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INTRODUCTION

Bak, Tang& and Weisenfeld (ref 1) (BTW) introduced the concept of self-organized criticality
(SOC) to provide a consistent explanation for the fractal spatial structures, power-law distributions, and
flicker noise commonly observed in spatially extended, dissipative, dynamical systems. Jensen, Christensen,
and Fogedby (ref 2) (JCF) clarified the ideas in BTW and established the connection between the power-
law dependencies and the power spectral densities. The consequences of the SOC concept have been
extensively explored through computer simulations of sandpile dynamics (refs 1-4) and earthquake
phenomena (refs 5,6).

The most striking application of the theory describes the state of the earth's crust as a self-
organized critical system and provides a basis for understanding the Gutenberg-Richter law for the
distribution of earthquake magnitudes (ref 5). There is also a growing body of experimental investigations
of SOC-related phenomena including studies of actual sandpile dynamics (refs 7,8), motion of magnetic
domains in garnet films (ref 9), sliding friction (ref 10), and the Barkhausen effect in glassy metals (ref
11).

The Barkbausen effect is a natural candidate for the SOC concept. The magnetic response of a
ferromagnet is determined by its initial magnetic domain distribution and its response to applied magnetic
fields.

For small fields, kinetic barriers permit only small reversible domain-wall motions, and the system
remains magnetically elastic in analogy with elastic-plastic deformation or slip-stick SOC earthquake
models (ref 5). As the applied field approaches and exceeds the magnitude of the coercive force, the
specimen magnetization increases rapidly. The transition region is characterized by random irreversible
domain-wall jumps and clusters of jumps analogous to slip in solids (e.g., in the earth's crust) when the
applied force exceeds the yield strength and produces rapid, steplike increases in strain.

The stochastic character of domain-wall jumps, which is analogous to a mechanical slip in solids,
arises from the complex patterns of local magnetic fields, internal stresses, and bulk and surface defects in
ferromagnetic alloys. The fingerprint of SOC behavior is detected in the Barkhausen noise spectrum,
which generally exhibits the fE dependence (ref 12) characteristic of SOC phenomena.

The present study refines the analysis of the Barkhausen effect in glassy metals (ref 11) and
extends it to the Barkhausen effect in crystalline ferromagnets. In particular, the role of composition and
microstructure on the Barkhausen effect was investigated by analysis of three different ferromagnetic
materials: a glassy metal, iron, and alumel.

Measurements in the three ferromagnetic materials are consistent with the behavior of a self-
organized critical system. The distributions of pulse energy releases for the three materials are remarkably
well described by a power-law analogous to the Gutenberg-Richter law. Further, the Barkhausen pulse
distributions from the three specimens exhibit a cutoff on pulse duration (size effect) that correlates with
the presence of internal defects such as grain boundaries.



SAMPLE DESCRIPTION AND PREPARATION

We report on Barkhausen noise in three ferromagnetic metals.

1. Metglas 2605S (Fe~gBt 3Si,9). The nominally 2-mil thick Metglas ribbon, supplied by Allied
Signal. was cut into 2-mm by 20-mnm samples, which were subsequently annealed for 15 minutes at 3500C
to relieve residual stresses from the cutting process.

In some cases, highly reproducible peaks uncharacteristic of the general random behavior of the
pulse trains were observed. The presence of the large reproducible peaks, however, did not significantly
affect the results of the pulse analysis in those trials where they were detected. Annealing at T a 400TC,
which completely relieves the internal stresses, was impractical since the Barkhausen peak amplitudes were
reduced to such an extent that they could not be reliably distinguished.

These observations are consistent with the behavior of domain structures in 2605S studied by
Livingston and Morris (ref 13). In the as-cast state, there is a wide distribution of domain sizes and types
(in the unsaturated condition) generated by stresses from a variety of defects. At the other extreme--the
fully annealed state--the stresses are greatly reduced, producing only a few large domains that tend to
orient along the long axis of the specimen. In this condition, the permeability is at a maximum because
the domain walls encounter much smaller resistances and the corresponding Barkhausen pulses are smaller
and more difficult to detect. It should be noted that, except for the highly reproducible large amplitude
pulses described above, no major differences were observed in the original (ref 11) and current studies of
distributions of Barkhausen pulses from as-cast or partially annealed specimens.

2. Iron. Polycrystailine 5-mil iron thermocouple wire, provided by Omega Engineering, was cut
into approximately 5-cm long specimens. Grain sizt, was approximately I0&.

3. Alumel (Ni45A1,Mn 2). Polycrystalline 5-mil alumel thermocouple wire, provided by Omega
Engineering, was cut into approximately 5-cm long specimens. Mean grain size was approximately lop,
however, in contrast to the iron specimen, the grains showed evidence of annealing twins in a light
microscope, which is effectively a further subdivision of the grains. The density of annealing twins
generally increases with the amount of prior deformation, which was necessarily large with the drawing of
5-mil wire.

Unlike Metglas, which has no grain boundaries in the amorphous state, the grain boundaries in
polycrystalline metals represent a limit on the maximum size of the domains. In contrast to Metglas,
where cutting or deformation can generate large amplitude Barkhausen pulses, mechanical deformation
and surface abrasion of the polycrystalline specimens produced no dramatic changes in the character of the
trains.

It also should be noted that the number of measurable Barkhausen pulses in the alumel specimen
is relatively low and is sensitive to position along the wire, so that specimen has to be carefully positioned
within the pickup coil to register a sufficiently large number of observable pulses within a given train for
analysis.
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THEORY

The salient idea in the theory of self-organized criticality as conceived by BTW is that extended
dissipative dynamical systems tend to organize themselves into a critical state where chain reactions of all
sizes in time and space propagate through the system. The absence of characteristic length and time scales
in the SOC state imply fractal structure and "l/f' (or flicker) noise power spectral density. A collateral
consequence of SOC is power-law dependencies (hyperbolic distributions) of energies released, chain
reaction lifetimes, and cluster sizes. Thus, SOC provides a coherent basis for the common observation of
power laws, 1/f noise, and fractal structure in nature.

Jensen, Christensen, and Fogedby (ref 2) clarified the results in BTW and explicitly revealed the
important connection between power-law dependencies and power spectral density described by BTW.
Kadanoff, Nagel, Wu, and Zhou (ref 3) extended the SOC concept to systems of finite extent.

JCF derive an expression for the power spectral density of a train of pulses that represent the
chain reactions in an SOC system. JCF demonstrate that the power spectral density can be expressed as

Sq) f drG(v)sin2(2fnft) (1)

where r is the pulse repetition rate and G(T) is a weighted distribution of lifetimes, defined as

G(7) = f dAp(A [,/72 (2)
0

where P(A, T) is the joint probability for a pulse to have area A and length T.

JCF argue that if

G(7)•-T exp(-77To) for to : T , (3)

then

for lITo 0  f .lito , S(0 = const when a < -3, (4a)

for lITo s 11t 0 , S(6 - f-O(a) when -3 < a <-1, (4b)

for1/o : f g lito , S() _ f- 2 when a > -1, (4c)

for f lITo , S(f0 = const, (4d)
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and

for lt0 :gf, Sof) _f-f2  (4e)

We find that essentially the same results are obtained if

G(7) -- 7 (,7 (Y')

where H(s) is the Heaviside function, and the "cutoff pulse length" T, plays the role of T4. We refer to
i1T, or lITo, which defines the break in Eq. (4) as the "transition frequency."

APPROACH

The two parts to our approach are as follows:

I. Measure the joint distribution functions PL(In(A),In(1)I for logarithmically-spaced bins.
Linearly-spaced bins are not employed because the resulting histograms would contain only a few percent
of the data outside the first bin. Thus, for linearly-spaced bins, the parameters of interest are determined
by only a small fraction of the data, which represent ranges of pulse length where "size effects" are
dominant and statistical significance is low.

The joint distribution functions P(A, T), which appear in Eq. (2), are related to the measured

logarithmic joint distribution functions as follows:

P(A,7) dA = P,[Ln(A),In(7)] d[In(A)] "(In7)]
= PL[1n(A)In(7)JI(A } dA iT,

which implies that

P(A,7) = PL [n(A),In(7)V(A 7) (.)

0 Integrate PL[ln(A),In(T)I to obtain the log-spaced distribution functions nd[ln(T)J and nL[ln(AJI.
Investigate the suitability of hyperbolic distribution functions to describe nL[In(T)] and nL[In(A)I. (The
same notation is employed for different functions. Hopefully, no confusion will arise.)

Relationships analogous to Eq. (5) can be established between the log-spaced distribution
functions and their linear-spaced counterparts n(T) and n(A). It is apparent that hyperbolic distribution of
nL[ln(x)I implies a hyperbolic distribution of n(x) with exponent reduced by unity.

* Compute G(T) via Eq. (2). Investigate the suitability of hyperbolic distribution functions and
"size effect" forms to describe G(T). Use the JCF rules, i.e., Eq. (4) to deduce the exponent and transition
frequency in the power spectral density.

2. Employ Fast Fourier transform (FFT) and the Wiener-Khintchine theorem to deduce the
power spectral density directly from Barkhausen noise signals. Determine exponents and transition
frequencies and compare with the JCF computed results.

4



EXPERIMENTAL PROCEDURES

The sample is positioned within a pickup coil and the assembly is placed within an air-core
solenoid. A signal generator provides a sinusoidal current to the solenoid, which produces a field that
continuously drives the specimen through a B-H loop. The pickup coil detects the random. steplike
changes in sample magnetization, and the data are amplified and recorded on a digital oscilloscope. The
magnitude and frequency of the driving field are adjusted to minimize pulse overlap, while maintaining a
sufficiently large number of pulses for meaningful analysis.

The air-core solenoid, which is comprised of numerous turns of 10-mil copper wire, is 5 cm long
and I cm in diameter. The pickup coil, which comprises 200 turns of 5-mil copper wire, is 10 mm long
and 3 mm in diameter. Generally, the driving field magnitude was maintained at less than I Oe and its
frequency at less than I Hz. The signal from the pickup coil was amplified with a gain of 5000 through a
Stanford Research System's low noise preamplifier with the bandwidth set at 0.3 to 30 kHz.

Typically, trains of several hundred Barkhausen pulses were selected at random and captured on a
Nicolet digital oscilloscope, which recorded 4000 values per train. Sampling rates were selected to
minimize aliasing effects on power spectra calculated via FF1: typical sampling rates were 5 to 10 lisec per
point.

NUMERICAL PROCEDURES

Procedures for defining individual peaks and determining their distributions in Metglas 2605S,
iron, and alumel were as follows:

1. A polynomial baseline, generally a cubic, is fit through minima on twenty equally-spaced
intervals on each train. The signal level is then defined as the measured level minus the baseline.

2. The median signal level in a train is selected as a pulse-defining critical signal level. The
critical signal level defined in this way lies just above the background noise and passes through the
apparent base of the pulses and generally yields results consistent with less quantitative intuitive selection
of peaks on the digital scope.

A typical train and its cubic baseline are shown in Figure 1. An expanded section from the same
train, shown in Figure 2, illustrates the separation of major peaks.

3. The joint distribution function for logarithmically-spaced bins in pulse areaA and length T,
Pdln(AhIn(T)], is measured for pulses defined as described above.

4. The measured PL[ln(A),ln(T)J were numerically integrated to obtain the distribution functions
nL[ln(A)I and nL[ln(T)I and the JCF weighted density of states G(T).

5. Power spectral densities S(f) were computed by numerical integration based on the deduced
G(T).

6. Power spectral densities were determined directly from the pulse train data by means of FFT
and the Wiener-Khintchine theorem.
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7. Pulse energies were computed by numerical integration of the square of the measured voltages.
We assume that these computed energies are approximately proportional to the energy released in a
Barkhausen pulse.

MATLAB' was used for all computations.

RESULTS

Figure 3 is a log-log plot of the pulse area versus pulse duration for a 297 pulse train of
Barkhausen pulses for the iron specimen. Similar results are obtained with Metglas and alumeL Linear
regression through all the points gives a slope of 1.4. Essentially the same value is obtained in Metglas
and alumel and was measured in a previous study (ref 11) of Metglas 2605S.

Figures 4, 5, and 6 are log-log plots of the distribution of the 297 pulse durations, areas, and
energies for iron. The data reflect power-law distributions with exponents -1.64, -1.88, and -1.44,
respectively.

Figure 7 shows a log-log plot of the computed values of the JCF weighted distribution of pulse
lifetimes G(T) for the iron data. The slope of the linear portion of the graph is -1.0. Essentially the same
exponent is found for alumel and Metglas.

Figure 8 shows a log-log plot of S(f) computed via pulse analysis and FFT for the iron specimen.
Both curves exhibit a transition to approximatelyf' for f > 500 Hz. The f2 dependence is consistent with
the 7"F(T-TJ form for G(T).

Figures 9, 10, and I 1 are log-log plots of the distributions of 137 pulse durations, areas, and
energies for the alumel specimen. The corresponding power-law exponents are -2.1, -1.78, and -1.58,
respectively.

Figure 12 shows the computed pulse and FFT results for alumel. Both show a transition to
approximatelyf 2 for f > 2000 Hz. The difference in transition frequencies for iron and alumel are
consistent with the differences in cutoff values for pulse durations as can be inferred from Figures 4 and 9.

Figures 13, 14, and 15 are log-log plots of distributions of durations, areas, and energies of 218
pulses for the Metglas sample. The corresponding power-law exponents are -1.82, -1.74, and -1.60,
respectively. Earlier results (ref 11) on Metglas gave -2.26 rather than -1.81 for the duration exponent.
The discrepancy (which is less than 1.3 a' from Reference 11) results from fitting to the sharp cutoff
functional form with logarithmic binning rather than to the exponential cutoff form of JCF with linear
binning as in Reference 11. The new result is believed to be more reliable.

Figure 16 shows the agreement between the coutputed pulse and FFT results for S(f) for the
Metglas sample. Both show a transition to approximatelyf2 for f > 1000 Hz. The earlier result for the
FFT computed S(f) exponent was -1.244 (ref 11). We now believe that aliasing biased those data to
produce the smaller exponent.

6



DISCUSSION

Pulse Distribution Analysis

Since hyperbolically-distributed data tend to be intensely concentrated at small sizes,
logarithmically-spaced binning has proved to he better suiied to fitting the data than conventional linearly-
spaced binning. The problem with linear binning is that tht fitting parameters (i.e., the exponents) are
largely determined by the occupation values for low probability bins. Employing the techniques described
in the Numerical Procedures section, i.e., log-spaced binning, the situation is dramatically improved. The
problems in fitting reported in Reference 11 could have been largely resolved by employing
loprithmically-spaced binning.

The Functional Form of the Pulse Distribution Data

The Exponential Cutoff Pulse Distribution Form of JCF

As noted in our earlier report on Metglas (ref 11), which fit the Barkhausen pulse distributions to
a power law with exponential cutoff, the data appear to cut off faster than exp(-T/To).

Shari, Cutoff Pulse Distribution

The present pulse distributions and the earlier data are well approximated by hyperbolic
distributions with a sharp cutoff, i.e.,

n(7) = F T' H(T,-7) (6)

where H(xj is the Heaviside function and F is a constant as in Eq. (3'). The cutoff pulse duration T, plays
the role that T, plays in the exponential cutoff form in determining the frequency at which the transition
to fE behavior in the power spectral density occurs. The differences in Tc as determined from the analysis
of the Barkhausen pulse distributions in Metglas 2605S, iron, and alumel are reflected in the crossover
frequencies in their power spectral densities.

Physical Interpretation of TL or L

The origin of cutoffs in SOC avalanche models is determined by the size of the model which
imposes an upper limit on the size of avalanches. However, the present experimental data are consistent
with the view that internal defects rather than external dimensions determine the cutoff on the size of the
Barkhausen avalanches.

* Polycrystalline samples. The cutoff pulse size T. correlates with grain size in the polycrystalline
samples. The metallographically-determined grain structure is finer in the alumel wire (considering the
subgrain annealing twins) than in the iron wire samples. Thus, as observed, the maximum domain size and
largest avalanche would be expected to be smaller in the alumel wire.

* Amorphous samples. The situation is different in the Metglas 2605S samples. There are no
grain boundaries. Furthermore, the domains in the Metglas ribbons are essentially two-dimensional and
extend from the top to the bottom surfaces (ref 13). (The ribbon thickness was nonuniform and ranged
from I to 2 mils in our samples.) The defects that limit the maximum size of domain jumps in the
amorphous ribbons are expected to be internal stresses and surface imperfections produced during the
rapid solidification process or subsequent treatment. The cutoffs are also consistent with the existence of

7



self-organized subcritical states as in the magnetic domain pattern studies of Bak and Flyvbjerg (ref 14).

The Korcak Law

The "area-number relations" are discussed by Mandelbrot (ref 15) in terms of the number of
pulses whose area A exceeds a, denoted N(A > .3), which is related to the pulse distribution by

N(A>a) fn(A)dA.4 (7)

For hyperbolic distribution functions, n(A) - n(l) A"- with q a positive constant,

N(A >a) n(1)f A-qd, = n(1)a-(q-)/(q-1) = Fa-', (8)

i.e., the number of pulses whose area exceeds a will also be hyperbolically distributed if B = q - I > 0.
Mandelbrot refers to the hyperbolic form of area-number relations as the Korcak law.

Universality

Despite substantial differences in domain sizes and configurations, the pulse distributions and
power spectra measured in Metglas 2605S, iron, and alumel are strikingly similar. The only substantive
differences in the Barkhausen data for the three materials are manifested in variations in the pulse cutoff
values T, and the corresponding limiting frequencies for the f' behavior in the power spectral density.

Barkhausen Effect as a Manifestation of SOC

The theory of self-organized critical behavior described in BTW provides a fresh perspective on
Barkhausen phenomena. The power-law distributions (hyperbolic distributions) and flicker noise, which
are the hallmark of SOC, are conspicuous in Barkhausen phenomena. Furthermore, the quantitative link
between the exponents characterizing the pulse distribution and the flicker noise in the power spectral
density established by JCF for SOC systems holds for the present Barkhausen results.

The BTW theory of SOC phenomena provides a dynamical basis for the occurrence of hyperbolic
distributions and the concomitant flicker noise. Therefore, the present Barkhausen data are consistent
with SOC concepts concerning power-law distributions in dissipative dynamical systems.

Barkhausen Effect Reflecting Scale Invariant Static Structure

As Mandelbrot has stressed (ref 15), hyperbolic distributions are found in diverse scale invariant
systems. Thus, inherent static structural features in Barkhausen systems, e.g., fragmentation or fractal
grain or domain structure, independent of a self-organizing principle could yield the observed hyperbolic
distributions of Barkhausen avalanche sizes.

A similar interpretation has been proposed for earthquake data. There is some evidence (refs
16,17) that the power-law distributions of earthquake magnitudes are a consequence of a power-law
distribution of individual fault dimensions rather than a power-law distribution of earthquake sizes on a
given fault. We plan to explore this possibility for the Barkhausen effect.

8
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Figure 1. A typical Barkhausen pulse train for the iron specimen
and a third-order polynomial baseline.
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Figure 2. An expanded section of the Barkhausen pulse train of Figure 1

illustrating the separation of the major peaks.
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Figure 3. Pulse area versus pulse duration for a train of 297 Barkhausen pulses in the iron specimen.
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Figure 4. Distribution of pulse durations for the train of Figure 3.
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Figure 5. Distribution of areas for the train of Figure 3.
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Figure 6. Distribution of energies for the train of Figure 3.
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Figure 7. Computed values of the JCF weighted distribution of pulse
lifetimes for the train of Figure 3.
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Figure 8. Power spectral density computed from the results of pulse analysis
and via FF1 ',f the traw oi Figure 3.
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Figure 9. Distribution of durations for a train of 137 Barkhausen pulses in the alumel specimen.
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Figure 10. Distribution of areas for the train of Figure 9.
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Figure 11. Distribution of energies for the train of Figure 9.
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Figure 12. Power spectral density computed from the results of pulse analysis

and via FF1 of the train of Figure 9.
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Figure 13. Distribution of durations for a train of 218 Barkhausen pulses in the Metglas specimen.

102

101

100 1 1 1 1 ,I .M. I I I I I , , ,, l,

10-6 10-5 10-4 10-3

Area (V-sec)

Figure 14. Distribution of areas for the train of Figure 13.
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Figure 15. Distribution of energies for the train of Figure 13.
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and via FF'" of the train of Figure 13.
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