AD-A270 465

PASSIVE LOCALIZATION OF UNDERWATER ACOUSTIC BEACONS

by Dennis Michael Wojcik

B.S. Electrical Engineering Marquette University (1986)

Submitted to the Massachusetts Institute of Technology/ Woods Hole Oceanographic Institution Joint Program in Oceanography and Applied Ocean Science and Engineering in Partial Fulfillment of the Requirements of the Degree of

Master of Science in Oceanographic Engineering

at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution

September 1993

© Dennis Michael Wojcik 1993 The author hereby grants to the Massachusetts Institute of Technology, the Woods Hole Oceanographic Institution, and the U.S. Government permission to reproduce and distribute copies of this thesis in whole or in part.

Signature of Author Dennis Michael Woj at

Joint Program in Applied Ocean Science and Oceanographic Engineering Massachusetts Institute of Technology/Woods Hole Oceanographic Institution

Certified by

6

ယ

 $\mathbf{0}$

N

Dr. Albert M. Bradley Senior Engineer, Woods Hole Oceanographic Institute

Accepted by

Prof. Arthur N. Baggeroer Chairman, Joint Committee for Applied Ocean Science and Engineering

This document has been approved for public release and sale; its distribution is unlimited.

PASSIVE LOCALIZATION OF UNDERWATER ACOUSTIC BEACONS

by Dennis Michael Wojcik

B.S. Electrical Engineering Marquette University (1986)

Submitted to the Massachusetts Institute of Technology/ Woods Hole Oceanographic Institution Joint Program in Oceanography and Applied Ocean Science and Engineering in Partial Fulfillment of the Requirements of the Degree of Master of Science in Oceanographic Engineering

This thesis examines the use of a single, omnidirectional hydrophone as a receiving sensor to passively localize an acoustic beacon. The localization problem is presented as a constrained, nonlinear parameter estimation problem, and Lagrange multipliers are introduced to solve for the maximum likelihood estimate of the acoustic beacon's position. An iterative algorithm is developed using range difference measurements to solve for the maximum likelihood estimate of a stationary acoustic beacon's position. This algorithm is then extended to include linear, constant velocity motion of the acoustic beacon. Finally, design specifications for a receiver to implement the maximum likelihood estimation algorithms are developed.

To test the maximum likelihood estimate algorithms, Monte Carlo simulations are conducted. Results from six representative scenarios are presented. Test results show that as the number of range differences used increases, or the distance that the observer travels between received beacon signals increases, the accuracy of the estimated position improves. Also, tests show that accuracy of the estimated beacon position is directly related to the accuracy in which the observer's position is measured. To test the receiver's design specifications, a prototype receiver is built using commonly available components. It is then shown that the prototype receiver meets or exceeds the design specifications.

DIC QUALITY INSPECTED 8,

Accesi	on For		
_	CRA&I	P.	
DTIC		• • • •	
Upachous cad ED Dustrification			
By Drat.ita: 10007			
A A	warebury.	Divies.	
Dist	AVPA O SLOC		-
A-1			

2

Table of Contents

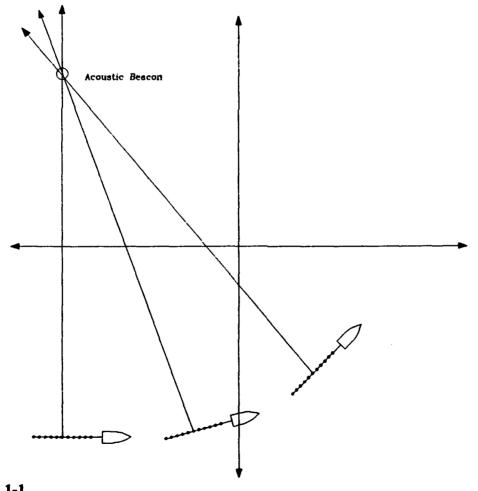
Chapter I
1.1 Introduction
1.2 Organization
-
Chapter II
2.1 Introduction
2.2 Problem Geometry 14
2.3 Structural Model
2.4 Measurement Errors 20
2.5 Parameter Estimation Solution - Maximum Likelihood Estimator 23
2.6 Algorithm
2.7 Accuracy of the Estimation 42
2.8 Summary 43
Chapter III
3.1 Introduction
3.2 Problem Geometry 44
3.3 Modified Structural Model 40
3.4 Maximum Likelihood Estimator Solution
3.5 Algorithm
3.6 Accuracy of the Estimator 56
3.7 Summary
Chapter IV
4.1 Introduction
4.2 Synthetic Measurement Vector Generation
4.3 Stationary Acoustic Beacon 65
4.3.1 Scenario 1 - Stationary Acoustic Beacon Located at
$\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & -2000 \end{bmatrix}^{\mathrm{T}} \dots $
4.3.2 Scenario 2 - Stationary Acoustic Beacon Located at $\theta = [0\ 866\ -2000]^{T}$
4.3.3 Scenario 3 - Stationary Acoustic Beacon Located at
$\theta = [-1000 \ 1000 \ -2000]^{\text{T}} \dots $
4.3.4 Stationary Acoustic Beacon Summary
4.4 Moving Acoustic Beacon
4.4.1 Scenario 4 - Moving Acoustic Beacon Located at:
$\theta = [0 \ 0 \ -2000 \ 0.5 \ -0.5 \ 0.25]^T \dots 84$

4.4.2 Scenario 5 - Moving Acoustic Beacon Located at: $\theta = [0\ 866\ -2000\ 0.5\ -0.5\ 0.25]^{T}$	94
4.4.3 Scenario 6 - Moving Acoustic Beacon Located at: $\theta = [-10000 \ 1000 \ -2000 \ 0.5 \ -0.5 \ 0.25]^{T} \dots \dots \dots \dots 1$	02
$\theta = [-10000 \ 1000 \ -2000 \ 0.5 \ -0.5 \ 0.25]$	
•	
4.5 Summary 1	13
Chapter V	15
•	15
	16
•	25
	28
	28
▲ · · · · · · · · · · · · · · · · · · ·	35
5.4.3 Logarithmic Compressor	36
5.4.4 68HC11 Microcontroller	
	39
	41
5.5.1 Preamplifier Performance	41
5.5.2 Envelope Detector	
5.5.3 Logarithmic Compressor	
5.6 Conclusions	
Chapter VI	47
6.1 Observations and Summary 1	
Appendix 1 1	51
Appendix 2	59
Appendix 3	88
References	23

List of Symbols

С	speed of sound in sea water
e"	residual error vector
e,	final residual error vectors
Г Е _і	tolerance factor used to stop iterating
g(w _μ , θ)	structural model of the parameter estimation problem
G(W , θ)	augmented vector of the structural model
Gi	augmented vector of the structural model evaluated at (\mathbf{W}^* , $\mathbf{\theta}^*$)
λ	Lagrange multipliers
٨	Lagrangian function
m _µ	measurement vector
M	moment matrix of the final estimated residual vectors
n	number of experiment vectors used to estimate parameter vector $\boldsymbol{\theta}$
Φ(W)	objective function
θ	parameter vector describing the acoustic beacon's position and velocity.
θ•	estimated parameter vector
t _µ	time of receipt of a beacon signal
t _{sµ}	measured synchronized time of receipt
Î _{sµ}	true synchronized time of receipt
Ŧ _{sµ}	measurement errors of the synchronized time of receipt
t _β	time that the acoustic beacon transmits a signal
T.	time that the acoustic beacon transmits the first signal received
T _p	pulse repetition interval
T _R	acoustic travel time of the signal
T,	sampling rate of the receiver
$\sigma^{2}_{t\mu}$	variance of the synchronized time of receipt measurement error
$\sigma^2_{x\mu}, \sigma^2_{y\mu}$	variance of the measured ship's position error
V_{μ}	covariance matrix of the measurement errors
\mathbf{w}_{μ}	measured experiment vector

5

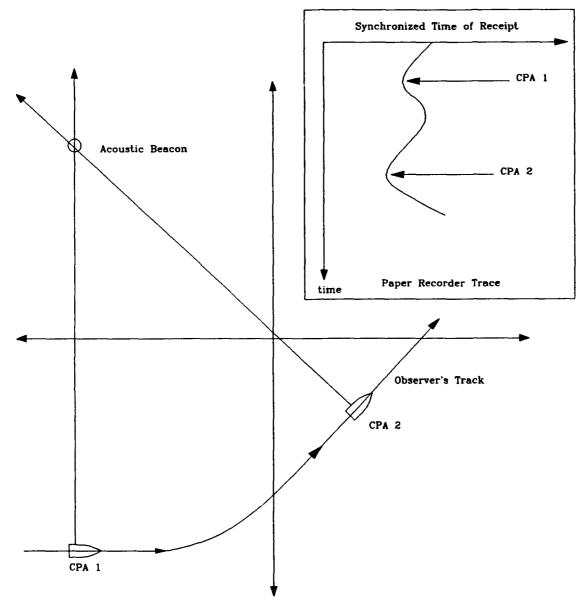

ŵ"	true value of the experiment vector
Ψ̃μ	measurement errors of the experiment vector
ŵ	estimated true experiment vector
W	augmented vector of <i>n</i> experiment vectors
$\mathbf{x}_{\mu}, \mathbf{y}_{\mu}$	measure location of the receiving ship
$\hat{\mathbf{x}}_{\mu}, \hat{\mathbf{y}}_{\mu}$	true location of the receiving ship
$\tilde{\mathbf{X}}_{\mu}, \tilde{\mathbf{Y}}_{\mu}$	measurement errors of the location of the receiving ship
$\mathbf{x}_{\mathrm{T}}, \mathbf{y}_{\mathrm{T}}, \mathbf{z}_{\mathrm{T}}$	the acoustic beacon' position for the stationary case
x _o ,y _o , z _o	the acoustic beacon's initial position for the moving beacon case
x _R , y _R	origin of the local Cartesian coordinate system
x_{B}, y_{B}, z_{B}	acoustic beacon position used to generate synthetic measurement vectors

Chapter I

Introduction and Problem Statement

1.1 Introduction

There are many scenarios in which passive localization of an acoustic beacon is needed. Techniques like Target Motion Analysis and Bearings Only Ranging can passively estimate an acoustic beacon's position by using received bearing information. These techniques rely upon a multiple sensor receiving array to find the relative bearing between the acoustic beacon and the observer. To estimate the position of the



acoustic beacon, bearing lines from several different observation points are combined to form a fix. See figure 1-1.

Recent developments in passive target ranging and tracking which use arrays of only a few elements can also be used to passively localize an acoustic beacon [Allen and King 1988] [Friedlander 1987] [Moose 1987]. These methods rely upon the array to estimate the relative bearing between the acoustic beacon and the observer as well. Statistical and test analyses have shown that the performance of the localization techniques mentioned above improves with increased distance between sensor elements in the receiving array [Moose 1987]. This typically leads to the use of long receiving arrays. The use of long arrays can become a problem if the ship used to deploy the array is small, or if budget constraints limit the size of the array. For these cases, the observer can employ a technique that uses a single omnidirectional sensor to form a synthetic aperture array instead of a conventional receiving array to passively localize the acoustic beacon.

Previous techniques to localize acoustic beacons using a single omnidirectional hydrophone instead of an array use a raster scanning paper recording device to produce a mark on recording paper whenever a beacon signal is received. The scan rate of the paper recorder is matched to the pulse repetition interval of the acoustic beacon. This synchronizes the paper recorder, so that a new line is printed for each pulse repetition interval. The observer can note the relative change in travel time between successive beacon signals by comparing the locations of the corresponding marks on the recording paper. If the observer and the acoustic beacon are stationary,

8

the time it takes the acoustic beacon's signal to travel between the beacon and the observer is constant. For this case, the trace made by the paper recorder is a vertical line. As the observer approaches the beacon along a linear path, the range to the beacon, and consequently the time that the beacon signal takes to travel to the

observer, decreases hyperbolically. The corresponding trace made by the paper recorder is also hyperbolic. The observer can use this relation to fix the acoustic beacon's position. To obtain a line of bearing to the acoustic beacon, the observer watches for the closet point of approach (CPA) to the acoustic beacon by noting the point where the trace produced by the paper recorder changes from negative to positive slope. This corresponds to the transverse axis of the hyperbolic trace and is the point where the range changes from decreasing to increasing. At the CPA, the acoustic beacon is located on a line of bearing perpendicular to the direction of the observer's motion. To estimate the location of the acoustic beacon, the observer must obtain lines of bearing from at least two different directions of motion. See figure 1-2. This method of passively locating acoustic beacons relies heavily upon the operator's skill in visually identifying the closest point of approach from the printed output of the paper recorder. Also, the observer is forced to travel in a straight line for a significant period of time until the CPA can be determined. Other factors that limit the usefulness of the above method are that paper recorders tend to be bulky, awkward to move, and require an adequate supply of expensive recording paper.

This thesis examines the use of a single omnidirectional hydrophone in place of a conventional receiving array to efficiently localize an acoustic beacon using a nonlinear parameter estimation technique. The goal is to develop an inexpensive, easily deployed localization receiver that can interface to a personal computer for data analysis and signal processing. As a backup, this receiver must also perform the functions of the older paper recording system, using the personal computer as the

10

display device.

1.2 Organization

This thesis is organized into six chapters and three appendices:

- Chapter I contains an introduction to the problem of passively localizing acoustic beacons.
- Chapter II contains the development of a technique to localize a stationary acoustic beacon using a constrained Maximum Likelihood Estimator (MLE).
- Chapter III contains an extension of the solution to the stationary acoustic beacon localization problem that allows for constant velocity, linear motion of the acoustic beacon.
- Chapter IV contains results of Monte Carlo simulations of the localization algorithms developed in chapters II and III. The effects of using different effective sensor spacings and different numbers of experimental data points are explored.
- Chapter V contains design criteria for a receiver to implement the algorithms developed in chapters II and III. A test receiver is designed and built based upon these criteria, and experiments are conducted to measure the actual performance of the receiver.
- Chapter VI contains observations and concluding remarks.
- Appendix 1 contains the schematic diagrams of the receiver designed in chapter V.
- Appendix 2 lists the source code for the 68HC11 microcontroller used in the

receiver designed in chapter V.

• Appendix 3 lists the source code for the Macintosh computer used for data analysis and signal processing.

Chapter II

Stationary Acoustic Beacon

2.1 Introduction

When the acoustic beacon is stationary, we are interested in locating the acoustic beacon to within a certain error bound as efficiently as possible. To accomplish this we treat the acoustic beacon's location as an unknown parameter vector, and formulate the localization problem as a constrained multiple dimension parameter estimation problem. To solve the constrained parameter estimation problem, we first develop a structural model that relates the values of a set of available measurements to the unknown parameter vector. We then define a residual error vector as the difference between the true values such the actual values of the measurements. Assuming the measurement errors are normally distributed, independent random variables, we define the likelihood function for a particular set of measurements as the logarithm of the joint probability density function of the measurements errors, viewed as a function of the residual error vectors. Next, we form a set of equality constraints by evaluating the structural model at the true values of the measurements, and the true value of the parameter vector θ . To find the maximum likelihood estimate (MLE) of the unknown parameter vector, we introduce a vector of Lagrange multipliers, and then define a Lagrangian function as the combination of the likelihood function and the sum of the equality constraints, weighted by the Lagrange multipliers. The maximum likelihood estimate is then found by determining the stationary point of the Lagrangian function.

2.2 Problem Geometry

Consider the acoustic beacon to be at a fixed latitude, longitude, and depth. Since we are only concerned with locating the acoustic beacon in a small region of the ocean, we approximate the earth as being flat in the region around the beacon's position and use a Cartesian coordinate system to describe the location of the acoustic beacon. The use of a Cartesian coordinate system does not contribute any significant errors as long as we correct for distortions due to the projection of the acoustic beacon's global coordinates onto the local Cartesian coordinate system. We define a parameter vector θ as:

$$\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{x}_T & \boldsymbol{y}_T & \boldsymbol{z}_T \end{bmatrix}^T \tag{2-1}$$

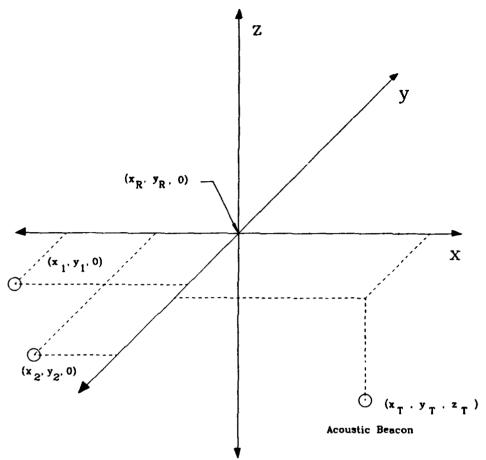
where x_T represents the east-west position of the acoustic beacon, y_T represents the north-south position of the acoustic beacon, and z_T represents the depth of the acoustic beacon in meters relative to the center of the local Cartesian coordinate system. To correct for the distortions caused by projecting the acoustic beacon's global coordinates onto the local Cartesian coordinate system, we introduce a correction factor that is proportional to the cosine of the latitude. We then relate θ to the acoustic beacon's global position by:

$$\theta = \begin{bmatrix} x_T \\ y_T \\ z_T \end{bmatrix} = \begin{bmatrix} degrees \ longitude \cdot \frac{60 \ Nm}{1^{\circ}} \cdot \frac{1853.2 \ m}{1 \ Nm} \cdot \cos(degrees \ latitude) - x_R \\ degrees \ latitude \cdot \frac{60 \ Nm}{1^{\circ}} \cdot \frac{1853.2 \ m}{1 \ Nm} - y_R \\ - depth \end{bmatrix}$$
(2-2)

where x_R and y_R define an arbitrary reference point on the surface of the ocean which defines the origin of the local Cartesian coordinate system. In equation (2-2) we assume that the acoustic beacon's latitude and longitude are given in degrees.

Similarly, we consider an observer on a receiving ship in the general location of the acoustic beacon. We define a measurement vector m_{μ} as:

$$m_{\mu} = [x_{\mu} \ y_{\mu} \ t_{\mu}]^{T}$$
(2-3)


where x_{μ} and y_{μ} are the receiving ship's coordinates on the same local Cartesian coordinate system defined for the acoustic beacon, and t_{μ} is the time that the observer's position x_{μ} , y_{μ} was obtained. We use the same relation described in equation (2-2) to convert the receiving ship's global coordinates to local Cartesian coordinates. The measurement vector m_{μ} is then given by:

$$m_{\mu} = \begin{bmatrix} x_{\mu} \\ y_{\mu} \\ t_{\mu} \end{bmatrix} = \begin{bmatrix} degrees \ longitude \cdot \frac{60 \ Nm}{1^{\circ}} \cdot \frac{1853.2 \ m}{1 \ Nm} \cdot \cos(degrees \ latitude) - x_{R} \\ degrees \ latitude \cdot \frac{60 \ Nm}{1^{\circ}} \cdot \frac{1853.2 \ m}{1 \ Nm} - y_{R} \\ t_{\mu} \end{bmatrix}$$

$$(2-4)$$

Again, we assume that the receiving ship's latitude and longitude are given in degrees. Figure 2-1 summarizes the problem geometry.

Now let us assume that the acoustic beacon transmits a signal at a regular interval, and that at time t_{μ} the observer receives one of the signals from the acoustic beacon. The time t_{μ} can be related to the time that the signal took to reach the

observer by:

$$t_{\mu} = T_{R} + i \cdot T_{p} + T_{o} \tag{2-5}$$

Here T_R represents the acoustic travel time of the signal, T_o is the time that the acoustic beacon transmitted the first signal, *i* is the number of pulse repetition intervals between when the first signal was transmitted and when the current signal was transmitted, and T_p represents the pulse repetition interval. The product *i*· T_p represents the time after T_o that the acoustic beacon transmitted the current received signal. It is

assumed that the observer knows the pulse repetition interval of the acoustic beacon. The observer can therefore remove the dependance upon $i \cdot T_p$ by counting the number of signals received (*i*), then subtracting $i \cdot T_p$ from equation (2-5). This synchronizes the observer's receiver with the pulse repetition interval of the acoustic beacon. We define the synchronized time of receipt as the time of receipt t_{μ} corrected to eliminate the pulse repetition interval of the acoustic beacon as:

$$t_{su} \equiv t_u - i \cdot T_p = T_R + T_o \tag{2-6}$$

and subsequently redefine the measurement vector m_{μ} as:

$$m_{\mu} = [x_{\mu} \ y_{\mu} \ t_{s\mu}]^{T}$$
 (2-7)

The difficulty in passively ranging an acoustic beacon arises because the observer does not know T_o , the time the acoustic beacon started to transmit. In active ranging systems, the observer can measure T_R directly by transmitting a signal at a known time T_o , and measuring the time that the corresponding reflected signal from a target is received. In passive ranging systems, the observer does not know when the beacon signal was transmitted and therefore the observer has no time reference T_o . Consequently the observer has no way to directly calculate T_R . In order to passively range a target, the observer must eliminate the dependence on the absolute time reference T_o .

2.3 Structural Model

In order to proceed, we must develop a model which relates the measurement vector m_u , and the unknown parameter vector θ . We define a function $f(m_u, \theta)$

which relates the distance between the acoustic beacon's position θ and the receiving ship's position x_{μ} , y_{μ} to the synchronized time of receipt $t_{s\mu}$ as:

$$f(m_{\mu}, \theta) = \sqrt{(x_{\mu} - x_{T})^{2} + (y_{\mu} - y_{T})^{2} + z_{T}^{2}} - \tau(C, t_{s\mu})$$
(2-8)

where $\tau(\mathbf{C}, \mathbf{t}_{u\mu})$ is a function that relates the speed of sound in seawater to the measured time of receipt, synchronized to the pulse repetition interval of the acoustic beacon. It is assumed that the receiving ship is on the surface of the ocean, or equivalently z_{μ} is zero. Using a homogeneous ocean model and a direct path propagation mode for simplicity, we can define $\tau(\mathbf{C}, \mathbf{t}_{u\mu})$ from equation (2-6) as:

$$\tau(C, t_{su}) = C \cdot T_R = C \cdot t_{su} - C \cdot T_o$$
(2-9)

Substituting equation (2-9) into equation (2-8) yields:

$$f(m_{\mu}, \theta) = \sqrt{(x_{\mu} - x_{T})^{2} + (y_{\mu} - y_{T})^{2} + z_{T}^{2}} - (C \cdot t_{s\mu} - C \cdot T_{o})$$
(2-10)

It is apparent from equation (2-10) that we can not eliminate the dependence upon T_o with only one received signal from the acoustic beacon. One way around this problem is to compare the time of receipt and positions from two separate received signals. This is commonly referred to as range difference, or time difference ranging. We define a new function $g(m_1, m_2, \theta)$ as:

$$g(m_1, m_2, \theta) = f(m_1, \theta) - f(m_2, \theta)$$
(2-11)

Substituting equation (2-10) into equation (2-11) with m_1 for the first received signal and m_2 for the second received signal we have:

$$g(m_1, m_2, \theta) = \sqrt{(x_1 - x_T)^2 + (y_1 - y_T)^2 + z_T^2} + \dots$$

- $\sqrt{(x_2 - x_T)^2 + (y_2 - y_T)^2 + z_T^2} + \dots$ (2-12)
- $C \cdot (t_{s1} - t_{s2})$

The first two terms of the function $\mathbf{g}(\mathbf{m}_1, \mathbf{m}_2, \theta)$ represent the slant range between the acoustic beacon and the receiving ship at the two separate times that a beacon signal is received. By subtracting one range from the other, we are left with the distance that the observer moved radially, relative to the beacon, between the times \mathbf{t}_{s1} and \mathbf{t}_{s2} . This is known as the range difference between the two points given by \mathbf{m}_1 and \mathbf{m}_2 . The last term of the function $\mathbf{g}(\mathbf{m}_1, \mathbf{m}_2, \theta)$ represent the range difference between points \mathbf{m}_1 and \mathbf{m}_2 calculated from the time difference. From the last term of $\mathbf{g}(\mathbf{m}_1, \mathbf{m}_2, \theta)$ we see that the dependence upon T_0 is eliminated, and we are left with a model that relies on measuring the time of receipt, synchronized to the pulse repetition interval of the acoustic beacon, and the location of the receiving ship at the time of receipt.

To simplify notation, we define an experiment to be the augmentation of two measurement vectors m_1 and m_2 , and use the notation:

$$w_{\mu} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & t_{s1} & x_2 & y_2 & t_{s2} \end{bmatrix}^T$$
(2-13)

We then redefine the equation (2-12) as a scaler valued function of the experiment vector w_{μ} and the acoustic beacon location vector θ :

$$g(w_{\mu}, \theta) = g(m_1, m_2, \theta) \qquad (2-14)$$

We denote the function $\mathbf{g}(\mathbf{w}_{\mu}, \theta)$ as the structural model of the parameter estimation problem. Ideally, if the measurements have no errors and $\tau(\mathbf{C}, \mathbf{t}_{\mu\mu})$ is the correct propagation model, $\mathbf{g}(\mathbf{w}_{\mu}, \theta)$ equals zero at the true value of the parameter vector θ . The estimation problem is then to determine the value of the parameter vector θ that minimizes the value of the structural model given experiment vectors which contain errors.

2.4 Measurement Errors

The structural model describes the ideal situation - perfect measurements, free from any errors. In reality both the synchronized time of receipt $t_{s\mu}$ and the positions x_{μ} , y_{μ} have errors associated with the measurement process. We can define the actual measurements as the sum of the true value and a random error component:

$$w_{\mu} = \hat{w}_{\mu} + \tilde{w}_{\mu} = \begin{bmatrix} \hat{x}_{1} + \tilde{x}_{1} \\ \hat{y}_{1} + \tilde{y}_{1} \\ \hat{t}_{s1} + \tilde{t}_{s1} \\ \hat{x}_{2} + \tilde{x}_{2} \\ \hat{y}_{2} + \tilde{y}_{2} \\ \hat{t}_{s2} + \tilde{t}_{s2} \end{bmatrix}$$
(2-15)

where \hat{x}_{μ} , \hat{y}_{μ} , $\hat{t}_{s\mu}$, and \hat{w}_{μ} represent the true values of the measurements, and \tilde{x}_{μ} , \tilde{y}_{μ} , $\tilde{t}_{s\mu}$, and \tilde{w}_{μ} represent the random errors associated with the measurement process.

With the assumption of a homogeneous, direct path propagation mode, and since the time of receipt will be determined by looking at the output of a simple digital peak detector, the errors in measuring $\hat{t}_{s\mu}$ arise mainly from the sampling of the received signal. Because we use a simple peak detector to measure the time of receipt, we can only estimate the true time of receipt to within one sampling interval if we sample the received signal every millisecond, then we can only know the time of receipt to within 1 millisecond. This quantization of the time base causes the measurement errors to have a uniform distribution centered around the true value $\hat{t}_{s\mu}$ with a variance given by:

$$\sigma_{t_{\mu}}^{2} = \frac{T_{s}^{2}}{12}$$
(2-16)

where T_s is the sampling interval in seconds. For the sake of computational efficiency and mathematical tractability, we would like to model the measurement errors of $t_{s\mu}$ as zero mean, normally distributed random variables. If we consider that the structural model is not exact (a far more complex function $\tau(C, t_{s\mu})$ is needed to have an exact structural model), and that there will be errors due to factors such as dispersion and multipath interference, we can lump the modeling errors of $\tau(C, t_{s\mu})$ together with the quantization errors in the time $t_{s\mu}$. Although not strictly rigorous, this allows us to simplify the development of the solution to the localization problem by assuming the measurement errors of $t_{s\mu}$ are zero mean, normally distributed random variables, with a variance approximated by σ_{μ}^2 . Also, since the measurement of the time of receipt of one signal is not effected by the measurement of any other time of receipt, we can take the errors in measuring $t_{s\mu}$ as independent between t_{s1} and t_{s2} , and also independent between experiments w_{u} .

Errors in measuring the ship's position at the time of receipt of the beacon signal are due to the accuracy of the system used to obtain the ship's position. To obtain the ship's location, a Global Positioning System (GPS) receiver will be used. Other navigation systems such as Loran, Omega, or even Inertial Navigation systems could be used, however the price and accuracy of the GPS system make it the natural choice. Currently, inexpensive commercial C/A code GPS receivers are available with published errors on the order of 25 meters rms in latitude and longitude. The more accurate Differential GPS and P code receivers are not readily available at this time. We will assume that the errors of the GPS positional data are normally distributed, and independent in latitude and longitude. This assumption is unlikely to cause much harm as long as the true probability distribution of the errors have smooth tails [Bard 1974].

With these arguments in mind, and for the sake of computational efficiency and mathematical tractability, we model the measurement errors as zero mean, normally distributed, independent random variables. We take the covariance matrix of the measurement errors as:

$$V_{\mu} = \begin{bmatrix} \sigma_{x_{\mu}}^{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{y_{\mu}}^{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{t_{\mu}}^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{x_{\mu}}^{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{y_{\mu}}^{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_{t_{\mu}}^{2} \end{bmatrix}$$
(2-17)

Where $\sigma_{t\mu}^{2}$ is the variance given by equation (2-16), σ_{x}^{2} is the variance of the GPS longitude error in meters, and σ_{y}^{2} is the variance of the GPS latitude error in meters.

2.5 Parameter Estimation Solution - Maximum Likelihood Estimator

To solve for the parameter vector θ we would normally use a weighted least square approach. However, because of the nonlinearities in the structural model $g(w_{\mu}, \theta)$, and because all of the measurements have errors, the weighted least squares method does not work well. To demonstrate why the normal weighted least squares method does not work well, we look at the contours of the χ^2 merit function:

$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{g(w_{\mu}, \theta)}{\sigma_{t_{\mu}}} \right)^{2}$$
(2-18)

If the structural model is truly exact, and there are no measurement errors in w_{μ} , $g(w_{\mu}, \theta)$ and χ^2 are equal to zero for the true value of θ . As the value of θ in equation (2-18) moves farther away from the true value of θ , the χ^2 function increases. Figure 2-2 shows the contours of the χ^2 function for the true values of the measurements w_{μ} , where the acoustic beacon is located at $x_T = -1000$, $y_T = 1000$, and $z_T = -1000$. From Figure 2-2 we see that the contours of the χ^2 merit function that encircle the true position of the acoustic beacon are highly eccentric. This eccentricity leads to large variances in the location estimate along the major axis of the ellipse. With errors in all of the measur ...nents, this in turn produces errors in the parameter estimates that are unacceptable.

To overcome the difficulties in solving the parameter estimation problem with a nonlinear structural model and errors in all of the measurements, we treat the problem as a constrained minimization problem. Our goal is to estimate the true values of the measurements w_{μ} given a set of *n* equality constraints which we obtain by setting the

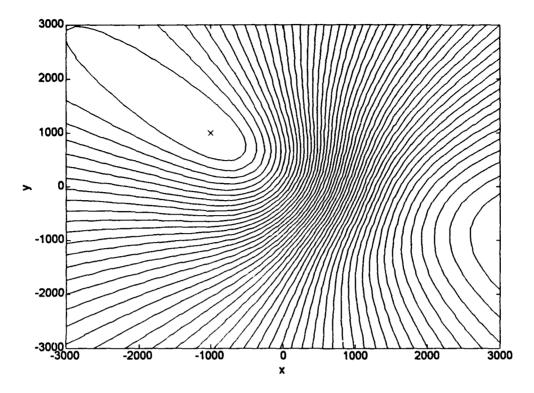


Figure 2-2 Chi Square Contours for the Normal Weighted Least Squares Method

structural model $g(w_{\mu}, \theta)$ equal to zero at the estimated true values of the measurements and the estimated parameter vector θ . Because of the measurement errors, we must modify the structural model to indicate the dependence upon the true values of w_{μ} :

$$g(\hat{w}_{\mu}, \theta) = \sqrt{(\hat{x}_{1} - x_{T})^{2} + (\hat{y}_{1} - y_{T})^{2} + z_{T}^{2}} + ...$$

- $\sqrt{(\hat{x}_{2} - x_{T})^{2} + (\hat{y}_{2} - y_{T})^{2} + z_{T}^{2}} + ...$ (2-19)
- $C \cdot (\hat{t}_{s1} - \hat{t}_{s2})$

Next we define a residual vector as the difference between the true value and the observed value of the measurements:

$$e_{\mu}(\hat{w}_{\mu}) = \hat{w}_{\mu} - w_{\mu}$$
 (2-20)

We also define a composite experiment vector W as the augmentation of *n* experiment vectors w_u :

$$\mathbf{W} = \left[\begin{array}{ccc} w_1^T & w_2^T & \dots & w_n^T \end{array} \right]^T$$
(2-21)

With the assumption that the measurement errors are normally distributed random variables, independently distributed between experiments, and with the further assumption that the covariance matrix is the same for each experiment, the likelihood function takes the form:

$$\log(L(\hat{W}, V)) = -(n/2)\log(\det V) - \frac{1}{2} \cdot \sum_{\mu=1}^{n} e_{\mu}^{T} V^{-1} e_{\mu} \qquad (2-22)$$

where *n* is the number of experiment vectors w_{μ} used in the estimation problem [Bard 1974]. The maximum likelihood estimate is found by determining the value of θ^* , and the value of w^*_{μ} for each of the *n* experiments, which minimizes log(L) while satisfying the *n* equality constraints imposed by the structural model. The terms w^*_{μ} and θ^* represent the maximum likelihood estimate of the true values of w_{μ} and θ .

To find the maximum likelihood estimate given the *n* equality constraints imposed by the structural model, we introduce an *n*-dimensional vector of Lagrange multipliers λ_{μ} for each experiment. We then form the Lagrangian function:

$$\Lambda(\hat{W}, \theta, V, \lambda_1, ..., \lambda_n) = \log(L(\hat{W}, V)) + \sum_{\mu=1}^n \lambda_\mu \cdot g(\hat{w}_\mu, \theta)$$
 (2-23)

The solution to the estimation problem will be found at a stationary point of the Lagrangian $\Lambda(W, \theta, V, \lambda_1, ..., \lambda_{\mu})$ [Bard 1974].

To demonstrate the benefits of using this approach, we look at the contours of the Lagrangian function given by equation (2-23). Using the algorithm developed in section 2.6, figure 2-3 shows the contours of the Lagrangian function obtained by using the same experiment vectors used to generate the contours of the normal weighted least squares method.

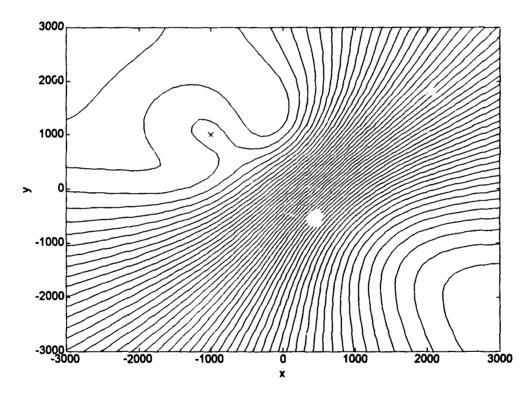


Figure 2-3 Contours of the Lagrangian Function Λ

From figure 2-3 we see that the contours that surround the true position of the acoustic beacon are much less eccentric then the contours of the normal weighted least squares method. Therefore, we do not have the large variances associated with the major axis

of the normal weighted least squares method, and the estimate of the parameter vector θ will be more accurate.

To solve the maximum likelihood estimator problem given the equality constraint of the structural model we use an iterative method suggested by Deming as described by Bard [Bard 1974]. We define the parameter vector θ_i^* as the estimate of the acoustic beacon's location at the *i*th iteration:

$$\theta_i^* = [x_{T_i}^* \ y_{T_i}^* \ z_{T_i}^*]^T$$
(2-24)

We also define the estimated true experiment vector at the *i*th iteration as:

$$\hat{w}_{\mu_{i}}^{*} = \begin{bmatrix} \hat{x}_{1_{i}}^{*} & \hat{y}_{1}^{*} & \hat{t}_{s1_{i}}^{*} & \hat{x}_{2_{i}}^{*} & \hat{y}_{2_{i}}^{*} & \hat{t}_{s2_{i}}^{*} \end{bmatrix}^{T}$$
(2-25)

and the corresponding composite experiment vector:

$$\hat{W}_{i}^{*} = \begin{bmatrix} \hat{w}_{1}^{*^{T}} & \hat{w}_{2}^{*^{T}} & \dots & \hat{w}_{n}^{*^{T}} \end{bmatrix}^{T}$$
(2-26)

The vector \mathbf{W}_{i}^{*} is the augmentation of the *n* estimated true experiment vectors \hat{w}_{μ}^{*} at the *i*th iteration. We then define a composite vector valued function $G(\mathbf{W}_{i}^{*}, \theta_{i}^{*})$ where the *j*th component of $G(\mathbf{W}_{i}^{*}, \theta_{i}^{*})$ is the structural model evaluated at $(\hat{w}_{\mu}^{*}, \theta_{i}^{*})$:

$$G(\hat{W}_{i}^{*}, \theta_{i}^{*}) = G_{i} = [g(\hat{w}_{1_{i}}^{*}, \theta_{i}^{*}) \ g(\hat{w}_{2_{i}}^{*}, \theta_{i}^{*}) \ \dots \ g(\hat{w}_{n_{i}}^{*}, \theta_{i}^{*})]^{T}$$
(2-27)

Next we define an objective function as the weighted least squares sum of the

residuals given by equation (2-2-). At the *i*th iteration the objective function is:

$$\Phi\left(\hat{W}_{i}^{*}\right) = \frac{1}{2} \cdot \sum_{\mu=1}^{n} \left(\hat{w}_{\mu_{i}}^{*} - w_{\mu}\right)^{T} V_{\mu}^{-1} \left(\hat{w}_{\mu_{i}}^{*} - w_{\mu}\right)$$
(2-28)

This is the same form as the last term in equation (2-22). To solve for the Maximum Likelihood Estimate, the objective is to find the \mathbf{W}_{i}^{\bullet} which minimizes log(L), or equivalently, $\Phi(\mathbf{W}_{i}^{\bullet})$ subject to the constraints $G(\mathbf{W}_{i}^{\bullet}, \theta_{i}^{\bullet}) = 0$. We note that now the unknown parameters that we are estimating are the acoustic beacon's location as well as the true values of all the measurements.

To develop a solution, we define the following terms:

$$\boldsymbol{q}_i \equiv \partial \boldsymbol{\Phi}(\boldsymbol{\hat{W}}_i^*) / \partial \boldsymbol{\hat{W}}$$
(2-29)

$$\boldsymbol{H}_{i} \equiv \partial^{2} \boldsymbol{\Phi} \left(\hat{\boldsymbol{W}}_{i}^{*} \right) / \partial \hat{\boldsymbol{W}} \partial \hat{\boldsymbol{W}}$$
(2-30)

$$\boldsymbol{A}_{i} \equiv \partial G\left(\hat{\boldsymbol{W}}_{i}^{*}, \boldsymbol{\theta}_{i}^{*}\right) / \partial \hat{\boldsymbol{W}}$$
(2-31)

$$\boldsymbol{B}_{i} = \partial G\left(\hat{\boldsymbol{W}}_{i}^{*}, \boldsymbol{\theta}_{i}^{*}\right) / \partial \boldsymbol{\theta}$$
 (2-32)

Next we expand the objective function in a Taylor series around the current estimate of W and θ . Keeping only up to the second order terms we have:

$$\tilde{\Phi}_{i}(\delta \hat{W}) = \Phi_{i} + q_{i}^{T} \delta \hat{W} + \frac{1}{2} \delta \hat{W}^{T} H_{i} \delta \hat{W}$$
(2-33)

Now we expand the structural model in a Taylor series around the current estimate of W and θ . Keeping only the first order terms we have:

$$\tilde{G}_i(\delta \hat{W}, \delta \theta) = G_i + A_i \delta \hat{W} + B_i \delta \theta \qquad (2-34)$$

To find the maximum likelihood estimate we now want to find the $\delta \hat{W}$ and $\delta \theta$ that minimize $\tilde{\Phi}_i$ while at the same time satisfies the structural model constraints $\tilde{G}_i = 0$. To do this we introduce the vector of Lagrange multipliers λ and look for the stationary point of the Lagrangian:

$$\Lambda_i(\delta \hat{W}, \delta \theta, \lambda_i) = \tilde{\Phi}_i(\delta \hat{W}) + \lambda_i^T \tilde{G}_i$$
(2-35)

Forming the normal equations of the Lagrangian and using equations (2-33) and (2-34) we have:

$$\partial \Lambda_i (\delta \hat{W}, \delta \theta, \lambda_i) / \partial (\delta \hat{W}) = q_i + H_i \delta \hat{W} + A_i^T \lambda_i = 0 \qquad (2-36)$$

$$\partial \Lambda_i (\delta \hat{W}, \delta \theta, \lambda_i) / \partial \lambda_i = G_i + A_i \delta \hat{W} + B_i \delta \theta = 0$$
 (2-37)

$$\partial \Lambda_i (\delta \hat{W}, \delta \theta, \lambda_i) / \partial (\delta \theta) = B_i^T \lambda_i = 0$$
 (2-38)

From equation (2-36):

$$\delta \hat{W} = -H_i^{-1} \cdot (q_i + A_i^T \lambda_i)$$
 (2-39)

Substituting equation (2-39) into equation (2-37) we have:

$$G_i - A_i H_i^{-1} q_i - A_i H_i^{-1} A_i^T \lambda_i + B_i \delta \theta = 0 \qquad (2-40)$$

Solving for λ_i :

$$\lambda_{i} = (A_{i} H_{i}^{-1} A_{i}^{T})^{-1} \cdot (B_{i} \delta \theta - A_{i} H_{i}^{-1} q_{i} + G_{i})$$
(2-41)

Now substituting equation (2-41) into equation (2-38):

$$B_{i}^{T} \cdot (A_{i}H_{i}^{-1}A_{i})^{-1} \cdot (B_{i}\delta\theta - A_{i}H_{i}^{-1}q_{i} + G_{i}) = 0$$
 (2-42)

Solving for $\delta\theta$ we are left with:

$$\delta \theta = (B_i^T \cdot (A_i H_i^{-1} A_i^T)^{-1} \cdot B_i)^{-1} \cdot B_i^T \cdot (A_i H_i^{-1} A_i^T)^{-1} \cdot (A_i H_i^{-1} q_i - G_i)$$
(2-43)

We can define a new term C_i as:

$$C_i = A_i H_i^{-1} A_i^T \tag{2-44}$$

and a term D_i as:

$$\boldsymbol{D}_i = \boldsymbol{B}_i^T \boldsymbol{C}_i^{-1} \boldsymbol{B}_i \tag{2-45}$$

Substituting equations (2-44) and (2-45) into equation (2-43) gives:

$$\delta \Theta = \boldsymbol{D}_i^T \boldsymbol{B}_i^T \boldsymbol{C}_i^{-1} \cdot (\boldsymbol{A}_i \boldsymbol{H}_i^{-1} \boldsymbol{q}_i - \boldsymbol{G}_i)$$
 (2-46)

Once we have calculated $\delta\theta$, we use equation (2-41) to calculate the

Lagrangian multipliers which in turn are substituted into equation (2-39) to calculate the updates to the true measurements. Equations (2-39) and (2-46) then allow us to iteratively calculate the estimated beacon location and the estimated true values of the measurements with the recursion relations:

$$\theta^*_{i+1} = \theta^*_i + \delta\theta$$

$$\hat{W}^*_{i+1} = \hat{W}^*_i + \delta\hat{W}$$
(2-47)

All we need to start the calculations are initial values for θ^* and for \hat{W}^* . Since the measurement errors are presumably small, we can use the actual measured values W for the initial values of \hat{W}^* . However, since we have no idea of the location of the acoustic beacon, the choice of an initial value for θ^* is more difficult. In the absence of any other information, we can choose the center of the search area for the initial value of θ^* .

In developing the solution to the maximum likelihood estimate we made the assumption that the measurement errors are normally distributed and independent between experiments. To determine if this is valid we refer back to the source of the measurement errors. The measurement error t_{sp} is not normally distributed. However, if we do not make the assumption of a normally distributed error, and stay with a uniform distribution of errors, we will be unable to use the maximum likelihood method. This is because likelihood methods use gradient techniques to maximize a likelihood function which is based upon the probability distribution function of the errors. If the underlying probability distribution function is not smooth and continuous, there will not be a unique maximum, and a useful estimate can not be found. This means if we stay with the uniform distribution we will be forced to use a more computationally expensive direct search of the parameter space, or minimax method to estimate the acoustic beacon's location.

As a result of the uniformly distributed errors in $t_{\mu\mu}$, the solution that we obtain from the maximum likelihood estimator is suboptimal. There is also a chance that the method used to find the estimate that maximizes the likeliness function will diverge. This happens when the estimate of the true value of $t_{s\mu}$ is further away from the actual true value of $t_{s\mu}$ then the quantization of the time base allows. To prevent the solution from diverging, we can place additional constraints upon the minimization of the objective function that confine the solution to be within a feasible region. We define the feasible region to be the region bounded by the inequality constraints:

$$-Range_{\max} \le x_T \le Range_{\max}$$
$$-Range_{\max} \le y_T \le Range_{\max}$$
$$-Depth_{\max} \le z_T \le 0$$
(2-48)

Where Range_{max} defines the size of the search area that we are willing to scan, and Depth_{max} is the maximum depth in the area of the search. The beacon's depth is bounded above by the sea surface level. If the solution to the maximum likelihood estimator is within the feasible region, we accept the estimate. If, however, the solution to the maximum likelihood estimator is outside the feasible region we must adjust the estimator to bring the solution inside the feasible region, or in the worst case, disregard the estimate.

To maintain a feasible solution we break equation (2-47) into component parts:

$$\theta^*_{i+1} = \theta^*_i + \delta\theta = \theta^*_i + \rho_\theta U_\theta$$

$$\hat{W}^*_{i+1} = \hat{W}^*_i + \delta\hat{W} = \hat{W}^*_i + \rho_{\hat{W}} U_{\hat{W}}$$
(2-49)

where U_{θ} and U_{W}° are unit magnitude vectors that describe the direction of $\delta\theta$ and δW , and ρ_{θ} and ρ_{W}° are the magnitudes of $\delta\theta$ and δW . We assume that $\delta\theta$, and hence U_{θ} , points in the proper direction to the maximum likelihood estimator. If

 $\theta_i^* + \delta \theta$ is outside the feasible region defined by equation (2-48), we find the maximum value of ρ which satisfies:

$$\begin{vmatrix} -Range_{\max} \\ -Range_{\max} \\ Depth_{\max} \end{vmatrix} < \theta_i^* + \rho_{\max} U_{\theta} < \begin{bmatrix} Range_{\max} \\ Range_{\max} \\ 0 \end{bmatrix}$$
(2-50)

Once we have found ρ_{max} we replace ρ_{θ} and ρ_{w} in equation (2-49) which gives the new update equations:

$$\theta^{*}_{i+1} = \theta^{*}_{i} + \frac{\rho_{\max}}{\sqrt{2}} U_{\theta}$$

$$\hat{W}^{*}_{i+1} = \hat{W}^{*}_{i} + \frac{\rho_{\max}}{\sqrt{2}} U_{W}$$
(2-51)

This essentially shortens the step that we move in updating θ^* and W^* for the iteration. Notice that we do not simply replace ρ_{θ} and ρ_W with ρ_{mex} . If we did this, θ^*_{i+1} would be on the edge of the feasible region. With θ^*_{i+1} on the edge of the feasible region, ρ_{max} will be zero, and θ^*_{i+1} will equal θ^*_i for all subsequent iterations. If this happens we will be unable to achieve any further updates of θ^*_{i+1} and W^*_i . It is still possible that, after a certain number of iterations, θ^*_{i+1} lies on the edge of the feasible region. If this happens we must reject the estimate and try again using a different initial value for θ^* or more experimental data points.

2.6 Algorithm

Figure 2-4 at the end of this section describes the algorithm used to estimate the location of the acoustic beacon based on Deming's method as described by Bard. There is no natural way of telling whether or not progress towards the solution has occurred in any given iteration when we use this method [Bard 1974]. Bard suggests calculating the quantities:

$$Z_{o} = \sum_{\mu=1}^{n} g_{\mu} (\hat{w}_{\mu_{i}}^{*}, \theta_{i}^{*})^{T} c_{\mu_{i}}^{-1} g_{\mu} (\hat{w}_{\mu_{i}}^{*}, \theta_{i}^{*})$$
(2-52)

and:

$$Z_{1} = \sum_{\mu=1}^{n} g_{\mu} (\hat{w}_{\mu_{i}}^{*} + \delta \hat{w}_{\mu}, \theta_{i}^{*} + \delta \theta)^{T} c_{\mu_{i}}^{-1} g_{\mu} (\hat{w}_{\mu_{i}}^{*} + \delta \hat{w}_{\mu}, \theta_{i}^{*} + \delta \theta)$$
(2-53)

The rational behind these quantities follows that at the true values of W and θ , G(W, θ) must equal zero. If Q_i is a positive definite matrix, we require that:

$$G(\hat{W}_{i+1}^{*}, \theta_{i+1}^{*})^{T} Q_{i} G(\hat{W}_{i+1}^{*}, \theta_{i+1}^{*}) \leq G(\hat{W}_{i}^{*}, \theta_{i}^{*})^{T} Q_{i} G(\hat{W}_{i}^{*}, \theta_{i}^{*})$$
(2-54)

This means that as \mathbf{W}_{i}^{*} and θ_{i}^{*} approach the true values of W and θ , the quantity $G(\mathbf{W}_{i}^{*}, \theta_{i}^{*})^{T} Q_{i} G(\mathbf{W}_{i}^{*}, \theta_{i}^{*})$ must decrease. The natural choice for Q_{i} is the inverse of the covariance matrix of $G(\mathbf{W}_{i}^{*}, \theta_{i}^{*})$ [Bard 1974]. With V_{μ} as the covariance matrix of the measurements, the covariance matrix of $G(\mathbf{W}_{i}^{*}, \theta_{i}^{*})$ is approximately:

$$COV (G(\hat{W}_{i}^{*}, \theta_{i}^{*})) \approx \sum_{\mu=1}^{n} a_{\mu_{i}} V_{\mu} a_{\mu_{i}}^{T}$$
(2-55)

Now from equation (2-30) we have:

$$H_{i} = \partial^{2} \Phi(\hat{W}^{*}) / \partial \hat{W} \partial \hat{W} = \begin{bmatrix} V_{1}^{-1} & 0 & \dots & 0 \\ 0 & V_{2}^{-1} & & \\ \vdots & & & \\ 0 & \dots & V_{n}^{-1} \end{bmatrix}$$
(2-56)

So we choose:

$$Q_{i} = COV(G(\hat{W}_{i}^{*}, \theta_{i}^{*}))^{-1} = \left(\sum_{\mu=1}^{n} a_{\mu_{i}} V_{\mu} a_{\mu_{i}}\right)^{-1} = \left(A_{i} H_{i}^{-1} A_{i}^{T}\right)^{-1} = C_{i}^{-1}$$
(2-57)

It then follows that: [Bard 1974]

$$G(\hat{W}_{i}^{*},\theta_{i}^{*})^{T}Q_{i}G(\hat{W}_{i}^{*},\theta_{i}^{*}) = \sum_{\mu=1}^{n} g_{\mu}(\hat{w}_{\mu_{i}}^{*},\theta_{i}^{*})^{T}c_{\mu_{i}}^{-1}g_{\mu}(\hat{w}_{\mu_{i}}^{*},\theta_{i}^{*})$$
(2-58)

If Z_1 is less then Z_0 , we accept $\delta\theta$ and δW and continue to the next iteration. If Z_1 is greater then Z_0 , we shorten $\delta\theta$ and δW and then recalculate Z_1 .

To determine when to stop the algorithm we follow the termination criterion of Marquardt [Bard 1974]. We define a tolerance:

$$\epsilon_i = 10^{-4} \cdot \left(\left| \theta_i^* \right|_{\min} + 10^{-3} \right)$$
 (2-59)

where $|\theta_i^*|_{min}$ is the smallest component of θ_i^* . The term 10⁻³ is added in case $|\theta_i^*|_{min}$ is close to zero. For each iteration we check to see if $|\delta\theta|_{min}$ is less then ε_i . If $|\delta\theta|_{min}$ is less then ε_i , we terminate the algorithm. If $|\delta\theta|_{min}$ is not less then ε_i , we continue. For each iteration we calculate a new tolerance value ε_i . This leads to a conservative termination criterion that will stop the algorithm if the parameter values cease changing.

To start the algorithm we choose an initial guess of the location of the

acoustic beacon, θ_0^{\bullet} . We then use the measured values of W for the initial values of W_0^{\bullet} . For each experiment μ , we calculate:

$$e_{\mu} = \hat{w}_{\mu}^{*} - w_{\mu}$$
 (2-60)

$$a_{\rm u} = \partial g_{\rm u} / \partial \hat{w} \tag{2-61}$$

$$b_{\mu} = \partial g_{\mu} / \partial \theta \qquad (2-62)$$

For the case of the stationary beacon a_{μ} is given by:

$$a_{\mu} = \begin{bmatrix} \frac{(\hat{x}_{1}^{*} - x_{T}^{*})}{\sqrt{(\hat{x}_{1}^{*} - x_{T}^{*})^{2} + (\hat{y}_{1}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} \\ \frac{(\hat{y}_{1}^{*} - y_{T}^{*})}{\sqrt{(\hat{x}_{1}^{*} - x_{T}^{*})^{2} + (\hat{y}_{1}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} \\ -C \\ \frac{(\hat{x}_{2}^{*} - x_{T}^{*})}{\sqrt{(\hat{x}_{2}^{*} - x_{T}^{*})^{2} + (\hat{y}_{2}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} \\ -\frac{(\hat{y}_{2}^{*} - y_{T}^{*})}{\sqrt{(\hat{x}_{2}^{*} - x_{T}^{*})^{2} + (\hat{y}_{2}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} \\ +C \end{bmatrix}$$
(2-63)

and b_{μ} is given by:

$$b_{\mu} = \begin{bmatrix} \frac{(\hat{x}_{2}^{*} - x_{T}^{*})}{\sqrt{(\hat{x}_{2}^{*} - x_{T}^{*})^{2} + (\hat{y}_{2}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} & -\frac{(\hat{x}_{1}^{*} - x_{T}^{*})}{\sqrt{(\hat{x}_{1}^{*} - x_{T}^{*})^{2} + (\hat{y}_{1}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} \\ \frac{(\hat{y}_{2}^{*} - y_{T}^{*})}{\sqrt{(\hat{x}_{2}^{*} - x_{T}^{*})^{2} + (\hat{y}_{2}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} & -\frac{(\hat{y}_{1}^{*} - y_{T}^{*})}{\sqrt{(\hat{x}_{1}^{*} - x_{T}^{*})^{2} + (\hat{y}_{1}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} \\ \frac{z_{T}^{*}}{\sqrt{(\hat{x}_{1}^{*} - x_{T}^{*})^{2} + (\hat{y}_{1}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} & -\frac{z_{T}^{*}}{\sqrt{(\hat{x}_{2}^{*} - x_{T}^{*})^{2} + (\hat{y}_{2}^{*} - y_{T}^{*})^{2} + (z_{T}^{*})^{2}}} \end{bmatrix}$$
(2-64)

Once we have a_{μ} and $b_{\mu},\;\; we \; calculate:$

$$c_{\mu} = a_{\mu}^{T} V_{\mu} a_{\mu}$$
 (2-65)

$$Z_0 = \sum_{\mu=1}^{n} \frac{g(\hat{w}_{\mu}^*, \theta^*)^2}{c_{\mu}}$$
(2-66)

and:

$$D = \sum_{\mu=1}^{n} \left(\frac{1}{c_{\mu}}\right) \cdot b_{\mu} b_{\mu}^{T} \qquad (2-67)$$

Using equation (2-46) we can solve for $\delta\theta$:

$$\delta \theta = D^{-1} \cdot \sum_{\mu=1}^{n} \left(\frac{1}{c_{\mu}} \right) \cdot \left(a_{\mu}^{T} e_{\mu} - g \left(\hat{w}_{\mu}^{*}, \theta^{*} \right) \right) \cdot b_{\mu}$$
(2-68)

Now using equation (2-41) we calculate the Lagrangian multipliers:

$$\lambda_{\mu} = \left(\frac{1}{c_{\mu}}\right) \cdot \left(\boldsymbol{b}_{\mu}^{T} \,\delta\boldsymbol{\theta} - \boldsymbol{a}_{\mu}^{T} \,\boldsymbol{e}_{\mu} + g\left(\hat{\boldsymbol{w}}_{\mu}^{*}, \,\boldsymbol{\theta}^{*}\right)\right) \tag{2-69}$$

and finally we calculate:

$$\delta \hat{w}_{\mu} = -e_{\mu} - \lambda_{\mu} V_{\mu} a_{\mu} \qquad (2-70)$$

Once we have $\delta \theta$ and δW we check to see if $\theta_i^* + \delta \theta$ is in the feasible region. If $\theta_i^* + \delta \theta$ is not in the feasible region, we adjust the step size of $\delta \theta$ as describe earlier. Once we have a feasible step for $\delta \theta$, we calculate:

$$Z_{1} = \sum_{\mu=1}^{n} \frac{g(\hat{w}_{\mu}^{*} + \delta\hat{w}_{\mu}, \theta^{*} + \delta\theta)^{2}}{c_{\mu}}$$
(2-71)

If Z_1 is less then Z_0 , we accept the values of $\delta\theta$ and $\delta\Psi$ and update θ^* and Ψ^* using equation (2-47). We then move to the next iteration. If Z_1 is greater then Z_0 , we assume that we have overshot the maximum likelihood estimate, shorten $\delta\theta$ and $\delta\Psi$ by a factor of two, then recalculate Z_1 . We continue this process until Z_1 is less then Z_0 , or until $\delta\theta$ is negligible, at which point we have to stop the algorithm and begin again with a new initial value for θ^* , or more experimental data points.

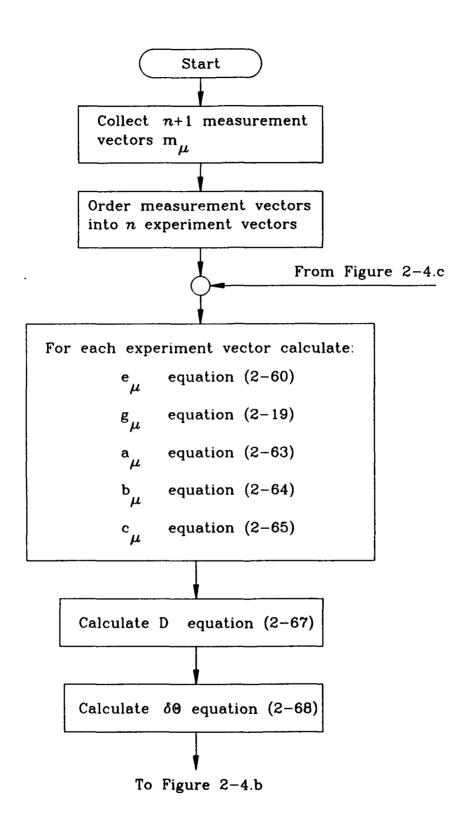
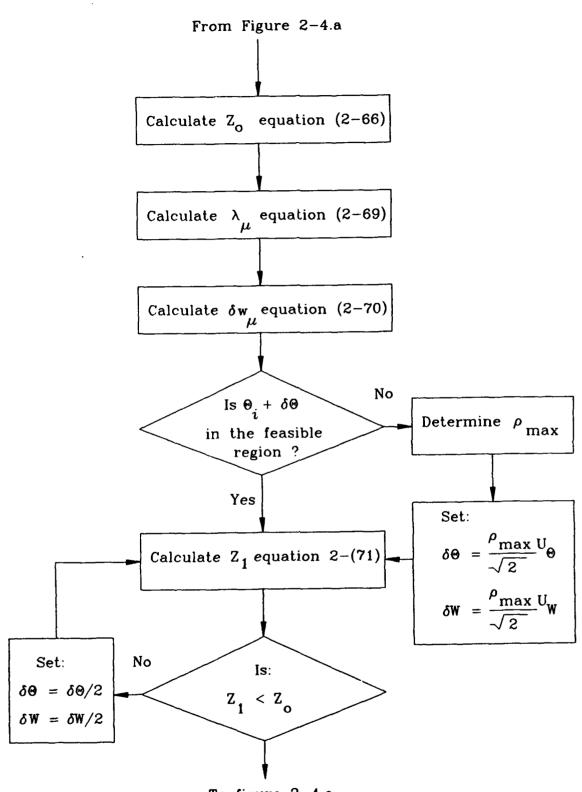



Figure 2-4.a

To figure 2-4.c

Figure 2-4.c

2.7 Accuracy of the Estimation

One of the benefits of using Deming's method for the maximum likelihood estimate is that the covariance of the estimated parameters is approximated by the inverse of the matrix D defined by equation (2-45) [Bard 1974]. This lets us quickly determine if the estimation of the acoustic beacon's position is acceptable, or if more experimental data needs to be collected to improve the estimation. We are also able to test if the assumptions made regarding the covariance matrix of the measurement errors are valid by examining the final residual vectors. We define a moment matrix M as:

$$M = \sum_{\mu=1}^{n} e_{\mu}^{*} e_{\mu}^{*T}$$
 (2-72)

where the e^{*}_{μ} 's are the final residual vectors. To estimate the covariance of the residuals we take:

$$\tilde{V} = \frac{6}{n-3} \cdot M \tag{2-73}$$

where *n* is the number of experiment vectors used in the maximum likelihood estimation. Because of the nature of the constrained minimization problem, the first term in equation (2-73) is needed to correct for bias [Bard 1974]. We can compare the outcome of equation (2-73) to the assumed covariance matrix V_{μ} defined by equation (2-17) to see if the estimated covariance matrix V_{μ} is valid.

2.8 Summary

In this chapter we have developed the maximum likelihood estimate of the acoustic beacon's position, and a means in which to gauge the accuracy of the estimation. To estimate the beacon's position we defined a structural model that requires the observer to measure the time of receipt and location of receipt of two different signal from the acoustic beacon. The choice of how far apart the two signals that define an experiment vector (w_{μ}) must be, and the number of experiment vectors to use in the parameter estimation problem (*n*) remain as free parameters. In chapter IV we examine the performance of the algorithm of this chapter for different choices of these two free parameters.

Chapter III

Moving Acoustic Beacon

3.1 Introduction

In chapter II we developed the maximum likelihood estimator for a stationary acoustic beacon. In this chapter we extend the solution to include a moving acoustic beacon. The task of localizing an arbitrarily moving acoustic beacon is quite difficult. Abrupt changes in the acoustic beacon's velocity are difficult to parameterize and model. Therefore, we concentrate on the case of an acoustic beacon which moves in a constant velocity, linear path. The assumption of constant velocity, linear motion is a reasonable assumption for acoustic beacons located on instruments ascending at terminal velocity from the bottom, or for acoustic beacons located on instruments moving with an ocean current that is steady in the area of interest. With the assumption of constant linear motion, we modify the structural model given by equation (2-19) to include parameters that reflect the acoustic beacon's velocity. Once the new structural model is defined, we show that the solution to the maximum likelihood estimate for the moving beacon follows directly from the solution to the maximum likelihood estimate for the stationary acoustic beacon. Next, the algorithm developed to solve the stationary acoustic beacon localization problem is extended using the new structural model so that the position and velocity parameters of the moving acoustic beacon can be determined. Finally, the accuracy of the estimator is examined.

3.2 Problem Geometry

Consider an acoustic beacon having constant velocity components given by v_x , v_y , and v_z . We define a new parameter vector:

$$\boldsymbol{\theta} = [\boldsymbol{x}_{o} \ \boldsymbol{y}_{o} \ \boldsymbol{z}_{o} \ \boldsymbol{v}_{x} \ \boldsymbol{v}_{y} \ \boldsymbol{v}_{z}]^{T}$$
(3-1)

where the coordinates x_0 , y_0 , and z_0 define the acoustic beacon's initial position on the same Cartesian coordinate system that was described in chapter II. For convenience, we assume the velocity components v_x , v_y , and v_z have the units of meters per second. The position of the acoustic beacon at an arbitrary time t_β can by found using:

$$\begin{bmatrix} x_T \\ y_T \\ z_T \end{bmatrix} = \begin{bmatrix} x_o \\ y_o \\ z_o \end{bmatrix} + (t_\beta - T_o) \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$
(3-2)

where T_o is the reference time that corresponds to the acoustic beacon's initial position x_o , y_o , z_o .

As in chapter II, we define a measurement vector m_{μ} as:

$$m_{\mu} = [x_{\mu} \ y_{\mu} \ t_{z\mu}]^{T}$$
(3-3)

Where x_{μ} and y_{μ} are the ship's coordinates, in meters, on the same local Cartesian coordinate system defined for the acoustic beacon, and t_{μ} is the synchronized time of receipt that corresponds to the observer's position x_{μ} , y_{μ} .

3.3 Modified Structural Model

To account for the linearly moving acoustic beacon, we redefine the function $f(\mathbf{m}_{a}, \theta)$ from chapter II as:

$$f(m_{\mu}, \theta) = \sqrt{\left[x_{\mu} - x_{o} - (t_{\beta} - T_{o})v_{x}\right]^{2} + \left[y_{\mu} - y_{o} - (t_{\beta} - T_{o})v_{y}\right]^{2} + \left[z_{o} + (t_{\beta} - T_{o})v_{z}\right]^{2}} - \tau(C, t_{s\mu})$$
(3-4)

where t_{β} represents the time that the acoustic beacon transmitted the signal that the observer received at the synchronized time of receipt $t_{s\mu}$. Using the same homogeneous ocean model, and direct path propagation from chapter II, we simplify equation (3-4) to:

$$f(m_{\mu}, \theta) = \sqrt{\left[x_{\mu} - x_{o} - (t_{\beta} - T_{o})v_{x}\right]^{2} + \left[y_{\mu} - y_{o} - (t_{\beta} - T_{o})v_{y}\right]^{2} + \left[z_{o} + (t_{\beta} - T_{o})v_{z}\right]^{2}} - C(t_{s\mu} - T_{o})$$
(3-5)

Now assume that at time T_o the acoustic beacon transmitted the first signal that the observer receives. To find when the current signal received at the synchronized time of receipt $t_{s\mu}$ was transmitted, we note that the acoustic beacon transmits a signal for every pulse repetition interval. With T_o as a reference, t_B can be found by:

$$t_{\beta} = T_{o} + i \cdot T_{p} \tag{3-6}$$

where T_p is the pulse repetition interval of the acoustic beacon and *i* is number of pulse repetition intervals that separate the signal transmitted at time t_β from the signal transmitted at reference time T_o . To determine *i*, the observer counts how many signals are received between the first received signal and the signal received at the

$$g(\hat{w}_{\mu}, \theta) = \sqrt{(\hat{x}_{1} - x_{o} - i \cdot T_{p} \cdot v_{x})^{2} + (\hat{y}_{1} - y_{o} - i \cdot T_{p} \cdot v_{y})^{2} + (z_{o} + i \cdot T_{p} \cdot v_{z})^{2}} - \sqrt{(\hat{x}_{2} - x_{o} - j \cdot T_{p} \cdot v_{y})^{2} + (\hat{y}_{2} - y_{o} - j \cdot T_{p} \cdot v_{y})^{2} + (z_{o} + j \cdot T_{p} \cdot v_{z})^{2}} - C \cdot (\hat{t}_{s1} - \hat{t}_{s2})$$

$$(3-10)$$

This is analogous to equation (2-19) with additional terms included to correct for the beacon's motion.

3.4 Maximum Likelihood Estimator Solution

The solution to the maximum likelihood estimation problem for the case of the moving acoustic beacon follows directly from the solution to the maximum likelihood estimation problem for the case of the stationary acoustic beacon. Since only the structural model has changed, the likelihood function log (L ($\hat{\mathbf{W}}$, V)), the Lagrangian function $\Lambda(\hat{\mathbf{W}}, \theta, V, \lambda_1, ..., \lambda_n)$ and the objective function $\Phi(\hat{\mathbf{W}}_i^*)$ all have the same form as the corresponding functions defined for the stationary beacon. To solve for the maximum likelihood estimator of the parameter vector θ , we simply substitute the modified structural model given by equation (3-10) for the stationary structural mode given by equation (2-19), and follow the method of Deming described in chapter II. There are, however, a few differences that must be accounted for.

If the measurement errors are the same for both cases, we still expect the solution to the maximum likelihood estimator to be suboptimal. Because of the uniform distribution of the measurement errors $\bar{t}_{s\mu}$, we must continue to confine the solution of the maximum likelihood estimation problem to a feasible region. With the addition of the parameters v_x , v_y , and v_z to θ , we expand the feasible region defined by

equation (2-48) to:

$$-Range_{max} \leq x_{o} \leq Range_{max}$$

$$-Range_{max} \leq y_{o} \leq Range_{max}$$

$$-Depth_{max} \leq z_{o} \leq 0$$

$$-v_{x_{max}} \leq v_{x} \leq v_{x_{max}}$$

$$-v_{y_{max}} \leq v_{y} \leq v_{y_{max}}$$

$$-v_{z_{max}} \leq v_{z} \leq v_{z_{max}}$$

As in chapter II, to maintain a feasible solution, we break $\delta\theta$ into component parts:

$$\theta_{i+1}^* = \theta_i^* + \delta \theta = \theta_i^* + \rho_\theta U_\theta$$
(3-12)

where U_{θ} is unit magnitude vector that describes the direction of $\delta\theta$, and ρ_{θ} is the magnitude of $\delta\theta$. We assume that $\delta\theta$, and therefore U_{θ} , points in the proper direction to the maximum likelihood estimator. If $\theta_i^* + \delta\theta$ is outside the feasible region defined by equation (3-11), we find the maximum value of ρ that satisfies:

$$\begin{vmatrix}
-Range_{max} \\
-Range_{max} \\
-Depth_{max} \\
-v_{x_{max}} \\
-v_{y_{max}} \\
-v_{y_{max}} \\
-v_{z_{max}}
\end{vmatrix} < \theta_i^* + \rho_{max} U_0^* < \begin{cases}
Range_{max} \\
Range_{max} \\
0 \\
v_{x_{max}} \\
v_{y_{max}} \\
v_{y_{max}} \\
v_{z_{max}}
\end{vmatrix}$$
(3-13)

Once we have found ρ_{max} , we define the new recursion relations:

$$\theta_{i+1}^* = \theta_i^* + \frac{\rho_{\max}}{\sqrt{2}} U_0$$

$$\hat{W}_{i+1}^* = \hat{W}_i^* + \frac{\rho_{\max}}{\sqrt{2}} U_{ij}$$
(3-14)

As with the case of the stationary acoustic beacon, if, after a few iterations, θ_i^* lies on the edge of the feasible region, ρ_{max} will be zero and θ_{i+1}^* will equal θ_i^* for all subsequent iterations. If this happens we reject the estimate, and try again using a different initial value for θ^* , or more experimental data points.

3.5 Algorithm

Figure 3-1 at the end of this section describes the algorithm used to solve for the acoustic beacon's position and velocity. The algorithm is essentially the same algorithm developed in chapter II with changes made to account for the modified structural model of equation (3-10). Because of the modified structural model, we must reevaluate the quantities a_{μ} and b_{μ} . From equation (3-10), we define the quantities:

$$d_{1} = \sqrt{(\hat{x}_{1}^{*} - x_{o}^{*} - i \cdot T_{p} \cdot v_{x}^{*})^{2} + (\hat{y}_{1}^{*} - y_{o}^{*} - i \cdot T_{p} \cdot v_{y}^{*})^{2} + (z_{o}^{*} + i \cdot T_{p} \cdot v_{z}^{*})^{2}}$$

$$d_{2} = \sqrt{(\hat{x}_{2}^{*} - x_{o}^{*} - j \cdot T_{p} \cdot v_{x}^{*})^{2} + (\hat{y}_{2}^{*} - y_{o}^{*} - j \cdot T_{p} \cdot v_{y}^{*})^{2} + (z_{o}^{*} + j \cdot T_{p} \cdot v_{z}^{*})^{2}}$$
(3-15)

 \mathbf{a}_{μ} and \mathbf{b}_{μ} are then given by:

$$a_{\mu} = \partial g(\hat{w}_{\mu}^{*}, \theta^{*}) / \partial \hat{w}_{\mu} = \frac{\left[\frac{(\hat{x}_{1}^{*} - x_{o}^{*} - i \cdot T_{p} \cdot v_{x}^{*})}{d_{1}}\right]}{(\hat{y}_{1}^{*} - y_{o}^{*} - i \cdot T_{p} \cdot v_{y}^{*})}{d_{1}}$$

$$-C$$

$$\frac{(\hat{x}_{2}^{*} - x_{o}^{*} - j \cdot T_{p} \cdot v_{x}^{*})}{d_{2}}$$

$$\frac{(\hat{y}_{2}^{*} - y_{o}^{*} - j \cdot T_{p} \cdot v_{x}^{*})}{d_{2}}$$

$$\frac{(\hat{y}_{2}^{*} - y_{o}^{*} - j \cdot T_{p} \cdot v_{y}^{*})}{d_{2}}$$

$$C$$

$$(3-17)$$

 $b_{\mu} = \partial g(\hat{w}_{\mu}^{*}, \theta^{*})/\partial \theta$

$$= \begin{pmatrix} \frac{(\dot{x}_{2}^{*} - x_{0}^{*} - j \cdot T_{p} \cdot v_{x}^{*})}{d_{2}}{d_{2}} - \frac{(\dot{x}_{1}^{*} - x_{0}^{*} - i \cdot T_{p} \cdot v_{x}^{*})}{d_{1}} \end{pmatrix} \\ \begin{pmatrix} \frac{(\dot{y}_{2}^{*} - y_{0}^{*} - j \cdot T_{p} \cdot v_{y}^{*})}{d_{2}}{d_{2}} - \frac{(\dot{y}_{1}^{*} - y_{0} - i \cdot T_{p} \cdot v_{y}^{*})}{d_{1}} \end{pmatrix} \\ \begin{pmatrix} \frac{(z_{0}^{*} + i \cdot T_{p} \cdot v_{z}^{*})}{d_{1}} - \frac{(z_{0}^{*} + j \cdot T_{p} \cdot v_{x}^{*})}{d_{2}} \end{pmatrix} \\ \begin{pmatrix} \frac{j \cdot T_{p}(\dot{x}_{2}^{*} - x_{0}^{*} - j \cdot T_{p} \cdot v_{x}^{*})}{d_{2}} - \frac{i \cdot T_{p}(\dot{x}_{1}^{*} - x_{0}^{*} - i \cdot T_{p} \cdot v_{x}^{*})}{d_{1}} \end{pmatrix} \\ \begin{pmatrix} \frac{j \cdot T_{p}(\dot{y}_{2}^{*} - y_{0}^{*} - j \cdot T_{p} \cdot v_{x}^{*})}{d_{2}} - \frac{i \cdot T_{p}(\dot{y}_{1}^{*} - y_{0}^{*} - i \cdot T_{p} \cdot v_{x}^{*})}{d_{1}} \end{pmatrix} \\ \begin{pmatrix} \frac{j \cdot T_{p}(\dot{y}_{2}^{*} - y_{0}^{*} - j \cdot T_{p} \cdot v_{x}^{*})}{d_{2}} - \frac{j \cdot T_{p}(\dot{y}_{1}^{*} - y_{0}^{*} - i \cdot T_{p} \cdot v_{x}^{*})}{d_{1}} \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

(3-18)

To evaluate the structural model, and the terms a_{μ} and b_{μ} , we need to know the values of *i* and *j* that represent the time that the received signals were transmitted. This forces the observer to keep a count of the number of signals that are received, with the first received signal corresponding to i = 0.

Once we have found the maximum likelihood estimate of the parameter vector θ , we need to evaluate the estimated current position of the acoustic beacon. The position defined by x_0^* , y_0^* , z_0^* is the estimated initial position of the acoustic beacon at the time T_0 . We assume that the time T_0 corresponds to the case i = 0. To determine the current position of the acoustic beacon, we project the solution forward along the path described by the estimated velocity components v_x^* , v_y^* , v_z^* . The estimated current position of the acoustic beacon is then given by:

$$\begin{bmatrix} x_T^* \\ y_T^* \\ z_T^* \end{bmatrix} = \begin{bmatrix} x_o^* \\ y_o^* \\ z_o^* \end{bmatrix} + i \cdot T_p \begin{bmatrix} v_x^* \\ v_y^* \\ v_z^* \end{bmatrix}$$
(3-19)

where *i* is the total number of beacon signals received and T_p is the pulse repetition interval of the acoustic beacon. The quantity $(i \cdot T_p)$ represents the time it took to collect the measurements used to calculate the maximum likelihood estimator.

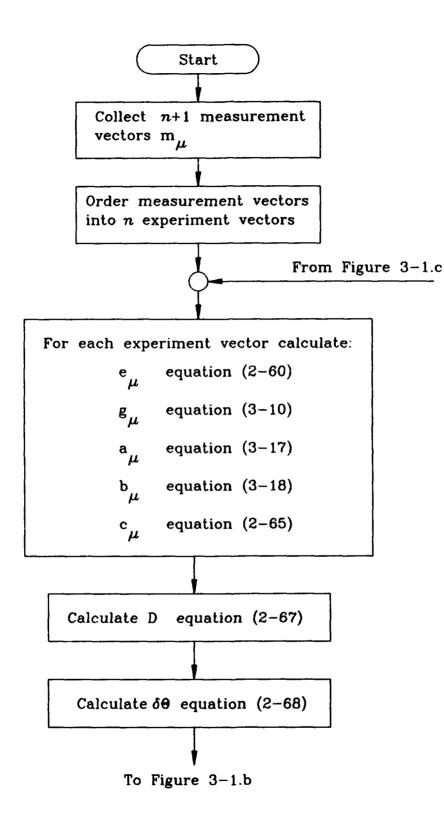
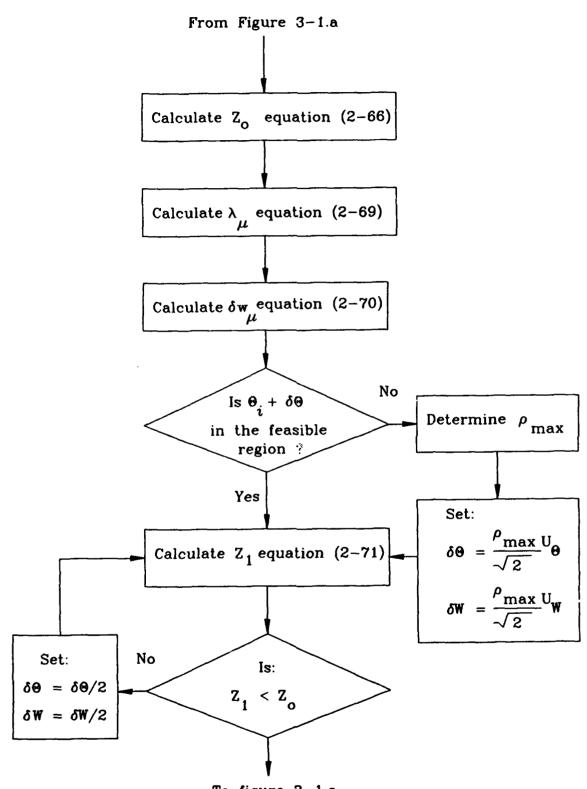
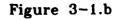




Figure 3-1.a

To figure 3-1.c

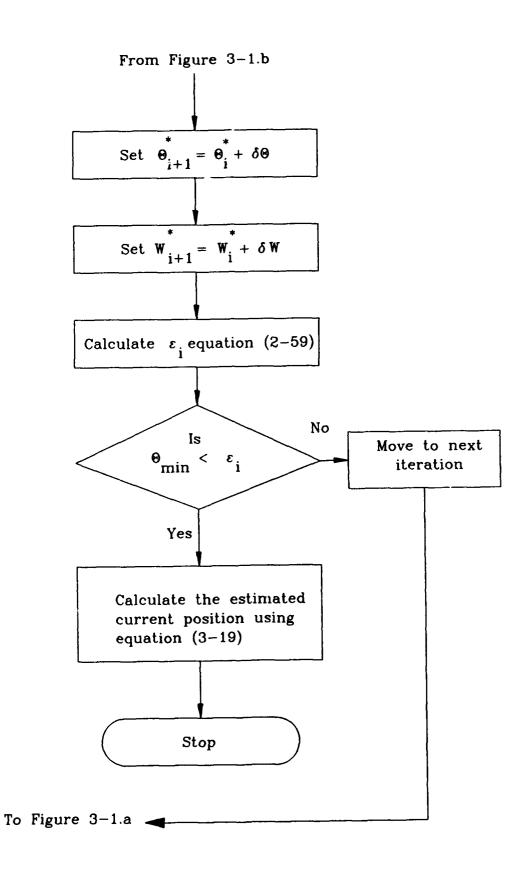


Figure 3-1.c

3.6 Accuracy of the Estimator

To estimate the accuracy of the solution to the maximum likelihood estimator, we examine the estimated covariance matrix of the parameter vector θ . As with the stationary beacon, the estimated covariance matrix of the parameter vector θ is given by the inverse of the matrix D or:

$$V_{\theta}^{*} = (B^{T} C^{-1} B)^{-1} = \left(\sum_{\mu=1}^{n} \left(\frac{1}{c_{\mu}}\right) \cdot b_{\mu} b_{\mu}\right)^{-1}$$
(3-20)

The variance of the velocity components v_x^* , v_y^* , and v_y^* are the last three diagonal elements of the covariance matrix V_{θ}^* .

To determine the variances of the current acoustic beacon position estimates we calculate:

$$\sigma_{x_{T}}^{2} = E\left[\left((x_{o} + i \cdot T_{p} v_{x}) - E\left[x_{o} + i \cdot T_{p} v_{x}\right]\right)^{2}\right]$$
(3-21)

$$\sigma_{y_{T}}^{2} = E\left[\left((y_{o} + i \cdot T_{p} v_{y}) - E\left[y_{o} + i \cdot T_{p} v_{y}\right]\right)^{2}\right]$$
(3-22)

$$\sigma_{z_r}^2 = E \Big[((z_o + i \cdot T_p \, v_z) - E \big[z_o + i \cdot T_p \, v_z \big])^2 \Big]$$
(3-23)

Simplifying equations (3-21) through (3-23) yields:

$$\sigma_{x_{T}}^{2} = \sigma_{x_{o}}^{2} + (i \cdot T_{p})^{2} \cdot \sigma_{v_{x}}^{2} + 2 \cdot (i \cdot T_{p}) E[x_{o} v_{x}]$$

- $E[x_{o}]^{2} - 2 \cdot (i \cdot T_{p}) E[v_{x}] E[x_{o}] - (i \cdot T_{p} \cdot E[v_{x}])^{2}$ (3-24)

$$\sigma_{y_{T}}^{2} = \sigma_{y_{o}}^{2} + (i \cdot T_{p})^{2} \cdot \sigma_{v_{y}}^{2} + 2 \cdot (i \cdot T_{p}) E[y_{o} v_{y}] - E[y_{o}]^{2} - 2 \cdot (i \cdot T_{p}) E[v_{y}] E[y_{o}] - (i \cdot T_{p} \cdot E[v_{y}])^{2} 56$$
(3-25)

$$\sigma_{z_{r}}^{2} = \sigma_{z_{o}}^{2} + (i \cdot T_{p})^{2} \cdot \sigma_{v_{z}}^{2} + 2 \cdot (i \cdot T_{p}) E[z_{o} v_{z}]$$

$$- E[z_{o}]^{2} - 2 \cdot (i \cdot T_{p}) E[v_{z}] E[z_{o}] - (i \cdot T_{p} \cdot E[v_{z}])^{2}$$
(3-26)

Now if we assume that the estimate of the parameter vector θ is unbiased, we can substitute the estimated parameter values for their means in equations (3-24) through (3-26). This gives us a method in which to calculate the estimated variance of the projected current position:

$$\sigma_{x_{T}}^{2} = \sigma_{x_{o}}^{2} + (i \cdot T_{p})^{2} \cdot \sigma_{v_{x}}^{2} + 2 \cdot (i \cdot T_{p}) E[x_{o} v_{x}] - (x_{o}^{*})^{2} - 2 \cdot (i \cdot T_{p}) v_{x}^{*} x_{o}^{*} - (i \cdot T_{p} \cdot v_{x}^{*})^{2}$$
(3-27)

$$\sigma_{y_{T}}^{2} = \sigma_{y_{o}}^{2} + (i \cdot T_{p})^{2} \cdot \sigma_{y_{y}}^{2} + 2 \cdot (i \cdot T_{p}) E[y_{o} v_{y}] - (y_{o}^{*})^{2} - 2 \cdot (i \cdot T_{p}) v_{y} y_{o}^{*} - (i \cdot T_{p} \cdot v_{y}^{*})^{2}$$
(3-28)

$$\sigma_{z_{p}}^{2} = \sigma_{z_{o}}^{2} + (i \cdot T_{p})^{2} \cdot \sigma_{v_{z}}^{2} + 2 \cdot (i \cdot T_{p}) E[z_{o} v_{z}] - (z_{o}^{*})^{2} - 2 \cdot (i \cdot T_{p}) v_{z}^{*} z_{o}^{*} - (i \cdot T_{p} \cdot v_{z}^{*})^{2}$$
(3-39)

From equations (3-27) through (3-29) we see that the variance of the estimated current position has a complex relationship to the number of experiment vectors used and the effective sensor spacing. As these quantities increase, we expect that the variances of the estimated initial positions and velocities will decrease. However, as the number of experiment vectors used and the effective sensor spacing increases, the term *i* will increase and the variance of the estimate of the current position of the acoustic beacon can also increase. This is because if we project the initial position of the acoustic beacon forward based on the estimated velocity parameters, any errors in the acoustic beacon's velocity causes us to move the estimate in the wrong direction. The choice of how many experiment points to collect, or how long we spend collecting data points, will be examined in chapter IV.

As with the stationary beacon, we can test the assumptions made regarding the covariance matrix of the measurement errors. We define the moment matrix as:

$$M = \sum_{\mu=1}^{n} e_{\mu}^{*} e_{\mu}^{*T}$$
 (3-30)

where the e^{\bullet}_{μ} 's are the final residual vectors defined as in chapter II. To estimate the covariance of the residuals we take:

$$\tilde{V} = \frac{6}{n-6} \cdot M \tag{3-31}$$

where n is the number of experiment vectors used in the maximum likelihood estimation. The first term in equation (3-31) corrects for the bias caused by the constrained minimization problem [Bard 1974]. We can compare the results of equation (3-31) with the assumed covariance matrix of the measurement errors to judge if the assumed covariance matrix V_{μ} is valid.

3.7 Summary

In this chapter we have extended the results of chapter II to include linear motion of the acoustic beacon. We found that the solution to the maximum likelihood estimator for the case of the moving beacon follows the same form as the solution for the case of the stationary beacon. The quantity (j - i) is one of the free parameters of the moving acoustic beacon estimation problem. We define this quantity as the effective sensor spacing. This quantity corresponds to the spacing in time between the two signals used to form the experiment vector w_{μ} . The other free parameter is the number of experiment vectors to use in the parameter estimation problem. In the next chapter we examine the performance of the algorithm described in this chapter for different choices of the two free parameters.

Chapter IV

Algorithm Simulations and Tests

4.1 Introduction

In chapters II and III we developed algorithms to solve for the maximum likelihood estimate of an acoustic beacon's position for both the stationary and the moving beacon. In both chapters we were left with choosing how many experiment vectors (w_{μ}) to use, and which measurement vectors (m_{μ}) to use to define the experiment vectors. We defined the effective element spacing to be the number of pulse repetition intervals (T_p) bet ween the measurement vectors that form the experiment vector w_{μ} . In this chapter we examine the performance of the algorithms developed in chapters II and III for different numbers of experiment vectors, and for different effective element spacings. We show that the accuracy of the estimated beacon position (θ°) improves, while the variance of the estimated position decreases as the number of experiment vectors used to find the maximum likelihood estimate increases. We also show that the accuracy of the estimated beacon position improves, and the variance of the estimated position decreases with increased effective sensor spacing. This result is similar to the methods mentioned in chapter I.

To test the algorithms of chapters II and III, Monte Carlo simulations were conducted for several different initial positions and velocities of the acoustic beacon. Results from six of the scenarios tested are presented in the following sections. We assume that the measurement errors are as defined in section 2.4. To see how the accuracy of the measured position of receipt (x_{μ}, y_{μ}) affects the maximum likelihood estimate, we use GPS errors of 3 meters rms and 25 meters rms. These errors approximate the errors of a Differential/P code GPS receiver and a C/A code GPS receiver respectively. For measurement errors in the synchronized time of receipt $t_{s\mu}$, we assume the sampling rate of the receiver, T_s , is 1 millisecond and use equation (2-16) to define the variance.

4.2 Synthetic Measurement Vector Generation

To test the algorithms of chapters II and III, synthetic measurement vectors were generated for several different acoustic beacon positions and velocities. Table 4-1 lists the initial position and velocities for each of the scenarios presented. We assume that the receiving ship moves in a hexagonal search path with legs of 1000 meters. This is a reasonable search path in the general location of the acoustic beacon which is easy to model. The actual path of the receiving ship is not critical,

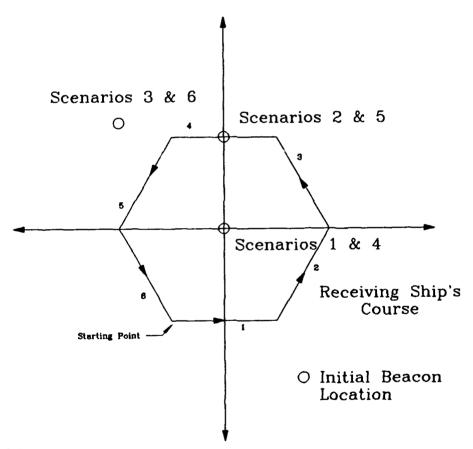

Scenario	х _в (m)	y _B (m)	z _B (m)	v _x (m/s)	v _y (m/s)	V, (m/s)
1	0	0	-2000	0	0	0
2	0	866	-2000	0	0	0
3	-1000	1000	-2000	0	0	0
4	0	0	-2000	0.5	-0.5	0.25
5	0	866	-2000	0.5	-0.5	0.25
6	-1000	1000	-2000	0.5	-0.5	0.25

Table 4-1

as long as it is not linear. If the receiving ship's path is linear we will be unable to

accurately resolve the acoustic beacon's position in three dimensions. This is analogous to the inability of a conventional linear array to resolve the direction of arrival of a signal in two dimensions. We restrict the speed of the receiving ship to five meters per second so that flow noise does not become a problem.

Figure 4-1 shows the positions of the acoustic beacon for the scenarios defined in Table 4-1 compared to the path of the receiving ship.

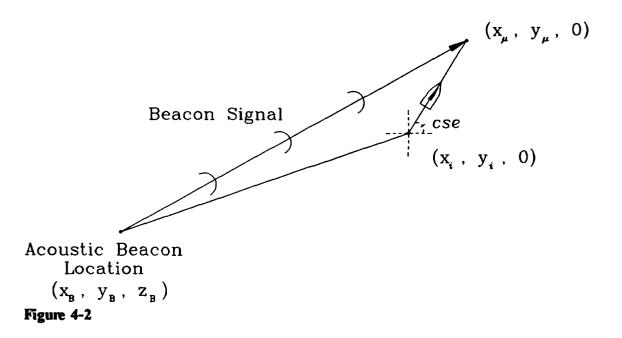


Figure 4-1

Scenarios 1 and 4 corresponds to an acoustic beacon located in the center of the search path, scenarios 2 and 5 correspond to an acoustic beacon located directly below the search path, and scenarios 3 and 6 correspond to an acoustic beacon located outside of

the search path.

To generate the synthetic measurement vectors m_{μ} , we solve for the intercept of the receiving ship and the beacon signal. Figure 4-2 shows the intercept geometry.

The position x_i , y_i is the location of the receiving ship when the beacon signal is transmitted, and the position x_{μ} , y_{μ} is the location of the ship when the beacon signal is received. Using a homogeneous ocean model and a direct path propagation mode, we calculate the synchronized time of receipt by finding the positive root of:

$$\alpha \cdot t^2 + \beta \cdot t + \gamma = 0 \tag{4-1}$$

where:

$$\alpha = s^{2} - C^{2}$$

$$\beta = 2 \cdot s \cdot [\cos(cse) \cdot (x_{i} - x_{B}) + \sin(cse) \cdot (y_{i} - y_{B})]$$

$$\gamma = (x_{i} - x_{B})^{2} + (y_{i} - y_{B})^{2} + z_{B}^{2}$$
(4-2)

Here s is the speed of the receiving ship in meters per second, C is the speed of sound in sea water, and *cse* is the course of the receiving ship in degrees. It is assumed that the receiving ship does not change its course for the duration of the calculation. Once we have the synchronized time of receipt, we calculate the position of receipt x_{μ} , y_{μ} using:

$$x_{\mu} = x_{i} + t_{s\mu} \cdot s \cdot \cos(cse)$$

$$y_{\mu} = y_{i} + t_{s\mu} \cdot s \cdot \sin(cse)$$
(4-3)

To find the next synchronized time of receipt and position of receipt (x_{μ}, y_{μ}) we update the acoustic beacon's position based on its velocity:

$$x_{B} = x_{B} + T_{p} \cdot v_{x}$$

$$y_{B} = y_{B} + T_{p} \cdot v_{y}$$

$$z_{B} = z_{B} + T_{p} \cdot v_{z}$$
(4-4)

where T_p is the pulse repetition interval of the acoustic beacon. For the results presented in the following sections we assume the acoustic beacon has a pulse repetition interval of 2 seconds. Next we find the location of the receiving ship when the new beacon signal is transmitted using:

$$x_{i} = x_{i} + T_{p} \cdot s \cdot \cos(cse)$$

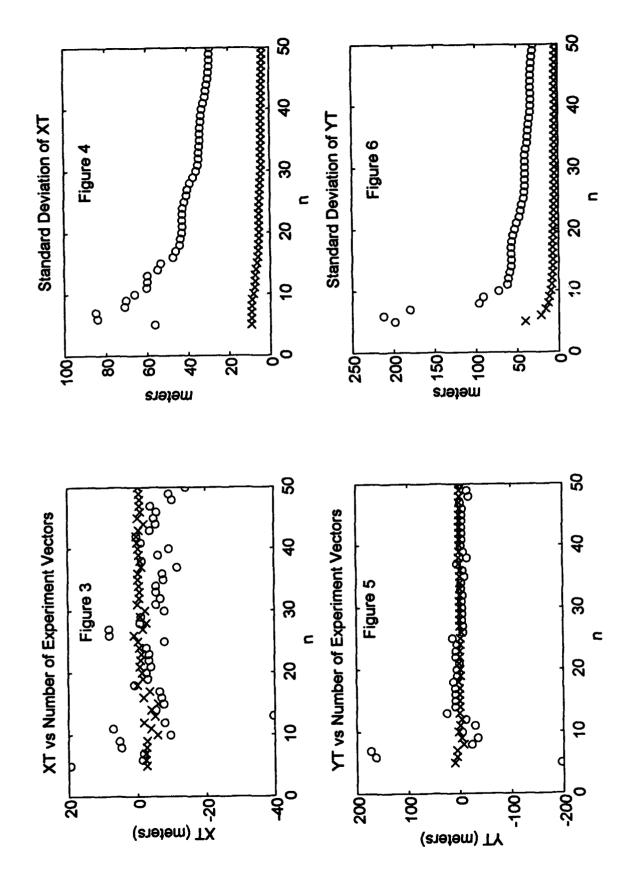
$$y_{i} = y_{i} + T_{p} \cdot s \cdot \sin(cse)$$
(4-5)

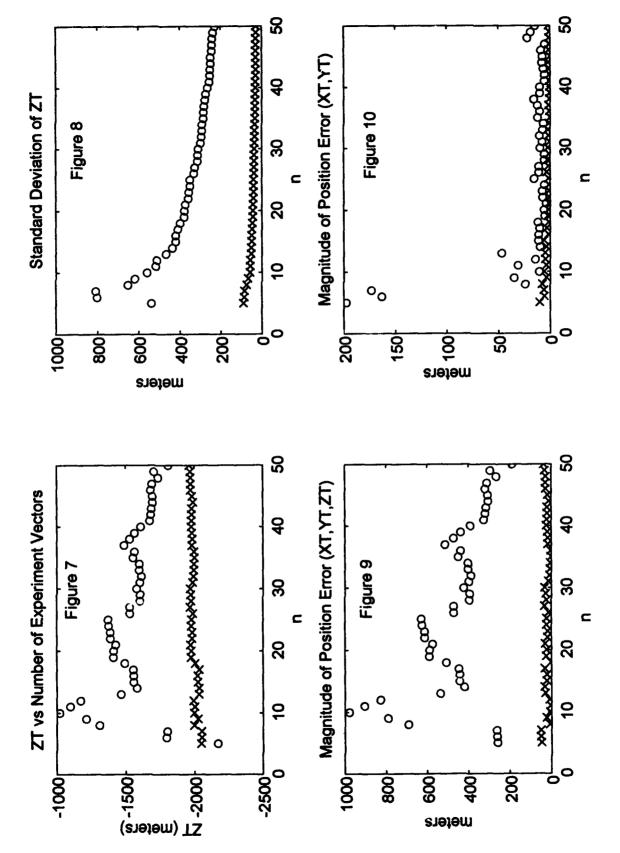
We then solve for the intercept of the beacon signal and the receiving ship using equations (4-1) and (4-2). We continue in this manner until we have generated a sufficient number of measurement vectors m_{μ} . Once we have generated the

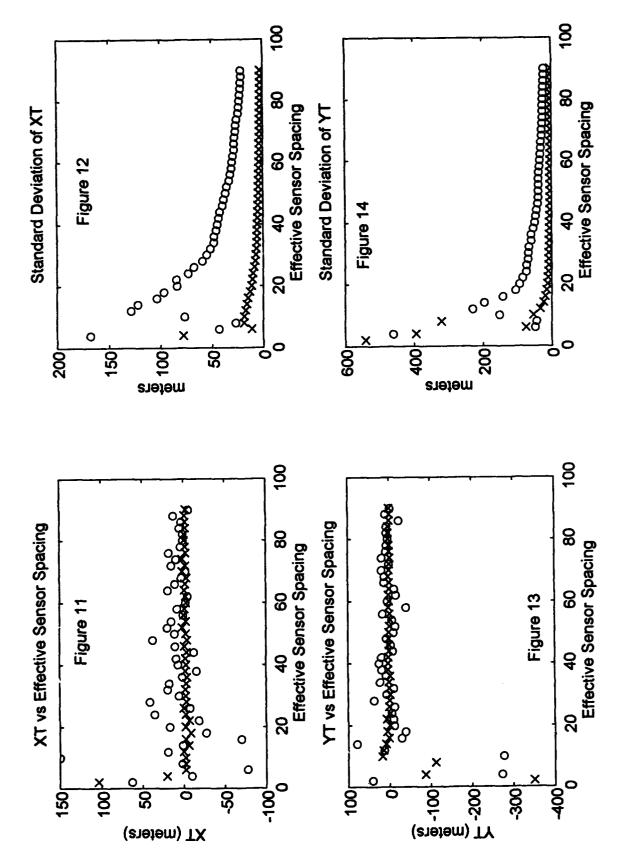
measurement vectors, we add normally distributed random error terms to each measurement based upon the errors discussed in section 2.4.

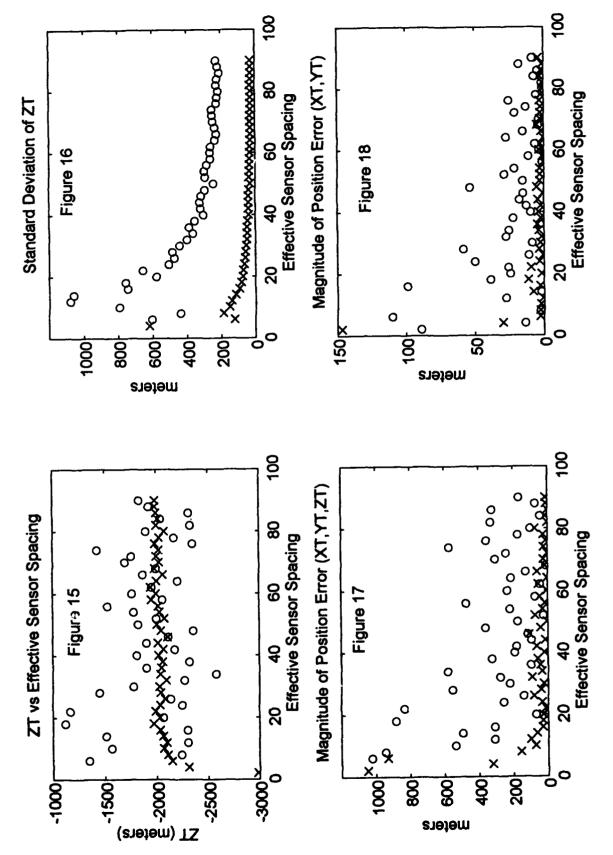
4.3 Stationary Acoustic Beacon

In this section we examine the performance of the algorithm given in Figure 2-4. Figures 4-3 through 4-50 contain the results of the Monte Carlo simulations conducted for scenarios 1 through 3. For each scenario, the initial value of the estimated parameter vector θ^* is taken as:

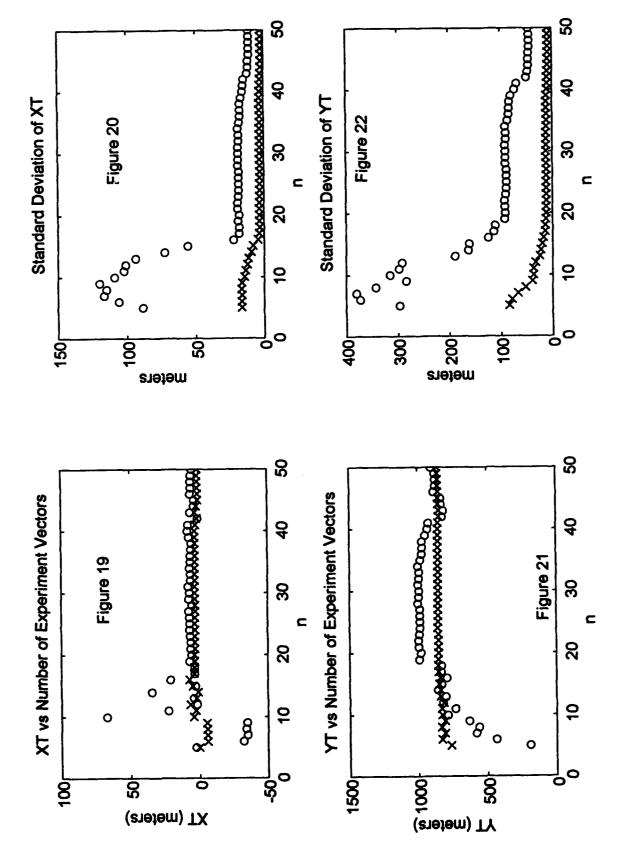

$$\theta_0^* = \begin{bmatrix} 0 & 0 & -2500 \end{bmatrix}^T \tag{4-6}$$

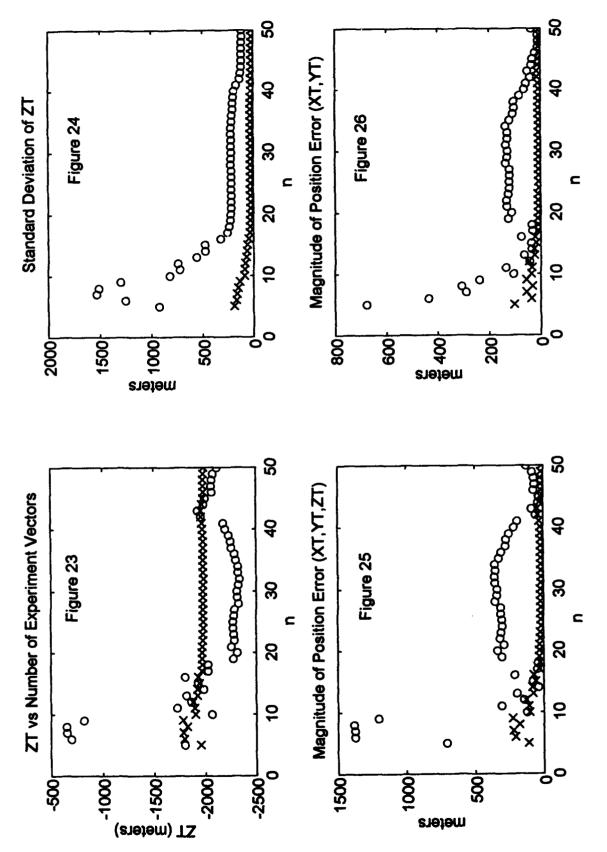

The feasible region is defined by $\text{Range}_{max} = \text{Depth}_{max} = 5000$ meters. If the maximum likelihood estimate found using the algorithm of chapter II is outside the feasible region, the corresponding entries are left blank. To find a solution for these cases, we need to start with a different initial parameter vector θ° , or use more experiment vectors.

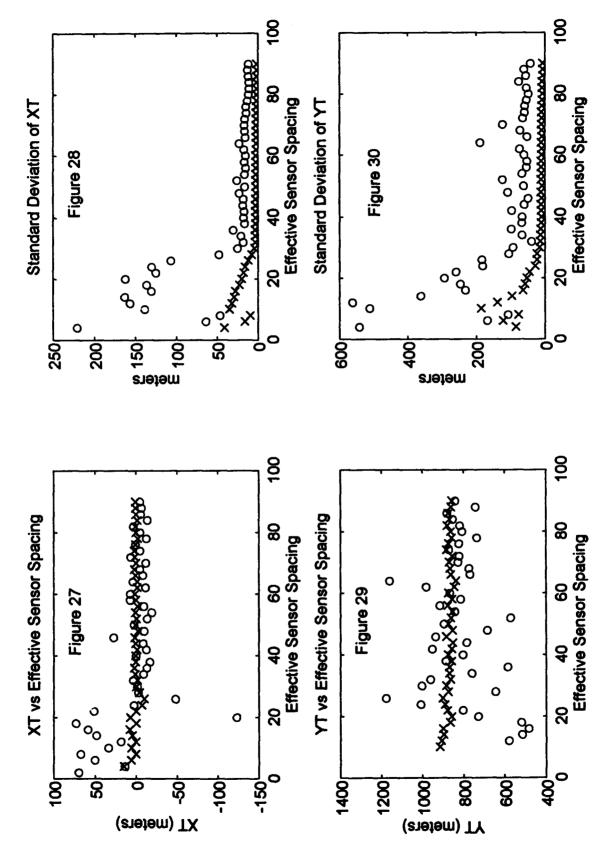

To test the effect of increasing the number of experiment vectors (*n*), we solve for the estimated parameter vector θ^* using *n* ranging from 5 to 50. We fix the effective sensor spacing at 45 pulse repetition intervals by using every 45th received beacon signal in defining the experiment vectors. To test the effects of increasing the effective sensor spacing, we solve for the estimated position vector using effective sensor spacings ranging from 2 to 90 pulse repetition intervals. For this case we fix the number of experiment vectors used to 25. We conduct each experiment using GPS errors of 3 meters rms and 25 meters rms. The results of the estimation algorithm for GPS errors of 3 meters rms are shown by x's on the plots, while the results of the estimation algorithm for GPS errors of 25 meters rms are shown by o's.

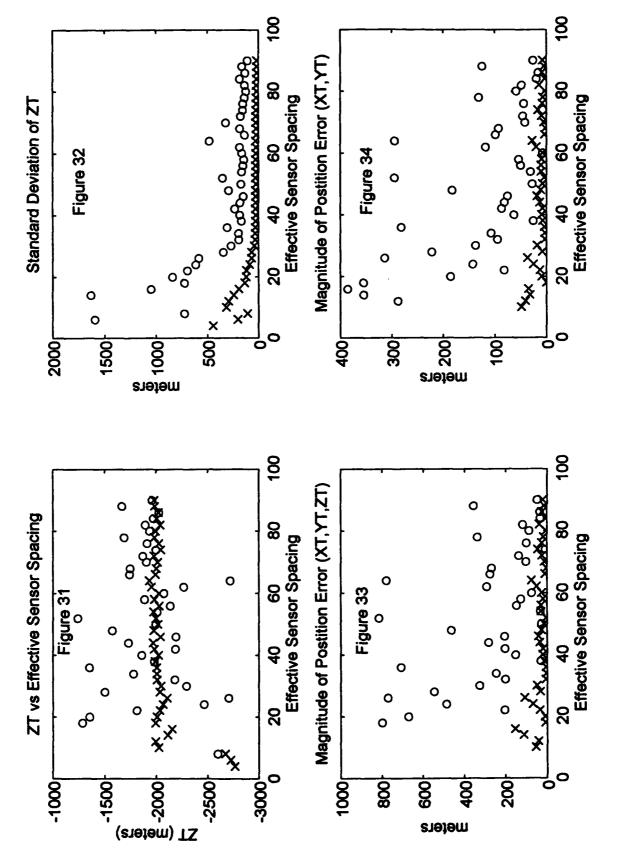

4.3.1 Scenario 1 - Stationary Acoustic Beacon Located at $\theta = [0 \ 0 \ -2000]^T$

Figures 4-3 through 4-10 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-11 through 4-18 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 1. We see that in general, as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated beacon position improves, and the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, and the standard deviation of the estimated position decreases. For both cases, the position errors and the standard deviation of the estimates initially decrease rapidly as the receiving ship spans more of its two dimensional search path. However after the number of experiment vectors used reaches approximately 20, or after the effective sensor spacing reaches approximately 35, the errors and the standard deviations decrease at much slower rate. At this point the receiving ship has completed two legs of the search path, and spans enough of the two dimensional search path to form a decent estimate of the acoustic beacon's position.

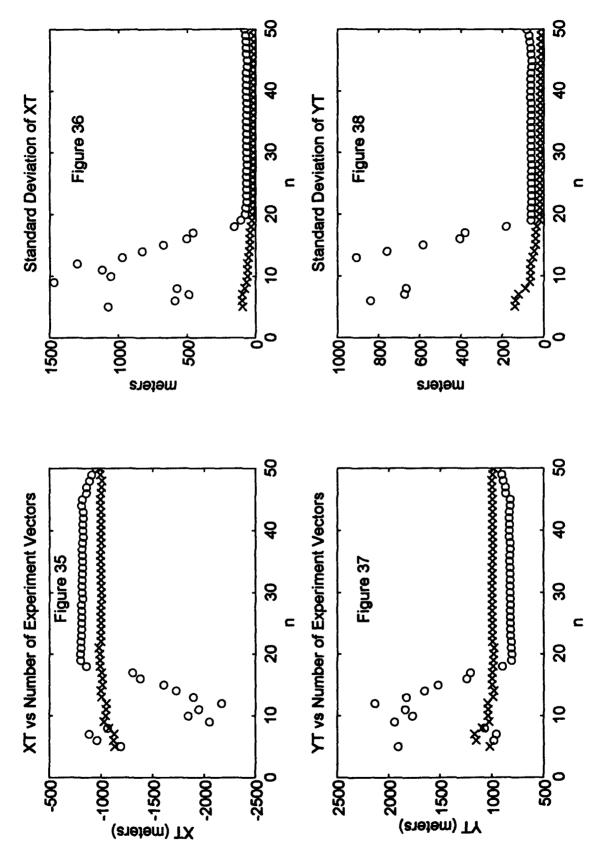


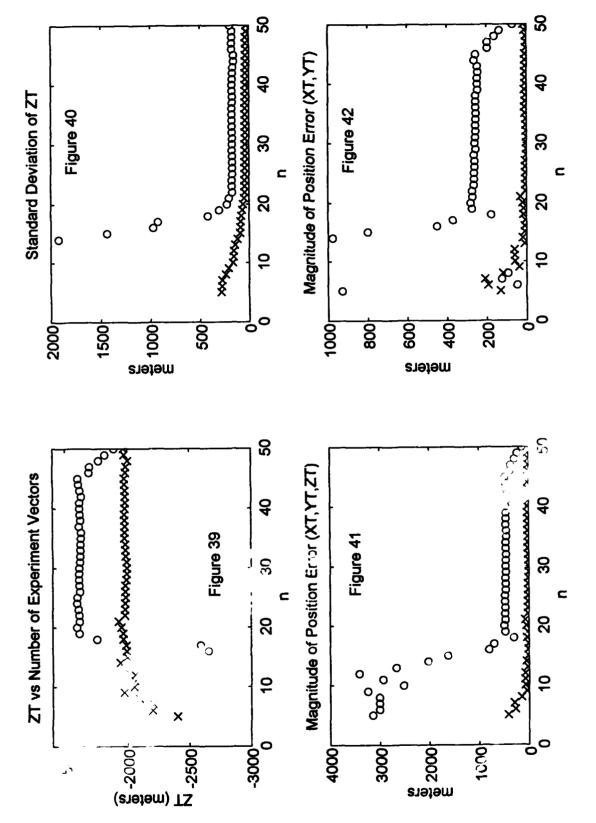

4.3.2 Scenario 2 - Stationary Acoustic Beacon Located at $\theta = [0 \ 866 \ -2000]^T$


Figures 4-19 through 4-26 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-27 through 4-34 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 2. Like scenario 1, as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated beacon position improves, and the standard deviation of the estimated position decreases. Also like scenario 1, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, and the standard deviation of the estimated position decreases. Again we see an initial rapid decrease in the errors and standard deviations which levels off after the number of experiment vectors used reaches approximately 20, or the effective sensor spacing reaches approximately 35. As in scenario 1, these values correspond to when the receiving ship completes the second leg of the search path.

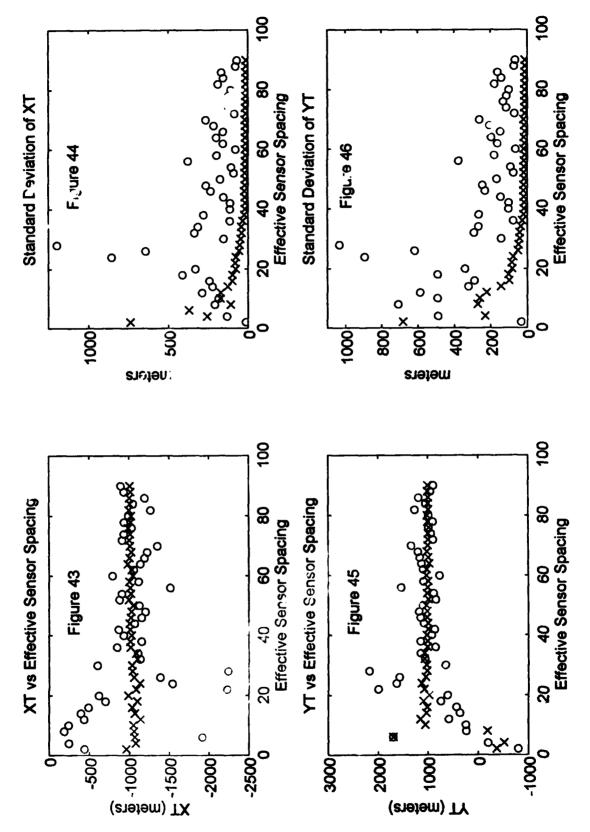

Unlike scenario 1, we see a significant improvement in the estimated position (especially when using 25 meter GPS errors) when the number of experiment vectors used is greater then 40, or the effective sensor spacing is greater then 65. At this point the receiving ship passes directly over the acoustic beacon and begins moving away from the beacon on the fourth leg of the search path. To see why we get this improvement, we can define a vertical plane as the plane orthogonal to the x-y plane that passes through the acoustic beacon's position and the starting point of the leg of the search path that the receiving ship is currently on. In general, it was found that if

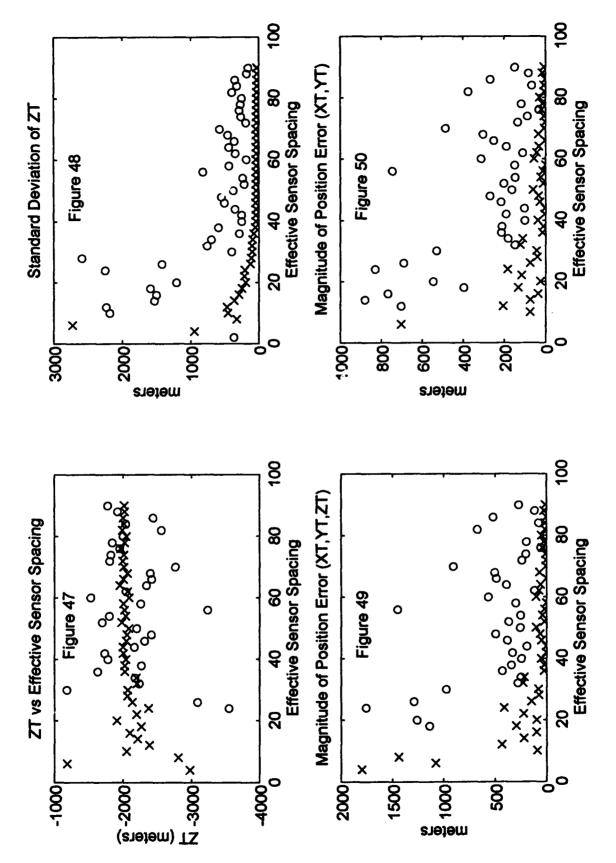
the receiving ship moves such that it stays in this vertical plane, significant improvements to the estimated beacon location can be made. This is because as the receiving ship moves in the same vertical plane relative to the acoustic beacon, the localization problem is essentially a two dimensional problem, and the range differences between measurement vectors is maximized for a given ship's velocity. The same is true if the acoustic beacon and the receiving ship are in the same horizontal plane.




4.3.3 Scenario 3 - Stationary Acoustic Beacon Located at $\theta = [-1000 \ 1000 \ -2000]^T$

Figures 4-35 through 4-42 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-43 through 4-50 show the results of the maximum likelihood estimation algorithm for different effective sensor spacing for scenario 3. Like the first two scenarios, as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. Again we see an initial rapid decrease in the errors and standard deviations which levels off after the number of experiment vectors used reaches approximately 20, and the effective sensor spacing reaches approximately 35. As in the first two scenarios, these values correspond to when the receiving ship completes the second leg of the search path.


In this scenario, we see a significant improvement in the location estimate when the number of experiment vectors used is greater then 45, or when the effective element spacing is greater then 75. At this point the receiving ship passes through the closest point of approach to the acoustic beacon on the fifth leg of the search path. In general, it was found that the estimate of the acoustic beacon's location improves as the receiving ship passes through closest points of approach to the acoustic beacon along the search path.


.

é

Í

4.3.4 Stationary Acoustic Beacon Summary

From scenarios 1 through 3 we showed that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated beacon position improves, while the standard deviation of the estimated position decreases. We also showed that as the receiving ship passes through a closest point of approach, the estimated position of the acoustic beacon improves. This is why the estimate of acoustic beacon's location in scenario 1 is better then the estimates obtained for the other two scenarios. In scenario 1, each leg of the search path passes through a closest point of approach. This is not true for the other two scenarios. In all of the scenarios, we see that the depth of the acoustic beacon is the least accurately estimated parameter. This is because we are attempting to locate the acoustic beacon in three dimensions, while the receiving ship only moves in two dimensions. Finally, we see that the accuracy of the estimated acoustic beacon position obtained from using GPS errors of 3 meters is approximately an order of magnitude better then the estimated acoustic beacon position obtained from using GPS errors of 25 meters.

These observations suggest that to obtain the best possible estimate of the acoustic beacon's location, we need to use a large number of experiment vectors with a large effective sensor separation, and we need to use a Differential/P code GPS receiver. The problem with this is that the time it takes to collect the measurement vectors used to form the experiment vectors increases with increasing sensor spacing

and increasing numbers of experiment vectors. As an example, with an effective sensor spacing of 45 pulse repetition intervals, a pulse repetition interval of 2 seconds, and using 50 experiment vectors it takes over 76 minutes to collect the required measurement vectors. If time is an issue, then we must use fewer experiment vectors and shorter effective sensor spacings. From looking at the results of the simulations presented above, for the hexagonal search path of figure 4-1 and for a pulse repetition interval of 2 seconds, the minimum required number of experiment vectors is 20, and the minimum effective sensor spacing is 35. With these values we span enough of the two dimensional search path to obtain a decent estimate of the acoustic beacon's location.

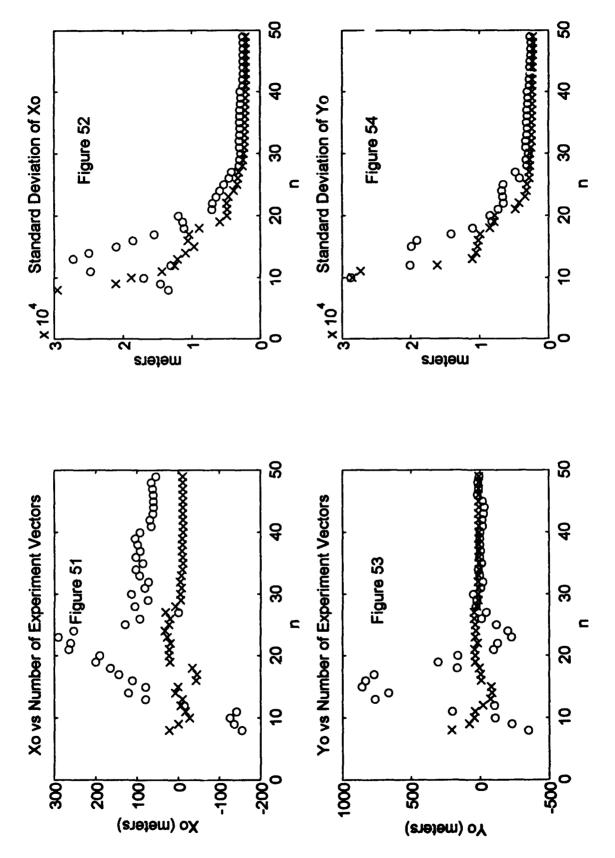
4.4 Moving Acoustic Beacon

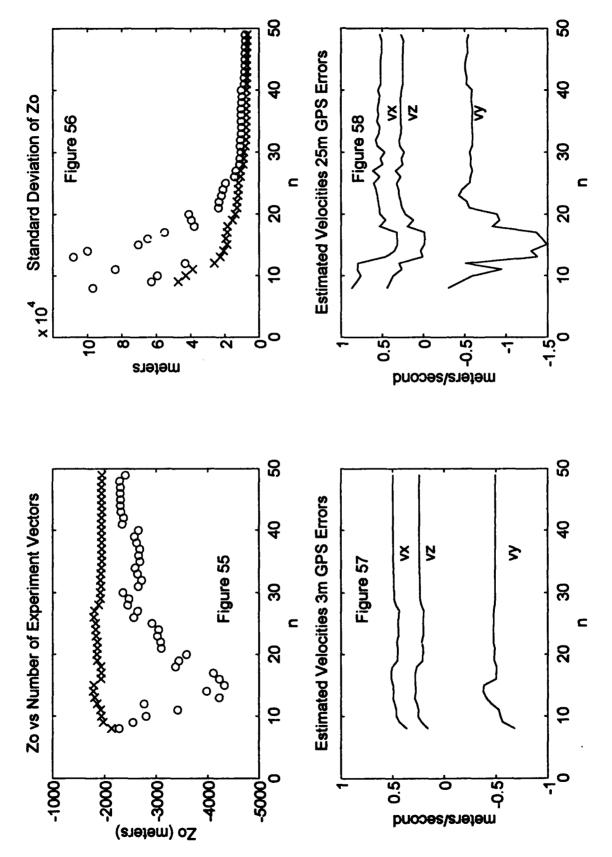
In this section we examine the performance of the algorithm given in Figure 3-1. Figures 4-51 through 4-146 contain the results of the Monte Carlo simulations conducted for scenarios 4 through 6. For each scenario, the initial value of the estimated parameter vector θ^* is taken as:

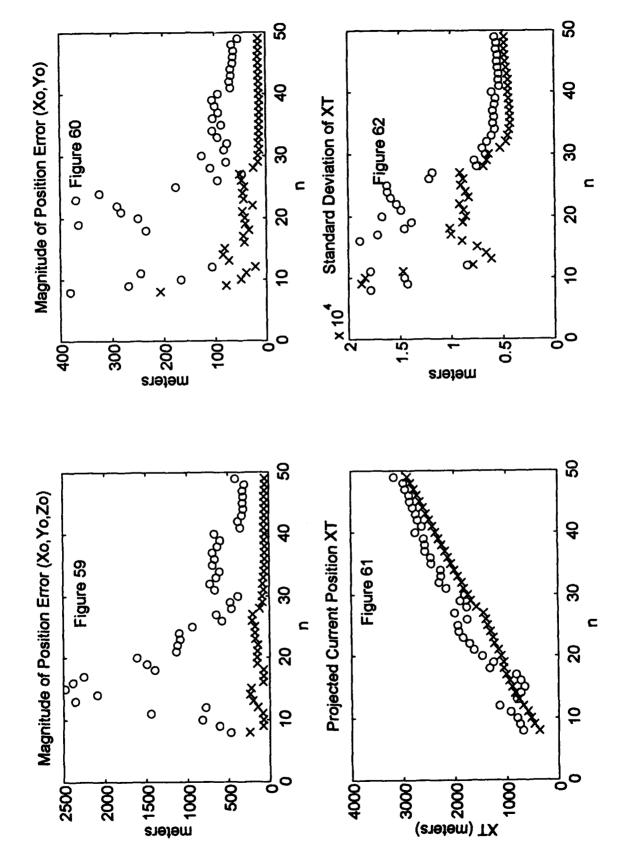
$$\theta_{\rho}^{*} = \begin{bmatrix} 0 & 0 & -2500 & 0 & 0 \end{bmatrix}^{T}$$
(4-7)

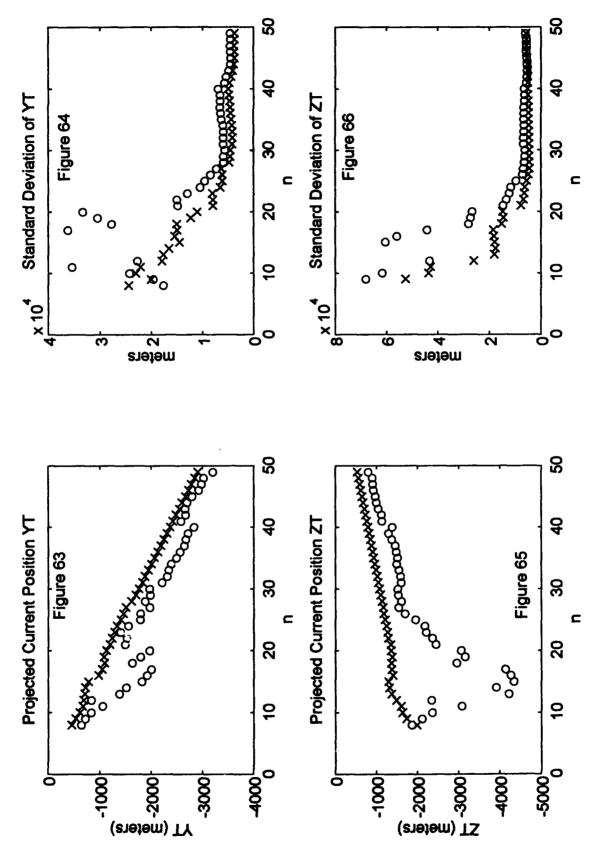
The feasible region is defined by $\text{Range}_{max} = \text{Depth}_{max} = 5000$ meters, and $v_{xmax} = v_{ymax} = v_{zmax} = 5$ meters per second. If the maximum likelihood estimate found using the algorithm of chapter III is outside the feasible region, the corresponding entries are left blank. To find a solution for these cases, we need to start with a different initial parameter vector θ , or use more experiment vectors.

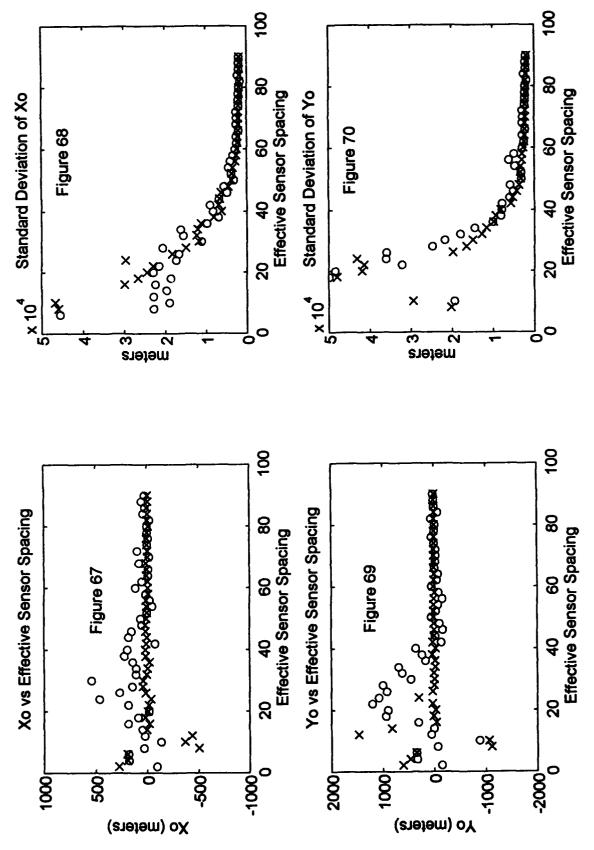
To test the effect of increasing the number of experiment vectors (n), we solve

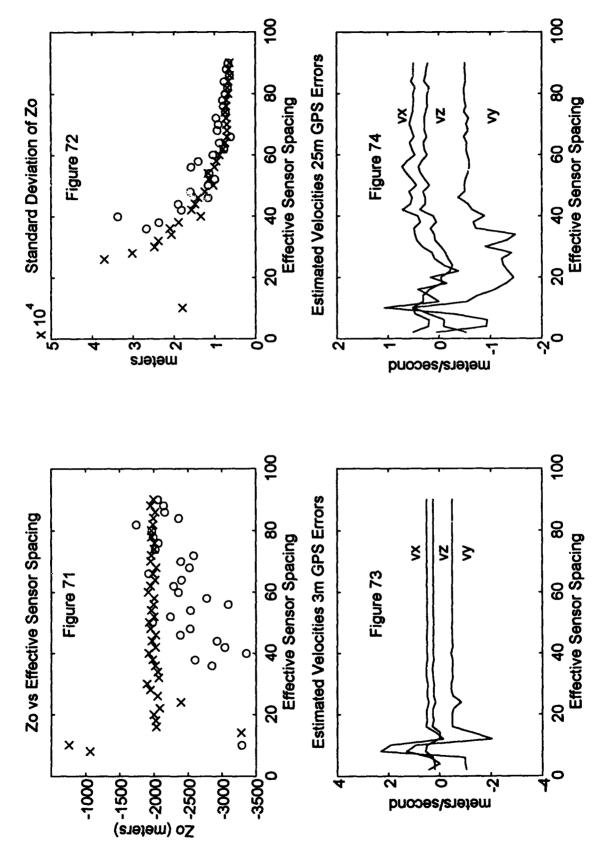

for the estimated parameter vector θ^* using *n* ranging from 10 to 50. We fix the effective sensor spacing at 60 pulse repetition intervals by using every 60th received beacon signal in defining the experiment vectors. To test the effect of increasing the effective sensor spacing, we solve for the estimated position vector using effective sensor spacings ranging from 2 to 90 pulse repetition intervals. For this case we fix the number of experiment vectors used to 30. We conduct each experiment using GPS errors of 3 meters rms and 25 meters rms. The results of the estimation algorithm for GFS errors of 25 meters rms is shown by o's.

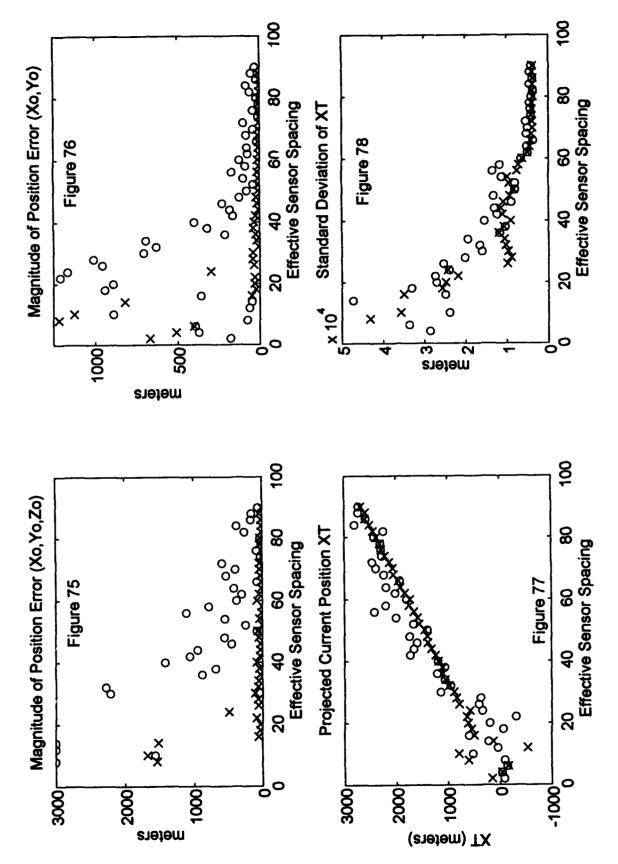

4.4.1 Scenario 4 - Moving Acoustic Beacon Located at:

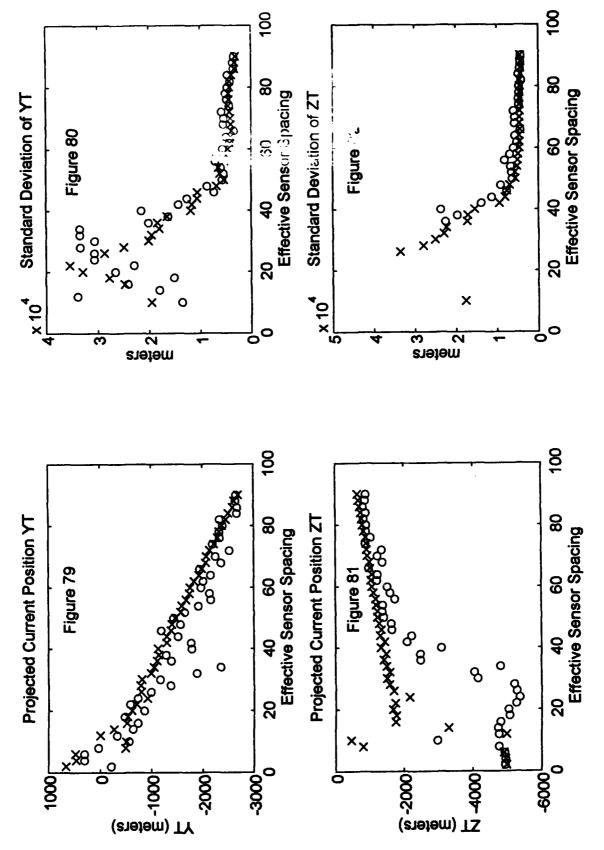

 $\theta = [0 \ 0 \ -2000 \ 0.5 \ -0.5 \ 0.25]^{T}$

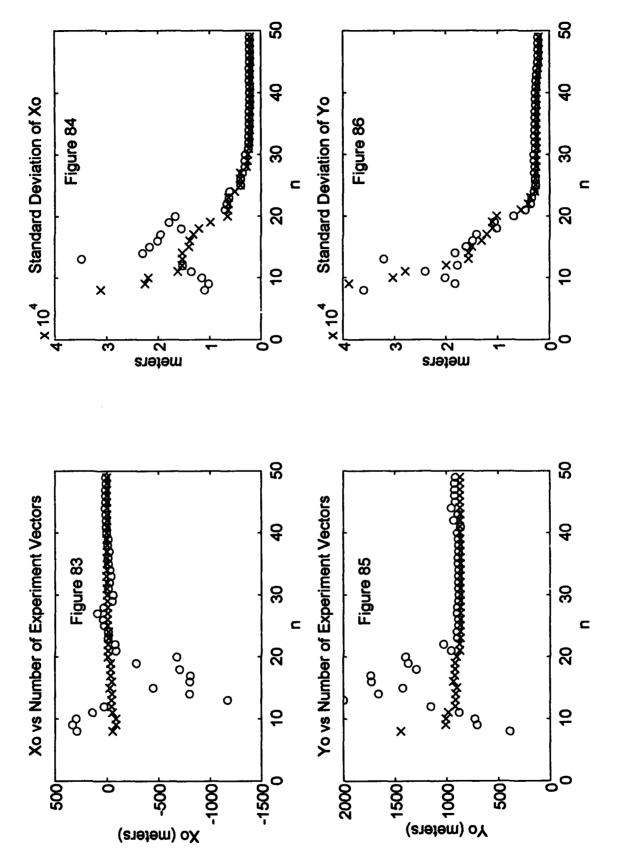

Figures 4-51 through 4-66 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-67 through 4-82 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 4. Similar to the stationary acoustic beacon scenarios, we see that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, while the standard deviation of the estimated position and velocities decrease. We also see that as the effective sensor spacing increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, and the standard deviation of the estimated position decreases. As with the stationary acoustic beacon, the position and velocity errors initially decrease rapidly, however, after the number of experiment vectors used reaches approximately 30, or the effective sensor spacing reaches approximately 45, the errors and the standard deviations decrease much slower.

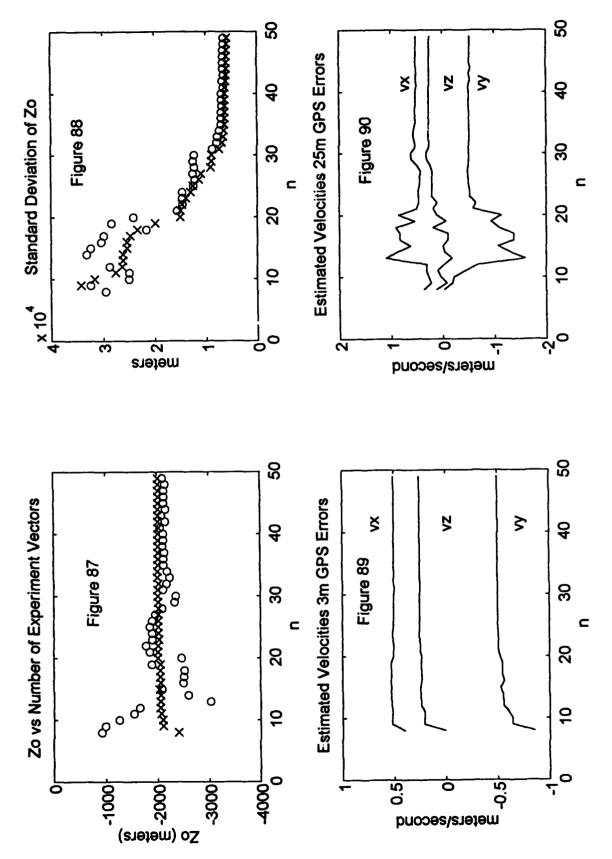

Figures 4-61 through 4-66 and figures 4-77 through 4-82 show the estimation algorithm's ability to track the linearly moving acoustic beacon. We see that projected current positions follow the linearly moving acoustic beacon fairly well when using 3 meter GPS errors. We also see that the standard deviation of the projected current positions decrease as the number of experiment vectors used increases and the effective sensor spacing increases. However, we notice in a few cases the standard deviations increase slightly for increasing numbers of experiment vectors used and increas^{in \sim} effective sensor spacing. This is a result of projecting the current position forward in time using equation 3-19.

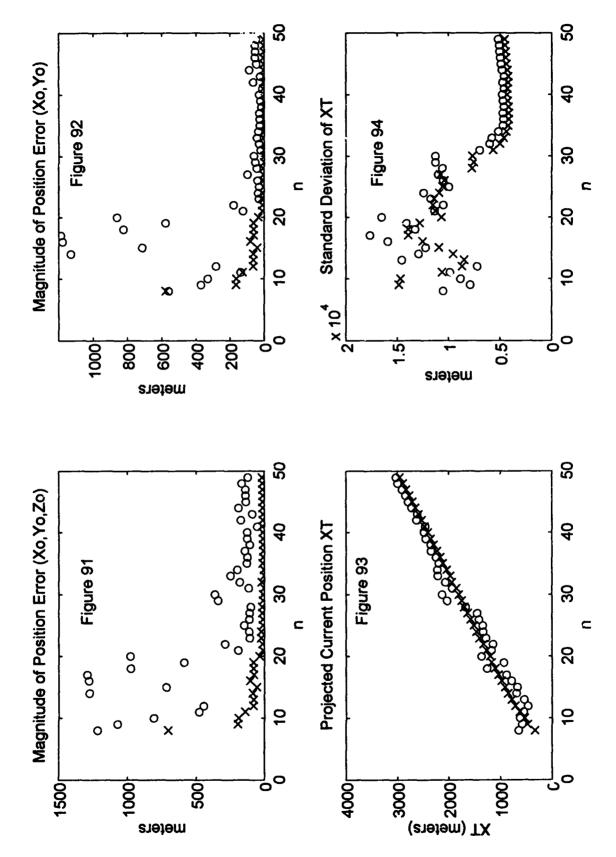


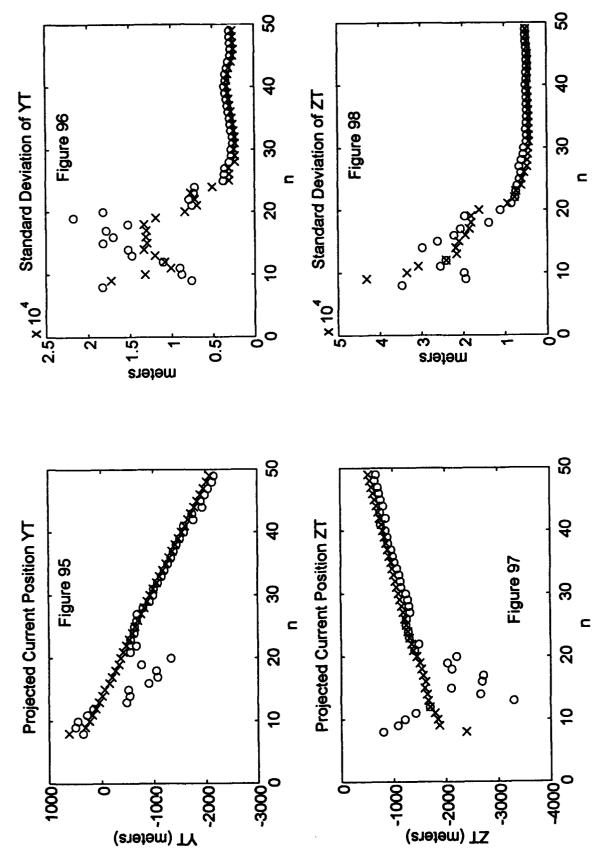


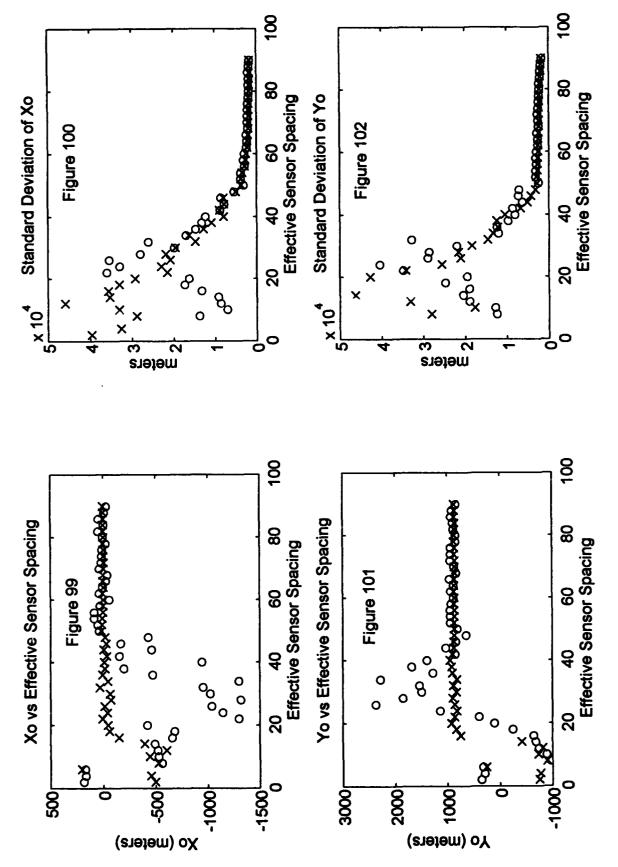


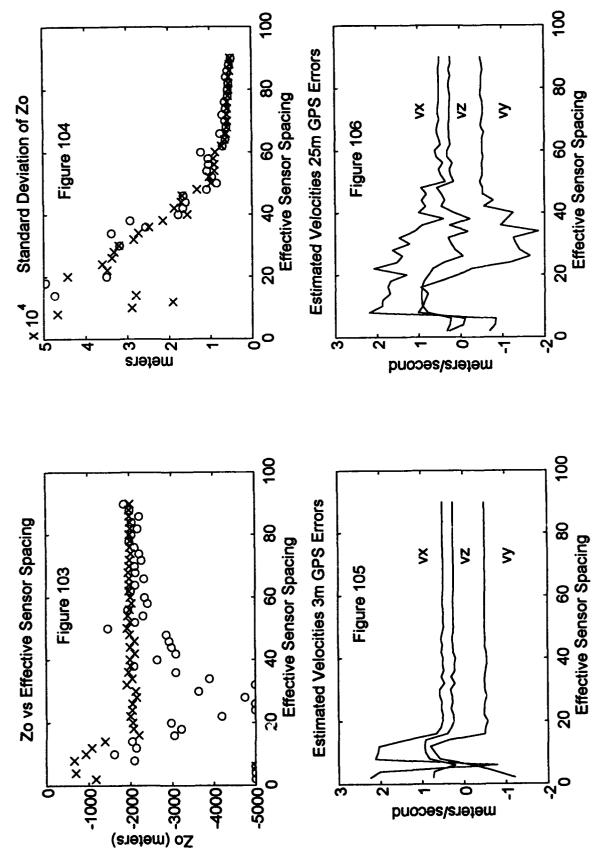


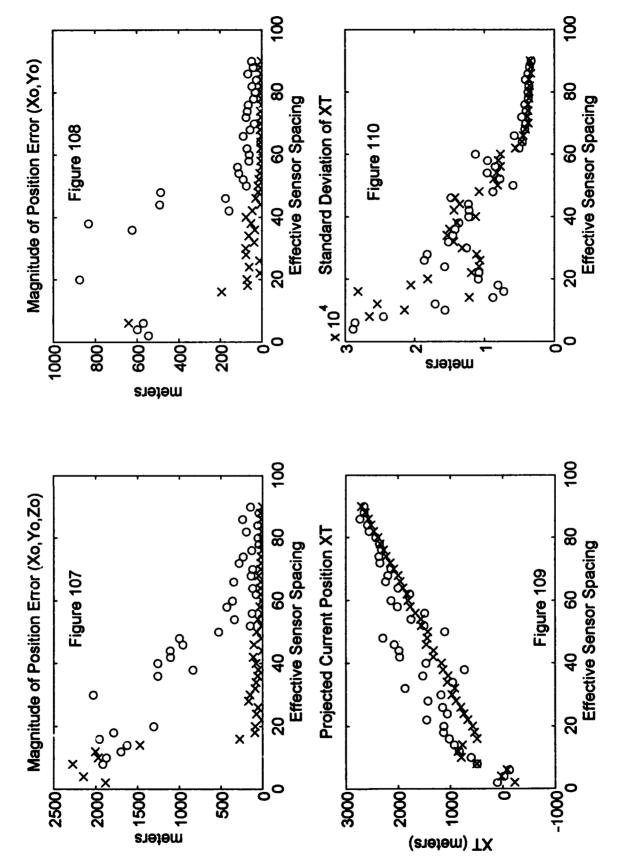

4.4.2 Scenario 5 - Moving Acoustic 6 / Located at:

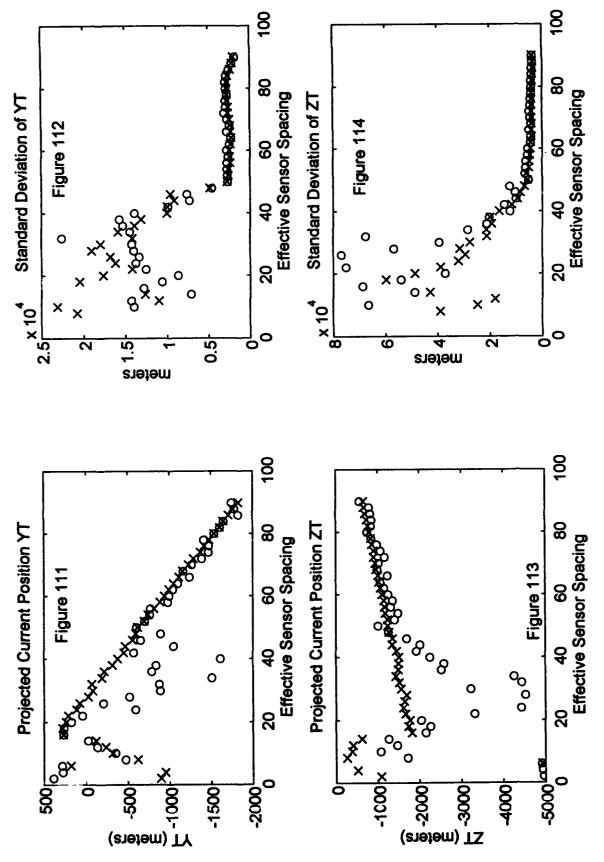

, = (10,865) (May 1 3 1 1 1 1 1

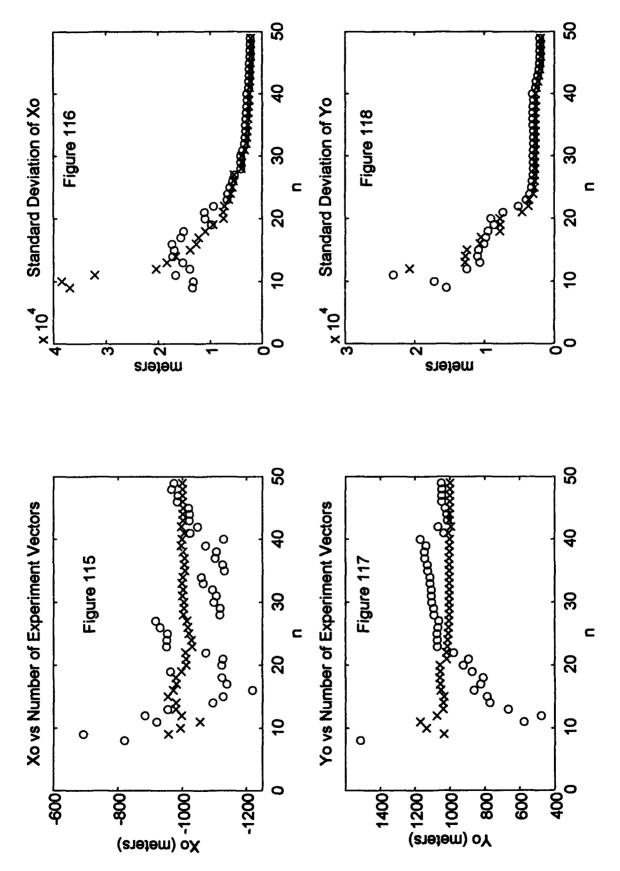

Fig. 2.1. We also see that as the effective sensor spacing increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, while the standard deviation of the estimated position and velocities of the standard deviation of the estimated position and velocities and velocities of the estimated position and velocities of the standard deviation of the estimated position and velocities of the standard deviation of the estimated position and velocities and the standard deviation of the estimated position and velocities and the standard deviation of the estimated position and velocities and the standard deviation of the estimated position and velocities and the standard deviation of the estimated position and velocities and the standard deviation of the estimated position and velocities and the estimated position decreases. As before, the position and velocities used reaches approximately 30, and the effective sensor spacing reaches approximately 45, the errors and the standard deviations decrease much slower.

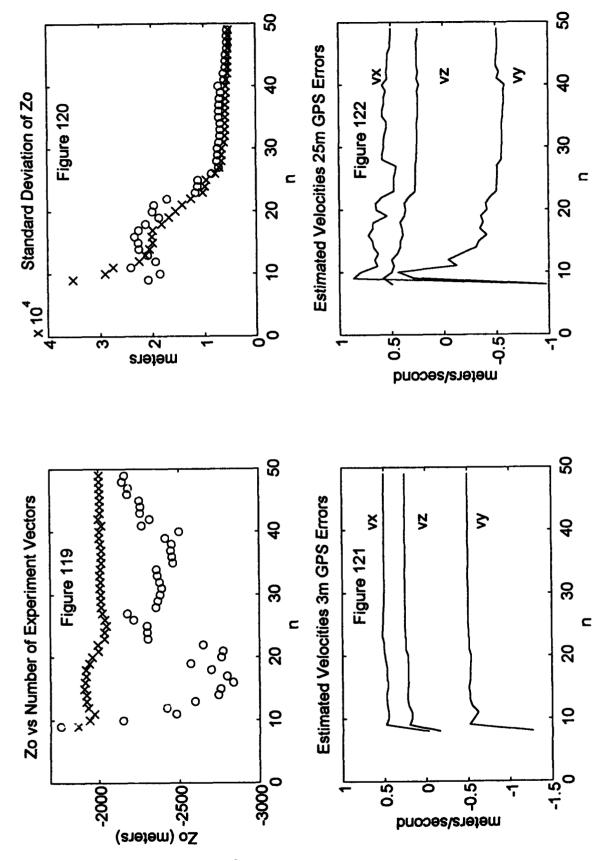

Figures 4-93 through 4-98 and figures 4-109 through 4-114 show the estimation algorithm's ability to track the linearly moving acoustic beacon for this scenario. We see that the projected current positions follow the linearly moving acoustic beacon fairly well for both 3 meter and 25 meter GPS errors. This is because the estimated initial positions x_0 , y_0 , and z_0 obtained using 25 meter GPS errors were better in this scenario then for scenario 4. In general this is not the case, however the measurement errors in this scenario simply led to a better estimate of the acoustic beacon's position.

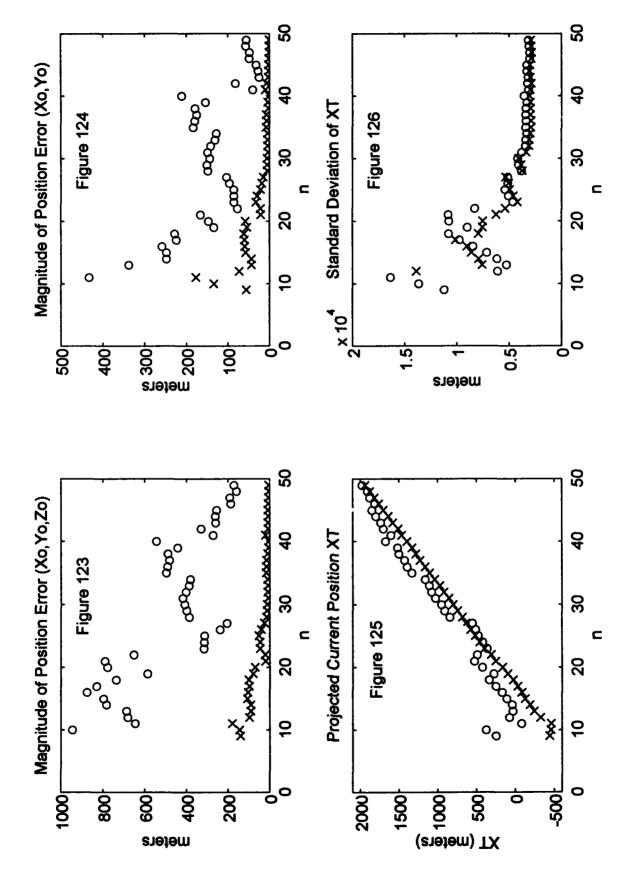


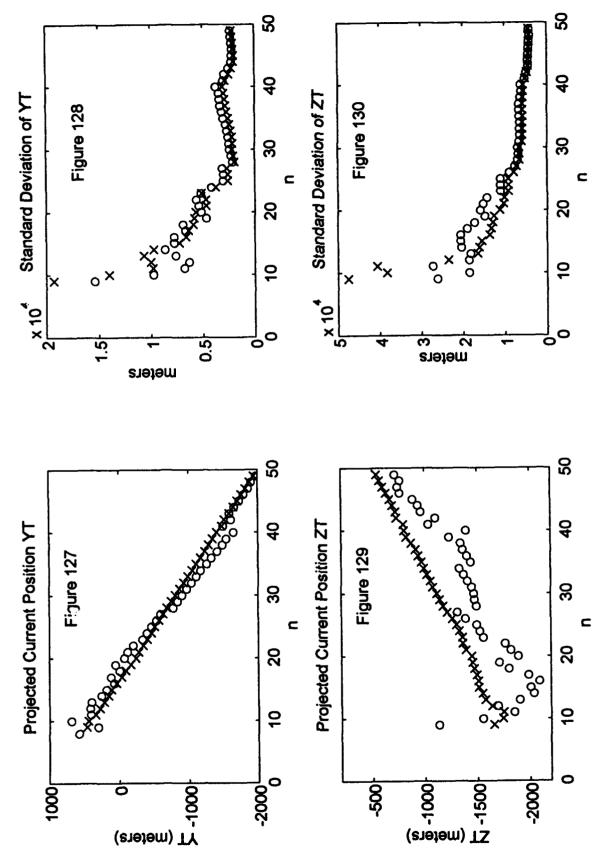


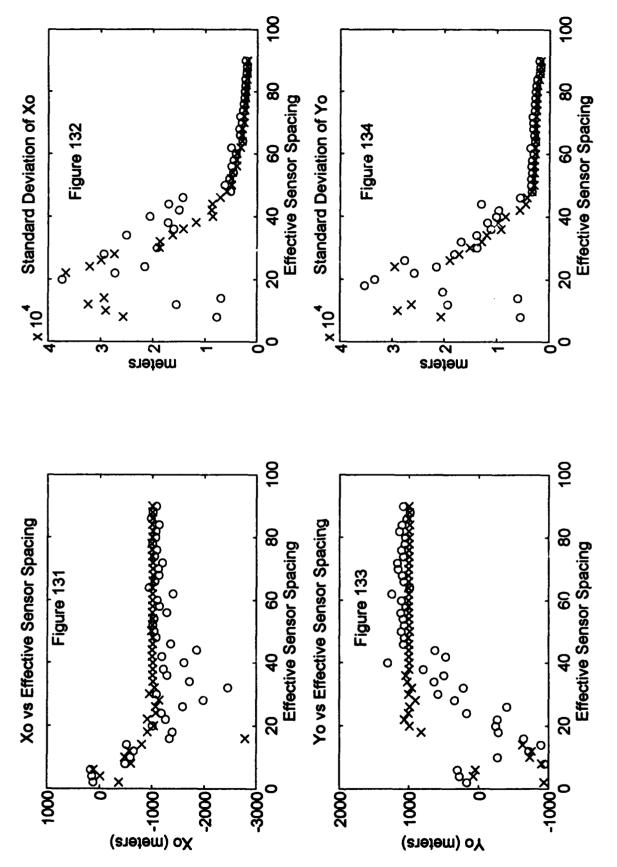


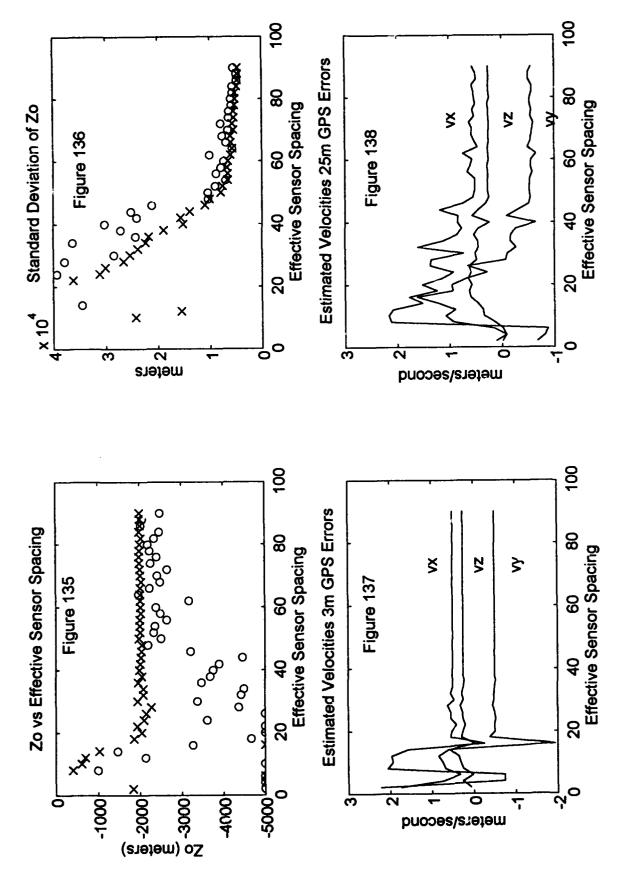


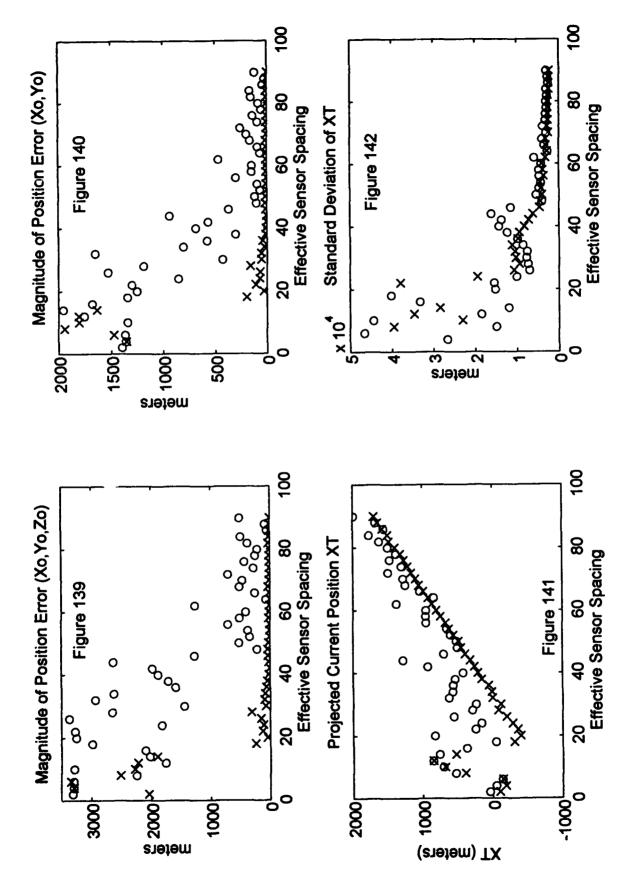

4.4.3 Scenario 6 - Moving Acoustic Beacon Located at:

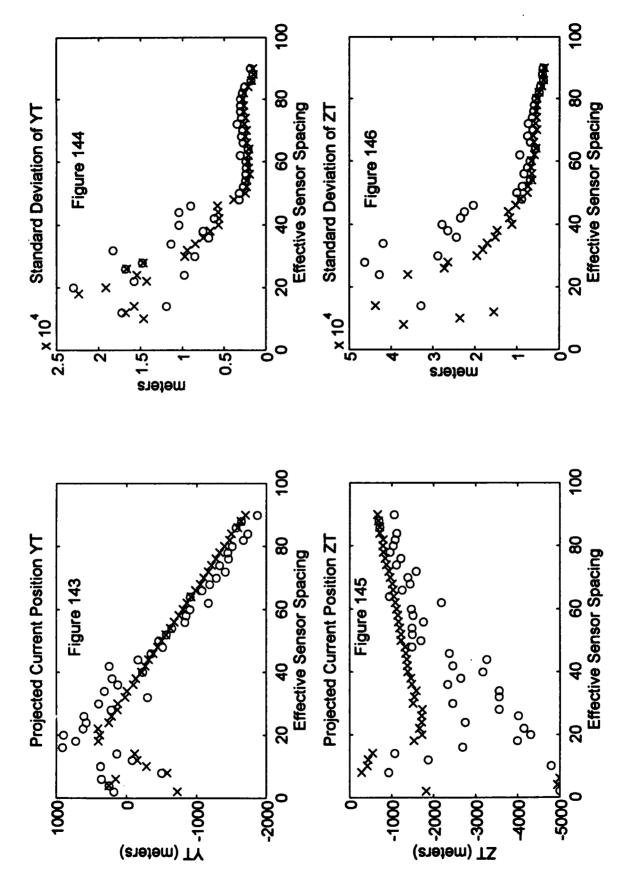

$\theta = [-10000 \ 1000 \ -2000 \ 0.5 \ -0.5 \ 0.25]^{T}$


Figures 4-115 through 4-130 show the results of the maximum likelihood estimation algorithm for different numbers of experiment vectors, and figures 4-131 through 4-146 show the results of the maximum likelihood estimation algorithm for different effective sensor spacings for scenario 6. Again we see that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, and the standard deviation of the estimated position and velocities decrease. We also see that as the effective sensor spacing increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, while the standard deviation of the estimated position decreases. As before, the position and velocity errors initially decrease rapidly, however after the number of experiment vectors used reaches approximately 30, or the effective sensor spacing reaches approximately 45, the errors and the standard deviations decrease much slower.


Figures 4-125 through 4-130 and figures 4-141 through 4-146 show the estimation algorithm's ability to track the linearly moving acoustic beacon for this scenario. We see that the projected current positions follow the linearly moving acoustic beacon fairly well using 3 meter GPS errors. Again, because of the errors in estimating the acoustic beacon's initial positions x_0 , y_0 , and z_0 , the projected current position obtained from using 25 meter GPS errors does not track the acoustic beacon's motion as well.







4.4.4 Moving Acoustic Beacon Summary

From scenarios 4 through 6 we showed that as the number of experiment vectors used in the maximum likelihood estimation problem increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, while the standard deviation of the estimated position decreases. Also, as the effective sensor spacing increases, the accuracy of the estimated position and velocities of the acoustic beacon improves, and the standard deviation of the estimated position decreases. For all of the moving acoustic beacon scenarios, we see that the depth of the acoustic beacon is the least accurately estimated parameter. This is because we are still attempting to locate the acoustic beacon in three dimensions, while the receiving ship only moves in two dimensions. We also note that the standard deviations of the estimated beacon scenarios. These larger for the moving beacon scenarios then for the stationary beacon scenarios. These larger standard deviations are due to the nature of the structural model and reflect the difficulties in locating a moving acoustic beacon using only a single omnidirectional hydrophone as a receiving source.

Similar to the stationary acoustic beacon scenarios, to obtain the best possible estimate of the acoustic beacon's location we need to use a large number of experiment vectors with a large effective sensor spacing. Again we run into problems with the time it takes to collect the required measurement vectors. For example, with an effective sensor spacing of 60 pulse repetition intervals, a pulse repetition interval of 2 seconds, and using 50 experiment vectors it takes 100 minutes to collect the required measurement vectors. As with the stationary acoustic beacon scenarios, if time is an

issue, we must reduce the number of experiment vectors used, and reduce the effective sensor spacing. As a minimum, we must use at least 30 experiment vectors and a minimum effective sensor spacing of 45 pulse repetition intervals. With these values, for the search path of figure 4-1 and for a pulse repetition interval of 2 seconds, we should be able to obtain a decent estimate of the acoustic beacon's position and velocities.

4.5 Summary

From the results of the Monte Carlo simulations we see that in general, as the number of experiment vectors used to find the estimated parameter vector θ increases, the errors of the estimated parameters and the variance of the estimated parameter vector deceases. This implied that to obtain the best estimate of the acoustic beacon's location, we should use a large number of experiment vectors, with a large effective sensor spacing. We run into problems with this is approach if the time it takes to obtain an estimated position is a factor. We showed that for the search path given in section 4.2 and for an acoustic beacon with a pulse repetition interval of 2 seconds, we need to use a minimum of 20 experiment vectors and an effective sensor spacing of 35 pulse repetition intervals to obtain a decent estimate when using the stationary acoustic beacon algorithm. We also showed that with the same search path and pulse repetition interval, we need to use a minimum of 30 experiment vectors and an effective sensor spacing of 45 pulse repetition intervals. In all scenarios, the use of accurate navigational equipment to measure the position of the receiving ship is critical to obtain an accurate estimate of the acoustic beacon's location. This is shown by the

better estimates obtained from using Differential/P code GPS errors of 3 meters rms.

Chapter V

Receiver Design

5.1 Introduction

A receiver must be designed to implement the maximum likelihood estimation algorithms described in chapters II and III. This receiver should fulfill the goals of being an inexpensive, lightweight, easily transported receiver that can perform all of the functions of an older chart recorder. To determine the specifications for the receiver hardware, we look at the signal that is received, the ambient noise that is received, the thermal noise generated by the receiver's preamplifier, and the required signal output. We also examine the characteristics of the hydrophone used as a receiving sensor, and develop a practical hydrophone model so the preamplifier's input characteristics can be determined.

In designing a receiver to implement the algorithms described in chapters II and III, we make the following general assumptions. We assume that the beacon signal has a carrier frequency of 10,000 Hertz, a pulse width of 10 milliseconds, and a pulse repetition interval of 2 seconds. This is similar to several acoustic beacons currently in use. To cut costs, a Motorola 68HC11 microcontroller will be used. The 68HC11 is an 8-bit, low power microcontroller with several useful peripheral functions built in. These peripheral functions include an eight channel 8-bit analog to digital (A/D) converter, an asynchronous serial communications interface, five general input/output ports, and a 16-bit free running timer system with five output compare registers. This lets us use a single chip to synchronize the time of receipt t_µ to the pulse repetition interval, digitally sample the received signal, control the receiver's gain, and communicate with the interfacing computer. Another factor in deciding to use the 68HC11 microcontroller is that the 68HC11 and it's programming support equipment are commonly available. For the receiving sensor, we use the Benthos AQ-4 hydrophone attached to 100 meters of RG-58/u coaxial cable. The Benthos AQ-4 hydrophone has an open circuit response of -201 dB re 1 Volt per 1 μ Pa, which is representative of the type of omnidirectional hydrophones currently available.

5.2 Design Criterion

The signal transmitted by the acoustic beacon can be characterized as a sequence of gated continuous wave pulses at a carrier frequency f_c . We depict the beacon signal as:

$$s_n(t) = \sum_{i=0}^{\infty} w (t - iT_p - T_o) \cdot \cos[2\pi f_c (t - iT_p - T_o) + \Phi]$$
(5-1)

where w(t) is a windowing function that defines the pulse width, T_p is the period which defines the pulse repetition interval, and ϕ is a phase term. As before, the coefficient T_o represents the unknown absolute time reference.

We can represent the signal that is received by the observer as:

$$R_{n}(t) = \sum_{i=0}^{n} h_{i} \cdot w(t - iT_{p} - t_{s\mu}) \cdot \cos[2\pi f_{c}(t - iT_{p} - t_{s\mu}) + \phi + \zeta_{i}] + n(t)$$
(5-2)

where h_i represents the attenuation the signal experiences in traveling from the beacon to the observer, and ζ_i represents a random phase distortion due the propagation of the signal through the ocean. As discussed in chapter II, the term $t_{s\mu}$ represents the synchronized time of receipt and is given by:

$$t_{s\mu} = t_{\mu} - i \cdot T_{p} = T_{R} + T_{o}$$
 (5-3)

where T_R is the acoustic travel time of the beacon signal. The term n(t) represents the combination of the ambient noise that is received and the thermal noise that is generated by the receiver's preamplifier.

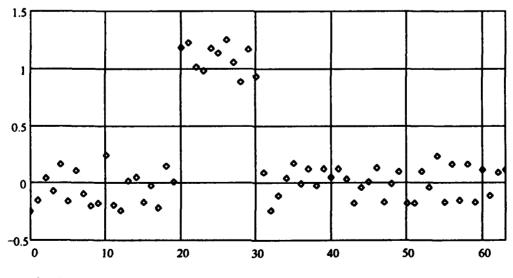
Since we use range differences in the maximum likelihood estimation algorithms of chapters II and III, the parameter that we need to find from the received signal is the synchronized time of receipt $t_{s\mu}$. In order to find $t_{s\mu}$, we digitally process the received signal. To determine the proper sampling rate, we must look at the frequency content of the received signal and the desired accuracy of the synchronized time of receipt t_{su} . If we apply the Nyquist sampling rate theorem directly to the received signal, the sampling rate would have to be greater then twice the carrier frequency $f_{\rm c}$. For carrier frequencies around 10,000 Hertz, the required sampling rate is too fast for the 68HC11 to handle both the data collection and the signal processing. However, from looking at equation (5-2), we notice that the received windowing function w(t) contains the parameter t_{su} . Therefore, if we remove the carrier frequency and just look at the envelope of the received signal given by w(t), we can still determine the synchronized time of receipt by observing when the signal's envelope is received. To remove the carrier frequency f_{e} , we use a precision rectifying circuit with a low pass filter to form an envelope detector. This allows us sample at the reduced rate of twice the bandwidth of the signal's envelope given by w(t).

To reduce the receiver's overall noise level, the bandwidth of the receiver should match the bandwidth of the envelope. If the bandwidth of the receiver increases above the bandwidth of the received signal's envelope, out of band noise from the oceanic environment and other interference sources enters the receiver, decreasing the signal to noise ratio. On the other hand, if the receiver's bandwidth is less then the bandwidth of the received signal's envelope, we do not allow the full bandwidth of the envelope to pass through the receiver, which again lowers the signal to noise ratio. The windowing function w(t) can be approximated by a simple rectangular window with a duration equal to the pulse width of the signal. The bandwidth of the windowing function and the receiver is then given by:

$$Bandwidth = \frac{1}{PulseWidth}$$
(5-4)

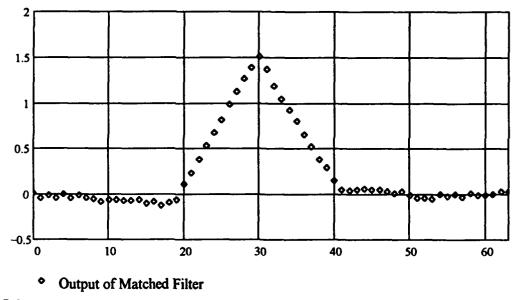
For a pulse width of 10 milliseconds, the windowing function's bandwidth is 100 Hertz. With a bandwidth of 100 Hertz, the sampling frequency must then be at least 200 Hertz, which equates to a sampling interval of no more then 5 milliseconds.

We must be careful not to sample at too slow a rate, otherwise the errors associated with the quantization of the time base will cause large errors in the localization algorithms. To determine an acceptable quantization step size, or equivalently, how much error can we tolerate in the time of receipt data, we need to compare the quantization errors to the errors in measuring the observer's location. The source of error in measuring the observers position is due to errors in the GPS position data. For a C/A-code GPS receiver, the published rms errors are on the order of 25


meters. Using a simple homogeneous, direct path propagation model with the speed of sound in water equal to 1500 meters per second, a signal takes 16.667 milliseconds to travel 25 meters. We call this the equivalent time error of the position error. We would like the errors associated with the quantization of the time base to be less than the equivalent time error of the position errors. Assuming no other errors in the time of receipt, the maximum error in measuring the time of arrival $t_{s\mu}$ is half the sampling interval. For a C/A code GPS receiver the required sampling interval of 5 milliseconds is much less then the equivalent time error of the position error, therefore the quantization errors are relatively small compared to the errors in measuring the observer's position. However, because more accurate navigational equipment will most likely be available in the near future, and because the 68HC11 has the required speed, we will sample the received signal's envelope every 1 millisecond. With a sampling interval of 1 millisecond, as long as the rms errors of the navigational system are greater than 1.5 meters, the quantization errors will be smaller then the equivalent time errors of the position errors.

To determine the synchronized time of receipt $t_{s\mu}$ from the sampled envelope, we pass the sampled envelope through a matched filter based upon w(t), and look for the time that corresponds to the maximum value of the output of the matched filter. The received time is then divided modulo the pulse repetition interval to obtain the synchronized time of receipt. The use of a matched filter has two benefits. First, the output of a matched filter for a rectangular input signal with the same pulse width of w(t) will have a unique maximum peak which we can use to calculate the time of

receipt. Secondly, a matched filter produces an output with the maximum signal to noise ratio. The digital form of a matched filter for a rectangular signal has the form of the moving average:


$$y[n] = \frac{1}{N+1} \sum_{i=0}^{N} x[n-i]$$
 (5-5)

For a pulse width of 10 milliseconds and a sampling rate of 1 millisecond, N is equal to 10. Figures 5-1 and 5-2 show the output of the moving average matched filter for an input that represents the sampled envelope of the received signal with additive noise. From figure 5-2 we see that it is relatively easy to find the maximum value of the output of the matched filter. We do not have to worry about the phase delay of the matched filter because we compare the time of arrival of two signals relative to each other. Since the phase delay is the same for all received signals, it does not effect the comparison of the two arrival times.

Sampled Envelope with Additive Noise

Figure 5-1

The receiver should be able to detect the target's beacon signal in the presence of the additive noise term n(t). The two largest contributors of noise are ambient oceanic noise and thermal noise generated by the receiver's preamplifier. Ambient oceanic noise, due to factors such as wind force, ships, industrial activity, precipitation, biologics, and others, is received by the hydrophone which generates an equivalent noise voltage. Using the hydrophone's open circuit response characteristics, the receiver's bandwidth, and empirical data of noise spectrum levels summarized by Wenz [Wenz 1962], the equivalent noise voltage of the oceanic noise can be calculated using:

$$e_{\mu} = 10^{\left(\frac{H_{ec} + e_{\phi}}{20} + \log(BW)\right)}$$
(5-6)

where H_{oc} is the hydrophones open circuit response in dB re 1 Volt per 1µPa, e_o is the

ambient oceanic noise in dB re 1µPa, and BW is the receiver's bandwidth in Hertz. Table 5-1 shows the equivalent noise voltage for various Sea states (Beaufort Scale) at 10,000 Hertz using a hydrophone with an open circuit receiver response of -201 dB re 1 Volt per 1µPa, and a receiver bandwidth of 100 Hertz. Ideally the noise in a receiver should be dominated by external noise sources. This means that the receiver's thermal noise should be less then the ambient oceanic noise. Since sea states 1 and 2 are not common, the receiver's thermal noise is designed to be less then the ambient oceanic noise associated with sea state 3. This requirement limits the test receiver's thermal noise reflected at the input of the preamplifier to be less then 89 nV/ \sqrt{Hz} .

Sea State (Beaufort Scale)	Ambient Oceanic Noise (dB re 1µPa)	Equivalent Noise Voltage (nV/V Hz)	Total Equivalent Noise Voltage e _n (μV)
1	48	22	0.22
2	56	56	0.56
3	60	89	0.89
5	68	224	2.24
8	73	398	3.98
limit	80	891	8.91

Table 5-1

Another desirable characteristic of the receiver is that it should have as large a dynamic resolution as possible. A large dynamic resolution allows the receiver to detect a broad level of signal amplitudes for a set gain. Since the received signal will be digitally processed, we need to look at the dynamic resolution of the A/D converter.

The dynamic resolution of an A/D converter is given by:

$$Dynamic Resolution = 20 \log_{10}(2^{bits})$$
(5-7)

For and 8 bit A/D converter, the dynamic resolution is only

$$20 \log_{10}(2^8) = 48 \ dB \tag{5-8}$$

This is not quite large enough. We would like a dynamic resolution that is comparable to the dynamic resolution of the older paper recorders. This means we need a dynamic resolution of at least 60 dB. To increase the dynamic resolution, either a higher bit A/D converter could be used, or a logarithmic compressor can be used prior to digital sampling. Since we are restricted to the 8 bit A/D converter of the 68HC11, a logarithmic compressor will be used to increase the receiver's dynamic resolutior.

Using a logarithmic compressor, the dynamic resolution is given by:

Dynamic Resolution =
$$20 \cdot \log_{10} \left(\frac{V_{sat}}{V_{min}} \right)$$
 (5-9)

where V_{sat} is the saturation point of the logarithmic compressor and V_{min} is the minimum detectable signal at the input of the logarithmic compressor. Typically, logarithmic compressors require an input signal that is greater then 2 mV. Below 2 mV, the input current to the logarithmic compressor becomes comparable to the bias current of the matched transistors used to obtain the logarithmic dependence, and

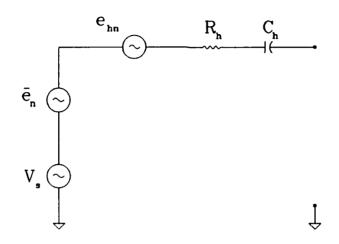
subsequently the logarithmic dependence is no longer valid [Millman 1979]. For the receiver designed in section 5.4, V_{sst} is approximately 8 V which gives a dynamic resolution of:

Dynamic Resolution =
$$20 \cdot \log_{10} \left(\frac{8}{2 \cdot 10^{-3}} \right) = 72 \ dB$$
 (5-10)

To determine the required gain of the receiver, we need to took at the signal level that we are attempting to receive. We wish to be able to detect low level signals that are right at the noise floor of the receiver. This requires the receiver to have enough gain to detect a signal at the equivalent oceanic noise level of 89 nV/ \sqrt{Hz} . Since a logarithmic compressor is used just prior to A/D conversion, the required gain is determined by the minimum detectable level in the logarithmic compressor and the oceanic noise level. Using the ambient oceanic noise and the input requirements of the logarithmic compressor from above, the maximum required gain of the receiver is given by:

$$A_{v_{\text{max}}} = \frac{2 \cdot 10^{-3}}{89 \cdot 10^{-9}} = 87 \ dB \tag{5-11}$$

However, it is possible that the received signal could be quite a bit larger then the minimum signal level for a strong beacon in close proximity to the receiving ship. For example, a 30 Watt beacon 100 meters from the receiving hydrophone will produce an input signal of about 10 mV. This signal would completely saturate the receiver if the gain is fixed at A_{Vmax} . To prevent the receiver from saturating, some form of feedback gain control is needed. Using one of the output ports of the 68HC11 as a control line, simple resistive attenuators can be switched on or off to reduce or increase the gain of the receiver based upon the maximum signal level at the A/D converter. To determine how much attenuation is needed, we look at the saturation point of the preamplifier and the maximum likely input signal. For design purposes, to keep a 10 mV signal from saturating the receiver, the receiver's minimum gain is given by:


$$A_{v_{\min}} = \frac{V_{sat}}{10 \cdot 10^{-3}} = \frac{8}{10 \cdot 10^{-3}} = 58 \, dB \tag{5-12}$$

Here again V_{sat} is the logarithmic compressor's saturation level. Since the input signal level will be somewhere between the noise floor and the maximum likely input signal most of the time, we can use multiple resistive attenuator networks to set the receiver's gain to any level in between A_{Vmax} and A_{Vmin} . For this design we will use four resistive attenuator networks to provide attenuation levels of -3 dB, -9 dB, -12 dB, -18 dB, -24 dB, and -30 dB.

5.3 Hydrophone Model

To determine the input characteristics of the preamplifier, the hydrophone and cable must be modeled. Figure 5-3 shows an equivalent circuit for a stiffness-controlled piezoelectric hydrophone. Here R_h is the hydrophone's resistance, C_h is the hydrophone's capacitance, e_n represents the equivalent ambient noise of the ocean, and e_{hn} represents the thermal noise of the hydrophone. For frequencies considerably below 100 kHz, the ambient noise level of the ocean is much greater then the

hydrophone's thermal noise, while the impedance of the hydrophone is dominated by the capacitance C_h . This allows us to simplify the hydrophone model by eliminating R_h and e_{hn} [Wilson 1985].

Figure 5-3

The cable assembly can be modeled as a two conductor transmission line. Using standard RG-58/u coaxial cable with a solid copper inner conductor and a polyethylene dielectric, we can model the cable as a series resistance R_e and a shunt capacitance C_e [Cheng 1983]. Standard RG-58/u coaxial cable has a series resistance of 33.31 Ω per 1,000 meters, and shunt capacitance of 70 pF per meter. Combing the simplified hydrophone model and the cable model, we have the circuit of figure 5- 4.

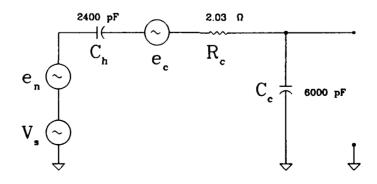
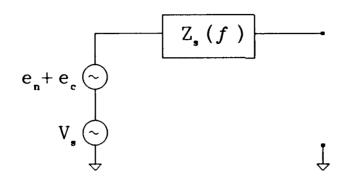



Figure 5-4

Figure 5-4 can be simplified to give the equivalent Thevinin circuit model:

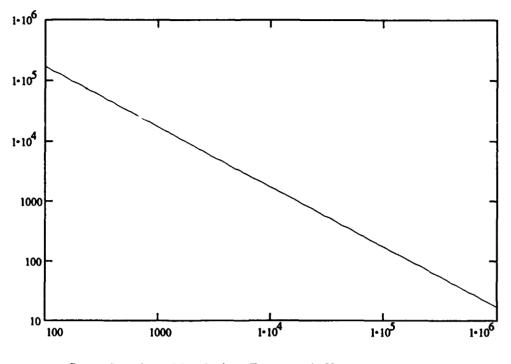


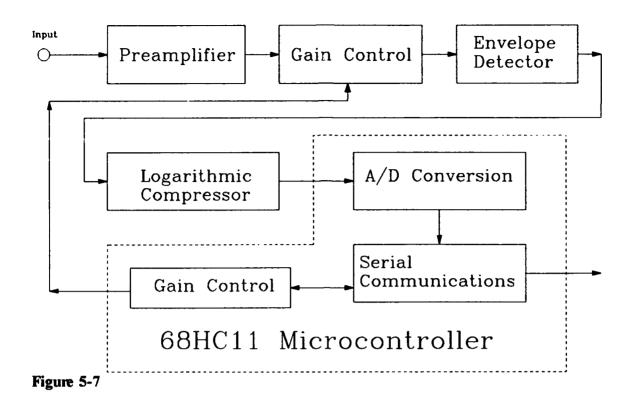
Figure 5-5

The source impedance $Z_s(f)$ is given by:

$$Z_{s}(f) = \frac{2j\pi f R_{c} C_{h} + 1}{\left[2j\pi f R_{c} C_{h} C_{c} + (C_{h} + C_{c})\right] 2j\pi f}$$
(5-13)

Figure 5-6 shows a plot of the source impedance verses frequency for the Benthos AQ-4 hydrophone with C_h specified as 2,400 pF ±25%. To prevent serious loading effects, the preamplifier's input impedance must be considerably larger than the source impedance given by equation (5-13). For design purposes, the magnitude of the source impedance at 10,000 Hertz is 1,693 Ω , therefore we choose the preamplifier's input impedance to be at a minimum of 20 time the source impedance, or 33.8 k Ω . This will keep the loss due to loading below 0.5 dB.

- Source Impedance Magnitude vs Frequency in Hz


Figure 5-6

5.4 Test Receiver Hardware Design

Based on these design criteria, a receiver was built for testing. This section discuses the circuit design considerations and implementation of this test receiver. Figure 7 shows the general signal flow of the receiver starting with the preamplifier and moving to the 68HC11 microcontroller. An important theme of the receiver design is to avoid exotic components to minimize the cost of the receiver.

5.4.1 Preamplifier

Refer to the preamplifier schematic diagrams in Appendix 1 for the following description. The first stage of the preamplifier is a tuned N channel junction field effect transistor (JFET) common-source amplifier. To help keep low frequency ambient oceanic noise from entering the preamplifier, C_{01} and R_{01} form a high pass

filter with a cutoff frequency given by:

$$f_c = \frac{1}{2 \pi R_{01} C_{01}} \tag{5-14}$$

To eliminate as much low frequency oceanic noise as possible but still allow for small changes in the acoustic beacon's carrier frequency, we chose the high pass filter cut off frequency as 7000 Hertz. The preamplifier's input impedance is determined by R_{01} since the input impedance of the JFET is so large (>10¹⁴ Ω). To prevent loading between the hydrophone source and the preamplifier we must ensure R_{01} is larger then 33.8 k Ω . To ensure that the thermal noise of the preamplifier is less then equivalent oceanic noise of sea state 3, R_{01} must be chosen such that the thermal noise of the parallel combination of R_{01} and source impedance $Z_s(f)$ is considerably less then 89 nV/ \sqrt{Hz} . The thermal noise of a resistor is given by:

$$\vec{e}_{a} = \sqrt{4ktRB} \tag{5-15}$$

where k is Boltzmann's constant, t is the absolute temperature in Kelvin, B is the bandwidth in Hertz, and R is the resistance in Ohms [Horowitz and Hill 1989]. For the Benthos AQ-4 hydrophone at a frequency of 10,000 Hertz $Z_s(f)$ is approximately 1700 Ω As a result, the parallel combination of R_{01} and $Z_s(f)$ will be close to the value of $Z_s(f)$ for R_{01} greater then 32 k Ω , and the associated thermal noise will be well below 89 nV/VHz. However, it would be nice to ensure that the thermal noise of the preamplifier is much less then equivalent oceanic noise of sea state 3 for any source impedance. To ensure this, we choose R_{01} such that its thermal noise is approximately 45 nV/VHz. To meet the noise constraint, the loading constraint, and the cut off frequency constrain of equation (14), we choose R_{01} as 120 k Ω and C_{01} as 180 pF.

The gain of the first stage JFET common-source amplifier is given by:

$$A_{\nu_{1}}(f) = \frac{-Y_{f_{s}} \cdot Z_{D}(f) \cdot r_{d}}{Z_{D}(f) + r_{d}}$$
(5-16)

where Y_{fs} is the JFET's forward transconductance, r_d is the JFET's intrinsic drain resistance, and $Z_D(f)$ is given by:

$$Z_{d}(f) = \frac{\frac{2j\pi f}{C_{02}}}{(j\pi f)^{2} + \frac{2j\pi f}{R_{02}C_{02}} + \frac{1}{L_{01}C_{02}}}$$
(5-17)

 $Z_D(f)$ represents the complex impedance of the combination of L_{01} , R_{02} , and C_{02} . The use of the reactive load $Z_D(f)$ allows us to obtain the narrow bandwidth required by equation (5-4). The gain of the first stage will be greatest when the frequency of the input signal is at the resonant frequency of $Z_D(f)$. The resonant frequency of $Z_D(f)$ is given by:

$$f_r = \frac{1}{2 \pi \sqrt{L_{01} C_{02}}}$$
(5-18)

We want the preamplifier to have it's maximum gain at the acoustic beacon's carrier frequency, therefore we choose L_{01} and C_{02} such that the resonant frequency equals the acoustic beacon's carrier frequency. In the test receiver, Q_{01} is an E230 general purpose N channel JFET. The E230 has a nominal forward transconductance of $1.5 \cdot 10^{-3}$ Siemens and a nominal intrinsic drain resistance of 12.5 k Ω . Using equations (5-16) and (5-17), and the values from Appendix 1, at a beacon frequency of 10,000 Hz, A_{v1} is approximately 24 dB.

In general, the output impedance of an R-L-C tuned amplifier is quite high, therefore, a JFET source follower is used as a buffer immediately following the first stage. Resistor R_{04} and capacitor C_{04} form a high pass filter similar to R_{01} and C_{01} , and serve to capacitively couple the JFET source follower to the tuned JFET amplifier. The cut off frequency of the high pass filter formed by R_{04} and C_{04} is given by equation (5-14) with R_{04} substituted for R_{01} and C_{04} substituted for C_{01} . To prevent loading between the JFET amplifier and the JFET buffer, R_{04} must be significantly larger then the output impedance of the JFET amplifier. However, we must be careful in choosing R_{04} so that its thermal noise, when reflected back to the input of the first stage, is less then 89 nV/V Hz. Using equation (15), this limits R_{04} to 560 k Ω .

To enhance the performance of the JFET source follower, Q_{03} and R_{05} are added as a bootstrapped load. Because the base-emitter voltage of Q_{03} is approximately constant, the combination of R_{05} and Q_{03} cause a constant source current to flow through JFET Q_{02} . This makes Q_{02} 's V_{GS} approximately constant, which in return reduces nonlinearities [Horowitz and Hill 1989]. This is beneficial because the signal level at this point in the preamplifier is still quite small.

The first stage of the preamplifier is powered by a separate 5 Volt 3-terminal 7805 voltage regulator. We do this to isolate the first stage from subsequent stages, which prevents the feedback of any noise generated by subsequent stages along the main power supply line. This provides Q_{01} with a clean, stable supply voltage which is critical when working with very low level input signals.

The second stage of the preamplifier is another tuned amplifier, this time using a PNP bipolar transistor. Capacitor C_{05} combined with the parallel combination of the bias resistors R_{07} and R_{08} form another high pass filter while also serving to capacitively couple the JFET source follower from the first stage to the second stage. The cutoff frequency of the high pass filter formed by C_{05} , R_{07} and R_{08} is given by:

$$f_{c} = \frac{1}{2\pi \cdot C_{05}} \frac{R_{07} \cdot R_{08}}{R_{07} + R_{08}}$$
(5-19)

For this stage, we set the high pass filter's cut off frequency at 3000 Hertz. The gain of the second stage is given by:

$$A_{V_2} = \frac{-Z_c(f)}{R_{10}}$$
(5-20)

where

$$Z_{c}(f) = \frac{\frac{2j\pi f}{C_{07}}}{(2j\pi f)^{2} + \frac{2j\pi f}{R_{11}C_{07}} + \frac{1}{L_{02}C_{07}}}$$
(5-21)

As in the first stage we set the resonant frequency of $Z_c(f)$ given by:

$$f_r = \frac{1}{2 \pi \sqrt{L_{02} C_{07}}}$$
(5-22)

to the acoustic beacon's carrier frequency. Using equations (5-20) and (5-21) for a beacon frequency of 10,000 Hertz, A_{v2} is approximately 31 db.

Following the PNP tuned amplifier, a simple JFET source follower is used as a buffer. Capacitor C_{08} and resistor R_{12} form yet another high pass filter while also capacitively coupling the output of the PNP amplifier to the input to the JFET follower. The cut off frequency of the high pass filter formed by C_{08} and R_{12} is given by equation (14) with C_{08} substituted for C_{01} and R_{12} substituted for R_{01} , and is set to 3,000 Hertz.

Similar to the first stage, the second gain stage is powered by a separate 5 Volt, 3-terminal 7805 voltage regulator. Again we do this to prevent noise from being feedback along the power supply lines. At the end of the second stage of the preamplifier the maximum gain at the acoustic beacon's carrier frequency is approximately 55 dB. We are under the minimum required gain of 58 dB, therefore we should not have to worry about the first two stages of the preamplifier saturating the logarithmic compressor. However, we still need an additional 32 dB of gain to reach the required maximum gain of 87 dB. Prior to the next gain stage, we include an attenuation network to prevent subsequent stages from saturating.

Following the JFET source follower Q_{05} , R_{14} in combination with shunt resistors R_{15} , R_{16} , R_{17} , and R_{18} form a variable attenuation network which is controlled by the 68HC11 microcontroller. To reduce the gain of the preamplifier, any combination of R_{15} through R_{18} can be switched to ground through two CD4053 analog switches. Once grounded, the shunt resistors form a voltage divider with R_{14} , and subsequently attenuate the signal. Following the shunt resistors is a simple common emitter amplifier that provides the final gain necessary to obtain a maximum of 87 dB. The gain of this stage, including the effects of the attenuator network is given by:

$$A_{V_{3}} = \frac{-R_{21}}{R_{22}} \cdot \frac{2 \pi f R_{s} C_{09} \cdot \frac{R_{19} R_{20}}{R_{19} + R_{20}}}{\left[\left(R_{14} + \frac{R_{19} R_{20}}{R_{19} + R_{20}} \right) \cdot R_{s} + \frac{R_{19} R_{20}}{R_{19} + R_{20}} \cdot R_{14} \right] \cdot 2 \pi f C_{09} + R_{s} + R_{14}}$$
(5-23)

where R, is the parallel combination of any shunt resistors R_{15} through R_{18} that are switched to ground. If none of the shunt resistors are switched to ground, R, is very large and A_{V3} approaches:

$$A_{V_3} = \frac{-R_{21}}{R_{22}} \tag{5-24}$$

In this case the gain of the preamplifier is at its maximum of approximately 89 dB. In actuality, the maximum gain will be slightly less then 89 dB due to small losses caused by loading between the different stages. If all of the shunt resistors are switched to ground, R, is at its minimum value and the gain of the preamplifier is approximately 56 dB. Table 5-2 summarizes which shunt resistors are switched to ground to obtain different levels of attenuation.

Attenuation Level	Shunt Resistors Switched to Ground	
0 dB	none	
-3 dB	R ₁₅	
-9 dB	R ₁₆	
-12 dB	R ₁₅ and R ₁₆	
-18 dB	R ₁₇	
-24 dB	R ₁₈	
-30 dB	R ₁₅ , R ₁₆ , R ₁₇ , and R ₁₈	

Table 5-2

5.4.2 Envelope Detector Circuit

Refer to the Envelope Detector schematic diagram in Appendix 1 for the following description. After the preamplifier, the received signal passes through a unity gain buffer. This isolates the preamplifier from the envelope detector, and also provides the low source impedance that the precision rectifier circuit needs to function properly. U_{07} , Q_{07} , Q_{08} , and the low pass filter combination of C_{25} and R_{31} are the

heart of the envelope detector. Diode D_{01} protects U_{07} during large input swings above the reference voltage V_{REF} . Resistors R_{29} and R_{30} add bias stability to transistors Q_{07} and Q_{08} .

As the input signal at the inverting terminal of U_{07} goes below the reference voltage at the noninverting terminal of U_{07} , Q_{07} is brought into the active region, thereby drawing Q_{08} into the active region which charges capacitor C_{25} . As the difference between the reference voltage and the input signal becomes greater, Q_{07} and Q_{08} are brought further into the active region which in turn increases the time that capacitor C_{25} charges. When the signal at the inverting terminal of U_{07} , is above the reference voltage at the noninverting terminal of U_{07} , transistor Q_{07} , and subsequently Q_{08} are cut off. The charge in capacitor C_{25} is then discharged through resistor R_{31} . As long as the time constant formed by the combination of C_{25} and R_{31} is much greater then the period of the input signal's carrier frequency, the output taken at C_{25} will be the envelope of the input signal. To ensure operation with very low level inputs, U_{08} is chosen to have a large gain bandwidth product and a fast slew rate.

5.4.3 Logarithmic Compressor

Refer to the Logarithmic Compressor schematic diagram in Appendix 1 for the following description. Prior to logarithmic compression, we pass the received envelope through a noninverting amplifier with a gain of 9 dB to restore the signal level that was lost in the envelope detector. To obtain an output that is proportional the logarithm of the input, we rely on the logarithmic relation between transistor Q_{09} 's voltage and current. By using Q_{09} in U_{09} 's feedback loop, the output of the logarithmic

compressor is given by:

$$V_{o} = -\left(1 + \frac{R_{41}}{R_{42}}\right) \cdot V_{T} \cdot \ln\left(\frac{V_{i} \cdot R_{40}}{R_{35} \cdot V^{+}}\right)$$
(5-25)

where V_{τ} is given by:

$$V_T = \frac{temperature}{11600}$$
(5-26)

Here the temperature is in Kelvin. For room temperature, V_T is approximately 0.0259. From equation (5-25) we note that for small input signals, the output V_o is large, and for large input signals, the output V_o is small. To set the zero crossing point of the logarithmic compressor, we choose R_{40} such that:

$$R_{40} = \frac{R_{35} \cdot V^+}{V_{sat}}$$
(5-27)

With R_{35} equal to 10 k Ω , V+ equal to 10 Volts, and V_{sat} equal to 8 Volts, R_{40} is approximately 12.5 k Ω . V_{sat} represents the largest possible input to the logarithmic compressor. To set the maximum output level of the logarithmic compressor, we chose R_{42} and R_{43} such that the minimum input signal of 2 mV produces an output of 5 volts. This allows us to digitally sample the output of the logarithmic compressor directly, without worrying about damaging the 68HC11's A/D converter. The use of the matched transistor Q_{09} helps stabilize the temperature dependence of V_T , and is essential to eliminate the dependence upon the reverse saturation current I_0 which doubles for every 10° C rise in temperature [Millman 1979].

By taking the saturation level of the receivers as approximately 8 volts, the

dynamic resolution of the receiver is approximately:

Dynamic Resolution =
$$20 \cdot \log_{10} \left(\frac{8}{2 \cdot 10^{-3}} \right) = 72 \ dB$$
 (5-28)

To obtain the full dynamic resolution at the input to the A/D converter, the output of operational amplifier U_{10} must be capable of going between zero and five volts. We would like to restrict the output of U_{10} to be strictly less then 5.5 Volts to prevent damage to the 68HC11's A/D converter in case of a failure in the logarithmic compressor. To accomplish this, we step down the main positive supply voltage to 5.6 volts using a zener diode reference. The maximum output of the CA3130 operational amplifier used for U_{10} is about 0.5 volts below the positive supply voltage, therefore the output of U_{10} is restricted between 0 and 5.1 volts.

5.4.4 68HC11 Microcontroller

Refer to the 68HC11 Microcontroller schematic diagram in Appendix 1 for the following description. The 68HC11 is run in expanded mode at a clock speed of 8 MHz. Input/Output ports B and C are used to interface to the external 27HC64 EPROM and the 62HC64 RAM chips. A 74HC373 multiplexer and a 74HC00 NAND GATE are used to form the proper address line controls and to transfer data to the external memory chips. Port PE0 is used for the input to the A/D converter. The logarithmically compressed signal passes through a low pass filter to remove any high frequency noise, and then is sequentially sampled by the A/D converter. Ports PD0 and PD1 are used for serial data output. A SCL/U 20 mA SAIL-to-low-power-logic converter is used to convert the 68HC11's serial data to the SAIL communication

protocol. The use of the SAIL communications protocol is beneficial because of it's simplicity, and it's ability to communicate with multiple nodes. The rest of port D's output lines are tied to the positive supply through 100 k Ω pull up resistors to prevent the output lines from floating. Ports PA3, PA4, PA5, and PA7 are used to control the two CD4053 2 channel analog switches which control the attenuator network described earlier. The rest of port A's input/output lines, except PA0, are tied to ground through 100 k Ω resistors to prevent the outputs from floating. PA0 is left as an external input for further development, and is tied to the positive supply through a 100 k Ω pull up resistor.

Appendix 2 contains a listing of the program that the 68HC11 executes.

5.4.5 Power Supply

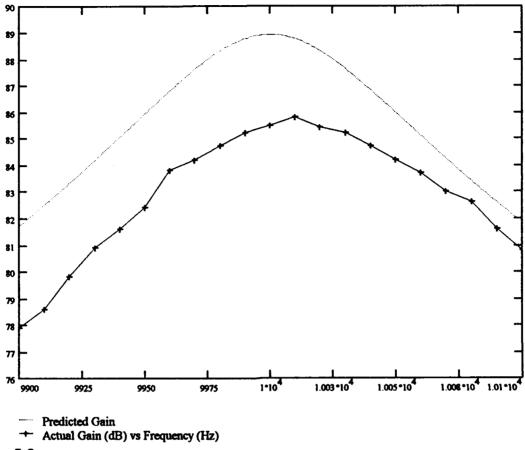
In the test receiver, a +10 volt power supply is used to power the preamplifier, the envelope detector, and the logarithmic compressor. A secondary +5 volt power supply is used to power the 68HC11 microcontroller. The use of a separate power supply for the microcontroller prevents high frequency noise generated by the digital components from entering the preamplifier. For the -5 V that is required by the logarithmic compressor, a third supply is used. This provides a better regulated negative supply then using a DC to DC voltage converter such as the ICL 7660 to generate the required -5 V. Finally, a +12 volt, 300 mA supply is provided to power an external GPS receiver. All four power supplies are built on a common circuit board and share a common ground bus. Refer to the Power Supply schematic diagram in Appendix 1 for the following circuit description.

The test receiver uses a standard power cord to connect to external power with a one half amp slow-blow fuse to protect the receiver in case of a short circuit. A Magnetek Triad F-93X transformer is used to step down the input voltage. Diodes D_{01} through D_{04} act as a standard full wave bridge rectifier. Voltage regulator U_{01} is a simple three terminal +12 volt regulator used to provide power to the external GPS receiver. Capacitor C_{01} filters the rectified supply voltage to provide an unregulated DC voltage to U_{01} . Capacitors C_{02} and C_{03} are bypass capacitors used to reduce noise on U_{01} 's input and output leads. Because of the high current requirements of the voltage regulator, U_{01} is mounted to the chassis bottom for heat sinking.

Voltage regulator U_{02} is an adjustable four terminal voltage regulator used to provide the +10 volts required by the preamplifier, absolute value circuit, and the logarithmic compressor. Resistor R_{01} and capacitor C_{04} form a low pass filter which helps reduce high frequency feedback from the GPS receiver power supply (U_{01}). R_{01} also acts as an attenuator, reducing the unregulated DC input voltage to regulator U_{02} . By doing this, the power that U_{02} has to sink is reduced, increasing U_{02} 's efficiency. Resistors R_{02} , R_{03} , and R_{04} form the feedback network used by U_{02} to set the output voltage. By using an adjustable voltage regulator, the positive supply voltage can be set more precisely, which is needed to maintain sensitive bias points in the logarithmic compressor. Capacitors C_{05} and C_{06} are bypass capacitors similar to C_{02} and C_{03} .

Voltage regulator U_{03} is a simple three terminal regulator used to supply the +5 volts required by the 68HC11 and support systems. Resistor R_{05} and capacitor C_{07} form another low pass filter which helps isolate the preamplifier from the 68HC11

microcontroller. As with R_{01} , R_{05} reduces the unregulated DC voltage at the input of U_{03} , reducing the power that U_{03} must sink. Capacitors C_{08} and C_{09} are bypass capacitors similar to C_{02} and C_{03} . The combination of resistor R_{06} and LED D_{05} are used as a power indicator, with D_{05} mounted on the front panel of the chassis next to the power switch.


Finally, voltage regulator U_{04} is a four terminal, adjustable negative voltage regulator that is used to provide the -5 volts required for the logarithmic compressor. Resistor R_{07} and capacitor C_{10} form a low pass filter which converts the rectified input voltage to unregulated DC. Resistors R_{08} , R_{09} , and R_{10} form the feedback network used by U_{04} to set the output voltage at -5 volts. As before, C_{11} and C_{12} are bypass capacitors that help reduce noise the voltage regulator's input and output lines.

5.5 Test Receiver Performance

To test the validity of the receiver designed in section 5.4, experiments were conducted to measure the actual performance of the preamplifier, envelope detector, and logarithmic compressor.

5.5.1 Preamplifier Performance

To test the performance of the preamplifier, experiments were conducted to measure the preamplifier's actual gain, bandwidth, and thermal noise. To measure the gain and bandwidth of the preamplifier, the output of the preamplifier was measured for sinusoidal inputs at different frequencies. The results, along with the predicted values are plotted in figure 5-8. From figure 5-8 we see that the actual gain of the preamplifier at the acoustic beacon's carrier frequency is 86 dB. This is close enough

to the design goal to be acceptable. The loss in gain compared to the predicted gain is due to the effects of loading between the various stages and to deviations from the nominal values of Y_{fs} and r_d . We also note that the actual bandwidth is 120 Hz which is slightly larger then the predicted bandwidth. This increase is due to deviations of R_{02} and R_{11} from their nominal values and is not significant.

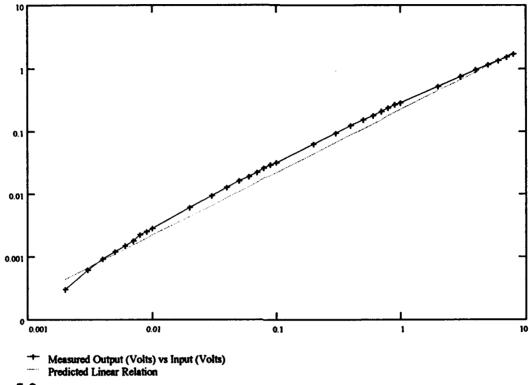
To determine the actual thermal noise of the preamplifier, we short the preamplifier's input and measure the root mean square output using a digital multimeter. Assuming the preamplifier's noise is normally distributed, we correct the output measurement to reflect a normal distribution by multiplying by 1.13 [Horowitz and Hill 1989]. The preamplifier's thermal noise is then found by using:

$$e_{R} = \frac{1.13 \cdot e_{s}}{A_{u} \sqrt{BW}}$$
(5-29)

where e_s is the measured output voltage, A_v is the total gain of the preamplifier, and BW is the bandwidth of the preamplifier. Using this approach, e_s was measured as 6.8 millivolts. The preamplifier's thermal noise is then:

$$e_n \approx \frac{1.13 \cdot 6.8 \cdot 10^{-3}}{19275 \sqrt{120}} \approx 31 \ nV / \sqrt{Hz}$$
 (5-30)

To check this value we can observe the output of the preamplifier (with the input grounded) on an oscilloscope. To measure the preamplifier's noise, we take the peak value observed on the oscilloscope. Next we calculate the preamplifier's thermal noise using:


$$e_n = \frac{V_{peak}/6}{A_v \sqrt{BW}}$$
(5-31)

This gives a rough approximation of the thermal noise of the preamplifier. V_{peak} was measured as 35 mV. Using equation (5-31), the thermal noise of the preamplifier is roughly 28 nV/ \sqrt{Hz} . This value is of the same order of magnitude as found in equation (5-30), so we can assume the noise figure given in equation (5-30) is correct.

5.5.2 Envelope Detector

To test the performance of the envelope detector we look at the output for

different amplitudes of a sinusoidal input. Figure 5-9 shows the measured output of the envelope detector for different amplitudes of a 10,000 Hertz sinusoid input.

Ideally, the envelope detector should have an output that is linearly dependent on the amplitude of the input sinusoid. This allows the envelope detector to accurately track the true envelope of the beacon signal. From figure 5-9 we see that the measured output is nearly linear, therefore we expect the envelope detector to work properly.

5.5.3 Logarithmic Compressor

To test the performance of the logarithmic compressor, we look at the output for different DC voltage inputs. Figure 5-10 shows the measured output values and the predicted values.

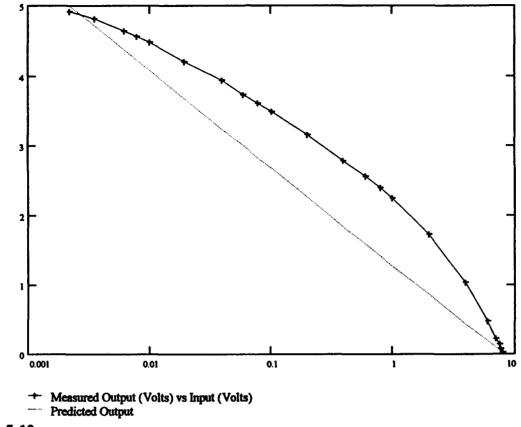


Figure 5-10

From figure 10 we see that the logarithmic compressor does not follow an exact. logarithmic relation. However, since the output of the logarithmic compressor monotonically decreases throughout the full range of input values, the compressor is sufficiently logarithmic to achieve the dynamic resolution of equation (5-28). Since we achieve the desired dynamic resolution, the performance of the logarithmic compressor is acceptable.

5.6 Conclusions

In this chapter a receiver to implement the maximum likelihood estimation algorithms developed in chapter II and III was designed and tested. Appendix 1 contains the schematic diagrams of the receiver built for testing. From the tests conducted, we see that the test receiver meets the design criteria developed in section 5.2. To complete the receiver, an Apple Macintosh personal computer is used for the final signal processing and for data display. Appendix 3 contains a listing of the source code used by the Macintosh for signal processing and for displaying the collected data.

Chapter VI

Conclusion

6.1 Observations and Summary

In this thesis, a method to passively localize stationary and linearly moving acoustic beacons was developed. Because of the nonlinearities of the structural model $g(w_{\mu}, \theta)$, and the errors in the measurements x_{μ} , y_{μ} , and $t_{\mu\nu}$, the localization problem was formulated as a constrained maximum likelihood estimation problem. To solve for the maximum likelihood estimate, a vector of Lagrange multipliers was introduced and a Lagrangian function Λ formed. The maximum likelihood estimate was then found at the stationary point of the Lagrangian function. Figures 2-4 and 3-1 summarize the algorithms used to solve for the maximum likelihood estimate of the acoustic beacon's position. Both algorithms require that the user specify the maximum range and depth of the search area, and an initial guess of the acoustic beacon's location. For the case of the moving beacon, the user must also specify the maximum allowed velocity of the acoustic beacon.

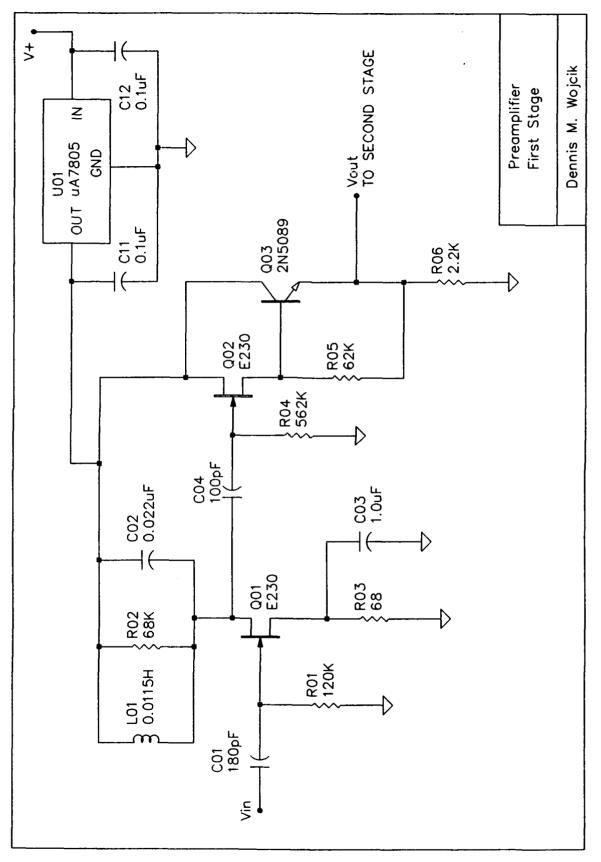
Monte Carlo simulations were conducted for several different positions and velocities of the acoustic beacon. It was assumed that the receiving ship followed a hexagonal search path with legs of 1000 meters. In practice, the actual search path is not critical as long as it is not linear. In chapter IV results from six scenarios were presented. Overall, the algorithms developed in chapters II and III performed well for these scenarios. For a stationary acoustic beacon, good estimates of the acoustic beacon's location were obtain using GPS errors of 3 meters and 25 meters rms. For

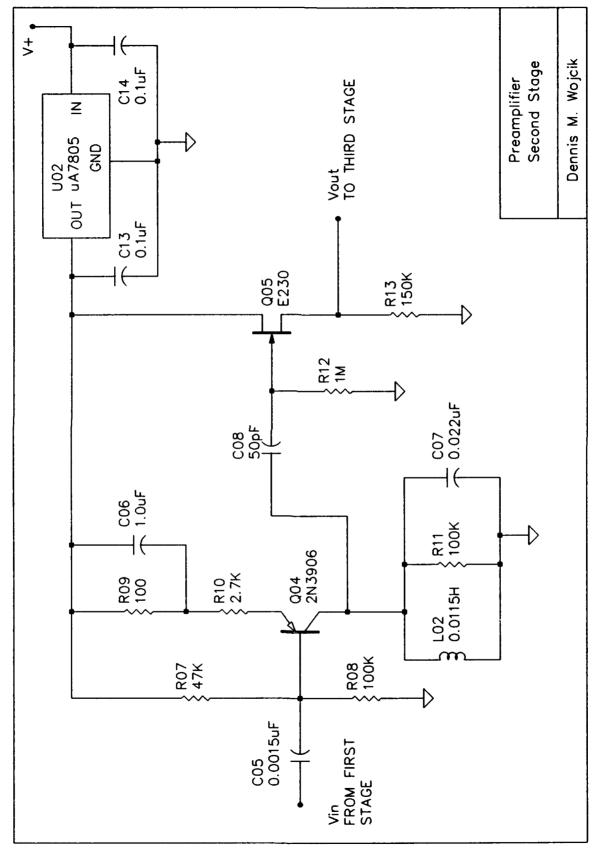
the moving acoustic beacon, a good estimate of the acoustic beacon's location was obtained when using GPS errors of 3 meters rms. However, the accuracy of the algorithm used to estimate the moving acoustic beacon's location degrades for GPS errors of 25 meters rms unless a large number of experiment vectors are used, or a large effective sensor spacing is used.

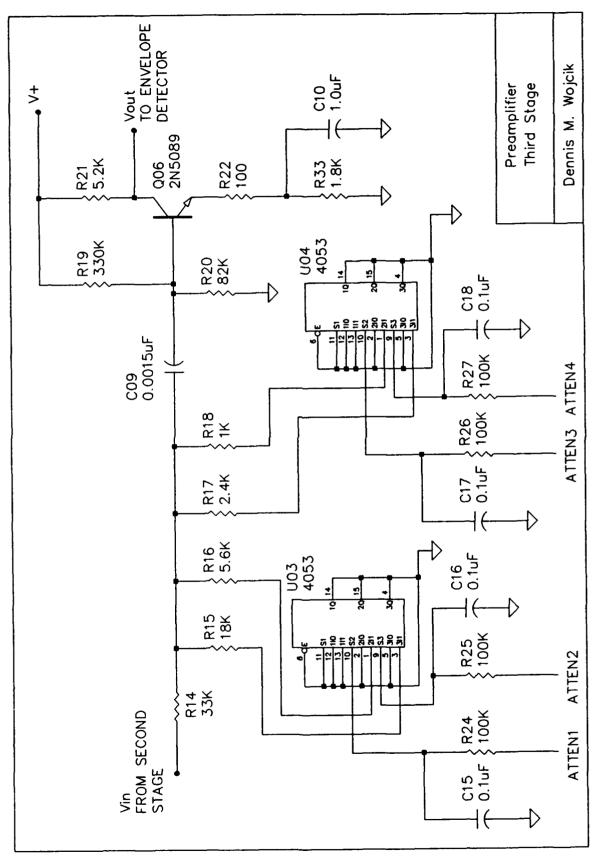
From the results of the Monte Carlo simulations, it was shown that, in general, as the number of experiment vectors (w_{μ}) used in the maximum likelihood estimation problem increased, or the effective sensor spacing increased, the accuracy of the estimated beacon location improved. It was also shown that the accuracy of the estimated beacon location improved if the receiving ship passed through a closest point of approach to the acoustic beacon. In all cases, the accuracy of the estimated beacon position was significantly better when using 3 meter GPS errors. This shows that to obtain a better estimate of the acoustic beacon's location, the position of the receiving ship must be measured accurately.

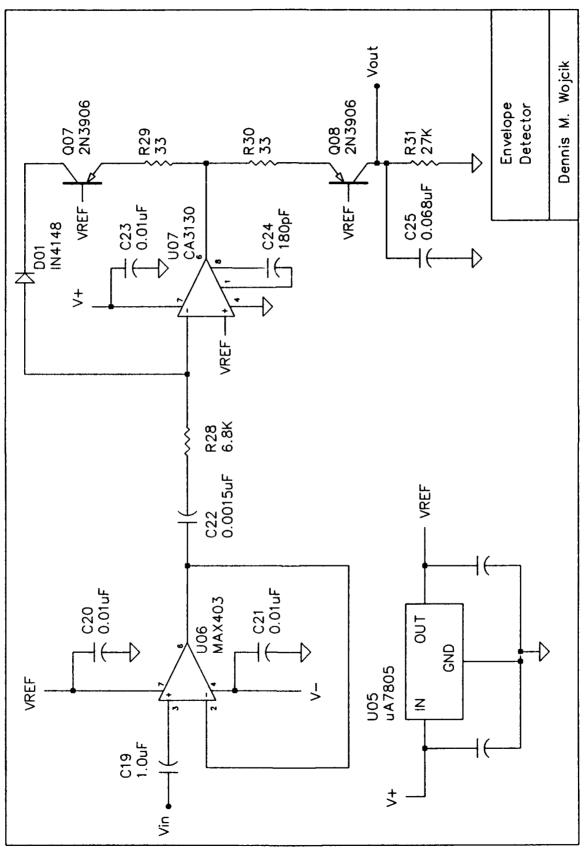
For all scenarios, the variance of the estimated beacon position and velocity decreased as the number of experiment vectors used increased, or the effective sensor spacing increased. It was found that the variance of the moving beacon's estimated position was much greater then the variance of the stationary beacon's estimated position. This is due the manner in which the acoustic beacon's initial position and velocity are combined in the modified structural model. In the modified structural model given by equation 3-10, the individual velocity components are added to the initial beacon coordinates x_o , y_o , and z_o to find the location of the acoustic beacon

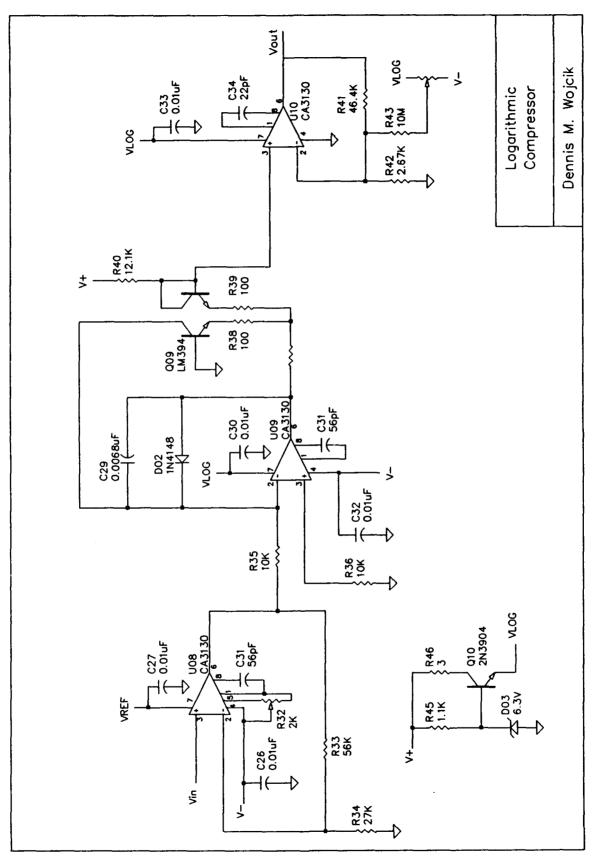
when it transmits a signal. As a result, the algorithm estimates the value of the sum of the initial position coordinates and the velocities better then the individual components. Consequently, the algorithm can not discern between small perturbations in the estimated position coordinates and the estimated velocities.

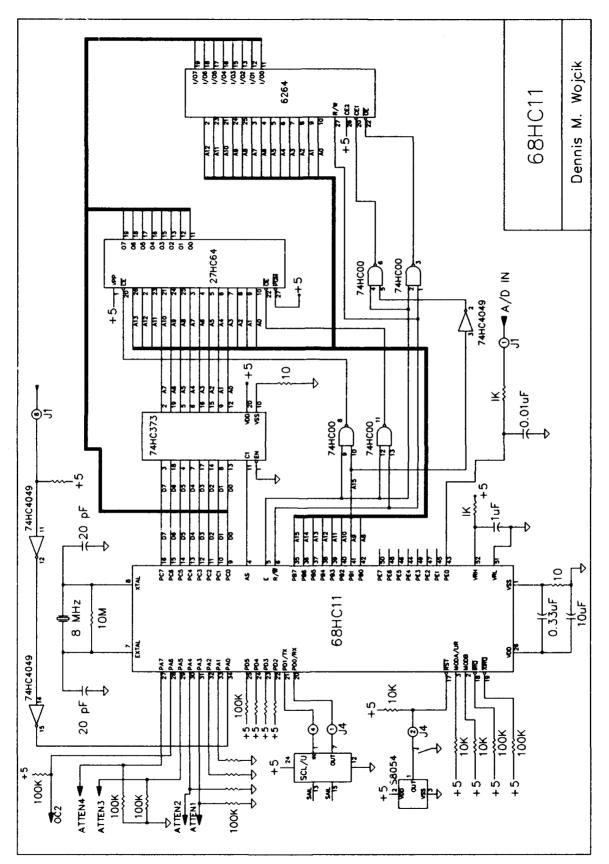

From these results, to obtain the best possible estimate of the acoustic beacon's position a large number of experiment vectors with a large effective sensor spacing must be used. However, the time required to collect the measurement vectors increases with both the number of experiment vectors and the effective sensor spacing. If the time it takes to obtain an estimate of the acoustic beacon's position is an issue, fewer experiment vectors and smaller effective sensor spacings can be used. For the hexagonal search path shown in figure 4-1, and a pulse repetition interval of 2 seconds, a minimum of 20 experiment vectors with an effective sensor spacing of 35 pulse repetition intervals are required to obtain a decent estimate of the acoustic beacon's position for a stationary beacon. For the moving beacon, assuming the same search path, a minimum of 30 experiment vectors with an effective sensor spacing of 45 pulse repetition intervals are required.

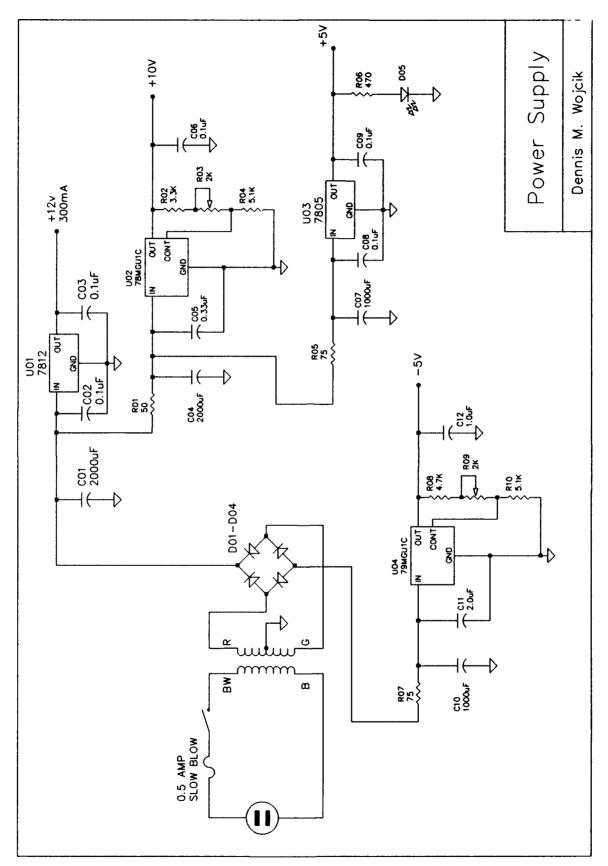

In chapter V design specifications for a receiver to implement the algorithms given in chapters II and III were developed. The synchronous time of receipt was measured by determining the time of arrival of the acoustic beacon's envelope. To determine the arrival time of the acoustic beacon's envelop, the beacon's carrier frequency was first removed using a precision rectifier with a low pass filter to form an envelope detector. The output of the envelope detector was then logarithmically


compressed to increase the dynamic resolution of the receiver. Next, the output of the logarithmic compressor was digitally sampled using a 68HC11 microcontroller. Following A/D conversion, the sampled envelope was passed through a digital matched filtered. For a rectangular windowing function, this produces a unique maximum output which was used to determine the time of arrival. Following the design specifications, a receiver was built from commonly available components. Experiments conducted on receiver showed that the test receiver met the design specifications of section 5.2.


Appendix 1


This appendix contains the schematic diagrams for the receiver designed in chapter V.





Appendix 2

This appendix contains the source code used by the 68HC11. The code is based on a full function SAIL driver written by Dr. Albert Bradley and operates under serial communication interrupt control. The sampling rate of the A/D converter is set by using a Timer Output Compare function. After the microcontroller finishes an initialization period, it sits in a wait state until a serial communications interrupt or a timer output compare interrupt occurs. Once the interrupt is received, the microcontroller executes the requested task, and then returns to the wait state. : #PTR Driver THE MINIMUM POWER DRAIN IS-2.5 MA IF IN WAIT LOOP, 4.9152 MHZ 6-7 MA IF WORKING, NO LOADS *********************************** ; Mon, Sep 17, 1990, 19:21 MINOR CLEANUPS : IT CONTAINS--?M AND !M ARE OPTIONAL DEPENDING ON THE 'BIG' FLAG -FULL BAUD SWITCH CAPABILITY -FULL USE OF EVEN PARITY -FULL TTY HANDLES PROC "68HC11" ; THIS IS THE CONTROL FOR THE CONDITIONAL ASSEMBLY OF THE IM AND ?M SECTIONS =1 WILL INCLUDE THEM =0 WILL EXCLUDE THEM (SAVES \$118 BYTES OF CODE) EQU LOAD: 1 VIEW: EQU 1 ; DEFAULT PARAMETERS EQU ;START UP AT 9600 BAUD WITH 8.0 MHZ XTAL DBAUD: \$30 EQU ;1.0mSEC SAMPLING RATE (ADJUSTED FOR ERRORS) SAMPLE: \$07D1 \$3000 RADBUFF: EQU LOCATION OF RUNNING A/D BUFFER ADBFULL: EQU \$300B ;A/D BUFFER FULL AT 11 VALUES (0-10) EQU :LOCATION OF BUFFER 1 MAXBUF1: \$3100 MAXBUF2: **;LOCATION OF BUFFER 2** EQU \$3200

ATTNINC:	EQU	SE8	;INCREASE ATTN AT 4.75 VOLTS
ATTNDEC:	EQU	\$ 40	;INCREASE THE PREAMP GAIN AT THIS LEVEL
MAX1FL:	EQU	\$310F	CHECK VALUE TO INITIALIZE MAX BUFFER
MAX2FL:	EQU	\$320F	CHECK VALUE TO INITIALIZE MAX BUFFER
,			
; ATTENUATO	OR LEVI	ELS	
DB00:	EQU	\$ 01	; 0 DB ATTEN
DB03:	EQU	\$ 09	; 3 DB ATTEN
DB09:	EQU	\$11	9 DB ATTEN
DB12:	EQU	\$ 19	;12 DB ATTEN
DB18:	EQU	\$ 21	;18 DB ATTEN
DB24:	EQU	\$ 81	;24 DB ATTEN
DB30:	EQU	\$B9	;30 DB ATTEN
	ĽŲŪ	J D7	,50 DD ATTER
, DMAXNUM:	EQU	\$ 02	;DEFAULT NUMBER OF MAX POINTS TAKEN
			DEFAULT TO 2 SECOND PERIOD
DPERIOD: DWIND:	EQU	\$07D0	•
DWIND:	EQU	\$ 0014	;DEFAULT INDEX WINDOW
;			
, ,			
;	2011		
RP:	EQU	\$0000	REGISTER PAGE ON BASE PAGE
PORTA:	EQU	RP+\$00	; OC1.OC2.OC3.OC4!OC5.IC1.IC2.IC3
PORTC:	EQU	RP+\$03	;
PORTB:	EQU	RP+\$04	;
DDRC:	EQU	RP+ \$ 07	;
PORTD:	EQU	RP+\$08	; X.X.SS.SCK!MOSI.MISO.TXD.RXD
DDRD:	EQU	RP+\$09	, ,
PORTE:	EQU	RP+\$0A	; V7.V6.V5.V4!X.X.X.BRK
•			;BAT.BAUD.
CFORC:	EQU	RP+\$0B	;TIMER COMPARE FORCE REGISTER
OC1M:	EQU	RP+\$0C	OUT COMP 1 MASK REG
OC1D:	EQU	RP+\$0D	OUT COMP 1 DATA REG
TCNT:	EQU	RP+\$0E	TIMER REGISTER (HIGH BYTE)
DTIC1:	EQU	RP+\$10	TIMER INPUT CAPTURE 1 (HI BYTE)
DTIC2:	EQU	RP+\$12	TIMER INPUT CAPTURE 2 (HI BYTE)
DTIC3:	EQU	RP+\$14	TIMER INPUT CAPTURE 3 (HI BYTE)
DTOC1:	EQU	RP+\$16	TIMER OUTPUT COMPARE 1 (HI BYTE)
DTOC2:	EQU	RP+\$18	TIMER OUTPUT COMPARE 2 (HI BYTE)
DTOC3:	EQU	RP+\$18 RP+\$1A	TIMER OUTPUT COMPARE 2 (HI BTTE)
			• • • •
DTOC4:	EQU	RP+\$1C	TIMER OUTPUT COMPARE 4 (HI BYTE)
DTOC5:	EQU	RP+\$1E	;TIMER OUTPUT COMPARE 5 (HI BYTE)
TCTL1:	EQU	RP+\$20	;TIMER CONTROL REG 1
TCTL2:	EQU	RP+\$21	;TIMER CONTROL REG 2
TMSK1:	EQU	RP+\$22	TIMER INTERRUPT MASK REG 1
TFLG1:	EQU	RP+\$23	;TIMER INTERRUPT FLAG REG 1
TMSK2:	EQU	RP+\$24	;TIMER INTERRUPT MASK REG 2
TFLG2:	EQU	RP+\$25	;TIMER INTERRUPT FLAG REG 2
PACTL:	EQU	RP+\$26	;PULSE ACCUMULATOR CONTROL REG
PACNT:	EQU	RP +\$27	;PULSE ACCUMULATOR COUNT REG
SPCR:	EQU	RP+\$28	;SPI CONTROL REGISTER
SPSR:	EQU	RP+\$29	;SPI STATUS REGISTER
	-		

	_		
SPDR:	EQU	RP+\$2A	;SPI DATA REGISTER
BAUD:	-	RP+\$2B	
SCCR1:	•	RP+ \$ 2C	
SCCR2:		RP+\$2D	
SCSR:	EQU	RP+\$2E	
SCDR:	EQU	RP+ \$2 F	
ADCTL:	EQU	RP+\$30	
ADR1:	EQU	RP+\$31	
ADR2:	EQU	RP+\$32	;
ADR3:	EQU	RP+\$33	;
ADR4:	EQU	RP+ \$ 34	•
	-		
OPTION:	EQU	RP+ \$ 39	
HPRIO:		RP+\$3C	
INIT:	EQU	RP+\$3D	;[RAM3.2.1.0!REG3.2.1.0]
;	•		
********	******		*****
; SAIL inteface	RAM w	orkspace	
RJUMP:	EQU	\$ 40	JUMP INST GOES HERE
RVECT:	EQU	\$ 41	HI
:		\$ 42	LO
XJUMP:	EQU	\$ 43	XMIT JUMP INST
XVECT:	EQU	\$ 44	; HI
:		\$ 45	; LO
, JUMP2:	EQU	\$ 46	2ND JUMP INST
VECT2:	EQU	\$47	; HI
	LQU	\$48	; LO
, SCRTCH1:	EQU	\$49	SCRATCH LOC 1
SCRTCH2:	-	\$4A	SCRATCH LOC 2
SCRTCH2:	-	\$4B	SCRATCH LOC 2
SCRTCH4:	-	\$ 4C	SCRATCH LOC 3
	-		
SCRTCH5:	EQU	\$4D	;SCRATCH LOC 5
, VTTV.	FOU	€4E	TTY DONITED UI
XTTY:	EQU	\$4E \$4F	TTY POINTER HI LOW
,		J+ L	LOW
, . ********* *****	*******		**************************
, ; PTR Data inte	face DA	Mworkensee	
PERINDX:	EQU	\$50	;PERIOD TIMER INDEX HI
· ERINDA.	LQU	\$51	LOW
, DEDIOD.	FOU		
PERIOD:	EQU	\$52 \$52	;LENGTH OF PERIOD HI
	FOU	\$53 664	
MAXBUFF:	EQU	\$ 54	;MAXIMUMS BUFFER LOCATION HI
, MANTTITT.	FOU	\$55 \$50	LOW
MAXFULL:	EQU	\$ 56	;MAX BUFFER FULL LOCATION HI
	BOT	\$ 57	
ADBFPTR:	EQU	\$58 \$50	;RUNNING A/D BUFFER LOCATION HI
	DOM	\$59	
TXBUFF:	EQU	\$5A	;MAXIMUMS BUFFER TO TX HI
· ·		\$5B	LOW
TXBFULL:	EQU	\$5C	;TX BUFFER FULL LOCATION HI

;		\$5D	LOW
TXIFLG:	EQU	\$5E	;FIRST MAXIMUMS SENT FLAG
TX2FLG:	EQU	\$ 5F	;SECOND MAXIMUMS SENT FLAG
; MAXFLG:	EQU	\$ 60	WHICH MAXIMUM BUFFER TO SAVE FLAG
AGCFLG:	EQU	\$ 61	;MANUAL GAIN CONTROL FLAG
BIG:	EQU	\$ 62	;LARGEST A/D VALUE PER PERIOD LOCATION
MAXNUM:	EQU	\$63	NUMBER OF MAXIMUMS LOCATION
TXMHI:	EQU	\$ 64	TRANSMIT OUT BUFFERS
TXMLO:	EQU	\$65	
TXIHI:	EQU	\$66	
TXILO:	EQU	\$67	
TXINT:	EQU	\$ 68	;INTERM STORAGE FOR TX POINTER
TEMPIND:	EQU	\$70	INTERM STORAGE FOR MAXIMUM INDEX
TEMPMAX:	EQU	\$72	INTERM STORAGE FOR MAXIMUM
WINDOW:	EQU	\$74	MAXIMUM CHECK WINDOW SIZE
WINCHK:	-	\$76	USED FOR TESTING IF WITHIN WINDOW
INDXCHK:	EQU	\$78	
:	240	\$ 70	,
, ,***********	******	*******	•••••
ORG	\$E800	;ASSUME 27C6	54 EPROM
; SAIL Address	s stored h	nere	
ADDR:	FCB	"#PTR"	;SAIL ADDRESS
	FCB	\$00	;TERMINATOR
;			
		**********	**********
START:	SEI		
	CLR	\$103D	;MOVE REGISTERS TO BASE PAGE (00-> INIT)
	LDS	#\$00FF	;SET STACK POINTER
		#DBAUD	;SET DEFAULT BAUD
		BAUD	
	CLR		;8 DATA BITS, WAKE ON IDLE?
	LDAA		;ONLY REC INTERRUPTS YET
	STAA	SCCR2	
DTD TIMED I	NTEDIT	TINITIALIZAT	ION
•	LDAA		;TOGGLE OC2 ON EACH COMPARE
		TCTLI	, TOUGLE OCZ ON EACH COMPARE
		TMSK2	;SET PRESCALE TO /I
	LDAA		TURN ON THE A/D CONVERTER
		OPTION	, TORIN ON THE AD CONVERTER
	LDAA		;USE PEO FOR A/D INPUT, SINGLE CHANNEL,
		ADCTL	CONTINUOUS SAMPLING
	LDAA		SET PORT A PINS 7 AS OUTPUT
		PACTL	
		MAXFLG	INITIALIZE TO FIRST MAXIMUMS BUFFER
		TXIFLG	INITIALIZE TO NOT TX'D
		TX2FLG	INITIALIZE TO NOT TXD
		AGCFLG	;INITIALIZE TO AGC ON
	CLR		INITIALIZE THE LARGEST VALUE TO ZERO.
	CLR	TXMHI	CLEAR THE OUTGOING BUFFERS
			,

	CLR CLR CLR	TXMLO TXIHI TXILO	
	LDAA		;SET 0 DB OF ATTENUATION
	LDD	#RADBUFF ADBFPTR	;SET A/D DATA BUFFER LOCATION IN BASE PAGE
	LDX	#MAXBUF1 MAXBUFF	;SET FIRST MAX BUFFER LOCATION IN BASE PAGE
	STX	TXBUFF	
		#DMAXNUM	
		#DMAXNUM	
	STAB ABX	MAXNUM	;SET THE NUM MAX CHECK VALUE
	STX	MAXFULL TXBFULL	;SET BUFFER FULL TO 2xDMAXNUM
		#DPERIOD	SET THE PERIOD SIZE
		PERIOD	,
	LDX	# \$ 0000	
	STX	PERINDX	;INITIALIZE PERIOD TIMER TO ZERO
	LDAA		
		ADBFPTR	
CLRAD:	STAA INX	·	;CLEAR THE RUNNING A/D BUFFER
		#ADBFULL	
		CLRAD	
~ . ~ .		#MAXBUF1	CLEAR THE FIRST MAXIMUM BUFFER
CLMX1:	STAA INX	3 00, X	
	CPX	#MAX1FL	
		CLMXI	
		#MAXBUF2	CLEAR THE SECOND MAXIMUM BUFFER
CLMX2:	STAA		
	INX		
	CPX	#MAX2FL	
	BLS	CLMX2	
	LDD	#DWIND	;SET DEFAULT INDEX WINDOW
	STD	WINDOW	
; •********	********	**********	******
>	CLR	SCRTCH1	USE AS SAIL MODE FLAG & ADDR POINTER
	LDAA	#\$7E	MUST WRITE JMP INSTS.
	STAA	RJUMP	INTO SAIL WORK AREA
	STAA	XJUMP	
	STAA	JUMP2	
	LDD		SET VECTORS TO INITIAL VALUES
		RVECT	
	STD	XVECT	
	CLI		;AND FINALLY ALLOW INTERRUPTS
•			

	******	***********		
; MAIN PROGRAM BODY				
LOOP:	WAI		;WAIT TILL INTERRUPTED	
LOOI.	BRA	LOOP		
·************	******			
, 	******	***********		
; TIMER INTE	RUPT H	ANDLER		
; Fri, Jul	10, 1992	, 13:02		
; Wed, Ju	1 22, 199	92, 8:35		
; Fri, Apr	23, 199	3, 9:12		
; Thu, M	ay 20, 19	93, 1:52 PM		
;				
OC2:	LDD	DTOC2	;GET LAST VALUE IN TOC2	
	ADDD	#SAMPLE	;AND AD ONE PERIOD TO IT	
	STD	DTOC2	;STORE BACK IN TOC2	
;				
	LDAA		;NORMALIZE THE A/D VALUE	
	SUBA			
	CMPA		IS A/D VALUE GREATER THEN BIG?	
	BLO		;IF IT IS STORE IN BIG ELSE MOVE ON	
	STAA	BIG		
, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t DV	ADBFPTR	GET THE CURRENT A/D POSITION	
TII:	LDX STAA		STORE THE VALUE	
	INX	3 00, A	UPDATE THE POINTER	
	CPX	#ADBFULL	CHECK IF AT LAST A/D STORAGE LOCATION	
	BLO	TI2	; IF NOT INC ADBPTR AND MOVE ON	
		#RADBUFF	; IF YES REINITIALIZE ADBPTR AND MOVE ON	
TI2:	STX	ADBFPTR	SAVE THE A/D STORAGE POINTER	
· · · · · · · · · · · · · · · · · · ·			,	
,	LDX	#RADBUFF	GET THE A/D BUFFER LOCATION	
	LDY	#\$0000	INITIALIZE THE SUMATION VALUE	
SUMMING:	LDAB	\$00,X	GET THE A/D VALUE TO ADD	
	ABY		;SUM=SUM+A/D	
	INX		;CONTINUE UNTIL ALL VALUES IN THE A/D	
	СРХ	#ADBFULL	;BUFFER ARE SUMMED	
	BLO	SUMMING		
•				
	LDX	MAXBUFF	GET THE BUFFER TO WRITE TO	
	LDD	PERINDX	SETUP FOR TESTING MAX VALUES	
	STD	TEMPIND		
	CPD	WINDOW	;SEE IF THE MAX IS CLOSE TO THE START OF	
•			THE PERIOD	
	BHI	TI1_1_1	; IF NOT MOVE ON, OTHERWISE	
	CPY	\$00,X	CHECK FOR A NEW MAXIMUM	
	BLO	TI1_2	; IF NOT GOTO CHECK FOR SECONDARY MAX'S	
	STY	\$00,X	;IF YES JUST REPLACE CURRENT MAX	
	LDD	TEMPIND		
	STD	\$10,X		
	BRA	TIENDJ		

| | |

:			
ŤI1_1_1:	ADD D	WINDOW	;SEE IF THE MAX IS CLOSE TO THE END OF PERIOD
	CPD	PERIOD	
	BLO	TI1_1_2	;IF NOT MOVE ON, OTHERWISE
	CPY	\$00,X	CHECK FOR A NEW MAXIMUM
	BLO	TI1_2	;IF NOT GOTO CHECK FOR SECONDARY MAX'S
	STY	\$00,X	;IF YES JUST REPLACE CURRENT MAX
	LDD	TEMPIND	
	STD	\$10,X	
	BRA	TIENDJ	
; TI1_1_2:	LDD	PERINDX	
***_*_#		WINDOW	
	STD	WINCHK	
	CPY	\$00,X	CHECK FOR A NEW MAXIMUM
	BLO	TI1_2	IF NOT CHECK FOR SECONDARY MAX'S
	CPD	\$10,X	CHECK IF WITHIN WINDOW
	BHI	TI1_1	;IF NO REPLACE ALL MAX'S
	STY	\$00,X	;IF YES JUST REPLACE CURRENT MAX
	LDD	TEMPIND	
	STD	\$ 10, X	
TIENDJ:	BRA	TIEND	
; TII 1:		¢00 ¥	SHIFT ALL OLD MAX'S ONE LOCATION AND
111_1.	LDD STY	\$00,X \$00,X	SAVE THE NEW MAX VALUE
	STD	TEMPMAX	,SAVE THE NEW MAA VALUE
	LDY	\$10,X	SHIFT THE INDICIES
	LDD	TEMPIND	
	STD	\$10,X	
	STY	TEMPIND	
	LDY	TEMPMAX	
	INX		;INCREMENT TO THE NEXT MAX
	INX		
	CPX	MAXFULL	;SEE IF DONE
	BLO	TII_I	
	BRA	TIEND	
; TI1_2:	חחז	\$ 10,X	CHECK FOR SECONDARY MAX'S
····_2.		WINDOW	SET UP INDEX WINDOW
	STD	INDXCHK	,SET OF INDEX WINDOW
	INX	<i>INDACIA</i>	;MOVE TO THE NEXT MAX
	INX		
		MAXFULL	;SEE IF DONE
	BHS	TIEND	
	CPY		LOOK FOR NEW SECONDARY
	BLO		
	LDD	TEMPIND	
	CPD	INDXCHK	;IF WITHIN THE WINDOW OF THE LARGER MAX
	BLO	TIEND	IGNORE THE VALUE
	LDD	PERIOD	
	SUBD	PERINDX	

	CPD BLO	WINDOW TIEND	;IF ON THE SCREEN WRAP IN WINDOW IGNORE
,	LDD SUBD CPD		IF WITHIN THE WINDOW OF THE SECONDARY
	BHI	TI1_3	
	STY	\$00,X	JUST REPLACE THE ONE VALUE
	LDD STD		
	BRA	•	
; TI1_3:	LDD	\$00,X	ELSE REPLACE AND SHIFT OLD VALUES DOWN
····_5.	STY	-	
	STD	TEMPMAX	
	LDY	\$ 10, X	
	LDD		
	STD	•	
	STY LDY		
	INX	IEMPMAA	
	INX		
		MAXFULL	
	BLO	TI1_3	
; TIEND:	LDX	PERINDX	GET THE PERIOD COUNTER AND INCREMENT
TIEND.	INX	ILKINDA	, OLT THE TERIOD COUNTER AND INCREMENT
	CPX	PERIOD	;IS THE PERIOD COMPLETED?
	BLO	TIII	
?	DIC	MAYELC	
		MAXFLG MAXFLG, \$ 01,T	ARE WE IN MAXIMUMS BUFFER 1 OR 2?
	CLR	TX1FLG	CLEAR BUFFER 1 TX'D FLAG
	LDY	#MAXBUF2	
	BRA	TI8	
TI 7 :	CLR		;CLEAR BUFFER 2 TXD FLAG
	LDY		
TI8:	STY		;UPDATE THE BUFFER TO USE
	LDAB ABY	MAXNUM	
	STY	MAXFULL	UPDATE THE FULL BUFFER VALUE
;			,
			110 ;IF MANUAL GAIN SET DON'T CHECK AGC
	LDAA		TEST IF GAIN NEEDS TO BE DECREASED
	CMPA BLO	#ATTNINC TI9	;IF NOT MOVE ON
	JSR		GO TO ATTN FOR MORE ATTENUATION
	BRA		,00 TO ATTA FOR MORE ATTEMORITON
TI9 :		#ATTNDEC	;TEST IF GAIN NEEDS TO BE INCREASED
	BHI	TI10	;IF NOT MOVE ON
	JSR	INC	GO TO INC FOR LESS ATTENUATION

TI10:	CLR	BIG	RESET BIG FOR NEXT PERIOD
; TI11:	LDX	# \$ 0000 PERINDX	;CLEAR THE PERIOD COUNTER
1111.	LDAA		;RESET TIMER FLAGS
	RTI		
;	******	*********	
SCI INTERRI	IPT HA	NDLER (SAIL D	RIVER)
			ACT BY 20 BYTES BY USING RSET:
			ACT BY USING CONDITIONAL ASSEMBLY
		-	BY USING TTY FOR PROMPT
; Mon, Se		990, 19:20 ADD I	
SCI:			HAR ;TEST FOR VALID CHAR
;&		SCSR	;TEST OR.NF.FE
•	ANDA		
,	-		;IF GOOD, GO ON
20110		SCDR	READ BAD CHAR TO CLEAR?
ECHO:	NOP		; RECEIVE AN ECHO CHARACTER (& IGNORE!)
SCIXIT:	RTI		; & EXIT
, ,			
, CKCHAR:	BRSET	SCSR,\$20,REAI	חר
;&		SCSR, 520, REA	;TEST DA
;	ANDA		,
,		READD	
,	JMP	CHECKX	;IF NOT, XMIT
; READD:	LDAA	SCDR	;READ DATA TO A
	TAB		;AND COPY TO B
•	LDX	#PARITY	POINT PARITY TABLE
	ABX		POINT INTO PARITY TABLE
•	LDAB	0,X	GET PARITY WORD
•	BNE	SCIXIT	REJECT IF NOT EVEN PARITY
,	ANDA	# \$ 7F	;ELSE REMOVE PARITY FOR SUBSEQUENT TESTS
	TAB		;(ALSO COPY TO B)
	CMPA		;IS IT '#'?
	BEQ		
	JMP	RJUMP	;ELSE GO THRU VECTOR
, ATXIT:	JMP	SCIXIT	NO FURTHER USE FOR THIS CHAR, EXIT
;			
; SAIL ADDRE	SS RECO	OGNIZE SECTIO	N
GOTNUM:	LDAB	#01	; GOT # CODE
	STAB	SCRTCH1	;SET SAIL FLAG TO 01
		SCCR2,SD2	;TURN OFF XMIT INTERRUPTS
;&		SCCR2	
•	ANDA		;TURN OFF XMIT INTERRUPTS
;		SCCR2	
	LDD	#READAD	;POINT READ ADDRESS

RSET:	STD JMP		;MAY ENTER HERE FROM MANY OTHER PLACES ;AND EXIT
; READAD:	LDAB CMPB BNE		;GET SMODE COUNT ;IS THIS THE FIRST CHAR?
:	CMPA BEQ		;IF FIRST, IS IT '0'? ;IF SO, MAY BE BAUD SWITCH ;CONTINUE ON BELOW
TRYADD:	LDX ABX	#ADDR	ELSE POINT X TO ADDR
	CMPA BEQ	0,X NEXTAD	;COMPARE NEW CHAR TO A ;IF MATCH, LOOK FOR NEXT IN LIST
, SETUNAD:	LDD STD		;ELSE SET UNADDRESS STATE
; UNADDR:	CLR	SCRTCHI	CLEAR SAIL MODE TO 00
UNADDR.		SCCR2, S D2	TURN OFF XMIT INTERRUPTS
;&		SCCR2	, TORIX OTT MAIL MAILAROT IS
;	ANDA		;TURN OFF XMIT INTERRUPTS
•		SCCR2	
,	LDD		SET XMIT VECTOR TO PASS
XSET:	STD		,
	JMP	SCIXIT	
:			
NEXTAD:	INX		;POINT NEXT ADD CHAR
	INC	SCRTCH1	;(& INC COUNTER)
	TST	0,X	TEST IT,
	BEQ	GOTADDR	; TERMINATOR?
	JMP	SCIXIT	ELSE SAME VECTOR
;			
GOTADDR:	ldd JMP	#CONCHAR RSET	;REC CONTROL CHAR NEXT
;			
		IANGE COMMA	ND
TSTBAUD:	LDD JMP	#BAUD2 RSET	
:			
BAUD2:	CMPA	#' 0'	;GOT SECOND 0?
	BEQ	BAUD3	
	JMP	SETUNAD	
;			
; COME HERE	E IF GOT	#00 (BAUD CH	(ANGE)
BAUD3:	LDX	#SCRTCH1	;POINT TO 5 CHAR BUFFER
	STX	VECT2	;SAVE AT VECT2
	LDD	#BAUD4	
	JMP	RSET	
,			
BAUD4:	LDX	VECT2	;GET POINTER
	СМРА	#' '	;IS IT SPACE?

	BNE		
	LDAA		:CHANGE SPACES TO 0'S
BAUD5:		0,X	;STORE CHAR
	INX		;ADVANCE POINTER
			;PAST END OF 5 CHAR BUFFER?
	-	BAUD6	
		VECT2	;IF NOT DONE, SAVE POINTER
	JMP	SCIXIT	;AND GET MORE
;			
BAUD6:	LDX		GET LAST TWO CHARS
	CPX		ARE LAST TWO CHARS BOTH 0?
	BNE	WAITBRK	;IF NOT VALID, SET UP TO WAIT FOR BREAK
			W DUFFED ACADICT DATA TADI ES FOD A MATCH
; IF LAST TWO			K BUFFER AGAINST DATA TABLES FOR A MATCH
	LDD		SET UP TABLE POINTER
	SID	VECT2	;AND STORE IN JUMP2 VECTOR
			A & 1ST OTAD SIGNALS END OF TADLE
•	IABLE 3	VECT2	0 AS 1ST CHAR SIGNALS END OF TABLE
BTRY:		VEC12	;GET TABLE POINTER ; AND TABLE ELEMENT
	LUAA	U,X WAITBRK	; IF=00, WAS NO MATCH, WAIT FOR BREAK
	DEQ	WAIIDKK	, IF-00, WAS NO MATCH, WALL FOR BREAK
		WITH ONE TAE	DI E ENITDV
, COMPARE E		#SCRTCH1	
		XVECT	; & SAVE IN XMIT JUMP VECTOR
: COMPARE E			, & SAVE IN XMIT JONE VECTOR
COMPARE:		XVECT	GET BUFFER POINTER
COMPARE.		0,X	; TO GET BUFFER CHAR TO A
	INX	V,A	; INX BUF POINT WHILE WE'RE HERE
		XVECT	; & SAVE
		VECT2	NOW GET TABLE POINTER
	CMPA		; & USE TO COMPARE CHARS
	BNE	•	, a ose to comitate charts
CMATCH:	INX	NOMATON	;IF MATCH, MOVE AHEAD TABLE POINTER
CMATCH.		0,X	LOOK AT NEXT TABLE ELEMENT
		МАТСН	; IF IT'S 00, FULL MATCH!
		VECT2	; ELSE SAVE TABLE POINTER
	BRA		; AND TRY NEXT CHAR
	DIM	comme	
, NOMATCH:	INX		;INC TABLE POINTER
	LDAA	0 X	AND LOOK FOR 00
	BNE	NOMATCH	;LOOP TILL IT'S FOUND
	INX		INC OVER NULL
	INX		; & BAUD SET BYTE
		VECT2	AND REPLACE TO HOLDING LOCATION
	BRA	BTRY	GO BACK TO CHECK NEXT TABLE
:	are a bid b	2	
, WAITBRK:	LDAA	# \$ 0C	;TURN OFF SCI INTERRUPTS
		SCCR2	; (REQUIRES TOF INTERRUPT TO RESTART)
	JMP	SETUNAD	AND SET VECTORS FOR NEW ADDRESS
:			
,			

;*BAUD* ALL LINES WITH THIS ITEM ARE MODIFIED FOR EACH BAUD GROUP : MATCH TABLE FOR BAUD RATE SWITCH **BAUDTBL**: '096',\$00,\$30 ; 9600 FCB *BAUD* ; 4800 BAUD FCB '048',\$00,\$31 *BAUD* FCB '024',\$00,\$32 ; 2400 *BAUD* FCB '012'.\$00.\$33 : 1200 *BAUD* FCB '006',\$00,\$34 : 600 *BAUD* FCB '003',\$00,\$35 ; 300 *BAUD* FCB ;DONE \$00 MATCH: INX :PASS 00 TERMINATOR LDAA 0,X GET BAUD BYTE STAA BAUD ;AND RE-WRITE JMP SETUNAD ;AND PREPARE FOR NEW ADDRESSING ... ; ?M COMMAND - DATA INPUT SECTION if VIEW • LDD #SAVEADD ;NOW INPUT ADDRESS QUERYM: JMP IN4 SAVEADD: LDD SCRTCH1 ;GET ADDRESS, STD SCRTCH3 **& SAVE IN ADDRESS POINTER** LDD #STARTL JMР IN4 **;THEN GET LENGTH** STARTL: LDD SCRTCH1 ;IF LENGTH NE 0000 BNE STARTL2 ; CARRY ON ... JMP PROMPT ;ELSE QUIT STARTL2: LDD #ECHO **;PREPARE TO IGNORE ECHO CHARS** STD RVECT BSET SCCR2,SE0 **:START XMIT INTERRUPTS** ;& LDAA SCCR2 ORAA #SE0 **START XMIT INTERRUPTS** STAA SCCR2 ; JMP OUTLINE ;& SEND A LINE ... ; .. THE ?M DUMP IS STORED IN THE XMIT SERVICE SECTION BELOW else endif : IM SECTION IF LOAD :CONDITIONAL ASSEMBLY OF LOAD M SECTION BANGM: LDD #KEEPADD INPUT STARTING ADDRESS JMP IN4 KEEPADD: LDD #HIHEX ;WAIT FOR HIGH HEX CHAR

	JMP	RSET	
; HIHEX:	JSR BCS ASLA ASLA ASLA ASLA STAA LDD JMP	ASCHEX TERMIN SCRTCH5 #LOWHEX RSET	;ATTEMPT CONVERT TO HEX ;CHECK TERMINATOR IF NOT ;MOVE OVER NIBBLE
; LOWHEX:	JSR BCC	ASCHEX	;CONVERT LOW
STASH:	JMP LDX ORAA STAA INX STX LDD JMP	SCRTCHI SCRTCH5 0,X SCRTCHI	;PROMPT IF BAD SECOND CHAR ;GET POINTER ;COMBINE NIBBLES ;STORE IT ;INC & ;RESTORE POINTER
; TERMIN:	ANDA CMPA BNE JMP		;MASK OFF FLAG BIT ;IS IT CR?
; TERMIN2:	CMPA BNE LDD JMP	#' ' TERMIN3 #HIHEX RSET	;IS IT SPACE?
; TERMIN3:	CMPA BNE LDD BRA	#';' TERMIN4 #BANGM PASSLF	;OR ';' ?
; TERMIN4:		#',' TERMIN5 #SETHIHX	;OR ',' ?
PASSLF:	STD	VECT2 #PASSLF2 RSET	
; PASSLF2:CMP/	A BNE	# \$ 0A PXIT	;GOT LF YET?
PXIT:	JMP JMP	JUMP2 SCIXIT	;IF AES, EXIT THRU JMP2 ;ELSE WAIT FOR MORE CHARS
; SETHIHX:	LDD	#HIHEX	;IF ',' THEN PREP FOR MORE HEX

.

JMP RSET

	JMP	KSEI	
; TERMIN5:	JMP endif	PROMPT ·	;TO PROMPT IF NOT VALID CHAR
;; : IN4 HEX [DIGITS		
,		GITS TILL T	ERMINATED BY A SPACE OR
			ESS). RESULT LEFT AT SCRTCH1,2
•	-		DONE (TARGET IN D ON ENTRY)
; IN4:	STD	VECT2	STORE EXIT VECTOR
		SCRTCHI	CLEAR INPUT BUFFER
		SCRTCH2	
		#IN4HEX	POINT CHAR RECEIVER
	JMP		
,	IOD	ACCUTEN	CONTRACTO
IN4HEX:		ASCHEX	-
		CKEND	;IF NOT HEX, CHECK FOR END
	PSHA		;SAVE
		SCRTCHI	;HI TO A
		SCRTCH2	
	ASLD		;SHIFT OVER FOUR
	ASLD		
	ASLD		
	ASLD		
		SCRTCH1	;RETURN HIGH
		SCRTCH2	;AND B
	PULA	000000110	RETRIEVE NEW NIBBLE
		SCRTCH2	;ADD NEW NIBBLE
		SCRTCH2	; & UPDATE
	JMP	SCIXIT	
, CKEND:	ANDA	# \$ 7F	CLEAN OFF MS FLAG BIT
	CMPA	#' '	;IS IT SPACE?
	BEQ	INEXIT	
	CMPA	#\$0D	;IS IT CR?
	BEQ	INEXIT	
	JMP	SCIXIT	;ELSE, GET ANOTHER CHAR
; INEXIT:	JMP	JUMP2	;IF DONE, CARRY ON THRU VECTOR
,			
;			
; INPUT ON	E HEX BY	TE AND CON	TINUE THRU JUMP2
INBYTE:	ASLA		;MOVE OVER
	ASLA		
	ASLA		
	ASLA		
		SCRTCH5	;SAVE
		#INBYTE2	-
	JMP		

10

Ì

INBYTE2: JSR ASCHEX **;CONVERT LOW NIBBLE** BCC SAVEDAT JMP SETUNAD :UNADDRESS IF ERROR SAVEDAT :ORAA SCRTCH5 :COMBINE JMP JUMP2 ;AND CARRY ON THRU VECTOR2 ; NOW CHECK THE TRANSMIT SITUATION CHECKX: BRCLR SCSR.\$80,XERROR ;& LDAA SCSR ;MAKE SURE XMIT BIT WAS SET ANDA #\$80 ; BEQ XERROR ; JMP XJUMP GO THRU XMIT VECTOR : THESE SEGMENTS ARE ENTERED THRU XJUMP AND XVECTOR.. XERROR: NOP **;TRIG LOC FOR DIAGNOSTICS** : XJUMP TARGETS.. BCLR SCCR2.\$D0 XPASS: :&: LDAA SCCR2 ANDA #\$2F ; STAA SCCR2 ; JMP SCIXIT if VIEW ;a conditional segment ; OUTPUT A LINE OF DATA (FROM ?M DUMP) LDD #OUTLF :& SET UP TO XMIT OUTLINE: STD XVECT LDAA #\$0D ;SEND CR JMP SETOUT OUTLF: LDD #OUTADDR STD XVECT LDAA #\$0A ;SEND LF JMP SETOUT OUTADDR: LDD #LOWADDR ;PREP OUTBYTE XIT STD VECT2 LDAA SCRTCH3 ;GET HIGH ADDRESS JMP OUTBYTE LOWADDR: LDD #LOWADD2 EXIT FROM 2ND OUTBYTE.. JMP XSET LOWADD2: LDD #ADDRSP STD VECT2 LDAA SCRTCH4 ;NOW LOW ADDRESS JMP OUTBYTE ;

ADDRSP:	ldd Jmp	#SENDSP XSET	EXIT FROM 2ND OUTBYTE		
, SENDSP:	LDD STD LDAA JMP	#OUTDATA XVECT # \$2 0 SETOUT	;SEND SPACE		
; OUTDATA:	LDX LDAA PSHA LDD STD PULA JMP	SCRTCH3 0,X #DECLEN VECT2 OUTBYTE	;GET ADDR POINTER ;TO GET DATA BYTE ;SAVE ;PREP XIT VECTOR ;RETRIEVE DATA BYTE ;& SEND IT		
DECLEN:	LDD JMP	#DECLEN2 XSET	;EXIT FROM OUTBYTE2		
; DECLEN2:	LDX DEX STX BNE JMP	SCRTCHI SCRTCHI SAYMORE PROMPT	;GET LENGTH ;DECREMENT ;& RETURN ; MORE DATA? ;PROMPT IF DONE		
; SAYMORE:	LDX INX STX XGDX LSRD BCS ANDB BNE	SCRTCH3 OUTDATA	;GET ADDR ;INCREMENT ;REPLACE ;X REG TO ACCD ;LSB TO C ;NEXT BYTE NOW IF ODD ;CHECK FOR XXX0 (LINE END) ;IF ONLY EVEN, SEND SP		
;	JMP	#';' GENPAR SCDR #OUTLINE XSET	;IF NEW LINE, SEND CONTINUATION ;& PREP FOR NEW LINE		
endif ; ;					
; OUTPUTS A OUTBYTE:		N A AS TWO HE SCRTCH5	EX CHARS, EXITS VIA VECT2 ;STASH FOR LATER ;MOVE OVER		
	JSR PSHA	HEXASC #OUTBYT2	;CONVERT ;AND SAVE		

	STD	XVECT			
	PULA JMP	SETOUT	Г	;RECOVER CHARACTER	
; OUTBYT2:		SCRTCH	14		
OUIDI12 .	ANDA		15	;CLEAN UP	
		HEXAS	с		
		OUTJM		;CONVERT, SEND & JUMP THRU VECT2	
•					
;					
			MONI	TOR, THEN WAIT FOR CHARS	
PROMPT:		#PLIST			
	JMP	\$0D,\$0A,':',\$EE,\$90,SCRTCH1,\$AA			
PLIST:	FCB				
	FDB				
PJUMP:		SCRTCH			
	JMP	CONCH	AR		
,					
; INITIATE AN	I OUTPU	JT SEQU	ENCE		
SETOUT:		GENPA			
				;SEND FIRST CHAR	
-		SCCR2,			
;&	LDAA	L .			
;	ORAA		# \$ C0		
;					
		#ECHO		;& PREPARE TO ECHO	
	JMP	RSET			
;					
; SENDS ETX					
	LDAA	# \$ 03	_	;SEND ETX	
OUTJMP:				;MAY ENTER HERE	
		SCDR		;DRAGON AGAIN?	
	JMP	JUMP2		;NOW THRU JUMP2	
•					
;					
; ********* ****	******			*********************	
; SUBROUTINE	es used	BY PTR	DRIVE	ER	

ATTN:		PORTA		GET THE VALUE IN PORT A	
		#DB00		;IS 0 DB SET?	
		ATTN1		;IF NO GO ON	
		#DB03		;IF YES SET 3 DB	
		PORTA			
		ATTNF		;EXIT	
ATTN1:		#DB03		;IS 3 DB SET?	
		ATTN2		;IF NO GO ON	
		#DB09		;IF YES SET 9 DB	
		PORTA			
		ATTNF		;EXIT	
ATTN2:	CMPA	#DB12		;IS 12 DB SET?	
	BNE	ATTN3		;IF NO GO ON	

		#DB18	;IF YES SET 18 DB
		PORTA	
		ATTNF	;EXIT
ATTN3:		#DB18	;IS 18 DB SET?
		ATTN4	;IF NO GO ON
		#DB24	;IF YES SET 24 DB
		PORTA	
		ATTNF	;EXIT
ATTN4:		#DB24	;IS 24 DB SET?
		ATTN5	;IF NO GO ON
		#DB30	;IF YES SET 30 DB
		PORTA	EVIT
A TTAIC.		ATTNF	EXIT
ATTN5:		#DB30	;IS 30 DB SET? ;IF NO GO ON
		ATTN6 ATTNF	JIF YES CAN'T CHANGE ANYMORE
ATTN6:		#DB00	; IF NON OF THE ABOVE ARE SET, SET 0 DB
ATTNO:		PORTA	, IF NON OF THE ABOVE ARE SET, SET UDB
ATTNF	RTS	FURIA	
ATTNE	RIS		· ·
INC:	LDAA	PORTA	GET THE VALUE IN PORT A
	CMPA	#DB30	;IS 30 DB SET?
	BNE	INC1	;IF NO GO ON
	LDAA	#DB24	;IF YES SET 24 DB
	STAA	PORTA	
	BRA	INCF	;EXIT
INC1:	CMPA	#DB24	;IS 24 DB SET?
	BNE	INC2	;IF NO GO ON
	LDAA	#DB18	;IF YES SET 18 DB
	STAA	PORTA	
	BRA	INCF	;EXIT
INC2:		#DB18	;IS 18 DB SET?
	BNE	INC3	;IF NO GO ON
	LDAA	#DB12	;IF YES SET 12 DB
	STAA	PORTA	
	BRA		;EXIT
INC3:	CMPA	#DB12	;IS 12 DB SET?
	BNE	INC4	;IF NO GO ON
		#DB09	;IF YES SET 9 DB
		PORTA	
	BRA	INCF	
INC4:		#DB09	;IS 9 DB SET?
	BNE	INC5	;IF NO GO ON
		#DB03	;IF YES SET 3 DB
		PORTA	
	BRA	INCF	
INC5:		#DB00	;IF NON OF THE ABOVE ARE SET, SET 0 DB
		PORTA	
INCF	RTS		

; SUBROUTINE	es used	BY SAIL DRIVE	E R	
,	ANDA ADDA		in A ;CLEAN IT UP	
HNUMBER:	ADDA	HNUMBER #\$07 #\$3A	;CONVERT ; TO ASCII	
;				
; Converts ASC	CII char in	n A to nibble in A	if it is HEX &	clears C
; Otherw	ise, returi	ns origional char v	with C bit set.	
ASCHEX:	PSHA		;SAVE CHAR	
	SUBA			
		NOTHEX		
	SUBA			
		TSTALPH		_
	ADDA		;REPAIR NUM	B
	BRA			
TSTALPH:		# \$ 07	;41->00 ?	
	SUBA	NOTHEX		
		NOTHEX		
		#\$10	;REPAIR ALPH	,
AXIT:	INS	<i>#</i> # 10	;POP OFF SAV	
	CLC		AND CLEAR	
	RTS		,	
;				
NOTHEX:	PULA		GET CHAR	
	SEC RTS		;SET CARRY	
*****		*****		
; GENERATE I	PARITY-	Char is passed in	and out thru A	
GENPAR:	PSHB		;SAVE SOME S	STUFF
	PSHX			
;	TAB		;COPY CHAR	
•	LDX	#PARITY	•	RITY TABLE TOP
;	ABX			TO POINT X TO CHAR
· ·	ORAA	0,X	;ADD PARITY	BIL
	PULX PULB		;RESTORE	
	RTS			
	KI S			
, ; PARITY TAB	ILE			
PARITY:		0,\$80,\$80,\$00,\$80	082.002.002	;A
		0,\$00,\$00,\$80,\$00		;B
		0,\$00,\$00,\$80,\$00		;B
	FCB \$0	0,\$80,\$80,\$00,\$80	\$00,\$00,\$80	;A
; XX20				
	FCB \$8	0 ,\$00,\$0 0, \$80,\$ 00	,\$80,\$80,\$00	;B

	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	; A
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;B
; XX40		
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;B
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;В
; XX60		
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;B
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;B
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
; XX00		
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;B
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;B
; XXA0		
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;B
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;B
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
; XXC0		
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;В
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;В
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;A
; XXE0		
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;A
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	;B
	FCB \$00,\$80,\$80,\$00,\$80,\$00,\$00,\$80	; B
	FCB \$80,\$00,\$00,\$80,\$00,\$80,\$80,\$00	;A
•		
;		
; CHARACTER	LOOKUP TABLE	
CHARTBL:	FCB \$41,\$42,\$43,\$44,\$45,\$46,\$47,\$00	;00-07
	FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00	;0 8-0 F
	FCB \$49,\$4A,\$4B,\$4C,\$4D,\$4E,\$50,\$00	;10-17
	FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00	;18-1F
	FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$51,\$52,\$53,\$54,\$55,\$56,\$57,\$00	;18-1F ;20-27
		•
	FCB \$51,\$52,\$53,\$54,\$55,\$56,\$57,\$00	;20-27
	FCB \$51,\$52,\$53,\$54,\$55,\$56,\$57,\$00 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00	;20-27 ;28-2F
	FCB \$51,\$52,\$53,\$54,\$55,\$56,\$57,\$00 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$59,\$5A,\$5B,\$5C,\$5D,\$5E,\$5F,\$75	;20-27 ;28-2F ;30-37
	FCB \$51,\$52,\$53,\$54,\$55,\$56,\$57,\$00 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$59,\$5A,\$5B,\$5C,\$5D,\$5E,\$5F,\$75 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00	;20-27 ;28-2F ;30-37 ;38-3F
	FCB \$51,\$52,\$53,\$54,\$55,\$56,\$57,\$00 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$59,\$5A,\$5B,\$5C,\$5D,\$5E,\$5F,\$75 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$61,\$62,\$63,\$64,\$65,\$66,\$68,\$74	;20-27 ;28-2F ;30-37 ;38-3F ;40-47
	FCB \$51,\$52,\$53,\$54,\$55,\$56,\$57,\$00 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$59,\$5A,\$5B,\$5C,\$5D,\$5E,\$5F,\$75 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$61,\$62,\$63,\$64,\$65,\$66,\$68,\$74 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00	;20-27 ;28-2F ;30-37 ;38-3F ;40-47 ;48-4F
	FCB \$51,\$52,\$53,\$54,\$55,\$56,\$57,\$00 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$59,\$5A,\$5B,\$5C,\$5D,\$5E,\$5F,\$75 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$61,\$62,\$63,\$64,\$65,\$66,\$68,\$74 FCB \$00,\$00,\$00,\$00,\$00,\$00,\$00 FCB \$69,\$6A,\$6B,\$6C,\$6D,\$6E,\$70,\$74	;20-27 ;28-2F ;30-37 ;38-3F ;40-47 ;48-4F ;50-57

-

; HELP FILE DUMP SAYHELP: LDX #HELPFIL BRA TTY0 ; A TTY ROUTINE FOR SAIL68 **DO NOT DELETE! USED BY PROMPT ETC!** -USES \$FD BYTES -TO ENTER FOR XMIT, LDX #table AND THEN JMP TTYO -TO ENTER IN REC MODE LDX #table AND JMP TTYR0 -MUST USE EE TO SWITCH FROM SENDING TO REC CHARS -CAN GO BACK TO SENDING W/O PROBLEM -ARG TABLE CODES.. ASCII -TYPE IT AND GO ON WITH XMIT INTERRUPTS ON -BACK TO THE PROMPT 00 -JMP TO aaaa WITH XMIT INTERRUPTS STILL ON (USE FDB!) AA aaaa 80 aa -SEND CHAR AT LOC aa 81 aa -SEND HEX PAIR AT LOC aa EE -SEND ETX & WAIT FOR A CHAR (MUST BE FOLLOWED BY 9X) 90 aa -REC A CHAR AND SAVE IT AT aa 91 aa -REC A HEX PAIR AND SAVE IT AT aa (ABORT TO PROMPT ~HEX) 94 aa -CLEAR SCRTCH1,2 & WAIT FOR A HEX STRING, PUT AT aa,aa+1 (ENTRY TERMINATED BY SP OR CR) :LOAD X FROM STORAGE LOCATION TTY: LDX XTTY LDD #TTY ;SET REENTER VECTOR TTY0: STD XVECT ;GET ARGUMENT LDAA 00,X BNE TRYAA ;IF =00, GO DIRECTLY TO PROMPT ... JMP PROMPT TRYAA: CMPA #\$AA BNE TRYASC INX ;VECTOR TO X LDX 0,X JMР **X**,0 ;AND JUMP TO M(X) **TRYASC:** TSTA BMI **TRY80** ;IF MSB IS 1, NOT ASCII.. JSR LBISX ELSE GET THE ASCII IMM CHAR TBA JMР SETOUT GO SEND IT NOW **TRY80**: CMPA #\$80 ;REQ IND CHAR? BNE **TRY81** INX JSR LBISX ;GET THE ADDRESS (ASSUME BASE PAGE) JSR CRADDR ;CREATE ADDRESS LDAA 0.X GET THE IND DATA SETOUT JMP **TRY81**: CMPA #\$81 ;REQ IND HEX PAIR? BNE TRYEE

	INX				
		LBISX	GET THE ADDRESS (ASSUME BASE PAGE)		
		CRADDR	;CREATE ADDRESS		
		#TTY2	THEN SET UP VECT2 EXIT PATH		
	STD	VECT2			
	LDAA	0,X	GET THE IND DATA NOW		
	JMP	OUTBYTE			
;					
TTY2:	LDD		EXIT PATH FOR VEC 12 STUFF.		
	JMP	XSET	;(ALLOWS OUTBYTE TO RETUPN TO TTY)		
· •	.	*****			
TRYEE:	CMPA		;SEND ETX & GO TO RECEIVE MODE?		
TOFOD	•	GOTEE			
TRERR:	JMP	PROMPT	;IF NOT VALID OUT GROUP CONTROL CHAR, JUST		
PROMPT					
, GOTEE:	INX		SWITCH TO INPUT MODE		
GOILL.	STX	XTTY	SAVE THE CONTROL TABLE POINTER		
	LDAA		SEND ETX		
	JSR	GENPAR			
		SCDR			
	BCLR	SCCR2,\$C0	STOP FURTHER XMIT INTERRUPTS		
	LDD	#TTY3	; AND PREPARE TO RECEIVE THE ETX ECHO		
	JMP	RSET			
;					
TTY3:		# \$ 03	;GOT ETX YET?		
	•	TTY4	; KEEP WAITING TILL IT ECHOS		
	JMP	SCIXIT			
• •					
TTY4:			WHEN GOT ETX, PREP TO REC DATA CHARS		
•	JMP	RSET	; SET RVECT TO TTYR AND EXIT		
· TTY RECEIV	F SECTI	ON ENTER HER	RE FROM COMMAND CHAIN W/O NEW CHAR		
TTYRO:	STX	XTTY	JUST SAVE TABLE POINTER		
	BRA	TTY4	; AND GO GET A NEW CHAR		
			,		
; ENTER HERE FROM RVECT WITH DATA CHAR IN A					
TTYR:	LDX	XTTY	; WHILE WE FIGURE OUT WHAT TO DO WITH IT		
	JSR	LBISX	GET THE CONTROL CHAR		
TRY90 :	CMPB		;SAVE WHOLE CHAR		
	BNE	TRY91			
SAVCHR:	JSR	LBISX	; IF 90, SAVE WHOLE CHAR AT IMM ADDRESS		
	JSR	CRADDR	CREATE ADDRESS		
	STAA	•	SAVE THE DATA BYTE IN M(X)		
WRITE)	BRA	CKNEXT	;CHECK NEXT CONTROL BYTE FOR TYPE (READ OR		
WRIEJ					
, TRY91:	CMPB	#\$91	ENTER A HEX PAIR?		
	BNE	TRY94			
	JSR	ASCHEX			
	BCS	TRERR	ABORT IF NOT HEX CHAR		

	ASLA ASLA ASLA ASLA	SODTOUL	;MOVE OVER
	LDD JMP	SCRTCH1 #TTYHEX RSET	;SAVE TILL NEXT PASS ;PREP FOR 2ND HEX CHAR
, TTYHEX:	JSR	ASCHEX	;(SECOND HALF OF TRY91)
	BCS	TRERR	;ABORT IF NOT A VALID HEX CHAR
		SCRTCH1	;COMBINE HIGH AND LOW CHARS
	LDX	LBISX	;GET SINK ADDRESS
		CRADDR	CREATE ADDRESS
	STAA		,
		#TTYR	;REPAIR THE VECTOR
		RVECT	; AND ON TO CHECK NEXT COMMAND
	BRA	CKNEXT	
, TRY94:	CMPB	#\$94	;IS IT IN4?
		TRERR	QUIT IF NOT A VALID CODE
GOT94:	CLR	SCRTCH1	GOT FIRST DIGIT IN A, CLEAR INPUT BUFFER
	CLR	SCRTCH2	
	PSHA		;SAVE THE ARGUMENT
	LDD	#SAVE4 VECT2	PREPARE EXIT VECTOR
	LDD		, REFARE EAT VECTOR
	STD	RVECT	;CHANGE RVECT
	PULA		
	JMP	IN4HEX	;AND PROCESS THE FIRST DIGIT
; SAVE4:	LDD	#TTYR	
DITTE:	STD	RVECT	REPAIR THE VECTOR
	LDX	XTTY	;GET THE TABLE POINTER
	JSR	LBISX	;AND GET THE SINK ADDRESS
	JSR	CRADDR	;CREATE ADDRESS
	LDD STD	SCRTCH1 0,X	;AND STORE THE DOUBLE BYTE
	BRA	CKNEXT	CHECK NEXT CONTROL CHAR
•			
CKNEXT:	LDX		;IS THE NEXT CONTROL CHAR AN INP OR OUT?
	LDAA	•	;GET THE CONTROL CHAR
	ANDA CMPA		; AND CHECK THE HIGH NIBBLE
		TTYOL	;IS IT AN INPUT TYPE? ;IF NOT, SWITCH TO OUTPUT MODE
	JMP	SCIXIT	ELSE GET ANOTHER CHAR
,			
TTYOL:	JMP	TTYO	
; LBISX:	LDAB	0 Y	;SUBROUTINE TO LOAD B, INC & STR X
	INX	vyA	; USED BY TTY ABOVE

	STX RTS	XTTY	
; CRADDR:	LDX ABX RTS	# \$ 0000	;SUBROUTINE TO CREATE AN ADDRESS
	ותת מו	RESS RECEIVE	CONTROL CHAR
CONCHAR:		#\$7F	CLEAN OFF FLAG BIT
	CMPA		:IS IT '!'
	BEQ		
	CMPA		;OR IS IT '7'
	BEQ	SETQG	
	CMPA	#'O'	;IS IT 'O', START DATA COLLECTION?
	BEQ	TIMEJ	
	CMPA	#'P'	;IS IT 'P', PAUSE DATA COLLECTION?
	•	TIMOUTJ	
	CMPA		;IS IT '-', DATA SCAN REQUEST?
	-	DSCANL	
	CMPA		;IS IT'A', SET GAIN CONTROL?
	•	ATTCMD	
	CMPA		;SPACE TO ENTER MONITOR?
	-	GOMON	
	CMPA		;CAAR RETURN TO ENTER MONITOR?
	-	GOMON	
	CMPA		;HELP?
	-	SAYHEL	DESTADTO
	CMPA		;RESTART?
	CMPA	RSTARTJ	ATTEN VALUE DECHEST
		AVOUTJ	;ATTEN VALUE REQUEST
	JMP	SETUNAD	;UNADDRESS IF NOT VALID
	JIVIF	SETUNAD	, ONADDRESS IF NOT VALID
, GOMON:	JMP	PROMPT	LINK INTO MONITOR
SAYHEL:	JMP	SAYHELP	LINK TO SAYHELP
DSCANL:	JMP	DSCAN	LINK TO DATA SCAN
TIMEJ:	JMP	TIME	LINK TO TIME
TIMOUTJ:	JMP	TIMOUT	LINK TO TIMOUT
RSTARTJ:	JMP	START	LINK TO START
AVOUTJ:	JMP	AVOUT	LINK TO ATTEN VAL OUTPUT
• • •			
SETBG:	LDD	#BGROUP	PREPARE FOR THE CHAR AFTER !
	JMP	RSET	
SETQG:	LDD	#QGROUP	;PREPARE FOR THE CHAR AFTER ?
	JMP	RSET	
ATTCMD:	LDD	#ATTNGRP	;PREPARE FOR THE CHAR AFTER A
	JMP	RSET	
;			
BGROUP:	NOP		
	CMPA		
	BEQ	LTESTJ	

÷	endif		
, BANGML:	if JMP else endif	LOAD BANGM	;LINK TO IM
LTESTJ:	JMP	LTEST	
, QGROUP:	CMPA BEQ else endif	VIEW #'M' QUER YML PROMPT	
;	if	VIEW	
QUERYML:		VIEW QUERYM	;LINK TO ?M
ATTNGRP:	NOP		
ATTNGRP:	СМРА		;MANUAL SET 0 DB ATTEN
,ATTNGRP:	CMPA BEQ CMPA	SET0DBJ #'1'	;MANUAL SET 0 DB ATTEN ;MANUAL SET 3 DB ATTEN
,ATTNGRP:	CMPA BEQ CMPA BEQ CMPA	SETODBJ #'1' SET1DBJ #'2'	
,ATTNGRP:	CMPA BEQ CMPA BEQ CMPA BEQ CMPA	SETODBJ #'1' SET1DBJ #'2' SET2DBJ	;MANUAL SET 3 DB ATTEN
,ATTNGRP:	CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA	SET0DBJ #'1' SET1DBJ #'2' SET2DBJ #'3' SET3DBJ #'4'	;MANUAL SET 3 DB ATTEN ;MANUAL SET 9 DB ATTEN
,ATTNGRP:	CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA	SET0DBJ #'1' SET1DBJ #'2' SET2DBJ #'3' SET3DBJ #'4' SET4DBJ #'5'	;MANUAL SET 3 DB ATTEN ;MANUAL SET 9 DB ATTEN ;MANUAL SET 12 DB ATTEN
,ATTNGRP:	CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA	SET0DBJ #'1' SET1DBJ #'2' SET2DBJ #'3' SET3DBJ #'4' SET4DBJ #'5' SET5DBJ #'6'	;MANUAL SET 3 DB ATTEN ;MANUAL SET 9 DB ATTEN ;MANUAL SET 12 DB ATTEN ;MANUAL SET 18 DB ATTEN
,ATTNGRP:	CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA	SETODBJ #'1' SET1DBJ #'2' SET2DBJ #'3' SET3DBJ #'4' SET4DBJ #'5' SET5DBJ #'6' SET6DBJ #'A'	;MANUAL SET 3 DB ATTEN ;MANUAL SET 9 DB ATTEN ;MANUAL SET 12 DB ATTEN ;MANUAL SET 18 DB ATTEN ;MANUAL SET 24 DB ATTEN
,ATTNGRP:	CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ	SETODBJ #'1' SET1DBJ #'2' SET2DBJ #'3' SET3DBJ #'4' SET4DBJ #'5' SET5DBJ #'6' SET6DBJ #'A'	;MANUAL SET 3 DB ATTEN ;MANUAL SET 9 DB ATTEN ;MANUAL SET 12 DB ATTEN ;MANUAL SET 18 DB ATTEN ;MANUAL SET 24 DB ATTEN ;MANUAL SET 30 DB ATTEN
, ATTNGRP: ATTNGRP: SET0DBJ: SET1DBJ: SET2DBJ: SET3DBJ: SET4DBJ: SET4DBJ: SET5DBJ:	CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ CMPA BEQ	SETODBJ #'1' SET1DBJ #'2' SET2DBJ #'3' SET3DBJ #'4' SET4DBJ #'5' SET5DBJ #'6' SET5DBJ #'6' SET6DBJ #'A' AGCONJ	;MANUAL SET 3 DB ATTEN ;MANUAL SET 9 DB ATTEN ;MANUAL SET 12 DB ATTEN ;MANUAL SET 18 DB ATTEN ;MANUAL SET 24 DB ATTEN ;MANUAL SET 30 DB ATTEN

- - -----

SET6DBJ: AGCONJ:	JMP JMP		;LINK TO SET30DB ;LINK TO AGCON
;;PAUSE REQUE	EST		STOPS THE DATA DUMP
TIMOUT:	CLR	TMSKI	;DISABLE TOC2 INTERUPT
		#SFF	;RESET TOC FLAGS
	STAA	TFLG1	
		PROMPT	;RETURN
;;START REQUE		*********	TURN ON TIMER INTERUPT
TIME:	LDD		;LOAD THE CURRENT TIMER VALUE
		#SAMPLE	
		DTOC2	
		# \$ 40	;TURN ON OC2 INTERUPT
	STAA	TMSK1	
	JMP	PROMPT	;RETURN
; ; DATA SCAN	*******		
•	LDX	#DSCAN0	
	JMP		
DSCAN0:			
		DSCANI	
DSCAN1:			SCAN2 ;HAS BUFFER 1 BEEN SENT YET?
			SCAN3 ;HAS BUFFER 2 BEEN SENT YET?
NOTYET:	LDX	#NOTRDY	;WAIT UNTIL A BUFFER IS READY
	JMP	TT YO	
NOTRDY:	FCB	\$00,\$00	
•			
DSCAN2:	BSET		;SET BUFFER 1 TX'D FLAG
	LDX		
		DSCAN4	
DSCAN3:		TX2FLG,\$01	;SET BUFFER 2 TXD FLAG
		#MAXBUF2	
DSCAN4:		TXBUFF	SAVE THE BUFFER TO TX IN TXBUFF
	_	MAXNUM	
	ABX		
	STX	TXBFULL	GENERATE THE BUFFER DONE VALUE
•	LDY	TXBUFF	
	STY		
DSCAN5:		\$00,Y	GET THE DATA POINT HI BYTE
DSCANJ.		TXMHI	STORE IN BASE PAGE
		\$01,Y	GET THE DATA POINT LOW BYTE
		TXMLO	STORE IN BASE PAGE
		\$10,Y	GET THE INDEX HI BYTE
		тхіні	,
		\$11,Y	GET THE INDEX LOW BYTE
		TXILO	,
•			
	LDX	#BITSND1	;PREP FOR TX

	20		TY DATA DODT
DITCMD1.	JMP	TTY0 \$81,TXMHI,\$AA	TX DATA POINT
BITSND1:	DB		
DTV1.		DTX1 #BITSND2	;PREP FOR TX
DTX1:			TX DATA POINT
	JMP	TTY0 \$81,TXMLO,\$A	•
BITSND2:	DB	•	
DT3/4	DW	DTX2	DEED FOD TY
DTX2:	LDX	#BITSND3	PREP FOR TX
	JMP	TTYO	TX DATA POINT
BITSND3:	DB	\$81,TXIHI,SAA	
DTV1.	DW	DTX3	DDED FOD TY
DTX3:		#BITSND4	PREP FOR TX
DITCLIDA	JMP	TTYO	TX DATA POINT
BITSND4:	DB	\$81,TXILO,\$AA DSCAN6	
	DW	DSCANO	
, DSCAN6:	LDY	TXINT	
200	INY		
	INY		
	STY	TXINT	
	CPY		:HAS THE ENTIRE BUFFER BEEN SENT?
	BLO	DSCAN5	
•	DLU	DOCARD	
•	LDAA	#\$00	
	LDX	TXBUFF	CLEAR THE BUFFER THAT WAS TXD
DSCAN7:	STAA		
Docravi	INX	••••	
	CPX	TXBFULL	
	BLO	DSCAN7	
;		Dooran	
,	LDX	#DSCAN8	END TX
	JMP	TTYO	<u>,</u>
DSCAN8:	DB	\$00,\$00	
·		,	
LTEST:	LDX	#RTEST	
	JMP	TTYR0	
:			
RTEST:	DB	\$94,\$80," GOT 4	4! SEND 4 MORE", SEE, \$94, \$84, "DONE", \$00, \$00
•			
,,	*****		
;0 DB MANUA			TIDN OFF ACC
SET0DB:	BSET	•	TURN OFF AGC
			;SET 0 DB ATTENUATION
		PORTA	
•	JMP	PROMPT	;RETURN
;3 DB MANUA	L GAIN	REOUEST	
SET03DB:	BSET		;TURN OFF AGC
			;SET 3 DB ATTENUATION
		PORTA	,
		PROMPT	;RETURN
	~		,

;9 DB MANUAL GAIN REQUEST :TURN OFF AGC SET09DB: BSET AGCFLG.\$01 **SET 9 DB ATTENUATION** LDAA #DB09 STAA PORTA JMP PROMPT ;RETURN :12 DB MANUAL GAIN REOUEST BSET AGCFLG,\$01 ;TURN OFF AGC SET12DB: LDAA #DB12 SET 12 DB ATTENUATION STAA PORTA ;RETURN JMP PROMPT **;18 DB MANUAL GAIN REQUEST** SET18DB: BSET AGCFLG.\$01 ;TURN OFF AGC LDAA #DB18 **;SET 18 DB ATTENUATION** STAA PORTA JMP PROMPT :RETURN ;24 DB MANUAL GAIN REQUEST SET24DB: BSET AGCFLG,\$01 ;TURN OFF AGC LDAA #DB24 ;SET 24 DB ATTENUATION STAA PORTA JMP PROMPT ;RETURN ;30 DB MANUAL GAIN REQUEST SET30DB: BSET AGCFLG,\$01 ;TURN OFF AGC LDAA #DB30 SET 30 DB ATTENUATION STAA PORTA JMP PROMPT :RETURN ;AGC ON REQUEST AGCFLG ;SET AGC ON FLAG TO 0 (TURN AGC ON) AGCON: CLR JMP :RETURN PROMPT AVOUT: LDX #AVODAT JMP TTY0 AVODAT: DB \$81,PORTA,\$00,\$00 JMP PROMPT ***************************** *********** ***** ********* : HELP FILE HELPFIL :FCB 'elp SAIL DRIVER Mon, Jun 7, 1993, 11:53',\$0D,\$0A FCB 'Monitor Commands (enter via _ or ? or !)',\$0D,\$0A FCB ' (space) enter monitor*',\$0D,\$0A FCB '?Maaaa llllcr *',\$0D,\$0A FCB '!Maaaa_dd...cr *',\$0D,\$0A FCB 'Attenuator Commands (enter via A)',\$0D,\$0A ' A0 sets 0 dB manual attenuation',\$0D,\$0A FCB FCB ' A1 sets 3 dB manual attenuation',\$0D,\$0A FCB ' A2 sets 9 dB manual attenuation',\$0D,\$0A ' A3 sets 12 dB manual attenuation',\$0D,\$0A FCB

- FCB ' A4 sets 18 dB manual attenuation',\$0D,\$0A
- FCB ' A5 sets 24 dB manual attenuation',\$0D,\$0A
- FCB ' A6 sets 30 dB manual attenuation',\$0D,\$0A
- FCB ' AA turns AGC on',\$0D,\$0A
- FCB 'O starts receiver collecting samples',\$0D,\$0A

- FCB 'P pauses receiver',\$0D,\$0A
- FCB 'R resets the system',\$0D,\$0A
- FCB 'with all RCA UT4 conventions',\$0D,\$0A
- FCB '* returns prompt',\$00

,		*********
	ORG S	FFD6
VSCI:	FDB	SCI
VSPI:	FDB	START
VPAIE:	FDB	START
VPAO:	FDB	START
VTOF:	FDB	START
VTOC5:	FDB	START
VTOC4:	FDB	START
VTOC3:	FDB	START
VTOC2:	FDB	OC2
VTOC1:	FDB	START
VTIC3:	FDB	START
VTIC2:	FDB	START
VTIC1:	FDB	START
VRTI:	FDB	START
VIRQ:	FDB	START
VXIRQ:	FDB	START
VSWI:	FDB	START
VILLOP:	FDB	START
VCOP:	FDB	START
VCLM:	FDB	START
VRST:	FDB	START
	END	

Appendix 3

This appendix contains the C source code use by the Macintosh computer for the algorithm of figure 2-4. The user interface follows the guidelines specified by Apple, and the Event Manager is used to initiate all functions. After the hardware is initialized, the program waits in the EventLoop until an event is received. If no events are received in the loop cycle time, the program requests data from the 68HC11 and the GPS receiver. If the data is available, it is stored to form experiment vectors. Once enough experiment vectors are collected, the maximum likelihood estimate is calculated. The program the returns to the EventLoop.

TRACKER.C

Dennis Michael Wojcik 15 July 1993

This program is version 1.0 of the Precision Tracking Receiver. It is tailored for the scenario of a stationary acoustic beacon and a moving observer. The program assumes that the observer has a GPS receiver for positioning data that can produce a fix at least every 2 seconds. If a different navigation system is used to provide ship locations, it is up to the user to provide the proper position format:

?L HHMMSS,DDMM.hh,N,DDDMM.hh,E,x,x,DOP,xxx,M,xxxxx,M

/********	••• INCLUDES •••••••••••••••••••••••••••••••••	
#include <math.h></math.h>	// needed for math calls	
<pre>#include <appleevents.h></appleevents.h></pre>	// needed to handle AppleEvents	
#include <gestaltequ.h></gestaltequ.h>	// needed to read system 7 AppleEvents	
#include <values.h></values.h>	// contains needed Mac constants	
<pre>#include <serial.h></serial.h></pre>	// has needed serial comms constants	
<pre>#include <packages.h></packages.h></pre>	// needed to call time functions	
#include <string.h></string.h>	// needed to call string functions	
#include <float.h></float.h>	// contains needed constants	
#include <stdlib.h></stdlib.h>	// for standard calls such as strtoul etc	
#include <stdio.h></stdio.h>	// usefull for debugging	
/****************************	*****************	

/••••••	DEFINES *********	••••••
#define kBaseResID	128	// define general resource infor
#define kMoveToFront	(WindowPtr)-1L	·
#define kUseDefaultProc	(void *)-1L	
#define kSleep	il	
#define kLeaveWhereItIs	false	
#define mApple	kBaseResID	// Apple menu resource ID
#define iAbout	1	
#define mFile	kBaseResID+1	// File menu resource ID
#define iQuit	1	
#define mAttenuator	kBaseResID+3	// Attenuator menu resource ID
#define iAuto	1	
#define i0dB	2	
#define i3dB	3	
#define i9dB	4	
#define i12dB	5	
#define i18dB	6	
#define i24dB	7	
#define i30dB	8	
#define mBaud	kBaseResID+4	// Baud Rate menu resource ID
#define i300	1	
#define i600	2	
#define i1200	3	
#define i2400	4	
#define i4800	5	
#define i9600	6	
# 1. 6 0 1		
#define mSignal	kBaseResID+5	// Signal menu resource ID
#define iPeriod	1	
#define iNumMax	2 3	
#define iWindow		
#define iMessageText	4 hDeepDeeJD	
#define kPeriodDialog	kBaseResID	
#define kNumMaxDialog	kBaseResID+1	
#define kWindowDialog	kBaseResID+2	
#define kLeftMargin	4	// define screen margins
#define kFontSize	4	// define screen margins
#define kRowHeight	(kFontSize+2)	
-		
#define kDataScanHeight #define kHorizontalOffset	1 0	
#define kGestaltMask #define kHorizontalBix	1L 30	
#define kHorizontalPix	30	
#define kVerticalPix	40	
#define kMinWindowHeight	50	
#define kMinWindowWidth	80	
#define kMinTextPosition	0	

		32767	
#define kScroll	harAdiust	(16-1)	// define update constants
#define kNorma	-	true	i donne dpare consums
	nopalito		
#define bufferS	ize	1024	// misc. default values
#define k16Bit		4	
#define k8Bit		2	
#define kHexBa	asc	16	
#define kpi		3.141592654	
#define kNumE	хр	6	<pre>// default experiment parameters</pre>
#define kParam	eters	3	
#define kNumN	leas	6	
#define kStep		15	
#define kC		1500	
#define kMaxR		5000.0	
#define kMaxD	•	-5000.0	
#define kMinD		-1.0	
#define kxvar		9.0	
#define kyvar		9.0	
#define ktvar		8.3333e-2	
/*********	************	MACROS ****	*******
#define TopLef		(*(Point *) &(r).	
#define Bottom	Right(r)	(*(Point *) &(r).	bottom)
/***********	************		- ,
		*********	••••••
/**********			••••••
	***********	GLOBALS ****	***************************************
int	gASerRefIn, gA	GLOBALS ****	***************************************
int Boolean	gASerRefIn, gA gDone, gHasPo	GLOBALS ****	***************************************
int Boolean Rect	gASerRefIn, gA gDone, gHasPo gTrackerRect;	GLOBALS **** SerRefOut; pupControl, gData	***************************************
int Boolean Rect int	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels;	GLOBALS **** SerRefOut; pupControl, gData	Scan;
int Boolean Rect int int	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa	GLOBALS **** SerRefOut; pupControl, gData	Scan;
int Boolean Rect int int unsigned long	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U	GLOBALS **** SerRefOut; pupControl, gData taRowStart, gserC L;	Scan;
int Boolean Rect int int unsigned long long	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L,	GLOBALS **** SerRefOut; pupControl, gData taRowStart, gserC L; gWindow=20L;	Scan;
int Boolean Rect int int unsigned long long char	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu	GLOBALS **** ASerRefOut; pupControl, gData ataRowStart, gserC L; gWindow=20L; fferSize];	Scan;
int Boolean Rect int int unsigned long long	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu	GLOBALS **** SerRefOut; pupControl, gData ataRowStart, gserC L; gWindow=20L; fferSize]; fferSize]=	Scan; onfig;
int Boolean Rect int int unsigned long long char char	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145	GLOBALS **** SerRefOut; pupControl, gData ttaRowStart, gserC L; gWindow=20L; fferSize]; fferSize]= 642,0000.00,N,000	Scan;
int Boolean Rect int unsigned long long char char short	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gl	GLOBALS **** SerRefOut; pupControl, gData ttaRowStart, gserC L; gWindow=20L; fferSize]; fferSize]= 642,0000.00,N,000	Scan; onfig;
int Boolean Rect int unsigned long long char char short Str255	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gl gItemText;	GLOBALS **** SerRefOut; pupControl, gData ttaRowStart, gserC L; gWindow=20L; fferSize]; fferSize]= 642,0000.00,N,000 LastBaud=6;	Scan; onfig;
int Boolean Rect int int unsigned long long char char short Str255 unsigned long	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gJ gItemText; ghorizontalPixe	GLOBALS **** SerRefOut; pupControl, gData taRowStart, gserC L; gWindow=20L; fferSize]= 642,0000.00,N,000 LastBaud=6; ls;	Scan; onfig;
int Boolean Rect int unsigned long long char char short Str255	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gJ gItemText; ghorizontalPixe	GLOBALS **** SerRefOut; pupControl, gData ttaRowStart, gserC L; gWindow=20L; fferSize]; fferSize]= 642,0000.00,N,000 LastBaud=6;	Scan; onfig;
int Boolean Rect int int unsigned long long char char short Str255 unsigned long	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gl gItemText; ghorizontalPixe gWetPaperWind gPulseCounter=	GLOBALS **** SerRefOut; pupControl, gData taRowStart, gserC L; gWindow=20L; fferSize]= 642,0000.00,N,000 LastBaud=6; ls; d, gTerminalWind, 6L;	Scan; onfig;
int Boolean Rect int int unsigned long long char char short Str255 unsigned long WindowPtr	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gl gItemText; ghorizontalPixe gWetPaperWind gPulseCounter= gCheckVal=1L;	GLOBALS **** SerRefOut; pupControl, gData taRowStart, gserC L; gWindow=20L; fferSize]= 642,0000.00,N,000 LastBaud=6; ls; d, gTerminalWind, OL;	Scan; onfig;
int Boolean Rect int int unsigned long long char char short Str255 unsigned long WindowPtr long	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gl gItemText; ghorizontalPixe gWetPaperWind gPulseCounter=	GLOBALS **** SerRefOut; pupControl, gData taRowStart, gserC L; gWindow=20L; fferSize]= 642,0000.00,N,000 LastBaud=6; ls; d, gTerminalWind, OL;	Scan; onfig;
int Boolean Rect int int unsigned long long char char short Str255 unsigned long WindowPtr long long	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gl gItemText; ghorizontalPixe gWetPaperWind gPulseCounter= gCheckVal=1L; gtime 1, gtime2;	GLOBALS **** SerRefOut; pupControl, gData taRowStart, gserC L; gWindow=20L; fferSize]= 642,0000.00,N,000 LastBaud=6; ls; d, gTerminalWind, OL;	Scan; onfig; 000.00,E,0,0,000,000,M,0000,M"; gRangeWind;
int Boolean Rect int unsigned long long char char short Str255 unsigned long WindowPtr long long unsigned long	gASerRefIn, gA gDone, gHasPo gTrackerRect; gverticalPixels; gRowStart, gDa gPeriod=2000U gNumMax=2L, gDataBuffer[bu gGPSBuffer[bu "L 145 gLastAttn=1, gl gItemText; ghorizontalPixe gWetPaperWind gPulseCounter= gCheckVal=1L; gtime 1, gtime2;	GLOBALS **** SerRefOut; pupControl, gData taRowStart, gserC L; gWindow=20L; fferSize]= 642,0000.00,N,000 LastBaud=6; ls; d, gTerminalWind, 0L;	Scan; onfig; 000.00,E,0,0,000,000,M,0000,M"; gRangeWind;

Boolean	greflag=true;
Boolean	gDataWrap=false, trackerStart=false;
double	gYFact;
unsigned long	gt_mul, gt_mu2;
double	gV[kNumMeas]={kxvar,kyvar,ktvar,kxvar,kyvar,ktvar};
double	gtheta[3]={ 0.0, 0.0, -2000.0}, gPosition[kParameters];
double	*gw;
double	gxold=0.0, gyold=0.0;
int	gnumIts=0;
int	gmu=0;
long	gi=0L,gnumExp=0L;
double	gj=1.0;
char	gYrefString[8];
char	gXrefString[9];
/**********	***************************************
/**********	************ FUNCTION PROTOTYPES************************************
void	ToolBoxInit(void);
void	WindowInit(void);
void	MenuBarInit(void);
void	SerialInit(void);
void	EventLoop(void);
void	DoEvent(EventRecord *eventPtr);
unsigned long	HandleDataIn(int numDataPoins);
void	HandleMouseDown(EventRecord *eventPtr);
void	HandleMouseUp(EventRecord *eventPtr);
void	HandleMenuChoice(long menuChoice);
void	HandleAppleChoice(short item);
void	HandleFileChoice(short item);
void	HandleAttenuator(short item);
void	HandleBaud(short item);
void	HandleSignal(short item);
unsigned long	HandleDialog(int dialogRes);
void	ConcatString(Str255 str1, Str255 str2);
void	HandleKeyIn(char theChar);
int	TalkSail(char theChar);

void	HandleKeyIn(char theChar);
int	TalkSail(char theChar);
void	DisplayString(int numDataPoints);
void	ScrollDisplay(void);
void	HandleNull(void);
unsigned	HexCharToInt(char Bite, int exponent);
int	DecIntToHexChar(int decimal);
void	DoUpdate(EventRecord *eventPtr);
int	Power(int base, int exponent);
int	DecIntToHexChar(int decimal);
void	ScrollDataScan(void);
unsigned long	DecTimeToSec(unsigned long timeVal);
double	LatToY(double latVal);
double	LongToX(double longVal, double cosfact);
void	tracker(long numExp);
pascal OSErr	SetDialogDefaultItem(DialogPtr theDialog, short newItem)

```
= \{ 0x303C, 0x0304, 0xAA68 \};
                 SetDialogCancelItem(DialogPtr theDialog, short newItem)
pascal OSErr
                                  = \{0x303C, 0x0305, 0xAA68\};
                 SetDialogTracksCursor(DialogPtr theDialog, Boolean tracks)
pascal OSErr
                                  =\{0x303C, 0x0306, 0xAA68\};
                                                                              ************/
                                                           .*!
                      ---Main------
void
        main(void)
{
        WindowPtr
                         window;
                         RAMOpenErr, resetErrIn, resetErrOut, bufSizeErr;
        OSErr
                         SerConfig;
        int
                         serBPtr;
        Ptr
                         serInBuffer[bufferSize];
        char
                         numCharIn, numCharOut, maxtime;
        long
                         addressBuf[20];
        char
                                                           // initialize the toolboxes
        ToolBoxInit();
                                                           // set up the windows
        WindowInit();
                                                           // draw the menu bar
        MenuBarInit();
                                                           // open the serial drivers
        SerialInit();
                                                           // ensure we're in the window
         window=FrontWindow();
        RAMOpenErr=RAMSDOpen(sPortA);
                                                            // open the RAM Serial Drivers
                                                            // if we can't open RAM Driver beep
                 if (RAMOpenErr != noErr)
                 {
                          SysBeep(10);
                          ScrollDisplay();
                          DrawString("\pProblem opening the RAM Serial Drivers.");
                 3
         gserConfig=baud9600+data8+stop10+noParity;
                                                            // Set the protocal for 9600
                                                            // 8 data, 1 stop, no parity
         resetErrIn=SerReset(gASerRefIn,gserConfig);
         resetErrOut=SerReset(gASerRefOut,gserConfig);
                 if ((resetErrIn != noErr) || (resetErrOut != noErr))
                  {
                          SysBeep(10);
                                                            // if we can't set u.e protocal
                                                            // beep
                          ScrollDisplay();
                          DrawString("\pProblem setting the serial protocal.");
                  }
                                                            // Set the serial buffer size
         serBPtr=serInBuffer;
         bufSizeErr=SerSetBuf(gASerRefIn,serBPtr,bufferSize);
                 if (bufSizeErr != noErr)
                  {
                                                            // if we can't set the buffer
                          SysBeep(10);
                                                            // size, beep
                          ScrollDisplay();
                          DrawString("\pProblem resizing the serial input buffer.");
                  }
```

ScrollDisplay();

```
// see if we can talk to the GPS receiver
numCharOut=5L;
FSWrite(gASerRefOut, &numCharOut, "#GPS ");
SerGetEuf(gASerRefIn,&numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 9L)
£
        SerGetBuf(gASerRefIn,&numCharIn);
        if(TickCount() > maxtime)
        {
                SysBeep(10);
                DrawString("\p Can't talk to the GPS reciever, unable to run!!");
                ScrollDisplay();
                break;
        }
}
FSRead(gASerRefIn,&numCharIn,&addressBuf);
                                                 // see if we can talk to the PTR receiver
numCharOut=5L;
FSWrite(gASerRefOut, &numCharOut, "#PTR ");
SerGetBuf(gASerRefIn,&numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 9L)
Ł
        SerGetBuf(gASerRefIn,&numCharIn);
        if(TickCount() > maxtime)
        {
                SysBeep(10);
                DrawString("\p Can't talk to the PTR reciever, unable to run!!");
                ScrollDisplay();
                maxtime=TickCount()+120L;
                while(TickCount() < maxtime)</pre>
                        TickCount();
                abort();
        }
FSRead(gASerRefIn,&numCharIn,&addressBuf);
                                                 // start the PTR's data collection
TalkSail('O');
DrawString("\p: ");
                                                 // display a cursor
gw = calloc(3L*kStep*(kNumExp+1),sizeof(double));
                                                         // get memory for data
if (gw == NULL)
{
        DrawString("\pCan't allocate memory for data collection!!!");
        abort();
}
EventLoop();
                                         // main execution loop
RAMSDClose(sPortA);
                                         // must close the RAM Drivers before shutdown
```

```
// must release the memory before shutdown
       free(gw);
ł
       -----ToolBoxInit-----*/
/*-----
void
       ToolBoxInit(void)
                                                  // initialize all of the ToolBox
{
                                                  // Routines
       InitGraf(&thePort);
       InitFonts();
       InitWindows();
       InitMenus();
       TEInitO;
       InitDialogs(nil);
       InitCursor();
}
  -----*/
/*.
/*------WindowInit------*/
void
       WindowInit(void)
                                                  // initialize the display windows
{
                      window;
       WindowPtr
                      fontNum;
       short
                     update = true;
       Boolean
       window = GetNewWindow(kBaseResID, nil, kMoveToFront);
       if (window == nil)
       {
              SysBeep(10);
                                                   // Couldn't load the WIND resource
              ExitToShell();
       }
                                                   // set the window to be active
       SetPort(window);
       GetFNum("\pTimes", &fontNum);
                                                   // use Times font
       if (fontNum != 0) TextFont(fontNum);
       TextSize(kFontSize);
                                                   // use the default font size
       gverticalPixels=screenBits.bounds.bottom-screenBits.bounds.top-45;
       ghorizontalPixels=screenBits.bounds.right-screenBits.bounds.left-10;
       gDataRowStart=gverticalPixels-2*kFontSize;
       SizeWindow(window, ghorizontalPixels, gverticalPixels, update);
                                                   // activate the window
       ShowWindow(window);
       gWetPaperWind=FrontWindow();
       gTerminalWind = GetNewWindow(kBaseResID+1, nil, kMoveToFront);
       if (gTerminalWind == nil)
```

```
194
```

```
{
                                                  // Couldn't load the WIND resource
              SysBeep(10);
              ExitToShell();
       }
       SetPort(gTerminalWind);
                                                  // set the window to be active
       GetFNum("\pTimes", &fontNum);
                                                  // use Times font
       if (fontNum != 0) TextFont(fontNum);
                                                  // use the default font size
       TextSize(kFontSize);
       gRowStart=gTerminalWind->portRect.bottom-2*kFontSize;
       ShowWindow(gTerminalWind);
}
       •----*
/•
/*-----MenuBarInit-----*/
void
       MenuBarInit(void)
{
       Handle
                     menuBar;
       MenuHandle
                     menu;
       menuBar = GetNewMBar( kBaseResID );
       SetMenuBar( menuBar );
       menu = GetMHandle( mApple );
       AddResMenu( menu, 'DRVR');
       DrawMenuBar();
}
      /*-----SerialInit-----*/
void
       SerialInit(void)
{
       WindowPtr
                     window;
       OSErr
                     openErr, RAMErr, resetErr ;
                                                  // define system errors
       int
                     serConfig;
                                                  // define the port configuration
       char
                     driverStringIn[]="\p.AIn";
                                                  // define the input driver name
       char
                     driverStringout[]="\p.Aout";
                                                  // define the output driver name
       window=FrontWindow();
       openErr=OpenDriver(driverStringIn,&gASerRefIn); // Open the port A ROM input serial driver
              if (openErr ! \approx 0)
              {
                     SysBeep(10);
                     ScrollDisplay();
                     DrawString("\pCan't open the ROM Serial input driver");
                     return;
```

```
}
                                                            // Open the port A ROM output
       openErr=OpenDriver(driverStringout,&gASerRefOut);
                                                            //serial driver
               if (openErr != 0)
               {
                       SysBeep(10);
                       ScrollDisplay();
                       DrawString("\pCan't open the ROM Serial output driver");
                       return;
               }
       gserConfig=baud9600+data8+stop10+noParity;
                                                    // Set the protocal for
                                                     // 9600, 7D, 1S, no parity
       resetErr=SerReset(gASerRefIn,gserConfig);
                                                    // Set the input driver to the new protocal
               if (resetErr != 0)
               {
                       SysBeep(10);
                       ScrollDisplay();
                      DrawString("\pCan't set the ROM Serial input protocal");
                       return;
               }
       resetErr=SerReset(gASerRefOut,gserConfig);
                                                  // Set the output driver to the new protocal
               if (resetErr != 0)
               £
                       SysBeep(10);
                       ScrollDisplay();
                      DrawString("\pCan't set the ROM Serial output driver");
                       return;
               }
        •-----*/
         ------EventLoop-----*/
void
       EventLoop(void)
       EventRecord
                      event;
       gDone = faise;
       while (gDone == false)
                                                    // loop here until done with program
       Ł
               if (WaitNextEvent(everyEvent, &event, kSleep, nil))
                      DoEvent(&event);
               else
                      HandleNull();
                                                    // collect data here
       }
           •/
```

196

}

/•.

{

}

```
/*-----
         -----DoEvent-----
                                        void
       DoEvent(EventRecord *eventPtr)
{
       Boolean
                      becomingActive;
       char
                      theChar;
       switch (eventPtr->what)
       ł
               case mouseDown:
                      HandleMouseDown(eventPtr);
                      break:
               case mouseUp:
                      HandleMouseUp(eventPtr);
                      break:
               case keyDown:
                      theChar = eventPtr->message & charCodeMask;
                      if((eventPtr->modifiers & cmdKey) != 0)
                             HandleMenuChoice(MenuKey( theChar));
                      else
                             HandleKeyIn( theChar );
                      break;
               case updateEvt:
                      DoUpdate( eventPtr);
                      break:
/*
               case activateEvt:
                      becomingActive = ((eventPtr->modifiers &
                                                      activeFlag) ==
                                                      activeFlag);
                      DoActivate((WindowPtr)eventPtr->message,
                                            becomingActive);
                      break;*/
       }
3
                            .....*/
   -----HandleNull-----+/
/*-
       HandleNull(void)
void
{
                              numGPSPoints;
       int
       int
                              numDataPoints;
       int
                              GPSbuff;
                              numCharOut, numCharIn, numCharInOld;
       long
                              addressBuf[bufferSize];
       char
                              *tok;
       char
       char
                              *timeOfRx;
                              *latitude;
       char
                              *longitude;
       char
                              +HDOP;
       char
                              *delim=" ,";
       char
                              *end;
       char
```

int	i;
unsigned long int	timeVal;
double	latVal,longVal,HDOPVal;
double	cosfact;
unsigned long	t_mu;
long	maxtime;
Str255	numstr;
char	*lattest="1234.89";
double	lattestd, d1;
long	lattestdec,lattestr;
double	timemod;
if (gDataScan == true)	
{	

/*---> use this part when the GPS receiver is available

•/

```
numCharOut=5L;
FSWrite(gASerRefOut, &numCharOut, "#GPS ");
SerGetBuf(gASerRefIn,&numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 9L)
{
       SerGetBuf(gASerRefIn,&numCharIn);
       if(TickCount() > maxtime) break;
}
FSRead(gASerRefIn,&numCharIn,&addressBuf);
numCharOut=2L;
FSWrite(gASerRefOut, &numCharOut, "?L");
SerGetBuf(gASerRefIn,&numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 55L)
{
       SerGetBuf(gASerRefIn,&numCharIn);
       if(TickCount() > maxtime) break;
FSRead(gASerRefIn,&numCharIn,&gGPSBuffer);
numCharOut=5L;
FSWrite(gASerRefOut, &numCharOut, "#PTR ");
SerGetBuf(gASerRefIn,&numCharIn);
maxtime=TickCount()+20L;
while(numCharIn < 9L)
{
       SerGetBuf(gASerRefIn,&numCharIn);
       if(TickCount() > maxtime) break;
}
FSRead(gASerRefIn,&numCharIn,&addressBuf);
numDataPoints=TalkSail('-');
```

```
if(numDataPoints > 5)
                {
                        gPulseCounter++;
                        tok=strtok(gGPSBuffer,delim);
                        timeOfRx=strtok(NULL,delim);
                        latitude=strtok(NULL,delim);
                        tok=strtok(NULL,delim);
                        longitude=strtok(NULL,delim);
                        tok=strtok(NULL,delim);
                        tok=strtok(NULL,delim);
                        tok=strtok(NULL,delim);
                        HDOP=strtok(NULL,delim);
                        timeVal=strtoul(timeOfRx,&end,10);
                        latVal=strtod(latitude,&end);
                        longVal=strtod(longitude,&end);
                        HDOPVal=strtod(HDOP,&end);
                        if (HDOPVal < 10.0)
                        {
                                if (gstarter == true)
                                 {
                                         t mu=HandleDataIn(numDataPoints);
                                         gtime2=DecTimeToSec(timeVal);
                                         gX2=0.0;
                                         gY2=0.0;
                                         if (greflag == true)
                                         {
                                                 gYref=LatToY(latVal);
                                                 gYFact=cos((gYref/(1853.2*60.0))*kpi/180.0);
                                                 gXref=LongToX(longVal,gYFact);
                                                 greflag=false;
                                         }
                                         gstarter=false;
                                 }
                                 else
                                 {
                                         t_mu=HandleDataIn(numDataPoints);
/*---> use this if GPS available to see if fixes are 2 sec apart
                                         if(DecTimeToSec(timeVal) != gtime2-2UL)
                                         if(DecTimeToSec(timeVal) != gtime2)
                                         {
                                                 gstarter=true;
                                         }
                                         else
                                         {
```

gtime1=gtime2; gtime2=DecTimeToSec(timeVal);

+/

gX1=gX2;gX2=LongToX(longVal,gYFact)-gXref; gY1=gY2; gY2=LatToY(latVal)-gYref; //---> make up data to test program gw[gi]=gxold+cos(0.00515*gj)*5.14778; gw[gi+1]=gyold+sin(0.00515*gj)*5.14778; gxold=gw[gi]; gyold=gw[gi+1]; gj=gj+1.0; d1=sqrt((gxoid-1000)*(gxoid-1000) +(gyold-2000)*(gyold-2000)+3000*3000); timemod=d1/1.5; while(timemod > 2000.0) timemod=timemod-2000.0; gw[gi+2]=timemod; //---> end of simulated data /*--->use this if GPS available gw[gi]=(1.0-t_mu/((gtime2-gtime1)*1000.0)*gX1 +gX2; gw[gi+1]=(1.0-t_mu/((gtime2-gtime1)*1000.0)*gY1 +gY2; gw[gi+2]=t_mu; */ gi=gi+3L; $if(gi \ge 3L^*(kStep^*kNumExp+1L))$ trackerStart=true; if(gi >= 3L*kStep*(kNumExp+1L)) { gi=0L; gDataWrap=true; } if((trackerStart == true) || (gDataWrap == true)) £ tracker(gnumExp); } } } } else { t_mu=HandleDataIn(numDataPoints);

```
gstarter=true;
                  }
            }
      }
}
                    ______
/+
/*-----DecTimeToSec-----*/
unsigned long DecTimeToSec(unsigned long timeVal)
{
      unsigned long hr, min, sec, timeSec;
      hr=timeVal/10000UL;
      min=(timeVal-hr*10000UL)/100UL;
      sec=timeVal-hr*10000UL-min*100UL;
      timeSec=hr*3600UL+min*60UL+sec;
      return(timeSec);
}
 **
/*-----LongToX-----*/
double
           LongToX( double longVal, double cosfactor)
{
      long double
                  deg, min, X;
      deg=floor(longVal/100.0);
      min=(longVal-deg*100.0);
      X=(deg*60.0+min)*1853.2*cosfactor;
      return(X);
}
               /*-----LatToY-----*/
double
           LatToY(double latVal)
{
      long double
                  deg, min, Y;
      deg=floor(latVal/100.0);
      min=(latVal-deg*100.0);
      Y = (deg^{*}60.0 + min)^{*}1853.2;
      return(Y);
```

```
}
   */
/#.
     -----HandleMouseDown-----+/
/*---
void
      HandleMouseDown(EventRecord *eventPtr)
{
                  whichWindow;
      WindowPtr
      GrafPtr
                  oldPort:
      short
                  thePart;
                  menuChoice;
      long
      thePart = FindWindow(eventPtr->where, &whichWindow);
      switch(thePart)
      {
            case inMenuBar:
                  menuChoice = MenuSelect( eventPtr->where );
                  HandleMenuChoice( menuChoice );
                  break:
            case inSysWindow:
                   SystemClick(eventPtr, whichWindow);
                  break:
            case inContent:
                  SetPort(whichWindow);
                  GlobalToLocal( &eventPtr->where);
                  break;
            case inDrag:
                  DragWindow(whichWindow, eventPtr->where,
                                     &screenBits.bounds);
                  break:
            case inGoAway:
                  gDone = true;
                  break;
      }
}
         /*-----HandleMouseUp------+/
void
      HandleMouseUp(EventRecord *eventPtr)
{
      // Put some function in here
ł
                 */
/*-----HandleMenuChoice-----*/
void
      HandleMenuChoice(long menuChoice)
Ł
      short
                  menu;
```

```
short
                      item;
       if (menuChoice != 0)
       {
              menu=HiWord(menuChoice);
              item=LoWord(menuChoice);
              switch(menu)
               {
                      case mApple:
                             HandleAppleChoice(item);
                             break;
                      case mFile:
                             HandleFileChoice(item);
                              break:
                      case mAttenuator:
                              HandleAttenuator(item);
                              break:
                      case mBaud:
                             HandleBaud(item);
                              break;
                      case mSignal:
                             HandleSignal(item);
                             break;
              }
              HiliteMenu(0);
       }
                           */
/+.
/*-----HandleAppleChoice-----*/
void
       HandleAppleChoice( short item )
{
       MenuHandle
                              appleMenu;
       Str255
                              accName;
       short
                              accNumber;
       switch(item)
       {
               case iAbout:
                      NoteAlert(kBaseResID,nil);
                      break;
               default:
                      appleMenu = GetMHandle(mApple);
                      GetItem(appleMenu, item,accName);
                      accNumber=OpenDeskAcc(accName);
                      break;
       }
/+
                                                  _*/
```

}

}

```
203
```

```
/*-----HandleFileChoice-----+/
void
       Haid 'FileChoice(short item)
ł
       switch(item)
       Ł
              case iQuit:
                     gDone = true;
                     break;
       }
}
                /*-----HandleAttenuator-----*/
       HandleAttenuator(short item)
void
{
       MenuHandle
                     menuHandle;
                     numCharOut, numCharIn;
       long
       char
                     attenBuff[10], addressBuf[10];
       numCharOut=5L;
       FSWrite(gASerRefOut, &numCharOut, "#PTR ");
       SerGetBuf(gASerRefIn,&numCharIn);
       while(numCharIn < 9L)
       {
              SerGetBuf(gASerRefIn,&numCharIn);
       }
       FSRead(gASerRefIn,&numCharIn,&addressBuf);
       numCharOut=2L;
       numCharIn=6L;
       menuHandle=GetMHandle(mAttenuator);
       CheckItem(menuHandle,gLastAttn,false);
       CheckItem(menuHandle,item,true);
       gLastAttn=item;
       switch(item)
       {
              case iAuto:
                     FSWrite(gASerRefOut, &numCharOut, "AA");
                     break;
              case i0dB:
                     FSWrite(gASerRefOut, &numCharOut, "A0");
                     break:
              case i3dB:
                     FSWrite(gASerRefOut, &numCharOut, "A1");
                     break;
              case i9dB:
                     FSWrite(gASerRefOut, &numCharOut, "A2");
                     break;
```

```
case i12dB:
                      FSWrite(gASerRefOut, &numCharOut, "A3");
                      break:
               case i18dB:
                      FSWrite(gASerRefOut, &numCharOut, "A4");
                      break;
               case i24dB:
                      FSWrite(gASerRefOut, &numCharOut, "A5");
                      break:
               case i30dB:
                      FSWrite(gASerRefOut, &numCharOut, "A6");
                      break;
       FSRead(gASerRefIn, &numCharIn, attenBuff);
}
                                 •/*/
11
        -----HandleBaud-----+/
/*_
       HandleBaud(short item)
void
{
       MenuHandle
                      menuHandle:
       long
                      numCharOut, numCharOutr, numCharIn;
       int
                      serConfig;
       OSErr
                      resetErrIn, resetErrOut;
       char
                      inBuff[8];
       SerStaRec
                      serialStatusOut;
       numCharOut=8L;
       menuHandle=GetMHandle(mBaud);
       CheckItem(menuHandle,gLastBaud,false);
       CheckItem(menuHandle,item,true);
       gLastBaud=item;
       switch(item)
       {
               case i300:
                      FSWrite(gASerRefOut, &numCharOut, "#000030C");
                      gserConfig=baud300+data8+stop10+noParity;
                      break;
               case i600:
                      FSWrite(gASerRefOut, &numCharOut, "#0000600");
                      gserConfig=baud600+data8+stop10+noParity;
                      break;
               case i1200:
                      FSWrite(gASerRefOut, &numCharOut, "#0001200");
                      gserConfig=baud1200+data8+stop10+noParity;
                      break;
               case i2400:
                      FSWrite(gASerRefOut, &numCharOut, "#0002400");
                      gserConfig=baud2400+data8+stop10+noParity;
```

```
break:
               case i4800:
                       FSWrite(gASerRefOut, &numCharOut, "#0004800");
                       gserConfig=baud4800+data8+stop10+noParity;
                       break:
               case i9600:
                       FSWrite(gASerRefOut, &numCharOut, "#0009600");
                       gserConfig=baud9600+data8+stop10+noParity;
                       break;
       }
       SerStatus(gASerRefOut,&serialStatusOut);
       while ((serialStatusOut.rdPend != 0) || (serialStatusOut.wrPend !=0))
       {
               SerStatus(gASerRefOut,&serialStatusOut);
       }
       FSRead(gASerRefIn, &numCharOut, &inBuff);
       resetErrOut=SerReset(gASerRefOut,gserConfig);
       resetErrIn=SerReset(gASerRefIn,gserConfig);
                                                              // Set the protocal
               if ((resetErrIn ! ....Frr) || (resetErrOut != noErr))
               {
                       SysBeep(10);
                       ScrollDisplay();
                       DrawString("\pProblem setting the serial protocal.");
               }
}
                          .....*/
/*------HandleSignal------*/
       HandleSignal(short item)
void
Ł
                       periodData="\p!M52 ";
       Str255
       Str255
                       numMaxData="\p!M63 ";
       Str255
                       windowData="\p!M74 ";
       char
                       hexChar;
                       numCharOut, numCharIn;
       long
                       inbuff[30], outbuff[20], addressBuf[10];
       char
       int
                       cr[1] = \{13\};
                       radix, hexDec;
       int
       short
                       i;
       int
                       period, numMax, window;
       SerStaRec
                       serialStatusOut;
       numCharOut=5L;
       FSWrite(gASerRefOut, &numCharOut, "#PTR ");
       SerGetBuf(gASerRefIn,&numCharIn);
       while(numCharIn < 9L)
        ł
               SerGetBuf(gASerRefIn,&numCharIn);
```

} FSRead(gASerRefIn,&numCharIn,&addressBuf);

switch(item)

{

```
case iPeriod:
       gPeriod=HandleDialog(kPeriodDialog);
       period=gPeriod;
       for (i=0;i < k16Bit; i++)
       Ł
               radix=Power(kHexBase,k16Bit-1-i);
               hexDec=period/radix;
               hexChar=DecIntToHexChar(hexDec);
               periodData[1+i+periodData[0]]=hexChar;
               period=period-hexDec*radix;
        }
        periodData[periodData[0]+k16Bit+1]=cr[0];
        periodData[0]=periodData[0]+k16Bit+1;
        for (i=0;i<periodData[0];i++)
        {
                outbuff[i]=periodData[i+1];
        ł
        numCharOut=periodData[0];
        break;
case iNumMax:
        gNumMax=HandleDialog(kNumMaxDialog);
        numMax=gNumMax*2;
        for (i=0;i < k8Bit; i++)
         ł
                radix=Power(kHexBase,k8Bit-1-i);
                hexDec=numMax/radix;
                hexChar=DecIntToHexChar(hexDec);
                numMaxData[1+i+numMaxData[0]]=hexChar;
                numMax=numMax-hexDec*radix;
         }
         numMaxData[numMaxData[0]+k8Bit+1]=cr[0];
         numMaxData[0]=numMaxData[0]+k8Bit+1;
         for (i=0;i<numMaxData[0];i++)
         {
                 outbuff[i]=numMaxDats[i+1];
         }
         numCharOut=numMaxData[0];
         break;
 case iWindow:
         gWindow=HandleDialog(kWindowDialog);
         window=gWindow;
         for (i=0;i < k16Bit; i++)
          Ł
                 radix=Power(kHexBase,k16Bit-1-i);
                 hexDec=window/radix;
```

```
hexChar=DecIntToHexChar(hexDec);
                            windowData[1+i+numMaxData[0]]=hexChar;
                            window=window-hexDec*radix;
                     }
                     windowData[windowData[0]+k16Bit+1]=cr[0];
                     windowData[0]=windowData[0]+k16Bit+1;
                     for (i=0;i<windowData[0];i++)
                     {
                            outbuff[i]=windowData[i+1];
                     }
                     numCharOut=windowData[0];
                     break;
       FSWrite(gASerRefOut,&numCharOut,&outbuff);
       while (1 == 1)
       {
              SerGetBuf(gASerRefIn,&numCharIn);
              FSRead(gASerRefIn, &numCharIn, &inbuff);
              if(inbuff[numCharIn-1L] == 03) break;
       }
}
                         -----*/
/*-----DecIntToHexChar-----*/
              DecIntToHexChar(int decimal)
int
{
       int
              hexChar;
       if ((decimal >= 0) \& (decimal < 10))
              hexChar=48+decimal;
       if ((decimal >= 10) & (decimal < 16))
              hexChar=55+decimal;
       return(hexChar);
}
                      •----•
1
/*-----ConcatString-----*/
       ConcatString(Str255 str1, Str255 str2)
void
{
              i;
       short
       for(i=str1[0];i<str2[0]+str1[0];i++)
       {
              str1[i+1]=str2[i-str1[0]+1];
```

```
}
str1[0]=i;
}
/•------*/
```

```
-----HandleDialog------
                                                          .*/
/•
unsigned long
                        HandleDialog(int dialogRes)
{
        WindowPtr
                        window:
        DialogPtr
                        dialog;
        Boolean
                        dialogDone;
        Handle
                        textItemHandle;
        Handle
                        okItemHandle;
        short
                        itemType, itemHit;
        Rect
                        itemRect;
        long
                        itemNum;
        unsigned long
                        itemNumU;
        window=FrontWindow();
        dialog=GetNewDialog(dialogRes,nil,kMoveToFront);
        ShowWindow(dialog);
        SetPort(dialog);
/*
        SetDialogDefaultItem(dialog, ok);
        SetDialogCancelItem(dialog, cancel);
        SetDialogTracksCursor(dialog, true);
*/
        GetDItem(dialog, iMessageText, &itemType,
                                &textItemHandle, &itemRect);
        GetDItem(dialog, ok, &itemType, &okItemHandle,
                                &itemRect);
        SellText(dialog, iMessageText, kMinTextPosition, kMaxTextPosition);
        dialogDone=false;
        while( ! dialogDone)
        {
                GetIText(textItemHandle, &gItemText);
                ModalDialog(nil, &itemHit);
                switch(itemHit)
                {
                        case ok:
                        case cancel:
                                dialogDone=true;
                                break;
                }
        }
```

DisposeDialog(dialog);

```
SelectWindow(window);
       SetPort(window);
       StringToNum(gItemText, &itemNum);
       itemNumU=itemNum;
       return(itemNumU);
                            /*-----
        -----HandleKeyIn-----
                                                   HandleKeyIn(char theChar)
void
       int
                      bufferLength, i;
       RgnHandle
                      gtempRgn;
       long
                      numCharOut, numCharIn;
       char
                      addressBuf[10];
       gtempRgn = NewRgn();
       switch(theChar)
       {
               case 'W':
                      gDataScan=false;
                      SelectWindow(gTerminalWind);
                      SetPort(gTerminalWind);
                      DrawString("\pW");
                      ScrollDisplay();
                      DrawString("\p:");
                      break;
               case 'K':
                      gDataScan=false;
                      SelectWindow(gTerminalWind);
                      SetPort(gTerminalWind);
                      numCharOut=5L;
                      FSWrite(gASerRefOut, &numCharOut, "#PTR ");
                      SerGetBuf(gASerRefIn,&numCharIn);
                      while(numCharIn < 9L)
                      {
                              SerGetBuf(gASerRefIn,&numCharIn);
                      }
                      FSRead(gASerReiin,&numCharIn,&addressBuf);
                      bufferLength=TalkSail('P');
                      DisplayString(bufferLength);
                      gi=0L;
                      break;
               case '-':
                      gDataScan=true;
                      SelectWindow(gWetPaperWind);
                      SetPort(gWetPaperWind);
```

}

{

```
for (i=0; i < 10; i++)
                      {
                              ScrollDataScan();
                      }
                      numCharOut=5L;
                      FSWrite(gASerRefOut, &numCharOut, "#PTR ");
                      SerGetBuf(gASerRefIn,&numCharIn);
                      while(numCharIn < 9L)
                      {
                              SerGetBuf(gASerRefIn,&numCharIn);
                      ł
                      FSRead(gASerRefIn,&numCharIn,&addressBuf);
                      bufferLength=TalkSail('O');
                      bufferLength=TalkSail(theChar);
                      break;
               default:
                      SelectWindow(gTerminalWind);
                      SetPort(gTerminalWind);
                      bufferLength=TalkSail(theChar);
                      DisplayString(bufferLength);
                      break;
       }
}
         /*
/*-----HandleDataIn-----*/
unsigned long
                      HandleDataIn(int numDataPoints)
{
       int
                      i, j;
       char
                      max[8][4], time[8][4];
       unsigned
                      timeInt[8], maxInt[8];
       unsigned long
                      timeLong;
       Str255
                      timeOfMaxString;
       unsigned long
                      drawTime, dtemp, horizontalPosit;
       float
                      fraction;
       Str255
                      numpixel, horstring;
       for (j=0;j<gNumMax;j++)
       Ł
               for (i=0;i<4;i++)
               {
                      max[j][i]=gDataBuffer[8*j+4-i];
                      time[j][i]=gDataBuffer[8*j+8-i];
               }
               timeInt[j]=0;
               maxInt[j]=0;
               for(i=0;i<4;i++)
               {
```

```
timeInt[j]=timeInt[j]+HexCharToInt(time[j][i],i);
                     maxInt[j]=maxInt[j]+HexCharToInt(max[j][i],i);
              }
       }
       for (i=0;i < gNumMax; i++)
       {
              drawTime=(timeInt[i]*(ghorizontalPixels-8UL))/gPeriod;
              SetPort(gWetPaperWind);
              horizontalPosit=drawTime+kLeftMargin;
              PenNormal();
              MoveTo(horizontalPosit,gDataRowStart);
              Line(0,0);
       }
       ScrollDataScan();
       timeLong=timeInt[0];
       return(timeLong);
}
       •....•
/#
/*-----HexCharToInt-----*/
              HexCharToInt(char Bite,int exponent)
unsigned
Ł
       unsigned
                     value;
       if ((Bite > 47) & (Bite < 58))
                     value=(Bite-48)*Power(kHexBase,exponent);
       if ((Bite > 64) & (Bite < 71))
                     value=(Bite-55)*Power(kHexBase,exponent);
       return(value);
}
        /+
      -----TalkSail-----*/
/* ...
              TalkSail(char theChar)
int
{
                     numCharOut, numCharIn, startTime, maxTime;
       long
       OSErr
                     serOutErr, serInErr;
       char
                     inBuff[bufferSize],DataBuffer[bufferSize],inChar;
       int
                     i, start;
       SerStaRec
                     serialStatusIn, serialStatusOut;
       Str255
                     startString;
```

numCharOut=1L;

```
serOutErr=FSWrite(gASerRefOut, &numCharOut, &theChar);
               if (serOutErr != noErr)
               {
                       SysBeep(10);
                       DrawString("\pProblem sending the character out.");
                       ScrollDisplay();
                       DrawString("\p:");
               }
       SerStatus(gASerRefOut,&serialStatusOut);
       while ((serialStatusOut.rdPend != 0) || (serialStatusOut.wrPend !=0))
       {
               SerStatus(gASerRefOut,&serialStatusOut);
       }
       SerStatus(gASerRefIn,&serialStatusIn);
       while(serialStatusIn.rdPend != 0)
                       SerStatus(gASerRefIn,&serialStatusIn);
       start=0;
       startTime=TickCount();
       maxTime=startTime+20L;
       while (1 == 1)
        {
               SerGetBuf(gASerRefIn,&numCharIn);
               serInErr=FSRead(gASerRefIn, &numCharIn, &inBuff);
                       if (serInErr != noErr)
                       {
                               SysBeep(10);
                               DrawString("\pProblem receiving characters.");
                               ScrollDisplay();
                               DrawString("\p:");
                       }
               memmove(&gDataBuffer[start],&inBuff,numCharIn);
               start=start+LoWord(numCharIn);
               if(inBuff[numCharIn-1L] == 03) break;
               if((start < 2) & (TickCount() > maxTime)) break;
        }
       return(start);
                         ·____
/*-----DisplayString------*/
               DisplayString(int numDataPoints)
void
       int
               i;
        for (i=0;i < numDataPoints ;i++)
        {
```

}

{

```
switch(gDataBuffer[i])
              Ł
                     case 03:
                            break:
                     case 13:
                            {
                                   if (gDataBuffer[i+1] == 10)
                                   {
                                          ScrollDisplay();
                                          i=i+1;
                                   }
                                   break;
                            }
                     case 10:
                            {
                                   if (gDataBuffer[i+1] == 13)
                                   {
                                          ScrollDisplay();
                                          i=i+1;
                                   }
                                   break;
                            }
                     default:
                            DrawChar(gDataBuffer[i]);
              }
       }
}
                          .....*/
/1
/*-----ScrollDisplay-----*/
void
       ScrollDisplay(void)
{
                     tempRgn;
       RgnHandle
                     window;
       WindowPtr
       window = FrontWindow();
       tempRgn = NewRgn();
       ScrollRect(&window->portRect, kHorizontalOffset,
                            -kRowHeight, tempRgn);
       DisposeRgn(tempRgn);
       MoveTo(kLeftMargin, gRowStart);
}
                              •----*
/•
/*-----ScrollDataScan-----*/
void
       ScrollDataScan(void)
{
       RgnHandle
                     tempRgn;
```

```
WindowPtr
                    window;
      window = FrontWindow();
      tempRgn = NewRgn();
      ScrollRect(&window->portRect, kHorizontalOffset,
                           -kDataScanHeight, tempRgn);
      DisposeRgn(tempRgn);
      MoveTo(kLeftMargin, gDataRowStart);
}
                        •/-----+/
/*-----DoUpdate-----*/
void
      DoUpdate(EventRecord *eventPtr)
{
      WindowPtr
                           window;
      window = (WindowPtr)eventPtr->message;
      BeginUpdate(window);
      // put some update info in here
      EndUpdate(window);
}
                      -----*
/*-----Power-----*/
             Power(int base, int exponent)
int
{
       int
                    i, p;
       p=1;
       for (i=1; i \le exponent; ++i)
             p=p*base;
       return(p);
}
                      /*
                           numExp)
             tracker(long
void
{
       int
                    i, j;
                    nextIteration, noUpdate=0, numIterations=0;
       int
                    u, index1, index2;
       long
                    f, Cs=1.5;
       double
                    theta[kParameters] = \{0.0, 1000.0, -2500\};
       double
```

xvar, yvar, tvar, V[kNumMeas];

stopval=1.0, epsilon=0.1, epsilonc;

term;

double double

double

```
double
                D[kParameters][kParameters];
                Dinv[kParameters][kParameters];
double
double
                dtheta[kParameters]=\{0.0, 0.0, 0.0\};
double
                dthetaSum[kParameters]=\{0.0, 0.0, 0.0\};
double
                Z0=0.0, Z1;
double
                d1_x, d1_y, d_z, d1;
double
                d2_x, d2_y, d2;
                g[kNumExp+1], g1[kNumExp+1];
double
double
                dthetaVec;
double
                x1, x2, y1, y2;
double
                lamda1, lamda2;
double
                feas1, feas2, feas3, rhomax;
                nextIter=true;
Boolean
double
                 *e, *a, *b, *c, *lamda;
double
                 *wtrue;
double
                 *dwtrue;
double
                 *wmeas;
Str255
                 numstr, thetaString;
                 thestring;
long
                 maxR=5000.0, maxD=-5000.0, minD=-1.0;
double
wtrue = calloc(3L*(kStep*kNumExp+1),sizeof(double));
if(wtrue == NULL)
{
        DrawString("\pCan't allocate memory for data collection!!!");
        abort();
}
wmeas = calloc(3L*(kStep*kNumExp+1),sizeof(double));
if(wmeas == NULL)
{
        DrawString("\pCan't allocate memory for data collection!!!");
        abort();
}
dwtrue = calloc(3L*(kStep*kNumExp+1),sizeof(double));
if(dwtrue == NULL)
{
         DrawString("\pCan't allocate memory for data collection!!!");
         abort();
}
e = calloc(kNumExp*kNumMeas,sizeof(double));
if (e == NULL)
{
         DrawString("\pCan't allocate memory for data collection!!!");
         abort();
a = calloc(kNumExp*kNumMeas,sizeof(double));
if (a == NULL)
{
         DrawString("\pCan't allocate memory for data collection!!!");
```

```
abort();
}
b = calloc(kNumExp*kParameters,sizeof(double));
if (b == NULL)
{
        DrawString("\pCan't allocate memory for data collection!!!");
        abort();
}
c = calloc(kNumExp,sizeof(double));
if (c == NULL)
{
        DrawString("\pCan't allocate memory for data collection!!!");
        abort();
}
lamda = calloc(kNumExp,sizeof(double));
if (lamda == NULL)
{
        DrawString("\pCan't allocate memory for data collection!!!");
        abort();
}
f=1.0/sqrt(2.0);
for(u=0;u<kNumExp;u++)
Ł
        index1=3*(u*kStep+numExp);
        if(index1 >= 3*kStep*(kNumExp+1))
                index1=index1-3*kStep*(kNumExp+1);
        index2=3*((u+kNumExp/2)*kStep+numExp);
        if(index2 >= 3*kStep*(kNumExp+1))
                index2=index2-3*kStep*(kNumExp+1);
        for(i=0;i<3;i++)
        ł
                wtrue[kNumMeas*u+i]=gw[index1+i];
                wtrue[kNumMeas*u+i+3]=gw[index2+i];
                wmeas[kNumMeas*u+i]=gw[index1+i];
                wmeas[kNumMeas*u+i+3]=gw[index2+i];
        }
}
while(stopval > epsilon)
{
        numIterations++;
        for(i=0;i<kParameters;i++)
        {
                 dthetaSum[i]=0.0;
                 for (j=0;j<3;j++)
                         D[i][j]=0.0;
         }
        Z0=0.0;
```

```
for(u=0;u<kNumExp;u++)
        for(i=0;i<kNumMeas;i++)
        Ł
                 e[6^{u+i}]=wtrue[6^{u+i}]-wmeas[6^{u+i}];
        }
        dl_x=(wtrue[6^*u]-theta[0])^*(wtrue[6^*u]-theta[0]);
        d1_y=(wtrue[6^u+1]-theta[1])^*(wtrue[6^u+1]-theta[1]);
        d_z=theta[2]*theta[2];
        dl = sqrt(dl_x+dl_y+d_z);
        d2_x = (wtrue[6^u+3]-theta[0])^*(wtrue[6^u+3]-theta[0]);
        d2_y = (wtrue[6*u+4]-theta[1])*(wtrue[6*u+4]-theta[1]);
        d2=sqrt(d2_x+d2_y+d_z);
        g[u]=d1-d2-Cs^*wtrue[6^*u+2]+Cs^*wtrue[6^*u+5];
        a[6^{u+0}] = (wtrue[6^{u+0}]-theta[0])/d1;
        a[6^{u+1}] = (wtrue[6^{u+1}]-theta[1])/d1;
        a[6^{*}u+2] = -Cs;
        a[6^{u+3}] = -(wtrue[6^{u+3}]-theta[0])/d2;
        a[6^{u+4}] = -(wtrue[6^{u+4}]-theta[1])/d2;
        a[6^{u+5}] = Cs;
        b[3^{u+0}] = (wtrue[6^{u+3}]-theta[0])/d2-(wtrue[6^{u+0}]-theta[0])/d1;
        b[3^{u+1}]=(wtrue[6^{u+4}]-theta[1])/d2-(wtrue[6^{u+1}]-theta[1])/d1;
        b[3*u+2]=theta[2]/d1-theta[2]/d2;
        for(i=0;i<3;i++)
                 if(b[3*u+i] == 0.0)
                          b[3*u+i]=1e-6;
        c[u]=0.0;
        for(j=0;j<6;j++)
                 term = a[6^{u+j}]^{gV[j]} a[6^{u+j}];
        c[u]=c[u]+term;
        for(i=0;i<3;i++)
        {
                 for(j=0;j<3;j++)
                 {
                          D[i][j]=D[i][j]+(1/c[u])*(b[3*u+i]*b[3*u+j]);
                 }
        }
        dthetaVec=0.0;
        for(i=0;i<6;i++)
         Ł
                 dthetaVec=dthetaVec+a[6*u+i]*e[6*u+i];
        }
```

{

```
for(i=0;i<3;i++)
        ł
                dthetaSum[i]=dthetaSum[i]+(dthetaVec-g[u])*b[3*u+i]/c[u];
        Z0=Z0+g[u]*g[u]/c[u];
}
x1=D[1][1]-D[0][1]*D[1][0]/D[0][0];
x2=D[1][2]-D[0][2]*D[1][0]/D[0][0];
y_1=D[2][1]-D[0][1]*D[2][0]/D[0][0];
y_2=D[2][2]-D[0][2]*D[2][0]/D[0][0];
Dinv[2][2]=x1/(x1*y2-x2*y1);
Dinv[1][2]=-x2/(x1*y2-x2*y1);
Dinv[0][2]=-(D[0][1]*Dinv[1][2]+D[0][2]*Dinv[2][2])/D[0][0];
Dinv[2][1]=-y1/(x1*y2-x2*y1);
Dinv[1][1]=(1.0+x2*y1/(x1*y2-x2*y1))/x1;
Dinv[0][1]=-(D[0][1]*Dinv[1][1]+D[0][2]*Dinv[2][1])/D[0][0];
Dinv[2][0]=(x1/(x1*y2-x2*y1))*
                 (-D[2][0]/D[0][0]+(D[1][0]*y1)/(D[0][0]*x1));
Dinv[1][0]=-(D[1][0]/D[0][0]+x2*Dinv[2][0])/x1;
Dinv[0][0]=(1.0-(D[0][1]*Dinv[1][0]+D[0][2]*Dinv[2][0]))/D[0][0];
for(i=0;i<kParameters;i++)
{
        dtheta[i]=0.0;
        for(j=0;j<kParameters;j++)</pre>
         {
                 dtheta[i]=dtheta[i]+Dinv[i][j]*dthetaSum[j];
         }
}
for(u=0;u<kNumExp;u++)
Ł
         lamda1=0.0;
         for(i=0;i<3;i++)
         {
                 lamda l=lamda l+b[3*u+i]*dtheta[i];
         }
         lamda2=0.0;
         for(i=0;i<6;i++)
         {
                 lamda2=lamda2+a[6*u+i]*e[6*u+i];
         lamda[u] = (lamda l - lamda 2 + g[u])/c[u];
         for(i=0;i<6;i++)
         {
                  term=gV[i]*a[6*u+i];
```

//

```
dwtrue[6^{u+i}]=-e[6^{u+i}]-lamda[u]^{gV[i]^{a}[6^{u+i}];
        }
}
if(dtheta[0] >= 0.0)
        feas1=(kMaxR-theta[0])/dtheta[0];
if(dtheta[0] < 0.0)
        feas1=(kMaxR+theta[0])/(-dtheta[0]);
if(dtheta[1] \ge 0.0)
        feas2=(kMaxR-theta[1])/dthe:_[1];
if(dtheta[1] < 0.0)
        feas2=(klviaxR+theta[1])/(-dtheta[1]);
if(dtheta[2] \ge 0.0)
         feas3=(kMinD-theta[2])/dtheta[2];
 [(d:heta[?] < 0.0)]
         feas3=(kMaxD-theta[2])/dtheta[2];
rhomax=1.0;
if(feas! < rhomax)
         rhomax = feasl;
if(feas2 < rhomax)
         rhomax = feas2;
if(feas3 < rhomax)
         rhomax=feas3;
epsilon=(gtheta[0]+0.001)/1e6;
if(epsilon < 0)
         epsilon=-epsilon;
epsilonc=(gtheta[1]+0.001)/1e6;
if(epsilonc < 0)
         epsilonc=-epsilonc;
if(epsilonc < epsilon)
         epsilon=epsilonc;
epsilonc=(gtheta[2]+0.001)/1e6;
if(epsilonc < 0)
         epsilonc=-epsilonc;
if(epsilonc < epsilon)
         epsilon=epsilonc;
nextIteration=0;
 while(nextIteration == 0)
 {
         Z1=0.0;
         for(u=0;u<kNumExp;u++)</pre>
         {
                  d1_x=((wtrue[6*u]+rhomax*f*dwtrue[6*u])
                                    -(gtheta[0]+rhomax*f*dtheta[0]))*
                           ((wtrue[6*u]+rhomax*f*dwtrue[6*u])
                                    -(gtheta[0]+rhomax*f*dtheta[0]));
                  d1_y = ((wtrue[6^*u+1]+rhomax^*f^*dwtrue[6^*u+1]))
```

```
220
```

```
-(gtheta[1]+rhomax*f*dtheta[1]))*
                         ((wtrue[6*u+1]+rhomax*f*dwtrue[6*u+1])
                                 -(gtheta[1]+rhomax*f*dtheta[1]));
                d_z=(gtheta[2]+rhomax*f*dtheta[2])*(gtheta[2]+rhomax*f*dtheta[2]);
                dl=sqrt(dl_x+dl_y+d_z);
                d2_x = ((wtrue[6*u+3]+rhomax*f*dwtrue[6*u+3]))
                                 -(gtheta[0]+rhomax*f*dtheta[0]))*
                         ((wtrue[6*u+3]+rhomax*f*dwtrue[6*u+3])
                                 -(gtheta[0]+rhomax*f*dtheta[0]));
                d2_y = ((wtrue[6^*u+4]+rhomax^*f^*dwtrue[6^*u+4])
                                 -(gtheta[1]+rhomax*f*dtheta[1]))*
                         ((wtrue[6*u+4]+rhomax*f*dwtrue[6*u+4])
                                 -(gtheta[1]+rhomax*f*dtheta[1]));
                d2 = sqrt(d2_x+d2_y+d_z);
                g[u]=d1-d2
                         -Cs*(wtrue[6*u+2]+rhomax*f*dwtrue[6*u+2])
                         +Cs*(wtrue[6*u+5]+rhomax*f*dwtrue[6*u+5]);
                Z_1=Z_1+g_1[u]*g_1[u]/c[u];
        }
        if(noUpdate > 5) Z1=0.0;
        if(Z1 < Z0)
        {
                noUpdate=0;
                nextIteration=1;
                for(i=0;i<3;i++)
                {
                         theta[i]=theta[i]+rhomax*f*dtheta[i];
                         gPosition[i]=gPosition[i]+theta[i];
                for(u=0;u<kNumExp;u++)</pre>
                 {
                         for(i=0;i<6;i++)
                                 wtrue[6*u+i]=wtrue[6*u+i]
                                                  +rhomax*f*dwtrue[6*u+i];
                }
        }
        else
                rhomax=rhomax/2.0;
                noUpdate++;
MoveTo(50,150);
thestring=theta[0];
NumToString(thestring,&numstr);
DrawString(numstr);
DrawString("\p : ");
thestring=theta[1];
```

```
221
```

NumToString(thestring,&numstr);

}

```
DrawString(numstr);
        DrawString("\p : ");
        thestring=theta[2];
        NumToString(thestring,&numstr);
        DrawString(numstr);
        for(i=0;i<10;i++) ScrollDataScan();
        if(numIterations > 50)
                stopval=0.0;
        else
        {
                if(dtheta[0] < 0)
                        stopval=-dtheta[0];
                else
                        stopval=dtheta[0];
        }
}
if(numExp < (kNumExp+1)*kStep-1)
        gnumExp=gnumExp+1L;
else
        gnumExp=0L;
free(wtrue);
free(wmeas);
free(dwtrue);
free(e);
```

```
free(e);
free(a);
free(b);
free(c);
free(lamda);
```

}

References

- Allen, Mark R. and King, Louis A.. 1988. An adaptive Two Stage Kalman Structure for Passive Undersea Tracking. <u>IEEE Transactions on Acoustics, Speech, and</u> <u>Signal Processing</u>. Vol. 36, No 1, pages 3-9
- Bard, Yonathan. 1974. <u>Nonlinear Parameter Estimation</u>. New York: Academic Press Inc.
- Cheng, David K. 1983. <u>Field and Wave Electromagnetic</u>. Reading, Massachusetts: Addison-Wesley Publishing Company.
- Friedlander, Benjamin. 1987. A Passive Localization Algorithm and Its Accuracy. <u>IEEE Journal of Oceanic Engineering</u>. Vol. OE-12, No. 1, pages 234-245
- Horowitz and Hill. 1989. <u>The Art of Electronics</u>. New York: Cambridge University Press.
- Millman, Jacob. 1979. <u>Micro-Electronics: Digital and Analog Circuits and Systems</u>. New York: McGraw-Hill Book Company.
- Moose, Richard L. 1987. Passive Range Estimation of an Underwater Maneuvering Target. <u>IEEE Transactions on Acoustics, Speech, and Signal Processing</u>. Vol. ASSP-35, No 3, pages 274-2859
- Wenz, J. 1962. Ambient Noise Spectra. Journal of the Acoustical Society of America. Vol. 34, p 1936.
- Wilson, Oscar Bryan 1985. <u>An Introduction To The Theory and Design of Sonar</u> <u>Transducers</u> Monterey, California: Naval Postgraduate School.