setup does not imply a limitation of

STDWP; also was tj introduced just for demonstration purposes. Like common STD's

STDWP is capable of representing both, synchronous and asynchronous states.

A STDWP can also be organized as a multi-level STD [Ref. 8] where an individual

state of a higher-level diagram can encapsulate a lower-level diagram. Then the final

state(s) in the lower-level diagram is(are) identical to the exit conditions of the higher-level

state. This decomposition may be recursively applied to give order and understandability

to an otherwise complex diagram, the decomposition represents a standard approach to the

design and analysis of complex, state-based systems.

C. SIGNIFICANCE AND APPLICABILITY

The introduction of STDWP's facilitates the graphical representation of a new class of

problems. In [Ref. 9] and [Ref. 101 STDWP's were applied to represent and explain high-

level control of the NPS AUV-II giaphically. Another application of a STDWP is the

graphical representation of a forward chaining rule-based system. Such a system operates

in two steps, rule activation and rule-firing [Ref. 11]. This exactly corresponds to the

14



STDWP's activation and execution stages. Thus, competing behaviors among rules in the

rule agenda of a forward chaining rule-based system can be graphically depicted, and rule-

firing can be graphically modeled, too.

As a consequence, STDWP's build a bridge between a forward chaining rule-based

system as domain of Artificial Intelligence and a control based system represented by a

conventional STD. Practical engineers with background of STD's and with a little

knowledge of STDWP's can easily extend this idea to a high-level control of complex

autonomous robots without learning an entirely new forward changing rule-based system.

This advantage turns out to be very beneficial for the control of autonomous robots,

because rule-based control of robot systems is very promising for design and coding of

mission logic, as it was reported in the Rational Behavior Model software control

architecture research of [Ref. 12] and [Ref. 91. The impact of STDWP's is just unfolding,

their application yet to be discovered for the future.

The following sections of this study show the application of STDWP's in general and

for RBM software control architecture in particular. The RBM is mainly designed for

control of a real-time autonomous agent, and will be briefly described later.

15



IV. APPLICATIONS OF THE STDWP

A. INTRODUCTION

In this chapter, the very basic structures, "AND-Relationship" and "OR-

Relationship", that may be found in any portion of a Prolog program are discussed and

depicted by STDWP structures. Implementations in CLIPS are then derived from these

STDWP structures. In order to show how this translation pattern can be applied to more

complex structures, two small Prolog programs are introduced later. They are first

displayed by an AND/OR goal tree (whose definition will follow in the next section) and

then translated in a STDWP. Finally, the STDWP is implemented in CLIPS code.

Either program'follows a different approach of implementation. As it will be shown,

the second implementation predominates the previous one by its assets, although both

programs are equivalent to the initial Prolog code, in particular in regard to logic and

behavior.

The final section of this chapter briefly introduces the Rational Behavior Model

(RBM) and its strategic level, one of three main components of the RBM. The strategic

level is represented graphically by an AND/OR goal tree and by a STDWP. For either

representation the corresponding implementation is explained and presented.

B. BASIC STRUCTURES

1. AND-Relationship

A simple example of a Prolog rule and its notation as an AND/OR goal tree is

shown on the left hand side of Figure 5. An AND/OR goal tree is defined as follows:

"An AND/OR goal tree is a graphical representation of AND/OR goal

decomposition, with the root node representing the root goal, the leaf nodes representing

the primitive goals, all other nodes representing intermediate goals subject to further

decomposition, and the connecting arcs representing the logical relationship between

subgoals and the goal from which they were decomposed." [Ref. 9]

16



In the given example, "A" is the goal, "B" and "C" are subgoals. Both subgoals

have to be satisfied to satisfy the goal "A". This relationship is graphically shown in an

AND/OR goal tree by introducing a parent node "A" and two children nodes, "B" and "C".

The "AND-Relationship" between "B" and "C" is depicted with an arc connecting the

adjacent branches. The AND/OR goal tree which is equivalent to the Prolog rule is now

translated in a STDWP. The result is shown on the right hand side of Figure 5.

A A:- B,C.
initial-fact A %fact B a, fact C state

sat B C done

B C

Figure 5: Example of an "AND-Relationship"

Specifically, the "A" node of the AND/OR goal tree corresponds to the "A done"

state in the STDWP, and the "B" and "C" nodes are equivalent to the "state B" and "state

C" states, respectively. The "A start" state is a special state which is introduced to show the

current mode of an operation of a STDWP and to signal that the STDWP is trying to

achieve goal "A". Only when the two successor states are satisfied, the "A done" state can

be reached. The "A done" state itself signals the achievement and completion of goal "A".

The previous discussion is tabulated in Table 5:

TABLE 5: Correspondence of nodes and states

AND/OR Goal Tree STDWP

A A done

B state B

C state C

17



In CLIPS, the states of a STDWP are implemented by the def.template construct.

For our example, the deftemplate construct looks as follows:

(deftemplate rule-A
(field state

(type SYMBOL)
(allowed-symbols start B C done)))

The deftemplate construct in CLIPS actually defines a group of related facts, in

this case all possible states of rule "A". These facts will be used in CLIPS to control the

flow in the STDWP. Thus, the equivalent CLIPS code to the given Prolog rule looks as

shown in Figure 6.

(deftemplate rule-A
(field state

(type SYMBOL)
(allowed-symbols start B C done)))

(defrule start-program ;corresponding notation in the STDWP:
?x <- (initial-fact)

=> initial-factA
(retract ?:-)
(assert (rule-A (state start)))

(defrule rule-A-state-B
?x <- (rule-A (state start)) fact B state
(fact C)

=B
(retract ?x)
(assert (rule-A (state B))))

(defrule rule-A-state-C
?x <- (rule-A (state B)) fact C
(fact C)

(retract ?x)
(assert (rule-A (state C))))

(defrule rule-A-state-done
?x <- (rule-A (state C))

(retract ?x)(assert (rule-A (state done)))

Figure 6: CLIPS code for the "AND-Relationship" shown in Figure 5
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2. OR-Relationship

A Prolog example showing "OR-Relationship" and its AND/OR goal tree are

shown on the left hand side of Figure 7. Goal "A" can be reached by either subgoal, "B" or

"C". Rule "A :- B." takes precedence over "A :- C." because of the textual order of the rules.

After translating the corresponding AND/OR goal tree in a STDWP two branches

are obtained, both of which start at the state "A start" which is a branching state and end in

the merging state "A done". Note that there is a competing arc between the two branches

in the STDWP to emphasize the "OR-Relationship" with a non-disjoint state transition

condition. The upper branch corresponds to the rule with higher priority, the lower branch

to the rule with lower priority, respectively. This fact is shcwn with the path priorities "0"

and "-l".1

The reason is as follows: Two Prolog rules with the same goal participate in an

"OR-Relationship" and have an implicit order. The corresponding AND/OR goal tree also

has the same implicit order; i.e., from left to right.2 Thus, the upper branch of the STDWP

corresponds to the left branch of the AND/OR goal tree and has a higher priority than the

1. Since CLIPS assigns a salience of "0" to any rule per se this study follows this automatism and
assigns a salience of "-" to the lower branch; the next branch would obtain "-2", and so forth.
2. Therefore, an AND/OR goal tree is equivalent to an AND/OR tree with a depth-first-goal tra-
verser.
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lower branch. In order to satisfy this fact, the saliences "0" and "-1" are assigned to the

appropriate branches.

AA: B. fact8; P 0 ste
A A: C.B

B C ~~fact C; P -1 ste

Figure 7: Example of an "OR-Relationship" with single states in each branch

Similar to the example for an "AND-Relationship", a deftemplate construct is

built with the states "start", "B", "C", and "done" referring to the states in the STDWP.

However, an additional deftemplate construct is necessary for three reasons caused by the

implementation:

(1) to facilitate the required backtracking capability,

(2) to avoid confusion with equal states in different branches, and

(3) to identify the paths associated with "OR-Relationship".

This deftemplate construct may be called "A-branches" and shall represent the

upper path by "branch A-I", and the lower branch by "branch A-2". Thus, the two

deftemplate's are constructed and will look as follows:

(deftemplate rule-A
(field state

(type SYMBOL)
(allowed-symbols start B C done)))

(deftemplate A-branches
(field branch

(type SYMBOL)
(allowed-symbols A-I A-2 )))

As mentioned earlier, the "A start" state in the STDWP includes the initialization

of an operation mode. In this case, the "A start" state acts as a "traffic control state". In the
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case of an "AND-Relationship" the traffic control functionality is not necessary since there

exists only one path in the STDWP and backtracking is not an issue at all since there is no

closest previous branching state. However, if there are different branches as in an "OR-

Relationship", then we need to provide traffic rules to control the backtracking path to the

closest previous branching state and to start a new branch. That is (see Figure 8), if the

transition from "B" to "A done" fails because "fact B" is not true or not available, then the

state "A done" will not be reached by the upper branch. Instead, the lower branch is

activated by the traffic rule "A-branch-2-start" (after backtracking to the closest previous

branching state "A start") which awaits the failure of the upper branch and asserts the fact

"(branch A-2)", so that the lower branch is tried. However, this attempt could also fail, if

"fact C" does not exist.

If a branch fails, the fact-list will still contain the traffic control facts asserted by

the traffic rules and one of the facts that has been most recently asserted by one of the rules

in this branch. This circumstance could possibly cause confusion with repeated states or

similar constructs within the STDWP. To avoid such an insufficiency an additional traffic

rule called "clean-up" takes facts left over from the last failed branch off the fact-list and

cleans it up for later assertions.
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(deftemplate rule-A
(field state

Stypo SYMBOL)
allowed-symbols start B C done)))

(deftemplate A-branches
(field branch

(type SYMBOL
(alowed-symLols A-1 A-2)))

(defrule start-programi
?x <- (initial-fact) imtiu-f&ý

(retract ?x)
(assert (rule-A (state start)))

------------------------------- Traffic rules ------
(defrule A-branch-l-start

?x <- (rule-A (state start))

(retract ?x)
assert (A-branches (branch A-i))))

(defrule A-branch-2-start
(declare (salience -1))
?x <- A-branches (branch A-i))
?y <-.(rule-A (state ?))

Sretract ?x
retract ?y)

(assert (A-branches (branch A-2))))

(defrule A-branches-clean-up
(declare (salience -2))
?x <- (A-branches (branch A-2))
?y <- (rule-A (state ?))

(retract ?x)
(retract ?y)

--------------------------------------------A-i-branch-----
A-l-branch A c t--d-e-fru-l-e A--b-r-an-ch--l--s-tat-e--B- - - - - - - - - - - - - acB

(A-branches (branch A-i)) . staej
(fact B) DB

(assert (rule-A (state B)))

(defrule A-branch-l-state-done
?x <- (A-branches (branch A-i))
?y <- (rule-A (state B))

retract ?x
(retract ?y)
(assert (rule-A (state done)))

------------------------------------- 2-branch.----

Idefrule A-branch-2-state-C
(A-branches (branch A-2)) factC st
(fact C)

(assert (rule-A (state C)))

(defrule A-branch-2-state-done
?x <- (A-branches (branch A-2))
?y <- (rule-A (state C))

> retract ?x
(retract ?y
(assert (rule-A (state done)))

Figure 8: CLIPS code for the "OR-relationship" in Figure 7
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C. A MORE COMPLICATED PROBLEM

1. Implementation

In order to show how basic structures are combined in a STDWP and how a given

construct is implemented in CLIPS, the following steps are shown in the following.

First, a simple, RBM's strategic-level alike Prolog program is introduced. An

AND/OR goal tree is then constructed after this program which will be followed by the

transition to a STDWP. Then the equivalent CLIPS code is produced.

(1) The simple Prolog program is shown in Figure 9.

A :- B,C,D.
B :- D,E.
B:-F.
C :- D,E,F.
C :- D,F
C:-E.
D:-G.
D:-H.

Figure 9: A simple Prolog program

(2) The corresponding AND/OR goal tree is shown in Figure 10.

Figure 10: AND/OR goal tree for the Prolog example in Figure 9
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(3) Similar to the example for an AND-Relationship, rule "A" of the Prolog

code is represented in a STDWP as shown in Figure 11. This construct corresponds to the

top level of the AND/OR goal tree shown in Figure 10. The states "B", "C", and "D",

however, encapsulate lower-level STDWP's. In this case we talk about a multi-level

STDWP.

initial-fact ,7 facB/factC /fact D 7 \7I

Figure 11: Multi-level STDWP with encapsulated states

(4) The multi-level STDWP shown in Figure 11 is explicitly expanded in

Figure 12. 3

Figure 12: Complete STDWP for the Prolog example in Figure 9

It can be easily inferred from the Prolog code that the subgoals "E", "F", "G", and

"H" are facts since there is no rule corresponding to those subgoals. Therefore these facts

3. In order to simplify the drawing, state transition conditions are not shown. However, path priori-

ties and competing arcs are drawn for clarity.
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are represented as leaves in the AND/OR goal tree. At least one fact, "E" or "F', is required

to reach the goal "B" and "C", respectively; and either condition "G" or "H" satisfies the

goal "D". Therefore, any combination of states ("E" or "F', and "G" or "H") eventually

facilitates a path to the goal "A" successfully (see Figure 12 and also Figure 10).

The state transition table for the STDWP of Figure 12 is shown in Table 6. It

tabulates the inputs which are required to reach the goal state "A done".

TABLE 6: State transition table for the STDWP

Current State Input Possible Next State

E fact E F; B done; C done

F fact F B done; C done

G fact G D done

H fact H D done

2. Testing

Two test cases may be used to support the above observation and to illustrate how

the CLIPS program shown in APPENDIX A determines the path through the STDWP. The

first test case provides "fact E" and "fact H" to the STDWP. This will furnish the STDWP
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to reach the state "A done". As expected, the corresponding CLIPS code will reach the state

"A done" as shown in Figure 13.

PATH through STDWP

A-start;
B-start (branch B-1); D-start (branch D-i); * branch D-1 failure *
D-start (branch D-2); H-state; D-done;
E-state; B-done;
C-start (branch C-1); D-start (branch D-l); * branch D-1 failure *
D-start (branch D-2); H-state; D-done;
E-state; * branch C-i failure *
C-start (branch C-2); D-start (branch D-l); * branch D-1 failure *
D-start (branch D-2); H-state; D-done;
* branch C-2 failure *
C-start (branch C-3); E-state; C-done;
D-start (branch D-l); * branch D-1 failure *
D-start (branch D-2); H-state; D-done;
A-done

* Successful termination *

Figure 13: Output of first test case

In the second test case, "fact E" and "fact F" are provided for the CLIPS code.

These two states are not sufficient to furnish the STDWP to reach state "A done"; instead,

it fails. This behavior can be observed in Figure 14 which shows the output of a sample run

with "fact E" and "fact F'.

PATH through STDWP

A-start;
B-start (branch B-i); D-start (branch D-i); * branch D-1 failure *
D-start (branch D-2); * No D-branch successful *
* branch B-1 failure *
B-start (branch B-2); F-state; B-done;
C-start (branch C-1); D-start (branch D-i); * branch D-1 failure *
D-start (branch D-2); * No D-branch successful *
* branch C-1 failure *
C-start (branch C-2); D-start (branch D-i); * branch D-1 failure *
D-start (branch D-2); * No D-branch successful *
* branch C-2 failure *
C-start (branch C-3); E-state; C-done;
D-start (branch D-i); * branch D-1 failure
D-start (branch D-2); * No D-branch successful *

• Premature Termination, no success! *

Figure 14: Output of second test case
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3. Assessment of the Behavior

The CLIPS program was tested for any conceivable scenario and proved the

correct behavior by producing the expected sequence of states in the STDWP. This

sequence is equivalent to the goal activation achieved by the original Prolog code shown in

Figure 9.

Apparently, this behavior is satisfactory - but only for a problems of the given

kind. The reason, why it behaves correctly is, that the number of branches in the "OR-

Relationships", that occur in the "second level", is limited 4; i.e., rule "D" consists of two

branches, each of which holding just one state, namely "G" and "H". After the failure of

the branch with salience "0" only one choice is left, namely the other branch with salience

If there were more than two branches with multiple states, then the

implementation shown in the previous section would quickly reach its boundaries. In this

case, the system should encounter a newly competing situation, that is, a competition

between all branches which have not failed yet. And besides that, it must be assured that

the recently failed branch does not participate in any other branch competitions.

Combined with this study, the attempt has been made to implement "OR-OR-

Relationships" by following the translation pattern in the previous section. But it turned

out, that the program actually conducts a sequential run through the eligible states

regardless to the given saliences. And this seems to be inevitable, due to rule firing control

and salience management. Furthermore, the number of traffic rules increased enormously,

such that the portion of traffic, clean-up, and control rules shared almost thirty percent of

the entire program.

These crucial drawbacks were the motivation for a different implementation

approach. It is being presented in the following section.

4. An "OR-Relationship" which is itself a portion of another "OR-Relationship's" construct may be
called "OR-OR-Relationship" in the following.
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D. A PROBLEM WITH "OR-OR-RELATIONSH[PS"

1. Introduction of the Problem

The system to be discussed in this section is shown in its Prolog version in Figure

15, its corresponding STDWP in Figure 16, and accordingly, the CLIPS code may be found

in APPENDIX B. The AND/OR Goal Tree is neglected in this context, since it is not

important for the further discussion.

A:- B, Bl.
A :-C, Cl.
A:- D, Dl.
B :X, X1,X2.
B-Y.
B :Z, Z1.
Y:- ALPHA, ALPHA1.
Y:- BETA, BETA I.
Y:- GAMMA, GAMMA I.

Figure 15: A simple Prolog program

Four levels of relationships are joint together in this system. On the first level, an

"OR-Relationship" is given by three rules of "A", each of which containing an "AND-

Relationship" that is to be considered on the second level. A closer look to the right side of

the Prolog rules makes clear that only the first rule with goal "A" contains a further level,

that is rule "A:- B, B 1." by the subgoal "B". The goal "B", on the other hand, can be reached

by three alternative rules. Again, this is considered to be an "OR-Relationship", but now on

the third level. The first and the third rule of "B" contain "AND-Relationships", where the

second rule is satisfied by subgoal "Y", which leads also to an "OR-Relationship", namely

to the three alternative rules of "Y". With this construct, the fourth level is finally reached.

To be consistent and complete, a fifth level will be entered by the "AND-Relationships" of

the right hand sides of every "Y" rule.

Such a joint construct may be called an "OR-AND-OR-OR-Relationship". The

fifth level, given by the "AND-Relationships" for the alternative goals "Y", can be
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neglected. This is, because an extra "AND-Relationship" does not require additional traffic

rules; more explanations will be given in the next section.

Iz z dn
-2

Figure 16: STDWP corresponding to the Prolog code in Figure 15

The derived STDWP is shown in Figure 16. It consists of three "A-branches"

leaving the branching state "A start", three "B-branches" starting from "B start", and three

"Y-branches" leaving state "Y start", each of which holding multiple states in this branch.

Following the definitions of a STDWP, the upper branches have higher priority over lower

branches, indicated by numbers (in the diagram of Figure 16 drawn close to the transition

arrows). The transition conditions are named after the states. I.e., state "X" requires the

transition condition "(condition X)", "B start" may only be reached, if "(condition B)" is

available. These transition conditions are provided in the same fashion in the CLIPS code

which may be found in APPENDX B. To keep the drawing simple, the transition conditions

are not shown in Figure 16, as well as the backtracking paths.
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2. Jmpkuuamoio

The most difficult part of the implementation of the STDWP displayed in Figure

16 in CLIPS was twofold:

(1) After a failure of a transition, the correct backtracking to the closest

previous branching state needs to be assured. In an "OR-OR-Relationship", there are two

branching states which are both acting as closest previous branching states. If a branch fails

in the second level, then backtracking to the closest previous branching state of the first

level has to be avoided. This means, that the STDWP's construct outside of the current

"OR-Relationship" has to be "hidden" of any possible access. To provide this feature, a

"status" field with a "hide" and "reveal" slot is added to each template defining an "OR-

Relationship" in CLIPS (an example will be given shortly).

(2) After backtracking occurred, the failed branch has to be excluded from

any new competition among the branches which leave this closest previous branching state.

This feature is ensured by retracting the transition condition which enabled the system to

try the branch which turned out to fail; i.e., if the "X-branch" fails in the "B" construct, then

the system is backtracking to "B-start". At the same time, "(condition X)" is retracted from

the database so that the "X-branch" cannot compete anymore with the remaining and

eligible branches "Y-branch" and "Z-branch".

Besides the "hide" and "reveal" slots, two more slots have been added to the

"status" field of the CLIPS templates, namely "failed" and "succeeded". The slot "failed"

is necessary to make sure that the failed partial construct of the STDWP is not eligible

anymore. This will be the case when the system has tried all eligible transitions in this

portion of the STDWP and has not succeed. The slot "succeeded" is used for the other, the

positive case and for "OR-AND-Relationship" constructs. State transitions, following an

"OR-Relationship" after a "done" state have to be prevented from backtracking to the

closest previous branching state of the successful "OR-Relationship". In the case of a

transition failure in the "AND-Relationship", the system must backtrack to the prior closest
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previous branching state. I.e., in the system introduced in this section, state "B I" follows

state "B-done" which is the final state of the "OR-Relationship" construct for "B". If the

transition to state "B 1" fails, then the responsible closest previous branching state will be

state "A-start", and not "B-start". This confusion is avoided by the "succeeded" slot in

"deftemplate B", such that the system cannot start any transitions within the "B" construct

again.

As an example, the CLIPS's deftemplate construct for the "OR-Relationship" of

goal "A" is shown in the following to complete the previous explanations (see also

APPENDIX B). Note that a deftemplate A-branches as it was introduced in section IV.C.

is not required any more.

(deftemplate A
(field state

(type SYMBOL)
(allowed-symbols start B BI C C1 D D1 done))

(field status
(type SYMBOL)
(allowed-symbols reveal hide succeeded failed)))

Backtracking comes into play when a transition failed to be executed. In order to

ensure that the backtracking path reaches the responsible closest previous branching state,

every branch in the STDWP has to be furnished with a traffic rule; i.e., the traffic rule for

the "X-branch" within the "B" construct is "X-failure". This rule controls the backtracking

traffic from all states in this branch to state "B-start" which is the responsible state. At this

point, the traffic rule "B-failure" comes into action. It activates all remaining and eligible

transitions for another competition. As expected, the state transition with the highest

priority will be executed then.

3. Testing the Behavior

The system as it was introduced above is started by the CLIPS-internal "initial-

fact" which can be accomplished automatically by the "(reset)" command.5 From here, the

5. For complete and further syntax it is referred to [Ref. 11].
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system is going through the states that can be reached by the given transition conditions.

These conditions may be added to the CLIPS's database either by a batch file or by

asserting the conditions manually.

Two test cases may illustrate the system's behavior implemented by the code as

shown in APPENDIX B. They are shown in Figure 17 and 18.

The output shows the path through the STDWP, including the states reached by

backtracking. These states are followed by a *... failure * message since a failure is the only

cause for a backtracking path.

In the first case, the following conditional scenario is available in the CLIPS

database: (condition A), (condition B), (condition Y), (condition Z), (condition ALPHA),

(condition GAMMA), (condition D), and (condition DI). The program's output is shown

in Figure 17.

PATH through STDWP

A start;
B-state; Y-state;
ALPHA-state; * branch Y- I failure *; Y-state;
GAMMA-state; * branch Y-3 failure *; Y-state;
* branch B-2 failure *; B-state;
Z-state; * branch B-3 failure *; B-state
* branch A-I failure *; A-state
D-state; D1-state;
A-done;

* Successful termination *

Figure 17: Output of the first test case

After starting the system and reaching state "B-start", only two state transitions

are activated due to (condition Y) and (condition Z). The transition to "Y-start" is executed

because of its higher priority. Again, just two transition activations are eligible, caused by

(condition ALPHA) and (condition GAMMA). Both branches will fail since none of the

further transition conditions are met. Thus, in both cases the system is backtracking to state

"Y-start" causing itself backtracking to state "B-star". The only eligible, activated, and
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executed transition to state "Z" is being made, but is backtracking to state "B-start"

afterwards since (condition Zi) is not available. This causes backtracking to state "A-start"

because all branches in the "B" construct failed. From this point, the final state transitions

to state "A-done" are conducted via state "D" and "Dl".

In the second test case, the scenario differs from the first one by the following

conditions: Instead of (condition GAMMA), the database includes (condition BETA) and

(condition BETA 1); additionally (condition B 1). The output looks as shown in Figure 18.

PATH through STDWP

A start;
B-state; Y-state;
ALPHA-state; * branch Y- I failure *; Y-state;
BETA- state; BETA 1-state;
Y-done; B-done; B 1-state;
A-done;

* Successful termination *

Figure 18: Output of the second test case

In this case, the correct behavior of the "OR-AND-OR-OR-Relationship" of the

given STDWP was tested. The conducted path is shown in Figure 18 and may not require

further explanations.

Almost all conceivable scenarios have been tested. The system as it is

implemented by C! TPS in APPENDIX B behaved in the same manner as it would do in the

Prolog version. Th .., o'es empirically the logical and the behavioral equivalence between

both implementations.
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E. THE STRATEGIC LEVEL OF THE RATIONAL BEHAVIOR

MODEL

1. Introduction of the Rational Behavior Model

The Rational Behavior Model (RBM) is a tri-level software control architecture

for autonomous vehicles. It is composed of a strategic, a tactical, and an execution level.

The strategic level mainly consists of goals which are to be achieved by an autonomous

robot vehicle under control of RBM. These goals have to be achieved in a certain sequence

depending on external (= world) and internal (= vehicle) events to accomplish a given

mission. In order to exhibit coherently intelligent behavior globally, some means of

understanding and memorizing external and internal events are required by the control

architecture. Otherwise, globally intelligent behaviors cannot be achieved by an

autonomous robot [Ref. 13]. In RBM, the tasks of understanding and memorizing are

performed by the tactical level [Ref. 14]. Thus, the strategic level is free from processing

or memorizing external or internal events directly. This arrangement reduces the

complexity of the strategic level by a major portion; in particular, the strategic level does

not need any state memory associated with the external world or the control of the robot.

Instead, it queries the tactical level, whenever it is appropriate. Inferring the returned values

of the predicate queries, the strategic level determines next which goal has to be activated

at this moment. Specifically, a goal activation means a behavior activation request to the

tactical level. Once the requested behavior is completed by the tactical level in conjunction

with the execution level, then the goal is achieved.6 In this way, goals in the strategic level

directly affect the behavior of the physical robot under control.

Since the strategic level purely operates by predicate queries and goals, a rule-

based programming language is the best choice for implementation. Fundamentally, there

are two ways of implementing rule-based programming, these are backward chaining and

6. The execution level is the lowest level in RBM. It directly handles the vehicle's hardware. Thus,
the execution level is mainly composed of various conventional control loops and device drivers.
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forward chaining. Both are equivalent in the sense of pure logical power. They are merely

different in syntactical perspective. However, one implementation ,'ith one chaining

direction may be more efficient than the other. In spite of this well known fact, a translation

from one chaining implementation of the strategic level in RBM to the other is not trivial.

The reason is due to the fact, that a sequence of logic resolution steps is not unique.7 In

other words, two different chaining implementations may produce two different paths of

goal activation and execution during chaining. This means that the two implementations

could make the vehicle behave totally differently even though they are logically equivalent.

However, in robot control, the sequence of behavior matters. For example, a final goal

cannot be achieved without achieving an intermediate goal. In other words, two different

implementations for the strategic level of RBM have to be able to produce an identical

sequence of goal activations. This is an unique constraint of equivalence of the strategic

level of RBM.

The first instance of the strategic level of RBM [Ref. 14] was implemented in

Prolog which was used as a backward chaining rule-based programming language. This led

to another implementation in Prolog [Ref. 15]. Both implementations have been established

for the Adaptive Suspension Vehicle (ASV) [Ref. 16]. Later, the strategic level of the Naval

Postgraduate School Autonomous Underwater Vehicle Model 1I (NPS AUV) [Ref. 9] was

also implemented in Prolog (see APPENDIX C).

It is not surprising that Prolog served as programming language for all these

implementations. The reason is that goals in robot vehicle control tend to be related in

hierarchical order. For example, "execute-auv-mission" is a top goal which can be

immediately decomposed into subgoals corresponding to submissions of the entire mission.

A hierarchical organization composed of a top goal, some sub-goals, some sub-sub-goals,

etc. can be easily expressed in Prolog because of its declarative nature. Moreover, Prolog's

inference engine with its depth-first-search strategy forces the rule firing and conflict

7. Chaining is known to be a special case of resolution.
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resolution to follow the textual order of the Prolog rules. Therefore, multiple subgoals that

participate in an "OR-Relationship" among each other can be easily prioritized by the

textual order of the Prolog rules. In this way, the strategic level can be "naturally" declared

in Prolog, and the desired sequence of goal activations is evidently produced by Prolog's

inference engine.

The forward chaining implementation of the strategic level, however, has been

delayed until STDWP was introduced. The extra constraint needed to maintain equivalence

of two opposite chaining implementations, an equal sequence of goal activations, was hard

to be satisfied in a context of a complex real world problem. A simple syntactical change

in the translation from backward chaining to forward chaining is guaranteed to produce a

non-functioning strategic level since it will cause a different sequence of goal activations.

Fortunately, two sets of equivalences are found in the context of the strategic level of RBM.

One is the equivalence of Prolog rules and AND/OR goal trees, and the other is the

equivalence of CLIPS forward chaining rules and STDWP.8

The graphical equivalence between an AND/OR goal tree and a STDWP has

been shown in [Ref. 9); the logical and behavioral equivalence of corresponding

implementations in Prolog vs. CLIPS was empirically proven in the previous chapter.

To support these findings, both graphical tools and either implementation is being

applied to the strategic level of RBM for the NPS AUV in the following section.

2. The Implementation of the Strategic Level

The RBM's strategic level was initially implemented in Prolog because of

Prolog's hierarchical order and its determination of sequence of primitive goals. The source

code of this implementation is presented in APPENDIX C. The corresponding AND/OR

goal tree may be found in APPENDIX D and the STDWP in APPENDIX E. The

complexity of either graphical representation is considered to be not too big so that it

8. The equivalence relationship is empirically known to be correct. Formal proof is not available

yet.
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becomes impractical. Both graphs support enough readability and may be used side by side

since they provide equivalent logic and behavior.

The implementation in CLIPS was derived from Prolog's source code and was

first carried out "manually". Although the fundamental and theoretical background was

still not exactly defined by the time of translation, a translation pattern was already found

and used.

The CLIPS code as it is presented in APPENDIX C is an enhanced version of the

initial program. It differs slightly from the structures introduced and discussed in the

previous sections since thL translation was completed based on preliminary findings.

Nevertheless, a syntactically clean version that accomplishes a "clean" translation

according to the implementation structures introduced in the previous chapter is already in

progress and will be reported later.

However, the equivalent sequence of the behavioral activation is empirically

confirmed for both, the Prolog and the CLIPS implementations [Ref. 9]. That means, that

either version of the strategic level, whether Prolog or CLIPS, produces exactly the same

sequence of behaviors during mission control and execution when it controls the NPS

AUV's simulator [Ref. 9]. This observation was also made when the CLIPS code was used

in CLIPS/Ada for the tactical level's software testing in [Ref. 14].
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V. SUMMARY AND CONCLUSIONS

STDWP's add a new dimension to conventional STD's by permitting non-disjoint

state transition conditions to multiple successor states. The non-determinism introduced by

this extension is resolved by path priorities. Thus, although several state transitions are

eligible, only one state transition with highest path priority will be selected to carry out a

state transition to the next state. With this extension of a conventional STD, a STDWP is

ready to be applied to a new class of problems; i.e., for graphical representation of forward

chaining production rules for the strategic level of the RBM.

Before the STDWP was introduced, the translation of the backward chaining

implementation of the strategic level in a forward chaining implementation was not

possible. There were even doubts and confusion about such a translation among researchers

at the Naval Postgraduate School because of unique equivalence requirements in the

strategic level of the RBM; i.e., two implementations have to be not only logically

equivalent, but also identical in the sequence of proving steps. These requirements led to a

new class of equivalence of logic.

If an equivalent forward chaining implementation had not been found, there would

have been a serious chance that the unique equivalent requirements prevented the strategic

level from being qualified as a subset of a rule-based system. However, an equivalent

forward chaining implementation of the strategic level was successfully hand-coded

utilizing STDWP. Most likely, there always exists two equivalent chaining

implementations in each direction because of the found algorithm which allows bi-

directional translation' [Ref. 7]. However, a formal proof for existence of two opposite

chaining implementation is not researched yet. A formal proof will automatically provide

another evidence for that a strategic level of RBM is a true subset of a conventional rule-

based reasoning system which only concerns about logical equivalence. But this is also

another future research topic.

1. The correctness and completeness of this algorithm is not proved yet.
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Another discovery from the presented work is complexity, compared between two

implementations. Backward chaining implementation is always simpler than the

corresponding forward chaining implementation. For example, comparing the number of

nodes in the AND/OR goal tree in FigurelO with the number of states in the STDWP in

Figure 12 results in a difference of 7, that is 21 nodes vs. 28 states. A similar discovery is

reported in a different context [Ref. 17].

The previous discovery can be summarized as follows: an AND/OR goal tree is

viewed as a goal decomposition diagram, and a STDWP is considered as a goal execution

diagram with explicit goal execution details. The former can be seen as a disassembly

diagram, the latter can be interpreted as an assembly diagram.2 In a computational aspect,

the former demands more than the latter implementation. Actually, faster execution was

observed in the CLIPS implementation even though the size of the code is about ten times

bigger than the equivalent Prolog code. This observation supports the role of the AND/OR

goal tree's depth first traverser. The depth first traverser interprets the AND/OR goal tree,

and it produces a sequence of goal activations depending on a situation on fly whereas the

STDWP needs little computation because it can be seen as a collection of all possible

execution paths. Whether or not the translation problem is the same class of problems as

that presented by [Ref. 17] is another future research topic.

The final issue is whether an equivalent STDWP is a minimum representation or not.

If this is not the case, then it has to be researched how to make a minimum STDWP. This

issue seems not to be discussed in Homem de Mello's research. [Ref. 17]

Once the above mentioned research questions are fully answered, then those findings

will immediately lead to an economy of mission description in general (mission description

for either AUV or human military unit); i.e., an AND/OR goal tree style mission

description vs. a STDWP style mission description. The observation of current practices

among people in general reveals two side stories. If a mission is well defined and well

2. Loosely speaking, disassembling a device is an easier task than assembling it.
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understood, then an AND/OR goal tree style mission description is common. On the other

hand, the opposite is true. A military AUV mission and a scientific discovering AUV

mission show two examples, one for each side.

The research presented in this study is just opening up whole new issues rather than

reducing them by solving existing problems. This recognition might be an herald of an

extremely interesting research area.
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APPENDIX A. CLIPS IMPLEMENTATION OF THE EXAMPLE IN
SECTION IV.C.

;* Title : Example for Thesis, Section IV.C.
; Name : example2.2
;* Version : 2.2
; Author : Thomas Scholz
;* Date : 18 Nay 1993

Revised : 15 September 1993
System : UNIX Sun/Solbourne
Compiler : Clips 5.1

(deftemplate rule-A
(field state

(type SYMBOL)
(allowed-symbols start B C D done)))

(deftemplate rule-B
(field state

(type SYMBOL)
(allowed-symbols start D E F done)))

(deftemplate B-branches
(field branch

(type SYMBOL)
(allowed-symbols B-1 B-2)))

(deftemplate rule-C
(field state

(type SYMBOL)
(allowed-symbols start D E F done)))

(deftemplate C-branches
(field branch

(type SYMBOL)
(allowed-symbols C-1 C-2 C-3)))

(deftemplate rule-D
(field state

(type SYMBOL)
(allowed-symbols start G H done)))

(deftemplate D-branches
(field branch

(type SYMBOL)
(allowed-symbols D-1 D-2)))
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; Prolog ------
; A :- BCD.

(defrule start-program
?x <- (initial-fact)

U>

(retract ?x)
(assert (rule-A (state B)))
(printout t crlf "PATH through STDWP:w crlf crlf "A-start;"
crlf))

(defrule rule-A-state-B
?x <- (rule-A (state B))

(retract ?x)
(assert (rule-B (state start))))

(defrule rule-A-state-C
(declare (salience -10))
"?x <- (rule-B (state done))

(retract ?x)
(assert (rule-C (state start))))

(defrule rule-A-state-D
(declare (salience -20))
?x <- (rule-C (state done))

(retract ?x)
(assert (rule-D (state start))))

(defrule rule-A-state-done
(declare (salience -30))
?x <- (rule-D (state done))

(retract ?x)
(assert (rule-A (state done)))
(printout t "A-done" crlf crlf 0* Successful termination
crlf crlf))

(defrule total-failure
(declare (salience -100))
(not (rule-A (state done)))

(printout t crlf "* Premature Termination, no success!
crlf crlf))
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; Prolog

; B :- D,E.
B :-F.

-------------------------------------- Traffic rules ------
(defrule B-branch-l-start

?x <- (rule-B (state start))
a>

(retract ?x)
(assert (B-branches (branch B-i))))

(defrule B-branch-2-start
(declare (salience -1))
?x <- (B-branches (branch B-i))
?y <- (rule-B (state ?))

(retract ?x)

(retract ?y)
(assert (B-branches (branch B-2))))

(defrule B-branches-clean-up
(declare (salience -2))
?x <- (B-branches (branch B-2))
?y <- (rule-B (state ?))

(retract ?x)

(retract ?y)
(printout t 0* No B-branch successful crlf))

------------------------------------------ B-i-branch ----
(defrule B-branch-l-state-D

(B-branches (branch B-i))

(assert (rule-B (state D)))
(assert (rule-D (state start))
(printout t *B-start (branch B-i); ))

(defrule B-branch-l-state-E
(B-branches (branch B-i))
?x <- (rule-B (state D))
?y <- (rule-D (state done))

(retract ?x)

(retract ?y)
(assert (rule-B (state E))))
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SIf O(fact K)" exints, "(rule-B (state done)), will follow irmediately.

(defrule B-branch-l-state-done
?x <- (B-branches (branch B-i))
?y <- (rule-B (state E))
(fact E)

I>

(retract ?x)
(retract ?y)
(assert (rule-B (state done)))
(printout t "E-state; B-done; * crlf))

-------------------------------------------- B-2-branch---
(defrule B-branch-2-state-F

(B-branches (branch B-2))

(assert (rule-B (state F)))
(printout t "* branch B-1 failure *" crlf
"B-start (branch B-2); "))

If "(fact F)" exists, "(rule-B (state done))" will follow immediately.

(defrule B-branch-2-state-done
?x <- (B-branches (branch B-2))
?y <- (rule-B (state F))
(fact F)

(retract ?x)

(retract ?y)
(assert (rule-B (state done)
(printout t "F-state; B-done; " crlf))

------------------------------------------------ Prolog -----
C :- D, E, F.

; C D, F.
C :-E.

------------------------------------------ Traffic rules--
(defrule C-branch-l-start

?x <- (rule-C (state start))

(retract ?x)
(assert (C-branches (branch C-i))))

(defrule C-branch-2-start
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(declare (salience -1))
?x <- (C-branches (branch C-1))
?y <- (rule-C0 (state ?))
(>

(retract ?x)
(retract ?y)

(assert (C-branches (branch C-2))))

(defrule C-branch-3-start
(declare (salience -2))
?x <- (C-branches (branch C-2))
?y <- (rule-C (state ?))

(retract ?x)

(retract ?y)
(assert (C-branches (branch C-3))))

(defrule C-branches-clean-up
(declare (salience -2))
?x <- (C-branches (branch C-3))
?y <- (rule-C (state ?))

(retract ?x)

(retract ?y)
(printout t "* No C-branch successful *" crlf))

------------------------------------------ C-1 branch ------
(defrule C-branch-l-state-D

(C-branches (branch C-i))

(assert (rule-C (state DM
(assert (rule-D (state start))
(printout t "C-start (branch C-1); "))

(defrule C-branch-l-state-E
(C-branches (branch C-i))
?x <- (rule-C (state D))

?y <- (rule-D (state done))

(retract ?x)

(retract ?y)
(assert (rule-C (state E))))

; If *(fact E)6 exists, O(rule-C (state F))" will follow immediately.

(defrule C-branch-l-state-F
(C-branches (branch C-i))
?x <- (rule-C (state E))

(fact E)
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U>

(retract ?x)
(assert (rule-C (state F)))
(printout t OE-state; n))

If O(fact F)* exists, s(rule-C (state done))" will follow immediately.

(defrule C-branch-l-state-done
?x <- (C-branches (branch C-i))

?y <- (rule-C (state F))
(fact F)

(retract ?x)

(retract ?y)
(assert (rule-C (state done)))
(printout t OF-state; C-done; " crlf))

-----------------------------------------C-2 branch ------
(defrule C-branch-2-state-D

(C-branches (branch C-2))

(assert (rule-C (state DM

(assert (rule-D (state start))
(printout t 0* branch C-1 failure * crlf
"C-start (branch C-2); "))

(defrule C-branch-2-state-F
(C-branches (branch C-2))
?x <- (rule-C (state D))
?y <- (rule-D (state done))

(retract ?x)
(retract ?y)
(assert (rule-C (state F))))

; If '(fact F)" exists, "(rule-C (state done))" will follow immediately.

(defrule C-branch-2-state-done
?x <- (C-branches (branch C-2))
?y <- (rule-C (state F))
(fact F)

(retract ?x)

(retract ?y)
(assert (rule-C (state done)
(printout t OF-state; C-done; " crlf))

46



;-------------------------------------------------. --- C-3 branch----
(defrule C-branch-3-state-E

(C-branches (branch C-3))

(assert (rule-C (state E)))
(printout t 0* branch C-2 failure * crlf
OC-start (branch C-3); 0))

If *(fact E)" exists, "(rule-C (state done))" will follow immediately.

(defrule C-branch-3-state-done
?x <- (C-branches (branch C-3))
?y <- (rule-C (state E))
(fact E)

(retract ?x)

(retract ?y)
(assort (rule-C (state done)))
(printout t "E-state; C-done; " crlf))

----------------------------------------------- Prolog
D :-G.

D :-H.

--------------------------------------- Traffic rules ------
(defrule D-branch-l-start

?x <- (rule-D (state start))

(retract ?x)
(assert (D-branches (branch D-1))))

(defrule D-branch-2-start
(declare (salience -1))
?x <- (D-branches (branch D-l))
?y <- (rule-D (state ?))

(retract ?x)

(retract ?y)
(assert (D-branches (branch D-2))))

(defrule D-branches-clean-up
(declare (salience -1))
?x <- (D-branches (branch D-2))
?y <- (rule-D (state ?))

(retract ?x)
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(retract ?y)
(printout t "* No D-brancn successful crlf))

-----------------------------------------D-l-branch ----
(defrule D-branch-l-state-G

(D-branches (branch D-l))

(assert (rule-D (state G)))
(printout t "D-start (branch D-l); "))

If "(fact G)" exists, "(rule-D (state done))" will follow immediately.

(defrule D-branch-l-state-done
?x <- (D-branches (branch D-l))
?y <- (rule-D (state G))
(fact G)

(retract ?x)

(retract ?y)
(assert (rule-D (state done)))
(printout t "G-state; D-done;" crlf))

----------------------------------------- D-2-branch ----
(defrule D-branch-2-state-H

(D-branches (branch D-2))

(assert (rule-D (state H)))
(printout t N* branch D-1 failure * " crlf

"D-start (branch D-2); "))

If "(fact H)" exists, "(rule-D (state done))" will follow immediately.

(defrule D-branch-2-state-done
?x <- (D-branches (branch D-2))
?y <- (rule-D (state H))
(fact H)

(retract ?x)

(retract ?y)
(ass'-rt (rule-D (state done)))

(printout t "H-state; D-done;" crlf))
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APPENDIX B. CLIPS IMPLEMENTATION OF THE EXAMPLE IN
SECTION IV.D.

;* Title : Example for Thesis. section IV.D.

;* Name : newl.5
;* Version : 1.5
;* Author : Thomas Scholz

Date : 9 September 1993
Revised : 15 September 1993
System : Sun/Solbourne UNIX
Compiler : Clips 6.0
Prolog-Code :

A B,Bl.
A C,Cl.
A DoD1.
B XXl,X2.
B Y.

B Z,Zl.
Y ALPHA, ALPHA1.
Y BETA,BETA1.

Y GAMMA,GAMMA1.

;* Remarks No more sequential behavior. After a branch failure, all
remaining choices compete again.
Implementation of "OR-AND-OR-OR - Relationship'.

- -------- Templates for OR-Relationships
(deftemplate A

(field state
(type SYMBOL)

(allowed-symbols start B Bl C Cl D Dl done))
(field status

(type SYMBOL)
(allowed-symbols reveal hide succeeded failed)
(default reveal)))

(deftemplate B
(field state

(type SYMBOL)
(allowed-symbols start X Xl X2 Y Z Zl done))

(field status
(type SYMBOL)
(allowed-symbols reveal hide succeeded failed)
(default reveal)))
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(deftemplate Y
(field state

(type SYMBOL)
(allowed-symbols start ALPHA ALPHA1 BETA BETA1

GAMMA GAMMAl done))
(field status

(type SYMBOL)
(allowed-symbols reveal hide succeeded failed)
(default reveal)))

----------------------------------------- start program -----
(defrule start-program

?x <- (initial-fact)
(condition A)

(retract ?x)
(assert (A (state start)))
(printout t crlf 'PATH through STDWPI crlf crlf 'A start;' crlf))

(defrule A-failure
(declare (salience -10))
?z <- (initial-fact)

(retract ?z)
(printout t "* Total failure *. System halted., crlf crlf))

------------------------------------ A-1 branch
(defrule A-start-B

?x <- (A (state start))
(condition B)

(modify ?x (state B) (status hide))
(assert (B (state start)))
(printout t "B-state; 0))

(defrule B-failure
(declare (salience -10))
?x <- (A (state B) (status hide))
?y <- (B (state ?n) (status reveal))
?z <- (condition B)

(retract ?z)
(modify ?x (state start) (status reveal))
(modify ?y (state ?n)(status failed))
(printout t 0* branch A-I failure *; A-state' crlf))

--------------------------------------------- B-1 branch----
(defrule B-start-X

?x <- (B (state start)(status reveal))
(A (state B)(status hide))
(condition X)
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(>

(modify ?x (state X)(status hide))
; (modify ?y (status hide))

(printout t OX-state; "))

(defrule X-failure
(declare (salience -10))
?x <- (B (state ?n)(status hide))
?y <- (condition X)

K>

(retract ?y)
(modify ?x (state start)(status reveal))
(printout t "* branch B-1 failure *; B-state, crlf))

(defrule B-start-Xl
?x <- (B (state X))
(condition Xl)

(modify ?x (state Xl))
(printout t "Xl-state; 9))

(defrule B-start-X2
?x <- (B (state Xl))
(condition X2)

(modify ?x (state X2))
(printout t "X2-state; "))

(defrule B-donel
?x <- (B (state X2))
?Y <- (A (state B))

(modify ?x (state done)(status reveal))

(modify ?y (status reveal))
(printout t crlf "B-done; 1))

-------------------------------------- end of B-1 branch
-------------------------------------- B-2 branch

(defrule B-start-Y
(declare (salience -1))
?x <- (B (state start) (status reveal))
(condition Y)

(modify ?x (state Y) (status hide))
(assert (Y (state start)))
(printout t NY-state; " crlf))

(defrule Y-failure
(declare (salience -10))
?x <- (B (state Y)(status hide))
?y <- (Y (state start)(status reveal))
?z <- (condition Y)
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=>

(retract ?z)
(modify ?x (state start)(status reveal))
(modify ?y (status failed))
(printout t 0* branch B-2 failure *; B-state; crlf))

--------------------------------------- Y-1 branch
(defrule Y-start-ALPHA

?x <- (Y (state start)(status reveal))
(condition ALPHA)

(modify ?x (state ALPHA))
(printout t OALPHA-state; "))

(defrule ALPHA-failure
(declare (salience -10))
?y <- (B (state Y)(status hide))
?x <- (Y (state ?n)(status reveal))
?z <- (condition ALPHA)

(retract ?z)
(modify ?x (state start)(status reveal))
(modify ?y (status failed))
(printout t 0* branch Y-1 failure *; Y-state; crlf))

(defrule Y-start-ALPHAl
?x <- (Y (state ALPHA))
(condition ALPHA1)

(modify ?x (state ALPHA1))
(printout t 'ALPHAl-state; "))

(defrule Y-done-l
?x <- (Y (state ALPHA1))
?y <- (B (state Y))
?z <- (A (status hide))

(modify ?x (state done)(status succeeded))

(modify ?y (state done)(status reveal))
(modify ?z (status reveal))
(printout t crlf OY-done; B-done; 0))

---------------------------------------- end of Y-1 branch---
---------------------------------------- Y-2 branch-

(defrule Y-start-BETA
(declare (salience -1))
?x <- (Y (state start)(status reveal))
(condition BETA)

(modify ?x (state BETA))
(printout t 'BETA-state; 9))
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(defrul. BETA-failure
(declare (salience -10))
?x <- (B (state Y)(status hide))
?x <- (Y (state ?n)(status reveal))
?z <- (condition BETA)

(retract ?z)
(modify ?x (state start)(status reveal))
(modify ?y (status failed))
(printout t 0* branch Y-2 failure *; Y-state; crlf))

(defrule Y-start-BETAl
?x <- (Y (state BETA))
(condition BETAl)

(modify ?x (state BETA1))
(printout t OBETAl-state; 0))

(defrule Y-done-2
?x <- (Y (state BETAl))
?y <- (B (state Y))

; ?z <- (A (status hide))

(modify ?x (state done)(status succeeded))
(modify ?y (state done) (status reveal))
(modify ?z (status reveal))
(printout t crlf 'Y-done; B-done; ))

----------------------------------------- end of Y-2 branch--
----------------------------------------- Y-3 branch

(defrule Y-start-GAMMA
(declare (salience -2))
?x <- (Y (state start))
(condition GAMMA)

(modify ?x (state GAMMA))
(printout t 'GAMMA-state; "))

(defrule GAMMA-failure
(declare (salience -10))
?x <- (Y (state ?n)(status reveal))
?y <- (B (state Y)(status hide))
?z <- (condition GAMMA)

(retract ?z)
(modify ?x (status failed))

4dify ?x (state start)(status reveal))
(printout t 9* branch Y-3 failure *; Y-state; crlf))

(defrule Y-start-GAMMA1
?x <- (Y (state GAMMA))
(condition GAMMAl)
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=>

(modify ?x (state GAN1A1)
(printout t GAMOAl-state; 1)

(defrule Y-done-3
?x <c- (Y (state GAMMAU))
?y <- (B (state Y))

; ?z <- (A (state B)(status hide))

(modify ?x (state done)(status succeeded))
(modify ?y (state done)(status reveal))

; (modify ?z (status reveal))
(printout t crlf OY-done; B-done; 1))

; - ----------------------------------------- end of Y-3 branch---
---------------------------------------- B-3 branch

(defrule B-start-Z
(declare (salience -2))
?x <- (B (state start)(status reveal))
(A (state B) (status hide))
(condition Z)

(modify ?x (state Z)(status hide))
(modify ?y (status hide))
(printout t "Z-state; ))

(defrule Z-failure
(declare (salience -10))
?x <- (B (state ?n)(status hide))
?y <- (condition Z)

(retract ?y)
(modify ?x (state start)(status reveal))
(printout t 9* branch B-3 failure *; B-state' crlf))

(defrule B-start-Zl
?x <- (B (state Z))
(condition Zl)

(modify ?x (state Zl))
(printout t 'Zl-state; 0))

(defrule B-done-2
?x <- (B (state Zl))

?y <- (A (state B))

(modify ?x (state done)(status reveal))

(modify ?y (status reveal))
(printout t crlf B-done; A-done; crlf crlf
"* Successful termination *0 crlf crlf))

------------------------------------- end of B-3 branch -----
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(defrule A-start-Bl
?x <- (A (state B))
(B (state done)(status reveal))
(condition Bl)

3>

(modify ?x (state Bi))
(printout t Bl-state; 1))

(defrule A-done-1
?x <- (A (state Bl))

Z>

(modify ?x (state done)(status succeeded))
(printout t crlf 'A-done;* crlf crlf °* Successful termination

crlf crlf))

--------------------------------------- end of A-1 branch -----
--------------------------------------- A-2 branch

(defrule A-start-C
(declare.(salience -1))
?x <- (A (state start))
(condition C)

=>

(modify ?x (state C))
(printout t *C-state; 1)

(defrule C-failure
(declare (salience -10))
?x <- (A (state 7)(status reveal))
?y <- (condition C)

(retract ?y)
(modify 7x (state start)(status reveal))
(printout t 0* branch A-2 failure *; A-state; crlf))

(defrule A-start-Cl
?x <- (A (state C))

(condition Cl)
=>

(modify ?x (state CI))
(printout t 'Cl-state; 0))

(defrule A-done-2
?x <- (A (state Cl))

U>

(modify ?x (state done)(status succeeded))
(printout t crlf NA-done;' crlf crlf I* Successful termination

crlf crlf))
------------------------------------- end of A-2 branch ------

55



--------- -------- --------- -------- -------- A-3 branch-
(defrule A-start-D

(declare (salience -2))

?x <- (A (state start))
(condition D)

U>

(modify ?x (state D))
(printout t ID-state; 0))

(defrule D-failure
(declare (salience -10))
?x <- (A (state ?)(status reveal))

?y <- (condition D)
=>

(retract ?y)
(modify ?x (status failed))
(printout t 0* branch A-3 failure *; A-state.' crlf crlf)

(printout t 9* No A-branch successful *. System halted. crlf crlf))

(defrule A-start-Dl
?x <- (A (state D))
(condition Dl)

(modify ?x (state Dl))
(printout t OD1-state; 9))

(defrule A-done-3
?x <- (A (state Dl))

(modify ?x (state done)(status succeeded))
(printout t crlf NA-done;" crlf crlf N* Successful termination

crlf crlf))
------------------------------------ end of A-3 branch ------
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APPENDIX C. PROLOG IMPLEMENTATION OF THE RBM'S
STRATEGIC LEVEL

I* Strategic Level for the RBM AUV Mission Controller/Coordinator
by Byrnes, Kwak, Healey, Marco for use at Florida competition

Version: 2.3 Oct 27, 1992

/* ---------------------- MISSION SPECIFICATION -------------- *

initialize :- readyveh_for_launch(ANS1),
ANSI == 1, solectfirst-waypoint(ANS2).

initialize :- alert._.user(ANS), fail.

mission :- in_transitp(ANS1), ANSI == 1, transit, 3,

transitdone.p(ANS2),
ANS2 == 1, fail.

mission :- insearch.p(ANS1), ANSI == 1, search, !,

search_donep(ANS2), ANS2 == 1, fail.
mission :- intask.p(ANS1), ANSI == 1, task, !, task-done-p(ANS2),

ANS2 == 1, fail.

mission :- in_returnp(ANS1), ANSI == 1, return, !, return_done.p(ANS2),
ANS2 == 1, wait_for_recovery(ANS3).

transit :- waypointcontrol.
transit :- surface(ANS).

search :- do_searchpattern(ANS), ANS == 1.
search :- surface(ANS).

task :- homing(ANSi), ANSI == 1, droppackage(ANS2), ANS2 == 1,
getgpsfix(ANS3), ANS3 == 1, getnextwaypoint(ANS4), ANS4 == 1.

task :- surface(ANS).

return :- waypoint_control.
return :- surface(ANS).

/* ------------------------------ NPS AUV DOCTRINE ----------------*

execute_auv_mission :- initialize, repeat, mission.

waypoint.control :- not(crit.system-prob), getwaypoint_status,
plan, sendsetpoints_and_modes(ANS).

/* need to monitor accuracy of trar relative to current and GPS */
/*obstacle avoidance in Tac, replanning in Strategic *1

get-waypoint_status :- gps.check, reach_waypoint(ANS1), ANSI == 1,
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get-nraxt...waypoint (ANS2).
got..waypoint....tatus.

gps..check :-gps...needed(ANSl), ANS1 = 1, get..gps...fix(ANSl).
gps-check.

/* Planning: reduced capability (cut mission short), system degradation
(continue mission at lower performance), obstacle avoidance, normal.

g system*/

plan r-d,..,cap...system-.prob, global~replan.

/* Subset of system probs requiring replan (TED) *i

plan :-near_uncharted_ýobstacle, local-replan.
plan.

near_uncharted_obstacle :- unk_obstacle..p(ANSl), ANS1 == 1,
logr_new,_obstacle(ANS2).

local-.replan :-loiter(ANS1), start-local-replanner(ANS2).

global~replan :-loiter(ANSl), start~global...eplanner(ANS2).

crit~system-.prob power~gone...p(ANS), ANS == 1.
crit..system...prob :-computer...system..inop-p(ANS), ANS == 1.
crit...systerr-prob propulsion~system...p(ANS), ANS ==1.
crit..system...prob :-steering...systen~.inop..pCANS), ANS ==1.

re&..cap..system~prob diving...system...p(ANS), ANS == 1.
red-cap...system-prob : bouyancy...system-p(ANS), ANS = 1.
red...cap...system...prob :-thruster~systeM..p(ANS), ANS ==1.

red-cap~system...prob :-leak..test~p(ANS), ANS == 1.
red.cap~system...prob :-payload~prob..p (ANS), ANS == 1.
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APPENDIX F. CLIPS IMPLEMENTATION OF THE STRATEGIC
LEVEL

•* Title Strategic Level for the NPS AUV II
•* Name : strlev6.20
•* Version : 6.20
•* Author Thomas Scholz
• Date :10 August 1993
• Revised
• System : Sun3 UNIX; server's name "virgo"
•* Compiler CLIPS/Ada 4.40
• Description : This program is the strategic level of the NPS AUV II,

"top level of the Rational Behavioral Model design
.*

;* Remarks : The function names (i.e. "diving-system_.probp") match the
names that have been used in the tactical level code of
Fritz Thornton [Ref. 13]

•********************NPS AUV - RBM Mission Controller/Coordinator**************

S*4***4****4************************ Templates *****************************

(deftemplate execute-auv-mission
(field state

(type SYMBOL)
(allowed-symbols start initialize mission done)))

(deftemplate initialize
(field state

(type SYMBOL)
(allowed-symbols start

ready-vehicle-for-launch
select-first-waypoint
alert-user
done)))

(deftemplate initialize-branches
(field branch

(type INTEGER) (range 1 2))
(field status

(type SYMBOL)
(allowed-symbols try failed)))
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(deftemplate mission
(field state

(type SYMBOL)
(allowed-symbols start

transit in-transit-p transit-done-p
search in-search-p search-done-p
task in-task-p task-done-p
return in-return-p return-done-p
wait-for-recovery
done)))

(deftemplate mission-branches
(field branch

(type INTEGER) (range 1 4))
(field status

(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate transit
(field state

(type SYMBOL)
(allowed-symbols start

waypoint-control
surface
done)))

(deftemplate transit-branches
(field branch

(type INTEGER) (range 1 2))
(field status

(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate search
(field state

(type SYMBOL)
(allowed-symbols start

do-search-pattern
surface
done)))

(deftemplate search-branches
(field branch

(type INTEGER) (range 1 2))
(field status

(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate task
(field state
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(type SYMBOL)
(allowed-symbols start

homing drop-package
get-gps-fix
get-next-waypoint
surface
done)))

(deftemplate task-branches
(field branch

(type INTEGER) (range 12))
(field status

(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate return
(field state

(type SYMBOL)
(allowed-symbols start

waypoint-control

surface
done)))

(deftemplate return-branches
(field branch

(type INTEGER) (range 1 2))
(field status

(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate waypoint-control
(field state

(type SYMBOL)
(allowed-symbols start

crit-system-prob
get-waypoint-status
plan
send-setpoints-and-modes
done)))

(deftemplate get-waypoint-status
(field state

(type SYMBOL)
(allowed-symbols start

gps-check
reach-waypoint
get-next-waypoint
done)))

(deftemplate get-waypoint-status-branches
(field branch
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(type INTEGER) (range 1 2))
(field status

(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate gps-check
(field state

(type SYMBOL)
(allowed-symbols start

gps-needed
get-gps-fix
done)))

(deftemplate gps-check-branches
(field branch

(type INTEGER) (range 1 2))
(field status

(type SYMBOL)
(allowedosymbols try failed)))

(deftemplate plan
(field state

(type SYMBOL)
(allowed-symbols start

red-cap-system-prob
global-replan
near-uncharted-obstacle
local-replan
done)))

(deftemplate plan-branches
(field branch

(type INTEGER) (range 1 3))
(field status

(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate near-uncharted-obstacle
(field state

(type SYMBOL)
(allowed-symbols start

unknown-obstacle-p
log-new-obstacle
done)))

(deftemplate local-replan
(field state

(type SYMBOL)
(allowed-symbols start

loiter
start-local-replanner
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done))

(field state
(type SYMBOL)
(allowed-symbols start

loiter
start-global-replanner
done)))

(deftemplate cnit-system-prob
(field state

(type SYMBOL)
(allowed-symbols start

power-gone-p
computer-system-mnop-p
propulsion-system-p
steering-system-mnop-p
not-done
done)))

(deftemplate crit-system-prob-branches
(field branch

(type INTEGER) (range 1 4)))
(field status
* (type SYMBOL)
* (allowed-symbols try failed)))

(deftemplate red-cap-system-prob
(field state

(type SYMBOL)
(aflowed-symbols start

diving-system-p
bouyancy-system-p
thruster-system-p
leak-test-p
payload-prob-p
done)))

(deftemplate red-cap-system-prob-branches
(field branch

(type INTGER) (range 1 5)))
(field status
* (type SYMBOL)

(allowed-symbols try failed)))

**************.**************Rules ***********~******

;------- ----------*---------execute-auv-mission----

(defrufle start-programn
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?x <- (start)

(retract ?x)
(assert (execute-auv-mission (state start))))

(defrule execute-auv-mission-state-initialize
?x <- (execute-auv-mission (state start))

(retract ?x)
(assert (execute-auv-mission (state initialize)))
(assert (initialize (state start))))

(defrule execute-auv-mission-state-mission
?x <- (execute-auv-mission (state initialize))
?y <- (initialize (state done))

(retract ?x)
(retract ?y)
(assert (execu.te-auv-mission (state mission)))
(assert (mission (state start))))

(defrule execute-auv-mission-state-done
?x <- (execute-auv-mission (state mission))
?y <- (mission (state done))

(retract ?x)
(retract ?y)
(assert (execute-auv-mission (state done)))
(printout t crlf** crlf

*MISSION EXECUTED SUCCESSFULLY. *" crlf
"AUV IS WAITING FOR RECOVERY... *" crlf

"************************************** crlf crif))

- --.-.-.------.-.-------.-.--------- initialize traffic rules- -.------.

(defrule initialize-branch- 1-start
?x <- (initialize (state start))

(retract ?x)
(assert (initialize-branches (branch l)(status try))))

(defrule initialize-branch-2-start
(declare (salience -10))
?x <- (initialize-branches (branch l)(status failed))

(retract ?x)
(assert (initialize-branches (branch 2)(status try))))
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-d ~dae" • ..ceanup
(deckl (slence -20))
?x <- (nidalize-branches (Winch 2Xswus failed))
?y <- ('nitialize (stae?))

W>(reouwt ?U)
(retract ?y)

(plintout t"No initialize branch successful!" crlf crlf))

(defrule initialize-branch-failure
(declare (salience -100))
?x <- (initialize-branches (branch ?nXstatus try))
?y <- (initialize (state ?))

W>

(reutac ?x)
(retract ?y)
(assert (initialize-branches (branch ?n)(status failed))))

-------- - ----- initialize branch 1 --------------..

(defrule initialize- I-state-ready-vehicle-for-launch
(initialize-branches (branch lXstatus try))

U>

(assert (initialize (state ready-vehicle-for-launch))))

(defrule initialize-i-state-select-first-waypoint
(initialize-branches (branch lXstatus try))
?x <- (initialize (state ready-vehicle-for-launch))
(test (= (readyyehiclejorjIaunch) 1))

(retract ?x)
(assert (initialize (state select-first-waypoint))))

(defrule initialize-l-state-done
?x <- (initialize-branches (branch 1)(status try))
?y <- (initialize (state select-frst-waypoint))

(select furst_waypoint)
(retract ?x)
(react ?y)
(assert (initialize (state done))))

---- -.-.-.-..---.---.-..-.- .-----initialize branch 2 -

(defruie initialize-2-state-alert-user
(initialize-branches (branch 2Xstatus try))

(assert (initialize (state alert-user))))

(defrule initialize-2-state-done
?x <- (initialize-branches (branch 2)(status try))
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?y <- (initialize (state alert-user))
=>

(alet-user)
(retract ?x)
(retract ?y)
(assert (initialize (state done))))

_--- mission traffic rules- -..------

(defrule mission-branch-i -start
?x <- (mission (state start))

U=>

(retract ?x)
(assert (mission-branches (branch l)Xstatus try))))

(defrule mission-branch-2-start
(declare (salience -10))
?x <- (mission-branches (branch 1)(status failed))

(retract ?x)
(assert (mission-branches (branch 2Xstatus try))))

(defrule mission-branch-3-start
(declare (salience -20))
?x <- (mission-branches (branch 2)(status failed))

(retract ?x)
(assert (mission-branches (branch 3Xstatus try))))

(defrule mission-branch-4-start
(declare (salience -30))
?x <- (mission-branches (branch 3Xstazus failed))

(retract ?x)
(assert (mission-branches (branch 4Xstatus try))))

(defrule mission-branches-clean-up
(declare (salience -40))
?x <- (mission-branches (branch 4))

(retract ?x)
(assert (mission (state start))))

;(defrule mission-branch-repeat
(declare (salience -10000))
?x <- (mission-branches (branch ?n)(status try))
?y <- (mission (state ?))

(retract ?x)
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; ("out ?Y)
(amen(mion (aft stat))))

(debu. misoM-braan-fai=ur
(declare (mSaice -1000))
?x <- (mission-bunches (branch ?nXstas try))
?y <- (mission (same ?))

(retract ?x)
(retract ?y)
(mscan (mission-branches (branch ?nXsmtus failed))))

-mission branch I -.......----

(defrule mission-I-stwe-in-transit-p
(mission-branches (branch MXstaus try))

(assert (mission (state in-transit-p))))

(defrule mission- l-state-transit
(mission-branches (branch X)stawus try))
?x <- (mission (state in-transit-p))
(test (-. (in-transit.p) I))

(retract ?x)
(assert (mission (stame transit)))
(assert (transit (state start))))

(defrule mission- i-state-transit-done-p
?x <- (mission-branches (branch 1)(status try))

; (mission-branches (branch IXstatus try))
?y <- (mission (state transit))
?z <- (transit (state done))
(test (- (transit.done~p) 1))
( a>

(retract ?Y)
(retract ?y)
(retract ?z)

(assert (mission (state transit-done-p)))
(assert (mission-branches (branch IXstatus try)))
(printout t crlf' ** **** ********" crlf

"0* TRANSIT SUCCESSFUL. *"crlf
crlfc rl))

--- .mission branch 2 -------.......

(defrule mission-2-state-in-search-p
(mission-branches (branch 2Xstazus try))

a.>

(amen (mission (state in-search-p))))
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(deofule mission-2-state-search
(mission-branches (branch 2X)mtus try))
?x <- (mission (state in-search-p))
(teat (. (in-uearch_.p) 1))

(retract ?x)
(asert (mission (state seaMch)))
(awert (search (state start))))

(defrule mission-2-staxe-search-done-p
?x <- (mission-branches (branch 2)status try))

; (mission-branches (branch 2Xsztaus try))
?y C- (m.,sion (Stac search))
?z <- (search (state done))
(test (- (searchdoncp) W))

(retract ?x)
(retract ?y)
(retract ?z)
(assert (mission (state search-done-p)))
(assert (mission-branches (branch 2)(status try)))
(printout t crlf ** crif

"°'* SEARCH SUCCESSFUL. *" crlf
**.**.*..*.* ..** .***** .**** ******* * •lcrf cr1f))

.----- mission branch 3 --------......

(defrle mission-3-state-in-task-p
(mission-branches (branch 3)(status try))

(assert (mission (state in-task-p))))

(defrule mission-3-state-task
(mission-branches (branch 3)(status try))
?x <- (mission (state in-task-p))
(test (- (in.task.p) 1))

(retract ?x)
(assert (mission (state task)))
(assert (task (state start))))

(defrule mission-3-state-task-done-p
?x <- (mission-branches (branch 3)(status try))
(mission-branches (branch 3Xstatus try))
?y <- (mission (state task))
?z <- (task (state done))
(test (= (task-doep) M))

a>•

(retract ?%)
(retract ?y)
(retract ?z)
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(amu (miioan (stae tw-done-p)))
(PmA. (mimion-branches (brnh 3Xstaus try)))
(prinwtout crlf crif

"TASK SUCCESSFUL. *" crlf
'*e************e***.*9******S********** Sr" ( 1 fcrl))

---- - -------- mission branch 4-----------

(defrnle mission-4-state-in-return-p
(mission-branches (branch 4Xstatus try))

(assert (mission (state in-return-p))))

(defrule mission-4-state-retum
(mission-branches (branch 4)(status try))
?x <- (mission (state in-return-p))
(test (- (in.r.eurn.,p) 1))

(retract ?x)
(assert (mission (state return)))
(assert (return (state stan))))

(defrule mission-4-state-reurn-done-p
?x <- (mission-branches (branch 4)(status try))
(mission-branches (branch 4Xstatus try))
?y <- (mission (state return))
?z <- (return (state done))
(test (= (returndone.p) 1))

(retract ?x)
(retract ?y)
(retract ?z)
(waiL forjecovery)
(printout t crlf * crlf

"'* RETURN SUCCESSFUL. *" crlf
"************************************** crlf crlf)

(assert (mission (state done))))

- .- ---- transit traffic rules--.

(defrule transit-branch-i -start
?x <- (transit (state start))

(retract ?x)
(assert (transit-branches (branch 1)(status try))))

(defrule transit-branch-2-start
(declare (salience -10))
?x <- (transit-branches (branch 1)(status failed))
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(retract ?x)
(assert (transit-branches (tmach 2Xstatus try))))

(defrule transit-branches-clean-up
(declare (salience -20))
?x <- (transit-branches (branch 2)(status failed))

B>

(retract ?x)
(printout t "No transit branch successful!" crlf cr1f))

(defrule transit-branch-failure
(declare (salience -100))
?x <- (transit-branches (branch ?n)(status try))
?y <- (transit (state ?))
(r>

(retract ?x)
(retract ?y)

(assert (transii-branches (branch ?nXstatus failed))))

-------....---...- ------ ..------ -------- transit branch I

(defrule transit-1-state-waypoint-control
(transit-branches (branch 1)(status bry))

B>

(assert (transit (state waypoint-control)))
(assert (waypoint-control (state start))))

(defrule transit- l-state-done
?x <- (transit-branches (branch 1)(status try))
?y <- (transit (state waypoint-control))
?z <- (waypoint-control (state done))

(retract ?x)
(retract ?y)
(retract ?z)
(assert (transit (state done))))

------.-...-----..----.-.---- ...------------- transit branch 2

(defrule transit-2-state-surface
(transit-branches (branch 2)(status try))

B>

(assert (transit (state surface))))

(defrule transit-2-state-done
?x <- (transit-branches (branch 2)(status try))
?y <- (transit (state surface))
( c

(retract ?x)
(retract ?y)
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(assert (transit (state done)))) ;is transit done???

(defirule searh-branch-1-start
?x <- (search (state start))

(retract ?X)
(assert (search-branches (branch 1)(status try))))

(defrule search-branch-2-start
(declare (salience -10))
Ux <- (search-branches (branch I )(status failed))

(retract ?x)
(assert (search-branches (branch 2)(status try))))

(defrule search-branches-clean-up
(declare (salience -20))
Ux <- (search-branches (branch 2)status failed))

(retract Ux)
(printout t"No search branch successful!" crlf cr10))

(deftule search-branch-failure
(declare (salience -100))
Ux <- (search-branches (branch ?n)(status try))
?y <- (search (state ?))

(retract ?x)
(retract ?y)
(assert (search-branches (branch ?n)(status failed))))

-------------- ---- - ----------------- search branch 1 -----

(defruie search- I -state-do-search-pattern

(search-branches (branch l)(status try))

(assert (search (state do-search-pattern))))

(defrule search- 1 -state-done
Ux <- (search-branches (branch 1)(status try))
?y <- (search (state do-search-pattern))
(test (- (do...search_.pattern) 1))

(retract Ux)
(retract ?y)
(assert (search (state done))))
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;, seachbranch 2 --------

(defrule search-2-state-surface

(search-branches (branch 2)(status try))

(assert (search (state surface))))

(defrule search-2-state-done
?x <- (search-branches (branch 2Xstatus try))
?y <- (search (state surface))

(retract ?x)
(retract ?y)
(surface))

(assert (transit (state done)))) : is transit done???

---- ------ ------ . .-.-----.------.--------. -task traffic rules

(defrule task-branch-I -start
?x <- (task (state start))

(retract ?x)
(assert (task-branches (branch l)(status try))))

(defrule task-branch-2-start
(declare (salience -10))
?x <- (task-branches (branch 1)(status failed))

(retract ?x)
(assert (task-branches (branch 2)(status try))))

(defrule task-branches-clean-up
(declare (salience -20))
?x <- (task-branches (branch 2)(status failed))

(retract ?x)
(printout t "No task branch successful!" crlf crlf))

(defrule task-branch-failure
(declare (salience -100))
?x <- (task-branches (branch ?n)(status try))
?y <- (task (state M))

(retract U)
(retract ?y)
(assert (task-branches (branch ?nXstatus failed))))
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(defnule task- -st - e-homing

(task-branches (branch 1)(status try))

(assert (task (state homing))))

(defrule task- 1-state-drop-package
(task-branches (branch 1)(status try))
?U <- (task (state homing))
(test (= (homing) 1))

(retract ?x)
(assert (task (state drop-package))))

(defrule task- l-state-get-gps-fix
(task-branches (branch l)(status try))
?x <- (task (state drop-package))
(test (= (drop.Lpackage) 1))

(retract ?x)
(assert (task (state get-gps-fix))))

(defrule task- 1-state-get-next-waypoint
(task-branches (branch 1)(status try))
?x <- (task (state get-gps-fix))
(test (= (getgpsfix) 1))

(retract ?x)
(assert (task (state get-next-waypoint))))

(defrule task- 1-state-done
?x <- (task-branches (branch 1)(status try))
?y <- (task (state get-next-waypoint))
(test (= (get_next-waypoint) 1))

(retract ?x)
(retract ?y)
(assert (task (state done))))

- --------.-.-----.----.- ..........------------- task branch 2 ---------

(defrule task-2-state-surface
(task-branches (branch 2)(status try))

(assert (task (state surface))))

(defrule task-2-state-done
?x <- (task-branches (brnch 2)(status try))
?y <- (task (state surface))
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(retract ?x)
(retract ?y)
(surface))

(assert (task (state done)))) ; is task done???

- -... ..... -------. ----------..------- return traffic rules.

(defrule return-branch- 1-start
?x <- (return (state start))

(retract ?x)
(assert (return-branches (branch 1)(status try))))

(defrule return-branch-2-start
(declare (salience -10))
?x <- (return-branches (branch 1)(status failed))

(retract ?x)
(assert (return-branches (branch 2)(status try))))

(defrule return-branches-clean-up
(declare (salience -20))
?x <- (return-branches (branch 2)(status failed))

(retract ?x)
(printout t "No return branch successful!" crlf crlf))

(defrule return-branch-failure
(declare (salience -100))
?x <- (return-branches (branch ?n)(status try))
?y <- (return (state ?))

(retract ?x)
(retract ?y)
(assert (return-branches (branch ?n)(status failed))))

--.-. ----.-.- .......------ -------- ----------- return branch 1 ---------

(defrule return- l-state-waypoint-control
(return-branches (branch 1)(status try))

(assert (return (state waypoint-control)))
(assert (waypoint-control (state start))))

(defrule return-i-state-done
?x <- (return-branches (branch 1)(status try))
?y <- (return (state waypoint-control))
?z <- (waypoint-control (state done))
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(rourt IX)
(retta ?y)
(retract ?z)
(assert (return (state done))))
(assert (mission (state start))))

.ernbranch 2 --------

(defrule return-2-state-surface

(return-branches (branch 2)(status try))

(assert (return (state surface))))

(defrule retun-2-state-done
?x <- (return-branches (branch 2)(status try))
?y <- (return (state surface))

(retract U)
(retract ?y)
(surface))

(assert (return (state done)))) ; is return done???

--.---.--..--......------- ------ --------- waypoint-control --------

(defrule waypoint-control-state-crit-system-prob
?x <- (waypoint-control (state start))

(retract ?X)
(assert (waypoint-control (state crit-system-prob)))
(assert (crit-system-prob (state start))))

(defrule waypoint-control-state-get-waypoint-status
?x <- (waypoint-cokitrol (state crit-system-prob))
?y <- (crit-system-prob (state not-done))

(retract ?x)
(retract ?y)
(assert (waypoint-control (state get-waypoint-status)))
(assert (get-waypoint-status (state start))))

(defrule waypoint-control-state-plan
?x <- (waypoint-controi (state get-waypoint-status))
?y <- (get-waypoint-status (state done))

(retract ?U)
(retract ?y)
(assert (waypoint-control (state plan)))
(assert (plan (state start))))
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(defrule, waypoint-contro1-state-done
?x <- (waypoint-control (state plan))
?y <- (plan (state done))

(retract ?x)
(rewtat?y)
(send-selpoirns..and.modes)
(assert (waypoint-control (state done))))

------.--get-waypoint-swaus traffic rules---

(defnjle, get-waypoint-staus-branch- I -start
?x <- (get-waypoint-smaus (state start))

(retract ?x)
(assert (get-waypoint-status-branches (branch 1 )(status try))))

(defrule get-waypoint-status-brAnch-2-stant
(declare (salience -10))
?x <- (get-waypoint-status-branches (branch 1)(status failed))

(retract ?x)
(assert (get-waypoint-status-branches (branch 2)Xstatus try))))

(defrule get-waypoint-status-branches-clean-up
(declare (salience -20))
?x <- (get-waypoint-status-branches (branch 2)(status failed))

(retract ?x)
(printout t "No get-waypoint-status branch successful!" crlf cr10))

(defrule get-waypoint-status-branch-failure
(declare (salience -100))
?x <- (get-waypoint-status-branches (branch ?n)(status try))
?y <- (get-waypoint-status (state ?))

(retract ?x)
(retract ?y)
(assert (get-waypoint-status-branches (branch ?n)(status failed))))

.--------------- get-waypoint-stazus branch 1 -- -

(deftule get-waypoint-status-1-state-gps-check
(get-waypoint-swaus-branches (branch 1)(status try))

(assert (get-waypoznt-smaus (state gps-check)))
(assert (gps-check (state start))))

(defrule get-waypoint-status-l-state-reach-waypoint

79



(Ift-waypoimt-swusi-branches (branch lXOSMau try))
?z <- (get-waypoint-status (slate asp-check))
?y <- (gps-check (state done))

(retract ?x)
(rebuat ?Y)
(assert (get-waypoint-stazus (state reach-waypoint))))

(defirule get-waypoint-status- 1-rn-done
?x <- (get-waypoint-stawus-branches (branch l)(status try))
?y <- (get-waypoint-stawus (state reach-waypoint))
(test (- (reach..waypoint..p) 1))

(retrat ?x)
(retrat ?y)
(get-next~yaypoint)
(assert (get-waypoint-status (state done))))

--- ---- --- ----------- get-waypoint-status branch 2 ------

(defrule get-waypoint-status-2-state-done

?x <- (get-waypoint-status-branches (branch 2)(status try))

(retrat ?x)
(assert (get-waypoint-status (state done))))

------- ------------------- ------ - -gps-check traffic rules--

(defrule gps-check-branch- 1 -star
?x <- (gps-check (state start))

(retrat ?x)
(assert (gps-check-branches (branch 1)(status try))))

(defrule gps-check-branch-2-start
(declare (salience -10))
?x <- (gps-check-branches (branch 1)(status failed))

(retrat ?x)
(assert (gps-check-branches (branch 2)Xstatus try))))

(defrule gps-check-branches-clean-up
(declare (salience -20))
?x <- (gps-check-branches (branch 2)(status failed))

(retract ?x)
(printout t "No gps-check branch successful!" crlf crlf))
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(deftue sc heck-bunch-failure
(declare (salience -100))
?x <- (gps-check-branches (branch ?n)(statis try))
?y <- (jps-check (state ?))

(reract ?x)
(retract ?y)
(assert (gps-chcck-branches (branch ?n)(status failed))))

S---- - ----------- g-sc-ecbranch I----- --

(defrule gps-check- I -stae-gps-needed
(gps-check-brAnches (branch l)(status try))

(assert (gps-check (state gps-needd))))

(defrule gps-check- I1-state-get-gps-fix
(gps-check-branches (branch I )(status try))
?x <- (gps-check (state gps-needed))
(test (= (gps...needed...p) 1))

(retract ?x)
(assert (gps-check (state get-gps-fix))))

(defrule gps-check- 1 -state-done
?x <- (gps-check-branches (branch 1 )(status bry))

?y<- (gps-check (state get-gps-f ix))

(rtac>x

(retract ?Y)

(get...ps-fix)
(assert (gps-check (state done))))

---------------------- ------ -- gps-check branch 2-------

(defrule gps-check-2-state-done
?x <- (gps-check-branches (branch 2)(status try))

(retract ?x)
(assert (gps-check (state done))))

S------ --- patrafficnrules ----

(defrule plan-branch- 1 -start
Ux <- (plan (state start))

(retract ?x)
(assert (plan-branches; (branch 1)(status try))))
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(deti plan-branch2.star

(declare (salience -10))
?x <. (pan-branches (branch iXswus failed))

(retrt ?x)
(assert (plan.branches (branch 2Xstatus try))))

(defrule plan-branch-3-start
(declare (salience -20))
?x <- (pLan-branches (branch 2Xstatus failed))

=>

(retract ?x)
(assert (pla-branches (branch 3Xstatus try))))

(defrule phn-branches-clean-up
(declare (salience -30))
?x <- (pwan-branches (branch 3)(status failed))

(retract ?x)
(printout t "No plan branch successful!" crif crlf))

(defrule plan-branch-failure
(declare (salience -100))
?x <- (plan-branches (branch ?nXstatus try))
?y <- (plan (state ?))

(retract ?x)
(retract ?y)
(assert (plan-branches (branch ?n)(status failed))))

-----..----......------..--------------- --plan branch I -----------.

(defrule plan- 1-state-red-cap-system-prob
(plan-branches (branch lXstatus try))

(assert (plan (state red-cap-system-prob)))
(assert (red-cap-system-prob (state start))))

(defrule plan- l-state-global-replan
(plan-branches (branch lXstatus try))
?x <- (plan (state red-cap-system-ptob))
?y <- (red-cap-system-prob (state done))

(retract ?x)
(retract ?y)
(assert (plan (state global-replan)))
(assert (global-replan (state start))))

(defrule plan-l-state-done
?x <- (plan-branches (branch IXstatus try))
?y <- (plan (state global-replan))
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?z <- (global-replan (stae done))

(retract ?X)
(retract ?Y)
(retract ?z)
(assert (plan (state done))))

- ----------- -plan branch 2 ---.-------

(defrule plan-2-ste-near-unchaned-obstacle
(plan-branches (branch 2Xstatus try))

(assert (plan (state near-uncharted-obstacle)))
(assert (near-uncharted-obstacle (state start))))

(defrule plan-2-state-local-replan
(plan-branches (branch 2Xstatus try))
?x <- (plan (state near-uncharted-obstacle))
?y <- (near-uncharted-obstacle (state done))

(retract ?x)
(retract ?y)
(assert (plan (state local-replan)))
(assert (local-replan (state start))))

(defrule plan-2-state-done
?x <- (plan-branches (branch 2)(status try))
?y <- (plan (state local-replan))
?z <- (local-replan (state done))

(retract ?x)
(retract ?y)
(retract ?z)
(assert (plan (state done))))

-.. .. . . planbranch 3 ----.------

(defrule plan-3-state-done
?x <- (plan-branches (branch 3)(status try))

(retract ?x)
(assert (plan (state done))))

,---- ----------near-un charted-obstacle.-.-

(defrule near-uncharted-obstacle-stale-unknown-obstacle-p
(nero-uncharted-obstacle (state start))

(assert (near-uncharted-obstacle (state unknown-obstacle-p))))
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(deduc .i-ew .tmchms-osw.-a ,-Iog-aew-obstc•

?x <- ( mb-u ed-obsale (state unknown-obstacle-p))
(tU (- (inownpo stacl._p) W))

(retract ?x)
(assert (near-unchIed-obstacle (state log-new-obstacle))))

(defrule near-unchuted-ostacle-state-done
?x <- (nea-unchauted-obstacle (state log-new-obstacle))

(lolLnew_obstacle)
(retract ?x)
(assert (near-unchaled-obstacle (state done))))

(defnric local-replan-state-loiter

(local-replan (state start))

(assert (local-replan (state loiter))))

(defrule local-replan-state-start-local-)planner
?x <- (local-replan (state loiter))

(loiter)
(retut ?x)
(assert (local-replan (state start-local-replanner))))

(defrule local-replan-state-done
?x <- (local-replan (state start-local-replanner))

(start jocal-replanner)
(retract ?x)
(assert (local-replan (state done))))

--. .- . . . . . . ..-.-.-- ----.-.-.-- - --- ---- -- . ..-- - ---- g lo b a l -r e p la n ----

(defrule global-replan-state-loiter

(global-replan (state start))

(assert (global-replan (state loiter))))

(defrule global-replan-smtte-sa-globa-replaner
?x <- (global-replan (state loiter))

(loiter)
(rebat ?x)
(assert (global-replan (state start-global-replanner))))
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(defrule gk*.-rcplan-stame-on
?I <- (global-replan (same start-global-replanner))

(startj&W-replanner)
(retract ')
(asr (globel-replan (state done))))

,-----------------------cri-systiem-prob traffic rles----

(defrule crit-systemn-prob-branch-1-start.
?x <- (cnit-systemn-prob (state start))

(retrat?x)
(assert (crit-system-prob-branches (branch 1))))

(defrule crit-system-prob-branch-2-start
(declare (salience -10))
?x <- (crit-systemjwrob-branches (branch 1))
?y <- (crit-system-prob (state ?))

(retract ?x)
(retract ?Y)
(assert (crit-system-prob-branches (branch 2))))

(defrule crit-system-prob-branch-3-stant
(declare (salience .20))
?x <- (crit-system-prob-branches (branch 2))
?y <- (crit-systemn-prob (state ?))

(retract ?x)
(retract ?Y)
(assert (crit-system-prob-branches (branch 3))))

(defrule crit-system-prob-branch-4-start
(declare (salience -30))
?x <- (crit-system-prob-branches (branch 3))
?y <- (crit-system-prob (state ?))

(retract ?x)
(retract ?y)
(assert (crit-system-prob-branches (branch 4))))

(defrule crit-system-prob-branches-clean-up
(declare (salence -40))
?x <- (crit-system-prob-buunches (branch 4))
?y <- (crit-system-prob (state ?))

(rtac x

(retract ?x)
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(imoim t -.No at-syummalok~ bnruch maccessful!" crif cr1))

(defnie aki-symem-guubl- I -mmower-loae-p

(aik-yamu cbesw (branch 1)

(amie (casi-syseem-prob (mlae power-gone-p))))

(defnde crit-sysaem-prob- I-sltmedone
?z -c- (crit-systemn-jwo-branches (branch W)
?y <- (crit-systcm-prob (slae power-gone-p))
(lost (_ (power-sose.p)1)

(retract ?x)
(retrat ?Y)
(assert (cnitsystem-prob (state done))))

(defrule crit-system-prob-2-state-computer-system-inop-p

(crit-system-prob-brinches (branch 2))

(assert (crit-system-prob (state computer-system -inop-p))))

(defrule crit-system-prob-2-state-done
?x <- (crit-system-prob-branches (branch 2))

?y<- (crit-systemn-prob, (state computer-system-inop-p))
(test (= (computer-systenuwrob..p) 1))

(retract ?x)
(retract ?y)
(assert (crit-system-prob (state done))))

------ -- --- ---------- ------- ---- crit-system-prob-3---

(defrule crit-system-prob-3-state-propulsion-system-p
(cnit-system-prob-brancbcs (branch 3))

(assert (cnit-system-prob (state propulsion-system-p))))

(defrule cnt-system-prob-3-state-done
?x <- (crit-system-prob-bmanches (branch 3))

?y<- (crit-system-prob (state propulsion-system -p))
(test (- (jprvpulsioti.systenijwrob..p) 1))

(retract ?x)
(retract ?y)
(assert (cnit-system-prob (state done))))
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(defrule cnit-system-prob.4-satae-seering-system-inop-p
(crit-systein-prb-branches (branch 4))

(assert (crit-system-prob (state steering-system-inop-pD)))

(defnilc crit-system-prob-4-satme-done
?x <- (crit-system-prob-branches (branch 4))
?y <- (cnit-systemn-prob (state steecng-system-inop-p))
(test (w (meiSn ysem..prb.p) 1))

(retract ?x)
(retract ?y)
(assert (crit-system-prob (state done))))

----- -------- red-cap-system-prob traffic rules-----

(defrule red-cap-system-prob-branch- I1-start
?x <- (red-cap-system-prob (state start))

(retract ?x)
(assert (red-cap-systemn-prob-branches (branch 1))))

(defnJe red-cap-system-prob-branch-2-start
(declare (salience -10))
?x <- (red-cap-system-prob-branches (branch 1))
?y <- (red-cap-system-prob (state?)

(retract ?x)
(retract ?Y)
(assert (red-cap-system -prob-branches (branch 2))))

(defrule red-cap-system -prob-branch-3-start
(declare (salience -20))
?x <- (red-cap-system-prob-branches (branch 2))
?y <- (red-cap-system-prob (state ?))

(retract ?X)
(retract ?y)
(assert (red-cap-systemn-prob-branches (branch 3))))

(defrule red-cap-system-prob-branch-4-start
(declare (salience -30))
?x <- (red-cap-system-prob-brAnches (branch 3))

?y<- (red-capsystem-pwob (state ?))

a> tach

(retract ?x)

(assert (red-cap-systemn-prob-branches (branch 4))))
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(declar (Jimace, 40))
?Ix <- (red-cap-sym~n-prob-banches (branch 4))
?y <- (red-capsyssem-prob (state?)

(reuse:?x)
(retract ?Y)
(assert (red-cap-system-prob-branches (branch 5))))

(defnzle red-ap-system-prob-branches-clean-up
(declare (salience -50))
?x <- (red-cap-system-prob-branches (branch 5))
?y <- (red-cap-system-prob (state ?))

W>

(retract ?x)
(retract ?Y)
(printout:t "No red-cap-system-prob branch successful!" crlf crll))

(defrule red-cap-system-prob- l-stae-diving-syswmt-p

(red-cap-system-prob-br..nches (branch 1))

(assert (red-cap-system-prob (state diving-system-p))))

(defrule red-cap-system-prob- 1-state-done
?x <- (red-cap-system-prob-branches (branch 1))
?y <- (red-cap-system-prob (state diving-system-p))
(test (a (diving-.system..prob..p) 1))

a> tac X

(retract ?x)

(assert (red-cap-systemn-prob (state done))))

----- ----- ----------- ---- -- --- --- --r -cap-system-prob-2----

(defrule red-cap-system-prob-2-state-bouyancy-system-p
(red-cap-system-prob-branches (branch 2))

(assert (red-cap-system-prob (state bouyancy-system-p))))

(defrule red-cap-system-prob-2-state-done
(kdelare (salience -10))
?x <- (red-ap-system-prob-branches (branch 2))
?y <- (red-cap-system-prob (state bouyancy-system-p))
(test (- (buoyancy-.systemjwrob..p) 1))

(rta> x

(retract ?x)
(assert (red-cap-system-prob (state done))))
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(defrule red-cpsystemn-prob-3-stat-thruster-systeml-p

(rapl-csystem-prob-braflJC (branch 3))

(assert (red-capsystemn-prob (state thruster-syslemn-p))))

(defrue red-cap-system-prob-3-sawe-done
?x <- (red-capsystcm-prob-bralIChes (branch 3))
?y <- (red-capsystemn-prob (state thnister-system-p))
(teu (- (8 uster~system-piot-p) 1))

(retract ?x)
(retract ?y)
(assert (red-capsystem-prob (state done))))

---- --- ------- - - ----- ------- red-c psystem-pr -4---

(defrule red-cap-system-prob-4-state-Ieak-test-p
(red-cap-system-prob-braflches (branch 4))

(assert (red-cap-system-prob (stale Ieak-test-p))))

(defrule red-cap-system -prob-4-state-done
?x <- (red-cap-system-prob-braflches (branch 4))
?y <- (red-cap-system-prob (state Ieak-test-p))
(test (= (Ieak-jest4p) 1))

(retract ?x)
(retract ?y)
(assert (red-cap-system-prob (state done))))

---------- ---- ----- ------ -red-cap-system-prob-5---

(defrue red-cap-system-prob-5-state-payload-prob-p

(red-cap-system-prob-braflches (branch 5))

(assert (red-cap-system-prob (state payload-prob-p))))

(defrule red-cap-system-prob-5-state-dofle
?x <- (red-cap-system-prob-braiIches (branch 5))
?y <- (red-cap-system-prob (state payload-prob-p))
(test (= (payload~jrob...p) 1))

(retract ?x)
(retract ?y)
(assert (red-cap)-system-prob (state done))))
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