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A Kirchhoff approach to seismic modeling and
prestack depth migration

Zhenyue Liu

ABSTRACT

The Kirchhoff integral provides a robust method for implementing seismic
modeling and prestack depth migration, which can handle lateral velocity varia-
tion and turning waves. With a little extra computation cost, the Kirchhoff-type
migration can obtain multiple outputs that have the same phase but different
amplitudes, compared with that of other migration methods. The ratio of these
amplitudes is helpful in computing some quantities such as reflection angle.

Here, I develop a seismic modeling and prestack depth migration method
based on the Kirchhoff integral, that handles both laterally variant velocity and
a dip beyond 90 degrees. The method uses a finite-difference algorithm to cal-
culate traveltimes and WKBJ amplitudes for the Kirchhoff integral. Compared
to ray-tracing algorithms, the finite-difference algorithm gives an efficient imple-
mentation and single-valued quantities (first arrivals) on output. In my finite-
difference algorithm, the upwind scheme is used to calculate traveltimes, and the
Crank-Nicolson scheme is used to calculate amplitudes. Moreover, interpolation
is applied to save computation cost.

The modeling and migration algorithms here require a smooth velocity func-
tion. I develop a velocity-smoothing technique based on damped least-squares to
aid in obtaining a successful migration. This velocity-smoothing technique also
can be used to improve results of other migration algorithms, such as Gaussian
beam migration.

INTRODUCTION

Seismic modeling and migration play an important role in seismic data processing.
To treat complex media, one needs prestack depth migration that can handle lateral
velocity variation and reflector dips. Conventional techniques, such as the down-
ward continuation of sources and geophones by finite difference (S-G finite-difference
migration), are relatively slow and dip-limited. Compared to S-G finite-difference
migration, the Kirchhoff integral implements prestack migration relatively efficiently
and has no dip limitation.
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Bleistein et al. (1987) derived the Kirchhoff integral method by using the WVKBJ
approximation. This method treats amplitude in migration in a WKIJ-consistent
manner so that the output is the reflectivity function. Furthermore. Bleistein showed
that one can design weights in the Kirchhoff integral to determine quantities such
as the reflection angle, based on the stationary-phase principle. In Bleistein's inte-
gral formula, the integrand consists of traveltime, WKBJ amplitude, ray parameters,
and so on. Two commonly used approaches to calculate traveltimes and the other
quantities in the Kirchhoff integral are ray-tracing and finite-difference applied to
the eikonal equation. The ray-tracing algorithm calculates traveltimes and ampli-
tudes on each ray. Usually, the rays do not pass through output grid points, so we
need to interpolate to obtain traveltimes and amplitudes at the grid locations. This
interpolation is complicated when the raypaths have a caustic, and thus limits the
efficiency of the ray-tracing algorithm. In contrast, the finite-difference algorithm cal-
culates traveltimes and amplitudes directly at output grid locations. For caustics, the
finite-difference algorithm calculates the first-arrival traveltime and the corresponding
amplitudes.

Traveltimes satisfy the eikonal equation, and amplitude terms satisfy linear par-
tial differential equations that depend on traveltime derivatives. Van Trier and Symes
(1990) introduced a finite-difference scheme for solving this equation to obtain the
traveltimes and traveltime derivatives. Pusey and Vidale (1991) used a similar, ex-
plicit scheme to solve for the WKBJ amplitudes. For the explicit scheme, one has to
choose a small enough step size for a stability when the velocity function is varied. In
this paper, I use the Crank-Nicolson scheme to solve for the amplitudes. Compared
to the explicit scheme, the Crank-Nicolson scheme is second-order accurate and ab-
solutely stable so that computation cost is made relatively small for variable velocity
by choosing large step sizes.

Calculation cost of pointwise traveltimes and amplitudes by the above method
would dominant the total calculation cost of the Kirchhoff integral method. For cach
source or receiver, the calculation cost depends on the number of grid points. To
speed up the Kirchhoff integral method, I apply interpolation to avoid computation
on the entire grid.

A smooth velocity function is required by most migration algorithms. A few
methods for smoothing the model velocity have been developed in the past. The
windowed-averaging method, for example, calculates a smooth velocity value at one
point by averaging velocity values over a depth-midpoint window centered at this
point. If the original velocity is discontinuous, it is easy to show that the smoothed
velocity from the windowed-averaging method does not have the continuity of the
first derivative. Consequently, this method is not effective when the velocity has a
strong discontinuity. Here, I present a velocity-smoothing technique based on damped
least-squares. The curvature of the raypath is a key factor in migration imaging. The
smaller the curvature, the more stable the migration result. I derive a representation
for the curvature that depends on first derivatives of velocity. A smooth velocity
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function is sought that minimizes the weighted sum of (1) the deviation between the
smooth velocity and the original one, and (2) the first derivatives of velocity with
respect to spatial variables. I use the result that the reciprocal of the curvature of
the raypath is proportional to the velocity gradient. Therefore, my method may
remove migration artifacts by suppressing the curvature of the raypath. Moreover,
this method allows local variation in the degree of smoothing allowed by using a
window function, so that the velocity is smoothed more in rougher areas.

FINITE-DIFFERENCE ALGORITHM

The Kirchhoff integral method can be represented by

output = integral{weight • input }.

For modeling problems, the input consists of velocity layers, and the output is seismic
traces, for inversion problems, the input is seismic traces, the output is a structural
image. Both require common quantities to be calculated. These quantities include
(Bleistein, 1986):

r traveltime,
6 propagation angle,
a running ray parameter,
/0 incident angle from source or reciever,
a//Ox geometrical spreading parameter.

For each source or receiver, the above quantities satisfy the follow eqations:

197-2  + ( a z- 2  = 1 (1)

Ox
OU OT O4)a Or I R (3)
- ' + -' a =(3)

OxfOx Oz Oza#7 C-7 + o- o-r 0, (4)

L, ) + I I (x, z)• = 0,()50 ax3' Txr 1  ax]1 (5)
t "ce ioll. .. .

wherc z,(r, ;) is velocity and 3 :

a aT
;(x, Z) OFX I•T '[r1 -u.. . ..

........... ...... .. ...3I I

ifk .....
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Equation (1) is the eikonal equation. Equations (3) and (4) are derived by Pusey
and Vidale (1991). Equation (5) follows from equation (3). Van Trier et al. (1990)
used the efficient upwind scheme to solve this equation for traveltime and traveltime
derivatives. However, computation in Cartesian coordinates requires that tOr/Oz be
positive, so turning waves cannot be handled. Computation in polar coordinates does
not suffer this limitation. Let us introduce the coordinate transform

x = x, + rsinO, z = rcosO.

In polar-coordinates, equations (1) through (5) become

Or 2 1ar2 I

7r ) + T2 To = -v2(r,-)' (6)

sin(O- 8) TO) (7)

Oa OT 10aOr
OOr ar r2 00 00 -1, 

(8)

O9 Or 1 a,3 Or-. = o, (9)

9 ( ) + [(r,0)- LO 0, (10)

where
.s(r,0) = 2• [ r2j'

Although more computation is required in polar-coordinates, the boundary conditions
are more easily treated and, more importantly, we can handle turning waves.

The coefficient p of equation (10) is inside the differential operator. If an error
exists in numerical computation of p, the solution of equation (10) may suffer. Instead
of solving equation (10), I use an approximate formula

O,0 vor
=- cos(0- €), (11)TO0 a

where v0 is the velocity value at the source position. Formula (11), derived in
Appendix A. is exact for linear velocity. When velocity is strongly nonlinear, the
geometry-spreading factor based on formula (11) is not accurate. However, not only
the geometry-spreading factor but also the finite difference algorithm, which requires
that Or/Or be positive, suffers from strong-nonlinear velocity. The smoothing tech-
nique in this paper will produce a sufficiently smooth velocity to solve these two
problems.
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Crank-Nicolson scheme

Van Trier et al. (1990) gives an upwind finite-difference scheme for solving equa
tion (6). Also that scheme yields derivative values for use in equation (7). Pusey and
Vidale (1991) use a similar scheme to solve equation (8). Those upwind schemes are
explicit. Therefore, one has to choose a small enough step size for stability when the
velocity function is varied. In this paper, the Crank-Nicolson scheme is applied to
equations (8) and (9). Compared to the explicit scheme, the Crank Nicolson scheme
is second-order accurate and absolutely stable so that computation cost is made rel-
atively small for variable velocity by choosing large steps.

Let
_ #r i ar

P -- Tr 'q- =r2 _0 "

With the Crank-Nicolson approximation, equation (8) becomes

"+1 -ail2r +P 8 (o*+ -+ °- V + a - 0_1) = 1, (12)

and equation (9) becomes

'- (p3 3 +1 + p,) + 81 ""÷'t 0;_' + ji+1 - O!_) = 0, (13)

where j is the index of r, i is the index of 0, and Ar and AO define the grid cell sizes.

For each j, equations (12) and (13) are tridiagonal systems that can be solved
relatively efficiently.

INTERPOLATION TECHNIQUE

Calculation cost of pointwise traveltimes and amplitudes by the above method
would dominant the total calculation cost of the Kirchhoff integral method. For each
source or receiver, the calculation cost depends on the number of grid points. To
speed up the Kirchhoff integral method, I apply interpolation at two stages so as to
avoid computation on the entire grid.

One stage is the interpolation between the sources or receivers: I calculate trav-
eltimes and amplitudes only at selected sources or receivers, and then interpolate
traveltimes and amplitudes at the other sources or receivers. Suppose that the trav-
eltime functions r(x, z; x,) and r(x, z; x, 2) from two sources x,, and x,2 have been
calculated. I interpolate a traveltime function from source x, (x,, < X, < x, 2 ) by

r(x, z, x,) = Ar(x+ x,,-x$,z;x92 ) + (1- A)r(x+x.,-xx, z;x",)., (14)

where A = (x, - x,,)/(x,2 - x,). When the velocity is only depth-dependent, this
linear interpolation is exact because the traveltime is invariant for parallel movement;
i.e., for any h,

r(x + h, z; x, + h) = r(x, z; x,).
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For a general velocity function v(x, z), the interpolation error depends on dv/ax.
Reducing this error is one motivation for smoothing the velocity.

The other interpolation is between grid points. To save computation, I use a
relatively coarse grid in the traveltime and amplitude calculation. Then, to preserve
resolution, I use a finer grid for migration output with traveltimes and amplitudes
calculated by bilinear interpolation.

VELOCITY SMOOTHING

A smooth velocity function is required by most migration algorithms. Before a
smoothing technique is selected, it is essential to know how smoothness of velocity
affects migration results.

Numerous migration algorithms are based on ray theory (high-frequency assump-
tion). The smaller the curvature or the larger the radius of curvature, the better is
the quality of the raypath. Generally, a large curvature increases the sensitivity of
a raypath to the incident angle from the source, resulting in sparse raypath cover-
age. In addition, a large curvature may cause troubles in the imaging process. In
Gaussian beam migration, for example, traveltime at one point in the vicinity of a
central ray are calculated by projecting this point onto the ray and then by using
the Taylor series expansion. If the curvature of the ray is too large, the projecting
point is not unique and also the Taylor series expansion is inaccurate, so that a poor
migration result may suffer from the inaccurate calculation of the traveltimes. For
another example, the finite-difference method in this paper will fail if, at any point
of the raypath, there is more than a 90-degree difference between the ray direction
and the direction from the source position to this point. Therefore, control of the
curvature of the raypath is necessary. From Dohr (1985, p. 23), the curvature n can
be represented by

1 9v cos 0 Ov sin 0
,R = O z V (15)

where R is the radius of the curvature, v is the velocity, and 0 is the propagation
angle. Equation (15) shows that the first derivatives dominate the curvature of the
ray. Based on this characteristic, I used the damped least-squares method to calculate
a smooth velocity that has suppressed the first derivatives and, therefore, reduced the
raypath curvature. Use of a smooth velocity function is also required in the WKBJ
approximation and in the interpolation for traveltimes.

Let v(x, z) be the original velocity; then a smooth velocity v,(x, z) is determined
by

J (,o3(xa) Oxaz J x ( dx = min, (16)

J (V '(X, Z) _y,(X, Z)) 2 dz +a 2f w(X,) () dz = min, (17)
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where a., a. are the smoothing parameters and w(x, z) is a window function. The
window function, ranging from 0 to 1, allows local variation in the degree of smoothing
desired. Roughness of the original velocity function is usually not uniform, so one
can design a window function such that velocity is smoothed more in rougher areas.

Equation (16) smooths the original velocity along the x-direction, from which
£i(x, z) is obtained; equation (17) smooths i, (x, z) along the z-direction to get the
smoothed velocity v,(x, z). In the wavenumber domain and for w(x, z) = 1, the
smooth velocity can be determined by

V (ký, ký) (8
V,(k 2,k.) = (1 + +k (1

where V, and V are the Fourier transforms of v, and v respectively. Therefore, large-
wavenumber components are suppressed. In discretization, equation (18) becomes

V(k., k.)
V•(k,,k,) = (1 + 4(a,/ILx)2 sin2 (k,,Ax/2)) (1 + 4(a,/Az) 2 sin 2 (k:Az/2))' (19)

where Ax and Az define the grid-cell sizes. A proof of formula (18) and formula (19)
is in Appendix B. I define the unit of the smoothing parameters by

a. = AzX/2, a. = Az/2.

For such smothing parameters, the Nyquist-wavenumber components in x and z di-
rections, respectively, reduce by 1/2, i.e.,

V,(2/Ax,2/Az) = I V(2/Ax,2/Az).
4

The larger the values of a. and a,, the smoother will be v,(x, z) and the larger will
be the difference between v(x, z) and v,(x, z). The following formula may be used to
measure the difference between v(x, z) and v,(x, z):

f _ f2) (v(x, z') - v(x, z')) 2dz'dx (20)
f f0 v(x, z') 2dz'dx

Based on my experience,if e(z) is greater than 0.1, the smoothing parameters are too
large-the velocity is oversmoothed.

COMPUTER IMPLEMENTATION

I applied the modeling and migration method to synthetic models. Also, I tested
the effect of velocity smoothing on the Kirchhoff migration of this paper and Gaussian
beam migration.
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Synthetic Data

The first model shown in Figure la, consists of five reflectors, each with a dipping
and horizontal segment. Dips for the dipping segments range from 30 to 90 degrees in
15-degree increments. The velocity function consists of a linear function. v(z) = 1.5+z
km/s, plus a lateral variation that is cos(z (x- 1.5)) multiplied by a depth-dependent
function, as shown in Figure lb. The maximum lateral variation is 12 percent at
Z = 1 km. With the model and the velocity function, I generated two data sets:
zero-offset and an offset of 1000 m. Figures 2 and 3 show the modeling data and
inversion results for the two offsets. Because of the lateral variation in velocity, even
horizontal reflectors give curve events in the data. After migration, all reflectors,
horizontal through vertical, are imaged to their correct positions, for both the zero-
and nonzero-offset data. Figure 4 shows Gaussian beam migration result by using
the same zero-offset data. While both our method and Gaussian beam migration did
well, the Gaussian beam migration used 17 minutes on the IBM Risk System/6000,
and our method used 7 minutes, even though I used the prestack algorithm for the
zero-offset data.

The second example is on turning-wave migration. The model shown in Figure 5
is a single reflector, with a segment beyond 90 degrees. The velocity function is the
same as in the first example, shown in Figure lb. With the model and the velocity
function, I generated a data set with an offset of 500 m, shown in Figure 6a. After
migration, the reflector is imaged to its correct position shown in Figure 6b, even
for the segment beyound 90-degrees. This result shows that my method can handle
lateral variation in velocity and turning waves.

Smoothing test

The velocity model shown in Figure 7 consists of six constant-velocity layers and
the input zero-offset data for migration shown in Figure 8 were generated with this
model by the CSHOT program(Docherty, 1987).

Different smoothed velocity functions are used in Gaussian-beam migration that
is implemented by Hale's program (1992). Figure 9 shows the data migrated with
the unsmoothed velocity in Figure 7. The migration result is poor: low resolution
and migiration artifacts are in the first three reflectors, and the last two reflectors
are almost invisible. Figure 10 shows the data migrated with a smoothed velocity
(smoothing parameters ar = a, = 2.5). While it is much better than Figure 9, there
are still some artifacts. Figure 11, showing the data migrated with a more smoothed
velocity ( smoothing parameter a, = a, = 5), gives an improved structural image. If
too large smoothing parameters (a. = az = 20) are used, the migration result, shown
in Figure 12, deteriorates. One can see that the corners of the third reflector have
become too sharp, and the bottom reflector is no longer flat. Figure 13 shows the
data migrated with the smoothed velocity by the windowed averaging method. The
window size is selected so that the difference between the smoothed velocity and the
original one is about the same as that in Figure 11. Both the damped least-squares
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and the windowed averaging method improve structural images through smoothing
the velocity, but the former looks a little better than the latter. There is incoherence
on the vicinity of the right intersection between the first and the second interface in
Figure 13 compared to Figure 11. The selected parts are shown in Figure 14. From
this result, one may conclude that if the differences between the smoothed velocities
and the original one are the same, the damped least-squares method smooths velocity
a little more effectively, therefore, gives a slightly better result.

The velocity in Figure 7 has strong lateral variation. For this unsmoothed velocity,
the finite difference algorithm for the eikonal equation 6 will break down because
,9/az may not positive. Therefore, in order to implement the Kirchhoff migration
of this paper, the smoothed velocity is required. The least smoothing parameters for
this requirement are a. = a, = 14. Since the velocity is slightly oversmoothed. the
bottom reflector is not very flat. Furthermore, like other Kirchhoff migration methods,
the discontinuities in the bottom event of Figure 8 make strong diffraction smiles in
Figure 10 since large apertures are used. In contrast, Gaussian beam migration does
not suffer this problem.

Figure 16 shows the differences between the smoothed velocities and the original
one, which is calculated by using formula (20). The larger the smoothing parameters,
the larger the difference. This difference may help to choose suitable smoothing
parameters. For example, the difference for a,, = a, = 20 is greater than 0.1 from
which I conclude that the velocity is oversmoothed and then reject these smoothing
parameters.

CONCLUSION

The Kirchhoff integral provides a powerful tool for modeling and migration. In this
paper, a finite-difference algorithm is used to calculate traveltimes and amplitudes.
With the help of interpolation, this method can be efficiently implemented. The result
on the synthetic data shows that this method can handle lateral variation in velocity
and turning waves. One limitation is that the Kirchhoff method cannot efficiently deal
with caustics in the Green's functions of the integration operator and multiple-arrival
times. Another is that this method needs a sufficiently smooth velocity function.
When velocity has a strong lateral variation, the eikonal equation cannot be solved
by this method. This difficulty may be solved through uAng smoothed velocity.
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APPENDIX A: GEOMETRIC-SPREADING FACTOR FOR LINEAR
VELOCITY

Firstly, I assume that the velocity is

v(z) = vo + az.

Following from formulas in Bleistein (1986), I find

x - X, = -- (Cos 3 - Cos (A-i)
asin/o

and
vo(cosL3 - cos,)

a sin2,3 (A-2)

From Snell's law

sin/# sin4€

I have
d-" = : 4z)cos- 3 (A-3)

By using the Snell's law and equation (A-I), I obtain

x - x, !=L cot fi - cot . (A-4)
a a
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FIG. 1. (a) Subsurface structural model used to generate synthetic seismic traces.

(b) Velocity model. The darker shading denotes higher velocity.
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FIG. 2. (a) Zero-offset data for the model in Figure 1. (b) The IKirchhoff migration
of the data in (a), with velocity model in Figure lb.
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FIG. 3. (a) Nonzero-offset data (offset=1000 m) for the model in Figure 1. (b) The
Kirchhoff migration of the data in (a), with velocity model in Figure lb.
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FIG. 4. Gaussian-beam migration of the data in Figure 2a.
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FIG. 5. Subsurface structural model used to generate turning waves.
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FIG. 6. (a) Data (offset=500 m) for the model in Figure 5. (b) The Kirchhoff
migration of the data in (a), with velocity model in Figure lb.
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FIG. 7. True velocity model in smoothing test. The darker shading denotes higher
velocity.
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FIG. 8. Zero-offset synthetic data generated with the velocity model in Figure 7.
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Midpoint (m)
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3000

FIG. 9. Gaussian beam migration with the unsmoothed velocity model in Figure 8.
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0
1000-

E

•.2000-

3000-

FIG. 10. Gaussian beam migration with a smoothed velocity model. The smoothing
parameters a-, = CL = 2.5. The velocity is undersmoothed.
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Midpoint (in)
2000 4000 6000

1000

E

2

FIG. 11. Gaussian beam migration with a smoothed velocity model. The smoothing
parameters a, = ,= 5.

Midpoint (m)
2000 4000 6000

0

1000

3000

FIG. 12. Gaussian beam migration with a smoothed velocity model. The smoothing
parameters a, = a. = 20. The velocity is oversmoothed.
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Midpoint (m)
2000 4000 6000

3000

FIG. 13. Gaussian beam migration with a smoothed velocity model. The velocity is
smoothed by the windowed averaging with the window size of 9 points.

MiWPOc (m) Wcb (M)
4000 5000 40W 5000

IOD I

FIG. 14. Selection form Figure 11 and Figure 13. The left one is from Figure 11 and
the right one is from Figure 13.
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Midpoint (m)
2000 4000 6000

I,

2000

FIG. 15. Kirchhoff migration with a smoothed velocity model. The smoothing
parameters a. = a= 14. The velocity is slightly oversmoothed.

0.15

0 0.10-

SO~x.=a..a= 1

a,

0
0 1000 2000 3000

Depth (m)

FIG. 16. The relative rms-differences between smoothed velocities and the true ve-
locity. Four solid curves denote the smoothed velocities by the damped least-squares.
The dashed curve denotes the smoothed velocity by the windowed averaging.

20



Liu Modeling and Migration

Taking the derivative with respect to 13 and using equation (A-3) gives

Ox VO v(z) d' ko v2 (z) cos3 0 (cos3 - coso)2- =+ - _ _ _ _ _ _ _Sn 2s-0i id2 0 COS -- n+
0 a sin d a sin 3 avsin2 coso asin2 3cosO

Therefore,
Ox 01-2 ; (A-5)

-• Vo cos~

i.e., OB V0 COS (P

09 = COS (A-6)Tx or

From equation (4),

013 _0/3 r arov 1
0- T - - tan,

The above formula and the chain rule for partial differentiation give

090 090 Ox OI Oz 0( r cos( - p)A-. + = - - cos= + rsiOS0 + r sin tan) cos() (A-7)
Tx co Tx5- a 0CS(

Finally, substituting equation (A-6) into (A-7), I obtain

013 rvoo~ = rvo COO( - 0). (A-8)

When the velocity is a linear function of x and z, there is a rotational transfor-
mation around the point (x, 0) such that the velocity is a linear function of z in the
new coordinate system. Also it is easy to show that equation (A-8) is invariant under
the rotational transformation.

APPENDIX B: SMOOTHING IN WAVENUMBER

By using the Euler's formula from the calculus of variations, we change (16) into
a differential equation for i3,(x, z):

3, (x, z) - v(x, z) - a2 a2-.-I = 0. (B-1)

Taking the Fourier transforms with respect to x and z gives the solution in the
wavenumber domain

F, (k•,k,) = v(k,,kz)/(1 + a2k2).

Similarly,
v,(k., k,) = v, (k,,, k.)/(1 + c2k2).
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So

v. (k..., k,) = +v(k,k.)•.(.,k) =(1 + a•k2)(1 + Cj2k2•t•.(i+ck.) (B-2)

In discretization, the second derivative can be approximated by

&2T), y, (x + Ax, z) - 2), (x, z) + V, (x - Ax, z)
ýX-2 (Ax) 2

whose Fourier transform with respect to x is

4 sin 2(k, Ax/2)

(ax)2 (kz).

Using this formula and taking the Fourier transforms with respect to x and z in (B-i)
give the solution in the wavenumber domain

kv(k, k,)
1 + 4(aI,/A.) 2 sin2(k,,Ax/2)"

Similarly,
v,(k.,k.) =1 (k, IC2)

1 + 4(a/Az) 2 sin 2(k.Az/2)"

So

v.(k.,Ik) 2 v(k.,k,)

(1 + 4(a,/Ax) 2 sin2 (k.zx/2)) (1 + 4(i./Az) 2 sin 2(k.Az/2)) (B-3)
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