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ABSTRACT

The conventional method of imposing time dependent boundary con itioras for Runge-

Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first

order locally, and second order globally, independently of the spatial operator. This counter

intuitive result is analyzed in this paper.

Two methods of eliminating this problem are proposed for the linear constant coefficient

case: 1) impose the exact boundary condition only at the end of the complete RK cycle,

2) impose consistent intermediate boundary conditions derived from the physical boundary

condition and its derivatives. The first method, while retaining the RK accuracy in all

cases, results in a scheme with much reduced CFL condition, rendering the RK scheme

less attractive. The second methodetains the same allowable time step as the periodic

problem. However it is a general remedy only for the linear case. For non-linear hyperbolic

equations the second method is effective only for for RK schemes of third order accuracy or

less. Numerical studies are presented to verify the efficacy of each approach.

'This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-19480 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.



Introduction

The recent interest in long time integration is due to the need to tackle problems in areas

such as aero-acoustics, electro-magnetics and others. This in turn necessitates working with

higher order accurate spatial differencing operators. In many cases the time-stepping algo-

rithm of choice is a multi-stage Runge-Kutta (RK) of temporal order of accuracy comparable

to the spatial one.

Several bothersome issues arise when using RK methods for long time integration. A

principle concern is the imposition of numerical boundary conditions which retain the formal

accuracy of the numerical method and guarantee numerical stability of the solution. For

example (see Trefethen [1], or Carpenter et. al [2], [3]) Lax and GKS stability are not

sufficient to assure that the there is no exponentially growing temporal error when using

realistic grids. To alleviate this "anomaly" the use of spatial operators which have specific

semi-discrete energy norms has been proposed [4], [5], [6], [7]. These papers have primarily

focused on the semi-discrete form of the equations.

The present paper, however, deals with the loss of accuracy due to the imposition of

time dependent boundary conditions g(t), dictated by the physics of the problem. The

conventional way of dealing with the uncertainty of what is happening at the intermediate

stages of the RK time advancement is to impose at t + ar6t, the boundary value g(t + alt),

where a, is the coefficient appropriate to the particular t," stage of the given RK algorithm.

It will be shown that this conventional boundary condition imposition leads to a numerical

scheme which is only first order accurate in the neighborhood of the boundary, leading to

a global accuracy of second order only. Another approach is to treat the time-dependent

boundary .condition, g(t), as a source term in the governing partial differential equation

(p.d.e), thereby avoiding the need to formally specify intermediate boundary conditions.

However, it can be shown that procedure is equivalent to the conventional method with its

attended problems (see Appendix A). A third natural procedure is indeed not to specify any

intermediate boundary conditioujg4tobtain them from the inner scheme. This method

retains the accuracy of the spatial operator, but significantly reduces the allowable time step

for stability, rendering the scheme less attractive.

In section 2) we analyze and pinpoint the reasons for the deterioration of the accuracy and

provide a simple recipe' for restoring the accuracy in the case of linear, constant coefficient

hyperbolic system of p.d.e.'s.

In section 3) we deal with a non-linear hyperbolic system of conservation laws. The reme-

dies provided in Sections 2) and 3) can not be generalized to non-linear systems integrated

by RK schemes of arbitrary order of accuracy. We show that for the RK of third order, the

remedy of section 2) is effective.



2i The linear case

To illustrate the phenomenon of loss of accuracy due to the conventional imposition of

inflow boundary conditions, we consider the following problem:

au auI

0 +  =  0 x:<l, t>O (1)

u(0,) = g(t) (2)

The semi-discretized version of equations (1) - (2) is

dvt

vo(L) = g(Ot). ()

where V = vtT [vO, ...VN]T is the semi-discrete approximation which converges to u(xi, t)
at the spatial grid points x; (for stable discretizations); and Q is the differentiation matrix

representation of the derivative operator -. The specific form of Q depends on the algorithm
used and in particular on the order of accuracy. For all finite difference operators on uniform
grids (which suffices for the present purpose of illustration) we may write Q = ID, where

h is the mesh spacing.

The demonstration of accuracy deterioration will be shown for the four-stage "classical"

RK scheme, which is one of the most common RK time advancing schemes. For the analysis
to make sense we assume that the differentiation matrix Q, is at least of fourth-order accuracy
up to the boundary. It should be noted, however, that this illustration could be carried out
for any RK algorithm.

The above mentioned four-stage integration, together with the conventionally imposed

boundary conditions, is implemented as follows:

= + D'), 1<i <N (5)

o = g( + Y)

2v,=v + -.(DV1), 1<i <.A' (6)

6t
0 2

3v vn + A(DV')i 1< i <N (7)
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Uvg g(t+ 6t)

v +  = vp + [(.DV')j + 2(DV')i + 2(DV 2)i + (DV 3),] 1 _ i < N (8)

v n+ 1  = g(t + 6t)

where A = h'

Equations (5) - (8) take the semi-discrete variable v>(t), from the time level n, to vi(t +t)

at time level n + 1.

For the purpose of analysis, the above system is rewritten in the following form, again

with V = [Vo, ... vN]T:

vI = Vi + ADV" + G" eo (9)
2

= V"+-DV' + G1 eo (10)

V 3  = VI + ADV 2 + G 2 c()

- V" + '-[DV° + 2DV' + 2DV2 + DV3] ± G% 0  (12)

where eo = 0, .,.0]T, and

Ri A
G' = g(t + - ) v0 - (DV-)o (13)

GI 9( +st Vn-A
2Y 0 2 (DV')o (14)

G2 = g(t + St) v'- A(DV 2)o (15)

=g(t - St) - - -A[D v  + 2DV 1 + 2DV' + DV3]0  (16)

Substitution of (9) into (10) and the result into (11), etc. leads to the following expression

for V"+':

V'+  = [ + A D + A2 D2 +AD3 + D4]vn
2 A3

++AO + 2 -D2 A 3 3 0

3 6 12

+ i[ D + -- D2]e0

A
t6J

4- G3e°  (17)
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To determine the formal accuracy of (17) we substitute the exact solution u(xi, t), (pro-
jected at the points xi), for v!. Under the assumption on the order of the differentiation
matrix Q, it is clear that DkV in equation (17) can be replaced, up to fourth-order accuracy,

by h ,(-)_ 11 at the points (xi,t). Equation (17) then becomes

v + 1 = +u(i + 61) + o([5t]6, [6XJ])

+ GO[(AD + -D 2 + P2D 31e°
A2

+ D + AD ]e°

+ G2[AD]eO

6
+i Ga%°  (18)

Applying the same procedures to equations (13) - (16) we get:

8t 6t,
G = g(t + 9(t) - (g)(t)

9 = (t + - -g(t)- _ &g(t) _4 ,() 'G
2 4 2 00

G2 g(t + bt) -g(t) - (St)g'(t) - g(t) -KT .(t)~ - Ad' G1  20()0d Go
(t), (S)3 ,,,4 (St

G' = (t + St) - g(t) - (,t)g'(t) - !-.g"(t) - g d4 gdot9j 3 ,(l + a)- 6(t d (00 ' _2" ,, d!)g,() 0 ("'g,,,

A d' + LA ) d 2 
01 G13" + 6 o

A
,d' G2 (19)

wthere dlo = (Deo)o, d' = (D'eo)O, d 0o = (Daeo)o, and (Dkeo)o is the first element of

the vector Dkeo; 1 < k < 3. A Taylor series expansion of equation (19) clearly shows that

Go = 0( 6t 2): as it does for G, G2 and G3 . for arbitrary A. In addition, it can be shown

that the vecuors D'eo (1 < k < 3) are linearly independent. Substituting equation (19) into

equat'on (18) yields the expression

1"+, - u(t r St) [,t- (Deo)g" + O(1r6t]') ('2)
96
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Rearranging equation (20) we have

V1 +1  u(t + St) (A),
r =_ _-t(D'eo)g" + 0([6x]2) = o'x) (21)

96

which means that the RK approximation is locally (near the boundary) only first order

accurate, The locality is assured by the finite support of D for explicit schemeb, And by geo-

metrically decaying coefficients in space for compact schemes. However, the overall accuracy

in the Lid norm cannot exceed second order (see Gustafsson [8]).

The remedy for the dilemma posed by equation (21) suggests itself when one examines

equations (17) and (18). We note that if we set C' = G' = G2 0, then Vn+  =

11(t + 6t) + O([&t) + e0aG. But, with R' = CG 2 -= 0. then G' = O([6t]"), and we

have the correct order for V-+'. lo achieve these identities v e specifically use in equations
(5)-(8) the following expressions for the intermediate boundary conditions:

vo g(t) + -- g'(t) (22)

vo g(t.) 4- tg'(t) +- ----- g (t) (23)
(2t)2  (23)

va  g(t) + (St)g'(t) + ( -t)2  + (-t)3  (24)

Note that equations (22 - 24) are precisely the intermediate boundary conditions obtained by

numerically integrating -- g"'(t) with the classical fourth order RX scheme. Specifically,

replacing the third order equation in u with the sistem of first order equations for the

unknown functions V0, vto and ttt o,

d(V)O (t) 0  (25)
dt

d(v -)o _ (vtt)o (26)
dt.d(tt~c 7)v t0 =g'(t) (27)

dt

on the boundary, and integrating with the standard fourth order RK scheme, yields precisely

the intermediate boundary conditions proposed in equation (24). Solving the third order

o.d.e (27) on the boundary, is a remed.v that can be applied to any four stage fourth order
RK scheme, and thus provides a simple and general means of implementing the correct inter-

mediate boundary conditions. For three stage t-hird order RK schemes, solving 0Tr =



on the boundary provides a general technique for imposing the correct boundary conditions

on the linear problem,

At this point we comment on why the above predicted phenomena has not been observed

previously by the practitioners of higher order methods. From equation (21) we see that

the leading error coefficient in the expression is proportional to (A)46x. For example, if D

represents a fourth order central difference operator with fourth order boundary closures,

and u = e'(" - t) then the error at the point next to the boundary becomes

19A4 x1  i(184320 - 1520A)A 46x 2  (+172800 + 23040A - 190X2 )A,&x(

165888 79626240 79626240

Thus if A << 1 for a giv-n bx it is possible that, A'6x < (t) 4 . However, if one refines tae

grid, jr 'onversely, if o e runs the comiputation at the allowable stable CFL (A = O(

then the first order error becomes apparent. A detailed study of this effect is now presented.

We begin by showing the the results from a grid refinement study using three high-order

central difference schemes; 1) (3,3-4-3,3): a fourth order explicit interior with two third-order

explicit boundary points at each end of the domain, 2) (52, 52 -6 - 52, 52)[2]: a sixth-order

compact interior, with two fifth-ordcr boundary closures at each end of the domain, and 3)

(5,5,5,5,5,5-6-5,5,5,5,5,5 )[6]: a sixth-order explicit, with six fifth-order boundary points at

each end of the domain. (See Carpenter et al[2] for detail of the high-order nomenclature).

All schemes are GKS and time stable for the scalar hyperbolic equation. In addition, when

used in conjunction with the SAT [31] boundary procedure, the semi-discrete form of scheme

3) can be shown to be time stable for the constant coefficient hyperbolic system. An explicit,

a compact implicit, and a scheme which satisfies the summation by parts energy norm were

chosen to illustrate the generality of the problem, as well as the remedy.

The model problem used to test the schemes is the scalar hyperbolic equation

O9u Ou
0, 05x<1, t>0 (29)

u(0,t) sin. 2-(-t), t > 0 (30)

u(x,0) = sin2r(x), 0 < x < 1, (31)

The exact solution is

6



u(x, t) = sin21r(x- ), 0 _< x < 1, t >_ 0 (32)

In all cases the solution was advanced in time using the classical fourth-order RK scheme

with bounday conditions imposed as in equations (5) - (8).

Upon grid refinement with a vanishingly small CFL, all schemes recover their theoretical

accuracy of fourth-order, sixth-order and sixth-order, respectively. Table (I.a) shows that

all schemes convergc at a fourth-order rate for moderate resolutions, but gradually degrade

to an asymptotic rate of 2.5. This trend is representative of high-order explicit or compact

spatial operators advanced in time with a fourth-order RK scheme, with or without the SAT

boundary procedure.

(3,-4-3,3 C 52) -6 5 ( -
C FL --2.0 Cony CFL =1.4 Conv CFL = 1.5 Cony

Grid log L2  Rate log L2  Rate log L2  Rate
41 -2.371 -3.033 -1.537
81 -3.570 3.98 -4.242 4.02 -2.221 2.27
161 -4.678 3.68 -5.450 4.02 -2.956 2.44
321 -5.593 3.04 -6.635 3.94 -3.704 2.48
641 -6.380 2.61 -7.711 3.57 -4.455 2.49
1281 -7.138 2.52 -8.586 2.91 -5.208 2.50

Table I.a: Conventional imposition of boundary condition u(0, t) = g(t), for three

high-order finite difference schemes.

Two possible remedies have been suggested to rectify the loss of accuracy for the linear

problem: 1) do not impose intermediate physic ,undary conditions, and 2) impose con-

sistent intermediate boundary conditions derivt, im the physical boundary conditions and

their derivatives. (Or alternatively, solve the related system of equations on the boundary).

Not imposing intermediate physical boundary conditions results in a fully discrete scheme

which i formally fourth order accurate. (By definition a fourth order scheme in space and

time will remain fourth order in the absence of boundary conditions). A problem with this

remedy, however, is that the stability of the scheme is greatly reduced. When using the RK4

scheme with various finite difference operators, at least of a factor of two (and often much

more) decrease in CFL was observed.

The alternative remedy is to impose consistent intermediate boundary conditions, derived

from the physical boundary conditions and its derivatives. For the scalar advection defined

by equations (29) - (30) it is sufficient to solve the derivative boundary conditions described

by the system of equations (27).

7



Table. (l.b) shows the results of a grid refinement study using the derivative form of the

boundary condition.
- - (3,3-4-3,3) (5 '2,-5 52) C n ,:,,--

CFL = 2.0 Cony CFL = 1.4 Cony CFL = 1.5 Cony
Grid log L2  Rate log L2 _ Rate log L2  Rate
41 -2.394 -3090 -2.490 -
81 -3.613 4.05 -4.282 3.97 -3.767 4.24
161 -4.817 4.00 -5.486 3.99 -5.076 4.35
321 -6.019 3.99 -6.687 3.99 -6.377 4.32
641 -7.222 3.99 -7.891 4.00 -7.655 4.25
_28_L -8.425 j 4.00 -9.099 4.01 -8.911 4.17

Table l.b: New physical boundary condition imposed asd = g"' (t), for three

high-order finite difference schemes.

Fourth-order temporal accuracy is recovered for all methods with this approach. In addition,
the same maximum CFL was achieved in all cases, as was possible with the conventional

boundary conditions. Similar results have been obtained for three stage third order and six

stage fifth order RK schemes as well.

Section 3. Non-Linear Hyperbolic System

We have shown that the traditional imposition of time-dependent boundary conditions
causes a degradation of the formal accuracy to first-order. We have also shown how to elim-
inate the problem, given the exact boundary condition and its derivatives oil the boundary.
We shall now show that boundary treatment similar to that resulting from the linear analysis
of section 2, is also valid for third order RIK schemes, even for the case of a system of non-
linear conservation laws. The procedure does not obviously generalize to higher order RK

integration, however. (The only technique available that does directly extend to non-linear
hyperbolic systems is not imposing intermediate physical boundary conditions.)

Consider the system

A (U) -f 0 (") 0 < x < 1;t > 0 (33)
t TX _. ax.

U(0,t) §f(t) (34)

where A(U) is the .acobian of f(iU) with respect to U. We perfoim the integration using the

third order RK scheme attributed to lteun. The boundary conditions at the intermediate

time levels are obtained from solving the boundary equation with -eun's
t lead 2

method.

8



+ I < i < N (35)
3

.St

= r + 2AI[D-if)]i 1 i < N (36)
3 Lf

Vl= NO + T (6 (t
g 3t §g(t) + -g (t

11 3+

V = + -i + A[D f(")]j 1 <! i < (37)

Folio' in th nottio of equations +, (3)9)1)wehv

44 4

wh.e it is~ (38)rm qain(3)-(7 ta ee

do g -t + 9 (&%. (41)

3 3A

a0  *(t ~t) 2(&2 -,,4D() 2 [fr'] (41)

5f(t±S' t) A - D Lf(g 2 )I o (43)

As in the linear case described by equation (18), (32 wvill be given by a linear combination

of do and 6', plus termis proportional to (6t)4. We now show from equ,.ions (41) and (42)

that f(70 = 0, and d' O= ([6t]3) , and thus the overall accuracy of d2is 0([6t!').

As in section 2, in order to obtain the truncation error we substitute iII(xi, t) for '. The

vector G0O immediately follows as

(0iz =~()+ 3-14'(t) P04 ( 3) -f-(i,)) 0  (4

8t _"')+ gt) -(i,(0+)izl)o = 0 (4,5)

9



and in a similar vain,

= ( t) + L Ot + #"(t) f i(t) - 0[.(( + 'tf)]}o (46)

3= t - ( 3 8x

t() + 2t ) + --t) - , 2  [f(-(t) + R + ([tt]+)]}°
T!(t) + 9-u T Tx) 3 fa

(47)

but f l, -- A(i)i, = ft and 2[ft] = n(f,,) tlt. Thus

0 (t 2(t)2 ,,(,) - _ 25t., + 2(1t)2t,} + O([St 3 )
3 9 T 9

I1  = O([6t]3) (48)

The consequence of equations (45) and (48), substituted into equation (40) with V" -+ Ui(x, i)

is that the error is proportional to

+-(t + 8t)l - O([,t]2 ); i O,1,...,m (49)

St

near the boundary, (m finite), and proportional to O([6t1,3) in the interior. In other words

I the boundary conditions prescribed in equations (35) - (37) give us the required overall

accuracy. Unfortunately, this procedure does not seem to generalize to RK integrations of

order higher than three for the case of non-linear systems. The main reason is that beyond

1rt,, we will need to use the "Jacobian of the Jacobian" which can not be related simply to

the temporal derivatives of the vector g(x,t).

4. Conclusion

We have shown that the imposition of inflow boundary conditions at the intermediate

steps of Runge-Kutta algorithms for hyperbolic P.D.E.'s has to be done in a counter-intuitive

manner, if oue is to preserve the overall accuracy of the scheme. The conventional (or
"natural") way of assigning at level n + a,, (0 < a, _< 1) the value g(t + a,6t) degrades

the scheme to be of first order accuracy near the boundary and of second order accuracy

overall. We presented ways to deal with the linear case of general order and with systems of

conservation laws in the case of third order RK integration. Much work remains to be done

for the non-linear case and linear problems with variable coefficients.
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Appendix A

Once the -patial operator has been chosen, a P.D.E. becomes a system of O.D.E.'s, plus
a boundary term. If the boundary term is treated as a source term, then entire system can
then be treated by conventional techniques, We show that this technique suffers from the
sare loss of accuracy at the boundary as was discussed earlier.

We start with the governing equar0iont

Ou Ou
o- +  

- 0 0 X<, t >0 (AI. 1)
u(0 , - g(t) (AI. 2)

The semi-discrctized version of (Al. 1) - (Al. 2) is

dvi
= (Dv)j i = 1,,.,N; t > 0 (AI. 3)

Vo(t) = g(t) (Al. 4)

where V = viTi = 0,..., N. Define the reduced identity matrix P by

0

.1P=

. 11

where the matrix P is dimension (N+i,N+I). Similarly, e L I 0,...,0]T, and has dimension

(N+l). Next define the new variables V = PV, D = PDP and qo PDe0 . Now replace
equation (Al. 1) by the fully discrete source equations:

Vij V + [(f),) + g(t)(q0)jj < <" N (Al. 5)

1 2 ? + 2 [(D V' 4- g(t + T)(4o)j] (Ai 6)

A

+' + -[(b')) + +() 1 j + N

+ -(t) + 4g(t + g + g t)1(4o)j (AI. 8)

6 2' "



Rewriting equation (Al. 5) in terms of V and D one obtains:

A
(PVI)j = (PVI)5 + i[(PDPV")j + g(t)PD(eo)j] 1 < j N g

(PV) + (PDV") P[(V") + A(DV")]j (Al. 9)

It is clear that the reduced vector PV' is identical to the vector at time level I obtained

from the conventional imposition of boundary conditions for 1 :5 j _< N [see equation (5)].

Noting this equivalence, equation (Al. 6) can now be interpreted as

P(V 2 ,) P(V")J+ A (pDp +(t + )PD(eo) I < < A

'2 2 ) L(O
AP(V') + 2(PDV')j P[(V") + 2(DV')Ijl (Al. 10)

The reduced vector PV 2 is identical to that obtained with the conventional boundary condi-
tions for 1 < j N. This procedure can be used to show that each stage of the conventional
boundary procedure is equivalent to that obtained from solving equations (AL. 5) - (Al. 8).

Thus, the entire procedures are equivalent.

12
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