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Polarimetric Synthetic Aperture Radar Imaging*
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ABSTRACT ions will be im Dlack and

MIT Lincoin Laboratory isWAvbhRating the detection and identifica-
tion of stationary ground targets in high resolution, fully polarimetric,
synthetic aperture radar (SAR) imagery. This article (1) provides a
briet description of the Lincoln Laboratory SAR, (2) describes an
optimum polarimetric processing technique used to construct
minimum-speckie SAR intensity imagery, and (3) presents examples
of polarimetrically processed imagery. (© 1993 John Wiley & Sons,
Inc.

1. INTRODUCTION

The Lincoln Laboratory SAR is a fully polarimetric. 33-GHz
synthetic aperture radar sensor [1]. The polarimetric capabili-
ty of the radar is used to enhance the quality of the imagery
taken from a small aircraft; the synthetic aperture permits
data to be processed to a resolution of 1 ft x 1 ft at a slant
range of 7km. The sensor was developed to provide a high-
quality database of clutter and target-in-cluiter imagery. for
use in evaluating the performance of station iry-target detec-
tion, discrimination, and identification algorithms.

An example of the quality of imagery gathe-ed by the SAR
is presented in Fig. 1. This synthetic aperture radar image of a
golt course located near Stockbridge, NY, has undergone the
optimum speckle-reduction processing described here. Figure
2 shows a close-up photograph of the golf course: note the
pond, flag pole, putting green, and line of four trees which are
visible in both Figs. | and 2. Because of its high resolution,
the Lincoln Laboratory SAR can resolve individual trees and
bushes, as well as the pond and the putting green shown in the
image. Note the 1ft x 1 ft resolution permits one to discern
very small objects such as the flag pole located in the center of
the putting green. This image was obtained under clear
weather conditions. However. the quality and resolution of
the SAR image would not be degraded in the presence of
dense fog or thick cloud cover. Thus a SAR sensor has a
significant advantage over optical sensors: the image quality is
not dependent on weather conditions, and the sensor can be
used either during the day or at night.

Figure 3 shows the Lincoln Laboratory SAR Sensor and
lists some of the system parameters. The SAR Sensor is an
airborne, instrumentation-quality radar carried on a Gulf-

*This work was sponsored by the Defense Advanced Rescarch Projects
Agency under Air Force Contract #F19628-90-C-0002.
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stream G1 aircraft. The radar antenna is housed in a specially
designed radome mounted beneath the aircraft. The radar
transmitter, dual-channel recciver, and digital recording
equipment are all carried by the airplane.

Since a principal objective of the Lincoln Laboratory
studies is to evaluate the benefits of fully polarimetric radar
data for stationary-target detection and identification. polari-
zation purity is essential. To achieve polarization purity, a
special corrugated horn antenna with a Fresnel lens was
designed, providing very pure horizontally and vertically
polarized transmit waves. The radome was designed to mini-
mize cross coupling between the horizontal and vertical po-
larizations. The radar transmits horizontal and vertical polari-
zations on alternate pulses; dual receiver channels measure
both retu:ns simultaneously. Inertial velocity estimates com-
pensate fou aircraft motion between the horizontal and verti-
cal transmit pulses.

An in-scene corner reflector calibration array comprised of
several high-quality trihedrals—and dihedrals oriented at 0,
22,5, and 45°—is used for polanmetrically calibrating the
imagery. The polarimetric calibration scheme is described in
ref. 2. During cach flight, data are gathered and digitized in
real time with a 28-chaninc! Ampcx recorder. The data are
then brought to the Lincoln Laboratory ground processing
facility, where SAR image formation is performed. Special-
purpose. high-speed digital processing hardware is used to
construct the imagery and perferm the polarimetric cali-
bration.

A SAR is a radar that synthesizes a long aperture as an
aircraft flies along its path. Thus 2 SAR can achieve cross-
range resolutions that could otherwise be attained only with a
long antenna. In SAR mode the Lincoln Laboratory radar has
1ft x 1ft resolution. Range resolution is achieved by using
600-MHz bandwidth pulses. To achieve 1ft azimuth res-
olution, a synthetic aperture of approximately 150 m length is
constructed by processing 1s of data as the plane flies.

SAR pracessing can produce high-resolution images, but
the process is subject to a considerable amount of speckle in
the images because of the cohevent nature of the imaging
process. Noncoherent spatial averaging of high-resolution
pixel intensities can be used to reduce image speckle. For
example, we have significantly reduced image speckle by
averaging 4 X 4 pixel clusters of single-polarimetric-channel
intensity data into effective 1-m X 1-m resolution pixels. How-
ever, the speckle reduction was obtained at the cost of
degraded image resolution. A new technique described here,
the polarimetric whitening filter (PWF), uses a polarimetric

CCC 0899-9457/93/040306-13
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Figure 1. SAR image of a goif course in Stockbridge, NY (1 # x 1 ft resolution). The sensor was flown at an altitude of 2 Km with a look-down
(depression) angle of 22.5°, giving a slant range of 7 Km. PWF processing was used to produce this minimum speckle image. The radar is
located at the top of the image looking down, therefore, the radar shadows go toward the bottom of the page.

methud of speckle reduction that preserves image resolution
(3. 3]. This tilter processes the complex (HH., HV, VV) data
into full-resolution pixel intensities in a way that minimizes
SAR image speckle. This method is based on & mathematical

model that characterizes fully polarimetric radar returns from
clutter. By using this polarimetric clutter model. we can
derive un algorithm that shows how fully polarimetric data can
be combined into minimum-speckle imagery.

Figure 2. Optical photograph of one side of the golf course. This photograph was taken on November 1991. Some visible features in the
photograph are the flag pole in the center of the putting green, the open area pond, and the four large trees adjacent o the pond.

Vol. 4. 306-318 (1992) 307
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Figure 3. The advanced detection technology sensor (right). The sensor platform is a Gulfstream G1 aircraft shown in flight (left). The ADTS
radome. located at the bottom of the aircraft, was built by the Loral Corporation. System features: SAR/RAR operation; coherent and fully
polarimetric. System parameters: frequency, 33 GHz; resolution (SAR), 1 ft x 1 ft; beamwidth, 2°; polarization isolation. 30 dB: sensitivity (SAR

Mode). S'N 10dB for; (7 km Range), o = ~30dBm>

. POLARIMETRIC CLUTTER MODEL
We use a non-Gaussian “product’” mode! to characterize the
polarimetric return from ground clutter. Note that with a
Gaussian model. each pixel of clutter in a spatially homoge-
neous region of an image has the same average polarimetric
power. A number of authors have stated that it is more
realistic to assume that ground clutter and sea clutter. for
example. are spatially nonhomogeneous. A non-Gaussian
model consistent with this more realistic assumption has been
proposed [3-7]. and, in fact. the Gaussian model is actually a
special case of the non-Gaussian modef.

We assume that the radar measurement vector Y consists
of three complex elements: HH. HV, and VV. Therefore.

HV HV, + jHV,,

HH /HH, + jHH,,
Y= ( ) = H
vy \ VvV, +jvv,

where HH, and HH,. for example. are the in-phase and
quadrature components of the complex HH measurement. 'Y
is assumed to be the product of a complex Gaussian vector X
(representing the speckle) and a spatially varying texture
variable v/g. That is,

Y= VEX. (2)

The vector X is assumed to be circular complex Gaussian
with a joint probability density function (PDF) of the form:

1
X)=—= exp(-X'2 'X 3
fX) 3] exp( ) 3
where ¥ = (XX') is the polarization covariance matrix. The
vector X is zero mean { E(X) = 0}. The covariance matrix that
we use for clutter data takes the following form (in a linear-
polarization basis):

10 pvy
=0, 0 e 0 (4)
p'vy 0 v

308 Vol. 4, 306318 (1992)

where
o . EUHVE)Y EQVVEY
un = EUHHE). € = L ommry Y ™ EdHAD
E(HH-VV™)

and p = (3

LEQHHP Y- EQVvVi))
The assumption that HV is uncorrelated with HH and VYV is
not always true (especially for man-made targets or for a
polarimetric SAR with cross-talk between channels): how-
ever, we have found this assumption is valid for natural
ground clutter.

We model the product multiplicr g as o gamma-distributed
random variable. This assumption is not universal: the log-
normal and Weibull models are also widely used. But if we
assume that the gamma distribution is reasonable. the PDF of
the product multiplier g is specified by

(k

where the parameters ¢ and v are related to the mean and
variance of the random varjable g:

[

) ' ﬁcxp( ‘;5) (6}

s

fg)=

IS —
el

L(g)y=gv
E(g)=gviv+1). (7)

With the assumption that g is gamma distributed. the PDF of
the resulting vector Y = vgX is the moditied Bessel function,
or generalized K-distribution [5].

, Yx'y
5 K, ,,(2\ 3 —)
m e TWE] (gYE V)"

fiY)= (8)

If we set g = (1/v) so that the mean of the texture variable
is unity, then in the limit as v — %, this model reduces to the
Gaussian model.




s armn o

‘

M. MINIMUM-SPECKLE SAR IMAGE PROCESSING

In this section we consider how to process the three complex
measurements—HH, HY. and VV (i.e.. the vector Y)—into
pixel intensity in a way that minimizes speckle. The clutter
product model is used to derive the optimal method of
polarimetric speckle reduction. whick can be interpreted as a
PWF. Then the amount of speckle reduction that can be
achieved by using the PWF is determined theoretically.

The measure of speckle we use is the ratio of the standard
deviation of the image pixel intensities 1o the mean of the
intensities (s/m):

s stodev.(y

_ st devi(y)
m  mean(y) )

where the random variable y denotes pisel intensity. Given
the measurements HH. HV. and V'V, we wish to construct an
image from the quadratic

v =Y AY = gX'AX (1)

where A is a weighting matrix that is assumed to be Hermitian
symmetric and positive definite. thus keeping v positive. To
find the optimal weighting matrix A* (i.e.. the one that results
in an imase whose pixel intensities have the minimum possible
sim), we use the following results from Ref. &:

3
EXAX)=t(2-A)= 2 A (1)
.
VAR(X'AX) = tr(2-A) = 2 A° (12)
vl

where E is the expected value. tr is the trace. YAR is the
variance. and A,. A,. and A, are the eigenvalues of the matrix
2 - A. Combining Eqgs (7) through (12) vields

(i )-‘ _ [ VAR( y)_] _ [E{g:)  VAR(X'AX) , VAR(g)

m E*(») E'(g) EY(XAX)  E(g)
(13
v+l ,‘2. A 1
= e
v 4

(£)

Note in Eq. (13) that v is a constant. Therefore, minimizing
s/m is equivalent to minimizing

2 A
PRSI DU (14)

30

If A, such that X' =[A,. A,. A,] is a minimizing solution of
(14). then so is @Ak, where a is a real scalar. Therefore, we
can minimize (14) by minimizing its numerator

(ZA) (15)

with the following constraint on its denominator

I T = AT T A

(l A) -1 (16)

i

Using a Lagrange multiplier. 8. we minimize the uncon-
strained functional

=22 (X)) (17)

[

Taking partial derivatives with respect to A, vields

H(A) ‘.,
{—ff:-:Z/\l—ZﬁlA:U:i:!.l.?v (18)
['Al i H !
Thus we tind that
A A A,
R (19)

which implies that
A, = AL = A, £20)

15 a4 minimizing solution. The optimal weighting matrix A” is
the one that causes the cigenvalues to X - 4 to all be equal.
Therefore, a minimizing solution is

AT=3% ! (21

The solution derived above is equivalent to applving a whiten-
ing filter to the polarimetric vector Y before forming the
image (see Fig. 4). In the whitening process. the vector Y is
passed through the filter ¥ ' 7 to obtain

W=3 'Y=1%% 'X. (22

The clements of W are complex random variables with equal
expected power. The covariance of W is a scaled identity
matrix: thus W is said to be white. As shown in Fig. 4. the
optimal solution to the polarimetric speckle-reduction prob-
lem is simply to noncoherently sum the powers in the ele-
ments of W:

YEWW., (23)

hence the name polarimetric whitening filter (PWF),

The process shown in Fig. 4 can also be interpreted as a
change of polarimetric basis from a linear polarization basis
(HH. HV. VV) to a new basis given by

ny wv_pvom | o0

HH, —. =
[ Ve Vi -1ol)

In this new basis, the three polarimetric channels are uncorre-
lated and have equal expected power. Thus the optimal way
to reduce speckle polarimetrically is to sum the powers non-
coherently in these three polarimetric channels.

We have shown that the PWF algorithm processes the
polarimetric measurement vector Y in a way that minimizes
SAR image speckle. Furthermore, the PWF is the maximum-

Vol. 4, 306-318 (1992) 309



POLARIMETRIC WHITENING FILTER

¢ SIMPLE INTERPRETATION

i

HH 1‘

[HH -t2 i,_! '

Y={HV|= 2 =>W= vE
Ly c WV - p* JTHH |
“"WHITENING” —,====p=%=-—
FILTER vYO=lpl®)
UNCORRELATED IMAGES
* PWF IMAGE
2 I3 :
y = IHH? *"—l‘; + —1=—_—=——-vv_p \YzHH
Ive VY(1~1pl%)

Figure 4. Minimum-speckle image processing. Y is a complex
vector containing the three linear-polarization measurements. Using
the whitening filter gives a new polarization basis W. In this basis the
three elements are uncorrelated and have equa! expected power.
The PWF image, y. is the noncoherent sum of the uncorrelated
images.

likelihood estimate (MLE) of the spatial multiplier g. The
MLE can also be shown to be an unbiased. minimum-variance
estimator of g (i.e.. it achieves the Cramer-Rao lower bound)
(see Appendix 1).

Next we theoretically determine the amount of speckle
reduction that can be achieved by using the PWFE. Although
the PWF solution is independent of the PDE of the spatial
multiplier g in the product model. the resulting s/ m ratio after
speckle reduction does depend upon f, ( g). Thus, the s'm for
the PWF is

(b =302 =030 0) e

PWE

and the s/m for a single-polarimetric-channel HH image is

syt T \
L L B CY

The v parameter of the gamma multiplier appears in Eqs.
(25) and (26) because the s/m includes fluctuations in the
texture variable g. For an ideal speckle-free image. in fact.
fluctuations in the terrain reflectivity across the image are stilt
present. thus. its s/m is given by

< i =i

s
(";)1\.&;”‘_ \ (27'

The » parameter is closely related to the log standard
deviation (o, in dB) of the texture component of the clutter.
This relation is derived in Appendix 2. and values of the v
parameter for clutter regions that have o, of 1 dB to 3 dB are
tabulated. By using Egs. (25) and (26) and the results given in
Appendix 2. we can calculate the reduction in the standard-
deviation-to-mean ratio achieved with the PWF (relative to a
single-polarimetric-channel image). For clutter with a spatial
log standard deviation of | dB. the s/m ratio of single-channel
data is 1.66 times targer than the s/m ratio of PWF data. For

310 Vol. 4. 306-31R (1992)

clutter wath a sputial log standard deviation of 3dB. the s m
ratio of single-channe! data is 1.45 times larger than that of
PWEFE data. In the next section, these theoretical predictions
will be compared with measurements made on actual data

V. SPECKLE REDUCTION RESULTS

In the preceding section. we determined that the optimum
polarimetric processing for speckle reduction is the PWE, and
we derived formulas to caleulite the amount of speckle
reduction achicvable by using the PWF. In this section we
show typical imagery gathered by the Lincoln Laboratory
SAR and visually compare single-polarimetric-channel ima-
gery with PWFE-processed imagery: then we use actual clutter
data to calculate typical polarization covariances of trees.
grass. mixed scrub. and shadows: finally. we apply PWF
processing to these clutter data and compare the actual
amount of speckle reduction with theoretical  predictions
based upon previously derived formulas [Egs. (25) and (26)].

A. Typical SAR Imagery. Figurc 5 shows another SAR
image of the golf course—this image was constructed by first
reducing speckle polarimetrically (using PWF processing while
preserving the 1t x 1 ft resolution) and then using noncoher-
ent spatial averaging of the 1t x 1 ft PWF pixel intensitics
into cffective 1 m x 1 m resolution pixels. The area of the
image shown in Fig. 5 1s approximately 500 x 500 m. Clearly
visible in the SAR image are the pond and several sets of
trees, as well as the putting green located next to the fairway.
and a larger set of trees located befow the golf course. Fireure
6 shows an acrial photograph of the golf course that was
imaged by the Lincoln Lab SAR sensor. Note that. although
the acrial photograph gives an excellent image of the golf
course under conditions of good visibility. only the SAR
image would be unaffected by such phenomena as rain. cloud
cover, or fog.

Figure 7 displays a SAR image of a highway overpass scene
(= 1 ft resolution). Clearly visible in the SAR image are
the guardrails on each side of the overpass and the high
energy returns due to the columns directly bencath the over-
pass. Figure 8 shows an optical photograph of the highway
overpass and we can see these supporting structures. We
theorize that the road bencath the overpass and the evlindnical
concrete pillars create a top-hat reflector: multipath returns
from these top-hat refiectors appear in the SAR Image as
bright returas. displaced in range (Fig. 7).

B. Comparison of HH and PWF Imagery. Figure 9 displays
a SAR image (HH polarization) of the powerline tower scene
(1 m x 1 m resotution). Clearly visible in the upper and fower
portions of the image are two regions of trees separated by a
narrow strip of coarse scrub. Also visible in the image. though
somewhat faint. are four powerline towers positioned in the
scrub region (once pair of towers in the upper left of the image
and one pair in the lower right).

Figure 10 shows the corresponding PWF processed image
of the powerline tower scene. Note that in the PWF processed
image, the powerline towers have much greater intensity than
they had in the single polarimetric channel /[1H image (Fig.
9). In Fig. 11, we give a graphical example of how the
powerline tower and scrub clutter distributions are changed by
polarimetric processing. In particular. we show histograms of




Figure 5. SAR image of the goif course scene (1 m ~ 1w resolution) corresponding to the aerial photograph shown in Figure 6. This image
was formed by first applying PWF processing to the 1ft coherent data, then spoiling (4 x 4 noncoherent averaging) to an effective 1m

resoiution.

Figure 6. Aerial photograph of the golf course in Figure 5. This photograph was taken in the spring of 1989. Note that, unlike radar imagery.
aerial photography of this quality can only be taken under clear weather conditions.

Vol. 4, 36-318 (1992) 311




Figure 7. SAR image of a highway overpass (1 ft x 1 ft resolution). This image taken from a stripmap containing Highway US 90 in New York,
shows the detail obtained from PWF processing; note the guard rails along both sides of the overpass.

data in the powerline tower region and in the scrub region for
the HH polarization tmage and for the PWF processed image.
Clearly, the histograms for the PWF-processed data exhibit
much less intensity variation than do the histograms for the
HH polarized data. In addition, since the PWF greatly re-
duces speckle in the scrub region. the features of the project-

ed target shadow are casily discerned. Figure 12 shows a
Pt x 1t resolution image of the powerline tower and its
shadow projected onto the ground. Notice the intricate
shadow structure in the arca below the tower in this image.
and the corresponding physical structure of the actual tower
as shown in Figure 13.

Figure 8. Optical photograph of one side of the highway overpass (this photograph was taken in November 1991). Note the placement of the

cylindrical support structures which form top-hat reflectors with the road.

312 Vol. 4, 36-318 (1992)
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Figure 9. HH SAR image of the powerline towers in a coarse scrub region. (1 m ~ 1 m resoiution). Two pairs of poweriine towers are visible n
the scene, with one pair positioned at either end of the narrow strip of coarse scrub running diagonally through the image.

Figure 10. PWF SAR image of the powerline towers (1 m x 1 m resolution). Note that the towers have much greater intensity than they have in
the HH image shown in Figure 9.

Vol. 4. 306-318 (1992) 3n



PIXEL INTENSITY DISTRIBUTIONS

POWERLINE TOWER AREA
11t x 11t RESOLUTION

0.08 r

004

RATE OF OCCURRENCE

0.02 r

0.00

_
—40

Figure 11. Histograms of powerline tower data {1t~ 1ft res-
olution) and scrub clutter data for single-channel HH image (sold
curves) and for PWF processed image (dashed curves)

Figure 12. SAR image of a single poweriine tower and its shadow
projected onto the ground. Visible in the lower portion of the shadow
is the outline of the upper support structure of the tower. including the
insutators.

314 Vol 4. 306318 (1992)

Figure 13. Photograph of the powerline tower whose SAR signa-
ture and shadow were shown in Figure 12

C. Polarization-Covariance Calculations. The dati used in
this experiment were collected near Stockbridge. NY i the
spring of 1989, The scrub region located m the vicimty ot the
powerline towers (Fig. [0) was used v one of our tvpacal
clutter  backgrounds—we  caleulated s
covariance. X, to be

polanzation

100+ 0,00
001 - j0.02
0.60 + j0.05

001 - 70,02 06 00s
019 - JO00 (L
000+ 000 LUK« 0

PR (X] VT
(28)

Note that the polarization covariance for scrub clutter may be
approximated (quite accurately) by the general torm de-
scribed previously [Egs. (4) and (5)).

Next we evaluated the polarization covariances of tree,
grass. and shadow regions. For cach region. we estimated the
clutter polarization covariance parameters o,,,,. €. y. and p as
defined in Eq. (5). these estimates are given in Table L
Although the guantity pv7 in Table T is complex. we find for
natural ground clutter that the imaginary part s negligibly
small.

The  polarization-covanance  parameters  of  manmade
targets are quite different from those of trees, grass. and other
types of clutter. For convenience. we considered the pow-
erline towers shown in Figs. 9 and H) 1o be our hypothetical




Fable 1. Polunization covarianee parameters of (11t - 1 clutter

data

o ¢ v I
Frees 0 286 o lo (8 1kl
Scrub INLIN 1w I s 0.
Crrass 1} U=t 1NN ISR TR}

Shadow

1 Ol 143 1IN 03y

targets of terest. We estumated the polarizition covartance
of vur hypothenicat targets from several hundred bright peaks
i the vicinnty of cach tower. The value obtamned tor 20 was:

1A - 0
S bxu 020 j02s
039 - 007

020 - 5025 .39 jo o7
140+ 000 (IXE) TR T
(L - 0 16 099 - 0K

129)

From the above polarization covarance matnx we see that
ECHV )y L4 ECHEL ). which implies that the powerline
towers gine an unusually large HV-polanized return. This i
duc to the physical structure of the towers. As showanin Fig.
13, the tower frames are renforced with steel-strut fattices
onented at many different angles. Alsol trom the aboyve
polanizabion covarniance matnx we see that AV s correlated
with HH and V'V

D. PWF Speckle Reduction. To vahidate the speckle-reduc-
ton tormulas dernved previously. we selected tour chatter
regions-—shadow . grass. scrub. and trees. For cach region we
catculated standard-devianon-to-mean ratios tor HH . HV' and
Vi data, and for the PWE data. The s mratios of clutter data
pinven an Table 1 show lower~and better—numbers for the
PWE processed data.

The wngle-polarimetrnic-channel s m ratos given i Table
11 cun be used to compute the rms standard-deviation-to-mean
ratio tor cach clutter region. Bq. (26} was used o estimate
the approximate v for cach region. and Eq. (251 was used to
predict the s moof the PWFEF data. Table HI compares the
theoretical predictions with the actual measured values. The
agreement between the theory and measurements is very
good—within 3% in all cases.

Although the v m ratios given in Table 11 clearly show that
the PWF reduces SAR speckle. the more important question
1s whether the clutter Jog standard deviation has a correspond-
ing decrease. because the log standard  deviation directly
affects target-detection performance. Shown in Table 1V are
the log standard deviations computed from the 1-ft resolution
HH, HV. and VV data. and the 1t PWF data. The PWF
reduces the log standard deviation by approximately 2.0 to
2.7dB compared with single-channel 1t data.

Table L v o0 Rutios theory vy micasgivment
Picdiaed

Mo sured

treos [ T
Sorub 0y o) g
Criass (TS} [Nt

Shadow

[TIAEN oent

Table IV, Stundard deviens odBy ot o e Do clurer data

HiE H Vi PW i
Froos Hn” o4 fnoAs 10
Scrub 62N o Nl 1At T up
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Shadow 32 S04 ~ i v

E. PWF Versus Adaptive PWF Comparison. ln Rel 3 .n
adaptive PWE algonthm was proposed and anabvzed Hhis
algonithm adaptively estmates polanization covananees ot
vanous regrons ot clutter over the image and uses these same
estimated covanances 1o mmimuze e speckle within caen
clutter region. Since the polanzation covanances ot grass.
trees. and shadow regions were tound o be very sl
(Table ). weamestigated the improvement in speckle reduc
tteas achiovable using adaptise PWE processing

We compared the tog stundard deviation ot the clutter
regtons atter they were whitened with the vcovanaiie of grass,
versus the rooult when they were whitened with the proper
covarance (eog.. trees whitened with tree covariancesi. As the
data in Table Voindicate. the use of the proper covarances
made virtwally no change n the log stundard desiavons. Thuas.
because the covanances of the ditferent regions are so simidar.
the extra computation reguired for adaptive PWE processing
s not warranted.

F. Polarimetric Averaging Versus Spatial Averaging. A-
mentioned carlier. speckle can be reduced by noncoherent
spatial averaging. or spothag. of the high-resolubon SAR
intensity data: however, noncoherent spatial averaging de-
grades image resolution. The Jog standard deviations of 14t
and I m PWE data are clearly supertor o the log standard
devianon of 1 nand 1 m singic polanmetne-channel data. as
is shown by the results presented in Table VI

For grass regions, PWE data at 1t resolution were mea-
sured to have a log standard deviation of 2.0dB. At the same
resotution, the A data were measured to have a log standard
deviation of 5.7dB and the HV data had a log standard
deviation of 3.6 dB. Thus polarimetric averaging improved the
results over single-channel duta by 2.7dB. Noncoherently
spoiling the singie-channel data to 1 ar resolution tie. 4~ 4
averaging) reduced o, by approximately 3.7dB. 1 dB better
than polarimetric averaging—but image resolution was sac-

Table V. Standard deviations (dB)Y of PWE ve adaptive PWE

Table I1. s m Ratios ot (1t < | ft) clutter data. data

HH HY Vv PWF PWF APWF
Trees 1.59 1.69 1.39 Lio Trees 403 4.14
Scrub 143 1.27 13K (.94 Scrub 29N 389
Cirass 112 .06 1.16 0.67 Girass 297 297
Shadow 0499 0.99 1.02 ().60) Shadow 208 217
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Table V1. Standard deviations (dB) of 1-ft- and I-m-resolution data.

1-ft HH 1-ft PWF 1-m HH I-m PWF
Trees 6.7 4.1 35 2R
Girass 57 RX(] 20 1.3
Shadow 5.2 R 1.7 [RY

rificed for the improvement. Spoiling the PWF data to 1-m
resolution yielded the clutter log standard deviation of 1.3dB,
an (1.7 dB improvement over the I-m HH data, and an 0.5-dB
improvement over the | m HV data. Similar results were
obtained for tree clutter and for shadows.

SUMMARY

We investigated the polarimetric speckle reduction that is
achieved by using the polarimetric whitening filter (PWF);
this processing method reduces SAR image speckle without
degrading the spatial resolution of the image. Results ob-
tained with actual SAR data show that the PWF reduced
speckle—and it also significantly reduced clutter log standard
deviation. At 1 ft x 1 ft resolution. the log standard deviation
of clutter was reduced by approximately 2.5 dB relative to a
single polanmetric channel. Such an improvement in log
standard deviation has been shown to improve target detec-
tion performance [8. 3]. PWF processing has also been shown
to significantly improve the performance of clutter segmenta-
tion [10] and texture discrimination algorithms [11].

Other rescarchers have applied PWF, adaptive PWF. and
other polarimetric  processing methods to multifrequency
polarimetric SAR data. A brief discussion of some of this
important research is given in the following paragraphs.

Toma et al. {13] developed a method for reducing speckle
in SAR intensity  imagery using multifrequency.  fully
polarimetric SAR data; their method. which is a straight-
forward extension of the PWF, was applied to 4mxdm
resolution data gathered by the Jet Propulsion Laboratory
(JPL) airborne SAR {14]. The three complex polarimetric
measurements (HH. HV, and VV') simultaneously gathered at
P-. L-. and (- bands were combined into a 9-dimensional
measurement vector:

Y' = (HH,.HV,.VV,.HH, . HV, VV, HH . HV_.VV,)
(30)

Then a 9 X 9 whitening filter was applied to the complex data
to obtain nine uncorrelated intensity images. Noncoherent
averaging of these nine images produced a SAR intensity
image having an amount of speckle reduction equivalent to
that obtained by averaging nine independent samples.

Lee et al. [15] also developed a method for reducing
speckle in SAR intensity imagery using muitifrequency. fully
polarimetric SAR data: they also applied their method to JPL
SAR data. The method does not use the complex HH. HV.
and VV data, but instead uses the polarimetric intensity data
({HH|®, |[HV}. and |VV|®) to achieve speckle reduction. For
each single-frequency-band (P-, L-, and C-), a weighted
linear combination of the form

y = |HH|)> + k,|HV] + k,|VV) (31)

was used to construct a reduced-speckle SAR intensity image,
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v. The coetficients &, and &, were selected to munimize a
mean-square-error cost function (see Appendix A of Ref. 13
for details).

Since Eq. (31) 15 a weighted average of three correlated
images. one would not expect 1o achieve as much speckle
reduction as that obtained by averaging three independent
samples. The P-. L-. and C-band intensity images produced
using Eq. (31) were combined using a weighted average
similar to Eq. (31). This final SAR intensity image was
observed to have an amount of speckle reduction equivalent
to that obtained by averaging six independent samples. Recall
that the approach of Toma et al. [13] provided an amount of
speckle reductn s equivalent 1o that obtained by averaging
nine independent samples.

The reason for the difference in speckle reduction is that
Lee, et al. used HH and VV data. which are correlated. Toma
et al. used a whitening filter to produce nine uncorrelated
(independent) samples.

In our studies. adaptive PWF processing provided & margi-
nal improvement in speckle reduction (Table V shows these
results). This is in agreement with the findings of Lee et al.
and Toma et al. However. adaptive processing has been found
to blur imagery. especially near sharp contrast edges [8)
(nonadaptive PWF processing produces very clear imagery. as
is shown in this article. Also. adaptive PWF processing has
been shown to produce degraded target detection perform-
ance compared with nonadaptive PWF processing [8].

APPENDIX 1: THE PWF AS AN ESTIMATOR

In this appendix. we show that for a given polarimetric
measurement vector Y, the PWF is the maximum-tikelihood
estimate (MLE) of the clutter tevture parameter g. We also
show that the PWF is an unbiascd. minimum-variance cs-
timator (1.c.. it achieves the Cramer-Kao lower bound) of the
texture parameter g.

A. Maximum-Likelihood Estimate. In MLE. the parameter
g 15 treated as if it were deterministic (nonrandom) but
unknown. We seek the value of parameter g that makes the
observed vector Y most likely. If we denote the MLE of g for
a given Y by g, . then g, is implicitly defined by

Ly =0 32

e 1R = (32)
where p(Y] g) is the conditional probability density function
(PDF) of the vector Y given g. This conditional PDF is casy
to evaluate since. given g. the vector Y is complex Gaussian
with mean O and covariance gX. Thus

1 o
)= ——/—— ¢ - 3
pY|g) PG exp(~Y'Y 'Y/g) (33)

where p =the number of polarizations (HH. HV. and VV;
thus p = 3 in our case). To obtain the MLE. we need to find
the value of g for which p(Y| g) is maximum. Equivalently,
we can find the value of g for which log p(Y | g) is maximum.

log[ p(Y| g)]= —log(#"|E)—plog g~ Y'S 'Yig.
(34)
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Ditferentiating with respect to g vields

a p Y [
Zlogip(Y| )= -£ + — =0
ag oelpY )] = =5 .
(35)
e =YL 'Yp.

which is precisely the PWF solution.

Cramer-Rao Bound. Next, we investigate the estimate g, ,
and determine (1) that the estimate is unbiased. and (2) that
the estimate achieves the Cramer-Rao lower bound on var-
iance of the error (thus g,,,, is an efficient estimate of the
texture parameter g).

First we demonstrate that g,,, , is unbiased. From Eqg. (35)
we have

Loy | .
Eat :,;Y'}- lY:,_) gX'¥ 'X. (36)

Taking the expectation with respect to X gives
. 1 .
IZ(A’MII)ZI—)A’E(XE 'X) (37)

But Eq. (11) gives
E(X'E 'X)=1r|¥ TE(XX)] (38)
=m3 '2)=;}.

Thus we have verified that the MLE estimate. gy, ,. is
unbiased. That is.

E(gw)=¢. (39)

Next we verify that g,,,, satisfies the Cramer-Rao lower
bound. which states that the variance of any unbiased esti-
mate, ¢ must satisfy the inequality

VAR(g) = ‘ ! i (40)

4o
E ;;lﬂglﬁ(Ylg)l}

Civitting the details of the derivation. one may easily show
that

¥ 'Y
g

7:
o togpv o] = B - (41)
g g

Evaluating the expectation of the above. again using Eq. (11).
yields the result

[ ~
[;{;; 1ug[p(v|g)]} = «g—” (42)

Thus the variance of any unbiased estimator of the texture
parameter g must satisfy the Cramer-Rao bound

VAR(§)= & . (43)

= |,

Finally, we can verify that the unbiused estimate g, ,.
achieves the lower bound.

1 ’
VAR( gy, ) - VAR( HC 'X) (44)
I P,
= VARXY X
)

Evaluating the above. using Eq. (12) vields the result

VAR(g,, ) =& . (43)
14
APPENDIX 2: RELATING o . AND v
The log standard deviation of the texture variable g (denoted
o) is defined 1o be

o = \VVAR0log,, g). (dB) (46)

The relation between o, and the shape parameter v of the
gamma PDF can be described as

o 1) = ——— [ (og 01g" "expl - &) de
Ellog ) = s || (og 0)g expl Q‘)d‘g. (47)

From Ref. 12 [Eq. (4.352.1)] we have

E(log g) = ¥(r) + log g (48)

- 1 B . ;
El(log gy} = o J“ (log g)'g 'cxp( %)Ag.

(49)
Ref. 12 [Eq. (4.358.2)] also gives
Eltog @)1 = [W(w) +log ] + (2. 0) . (50)
Thus
VAR(log g) = (2. 1) (51)
and
VAR(10log,,, £) = VAR( 1:(’)':?0"") = (4.34)°0(2. 1) .
(52
where from Ref. 12 [Eq. (9.521.1)]
=3 —! (53)

Sow oy
Table VII lists the value of the gamma parameter as a
function of the clutter standard deviation for some typical

clutter standard deviations.

Table VII. Gamma parameter (v) versus o, (dB)

0, v

1.0 19.3
1.5 8.9
2.0 5.2
2.5 35
RX] 2.6
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