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1. Introduction

1.1 Overview

Transit [Knight 891 is a high performance network for large scale MIMD computers.

Transit is intended to provide the underlying network support for a wide range of parallel
processing paradigms including message passing, shared memory, and dataflow. Tran-

sit provides low-latency interconnect between processors via an indirect circuit switched

network. The network is constructed as a bidelta multi-stage shuffle exchange network
[Kruskal 861 utilizing 4 x 4 crossbar routing elements. The Transit bidelta network allows

connections between source and destination to be made through a few routing stages for
moderate size networks. In order to provide fault-tolerance and improve network routing
efficiency, redundant paths are provided through the network. Routing switches a-c kept
simple, and thus fast, by implementing a source responsible connection protocol: this frees

the individual routing elements from the complexity of collision avoidance.

For moderate sized networks (i.e. 64 to 256 processors), the bidelta retwork construc-
tion keeps the delay uniformly small between all processors in the network. Additionally.
using three-dimensional wiring strategies, the size and wire length can be kept reasonably
small. This allows the network to be constructed in a singie physical package within current

technology limitations.

Scaling to larger network sizes by simply extending this, strategy leads to a few difficul-
ties. Network delays become uniformly large. The networiý itself becomes large enough that
it must be divided into multiple parts for packaging. In addition, wire lengths grov 'uch
that reducing the clock rate of the system, due to wire delays, becomes a serious concern.

To avoid this uniform performance degradation, I propose a scheme for constructing
larger networks using Leiserson's volume-universal fat-tree network [Leiserson 851. In this

manner, locality can be exploited to provide short interconnect between closely situated
processors; at the same time, interconnection between more distant processors is still possi-
ble without significant performance reduction from that of the bidelta network. The fat-tree
network also allows the network to be decomposed into constituent elements for packaging

in a straightforward manner.

The extension to a fat-tree network scheme primarily impacts interconnection topology
and routing schemes. I describe how the fat-tree routing network can be realized utilizing
the existing Transit routing element and packaging technology. This extension can be
impl,.mented with minor revisions to the Transit routing component.

In the remainder of this chapter, I briefly review the relevant properties of Transit
(Sections 1.2 through 1.5) and fat-trees (Section 1.6). In Chapter 2, 1 develop some of the
topology issues for building the fat-tree network structure. Chapter 3 follows providin6,
concrete possibilities for the realization of the fat-tree network. Chapter 4 then proceeds to
quantify some ,rthe properties of the network and compares it with Transit bidelta networks

I
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Figure 1.1: Network Processor Interface

of comparable size. Finally. Chapter 5 closes with conclusions and future directions.

1.2 Processor Network Interface Model

The development provided throughout this paper is concerned entirely with the con-

struction of interconnection networks. In order for the network to be useful in the context

of a large scale parallel computer, it must interface coherently with its set of processors.

The network processor interface is shown in Figure 1.1. Each network endpoint is a pro-

cessor with its own local memory and a cache-controller for maintaining its local cache

and keeping the cache coherent with the rest of the network. Each processor has a pair of

inputs and a pair of outputs to the network. Transit design intends the cache-controller to

serve as the processor's interface to the network so that the processor need not explicitly

deal with network interactions; however, this is a separate architectural issue and need not

necessarily be the case.

The network input and output connections are paired for fault tolerance and improved

routing success probabilities. Fault tolerance issues are discussed further in Section 1.5.

The processor will generally only use one of its two inputs to the network, guaranteeing

that the network will never be loaded above 50%.

1.3 Routing Component

Basic switching is provided by the routing element, RN1. This is a custom CMOS

routing component designed to provide simple high speed switching. RNi has eight nine-bit

wide input channels and eight nine-bit wide output channel. This provides byte wide data

transfer with the ninth bit serving as a signal for the beginning and end of transmissions.

2
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RNl can be configured in one of two ways as shown in Figure 1.2. RNlIs primary
configuration is as a 4 x 4 crossbar router with 2 equivalent outputs in each logical direction.
In this configuration, all 8 input channels are logically equivalent. Alternately, RN1 can be
configured as a pair of 4 x 4 crossbars, each with 4 logically equivalent inputs and a single
output in each logical direction.

Simple routing is performed by using the first two bits of a transmission to indicate the
the desired output destination. it an output in the desired direction is available, the data
transmission is routed to one such output. Otherwise, the data is ignored. In either case,
when the transmission completes, RN1 informs the sender of the connection status so that
the sender will know whether or not it is necessary to retry the transmission.

To allow rapid responses to network requests, RN1 allows connections opened over the
network to be turned around; that is, the direction of the connection can be reversed
allowing data to flow back from the destination to the source processor. The ability to turn
a network connection around allows a processor requesting data to get its response quickly
without requiring the processor it is conmnunicating with to open a separate connection
through the network.

Since RN1 always looks at the most significant two bits of the frst byte of a transmission
to determine switching direction, it is necessary for the bits within this byte to be rotated
between network stages. This rotation guarantees each network stage a fresh set of bits
from the routing byte. The rotation property must be provided by the network wiring
scheme in which RNI is used.

When configured as a 4 x 4 crossbar with two outputs in each logical direction, RN1
provides redundant paths through the network since it provides multiple outputs in each
logical direction. This serves to increase both fault tolerance and the probability of routing
success. When both logically equivalent outputs are available, RN1 randonly selects one of
the two for use. In this manner, networks built from RNI will have a level of fault tolerance
in that multiple attempts to send a transnmission through the network will most likely take
separate paths through the network. The random selection of the preferred output port
in each direction gives transmissions a good chance of avoiding any faulty component(s)
entirely in successive connection attempts.

The alternative configuration for RN1 as a pair of 4 x 4 crossbars is provided for further
fault tolerance. As Section 1.2 described, there are two outputs from the network for
each processor. Using only the standard RNI configuration, these two outputs would
have to come from a single routing component making that routing component critical to

3



372 contact chip carrier package
- 1.400

Or00000000000 O0 O0 00000

0 0 000000000000000000000 000
0 0000000000000000000°o°00O°°°00°°°°0°°°O ° 00 Coolant

00 0 0 00O 0O 0O0 •t

Bypass 0 0 0 0 0 Channels
Capacitors 0 0- 0 -_o o o o0000 0

00 0 0
Capaitor 0 00 0 - 0 0 00

0 -0 - 0 0 0 0
0000 0

0000 0 0

0 0 0 0 0 00 000
0 0 0 00 0 000 

0000
00 00

0 0 0

all -0 0

-000000000000 00 0000

5Oi 0 0 0
petcdeht0000 0000000000 00 00

50 mil -7o7 0200 0 00 00 000

00-000-00000-000-0000 0 000 0pitch 0 00o000000000000000000 0 Alignment
0 0 0 00 0 0 0 0 O0 O 0 0 a 0 000 H oe

Heat Sink

Figure 1.3: RN1 Package (Diagram courtesy of Fred Drenckhahn)

the proper functioning of the network [Leighton 89-21. With this alternate configuration,
the two outputs from the network for each processor can come from two different RN1
components so neither component is critical. Section 1.5 explains this fault tolerance issue
in the context of the Transit bidelta networks.

The Transit routing component is described further in [Knight 891 and (Minsky 90].

1.3.1 Physical Description

RN 1 will be packaged as a pad grid array with all signals appearing on pads on both
sides of the package. Figure 1.3 shows a top and side view of the RN1 package. A total of
76 periphery pads will provide through routing conduits for signals. Holes in the package

are provided for packaging alignment and coolant flow. Since RNl is designed to drive
144 signal pins simultaneously at 100MHz, provisions for liquid cooling are essential. The
target physical statistics for RNI are summarized in Table 1.1.

4



Clock Rate 100MHz
Size 1.4" x 1.4" x 0.11"
Signal Pins 150+
Through Routing Pins 76
Total Contacts/Side on RN1 package 372

Table 1.1: RN1 Physical Statistics

1.3.2 Routing to more than 256 destinations

Using the first byte to specify routing destinations as described above becomes linmit-
ing when attempting to address a large number of destinations. A single byte can only
distinguish 256 distinct destinations.

To address this potential problem, RN1 has a provision for dropping the leading byte
of a stream of data before looking at it. It then uses the remainder of the stream as if the
first byte never existed. Thus, RN1 starts using the new routing byte, which was originally
the second byte in the message, at the stage where the first was dropped. By properly

designating the stages in the network at which components should drop, or swallow, the
first byte in this manner, we can specify arbitrarily many distinct destinations.

This swallow property of a network routing stage is a static property. In the simply case
of bidelta networks, the swallow property can be set on a per chip basis, since all inputs
to a network stage will need fresh routing bytes at the same time. For full generality in
the networks considered here, it is beneficial to be able to configure this property on a per
input basis. This allows a single routing component to have inputs that connect to paths
of varying lengths.

1.4 Construction Technology

The basic unit of network packaging for Transit is the stack. A stack is a three-
dimensional interconnect structure constructed by sandwiching layers of RN1 routing coni-
ponents between horizontal pc-board layers. The pc-boards perform inter-stage wiring and
the bit rotations described in the previous section while the routing stages provide switch-
ing. Figure 1.4 shows a partial cross-section of a stack. The dominant direction of signal
flow is vertical as connections are made vertically through the stack. At each horizon-
tal routing layer, each path through the network will make a connection through a single
routing component. Between routing layers, the connection is routed horizontally to the
appropriate routing component in the next layer.

When the transmission reaches the top of the routing stack it is brought straight down.
back through the stack, to connect to the destination processors. This is necessary because

the set of source and destination processors will normally be the same. All routing through
the layers of routing components is provided by the through routing pins on the RN1
package as described in the previous section.

5
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Contact is made between the routing components and the horizontal pe-boards through

button board carriers. These carriers are thin boards, roughly the same size as the routing

chip, with button balls [Smoley 856 aligned to each pad on the routing chip. These button
balls are 25 m-icron spun wire compressed into 20 rail diameter by 40 nmil high holes in the

button board connector. They provide multiple points of contact between each routing

component and horizontal board when the stack is compressed together; in this manner

they effect good electrical contact without the need for solder. This allows ease of packaging

construction and component replacement.

Channels are Provided both in the stack and through each routing component for liquid

cooling. FCC-77 Fluorinert will be pumped through these channels to provide efficient heat

removal during operation.

At the targeted clock rate of 100MHz for network operation, wire delay consumes a

significant portion of the clock cycle. Thus, the physical size of the horizontal routing

I I i i I I I I i6



boards is an important consideration for network performance. Additionally, with current
technology for fabricating pc-boards, it is not possible fabricate pc-boards any larger than
2' x 2' with reliable yield.

Using 12 layer pc-boards for the horizontal routing, a stack is expected to have a side
length of roughly: 2 x (chip side length) x (number of chips across side). Each layer, in-
cluding pc boards, routing components, and connectors, will be 0.25" tall. The height of a
stack will be roughly: 0.25" x (number of routing layers).

A more detailed description of Transit packaging technology is given in [Knight 89].

1.5 Fault Tolerance in Bidelta Routing Stacks

The network interface model described in Section 1.2 along with the properties designed
into RN1 allow a reasonable level of fault tolerance to be built into Transit bidelta networks.

Two inputs are provided from the processor or cache-controller to the network. The
processor is expected to utilize only one of these two inputs at a given point of time. Leaving
the second input unused guarantees that the network will never be congested above the 50%
level (Section 1.2). Allowing the processor to chose which of the two inputs to the network

to actually use at the beginning of each network transaction, prevents a single link between
the processor and network from being critical to the processor's ability to communicate
over the network. When two inputs are provided to the network through separate routing
components, we guarantee that no single component failure will isolate a set of processors
from the network.

Within the network, the standard RN1 configuration provides multiple outputs in each
logical direction. This allows the number of different paths through the network to expand.
No single routing component in the interior of the bidelta network is critical since there

is a complete path from each source to each destination which avoids any given routing
component.

The final routing stage of the bidelta network is constructed with the RN1 routing
components configured in the alternative manner in which RN1 acts as a pair of single

output 4 x 4 crossbars. In this way, the final switching stage for the pair of outputs
destined to the same processor can be distributed across two different routing components.
Since any connection to a given processor could be routed through either output. and hence
either of the two routing components in this final stage, neither of the routing components
is critical.

A mc:e detailed description of this scheme for achieving fault tolerance in multistage
networks is given in [DeHon 90].

1.6 Fat-Trees

Fat-Trees are universal routing networks for interconnecting processors in a multipro-
cessor environment [Leiserson 85]. Fat-Trees interconnect processors using a complete tree
structure. The processors are located at the leaves of the tree while the tree's internal nodes
compose the interconnection network. Fat-Trees parameterize the bandwidth between in-
ternal nodes according to their distance from the root node. In general, nodes closer to
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Figure 1.5: Area-Universal Fat-Tree with Constant Size Switches (Greenberg and Leiserson)

the root have greater bandwidth to accommodate additional message traffic. Connections

between processors within a sub-tree can be made without consuming bandwidth higher
in the tree. This allows locality to be exploited while reserving critical "long distance"
bandwidth for connections between widely separated processors. A fat-tree achieves these
properties with only a linear increase in the number of routing stages that must be traversed
in the worst case over a comparably sized bidelta network.

Fat-Trees are of particular interest because they can be area- or volume-universal when
the bandwidth growth toward the root is selected properly. A fat-tree is volume-universal

if it can simulate any other network constructed from the same amount of hardware with at
most a polylogarithmic slowdown. This property guarantees that the hardware dedicated
to constructing the routing network can be utilized efficiently.

In [Greenberg 85] Greenberg and Leisers,.,: nropose the area-universal fat-tree shown
in Figure 1.5. The fat-tree shown demonstrates a basic construction structure for fat-
trees using constant size switching elements. The internal ri)de capacity doubles on each
successive level toward the root. This average capacity growth is sufficient to guarantee
area-universality for a quaternary fat-tree.

Fat-Tree networks were developed by Charles Leiserson. He provides a detailed de-
scription in [Leiserson 85] as well as proofs for the universality properties of fat-trees. In
[Greenberg 85], Leiserson and Greenberg expand the generality of fat-trees by proving that
the universality properties hold for on-line routing algorithms.
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2. Basic Configuration

2.1 Hybrid Fat-Tree Approach

The fat-tree network structure will be used to interconnect small Transit bidelta routing
networks. That is, the leaf nodes of the fat-tree will themselves be bidelta networks rather
than individual processors. This allows a moderate number of processors to be clustered
together and share uniformly short interconnection paths amongst themselves. All these
bidelta clusters are then interconnected through the fat-tree network allowing locality to
be exploited between adjacem clusters while making it possible for any pair of processor to
comnmunicate in a moderately efficient manner.

The ternminal clusters are built in stacks much like the standard Transit bidelta net-
work stacks. The only difference is that a bidelta cluster stack must have some bandwidth
between itself and the fat-tree network rather than dedicating all bandwidth in and out
of the stack to processors. This can be done in a straightforward manner as shown dia-
grammatically in Figure 2.1. The processors connect to the bidelta network, but instead of
consuming all of the bandwidth into the first stage of the bidelta network, they consume
only three-fourth of the bandwidth. The first routing stage routes in four logical directions
as before. However, only three of these directions route to further switching stages in the
bidelta cluster. One of the logical destinations out of the first routing stage connects directly
to the fat-tree network. Thus. the remaining routing stages will only be three-quarters the
size of the first routing stage since one-quarter of the interconnect bandwidth leaves the
stack after the first routing stage.

To Fat-Tree Network
m

M/3
Local

Cluster
Routing

first routing stage

From Fat-Tree Network

- Processors Local to Cluster

Figure 2.1: Bidelta Cluster at Leaves of Fat-Tree
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2.1.1 Allocation of Bandwidth to and from Fat-Tree

In the manner described, the fat-tree network consumes one-quarter of the total band-
width into and out of the bidelta routing stack. Clearly, the one-quarter of the bandwidth

from the first stage of routing to the fat-tree network must come from all the routing com-
ponents in the first stage. Naively, it would be possible to connect the bandwidth back from
the fat-tree network to the bidelta cluster to any of the inputs of the first stage routing
components as all these inputs are logically equivalent; however, it turns out that many
possible configurations prove not to be optimal.

One extreme would be to connect all the input to the bidelta cluster from the fat-tree
network to all of the inputs of one-quarter of the routing elements in the first stage. This
would be non-optimal in terms of fault-tolerance because an unfortunately placed single
chip failure in this first routing stage could eliminate 8 of the inputs from the fat-tree

network. In terms of routing, this would be wasteful of bandwidth to the fat-tree network.
The outputs from the first routing stage to the fat-tree network that come from the set of
routing components with all their inputs origination from the fat-tree network would be
unused. This results because there is no reason to route a connection through a leaf node.
Clearly, this extreme is undesirable.

The alternate extreme is to distribute the bandwidth from the fat-tree network to the

cluster over all the routing components in the first routing stage. In this scheme, each
routing chip in the first stage has 2 of its 8 inputs connected to the fat-tree network. A
single chip failure will always reduce the bandwidth from the fat-tree network to the bidelta
cluster by two. Through each routing component at most six of the inputs will need to
be switched in the direction of the fat-tree network. Given even connection frequency
distributions across all processors of requests requiring the fat-tree network, each pair of
outputs to the fat-tree will be equally loaded.

A brief consideration of alternatives between these two extremes makes it clear that
the later extreme is the most equitable distribution. Any configuration between these
two extremes would make it more likely for some processors to be able to make a non-
local connection than others. Similarly, any scheme other than the later extreme would
necessarily lose more bandwidth due to a worst-case single chip failure. Thus, the most
equitable configuration is the one in which all the bandwidth between the fat-tree network
and the bidelta cluster is evenly distributed over all the routing components composing the
first stage of routing in the bidelta cluster.

2.1.2 Fault Tolerance

The bidelta leaf cluster is configured for fault tolerance in the same manner as Transit
bidelta networks (Section 1.5). The pair of inputs from each processors should be dis-
tributed to different routing components. All but the final stage of routing is provided by

RNl components in the standard 4 crossbar configuration with 2 outputs in each logical
direction. The final output stage is constructed with the RN1 components configured in
the alternate manner such that each processor receives its pair of network outputs from
two distinct routing components.

10



Figure 2.2: Logical Topology of Quaternary Tree

2.2 Fat-T'ree Topology

2.2.1 Quaternary Tree

The appropriate fat-tree to construct using RNl is logically a quaternary fat-tree (Fig-

ure 2.2) as opposed to the binary fat-trees prevalent in the literature. This is the natural

selection since our routing component is a 4 x 4 crossbar switch. Using less than four direc-

tions would require overspecifying every routing path through the network since two logical

output ports from a routing chip would actually be going in the same logical direction.

Similarly, constructing a tree with a branching factor greater than four would require mul-

tiple stages of routing components to construct each virtual routing stage. The quaternary

tree, of course, has fewer levels of routing for a given network size than a comparable binary

tree.

2.2.2 Separate Up and Down Trees

The logical structure of a fat-tree as described in [Leiserson 85], [Greenberg 851, and

elsewhere integrates up and down routing into a single tree. For construction purposes based

on the Transit routing components and technology, it is preferable to actually construct

this logical structure with the up and down routing trees separated. Lateral connections

are provided between the two routing trees at every level to allow connections to cross-over

from the up routing to the down routing tree as soon as appropriate.

2.2.3 Structure

Thre fat-tree structure will be constructed in three-dimensional space. A separate plane

is allocated for each tree level. One way to view this, is to take the logical structure shown

in Figures 2.2 and raise each internal tree node up to a plane equivalent to its height in the

tree. Figure 2.3 shows this three-dimensional mapping of the tree structure.

11



Figure 2.3: Three-Dimensional View of Tree Structure

2.2.4 Upward Routing

RN1 is a crossbar switching element. Since RN1 has multiple outputs in each logical
direction, it does some amount of concentration. Its primary strength, though, is in routing.
We can take advantage of this by routing in the up tree as well as the down tree. Rather
than actually going through every logical tree level on the journey up the tree to the desired
height, some routing is done to allow the up routing path to short-cut around some tree
stages. With this short-cutting, we don't need an up routing stage for every level of the tree.
Using RN1 which distinguishes four routing directions, each up routing stage can route a
connection to one of the next three lateral crossovers in the tree or to the next up routing
stage in the tree. The next up routing stage will perform similarly. In this manner, one up
routing stage is needed for every three levels of the tree. Figure 2.4 shows a cross-sectional
view of an upward router and its logical connections to components in the up and down
routing trees. This cross-section spans three logical tree levels which are realized as one
physical up routing stage and three physical down routing stages, the cross-section shows
only a single component at each up and down routing stage.

Utilizing the routing capability of RN1 in this manner, routing up the fat-tree is accom-
plished in at most 4 stages as opposed to the log4 N that would be required if no routing
were performed in the up tree. At the same time, RN1 still performs some concentration
at each upward routing stage but not full concentration.' That is, at each stage in the up
routing tree, all inputs destined for the same parent node cannot end up on any wire in

'Leiserson did point out that if the routing component were modified slightly to allow a specification of
"route to height z" in the fat-tree in addition to "route in direction y" it would be possible to specify large
heights in the fat-tree with only a small number of bits and offer more freedom in terms of concentration
and bandwidth allocation [Leiserson 89].

12
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Figure 2.4: Cross-Section View of Up and Down Routing Trees

the up the tree connected to that parent node. Each up routing stage allows a given input

wire to be connected to any of two wires in each logical direction when wired properly; a

concentration of two is effectively achieved at each upward routing stage. The best known

means of achieving full concentration at each stage will cost O(log N) time and hardware

[Ajtai 83] (Cormen 86] whereas RN1 performs its limited concentration in constant time

and hardware. In this manner, the concentration in this fat-tree configuration is much like

the fat-tree with constant size switches of Leiserson and Greenberg [Greenberg 85] shown in

Figure 1.5. The number of signals into each level up the fat-tree does grow because fan-in
occurs from more and more stages.

Figure 2.5 shows what the up tree connections look like in three dimensions. The routing

components are at the base. The connections to further up routing stages are shown straight

up from each routing component. Figure 2.6 shows horizontal cross-sections of Figure 2.5

to make the convergence and routing clear. Layer 0 is the layer of routing components.

Layers 1 through 3 show where the logical connections frem each routing component fan-in

to the lateral connection of the next three crossover stages. The fourth logical connection

out of the routing components, of course, connects directly upward to the next up routing
stage.

Quick Routing for Very Large Systems
It is actually possible to do better than the 04 N stages of up routing just described.

By using a series of routing stages to switch a connection to the maximum height up the

tree to which it needs to be routed, the connection to the appropriate lateral crossover
between the up and down routing tree can be made in log 4 of number of levels in tree.

Since there are log4 (N) levels in the tree, this means only log 4 log4 (N) stages are needed

13
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Figure 2.5: Three-Dimensional View of Connections from One Up Routing Stage

to perform upward routing.2 In essence, this routing scheme builds a bidelta network from
the processors to the various tree levels. Figure 2.7 depicts how an bidelta network can be
used to reach any height in a tree of depth 16 in only 2 stages of routing.

However, this up routing scheme is only of interest when the fat-tree has a large number
of tree stages. In essence, we are already getting the benefit from this scheme achievable
when the size is on the order of 4 levels. The point where it actuall3 becomes interesting
to use this scheme occurs when the number of levels is roughly 4 x 4 = 16. In our scheme
however, 16 tree levels implies a network supporting 416 bidelta clusters each with 48 to
192 processors. Thus even in the the smallest case we will have 3 . 41 or about 200
billion processors. The capacity analysis and geometry requirements for this case are not
considered here since this is clearly not a scheme of current practical interest.

2.2.5 Down Routing

The down routing path is simply the straight-forward tree structure. Each down routing
stage switches in four logical directions among its four sub-trees. The logical down routing
path looks just like the logical tree structure shown in Figure 2.3. Most of the inputs to a
down routing stage come from its parent in the fat-tree. The rest of the inputs come from
the lateral cross-over from the up routing tree as described in the previous section.

2.2.6 Desired Capacity Growth Rate

One of the nice properties which fat-trees can have is volume-universality. This prop-
erty essentially states that a fat-tree fat-tree can efficiently simulate any other network of

2 N.B. It will always take this many stages regardless of the height routed by such an up routing tree.
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Figure 2.6: Horizontal Cross-Sections One U~p Routing Stage

comparable volume with at most a polylogarithmic slowdown [Leiserson 851. Additionally.

volume-universality implies that larger fat-trees can be created by simply adding levels and

scaling the fat-tree structure in the three-dimensional world.

To astare volume- universality, the bisection bandwidth must be properly correlated

with the volumes contained within each portion of the network. For three dimensional

structures, bandwidth into a volume is generally proportional to the surface area of the

enclosed volume; this volume will in turn be proportional to the number of terminal nodes

or network end points from which the volume is composed. Thus we assume:

"• Volume = v, rx network endpoints.

"• Bandwidth oc Surface area = a
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* Surface area I a ýx ( r)2

Using v as some measure of the number of network endpoints, and a as some measure of the
network bandwidth, the important relation is a cx (C/t)2. If we assume that the enclosed
volume increases by a factor of 4 (v, = 4v,-,) at each level, as one might expect for a
quaternary tree. it is clear that volume universallity can be achieved only if the bandwidth
increases no faster than the factor derived in Equation 2.1.

,a• x• (,V2C)2  = a,,-,( -- (I/, ••) )- (•/6)2 - a__ i-1 (2.1)

Thus, on average, bandwidth should increase by a factor of ,/B at each successive level up
the tree to maximize the bandwidth available in the network while keeping the growth rate
appropriately bounded. Whether this bandwidth increase can actual be realized within
the assumed factor of four growth rate is still an open question. A generalization of the
universallity proofs in [Leiserson 85] and (Greenberg 85] to this rate of growth may be
possible, but has yet to be demonstrated.

2.2.7 Channel Capacity Growth

It is easy to see the average channel capacity, number of distinct physical connections
in or out of an internal tree node, growth by looking at the channel capacity growth
across three tree levels. For simplicity, consider the portion of a fat-tree network shown in
Figure 2.6. The channel capacity of each logical channel in and out of the bottom of this

16



L Layer I Tree Level Capacity JLogical Channels

0 8 64
1 7 8 16
2 n-1 1 32 4
3 n - 2 128 1
o 12-8 1
I n + 4 128 1

t 4

Table 2.1: Up Tree Bandwidth Allocation

structure is eight. The channel capacity of the single logical channel in and out of the top
of this structure is 128. Thus, the channel capacity has grown by a factor of 16 across 3
tree levels giving the desired average growth of /1-6.

Since the up routing and down routing trees are separate, the channel capacity growth
in the up tree differs somewhat from the capacity of the the corresponding network stages
in the down tree.

Up Tree

To see how the up tree routing capacity grows, it is easiest to look at the channel
capacities for the first few stages of the network. Consider the portion of the up routing tree
shown in Figures 2.5 and 2.6. Layer 0 simply performs the routing to the next three layers
so it does not correspond to an actual level in the tree. Each base routing component in layer
0 is an RN1 routing chip. Thus each of the 64 routing components shown in Figure 2.6(A)
has 8 inputs and outputs. The 8 outputs are divided into four logical directions with two
going to each of the next three layers and 2 going further up the tree. Thus layer I has 64
pairs of outputs converging to 16 different sub-trees (Figure 2.6(B)); the result is 16 logical
channels of capacity 8. Similarly, layer 2 has 64 pairs of outputs converging in 4 sub-trees
making 4 logical channels each of capacity 32 (Figure 2.6(C)). Finally, layer 3 has 64 pairs
of outputs converging to a single sub-tree which gives a single logical channel with capacity
128 (Figure 2.6(D)). This leaves the remaining 64 pairs of outputs which connect to the
next routing stage as a single logical channel with capacity 128. This logical channel will
then encounter another routing stage Just like layer 0 and the progression will continue in
this manner. This capacity progression is summarized in Table 2.1. The final items in the
table are the corresponding layer 0 and 1 progressions for the next routing stage. Thus the
progressions of growth factors is 1, 4, 4 giving a capacity growth of 16 in 3 tree stages or
an average growth of 'Y/•.

Downward

The bottom most down routing level must provide 8 outputs in each logical destination
to scale properly with input to the up routing tree. This dictates 8 • 4 = 32 outputs or 4

17



Tree Level] Capacity

n 8
n+1 24
n+ 2 64

n + 3 128
n + 4 384

Table 2.2: Down Tree Bandwidth Allocation

routing chips. This implies that the total fan-in to this level is also 32. 2 • 4 = 8 of that
fan-in is consumed by lateral connections leaving 32 - 8 = 24 inputs which must fan-in
from above. At the next level, there need to be 24 outputs for each logical destination as
just determined. This dictates 24 . 4 = 96 outputs or 12 routing components and a total
fan-in of 96. There are 2 . 4- 4 = 32 lateral fan-in signals to this level, leaving 96 - 32 = 64
inputs for fan-in from the previous down routing stage. Similarly each logical destination
at level three has 64 outputs associated with it. This dictates 64 - 4 = 256 total outputs
or 32 routing chips. This gives a total fan-in to this level of 256. The lateral fan-in is
2. 4 - 4 • 4 = 128 leaving 256 - 128 = 128 inputs for fan-in from above.

Beyond this point, the structure replicates. The next level up looks like the bottom
level scaled so that the input size in each direction matches the output from the previous
stage. progression may continue in this manner ad infinitum. The progression of channel
capacities in the downward route are thus as shown in Table 2.2. Level n + 4 is equivalent
to the level n stage since the series begins to repeat at that point. Thus the progressions
of growth factors is 3, ý, 2, giving a capacity growth of 16 across 3 tree levels. This again

gives the desired average growth of ¢Y/. This is identical to the growth in the upward
routing tree, but the growth does not coincide with the upward tree on a stage per stage
basis.

2.3 Wiring Constraints for Efficient Bandwidth Distribution

In both the up and down routing portions of the fat-tree network, a logical routing stage
is composed of many separate routing components. The inputs to any logical routing stage
come from different logical directions; that is the inputs to the logical routing stage may
be lateral crossover connections from different subtrees or may come from the immediate
parent routing stage. The distribution of these inputs to physical routing components
presents a more general case of the input bandwidth allocation discussed in Section 2.1.1.
In this section, the issue of bandwidth distribution to routing components is examined in
more detail in order to develop some constraints for the general problem of optimally wiring
the fat-tree network.

Again, we start by examining the two extreme cases for bandwidth distribution. I use
the word dispersion to refer to the degree to which inputs from different logical directions

are distributed across distinct routing components. Dispersion is closely related to the
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Figure 2.8: Non-Disperse Example

notion of expansion in the theory literature.

2.3.1 No Dispersion

In the non-disperse case at each such logical routing stage, the inputs from a given
direction are each routed to their own set of routing components. That is. if the inputs
from a given direction make up a fraction a of the inputs into that level, then these are all
destined for an equivalent fraction of the routing components at that level. Components
will be shared between logical input directions only in the case that there is an uneven
division of components among the input directions.

At any stage, inputs from a given direction can only make use of a of the bandwidth
to each logical destination. This means the inputs from that stage can, at most, reach
a of the routing components at the next level. This effectively minimizes the number of
different components, and hence paths, reachable; This is non-optimal for fault-tolerance
and minimizing routing congestion. On the positive side. at least a of the bandwidth in
a given direction is guaranteed to the inputs from each input direction; since the inputs
from a single logical direction do not, in general, share routing components with inputs
from other directions, those inputs are guaranteed the entire a of the bandwidth. Non-
dispersion means that at each level, inputs from the same direction are competing only
with each other for the bandwidth to the next level.

Example Consider Figure 2.8 for a concrete example of this wiring strategy. This switch-
ing could represent Level 1 of the fat-tree in the downward routing path. The logical routing
stage is thus composed of four routing components as shown. In this case, 8 wires enter from
the lateral direction while 24 enter from the previous down routing stage in the downward
routing tree. Eight wires leave level 1 in each of the 4 logical directions.

Here, the 32 wires are partitioned based on their direction of origination. The 8 lateral
wires all go into a single routing chip. The 24 wires from farther up the tree are connected
to the remaining 3 routing chips. Of the 8 lateral connections through this level, at most
two connections can be made in each logical output direction; however, if more than two
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Figure 2.9: Disperse Example

lateral connections need to be made in a particular direction, at least 2 of the connections
will be made. A single chip failure at this level would either prevent lateral conununication

entirely or cut down the bandwidth from farther up in the tree by 33%.

2.3.2 Full Dispersion

Full dispersion is achieved when the input wires to each level from a given input direction

are spread out amongst as many different routing components as possible. The pair of
outputs from the same direction of a single chip at a previous level always go to different
routing components.

The number of potential paths from point to point expand at each level. This results
because each input wire from a logical input direction has the opportunity to leave on any
of two outputs; at the same time, when a connection from a logical input direction does exit
the routing level via a particular output port, it is not diminishing the bandwidth potential
for any other inputs from that same logical direction. Thus inputs from all directions

compete for the bandwidth to the next level. To a limited extent, this allows averaging of
the load from several input directions across the total available bandwidth. Similarly, the
effects of component failure is spread evenly over all logical input directions. When a chip
fails, it effectively reduces a fraction of the fan-in from each logical direction.

Example Figure 2.9 gives the concrete example for the full dispersion case. This cor-
responds to the disperse wiring of the same level 1 downward routing path given in the

example of the previous section.
In this case, the 32 wires are distributed evenly, based on direction of origination, across

the 4 routing chips. If all 8 lateral connection were destined for the same output direction,
there is a possibility that they could all be routed; there is also the possibility that they
could all be blocked because all the bandwidth in that particular direction is consumed by
connections farther up the tree. A single chip failure at this level would effectively cut the
bandwidth out of this level down by 25%.
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2.3.3 Potential Path Growth

From the above, we see that full dispersion will maximize the number of paths available
for a connection through the network. This factor of two increase at each level in the
number of paths over which a given connection can be made is the best achievable using
RNl. This occurs when each wire oil which a connection could potentially be made by
a conunon source is connected to a different routing coinjponent. There are then twice as
many potential paths toward the desired destinatio: ,ut of each routing level as there were
into the level. As long as this property can be maii.,;ined. each routing level will be able
to achieve this effective doubling of the number of paths betweca a given source and its
destination.

Certainly, it is possible to wire the network with less potential paths between each
source destination pair. If two or more wires which a given source could have routed a
message through are (onnected to the same routing chip, then the path growth will be
smaller.

In order to guarantee that we can achieve the maximal path growth or path czpansion
described above, at each level, it need only be the case that there is not a single set of
wires that can be reached from a single processor that accounts for more than of the
total bandwidth into any level. This is not .he same as saying that the inputs from a single
logical direction must conmpose less than 1 of the inputs to a given logical routing level.
The inputs from a given logical direction are not necessarily fully concentrated when they
enter a routing level. As long as the constraint given above on the fraction of potential
inputs from a single source can be maintained, each input wire from a potentially connmon
source can be routed through a different routing component at any level in question. For
the fat-tree routing structure described here, this property is maintained at. each logical
routing level composing the network.

Leighton and Maggs [Leighton 89-2] point out that the above constraint is sufficient
only to guarantee optimal path expansion at the micro-level; that is when looking at the
number of paths between a single source and destination. When viewing path expansion at
the macro-level, additional constraints are necessary to guarantee optimal path expansion;
macro-level path expansion is the growth in the number of paths between sets of source
and destination processors rather than simply individual processors. Leighton and Maggs
demonstrate the advantages of optimal or near-optimal macro-level expansion wiring when
with a scheme where the switching elements can arbitrate with one another concerning
network loading [Leighton 89-1}. RN1, however, selects output, paths obliviously. As such,
it is not clear that their macro-level con, -aints will have any significant affect in practice
on the routing performance of a network louiU! using R.N1 switches. Recent work [DeHon 90]
would indicate that this kind of expansion is useful to maximizing the fault tolerance of
the network.

The complexity of Leighton and Maggs' switching element [Leighton 89-11 is much
greater than that of RNI. As such, it would certainly represent a much slower compo-
nent. Additionally, their switching scheme requires approximately 4(log N) clock cycles to
route a connection as opposed to the (log N) clock cyles required by RN1. Both of these
properties make its routing much slower than RN1. However, if its routing efficiency turns
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out to he greater than that of the oblivious routing done by RNI by a comparable factor,

then perhaps it would be beneficial to look further into the alternative of constructing such

a switching element.
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3. Construction

This chapter expands on the technical details involved in the construction of the network
structure described in the previous chapter. Section 3.1 discusses a few further issues about
the construction of the bidelta clusters at the leaves of the fat-tree. Section 3.2 addresses

a couple of issues important to the realization of a such network using RNl. Section 3.3
introduces the unit tree, a stack structure that can serve as the basic building block for this
kind of fat-tree network. Then Section 3.4 describes a possible geometry for arranging these
unit tree structures in three-dimensions to realize networks of reasonable size. Section 3.5
follows describing construction issues for this geometry. Section 3.6 then deals with the
long wires that necessarily occur in this structure. Section 3.7 briefly details processor
placement with respects to such a network. Finally, Section 3.8 details an efficient scheme

for computing routing sequences for this network.

3.1 Bidelta Leaf Clusters

Section 2.1 described the composition of the bidelta leaf clusters. This section fills in
construction details not readily apparent from the previous description.

3.1.1 Connections To Fat-Tree

For simplicity, the 11 logical routing direction out of the first stage of routing in the
bidelta cluster is chosen to route into the fat-tree network. That is, if the first two routing
bits of the routing sequence are both ones, the connection will be routed out of the bidelta
cluster and into the fat-tree network. The choice of which logical direction to use for this
purpose is somewhat arbitrary, but it is useful to settle on a single direction for reference
purposes.

3.1.2 Connections From Fat-Tree

The first stage routing components will be configured to swallow the first routing byte

they encounter, as described in Section 1.3.2, for cluster inputs from the fat-tree network.
This means the swallow property must be set only on the two inputs from the fat-tree
network to each routing component in the first routing stage; the other six inputs to each
routing component will come directly from processors and not require this swallow property
to be set. In this manner, a fresh routing bytes is always used to route through the bidelta
cluster regardless of the source of the connection. This provides a logical separation between
the portion of the routing sequence used to route through the fat-tree and that used to route
within the cluster making routing calculation moderately easy. It also guarantees that a
fresh set of routing bits is available to route through the bidelta cluster.
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3.1.3 Size

The number of processors that a single bidelta clusters stack can support is constrained

by physical size, bandwidth, and granularity. Since the routing component distinguishes

four distinct directions, each additional routing stage will increase the size, number of

processors, by a factor of four. Note, however, that since one logical direction out of the

first stage connects to the fat-tree rather than the bidelta network, that the first stage only

distinguishes three directions within the network. This granularity constraint alone specifies

the construction of clusters which support 3- 4 processors, for any non-negative i. When

considering physical size we are limited by the size we can construct the horizontal routing

boards (see Section 1.4). Considering the projected size of RNl. the largest possible single

horizontal routing plane we can construct will support 8 x 8 = 64 routing componIents: this

would allow the construction of the 4 stage network supporting 3- 43 = 192 processors.

Additionally, the bidelta chliter will have to provide bandwidth to and from the fat-tree

network which will match that of the fat-tree network being constructed.

For notational convenience, a bidelta clusters supporting n processors will be denoted

by B,. e.g. a 3 stage bidelta clusters will support 3 - 42 = 48 processors and will thus be

referenced as B 4 8 .

3.2 Inter-Stage Details

3.2.1 Up Path Directions

Routing components in an up routing stage route in four distinct directions as shown

in Figure 2.4. Here, again, the assignment of actual routing directions to each of the four

logical directions is somewhat arbitrary. It is useful, though, to make this assignment in a

logical manner for the sake of references and routing simplicity. The 11 direction is assigned

to the direction which routes further up the tree. This is consistent with the choice of the 11

direction to route out of the bidelta cluster. The 00, 01, and 10 directions each respectively

route to the each of the next three successive down routing stages. That is the 00 direction

routes to the next down routing stage, 01 to its parent, and 10 to the next parent.

3.2.2 Swallows

In order to allow routing to arbitrarily many destinations, we need to make sure that

the fat-tree network is configured to discard an old routing byte when it is exhausted. Thus

the swallow stages need to be arranged in a functional manner. This task is complicated

by the fact that connections can be made through arbitrary heights in the tree such that

complete paths from source to destination are not entirely homogeneous; that is, paths will

differ in length based on where they entered the down routing tree.

Ideally we would like each of the swallow stages to be placed a a maximum distance from

each other. This is desirable because each swallow stage effectively costs one clock cycle of

delay while the old routing byte is being discarded so the new can take its place. Thus to

minimize the time to make a connection, swallow stages should be placed as infrequently

as possible.
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Since there are 8 bits in each routing byte and each routing stage consumes 2 bits,
swallows are required at least every four routing stages. Swallow stages will certainly be
needed at least every 4 stages on the up path and on the down path. It is possible to change
from up routing to down routing at any up stage. In order to be assured that the down
routing stages get fresh routing bytes when needed, the old routing byte will be stripped
off as part of the lateral crossover from the upward tree to the downward. This routing
byte change will be realized by setting the swallow property on all lateral inputs to a down

routing stage. This lateral swallow provides a clear separation between the up and down
routing portion of a connection.

3.2.3 Bit Rotations

Recall from Section 1.3 that the appropriate bits from the data path are used to perform
routing. In order to assure that a different pair of bits are used at each level, the data path
is rotated between routing levels. This poses a similar problem to the swallow. Whereas,
in a bidelta network, all paths in the network are of the same length. all paths through the

fat-tree are not. More importantly, all paths are not even of the same length modulo four.

Even paths through a given routing component can differ in length. Thus, some attention
must be given to assuring that the bits are rotated uniformly through the tree network.

From the source processor to a given height in the tree, the amount of rotation incurred
will be known. Similarly, from that height down to a destination, the number of rotations
will be known. What we must assure is that the total number of bit rotations modulo
four through the network is the same regardless of the height at which the lateral crossover
occurs. In order to guarantee this, we must use the lateral crossover between the up routing
tree and the down routing tree to shuffle the bits into a consistent state: that is make sure

that the lateral bits into a given down routing level have the same rotation applied to them
as those coming into the down routing level from above. This is closely related to need to
swallow on the lateral crossover in order to be synchronized with the point of entry into
the downward routing path and similarly guarantees that, regardless of the history of a

connection's path, it merges consistently into the downward tree.

3.3 Unit Tree

In building the fat-tree network, we are constrained in the size we can reliably fabricate
the component stacks. Recall from Section 1.4 that the horizontal pc-boards are linited
to about two feet square. There are also other difficulties that arise if we attempt to build
larger stacks. The on-board wire lengths begin to become a more serious concern slowing
the clock cycle of each routing stage. The already dense wiring on the pc-boards becomes
proportionally more severe.

It is clear that the fat-tree network will have to be packaged in multiple component
stacks. From this realization, it is necessary to determine how to separate the fat-tree into
stacks and how each constituent stack is composed. We wish to avoid building many stacks
of different geometries, and hence needing to design and fabricate many different pc-boards
and other components. We want as much as possible to be reusable when scaling to larger
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and larger sized fat-trees. Essentially, we need a standard replicable structure that can
serve as a building block for fat-trees in much the samne way that a set of identical routing
components can be used to construct a routing stack.

3.3.1 Unit Tree Structure

The unit tree is a single stack structure from which a fat-tree interconnection of a wide
variety of sizes can be built. This basic building block, when replicated and properly
arranged will realize the fat-tree structure described herein.

Size

As noted, current technology limits the size of a single horizontal pc-board routing layer
to about 2' x 2'. Given the target size of RNI as 1.4" x 1.4", if we leave an equal amount
of space between each routing component for routing wires, we can place about 8 x 8 = 64
routing components in a single routing layer. As such, a unit tree is constrained to this size
for the present time. As technology improves, the number of components per layer will. no
doubt, increase; however, this scheme is very scalable and can easily be modified to ta1k
advantage of improved technology. For the remainder of this paper, 64 routing compomn:I,
will be assumed as the maximum layer size.

The basic structure of the fat-tree described in Section 2.2 showed that the fat-tree is
built by replicating a series of one upward routing stage and 3 downward routing stages.
These 4 stages describe the natural structure of the tree. This gives a natural division
between routing levels appropriate for inclusion in each unit tree stack.

The unit tree is thus constructed in 4 layers as shown in Figures 2.5, 2.6, and 2.3. The up
routing layer is at the base and is composed of the maximum 64 routing components. It is
followed by the first down routing stage which is also composed of 64 routing components in
order to match bandwidth with the up routing stage. The next down routing stage provides
input to only three-fourth of the first down routing stage since lateral inputs consume one-
quarter of the input capacity to the first down routing stage. It is thus composed of
only 48 routing components. The third, and final down routing stage provides inputs to
the second down routing stage. Since the second down routing stage has one-third of its
inputs dedicated to lateral crossover inputs, the third stage is only two-thirds the size of
the second. This makes it one-half the size of the first down routing stage which is 32
components. Thus, the component count for a unit tree is shown in Tables 3.1. Each
such unit tree thus requires a total of 208 routing components. With four routing layers,
the stack should be about 1.5" tall making the entire stack roughly 2' x 2' x 1.5". Since
there are several variations of this basic unit tree worth considering, when it is necessary
to differentiate them, this particular unit tree will be referenced as UTT6 4 ×.

Characteristics

With this development, the size and geometry of a basic unit tree is fully constrained.
As such we can summarize the bandwidth characteristics as given in Tables 3.2.
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Level e Routing Components

64
1 64

2 48

3 32

Table 3.1: Unit Tree Component Sununary

I Total Bandwidth Total Logical Channels Capacity

Up from Leaves 512 64 8
Down toward Leaves 512 64 8
Up toward Root 128 1 128
Down from Root 128 1 128

Table 3.2: UT 6 4 ×s Bandwidth

Stack F Component Available Required Bandwidth

Layer Count Bandwidth Down Path [Up Path

0 64 512 512 0
1 64 512 0 384
2 48 384 0 256

-__3 32 256 0 128

Table 3.3: [TT6 4 ×s Vertical Through Bandwidth

Through Bandwidth

All of the vertical straight through connections between horizontal boards in the stack
structure are contained on the routing components' package as described in Section 1.3.1.
This limits the number of vertical routing conduits available for up or down routing con-
nections which simply pass through a layer without being involved in the routing occurring
on that layer. Each package provides sufficient through routing conduits for 8 bundles of
9 wires apiece. No vertical vias are needed for the downward routing path, except when
the entire downward bandwidth must route through the upward routing level. The upward
routing path requires through bandwidth on all the down routing levels. Available and
required bandwidth is summarized in the Tables 3.3. Clearly, there is adequate vertical
through bandwidth available for this scheme.
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3.3.2 Tree Root

Two alternatives exist for terminating the fat-tree. It is possible simply to build the
tree up to a desired size and leave the bandwidth out of the top of the topmost age of unit

trees unused. Alternately, we can build a capping level which utilizes the logical direction
which would have routed further up the tree to route laterally to another down routing

level.

The first option is the conceptually cleanest. All of the unit tree stacks will be identical.

Routing will be identical on trees of all sizes.

The later option allows more size flexibility in some cases. Knowing the size of the stack
becomes important to routing considerations when the root stack is capped in this manner.
Stacks with a cap level will be slightly different from other stacks so that not all stacks will
be identical; however, these capped stacks can differ only by the addition of an additional

routing layer to the top of a standard unit tree stack.

Cap Level

Conceptually, the root layer constructed for a capped unit tree will be for the conver-
gence of four unit trees; however, the components that compose this layer can be distributed
across the four stacks. This distribution is necessary since we cannot make a single stack
la:.ger. At the top of a standard unit tree there are 128 channels that would go further
toward the root and 128 coming from the root. With a down bandwidth of 128 into each
of the 4 stacks and hence logical directions, we need a total of 64 routing components to
compose the final level. One-fourth of these components can be placed in each stack. This
appropriately gives 128 outputs from this new level to the 128 inputs to the down routing

level which was formerly the top of each stack. Each stack will then have 12_8 = 32 con-
nections through the capped root back to itself and 32 connections from each of the three
adjacent stacks into its original top down routing level. Similarly, each stack will connect
to 3 other stacks with 32 connections. Obviously, if the root level of unit trees is composed
of more than 4 stacks, the 32 connection in each logical direction should be maximally

distributed over all stacks composing each logical direction.

For the sake of clarity, this capped unit tree will be referenced as UT6 4 s8 ¢.

3.3.3 Building a Fat-Tree .From Unit Trees

Each bidelta leaf cluster has a bandwidth of 2_----- into the fat-tree, where Ntis! is the
3

number of processors in the leaf cluster. A single unit tree has a bandwidth of 8 in each of
the 64 logical directions it distinguishes. As such. N1 I unit trees are required to construct
the smallest fat-tree which has only a single layer of unit trees. The next larger size can
then be constructed by replicating this smallest structure 64 times and using another layer

of unit trees to intercom,.,ct these 64 subtrees. Enough unit trees at this second level will
be needed to match the bandwidth out of the top of the first stage of unit trees. This
progression can be continued to build fat-trees arbitrarily large.
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Examples

12K As an initial example, consider building a 12K processor machine. WVe caii use a
B192 leaf cluster for the leaf. The next level is then built out of 1I-2 16 unit trees. This

12
gives 192 5 64 12288 processors using (5At B19, bidelta clusters and 16 1 1'64,. unit tree
blocks.

48K U sing a capping level at the top of a single layer of unit trees, we can support 48K
processors, four tunes as many processors as the previous example. The nulmber of unit
trees simply needs to grow byi a factor oft four. Similarly, four tlmes as iany bidelta clusters
are needed. Thus, this is constructed friom 256 BI!2 leaf clusters and B4 1'4. , unit tree,,,.

768K Adding a full second level of unit trees allows us to connect 64 192 786K
processors. This requires a bidelta leaf cluster for each 192 processors:

768K
4K

192

The lowest level of unit trees is composed of' unit trees given by the following:

d

768K 192 1
192 12 64

(a) is the number of bidelta clusters that connect to this level. (b) is the number of unit
tree stacks necessary to satisfy the bandwidth for a single B192 bidelta block. (c) is the
fraction of the unit trees from (b) that are actually used by a single bidelta block. (d) which
is the product of (c) and (b) is the ratio of the number of bidelta clusters to unit tree stacks
required to build this first level. The bandwidth out of the top of a unit tree is one-fourth
the bandwidth into it. Thus the next level will only require one fourth as many unit trees:

1024
256

4

This brings the total structure to 4096 B 1 9 2 bidelta clusters and 1280 UT 6 45 5 unit tree
stacks.

Generalizing

We can generalize network sizes and composition in terms of the number of unit tree
layers usd for network construction. Again. N',,ai is the number of processors composing
a single bidelta leaf cluster. i is a parameter denoting the total number of stack levels,
including the leaf cluster stack; i is constrained only to be a non-negative integer greater
than one. The total number of processors supported by a network with i - i unit tree layers

all of type UT6 4 s8 is thus Ntotal as shown in Equation 3.1.

Ntotaj t 64(-1) ( Nlea (3.1)
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This requires one bidelta cluster for each Nhi processors.

A'totaj

Nbadeta -- (3.2)

The first layer of unit trees is composed of .2 _ (TT,,,,, 'it trees for each bidelta

cluster. Each successive layer requires one-fourth as many unit trees since the bandwidth
out of the top of each unit tree is one-fourth the bandwidth into the bottom. Thus the
total number of [rT 6 4 ×8 unit trees necessary to construct a network of size N,,t,, is simply
as given by Equation 3.3.

Nl,, ftz 12 64 40-1i

Thus a netvork of NtotA. processors is constructed with Nbidelta leaf clusters and Nunz

('T 64 1 8 unit trees.
Using capped unit trees at the top level, the composition is slightly different. The total

number of processors is greater by a factor of four because of the extra routing stage.

Ntotai = 4 - 64P-" - Nleaj (3.4)

The number of bidelta leaf clusters needed is computed as before.

Nbidela = Ntotal (3.5)

The number of stacks progresses the same. The difference here is that the top level is
constructed out of UT6 4 ×8s unit trees. Thus the number of UT 64 ×s unit trees, N,.it and
UT 64 ×s8 unit trees Ncunt are computed by Equations 3.6 and 3.7.

Nuit = Y Ntotai Ne_ 1_ I _ Ntota, I (1_- 4(2-r) (3.6)j=1 Nt, ,, 12 64 4(j-1i) \576/

N tot (3.7)
768 . 4 (i-2)

3.3.4 Alternative Unit Tree

It is also worthwhile to consider an alternative unit tree structure. In particular, this is
necessary if we wish to construct entirely fat-tree networks; that is if we wish to construct
networks that have processors as leaves rather than bidelta clusters. Alone, "he vi-:" tree just
described is inadequate for this purpose because it will always provide at least 8 connections
in each logical direction. To match the connections to a single processor, we need a unit
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tree that provides two logical connections per direction. This unit tree can be used by itself
to construct such a complete fat-tree network, or used only as the bottom most tree stage
of a fat-tree network utilizing UT 6 4 ×8 unit trees for the construction of the upper portion
of the tree. For distinction, this unit tree will be referred to as UT 64 ×2.

Fault Tolerance

To get the desired two outputs, and hence inputs, in each logical direction, we essentially
need to scale down the size of the unit tree constructed by a factor of four from that of
the UT 64 ×8 unit tree. In naively scaling down the unit tree size, we encounter one problem
at the final down routing stage. Each single routing component becomes critical in order
to provide network connectivity to four processors; that is, unlike the component in other
stages, if one of these components fail, four processors will become unreachable.

This identical sort of problem occurs in the bidelta clusters. As described in Sections 1.3
and 1.5, this was the reason for implementing the alternative configuration for RN1 as two
separate 4 x 4 crossbars. With RN1 configured in this manner at the bottommost down
routing stage, instead of having a single component that makes the final routing connection
to 4 processors, we have 2 components that make the final connection to 8 processors. This
way no single component is critical to the functionality of the network.

To avoid having a similar problem on the inputs, we also configure these as in the bidelta
configuration. While each processor will use only a single connection into the network at
a time to guarantee that the network is not overloaded, each processor has two network
connections. Each of these network connection should be connected to different routing
components. The processor then guarantees to only use one of the two network connections
at a time. In this manner, no single component in the first up routing stage of the network
is critical since a given processor can always originate a connection through the network
through either of the two routing components to which it is connected.

Size

The entire UT 64 ×2 ends up being one-quarter the size of the UT6 4 ×8 unit tree. A UT6 4 ×2

is thus composed of a total of 52 RN1 routing components. The stages are each composed
of one-fourth as many routing components as the corresponding stages in the UT 6 4 ×8 unit
tree summarized in Table 3.4. The largest routing layer has 16 components. These can be
arranged as 4 x 4 components in the horizontal plane. This makes each side of the UT 6 4 ×2

roughly half the size of each side of the UT64 1 8 unit tree. Thus each side of the UT64a 2 unit
tree will be about one foot long. The number of stages is the same between the (T 64 ×2

and IJT64 ×8 unit, trees so they will be the same height.

Characteristics

This composition gives the UT 6 4 ×2 unit tree the characteristics shown in Tables 3.5.

31



(Level I Routing Components

0 16
1 16
2 12
3 8

Table 3.4: UT6 4 x2 Component Summary

Total Bandwidth ITotal Logical Channels (Capacity

Up from Leaves 128 64 2
Down toward Leaves 128 64 2
Up toward Root 32 1 32
Down from Root 32 1 32

Table 3.5: UT6 4 ×2 Bandwidth

Through Bandwidth

As with the UT6 4 ×8 unit tree all vertical routing vias between routing levels in the stack
structure are contained in the routing components. Since this is only a scaled down version
of the UT6 4 ×8 unit tree, we have no new problems with vertical through routing bandwidth.

Building Trees

Building fat trees with UT6 4 ×2 unit trees is done in much the same manner as before.
This unit tree can be used as the only kind of unit tree in constructing the fat-tree. Alter-
nately, it can be used as the leaf node in place of the bidelta clusters, and the UT6 4 xs unit
tree can be used to build the rest of the structure for the tree. Using UT 6 4 ×8 unit trees
for the upper tree structure gives better routing performance and is hence preferable. This
difference in routing performance arises from the usage of the alternate RN1 configuration
in the final down routing stage of the UT6 4 ×2 unit tree. This makes the UT6 4 ×2 's routing
performance slightly less desirable than that of the UT6 4 x8 unit tree where the last stage
is configured normally.

Since there is a performance differential, its reasonable to only consider using the UT64 x 2
unit trees at the bottom most layer of the fat-tree. The fat-trees so constructed are free to
be any power of 64.

Ntotat = 64i (3.8)

One UT 64 ×2 unit tree is needed for each 64 processors. Thus the total number needed,
Niuit, is given by Equation 3.9.

N funit - Ntotal (3.9)
64
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The number of UT 64 ×8 unit trees in the next level is determined by matching the total
bandwidth out of the tops of the LTT 6 4 ×2 unit tree layer with the bandwidth into each
U'T6 4 x Unit tree. As before successive unit tree levels each require one-quarter the number
of the unit trees as the preceding level. As such, Equation 3.10 gives the number of UT 6 4 ×8

unit trees needed, N,,,t.

N..i (=oa (- 32 ___ ta____

Nui = Z 64 "512) -4(-7-) = 256.4J

41 01) (3.10)3 1024768

Example Using two levels of UT64 )s style unit trees on top of one level of UT 64 ×2 style
unit trees, the fat-tree network will support 643 = 256K processors. This requires unit
trees as follows:

Nf,,i =64 3 64'2 4K
64N/unt - 64 -64\, 4

N643"= (1 - 4(1-3) 320

3.3.5 Wiring Details for Unit Trees

As described in Sections 1.3.2 and 3.2.2, in order to specify more than 8 bits of routing
information, the first routing byte must be periodically stripped from the data stream.
Within the unit tree structure, this operation should logically be performed at three places.

1. every fourth unit tree up on up the routing path

2. at the lateral crossovers between the up and down routing trees

3. upon entrance of a unit tree at the top down routing level when the connection crosses
over higher up in the fat-tree.

The first case will only be necessary when more than 8 bits are needed to specify up routing.
This becomes necessary only when we have more than Nlea" - 643 processors so will not be
likely to be necessary in the near future. The need for lateral crossovers is described in
Section 3.2.2. Recall that the wiring constraints of Section 2.3 recommend that inputs from
different logical directions be distributed across as many different routing components as
possible. As such, lateral crossover inputs will only make up a fraction of the inputs to a
given routing component and hence be configured differently than the remaining inputs;
fortunately, RN1 allows the the swallow property to be configured independently for each
input. The logical place for stripping bytes in the downward path is at the entrance of
each unit tree from higher in the fat-tree. This provides the most regular place for this
function. This is somewhat non-optimal in that the swallow occurs between every 3 stages
of down routing, as opposed to every 4; this means that the routing byte is being changed
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slightly more frequently than it could be in best case. As such the low two bits of each
down routing byte are unused.

The rotation of bits between unit tree stages must be carefully arranged so that all
paths through the fat-tree network rotate the routing bits equivalently, as described in
Section 3.2.3. Obviously, each byte-wide routing path must be rotated by 2 bits following
each up routing stage and following each down routing stage. Since there are only three
down routing stages through each unit tree, following the last down routing stage there
must actually be a four bit rotation so that the bits are correctly aligned to enter the
following unit tree. The lateral crossover connections pose the least straightforward bit
rotations. Each lateral crossover must guarantee that as the connection enters the down
routing path, the bit rotation is consistent with the point at which the down routing path is
entered. While this is easy enough to guarantee, this implies that the amount of rotation in
each crossover will differ depending on the height of the unit tree in the fat-tree; this results
from the difference in the length of the up routing path traversed before encountering the
crossover. This requirement unfortunately, forces unit trees to differ slightly depending
upon which layer of the fat-tree they are implementing. The effect of this difference can be
minimized by locating the necessary rotation difference entirely in the horizontal pc-routing
board just above the up routing stage. This localizes the difference in unit trees to a single
horizontal routing board. Of course, since the four stages of two bit rotations return the
rotation to the original rotation, at most four such distinct boards will be necessary to
build an arbitrarily large fat-tree.

3.3.6 Wire Accounting

There are a large number of wires entering and leaving each unit tree stack in order
to properly connect the unit tree in the network. These wires, by necessity must go to
a number of different locations. While each data path of 9 wires could go to a different
destination, actually allowing them to do so would unnecessarily complicate the wiring
pattern. To prevent this, we would like to group together reasonably sized wire bundles to
interconnect unit trees and connect unit trees to leaf nodes.

UT 6 4 x 8

The bandwidth entering and leaving the bottom of the UT64 X8 unit tree stack is logically
segregated into 64 directions each of which is 8 channels wide. Each channel is composed
of 9 bits. There are equally many channels going both into the stack from below and
downward out of the stack. Grouping this together, we have 2 x 8 x 9 = 144 wires in each
logical direction. It makes sense to use this is a the standard wire bundle size.

The bandwidth leaving the top of one of these unit trees is composes a single logical
direction. However, since it will in turn be connecting to other UT6 4 ×8 unit trees, it makes
most sense to use the same wire bundle size. Since there are only one-fourth the bandwidth
exiting the top of the stack, there will only be 16 such bundles out of the top of a unit tree.
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Unit Tree Type Number of Bundles [Bundles Size Total Wires

UT 64 , 8  Bottom 64 144 9216
Top 16 144 2304

UT64 ,8, Bottom 64 144 9216
Top 12 144 1728

UT 6 4 × 2  Bottom 64 36 2304
Top 4 144 576

Table 3.6: Unit Tree Wire Bundling for External Connections

UT64×8 &

Since the capped unit tree, UT64×8s, is simply a variation on the 1TT 64 "8 , it is very
similar. The bandwidth into the bottom is identical to the UT 64 ×8 case. The wires out
of the top are different. In this case, each unit tree will potentially be connecting to 3 or
more others. For consistency, bundles of 144 wires can be used here as well. There are
three logical directions out of the top of a UT 64 ×s8; each direction has with one-fourth of
the total bandwidth out of the top of the UT6 4 x8 . This gives us 4 bundles of 144 wires for
each of the 3 logical directions.

ST64. 2

The bandwidth into the bottom of the UT6 4 1 2 unit tree is distributed as 64 pairs of
channels. This means there are 2 x 2 x 9 = 36 wires in each logical direction. Again, the
bandwidth out of the top of the unit tree is one logical unit. This top bandwidth needs to
be divided into bundles the same size as those out of the bottom of the UT 64 ×8 unit trees
to which this will be connecting. This means the top bandwidth should be broken down

into 4 bundles of 144 wires each.

Unit Tree External Bundle Summary

Table 3.6 summarizes the bundles in and out of the unit trees discussed in this section.

3.4 Geometry

3.4.1 Basic Properties

From the preceding section, we see that the total number of unit trees needed to con-
struct each level decreases by a factor of fonr on each successive level toward the tree root.
Looking at the composition of each unit tree, we see a common convergence from 64 units
of a given size at one stage to 16 such units at the next physical stage up the tree. The size
of these units involved in the convergence increases from a single stack at the first stage by
a factor of 16 for each successive stage.
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Example Looking back at the 768K processor example of Section 3.3.3, the terminal level

is composed of 4096 B 19 2 stacks, the bottom tree level of 1024 UT 64 ,s stacks, and the top

tree level of 256 [TT64 ×s stacks. The convergence at the first level is from 64 B192 stacks to

a set of 16 UT 6 4 ×s stacks. At the next level, these sets of 16 UT6 4 ×8 stacks form the basic

logical unit. Sixty-Four of these units, which is 64 - 16 = 1024 LTT 6 4 . 8 stacks, converge to

16 of these sets of 16 UT 64 S stacks at the root level. These 16 • 16 = 256 UT6 4 ,s stacks

then form the root structure for the fat-tree.

3.4.2 Growth

There is no recursively repeatable, three-dimensional structure that keeps inter-stage

interconnection distances constant. This can easily be seen by noting that:

"* The number of components needing interconnect grows exponentially.

"* Keeping inter-stage distances constant, the three-dimensional space of candidate lo-

cations for components is bounded by cubic growth.

Thus, there is no way to prevent inter-stage delays from growing between successive levels
as the system is scaled up in size. At best, we can hope to keep the inter-stage delay growth

down to a reasonable level.

Note, however, that since the number of processors grow as 64V, the system grows very

rapidly. As such, we need only accommodate a few stages of growth in order to build the

networks of interesting size for the near future.

3.4.3 Hollow Cubes

A natural approach to accommodating this 4:1 convergence in a world limited to three-

dimensions, is to build hollow cubes. If we select one side as the "top" of the cube, the

four sides can accommodate four times the surface area of the top, and naturally four times

the number of routing stacks of a given size. As such, the "sides" contain the converging
stacks from one level, and the "top" contains the set of stacks at the next level up the tree

to which the "side" stacks are converging. The remaining side will remain open, free of

stacks. This last side could be used to shorten wires slightly farther, but utilizing it in this

manner would decrease accessibility (see Section 3.4.5 for further discussion of this issue).

To start, let us consider the first level of convergence of the fat-tree structure. We want
to connect 64 stacks of a kiven size to some number of others. Particularly, we wish to

connect: 64 leaf nodes to 12 UTT64 ×s's or 64 UT64 ×2's to 4 UT64Ts's. Each side is made

of 16 stacks of the leaf size. Each side is constructed by laying out the 16 constituent stacks

into a 4 x 4 array. The top will be of comparable size depending on the relative size of

the stacks at each fat-tree level. Figure 3.1 shows a hollow cube configuration in which

the stacks at each stage are of equivalent size (e.g. this will be the case when the lower

level is B 19 2 leaf clusters and the top is UT 6 4 ×8 unit trees). Figure 3.2 shows a hollow cube
configuration where the top level stacks are four times the size of the lower level (e.g. this

would be case when on the first level of a full fat-tree network in which the top level was
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Figure 3.1: First Level Hollow Cube Geometry

Figure 3.2: Hollow Cube with Top and Side Stacks of Different Sizes

constructed from UT64 ×sunit trees and the bottom most stage was composed of UT 64 ×2 unit
trees).

At the next stage of convergence, we treat the unit we just created as the base unit.
These can be arranged such that the tops of these hollow cube units are treated as the
basic unit structure for this next stage. Then we arrange a plane of 4 x 4 of these for each
side. A plane of unit trees of size equal to each of the sides is then used for the "top". This

37



Figure 3.3: Second Level Hollow Cube Geometry

next stage is shown in Figure 3.3 as the natural extension of Figure 3.1. This progression
can be continued in this manner ad inifititm.

3.4.4 Convergence Size

Beyond the first level, the size progression is fairly straightforward. The side size will
grow by 4 at each successive stage since the size growth of 16 is accommodated in two
dimensions.

At the first level, the size of convergence depends on the size of the leaf stacks used
compa~red to the UT 6 4 ,18's to which they connect. Less UT64 ,18's will be required the smaller
the leaf stack size. In general 64 leaf stacks connect to Neaj UT64 ,,8 stacks. From this we
can determine the side size of the initial convergence square, or "top", and hence the side
length for the hollow cube. The side size for the cube will be the greater of the side size of
the "top" and the side size of the "sides". Let 1,ut be the length of the side of a UT 64 118 stack
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and el1 be the side length for leaf stack; these lengths will be as given by Equations 3.11

and 3.12, respectively. The length of a cube side is then, Is, as given in Equation 3.13.

It, = 2 . 8 - Schip (3.11)

1leaf 2 Nleaf ] (3.12)
3

=max (4~a~[Nl~f ]
max (16Sehf { 8] Schip [N~~ 1j (3.13)

As described in Section 3.1.3, N1eaf will always be a multiple of three. For almost all sizes
of interest, Nleoj will also be a multiple of four. As such, the component arrangements
will always be a square number and the ceiling functions can be dropped. This reduces
the two arguments of the max function to same expression. So Equation 3.13 reduces to

Equation 3.14.

Is =8Schip ( FNI ea ) (3.14)

The fact that the two lengths reduced to essentially the same expression was predictable

since the bandwidth out of the top of a stack is one-quarter the bandwidth into its bottom.

The four side bandwidths, which are all from the top of stacks match the bandwidth of the
bottom of the stacks on the "top". The surface area is proportional to bandwidth in this

configuration.

3.4.5 Features

While this hollow cube structure may not be the most compact structure, it does exhibit

a number of nice properties.
It exposes the entire surfaces which are interconnected to one other. Since the band-

width of the interconnection is largely surface area limited, this allows maximum exposure
of the areas that need to be connected.

Since the structure is "hollow" the connections can be wired through the free-space in

the center. Wiring through free-space in this manner, the maximum wire length is only V15
times the length of a side. This maximum length increases by roughly a factor of 4 every

time we increase the number of processors by a factor of 64. This factor of four increase in
size is due to the factor of four growth in side size for each successive level of the hollow
cube.1

'As this continues, it will also be necessary to take the size of the "sides" of each square into account,
making the increase somewhat more than a factor of four; for the sizes of present interest, this is not a real
issue.
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This structure is highly replicable. The progression described in Section 3.4.3 can be
continued arbitrarily. The growth in wire lengths may, however, prove to be undesirable
for very large structures.

In this form, the individual stacks are reasonably accessible for repair. Since the cubes
are hollow, it is possible to get at any individual stack without moving any other stacks.
This should allow repair and inspection without interfering with the bulk of the network
operation. There may be some difficulty with accessibility due to the mass of wire inside
the cube, but perhaps this can be minimized (see Section 3.5.3). The "inissing" sixth wall
of the cube can be used to allow entrance into the center of the structure for maintenance
and repair.

3.4.6 Optimality

This solution seems practical while giving reasonable performance for the sizes of interest
for the next decade. It is not known to be optinmal for minimizing the inter-stage wiring
distances. Finding an optimal solution that retains adequate accessibility to be of practical
interest is still an open issue.

3.5 Hollow Cube Construction

3.5.1 Structure Size

Recall from Sections 3.3.1 and 3.3.4 that each UT 64 X8 unit tree is roughly two feet square
and one and a half inches tall while UT 64 ×2 is roughly one foot square. Arranging these,
or similarly sized bidelta leaf clusters in 4 x 4 grids and building cubes as just described
in Section 3.4, creates structures with sides between 4 and 8 feet long. Following this
progression one step further, we see that the side lengths grow to between 16 and 32 feet.

Clearly, networks of this size, in current technology, are room and building sized entities,
not something to put on your desk top.

3.5.2 Structure

To achieve the hollow cube structure of Section 3.4, it is necessary to construct "rooms"
for networking. The "walls" of these "rooms" will be tiled with stacks in the 4 x 4 arrange-
ment described, as will be the "ceiling". These stacks which tile the walls and ceiling will
be arranged such that the tops of the wall stacks face into the room, and the bottoms of
the ceiling stacks face into the room. The wall and ceiling thickness will be relatively small

since the stacks are thin. Current projections are for the stacks to be about 1.5" thick. In
some cases, it will be appropriate for the "ceiling" structure to be something other than
the top or actual ceiling of the room; a review of Figure 3.3 will make this point clear. This
should pose no additional problems.

To hold these stacks in place, the wall will be a structural grid. It will be similar to a
raised floor where the stacks are analogous to tiles and the wall structure is analogous to
the floor grid which supports the tiles. This grid provides sites for each of the stacks. It
will then be possible to slide the stacks in and out of their sites, and "lock" them into place.
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Due to the size and nature of this structure, the wall will also have to provide structural

support. Adding an additional "real" wall to support the structure would prevent close
packing and require the structure to be much larger.

The grid structure supporting the stacks will also need conduits to allow the fluorinert
which cools the stacks to flow to the stacks. Similarly, conduits for power supply connections

will also be needed. The actual fluorinert pumps and power supplies can be placed in
adjacent rooms or on the sixth side of the cube.

3.5.3 Wiring

Interconnection signal wiring will be routed through the free-space in the center of the
room.

Wire Frames

Instead of connecting the wire bundles directly to each stack, these will be wired to a
wiring frame. This wiring frame is a unit attached to the structural grid of the wall and

will serve as a hatch-door on each routing side of a stack. All the wires to a stack are

connected to the wiring frame. When the wiring frame is closed and locked into position,
it will be compressed directly against the routing stack. The compression makes electrical

contact between the stack and the connecting wires establishing signal flow. The wires are
wired to the wiring frames instead of the stack to facilitate repair and ease of access to

each stack. This scheme allows a stack to be changed without the need to disconnect and
reconnect wires from 80 or more different sources. With the wiring frame, the frame can
simply be opened to replace a stack.

The wire frame is "locked" into place when closed. This allows fluorinert and power to

flow into the stack. When a frame is "unlocked" to remove a stack, several things should

happen. The power to the stack should be cut. The fluorinert flow to the stack should also
cease, and the fluorinert in the stack should be drained. Additionally, it may be necessary
to terminate the transmission lines in some well-behaved manner for the sake of the rest of
the network. When the frame is "re-locked", the fluorinert flow will need to be resumed.

Once the system has had time to refill with fluorinert and get adequate power, it should
be go through a reset sequence so that it comes online in a consistent manner.

Optical Connections

While the hollow cube provides adequate space for the wiring required, the wiring within
the cube will still be quite formidable. Keeping track of the large quantity of wires will be

a serious task, especially when problems occur with wiring conductivity.
An alternative that may be technically viable by the time one of these networks is

actually constructed would be to use optical interconnections to provide the wiring through

the cube. The cube is basically free-space so that each light beam need only be aimed at
its appropriate receiver in order to effect interconnect. Since light beams will not interfere
with each other, there will be no need to worry about the three-dimensional wiring problem

of avoiding interference in the center of the cube. [Bergman 86] and [Wu 87] discuss early
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work to provide large scale optical interconnect for VLSI systems. Of particular interest is
their use of a holographic optical element to direct optical beams for interconnections and
the potential for adaptive and dynamic connection reconfiguration.

With optical interconnect, signal propagation time ac-ýýs the connection is less sensitive
tu wiring materials. Long electrical connections will have delay proportional to both wire
length and the perxnitivity of the material ((,) as given by Equation 3.15 where c is the
speed of light.

twire (3.15)
c

Long optical interconnection, in contrast, comes closer to the fundamental limit posed by

the speed of light as given by Equation 3.16 ýKianmilev 89ý.

I
toptical interconnect (3.16)

Without wires occupying volume in the center of the cube, the whole interior of the
cube would be much more accessible for repair and maintenance.

One potential problem that would arise with optical interconnect is keeping the Inil-
lions of laser connections in proper alignment. This could be a very hard task and align-
ment might prove very sensitive to repair operations within the cube. Adaptive align-

ment schemes would virtually be a necessity to make the fine alignment of a system of
this size tractable. Adaptive alignment would allow the system to self adjust itself into
proper configuration. Perhaps a mature version of the progranunable optical interconnect
of [Kianiilev 89] would provide a potential candidate for such adaptive alignment.

If utilized, the optical interconnect would, of course, be integrated as part of the wiring
harness.

3.5.4 Maintenance

One very important issue for the hollow cube is that maintenance is possible, and that
it is possible while the machine is in operation. With a system of this size, and necessarily
expense, extensive down time will be expensive. Additionally, with a system this large, the
number of failures per unit time is necessarily proportionally larger than in snmall systems.
As a first line of defehse against these problems the system is designed to be fault tolerant.
When faults do occur, however, it will be necessary to fix them before they accumulate. It
is very desirable to be able perform such repairs without completely disabling the machine.

The "unused" sixth side of the cube provides access into the interior of the cube. On
this face a door or hatch can be placed to allow access into the internal structure. With the
individual stacks laid out contiguously along the walls and ceiling, each is readily accessible
without any need to displace any other stacks.

A single stack can be removed and replaced relatively quickly. With the wiring attaching
to the wire frame, the whole operation of replacing a faulty stack can be moderately short.
The faulty stack needs first to be located. Once located, its wiring-frame can be "unlocked".
The stack can then be replaced and the wiring-frame "relocked" allowing the network to
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return to normal operation. The stack which has just been removed can then be taken
elsewhere so that its faults can be identified and repaired.

Since there are redundant paths through the network using different intervening stacks
for routing, it will be possible to remove an entire stack from the network while the rest
of the network remains in operation. The practical effect of this will be that some fraction
of the bandwidth will be "missing" or rather appear faulty: this is how it would looked
anyway if much of the routing stack was faulty. The network should be wired such as to
guarantee that each output from one level of the network can route through several different
stacks at the next level. With this property and proper termination of the connections to
the removed stack, the network will simply fail to route any connections which attempt
to traverse the stack being replaced. The originating processor will then retry the failed
connections later and either utilize another path through the network, or the same one after
the replacemen' -tack is powered up.

3.5.5 Technology Scaling

These considerations, and the sizes assumed throughout this work, are based mostly on
current, usable technology. Certainly, as interconnect technology increases and packaging
sizes diminish further, this structure can similarly decrease in size. This decrease in size will
linearly translate directly to improvements in the interconnect speed between components
and stages.

One technology that will perhaps be feasible by the time systems of this size become of
real practical interest is the kind of packaging used on the Cray III [Cray 89]. Utilizing this
kind of technology would allow the size of the component structures, and thus the resulting
structure, to be diminished by about a factor of four to six. Similarly, prospects of wafer
scale integration offer roughly the same size scaling advantages.

3.6 Long Wires

It should be clear from Section 3.5.1 that long wires will be required for interconnection
between unit tree stacks. Here long wires are any wires whose length must be longer than
the longest wire within a unit tree stack.

3.6.1 Strategy

The clock cycle on the unit tree and bidelta stacks will be optimized to be as short as
possible given the operational speed of the routing component and the length of the longest
wire in the unit tree. This means it will necessarily take multiple clock cycles for data to
traverse these long wires between unit tree stacks. It is possible to place multiple data bits
on a set of wires simultaneously, but we must be careful that the data is kept in proper
phase with the clock in order to assure proper behaviour of the routing chip. The proper
phase can be assured in either of a couple of ways. The interconnection wire lengths can
be carefully chosen such that their delays are always integer multiples of length of the unit
tree clock cycle. In this manner, the phase is preserved by guaranteeing the delay through
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the wire interconnection is sufficiently well behaved. Alternately, tapped delay line buffers

can he used to insure that the data is presented in the proper phase relation with the
unit tree clock. A scheme similar to Rettberg 87 can be used for this purpose. If optical

interconnect is used (Section 3.5.3). using wires to match interconnect delayvs to the phase
of the data will not be possible. In such a case it would be necessary to use the tapped
delay line alternative.

This scheme will necessarily increase the latencv of a connection, but the increased
latency is inevitable given the geometric constraints of routing. This scheme does manage
to mininize the effects of scaling on latency by only slowing down those interconnection
stages which must be long.

3.6.2 Requirements

The only additional requirements this scheme poses is on RNI. the routing component.
In oarticularly, it only requires different beha, iour from RNI when a connection is turned
around (see Section 1.3). Currently, RN1 expects to get valid data in the new direction
of flow two clock cycles following the reception of a byte indicating it should turn the
connection around. The addition of a single clock cycle's worth of wire delay cAuses this
turn around time to be increased by two clock cycles; that is one additional clock cycle
is required for the turn byte to propagate across the interconnect to the next routing
component, and one additional clock cycle is required for the return data to propagate
back across the connection. With no extra clock cycles of wire delay between RNl routing
components. this turn will occur in two clock cycles. With k clock cycles of wire delay
between a pair of successive routing stages, the turn will occur in 2(k + 1) cloc!l cycles.
In order for the turn sequence to function properly, the routing component at each end of
such a long wire must be capable of dealing with the extra cycles, RN1 will need to know

the number of delay cycles to expect and be able to deal with them accordingly.

The delay size will need to be configurable for ever input and output port on the
routing component. With 8 input ports and 8 output ports, this makes for a total of
16 ports that need to be configured on a single RNl component. It is necessary to be

able to configure each input and output port separately as established in Section 2.3 to
allow input and output ports from the same component to connect to interconnections of

differing delay lengths. Additionally, to allow for the large range of delay values that must
be accommodated for reasonabiy large networks, 2 the delay length configuration will require

multiple bits to specify the delay of a single input or output port. While this configuration
information could be provided to the chip by configuration pins, it should be obvious that
this would require the addition of quite a large number of signal pins. RN1 alread, has
tight constraints on the number of pins that its package will support. Thus, an alternate

means must be used to configure an RNI routing component with this information.
One such alternative is to use UV programmable cells in the routing chip to store this

configuration data. This would require the addition of only a few signal pins to facihtate
the programming of the UV configuration cells. Cells would be programmed by initiat-

ing a program sequegce and shifting the configuration data into the UV cells while the

'See Section 4.1 for projected wire and delay cycle lengths in systems of various sizes.

44

J



component is exposed to UV light. [Glasser 85) describes a technique for constructing UV
programmable cells of this nature which is applicable to the one micron CMOS process in
which RN1 is fabricated. This scheme has the drawback that a component cannot simply
be replaced with another one off the shelf. The replacement component will first need to
be configured before it can serve as a replacement.

A simple progranmming board can easily be built to program the configuration into a
component as necessary.

With the additional configuration information provided to RNI, it must also be updated
to deal appropriately with the configured delays of various lengths. This will required
updating the finite state machine logic in the routing component to deal with varying
delay lengths. This will be a minor change, but will necessitate adding additional state
information to the FSM's. During the additional delay cycles, some reasonable data or
pattern should be sent to the component not directly connected to the long wire so that
the system is guaranteed to be well behaved. After the status and checksum bytes are sent
to this component, the component on what was originally the sending side of the long wires,
will need to send this additional data. This additional data could simply be a repetition of
the status and checksum bytes.

3.7 Processors

Processing elements can be attached in a straightforward fashion to this network config-
ured in the geometry described. Conceptually, each network terminal point will consist of a
processor, memory, and a cache-controller (See Figure 1.1). A given number of processors
will be associated with each leaf stack, whether a bidelta leaf cluster or a UT 64 ×2 unit tree.
As previously noted, each leaf stack is rather thin. The processors and their associated
components for a given leaf can also be arranged in a stack structure. The sides of this
stack structure will be made the same size as the relevant routing stack. The processor
stack can then be layered until it accommodates all the necessary components. Since the
number of processors associated with a leaf routing stack is generally about the same as
the number of routing components in the leaf stack, the processor stack structure will be
of a thickness which is the same order of magnitude as that of the leaf routing stack. This
processor stack can then be abutted directly to the leaf stack or even directly connected.
making it part of the same physical stack. Since the stack structure tends to keep vertical
distances short, this allows the processors to be within reasonable proximity of the routing
network. Also sii,-e the stacks are thin, this will accormnodate space for the processors by
only making the "walls" of the hollow cube (Sections :1.4 and 3.5) slightly thicker. This
additional thickness should not, be significant enough to change the overall size of the hollow
cube structure appreciably.

3.8 Routing Computation

The arrangement of components and structures described so far essentially determine
the composition of a routing sequence for this network. In this section. this routing is
summarized including a scheme for the proper generation of the routing sequence.
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3.8.1 Distinguishing a Processor

Each leaf processor needs to have a unique specification so that it can be referenced.
In a fat-tree structure, the logical specification for a processor is its "address" or location
relative to the root of the fat-tree. In the case of a full fat-tree, this will simply be the path
down the fat-tree to the processor. In a hybrid fat-tree with bidelta clusters as leaves of
the fat-tree network rather than individual processors, this address will be the path from
the root and the location of the processor in the leaf cluster. Thus, a processor is specified
as, L = C o P, where C is the path from the fat-tree root to the leaf, and P is the location
of the processor within the bidelta cluster. Recall from Section 3.1.1 that routing out of
the bidelta leaf cluster stack is accomplished when the high two bits of the initial routing
byte are l's; as such, the high two bits of a processor specification will never be 11. It is
easiest for routing if C is exactly the routing sequence necessary to get from the root to
the desired leaf. Recall from Section 3.3.5 that the low two bits of each byte in a down
routing sequence through unit trees is unused since only six bits of routing is performed on
the down routing path through each unit tree. The value of these unused bits is irrelevant,
but for clarity, they should probably be considered zero (0).

3.8.2 Routing

The routing sequence will be the series of bytes necessary to open a connection to a
desired destination. In general this consists of three parts, the up routing sequence, RU, the
down routing sequence, RD, and the routing within the bidelta cluster, RC. Of course, full
fat-trees will not have the RC component. Each of the components of the routing sequence
will occupy an integral nmunber of bytes; a component will be padded to byte length when
necessary. This keeps the portions of the routing sequence conceptually separated and is
consistent with the previous specifications for the placement of swallows (Sections 3.3.5
and 3.1.2). The separation of the components of the routing sequence into their own bytes
allows the routing bytes to be generated without any need to shift bits around within bytes.
A complete routing sequence, R, is simply RU o RD o RC.

3.8.3 Computing the Routing Sequence

With this configuration, we can compute the necessary routing sequence R with moder-
ate ease. Unlike the bidelta case, it is necessary to know the source location in the network
in order to determine an optimal routing sequence; this additional information is necessary

in order to exploit locality in the fat-tree structure. Let L1 = C1 oP 1 be the source processor
and L2  C2 n P 2 be the destination processor.3 The computation of the routing sequence
then proceeds as follows:

1. I = C1 @ C2; that is I is the bit-wise logical exclusive-or of C, and C2.

2. M = a bit vector with O's for all leading zero bytes and l's for all bytes from the
leading non-zero byte to the end; that is M is a vector which marks all significant
bytes.

3 This degenerates to the specific case of full fat trees when P1 = P 2 = t (the empty string).
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C-1N<7:O> 
8

C_2N<7:O> 8 x8 IN<7:0>

Figure 3.4: Byte-wide xor Slice.

3. j = location of highest-order non-zero bit in M (I based).

10 if bit 6 or 7 is highest non-zero bit in high non-zero byte of I

4. 0 = 001 if bit 4 or 5 is highest non-zero bit in high non-zero byte of I
00 if bit 2 or 3 is highest non-zero bit in high non-zero byte of I

5. RU (11)i o (o) o (0 0 )((3-j)mod4); the trailing O's simply suffice to pad RU to an
integral byte quantity.

6. RD = low j bytes of C2. This will, in fact, include unnecessary routing information.
However, this quantity needs to be padded to an integral number of bytes in any case.
When the bit-rotations are wired appropriately in the crossover routing paths, this
allows RD to be generated with minimal calculations.

7. RC=P2

Note that when M evaluates to all zero, it is the case that C1 = C2 and RU and RD are
unnecessary; in this case, RC full specifies the routing to the final destination since the two

processors are in the same leaf cluster.

3.8.4 Implementation of Computation

It is enlightening to consider possible structures to efficiently implement the compu-
tation just described. In order to talk about individual bytes and bits, let us adopt the

following notation:

"* B< n > refers to the nth bit of B, with the lowest bit being bit zero.

"* BN refers to the Nth nyte of B, with the lowest bit being bit zero.

"* BN < n >, thus refers to the nth bit of the Nth byte of B.

The intermediate quantity I, being an xor, is designed to be cheap to calculate.
The value M requires only the knowledge of which byte is the first to contain non-

zero bits. This allows all the bits in each byte of I to be or'ed together for comparison.
The result is a small bit vector. Since this quantity is then a small number of bits, it is
possible to let the first non-zero bit stimulate the others so that a vector results with all
the significant bytes marked with a 1 bit. Figure 3.5 shows this computation for a single
bit in M.
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M<n+1>

Men>

IN<7:0>

Figure 3.5: Calculation of a Single Bit of M.

4
ONO,>

6 *ON<2>

7
IN<7:0>

Figure 3.6: Calculation of a Single Bit of 0.

Both of the computation of I and M can easily be done either completely in parallel,
all of C1 and C 2 at once, or in a byte serial manner as is appropriate to a particular
implementation.

In both cases the computation of 0 can be calculated on each byte in I s multaneously
and in parallel with the computation of M. The value of M will determine which compu-
tation of 0 should be used. The computation of 0 can proceed similarly to M only with a
granularity of pairs of bits instead of bytes. In fact it is necessary to look only at the high
two pairs of bits in order to determine 0. In this case, instead of stimulating the lower
bit(s) in the bit vector, we inhibit so that ON < 2 : 1 > is the correct value for use in the
construction of RU. See Figure 3.6 for an example of the calculation of 0.

We can assume for the moment that RU will be a single byte quantity.4 RU can be
computed from M and 0 in a couple of gate delays as shown in Figure 3.7.

Since bytes are sent byte serial into the network, no computation is really done for RD.
M identifies which byte of (,'2 to start with when it is time to start sending RD into the
network. Similarly, no computation is done for RC.

From these simple constructs, we can see that the computation of a routing sequence is
an inexpensive operation and can be done in a reasonably small amount of time. A quick
simulation of this implementation in a 1 micron CMOS process 5 calculates RU and M in
less than 6ns.

4 This will be the case until more than about 50 million processors are connected in this manner; this
scheme easily generalizes to the multiple byte case.

'the same processes in which RN1 is fabricated
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Figure 3.7: Calculation of RU from M and 0.

3.8.5 Example

Consider the fat-tree built with B19 2 leaves and two levels of UT 64 1x8 unit trees described
in Section 3.3.3. This gives a fat-tree with 786,432 processors; C will be 2 bytes long and
P will be one byte long. Let L, = OxCC0234 and L 2 - 0zD84267.

1. I = OxCCO2 D 0xD842 = 0x1440

2. M = 0z03

3. j= 2

4. 01 = 10; 02 = 01; since M = 003, 02 is the correct value for 0

5. RU (11)2 o (01) a (00)1 = 11110100 = OzF4

6. RD 0xD842

7. RC= 0x67

Thus the correct routing sequence is RU o RD o RC = 0xF4D84267. This will open a
connection out of the bidelta stack, through the first stage unit tree, and into level 2 of the
next unit tree. At that point, it has crossed over to the down path so the first byte, RU is
swallowed. It routes down through that stack with the relevant portion of the next byte.
That byte is then swallowed and the next byte, 0a42, is used to route back through the
appropriate unit tree in the first stage. This final RD byte is swallowed and the 0z67 byte
is used to route through the bidelta leaf cluster to the final destination.

49



4. Analysis

Chapters 2 and 3 described the construction of Transit fat-tree networks. This chapter
quantifies some characteristics of the resulting networks. Considering fat-tree networks
with both UT6 4 ×2 leaves and bidelta clusters leaves, a progression of networks from full
bidelta networks to full fat-trees can be compared and analyzed. Section 4.1 describes the
distribution of wires by length in hollow cube configurations. Section 4.2 extends the bidelta
network structure beyond the single stack size for the purpose of comparisons. Section 4.3
summarizes network size freedoms for the various network configurations. It then uses size
as a parameter to quantify hardware requirements and network latencies. Section 4.4 uses
the development of the previous sections to provided some concrete network examples for
comparison. Finally, Section 4.5 uses simple probabilistic models to provide basic routing
statistics for the networks of Section 4.4.

4.1 Wire Lengths

Wire lengths are a significant concern in building large netwcrks. As the system grows,
the number of clock cycles required to route between unit trees becomes the dominant com-
ponent of network latency. The hollow cube structure (Section 3.4) keeps wires moderately
short considering the magnitude of the wire convergence that must occur. This section
quantifies the distribution of wires by length in hollow cube geometries.

4.1.1 Worst Case

Utilizing free-space wiring in the hollow cube, the longest wires will be those that
traverse the cube's diagonal. These wires will be vlri times the length of the cube side
long. The length of the cube side depends on the size of convergence for the cube. As
seen in Section 3.4.4, for standard hybrid fat-trees, the sides will be four bidelta leaf stack
side lengths long at the first convergence and increase by a factor of four at each successive
stage. Full fat-trees similarly progress from sides of length equal to four [TT64 ×x2 side lengths
at the first convergence and progress by a factor of four at successive stages. The length
of the side of a stack is determined by the maximum number of routing components on a
single routing stage.

4.1.2 Distribution of Lengths

Only a small fraction of the total wires within a hollow cube are of the worst case length.
Perhap -t more interesting metric is the distribution of wires by their length.

For -inplicity, let us normalize wire lengths to the length of the stack sides. This allows
the derived distributions to be applied generally regardless of stack size. The normalizing

50



length, Istack, will be the length of a side of the component stacks at the terminal level of
the fat-tree. N. will denote the number of stacks along the side of cube.

Each interconnection within the hollow cube connects from a "side" to the "top" of the
cube (See Figures 3.1 and 3.2). Connection endpoints are evenly distributed across the two

dimensions composing each the sides of the hollow cube; this results since each stack in the
sides has the same distribution of interconnection to the top. Each of the stacks on the
hollow cube sides will connect to endpoints which are evenly distributed across the surface
of the top of the cube. Using this uniformity, we can easily characterize the wire length

distributions.
We can start by decomposing the distribution into separate dimensional components, z,

y, and z. Since these distributions are independent, we can then form the total distribution
from the product of the dimensional distributions. To express the dimensional distributions,
a couple of simple probability distribution are needed.

Uniform Unidimensional Distribution

One case of interest occurs when the distribution is completely uniform across the
possible space of lengths. For such a case, we have a uniform distribution. Thus the
distribution function is simply that of Equation 4.1.

-L I < x 0, < N ., 4 1
0 otherwise (4.1)

Unifrom Difference Distribution

The other case of interest occurs when the distribution is that of the difference between
two values picked randonly from the same uniform distribution. In this case, we have a
distribution p,(xo) as in Equation 4.1, and we want the distribution for the quantity ix0-xi

where x0 and x, are described by pr. This distribution is described by Equation 4.2.

JN, ~ o0N
I -L 0 = 0 < N,

Pd-A(Xr)= 2(N.- o) 0 < x0 < N, (4.2)

0 0 otherwise

Hollow Cube Distribution

With the simple distributions just described, the total distribution for wire lengths in
a hollow cube can be derived. The distance the wire must traverse in the vertical (z)
dimension will be described by p, since all interconnections connect from the top to some
distance down the side of the cube. Similarly, the distance the wire must traverse "into"
the cube, normal to the surface of the side, will be determined solely by the location of the

destination on the top surface. This dimension, which for the current development will be
called y, can also be described by p,. In the remaining dimension, which will be referred

'N.B. In an absolute frame of reference, this dimension would be the x dimension for two faces and the

y dimension for the two faces adjacent to those.
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Figure 4.1: Distribution of Normalized Wire Lengths for N, 4 and 16, Respectively.

N8, E(1)

Table 4.1: Expected Wire Lengths Normalized to Stack Size, .,tack

to as x, the distance traversed by the wire depends on the relative placement of both the
source and destination of the wire and thus will be described by Pd,.

With this understanding of the dimensional distance distributions, we can describe the
wire length distribution by Equation 4.3.

max(l) max(l) max(l)
pt(lo) = E E E [p(z)'p.,(y).pd.,,(dx)'wl(lo,dx,y,z)] (4.3)

z=O y=O dax=0

max(l) = [v'/3N8  (4.4)

The function w, is simply used to determine whether or not to include the probability for
a given (dx,y, z) combination in the sum and is described by Equation 4.5.

(o y 1 lo= [\/d2+ y2 + z21 (4.5)
wl(Io,dx, y,z) { 0 otherwise

The distribution, pi is easily computed for a given value of N, and gives the resulting
lengths in units of l'tack. Figure 4.1 shows the distributions of pl for N, = 4 and 16, the
first two side lengths for hollow cubes. The expected, or average, wire lengths derived from
this distribution are shown in Table 4.1.

4.1.3 Distribution by Delay

Once we have the normalized distributions, it is easy to convert these into delay distri-
butions for a particular leaf stack size, latack. This, of course, is the important performance
metric.
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The previous distribution. Pl. can be converted into delay distribution when the clock

cycle and stack size are given. With clock cycle, t, and ltack, the number of delay cycles

between stages is related to the wire delay by Equations 4.6.

ncycles(0) = | (_ 1 (4.6)

Using an appropriate model for the propagation time of a signal across a given length of

wire, we can relate the number of delay cycles directly to the normalized wire length 10.

Equation 4.7 gives this relation assuming the signal is free to propagate at the speed of

light, c, as would be the case for optical interconnect.

tdeiat(l0o) - Io ' Istack (4.7)
C

With these relations. the wire length distribution can be converted into a distribution for

the number of delay cycles between stages is computed as Equation 4.8.
I ~maxU/)

p,, (no) = • •o(Io)'-w,, (no, lo) ' (4.8)

0

Once again a selection function. wt,(no, lo), is used to select the appropriate lengths which

correspond to a given delay.

w,.,(nolo) 1 no = F•ncycie.(lo) (4.9)
, 0 otherwise

Current projections make t, IOns (Section 1.3). Recall that for UT64 , 2's lstack : 1'

(Section 3.3.4). Equation 3.12 gives a rough approximation of leaf stack size for bidelta

clusters. Using these values, several distributions for a hybrid and full fat-tree hollow cube

structure are shown in the following figures. Figure 4.2 is the delay cycle distribution in

a hybrid fat-tree hollow cube using B192 leaves. Figure 4.3 describes the distribution for

both hybrid fat-trees using B 48 leaves and full fat-trees using UT64 1 2 leaves. Figure 4.4

corresponds to the distribution for a hybrid fat-tree hollow cube with B 12 leaves. These

figures all parallel Figure 4.1. but the distributions here are given in terms of cycles of delay.

Table 4.2 gives the expected number of delay cycles for these configurations.

4.2 Large Bidelta Networks

For comparison, it is necessary to consider bidelta networks scaled to sizes comparable to

the fat-tree networks under consideration. However, since we cannot simply build arbitrarily

large stacks (Section 1.4), large bidelta networks must be decomposed into multiple stack

structures.
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Figure 4.2: Distribution of Delay Cycles for N, 4 and 16M respectively Using B 192 Leaves.

""_I

Figure 4.3: Distribution of Delay Cycles for N, 4 and 16. respectively Using B4 8 Leaves.

Figure 4.4: Distribution of Delay Cycles for N, 4 and 16. respectively Using B 12 Leaves.

Leaf Stack Type [ltc•k N,[ E(n)]

B 192  2' 4 1.0
16 3.2

B 48  1' 4 1.0
16 1.8

B12 6" 4 1.0

Table 4.2: Expected Number of Delay Cycles
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4.2.1 Bidelta Stacks

Perhaps, the ideal size for the constituent stacks is four routing stages. With four
stages of routing, the stack distinguishes 256 logical destination. Thus each stack performs
a byte's worth of routing; a fresh routing byte can be used to route through each stack.

The final size of such a configuration will then depend on the number of outputs provided
in each of the logical directions. The smallest configuration would provide two outputs per
logical direction. In general, such a configuration would only be desirable as the final
routing stack composing a large bidelta network. In order to provide proper fault tolerance
with two outputs in each logical direction, the final stage of the network must utilize
the alternate RNl configuration where each crossbar provides a single output per logical
direction (Section 1.5). Since this routing stage's performance is inferior to that of the
other stages, in order to achieve optimal routing performance only the final routing stack
should concentrate the number of outputs in each direction to two.

Being limited to at most 64 components in each routing stage (Section 3.3.1), we are not
free to consider bidelta stacks that both distinguish 256 different destinations and provide
more than two outputs in each logical direction. In general if a stack distinguishes n logical
destinations and has I outputs in each logical destination, N, routing components will make
up each routing stage as given by Equation 4.10. This relation follows trivially from the
fact that each RN1 component has eight outputs.

n.I
N, -= n (4.10)8

As such, we are only free to consider stacks in which n •I < 512. For clarity bidelta stacks
with parameters n and I will be referenced as B,,,. From this discussion, we can conclude

that B 256 X2 , B6 4 ×2, and B 16 ×2 stacks should be used only as the final stage of stacks in
large bidelta networks. The largest stack reasonable for use in forming the earlier network

stages is the B 6 4 ×s.

4.2.2 Arranging Bidelta Stacks

The bidelta stacks are then treated as the standarl routing units. They are arranged
into stages in order to build larger bidelta networks. Within the bidelta stacks, the clock
cycle can be as fast as a single stack constrains it to be. Additional stage delays will be
incurred between stack stages as is the case with fat-trees because the wires will be long.
However, this extra delay is only incurred between stack stages and at the final recycle
path. The long wires can be dealt with as described in Section 3.6. This configuration will
give better performance than uniformly slowing the clock rate down everywhere in order

to accommodate the propagation delay across the long wire paths.
For replication, it will be necessary to place swallows between the stages of routing

stacks. In this manner, a separate byte is used to route through each bidelta stack.
Since the number of inter-stage delays does not affect the total clock rate of the system.

it makes sense to inter-wire the stacks in an indirect binary cube network style. This
allows the wires at the first few stages to be relatively short. Successively longer wires are
used between successive stages of routing stacks. This structure can be laid out in two
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Figure 4.5: Indirect Binary Cube Topology

dimensions so that the critical geometric parameter at each stage is the square root of the
number of stacks involved in the convergence; that is the subsets of the routing plane that
will be interconnecting between successive levels will be squares of stacks. At the final
stage, the convergence will be one big square; at earlier stages, there will be many smaller
squares of convergence. Figure 4.5 shows the interconnection topology of an indirect binary
cube using binary switching components. Using bidelta stacks for switching, each stack will
switch in 16, 64, or 256 directions, and the inter-stage wiring will occur in two dimensions
rather than one.

4.2.3 Wire Lengths

We can apply the analysis of Section 4.1 to analyze the distribution of wires by length
in this scheme as well. Here we have a sequence of routing planes with the interconnect
between planes. In this configuration, the wires are distributed with various displacements
x and y direction and an essentially constant displacement between planes. Assuming the
inter-plane displacement is negligible, we can get a feel for the distribution of wire lengths.

Here the distribution of displacements necessary in the x and y directions are, to a
first-order approximation, uniform difference distributions as described in Section 4.1.2.
From this, we can easily derive the distribution of wire lengths. Let N, be the length of the
side of the square of convergence at the stage of interest; again N. is normalized to stack
size. p, will again be our distribution function. w, will be the selection function as before.
Equations 4.11 through 4.13 summarize these relations.

max(l) max(i)

pd(lo) = Z Z [pd.(dx).pd,(dy).wj(1o,dx,dy)] (4.11)
dy-=O dx-zO

max(/) = [V-N.] (4.12)

wl(lo,dxdy) = 1 lo= [v/dx2+dy21 (4.13)

t~0 otherwise
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_ _ iIk,
Figure 4.6: Distribution of Normalized Wire Lengths for N, 8 and 64. Respectively.

Figure 4.7: Distribution of Delay ('ycles for N, 8 and 64, Respectively using 2' x 2'
Stacks.

Figure 4.6 shows the distributions for normalized side lengths of 8 and 64. If a large bidelta
network were built with three stack stages, two built from B 6 4 ×s and the last from B25 6 x 2,
N, would be 8 between the first and second stage and 64 between the second and third.
Normalized average wire lengths are 4.6 and 33.9 for N, = 8 and 64. respectively.

4.2.4 Delay Cycles

The number of delay cycles required can be determined exactly as described in Sec-
tion 4.1.3. Making the same assumptions as in Section 4.1.3. Figure 4.7 parallels Figure 4.6
in terms of delay cycle units. The side length for both the B 64 x8 and B2s6X 2 stacks is two
feet. For this configuration. the average number of delay cycles for is 1.3 when N, = 8 and
6.9 when N, = 64.

4.3 Network Characterizations

This section summarizes a few quantizations for various network characteristics param-
eterized by network size. Quantizations are provided for full fat-tree, hybrid fat-tree, and
bidelta networks. This allows some comparison across the range of networks between full
fat-tree and full bidelta networks. For each network, characterizations are provided for
required hardware and network latency.

Table 4.3 summarizes most of the variables used in the remainder of this section.
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ANP num.er of processors

'N . number of routing components

Nija f number of processors supported bv a leaf stack
N, . t number of routing components in a bidelta leaf stack

N),elt1 number of bidelta leaf clusters

S.V ,,t number of UT6 4 x8 unit trees

fptt number of U'T6i4 .2 unit trees

a parameter describing selection freedon:

i represents the number of stack stages in a network
i must be a positive integer

j a parameter describing selection freedom:

_ j represents the number of routing stages in a bidelta stack

total number of routing stages in a bidelta network

____.___ length of a -ide of the routintm chip

clock period
1lr,.e length of longest wire

twt,•e wire delay

c speed of light

fn".) stage delays between stage n) and o

Lop latency opening connection from source to destination

Lcnnect latency of an open connection front source to destination.

N B. For the following, latency is used to refer to the period of time between the time
the message enters the network and the time the message arrives at the destination. The

act'ial latency of a network operation will be a function of' this metric and depending

on the end to end protocol used. Connection latency. L,.de. (lifters front the latency
opening a connection. LoPn due to the need to change routing bytes (luring the opening of

a connection.

Table 4.3: Variable Summary

4.3.1 Full Fat-Tree

Recall from Section 3.3.4 that full fat-tree networks are built entirely from unit trees.
Full fat-trees have processors as the ultimate leaves of the fat-tree structure.

Size

Full fat-tree networks are built with (TT 6 4 ×2 unit trees forming the bottommost stage

of the fat tree and UT6 4 8 unit trees form-ing the remainder of the tree structure. Equa-
tion 4.14 characterizes the sizes of constructible full fat-trees.

Np = 64' (4.14)
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A full fat-tree network of a given size will have 3i tree levels made from i stages of unit
trees. The fat-tree will be composed of i up routing stages and 3i down routing stages.

Hardware Requirements

Each UT 64 ×s unit tree requires 208 RN1 routing components (Section 3.3.1) while each

UT 64 ×2 requires 52 RNI components (Section 3.3.4). Equations 4.15 and 4.15 respectively
describe the required number of [T 6 4 ×2 and UT 64 ×8 unit trees necessary to build full fat-
trees of size Np (Section 3.3.4).

NAfnit Np (4.15)
64

N..it = (I - 4(1-i)) Np (4.16)
768

Combining these requirements, we find the total number of routing components required
as expressed in Equation 4.17.

1 76 4(-i I- + (1-408 13Np (4.17)N, =(52) ( L4P) + (208)(i L74(1 P8) 16 48 ) 3, (.)

Latency

As described in Section 3.6 there will be some number of stage delays between stack
stages. Let n(,,) be the number of clock cycles of delay between stack stage rn and stage

o. Between any pair of stages, the values of n(k,k+l) and n(k+1,k) will be distributed as

described in Section 4.1. Since there is a distribution of possible values for n(kk+1) between
the same stack stages, no single value describes this quantity. The reverse stage delays,

n(k+i,k) will be distributed similarly; however, a particular n(k+l,k) need not be related to
the corresponding n(kk+l) utilized as part of the same interconnection.

To route through a given level of the full fat-tree, a connection must route through one
up routing level for each 3 levels up the tree. The connection will then route through all
the down levels. Between stack stages on both the up and down path, the route will suffer
the additional stage delays due to the long wires between stages. The latency through level
k of tree is given by Equation 4.18.

([k] 31-1

cnect(k) -+ E nJ+lJ) X tc (4.18)
j=1 j=1

In opening a connection through level k, an additional cycle of delay is incurred between
stacks on the down route in order to swallow the leading routing byte. Similarly, at least

one up routing byte will need to be dropped in crossing over to the down routing path;
every fourth stage between unit trees requires an additional stage of delay for the leading
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routing byte to be dropped. The latency to open a connection through level k of the fat-tree
is sunumarized in Equation 4.19.

Lopen(k) Lcgn,1 ect + [k] i + [Al) x

1 +2 + k- 1 + x + E X tc (4.19)
j=1 j=1

The best-case routing occurs when the most locality can be exploited. This occurs when
a processor connects to its nearest neighbor. In this case, the route occurs through level
one of the fat-tree. Thus Equations 4.20 and 4.21 describe the best-case performance for a
full fat-tree.

Lconnect = 2tc (4.20)

Lopen = 3tc (4.21)

In the worst-case, the only common ancestor of the source and destination processors
is the tree root. In this case, the connection must travel all i stages up to the root of the
fat-tree and then all 3i stages back down to the destination leaf. Equations 4.22 and 4.23

give the worst-case latencies for the full fat-tree.

Lconnect = 4 + E n(j,j+ + +E n(j+,j) X tc (4.22)
j=1 j=l

Lo(n = + 5i - I + n(j,j+1) + nl(j+,j) x t' (4.23)
4j=l j=l

4.3.2 Hybrid Fat-Tree

Hybrid fat-trees are built with bidelta leaf clusters forming the leaves of the fat-tree

structure.

Size

The leaf stage of the network is built with the bidelta leaf clusters described in Sec-
tion 3.1. These are interconnected with a fat-tree structure constructed from UT 64 ×8 unit
trees. Each leaf cluster is built from j routing stages and supports Nieai processors as
described by Equation 4.24.

Nieaf 3 .4(0-1) (4.24)

For technical reasons described in Section 3.1.3, 1 < j < 4. Using i - 1 stages of UT6 4 ×8

unit trees, the total number of processors supported is thus given by Equation 4.25.
N, = Nieaf " 64(P-) = 3- 4(-1) • 64('-1) (4.25)

The fat-tree structure provides i - 1 up routing stages and 3(i - 1) tree levels and hence
down routing stages.
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Hardware Requirements

Each leaf is constructed from c, kt ANI routing components as described by Equa-
tion 4.26.

N _J- 4(-= 1) + (j - 1)3. 4 (j-2) = (3j + 1)4(J-2) (4.26)

The total number of bidelta leaf cluster required is described by Equation 4.27 (Sec-

tion 3.3.3).

Nbidelta - 6 4 (i-i) (4.27)
Nlea.f

The number of unit trees required for a hybrid fat-tree with i - 1 unit tree stages is given
by Equation 4.28 (Section 3.3.3).

N,,nit (I ( 6)1- 4(1-')) (4.28)

Each UT64 ×8 unit tree is constructed from 208 RN1 components (Section 3.3.1). Consoli-
dating these relations, we get Equation 4.29 which described the total number of routing
components in a hybrid fat-tree.

N, = (3j + 1)4(,') .64(i-') + 208 (1

[(3j + I)4 J- 2) + 1-)4(J-1) (- 4(1'))] 64('-') (4.29)

Latency

The best-case interconnect in the hybrid fat-tree occurs when a connection is made
within the bidlta leaf cluster. When this level of locality can be exploited, the latency for
a connection is given by Equation 4.30.

Lconnect = Lopen j X t c (4.30)

Opening and continuing a connection are identical in this case because j is constrained to
not exceed four due to current technology limitations.

When communications do need to occur between processors in different leaf clusters,
connections must be made through the fat-tree. As connections are routed between stack
stages, delay cycles will be incurred as described for the full fat-tree (Section 4.3.1). In
routing through some stage of the fat-tree, the connection first requires one cycle to route
into the fat-tree network. The connection traverses one up routing stage every three stages
up the tree it must go. Once the connection reaches the root of the smallest common
sub-tree between the source and destination processor, the connection must then be routed

down all the down routing stages to the desired bidelta leaf stack. Once the connection
finally enters the destination leaf stack, there will be an additional j stages of routing within
the leaf stack. Equation 4.31 summarizes the latency of a connection through level k of the
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fat-tree network.

Lconnect(k) I + j + k + 3+ ± (MM+U + E n(mt,,, , t' (4.31)

When opening a connection, additional delay cycles are required due to the need to change
routing bytes. The hybrid fat-tree requires the additional cycles for swallowing bytes on
the up routing path, down routing path, and in the crossovers as described for full fat-
trees (Section 4.3.1). Since two bits of routing are required to route into the fat-tree the
swallow on the up path will occur one stack stage earlier in this configuration than in the

full fat-tree configuration. The hybrid fat-tree will require an additional change of routing
bytes when the connection enters the destination leaf cluster. Equation 4.32 combines these
additional delays to describe the latency for opening a connection through level k of the
fat-tree portion of a hybrid fat-tree.

Lopenk Lonc(k) + ([k1 ±[k;31 1 ) >xt,

Lopen (k) I+ j + k + [ 3 1 + 2 [f iinmm, + L fl(m+l~m)) X t' (4.32)
m=1 M=1

Worst-case connections in the hybrid fat-tree occur when interconnection must be made
through the top level of the top stage of unit trees. Here the connection is made into the
fat-tree, up the i- I up routing stages to the root, down the 3(i- 1) stages to a leaf cluster,
then across the j stages of the leaf cluster to the destination processor. Equations 4.33 and
4.34 describe the latency for this worst-case interconnection.

i-1 i-I

Lconnect I + 4(i - 1) + j + E n(m,n+l) + E n(m+i,m) × tc (4.33)
M~ = I M= 1

Lope 1 + j + 5(i - 1)+ +4[ n(m,m+i)+ ± n(m+,m)) x t' (4.34)
I ---m=I M=-I

4.3.3 Bidelta Network

Section 4.2 described the construction of large bidelta networks. This is a generalization
of the Transit bidelta network to multiple stack sizes.

Size

The constituent stack stages are each constructed with j layers of routing. i stack stages
can then be combined to construct the large bidelta network. The j's for each stage in a
single network need not be identical across all stack stages. Thus the number of processors
in such a network is described by Equation 4.35.

N -= 4j • 4j2 ... Ai (4.35)
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Recall from Section 4.2.1 that size and performance constraints limit j as given by Rela-
tions 4.36 and 4.37.

for m < i2: 1 < 3 (4.36)

2 < ji < 4 (4.37)

The total number of routing stages in this network is summarized in Equation 4.38.

h = jl + j2 + + + j= log4 (NP) (4.38)

Hardware Requirements

The number of routing components needed can be determined by looking at the entire
network without a need to do individual accounting at each stack stage. Considering the
bandwidth in and out of the beginning and end of the network, Equation 4.39 gives the
number of routing components needed at each routing stage.

Nc,,tae =- Np (4.39)
4

Combining this with Equation 4.38, the total number of RNl routing components required
for the bidelta network will be determined by Equation 4.40.

N, hx L
4

NP log 4 (NP) (4.40)
4

4.3.4 Latency

Delay stages are incurred between successive stack stages as previously described. Sec-
tion 4.2.3 describes the distribution characteristics the extra delay cycles required between
stack stages. Since the set of source processors is the same as the destination set, con-
nections must loop-back from the end of the bidelta network to the beginning. Since this
requires only translation in the vertical stack dimension, we will assume this loop-back can
occur in a single clock cycle (t~taOk). Note that since routing only occurs in one direction
through the bidelta network, unlike the tree structures, the delays between stack stages is
only incurred once in this structure.

With the exception of the number of delay cycles incurred between stages due to long
wires, all path. through the bidelta network are the same length. Each path traverses
the h routing stages described above. Inter-stage delay is incurred as well as a cycle for
the final loop-back. As such, the connection latency for a bidelta network is described by

Equation 4.41.

LconneCt = h + E n(,k+l)+1 X ttack (4.41)
k=1

In opening a new connection through the bidelta network, additional latency occurs as a
result of changing routing bytes. Routing bytes will be changed between routing stack
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Number of Unit Tree Total
Processors Stacks Components

64 1I T 64. 2  52
4,096 64 U;T 64 ý 2  4 17T 6 4 . 8  4.160

262.144 4096 ITT64 X2  320 ITT6 4 X8 279,552

Table 4.4: Full Fat-Tree Hardware Requirements

stages as describe in Section 4.2.2. Due to the constraints placed on j, there will never
be a need to change routing bytes within a bidelta stack. Equation 4.42 gives the latency
required to open a connection through the bidelta network.

Loprn =Lconect + (i - 1) x t stack

I-

k=1

4.4 Comparisons

In order to offer a clearer comparison between the various networks described herein.,
this section provides some concrete examples. Using the equations and assumptions from
Section 4.3 and the geometric configurations described in Sections 3.4 and 4.2, represen-
tative numbers are determined for network size, composition, and latency. All values are
characterized as describe in Section 4.3.

4.4.1 Full Fat-Tree

Tables 4.4 summarizes the hardware requirements for a few full fat-trees of interesting
sizes. Table 4.5 characterizes the extreme latency cases for the full fat-trees described in
Table 4.4. The worst-case latency included here uses the worst-case wire delays between

unit tree stages on both paths through the fat-tree and assumes the connection must be
made through the tree root. Review Section 4.1 to get a feel for the distribution of latencies
between the best and worst cases.

4.4.2 Hybrid Fat-Tree

Table 4.6 describes several sizes of hybrid fat-trees. Table 4.7 summarizes the latency
range for these configurations. Just as for the full fat-trees the worst-case latency shown is

for a connection through the tree root with the longest possible wires between stack stages
on both the up and down tree traversal. Again, Section 4.1 describes the distributions of
wire delays for configurations such as these.
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Number of Latency of Connect Latency of Open
Processors] Worst Case I Best Case Worst Case I Best Case

64 40ns 20ns 50ns 30ns

4,096 lOOns 20ns 120ns 30ns
262,144 200ns 20ns 230ns 30ns

Table 4.5: Full Fat-Tree Latencies

Number of Bidelta Unit Tree Total
Processors Stacks Stacks Components

768 64 B 12  1 ('T 6 4 . 8  656
3,072 64 B 48  4 UT6 4 ×8  3,392

12,288 64 B 1 9 2  16 UT 6 4 s8  16,640
49,152 4096 B12  80 UT 6 4 ×8  45,312

196,608 4096 B 48  320 UT64 . 8  230,400
786,432 4096 B 192  1280 UT 64 . 8  1,118,208

Table 4.6: Hybird Fat-Tree Hardware Requirements

Number of Latency of Connect Latency of Open
Processors Worst Case Best Case Worst Case Best Case

768 90ns 20ns 1lOns 20ns

3,072 lOOns 30ns 120ns 30ns
12,288 130ns 40ns 150ns 40ns

49,152 170ns 20ns 200ns 20ns
196,608 200ns 30ns 230ns 30ns

786,432 290ns 40ns 320ns 40ns

Table 4.7: Hybrid Fat-Tree Latencies

4.4.3 Full Bidelta

Tables 4.8 and 4.9 summarize the characteristics for some bidelta networks of compa-
rable size to the full fat-tree and hybrid fat-tree configurations listed above. For this case,
the worst-case latencies are for the case in which the wires are maximal length between
stages. The best-case latencies assume a single cycle of delay due to inter-stage wiring.
Section 4.2.3 describes the delay cycle distributions for this configuration.
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Number of Bidelta Total
Processors Stacks jComponents

64 B64x 48

256 B 2 5 6 x 2  256
1,024 B64 ×s B16 ×2  1,280

4,096 B 64 x8 B 6 4 ×2  6.144
16,384 B 64 ×8 B 25 6x 2  28,672
65,536 B64x8 B 64 xs B16 , 2  131,072

262,144 B64, 8 B64, 8 B64 X2  589,824
1,048,576 B64×8 B64 ×8 B 256 X2  2,621,440

Table 4.8: Bidelta Network Hardware Requirements

Number of Latency of Connect Latency of Open

Processors Worst CaseI Best Case Worst Case Best Case

64 30ns 30ns 30n, 30ns
256 40ns 40ns 40ns 40ns

1,024 70ns 70ns 80ns 8ons

4,096 90ns 80ns lOOns 90ns
16,384 110ns 90ns 120ns lOOns

65,536 l60ns llons 180ns 130ns

262,144 210ns 120ns 230ns 140ns
1,048,576 310ns 130ns 330ns 150ns

Table 4.9: Bidelta Network Latencies

4.5 Routing Statistics

Using the simply probabilistic models for routing analysis developed in [Knight 90],
this section provides some basic routing statistics for the network topologies described
here. Statistics are provided for all of the configurations detailed in the previous section.
All statistics summarized hee are based on the network model presented in Section 1.2.
This means that each processor will use at most one of its two inputs into to the network
at a given point in time. The probabilistic models used to derive these statistics simply
characterize routing probability in terms of network loading. The effect of input queuing

at each source is not modeled.

Traffic distribution will have a considerable effect on the actual performance of any
of these networks. The fat-tree structured networks require considerable communication
locality in order to perform optimally. Each network is considered with the loading distribu-
tions for which it is most favorable. Along with the routing statistics, this section provides
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characterizations for the locality required by each network configuration to achieve near

optimal performance.

4.5.1 Full Fat-Tree

A full fat-tree network is optimized to take advantage of locality. The actual construc-
tion and bandwidth allocation determine the locality characteristics necessary to utilize the
network most effectively. The optimal loading case occurs when each connection through an
RNI routing component is equally likely to be made through each of the component's out-
puts. Within a unit tree structure, this means that a connection is equally likely to crossover
at each lateral crossover stage. In a unit tree stage other than the root, the connection fur-
ther up the tree will also be utilized with equal likelihood as each lateral crossover. Taking
these two considerations together, the distribution of connections through each tree level
in the same unit tree is roughly equal; the distribution of connections through unit tree
stages drops off by a factor of four at each successive stage toward the root.

There are two ways of looking at the locality distribution. As described, we can think
of the distribution in terms of the probability of routing through a given height in the
fat-tree. This is the probability, Paiy(ln), that a processor will need to communicate with

any processor a fixed distance, n, away from the source processor. The probability that the
processor will need to communicate with a particular processor a fixed distance form the
source processor is an alternate way of viewing this locality. This probability, Pparticular(n),

is simply the previously mentioned probability normalized by the number of processor that
are located the fixed distance away from the source processor. Table 4.10 through 4.12
summarizes the locality distributions assumed for the full fat-trees considered here in terms
of these locality measures.

With these locality models, Figures 4.8 through 4.10 show the routing statistics on each
of these full fat-trees. Each graph includes a separate curve for the routing statistic through
each level of the fat-tree. The topmost curve characterizes the statistics for a connection
through the first level of the fat-tree. Successive curves down the graph give routing statis-
tics for routing through successive tree levels; the bottommost curve characterizes routing
through the tree root.

Figure 4.11 shows the normalized routing probabilities for these three sizes of full fat-
trees. The normalized statistics are roughly identical for the three sizes, so the individual
normalized curves are indistinguishable. The normalized probabilities give an idea of overall
network performance under the assumed loading conditions. The normalized probabilities
are determined by weighting the probability of routing through a given tree level by the
probability that a connection can successfully be made through that tree level as summa-
rized in Equations 4.43.

max (n)
Pnorm = Pa.n(n)"- P,.ote(n) (4.43)

1
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Figure 4.11: Normalized Routing Statistics for Full Fat-Trees
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11Pai9(71) Ppartzu-lsarf~n)

1 0.333 0.111
2 0.333 2.78 x 10-2

3 0.333 6.94 x 10-

Table 4.10: Locallity Structure of Full Fat-Trees (64 Processors)

nI Pany(n) ]Pparticular(nI)
1 0.278 9.27 x 10-2
2 0.278 2.32 x 10-2

3 0.278 5.79 x 10-3

4 5.53 x 10-2 2.88 x 10-4

5 5.53 x 10-2 7.20 x 10-o

6 5.53 x 10-2 1.80 x 10-5

Table 4.11: Locallity Structure of Full Fat-Trees (4096 Processors)

nL Pany(fl) jPpartimluar(n)ý
1 0.274 9.13 x 10-2

2 0.274 2.28 x 10-2

3 0.274 5.71 x 10-'
4 3.17 x 10-2 1.65 x 10-4

5 3.17 x 10-2 4.13 x 10-5

6 3.17 x 10-1 1.03 x 10-5
7 1.06 x 10-2 8.62 x 10-7

8 1.06 x 10-2 2.16 x 10- 7

9 1.06 x 10-2 5.39 x 10-8

Table 4.12: Locality Structure of Full Fat-Trees (262144 Processors)

4.5.2 Hybrid Fat-Tree

The hybrid fat-tree also takes advantage of locality much like the full fat-tree. Since
only one-quarter of the bandwidth out of the first stage connects to the fat-tree structure,
optimal performance occurs when three-quarters of the processor initiated traffic is local to
the bidelta leaf clusters. Within the leaf, the distribution of traffic is uniform; that is, it is
equally likely to need to connect to any of the processors within the leaf. For connections
through the tree, the arrangement is identical to that of a full fat-tree so the distribution
of requests by tree level will progress in the same manner. Tables 4.13 and 4.14 summarize
the distributions assumed for the hybrid fat-tree network traffic.
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PaTy( ) [ Ppartzcularj 11)

__B 12  B48  B 12

0 (leaf) 0.75 6.82 x 10-2 1.60 X 10-2 3.93 10-3

1 8.33 x 10-6 2.31 x 10-3 5.78 x 10-4 1.45 10-4

2 8.33 x 10-2 5.78 x 10-4 1.45 × 10-4 3.62 10 1
3 8.33 x 10-2 1.45 x 10-4 3.62 x 10-5 9.04 x 10"6

Table 4.13: Localfity Structure of Hybrid Fat-Trees (Single Unit Tree Stage)

nl P-ny(?l) I Pparticular(fl)

B 1 2  B 48  B12

0 (leaf) 0.75 6.82 x 10-2 1.60 x 10-' 3.93 x 10-3

1 6.95 x 10-2 1.93 x 10-3 4.83 x l0-4 1.21 X 10-4

2 6.95 x 10-2 4.83 x 10-4 1.21 x 10-4 3.02 x 10-
3 6.95 x 10-2 1.21 X 10-4 3.02 x 10-' 7.54 x 10"

4 6.95 x 10-2 3.02 x 10-5 7.54 x 10-6 1.89 x 10-6
5 6.95 x 10-2 7.54 x 10-6 1.89 x 10-6 4 .7 1 T 1 0-
6 6.95 x 10-2 1.89 x 10-6 4.71 x 10-- 1.18 x 10-'

Table 4.14: Locallity Structure of Full Fat-Trees (Two Unit Tree Stages)

Figures 4.12 through 4.17 show the routing statistics for the hybiid fat-trees described
in Section 4.4.2. The first three graphs are for the configurations with one stage of unit
trees, while the later three graphs are for the two tree stage configurations. The topmost

curve in each graph represents the routing probabilities within the bidelta cluster. Each
successive curve down a graph shows routing statistics for connecting through a successively
higher level in the tree structure.

Figure 4.18 shows the normalized routing probabilities for these six hybrid fat-tree
configurations. The normalized statistics for hybrid fat-trees with one or two unit tree
stages coincide as long as the size of their bidelta leaf clusters is identical; that is the

normalized statistics differ only by the size of the bidelta leaf cluster. The topmost curve
shows statistics for hybrid fat-trees using B 12 bidelta leaves, the middle for B 48 bidelta
leaves, and the bottom for B 19 2 leaves.

4.5.3 Full Bidelta

To a processor on a full bidelta network, all destinations are equally distant. The
routing to all destinations is topologically identical. The bidelta network will provide its
best overall performance when message traffic is uniformly distributed across all processors;
that is, its most favorable loading condition occurs when each source will open a connection
to all destinations with equal likelihood. This flat, random distribution of connections is
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essentially the extreme case in which no locality is exploited. As traffic deviates from
this flat distribution, the performance will deteriorate. Figure 4.19 shows the routing
statistics for the bidelta networks described in Section 4.4.3. The topmost curve in the
figure corresponds to a 3 stage, 64 processor, bidelta network. Each successive curve down
the graph plots statistics for a network with an additional stage of routing, making the
total network size a factor of four large. The bottommost curve thus corresponds to a 10
stage network supporting 1,048,576 processors.
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5. Conchlsion

Chapters 2 and 3 presented the topology and construction details for constructing fat-
tree style networks using Transit technology. Chapter 4 then sununarized many of the
parameters and characteristics implied by the network structure in order to provide a basis
for comparison with other architectures. This chapter summarizes some of the requirements
and consequents of these fat-tree structures and identifies components of the design which
might merit further study.

5.1 Routing Component Requirements

The manner in which the RNI routing component could be utilized as the primitive
routing element in network construction was always a primary consideration throughout
this work.

In order to build a maximally fault tolerant network structure, two properties of the
RN1 component were identified as critical. The ability to separately configure the byte
dropping characteristics of each input port was established as necessary for optimal dis-
persion of connections (Section 3.1.2 and 3.3.5). The alternate configuration of RN1 as an
independent pair of 4 x 4 crossbars with one output in each logical direction proved critical
to the construction of a network resilient against single component failures. This also helps
minimize the effects of each component failure (Section 2.1.2 and 3.3.4).

For this network structure the only functionality that is lacking from the current RN1
design is the ability to deal with round trip delays on long wires (Section 3.6). This ability
turns out to be necessary for optimal performance when building any networks of these sizes
regardless of whether the network is arranged as a bidelta or fat-tree network (Section 3.6
and 4.2). Section 3.6 describes a scheme for rectifying this deficiency in future revisions of
RN1.

5.2 Characteristics

The network design presented overcomes the potential problems identified in Section 1.1
due to network size, decomposition, and topology. A number of interesting structures were
developed to surmount these problems. The result is a fat-tree network structure that has
a number of desirable properties.

5.2.1 Constructable

An overriding concern in the development of the physical network structure was estab-
lishing a design which could be physically realized in the real world. Attention was paid
to the real world constraints posed by technology limitations. Also, some care was taken
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to minimize the construction complex.ty. The intent was to design a structure which could

realistically be fabricated within the next few years without relying on any technological
breakthroughs. At the same time, attention was paid to technology trends so that the
architecture itself would still prove valuable with improved technological capabilities.

The unit tree structures (Section 3.3) provide a powerful component for dealing with
technological size limitations. They provide a decomposition of the large network into
components that can be reliably fabricated. The unit tree also serves as a building block.
limiting design complexity. Since each unit tree is virtually identical, the complexity of
configuring a network is reduced to that of configuring a couple of unit trees and then

inter-connecting unit trees accordingly.
The hollow cube geometry (Section 3.4.3) provides a simple and straightforward manner

in which to arrange unit trees. Its structure reflects the natural growth characteristics of
the fat-trees constructed with unit trees. With careful design (Section 3.5), the hollow cube
structures can provide a framework for the interconnection of unit trees, in this manner.

they will significantly simplify the complexity of configuring and maintaining unit tree
interconnections.

5.2.2 Fault Tolerance

Utilizing the properties of R.N1 and judicious wiring patterns, the fat-tree network will
be reasonably fault tolerant. All the fat-tree structures described are resilient against single
component failures (Sections 2.1.2 and 3.3.4). With the redundant paths through the net-
work, the effects of any component failures are minimized. Sections 2.1.1 and 2.3 presented
constraints on wiring to maximize the fault, tolerance of these networks. Additionally, the
accessibility afforded by the hollow cube structure will allow faults to be repaired while the
network is in operation (Section 3.5.4).

5.2.3 Cheap Routing

The network is structured to make routing on the fat-tree both conceptually and prac-
tically simple. This allows routing to be performed cheaply as described in Section 3.8.

5.2.4 Performance

The resulting fat-tree based networks attempt to minimize the latency of the intercon-
nect while maximizing the probability of performing a successful route.

Latency is improved over a naive approach in a number of ways. Routing on the upward
tree path (Section 2.2.4) reduces by a factor of three the number of stages of routing incurred
while traveling up the tree. Utilizing the RNI component, which is a constant sized switch,
keeps the routing delay at each stage constant at the cost of incomplete concentration
(Section 2.2.4). Making the routing clock cycle insensitive to the signal delays incurred
while crossing long wires, allows fast pipelining of data transmissions; a long wire only
affect the latency of a connection which actually traverses it (Section 3.6).

When building networks of the magnitude described here, it is clear that locality will
be necessary to obtain reasonable performance. The fat-trees constructed from unit trees
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have a natural architectural locality resulting from the allocation of hardware. This nat-
ural locality is summarized for full fat-trees in Section 4.5.1 and for hybrid fat-trees in
Section 4.5.2. Knowing this optimal level of locality may prove useful in designing parallel

algorithms and software for large systems. With proper locality, the routing statistics for
these fat-tree structures is reasonable; the probability of obtaining a successful route in a

fully loaded network is in the 70% to 80% range even for networks with three-quarters of a
million processors (Sections 4.5.1 and 4.5.2).

5.3 Future

I have attempted to develop the construction of these fat-tree structures in reasonable
detail. Sufficient detail was provided to demonstrate the feasibility of such networks. Also,
this development gives enough information about the structure that good estimates of
critical parameters such as hardware requirements and performance can be obtained. This
development, however, is by no means definitive. A number of issues are open for further
study and optimization while a few issues require additional specification.

5.3.1 Routing Statistic Modeling

The routing statistics provided in Section 4.5 model the probability of successfully
finding a route through the network as a function of network loading. As such, it does
not take into account the manner in which the network will normally used; in general,
when a message fails to get routed, the processor will resend it later. This will have a
feedback effect on the network loading. In order to see network performance under this
more realistic model of network traffic, a more detailed statistical model must be utilized
which takes input queuing into account. Additionally, this analysis would provide a means
for estimating the amount of time required, on average, in order to acquire a complete
connection through the network.

5.3.2 Simulations

As a complement to statistical modeling, it will be enlightening to simulate this net-
work structure. This will provide a good means of checking the validity of the statistical
assumptions under various loading conditions.

5.3.3 Interconnection Details

Section 2.3 provided a number of constraints necessary to obtain good performance.
As mentioned there, it is unclear whether or not the expansion properties proposed by
Leighton and Maggs should be used to further dictate the details of interconnection wiring.
Once we have functional simulations, we should be able to establish the importance of these
constraints. Once this is known, detailed wiring patterns must be developed for the unit
tree structures.

The wiring between stack stages merits additional attention and detail. If optical inter-
connection is to actually be used, additional study on the integration of this technology will
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be required. Additional work on schemes for adaptive alignment will be a virtual necessity
in order to utilize free-space interconnection on this scale. For maximal efficiency, custom
components may need to be designed and fabricated for this purpose.

5.3.4 Geometry

As stated in Section 3.4.6, the hollow cube geometry is not known to be optimal. Its pos-
sible future study may produce a geometry that provides shorter interconnection distances
for the basic network structure described while retaining the properties of maintainability
and constructibility.

5.3.5 Packet Switching

The basic Transit networking scheme is circuit switched. Circuit switching is used to
minimize the latency inherent in getting a response from a remote processor on the network.
Using circuit switching, no buffering is needed within the network. This avoids problems
due to internal buffer overflow or network congestion by blocked packets.

For large networks where the latency from one end of the network to the other is
greater than the time required to transmit the standard quanta of data, circuit switching
may inefficiently utilize network bandwidth. If such is the case, it might be worthwhile to
consider packet routing schemes. The basic fat-tree structure and interconnect described
here would be applicable to a packet switched network scheme. The difference that arise
would occur in the routing protocol and policies. Almost all of these differences would thus
be limited to the design of the cache-controller and routing component.

5.3.6 Construct Prototypes

Certainly, the most definitive way to evaluate the worth of this fat-tree network struc-
ture is to actually construct prototypes. The construction exercise will guarantee that no
essential construction details are overlooked. Such construction will, no doubt, uncover
issues and problems not yet considered.
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