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ABSTRACT

The overall software structure of the Naval Postgraduate School Autonomous
Underwater Vehicle (NPS AUYV) is the Rational Behavior Model (RBM), a tri-level,
multilingual software architecture which is based on three levels of abstraction called the
Strategic, Tactical, and Execution level. In this study, interests were focussed on the
implementation of the Strategic level in CLIPS such that it exhibits the same behavior as
the already existing implemenation written in Prolog.

As a tool for translating a backward chaining version of the Strategic level software
(like Prolog) to a forward chaining one (like CLIPS), the State Transition Diagram With
Path Priority (STDWP) was introduced in this study. Specifically, STDWP allows
graphical translation between backward and forward chaining versions of the Strategic
level.

This research shows empirically that the translation is always possible and that the two
versions hold logical and behavioral equivalence. Thus, STDWP bridges two approaches

in robot control which are based on forward and backward chaining.
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A person with one watch knows what time it is;

a person with two watches is never sure.

anon.




L INTRODUCTION

A. BACKGROUND

The link between intelligent behavior and mission planning and control of
autonomous vehicles is one of the major issues in research efforts of artificial intelligence
and robotics. It is apparent that the creation and incorporation of “intelligence” for truly
autonomous vehicles that are able to conduct a mission fully independently requires serious
considerations about the software architecture. One solution is the Rational Behavior
Model (RBM), a multi-paradigm, tri-level architecture for the control of autonomous
vehicles [Ref. 1]. The attribute “tri-level” is based on the three levels of abstraction, namely
the strategic (top), tactical (middle), and execution (bottom) level. “Multi-paradigm”, on
the other hand, describes the utilization of different programming languages in order to
exploit their strengths and to avoid their weaknesses wherever it is appropriate.

The RBM architecture has been implemented for the Naval Postgraduate School
Autonomous Underwater Vehicle Model I (NPS AUV II) and has been successfully run in
simulation using one workstation for each level and being connected via ethernet.

Initially, the three levels of RBM have been implemented in Prolog (strategic level),
Classic-Ada (tactical level), and C (execution level). The hardware onboard the NPS AUV
currently consists of two Gespac computers with an 80386/MS-DOS and a 68030/0S-9
processor. Unfortunately, there does not exist a PC-version for Prolog that provides an
appropriate interface to Classic-Ada. The study presented here provides one solution for
this problem. This is, as a major part of this study, the translation from Prolog to CLIPS has
been accomplished for the strategic level. The translated CLIPS implementation of the
strategic level now works with a tactical level which has been completed in Ada in another
study [Ref. 2].




B. OBJECTIVES

In this thesis, interests were focused on the implementation of the strategic level by
rule-based programming languages and on the investigation of a translation between two
programming languages whose production systems are based on backward and forward
chaining, respectively, will exhibit the same behavior on mission control and execution of
robust vehicles, such as the NPS AUV II. In other words, is it possible to achieve both
logical and behavioral equivalence of two different chaining implementations for the
strategic level?

C. SCOPE

This study was specifically focussed on three major tasks:

(1) Discussing the graphical representations of rule based programming languages; in
particular, AND/OR goal trees for a language with a backward chaining inference engine
and State Transition Diagrams With Path Priority (STDWP) for a language with a forward
chaining inference engine. The main emphasis is put on the discussion of STDWP since it
was introduced newly in {Ref. 3].

(2) Applying both graphical representations as tools for the implementation in the
corresponding programming language.

(3) Investigating the logical and behavioral equivalence of the example programs and
the CLIPS implementation for the RBM’s strategic level for the NPS AUYV.

D. ORGANIZATION

This study contains two major parts:

The first part covering Chapters II and III, discusses state diagrams and state tables in
general and the background of STDWP’s. The STDWP is introduced and presented as a
tool for graphical representation of a forward chaining rule-based system. Its terminology
and definitions are explained as well in this context.

The second part covering Chapter IV, applies the STDWP as a means of translating

backward and forward chaining implementations from basic to more complicated




examples. Finally, the translation of the RBM’s strategic level for the NPS AUV from a
backward to a forward chaining implementation is presented.

The summary and conclusions are made in Chapter V, where also an outlook on the
STDWP’s general applicability is ventured and where challenges on future research are
discussed.




IL. STATE TABLES AND STATE DIAGRAMS IN GENERAL

State tables and state diagrams have been mostly used in switching theory and for logic
design to represent sequential systems, such as logic circuits. Therefore, a brief overview
of logic circuits and of available tools for designing such circuits are presented in the
following sections. State tables and state diagrams will be discussed in particular since they
constitute the background for “State Transition Diagrams with Path Priority” as will be

shown in Chapter II1.

A. OVERVIEW

Logic circuits are basically classified into two groups, namely combinational and
sequential circuits. [Ref. 2] [Ref. 3]

A combinatorial circuit is defined as a circuit whose output at any time is a function
of its input signals without regard to previous inputs; i.e., a domestic lighting circuit

controlled by an ordinary tumbler switch turns the light “on” if the switch is up, it turns it

“off” if the switch is down.!

A sequential circuit is defined as a circuit whose output at any given time is determined
by the order in which the input signals are applied; i.e., a lighting circuit controlled by a
cord-pull. The effect of pulling the cord depends on the state the circuit is currently in; if
the light is “on” then pulling the cord will turn it “off”’, if the light is “‘off”, the light will be
turned “on”.

Sequential circuits are further classified into
(1) event-driven,
(2) clock-driven, and

(3) pulse-driven circuits,

1. Combinational circuits are not further discussed in this study.




ecch of which can be determined in more detail as a cyclic or an non-cyclic circuit

depending on the fact whether the circuit returns to its initial state or not.2

Several methods are available to design and to describe sequential circuits:
(1) Verbally, by the means of word statements,
(2) Diagrammatically, by the means of state diagrams,
(3) Tabularily, by the means of state tables, and

(4) Algebraically, by the means of Boolean statements, loosely referred to
as sequential equations. [Ref. 3]

Verbal statements are subject to misinterpretation and that is why they tendentiously
cause ambiguity. So verbal statements are not a recommendable tool. A state diagram, on
the other hand, is free of ambiguities and can be easily understood because of its clear
representation. State tables are in general utilized to depict the sequence (also the time
sequence) of a circuit’s input and output. They can also be helpful to reduce the size of a

circuit when such a reduction is possible. Sequential equations are mostly used for

engineering purposes before the circuit is actually implemented. 3

B. STATE TABLES

The form and features of state tables vary throughout the relevant literature. State
tables are usually applied and modified to certain requirements. However, according to
[Ref. 3], [Ref. 4], and [Ref. 5] most state tables have the following features in common.

A state table has as many rows as states and as many columns as possible input signals

(or states). In each square of the table, the next state is entered as result of the column’s

input applied to the state of this row.* If there is no next state the intersection in the table is
left blank.

2. For more details it is referred to [Ref. 3], [Ref. 4], and [Ref. 5}.

3. Tool (1) and (4) will not be discussed in more detail since they are not useful for the objectives of
this study.

4. Therefore, state tables are sometimes called “next-state tables” [Ref. 2]




A simple example of a state table is given in TABLE 1.
TABLE 1: AN EXAMPLE STATE TABLE

" Input
sates|| X; | X, | X3 | Xa
=TT
B D B
C Ir C A
D D C

The circuit depicted by the state table in TABLE 1 issues four states, namely “A”, “B”,
“C”, and “D”. Possible inputs are “X;”, “Xy”, “X3”, and “X,”. For example, state “A”
transitions either to state “B” if input “X,” is existent, or to state “D” if input “X3” is
existent. No transitions are made from “A” if the input “X;” or “X4” occurs, so there are
no next-states in these cases.

Additional data, such as an initial state, a final or accepting state, or a certain output
after a transition, may be built in a state table as well. For this study, however, the discussed

features are satisfactory.

C. STATE DIAGRAMS
The information available in a state table is graphically represented in a state diagram.

A state diagram in general consists of nodes, directed lines>, and input / conditions. The
nodes represent states. The arrows link the nodes and represent the interstate transitions. An
arrow connecting a node with itself indicates that no change of state occurs. The input /
conditions are usually inserted above or below the arrow representing the corresponding

transition.

5. In the following, a directed line is referred to as an “arrow™.




The example given in TABLE 1 is graphically displayed as a state diagram in Figure 1.

( )
X Q X,

Figure 1: State diagram derived from the state table in TABLE 1

There is no difference between a state table and a state diagram, except for the
different representation. A state diagram follows directly from a state table and gives a
pictorial view of the state transitions and is very suitable for human interpretation. By the
same token, state diagrams are often used as initial design specification of sequential

circuits, machines, or systems [Ref. 6].




II1. THE STATE TRANSITION DIAGRAM WITH PATH PRIORITY
(STDWP)

A. INTRODUCTION

A state transition diagram (STD) is a modeling tool for describing a time dependant
behavior of a system. It is represented as a graph that consists of nodes, each representing
one of the possible states of the system, and of arrows which represent the valid state
transition among the states. A state aransition occurs only in case of a detected specific
condition. A state is defined as a set of attributes which characterizes the system at a given
time. No knowledge of past inputs is needed at this moment to determine the further
behavior of the system.

The ordinary STD is extensively used as a tool of switching theory and logical design.
In this chapter, a new extended STD is introduced which is called a State Transition

Diagram With Path Priority (STDWP)

B. DEFINITIONS AND EXAMPLES

The notation used for conventional STD’s requires that responses, in the form of state
transitions, are identified for all possible conditions. This may lead to states which have two
or more successor states. To avoid nondeterminism, the conditions for each transition path
must be mutually exclusive. For example, if a set of condition a is needed to trigger a
transition from state “A” to state “B”, and another set of condition P causes a transition
from state “A” to state “C”, then it must be true that a N = .

Unfortunately, the approach adopted by conventional STD’s, in order to avoid
nondeterminism, limits its applicability to real world problems. In [Ref. 7], Kwak et alteri
presented a new approach to relieve this limitation. It is called a State Transition Diagram
With Path Priority (STDWP). A STDWP has all the characteristics of a conventional STD.

However, unlike a STD, a STDWP allows a state to have two or more successor states
with non-mutually exclusive state transition conditions. For example, if a set of condition

a is needed to trigger a transition from state “A” to state “B”, and another set of condition




B causes a transition from state “A” to state “C”, theneithera NP = GoranP=#D is
allowed. The latter case is an unique characteristic of a STDWP. Additionally, in a
STDWP, nondeterminism caused by aa N B =, is taken care of by priorities among
possible non-unique state transition paths. That is, if a specific condition makes multiple
state transition paths eligible, then only one state transition path with the highest path

priority will be selected and the corresponding state transition will be made.

Definiton (1): A State Transition Diagram With Path Priority (STDWP) has the
characteristics of a conventional STD and allows for each state two or more successor states
with non-mutually exclusive state transition conditions. Non-mutually exclusive state

transitions issue path priorities, such that only one transition will actually be made.

A portion of a STDWP is shown in Figure 2. There are four states, “A”, “B”, “C”, and
“D”. Suppose, “A” is the current state, then “B”, “C”, and “D” are successor states. The
state transition conditions are shown as combinations of “X”, “Y”, and “2”. The path
priority for the appropriate state transition conditions is also shown with numerical values
for “p”, namely “p=1”, “p=2", and “p=3" where a bigger number means a higher priority.
For example, the state transition conditions from “A” to “D” are “X” or “Y” with path
priority “p=2". Therefore, there are three state transition paths which have non-mutually
exclusive state transition conditions. For example, if condition “X” is currently met, all

three state transition paths become eligible. However, only one state transition path is

actually made from “A” to “C”, that is the path with the highest path priority, in this case




the transition from “A” to “C”". This fact is documented by a competing arc which connects

the relevant state transition arrows,

Definiton (2): If a state in a STDWP has multiple successor states with non-mutually
exclusive state transition conditions, then a competing arc indicates the competing

relationship among these successor states.

Figure 2: A portion of a State Transition Diagram With Path Priority

Therefore, a state transition in a STDWP is composed of two stages of operation:

First, activate possible state transition paths. In the previous example, all three state
transition paths were activated with condition “X".

Second, execute the state transition which has the highest path priority among
activated sta . transition paths. This sequence of two stages is called the activation stage
and execution stage, respectively.

In Table 2, for all possible combinations of “X”, “Y”, and “Z” conditions, the
corresponding state transitions are tabulated with the two state operations. The numerical
entries in the left column indicate if the corresponding condition(s) exist(s) or not. “0”
means absence of the corresponding condition, and “1” means its existence. The alphabetic

entries in the other columns show either activated state transitions (see center column) or

10




executed state transitions (see right column); i.e., “AB” in the right column means an actual

state transition from “A” to “B” if the condition combinations “X"” or “XZ"” are existent.

TABLE 2: Transition Table for STDWP in Figure 2

Condition XYZ | Activated Transition | Executed Transition
—
001 - -
010 - -
011 - -
100 AB AB
101 AB AB
110 AB, AD AD
111 AB,AC,AD AC

Another major difference to conventional STD’s is an implicit backtracking feature
built in a STDWP. In other words, if the available input does not satisfy any of the explicit
state transition conditions from the current state, then backtracking will be initiated. That
is, the current state is changed to that previous state which has multiple successor states and

is closest to the current state. This discovery leads to the following definitions.

Definiton (3): A branching state is a state with multiple successor states. If a
branching state is the first state that can be arrived by traversing against the normal state
transition direction, then it is called a closest previous branching state. However, a

branching state itself cannot be a closest previous branching state.

Definiton (4): A branching state may have a competing arc and/or path priorities if

there is a non-disjoint state transition condition.

11




Definiton (5): A state with multiple previous states is called a merging state and has
no closest previous branching state. Successor states of a merging state also have no closest
previous branching state unless one of the successor states becomes a branching state. A

starting state is treated as a merging state.

Therefore, if any condition of all possible state transitions cannot be met, then the state
changes to the closest previous branching state. This transition is called backtracking

For example, Figure 3 shows a STDWP with six different states. Note, that the
STDWP in this figure has disjoint state transition conditions. Thus, there are no competing
arc and no path priorities. “A” is the closest previous branching state for state “B”, “C”,

“D”, and “E”. “F”’, however, does not have a closest previous branching state since it is a

Figure 3: A STDWP with six states

12




merging state. The backtracking paths for each state may be explicitly drawn in a STDWP

as shown in Figure 4, but are preferably not included to keep the drawing simple.

Figure 4: A STDWP showing implicit backtracking paths

One possible scenario of state transitions is shown in Table 3. Since the required state
transition condition is available at the right time a sequence of state transitions from “A” to

“F” via “B” and “C” can be conducted without any backtracking.

TABLE 3: Scenario without backtracking

Time Current State Input Next State
FT_?Fﬁ_—B——*
ty B X2
t3 C X3 F

Another scenario is shown in Table 4. After the state transition from “A” to “B” and

from “B” to “C” are carried out, input x3 is not available at time t3. At this moment, rather

than stopping and waiting for an external input indefinitely, backtracking is started to the

closest previous branching state, which is state “A”. Fortunately, the external input y; is

available. Thus, the state transition to “D” is possible and the path eventually arrives at “F”.

13




However, if the external input y; were not available, then no further state transition would
be done and state “F” would never be reached.

TABLE 4: Scenario with backtracking

Time Current State Input Next State
t A Xy B
19) B X3
t3 C Y1 A
7 A Y1 D
ts D y2 E
6 E Y3 F

In the above discussion, only one state transition condition was utilized for each state,
and all state transition conditions were unique. This setup does not imply a limitation of

STDWP, also was t; introduced just for demonstration purposes. Like common STD’s

STDWP is capable of representing both, synchronous and asynchronous states.

A STDWP can also be organized as a multi-level STD [Ref. 8] where an individual
state of a higher-level diagram can encapsulate a lower-level diagram. Then the final
state(s) in the lower-level diagram is(are) identical to the exit conditions of the higher-level
state. This decomposition may be recursively applied to give order and understandability
to an otherwise complex diagram, the decomposition represents a standard approach to the

design and analysis of complex, state-based systems.

C. SIGNIFICANCE AND APPLICABILITY

The introduction of STDWP’s facilitates the graphical representation of a new class of
problems. In [Ref. 9] and [Ref. 10] STDWP’s were applied to represent and explain high-
level control of the NPS AUV-II g.aphically. Another application of a STDWP is the
graphical representation of a forward chaining rule-based system. Such a system operates

in two steps, rule activation and rule-firing [Ref. 11]). This exactly corresponds to the

14




STDWP’s activation and execution stages. Thus, competing behaviors among rules in the
rule agenda of a forward chaining rule-based system can be graphically depicted, and rule-
firing can be graphically modeled, too.

As a consequence, STDWP's build a bridge between a forward chaining rule-based
system as domain of Artificial Intelligence and a control based system represented by a
conventional STD. Practical engineers with background of STD’s and with a little
knowledge of STDWP’s can easily extend this idea to a high-level control of complex
autonomous robots without leamning an entirely new forward changing rule-based system.
This advantage turns out to be very beneficial for the control of autonomous robots,
because rule-based control of robot systems is very promising for design and coding of
mission logic, as it was reported in the Rational Behavior Model software control
architecture research of [Ref. 12] and [Ref. 9]. The impact of STDWP’s is just unfolding,
their application yet to be discovered for the future.

The following sections of this study show the application of STDWP’s in general and
for RBM software control architecture in particular. The RBM is mainly designed for

control of a real-time autonomous agent, and will be briefly described later.

15




IV. APPLICATIONS OF THE STDWP

A. INTRODUCTION

In this chapter, the very basic structures, “AND-Relationship” and “OR-
Relationship”, that may be found in any portion of a Prolog program are discussed and
depicted by STDWP structures. Implementations in CLIPS are then derived from these
STDWP structures. In order to show how this translation pattern can be applied to more
complex structures, two small Prolog programs are introduced later. They are first
displayed by an AND/OR goal tree (whose definition will follow in the next section) and
then translated in a STDWP. Finally, the STDWP is implemented in CLIPS code.

Either program follows a different approach of implementation. As it will be shown,
the second implementation predominates the previous one by its assets, although both
programs are equivalent to the initial Prolog code, in particular in regard to logic and
behavior.

The final section of this chapter briefly introduces the Rational Behavior Model
(RBM) and its strategic level, one of three main components of the RBM. The strategic
level is represented graphically by an AND/OR goal tree and by a STDWP. For either

representation the corresponding implementation is explained and presented.

B. BASIC STRUCTURES

1. AND-Relationship

A simple example of a Prolog rule and its notation as an AND/OR goal tree is
shown on the left hand side of Figure 5. An AND/OR goal tree is defined as follows:

“An AND/OR goal tree is a graphical representation of AND/OR goal
decomposition, with the root node representing the root goal, the leaf nodes representing
the primitive goals, all other nodes representing intermediate goals subject to further
decomposition, and the connecting arcs representing the logical relationship between

subgoals and the goal from which they were decomposed.” [Ref. 9]
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In the given example, “A” is the goal, “B” and “C” are subgoals. Both subgoals
have to be satisfied to satisfy the goal “A”. This relationship is graphically shown in an
AND/OR goal tree by introducing a parent node “A” and two children nodes, “B” and “C”.
The “AND-Relationship” between “B” and “C” is depicted with an arc connecting the
adjacent branches. The AND/OR goal tree which is equivalent to the Prolog rule is now
translated in a STDWP. The result is shown on the right hand side of Figure S.

° A:- B,C
- "EEEHEEE-@
® ©

Figure 5: Example of an “AND-Relationship™

2

Specifically, the “A” node of the AND/OR goal tree corresponds to the “A done’
state in the STDWP, and the “B” and “C” nodes are equivalent to the *‘state B” and “state
C” states, respectively. The “A start” state is a special state which is introduced to show the
current mode of an operation of a STDWP and to signal that the STDWP is trying to
achieve goal “A”. Only when the two successor states are satisfied, the “A done” state can
be reached. The “A done” state itself signals the achievement and completion of goal “A”".

The previous discussion is tabulated in Table 5:

TABLE §: Correspondence of nodes and states

AND/OR Goal Tree STDWP
%

A A done
B state B
C state C
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In CLIPS, the states of a STDWP are implemented by the def'emplate construct.

For our example, the deftemplate construct looks as follows:

(deftemplate rule-A
(ficld state
(type SYMBOL)

(allowed-symbols start B C done)))

e et

The deftemplate construct in CLIPS actually defines a group of related facts, in

this case all possible states of rule “A”. These facts will be used in CLIPS to control the

flow in the STDWP. Thus, the equivalent CLIPS code to the given Prolog rule looks as

shown in Figure 6.

(deftemglate rule-A

?x <- (initial-fact)
=>
{retract ?:)
(assert (rule-A (state start)))

(defrule rule-A-state-B
?X <~ (rule-A (state start))

(fact C)
=>
(retract ?x)
(assert (rule-A (state B))))

(defrule rule-A-state-C
?x <~ (rule-A (state B))
(fact C)
=>
(retract ?x)
(assert (rule-A (state C))))

(defrule rule-A-state-done

= ?X <~ {(rule-A (state C))
(retract ?x)
(assert (rule-A (state done)))

{field state
(t{ge SYMBOL)
(allowed-symbols start B C done}})
(defrule start-program ;corresponding notation in the STDWP:

tnitial-fact

e

fact B
state
=)
fact C ‘ii'

Figure 6: CLIPS code for the “AND-Relationship’ shown in Figure 5§
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2. OR-Relationship

A Prolog example showing *“OR-Relationship” and its AND/OR goal tree are
shown on the left hand side of Figure 7. Goal “A” can be reached by either subgoal, “B” or
“C”. Rule “A :- B.” takes precedence over “A :- C.” because of the textual order of the rules.

After translating the corresponding AND/OR goal tree in a STDWP two branches
are obtained, both of which start at the state ““A start™ which is a branching state and end in
the merging state “A done”. Noie that there is a competing arc between the two branches
in the STDWP to emphasize the “OR-Relationship” with a non-disjoint state transition
condition. The upper branch corresponds to the rule with higher priority, the lower branch
to the rule with lower priority, respectively. This fact is shcwn with the path priorities “0”
and 1"} |

The reason is as follows: Two Prolog rules with the same goal participate in an

“OR-Relationship” and have an implicit order. The corresponding AND/OR goal tree also

has the same implicit order; i.e., from left to right.2 Thus, the upper branch of the STDWP

corresponds to the left branch of the AND/OR goal tree and has a higher priority than the

1. Since CLIPS assigns a salience of “0” to any rule per se this study follows this automatism and
assigns a salience of “-1” to the lower branch; the next branch would obtain “-2”, and so forth.

2. Therefore, an AND/OR goal tree is equivalent to an AND/OR tree with a depth-first-goal tra-
verser.

19




lower branch. In order to satisfy this fact, the saliences “0” and “-1” are assigned to the

appropriate branches.

A:- B. fact B; p=0
° A= G initial-fact :
G factC;p=-1

Figure 7: Example of an “OR-Relationship” with single states in each branch

Similar to the example for an “AND-Relationship”, a deftemplate construct is
built with the states “start”, “B”, “C”, and “done” referring to the states in the STDWP.
However, an additional deftemplate construct is necessary for three reasons caused by the

implementation:
(1) to facilitate the required backtracking capability,
(2) to avoid confusion with equal states in different branches, and

(3) to identify the paths associated with “OR-Relationship”.
This deftemplate construct may be called “A-branches” and shall represent the
upper path by “branch A-1”, and the lower branch by “branch A-2”. Thus, the two

deftemplate’s are constructed and will look as follows:

(deftemplate rule-A
(field state
(type SYMBOL)
(allowed-symbols start B C done)))
(deftemplate A-branches
(field branch
(type SYMBOL)
(allowed-symbols A-1 A-2)))

As mentioned earlier, the ““A start” state in the STDWP includes the initialization

of an operation mode. In this case, the “A start” state acts as a “traffic control state”. In the
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case of an “AND-Relationship” the traffic control functionality is not necessary since there
exists only one path in the STDWP and backtracking is not an issue at all since there is no
closest previous branching state. However, if there are different branches as in an “OR-
Relationship”, then we need to provide traffic rules to control the backtracking path to the
closest previous branching state and to start a new branch. That is (see Figure 8), if the
transition from “B” to “A done” fails because “fact B” is not true or not available, then the
state “A done” will not be reached by the upper branch. Instead, the lower branch is
activated by the traffic rule “A-branch-2-start” (after backtracking to the closest previous
branching state “A start”) which awaits the failure of the upper branch and asserts the fact
“(branch A-2)”, so that the lower branch is tried. However, this attempt could also fail, if
“fact C” does not exist.

If a branch fails, the fact-list will still contain the traffic control facts asserted by
the traffic rules and one of the facts that has been most recently asserted by one of the rules
in this branch. This circumstance could possibly cause confusion with repeated states or
similar constructs within the STDWP. To avoid such an insufficiency an additional traffic
rule called “clean-up” takes facts left over from the last failed branch off the fact-list and

cleans it up for later assertions.
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(deft late rule-A
‘mp(field state

$:¥Y:w§§!§OL 1ls start B C done)))

(deftemplate A-branches
(field branch
}t{ge SYMBOL
allowed-s 1ls A-1 A-2)))

{(defrule start-progr

ram
?%x <- (initial-fact) initial-fact

=>
{retract ?x) @

(assert (rule-A (state start)))

§mm e Tt emsee—ee-mec——eeseceo e cc-cesccoaoo- Traffic rules------
(defrule A-branch-l-start
?X <- (rule-A (state start))

2retract X
assert (A-branches (branch A-1))))

(defrule A-branch-2-start
(declare (salience -1))
?X <- (A-branches (branch A-1))
?2y <- (rule-A (state ?))

retract ?x
retract ?y
(assert (A-branches (branch A-2))))

(defrule A-branches-clean-up
(declare (salience -2))
?X <- (A-branches (branch A-2))
?y <- (rule-A (state ?))

=>
(retract ?x)
(retract ?y)
- et eeemee e e cccc— e e mcecemcceosesmscce—csoo A-l-branch---~
(defrule A-branch-l-state-B JactB
(A-branches (branch A-1)) state
- (fact B) B

(assert (rule-A (state B)))
(defrule A-branch-~l-state-done
?X <- (A-branches (branch A-1)) A
?y <~ (rule-A (state B)) done
retract ?x;

retract ?y
(assert (rule-A (state done)))

T - — - —— . - S = - e - e v A e e e e e = We e e -

(A-branches (branch A-2)) fact C
= (fact C) @

(assert (rule-A (state C)))

=>

(defrule?A-branch-z-state-done

X <- (A-branches (branch A-2))
= ?y <- (rule-A (state C)) @
retract ?x

retract ?yi
{(assert (rule-A (state done}))

T e - - - . R Y S e - e G Y e e e S M e T S = - e e

Figure 8: CLIPS code for the “OR-relationship” in Figure 7
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C. A MORE COMPLICATED PROBLEM

1. Implementation
In order to show how basic structures are combined in a STDWP and how a given
construct is implemented in CLIPS, the following steps are shown in the following.
First, a simple, RBM’s strategic-level alike Prolog program is introduced. An
AND/OR goal tree is then constructed after this program which will be followed by the
transition to a STDWP. Then the equivalent CLIPS code is produced.

(1) The simple Prolog program is shown in Figure Y.

A 'B,CyD
B :- D,E.
B :-E

C :- D,E,F
C :- D,E

C :- E.

D : G.

D :- H.

Figure 9: A simple Prolog program

(2) The corresponding AND/OR goal tree is shown in Figure 10.

(B) (©) ©
% AN

DME & @ME®E O ® © @
O ® O O © @

Figure 10: AND/OR goal tree for the Prolog example in Figure 9
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(3) Similar to the example for an AND-Relationship, rule “A” of the Prolog
code is represented in a STDWP as shown in Figure 11. This construct corresponds to the
top level of the AND/OR goal tree shown in Figure 10. The states “B”, “C”, and “D”,
however, encapsulate lower-level STDWP’s. In this case we talk about a multi-level
STDWP.

initial-fact fact B fact C factD
—(2)—(B)—()—(D)—()

Figure 11: Multi-level STDWP with encapsulated states

(4) The multi-level STDWP shown in Figure 11 is explicitly expanded in
Figure 12. 3

Figure 12: Complete STDWP for the Prolog example in Figure 9

It can be easily inferred from the Prolog code that the subgoals “E”, “F”, “G”, and

“H” are facts since there is no rule corresponding to those subgoals. Therefore these facts

3. In order 10 simplify the drawing, state transition conditions are not shown. However, path priori-
ties and competing arcs are drawn for clarity.
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are represented as leaves in the AND/OR goal tree. At least one fact, “E” or “F”, is required
to reach the goal “B” and “C”, respectively; and either condition “G™ or “H"” satisfies the
goal “D”. Therefore, any combination of states (“E” or “F”, and “G” or “H") eventually
facilitates a path to the goal “A” successfully (see Figure 12 and also Figure 10).

The state transition table for the STDWP of Figure 12 is shown in Table 6. It

tabulates the inputs which are required to reach the goal state “A done™.

TABLE 6: State transition table for the STDWP

Current State Input Possible Next State
F fact F B done; C done
G fact G D done
H factH D done

2. Testing

Two test cases may be used to support the above observation and to illustrate how
the CLIPS program shown in APPENDIX A determines the path through the STDWP. The
first test case provides “fact E” and “fact H” to the STDWP. This will furnish the STDWP
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“A done” as shown in Figure 13.

to reach the state “A done”. As expected, the corresponding CLIPS code will reach the state

PATH through STODWP
A-start;

A-done

B-start (branch B-1); D-start (branch D-1); * branch D-1 failure *
D-start (branch D-2); H-state; D-done;

E-state; B-done;

C-start (branch C-1); D-start (branch D-1); * branch D-1 failure *
D-start (branch D-2); H-state; D-done;

E-state; * branch C-1 failure *

C~-start (branch C-2); D-start (branch D-1); * branch D-1 failure *
D-start (branch D-2); H-state; D-done;

* branch C-2 failure *

C-start (branch C-3); E-state; C-done;

D-start (branch D-1); * branch D-1 failure *

D-start (branch D-2); H-state; D-done;

* Successful termination *

Figure 13: Output of first test case

In the second test case, “fact E” and “fact F”’ are provided for the CLIPS code.

These two states are not sufficient to furnish the STDWP to reach state “A done™;

; instead,

it fails. This behavior can be observed in Figure 14 which shows the output of a sample run

with “fact E” and “fact F’.

PATH through STDWP

A-start;

B-start (branch B-
D-start (branch D-
* branch B-1 failu
B-start (branch B-
C-start (branch C-

)
)Y
e
)i
D-start (branch D-2)
)
)
}:
)

1
2
x
2
1
2
r

* branch C-1 failure
C-start (branch C-2

* branch C-2 failure
C-start (branch C-3
D-start (branch D-1
D-gstart (branch D-2)

* Premature Terminat

D-start (branch D-2);

D-start (branch D-1); * branch D-1 failure *

*' No D-branch successful *

-state; B-done; .
-start (branch D-1); * branch D-1 failure *
No D-branch successful *

start (branch D-1); * branch D-1 failure *
No D-branch successful

; F-
; D-
. *
'i
i D-
*

't

E-state; C-done;

* branch D-1 failure *

* No D-branch successful *

,
’
.
’

*

ion, no success!

Figure 14: Output of second test case
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3. Assessment of the Behavior

The CLIPS program was tested for any conceivable scenario and proved the
correct behavior by producing the expected sequence of states in the STDWP. This
sequence is equivalent to the goal activation achieved by the original Prolog code shown in
Figure 9.

Apparently, this behavior is satisfactory - but only for a problems of the given

kind. The reason, why it behaves correctly is, that the number of branches in the “OR-

Relationships”, that occur in the “second level”, is limited 4. i.c., rule “D" consists of two
branches, each of which holding just one state, namely “G” and “H”. After the failure of
the branch with salience “0” only one choice is left, namely the other branch with salience
“1%

If there were more than two branches with multiple states, then the
implementation shown in the previous section would quickly reach its boundaries. In this
case, the system should encounter a newly competing situation, that is, a competition
between all branches which have not failed yet. And besides that, it must be assured that
the recently failed branch does not participate in any other branch competitions.

Combined with this study, the attempt has been made to implement “OR-OR-
Relationships” by following the translation pattern in the previous section. But it turned
out, that the program actually conducts a sequential run through the eligible states
regardless to the given saliences. And this seems to be inevitable, due to rule firing control
and salience management. Furthermore, the number of traffic rules increased enormously,
such that the portion of traffic, clean-up, and control rules shared almost thirty percent of
the entire program.

These crucial drawbacks were the motivation for a different implementation

approach. It is being presented in the following section.

4. An “OR-Relationship™ which is itself a portion of another “OR-Relationship’s™ construct may be
called “OR-OR-Relationship” in the following.
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D. A PROBLEM WITH “OR-OR-RELATIONSHIPS”

1. Introduction of the Problem
The system to be discussed in this section is shown in its Prolog version in Figure
15, its corresponding STDWP in Figure 16, and accordingly, the CLIPS code may be found
in APPENDIX B. The AND/OR Goal Tree is neglected in this context, since it is not

important for the further discussion.

-B
:-C
=D
=X
=Y.
~Z
.- ALPHA, ALPHAL.

:- BETA, BETAL
:- GAMMA, GAMMAL.

xoow
%
N

4

-<-<-<wuuw>>>
't:

Figure 15: A simple Prolog program

Four levels of relationships are joint together in this system. On the first level, an
“OR-Relationship” is given by three rules of “A”, each of which containing an “AND-
Relationship” that is to be considered on the second level. A closer look to the right side of
the Prolog rules makes clear that only the first rule with goal “A” contains a further level,
thatis rule “A:- B, B1.” by the subgoal “B”. The goal “B”, on the other hand, can be reached
by three alternative rules. Again, this is considered to be an “OR-Relationship”, but now on
the third level. The first and the third rule of “B” contain “AND-Relationships”, where the
second rule is satisfied by subgoal “Y”, which leads also to an ““OR-Relationship”, namely
to the three alternative rules of “Y”. With this construct, the fourth level is finally reached.
To be consistent and complete, a fifth level will be entered by the “AND-Relationships” of
the right hand sides of every “Y” rule.

Such a joint construct may be called an “OR-AND-OR-OR-Relationship”. The
fifth level, given by the “AND-Relationships™ for the alternative goals “Y”, can be
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neglected. This is, because an extra “AND-Relationship” does not require additional traffic

rules; more explanations will be given in the next section.

initial-fact

Figure 16: STDWP corresponding to the Prolog code in Figure 15

The derived STDWP is shown in Figure 16. It consists of three “A-branches”
leaving the branching state “A start”, three “B-branches” starting from “B start”, and three
“Y-branches” leaving state “Y start”, each of which holding multiple states in this branch.
Following the definitions of a STDWP, the upper branches have higher priority over lower
branches, indicated by numbers (in the diagram of Figure 16 drawn close to the transition
arrows). The transition conditions are named after the states. l.e., state “X” requires the
transition condition “(condition X)”, “B start™ may only be reached, if “(condition B)” is
available. These transition conditions are provided in the same fashion in the CLIPS code
which may be found in APPENDX B. To keep the drawing simple, the transition conditions
are not shown in Figure 16, as well as the backtracking paths.
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2. Impiementation
The most difficult part of the implementation of the STDWP displayed in Figure
16 in CLIPS was twofold:

(1) After a failure of a transition, the correct backtracking to the closest
previous branching state needs to be assured. In an “OR-OR-Relationship”, there are two
branching states which are both acting as closest previous branching states. If a branch fails
in the second level, then backtracking to the closest previous branching state of the first
level has to be avoided. This means, that the STDWP’s construct outside of the current
“OR-Relationship” has to be “hidden” of any possible access. To provide this feature, a
“status” field with a “hide” and “reveal” slot is added to each template defining an “OR-

Relationship” in CLIPS (an example will be given shortly).

(2) After backtracking occurred, the failed branch has to be excluded from
any new competition among the branches which leave this closest previous branching state.
This feature is ensured by retracting the transition condition which enabled the system to
try the branch which turned out to fail; i.e., if the “X-branch” fails in the “B” construct, then
the system is backtracking to “B-start”. At the same time, “(condition X)” is retracted from
the database so that the “X-branch” cannot compete anymore with the remaining and
eligible branches “Y-branch” and “Z-branch”.

Besides the “hide” and “reveal” slots, two more slots have been added to the
“status” field of the CLIPS templates, namely “failed” and “succeeded”. The slot “failed”
is necessary to make sure that the failed partial construct of the STDWP is not eligible
anymore. This will be the case when the system has tried all eligible transitions in this
portion of the STDWP and has not succeed. The slot “succeeded” is used for the other, the
positive case and for “OR-AND-Relationship” constructs. State transitions, following an
“OR-Relationship” after a “done” state have to be prevented from backtracking to the
closest previous branching state of the successful “OR-Relationship”. In the case of a

transition failure in the “AND-Relationship”, the system must backtrack to the prior closest
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previous branching state. Le., in the system introduced in this section, state “B1” follows
state “B-done” which is the final state of the “OR-Relationship” construct for “B”. If the
transition to state “B1” fails, then the responsible closest previous branching state will be
state “A-start”, and not “B-start”. This confusion is avoided by the “succeeded” slot in
“deftemplate B”, such that the system cannot start any transitions within the “B* construct
again.

As an example, the CLIPS’s deftemplate construct for the “OR-Relationship” of
goal “A” is shown in the following to complete the previous explanations (see also
APPENDIX B). Note that a deftemplate A-branches as it was introduced in section IV.C.

is not required any more.

(deftemplate A
(field state
(type SYMBOL)
(allowed-symbols start B B1 C C1 D D1 done))

(field status
(type SYMBOL)
(allowed-symbols  reveal hide succeeded failed)))

Backtracking comes into play when a transition failed to be executed. In order to
ensure that the backtracking path reaches the responsible closest previous branching state,
every branch in the STDWP has to be furnished with a traffic rule; i.e., the traffic rule for
the “X-branch” within the “B” construct is “X-failure”. This rule controls the backtracking
traffic from all states in this branch to state “B-start” which is the responsible state. At this
point, the traffic rule “B-failure” comes into action. It activates all remaining and eligible
transitions for another competition. As expected, the state transition with the highest

priority will be executed then.

3. Testing the Behavior

The system as it was introduced above is started by the CLIPS-internal “initial-

fact” which can be accomplished automatically by the “(reset)” command. From here, the

5. For complete and further syntax it is referred to [Ref. 11].
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system is going through the states that can be reached by the given transition conditions.
These conditions may be added to the CLIPS’s database either by a batch file or by
asserting the conditions manually.

Two test cases may illustrate the system’s behavior implemented by the code as
shown in APPENDIX B. They are shown in Figure 17 and 18.

The output shows the path through the STDWP, including the states reached by
backtracking. These states are followed by a *... failure * message since a failure is the only
cause for a backtracking path.

In the first case, the following conditional scenario is available in the CLIPS
database: (condition A), (condition B), (condition Y), (condition Z), (condition ALPHA),
(condition GAMMA), (condition D), and (condition D1). The program’s output is shown

in Figure 17.

PATH through STDWP

A start;

B-state; Y-state;

ALPHA-state; * branch Y-1 failure *; Y-state;
GAMMA-state; * branch Y-3 failure *; Y-state;
* branch B-2 failure *; B-state;

Z-state; * branch B-3 failure *; B-state

* branch A-1 failure *; A-state

D-state; D1-state;

A-done;

* Successful termination *

Figure 17: Output of the first test case

After starting the system and reaching state “B-start”, only two state transitions
are activated due to (condition Y) and (condition Z). The transition to “Y-start” is executed
because of its higher priority. Again, just two transition activations are eligible, caused by
(condition ALPHA) and (condition GAMMA). Both branches will fail since none of the
further transition conditions are met. Thus, in both cases the system is backtracking to state

“Y-start” causing itself backtracking to state “B-start”. The only eligible, activated, and
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executed transition to state “Z” is being made, but is backtracking to state “B-start”
afterwards since (condition Z1) is not available. This causes backtracking to state *“A-start”
because all branches in the “B” construct failed. From this point, the final state transitions
to state “A-done” are conducted via state “D” and “D1”.

In the second test case, the scenario differs from the first one by the following
conditions: Instead of (condition GAMMA), the database includes (condition BETA) and
(condition BETA); additionally (condition B1). The output looks as shown in Figure 18.

PATH through STDWP

A start;

B-state; Y-state;

ALPHA-state; * branch Y-1 failure *; Y-state;
BETA-state; BETAl-state;

Y-done; B-done; B1-state;

A-done;

* Successful termination *

Figure 18: Output of the second test case

In this case, the correct behavior of the “OR-AND-OR-OR-Relationship” of the
given STDWP was tested. The conducted path is shown in Figure 18 and may not require
further explanations.

Almost all conceivable scenarios have been tested. The system as it is
implemented by C'! TPS in APPENDIX B behaved in the same manner as it would do in the
Prolog version. Th:- ;. ..:ves empirically the logical and the behavioral equivalence between

both implementations.
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E. THE STRATEGIC LEVEL OF THE RATIONAL BEHAVIOR
MODEL

1. Introduction of the Rational Behavior Model

The Rational Behavior Model (RBM) is a tri-level software control architecture
for autonomous vehicles. It is composed of a strategic, a tactical, and an execution level.
The strategic level mainly consists of goals which are to be achieved by an autonomous
robot vehicle under control of RBM. These goals have to be achieved in a certain sequence
depending on external (= world) and internal (= vehicle) events to accomplish a given
mission. In order to exhibit coherently intelligent behavior globally, some means of
understanding and memorizing external and internal events are required by the control
architecture. Otherwise, globally intelligent behaviors cannot be achieved by an
autonomous robot [Ref. 13]. In RBM, the tasks of understanding and memorizing are
performed by the tactical level [Ref. 14]. Thus, the strategic level is free from processing
or memorizing external or internal events directly. This arrangement reduces the
complexity of the strategic level by a major portion; in particular, the strategic level does
not need any state memory associated with the external world or the control of the robot.
Instead, it queries the tactical level, whenever it is appropriate. Inferring the returned values
of the predicate queries, the strategic level determines next which goal has to be activated
at this moment. Specifically, a goal activation means a behavior activation request to the

tactical level. Once the requested behavior is completed by the tactical level in conjunction

with the execution level, then the goal is achieved.® In this way, goals in the strategic level
directly affect the behavior of the physical robot under control.

Since the strategic level purely operates by predicate queries and goals, a rule-
based programming language is the best choice for implementation. Fundamentally, there

are two ways of implementing rule-based programming, these are backward chaining and

6. The execution level is the lowest level in RBM. It directly handles the vehicle’s hardware. Thus,
the execution level is mainly composed of various conventional control loops and device drivers.
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forward chaining. Both are equivalent in the sense of pure logical power. They are merely
different in syntactical perspective. However, one implementation vith one chaining
direction may be more efficient than the other. In spite of this well known fact, a translation

from one chaining implementation of the strategic level in RBM to the other is not trivial.

The reason is due to the fact, that a sequence of logic resolution steps is not uniquc.7 In
other words, two different chaining implementations may produce two different paths of
goal activation and execution during chaining. This means that the two implementations
could make the vehicle behave totally differently even though they are logically equivalent.
However, in robot control, the sequence of behavior matters. For example, a final goal
cannot be achieved without achieving an intermediate goal. In other words, two different
implementations for the strategic level of RBM have to be able to produce an identical
sequence of goal activations. This is an unique constraint of equivalence of the strategic
level of RBM.

The first instance of the strategic level of RBM [Ref. 14] was implemented in
Prolog which was used as a backward chaining rule-based programming language. This led
to another implementation in Prolog [Ref. 15]. Both implementations have been established
for the Adaptive Suspension Vehicle (ASV) [Ref. 16]. Later, the strategic level of the Naval
Postgraduate School Autonomous Underwater Vehicle Model I (NPS AUV) {Ref. 9] was
also implemented in Prolog (see APPENDIX C).

It is not surprising that Prolog served as programming language for all these
implementations. The reason is that goals in robot vehicle control tend to be related in
hierarchical order. For example, ‘“execute-auv-mission” is a top goal which can be
immediately decomposed into subgoals corresponding to submissions of the entire mission.
A hierarchical organization composed of a top goal, some sub-goals, some sub-sub-goals,
etc. can be easily expressed in Prolog because of its declarative nature. Moreover, Prolog’s

inference engine with its depth-first-search strategy forces the rule firing and conflict

7. Chaining is known to be a special case of resolution.
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resolution to follow the textual order of the Prolog rules. Therefore, multiple subgoals that
participate in an “OR-Relationship” among each other can be easily prioritized by the
textual order of the Prolog rules. In this way, the strategic level can be “naturally” declared
in Prolog, and the desired sequence of goal activations is evidently produced by Prolog’s
inference engine.

The forward chaining implementation of the strategic level, however, has been
delayed until STDWP was introduced. The extra constraint needed to maintain equivalence
of two opposite chaining implementations, an equal sequence of goal activations, was hard
to be satisfied in a context of a complex real world problem. A simple syntactical change
in the translation from backward chaining to forward chaining is guaranteed to produce a
non-functioning strategic level since it will cause a different sequence of goal activations.
Fortunately, two sets of equivalences are found in the context of the strategic level of RBM.

One is the equivalence of Prolog rules and AND/OR goal trees, and the other is the

equivalence of CLIPS forward chaining rules and STDWP3
The graphical equivalence between an AND/OR goal tree and a STDWP has
been shown in [Ref. 9); the logical and behavioral equivalence of corresponding
implementations in Prolog vs. CLIPS was empirically proven in the previous chapter.
To support these findings, both graphical tools and either implementation is being

applied to the strategic level of RBM for the NPS AUV in the following section.

2. The Implementation of the Strategic Level
The RBM’s strategic level was initially implemented in Prolog because of
Prolog’s hierarchical order and its determination of sequence of primitive goals. The source
code of this implementation is presented in APPENDIX C. The corresponding AND/OR
goal tree may be found in APPENDIX D and the STDWP in APPENDIX E. The

complexity of either graphical representation is considered to be not too big so that it

8. The equivalence relationship is empirically known to be correct. Formal proof is not available
yet.
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becomes impractical. Both graphs support enough readability and may be used side by side
since they provide equivalent logic and behavior.

The implementation in CLIPS was derived from Prolog’s source code and was
first carried out “manually”. Although the fundamental and theoretical background was
still not exactly defined by the time of translation, a translation pattern was already found
and used.

The CLIPS code as it is presented in APPENDIX C is an enhanced version of the
initial program. It differs slightly from the structures introduced and discussed in the
previous sections since the aanslation was completed based on preliminary findings.
Nevertheless, a syntactically clean version that accomplishes a “clean” translation
according to the implementation structures introduced in the previous chapter is already in
progress and will be reported later.

However, the equivalent sequence of the behavioral activation is empirically
confirmed for both, the Prolog and the CLIPS implementations [Ref. 9]. That means, that
either version of the strategic level, whether Prolog or CLIPS, produces exactly the same
sequence of behaviors during mission control and execution when it controls the NPS
AUV’s simulator [Ref. 9]. This observation was also made when the CLIPS code was used

in CLIPS/Ada for the tactical level’s software testing in [Ref. 14].
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V. SUMMARY AND CONCLUSIONS

STDWP’s add a new dimension to conventional STD’s by permitting non-disjoint
state transition conditions to multiple successor states. The non-determinism introduced by
this extension is resolved by path priorities. Thus, although several state transitions are
cligible, only one state transition with highest path priority will be selected to carry out a
state transition to the next state. With this extension of a conventional STD, a STDWP is
ready to be applied to a new class of problems; i.e., for graphical representation of forward
chaining production rules for the strategic level of the RBM.

Before the STDWP was introduced, the translation of the backward chaining
implementation of the strategic level in a forward chaining implementation was not
possible. There were even doubts and confusion about such a translation among researchers
at the Naval Postgraduate School because of unique equivalence requirements in the
strategic level of the RBM; i.e., two implementations have to be not only logically
equivalent, but also identical in the sequence of proving steps. These requirements led to a
new class of equivalence of logic.

If an equivalent forward chaining implementation had not been found, there would
have been a serious chance that the unique equivalent requirements prevented the strategic
level from being qualified as a subset of a rule-based system. However, an equivalent
forward chaining implementation of the strategic level was successfully hand-coded
utilizing STDWP. Most likely, there always exists two equivalent chaining

implementations in each direction because of the found algorithm which allows bi-

directional translation! [Ref. 7]. However, a formal proof for existence of two opposite
chaining implementation is not researched yet. A formal proof will automatically provide
another evidence for that a strategic level of RBM is a true subset of a conventional rule-
based reasoning system which only concemns about logical equivalence. But this is also

another future research topic.

1. The correctness and completeness of this algorithm is not proved yet.
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Another discovery from the presented work is complexity, compared between two
implementations. Backward chaining implementation is always simpler than the
corresponding forward chaining implementation. For example, comparing the number of
nodes in the AND/OR goal tree in Figure10 with the number of states in the STDWP in
Figure 12 results in a difference of 7, that is 21 nodes vs. 28 states. A similar discovery is
reported in a different context [Ref. 17].

The previous discovery can be summarized as follows: an AND/OR goal tree is
viewed as a goal decomposition diagram, and a STDWP is considered as a goal execution

diagram with explicit goal execution details. The former can be seen as a disassembly

diagram, the latter can be interpreted as an assembly diagmm.2 In a computational aspect,
the former demands more than the latter implementation. Actually, faster execution was
observed in the CLIPS implementation even though the size of the code is about ten times
bigger than the equivalent Prolog code. This observation supports the role of the AND/OR
goal tree’s depth first traverser. The depth first traverser interprets the AND/OR goal tree,
and it produces a sequence of goal activations depending on a situation on fly whereas the
STDWP needs little computation because it can be seen as a collection of all possible
execution paths. Whether or not the translation problem is the same class of problems as
that presented by [Ref. 17] is another future research topic.

The final issue is whether an equivalent STDWP is a minimum representation or not.
If this is not the case, then it has to be researched how to make a minimum STDWP. This
issue seems not to be discussed in Homem de Mello’s research. [Ref. 17]

Once the above mentioned research questions are fully answered, then those findings
will immediately lead to an economy of mission description in general (mission description
for either AUV or human military unit); i.e., an AND/OR goal tree style mission
description vs. a STDWP style mission description. The observation of current practices

among people in general reveals two side stories. If a mission is well defined and well

2. Loosely speaking, disassembling a device is an easier task than assembling it.
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understood, then an AND/OR goal tree style mission description is common. On the other
hand, the opposite is true. A military AUV mission and a scientific discovering AUV
mission show two examples, one for each side.

The research presented in this study is just opening up whole new issues rather than
reducing them by solving existing problems. This recognition might be an herald of an

extremely interesting research area.
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APPENDIX A. CLIPS IMPLEMENTATION OF THE EXAMPLE IN

Compiler : Clips 5.1

SECTION IV.C.
;""tt".".'f"""."'.".Q't."ﬁ't'.'..'ﬁ’.’tt'it’t""'t"'t""."
i Title : Example for Thesis, Section IV.C.
i* Name : example2.2
P Version : 2.2
;* Author : Thomas Scholz
:* Date : 18 May 1993
P Revised : 15 September 1993
;* System : UNIX Sun/Solbourne
P
;i

(deftemplate rule-A
(field state

(type SYMBOL)
(allowed-symbols

(deftemplate rule-B
(field state

(type SYMBOL)
(allowed-symbols

(deftemplate B-branches
(field branch

{type SYMBOL)
(allowed-symbols

(deftemplate rule-C
(field state

(type SYMBOL)
(allowed-symbols

(deftemplate C-branches
{field branch

(type SYMBOL)
(allowed-symbols

(deftemplate rule-D
(field state

(type SYMBOL)
(allowed-symbols

(deftemplate D-branches
(field branch

(type SYMBOL)
(allowed-symbols
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(defrule start-program
?x <- {(initial-fact)
B>
(retract ?x)
(assert (rule-A (state B)))
(printout t crlf “PATH through STDWP:®" crlf crlf *"A-start;"
crlf))

(defrule rule-A-state-B
?X <- (rule-A (state B))
=>
(retract ?x)
(assert (rule-B (state start))))

(defrule rule-A-state-C
(declare (salience -10))
?X <- (rule-B (state done))

(retract ?x)
(assert (rule-C (state start))))

{defrule rule-A-state-D
(declare (salience -20))
?X <- (rule-C (state done))

(retract ?x)
(assert (rule-D (state start))))

(defrule rule-A-state-done
(declare (salience -30))
?X <- (rule-D (state done))

(retract ?x)

(assert (rule-A (state done)))

(printout t "A-done” crlf crlf *"* Successful termination **
crlf crilf))

{defrule total-failure
(declare (salience -100))
(not (rule-A (state done)))
=>
{(printout t crlf "* Premature Termination, no success! **
crlf crlf))
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R L D DD LD D ittt Dkl ket Traffic rules------

(defrule B-branch-l-start
?X <- (rule-B (state start))
=D>
(retract ?x)
(assert (B-branches (branch B-1))))

(defrule B-branch-2-start
(declare (salience -1))
?Xx <~ (B-branches (branch B-1))
?2y <- (rule-B (state ?))

(retract ?x)
{(retract ?y)
(assert (B-branches (branch B-2))))

(defrule B-branches-clean-up
(declare (salience -2))
?X <- (B-branches (branch B-2))
?y <- (rule-B (state ?))

(retract ?x)
(retract ?y)
{(printout t "* No B-branch successful ** crilf))

® Y R R R e e e - e e b S g TR R WP W TR e e N W e S SN R M A M e m e

R e D il ittt Rt B-l-branch----
(defrule B-branch-l-state-D

(B-branches (branch B-1))
=>

(assert (rule-B (state D)))

(assert (rule-D (state start)))

(printout t "B-start (branch B-1); "))

(defrule B-branch-l-state-E
(B-branches (branch B-1l))
?Xx <~ (rule-B (state D))
2y <~ (rule-D (state done))

(retract ?x)
(retract ?y)
(assert (rule-B (state E))))




; If *(fact E)" exints, ®(rule-B (state done))*® will follow immediately.
(defrule B-branch-l-state-done

?%x <- (B-branches (branch B-1))

?y <- (rule-B (state E))

(fact E)
=>

(retract ?x)

(retract ?y)

{assert (rule-B (state done)))

{(printout t “"E-state; B-done; " crilf))

P R h e e e A R W T e e e S U e P TR T T W P e e W e W e

L Ll b bl Dl ittt LRt Db R bt it B-2-branch---
{(defrule B-branch-2-state-F

{B-branches (branch B-2))
=>

(assert (rule-B (state F)))

(printout t "* branch B-1 failure *" crilf

*B-gstart (branch B-2); "))

@ e W P e W e D D ) P T = AP R e e e A T e A W e e R M G e em e e e e e e e e

; If “(fact F)" exists, "(rule-B (state done))" will follow immediately.
(defrule B-branch-2-state-done

?Xx <- (B-branches {(branch B-2))

?y <- (rule-B (state F))

(fact F)
=>
(retract ?x)
(retract ?y)
(assert (rule-B (state done)))
(printout t *F-state; B-done; * crilf))
e L Ll L Rttt e ket Prolog-----
IC:"D,E,F.
; C := D, F.
; C :~ E.

T Y S S wr w w T h m A)  ES E E E EE V  E  m A E G G S e WP e e e R e

(defrule C-branch-1l-start
?x <- (rule-C (state start))
=>
(retract ?x)
(assert (C-branches (branch C-1))))

(defrule C-branch-2-start




(declare (salience -1))
?X <- (C-branches (branch C-1))
?Y <- (rule-C, (state ?))

=>
(retract ?x)
(retract ?y)
(assert (C-branches (branch C-2))))

(defrule C-branch-3-start
(declare (salience -2))
?x <~ (C-branches (branch C-2))
?y <- (rule-C (state ?))

(retract ?x)
(retract ?y)
(assert (C-branches (branch C-3))))

(defrule C-branches-clean-up
(declare (salience -2))
?x <~ (C-branches (branch C-3))
?y <- (rule-C (state ?))

(retract ?x)
(retract ?y)
(printout t ** No C-branch successful ** crlf))

PR ittt ettt C-1 branch------
(defrule C-branch-l-state-D

(C-branches (branch C-1))
=>

(assert (rule-C (state D))})

(assert (rule-D (state start)))

{printout t "C-start (branch C-1); "))

(defrule C-branch-l-state-E
(C-branches (branch C-1))
?X <- (rule-C (state D))
?2y <- (rule-D (state done))

(retract ?x)
(retract ?y)
(assert (rule-C (state E))))

; If "(fact E)* exists, "(rule-C (state F))" will follow immediately.

D o n e G G S G R T G Y Y S S S S A S S . R S L e e TS T A R P AR W e = -

(C-branches (bkranch C-1))
?X <- (rule-C (state E))
(fact E)
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2>

(retract ?x)
(assert (rule-C (state F)))
{printout t “E-state; "))

@ - - TP T e A e D S M W W e S e = N A W M e AR R e R e AP R TS T e W e e

; If *"(fact F)" exists, ®"(rule-C (state done))*® will follow immediately.
(defrule C-branch-l-state-done

?xX <- (C-branches (branch C-1))

?y <- {rule-C (state F))

(fact F)
=>

(retract ?x)

(retract ?y)

(assert (rule-C (state done}))

(printout t *F-state; C-done; * crlf))

G N - D A e e D R Y T e e S s A W SE P e e M S e T e e e e

R e it C-2 branch------
(defrule C-branch-2-state-D
(C-branches (branch C-2})

(assert (rule-C (state D)))

(assert (rule-D (state start)))

(printout t *"* branch C-1 failure * " crlf
*C-start (branch C-2); *))

(defrule C-branch-2-state-F
(C-branches (branch C-2))
?X <- (rule-C (state D))
2y <- (rule-D (state done))

(retract ?x)
(retract ?y)
(assert (rule-Cc (state F))))

¢ e T S S e e Y e Em e = e R R SR R e R W S W AR WS SR M e N e e - A e = e

; If "(fact F)" exists, ®"(rule-C (state done))"® will follow immediately.
(defrule C-branch-2-state-done

?x <- (C-branches (branch C-2))

?y <- (rule-C (state F))

(fact F)

(retract ?x)

(retract ?y)

(agsert (rule-C (state done)))
{(printout t *F-state; C-done; " crlf))




R b DR Rl D il L Tt ittt b Dbt e C-3 branch----
(defrule C-branch-3-state-E
(C-branches (branch C-3))

(assert (rule-C (state E)))
(printout t ** branch C-2 failure * " crlf
*C-start (branch C-3); *))

P e - e e s WS e D M e P R P R TR WP T e e e M G WP T m R P R G D - R T P T

; If *(fact E)" exists, "(rule-C (state done))® will follow immediately.
(defrule C-branch-3-~state-done

?x <- (C-branches (branch C-3))

?y <- (rule-C (state E))

(fact E)
=>
(retract ?x)
(retract ?y)
(asseért (rule-C (state done)))
(printout t "E-state; C-done; " crlf))
R et D bttt L e et Prolog---- --
s D :=- G.
; D :=- H.
-------------------------------------------------- Traffic rules------

(defrule D-branch-l-start
?%X <- (rule-D (state start))

(retract ?x)
(assert (D-branches (branch D-1))))

(defrule D-branch-2-start
(declare (salience -1))
?x <- (D-branches (branch D-1))
?2y <~ (rule-D (state ?))

(retract ?x)
{retract ?y)
(assert (D-branches (branch D-2))))

(defrule D-branches-clean-up
(declare (salience -1))
?x <- (D-branches (branch D-2))
?y <- (rule-D (state ?}))

(retract ?x)
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(retract ?y)
{(printout t ** No D-brancn successful ** crlf))

------------------------------------------------------ D-l-branch----
(defrule D-branch-l-state-G

(D-branches (branch D-1))

{assert (rule-D (state G)))
(printout t *“D-start (branch D-1); *))

.

; If *(fact G)" exists, *"(rule-D (state done))" will follow immediately.

(defrule D-branch-l-state-done
?X <~ (D-branches (branch D-1))
?y <~ (rule-D (state G))
(fact G)

(retract ?x)

(retract ?y)

(assert (rule-D (state done)))
(printout t “G-state; D-done;* crlf))

------------------------------------------------------ D-2-branch----
(defrule D-branch-2~-state-H

{(D-branches (branch D-2))
=>

(assert (rule-D (state H)))

(printout t ** branch D-1 failure * * crif

*D-start (branch D-2); "))

; If "(fact H)* exists, "(rule-D (state done))" will follow immediately.
(defrule D-branch-2-state-done

?%x <~ {D-branches (branch D-2})

?y <~ (rule-D (state H))

(fact H)

(retract ?x)

(retract ?y)

(assert (rule-D (state done)))
(printout t "H-state; D-done;" crif))

- e " = e e A G = S G 4 e e " e G - AP M 4m S e e e e e Ak ek e ==

;*****t*********i***ﬁ****i******t********t*************tt**i**********t*
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APPENDIX B. CLIPS IMPLEMENTATION OF THE EXAMPLE IN
SECTION 1V.D.

l.ﬁi'iiit'**'iit'tt*"".*"ti"*'ﬁt"""'i"ti"*ﬁ'tt'iiti'i"*tt**ttt**.'

. W
.

. we

Remarks : No more sequential behavior. After a branch failure, all
remaining choices compete again.
Implementation of “OR-AND-OR-OR - Relationship”.

[ Z 222 EE 2RSSR XX 222X 222 R 2l id Rl il iR Rl sl il sttt Ll Rl

“e

-

P Title : Example for Thesis, section IV.D.
P Name : newl.S

P Version : 1.5

:* Author : Thomas Scholz

:* Date : 9 September 1993

P Revised : 15 September 1993

:* System : Sun/Solbourne UNIX

P Compiler : Clips 6.0

P Prolog-Code :

i A :- B,Bl.

s A :-C,C1.

it A :- D,D1.

i * B :- X,X1,X2.

;¥ B :- Y.

P B :- 2,21.

;* Y :- ALPHA, ALPHAl.
i * Y :- BETA,BETAl.

* Y :- GAMMA,GAMMALl.
*

*

*

*

*

~s we

(deftemplate A
(field state
(type SYMBOL)
(allowed-symbols start B Bl C Cl1 D Dl done))
(field status
(type SYMBOL)
(allowed-symbols reveal hide succeeded failed)
(default reveal)))

(deftemplate B
(field state
(type SYMBOL)
(allowed-symbols start X X1 X2 Y Z Z1 done))
(field status
(type SYMBOL)
(allowed~symbols reveal hide succeeded failed)
(default reveal)))
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(deftemplate Y
(field state
(type SYMBOL)
(allowed-symbols start ALPHA ALPHAl BETA BETAl
GAMMA GAMMAl1l done))

(field status
(type SYMBOL)
(allowed-symbols reveal hide succeeded failed)
(default reveal)))

(defrule start-program
?X <- (initial-fact)
(condition A)

(retract ?x)
(assert (A (state start)))
(printout t crlf “PATH through STDWP” crlf crlf *“A start;” crlf))

(defrule A-failure
(declare (salience -10))
?2 <- (initial-fact)

(retract ?z)
(printout t “* Total failure *. System halted.” crlf crlf))
I ettt et e e T L R A-1 branch----~---r-uc--
(defrule A-start-B
?xX <- (A (state start))
(condition B)

(modify ?x (state B) (status hide))
(assert (B (state start)))
(printout t “B-state; *))

(defrule B-failure
(declare (salience -10))
?x <- (A (state B) (status hide))
7Y <- (B (state ?n) (status reveal))
?z <- {(condition B)

{(retract ?z)

(modify ?x (state start) (status reveal))

{modify ?y (state ?n) (status failed))

(printout t ** branch A-1 failure *; A-state” crlf))

T i ittt B-1 branch----
(defrule B-start-X

?X <- (B (state start) (status reveal))

(A (state B) {(status hide))

(condition X)
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z=>
(modify ?x (state X) (status hide))
H {(modify ?y (status hide))
(printout t “X-state; *))

(defrule X-failure
(declare (salience -10))
?x <- (B (state 7?n) (status hide))
?y <- (condition X)

(retract ?y)
(modify ?x (state start) (status reveal))
(printout t “* branch B-1 failure *; B-state” crlf))

(defrule B-start-X1
?X <- (B (state X))
(condition X1)

(modify ?x (state X1))
(printout t “Xl-state; *))

(defrule B-start-X2
?X <- (B (state X1l))
(condition X2)

(modify ?x (state X2))
(printout t “X2-state; *))

(defrule B-donel
?X <- (B (state X2))
?y <- (A (state B))

(modify ?x (state done) (status reveal))
(modify ?y (status reveal))
(printout t crlf “B-done; *))

P e L L e L LD D bttt B-2 branch
(defrule B-start-Y

(declare (salience -1))

?X <- (B (state start) (status reveal))

(condition Y)

(modify ?x (state Y) (status hide))
(assert (Y (state start)))
(printout t *Y-state; * crlf))

(defrule Y-failure
(declare (salience -10))
?X <- (B (state Y) (status hide))
?y <- (Y (state start) (status reveal))
?z <- (condition Y)
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=>

(retract 7z)

(modify ?x (state start) (status reveal))

(modify ?y (status failed))

(printout t “* branch B-2 failure *; B-state; “ crlf))

R Ll DD LD D et L LD D ke L LS L Y¥-1 branch---------~
(defrule Y-start-ALPHA

?x <- (Y (state start) (status reveal))

{condition ALPHA)

{modify ?x (state ALPHA))
(printout t “ALPHA-state; “))

{defrule ALPHA-failure

(declare (salience -10))

?y <- (B (state Y) (status hide))

?x <- (Y (state ?n) {(status reveal))
?2z <- (condition ALPHA)

-,

(retract ?2z)

(modify ?x (state start) (status reveal))

(modify ?y (status failed))

(printout t ** branch Y-1 failure *; Y-state; *“ crlf))

-

(defrule Y-start-ALPHAl
?x <- (Y (state ALPHA))
{(condition ALPHAl)

(modify ?x (state ALPHAl))
(printout t “ALPHAl-state; “))

(defrule Y-done-1
?Xx <- (Y (state ALPHAl))
?2y <- (B (state Y))

; ?2 <- (A (status hide))

(modify ?x (state done) (status succeeded))
{(modify ?y (state done) (status reveal))

: (modify 2z (status reveal))

(printout t crlf “Y-done; B-done; *))
et it e hatnte i L end of Y-1 branch---
I et D D L B L ey Y-2 branch---------

(defrule Y-start-BETA
(declare (salience -1))
7% <- (Y (state start) (status reveal))
(condition BETA)

(modify ?x (state BETA))
(printout t *BETA-state; *))
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(defrule BETA-failure

=2

~

(declare (salience -10))

?X <- (B (state Y) (status hide))

?X <~ (Y (state ?n) (status reveal))
?z <- (condition BETA)

(retract ?z)

(modify ?x (state start) (status reveal))

(modify ?y (status failed))

(printout t ** branch Y-2 failure *; Y-state; * crlf))

(defrule Y-start-BETAl

?%x <~ (Y (state BETA))
(condition BETAl)

(modify ?x (state BETAl))
(printout t *“BETAl-state; *))

(defrule Y-done-2

o~
v

-

?x <- (Y (state BETAl))
?y <- (B (state Y))
?2 <- (A (status hide))

(modify ?x (state done) (status succeeded))
(modify ?y (state done) (status reveal))
(modify 2z (status reveal))

(printout t crlf “Y-done; B-done; “))

] e eeeeeme e m e mmemm—mmmememmm e e e e end of Y-2 branch--

---------------------------------------------------- Y-3 branch

(defrule Y-start-GAMMA

(declare (salience -2))
?x <- (Y (state start))
(condition GAMMA)

(modify ?x (state GAMMA))
(printout t *“GAMMA-state; *))

(defrule GAMMA-failure

-

(declare (salience -10))

?X <- (Y (state ?n) (status reveal))
?y <- (B (state Y) (status hide))

?Z <- (condition GAMMA)

(retract ?z)
(modify ?x (status failed))
>dify ?x (state start) (status reveal))
(printout t ** branch Y-3 failure *; Y-state; * crlf))

(defrule Y-start-GAMMAl

?X <~ (Y (state GAMMA))
(condition GAMMA1l)
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(modify ?x (state GAMMAl))
(printout t “GAMMAl-state; “))

(defrule Y-done-3

?X <- (Y (state GAMMAl))
?y <- (B (state Y))
?z <- (A (state B) (status hide))

=
(modify ?x (state done) (status succeeded))
(modify ?y (state done) (status reveal))
: (modify ?z (status reveal))
(printout t crlf *“Y-done; B-done; *))
P e L e e L D DL DL T P L L end of Y-3 branch-~--
RS LD LD L E D Ll D DLl D e b bt it b B-3 branch---------

(defrule E-start-2

(declare (salience -2))

?X <- (B (state start) (status reveal))
(A (state B) (status hide))

(condition 2)

(modify ?x (state Z) (status hide))
(modify ?y (status hide))
(printout t “Z-state; *})

(defrule Z-failure

(declare (salience -10))
?X <- (B (state ?n) (status hide))
?y <- (condition 2)

(retract ?y)
(modify ?x (state start) (status reveal))

{(printout t “* branch B-3 failure *; B-state” crilf))

(defrule B-start-2Z1

?X <- (B (state 2Z))
(condition 2Z1)

(modify ?x (state 2Z1))
(printout t “Zl-state; *))

(defrule B-done-2

?x <- (B (state 21))
?y <- (A (state B))

=>
(modify ?x (state done) (status reveal))
(modify ?y (status reveal))
(printout t crlf “*B-done; A-done;” crlf crlf
** Successful termination ** crlf crlf))
R L L D e e L D e et end of B-3 branch-----




(defrule A-start-Bl
?xX <- (A (state B))
(B (state done) (status reveal))
{condition Bl)

z=>
(modify ?x (state Bl))
(printout t “Bl-state; *))

(defrule A-done-1

?x <~ (A (state Bl))
=>

(modify ?x (state done) (status succeeded))

(printout t crlf “A-done;” crlf crlf “* Successful termination **
crlf crlf))

R e it R L LD D et b e L L L LS end of A-1 branch-----

HEE R LD e D D Dt e bt L L L E T L e A-2 branch--------
(defrule A-start-C

(declare. (salience -1))

?X <- (A (state start))

{condition C)

(modify ?x (state C))
{printout t “C-state; *))

(defrule C-failure
(declare (salience -10))
?%x <- (A (state ?) (status reveal))
?y <=~ (condition C)

(retract ?y)
(modify ?x (state start) (status reveal))
(printout t “* branch A-2 failure *; A-state; ” crlf))

(defrule A-start-Cl
?xX <- (A (state C))
(condition C1)

(modify ?x (state C1))
(printout t “Cl-state; *))

(defrule A-done-2
?x <- (A (state Cl))
=>
(modify ?x (state done) (status succeeded))
(printout t crlf “A-done;” crlf crlf “* Successful termination **
crlf crlf))
R e L D D LD L LD LD et D PP P end of A-2 branch------
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A e i D i ettt b DL LD LD DL L L A-3 branch------«-ca---~
{defrule A-~-start-D

(declare (salience -2))

?x <~ (A (state start))

(condition D)
2>

{(modify ?x (state D))

(printout t “D-state; “))

(defrule D~failure
{(declare (salience -10))
?x <- (A (state ?) (status reveal))
?y <- (condition D)
=>
(retract ?y)
(modify ?x (status failed))
(printout t “* branch A-3 failure *; A-state.” crlf crilf)
(printout t “* No A-branch successful *. System halted.*” crlf crilf))

(defrule A~start-D1
?x <- (A (state D))
{condition D1)

(modify ?x (state D1))
(printout t “Dl-state; *))

Ze—"

(defrule A-done-3
?x <- (A (state D1))
=>
(modify ?x (state done) (status succeeded))
(printout t crlf *A-done;” crlf crlf ** Successful termination **

It e ittt D e end of A-3 branch------

‘.i*'ﬁ**it**i******tt***'it'ﬁﬁ*****ii*t***iﬁ’t***ﬁt**tt'***ii**Q***t***ﬁ*i
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APPENDIX C. PROLOG IMPLEMENTATION OF THE RBM’S
STRATEGIC LEVEL

/* Strategic Level for the RBM AUV Mission Controller/Cocordinator
by Byrnes, Kwak, Healey, Marco for use at Florida competition

Version: 2.3 Oct 27, 1992 */

initialize :- ready_veh_for_launch(ANS1),
ANS1 == 1, select_first_waypoint (ANS2).
initialize :- alert_user(ANS), fail.

mission :- in_transit_p(ANS1l), ANS1l == 1, transit, !,
transit_done_p(ANS2),
ANS2 == 1, fail.

mission :- in_search_p(ANSl), ANS1 == 1, search, !,
search_done_p (ANS2), ANS2 == 1, fail.
mission :- in_task_p(ANS1l), ANS1 == 1, task, !, task_done_p(ANS2),
ANS2 == 1, fail.
mission :- in_return_p(ANS1l), ANS1 == 1, return, !, return_done_p(ANS2),

ANS2 == 1, wait_for_recovery (ANS3).

transit :- waypeoint_control.
transit :- surface(ANS).

search :- do_search_pattern(ANS), ANS ==
search :- surface(ANS).

task :- homing (ANS1), ANS1 == 1, drop_package(ANS2), ANS2 == 1,
get_gps_fix(ANS3), ANS3 == 1, get_next_waypoint (ANS4), ANS4 == 1.
task :- surface(ANS).

return :- waypoint_control.
return :- surface(ANS).

execute_auv_mission :- initialize, repeat, mission.

waypoint_control :- not(crit_system_prob), get_waypoint_status,
plan, send_setpoints_and_modes {ANS).

/* need to monitor accuracy of trar _ relative to current and GPS */
/*obstacle avoidance in Tac, replanning in Strategic */

get_waypoint_status :- gps_check, reach_waypoint (ANS1), ANS1 == 1,
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get_next_waypoint (ANS2) .
get_waypoint_status.

gps_check :- gps_needed(ANSl), ANS1 == 1, get_gps_fix(ANS1).
gps_check.

/* Planning: reduced capability (cut mission short), system degradation
(continue mission at lower performance), obstacle avoidance, normal.
g system*/
plan :- red_cap_system_prob, global_replan.
/* Subset of system probs requiring replan (TBD) */

plan :- near_uncharted_obstacle, local_replan.
plan.

near_uncharted_obstacle :- unk_obstacle_p(ANSl), ANS1l == 1,
log_new_obstacle (ANS2).

local_replan :- loiter (ANS1l), start_local_replanner (ANS2).
global_replan :- loiter (ANS1l), start_global_replanner (ANS2).

crit_system_prob :- power_gone_p(ANS), ANS ==

crit_system_prob :- computer_system_inop_p(ANS), ANS ==z 1.
crit_system_prob :- propulsion_system_p(ANS), ANS == 1.
crit_system_prob :- steering_system_inop_p(ANS), ANS == 1.
red_cap_system_prob :- diving_system_p(ANS), ANS == 1.
red_cap_system_prob :- bouyancy_system_p(ANS), ANS ==z 1.

red_cap_system_prob :- thruster_system_p(ANS), ANS == 1.
red_cap_system_prob :- leak_test_p(ANS), ANS == 1.
red_cap_system_prob :- payload_prob_p(ANS), ANS ==

[y
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APPENDIX F. CLIPS IMPLEMENTATION OF THE STRATEGIC

LEVEL
; t 112 ] L 2 2 E 1 1 tE3 2 L3 11T Y g hkh L3 1 18] SRR R SRS ES AR R SRR B SR E kS
"
* Tite : Strategic Level for the NPS AUV 11
* Name : strlev6.20
* Version :620
o

Author  : Thomas Scholz

;* Date : 10 August 1993

:* Revised

;* System  :Sun3 UNIX; server's name “virgo”

;* Compiler :CLIPS/Ada4.40

:* Description : This program is the strategic level of the NPS AUV 11,
* top level of the Rational Behavioral Model design

ok .

* Remarks : The function names (i.e. “diving_system_prob_p”) match the
* names that have been used in the tactical level code of
* Fritz Thomnton [Ref. 13]

o

3
otk ek o e e et b e e e ol e e e ol ke e e e e el ol e de ke el o o b el e ol e ol e e sk o e oge ol ok ool e ok ek sk ok ok
’

JrekaEkkbkakkkkkaat s «NPS AUV - RBM Mission Controller/Coordinator****#### % #%%x

;t#i#‘*‘##t#ttt#*t‘*#‘t*ttt*‘t#t‘* Templales e st e ok i o o o o e afe ke o abe ok e ode e ok 3 o o e o e ol o ol o o ok ke ok 2k

(deftemplate execute-auv-mission
(field state
(type SYMBOL)
(allowed-symbols start initialize mission done)))

(deftemplate initialize
(field state

(type SYMBOL)

(allowed-symbols start
ready-vehicle-for-launch
select-first-waypoint
alert-user
done)))

(deftemplate initialize-branches
(field branch
(type INTEGER) (range 1 2))
(field status
(type SYMBOL)
(allowed-symbols try failed)))
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(deftemplate mission
(field state

(type SYMBOL)

(allowed-symbols start
transit in-transit-p transit-done-p
search in-search-p search-done-p
task in-task-p task-done-p
return in-retum-p return-done-p
wait-for-recovery
done)))

(deftemplate mission-branches
(field branch
(type INTEGER) (range 1 4))
(field status
(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate transit
(field state
(type SYMBOL)
(allowed-symbols start
waypoint-control
surface
done)))

(deftemplate transit-branches
(field branch
(type INTEGER) (range 1 2))
(field status
(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate search
(field state
(type SYMBOL)
(allowed-symbols start
do-search-patiern
surface
done)))

(deftemplate search-branches
(field branch
(type INTEGER) (range 1 2))
(field status
(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate task
(field state
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(type SYMBOL)
(aliowed-symbols  stant

homing drop-package
get-gps-fix
get-next-waypoint
surface
done)))
(deftemplate task-branches
(field branch
(type INTEGER) (range 1 2))
(field status
(type SYMBOL)
(allowed-symbols  try failed)))
(deftemplate return
(field state
(type SYMBOL)
(allowed-symbols starn
waypoint-control
surface
done)))
(deftemplate return-branches
(field branch
(type INTEGER) (range 1 2))
(field status
(type SYMBOL)
(allowed-symbols try failed)))
(deftemplate waypoint-control
(field state
(type SYMBOL)

(allowed-symbols start
crit-system-prob
get-waypoint-status
plan
send-setpoints-and-modes
done)))

(deftemplate get-waypoint-status
(field state

(type SYMBOL)

(allowed-symbols start
gps-check
reach-waypoint
get-next-waypoint
done)))

(deftemplate get-waypoint-status-branches
(field branch




(type INTEGER) (range 1 2))
(field status

(type SYMBOL)

(allowed-symbols try failed)))

(deftemplate gps-check
(field state
(type SYMBOL)
(allowed-symbols start
gps-needed
get-gps-fix
done)))

(deftemplate gps-check-branches
(field branch
(type INTEGER) (range 1 2))
(field status
(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate plan
(field state

(type SYMBOL)

(allowed-symbols stan
red-cap-system-prob
global-replan
near-uncharted-obstacle
local-replan
done)))

(deftemplate plan-branches
(field branch
(type INTEGER) (range 1 3))
(field status
(type SYMBOL)
(allowed-symbols try failed)))

(deftemplate near-uncharted-obstacle
(field state
(type SYMBOL)
(allowed-symbols stant
unknown-obstacle-p
log-new-obstacle
done)))

(deftemplate local-replan
(field state
(type SYMBOL)
(allowed-symbols start
loiter
start-local-replanner
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donc)))

(deftemplate global-replan
(field state

(type SYMBOL)

(allowed-symbols start
loiter
start-global-replanner
done)))

(deftemplate crit-system-prob
(field state

(type SYMBOL)

(allowed-symbols  start
power-gone-p
computer-system-inop-p
propulsion-system-p
steering-system-inop-p
not-done
done)))

(deftemplate crit-system-prob-branches
(field branch
(type INTEGER) (range 1 4)))
+  (field status

; (type SYMBOL)
: (allowed-symbols try failed)))
(deftemplate red-cap-sysiem-prob
(field state
(type SYMBOL)

(allowed-symbols start
diving-system-p
bouyancy-system-p
thruster-system-p
leak-test-p
payload-prob-p
done)))

(deftemplate red-cap-system-prob-branches
(field branch
(type INTEGER) (range 1 5)))
;  (field status

; {type SYMBOL)

; (allowed-symbols try failed)))

; L 1 * Rules REEERR R RER KRR RRE R REREE R R R R R Rk R kE
; execute-auv-mission--------

(defrule start-program




7x <- (start)
=>
(retract 7x)
(assert (execute-auv-mission (state start))))

(defrule execute-auv-mission-state-initialize
x <- (execute-auv-mission (state start))
=>
(retract 7x)
(assert (execute-auv-mission (state initialize)))
(assert (initialize (state start))))

(defrule execute-auv-mission-state-mission
7x <- (execute-auv-mission (state initialize))
7y <- (initialize (state done))

=>
(retract 7x)
(retract 7y)
(assert (execute-auv-mission (state mission)))
(assert (mission (state start))))

(defrule execute-auv-mission-state-done
7x <- (execute-auv-mission (state mission))
?y <- (mission (state done))

=>
(retract 7x)
(retract ?y)
(assert (execute-auv-mission (state done)))
(printout t crif “sse»* ** bk orlf
“*¢ MISSION EXECUTED SUCCESSFULLY. *" crlf
“* AUV IS WAITING FOR RECOVERY... *” crif
han R * =+ crlf crif))
3 initialize traffic rules---------- -

(defrule initialize-branch-1-start
7x <- (initialize (state start))
=>
(retract 7x)
(assert (initialize-branches (branch 1)(status try))))

(defrule initialize-branch-2-start

(declare (salience -10))

7x <- (initialize-branches (branch 1)(status failed))
=> .

(retract 7x)

(assert (initialize-branches (branch 2)(status try))))
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(defrule initialize-branches-clean-up
(declage (salience -20))
7x <- (initialize-branches (branch 2)(status failed))
7y <- (initialize (stase 7))

(retract 7x)
(retract 7y)
(printout t “No initialize branch successful!” crif crif))

(defrule initialize-branch-failure
(declare (salience -100))
7x <- (initialize-branches (branch Tn)(status try))
7y <- (initialize (state ?))

(retract 7x)
(retract 7y)
(assert (initialize-branches (branch ?n)(status failed))))

; initialize branch l-------vcocusceee

(defrule initialize-1-state-ready-vehicle-for-launch
(initialize-branches (branch 1)(status try))

=>
(assert (initialize (state ready-vehicle-for-launch))))

(defrule initialize-1-state-select-first-waypoint
(initialize-branches (branch 1)(status try))
7x <- (initialize (state ready-vehicle-for-launch))
(test (= (ready_vehicle_for_launch) 1))

=>
(retract 7x)
(assert (initialize (state select-first-waypoint))))

(defrule initialize-1-state-done
7x <- (initialize-branches (branch 1)(status try))
7y <- (initialize (state select-first-waypoint))

=>
(select_first_waypoint)
(retract 7x)
(retract ?y)
(assert (initialize (state done))))
R initialize branch 2--~-eeeeceeac-—-

(defrule initialize-2-state-alert-user
(initialize-branches (branch 2)(status try))
=>
(assert (initialize (state alert-user))))

(defrule initialize-2-state-done
7x <- (initialize-branches (branch 2)(status try))
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7y <- (initialize (state alert-user))

(alert_user)
(retract 7x)
(retract ?y)
(assert (initialize (state done))))

: mission traffic rules----—-----

(defrule mission-branch-1-start
7x <- (mission (state start))
=>
(retract 7x)
(assert (mission-branches (branch 1)(status try))))

(defrule mission-branch-2-start

(declare (salience -10))

7x <- (mission-branches (branch 1)(status failed))
=>

(retract 7x)

(assert (mission-branches (branch 2)(status try))))

(defrule mission-branch-3-start

(declare (salience -20))

7x <- (mission-branches (branch 2)(status failed))
=>

(retract 7x)

(assert (mission-branches (branch 3)(stats try))))

(defrule mission-branch-4-start

(declare (salience -30))

7x <- (mission-branches (branch 3)(status failed))
=>

(retract 7x)

(assert (mission-branches (branch 4)(status try))))

(defrule mission-branches-clean-up
(declare (salience -40))
7x <- (mission-branches (branch 4))
=>
(retract 7x)
(assert (mission (state start))))

:(defrule mission-branch-repeat

:  (declare (salience -10000))

5 7x<- (mission-branches (branch 7n)(status try))
s 7y <- (mission (state 7))

=>

;  (retract 7x)
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v (retract 7y)
i (assest (mission (state start))))

(defrule mission-branch-failure
(declare (salience -1000))
2x <- (mission-branches (branch 7n)(status try))
7y <- (mission (state 7))

(retract 7x)
(retract 7y)
(assent (mission-branches (branch 7n){status failed))))

mission branch Je-eeeeemsoeeees

(defrule mission-1-state-in-transit-p
(mission-branches (branch 1)(status try))
=>
(assert (mission (state in-transit-p))))

(defrule mission-1-state-transit
(mission-branches (branch 1)(status try))
7x <- (mission (state in-transit-p))

(test (= (in_transit_p) 1))

=>
(retract 7x)

(assert (mission (state transit)))
(assert (transit (state start))))

(defrule mission-1-state-transit-done-p
7x <- (mission-branches (branch 1)(status try))
(mission-branches (branch 1)(status try))
7y <- (mission (state transit))
7z <- (transit (state done))
(test (= (transit_done_p) 1))
=>
(retract 7x)
(retract ?y)
(retract 72)
(assert (mission (state transit-done-p)))
(assert (mission-branches (branch 1)(status try)))
(printout t crif “** e saseeean” orif
“¢  TRANSIT SUCCESSFUL. *"crlf
d e ** crif crif))

: MiSSion branch 2-----eee---

(defrule mission-2-state-in-search-p
(mission-branches (branch 2)(status try))
=>
(assert (mission (state in-search-p))))
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(defrule mission-2-state-search
(mission-branches (branch 2)(status try))
7x <- (mission (state in-search-p))

(test (= (in_search_p) 1))

=>
(retract 7x)

(assert (mission (state search)))
(assert (search (state start))))

(defrule mission-2-state-search-done-p
7x <- (mission-branches (branch 2){status try))
(mission-branches (branch 2)(status try))
?y <- (mwssion (state search))
7z <- (search (state done))
(test (= (search_done_p) 1))

(retract 7x)

(retract 7y)

(retract 7z)

(assert (mission (state search-done-p)))

(assert (mission-branches (branch 2)(status try)))

(printout t crif “s#%*= SELRERAERRE LR EREE (4 f
. SEARCH SUCCESSFUL. *"crif
L bl bl il * sassbensrins” crif orif))

mission branch 3------cceceeee-

(defrule mission-3-state-in-task-p
(mission-branches (branch 3)(status try))
=>
(assert (mission (state in-task-p))))

(defrule mission-3-state-task
(mission-branches (branch 3)(status try))
7x <- (mission (state in-task-p))

(test (= (in_task_p) 1))

=
(retract 7x)

(assert (mission (state task)))
(assert (task (state start))))

(defrule mission-3-state-task-done-p
7x <- (mission-branches (branch 3)(status try))
(mission-branches (branch 3)(status try))
7y <- (mission (state task))
7z <- (task (state done))
(test (= (task_done_p) 1))

(retract 7x)

(retract 2y)
(retract 7z)
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(assent (mission (state task-done-p)))
(assert (mission-branches (branch 3)(status lry)))

(printout ¢ crif seess” crif
“s  TASKSUCCESSFUL. *"crif
srevsuare . *" crif crif))

B mission branch 4-----veeeeveee-

(defrule mission-4-state-in-retum-p
{mission-branches (branch 4)(status ry))
->
(assert (mission (state in-return-p))))

(defrule mission-4-state-retum
(mission-branches (branch 4)(status try))
7x <- (mission (state in-return-p))

(test (= (in_return_p) 1))

=
(retract 7x)

(assert (mission (state retum)))
(assert (return (state start))))

(defrule mission-4-state-return-done-p

7% <- (mission-branches (branch 4)(status try))
;  (mission-branches (branch 4)status try))

7y <- (mission (state return))

7z <- (return (state done))

(test (= (return_done_p) 1))

(retract 7x)
(retract 7y)
(retract 72)
(wait_for_recovery)
(printout t crif * b EERRRRR” orlf
. RETURN SUCCESSFUL. *"crlf
hihhd *ERRRRES *** crlf crlf)
(assert (mission (state done))))

v transit traffic rules-------

(defrule transit-branch-1-start
7x <- (transit (state start))
=>
(retract ?x)
(assert (transit-branches (branch 1)(status try))))

(defrule transit-branch-2-start

(declare (salience -10))
7x <- (transit-branches (branch 1)(status failed))
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=>
(retract 7x)
(assert (transit-branches (branch 2)(status try))))

(defrule transit-branches-clean-up
(declare (salience -20))
7x <- (ransit-branches (branch 2)(status failed))
=>
(retract 7x)
(printout t “No transit branch successful!” crif crif))

(defrule transit-branch-failure
(declare (salience -100))
7x <- (transit-branches (branch 7n)(status try))
7y <- (transit (state 7))

(retract 7x)
(retract ?y)
(assert (transii-branches (branch 7n)(status failed))))

transit branch 1---------

(defrule transit-1-state-waypoint-control
(transit-branches (branch I)(status try))
=>
(assert (transit (state waypoint-control)))
(assert (waypoint-control (state start))))

(defrule transit-1-state-done
7x <- (transit-branches (branch 1)(status try))
7y <- (transit (state waypoint-control))
7z <- (waypoint-control (state done))
=>
(retract 7x)
(retract 7y)
(retract 7z)
(assert (transit (state done))))

; transit branch 2---------

(defrule transit-2-state-surface
(transit-branches (branch 2)(status try))
=>
(assert (transit (state surface))))

(defrule transit-2-state-done
7x <- (transit-branches (branch 2)(status try))
7y <- (transit (state surface))
=>
(retract 7x)
(retract ?y)
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(surface))

v (assert (ransit (state done)))) . is transit done???

y search traffic rules

(defrule search-branch-1-start
7x <- (search (state start))
=>
(retract 7x)
(assert (search-branches (branch 1)(status try))))

(defrule search-branch-2-start

{declare (salience -10))

7x <- (search-branches (branch 1)(status failed))
=D

(retract 7x)

(assert (search-branches (branch 2)(status try))))

(defrule search-branches-clean-up
(declare (salience -20))
7x <- (search-branches (branch 2)(status failed))
=>
(retract 7x)
(printout t “No search branch successful!™ crif crlf))

(defrule search-branch-failure
(declare (salience -100))
7x <- (search-branches (branch ?n)(status try))
7y <- (search (state 7))
=
(retract 7x)
(retract 7y)
(assert (search-branches (branch ?n)(status failed))))

(defrule search-1-state-do-search-pattern
(search-branches (branch 1)(status try))
=>
(assert (search (state do-search-pattern))))

(defrule search-1-state-done
7x <- (search-branches (branch 1)(status try))
7y <- (search (state do-search-pattern))
(test (= (do_search_pattern) 1))

(retract 7x)

(retract 7y)
(assert (search (state done))))
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: search branch 2------- -

(defrule search-2-state-surface
(search-branches (branch 2)(status try))
=>
(assert (search (state surface))))

(defrule search-2-state-done
Ix <- (search-branches (branch 2)(status try))
7y <- (search (state surface))
=>
(retract 7x)
(retract 7y)
(surface))

H (assert (transit (state done)))) ; is transit done???

;mm——

; - task traffic rules-------

(defrule task-branch-1-start
7x <- (task (state start))
=>
(retract 7x)
(assert (task-branches (branch 1)(status try))))

(defrule task-branch-2-start

(declare (salience -10))

7x <- (task-branches (branch 1)(status failed))
=>

(retract 7x)

(assert (task-branches (branch 2)(status try))))

(defrule task-branches-clean-up
(declare (salience -20))
7x <- (task-branches (branch 2)(status failed))
=>
(retract 7x)
(printout t “No task branch successful!” crif crlf))

(defrule task-branch-failure
(declare (salience -100))
7x <- (task-branches (branch ?n)(status try))
7y <- (task (state 7))
=>
(retract 7x)
(retract 7y)
(assert (task-branches (branch 7n)status failed))))
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: task branch 1-—--------

(defrule task-1-state-homing
(task-branches (branch 1)(status try))
=>
(assert (task (state homing))))

(defrule task- 1-state-drop-package
(task-branches (branch 1)(status try))
7x <- (task (state homing))

(test (= (homing) 1))

=>
(retract 7x)

(assert (task (state drop-package))))

(defrule task-1-state-get-gps-fix
(task-branches (branch 1)(status try))
7x <- (task (state drop-package))
(test (= (drop_package) 1))

=>
(retract 7x)

(assert (task (state get-gps-fix))))

(defrule task- 1-state-get-next-waypoint
(task-branches (branch 1)(status try))
7x <- (task (state get-gps-fix))
(test (= (get_gps_fix) 1))
=>
(retract 7x)
(assert (task (state get-next-waypoint))))

(defrule task-1-state-done
7x <- (task-branches (branch 1)(status try))
7y <- (1ask (state get-next-waypoint))
(test (= (get_next_waypoint) 1))

(retract 7x)
(retract 7y)
(assert (task (state done))))

: task branch 2---------

(defrule task-2-state-surface
(task-branches (branch 2)(status try))
=>
(assert (task (state surface))))

(defrule task-2-state-done
7x <- (task-branches (branch 2)(status try))
?y <- (task (state surface))

=>
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(retract 7x)
(retract ?y)
(surface))

i (assert (task (state done)))) :is task done???

o
R T TR T T S

; return traffic rules--------

(defrule return-branch-1-start
7x <- (return (state start))
=>
(retract 7x)
(assert (retum-branches (branch 1)(status try))))

(defrule retum-branch-2-start
(declare (salience -10))
7x <- (return-branches (branch 1)(status failed))
=> .
(retract 7x)
(assert (return-branches (branch 2)(status try))))

(defrule return-branches-clean-up
(declare (salience -20))
7x <- (return-branches (branch 2)(status failed))
=>
(retract 7x)
(printout t “No return branch successful!™ crif crlf))

(defrule return-branch-failure
(declare (salience -100))
7x <- (return-branches (branch ?n)(status try))
7y <- (return (state ?))
=>
(retract 7x)
(retract 7y)
(assert (return-branches (branch 7n)(status failed))))

3 return branch 1

(defrule return-1-state-waypoint-control
(return-branches (branch 1)(status try))
=>
(assert (return (state waypoint-control)))
(assert (waypoint-control (state start))))

(defrule retum-1-state-done
7x <- (return-branches (branch 1)(status try))
7y <- (return (state waypoint-control))
7z <- (waypoint-control (state done))

=>
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(retract ?x)
(retract 7y)
(retract 7z)
{assest (return (state done))))
;  (assert (mission (state start))))

’ retum branch 2---------

{defrule return-2-state-surface
(return-branches (branch 2)(status try))
=>
(assert (retumn (state surface))))

(defrule return-2-state-done
7x <- (retum-branches (branch 2)(status try))
7y <- (return (state surface))
=
(retract 7x)
(retract 7y)
(surface))

s (assert (return (state done)))) ; is return done???

y waypoint-control

(defrule waypoint-control-state-crit-system-prob
7x <- (waypoint-control (state start))
=>
(retract 7x)
(assert (waypoint-contro] (state crit-system-prob)))
(assert (crit-system-prob (state start))))

(defrule waypoint-control-state-get-waypoin-status
7x <- (waypoint-control (state crit-system-prob))
7y <- (crit-system-prob (state not-done))
=
(retract 7x)
(retract 7y)
(assert (waypoint-contro} (state get-waypoint-status)))
(assert (get-waypoint-status (state start))))

(defrule waypoint-control-state-plan
Ix <- (waypoint-control (state get-waypoint-status))
7y <- (get-waypoint-status (state done))
=
(retract 7x)
(retract ?y)
(assert (waypoint-control (state plan)))
(assert (plan (state start))))
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(defrule waypoint-control-state-done
7x <- (waypoint-control (state plan))
7y <- (plan (state done))
=>
(retract 7x)
(retract y)
(send_setpoints_and_modes)
(assert (waypoint-control (state done))))

: get-waypoint-status traffic rules---

(defrule get-waypoint-status-branch-1-start
7x <- (get-waypoint-status (state start))
=>
(retract 7x)
(assert (get-waypoint-status-branches (branch 1)(status try))))

(defrule get-waypoint-status-branch-2-start

(declare (salience -10))

7x <- (get-waypoint-status-branches (branch 1)(status failed))
=>

(retract 7x)

(assert (get-waypoint-status-branches (branch 2)(status try))))

(defrule get-waypoint-status-branches-clean-up
(declare (salience -20))
7x <- (get-waypoint-status-branches (branch 2)(status failed))
=>
(retract 7x)
(printout t “No get-waypoint-status branch successful!” crif crif))

(defrule get-waypoint-status-branch-failure
(declare (salience -100))
7x <- (get-waypoint-status-branches (branch ?n)(status try))
7y <- (get-waypoint-status (state 7))

=>

(retract 7x)

(retract ?y)

(assert (get-waypoint-status-branches (branch ?n)(status failed))))
: get-waypoint-status branch 1--------

(defrule get-waypoint-status-1-state-gps-check
(get-waypoint-status-branches (branch 1)(status try))
=>
(assert (get-waypoint-status (state gps-check)))
(assert (gps-check (state start))))

(defrule get-waypoint-status-1-state-reach-waypoint
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(get-waypoint-status-branches (branch 1)(status try))
7x <- (get-waypoint-status (state gps-check))
7y <- (gps-check (state done))

(retract ?x)
(retract 7y)
(assert (get-waypoint-status (state reach-waypoint))))

(defrule get-waypoint-status-1-state-done
?x <- (get-waypoint-status-branches (branch 1)(status try))
7y <- (get-waypoint-status (state reach-waypoint))
(test (= (reach_waypoint_p) 1))

(retract 7x)

(retract ?y)

(get_next_waypoint)

(assert (get-waypoint-status (state done))))

get-waypoint-status branch 2--------

(defrule get-waypoint-status-2-state-done

7x <- (get-waypoint-status-branches (branch 2)(status try))
=2

(retract ?x)

(assert (get-waypoint-status (state done))))

g m & G i Y T R T

s,
—

y -gps-check traffic rules---

(defrule gps-check-branch-1-start
7x <- (gps-check (state start))
=
(retract 7x)
(assert (gps-check-branches (branch 1)(status try))))

(defrule gps-check-branch-2-start

(declare (salience -10))

7x <- (gps-check-branches (branch 1)(status failed))
=2

(retract 7x)

(assert (gps-check-branches (branch 2)(status try))))

(defrule gps-check-branches-clean-up
(declare (salience -20))
7x <- (gps-check-branches (branch 2)(status failed))
=>
(retract 7x)
(printout t “No gps-check branch successful!” crif crif))
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(defrule gps-check-branch-failure
(declare (salience -100))
7x <- (gps-check-branches (branch Tn)(stats try))
7y <- (gps-check (state 7))

(retract 7x)
(retract ?y)
(assert (gps-check-branches (branch ?n)(status failed))))

B gps-check branch 1----—--

(defrule gps-check-1-state-gps-needed
(gps-check-branches (branch 1)(status try))
=
(assert (gps-check (state gps-needed))))

(defrule gps-check-1-state-get-gps-fix
(gps-check-branches (branch 1)(status try))
7x <- (gps-check (state gps-needed))

(test (= (gps_needed_p) 1))

=
(retract 7x)

(assert (gps-check (state get-gps-fix))))

(defrule gps-check-1-state-done
7x <- (gps-check-branches (branch 1)(status try))
7y <- (gps-check (state get-gps-fix))
=
(retract 7x)
(retract 7y)
(get_gps_fix)
(assert (gps-check (state done))))

; gps-check branch 2--------

(defrule gps-check-2-state-done

7x <- (gps-check-branches (branch 2)(status try))
=>

(retract 7x)

(assert (gps-check (state done))))

plan traffic rules--------

(defrule plan-branch-1-start
7x <- (plan (state stast))
=>
(retract 7x)
(assert (plan-branches (branch 1)(status try))))
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(defrule plan-branch-2-starnt

(declare (salience -10))

7x <- (plan-branches (branch 1)(status failed))
=

(retract 7x)

(assert (plan-branches (branch 2)(status try))))

(defrule plan-branch-3-start

(declare (salience -20))

7x <- (plan-branches (branch 2)(status failed))
=>

(retract 7x)

(assert (plan-branches (branch 3)(status try))))

(defrule plan-branches-clean-up
(declare (salience -30))
7x <- (plan-branches (branch 3)(status failed))
=>
(retract 7x) .
(printout t “No plan branch successful!” crif crif))

(defrule plan-branch-failure
(declare (salience -100))
7x <- (plan-branches (branch ?n)status try))
7y <- (plan (state 7))
=>
(retract 7x)
(retract 7y)
(assert (plan-branches (branch In)(status failed))))

; plan branch 1----------- -

(defrule plan-1-state-red-cap-system-prob
(plan-branches (branch 1)(status try))

=
(assert (plan (state red-cap-system-prob)))
(assert (red-cap-system-prob (state start))))

(defrule plan-1-state-global-replan
(plan-branches (branch 1)(status try))
7x <- (plan (state redcap-system-prob))
7y <- (red-cap-system-prob (state done))

=>
(retract 7x)

(retract 7y)
(assert (plan (state global-replan)))
(assert (global-replan (state start))))

(defrule plan-1-state-done

7x <- (plan-branches (branch 1)(status try))
?y <- (plan (state global-replan))
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72 <- (global-replan (state done))

(retract 7x)
(retract ?y)
(retract 7z)
(assert (plan (state done))))

plan branch 2---—------ -

(defrule plan-2-state-near-uncharted-obstacle
(plan-branches (branch 2)(status try))

=>
(assert (plan (state near-uncharted-obstacle)))
(assert (near-uncharted-obstacle (state start))))

(defrule plan-2-state-local-replan

(plan-branches (branch 2)(status try))

7x <- (plan (state near-uncharted-obstacle))

7y <- (near-uncharted-obstacle (state done))
=>

(retract 7x)

(retract 7y)

(assert (plan (state local-replan)))

(assert (local-replan (state start))))

(defrule plan-2-state-done
7x <- (plan-branches (branch 2)(status try))
?y <- (plan (state local-replan))
7z <- (local-replan (state done))

(retract 7x)
(retract ?y)
(retract 7z)
(assert (plan (state done))))

: plan branch 3---wseeeees -

(defrule plan-3-state-done

7x <- (plan-branches (branch 3)(status try))
=>

(retract 7x)

(assert (plan (state done))))

g
»

K near-uncharted-obstacle-----

(defrule near-uncharted-obstacle-state-unknown-obstacle-p
{near-uncharted-obstacle (state start))
=>

(assert (near-uncharted-obstacle (state unknown-obstacle-p))))
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(defrule near-uncharted-obstacle-state-log-new-obstacle
7x <- (near-uncharted-obstacle (state unknown-obstacle-p))
(1est (= (unknown_obstacle_p) 1))
=
(retract 7x)
(assert (near-ancharted-obstacle (state log-new-obstacle))))

(defrule near-uncharted-obstacle-state-done

7x <- (near-uncharted-obstacle (state log-new-obstacle))
=

(log_new_obstacle)

(retract 7x)

(assert (near-uncharted-obstacle (state done))))

e AT
L]

s local-replan-----

(defrule local-replan-state-loiter
(local-replan (state start))

=>
(assert (local-replan (state loiter))))

(defrule local-replan-state-start-local-replanner
7x <- (local-replan (state loiter))
=>
(loiter)
(retract 7x)
(assert (focal-replan (state start-local-replanner))))

(defrule Jocal-replan-state-done

7x <- (local-replan (state start-local-replanner))
=>

(start_local_replanner)

(retract 7x)

(assert (local-replan (state done))))

y global-replan----

(defrule global-replan-state-loiter
(global-replan (state start))

=>
(assert (global-replan (state loiter))))

(defrule global-replan-state-start-global-replanner
7x <- (global-replan (state loiter))
=>
(loiter)
(retract 7x)
(assert (global-replan (state start-global-replanner))))




(defrule global-replan-state-done

7x <- (global-replan (state start-global-replanner))
=>

(start_global_replanner)

(retract 7x)

(assert (global-replan (state done))))

R crit-system-prob traffic rules-----

(defrule crit-system-prob-branch-1-stant
7x <- (crit-system-prob (state start))
=>
(retract 7x)
(assert (crit-system-prob-branches (branch 1))))

(defrule crit-system-prob-branch-2-stan
(declare (sali¢nce -10))
7x <- (crit-system-prob-branches (branch 1))
7y <- (crit-system-prob (state 7))
=
(retract 7x)
(retract 7y)
(assert (crit-system-prob-branches (branch 2))))

(defrule crit-system-prob-branch-3-start
(declare (salience -20))
7x <- (crit-system-prob-branches (branch 2))
7y <- (crit-system-prob (state ?))
=>
(retract 7x)
(retract ?y)
(assert (crit-system-prob-branches (branch 3))))

(defrule crit-system-prob-branch-4-start
(declare (salience -30))
7x <- (crit-system-prob-branches (branch 3))
7y <- (crit-system-prob (state ?))
=>
(retract 7x)
(retract 7y)
(assert (crit-system-prob-branches (branch 4))))

(defrule crit-system-prob-branches-clean-up
(declare (salience -40))
7x <- (crit-system-prob-branches (branch 4))
?y <- (crit-system-prob (state 7))

=>
(retract 7x)
(retract 7y)
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(aseert (crit-system-prob (stase not-done)))
(printowt ¢ *No crit-gysie.-prob branch successful!” crif crif))

: crit-system-prob-1---—

(defrule crit-system-prob- 1-state-power-gone-p
{crit-system-prob-branches (branch 1))

=
(assert (crit-system-prob (state power-gone-p))))

(defrule crit-system-prob-1-state-done
7x <- (crit-system-prob-branches (branch 1))
7y <- (crit-system-prob (state power-gone-p))
(test (= (power_gone_p) 1))

(retract 7x)
(retract 7y)
{assert (crit-system-prob (state done))))

crit-system-prob-2-----

(defrule crit-system-prob-2-state-computer-system-inop-p
(crit-system-prob-branches (branch 2))

=>
(assert (crit-system-prob (state computer-system-inop-p})))

(defrule crit-system-prob-2-state-done
7x <- (crit-system-prob-branches (branch 2))
7y <- (crit-system-prob (state computer-system-inop-p))
(test (= (computer_system_prob_p) 1))

(retract 7x)
(retract 7y)
(assert (crit-system-prob (state done))))

v crit-system-prob-3-----

(defrule crit-system-prob-3-state-propulsion-system-p
(crit-system-prob-branches (branch 3))

=>
(assert (crit-system-prob (state propulsion-system-p))))

(defrule crit-system-prob-3-state-done
7x <- (crit-system-prob-branches (branch 3))
7y <- (crit-system-prob (state propulsion-system-p))
(test (= (propulsion_system_prob_p) 1))
=>
(retract 7x)
(retract 7y)
(assert (crit-system-prob (state done))))




: crit-system-prob-4-----

(defrule crit-system-prob-4-state-steering-system-inop-p
(crit-system-prob-branches (branch 4))

=>
(assert (crit-system-prob (state steering-sysiem-inop-p))))

(defrule crit-system-prob-4-state-done
7x <- (crit-system-prob-branches (branch 4))
7y <- (crit-system-prob (state steering-system-inop-p))
(test (= (steering_system_prob_p) 1))
=>
(retract 7x)
(retract 7y)
(assert (crit-system-prob (state done))))

o ==

: red-cap-system-prob traffic rules-----

(defrule red-cap-system-prob-branch- 1-start
7x <- (red-cap-system-prob (state start))
=>
(retract 7x)
(assert (red-cap-system-prob-branches (branch 1))))

(defrule red-cap-system-prob-branch-2-start
(declare (salience -10))
7x <- (red-cap-system-prob-branches (branch 1))
7y <- (red-cap-system-prob (state ?))
=>
(retract 7x)
(retract 7y)
(assert (red-cap-system-prob-branches (branch 2))))

(defrule red-cap-system-prob-branch-3-start
(declare (salience -20))
7x <- (red-cap-system-prob-branches (branch 2))
7y <- (red-cap-system-prob (state ?))
=>
(retract 7x)
(retract ?y)
(assert (red-cap-system-prob-branches (branch 3))))

(defrule red-cap-system-prob-branch-4-start
(declare (salience -30))
7x <- (red-cap-system-prob-branches (branch 3))
7y <- (red-cap-system-prob (state ?))
=>
(retract 7x)
(retract ?y)
(assert (red-cap-system-prob-branches (branch 4))))
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(defrule red-cap-system-prob-branch-5-start
(declare (salience -40))
7x <- (red-cap-system-prob-branches (branch 4))
7y <- (red-cap-system-prob (state 7))

=>

(retract 7x)
(retract ?y)
(assert (red-cap-system-prob-branches (branch 5))))

(defrule red-cap-system-prob-branches-clean-up
(declare (salience -50))
7x <- (red-cap-system-prob-branches (branch 5))
7y <- (red-cap-system-prob (state ?))
=>
(retract 7x)
(retract 7y)
(printout t *No red-cap-system-prob branch successful!” crif crif))

; red-cap-system-prob- 1--—--

(defrule red-cap-system-prob-1-state-diving-system-p
(red-cap-system-prob-brznches (branch 1))

=
(assert (red-cap-system-prob (state diving-system-p))))

(defrule red-cap-system-prob-1-state-done
7x <- (red-cap-system-prob-branches (branch 1))
7y <- (red-cap-system-prob (state diving-system-p))
(test (= (diving_system_prob_p) 1))

=>
(retract 7x)
(retract 7y)
(assert (red-cap-system-prob (state done))))

R red-cap-system-prob-2-----

(defrule red-cap-system-prob-2-state-bouyancy-system-p
(red-cap-system-prob-branches (branch 2))

=>
(assert (red-cap-system-prob (state bouyancy-system-p))))

(defrule red-cap-system-prob-2-state-done
(declare (salience -10))
7x <- (red-cap-system-prob-branches (branch 2))
7y <- (red-cap-system-prob (state bouyancy-system-p))
(test (= (buoyancy_system_prob_p) 1))
=>
(retract 7x)
(retract 7y)
(assert (red-cap-system-prob (state done))))
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B red-cap-system-prob-3----

(defrule red-cap-system-prob-3-state-thruster-system-p
(red-cap-system-prob-branches (branch 3))

=>
(assert (red-cap-system-prob (state thruster-system-p))))

(defrule red-cap-system-prob-3-state-done
7x <- (red-cap-system-prob-branches (branch 3))
7y <- (red-cap-system-prob (state thruster-system-p))
(tes: (= (thruster_system_prob_p) 1))

=>
(retract 7x)
(retract ?y)
(assert (red-cap-system-prob (state done))))
3 red-cap-system-prob-4-----

(defrule red-cap-system-prob-4-siate-leak-test-p
(red-cap-system-prob-branches (branch 4))

=
(assert (red-cap-system-prob (state leak-test-p))))

(defrule red-cap-system-prob-4-state-done
7x <- (red-cap-system-prob-branches (branch 4))
7y <- (red-cap-system-prob (state leak-test-p))
(test (= (leak_test_p) 1))

=>
(retract 7x)
(retract ?y)
(assert (red-cap-system-prob (state done))))
, red-cap-system-prob-5-----

(defrule red-cap-system-prob-S-state-payload-prob-p
(red-cap-system-prob-branches (branch 5))

=>
(assert (red-cap-system-prob (state payload-prob-p))))

(defrule red-cap-system-prob-5-state-done
7x <- (red-cap-system-prob-branches (branch 5))
7y <- (red-cap-system-prob (state payload-prob-p))
(test (= (payload_prob_p) 1))

(retract 7x)
(retract 7y)
(assert (red-cap-system-prob (state done))))
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