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ABSTRACT

This thesis documents the development of an interim Small Autonomous

Underwater Vehicle (AUV) Navigation System (SANS), a self-contained, externally

mountable navigation package. The purpose of SANS is to determine the position of a

submerged object of interest located by an AUV. The volume of SANS must not

exceed 120 cubic inches and total system accuracy of 10.0 meters rms or better is

required. An Inertial Navigation System (INS) is implemented to compute the ascent

path during transit from an object of interest to the surface. INS hardware components

include miniature spin gyroscopes, a compass and a depth transducer interfaced

through an analog to digital converter. Global Positioning System (GPS) is used to

determine the AUV's location after reaching the surface. The reciprocal of the ascent

vector is applied to the AUV's GPS position to accurately determine the location of

the target of interest. A primarily object-oriented software architecture is implemented

here with extensive software testing to verify the proper operation of key modules.

The objective of this thesis is to quantify the adequacy of the selected components

in meeting these requirements and to develop a breadboard design demonstrating the

basic functions of the interim SANS. This research concludes that the components

selected for the interim SANS meet the accuracy requirements provided the AUV

maintains a climb angle which is equal to or steeper than 12 degrees from a typical

mission depth of 20 meters.
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I. INTRODUCTION

A. BACKGROUND

Many of the missions proposed for Autonomous Underwater Vehicles (AUV's)

require a high degree accuracy in navigation. The Global Positioning System (GPS)

provides perhaps the most accurate navigation information currently available. The

feasibility of incorporating GPS into a Small AUV Navigation System (SANS) was

evaluated by the thesis of James Bernard McKeon with a favorable assessment. Some

major concerns addressed by McKeon were accuracy, acquisition time (to limit the

probability of counter-detection) and power consumption. f Ref. I]

B. PURPOSE

There are two distinct phases embodied in the eventual employment of a SANS.

The first of these is the transit phase involving navigation of the AUV from a launch

position to an area where an underwater mapping mission is to be conducted. After

the mapping mission is complete, the AUV will transit back to a recovery position.

This mission may involve waypoint steering and artificial intelligence applications

such as obstacle avoidance. The second distinct phase called the mission phase

involves execution of the mapping mission. The objective here is to determine the

locations of underwater objects identified by the AUV in the area of interest.

The purpose of this thesis is to document the development of an interim system

meeting the mission execution (mapping phase) objectives of the SANS. Specifically,
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this interim system will occupy less than 120 cubic inches and will demonstrate the

feasibility of determining the position ot a submerged object located by an AUV to

within 10 meters. The term AUV should include any small underwater vehicle which

could easily carry such a compact device.

C. PRINCIPLES OF OPERATION

The interim system seeks to incorporate GPS position fixing into the SANS. In

order to resolve the location of a submerged object, two problems must be solved.

First, the path travelled from the submerged object to the surface must be determined

since GPS signals cannot penetrate water. Secondly, the AUV's position on the

surface must be accurately determined so that the location of a submerged object may

be resolved by applying the reciprocal of the ascent path.

Commercially available inertial navigation systems will soon exist which exceed

the accuracy requirements and are compatible with the volume requirements of SANS.

This would permit identification of multiple targets with only occasional GPS updates

for navigation accuracy. This capability will be explored in future research. In the

interim SANS, a pop-up mode is employed in order to locate each underwater object.

The AUV's ascent path is calculated trigonometrically by measuring the depth change,

pitch angle and compass heading throughout the ascent. On the surface, data from the

GPS receiver is recorded to resolve the location of the target through post-processing.
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D. SCOPE OF THESIS

This thesis reports the findings of the second year of research in an ongoing

research project. The objectives of this thesis are limited to defining the hardware and

software architecture required to conduct the mapping phase of the mission. These

objectives are described by McGhee et al. and include [Ref. 21 :

a. Low Power Consumption. Operation from an external bat'e;y pack for 24
hours is desirable.

b. GPS antenna exposure time in survey area shouk. be minimized. Up to 30
seconds exposure allowed but intervals between sucn exposures should be as
long as possible, exceeding several minutes at a minimum.

c. The GPS antenna should present a very small cross section when exposed
and should not extend more than a few inches above the surface.

d. For the mapping phase of the mission, system positioning accuracy of 10
meters rms or better is required with post-processing, submerged as well as
surfaced.

e. Total volume not to exceed 120 inches. Elongated, streamlined packaging is
preferred.

The feasibility of meeting the objectives of the mapping phase is demonstrated

initially by a "brea iboard" system design. The performance of individual components

is assessed through analysis of data collected from the "breadboard" system operating

onboard an instrumented golf-cart traversing a surveyed test track. Eventually, a "wet

design" prototype is planned which will be carried externally aboard the Naval

Postgraduate School AUV-2 as part of a technology demonstration. The transit and

3



return phases characterized by more relaxed navigation accuracy requirements will be

addressed in future research.

E. THESIS ORGANIZATION

This thesis cxplores hardware components required to implement the interim SANS

and the software architecture to support this mission execution. While the technical

expertise of the author lies more in the realm of the software design, both topics are

covered in sufficient detail to ensure that the overall system performance satisfies the

design objectives.

Chapter 1I reviews previous and ongoing work, especially that which relates to the

incorporation of GPS and inertial navigation into AUV navigation.

In Chapter III, a detailed problem statement is presented. The requirements for the

GPS serial line interface and translation of the binary format is examined. Problems

related to the computation of the distaiice travelled from datum are discussed.

Possible solutions involving gyros or accelerometers to determine the climb angle are

examined.

Chapter IV details the design of the SANS. Those characteristics of the individual

hardware components which are significant to the design of the SANS are presented.

The software design methodology and philosophy is presented in this chapter.

Chapter V delineates the process and results of software testing. Various

approaches to testing are considered and a testing philosophy and strategy a-e

developed. Reliability of key modules are examined.
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In Chapter VI, the experimental data gathered during system validation is presented

along with detailed analysis. The accuracy and adequacy of individual components is

described with comparison to advertised technical specifications. The performance of

the complete system is also assessed.

Chapter VII concludes with a summary of the results of this research. Future

research topics are also described.
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II. SURVEY OF PREVIOUS WORK

A. AUV NAVIGATION

As stated by McKeon Iref. I]:

Approaches to navigating of AUV's fall into two different categories: sensor
based navigation and external signal based navigation. Sensor based navigation
refers to an AUV navigational system that is self contained.

For AUV missions of extended duration (in excess of 100 hours), current sensor

based navigation systems alone are considered incapable of providing the accuracy

necessary to perform precise mapping operations. Most external signal navigation

systems require continuous exposure of some sort of signal receiver. This is a serious

restriction which negates many of the advantages of an AUV. McKeon proposes a

navigation system combining the strengths of sensor based and external signal based

navigation systems for AUV navigation. IRef. 11

Previously, the most widely available forms of external signal navigation systems

were Loran and Omega. Both of these are considered unsuitable for AUV navigation

due to limited coverage, relative inaccuracy and the requirement for uninterrupted

signal reception in Loran.

B. INCORPORATION OF GPS INTO AN AUV

With the Initial Operational Capability (JOC) of the GPS satellite network in 1993,

continuous worldwide GPS coverage will be available [Ref. 3]. This combined with

the accuracy of GPS shown in Table 2.1 makes it an ideal candidate for use as an

6



TABLE 2.1 : GPS POSITIONING ACCURACY
(IN METERS)

PPS SPS

NON-DIFFERENTIAL 16 100

DIFFERENTIAL 2-4 2-4

external signal navigation source in AUV's. McKeon provides a detailed analysis of

the expected accuracy of an AUV based GPS receiver with consideration for the

requirement to minimize antenna exposure. A navigation solution was achieved in 30

seconds or less with a 57% success rate (86 of 150 cases). The position errors fell

within the expected range with a standard deviation of horizontal error of 29 meters.

[Ref. 1]

Dr. SeHung Kwak developed an assembly language serial line interface for a GPS

receiver during implementation of a Suitcase Navigation Data Logger (SNDL) [Ref.

41. This interface is used extensively in the implementation of the GPS and AUV

communications here because of its compatibility with Ada, the development language

for SANS.

C. INERTIAL NAVIGATION IN AUV'S

In Reference 2, McGhee et al. examine the incorporation of available inertial

navigation systems into an AUV. These systems include fiber optic gyros, ring laser

gyros and vibratory rate sensors. Analysis shows that systems exceeding the accuracy

7



requirements within the size and power consumption restrictions outlined in Chaipter 1

are feasible and should be available in 1994. These findings are supported by the

work of Hutchinson et al. in Reference 5.

The utilization of GPS to correct inertial measurements for navigation of an AUV

is addressed by Brown [Ref. 6] and Nagengast [Ref. 71. A model based on a medium

grade INS using ring laser gyro's (RLG's) and combinations of high and low accuracy

GPS was used to simulate actual conditions. The results from computer simulations

matched expectations with one nautical mile per hour drift in the INS. Nagengast's

estimate of GPS error is 43 meters (one standard deviation of horizontal error). This

is larger than McKeon's result but uiii within the expected range.

In Reference 8, Miller develops an extended Kalman filter adapted for an AUV

which seeks to optimize the INS navigation solution.

D. KALMAN FILTERING TECHNIQUES

A major objective in the incorporation of GPS into an AUV, especially in a tactical

environment, is the requirement to minimize the probability of detection. The SANS

must optimize the accuracy of the GPS position while minimizing the duration of

antenna exposure. No previous work has been identified which addresses the

incorporation of a Kalman filtering technique to update a navigation solution for an

AUV using GPS data. This is due to the narrow scope of the problem in AUV

navigation where antenna exposure must he minimized and time between exposures

8



may be large. Most commercial GPS receivers already incorporate some filtering

technique internally to produce position fixes.



111. DETAILED PROBLEM STATEMENT

A. GPS NAVIGATION

"The GPS has two levels of accuracy, the Standard Positioning Service (SPS), and

the Precise Positioning Service (PPS)." [Ref. 31 In SPS, an intentional inaccuracy is

introduced into the satellite broadcast signals to degrade the accuracy of non-PPS

receivers through a process called Selective Availability (SA). This limits the

accuracy of the GPS solution of non-PPS receivers in real-time to 100 meters (two

standard deviations horizontal error) unless differential processing is used. PPS

processing requires the use of cryptographic keys to decode and remove the error in

broadcast signals and yields an accuracy of 16 meters as shown in Table 2.1. [Ref. 10]

The use of cryptographic keys aboard an AUV is undesirable. Even with relatively

tamper-proof secure devices, the potential for loss causes concern. As seen in Table

2.1, real-time differential processing or differential post-processing can improve GPS

accuracy to 2-4 meters (SA on or off) negating any advantage of processing with SA

off. This also alleviates the concern of placing cryptographic keys aboard an

unmanned vehicle.

A commercial GPS receiver mnar fictured by Motorola is being used to conduct

research in the development of the interim SANS system. In order to achieve the

objectives for accuracy during the mapping phase established in Section I.D.d,

differential processing is required. To permit differential post-processing, the GPS

10



receiver transmits satellite range format messages containing "raw" (unprocessed)

satellite range data. These messages are transmitted through a serial connection to the

host computer where they are stored in non-volatile memory. A second receiver

operating concurrently at a known location is used to determine and record the total

error dcgrading GPS accuracy. This error includes inaccuracy due to atmospheric

conditions and SA. The error in the range data recorded by the SANS is corrected

during post-processing to yield the accuracy described in Table 2.1.

Position format messages, which are another message format transmitted by the

GPS receiver, permit navigation updates during mission execution or during transit.

Both position format and satellite range format messages are transmitted in Motorola

proprietary binary format in RS-232 compatible serial stream. In position format

messages, the latitude and longitude are 32-bit two's complement encoded in 4 bytes

each. This binary format necessitates the development of a module capable of

receiving, storing, and processing variable length binary data streams.

In order to conserve power, the GPS receiver must be unpowered when not in

operation. Since this receiver cannot output position and satellite range format

messages at the same time, initialization must provide for transmission of the

appropriate message format depending on the current mission phase. During transit

phase, the receiver must be initialized to transmit position format messages for

position updates. During mapping phase, satellite range format message transmission

must be initialized to provide satellite range data for post-processing.

11



B. SUBMERGED NAVIGATION

In order to calculate the distance from a submerged object to the surface where an

accurate GPS fix can be obtained, the depth change, climb angle and direction of

travel (heading) must be known. Heading is measured by a compass and depth change

is measured by a depth transducer. The compass and depth transducer selected for use

in SANS both produce an analog output which is converted to digital data by an

Analog to Digital (A to D) convener. The specifications and interface for these are

covered in the section 1V.A (system hardware) and Appendix A (technical

specifications).

Figure 3.1 and equation 3.1 illustrate the trigonometry involved in computation of

horizontal distance. Figure 3.2 and equations 3.2 and 3.3 illustrate how heading and

horizontal distance travelled are resolved into latitude and longitude components.

Rather than computing a single vector travelled at the surface, SANS sums a series of

vectors calculated for small increments of time during the ascent. This should improve

accuracy due to frequent heading and climb angle changes through the ascent. A

differential error analysis is conducted using this approach in section VI.D.2. In

computing the horizontal distance travelled in equation 3.1, as the climb angle

approaches zero, the horizontal distance travelled will approach infinity (the AUV will

never reach the surface since the climb angle is zero). Therefore, the minimum climb

angle consistent with system accuracy objectives for the interim SANS system must be

quantified.

12



DEPTH
CHAC

oCLIMB ANGLE

HORIZONTAL DISTANCE

Figure 3.1 : Computation of Horizontal Distance Travelled

LATITUDE
CHANGE

HEADING/

LONGITUDE CHANGE

Figure 3.2 : Computation of Latitude/Longitude Change
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DEPTHCHANGE (3.1)TANO

8 4=SH* COSa (3.2)

5X=sH*SINa (3.3)

Where e is the climb angle.

0 is the latitude

lambda is the longitude

The measurement of the climb angle presents the greatest challenge within the

space requirements of the SANS. Two approaches are developed here using a

miniature gyroscope (gyro) and a single axis accelerometer.

1. Gyroscope

A miniature spin gyro manufactured by Gyration Inc. is small enough for use in

SANS and has a very low power requirement (0.1 watts). While the drift rate of the

gyro is high, it should be acceptable for the short period of time required to travel

from a submerged object to the surface. The error rate of the gyro is evaluated and

14



impact on system accuracy are assessed in section VI.D along with other system

hardware.

The gyro's rotational positional information is encoded in two phase and

quadrature digital data signals as illustrated in Figure 3.3. These signals encode the

output of an optical encoder. The direction of gyro rotation can be determined by

observing which signal rises first and the amount of rotation can be determined by

counting the number of pulses. One period of rotation in the optical encoder begins at

the rising edge of a pulse in either output signal. The period includes both pulses in

the pulse pair and ends at the beginning of the next rising edge in either output signal.

One period represents 0.8 degrees of rotation in a low-resolution gyro (0.4 degrees in

high-resolution). Only relative position is available from the gyro. The solution in

SANS assumes a near level attitude for the AUV at the time an object of interest is

located on the bottom. Climb angles during the ascent are relative to this assumed

horizontal attitude.

The manufacturer provides a development test box which converts this output

into a serial data stream. This test box is too bulky for inclusion in SANS so use of

gyro information necessitates developrncnt of a module to track gyro rotation. This

rotation can be applied to the last known climb angle at regular intervals during the

ascent to determine the gyro's new relative position.

A significant problem encountered by Gyration Inc. is high frequency noise in

the output signal while the gyro is stationary as shown in Figure 3.4. This noise is

15



SIGNAL A

SIGNAL B

.ONE PERIOD OF

OPTICAL ENCODER

*NOTE: Overlapping pulses indicates valid gyro rotation

Figure 3.3 : Phase and Quadrature Signal Output

SIGNAL A

SIGNAL B

Note : Non-overlapping pulses indicate presence of noise only
(no valid gyro rotation is present)

Figure 3.4 : Noise in Phase and Quadrature Signal Output
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random and can occur in one or both channels. The software solution developed to

track gyro movement must filter out this noise. This can be accomplished by taking

advantage of the fact that signals describing valid iotation must follow certain state

transition patterns. These patterns will be used in the next chapter to develop a state

transition algorithm to count valid state transitions while rejecting invalid state

transitions as noise. ThL pulse couni can then be incremented or decremented by the

algorithm accordingly.

2. Accelerometer

A second approach which may be developed to determine climb angle in the

SANS is inertial measurement based on an accelerometer. McGhee develops a finite

approximation of climb angle using the output of a single-axis accelerometer. This is

accomplished by sensing the component of gravity along the axis measured by the

accelerometer. The longitudinal acceleration of the AUV is assumed to be negligible

(constant velocity). This allows the x-axis (vertical) acceler3tion to be used to

determine the climb angle. [Ref. 9i

McGhee points out that a measurement of rotation based on accelerometers will

yield best results during low frequency rotation since the precession error in the gyro

is predominant. The reverse is true during high frequency pitch attitude excursions

where gyros arc preferred since the effect of precession error is minimized. A hybrid

solution using both accelerometers and gyros would optimize the strengths of each

approach. [Ref. 9]
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Similar logic applies in measuring heading change. The compass is preferred

unde, stable conditions due to the predominance of precession error in the gyro.

During a high rate of rotation, howeve,, the directional gyro yields a better result since

the flIcct ol precession error is minimized. Again, a hybrid solution using the gyro to

smooth compass heading changes during turns i, preterred.

18



IV. SYSTEM DESIGN

A. HARDWARE DESCRIPTION

A brief description of each hardware device is provided here to summarize some of

the significant characteristics essential to the design of the interim SANS. Appendix

A provides a more detailed summary of each device's technical specifications. Figure

4.1 illustrates the hardware interface.

COMPUTER
(ESP-8o80)

D IG IT A L B I N A R
GYRO SIGNAL BINARY BINARY

HEADING DATA "\DATA
DEPTH /RS-232) \4RS -2 32)

SAPPHIRE A TO D I P U

DIGITAL ANALOG ANALOG
GYRO SI AL HEADING DEPTH

GYRO CMPASS DEPTHGYRO. COMPASS TRANSDUCER

Figure 4.1 : SANS Hardware Devices Interface

1. Sapphire Converter

The Diamond Systems Sapphire card provides a variety of features. The key

features utilized in the development of SANS are the Analog to Digital (A to D)

conversion and the Digital to Digital (D to D) Input/Output (I/O) capability.

19



The Sapphire D to D interface provides a 7-bit digital I/O port through a DB-37

connector (37-pin). These include 3 input and 4 output pins. The DB-37 also

provides a single external trigger input channel. A 24-bit general purpose I/O port is

also provided through the 82C55 programmable interface. Each group of 12 pins may

be programmed in sets of 4 pins and 8 pins as inputs or outputs. This permits

definition of three 8-bit ports (A through C). Port C can be divided into 2 4-bit ports

under mode control. Each of these 4-bit ports can be combined with an 8-bit port to

provide 12-bit input/output if desired.

The analog interface provides 8 analog input channels through the software

controlled input channel multiplexer. While there are 3 selectable voltage ranges (+/-

5 volts, 0-10 volts and +/- 10 volts), the multiplexer can actually tolerate voltages of

up to +/- 32 volts. 8-bit output resolution (1 part in 256) or 12-bit output resolution (1

part in 4096) with a 20 micro-second A to D conversion time is software selectable

for each analog input channel. [Ref. 101

One serious limitation imposed by the Sapphire converter is the availibilty of

only a single interrupt input channel. This restricts the current software architecture to

tracking a single gyro at any given time. The interface chosen for the target machine

should have at least two interrupt channels so that the directional gyro may be used to

aid in heading updates. This is especially important during high rates of turn as

discussed in Section III.B.2.
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2. Core Module

The Dover Electronics ESP 8680 (Extra Small Package) core module provides

an 8086 equivalent central processor. One megabyte Dynamic Random Access

Memory (DRAM) is provided as well as two serial ports (RS-232). This module was

chosen for its compactness (1.7 inches by 5.2 inches by 1/3 inch) and for its power

conservation features. Several modes of operation are provided including full speed

operation at 14 megahertz and a low power consumption "drowsy mode" operating at

1 megahertz. Typical power consumption is 0.2 watts at 8 megahertz [Ref. 11]. Two

megabyte EPROM (Eraseable Programmable Read-Only Memory) non-volatile

memory modules are currently available. 20 megabyte memory modules are expected

to be available shortly. Additionally, the manufacturer is currently developing a

miniaturized A to D converter with capabilities equivalent to the Sapphire A to D

converter.

3. GPS Receiver

The Motorola PVT6 is a lightweight miniature GPS receiver capable of tracking

six satellites simultaneously. The receiver is capable of real-time differential

processing and can be upgraded to support PPS. Acquisition time is 24 seconds

typical time to first fix with an accuracy of 100 meters with SA on without differential

processing. With differential processing, I - 5 meters accuracy is probable.

When power is applied, the receiver is initialized in the mode that existed when

power was last removed. The most recent valid coordinates are stored by the receiver
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through reinitialization. This is accomplished by transmitting a formatted binary

command (message) through the serial communication line.

Serial stream output is provided through an RS-232 standard interface in a

variety of formats. These include National Marine Electronics Association (NMEA)

standard format, Motorola Proprietary Binary format and LORAN input/output format.

Although the NMEA standard format would be vcry attractive from the standpoint of

compatibility between various receivers, the Motorola Proprietary Binary format was

selected since it provides both satellite range information for differential post-

processing and position format messages (although not concurrently).

4. Gyroscopes

The Gyration GyroEngine is an optically sensed miniature spin gyroscope

(gyro). There are two varietics of gyro available from Gyration, vertical and

directional. Both are used in this interim system. The vertical gyro inner gimbals

encoder measures the pitch attitude of the AUV during ascent from the object of

interest. Roll attitude measured by the outer gimbals is not of interest in this system.

The directional gyro's outer gimbals reports yaw information and may be used to

smooth the compass heading data during high turn rates.

The GyroEngine generates two phase and quadrature digital data signals from

each gimbals encoder. A test box provided by Gyration, Inc. translates this signal into

serial stream data interfaced through an RS-232 serial port connection. The test box is

useful for evaluating the performance characteristics of the GyroEngine, but is too
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bulky to be used in the SANS. A software solution has been developed to permit the

GyroEngine to interface directly with the ESP-8680 through Sapphire A to D via

Digital Input/Output (DIO). This solution is developed in Section IV.B.2.f and

Appendix D.

5. Compass

The KVH C100 Multi-Purpose Digital Compass provides digital output in a 4

digit Binary Coded Decimal (BCD) serial stream format. Analog output is provided in

the form of linear or sine/cosine voltage signal. Since the serial stream digital output

would require an additional serial port connection in the ESP-8680, the compass

analog output is interfaced through the Sapphire A to D converter. A linear voltage is

produced proportional to heading in the range from 0.1 volts (000 degrees) through 1.9

volts (360 degrees). This voltage is converted to digital data by software triggered A

to D conversion mode through the Sapphire A to D converter. The analog signal from

the compass is connected to the Sapphire through one of 8 multiplexed input channels.

This input channel is selectable in the parameters file ATOD.DAT at run-time.

6. Depth Transducer

The Omega Inc. PX176-100S5V Depth Transducer has an operating range of 0

to 100 pounds per square inch static pressure (PSIS). This equates to 6.7 standard

atmospheres or 217 feet (67 meters) Jep•.h of sea water. Analog output is 1 to 6 volts

direct current (DC). A to D conversion is performed by repetitive software triggered
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single A to D conversions in the same manner as the compass signal with the analog

input channel similarly selectable.

B. SOFTWARE ARCHITECTURE

The software design for the SANS, can be described at the highest level by three

major operations. These are:

- Monitoring the AUV for a position fix request,

- Navigation data-logging for dead reckoning (DR) navigation (post-processed to

determine ascent vector), and

- GPS data-logging for post-processed positional information.

AUV monitoring must be performed continuously in the event of a request by the

AUV to determine the location of a submerged object of interest. This permits the

GPS to be unpowered while the AUV is submerged and is intended as an energy

conservation measure. DR navigation in the interim system consists of measuring the

horizontal distance travelled from a submerged object to the surface as described in

Figures 3.1 and 3.2. After the AUV reaches the surface, the GPS position is provided

through a serial port connection from thL Motorola GPS receiver.

The programming language used in the development of SANS is Meridian Ada

version 4.1.1. Assembly language is used for low level, high frequency operations to

improve efficiency. The object code for these assembly language modules are

compiled by Borland's Turbo-Assembler and linked with the Ada object code using

Borland's Turbo-Linker.
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In order to produce a logical structure, a precise definition of design

requirements is essential. "The primary product of this phase is an approved

development (functional) software specification." as stated by Booch [Ref 11]. These

requirements form the basis for development of the software structure. They also

permit formulation of a test plan to evaluate the performance of the overall system and

of individual modules.

a. A UV Monitoring.

AUV monitoring shall be performed continuously during the mapping phase

so that when an object of interest has been located by the AUV, sufficient data may be

recorded to determine the geographic position of the object. Communication with the

AUV shall be via RS-232 serial line communication. DR navigation and GPS

processing shall remain inactive with GPS unpowered (except for a low voltage

applied to preserve static RAM (SRAM volatile memory) until the AUV requests a

position fix.

b. GPS.

The GPS shall be initialized with the receiver in the Motorola proprietary

binary format when the AUV requests a position fix. The receiver shall be

programmed to transmit both position/status and satellite range format messages on a

one second interval when initialized. The host computer shall be configured to receive

RS-232 serial communications with connection parameters specified from an input

data file at run-time. Upon mission termination, the host machine configuration shall
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data file at run-time. Upon mission termination, the host machine configuration shall

be restored to the state which existed prior to SANS execution. This is primarily to

prevent side-effects due to improper configuration in the software development

machine during software development.

All information received through the serial connection by the host machine

shall be written to non-volatile memory prior to real-time processing. Satellite range

messages will be recorded for post-processing only, while position/status information

may be processed for navigation updates as necessary. Position format messages shall

be processed to determine the current position and PDOP for navigation updates and

the checksum to validate the particular message.

c. DR Navigation

DR navigation outputs shall include pitch attitude and heading in degrees

and depth in meters. DR processing shall record input values with a precision

commensurate with component accuracy and sufficient to satisfy system accuracy

requirements specified in section I.D.d.

(1) Pitch Angle. Gyro position shall be monitored continuously by a process

transparent to SANS operation. The process shall take a pair of standard phase and

quadrature signals as inputs. Valid pulse pairs [Fig. 3.3] shall be counted on a

continuous basis with each unit representing +/- 0.4 degrees of rotation depending on

the direction of rotation. Invalid pulses from either signal [Fig. 3.4] are considered

"noise" and shall be disregarded in the pulse count. The cumulative value of the pulse
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count shall be continuously available for interrogation by the main procedure for DR

navigation.

(2) A to D Conversions. Sapphire A to D conversions shall be initialized

from a data file containing the multiplexed channels to be used for heading and depth

inputs. Analog to digital conversion of analog heading and depth output shall provide

12 bit accuracy (one part in 4096). Digitized output shall be converted into meters for

depth and degrees for heading.

2. Software Design

The object oriented design methodology described by Booch [Ref. 11 is used in

the design of SANS. The object oriented approach was selected because it provides

an advantage in the management of complexity of the system at the highest level over

other design approaches.

As the system is decomposed hierarchically, some sma!]er elements are more

logically approached using a functional design methodology. The functional design

engineered by Dr. Kwak for the serial line interface was retained in SANS for both

AUV monitoring and GPS processing. This approach is also well suited for the

implementation of the procedure oriented assembly language driver for the gyro.

Booch suggests the following sequence in the object-oriented design approach

[Ref. II]:

- Identify the objects and their attributes
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- Identify the operations that affect each object and the operations that each

object must initiate

- Establish the visibility of each object in relation to other objects

- Establish the interface of each object

- Implement each object

a. Identify the Objects

The purpose of DR navigation in the interim system is to produce a _,ctor

travelled by the AUV from the submerged object to a position on the surface where a

GPS fix is obtained. Figure 3.1 illustrates the computation of the horizontal distance

travelled from the pitch angle and depth change during the ascent. Figure 3.2

describes the calculation of the change in latitude and longitude from the heading and

horizontal distance travelled.

In order to accomplish the objectives of DR navigation, the AUV's heading,

pitch angle and depth change must be accessed for each update cycle. This is

accomplished repetitively in small increments throughout the ascent. These data items

are treated as objects as described in Table 4.1. Every instance of each object type is

stored in a file for post-processing. During post-processing, these values are used to

calculate a heading and horizontal distance travelled by the AUV from the target

located by the AUV to the surface. The reciprocal of this vector can be applied to the

GPS position on the surface to determine the target's location. Determination of

heading in this implementation is restricted to compass only due to the restriction of a
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TABLE 4.1 : OBJECTS AND OPERATIONS ASSOCIATED WITH SANS

OBJECT OPERATION(s)

DR Navigation Pitch Attitude Current Value

Depth Current Value

Heading Current Value

DeltaLatLong DELTA-UPDATE

GPS Navigation NAVDATATYPE PROCESSGPS
- I

single interrupt input channel in the Sapphire Converter. This restricts the ability to

support a second driver to track rotation of the directional gyro.

The primary object associated with GPS is the class object

NAVDATATYPE. This object is generated by an operation PROCESSGPS

adapted from Dr. Kwak's functional implementation of a serial line interface in SNDL

(see section II.D) consisting of latitude, longitude, position dilution of precision

(PDOP) and time. Each position format message is processed to determine the

position and PDOP to construct an instance of NAVDATATYPE. The lowest level

of PROCESSGPS is the message interpreter MOTOROLA which replaces SNDL

interpreters for other receivers. These receivers produce incompatible GPS message

formats. Table 4.1 summarizes the objects essential to the operation of SANS at the

highest level along with their associated operations.
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b. Identify the Operations

The only operation associated with the basic elements of DR navigation is

CURRENTVALUE of that object. For heading and depth, this is accomplished

through module ATOD. This module outputs a 12-bit digital value which is

proportional in the range 0 through 4095 to the analog output of the respective

instrument. These values are translated into appropriate units and written to non-

volatile memory by CURRENTHEADING and CURRENTDEPTH respecti'vely.

Pitch attitude is tracked by an interrupt-driven service routine which may be queried

for CURRENTPITCH at any time by the main procedure.

c. Establish the Visibility

MONITORAUV interfaces directly with the AUV through a serial line

interface to determine when an object of interest has been located by the AUV. It has

no visibility of PROCESS_GPS or DRNAVIGATION but simply relinquishes control

to them when an update is requested. CURRENT-PITCH is invisible to all other

operations as is PROCESS_GPS. Heading and depth analog to digital conversions

both use ATOD but have independent routines for conversion to appropriate units.

d. Establish the Interface

The interface of objects is described fully by the specification of each

package contained in the source code for SANS in Appendix B. Figure 4.2 illustrates

the order of module dependency.
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SSANS

SMAIN PRDCEDURE)

Figure 4.2 :Module Dependency Diagram

e. Implement Each Object (Analog Conversions)

The Sapphire A to D converter accepts control parameters through control

registers 1 and 2 which are mapped to the I/O address space of the host CPU. The

I/O address space map is shown in Table 4.2. Control registers 1 and 2 are accessed

by offsetting the base address (factory preset at 300 Hexadecimal) by 2 and 3

respectively. Meridian Ada package Port provides procedure OUT_BYTE which

writes a byte to the specified output port and function INBYTE which reads a byte

from the specified input port.
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TABLE 4.2: SAPPHIRE 1/O ADDRESS SPACE MAP

Offset From Base Write Read
Address

0 8-bit A to D Trigger 4 LSB's from A to D

I 12-bit k to D Trigger 8 MSB's from A to D

2 Control Register I Status Register

3 Control Register 2 No Function

4 Counter 0 Register Counter 0 Registei

5 Counter I Register Counter 1 Register

6 Counter 2 Register Counter 2 Register

7 Counter Control No Function
Register

8 Port A Output Port A Input

9 Port B Output Port B Input

10 Port C Output Port C Input

11 DIO Control Register No Function

12-15 No Function No Function

The sequence of operations in the A to D conversion is [Ref. 101:

(1) Control register two is used to program the voltage rar-e to be used (0 -

10 volts). The three least significant bits (LSB) in control regi.ter one select the

multiplexed channel (0 to 7) matching the desired analog input port being utilized.

(2) After specification of the channel and voltage level to be used for the

conversion, a switching time (minimum 8.5 micro-second delay) is programmed to
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allow the multiplexed channel to stabilize at the analog input level. The conversion is

then triggered by writing at the base address with an offset + 1 (301 hexadecimal).

The written data can be any value but an ASCII character I is used for this specific

application.

(3) After the conversion has been triggered, the conversion status register's

most significant bit (MSB) indicates status of the conversion (1 indicates complete).

This register is located at I/O address 302 hexadecimal (base address + 2). The

register's contents are read in a loop usirg package Port's function INBYTE until the

MSB indicates conversion complete.

(4) The conversion result is read from the two analog output registers using

INBYTE. The 4 MSB's from the base address provide the conversion result's 4

LSB's (called the LSBS). The byte from base address + one provides the 8 MSB's

(called the MSBS). The digital output value is deterrrined by applying equation 4.1.

Value-=MSBS* 16+ LSBS (4.1)
16

The division by 16 in the LSBS simply removes the 4 LSB's from the register

contents. The multiplication by 16 in MSBS shifts this byte 4 bits to the left.

f Implement Each Object (Digital Phase Counting)

Pitch angle is one object used in the computation of horizontal distance

travelled from the datum as shown in Table 4.1. Digital phase counting of gyro phase

and quadrature signal outputs is accomplished by initialization of the interrupt service
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routine. This requires that the interrupt vector table be modified so that the interrupt

level used to interface the gyro input may be handled by the service routine. The

service routine implements the state transition algorithm developed below to track

valid state transitions. The service routine and algorithm are procedure oriented in

nature. Therefore, a functional implementation for this object is appropriate.

Development of the device driver for the gyro was accomplished in three

major phases. Initial development concentrated on determining the characteristics of

the phase and quadrature output of the gyro through development of a timed polling

system. The data collected by the polling system was used to develop and test a state

transition model and algorithm to filter out noise and track gyro rotation through valid

state transitions. Finally, after development of the state transition algorithm, an

assembly language interrupt routine was developed with a service routine adapted from

the state transition model.

(1) Polled Sampling System. A polled system sampling both outputs of a

particular gimbals on a 1.0 millisecond interval was developed using the Sapphire

82C54 programmable interval timer. The phase and quadrature signals are designated

lines A and B by Gyration's documentation. [Ref. 13] As illustrated by Figure 3.3,

clockwise rotation of the gyro is indicated by a phase shift to the right (the level of

signal A will still be low after signal B has risen). For each pulse, 0.4 degrees of

rotation (0.8 degrees in low-resolution gyros) has occurred and the event counter is
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incremented to reflect this. Counter-clockwise rotation is indicated by a phase shift to

the left (signal A has risen before signal B) and the counter is decremented.

The phase and quadrature output of the gyro is interfaced through the

Sapphire card in the Digital I/O (DIO) mode of operation. The inner gimbals output is

used for pitch attitude information. Inner Gimbal A (IG-A) is interfaced through IPI

(pin 25 of the DB-37) and Inner Gimbal B (IG-B) is interfaced through IP2 (pin 26).

A 1.0 milli-second polling interval (1,000 Hz) represents a rate which

significantly exceeds the gyro's highest rate of 10,000 rpm (167 Hz) at 5.0 volts. The

82C54 (programmable interval timer) in the Sapphire card is used to time the read

operations. Mode 3 of the 82C54 provides a square wave through any of the 3

counters in the 82C54. An initial count N is written to the counter control register

(base offset + 7) and the counter decrements the loaded value N until this value

reaches zero. When this occurs, the counter produces one pulse and reloads the

counter with initial count N. This sequence of operations repeated results in a square

wave with a period of N clock cycles. Counter 2 is used for this application since it's

clock input is connected to the host computer's I/O bus clock. Therefore, calibration

of the timer is dependent on the host's I/O bus clock speed. The 1.0 milli-second

interval on the host machine with a 8.0 mHz I/O clock is achieved by programming an

8,000CYCLES = 1 SECONDS
CYCLES 1,000 (4.2)8,000,000
SECOND
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initial count (N) of 8,000 into the counter control register. This produces a square

wave with a period of 8000 clock cycles so that the gyro input is polled at a rate of

1,000 Hz at 8.0 mHz as shown in equation 4.2.

The current value of the digital inputs are read through the status register

(Sapphire base offset + 2) with bits 5 and 6 representing quadrature input values at the

time of the sampling. To extract the values of the 4 MSB's from the 8-bit input,

divide by 16 to remove the 4 least significant bits (LSB's).

INPUT BIS5-8= INPUT (4.3)

16

Take the remainder of a division by 4 to extract bits 5 and 6.

INPUT BITS5-6=REMAINDER INPUT"BITS5 -8 (4.4)
4

Bit 6 is the result of a division by 2 and bit 5 is the remainder of a division by 2.

INPUTBITS =REMAINDER INPUT BITS5-6 (4.5)
2

INPUT BITS5-6 (46)INPUTBIT6= 2 46
2
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The current phase and quadrature input is read once at the beginning of

each 1 milli-second counting cycle. After the current phased quadrature inputs are

recorded, the value in counter 2, which is accessed at 1/O address 306 hexadecimal

(base address + 6), is monitored until the counter cycle ends. Specifically, to read the

count, the counter must first be "latched". This records the counter value for the read

operation while allowing the counter to continue Lo decrement. To determine when a

cycle has expired, the counter register value is monitored. When the value in the

counter data register reaches zero, the counter control register writes back the initial

count N (8,000). When this rise in the counter register is detected, the cycle has

expired and 1.0 millisecond has elapsed. At this point, the status register is read to

determine the current phase and quadrature signal levels and the sequence begins

again.

The sequence of operations is the polled state transition counting is:

(a) Write the initial count (N = 8,000) to the counter control register to

establish a 1.0 millisecond interval on an 8.0 mHz I/O bus clock.

(b) Read the status register of the Sapphire board and extract bits 5 and

6 (equations 7 through 10) to determine the current phased quadrature value of IG-A

and IG-B.

(c) Monitor the counter by latching counter 2 and reading the value.

Repeat this process until the counter is incremented back to the initial count (8,000)

then return to (a).
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(2) State Transition Model Development. After the characteristics of the

phase and quadrature output were determined through the timer based polling system,

a state transition model was developed to track valid pulse pairs while filtering out

"noise". The state represents the most recent value of the gimbals signals A and B

where 0 is low (no pulse) and I is high. The state transition input similarly represents

the new value of the gimbals signals and will always result in a transition to the

corresponding state. The output is dependent on the path travelled in the transition, I

for valid state transitions and 0 for invalid transitions.

If the states of the lines A and B are a and b, then the system state can

be denoted ab. There are 4 possible states described by all combinations of a and b.

Because the software senses only transitions of either a or b from 0 to 1, the state 0,0

is not visible to the software. Therefore, the software is designed around the three-

state transition model in Figure 4.3. Figure 4.4 and Table 4.3 describe the tracking

algorithm for the reduced state transition model.

The interrupt driven approach to digital phase counting results in two

observable events in one period of the optical encoder's output. The beginning of a

period is indicated by a transition to state 1 or state 3 since a pulse has occurred in

either signal output. If the other output signal produces a pulse while the first signal

is still high, a transition to state 2 will occur. In this case, the pitch count will be

incremented or decremented as appropriate. Otherwise, the signal returns to state 1 or

state 3 and the event is disregarded in the pitch count. Each unit of pitch count in the
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10,•0 !0!0

procedure 3_state_tracking3algorithm is

current state, laststate : state(1..3)
pitch-count : integer := 0

begin
loop

if current state = 2 then
if last-state = 1 then (case 3, clockwise rotation)

increment pitch count
elsif laststate = 3 then (case 1, counter-clockwise rotation)

decrement pitch-count
end if

else
no trackable rotation has occurred (case 0, 2 or 4)

end if
last-state := current-state
get(currentstate)

end loop
end 3_statetrackingalgorithm

Figure 4.6 : Three-State Transition Model Tracking Algorithm
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three-state algorithm represents one period of the optical encoder (0.8 degrees of

rotation in a low-resolution gyro). Verification of the algorithm is contained in

Chapter V (Software Testing) and Appendix D.

(3) Interrupt-Driven Solution. The interrupt routine is modelled loosely after

the serial line service routine developed by Dr. Kwak and used for GPS interface in

SANS. LPT1 (level 7) is used as the interrupt number to interface interrupt inputs.

The interrupt service routine implements the reduced state transition model which

compares the current and previous state signals to track gyro rotation. [Ref. 12]

The interface of IG-A and IG-B (inner gimbals lines A and B

respectively) is the same as for the polled system with an additional interrupt signal

input. IG-A and IG-B are sampled immediately after each interrupt. Sapphire

provides one interrupt input channel and the interrupt service routine requires rising

edge trigger on either signal (IG-A or IG-B). An integrated circuit was developed by

Dr. Kwak (Ref. 141 to generate distinct leading edges for interrupt triggers.

Each gimbals signal is first processed by a dual one-shot (74LS221)

integrated circuit (IC). This IC generates a 10.0 microsecond pulse on the leading

edge of the input signal pulse. The two signals are combined through a quad OR IC

(74LS32) and input through INT.IN (pin 24 of the DB-37). The 10.0 microsecond

pulse triggers the interrupt service routine. The service routine reads the value of each

gimbals signals. These values are compared with the previous signal values as
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illustrated in Figure 4.4 to determine what rotation, if any has occurred. A review of

the major operations in the interrupt routine are contained in Appendix C.

GIMBALS A

GIMBALS B II I
I NT ERR UT

INPUT JifLi

Figure 4.5 : Phase and Quadrature Interrupt Input Signal Generation

The driver developed performs very well as expected with the gyro in

motion and at rest. The solution appears practical for the short duration, highly

dynamic operations intended for SANS as verified in chapter VI.

3. GPS Update

The Suitcase Navigation Data Logger (SNDL) designed by Dr. Se-Hung Kwak

establishes the framework for an RS-232 serial port interface to a GPS receiver. This

design was kept largely intact for the GPS interface. The lowest level packages

involving the GPS message translation were completely redesigned due to differences

in receiver message format. The basic design philosophy for GPS processing in

SNDL remains unchanged in SANS.

The AUV may request a GPS update during transit phase for a navigation check

or during the mission execution when an object of interest has been located. As with
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the gyro driver, the GPS serial line communication is established at each GPS update

request and is terminated at completion of that update.

a. Serial Port Communication

When SANS detects an update request from the AUV, the GPS is powered

up and INITGPS establishes the serial connection with the GPS receiver. The

parameters for the connection are specified in the file SETUP.DAT. The initialization

routine establishes a buffer where the interrupt service routine writes the bytes

received through the connection.

Motorola proprietary binary message format was chosen for data

transmission from the receiver. This is the only format which allows transmission of

both position information for real-time navigation and satellite range information for

post-processing.

PROCESSGPS permits the main procedure to test for a GPS message by

checking the buffer established during initialization through procedure READCHAR.

The result of this procedure includes a status value which indicates whether the buffer

has any new data (messages). When data is in the buffer, all data is processed before

exiting to wait for another message. READCHAR is an assembly language program

linked with the SANS program's Ada object code through pragma interface. Each

character read through the serial interface is written to an output file for post-

processing before any real-time processing.
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b. GPS Message Translation

There are two message formats transmitted by the Motorola receiver.

Position format messages are 68 bytes in length and are distinguished by the 4 byte

header @@Ba. The 122 byte satellite range response message is recognized by the 4

byte header @@Bg.

If the first 4 bytes of the message match the position format message, the

message is processed to produce an instance of NAVDATATYPE. This is a

composite type (record) consisting of latitude and longitude in degrees, minutes and

seconds, PDOP and time as described in Section IV.B.2.a. Package Nay provides a

procedure for translating milli-arcseconds in long-integer into degrees and fractions of

degrees.

Bytes 16 through 19 encode a 32 bit two's complement long-integer. This

value represents the latitude in milli-arcseconds in the range +/- 324,000,000 (+/- 90

degrees). Bytes 20 through 23 similarly represent the longitude in the range +/-

648,000,000 (+/- 180 degrees).

To convert the 32-bit two's complement number (4 bytes) to long-integer

format, the parity must be determined by comparing the first byte with 127. If the

first byte is greater than or equal to 128 (40 hex), then the first bit is one and the

value therefore represents a negative number in two's complement form. In this case,

all 4 bytes must be converted to a negative equivalent by subtracting 255 from each.

A boolean flag is set to trigger the subtraction operation on each succeeding byte.
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Each byte is multiplied by the appropriate factor as shown in equation 4.7 to

determine the long-integer equivalent.

LONG -INTEGER=BYTEJ 22÷BYTE2 -2 2 +BYTE3 - 2BYTE4 (4.7)

The value of PDOP, taken from bytes 36 and 37, provides the relative

quality of the position to aid in integration into the update solution. Byte 66 contains

a checksum which is the exclusive OR (XOR) of bytes 3 through 65. This value is

compared with a checksum produced by the Motorola processor. If the two values do

not match, the position is disregarded. Each binary format message is terminated with

a carriage return and line feed (ASCII characters 13 and 10). By monitoring for these

bytes, the end of the message is recognized so that processing can begin on subsequent

messages.

c. GPS Fixing

There are two types of GPS fixes which must be considered in the design of

SANS. During transit phase, real-time processing of GPS messages is required to

maintain navigation accuracy of 100 meters. The ultimate goal of SANS is to provide

GPS information for post-processing and combination with DR submerged navigation

ascent vector to allow the location of submerged objects with an accuracy of 10

meters.
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The message header distinguishes the message format as described earlier so

that only position format messages are processed real-time by SANS for navigation

updates to produce instances of NAVDATATYPE. During transit mode, several

instances of NAVDATATYPE will be produced while the AUV is surfaced. When

the accuracy of the fix is considered adequate by the main procedure, GPS processing

will be terminated until the next update request from the AUV. This accuracy

assessment will eventually be based on PDOP and relation to previous positions

through a Kalman filtering technique.
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"V. SOFTWARE TESTING

A. INTRODUCTION

In order to provide confidence in the softwart- architecture developed for SANS, a

systematic and thorough it not exhaustive testing process is essential. Booch IRef. I!1

states two goals in the design of software tests:

Primary goal : Preventing bugs from entering code by making potential mistakes
and misunderstandings visible and by identifying incomplete
requirements/design.

Secondary goal : clearly identifying if there is a bug by causing that bug to
produce a result that conflicts with a specified or expected result.

SANS is a multi-year project which will progressively incorporate new technology

components to achieve improved accuracy. The solution described in this interim

SANS design considers primarily the tactical mission execution of underwater

mapping. The architecture will expand in the next generation to include the strategic

considerations involved in transit to and from the target area and optimization of the

mapping phase.

The interim SANS originally utilized Ada tasking to permit concurrent operation of

DR Navigation and GPS processing. This concurrency was eventually eliminated

since the calculation of the ascent vector and GPS processing occurs consecutively

vice concurrently. The resulting structure is much less complicated at the highest

level.
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While the higher level architecture will prot,ably undergo further radical changes to

meet expanding requirements, modules developed in the interim system will be reused

to provide a foundation for implementation of the next generation SANS. Due to the

nature of dcvelopment objectives and the elimination of concurrency, the testing

approach here concentrates much more heavily on verifying the correct operation of

individual modules than of the overall system. A functional (black box) testing

approach is consistent with the objectives of ensuring modular correctness.

B. CLASSIFYING REQUIREMENTS

The software system requirements are developed from Section IV.B.1 (Software

Architecture : Determining Requirements). Requirements can be classified according

to the approach used to verify compliance. The four classification levels are non-

testable, inspection (of source code), dynamic analysis (of variable usage, comments,

etc.) and execution (of compiled code with selected test data). [Ref. 11]

1. AUV monitoring shall be performed continuously during the mapping phase so

that when an object of interest has been located by the AUV, sufficient data may be

recorded to determine the geographic position of the object through post-processing.

This requirement can be verified by inspection and is satisfied through a loop in the

main procedure which "idles" all processes until a position update request is received

from the AUV. This lnop continuously monitors an RS-232 serial connection with the

AUV for an update request message. After the update is complete, the loop is then re-

entered until another request is received.
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2. DR navigation and GPS processing shall remain inactive with GPS unpowered

(except for a low voltage applied to preserve volatile memory) until the AUV requests

a position fix. Satisfaction of this requirement with respect to software is verified by

inspection of the source code which indicates that DR and GPS processing only occur

l ollowing an AUV update request. The hardware design must also ensure that power

is physically removed from these devices between requests.

3. When an update is requested, AUVMONITOR shall initiate DR navigation and

GPS processing. Inspection verifies that upon receipt of an AUV update request, the

AUV monitoring loop is exited so that DR and GPS processing can commence. DR

navigation data is collected until the AUV is surfaced where GPS satellite range data

is recorded.

4. The GPS shall be initialized with the receiver in the Motorola proprietary

binary format with transmissions at a one second interval after the AUV requests a

position fix. This requirement can be verified by inspection of source code and

through execution of the initialization routine which initializes the receiver in the

configuration which existed when power was last removed.

5. The receiver shall be programmed to transmit position/status format messages

during transit phase and satellite range format messages during mapping phase when

initialized. This requirement has not yet been satisfied but can be verified by

inspecion. Compliance will occur at implementation of transit phase during future

research.
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6. The host computer shall be configured to receive RS-232 serial communications

with connection parameters specified from an input data file at run-time. This

requirement is verified through inspection and execution of the serial communication

procedure.

7. Upon mission completion, the host machine configuration shall be restored to

the state which existed prior to SANS execution. Inspection shows that the original

interrupt masks and vectors are stored at initialization in the data section of the

assembly language code for serial connections and gyro driver. These values are

restored by CLOSESERIAL upon program termination. Prior to program execution,

the DOS (disk operating system) program debug.exe is used to verify the current

interrupt vector for affected hardware interrupt levels. After termination, DOS debug

verifies that the vector table has been restored to its original condition.

8. All information received through the serial connection by the host machine shall

be written to non-volatile memory prior to real-time processing. Inspection of package

body Motorola shows that this requirement is satisfied since each execution of

READCHAR is followed by a write to the output file prior to any other processing.

9. Position lormat messages shall be processed to determine the current position

and PDOP for navigation updates and to determine the checksum to validate the

particular message. Execution test cases are developed in Appendix F to ensure that

position and PDOP are correctly interpreted.
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10. DR navigation outputs shall include pitch attitude and heading in degrees and

depth in meters. By inspection of the specification of DELTAUPDATE, the inputs

for DR navigation are confirmed. These values are recorded in non-volatile memory

along with mission time.

11. DR processing shall record output values with a precision commensurate with

component accuracy and sufficient to satisfy system accuracy requirements specified in

section l.D.d. Chapter VI examines component and system accurracy to include an

assessment of overall system performance.

12. Gyro position shall be monitored continuously by a process transparent to

SANS operation. Inspection of the assembly language device driver for tracking gyro

rotation shows that interrupts generated from the phased quadrature input are used to

trigger an interrupt service routine to count valid pulses. The machine state is saved

at each interrupt and restored after the interrupt is handled. Execution of benchmark

processes to examine CPU processing limitations for handling interrupts from the gyro

driver are detailed in Section V.D.

13. The process shall take a pair of standard phased quadrature signals as inputs.

This requirement is verified through inspection of the assembly language device driver

for the gyro as in requirement 12. The signals are interfaced through pins 25 and 26

of the Sapphire DB-37 connector.

14. Valid pulse pairs [Fig. 4.3] shall be counted on a continuous basis with each

unit representing +/- 0.4 degrees of rotation depending on the direction of rotation.
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This requirement is satisfied through analysis in section V.D.I.a of the 3-state tracking

algorithm IFig. 4.4] contained in section V.E.2.a. Execution test cases contained in

Appendix E ensure that the algorithm is correctly implemented.

15. Invalid pulses from either signal (non-overlapping) are considered "noise" [Fig.

4.4] and shall be disregarded in the pulse count. As in requirement 14, analysis

verifies the correctness of the algorithm with execution test cases in Appendix E

validating the implementation.

16 The cumulative value of the pulse count shall be continuously available for

interrogation by the main procedure for DR navigation. Verification of this

requirement is accomplished through inspection of the assembly language gyro driver

and inspection of the interface between the gyro driver and the main procedure.

17. Sapphire A to D conversions shall be initialized from a data file containing the

muli.i4cxed channels to be used for heading and depth inputs. Inspection of the main

procedure and package ANALOG shows that the A to D conversion channels are

selected from the input data file ATOD.dat.

18. Analog to digital conversion of analog heading and depth output shall provide

12 bit accuracy (one part in 4096). Execution of a range of analog inputs from a DC

power supply were used to correlate voltage levels with digitized outputs. Inspection

of the implementation in package ANALOG shows that 12 bit accuracy is provided.
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C. IDENTIFY IMPORTANT CASES AND SELECT TEST DATA

1. Requirements 13 through 16 involve the accurate tracking of gyro rotation and

is evaluated in two phases. The state transition tracking algorithm is first verified by

informal proof in section V.D.I.a below. Test cases read from an input file are then

executed to validate the implementation of the algorithm. Inputs with expected and

observed results are contained in Appendix D.

a. There arc 4 cases to examine in the 3-state transition tracking algorithm as

shown in Figure 4.4. Appendix D contains examples of each state transition case

along with results from test executions.

In cases I and 3, valid rotation has been indicated by a state transition from

state 1 (clockwise rotation) or from state 3 (counter-clockwise rotation) to state 2.

This is illustrated in Figures D.] and D.2 respectively. The results of the test

execution demonstrate that the pitch-count is correctly computed in each case.

Figures D.3 and D.4 demonstrate that the algorithm correctly tracks a reversal in

rotation as illustrated by a reversal in the order of rising edges in the gimbals output

signals.

In case ? transitions, the machine is returning to state I or 3 from state 2.

This is usually an indication that a valid rotation has occurred in the previous

sampling and a new pulse has been detected from one signal input. Figures D.1

through D.4 demonstrate that case 2 transitions are correctly discounted by the

implencntation.
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In case 0, no state transition has occurred since the current state is the same

as the last state. This is typically the case with noise in a single channel. Figures

D.5, D.6 and D.7 demonstrate that no rotation is occurring in case 0 state transitions

and also that this case is correctly discounted by the tracking algorithm's

implementation.

Case 4 transitions are invalid state transitions between state 1 and state 3.

This transition is caused by a pulse from one gimbals then the other where the pulses

do not overlap. The likely cause of a case 4 transition is noise in both channels as

illustrated in Figure D.8. Figure D.8 also demonstrates that this case is correctly

discounted by the tracking algorithm.

2. Requirement 8 calls for the correct interpretation of the latitude, longitude and

PDOP from position format messages. This requirement is evaluated through a test

implementation of package MOTOROLA which reads a binary input file vice actual

receiver messages. In this manner, all paths can be tested and a full range of edge

cases can be executed.

The range of latitudes is +/- 324,000,000 degrees in milliseconds. For

longitude, the range is +/- 648,000,000 degrees in milliseconds. Test cases include

positive and negative two's complement values to exercise hemisphere interpretation

and various message formats. Appendix E summarizes test cases with expected and

observed results.

53



D. REAL-TIME PROCESSING VERIFICATION

The elimination of concurrent processing from the main procedure in the interim

SANS has greatly simplified the timing requirements at the highest level. In the

lowest level assembly language procedures employing interrupts, a statistical analysis

is conducted here to evaluate the adequacy of the software development machine to

handle the expected interrupts and processing requirements. Growth capability is

examined for handling multiple gyros.

The software development machine was benchmarked for 10,000 sine operations to

evaluate the effect of the interrupt service routine on central processor unit (CPU)

availability. Execution of the sine operations with no other significant load required

306.795 seconds with a standard deviation of 0.085 seconds. After the sine ope;rations

were benchmarked, the driver for the gyro was loaded. Both the pitch and roll axis of

the vertical gyro were interfaced through the single interrupt input channel to simulate

multiple interrupt inputs.

The time to execute the same 10,000 sine operations with both gyro axis highly

excited increased by 6.035 seconds with a standard deviation of 0.41 seconds. This is

an increase of only 1.97 percent in execution time. The only other time critical

processing requirement in SANS is the RS-232 (9600 baud) serial line connection

which imposes a similar CPU load. The software development machine should handle

such loads with no problems. These conditions should be reassessed when the

software and hardware are moved to the ESP-8680 target machine.
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VI. HARDWARE CHARACTERISTICS

All accuracy assessments made in earlier research are based on manufacturer's

technical specifications. In order to validate these findings, field and laboratory test

data are presented here with statistical analysis of those results. This chapter

concludes with an assessment of overall system performance based on these findings.

A. MOTOROLA GPS RECEIVER

A major limiting factor in SANS accuracy is the accuracy of the GPS receiver.

Extensive GPS data was collected with the Motorola PVT6 receiver to assess the

impact on system performance. There are two broad test categories conducted in this

research involving GPS. These tests evaluate the receiver for accuracy in a dynamic

environment and for acquisition time in a static environment. The major limitation on

the test results presented here is the absence of differential processing which has been

deferred to future research.

1. GPS DYNAMIC TESTS

GPS dynamic tests were conducted onboard a modified electric golf cart (called

the test vehicle). This platform is capable of a top speed of approximately 5

meters/second and provides both 12 volt DC from a deep marine battery and 110 volt

alternating current (AC) through a DC to AC converter.

In order to assess the accuracy of field data, the test vehicle is specially

instrumented to permit accurate tracking through a surveyed test track. Data is logged
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by a general serial I/O handler developed by Dr. James Clynch called GEORGE. This

program provides a wide variety of functions including a printer port status (PPS)

which logs changes in the condition of the instrumentation devices interfaced through

the printer port. [Ref. 15]

Test vehicle instrumentation includes an infrared (IR) sensor which detects

reflective IR strips on the surveyed test track. The position of the centroid of the IR

strips is known to an accuracy of approximately 1 centimeter. The vehicle is also

equipped with a trailing bicycle wheel with magnetic sensors for recording

longitudinal distance travelled and a "button" which allows the operator to manually

mark some event. Dynamic tests were conducted at Fritzsche Army Air Field (AAF)

at Fort Ord, California. The test track was surveyed to an accuracy of approximately

1 centimeter (cm).

The objective in the dynamic GPS data collection is to assess the dynamic

accuracy of the Motorola GPS receiver relative to expected SPS accuracy. Fourteen

test runs over a one hour period were conducted to gather data. Figure 6.1 illustrates

the positional accuracy of the test runs relative to the known course. This is a plot of

unprocessed GPS without respect to time.

In order to assess the accuracy of the GPS data, a comparison was made with

test track events recorded by GEORGE's operation PPS. This time history will be

called "truth data" due to its known relative precision of 1 centimeter. The host

computer was corrected to universal coordinated time (UTC) via modem connection to
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Figure 6.1 : Test Data Results Relative to Known Positions

permit correlation of GEORGE's time reference with GPS time (also recorded in

UTC).

The GPS binary data was processed through package Motorola's test procedure

to convert data of interest to character format for comparison with GEORGE's "truth

data". GEORGE's PPS data was similarly processed to allow for comparison. The

raw PPS file was first processed by package BIW (button, IR, Wheel) to identify each

event according to its source. The BIW file was then manually processed with

reference to the sequence of events recorded at the time of test. The purpose here is

to identify the specific location of each IR marker in the "truth data" file for
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comparison with GPS positions. The velocity was computed based on wheel

revolutions with respect to elapsed time.

Finally, the processed GPS and truth data were correlated using a routine

developed by Dr. Clynch called DIFDAT. This procedure compares a specified

parameter, in this case time, in each file to interpolate between events occurring

asynchronously in the two files. This permits an assessment of the accuracy of the

GPS data relative to the known positions in the truth data even though the position

times do not correlate exactly. [Ref. 16]

As can be seen in Figures 6.2 and 6.3 the standard deviation of error is 18.7

meters in latitude and 13.2 meters in longitude. This yields a positional error of 22.9

meters one rms which is well within the expected range for SPS accuracy. North and

east velocity components were similarly processed from the raw GPS and truth data

files. The error is 0.21 meters/second for north velocity components and 0.17

meters/second for east velocity components. This yields a rms velocity error of 0.27

meters/second.

2. GPS STATIC TESTS

Static tests were conducted using the Motorola receiver to assess acquisition

time and first fix accuracy. These tests utilize an antenna mounted on the roof of

Spanagel Hall at a surveyed location. This site provides a horizon relatively free from

obstructions.
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GEORGE's operation PPS was used to program a relay box which interrupts the

12 volt main power supply to the GPS receiver for a specified duration and interval.

However, the 5 volt regulated keep alive power is supplied continuously to preserve

the most recent coordinates and constellation in SRAM volatile memory. GPS data is

logged using the manufacturer's software to ease processing requirements due to

compatibilty with commercial spreadsheets.

Appendix F illustrates the results (it these tests as a function of the amount of

time which the receiver was unpowered. These times range from 90 seconds through

6 hours. The results are summarized in Table 6.1. Although time to first fix (1T=F)

is relati ,ely stable through the longest test (6 hours), the accuracy of the first fix

dcgrades considerably beyond 30 minutes off.

TABLE 6.1: GPS STATIC TEST RESULTS SUMMARY

RECEIVER TIME ACQUISITION FIRST FIX NUMBER
UNPOWERED TIME (rms) ERROR (rms) of

SECONDS METERS SAMPLES

90 SECONDS OFF 29.1 46.4 45

10 MINUTES OFF 29.6 51.2 30

30 MINUTES OFF 29.2 48.6 39

1 HOUR OFF 28.7 60.9 33

3 HOURS OFF 42.0 75.2 23

6 HOURS OFF 49.4 25.0 15
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Analysis of the raw GPS data indicates that the predominant factor in this

accuracy degradation is occasional poor geometry in the first set of satellites acquired

by the receiver. Inspection of tracked satellites indicates that the geometry improves

quickly after tracking the first satellite due to rapid acquisition of additional satellites.

However, this process continues to slow as time unpowered increases due to increasing

frequency of changes in the currently visible satellites.

The static test results indicate that the TI"F is relatively stable below 30

seconds until the time off exceeds one hour. The first fix accuracy deteriorates

steadily as a function of time off with the exception of 6 hours off where the TI"F is

excessive. The maximum time between GPS updates should not normally exceed

approximately 30 minutes in order to improve first fix accuracy. At this update

frequency, antenna exposure can be limited to approximately 30 seconds maximum.

L)nger intervals between updates are possible but will necessitate longer antenna

exposures to obtain a position update of reasonable accuracy.

These test results confirm the manufacturer's specifications in Appendix A and

indicate that the objectives for the SANS transit phase are easily attainable. Further

testing using differential processing techniques is required to validate feasibility of the

accuracy requirements for the mapping phase.

B. GYRATION GYROENGINE

Testing of the gyroscopes was conducted at the AAF test track. The testing was

conducted in cooperation with the manufacturer of the gyro and consisted of 10 test
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circuits on the instrumented test track. Only the directional gyro was evaluated due to

the two-dimensional orientation of the test track. Gyro data was recorded utilizing the

manufacturer's software. GEORGE was again used to record "truth data" from the

test vehicle. Processing of the "truth data" was conducted in the same fashion as for

the dynamic GPS experiments. This data was then compared manually with the gyro

data to determine the cumulative error for each individual run.

The test gyro was powered f y 12.0 volts during 8 of 10 test runs. Single test run

were conducted at 5.0 volts and 15.0 volts. During steady state operations at 12.0

volts, the mean drift rate was 2.3 degrees per minute (dpm) with a standard deviation

of 2.2 dpm yielding 3.2 dpm rms. This is slightly higher than the product

specification for Scorsby drift rates of 1.5 dpm typical and 3.0 dpm maximum fRef.

131.

During the 9.2 meter radius turn at the comer of the test track with an average

speed of 3.0 meters per second, the average acceleration was computed to be 0.16 G's

or 1.6 meters per second per second. The observed drift rate was 25.4 dpm with a

standard deviation of 15.6 dpm yielding 29.8 dpm rms. The expected drift rate at the

advertised specification of 3.0 degrees per second per G for the computed 0.16 G is 30

dpm. These observed and expected results here are consistent and demonstrate that

acceleration is the dominant factor in gyro drift rate.

The result of a single test run at 5.0 volts DC is particularly noteworthy. Although

steady state drift rate was consistent with other tests, the drift rate in turns was 120
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dpm. The high drift rate at this low motor speed is unacceptable for the intended

applications in SANS. Since the SANS driver for the gyro was developed for

execution at 5.0 volts, future research should concentrate on expanding the envelope of

the SANS gyro driver with higher voltages and the resultant higher motor speeds.

Further testing is also necessary to validate the performance of the pitch axis of the

vertical gyro.

C. DEPTH TRANSDUCER

The Omega Inc., depth transducer was evaluated on a 50 PSI Chandler Engineering

dead weight tester. This test bench utilizes a hydraulic cylinder to pressurize the

diaphragm of the depth transducer. Pressure is generated in increments of 5 PSI by

adding calibrated weights to pressurize the cylinder. The depth transducer's output

was measured by a digital voltmeter to 3 decimal points accuracy (milli-volts).

Figure 6.4 illustrates the results of the pressurization schedule. Due to the

minimum pressurization of 50 PSI, no measurements are possible between ambient and

50 PSI. The maximum deviation from a linear function in the digital output is

observed at the 50 PSI mid-point. The deviation at this point is 16 milli-volts (3.516

volt average over 4 runs with 3.499 volts expected). This deviation correlates to 0.46

percent, which is within the 0.5 percent advertised linearity accuracy. IRef. 17) For

SANS, t':is translates into 0.335 meter accuracy for full depth excursions.
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Figure 6.4 Depth Transducer Calibration Results

D. SYSTEM PERFORMANCE ASSESSMENT

1. GPS Performance

Although not all components of the system have yet been evaluated in their

operational mode, some assumptions can be made to assess the overall performance of

the interim SANS. The results of the GPS static testing certainly indicate that the

target acquisition times and fix accuracy are attainable for update intervals of less than

30 minutes. These results also indicate that differential post-processing should permit

GPS positions to be determined to an accuracy of 2 to 4 meters.

2. DR Navigation Performance

The accuracy of the computation of the horizontal distance travelled is affected

by the accuracy of th- depth transducer and gyro (or accelerometers) during the ascent.

The maximum effect of the pitch attitude inaccuracy would occur wh'le SANS is level
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(pitch attitude = 0 degrees) since the value of tangent(theta) in the denominator of

(Equation 3.2) approaches 0.0 at zero degrees. This would result in an error of infinite

magnitude for even small errors in pitch attitude measurement. Similarly, heading

measurement inaccuracy affects system accuracy most when the pitch attitude is very

shallow since this results in a large horizontal distance travelled and high gyro drift.

The differential approach used here to assess the overall accuracy of SANS was

developed by Dr. J. R. Clynch. [Ref. 181 The analysis uses the manufacturer's

technical specification in Appendix A except in the case of the gyro drift rate where

the slightly higher test results are used. The drift rate for the pitch axis of the vertical

gyro is assumed to be :he same as that calculated for the directional gyro.

Recall from Figures 3.1 and 3.2 and the text that the climb angle (theta) is

measured by the pitch axis of the vertical gyro. Alpha is the AUV heading which will

be measured by compass and directional gyro in future development. Let h represent

the change in depth measured by the depth transducer and let sH represent the

horizontal distance travelled by the AUV from a submerged object of interest during

its ascent to the surface where the GPS position will be determined. Then as in

equation 3.2:

h (6.1)
tanO
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By taking the first derivative:

dsfrdh cos(O) h dO (6.2)
sin(() sin(0)

Because the depth and pitch angle errors are uncorrelated, the sum of the

magnitude of the two terms in equation 6.2 can be used to estimate the size of the

error in slant range. [Ref. 18] Equation 6.3 yields the position error due to precession

in the heading gyro.

AOU=sH *da *dsH (6.3)

Where AOU is the Area of Uncertainty.

The AOU will be the slant range error times the heading error. The radius of a

circle covering the same area will be used as an estimate of the positional error. [Ref.

181 Figure 6.5 illustrates the computation of the positional error.

NO: TH

HEDN READING ERROR

SUBMERGED OBJECT
OF INTEREST

Figure 6.5 : Computation of Inertial Measurement AOU
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Table 6.2 tabulates the results of error approximations for varying climb angles.

A transit from the depth transducer's maximum depth is assumed with a maximum

gyro drift rate of 3.2 dpm as calculated above (assuming no significant accelerations).

The GPS error is assumed to be 4.0 meters rms.

TABLE 6.2: SANS SYSTEM ACCURACY FROM 70 METERS

CLIMB ANGLE 20 degrees 25 degrees 30 Ddgrees

TIME TO CLIMB 39 seconds 32 seconds 27 seconds

GYRO PRECESSION 2.1 degrees 1.7 degrees 1.4 degrees
0.036 radians 0.03 radians 0.025 radians

AREA OF 140.0 meters 2  49.0 meters2  11.6 meters 2

UNCERTAINTY

POP-UP ERROR rms 11.8 meters 7.0 meters 3.4 meters

TOTAL ERROR rms 12.5 meters 8.0 meters 5.3 meters
(GPS + POP-UP)

The objective for accuracy during mapping phase of 10 meters rms are achieved

by SANS during transits from its maximum depth of 67 meters only when the climb

angle is slightly greater than 30 degrees. NPS AUV2 is restricted to much shallower

climb angles but also to depths of less than approximately 10 meters. This depth is

more typical of the application expected for SANS. As indicated by Table 6.3, climb

angles greater than 12 degrees should satisfy the accuracy objectives of SANS.
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TABLE 6.3 SANS SYSTEM ACCURACY FROM 20 METERS

CLIMB ANGLE 10 degrees 12 degrees 15 degrees

TIME TO CLIMB 23 seconds 19 seconds 15 seconds

GYRO PRECESSION 1.2 degrees 1.0 degrees 0.8 degrees
0.02 radians 0.017 radians 0.014 radians

AREA OF 101 meters2  46.3 meters2  4.4 meters2

UNCERTAINTY

POP-UP ERROR rms 10.0 meters 6.8 meters 2.1 meters

TOTAL ERROR rms 10.8 meters 7.9 meters 4.5 meters
(GPS + POP-UP)
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VII. CONCLUSIONS

A. SOFTWARE ARCHITECTURE

A primarily object-oriented design approach is used to implement the design of

SANS. The major operations performed by SANS are

- Monitoring the AUV for a position fix request

- Navigation data-logging for dead reckoning (DR) navigation (post-processed to

determine ascent vector), and

- GPS data-logging for post-processed positional information.

The first and third of these are implemented primarily through a serial communication

line routine designed by Dr. Se-Hung Kwak. The GPS processing routine was

redesigned at the lowest level to accommodate the proprietary binary format used by

Motorola. DR navigation implements a navigation data logger for hardware

components of an inertial navigation system. This data includes the results of A to D

conversions of compass and depth transducer outputs and D to D counting operations

associated with phase and quadrature digital output signals from a miniature spin gyro.

D to D operations are implemented in assembly language for higher efficiency due to

their high frequency. A to D operations are implemented in Ada.

A major goal in the implementation of SANS has been modularity of code. As

new technology is incorporated, this approach facilitates redesign of the entire system
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with many modules being reused or replaced. Complexity management in a

moderately large software system like SANS is also enhanced. [Ref. 11]

B. SOFTWARE TESTING

Requirements based testing is applied to SANS in order to verify the proper

operation of key modules in the implementation. A primarily functional (black box)

testing approach is used in keeping with the design goal of modularity to ensure that

individual modules may be replaced or reused without side-effects on other modules.

Some of the key findings are summarized below.

1. GPS MESSAGE TRANSLATION

a. All paths in package Motorola are reachable through the various test cases

represented in Appendix E. All outputs are consistent with expected results.

Validation of checksums are not yet implemented. This requirement will be essential

for real-time processing of the position format messages in the implementation of the

transit phase of the mission.

b. Values falling outside the ranges of +/- 648,000,000 for longitude and +/-

324,000,000 for latitude are possible if messages are incorrectly translated. Although

testing for this situation is not specified as a requirement, correction is advisable and

is accomplished by declaring legal ranges for input values.

2. GYRO DRIVER

a. Gyro rotation is correctly tracked through all possible state transitions as

demonstrated in Appendix D. This result is consistent with many hours of direct
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observation of pre-production gyros under dynamic operating conditions in which only

low drift rate precession has been observed.

b. Interrupt handling for the gyro is easily accommodated in the software

development machine. Real time processing requirements should be reassessed when

the software and hardware are moved to the ESP-8680 target machine.

C. HARDWARE CHARACTERISTICS

All components meet or exceed all critical speifications except for the gyro where

the drift rate of 3.2 degrees per minute is slightly higher than the maximum specified

(3.0 degrees per minute). The error analysis conducted in section VI.D uses the more

conservative results for the gyro rather than manufacturer's technical specifications.

Further research is necessary to validate the performance of the pitch axis of the

vertical gyro, the compass accuracy and the accuracy of post-processed GPS.

The error analysis indicates that all objectives of the interim SANS are achievable

according to research conducted to date. The only major restriction associated with

the interim SANS system is the requirement that the AUV must be restricted to a

climb angle of slightly greater than 30 degrees from the SANS' maximum depth of 70

meters. During climbs from a more typical depth of 20 meters, a climb angle of

approximately 12 degrees will deliver acceptable accuracy. These restrictions are

necessary in order to ensure acceptable positional accuracy which is degraded by the

increasing degree of gyro precession during the long ascent paths associated with
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shallow climb angles. These restrictions will limit a technology demonstration to

more shallow depths or to AUV's capable of attaining large climb angles.

D. FUTURE RESEARCH

1. SOFTWARE DEVELOPMENT

All software testing so far has been confined to the software development

machine. The next critical phase in the software development is to evaluate the

performance in the ESP-8680 target machine. Additional hardware is necessary to

support the operation of SANS during this process. The A to D converter selected

should have two interrupt input channels so that the yaw axis directional gyro may be

tracked to improve heading accuracy during high turn rates. The current

implementation of SANS is restricted to the pitch axis of the vertical gyro only.

The primary focus of this research has been the conduct of the mapping phase

of the SANS mission. This only requires that satellite range format messages be

recorded in order to permit the AUV's location to be determined through post-

processing. In order to execute the transit phase of the mission, the Motorola GPS

receiver must be reinitialized during the mission to transmit position format messages.

This will be accomplished through transmission of preformatted binary messages using

package SERIAL's function WRITECHAR for writing characters through the serial

communication.
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2. GYROSCOPES

As stated above, further research is necessary to validate the performance

characteristics of the pitch axis of the vertical gyro. This will most likely require

laboratory experiments using a servo-driven tilt table. [Ref. 19)

All testing with the device driver for the gyro thus far has been accomplished

using pre-production items on loan from Gyration, Inc. During initial operation of the

production issue gyros with the software development device driver, some

inconsistencies in tracking gyro rotation were observed. Compatibility of the driver

with these nroduction items must be assessed. Expansion of the driver's envelope

must also be addressed to ensure proper operation at higher input voltages ard the

corresponding higher motor speeds. Clearly, the field tests indicate that even under

moderate acceleration at the low motor speed associated with an input of 5.0 volts, the

drift rate is unacceptable for the application intended here. Further research may be

necessary to develop a solution incorporating the use of accelerometers to dampen the

effect of high frequency pitch excursions.

Finally, an applicability study of a new small but high performance IMU

package developed by Systron Donner Corporation is proposed for SANS. This unit is

expected to meet the space and power requirements of SANS and easily improve the

system accuracy. [Ref. 19]
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APPENDIX A

TECHNICAL SPECIFICATIONS

A. SAPPHIRE CONVERTER

Analog Section:

A/D resolution: 12-bits (1/4096)

Linearity error: 1/2 LSB max

Differential linearity error: 12 bits (no missing
codes)

Conversion time: 20Qs max

Maximum conversion rate*: 15kHz with clock
timing

30kHz in software
burst mode

Input channels: 8, single-ended

Expansion capabality: 128 channels,
differential

Input ranges: ±5V, ±10V, 0-10V

Input range selection: Software

Input impedance: 2.5MQ min

Channel-to-channel isolation: 68dB min

Input overvoltage protection: ±32V

Digital Section:

Digital I/O: 31 bits, TTL-compatible

Direction: 4 out, 3 in (Ji)
Software configurable (J2)
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Output voltage levels:
Jl: Low O.OV min, 0.5V max @ 8mA

High 5.OV max, 2.7V min @ 400VA
J2: Low O.OV min, 0.45V max @ 1.5mA (J2)

High 5.OV max, 2.4V min @ 100pA

Input voltage levels:
J1: Low O.OV min, 0.8V max

High 2.OV min, 5.5V max
J2: Low -0.5V min, 0.8V max

High 2.OV min, 5.5V max

Interrupt input: TTL-compatible
rising-edge triggered

Counter/Timer Section:

No. of counters: 3, 16 bits wide each

Type: Presettable synchronous
down counters

Maximum count frequency: 8MHz

Internal clock source: PC clk-2, PC clk÷4
(jumper selectable)

Miscellaneous:

Operating temperature: 0-60°C

Dimensions: 4.2" x 7.0"

*These specifications are derived from tests on a
12MHz 80286-based AT compatible. Maximum speed will
vary depending on the speed of the host computer.
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B. ESP-8680

Processor 14 MHz 5-volt "8680" (8086
equivalent)

Serial Port RS-232

Graphics CGA (Color Graphics Adapter) or
LCD (Liquid Crystal Display)

Memory 256K x 8 EPROM or Flash Memory
512K or 1MB DRAM (8-bit or 16-bit
wide memory path)

Memory Option Expansion board adds up to

16MB DRAM

Bus Interface ISA (Industry Standard Architecture)

Form Factor 1.7" x 5.2" (13.2cm x 4.3cm)

Power Consumption Draws from 1 mA (sleep mode) to
300 mA (peak load powering
back-lit LCD and peripherals)
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C. MOTOROLA PVT6

Receiver Architecture 6-channel
Li 1575.42 MHz

Tracking Capability 6 simultaneous satellite
vehicles

Dynamics Velocity 1000 Knots
(514m/sec)

Acceleration 4g

Aquisition Time 24 sec. typical TTFF (with
(Time to First Fix, TTFF) current almanc, position,

and time)
54 sec. typical TTFF

Accuracy Less than 25 meters, SEP
(without SA)

Operating Temperature -30 0 C to +80°C

Physical Dimensions 3.94 x 2.75 x 0.65 inches
(100 x 70 x 16.5 mm)

Weight 4.5 ounces (128 grams)

Switched Power 9-16 Vdc or
5 ± 0.25 Vdc

Keep-Alive Power 4.75 - 16 Vdc; 0.3 mA max

Power Consumption Typical
1.3 W @ 5Vdc input
1.8 W @ 12Vdc input

MTBF 65,000 hours (estimated)
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D. GYRATION GYROENGINE

Performance
motor speed: 8,000 revolutions per minute (RPM) to

50,000 RPM selectable by input voltage
Scorsby drift:

Temperature 25,000 RPM 50,000 RPM

-40 0 C Typical 6.0°/min. 5.0°/min.
Maximum 15.0 0 /min. 12.0°/min.

+25 0 C Typical 2.0°/min. 1.5°/min.
Maximum 5.0°/min. 3.0°/min.

+80 0 C Typical 4.0°/min. 3.0 0 /min.
Maximum 10.0°/min. 7.0°/min.

Static Drift
-40 0 C to +80°C; typical 0.5 0 /min., maximum 1.0°/min.

at 25,000 to 50,000 RPM

Precession
erection system: pendulous inner gimbal
precession period: 135 seconds
precession damping: precession decreases 37% each

precession period
precession angle due to horizontal acceleration:

3°/sec./G, equivalent to 0.140/1 mile/hour
change in speed

Optical Encoder Output
encoder resolution: 0.10
encoder linearity: ±1% of full scale maximum
sensor slew rate: 260°/sec.
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Power
DC supply voltage: 4V to 12V selects motor speed
maxium DC starting current:

200 mA at 5V
500 mA at 7V
700 mA at 9V

maximum DC running current:
50 mA at 5V corresponds to 10,000 RPM
125 mA at 7V corresponds to 25,000 RPM
350 mA at 9V corresponds to 50,000 RPM

Environmental
operational temperature range: -40°C t +80°C
humidity: 80% relative
pressure altitude: -1,000 ft. to 40,000 ft.
shock resistance: 400 G's, 8 mS half sine wave

pulse duration (all axes)
vibration: 2 G's RMS (20 Hz to 2,000 Hz)

Physical
dimensions: 1.3 in. maximum diameter

1.75 in. maximum length
weight: 1.5 oz.
external: molded optical-grade polycarbonate with

butyl rubber expansion seal
internal: gimbal floatation fluid (Brayco 1721

aerospace low-viscosity vacuum oil)

Service Life
40,000 hours
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E. KVH C100 DIGITAL COMPASS SENSOR

Accuracy ±0.5° or ±10 mils RMS

Repeatability ±0.2° or ±5 mils

Resolution 0.10 or 5 mils

Dip Angle ±80° Maintains stated
accuracy after autocal
over ±80° Magnetic Dip
Angle

Tilt Angle ±16° Dev.= ±0.30 RMS
±450 Dev.= ±0.50 RMS

Electrical Power Input Voltage: +8 to +20 VDC
or +20 to +30 VDC
(user selectable)

Current Drain: 20 mA DC;
nominal

Size 1.80 x 4.50 x 1.10"
(4.6 cm x 11.4 cm x 2.8 cm)

Weight 2.0 ounces (57 grams)

Environmental Performance Operating Temp.: -22°F to

+122 0 F

(-30 0 C to
+50°C)

Vibration: 30 minutes random
MIL-STD-810

Shock: Handling shock pcr
MIL-STD-810

Digital Interfaces Standard RS232
Bidirectional Serial Data

Analog Outputs Sine/Cosine: Sine/Cosine
output voltage +2.5V±I.OV

OR
Linear Voltage: 0 to +3.6VDC

into 10K Ohm minimum load
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F. OMEGA PX176-100PSIS

PAFRAMETER MIN TYP MAX UNITS

Full Scale Output 4.90 4.95- 5.10 Vdc
(FSO) @ 25-C 5.05

Null Offset @ 25°C .85 .95- 1.15 Vdc
1.05

Linearity (Best Fit) ±.2 ±.5 %FSO

Hysteresis ±.25 %FSO

Temperature Error ±.01 ±.02 %FSO/
Null 00 to 85°C °C

-550 to 0°C +85 0 C ±.02 %FSO/

to 105 0C 0°C

Sensitivity 0° to ±.01 ±.02 %FSO/
85°C °C

-550 to 0°C +85°C ±.02 %FSO/

to 105°C C

Stability (1 year) ±1.0 %FSO

Frequency Response 10 kHz

Supply Voltage 9 20 Vdc

Supply Current 15 mA
(Quiecent)
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APPENDIX B

SOURCE CODE

-- File Name : SANS.A
-- Author : Lcdr C. D. Stevens
-- DATE : 12/3/92
-- Adapted from SNDL.a authored by Se-Hung Kwak
-- Comments : SANS consists of 3 major operations
-- AUV MONITOR is a busy wait
-- while other operations are idle
-- AUV MONITOR waits for a position update
-- request
-- DR NAVIGATION consists of logging DEPTH, HEADING
-- and PITCH along with the current time in small
-- time increments for post-processing
-- INIT PROCESS GPS initializes the Motorola GPS
-- and PROCESS GPS DATA logs all Motorola pro-

prietary Binary Messages for Post-processing

with NAVDATA, CALENDAR, P_AUV, P_GPS, A_toD, tty, text_io,
gyrocnt, MOTOROLA;

use NAVDATA, CALENDAR, P_AUV, P_GPS, A_to_D, tty, textio,
gyro cnt, MOTOROLA;

procedure SANS is

package INTEGER INOUT is new INTEGERIO(INTEGER);
package FLOAT INOUT is new FLOATIO(FLOAT);
u!e INTEGER_INOUT, FLOATINOUT;

GPS DATA : NAV DATA TYPE;
DIGITALHEADING, DIGITALDEPTH : INTEGER;
HEADING, HDGCHAN, DEPTH, DEPTH CHAN, PITCH COUNT : INTEGER;
PITCHDATA, HDG_DATA, DEPTHDATA: FILETYPE;
GPSFILE : BYTE FILE.FILETYPE;
FIX SECONDS : DURATION;
FIX TIME : TIME;
GOOD POSITION, UPDATE_REQUESTED BOOLEAN := FALSE;

begin
BYTE FILE.OPEN(GPS_FILE, MODE => BYTEFILE.OUT FILE, NAME =>

"GPS.DAT");
OPEN(PITCH DATA, MODE => OUTFILE, NAME => "PITCH.DAT");
OPEN(HDGDATA, MODE => OUT FILE, NAME => "HDG.DAT");
OPEN(DEPTH DATA, MODE => OUTFILE, NAME => "DEPTH.DAT");
A TO D PARAMETERS(HDG CHAN, DEPTH_CHAN);
INITPROCESS GPS DATA;
INITPROCESSAUVDATA;
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INITDIGITALCOUNTER;

loop
PROCESSAUVDATA(UPDATEREQUESTED);
CURRENTDIGITALVALUE(HDGCHAN, FIX_TIME, DIGITALHEADING);
-- Convert Digital Heading to a compass reading
HEADING :=CURRENTHEADING(DIGITALHEADING);
FIXTIME :CLOCK;
FIXSECONDS := SECONDS(FIX_-TIME);
PUT(HDG_DATA, HEADING);
PUT(HDG_DATA, FLOAT(FIXSECONDS));
put (heading);
text io.put line('heading");
NEWLINE(HDC_DATA);

CURRENTDIGITALVALT.UE(DEPTHCHAN, FIX_TIME, DIGITALDEPTH);
-- Convert Digital Depth to actual Depth
DEPTH :=CURRENT DEPTH(DIGITALDEPTH);
PUT(HDG_-DATA, HEADING);
PUT( HDGDATA, FLOAT( FIXSECONDS));
put(heading);
text_io.put line( "heading");
NEWLINE(HDGDATA);

PITCHCOUNT := READPITCH;
PUT(PITCHDATA, PITC-H_COUNT);
PUT(PITCHDATA, FLOAT(FIX_SECONDS));
put(pitch_count);
text_io.put~line("pitch");
NEWLINE(PITCH_DATA);

PROCESSGPSDATA(GPS_DATA, GOODPOSITION, GPS_FILE);

exit when GOODPOSITION or tty-char ready;

end loop;
BYTEFILE.CLOSE(GPS_FILE);
CLOSEf(PITCHDATA);
CLOSE(HDG_D-ATA);
CLOSE(DEPTH DATA);
SHUTDOWNPROCESSGPSDATA;
SHUTDOWN PROCESSAUVDATA;
RESTOREINTERRUPTS;

end SANS;
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-- File Name : AUV MON.A
-- Author : Lcdr C. D. Stevens
-- DATE : 5/15/93
-- Comments : Adapted from PGPS by Dr. Se-Hung Kwak to
-- implement a serial line communication with an
-- AUV which will request a GPS/Position Update

-- Nay data contains the declarations for the Nay Data record
format
package PAUV is

procedure initProcessAUVData;

procedure SHUTDOWNProcessAUV_Data;

procedure ProcessAUVData(UPDATE_REQUESTED : in out BOOLEAN);

end PAUV;

-- serial is an assembly language program which buffers incoming
-- serial stream data
with TEXTIO, SERIAL;
use TEXTIO, SERIAL;

package body PAUV is

LOCAL TIME DIFF, RECEIVER TYPE SIZE, PORT,
BAUD,DATA_BIT,STOP_BIT: INTEGER;

PARITY : CHARACTER;

-- get parameters to establish serial connection
procedure GET AUV PARAMETERS is

TIME ZONE INFO, RECEIVER INTERVALINFO, LINE : STRING(1..80);
ZONEINFOSIZE, INTERVALSIZE,SIZE : INTEGER;
INF TEXT_IO.FILETYPE;

begin
OPEN(INF, MODE => INFILE, NAME => "AUVSETUP.DAT");
GET LINE(INF, LINE, SIZE);
PORT := INTEGER'VALUE(LINE(l..SIZE));
GET LINE(INF, LINE, SIZE);
BAUD := INTEGER'VALUE(LINE(1..SIZE));
GET LINE(INF, LINE, SIZE);
DATA BIT := INTEGER'VALUE(LINE(l..SIZE));
GET LINE(INF, LINE, SIZE);
PARITY := LINE(I);
GET LINE(INF, LINE, SIZE);
STOP BIT := INTEGER'VALUE(LINE(I..SIZE));
CLOSE(INF);

end getAUVParameters;
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procedure initProcessAUV data is
begin

get_AUVParameters;
-- establish a serial connection
-- and begin processing raw data
openserial(port,baud,databit,parity,stopbit);

end initProcessAUVdata;

procedure SHUTDOWNProcessAUVData is
begin

close serial;
end SHUTDOWNProcessAUV_Data;

procedure ProcessAUVData(UPDATE_REQUESTED in out BOOLEAN)
is

UNS BYTE INT : UNS8;
FLAG : character;

begin
loop

READ_CHAR(UNS BYTEINT, FLAG);
exit when FLAG =I';

end loop;
UPDATEREQUESTED : TRUE;

exception
when others =>

UPDATEREQUESTED := FALSE;

end PROCESSAUVDATA;

end PAUV;
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-- File Name P GPS.A
-- Author : Se-Hung Kwak
-- DATE : 9/11/91
-- MODIFIED : Lcdr C. D. Stevens
-- DATE : 10/08/92
-- COMMENTS : Init Process GPS reads a setup file for
-- parameters to initialize a serial port
-- (RS-232) connection in this version, actual
-- data is read from a file
-- Shutdown ProcessGPS terminates the serial
-- connection
-- Process GPS Data calls a procedure to
-- initialize the proper receiver type and begin
-- processing

with NAVDATA, TEXT_10, MOTOROLA;
use NAVDATA, TEXTIO, MOTOROLA;
package PGPS is

procedure initProcessGPSData;

procedure SHUTDOWNProcessGPSData;

procedure ProcessGPS Data(GPSDATA : in out NAVDATATYPE;
END DATA : in out BOOLEAN;
GPSFILE : in out BYTEFILE.FILETYPE);

end PGPS;

-- serial is an assembly language program which buffers
-- serial stream data
with SERIAL, MOTOROLA, TEXT 10, NAV_DATA;
use SERIAL, MOTOROLA, TEXT_10, NAVDATA;

package body PGPS is

GPS RECEIVER TYPE : STRING(1..80);
LOCAL TIME DIFF, RECEIVER TYPESIZE, PORT,

BAUD,DATABIT,STOP BIT: INTEGER;
PARITY : CHARACTER;

-- get parameters to establish serial connection
procedure GET GPSPARAMETERS is

TIME ZONE INFO, RECEIVER INTERVALINFO, LINE : STRING(1..80);
ZONEINFOSIZE, INTERVALSIZE,SIZE : INTEGER;
INF : TEXTIO.FILETYPE;-
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begin
OPEN(INF, MODE => IN_FILE, NAME => "SETUP.DAT');
GETLINE(INF, GPSRECEIVERTYPE, RECEIVERTYPE_SIZE);
GETLINE(INF, LINE, SIZE);
PORT :=INTEGER'VALUE(LINE(1..SIZE));
GET_5LINE(INF, LINE, SIZE);
BAUD := INTEGER'VALUE(LINE(1..SIZE));
GET_-LINE(INF, LINE, SIZE);
DATABIT :=INTEGER'VALUE(LINE(l..SIZE));
GET_-LINE(INF, LINE, SIZE);
PARITY :=LINE(l);
GET_-LINE(INF, LINE, SIZE);
STOPBIT := INTEGER'VALUE(LINE(1..SIZE));

-- time zone is not used in sans
GETLINE(INF, TIMEZONEINFO, ZONEINFO_SIZE);
LOCAýLTIME DIFF =

INTEGER'VALUE(TIMEZONE_INFO(1. .ZONEINFOSIZE));
CLOSE(INF);

end get GPSParameters;

procedure mnitProcessGPS-data is
begin

get -GPS -Parameters;
-- establish a serial connection
-- and begin processing raw data

open _serial(port,baud,data_bit,parity,stop bit);
end mnit ProcessGPS-data;

procedure SHUTDOWNProcessGPSData is
begin
close serial;

end SHUTDOWNProcessGPSData;

procedure ProcessGPSDATA(GPS_-DATA : in out NAVDATATYPE;
ENDDATA : in out BOOLEAN;
GPSFILE : in out BYTEFILE.FILETYPE) is

begin
GET_-MOTOROLADATA(GPSFILE, GPSDATA, END-DATA);
exception
when others =>
put line( "end3");
ENDDATA :=TRUE;

end ProcessGPSDATA;

end PGPS;
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-- Title : Motorola.a
-- Author : Lcdr C. D. Stevens
-- DATE : 9/11/91
-- Comments : GET MOTOROLA DATA records variable length
-- strings of-Motorola Proprietary Binary Data.
-- It is linked with package SANS.
-- POST PROCESS MOTOROLA DATA processes position
-- format binary messages from an input file
-- GPS.DAT and records them in a file OUTPUT.DAT.
-- It is linked with package
-- MOTOROLA POST PROCESSOR.
-- Package Serial declares a type UNS8 which is a
-- byte_integer in the range 0..255 to be
-- compatible with Motorola binary format
-- a problem exists in CHECK SUM

with TEXTIO, NAV DATA, SERIAL, SEQUENTIALIO;

use NAVDATA, SERIAL;

package MOTOROLA is

package BYTE FILE is new SEQUENTIALIO(UNS8);
use BYTEFILE;

-- procedure records data to a file for post-processing
procedure GETMOTOROLADATA(GPSFILE : in out

BYTE FILE.FILETYPE;
GPS DATA: out NAV DATA TYPE;
END-ofDATA :out BOOLEAN);

-- procedure reads a file and performs conversions
procedure POSTPROCESSMOTOROLADATA(TEST FILE: in out

BYTEFILE.FILETYPE;
OUTPUT F.LE: in out TEXT IO.FILE TYPE;
GPS DATA: in out NAV DATA_TYPE;
ENDDATA : in out BOOLEAN);

end MOTOROLA;

with text io, SERIAL, MATH LIB, BIT OPS;
use textio, SERIAL, MATH_LIB, BITOPS;

package body MOTOROLA is
package INTEGER INOUT is new INTEGER_IO(INTEGER);
package LONGINTEGER INOUT is new INTEGERIO(LONGINTEGER);
package UNS_BYTE INTEGER INOUT is new INTEGERIO(UNS8);
package BYTEINTEGER INOUT is new INTEGER IO(byteinteger);
package FLOAT INOUT is new FLOAT IO(FLOAT);
use INTEGERINOUT, UNS BYTE INTEGER INOUT, BYTE INTEGERINOUT,

FLOATINOUT, LONGINTEGERINOUT;
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-- Motorola's start frame chars are '@@'
-- end frame chars are 'Cr' and 'Lf'

FLAG : character;
temp : float;

procedure GETMOTOROLADATA(GPSFILE : in out
BYTEFILE.FILETYPE;

GPS DATA: out NAV DATA TYPE;
ENDOFDATA : out BOOLEAN) is

UNSBYTEINT : UNS8;
begin

loop
READCHAR(UNSBYTE_INT, FLAG);
exit when FLAG = 'N';
WRITE(GPS FILE, UNSBYTEINT);

-- *** DISPLAY OUTPUT FOR OBSERVATION PURPOSES ONLY *
PUT(UNS_BYTE_INT);

end loop;
exception

when others =>
ENDOFDATA := TRUE;

end GETMOTOROLADATA;

procedure POSTPROCESSMOTOROLADATA(TESTFILE: in out
BYTEFILE.FILETYPE;

OUTPUT FILE: in out TEXT IO.FILE TYPE;
GPS DATA: in out NAV DATA_TYPE;
ENDDATA : in out BOOLEAN) is

INT LONG : LONG INTEGER := 0;
UNS BYTE INT : UNS8 := 0;
CHECK SUM : BYTE INTEGER : 0;
FIX SECONDS : DURATION;
COUNT, INT PDOP : INTEGER := 0;
POSIT FORMAT : BOOLEAN := FALSE;
TEMPTIME : FLOAT;
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function PROCESSCHECKSUM(UNS_BYTEINT : UNS8)
return BYTEINTEGER is

begin
if UNS BYTE INT < 128 then

CHECK SUM := CHECKSUM XOR BYTEINTEGER(UNSBYTEINT);
else

-- remove MSB to bring UNSBYTEINT into range of byte
-- integer then two's complement the result of XOR to
-- account for MSB's effect
if CHECK SUM < 0 then

CHECKSUM := ((CHECKSUM XOR
BYTEINTEGER(UNSBYTEINT-128))+1)*(-1);

else
CHECKSUM := (-1) * (CHECKSUM XOR

BYTEINTEGER(UNSBYTEINT-128))-I;
end if;

end if;
return CHECK SUM;

end PROCESSCHECKSUM;

procedure PROCESSLONGINTEGER(
INT LONG : in out LONG INTEGER;
COUNT : in out INTEGER) is

TWOS COMPLEMENT : BOOLEAN := FALSE;
BYTE INT : BYTEINTEGER;
TEMPLONGINT : LONGINTEGER;

procedure GETNEXTBYTE is
begin

BYTE FILE.READ(TEST FILE, UNS BYTE INT);
CHECK_SUM := PROCESS_CHECK_SUM(UNSBYTEINT);
COUNT := COUNT + 1;
if TWOS COMPLEMENT then

TEMPLONGINT LONGINTEGER(UNS_BYTE_INT) - 255;
else

TEMPLONGINT := LONGINTEGER(UNS_BYTEINT);
end if;

end GETNEXTBYTE;
begin

if UNS BYTE INT > 127 then
TEMPLONG INT := LONGINTEGER(UNSBYTEINT) - 255;
TWOS COMPLEMENT := TRUE;

else
TEMP LONG INT := LONG INTEGER(UNSBYTEINT);
TWOS COMPLEMENT := FALSE;

end if;
INT LONG := TEMP LONGINT * 2**24;
GET NEXT BYTE;
INT-LONG-:= INTLONG + (TEMPLONGINT * 2**16);
GETNEXT BYTE;
INT-LONG := INTLONG + (TEMP LONGINT * 2**8);
GETNEXT_BYTE;
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INTLONG := INTLONG + TEMPLONGINT;
end PROCESSLONGINTEGER;

procedure PROCESS TIME(TEMPTIME : in out FLOAT;
COUNT T in out INTEGER) is

begin
TEMPTIME := 0.0;
BYTE FILE.READ(TESTFILE, UNS BYTEINT);
CHECK SUM := PROCESSCHECKSUM(uns byte_int);
TEMP TIME FLOAT(UNS BYTEINT) * 3600.0;
COUNT := COUNT + 1;
TEMPTIME := TEMP TIME + float(UNS BYTEINT) * 60.0;
BYTE FILE.READ(TESTFILE, UNSBYTEINT);
CHECK SUM := PROCESSCHECKSUM(uns byte_int);
COUNT := COUNT + 1;
TEMP TIME := TEMP TIME + float(UNSBYTEINT);
PROCESSLONGINTEGER(INT LONG, COUNT);
TEMP TIME := TEMPTIME + float(INTLONG) * (10.0 ** (-9));
PUT(OUTPUT FILE, );
PUT(OUTPUTFILE, TEMPTIME, fore => 8, aft => 2, exp => 0);
PUT(OUTPUT FILE, '

end PROCESSTIME;

procedure PROCESS VELOCITY(
COUNT : in out INTEGER) is

VEL, VELN, VEL_E, HDG, RADIANS : float := 0.0;
begin

VEL := FLOAT(UNSBYTE_INT) * FLOAT(2 ** 8);
BYTEFILE.READ(TEST_FILE, UNSBYTEINT);
CHECK SUM := PROCESSCHECKSUM(uns byte_int);
COUNT := COUNT + 1;
vel := (vel + float(uns_byteint))/100.0;
BYTE FILE.READ(TEST_FILE, UNSBYTEINT);
CHECKSUM := PROCESSCHECKSUM(uns byte_int);
COUNT := COUNT + 1;
HDG := FLOAT(UNSBYTE_INT) * FLOAT(2 ** 8);
BYTEFILE.READ(TEST_FILE, UNS BYTEINT);
CHECKSUM := PROCESSCHECKSUM(uns byte_int);
COUNT := COUNT + 1;
HDG := (HDG + float(uns_byteint))/10.0;
RADIANS := HDG/57.2958;
VEL N COS(RADIANS) * VEL;
VEL-E := SIN(RADIANS) * VEL;
put(output file, vel_n, fore => 5, aft => 2, exp => 0);

PUT(OUTPUT FILE, );
put(outputfile, vel_e, fore => 5, aft => 2, exp => 0);

PUT(OUTPUT FILE, ' ');
put(outputfile, hdg, fore => 5, aft => 2, exp => 0);

PUT(OUTPUT FILE, ' 1);
put(outputfile, vel, fore => 5, aft => 2, exp => 0);

PUT(OUTPUT FILE, ' 1);
end PROCESS-VELOCITY;
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procedure PROCESS_PDOP(
COUNT in out INTEGER) is

PDOP : float := 0.0;
begin

-- GPSTDATA.PDOP := INTEGER(UNSBYTEINT) * (2**8);
PDOP := FLOAT(UNS BYTEINT) * FLOAT(2 ** 8);
BYTEFILE.READ(TESýT FILE, UNSBYTEINT);
CHECR _SUM := PROCESS_-CHECK SUFM(uns byte int);
PDOP := (PDOP + float(UNS_-BYTE_-INT))/10.0;
PUT(OUTPUT_FILE, PDOP, fore => 4, aft => 0, exp => 0);

-- GPSDATA.PDOP := (GPSDATA.PDOP +
INTEGER(UNSBYTEINT))/1O;

COUNT := COUNT + 1;
end PROCESSPDOP;

procedure SYNCH WITHHEADER is
FIRSTDELIMITER : BOOLEAN := FALSE;

begin
-- loop until ASCII character @ is received (first
-- delimiter)

loop
BYTE FILE.READ(TESTFILE, UNSBYTEINT);
PUT(5UTPUTFILE, COUNT);
exit when UGNSBYTEINT = 64;

end loop;
BYTEFILE.READ(TESTFILE, UNSBYTE_INT);
PUT(OUTPUT FILE, COUNT);
if UNS BYT-EINT = 64 then

BYTE FILE.READ(TEST FILE, UNSBYTE INT);
PUT(OUTPUT_'FILE, COUNT);
if UNSBYTEINT = 66 then
BYTEFILE.READ(TESTFILE, UNSBYTEINT);
PUT(OUTPUTFILE, COUNT);
if UNS BYTE INT =97 then
POSITFORMAT :TRUE;
COUNT := 4;
CHECKSUM := 35;

end if;
end if;

end if;
end SYNCHWITHHEADER;
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begin
SYNCHWITHHEADER;
loop
BYTEFILE.READ(TESTFILE, UNSBYTEINT);
COUNT :=COUNT + 1;
PUT(OUTPUTFILE, COUNT);
CHECKSUM := PROCESSCHECK SUM(uns byte_int);

if POSITFORMAT then
if count = 9 then
-- get time in seconds
PROCESSTIME(TEMP_TIME, COUNT);

-- get latitude
elsif COUNT = 16 then
PROCESSLONGINTEGER(INT_LONG, COUNT);
temp := float(int long)/(3.6 * (10.0 ** 6));
put(output file, temp, fore => 6, aft => 6, exp => 0);
PUT(OUTPUTFILE, 1 )

-- GPSDATA.LATITUDE := NAVCONVERSION(INT LONG);

-- get longitude
elsif COUNT = 20 then
PROCESSLONGINTEGER(INT_LONG, COUNT);
temp :=float(int_long)/(3.6 * (10.0 ** 6));
put(output file, (360.0 + temp), fore => 6, aft => 6, exp

=> 0);
put(output file,

-- GPSDATA.LONGITUDE := NAV CONVERSION(INT LONG);

-- get ellipsoidal height
elsif COUNT = 24 then
PROCESSLONGINTEGER(INT_LONG, COUNT);
temp := float(int_long)/(100.0);
put(output file, temp, fore => 6, aft => 2, exp => 0);
PUT(OUTPUTFILE,1 )

elsif COUNT = 32 then
PROCESSVELOCITY(COUNT);

elsif COUNT = 36 then
PROCESSPDOP(COUNT);

elsif COUNT = 65 then
if CHECK -SUM = BYTE INTEGER(UNS_BYTE_INT) then
PUT(OUTPUT_FILE, "GOOD CHECKSUM");

else
PUT(OUTPUT_FILE, "BAD CHECKSUM");

end if;
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elsif UNS BYTE INT = 13 then
-- count is 65 vice 67
BYTE FILE.READ(TESTFILE, UNSBYTEINT);
COUNT := COUNT + 1;
if UNS BYTEINT = 10 then

exit;
end if;

end if;
end if;

end loop;
newline(outputfile);

-- NAVyDATA.PUT(GPS_DATA);

exception
when others =>

putline("end of file");
END DATA := TRUE;

end POSTPROCESSMOTOROLADATA;

end MOTOROLA;
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-- File Name : SERIAL D.A
-- Author : Se-Hung Kwak
-- DATE : 9/11/91
-- Modified : Lcdr C. D. Stevens to include type UNS8 which
-- is an unsigned byte integer in the range
-- 0..255 to be
-- compatible with Motorola Proprietary Binary
-- Format

package SERIAL is
-- UNS8 is a subtype byte_integer (8-bit integer)
-- which is natural vice 2's complement
type UNS8 is range 0..255;

-- procedure READCHAR(CH, DATAREADY : out CHARACTER);
-- pragma INTERFACE(assembly, readchar);

-- function WRITECHAR(CH: in CHARACTER) return CHARACTER;
-- pragma INTERFACE(assembly, writechar);

procedure READ CHAR(CH : out UNS8;
DATAREADY : out CHARACTER);

pragma INTERFACE(assembly, read_char);

function WRITE CHAR(CH: in CHARACTER) return UNS8;
pragma INTERFACE(assembly, writechar);

procedure OPENSERIAL(PORT, BAUD, DATA BIT: INTEGER;
PARITY:CHARACTER; STOP: INTEGER);

procedure
INI'£_ SERIAL(kA_REG,TX_REG,INT _EN,LINE_CRT,MODEMCRT,LINE STAT,

BAUD_LSB,LINE,INTMASK,INT NUM: in INTEGER);
pragma INTERFACE(assembly, init_serial);

procedure CLOSE_SERIAL;
pragma INTERFACE(assembly, closeserial);

end SERIAL;
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File Name SERIAL.A
Author : Se-Hung Kwak
DATE : 9/11/91

package body SERIAL is

procedure OPEN SERIAL(PORT, BAUD, DATA BIT: INTEGER;
PjiRITY:CHARACTER; STOP: INTEGER) is

OFFSET : constant INTEGER := 16#100#;
RX REG : INTEGER 16#2FB#;
TX REG : INTEGER 16#2F8#;
INT EN : INTEGER 16#2F9#;
LINE CRT : INTEGER 16#2FB#;
MODER CRT : INTEGER 16#2FC#;
LINE '§TAT : INTEGER 16#2FD#;
BAUD LSB, LINE, INT-MASK, INT-NUM INTEGER;

begin
if PORT = 1 then

RX REG RX REG + OFFSET;
TX REG TX REG + OFFSET;
INT EN INT EN + OFFSET;
LINE CRT -LINE CRT + OFFSET;
MODER CRT MODER CRT + OFFSET;
LINE '§TAT LINE '§TAT + OFFSET-

end if; default port2

if BAUD = 1200 then
BAUD LSB 96;

elsif BAUD 2400 then
BAUD LSB 48;

elsif 9AUD 4800 then
BAUD LSB 24;

else
6AUD LSB 12; default port2

end if;

if DATA BIT 5 then
LINE := 0;

elsif DATA BIT = 6 then
LINE := f;

elsif DATA BIT = 7 then
LINE

else
LINE 3; default 8 data bits

end if;
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if STOP = 2 then
LINE : LINE + 16#4#;

end if; -- default 1 stop bit

if O'.RITY /= 'N' then
LINE := LINE + 16#8#;
if PARITY = 'E' then

LINE := LINE + 16#10#;
end if; -- default parity : odd

end if;

if PORT = 1 then
INTMASK 16#EF#; -- reset bit 4

else
INTMASK 16#F7#; -- default port2 & reset bit

3

end if;

if PORT = 1 then
INTNUM := 16#OC#; -- SERIAL 1 INTERRUPT #, OCH

(12)
else

INTNUM : 16#OB#; -- default SERIAL2 INT #, OBH
(11)

end if;

INITSERIAL(RXREG,TXREG,INT_EN,LINECRT,MODEMCRT,LINESTAT,

BAUDLSB,LINE,INTMASK,INT_NUM);

end OPENSERIAL;

end SERIAL;

; File Name : SERIAL.ASM
Author : Se-Hung Kwak
DATE : 9/11/91

; Modified Lcdr C. D. Stevens to eliminate the stripping of
bit 7 from ASCII characters since Motorola
proprietary binary format uses all 8 bits

I

NAME SERIAL
DGROUP GROUP DATA

data segment para public 'data'
bufsiz equ 4096
buffer db bufsiz dup(0) ; buffer
bufptrl dw 0 ; points to start of
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buffer
bafptr2 dw 0 ; points to end of buffer
bufcs dw 0 ; interrupt vector cs
buffer
bufip dw 0 ; interrupt vector ip
buffer

RX REG DW 0 ; RX REG ADDRESS
TX REG DW 0 ; TX REG ADDRESS
INT EN DW 0 ; INT ENABLE REG ADDRESS
LINE CRT DW 0 ; LINE CRT REG ADDRESS
MODEM CRT DW 0 ; MODEM CRT REG ADDRESS
LINE STAT DW 0 ; LINE STAT REG ADDRESS
BAUD LSB DW 0 ; BAUD DIVISOR (LSB)
LINE DW 0 ; LINE VALUE (DATA
BIT,PARITY,STOP)
INT MASK DW 0 ; 8259 INT MASK VALUE FOR
PORT1 OR 2
INT NUM DW 0 ; INTERRUPT NUMBER FOR
PORT1 OR 2
data ends

_SERIAL segment para public 'code'
ASSUME CS:_SERIAL, DS:DGROUP

Procedure INITSERIAL(RX_REG,TX_REG,INTEN,LINECRT,MODEMCRT,
LINESTAT,BAUDLSB,LINE,INIT_MASK,
INT_NUM : in INTEGER);

PUBLIC INITSERIAL
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INIT SERIAL PROC FAR

cli ;disable all interrupts
PUSH BP
MOV BP, SP
PUSH DS
MOV AX, DATA
MOV DS, AX
PUSH DX
PUSH DI
PUSH SI
PUSH CX
mov ax, [BP+6] ; GET RXREG ADDR
mov RXREG, ax
mov ax, [BP+8] ; GET TXREG ADDR
mov TX_REG, ax
mov ax, [BP+1I0] ; GET INTEN ADDR
mov INTEN, ax
mov ax, [BP+12] ; GET LINECRT ADDR
mov LINECRT, ax
mov ax, [BP+14] ; GET MODEMCRT ADDR
mov MODEM CRT, ax
mov ax, [BP+16] ; GET LINESTAT ADDR
mov LINESTAT,ax
mov ax, [BP+18] ; GET BAUDLSB
mov BAUDLSB,ax
mov ax, [BP+20] ; GET LINE
mov LINE, ax
mov ax, [BP+22] ; GET INTMASK
mov INTMASK, ax
mov ax, [BP+24J ; GET INTNUM
mov INTNUM, ax

; set baud

mov dx, LINE CRT ; select baud divisor
mov ax, dx
mov al, 80h
out dx, al
mov dx, RX REG ; LSB divisor
mov ax, BAUD LSB
out dx, al
mov dx, INT EN ; MSB divisor
mov al, 0
out dx, al

; init line control reg.

mov dx, LINECRT
mov ax, LINE
out dx, al
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init modem control reg.

mov dx, MODEM CRT
mov al, OBh ; loop back test
out dx, al

; enable interrupts

mov dx, INT EN
mov al, 1 ; enabled receiver-data-ready
out dx, al

save interrupt vector

push es ; es:bx vector will be returned
push bx
mov ax, INTNUM ; give interrupt number
mov ah, 35h ; dos function call #35h: get vector
int 21h ; dos function call int 21h
mov bufip, bx ; save ip
mov bufcs, es ; save cs
pop bx
pop es
mov cx, INTNUM ; save INT NUM into CX because of DS

change

; Set up interrupt vector table

push ds ; ds:dx will be saved into vector
table

push dx
mov ax, offset asyint
mov dx, ax
mov ax, cs
mov ds, ax
mov ax, CX ; give interrupt number
mov ah, 25h ; dos function call #25h: Set int

; vector
int 21h ; dos function call int 21h
pop dx
pop ds
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; adjust interrupt mask reg in 8259

in al, 21h ; interrupt mask pattern
and ax, INTMASK ; enable irq3 or 4 by resetting

; proper bit
out 21h, al ; save to interrupt mask reg in 8259

POP CX
POP SI
POP DI
POP DX
POP DS
POP BP
sti
RET 20

INITSERIAL ENDP

; Procedure CLOSESERIAL

PUBLIC CLOSESERIAL

CLOSESERIAL PROC FAR
cli ;disable all interrupts
PUSH DS
MOV AX, DATA
MOV DS, AX
PUSH CX

; adjust interrupt mask reg in 8259

push bx
mov bx, INTMASK ; get INT MASK pattern
not bx ; flip INT_MASK pattern
mov ax, bx
in al, 21h ; interrupt mask pattern
or ax, bx ; disable irq3 or 4 by setting

; proper bit
out 21h, al ; save to interrupt mask reg in 8259
pop bx

MOV CX, INTNUM ; save INT NUM into CX because of DS
; change
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restore interrupt vector for serial-2

push ds ; ds:dx will be saved into vector
table

push dx
mov dx, bufip
mov ds, bufcs
mov ax, CX ; get proper INTERRUPT NUMBER
mov ah, 25h ; dos function call #25h: Set int

; vector
int 21h ; dos function call int 21h
pop ds
pop dx

POP CX
POP DS
sti ; enable all interrupts

CLOSESERIAL ENDP

Procedure READ_CHAR(CH, DATA READY : out CHARACTER);
DATA READY = 'Y' New CH
DATA READY = 'N' NO CH

I

PUBLIC READ CHAR
READCHAR PROC FAR

STI
PUSH BP
MOV BP, SP
PUSH DS
MOV AX, DATA
MOV DS, AX
call chget
mov bx, ax ; save received char
mov al, ah
PUSH ES
LES SI, DWORD PTR [BP+10]
MOV AL, 'N'
MOV ES:[SI], AL ; DATAREADY = N
CMP AH, 0
JE R END ; NO Ch Available -> return
LES SI, DWORD PTR [BP+10]
MOV AL, 'Y'
MOV ES:[SI], AL ; YES, ch. DATAREADY = Y
LES SI, DWORD PTR [BP+6]
mov ax, bx ; restore received char
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MOV ES:[SI], AL ; Return CH
REND: POP ES

POP DS
POP BP
RET 8

READCHAR ENDP

**** ********** ** ********* ****************************************

; Function WRITECHAR(CH: in CHARACTER) return CHARACTER
Return 'Y' CH is out
Return 'N' CH is not out. Buffer is full

*************** *************************************************

PUBLIC WRITE CHAR
WRITE CHAR PROC FAR

STI
PUSH BP
MOV BP, SP
PUSH DS ; Save DS
MOV AX, DATA ; Data is accessable
MOV DS, AX
MOV CL, 'N' ; TX buf is full
MOV DX, LINESTAT ; Line Status Reg
IN AL, DX
TEST AL, 20H ; TX is empty?
JZ W END ; Not empty, return
MOV AL, [BP+6] ; Get CHAR
MOV DX, TX_REG ; Output to TX Reg
OUT DX, AL
MOV CL, 'Y' ; Success

WEND:
POP DS
POP BP
RET 2

WRITECHAR ENDP

; serial communication interrupt routine

asyint proc far
push dx
push bx
push ax
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place the ascii char into the buffer.

cli
push ds
mov ax, data
mov ds, ax
mov dx, RXREG ; read data port
in ai,dx

DO NOT strip bit 7 for Motorola unsigned byte integer
operations

and al,7fh ; strip off bit 7
mov bx,bufptr2 ; bx <- bufptr2
mov [buffer+bx], al ; save into buffer
inc bx ; inc ptr2
cmp bx,bufsiz ; end of buffer ?
jc asyskip ; no
mov bx,0 ; yes, wrap around

asyskip: cmp bx,bufptrl ; buffer full ?
jz end asy ; yes, ignore input data
mov bufptr2,bx ; save ptr2 into bufptr2

end asy: mov al,20h ; send EOI (end of
interrupt) command

out 20h,al ; to port 20 (8259 command
reg)

pop ds
sti
pop ax
pop bx
pop dx
iret

asyint endp

; c•t character (al <- data, ah <- I : success, ah <- 0 : buffer
empty)

chget proc near
push bx

cli ; disable all interrputs
mov bx,bufptrl ; get ptrl
cmp bx,bufptr2 ; buffer empty ?
jnz chget2
mov ah,0 ; no char in the buffer
jmp chgete ; get out from chget

chget2: mov al,(buffer+bx] ; NO, pass char through
; al reg

inc bx ; inc ptrl
cmp bx, bufsiz ; end of buffer ?
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jc chget3
mov bx,O ; YES, reset ptrl

chget3: mov bufptrl,bx ; save ptrl
mov ah,l ; success

chgete:
;sti ; enable int
pop bx
ret

chget endp
I I

; display a char on the screen in the al reg with ascii format

disply proc near
push bx
push ax ; save char

; prepare to display the char.

mov bx,O
mov ah,14
int 10h
pop ax
push ax
cmp al,Odh
jnz end_dis

; return -> return + line feed

mov al,Oah
mov bx,O
mov ah,14
int 10h

end dis: pop ax
pop bx
ret

disply endp

_SERIAL ends
end
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-- File Name : ANALOG.A
-- Author : Lcdr C. D. Stevens
-- Date : 01 December 1992
-- Comments : A-to D is a package which controls the operation
-- of the Sapphire A to D converter through I/O
-- reads and writes
-- procedures are provided to read the ports from a
-- setup file and eventually the base address

with TEXT _O, CALENDAR;
use TEXT _O, CALENDAR;
package A_toD is

procedure ATODPARAMETERS(HDGPORT, DEPTHPORT : out
INTEGER);

procedure CURRENTDIGITALVALUE(PORT : in INTEGER;
FIX TIME : in out TIME;
OUTPUT : in out INTEGER);

function CURRENTHEADING(DATA : INTEGER) return INTEGER;

function CURRENTDEPTH(DATA : INTEGER) return INTEGER;

end A toD;
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with PORT, SPIO, TEXT_10, CALENDAR, SYSTEM;
use PORT, SPIO, TEXTIO, CALENDAR;
package body Ato D is

package INTEGER INOUT is new INTEGERIO(INTEGER);
package FLOAT INOUT is new FLOATIO(FLOAT);
use INTEGERINOUT;
use FLOATINOUT;

procedure ATODPARAMETERS(HDG_PORT, DEPTHPORT :out INTEGER)
is

INFO : FILE TYPE;
LINE : STRING(1..5);
SIZE : INTEGER;

begin
-- open the setup file and read ports for depth and heading
-- analog inputs (adjustable base address may be implemented

-- later)
OPEN(INFO, MODE => INFILE, NAME => "ATOD.dat");
GET LINE(INFO, LINE, SIZE);
HDG PORT := INTEGER'VALUE(LINE(1..SIZE));
GET LINE(INFO, LINE, SIZE);
DEPTH PORT := INTEGER'VALUE(LINE(I..SIZE));

-- BASEADDR := INTEGER'VALUE(LINE(I..SIZE));
CLOSE(INFO);

end ATODPARAMETERS;

procedure CURRENT DIGITAL VALUE(PORT : in INTEGER;
FIX TIME : in out TIME;
OUTPUT in out INTEGER) is

IN_4LSB : INTEGER : 16#300#; -- Input 4 Least
-- Significant Bits

-- Base 300 + Offset 0

TRIGGER : INTEGER : 16#301#; -- 12 Bit A to D
-- Trigger(Output)

IN_8MSB : INTEGER := 16#301#; -- Input 8 MSB's
-- Base 300 + Offset 1

CONTROLREGI : INTEGER 16#302#; -- Control Register 1
STATUS_REG : INTEGER 16#302#; -- A to D Conversion Status

-- Register (In)
-- Base 300 + Offset 2

CONTROLREG2 : INTEGER := 16#303#; -- Control Register 2
-- Base 300 + offset 3

VOLTRNG : INTEGER := 16#10#; -- Write to Control
-- Register 2

-- Analog Input Range 0-10 volts
DATALSB, DATAMSB, LOOPS : INTEGER := 0;

procedure CONVERSIONSTATUS is
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STATUS VAL : INTEGER;
CONVERSIONCOMPLETE : BOOLEAN := FALSE;

begin
check the status register until A to D conversion

-- complete
-- bit 7 = 0 indicates conversion complete
loop

STATUS VAL := IN BYTE(STATUS REG);
-- Hex 80 = 1000-0000 and STATUSVAL is binary
if STATUS VAL < 16#80# then

CONVERSIONCOMPLETE := TRUE;
end if;
exit when CONVERSIONCOMPLETE;

end loop;
end CONVERSIONSTATUS;
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begin
OUT BYTE(CONTROL REG2, VOLTRNG); -- write voltage range
OUT-BYTE(CONTROL-REG1, PORT); -- Select Mux Channel
delay 0.001; -- wait for new channel to

-- settle
OUTBYTE(TRIGGER, 1); -- Trigger Conversion

-- check status register and wait until conversion complete
CONVERSIONSTATUS;

DATA LSB := IN-BYTE(IN_4LSB); -- Read LSB's
DATA-MSB IN-BYTE(IN_8MSB); -- Read MSB's

-- extract 12-bit integer from the two-byte code
OUTPUT := (DATA LSB/16) + (DATAMSB * 16);

end CURRENTDIGITALVALUE;

-- Convert the A to D output to a compass heading in degrees
-- 0.1 volts = 000 degrees
-- 1.9 volts = 360 degrees
function CURRENT HEADING(DATA : INTEGER) return INTEGER is

VOLTS, HEADING : FLOAT;
begin

VOLTS := ((FLOAT(DATA) * 10.0)/4096.0);
HEADING := (VOLTS - 0.1) * 200.0;
return INTEGER(HEADING);

end CURRENTHEADING;

-- Convert the A to D digital output to actual depth
-- 1.0 volts = 0 Feet
-- 6.0 volts = 220 Feet (@ 32 feet per atmosphere)
-- 0 - 100 PSIS (6.8 Atmospheres)
function CURRENTDEPTH(DATA : INTEGER) return INTEGER is

VOLTS, DEPTH : FLOAT;
begin

VOLTS := (FLOAT(DATA) * 10.0)/4096.0;
-- convert to meters 9.85 meters/atmosphere
DEPTH := (VOLTS - 1.0) * 9.85 * 6.8/5.0;
return INTEGER(DEPTH);

end CURRENTDEPTH;

end AtoD;
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-- Title : gyrocnt.a
-- Author : Se-Hung Kwak, Lcdr C. D. Stevens
-- DATE : 2/20/93
-- Comments : Gryo cnt.a provides the Pragma Interface with
-- assembly language Gyro cnt.asm

package GYROCNT is

procedure INIT DIGITAL COUNTER;
pragma INTERFACE (assembly, INITDIGITALCOUNTER);

function READ PITCH return integer;
pragma INTERFACE (assembly, READPITCH);

procedure RESTORE INTERRUPTS;
pragma INTERFACE (assembly, RESTOREINTERRUPTS);

procedure SAPPHIRE DELAY;
pragma INTERFACE (assembly, SAPPHIRE_DELAY);

end GYRO_CNT;
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File Name : GYRO CNT.ASM
; Authors : Se-Hung Kwak, LCDR C. D. STEVENS

DATE : 2/20/93
; Comments : Implements an assembly language driver for a

Gyration, Inc. miniature spin gyroscope
The service is interrupt driven through LPT1

interfaced through a Sapphire A to D converter

NAME GYRO CNT
DGROUP GROUP DATA

data segment para public 'data'
; PITCH CALC variables
olddata db 0 ; previous state value
old hi db 0 ; previous hi bit value
old lo db 0 ; previous lobit value
count dw 0
bufip dw 0
bufcs dw 0
bufim dw 0

; INTERRUPT INITIALIZATION variables
INT MASK DW 0 ; 8259 INT MASK VALUE FOR
PORT1 OR 2
INT NUM DW 0 ; INTERRUPT NUMBER FOR
PORT1 OR 2

data ends

CODE segment para public 'code'
ASSUME CS:CODE, DS:DATA

; Procedure INITDIGITALCOUNTER

PUBLIC INITDIGITALCOUNTER

INITDIGITALCOUNTER PROC FAR

cli ;disable all interrupts
PUSH BP
MOV BP, SP
PUSH DS
MOV AX, DATA
MOV DS, AX
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PUSH DX
PUSH DI
PUSH SI
PUSH CX
mov INTMASK, 07fh ; 8259 interrupt mask pattern
mov INTNUM, Ofh ; interrupt number for LPTI

; program sapphire board

push ax
push dx
mov dx,0302h
mov al,08
out dx,al ; output port #302h 1000 (8h)
pop dx
pop ax

set counter initial value

mov ax,0
mov count,ax

; save interrupt vector

push es ; es:bx vector will be returned
push bx
mov ax, INT NUM ; give interrupt number
mov ah, 35h ; dos function call #35h: get vector
int 21h ; dos function call int 21h
mov bufip, bx ; save ip
mov bufcs, es save cs
pop bx
pop es
mov cx, INTNUM ; save INTNUM into CX because of DS

; change

Set up interrupt vector table

push ds ; ds:dx will be saved into vector
table

push dx
mov ax, offset PITCHCALC
mov dx, ax
mov ax, cs
mov ds, ax
mov ax, CX ; give interrupt number
mov ah, 25h ; dos function call #25h: Set int

vector

int 21h ; dos function call int 21h
pop dx
pop ds
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; adjust interrupt mask reg in 8259

in al, 21h ; interrupt mask pattern
mov bufim,ax ; save interrupt mask for

restoration
and ax, INT MASK ; enable irq5 by resetting properbit
out 21h, al ; save to interrupt mask reg in 8259

POP CX
POP SI
POP DI
POP DX
POP DS
POP BP
sti
RET

INITDIGITALCOUNTER ENDP

I

function READPITCH return INTEGER;

I

PUBLIC READ PITCH
readpitch proc far

sti
push ds
mov ax,data
mov ds,ax
mov cx,count ; recall current pitch-count
pop ds
ret

readpitch endp
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I

; PITCHCALC interrupt service routine

I

PUBLIC PITCH CALC
PITCH CALC PROC FAR

CLI
PUSH DX ; save register contents
PUSH AX
PUSH DS ; make data segment visible
MOV AX,DATA
MOV DS,AX

; read status register and evaluate state changes

mov dx,0302h
in al,dx ; input al register contents of

status register
mov ah,al

and ah,07h not needed but may affect
output pattern

OP4 thru OPI

and al,30h ; extract bits 5 and 6
cmp al,30h ; test new case for state 11
jne update ; no other case matters
mov dl,olddata ; recall last state for comparisons

cmp dl,10h ; check for cw rotation
jne ccw

inc count
jmp update

ccw: cmp dl,20h ; check for ccw rotation
jne update
dec count

update: mov olddata,al ; update previous state value in
data

MOV AL,20H ; send EOI (end of interrupt)
command

OUT 20H,AL ; to port 20 (IBM specific - 8259
; register)

mov dx,302h ; reset int
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mov al,ah
or al,08h
out dx,al

POP DS ; restore data segment
POP AX ; restore registers
POP DX
STI
IRET ; return control to BP addr

(previous routine)
; (interrupt return)

PITCHCALC ENDP

I

procedure RESTOREINTERRUPTS (termination routine)

I

PUBLIC RESTORE INTERRUPTS
restore-interrupts proc far

cli
push dx ; save registers
push ds
mov ax,data ; make data visible
mov ds,ax

mov ax,bufim ; recall interrupt mask
out 21h, al ; restore to interrupt mask reg
mov dx,bufip ; recall initial interrupt vector
mov ax,bufcs
mov ds,ax
mov ax,Ofh ; load interrupt level
mov ah, 25h ; dos function call #25h: Set int

; vector
int 21h ; dos function call int 21h

pop ds ; restore registers
pop dx
sti
ret

restoreinterrupts endp
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; Debugging routine
; display a char on the screen in the al req with ascii format
; example :

mov ax,[some register]
call disply

disply proc near
push bx
push ax ; save char

prepare to display the char.

mov bx,O
mov ah,14
int 10h
pop ax
push ax
cmp al,Odh
jnz enddis

; return -> return + line feed

mov al,Oah
mov bx,O
mov ah,14
int 10h

enddis:pop ax
pop bx
ret

disply endp

CODE ends
end
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-- File Name : NAV.A
-- Author : Lcdr C.D. Stevens
-- Date : 12-3-92
-- Comments : NavyData provides the declarations for a
-- navigation data type
-- function nav conversion converts
-- a long integer input to a type degree type
-- Put outputs a nay_data type

with CALENDAR; use CALENDAR;
package NAVDATA is

type DEGREETYPE is
record

DEGREES : INTEGER;
MINUTES : INTEGER;
SECONDS : FLOAT;

end record;

type NAV DATATYPE is
record

FIX TIME : TIME;
LATITUDE : DEGREETYPE;
LONGITUDE : DEGREETYPE;
DEPTH : FLOAT;
PDOP : INTEGER;

end record;

-- Data type to track AUV's ascent vector
type DELTATYPE is

record
DELTA LAT : FLOAT;
DELTA LONG : FLOAT;

end record;

function NAVCONVERSION(VAR : LONG-INTEGER;
DATA : DEGREETYPE) return DEGREE_TYPE;

proceQitre PUT(DATA : in NAVDATATYPE);

end NAVDATA;
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with TEXT_10, CALENDAR;
use TEXT IO, CALENDAR;
package body NAV DATA is

package INTEGER INOUT is new INTEGERIO(INTEGER);
package FLOAT_INOUT is new FLOAT_IO(FLOAT);
use INTEGERINOUT, FLOATINOUT;

-- 648,000,000 = 180 DEGREES (longitude)
-- range of latitude is +/- 324,000,000 (+/- 90 degrees)
function NAVCONVERSION(VAR : LONGINTEGER;

DATA : DEGREETYPE) return DEGREETYPE is
RESULT : DEGREE TYPE;
DEG, MIN, REMAINDER : LONGINTEGER;

begin
-- integer division to extract degree component
DEG := VAR/360000;
RESULT.DEGREES := INTEGER(DEG);
-- integer division to extract minute component from
-- remainder
MIN := (VAR - DEG * 360000)/6000;
RESULT.MINUTES := INTEGER(MIN);
REMAINDER := VAR - ((DEG * 360000) + (MIN * 6000));
-- float division to extract seconds component
RESUTT.SECONDS := FLOAT(REMAINDER)/100.0;
return RESULT;

end NAVCONVERSION;

procedure PUT(DATA : in NAVDATATYPE) is
SECS : DURATION;

begin
if DATA.LATITUDE.DEGREES >= 0 then

PUT( 'N');
else

PUT( '5');
end if;
PUT(DATA.LATITUDE.DEGREES, WIDTH => 4);
PUT(" DEG ");
PUT(DATA.LATITUDE.MINUTES, WIDTH => 3);
PUT(" MIN ");
PUT(DATA.LATITUDE.SECONDS, FORE => 3, AFT => 2, EXP => 0);
PUTLINE(" SEC");

if DATA.LONGITUDE.DEGREES >= 0 then
PUT( 'E');

else
PUT( 'W');

end if;
PUT(DATA.LONGITUDE.DEGREES, WIDTH => 4);
PUT(" DEG ");
PUT(DATA.LONGITUDE.MINUTES, WIDTH => 3);
PUT(" MIN ");
PUT(DATA.LONGITUDE.SECONDS, FORE => 3, AFT => 2, EXP => 0);
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PUTLINE(" SEC ");

PUT("DEPTH : ");
PUT(DATA.DEPTH, FORE => 3, AFT => 2, EXP => 0);
NEW LINE;
PUT("PDOP : );
PUT(DATA.PDOP, WIDTH => 5);
NEW LINE;
PUT("TIME : ");
SECS := SECONDS(DATA.FIXTIME);
PUT(FLOAT(SECS), FORE => 6, AFT 2, EXP => 0);
NEW LINE;

end PUT;

end NAVDATA;
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-- File Name : DR.A
-- Author : Lcdr C. D. Stevens
-- Date : 03 December 1992
-- Comments : DR provides the basic navigation functions
-- Delta Update calculates the latitude and
-- longitude change
-- based on the heading, climb angle and depth
-- change since
-- last deltaupdate and maintains a cumulative
-- vector

with NAVDATA, DELTAPOSIT;
use NAV_DATA, DELTA_POSIT;
package DR is

procedure DELTA UPDATE(PITCH ANGLE : in FLOAT;
DEPTH CHANGE : in FLOAT;
HEADING : in FLOAT;
DELTAPOS : in out DELTATYPE);

end DR;

122



with NAVDATA, DELTA POSIT, MATH_LIB, TEXT_10;
use NAV_DATA, DELTAPOSIT, MATH_LIB, TEXT_1O;
package body DR is

-- not yet operational as a post proccessor
-- can be linked with operational SANS for real-time processing
-- of DRNavigation data
procedure DELTA UPDATE(PITCH ANGLE : in FLOAT;

DEPTH CHANGE : in FLOAT;
HEADING : in FLOAT;
DELTAPOS : in out DELTA-TYPE) is

TWO PI : FLOAT := 6.2832;
DELTA LATIT, DELTALONGIT : FLOAT;
ADJACENT, DISTANCE, RADIANS : FLOAT;

begin
-- Calculate the distance travelled by examining the pitch

angle
-- and depth change to calculate the horizontal component
ADJACENT := SIN(PITCHANGLE)/COS(PITCH_ANGLE); -- Tan not

found
DISTANCE := DEPTHCHANGE/ADJACENT;

-- Determine the latitude and longitude components of the
distance

RADIANS := HEADING/TWO PI;
DELTALATIT := DISTANCE/COS(RADIANS);
DELTALONGIT : DISTANCE/SIN(RADIANS);

-- update the cumulative vector with the respective
components

-- of latitude and longitude change
DELTA POS.DELTALAT := DELTAPOS.DELTALAT + DELTALATIT;
DELTA POS.DELTALONG := DELTAPOS.DELTALONG + DELTALONGIT;

end DELTAUPDATE;

end DR;
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APPENDIX C

INTERRUPT ROUTINE MAJOR OPERATIONS

The development of the interrupt-driven routine for tracking gyro rotwtion was

outlined in Section IV.B.2.f.(3). This appendix provides specific details outlining the

implementation's four basic procedures.

A. INITIALIZE THE INTERRUPT ROUTINE

At the execution of the main procedure, 0-A host machine's interrupt vector table

must be adjusted. This permits the Sapphire interrupt input channel to trigger the

Gyro's service routine.

1. The initialization routine, INITDIGITALCOUNTER disables interrupts and

saves the current value of registers to be used during initialization.

2. Interrupt enable is programmed in the Sapphire board through bit 3

(hexadecimal value 8) of control register 1 (base offset + 2). Interrupt enable must be

reprogrammed after each interrupt by the interrupt service routine. The value of the

pitch count is inititalized to 0.

3. The interrupt vector table is set to respond to hardware interrupt level 7 (1R07)

by transferring control to the interrupt service routine PITCHCALC. The interrupt

number and effective address to which control must pass is added to the current vector

table.
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4. The current hardware level 7 interrupt vector is saved to be restored after

termination of SANS. The interrupt level to be replaced (OF hexadecimal corresponds

to IRQ7) is loaded into the lower half of the AX register (AL) and the function

number (35 hexadecimal for retrieve current vector) is loaded into the upper half of

the AX register (AH). AX contains the parameters for Disk Operating System (DOS)

function call INT 21. The result of the call is the current code segment address (CS)

returned to the ES register and program counter (IP) returned to the BX register

(ES:BX). These results are stored in the data segment for later restoration. [Ref. 20]

5. After the current vector for LPT1 has been saved, the new vector is loaded into

the interrupt vector table. This vector enables the interrupt service routine to be

accessed at each interrupt. The offset operator is used to determine the offset address

of the service routine PITCHCALC. This address is loaded as the new address for

the service routine in the interrupt vector table. To program the vector, the offset

value is loaded in the DX register and the code segment address (CS register) is

loaded in the DS register as parameters for DOS function call INT 21. Interrupt level

(IRQ7) is loaded in AL as before, and DOS function number 25 hexadecimal is loaded

in AlH as additional parameters for INT 21. The result is a new service address for

IRQ7 of DS:DX. [Ref. 20]

6. For IBM compatible architecture, the interrupt mask must be set in the 8259

programmable interrupt mask. The current interrupt mask is read from I/O port 21

hexadecimal. The value read from I/O port 21 is AND'ed with 7F hexadecimal (0111
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1111 binary), to reset IRQ7 (bit 7). This operation and is performed on the current

value and 7F hexadecimal to preserve all current interrupts while enabling the new

interrupt. The result is written to port 21 hexadecimal.

7. The contents of the registers are then restored, interrupts re-enabled and control

restored to the address in the base pointer.

B. IMPLEMENT THE SERVICE ROUTINE

1. After the interrupt vector table has been set, interrupts are handled by the

interrupt service routine. The current state of both inner gimbals input signals are

evaluated at each interrupt by reading the contents of the status register from Sapphire

base offset + 2.

2. The values of bits 5 and 6 are extracted by operation and with 30 hexadecimal

(0011 0000 binary). This makes all bits zero except bits 5 and 6 which retain their

value. The result indicates the current state.

3. This state is compared with the previous state recalled from memory to

determine if the state transition is valid as described by Figure 4.4. The cumulative

rotation since initialization is incremented/decremented as appropriate.

4. The interrupt service routine resets interrupt enable in the Sapphire board

through bit 3 of control register 1 for subsequent interrupts.

C. CURRENT-VALUE

The main procedure must be able to access the result of the interrupt service

routine's tracking of the gyro rotation. Ada function READPITCH interfaces with
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the assembly language procedure READPITCH which loads the current value of the

pulse count from the data segment into register CX. The contents of CX is the

function return value.

Whenever the gyro's CURRENTVALUE is required by the main procedure, the

pulse count (cumulative rotation since initialization) is determined by a function call to

READPITCH. The difference since the last update is applied as gyro rotation to

determine the new pitch angle.

D. RESTORE INTERRUPTS

Before program termination, the interrupt vector table s restored to its initial

condition through procedure RESTOREINTERRUPTS. This requires restoring the

interrupt mask and vector stored in the data segment at initialization to their initial

configuration.

1. Interrupts are disabled, register contents are saved and the data segment is made

visible.

2. The original interrupt mask is loaded from memory to the AX register. This

register's contents are written to port 21 to reconfigure the 8259.

3. The original interrupt vector table is restored by loading the original interrupt

vector address for IRQ7 from memory into the DX:DX register pair. IRQ7, which is

OF hexadecimal, is loaded in AL as before and DOS function number 25 hexadecimal

is loaded in AH as AX register parameters for DOS function call INT 21. The result

of the DOS operation is restoration of the original service address for LPT1. [Ref. 201
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APPENDIX D

STATE TRANSITION TRACKING ALGORITHM VERIFICATION

CASE 1 : clockwise rotation (the counter is incrementing).

The result should be 4 units of rotation (cý 0.4 degrees/unit.

IG-A IG-B PITCH COUNT STATE TRANSITION CASE
1 0 1 -
1 1 2 1

0 1 1 1 2
1 1 2 2 1
0 1 2 1 2
1 1 3 2 1
0 1 3 1 2

4 2 1

GIMBALS A 
L

GIMBAL-S B

INTERRUPT
INPUT

STATE 1 2 1 2 1 2 1 2

Figure DA Case I State Transitions
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CASE 3 : counter-clockwise rotation (the counter is decrementing).

The result should be -4 units from initial value.

IG-A IG-B PITCH COUNT STATE TRANSITION CASE
1 0 4 3
1 1 3 2 3
1 0 3 3 2
1 1 2 2 3
1 0 2 3 2
1 1 1 2 3
1 b 1 3 2
1 1 0 2 3

GIMBALS A

GIMBALS BL

INTERRUPT ff
INPUT iI __

STATE 3 2 3 2 3 2 3 2

Figure D.2 : Case 3 State Transitions
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CASE 1 to CASE 3 : reversal in rotation, clockwise to counter-clockwise.

The result should be 0, increment 2 then decrement 2.

IG-A IG-B PITCH COUNT STATE TRANSITION CASE
0 1 0 1 -

I 1 1 2 1
0 1 1 1 2
1 1 2 2 1
1 0 2 3 2
1 1 1 2 3
1 0 1 3 2
1 1 0 2 3

GIMBALS A

GIMBALS 13

I N I T E R R U P T __ _ _ U. ..__INPUT ILLJ_[LJJ_
STATE 1 2 1 2 3 2 3 2

Figure D.3 : Case I to Case 3 Rotation Reversal
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CASE 3 to CASE 1 : Revei-sat in rotation, counter-clockwise to clockwise.

The result should be 0, decrement 2 then increment 2.

IG-A IG-B PITCH COUNT STATE TRANSITION CASE
1 0 0 3
1 1 -1 2 3
1 0 -1 3 2
1 1 -2 2 3
o 1 -2 1 2
1 1 -1 2 1
0 1 -1 1 2
1 1 0 2 1

CtMBALS A

GIMBALS B

INTERRUPT r n•I.rL

INPUT

STATE 3 2 3 2 1 2 1 2

Figure D.4 : Case 3 to Case 1 Rotation Reversal
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CASE 0 : Gyro is stationary with noise in IG-A.

The result should be 0 (ignore noise).

IG-A IG-B PITCH COUNT STATE TRANSITION CASE
1 0 0 3 -

1 0 0 3 0
1 0 0 3 0
1 0 0 3 0
1 0 0 3 0
1 0 0 3 0
1 0 0 3 0
1 0 0 3 0

CUABALS A

GIMBALS B 8

INJTERRUPT 7

INPUT

STATE 3 3 3 3

Figure D.5 Noise in IG-A
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CASE 0 : Gyro is stationary with noise in IG-B.

The result should be 0 (ignore noise).

IG-A IG-B PITCH COUNT STATE TRANSITION CASE
0 1 0 1
0 1 0 1 0
0 1 0 1 0
0 1 0 1 0
0 1 0 1 0
o 1 0 1 0
0 1 0 1 0
0 1 0 1 0

GIMBALS A

GIMBALS B j~ ~ ~ 1 J
INTERRUPT
INPUT IL ~ j j

STATE 1

Figure D.6: Noise in IG-B
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CASE 0 : Gyro is stationary with noise in both channels.

The result should be 0 (ignore noise).

IG-A IG-B PITCH COUNT STATE TRANSITION CASE
1 1 0 2
1 1 0 2 0
1 1 0 2 0
1 1 0 2 0
1 1 0 2 0
1 1 0 2 0
1 1 0 2 0
1 1 0 2 0

GIMBAL.S A

GIMBALS B _ J
I I II

INTERRUPT
IN~PUT

STATE 1 1

Figure D.7 Noise in Both Channels
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CASE 4 : Gyro is stationary with noise in both channels.

The result should be 0 (ignore noise).

IG-A IG-B PITCH COUNT STATE TRANSITION CASE
1 0 0 3 -

0 1 0 1 4
1 0 0 3 4
0 1 0 1 4
1 0 0 3 4
0 1 0 1 4
1 0 0 3 4
0 1 0 1 4

GIMBALS A

GIMBALS B F -
(NTERRUPT__

INPUT

STATE 3 3

Figure D.8: Noise in Both Input Channels
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APPENDIX E

A. GPS MESSAGE TRANSLATION TEST CASES

The following is a typical 68 byte binary message with each byte
represented by its equivalent integer value :

64 64 66 97 Header
1 20 7 201 Date

19 39 6 0 14 12 23 Time
7 218 54 110 Latitude

229 217 60 97 Longitude
0 0 3 84 velocity
0 0 14 231 Heading
0 139 11 235 Height
0 73 0 PDOP/Type
4 4 Satellites/Tracked

15 8 96 128 Channel 1
25 8 112 136 Channel 2

0 0 0 0 Channel 3
29 8 107 136 Channel 4
14 8 112 136 Channel 5
0 0 0 0 Channel 6

32 Receiver Status
143 Checksum
13 10 End Delimiters

TEST CASE I

Header:
@ @ B a (This header corresponds to a
64 64 66 97 position format message and is

processed after storage)

Month Day Year (7 * 256 + 201 =1993)
1 26 7 201 => (January 26, 1993)

Hours/Minutes/Seconds and fractional seconds
19 39 6 0 14 12 23

=> 19:39:06.000920599

Latitude (in milliseconds)
7 218 54 110

(7 * 2exp24) + (218 * 2expl6) + (54 * 2exp8) + 110
=> 131,741,294

Longitude (in milliseconds)
229 217 60 97 => 3,856,216,233 > 2exp3l
(3,856,216,233 - 2exp32) => -438,748,063 (two's complement)
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Velocity Heading Height
0 0 3 84 0 0 14 231 0 139 11 235

PDOP (decimal value) PDOP type
0 73 0
(0 * 2exp8) + 73 = 73

Satellite status information
4 (visible) 4 (tracked)

ID mode strength flags
15 8 96 128
25 8 112 136
0 0 0 0
29 8 107 136
14 8 112 136
0 0 0 0

32 (receiver status) 143 (checksum)

13 10 <CR><LF> end of message delimiters

OUTPUT:
North 36.594803 degrees (131,741,294 milliseconds)
West 121.87446 degrees (-438,748,063 milliseconds)
PDOP : 7.3 (in decimal range 0.0 to 99.9 for Motorola)

TEST CASE II

Header corresponds to a satellite range format message. The
message is not processed after writing to non-volatile memory.

@ @ B g
64 64 66 103

Time (in seconds) Fractional seconds (in nanoseconds)
2 12 66 1 15 90 225

SVID Mode GPS Time Carrier/Code Phase
(Seconds/Fractional Seconds)

18 8 8 12 92 66 225 8 212 82 12 4 8 12 9 11 7
13 8 8 12 92 66 225 8 210 88 11 5 6 66 8 22 7

8 8 8 12 92 66 225 8 224 99 13 6 8 88 9 11 8
9 8 8 12 92 66 225 8 214 103 12 4 5 99 8 33 9

24 0 7 16 88 55 107 0 112 122 55 5 8 88 9 22 6
16 8 8 12 92 66 225 8 214 44 66 7 8 55 8 11 6

73 Checksum (Exclusive OR of all bits after @@)
13 10 <CR><LF> (Carriage Return/Line Feed) End Delimiter
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TEST CASE III

Only the latitude/longitude conversions are addressed henceforth.

Input:

Latitude (bytes 15-18)
255 218 54 125 (-2,476,329 milliseconds in two's
complement)

Longitude (bytes 19-22)
255 217 60 72
(-2,440,472 milliseconds in two's complement)

Output:

South -0.687869 degrees
West -0.677909 degrees

TEST CASE IV

Input:

Latitude
0 0 0 3 (000,000,003 milliseconds)

Longitude
0 0 0 4 (000,000,004 milliseconds)

Output:

North 0.0000000 degrees
East 0.0000000 degrees
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APPENDIX F

MOTOROLA ACQUISITION TIME
90 SECONDS OFF

50

45

40

36 5

S30 % NNW MEAN

2526.

20

15

10
"STANDARD DEVIATION 4.20

Figure F.1 : Motorola Acquisition Time After 90 Seconds Off

FIRST FIX ACCURACY (in meters)
90 SECONDS OFF

200

I rmin 6 .6 METERS

0 O

• gN N x

-100 9

-200
-200 -100 WNGITUDLPMEIA?10N 10 200

Figure F.2 : Motorola First Fix Accuracy After 90 Seconds Off
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MOTOROLA ACQUISITION TIME
10 MINUTES OFF
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Figure F.3 : Motorola Acquisition Time After 10 Minutes Off

FIRST FIX ACCURACY (in meters)
10 WKJTES OFF

200
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Figure F.4 : Motorola First Fix Accuracy After 10 Minutes Off
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MOTOROLA ACQUISITION TIME
30 MINUTES OFF
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Figure F.5 : Motorola Acquisition Time After 30 Minutes Off

FIRST FIX ACCURACY (in meters)
30 MINUTES OFF
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Figure F.6 : Motorola First Fix Accuracy After 30 Minutes Off
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MOTOROLA ACQUISITION TIME
ONE HOUR OFF
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Figure F.7 : Motorola Acquisition Time After One Hour Off
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Figure F.8: Motorola First Fix Accuracy After One Hour Off
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MOTOROLA ACQUISITION TIME
3 HOURS OFF
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Figure F.9: Motorola Acquisition Time After 3 Hours Off
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Figure F.10: Motorola First Fix Accuracy After Three Hours Off
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MOTOROLA ACQUISITION TIME
SIX HOURS OFF
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Figure F.II : Motorola Acquisition Time After 6 Hours Off
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Figure F.12 : Motorola First Fix Accuracy After 6 Hours Off
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