		517m 41121449 318 118 1114 0188
2. A set of the se		
1		91 TO 31 MAR 93
4. TITLE AND SUBTITLE UUGM CODE DEVELOPMENT (U)		5
5 AUTHOR(S)	ga din da da interneta a si anga pananga sama	
Professor S. Eidelman		6775/DARPA F49620-89-C-0087
2 PERFORMING COLAMIZATION COLAMIZATION COLAMIZATION Science Applications International Corp 1710 Goodridge Drive, MS 2-3-1 McLean VA 22102	AEOSR-TR-	 3 - (3 - (3 - (3 - (3 - (3 - (3 - (3 -
AFOSR/NM 110 DUNCAN AVE, SUITE B115 BOLLING AFB DC 20332-0001		10 SPONSDRING MONITORING VGENCY REPORT NUMBER F49620-89-C-0087
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLI	MITED	126 DISTRIBUTION CODE
The primary objective of SAIC was to develop an unsthat dynamically adapts to the computed solution of of gasdynamics in two and three spatial dimensions. imposed on the algorithm were: robustness, accura adaptability. The main research and code development these objectives; extensive testing and code valid demonstrate the code's performance for realistic CFD in all flow regimes from subsonic to hypersonic development of the AUGUST code 'Adaptive Unstructur Triangles). AUGUST is implemented for solution of adaptive triangular or tetrahedral grids. The code Godunov method, allowing accurate and robust numeric gas dynamics. A new method was developed for Direct D AUGUST code was also implemented for multiphase, structured/unstructured version of the AUGUST code wa was extensively validated for a wide range of problement.	the time de Important acy, effici t effort wa idation eff problems. . The main red Grid Up Euler's ec fully implet al solution ynamic Grid multicompon s also deve	pendent Euler equations requirements that were ency, flexibility. and is focused on achieving ort was undertaken to The method is accurate n achievement was the owind Second Order for quations on dynamically ements the Second-Order of Euler equations of Refinement (DDR). The ent flows. A combined loped. The AUGUST code s proven to be a robust 15. NUMBER OF PAGES 255
that dynamically adapts to the computed solution of of gasdynamics in two and three spatial dimensions. imposed on the algorithm were: robustness, accura adaptability. The main research and code development these objectives; extensive testing and code validemonstrate the code's performance for realistic CFD in all flow regimes from subsonic to hypersonic development of the AUGUST code Adaptive Unstructure Triangles). AUGUST is implemented for solution of adaptive triangular or tetrahedral grids. The code Godunov method, allowing accurate and robust numeric gas dynamics. A new method was developed for Direct D AUGUST code was also implemented for multiphase, structured/unstructured version of the AUGUST code was was extensively validated for a wide range of mobilities. 14. SUBJECT TERMS 17. SECURITY CLASSIFICATION to provide the august of the	the time de Important acy, effici t effort wa idation eff problems. . The main red Grid Up Euler's ec fully implet al solution ynamic Grid multicompon s also deve	pendent Euler equations requirements that were ency, flexibility. and as focused on achieving ort was undertaken to The method is accurate n achievement was the owind Second Order for uations on dynamically ements the Second-Order of Euler equations of Refinement (DDR). The ent flows A combined loped. The AUGUST code s proven to be a robust 15. NUMBER OF PAGES 255 16. PRICE CODE

Standard F	201.00	298	26A	÷.
in in ped by	3.565	da 1	14.14	
- H 1 1 2				

UUGM CODE DEVELOPMENT

. .►

....

.

r

Science Applications International Corporation An Employee-Owned Company

e and the second states of the second se

••

UUGM CODE DEVELOPMENT

Accesio	n For		
NTIS DTIC Unanno Justific	TAB ounced		
By Distribution /			
Availability Codes			
Dist	Avail ar Spec		
A-1		110 	

DITC SHALLT CORPORATE 3

Post Office Box 1303, 1710 Goodridge Drive, McLean, Virginia 22102 (703) 821-4300

UUGM CODE DEVELOPMENT

SAIC Final Report #SAIC-93/1152

Final Report for work accomplished under AFOSR Contract #F49620-89-C-0087 during period 15 October 1990 through 30 November 1992

> Contributors: Shmuel Eidelman William Grossmann Isaac Lottati Xiaolong Yang Marty Fritts Adam Drobot Michael Kress Aaron Friedman

Prepared by: Science Applications International Corporation Applied Physics Operation 1710 Goodridge Drive, MS 2-3-1 McLean, VA 22102

Sponsored by Defense Advanced Research Projects Agency DARPA Order No. 6775 Monitored by AFOSR Under Contract No. F49620-89-C-0087

July 26, 1993

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

EXECUTIVE SUMMARY

This progress report documents the effort conducted at SAIC from 15 October 1990 through 31 May 1993, under DARPA and AFOSR contract #F49620-89-C-0087 entitled "UUGM Code Development".

Scope of Research

The primary objective of SAIC was to develop an unstructured grid algorithm and code that dynamically adapts to the computed solution of the time dependent Euler equations of gasdynamics in two and three spatial dimensions. Important requirements that were imposed on the algorithm were: robustness, accuracy, efficiency, flexibility, and adaptability. The main research and code development effort was focused on achieving these objectives; extensive testing and code validation effort was undertaken to demonstrate the code's performance for realistic CFD problems. The method is accurate in all flow regimes from subsonic to hypersonic.

Achievements

C

The main achievement was the development of the AUGUST code (Adaptive Unstructured Grid Upwind Second Order for Triangles). AUGUST is implemented for solution of Euler's equations on dynamically adaptive triangular or tetrahedral grids. The code fully implements the Second-Order Godunov method, allowing accurate and robust numerical solution of Euler equations of gas dynamics.

A new method was developed for Direct Dynamic Grid Refinement (DDR). This method allows grid refinement in arbitrary regions of the computational domain, using only one level of undirectness in the logical data structure. The DDR is an integral part of the AUGUST solver and allows manipulation of the grid as a part of the solution. The adapted grid is not only more refined in the adaptation regions of the flow but is also improved structurally due to a refinement algorithm.

The AUGUST code was also implemented for multiphase, multicomponent flows. We used a multiple-fluid description, where a separate set of conservation laws is used to describe every flow component. In our approach Lagrangian tracers are used to describe sparse or discrete flow components that do not form a continuum. Use of unstructured triangular grids allows adjustment of the grid resolution to the accuracy requirements in the flow subdomains.

A combined structured/unstructured version of the AUGUST code was also developed. Following this approach the unstructured adaptive grid is used only in the flow regions requiring adaptation or description of the complex geometry elements. The structured grid is used to simulate the larger part of the computational domain. This approach has allowed us to capitalize on the advantages of both structured and unstructured grid approaches. Using the structured/unstructured grid version of the

i

AUGUST code, we simulated the shock wave focusing problem for the reflector used for extracorporeal shock-wave lithotripsy. In this simulation, we showed that the solution smoothly transits through the interfaces between the grids, maintaining the same accuracy and resolution.

The AUGUST code was extensively validated for a wide range of problem: and has proven to be a robust tool. The code was initiated at the start of the UUGM project and has now evolved into a production code that is used for many applied problems. The list of applications includes potential flow past an ellipse, hypersonic flow past a flat plate, shock diffraction over single and double wedges, mine explosions under vehicles, pulsed detonation engines, shock focusing in air, and nonideal airburst in multiphase media. The code has shown the required robustness and insensitivity to the initial user specified grid. The number of nodes required to obtain a high-quality solution is significantly smaller than for structured grid codes. This is particularly true for transient problems with complicated flows having discontinuities.

It is important to note that the AUGUST code obtains a high resolution solution with no "knobs." The various flow regimes, except those requiring a different definition of boundary and initial conditions, were simulated using the same code.

ii

TABLE OF CONTENTS

1. INTRODUCTION	. 1
1.1 RECENT CFD DEVELOPMENT	. 1
1.2 UNSTRUCTURED MESHES IN COMPLEX GEOMETRIES	. 1
2. UUGM: UNIVERSAL CFD SIMULATION ENVIRONMENT	
2.1 MATHEMATICAL MODEL AND INTEGRATION ALGORITHM	
2.2 MULTIPHASE MULTICOMPONENT REACTIVE FLOW	. 9
2.3 DIRECT DYNAMIC REFINEMENT METHOD FOR UNSTRUC-	
TURED TRIANGULAR GRIDS	
2.4 STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS	. 16
2.5 THREE-DIMENSIONAL CAPABILITY	. 19
3. APPLICATIONS	
3.1 POTENTIAL FLOW OVER AN ELLIPSE	
3.2 HYPERSONIC FLOW PAST A FLAT PLATE	
3.3 SHOCK ON WEDGE WITH ADAPTIVE GRIDDING	
3.4 MINE EXPLOSION UNDER VEHICLE	
3.5 PULSED DETONATION ENGINE	. 36
3.6 SHOCK FOCUSING IN AIR	
3.7 NONIDEAL AIRBURST IN MULTIPHASE MEDIA	
3.8 FLOW IN THE SARL WIND TUNNEL	. 39
3.9 SHOCK ON DOUBLE WEDGE	. 42
3.10 SUPERSONIC SPRAY COATING DEVICES	
3.11 DUSTY FLOW OVER A CYLINDER	. 49
3.12 IMAGE PROCESSING	
3.13 DETONATION IN A MULTIPHASE MEDIUM	55
	~~
4. CONCLUSIONS	. 60
REFERENCES	61
ADDENIDIX As Code Description	
APPENDIX A: Code Description	

APPENDIX B: Listings

Ô

•

APPENDIX C: Copies of Publications

LIST OF ILLUSTRATIONS

Figure 2.1.1	Representative triangular cell in the mesh showing fluxes and	_
	projected values.	5
Figure 2.1.2	Density profile comparison between analytical results and results	
	obtained by applying the second-order Godunov algorithm using	
	structured or unstructured grids.	8
Figure 2.3.1	Illustration of the grid refinement process.	14
Figure 2.3.2	Illustration of the grid coarsening process.	15
Figure 2.4.1	A possible candidate configuration for hybrid structured/unstructured	
	domain decomposition.	18
Figure 2.4.2	Hybrid structured/unstructured grid used to simulate ellipsoidal	
	reflector, showing adaptation to curved boundaries.	18
Figure 2.5.1	An elongated tetrahedron can be refined using smaller tetrahedra that	
	are nearly regular.	20
Figure 2.5.2	Points used to define structure of vehicle.	21
Figure 2.5.3	Tetrahedral grid generated by Finite Octree method.	21
Figure 3.1.1	The grid used for simulating the flow over an ellipse.	24
Figure 3.2.1a	Grid for simulation of hypersonic flow over a flat plate.	25
	Second order solution for a flat plate, pressure contours. Mach = 32:	
•	5509 grid vertices: $P_{max} = 5.0 \times 10^4 Pa$, $P_{min} = 98.7 Pa$.	26
Figure 3.3.1a	Density contours at early time for shock in planar channel	
	$(M = 8.7, wedge angle = 27^{\circ}).$	27
Figure 3.3.1b		
	$(M = 8.7, wedge angle = 27^\circ).$	28
Figure 3 3 2a	Density contours at intermediate time for shock in planar channel	20
1 iguie 5.5.24	$(M = 8.7, wedge angle = 27^{\circ}).$	28
Figure 3.3.2b		20
Figure 5.5.20	$(M = 8.7, wedge angle = 27^{\circ}).$	29
Figure 2 2 2 0	Density contours at late time for shock in planar channel $\frac{1}{2}$	£7
rigule 5.5.5a	· ·	29
Figure 2.2.24	$(M = 8.7, wedge angle = 27^\circ).$	29
Figure 3.3.3b	-	20
T 241	$(M = 8.7, wedge angle = 27^{\circ}).$	30
Figure 3.4.1	Two views of interaction between mine blast and M925 cargo truck:	21
	pressure contours at $t = 0.574$ msec.	31
Figure 3.4.2	Blast – plow interaction: pressure contours in initial stage.	33
Figure 3.4.3	Blast - plow interaction: pressure contours in advanced stage.	33
Figure 3.4.4	Structural response of the plow to blast load:a) $t = 0$; b) $t = 200$	
	msec; c) $t = 400$ msec; d) $t = 600$ msec.	34
Figure 3.5.1	Pulsed detonation engine simulation: flow tracers.	35
Figure 3.6.1a	Hybrid structured/unstructured grid used for numerical simulation of	
	ellipsoidal reflector.	37
Figure 3.6.1b	A schematic drawing of the center cross section of the ellipsoidal	
	reflector.	37

۲

•

Figure 3.6.2	Pressure contours at time $t = 1.21 \times 10^{-6}$ sec showing the incident wave as reflected from the reflector wall.	38
Figure 3.6.3	Pressure contours at time $t = 8.41 \times 10^{-4}$ sec showing the stage at which the maximum focused pressure is obtained.	38
Figure 3.7.1	Formation of a radiative cloud. Multiphase simulation.	40
Figure 3.8.1	The unstructured grid used to simulate the SARL wind tunnel.	41
Figure 3.8.2	The pressure contours from the simulation of the SARL wind tunne	41
Figure 3.9.1	Experimental interferogram of a shock hitting a 45° corner at N [°] =	••
-	2.85.	42
Figure 3.9.2	Interaction of a Mach 8.7 planar shock wave with a 27° double ramp: Mach reflection stage.	43
Figure 3.9.3	Interaction of Mach 8.7 planar shock wave with a 27° double ramp: start of the diffraction stage.	44
Figure 3.9.4	Interaction of Mach 8.7 planar shock wave with a 27° double ramp:	
	shock diffraction stage.	45
Figure 3.10.1	The figure shows the initial computational grid for the jet spray	
	simulation demonstration. Shown are the nozzle, injection region and	
	target surface depicted as a flat plate with perforations, oriented	
	perpendicular to the mean spray flow. The boundary conditions used	
	for the sample simulation were: $V_g = 1000 \text{ m/sec}$, $\rho_g = 0.1 \text{ kg/m}^3$,	
	$T_g = 3500$ K at the inlet of the reactor nozzle; $V_g = 1500$ m/sec, ρ_g	
	$T_g = 3500$ K at the inlet of the reactor nozzle; $V_g = 1500$ m/sec, $\rho_g = 0.3$ kg/m ³ , $T_g = 1500$ K, $V_p = 1500$ m/sec, $T_p = 1500$ K, $N_p = 1500$	
	2000 at the inlet of the reactor nozzle.	46
Figure 3.10.2	Lagrangian marker particles are shown in color representing the	
-	evolution of injected particle temperature as a function of particle	
	position and time in the jet spray stream.	47
Figure 3.10.3	Gas temperature contours in the jet spray stream. The maximum	
Ū.	temperature is 3500°K and the minimum is 600°K.	48
Figure 3, 10,4	Gas density contours in the jet spray stream. The injected stream and	
	the main flow mix poorly. The diamond patterns describe the shock	
	wave pattern resulting from the flow's overexpansion.	48
Figure 3 10 5	Pressure contours in the jet spray stream. The diamond patterns	
1.80.0 3.10.3	show that supersonic flow is maintained near the vicinity of the target	
	surface.	48
Figure 3 11 1	Comparison for $M_s = 2.8$ pure-gas flow: (a) interferogram from	40
riguie 5.11.1	experiment; (b) density contours from present calculation.	50
Elemen 2 11 0		50
Figure 3.11.2	Density contours for the case $M_s = 2.8$, $\rho_p = 0.25$ kg/m ³ , $r_p = 10\mu m$	
	at two different times: (a) particle density at t_1 , (b) gas density at t_1 ;	51
	c) particle density at t_2 , (d) gas density at t_2 .	51
Figure 3.11.3	Density contours for the case $M_s = 2.8$, $\rho_p = 0.76$ kg/m ³ , for two	
	different particle sizes: (a) particle density and (b) gas density for $r_p =$	<i>p</i> .
	10 μ m; c) particle density and (d) gas density for $r_p = 50\mu$ m.	51
	Edge enhancement for a sinusoidal distribution without noise.	56
Figure 3.12.2	Edge enhancement for a sinusoidal distribution with 10% intensity	. .
	random noise.	54

v

Figure 3.12.3	Edge enhancement for a sinusoidal distribution with 50% intensity	
	random noise.	55
Figure 3.12.4	Edge enhancement for a sinusoidal distribution with 100% intensity	
	random noise.	55
Figure 3.13.1	Computational domain and boundary conditions.	57
Figure 3.13.2	Explosive initially localized in 2.5-cm layer at constant density of 100 kg/m ³ . Density in the cloud is 0.75 kg/m ³ . (a), (b), and (c) are gas	
	pressure, gas density, and particle density at 66 µsec, respectively.	-58
Figure 3.13.3	Particle density distributed in layer in accordance with the fourth power of height. Gas pressure, temperature, and particle density at	
	55 µsec, respectively.	59

E

vi

1. INTRODUCTION

1.1 RECENT CFD DEVELOPMENT

Computational fluid dynamics (CFD) development over the past twenty years has truly been outstanding. The recent CFD developments that are particularly important are: 1) advances in flow solvers in all the regimes of fluid flow (very low speed and subsonic flows, transonic flow, supersonic and hypersonic flows), 2) advances in unstructured adaptive gridding techniques and, 3) advances in chemical and particle kinetic modeling for fluid flows. Developments in graphics and visualization, construction of graphical user interfaces (GUIs) and advances in large database management have also played an important role in the scale and complexity of problems that can now be realistically simulated by CFD techniques. SAIC has been involved in all aspects of these developments and is on the forefront of CFD technology development.

DARPA, NASA, DNA and DOE have for the most part been the largest benefactors of CFD development, and each agency today is actively pursuing CFD applications to real problems. Full 3-D unsteady flows about military and commercial aircraft are routinely simulated to assess aerodynamic performance characteristics, and where it used to require several hundred hours of CRAY CPU time it now takes minutes to an hour on a supercomputer or a like time on workstations, depending on the specifics of the problem being solved. The U.S. Marine Corps' latest initiative in the development of blast (due to land mines) resistant vehicles is being pursued successfully with the aid of full 3-D CFD simulations of land mine blast effects on truck configurations. The CFD technology developed in SAIC's UUGM contract is playing a leading role in this Marine Corps effort (see Section 3.4). Many other such examples of improvements in CFD performance exist. In view of this, it is quite appropriate to begin to transition CFD technology into other disciplines that can take advantage of realistic CFD based simulation.

1.2 UNSTRUCTURED MESHES IN COMPLEX GEOMETRIES

Current emphasis in CFD calls for solutions of applied physical problems for complex realistic geometries.¹ In addition to the inherent difficulties in describing the details of the complex three-dimensional geometry, the flow fields usually have an inhomogeneous structure. Regions of rapid change of the flow functions and chemical reactions will be embedded in regions where the flow gradients are relatively small. Accurate simulations of flows in regions with strong gradients is key to the overall accuracy of physical, chemical and biological simulations. For this reason most of the software and hardware computational resources are defined by the accuracy requirements of these flow regions and geometry of the computational domain.

Early CFD research was almost entirely concerned with the formulation the mathematical models of the flow and methods of solution. Mesh generation was regarded as secondary and meshes were developed for specific cases. During this early period very

1

significant improvements were made in the methods of integration of the partial differential equations of gasdynamics. Presently, as a result of steady improvement in the various integration techniques, the advantages which could be gained by using better thow solvers have become limited. On the other hand substantial progress is anticipated to the areas of grid generation and algorithm development.²

Currently, most numerical simulations employ structured meshes compased of quadrilaterals in two dimensions or hexahedra in three dimensions. However, it has become evident that the quadrilateral structured grids cannot satisfy the requirements of large scale numerical simulations over complex geometries in three dimensions. The physics of the flow about a complete aircraft is extremely complex. Yet the flow in many distinct regions and regimes may be represented by fairly well-known physical theories. Vortices shed by lifting surfaces are confined to fairly thin wake regions. Exhaust plumes can be initially approximated by regular bounding surfaces. Flow disturbances due to shocks are confined to thin discontinuities. Boundary layers are restricted to near-wall regions. Each of these flow regions requires different theories, different resolution and different numerical algorithms. This diversity of computational requirements cannot be satisfied by the quadrilateral structured grids.

Recently proposed alternatives to quadrilateral grids use triangles in two dimensions and tetrahedra in three dimensions. For these grids the mesh will generally lose its structure, allowing a new degree of flexibility in treating complex geometries.^{3,4} Unstructured grids can relatively easily be adapted to follow flow features, thereby increasing the solution accuracy. The result has been the development of adaptive refinement techniques which have been used with great success for two dimensional simulations on unstructured triangular grids. These methods have resulted in the resolution of previously difficult details in the evolving flows over complex configurations.

However, it is not a trivial task to adapt this approach to three-dimensional simulations. One of the problems is the generation of the adaptive grid. Since the grid is constructed from the volume elements (tetrahedra) the moving front is made up of a surface of triangular faces. It should be noted that this moving front can and will change its shape during the computation as time evolves. It is necessary to take care when determining the intersections of planar faces, and to ensure that no overlapping of tetrahedra occurs.

2. UUGM: UNIVERSAL CFD SIMULATION ENVIRONMENT

The Ultimate Unstructured Grid Method (UUGM) represents a new approach to the computational domain discretization. The principal advantage of the method is most apparent for simulations of complicated flow regimes with physical and chemical processes over bodies with complex geometries in three dimensions.

The usual technique employed in regridding is called hierarchical dynamic refinement (H refinement). The idea here is to retain a history of the original grid and the

subdivisions needed to change it into the current grid, so that it is always possible to retrace these steps and get back to previous grids. While this feature is useful in modeling reversible processes, it is generally unnecessary, and it increases overhead costs. Our implementation (Direct Dynamic Refinement) is Markovian, in the sense that the way regridding is done depends only on the current grid and flow conditions.

The other distinguishing feature is the use of the Second-order Godunov method to solve the Euler equations of gasdynamics. The philosophy behind it is to treat the local values of the dependent variables at every point on the grid as initial conditions for a Riemann problem, and to use the resultant solution of that problem to calculate the fluxes of material, momentum, and energy from one cell to the rest. Previous implementations of this method were confined to structured meshes.

2.1 MATHEMATICAL MODEL AND INTEGRATION ALGORITHM

We consider a system of two-dimensional Euler equations written in conservation law form as

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0, \qquad (2.1)$$

where

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \end{vmatrix}, F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{vmatrix}, G = \begin{vmatrix} \rho v \\ \rho u v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{vmatrix}.$$

Here u, v are the x, y velocity vector components, p is the pressure, ρ is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is given by the equation of state,

$$p = (\gamma - 1) \left[e - \left(\frac{\rho}{2} \right) (u^2 + v^2) \right], \qquad (2.2)$$

where γ is the ratio of specific heats and is typically taken as 1.4 for air. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (2.1) can be written as

$$\frac{\partial U}{\partial t} + \nabla \cdot Q = 0, \qquad (2.3)$$

where Q represents the convective flux vector. Integrating Eq. (2.3) over space and using Gauss' theorem produces the expression

$$\frac{\partial}{\partial t} \int_{\Omega} U \, dA + \oint_{\partial \Omega} Q \cdot dI = 0, \qquad (2.4)$$

where dl = ndl, *n* is the unit normal vector in the outward direction, and *dl* is the element of length on the boundary of the domain. Here Ω is the domain of computation and $\partial \Omega$ is the boundary of this domain.

We seek a solution to the system of Eq. (2.1) in the computational domain, which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured grid (Refs. 5-8) to describe the curved boundary of the computational domain and areas that need increased local resolution; this covers a small part of the total computational domain. The largest area of the computational domain is decomposed by the structured grid. The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. 9-11, and the technique for the structured grid is described in Ref. 9. These numerical techniques apply some of the ideas that were introduced in Refs. 13-14. The structured and unstructured codes apply the center-based formulation, i.e., the primitive variables are defined in the center of the cell, which makes the cell the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second-Order Godunov method can be defined as follows:

1. Find the value of the gradient at the baricenter of the cell for each gasdynamic parameter U_i ,

2. Find the interpolated values of U at the edges of the cell using the gradient values;

3. Limit these interpolated values based on the monotonicity condition; 13

4. Subject the projected values to the characteristics constraints, 14

5. Solve the Riemann problem applying the projected values at the two sides of the edges;

6. Update the gas dynamic parameter U according to the conservation equations (1) applying to the fluxes computed and the current timestep.

As was recommended in Ref. 11, we prefer the version based on triangle centers over the vertex-based version of the code. For the same unstructured grid, a center-based algorithm will result in smaller control volumes than a vertex-based. In addition, for the Second-Order Godunov solver, implementation of the boundary conditions is more straightforward and accurate for the center-based algorithm than in the vertex-based version. These two factors, along with the effects of grid connectivity, strongly affect the algorithm accuracy and performance and are the main reasons for the superiority of the center-based version over the vertex version.

Equation (2.4) can be discretized for each element (cell) in the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^M Q_j^n \cdot n_j \Delta L_j, \qquad (2.5)$$

where A_i is the area of the cell; Δt is the marching timestep; U_i^n and U_i^{n+1} are the primitive variables at the center of the cell at time *n* and at the updated (n + 1)st timestep; Q_j is the value of the fluxes across the boundaries on the circumference of the cell where n_j is the unit normal vector to the boundary edge *j*, and ΔL_j is the length of the boundary edge *j*. The fluxes Q_i^n are computed applying the Second-Order Godunov algorithm, and Eq. (2.5) is used to update the physical primitive variables u_i according to computed fluxes for each marching timestep Δt . The marching timestep is subjected to the Courant-Friedrichs-Lewy (CFL) constraint.

Figure 2.1.1 Representative triangular cell in the mesh showing fluxes and projected values

To obtain second-order spatial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell edge, as shown in Fig. 2.1.1. The gradient is approximated by a path integral

$$\int_{\Omega} \nabla U_i^{\text{cell}} dA = \oint_{\partial \Omega} U_j^{\text{edge}} dl.$$
 (2.6)

The notation is similar to the one used for Eq. (2.5), except that the domain Ω is a single cell and U_i and U_j are values at the baricenter and on the edge respectively. The gradient is estimated as

$$\nabla U_i^{\text{cell}} = \frac{1}{A} \sum_{j=1}^3 U_j^{\text{edge}} \mathbf{n}_j \Delta L_j \qquad (2.7)$$

where U_{i}^{edge} is an average value representing the value of primitive variable for edge j.

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints.³ The monotonicity constraint ensures that the interpolated values do not create new extrema.

The monotonicity limiter algorithm can be written in the following form

$$U_{\text{proj}}^{\text{edge}} = U_i^{\text{cell}} + \phi \nabla U_i \cdot \Delta r$$
(2.8)

where Δr is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge. Here ϕ is the coefficient that limits the gradient ∇U_i .

First we compute the maximum and minimum values of the primitive variable in the *i*th cell and its three neighboring cells that share common edges (see Fig. 2.1.1):

$$\begin{array}{l} U_{\text{cell}}^{\max} = \max\left(U_{k}^{\text{cell}}\right) \\ U_{\text{cell}}^{\min} = \min\left(U_{k}^{\text{cell}}\right) \end{array} k = i, 1, 2, 3.$$

$$(2.9)$$

The limiter can be defined as

$$\phi = \min\left\{1, \phi_k^{ir}\right\}, k = 1, 2, 3 \tag{2.10}$$

where the superscript *lr* stands for left and right of the three edges (6 combinations altogether); ϕ_k^{lr} is defined by

$$\phi_{k}^{lr} = \frac{\left[1 + \operatorname{sgn}\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{\text{cell}}^{\text{max}} + \left[1 - \operatorname{sgn}\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{\text{cell}}^{\text{man}}}{2 \Delta U_{k}^{lr}}, \ k = 1, 2, 3 \quad (2.11)$$

where $\Delta U_{k}^{lr} = \nabla U_{i}^{lr} \cdot \Delta \mathbf{r}_{k}$ and

$$\Delta U_{\text{cell}}^{\max} = U_{\text{cell}}^{\max} - U_{i}^{\text{cell}} \\ \Delta U_{\text{cell}}^{\min} = U_{\text{cell}}^{\min} - U_{i}^{\text{cell}} \end{cases}$$
(2.12)

To obtain second-order accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one-dimensional characteristic predictor is applied to the projected values at the half timestep $t^n + \Delta t/2$. The characteristic predictor is formulated in the local system of coordinates for the one-dimensional Euler equation. We illustrate the implementation of

the characteristic predictor in the direction of the unit vector \mathbf{n}_{c} . The Euler equations for this direction can be written in the form

$$W_{t} + A(W)W_{nc} = 0;$$
 (2.13)

$$W = \begin{cases} \tau \\ u \\ p \end{cases}; \ A(W) = \begin{pmatrix} u & -\tau & 0 \\ 0 & u & \tau \\ 0 & \rho c^2 & u \end{pmatrix},$$
(2.14)

where $\tau = \rho^{-1}$, ρ denotes density, u, p are the velocity and pressure. The matrix A(W) has three eigenvectors (l#, r#) (l for left and r for right, where # stands for +, 0, -) associated with the eigenvalues $\lambda^+ = u + c$, $\lambda^- = u$, $\lambda^- = u - c$.

An approximation of the value projected to an edge, accurate to second order in space and time, can be written as

$$W_{i+\Delta r}^{n+1/2} \approx W_{i}^{n} + \frac{\Delta t}{2} \frac{\partial W}{\partial t} + \Delta r \frac{\partial W}{\partial r_{nc}}$$

$$\approx W_{i}^{n} + \left[\Delta r - \frac{\Delta t}{2} A \left(W_{i} \right) \right] \frac{\partial W}{\partial r_{nc}}.$$
(2.15)

An approximation to $W_{i+\Delta r}^{n+1/2}$ can be written as

$$W_{i+\Delta r}^{n+1/2} = W_i + \left(\Delta r_i - \frac{\Delta t}{2} \left(M_x M_n\right) n_c\right) \cdot \nabla W_i, \qquad (2.16)$$

where

$$\left(\mathbf{M}_{\mathbf{x}} \mathbf{M}_{\mathbf{n}} \right) = \begin{cases} \max \left(\lambda_{i}^{+}, 0 \right) & \text{for the cell on the left of the edge} \\ \min \left(\lambda_{i}^{-}, 0 \right) & \text{for the cell on the right of the edge}. \end{cases}$$
 (2.17)

The gradients applied in the process of computing the projected values at $t^{n} + \Delta t/2$ are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux $Q^{n+1/2}$ through the edge. The fluxes through the edges of triangles are then integrated (Eq. 2.5), thus giving an updated value of the variables at t^{n+1} . One of the advantages of this algorithm is that calculation of the fluxes is done over the largest loop in the system (the loop over edges) and can be vectorized or parallelized. This leads to an efficient algorithm.

We have carried out an extensive and painstaking series of tests in the course of developing and implementing the algorithm. Most of these used a standard benchmark, the exploding diaphragm or "Sod problem" (Fig. 2.1.2). In this problem two regions containing an ideal gas at different densities and pressure are separated by an infinitely thin interface (the diaphragm). A shock wave, a rarefaction wave, and a contact discontinuity propagate away from that point at different speeds when this diaphragm is instantaneously removed. The Riemann solution yields an analytical solution in terms of simple waves which can be compared with the numerical approximation.

We used this problem as a testbed to compare structured vs. unstructured grids, first-order vs. second-order Godunov schemes, schemes with and without limiters, etc. For example, Fig. 2.1.2 shows that the solution obtained with an unstructured grid is noticeably better than that obtained with a structured grid.

Figure 2.1.2 Density profile comparison between analytical results and results obtained by applying the second-order Godunov algorithm using structured or unstructured grids.

2.2 MULTIPHASE MULTICOMPONENT REACTIVE FLOW

Multiphase multicomponent reacting flows (MPMCRF) consist of material media (continua and particles) dispersed in a flow varying in space and time. Two basic approaches can be used to describe MPMCRFs, heterogeneous and homogeneous phase descriptions. For homogeneous mixtures one assumes that each mixture component occupies the same volume with other mixture components on an equal basis ($V_1=V_2=...=V_n=V$). This approach is justified for an interpenetrating mixture of gases or a dilute suspension of particles in a gas. In a heterogeneous description of a suspension, each component occupies only part of the global volume ($V_1+V_2+...+V_n=V$). Therefore in the mathematical description of the heterogeneous suspensions, in addition to the density of the i-th component ρ_i one needs to introduce the fractional volume of the components:

$$\phi_1 + \phi_2 + \dots \phi_N = 1 \quad (\phi_i > 0),$$
 (2.18)

which allows us to define the real density of each of the components as $\sigma_i = \frac{\rho_i}{\phi}$.

Consider a chemically reacting system containing an N-component gaseous phase and one solid particle phase. The conservation equations can be written as follows:³

Conservation of Mass

Global continuity for gaseous phase:

$$\frac{\partial \rho_{g}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\rho_{g} u_{(g)j} \right) = I_{g}.$$
(2.19)

Continuity of N-1 species or components of gaseous phase:

$$\frac{\partial Y^{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left[\rho_{g} Y^{i} \left(u_{(g)j} + V^{i}_{j} \right) \right] = \omega^{1} + I^{1}_{g}. \qquad (2.20)$$

Continuity for solid particle phase:

$$-\frac{\partial \rho_{p}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\rho_{p} u_{(p)j} \right) = -I_{p}. \qquad (2.21)$$

In the above equation of mass conservation, ρ_g is the partial gas density. The gas volume fraction is ϕ_g . The relation between partial gas density and material density σ_g is $\rho_g = \phi_g \sigma_g$. Similarly, we define the partial phase density ρ_p and material density σ_p . The relation between the two is then $\rho_p = \phi_p \sigma_p$. We assume volume conservation, which is

$$\phi_{g} + \phi_{p} = 1. \tag{2.22}$$

The species diffusion velocity V_{\perp}^{\perp} is calculated through Fick's law:

$$V_{i}^{I} = -\frac{D}{Y'}\frac{\partial Y'}{\partial x_{i}}, \qquad (2.23)$$

where D is the diffusion coefficient. Finally, we assume mass conservation in all chemical reactions:

$$\sum_{i}^{N} w_{i}^{i} = 0 \quad \text{and} \quad I_{p} = -\sum_{i}^{N} I_{g}^{i} = -I_{g}.$$
 (2.24)

Conservation of Momentum

Conservation of momentum for the gaseous phase:

$$\frac{\partial \left(\rho_{g} u_{(g)i}\right)}{\partial t} + \frac{\partial}{\partial x_{j}} \left[\rho_{g} u_{(g)i} u_{(g)j} + \delta_{ij} \phi_{g} p_{g}\right]$$

$$= \frac{\partial}{\partial x_{j}} \left[\left(\mu' - \frac{2}{3} \mu\right) \frac{\partial u_{(g)k}}{\partial x_{k}} \delta_{y} + \mu \left(\frac{\partial u_{(g)i}}{\partial x_{j}} + \frac{\partial u_{(g)i}}{\partial x_{i}}\right)\right]$$

$$- F_{i}^{(p)} + I_{p} u_{(p)i}.$$
(2.25)

Conservation of momentum for the particle phase:

$$\frac{\partial \left(\rho_{p} u_{(p)i}\right)}{\partial t} + \frac{\partial}{\partial x_{j}} \left[\rho_{p} u_{(p)i} u_{(p)j} + \delta_{ij} \phi_{p} p_{p}\right] = \frac{\partial}{\partial x_{j}} \left(\tau_{(p)ij}\right) + F_{i}^{(p)} - I_{p} u_{(p)i}. \quad (2.26)$$

In the above momentum conservation equations, p_p and p_g are the pressure of the solid particle and gaseous phases respectively, $F_i^{(p)}$ represents the interaction force between the two phases, and $\tau_{(p)ij}$ is the stress tensor for the particle phase, to be determined by experimental or empirical correlations.

For the gaseous phase, the stress tensor can be written as

$$\tau_{(g)ij} = -p\delta_{ij} + \left(\mu' - \frac{2}{3}\mu\right)\frac{\partial u_k}{\partial x_k}\delta_{ij} + \mu\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right), \quad (2.27)$$

where μ is the dynamic viscosity and μ' is the second viscosity coefficient.

Conservation of Energy

The governing equation for conservation of energy for the gaseous phase is usually written

$$\frac{\partial \left[\rho_{g}\left(e_{g}+0.5u_{(g)i}u_{(g)}\right)\right]}{\partial t} + \frac{\partial}{\partial x_{j}}\left[\rho_{g}u_{(g)j}\left(e_{g}+0.5u_{(g)i}u_{(g)i}\right) + \phi_{g}p_{g}u_{(g)j}\right] \\
= -\frac{\partial q_{(g)j}}{\partial x_{j}} + Q_{g} + \frac{\partial}{\partial x_{j}}\left[u_{(g)i}\left[\left(\mu'-\frac{2}{3}\mu\right)\frac{\partial u_{(g)k}}{\partial x_{k}}\delta_{ij} + \mu\left(\frac{\partial u_{(g)i}}{\partial x_{i}}\right)\right]\right] \qquad (2.28)$$

$$-F_{(p)i}u_{(p)i} + Q_{p}.$$

The equation for conservation of energy for the particle phase has the form

$$\frac{\partial}{\partial t} \left[\rho_{p} (C_{s} T_{p} + 0.5 u_{(p)i}) \right] + \frac{\partial}{\partial x_{j}} \left[\rho_{p} u_{(p)j} (C_{s} T_{p} + 0.5 u_{(p)i} u_{(p)i}) + \phi_{p} u_{(p)j} p_{p} \right]$$

$$= -\frac{\partial q_{(p)j}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} (u_{(p)j} \tau_{(p)ij}) + F_{i}^{(p)} u_{(p)i} - Q_{p}.$$
(2.29)

In the conservation of energy, $\frac{\partial q_{(g)j}}{\partial x_j}$ and $\frac{\partial q_{(p)j}}{\partial x_j}$ are the heat flux gradients in the *j*th direction in the gaseous and particle phases, respectively. Q_p is the energy source due to heterogeneous chemical reactions (between the gaseous and particle phases), plus heat transfer between the two phases. Here $Q_g = \sum_{i=1}^{N} (-\omega_1 \Delta h_{fi}^{\circ})$ is the energy source due to homogeneous (gaseous) chemical reactions, which is defined in the chemical reaction model.

Conservation of Number of Particles

An equation for total conservation of particles is given by

$$\frac{\partial n_{p}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(n_{p} u_{(p)j} \right) = 0.$$
(2.30)

Equation of State

The equation of state for all gases can be put into the generic form

$$e_{g} = f_{g}(p_{g}, \sigma_{g}, Y^{1}, \cdots, Y^{N}),$$
 (2.31)

where for an ideal gas the form is

$$e_{g} = \frac{p_{g}}{\sigma_{g}(\gamma_{g} - 1)} \tag{(.32)}$$

and

$$p_{g} = \sigma_{g} R_{u} T_{g} \sum_{i=1}^{N} \frac{Y^{i}}{W^{i}}.$$
(33)

An equation of state for the particle phase can be written in symbolic form as

$$p_{p} = f\left(\sigma_{p}, T_{p}\right), \qquad (2.34)$$

where the exact form of Eq. (2.34) that is to be used in a numerical simulation depends on experimental data or results from physical approximations.

In the above equations, γ_g is the ratio of specific heats of the gaseous mixture and R_u is the universal gas constant.

Chemical Reaction Model

A phenomenological chemical reaction model for the gaseous phase (including M chemical reactions) has been formulated as

$$\omega^{1} = W^{i} \sum_{k=i}^{M} \left(v_{k}^{\prime (1)} - v_{k}^{(1)} \right) B_{k} T^{ak} \exp \left(\frac{E_{ak}}{R_{u} T_{g}} \right) \prod_{j=1}^{N} \left(\frac{X^{j} p_{g}}{R_{u} T_{g}} \right)^{v_{jk}}.$$
 (2.35)

Similarly, a phenomenological heterogeneous (for gas and particle phases) chemicals reaction model can be written symbolically as

$$I_{(p)} = f(T_{p}, P_{p}, ...), \qquad (2.36)$$

and again the exact form of Eq. (2.36) will depend on experimental data or approximations from physical models.

The following nomenclature defines the symbols used in the above system of equations (2.19) - (2.36): B - chemical reaction collision frequency factor; C_S - specific heat for solid particle; e - internal energy; D - mass diffusion coefficient; E_{ak} - activation energy for the kth reaction; F_i - interphase force in *i*th direction; I - source function generated by chemical reaction; p_g - gas pressure; q_i - heat flux in the *i*th direction; R_u - universal gas constant; t - time; T - temperature; u_i - velocity in *i*th direction; V_i - species diffusion velocity in *i*th direction; W^i - molecular weight of *i*th component of gas; x_i - coordinate in *i*th direction; χ^i - mode fraction of *i*th component of gas; Y^i - mass fraction of *i*th component of gas; α - temperature exponent of the kth reaction; γ - ratio of specific heat; λ - thermal conductivity of gas; μ - dynamic viscosity of gas; μ' - second

viscosity coefficient of gas; τ_{ij} - stress tensor; ω^{i} - mass rate of production of species *i*; ρ - density; $v_{i,k}$ - stoichiometric coefficient for species *i* appearing as a reactant in the *k*th reaction; $v'_{i,k}$ - stoichiometric coefficient for species *i* appearing as a product in the *k*th reaction; ϕ - volume fraction; σ - material density. Subscripts are defined as follows: g gas phase; p - particle phase; *i,j,k*, - direction indexes; l - species index. Superscripts refer to species type.

The comprehensive mathematical model and system of equations given above for an MPMCRF simulation of advanced material synthesis processes is based on volume averaging, assuming that each phase or component can be described by continuous flow. Such averaging leads to a loss of information that can be recovered by appropriate closure relations. The closure relations such as interphase forces, chemical reaction models and the equations of state are usually developed from correlations involving experimental data or from simple physical or chemical models describing interphase or intraphase interactions. Such correlations are generally only valid within the range of known experimental data; the choice of appropriate closure models reflects the understanding of the underlying physical and chemical nature of the system to be simulated.

2.3 DIRECT DYNAMIC REFINEMENT METHOD FOR UNSTRUCTURED TRIANGULAR GRIDS

As stated, an unstructured grid is very well suited to implement boundary conditions on complex geometrical shapes and to refine the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient use of memory resources. The adaptive grid enables the code to capture moving shocks and large-gradient flow features with high resolution. The memory resources available can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture the main features of the solution's physical property. Dynamic refinement controls the resolution priorities. These priorities can be set according to the physical features that the user wishes to emphasize in the simulation. The user has control over the resolution of the physical features, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement is the hierarchical dynamic refinement⁶ (H refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the H refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is required to keep track of the H refinement process. As mentioned, H refinement relies heavily on the initial grid as it subdivides the mother grid, and returns to that grid after the passage of the shock.

The Direct Dynamic Refinement (DDR) method for capturing the shock requires the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid be done after the passage of the shock. The interpolation and extrapolation in the refinement and coarsening of the grid is done in the region where the flow features are smooth.

a. Original grid.

c. Grid after one refinement and one reconnection.

b. Grid after one refinement.

d. Second refinement.

e. Second reconnection.

Figure 2.3.1 Illustration of the grid refinement process.

a. Original grid.

b. Point removal.

c. Constructing of new cells.

d. Grid after reconnection and relaxation.

Figure 2.3.2 Illustration of the grid coarsening process.

The physics of the problem is involved in the process that identifies the region of refinement and coarsening. Error criteria can be derived that will allow grid adaptation to stationary or moving pressure or density discontinuities, region of high vortical activity, etc. There should be an error indicator specially suited to capture and identify the region of importance for each of the physics features to be resolved.

The original FUGGS algorithm reported in Ref. 9 was modified to e able adaptivity of the grid in the course of the computation. In AUGUST, we have implemented an algorithm with multiple criteria for capturing a variety of features that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov algorithm for solving the Euler equations, and are used to update the physical variables for each timestep in each triangle. A shock wave means that there is a "step-function" change in the cell that is caused by an influx of energy, momentum or density. Stationary shocks can be identified by density gradients that are computed in the course of implementing the Second-Order Godunov algorithm.

In Fig. 2.3.1, we illustrate the basic process of refinement accomplished in the DDR. The original grid is shown in Fig. 2.3.1a. Figure 2.3.1b illustrates a one-step scheme refinement in which a new vertex is introduced into a triangular cell, forming three new cells. This is followed by reconnection, which modifies the grid as demonstrated in Fig. 2.3.1c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved, as illustrated in Figs. 2.3.1d and 2.3.1e. This direct approach to the grid refinement provides extreme flexibility in resolving local flow features. A similar simple method is applied to grid coarsening. In the first step of coarsening the marked vertices, all associated elements of the grid are simply removed, as shown in Fig. 2.3.2a. During the second step, this void in the grid is filled with new larger triangles (Fig. 2.3.2b) and then reconnected as shown in Fig. 2.3.2c. When a very large increase of the local grid density is required, these simple algorithms of grid addition and deletion can create triangles with an unacceptably large aspect ratio. To avoid this condition for very large grid densities (when the area of the triangles in the dense region is reduced to less than 2% of the initial area), we introduced local grid relaxation immediately after the grid deletion procedure.

AUGUST has proven to be a very robust and efficient algorithm capable of computing transient phenomena, and with the ability to sense the region of physical interest and resolve it by refining and coarsening the grid as needed.

2.4 STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS

Structured rectangular grids allow the construction of numerical algorithms that perform an efficient and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algorithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved boundaries of the computational domain using the stair-step approximation available with the rectangular domain decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were developed. With these techniques, the computational domain is decomposed into quadrilaterals that can be fitted to the curved domain boundaries. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary-fitted coordinate approach leads to efficient codes, with approximately a 4:1 penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain leads to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body fitted coordinates used for simulations of flows over a profile with sharp trailing edges. In this case, increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of 10, and will run about 20 times slower per cell per iteration than a structured rectangular code.

Unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows dynamic decomposition of the computational domain subregions, thus leading to an order-of-magnitude reduction in the number of cells for some problems, as compared to the unstructured grid lacking this adaptive capability. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over the unadaptive unstructured domain decomposition if the area of high-resolution domain decomposition is less than one tenth of the global area of the computational domain. This explains why the adaptive unstructured method may be extremely effective for solutions with multiple shock waves in complex geometries, but becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstructured methods for achieving better efficiency and accuracy. Under this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Fig. 2.4.1) or to conform to the curved boundaries of the computational domain (Fig. 2.4.2). In these figures, an unstructured triangular grid is used to decompose the regions of the computational domain that have a simple geometry.

Figure 2.4.1 A possible candidate configuration for hybrid structured/unstructured domain decomposition.

Figure 2.4.2 Hybrid structured/unstructured grid used to simulate ellipsoidal reflector, showing adaptation to curved boundaries.

2.5 THREE-DIMENSIONAL CAPABILITY

Once the 2D capability was fully developed, we initiated the development of a fully 3D CFD adaptive unstructured simulation capability. This part of our effort is not yet documented in published material.

The first step in solving a 3D CFD problem is to discretize the computational domain into tetrahedra. The grid generation is a recognized bottleneck in the time it takes to evaluate an aerodynamic configuration.¹⁵ One could even argue that it represents the most time-consuming portion of the evaluation process. There are a handful of codes that are capable of gridding any given domain into tetrahedra. In order to shorten the part to our objective of achieving a 3D adaptive solver capability, we decided to make use of an existing grid generator to provide the initial grid.

OCTREE,¹⁶ which was developed at Rensselaer Polytechnic Institute (RPI), is a Finite Octree 3D grid generator that provides the initial grid for our adaptive solver. The productivity of a 3D grid generator is a function of the complexity of the surfaces that define the domain of computation. Usually, this task is the most time-consuming and painful for the user. OCTREE does not have a CAD/CAM package to assist the user in defining the surfaces of the geometry to be gridded. Nevertheless, OCTREE is a very robust and reliable grid generator.

The OCTREE algorithm is based on the concept of dividing the computational domain into octants. In each step, the code defines three planes that halve the domain in each of the three dimensions, thus dividing the volume into eight octants. Those three planes intersect the surfaces of the geometry, defining vertices. All the vertices are collected and sorted into topological loops. If the vertices are not sufficient to define correct topological loops, the code will subdivide the corresponding octant into eight smaller octants until the topology is fully resolved. The user is allowed to specify the level of the local octree subdivision he wishes to resolve. Once the code subdivides the volume into the level of octree specified by the user or needed to resolve the local geometrical details, the code defines tetrahedra to fill the volume of the computation domain. The code provides the user with an option that improves the quality of the tetrahedra by smoothing and eliminating the very small ones.

As stated, OCTREE provides the initial grid for the 3D solver. The adaptivity of the mesh is controlled by specific physical features that the user defines based on the physics of the problem to be solved. The adaptivity of the mesh automatically traces the physical features in the simulation and refines and coarsens the mesh accordingly to the criteria and the resolution specified by the user.

Figure 2.5.1 An elongated tetrahedron can be refined using smaller tetrahedra that are nearly regular.

The target tetrahedra are refined by first subdividing each of the four surfaces into smaller triangles that satisfy the resolution set by the user. There are no constraints on the way each face is subdivided. Each edge of the face is subdivided according to the local resolution needed, and the points along the edges are connected to construct the best triangles possible. The code adds points inside the face along with points on the edges to achieve an adequate triangulation of the faces. The triangles of the four faces of the target tetraheda are used to define smaller tetrahedra that will fill the volume. If needed, the code will add points inside the volume of the target tetrahedron to achieve the best tetrahedra possible. The code has the ability to reconnect tetrahedra to improve quality. The reconnection is done by pulling out an edge, sorting all the tetrahedra connected to this edge, deleting these tetrahedra and filling the void with better shaped tetrahedra.

Figure 2.5.1 shows how the subdivision process can fill an irregular (elongated) tetrahedron with smaller tetrahedra that are nearly equilateral. (This is not the case with H refinement.) Figure 2.5.2 shows points used to create octree refinement to grid a problem involving surface-mine blast effects on the underside of a truck. Figure 2.5.3 is the corresponding tetrahedral grid. The calculated overpressures on the surface of the truck underbody for an eight-pound explosive are shown in Sec. 3.4.

The algorithm used to solve the 3D gasdynamic equations is an immediate extension of the 2D case described in Sec. 2.1. Thus, Eq. (2.6) is replaced by

$$\int_{\Omega} \nabla U_i^{\text{cell}} \, \mathrm{d}V = \int_{\partial \Omega} U_j^{\text{face}} \, \mathrm{d}\mathbf{S}, \qquad (2.6')$$

Figure 2.5.2 Points used to define structure of vehicle.

Figure 2.5.3 Tetrahedral grid generated by Finite Octree method.

where now Ω and $\partial \Omega$ are the volume and surface of a tetrahedron, and dV and dS are the corresponding differential elements. Its finite-difference approximation is

$$\nabla U_i^{\text{cell}} = \frac{1}{V} \sum_{j=1}^4 \widetilde{U}_j^{\text{face}} \mathbf{n}_j \Delta S_j, \qquad (2.7')$$

where the summation is over the four faces and n_j is the normal to the *j*th face with surface area dS_{j} . In the equations corresponding to Eqs. (2.9) - (2.11), the range 1, 2, 3 is replaced by 1, 2, 3, 4. Equations (2.12) - (2.16) are formally unchanged, and Eq. (2.17) becomes

$$\left(\mathbf{M}_{x} \mathbf{M}_{n}\right) = \begin{cases} \max\left(\lambda_{i}^{+}, 0\right) & \text{for the cell on the left of the edge} \\ \min\left(\lambda_{i}^{-}, 0\right) & \text{for the cell on the right of the edge.} \end{cases}$$
(2.17')

3. APPLICATIONS

The AUGUST code was extensively validated for a wide range of known CFD problems and has been shown to be a robust simulation tool. It has been utilized on a variety of problems which span flow regimes ranging from low subsonic Mach numbers to hypersonic Mach numbers (Table 3.1).

Appendix C contains a complete collection and description of the CFD problems addressed during the UUGM research. Additional details of the AUGUST code are contained in SAIC's progress report for the UUGM DARPA program, submitted in November 1991. Here we briefly describe the most noteworthy applications.

It is worth underscoring again that in the past it was necessary to use a sequence of codes as well as numerical parameter adjustment to bridge the gap in flow phenomena occurring in different flow regimes. An important point to be made here is that the AUGUST code allows robust, accurate and efficient solutions across these different regimes without the necessity of adjusting coefficients to enhance convergence accuracy or efficiency.

Table 3.1 AUGUST Applications

Problem	Activity
1. Calculation of potential flow about an ellipse.	Reported at the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, Sept 1991.
2. Hypersonic flow past a flat plate.	Reported at AIAA Reno Meeting (AIAA- 90-0699), 1990.

Problem

Activity

3. Shock on wedge with adaptive gridding.	Reported at the Free Lagrange Conference, Jackson Lake, WY, 1990.
4. Simulation of mine explosion under a vehicle.	Performed for U.S. Army Corps of Engineers, Ft. Belvoir, VA.
5. Simulation of pulsed detonation engine.	Published in J. of Propulsion and Power Nov/Dec 1991 Vol. 7 (6) pp. 857-865 and AIAA Meeting, Reno, NV 1992.
6. Shock focusing in air using structured/unstructured grids.	Presented at the ICAM Conference, Rutgers, NJ, June 1992.
7. Nonideal airburst calculations for multiphase media.	Performed for the Defense Nuclear Agency, Alexandria, VA.
8. Flow in the SARL wind tunnel.	Performed for Wright-Patterson AFB.
9. Simulation of a shock on a double wedge.	Presented at the Army workshop on Adaptive Methods for PDEs, RPI, March 1992.
10. Supersonic spray coating devices.	To be published.
11. Nanomaterial synthesis.	Published in Surf. Coating Tech. 49, 387- 393 (1991).
12. Dusty flow over a cylinder.	To be published in AIAA Journal.
13. Image processing.	Presented at SPIE conference on Applications of Digital Image Processing, San Diego, July 1991.
14. Multiphase detonation.	Published in Combust. Sci. Tech. 89, 201- 218 (1993).

3.1 POTENTIAL FLOW OVER AN ELLIPSE

One of the outstanding early CFD computational challenges (from the point of view that no satisfactory solution had been obtained) was associated with simulating subsonic (Mach 0.2 ϵ nd less) flow over a symmetric elliptical airfoil using the Euler equations (Fig. 3.1.1). All previous attempts to compute the flow over such an ellipse resulted in spurious lift and drag values that were significantly larger than the classical

Figure 3.1.1 The grid used for simulating the flow over an ellipse.

potential flow solution. The potential flow result should have been closely approximated if there were no numerical viscosity present. This test case is important because, in transitioning from an Euler solver to a full Navier-Stokes solver, one needs confidence that the artificial (numerical) viscosity will not dominate the physical viscosity included in the Reynolds' stress terms. As shown in Appendix C-1, use of an earlier version of the AUGUST code, the Fast Unstructured Grid Godunov Solver (FUGGS) code provided solutions to this test case that were very close to the potential flow solution. Other attempts resulted in lift and drag values that were off by several orders of magnitude compared with the SAIC FUGGS results. The results described here were prepared for a poster presented to Dr. Arje Nachman, SAIC's UUGM AFOSR program monitor and Dr. James Crowley, SAIC's UUGM DARPA program manager.

3.2 HYPERSONIC FLOW PAST A FLAT PLATE

To demonstrate the versatility of the method for the entire range of flow regimes we have simulated a hypersonic flow test problem. One of the advantages of the Godunov methods is that over the whole range of calculations performed (low subsonic flow, supersonic flow, unsteady flow with strong shock, or hypersonic flow at Mach number M=32) it is unnecessary to change or adjust the numerical algorithm. In Ref. 17 the performance of first- and second-order Godunov methods was analyzed for hypersonic flow regimes. There, as a test problem, an analytical solution was used for a hypersonic flow around a flat plate of finite thickness. This solution was obtained based on the analogy between hypersonic flow over a flat plate of finite thickness and a strong planar explosion. Here we use an expression from Ref. 17 which defines the shape of the shock wave as a function of plate thickness d; γ is the adiabatic coefficient, and α is a nondimensional scale factor related to the energy released at the stagnation point.

$$Y_{\rm SHCCK} = \left(\frac{1}{2}D_f \frac{dx^2}{2}\right)^{\nu s}$$

where D_f is a coefficient of order unity,

$$a = k_1 (\gamma - 1)^{k_2 + k_3 in(\gamma - 1)}$$

with $k_1 = 0.36011$, $k_2 = 1.2537$, and $k_3 = -0.1847$.

As a direct comparison we solved the hypersonic flow problem for the same set of conditions as in Ref. 17:

$$U_{\rm m} = 10011 \text{ m/sec}, p = 98.72 \text{ Pa}, \rho = 1.24 \times 10^{-3} \text{ kg/m}^3, \text{ and } \gamma = 1.2.$$

The grid used for this simulation is shown in Fig. 3.2.1a. This grid has \approx 5500 vertices and its spatial resolution at the leading edge of the plate is of the same order as that of a 300 x 60 rectangular grid used in Ref. 5.

Figure 3.2.1a Grid for simulation of hypersonic flow over a flat plate.

Figure 3.2.1b shows results for this simulation in the form of pressure contours. Figure 3.2.1b also represents the location of the analytically calculated shock front by a discrete line (squares). The shock resolution and accuracy or its location are comparable to that obtained in Ref. 17 even though our triangular grid has less than one third as many nodes as the rectangular grid used in Ref. 17. This is because in constructing the triangular grid we had the flexibility to place the highest concentration of nodes in the area of the leading edge where the main properties of the flow are established.

Figure 3.2.1b Second order solution for a flat plate, pressure contours. Mach = 32: 5509 grid vertices: $P_{max} = 5.0 \times 10^4 Pa$, $P_{min} = 98.7 Pa$.

3.3 SHOCK ON WEDGE WITH ADAPTIVE GRIDDING

An unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes and refining the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient usage of memory resources. The adaptive grid enables the code to capture moving shocks and large-gradient flow features with high resolution. The memory resources available can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture the main features of the physical property of the solution.

One strategy for doing this is called hierarchical dynamic refinement (H refinement). It keeps a history of the initial grid (other grid) and the subdivision of each level (daughter grid). H refinement subdivides the initial grid into two or four triangles in each level, and keeps track of the number of subdivision levels each triangle has undertaken. In the H refinement method, one has to keep overhead information on the level of each triangle subdivision, and needs double indirect indexing to keep track of the H refinement process. This slows down the computation by partially disabling the vectorization of the code. As mentioned, H refinement relies heavily on the initial grid as it subdivides the mother grid and returns back to it after the passage of the shock.

AUGUST and its predecessor FUGGS use a second-order Godunov solver on an unstructured grid. The refinement strategy incorporated in these codes is called Direct Dynamic Refinement. For shock capturing, Direct Dynamic Refinement basically requires the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid should be done after the passage of the shock. In principle, the interpolation and extrapolation in the refinement and coarsening of the grid are done in the region where the flow features are smooth.

FUGGS was used with direct dynamic refinement to solve the transient behavior of the flow entering a channel with a wedge (prism) having an inclination of 27° . The flow enters the channel from the left with Mach number 8.7. A sequence of snapshots illustrates the density contours, and the grid for each timestep is given in Figs. 3.3.1a - 3.3.3a (contour plots) and 3.3.1b - 3.3.3b (grid). These figures clearly demonstrate the automatic adaptation of the grid to the moving shocks and the ability to capture the detailed physics of the simulation with very high resolution and minimal memory requirements. The initial grid can clearly be seen to the right of the shock ("ahead") in the early stage of the shock propagation from left to right. The coarsening algorithm is able to produce a reasonable mesh in the region trailing the shock as shown in the figures.

Figure 3.3.1a Density contours at early time for shock in planar channel $(M = 8.7, wedge angle = 27^\circ)$.

Figure 3.3.1b Grid at early time for shock in planar channel $(M = 8.7, wedge angle = 27^\circ)$.

Figure 3.3.2a Density contours at intermediate time for shock in planar channel $(M = 8.7, wedge angle = 27^{\circ})$.

Figure 3.3.2b Grid at intermediate time for shock in planar channel $(M = 8.7, wedge angle = 27^\circ)$.

Figure 3.3.3a Density contours at late time for shock in planar channel $(M = 8.7, wedge angle = 27^{\circ}).$

Figure 3.3.3b Grid at late time for shock in planar channel $(M = 8.7, wedge angle = 27^\circ).$

3.4 MINE EXPLOSION UNDER VEHICLE

The main objective of this joint Marine-Army program was the development of vehicles hardened against antitank (AT) land mines. The basic vehicle is the M925 5-ton cargo truck. Numerical simulations were used to determine the dynamic loads produced by the AT mine detonation on the cargo bed and other structural elements of the truck.

The algorithms, techniques and codes developed under the UUGM program provided two key elements necessary for the numerical simulations for this project: a) flexibility in describing the very complex geometry of the truck; b) high resolutioncalculation of the shocks and other discontinuities using an adaptive unstructured grid. A version of the AUGUST-2D code developed under the UUGM program is being used for the analysis of blast resistance of different truck geometries.

We have carried out four such calculations, using four, eight, eight, and 20 pounds of C-4 explosive. These employed fixed (nonadaptive) meshes with 30,000 (4-1b case), 21,000 (8-lb cases).

A one- or two-dimensional calculation was performed to produce the initial blast profiles laid down on the three-dimensional grid. Aside from the amount of explosive, the calculations differed in the following ways: all but the 4-lb blast were centered beneath

Figure 3.4.1 Two views of interaction between mine blast and M925 cargo truck: pressure contours at t = 0.574 msec.

the left front wheel of the truck (the 4-lb blast was situated 70 cm further back); for the first 8-lb case a crater with diameter 60 cm and depth 30 cm was situated underneath the blast.

All but the second 8-lb case used an ideal-gas equation of state with $\lambda = 7/5$ for the air and detonation products. Twenty pressure "sensors" positioned on the mesh at points corresponding to the pressure gauges used in actual field tests were used to record the pressure and impulse histories there for comparison with the experimental data.

The calculations were run out to about 4.5 msec. The pressure stations closest to ground level and to the blast center exhibited peaks up to $\sim 10^3$ psi. In some cases multiple peaks were present, corresponding to reflected shocks.

An example of the domain decomposition of the computational grid for a typical mine-truck interaction problem is shown in Fig. 2.5.2. In Fig. 2.5.3 the unstructured triangular grid is used to describe a cross section of an M925 cargo truck. Use of unstructured grids allows detailed description of the truck geometry. Figure 3.4.2 shows results of the simulation in the form of pressure contours overlaid on the unstructured grid, viewed from two different directions halve a millisecond after the detonation.

At Ft. Belvoir's request, SAIC also assessed the damage to a mine-clearing plow due to a single detonation of an AT mine at close range during the Desert Storm operation. At that time, Ft. Belvoir RDEC had responsibility for support of countermine activity in the Desert Storm operation.

To simulate the plow-mine blast interaction, SAIC used computational capabilities partially developed under the UUGM program. Use of unstructured triangular grids again enables detailed description of the plow geometry and use of Direct Dynamic grid Adaptation method allows detailed simulation of the complex pattern of the shock wave reflections.

In Fig. 3.4.2 the initial stage of the blast-plow cross section interaction is shown in the form of pressure contours overlaid on the dynamically adapting grids. In Fig. 3.4.3 a more advanced stage of the blast-structure interaction is shown in the same format as in Fig. 3.4.2. The adaptive grid allows high resolution of a complex blast interaction phenomena.

SAIC has also simulated the structural response of the plow to the dynamic load that is defined by the gas dynamic simulations described above. In Figs. 3.4.4a - d results are shown for the plow deformation in response to dynamic load. Recent experimental assessment of the plow damage showed that SAIC predictions correctly described blast damage to the plow.

Figure 3.4.3 Blast - plow interaction: pressure contours in advanced stage

b. Detonation

c. Detonation product expansion Figure 3.5.1 Pulsed detonation engine simulation: flow tracers.

3.5 PULSED DETONATION ENGINE

The main objective was the development of a revolutionary propulsion concept based on intermittent detonative combustion. Development of this concept will result in a new class of engines with performance surpassing those of small turbines at significantly reduced cost. SAIC's PDE research was noted in a recent article [Aviation 3^{-1} -ek, October 28, 1991, pages 68-89]. The PDE is currently considered as a candidate concept for numerous propulsion systems including the air-to-air missile, cruise missile. RPV engine, high altitude UAVs and others.

The codes developed under the UUGM program have enabled SAIC to conduct a detailed study of the PDE concept. The unstructured grids used in the simulations allowed us to describe the complex geometries of the detonation chamber and air inlets for a full missile configuration. Adaptive gridding allowed efficient and accurate simulation of the detonation and resulting shock waves interacting with the thrust-producing surfaces of the engine.

In Fig. 3.5.1 results are shown for the simulation of the PDE detonation cycle for a Mach 2 missile. Lagrangian flow tracers are used to track air and fuel trajectories in the engine. The figures demonstrate the sequence of stages in one PDE cycle. Shown in Figs. 3.5.1a-c are the fuel mixing stage, the detonation stage and the detonation products discharge stage, respectively. Detailed CFD analysis of various geometries and flow regimes allowed us to develop an understanding of the parametric dependence of the fundamental variables that determine the PDE performance.

3.6 SHOCK FOCUSING IN AIR

Research relating to focusing of shock and acoustic waves is of considerable practical interest for application to extracorporeal shock-wave lithotripsy (ESWL). A schematic of the cross section of such a reflector is shown in Fig. 3.6.1. Strong acoustic waves are generated in the left focal point of the ellipsoid by an instantaneous release of energy and are refocused at the right focal point. Ideally, focusing should be based on waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to significant distortions in wave propagation and impair simple geometrical focusing.

Figure 3.6.1 shows the computational domain and grid for the ellipsoidal reflector. Figure 3.6.2 shows the simulation results at time $t = 1.21 \times 10^{-6}$ sec. At this stage, the wave front that propagated to the left has undergone full reflection and the reflected wave propagates in the direction of the incident wave to the right. Figure 3.6.3 shows the pressure contours ($t = 8.41 \times 10^{-4}$ sec) when the maximum focused pressure is obtained in the system. The incident front has left the computational domain, and the maximum pressure occurs in a small volume in the vicinity of the right focal point. The maximum focused pressure has reached 1.37×10^5 Pa and is located 11 mm to the right of the focal point of the ellipsoid. In all the figures presented, the method of composite domain decomposition works extremely well, producing seamless solutions at the interfaces.

Figure 3.6.1a Hybrid structured/unstructured grid used for numerical simulation of ellipsoidal reflector.

Figure 3.6.1b A schematic drawing of the center cross section of the ellipsoidal reflector.

Figure 3.6.2 Pressure contours at time $t = 1.21 \times 10^{-6}$ sec showing the incident wave as reflected from the reflector wall.

Figure 3.6.3 Pressure contours at time $t = 8.41 \times 10^{-4}$ sec showing the stage at which the maximum focused pressure is obtained.

3.7 NONIDEAL AIRBURST IN MULTIPHASE MEDIA

The main objective was to advance the understanding of the formation dynamics and microphysics of the multiphase flow of clouds developing as a result of a nuclear explosion. A main difficulty in analysis of nuclear cloud formation is the necessity to take into account physical phenomena that are interdependent and occur on vastly different scales. At about 30 seconds after a nuclear detonation, the cloud can be 4 km high and the shock wave will be at the distance of 10 km. The multiphase interactions that occur on a scale of 10-100 meters are very important and have to be accounted for.

SAIC has developed a multiphase, multicomponent version of the AUGUST-2D code developed under the UUGM program. We use an explicit method for the solution of the multiphase flow described by equivalent Euler equations, and an implicit integration for simulation of the particle-fluid interactions. The grid adaptivity allows efficient and accurate simulation of this multiphase phenomenon. The grid adaptivity is used for adjusting the spatial scale of the domain decomposition to the scale required for accurate simulation of various physical interactions. Other code improvements such as introduction of the real-gas equation of state and Lagrangian particle tracing were employed to enable simulations and analysis of this complicated phenomena.

In Fig. 3.7.1a the computational domain and grid are shown for the nuclear cloud simulation. In this figure the temperature contours are overlaid on the unstructured grid. In Fig. 3.7.1b the particle density contours are shown for the same stage of the cloud evolution as in Fig. 3.7.1a. In Fig. 3.7.1c particle radius is shown for the same stage of the cloud evolution, and Fig. 3.7.1d shows locations of the Lagrangian tracers that mark evolution of the detonation products.

3.8 FLOW IN THE SARL WIND TUNNEL

One of the problems to which AUGUST 3D has been applied is that of modeling the SARL wind tunnel at Wright Laboratory. This example is a good test of the use of the Second-Order Godunov method to do nearly incompressible flow calculations. To illustrate the results, Fig. 3.8.1 shows the grid used for simulating the flow. The calculation was performed by specifying the inflow and outflow parameters and running the simulation to convergence. The run was performed at SAIC on the Stardent workstation and repeated on an Iris at FIMM. Figures 3.8.2 and 3.8.3 show the pressure levels in the tunnel. The results were visualized using AVS.

Figures 3.8.1 and 3.8.2 show two views of the pressure contours generated in a calculation of subsonic flow (Mach number 0.05). The results were confirmed by comparison with those obtained using a code with a structured grid, and by checking them against measurements.

Figure 3.7.1 Formation of a radiative cloud. Multiphase simulation.

Figure 3.8.1 The unstructured grid used to simulate the SARL wind tunnel.

Figure 3.8.2 The pressure contours from the simulation of the SARL wind tunnel.

41

3.9 SHOCK ON DOUBLE WEDGE

A much more complicated problem, which has been extensively studied to benchmark and validate Euler solvers, is flow over a double wedge. This problem contains multiple fluid phenomena and is a stringent test for any solver. It includes shock formation, a Mach stem, rarefaction, a slip line, vortex generation and rollup, and is transient in nature. To validate our direct dynamic refinement method in AUGUST, we simulated a Mach 2.85 shock wave propagating in a channel and impinging on a symmetric 45° wedge, and also a Mach 8.7 shock impinging on a symmetric 27° wedge.

Both of these compared well with experimental results. Figure 3.9.1 shows an interferogram taken from Glaz et al., 1^7 showing the M = 8.7 shock interacting with the front surface of the 27° wedge. Our results are shown in Figs. 3.9.2 - 3.9.4. The first of these illustrates the grid and density when the shock is on top of the wedge. The shock is well resolved and the grid is well adapted in the vicinity of important features and coarsened in the region that the shock has passed through. The next two figures show the evolution of the flow and the grid after the wedge where comparison can be made with the experimental results. AUGUST produces no artificial features and recovers the phenomenology seen in the experiment.

Figure 3.9.1 Experimental interferogram of a shock hitting a 45° corner at $M_s = 2.85$.

In the figures showing the triangular grids, the area of a triangle in the dense region of the grid is roughly 100 times smaller than the area of a triangle in the initial grid. The figures show that the grid adaptivity is capable of capturing the flow gradients including shocks, contact discontinuities and slip lines. Formation of a triple point of the Mach reflection, slip line and strong vortex formation are seen in Fig. 3.9.2a. In fairness, most of the flow phenomena that is captured by AUGUST have also been captured by other CFD schemes.¹⁸ However, the accuracy estimated for the AUGUST numerical calculations in this example is on the order of 4%, equal to the accuracy of the experimental observations.

b. Adaptive grid, 15,123 vertices

Figure 3.9.2 Interaction of a Mach 8.7 planar shock wave with a 27° double ramp: Mach reflection stage.

b. Adaptive grid, 27,132 vertices

Figure 3.9.3 Interaction of Mach 8.7 planar shock wave with a 27° double ramp: start of the diffraction stage.

۱

b. Adaptive grid, 46,462 vertices

Figure 3.9.4 Interaction of Mach 8.7 planar shock wave with a 27° double ramp: shock diffraction stage.

3.10 SUPERSONIC SPRAY COATING DEVICES

In this section we present the results of an application of the UUGM similar on technology to a sample problem involving spray-coating devices. Here we only trease aerodynamic flow of particles in a high temperature gas which is moving superscript, we consider a reasonably complex geometry including a simulated surface that the substrate to be coated. The details of the surface interaction resulting in deposition are not treated in this example.

In Fig. 3.10.1 the computational domain and grid are shown for a model supersonic jet sprayer device that includes reactor nozzle, solid particle injector, and expansion nozzle. Also shown in Figure 3.10.1 is a perforated flat surface substrate placed in the flow field. The high-velocity high-temperature flow stream exiting the reactor nozzle accelerates the injected particles. The particles are heated during acceleration, melt, then expand with the flow in the nozzle, gain more speed, and finally impinge onto the surface. Details of the flow-surface interaction (here without boundary layers taken into account) will strongly affect the uniformity with which the surface will be "coated" by the particles carried by the flow.

Figure 3.10.1 The figure shows the initial computational grid for the jet spray simulation demonstration. Shown are the nozzle, injection region and target surface depicted as a flat plate with perforations, oriented perpendicular to the mean spray flow. The boundary conditions used for the sample simulation were: $V_g = 1000 \text{ m/sec}$, $\rho_g = 0.1 \text{ kg/m}^3$, $T_g = 3500 \text{ K}$ at the inlet of the reactor nozzle; $V_g = 1500 \text{ m/sec}$, $\rho_g = 0.3 \text{ kg/m}^3$, $T_g = 1500 \text{ K}$, $V_p = 1500 \text{ m/sec}$, $T_p = 1500 \text{ K}$, $N_p = 2000 \text{ at the inlet of the reactor nozzle}$.

To trace the motion of the particles in the plasma spray device and the interaction pattern with the target surface we have injected Lagrangian "marker" particles (massless but moving with the local flow speed) in the particle injector flow stream. In Fig. 3.10.2 results are shown in the form of marker particle locations. To monitor the particle temperatures we have introduced particle coloring, where the color defines the local particle temperature. Thus one can evaluate the evolution of the particle temperature by observing the particle color transition. This coloring scheme can be used to show other parameters such as particle residence time or density. This represents a simple method of visualization that we have used successfully in past UUGM simulations.

Figure 3.10.2 Lagrangian marker particles are shown in color representing the evolution of injected particle temperature as a function of particle position and time in the jet spray stream.

In Fig. 3.10.3 simulation results for the steady state are presented in the form of gas temperature contours for the jet spray system. Here it is possible to observe a very large temperature variation in the nozzle. The cold gas that is injected with the particles remains at the edge of the jet stream. At the same time the main jet cools through the expansion in the nozzle from 3500°K to 2000°K, and then undergoes a series of expansions and compressions in the system of shock waves created by overexpansion of the supersonic jet. Figure 3.10.3 also shows a nonuniform temperature distribution on the surface that is partially created by the gas flow through the perforated holes.

In Figs. 3.10.4 and 3.10.5 simulation results are shown for the density and pressure contours. Here we can observe the formation of several diamond-shaped shock structures as a result of supersonic flow over expansion. However, for the flow regimes in our simulation these shocks do not lead to a higher rate of mixing by injected cold gas with particles and the main hot gas stream. This can be noticed in the density contours, where one clearly observes that the high-density cold gas does not penetrate the main hot jet flow. By changing the condition (injection pressure, angle of entry, etc.) of the injected flow one can improve mixing, thus achieving higher particle temperatures and velocity.

Figure 3.10.3 Gas temperature contours in the jet spray stream. The maximum temperature is 3500°K and the minimum is 600°K.

Figure 3.10.4 Gas density contours in the jet spray stream. The injected stream and the main flow mix poorly. The diamond patterns describe the shock wave pattern resulting from the flow's overexpansion.

Figure 3.10.5 Pressure contours in the jet spray stream. The diamond patterns show that supersonic flow is maintained near the vicinity of the target surface.

3.11 DUSTY FLOW OVER A CYLINDER

A numerical study of two-phase compressible flow has been performed for the reflection and diffraction of a shock wave propagating over a semicircular cylinder in a dusty gas. The following model was used to derive the governing equations:

(1) The gas is air and is assumed to be ideal;

(2) The particles do not undergo a phase change because for the particles considered here (sand) the phase transition temperature is much higher than the temperatures typical for the simulated cases;

(3) The particles are solid spheres of uniform diameter and have a constant material density;

(4) The volume occupied by the particles is negligible;

(5) The interaction between particles can be ignored;

(6) The only force acting on the particles is drag and the only mechanism for heat transfer between the two phases is convection. The weight of the solid particles and their buoyant force are negligibly small compared to the drag force;

(7) The particles have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Under the above assumptions, separate equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases appear as source terms on the right-hand sides of the governing equations. The two phases are coupled by interactive drag force and heat transfer.

The objectives of the study were (a) to solve the two-phase compressible flow field and compare the simulation with available experimental results; (b) to observe and investigate the reflection and diffraction wave patterns when a shock wave propagates over a semicircular cylinder in a dusty gas, with particle radius and loading as parameters.

To test the accuracy of the two-dimensional computation, we first computed the pure gas flow case of shock wave reflection and diffraction over a semicircular cylinder. We then compared the simulation with experimental results. Shock wave reflection on a wedge has been extensively studied by many researchers (see e.g., review papers of Ben-Dor and Dewey¹⁸ and Hornung.¹⁹ As one can see from Fig. 3.11.1, the results show excellent quantitative and qualitative agreement between the numerical simulation and experimental results.

Figure 3.11.1 Comparison for $M_s = 2.8$ pure-gas flow: (a) interferogram from experiment; (b) density contours from present calculation.

In the two-phase simulation a planar shock with $M_s = 2.8$ propagates into an area of dusty gas and impinges on a semicircular cylinder. The interface between pure air and dusty air is located at x = 0.0 of the computational domain. The area of the dusty air contains a semicylinder with a radius of 1m. The size of the computational domain, initial parameters of the gas, parameters of the incoming shock, size of the semicylinder and its location in the computational domain, are the same as in the reflection and diffraction simulation in the pure gas case. The main objective of this set of simulations was to study the effects of particle size and particle loading on the parameters of the reflected and diffracted shock waves.

The first set of simulation results is shown for the case with dust parameters $r_p = 10\mu$ m and $\rho_p = 0.25$ kg/m³. The gas parameters and the parameters of the incoming shock wave were the same as in the pure gas case presented above. In Figs. 3.11.2a and 3.11.2b, the particle density and gas density contours are shown at the stage where significant diffraction has taken place and the shock front is approaching the trailing edge of the cylinder. To study the influence of particle loading on the dynamics of reflection and diffraction, we have simulated the case with a dust density of $\rho_p = 0.76$ kg/m³ and with $r_p = 10\mu$ m. To examine the effect of particle size on the reflection-diffraction process, we simulated a case where the particle loading and gas flow conditions were the same as in the previous case with particle density $\rho_p = 0.76$ kg/m³, but the particle size was $r_p = 50\mu$ m (Fig. 3.11.3).

On the basis of these calculatrions we reached the following conclusions:

(1) For a two-dimensional pure-gas flow, numerical results agree well with existing experimental data qualitatively and quantitatively, indicating that the gas phase is accurately simulated by the adaptive grid technique;

Figure 3.11.2 Density contours for the case $M_s = 2.8$, $\rho_p = 0.25 \text{ kg/m}^3$, $r_p = 10 \mu \text{m}$ at two different times: (a) particle density at t_1 , (b) gas density at t_1 ; c) particle density at t_2 , (d) gas density at t_2 .

(

•

Figure 3.11.3 Density contours for the case $M_s = 2.8$, $\rho_p = 0.76 \text{ kg/m}^3$, for two different particle sizes: (a) particle density and (b) gas density for $r_p = 10 \mu \text{m}$; c) particle density and (d) gas density for $r_p = 50 \mu \text{m}$.

(2) Particles in the gas can have a profound effect on the shock wave reflection and diffraction pattern, which is a function of particle size and loading. The bas the particle loading, the less the influence of particle on the flow field;

(3) In the three simulation cases, particles accumulate behind the "back ulder" of the semicircular cylinder due to the effect of particle inertia and the rarefaction ave;

(4) For different particle sizes at fixed particle loading, the larger particle will have a longer relaxation zone and less accumulation at the "back shoulder" and behind the incident shock. The gas density contours show a less distinguishable slip line in the small particle case than in the large particle case.

3.12 IMAGE PROCESSING

Very recently, there have been exploratory efforts in image processing based on nonlinear methods. If the purpose of an enhancement process is to highlight the edges of an image, then the technique used in the frequency domain is usually highpass filtering. An image can be blurred, however, by attenuating the high-frequency component of its Fourier transform. Since edges and other abrupt changes in the gray levels are associated with high-frequency components, image sharpening can be achieved in the frequency domain by a highpass filtering process, which attenuates the low-frequency without disturbing high-frequency information in the Fourier transform. The primary problem with this technique is that an ideal discontinuity has an infinite spectrum of frequencies associated with it. When filtering is applied, some frequencies are cut off, leading to a loss of edges in the image.

In computational fluid dynamics (CFD) similar problems exist in simulating flows with discontinuities. The problem of simulating flows with discontinuities is less forgiving, since an incorrect calculation usually leads to a complete distortion of the flow field. This has led CFD scientists to develop sophisticated algorithms that identify and preserve discontinuities while integrating the flow field in the computational domain. In the image domain, sharpening is usually done by differentiation. The most commonly used methods involve the use of either gradients or second derivatives of the pixel information. Central differencing is usually used to calculate the derivatives. CFD research has shown that this strategy will lead in many cases to smearing of the flow discontinuities (analog of the image edges in image enhancement).

A new and unique image sharpening method based on computational techniques developed for AUGUST has been developed. Preliminary experience shows that it can enhance image edges and deconvolve images with random noise. This indicates a potential application for image deconvolution from sparse and noisy data resulting from measurements of backscattered laser-speckle intensity.

52

The Second-Order Godunov Method used in AUGUST was developed from an understanding of the phenomenology of signal propagation in gasdynamical systems. The numerical algorithm implementing this method is not analytical and contains a set of steps that can be regarded as wave filters. These filters are designed to not smear the discontinuity (edge), suppress the spurious oscillations, and propagate the relevant signals through the system. The following algorithmic steps are performed to advance the solution for a single iteration in the Second-Order Godunov Method:

- 1. Local Extrapolation
- 2. Monotonicity Constraint
- 3. Characteristics Constraint
- 4. Riemann Problem Solution
- 5. Integration

Most of these steps have an analog in conventional image processing methods. Here we will give an explanation of the function of each algorithmic step of the Second-Order Godunov Method and where applicable, will point to its possible analog in conventional signal processing techniques.

Step 1 consists of extrapolation of the values in the computational grid (pixel) cell to the edges of the cell. Linear or nonlinear extrapolation can be used. This step is analogous to the standard edge-sharpening techniques used in image processing, with one important difference: the extrapolation is done not for the value itself but for its flux (change of value across cell boundary).

Step 2 includes a monotonicity constraint for the values at the cell edges. This is analogous to the nonlinear technique of locally monotonic regression only recently introduced for signal processing.

Step 3 subjects the values at the edges to the constraints derived from a solution of the one-dimensional characteristics. This step assures that the values at the edges have not been extrapolated from directions inconsistent with the characteristic solutions. This prevents extrapolation as well as smearing or overshoot of the discontinuities. For the image-processing application, this can be regarded as a form of automatic edge detection step where the shock waves are associated with the edges of an image.

Step 4 uses an exact solution of the system of the gasdynamic equations for calculation of the flux values based on the extrapolated values of the parameters at the left and right side of the edges. This step has no analogy in image processing. However, since the analytical solution includes discontinuities, an exact calculation of the flux at the edge location is allowed, even if this flux is calculated through a discontinuity.

Step 5 consists of finite-volume integration of the system of conservation laws. Here, the image is effectively treated as a flow field: the flux integration serves as a smoothing filter from the image perspective.

The effect of these steps is equivalent to the application of a unique filte stack with proven properties of discontinuity preservation and robustness.

The field of gray scale intensity of an image can be translated into a flow ueld. To every image pixel we assign to the corresponding cell of the computational domain values of the gasdynamical parameters proportional to the values of the gray scale. Our understanding of the basic gasdynamical processes plays a major role in completing the analogy. Appropriate mapping of the image gray scale intensity into a flow field creates conditions favorable for the formation or enhancement of field discontinuities. For example, a shock wave reflecting from a wall or a contact surface can increase in strength, or two colliding flow streams will produce a contact surface that will become stronger in time. If we have a numerical technique to resolve these discontinuities accurately, then with successive numerical integration of the flow field, the discontinuities will sharpen as the solution evolves in time. Then by inverse mapping of the flow field to the image gray scale field, we can reconstruct an enhanced image.

Figure 3.12.1 Edge enhancement for a sinusoidal distribution without noise.

Figure 3.12.2 Edge enhancement for a sinusoidal distribution with 10% intensity random noise.

Fig. 3.12.3 Edge enhancement for a sinusoidal distribution with 50% intensity random noise.

Fig. 3.12.4 Edge enhancement for a sinusoidal distribution with 100% intensity random noise.

Applications have been made to two-dimensional images derived from satellite reconnaissance and gamma-ray medical diagnostics (see Appendix C). Note that the images shown there are distorted by the xerographic process used to reproduce these illustrations, which also act as a nonlinear filter but is not funed to these images.

Analogous extensions of nonlinear CFD techniques can be used for image compression.

3.13 DETONATION IN A MULTIPHASE MEDIUM

In this study the main subjects were the initiation, propagation, and structure of detonations occurring when combustible particles are intentionally or unintentionally dispersed into the air. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. Previous experimental and theoretical studies of these phenomena addressed only homogeneous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion always lead to inhomogeneous particle density distribution.

On the other hand, some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with a residual concentration in the vicinity of the latter.

When the detonation wave is generated in a homogeneous mixture by "ct initiation," it starts with a strong blast wave from the initiating charge. As the blast we decays, combustion of the reactive mixture behind its shock front starts to have a wiger role in support of the shock wave motion. When the initial explosion energy eveeds some critical value, transition to steady state detonation occurs. In explosive dust mixtures with a nonuniform particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density regions is not necessarily adequate for other regions. We have demonstrated that the phenomenology of these interactions is distinctly different from the classical studies of multilayer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multigas layer experiment varies by a factor of two or four, whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

At present the physics of the energy release mechanisms in solid particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. The chemical processes of single-particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multiphase mixtures, the rate of energy release is mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. Fortunately, in most cases of multiphase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena.

In this work we considered solid particles consisting of explosive material. Twodimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution with 12 mm above ground with a maximum density on the ground of 800 kg/m³; a uniform 25-mm layer with a density of 100 kg/m³; and a 12-mm uniform layer with a density of 250 kg/m³. In all these cases, the weight of the condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.

Figure 3.13.1 shows a setup for a typical two-dimensional simulation. Here the computational domain is $25 \text{cm} \times 25 \text{cm}$. The explosive powder density is distributed according to the 4th power law of the vertical distance, starting from the ground where the density is 800 kg/m^3 , and rising to 1.2cm, where the density is 0.75 kg/m^3 . From this point to 25cm height, the density is constant and equal to 0.75 kg/m^3 . The density distribution is uniform in the x direction.

Figure 3.13.1 Computational domain and boundary conditions.

In all three cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of 2-3m above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as the pressure on the ground.

In all three two-dimensional simulations, we observed a very distinctive shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation front can be explained by the fact that the energy released in the ground layer detonation wave produces a faster propagating shock wave in the dilute cloud than in the ground layer which is heavily loaded with solid particles. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

Figure 3.13.2 Explosive initially localized in 2.5-cm layer at constant density of 100 kg/m³. Density in the cloud is 0.75 kg/m³. (a), (b), and (c) are gas pressure, gas density, and particle density at 66 μsec, respectively.

Figure 3.13.3 Particle density distributed in layer in accordance with the fourth power of height. Gas pressure, temperature, and particle density at 55 µsec, respectively.

4. CONCLUSIONS

The AUGUST-2D and AUGUST-3D adaptive unstructured CFD simulation codes, developed under SAIC's UUGM (through a contract form ARPA's Appliciand Computational Mathematics Program) program have been tested through the se standard CFD benchmark test cases and have been applied to a wide range of the line is problems for a variety of end-users. In most cases where these codes have been applied, significant improvements in accuracy, resolution, and ease of use have been noted. Use of the Second Order Godunov flow solver algorithm has provided a robust capability to treat low Mach number subsonic-to high Mach number hypersonic flow problems within one simulation code without the necessity of tuning the flow solver via adjustable parameters. In addition, the extension of the AUGUST family of codes to treat multiphase, multicomponent reactive flow phenomena provides the capability, for the first time, of simulating a wide variety of physically interesting and challenging problems that are rich in physics-chemical phenomena. The range of these problems includes: 1) full 3D flows about complex aircraft in all flight regimes (except rarefied flows), 2) shock-body interactions, 3) chemically reacting flows typical in combustion problems, and 4) detonation phenomena found in explosives, shock tubes, and specific applications to such devices as the pulsed detonation engine.

SAIC's UUGM program has resulted in over 20 publications in various stages of preparation, and numerous presentations at U.S. and international technical meetings, conferences, and workshops. The AUGUST family of simulation codes is presently being applied to several current materials development and synthesis areas of research. In particular, the ability of the AUGUST codes to capture the complex geometry of material synthesis reactor configurations, resolve the complex flow patterns, and treat the complex physics and chemistry of the synthesis process provides a simulation and modeling tool that is useful for design of such process reactors, analyse and evaluate experimental results, and (depending on successful benchmarking) provide a process control tool based on validated models. SAIC intends to exploit this capability in future programs.

SAIC's Applied Physics Operation, Hydrodynamic Modeling Division staff members performed the work under the DARPA UUGM program. Dr. Shmuel Eidelman and Dr. William Grossmann were co-program managers. Important contributions were made by Drs. Itzhak Lottati, Xiaolong Yang, Marty Fritts, Adam Drobot, Ahron Friedman, and Michael Kress. SAIC's UUGM team would like to acknowledge the support and interest of Dr. James Crowley (ARPA ACMP program manager), Drs. Lois Auslander and Helena Wisniewski (previously DARPA ACMP program managers), and Dr. Arje Nachman (AFOSR) who served as the ARPA agent for the UUGM program.

REFERENCES

- 1. T.J. Baker and A. Jameson, "A Novel Finite Element Method for the Calculation of Inviscid Flow Over a Complete Aircraft," Sixth International Symposium on Finite Element Methods in Flow Problems, Antibes, France (1986).
- 2. T.J. Baker, "Developments and Trends in Three-Dimensional Mesh Generations," Transonic Symposium held at NASA Langley Research Center, Virginia (1988).
- 3. R. Lohner, "Generation of Three-Dimensional Unstructured Grids by the Advanced-Front Method," AIAA 26th Aerospace Sciences Meeting, Reno, AIAA Paper 88-0515, January 1988.
- 4. R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategies for Finite Element Aerodynamic Computations," AIAA 29th Aerospace Sciences Meeting, Reno, AIAA Paper 86-0499, January 1986.
- 5. A. Jameson, T.J. Baker, and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
- 6. R. Lohner, "Adaptive Remeshing for Transient Problems, Comp. Meth. Appl. Mech. Eng. 75 195-214 (1989).
- 7. J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz, "Adaptive Remeshing for Compressible Flow Computations," J. Comp. Phys. <u>72</u>, 449-466 (1987).
- 8. D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes," AIAA 88-3707 (1988).
- I. Lottati, S. Eidelman, and A., Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV (1990).
- I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceeding of the Free Lagrange Conference, Jackson Lake, WY, June 1990.
- 11. I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids," Proceeding of the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.
- 12. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10 (1984).
- 13. B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. <u>32</u>, 101-136 (1979).
- 14. P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. <u>54</u>, 174-201 (1984).
- 15. J.F. Thompson, "Grid Generation Techniques in Computational Fluid Dynamics," AIAA Tour., Vol. 22, No. 11, pp. 1505-1523, November, 1984.
- M.S. Shepherd and M.K. Georger, "Automatic Three-Dimensional Mesh Generation by the Finite Octree Method," Intern. J. Num. Meth. Eng., Vol. 32, pp. 709-749, (1991).
- H.M. Glaz, P. Colella, L.I. Glass, and R.L. Deschambault, "A Detailed Numerical, Graphical and Experimental Study of Oblique Shock Wave Reflections," DNA-TK-86-365, 1986.
- I.I. Glass and D.L. Zhang, "Interferometric Investigation of the Diffraction of Planar Shock Waves Over a Half-Diamond Cylinder in Air," UTIAS Report No. 322, March 1988.
- 19. H. Hornung, "Regular and Mach Reflection of Shock Waves," Annual Review of Fluid Mechanics, Vol. 18, pp. 33-58, 1986.

¢

PUBLICATIONS UNDER THE UUGM PROJECT

- S. Eidelman, W. Grossmann, and I. Lottati, "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 89-2446, AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conf., Monterey, CA, July 1989.
- S. Eidelman, W. Grossmann, and I. Lottati, "Computational Analysis of Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, January 1990.
- I. Lottati, S. Eidelman, and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)", AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, January 1990.
- 4. S. Eidelman and I. Lottati, "Reflection of the Triple Point of the Mach Reflection in a Planar and Axisymmetric Converging Channels," 9th Mach Reflection Symposium, Freiburg, Germany, June 1990.
- I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," in H.E. Trease, M.J. Fritts, and W.P. Crowley (Eds.), Proceedings of the Next Free-Lagrange Conference, Jackson Lake, WY, June 1990 [Advances in the Free-Lagrange Method, Springer-Verlag, New York (1992)].
- S. Eidelman, W. Grossmann, and I. Lottati, "Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study," AIAA 90-2420, AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conf., Orlando, FL, July 1990.
- E. Hyman, K. Tsang, I. Lottati, A. Drobot, B. Lane, R. Post, and H. Sawin, "Plasma Enhanced Chemical Vapor Deposition Modeling," *Surface and Coatings Tech.* 49, 387 (1991).
- 8. S. Eidelman, W. Grossmann, and A. Friedman, "Nonlinear Signal Processing Using Integration of Fluid Dynamics Equations," Applications of Digital Image Processing XIV, SPIE Vol. 1567, 1991.
- S. Eidelman, W. Grossmann, and I. Lottati, "Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept," J. Propulsion 7, 857 (1991).
- 10. D.L. Book, S. Eidelman, I. Lottati, and X. Yang, "Numerical and Analytical Study of Transverse Supersonic Flow Over a Flat Cone," Shock Waves 1, 197, 1991.

- S. Eidelman and X. Yang, "Detonation Wave Propagation in Variable Density Multiphase Layers," AIAA 92-0346, 30th Aerospace Sciences Meeting, Reno, NV, January 1992.
- 12. S. Eidelman, I. Lottati, and W. Grossmann, "A Parametric Study of the Air-Berning Pulsed Detonation Engine," AIAA 92-0392, 30th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 1992.

1

1

t

ŧ

- 13. I. Lottati and S. Eidelman, "A Second Order Godunov Scheme on a Spatial Adapted Triangular Grid," in U.S. Army Workshop on Adaptive Methods for Partial Differential Equations, Rensselaer, NJ, 1992.
- 14. I. Lottati and S. Eidelman, "Decomposition by Structured/unstructured Composite Grids for Efficient Integration in Domains with Complex Geometries," in Adv. in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky, D. Knight, and G. Richter (Eds.), 1992.
- 15. X. Yang, S. Eidelman, and I. Lottati, "Two-Phase Compressible Flow Computation on Adaptive Unstructured Grid Using Upwind Schemes," in *Adv. in Computer Methods* for Partial Differential Equations VII, R. Vichnevetsky, D. Knight, and G. Richter (Eds.), 1992.
- S. Eidelman and W. Grossmann, "Pulsed Detonation Engine Experimental and Theoretical Review," AIAA 92-3168, AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conf. and Exhibit, Nashville, TN, July 1992.
- 17. S. Eidelman and A. Altshuler, "Synthesis of Nanoscale Materials Using Detonation of Solid Explosives," *1st Intern. Conf. on Nanostructured Materials*, Cancun, Mexico, September 1992.
- 18. S. Eidelman and X. Yang, "Detonation Wave Propagation in Combustible Mixtures with Variable Particle Density Distributions," AIAA J. 31, 228, 1993.
- S. Eidelman and X. Yang, "Detonation Wave Propagation in Combustible Particle/Air Mixture with Variable Particle Density Distributions," Combust. Sci. and Tech. 89, 201, 1993.
- X. Yang, S. Eidelman, and I. Lottati, "Computation of Shock Wave Reflection and Diffraction Over a Semicircular Cylinder in a Dusty Gas," AIAA 93-2940, 24th Fluid Dynamics Conf., Orlando, FL, July 1993.
- 21 I. Lottati and S. Eidelman, "Acoustic Wave Focusing in an Ellipsoidal Reflector for Extracorporeal Shock-wave Lithotripsy," AIAA 93-3089, 24th Fluid Dynamics Conf., Orlando, FL, July 1993.

APPENDIX A

CODE DESCRIPTION

•

APPENDIX A CODE DESCRIPTION

A.1 AUGUST (2D)

The subroutines in the AUGUST code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

TABLE A.1

LIST OF SUBROUTINES

1. MAIN	Governing program for AUGUST. Reads input files and sets the mode for the computation.
2. HYDRFL	Computes the fluxes at interfaces by applying the Godunov algorithm to solve the Riemann problem across the interface.
3. HYDRMN	Controls the computation. The integration of the fluxes and update of the physical variables, adaptation of the grid and writing to output files are performed in this subroutine.
4. GEOMTR	Calculates the geometrical quantities not provided by the input data file but needed for the computational algorithm. GEOMTR is only used once for starting a new simulation.
5. UPDATE	Reads the input file for a new simulation and calls GEOMTR to update the geo- metrical variables needed to perform the computation.

6 IDCDAD	
6. UPGRAD	Called if a restart run is performed. Will read the appropriate file written at the end of the previous run.
7. GRADNT	Computes the gradient of the physical variables to improve the prediction of those variables for the two sides of the interface. The gradients are subjected to the monotonicity condition that limits the projected values, thus preventing new maxima-minima from being caused artificially by interpolation (IOPORD = 2). Calls FCHART in order to compute projected values at the half timestep associated with the local characteristics of the flow.
8. GRDFLX	Computes the gradient of the pressure and Mach number in each cell. This information is used as an error indicator for the adaptation needed in a steady state solution.
9. FIRST	The equivalent of GRADNT if run in a first order mode (IOPORD = 1). Using FIRST assumes that the physical variables are constant in each cell. Takes care of the boundary conditions if the interface is a boundary.
10. FCHART	Computes the projected values at a half timestep for the two sides of the interface based on the local characteristics of the flow. Called by GRADNT, it modifies the projected values for the two sides of the interface and assigns them to the correct location in memory. Takes care of the boundary conditions if the interface is a boundary.

•

11. PRLCTN	
	Determines particle cell location in the initial phase of tracing a group of particles.
12. PRPTHC	Advances the position of each particle, assuming that the particle has the flow velocity of the cell. PRPTHC will find the cell location of the particle after it advances by the timestep of the computation.
13. VERCEN	Places an additional vertex at the center of a specified cell to refine the size of the cell by a factor of three.
14. DISECT	Places an additional vertex at the middle of a specified edge to refine the size of the two cells adjacent to the edge by a factor of two. This method of refinement is used only on the edges lying on the boundaries of the computational domain.
15. DYNPTN	Tests and flags the cells for specified refinement criteria. DYNPTN is called only if the parameter IOPADD = 1. Will start the refinement procedure by calling VERCEN and DISECT and will call DYYPTN for further refinement. This insures that the buffer zone ahead of the shock is resolved according to the specified area criteria (AREADD).
16. DYYPTN	Refines the cells flagged by DYNPTN by calling VERCEN and DISECT until the area of each flagged cell meets the area criteria specified by the parameter AREADD.

17. INTPTN	Refines the cells in the inlet region. Prepares the inlet region for the introduction of a shock wave. This initial refinement is essential to prevent additional refinement of the grid in the presence of a shock wave. It is called only if the parameters ICOND=0 and IOPTN= 2 (solution for transient phenomena).
18. DELPTN	Tests and flags the cells for the specified criteria for coarsening. DELPTN is called only if parameter IOPDEL = 1.
19. RELAXY	Relaxes the vertices of the cells that were created in the process of deleting a vertex.
20. VERDEL	Deletes a specified vertex.
21. RECNC	Tests two cells adjacent to the specified edge. Compares them to the two cells that can be created if this edge is flipped to pass between the other two vertices of the quadrilateral containing the original two cells. If the tests result in a better quality triangle, then RECNC will swap the edge.
22. EOS	Applies Gilmore equation of state to compute $\gamma = c_p/c_v$, giving the internal energy and density of the fluid in a cell. This option is controlled by the parameter IOPEOS = 1.
23. LIFTDR	A diagnostic to compute the lift, drag, and transfer momentum developed in the configuration. Takes into account all boundary edges that are specified as 5. It is controlled by the parameter $IOPLFT = 1$.

THE MAIN PROGRAM

All of the data input and initiation of a run (or a restart run) is performed in MAIN. The actual simulation is controlled by HYDRMN, which is called from MAIN. At the completion of a run, control is returned to MAIN and a successful termination prints the message STOP 777.

MAIN contains one name list (file no. 2) and requires an input file that contains the grid data description (file no. 16). The data organization for the grid file is described in Appendix A. There are five files that should be included: CINTOO.H, CMSHOO.H, CPHS10.H, CPHS20.H, CHYDOO.H.

	ICOND	ICONP	ITRIGR	IOPTN
	XMCHIN	RIN	PIN	ALFA
	HRGG	IHRN	NTIME	MDUMP
NAMELIST/DATA	NDUMP	KDUMP	IOSPCL	IOPLFT
	IOPRCN	IOPORD MPRTCL	IOPBYN IOPINT	IAXSYM IOPADD
	IOPDEL	AREADD	AREDEL	IWINDW
	ISTATC		····	

VARIABLE	PURPOSE
ICOND	= 0 READ INPUT GRID FOR A NEW SIMULATION = 1 READ THE GRID FROM PREVIOUS RUN

ICOND = 0:

MAIN will read the initial grid definition stored in file number 16. The current setting is to read the input ile as provided by Smart, a two dimensional triangula. grid generator that runs interactively on the Macintosh prosonal computer.

MAIN will call UPDATE, which will call CEOMTR. GEOMTR will compute essential geometrical parameters that are not provided by file 16. All geometrical information is dumped into output files (8 and 88) so that ICOND=0 is used only once at the beginning of a new simulation.

ICOND = 1;

ICONP = 0:

MAIN will call UPGRAD, which will call one of the output files (8 or 88) written by the previous run. This will load the geometrical definition of the grid (either 8 or 88---they are identical). Writing identical files provides a backup in the event that the job terminates for lack of time while in the process of writing to one of those output files.

VARIABLE	PURPOSE
	= 0 PRIMITIVE VARIABLES INITIALIZED = 1 VARIABLES READ FROM PREVIOUS RUN

Initialize the primitive variables in computational domain with an initial value specified by the user. The two options set by the code are controlled by IOPTN.

ICONP = 1:The flow field condition reads in files 8 or 88 and
provides a followup run set from the previous run.

VARIABLE	PURPOSE
ITRIGF.	 = 0 USING THE INPUT GRID AS THE INITIAL GRID = 1 THE INPUT GRID TRIPLED BY ADDING AN EXTRA VERTEX IN EACH TRIANGLE

ITRIGR = 1:

The original grid cells will be tripled by adding an extra vertex in the baricenter of each triangle. This option can be triggered at the beginning of a simulation only (ICOND = 0).

VARIABLE	PURPOSE
IOPTN	= 1 SOLUTION FOR STEADY STATE = 2 SOLUTION FOR TRANSIENT PHENOMENA

There are two choices available to set the initial condition of the problem.

lopin = 12

Assign the conditions at the inlet to the computational domain. This is the fastest way to get a steady state solution for the conditions specified at the inlet. In this option. PIN (pressure), RIN (density) and XMCHIN (Mach number: are assigned to the pressure density and velocity (the speed of sound is computed in the code) and imposed at the inlet boundaries.

\$(0)**:4**\$;}@**_%**4~

Used if a shock wave is to be simulated moving from the inlet (edge boundary 8) to the outlet (edge boundary 7). For this setting, specify PIN (ambient pressure in the chamber), RIN (ambient density in the chamber) and XMCHIN (upstream Mach number). The code will use the normal shock wave relations for an adiabatic flow of a completely perfect fluid to compute the static-pressure ratio across the shock P_2/P_1 and the density ratio ρ_2/ρ_1 , and the ratio of the Mach number across the shock M_2/M_1 . These computed quantities are applied to set correctly the condition on the pressure density and velocity at the inlet boundary.

VARIABLE	PURPOSE
ALPHA	THE DIRECTION OF INFLOW IN DEGREES RELATIVE TO A RIGHT HAND COORDINATE SYSTEM. ALPHA = 0 MEANS FLOW FROM LEFT TO RIGHT.

The velocity computed by the code according to the input data provided by the user is split (projected) in the X and Y directions by using α .

VARIABLE	PURPOSE
HRGG	INITIAL γ IN THE EQUATION OF STATE. THE CODE RUNS USING THE IDEAL EQUATION OF STATE AS A BASELINE AND SHOULD BE MODIFIED IF SOMETHING ELSE IS DESIRED. IOPEOS=1 WILL TRIGGER THE USE OF GILMORE EQUATION OF STATE.

VARIABLE	PURPOSE
IHRN	NUMBER OF ITERATIONS IN THE RIEMANN SOLVER TO FIND THE DIAPHRAGM SOLUTION. (THREE TO FOUR SHOULD BE USED AND INCREASED ONLY FOR A VERY HIGH MACH NUMBER CASES.)

VARIABLE	PURPOSE
NTIME	NUMBER OF REPEATS FOR THE INTEGRATION/ REFINEMENT/COARSENING SEQUENCE. AN OUTPUT DUMP IS DONE FOR EVERY SEQUENCE REPEAT.

VARIABLE	PURPOSE
MDUMP	NUMBER OF OUTERMOST LOOP ITERATIONS IN THE CALCULATION WHERE COARSENING OF THE GRID IS PERFORMED EVERY SEQUENCE REPEAT.

VARIABLE	PURPOSE
NDUMP	NUMBER OF OUTER LOOP ITERATIONS IN THE CALCULATION WHERE REFINING IS DONE FOR EVERY SEQUENCE REPEAT WITHOUT COARSENING.

VARIABLE	PURPOSE
KDUMP	NUMBER OF ITERATIONS PERFORMED WITH NO REFINEMENT OR COARSENING. THE INNER LOOP OF THE CALCULATION. IF KDUMP = 0, KDUMP WILL BE SET BY THE CODE AUTOMATI-CALLY ACCORDING TO THE SETTING OF THE VARIABLE AREADD.

VARIABLE	PURPOSE
IOSPCL	 = 0 NOT USING REDEFINITION OF POINTS ON THE BOUNDARY = 1 USING REDEFINITION OF POINTS ON THE BOUNDARY

IOSPCL = 1:

Modifies the definition of points along the boundary according to a presetting in the code. The setting currently will redefine the points along the edge boundary 5 to exactly match NACA0012 airfoil shape. This is done to redefine points on a boundary that has an analytical definition of points, but where these points have been dislocated by a refining procedure.

VARIABLE	PURPOSE
IOPLFT	 = 0 THE COMPUTATION OF LIFT DRAG AND MOMENT TURNED OFF = 1 THE COMPUTATION OF LIFT DRAG AND MOMENT TURNED ON

1

1

1

Set IOPLFT = 1 if integral quantities need to be computed. The current setting will calculate the lift, drag and moment on edge boundary 5.

VARIABLE	PURPOSE
IOPRCN	 = 0 A GLOBAL SWAPPING (RECONNECTION) PROCEDURE IS OFF = 1 A GLOBAL SWAPPING (RECONNECTION) PROCEDURE IS ON

This swapping is done by calling subroutine RECNC. It is used only in a new simulation (ICOND = 0).

VARIABLE	PURPOSE
IOPORD	 = 1 THE CODE WILL RUN FIRST ORDER GODUNOV METHOD = 2 THE CODE WILL RUN SECOND ORDER GODUNOV METHOD

IOPORD = 1 Subroutine FI

Subroutine FIRST is called.

IOPORD = 2 Subroutine GRADNT is called.

VARIABLE	PURPOSE
IOP' YN	 = 0 NO BUOYANCY EFFECTS ARE COMPUTED = 1 BUOYANCY EFFECTS IN THE X DIRECTION ARE COMPUTED = 2 BUOYANCY EFFECTS IN THE Y DIRECTION ARE COMPUTED

The buoyancy effect applies the gravity acceleration as g = 9.81.

VARIABLE	PURPOSE
IAXSYM	 = 0 THE CODE WILL RUN IN A PURE TWO DIMENSIONAL MODEL = 1 THE CODE WILL RUN IN AN AXISYMMET- RICAL MODE (X AS THE AXIS OF SYMMETRY) = 2 THE CODE WILL RUN IN AN AXISYMMET- RICAL MODE (Y AS THE AXIS OF SYMMETRY)

VARIABLE	PURPOSE
IOPEOS	= 0 THE CODE WILL RUN WITH CONSTANT γ = 1 THE CODE WILL RUN WITH VARIABLE γ USING THE EQUATION OF STATE FOR AIR

I©IEEQS∈OS

The initial γ is not changed and is kept constant across the computational domain at all times (with value set by HRGG).

IOPEOS = 1.The γ of each cell will be modified according to localinternal energy and density. Thus, if IOPEOS = 1, the actualpressure and density should be input (in the appropriatedimension). Otherwise (IOPEOS=0), a normalized pressureand density of unity can be used for simulation.

VARIABLE	PURPOSE
MPRTCL	= 0 NO PARTICLE TRACING = 1 THE CODE WILL TRACE PARTICLES

MPRTCL = 1:

The ability to trace particles will be turned on. Initially PRLCTN is called to identify the cell location of each particle. For each time step, PRPTHC will be called to update the cell location of each particle if it is relocated, assuming the particle moves at the same velocity as the fluid.

The initial location of the particles is defined in MAIN.

VARIABLE	PURPOSE
IOPINT	 = 0 DOES NOT PREPARE A BUFFER ZONE. = 1 INITIALLY PREPARE A BUFFER ZONE AHEAD OF EDGE BOUNDARY 8

For simulating transient phenomena, the refining of the grid is done in the region ahead of the shock. In this way, we avoid interpolating in a region where large gradients reside. IOPINT = 1 will refine the region of the inlet flow to prepare a buffer zone (edge boundary 8). If refining is needed in another region, subroutine INTPTN should be modified accordingly.

VARIABLE	PURPOSE
IOPADD	= 0 THE REFINEMENT PROCEDURE IS TURNED OFF = 1 THE REFINEMENT PROCEDURE IS TURNED ON

VARIABLE	PURPOSE
IOPDEL	= 0 THE COARSENING PROCEDURE IS TURNED OFF = 1 THE COARSENING PROCEDURE IS TURNED ON

VARIABLE	PURPOSE
AREADD	SPECIFIES THE MINIMUM AREA VALUE THAT A TRIANGLE SHOULD HAVE AFTER REFINEMENT. SPECIFIED AS A FRACTION OF THE AVERAGE TRIANGLE AREA OF THE INITIAL GRID. THIS REFERENCE AREA IS KEPT CONSTANT THROUGH THE WHOLE SIMULATION.

VARIABLE	PURPOSE
AREDEL	SPECIFIES THE MAXIMUM VALUE THAT A TRIANGLE SHOULD HAVE AFTER COARSENING DEFINED AS A FRACTION OF THE REFERENCE AREA.

VARIABLE	PURPOSE
IWINDW	= 0 NO RESTRICTION ON THE REGION FOR REFINING THE GRID = 1 SETTING A WINDOW FOR REFINING THE GRID

IWINDW = 1.The user can specify a region in which the refinement
process will take place. Otherwise, the refinement takes
place everywhere in the computational domain.

VARIABLE	PURPOSE
ISTATC	 = 0 THE ADAPTATION WILL BE DONE ON A MOVING WAVE = 1 THE ADAPTATION WILL BE DONE ON A STEADY STATE CONDITION

Because the criteria for refinement in the presence of a static shock are not suited to treating a moving shock, the code sets different error indicators for adapting the grid for the two cases.

ISTATC =0

The energy and density net fluxes across each cell are tested for sensing the level of activity. This method is a very good error indicator for sensing transient phenomena as traveling shocks.

STM TO BAR

The pressure and Mach gradients in each cell are tested for sensing steady state shocks.

The gradient of density is always tested as a third criteria for making sure that static shocks are not ignored in computing a transient flow.

HYDRICE

Computes the fluxes across interfaces when the conditions for both sides are given. The fluxes are computed assuming a shock solution at a broken diaphragm simulated by the presence of the interface. The conditions existing on the two sides of the diaphragm will define the condition of the flow at the diaphragm location. These conditions are computed by solving the Riemann problem using the Godunov algorithm. The condition at the diaphragm defines the flux of energy, mass, and momentum passing across the interface. The Euler conservation law is applied to conserve energy, mass, and momentum crossing interfaces from one cell to the other.

Quantity	Side 1	Diaphragm (Interface)	Side 2
Density	ρ1	ρ	ρ2
Pressure	P1	Р	P2
Velocity Perpendiar to Interfac	uı	u	u2
Velocity arallel to Inter_ce	v ₁	v	v ₂

HYDRMIN

Controls the code and the iteration loops. It calls HYDRFL to find the interface fluxes. These fluxes are integrated to update the physical variables in each cell. If adaptation of the grid is required, HYDRMN will set the criteria for controlling the adaptation of the grid. The refining (DYNPTN, DYYPTN) and coarsening (DELPTN) of the grid is invoked by HYDRMN. HYDRMN also controls the output by writing the necessary information on files for post processing data and for restarting the AUGUST code at a later time. It also manages print file diagnostics.

GEOMTR

Calculates geometrical variables that are not supplied by the input data and are needed to run the code. For example, it will compute:

- 1) Area of the cells;
- 2) Length of the edges:
- 3) Unit vector perpendicular to the edge. (For boundary edges, this unit vector is direct from the computational domain outward);
- 4) Unit vector directed from the baricenter of the left cell to the baricenter of the right cell. For boundary edges, the unit vector is perpendicular to the edge (from left cell outward).

The code will change the direction of the boundary edges so that all are arranged counterclockwise and the associated computational cell is always on the left side. GEOMTR is called once in the beginning of a new simulation.

UPDATE

Called in the beginning of a new simulation for setting geometrical variables not provided by the input data. (It calls GEOMTR.)

UP(C)RAD)

Called if the run is a restart. UPGRAD will read the appropriate file (either 8 or 88) dumped by the previous run.

CRADNT

Compute the gradients of the physical variables in each cell. These computed gradients, along with the physical values at the baricenters, are applied using linear interpolation to predict the values on the interface.

The computed gradients are subjected to the monotonicity condition, ensuring that the projected values are bounded by the value of each quatity in the three adjacent cells, and to make sure that no new maxima or minima occurs. The projection of quantities to the interface improves the results from the code and provides second order accuracy in space.

GRADNT calls FCHART, which computes the projected values at the interfaces at the half timestep level according to the local characteristics of the flow in each cell bordering the interface cell. The assignment of values at the two sides of each interface is done at the end of FCHART. This same loop will also impose the boundary conditions for the interfaces at the boundaries of the computational domain.

GRDFLX

Computes the gradient of the Mach value and pressure gradient in each cell. These gradients are applied if the adaptation is done on a steady state converged solution. These variables, in addition to the computed density gradient, provide the criteria for adaptation if it is necessary to refine the grid for steady state problems.

FIRST

Assigns flow quantities to each side of an edge. These are based on the values at the baricenter of the triangles on either side of the edge. FIRST uses a first order approximation to find the values at the edge.

The user can specify FIRST or GRADNT by choosing 1 or 2 for the parameter IOPORD.

FCHART

Called by GRADNT to compute the values projected at the interfaces at the half timestep. These calculations are done by applying the local velocity characteristics in each cell. This projection in time improves the results and makes the code second order accurate in time.

PRINCHAN

Identifies the initial cell location of each particle. Called once after specifying the starting location of each particle to be traced.

PRPTEC

Advances the particle position by the marching timestep. It finds the new cell location if a particle crosses an interface. The assumption is that the particles move at the fluid velocity.

Introduces a **VERCEN** new vertex at the baricenter of the designated cell during the refinement process.

DISECT

Introduces a new vertex at the middle of a designated edge.

DYNPIN

Tests the cells according to the refining criteria and flags each cell which requires refinement. The flagged cells are refined in DYYPTN. The refinement is subjected to geometrical constraints on the cell shape to retain a high better quality refined grid.

The user can specify a window in the computational domain for refinement. The parameter to trigger this option is IWINDW = 1. For specifying the actual window, it may be necessary for the user to alter this subroutine and provide a definition of the geometrical area to be refined.

DYYPTN

Traces the cells that are flagged for refinement by DYNPTN. It subdivides them until each one of the refined cells meets the area refinement criteria of AREADD. Because each loop of refinement is restricted to a one-third reduction in cell area (calling VERCEN), DYYPTN will perform the necessary number of loops to meet the area reduction specified for refinement. AREADD is a fraction of the average area of the initial grid. This reference area is kept constant and fixes the minimum resolution in the simulation domain.

2 I \'9 V = 4 V \'6

Performs the initial refinement of the grid before the initialization. The assumption is that a shock wave is introduced through the inlet boundary. Consequently, LAAPTN will test for the inflow boundary interface and will refine the appropriate cells. (Note: It is not recommended that the code automatically refine the grid in the inlet region in the presence of a shock wave. If a shock wave is not introduced through the inlet, INTPTN should be modified to accommodate the change of the initial condition.)

DELPTN

Tests the cells according to coarsening criteria and flags them. Each triangle is tested to determine which vertex of the triangle is most appropriate for removal. This vertex is removed by calling VERDEL. DELPTN cannot delete nodes that have the status JV(1,IV) = 3. It is therefore recommended that nodes at sharp corners or nodes on important boundaries that are curved, be flagged as JV(1,IV) = 3.

RELAXY

Relaxes the cells that are created in the process of deleting a vertex. The relaxation procedure relocates the designated vertex to the mass center of the surrounding vertices.

LAPLAC

Computes the Laplacian of the pressure and density.

VERDEL

Deletes a designated vertex.

\$\$2¥\$\$\$\$

Tests the possibility of swapping the designated interface to create two triangles of better quality than the original two.

12(0)*2*)

Computes γ using to the equation of state for air (Gilmore equation of state), given the density and internal energy of the air. The user may choose to apply the equation of state by setting IOPEOS = 1.

Computes integral quantity diagnostics on any configuration. The integral quantities are lift, drag, and momentum and are found on boundary interfaces designated as 5.

GRADNEL

Computes the gradient of a scalar variable at the center of a cell. It uses a least squares technique to interpolate the values at the center of four triangles (the cell and its three adjacent triangles) to fit (four equations with three unknowns).

 $f = a_0 + a_1x + a_2y$

Those gradients are subjected to a monotonicity limiter that ensures no new minima or maxima are produced artificially in the projected values at the interfaces.

1)	find maximum and minimum of f_1, f_2, f_3, f_4 $f_{max} = Max (f_1, f_2, f_3, f_4)$ $f_{min} = Min (f_1, f_2, f_3, f_4)$
2)	compute $\Delta f_{max} = f_{max} - f_1$ $\Delta f_{min} = f_{min} - f_1$
3)	compute incremental projected values at the interfaces
	$\mathbf{f}_{\mathbf{m}\mathbf{j}\mathbf{R}} - \mathbf{f}_{\mathbf{R}} = \nabla \mathbf{f}_{\mathbf{R}} \cdot \mathbf{\bar{r}}_{\mathbf{j}\mathbf{R}}$
	$\mathbf{f_{mjL}} - \mathbf{f_L} = \nabla \mathbf{f_L} \cdot \mathbf{\bar{r_{jL}}}$

The monotonicity algorithm involves the following steps

 $\Delta f_{mjR} = f_{mjR} - f_R = \nabla f_R \cdot \overline{r}_{jR}$ $\Delta f_{mjL} = f_{mjL} - f_L = \nabla f_L \cdot \overline{r}_{jL}$

where j stands for every interface of the cell and fmj is the interpolated value at the middle of the interface.

4) compute the limiter by calculating the minimum of indicator for each edge of the three edges of the cell.

right to the interface RUVPR = $\frac{(1 + \text{sign } \Delta f_{miR}) \Delta f_{max} + (1 - \text{sign } \Delta f_{miR}) \Delta f_{min}}{2 \Delta f_{mjR}}$ left to the interface RUVPL = $\frac{(1 + \text{sign } \Delta f_{miL}) \Delta f_{max} + (1 - \text{sign } \Delta f_{mjL}) \Delta f_{min}}{2 \Delta f_{mjL}}$

This formulation ensures that

$$\inf \begin{cases} \Delta f_{mj} > 0 \text{ RUVP} = \frac{\Delta f_{max}}{\Delta f_{mj}} \\ \Delta f_{mj} < 0 \text{ RUVP} = \frac{\Delta f_{min}}{\Delta f_{mj}} \end{cases}$$

the outcome of RUVP is always positive. If RUVP > 1 then the projected value at the interfaces will introduce a new minimum or maximum relative to the values at the baricenters of the appropriate cells.

Select the minimum between the six values for RUVP (two for every one of the three interfaces of the cell) not exceeding unity. The selected minimum

of RUVP is the required limiter. The gradient is multiplied by this limiter that is always less or equal to unity.

FCHART

Computes the projected values at the half time step level based on the local characteristics of the flow. This process extends the accuracy of the code to be second-order in time as well as in space.

The characteristic projection consists of several steps.

1) Calculate the velocity of sound in the two cells bordering the designated interface

 $CNLEFT = \sqrt{\gamma_L \cdot P_L/\rho_L} \quad sound speed in left cell$

CNRIGT = $\sqrt{\gamma_R \cdot P_R / \rho_R}$ sound speed in right cell

UVLEFT = $\overline{U}_L \cdot \overline{t}$ velocity of fluid at the left cell projected in \overline{t} direction

UVRIGT = $\overline{U}_R \cdot \overline{t}$ velocity of fluid at the right cell projected in \overline{t} direction

where

 $\overline{\mathbf{t}} = \mathbf{X}\mathbf{X}\mathbf{N}\cdot\overline{\mathbf{i}} + \mathbf{Y}\mathbf{Y}\mathbf{N}\cdot\overline{\mathbf{j}}$ $\overline{\mathbf{U}} = \mathbf{U}\cdot\overline{\mathbf{i}} + \mathbf{V}\cdot\overline{\mathbf{j}}$

2) To compute the interpolated left and right projected values at time $t^{N} + \Delta t/2$, we calculate the distances that the disturbances generated from the baricenter of the cells, traveling toward the interface:

 $ZZLEFT = (UVLEFT + CNLEFT) \cdot \Delta t/2$

 $ZZRIGT = -(UVRIGT - CNRIGT) \cdot \Delta t/2$

If ZZLEFT or ZZRIGT is negative they are reset to zero.

3) Calculate the distances that the flow will travel if it were to flow at the velocity of each of the local characteristics:

 $ZOLEFT = UVLEFT \cdot \Delta t/2$

 $ZORIGT = -UVRIGT \cdot \Delta t/2$

ZPLEFT = (UVLEFT + CNLEFT) $\cdot \Delta t/2$ ZPRIGT = - (UVRIGT + CNRIGT) $\cdot \Delta t/2$ ZMLEFT = (UVLEFT - CNLEFT) $\cdot \Delta t/2$ ZMRIGT = - (UVRIGT - CNRIGT) $\cdot \Delta t/2$.

4) Calculate the projected values of the nonconservative variables (density, velocity component (perpendicular and tangential to the interface), and pressure).

For the left cell:

Density HRRL = $\rho_L + \overline{\nabla}\rho_L \cdot (\overline{r}_L - ZZLEFT \cdot \overline{t})$ Perpendicular Velocity HUUL = $U_L + \overline{\nabla}U_L \cdot (\overline{r}_L - ZZLEFT \cdot \overline{t})$

Tangential Velocity	HVVL	*	$V_L + \overline{\nabla} V_L \cdot (\overline{r}_L - ZZLEFT \cdot \overline{t})$
Pressure	HPPL GMTLFT	11 11	$P_{L} + \overline{\nabla}P_{L} \cdot (\overline{r}_{L} - ZZLEFT \cdot \overline{t})$ $\rho_{L} \cdot HRRL \cdot HPPL$
For the right cell:			
Density	HRRR	2	$\rho_{\mathbf{R}} + \overline{\nabla} \rho_{\mathbf{R}} \cdot (\overline{\mathbf{r}}_{\mathbf{R}} - ZZRIGT \cdot \overline{\mathbf{t}})$
Perpendicular velocity	HUUR	=	$\mathbf{U}_{\mathbf{R}} + \overline{\nabla} \mathbf{U}_{\mathbf{R}} \cdot (\overline{\mathbf{r}}_{\mathbf{R}} - \mathbf{Z}\mathbf{Z}\mathbf{R}\mathbf{I}\mathbf{G}\mathbf{T} \cdot \overline{\mathbf{t}})$
Tangential velocity	HVVR	=	$V_R + \overline{\nabla} V_R \cdot (\overline{r}_R - ZZRIGT \cdot \overline{t})$
Pressure	HPPR GMTRGT	=	$P_{R} + \overline{\nabla} P_{R} \cdot (\overline{r}_{R} - ZZRIGT \cdot \overline{t})$ $\rho_{R} \cdot HRRR \cdot HPPR$

For the left cell, taking into account the following characteristics:

• For UVLEFT + CNLEFT:

• For UVLEFT – CNLEFT:

• For UVLEFT:

```
PPP = \overline{\nabla}P_{L} \cdot (ZOLEFT - ZZLEFT) \cdot \overline{t}

RRRR = \rho_{L} + \overline{\nabla}\rho_{L} \cdot (\overline{r}_{L} - ZOLEFT) \cdot \overline{t}

URLFT = PPP/GMTLFT + 1/HRRL - 1/RRRR

If UVLEFT is negative, URLEFT is reset to zero.
```

For the right cell, taking into account the following characteristics:

• For UVRIGT + CNRIGT:

• For UVRIGT - CNRIGT:

• For UVRIGT:

 $PPP = \overline{\nabla}P_{R} \cdot (ZZRIGT - ZORIGT) \cdot \overline{t}$ $RRRR = \rho_{R} + \overline{\nabla}\rho_{R} \cdot (\overline{r}_{R} + ZORIGT) \cdot \overline{t}$ URRGT = PPP/GMTRGT + 1/HRRR - 1/RRRRIf UVRIGT - CNRIGT is positive, URRGT is reset to zero. The projected values will be:

RRL = 1/(1/HRRL - (UPLFT + UMLFT + URLFT))UUL = HUUL + (UPLFT - UMLFT) \sqrt{GMTLFT} VVL = HVVL + (UPLFT - UMLFT) \sqrt{GMTLFT} PPL = HPPL + (UPLFT + UMLFT) GMTLFT RRR = 1/(1/HRRR - (UPRGT + UMRGT + URRGT))UUR = HUUR + (UPRGT - UMRGT) \sqrt{GMTRGT} VVR = HVVR + (UPRGT - UMRGT) \sqrt{GMTRGT} PPR = HPPR + (UPRGT + UMRGT) · GMTRGT.

Those values are the assigned condition for the two sides of the interface. If the interface is a boundary, the right condition is determined according to the type of boundary.

D'4' S La V' C La V' C La V'

DYNPTN applies three distinct criteria to test cells to determine their need for refinement. They are as follows:

For unsteady dynamic simulation

- 1) total energy flux entering or leaving a cell
- 2) total density flux entering or leaving a cell
- 3) density gradient in each cell.

For steady state simulation

- 1) Pressure gradient in each cell
- 2) Mach number gradient in each cell
- 3) density gradient in each cell.

Cells that meet one of those three criteria are flagged, and are actually subdivided in DYYPTN until they meet the area criteria set for refinement (AREADD). The code will compute the maximum of each of the three criteria and set a 5% of the maximum or higher to the refinement criteria for the fluxes and 3% for the gradient. These criteria work extremely well for moving waves. It should be noted that those error indicators and their levels are set according to the actual simulated condition. For different cases, other error indicators and level settings might be more appropriate than the above.

DELPTN

Tests the cells for coarsening criteria. The same criteria that refines the grid are applied to coarsen the grid but in a different setting. Each cell that has less than 5% of the fluxes and less than 3% of the gradient criteria is eligible for coarsening. The code will test the cell flagged for coarsening and will choose one of the three vertices of the cell for deletion by determining which of the three has the smallest aspect ratio. (The aspect ratio is defined as the ratio between the height emerging from the node and its corresponding base.) There are vertices that cannot be removed, such as corners or vertices that preserve the original shape of the boundaries (JV(1,IV) = 3).

After the vertex is deleted, a relaxing procedure is performed on the vertices surrounding the deleted vertex, as well as a swapping procedure to improve the quality of the triangles constructed in the deletion procedure.

VERCEN

Adds an additional vertex at the baricenter of the designated cell.

VERCEN assigns one of the three new triangles the number of the original triangle and will add two more at the end of cells table. A new vertex plus three new interfaces are added at the end of the associated tables.

DISECT

Adds a new vertex at the middle of the designated edge.

DISECT will add one new vertex, three new edges and two new triangles. all of which are added at the end of the corresponding tables (vertices, edges and cells).

VERDEL

Forces deletion of a designated vertex. There are two types of vertices: deletion of a vertex in the interior of the computational domain and deletion of a vertex on the boundary. The steps of deleting a vertex are:

1) Identify the edges and cells surrounding the designated vertex in the computational domain

Interior Vertex to be Deleted

and on the boundary.

Deletion is more difficult and needs more computational resources than addition. The new vertices edges and cells being added are stacked at the bottom of the corresponding tables while undergoing deletion is always a member in the table. In order not to leave gaps in the table, a more complicated procedure was developed to replace the deleted member by the member at the bottom of the table.

2) Once the vertex, edges and cells joining the designated vertex are deleted we rezone the void (polygon) without adding new vertices. The adding of the new edges and cells are stacking at the end of the corresponding tables.

3) A relaxation procedure is performed on the vertices of the polygon (void). This procedure improve the quality of the cells that fill the void.

4) A swap procedure is performed on the new edges that were added in the process of filling the void.

A.1.1 Pre-Processor for the Unstructured Grid

The input geometrical data for AUGUST should provide the ...llowing data:

1) Number of: vertices (NV) flagged vertices (NVM) edges (NE) cells (NS) 2) A table of vertices specifying: number of vertex (IV) x coordinate (XV(1,IV)) y coordinate (XV(2,IV)). 3) A table of flagged vertices that cannot be removed by the coarsening process: number of vertex (IV) status of vertex (JV(1, IV)) The only status of vertex that is currently implemented is the flagging node that does not allow removal: JV(1.IV)=34) A table of edges specifying: number of edges (IE) vertex number indicating the beginning of the edge (JE(1,IE)) vertex number indicating the end of the edge (JE(2,IE))cell number indicating the cell at the left the edge (JE(3,IE))cell number indicating the cell at the righthe edge (JE(4,IE))number associated with the status of the : .ge

(JE(5,IE))

If JE(5,IE)=0, the edge is an ordinary edge inside the computational domain.

If $JE(5,IE)\neq0$, the edge lies on the boundary of the domain. The labeling number will indicate what type of boundary to be applied through this edge.

IV1 = JE(1,IE) vertex indicating the beginning of the edge IV2 = JE(2,IE) vertex indicating the end of the edge

The direction of the edge is defined from IV1 to IV2.

ISL = JE(3,IE)	left triangle
ISR = JE(4,IE)	right triangle
IJE5 = JE(5,IE)	status of the edge
IJE5 = 5	simulating wall conditions
IJE5 = 6	simulating wall conditions
IJE5 = 7	simulating supersonic outlet conditions
IJE5 = 8	simulating supersonic inlet conditions

5) A table of cells specifying:

number of cells (IS) number of first edge (JS(4,IS)) number of second edge (JS(5,IS)) number of third edge (JS(6,IS))

The sign of JS(4,IS), JS(5,IS), JS(6,IS) indicates whether the direction of the edge is counterclockwise (positive) or clockwise (negative).

The three associated vertices for the triangle JS(1,IS), JS(2,IS), JS(3,IS) are defined by the code in GEOMTR.

.

The three vertices of the cell are ordered in a counterclockwise arrangement.

IV1 = JS(1,IS)	first vertex
IV2 = JS(2,IS)	second vertex
IV3 = JS(3,IS)	third vertex
IE1 = JS(4, IS)	First edge of the triange directed from IV1 to IV2 (IE1 is positive).
IE2 = JS(5,IS)	Second edge directed originally from IV3 to IV2. (IE2 will be negative because its direction is clockwise)
IE3 = JS(6, IS)	Third edge directed originally from IV3 to IV1 (IE3 is positive)

A.1.2 Post-Processor for the Unstructured Grid

Postprocessing for visualization of the results on an unstructured grid is done in two different codes. The first code, DRAWBF, reads the data as dumped by AUGUST and performs the whole load of computation necessary to produce the information needed for the graphic.

The second code DRAWAF reads the data file written by DRAWBF and uses the DISSPLA software to produce the image on the screen. Breaking the postprocessing job into two separate codes enables the user to run the two codes on different machines.

DRAWBF

Reads an input data file produced by AUGUST and will read another input data file (drawbf.d) specifying the option that the user chooses to have processed.

The input data file drawbf.d specifies the window of the computational domain chosen by the user to be processed. This window is specified by XMIN, XMAX, DX and YMIN, YMAX, DY, where XMIN, XMAX, YMIN, YMAX, will specify the lower and upper limit of the region to be drawn. DX and DY will be parameters for DISSPLA to subdivide the axis into tick marks.

DISSPLA is constrained to seven colors. To extend the number of contour levels, the code can be set to draw a couple of levels in each color (7 x **NLEV** where **NLEV** is the number of levels for each color).

The user should specify the variable he wants to draw:

IHYD = 1 is density,

- = 2 is velocity in the x direction
- = 3 is velocity in the y direction
- = 4 is pressure
- = 5 is gamma (γ)
- = 6 is Mach number
- = 7 is entropy
- = 8 is a vector plot of the velocity field
- = 9 is a plot of the location of particles

The last parameter that the user should specify is IREC. IREC specifies how many dumps are in the input file produced by AUGUST. If IREC=0, the user will get as many figures as the number of dumps produced by AUGUST. Otherwise, the user will get the figure corresponding to IREC specified in the input file.

Subroutine NEXTREC reads a whole dump from the input file (written by AUGUST). It will make sure that the allocation of memory is adequate according to the number of vertices, edges and triangles to be processed. If the memory allocation is not adequate, the code will stop with an explanatory message.

Subroutine LOADF loads the portion of data needed according to the specification of the window and according to the specified IHYD into the appropriate matrices in the code.

Subroutine PHYDR produces the data for the contour plots.

Subroutine VECTOR produces the data for the vector plot of the velocity field.

Subroutine TRACER produces the data for the location of particles.

DRAWAF

DRAWAF reads an input data file (drawbf.k) produced by DRAWBF and another input file (drawaf.d) that specifies the format chosen for display.

The parameters specified in drawaf.d are:

I SIVIE STREET IN

No grid is drawn.

Grid is drawn.

)(@)**:43@)\'@<u></u>__(6**}///

A single frame is drawn.

IDFION = 1. Two frames are drawn, one for the grid and one for displaying results. The frame for the grid is drawn even if IFMESH=0, but in this case the frame will stay empty.

Identical with IOPTN=1 except the level on the bar chart is written in engineering format (XE+Y). As in the former, it is written keeping a four decimal digit.

ICONFG = 0The basic dimension for the frames is specified as 6.0x 3.0 inches (in the x and y axis, respectively). The codemakes sure that the proportionality of the frame matches thephysical window to be drawn, so that the figure will not bedistorted. This is done by redefining the x or y dimension ofthe frame accordingly, but not to exceed the 6.0 x 3.0 on thescreen (ICONFG=0 should be picked if IOPTON > 0 and atwo-frame drawing is desired).

(6(0)))]](0))))

The same as ICONFG=0 except that the basic dimensions are defined now as $6.0 \ge 6.0$ inches. This option should be specified if a one frame drawing is desired.

The user can specify a header for the drawing composed of two lines to be specified as Caption 1 and Caption 2 in the input file.

The standard drawing includes the number of vertices, edges and cells as well as the Mach number, lift, drag, moment, angle of attack (for drawing diagnostics for a wing profile). An indication of the nature of the results that appear on the drawing is also included, i.e., the physical variables drawn are identified by the parameter passing from DRAWBF.

It should be noted that the format of the output drawing is very easily redesigned to meet the needs of an individual user.

- 1. Read geometrical data defining the initial grid. The current format is set to read data file from Smart (two dimension grid generator).
- 2. Read geometrical data defining the grid read from a file dumped by a previous run of the code.
- 3. Initialize the physical variables according to IOPTN (either steady state or moving shock wave). If a different initial setting is needed, it should replace the current setting.
- 4. Read the physical variables from a file dumped by a previous run.

A.2 AUGUSTT (3D)

The subroutines in the AUGUSTT code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

TABLE A.2.1

LIST OF SUBROUTINES

The subroutines in the AUGUST code are organized here as they appear in the listing in Appendix B. A brief description indicates the function performed by each subroutine.

1. MAIN	
	Governing program for AUGUST. Reads input files and sets the mode for the computation.
2. HYDRFL	Computes the fluxes at interfaces by applying the Godunov algorithm to solve the Riemann problem across the interface.
3. HYDRMN	Controls the computation. The integration of the fluxes and update of the physical variables and writing to output files are performed in this subroutine.
4. GEOMTR	Calculates the geometrical quantities not provided by the input data file but needed for the computational algorithm. GEOMTR is only used once for starting a new simulation.
5. UPDATE	Reads the input file for a new simulation and calls GEOMTR to update the geo- metrical variables needed to perform the computation.
6. UPGRAD	Called if a restart run is performed. Will read the appropriate file written at the end of the previous run.

7. GRADNT	Computes the gradient of the physical variables to improve the prediction of those variables for the two sides of the interface. The gradients are subjected to the monotonicity condition that limits the projected values, thus preventing new maxima-minima to be caused artificially by interpolation (IOPORD = 2). Calls FCHART in order to compute projected values at the half timestep associated with the local
	characteristics of the flow.
8. FIRST	The equivalent of GRADNT if run in a first order mode (IOPORD = 1). Using FIRST assumes that the physical variables are constant in each cell. Takes care of the boundary conditions if the interface is a boundary.
9. FCHART	Computes the projected values at a half timestep for the two sides of the interface based on the local characteristics of the flow. Called by GRADNT, it modifies the projected values for the two sides of the interface and assigns them to the correct location in memory. Takes care of the boundary conditions if the interface is a boundary.

The MAIN Program

All of the data input and initiation of a run (or a restart run) is performed in MAIN. The actual simulation is controlled by HYDRMN, which is called from MAIN At the completion of a run, control is returned to MAIN and a successful terminat. I prints the message STOP 777.

M. N contains one name list (file no. 2) and requires an input file that contains ne grid data description (file no. 16). The data organization for the

44

grid file is described in Appendix A. The following files should be included: DMSH00.H, DPHS ϕ 0.H, DHYD00.H.

	ICON	ND IC	ONP IO	PTN
NAMELIST/DATA	XMC	그 프로그 이상 이상 전에 주말했다.		프로그램은 영상에서 관계하는 것을 받았다.
	ALE			RN
	NTD	· · · · · · · · · · · · · · · · · · ·		PORD

VARIABLE	PURPOSE
ICOND	= 0 READ INPUT GRID FOR A NEW SIMULATION = 1 READ THE GRID FROM PREVIOUS RUN

ICOND = 0

MAIN will read the initial grid definition stored in file number 16. The current setting is to read the input file as provided by Smart, a two-dimensional triangular grid generator that runs interactively on a Macintosh personal computer.

MAIN will call UPDATE, which will call GEOMTR. GEOMTR will compute essential geometrical parameters that are not provided by file 16. All geometrical information is dumped into output files (8 and 88) so that ICOND=0 is used only once at the beginning of a new simulation.

ICOND = 1

MAIN will call UPGRAD, which will call one of the output files (8 or 88) written by the previous run. This will load the geometrical definition of the grid (either 8 or 88--they are identical). Writing identical files provides a backup in the event that the job terminates for lack of time while in the process of writing to one of those output files.

VARIABLE	PURPOSE
ICONP	= 0 PRIMITIVE VARIABLES INITIALIZED = 1 VARIABLES READ FROM PREVIOUS RUN

ICONP = 0. Initialize the primitive variables in computational domain with an initial value specified by the user. The two options set by the code are controlled by IOPTN.

ICONP = 1. The flow field condition reads in files 8 or 88 and provides a follow-up run set from the previous run.

VARIABLE	PURPOSE
IOPTN	= 1 SOLUTION FOR STEADY STATE = 2 SOLUTION FOR TRANSIENT PHENOMENA

There are two choices available to set the initial condition of the problem.

Assign the conditions at the inlet to the computational domain. This is the fastest way to get a steady-state solution for the conditions specified at the inlet. In this option, PIN (pressure), RIN (density) and XMCHIN (Mach number) are assigned to the pressure density and velocity (the speed of sound is computed in the code) and imposed at the inlet boundaries.

10PTN = 2:...

Used if a shock wave is to be simulated moving from the inlet (edge boundary 8) to the outlet (edge boundary 7). For this setting, specify PIN (ambient pressure in the chamber). RIN (ambient density in the chamber) and XMCHIN (upstream Mach number). The code will use the normal shockwave relations for an adiabatic flow of a completely perfect fluid to compute the static-pressure ratio across the shock P2/P1 and the density ratio r2/r1, and the ratio of the Mach number across the shock M2/M1. These computed quantities are applied to set correctly the condition on the pressure density and velocity at the inlet boundary.

VARIABLE	PURPOSE
	THE DIRECTION OF INFLOW IN DEGREES RELATIVE TO A RIGHT-HAND COORDINATE SYSTEM. ALFA = 0 MEANS FLOW FROM LEFT TO RIGHT.

The velocity computed by the code according to the input data provided by the user is split (projected) in the X and Y directions by using α .

VARIABLE	PURPOSE
HRGG	INITIAL γ IN THE EQUATION OF STATE. THE CODE RUNS USING THE IDEAL EQUATION OF STATE AS A BASELINE AND SHOULD BE MODIFIED IF SOMETHING ELSE IS DESIRED. IOPEOS=1 WILL TRIGGER THE USE OF GILMORE EQUATION OF STATE.

VARIABLE	PURPOSE
IHRN	NUMBER OF ITERATIONS IN THE RIEMANN SOLVER TO FIND THE DIAPHRAGM SOLUTION. (THREE TO FOUR SHOULD BE USED AND THE NUMBER INCREASED ONLY FOR VERY HIGH MACH NUMBER CASES.)

VARIABLE	PURPOSE
NTIME	NUMBER OF REPEATS FOR THE INTEGRATION SEQUENCE. AN OUTPUT DUMP IS DONE FOR EVERY SEQUENCE REPEAT.

VARIABLE	PURPOSE
NDUMP	NUMBER OF OUTER LOOP ITERATIONS IN THE CALCULATION WHERE REFINING IS DONE FOR EVERY SEQUENCE REPEAT WITHOUT COARSENING.

VARIABLE	PURPOSE
IOPORD	 = 1 THE CODE WILL RUN FIRST ORDEL GODUNOV METHOD = 2 THE CODE WILL RUN SECOND ORDER GODUNOV METHOD

Subroutine FIRST is called.

IOPORD = 2 Subroutine GRADNT is called.

HYDREL

Computes the fluxes across interfaces when the conditions for both sides are given. The fluxes are computed assuming a shock solution at a ruptured diaphragm simulated by the presence of the interface. The conditions existing on the two sides of the diaphragm will define the condition of the flow at the diaphragm location. These conditions are computed by solving the Riemann problem using the Godunov algorithm. The condition at the diaphragm defines the flux of energy, mass, and momentum passing across the interface. The Euler conservation law is applied to conserve energy, mass, and momentum crossing interfaces from one cell to the other.

Quantity	Side 1	Diaphragm (Interface)	Side 2
Density	ρ1	ρ	r2
Pressure	P ₁	Р	P ₂
Velocity Perpendicular to Interface	u _l	u	u ₂
Velocity Parallel to Interface	v ₁	v	v2
Velocity Parallel to Interface to Construct a Right-Hand Coordinate System (u, v, w,)	w1	w	w2

49

EYDRMIN

Controls the code and the iteration loops. It calls HYDRFL to find the interface fluxes. These fluxes are integrated to update the physical variables in each cell. If adaptation of the grid is required, HYDRMN also controls the output by writing the necessary information on files for postprocessing data and for restarting the AUGUST code at a later time. It also manages print file diagnostics.

(e))(e))(e)

Calculates geometrical variables that are not supplied by the input data and are needed to run the code. For example, it computes:

- 1) distances between baricenters of adjoining cells;
- 2) the location of the intersection between the line joining adjacent baricenter cells and the interface.

The code changes the direction of the boundary edges so that all are arranged counter clockwise and the associated computational cell is always on the left side. GEOMTR is called once in the beginning of a new simulation.

UPDATE

Called in the beginning of a new simulation for setting geometrical variables not provided by the input data. (It calls GEOMTR.)

UPGRAD

Called if the run is a restart. UPGRAD will read the appropriate file (either 8 or 88) dumped by the previous run.

GRADNT

Compute the gradients of the physical variables in each cell. These computed gradients, along with the physical values at the baricenters, are applied using linear interpolation to predict the values on the interface.

The computed gradients are subjected to the monotonicity condition, ensuring that the projected values are bounded by the value of each quantity in the three adjacent cells, and to make sure that no new maxima or minima occur. The projection of quantities to the interface improves the results from the code and provides second order accuracy in space.

GRADNT calls FCHART, which computes the projected values at the interfaces at the half timestep level according to the local characteristics of the flow in each cell bordering the interface cell. The assignment of values at the two sides of each interface is done at the end of FCHART. This same loop also imposes the boundary conditions for the interfaces at the boundaries of the computational domain.

FOR THE STR

Assigns flow quantities to each side of an edge. These are based on the values at the baricenter of the triangles on either side of the edge. FIRST uses a first order approximation to find the values at the edge.

The user can specify FIRST or GRADNT by choosing 1 or 2 for the parameter IOPORD.

FCHART

Called by GRADNT to compute the values projected at the interfaces at the half timestep. These calculations are done by applying the local velocity characteristics in each cell. This projection in time improves the results and makes the code second order accurate in time.

GRADNT

Computes the gradient of a scalar variable at the center of a cell. The gradient theorem is applied for each cell.

$$\int \nabla \cdot d\mathbf{v} = \oint f \, \hat{\mathbf{n}} \, d\mathbf{s}$$
volume four surfaces

Those gradients are subjected to a monotonicity limiter that ensures no new minima or maxima are produced artificially in the projected values at the interfaces.

The monotonicity algorithm involves the following steps.

1)	find maximum and minimum of f_1 , f_2 , f_3 , f_4 , f_5 $f_{max} = Max (f_1, f_2, f_3, f_4, f_5)$ $f_{min} = Min (f_1, f_2, f_3, f_4, f_5)$
2)	compute $\Delta f_{max} = f_{max} - f_1$ $\Delta f_{min} = f_{min} - f_1$
3)	compute incremental projected values at the interfaces $f_{mjR} - f_R = \overline{\nabla} f_R \cdot \overline{r}_{jR}$ $f_{mjL} - f_L = \overline{\nabla} f_L \cdot \overline{r}_{jL}$

 $Df_{mjR} = f_{mjR} - f_R = \overline{\nabla} f_R \cdot \overline{r} j_R$ $Df_{mjL} = f_{mjL} - f_L = \overline{\nabla} f_L \cdot \overline{r} j_L$

where j stands for every interface of the cell and fmj is the interpolated value at the middle of the interface.

4) compute the limiter by calculating the minimum of indicator for each edge of the four surfaces of the cell.

right to the interface RUVPR = $\frac{(1 + \text{sign } \Delta f_{miR}) \Delta f_{max} + (1 - \text{sign } \Delta f_{miR}) \Delta f_{min}}{2 \Delta f_{mjR}}$

left to the interface RUVPL = $\frac{(1 + \text{sign } \Delta f_{mjL}) \Delta f_{max} + (1 - \text{sign } \Delta f_{mjL}) \Delta f_{min}}{2 \Delta f_{mjL}}.$

This formulation ensures that:

$$if \begin{cases} \Delta f_{mj} > 0 \text{ RUVP} = \frac{\Delta f_{max}}{\Delta f_{mj}} \\ \Delta f_{mj} < 0 \text{ RUVP} = \frac{\Delta f_{min}}{\Delta f_{mj}} \end{cases}$$

the outcome of RUVP is always positive. If RUVP > 1 then the projected value at the interfaces will introduce a new minima or maxima as compared to the values at the baricenters of the appropriate cells.

Select the minimum between the six values for RUVP (two for every one of the three interfaces of the cell) not exceeding unity. The selected minimum of RUVP is the required limiter. The gradient is multiplied by this limiter that is always less or equal to unity.

J (x ∞) = X ∧ 3 ζ 4 mm

Computes the projected values at the half timestep level based on the local characteristics of the flow. This process extends the accuracy of the code to be second-order in time as well as in space.

The characteristics projection consists of several steps.

1) Calculate the velocity of sound in the two cells bordering the designated interface:

 $CNLEFT = \sqrt{\gamma_L \cdot P_L / \rho_L} \quad sound speed in left cell$

CNRIGT = $\sqrt{\gamma_R \cdot P_R / \rho_R}$ sound speed in right cell

UVLEFT = $\overline{UL} \cdot \overline{t}$ velocity of fluid at the left cell projected in \overline{t} direction

UVRIGT = $\overline{UR} \cdot \overline{t}$ velocity of fluid at the right cell projected in \overline{t} direction

where:

 $\overline{\mathbf{t}} = \mathbf{X}\mathbf{X}\mathbf{N} \cdot \overline{\mathbf{i}} + \mathbf{Y}\mathbf{Y}\mathbf{n} \cdot \overline{\mathbf{j}} + \mathbf{z}\mathbf{z}\mathbf{n}\ \overline{\mathbf{k}}$ $\overline{\mathbf{U}} = \mathbf{U} \cdot \overline{\mathbf{i}} + \mathbf{v} \cdot \overline{\mathbf{j}} + \mathbf{w} \cdot \overline{\mathbf{k}}$

2) To compute the interpolated left and right projected values at time tN + Dt/2, we calculate the distances that the disturbances generated from the baricenter of the cells, traveling toward the interface:

 $ZZLEFT = (UVLEFT + CNLEFT) \cdot \Delta t/2$ $ZZRIGT = - (UVRIGT - CNRIGT) \cdot \Delta t/2$

If ZZLEFT or ZZRIGT are negative they are reset to zero.

3) Calculate the distances that the flow will travel if it were to flow at the velocity of each of the local characteristics:

ZOLEFT	=	UVLEFT $\cdot \Delta t/2$
ZORIGT	H	- UVRIGT $\cdot \Delta t/2$
ZPLEFT	=	(UVLEFT + CNLEFT) $\cdot \Delta t/2$
ZPRIGT	=	- (UVRIGT + CNRIGT) $\cdot \Delta t/2$

ZMLEFT = $(UVLEFT - CNLEFT) \cdot \Delta t/2$ ZMRIGT = $-(UVRIGT - CNRIGT) \cdot \Delta t/2$.

4) Calculate the projected values of the nonconservative variables (density, velocity component (perpendicular and tangential to the interface), and pressure).

For the left cell:

2

Density	HRRL	=	$\rho_{L} + \overline{\nabla} \rho_{L} \cdot (\overline{r}_{L} - ZZLEFT \cdot \overline{t})$
Perpendicular Velocity Tancential Velocity	HUUL HVVL		$\begin{split} & \mathbf{U}_{L} + \overline{\nabla} \mathbf{U}_{L} \cdot (\overline{\mathbf{r}}_{L} - \mathbf{Z}\mathbf{Z}\mathbf{L}\mathbf{E}\mathbf{F}\mathbf{T} \cdot \overline{\mathbf{t}}) \\ & \mathbf{V}_{L} + \overline{\nabla} \mathbf{V}_{L} \cdot (\overline{\mathbf{r}}_{L} - \mathbf{Z}\mathbf{Z}\mathbf{L}\mathbf{E}\mathbf{F}\mathbf{T} \cdot \overline{\mathbf{t}}) \end{split}$
Pressure	HPPL GMTLFT	=	$P_{L} + \overline{\nabla}P_{L} \cdot (\overline{r}_{L} - ZZLEFT \cdot \overline{t})$ $\rho_{L} \cdot HRRL \cdot HPPL$

For the right cell:

Density	HRRR	=	$\rho_{\mathbf{R}} + \overline{\nabla} \rho_{\mathbf{R}} \cdot (\overline{\mathbf{r}}_{\mathbf{R}} - \mathbf{ZZRIGT} \cdot \overline{\mathbf{t}})$
Perpendicular velocity	HUUR	=	$U_R + \overline{\nabla} U_R \cdot (\overline{r}_R - ZZRIGT \cdot \overline{t})$
Tangential velocity	HVVR	-	$V_R + \overline{\nabla} V_R \cdot (\overline{r}_R - ZZRIGT \cdot \overline{t})$
Pressure	HPPR GMTRGT	8	$P_{R} + \overline{\nabla}P_{R} \cdot (\overline{r}_{R} - ZZRIGT \cdot \overline{t})$ $\rho_{R} \cdot HRRR \cdot HPPR$

For the left cell, taking into account the following characteristics:

• For (UVLEFT + CNLEFT):

 $\begin{array}{l} UUU = \overline{\nabla} U_L \cdot (ZPLEFT - ZZLEFT) \ \overline{t} \\ \\ PPP = \overline{\nabla} P_L \cdot (ZPLEFT - ZZLEFT) \ \overline{t} \\ \\ UPLFT = -0.5 \cdot \left(UUU + PPP / \ \sqrt{GMTLFT} \right) \ / \ \sqrt{GMTLFT} \\ \\ If UVLEFT + CNLEFT \ is \ negative, \ UPLFT \ is \ reset \ to \ zero. \end{array}$

• For UVLEFT – CNLEFT:

 $\begin{array}{l} UUU = \overline{\nabla} U_L \cdot (ZMLEFT - ZZLEFT) \cdot \overline{t} \\ \\ PPP = \overline{\nabla} P_L \cdot (ZMLEFT - ZZLEFT) \cdot \overline{t} \\ \\ UMLFT = 0.5 \cdot (UUU - PPP/\sqrt{GMTLFT}) / \sqrt{GMTLFT} \\ \\ If UVLEFT - CNLEFT is negative, UPLFT is reset to zero. \end{array}$

• For UVLEFT:

 $PPP = \overline{\nabla}P_{L} \cdot (ZOLEFT - ZZLEFT) \cdot \overline{t}$

```
RRRR = \rho_L + \overline{\nabla}\rho_L \cdot (\overline{r}_L - ZOLEFT) \cdot \overline{t}
URLFT = PPP/GMTLFT + 1/HRRL - 1/RRRR
If UVLEFT is negative, URLEFT is reset to zero.
```

For the right cell, taking into account the following characteristics:

```
• For UVRIGT + CNRIGT:
```

```
\begin{array}{l} \textbf{UUU} = \overline{\nabla} \textbf{U}_{R} \cdot (\textbf{ZZRIGT} - \textbf{ZPRIGT}) \ \overline{\textbf{t}} \\ \textbf{PPP} = \overline{\nabla} \textbf{P}_{R} \cdot (\textbf{ZZRIGT} - \textbf{ZPRIGT}) \ \overline{\textbf{t}} \\ \textbf{UPRGT} = -0.5 \cdot (\textbf{UUU} + \textbf{PPP} / \sqrt{\textbf{GMTRGT}}) / \sqrt{\textbf{GMTRGT}} \\ \textbf{If UVRIGT} + \textbf{CNRIGT is positive, UMRGT is reset to zero.} \end{array}
```

• For UVRIGT - CNRIGT:

 $\begin{array}{l} \textbf{UUU} = \overline{\nabla} \textbf{U}_{R'} \left(\textbf{ZZRIGT} - \textbf{ZMRIGT} \right) \cdot \overline{\textbf{t}} \\ \textbf{PPP} = \overline{\nabla} \textbf{P}_{R} \cdot \left(\textbf{ZZRIGT} - \textbf{ZMRIGT} \right) \cdot \overline{\textbf{t}} \\ \textbf{UMRGT} = 0.5 \cdot \left(\textbf{UUU} - \textbf{PPP} / \sqrt{\textbf{GMTRGT}} \right) / \sqrt{\textbf{GMTRGT}} \\ \textbf{If UVRIGT} - \textbf{CNRIGT is positive, UMRGT is reset to zero.} \end{array}$

• For UVRIGT:

 $PPP = \overline{\nabla} P_R \cdot (ZZRIGT - ZORIGT) \cdot \overline{t}$

RRRR = $\rho_R + \overline{\nabla}\rho_R \cdot (\overline{r}_R + ZORIGT) \cdot \overline{t}$ URRGT = PPP/GMTRGT + 1/HRRR - 1/RRRR If UVRIGT - CNRIGT is positive, URRGT is reset to zero.

The projected values will be:

RRL = 1/(1/HRRL - (UPLFT + UMLFT + URLFT)) $UUL = HUUL + (UPLFT - UMLFT) \sqrt{GMTLFT}$

 $VVL = HVVL + (UPLFT - UMLFT) \sqrt{GMTLFT}$ PPL = HPPL + (UPLFT + UMLFT) GMTLFT RRR = 1/(1/HRRR - (UPRGT + UMRGT + URRGT)) $UUR = HUUR + (UPRGT - UMRGT) \sqrt{GMTRGT}$ $VVR = HVVR + (UPRGT - UMRGT) \sqrt{GMTRGT}$ $PPR = HPPR + (UPRGT + UMRGT) \cdot GMTRGT.$

Those values are the assigned condition for the two sides of the interface. If the interface is a boundary, the right condition is determined according to the type of boundary.

A.2.1 Preprocessor for the Three-Dimensional Unstructured Grid

The input geometrical data for AUGUST should provide the following data:

1) Number of vertices (NV)

- 2) A table of vertices specifying: number of vertex (IV) x coordinate (XV(1,IV)) y coordinate (XV(2,IV)) z coordinate (XV(3,IV).
- 3) Number of edges (NE)
- A table of edges specifying number of edges (IE) vertex number indicating the beginning of the edge (JE(1,IE)) vertex number indicating the end of the edge (JE(2,IE))
 IV1 = JE(1,IE) vertex indicating the beginning of the edge
 IV2 = JE(2,IE) vertex indicating the end of the edge

The direction of the edge is defined from IV1 to IV2.

5) Number of sides (NS)

6) A table of sides (triangles) specifying:

number of sides (IS) number of first vertice (JS(1,IS)) number of second vertices (JS(2,IS)) number of third vertices (JS(3,IS)) number of first edge (JS(4,IS)) number of second edge (JS(5,IS)) number of third edge (JS(6,IS))

The sign of JS(4,IS), JS(5,IS), JS(6,IS) indicates whether the direction of the edge is counter clockwise (positive) or clockwise (negative).

tetrahedra on left to the side (JS(7,IS))

tetrahedra on right to the side (JS(8,IS))

Number associated with the status of the side (JS(9,IS)).

if JS(9,IS) = 0 the side is an ordinary side inside the computational domain.

if $JS(9,IS) \neq 0$ the side lies on the boundary of the domain. The labeling number will indicate what type of boundary to applied through this side.

The three vertices of the side are ordered in a counter clockwise arrangement.

IV1 = JS(1,IS)	first vertex
IV2 = JS(2,IS)	second vertex
IV3 = JS(3,IS)	third vertex
IE1 = JS(4, IS)	First edge of the triangle directed from IV1 to IV2
	(IE1 is positive).
IE2 = JS(5,IS)	Second edge directed originally from IV3 to IV2.
	(IE2 will be negative because its direction is clockwise.)
IE3 = JS(6,IS)	Third edge directed originally from IV3 to IV1 (IE3
	is positive).
IC1 =JS(7,IS)	tetrahedra on the left
IC2 = JS(8, IS)	tetrahedra on the right

The normal to the side is directed from IC1 toward IC2. If the side is a boundary, the normal is always from the computational domain pointing outside (out of the fluid domain). The three vertices are ordered in a counter clockwise direction opposite to the direction of the normal to the side. For a boundary side, IC2 will be always zero.

IJS = JS(9,IS)	Status of the side
IJS9 = 6	Simulating wall conditions
IJS9 = 7	Simulating supersonic outlet conditions
IJS9 = 8	Simulating supersonic inlet conditions.

7) A table of sides specifying:

x coordinate of baricenter of side (XS(1,IS)) y coordinate of baricenter of side (XS(2,IS)) z coordinate of baricenter of side (XS(3,IS)) area of side (XS(4,IS))

8) A table of sides specifying:the three component of the vector normal to the side:

 $\vec{N} = XN(IS) \overrightarrow{i} + yN(IS) \overrightarrow{J} + ZN(IS)\overrightarrow{k}$

the three component of the parallel vector tangential to the side:

 $\overrightarrow{P} = XP(IS) \overrightarrow{r} + YP(IS) + ZP(IS)\overrightarrow{k}$

the three component of the parallel vector tangential to the side:

 $T = XT(IS) \overrightarrow{r} + YT(IS) \overrightarrow{j} + ZT(IS) \overrightarrow{k}$

where $\overline{P} \times \overline{T} = \overline{N}$ (the normal, perpendicular and parallel vectors form a local right-handed coordinate system).

9) number of cells (tetrahedrals) (NC)

- 10) A table of cells specifying: Number of cells (IC)
 Number of first vertex (JC(1,IC))
 Number of second vertex (JC(2,IC))
 Number of third vertex (JC(3,IC))
 - N aber of fourth vertex (JC(4,IC))

 - I ...mber of the second side (JC(6,IC))

Number of the third side (JC(7.IC))

Number of the fourth side (JC(8,IC))

IV1 = JC(1,IC) first vertex

IV2 = JC(2,IC) second vertex

IV3 = JC(3,IC) third vertex

IV4 = JC(4, IC) fourth vertex

Seen from inside the tetrahedron, the first three vertices are counter clockwise around the large with the fourth vertex at the apex.

IS1 = JC(5,IC) first side

IS2 = JS(6,IC) second side

IS3 = JS(7,IC) third side

IS4 = JS(8,IC) fourth side

Face ISJ is opposite the IVJ vertex

11) A table of cells specifying:

x coordinate of the baricenter of cell	(XC(1,IC))
y coordinate of the baricenter of cell	(XC(2,IC))
z coordinate of the baricenter of cell	(XC(3,IC))
Volume of the cell	(XC(4,IC))

A.2.2 Face(Triangle) information

Cell(Tetrahedral) information

xc(1.k) - x position of cell centroid xc(2.k) - y position of cell centroid xc(3.k) - z position of cell centroid xc(4.k) - volume of cell

jc(1.k) - the index of the first base vertex jc(2.k) - the index of the second base vertex jc(3.k) - the index of the third base vertex jc(4.k) - the index of fourth vertex opposite base jc(5.k) - the index of face opposite first vertex jc(6.k) - the index of face opposite first vertex jc(7.k) - the index of face opposite secondvertex jc(8.k) - the index of face opposite third vertex jc(9.k) - the index of face opposite fourth vertex jc(10.k) - the index of cell opposite first vertex jc(11.k) - the index of cell opposite third vertex jc(12.k) - the index of cell opposite third vertex jc(13.k) - the index of cell opposite third vertex jc(13.k) - the index of cell opposite fourth vertex

APPENDIX B

1

1

•

•

0

LISTINGS

Thu Jul 1 14:17:00 1993

М

•

	#	routine	page
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	main HYDRFL RYDRFL KYDRFL HYDRMN GEOMTR UPGRAD GRADNT FIRST FCHART EOS1 MATRLA PSM BILD MATRLX VOLMTETC	1 13 19 22 26 33 38 39 51 53 59 62 64 64 64 64
Thu Jui	1 14:17	:00 1993	threed.f
	#	routine	page
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	BILD EOSI FCHART FIRST GEOMTR GRADNT HYDRFL HYDRFN KYDRFL MATRLA MATRLA PSM RYDRFL UPGRAD VOLMTETC main	64 59 53 51 33 39 13 26 22 62 64 64 64 19 38 66 1

threed.f

Module List - order of occurence

page

i

Module List - alphabetical order

main program

u Jul	1 14:17	7:00	1993	threed	1.f main program
1 2	1 2	с	f	PROGRAM AUG	SUSTT
3	3	-		***********	
4 5 6	5	C C C		The AUGUST	IT Code
7	7	C			- Adaptive
8 9	8	ç			- Unstructured - Godunov
10	9 10	C C			- Upwind
11	11	C			- Second order
12 13	12 13	C C			- Triangular - Th ree dimension
14	14	C			
15 16	15 16	C C			The geometry structure comes from BERMUDA The solver is based on FUGGS
17		ç			
18 19	18 19	C C		Version:	1.00 22 july, 1991
20	20	C			
21 22		C C		Authors:	Itzhak Lottati (703)749-8648 Shmuel Eidelman (703)448-6491
23	23	C			Adam Drobot (703)734-5840
24 25	24 25	C C			Science Applications International Corporation
26	26	C			Applied Physics Operation
27 28		C C			1710 Goodridge Drive McLean, Virginia 22102
29	29	С			
30 31	30 31	C=== C	****	₽₩₩₽₩₩₽₩₩₽₽₽₽	***************************************
32	32	Ċ			_
33 34		C C			······································
35	35	Ċ	86		WULTIDIMENSIONAL CODE WHICH IS BASED ON THE
36 37	36 37	C C			OF TRIANGULAR GRIDS AS THE FUNDAMENTAL MESH I FIELD LIKE QUANTITIES. THE CODE REQUIRES I
38	38	С		THAT	ALL QUANTITIES ARE BASED AT THE BARICENTER I
39 40	39 40	C C		OF S	SIDES/TRIANGLES.
41	41	C		THE	QUIP IS THAT THOSE WHO WORK ON BERMUDA
42 43		C C		TRIA	NGLES ARE NEVER HEARD FROM AGAIN.
44	44	C		THE	BASIC MODULES IN BERMUDA INCLUDE:
45 46		C C			A HYDRODYNAMICS CODE I
47		č			.BASED ON A FIRST ORDER GODUNOV
48 49	48 49	C C			METHOD OR A SECOND ORDER GODUNOV I WITH MESH ADAPTATION. I
50	50	č			
51 52		C C	****		***************************************
53	53	С	GR	ID SETUP T	ABLES AND THEIR MEANING:
54 55		C C			******
56	56	C	+		+
57 58		Ĉ C	+	LIST OF	VERTICES +
59	59	С	+	IV	- VERTEX INDEX +
60	60	C C	+		1.IV) - X POSITION OF VERTEX + 2.IV) - Y POSITION OF VERTEX +
61 62	62	C	+		2.IV) - Y POSITION OF VERTEX + 3.IV) - Z POSITION OF VERTEX +
F	63	C	+		+
1	65	C C	++	· · · · · · · · · · · · · · · · · · · 	***************************************
5	66	C	++	****	*********
57 6 8		C C	+	LIST OF	EDGES +
69	69	C	+		+
70 71		C C	++	IE JE(- EDGE INDEX + 1.IE) - INDEX OF LOWER EDGE VERTEX +
72	72	C	+	JE (2, IE) - INDEX OF UPPER EDGE VERTEX +
73	73	Ç	+	JE (3, IE) - INDEX OF LEFT SIDE +

page

1

page

1
ı Jul	1 14:	17:00	1993 threed.f	main program	page)
74	74	C	+ JE(4, IE)	- INDEX OF RIGHT SIDE	+	7
75	75	ç	+ XE(1.IE)	- LENGTH OF EDGE	+	7
76	76	C	+ XE(2,IE)	- DISTANCE BETWEEN ADJOINING SIDE	+	7
77 78	77 78	C C	+	POINTS.	*	1
79	70	Č	···	*****	*	7
80	80	č				7
81	81	č	*****		***	8
82	82	С	+		•	š
83	83	Ç	+ LIST OF SIDES		+	8
84	84	Ç	*		+	8
85	85	С С	+ IS	- SIDE INDEX	+	8
86 87	85 87	C	+ JS(1, IS)	- INDEX OF FIRST VERTEX - INDEX OF SECOND VERTEX	+	8
88	88	č	+ JS(2,IS) + JS(3,IS)	- INDEX OF SECOND VERTEX	•	8
89	89	č	+	THOER OF THIRD TERTER	•	8 8
90	90	C	+ THE VERTICES	S RUN AROUND THE SIDE IN ORDER	+	ģ
91	91	C		CKWISE FASHION	+	ģ
92	92	Ç	+		+	ġ
93	93	Ç	+ JS(4, IS)	- INDEX OF THE FIRST EDGE	+	9
94	94	C	+ JS(5,IS)	- INDEX OF THE SECOND EDGE	+	9
95 96	95	C	+ JS(6,IS)	- INDEX OF THE THIRD EDGE	+	9
90 97	96 97	C C		RE ARRANGED IN COUNTER-ICLOCKWISE	•	
98	98	č		E ONE RUNS FROM VERTEX-ONE TO	+ +	9
<u>99</u>	99	č	+ VERTEX-TWO	TC THE SIGN OF JS(4-6, IS) INDICATES	S +	ç
00	100	Č	+ IF EDGE DATA	IS STORED THE SAME WAY. IF IT IS	- +	10
01	101	С	+ JS>O AND IT	IS REVERSED JS<0	+	i
02	102	С	+ JS(7,15)	- INDEX OF CELL ON LEFT	+	10
03	103	C	+ JS(8,IS)	- INDEX OF CELL ON RIGHT	+	10
04	104	Ç	+		+	10
05	105	ç	+ XS(1, IS)	- X POSITION OF CENTROID OF TRIANGLE		10
06 07	106 107	C C	+ XS(2,1S)	- Y POSITION OF CENTROID OF TRIANGLE		10
08	108	č	+ XS(3,IS) + XS(4,IS)	- Z POSITION OF CENTROID OF TRIANGLE - AREA OF TRIANGLE		10
09	109	č	+ XS(5,1S)	- DISTANCE BETWEEN ADJOINING CELLS	+	10 10
10	110	č	+	POINTS CROSSING TRIANGLE IS	* *	11
11	111	Č	+		+	- 11
12	112	C	+		+	11
13	113	Ç	+++++++++++++++++++++++++++++++++++++++	*******	+++	11
14	114	ç				11
15 16	1 15 1 16	C C	**************************************	*************	+++	11
17	117	č	+ LIST OF CELLS		* +	11
18	118	č	+		* *	11
19	119	Č	+ IC	- CELL INDEX	+	ii
20	120	С		- INDEX OF FIRST VERTEX	+	12
21	121	Ç		- INDEX OF SECOND VERTEX	+	12
22	122	C		- INDEX OF THIRD VERTEX	+	12
23	123	ç		- INDEX OF FOURTH VERTEX	+	12
24 25	124	C C	+ THE CONVENTI	ON FOR VERTICES IS THAT 1-3	+	12
25	125 126	č		ON FOR VERTICES IS THAT I-S COUNTER-CLOCKWISE ABOUT THE	+ +	12 12
27	127	č		T 4 IS AT THE APEX.	+	12
28	128	č	+		•	12
29	129	С		- INDEX OF FIRST SIDE	+	12
30	130	С	+ JC(6,IC)	- INDEX OF SECOND SIDE	+	13
31	131	ç		- INDEX OF THIRD SIDE	+	13
32	132	ç	• • •	- INDEX OF FOURTH SIDE	+	13
33	133	C C	+ 	ON END STORE IS THAT STOR OUR COURDE	+	13
34 35	134 135	c		ON FOR SIDES IS THAT SIDE ONE COVERS TWEEN VERTEX-ONE, VERTEX-TWO, AND THE	+ +	13 13
	136	č		E APEX ETC SIDE FOUR IS THE BASE	+ +	13
	137	č	+		+	13
36 37	138	С		- X POSITION OF CELL POINT	+	13
36 37		С	+ XC(2,IC)	- Y POSITION OF CELL POINT	+	13
36 37 38	139	C	+ XC(3,IC)	- Z POSITION OF CELL POINT	+	14
36 37 38 39 40	140	~	+ XC(4,IC)	- CELL VOLUME.	+	14
36 37 38 39 40 41	140 141	Ç				- 14
36 37 38 39 40 41 42	140 141 142	С	+		+	
36 37 38 39 40 41 42 43	140 141 142 143	C C	+	******	+	14
36 37 38 39 40 41 42 43 44	140 141 142 143 144	C C C	+	******	+	14 14
36 37 38 39 40 41 42 43	140 141 142 143	C C	+	*******	+	14

page

Thu Jul	1 14:1	17:00	1993 threed.f main program	pa ge
148	148	С		
149	149		- DEFINITION FOR ALL HYDRODYNAMIC QUANTITIES	
150 151	150 151	Ç		
151	151	Č		
153	153	č	USE OF PARAMETERS:	
154	154	Ç	I	
155	155	ç	MHQ - MAXIMUM NUMBER OF HYDRO QUANTITIES.	
156 157	156 157	C C		
158	158	Č	; 	
159	159	Ċ		
160	160	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
161	161	C	include 'dmsh00.h'	
162 163	162 163		include 'dhydm0.h'	
164	164		include 'dhydm0.h' include 'dphsm0.h'	
165	165		include 'dmtr10.h'	
166	166	C		
167 168	167 168		REAL XX(600),PP(600),HR(600), UU(600),GG(600),AA(600),EE(600)	
169	169		DOUBLE PRECISION VOL1.VOL2.VOL3.VOL4.VOLL.XXI.YYI.ZZI	
170	170		DOUBLE PRECISION DEFVOL	
171	171		OPEN(2 ,FILE='data.dd',FORM='FORMATTED')	
172	172		OPEN(4 ,FILE='thermo.d',FORM='FORMATTED')	
173 174	173 174		OPEN(8 ,FILE-'threed2.5'.FORM-'UNFORMATTED') OPEN(88 ,FILE-'threed82',FORM-'UNFORMATTED')	
175	175		OPEN(9 ,FILE='threed3',FORM='UNFORMATTED')	
176	176		OPEN(10, FILE='threed4', FORM='FORMATTED')	
177	177		OPEN(15, FILE='AVSfmhall.inp', FORM='FORMATTED')	
178	178		OPEN(14,FILE='AVSsmbail.inp',FORM='FORMATTED')	
179 180	179 180		OPEN(16.FILE='OUTPUT.MSH',FORM='FORMATTED') OPEN(26.FILE='EXPLSV.RND',FORM='FORMATTED')	
181	181		OPEN(17,FILE='ve0640.stv',FORM='FORMATTED')	
182	182		OPEN(18, FILE='f0640.stv', FORM='FORMATTED')	
183	183		OPEN(19, FILE-'pr640.stv', FORM-'FORMATTED')	
184 185	184 185	с	OPEN(11,FILE='truck.input.8b',STATUS='OLD')	
185	185	-	## <u>#####</u> #############################	
187	187	č		
188	188	C	NAMELIST /DATA/ ICOND, ICONP, IOPTN, XMCHIN, RIN, PIN, ALFA, HRGG, IHRN,	
189	189	C	. NTIME, NDUMP, IOPORD	
190 191	190 191	С С		
192	192	č	i	
193	193	C	1	
194	194	Č	MEANING OF NAMELIST VARIABLES:	
195 196	195 196	C C	ICOND = 0 READ INPUT GRID FOR A NEW RUN	
197	197	č	- 1 READ THE GRID FROM PREVIOUS RUN	
198	198	Ċ	ICONP = 0 PRIMITIVE VARIABLES SET TO ZERO	
199	199	ç	= 1 VARIABLES READ FROM PREVIOUS RUN	
200 201	200 201	C C	IOPTN = 1 SOLUTION FOR STEADY STATE, I = 2 SOLUTION FOR TRANSIENT PHENOMENA	
201	201	č	- 2 JULUIIVA IVA IVAUJLA FACAVACAN	
203	203	С	XMCHIN - FOR TRANSIENT SHOCK CALCULATIONS(IOPTN=2)THIS VARIABLE	
204	204	Ç	IS USED TO SPECIFY THE UPSTREAM MACH NUMBER	
205 206	205 206	C C	RIN = THE AMBIENT DENSITY IN THE CHAMBER	
200	200	č		
208	2::	C	PIN - THE AMBIENT PRESSURE IN THE CHAMBER	
209	•••	С		
210	1	C C	APPLYING NORMAL SHOCK WAVES RELATIONS FOR AN ADIABATIC I FLOW RELATION STATIC-PRESSURE RATIO ACROSS THE SHOCK I	
211 212	.1	č	AS WELL AS THE DENSITY RATIO AND MACH NUMBER RATIO	
213	_13	С	ARE COMPUTED TO SET CORRECTLY THE CONDITION AT THE	
214	214	С	INLET EDGES (EDGE BOUNDARY 8) OF THE COMPUTATIONAL	
215	215	ç	DOMAIN	
216 217	216 217	C C	FOR STEADY STATE SHOCK CALCULATIONS(10PTN=1)THIS IS THE	
218	218	č	INFLOW MACH NUMBER. ALL DOMAIN VELOCITIES ARE THEN	
219	219	C	INITIALIZED WITH THIS VALUE.	
220	220	ç	DIN . THE ANDIENT OFNETTY AT THETHITY	
221	221	С	RIN - THE AMBIENT DENSITY AT INFINITY I	

(

b

3

Thu Jul	1 14:1	7:00	1993	threed.f	main program	pa ge 4
222 223	222 223	C C		PIN - THE	AMBIENT PRESSURE AT INFINITY	222 223
224 225 226	224 2 25 2 26	с с с		ALL COMPU THOSE VALI	TATIONAL DOMAIN ARE THEN INITIALIZED WITH	224 225 226
227 228 229	2 27 2 28 2 29	C C C	ALFA		ION OF INFLOW IN DEGREES RELATIVE TO A RIGHT I INATE SYSTEM. ALFA=0 MEANS FLOW FROM LEFT TO I	227 228
230 231	230 231	C C		RIGHT. ALF/ MEANS FLOW	A=90 MEANS FROM BOTTOM TO TOP. ALFA=-90 OR 270 I FROM TOP TO BOTTOM ETC.	229 230 231
232 233 234	2 32 2 33 2 34	С С С	HRGG	THE CODE R	MMA IN THE EQUATION OF STATE I UNS USING THE AIR EQUATION AS A BASELINE AND I MODIFIED IF SOMETHING ELSE IS DESIRED. I	232 233
235 236	235 236	C C	IHRN	- NUMBER OF DIAPHRAGM	ITERATIONS IN THE RIEMANN SOLVER TO FIND THE I SOLUTION.(3 to 4 SHOULD BE USED AND INCREASED I	234 235 236
237 238 239	237 238 239	C C C	NTIME		IGH MACH NUMBER CASES). I IREPEATS FOR THE INTEGRATION SEQUENCE. I	237 238 239
240 241	240 241	C C		AN OUTPUT (DUMP IS DONE EVERY SEQUENCE REPEAT. I ITERATIONS IN THE INNER LOOP I	240 241
242 243 244	242 243 244	C C C	ţ		ONTIME - DUMPING DATA I	242 243 244
245 246	245 246	C C	Ĩ	t I	o NDUMP - INTEGRATION I	245 246
247 248 249	247 248 249	с с с	I I I	I +	0 INNER LOOP I	247 248 249
250 251 252	250 251 252	C C C	+ 		O DUMPING LOOP I I E WILL RUN FIRST ORDER GODUNOV METHOD I	250 251 252
253 254	253 254	C C	IOFUR		E WILL RUN SECOND ORDER GODUNOV METHOD I	253 254
255 256 257	255 256 257	C C	ICOND		······································	255 256 257
258 259	2 58 2 59		ICONP- IOPTN	= 0 = 1		258 259
260 261 262	260 261 262	С	IEOS XMCHIN	- 1 1 - 2.5		260 261 262
263 264	263 264		RIN PIN	= 1.25 - 101350.		263 264 265
265 266 267	265 266 267	с	GPERCO	= 8314.3 C = .001		266 267
268 269 270	2 68 269 270		ALFA - HRGG - Ihrn -	• 1.4		268 269 270
271 272	271 2 72		NTIME NDUMP	= 12 = 200		271 272
273 274 275	273 274 275	с с	IOPORE		A	273 274 275
276 277 278	276 277 278	C C C	REAL) (2,DATA)		276 277 278
279 280	279 280					279 280
281 282 283	281 282 283	С	•	NT	ND.ICONP,IOPTN,XMCHIN.RIN,PIN,ALFA,HRGG,IHRN, IME,NDUMP,IOPORD	281 282 283
284 285 286	284 285 286	C C C			AND PRINTOUT TO CONSOLE	284 285 286
287 288	287 288	č	THIRE) = 1. / 3.		287 288 289
289 290 291	289 290 291	С		ICOND . EQ .	י א וחבת	290 291
292 293 294	292 293 294	с с	ELSE			292 293 294
294 295	295	~	CALL	L UPGRAD		295

•

0

•

6

Thu Jul	1 14:1	17:00	1993	threed.f		main program		page	5
296	296	С		_					296
297 2 98	297 298		END I	F MATRLA					297
299	299			MATRLX					298 299
300 301	300	Ç	******						300
302	301 302	C	- INTITA	LIZATION OF THE PR	UBLEM				301 302
303	303			SM = 1.E-8					303
304 305	304 305			GP = HRGG + 1. $GM = HRGG - 1.$					304
306	3 06		CF	= HRGP / (2. *	HRGG)				305 306
307 308	307 308	C	TT = 0	•					307
309	309	u u	PIRAD	= ATAN(1.) / 45.					308 309
310 311	310 311			ALFA * PIRAD * ALFA DIDAD ALDUA					310
312	312	С	LKTUI	*,ALFA,PIRAD,ALPHA					311 312
313	313			COS(ALPHA)					313
314 315	314 315			SIN(ALPHA) TAN(ALPHA)					314 315
316	316	ç							316
317 [.] 318	317 318	(#=## C		***************	*********	***************	192499999999999999999		317 318
319	319	Č	SET TH	E INITIAL VALUE FO	R PRIMITIV	E VARIABLES	***		319
320 321	320 321	C C(2)>	~~~						320 321
322	322	- (- /	TLIMI	T = .9					322
323 324	32 3 324		ITER T	= 6 OND . EQ . 0) THE	N				323 324
325	325		UVI	N = XMCHIN * SORT(N / RIN)			325
326 327	326 327			= UVIN * COSS = UVIN * SINN					326
328	328			= 0.					327 328
329 330	329 3 30	C	D 0.1	150 IC = 1 . NC					329
331	331			HYDV(IC,İ) = R	IN				330 331
332 333	332 333			HYDV(IC, 2) = 0	-				332
334	334			HYDV(IC,3)=0 HYDV(IC,4)=0	•				333 334
335	335			HYDV(IC, 5) = P					335
336 337	3 36 3 3 7			HYDV(IC,6) = 1 HYDV(IC,7) = 1	.E-6 .4				336 337
338	338	~	I	HYDV(IC, 8) = P		V(IC , 7) - 1.)		338
339 340	339 340	C 1 50	CONT	TINUE					339 340
341	341			IUS = .0001					341
342 343	342 34 3			LSV = 8. IC = 1 , NC					342 343
344	344)	XXI = XC(1, IC)					344
345 346	345 346		2	YYI = XC(2, IC) ZZI = XC(3, IC)					345 346
347	347		F	RSS - SQRT(XXI +)	XXI + YYI 🕈	• YYI + ZZI + ZZ	I)		347
348 349	348 349			IF(RSS . LT . RAD print*,xxi,yyi,z	IUS) HEN zi.radius				348 349
350	350			HYDV(IC,1)	EXPLSV *	.4536 * .75 / 3	.141569 /		350
351 352	351 352		•	HYDV(IC, 5)	(RADIUS	* RADIUS * RADI	US)		351 352
353	353			HYDV(IC, 8)	- HYDV(IC	. 1) * 1080. *			353
354 355	354 355		NITER -	• 0		1000. * 1	.01 / .7		354 355
356	356		DST = H	YDV(IC , 1) * GF	PERCC				356
357 358	357 358		EMEO =	<pre>/MX + (1 DST / HYDV(IC , 8) / }</pre>	757) / DS HYDV(IC .	51 / XGX 1) * WMX / RGA	S		357 358
359	359	C							359
360 361	360 361			(EMEO - EMEOX(3) Maxo(1 , mino(iy)		IX + I			360 361
362	362	C			,, , ,				362
363 364	363 364		K = IYY IYY = I						363 364
365	365		. + INT(AMAX1 (EMEO - EME	EOX(K)	0.) / DYX(K))		365
366 367	366 367		1882 IYY = M	AMAX1(EMEOX(K + AXO(1, MINO(IYY	, 47) - EME	.u, u,) / UYX(к))		366 367
368	368	C							368
369	3 69		K1 = IY	174					369

page

Thu Jul	1 14:	17:00	1993 threed.f main p	program page	6
370 371	370 371		K2 = K1 + 1 RT - (EMEO - EMEOX(K1)) / (EMEOX(#		370 371
372 373	372 37 3		T = TX(K1) + 100. * RT CVM = CVMX(K1) + RT * (CVMX(K2) - C		372 373
374 375	374 375	C	ERS = 0.		374 375
376 377	376 377	10	CONTINUE P = RGAS * T / VOL / GPERCC		376 377
378 379 380	378 379	C	RGAMM1 = CVM		378 379
381 382	380 381 382		X = COVX / VOL / ((T + THETAX) ** ALF Z = X * EXP(BETAX * X) X = 1. + BETAX * X		380 381
383 384	383 384		RT = ALFAX * T / (T + THETAX) ERS = ERS + RT * Z * T		382 383
385 386	385 386	С	IF (ITER .EQ. NITER) GO TO 20		384 385 385
387 388	387 388	С	CVH = CVM * XGX + SCVX		386 387 388
389 390	389 390		* + RT * Z * (2 RT / ALFAX T = T - AMIN1(ERS / CVM , TLIMIT * T)	(+ RT * X) 3	389 390
391 392	391 392	С	NITER - NITER + 1	3	391 392
393 394	39 3 394	С	RT = 0.01 * T	3	393 394
395 396	395 396		K1 = RT K1 = MINO (K1, 49)	3	395 396
397 398 399	397 398 399		K1 = MAXO (K1, 3) K2 = K1 + 1	3	397 398
400 401	400 401		RT = RT - K1 CVH = CVMX(K1) + RT * (CVMX(K2) - CVM ERS = EMEOX(K1) + RT * (EMEOX(K2) -	X(K1))	399 100
402 403	402 403	с	ERS - ERS - EMEO	4	101 102
404 405	404 405	c	GO TO 10	4	103 104 105
406 407	406 407	20	CONTINUE $P = P * \{1, +Z\}$	4	105 106 107
408 409	408 409		RGAMM1 = (RGAMM1 + * RT * Z * (2 RT / ALFAX - 1	4	108 109
410 411	410 411		X = X * Z / (1. + Z) RGAMM1 = RGAMM1 / ((1 RT * X) ** 2	1	10 11
412 413	412 413		ERS = ERS / EMEO HYDV(IC , 7) = 1. / RGAMH1 + 1.		12 13
414 415 416	41 4 415		HYDV(IC,5) = P END IF END DO	4	14
417 418	416 417 418	С	XCOUNT = 0	4	16
419 420	419 420		DO IC = 1 , NC RCOUNT = HYDV(IC , 8) + .5 * HYDV(IC ,	4	18 19 20
421 422	421 422		(HYDV(IC , 2) * HYT HYDV(IC , 3) * HYT	DV(1C,2)+ 4	21
423 424	42 3 42 4		HYDV(IC,4) * HYT XCOUNT = XCOUNT + XC(4,IC) * RCOUNT	DV(IC,4)) 4	23
425 426	425 426		END DO PRINT * ,XCOUNT		25 26
427 428	427 428	c	IIJJ-1 IF(IIJJ.EQ.0) GO TO 1122	43	27 28
429 430 431	429 430 431	C C C	remove the followed IF statement for regu IF(IOPTN . EQ . 2) THEN IF(IOPTN . EQ . 1) THEN		29 30
432 433	432 433	č	NX = 360	4	32 33
434 435	434 435		DO 190 IX = 1 , NX XX(IX) = (IX5)*.002	43	33 34 35
436 437	436 437	19 0	CONTINUE READ (11,1001) (PP(IX),IX=1,NX)	43	36 37
438 439	438 439		READ (11,1001) (UU(IX),IX-1,NX) READ (11,1001) (HR(IX),IX-1,NX)	43	38 39
440 441	440 441		READ (11,1001) (AA(IX),IX=1,NX) READ (11,1001) (GG(IX),IX=1,NX)	44 44	40 41
442 443	442 143	1001	READ (11,1001) (EE(IX),IX=1,NX) FORMAT(6E12.5)		42 43

Thu Jul	1 14:	17:00	1993 th reed. f п	ain .	page	7
444	444	C				444
445	445		ICOUNT - 0			445
446	446		DO 260 IC = 1 , NC			446
447	447	С	XXI = XC(1, IC) + .2667			447
448	448		XXI = XC(1, IC) + .1143			448
449	449	c	YYI = XC(2, 1C) - 1.96596			449
450 451	450 451	С	ZZI = XC(3, IC) - 1.25			450
451	451		ZZI = XC(3 , IC) - 1.905 RSS = SQRT(XXI * XXI + YYI	* VVI / 771 * 771 \		451
453	453		XYS = SQRT(XXI + XXI + YYI)	* 111 + 221 - 221) * 111 -		452
454	454	С	NIG - SQUIT ANT ANT FIT			453 454
455	455		DO 270 IX = 1 , NX-1			455
456	456		XDO1 = XX(IX)			456
457	457		XDD2 = XX(IX+1)			457
458	458			. RSS . LT . XDD2) THEN		458
459 460	459 460		XKSI = (RSS - XDD1)	/ (XDD2 - XDD1)		459
460	461	С	ICOUNT = ICOUNT + 1			460
462	462	4	HYDV(IC,1) - HR(IX) *	(1 -XKSI) +		461
463	463			X+1) * XKSI		462 463
464	464	С				464
465	465		HYDUVW = UU(IX) + (1			465
466	466		. UU(IX+1)			466
467 468	467 468		HYDV(IC, 4) = ZZI / RSS	* HYDUVW		467
469	469	С	HYDVUV = XYS / RSS * H	TUUVW		468
470	470	•	THETHA - ATAN2(YYI ,	XXT)		469 470
471	471		HYDV(IC,2) = HYDVUV *			471
472	472		HYDV(IC,3) = HYDVUV *			477
473	473	С				473
474 475	47 4 475		HYDV(IC,5) = PP(IX) *	(1XKSI) + (+1) * XKSI		474
476	476	С	HYDV(IC,5) = 1.08*HYDV			475 476
477	477		HYDV(IC,7) = GG(IX) *			477
478	478		. GG(1)	(+1) * XKSI		478
479 480	479 480		HYDV(IC,6) = AA(IX) +			479
481	481		. AA(1. HYDV(IC,8) = EE(IX) *	(+1) * XKSI		480
482	482			(1^\\) + XKSI		481 482
483	483	С				483
484	484		GOTO 301			484
485 486	485 486	270	ENDIF			485
487	487	301	CONTINUE Continue			486
488	488	201	NITER = 6			487 488
489	489		IF(NITER.EO.0) THEN			489
490	490		IF(HYDV(IC , 6) . LT2) THEN			490
491 492	491		DST = HYDV(IC , 1) * GPERCC			491
492	492 493		VOL = WMA * (1 DST / FSA) / DS' TT = HYDV(IC , 5) * VOL * GPERCC /			492
494	494	С	The and to , 5) YOU GPERCE	CADA		493 494
495	495		T - TT			495
496	496		RT = 0.01 + T			496
497 498	497 498		K1 - RT K1 - Mino (K1, 49)			497
499	499		K1 = MAX0 (K1, 3)			498 499
500	500		K2 = K1 + 1			500
501	501		RT = RT - K1			501
502	502		ENERGY = EMEOA(K1) + RT * (EMEOA)	(K2) - EMEOA(K1))		502
503 504	503 504	С	ENERGY = ENERGY * RGAS / WMA			503 504
505	505	•	DO ITER - 1 . NITER			505
506	506		X = COVA / VOL / (T + THETAA) ** #	LFAA		506
507	507	C				507
508 509	508 509		BETAZX = BETAA * X PT = X * SYP(PSTAZY)			508
510	510		RT = X * EXP(BETAZX) RTINV = 1. / (1. + RT)			509 510
511	511	C -	ERS IS THE FUNCTION, RT IS THE DERIV	ATIVE		511
512	512		ERS = T - TT * RTINV			512
513	513		RT = 1 TT * PTINV * RTINV * ALFA	* RT * (1. + BETAZX) /		513
514 515	514 515		. (T + THETAA) ERS = ERS / RT			514
515	516		T = T - ERS			515 51 6
517	517		END DO			517

Thu Jul	1 14:	17:00	1993 threed.f	main program	page	8
518	518	С				518
519 520	519 520		RT = 0.01 * T K1 = RT			519
521	521		KI = MINO (K1, 49			520 521
522	522		K1 = MAX0 ($K1, 3$)		522
523 524	52 3 524		K2 = K1 + 1 RT = RT - K1			523 524
525	525	-) + RT * (EMEOA(K2) - EMEOA(K1))		525
526 527	52 6 527	С	x = COVA / VOI / ((T + THETAA) ** ALFAA)		526
528	528		EX = EXP(BETAA * >			527 528
529	529		Z = X * EX			529
530 531	530 531		RT = ALFAA * T / (ENERGY = ENERGY + F			530
532	532		HYDV(IC , 8) - EN	IERGY * RGAS / WMA		531 532
533	533	¢	EMEO = HYDV(IC , 8	3) / HYDV(1C , 1) * WMA / RGAS		533
534 535	534 535	C	IYY = (EMED - EMED	DA(3))/RANGEA + 1		534 535
536	5 36		IYY = MAXO(1 , MIN	IO(IYY , 47))		536
537 538	537 538	C	K = IYY + 2			537
539	539		IYY = IYY			538 539
540	540		. + INT(AMAX1(EMEC) - EMEDA(K) , 0.) / DYA(K))		540
541 542	541 542		IYY = MAXO(1, MINO	DA(K + 1) ~ ÉMEO , 0.) / DYA(K))		541
543	543	С				542 543
544	544		K1 = IYY + 2			544
545 546	545 546		K2 = K1 + 1 RT = (EMEO - EMEOA	N(K1)) / (EMEOA(K2) ~ EMEOA(K1))		545 546
547	547		T = TA(K1) + 100.	. * RT		547
548 549	5 48 5 49		CVM = CVMA(K1) + ERS = 0.	RT * (CVMA(K2) - CVMA(K1))		548
550	550	С				549 550
551	551		P = RGAS * T / VOL	/ GPERCC		551
552 553	552 5 53		RGAMM1 = CVM HYDV(IC,7) = 1.	/ RGAMM1 + 1		552 553
554	554		HYDV(IC , 5) - P			554
555 556	55 5 55 6	C	ELSE			555
557	557	C				556 557
558	558		DST = HYDV(IC , 1			558
559 560	5 59 5 60		$\frac{VUL = WMX = (1 TT = HYDV(1C - 5))}{TT = HYDV(1C - 5)}$	DST / FSX) / DST / XGX * VOL * GPERCC / RGAS		559 560
561	561	C				561
562 563	5 62 5 63		T = TT RT = 0.01 * T			562
564	564		K1 = RT			563 564
565	565		K1 = MINO (K1, 49			565
566 567	566 567		K1 = MAXO (K1, 3) K2 = K1 + 1)		566 567
568	5 68		RT = RT - K1			568
569 570	569 570		ENERGY = EMEOX(K1 ENERGY = ENERGY * R) + RT * (EMEOX(K2) - EMEOX(K1))		569
571	571	С	CHERGI - CHERGI K			570 571
572	572		DO ITER = 1 , NITER			572
573 574	57 3 57 4	С	$\mathbf{X} = \mathbf{U}\mathbf{V}\mathbf{X} / \mathbf{V}\mathbf{O}\mathbf{L} / \mathbf{U}$	T + THETAX) ** ALFAX		573 574
575	575	•	BETAZX = BETAX * X			575
576 577	576 577		RT = X * EXP(BETAZ RTINV = 1. / (1. +			576 577
578	57 8	C -		, RT IS THE DERIVATIVE		578
579	579		ERS = T - TT * RTH			579
580 581	580 581			V * RTINV * ALFAX * RT * (1. + BETAZX) / + THETAX)		580 581
582	582		ERS = ERS / RT			582
583 584	553 584		T = T - ERS END DO			583 584
585	585	C				5 85
586 587	58 6 587		RT = 0.01 * T K1 = RT			586 587
588	588		K1 - MINO (K1, 49			588
589	589		K1 = MAXO (K1, 3			589
590 591	590 591		K2 = K1 + 1 RT = RT - K1			590 591

10.00

Thu Jul	1 14:	17:00	1993 threed.f main program	page	9
592	592	_	ENERGY = EMEOX(K1) + RT * (EMEOX(K2) - EMEOX(K1))		592
593 594	5 93 5 94	С	X = COVX / VOL / ((T + THETAX) ** ALFAX)		593 594
595 596	5 95		EX = EXP(BETAX * X)		595
597	596 597		Z = X * EX RT = ALFAX * T / (T + THETAX)		596 597
598 599	598 599		ENERGY = ENERGY + RT * Z * T HYDV(IC, 8) = ENERGY * RGAS / WMX		598
600	600		VOL - WMX * (1 DST / FSX) / DST / XGX		599 600
601 602	601 602	с	EMEO = HYDV(IC , 8) / HYDV(IC , 1) * WHX / RGAS		601
603	603	v	IYY = (EMEO - EMEOX(3)) / RANGEX + 1		602 603
604 605	604 605	С	IYY - MAXO(1 , MINO(IYY , 47))		604 605
606	606		$\mathbf{K} = \mathbf{I}\mathbf{Y}\mathbf{Y} + 2$		606
607 608	607 6 08		IYY - IYY . + INT(AMAX1(EMEO - EMEDX(K) , 0.) / DYX(K))		607 608
609 610	6 09 610		INT(AMAX1(EMEOX(K + 1) - EMEO , 0.) / DYX(K))		609
611	611	C	IYY - MAXO(1, MINO(IYY , 47))		610 611
612 613	612 613		K1 = IYY + 2 K2 = K1 + 1		612
614	614		RT = (EMEO - EMEOX(K1)) / (EMEOX(K2) - EMEOX(K1))		613 614
615 616	615 616		T = TX(K1) + 100. * RT CVM = CVMX(K1) + RT * (CVMX(K2) - CVMX(K1))		615 616
617	617	•	ERS = 0.		617
618 619	61 8 619	C 401	CONTINUE		618 619
620 621	620		P = RGAS * T / VOL / GPERCC		620
622	621 622	С	RGAMM1 - CVM		621 622
623 624	623 624		X = COVX / VOL / ((T + THETAX) ** ALFAX) Z = X * EXP(BETAX * X)		623
625	625		X = 1. + BETAX * X		624 625
626 627	62 6 627		RT = ALFAX * T / (T + THETAX) ERS = ERS + RT * Z * T		626 627
628	62 8	C			628
629 630	629 630	С	IF (ITER .EQ. NITER) GO TO ZOI		629 630
531 632	631 632		CVM = CVM * XGX + SCVX * + RT * Z * (2 RT / ALFAX - RT * X)		631
633	633	_	T = T - AMINI(ERS / CVM, TLIMIT * T)		632 633
634 635	634 635	С	NITER - NITER + 1		634 635
636	6 36	С			636
637 638	637 638		RT = 0.01 * T K1 = RT		637 638
639 640	639 640		K1 = MINO (K1, 49) K1 = MAXO (K1, 3)		639
641	641		K2 = K1 + 1		640 641
642 643	642 643		RT = RT - K1 CVH = CVMX(K1) + RT * (CVMX(K2) - CVMX(K1))		642 643
644	644		ERS = EMEDX(K1) + RT * (EMEOX(K2) - EMEOX(K1))		644
645 646	645 646	С	ERS = ERS - EMEO		645 646
647 648	647 648	с	GO TO 401		647 648
649	649	201	CONTINUE		649
650 651	650 651		P = P * (1. + Z) RGAMM1 = (RGAMM1 +		650 651
652	652		* RT * Z * (2 RT / ALFAX - RT * X)) / (1. + Z)		652
653 654	653 654		X = X * Z / (1. + Z) RGAMM1 = RGAMM1 / ((1 RT * X) ** 2 + X * RGAMM1)		653 654
655 65f	655 656		ERS = ERS / EMEO HYDV(1C , 7) = 1. / RGAMM1 + 1.		655 656
65	657		HYDV(IC, 5) = P		657
65 65	658 659		END IF END IF		658 659
660 661	660 661	2 60 C			660
662	662	č(z).			661 662
563 664	663 664	С	ELSE		663 664
665	665	-	XMSQR = XMCHIN * XMCHIN		665
			_		

Thu Jul	1 14:1	17:00 1993 threed.f main program	page	10
666	666	PINL - PIN		666
667 668	6 67 6 68	RINL = RIN RINRTO = (HRGG + 1.) * XMSQR /		667
669	669	((HRGG - 1.) * XMSOR + 2.)		668 669
670	670	PINRTO - (2. * HRGG * XMSQR - (HRGG - 1.)) /		670
671 672	671 672	· (HRGG + 1.) PIN = PINRTO * PINL		671
673	673	RIN = RINRTO * RINL		672 673
674 675	674 675	YMCHIN = SQRT(((HRGG - 1.) * XMSQR + 2.) /		674
676	67 6	- (2. * HRGG * XMSQR - (HRGG - 1.))) PRINT*,HRGG,RIN,PIN,YMCHIN		675 676
677	677	PRINT*, HRGG, RINL, PINL, XMCHIN		677
678 679	678 679	UVIN = XMCHIN * SQRT(HRGG * PINL / RINL) -		678
680	680	• YMCHIN * SQRT(HRGG * PIN / RIN) UIN = UVIN * COSS		679 680
681	681	VIN - UVIN * SINN		681
682 683	682 683	WIN - O. C		682
684	684	DO 155 IC = 1 , NC		683 684
685 6 86	685	HYDV(IC, 1) = RINL		685
687	6 86 687	HYDV(IC , 2) = UIN HYDV(IC , 3) = VIN		686 687
688	6 88	HYDV(IC,4) - WIN		688
689 690	689 690	HYDV(IC,5) - PINL C		689
691	691	155 CONTINUE		690 691
692	692	ENDIF		692
693 694	6 93 6 94	C remove the followed END IF for regular run C ENDIF		693
695	6 95	C ENDIF		694 695
696	6 96	C(2)<<<<		696
697 698	6 97 6 98	C 1122 CONTINUE		697 6 96
699	6 99	IF(ICOND.EQ.0) THEN		699
700 701	700 701	NPRTCL = 25 XPRTCL(1,1) = .443		700
702	702	XPRTCL(2,1) = 1.0414		701 702
703	703	XPRTCL(3,1) = 1.4224		703
704 705	704 705	XPRTCL(1,2) =002 XPRTCL(2,2) = .3556		704 705
706	706	XPRTCL(3,2) = 0.5842		705
707 708	7 07 7 08	XPRTCL(1,3) =275 XPRTCL(2,3) =3058		707
709	709	XPRTCL(3,3) = -1.4224		708 709
710	710	XPRTCL(1,4) = 2.032		710
711 712	7 11 7 12	XPRTCL(2,4) =3048 XPRTCL(3,4) = -4.572		711 712
713	713	XPRTCL(1,5) = .3048		713
714 715	714 715	XPRTCL(2,5) = .1016 XPRTCL(3,5) = .3048		714
716	716	XPRTCL(1,6) = .4572		715 716
717	717	XPRTCL(2.6) = .1016		717
718 719	7 18 7 19	XPRTCL(3,6) = .4572 XPRTCL(1,7) = .6096		718 719
720	720	XPRTCL(2,7) = .1016		720
721 722	721 7 22	XPRTCL(3,7) = .3048 XPRTCL(1,8) = .4572		721 722
723	723	XPRTCL(2,8) = .1016		723
724	724	XPRTCL(3,8)1524		724
725 726	7 25 7 26	XPRTCL(1,9) = 1.3462 XPRTCL(2,9) = .1016		725 726
727	7 27	XPRTCL(3,9) = .3048		727
728 729	728 729	XPRTCL(1,10) = 1.4986 XPRTCL(2,10) = .1016		728 729
730	730	XPRTCL(3,10) = .4572		730
731 732	7 31 7 32	XPRTCL(1,11) = 1.651 XPRTCL(2,11) = 1016		731
733	733	XPRTCL(2,11) = .1016 XPRTCL(3,11) = .3048		732 733
734	734	XPP*CL(1,12) = 1.4986		734
735 736	7 35 7 36	XPR/CL(2,12) = .1016 XPRTCL(3,12) = .1524		735 736
737	737	XPRTCL(1,13) = .6096		737
738 739	7 38 739	XPRTCL(2,13) = .7740 XPRTCL(3,13) = 1.0668		738 739
1.5	1.93	VIK(02(3)13) - 1.0000		1 7 2

Thu Jul	1 14:17:00	1993 th ree d.f	main program
740	740	XPRTCL(1,14) = .6096	
741	741	XPRTCL(2, 14) = .8138	
742	742	XPRTCL(3,14) = .5334	
743 744	7 43	XPRTCL(1,15) = 1.4224	
745	744 745	XPRTCL(2,15) = .7740 XPRTCL(3,15) = 1.0668	
746	746	XPRTCL(1,16) = 1.4224	
747	747	XPRTCL(2, 16) = .8128	
748 749	748	XPRTCL(3, 16) = .5334	
750	7 49 7 50	XPRTCL(1,17) =3058 XPRTCL(2,17) = 1.3208	
751	751	XPRTCL(3, 17) =4318	
752	752	XPRTCL(1,18) = .2032	
753 754	75 3 754	XPRTCL(2,18) = .7590 XPRTCL(3,18) = 1.1898	
755	755	XPRICL(1,19) = .254	
756	756	XPRTCL(2,19) = .1772	
757	757	XPRTCL(3,19) = 1.1948	
758 759	7 58 7 59	XPRTCL(1,20) = .9144 XPRTCL(2,20) = .4064	
760	760	XPRTCL(3,20) = .9652	
761	761	XPRTCL(1,21) = .2032	
762	762	XPRTCL(2,21) = .7680	
763 764	7 63 7 64	XPRTCL(3,21) = 1.1888 XPRTCL(1.22) = .1532	
765	765	XPRTCL(2,22)7670	
766	766	XPRTCL(3,22) = 1.1888	
767 768	767 768	XPRTCL(1,23) ~ .1532 XPRTCL(2,23) ~ .7665	
769	769	XPRTCL(3,23) = 1.1878	
770	770	XPRTCL(1,24) = .1532	
771 772	771 7 72	XPRTCL(2,24) = .7765 XPRTCL(3,24) = 1.1898	
773	773	XPRTCL(1,25) = .1532	
774	774	XPRTCL(2,25) = .7655	
775 776	7 75	XPRTCL(3,25) = 1.1898	
777	7 76 7 77	DO IK = 1 , NPRTCL RMINN = 100000000.	
778	7 78	DO IC = 1, NC	
779	779	I1=JC(1, IC)	
780 781	7 80 781	I2=JC(2,IC) I3=JC(3,IC)	
782	782	I4=JC(4,IC)	
783	783	XXI = XPRTCL(1, IK)	
784 785	7 84 785	YYI = XPRTCL(2, IK) ZZI = XPRTCL(3, IK)	
786	786	CALL VOLMTETC (11, 12	, I3, XXI, YYI, ZZI , VOL1)
787	787	CALL VOLMTETC (11, 12	, I4. XXI. YYI, ZZI . VOL2)
788 789	788 789		, I4, XXI, YYI, ZZI , VOL3) , I4, XXI, YYI, ZZI , VOL4)
790	790	XXI = XV(1, I4)	, 14, AAI, //I, 221 , 90E4 /
7 91	791	YYI = XV(2, 14)	
792 793	7 92 7 93	ZZI = XV(3, 14)	
794	793 794		, I3. XXI. YYI, ZZI , VOLL) (VOL2)+DABS(VOL3)+DABS(VOL4)
795	7 95	-DABS(VOLL)	
796	796	IF(DABS(DEFVOL/VOLL)	LT001) THEN
797 798	7 97 7 98	IJKPRT(IK) = IC PRINT*,ik,vol1,vol2	vol3 vol4
799	799	PRINT*, ic, voll, def	
800	800	PRINT*, (XV(kk,jc(1	ic)),kk-1,3)
801 802	801 802	PRINT*,(XV(kk,jc(2 PRINT*,(XV(kk,jc(3	
803	803	PRINT*, (XV(kk,jc(4)	
804	804	PRINT*, (JS(9, jc(kk)	
805 806	805 806	END IF	
807	807	eno do Eno do	
808	8 08	DO IK = 1 , NPRTCL	
809 810	809	IC = IJKPRT(IK)	
811	810 811	ISS = JC(5,IC) DO IKK = 5 , 8	
812	812	IS = JC(IKK, IC)	
813	813	IBC - JS(9,IS)	

0

Thu Jul	1 14:17	:00	1993 threed	.f main program	oage	12
814	814		IFC TRC .	EQ.6)THEN		814
815	815		ISS = 15			815
816	816	•	END IF			816
817	817		END DO			817
818	818		IJKPRT(IK) = ISS		818
819	819		END DO			819
820	820		END IF			820
821		C				821
822	822	_	PRINT * ,ICO	ND, ICONP		822
823		C				823
824	824			EQ. 1) THEN		824 825
825	825			PIN,RINL,PINL,UVIN,UIN,VIN,WIN,TT ,PIN,RINL,PINL,UVIN,UIN,VIN,WIN,TT		826
826	826	~	$\frac{\mathbf{PRINT} = \mathbf{READ}}{\mathbf{READ}}$			827
827	827 828	C C	IF(NPRTCL.			828
828 829		č	DEAD (8) (IJKPRT(IK), IK=1, NPRTCL)		829
830	830	L	DO II = 1.			830
831	831			DV(IC,IK),IK-1.8),IC-1,NC)		831
832	832		END DO			832
833		С				833
834	834	•	END IF			834
835		С				835
836	836		ZCOUNT = 0			836
837	837		D0 380 IC = 1	, NC		837
838	838		RCOUNT = HYDV	(IC, 8) + .5 * HYDV(IC, 1) *		838
839	8 39		•	(HYDV(IC , 2) * HYDV(IC , 2) +		839
840	840		•	HYDV(IC , 3) + HYDV(IC , 3) +		840
841	841			HYDV(IC , 4) + HYDV(IC , 4))		841 842
842	842			NT + XC(4 , IC) * RCOUNT		843
843	843	380	CONTINUE YCOUNT - ZCO	OUT YCANT		844
844	844		PRINT * ,ZCO			845
845	845		CALL HYDRMN			846
846 847	846 847	С	CALL HIDNIN			847
848	848	č	- FXIT POINT FR	OM PROGRAM		848
849	849	č				849
850		č				850
851	851		STOP 777			851
852	852	С				852
853	853	C				853
854	854	-	- FORMATS			854
855	855	C				855
856	856	101	FORMAT(1H , 1	COND-', 12,5X, '1CONP-', 12,5X, '1OPTN-', 12,/,1X,		856 857
857	857		• ')	MCHIN=', F13.6,5X, 'RIN=', F13.6,5X, 'PIN=', F13.6,/,1X,		858
858	858			LFA=', F13.6,5X, 'HRGG=', F13.6,5X, 'HRN=', 12,5X,/,1X,		859
859	859		• •	ITIME=', I2,5X, 'NDUMP=', I5,5X, 'IOPORD-', I2)		860
860	860		CND			861
861	861	~	END			862
862	8 62	С				~~~

Thu Jul	1 14:1	7:00 1	993 threed.f SUBROUTINE HYDRFL	page	13
863	1	_	SUBROUTINE HYDRFL		863
864 865	2 3	С С			864 865
866 867	4 5	C C	I HYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I		866 867
868	6	C	FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I		868
869 870	7 8	C C	VARIABLES . I		869 870
871 872	9 10	C			871
873	11	L.	include 'dmsh00.h'		872 873
874 875	12 13		include 'dhydm0.h' include 'dphsm0.h'		874 875
876 877	14	с	include 'datr10.h'		876
878	16	L	REAL DELP(128), WSOP(128), WSOH(128), WSOO(128),		877 878
879 880	17 18		. RSTAR(128),CSTAR(128),PMAX(128),PMIN(128) REAL RRIGHT(128),URIGHT(128),VRIGHT(128),PRIGHT(128)		879 880
881 882	19 20		REAL RLEFTT(128), ULEFTT(128), VLEFTT(128), PLEFTT(128)		881
883	21	С	REAL ENRGYI (128), ANRGYI (128)		882 883
884 885	22 23	C C	BEGIN LOOP OVER ALL EDGES IN THE DOMAIN		884 885
886	24	•	DO 280 $IH = 1$, 6		886
887 888	25 26		DO 280 IC = 1 , NC HYDFLX(IC , IH) = 0.		887 [.] 888
889 890	27 2 8	2 80 C	CONTINUE		889 890
891	29	U			891
892 893	30 31		NS2 - NOFVES(1) DO 110 INS - 1, NVEES		892 893
894 895	32 33	с С	FETCH HYDRO QUANTITIES		894 895
8 96	34	č			896
897 898	35 36		$\begin{array}{r} \text{D0 120 IS = NS1 , NS2} \\ \text{KS = IS - NS1 + 1} \end{array}$		897 898
899 900	37 38	C	RRR(KS) = RR(IS)		899 900
901	39		UUR(KS) = UR(IS)		901
902 903	40 41		VVR(KS) = VR(IS) WWR(KS) = WR(IS)		902 903
904 905	42 43		PPR(KS) = PR(IS) AAR(KS) = AR(IS)		904 905
906	44		EER(KS) - ER(IS)		906
907 908	45 46	с	GGR(KS) = GR(IS)		907 908
909 910	47 48		RRL(KS) - RL(IS) UUL(KS) - UL(IS)		909 910
911	49		VVL(KS) = VL(IS)		911
912 913	50 51		WWL(KS) = WL(IS) PPL(KS) = PL(IS)		912 913
914	52		AAL(KS) = AL(IS) EEL(KS) = EL(IS)		914 915
915 916	53 54		GGL(KS) = GL(IS)		915
917 918	55 56	C 1 20	CONTINUE		917 918
919	57	C	DO 130 KS = 1 , NOFVES(INS)		919 920
920 921	58 59	C			921
922 923	60 61	C C	THIS SECTION OF CODE SOLVES FOR "PSTAR" AND "USTAR" IN THE RIEMANN PROBLEM USING NEWTON'S METHOD.		922 923
924 925	62 63	C	WLEFT(KS) = SQRT(GGL(KS) * PPL(KS) * RRL(KS))		924 925
926	64		WRIGT(KS) = SQRT(GGR(KS) * PPR(KS) * RRR(KS))		926
927 928	65 66		WLESQ(KS) = WLEFT(KS) * WLEFT(KS) WRISQ(KS) = WRIGT(KS) * WRIGT(KS)		927 928
929 930	67 68	С	PMIN(KS) = AMIN1(PPL(KS) , PPR(KS))		929 930
931	69	~	PSML(KS) = HRSM * PMIN(KS)		931
932 933	70 71	С С	FORM THE STARTING GUESS FOR THE SOLUTION		932 933
934 935	72 73	С	PSTAR(KS) = (WLEFT(KS) * PPR(KS) +		934 935
936	74		. WRIGT(KS) * PPL(KS) -		936

Thu Jul 1 14:17:00 1993 threed.f SUBROUTINE HYDRFL page WLEFT(KS) * WRIGT(KS) * (UUR(KS) - UUL(KS))) / (WLEFT(KS) + WRIGT(KS)) PSTAR(KS) = AMAX1(PSTAR(KS), PSML(KS))130 CONTINUE С DO 140 I = 1 . IHRN С C --- BEGIN THE NEWTON ITERATION -----£ ZLEFT(KS) = 2. * WLEFT(KS) * WLEFS(KS) (WLESQ(KS) + WLEFS(KS)) USTL(KS) = UUL(KS) -(PSTAR(KS) - PPL(KS)) / WLEFT(KS) 150 CONTINUE C DO 152 KS = 1 , NOFVES(INS) CFFR = (GGR(KS) + 1.) / (2. * GGR(KS)) WRIFS(KS) = (1. + CFFR * (PSTAR(KS) / 97 PPR(KS) - 1.)) * WRISQ(KS) WRIGT(KS) = SQRT(WRIFS(KS)) ZRIGT(KS) = 2. * WRIGT(KS) * WRIFS(KS) WRISQ(KS) + WRIFS(KS)) USTR(KS) = UUR(KS) (PSTAR(KS) - PPR(KS)) / WRIGT(KS) 152 CONTINUE С DO 160 KS = 1 , NOFVES(INS) DPST(KS) = ZLEFT(KS) * ZRIGT(KS) * (USTR(KS) - USTL(KS)) / <u>971</u> (ZLEFT(KS) + ZRIGT(KS)) PSTAR(KS) = PSTAR(KS) - DPST(KS) PSTAR(KS) = AMAX1(PSTAR(KS) , PSML(KS)) CONTINUÈ С CONTINUE Ĉ С --- FORM FINAL SOLUTIONS -----С DO 170 KS = 1 , NOFVES(INS) I/U KS = 1 , NUTVES(INS) CFFL = (GGL(KS) + 1.) / (2. * GGL(KS)) WLEFT(KS) = SQRT(WLESQ(KS) * (1. + CFFL * (PSTAR(KS) / PPL(KS) - 1.))) 170 CONTINUE C DO 172 KS = 1 , NOFVES(INS) 172 CONTINUE Ĉ DO 180 KS = 1 , NOFVES(INS) USTAR(KS) = (PPL(KS) - PPR(KS) + WLEFT(KS) * UUL(KS) + WRIGT(KS) * UUR(KS)) (WLEFT(KS) + WRIGT(KS)) 180 CONTINUE С DO 190 KS = 1 , NOFVES(INS) С С --- BEGIN PROCEDURE TO OBTAIN FLUXES FROM REIMANN FORMALISM --C IF(USTAR(KS) . LE , 0.0) THEN С RO(KS) = RRR(KS)PO(KS) = PPR(KS) UO(KS) = UUR(KS) CO(KS) = SORT(HRGG * PPR(KS) / RRR(KS)) WO(KS) = WRIGT(KS)

Thu Jul	1 14:17:00	1993 th reed. f	SUBROUTINE HYDRFL	page 15
1011 1012	149 150	GO(KS) = GGR(ISN(KS) = 1	(KS)	1011 1012
1013 1014	151 C 152	ENRGY1(KS) -		1012 1013 1014
1015	153	ANRGYI (KS) =	AAR(KS)	1015
1016 1017	154 155	VGDNV(KS) = \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1016 1017
1018 1019	156 C 157	ELSE		1018 1019
1020 1021	158 C 159	RO(KS) = RRL(1020 1021
1022 1020	160 161	PO(KS) = PPL(UO(KS) = UUL((KS)	1022 1023
1024 1025	162 163	CO(KS) = SQR1 WO(KS) = WLEF	[(HRGG * PPL(KS) / RRL(KS)) FT(KS)	1024 1025
1026 1027	164 165	GO(KS) = GGL(ISN(KS) = ~ 1	(KS)	1026 1027
1028 1029	166 C 167	ENRGYI(KS) =		1028 1029
1030 1031	168 169	ANRGYI (KS) = VGDNV(KS) = V	AAL(KS)	1030 1031
1032	170	WGDNV(KS) = H		1032
1033 1034	171 172 190	END IF D CONTINUE		1033 1034
1035 1036	173 C 174	DO 200 KS = 1 , NOFVE	ES(INS)	1035 1036
1037 1038	175 176	WSOP(KS) = ISN	AR(KS) - PO(KS) (KS) * UO(KS) + WO(KS) / RO(KS)	1037 1038
1039 1040	177 178 200		(KS) * ŬO(KS) + CO(KS)	1039 1040
1041 1042	179 C 180	DO 210 KS = 1 , NOFVE	ES(INS)	1041 1042
1043 1044	181 182	IF(DELP(KS) . GI WSOO(KS) = WSOF	T.O.) THEN	1043 1044
1045 1046	183 184	ELSE WS00(KS) - WS01		1045 1046
1047	185	END IF		1047
1048 1049	1 87 C			1048 1049
1050 1051	188 189 C	DO 220 KS = 1 , NOFVE	IION	1050 1051
1052 1053	1 91 C			1052 1053
1054 1055	192 193	PGDNV(KS) = PO(Ugdnv(KS) = U0((KS)	1054 1055
1056 1057	1 94 195	CGDNV(KS) = CO RGDNV(KS) = RO		1056 1057
1058 1059		O CONTINUE		1058 1059
1060 1061		COMPUTE STARRED VALUE	S	1060 1061
1062 1063	200 201	00 230 KS = 1 . NOFVE	ES(INS) / (1. / RO(KS) - DELP(KS) /	1062 1063
1064 1065	202 203	•	(HO(KS) * WO(KS))) RT(GO(KS) * PSTAR(KS) / RSTAR(KS))	1064 1065
1065 1066 1067	204 205 230	WSOM(KS) = ISM	(KS) + USTAR(KS) + CSTAR(KS)	1066 1067
1068	2 06 C			1069 1069
1069 1070	207 208	DO 240 KS = 1 , NOFVE IF(DELP(KS) , GT	[. 0.) THEN	1070 1071
1071 1072	209 210	SPIN(KS) = WSOF ELSE		1072
1073 1074	211 212	SPIN(KS) = WSON END IF	1(KS)	1073 1074
1075 1075	213 240 214 C			1075 1076
107) 1078	215 216 C	DO 250 KS = 1 , NOFVE		1077 1078
1079 1080	217 2 18	IF(WSOO(KS) . GE . IF(SPIN(KS) .		1079 1080
1081 1082	219 C		E RESULTS	1081 1082
1083 1084	221 C 222		GDNV(KS) - RSTAR(KS)	1083 1084
1007			and a sum provide the provide	· · ·

1 1 14:17	:00 1993 threed.f SUBROUTINE HYDRFL	page	
2 23 2 24	UGDNV(KS) = USTAR(KS) CGDNV(KS) = CSTAR(KS)		1
225	PGDNV(KS) = PSTAR(KS)		1
2 26 2 27	ELSE		1
228	C EVALUATE THE INSIDE RAREFACTION WAVE		-1(-1)
2 29 230	C CGDNV(KS) = (CSTAR(KS) * 2		Ĩ
231	· ISN(KS) * USTAR(KS) * (GO(KS) - 1.))		1
2 32 2 33	. / (GO(KS) + 1.) UGDNV(KS) ISN(KS) * CGDNV(KS)		Ī
234	RGDNV(KS) = (CGDNV(KS) / CO(KS)) **		1
235 236	$\frac{(2. / (GO(KS) - 1.)) * RO(KS)}{(GO(KS) - 1.)} $		ī
237	PGDNV(KS) = ČGDNV(KS) * CGĎNV(KS) * RGDŇV(KŠ) / GO(KS)		1
			1
239 240	END IF		1
241	END IF		1
242 243	250 CONTINUE		1
244	DO 260 KS = 1 , NOFVES(INS)		1
245 246	IS = KS + NS1 - 1		1
240	ICL = JS(7, IS)		1
248	ICR = JS(8, 1S)		i
2 49 250	CTT = SQRT(GO(KS) * PGDNV(KS) / RGDNV(KS))		1
251	XSS = XS(5, 1S)		1
252 253	XYZ = 1. / XSS		1
255	$\mathbf{IATRB} = \mathbf{JS}(9, \mathbf{IS})$		1
255	IF(IATRB.EQ.O) THEN		1
256 257	XXN = (XC(1, ICR) - XC(1, ICL)) * XYZ		1
2 58	YYN = (XC(2, ICR) - XC(2, ICL)) + XYZ		i
2 59 2 60 (ZZN = (XC(3 , ICR) - XC(3 , ICL)) * XYZ		1
261	VEL -		111
262	. (UGDNV(KS) * XN(IS) +		1
2 63 2 64			1
265	. (UGDNV(KS) * YN(IS) +		1
266 267			111
268	. (UGDNV(KS) * ZN(IS) +		i
2 69 2 70	. VGDNV(KS) * ZP(IS) + . WGDNV(KS) * ZT(IS)) * ZZN		1
271 (1
272	DTU = XSS / (CTT + ABS(VEL))		1
27 3 274 (1
275	ELSE		1
276 (277	XXN - (XYZMDL(1 , IS) - XC(1 , ICL)) * XYZ		1
278	YYN = (XYZMDL(2 , IS) - XC(2 , ICL)) * XYZ		1
279 280 (ZZN = (XYZMDL(3, IS) - XC(3, ICL)) + XYZ		1
281	VEL -		1
2 82 2 83	- (UGDNV(KS) * XN(IS) +		L
284	- VGDNV(KS) * XP(IS) + - WGDNV(KS) * XT(IS)) * XXN +		1:
285	. (UGDNV(KS) * YN(IS) +		1
286 287	. VGDNV(KS) * YP(IS) + . WGDNV(KS) * YT(IS)) * YYN +		1:
288	. (UGDNV(KS) * ZN(IS) +		Ľ
289 290	. VGDNV(KS) * ZP(IS) + . WGDNV(KS) * ZT(IS)) * ZZN		11
291 0			11
292 293	DTU = XSS / (CTT + ABS(VEL))		11
293			11
295			11
296	260 CONTINUE		11

(

1

page

Thu Ju	1 1 14:17:00 1	1993 threed.f SUBROUTINE HYDRFL	page	17
1159 1160 1161	297 C 298 299	DO 270 KS = 1 , NOFVES(INS) IS = KS + NSI - 1		1159 1160 1161
1162 1163		FLUX FOR DENSITY		1162 1163
1164 1165	302 C 303	RO(KS) = RGDNV(KS) * UGDNV(KS)		1164 1165
1166 1167	304 C 305 C	FLUX FOR MOMENTUM DENSITY		1166 1167
1168 1169	3 00 L	UO(KS) = PGDNV(KS) * XN(IS) +		1168 1169
1170 1171	308 309	. RO(KS) * (UGDNV(KS) * XN(IS) + VGDNV(KS) * XP(IS) +		1170 1171
1172 1173	310			1172 1173
1174 1175	312 313	RO(KS) * (UGDNV(KS) * YN(IS) + VGDNV(KS) * YP(IS) +		1174 1175
1176	314			1176
1177 1178	315 316	. RO(KS) * (UGDNV(KS) * ZN(IS) +		1177 1178
1179 1180	317 318	. VGDNV(KS) * ZP(IS) + . WGDNV(KS) * ZT(IS))		1179 1180
1181 1182		FLUX FOR ENERGY DENSITY		1181 1182
1183 1184	321 C 322	PD(KS) = UGDNV(KS) * (ENRGYI(KS) +		1183 1184
1185 1186	32 3 324			1185 1186
1187 1188	325 326 C	. WGDNV(KS) * WGDNV(KS))		1187 1188
1189 1190	327 C 328 C	. WGDNV(KS) * WGDNV(KS))) FLUX FOR COMBUSTION INTERFACE TRACKING	-	1189 1190
1191 1192	329 330 C	AQ(KS) = UGDNV(KS) * RGDNV(KS) * ANRGYI(KS)		1191 1192
1193	331 270	CONTINUE		1193
1194 1195	332 C 333	DO 290 IS = NS1 . NS2		1194 1195
1196 1197	334 335 C	KS = IS - NSI + 1		1196 1197
1198 1199	337	ICL = JS(7, IS) ICR = JS(8, IS)		1198 1199
1200 1201	3 38 C 3 39	IATRB = JS(9, IS)		1200 1201
1202 1203	340 341 C	IF(IATRB . EQ . 0) THEN		1202 1203
1204 1205	342 C 343 C	FLUX FOR DENSITY		1204 1205
1206 1207	344 345	DLENG = XS(4, IS) * RO(KS) HYDFLX(ICL,1) = HYDFLX(ICL,1) + DLENG		1206 1207
1208 1209	346 347 C	HYDFLX(ICR , 1) = HYDFLX(ICR , 1) - OLENG		1208 1209
1210 1211		FLUX FOR MOMENTUM DENSITY (U DIRECTION)		1210 1211
1212 1213	350 351	DLENG = XS(4 , IS) * UO(KS) HYDFLX(ICL , 2) = HYDFLX(ICL , 2) + DLENG		1212 1213
1214 1215	352 353 C	HYDFLX(ICR , 2) = HYDFLX(ICR , 2) - DLENG		1214 1215
1215 1216 1217	354 C 355 C	FLUX FOR MOMENTUM DENSITY (V DIRECTION)		1216 1217
1218	356	DLENG = $XS(4, IS) * CO(KS)$		1218 1219
1219 1220	357 358	HYDFLX(ICL , 3) - HYDFLX(ICL , 3) + DLENG HYDFLX(ICR , 3) - HYDFLX(ICR , 3) - DLENG		1220
1221 1222		FLUX FOR MOMENTUM DENSITY (W DIRECTION)		1221 1222
1223 1224	361 C 362	DLENG = XS(4 . IS) * WO(KS)		1223 1224
1225 1226	363 364	HYDFLX(ICL , 4) = HYDFLX(ICL , 4) + DLENG HYDFLX(ICR , 4) = HYDFLX(ICR , 4) - DLENG		1225 1226
1227 1228		FLUX FOR ENERGY DENSITY		1227 1228
1229 1230	367 C 368	DLENG = XS(4 , IS) * PO(KS)		1229 1230
1231 1232	3 69 370	HYDFLX(ICL , 5) - HYDFLX(ICL , 5) + DLENG HYDFLX(ICR , 5) - HYDFLX(ICR , 5) - DLENG		1231 1232

Thu Jul	1 14:	17:00 1	993 threed.f	SUBROUTINE HYDRFL	page	18
1233	371	C				1233
1234	372	C	FLUX FOR COMBUSTION INTERFACE T	RACKING		1234
1235	373	С				1235
1236	374		DLENG = XS(4, IS) * AO(KS)			1236
1237	375		HYDFLX(ICL , 6) = HYDFLX(ICL	, 6) + DLENG		1237
1238	376		HYDFLX(ICR , 6) = HYDFLX(ICR	, 6) - DLENG		1238
1239	377	С				1239
1240	378		ELSE			1240
1241	379	C				1241
1242	380		FLUX FOR DENSITY	• • • • • • • • • • • • • • • • • • • •		1242
1243	381	C				1243
1244	382		DLENG = XS(4, IS) * RO(KS)			1244
1245	383	-	HYDFLX(ICL , 1) = HYDFLX(ICL	, 1) + DLENG		1245
1246	384	C				1246
1247	385	C	FLUX FOR MOMENTUM DENSITY (U D	IRECTION)		1247
1248	386	C				1248
1249	387		DLENG = XS(4, IS) + UO(KS)			1249
1250	388	~	HYDFLX(ICL , 2) = HYDFLX(ICL	, Z) + ULENG		1250
1251	389	C	CLUY COD MOMENTIN DEVELTY / V D	IRECTION)		1251
1252	390 391	с с	FLUX FOR MOMENTUM DENSITIE (4 D	IRECTION /		1252
1253 1254	392	L	DLENG - XS(4 , IS) * CO(KS)	•		1253
1254	393		HYDFLX(ICL, 3) = HYDFLX(ICL)			1254 1255
1255	393	С	$\operatorname{HIDPLA}(\operatorname{ICL}, \operatorname{J}) = \operatorname{HIDPLA}(\operatorname{ICL})$, J / + ULENU		
1250	394	c c	CLUX FOR MOMENTUM DENSITY / U D	IRECTION)		1256 1257
1258	396	с	I LOA FOR HOMEATOR DEADTIT (# D	INCUITUR /		1257
1250	397	L	DLENG = XS(4, IS) * HO(KS)			1259
1260	398		HYDFLX(ICL , 4) - HYDFLX(ICL	4 + 01 ENG		1260
1261	399	С		, , , · Occas		1261
1262	400		FLUX FOR ENERGY DENSITY			1262
1263	401	č				1263
1264	402	•	DLENG = XS(4, IS) * PO(KS)			1264
1265	403		HYDFLX(ICL , 5) - HYDFLX(ICL	. 5) + DLENG		1265
1266	404	C	•			1266
1267	405	Ċ	FLUX FOR COMBUSTION INTERFACE T	RACKING		1267
1268	406	C				1268
1269	407		DLENG = XS(4, IS) * AO(KS)			1269
1270	408		HYDFLX(ICL , 6) - HYDFLX(ICL	, 6) + DLENG		1270
1271	409	C				1271
1272	410		END IF			1272
1273	411	290	CONTINUE			1273
1274	412	C				1274
1275	413		NS1 = NS2 + 1			1275
1276	414		NS2 = NS2 + NOFVES(INS + 1)			1276
1277	415		CONTINUE			1277
1278	416	C	ACTION			1278
1279	417		RETURN			1279
1280	418	С	END			1280 1281
1281	419	L				1201

Thu Jul	1 14:1	7:00	1993 threed.f SUBROUTINE RYDRFL	page	19
1282 1283	1 2	С	SUBROUTINE RYDRFL		1282
1284	3	Č	I		1283 1284
1285 1286	4 5	C C	RYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES		1285 1286
1287 1288	6 7	C C	FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I		1287 1288
1289 1290	8 9	С С	1 I		1289 1290
1291 1292	10 11	C	include 'dmsh00.h'		1291 1292
1293 1294	12 13		include 'dhydm0.h' include 'dphsm0.h'		1293
1295	14	~	include 'dmtrl0.h'		1294 1295
1296 1297	15 16	С	REAL DELP(128), WSOP(128), WSOM(128), WSOO(128),		1296 1297
1298 1299	17 18		. RSTAR(128),CSTAR(128),PMAX(128),PMIN(128) REAL RRIGHT(128),URIGHT(128),VRIGHT(128),PRIGHT(128)		1298 1299
1300 1301	19 20		REAL RLEFTT(128),ULEFTT(128),VLEFTT(128),PLEFTT(128) REAL ENRGYI(128),ANRGYI(128)		1300 1301
1302 1303	21 22	C	- BEGIN LOOP OVER ALL EDGES IN THE DOMAIN		1302 1303
1304	23	Č			1304
1305 1306	24 25		NS1 - 1 NS2 - NOFVES(1)		1305 1306
1307 1308	2 6 27	С	DO 110 INS - 1 , NVEES		1307 1308
1309 1310	28 29	C	- FETCH HYDRO QUANTITIES		1309 1310
1311 1312	30 31		DO 120 IS - NS1 , NS2 KS - IS - NS1 + 1		1311 1312
1313 1314	32 33	C	ICL = JS(7, IS)		1313
1315	34	~	IBC = JS(9, IS)		1314 1315
1316 1317	35 36	C	RRL(KS) - HYDV(ICL, 1)		1316 1317
1318 1319	37 38		UUL(KS) - HYDV(ICL, 2) * XN(IS) + HYDV(ICL, 3) * YN(IS) +		1318 1319
1 320 1 321	39 40		. HYDV(ICL.4) * ZN(IS) VVL(KS) - HYDV(ICL.2) * XP(IS) +		1320 1321
1322 1323	41 42		. HYDV(ICL, 3) * YP(IS) +		1322 1323
1324	43		WHL(KS) = HYDV(ICL , 2) * XT(IS) + HYDV(ICL , 3) * YT(IS) +		1324
1325 1326	44 45		. HYDV(ICL, 4) * ZT(IS)		1325 1326
1327 1328	46 47		PPL(KS) = HYDV(ICL . 5) AAL(KS) = HYDV(ICL . 6)		1327 1328
1329 1330	48 49		EEL(KS) = HYDV(ICL . 8) GGL(KS) = HYDV(ICL . 7)		1329 1330
1331 1332	50 51	С	RRR(KS) - RRL(KS)		1331 1332
1333 1334	52 53		IF(IBC . EQ . O) THEN UUR(KS) - UUL(KS)		1333 1334
1335	54		ELSE		1335 1336
1336 1337	55 56		UUR(KS) = - UUL(KS) END IF		1337
1338 1339	57 58		VVR(KS) - VVL(KS) WWR(KS) - WWL(KS)		1338 1339
1340 1341	59 60		PPR(KS) = PPL(KS) AAR(KS) = AAL(KS)		1340 1341
1342 1343	61 62		EER(KS) = EEL(KS) GGR(KS) = GGL(KS)		1342 1343
1344 1345	63 64	C 120	CONTINUE		1344 1345
1346	65	C			1346 1347
1347 1348	66 67	C	DO 130 KS = 1 . NOFVES(INS)		1348
1349 1350	68 69	C	- THIS SECTION OF CODE SOLVES FOR "PSTAR" AND "USTAR" IN THE RIEMANN PROBLEM USING NEWTON'S METHOD.		1349 1350
1351 1352	70 71	C	WLEFT(KS) = SQRT(GGL(KS) * PPL(KS) * RRL(KS))		1351 1352
1353 1354	72 73		WRIGT(KS) = SQRT(GGR(KS) * PPR(KS) * RRR(KS)) WLESQ(KS) = WLEFT(KS) * WLEFT(KS)		1353 1354
1355	74		WRISQ(KS) - WRIGT(KS) * WRIGT(KS)		1355

Thu Jul	1 14:	17:00 19	93 threed.f	SUBROUTINE RYDRFL	page	20
1356 1357 1358	75 76 77	С	PMIN(KS) = PSML(KS) =	AMIN1(PPL(KS) , PPR(KS)) HRSM * PMIN(KS)		1356 1357 1358
1359 1360	78 79	с с		GUESS FOR THE SOLUTION		1359 1360
1361 1362	80 81	С				1361 1362
1363 1364	82 83	•		WRIGT(KS) * PPL(KS) - WLEFT(KS) * WRIGT(KS) *		1363 1364
1365 1366	84 85	•		(UUR(KS) - UUL(KS))) / (WLEFT(KS) + WRIGT(KS))		1365 1366
1367 1368	86 87	130	PSTAR(KS) = CONTINUE	AMAX1(PSTAR(KS) , PSML(KS))		1367 1368
1369 1370	88 89	c	. DO 140 I = 1			1369
1371 1372	90 91	с с		ITERATION		1370 1371
1373 1374	92 93	С	DO 150 KS = 1 , N			1372 1373
1375 1376	94 95		CFFL = (GG	L(KS) + 1.) / (2. * GGL(KS))		1374 1375
1377	96			= (1. + CFFL * (PSTAR(KS) / PPL(KS) - 1.)) * WLESQ(KS)		1376 1377
1378 1379	97 98		ZLEFT(KS)	- SQRT(WLEFS(KS)) - 2. * WLEFT(KS) * WLEFS(KS) /		1378 1379
1380 1381	99 100	•	USTL(KS)	(WLESQ(KS) + WLEFS(KS)) = UUL(KS) -		1380 1381
1382 1383	101 102	15 0	CONTINUE	(PSTÅR(KŚ) - PPL(KS)) / WLEFT(KS)		1382 1383
1384 1385	103 104	C	DO 152 KS = 1 , N	OFVES(INS)		1384 1385
1386 1387	105 106		CFFR = (GG)	R(KS) + 1.) / (2. * GGR(KS)) = (1. + CFFR * (PSTAR(KS) /		1386 1387
1388 1389	107 108	•		PPR(KS) - 1.)) * WRISQ(KS) = SQRT(WRIFS(KS))		1388 1389
1390 1391	109 110		ZRIGT(KS)	= 2. * WRIGT(KS) * WRIFS(KS) / (WRISQ(KS) + WRIFS(KS))		1390 1391
1392 1393	111 112		USTR(KS)	= UUR(KS) + (PSTAR(KS) - PPR(KS)) / WRIGT(KS)		1392
1394 1395	113 114	152 (C	CONTINUE	(13/14(K3 / 5 / 14 (K3 /) / #KIGI(K3 /		1393 1394
1396 1397	115 116	-	00 160 KS = 1 , NO	DFVES(INS) - ZLEFT(KS) * ZRIGT(KS) *		1395 1396
1398 1399	117 118	•	Ursi(KS)	(USTR(KS) - USTL(KS))/		1397 1398
1400	119	•	PSTAR(KS)	(ZLEFT(KS) + ZRIGT(KS)) = PSTAR(KS) - DPST(KS)		1399 1400
1401 1402	120 121	160	CONTINUE	= AMAX1(PSTAR(KS) , PSML(KS))		1401 1402
1403 1404	122 123	C 140	CONTINUE			1403 1404
1405 1406	124 125		ORM FINAL SOLUTIO	DNS		1405 1406
1407 1408	126 127	С [00 170 KS = 1 , NO	DFVES(INS)		1407 1408
1409 1410	128 129		WLEFT(KS) =	KS) + 1.) / (2. * GGL(KS)) SQRT(WLESQ(KS) * (1. +		1409 1410
1411 1412	130 131	170 0	ONTINUE	CFFL * (PSTAR(KS) / PPL(KS) - 1.)))		1411 1412
1413 1414	132 133	C [10 172 KS = 1 , NC	DFVES(INS)		1413 1414
1415 1416	134 135		WRIGT(KS) =	KS) + 1.) / (2. * GGR(KS)) SQRT(WRISQ(KS) * (1. +		1415 1416
1417 1418	136 137	172 0	ONTINUE	CFFR * (PSTAR(KS) / PPR(KS) - 1.)))		1417 1418
1419 1420	138 139	C	0 180 KS = 1 , NO	DFVES(INS)		1419 1420
1421 1422	140 141		USTAR(KS) =	(PPL(KS) - PPR(KS) + WLEFT(KS) * UUL(KS) +		1421 1422
1423 1424	142 143	•		WRIGT(KS) * UUR(KS)) / (WLEFT(KS) + WRIGT(KS))		1423 1424
1425 1426	144 145	180 C	ONTINUE			1425 1426
1427 1428	145 146 147		0 190 KS = 1 , NO	FVES(INS)		1427
1429	147		EGIN PROCEDURE TO	OBTAIN FLUXES FROM REIMANN FORMALISM		1428 1429
				nage 20		

Thu Jul	1 14:1	7:00	1993 threed.f	SUBROUTINE RYDRFL	page	21	•
1430	149	С			1	430	
1431 1432	150 151	С	IF(USTAR(KS) .	LE . 0.0) THEN		431 432	
1433	152	J	RO(KS) = RRR(433	
1434 1435	153 154		PO(KS) = PPR(UO(KS) = UUR(434	
1436	155		CO(KS) = SQRT	(HRGG * PPR(KS) / RRR(KS))		435 436	۲
1437 1438	156 157		WO(KS) = WRIG GO(KS) = GGR(T(KS)		437	
1439	158		ISN(KS) = 1	K5)		438 439	
1440 1441	159 160	C	ENRGYI(KS) =		1	440	
1442	161		ANRGYI(KS) =	AAR(KS)		441 442	
1443 1444	162 163		VGDNV(KS) = V	VR(KS)	1	443	•
1445	164	С	WGDNV(KS) = H	#R(K3)		444 445	
1445 1447	165 166	c	ELSE		1	446	
1448	167	L	RO(KS) = RRL(KS)		447 448	
1449	168		PO(KS) = PPL(KS)	1	449	
1450 1451	169 170		UO(KS) = UUL(CO(KS) = SORT	KS) (HRGG * PPL(KS) / RRL(KS))		450 451	-
1452	171		WO(KS) = WLEF	T(KS)	1	452	•
1453 1454	172 173		GO(KS) = GGL(ISN(KS) = - 1			453 454	
1455	174	C				455	
1456 1457	175 176		ENRGYI(KS) = ANRGYI(KS) =			456 457	
1458	177		VGDNV(KS) = V	VL([°] KS) [°]	1	458	
1459 1460	178 179		WGDNV(KS) = W END IF	WL(KS)		459 460	۲
1461	180	190				461	
1462 1463	18 1 182	C	DO 200 KS = 1 , NOFVE	C/ 787)		462	
1464	183		DELP(KS) = PSTA	R(KS) – PO(KS)		463 464	
1465 1466	184 185		WSOP(KS) = ISN(KS) * UO(KS) + WO(KS) / RO(KS)	1	465	
1467	186	200	CONTINUE	KS) * 00(KS) + CO(KS)		466 467	
1468 1469	187 188	С		C(THE)	1	468	•
1470	189		DO 210 KS = 1 , NOFVE IF(DELP(KS) , GT			469 470	
1471 1472	190 191		WSOO(KS) - WSOP		1	471	
1473	192		ELSE WSOO(KS) = WSOM	(KS)		472 473	
1474 1475	193 194	210	END IF CONTINUE	· · ·	1-	474	
1475	194	C 210	CONTINUE		_	475 476	•
1477 1478	1 96 197	С	DO 220 KS = 1 , NOFVE	S(INS)	14	477	
1479	198		- USE OUTER STATE SOLUT	ION		478 479	
1480 1481	199 200	C			1	480	
1482	201		PGDNV(KS) = PO(UGDNV(KS) = UO(KS)		481 482	
1483 1484	202 203		CGDNV(KS) = CO(483	•
1485	203	2 20	RGDNV(KS) = RO(CONTINUE	KS)		484 485	
1485	205	ç		-	14	486	
1487 1488	206 207	с	- COMPUTE STARKED VALUE	5		487 488	
1489	208		00 230 KS = 1 . NOFVE	S(INS)	14	489	
1490 1491	209 210		RSTAK(RS) = 1.	/ (1. / RO(KS) - DELP(KS) / (WO(KS) * WO(KS)))		490 491	•
1492	211		CSTAR(KS) = SOR	T(GO(KS) * PSTAR(KS) / RSTAR(KS))	14	492	-
1493 1494	212 213	230	WSOM(KS) = ISN CONTINUE	(`KS`) * USTAR(KS`) + CSTAR(KS`)		493 494	
1495	214	C			14	495	
1496 1497	215 216		DO 240 KS = 1 , NOFVE IF(DELP(KS) . GT			196 197	
1498	217		SPIN(KS) = WSOP		14	198	
1499 1500	218 219		ELSE SPIN(KS) - WSOM	(KS)		499 500	•
1501	220	240	END IF		1	501	
1502 1503	221 222	240 C	CONTINUE			502 503	

Thu Jul	1 14:	17:00 1	993 threed.f SUBROUTINE RYDRFL	page	2 2
1504	223		DO 250 KS = 1 , NOFVES(INS)		1504
1505	224	C			1505
1506 1507	225 226		IF(WSOO(KS) . GE . O.) THEN IF(SPIN(KS) . GE . O.) THEN		1506 1507
1508	227	С			1508
1509	228		USE THE STARRED STATE RESULTS		1509
1510 1511	2 29 230	C	RGDNV(KS) = RSTAR(KS)		1510 1511
1512	231		UGDNV(KS) = USTAR(KS)		1512
1513 1514	232 233		CGDNV(KS) = CSTAR(KS) PGDNV(KS) = PSTAR(KS)		1513 1514
1515	234		ELSE		1514
1516	235	C			1516
1517 1518	236 237	C	EVALUATE THE INSIDE RAREFACTION WAVE		1517 1518
1519	238	•	CGDNV(KS) - (CSTAR(KS) * 2		1519
1520 1521	239 240		. ISN(KS) * USTAR(KS) * (GO(KS) - 1.))		1520
1522	241		. / (GO(KS) + 1.) UGDNV(KS) = - ISN(KS) * CGDNV(KS)		1521 1522
1523	242		RGDNV(KS) = (CGDNV(KS) / CO(KS)) **		1523
1524 1525	243 244		. (2./(GO(KS)-1.))*RO(KS) PGDNV(KS)-CGDNV(KS)*CGDNV(KS)*RGDNV(KS)/		1524 1525
1526	245		GO(KS)		1525
1527	246	C			1527
1528 1529	247 248	C	END IF		1528 1529
1530	249	-	END IF		1530
1531 1532	250 251	250 C	CONTINUE		1531
1533	252	L	DO 260 KS = 1 , NOFVES(INS)		1532 1533
1534	253		IS = KS + NSI - 1		1534
1535 1536	254 255		RR(IS) = RGDNV(KS) PR(IS) = PGDNV(KS)		1535 1536
1537	256	2 60	CONTINUE		1537
1538	257	C			1538
1539 1540	258 259		NSI = NS2 + 1 NS2 = NS2 + NOFVES(INS + 1)		1539 1540
1541	260	110			1541
1542 1543	261 262	С			1542
			DETILDW		
1544	263		RETURN END		1543
1544 1545	263 264	C			
	264	C 17:00 1	END		1543 1544
1545 Thu Jul 1546	264 1 14:1 1	7:00 1	END		1543 1544 1545 1546
1545 Thu Jul 1546 1547	264 1 14:1 1 2	17:00 1 C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL		1543 1544 1545 1546 1547
1545 Thu Jul 1546 1547 1548 1549	264 1 14:1 1 2 3 4	C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL		1543 1544 1545 1546 1547 1548 1549
1545 Thu Jul 1546 1547 1548 1549 1550	264 1 14:1 1 2 3 4 5	C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I		1543 1544 1545 1546 1547 1548 1549 1550
1545 Thu Jul 1546 1547 1548 1549	264 1 14:1 1 2 3 4 5 6 7	C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL		1543 1544 1545 1546 1547 1548 1549
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553	264 1 14:1 2 3 4 5 6 7 8	C C C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES .		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554	264 1 14:1 2 3 4 5 6 7 8 9	C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11	C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I include 'dmsh00.h'		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1555 1555
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12	C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . include 'dmsh00.h' include 'dmsh00.h'		1543 1544 1545 1546 1547 1548 1549 1550 1551 1553 1554 1555 1556 1557
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11	C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I include 'dmsh00.h'		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1555 1555
1545 Thu Jul 1546 1547 1548 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES VARIABLES . include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h'		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1555 1556 1557 1558 1559 1560
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' REAL DELP(128),WSOP(128),WSOM(128),WSOO(128),		1543 1544 1545 1546 1547 1548 1559 1551 1553 1554 1555 1556 1557 1558 1559 1560 1561
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' REAL DELP(128), WSOP(128), WSOM(128), WSOD(128), REAL DELP(128), WSOP(128), PMAX(128), PMIN(128) REAL RRIGHT(128), URIGHT(128), VRIGHT(128), PRIGHT(128)		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1561 1562 1563
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1555 1555 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' REAL DELP(128), WSOP(128), WSOM(128), WSOD(128), REAL DELP(128), WSOP(128), WSOM(128), PRIGHT(128) REAL RIGHT(128), ULEFTT(128), VLEFTT(128), PLEFTT(128)		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	C C C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' REAL DELP(128),WSOP(128),WSOM(128),WSOO(128), REAL RIGHT(128),CSTAR(128),PMAX(128),PMIN(128) REAL RIGHT(128),UEFTT(128),VLEFTT(128),PLEFTT(128) REAL RIGHT(128),ULEFTT(128),VLEFTT(128),PLEFTT(128) INTEGER NOFVEP(128)		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1561 1562 1563
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1566 1566 1567	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	C C C C C C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' REAL DELP(128), WSOP(128), WSOM(128), WSOD(128), REAL DELP(128), WSOP(128), WSOM(128), PRIGHT(128) REAL RIGHT(128), ULEFTT(128), VLEFTT(128), PLEFTT(128)		1543 1544 1545 1546 1547 1548 1549 1550 1551 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1565 1566 1567 1568	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	C C C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL I KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I include 'dmsh00.h' include 'dmsh00.h' include 'dmsm0.h' include 'dmtr10.h' REAL DELP(128),WSOP(128),WSOM(128),WSOO(128), RSTAR(128),CSTAR(128),PMAX(128),PMIN(128) REAL RIGHT(128),URIGHT(128),VRIGHT(128),PRIGHT(128) REAL RIGHT(128),ULEFTT(128),VLEFTT(128),PLEFTT(128) INTEGER NOFVEP(128) FETCH HYDRO QUANTITIES		1543 1544 1545 1546 1547 1548 1559 1551 1552 1554 1555 1556 1557 1558 1560 1561 1562 1563 1564 1565 1566 1567 1568
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1565 1566 1565 1566 1566	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	C C C C C C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES. I include 'dmsh00.h' include 'dmsh00.h' include 'dmsm0.h' include 'dmsm0.h' include 'dmsm0.h' include 'dmsm0.h' REAL DELP(128),WSOP(128),WSOM(128),WSO0(128), REAL RIGHT(128),UEFTT(128),PMIN(128) REAL RIGHT(128),UEFTT(128),VEFTT(128),PEFTT(128) INTEGER NOFVEP(128) FETCH HYDRO QUANTITIES		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1555 1556 1557 1558 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1565 1566 1565 1566 1566	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	C C C C C C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' REAL DELP(128),WSOP(128),WSOM(128),WSO0(128), REAL DELP(128),USOP(128),WSOM(128),WSO0(128), REAL RIGHT(128),ULGHT(128),PMAX(128),PMIN(128) REAL RIGHT(128),ULGHT(128),VLGHT(128),PRIGHT(128) REAL RIGHT(128),ULGHT(128),VLEFTT(128),PLEFTT(128) INTEGER NOFVEP(128) FETCH HYDRO QUANTITIES		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1565 1566 1565 1566 1566	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	C C C C C C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES. I include 'dmsh00.h' include 'dmsh00.h' include 'dmsm0.h' include 'dmsm0.h' include 'dmsm0.h' include 'dmsm0.h' REAL DELP(128),WSOP(128),WSOM(128),WSO0(128), REAL RIGHT(128),UEFTT(128),PMIN(128) REAL RIGHT(128),UEFTT(128),VEFTT(128),PEFTT(128) INTEGER NOFVEP(128) FETCH HYDRO QUANTITIES		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1555 1556 1557 1558 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
1545 Thu Jul 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1565 1566 1567 1568 1569 1570 1571 1572	264 1 14:1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	C C C C C C C C C C C C C C C C C C	END 993 threed.f SUBROUTINE KYDRFL SUBROUTINE KYDRFL KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES I FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I VARIABLES . I include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' REAL DELP(128),WSOP(128),WSOM(128),WSO0(128), REAL DELP(128),USOP(128),WSOM(128),WSO0(128), REAL RIGHT(128),ULGHT(128),PMAX(128),PMIN(128) REAL RIGHT(128),ULGHT(128),VLGHT(128),PRIGHT(128) REAL RIGHT(128),ULGHT(128),VLEFTT(128),PLEFTT(128) INTEGER NOFVEP(128) FETCH HYDRO QUANTITIES		1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

Thu Jul	1 14:17:00 1	993 threed.f	SUBROUTINE	KYDRFL	page	23
1575 1576 1577	30 31 32	•	HYDV(ICL , 2) * XN(IS) + HYDV(ICL , 3) * YN(IS) + HYDV(ICL , 4) * ZN(IS)			1575 1576 1577
1578 1579	33 34	VVL(KS) =	HYDV(ICL , 2) * XP(IS) + HYDV(ICL , 3) * YP(IS) +			1578 1579
1580	35	•	HYDV(ICL , 4) * ZP(IS)			1580
1581 1582	36 37	WWL(KS) =	HYDV(ICL , 2) * XT(IS) + HYDV(ICL , 3) * YT(IS) +			1581 1582
1583	38		HYDV(ICL , 4) * ZT(IS)			1583 1584
1584 1585	39 40	AAL(KS) =	HYDV(ICL, 6)			1585
1586 1587	41 42		HYDV(ICL.8) HYDV(ICL.7)			1586 1587
1588	43 C					1588
1589 1590	44 45	RRR(KS) - IF(IBC.E	Q.O) THEN			1589 1590
1591 1592	46 47	UUR(KS) - Else	UUL(KS)			1591 1592
1593	48	UUR(KS) -	- UUL(KS)			1593
1594 1595	49 50	END IF VVR(KS) =	VVL(KS)			1594 1595
1596	51	WWR(KS) =	WWL(KS)			1596
1597 1598	52 53	AAR(KS) =	PPL(KS) AAL(KS)			1597 1598
1599 1600	54 55	EER(KS) = GGR(KS) =				1599 1600
1601	56 C					1601
1602 1603	57 120 58 C	CONTINUE				1602 1603
1604 1605	59 60 C	DO 130 KS = 1 ,	NPRTCL			1604 1605
1606	61 C		CODE SOLVES FOR "PSTAR" AND	"USTAR" IN		1606
1607 1608	62 C 63 C	THE RIEMANN PRO	BLEM USING NEWTON'S METHOD.			1607 1608
1609	64		= SORT(GGL(KS) * PPL(KS			1609
1610 1611	65 66	WLESQ(KS)	- SQRT(GGR(KS) * PPR(KS - WLEFT(KS) * WLEFT(KS)) * KKK(KS))		1610 1611
1612 1613	67 68 C	WRISQ(KS)	= WRIGT(KS) * WRIGT(KS)			1612 1613
1614	69		- AMIN1(PPL(KS) , PPR(KS))		1614
1615 1616	70 71 C	PSHL(KS)	- HRSM * PMIN(KS)			1615 1616
1617 1618	72 C 73 C	FORM THE STARTI	NG GUESS FOR THE SOLUTION			1617 1618
1619	74	PSTAR(KS)	= (WLEFT(KS) * PPR(KS) -			1619
1620 1621	75 76	•	WRIGT(KS) * PPL(KS) WLEFT(KS) * WRIGT(KS	*		1620 1621
1622 1623	77 78	•	(UUR(KS) - UUL(KS)) (WLEFT(KS) + WRIGT(KS) /		1622 1623
1624	79		= AMAX1(PSTAR(KS) , PSML(1624
1625 1626	80 130 81 C	CONTINUE				1625 1626
1627 1628	82 83 C	DO 140 I =	1 , IHRN			1627 1628
1629	84 C	BEGIN THE NEWTO	N ITERATION			1629
1630 1631	85 C 86	DO 150 KS = 1 .	NPRTCL			1630 1631
1632 1633	87	CFFL = (*	GGL(KS) + 1.) / (2. * GGL) = (1. + CFFL * (PSTAR(K	(KS))		1632 1633
1634	88 89	•	PPL(KS) - 1.)) * WLESQ(KS)		1634
1635 1636	90 91) = SQRT(WLEFS(KS))) = 2. * WLEFT(KS) * WLEFS	(KS)/		1635 1636
1637 1638	92	. USTL(KS	(WLESQ(KS) + WLEFS			1637 1638
1639	93 94	•	(PSTAR(KS) - PPL(KS)) / WLEFT(KS)		1639
1640 1641	95 150 96 C	CONTINUE				1640 1641
1642	97	DO 152 KS = 1 .		(45))		1642 1643
1643 1644	98 99	WRIFS(KS	GGR(KS) + 1.) / (2. * GGR) = (1. + CFFR * (PSTAR(K	Ś)/		1644
1645 1646	100 101	•	PPR(KS) - 1.)) = SQRT(WRIFS(KS))) * WRISQ(KS)		1645 1646
1647	102) = 2. * WRIGT(KS) * WRIFS	(KS)/		1647
1648	103	•	(WRISQ(KS) + WRIFS	(KS))		1648

Thu Jul	1 14:	17:00 1	993 threed, f	SUBROUTINE KYDRFL	page	24
1649	104		USTR(KS) -			1649
1650 1651	105 106	152	. (CONTINUE	PSTAR(KS) - PPR(KS)) / WRIGT(KS)		1650
1652	107	C				1651 1652
1653 1654	108 109		DO 160 KS = 1 . NPR			1653
1655	110		• UPSI(KS) =	ZLEFT(KS) * ZRIGT(KS) * USTR(KS) - USTL(KS)) /		1654 1655
1656 1657	111		. (ZLEFT(KS) + ZRIGT(KS))		1656
1658	112 113		PSTAR(KS) = PSTAR(KS) =	PSTAR(KS) - DPST(KS) AMAX1(PSTAR(KS), PSML(KS))		1657 1658
1659	114	_ 160	CONTINUE			1659
1660 1661	115 116	C 140	CONTINUE			1660 1661
1662	117	C		-		1662
1663 1664	118 119	C	FORM FINAL SOLUTION	\$		1663 1664
1665	120	-	DO 170 KS = 1 . NPR			1665
1666 1667	121 122		CFFL = (GGL(K WIFFT(KS) = S	S) + 1.) / (2. * GGL(KS)) QRT(WLESQ(KS) * (1. +		1666
1668	123		. C	FFL * (PSTAR(KS) / PPL(KS) - 1.)))		1667 1668
1669 1670	124 125	170 C	CONTINUE			1669
1671	126	•	DO 172 KS = 1 , NPR	TCL		1670 1671
1672 1673	127 128		CFFR = (GGR(K	S) + 1.) / (2. * GGR(KS))		1672
1674	129		. Ci	QRT(WRISQ(KS) * (1. + FFR * (PSTAR(KS) / PPR(KS) - 1.)))		1673 1674
1675 1676	130 131	172 C	CONTINUE			1675
1677	132	L	DO 180 KS = 1 , NPR	TCL		1676 1677
1678	133		USTAR(KS) = (PPL(KS) - PPR(KS) +		1678
1679 1680	134 135		•	HLEFT(KS) * UUL(KS) + WRIGT(KS) * UUR(KS)) /		1679 1680
1681	136		. (WLEFT(KS) + WRIGT(KS))		1681
1682 1683	137 1 38	180	CONTINUE			1682 1683
1684	139	•	DO 190 KS = 1 , NPR	TCL		1684
1685 1686	140 141	С С	REGIN PROCEDURE TO (DBTAIN FLUXES FROM REIMANN FORMALISH		1685
1687	142	č				1686 1687
1688 1689	143 144	с	IF(USTAR(KS)	. LE . 0.0) THEN		1688
1690	145	·	, RO(KS) - RRF	R(KS)		1689 1690
1691 1692	1 46 147		PO(KS) = PPF UO(KS) = UUF	R(KS)		1691
1693	148		CO(KS) - SQF	RT(HRGG * PPR(KS) / RRR(KS))		1692 1693
1694 1695	149 150		WO(KS) = WR	IGT(KS)		1694
1696	151		GO(KS) = GGF ISN(KS) = 1			1695 1696
1697 1698	152 153	C	VGDNV(KS) =	MID(KS)		1697
1699	154		WGDNV(KS) =	WWR(KS)		1698 1699
1700 1701	155 156	C	ELSE			1700
1702	157	С				1701 1702
1703 1704	158 159		RO(KS) = RRL PO(KS) = PPL	.(KS)		1703
1705	160		UO(KS) = UUL			1704 1705
1706 1707	161 162		CO(KS) = SOR	IT(HRGG * PPL(KS) / RRL(KS))		1706
1708	163		WO(KS) = WLE GO(KS) = GGL	(KS)		1707 1708
1709 1710	164 165	С	ISN(KS) = -			1709
1711	166	L.	VGDNV(KS) =	VVL(KS)		1710 1711
1712 1713	167 168		WGDNV(KS) -			1712
1714	169	190	END IF CONTINUE			1713 1714
1715 1716	170	С				1715
1717	171 172		DO 200 KS = 1 , NPRT DELP(KS) = PST	CL AR(KS) - PO(KS)		1716 1717
1718	173		WSOP(KS) = ISN	(KS) * UQ(KS) + WO(KS) / RO(KS)		1718
1719 1720	174 175	200	CONTINUE	(KS) * UO(KS) + CO(KS)		1719 1720
1721 1722	176 177	С		ci -		1721
1166	1/1		DO 210 KS = 1 , NPRT	ι.		1722

6

Thu Ju}	1 14:1	17:00 1	993 threed.f SUBROUTINE KYDRFL	page
1723	178		IF(DELP(KS) . GT . O.) THEN	
1724	179		WSOO(KS) = WSOP(KS)	
1725	180			
1726 1727	181 182		WSOO(KS) = WSOM(KS) END IF	
1728	183	210	CONTINUE	
1729	184	с		
1730	185		DO 220 KS = 1 , NPRTCL	
1731	186	ç	HER OUTER STATE SOLUTION	
1732 1733	187 188	с	USE OUTER STATE SOLUTION	
1734	189	C	PGDNV(KS) = PO(KS)	
1735	190		UGDNV(KS) = UO(KS)	
1736	191		CGDNV(KS) = CO(KS)	
1737	192	220	RGDNV(KS) - RO(KS)	
1738 1739	193 194	C 220	CONTINUE	
1740	195		COMPUTE STARRED VALUES	
1741	196	C		
1742	197		DO 230 KS = 1 . NPRTCL	
1743 1744	198 199		RSTAR(KS) = 1. / (1. / RO(KS) - DELP(KS) / (WO(KS) * WO(KS)))	
1745	200		CSTAR(KS) = SQRT(GO(KS) * PSTAR(KS) / RSTAR(KS))	
1746	201		WSOM(KS) = ISN(KS) * USTAR(KS) + CSTAR(KS)	
1747	202	230	CONTINUE	
1748 1749	203 204	С		
1750	204		DO 240 KS = 1 , NPRTCL IF(DELP(KS) . GT . O.) THEN	
1751	206		SPIN(KS) = WSOP(KS)	
1752	207		ELSE	
1753	208		SPIN(KS) = WSOM(KS)	
1754 1755	209 210	240	END IF CONTINUE	
1756	211	C 240	CONTINUE	
1757	212	÷	DO 250 KS = 1 , NPRTCL	
1758	213	С		
1759 1760	214 215		IF(WSOO(KS), GE, O,) THEN	
1761	215	С	IF(SPIN(KS) . GE . O.) THEN	
1762	217		USE THE STARRED STATE RESULTS	
1763	218	C		
1764 1765	219 2 20		RGDNV(KS) = RSTAR(KS) Ugdnv(KS) = USTAR(KS)	
1766	221		CGDNV(KS) = CSTAR(KS)	
1767	222		PGDNV(KS) = PSTAR(KS)	
1768	223	•	ELSE	
1769 1770	224 225	ç	EVALUATE THE INSIDE RAREFACTION WAVE	
1771	226	č	EVALUATE THE INSIDE WAREFACTION WAVE	
1772	227	-	CGDNV(KS) = (CSTAR(KS) * 2	
1773	228		. ISN(KS) * USTAR(KS) * ($GO($ KS) - 1.))	
1774 1775	229 230		. / (GO(KS) + 1.) UGDNV(KS) = - ISN(KS) * CGDNV(KS)	
1776	230		RGDNV(KS) = (CGDNV(KS) / CO(KS)) **	
1777	232		. (2. / (GO(KS) - 1.)) * RO(KS)	
1778	233		PGDNV(KS) = CGDNV(KS) * CGDNV(KS) * RGDNV(KS) /	
1779 1780	234	r	. GO(KS)	
1781	235 236	C	END IF	
1782	237	С		
1783	238		END IF	
1784 1785	239 240	2 50 C	CONTINUE	
1786	240	U U	DO 260 KS - 1 , NPRTCL	
1787	242		RR(KS) = RGDNV(KS)	
1788	243		PR(KS) = PGDNV(KS)	
1789	244	260	CONTINUE	
1790 1791	245 246	C	RETURN	
1792	247		END	
1793	248	С		

Thu Jul	1 14	1:17:00	1993 t	:h reed. f		SUBROUTINE	HYDRMN		page	26
1794	1		SUBROUT I	INE HYDRMN						1794
1795 1796	2							r		1795 1796
1797	4							1		1797
1798 1799	5			IS A 2 DIMENSION FLUXES ACROSS NO			AT CALCULAT	IES I		1798 1799
1800	7			IT IS CONFIGURED			WO OR THREE	E I		1800
1801	8	5 C		DIMENSIONAL SITU	ATIONS. TH	E HYDRODYN	AMIC QUANTI	TIES I		1801
1802 1803	9 10			CAN BE SIDE OR V VERTEX CENTERED	FOR 3-D. T	HE SPECIFI	-U AND LELL C USE IS BA	SED I		1802 1803
1804	11	. C		ON THE CONTENTS				I		1804
1805 1806	12 13							I I		1805 1806
1807	14	↓ C						I		1807
1808 1809	15 16		THE USE	OF THE HYDRO VA	RTARIES IS	AS FOLLOW	c.			1808 1809
1810	17				MINDLES IS	NO FULLUM	2:			1810
1811	18			****	++++++++	*****	+++++++++	•		1811
1812 1813	19 20		+	HYDV(IV, IH) CONT	AINS VERTE	X CENTERED	HYDRO-	+		1812 1813
1814	21	C	+	DYNAMIC QUANTITI				+		1814
1815 1816	22 23		+	HYDE(IH, IE) CONT	AINS FOGE	CENTERED	HYDRO.	+		1815 1816
1817	24	F C -	+	DYNAMIC FLUX QUA	NTITIES WI	TH ORIENTA	TION	+		1817
1818	25		+	DETERMINED BY TH OPTIONS . IT IS	E "SIDE"	"VERTEX" O	R *CELL "	+		1818
1819 1820	26 27		+ +	"OPTHYD" = "SIDE	2D" 2-D	SIDE CENTE	RED	+		1819 1820
1821	28	1 C	+	= "VERT	EX2D" 2-D	VERTEX CEN	TERED	+		1821
1822 1823	29 30		++	= "VERT	EX30" 3-0	VERTEX CEN	TERED	+		1822 1823
1824	31	C	+	HYDC(IC, IH) CONT				+		1824
1825	32		+	DYNAMIC QUANTITI "OPTHYD" - "CELL	ES. IT IS	USED FOR TI		+		1825
1826 1827	33 34		+	"UPINID" = "LELL	20. 2-0	LELL LEN	TERED	+ +		1826 1827
1828	35	i C	+					+		1828
1829 1830	36 37		+	IV - VERTEX IS - SIDE	INDEX			+		1829 1830
1830	38		+	IE - EDGE	INDEX			+		1831
1832	39) C	+	IC - CELL	INDEX			+		1832
1833 1834	40 41		+	IH - HYDRO	INDEX			+		1833 1834
1835	42	2 C	+			IN ******		+		1835
1836	43 44		+	2 = UX 3 = UY		TY ******* TY ******		+		1836 1837
1837 1838	44		+	4 = UZ		********	****	+		1838
1839	46	i C	+	5 - PO			****	+		1839
1840 1841	47 48		+	5 = EN	ENERGY I	N TRANK	****	+		1840 1841
1842	49) C		*****	++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+		1842
1843	50		include	'damsh00.h'						1843 1844
1844 1845	51 52		include include	'dhydm0.h'						1845
1846	53	}	include	'dphsm0.h'						1846
1847 1848	54 55		inciude	'dmtrl0.h'						1847 1848
1849	56	5		(128), URN(128), V		N(128),EPN	(128),			1849
1850 1851	57 58			(128),XS2S(128),)VR(128),HYDVU(12		28).HYDVW/	128)			1850 1851
1852	59		. HYC	WP(128)	. ,	20//11/04/11	120),			1852
1853	60			NDUMMY1, NDUMMY2,		•				1853 1854
1854 1855	61 62			IDUMMY(4),VDATA(R*31 VLABEL	2), FUAIA(2)				1855
1856	63		CHARACTE	R*32 FLABEL						1856
1857 1858	64 65			R*6 CTRI, CTET ISURF(400000)						1857 1858
1859	66	i C								1859
1860	67		REAL CD1	(4),CD2(4)						1860 1861
1861 1862	68 69		NDUMMY1=	•1						1862
1863	70)	NDUMMY2-	-4						1863
1864 1865	71 72		NDUMMY3- IDUMMY(1							1864 1865
1866	73	I	IDUMMY (2	2) = 0						1866
1867	74		[DUMMY(3	3) = 0						1867

•

.

.

.

•

0

(

1

Thu Jul	1 14:	17:00	1993 threed.f	SUBROUTINE HYDRMN	page 27
1868	75		IDUMMY(4) = 0		1868
1869	76		VDATA(1) = 1		1869
1870	77		VDATA(2) = 1		1870
1871 1872	78 79		FDATA(1) = 1 FDATA(2) = 4		1871
1873	80		VLABEL=' pressure, ne	w / m**2'	1872
1874	81		FLABEL-' tets faces.'		1873 1874
1875	82		CTRI=' tri '		1875
1876	83	•	CTET-' tet '		1876
1877	84	С	TLIMIT-TT		1877
1878 1879	85 86	С	TLIMIT-30.		1878
1830	87	C	IJKNUM = 0		1879
1881	88		IF(ICONP . EQ . 1)	THEN	1880 1881
1882	89		REWIND 10		1882
1883	90		REWIND 26		1883
1884 1885	91		READ (26,*) IJKNUM		1884
1886	92 93		DO KKJ = 1 , IJKNUM READ (26,*) RO,(RRN(1885
1887	94		WRITE (10,*) R0, (RRN	INJ,IN=I,MPRICL) (IV) IK=1 NDDTCI)	1886
1888	95		END DO	(any jawa) in nivel	1887 1888
1889	96		END IF		1889
1890	97		DO 120 JT = 1 , NTIME		1890
1891	98	~	IF(JT.GT.5) IEOS=0		1891
1892 1893	99 100	С	DO KK = 1.5		1892
1894	101		DO IV = 1 . NV		1893
1895	102		HNUM(IV , KK) = 0		1894 1895
1896	103		END DO	•	1896
1897	104		END DO		1897
1898	105	•	DO 140 ITT = 1 , NDUM	p	1898
1899	106	ç		0.177 04	1899
1900 1901	107 108	С С	- SELECT UNDER UF INTEG	RATION	1900
1902	109	C	IF(IOPORD.EQ.1)THEN		1901
1903	110		CALL FIRST		1902 1903
1904	111		ELSEIF(IOPORD.EQ.2)TH	EN	1904
1905	112		CALL GRADNT		1905
1906 1907	113	c	ENDIF		1906
1907	114 115	C	DTT = 1.E24		1907
1909	115	С	011 - 1.224		1908 1909
1910	117	•	CALL HYDRFL		1910
1911	118	C			1911
1912	119		DTT = DTT * .4		1912
1913	120		TT = TT + DTT	NC .	1913
1914 1915	121 122	С	PRINT +, JT, ITT, DTT, TT,	, NS	1914
1916	123	•	NC1 = 1		1915 1916
1917	124		NC2 = NOFVEC(1)		1910
1918	125	-	DO 110 INC = 1 , NVEE(1918
1919	126	С			1919
1920 1921	127 128		DO 150 IC = NC1 , NC2 $KC = IC = NC1 + 1$		1920
1921	128		$\frac{\text{KC} = \text{IC} - \text{NC1} + 1}{\text{RRR}(\text{KC}) = \text{HYDV}($	IC 1)	1921
1923	130		UUR(KC) = HYDV(1922 1923
1924	131		VVR(KC) = HYDV(IC.3)	1924
1925	132		WWR(KC) = HYDV(IC , 4)	1925
1926	133		PPR(KC) - HYDV(IC , 5)	1926
1927 1928	134 12	С	AAR(KC) = HYDV(ic , 0)	1927
1929	1	*	RRL(KC) = HYDFL)	((IC.1)	1928 1929
1930	1		UUL(KC) = HYDFLX	((IC , 2)	1930
1931	·		VVL(KC) = HYDFLX	((IC , 3)	1931
1932	5		WWL(KC) = HYDFLX		1932
1933 1934	0		PPL(KC) = HYDFLX		1933
1935	\$1 \$2	с	AAL(KC) = HYDFLX	(IC , O)	1934 1935
1936	.43	•	XS2S(KC) = XC(2	. IC)	1936
1937	144		XSAR(KC) = SVOLM		1930
1938	145	150		· ·	1938
1939	146	C	DO 170 40 1 40		1939
1940	147		DO 170 KC = 1 , NOFVE	C(INC)	1940
1941	148		IC = KC + NCI - 1		1941

Thu Jul	1 14:17:	00 1993 th reed. f	SUBROUTINE	HYDRMN	page	28
1942	149	RRN(KC) = RRR(KC)				1942
1943 1944	150 151	URN(KC) = RRR(KC) * VRN(KC) = RRR(KC) *	UUR(KC)			1943
1945	152	WRN(KC) = RRR(KC) *	WWR(KC)			1944 1945
1946	153	EPN(KC) = HYDV(IC, 8)) + .5 * RRR(KC)	*		1946
1947 1948	154 155	• (UUR(KC) * UUR(KĆ VVR(KC) * VVR(KC) +		1947
1949	156		WWR(KC) * WWR(KC)			1948 1949
1950 1951	157 158	ARN(KC) = RRR(KC) *	AAR(KC)			1950
1951		170 CONTINUE Compute the source term f	OR AXI SYMMETRY FLOW			1951 1952
1953	1 60 C	IF THE FLOW IS NOT AXI SY	MMETRY , COMMENT LOC	DP 160		1953
1954 1955	161 C 162	DO 190 KC = 1 , NOFVEC(THE I			1954
1956	163	IC = KC + NC1 - 1	Inc /			1955 1956
1957	164	DTA = DTT * XSAR(KC)				1957
1958 1959	165 C 166	RRLL = DTA * RRL(KC)				1958
1960	167	UULL = DTA * UUL(KC)				1959 1960
1961 1962	168	VVLL = DTA * VVL(KC)				1961
1962	1 69 170	WWLL = DTA * WWL(KC) RRN(KC) = RRN(KC) -	RRt L			1962 1963
1964	171 C	. , . ,				1964
1965 1966	172 173 C	URN(KC) = URN(KC) -	VULL			1965
1967	173 C	VRN(KC) = VRN(KC) -	VVEL			1966 1967
1968	175 C					1967
1969 1970	176 177 C	WRN(KC) = WRN(KC) -	WWLL			1969
1971	178	PPLL = DTA * PPL(KC)				1970 1971
1972	179	EPN(KC) = EPN(KC) -	PPLL			1972
1973 1974	180 C 181	AALL = DTA * AAL(KC)				1973
1975	182	$ARN(KC) = ARN(KC) - \frac{1}{2}$	AALL			1974 1975
1976	183 C					1976
1977 1978	184 1 185 C	90 CONTINUE				1977
1979	185 0	DO 195 IC = NC1 , NC2				1978 1979
1980	187	KC = IC - NC1 + 1				1980
1981 1982	188 189	HOUM = 1, / RRI Hydv(IC , 1) = RRN(KC				1981
1983	190	HYDV(IC , 2) - URN(KC)) * HDUM			1982 1983
1984	191	HYDV(IC, 3) - VRN(KC) * HDUM			1984
1985 1986	192 193	HYDV(IC, 4) = WRN(KC HYDV(IC, 6) = ARN(KC) * HDUM) * HDUM			1985
1987	194 1	95 CONTINUE) (1.7011			1986 1987
1988	195 C	50 500 to wet wet				1988
1989 1990	1 96 197	DO 200 IC = NC1 , NC2 KC = IC - NC1 + 1				1989 1990
1991	198	HYDV(IC , 8) = (EPN()	(C)5 * HYDV(I	C, 1) *		1990
1992 1993	199 200		IC , 2) * HYDV(I	C , 2) +		1992
1995 1994	200 201	. HYDV(IC , 3) * HYDV(1 IC , 4) * HYDV(1	C , 3) + C , 4)))		1993 1994
1995	202 2	00 CONTINUE		- + * / / /		1995
1996 1997	203 C 204	IF(IEOS . EQ . 1) THEN				1996
1998	205	TLIMIT9				1997 1998
1999	206	ITER = 6				1999
2000 2001	207 208	DO IC = NC1 , NC2 KC = IC - NC1 + 1				2000 2001
2002	2 09 C					2001
2003 2004	210 211	$\frac{NITER - 0}{16}$	5) THEN			2003
2004	211 212 C	IF(HYDV(IC , 6) . LE .	•<) INEN			2004 2005
2006	213	DST = HYDV(IC , 1) * GPE	RCC			2006
2007 2008	214 215	VOL = WMA * (1 DST / F EMEO = HYDV(IC , 8) / HY	SA) / DST / XGA	/ DCAS		2007
2009	216 C	CHEV - HIDAY IC , O J / NI	UT(10 , 1) ~ WMA ,	CADA /		2008 2009
2010	217	IYY = (EMEO - EMEOA(3)				2010
2011 2012	218 219 C	IYY - MAXO(1 , MINO(IYY	, 47))			2011
2013	220	K = IYY + 2				2012 2013
2014	2 21				:	2014
2015	22 2	. + INT(AMAX1(EMEO - EMEO	νA(K) , U.) / DYA(к))	4	2015

Thu Jul	1 14:17:00	0 1993 th ree d.f	SUBROUTINE HYDRMN	page 29
2016 2017	223 224		DA(K + 1) - EMEO-, 0.) / DYA(K))	2016 2017
2018	225 C	IYY - MAXO(1, MINO	J(111,47))	2018
2019	226	K1 = IYY + 2		2019
2020	227	K2 = K1 + 1		2020
2021 2022	2 28 2 29	RI = (EMEU - EMEUA) T = TA(K1) + 100.	N(K1))/(EMEOA(K2)-EMEOA(K1))	2021 2022
2022	230		RT * (CVMA(K2) - CVMA(K1))	2023
2024	231	ERS = 0.		2024
2025	232 C		1.005000	2025
2026 2027	2 33 234	P = RGAS * T / VOL RGAMM1 = CVM	7 GPERCC	2026 2027
2027	234	HYDV(IC, 7) = 1.	/ RGAMM1 + 1	2027
2029	236	HYDV(IC, 5) = P	, , , , , , , , , , , , , , , , , , ,	2029
2030	237 C			2030
2031	2 38 2 39 C	ELSE		2031
2032 2033	2 39 C 2 40	DST - HYDV(IC , 1) * GPERCC	2032 2033
2034	241	VOL = WMX * (1	DST / FSX) / DST / XGX	2034
2035	242	EMEO - HYDV(IC , 8	3) / HYDV(IC , 1) * WMX / RGAS	2035
2035	243 C		NY(2)) / DANCEY : 1	2036
2037 2038	244 245	ITT = (ENEU - ENEU IYY = MAXO(1 , MIN	DX(3))/RANGEX + 1	2037 2038
2039	246 C			2039
2040	247	K = IYY + 2		2040
2041	248	IYY = IYY		2041
2042 2043	2 49 250		D - EMEOX(K), O.) / DYX(K)) DX(K + 1) - EMEO, O.) / DYX(K))	2042 2043
2044	251	IYY = MAXO(1, MINO		2044
2045	2 52 C			2045
2046	253	K1 = IYY + 2		2045
2047 2048	254 255	K2 = K1 + 1 $PT = (FMED - FMED)$	K(K1)) / (EMEOX(K2) - EMEOX(K1))	2047 2048
2049	256	T = TX(K1) + 100.		2049
2050	257		RT * (CVMX(K2) - CVMX(K1))	2050
2051	258	ERS = 0.		2051
2052 2053	2 59 C 2 60 10	CONTINUE		2052 2053
2054	261	P = RGAS * T / VOL	/ GPERCC	2054
2055	262	RGANM1 = CVM		2055
2056	2 63 C		T T . THEFTALL & AN ALFAN &	2055
2057 2058	264 265	X = COVX / VOL / (Z = X * EXP(BETAX)	(T + THETAX) ** ALFAX) *	2057 2058
2059	266	X = 1. + BETAX * X	^)	2059
2060	267	RT = ALFAX * T / (T + THETAX)	2060
2061	268	ERS = ERS + RT + Z	* T	2061 2062
2062 2063	2 69 C 270	IF (ITER .EQ. NITE	FR) GO TO 20	2063
2064	271 C			2064
2065	272	CVM = CVM * XGX + S	SCVX	2065
2066	273 274	* + RT *	Z * (2 RT / ALFAX - RT * X) / CVM , TLIMIT * T)	2066 2067
2067 2068	274 275 C	1 - 1 - WITHT(EKS	A CARLY I FULLY I F	2068
2069	276	NITER = NITER + 1	,	2069
2070	277 C			2070
2071 2072	278 279	RT = 0.01 * T K1 = RT		2071 2072
2072	280	K1 = K1 K1 = MINO (K1, 49)	2073
2074	281	K1 = MAXO (K1, 3		2074
2075	282	K2 = K1 + 1		2075 2076
2076 2077	283 284	RT = RT - K1 $CVM = CVMX(K1) + RT$	Г * (CVMX(К2) – CVMX(К1))	2076
2078	285		+ RT * (EMEOX(K2) - EMEOX(K1))	2078
2079	286	ERS = ERS - EMEO		2079
2080	287 C	CO TO 10		2080 2081
2081 2082	2 88 289 C	GO TO 10		2082
2083	290 20	CONTINUE		2083
2084	291	P = P + (1. + Z)		2084
2085	292	RGAMM1 = (RGAMM1 +		2085 2086
2086 2087	2 93 2 94	X = X * Z / { 1. +	* (2 RT / ALFAX - RT * X)) / (1. + Z)	2083
2088	295	RGAMM1 = RGAMM1 / (((1 RT * X) ** 2 + X * RGAMM1)	2088
2089	296	ERS = ERS / EMEO		2089

Thu Jul	1 14:	17:00 1	1993 threed.f SUBROUTINE HYDRMN	page	30
2090	297		HYDV(IC , 7) = 1. / RGAMM1 + 1.	, -3-	
2091	298		HYDV(IC, 5) = P		2090 2091
2092 2093	299		END IF		2092
2095	300 301	С	END DO		2093 2094
2095	302		ELSE		2094
2096	303	C			2096
2097 2098	304 305		DO IC = NC1 , NC2 HYDV(IC , 5) = HYDV(IC , 8) * (HYDV(IC , 7) - 1.)		2097
2099	306				2098 2099
2100	307	~	END IF		2100
2101 2102	308 309	C	NC1 - NC2 + 1		2101
2103	310		NC2 = NC2 + NOFVEC(INC + 1)		2102 2103
2104	311	110	CONTINUE		2104
2105 2106	312 313	C	IF(NPRTCL . NE . 0) CALL KYDRFL		2105 2106
2107	314		IJKNUM = IJKNUM + 1		2100
2108 2109	315	140	WRITE(10,*) TT,(PR(KKJJ),KKJJ=1,NPRTCL)		2108
2110	316 317	140 C	CONTINUE		2109 2110
2111	318		PMAX = -10000000.		2111
2112 2113	319 320		DO 415 IC = 1 , NC IV1 = $JC(1 , IC)$		2112
2115	320		IV1 = JC(1, IC) IV2 = JC(2, IC)		2113 2114
2115	322		IV3 = JC(3, IC)		2115
2116 2117	323 324		IV4 = JC(4, IC) HNUMM = HYDV(IC, 5)		2116
2118	325		HNUMM = HYDV(IC,5) HNUMM = XC(4,IC)		2117 2118
2119	326		HNUM($IV1, 5$) = HNUM($IV1, 5$) + HNUMM * HNUMN		2119
2120 2121	327 328		HNUM($IV1$, 1) = HNUM($IV1$, 1) + HNUMN HNUM($IV2$, 5) = HNUM($IV2$, 5) + HNUMM + HNUMN		2120
2122	329		HNUM(IV2 , 5) - HNUM(IV2 , 5) + HNUMM * HNUMN HNUM(IV2 , 1) - HNUM(IV2 , 1) + HNUMN		2121 2122
2123	330		HNUM(IV3 , 5) = HNUM(IV3 , 5) + HNUMM * HNUMN		2123
2124 2125	3 31 3 32		HNUM(IV3 , 1) = HNUM(IV3 , 1) + HNUMN HNUM(IV4 , 5) = HNUM(IV4 , 5) + HNUMM * HNUMN		2124
2126	333		HNUM(1V4 , 5) = HNUM(IV4 , 5) + HNUMN * HNUMN HNUM(IV4 , 1) = HNUM(IV4 , 1) + HNUMN		2125 2126
2127	334	415	CONTINUE		2127
2128 2129	335 336		DO IV = 1 , NV HNUM(IV , 5) = HNUM(IV , 5) / HNUM(IV , 1)		2128 2129
2130	337		END DO		2129
2131 2132	338		DO IV = 1, NV TECHNING THE EXAMPLE THE EXAMPLE		2131
2132	3 39 340		IF(HNUM(IV , 5) .GT. PMAX) PMAX - HNUM(IV , 5) END DO		2132 2133
2134	341		PRINT * , PMAX		2134
2135	342	С	1949		2135
2136 2137	343 344		ISNS = 0 DO 300 IS = 1 , NS		2136 2137
2138	345		IF(JS(9,IS).EQ.6.AND.XS(2,IS).LT.1.9649) THEN		2138
2139 2140	346 347		ISNS-ISNS+1 ISURF(ISNS)-IS		2139
2141	348		END 1F		2140 2141
2142	349	300	CONTINUE		2142
2143 2144	350 351	С	print*,ISNS		2143 2144
2145	352	С	STEVE FORMAT		2144
2146 2147	35 3 354	C	DO 312 IV - 1 , NV		2146
2148	355		WRITE(17,1001) IV.(XV(KK,IV),KK=1,3)		2147 2148
2149	356	1001	FORMAT('n,',15,',',2(F10.5,','),F10.5)		2149
2150 2151	357 358	312 C	CONTINUE		2150
2152	359	•	DO 322 IS = 1 , ISNS		2151 2152
2153	360		IK-ISURF(IS)		2153
2154 2155	361 362	1002	WRITE(18,1002) IS,(JS(KK,IK),KK=1,3),JS(3,IK) FORMAT('en,',4(I10,'.'),I10)		2154 2155
2156	363	322	CONTINUE		2156
2157	364	C			2157
2158 2159	365 366	1005	WRITE(19,1005) TT FORMAT('time,',E13.5)		2158 2159
2160	367		ITWO = 1		2160
2161 2162	368 369		IZERO = 0 DO 342 IS = 1 , ISNS		2161
2163	370		IK=ISURF(IS)		2162 2163
			**		

1

Thu Jul	1 14:	17:00 19	193 threed.f SUBROUTINE HYDRMN	page	31
2164 2165	371 372		WRITE(19,1003) IS, ITWO. IZERO, HNUM(JS(1, IK), 5), HNUM(JS(2, IK), 5),		2164
2165	373	1003	HNUM(JS(3,IK),5),HNUM(JS(3,IK),5) FORMAT('sfe.',2(15,','),'pres.',15,',',3(E12.5,','),E12.5)		2165 2166
2167	374	342	CONTINUE		2160
2168	375	C			2168
2169 2170	37 6 377	10101	WRITE(14,10101) 3*ISNS,ISNS,NDUMMY1,NDUMMY3,NDUMMY3 FORMAT(518)		2169
2171	378	10102	FORMAT(18, 3E20.7)		2170 2171
2172	379	10103	FORMAT(218, A6, 318)		2172
2173 2174	380 381	10104	FORMAT(18,E20.7) CALL RYDRFL		2173
2175	382		KKVV = 0		2174 2175
2176	383		DO 310 $IV = 1$, ISNS		2175
2177	384		IK-ISURF(IV)		2177
2178 2179	385 386		IV1 = JS(1,IK) IV2 = JS(2,IK)		2178
2180	387		IV3 = JS(3, IK)		2179 2180
2181	388		XXV = XV(1, IVI)		2181
2182 2183	389 390		YYV = XV(2,IV1) ZZV = XV(3,IV1)		2182
2185	391		XNN = -XN(IK)		2183 2184
2185	392		YNN = -YN(IK)		2185
2186	393		ZNN = -ZN(IK)		2186
2187 2188	394 395		XXX = XXV + XNN * .001 YYY = YYV + YNN * .001		2187
2189	396		ZZZ = ZZV + ZNN * .001		2188 2189
2190	397		KKVV - KKVV + 1		2190
2191 2192	398 399		WRITE(14,10102) KKVV,XXX,YYY,ZZZ XXV = XV(1,IV2)		2191
2193	400		YYV = XV(2, IV2)		2192 2193
2194	401		ZZV = XV(3, IV2)		2194
2195 2196	402 403		XXX = XXV + XNN * .001 YYY = YYV + YNN * .001		2195
2197	404		ZZZ = ZZV + ZNN * .001		21 96 2197
2198	405		KKVV - KKVV + 1		2198
21 99 2 200	406 407		WRITE(14,10102) KKVV,XXX.YYY,ZZZ XXV - XV(1,IV3)		2199
2201	408		XXV = XV(2, 1V3) YYV = XV(2, 1V3)		2200 2201
2202	409		ZZV = XV(3, IV3)		2202
2203 2204	410 411		XXX = XXV + XNN * .001 YYY = YYV + YNN * .001		2203
2205	412		ZZZ = ZZV + ZNN * .001		2204 2205
2206	413		KKVV - KKVV + 1		2205
2207 2208	414 415	310	WRITE(14,10102) KKVV,XXX,YYY,ZZZ		2207
2209	415	210	CONTINUE KKVV = 0		2208 2209
2210	417		DO 320 IS = 1, ISNS		2210
2211 2212	418 419		IK-ISURF(IS)		2211
2212	420		WRITE(14,10103) IS,IS,CTRI,KKVV+1,KKVV+2,KKVV+3 KKVV = KKVV + 3		2212 2213
2214	421	320	CONTINUE		2214
2215 2216	422 423		WRITE(14, 10101) VDATA		2215
2210	424		WRITE(14,*) VLABEL KKVV = 0		2216 2217
2218	425		DO 430 IV = 1 , ISNS		2218
2219 2220	426 427		IK=ISURF(IV)		2219
2221	428		PRR = PR(IK) WRITE(14,10104) KKVV+1,PRR		2220 2221
2222	429		WRITE(14,10104) KKVV+2,PRR		2222
2223 2224	430 431		WRITE(14,10104) KKVV+3,PRR KKVV = KKVV + 3		2223
2225	432	430	CONTINUE		2224 2225
2226	433		ISNS = 0		2226
2227 2228	434 435		DO IS = 1, NS 15(15(0, 15), 50, 6) THEN		2227
2229	435		IF(JS(9,15).EQ.6) THEN XXS = XS(1,1S)		2228 2229
2230	437		YYS = XS(2, 1S)		2230
2231 2232	438 439		ZZS = XS(3, IS)		2231
2233	439		ISNS-ISNS+1 ISURF(ISNS)-IS		2232 2233
2234	441		END IF		2234
2235	442		END DO		2235
2236 2237	443 444		print*,ISNS WRITE(15,10101) 3*ISNS,ISNS,NDUMMY1,NDUMMY3,NDUMMY3		2236 2237
					~~~

Thu Jul	1 14:	17:00	1993 threed.f	SUBROUTINE HYDRMN page	32
2238	445		KKVV = 0		2220
2239	446		DO 410 IV = 1 , ISNS		2238 2239
2240	447		IK=ISURF(IV)		2240
2241	448		IV1 = JS(1, IK)		2241
2242	449		IV2 = JS(2, IK)		2242
2243 2244	450 451		IV3 = JS(3,IK) XNN = -XN(IK)		2243
2245	452		YNN = -YN(IK)		2244 2245
2246	453		ZNN = -ZN(IK)		2245
2247	454		XXV = XV(1, IV1)		2247
2248	455		YYV = XV(2, IV1)		2248
2249 2250	456 457		ZZV = XV(3, IV1)		2249
2251	457		XXX = XXV + XNN * YYY = YYV + YNN *		2250
2252	459		ZZZ = ZZV + ZNN *		2251 2252
2253	460		KKVV - KKVV + 1		2253
2254	461		WRITE(15,10102) K	KVV,XXX,YYY,ZZZ	2254
2255	462		XXV = XV(1, IV2)		2255
2256	463		YYV = XV(2, IV2)		2256
2257 2258	464 465		ZZV = XV(3,IV2) XXX = XXV + XNN *		2257
2259	466		YYY = YYV + YNN *		2258 2259
2260	467		ZZZ = ZZV + ZNN *		2260
2261	468		$\mathbf{K}\mathbf{K}\mathbf{V}\mathbf{V} = \mathbf{K}\mathbf{K}\mathbf{V}\mathbf{V} + 1$		2261
2262	469		WRITE(15,10102) K	KVV,XXX,YYY,ZZZ	2262
2263 2264	470		XXV = XV(1, IV3)		2263
2265	47 <u>1</u> 472		YYV = XV(2, IV3) ZZV = XV(3, IV3)		2264
2266	473		XXX = XXV + XNN *		2265 2266
2267	474		YYY = YYV + YNN *		2267
2268	475		ZZZ = ZZV + ZNN *		2268
2269	476		KKVV = KKVV + 1		2269
2270	477	410	WRITE(15,10102) K		2270
2271 2272	478 479	410	CONTINUE KKVV = 0		2271
2273	480		DO 420 IS = 1 , ISNS		2272 2273
2274	481		IK-ISURF(IS)		2274
2275	482				2275
2276	483		$\mathbf{K}\mathbf{K}\mathbf{V}\mathbf{V} = \mathbf{K}\mathbf{K}\mathbf{V}\mathbf{V} + 3$		2276
2277	484 ARE	420			2277
2278 2279	485 486		WRITE(15,10101) VDAT WRITE(15,*) VLABEL		2278 2279
2280	487		$\mathbf{K}\mathbf{K}\mathbf{V}\mathbf{V} = 0$		2280
2281	488		DO 330 IV = 1 , ISNS		2281
2282	489		IK-ISURF(IV)		2282
2283	490		PRR = PR(IK)		2283
2284 2285	491 492		WRITE(15,10104) K		2284
2286	492		WRITE(15,10104) KI WRITE(15,10104) KI		2285 2286
2287	494		KKVV = KKVV + 3		2287
2288	495	330	CONTINUE		2288
2289	496	ç		:	2289
2290	497 498	C C====			2290
2291 2292	490	C	<b>▼</b> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		2291
2293	500	č			2292 2293
2294	501	С	I OUTPUT FILE I	OR RESTARTS I	2294
2295	502	C	I		2295
2296	503	С			2296
2297 2298	504 505		IF( JT . EQ . 1 ) TH REWIND 8		2297
2299	506		WRITE(9) NV,NE,NS,NC,		2298 2299
2300	507		WRITE(9) ((XV(IK,IV))	IK=1,3), IV=1, NV)	2300
2301	508		WRITE(9) ((JE(KK,IE),	,KK=1,2),IE=1,NE)	2301
2302	509				2302
2303 2304	510 511				2303
2304	511 512		WRITE(9) ((XYZMDL(KI,		2304 2305
2306	513				2305
2307	514		WRITE(9) ((RGRAD(IC.)		2307
2308	515		. WGRAD(IC,)	<pre>(I),PGRAD(IC,KI),KI=1,3),IC=1,NC)</pre>	2308
2309	516		WRITE(9) SAREVG,		2309
2310 2311	517 518		NVELE, NKEME,		2310 2311
				.,, 145,0414,014,414,61	

C

0

•

ŀ

Thu Jul	1 14:	17:00	1993 threed.f SUBROUTINE HYDRMN	page	33
2312	519		WRITE(9) NPRTCL		2312
2313 2314	52 <b>0</b> 521		IF(NPRTCL.GT.O) WRITE(9) (IJKPRT(IK).IK=1.NPRTCL)		2313
2315	522		END IF		2314 2315
2316	523	~	WRITE(9) ((HYDV(IC,IK),IK=1,8),IC=1,NC)		2316
2317 2318	524 52 <b>5</b>	С	REWIND 88		2317 2318
2319	526		WRITE(88) NV, NE, NS, NC, NTIME		2319
2320 2321	527 528		WRITE(88) ((XV(IK,IV).IK=1,3),IV=1.NV) WRITE(88) ((JE(KK,IE).KK=1.2),IE=1.NE)		2 <b>320</b> 2 <b>321</b>
2322	529		WRITE(88) ((JS(KK,IS),KK=1.9),(XS(KI,IS),KI=1.5),		2322
2323 2324	530		. XN(IS), YN(IS), ZN(IS), XP(IS), YP(IS), ZP(IS), XT(IS), YT(IS), ZT(IS), IS=1, NS)		2323
2325	531 532		. XT(IS),YT(IS),ZT(IS),IS=1,NS) WRITE(88) ((XYZMDL(KI,IS),KI=1,4),IS=1,NS)		2324 2325
2 <b>326</b>	533		WRITE(88) ((JC(KK,IC),KK=1,8),(XC(KI,IC),KI=1,4),IC=1,NC)		2326
2327 2328	534 535		<pre>WRITE(88) ((RGRAD(IC.KI),UGRAD(IC.KI),VGRAD(IC.KI), WGRAD(IC.KI),PGRAD(IC.KI),KI=1,3),IC=1,NC)</pre>		2327 2328
2329	536		WRITE(88) SAREVG,		2329
2330 2331	537 538		NVECE, NREME, NVECV, NREMV, NVECS, NREMS, NVECC, NREMC		2330
2332	539		WRITE(88) RIN,PIN,RINL,PINL,UVIN,UIN,VIN,WIN,TT WRITE(88) NPRTCL		2331 2332
2333	540		IF(NPRTCL.GT.O)		2333
2334 2335	541 542		. WRITE(88) (IJKPRT(IK),IK=1,NPRTCL) WRITE(88) ((HYDV(IC,IK),IK=1,8),IC=1,NC)		2334 2335
2336	543	С			2336
2337 2338	544 545	120	D CONTINUE Rewind 10		2337 2338
2339	546		REWIND 26		2339
2340	547		WRITE(26,*) IJKNUM		2340
2341 2342	548 549		DO KKJ = 1 , IJKNUM READ (10,*) RO,(RRN(IK),IK=1,NPRTCL)		2341 2342
2343	5 <b>50</b>		WRITE (26,*) RO, (RRN(IK), IK=1, NPRTCL)		2343
2344 2345	551 552	С	END DO		2344 2345
2346	553	•	RETURN		2346
					2340
2347	554 555	r	END		2347
2348	555	C	END		
2348 Thu Jul			END 1993 threed.f SUBROUTINE GEOMTR		2347 2348
2348 Thu Jul 2349	555 1 14:1 1	17:00	END		2347 2348 2349
2348 Thu Jul 2349 2350 2351	555 1 14:1 1 2 3	L7:00 C	END 1993 threed.f SUBROUTINE GEOMTR		2347 2348
2348 Thu Jul 2349 2350 2351 2352	555 1 14:3 1 2 3 4	C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR I		2347 2348 2349 2350 2351 2352
2348 Thu Jul 2349 2350 2351	555 1 14:1 1 2 3	L7:00 C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR		2347 2348 2350 2351 2352 2353 2354
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355	555 1 14:3 1 2 3 4 5 6 7	C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I		2347 2348 2350 2351 2352 2353 2354 2355
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2355 2356	555 1 14:3 1 2 3 4 5 6 7 8	C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I I		2347 2348 2350 2350 2351 2352 2353 2354 2355 2356
2348 Thu Jul 2349 2350 2351 2352 2354 2355 2356 2355 2356 2357 2358	555 1 14:3 1 2 3 4 5 6 7 8 9 10	C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dmsh00.h'		2347 2348 2350 2351 2352 2353 2354 2355 2356 2356 2357 2358
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2356 2356 2357 2358 2359	555 1 14:3 1 2 3 4 5 6 7 8 9 10 11	C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I I include 'dmsh00.h' include 'dhydm0.h' include 'dphsm0.h'		2347 2348 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
2348 Thu Jul 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13	17:00 C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dhydm0.h' include 'dhysm0.h' include 'dmsh0.h'		2347 2348 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
2348 Thu Jul 2350 2351 2352 2353 2354 2355 2356 2357 2358 2357 2358 2359 2360 2361 2362	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14	17:00 C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I I include 'dmsh00.h' include 'dhydm0.h' include 'dphsm0.h'		2347 2348 2350 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
2348 Thu Jul 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13	17:00 C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dhydm0.h' include 'dhysm0.h' include 'dmsh0.h'		2347 2348 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
2348 Thu Jul 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	17:00 C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh0.h' include 'dmsh0.h'		2347 2348 2350 2351 2352 2353 2354 2355 2355 2355 2355 2355
2348 Thu Jul 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	17:00 C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dmsh00.h' include 'dmsm0.h' include 'dmsm0.h' includ		2347 2348 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2361 2362 2363 2364
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	17:00 C C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dhydm0.h' include		2347 2348 2350 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2368 2369	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	17:00 C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dmsh00.h' include 'dmsm0.h' include 'dmsm0.h' includ		2347 2348 2350 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2365 2365 2365 2366 2367 2368 2369
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368 2369 2370 2371	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	17:00 C C C C C C C C C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh00.h' include 'dmsh0.h' include 'dmsh0.h' inc		2347 2348 2350 2350 2351 2352 2353 2354 2355 2355 2355 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2369 2370 2371
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2364 2365 2365 2364 2365 2364 2365 2364 2365 2364 2365 2367 2365 2367 2363 2364 2365 2364 2365 2367 2365 2367 2363 2364 2365 2367 2365 2367 2363 2364 2365 2367 2367 2367 2363 2364 2365 2367 2367 2367 2367 2367 2363 2364 2367 2367 2367 2367 2367 2367 2367 2367	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	17:00 C C C C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include 'dmsh00.h' include 'dmsh0.h' include 'dmsh0.h' include 'dmsh0.h' include 'dmsh0.h' DO 110 IC = 1 , NC SVOLM(IC) = 1. / XC(4, IC) DO 120 IS = 1 , NS		2347 2348 2350 2351 2352 2353 2354 2355 2355 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2363 2364 2365 2366 2367 2368 2366 2367 2368 2369 2370 2371 2372
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2356 2356 2357 2358 2359 2360 2361 2362 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2360 2371 2369 2370 2371 2372 2373 2374 2375 2356 2357 2358 2359 2350 2357 2358 2359 2360 2357 2358 2359 2360 2357 2358 2359 2360 2361 2357 2358 2359 2360 2361 2369 2360 2361 2369 2360 2361 2369 2360 2361 2369 2360 2361 2369 2360 2361 2369 2360 2361 2369 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2361 2362 2363 2364 2365 2365 2366 2370 2368 2369 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2369 2360 2361 2362 2363 2364 2365 2369 2370 2370 2371 2372 2373	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	17:00 C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include		2347 2348 2350 2351 2352 2353 2354 2355 2356 2357 2358 2357 2358 2359 2360 2361 2362 2363 2364 2365 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2369 2361 2362 2363 2364 2365 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2367 2368 2369 2370 2371 2370 2371 2373 2370 2371 2375 2376 2370 2371 2375 2376 2370 2371 2375 2376 2370 2370 2371 2375 2375 2376 2370 2375 2375 2375 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 2376 237	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	17:00 C C C C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include		2347 2348 2350 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2365 2366 2365 2366 2365 2366 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2365 2366 2365 2366 2367 2368 2369 2370 2371 2372 2373 2373 2374 2375	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	17:00 C C C C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include		2347 2348 2350 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2370 2371 2372 2371 2372 2377 2378	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	17:00 C C C C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include		2347 2348 2350 2351 2352 2353 2354 2355 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2369 2370 2371 2372 2372 2377 2378 2378 2379	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	17:00 C C C C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include		2347 2348 2350 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
2348 Thu Jul 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367 2368 2369 2370 2371 2372 2371 2372 2377 2378	555 1 14:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	17:00 C C C C C C C C C C C C	END 1993 threed.f SUBROUTINE GEOMTR SUBROUTINE GEOMTR GEOMTR COMPUTE THE DUAL MESH AFTER INITIALIZATION THE GRID I include 'dmsh00.h' include		2347 2348 2350 2350 2351 2352 2354 2355 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2363 2364 2365 2366 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

ı,

Thu Jul	1 14:1	7:00	1993 thr	eed.f	5	UBROUTINE	GEOMTR		pa <b>ge</b>	34
2383 2384	35 36		B = YN(IS) C = ZN(IS)							2383 2384
2385 2386	37 38	С	`	* X1 + B * Y1 +	C * 71 )					2385 2386
2387 2388	39 40	С	XCL = XC(		• •• •					2387 2362
2389 2390	41 42		YCL = XC( ZCL = XC(	2 , ICL )						2389
2391 2392	43 44	C		CL + 8 * YCL + (	C * ZCL +	D				2391 2392
2393 2394	45 46	С	IATRB = JS			-				2393 2394
2395 2396	47 48	с		. EQ. O ) THEN						2395 2396
2397 2398	49 50	-	XCR = XC( YLR = XC(	1 , ICR ) 2 , ICR )						2397 2398
2399 2400	51 52	с	ZCR = XC(							2399 2400
2401 2402	53 54	•	XX = XCR - YY = YCR -							2401 2402
2403 2404	55 56	С	ZZ = ZCR -							2403 2404
2405 2406	57 58	c	DOD = A *	XX + B * YY + C	* ZZ					2405
2407 2408	59 60	u u	XYZ = -00	/ 000 , IS ) = XYZ						2407 2408
2409 2410	61 62		XYZMDL(1							2409 2410
2411 2412	63 64		XYZMOL (3	, IS ) = ZCL + 2 ) = SQRT( XX *	XYZ * ZZ	VV + 77 1	* 77 \			2411 2412
2413 2414	65 65	С	ELSE	) - 3911( 11	AA - []	11 7 22	~~ )			2413 2414
2415 2416	67 68	С	XYZ 00							2415 2416
2417 2418	69 70		XYZMDL( 1	, IS ) = XCL + 2 , IS ) = YCL + 2						2417 2418
2419 2420	71 72		XYZMDL( 3	(IS) = (CL + 2) (IS) = ZCL + 2 (IS) = ABS(XYZ)	XYZ * C					2419 2420
2421 2422	73 74	с	XYZMDL(4	(15) = 1.						2421 2422
2423 2424	75 76	c	END IF							2423 2424
2425 2426	77 77 78	ັ1 <b>20</b> ເ	CONTINUE							2425
2427 2428	79 80	Ŀ	RETURN							2427 2428
2429	81	С	END	TINE UPDATE						2429 2430
2430 2431 2432	82 83 84	с С	SUDKUU					Ţ		2431 2432
2433 2434	85 86	C C		MPUTE THE DUAL I				Ī		2433 2434
2435 2436	87 88	с с с	UPDATE CO					I		2435 2436
2430 2437 2438	89 90	C	include	'dmsh00.h'		******		1		2437 2438
2430 2439 2440	91 92		include	'dhydm0.h' 'dphsm0.h'						2439 2440
2441	93	r	include include	'dmtr10.h'						2441 2442
2442 2443 2444	94 95 96	C C C		ERTEX INFORMATI	01					2443 2444
2445 2446	97 98	č	-	6,*) NV.NE.NC.N						2445
2440 2447 2448	99 100		DO 1110	IK = 1 , NV 6,*) IJ,XV(1,IK)		XV/3 141				2447
2440 2449 2450	101 102	•	XXX =XV	(1.1K) + 34.5 (2.1K) - 65.75	,,,,,(2,1N)	*v*(3*1V)				2449 2450
2450 2451 2452	102 103 104		ZZZ =XV	(2,1K) = 03.75 (3,1K) + 11.5 )=XXX*.0254						2451 2452
2452 2453 2454	104 105 106		XV(2.IK	)=YYY*.0254 )=YYY*.0254 )=ZZZ*.0254						2453 2454
2455	100 107 108	1110		Ē						2455 2456
2456	100		rnini "	, ITV						C 7JU

D

0

Thu Jul	1 14:1	7:00 19	93 threed.f	SUBROUTINE GEOMTR	page	35
2457 2458	109 110	C C	READ IN EDGE INFORMA	TION ( EDGES OF TRIANGLES).		2457 2458
2459	111	Ċ		· ·		2459
2460	112		DO 1120 IK = 1 , N READ (16,*) IJ,JE(			2460 2461
2461 2462	113 114	1120	CONTINUE	1,10,00(4,10)		2462
2463	115		PRINT * , NE			2463
2464	116	C	READ IN CELL (TETRAH			2464 2465
2465 2466	117 118	C C	KEAD IN LELL (ICIKAN	IDRAL) IN ORBATION.		2466
2467	119	č	CELL INFORMATION, FO	R EACH CELL FOUR VERTICES		2467
2468	120	С	00 1130 IV - 1 N	r		2468 2469
2469 2470	121 122		DO 1130 IK = 1 , N READ (16.*) IJ.JC(	C 1,IK),JC(?,IK),JC(3,IK),JC(4,IK)		2470
2471	123	1130	CONTINUE			2471
2472	124	C	DO 1200 IK = 1 , N	r		2472 2473
2473 2474	125 126		IVI = JC(1, IK)			2474
2475	127		IV2 = JC(2, IK)			2475
2476	128		IV3 = JC(3, IK)			2476 2477
2477 2478	129 130	С	IV4 = JC(4, IK)			2478
2479	131	С	SIDE INFORMATION, FO	R EACH CELL CENTROID OF CELL		2479
2480	132	С		(V(1, IV1) + XV(1, IV2) +		2480 2481
2481 2482	133 134		X	(V(1, IV3) + XV(1, IV4)) * .25		2482
2483	135		XC(2, IK) = (X	(V(2, IV1) + XV(2, IV2) +		2483
2484	136		. XC/З ТК) – (Х	(v(2, IV3) + XV(2, IV4)) * .25 (v(3, IV1) + XV(3, IV2) +		2484 2485
2485 2 <b>486</b>	137 138		, , , , , , , , , , , , , , , , , , ,	(V(3, IV3) + XV(3, IV4)) * .25		2486
2487	139	C				2487
2488	140	C C	SIDE INFORMATION, FO	DR EACH CELL VOLUME OF CELL		2488 2489
2489 2490	141 142	L	XPIJ = XV(1), IV2	2) - XV(1, IV1)		2490
2491	143		YPIJ = XV(2, IV2)	2) + XV(2, IV1)		2491
2492	144	c	ZPIJ = XV(3, IV2)	2 ) - XV(3, IV1)		2492 2493
2 <b>49</b> 3 2494	145 146	C	XPIK = XV( 1 . IVS	3) - XV(1, IV1)		2494
2495	147		YPIK = XV(2, IV3)	3) - XV(2, IV1)		2495
2496	148 149	С	ZPIK = XV( 3 , IV)	3) - XV(3, IV1)		2 <b>496</b> 2 <b>49</b> 7
2497 2498	149	L	XNIK = YPIJ * ZPI	K – ZPIJ * Y <b>PIK</b>		2498
2499	151		YNIK = ZPIJ * XPI	K – XPIJ * ZPIK		2 <b>499</b> 2500
2500 2501	152 153	С	ZNIK = XPIJ * YPI	K - TPIJ * XPIK		2501
2502	155	U.	XPIJ = XV(1, 1V)	4) - XV(1, IV1)		2502
2503	155		YPIJ = XV(2, IV)	4) - XV(2), IV(1)		2503 2504
2504 2505	156 157	С	ZPIJ = XV(3, IV)	4 ) - XV( 3 , IV1 )		2505
2506	158	U	VOL = ( XNIK * XP	IJ + YNIK * YPIJ +		2506
2507	159			ZNIK * ZPIJ ) / 5.		2507 2508
2508 2509	160 161		XC( 4 , IK ) = VO IF( VOL . LT . 0.	) PRINT *, IK, VOL		2509
2510	162	1200	CONTINUE			2510 2511
2511	163 164	r	PRINT * , NC			2512
2512 2513	164	C C	READ IN SIDE (TRIAN	GLE) INFORMATION.		2513
2514	166	С				2514 2515
2515 2516	167 168	C C	SIDE INFORMATION, F	OR EACH FACE THREE VERTICES		2516
2510	169	C	DO 1150 IK = 1 ,			2517
2518	170			(1,IK),JS(2,IK),JS(3,IK)		2518 2519
2519 2520	171 172	1150	CONTINUE PRINT * , NS,NC			2520
2521	173	С				2521 2522
2522	174	C	SIDE INFORMATION, F	OR EACH FACE THREE EDGES		2522
2523 2524	175 176	С	00 1150 IK = 1 ,	NS		2524
2525	177		P'AP (5,*) IJ.JS	(4,IK),JS(5,IK),JS(6,IK)		2525 2526
2526	178 179	1160	CONIINUE PRINT * , NS.NC.N	v		2527
2527 2528	1/9	с				2528
2529	181	Ç	CELL INFORMATION, F	OR EACH CELL FOUR EDGES		2529 2530
2530	182	С				2339

Thu Jul	1 14:	17:00	1993 threed.f	SUBROUTINE GEOMTR	page	36
2531	183		DO 1140 IK = 1 , NC			2531
2532	184		READ (16,*) IJ, JC5, IDIR			2532
2533 2534	185 186		JC(5,IK) = IABS( JC5 )	3, JC8, IDIR4		2533
2535	187		JC(6, IK) = IABS(JC6)			2534 2535
2536	188		JC(7, IK) = IABS(JC7)			2536
2537 2538	189 190	1140	JC(8,IK) = IABS( JC8 ) CONTINUE			2537
2539	191	1140	PRINT * , NS,NC,NV,NE			2538 25 <b>39</b>
2540	192	Ç				2540
2541 2542	193 194	C C	SIDE INFORMATION, FOR EACH	H FACE LEFT AND RIGHT TETREHEDRA		2541
2543	195	Ŭ	DO 1170 IK = 1 , NS			2542 2543
2544 2545	196 197		READ (16,*) IJ, JS(7, IK)	,JS(8,IK)		2544
2545	198	1170	JS(9,IK)=0 CONTINUE			2545 2546
2547	199		PRINT * , NC,NV,NE			2540
2548 2549	200 201	C C	SIDE INFORMATION, FOR EACH	L FACE DOUNDARY CONDITION		2548
2550	202	č	SIDE INFORMATION, FOR EACH	FACE DOUNDART CUNUITION		2549 2550
2551	203	1180	CONTINUE			2551
2552 2553	204 205		READ (16.*,END-1210) IJ, GO TO 1180	,IDUMY,JS(9,IJ)		2552
2554	206	1210	CONTINUE			2553 2554
2555 2556	207	~	PRINT * , NV,NE,NS,NC			2555
2550	208 209	С	DO 1190 IK = 1 , NS			2556 2557
2558	210		IVI = JS( 1 , IK )			2558
2559 2560	211 212		IV2 = JS( 2 , IK ) IV3 = JS( 3 , IK )			2559
2561	213	С	1×5 = 53( 5 , 1k )			2560 2561
2562	214	ç	SIDE INFORMATION, FOR EACH	FACE TANGENTIAL VECTOR		2562
2563 2564	215 216	C	XP( IK ) - XV( 1 , IV2 )	- XV( 1 IVI )		2563 2564
2565	217		YP(IK) = XV(2, IV2)	- XV(2, 1V1)		2565
2566 2567	218 219		ZP(IK) = XV(3, IV2)	- XV(3, IV1)		2566
2568	220		XPOUMY = XV( 1 , IV3 ) - YPOUMY = XV( 2 , IV3 ) -	XV(1, 1V1)		2567 2568
2569	221	-	ZPDUMY = XV( 3 , 1V3 ) -	XV( 3 , IVI )		2569
2570 2571	2 <b>22</b> 2 <b>23</b>	C C	SIDE INFORMATION, FOR EACH	FACE NODMAL HATT VECTOD		2570 2571
2572	224	č				2572
2573 2574	2 <b>25</b> 2 <b>26</b>		XN(IK) - YP(IK) * ZP YN(IK) - ZP(IK) * XP	DUMY - ZP(IK) * YPDUMY		2573
2575	227		ZN(IK) = XP(IK) + YP	DUMY - YP(IK) * XPDUMY		2574 2575
2576	228	C				2576
2577 2578	229 230	C C	SIDE INFORMATION, FOR EACH	FACE TANGENTIAL VECTOR		2577 2578
2579	231		XT( IK ) = - YP( IK ) *	ZN( IK ) + ZP( IK ) * YN( IK )		2579
2580 2581	232 233		YI(IK) = -ZP(IK) + ZI(IK) +	XN( 1K ) + XP( 1K ) * ZN( 1K ) YN( 1K ) + YP( 1K ) * XN( 1K )		2580
2582	234	С	L(1) = -N(1)	(10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) + (10) +		2581 2582
2583 2584	235 236			YN(IK)*YN(IK) + ZN(IK)*ZN(IK)		2583
2585	237		IF(XYZDUM.EG.O.) PRINT * XYZDUM = 1. / SQRT( XYZD			2584 2585
2586	238	č		,		2586
2587 2588	239 240	C C	SIDE INFORMATION, FOR EACH	FACE AREA OF FACE		2587 2588
2589	241		XS( 4 , IK ) = .5 / XYZD	UM		2589
2590 2591	242 243	C C	SIDE INFORMATION, FOR EACH	SACE CENTROID OF FACE		2590
2592	244	č	SIDE INFORMATION, FOR EACH	TALE CENTRUID OF FACE		2591 2592
2593 2594	245		XS(1, IK) = (XV(1, VV(1)))			2593
2595	2 <b>46</b> 247			IV3))/3. IV1)+XV(2 IV2)+		2 <b>594</b> 2595
2 <b>596</b>	248		. XV(2,	1V3))/3.		2596
2597 2598	249 250		XS(3,1K) = (XV(3, XV(3,	IV1) + XV(3, IV2) - IV3))/3.		2597 2598
2599	251		XN( IK ) = XN( IK ) * XY	ZDUM		2599
2600 2601	252 253		YN( IK ) - YN( IK ) * XY ZN( IK ) * ZN( IK ) * XY			2600
2602	254			ZDOM YP(IK)*YP(IK) + ZP(IK)*ZP(IK)		2601 2602
2603	255		XYZDUM = 1. / SORT( XYZD	UM )		2603
2604	2 <b>56</b>		XP( IK) = XP( IK ) * XYZI	JUM		2604

Thu Jul	1 14:	:17:00	1993 th <del>reed</del> .f	SUBROUTINE GEOMTR	page	37
2605	257		YP( 1K) = YP( 1K ) *	* XYZDUM		2605
2606	258		ZP(IK) = ZP(IK)	* XYZDUM		2606
2607 2608	259 260		XYZDUM = XI(IK)*XT()	(K) + YT(IK)*YT(IK) + ZT(IK)*ZT(IK)		2607
2609	260		XYZCUM = 1. / SQRT( XT( IK) = XT( IK ) *	入1210円) * YY7D1M		2608
2510	262		YT(1K) = YT(1K) *			2609
2611	263		ZT( IK) = ZT( IK ) *			2610 2611
2612	264	1190	CONTINUE			2612
2613	265	~	PRINT * , NS			2613
2614 2615	266 267	C	NUECH _ MU / 100			2614
2616	268		NVECV = NV / 128 NREMV = NV - NVECV * 12	8		2615
2617	269		NVECE - NE / 128			2616 2617
2618	270		NREME - NE - NVECE * 12	8		2618
2619	271		NVECS = NS / 128	_		2619
2620 2621	272 273		<b>NREMS =</b> NS - NVECS $*$ 12	8		2620
2622	274		NVECC = NC / 128 NREMC = NC - NVECC * 12	8		2621
2623	275	С		6		2622 2623
2624	276		DO 125 INV = 1 , NVECV			2624
2625	277		NOFVEV( INV ) = $128$			2625
2626 2627	278 279	125	CONTINUE			2626
2628	280		NVEEV - NVECV IF( NREMV . GT . 0 ) TH	CN .		2627
2629	281		NVEEV - NVECV + 1			2628 2629
2630	2 <b>82</b>		NOFVEV( NVEEV ) - NREMV	1		2630
2631	283		END IF			2631
2632 2633	284	С				2632
2633	285 2 <b>86</b>		DO 105 INE = 1 , NVECE NOFVEE( INE ) = 128			2633
2635	287	105	CONTINUE			2634 2635
2636	288		NVEEE - NVECE			2635
2637	289		IF( NREME . GT . 0 ) TH	EN		2637
2638 2639	290		NVEEE = NVECE + 1			2638
2639	2 <b>91</b> 2 <b>92</b>		NOFVEE( NVEEE ) - NREME END IF			2639
2641	293	С				2640 2641
2642	294		DO 115 INS = 1 , NVECS			2642
2643	295		NOFVES(INS) = 128			2643
2644 2645	296 297	115	CONTINUE			2644
2646	298		NVEES - NVECS IF( NREMS . GT . 0 ) TH	FN		2645
2647	299		NVEES - NVECS + 1			2646 2647
2648	300		NOFVES( NVEES ) = NREMS			2648
2649	301	~	END IF			2649
2650 2651	302 303	C	DO 135 INC = 1 , NVECC			2650
2652	304		NOFVEC( 1NC ) = 128			2651 2652
2653	305	135	CONTINUE			2653
2654	306		NVEEC - NVECC			2654
2655 2656	307 308		IF( NREMC . GT . 0 ) THE NVEEC = NVECC + 1	EN		2655
2657	309		NOFVEC( NVEEC ) = NREMC			2656 2657
2658	310		END IF			2658
2659	311	C				2659
2660	312		PRINT *, NV, NE, NS, NC			2660
2661 2662	313 314		PRINT *, NVEEV, NVEEE, NVI PRINT *, NREMV, NREME, NRI			2661
2663	315	1001	FORMAT(417)	LTI 3 , MRE FR.		2662 2663
2664	316	1002	FORMAT(17, 3E20.12)			2664
2665	317	С				2665
2666 2667	318	С	CALL GEOMTR			2666
2668	319 320	L	RETURN			2667 2668
2669	321		END			2008
2670	322	С				2670
1	~	SUBROUTINE UPGRAD				
----------	--------	---------------------------------------------------------------------------	----			
23	С С					
4	č					
5	č	UPGRAD COMPUTE THE DUAL MESH AFTER ADDAPTING THE GRID				
6	С	I				
7	C					
8	С					
9 10		include 'dmsh00.h' include 'dhydm0.h'				
11		include 'dphsm0.h'				
12		include 'dmtrl0.h'				
13	С					
14	_	REAL XELEFT(128), YELEFT(128), XERIGT(128), YERIGT(128)				
15	ç					
16	C	- DEFINING BOUNDARY EDGES				
17 18	L	READ(8) NV.NE.NS.NC.NTINE				
19		READ(8) ((XV(IK,IV),IK=1,3),IV=1,NV)				
20		READ(8) ((JE(KK, IF), KK=1,2), IF=1 NF)				
21		READ(8) ((JS(KK, IS), KK=1.9), (XS(KI, IS), KI=1.5),				
22		. XN(IS), YN(IS), ZN(IS), XP(IS), ZP(IS), ZP(IS),				
23		. XT(IS),YT(IS),ZT(IS),IS=1,NS)				
24		READ(8) ((XYZMDL(KI.IS).KI=1.4), IS=1.NS)				
25		READ(8) ((JC(KK, IC), KK=1,8), (XC(KI, IC), KI=1,4), IC=1, NC)				
26		READ(8) ((RGRAD(IC,KI),UGRAD(IC,KI),VGRAD(IC,KI),				
27 28		. WGRAD(IC,KI),PGRAD(IC,KI),KI=1,3),IC=1,NC)				
29		READ(8) SAREVG, NVECE, NREME, NVECV, NREMV, NVECS, NREMS, NVECC, NREMC				
30		PRINT * , NE,NS				
31	С	(utur ( utu)				
32	-	DO 100 IC = 1 , NC				
33		SVOLM(IC) = 1. / XC(4, IC)				
34		CONTINUE				
35	C					
36		DO 105 INE = 1 , NVECE				
37	105	NOFVEE(INE) - 128				
38	105					
39 40		NVEEE - NVECE IF( NREME . GT . 0 ) THEN				
41		NVEEE = NVECE + 1				
42		NOFVEE( NVEEE ) = NREME				
43	·	END IF				
44	С					
45		00 115 INS = 1 , NVECS				
46 47	115	NOFVES( INS ) = 128 Continue				
48	112	NVEES - NVECS	٠.			
49		IF( NREMS . GT . 0 ) THEN				
50		NVEES = NVECS + 1				
51		NOFVES( NVEES ) - NREMS				
52		END IF				
53	С					
54		DO 125 INV = 1 , NVECV				
55	195	NOFVEV( INV ) = 128				
56 57	125	CONTINUE NVEEN - NVEEN				
57 58		NVEEV - NVECV IF( NREMV . GT . 0 ) THEN				
50 59		NVEEV - NVECV + 1				
60		NOFVEV( NVEEV ) - NREMV				
61		END IF				
62	C					
63		DO 135 INC = 1 . NVECC				
64		NOFVEC( INC ) = 128				
65	135	CONTINUE				
66		NVEEC = NVECC				
67 68		IF( NREMC . GT . O ) THEN				
69		NVEEC - NVECC + 1 NOFVEC( NVEEC ) - NREMC				
70		END IF				
71	С	1. JUL 41				
	-	PRINT *, NV, NE, NS, NC, NVECV, NREMV, NVECE, NREME, NVECS, NREMS,				
72		FRINI , NV, NE, NJ, NC, NVECV, NRENV, NVELE, NVERE, NVELJ, NRENJ,				

			1993 threed.f SUBROUTINE UPGRAD	page	39
2745 2746	75		RETURN		2745
	76 77	C	END		2746 2747
u Jul	1 14:	17:00	1993 threed.f SUBROUTINE GRADNT		
748	1		SUBROUTINE GRADNT		2748
749	2	C	······		2749
750 751	3 4	Ç			2750
752	5	C C	GRADNT COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION	-	2751 2752
753	6	č			2753
754	7	-		- I	2754
755 756	8 9	С	include 'dmsh00.h'		2755
757	10		include 'dhydan0.h'		2756 2757
758	ĩĩ		include 'dphsm0.h' include 'dmtr10.h'		2758
759	12	•	include 'dmtrl0.h'		2759
760 761	13 14	С	REAL RRMIDL(128), PPMIDL(128), UUMIDL(128), VVMIDL(128).		2760
762	15		. WWNIDL(128), AAMIDL(128)		2761 2762
763	16		REAL RIGRAD(128), PIGRAD(128), UIGRAD(128), VIGRAD(128),		2763
764	17		. WIGRAD(128), AIGRAD(128)		2764
765 766	18 19		REAL RJGRAD(128), PJGRAD(128), UJGRAD(128), VJGRAD(128), UJGRAD(128), A. JRAD(128)		2765 2766
767	20		REAL RKGRAD(128), PKGRAD(128), UKGRAD(128), VKGRAD(128),		2767
768	21		. WKGRAD(128), AKGRAD(128)		2768
769	22		REAL RMAX(128), PMAX(128), UMAX(128), VMAX(128), WMAX(128),		2769
770 771	23 24		. AMAX(128) REAL RMIN(128),PMIN(128),UMIN(128),VMIN(128),WMIN(128),		2770 2771
772	25		. AMIN(128)		2772
773	26		REAL ROR(4), UOR(4), VOR(4), WOR(4), POR(4), AOR(4)		2773
774	27	c	REAL ROL(4), UOL(4), VOL(4), WOL(4), POL(4), AOL(4)		2774
775 776	28 29	C	DO 120 IH $= 1$ , 3		2775 2776
777	30	C			2777
778	31		DO 120 IC = 1 , NC		2778
779 780	32 33	C	RGRAD( IC , IH ) - 0.		2779
781	34		UGRAD(IC, IH) = 0.		2780 2781
782	35		VGRAD(IC, IH) = 0.		2782
783	36		WGRAD(IC, IH) = 0.		2783
784 785	37 38	с	PGRAD(IC, IH) - 0.		27 <b>84</b> 2785
786	39		CONTINUE		2786
787	40	C		i	2787
788	41	С С	- BEGIN LOOP OVER ALL EDGES IN THE DOMAIN		2788
789 790	42 43	C	NS1 - 1		2789 2790
791	44		NS2 - NOFVES(1)	:	2791
792	45	c	DO 90 INS = 1 , NVEES		2792
793 794	46 47	с с	- FETCH HYDRO QUANTITIES		2793 2794
795	48	C			2795
796	49		DO 105 IS = NS1 , NS2		2796
797 798	50 51	С	KS = IS - NSI + 1		2797 2798
799	52	L.	ICL - JS(7, IS)		2799
300	53		ICR = JS(8, IS)	:	2800
301	54	C	(21 0 12) = -210		2801
102 103	55 56		IATRB = JS(9, IS) IF(IATRB, EQ.0) THEN		2802 2803
104	57	C	and multime a real a molecular		2804
805	58		XYZ + XYZMDL(4, IS)		2805
106 107	59 60		RRMIDL(KS) = HYDV(ICL, 1) + XYZ + (HYDV(ICR, 1))		2806 2807
307 308	61		. HYDV(ICL, 1) UUMIDL(KS) = HYDV(ICL, 2) + XYZ * (HYDV(ICR, 2)		2808
809	62		. HYDV(ICL, 2)	) 3	2809
810	63		VVMIDL( KS ) = HYDV( ICL , 3 ) + XYZ * ( HYDV( ICR , 3 )	-	2810
811 812	64 65		. HYDV(ICL, 3) WWMIDL(KS) = HYDV(ICL, 4) + XYZ * (HYDV(ICR, 4)		2811 2812
313	05 66		$\frac{1}{1} + \frac{1}{1} + \frac{1}$		2813
314	67		PPMIDL(KS) = HYDV(ICL, 5) + XYZ + (HYDV(ICR, 5))	-	2814
315	68		HYDV(ICL, 5)	)	2815

Thu Jul	1 14:	17:00	1993 th <b>reed.</b> f	SUBROUTINE GRADNT	page	40
2816 2817	69 70	С	EI CC			2816
2818	71	С	ELSE			2817 2818
2819 2820	72 73			HYDV(ICL, 1)		2819
2821	73		UUMIDL( KS ) = VVMIDL( KS ) =			2820 2821
2822	75		WWMIDL( KS ) =	HYDV(ICL, 4)		2822
2823 2824	76 77	С	Philor( K2 ) =	HYDV(ICL, 5)		2823 2824
2825 2826	78	с	END IF			2825
2827	79 80	ر 105	CONTINUE			2826 2827
2828	81	C		200		2828
2829 2830	82 83		DO 110 IS = NS1 , KS = IS - NS1			2829 2830
2831	84	C				2831
2832 2833	85 86		$\begin{array}{l} XEXN = XS(4), \\ XEYN = XS(4), \end{array}$	IS ) * XN( IS ) IS ) * YN( IS )		2832
2834	87		XEZN = XS(4)	ÎS ) * ZN( ÎS )		2833 2834
2835 2836	88 89	C	RIGRAD( KS ) =	RRMIDL( KS ) * XEXN		2835
2837	90		UIGRAD( KS ) =	UUMIDL( KS ) * XEXN		2836 2837
2838 2839	91 92		VIGRAD( KS ) = WIGRAD( KS ) =	VVMIDL( KS ) * XEXN WWMIDL( KS ) * XEXN		2838
2840	93		PIGRAD( KS ) -	PPMIDL( KS ) * XEXN		2839 2840
2841 2842	94 95	C	P.ICPAD( KS ) -	RRMIDL( KS ) * XEYN		2841
2843	96		UJGRAD(KS) =	UUMIDL( KS ) * XEYN		2842 2843
2844 2845	97 98		VJGRAD(KS) =	VVMIDL( KS ) * XEYN WWMIDL( KS ) * XEYN		2844
2846	99		PJGRAD(KS) =	PPMIDL( KS ) * XEYN		2845 2846
2847 2848	100 101	C	PECRAD/ KS ) -	RRMIDL( KS ) * XEZN		2847
2849	102		UKGRAD(KS) -	UUMIDL( KS ) * XEZN		2848 2849
2850 2851	103 104		VKGRAD( KS ) =	VVMIDL( KS ) * XEZN WWMIDL( KS ) * XEZN		2850
2852	105			PPMIDL( KS ) * XEZN		2851 2852
2853 2854	106 107	C 110	CONTINUE			2853
2855	108	C	CONTINUE			2854 2855
2856 2857	109 110		DO 130 IS = NS1 , KS = IS - NS1			2856
2858	111	C	ND - 13 - NJI -	* 1		2857 2858
2859 2860	112 113		$\frac{ICL = JS(7, IS}{ICR = JS(8, IS}$			2859
2861	114	С				2860 2861
2862 2863	115 116		$\begin{array}{l} \text{RGRAD}(\text{ ICL }, 1) = \\ \text{RGRAD}(\text{ ICL }, 2) = \end{array}$	RGRAD(ICL, 1) + RIGRAD(KS)		2862
2864	117		RGRAD(ICL, 3) =	RGRAD(ICL, 3) + RKGRAD(KS)		2863 2864
2865 2866	118 119		UGRAD(ICL, 1) = UGRAD(ICL, 2) =	UGRAD(ICL, 1) + UIGRAD(KS) UGRAD(ICL, 2) + UJGRAD(KS)		2865
2867	120		UGRAD( ICL , 3 ) -	UGRAD(ICL, 3) + UKGRAD(KS)		2866 2867
2868 2869	121 122		VGRAD(ICL, 1) = VGRAD(ICL, 2) =	VGRAD(ICL,1) + VIGRAD(KS) VGRAD(ICL,2) + VJGRAD(KS)		2868 2869
2870	123		VGRAD(ICL, 3) =	VGRAD(ICL, 3) + VKGRAD(KS)		2870
2871 2872	124 125		WGRAD(ICL, 1) - WGRAD(ICL 2) -	HGRAD(ICL, 1) + HIGRAD(KS) HGRAD(ICL, 2) + HJGRAD(KS)		2871 2872
2873	126		WGRAD(ICL, $3$ ) =	WGRAD(ICL. 3) + WKGRAD(KS)		2873
2874 2875	127 128		PGRAD(ICL, 1) = PGRAD(ICL, 2) =	PGRAD(ICL, 1) + PIGRAD(KS) PGRAD(ICL, 2) + PJGRAD(KS)		2874 2875
2876	129	•	PGRAD( ICL , 3 ) -	PGRAD(ICL, 3) + PKGRAD(KS)		2876
2877 2878	130 131	C	IATRB = JS(9, 1S)	)		2877 2878
2879	132	_	IF( IATRB . EQ . 0			2879
2880 2881	133 134	с с	GRADIENT OF DENSITY	( U V W DIRECTION )		2880 2881
2882	135	č				2881
2883 2884	136 137			RGRAD( ICR , 1 ) - RIGRAD( KS ) RGRAD( ICR , 2 ) - RJGRAD( KS )		2883 2884
2885	138	<u> </u>		RGRAD(ICR, 3) - RKGRAD(KS)		2885
2886 2887	139 140	С С	GRADIENT OF IL VELO	CITY ( U V W DIRECTION )		2886 2887
2888	141	č				2888
2889	142		UGRAD( ICR , 1 ) -	UGRAD( ICR , 1 ) - UIGRAD( KS )		2889

Ē.

Thu Jul	1 14:	17:00 1	993 th <b>ree</b> d.f	SUBROUTINE GRADNT	page	41
2890 2891	143 144		UGRAD( ICR , 2 ) = UGRAD( UGRAD( ICR , 3 ) = UGRAD(			2890 2891
2892	145	C	· · · · · · · · · · · · · · · · · · ·			2892
2893	146		GRADIENT OF V VELOCITY ( U	V W DIRECTION )		2893
2894	147	С				2894
2895 2896	148 149		VGRAD( ICR , 1 ) = VGRAD( VGRAD( ICR , 2 ) = VGRAD(			2895
2897	149		VGRAD(1CR, 2) = VGRAD(VGRAD(1CR, 3) = VGRAD(1CR, 3) = VGRAD(			28 <b>96</b> 2897
2898	151	С		· , ·		2898
2899	152	č	GRADIENT OF W VELOCITY ( U	V W DIRECTION )		2899
2900	153	С		·····, ·····		2900
2901	154		WGRAD(ICR.1) = WGRAD(	ICR , 1 ) - WIGRAD( KS )		2901
2902	155		WGRAD( ICR , 2 ) = WGRAD(			2902
2903 2904	155 157	С	WGRAD( ICR , 3 ) = WGRAD(	1CR , 3 ) - WKGRAD(KS)		2903
2905	158	č	GRADIENT OF PRESSURE ( 11 V	W DIRECTION )		2904 2905
2906	159	č	UNADIENT OF FRESSORE ( B F	WOINEGROUP (		2905
2907	160	-	PGRAD( ICR , 1 ) = PGRAD(	ICR , 1 ) - PIGRAD( KS )		2907
2908	161		PGRAD(ICR, 2) = PGRAD(	ICR = 2 - PJGRAD(KS)		2908
2909	162	_	PGRAD( ICR , 3 ) - PGRAD(	ICR , 3 ) - PKGRAD( KS )		2909
2910	163	C				2910
2911	164	c	END IF			2911
2912 2913	165 166	C 130	CONTINUE			2912
2913	167	C 130	CONTINUE			2913 2914
2915	168		NS1 = NS2 + 1			2915
2916	169		NS2 = NS2 + NOFVES( INS +	1 )		2915
2917	170	90	CONTINUE	- ,		2917
2918	171	С				2918
2919	172	~	DO 140 IH = $1, 3$			2919
2920	173	C	00 140 TC 1 NC			2920
2921 2922	174 175	С	DO 140 IC = 1 , NC			2921
2923	175	6	RGRAD( IC , IH ) = RGRAD(	TC TH Y + SVOLMC TC Y		2922 2 <b>923</b>
2924	177		UGRAD(IC, IH) = UGRAD(			2924
2925	178		VGRAD( IC . IH ) - VGRAD(	IC , IH ) * SVOLM( IC )		2925
2926	179		WGRAD( IC , IH ) = WGRAD(	IC , IH ) * SVOLM( IC )		2926
2927	180		PGRAD( IC , IH ) = PGRAD(	IC , IH ) * SVOLM( IC )		2927
2928	181	C				2928
2929	182		CONTINUE			2929
2930 2931	183 184	C	NC1 - 1			2930
2932	185		NC2 = NOFVEC( 1 )			2931 2932
2933	186		DO BO INC - 1 , NVEEC			2933
2934	187	C				2934
2935	188		DO 150 IC = NC1 , NC2			2935
2936	189		KC = IC - NC1 + 1			2936
2937 2938	190	С	18 - 10/ 5 10 1			2937
2938 2939	191 192	С	IS = JC(5, IC)			2938 2939
2940	192	~	ICL = JS(7, IS)			2939
2941	194		ICR = JS(8, IS)			2941
2942	195	С				2942
2943	196		RROL - HYDV( ICL , 1 )			2943
2944 2045	197		UUOL - HYDV( ICL , 2 )			2944
2945 2946	198 199		<b>VVOL - HYDV(</b> $1CL$ , 3 )			2945
2940	200		WWOL = HYDV( ICL , 4 ) PPOL = HYDV( ICL , 5 )			2946 2947
2948	201	с	$\cdots = \cdots = \cdots = (1 + 1 + 1 + 1)$			2948
2949	202	-	IATRB - JS( 9 , IS )			2949
2950	203		IF( IATRB . EQ . 0 ) THEN			2950
2951	204	C	·			2951
2952	205		RROR = HYDV( ICR , 1 )			2952
2953 2954	206 207		UUOR = HYDV(ICR, 2)			2953
2954	207		VVOR = HYDV(ICR, 3)			2954
2955	209		WWOR = HYDV( ICR , 4 ) PPOR = HYDV( ICR , 5 )			2955 2956
2957	210	С	$\frac{1}{100} = \frac{1}{100} = \frac{1}$			2957
2958	211	~	ELSE			2958
2959	212	С				2959
2960	213		RROR - RROL			2960
2961	214		UUOR = UUOL			2961
2962	215		VVOR = VVOL			2962
2963	216		WWOR - WWOL			2963

•

hu Jul	1 14:17:00	1993 threed.f	SUBROUTINE GRADNT	page	42
2964	217	PPOR - PPOL			2964
2965 2966	218 C 219	END IF			2965
2967	220 C				2966
2968	221	ROL( 1 ) = RROL			2967 2968
2969	222	UOL(1) = UUOL			2900
2970	223	VOL( 1 ) - VVOL			2970
2971	224	WOL(1) = WWOL			2971
2972	225	POL(1) = PPOL			2972
2973	2 <b>26</b> C				2973
2974	227	ROR(1) = RROR			2974
2975	228	UOR(1) = UUOR			2975
2976	229	VOR(1) = VVOR			2976
2977 2978	230	WOR(1) = WWOR POR(1) = PPOR			2977
2979	2 <b>31</b> 2 <b>32</b> C	PUR( 1 ) = PPUR			2978
2980	233	IS = JC(6, IC)			2979 2980
2981	234 C	13 - 00( 0 , 10 )			2980
2982	235	ICL = JS(7, IS)			2982
2983	236	ICR = JS(8, IS)			2983
2984	237 C				2984
2985	238	RROL - HYDV( ICL , 1 )			2985
2986	239	UUOL = HYDV( ICL , 2 )			2986
987	240	VVOL = HYDV( ICL , 3 )			2987
888	241	WWOL - HYDV (ICL, 4)			2988
2989	242	PPOL = HYDV( ICL , 5 )			2989
2990 2991	243 C	TATOD - 15/ 0 TC )			2990
992	244 245	IATRB = JS(9, IS)	CN .		2991
993	246 C	IF( IATRB . EQ . 0 ) TH			2992
994	247	RROR - HYDV( ICR , 1 )			2993 2994
995	248	UUOR = HYDV( ICR , 2 )			2995
996	249	VVOR - HYDV( ICR , 3 )			2996
997	250	WWOR = HYDV( ICR , 4 )			2997
998	251	PPOR = HYDV(ICR, 5)			2998
999	2 <b>52</b> C				2999
000	253	ELSE			3000
001	254 C				3001
002	255	RROR - RROL			3002
1003 1004	256	UUOR - UUOL			3003
005	257 258	VVOR - VVOL WWOR - WWOL			3004
005	259	PPOR = PPOL			3005 3006
007	260 C	1100 - 1102			3007
800	261	END IF			3008
009	2 <b>62</b> C				3009
010	263	ROL(2) = RROL			3010
011	264	UOL( 2 ) = UUOL			3011
012	265	VOL(2) = VVOL			3012
013	266	WOL(2) - WWOL			3013
014	267	POL(2) = PPOL			3014
015 016	268 C 269	ROR(2) = RROR			3015
017	270	UOR(2) = UUOR			3016 3017
018	271	VOR(2) = VVOR			3018
019	272	WOR(2) = WWOR			3019
020	273	POR(2) = PPOR			3020
021	274 C				3021
022	275	IS = JC(7, IC)			3022
023	276 C				3023
024	277	ICL = JS(7, 1S)			3024
025	278	ICR = JS(8, IS)			3025
026	279 C				3026
027 028	280 281	RROL = HYDV(ICL, 1) UUOL = HYDV(ICL, 2)			3027 3028
020	282	VVOL - HYDV(ICL, 3)			3029
030	283	WWOL - HYDV(ICL, 4)			3030
031	284	PPOL = HYDV(ICL, 5)			3031
032	2 <b>85</b> C				3032
033	286	IATRB = JS( 9 , IS )			3033
034	287	IF( TATRB . EQ . 0 ) TH	EN		3034
035	2 <b>88</b> C				3035
	289	RROR = HYDV(ICR, 1)			3036
036 037	290	UUOR - HYDV( ICR , 2 )			3037

Ľ

lo

ŀ

ŀ

0

Jul	1 [4:1	7:00	1993 threed.f	SUBROUTINE GRADNT	page	43
38	291		VVOR = HYDV( ICR , 3 )			3038
39	292		WWOR = HYDV(ICR, 4)			3039
40	293	r	PPOR = HYDV( ICR , 5 )			3040
41 42	294 2 <del>95</del>	C	ELSE			3041 3042
43	296	С				3042
44	297	-	RROR = RROL			3044
45	298		UUOR = UUOL			2045
46	2 <b>99</b>		VVOR - VVOL			3046
47	300		WWOR - WHOL			2047
48	301	~	PPOR = PPOL			3048
49 50	302 303	С	END IF			3049
51	304	С				3050 3051
52	305	v	ROL(3) = RROL			3052
53	306		UOL(3) = UUOL			3053
54	307		VOL(3) = VVOL			3054
55	308		WOL( 3 ) - WWOL			3055
56	309		POL(3) = PPOL			3056
57	310	С				3057
58	311		ROR(3) = RROR			3058
59 60	312		UOR(3) = UUOR			3059
60 61	313 314		VOR( 3 ) = VVOR WOR( 3 ) = WWOR			3060
62	314		POR(3) = PPOR			3061 3062
63	316	С	· • • • • • • • • • • • • • • • • • • •			3062
64	317	-	IS = JC(8, IC)			3064
65	318	C				3065
66	319		ICL = JS(7, IS)			3066
67	320	_	ICR = JS(8, IS)			3067
68	321	С				3068
69 70	322		RROL = HYDV(ICL, 1)			3069
70	323		$\frac{1}{100} = \frac{1}{100} (101 - \frac{1}{100})$			3070
71 72	324 325		VVOL = HYDV(ICL, 3) WWOL = HYDV(ICL, 4)			3071
73	325		PPOL = HYDV( ICL , 5)			3072 3073
74	327	С				3073
75	328	-	IATRB = JS(9, IS)			3075
76	329		IF( IATRB . EQ . 0 ) THEN			3076
77	330	С				3077
78	331		RROR = HYDV( ICR , 1 )			3078
79	332		UUOR = HYDV(ICR, 2)			3079
80	333		VVOR = HYDV(ICR, 3)			3080
81 82	334		WWOR = HYDV(ICR, 4)			3081
62 83	335 336	C	PPOR = HYDV( ICR , 5 )			3082 3083
84	337	•	ELSE			3083
85	338	Ç				3085
86	339	•	RROR = RROL			3036
87	340		UUOR = .UUOL			3087
38	341		VVOR = VVOL			3088
B9	342		WWOR = WWOL			3089
90	343	c	PPOR - PPOL			3090
91	344	С				3091
92 93	345	С	END IF			3092
13 ]4	346 347	L	ROL(4) = RROL			3093 3094
)5	348		UOL(4) = UUOL			3095
96	349		VOL(4) = VVOL			3096
97	350		HOL( 4 ) - WHOL			3097
8	351		POL(4) = PPOL			3098
99	352	С	-			3099
)0	353		ROR(4) = RROR			3100
01	354		UOR(4) = UUOR			3101
)2	355		VOR(4) = VVOR			3102
33	356		WOR(4) = WWOR			3103
)4 )5	357	c	POR(4) = PPOR			3104
05 06	358	C	PMAX ( KC ) - AMAXI ( DOL ( 1 )			3105 3106
06 07	359 360		DOD(1)	, ROL(2), ROL(3), ROL(4), , ROR(2), ROR(3), ROR(4))		3107
08	361		UMAX( KC ) = AMAX1( UOL( 1 )	, UOL(2), KOR(3), KOR(4)),		3108
09	362		UOR( 1)	, UOR( 2 ) , UOR( 3 ) , UOR( 4 ) )		3109
10	363		VMAX( KC ) = AMAX1( VOL( 1 )	, VOL(2), VOL(3), VOL(4),		3110
	364		. VOR( 1 )	, VOR(2), VOR(3), VOR(4))		3111

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE GRADNT	page	44
3112 3113	365 366	WMAX( KC ) = AMAX1	(WOL(1),WOL(2),WOL(3),WOL(4), WOR(1),WOR(2),WOR(3),WOR(4))		3112 3113
3114	367	PMAX( KC ) = AMAX1	( POL( 1 ) , POL( 2 ) , POL( 3 ) , POL( 4 ) ,		3114
3115 3116	368 369 C	•	POR(1), POR(2), POR(3), POR(4))		3115 3116
3117	370	RMIN( KC ) = AMINI	(ROL(1), ROL(2), ROL(3), ROL(4),		3117
3118 3119	371 372	UMIN( KC ) = AMINI	ROR(1), ROR(2), ROR(3), ROR(4)) (UOL(1), UOL(2), UOL(3), UOL(4),		3118 3119
3120	37 <b>3</b>	•	UOR(1), UOR(2), UOR(3), UOR(4))		3120
3121 3122	37 <b>4</b> 37 <b>5</b>	VMIN( KC ) = AMIN1	(VOL(1), VOL(2), VOL(3), VOL(4), VOR(1), VOR(2), VOR(3), VOR(4))		3121 3122
3123 3124	376	WMIN( KC ) = AMIN1	(WOL(1), WOL(2), WOL(3), WOL(4),		3123
3125	377 37 <b>8</b>	PMIN( KC ) = AMIN1(			3124 3125
3126 3127	379 380 C	•	POR(1), POR(2), POR(3), POR(4))		3126
3128	381 15	O CONTINUE			3127 3128
3129 3130	382 C 383	DO 180 IC - NC1 , NO	·7		3129 3130
3131	384	KC = IC - NC1 +			3131
3132 3133	385 C 386	RRR( KC ) = RMAX(	(KC) - HYDV(IC, 1)		3132 3133
3134	387	RRL( KC ) = RMIN(	KC) – HYDV(IC, I)		3134
3135 3136	388 389	UUR( KC ) = UMAX( UUL( KC ) = UMIN(			3135 3136
3137	390	VVR(KC) = VMAX(	KC) - HYDV(IC, 3)		3137
31 <b>38</b> 31 <b>39</b>	3 <b>91</b> 3 <b>92</b>	VVL( KC ) = VMIN( WWR( KC ) = WMAX(			3138 3139
3140	3 <b>93</b>	WWL( KC ) = WMIN(	KC ) - HYDV(IC, 4)		3140
3141 3142	394 395	PPR( KC ) = PMAX( PPL( KC ) = PMIN(			3141 3142
3143 3144	396 C 397 18				3143
3145	3 <b>98</b> C	D CONTINUE			3144 3145
3146 3147	399 400	DO 170 IC = NC1 , NC KC = IC - NC1 +			3146 3147
3148	4 <b>01</b> C		1		3148
3149 3150	402 403 C	IS = JC(5, IC)			31 <b>49</b> 3150
3151	404	ICL = JS( 7 , IS )			3151
3152 3153	405 406 C	ICR = JS( 8 , 1S )			3152 3153
3154	407	XML = XYZMDL( 1 , I	S = XC(1, ICL)		3154
3155 3156	408 409	YML = XYZMDL(2, I ZML = XYZMDL(3, I	S ) - XC( 2 , ICL ) S ) - XC( 3 , ICL )		3155 3156
3157 3158	410 C 411		AD( ICL , 1 ) * XML +		3157 3158
3159	412	• RGR	AD( ICL, 2) * YML + RGRAD( ICL, 3) * ZML		3159
3160 3161	413 41 <b>4</b>	UUOL = 1.E-16 + UGR	AD( ICL , 1 ) * XML + AD( ICL , 2 ) * YML + UGRAD( ICL , 3 ) * ZML		3160 3161
3162	415	VVOL = 1.E-16 + VGR	AD(ICL, 1) * XML +		3162
3163 3164	416 417	. VGR WWOL = 1.E-16 + WGR	AD(ICL, 2) * YML + VGRAD(ICL, 3) * ZML AD(ICL, 1) * XML +		3163 3164
3165	418	- WGR	AD(ICL, 2) * YML + WGRAD(ICL, 3) * ZML		3165
3166 3167	419 420		AD( ICL , 1 ) * XML + AD( ICL , 2 ) * YML + PGRAD( ICL , 3 ) * ZML		3166 3167
3168 3169	421 C 422	IATRB = JS( 9 , IS )			3168 3169
3170	423	IF( IATRB . EQ . 0 )			3170
3171 3172	42 <b>4</b> C 425	XMR = XYZMDL( 1 , I	S) - Xr(1 1(R)		3171 3172
3173	426	YMR = XYZMDL( 2 , I	S = XC(2, ICR)		3173
3174 3175	427 428 C	ZMR = XYZMDL(3, I	S = XC(3, 1CR)		3174 3175
3176	429		AD( ICR , 1 ) * XMR +		3176
3177 3178	430 431	. RGR UUOR = 1.E-16 + UGR	AD( ICR , 2 ) * YMR + RGRAD( ICR , 3 ) * ZMR AD( ICR , 1 ) * XMR +		3177 3178
3179	432	. UGR	AD( ICR , 2 ) * YMR + UGRAD( ICR , 3 ) * ZMR AD( ICR , 1 ) * XMR +		3179 3180
3180 3181	433 434	. VGR	AD( ICR , 2 ) * YMP + VGRAD( ICR , 3 ) * ZMR		3181
3182 3183	435 436	WWOR = 1.E-16 + WGR	AD( ICR , 1 ) * XMR + AD( ICR , 2 ) * YMR + WGRAD( ICR , 3 ) * ZMR		3182 3183
3184	437	PPOR = 1.E-16 + PGR	AD( ICR , 1 ) * XMR +		3184
3185	438	. PGR	AD(ICR,2) * YMR + PGRAD(ICR,3) * ZMR		3185

0

Thu Jul	1 14:	17:00	1993 threed.f SUBROUTINE GRADNT	pa <b>ge</b>	45
3186	439	С			3186
3187 3188	440 441	С	ELSE		3187
3189	442	C	RROR = RROL		3188 3189
3190	443		UUOR = UUOL		3190
3191	444		VVOR = VVOL		3191
3192	445		WOR = WOL		3192
3193 3194	446 447	с	PPOR - PPOL		3193 3194
3195	448	•	END IF		3195
3196	449	С			3196
3197	450		ROL(1) = 1. / RROL		319/
3198 3199	451 452		UOL( 1 ) = 1. / UUOL VOL( 1 ) = 1. / VVOL		3198
3200	453		WOL(1) - 1. / WWOL		3199 3200
3201	454		POL(1) = 1. / PPOL		3201
3202	455	С			3202
3203 3204	456 457		ROR(1) = 1. / RROR		3203
3205	457		UOR(1) - 1. / UUOR VOR(1) - 1. / VVOR		3204 3205
3206	459		WOR(1) = 1. / WWOR		3205
3207	460		POR(1) = 1. / PPOR		3207
3208	461	С			3208
3209 3210	462 463	с	IS = JC(6, IC)		3209
3211	403	L.	ICL = JS(7, 1S)		3210 3211
3212	465		ICR = JS(8, IS)		3212
3213	466	С			3213
3214	467		XML = XYZMDL(1, IS) - XC(1, ICL)		3214
3215 3216	468 469		YML = XYZMDL(2, IS) - XC(2, ICL) ZML = XYZMDL(3, IS) - XC(3, ICL)		3215 3216
3217	470	С	•		3217
3218	471		RROL = 1.E-16 + RGRAD(ICL, 1) * XML +		3218
3219	472		. RGRAD(ICL, 2) * YML + RGRAD(ICL, 3) * ZML		3219
3220 3221	473 47 <b>4</b>		UUOL = 1.E-16 + UGRAD( ICL , 1 ) * XML + UGRAD( ICL , 2 ) * YML + UGRAD( ICL , 3 ) * ZML		3220 3221
3222	475		VVOL = 1.E-16 + VGRAD( ICL , 1 ) * XML +		3222
3223	476		• VGRAD(ICL, 2) * YML + VGRAD(ICL, 3) * ZML		3223
3224	477		WHOL = 1.E-16 + WGRAD( ICL , 1 ) * XML +		3224
3225 3226	478 479		. WGRAD(ICL, 2) * YML + WGRAD(ICL, 3) * ZML PPOL = 1.E-16 + PGRAD(ICL, 1) * XML +		3225
3227	480		PFCL = 1.2-10 + PGRAD(1CL, 1) + ML + PGRAD(1CL, 3) + ZML		3226 3227
3228	481	С			3228
3229	482		IATRB = JS(9, IS)		3229
3230	483	r	IF( IATRB . EQ . 0 ) THEN		3230
3231 3232	484 485	C	XMR = XYZMDL(1, IS) - XC(1, ICR)		3231 3232
3233	486		YMR = XYZMDL(2, IS) - XC(2, ICR)		3233
3234	487	-	ZMR = XYZMDL(3, IS) - XC(3, ICR)		3234
3235	488	С			3235
32 <b>36</b> 32 <b>3</b> 7	489 490		RROR = 1.E-16 + RGRAD(ICR, 1) * XMR + . RGRAD(ICR, 2) * YMR + RGRAD(ICR, 3) * ZMR		3236 3237
3238	491		UUOR = 1.E-16 + UGRAD( ICR , 1 ) * XMR +		3238
3239	492		- UGRAD(ICR, 2) * YMR + UGRAD(ICR, 3) * ZMR		3239
3240	493		VVOR = 1.E-16 + VGRAD(ICR, 1) + XMR +		3240
3241 3242	494 495		• VGRAD( ICR , 2 ) * YMR + VGRAD( ICR , 3 ) * ZMR WWOR = 1.E-16 + WGRAD( ICR , 1 ) * XMR +		3241 3242
3242	495		HOR = 1.2-10 + HORAD(1CR, 1) - ARR + HORAD(1CR, 3) + ZMR		3243
3244	497		PPOR = 1.E-16 + PGRAD(1CR, 1) * XMR +		3244
3245	498	~	• PGRAD(ICR, 2) * YMR + PGRAD(ICR, 3) * ZMR		3245
3246 3247	499 500	С	ELSE		3246 3247
3247	500	С	LLJL		3248
3249	502	-	RROR = RROL		3249
3250	503		UUOR = UUOL		3250
3251	504		VVOR = VVOL		3251
3252 3253	505 506		NWOR - WWOL PPOR - PPOL		3252 3253
3254	507	С	i) vn ··· (TVL		3254
3255	508		END IF		3255
3256	509	С			3256
3257 3258	510 511		ROL(2) = 1. / RROL UOL(2) = 1. / UUOL		3257 3258
3259	512		VOL(2) = 1. / VVOL		3259
36.33	316		····· / - 10 / ·····		

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE GRADNT	pa <b>ge</b>	46
3260 3261	513 514	WOL(2) = 1. / WWOL POL(2) = 1. / PPOL			3260 3261
3262 3263 3264 3265	515 C 516 517	ROR(2) = 1. / RROR UOR(2) = 1. / UUOR UOR(2) = 1. / UUOR		3	3262 3263 3264
3266 3267 3268	518 519 520 521 C	VOR(2) = 1. / VVOR WOR(2) = 1. / WWOR POR(2) = 1. / PPOR			3265 3266 3267
3269 3270 3271	522 523 C	IS = JC(7, IC)		3	3268 3269 3270
3272 3273	524 525 526 C	ICL = JS(7, IS) ICR = JS(8, IS)		3	3271 3272 3273
3274 3275 3276	527 528 529	XML = XYZMDL(1, IS) YML = XYZMDL(2, IS) ZML = XYZMDL(3, IS)	- XC(2, ICL)	3	3274 3275 3276
3277 3278 3279	530 C 531 532	RROL = 1.E-16 + RGRAD( . RGRAD(	ICL, 2) * YML + RGRAD(ICL, 3) * ZML	3	3277 3278 3279
3280 3281 3282	533 534 535	UUOL = 1.E-16 + UGRAD( . UGRAD( VVOL = 1.E-16 + VGRAD(	ICL , 2 ) * YML + UGRAD( ICL , 3 ) * 7ML	3	3280 3281 3282
3283 3284 3285	536 537 538	WWOL = 1.E-16 + WGRAD( . WGRAD(	ICL , 2 ) * YML + WGRAD( ICL , 3 ) * 7ML	3 3	283 284 285
3286 3287 3288	539 540 541 C		ICL , 1 ) * XML + ICL , 2 ) * YML + PGRAD( ICL , 3 ) * ZML	3 3	286 287 288
3289 3290 3291	542 543 544 C	IATRB = JS( 9 , IS ) IF( IATRB . EQ . 0 ) TH		3 3	289 290 291
3292 3293 3294	545 546 547	XMR = XYZMDL(1, IS) YMR = XYZMDL(2, IS) ZMR = XYZMDL(3, IS)	- XC(2, ICR)	3	292 293 294
3295 3296 3297	548 C 549 550	RROR = 1.E-16 + RGRAD( RGRAD(	ICR , 2 ) * YMR + RGRAD( ICR , 3 ) * ZMR	3	295 1296 1297
3298 3299 3300	551 552 5 <b>53</b>	UUOR = 1.E-16 + UGRAD( . UGRAD( . VVOR = 1.E-16 + VGRAD(	ICR , 2 ) * YMR + UGRAD( ICR , 3 ) * ZMR ICR , 1 ) * XMR +	3	298 299 300
3301 3302 3303	5 <b>54</b> 5 <b>55</b> 5 <b>56</b>	. VGRAD( WWOR = 1.E~16 + WGRAD( . WGRAD(	ICR , 1 ) * XMR + ICR , 2 ) * YMR + WGRAD( ICR , 3 ) * ZMR	3	301 302 303
3304 3305 3306	557 558 559 C	PPOR = 1.E~16 + PGRAD( . PGRAD(		3.	304 305 306
3307 3308 3309	560 561 C 562	else Rror = rrol		3. 3:	307 308 309
3310 3311 3312	563 564 565	UUOR = UUOL VVOR = VVOL WWOR = WWOL		3:	310 311 312
3313 3314 3315 3316	566 567 C 568 569 C	PPOR - PPOL END IF		3: 3:	313 314 315
3317 3318 3319	569 C 570 571 572	ROL( $3$ ) = 1. / RROL UOL( $3$ ) = 1. / UUOL		3: 3:	316 317 318
3320 3321 3322	573 574 575 C	VOL(3) = 1. / VVOL WOL(3) = 1. / WWOL POL(3) = 1. / PPOL		3: 3:	319 320 321 322
3323 3324 3325	576 577 578	ROR(3) = 1. / RROR UOR(3) = 1. / UUOR VOR(3) = 1. / VVOR		3: 3:	322 323 324 325
3326 3327 3328	579 580 581 C	WOR(3) = 1. / WWOR WOR(3) = 1. / WWOR POR(3) = 1. / PPOR		3: 3:	325 326 327 328
3329 3330 3331	582 583 C 584	IS = JC(8, IC) ICL = JS(7, IS)		3. 3.	329 330 331
3332 3333	58 <b>5</b> 586 C	ICR - JS( 8 , IS )		33	332 333

(

1

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE GRADNT	page	47
3334	587	XML = XYZMDL( 1 , IS ) - XC( 1	, ICL )		3334
3335	588	YML = XYZMDL(2, IS) - XC(2)	, ICL )		3335
3336 3337	5 <b>89</b> 5 <b>90</b> C	ZML = XYZMDL(3, IS) - XC(3)	, ILL )		3336 3337
3338	591	RROL = 1.E-16 + RGRAD(ICL, 1)	) * XML +		3338
3339	592	. RGRAD( ICL , 2	) * YML + RGRAD( ICL , 3 ) * ZML		3339
3340 3341	593 604	UUOL = 1.E-16 + UGRAD(ICL, 1)	) * XML + ) * YML + UGRAD( ICL . 3 ) * ZML		3340
3342	594 595	VVOL - 1.E-16 + VGRAD( ICL , 1	) * YML + UGRAD( ICL , 3 ) * ZML ) * XML +		3341 3342
3343	596	. VGRAD( ICL , 2	) * YML + VGRAD( ICL , 3 ) * ZML		3343
3344	597	WWOL = 1.E-16 + WGRAD(ICL, 1)	) * XML +		3344
3345 3346	598 599	. WGRAD( ICL , 2 PPOL = 1.E-16 + PGRAD( ICL , 1	) * YML + WGRAD( ICL , 3 ) * ZML		3345
3347	600		) * YML + PGRAD( ICL , 3 ) * ZML		3346 3347
3348	601 C		,		3348
3349	602	IATRB = JS(.9, IS)			3349
3350 3351	603 604 C	IF( IATRB . EQ . O ) THEN			3350 3351
3352	605	XMR - XYZMDL( I , IS ) - XC( 1	, ICR )		3352
3353	60 <b>6</b>	YMR = XYZMDL(2, IS) - XC(2)			3353
3354 3355	607 608 C	ZMR = XYZMDL(3, IS) - XC(3)	, ICR )		3354 3355
3356	609 C	RROR = 1.E-16 + RGRAD( ICR , 1	) * XMR +		3356
3357	61 <b>0</b>	. RGRAD( ICR , 2	) * YMR + RGRAD( ICR , 3 ) * ZMR		3357
3358 3359	611	UUOR = 1.E-16 + UGRAD(ICR, 1)			3358
3360	612 613	VVOR = 1.E-16 + VGRAD( 1CR , 1	) * YMR + UGRAD( ICR , 3 ) * ZMR ) * XMR +		3359 3360
3361	614	. VGRAD( ICR , 2	) * YMR + VGRAD( ICR , 3 ) * ZMR		3361
3362 33 <b>63</b>	615 616	WWOR = 1.E-16 + WGRAD( ICR , 1 WGRAD( ICR , 2	) * XMR + ) * YMR + WGRAD( ICR , 3 ) * ZMR		3362 3363
3364	617	PPOR = 1.E-16 + PGRAD(ICR, 1)	) * XMR +		3364
3365	618	. PGRAD( ICR , 2	) * YMR + PGRAD( ICR , 3 ) * ZMR		3365
3366 3367	619 C 620	ELSE			3366 3367
3368	621 C				3368
3369	622	RROR = RROL			3369
3370 3371	623 624	UUOR - UUOL VVOR - VVOL			3370 3371
3372	625	WWOR = WWOL			3372
3373	626	PPOR = PPOL			3373
3374 3375	627 C 628	END IF			3374 3375
3376	6 <b>29</b> C				3376
3377	630	ROL(4) = 1. / RROL			3377
3378 3379	631 632	UOL( 4 ) = 1. / UUOL VOL( 4 ) = 1. / VVOL			3378 3379
3380	633	WOL(4) = 1. / WWOL			3380
3381	634	POL( 4 ) = 1. / PPOL			3381
3382	635 C				3382 3383
3383 3384	63 <b>6</b> 637	ROR(4) = 1. / RROR UOR(4) = 1. / UUOR			3384
3385	638	VOR(4) = 1. / VVOR			3385
3386	639	WOR( 4) = 1. / WWOR			3386
3387 3388	640 641 C	POR(4) = 1. / PPOR			3387 3388
3389	642 C	ISNR = SIGN( 1. , ROR( 1 ) )			3389
3390	643	ISNL = SIGN( 1. , ROL( 1 ) )			3390
3391 3392	644 C 645	TEMPR = ( 1 + ISNR ) * RRR( KC	) +		3391 3392
3393	64 <b>6</b>	. (1 - ISNR) * RRL( KC	)		3393
3394	647	RUVPR1 = 0.5 * TEMPR * ROR( 1	) [*]		3394
3395 3396	648 C 649	TEMPL = ( 1 + ISNL ) * RRR( KC	) +		3395 3396
3397	650	. (1 - ISNL) * RRL( KC	)		3397
3398	651	RUVPL1 = 0.5 * TEMPL * ROL( 1			3398
3399 3400	652 C 653	ISNR = SIGN( 1., ROR( 2 ))			3399 3400
3400	654	ISAR = SIGA(1., ROR(2)) ISAL = SIGN(1., ROL(2))			3401
3402	6 <b>55</b> C				3402
3403	656	TEMPR = (1 + ISNR) * RRR(KC)	) +		3403 3404
3404 3405	657 658	. (1 - ISNR) * RRL(KC RUVPR2 * 0.5 * TEMPR * ROR(2	)		3404
3406	65 <b>9</b> C				3406
3407	660	TEMPL = ( 1 + ISNL ) * RRR( KC	) +		3407

Thu Jul	1 14:17:00	1993 three	d.f		SUBROUTINE GRADNT		page	48
3408	661		- ISNL ) *					3408
3409 3410	6 <b>62</b> 6 <b>63</b> C	RUVPL2 = 0.5	5 * TEMPL *	ROL(2)				3409 3410
3411 3412	664 665	ISNR = SIGN						3411
3413	6 <b>66</b> C	ISNL - SIGN						3412 3413
3414 3415	6 <b>67</b> 6 <b>68</b>	TEMPR = (1)	+ ISNR ) * - ISNR ) *	RRR(KC)	+			3414 3415
3416	669	RUVPR3 = 0.5	5 * TEMPŔ *	ROR( 3)				3416
3417 3418	670 C 671	TEMPL = ( 1	+ ISNL ) *	RRR( KC )	+			3417 3418
3419 3420	672 673		- ISNL ) *	RRL(KC)				3419
3421	674 C							3420 3421
3422 3423	675 67 <b>6</b>	ISNR = SIGN ISNL = SIGN						3422 3423
3424 3425	677 C 678							3424
3426	679		- ISNR ) *	RRL(KC)	+			3425 3426
3427 3428	6 <b>80</b> 6 <b>81</b> C	RUVPR4 = 0.5	5 * TEMPR *	ROR( 4 )				3427 3428
3429	682	TEMPL = (1)			+			3429
3430 3431	683 684	. (1 RUVPL4 = 0.5	- ISNL ) * 5 * TEMPL *					3430 3431
3432 3433	685 C 686			• •	DURING 1 DURINDOO	DIB <b>UDI D</b>		3432
3434	687	•	= AUTUI( I.		RUVPL1 , RUVPR2 , RUVPL3 , RUVPR4 ,			3433 3434
3435 3436	6 <b>88</b> C 6 <b>89</b>	ISNR - SIGN(	(1 110 <b>R</b> (	1))				3435 3436
3437	690	ISNL = SIGN						3437
3438 3439	691 C 692	Tempr = ( 1	+ ISNR ) *	UUR( KC )	+			3438 3439
3440 3441	693 694	. (1	- ISNR ) *	UUL(KC)				3440
3442	6 <b>95</b> C	RUVPR1 = 0.5						3441 3442
3443 3444	6 <b>96</b> 697	TEMPL = (1)	+ ISNL ) * - ISNL ) *		+			3443 3444
3445	698	RUVPL1 = 0.5	5 * TEMPL *	UOL( 1 )				3445
3446 3447	699 C 700	ISNR - SIGN(	(1., UOR(	2))				3446 3447
3448 3449	7 <b>01</b> 7 <b>02</b> C	ISNL = SIGN(						3448 3449
3450	703	TEMPR = (1)			+			3450
3451 3452	7 <b>04</b> 7 <b>05</b>	- RUVPR2 = 0.5	- ISNR ) * 5 * TEMPR *	UOR(2)				3451 3452
3453 3454	7 <b>06</b> C 7 <b>07</b>	TEMPL = ( 1	+ (SNL) *	HIR KC )	+			3453 3454
3455	708	. (1	- ISNL ) *	UUL( KC )				3455
3456 3457	7 <b>09</b> 7 <b>10</b> C	RUVPL2 = 0.5	D * IEMPE *	UUL(2)				3456 3457
3458 3459	7 <b>11</b> 71 <b>2</b>	ISNR = SIGN( ISNL = SIGN(						3458 3459
3460	7 <b>13</b> C							3460
3461 3462	714 715	TEMPR = (1	+ ISNR ) * - ISNR ) *	UUR( KC ) UUL( KC )	+			3461 3462
3463 3464	716 717 C	RUVPR3 = 0.5	5 * TEMPR *	UOR( 3 )				3463
3465	718	TEMPL = ( 1	+ ISNL ) *	UUR( KC )	+			3464 3465
3466 3467	7 <b>19</b> 7 <b>20</b>	. (1 RUVPL3 = 0.5	- ISNL ) *	UUL( KC )				3466 3467
3468	7 <b>21</b> C							3468
3469 3470	7 <b>22</b> 7 <b>23</b>	ISNR = SIGN( ISNL = SIGN(						3469 3470
3471 3472	724 C 725	TEMPR = (1			*			3471 3472
3473	726	. (1	- ISNR ) *	UUL( KC )	•			3473
3474 3475	7 <b>27</b> 7 <b>28</b> C	RUVPR4 = 0.5	) * IEMPR *	UUR(4)				3474 3475
3476 3477	729 730	$TEMPL = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$		· · · ·	+			3476 3477
3478	731	. RUVPL4 = 0.5	- ISNL ) * 5 * TEMPL *					3478
3479 3480	732 C 733	UMIN( KC ) =	AMIN1( 1.	, RUVPR1 .	RUVPL1 , RUVPR2 ,	RUVPL2 .		3479 3480
3481	734	•	• ••• •		RUVPL3 , RUVPR4 ,			3481

Thu Jul	1 14:17	:00	1993 threed.f	SUBROUTINE GRADNT	page	49
3482	735	r				3482
3483	736		ISNR = SIGN( 1. , VOR( 1 ) )			3483
3484	737		ISNL = SIGN( 1., VOL( 1 ) )			3484
3485		С				3485
3486	739		TEMPR = (1 + ISNR) * VVR(KC)			3486
3487	740		(1 - ISNR) * VVL(KC)			3487
3488 3489	741 742	С	RUVPR1 = 0.5 * TEMPR * VOR( 1 )			3488
3490	743	C	TEMPL = (1 + ISNL) * VVR( KC )	+		3489 3490
3491	744		. (1 - ISNL) * VVL( KC )			3491
3492	745		RUVPL1 = 0.5 * TEMPL * VOL( 1 )			3492
3493		С				3493
3494	747		ISNR = SIGN(1., VOR(2))			3494
3495 3496	748	С	ISNL = SIGN(1., VOL(2))			3495
3490	7 <b>49</b> 750	L	TEMPR = ( 1 + ISNR ) * VVR( KC )			3496
3498	751		(1 - ISNR) * VVL(KC)			3497 3498
3499	752		RUVPR2 = 0.5 * TEMPR * VOR( 2 )			3499
3500		C				3500
3501	754		TEMPL = (1 + ISNL) * VVR(KC)			3501
3502	755		. (1 - iSNL) * VVL( KC )			3502
3503 3504	756 757 (	С	RUVPL2 = 0.5 * TEMPL * VOL( 2 )			3503
3505	758	L I	ISNR = SIGN( 1. , VOR( 3 ) )			3504 3505
3506	759		ISNL = SIGN(1., VOL(3))			3505
3507		С				3507
3508	761		TEMPR = (1 + ISNR) * VVR(KC)	+		3508
3509	762		. '1 - ISNR ) * VVL( KC )			3509
3510	763	~	RUVPR35 * TEMPR * VOR( 3 )			3510
3511 3512	764 ( 765	С	TEMPL = ( 1 + ISNL ) * VVR( KC )			3511
3513	766		(1 - ISNL) * VVL(KC)	*		3512 3513
3514	767		RUVPL3 = 0.5 * TEMPL * VOL(3)			3514
3515		C				3515
3516	769		ISNR = SIGN(1., VOR(4))			3516
3517	770	~	<b>ISNL =</b> SIGN( 1. , VOL( 4 ) )			3517
3518 3519	7 <b>71</b> ( 7 <b>72</b>	C	TCMOD = (1 + ISND) + WUD(VC)			3518
3520	773		TEMPR = (1 + ISNR) * VVR(KC) . (1 - ISNR) * VVL(KC)	•		3519 3520
3521	774		RUVPR4 = 0.5 * TEMPR * VOR(4)			3521
3522		C				3522
3523	7 <b>76</b>		TEMPL = (1 + ISNL) * VVR(KC)	+		3523
3524	777		. (1 - ISNL) * VVL( KC )			3524
3525 3526	7 <b>78</b> 7 <b>79</b> (	C	RUVPL4 = 0.5 * TEMPL * VOL( 4 )			3525
3527	780		VMIN( KC ) = AMIN1( 1. , RUVPR1	OUNDLI DUNDOZ DUNDLZ		3526 3527
3528	781			, RUVPL3 , RUVPR4 , RUVPL4 )		3028
3529	782 (	0		• • • • • • • • • • • • • • •		3529
3530	783		ISNR = SIGN(1., WOR(1))			3530
3531	784	~	ISNL = SIGN( 1. , WOL( 1 ) )			3531
3532 35 <b>33</b>	785 ( 786	0	TEMPR = (1 + ISNR) * WWR(KC)	+		3532 3533
3534	787		(1 - ISNR) * WWL(KC)			3534
3535	788		RUVPR1 = 0.5 * TEMPR * WOR( 1 )			3535
3536		2				3536
3537	730		TEMPL = (1 + ISNL) * WWR(KC)	+		3537
3538 3539	791		. (1 - ISNL) * WWL(KC)			3538
3539	7 <b>92</b> 7 <b>93</b> (	5	RUVPL1 = 0.5 * TEMPL * WOL(1)			3539 3540
3541	794	•	ISNR = SIGN( 1. , WOR( 2 ) )			3541
3542	795		ISNL = SIGN(1., WOL(2))			3542
3543	796 (	2				3543
3544	797		TEMPR = (1 + ISNR) * WWR(KC)	+		3544
3545 3546	7 <b>98</b> 79 <b>9</b>		. (1 - ISNR) * WWL(KC) RUVPR2 = 0.5 * TEMPR * WOR(2)			3545 3546
3540	800 (		NUTERE * U.D " TENER " WURL ( )			3540
3548	801	-	TEMPL = ( 1 + ISNL ) * WWR( KC )	+		3548
3549	802		. (1 - [SNL) * WWL(KC)			3549
3550	803		RUVPL2 = 0.5 * TEMPL * WOL( 2 )			3550
3551	804 (					3551
3552 3553	805 806		ISNR = SIGN(1, WOR(3)) $ISNL = SIGN(1, WOR(3))$			3552 3553
3554	807 (	-	ISNL = SIGN( 1. , WOL( 3 ) )			3554
3555	808	-	TEMPR - (1 + ISNR) * WWR(KC)	+		3555

Thu Jul	1 14:17:00	) 1993	threed.f		SUBROUTINE GRADNT		page	50
3556	809	•	(1 - ISNR) *	WWL( KC )				3556
3557 35 <b>58</b>	810 811 C	KUVPR	3 = 0.5 * TEMPR *	WOR(3)				3557 3558
3559	812	TEMPL	= (1 + ISNL) *		+			3559
3560 3561	813 814	RUVPL	( 1 - ISNL ) * 3 = 0.5 * TEMPL *					3560 3561
3562	815 C							3562
3563 3564	816 817		= SIGN( 1. , WOR( = SIGN( 1. , WOL(					3563 3564
3565 3566	81 <b>8</b> C 819							3565
3567	820	IEMPK	= (1 + ISNR) * (1 - ISNR) *		+			3566 3567
3568 3569	821 822 C	RUVPR	4 = 0.5 * TEMPR *	WOR(4)				3568
3570	823	TEMPL	= (1 + ISNL) *	WWR(KC)	+			3569 3570
3571 3572	824 825		(1 - ISNL) * 4 = 0.5 * TEMPL *	WWL( KC )				3571
3573	826 C							3572 3573
3574 3575	827 828	WMIN(	KC ) = AMIN1( 1.	, RUVPR1 .	RUVPL1 , RUVPR2 ,	RUVPL2		3574
3576	829 C	•			RUVPL3 , RUVPR4 ,	KUVPL4 )		3575 3576
3577 3578	830 831		= SIGN( 1. , POR( = SIGN( 1. , POL(					3577
3579	8 <b>32</b> C							3578 3579
3580 3581	833 834	TEMPR	= (1 + ISNR) * (1 - ISNR) *		+			3580 3581
3582	835	RUVPR	L = 0.5 * TEMPR *					3582
358 <b>3</b> 3584	836 C 837	TEMPL	= ( 1 + ISNL ) *	PPR( KC )	+			3583 3584
3585	838		(1 - ISNL) *	PPL( KC )				3585
3586 3587	839 840 C	RUVPL.	l = 0.5 * TEMPL *	POL( 1 )				3586 3587
3588	841		SIGN( 1. , POR(					3588
358 <del>9</del> 3590	842 843 C	1206	· SIGN( 1. , POL(	2))				3589 3590
3591	844	TEMPR	* (1 + ISNR) *		+			3591
3592 3593	845 846	RUVPR	(1 - ISNR) * 2 = 0.5 * TEMPR *					3592 3593
3594 3595	847 C			-				3594
3596	848 849	•	= ( 1 + ISNL ) * ( 1 - ISNL ) *	PPL(KC)	+			35 <del>95</del> 3596
3597 3598	8 <b>50</b> 851 C	RUVPL2	= 0.5 * TEMPL *	POL(2)				3597
3599	852	ISNR -	SIGN( 1. , POR(	3))				3598 3599
3600 3601	853 854 C	ISNL -	SIGN( 1., POL(	3))				3600 3601
3602	855	TEMPR	= (1 + ISNR) *		+			3602
3603 3604	856 857	RUVPR	( 1 - ISNR ) * = 0.5 * TEMPR *	PPL(KC) POR(3)				3603 3604
3605	8 <b>58</b> C							3605
3606 3607	859 860	•	* ( 1 + ISNL ) * ( 1 - ISNL ) *	PPL(KC)	*			3606 3607
3608 3609	861 862 C	RUVPL3	= 0.5 * TEMPL *	POL(3)				3608
3610	863		SIGN( 1., POR(					3609 3610
3611 3612	864 865 C	ISNL -	SIGN( 1. , POL(	4))				3611 3612
3613	866	TEMPR	= ( 1 + ISNR ) *		+			3613
3614 3615	867 868	RIIVPR4	( 1 - ISNR ) * = 0.5 * TEMPR *	PPL(KC)				3614 3615
3616	8 <b>69</b> C							3616
3617 3618	87 <b>0</b> 871	IEMPL	<pre>* ( 1 + ISNL ) *   ( 1 - ISNL ) *</pre>		+			3617 3618
3619	872	RUVPL4	= 0.5 * TEMPL *	POL( 4 )				3619
3620 3621	873 C 874	PMIN(	KC ) - AMIN1( 1.	, RUVPR1 .	RUVPL1 , RUVPR2 ,	RUVPL2 .		3620 3621
3622	875 876 C	•			RUVPL3 , RUVPR4 ,			3622
3623 3624	877 170	CONTIN	UE					364 <b>3</b> 3624
3625 3626	878 C 879							3625
3627	8 <b>80</b> C		IH = 1 , 3					3626 3627
3628 3629	881 882		IC = NC1 , NC2 = IC = NC1 + 1					3628 3629
	~~~	Νu	IN THE T					3463

Thu Jul	1 14:1	7:00	993 threed.f	SUBROUTINE GRADNT	page	51
3630 3631 3632 3633 3634 3635	883 884 885 886 887 888	c	RGRAD(IC, IH) = RGRAD(IC) UGRAD(IC, IH) = UGRAD(IC) VGRAD(IC, IH) = VGRAD(IC) WGRAD(IC, IH) = VGRAD(IC) PGRAD(IC, IH) = VGRAD(IC)	, IH) * UMIN(KC) , IH) * VMIN(KC) , IH) * WMIN(KC)		3630 3631 3632 3633 3634 3635
3636 3637 3638	889 890 891	C 330 C	CONTINUE			3636 3637 3638
3639 3640 3641	892 893 894	80	NC1 = NC2 + 1 NC2 = NC2 + NOFVEC(INC + 1) CONTINUE			3639 3640 3641
3642 3643	8 95 8 96	С	CALL FCHART			3642 3643
3644 3645	897 898	С	RETURN			3644 3645
3646 3647	8 99 9 00	С	END			3646 3647
Thu Jul	1 14:1	7:00	993 threed.f	SUBROUTINE FIRST		
3648 3649	1 2	с	SUBROUTINE FIRST			3648 3649
3650 3651	3 4	C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ī		3650 3651
3652 3653	5	Č	FIRST IS TO BY PASS GRADIENT /			3652 3653
3654	7	Č				3654
3655 3656	9	C	include 'dmsh00.h'			3655 3656
3657 3658	10 11		include 'dmsh00.h' include 'dhydm0.h' include 'dphsm0.h'			3657 3658
3659 3660	12 13	С	include 'dmtrl0.h'			3659 3660
3661 3662	14 15	с	DO 110 IS = 1 , NS			3661 3662
3663	16	C	ICL = JS(7, IS)			3663
3664 3665	17 18	С	ICR = JS(8, IS)			3664 3665
3666 3667	19 20		RL(IS) = HYDV(ICL, 1) UL(IS) = HYDV(ICL, 2) * 1 HYDV(ICL, 2) * 1 HYDV(ICL, 3) * 1 HYDV(ICL, 4) * 1	XN(15) +		3666 3667
3668 3669	21		. HYDV(1CL , 3) * HYDV(1CL , 4) * 7	YN(IS) + ZN(IS)		3668 3669
3670	23		. HYDV(ICL, 4) * VL(IS) = HYDV(ICL, 2) * HYDV(ICL, 3) * HYDV(ICL, 3) * HYDV(ICL, 4) * HYDV(ICL, 3) * HYDV(ICL, 4)	XP(IS) +		3670 3671
3671 3672	20					3672
3673 3674	26 27		WL(IS) = HYDV(ICL , 2) * 1 HYDV(ICL , 3) * 1	YT(IS) +		3673 3674
3675 3676	28 29		. HYDV(ICL, 4) * 7 PL(IS) = HYDV(ICL, 5)	ZT(IS)		3675 3676
3677 3678	30 31		AL(IS) = HYDV(ICL , 6) GL(IS) = HYDV(ICL , 7)			3677 3678
3679	32 33	C	EL(IS) = HYDV(ICL , 8)			3679 3680
3680 3681	34	L	IATRB = JS(9, 15)			3681
3682 3683	35 36	с	IF(IATRB . EQ . 0) THEN			3682 3683
3684 3685	37 38		RR(IS) = HYDV(ICR , 1) UR(IS) = HYDV(ICR , 2) * ;	XN(IS) +		3684 3685
3686 3687	39 40			YN(IS) + ZN(IS)		3686 3687
3688 3689	41 42		VR(IS) = HYDV(ICR , 2) * ;	XP(IS) + YP(IS) +		3688 3689
3690	43		. HYDV(ICR, 4) * ;	ZP(IS)		3690 3691
3691 3692	44 45		. HYDV(ICR , 3) * '	XT(IS) + YT(IS) +		3692
3693 3694	46 47		. HYDV(ICR , 4) * : PR(IS) = HYDV(ICR , 5)	21(15)		3693 3694
3695 3696	48 49		AR(IS) = HYDV(ICR,6) GR(IS) = HYDV(ICR,7)			3695 3696
3697 3698	50 51	с	ER(IS) = HYDV(ICR , 8)			3697 3698
3699	52 53	c	ELSE			3699 3700
3700	22	L				3700

Thu Jul	1 14:1	7:00	1993 threed.f SUBROUTINE FIRST	ruge	52
3701	54		IF(IATRB . EQ . 8) THEN		3701
3702	55	C			3702
3703	56		RR(IS) = RIN		3703
3704	57		UR(IS) = UIN * XN(IS) + VIN * YN(IS) + WIN * ZN(IS)		3704
3705 3706	58 59		VR(IS) = UIN * XP(IS) + VIN * YP(IS) + WIN * ZP(IS)		3705
3707	60		WR(IS) = UIN * XT(IS) + VIN * YT(IS) + WIN * ZT(IS) PR(IS) = PIN		3706
3708	61		AR(IS) = AL(IS)		3707 3708
3709	62		GR(IS) = GL(IS)		3709
3710	63		ER(IS) = EL(IS)		3710
3711	64	C			3711
3712	65		END IF		3712
3713	66	С			3713
3714 3715	67 68	С	IF(IATRB . EQ . 7) THEN		3714
3716	69	L.	RR(IS) - RL(IS)		3715
3717	70		UR(IS) = UL(IS)		3716
3718	71		VR(1S) = VL(1S)		3717 3718
3719	72		WR(IS) = WL(IS)		3719
3720	73		PR(IS) = PL(IS)		3720
3721	74		AR(IS) = AL(IS)		3721
3722	75		GR(IS) = GL(IS)		3722
3723	76	~	ER(IS) = EL(IS)		3723
3724 3725	77 78	C			3724
3726	79	С	END IF		3725
3727	80	C	IF(IATRB . EQ . 6) THEN		3726 3727
3728	81	Ç			3728
3729	82		RR(IS) = RL(IS)		3729
3730	83		UR(IS) = -UL(IS)		3730
3731	84		VR(IS) = VL(IS)		3731
3732	85		WR(IS) = WL(IS)		3732
3733 3734	86 87		PR(IS) = PL(IS)		3733
3735	88		AR(IS) = AL(IS) GR(IS) = GL(IS)		3734
3736	89		ER(1S) = EL(1S)		3735 3736
3737	90	C			3737
3738	91		END IF		3738
3739	92	C			3739
3740	93	~	END IF		3740
3741	94	C	CONT 1111		3741
3742 3743	95 96	110 C	CONTINUE		3742
3743	90 97	L.	RETURN		3743 3744
3745	98		END		3745
3746	99	C			3746

Thu Jul	1 14:17:0	0 1993 threed.f SUBROUTINE FCHART	page 53
3747	1	SUBROUTINE FCHART	3747
3748 3749	2 C 3 C-		3748
3750	4 C		3749 3750
3751	5 C	CHARCT INTRODUCE CORRECTION FOR SECOND ORDER CALCULATION 1	3751
37 52 37 53	6 C 7 C-		3752 3753
3754	8 C		3754
3755 3756	9 10	include 'dmsh00.h' include 'dhydm0.h'	3755
3757	11	include 'dphsm0.h'	3756 3757
3758 3759	12 13 C	include 'dmtrl0.h'	3758
3760	13 C	REAL ZZLEFT(128),ZOLEFT(128),ZPLEFT(128),ZMLEFT(128)	3759 3760
3761	15	REAL ZZRIGT(128),ZORIGT(128),ZPRIGT(128),ZMRIGT(128)	3761
3762 3763	16 17	REAL UPLEFT(128),UMLEFT(128),URLEFT(128) REAL UPRIGT(128),UMRIGT(128),URRIGT(128)	3762
3764	18	REAL UVLEFT(128), UVRIGT(128), CNLEFT(128), CNRIGT(128)	3763 3764
3765 3766	19 20	REAL RLEFTT(128), ULEFTT(128), VLEFTT(128), PLEFTT(128),	3765
3767	21	. ALEFTT(128) REAL RRIGHT(128),URIGHT(128),VRIGHT(128),PRIGHT(128),	3766 3767
3768	22	ARIGHT(128)	3768
3769 3770	23 C 24	NS1 = 1	3769
3771	25	NSI = 1 NSZ = NOFVES(1)	377C 3771
3772 3773	26 27 C	DO 90 INS = 1 , NVEES	3772
3774	28	DO 110 IS = NS1 , NS2	3773 3774
3775	29	KS = IS - NS1 + I	3775
3776 3777	30 C 31	ICL = JS(7, IS)	3776 3777
3778	32	ICR = JS(8, IS)	3778
3779 3780	33 C 34		3779
3781	35	GL(IS) = HYDV(ICL , 7) CNLFTS = GL(IS) * HYDV(ICL , 5) / HYDV(ICL , I)	3780 3781
3782	36	CNLFT = SQRT(CNLFTS)	3782
3783 3784	37 C 38	IATRB - JS(9 , IS)	3783
3785	39	IF(IATRB . EQ . 0) THEN	3784 3785
3786 3787	40 C 41		3786
3788	42	XYZ = 1. / XS(5 , IS) XXN - (XC(1 , ICR) - XC(1 , ICL)) * XYZ	3787 3788
3789	43	YYN = (XC(2 , ICR) - XC(2 , ICL)) * XYZ	3789
3790 3791	44 45 C	ZZN = (XC(3 , ICR) - XC(3 , ICL)) * XYZ	3790 3791
3792	46	UVLFT = HYDV(ICL , 2) * XXN +	3792
37 93 3794	47 48	. HYDV(ICL , 3) * YYN + . HYDV(ICL , 4) * ZZN	3793
3795	49 C	$\cdot \qquad \text{HDV}(100, 4) - 220$	3794 3795
3796	50	GR(IS) = HYDV(ICR, 7)	3796
3797 3798	51 52	CNRGTS = GR(IS) * HYDV(ICR , 5) / HYDV(ICR , 1) CNRGT - SQRT(CNRGTS)	3797 3798
3799	53 C		3799
3800 3801	54 55	UVRGT = HYDV(ICR , 2) * XXN + . HYDV(ICR , 3) * YYN +	3800 3801
3802	5 5	HYDV(ICR, 4) + ZZN	3802
3803 3804	57 C 58	ELSE	3803 3804
3805	59 C		3805
3806	60 61 C	CNRGT = CNLFT	3806
3807 3808	61 C 62	XYZ = 1. / XS(5 , IS)	3807 3808
3809	63	XXN = (XYZMDL(1, IS) - XC(1, ICL)) * XYZ	3809
3810 3811	64 65	YYN = (XYZMDL(2 , IS) - XC(2 , ICL)) * XYZ ZZN = (XYZMDL(3 , IS) - XC(3 , ICL)) * XYZ	3810 3811
3812	66 C		3812
3813 3814	67 68	UVLFT = HYDV(ICL , 2) * XXN + - HYDV(ICL , 3) * YYN +	3813 3814
3815	69	HYDV(ICL, 4) * ZZN	3815
3816 3817	70 C 71	UVRGT - UVLFT	3816 3817
3818	72	GR(IS) = GL(IS)	3818
3819	73 C		3819
3820	74	END IF	3820

Thu Jul	1 14:1	17:00 1	993 threed.f SUBROUTINE FCHART	page	54
3821 3822	75 76	C	CNLEFT(KS) = CNLFT		3821 3822
3823	77	~	CNRIGT(KS) = CNRGT		3823
3824 3825	78 79	С	UVLEFT(KS) - UVLFT		3824 3825
3826 3827	80 81	С	UVRIGT(KS) = UVRGT		3826 3827
3828 3829	82 83	110 C	CONTINUE		3828 3829
3830 3831	84 85	C	DO 130 KS = 1 , NOFVES(INS)		3830 3831
3832 3833	86 87	Ū	ZZLEFT(KS) = .5 * (UVLEFT(KS) + CNLEFT(KS)) * OTT ZZRIGT(KS) =5 * (UVRIGT(KS) - CNRIGT(KS)) * OTT		3832 3833
3834 3835	88	C			3834 3835
3836	89 90	С	CONTINUE		3836
3837 3838	91 92	C CH C	ARACTERISTICS LOCATIONS		3837 3838
3839 3840	93 94	С	DO 140 KS = 1 . NOFVES(INS)		3839 3840
3841 3842	95 96		IF(ZZLEFT(KS) . LT . 9.) ZZLEFT(KS) = 0. IF(ZZRIGT(KS) . LT . 0.) ZZRIGT(KS) = 0.		3841 3842
3843 3844	97 98	C 1 40	CONTINUE		3843 3844
3845 3846	99 100	c			3845 3846
3847	101	C	DO 150 KS = 1 , NOFVES(INS)		3847
3848 3849	102 103		ZOLEFT(KS) = .5 * UVLEFT(KS) * DTT ZORIGT(KS) = .5 * UVRIGT(KS) * DTT		3848 3849
3850 3851	104 105		ZPLEFT(KS) = .5 * (UVLEFT(KS) + CNLEFT(KS)) * DTT ZPRIGT(KS) =5 * (UVRIGT(KS) + CNRIGT(KS)) * DTT		3850 3851
3852 3853	106 107		ZMLEFT(KS) = .5 * (UVLEFT(KS) - CNLEFT(KS)) * DTT ZMRIGT(KS) =5 * (UVRIGT(KS) - CNRIGT(KS)) * DTT		3852 3853
3854 3855	108 109	C 1 50			3854 3855
3856 3857	110 111	С	RST GUESS LEFT AND RIGHT VARIABLES, LINEAR INTERPOLATON		3856 3857
3858	112	C			3858 3859
3859 3860	113 114	-	DO 160 IS = NS1 , NS2 KS = IS - NS1 + 1		3860
3861 3862	1 15 1 16	C	ICL - JS(7 , IS)		3861 3862
3863 3864	117 118	С	ICR = JS(8, IS)		3863 3864
3865 3866	119 120		IATRB = JS(9, IS) IF(IATRB.EQ.0) THEN		3865 3866
3867 3868	121 122	C	XYZ = 1. / XS(5, IS)		3867 3868
3869 3870	123 124		XXN = (XC(1, ICR) - XC(1, ICL)) * XYZ		3869 3870
3871	125	c	YYN = (XC(2 , ICR) - XC(2 , ICL)) * XYZ ZZN = (XC(3 , ICR) - XC(3 , ICL)) * XYZ		3871 3872
3872 3873	126 127	C	XXL = (XYZMDL(1 , IS) - XC(1 , ICL))		3873
3874 3875	128 129	<u>,</u>	YYL = (XYZMDL(2 , IS) ~ XC(2 , ICL)) ZZL = (XYZMDL(3 , IS) ~ XC(3 , ICL))		3874 3875
3876 3877	130 131	C	XX = XXL - ZZLEFT(KS) * XXN		3876 3877
3878 3879	132 133		YY = YYL - ZZLEFT(KS) * YYN ZZ = ZZL - ZZLEFT(KS) * ZZN		3878 3879
3880 3881	134 135	С	HRRL = HYDV(ICL , 1) + RGRAD(ICL , 1) * XX +		3880 3881
3882 3883	136 137		. RGRAD(ICL , 2) * YY + RGRAD(ICL , 3) * ZZ HUUL = HYDV(ICL , 2) + UGRAD(ICL , 1) * XX +		3882 3883
3884 3885	138		. UGRAD(ICL , 2) * YY + UGRAD(ICL , 3) * ZZ		3884 3885
3886	139 140		HVVL = HYDV(ICL, 3) + VGRAD(ICL, 1) * XX + . VGRAD(ICL, 2) * YY + VGRAD(ICL, 3) * ZZ		3886 3887
3887 3888	141		HWWL = HYDV(ICL, 4) + WGRAD(ICL, 1) * XX + HGRAD(ICL, 2) * YY + HGRAD(ICL, 3) * ZZ		3888
3889 3890	143 144	_	HPPL = HYDV(ICL, 5) + PGRAD(ICL, 1) * XX + . PGRAD(ICL, 2) * YY + PGRAD(ICL, 3) * ZZ		3889 3890
3891 3892	145 146	С	GNTLFT = GL(IS) * HRRL * HPPL		3891 3892
3893 3894	147 148	с	SQGMTL - SQRT(GMTLFT)		3893 3894
•					

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE FCHART	pa ge	55
3895 3896	149 150	XX = (ZPLEFT(KS)) YY = (ZPLEFT(KS))	- ZZLEFT(KS)) * XXN - ZZLEFT(KS)) * YYN		3895 3896
3897	151	ZZ = (ZPLEFT(KS)	- ZZLEFT(KS)) * ZZN		3897
3898	152) * XX + UGRAD(ICL . 2) * YY +		3898
3899 3900	153 154	. UGRAD(ICL , 3 PPP = PGRAD(ICL , 1) * $XX + PGRAD(ICL, 2) * YY +$		3899 3900
3901	155	. PGRAD(TCL , 3) * 22		3901
3902 3903	156 157 C	UPLFT =5 * (UUU	+ PPP / SQGMTL) / SQGMTL		3902 3903
3904	157 C	XX = (ZMLEFT(KS)	- ZZLEFT(KS)) * XXN		3904
3905	159	YY = (ZMLEFT(KS))	- ZZLEFT(KS)) * YYN		3905
3906 3907	160 161		- ZZLEFT(KS)) * ZZN) * XX + UGRAD(ICL , 2) * YY +		3906 3907
3 908	162	. UGRAD(ICL , 3) * 22		3908
3909	163) * XX + PGRAD(ICL , 2) * YY +		3909
3910 3911	164 165	PGRAD(ICL, 3 UMLFT = .5 * (UUU	- PPP / SQGHTL) / SQGHTL		3910 3911
3912	1 66 C				3912
3913 3914	167 168	XX = (ZOLEFT(KS))	- ZZLEFT(KS)) * XXN - ZZLEFT(KS)) * YYN		3913 3914
3915	169		- ZZLEFT(KS)) + ZZN		3915
3916	170	PPP = PGRAD(ICL , 1) * XX + PGRAD(ICL , 2) * YY +		3916
3917 3918	171 172 C	. PGRAD(ICL , 3) = 22		3917 3918
3919	173	XX = XXL - ZOLEFT(K			3919
3920	174	YY = YYL - ZOLEFT(K)			3920 3921
3921 3922	17 5 17 6 C	ZZ = ZZL - ZOLEFT(K)	5 / ~ 228		3922
3923	177) + RGRAD(ICL , 1) * XX +		3923
3924 3925	178 179		GRAD(ICL , 2) * YY + RGRAD(ICL , 3) * ZZ + 1. / HRRL - 1. / RRRR		3924 3925
3926	180 C		- 10 / marc - 10 / marc		3926
3927	181		(15) - XC(1, 1CR))		3927 3928
3928 3929	182 183		, IS) - XC(2 , ICR)) , IS) - XC(3 , ICR))		3929
3930	184 C				3930
3931 3932	185 186	XX = XXR + ZZRIGT(K YY = YYR + ZZRIGT(K			3931 3932
3933	187	ZZ = ZZR + ZZRIGT(K)			3933
3934	1 88 C				39 34
3935 3936	189 190		1) + RGRAD(ICR , 1) * XX + * YY + RGRAD(ICR , 3) * ZZ		3935 3936
3937	191	HUUR = HYDV(ICR ,	2) + UGRAD(ICR, 1) * XX +		3937
3938 3939	192 193	. UGRAD(ICR , 2)	* YÝ + UGRAD(ICR , 3) * ZZ 3) + VGRAD(ICR , 1) * XX +		3938 3939
3940	194	. VGRAD(ICR , 2)	* YY + VGRAD(ICR , 3) * ZZ		3940
3941	195	HWWR = HYDV(ICR ,	4) + WGRAD(ICR, 1) + XX +		3941 3942
3942 3943	195 197	HPPR = HYDV(ICR.	* YÝ + WGRAD(ICR , 3) * ZZ 5) + PGRAD(ICR , 1) * XX +		3943
3944	198	. PGRAD(ICR , 2)	* YÝ + PGRAD(ICR , 3) * ZZ		3944
3945 39 46	1 99 C 2 00	GMTRGT = GR(IS) *	HRRR * HPPR		3945 3946
3947	201	SQGMTR = SQRT(GMTR			3947
3948 3949	2 02 C 2 03	YY _ (77DICT(KS)	- ZPRIGT(KS)) * XXN		3948 3949
3949 3950	203		- ZPRIGI(KS)) $+$ XXN - ZPRIGT(KS)) $+$ YYN		3950
3951	205		- ZPRIGT(KS)) * ZZN		3951
3952 3953	206 207	UUU = UGRAD(ICR, 1) UGRAD(ICR, 3)) * XX + UGRAD(ICR , 2) * YY +) * 77		3952 3953
3954	208	PPP = PGRAD(ICR , 1) * XX + PGRAD(ICR , 2) * YY +		3954
3955 3956	209 210	. PGRAD(ICR , 3) * ZZ + PPP / SQGMTR) / SQGMTR		3955 3956
3950	211 C	unui 13 (000	/ Squitte / / Squitte		3957
3958	21 2		- ZMRIGT(KS)) * XXN		3958 3959
3959 3960	21 3 21 4		– ZMRIGT(KS)) * YYN – ZMRIGT(KS)) * ZZN		3960
3961	215	UUU = UGRAD(ICR , 1) * XX + UGRAD(ICR , 2) * YY +		3961
3962 3963	21 6 217	UGRAD(ICR , 3) * ZZ) * XX + PGRAD(ICR , 2) * YY +		3962 3963
3964	218	. PGRAD(ICR , 3) * 22		3964
3965	219		- PPP / SQGMTR) / SQGMTR		3965 3966
3966 3967	2 20 C 2 21	XX = (ZZRIGT(KS)	- ZORIGT(KS)) * XXN		3967
3968	222		- ZORIGT(KS)) * YYN		3968

Thu Jul	1 14:1	7:00	1993 threed.f	SUBROUTINE FCHART	pa ge	56
3969 3970	2 23 224		ZZ = (ZZRIGT(KS) - ZORIGT(KS) PPP = PGRAD(ICR , 1) * XX + PGRA			3969
3971	225		$\frac{PFP - PGRAD(ICR, 1)}{PGRAD(ICR, 3) * ZZ}$			3970 3971
3972	2 26	C				3972
3973	227		XX = XXR + ZORIGT(KS) * XXN			3973
3974 3975	2 28 2 29		YY = YYR + ZORIGT{ KS) * YYN ZZ = ZZR + ZORIGT(KS) * ZZN			3974 3975
3976	230	C	LL = LLR + LORIDI(RS) + LLR			3976
3977	231	-	RRRR = HYDV(ICR , 1) + RGRAD(IC	R.1) * XX +		3977
3978	232		. RGRAD(ICR , 2) * YY + RGRAD(ICR , 3) * ZZ		3978
3979 3980	2 33 2 34	С	URRGT = PPP / GMTRGT + 1. / HRRR -	1. / RRRR		3979
3981	235	C	ELSE			3980 3981
3982	236	С				3982
3983	237		XYZ = 1. / XS(5, IS)			3983
3984	238		XXN = (XYZMDL(1, IS) - XC(1 , ICL)) * XYZ		3984
3985 3986	239 240		YYN = (XYZMDL(2 , IS) - XC(2 ZZN = (XYZMDL(3 , IS) - XC(2 + 10 + 1 = 12 3 + 10 + 127		3985 3986
3987	241	С	$\sum n = (n \sum n \sum (n \sum n \sum n \sum n \sum n \sum n \sum n \sum n$			3987
3988	242		XXL = (XYZMDL(1, IS) - XC(1 , ICL))		3988
3989	243		YYL = (XYZMDL(2 , IS) - XC()			3989
3990 3991	244 245	С	ZZL = (XYZMDL(3, IS) - XC(1)	3, ILL))		3990. 3991
3992	246	C	XX = XXL - ZZLEFT(KS) * XXN			3992
3993	247		YY = YYL - ZZLEFT(KS) * YYN			3993
3994	248	•	ZZ = ZZL - ZZLEFT(KS) * ZZN			3994
3995 3996	2 49 2 50	С	HRRL = HYDV(ICL, 1) + RGRAD(3995 3996
3997	251		$\frac{1}{100} + \frac{1}{100} + \frac{1}$	ICL , I) = XA + ICL , I) = ZZ		3997
3998	252		HUUL = HYDV(ICL , 2) + UGRAD(ICL , 1) * XX +		3998
3999	253		. UGRAD(ICL, 2) * YY + UGRAD(ICL , 3) * ZZ		3999
4000	254		HVVL = HYDV(ICL, 3) + VGRAD(ICL , 1) * XX +		4000 4001
4001 4002	255 256		. VGRAD(ICL , 2) * YY + VGRAD(HWWL = HYDV(ICL , 4) + WGRAD(ICL , 3) * ZZ ICL , 1) * XX +		4002
4003	257		. WGRAD(ICL , 2) * YY + WGRAD(ICL 3) * ZZ		4003
4004	258		. WGRAD(ICL , 2) * YY + WGRAD(HPPL = HYDV(ICL , 5) + PGRAD(ICL , 1) * XX +		4004
4005	259	c	. PGRAD(ICL , 2) * YY + PGRAD(ICL , 3) * ZZ		4005
4006 40 0 7	2 60 2 61	C	GMTLFT = GL(IS) * HRRL * HPPL			4006 4007
4008	262		SQGMTL = SQRT(GMTLFT)			4008
4009	2 63	C				4009
4010	264		XX = (ZPLEFT(KS) - ZZLEFT(KS)			4010
4011 4012	265 266		YY = (ZPLEFT(KS) - ZZLEFT(KS) ZZ = (ZPLEFT(KS) - ZZLEFT(KS)			4011 4012
4013	267		UUU = UGRAD(ICL.1) * XX + UGRA			4013
4014	268		. UGRAD(ICL , 3) * ZZ			4014
4015	269		PPP = PGRAD(ICL, 1) * XX + PGRAD	D(ICL , 2) * YY +		4015
4016 4017	27 0 271		- PGRAD(ICL , 3) * ZZ UPLFT =5 * (UUU + PPP / SQGMT			401 6 4017
4018	272	С		e / / Squitte		4018
4019	273		XX = (ZMLEFT(KS) - ZZLEFT(KS)			4019
4020	274		YY = (ZMLEFT(KS) - ZZLEFT(KS))			4020 4021
4021 4022	275 276		ZZ = (ZMLEFT(KS) - ZZLEFT(KS) UUU = UGRAD(ICL , 1) * XX + UGRA			4021
4023	277		. UGRAD(ICL , 3) * ZZ			4023
4024	278		PPP = PGRAD(ICL, 1) * XX + PGRA	D(ICL , 2) * YY +		4024
4025	279		. PGRAD(ICL , 3) * ZZ) / SOCHTI		4025 4026
4026 4027	2 80 281	с	UMLFT = .5 * (UUU - PPP / SQGMT	L) / SUUNIL		4020
4028	282	•	XX = (ZOLEFT(KS) - ZZLEFT(KS)) * XXN		4028
4029	283		YY = (ZOLEFT(KS) - ZZLEFT(KS)) * YYN		4029
4030	284		ZZ = (ZOLEFT(KS) - ZZLEFT(KS))			4030 4031
4031 4032	2 85 2 86		PPP = PGRAD(ICL, 1) * XX + PGRA . PGRAD(ICL, 3) * ZZ	U(ICC , ') " IT *		4031
4033	287	C				4033
4034	288		XX = XXL - ZOLEFT(KS) * XXN			4034
4035	289		YY = YYL - ZOLEFT(KS) * YYN			4035 4036
4036 4037	290 291	С	ZZ = ZZL - ZOLEFT(KS) * ZZN			4030
4038	292	~	RRRR = HYDV(ICL , 1) + RGRAD(IC	L, 1) * XX +		4038
4039	293		. RGRAD(ICL , 2) * YY + RGRAD(ICL , 3) * ZZ		4039
4040	294	с	URLFT = PPP / GMTLFT + 1. / HRRL -	1. / RRRR		4040 4041
4041 4042	295 296	L.	HRRR - HRRL			4042
						_

Thu Jul	1 14:1	17:00 1993	threed.f	SUBROUTINE FCHART	pa ge	57
4043	297	HU	R = HUUL			4043
4044	298		R = HVVL			4044
4045	299		R = HWWL			4045
4046 4047	300 301	нн О	R = HPPL			4046
4048	302		RGT = GMTLFT			4047 4048
4049	303	SQ	MTR = SQGMTL			4040
4050	304	C				-050
4051 4052	305 306		T = UPLFT T = UMLFT			4051
4053	307		T = URLFT			1052
4054	308	С				4053 4054
4055	309	END	IF			4055
4056 4057	310	C DRI				4056
4058	311 312		KS) = HRRL KS) = HUUL			4057
4059	313		KS) = HVVL			4058 4059
4060	314		KS) = HWWL			4060
4061	315		KS) = HPPL			4061
4062 4063	316 317	000	KS) = HRRR			4062
4064	318	UUR				4063 4064
4065	319	VVR				4065
4066	320	WWR				4066
4067 4068	321		KS) = HPPR			4067
4068	3 22 32 3	C	FT(KS) = UPLFT			4068
4070	324		T(KS) = UMLFT			4069 4070
4071	325	URL	FT(KS) = URLFT			4071
4072 4073	326	C				4072
4073	327 328		GT(KS) = UPRGT GT(KS) = UMRGT			4073
4075	329		ST(KS) = URRGT			4074 4075
4076	330	C				4075
4077	331	160 CON	INUE			4077
4078 4079	3 32 3 33	C C CORREC	ON AF THE FIRST CHESS			4078
4080	334	C	ON OF THE FIRST GUESS			4079 4080
4081	335	00	O KS = 1 , NOFVES(INS)			4081
4082	336	С				4082
4083 4084	337 3 38	IF(WLEFT(KS) + CNLEFT(KS) . L	E, 0.) UPLEFT(KS) = 0.		4083
4085	339	IF	IVLEFT(KS) - CNLEFT(KS) . L IVLEFT(KS) .	E = 0.) URLEFT (KS) = 0. E = 0.) URLEFT (KS) = 0.		4084 4085
4086	340	C		z = 0.000		4086
4087	341	IF(WRIGT(KS) + CNRIGT(KS) . G	E . 0.) UPRIGT(KS) = 0.		4087
4088 4089	342 343	1F(UVRIGT(KS) - CNRIGT(KS) . G	E. 0.) UMRIGT(KS) = 0.		4088
4099	344	C 1F(IVRIGT(KS). G	E . O.) URRIGT(KS) = O.		4089
4091	345	170 CON	NUE			4090 4091
4092	346	C				4092
4093 4094	347 348	C FINAL V	LUES FOR RIGHT AND LEFT STATES	,		4093
4095	349	-	0 KS = 1 , NOFVES(INS)			4094 4095
4096	350		S = KS + NS1 - 1			4095
4097	351	C				4097
4098 4099	352 353		.FT = GL(IS) * RRL(KS) * PP ITL = SQRT(GMTLFT)	L(KS)		4098
4100	354	C Syd	IL = SURT (GRIEFI)			4099 4100
4101	355		GT = GR(IS) * RRR(KS) * PP	R(KS)		4101
4102	356		TR = SQRT(GMTRGT)			4102
4103 4104	357 3 58	C	KS) = 1 / 1 / DOI (WC)	/ HOLFET/ KC) .		4103
4104	359		KS) ≈ 1. / (1. / RRL(KS) UMLEFT(KS	- (UPLEFT(KS) +) + URLEFT(KS)))		4104 4105
4106	360	່ນນເ	KS) = UUL(KS) + SQGMTL * (UPLEFT(KS) -		4105
4107	361			UMLEFT(KS))		4107
4108 4109	362 363	VVL	KS) = $VVL(KS)$ + $SQGMTL$ * (UPLEFT(KS) -		4108
4109	364		KS) = WWL(KS) + SQGMTL * (UMLEFT(KS)) UPLEFT(KS)-		4109 4110
4111	365			UMLEFT(KS))		4111
4112	366	PPL	KS) = PPL(KS) + $GMTLFT$ * (UPLEFT(KS) +		4112
4113 4114	367 368	с .		UMLEFT(KS))		4113
4115	369		KS) = 1. / (1. / RRR(KS)	- (UPRIGT(KS) +		4114 4115
4116	370	•	UMRIGT(KS) + URRIGT(KS))		4116
			• -	· · ·		

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE FCHART	page	58
4117	371	UUR(KS) = UUR(KS) + SQGMTR	* (UPRIGT(KS) -		4117
4118 4119	372 373	VVR(KS) = VVR(KS) + SQGMTR	UMRIGT(KS)) * (UPRIGT(KS) -		4118 4119
4120	374		UMRIGT(KS))		4120
4121 4122	375 376	WWR(KS) = WWR(KS) + SQGMTR	* (UPRIGT(KS) - Umrigt(KS))		4121 4122
4123 4124	377	PPR(KS) = PPR(KS) + GMTRGT	* (UPRIGT(KS) +		4123
4124	378 379 C	•	UMRIGT(KS))		4124 4125
4126 4127	380 180 381 C	CONTINUE			4126
4128	382	DO 200 IS = NS1 , NS2			4127 4128
4129 4130	383 384 C	KS = IS - NS1 + 1			4129
4131	385	ICL = JS(7, 1S)			4130 4131
4132 4133	3 86 3 87 C	ICR = JS(8, IS)			4132 4133
4134	388	RL(IS) = RRL(KS)			4134
4135 4136	389 390	UL(IS) = UUL(KS) * XN(IS) . VVL(KS) * YN(IS)			4135 4136
4137 4138	391 392	• WWL(KS) * ZN(IS)			4137
4139	393		+		4138 4139
41 40 4141	394 395	• WWL(KS) * ZP(IS) WL(IS) = UUL(KS) * XT(IS)			4140
4142	3 96	• VVL(KS) * YT(IS)	+		4141 4142
4143 4144	397 398	. WWL(KS) * ZT(IS) PL(IS) = PPL(KS)			4143
4145	399	AL(IS) = HYDV(ICL, 6)			4144 4145
4146 4147	400 401	GL(IS) = HYDV(ICL, 7) EL(IS) = HYDV(ICL, 8)			4146 4147
4148	4 02 C				4148
4149 4150	403 40 4	IATRB = JS(9, IS) IF(IATRB . EQ . 0) THEN			4149 4150
4151	405 C				4151
4152 4153	406 407	RR(IS) = RRR(KS) UR(IS) = UUR(KS) * XN(IS)	+		4152 4153
4154 4155	408 409	• VVR(KS) * YN(IS)			4154
4156	410	VR(IS) = UUR(KS) * XP(IS)	+		4155 4156
4157 4158	411 412	- VVR(KS) * YP(IS) - WWR(KS) * ZP(IS)	+		4157 4158
4159	413	WR(IS) = UUR(KS) * XT(IS)	+		4159
4160 4161	41 4 415	- VVR(KS) * YT(IS) - WWR(KS) * ZT(IS)	+		4160 4161
4162	416 417	PR(IS) = PPR(KS)			4162
4163 4164	418	AR(IS) = HYDV(ICR , 6) GR(IS) = HYDV(ICR , 7)			4163 4164
4165 41 66	419 420 C	ER(IS) = HYDV(ICR, 8)			4165 4166
4167	421	ELSE			4167
4168 4169	422 C 423	IF(IATRB . EQ . 8) THEN			4168 4169
4170	424 C				4170
4171 4172	425 426	RR(IS) = RIN UR(IS) = UIN * XN(IS) + VIN	* YN(IS) + WIN * ZN(IS)		4171 4172
4173 4174	427 428	VR(IS) = UIN * XP(IS) + VIN	* YP(IS) + WIN * 7P(IS)		4173
4175	429	WR(IS) = UIN * XT(IS) + VIN $PR(IS) = PIN$	- FIL IS J T MIN " 21(15 J		4174 4175
4176 4177	430 431	$\begin{array}{l} AR(IS) = AL(IS) \\ GR(IS) = GL(IS) \end{array}$			4176 4177
4178	432	ER(IS) = EL(IS)			4178
4179 4180	433 C 434	END IF			4179 4180
4181	435 C				4181
4182 4183	436 437 C	IF(IATRB . EQ . 7) THEN			4182 4183
4184 4185	438 439	RR(IS) = RL(IS) $UR(IS) = UL(IS)$			4184 4185
4186	440	VR(IS) = VL(IS)			4186
4187 4188	441 442	WR(IS) = WL(IS) PR(IS) = PL(IS)			4187 4188
4189	443	AR(IS) = AL(IS)			4189
4190	444	GR(IS) = GL(IS)			4190
		D3/00	58		

Thu Jul	1 14:	17:00	1993	threed.f	SUBROUTINE FCHART	page	59
4191	445		FR(IS) = EL(IS)			4191
4192	446	С		,,			4192
4193	447	~	END IF				4193
4194 4195	448 449	С	IF (TATE	RB. EQ. 6) TH	- N		4194 4195
4196	450	C	11 1 1000				4195
4197	451			IS) = RL(IS)			4197
4198 4199	452 453			IS = -UL(IS) IS = VL(IS)			4198
4200	454			(S) = WL(1S)			4199 4200
4201	455		PR(IS = PL(IS)			4201
4202 4203	456 457			IS) = AL(IS) IS) = GL(IS)			4202
4203	458			(S) = GL(1S)			4203 4204
4205	459	C	•				4205
4206	460	c	END IF				4206
4207 4208	461 462	C	END IF				4207 4208
4209	463	C					4209
4210	464	200	CONTINUE	E			4210
4211 4212	465 466	С	NS1 - N	57 + 1			4211 4212
4213	467			S2 + NOFVES(INS	+1)		4212
4214	468	90	CONTINUE	E			4214
4215 4216	469 470	C	RETURN				4215
4210	471		END				4216 4217
Thu Jul	1 14:	17:00	1993	threed.f	SUBROUTINE EOSI		
4218	1	c	SUBROUT	INE EOSI (RRR,EE	E, N, GAMMA)		4218
4219 4220	2 3	C C	AIR IS	ASSUMED TO BE CA	ORICALLY IMPERFECT, THERMALLY PERFECT.		4219 4220
4221	4	С	THEREFO	RE, INCLUDE IMPE	RFECTIONS VIA A VARIABLE GAMMA DEPENDEN	T	4221
4222	5	C			ENERGY. THIS ROUTINE PERFORMS A TABLE		4222
4223 4224	6 7	C C	LOOK UP	FOR GAMMA.			4223 4224
4225	8	č	INPUT V	ARIBLE DEFINITIO	ſS.		4225
4226	9	С	RRR = M/	ASS DENSITY			4226
4227	10	C	EEE = II	NTERNAL ENERGY P	ER UNIT VOLUME		4227
4228 4229	11 12	С С			FERNAL *CALL TO ENERGY PER UNIT MASS) IN ARRAYS RRR & EEE		4228 4229
4230	13	č					4230
4231	14	С	PARAMETE	ER (M = 64)			4231
4232 4233	15 16	ι	DIMENSI	ON RRP(N), EEE(N	CAMMA(N)		4232 4233
4234	17		DIMENSI	ON T11(M), T12(M), T21(M), T22(M), RHO(M), E(M)		4234
4235	18		DIMENSI	ON OMP(M), Q(M),	I(M), J(M)		4235
4236 4237	19 20			G6(112),G2(11)	2),G3(112),G4(112),G5(112),		4236 4237
4238	21	С	•	uu(112),u/(11	.,		4238
4239	22	C			P TREATS ARRAY GF AS THOUGH IT		4239
4240 4241	23 24	C C	WERE DI	MENSIONED (8,105	1.		4240 4241
4241	25	L	EQUIVAL	ENCE (G1(1).GF(1)), (G2(1),GF(169)), (G3(1),GF(281)),		4242
4243	26		L	(G4(1),GF(3	3)), (G5(1),GF(505)), (G6(1),GF(617)),		4243
4244	27	с	1	(G7(1),GF(7	29))		4244
4245 4246	28 29	Ŀ	DATA XI	IGE /2.77258872	22397744835689081810414791107177734375/		4245 4246
4247	30	C		*****	******		4247
4248	31	ç			D FOR 32 BIT WORD MACHINES IN POWERS O	F	4248
4249 4250	32 33	C C			ITY VARIATION AND INTERMEDIATE VALUES VERTICALLY WHICH REPRESENT THE INTERNA	4	4249 4250
4250	34	C		ARIATION.	TENTEDRET MITON NEINEJENT THE INTENN		4251
4252	35	С					4252
4253 425 4	36 37	с с		.GE. RHO .GE.) .GE. E .GE. (4253 4254
4254	38	Ç		/ .UE. C .UC.			4255
4256	39				2,8*.4110,8*.4081,8*.4058,8*.4040,		4256
4257	40		1		L,8*.3998,8*.3988,8*.3978,8*.3969,		4257 4258
4258 4259	41 42		1		3,8*,3935,8*,3918, 07,.3699,.3690,.3680,.3663,.3637,		4259
4260	43		1	.3555,.3538,.35	22,.3502,.3476,.3430,.3344,.3238,		4260
4261	44		1	.3370,.3370,.33	70,.3364,.3347,.3277,.3099,.2885,		4261

Thu Jul	1 14:17:00	1993 threed.f	SUBROUTINE EOSI	pa ge	60
4262	45	.3257,.3227			4262
4263	46	1 .31663110	306329462831278326772358/		4263
4264 4265	47 48	UATA 62/.3123000	2940,.2787,.2635,.2588,.2502,.2236, 2810,.2665,.2466,.2418,.2350,.2131,		4264
4266	49	1 .3043,.2819			4265 4266
4267	50	.29292740			4267
4268 4269	51 52	2840,.2672	250023662166201519881879. 242922852125189018901811.		4268
4270	53	.2714,.2555	. 384. 2210. 2079. 1818. 1/99. 1747.		4269 4270
4271	54	1 .2669,.2504			4271
4272 4273	55 56	1 .2624, .2473			4272
4274	57	.20932440	,.2268,.2087,.1961,.1834,.1673,.1601, ,.1972,.1775,.1592,.1444,.1358,.1203,		4273 4274
4275	58	1 .2002,.1960	.1749.1536.1376.1252.1107.1044.		4275
4276 4277	59 60	1 .19111829	. 1633 1420 1266 1101 1012 0933.		4276
4278	61	DATA G3/.20011789	.1566,.1415,.1241,.1118,.1009,.0948/ .1594,.1443,.1306,.1189,.1095,.1013.		4277 4278
4279	62	l .2040,.1826	. 1657 1494 1338 1177 1081 0980.		4279
4280	63	.2034,.1854	,.1683,.1497,.1322,.1169,.1051,.0946,		4280
4281 4282	64 65	1 19091855	1685,.1487,.1304,.1149,.1024,.0916, 1677,.1475,.1287,.1126,.1002,.0900,		4281
4283	66	.18411817	. 1667 1464 1272 1109 0983 0888.		4282 4283
4284	67	! .1800,.1800	. 1659 1455 1262 1097 0965 0878.		4284
4285 4286	68 69	17791787	, 1657, 1450, 1254, 1087, 0949, 0868,		4285
4287	70	.17831778	, 1658, 1448, 1248, 1076, 10933, 10851,		4286 4287
4288	71	1.1808,.1781	1667 1451 1248 1074 0930 0843.		4288
4289 4290	72 73		.1978.1782.1565.1368.1206.1074. .1957.1739.1516.1312.1137.1000.		4289
4291	74	1 .22452109	.198917721563139012471133/		4290 4291
4292	75	DATA G4/.2299,.2132.	,.2017,.17951579,.1384,.1221,.1090,		4292
4293 4294	76 77	.2350,.2157	202317981575137011971057.		4293
4294	78	.2397,.2194	2034,.1796,.1572,.1372,.1205,.1070, 2050,.1805,.1576,.1379,.1236,.1118,		4294 4295
4296	79	1 .2510,.2256	. 2069 1814 1581 1383 1231 1103.		4295
4297	80	.25602282	.,2091.,1822.,1585.,1385.,1226.,1083.		4297
4298 4299	81 82	2505,.2312,	.211118291588138612221070. .212918361592138612181071.		4298
4300	83	1 .2759,.2403,	, .2145, .1857, .1598, .1389, .1219, .1078,		4299 4300
4301	84	.2834,.2445,			4301
4302 4303	85 86	1 .2905,.2484,	2175,.1898,.1613,.1399,.1226,.1090, 2199,.1918,.1625,.1407,.1230,.1096,		4302
4304	87	.43233582			4303 4304
4305	88	46104026	.362432122926255123752015/		4305
4306 4307	89 90	DATA G5/.4199,.3837,	.3401,.2979,.2623,.2318,.2108,.1854, .3194,.2760,.2427,.2157,.1902,.1721,		4306
4308	91	.37943479	.3025,.2673,.2311,.2019,.1842,.1613.		4307 4308
4309	92	l .3674,.3448,	.2961,.2593,.2255,.1994,.1785,.1594,		4309
4310 4311	93 04				4310
4312	94 95	1 .36743435	.2935,.2597,.2336,.2225,.2143,.2116, .3080,.2728,.2606,.2577,.2573,.2573,		4311 4312
4313	9 6	1.3685,.3453,	.3210,.3014,.2942,.2933,.2932,.2932,		4313
4314 4315	97 98	1.3814,.3612,	.3341,.3276,.3257,.3253,.3252,.3252, .3570,.3522,.3513,.3510,.3506,.3496,		4314
4316	99	40123899.	.3782,.3751,.3743,.3741,.3734,.3713,		4315 4316
4317	100	.4155,.4057	.3956,.3930,.3920,.3913,.3907,.3890,		4317
4318 4319	101 102	4290,.4205,	.4118,.4092,.4077,.4065,.4059,.4047, .5359,.5353,.5351,.5350,.5350,.5350/		4318
4320	103	DATA G6/.58235812.	.5801,.5797,.5796,.5797,.5797,.5797,		4319 4320
4321	104	1 .6096,.6090,	.6085,.6082,.6082,.6083,.6083,.6083,		4321
4322 4323	105 106	1 .6308,.6306,	.630563036303630563056305. .648564836484648664876487.		4322
4324	107	1 .6627,.6632,	.6637,.6636,.6637,.6640,.6640,.6640,		4323 4324
4325	108	l .6754, .6761,	.6769,.6768,.6770,.6773,.6773,.6773,	1	4325
4326 4327	109 110		.6885,.6884,.6886,.6890,.6890,.6890,. .6989,.6989,.6991,.6995,.6995,.6995,		4326
4328	111		.7083,.7083,.7085,.7090,.7090,.7090,		4327 4328
4329	112	1 .7139,.7154,	./169,.7169,.7172,.7176,.7177,.7177,	4	4329
4330 4331	113 114	1 .72147231,	.724872487251725672567256. .732173217325733073307330.		4330
4332	115	1.7350,.7370,	.7390,.7390,.7393,.7398,.7399,.7399,		4331 4332
4333	116	! .7411,.7432,	.7453,.7454,.7457,.7463,.7463,.7463/	4	4333
4334 4335	117 118		.8138, .8139, .8145, .8152, .8153, .8153, .8538, .8540, .8547, .8556, .8557, .8557		4334
7000	110		.8538,.8540,.8547,.8556,.8557,.8557,	4	4335

ł

Thu Jul	1 14:17:00	993 threed.f	SUBROUTINE EOSI	pa ge	61
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4345 4345 4346 4347 4348	119 120 121 122 123 124 125 126 127 128 129 130 131 C	<pre>! .8938.8990.9042.904 ! .9111.9166.9222.922 ! .9258.9316.9374.937 ! .9384.9445.9506.951 ! .9496.9559.9622.962 ! .9596.9661.9727.973 ! .9686.9753.9821.982 ! .9769.9837.9906.991 ! .9845.9915.9986.999 ! .9915.9987.9999.999</pre>	5, 8832, 8842, 8843, 8843, 6, 9054, 9064, 9065, 9065, 6, 9235, 9246, 9247, 9247, 9, 9387, 9399, 9400, 9400, 1, 9520, 9532, 9533, 9533, 7, 9637, 9649, 9650, 9650, 1, 9741, 9754, 9755, 9755, 6, 9836, 9849, 9850, 9850, 2, 9922, 9936, 9937, 9937, 1, 9999, 9999, 9999, 9999, 9, 9999, 9999, 9999, 9999, 9, 9999, 9999, 9999, 9999,		4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4344 4345 4346 4347 4348
4349 4350 4351 4352 4353 4354 4355 4356	132 C 133 C 134 C 135 C 136 C 137 C 138 C 139 C	TO AVOID COSTLY LOGARITHMIC FU FORM SO THAT THE HEXADECIMAL W MAY BE EXPLOITED. THIS LOGIC MAY BE TRANSFERED T THE TABLE "G" APPROPRIATE TO T MACHINE DEPENDENT FUNCTIONS AN	GILMORE DATA. (NO TEMP. MODEL) NCTIONS THE TABLE "G" IS STORED IN A ORD STRUCTURE OF A 32 BIT MACHINE O OTHER MACHINES BY RECALCULATING HE WORD ARCITECTURE OF THAT MACHINE. D KEY NUMBERS MUST ALSO BE CHANGED.		4349 4350 4351 4352 4353 4354 4355 4356
4357 4358 4359 4360 4361 4362 4363	140 141 142 143 C 144 10 145 146 C	RL16E = 1./XL16E IST = 0 NR = N CONTINUE NST = MINO(NR,M)			4357 4358 4359 4360 4361 4362 4363
4364 4365 4366 4367 4368 4369 4370	147 148 149 150 C 151 C 152 C 153	DO 20 IRE=1.NST RHO(IRE) = .774413*RRR(IST+IRE E(IRE) = AMAX1(3.e8,10000.*EEE CALCULATE MASS DENSITY VARIATI TEM = ALOG(RHO(IRE))*RL16E + 5	(IST+IRE)/RRR(IST+IRE)) ON INDEX "I".		4364 4365 4366 4367 4368 4369 4369 4370
4371 4372 4373 4374 4375 4376 4377	154 155 156 157 158 C 159 C 160 C	I(IRE) = AINT(TEM) OMP(IRE) = TEM - FLOAT(I(IRE)) I(IRE) = 502 - I(IRE) I(IRE) = MAXO(I(IRE),1) CALCULATE INTERNAL ENERGY VARI			4371 4372 4373 4374 4375 4376 4377
4378 4379 4380 4381 4382 4383 4383	161 162 163 164 165 166 167	TEM = ALOG(E(IRE))*RL16E JCY = AINT(TEM) TEM = TEM - FLOAT(JCY) TEM = EXP(XL16E*TEM) JCY = JCY - 7 JS = AINT(TEM) Q(IRE) = TEM - FLOAT(JS)			4378 4379 4380 4381 4382 4383 4383
4385 4386 4387 4388 4389 4390 4391	168 169 170 171 172 20 173 C 174	J(IRE) = JS + 15*JCY J(IRE) = MINO(J(IRE), 104) J(IRE) = I(IRE) + 8*J(IRE) I(IRE) = J(IRE) - 8 CONTINUE DO 30 IRE=1, NST			4385 4386 4387 4388 4389 4390 4391
4392 4393 4394 4395 4396 4397 4398 4398	175 176 177 178 179 30 180 C 181 C	T11(IRE) = GF(I(IRE)) T21(IRE) = GF(I(IRE)+1) T12(IRE) = GF(J(IRE)) T22(IRE) = GF(J(IRE)+1) CONTINUE CALCULATE GAMMA BY LINEAR INTE	RPOLATION.		4392 4393 4394 4395 4396 4397 4398 4399
4399 4400 4401 4402 4403 4404 4405	182 C 183 184 185 186 187 188	+ (1 OMP(IRE + 1.			4399 4400 4401 4402 4403 4404 4405 4406
4406 4407 4408 4409	189 40 190 C 191 192	CONTINUE NR = NR - NST IST = IST + NST			4408 4407 4408 4409

Thu Jul	1 14:17:	0 1993 threed.f	SUBROUTINE EOSI	page	62
4410	193	IF(NR.GT.O) GO TO	10		4410
4411 4412	194 C 195	RETURN			4411 4412
4413	196	END			4413
4414	1 97 C				4414
Thu Jul	1 14:17:	0 1993 th ree d.f	SUBROUTINE MATRLA		
4415	1	SUBROUTINE MATRLA			4415
4416 4417	2 C 3 C	READS MATERIAL PRO	OPERTIES		4416 4417
4418	4 C	EVALUATES MATERIAL	L RELATED CONTANTS		4418
4419 4420	5 C 6	include 'dmtrl	10.h'		4419 4420
4421	7	CHARACTER*8 PROC	DCT(15), PHASE(15), GG, SS, VV, NASAP		4421
4422 4423	8 9		, KVOL(15), M(15), RHOS(15), CVS(15) 2), CV(0:5,2)		4422 4423
4424	10 C	• •			4424
4425 4426	11 12	DATA KVOL/1 DATA GG/'G'	15*0./ '/, SS/'S'/, VV/'VVVV'/		4425 4426
4427	13	DATA CV/12*	*0./		4427
4428 4429	14 15	DATA PRODCT/'02',' DATA PHASE/2*'G',1			4428 4429
4430	16 C				4430
4431 4432	17 C 18 C	DATA PRODCI/'H2U'	','H2','C02','C0','NH3','CH4','N2','Cs' '/		4431 4432
4433	19 C	DATA PHASE/7*'G',			4433
4434 4435	20 C 21	ALFAA=.5			4434 4435
4436	22	BETAA=.09585			4436
4437 4438	23 2 4	THETAA=400. CAPPAA=12.685			443* 4438
4439	25	NNASA=100			4439
4440 4441	26 27	X(1)=21. X(2)=79.			4440 4441
4442	28	KVOL(1)=350.			4442
4443 4444	29 30	KVOL(2)=380. M(1)=32.			4443 4444
4445	31	M(2)=28.016			4445
4446 4447	32 33	CVS(1)=0. CVS(2)=0.			4446 4447
4448	34	RHOŠ(1)-0.			4448
4449 4450	35 36	RHOS(2)=0. NS = 0			4449 4450
4451	37	NG = 0			4451
4452 4453	38 C 39	TMS = 0.			4452 4453
4454	40	COVA = 0.			4454
4455 4456	41 42	GML = 0. SML = 0.			4455 4456
4457	43	SV = 0.			4457
4458 4459	44 45 C	SCVA = 0.			4458 4459
4460	46	REWIND 4			4460
4461 4462	47 48	DO 110 I = 1, 15 IF (PRODCT(I) .EC	D. VV) GO TO 10		4461 4462
4463	49	NS = I			4463
4464 4465	50 C 51	IF (PHASE(1) .EQ.	. GG) THEN		4464 4465
4466	52	NG - NG + 1	, , , , , , , , , , , , , , , , , , ,		4466
4467 4468	53 54	GML = GML + X(1) $TMS = TMS + X(1)*N$	4(1)		4467 4468
4469	55	COVA = COVA + X(I)			4469
4470 4471	56 C 57	ELSE IF (PHASE(I)) .EQ. SS) THEN		4470 4471
4472	58	PHASE(I) = VV			4472
4473 4474	59 60	SML = SML + X(I) TMS = TMS + X(I)*N	4(1)		4473 4474
4475	61	SCVA = SCVA + X(1))*CVS(I)		4475
4476 4477	62 63 C	SV = SV + X(1) M(1)	1)/KNU3(1)		4476 4477
4478	64	ELSE			4478 4479
4479 4480	65 66 C	STUP - PRODUCTS ET	ITHER SOLID, S. OR GAS, G'		4479
-	-				

.

(

page

Thu Jul	1 14:1	17:00	1993 threed.f	SUBROUTINE MATRLA	page	63
4481	67		END IF			4481
4482	68	110	CONTINUE			4482
4483	69	C				4483
4484	70	10	IF (NS .LT. 1) STOP ' NO PRODUC	TS ?'		4484
4485 4486	71 72	C	COVA - COVA * CAPPAA / GML			4485 4486
4487	73		FSA = TMS/AMAX1(SV, 1.E-15)			4400
4488	74		TML = GML + SML			4488
4489	75		XGA = GML/TML			4489
4490	76		SCVA - SCVA/THL			4490
4491	77	~	WMA = TMS/TML			4491
4492 4493	78 79	C	DO 130 INASA = 1, NNASA			4492 4493
4494	80		IF (NG .EQ. 0) GO TO 20			4494
4495	81	1	READ (4,1001) NASAP, ID			4495
4496	82	1001	FORMAT(A8,71X,11)			4496
4497	83		IF (ID .NE. 1) GO TO 1			4497
4498	84	С	00 100 T 1 NG			4498
4499 4500	85 86		DO 120 I = 1, NS IF (NASAP .EQ. PRODCT(I) .AND.	DUASE(1) EO CO) THEN		4499 4500
4501	87		PHASE(I) = VV	PRASE(1) . EQ. 30 / INC.		4500
4502	88		NG = NG - 1			4502
4503	89		READ (4,1002) ((CF(K,KK),K=1,7)	,KK=1,2)		4503
4504	90	1002	FORMAT(5E15.8)			4504
4505	91	C				4505
4506 4507	92 93		CF(1,1) = CF(1,1) - 1. CF(1,2) = CF(1,2) - 1.			4506 4507
4508	94		D0 115 K = 0. 5			4508
4509	95		CV(K,1) = CV(K,1) + (X(1)/GML)*CF(K+1.1)		4509
4510	96	115	CV(K,2) = CV(K,2) + (X(1)/GML			4510
4511	97	C		• •		4511
4512	98		END IF			4512
4513 4514	99	120 C	CONTINUE			4513 4514
4514	100 101	130	CONTINUE			4514
4516	102	ĉ	CONTINUE			4516
4517	103	20	DO 140 I = 1, NS			4517
4518	104		IF (PHASE(I) .NE. VV) STOP ' SP	ECIES NOT FOUND IN NASA'		4518
4519	105	140	CONTINUE			4519
4520 4521	106 107	С	DQ 150 I = 3, 50			4520 4521
4522	108	150	TA(1) = FLOAT(100*1)			4522
4523	109	ĉ				4523
4524	110		CALL PSM (CV(0,2),4, TA(3),8, C			4524
4525	111	~	CALL P.M (CV(0,1),4, TA(11),40,	CVMA(11))		4525
4526 4527	112 113	С				4526 4527
4527	113		DO 155 K = 1, 4 CV(K,1) = CV(K,1)/FLOAT(K+1)			4528
4529	115	155	CV(K,2) = CV(K,2)/FLOAT(K+1)			4529
4530	116	Ĉ				4530
4531	117		CALL PSM (CV(0,2),4, TA(3),8, E			4531
4532	118	c	CALL PSM (CV(0,1),4, TA(11),40,	LMEUA(11))		4532 4533
4533 4534	119 120	С	DO 160 I = 3, 10			4533
4535	120	160	EMEOA(I) = TA(I) * EMEOA(I)			4535
4536	122		$D0 \ 161 \ I = 11, \ 50$			4536
4537	123	161	EMEOA(I) = TA(I) * EMEOA(I)			4537
4538	124	С	00 100 1 3 50			4538 4539
4539 4540	125 126	180	DO 180 I = 3, 50 EMEOA(I) = EMEOA(I)*XGA + TA(I)*S	CVA		4539 4540
4540	120	200	LIEVA(1) * EREVA(1) AUA 7 (A(1)")	стл		4541
4542	128	-	CALL BILD (EMEOA, 48, RANGEA, DYA)			4542
4543	129	C				4543
4544	130		RETURN			4544
4545	131		END			4545

Thu Jul	1 14:17:0	0 1993 threed.f SUBROUTINE PSM	page 64
4546	1	SUBROUTINE PSM (A,NPOL, T,N, SMM)	** **
4547	2 C		4546 4547
4548	3	REAL A(O:NPOL), T(N), SMM(N)	4548
4549 4550	4 C		4549
4550	5 6 10	$DO \ 10 \ J = 1, \ N$ $SMM(J) = A(NPOL)$	4550
4552	7 Ĉ	J(w(0) - A(w(0))	4551
4553	8	DO 20 K = NPOL-1, 0, -1	4552 4553
4554	9 C		4554
4555 4556	10 11 15	100 15 J = 1, N	4555
4557	12 C	SMM(J) = SMM(J) * T(J) + A(K)	4556
4558	13 20	CONTINUE	4557 4558
4559	14 C		4559
4560 4561	15	RETURN	4560
4562	16 17 C	END	4561
	1, 0		4562
Thu Jul	1 14:17:00	0 1993 threed.f SUBROUTINE BILD	
4563			
4563 4564	1 2 C	SUBROUTINE BILD(Y, N, RANGE, DY)	4563
\$565	3	REAL Y(N),RANGE,DY(200)	4564
4566	4	IF(N .GT. 201) STOP ' ONLY 201 POINTS ALLOWED '	4565 4566
4567	5 C		4567
4568 4569	6 7	RANGE = $(Y(N+2) - Y(3)) / (N-1)$	4568
4509	8	DO 10 I = 1 , N-1 DY(I+2) = $Y(I+3) - Y(I+2)$	4569
4571	9 10	$\frac{1}{2} = \frac{1}{1} = \frac{1}$	4570 4571
4572	1 0 C		4572
4573	11	RETURN	4573
4574	12	END	4574
	1 14:17:00	Soundering Three	
4575	1	SUBROUTINE MATRLX	4575
4576 4577	2 C 3 C	READS MATERIAL PROPERTIES	4576
4578	4 C	EVALUATES MATERIAL RELATED CONTANTS	4577 4578
4579	5 Č 6		4579
4580	6	include 'dmtrl0.h'	4580
4581 4582	7 8	CHARACTER*8 PRODCT(15), PHASE(15), GG, SS, VV, NASAP REAL X(15), KVOL(15), M(15), RHOS(15), CVS(15)	4581
4583	ğ	REAL X(15), KVOL(15), M(15), RHOS(15), CVS(15) REAL CF(7,2), CV(0:5,2)	4582 4583
4584	1 0 C		4584
4585	11	DATA KVOL/15*0./	4585
4586 4587	12 13	DATA GG/'G'/, SS/'S'/, VV/'VVV'/	4586
4588	13 14 C	DATA CV/12+0./	4587 4588
4589	15	DATA_PRODCT/'H2O','CO2','CO','N2','CS',10*'VVVV // DATA_PHASE/4*'G','S',10*' //	4589
4590	16	DATA PHASE/4*'G', 'S', 10*' '/	4590
4591	17 C	AL CAY_ C	4591
4592 4593	18 19	ALFAX5 BETAX09585	4592
4594	20	THETAX-400.	4593 4594
4595	21	CAPPAX=12.685	4595
4596	22	NNASA-100	4596
4597 4598	23 24	X(1)=2.5 X(2)=1.66	4597
4599	25	X(3)=.188	4598 4599
4600	26	X(4)=1.5	4600
4601	27	X(5)=5.15	4601
4602 4603	28 29	KVOL(1)=250. KVOL(2)=600.	4602
4604	30	KVOL(2)=800. KVOL(3)=390.	4603 4604
4605	31	KVOL(4)=380.	4605
4606	32	KVOL(5)=0.	4606
	33	M(1)=18.	4607
4607		W/2)_//	
4608	34	M(2)=44. M(3)=28	4608
		M(2)=44. M(3)=28. M(4)=28.	4608 4609
4608 4609 4610 4611	34 35 36 37	M(3)-28. M(4)-28. M(5)-12.	4608 4609 4610 4611
4608 4609 4610	34 35 36	M(3)-28. M(4)-28.	4608 4609 4610

Ø

Thu Jul	1 14:1	7:00	1993	threed.f	SU	IBROUTINE	MATRLX	page	65
4614	40		NS = 0						4614
4615 4616	41 42	С	NG - 0						4615 4616
4617	43	v	TMS = 0	•					4617
4618	44		COVX =						4618
4619 4620	45 46		GML = 0 SML = 0						4619
4621	40		SV = 0.	•					4620 4621
4622	48		SCVX =	0.					4622
4623 4624	49 50	С	REWIND	a					4623
4625	51			T = 1, 15					4624 4625
4626	52		IF (PR	ODCT(I) .EQ. VV)	GO TO 10				4626
4627 4628	53 54	С	NS = I						4627
4629	55	L	IF (PH	ASE(I) .EQ. GG)	THEN				4628 4629
4630	56		NG = NG	+ 1					4630
4631 4632	57 58			ML + X(I) MS + X(I)*M(I)					4631
4633	59		COVX = 0	COVX + X(I)*KVOL(I)				4632 4633
4634	60	C							4634
4635 4636	61 62		ELSE IF PHASE(I	(PHASE(I) .EQ.	SS) THEN				4635 4636
4637	63		SML = SI	ML + X(I)					4030 4637
4638	64		TMS = 11	MS + X(I)*M(I)					4638
4639 4640	65			SCVX + X(I)*CVS(I + X(I)*M(I)/RHOS)				4639
4641	66 67	С	24 = 24	+ A(1)*M(1)/KR03	(1)				4640 4641
4642	68	-	ELSE						4642
4643 4644	69 70	С	STOP ' I	PRODUCTS EITHER S	OLID, S. OR	GAS, G'			4643
4645	70 71	L.	END IF						4644 4645
4646	72	110	CONTINU	Ε					4646
4647	73	C	10 (NC	47 1) 6700 1		21			4647
4648 4649	74 75	10 C	1F (NS	.LT. 1) STOP '	NO PRODUCTS	C			4548 4649
4650	76	•		COVX * CAPPAX / G					4650
4651	77			MS/AMAX1(SV,1.E-1	5)				4651
4652 4653	78 79		ML = G XGX = G	ML + SML HL/TMI					4652 4653
4654	80		· · · · · · · ·	SCVX / TML					4654
4655	81	~	WMX = TI	MS/TML					4655
4656 4657	82 83	C	DO 130	INASA = 1, NNASA					4656 4657
4658	84		IF (NG	.EQ. 0) GO TO 2	0				4658
4659	85	1 10 01		,1001) NASAP, ID					4659
4660 4661	86 87	TOOT		A8,71X,I1) .NE. I) GO TO 1					4660 4661
4662	88	C							4662
4663	89			I = 1, NS		AFF(7) F			4663 4664
4664 4665	90 91			NASAP .EQ. PRODCT (I) = VV	(1) .AND. Ph	ASE(1) .E			4665
4666	92		NG - 1	NG - 1					4666
4667 4668	93 94	1002	READ	(4.1002) ((CF(K,K T(5E15.8)	K),K≈1,7),KK	=1,2)			4667 4668
4000	94 95	C C	r URUTA	17777901					4669
4670	96	-		1,1) = CF(1,1) -					4670
4671 4672	97 98			1,2) = CF(1,2) - 115 K = 0, 5	1.				4671 4672
4673	99			(K,1) = CV(K,1) + CV(K,1)	(X(I)/GML)*C	F(K+1.1)			4673
4674	100	115		(K,2) = CV(K,2) +					4574
4675 4676	101 102	C	END I	F					4675 4676
4677	102	120	CONTINU						4677
4678	104	C							4678
4679 4680	105 106	130 C	CONTINU	<u>E</u>					4679 4680
4681	107	20		I = 1, NS					4681
4682	108		IF (PH/	ASE(I) .NE. VV)	STOP ' SPECI	ES NOT FO	UND IN NASA'		4682
4683 4684	109 110	140 C	CONTINU	Ł					4683 4684
4685	111		DO 150	I = 3, 50					4685
4686	112	150	TX(I) =	FLOAT(100*1)					4686 4687
4687	113	С							-00/

Thu Jul	1 14:	17:00	1993 threed.f	SUBROUTINE MATRLX	page	66
4688	114			TX(3),8, CVMX(3))		4688
4689 4690	115 116	С	CALL PSM (CV(0,1),4,	TX(11),40, CVMX(11))		4689
4691	110	ι	DO 155 K = 1, 4			4690 4691
4692	118		CV(K,1) = CV(K,1)/FLO	AT(K+1)		4692
4693	119	155	CV(K,2) = CV(K,2)/FLO	AT(K+1)		4693
4694 4695	120 121	С	CALL DSM (CV(0 2) A	TX(3),8. EMEOX(3))		4694
4696	122			TX(11).40, EMEOX(11))		4695 4696
4697	123	C	• •	·····		4697
4698 4699	124 125	160	DO 160 I = 3, 10 EMEOX(I) = TX(I)*EMEO	x(T)		4698
4700	126	100	$D0 \ 161 \ I = 11, \ 50$	^(1)		4699 4700
4701	127	161	EMEOX(1) - TX(1)*EMEO	X(I)		4701
4702 4703	128 129	C	DO 190 T 2 E0			4702
4703	130	180	DO 180 I = 3, 50 EMEOX(I) = EMEOX(I)*X(GX + TX(T)*SCVX		4703 4704
4705	131	C				4705
4706 4707	132	С	CALL BILD (EMEOX,48,R/	ANGEX, DYX)		4706
4708	133 134	L	RETURN			4707 4708
4709	135		END			4709
Thu: 1	1 14.	17.00	1003			
		17:00		SUBROUTINE VOLMTETC		
4710 4711	1 2	С	SUBROUTINE VOLMTETC (I1, I2, I3, X, Y, Z , VOLUMT)		4710
4712	3	-				4711 4712
4713	4	C		I		4713
47 <u>1</u> 4 4715	5 6	С С	VOLMTETC FINDS THE N	VOLUME OF THE TETRAHEDRON DEFINED BY THE I 2. I3, AND THE POINT (X, Y, Z). I		4714 4715
4716	7	r	THE CODE ASSUMES TH	AT THE ADEAL VECTOD OF THE BASE TOTANCLE T		4715
4717	8	C	FORMED BY I1, I2 AND	D 13 POINTS IN THE DIRECTION OF (X, Y, Z): I		4717
4718 4719	9 10	C C	BT THE KIGHT HAND RU	JLE, IF II, I2 AND I3 ARE ARRANGED I S VIEWED FROM ABOVE THE PLANE OF THE I		4718
4720	11	č		ALSO LIES ABOVE THE PLANE). BUT NOTE I		4719 4720
4721	12	С		I		4721
4722 4723	13 14	C C		RETURNED IS A SIGNED QUANTITY - IE. I FICES ARE NOT ORDERED BY THE RIGHT I		4722
4724	15	£		THE VOLUME WILL BE NEGATIVE,		4723 4724
4725	16	С		I		4725
4726 4727	17 18	C C	NECEMBED 1001+ M (FRITTS, FRITTS%MCL.SAINET@CCC.NERSC.GOV, I		4726 4727
4728	19	č	DECENDER, 1991, 11, 1	(301) 266-0992		4728
4729	20	Ç		I		4729
4730 4731	21 22	С С				4730 4731
4732	23	(≃==	*******			4732
4733	24	C				4733
4734 4735	25 26		DOUBLE PRECISION R217 DOUBLE PRECISION VOLU	(,R21Y,R21Z,R31X,R31Y,R31Z,R41X,R41Y,R41Z		4734 4735
4736	27	C	NUMBER EVERISION ANT	ли, љ, , , с		4736
4737	28	С				4737
4738 4739	29 30	С	include 'dmsh00.h'			4738 4739
4740	31		방옥치밖동 걸렸고, 문화	• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		4740
4741	32	C				4741
4742 4743	33 34	C C	- FIND THE VOLUME OF THE	TETRAHEDRON		4742 4743
4744	35	v	R21X = XV(1, I2) - XV	/(1,11)		4744
4745	36		R21Y = XV(2, 12) - XV	/(2.11)		4745
4746 4747	37 38		$\begin{array}{rcl} R21Z = XV(3, I2) &= XV\\ R31X = XV(1, I3) &= XV\\ \end{array}$	/(3,11) /(1 = F1)		4746 4747
4748	39		R31Y = XV(2, 13) = XV	/(2,11)		4748
4749	40		R31Z = XV(3, 13) = XV	/(3,11)		4749
4750 4751	41 42			(V(1,11) (V(2,11)		4750 4751
4752	42 43			(V(2,11) (V(3,11)		4752
4753	44	C				4753
4754 4755	45 46			X21Y*R31Z - R21Z*R31Y) - X21X*R31Z - R21Z*R31X) +		4754 4755
4755	40			$(211^{R})^{1} = R^{2}(2^{R})^{1} = R^{2}(2^{R})^{$		4756
4757	48	C				4757
4758	49	С				4758

Thu Jul	1 14:	17:00	1993 threed.f	SUBROUTINE VOLMTETC	page	67
4759 4760 4761 4762 4763 4764	50 51 52 53 54 55	C C C C	RETURN			4759 4760 4761 4762 4763 4764
4765	56	C				4765

Thu Jul 1 14:15:40 1993

	#	routine	page
	1	AUGUST	1
	2	HYDRFL	13
	3	HYDRMN	18
	4	GEOMTR	25
	2 3 4 5	UPDATE	29
	6	UPGRAD	30
Thu Jul	1 14:15	:40 1993	mainhd.f
Thu Jul	1 14:15 #	5:40 1993 routine	mainhd.f page
Thu Jul	#		page
Thu Jul	#	routine AUGUST	page
Thu Jul	#	routine AUGUST GEOMTR	page 1 25
Thu Jul	# 1 2 3	routine AUGUST GEOMTR HYDRFL	page 1 25 13
Thu Jul	# 1 2 3 4	routine AUGUST GEOMTR HYDRFL HYDRMN	page 1 25 13 18
Thu Juì	# 1 2 3	routine AUGUST GEOMTR HYDRFL	page 1 25 13

mainhd.f

Module List - order of occurence

i

Module List - alphabetical order

Thu Jul	1 14:	15:40	1993	i	mainhd.	d.f PROGRAM AUGUST pa	ige
1	1	~			AUGUST		
23	2	č				***************************************	
4 5	4 5	С С		The	AUGUST	T Code	
6 7	6 7	с с				- Adaptive - Unstructured	
8	8	С				- Godunov	
9 10	9 10	C C				- Upwind - Second order	
11	11	C				- Triangular	
12 13	12 13	C C				The geometry structure comes from BERMUDA	
14 15	14 15	C C				The solver is based on FUGGS	
16 17	16 17	Ċ C		Vone	ione	2.00 june 17, 1991	
18	18	С					
19 20	19 20	C C		Auth	ors:	Itzhak Lottati (703)749-8648 Shmue) Eidelman (703)448-6491	
21 22	21 22	C C				Adam Drobot (703)734-5840	
23	23	С				Science Applications International Corporation	
24 25	24 25	C C				Applied Physics Operation 1710 Goodridge Drive	
26 27	26 27	C C				McLean, Virginia 22102	
28	28	Č===	*****	****	*****	≝ċ#\$??₽₽₽₽\$\$\$\$₽₽₩₩\$\$A₽₽#¥₩₩₩₩₩₩₽₩₩₩₩₩₩₩₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
29 30	29 30	C C					
31 32	31 32	C C					
33	33	С	BE	RMUD		A MULTIDIMENSIONAL CODE WHICH IS BASED ON THE	
34 35	34 35	C C				OF TRIANGULAR GRIDS AS THE FUNDAMENTAL MESH I FIELD LIKE QUANTITIES. THE CODE REQUIRES I	
36 37	36 37	Ċ				T ALL QUANTITIES ARE BASED AT THE BARICENTER I SIDES/TRIANGLES. I	
38	38	č				I	
39 40	39 40	C				QUIP IS THAT THOSE WHO WORK ON BERMUDA I ANGLES ARE NEVER HEARD FROM AGAIN. I	
41 42	41 42	C C			THE E	BASIC MODULES IN BERMUDA INCLUDE:	
43 44	43 44	Ċ C				A HYDRODYNAMICS CODE	
45	45	С				.BASED ON A FIRST ORDER GODUNOV 1	
46 47	46 47	C C				METHOD OR A SECOND ORDER GODUNOV I WITH MESH ADAPTATION. I	
48 49	48 49	С С				1	
50	50	C					
51 52	51 52	C C	GH	ud s	ETUP TA	TABLES AND THEIR MEANING:	
53 54	53 54	C C	++ +	++++	******	***************************************	
55	55	С	+	LI	ST OF V	VERTICES +	
56 57	56 57	C C	++		IV		
58 59	58 59	C C	+		JV(1	(1,IV) - S STATUS OF THE POINT + S=0 FREE POINT WHICH MAY BE +	
60	60	С	+			DELETED/MOVED +	
61 62	61 62	C C	++			S=1 POINT RESTRICTED TO A SURFACE + S=2 POINT RESTRICTED TO A LINE +	
63 64	63 64	с С	++			S=3 POINT WHICH IS FIXED AND MAY + NOT BE REMOVED +	
65	65	С	+		JV(2	(2, IV) - INDEX OF A LINE WHICH INCLUDE THE +	
66 67	66 67	C C	+			POINT + NEGATIVE MEANS THE POINT IS ON A +	
68 69	68 69	C C	+		XV(1	BOUNDARY LINE + (1,IV) - X POSITION OF VERTEX +	
70	70	С	+			(2.1V) - Y POSITION OF VERTEX +	
71 72	71 72	C C	++	·++++	++++++	+ ++++++++++++++++++++++++++++++++++++	
73	73	С					

page

l

Thu Jul	1 14:15:	:40 1993	mainhd.f	PROGRAM AUGUST	page	2
74 75	74 (75 (*****	·+	74 75
76	76 0			IGES	+	76
77 78	77 C 78 C			- EDGE INDEX	+	77
78 79	79 0				+	78 79
80	80 C	; •			+	80
81 82	81 C 82 C			MENSIONAL PROBLEMS	+ +	81 82
83	83 C	; +	· · · · · · · · · · · · ·		+	83
84 85	84 C 85 C	; +		IE) – INDEX OF LEFT SIDE IE) – INDEX OF RIGHT SIDE	+	84
86	86 C	; +		ic) - (NDEX OF RIGHT SIDE	+	85 86
87	87 0	+		(3-4, IE) IS NEGATIVE THIS INDICATES THAT THE	+	87
88 89	88 C 89 C	+		EDGE LIES ALONG A BOUNDARY.	+	88 89
90	90 C	; +			+	90
91 92	91 C 92 C	+			+ +	91 92
93	93 C	+		7 - SUPERSONIC OUTFLOW	+	93
94 95	94 C 95 C				+ +	94 95
96	96 C	; +			+ +	95 96
97	97 C	; +	XE(2,	IE) - DISTANCE BETWEEN ADJOINING SIDE	+	97
98 99	98 C 99 C	· •		POINTS.	+ +	98 99
100	100 C	; +	*****	*****	+	100
101 102	101 C 102 C		*****	+++++++++++++++++++++++++++++++++++++++	.	101 102
103	103 C	; +			+	102
104	104 C	; +		DES	+	104
105 106	105 C 106 C			- SIDE INDEX	+ +	105 106
107	107 C	; +	JS(1,	IS) - INDEX OF FIRST VERTEX	+	107
108 109	108 C 109 C	+			+	108 109
110	110 U		• -	13) - INDEX OF HITAD VERIEX	+	110
111	111 0			ERTICES RUN AROUND THE SIDE IN ORDER	+	111
112 113	112 C 113 C			ER-CLOCKWISE FASHION	+ +	112 113
114	114 C	; +			+	114
115 116	115 C 116 C			IS) - INDEX OF THE SECOND EDGE IS) - INDEX OF THE THIRD EDGE	+ +	115 116
117	117 C	; +			+	117
118 119	118 C 119 C	+		DGES ARE ARRANGED IN COUNTER-ICLOCKWISE	+	118
120	120 C	; +	VERTE	ON. EDGE ONE RUNS FROM VERTEX-ONE TO X-TWO ETC THE SIGN OF JS(4-6,IS) INDICATES	+ +	119 120
121	121 C		IF ED	GE DATA IS STORED THE SAME WAY. IF IT IS	+	121
122 123	122 C 123 C			AND IT IS REVERSED JS<0	+ +	122 123
124	124 C	; +	XS(1,	IS) - X POSITION OF SIDE POINT	+	124
125 126	125 C 126 C		XS(2, XS(3	IS) - X POSITION OF SIDE POINT IS) - Y POSITION OF SIDE POINT IS) - AREA OF SIDE	+ +	125 126
127	127 C	; +	V2(35		•	127
128 129	128 C 129 C			•++++++++++++++++++++++++++++++++++++	+ ▲	128 129
130	130 C					130
131			***********	######################################	27771111111111111111111111111111111111	131
132 133	132 C 133 C	DE	FINITION FOR	ALL HYDRODYNAMIC QUANTITIES		132 133
134	134 C	•				134
135 136	135 C 136 C			······································		135 136
137	137 C	: US	E OF PARAMETE	RS: Î		137
138 139	138 C 139 C		MHQ _ M	AXIMUM NUMBER OF HYDRO QUANTITIES.		138 139
140	139 C		тану – М	ANALON RUBUEN OF RIDNO QUARTITIES. I		139
141	141 C] 		141
142 143	143 C					142 143
144	144 C	******	*****	ġġŖĦŦŢġŖŖġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ	*****	144
145 146	145 C 146		clude 'cm	sh00.h'		145 146
147	147		clude 'ch			147

page

Ui	1 14:1	5:40 1	993 m	anno. I	PROGRAM AUGUST	page
	148		include	'cint00.h'		
ł	149		include	'cphs10.h'		
	150	^	include	'cphs20.h'		
	151	C				
	152 153	(=====	********		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	154	-	NAMELIST	/DATA/ ICOND IC	CONP, ITRIGR, IOPTN,	
	155			XMCHIN.R	UNP, TIRIGR, LOPIN, RIN, PIN, ALFA, HRGG, IHRN, NTIME, MDUMP, NDUMP, DSPCL, IOPLFT, IOPRCN, IOPORD, IOPBYN, IAXSYM, IPRTCL, IOPINT, IOPADD, IOPDEL, AREADD, AREDEL, STATC	
	156		•	KDUMP, 10	SPCL. TOPIET, TOPREN, TOPORD, TOPBYN, TAXSYM.	
	157			IOPEOS.M	IPRTCL. IOPINT. IOPADD. IOPDEL. AREADD. AREDEL.	
	158		•	IWINDW, I	STATC	
	159	С		•		
	160	C				
	161	Ç				
	162	Ç			•	
	163	Ç	MEAN	ING OF NAMELIST	VARIABLES:	
	164	C				
	165	C	ICOND =	U READ INPUT GRI	D FOR A NEW RUN I	
	166	Ç	10000	I KEAU INE GRID	VARIABLES: D FOR A NEW RUN FROM PREVIOUS RUN ABLES SET TO ZERO FROM PREVIOUS RUN UT GRID AS THE INITIAL GRID D TRIPLED BY ADDING AN EXTRA VERTEX IN	
	167 168	ç	ILUNP =	J PRIMITIVE VAKI 1 VADIADJEC DEAD	NDLEJ JET TU LEKU Í	
	169	C C	110100	A HEING THE THE	TRUD FREVIOUS KUR I	
	170	C	11K10K =	1 THE INDIT COT	ABLES SET TO ZERU I FROM PREVIOUS RUN I PUT GRID AS THE INITIAL GRID I D TRIPLED BY ADDING AN EXTRA VERTEX IN I ITEADY STATE, I	
	170	č	-	FACH TOTANCIE	T	
	172	č	INPTN -	1 SOLUTION FOR S	TEADY STATE	
	173	č				
	174	č			HOCK CALCULATIONS(IOPTN=2)THIS VARIABLE I IFY THE UPSTREAM MACH NUMBER I ITY THE UPSTREAM MACH NUMBER I	
	175	č	XMCHIN =	FOR TRANSIENT S	HOCK CALCULATIONS(IOPTN=2)THIS VARIABLE	
	176	č	/	IS USED TO SPEC	IFY THE UPSTREAM MACH NUMBER I	
	177	Ċ			I	
	178	С		RIN - THE AMBIE	INT DENSITY IN THE CHAMBER I	
	179	C			I	
	180	С		PIN - THE AMBIE	INT PRESSURE IN THE CHAMBER	
	181	Ċ				
	182	C		APPLYING NORMAL	SHOCK WAVES RELATIONS FOR AN ADIABATIC I	
	183	C		FLOW RELATION S	SHOCK WAVES RELATIONS FOR AN ADTABATIC I ITATIC-PRESSURE RATIO ACROSS THE SHOCK I DENSITY RATIO AND MACH NUMBER RATIO I SET CORRECTLY THE CONDITION AT THE I GE BOUNDARY 8) OF THE COMPUTATIONAL I I	
	184	C			DENSITY RATIO AND MACH NUMBER RATIO I	
	185	C		ARE COMPUTED TO	SET CORRECTLY THE CONDITION AT THE I	
	186	C C			GE BOUNDARY 8) OF THE COMPUTATIONAL I	
	187 188	C C		DOMAIN		
	189	c		END STEADY STAT	E SHOCK CALCULATIONS(IOPTN-1)THIS IS THE I IBER, ALL DOMAIN VELOCITIES ARE THEN I	
	190	Č		TNELOW MACH NIM	RER. ALL DOMAIN VELOCITIES ARE THEN I	
	191	č		INITIALIZED WIT	H THIS VALUE.	
	192	č			I	
	193	Č		RIN = THE AMBIE	INT DENSITY AT INFINITY	
	194	č			l	
	195	Ċ		PIN - THE AMBIE	INT PRESSURE AT INFINITY 1	
	196	C			I	
	197	Ç			AL DOMAIN ARE THEN INITIALIZED WITH 1	
	198	C		THOSE VALUES.	1	
	199	ç	A1 C A			
	200	Ç			INFLOW IN DEGREES RELATIVE TO A RIGHT I	
	201	C			SYSTEM. ALFA=0 MEANS FLOW FROM LEFT TO I	
	202	C			EANS FROM BOTTOM TO TOP. ALFA=-90 OR 270 I	
	203 204	C C			TOP TO BOTTOM ETC. I THE EQUATION OF STATE I	
	204	C			SING THE AIR EQUATION AS A BASELINE AND I	
	205	ĉ			ED IF SOMETHING ELSE IS DESIRED.	
	207	č			TONS IN THE RIEMANN SOLVER TO FIND THE	
	208	č			ON. (3 to 4 SHOULD BE USED AND INCREASED I	
	209	č			I I I I I I I I I I I I I I I I I I I	
	210	č			·····	
	211	Ċ			S FOR THE INTEGRATION/REFINEMENT/ I	
	212	Ċ		COARSENING SEQUE	INCE	
	213	C	1	AN OUTPUT DUMP I	S DONE EVERY SEQUENCE REPEAT.	
	214	C			OST LOOP ITERATIONS IN THE CALCULATION I	
	215	Ç			OF THE GRID IS PERFORMED EVERY SEQUENCE I	
	216	ç		REPEAT.		
	217	ç			LOOP ITERATIONS IN THE CALCULATION WHERE I	
	218	Ç			EVERY SEQUENCE REPEAT WITHOUT COARSENINGI	
	219	C			IONS PERFORMED WITH NO REFINEMENT OR I S THE INNER LOOP OF THE CALCULATION. I	
	220	C		TIME STUDIES IN	S INF INDER LUUP UP INF LAILUIATIUM. (

Thu Jul	1 14:15:4	40 1993	mainhd.f	PROGRAM AUGUST	page	4
222	222 C		CODE AUTOMATIO	CALLY ACCORDING TO THE VARIABLE AREADD.		222
223 224	223 C 224 C	+		O NTIME - DUMPING DATA I		223 224
225	225 C	Į –	1	o MDUMP - COARSENING		225
226 227	227 C	I I	1	U ADUMP - CUARSENING		226 227
228 229	228 C 229 C	I	I +	O NDUMP - REFINENEMENT I		228 229
230	230 C	İ	I I +	O KDUMP - INTEGRATION I		230
231 232	231 C 232 C	I I	I I I I I I	I		231 232
233 234	233 C 234 C	I	I I +	O INNER LOOP I		233 234
235	235 C	I	I +	0 OUTER LOOP		235
236 237	236 C 237 C	I I	I	o OUTERMOST LOOP I		236 237
238	238 C	ī				238
239 240	239 C 240 C	+		0 DUMPING LOOP I		239 240
241 242	241 C 242 C	IOSPCL		REDEFNITION OF POINTS ON THE BOUNDARY I FENITION OF POINTS ON THE BOUNDARY I		241 242
243	243 C	IOPLFT	r = 0 THE COMPUT	ATION OF LIFT DRAG AND MOMENT TURNED OFF I		243
244 245	244 C 245 C	TOPRCM		ATION OF LIFT DRAG AND MOMENT TURNED ON I WAPING (RECONNECTION) PROCEDURE IS OFF I		244 245
246	246 C		= 1 A GLOBAL SI	WAPING (RECONNECTION) PROCEDURE IS ON I		246
247 248	247 C 248 C		= 2 THE CODE W	ILL RUN FIRST ORDER GODUNOV METHOD I Ill Run Second Order Godunov Method I		247 248
249 250	249 C 250 C	IOPBYN	i = 0 NO BUOYANC' = 1 BUOYANCY F	Y EFFECT ARE COMPUTED I		249 250
251	251 C	IAXSYM	1 = 0 THE CODE W	ILL RUN IN A PURE TWO DIMENSIONAL MODE		251
252 253	252 C 253 C		= 1 THE CODE W	Y EFFECT ARE COMPUTED I FFECT IN THE Y DIRECTION ARE COMPUTED I ILL RUN IN A PURE TWO DIMENSIONAL MODE I ILL RUN IN AN AXI SYMMETRICAL MODE (X AXIS) I ILL RUN IN AN AXI SYMMETRICAL MODE (Y AXIS) I ILL RUN WITH CONSTANT GAMA I ILL RUN WITH VARIABLE GAMA USING EQUATION I OR AIR		252 253
254	254 C	IOPEOS	S = 0 THE CODE W	ILL RUN WITH CONSTANT GAMA		254
255 256	255 C 256 C		OF STATE F	OR AIR		255 256
257 258	257 C 258 C	MORTO		F TRACING I		257 258
259	259 C	TH ATCC	= 1 THE CODE W	E TRACING I ILL TRACE PARTICLES I NG INITIALY THE EDGE BOUNDARY NO 8 I NITIALY THE EDGE BOUNDARY NO 8 I MENT PROCEDURE IS TURNED OFF I MENT PROCEDURE IS TURNED OFF I NING PROCEDURE IS TURNED OFF I NING PROCEDURE IS TURNED ON I MINIMUM VALUE THAT A TRIANGLE SHOULD HAVE I MAXIMUM VALUE THAT A TRIANGLE SHOULD HAVE I		259
260 261	260 C 261 C	IOPINT	<pre>i = 0 NOT REFINIT = 1 REFINING II</pre>	NG INITIALY THE EDGE BOUNDARY NO 8 I NITIALY THE EDGE BOUNDARY NO 8 I		260 261
262	2 62 C	IOPADO) = 0 THE REFINEN	MENT PROCEDURE IS TURNED OFF		262
263 264	263 C 264 C	IOPDEL	= 0 THE COARSE	NING PROCEDURE IS TURNED OFF I		263 264
265 266	265 C 266 C		= 1 THE COARSE	NING PROCEDURE IS TURNED ON I MINIMUM VALUE THAT A TRIANGLE SHOWLD HAVE I		265 266
267	267 C	1000	AFTER REFINE	MENT AS A FRACTION OF AVERAGE TRIANGLE AREA I		267
268 269	268 C 269 C	AKEDEL	AFTER COARSEI	MAXIMUM VALUE THAT A TRIANGLE SHOULD HAVE I NING AS A FRACTION OF AVERAGE TRIANGLE AREA I		268 269
270 271	270 C 271 C			I TION ON THE REGION FOR REFINING THE GRID		270 271
272	272 C		= 1 SETTING A N	WINDOW FOR REFINING THE GRID		272
273 274	273 C 274 C	ISTATO		TION WILL BE DONE ON A MOVING WAVE I TION WILL BE DONE ON A STEADY STATE I		273 274
275 276	275 C		CONDITION	I		275
277	276 C 277 C-			i I		276 277
278 279	278 C 279	CHARAC	TER*15 ZHEADER.	MNAME_MVNAME		278 279
280	280	CHARAC	CTER*1 FILLCH			280
281 282	281 282 C		ER NUMQUADS			281 282
283 284		OPEN A	ALL FILES FOR THE	IS RUN		283 284
285	285	OPEN(4,FILE='naca4'	,FORM='UNFORMATTED')		285
286 287	286 287	OPEN(8 OPEN/	<pre>I8.FILE='naca82', 8.FILE='naca2'</pre>	,FORM='UNFORMATTED') .FORM='UNFORMATTED')		286 287
288	288	OPEN(9,FILE='naca3'	,FORM='UNFORMATTED') ,FORM='UNFORMATTED')		288
289 290	289 290	OPEN(1	<pre>6, FILE='wedge45.</pre>	,FORM='FORMATTED') .zon',STATUS='OLD')		289 290
291 292	291 292 C	OPEN(1	18,FILE='nacaa'	,FORM='UNFORMATTED')		291 292
293	293 C+		Ŀ௹드림프로부르부유로분ポ하죠!	*****		293
294 295	294 C 295 C	DEFAIN	T VALUES FOR TH	PUT DATA		294 295
*** 1 5 ***		0-1 AVL				

Thu Jul	1 14:3	15:40 1	993 mainhd.f	PROGRAM AUGUST	page	5
296	296	С				296
297	297	-	THIRD = $1. / 3.$			297
298	298	С				298
299 300	299 300		ICOND = 0 ICONP = 0			299 300
301	301		ITRIGR = 0			301
302	302		IOPTN = 1			302
303	303	С				303
304	304		XMCHIN = 25.			304
305	305		RIN = 1.			305
306	306	С	PIN = 1.			305
307 308	307 308	L	ALFA = 0.			307 308
309	309		hRGG = 1.4			309
310	310		IHRN = 4			310
311	311		NTIME = 1			311
312	312		MDUMP = 80			312
313	313		NDUMP = 1			313
314 315	314 315		KDUMP = 0 IOSPCL = 0			314 315
316	315		10SPUL = 0 10PLFT = 0			315
317	317		IOPRCN - 0			317
318	318		10PORD = 2			318
319	319		IOPBYN = 0			319
320	320		IAXSYM = 0			320
321	321	~	IOPEOS = 0			321
322 323	322	C	MODICI 0			322
324	323 324		MPRTCL = 0 IOPINT = 0			323 324
325	325		IOPADD = 0			325
326	326		IOPDEL = 0			326
327	327		AREADD = 0.005			327
328	328		AREDEL = 1 .			328
329	329		IWINDW = 0			329
330	330	r	ISTATC = 0			330
331 332	331 332	С С	DEAD THE INDUT O	ATA		331 332
333	333	č				333
334	334	-	READ (2,DATA)			334
335	335	C	·			335
336	336	Ç	PRINTOUT THE RUN	PARAMETERS		336
337 338	337 338	С	PRINT 101,	ICOND, ICONP, ITRIGR, IOPTN.		337 338
339	339			XMCHIN, RIN, PIN, ALFA, HRGG, IHRN, NTIME, MOUMP, NDUMP,		339
340	340			KDUMP, IOSPCL, IOPLFT, IOPRCN, IOPORD, IOPBYN, IAXSYM,		340
341	341		•	IOPEOS, MPRTCL, IOPINT, IOPADD, IOPDEL, AREADD, AREDEL,		341
342	342		•	IWINDW, ISTATC		342
343	343	C	CET OUN CONDITIO	NC 4NO DOTATOUT TO CONCOLE		343
344 345	344 345	C	SET KUN CUNUTITU	NS AND PRINTOUT TO CONSOLE		344 345
346	346	L.	XREADD = 1. / AR	FADD		346
347	347			READD) / ALOG $(3.) + 1$		347
348	348		IF(NAREAD . LT	\cdot 3) NAREAD = 3		348
349	349		IF (NAREAD . GT			349
350	350		IF(ISTATC . EQ	.1) NAREAD = 3		350
351 352	351 352		PRINT*, AREADD, AR PRINT * , ICOND, I			351 352
353	353	С	, שמטשר, י ההנאי			353
354	354	•	NPT = 0			354
355	355		IJKINT = 3			355
356	356		IF(ICOND . EQ .			356
357	357		D0 122 IS = 1,	MSM		357
358	358	122	KSDELT(IS) = 0			358 359
359 360	359 360	166	CONTINUE END IF			359
361	361		HYDMOM(1) = 0.			361
362	362		HYDMOM(2) = 0.			362
363	363		HYDMOM $(4) = 0.$			363
364	364	С				364
365	365		DO 124 IK = 1 ,			365
366	366		GAMAG(IK) = HR	նն		366
367 368	367 368	124 C	CONTINUE			367 368
369	369		非非常有可能是才会就是当何能就是有	ᄜ迦밭곜삨넕童拳ᄟң끧ᄔ빋빒쏊ᄔ쇱빝쇖由윩ử希햧왕볛솧삟뺘?띡횯르ຈ끧ӊ좄ѡᆃℋᄔᇠᇗ河ᆑ드왕쳐드		369
		-				-
Thu Jul 1 14:15:40 1993 mainhd.f

0

1

6

PROGRAM AUGUST

.

ilu Jul	1 1411	10:40 1		paye	0
370	370	С			370
371	371		READ IN THE MESH DATA		371
372	372	C			372
373	373	C(1)>			373
374 375	374 375		IF(ICOND . EQ . 0) THEN IF(ICONP . EQ . 1) CALL UPGRAD		374 375
376	376	С			376
377	377		******		377
378	378		SMART" FORMAT MESH FILE IS READ. THE FILE IS SELECTED BY THE		378
379	379		MAL MACINTOSH FILE DIALOG BECAUSE OF THE '*' IN PLACE OF THE		379
380	380		E NAME. VERTICES OF EACH TRIANGLE ARE FORMED FROM THE INPUT.		380
381 382	381 382	C	READ (16,900) ZHEADER		381 382
383	383	900			383
384	384	300	IF (ZHEADER .NE. 'SMART-Z-T-(003)') THEN		384
385	385	C	THIS ROUTINE CANNOT READ ANY OTHER INPUT		385
386	386		PRINT *, 'MESH FILE IS NOT THE CORRECT KIND OR VERSION'		386
387	387		CALL EXIT		387
388	388		ENDIF		388
389	389 390		READ (16,910) FILLCH, NV, NVMK		389
390 391	390		PRINT *,NV,NVMK READ (16,910) FILLCH,NE,NEMK		390 391
392	392		PRINT *, NE, NEMK		392
393	393		READ (16,910) FILLCH, NS		393
394	394		PRINT *, NS		394
395	395		READ (16,910) FILLCH, NUMQUADS		395
396	396	010	PRINT *, NUMQUADS		396
397 398	397 398	910	FORMAT(A1,217) READ (16,920) FILLCH,NZMK,NSMK,NNMK		397 398
399	399		PRINT *, NZMK, NSMK, NNMK		399
400	400	920	FORMAT (A1, 1X, 313)		400
401	401		IF (NV .GT. MVM) THEN		401
402	402	C	CHECK NODE (I.E., VERTEX) STORAGE SIZE		402
403	403	1010	PRINT 1020, NV, NVM, NVMK		403
404 405	404 405	1010	FORMAT(1X, TOO MANY NODES. ',19,', MAX = ',15) CALL EXIT		404 405
405	405		ENDIF		406
407	407		IF (NE .GT. MEM) THEN		407
408	408	C	CHECK SIDE (I.E., EDGE) STORAGE SIZE		408
409	409		PRINT 1020, NE, MEM, NEMK		409
410	410	1020	FORMAT(1X, 'TOO MANY SIDES. ', 19, ', MAX = ', 15)		410
411	411		CALL EXIT ENDIF		411
412 413	412 413		INDIF		412 413
414	414	C	CHECK ZONE (I.E., SIDE OR TRIANGLE) STORAGE SIZE		414
415	415		PRINT 1030, NS, MSM		415
416	416	1030	FORMAT(1X, 'TOO MANY ZONES. ', 19, ', MAX = ', 15)		416
417	417				417
418	418		ENDIF IF (NUMQUADS .GT. 0) THEN		418
419 420	419 420	C			419 420
421	421	J	PRINT 1040		421
422	422	1040	FORMAT(1X, 'NO QUADRILATERALS ARE ALLOWED. ')		422
423	423		CALLEXIT		423
424	424	~	ENDIF		424
425 426	425 426	C	READ MARKER DEFINITIONS THE FOLLOWING JUST READS THE VARIABLES WITHOUT STORING		425 426
427	427	č	THEM INTO PERMANENT ARRAYS, EFFECTIVELY JUST READING		427
428	428	č	PAST THE MARKER DEFINITION INFORMATION.		428
429	429		DO 21 NZM = 1, NZMK		429
430	430		READ (16,1050) NMN, MNAME, NVAL		430
431	431		1000000000000000000000000000000000000		431 432
432 433	432 433	20	READ (16.1050) NMV.MVNAME CONTINUE		432
433	434	21	CONTINUE		434
435	435	1050	FORMAT(3X, 12, 1X, A15, 1X, 12)		435
436	436		DO 31 NZM = 1, NSMK		436
437	437		READ (16,1050) NMN,MNAME,NVAL		437
438	438		DO 30 NSMV = 1, NVAL		438
439	439	30	READ (16,1050) NMV, MVNAME		439 440
440 441	440 441	30 31	CONTINUE CONTINUE		440
442	441	31	DO 41 NZM \approx 1,NNMK		442
443	443		READ (16,1050) NMN, MNAME, NVAL		443

page

Thu Jul	1 14:	15:40	1993 mainhd.f PROGRAM AUGUST	page	7
444	444		DO 40 NNMV - 1, NVAL		444
445	445		READ (16,1050) NMV, MVNAME		445
446 447	446 447	40 41	CONTINUE		446 447
448	448		READ IN VERTEX INFORMATION		448
449	449		DO 51 IV = 1 , NV		449
450 451	450 451		IS - IV READ (16.1210) IK.XV(1.IS).XV(2.IS)		450 451
451	451		$\frac{10}{3} \frac{10}{1} \frac$		451
453	453	C	INITIALIZE ANY VERTEX MARKER STORAGE, I.E. JV(*, IV)		453
454	454	51	CONTINUE		454
455 456	455 456	1060	PRINT 1060,NV FORMAT(15,' NODES (VERTICES) READ IN.')		455 456
457	457		FORMAT(17, E15.9, 1X, E15.9)		457
458	458	•	IF (NVMK .GT. 0) THEN		458
459 460	459 460	(DO 55 IV - 1.NVMK		459 460
461	461		READ (16,*) IXV.MV1.MV2.MV3.MV4		461
462	462		JV(1, IXV) = HV1		462
463 464	463 464	C 55	STORE THESE MARKERS IN JV(*, IXV) AS DESIRED		463 464
465	465	11	PRINT 1070, NVMK		465
466	466	1070	FORMAT(15, ' NODE (VERTEX) MARKERS READ IN.')		466
467	467	c	ENDIF READ IN EDGE INFORMATION (EDGES OF TRIANGLES).		467
468 469	468 469	L	DO 60 IE = 1 . NE		468 469
470	470		IS = IE		470
471	471	~	READ (16,*) IJ, JE(1, IS), JE(2, IS), JE(3, IS), JE(4, IS)		471
472 473	472 473	С	INITIALIZE ANY MARKER STORAGE. JE(5,1E) = 0		472 473
474	474	60	CONTINUE		474
475	475		PRINT 1080, NE		475
476 477	476 477	1080	FORMAT(15,' SIDES (EDGES) READ IN.') IF (NEMK .GT. 0) THEN		476 477
478	478	C	READ IN EDGE MARKER INFORMATION		478
479	479		DO 65 IV - 1, NEMK		479
480	480		READ (16,*) IXE,MV1,MV2,MV3,MV4		480
481 482	481 482	65	JE(5,IXE) - MV1 Continue		481 482
483	483		PRINT 1090, NEMK		483
484	484	1090	FORMAT(15, ' SIDE (EDGE) MARKERS READ IN. ')		484
485 486	485 486	C	ENDIF		485 486
487	487	U	DO 81 IS + 1 , NS		487
488	488		IE = IS		488
489 490	489 490		READ (16.1100) IJ, MV1,MV2,MV3,MV4, . IV1,IU1,IV2,ID2,IV3,ID3		489 490
491		1100	FORMAT (17,413,3(17,12))		491
492	492		JS(4, IE) = IVI * IOI		492
493 494	493 494		JS(5,IE) = IV2 * ID2 JS(6,IE) = IV3 * ID3		493 494
495	495	C	JS(7, IE) = MV1		495
496	496	С			496
497 498	497 498	C C	STORE THESE MARKERS IN JS(*, IS) AS DESIRED		497 498
499	499	81	CONTINUE		499
500	500		PRINT 1110,NS		500
501 502	501 502	1110	FORMAT(15,' ZONES (SIDES) READ IN.') CLOSE (16)		501 502
502	502	C	FORM VERTEX INDICES FOR EACH SIDE (TRIANGLE).		503
504	504		DO 85 IS - 1 , NS		504
505 506	505 506		00 85 J = 1 , 3 IE = JS(J + 3 , IS)		505 506
507	500		$\frac{1}{12} = \frac{1}{12} $		507
508	508		IF (IE . GT . O) THEN		508
505 510	509 510		JS(J, IS) = JE(1, IEABS)		509 510
516 513	510		ELSE JS(J,IS) = JE(2,IEABS)		510
512	512		END 1F		512
513	513	85	CONTINUE		513
514 515	514 515	С С===	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		514 515
516	516	č			516
517	517		IF(IOSPCL.EQ.1)THEN		517
			_		

Thu Ju)	1 14:	15:40 1993	mainhd.f	PROGRAM AUGUST	page	8
518 519	518 519		ECIAL CASE FOR HALF	CIRCLE BOUNDARY DATA		518 519
520 521	520 521	C DI	0 382 IE = 1 , NE			520 521
522	522	Į,	JE5 = JE(5, IE)	THE		522
523 524	523 524	C	F(IJE5 . EQ . 6)	וובת		523 524
525 526	525 526		V1 = JE(1 , IE) V2 = JE(2 , IE)			525 526
527	527	C ,	vz = JL(z , IE)			527
528 529	528 529		XS1 = XV(1 , IV1) YS1 = XV(2 , IV1)			528 529
530	530	X	XS2 = XV(1, IV2)			530
531 532	531 532		YS2 = XV(2 , IV2) XX = XXS1 - 1.50			531 532
533	533	A	NGL = 1.570796327			533
534 535	534 535		F(DXX . NE . 0) A V(1 , IV1) = COS(NGL = ATAN2(YYS1 , DXX) ANGL) + 1.5		534 535
536	536	XI	V(2, IV1) = SIN(536
537 538	537 538		XX = XXS2 - 1.50 NGL = 1.570796327			537 538
539	539	I	F(DXX.NE.O)A	NGL = ATAN2 (YYS2 , DXX)		539
540 541	540 541		V(1 , IV2) = COS(V(2 , IV2) = SIN(540 541
542	542	С .	XXS = XV(1 , IVI)	* 1.008930411364		542
543 544	543 544	С. С.	.3516	* SQRT(XXS)126 * XXS - * XXS * XXS + .2843 * XXS * XXS * XXS -		543 544
545	545	C.	.1015	* XXS * XXS * XXS * XXS)		545
546 547	546 547			N(1., XV(2, IV1)) * YYS AND.XXS.LT7)JV(1, IV1) = 0		546 547
548 549	548 549	C				548 549
550	550	C '	XXS = XV(1 , IV2) YYS = .6 * (.2969	* SQRT(XXS)126 * XXS -		550
551 552	551 552	с. с.	.3516	* XXS * XXS + .2843 * XXS * XXS * XXS - * XXS * XXS * XXS * XXS)		551 552
553	553	с :	XV(2, IV2) = SIG	N(1., XV(2, IV2)) * YYS		553
554 555	554 555			AND . XXS . LT7) JV(1 , IV2) = 0 2) CALL DISECT (IE , IDONE , IJKINT)		554 555
556	556	E	ND IF			556
557 558	557 558		NTINUE ND IF			557 558
559	559	C				559
560 561	560 561	(⇒≈≠≈≈≈≈≈ C	드 및 후 및 상 및 별 및 및 및 및 및 및 별 및 별 및 별 및 별 및 별 및	######################################		560 561
562	562	C C	CHI ATE COTO OURNES			562
563 564	563 564	C CA	LUULATE GRID QUANTI	TIES THROUGH GEOMTR		563 564
565 566	565 566	C C	ALL UPDATE			565 566
567	567	C======		***************		567
568 569	568 569	C RFI	FINE THE INITIAL GR	ID BY A FACTOR OF THREE IF CALLED FOR		568 569
570	570	C				570
571 572	571 572	(>>>>> [F(ITRIGR . EQ . 1) THEN		571 572
573	573	N:	SS = NS	,		573
574 575	574 575	U	O 11O IS = 1 , NSS CALL VERCEN(IS)			574 575
576 577	576 577		ONTINUE			576 577
578	578		EE - NE 0 120 IE - 1 , NEE			578
579 580	579 580		IF(JE(5 , IE) . CALL DISECT (1	NE.O) THEN E.IDONE, IJKINT)		579 580
581	581	100	ENDIF			581
582 583	582 583		ONTINUE 0 130 IK = 1 , 3			582 583
584	584		RINT*, NV, NE, NS, IK			584
585 586	585 586		DO 130 IE = 1 , NE CALL RECNC(IE ,	IDONE, ITL, ITR, JA, JB, JC, JD)		585 586
587	587		CALL RECNC(JA .	JADONE, ITL, ITR, JAA, JAB, JAC, JAD)		587
588 589	588 589		CALL RECNC(JC ,	JBDONE , ITL , ITR , JBA , JB9 , JBC , JBD) JCDONE , ITL , ITR , JCA , JCB , JCC , JCD)		588 589
590 591	590 591	130 C	CALL RECNC(JD ,	JDDONE, ITL, ITR, JDA, JDB, JDC, JDD)		590 591
291	231	100 (1	ONTINUE			721

Thu Jul	1	14:15:40	1993	mainhd.f
	•	14413440	****	1100 0 0 0 0 0 0 0 0 0 0

đ

1

4

◀

1

1

(

ł

t

hu Jul	1 14:	15:40 1993 mainhd.f PROGRAM AUGUST	page	9
592	592	END IF		592
593	593	(<<<<<		593
594	594	C C		594
595	595			595
596 597	596 597	C C FIND AVERAGE TRIANGLE AREA		596 597
598	598			598
599	599	SAREMN = 1000000.		599
600	600	SAREMX = 0.		600
601	601	SAREVG = 0.		601
602 602	602	$D0 \ 105 \ IS = 1$, NS		602
603 604	603 604	AREASS = XS(3, IS) SAREMX = AMAX1(SAREMX, AREASS)		603 604
605	605	SAREMN - AMINI(SAREMN , AREASS)		605
606	606	SAREVG = SAREVG + AREASS		606
607	607	105 CONTINUE		607
608	608	AVGARE = SAREVG		608
609 610	609 610	SAREVG = SAREVG / NS ENTING = SAREVG * AREADD		609
611	611	FMINVG – SAREVG * AREADD Saremn – Saremn / Sarevg		610 611
612	612	SAREMX - SAREMX / SAREVG		612
613	613	PRINT*, SAREVG, SAREMX, SAREMN		613
614	614	C		614
615	615	C DO INITIAL REFINEMENT FOR ALL INFLOW BOUNDARIES DEFINED		615
616 617	616 617	C BY EDGES THAT CONTAIN BOUNDARY CONDITION 8(INFLOW) C		616 617
618	618	IF(IOPINT.EQ.1)THEN		618
619	619	NOFDIV = 2		619
620	620	CALL INTPTN(AREADD , NOFDIV , 1 , LTRIG)		620
621	621	NOFDIV = 2		621
622	622	CALL DYYPTN(AREADD , NOFDIV , 1 , LTRIG)		622
623 624	623 624	NOFDIV = 2 CALL INTPTN(AREADD , NOFDIV , 2 , LTRIG)		623 624
625	625	NOFDIV = 2		625
626	626	CALL DYYPTN(AREADD , NOFDIV , 2 , LTRIG)		626
627	627	NOFDIV = 2		627
628	628	CALL INTPIN(AREADD , NOFDIV , 3 , LIRIG)		628
629 630	629 630	NOFDIV = 2		629
631	631	CALL DYYPTN(AREADD , NOFDIV , 3 , LTRIG) C		630 631
632	632	PRINT*, NV, NE, NS		632
633	633	ENDIF		633
634	634	C		634
635	635	(635
636 637	636 637	C C FOR ICOND>0 READ IN PREVIOUS RUN'S DATA		636 637
638	638	C		638
639	639	C(1)		639
640	640	ELSE		64C
641	641	CALL UPGRAD		641
642 643	642 643	C CALL GEOMTR IF(ICONP . EQ . 0) THEN		642 642
643 644	043 644	READ (88) RIN, PIN, RINL, PINL, UVIN, UIN, VIN, TT,		643 644
645	645	. HYDMOM(1), HYDMOM(2), HYDMOM(4)		645
646	646	PRINT *, RIN,PIN,UVIN,UIN,VIN,TT		646
647	647	READ (88) ((HYDV(IS,IK),IK=1,5),IS=1,NS)		647
648	648	READ (88) ((HYDVVV(IV,IK),IK=1,5),IV=1,NV)		648
649 650	649 650	READ (88) IJKINT, (KSDELT(IS), IS=1, NS) IF(MPRTCL . EQ . 1)		649 650
651	651	. READ (88) NPT. ((XPRTCL(1K, 1PT), 1K=1,2), 1PT-1, NPT),		651
652	652	(IJKPRT(IPT), IPT=1, NPT)		652
653	653	ENDIF		653
654 655	654			654
655 656	655 656	C(1)<<<< C		655 656
657	657	C INITIALIZATION OF THE PROBLEM		657
658	658	C		658
659	659	SARERV = 1. / SAREVG		659
660	660	SARESQ = SQRT(SAREVG)		660
661 662	661	FMINVG - SAREVG * AREADD		661 662
662 663	662 663	HRSM = 1.E-8 HRGP = HRGG + 1.		662 663
664	664	HRGM = HRGG - 1.		664
665	665	CF = HRGP / (2. * HRGG)		665

page

Thu Jul	1 14:	15:40 19	993 mainhd.f PROGRAM AUGUST	page	10
666	666	С			666
667	667	•	JDUMP = 9		667
668	668 660		IF(KDUMP.EQ.0)THEN KDUMP = JDUMP		668
669 670	6 69 670		ENDIF		669 670
671	671	C			671
672 673	672	c	tt = 0.		672
674	673 674	C	PIRAD = ATAN(1.) / 45.		673 674
675	675		ALPHA = ALFA * PIRAD		675
676	676		PRINT *, ALFA, PIRAD, ALPHA		676
677 678	677 678	с	PRINT *, XMCHIN, PIN, RIN		677 678
679	679	Ŭ	COSS = COS(ALPHA)		679
680	680		SINN - SIN(ALPHA)		680
681 682	681 682	C	TANN = TAN(ALPHA)		681 682
683	683		***************************************		683
684	684	Ç			684
685 686	685 686	C C	SET THE INITIAL VALUE FOR PRIMITIVE VARIABLES		685 686
687	687	Č(2)>>	>>>		687
688	688		IF(IOPTN . EQ . 1) THEN		688
689 690	6 89 690		UVIN = XMCHIN * SQRT(HRGG * PIN / RIN) UIN = UVIN * COSS		689 690
691	691		VIN = UVIN * SINN		691
692	692		RIN = 1.		692
693 694	693 694	С	PIN = 1.		693 694
695	695	L	DO 100 IS = 1 , NS		695
696	696		HYDV(IS, I) = RIN		696
697 609	697 609		HYDV(IS,2) = 0. HYDV(IS,3) = 0.		697
698 699	698 699		$HYDV(IS_4) = PIN$		698 699
700	700		HYDV(IS, 5) = HRGG		700
701	701		XSS = XS(1, IS)		701
702 703	702 703		IF(XSS.LT0) THEN HYDV(IS,1) = .125 * RIN		702 703
704	704		HYDV(IS , 4) = .100 * PIN		704
705	705	150			705
706 707	706 707	150 C	CONTINUE		706 707
708	708	•	DO 176 $IV = 1$, NV		708
709	709		HYDVVV(IV, 1) = RIN		709
710 711	710 711		HYDVVV(IV, 2) = 0. HYDVVV(IV, 3) = 0.		710 711
712	712		HYDVVV(IV, 4) = PIN / HRGM		712
713	713		HYDVVV(IV, 5) = HRGG		713
714 715	714 715		XSS = XV(1, IV) IF(XSS . LT . ~.0) THEN		714 715
716	716		HYDVVV(IV, 1) = RIN		716
717	717		HYDVVV(IV, 4) = PIN / HRGM		717
718 719	718 719	176	END IF CONTINUE		718 719
720	720	Ĉ(2)	• • •		720
721 722	721	C	ELSE		721 722
723	722 723	L	XMSQR = XMCHIN * XMCHIN		723
724	724		IF(ICOND . EQ . 1 . AND . ICONP . EQ . 0) THEN		724
725	725		ELSE		725
726 727	7 26 7 27		PINL ~ PIN RINL ~ RIN		726 727
728	728		RINRTO = (HRGG + 1.) * XMSQR /		728
729	729	•	((HRGG - 1.) * XMSQR + 2.)		729
730 731	7 30 7 31	•	PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) / . (HRGG + 1.)		730 731
732	732	•	PIN - PINRTO * PINL		732
733	733		RIN = RINRTO * RINL		733
734 735	734 735		YMCHIN = SQRT(((HRGG = 1.) * XMSQR + 2.) / . (2. * HRGG * XMSQR - (HRGG = 1.)))		734 735
736	736	•	PRINT*, HRGG, RIN, PIN, YMCHIN		736
737	737		PRINT*, HRGG, RINL, PINL, XMCHIN		737
738 739	738 739		UVIN - XMCHIN * SQRT(HRGG * PINL / RINL) - . YMCHIN * SQRT(HRGG * PIN / RIN)		738 739
		•			

6

Thu Jul	1 14:	15:40	1993 mainhd.f	PROGRAM AUGUST	page	11
740 741	740 741		END IF DO 175 IV = 1 , NV			740
742	742		HYDVVV(IV, 1) =	RINL		741 742
743	743			0.		743
744 745	7 44 745		HYDVVV(IV , 3) = HYDVVV(IV , 4) =	U. DINI / HDCM		744
746	746		HYDVVV(IV , 5) -	HRGG		745 746
747	747		XSS = XV(1, IV)			747
748 749	748 749		IF(XSS . LT0 HYDVVV(IV , 1) =) THEN		748
750	750		HYDVVV(IV , 2) =			7 49 750
751	751		HYDVVV(IV, 4) =	PIN / HRGM + .5 * RIN * UVIN * UVIN		751
752 753	752 753	175	END IF			752
754	754	175	CONTINUE DO 170 IS = 1 , NS			753 754
755	755		HYDV(IS, 1) = R	INL		755
756	756		HYDV(IS, 2) = 0	•		756
757 758	757 758		HYDV(IS , 3) = 0 HYDV(IS , 4) = P	I NI		757
759	759		HYDV(IS, 5) - H	RG		758 759
760	760		XSS = XS(1, IS)			760
761 762	761 762		IF(XSS . LT0) THEN		761
763	763		HYDV(IS , 1) - R HYDV(IS , 2) - U	le /TN		762 763
764	764		HYDV(IS, 4) = PI	IN IN IN IN IN IN IN IN IN IN IN IN IN I		764
765 766	765	170	END IF			765
767	766 767	170 C	CONTINUE			766
768	768	•	IF(IOPEOS . EQ . 1	L) THEN		767 768
769	769		HRGGN = HRGG			769
770 771	770 771		HRGGL = HRGG RINRTO = (HRGGN +	1) * YMCAD /		770
772	772			-1.) * XMSOR + 2.)		771 772
773	773		PINRTO = (2. * HRO)	GGN * XMSQR - (HRGGN - 1,)) /		773
774 775	77 4 7 75		PIN - PINRTO * PIN	(HRGGN + 1.)		774
776	776		RIN = RINRTO * RINL			775 776
777	777		TTNN - PIN / (HRGG			777
778 779	778		RRNN = RIN			778
780	779 780		TTNL = PINL / (HRO RRNL = RINL	10L ~ 1.)		779 780
781	781		DO 1122 KI = 1 , 9			781
782	782		CALL EOS(RRNN ,	TTNN , 1 , HRGGN)		782
783 784	783 784		CALL EUS(KKNL , RINRTO = (HRGGN +	TTNL, 1, HRGGL)		783
785	785		. ((HRGGN	- 1.) * XMSOR + 2.)		784 785
786	786		PINRTO = (2. * HRG	GN * XMSQR - (HRGGN - 1.)) /		786
787 788	787 788		RIN = RINRTO * RINL	(HRGGN + 1.)		787
789	789		PIN = PINRTO * PINL			788 789
790	790		TTNN = PIN / (HRGG	N - 1.)		790
7 91 792	791 792		RRNN = RIN TTNL = PINL / (HRG	G(_ 1)		791
793	793		RRNL = RINL	ME - 1.)		792 793
794	794			HRGGN - 1.) * XMSQR + 2.) /		794
795 796	7 95 7 96		PRINT*, HRGGN, RIN, PI	2. * HRGGN * XMSQR ~ (HRGGN - 1.)))		795
797	797		PRINT*, HRGGL, RINL, P			796 797
798	798	1122	CONTINUE			798
799 800	799 800		UVIN = XMCHIN * SQR	T(HRGGL * PINL / RINL) -		799
801	801		D0 172 IS = 1, NS	T(HRGGN * PIN / RIN)		800 801
802	802		HYDV(IS, 5) = HR	GGL		802
803 804	803 804	172	CONTINUE END IF			803
805	805		UIN = UVIN * COSS			804 805
806	806	-	VIN = UVIN * SINN			806
807 808	807	С	ENDIE			807
809	808 809	C(2)	ENDIF <>>>			808 809
810	810	C				810
811	811		IF(MPRTCL . EQ . 1) THEN		811
812 813	812 813		IKXY = 0 DO 190 IKX = 1 ,	30		812
~~~	~17		04 230 fiv - v 1			813

1

í

Thu Jul	1 14:	15:40	1993 mainhd.f	PROGRAM AUGUST	page	12
814	814		DO 190 IKY = 1 , 15			814
815	815		IKXY = IKXY + 1			815
816 817	816 817		XPRICL( 1 , IKXY ) =	= (IKX - 1) * .1 + .05		816
818	818	190	CONTINUE	= ( IKY - 1 ) * .1 + .05		817
819	819	150	NPT = IKXY			818 819
820	820		PRINT *, NPT			820
821	821		CALL PRICTN			821
822	822		PRINT *, NPT			822
823 824	823	c	ENDIF			823
825	824 825	C		,		824
826	826	C		***************************************		825
827	827	Č	- READ INPUT DATA FROM 1	THE PREVIOUS RUN		826 827
828	828	Č				828
829	829		PRINT * , ICOND, ICONP			829
830	830		IF( ICONP . EQ . 1 )	THEN		830
831	831		READ (88) RIN, PIN, P	RINL, PINL, UVIN, UIN, VIN, TT,		831
832 833	832 833		PRINT *, RIN, PIN, UN	(1), HYDMOM(2), HYDMOM(4)		832
834	834		READ (88) ((HYDV) 19	5, IK), IK=1,5), IS=1, NS)		833 834
835	835		READ (88) ((HYDVVV)	[IV, IK), IK=1,5), IV=1, NV)		835
836	836		READ (88) IJKINT, (M	(SDELT(IS), IS=1, NS)		836
837	837		IF( MPRTCL . EQ .	1)		837
838	838		. READ (88) NPT.(	(XPRTCL(IK, IPT), IK=1,2), IPT=1, NPT),		838
839 840	839 840		ENDIF	(IJKPRT(IPT), IPT=1, NPT)		839
841	841	С	ENUIF			840
842	842					841 842
843	843	č				843
844	844	C	PERFORM THE ACTUAL CAL	CULATION		844
845	845	C				845
846	846	•	CALL HYDRMN			846
847 848	847 848	C C				847
849	849	C====	:##\$\$\$\$\$\$\$\$\$	全학 문제 바 것 문 문제 부 부 것 전 또 못 해 실 할 것 것 은 후 번 실 원 유 후 후 후 두 두 돈 및 드 위 드		848
850	850	č	EXIT POINT FROM PROGRA	M		849 850
851	851	Č				851
852	852	С	******			852
853	853	~	STOP 777			853
854 855	854	C C				854
855 856	855 856		FORMATS			855
857	857	č	1 VINETIJ			856 857
858	858	101	FORMAT(1H .'ICOND='.12	.5X,'ICONP=',I2,5X,'ITRIGR=',I2,5X,		858
859	859		. 'IOPTN=',12	./.1X.		859
860	860		<ul> <li>'XMCHIN=', F</li> </ul>	13.6,5X, 'RIN=', F13.6,5X, 'PIN=', F13.6./.1X.		860
861	861		• 'ALFA=',F13	.6,5X, 'HRGG=',F13.6,5X, 'IHRN=',I2.5X,/.1X.		861
862	862		• 'NTIME=', 12	,5X, 'MDUMP=', I5,5X, 'NDUMP=', I5,5X, /, 1X		862
863 864	863 864		<ul> <li>"KUUMP=',15</li> <li>'toppcn=',15</li> </ul>	,5X,'IOSPCL=',I2,5X,'IOPLFT=',I2,5X,/,IX, 2,5X,'IOPORD=',I2,5X,'IOPBYN=',I2,5X,/,IX		863
865	865		• ************************************	2,5X, 'IOPORD=',12,5X, 'IOPORN=',12,5X,/,1X 2,5X, 'IOPEOS=',12,5X, 'MPRTCL=',16,5X,/,1X,		864 865
866	866		· 'IOPINT='.1	2,5X, 'IOPADD=', I2,5X, 'IOPDEL=', I2,5X,/,IX,		866
867	867		<ul> <li>'AREADD=',F</li> </ul>	13.6,5X, 'AREDEL=', F13.6,5X,/,1X,		867
868	868			2,5X,'ISTATC=',I2)		868
869	869	ç				869
870 871	870 871	С	END			870
0/1	0/1		CHU			871

Thu Jul	1 14:1	15:40 1	993 maintd.f SUBROUTINE HYDRFL	page	13
872 873	1 2	С	SUBROUTINE HYDRFL		872 873
874	3	Č	i		874
875 876	4 5	C C	I HYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT COMPUTES THE I		875 876
877	6	ι	FLUXES ACKUSS NURMAL INTERFACES FUR UPDATING SIDE I		877
878 879	7 8	C C	OR TRIANGLE BASED QUANTITIES.		878 879
880 881		C C	1		880
882	11	L	include 'cmsh00.h'		881 882
883 884	12 13		include 'chyd00.h' include 'cint00.h'		883 884
885	14		include 'chyd0.h' include 'cint00.h' include 'cphs10.h' include 'cphs20.h'		885
886 887	15 16	С	include consector		886 887
888 889	17 18	C==== C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		888
890	19	L	REAL DELP(MBP), WSOP(MBP), WSOH(MBP), WSOO(MBP),		889 890
891 892	20 21		. RSTAR(MBP),CSTAR(MBP),PMAX(MBP),PMIN(MBP) REAL RRIGHT(MBP),URIGHT(MBP),VRIGHT(MBP),PRIGHT(MBP)		891 892
893	22	•	REAL RLEFTT(MBP), ULEFTT(MBP), VLEFTT(MBP), PLEFTT(MBP)		893
894 895	23 24	C C====	***************************************		894 895
896 897	25 26	C C			896
898	27	Č	BEGIN LOOP OVER ALL EDGES IN THE DOMAIN		897 898
899 900	28 29	С	DO 280  IH = 1, 4		899 900
901	30		DO 280 IS = 1 . NS		901
902 903	31 32	280	HYDFLX( IS , , , ) = 0. CONTINUE		902 903
904 905	33 34	C	NE1 - 1		904
906	35		NE2 = NOFVEE(1)		905 906
907 908	36 37	С	DO 110 INE = 1 , NVEEE		907 908
909	38	C	FETCH HYDRO QUANTITIES		909
910 911	39 40	C C	FOR LEFT AND RIGHT SIDE OF THE INTERFACE ON WHICH THE RIEMANN PROBLEM IS SOLVED		910 911
912 913	41	Ċ			912
914	42 43		DO 120 IE - NE1 , NE2 KE - IE - NE1 + 1		913 914
915 916	44 45	C	RR(KE) = RR(IE)		915 916
917	46		UUR( KE ) = UR( IE )		917
918 919	47 48		VVR( KE ) = VR( IE ) PPR( KE ) = PR( IE )		918 919
920	49	C			920
921 922	50 51		RRL( KE ) = RL( IE ) UUL( KE ) = UL( IE )		921 922
923 924	52 53		VVL( KE ) = VL( IE ) PPL( KE ) = PL( IE )		923 924
925	54		CONTINUE		925
926 927	55 56	С С	ASSIGN GAMA A VALUE		926 927
928 929	57 58	C			928 929
930	59		DO 130 KE = 1 , NOFVEE( INE ) IE = KE + NE1 - 1		930
931 932	60 61		ISL = JE(3, IE) ISR = JE(4, IE)		931 932
933	62		GAMAL( KE ) = HYDV( ISL , 5 )		933
934 935	63 64		IF(ISR.NE.0) THEN GAMAR(KE) = HYDV(ISR,5)		934 935
936 93	65 66		ELSE		936 937
92	67		GAMAR( KE ) = GAMAL( KE ) END IF		938
9: 9.	68 69	С С	THIS SECTION OF CODE SOLVES FOR "PSTAR" AND "USTAR" IN		939 940
94	70	С	THE RIEMANN PROBLEM USING NEWTON'S METHOD.		941
942 943	71 72	C	HLEFT( KE ) = SQRT( GAMAL( KE ) * PPL( KE ) * RRL( KE ) )		942 943
944 945	73 74	с	WRIGT( KE ) = SQRT( GAMAR( KE ) * PPR( KE ) * RRR( KE ) )		944 945
J7J	77	v			340

Thu Jul	1 14;	5:40 1993 mainhd.f	SUBROUTINE HYDRFL page	ge 14
946 947	75 76	WRISQ( KE ) = WRIG	T( KE ) * WLEFT( KE ) T( KE ) * WRIGT( KE )	946 947
948 949 950	77 78 79	C PMIN( KE ) = AMIN1( PSML( KE ) = HRSM *	(PPL(KE), PPR(KE)) * PMIN(KE)	948 949 950
951 952 953	80 81 82	C	S FOR THE SOLUTION	951 952 953
954 955	83 84	PSTAR( KE ) = ( WLE WRI	EFT( KE ) * PPR( KE ) + IGT( KE ) * PPL( KE ) -	954 955
956 957 958	85 86 87	. (UUF . (WLE	EFT( KE ) * WRIGT( KÉ ) * R( KE ) – UUL( KE } ) ) / EFT( KE ) + WRIGT( KE ) )	956 957 958
959 960 961	88 89 90	PSTAR( KE ) = AMAXI 130 CONTINUE C	1(PSTAR(KE),PSML(KE))	959 960 961
962 963 964	91 92 93	DO 140 I = 1 , IHRM C	N TION	962 963
965 966	94 95	C DO 150 KE - 1 , NOFVEE(		964 965 966
967 968 969	96 97 98	C	) + 1 . ) / GAMAL( KE ) * .5 1. + CF * ( PSTAR( KE ) /	967 968 969
970 971 972	99 100 101	WLEFT( KE ) = SQF 71FFT( KE ) = 2	PPL( KE ) - 1. ) ) * WLESQ( KE ) RT( WLEFS( KE ) ) * WLEFT( KE ) * WLEFS( KE ) /	970 971 972
973 974 975	102 103 104	USTL( KE ) = UUL	(WLESQ(KE) + WLEFS(KE)) L(KE) -	973 974
976 977	105 106	150 CONTINUE C	TAR( KE ) - PPL( KE ) ) / WLEFT( KE )	975 976 977
978 979 980	107 108 109	DO 152 KE = 1 , NOFVEE( C CF = ( GAMAR( KE	) + 1 . ) / GAMAR( KE ) * .5	978 979 980
981 982 983	110 111 112	WRIFS( KE ) = ( 1	L. + CF * ( PSTAR( KE ) / PPR( KE ) - 1. ) ) * WRISQ( KE )	981 982 983
984 985 986	113 114 115	ZRIGT( KE ) = 2. 	* WRIGT( KE ) * WRIFS( KE ) / ( WRISQ( KE ) + WRIFS( KE ) )	984 985 986
987 988	116 117	152 CONTINUE	TAR( KE ) - PPR( KE ) ) / WRIGT( KE )	987 988
989 990 991	118 119 120	C DO 160 KE - 1 , NOFVEE( DPST( KE ) = ZLE	( INE ) EFT( KE ) * ZRIGT( KE ) *	989 990 991
992 993 994	121 122 123	. (ZLE	TR( KE ) - USTL( KE ) ) / EFT( KE ) + ZRIGT( KE ) ) TAR( KE ) - DPST( KE )	992 993 994
995 996 997	124 125 126		AXI (PSTÁR ( KE ) , PSML ( KE ) )	995 996 997
998 999 1000	127 128 129	C FORM FINAL SOLUTIONS C		998 999
1001 1002	130 131	DO 170 KE = 1 , NOFVEE(		1000 1001 1002
1003 1004 1005	132 133 134	WLEFT( KE ) = SQRT( CF *	+ 1. ) / GAMAL( KE ) * .5 ( WLESQ( KE ) * ( 1. + ( PSTAR( KE ) / PPL( KE ) - 1. ) ) )	1003 1004 1005
1006 1007 1008	135 136 137	170 CONTINUE C DO 172 KE = 1 , NOFVEE(	(INE)	1006 1007 1008
1009 1010 1011	138 139 140		+ 1. ) / GAMAR( KE ) * .5 ( WRISQ( KE ) * ( 1. +	1009 1010 1011
1012 1013 1014	141 142 143		( PSTAŘ( KE ) / PPR( KE ) - 1. ) ) )	1012 1013 1014
1015 1016 1017	144 145 146	DO 180 KE = 1 , NOFVEE( USTAR( KE ) = ( PPL	(INE) ((KE) - PPR(KE) + FT(KE) * UUL(KE) +	1015 1016 1017
1017 1018 1019	140 147 148	- WRI	IGT( KE ) + UUR( KE ) ) / IFT( KE ) + WRIGT( KE ) )	1017 1018 1019

Thu Jul	1 14:1	15:40 19	993 mainhd.f SUBROUTINE HYDRFL	page	15
1020	149		CONTINUE		1020
1021 1022	150 151	C C	BEGIN PROCEDURE TO OBTAIN FLUXES FROM REIMANN FORMALISM		1021 1022
1023	152	č			1023
1024 1025	153 154		DO 190 KE = 1 , NOFVEE( INE ) IF( USTAR( KE ) . LE . 0.0 ) THEN		1024 1025
1026	155	С			1026
1027 1028	156 157		RO( KE ) = RRR( KE ) PO( KE ) = PPR( KE )		1027 1028
1029	158		UO( KE ) = UUR( KE )		1029
1030 1031	159 160		CO( KE ) = SQRT( GAMAR( KE ) * PPR( KE ) / RRR( KE ) ) WO( KE ) = WRIGT( KE )		1030 1031
1032	161		ISH(KE) = 1		1032
1033 1034	162 163	C	VGDNV( KE ) = VVR( KE )		1033 1034
1034	165	C			1035
1036	165	~	ELSE		1036 1037
1037 1038	166 167	С	RO(KE) = RRL(KE)		1037
1039	168		PO(KE) = PPL(KE)		1039
1040 1041	169 170		UO( KE ) = UUL( KE ) CO( KE ) = SQRT( GAMAL( KE ) * PPL( KE ) / RRL( KE ) )		1040 1041
1042	171		WO( KE ) = WLEFT( KE )		1042
1043 1044	172 173	С	ISN(KE) = -1		1043 1044
1045	174	•	VGDNV( KE ) = VVL( KE )		1045
1046 1047	175 176	190	END IF CONTINUE		1046 1047
1048	177	c			1048
1049 1050	178 179		DO 200 KE = 1 , NOFVEE( INE ) DELP( KE ) = PSTAR( KE ) - PO( KE )		1049 1050
1051	180		WSOP( KE ) = ISN( KE ) * UO( KE ) + WO( KE ) / RO( KE )		1051
1052 1053	181 182	200	WSOM( KE ) = ISN( KE ) * UO( KE ) + CO( KE ) CONTINUE		1052 1053
1055	183	C			1054
1055 1056	184 185		DO 210 KE = 1 , NOFVEE( INE ) IE(DELP(KE)) = CE = 0 ) THEN		1055 1056
1050	185		IF( DELP( KE ) . GT . O. ) THEN WSDO( KE ) = WSOP( KE )		1050
1058	187				1058
1059 1060	188 189		WSOO(KE) - WSOM(KE) END IF		1059 1060
1061	190		CONTINUE		1061 1062
1062 1063	191 192	с с	USE OUTER STATE SOLUTION		1062
1064	193	С			1064 1065
1065 1066	194 195		DO 220 KE = 1 , NOFVEE( INE ) PGDNV( KE ) = PO( KE )		1066
1067	196		UGDNV(KE) = UO(KE)		1067
1068 1069	197 1 <b>98</b>		CGDNV(KE) = CO(KE) RGDNV(KE) = RO(KE)		1068 1069
1070	199	220			1070
1071 1072	200 201	С С	COMPUTE STARRED VALUES		1071 1072
1073	202	č			1073
1074 1075	203 204		DO 230 KE = 1 , NOFVEE( INE ) IE = KE + NE1 - 1		1074 1075
1076	205		ISL = JE(3, IE)		1076
1077 1078	206 207		ISR = JE(4, IE) IF(ISR, NE, 0) THEN		1077 1078
1079	208		GAMAG( KE ) = .5 * ( HYDV( ISL , 5 ) + HYDV( ISR , 5 ) )		1079
1080 1081	209 210		ELSE GAMAG(KE) = HYDV(ISL,5)		1080 1081
1082	211	~	END IF		1082
1083 1084	_12 213	C	RSTAR( KE ) = 1. / ( 1. / RO( KE ) - DELP( KE ) /		1083 1084
1085	214	<b>^</b>	. (WO(KE) * WG(KE)))		1085
1086 1087	215 216	С	CSTAR( KE ) = SQRT( GAMAG( KE ) * PSTAR( KE ) / RSTAR( KE ) }		1086 1087
1088	217		WSOM( KE ) = ISN( KE ) * USTAR( KE ) + CSTAR( KE )		1088
1089 1090	218 219	230 C	CONTINUE		1089 1090
1091	220	-	DO 240 KE = 1 , NOFVEE( INE )		1091
1092 1093	221 222		IF( DELP( KE ) . GT . O. ) THEN SPIN( KE ) = WSOP( KE )		1092 1093
<b>-</b>					

## 

Thu Jul	1 14:	15:40 1	993 mainhd.f SU	BROUTINE HYDRFL	page	16
1094 1095	223 224		ELSE SPIN(KE) = WSOM(KE)			1094 1095
1096	225		END IF			1095
1097 1098	226 227	240 C	CONTINUE			1097 1098
1099	2 <b>28</b>	-	DO 250 KE = 1 , NOFVEE( INE )			1090
1100 1101	2 <b>29</b> 230	С	IF( WSOO( KE ) . GE . O. ) THEN			1100
1102	231		IF( SPIN( KE ) . GE . O. ) THEN			1101 1102
1103 1104	232 233	C C	USE THE STARRED STATE RESULTS			1103 1104
1105	234	č				1104
1106 1107	235 236		RGDNV( KE ) = RST. UGDNV( KE ) = UST.			1106 1107
1108	237		CGDNV( KE ) = CST	AR( KE )		1108
1109 1110	238 239		PGDNV( KE ) = PST. ELSE	AR( KE )		1109
1111	240	C				1110 1111
1112 1113	241 242	C C	EVALUATE THE INSIDE RAREFACTION WAVE			1112
1114	243	•	HRGG = GAMAG( KE )			1113 1114
1115 1116	244 245		HRGM = GAMAG( KE ) - 1. HRGP = GAMAG( KE ) + 1.			1115
1117	246		CGDNV(KE) = (CSTAR(KE) * 2.	-		1116 1117
1118 1119	247 248		ISN(KE) * USTA UGDNV(KE) = - ISN(KE) * CGDN	R(KE) * HRGM) / HRGP		1118
1120	249		RGDNV(KE) = (CGDNV(KE) / CO	( KE ) ) **		1119 1120
1121 1122	250 251		• (2. / HRGM ) * RO PGDNV( KE ) = CGDNV( KE ) * CGDN	( KE ) * PCDNV( KE ) / HPCC		1121
1123	252	С		$\mathbf{v}(\mathbf{R}\mathbf{E}) = \mathbf{R}\mathbf{u}(\mathbf{R}\mathbf{E}) + \mathbf{R}\mathbf{u}(\mathbf{R}\mathbf{E})$		1122 1123
1124 1125	253 254	с	END IF			1124
1126	255	U U	END IF			1125 1126
1127 1128	256 257	250 C	CONTINUE			1127
1129	2 <b>58</b>	C C	DO 142 IE - NE1 , NE2			1128 1129
1130 1131	259 260	с	KE = IE - NEI + 1			1130
1132	261	L	RRR( KE ) = XN( IE )			1131 1132
1133 1134	262 263		UUR( KE ) = YN( IE ) VVR( KE ) = XXN( IE )			1133
1135	264		PPR(KE) = YYN(IE)			1134 1135
1136 1137	265 266		PPL( KE ) = XE( 2 , IE ) RRL( KE ) = XE( 1 , IE )			1136
1138	267		RRL( KE ) = XE( 1 , IE ) UUL( KE ) = XYMIDL( IE )			1137 1138
1139 1140	268 259	C 142	CONTINUE			1139
1140	270	С				1140 1141
1142 1143	271 27 <b>2</b>	C C	SEARCH FOR MINIMUM VALUE OF TIMESTEP	DTT		1142
1144	27 <b>3</b>	C C	DO 260 KE = 1 , NOFVEE( INE )			1143 1144
1145 1146	27 <b>4</b> 275		CTT = SQRT( GAMAG( KE ) * PGDNV( KE ) VEL = UGDNV( KE )	/ RGDNV( KE ) )		1145
1147	276	C				1146 [°] 1147
1148 1149	277 27 <b>8</b>		PROJCT = RRR( KE ) * VVR( KE ) + UUR( DTU = PPL( KE ) * ABS( PROJCT ) / ( C	(KE) * PPR(KE)		1148
1150	279		DT1 = DTU * UUL( KE )	TI T ADS( VEL ) )		1149 1150
1151 1152	280 281		DT2 = DTU - DT1 DTT = AMIN1( DTT , DT1 , DT2 )			1151
1153	282		CONTINUE			1152 1153
1154 1155	283 284	C C	NOW FIND THE FLUXES AT EACH INTERFACE			1154
1156	285	с				1155 1156
1157 1158	286 287		DO 270 KE = 1 , NOFVEE( INE ) HRGG = GAMAG( KE )			1157
1159	288		HRGM - GAMAG( KE ) - 1.			1158 1159
1160 1161	289 290	С	HRGP = GAMAG( KE ) + 1.			1160
1162	291	C	FLUX FOR DENSITY			1161 1162
1163 1164	292 293	С	RO( KE ) - RGDNV( KE ) * UGDNV( KE )			1163
1165	294	ç				1164 1165
1166 1167	295 296	с с	FLUX FOR MOMENTUM DENSITY	••••••		1166 1167
		-			1	110/

Thu Jul	1 14:	15:40 1	993 mainhd.f SUBROUTINE HYDRFL	page	17
1168 1169	297 298		UO(KE) = PGDNV(KE) * RRR(KE) + . RO(KE) * (UGDNV(KE) * RRR(KE) - VGDNV(KE) * (URC KE) }		1168
1170	299				1169 1170
1171 1172	300 301		WO(KE) = PGDNV(KE) * UUR(KE) + RO(KE) * (UGDNV(KE) * UUR(KE) +		1171 1172
1173	302		· VGDNV(KE) * RRR(KE))		1173
1174 1175	303 304	С С	FLUX FOR ENERGY DENSITY		1174 1175
1176	305	С		•	1176
1177 1178	306 307		PO( KE ) = UGDNV( KE ) * ( PGDNV( KE ) * HRGG / HRGM + 5 * RGDNV( KE ) * ( UGDNV( KE ) * UGDNV( KE ) +		1177 1178
1179	308		· VGDNV( KE ) * VGDNV( KE ) )		1179
1180 1181	309 310	C 270	CONTINUE		1180 1181
1182	311	C			1182
1183 1184	312 313	ι C	COLLECT INTERFACE FLUXES FOR EACH TRIANGLE	-	1183 1184
1185	314	-	$DO_290 IE = NE1 , NE2$		1185
1186 1187	315 316	С	KE = IE - NE1 + 1		1186 1187
1188	317		ISL - JE( 3 . IE )		1188
1189 1190	318 319	с	ISR = JE(4, IE)		1189 1190
1191	320	-	DFLUX - RRL( KE )		1191
1192 1193	321 322	C	IF( JE( 5 , IE ) . EQ . 0 ) THEN		1192 1193
1194	323	Ç			1194
1195 1196	324 325	с с	FLUX FOR DENSITY		1195 1196
1197	326		HYDFLX(ISL, 1) = HYDFLX(ISL, 1) + DFLUX * RO(KE)		1197
1198 1199	327 328	С	HYDFLX(ISR, 1) = HYDFLX(ISR, 1) - DFLUX * RO(KE)		1198 1199
1200	329	с	FLUX FOR MOMENTUM DENSITY ( U DIRECTION )		1200
1201 1202	330 331	C	HYDFLX(ISL, 2) = HYDFLX(ISL, 2) + DFLUX * UO(KE)		1201 1202
1203 1204	332	c	HYDFLX(ISR, 2) = HYDFLX(ISR, 2) - DFLUX * UO(KE)		1203
1204	333 334	с с	FLUX FOR MOMENTUM DENSITY ( V DIRECTION )		1204 1205
1206 1207	335	C			1206
1207	336 337		HYDFLX( ISL , 3 ) = HYDFLX( ISL , 3 ) + DFLUX * WO( KE ) HYDFLX( ISR , 3 ) = HYDFLX( ISR , 3 ) = DFLUX * WO( KE )		1207 1208
1209 1210	338 339	ç	FLUX FOR ENERGY DENSITY		1209
1210	340	č	FLUA FUR ENERGY DENSITY		1210 1211
1212 1213	341 342		HYDFLX(ISL, 4) = HYDFLX(ISL, 4) + DFLUX * PO(KE)		1212
1214	343	С	HYDFLX(ISR,4) = HYDFLX(ISR,4) ~ DFLUX * PO(KE)		1213 1214
1215 1216	344 345	С	ELSE		1215
1217	346		FLUX FOR DENSITY		1216 1217
1218 1219	347 348	С	HYDFLX(ISL,1) = HYDFLX(ISL,1) + DFLUX * RO(KE)		1218 1219
1220	349	C			1220
1221 1222	350 351	с с	FLUX FOR MOMENTUM DENSITY ( U DIRECTION )		1221 1222
1223	352	-	HYDFLX( ISL , 2 ) = HYDFLX( ISL , 2 ) + DFLUX * UO( KE )		1223
1224 1225	353 354	с с	FLUX FOR MOMENTUM DENSITY ( V DIRECTION )		1224 1225
1226	355	č			1226
1227 1228	356 357	С	HYDFLX( ISL , 3 ) = HYDFLX( ISL , 3 ) + DFLUX * WO( KE )		1227 1228
1229	358	C	FLUX FOR ENERGY DENSITY		1229
1230 1231	359 360	C	HYDFLX( ISL , 4 ) = HYDFLX( ISL , 4 ) + DFLUX * PO( KE )		1230 1231
1232	361	C			1232
1233 1234	362 363	290	END IF CONTINUE		1233 1234
1235	364	C			1235
1236 1237	365 366		NE1 = NE2 + 1 NE2 = NE2 + NOFVEE( INE + 1 )		1236 1237
1238 1239	367		CONTINUE		1238
1240	368 369	C C≈====	==####################################	1	1239 1240
1241	370	C			1241

Thu Jul	1 14:	:15:40 1993 mainhd.f SUBROUTINE HYDRFL	page	18
1242 1243 1244 1245 1246 1247 1248 1249 Thu Jul	371 372 373 374 375 376 377 378	C RETURN C C		1242 1243 1244 1245 1246 1247 1248 1249
1250	1			1250
1251 1252	23	C		1250 1251
1253	4	CI		1252 1253
1254 1255	5 6	C HYDRODYNAMIC SOLVER, THIS SUBROUTINE OBTAINS THE		1254 1255
1256 1257	7 8	C EDGE BASED FLUXES FOR EACH TRIANGLE/SIDE FROM 1		1256
1258	9	C THE DEETNEMENT AND COADSENTING OF THE COTO T		1257 1258
1259 1260	10 11	C FOR POST-PROCESSING. I		1259 1260
1261 1262	12 13	C I C I		1261 1262
1253 1264	14 15	ČI C		1263
1265	16			1264 1265
1266 1267	17 18			1266 1267
1268 1269	19 20	include 'cphs10.h'		1268
1270	21	include 'cphs20.h' C		1269 1270
1271 1272	22 23	∁╧╗⋻⋹⋇⋧⋨⋕⋫⋇⋑⋪⋪⋩⋩⋩⋩⋧⋧⋧⋧⋧⋬⋨⋑⋜⋑⋩⋵⋨⋶⋇⋹⋹⋎⋇⋬⋍⋵⋐⋼⋎⋹⋎⋍∊∊⋼⋏⋵⋽⋫⋳⋹∊⋋∊⋹⋹⋫⋗⋎⋜⋧⋇⋞⋇⋇⋇ С		1271 1272
1273 1274	24 25	REAL RRN(MBP),URN(MBP),VRN(MBP),EPN(MBP),XSAR(MBP), TTN(MBP),XYRAD(MBP)		1273
1275	26	INTEGER IEDIST(2)		1274 1275
1276 1277	27 28	C C×===================================		1276 1277
1278 1279	29 30	C CFL = 0.90		1278 1279
1280	31	c		1280
1281 1282	32 33	C SET SPECIFIC TIME FOR A DUMP		1281 1282
1283 1284	34 35	TLIMIT=30. FLATDR = .9		1283 1284
1285 1286	36 37	LDUMP = KDUMP IF( IJKINT . EQ . 3 ) THEN		1285
1287	38	LDUMP = 6		1286 1287
1288 1289	39 40	IF( LDUMP . LT . KDUMP ) LDUMP * KDUMP END IF		1288 1289
1290 1291	41 42	C DO 120 JT - 1 . NTIME		1290 1291
1292	43	DO 130 IT = 1, MDUMP		1292
1293 1294	44 45	C D0 140 ITT = 1 , NDUMP		1293 1294
1295 1296	46 47	IJKKJI = ( JT - 1 ) * NDUMP * MDUMP + ( IT - 1 ) * NDUMP + ITT IJKIJK = IJKINT + IJKKJI		1295 1296
1297 1298	48 49	C DO 142 IKT = 1 , LDUMP		1297
1299	50	C		1298 1299
1300 1301	51 52	C SELECT ORDER OF INTEGRATION		1300 1301
1302 1303	53 54	IF(IOPORD.EQ.1)THEN CALL FIRST		1302 1303
1304 1305	55	ELSEIF(IOPORD.EQ.2)THEN		1304
1306	56 57	CALL GRADNG ENDIF		1305 1306
1307 1308	58 59	C C SET TIMESTEP TO HIGH VALUE IT WILL BE CALCULATED PROPERLY		1307 1308
1309 1310	60 61	C IN THE FLUX SUBROUTINE		1309 1310
1311	62	DTT = 1.E24		1311
1312	63	C		1312

Thu Jul	1 14:	15:40	1993 mainhd.f SUBROUTINE HYDRMN	page	19
1313	64		FIND THE FLUXES		1313
1314 1315	65 66	С	CALL HYDRFL		1314 1315
1316	67	С			1316
1317 1318	68 69		DTT = DTT * CFL TT = TT + DTT		1317 13 <b>18</b>
1319	70	•	PRINT *, JT, IT, IKT, DTT, TT, NS		319
1320 1321	71 72	С С	INITIALIZE THE VERTEX BASED QUANTITIES NEEDED FOR COARSENING AND -		. 320 1321
1322	73	C C	FOR REFINEMENT, AND FOR POST-PROCESSING		1322
1323 1324	74 75	ι	DO 210 IV = 1 , NV		1323 1324
1325	76		PR(IV) = 0.		1325
1326 1327	77 78		DO 210 IR = 1 , MHQ HYDVVV( IV , IR ) = 0.		1326 1327
1328 1329	79 80	210 C	CONTINUE		1328 1329
1330	81	L	NS1 = 1		1330
1331 1332	82 83		NS2 = NOFVES( 1 ) DO 110 INS = 1 , NVEES		1331 1332
1333	84	C			1333
1334 1335	85 86		DO 150 IS = NS1 , NS2 KS = IS - NS1 + 1		1334 1335
1336	87		RR(KS) = HYDV(IS, 1)		1336
1337 1338	88 89		UUR( KS ) = HYDV( IS , 2 ) VVR( KS ) = HYDV( IS , 3 )		1337 1338
1339	90	-	PPR(KS) = HYDV(IS, 4)		1339
1340 1341	91 92	C	RRL( KS ) = HYDFLX( IS , 1 )		1340 1341
1342	93		UUL(KS) = HYDFLX(IS, 2)		1342
1343 1344	94 95		VVL( KS ) = HYDFLX( IS , 3 ) PPL( KS ) = HYDFLX( IS , 4 )		1343 1344
1345	96	С			1345
1346 1347	97 98	150	XSAR( KS ) = SAREA( IS ) CONTINUE		1346 1347
1348	99	C			1348
1349 1350	100 101		DO 170 KS = 1 , NOFVES( INS ) IS = KS + NS1 - 1		1349 1350
1351	102		GAMAG(KS) = HYDV(IS, 5)		1351
1352 1353	103 104	С	HRGM = GAMAG( KS ) - 1.		1352 1353
1354 1355	105 106		RRN(KS) = RRR(KS)		1354 1355
1356	100		URN(KS) = RRR(KS) * UUR(KS) VRN(KS) = RRR(KS) * VVR(KS)		1356
1357 1358	108 109		EPN( KS ) = PPR( KS ) / HRGM + .5 * RRR( KS ) * ,		1357 1358
1359	110		. VVR( KS ) * VVR( KS ) )		1359
1360 1361	111 112	170 C	CONTINUE		1360 1361
1362	113	C===	ĨĨġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ		1362
1363 1364	114 115	С С	COMPUTING THE SOURCE TERM ASSOCIATED WITH AXI-SYMMETRIC CASE		1363 1364
1365	116	Č			1365
1366 1367	117 118		XYDUMY = 1. / 6.283185307 DO 188 KS = 1 , NOFVES( INS )		1366 1367
1368	119	120	XYRAD(KS) = XYDUMY		1368
1369 1370	120 121	188 C	CONTINUE		1369 1370
1371 1372	122 123	C C	Y-AXIS IS AXIS OF SYMMETRY		1371 1372
1373	124	L.	IF( IAXSYM . EQ . 2 )THEN		1373
1374 1375	125 .26		DO 180 KS = 1 , NOFVES( INS ) IS = KS + NS1 - 1		1374 1375
1376	· 27		XS2S = XS(1, 15)		1376
1377 1378	i28 129		XYRAD( KS ) = XS2S IF( XS2S . GT0005 ) THEN		1377 1378
1379	130		DTA = DTT * UUR( KS ) / XS2S		1379
1380 1381	131 132		RRN( KS ) = RRN( KS ) * ( 1. – DTA ) URN( KS ) = URN( KS ) * ( 1. – DTA )		1380 1381
1382 1383	133		VRN( KS ) = VRN( KS ) * ( 1. – DTA ) EPN( KS ) = EPN( KS ) * ( 1. – DTA ) – PPR( KS ) * DTA		1382 1383
1383	134 135		$EPR(RS) = EPR(RS) \land (1 DIR) - PPR(RS) \land DIR$ $END IF$		1384
1385 1386	136 137	180 C	CONTINUE		1385 1386
1300	791	υ.			1.700

Thu Jul	1 14:1	15:40 1993 mainhd.f SUBROUTINE HYDRMN	page	20
1387	138	C X-AXIS IS AXIS OF SYMMETRY		1387
1388 1389	139 140	C ELSEIF( IAXSYM . EQ . 1 )THEN		1388 1389
1390	140	DO 182 KS = $1 \cdot NOFVES(INS)$		1390
1391	142	IS = KS + NS1 - 1		1391
1392 1393	143 144	XS2S = XS(2,1S) XYRAD(KS) = XS2S		1392 1393
1394	145	IF( XS2S . GT0005 ) THEN		1394
1395	146	DTA = DTT * VVR(KS) / XS2S		1395
1396 1397	147 148	RRN( KS ) = RRN( KS ) * ( 1. – DTA ) URN( KS ) = URN( KS ) * ( 1. – DTA )		1396 1397
1398	149	VRN(KS) = VRN(KS) * (1, - DTA)		1398
1399 1400	150 151	EPN(KS) = EPN(KS) * (1. – DTA) – PPR(KS) * DTA END IF		1399 1400
1401	152	182 CONTINUE		1401
1402	153	ENDIF		1402
1403 1404	154 155	C C COMPUTE THE EFFECT OF THE BOUYANCY(GRAVITY) TERM		1403 1404
1405	156	C		1405
1406 1407	157 158	GRAVTY = 9.81 C		1406
1408	159	IF( IOPBYN . EQ . 2 )THEN		1407 1408
1409	160	00 184 KS = 1 , NOFVES( INS )		1409
1410 1411	161 162	DTA = DTT * RRR( KS ) * GRAVTY VRN( KS ) = VRN( KS ) - DTA		1410 1411
1412	163	EPN(KS) = EPN(KS) - DTA * VVR(KS)		1412
1413	164	184 CONTINUE		1413
1414 1415	165 166	ELSEIF( 10PBYN . EQ . 1 )THEN		1414 1415
1416	167	DO 186 KS = 1 , NOFVES( INS )		1416
1417 1418	168 169	DTA = DTT * RRR( KS ) * GRAVTY URN( KS ) = URN( KS ) - DTA		1417 1418
1419	170	EPN(KS) = EPN(KS) - DTA * UUR(KS)		1419
1420	171	186 CONTINUE		1420
1421 1422	172 173	END IF C		1421 1422
1423	174			1423
1424 1425	175 176	C C UPDATE THE HYDRODYNAMIC QUANTITIES		1424 1425
1426	177	C STORING THE FLUXES FOR THE REFINEMENT/COARSENING STEPS		1426
1427	178			1427
1428 1429	179 180	DO 190 KS = 1 , NOFVES( INS ) IS = KS + NS1 - 1		1428 1429
1430	181	DTA = DTT * XSAR( KS )		1430
1431 1432	182 183	C RRLL = RRL( KS )		1431 1432
1433	184	UULL = UUL( KS )		1433
1434	185	WLL = VVL(KS)		1434
1435 1436	186 187	RRN( KS ) = RRN( KS ) ~ RRLL * DTA URN( KS ) = URN( KS ) ~ UULL * DTA		1435 1436
1437	188	VRN(KS) = VRN(KS) - VVLL * DTA		1437
1438 1439	189 190	C PPLL ≖ PPL( KS )		1438 1439
1440	191	HYDFLX(IS, 4) = ABS(PPLL) / EPN(KS) * DTA		1439
1441	192	EPN(KŠ) = EPN(KS) - PPLL + DTA C		1441
1442 1443	193 194	190 CONTINUE		1442 1443
1444	195	C		1444
1445 1446	196 197	DO 202 IS = NS1 , NS2 KS = IS - NS1 + 1		1445 1446
1447	198	ENERGY = 1. / RRN( KS ) * ( URN( KS ) * URN( KS ) +		1447
1448 1449	199 200	•		1448 1449
1449	200	HYDFLX(IS, 1) = ENERGY / TTN(KS)		1449
1451	202	HYDFLX(IS, 2) = RRN(KS)		1451
1452 1453	203 204	C 202 CONTINUE		1452 1453
1454	205	C EQUATION OF STATE FOR AIR		1454
1455 1456	206 207	C IF( IOPEOS . EQ . 1 )THEN		1455 1456
1450	207	CALL EOS( RRN , ITN , NOFVES( INS ) , GAMAG )		1450
1458	209	ELSE		1458
1459 1460	210 211	ENDIF		1459 1460
	~ 4 4	-		

Thu Jul	1 14:	15:40 199		page	21
1461 1462	212 213		ACCUMULATE VALUES AT THE VERTICES FOR ADAPTATION AND ALSO		1461
1463	214	č			1462 1463
1464	215		DO 220 KS = $1$ , NOFVES(INS)		1464
1465 1466	216 217	С	IS = KS + NS1 - 1		1465
1467	218	•	IVI = JS(1, IS)		1466 1467
1468	219		IV2 = JS(2, IS)		1468
1469 1470	220 221	с	IV3 = JS(3, IS)		1469
1471	222	C C	VOLUME = 6.283185307 * XYRAD( KS )		1470 1471
1472	223	C			1472
1473	224		XYAREA = XS(3, IS) * VOLUME		1473
1474 1475	225 226		XYFDR = XYAREA * RRN( KS ) XYFDU = XYAREA * URN( KS )		1474
1476	227		XYFDV = XYAREA * VRN( KS )		1475 1476
1477	228		XYFDP = XYAREA * EPN( KS )		1477
1478 1479	229 230	С	XYFDG = XYAREA * GAMÁG( KŠ )		1478
1479	230	L	HYDVVV( IVI , 1 ) - HYDVVV( IVI , 1 ) + XYFDR		1479 1480
1481	232		HYDVVV(IV1, 2) = HYDVVV(IV1, 2) + XYFDU		1480
1482	233		HYDVVV(IV1, 3) = HYDVVV(IV1, 3) + XYFDV		1482
1483 1484	234 235		HYDVVV( IV1 , 4 ) = HYDVVV( IV1 , 4 ) + XYFDP HYDVVV( IV1 , 5 ) = HYDVVV( IV1 , 5 ) + XYFDG		1483
1485	235		PR(IVI) = PR(IVI) + XYAREA		1484 1485
1486	237	C			1485
1487	238		HYDVVV(IV2, 1) = HYDVVV(IV2, 1) + XYFDR		1487
1488 1489	239 240		HYDVVV( IV2 , 2 ) = HYDVVV( IV2 , 2 ) + XYFDU HYDVVV( IV2 , 3 ) = HYDVVV( IV2 , 3 ) + XYFDV		1488
1490	241		HYDVVV(IV2, 4) = HYDVVV(IV2, 4) + XYFDP		1489 1490
1491	242		HYDVVV( IV2 , 5 ) = HYDVVV( IV2 , 5 ) + XYFDG		1491
1492	243	r	PR(IV2) = PR(IV2) + XYAREA		1492
1493 1494	244 245	С	HYDVVV(IV3,1) = HYDVVV(IV3,1) + XYFDR		1493
1495	246		HYDVVV(IV3, 2) = HYDVVV(IV3, 2) + XYFDU		1494 1495
1496	247		HYDVVV(IV3,3) = HYDVVV(IV3,3) + XYFDV		1496
1497 1498	248 249		HYDVVV(IV3, 4) = HYDVVV(IV3, 4) + XYFDP		1497
1499	250		HYDVVV( IV3 , 5 ) = HYDVVV( IV3 , 5 ) + XYFDG PR( IV3 ) = PR( IV3 ) + XYAREA		1498 1499
1500	251	С			1500
1501	252		IENUMR = 0		1501
1502 1503	253 254		IE1 = IABS( JS( 4 , IS ) ) IJE5 = JE( 5 , IE1 )		1502
1504	255		IF( IJE5 , NE , O ) THEN		1503 1504
1505	256		IENUMR = IENUMR + 1		1505
1506 1507	257 258		IEDIST( IENUMR ) = IE1 END IF		1506
1508	259		IE2 = IABS(JS(5, IS))		1507 1508
1509	260		IJE5 = JE(5, IE2)		1509
1510 1511	261 262		IF( IJE5 . NE . O ) THEN		1510
1512	262		IENUMR = IENUMR + 1 IEDIST( IENUMR ) = IE2		1511 1512
1513	264		END IF		1512
1514	265		IE3 = IABS(JS(6, IS))		1514
1515 1516	266 267		IJE5 = JE( 5 , IE3 ) IF( IJE5 . NE . 0 ) THEN		1515
1517	268		IENUMR = IENUMR + 1		1516 1517
1518	269		IEDIST( IENUMR ) = IE3		1518
1519 1520	270 271	С	END 1F	•	1519
1520	272	L.	IF( IENUMR . NE . 0 ) THEN		1520 1521
1522	273		DO 322 IK = 1 , IENUMR		522
1523	274		IEK = IEDIST( IENUMR )	1	523
1524 1525	275 276		IJE55 ≠ JE( Š , IEK ) RRNN = RRN( KS )		524 525
1526	277		URNN = URN(KS)		526
1527	278		VRNN - VRN(KS)	1	527
1528 1529	279 280	с	$EPNN = EPN(KS)$ $IE(L)E55 = E0, 6, 00 = 1)E55 = E0, 5 \times THEN$		528
1529	281	C	IF( IJE55 . EQ . 6 . OR . IJE55 . EQ . 5 ) THEN UUVV = - ( URN( KS ) * XN( IEK ) +		.529 530
1531	282	с.	VRN(KS) * YN(IEK))		531
1532	283	С	VVUU = - URN( KS ) * YN( IEK ) +	1	532
1533 1534	284 285	с. с.	VRN( KS ) * XN( IEK ) URNN = UUVV * XN( IEK ) ~ VVUU * YN( IEK )		533
7994	203	L.	oune - nnaa - vut tev ) - AANN - LUT TEV )	]	.534

Thu Jul	1 14:1	15:40 1	1993 mainhd.f SUBROUTINE HYDRMN	page	22
1535	286	С	VRNN - UUVV * YN( IEK ) + VVUU * XN( IEK )		1535
1536	287 288	C C	ELSE IF( IJE55 . EQ . 8 ) THEN RRNN = RIN		1536 1537
1537 1538	289	C	URNN - RIN * UIN		1538
1539	290	C	VRNN = RIN * VIN		1539
1540 1541	291 292	C C	EPNN - PIN / HRGM + .5 * RIN * UVIN * UVIN END IF		1540 1541
1542	293	č			1542
1543	294		XYFDR + XYAREA * RRNN		1543 1544
1544 1545	295 296		XYFDU = XYAREA * URNN XYFDV = XYAREA * VRNN		1545
1546	297		XYFDP - XYAREA * EPNN		1546
1547 1548	298 299	С	XYFDG = XYAREA * GAMAG( KS )		1547 1548
1549	300	•	IV1 = JE( 1 , IEK )		1549
1550	301		IV2 = JE(2, IEK) HYDVVV(IV1,1) = HYDVVV(IV1,1) + XYFDR		1550 1551
1551 1552	302 303		HYDWWV(IV1, 2) = HYDWWV(IV1, 2) + XYFDU		1552
1553	304		HYDVVV( IVI , 3 ) = HYDVVV( IVI , 3 ) + XYFDV		1553
1554 1555	305 306		HYDVVV( IV1 , 4 ) = HYDVVV( IV1 , 4 ) + XYFDP HYDVVV( IV1 , 5 ) = HYDVVV( IV1 , 5 ) + XYFDG		1554 1555
1556	307		PR(IVI) = PR(IVI) + XYAREA		1556
1557	308	С			1557 1558
1558 1559	309 310		HYDVVV( IV2 , 1 ) = HYDVVV( IV2 , 1 ) + XYFDR HYDVVV( IV2 , 2 ) = HYDVVV( IV2 , 2 ) + XYFDU		1559
1560	311		HYDVVV( IV2 , 3 ) = HYDVVV( IV2 , 3 ) + XYFDV		1560
1561 1562	312 313		HYDVVV( IV2 , 4 ) = HYDVVV( IV2 , 4 ) + XYFDP HYDVVV( IV2 , 5 ) = HYDVVV( IV2 , 5 ) + XYFDG		1561 1562
1562	314		PR(IV2) = PR(IV2) + XYAREA		1563
1564	315	322	CONTINUE		1564
1565 1566	316 317	С	END IF		1565 1566
1567	318	220	CONTINUE		1567
1568 1569	319 320	Ç	- CONSTRUCT NONCONSERVED HYDRODYNAMIC QUATITIES		1568 1569
1509	321	C	CONSTRUCT NUNCONSERVED HIDRODINANIC QUATTIES CAREFORDED		1570
1571	322		00 195 IS - NS1 , NS2		1571
1572 1573	323 324		KS = IS - NSI + 1 HDUM = 1. / RRN(KS)		1572 1573
1574	325		HYDV(IS, 1) = RRN(KS)		1574
1575 1576	326 327		HÝDV(IS,2) = URN(KS) * HÐUM HYDV(IS,3) = VRN(KS) * HÐUM		1575 1576
1570	328		HYDV(IS, 5) = GAMAG(KS)		1577
1578	329	100	HYDV( IS , 4 ) = TTN( KS ) * ( HYDV( IS , 5 ) - 1. )		1578 1579
1579 1580	330 331	195 C	CONTINUE		1580
1581	332	•	NS1 = NS2 + 1		1581
1582 1583	333 334	110	NS2 = NS2 + NOFVES( INS + 1 ) CONTINUE		1582 1583
1584	335	ſ			1584
1585	336		- END OF LOOP OVER TRIANGLES		1585 1586
1586 1587	337 338	C (===	######################################		1587
1588	339	ċ			1588
1589 1590	340 341	C C	- CALL FOR PARTICLE TRACERS		1589 1590
1591	342	u	IF( MPRTCL . EQ . 1 )THEN		1591
1592	343	С	CALL PRPTHC		1592 1593
1593 1594	344 345	С	CALL PRPINC		1594
1595	346		ENDIF		1595
1596 1597	347 348	C	- END OF INNER LOOP OVER KDUMP		1596 1597
1598	349	C			1598
1599	350 351	C=== C			1599 1600
1600 1601	351	č	- NORMALIZE CONSERVATIVE VERTEX BASED QUANTITIES		1601
1602	353	Ċ			1602 1603
1603 1604	354 355		DO 230 IV = 1 , NV VAREA = 1. / PR( IV )		1603
1605	356		DO 230 IR = 1 , MHQ		1605
1606 1607	357 358	230	HYDVVV( IV , IR ) ≠ HYDVVV( IV , IR ) * VAREA CONTINUE		1606 1607
1607	359	C 230			1608
			22		

Thu Jul	1 14:	15:40 19	993 mainhd.f SUBROUTINE HYDRMN	page	23
1609	360	142	CONTINUE		1609
1610 1611	361 362	C	WRITE THE DUMP FILE DATA FOR POST-PROCESSING		1610 1611
1612	363		IF( IT, EQ . MDUMP . AND . ITT . EQ . NDUMP ) THEN		1612
1613 1614	364 365		WRITE (9) NV,NE,NS,NPT,NTIME WRITE (9) ((XV(IK,IV),IK=1,2),IV=1,NV)		1613 1614
1615	366		WRITE (9) (JV(2,IV),IV=1,NV)		1615
1616 1617	367 368		WRITE (9) ((JE(KK.IE),KK=1.5),IE=1,NE) WRITE (9) ((JS(KK.IS),KK=1.6),IS=1,NS)		1616 1617
1618	369		WRITE (9) ((XS(KK,IS),KK=1,2),IS=1,NS)		1618
1619 1620	370 371		WRITE (9) RIN.PIN.UVIN.UIN.VIN.TT.IOPLFT WRITE (9) ((HYDV(IS.IK).IK-1.5).IS-1.NS)		1619 1620
1621	372	C			1621
1622 1623	373 374	C C	WRITE OUT PARTICLE TRACER DATA		1622 1623
1624	375	•	IF( MPRTCL . EQ . 1 )THEN		1624
1625 1626	376 377		WRITE (9) ((XPRTCL(IK,IPT),IK=1,2),IPT=1,NPT), ((WPRTCL(IK,IPT),IK=1,2),IPT=1,NPT)		1625 1626
1627	378	•			1627
1628 1629	379 380	C	PRINT CONSOLE MESSAGE AT END OF LOOP		1628 1629
1630	381	č			1630
1631 1632	382 383	С	PRINT * , JT, NV, NE, NS		1631 1632
1633	384		END IF		1633
1634 1635	385 386	C	132438572#5.5959#119====##104 <u>+985098999999999</u> 88######### <u>##</u> #############		1634 1635
1636	387	ñ			1636
1637 1638	388 389	C	I REFINEMENT/ADDITION OF POINTS I		1637
1639	390	Č			1638 1639
1640 1641	391 392	C C			1640
1642	392		CALCULATE THE GRADIENT OF THE MACH NUMBER FOR STEADY STATE		1641 1642
1643	394	С	ADAPTIVE STEP AND GENERATE THE QUANTITIES ON WHICH WE ADAPT.		1643
1644 1645	395 396	с с	ADAPTATION TO STATIC QUANTITIES BASED ON GRADIENTS OF		1644 1645
1646	397	C	MACH NUMBER, PRESSURE, AND DENSITY. OVERRIDES		1646
1647 1648	398 399	C C	ADAPTATION ON DYNAMIC FLUXES OF ENERGY AND DENSITY		1647 1648
1649	400		IF( ISTATC . EQ . 1 ) THEN		1649
1650 1651	401 402		CALL GRDFLX DO 240 IS = 1 , NS		1650 1651
1652	403		HYDFLX(IS, 1) = ABS(PL(IS)) + ABS(PR(IS))		1652
1653 1654	404 405		HYDFLX( IS , 2 ) = ABS( RL( IS ) ) + ABS( RR( IS ) ) HYDFLX( IS , 4 ) = ABS( VL( IS ) ) + ABS( VR( IS ) )		1653 1654
1655	406	240	CONTINUE		1655
1656 1657	407 408	C	ELSE		1656 1657
1658	409	C	,		1658
1659 1 <b>66</b> 0	410 411		CALL GRDENG DO 242 IS = 1 . NS		1659 1660
1661	412		HYDFLX( IS , 1 ) = ( UL( IS ) * UL( IS ) + UR( IS ) * UR( IS ) ) /		1661
1662 1663	413 414	٠	. (HYDFLX(IS,1) + 1.E-12) HYDFLX(IS,2) = (RL(IS) * RL(IS) + RR(IS) * RR(IS) } /		1662 1663
1664	415		(HYDFLX(IS, 2) + 1.E-12)		1664
1665 1666	416 417		HYDFLX( IS , 4 ) = ( VL( IS ) * VL( IS ) + VR( IS ) * VR( IS ) ) / ( HYDFLX( IS , 4 ) + 1.E-12 )		1665 1666
1667	418	242	CONTINUE		1667
1668 1669	419 420	С	END IF		1668 1669
1670	421		DYDMOM = HYDFLX(1, 4)		1670
1671 1672	422 423		DO 250 IS - 1 , NS DYDMOM - AMAX1( DYDMOM , HYDFLX( IS , 4 ) )		1671 1672
1673	424	250	CONTINUE		1673
1674 1675	425 426		HYDMOM( 4 ) = .5 * ( DYDMOM + HYDMOM( 4 ) ) PRINT*,HYDMOM( 4 )		1674 1675
1676	427	C			1676
1677 1678	428 429		DYDMOM = HYDFLX(1,2) D0 260 IS = 1, NS		1677 1678
1679	430	9CA	DYDMUM = AMAX1( DYDMOM , HYDFLX( IS , 2 ) )		1679
1680 1681	431 432	260	CONTINUE HYDMOM(2) = .5 * ( DYDMOM + HYDMOM(2) )		1680 1681
1682	433		PRINT*, HYDMOM(2)		1682

ł

1

ŧ

Thu Jul	1 14:1	5:40 1993	mainhd.f	SUBROUTINE HYDRHN	page	24
1683 1684	434 435	C DY	DHOM - HYDFLX( 1 , 1	}		1683 1684
1685	436	00	270 IS = 1 , NS			1685
1686 1687	437 438		DMOM = AMAX1( DYDMOM NTINUE	I, HYDFLX(IS, 1))		1686 1687
1688	439			YDHOM + HYDHOM(1))		1688
1689	440		INT*, HYDMOM(1)			1689
1690 1691	441 442	C C and RE	FINEMENT STEP DONE H	ERE		1690 1691
1692	443	C				1692
1693	444		(IOPADD.EQ.1) THEN			1693
1694 1695	445 446		NOFDIV = 4 CALL DYNPIN( AREADD	. NOFDIV , IJKIJK , LTRIG )		1694 1695
1696	447		NOFDIV = 2			1696
1697 1698	448 449		CALL DYYPTN( AREADO NOFDIV = 1	, NOFDIV , IJKIJK , LTRIG )		1697 1698
1699	449			, NOFDIV , IJKIJK , LTRIG )		1699
1700	451			, NOFDIV , IJKIJK , LTRIG )		1700
1701 1702	452 453	С	PRINT*,NV,NE,NS			1701 1702
1703	454	EN	DIF			1703
1704 1705	455	140 CO C	NTINUE			1704 1705
1705	456 457	C EN	D OF OUTER LOOP DEFT	NED BYNDUMP		1705
1707	458	C				1707
1708 1709	459 460	(======= (	*****************	고 학 은 것 공 옷 방 강 전 소 요 한 밖 옷 다 가 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다		1708 1709
1710	461	С	[			1710
1711	462	C		ELETION OF POINTS I		1711
1712 1713	463 464	C C	<u> </u>			1712 1713
1714	465	C				1714
1715 1716	466 467	I	F(IOPDEL.EQ.1)THEN	19 ) CALL DELPTNT( AREDEL , IJKIJK )		1715 1716
1717	468		PRINT*,NV,NE,NS	19 ) CALL DECPINI ( AREDEL , IGNIGN )		1717
1718	469		NDIF			1718
1719 1720	470 471	130 C C	ONTINUE			1719 1720
1721	472	Č EN	D OF OUTERMOST LOOP	DEFINED BY MDUMP		1721
1722 1723	473 474	C C=======				1722 1723
1724	475	C				1723
1725	476	C	-			1725
1726 1727	477 478	C C	I DIAGNOSTIC F	OK LIFT/OKAG I		1726 1727
1728	479	č	•			1728
1729	480		(IOPLFT.EQ.1)THEN			1729
1730 1731	481 482		CALL LIFTDR DIF			1730 1731
1732	483	C				1732
1733 1734	484 485	C====== C		,		1733 1734
1735	486	С		I		1735
1736	487	ç		FOR RESTARTS I		1736
1737 1738	488 489	C C	1	**************		1737 1738
1739	490	3				1739
1740 1741	491 492		EWIND 88 TERAT - ITERAT + 1			1740 1741
1742	493	-		,NEMK,NS,NSMK,ITERAT		1742
1743	494			(),KK-1,2),(XV(IK,IV),IK-1,2),IV-1,NV)		1743
1744 1745	495 496			),KK=1,5),(XE(KI.IE),KI=1,2),IE=1,NE)  (IE),XXN(IE),YYN(IE),IE=1,NE)		1744 1745
1746	497	W	RITE (88) ((JS(KK,IS	5), KK=1,6), (XS(KI,IS), KI=1,3), IS=1, NS)		1746
1747 1748	498 499			,YMIDL(IE),XYMIDL(IE),IE=1,NE) CE,NREME,NVECV,NREMV,NVECS,NREMS		1747 1748
1749	500		RITE (88) RIN,PIN,RI	NL, PINL, UVIN, UIN, VIN, TT,		1749
1750	501	•		), HYDMOM(2), HYDMOM(4)		1750 1751
1751 1752	502 503			IK), IK=1,5), IS=1, NS) V, IK), IK=1,5), IV=1, NV)		1752
1753	504	H	RITE (88) IJKIJK, (KS	DELT(IS), IS=1, NS)		1753
1754 1755	505 506		IF( MPRTCL . EQ . 1 PITE (88) NPT ((XPPT	) CL(IK,IPT),IK=1,2),IPT=1,NPT),		1754 1755
1755	500		NITE 1007 HET, 11APKI	(IJKPRT(IPT), IPT=1, NPT)		1756
				· · · · ·		

Thu Jul	1 14:1	15:40	1993	mainhd.f	S	UBROUTINE	HYDRMN	page	25
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778	508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529	с 120 С С с  с	WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE IF( WRITE CONTI	(8) NV.NVMK.NE (8) ((JV(KK,IV (8) ((JE(KK,IE (8) (XM(IE).YN (8) ((JS(KK,IS (8) (XMIDL(IE)) (8) SAREVG.NVE( (8) RIN,PIN,RII HYDMOM( (8) ((HYDVV(I)) (8) (JKIJK,(KSI MPRTCL - EQ - 1 (8) NPT,((XPRT)) NUE IN SEQUENCE LOON	),KK=1,2),(XV( ),KK=1,5),(XE( (IE),XXN(IE),Y ),KK=1,6),(XS( ,YMIDL(IE),XYM CE,NREME,NVECV NL,PINL,UVIN,U 1),HYDHOM(2),H IK),IK=1,5),IS V.IK),IK=1,5), DELT(IS),IS=1, ) CL(IK,IPT),IK= (IJKP P DEFINED BY .	IK, IV), IK- KI, IE), KI- YN(IE), IE- KI, IS), KI- IOL(IE), IE , NREMV, NVE IN, VIN, TT, YDMOM(4) -1, NS) IV-1, NV) NS) -1,2), IPT-J RT(IPT), IF NTIME	1,2),IE=1,NE) -1,NE) -1,3),IS=1,NS) E=1,NE) ECS,NREMS CCS,NREMS 		1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1770 1771 1772 1773 1774 1775 1776
1779 1780 1781 1782 1783 1784 1785 1786 1786 1787 1788 1789	530 531 532 533 534 535 536 537 538 539 540	C C C C C	RETURN - FORMAT	OINT FROM SUBRO	UTINE				1779 1780 1781 1782 1783 1784 1785 1786 1786 1787 1788 1789
1790 Thu Jul	541 1 14:1	15:40	END 1993	mainhd.f	S	UBROUTINE	GEOMTR		17 <b>90</b>
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1801 1802 1803 1804 1805 1805	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	с с с с с	GEOMT includ includ includ includ includ	e 'chyd00.h e 'cint00.h e 'cphs10.h e 'cphs20.h	TRICAL PARAMET EDED BY THE CO	ERS TO COM DE.	19LETE THE GRID		1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	C C C=== C C	REAL - MAKE S EDGES DO 105 IJE5 IF( IS IF	XELEFT(MBP), YELD URE THAT THE DOM BY ORIENTING THE IJE = 1 . NE = JE( 5 . IE ) IJE5 . NE . 0 ) R = JE( 4 . IE ( ISR . NE . 0 IV2 = JE( 4 . IE ( ISR . NE . 0 IV2 = JE( 1 . II IV1 = JE( 2 . II JE( 1 . IE ) = JE( 3 . IE ) = JE( 4 . IE ) = 0	EFT(M8P), XERIG MAIN IS ALWAYS EM CORRECTLY. THEN ) THEN E ) IVI IVI IV2 ISR	T(MBP), YEF	RIGT(MBP)		1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

_

Thu Jul	1 14:15:40 1	993 mainhd.f	SUBROUTINE	GEONTR	page	26
1828 1829 1830 1831 1832	38 39 40 41 106 42		, 3 ( IR + 3 , ISR ) ) IE ) JS( IR + 3 , ISR )	- IE		1828 1829 1830 1831 1832
1833 1834 1835	45 C	ENDIF				1833 1834 1835
1836 1837 1838	47 C 48 C		RMAL TO THE EDGES LINE BETWEEN TRIANGLE E EAS.			1836 1837 1838
1839 1840 1841 1842	49 C 50 51 52	NE1 - 1 NE2 - NOFVEE( 1 ) DO 110 INE - 1 , NVE	FF			1839 1840 1841 1842
1843 1844 1845	53 54 55	DO 140 IE = NE1 , NE KE = IE - NE1 + 1 IV1 = JE(1, IE)				1843 1844 1845
1846 1847 1848	56 57 58	IV2 = JE(2, IE) ISL = JE(3, IE) ISR = JE(4, IE)				1846 1847 1848
1849 1850 1851 1852	59 C 60 C 61 C 62 C	FIND UNIT VECTOR NOR STORED IN XN(IE),YN(	MAL TO AN EDGE IE)			1849 1850 1851 1852
1853 1854 1855	63 64 65	DXD = XV(1, IV2 DYD = XV(2, IV2 XE(1, IE) = SQR	) - XV( 1 , IV1 ) ) - XV( 2 , IV1 ) T( DXD * DXD + OYD * DYD	)		1853 1854 1855
1856 1857 1858	66 67 68	XEY = 1. / XE( 1 , XD = 0XD * XEY YD = 0YD * XEY				1856 1857 1858
1859 1860 1861 1862	69 C 70 71 72 C	XN( IE ) - YD YN( IE ) - XD				1859 1860 1861 1862
1863 1864 1865	73 74 C	1JE5 = JE{ 5 , IE	)			1862 1863 1864 1865
1866 1867 1868	78 C					1866 1867 1868
1869 1870 1871 1872 1873	79 80 81 82 83	IF( IV3 . EQ . IV1	IMEN . OR . IV3 . EQ . IV2 ) . OR . IV3 . EQ . IV2 ) ( 1 . IV3 ) + XV( 1 . IV	IV3 = JS(3, ISL)		1869 1870 1871 1872 1873
1874 1875 1876	84 85 86	•	XV(1, IV (2, IV3) + XV(2, IV	'1 ) ) * THIRD		1874 1875 1876
1877 1878 1879 1880	87 C 88 89 90	AA - XV(1, IV2) BB - XV(2, IV2) CC - XELEFT(KE) -	- XV(2, IV1) XV(1, IV1)			1877 1878 1879 1880
1881 1882 1883 1884	91 92 93 94	DD = YELEFT( KE ) - EE = ( AA * CC + BB XERIGT( KE ) - XV( YERIGT( KE ) - XV(	* DD ) * XEY * XEY 1 , IV1 ) + AA * EE			1881 1882 1883 1884
1885 1886 1887 1888	95 C 96 97 98	DXD = XERIGT( KE ) DYD = YERIGT( KE ) XE( 2 , IE ) = SQRT		)		1885 1886 1887 1888
1889 1890 1891 1892	99 C 100 C 101 C 102 C	UNIT VECTOR FROM LEF STORED IN XXN(IE),YY	T TO RIGHT BARI-CENTER A N(IE)	T INTERFACE		1889 1890 1891 1892
1893 1894 1895 1896	103 104 105 106 C	XY = 1. / XE( 2 , 10 XXN( IE ) = DXD * X YYN( IE ) = DYD * X	Y			1893 1894 1895 1896
1897 1898 1899	107 C 108 C 109 C	STORED IN XE(2, IE)	EN BARI-CENTERS			1897 1898 1899
1900 1901	110 111 C	XE(2, IE) = 2. *	XE(2, IE)			1900 1901

Thu Jul	1 14:15:40 1	993 mainhd.f	SUBROUTINE GEOMTR	page	27
1902 1903	113 C	COORDINATES OF B STORED IN XS(1, I	NARI-CENTERS FOR EACH TRIANGLE S),XS(2,IS)		1902 1903
1904 1905 1906	114 C 115 116	XS(1, ISL) - XS(2, ISL) -			1904 1905 1906
1907 1908	117 C 118 C	INTERSECTION POI	NT ON INTERFACE FOR LINE CONNECTING BARI-CENTERS -		1907 1908
1909 1910 1911	119 C 120 C 121 C	STORED IN XMIDL(	IE),YMIDL(IE) AND FRACTION OF LENGHT BETWEEN TO INTERSECTION POINT IN XYMIDL(IE).		1909 1910
1912 1913	122 123	XYMIDL( IE ) = XMIDL( IE ) = X			1911 1912 1913
1914 1915	124 125 C				1914 1915
1916 1917 1918	127 C 128 C				1916 1917 1918
1919 1920	129 C 130 C		S		1919 1920
1921 1922 1923	131 132 133	ELSE IV3 = JS(1, I	SL ) IV1 . OR . IV3 . EQ . IV2 ) IV3 = JS( 2 , ISL )		1921 1922
1924 1925	134 135	IF( IV3 . EQ .	IVI . OR . IV3 . EQ . IV2 ) IV3 = JS( 2 , ISE ) IV1 . OR . IV3 . EQ . IV2 ) IV3 = JS( 3 , ISL ) ( XV( 1 , IV3 ) + XV( 1 , IV2 ) +		1923 1924 1925
1926 1927	136 137	YELEFT( KE ) =	XV(1, IV1) + THIRD (XV(2, IV3) + XV(2, IV2) +		1926 1927
1928 1929 1930	138 139 · C 140	• IV3 = JS( 1 , I	XV(2, IV1)) * THIRD SR)		1928 1929 1930
1931 1932	141 142	IF( IV3 . EQ . IF( IV3 . EQ .	IV1 . OR . IV3 . EQ . IV2 ) IV3 = JS( 2 , ISR ) IV1 . OR . IV3 . EQ . IV2 ) IV3 = JS( 3 , ISR )		1931 1932
1933 1934 1935	143 144 145	•	(XV(1, IV3) + XV(1, IV2) + XV(1, IV1)) * THIRD (XV(2, IV3) + XV(2, IV2) +		1933 1934 1935
1936 1937	145 147 C	•	XV(2, IV1)) * THIRD		1936 1937
1938 1939 1940	148 149 150 C	DXD = XERIGT( DYD = YERIGT(	KE ) - XELEFT( KE ) KE ) - YELEFT( KE )		1938 1939 1940
1941 1942	151 C 152 C	LENGTH OF LINE B STORED IN XE(2, I	ETWEEN BARI-CENTERSE		1941 1942
1943 1944 1945	153 C 154 155 C	XE(2,IE)-	SQRT( DXD * DXD + DYD * DYD )		1943 1944 1945
1946 1947	156 C 157 C	UNIT VECTOR FROM STORED IN XXN(1E	LEFT TO RIGHT BARI-CENTER AT INTERFACE ),YYN(IE)		1946 1947
1948 1949 1950	158 C 159 160	XY = 1. / XE( XXN( IE ) = DX			1948 1949 1950
1951 1952	161 162 C	YYN( IE ) = DY	D * XY		1951 1952
1953 1954 1955	163 C 164 C 165 C	COORDINATES OF B STORED IN XS(1,1	ARI-CENTERS FOR EACH TRIANGLE S),XS(2,1S)		1953 1954 1955
1956 1957	166 167	XS(1, ISL) = XS(2, ISL) =	YELEFT( KE )		1956 1957
1958 1959 1960	168 169 170 C	XS(1, ISR) = XS(2, ISR) =			1958 1959 1960
1961 1962	171 172	BB = XV(2, IV)	2) - XV(1, IV1) 2) - XV(2, IV1)		1961 1962
1963 1964 1965	173 174 175	DD = YELEFT( KE	) - XERIGT( KE ) ) - YERIGT( KE ) E ) - XV( 1 , IV1 )		1963 1964 1965
1966 1967	1 <b>76</b> 177	OBD = YERIGT( K	E) - XV(2, IVI) - DBD * CC) / (AA * DD - BB * CC)		1966 1967
1968 1969 1970	178 C 179 C 180 C	INTERSECTION POI STORED IN XMIDI (	NT ON INTERFACE FOR LINE CONNECTING BARI-CENTERS - IE),YMIDL(IE) AND FRACTION OF LENGHT BETWEEN		1968 1969 1970
1971 1972	181 C 182 C	LEFT BARI-CENTER	TO INTERSECTION POINT IN XYMIDL(IE).		1971 1972
1973 1974 1975	183 184 185 C		V( 1 , IV1 ) + AA * EE V( 2 , IV1 ) + BB * EE		1973 1974 1975
	v				

Thu Jul	1 14:	15:40 1	1993 mainhd.f SUBROUTINE GEOMTR	page	28
1976	186		XEMID = XMIDL( IE ) - XELEFT( KE )		1976
1977 1978	187 188	с	YEMID - YMIDL( IE ) - YELEFT( KE )		1977
1979	189	C	XYNIDL( IE ) = SORT( XEMID * XEMID + YEMID * YEMID ) * XY		1978 1979
1980	190	C			1980
1981 1982	191	140			1981
1983	192 193	140 C	CONTINUE		1982 1983
1984	194	•	NE] = NE2 + 1		1984
1985 1986	195 196	110	NE2 = NE2 + NOFVEE( INE + 1 )		1985
1987	190	C	CONTINUE		1986 1987
1988	198		CALCULATE AREA OF TRIANGLES		1988
1989 1990	199 200	C	DO 150 IS = 1 , NS		1989
1991	201		IVI = JS(1, IS)		1990 1991
1992	202		IV2 = JS(2, IS)		1992
1993 1994	203 204		IV3 = JŠ(3, IŠ) DX = XV(1, IV2) - XV(1, IV1)		1993
1995	205		DXX = XV(1, IV3) - XV(1, IV1)		1994 1995
1996	206		DY = XV(2, IV2) - XV(2, IV1)		1996
1997 1998	207 208		DYY = XV(2, IV3) - XV(2, IV1) XS(3, IS) = .5 * (DX * DYY - DXX * DY)		1997 1998
1999	209	150	CONTINUE		1999
2000 2001	210 211	С	DDINT * HE NS		2000
2002	212	С	PRINT * , NE,NS		2001 2002
2003	213		FIND AN EDGE ASSOCIATED WITH A VERTEX		2003
2004 2005	214 215	C C	THE VALUE WILL BE NEGATIVE IF ON THE BOUNDARY		2004
2006	216	U	DO 180 IV = 1 , NV		2005 2006
2007 2008	217	100	JV(2, IV) = 0		2007
2008	218 219	1 <b>80</b> C	CONTINUE		2008 2009
2010	220	•	DO 160 IE = 1 , NE		2010
2011 2012	221 222		IV1 = JE(1, IE) IJE5 = JE(5, IE)		2011
2013	223		IF(IJE5. NE.O) THEN		2012 2013
2014 2015	224		JV(2, IVI) = -IE		2014
2015	225 226	150	END IF CONTINUE		2015 2016
2017	227	С			2017
2018 2019	228 229	С	00 170 IE = 1 , NE		2018 2019
2020	230	v	IVI = JE(1, IE)		2019
2021 2022	231 232	С	IV2 - JE(2, IE)		2021
2023	232	L	IF( JV( 2 , IV1 ) . EQ . 0 ) THEN		2022 2023
2024	234		JV(2, IV1) = IE		2024
2025 2026	235 236	С	END IF		2025
2027	237	C	IF( JV( 2 , IV2 ) . EQ . 0 ) THEN		2026 2027
2028 2029	238		JV(2, IVZ) = IE		2028
2029	239 240	С	END IF		2029 2030
2031	241	170	CONTINUE		2031
2032 2033	242 243	C	DO 190 IS - 1 , NS		2032
2034	244		SAREA( IS ) = 1. / $XS(3, IS)$		2033 2034
2035	245	<u>190</u>	CONTINUE		2035
2036 2037	246 247	C C≖===	************************		2036 2037
2038	248	Č			2038
2039 2040	249 250	C	OPTION FOR GLOBAL RECONNECTION		2039 2040
2041	251	•	IF(IOPRCN.EQ.1)THEN		2040
2042 2043	252 253		DO 200 IE = 1, NE $(A = A = A = A = A = A = A = A = A = A =$		2042
2043	253		CALL RECNC( IE, IDONE, ITL, ITR, JA, JB, JC, JD) CALL RECNC( JA, JADONE, ITL, ITR, JAA, JAB, JAC, JAD)		2043 2044
2045	255		CALL RECNC( JB , JBDONE , ITL , ITR , JBA , JBB , JBC , JBD )		2045
2046 2047	256 257		CALL RECNC( JC , JCDONE , ITL , ITR , JCA , JCB , JCC , JCD ) CALL RECNC( JD , JDDONE , ITL , ITR , JDA , JDB , JDC , JDD )		2046 2047
2048	258	200	CONTINUE		2048
2049	259		ENDIF		2049

Thu Jul	1 14:1	15:40 1	993 mainhd.f SUBROUTINE GEOMTR	page	29
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060	260 261 262 263 264 265 266 267 268 269 270	с с с с с с	EXIT POINT FROM SUBROUTINE RETURN 		2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2050
Thu Jul	1 14:1	15:40 1	993 mainhd.f SUBROUTINE UPDATE		
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2071	1 2 3 4 5 6 7 8 9 10 11	C C=====	SUBROUTINE UPDATE		2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
2072 2073	12 13	С	include 'cmsh00.h'		2072 2073
2074 2075 2076 2077 2078	14 15 16 17 18	С	include 'chyd00.h' include 'cint00.h' include 'cphs10.h' include 'cphs20.h'		2074 2075 2076 2077 2078
2079 2080	19 20	-	2000#\$25\$***********************************		2079
2081	21	Č	BREAK UP THE VERTEX, EDGE, AND TRIANGLE DATA INTO BLOCKS		2080 2081
2082 2083	22 23	C	NVECE = NE / MBL		2082 2083
2084 2085	24 25		NREME - NE - NVECE * MBL NVECS - NS / MBL		2084 2085
2086 2087	26 27		NREMS = NS - NVECS * MBL NVECV = NV / MBL		2086 2087
2088 2089	28 29		NREMV - NV - NVECV * MBL PRINT *,NV,NE,NS,NVECE,NREME,NVECV,NREMV,NVECS,NREMS		2088 2089
2090 2091	30 31	C	DO 105 INE = 1 . NVECE		2090 2091
2092 2093	32 33	105	NOFVEC(INE) - MBL CONTINUE		2092
2094	34	105	NVEEE = NVECE		2093 2094
2095 2096	35 36		IF( NREME . GT . 0 ) THEN NVEEE - NVECE + 1		2095 2096
2097 2098	37 38		NOFVEE( NVEEE ) = NREME END IF		2097 2098
2099 2100	39 40	C	DO 115 INS = 1 , NVECS		2099 2100
2101 2102	41 42	115	NOFVES(INS) = MBL Continue		2101 2102
2103 2104	48 44		NVEES = NVECS IF( NREMS . GT . 0 ) THEN		2103 2104
2105 2106	45		NVEES = NVECS + 1		2105
2107	46 47	•	NOFVES( NVEES ) = NREMS END IF		2106 2107
2108 2109	48 49	C	DO 125 INV - 1 , NVECV		2108 2109
2110 2111	50 51	125	NOFVEV( INV ) = MBL Continue		2110 2111
2112 2113	52 53		NVEEV - NVECV 1F( NREMV . GT . 0 ) THEN		2112 2113
2114 2115	54 55		NVEEV - NVECV + 1 NOFVEV( NVEEV ) - NREMV		2114 2115
2116	56	c	END IF		2116 2117
2117 2118	57 58		CALL TO THE GEOMETRY DEFINITION SUBROUTINE		2118
2119 2120	59 60	C	CALL GEOMTR		2119 2120

•

Thu Jul	1 14:15:40	1993 mainhd.f SUBROUTINE UPDATE	page	30
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 Thu Jul	63 C 64 C - 65 C 66 C 67 68 C 69 C 70 C 71	EXIT POINT FROM SUBROUTINE RETURN  END 1993 mainhd.f SUBROUTINE UPGRAD		2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
Thu Jul 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2180 2181 2182 2181 2182 2183 2184 2185 2186	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 22 \\ 23 \\ 4 \\ 15 \\ 10 \\ 12 \\ 22 \\ 22 \\ 24 \\ 25 \\ 6 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	SUBROUTINE UPGRAD UPGRAD READS THE RESTART FILE FROM A PREVIOUS RUN AND BREAKS THE DATA INTO BLOCKS AS DEFINED BY THE PARAMETERMBL include 'cmsh00.h' include 'chyd00.h' include 'chyd00.h' include 'cphs10.h' include 'cphs20.h' MVM MAX NUMBER OF VERTICES (POINTS) MEM MAX NUMBER OF EDGES (INTERFACES) MSM MAX NUMBER OF SIDES (TRIANGLES) READ (88) NV.NVMK.NE.NEMK.NS.NSMK.ITERAT READ IN VERTEX INFORMATION READ (88) ((JV(IK,IV),IK=1,2),(XV(IK,IV),IK=1,2),IV=1,NV) READ IN EDGE INFORMATION (EDGES OF TRIANGLES) READ (88) ((JE(KK,IE),KK=1,5),(XE(KI,IE),KI=1,2),IE=1,NE) READ (88) ((JS(KK,IS),KK=1,6),(XS(KI,IS),KI=1,3),IS=1,NS) READ (88) ((XM(IE),YM(IE),YMIDL(IE),YMIDL(IE),IE=1,NE) READ (88) ((XS(KK,IS),KK=1,6),(XS(KI,IS),KI=1,3),IS=1,NS) READ (88) SAREVG.NVECE.NREME,NVECV.NREMV.NVECS,NREMS PRINT PROMT TO CONSOLE PRINT * . NE.NS DEFINE INVERSE AREA OF TRIANGLES		2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2155 2156 2157 2158 2156 2157 2158 2160 2161 2162 2163 2164 2165 2166 2167 2168 2167 2177 2177 2177 2177 2177 2177 2177
2187 2188 2189 2190 2191	56	NOFVEE(INE) = MBL 5 CONTINUE NVEEE = NVECE IF( NREME . GT . 0 ) THEN NVEEE = NVECE + 1		2187 2188 2189 2190 2191

Thu Jul	1 14:1	5:40 19	93 mainhdif	SUBROUTINE UPGRAD	page	31
2192	61		NOFVEE( NVEEE ) - NREME			2192
2193	62		END IF			2193
2194	63	С				2194
2195	64	•	DO 115 INS + 1 . NVECS			2195
2196	65		NOFVES( INS ) = MBL			2196
2197	66	115	CONTINUE			2197
2198	67		NVEES - NVECS			2198
2199	68		IF( NREMS . GT . 0 ) THE	N		2199
2200	69		NVEES = NVECS + 1			2200
2201	70		NOFVES( NVEES ) = NREMS			2201
2202	71		END IF			2202
2203	72	С				2203
2204	73		DO 125 INV = $1$ , NVECV			2204
2205	74		NOFVEV( INV ) = MBL			2205
2206	75	125	CONTINUE			2206
2207	76		NVEEV - NVECV			2207
2208	77		IF( NREMV . GT . 0 ) THE	N		2208
2209	78		NVEEV = NVECV + 1			2209
2210	79		NOFVEV( NVEEV ) = NREMV			2210
2211	80		END IF			2211
2212	81	C				2212
2213	82	C	PRINTOUT THE VERTEX, EDGE	, AND TRIANGLE BLOCK DATA		2213
2214	83	С				2214
2215	84		PRINT *, NV, NE, NS, NVECE,	NREME, NVECV, NREMV, NVECS, NREMS		2215
2216	85	С				2216
2217	86		#482224#272224x82242222	╪ <b>刘울⋿⋶</b> ⋛⋬⋸⋽⋳⋬⋪⋕⋕⋩⋧⋧⋓⋕⋭⋿⋎⋖⋍⋕⋳⋬⋪⋕⋧⋭⋽⋛⋡⋪⋽	:2 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2217
2218	87	C				2218
2219	88		EXIT POINT FROM SUBROUTI	NE		2219
2220	89	C				2220
2221	90	С				2221 2222
2222	91	•	RETURN			2223
2223	92	ç	*****			2224
2224	93	ç				2225
2225	94	С	 CNO			2226
2226	95		END			2220

## Thu Jul 1 14:15:55 1993 gradhd.f

0

4

1

		0100 1000	9
	#	routine	page
	1	GRDFLX	1
	2	GRDENG	4
	3	GRADNL	ż
	4	GRADNT	11
	5	MONOTN	15
	1 2 3 4 5 6 7 8 9	GRADNG	23
	ž	GRADNO	25
	8	GRADNS	27
	9	LUDCMP	29
	10	LUBKSB	30
	11	FIRST	31
	12	FCHART	32
	13	PRLCTN	36
	14	PRPTHC	37
Thu Jul	1 14:1	5:55 1993	gradhd.f
Thu Jul	1 14:1!	5:55 1993 routine	gradhd.f page
Thu Jul	#	routine	page
Thu Jul	#		-
Thu Jul	#	routine FCHART	page 32 31
Thu Jul	#	routine FCHART FIRST	page 32
Thu Jul	#	routine FCHART FIRST GRADNG	page 32 31 23
Thu Jul	#	routine FCHART FIRST GRADNG GRADNL	page 32 31 23 7 25
Thu Jul	# 1 2 3 4 5 6 7	routine FCHART FIRST GRADNG GRADNL GRADNO	- page 32 31 23 7
Thu Jul	# 12 34 56 78	routine FCHART FIRST GRADNG GRADNL GRADNS GRADNS GRADNS GRADNT GRDENG	page 32 31 23 7 25 27 11 4
Thu Jul	# 12 34 56 7 89	routine FCHART FIRST GRADNG GRADNU GRADNS GRADNS GRADNS GRADNS GRADNS GRADNS GRADNS	page 32 31 23 7 25 27 11 4 1
Thu Jul	# 1 2 3 4 5 6 7 8 9 10	routine FCHART FIRST GRADNG GRADNG GRADNU GRADNS GRADNT GRDENG GRDENG GRDFLX LUBKSB	page 32 31 23 7 25 27 11 4 1 30
Thu Jul	# 1 2 3 4 5 6 7 8 9 10 11	FOUTINE FCHART FIRST GRADNG GRADNL GRADNS GRADNS GRADNT GRDENG GRDFLX LUBKSB LUDCMP	page 32 31 23 7 25 27 11 4 1 30 29
Thu Jul	# 1 2 3 4 5 6 7 8 9 10 11 11 12	FOUTINE FCHART FIRST GRADNG GRADNL GRADNO GRADNS GRADNT GRDENG GRDFLX LUBKSB LUDCMP MONOTN	page 32 31 23 7 25 27 11 4 1 30 29 15
Thu Jul	# 1 2 3 4 5 6 7 8 9 10 11	FOUTINE FCHART FIRST GRADNG GRADNL GRADNS GRADNS GRADNT GRDENG GRDFLX LUBKSB LUDCMP	page 32 31 23 7 25 27 11 4 1 30 29

Module List - order of occurence

page i

Module List - alphabetical order

Thu Jul	1 14:15:55	5 1993 gradlid, f	SUBROUTINE GRDFLX	page
1	1	SUBROUTINE GRDFLX		
2 3		******	/	
4	4 C		Ĩ	
5 6	5 C 6 C		GRADIENT FOR ERROR INDICATOR I FOR STEADY STATE I	
7 8	7 C 8 C		[ ]	
9	9 C			
10 11	10 11	include 'cmsh00 include 'chyd00 include 'cint00 include 'cphs10 include 'cphs20	1.h'	
12	12	include 'cint00	•.h'	
13 14	13 14	include 'cphs10		
15	15 C			
16 17	16 C== 17 C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	======================================	
18	18		),B(3),1NDX(3),ATEMP(3,3,3),BTEMP(3,4,3)	
19 20	19 20 C	REAL AA0(3,3),BB0(3	(,4)	
21	21 C==	****		
22 23	22 C 23 C			
24	24 C -	BEGIN LOOP OVER ALL	CELLS IN THE DOMAIN	
25 26	25 C 26	NS1 = 1		
27	27	NS2 = NOFVES(1)		
28 29	28 29 C	DO 90 INS = 1 , NVE	ES	
30	30 C-	FETCH HYDRO QUANTIT	IES	
31 32	31 C 32	DO 105 IS = NS1 , N	\$2	
33	33	KS = IS - NS1 +		
34 35	34 C 35	XSM = XS(1, IS)		
36	36	YSM = XS( 2 , IS )		
37 38	37 38	XSM2 = XSM * XSM YSM2 = YSM * YSM		
39	39	XYSM = XSM * YSM		
40 41	40 C 41	AAO(1,1)=1.0		
42	42	AAD(1,2) = XSM		
43 44	43 44 C	AAO(1,3) = YSM		
45 46	45 46	AAO(2, 1) = XSM		
47	47	AAO(2,2) = XSM AAO(2,3) = XYS	ic M	
48 49	48 C 49	AAO(3,1) = YSM		
50	50	AAO(3,2) = XYS	M	
51 52	51 52 C	AAO(3,3) = YSM	2	
53	53	BB1 = HYDV(IS, 4	)	
54 55	54 55	BB2 = SQRT ( ( HYD Hyd	V(IS,2) * HYDV(IS,2) + V(IS,3) * HYDV(IS,3)) *	
56	56		) / HYDV( IS , 4 ) / HYDV( IS , 5 ) )	
57 58	57 C 58	881X = 881 * XSM		
59	Э	BB2X = BB2 * XSM		
60 61	0 C 1	881Y = 881 * YSM		
62	j <b>2</b>	882Y = 882 * YSM		
63 64	63 C 64	BBO(1,1) = BB1		
65 66	65 66 C	BBO(1, 2) = BB2		
6	67	BBO(2,1) = BB1		
6 6	68 69 C	BBO(2.2) = BB2		
7'	70	BBO(3, 1) = BB1		
7. 7.	71 72 C	BBO(3, 2) = BB2	Ŷ	
7.	73	DO 115 1K = 1 , 3		

page

Thu Jul	1 14:15:55	1993 gradhd.f	SUBROUTINE GRDFLX	page	2
74 75	74 75	IE = JS( IK + 3 , IS ) IF( IE . GT . 0 ) THEN		-	74
76	76	ISS = JE(4, IE)			75 76
77 78	77 78	ELSE ISS = JE(3,-IE)			77
79	79	END IF			78 79
80 81	80 C 81	IF( ISS . WE . 0 ) THE	4		80
82	82	XSS = XS(1, ISS)	•		81 82
83 84	83 84 C	YSS = XS(2, ISS)			83 84
85 86	85 86	HYDVP = HYDV(ISS, 4)			85
87	87	. HYDV(	ISS , 2 ) * HYDV( ISS , 2 ) + ISS , 3 ) * HYDV( ISS , 3 ) ) *		86 87
88 89	88 89 C	. HYDV(ISS,1)	) / HYDV( ISS , 4 ) / HYDV( ISS , 5 ) )		88
90	90	ELSE			89 90
91 92	91 C 92	IE = IABS( IE )			91
93	93	XSS = 2. * XMIDL(IE)	- XSM		92 93
94 95	94 95 C	YSS = 2. * YMIDL( IE )	- YSM		94
96 07	96	HYDVP = 881			95 96
97 98	97 98	HYDVR = BB2 IJE5 = JE( 5 , IE )			97 98
99 100	99 100	IF( 1JE5 . EQ . 8 ) THE	N		99 99
101	100 101	HYDVP = PIN HYDVR = SQRT(UVIN *	UVIN * RIN / PIN / HRGG )		100 101
102 103	102 103 C	END IF			102
104	104	END IF			103 104
105 106	105 C 106	XSS2 = XSS * XSS			105
107	107	YSS2 = YSS * YSS			10 <del>6</del> 107
108 109	108 109 С	22Y * 22X <del>=</del> 22YX			108
110 111	110	ATEMP(1, 1, 1, IK) = 1	.0		<i>109</i> 110
112	111 112	$\begin{array}{c} \text{ATEMP}(1,2,\text{ IK}) = X\\ \text{ATEMP}(1,3,\text{ IK}) = Y\end{array}$	SS		111 112
113 114	113 C 114	ATEMP(2,1,IK) = X		1	113
115	115	ATEMP(2, 2, IK) = X	SS2		114 115
116 117	116 117 C	ATEMP(2, 3, IK) = X	YSS	1	116
118	118	ATEMP(3, 1, IK) = Y	SS		117 118
119 120	119 120	ATEMP(3,2,IK) = X ATEMP(3,3,IK) = Y	rss ss2		119 120
121 122	121 C 122			1	121
123	123	BTEMP(1,1,IK) = H BTEMP(1,2,IK) = H			122 123
124 125	124 C 125	BTEMP(2,1,IK) = H)		1	124
126	126	BTEMP(2, 2, 1K) = H			125 126
127 128	127 C 128	BTEMP(3,1,IK) = H	YDVP * YSS	1	127 128
129 130	129 130 C	BTEMP( 3 . 2 , IK ) = H		1	129
131	131 115	CONTINUE			130 131
132 133	132 C 133			1	32
134	134	• ATEMP( 1 ,	, 1 ) + ATEMP(1,1,1) + , 1,2) + ATEMP(1,1,3)		133 134
135 136	135 136	AA(1, 2) = AAO(1, ATEMP(1, A	2) + ATEMP(1,2,1)+ 2,2) + ATEMP(1,2,3)		35
137	137	AA(1, 3) = AAU(1, 3)	(3) + ATEMP(1, 3, 1) +	1	36 37
138 139	138 139 C		3,2) + ATEMP(1,3,3)	1	.38 .39
140 141	140 141	AA(2, 1) = AAO(2, 1)	1) + ATEMP(2,1,1) +	1	40
142	142	AA(2, 2) = AAO(2, 2)	1,2) + ATEMP(2,1,3) 2) + ATEMP(2,2,1) +		41
143 144	143 144	ATEMP(2, AA(2, 3) = AAO(2, 3)	2,2) + ATEMP(2,2,3)	1	43
145	145	. ATEMP(2,	3) + ATEMP(2,3,1) + 3,2) + ATEMP(2,3,3)		44 45
146 147	146 C 147		1) + ATEMP(3,1,1)+	14	46 47
			- / IIIIII ( J , L , L J ^v	1.	<b>+</b> /

Thu Jul	1 14:15:55 1	993 gradhd.f	SUBROUTINE GRDFLX	page 3
148 149	148 149	. ATEMP AA(3,2) - AAO	3,1,2) + ATEMP(3,1,3) 3,2) + ATEMP(3,2,1) +	148 149
150	150	. ATEMPI	3, 2, 2 + ATEMP( $3, 2, 3$ )	145
151	151	AA(3,3) = AAO	3, 3 + ATEMP( $3, 3, 1$ ) +	151
152 153	152 153 C	. Alemp	3,3,2) + ATEMP(3,3,3)	152 153
154	154	BB(1,1) = 880	1,1) + BTEMP(1,1,1)+	155
155	155	BTEMP	1,1,2) + BTEMP(1,1,3)	155
156 157	156 157	BB(1,2) = 880	1,2) + BTEMP(1,2,1) + 1,2,2) + BTEMP(1,2,3)	156 157
158	158 C	· Uters	$1, 2, 2, 7$ $\rightarrow$ Dignr(1, 2, 3)	157
159	159	BB(2, 1) = BBO	2,1) + BTEMP(2,1,1)+	159
160 161	160 161	. BIEMP( BB(2,2) = BB0(	2,1,2) + BTEMP(2,1,3) 2,2) + BTEMP(2,2,1) +	160
162	162	. BU(2,2) - BUU	2,2) + BTEMP(2,2,1)+ 2,2,2) + BTEMP(2,2,3)	161 162
163	163 C			163
164 165	164 165	BB(3,1) = BBO( STEMP)	3,1) + BTEMP(3,1,1)+ 3,1,2) + BTEMP(3,1,3)	164
165	166	BB(3,2) = BB0(	3, 2, 7 + BTEMP(3, 2, 1) +	165 166
167	167	. BTEMP	3,2,2) + BTEMP(3,2,3)	167
168 169	168 C 169		* ( AA( 2 , 2 ) * AA( 3 , 3 ) -	168
170	170	•	AA(3,2) * AA(2,3)) +	169 170
171	171	. AA(2,1)	* ( AA( 3 , 2 ) * AA( 1 , 3 ) -	171
172 173	172 173		AA(1,2) * AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3,3) + AA(3	172
173	174	• nn(3,1)	* (AA(1,2) * AA(2,3) - AA(2,2) * AA(1,3))	173 174
175	175 C			175
176 177	176 177 C	DTRMIN = 1. / DETERN		176
178	177 C 17 <b>8</b>	AAA1 = AA(2, 3)	AA(3,1) - AA(2,1) * AA(3,3)	177 178
179	179	$AAA2 = AA(3, 3)^{1}$	AA(1,1) - AA(3,1) * AA(1,3)	179
180	180	AAA3 = AA(1, 3)	AA(2,1) - AA(1,1) * AA(2,3)	180
181 182	181 C 182	AAA4 = AA(2, 1)	AA(3,2) - AA(3,1) * AA(2,2)	181 182
183	183	AAA5 = AA(3, 1)	AA(1,2) - AA(1,1) + AA(3,2)	183
184	184	AAA6 = AA(1,1) '	AA(2,2) - AA(2,1) * AA(1,2)	184
185 186	185 C 186	PI(IS) = DTRMIN *	( BB( 1 , 1 ) * AAA1 +	185 186
187	187	•	BB(2,1) * AAA2 +	187
188	188	•	BB(3,1) * AAA3)	188
189 190	189 C 190	PR(IS) = DTRMIN *	(BB(1,1) * AAA4 +	189 190
191	191		BB(2,1) * AAA5 +	191
192	192	•	BB(3,1) * AAA6)	192
193 194	193 C 194	RL(IS) = DTRMIN *	( BB( 1 , 2 ) * AAA1 +	193 194
195	195	· · · · · · · · · · · · · · · · · · ·	BB(2,2) * AAA2 +	195
196	196 197 C	•	BB(3,2) * AAA3)	196
197 198	197 C 198	RR(IS) = DTRMIN *	(BB(1,2) * AAA4 +	197 198
199	199	•	BB(2,2) * AAA5 +	199
200 201	200 201 C	•	BB(3,2) * AAAG)	200
201	201 C 202 105	CONTINUE		201 202
203	2 <b>03</b> C			203
204 205	204 205	NS1 = NS2 + 1 NS2 = NS2 + NOFVES(1)	(5 4 1 )	204 205
205	205 206 90	CONTINUE	15 ' 1 J	205
207	207 C			207
208 209	208 C==== 209 C	教育的新聞的,我们是我们的是是我们的,我们是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	208 209
210		EXIT POINT FROM SUBRO	JTINE	
211	211 C			211
212 213	212 C 213	RETURN		212 213
213	213 214 C	KE TOKA		213
215	215 C			215
216 217	216 C 217	END		216 217
£11				21/

Thu Jul	1 14:1	5:55	1993 gradhd	.f		SUBROUTINE GR	DENG		page	4
218 219	1 2	с	SUBROUTINE GR	DENG						218
220	3	Č		*********	~*****	*********		1		219 220
221 222	4 5	C C	GRAENG COMPU	TE THE GRAD	IENT FOR	SECOND ORDER CA	ALCULATION	I		221 222
223 224	6 7	ſ						1		223 224
225 22 <del>6</del>	8 9	С	include '	cmsb00.h'						225
227 228	10 11		include '	chyd00.h'						227
229	12		include include	chyd00.h' cint00.h' cphs10.h' cphs20.h'						228 229
230 231	13 14	С	include '	cphs20.h'						230 231
232 233	15 16	C=== C	************	*********		*************	******			232
234 235	17	Ŭ				DL(MBP), VVMIDL				233 234
236	18 19		REAL RJGRAD(M	BP),PJGRAD(	18P),UJGR	AD(MBP), VIGRAD AD(MBP), VJGRAD	(MBP)			235 236
237 238	20 21		REAL AA(3,3), REAL AAO(3,3)	38(3,4),8(3) ,880(3,4)	),INDX(3)	,ATEMP(3,3,3),E	BTEMP(3,4,3)			237 238
239 240	22 23	C C===			******					239
241 242	24	С	- BEGIN LOOP OV							240 241
243	26	C		IN ALL VELLS		DUMAIN	********			242 243
244 245	27 28		NS1 = 1 NS2 = NOFVES(	1)						244 245
246 247	29 30	с	$00 \ 90 \ INS = 1$	, NVEES						246
248	31	C	- FETCH HYDRO QI	JANTITIES				****		247 248
249 250	32 33	C	DO 105 IS = NS	51 , NS2						249 250
251 252	34 35	C	XSM = XS( 1	IS)						251 252
253 254	36 37		YSM = XS( 2 XSM2 = XSM *	IS)						253
255 256	38 39		YSM2 = YSM * XYSM = XSM *	YSM						254 255
257	40	С								256 257
258 259	41 42		AAO(1,1) AAO(1,2)	= 1.0 = XSM						258 259
260 261	43 44	C	AAO(1,3)							260 261
262 263	45 46	-	AAO(2,1) AAO(2,2)							262
264	47	~	AAO(2,3)	= XYSM						263 264
265 266	48 49	С	AAO(3,1)							265 266
267 268	50 51		AAO(3,2) AAO(3,3)	= XYSM = YSM2						267 268
269 270	52 53	С	BB1 = HYDFLX(							269 270
271 272	54 55		BB2 = HYDFLX(	IS, 2)						271
273	56	С	BB3 = HYDFLX(							272 273
274 275	57 58		881X = 881 * 882X = 882 *	XSM						274 275
276 277	59 60	с	883X = 883 *	XSM						276 277
278 279	61 62		881Y = 881 * 882Y = 882 *							278
280	63	c	BB3Y = BB3 *							279 280
281 282	65	С	880(1,1)							281 282
283 284	66 67		BBO(1,2) 880(1,3)							283 284
285 286		С	BBO(2,1)							285 286
287 288	70 71		BBO(2,2)	= BB2X						287
289	72	C	BBO(2,3)							288 289
290 291	73 74		BBO(3,1) BBO(3,2)							290 291
					page	4				

Thu Jul	1 14:	15:55	1993 gradhd.f	SUBROUTINE GRDENG	page	5
292	75	~	BBO(3,3) = BB3Y			292
293 294	76 77	C	DO 115 IK = 1 , 3			293 294
295 296	78 79		IE = JS( IK + 3 , IS ) IF( IE , GT , 0 ) THEN			295
297	80		ISS = JE(4, IE)			296 297
298 299	81 82		ELSE ISS = JE(3, - IE)			298 299
300 301	83 84	С	END IF			300
302	85	Č.	IF( ISS . NE . 0 ) THEN			301 302
303 304	86 87		XSS = XS( 1 , ISS ) YSS = XS( 2 , ISS )			303 304
305 306	88 89	C		<b>`</b>		305
307	90		HYDVR = HYDFLX( ISS , 1 HYDVU = HYDFLX( ISS , 2	)		306 307
308 309	91 92	С	HYDVV = HYDFLX( ISS , 4	)		308
310	93	c	ELSE			309 310
311 312	94 95	L	IE = IABS( IE )			311 312
313 314	96 97		HYDVR = 881 Hydvu = 882			313
315	98	•	HYDVV - BB3			314 315
316 317	99 100	С	XSS = 2. * XMIDL( IE ) -	× XSM		316 317
318 319	101 102	С	YSS = 2. * YMIDL( IE ) -	YSM		318
320	103		END IF			319 320
321 322	104 105	C	XSS2 = XSS * XSS			321 322
323 324	106 107		YSS2 = YSS * YSS XYSS = XSS * YSS			323
325	108	C				324 325
326 327	109 110		ATEMP(1,1,IK) = 1. ATEMP(1,2,IK) = XS	0 S		326 327
328	111	r	ATEMP $(1, 3, IK) = YS$	š		328
329 330	112 113	C	ATEMP(2,1,1K) = XS	s		329 330
331 332	114 115		ATEMP(2,2,IK) = XS ATEMP(2,3,IK) = XY			331
333	116	С				332 333
334 335	117 118		ATEMP(3,1,IK) = YS ATEMP(3,2,IK) = XY	s Ss		334 335
336 337	119 120	с	ATEMP(3,3,IK) = YS			336
338	121	U	BTEMP(1, 1, 1, IK) = HY	OVR .		337 338
339 340	122 123		BTEMP(1,2,IK) = HY BTEMP(1,3,IK) = HY	DAN DAN		339 340
341 342	124 125	С	BTEMP(2,1,IK) - HY			341
343	126		BTEMP(2, 2, IK) = HY	DVU * XSS		342 343
344 345	127 128	С	BTEMP(2,3,IK) = HY	DVV * XSS		344 345
346 347	129 130		BTEMP $(3, 1, IK) = HYI$	DVR * YSS		346
348	131		BTEMP(3,2,1K) = HY BTEMP(3,3,1K) = HY			347 348
349 350	132 133	C 115	CONTINUE			349 350
351 352	134 135	C				351
353	136		ATEMP(1.	1) + ATEMP(1,1,1)+ 1,2) + ATEMP(1,1,3)		352 353
354 355	137 138		AA(1, 2) = AAO(1, ATEMP(1))	2) + ATEMP(1,2,1) + 2,2) + ATEMP(1,2,3)		354 355
356 357	139 140		AA(1, 3) = AAO(1, 3)	3) + ATEMP(1, 3, 1) +		356
358	141	С		3, 2) + ATEMP(1,3,3)		357 358
359 360	142 143		AA(2, 1) = AAO(2, ATEMP(2, A	1) + ATEMP(2,1,1) + 1,2) + ATEMP(2,1,3)		359 360
361	144		AA(2, 2) = AAO(2, 4)	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $		361
362 363	145 146		AA[2, 3] = AAU[2]	3 + ATFMP(7 - 3 - 1) +		362 363
364 365	147 148	с	. ATEMP( 2 .	3, 2) + ATEMP(2, 3, 3)		364
202	1-10	L.				365

Thu Jul	1 14:1	15:55	1993	gradhd.f SUBROUTINE GRDENG	page 6
366 367	149 150		•	.1) - AAO(3,1) + ATEMP(3,1,1) + ATEMP(3,1,2) + ATEMP(3,1,3)	366 367
368	151		AA( 3	(2) = AAO(3, 2) + ATEMP(3, 2, 1) + ATEMP(3, 2, 2) + ATEMP(3, 2) + ATEMP(	
369 370	152 153		· 44/ 3	ATEMP(3,2,2) + ATEMP(3,2,3) ,3) = AAO(3,3) + ATEMP(3,3,1) +	369
371	155			(3, 3) = AAU(3, 3) + ATEMP(3, 3, 1) + ATEMP(3, 3, 2) + ATEMP(3, 3, 3)	370 371
372	155	С	•		372
373	156		BB( 1	(1, 1) = BBO(1, 1) + BTEMP(1, 1, 1) +	373
374	157			BTEMP(1, 1, 2) + BTEMP(1, 1, 3)	374
375 376	158 159		RR( 1	, 2) = BBO(1,2) + BTEMP(1,2,1) + BTEMP(1,2,2) + BTEMP(1,2,3)	375
377	160			BTEMP(1,2,2) + BTEMP(1,2,3) ,3) = BBO(1,3) + BTEMP(1,3,1) +	376 377
378	161			BTEMP(1,3,2) + BTEMP(1,3,3)	378
379	162	C			379
380	163		BB( 2	(1) = BBO(2, 1) + BTEMP(2, 1, 1) +	380
381 382	164 165		. 89/ 2	BTEMP(2,1,2) + BTEMP(2,1,3) ,2) = BBO(2,2) + BTEMP(2,2,1) +	381
383	166			, 2) = BBU(2,2) + BTEMP(2,2,1) + BTEMP(2,2,2) + BTEMP(2,2,3)	382 383
384	167		BB( 2	(3) = BBO(2, 3) + BTEMP(2, 3, 1) +	384
385	168		•	BTEMP(2,3,2) + BTEMP(2,3,3)	385
386 387	169	С	00/ 3	1 = 000(2 + 1)	386
387 388	170 171		68(3	, 1) = BBO(3,1) + BTEMP(3,1,1) + BTEMP(3,1,2) + BTEMP(3,1,3)	387 388
389	172		BB( 3	(2) = BBO(3, 2) + BTEMP(3, 2, 1) +	389
390	173		•	BTEMP(3, 2, 2) + BTEMP(3, 2, 3)	390
391	174		BB( 3	(3) = BBO(3, 3) + BTEMP(3, 3, 1) +	391
392 393	175 176	С	•	BTEMP(3,3,2) + BTEMP(3,3,3)	392
394	177	L.	DETER	= AA(1,1)*(AA(2,2)*AA(3,3)-	393 394
395	178			AA(3,2) * AA(2,3)) +	395
396	179		•	AA(2,1)*(AA(1,3)*AA(3,2)-	396
397 398	180		٠	AA(3,3) * AA(1,2) + AA(2,2) + AA(2	397
399	181 182		٠	AA(3,1)*(AA(1,2)*AA(2,3)- AA(2,2)*AA(1,3))	398 399
400	183	C	•	m(z;z) - m(1;3)	400
401	184		DTRMI	= 1. / DETERM	401
402 403	185	C			402
403	186 187		AAA1 *	AA(2,3) * AA(3,1) - AA(2,1) * AA(3, AA(3,3) * AA(1,1) - AA(3,1) * AA(1,1) - AA(3,1) * AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1) + AA(1,1)	, 3) 403 , 3) 404
405	188			AA(1,3) * AA(2,1) - AA(1,1) * AA(2)	. 3 ) 405
406	189	С			406
407 408	190 191		AAA4 +	AA(2, 1) * AA(3, 2) - AA(3, 1) * AA(2, 1)	, 2 ) 407
409	192			AA(3,1) * AA(1,2) - AA(1,1) * AA(3) AA(1,1) * AA(2,2) - AA(2,1) * AA(1)	, 2) 408 , 2) 409
410	193	С	,		410
411	194		RR( 15	) = DTRMIN * ( BB( 1 , 1 ) * AAA1 +	411
412	195		•	BB(2,1) * AAA2 +	412
413 414	196 197	С	•	BB(3,1) * AAA3)	413 414
415	198	•	RL( 19	) = DTRMIN * ( BB( 1 , 1 ) * AAA4 +	414 415
416	199		•	BB(2,1) * AAA5 +	416
417	200	c	•	BB(3,1) * AAA6)	417
418 419	201 202	C	110/ 19	) = DTRMIN * ( BB( 1 , 2 ) * AAA1 +	418 419
420	203			BB(2, 2) * AAA2 +	419 420
421	204	-		BB(3,2) * AAA3)	421
422	205	С	114 × + +		422
423 424	206 207		01(1)	) = DTRMIN * ( $BB(1, 2)$ * AAA4 + BB(2, 2) * AAA5 +	423 424
425	208			BB(3,2) * AAA6)	424
426	209	C			426
427	210			) = DTRMIN * (BB(1, 3) * AAA1 + BB(2, 3) * AAA1 + BB(2, 3) * AAA2 + BB(2, 3) * AAA2 + BB(3, 3) * BAA2  + BB(3, 3) * BAA2 + BB(3, 3) * BA	427
428 429	211 212		•	BB(2,3) * AAA2 + BB(3,3) * AAA3)	428 429
430	213	С	•		429
431	214		VL( IS	) = DTRMIN * ( BB( 1 , 3 ) * AAA4 +	431
432 433	215		•	BB(2,3) * AAA5 +	432
433 434	216 217	С	•	BB(3,3) * AAA6)	433 434
435	218	<b>105</b>	CONTINU		435
436	219	C			436
437 438	220		NS1 = N		437
430	221 222	90	CONTINU	S2 + NOFVES( INS + 1 )	438 439
		- •			455

-

page

6

Thu Ju)	1 14:15	:55 1993 gradhd.f SUBROUTINE GRDENG	page	,
440 441 442 443	224 225 226	C C C C EXIT POINT FROM SUBROUTINE		440 441 442 443
444 445 446 447 448	228 229 230 231	C		444 445 446 447 448
449 450	232 233	C END		449 450
Thu Jul	1 14:15	55 1993 gradhd.f SUBROUTINE GRADNL		
451 452 453	3	C		451 452 453
454 455 456 457 458 459	5 6 7 8 9	C SEARCH FOR ALL TRIANGLES SUROUNDING THE TARGET I C CELL FOR COMPUTING THE GRADIENT APPLYING LEAST I C SQUARE TECHNIQUE I C I		454 455 456 457 458 459
460 461 462 463 464 465 465		CI C include 'cmsh00.h' include 'chyd00.h' include 'cint00.h' include 'cphs10.h' include 'cphs20.h'		460 461 462 463 464 465 465
467 468 469 470	17 18	C C===================================		467 468 469
470 471 472 473 474	21 22 23 24	REAL RRMIDL(MBP),PPMIDL(MBP),UUMIDL(MBP),VVMIDL(MBP) REAL RIGRAD(MBP),PIGRAD(MBP),UIGRAD(MBP),VIGRAD(MBP) REAL RJGRAD(MBP),PJGRAD(MBP),UJGRAD(MBP),VJGRAD(MBP) REAL RMAX(MBP),PMAX(MBP),UMAX(MBP),VMAX(MBP) REAL RMIN(MBP),PMIN(MBP),UMIN(MBP),VMIN(MBP)		470 471 472 473 474
475 476 477 478	25 26 27 28	REAL RLEFTT(MBP),ULEFTT(MBP),VLEFTT(MBP),PLEFTT(MBP) REAL RRIGHT(MBP),URIGHT(MBP),VRIGHT(MBP),PRIGHT(MBP) REAL ROR(3),UOP(3),VOR(3),POR(3) REAL ROL(3),UOL(3),VOL(3),POL(3)		475 476 477 478
479 480 481 482	29 30 31	REAL AA(3,3),BB(3,4),B(3),INDX(3),ATEMP(3,3),BTEMP(3,4) C C C		479 480 481 482
483 484 485 486	33	C BEGIN LOOP OVER ALL CELLS IN THE DOMAIN C NSI = 1 NS2 = NOFVES( 1 )		483 484 485 486
487 488 489 490	37 38 39	DO 90 INS = 1 , NVEES C C FETCH HYDRO QUANTITIES C		487 488 489 490
491 492 493 494	41 42 43	00 105 IS = NSI , NS2 C JJCOLR = 0 C		491 492 493 494
495 496 497	45 46 47	DO 115 IK = 1 , 3 IVV = JS( IK , IS ) IEE = JV( 2 , IVV )		495 496 497
498 499 500 501 502 503	49 50 51 52 53	C IF(IEE.GT.0) THEN C IVI = JE(1,IEE) IF(IVI.EQ.IVV) THEN ISI = JE(3,IEE)		498 499 500 501 502 503
504 505 506 507 508	54 55 56 57 58	ELSE ISI = JE(4, IEE) END IF ISS - ISI IE - IEE		504 505 506 507 508
509 510		C 150 CONTINUE		509 510

Thu Jul	1 14:1	15:55	1993	gradhd.f	2	SUBROUTINE	GRADNL	page	8
511 512	61 62	C		LR = JJCOLR + 1					511 512
513 514	63 64	С	I ICO	LR( JJCOLR ) = ISS					513 514
515	65	÷		$60 \ IR = 1, 3$					515
516 517	66 67			MOD(IR, 3) + 1 = IABS(JS(JR + 3)	. (\$\$.))				516 517
518	68		IF(	IEA . EQ . IE ) THE	IN .				518
519 520	69 70		JJR IER	= MOD( JR + 1 , 3 ) = IABS( JS( JJR , 1	55))				519 520
521	71	C			/ /				521
522 523	72 73		IVI IF(	★ JE( 1 , 1ER ) IV1 . EQ . IVV ) TH	EN				522 523
524 525	74 75			= JE( 3 , IER )					524
526	76			- JE( 4 , IER )					525 526
527 528	77 78		END END						527 528
529	79	C							520 529
530 531	80 81	160 C	CONT	INUE					530 531
532	82	v		ISR . NE . ISI ) TH	EN				532
533 534	83 84		ISS IE =	= ISR IFR					533 534
535	85		GO T	0 150					535
536 537	86 87	С	END	IF					536 537
538	88		ELSE						538
539 540	89 90	C	IFF	= - IEE					539 540
541	91		IV1	= JE( 1 , IEE )					541
542 543	92 93		IF( ISI	IV1 . EQ . IVV ) TH = JE( 3 , IEE )	EN				542 543
544 545	94		ELSE						544
545 546	95 96		END	- JE( 4 , IEE ) IF					545 546
547 548	97 98		ISS ISI	ISI					547
549	99		IE =				•		548 549
550 551	100 101	C 170	CONT	INIF					550 551
552	102	Ċ							552
553 554	103 104			LR = JJCOLR + 1 LR( JJCOLR ) = ISS					553 554
555	105	C							555
556 557	10 <del>6</del> 107		JR =	30 IR = 1 , 3 MOD(IR , 3) + 1					556 557
558	108		IEA -	= IABS( JS( JR + 3					558
559 560	109 110		JJR	IEA . EQ . IE ) THE • MOD( JR + 1 , 3 )	+ 4				559 560
561 562	111	c	IER	= IABS( JS( JJR , I	SS ) )				561
563	112 113	С	IV1 -	- JE( 1 . IER )					562 563
564 565	114 115			IV1 . EQ . IVV ) TH - JE( 3 , IER )	EN				564 565
566	116		ELSE						566
567 568	117 118		ISR 4 END	= JE(4, IER) IF					567 568
569	119	~	END						569
570 571	120 121	C 180	CONT	INUE					570 571
572 573	122 123	C			EN				572
574	124		ISS -	ISR . NE . ISI ) TH ISR	LIN				573 574
575 576	125 126		- 31 60 T	IER 0 170					575 576
577	127		END						577
578 579	128 129	C	END	IF					578 579
580	130	115	CONT						580
581 582	131 132	C	ATEM	P(1, 1) = 0.					581 582
583 584	133 134		ATEM	P(1,2)=0.					583
104	194			P(1, 3) = 0.					584

Thu Jul	1 14:15	:55 1993	gradhd.f		SUBROUTINE	GRADNL	page	9
585 586	135 136		(2,1)=0.					585
587	137	ATEMP	(2.2) = 0.					586 587
588 589	138 139	ATEMP(	(2,3)=0.					588 589
590 591	140 141		(3, 1) = 0. (3, 2) = 0.					590
592	142	ATEMP	(3,3)=0.					591 592
593 594	143 144	C BTEMP(	(1,1)=0.					593 594
595 596	145 146	BTEMP	(1, 2) = 0. (1, 3) = 0.					595
597	147	BTEMP (	(1, 3) = 0.					596 597
598 599	148 149	C Btemp(	(2,1)=0.					598 599
600 601	150 151	BTEMP (	2.2) = 0.					600
602	152	BTEMP ( Btemp (	2, 3) = 0. 2, 4) = 0.					601 602
603 604	153 154	C BTEMP(	3,1)=0.					603 604
605 606	155	BTEMP (	3,2)=0.					605
607	156 157		3, 3) = 0. 3, 4) = 0.					606 607
608 609	158 159	C DO 225	KK = 2 , JJCOLF	1				608 609
610	160	ISS =	IICOLR( KK )					610
511 612	161 162	XSS =	S . NE . O ) THE XS( 1 , ISS )	N				611 612
613 614	163 164 (		XS(2, ISS)					613
615	165	HYDVR	= HYDV( ISS , 1					614 615
616 617	166 167	HTDVU HYDVV	= HYDV( ISS , 2 = HYDV( ISS , 3	)				616 617
618 619	168 169 (		= HYDV( ISS , 4					618
620	170	XSS2 =	XSS * XSS					619 620
621 622	171 172		YSS * YSS XSS * YSS					621 622
623 624	173 ( 174		1 , 1 ) = ATEMP	( 1 1 ) +	1.0			623
625	175	ATEMP(	1,2) = ATEMP	(1, 2) +	XSS			624 625
626 627	176 177 (	ATEMP(	1 , 3 ) = ATEMP	(1,3)+	YSS			626 627
628 629	178 179	ATEMP( ATEMP(	2, 1) = ATEMP 2, 2) = ATEMP	(2,1)+(2,2)+	XSS XSS2			628
630 631	180	ATEMP (	2,3) = ATEMP	(2,3)+				629 630
632	182	: Atemp(	3 , 1 ) - ATEMP	(3,1)+	YSS			631 632
633 634	183 184	ATEMP( ATEMP(	3,2) = ATEMP 3,3) = ATEMP	(3, 2) + (3, 3) +	XYSS YSS2			633 634
635 636	185 ( 186			• • •				635
637	187	BTEMP(	1, 1) = BTEMP 1, 2) = BTEMP	(1,2)+	HYDVU			636 637
638 639	188 189	BTEMP( BTEMP(	1,3) = BTEMP 1,4) = BTEMP	(1,3)+(1,4)+	HYDVV HYDVP			638 639
640 641	190 ( 191					· •		640
642	192	BTEMP (	2,1) = BTEMP 2,2) = BTEMP	(2,2)+	HYDVU * XS	S		641 642
643 644	193 194		2, 3) = BTEMP 2, 4) = BTEMP					643 644
645 646	195 ( 196							645
647	197	BTEMP(	3,1) = BTEMP 3,2) = BTEMP	(3,2)+	HYDVU * YS	S		646 647
648 649	198 199	BTEMP( BTEMP(	3,3) = BTEMP 3,4) = BTEMP	(3,3)+ (3,4)+	HYDVV * YS	55 55		648 649
650 651	200 ( 201	END IF	. ,			· ··		650
652	202 (		-					651 652
653 654	204 (	25 CONTINU	L.					653 654
655 656	205 206			$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$				655 656
657	207	AA ( 1		1,3)				657
658	208 0							658
Jul	1 14:	15:55	1993 gradhd.	SUBROUTINE GRADNL	page			
----------	------------	----------	----------------------------------	------------------------------------------------------------------------	------	----------		
59 60	209 210		AA(2,1)= AA(2,2)=	ATEMP(2,1) ATEMP(2,2)		Ę		
61	211		AA(2,3) =	ATEMP( 2 , 3 )		1		
62 53	212 213	C	AA(3,1)=	ATEMP(3,1)		(		
64	214		AA(3,2) =	ATEMP(3,2)		6		
65 66	215 216	С	AA(3,3) =	ATEMP(3,3)		6		
67	217	C	<b>98(1,1)</b> =	BTEMP(1,1)		6		
58 59	218 219		<b>BB(1,2)</b> =	BTEMP(1,2)		6		
70	220		88(1,3) = BB(1,4) =	BTEMP(1,3) BTEMP(1,4)		6		
71 72	221 222	C				e		
73	223		BB(2,1) = BB(2,2) =	BTEMP(2,1) BTEMP(2,2)		6		
74 75	224		BB(2,3)=	BTEMP(2,3)		6		
75 76	225 226	C	BB(2,4)=	BTEMP(2,4)		6		
7	227	•	BB(3,1)=	BTEMP(3,1)		6		
18 19	228 229		BB(3,2) = BB(3,3) =	BTEMP(3,2) BTEMP(3,3)		6		
30	230		BB(3, 4) =	BTEMP(3,3) BTEMP(3,4)		6 6		
81 82	231 232	С				6		
33	233		UCIEKM = AA(	, 1 ) * ( AA( 2 , 2 ) * AA( 3 , 3 ) - AA( 3 , 2 ) * AA( 2 , 3 ) ) +		6 6		
14 15	234		. AA( 2	.1)*(AA(1,3)*AA(3,2)-		0 6		
15 16	235 236			AA(3,3) * AA(1,2)) + ,1) * (AA(1,2) * AA(2,3) -		6		
17	237	_	•	AA(2,2) * AA(1,3)		6 6		
18 19	238 239	C	DTRMIN = 1. /			6		
0	240	C	D(R) = 1.7	שבובגת		6		
1	241		AAA1 = AA(2)			6		
2	242 243		AAA2 = AA( 3 , AAA3 = AA( 1 ,	3) * AA(1,1) - AA(3,1) * AA(1,3) 3) * AA(2,1) - AA(1,1) * AA(2,3)		6		
4	244	C				69 69		
5 6	245 246		AAA4 = AA( 2 , AAA5 = AA( 3 ,			6		
7	247		AAA6 = AA(1),	1) * AA(1,2) - AA(1,1) * AA(3,2) 1) * AA(2,2) - AA(2,1) * AA(1,2)		6! 6!		
8 9	248 249	C				6		
õ	250			) = DTRMIN * ( BB( 1 , 1 ) * AAA1 + BB( 2 , 1 ) * AAA2 +		6! 71		
1 2	251 252	С	•	BB(3,1) * AAA3)		7		
3	253	L	RGRAD( IS , 2	) = DTRMIN * ( BB( 1 , 1 ) * AAA4 +		7( 7(		
4	254		•	BB(2,1) * AAA5 +		70		
5 6	255 256	С	•	BB(3,1) * AAA6)		70		
7	257	-	UGRAD( IS , 1	= DTRMIN * ( BB( 1 , 2 ) * AAA1 +		7( 7(		
8 9	258 259		•	BB(2,2) * AAA2 +		70		
0	260	С	•	BB(3,2) * AAA3)		70		
1 2	261 262		UGRAD( IS , 2	= DTRMIN * ( $BB(1, 2)$ * AAA4 +		71		
3	263		•	BB(2,2) * AAA5 + BB(3,2) * AAA6)		71		
4	264	C		· · ·		71		
5 5	265 266		VGKAD( 15 , 1	= DTRMIN * ( BB( 1 , 3 ) * AAA1 + BB( 2 , 3 ) * AAA2 +		71		
7	267	<u> </u>	•	BB(3,3) * AAA3)		71 71		
3	268 269	C	VGRADI IS 2	- DTRMIN * ( BB( 1 , 3 ) * AAA4 +		71		
)	270		•	BB(2,3) * AAA5 +		71		
2	271 272	c ·	•	8B(3,3) * AAA6)		72		
3	273		PGRAD( IS , 1	= DTRMIN * ( BB( 1 , 4 ) * AAA1 +		72 72		
5	274		•	BB(2,4) * AAA2 +		72		
5	275 276	С	•	BB(3,4) * AAA3)		72		
7	277		PGRAD( IS , 2	= DTRMIN * ( BB( 1 , 4 ) * AAA4 +		72 72		
}	278 279		•	BB(2,4) * AAAS + BB(3,4) * AAAG)		72		
)	280	С		00( J , 4 ) " MARC )		72		
	281	105	CONTINUE			73		

Thu Jul	1 14:	15:55 1993 gradhd.f SUBROUTINE GRADNL	page	11
733 734	283 284	NS1 = NS2 + 1 NS2 = NS2 + NOFVES( INS + 1 )	F-3-	733 734
735	285	90 CONTINUE		735
736	286	C C		736 737
737 738	287 288	ſ		738
739	289	C CALL THE MONOTONICITY LIMITER		739
740 741	290 291	C CALL MONOTN		740 741
742	292	C		742
743 744	293 294	Č=====================================		743 744
745	294	C		745
746	296	C EXIT POINT FROM SUBROUTINE		746
747 748	297 298	C		747 748
749	299	RETURN		749
750 751	300 301	C C		750 751
752	302	C		752
753	303	END		753
Thu Jul	1 14:1	15:55 1993 gradhd.f SUBROUTINE GRADNT		
754	1	SUBROUTINE GRADNT		754
755 756	2 3	C CI		755 756
757	4	Č Ī		757
758 759	5 6	C GRADNT COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION I C USE THE INFORMATION IN THE THREE NEIGHBOURING I		758 759
760	7	C TRIANGLES THAT HAVE COMMON EDGES TO COMPUTE I		760
761	8	C GRADIENT APPLYING LEAST SQUARE TECHNIQUE I		761
762 763	9 10	C I CI		762 763
764	11	C		764
765 766	12 13	include 'cmsh00.h' include 'chyd00.h'		765 766
767	14	include 'cint00.h'		767
768 769	15 16	include 'cphs10.h' include 'cphs20.h'		768 769
770	17			770
771 772	18 19	C≈₩₩₩₽₽₽₩₽₽₽₩₽₽₽₩₽₽₽₩₽₽₩₽₩₽₽₩₽₽₩₽₩₽₩₽₩₽₩		771 772
773	20	REAL RRMIDL(MBP), PPMIDL(MBP), UUMIDL(MBP), VVMIDL(MBP)		773
774 775	21 22	REAL_RIGRAD(MBP),PIGRAD(MBP),UIGRAD(MBP),VIGRAD(MBP) REAL_RJGRAD(MBP),PJGRAD(MBP),UJGRAD(MBP),VJGRAD(MBP)		774 775
776	23	REAL RMAX(MBP), PMAX(MBP), UMAX(MBP), VMAX(MBP)		776
777	24	REAL RMIN(MBP), PMIN(MBP), UMIN(MBP), VMIN(MBP)		777 778
778 779	25 26	REAL_RLEFTT(MBP),ULEFTT(MBP),VLEFTT(MBP),PLEFTT(MBP) REAL_RRIGHT(MBP),URIGHT(MBP),VRIGHT(MBP),PRIGHT(MBP)		779
780	27	REAL ROR(3), UOR(3), VOR(3), POR(3)		780
781 782	28 29	REAL ROL(3),UOL(3),VOL(3),POL(3) REAL AA(3,3),BB(3,4),B(3),INDX(3),ATEMP(3,3,3),BTEMP(3.4.3)		781 782
783	30	REAL AA0(3,3),880(3,4)		783
784 785	31 32	C C≠===================================		784 785
786	33	č		786
787 788	34 35	C BEGIN LOOP OVER ALL CELLS IN THE DOMAIN		787 788
789	36	NS1 = 1		789
790 791	37 38	NS2 = NOFVES( 1 ) DO 90 INS = 1 , NVEES		790 791
792	39	C C		792
793 794	40 41	C FETCH HYDRO QUANTITIES		793 794
794 795	42	DO 105 IS = NS1 , NS2		795
7 <b>9</b> 6 797	43 44	C XSM = XS(1, IS)		796 797
798	44 45	YSM = XS(2, IS)		798
799	46	XSM2 = XSM * XSM		799 800
800 801	47 48	YSM2 – YSM * YSM XYSM – XSM * YSM		801
802	49	C		802
803	50	AAO(1, 1) - 1.0		803
		D309 11		

ŧ

ł

Thu Jul	1 14:	15:55 1993	gradhd.f	SUBROUTINE	GRADNT	page	12
804	51	AA0 (	1, 2) = XSM				804
805 806	52 53	C AND (	1,3) = YSM				805
807	54		2,1)=XSM				806 807
808	55	AAO (	2,2) = XSM2				808
809 810	56 57	) 0AA C	2 , 3 ) <del>-</del> XYSM				809
811	58		3,1)=YSM				810 811
812	59	AAO (	3,2)=XYSM				812
813	60	AA0 (	3 , 3 ) = YSM2				813
814 815	61 62	C BR1	= HYDV( IS , 1 )				814
816	63		= HYDV( IS , 2 )				815 816
817	64	BB3	= HYDV( IS , 3 )				817
818 819	65 66	884 C	= HYDV( IS , 4 )				818
820	67		= 881 * XSM				819 820
821	68	BB2X	= 882 * XSM				821
822 823	69 70		= 883 * XSM				822
824	70 71	C 0047	= 684 * XSM				823 824
825	72	BB1Y	= 881 * YSM				825
826 827	73 74		= 882 * YSM				826
828	75		= 8B3 * YSM = 8B4 * YSM				827 828
829	76	С					829
830 831	77 78		1, 1) = 881				830
832	79	BB0(	1 , 2 ) = BB2 1 , 3 ) = BB3				831 832
833	80	880(	1, 4) = BB4				833
834 835	81 82	C BRO(	2 1) _ 001V				834
836	83	880(	2 , 1 ) = BB1X 2 , 2 ) = BB2X				835 836
837	84	BBO (	2,3) = BB3X				837
838 839	85 86	BBO(	2 , 4 ) = BB4X				838
840	87		3,1) = BB1Y				839 840
841	88	880(	3 , 2 ) = B82Y				841
842 843	89 90	BBO ( BBO (					842
844	91	C	5,4)-0041				843 844
845	92		15  IK = 1 , 3				845
846 847	93 94		JS( IK + 3 , IS ) IE . GT . 0 ) THEN		•		846
848	95		= JE( 4 , IE )				847 848
849	96	ELSE					849
850 851	97 98	END	= JE(3, - IE) IF				850 851
852	99	С					852
853	100	IF(	ISS . NE . O ) THE	1			853
854 855	101 102	×>> ' YSS =	= XS( 1 , ISS ) = XS( 2 , ISS )				854 855
856	103	С					856
857 858	104 105		R = HYDV( ISS , 1 ) U = HYDV( ISS , 2 )				857
859	105	HYDV	V = HYDV(ISS, 2)				858 859-
860	107	HYDVI	P = HYDV(ISS, 4)				860
861 862	108 109	C ELSE					861
863	110	C					862 863
864	111		IABS( IE )				864
865 866	112 113		R = 881 J = 882				865 866
867	114	HYDV	/ = 883				867
868 869	115 116	C HYDVI	P ≈ 884				868
870	110		= 2. * XMIDL( IE )	- XSM			869 870
871	118	YSS •	2. * YMIDL( IE )	- YSM			871
872 873	119 120	C IJES	5 = JE( 5 , IE )				872 873
874	121	C [F(	IJE5 . EQ . 6 . OR	. IJE5 . EQ . 5 ) THE	EN		874
875	122	C UUV	/= -(BB2 * XN(	IE ) + BB3 * YN( IE )			875
876 877	123 124	C VVUL C HYDV	J = UUVV * XN{ IF	IE ) + BB3 * XN( IE ) ) + VVUU * YN( IE )	)		876 877
				,			

hu Jul	1 14:1	5:55 1	1993 gradhd.f SUBROUTINE GRADNT	page 13
878	125	C	HYDVV = UUVV * YN( IE ) + VVUU * XN( IE )	878
879	126	Ç		879
880 881	127 128	C	ELSEIF( IJE5 . EQ . 8 ) THEN	880
B82	128	C	HYDVR - RIN HYDVU = UIN	881
383	129	C C	HYDVU = UIN HYDVV - VIN	882
884	131	č	HYDAA = AIM HADAA = DIN	883
385	132	č		884
386	133	č	END IF	885 886
387	134	-	END IF	887
388	135	С		888
389	136		XSS2 = XSS * XSS	889
390	137		YSS2 = YSS * YSS	890
391	138		XYSS = XSS * YSS	891
392	139	C		892
393 394	140		ATEMP(1, 1, 1, 1K) = 1.0	893
395	141		ATEMP(1, 2, IK) = XSS	894
896	142 143	C	ATEMP(1, 3, IK) = YSS	895
397	143	L	ATEMD ( 2 ) 1 (4 ) - VCC	896
398	145		ATEMP(2,1,IK) = XSS ATEMP(2,2,IK) = XSS2	897
99	146		ATEMP(2, 3, 1K) = XYSS	898 899
00	147	С	comment and and state in the second states	800 833
101	148	-	ATEMP(3,1,IK) = YSS	901
102	149		ATEMP $(3, 2, IK) = XYSS$	902
03	150		ATEMP(3, 3, IK) = YSS2	903
04	151	С		904
05	152		BTEMP(1, 1, IK) = HYDVR	905
06	153		BTEMP(1, 2, IK) = HYDVU	906
07	154		BTEMP(1, 3, IK) = HYDVV	907
80	155	c	BTEMP(1, 4, IK) = HYOVP	908
109 10	156	C	$\mathbf{DTEMP}(2) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	909
)11	157 158		BTEMP(2, 1, IK) = HYDVR * XSS	910
12	150		BTEMP(2,2,IK) = HYDVU * XSS	911
13	160		BTEMP(2,3,IK) = HYDVV * XSS BTEMP(2,4,IK) = HYDVP * XSS	912
14	161	С	$DIEMP(2, 4, IK) = HIVVP^* A33$	913
15	162	~	BTEMP(3,1,IK) = HYDVR * YSS	914
16	163		BTEMP(3, 2, 1K) = HYDVU * YSS	915 916
17	164		BTEMP(3,3,IK) = HYDVV * YSS	917
18	165		BTEMP(3, 4, IK) = HYDVP * YSS	918
19	166	C		919
20	167	115	CONTINUE	920
21	168	C		921
22	169		AA(1, 1) = AAO(1, 1) * 3. + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1, 1, 1) + ATEMP(1,	922
23 24	170 171		ATEMP(1,1,2) + ATEMP(1,1,3)	923
	-		AA(1,2) = AAO(1,2) * 3. + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,2,1) + ATEMP(1,	924
25 26	172 173		ATEMP(1,2,2) + ATEMP(1,2,3) AA(1,3) = AAO(1,3) * 3. + ATEMP(1,3,1) +	925
27	174		ATEMP(1, 3, 2) + ATEMP(1, 3, 3)	926
28		C		927 928
29	176	-	AA(2,1) = AAO(2,1) * 3. + ATEMP(2,1,1) +	929
30	177		. $ATEMP(2, 1, 2) + ATEMP(2, 1, 3)$	930
31	178		AA(2,2) = AAO(2,2) * 3. + ATEMP(2,2,1) +	931
32	179		• ATEMP(2,2,2) + ATEMP(2,2,3)	932
33	180		AA(2,3) = AAO(2,3) * 3. + ATEMP(2,3,1) +	933
34	181	~	. $ATEMP(2, 3, 2) + ATEMP(2, 3, 3)$	934
35	182	C		935
36 37	183		AA(3, 1) = AAO(3, 1) * 3. + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1, 1) + ATEMP(3, 1) + ATE	936
37 38	184 185		ATEMP(3, 1, 2) + ATEMP(3, 1, 3)	937
30 39	186		AA(3,2) = AAO(3,2) * 3. + ATEMP(3,2,1) + ATEMP(3,2,2) + ATEMP(3,2,3)	938
40	187	•	AICHP(3,2,2) + AICHP(3,2,3) + AAA(3,3) = AAO(3,3) + 3. + ATEMP(3,3,1) + AAO(3,3) + 3. + ATEMP(3,3,1) + AAO(3,3) + AAO(3) + AAO(3,3) + AAO(3) +	939
41	188		ATEMP(3, 3, 2) + ATEMP(3, 3, 3)	940 941
a		c	· · · · · · · · · · · · · · · · · · ·	941
	190	-	BB(1,1) = BBO(1,1) * 3. + BTEMP(1,1,1) +	942 943
	191		BTEMP(1,1,2) + BTEMP(1,1,3)	944
	192		BB(1,2) = BBO(1,2) + 3. + BTEMP(1,2,1) +	945
10	193		. BTEMP(1,2,2) + BTEMP(1,2,3)	946
47	194		BB(1,3) = BBO(1,3) * 3. + BTEMP(1,3,1) +	947
48	195		BTEMP(1,3,2) + BTEMP(1,3,3)	948
49	196		BB(1, 4) = BBO(1, 4) * 3. + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4, 1) + BTEMP(1, 4	949
	197		BTEMP $(1, 4, 2) + BTEMP(1, 4, 3)$	950
50 51	198	C		951

1

t

Thu Jul	1 14:	:15:55	1993 gradhd.f		SU	BROUTINE	GRADNT		page	14
952 953 954	199 200 201		8B(2,1) = 8B0 8TE 8B(2,2) = 8B0	ЧР(2,1,	* 3. + 6 2 ) + 6 * 3. + 6	BTEMP(2	. 1 . 1 ) + , 1 . 3 )			952 953
955	202		- BTE	ΨP(2,2,	2) + E	BTEMP( 2	. 2 . 1 ) + . 2 . 3 }			954 955
956 957	203 204		BB(2,3) = BBO	(2,3) 1P(2,3,	* 3. + E	STEMP(2	, 3 , 1 ) +			956
958	205		BB(2, 4) = BB0	(2,4)	* 3. + 8		, 3 , 3 ) , 4 , 1 ) +			957 958
959 960	206 207	С	• BTE	1P(2,4,	2)+8	BTEMP(2	. 4 , 3 )			959
961	208	-	88(3,1) = 880		* 3. + 8	STEMP( 3	, 1 , 1 ) +			960 961
962 963	209 210		• BB(3,2) = BB0	4₽(3,1, (3,2) '	2)+8 *3.+8	BTEMP(3) BTEMP(3)	, 1 , 3 ) , 2 , 1 ) +			962
964	211		- BTE	₩P(3,2,	(2) + 8	BTEMP(3	2,3)			963 964
965 966	212 213		BB(3,3) = BBO BTE	(3,3) 1P(3,3,	'3. + B 2) + B	STEMP( 3 STEMP( 3	, 3 , 1 ) + , 3 , 3 )			965
967 968	214		BB(3,4) = 880	(3,4)*	3. + 8	ITEMP( 3	, 4 , 1 ) +			966 967
969	215 216	С	- BIE	IP(3,4,	2)+8	STEMP( 3	, 4 , 3 )			968 969
970 971	217 218		DETERM = AA( 1 , 1		2,2)	* AA( 3				970
972	219		. AA(2,	AA( AA() * ( AA(	3, 2) 1, 3)					971 972
973 974	220 221		•	AA(	3,3)	* AA( 1	2))+			973
975	222		• AA(3,)	)*( AA( AA(	1.2) 2.2)	* AA( 2 * AA( 1	, 3) - , 3))			974 975
976 977	223 2 <b>24</b>	С	DTONEN 1 / DETE				1 3 7 7			976
978	225	С	DTRMIN = 1. / DETE							977 978
979 980	226 227		AAA1 = AA(2, 3)	* AA( 3 ,	1) - A	A(2.1	) * AA( 3 , 3			979
981	228		AAA2 = AA(3,3) AAA3 = AA(1,3)	* AA( 2 .	1) - A 1) - A	A(3,1 A(1,1	) * AA(1,3 ) * AA(2,3	)		980 981
982 983	229 230	C								982
984	231		AAA4 = AA(2, 1) AAA5 = AA(3, 1)	* AA( 1 .	2 ) - A	A(1.1	) * AA( 2 , 2 ) * AA( 3 , 2	}		983 984
985 986	232 233	с	AAA6 = AA(1, 1)	* AA( 2 ,	2) - A	A(2,1	) * AA(1,2	ý		985
987	234	v	RGRAD( IS , 1 ) =	DTRMIN * (	BB(1.	1) * A/	AA1 +			986 987
988 989	235 236		•		BB(2,	1)*A	AA2 +			988
990	237	С	•		• •	•	AA3)			989 990
991 992	238 239		RGRAD( IS , 2 ) =	DTRMIN * (	BB(1,		M4 +			991
993	240	_	•				VA5 + VA6 )			992 993
994 995	241 242	С	UGRAD( IS , 1 ) -	DTRMIN * ( )	DQ( 1	2 1 * 44	VA1 +			994
996	243		•		<b>BB(</b> 2,	2) * AA	W1 + W2 +			995 996
997 998	244 245	С	•		BB(3,	2) * AF	VA3 )			997 998
999 1000	246 247		UGRAD( IS , 2 ) =	DTRMIN * ( )	BB( 1 ,	2) * AA	A4 +			999
1001	248		•		BB(2, BB(3,	2) * AA 2) * AA	VA5 + VA6 )			.000 .001
1002 1003	249 250	С					<b>,</b>		1	.002
1004	251		VGRAD( IS , 1 ) = ;			3) * AA 3) * AA				.003 .004
1005 1006	252 253	с	•	i	BB(3,	3) * AA	( EA		1	005
1007	254	L.	VGRAD( IS , 2 ) = 1	OTRMIN * ( E	3B(1,	3) * AA	A4 +			006 007
1008 1009	255 256		•	ł	BB(2,	3) * AA	A5 +		1	008
1010	257	С	•			3) * AA				009 010
1011 1012	258 259		PGRAD( IS , 1 ) - (	)TRMIN * ( E	38(1,	4) * AA	A1 +			011
1013	260	<u> </u>	•	ť	BB(3,	4) * AA 4) * AA	A3)			012 013
1014 1015	261 262	C	PGRAD( IS , 2 ) = (						1	014
1016	263			E	3B(2,	4) * AA	A5 +		1	015 016
1017 1018	264 265	C		8	38(3,	4) * AA	A6 )		1	017 018
1019	266	105	CONTINUE						1	019
1020 1021	267 268	C	NS1 = NS2 + 1							020 021
1022 1023	269	00	NS2 = NS2 + NOFVES(	INS + 1 )					1	022
1024	270 271	90 C	CONTINUE							023 024
1025	272	(====	朱종조리드 파마 문 별 별 별 별 별 별 별 별 별 별 별 별 별 별 별 별 별 별		******	*******	*=*==****	*****		025

1

Thu Jul	1 14:	15:55 1993 gradhd.f SUBROUTINE GRADNT	page	15
1026	273	C		1026
1027 1028	274 275	C CALL THE MONOTONICITY LIMITERCALL THE MONOTONICITY LIMITER		1027 1028
1029	276	CALL MONOTN		1029
1030 1031	277 278	C C====4_===============================		1030 1031
1032	279	C		1032
1033 1034	280 281	C C EXIT POINT FROM SUBROUTINE		1033 1034
1034	282	C		1034
1036	283			1036
1037 1038	284 285	RETURN C		1037 1038
1039	286	C		1039
1040 1041	287 288	END		1040 1041
Thu Jul	1 14:	15:55 1993 gradhd.f SUBROUTINE MONOTN		
1042	1	SUBROUTINE MONOTH		1042
1043 1044	23	C C1		1043 1044
1044	4	Ċ		1044
1046	5 6	C MONOTN LIMIT THE GRADIENTS SO THAT NO NEW EXTREMUM ARE I C CREATED ARTIFICIALY DURING THE PROJECTION PROCESS I		1046
1047 1048	7	C CREATED ARTIFICIALT DURING THE PROJECTION PROCESS I		1047 1048
1049	8	ÇI		1049
1050 1051	9 10	C include 'cmsh00.h'		1050 1051
1052	11	include 'chyd00.h'		1052
1053 1054	12 13	include 'cint00.h' include 'cphs10.h'		1053 1054
1055	14	include 'cphs20.h'		1055
1056 1057	15 16	C C===================================		1056 1057
1058	17	Ċ		1058
1059 1060	18	REAL RRMIDL(MBP),PPMIDL(MBP),UUMIDL(MBP),VVMIDL(MBP) REAL RIGRAD(MBP),PIGRAD(MBP),UIGRAD(MBP),VIGRAD(MBP)		1059 1060
1060	19 20	REAL RIGRAD(MBP), FIGRAD(MBP), UIGRAD(MBP), VIGRAD(MBP) REAL RIGRAD(MBP), PJGRAD(MBP), UJGRAD(MBP), VJGRAD(MBP)		1061
1062	21	REAL RMAX(MBP), PMAX(MBP), UMAX(MBP), VMAX(MBP)		1062
1063 1064	22 23	REAL RMIN(MBP),PMIN(MBP),UMIN(MBP),VMIN(MBP) REAL RLEFTT(MBP),ULEFTT(MBP),VLEFTT(MBP),PLEFTT(MBP)		1063 1064
1065	24	REAL RRIGHT(MBP),URIGHT(MBP),VRIGHT(MBP),PRIGHT(MBP)		1065
1066 1067	25 26	REAL ROR(3),UOR(3),VOR(3), REAL ROL(3),UOL(3),VOL(3),POL(3)		1066 1067
1068	27	REAL AA(3,3),BB(3,4),B(3),INDX(3),ATEMP(3,3,3),BTEMP(3,4,3)		1068
1069 1070	28 29	REAL AA0(3,3),BBO(3,4) C		1069 1070
1071	30	(************************************		1071
1072	31			1072
1073 1074	32 33	C LIMITER FOR GRADIENTS BEGINS C USED TO PREVENT NEW MINIMA AND MAXIMA		1073 1074
1075	34	C AT PROJECTED INTERFACE VALUES.		1075
1076 1077	35 36	C NS1 - 1		1076 1077
1078	37	NS2 = NOFVES(1)		1078
1079 1080	38 39	DO 80 INS - 1 , NVEES C		1079 1080
1081	40	DO 150 IS = $MS1$ , $NS2$		1081
1082 1083	41 42	KS = IS - NS1 + 1 C		1082 1083
1085	42	C FIRST TRIANGLE EDGE		1084
1085	44	C		1085
1086 1087	45 46	IE = IABS( JS( 4 , IS ) ) C		1086 1087
1088	47	ISL = JE(3, IE)		1088
1089 1090	48 49	ISR = JE(4, IE) C		1089 1090
1091	50	RROL = HYDV( ISL , 1 )		1091
1092 1093	51 52	UUQL = HYDV( ISL , 2 ) VVQL = HYDV( ISL , 3 )		1092 1093
1095	52 53	PPOL = HYOV( ISL, 3)		1094
1095	54	C		1095 1096
1096	55	IJE5 = JE(5, IE)		1030

•

1

Thu Jul	1 14:1	5:55 1993	gradhd.f SUBROUTINE MONOTN	page	16
1097	56	IF(	( IJE5 . EQ . O ) THEN		1097
1098 1099	57 58	C	DR = HYDV( ISR , 1 )		1098 1099
1100	59		$\frac{1}{R} = \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} \frac{1}{R} $		1100
1101	60		PR = HYDV(ISR, 3)		1101
1102 1103	61 62	C	PR = HYDV(ISR, 4)		1102 1103
1104	63	ELS C	jE		1104
1105 1106	64 65		DR = RROL		1105 1106
1107	66		)R = UUOL		1107
1108 1109	67 68		DR = VVOL DR = PPOL		1108 1109
1110	69	C C IF			1110
1111 1112	70 71		F( IJE5 . EQ . 6 . OR . IJE5 . EQ . 5 ) THEN JVV = - ( UUOL * XN( IE ) + VVOL * YN( IE ) )		1111 1112
1113	72	C VV	/UU = -UUOL * YN(IE) + VVOL * XN(IE)		1113
1114 1115	73 74	C VV	JOR = UUVV * XN( IE ) - VVUU * YN( IE ) /OR = UUVV * YN( IE ) + VVUU * XN( IE )		1114 1115
1116	75	С			1116
1117 1118	76 77	C RR	SE IF( IJE5 . EQ . 8 ) THEN ROR = RIN		1117 1118
1119	78	C UU	JOR = UIN JOR = VIN		1119
1120 1121	79 80	C PP	JOR = VIN POR = PIN		1120 1121
1122 1123	81 82		ID IF		1122
1123	83		) IF		1123 1124
1125 1126	84 85	0	.( 1 ) = RROL		1125 1126
1127	86		(1) = WUOL		1127
1128 1129	87 88		_( 1 ) = VVOL _( 1 ) = PPOL		1128 1129
1130	89	C			1130
1131 1132	90 91		R(1) = RROR R(1) = UUOR		1131 1132
1133	92	VOR	R(1) = VVOR		1133
1134 1135	93 94	POR C	R(1) = PPOR		1134 1135
1136	95		UND TRIANGLE EDGE		1136
1137 1138	96 97	31	= IABS( JS( 5 , IS ) )		1137 1138
1139	98	C			1139
1140 1141	99 100		_ = JE(3, IE) R = JE(4, IE)		1140 1141
1142	101	С			1142
1143 1144	102 103		)L = HYDV( ISL , 1 ) )L = HYDV( ISL , 2 )		1143 1144
1145	104	VVO	DL = HYDV(ISL, 3)		1145
1146 1147	105 106	C PPO	DL = HYDV(ISL, 4)		1146 1147
1148	107	IJE	$E_{\text{F}} = JE(5, IE)$		1148
1149 1150	108 109	C	(IJE5.EQ.O) THEN		1149 1150
1151	110	RRO	R = HYDV(1SR, 1)		1151
1152 1153	111 112	VVO	)R = HYDV( ISR . 2 ) )R = HYDV( ISR . 3 )		1152 1153
1154	113	PPO	R = HYDV(ISR, 4)		1154 1155
1155 1156	114 115	C ELS	jE		1155
1157 1158	116 117	000	DR - RROL		1157 1158
1159	118	UUU	ir - Uuol		1159
1160 1161	119 120		DR = VVOL DR = PPOL		1160 1161
1162	121	С			1162
1163 1164	122 123	C IF	F( IJE5 . EQ . 6 . OR . IJE5 . EQ . 5 ) THEN JVV = − ( UUOL * XN( IE ) + VVOL * YN( IE ) )		1163 1164
1165	124	C VV	/UU = - UUOL * YN( IE ) + VVOL * XN( IE )		1165
1166 1167	125 126		JOR = UUVV * XN( IE ) - VVUU * YN( IE ) /OR = UUVV * YN( IE ) + VVUU * XN( IE )		1166 1167
1168	127	С			1168
1169 1170	128 129		SE IF( IJE5 . EQ . 8 ) THEN NOR - RIN		1169 1170
*					

•

	Thu Jul	1 14:	15:55	1993 gradhd	.f SUBROUTINE MONOTN page	17
1126       133       L       VOR - VIN       1173         1127       133       C       END IF       1173         1127       135       C       END IF       1173         1128       140       FOR(2) - ROR       1180       1174         1138       142       C       ROR(2) - ROR       1180       1181         1138       142       C       FOR(2) - ROR       1183       1184         1138       145       UPR(2) - PPOR       1180       1184       1184         1138       145       UPR(2) - PPOR       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1184       1185       1184       1184       118		· - ·				1171
1176       137       137       137         1177       138       C       HO       H7         1177       138       C       H0       H7         1179       137       H3       C       H17         1179       137       H3       C       H17         1180       H4       C       H17       H18         1181       H4       C       H17       H18         1182       H4       C       H18       H4       H18         1183       H4       VOR(2) - WOR       H18       H4       H4       H4<					n	
	1175	134				
1179       137       ROL(2) - ROD(       1179         1180       139       VOL(2) - VVOL       1180         1181       140       POL(2) - VVOL       1180         1181       140       POL(2) - VVOL       1180         1181       140       POL(2) - VVOL       1181         1184       138       UOR (2) - ROR (2) - ROR (2) - ROR (2) - VVOR       1182         1185       144       VOR (2) - VVOR       1183         1186       145       POR (2) - VVOR       1183         1186       144       VOR (2) - VVOR       1183         1188       147       C			c	END IF		
1179       138       UOL(2) - UUOL       1179         1180       130       VOL(2) - VVOL       130         1181       140       POL(2) - PPOL       130         1182       141       C       138         1183       144       C       138         1184       144       C       138         1185       144       C       138         1186       145       VOR(2) - ROR(2) - PPOR       138         1186       145       VOR(2) - PPOR       138         1188       147       C       148         1189       149       C       138         1180       147       C       138         1180       149       C       118         1181       150       C       118       139         1181       150       C       118       139         1181       151       146       118       139         1181       155       PPOL - HYDV [SL : 1]       130         1183       156       130       139       139         1184       157       C       147       145       120         1189			L	ROI(2) = R	RN	
160         VUL (2 ) = VOU         1180           1182         118         C         ROR (2 ) = ROR         1181           1183         114         UGR (2 ) = ROR         1182           1184         1185         VOR (2 ) = VUOR         1183           1186         1187         1187         1183           1186         1187         1187         1183           1186         1187         1180         1187           1188         1187         1180         1187           1188         1187         1180         1180           1189         1180         1187         1187           1189         1180         1187         1187           1189         1180         1180         1187           1180         1187         1187         1188           1181         1187         1187         1188           1181         1187         1188         1187           1181         1187         1188         1187           1181         1187         1188         1187           1181         1187         1188         1187           1181         1187         1187	1179	138		UOL(2) = U	VOL	
1182       141       C       C       C       1182         1183       142       UOR(2) = NUOR       1183         1184       143       UOR(2) = NUOR       1184         1185       144       VOR(2) = NUOR       1184         1185       144       VOR(2) = NUOR       1186         1186       1186       1186       1186         1189       146       C       1187         1189       146       C       1187         1189       146       C       1187         1181       151       151 + JE(3, 1E)       1199         1182       151       151 + JE(3, 1E)       1191         1182       153       ROL = NYOV(151, 2)       1191         1183       156       IVOL = NYOV(151, 2)       1191         1184       156       FPOL = NYOV(151, 1)       1192         1185       154       UOOL = NYOV(151, 2)       1192         1186       156       VOR = NYOV(151, 2)       1192         1186       156       ROR = ROL       1200         1201       166       C       ROR = ROL       1202         1202       166       C       FG = NYOV(158,						
1133       142       ROR(2) = ROR       1135         1134       143       UOR(2) = WOR       1136         1135       144       UOR(2) = WOR       1136         1136       144       UOR(2) = WOR       1136         1135       144       UOR(2) = WOR       1136         1136       147       C       1137         1138       147       C       1137         1139       150       IS       3.7			C	PUL(2) = PI	PUL	
11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16 11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16         11-16 <th11-16< th="">         11-16         11-16&lt;</th11-16<>			U	ROR(2) = RI	ROR	
1100 1107         1105 1107         1105 1107         1105 1107         1105 1107           1108         1107         1107         1107           1109         140         C         1107           1109         140         IE         1107           1109         140         IE         1107           1109         150         IS         JE         1107           1101         150         IS         JE         JE         1107           1103         151         IS         JE         JE         1107           1105         154         UUL         +MYWY ISL         J         1106           1107         155         VOL         +MYWY ISL         J         1106           1107         156         IF         LAES         JE						
1187       146       C       1189       1189       1189         1189       148       C       THE T THER TRIANCLE EDGE						1185
1188       147       C			С	FUR( 2 ) 4 FI	ruk -	
1130       149       149       149       119         1130       149       150       15       15       15         1131       150       157       154       151       1192         1135       153       RADL + MTOW (151, 1)       1193       1193         1136       155       10001 = MTOW (151, 2)       1194       1194         1139       156       WODL = MTOW (151, 1)       1194       1195         1139       156       WODL = MTOW (151, 1)       1194       1195         1139       156       WODL = MTOW (151, 1)       1195       1196         1139       156       WODL = MTOW (151, 1)       1196       1197         1139       156       WODL = MTOW (151, 1)       1200       1200         1130       157       C       1196       1197       1201         1130       158       JUDE + JUE (5, IE)       1201       1201       1201         1130       C       HODM + HODW (151, 1, 1)       1202       1201       1201         1130       C       HODM + HODW (151, 1, 2)       1201       1201       1201         1130       C       HODM + HODW (151, 1, 2)       1201       1			C	- THIRD TRIANGLE	E EDGE	
1191       150       C       151       1192         1192       151       152       151       152       151         1193       152       152       152       152       1192         1193       153       RBOL       HYDY (152.1)       1193       1193         1195       154       UUOL       HYDY (152.2)       1193       1193         1196       155       VYOL       HYDY (152.3)       1193       1196         1199       158       JJE5 - JE (5.5, E E)       1196       1196         1200       159       JF (152.5, O D) THEN       1201       1202         1201       160       C       RDR + HYDY (158.4)       1203         1204       163       VYOR + HYDY (158.4)       1204       1204         1205       164       PPOR + HYDY (158.4)       1205       1204         1206       165       C       1206       1207       1206         1206       165       C       1206       1207       1204       1201         1210       166       UURA + MOU       1214       1206       1201       1211         1216       1040       - UURA + MYI (12 + VUO + MYI (12 + V			C	TE - TABS/ 10		1189
1192       151       ISL - JE(3, IE)       1192         1193       152       ISL - JE(3, IE)       1195         1194       153       RROL - HYDV(ISL, 1)       1195         1195       154       UUOL - HYDV(ISL, 2)       1196         1196       155       VUOL - HYDV(ISL, 3)       1197         1196       155       VUOL - HYDV(ISL, 4)       1197         1199       156       PPOL - HYDV(ISL, 4)       1197         1199       150       IJE5 - JE(5, IE)       1197         1190       150       IJE5 - JE(5, IE)       1197         1201       160       RROR - HYDV(ISR, 1)       1201         1202       161       RROR - HYDV(ISR, 2)       1203         1204       163       VUOR - HYDV(ISR, 3)       1204         1206       165       C       1207         1206       166       C       1206         1206       167       C       1208         1211       170       VOR - VYOL       1211         1212       171       PPOR - PPOL       1212         1211       170       VOR - VUOL       1211         1212       171       VOR - VUOL       1214			C	IE - IMDS( JS	5(0,15))	
1193       152       ISR - JEY 4, IE)       1193         1194       153       RRD. + HYOV (ISL, I)       1195         1195       154       UUGL + HYOV (ISL, 2)       1196         1197       156       PPOL - HYOV (ISL, 3)       1197         1199       157       C       1197         1199       158       ILES - JE(S, IE)       1197         1200       158       ILES - JE(S, IE)       1198         1201       160       C       F(JJES, EQ, O) THEM       1200         1201       160       C       RROR - HYOV (ISR, 1)       1201         1204       163       VMOR - HYOV (ISR, 2)       1202       1203         1204       164       PFOR - HYOV (ISR, 2)       1204       1204         1206       165       C       1204       1204       1204         1206       166       C       1206       1201       1201       1201         1210       169       UUOR - UUOL       1204       1204       1204         1211       170       VOR + VOOL       1211       1206       1211         1211       170       UWOR + UVOL       1211       1212       1211       1212	1192	151	•	ISL = JE( 3 ,	IE)	
1135       1135       1134       1194         1136       1135       1136       1136         1136       1135       VOL - HYDV (ISL : 1)       1136         1139       1136       1137       1136         1139       1136       1137       1136         1139       1136       1125				ISR = JE' 4,	, IE )	
1196       155       VOD - HYDV [ISL ; 3 ]       1196         1197       156       PPOL - HYDV [ISL ; 4 ]       1197         1198       157       C       1198         1199       159       IJES - JE(S , 1E )       1199         1201       160       C       RROR - HYDV [ISR , 1 )       1200         1202       161       C       RROR - HYDV [ISR , 1 )       1201         1203       163       VVOR - HYDV [ISR , 2 )       1202         1204       163       VVOR - HYDV [ISR , 2 )       1202         1205       164       PPOR - HYDV [ISR , 4 )       1205         1205       165       C       1206       1200         1205       166       PEOR - HYDV [ISR , 4 )       1205         1206       165       C       1206       1200         1210       109       UUR - UURD !       1210       1206         1210       109       UUR - UURD !       1211       1206         1211       100       VVR - VURL - UURD !       1212       1211         1214       123       C       IF ( JJES - EO , 6 · OR · IJES · EO · S ) THEN       1212         1211       100       VVR - UUR ' WIR [E ) · VVU * XM [E )				ккиі = НТОV( { UO1 = НТОV/	ISL , 1 ) ISL , 2 )	1194
1197       156       PPOL = HYOV(ISL, 4)       1107         1198       157       C       1155       C         1200       159       IF(IJE5 - EQ. 0) THEN       1201         1201       160       C       1201         1202       161       RDR + HYOV(ISR - 1)       1201         1203       162       UUDR + HYOV(ISR - 2)       1201         1204       163       VYDR + HYOV(ISR - 3)       1202         1205       164       PPOR - HYOV(ISR - 4)       1205         1206       165       C       1205         1209       166       RROR - RROL       1206         1210       1007       -166       1206         1211       170       VYOR - VYOL       1211         1212       171       PPOR - PPOL       1212         1211       170       VYOR - VYOL       1213         1212       171       PPOR - PPOL       1214         1213       172       176       C       1207         1214       173       C       If(IJE5 - EQ - 6 ) THEN       1216         1211       170       VYOR - VYOL       1214       1215         1216       177	1196	155		VVOL = HYDV(	ISL , 3 )	
1199       150       L       LIJE 5 - JE ( 5 , LE )       1199         1200       159       IF ( JE5 - JE ( 5 , LE )       1200         1201       160       C       1201         1202       161       RROR + HYDV ( JSR , 2 )       1201         1203       162       UWOR + HYDV ( JSR , 2 )       1203         1204       163       VWOR + HYDV ( JSR , 2 )       1203         1205       164       PPOR + HYDV ( JSR , 4 )       1205         1206       165       C       1206         1207       166       ELSE       1206         1208       167       C       1208         1210       169       UUOR - HVDV ( JSR , 4 )       1210         1210       169       UUOR - NUOL       1210         1211       170       VYOR - VVOL       1211         1213       172       C       IF ( JJE5 - EO , 6 , 0R , IJE5 , EO , 5 ) THEN       1213         1214       173       C       IF ( JJE5 , EO , 7 ) THEN       1211         1215       174       C       UUVW ( UUOL * XN ( JE ) + VVOL * YN ( JE )       1215         1214       173       C       IF ( JJE5 , EO , 6 ) THEN       1216 <td< td=""><td></td><td></td><td>~</td><td></td><td></td><td></td></td<>			~			
1200       159       IF(IJES). EQ 0 () THEN       1200         1201       160       C       RROR + HYDV(ISR , 1)       1201         1203       161       WOR + HYDV(ISR , 2)       1202         1204       163       WUR + HYDV(ISR , 3)       1204         1205       164       PPOR + HYDV(ISR , 3)       1205         1206       165       C       1206         1207       166       ELSE       1207         1208       167       C       1207         1209       168       RROR - RROL       1206         1210       169       UUQR - WUQL       1210         1211       170       VOR + WVOL       1211         1212       171       PPOR + PPOL       1211         1213       172       C       IF(IJES - EQ - 6 - 0R - LJES - EQ - 5 - THEN       1212         1214       173       C       UUQR - WUQL * XN(IE + VVQL * XN(IE + )       1211         1214       175       C       UUQR - WUQL * XN(IE + VVQL * XN(IE + )       1211         1215       174       C       WUGR - WUW * XN(IE + ) + VVQL * XN(IE + )       1211         1216       177       C       WUGR - WUW * XN(IE + ) + VVQL * XN(IE + ) <td< td=""><td></td><td></td><td>C</td><td>LIE5 - 16/ 5</td><td>IF )</td><td>1198</td></td<>			C	LIE5 - 16/ 5	IF )	1198
1201       160       C       1201         1202       161       RROR = HYDV( ISR , 1 )       1202         1203       162       UUOR = HYDV( ISR , 2 )       1203         1204       163       VYOR = HYDV( ISR , 3 )       1204         1205       164       PPOR = HYDV( ISR , 4 )       1205         1206       165       C       1206         1209       166       ELSE       1207         1209       167       C       1208         1210       169       UUOR = NUOL       1210         1211       170       VYOR = HYDV( ISR , 4 )       1210         1212       171       PPOR = PPOL       1211         1213       172       C       IF( JLES - EQ , 6 , 0R , IJES - EQ , 5 ) THEN       1212         1214       173       C       IF( JLES - EQ , 6 , 0R , IJES - EQ , 5 ) THEN       1211         1215       174       C       UUV = - (UUOL * XM( IE ) + VVUL * YM( IE ) )       1211         1216       175       C       VUU = - (UUOL * XM( IE ) + VVUL * YM( IE )       1211         1216       170       C       UUOR = UUV * XM( IE ) + VVUL * XM( IE )       1211         1217       176       C       UUOR = UUV * XM(				IF( 1JE5 . EQ	, 10 ) THEN	
1202       101       RR0R = HYDV(1SR, 1)       1202         1204       163       VV0R = HYDV(1SR, 2)       1203         1205       164       PPOR = HYDV(1SR, 4)       1205         1206       165       C       1206         1208       167       C       1208         1209       168       RR0R = RR0L       1207         1210       169       UU0R = UU0L       1210         1211       170       VV0R = VU0L       1211         1212       171       PPOR = PPOL       1212         1213       172       C       17(1JE5 . E0 . 6 . 0R . LJE5 . E0 . 5 . THEN       1214         1212       171       PPOR = PPOL       1212       1214         1213       172       C       17(1JE5 . E0 . 6 . 0R . LJE5 . E0 . 5 . THEN       1214         1215       174       C       UU00 * XN(1E ) + VV01 * XN(1E )       1215         1214       175       C       UU00 * XN(1E ) + VV01 * XN(1E )       1217         1215       174       C       UU0V * XN(1E ) + VV01 * XN(1E )       1217         1214       1220       179       C       ELSE IF(1JE5 . EQ . 6 . THEN       1220         1221       180       C			C			
1204       163 $VORR = WDV/ISR : 3 ($ 1203         1205       164 $PPOR = HYDV/ISR : 4 ($ 1205         1207       166       ELSE       1206         1209       168       RROR = RROL       1206         1210       169       WUOR = WUOL       1209         1211       170       VVOR = VVOL       1211         1212       171       PPOR = PPOL       1212         1213       172       C       IF(IJES - EQ . 6 . OR - IJES - EQ . 5 . THEN       1213         1214       173       C       IF(IJES - EQ . 6 . OR - IJES - EQ . 5 . THEN       1214         1212       171       PPOR = VPOL       1213       1214       1214         1215       UVOR = VUUV = - UUUV * XN(IE ) + VVOL * XN(IE )       1216       1217         1216       175       C       VUOR * VN(IE ) + VVUL * XN(IE )       1216         1217       176       C       UUOV * YN(IE ) + VVUL * XN(IE )       1217         1218       177       C       VOR * UUV * YN (IE ) + VVUL * XN(IE )       1218         1220       179       C       ELSE IF(IJES - EQ . 8 ) THEN       1220         1221       180       C       RRON * RIN       1221				RROR = HYDV(	ISR, 1)	1202
1205       164       PPOR = HYDV(ISR, 4)       1205         1206       165       C       1206         1207       166       ELSE       1206         1208       167       C       1208         1209       168       RROR = RROL       1208         1210       169       UUOR = UUOL       1210         1211       170       VWOR = VVOL       1211         1213       172       C       17(1900000000000000000000000000000000000						
1207       166       ELSE       1207         1208       167       C       1208         1209       168       ROR = ROL       1209         1211       170       VVOR = VVOL       1210         1211       170       VVOR = VVOL       1211         1212       171       PPOR = PPOL       1212         1213       172       C       1214         1214       173       C       IF(jJE5. EQ 6 . OR . IJE5. FO . 5 ) THEN       1213         1214       173       C       IF(jJE5. EQ 6 . OR . IJE5. FO . 5 ) THEN       1214         1215       174       C       UUOR = VUOL * YN(IE ) + VVOL * YN(IE )       1215         1216       177       C       VUOR = UUVV * XN(IE ) + VVOL * XN(IE )       1217         1218       177       C       VOR = UUVV * YN(IE ) + VVUU * XN(IE )       1219         1220       179       C       ELSE IF(IJE5. EQ. 6 . 6 . 0 R . HEN       1220         1221       180       C       WOR = VIN       1221         1222       181       C       WOR = VIN       1221         1223       182       C       VOR = VIN       1222         1224       183       C	1205		-			
1208       167       C       1209         1209       168       RROR = RROL       1209         1210       169       UUOR = UUOL       1210         1211       170       VVOR = VVOL       1211         1212       171       PPOR = PPOL       1211         1213       172       C       IF(IJE5 - EQ - 6 - OR - IJE5 - EO - 5 - THEN       1212         1214       173       C       IF(IJE5 - EQ - 6 - OR - IJE5 - EO - 5 - THEN       1212         1214       173       C       IF(IJE5 - EQ - 6 - OR - IJE5 - EO - 5 - THEN       1212         1214       173       C       IF(IJE5 - EQ - 6 - OR - IJE5 - VVOL * YN(IE -)       1215         1216       175       C       VUUU = - UUUU * XN(IE -) + VVOL * XN(IE -)       1216         1217       176       C       UUWV * XN(IE -) + VVOL * XN(IE -)       1216         1220       178       C       1221       1217       1217         1221       180       C       RBOR = RIN       1221       1218         1221       180       C       RBOR = VIN       1221       1221         1223       182       C       VVOR = VIN       1222       1221         1224       18			C	EI SE		1206
1209       106       RK0R = RK0L       1209         1210       169       UUOR = VUOL       1210         1211       170       VVOR = VVOL       1211         1212       171       PPOR = PPOL       1211         1214       173       C       IF (JJES . EQ . 6 . OR . IJES . EQ . 5 ) THEN       1212         1214       173       C       IF (JJES . EQ . 6 . OR . IJES . EQ . 5 ) THEN       1213         1214       173       C       IF (JJES . EQ . 6 . OR . IJES . EQ . 5 ) THEN       1214         1215       174       C       UUUN * VII [E ) + VVOL * XN( IE )       1215         1216       175       C       VUUN * XN( IE ) + VVUL * XN( IE )       1216         1220       176       C       UUUN * XN( IE ) + VUUU * XN( IE )       1217         1218       177       C       UUUN * XN( IE ) + VUUU * XN( IE )       1218         1220       178       C       ELS IF (IJES . EQ . 6 ) THEN       1221         1221       180       C       UUUN * XN (IE )       VUU * XN (IE )       1211         1221       180       C       UUUN * XN (IE )       1221       1218         1221       180       C       UUUN * XN (IE )       VUU * XN (IE )			С	ELJE		
1210       109       UUUR = UUUL       1210         1211       170       VVOR = VVOL       1211         1212       171       PPOR = PPOL       1211         1213       172       C       1211       1212         1214       173       C       IF(1JE5.EQ.6.0R.IJE5.EQ.5)THEN       1213         1215       174       C       UUVV = - (UUOL * XN(IE) + VVOL * XN(IE)       1216         1217       176       C       UUVV = - (UUOL * XN(IE) + VVOL * XN(IE)       1217         1218       177       C       VUOR = UUVV * XN(IE) + VVUL * XN(IE)       1217         1218       177       C       VUOR = UUVV * XN(IE) + VVUL * XN(IE)       1218         1219       176       C       UUOR = UUVV * YN(IE) + VVUL * XN(IE)       1217         1221       180       C       ROR = RIN       1220         1221       180       C       ROR = PIN       1221         1222       181       C       UOR = UIN       1224         1225       184       C       END IF       1226         1226       185       C       1221       1222         1223       189       O       1230       1231		168		RROR = RROL		
1212       171       PPOR = PPOL       1212         1213       172       C       1213         1214       173       C       IF(IJE5.EQ.6.0R.IJE5.EQ.5)THEN       1213         1214       173       C       UUVV = - (UUUL * XN(IE) + VVOL * YN(IE))       1215         1216       175       C       UUVV = - (UUUL * XN(IE) + VVOL * YN(IE))       1215         1217       176       C       UUVV = - UUVV * YN(IE) + VVUU * YN(IE)       1217         1218       177       C       UUVV = - UUVV * YN(IE) + VVUU * XN(IE)       1218         1220       179       C       ELSE IF(IJE5.EQ.8) THEN       1220         1221       180       C       ROR = RIN       1221         1222       181       C       UUVR = VIN       1221         1223       182       C       VOR = VIN       1222         1224       183       C       PPOR = PIN       1222         1221       180       C       END IF       1226         1222       186       ROL(3) = ROL       1226         1223       187       C       1228         1224       187       C       1226         1227       186       ROL(3						
1213       172       C       174       1213         1214       173       C       IF (IJE5 - EQ - 6 - 0R - IJE5 - EQ - 5 ) THEN       1214         1215       174       C       UUVV = - (UUOL * XN(IE) + VVOL * YN(IE)       1215         1216       175       C       VUUN = - (UUOL * XN(IE) + VVOL * XN(IE)       1216         1217       176       C       UUOR = UUVV * YN(IE) + VVOL * XN(IE)       1216         1219       176       C       UUOR = UUVV * YN(IE) + VVOL * XN(IE)       1217         1219       178       C       ELSE IF (IJE5 - EQ - 6 ) THEN       1218         1220       179       C       ELSE IF (IJE5 - EQ - 6 ) THEN       1220         1221       180       C       ROR = RIN       1220         1221       180       C       ROR = RIN       1221         1222       181       C       UUOR = UIN       1222         1221       182       C       VVOR = UIN       1222         1221       180       C       PROR = PIN       1222         1225       184       C       END IF       1226         1226       187       C       1228       1227         1228       187						
1214       174       174       174       174       174       1215       1215       1215         1215       174       C       UUVV = - (UUOL * XN( IE ) + VVOL * YN( IE ) )       1215         1216       175       C       VUU = - (UUOL * XN( IE ) + VVOL * XN( IE )       1216         1217       176       C       UUOR = UUVV * XN( IE ) + VVUU * YN( IE )       1217         1218       177       C       VOR = UUVV * XN( IE ) + VVUU * XN( IE )       1217         1219       178       C       1217       1218       1217         1219       178       C       1219       1211       1219         1220       179       C       ELSE IF( IJES - EQ . 8 ) THEN       1220       1220         1221       180       C       ROR = RIN       1220       1221       1222       181       1220       1221         1222       181       C       UUOR = UIN       1222       1221       1222       1221       1222         1223       182       C       VOR = VIN       1222       1224       1225       1226       1227       1228       1227       1226       1227       1228       1227       1228       1227       1228 <td< td=""><td>1213</td><td>172</td><td>С</td><td></td><td></td><td></td></td<>	1213	172	С			
1216       175       C $VUU = -UUOL * YN(1E) + VVOL * XN(1E)$ 1216         1217       176       C $UUOR = UUVV * XN(1E) + VVOL * XN(1E)$ 1217         1218       177       C $UUOR = UUVV * XN(1E) + VVOU * YN(1E)$ 1217         1219       178       C       1217       1218       1217         1219       178       C       1219       1211       1211         1220       179       C       ELSE IF(1JE5 . EQ . B ) THEN       1220       1221         1221       180       C       ROR = RIN       1220       1221       1221       1222         1222       181       C       UUOR = UIN       1222       1221       1222       1221       1222         1223       182       C       VVOR = VIN       1223       1224       1225       1225       1226       1226       1227       1226       1227       1226       1227       1228       1229       188       C       END IF       1226       1227       1228       1230       1229       1230       1230       1231       1230       1231       1230       1231       1230       1231       1232       1231       1232       1231       <			С	IF( IJE5 . E	Q. 6. OR. IJE5. EQ. 5) THEN	
1217       176       C       UUOR = UUVV * XN(IE) - VVUU * YN(IE)       1217         1218       177       C       VUOR = UUVV * XN(IE) + VVUU * XN(IE)       1218         1219       178       C       1218       1219         1220       179       C       ELSE IF(IJE5 . EQ . 8) THEN       1220         1221       180       C       RROR = RIN       1221         1222       181       C       UUOR - UIN       1221         1223       182       C       VUOR = VIN       1222         1224       183       C       END IF       1226         1227       186       END IF       1226       1227         1228       187       C       1226       1227         1229       189       UOL(3) = RROL       1228       1229         1230       199       UOL(3) = VUOL       1230       1231         1231       190       VOL(3) = PPOL       1231       1232         1233       192       C       1231       1232       1232         1231       190       VOL(3) = PPOL       1231       1232         1231       192       C       1231       1232			C C	00 <b>4</b> 4 = - (	UUUL * XN( IE ) + VVOL * YN( IE ) )	
1218       1/7       C       VVOR = UUVV * YN( IE ) + VVUU * XN( IE )       1218         1219       179       C       ELSE IF( IJE5 . EQ . 8 ) THEN       1220         1221       180       C       RROR = RIN       1221         1222       181       C       UUOR = UIN       1221         1223       182       C       VVOR = VIN       1222         1224       183       C       PPOR = PIN       1224         1225       184       C       END IF       1226         1227       186       END IF       1227         1228       187       C       1228         1227       186       END IF       1227         1228       187       C       1228         1230       199       UOL(3) = RROL       1230         1231       190       VOL(3) = VUOL       1231         1232       191       POL(3) = PPOL       1231         1233       192       C       1232         1234       193       ROR(3) = RROR       1233         1234       193       POL(3) = PPOL       1236         1235       194       UUOR       1235         1236				UUOR = UUVV	* XN(IE) - VVUL * XN(IE)	
1219       170       C       ELSE IF( IJE5 . EQ . 8 ) THEN       1219         1220       179       C       ELSE IF( IJE5 . EQ . 8 ) THEN       1220         1221       180       C       RROR = RIN       1221         1222       181       C       UUOR = UIN       1221         1223       182       C       WOR = VIN       1223         1224       183       C       PPOR = PIN       1225         1226       184       C       END IF       1226         1229       188       ROL( 3 ) = RROL       1228       1227         1229       188       ROL( 3 ) = RROL       1229       1231         1230       189       UOL( 3 ) = UUOL       1231       1232         1231       190       VOL( 3 ) = PPOL       1231       1231         1233       192       C       1233       1232         1234       193       ROR( 3 ) = RROR       1233       1232         1233       192       C       1233       1232         1234       193       POR( 3 ) = PPOR       1235         1236       195       VOR( 3 ) = VUOR       1236         1237       196       PO				VVOR = UUVV	* YN( IE ) + VVUU * XN( IE )	
1221       180       C       RROR = RIN       1220         1222       181       C       UUQR = UIN       1221         1223       182       C       VVOR = VIN       1223         1224       183       C       PPOR = PIN       1224         1225       184       C       END IF       1225         1226       185       C       1226         1227       186       END IF       1226         1228       187       C       1227         1229       188       ROL(3) = RROL       1228         1230       189       UOL(3) = UUOL       1230         1231       190       VOL(3) = VVOL       1231         1233       192       C       1232         1233       192       C       1231         1234       193       ROR(3) = RROR       1234         1235       194       UOR(3) = VVOR       1235         1236       195       VOR(3) = VVOR       1236         1237       1236       197       1236         1238       197       C       1237         1238       197       C       1238         124						1219
1222       181       C       UUQR = UIN       1222         1223       182       C       VVOR = VIN       1223         1224       183       C       PPOR = PIN       1224         1225       184       C       END IF       1226         1226       185       C       1227       186       END IF       1227         1228       187       C       1228       1229       1230       1229         1230       189       UOL(3) = RROL       1229       1230       1231       120       1231         1231       190       VOL(3) = PPOL       1231       1231       1232       1231       1233       1232         1233       192       C       1233       1234       1233       1234       1233       1234       1233       1235         1234       193       ROR(3) = RROR       1236       1237       1236       1237       1236         1235       194       UOR(3) = VUOR       1236       1237       1236       1237         1236       197       C       1238       197       C       1238         1239       198       C        FIND MAXIMA I	1221					
1223       162       C $VUR = VIN$ 1223         1224       183       C       PPOR = PIN       1224         1225       184       C       END IF       1225         1227       186       END IF       1226         1229       187       C       1228         1229       186       ROL(3) = RROL       1228         1230       189       UOL(3) = VVOL       1230         1231       190       VOL(3) = VVOL       1231         1232       191       POL(3) = PPOL       1231         1233       192       C       1233         1234       193       ROR(3) = RROR       1234         1235       194       UOR(3) = VVOR       1235         1237       196       POR(3) = VVOR       1236         1237       196       POR(3) = PPOR       1236         1238       197       C       1238         1239       198       C        FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE       1238         1240       199       C       1236       1240       1240         1241       200       RMAX( KS) = AMAX1( ROL(1), ROL(2), ROL(3), IS       12	1222	181	С	UUOR = UIN		
1225       184       C       END IF       1225         1227       186       END IF       1226         1228       187       C       1228         1228       187       C       1228         1229       188       ROL(3) = RROL       1229         1230       189       UOL(3) = UUOL       1230         1231       190       VOL(3) = PPOL       1231         1232       191       POL(3) = PPOL       1231         1233       192       C       1233         1234       193       ROR(3) = RROR       1233         1235       194       UUR(3) = UUOR       1236         1236       195       VOR(3) = VVOR       1236         1237       196       POR(3) = PPOR       1237         1238       197       C       1238         1240       QU       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3), 1240       1240         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROR(3))       1242         1243       202       UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3))       1243						1223
1226       185       C       1226         1227       186       END IF       1227         1228       187       C       1228         1229       188       ROL(3) = RROL       1229         1230       189       UOL(3) = UUOL       1230         1231       190       VOL(3) = VVOL       1231         1232       191       POL(3) = PPOL       1231         1233       192       C       1232         1234       193       ROR(3) = RROR       1234         1235       194       UOR(3) = UUOR       1235         1236       195       VOR(3) = VVOR       1236         1237       196       POR(3) = PPOR       1237         1238       197       C       1238         1240       199       C       1238         1240       199       C       1239         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3), 1240       1240         1243       202       UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3), 1243       1243	1225					
1227       180       END IF       1227         1228       187       C       1228         1229       188       ROL(3) = RROL       1229         1230       189       UOL(3) = UUOL       1230         1231       190       VOL(3) = VVOL       1231         1232       191       POL(3) = PPOL       1231         1233       192       C       1233         1234       193       ROR(3) = RROR       1234         1235       194       UOR(3) = UUOR       1235         1236       195       VOR(3) = VVOR       1236         1238       197       C       1237         1239       198       C       FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE	1226	185				
1229       188       ROL(3) = RROL       1229         1230       189       UOL(3) = UUOL       1230         1231       190       VOL(3) = VVOL       1230         1232       191       POL(3) = PPOL       1231         1233       192       C       1233         1234       193       ROR(3) = RROR       1234         1235       194       UOR(3) = UUOR       1235         1236       195       VOR(3) = VVOR       1236         1237       196       POR(3) = PPOR       1237         1238       197       C       1238         1240       199       C       1238         1240       199       C       1239         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3), 1240       1241         1243       202       UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3), 1243       1243			c	END IF		1227
1230       189 $UOL(3) = UUOL$ 1229         1231       190 $VOL(3) = VVOL$ 1230         1232       191 $POL(3) = PPOL$ 1231         1233       192       C       1233         1234       193       ROR(3) = RROR       1234         1235       194       UOR(3) = UUOR       1235         1236       195       VOR(3) = VVOR       1236         1237       196       POR(3) = PPOR       1237         1238       197       C       1237         1239       198       C       FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE       1238         1240       199       C       1240       1240         1241       200       RMAX( KS ) = AMAX1( ROL(1), ROR(2), ROR(3))       1241         1243       202       UMAX( KS ) = AMAX1( UOL(1), UOL(2), UOL(3), UOL(3))       1243	1229		L	ROL(3) = RR(	DL	
1231       190 $VOL(3) = VOL$ 1231         1232       191 $POL(3) = PPOL$ 1232         1233       192       C       1233         1234       193 $ROR(3) = RROR$ 1234         1235       194       UOR(3) = UUOR       1235         1236       195       VOR(3) = VVOR       1236         1237       196       POR(3) = PPOR       1237         1238       197       C       1238         1239       198       C       FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE	1230	189		UOL(3) = UU(	DL	
1233       192       C       1232         1234       193       ROR(3) = RROR       1233         1235       194       UOR(3) = UUOR       1235         1236       195       VOR(3) = VVOR       1236         1237       196       POR(3) = PPOR       1237         1239       198       C       FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE       1238         1240       199       C       1239       1240         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3),						1231
1234 $193$ $ROR(3) = RROR$ $1234$ $1235$ $194$ $UOR(3) = UUOR$ $1234$ $1236$ $195$ $VOR(3) = VVOR$ $1236$ $1237$ $196$ $POR(3) = PPOR$ $1237$ $1238$ $197$ C $1237$ $1239$ $198$ $C$ $FIND$ MAXIMA $IN$ $THE$ $IRIGHBORHOOD$ $OF$ $A$ $IRIANGLE$ $I237$ $1240$ $199$ $C$ $I239$ $I240$ $I240$ $I240$ $1241$ $200$ $RMAX(KS) = AMAX1(ROL(1), ROR(2), ROR(3))$ $I242$ $I241$ $I243$ $202$ $UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3))$ $I243$	1233		С	rut( J ) = PP(		
1235       194 $UOR(3) = UUOR$ 1235         1236       195 $VOR(3) = VVOR$ 1236         1237       196 $POR(3) = PPOR$ 1237         1238       197       C       1238         1239       198       C FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE       1239         1240       199       C       1240         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3), 1241       1241         1243       202       UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3), 1243       1243	1234	193				
1237       196 $POR(3) = PPOR$ 1230         1238       197       C       1237         1239       198       C FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE       1238         1240       199       C       1239         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3), 1241       1242         1242       201       ROR(1), ROR(2), ROR(3))       1242         1243       202       UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3), 1243       1243						1235
1238       197       C       1237         1239       198       C       FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE       1238         1240       199       C       1239         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3), 1241       1241         1242       201       ROR(1), ROR(2), ROR(3))       1242         1243       202       UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3), 1243       1243	1237					
1239       198       C FIND MAXIMA IN THE NEIGHBORHOOD OF A TRIANGLE       1239         1240       199       C       1240         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3), 1241       1242         1242       201       ROR(1), ROR(2), ROR(3))       1242         1243       202       UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3), 1243       1243	1238	197		, .		
1240       199       1240       1240         1241       200       RMAX(KS) = AMAX1(ROL(1), ROL(2), ROL(3), 1241       1242         1242       201       ROR(1), ROR(2), ROR(3))       1242         1243       202       UMAX(KS) = AMAX1(UOL(1), UOL(2), UOL(3), 1243       1243		198		FIND MAXIMA IN	THE NEIGHBORHOOD OF A TRIANGLE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			L			1240
$1243 202 \qquad UMAX(KS) = AMAXI(UOL(1), UOL(2), UOL(3), 1243$	1242				ROR(1), $ROR(2)$ , $ROR(3)$	
	1243			UMAX(KS) = A	MAX1(UOL(1), UOL(2), UOL(3).	
	1244	203		•	UUR(1), UOR(2), UOR(3))	

ŝ

page

17

Thu Jul	1 14:	15:55 1993	gradhd.f	SUBROUTINE MONOTH	page	18
1245	204	VMAX (	KS ) = AMAX1(	VOL(1), VOL(2), VOL(3),		1245
1246 1247	205 206			VOR(1), $VOR(2)$ , $VOR(3)$		1246
1248	207	•	K2 ) ≠ ANAXI(	POL(1), POL(2), POL(3), POR(1), POR(2), POR(3))		1247 1248
1249 1250	208 209	C FIND M	INIMA IN THE NO	EIGHBORHOOD OF A TRIANGLE		1249
1251	210	С				1250 1251
1252 1253	211 212	RMIN(	KS ) = AMIN1(	ROL(1), ROL(2), ROL(3, ROL(3),		1252
1254	213	Umin(	KS ) = AMIN1(	ROR(1), ROR(2), ROR(3)) UOL(1), UOL(2), UOL(3),		1253 1254
1255 1256	214 215			UOR(1), UOR(2), UOR(3)) VOL(1), VOL(2), VOL(3),		1255
1257	216	•		VOR(1), $VOR(2)$ , $VOR(3)$		12. 1257
1258 1259	217 218	PMIN(	KS ) = AMIN1(	POL(1), $POL(2)$ , $POL(3)$ .		1258
1260	219	c ·		POR(1), $POR(2)$ , $POR(3)$		1259 1260
1261 1262	220 221	150 CONTIN C	UE			1261
1263	222	C FIND D	IFFERENCES BETW	EEN EXTREMA AND THE TRIANGLE CENTERED		1262 1263
1264 1265	223 224	C QUANTI C	TIES			1264
1266	225	· · · · · · · · · · · · · · · · · · ·	IS - NS1 . NS2			1265 1266
1267 1268	226 227	KS C	= 1S - NS1 + 1	i de la construcción de la construcción de la construcción de la construcción de la construcción de la constru		1267
1269	228	RRR	(KS) = RMAX(	KS) - HYDV(IS, 1)		1268 1269
1270 1271	229 230	RRL	( KS ) = RMIN(	KS) - $HYDV(IS, I)$		1270
1272	231	UUL	(KS) = UMIN(	(KS) - HYDV(TS) = 2		1271 1272
1273 1274	232 233	VVR	( KS ) = VMAX(	KS) - $HYDV(IS, 3)$		1273
1275	234	PPR	(KS) ≃ PMAX(	KS) - ¹ DV(1S, 4)		1274 1275
1276 1277	235 236	C	( KS ) = PMIN(	KS ) HYDV( 15 , 4 )		1276
1278	237	180 CONTINU	JE			1277 1278
1279 1280	238 239					1279
1281	240	L		CRAMENTS FOR INTERFACE BASED QUANTITIES		1280 1281
1282 1283	241 242	D0 170	IS = NS1, $NS2= IS - NS1 + 1$			1282
1284	243	r				1283 1284
1285 1286	244 245	C FIRST T C	RIANGLE EDGE -			1285
1287	246	IE = I	ABS( JS( 4 , 1	S ) )		1286 1287
1288 1289	247 248	C 181 -	JE(3, IE)			1288
1290	249	ISR =	JE(4, IE)			1289 1290
1291 1292	250 251	C XML	XMIDL( IE ) - 1	XS( 1 151 )		1291
1293	252	YML =	YMIDL( IE ) -			1292 1293
1294 1295	253 254	C RROL =	1.E-12 +			1294
1296	255	•	RGRAD( ISL	, 1 ) * XML + RGRAD( ISL , 2 ) * YML		1295 1296
1297 1298	256 257	UUOL =	1.E-12 +	, 1 ) * XML + UGRAD( ISL , 2 ) * YML		1297
1299	258	VVOL =	1.E-12 +			1298 1299
1300 1301	259 260	PPOL =	VGRAD( ISL ) 1.E-12 +	, 1 ) * XML + VGRAD( ISL , 2 ) * YML		1300 1301
1302	261	•		. i ) * XML + PGRAD( ISL , 2 ) * YML		1302
1303 1304	262 263	C IJE5 =	JE(5, IE)			1303 1304
1305 1306	264	IF( IJ	E5 . EQ . 0 ) 1	THEN		1305
1307	265 266	C XMR =	XMIDL( IE ) - )	KS(1, ISR)		1306 1307
1308 1309	267 268	YMR -	YMIDL( IE ) - )	KS(2, ISR)		1308
1310	269		1.E-12 +			1309 1310
1311 1312	270 271	1000 -	RGRAD( ISR , I.E-12 +	, 1 ) * XMR + RGRAD( ISR , 2 ) * YMR		1311
1313	272		UGRAD( 1SR ,	, 1 ) * XMR + UGRAD( ISR , 2 ) * YMR		1312 1313
1314 1315	27 <b>3</b> 274	VVOR -	1.E-12 +	. 1 ) * XMR + VGRAD( ISR _ 2 ) * YMR	1	1314
1316	275	PPOR =	1.8-12 +			1315 1316
1317 1318	276 277	с .	PGRAD( ISR ,	, 1 ) * XMR + PGRAD( ISR , 2 ) * YMR	1	1317
		-		х.	1	1318

ihu Jul	1 14:15:5	5 1993 gradhd.f SUBROUTINE MONOTN	page	19
1319	278	ELSE		1319
1320 1321	279 C 280	RROR = RROL		1320
1322	281	UUOR - UUOL		1321
1323	282	VVOR = VVOL		1323
1324	283	PPOR - PPOL		1324
1325 1326	284 C 285	END IF		132
1327	285 286 C	END IF		1320
1328	287	ROL(1) = 1. / RROL		1328
1329	288	UOL(1) = 1. / UUOL		1329
1330 1331	289 290	VOL(1) = 1. / VVOL		1330
1332	291 C	POL(1) = 1. / PPOL		133
1333	292	ROR(1) - 1. / RROR		1333
1334	293	UOR(1) = 1. / UUOR		1334
1335 1336	294 295	VOR(1) = 1. / VVOR		1335
1337	295 296 C	POR(1) = 1. / PPOR		1336
1338		SECOND TRIANGLE EDGE		1338
1339	2 <b>98</b> C			1339
1340	299	IE = IABS(JS(5, IS))		1340
1341 1342	300 C 301	ISL = JE( 3 , IE )		1341
1343	302	13L = 3E(3, 1E) 1SR = JE(4, 1E)		1342 1343
1344	303 C			1343
1345	304	XML = XMIDL(IE) - XS(1, ISL)		1345
1346 1347	305 306 C	YML = YMIDL( IE ) - XS( 2 , ISL )		1346
1348	307	RROL = 1.E - 12 +		1347 1348
1349	308	. RGRAD(ISL, 1) * XML + RGRAD(ISL, 2) * YML		1349
1350	309	UUOL = 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 12 + 1.E - 1.E - 12 + 1.E - 1		1350
1351 1352	310	UGRAD(ISL, 1) * XML + UGRAD(ISL, 2) * YML		1351
1352	311 312	VVOL = 1.E-12 + - VGRAD(ISL, 1) * XML + VGRAD(ISL, 2) * YML		1352
1354	313	PPOL = 1.E-12 +		1353 1354
1355	314	• PGRAD(ISL, 1) * XML + PGRAD(ISL, 2) * YML		1355
1356 1357	315 C 316			1356
1358	317	IJE5 - JE( 5 , IE ) IF( IJE5 . EQ . 0 ) THEN		1357 1358
1359	318 C			1350
1360	319	XMR = XMIDL(IE) - XS(1, ISR)		1360
1361 1362	320 321 C	YMR = YMIDL(IE) - XS(2, ISR)		1361
1363	322	RROR = 1.E - 12 +		1362 1363
1364	323	. RGRAD(ISR, 1) * XMR + RGRAD(ISR, 2) * YMR		1364
1365	324	UUOR = 1.E - 12 + 1000		1365
1366 1367	325	. UGRAD( ISR , 1 ) * XMR + UGRAD( ISR , 2 ) * YMR		1366
1368	326 327	VVOR = 1.E-12 + - VGRAD( ISR , 1 ) * XMR + VGRAD( ISR , 2 ) * YMR		1367 1368
1369	328	PPOR = 1.E - 12 + 12		1369
1370	329	• PGRAD(ISR,1) * XMR + PGRAD(ISR,2) * YMR		1370
1371 1372	330 C 331			1371
1373	331 332 C	ELSE		1372 1373
1374	333	RROR - RROL		1373
1375	334	UUOR - UUOL		1375
1376 1377	335	VVOR - VVOL PPOR - PPOL		1376
1378	336 337 C	FFUR = FFUR		1377 1378
1379	338	END IF		1378
1380	339 C			1380
1381 1382	340 341	ROL(2) = 1. / RROL		1381
1383	341 342	VOL(2) = 1. / VUOL VOL(2) = 1. / VVOL		1382 1383
1364	343	POL(2) = 1. / PPOL		1384
1385	344 C			1385
1385	345	$ROR(2) \approx 1. / RROR$		1386
1387 1388	346 347	UOR(2) = 1. / UUOR VOR(2) = 1. / VVOR		1387
1389	348	POR(2) = 1. / PPOR		1388 1389
390	349 C	· - , · · · · · · · ·		1390
1391	350 C -	THIRD TRIANGLE EDGE		1391

Thu Jul	1 14:	15:55	1993 gradhd.f	SUBROUTINE MONOTH	page	20
1393	352		IE = IABS(JS(6, IS))			1393
1394	353	C				1394
1395 1396	354 355		ISL = JE( 3 , IE ) ISR = JE( 4 , IE )			1395
1397	356	С	13R = 3C(4, 12)			1396 1397
1398	357		XML = XMIDL( IE ) - XS( 1 ,	ISL )		1398
1399 1400	358 359	с	YML = YMIDL( IE ) - XS( 2 ,	ISL )		1399
1401	360	L.	RROL = $1.E - 12 +$			1400 1401
1402	361		<pre>. RGRAD(ISL, 1) *</pre>	XML + RGRAD( ISL , 2 ) * YML		1402
1403 1404	362 363		UUOL = 1.E - 12 + UCPAD(15) + 1 + 1			1403
1405	364		VVOL = 1.E-12 +	XML + UGRAD( ISL , 2 ) * YML		1404 1405
1406	365		. VGRAD( ISL , 1 ) *	XML + VGRAD( ISL , 2 ) * YML		1405
1407 1408	366 367		PPOL = 1.E - 12 +			1407
1409	368	C	• PGRAD( ISL , I ) *	XML + PGRAD( ISL , 2 ) * YML		1408 1409
1410	36 <b>9</b>		IJE5 = JE( 5 , IE )			1410
1411 1412	370 371	С	IF( IJE5 . EQ . 0 ) THEN			1411
1413	372	v	XMR = XMIDL( IE ) - XS( 1 ,	ISR )		1412 1413
1414	373	-	YMR = YMIDL( IE ) - XS( 2 ,	ISR )		1414
1415 1416	374 375	C	0000 - 1 C 12 -			1415
1410	375		RROR = 1.E-12 + - RGRAD(ISR, 1) *	XMR + RGRAD( ISR , 2 ) * YMR		1416 1417
1418	377		UUOR = 1.E - 12 +			1418
1419 1420	378 379		• UGRAD( ISR , 1 ) * VVOR = 1.E-12 +	XMR + UGRAD(ISR, 2) * YMR		1419
1421	380			XMR + VGRAD( 1SR , 2 ) * YMR		1420 1421
1422	381		PPOR = 1.E - 12 +	· · ·		1421
1423 1424	382 383	~	- PGRAD( ISR , 1 ) *	XMR + PGRAD( ISR , 2 ) * YMR		1423
1424	384	C	ELSE			1424 1425
1426	385	С				1425
1427 1428	386 387		RROR - RROL			1427
1429	388		uuor = uuol vvor = vvol			1428
1430	389		PPOR = PPOL			1429 1430
1431 1432	390 391	C	END TE			1431
1433	392	C	END IF			1432 1433
1434	393		ROL(3) = 1. / RROL			1434
1435 1436	394 395		UOL(3) = 1. / UUOL			1435
1430	396		VOL( 3 ) = 1. / VVOL POL( 3 ) = 1. / PPOL			1436 1437
1438	397	C				1438
1439 1440	398 399		ROR(3) = 1. / RROR			1439
1441	400		UOR(3) = 1. / UUOR VOR(3) = 1. / VVOR			1440 1441
1442	401		POR(3) = 1. / PPOR			1442
1443 1444	402 403	С	ISNR = SIGN( 1. , ROR( 1 ) )			1443
1445	404		ISNK = SIGN(1., ROR(1.)) ISNL = SIGN(1., ROL(1.))			1444 1445
1446	405	ç				1446
1447 1448	40 <del>6</del> 407	C	PERFORM THE LIMITING ON THE I	INCRAMENTS		1447
1449	408	•	TEMPR = ( 1 + ISNR ) * RRR(	KS ) +		1448 1449
1450	409		• (1 - ISNR) * RRL(	KS )		1450
1451 1452	410 411	С	RUVPR1 = 0.5 * TEMPR * ROR(	1)		1451
1453	412	U	TEMPL = ( 1 + ISNL ) * RRR(	KS)+		1452 1453
1454	413		. (1 - ISNL) * RRL(	KS)		1454
1455 1456	414 415	С	RUVPL1 = 0.5 * TEMPL * ROL(	1)		1455
1457	416	•	ISNR = SIGN( 1. , ROR( 2 ) )			1456 1457
1458	417	c	ISNL = SIGN( 1. , ROL( 2 ) )			1458
1459 1460	418 419	C	TEMPR = (1 + ISNR) * RRR(	K2 ) +		1459
1461	420		. (1 - ISNR) * RRL(	KS)		1460 1461
1462	421	r	RUVPR2 = 0.5 * TEMPR * ROR(	2)		1462
1463 1464	422 423	C	TEMPL = ( 1 + ISNL ) * RRR(	K2 ) +		1463
1465	424		. (1 - ISNL) * RRL(	KS)		1464 1465
1466	425		RUVPL2 = 0.5 * TEMPL * ROL(	2)		1466

Thu Jul	1 14:	15:55	1993	gradhd, f	5	SUBROUTIN	E MONOTN	pi	age	21
1467	426	С								1467
1468	427		ISNR	= SIGN( 1. , ROR(	3))					1468
1469 1470	428 429	с	ISNL	= SIGN( 1., ROL(	3))					1469
1471	430	Ľ	TEMPR	= ( 1 + ISNR ) *	RRR(KS)	•				1470 1471
1472	431		•	(1 ~ ISNR) *	RRL(KS)					1472
1473 1474	432 433	С	RUVPR	3 = 0.5 * TEMPR *	ROR(3)					1473
1475	433	U	TEMPL	= ( 1 + ISNL ) *	RRR(KS)	•				1474 1475
1476	435		•	(1 - ISNL) *	RRL(KS)					1476
1477 1478	436 437	С	RUVPL	3 = 0.5 * TEMPĹ *	ROL(3)					1477
1479	438	L	RMIN(	KS ) = AMIN1( 1.	. RUVPR1 .	RUVPL1	RUVPR2 RUVP12			1478 1479
1480	439	_	•	,	•		RUVPR3 , RUVPL3 )			1480
1481 1482	440 441	C	TCND	- SIGN( 1 UOR(	1					1481
1483	442			= SIGN( 1. , UOL(						1482 1483
1484	443	C			- , ,					1484
1485 1486	444 445		TEMPR	= (1 + ISNR) *		•				1485
1487	445		RUVPR	( 1 - ISNR ) * 1 = 0.5 * TEMPR *	UOR(1)					1486 1487
1488	447	C			•					1488
1489	448		TEMPL	= (1 + ISNL) *	UUR( KS ) +					1489
1490 1491	449 450		RINPI	( 1 - ISNL ) * 1 = 0.5 * TEMPL *						1 <b>490</b> 1491
1492	451	С			• •					1492
1493	452		ISNR	= SIGN( 1. , UOR(	2))				1	1493
1494 1495	453 454	С	12NL -	SIGN( 1. , UOL(	2))					1494 1495
1496	455	U	TEMPR	= (1 + ISNR) *	UUR(KS) +					1495
1497	456		•	(1 - ISNR) *					1	1497
1498 1499	457 458	С	RUVPR	2 = 0.5 * TEMPR *	UUR(2)					1498
1500	459	L.	TEMPL	= (1 + ISNL) *	UUR( KS ) +				-	1499 1500
1501	460		•	(1 - ISNL) *	UUL(KS)				1	1501
1502 1503	461 462	С	RUVPL	2 = 0.5 * TEMPL *	UOL(2)					1502
1503	463	C	I SNR -	SIGN( 1., UOR(	3))					1503 1504
1505	464	_	ISNL -	SIGN( 1., UOL(	3))					1505
1506 1507	465 466	C	TEMOD	= ( 1 + ISNR ) *	1110/ VC ) .					1506
1508	467		1 C.FIF N	(1 - ISNR) *						1507 1598
1509	468		RUVPR	3 = 0.5 * TEMPŔ *	UOR(3)					15 J
1510 1511	469 470	C	TENDI	= (1 + ISNL) *	HID ( KS ) .					1510
1512	471			(1 - ISNL) *						1511 1512
1513	472	-	RUVPL3	3 = 0.5 * TEMPL *	UOL(3)					513
1514 1515	473 474	C	IMTN(	KS ) = AMIN1( 1.	0111/001	DIIVD1 1				1514
1516	475		• • • • • • • • • • • • • • • • • • • •	$n_{ij} = n_{ij} + 1$	, NUTERI ,		RUVPR2 , RUVPL2 , RUVPR3 , RUVPL3 )			1515 1516
1517	476	C		CTCN/ 1			· ······ · · · · · · · · · · · · · · ·		1	1517
1518 1519	477 478			= SIGN( 1. , VOR( = SIGN( 1. , VOL(						1518 1519
1520	479	C	44716 ⁻		~ / /					520
1521	480		TEMPR	= (1 + ISNR) *					1	521
1522 1523	481 482		RUVPRI	( 1 - ISNR ) * = 0.5 * TEMPR *	VVL(KS) VOR(1)					522 523
1524	483	C							1	524
1525	484		TEMPL	= (1 + ISNL) *					1	525
1526 1527	485 486		RIIVPI 1	(1 - ISNL) * = 0.5 * TEMPL *						.526 .527
1528	487	С								528
1529	488			SIGN( 1. , VOR(					1	529
1530 1531	489 490	С	I SNL =	SIGN( 1., VOL(	( ) )					530 531
1532	491	-	TEMPR	= (1 + ISNR) *	VVR( KS ) +					532
1533	492		DIMODO	(1 - ISNR) *	VVL(KS)				1	533
1534 1535	493 494	с	KUVPR2	= 0.5 * TEMPR *	VUK(2)					534 535
1536	495	-	TEMPL	= ( 1 + ISNL ) *						536
1537	496		• 010101 0	(1 - ISNL) *					1	537
1538 1539	497 498	С	KUVPLZ	≈ 0.5 * TEMPL *	VUL( 2 )					538 539
1540	499	-	ISNR -	SIGN( 1. , VOR(	3))					540
					n200 ²	1				

Thu Jul	1 14:15:5	5 1993 gradhd.f SUBROUTINE MONOTN	page	22
1541	500	ISNL = SIGN(1., VOL(3))		1541
1542	501 C			1542
1543	502 503	TEMPR = (1 + ISNR) * VVR(KS) + . (1 - ISNR) * VVL(KS)		1543 1544
1544 1545	503	RUVPR3 = 0.5 * TEMPR * VOR(3)		1545
1546	505 C			1546
1547	506	TEMPL = (1 + ISNL) * VVR(KS) + VVR(KS)		1547
1548 1549	507 508	. (1 - ISNL) * VVL(KS) RUVPL3 = 0.5 * TEMPL * VOL(3)		1548 1549
1550	509 C			1550
1551	510	VMIN( KS ) = AMINI( 1. , RUVPR1 , RUVPL1 , KUVPR2 , RUVPL2 ,		1551
1552 1553	511 512 C	. RUVPR3 , RUVPL3 )		1552 1553
1554	512 0	ISNR = SIGN(1., POR(1))		1554
1555	514	ISNL = SIGN(1., POL(1))		1555
1556 1557	515 C 516	TEMPR = (1 + ISNR) * PPR(KS) +		1556 1557
1558	517	(1 - ISNR) * PPL(KS)		1558
1559	518	RUVPR1 = 0.5 * TEMPR * POR( 1 )		1559
1560 1561	519 C 520	TEMPL = ( 1 + ISNL ) * PPR( KS ) +		1560 1561
1562	520	(1 - 1SNL) * PPL(KS)		1562
1563	522	RUVPL1 = 0.5 * TEMPL * POL(1)		1563
1564	523 C	15ND - 53CH ( 1 DOD ( 2 ) )		1564
1565 1566	524 525	ISNR = SIGN(1., POR(2)) ISNL = SIGN(1., POL(2))		1565 1566
1567	526 C	tour - prout re b tort r b b		1567
1568	527	TEMPR = (1 + ISNR) * PPR(KS) +		1568
1569 1570	528 529	. (1 - ISNR) * PPL(KS) RUVPR2 = 0.5 * TEMPR * POR(2)		1569 1570
1571	530 C	Norme - 013 TERM TONE 2)		1571
1572	531	TEMPL = (1 + ISNL) * PPR(KS) +		1572
1573 1574	532 533	. (1 - ISNL) * PPL(KS) RUVPL2 = 0.5 * TEMPL * POL(2)		1573 1574
1575	535 534 C	RUVPL2 = 0.5  icrel "PUL(2)		1575
1576	535	ISNR = SIGN(1., POR(3))		1576
1577	536	ISNL = SIGN(1., POL(3))		1577
1578 1579	537 C 538	TEMPR = ( 1 + ISNR ) * PPR( KS ) +		1578 1579
1580	539	. (1 - ISNR) * PPL(KS)		1580
1581	540	RUVPR3 = 0.5 * TEMPR * POR(3)		1581
1582 1583	541 C 542	TEMPL = ( 1 + ISNL ) * PPR( KS ) +		1582 1583
1584	543	. (1 – ISNL ) * PPL( KS )		1584
1585	544	RUVPL3 = 0.5 * TEMPL * POL( 3 )		1585
1586 1587	545 C 546	PMIN( KS ) = AMIN1( 1. , RUVPR1 , RUVPL1 , RUVPR2 , RUVPL2 ,		1586 1587
1588	547	RUVPR3 , RUVPL3 )		1588
1589	548 C			1589
1590		70 CONTINUE		1590 1591
1591 1592		LIMIT THE ACTUAL GRADIENTS		1592
1593	552 C	···		1593
1594 1595	553 554 C	DO 330 IH = 1 , 2		1594 1595
1595	555	DO 330 IS = NS1 , NS2		1596
1597	556	KS = IS - NS1 + 1		1597
1598 1599	557 C	RGRAD( IS , IH ) = RGRAD( IS , IH ) * RMIN( KS ) * FLATDR		1598 1599
1600	558 559	UGRAD(IS, IH) = UGRAD(IS, IH) = WIN(KS) = FLATOR UGRAD(IS, IH) = UGRAD(IS, IH) = UMIN(KS) = FLATOR		1600
1601	560	VGRAD(IS, IH) = VGRAD(IS, IH) * VMIN(KS) * FLATOR		1601
1602	561 562 C	PGRAD( IS , IH ) = PGRAD( IS , IH ) * PMIN( KS ) * FLATDR		1602 1603
1603 1604		30 CONTINUE		1603
1605	<b>564</b> C			1605
1606	565	NS1 = NS2 + 1 $NS2 = NS2 + NOEVES(INS + 1)$		1606 1607
1607 1608	566 567 8	NS2 = NS2 + NOFVES( INS + 1 ) O CONTINUE		1608
1609	568 C			1609
1610		======================================		1610
1611 1612	570 C 571 C	CALL THE CHARECTERISTIC LIMITER		1611 1612
1613	572 C	VILL IIIC UNALUTENISTIC CHILLEN		1613
1614	573	CALL FCHART		1614

Thu Jul	1 14:	15:55 1993 gradhd.f SUBROUTINE MONOTN	page	23
1615	574	C		1615
1616	575	(==;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		1615
1617 1618	576 577	C C		1617 1618
1619	578	C EXIT POINT FROM SUBROUTINE		1619
1620	579	C		1620
1621 1622	580 581	C RETURN		1621 1622
1622	582			1622
1624	583	C	•	1624
1625 1626	584 585	C END		1625
				1626
	1 14:	15:55 1993 gradhd.f SUBROUTINE GRADNG		
1627 1628	1 2	SUBROUTINE GRADNG C		1627
1629	3	· [		1628 1629
1630	4	Ċ		1630
1631	5 6	C GRADNG COMPUTE THE GRADIENT FOR SECOND ORDER CALCULATION I C USING THE INFORMATION STORED ASSOCIATED WITH THE I		1631
1632 1633	7	C USING THE INFORMATION STORED ASSOCIATED WITH THE I C VERTICIES OF THE TRIANGLE TO COMPUTE THE GRADIENT I		1632 1633
1634	8	C 1		1634
1635	9	ÇI		1635
1636 1637	10 11	C include 'cmsh00.h'		1636 1637
1638	12	include 'chvd00.h'		1638
1639	13	include 'Cintul, n'		1639
1640 1641	14 15	include 'cphsl0.h' include 'cphsl0.h'		1640 1641
1642	16	C C		1642
1643	17	(		1643
1644 1645	18 19	C C BEGIN LOOP OVER ALL CELLS IN THE DOMAIN		1644 1645
1646	20	C		1646
1647	21	NS1 = 1		1647
1648 1649	22 23	NS2 - NOFVES(1) DO 90 INS - 1, NVEES		1648
1650	23	C		1649 1650
1651	25	C FETCH HYDRO QUANTITIES		1651
1652 1653	26 27	C DO 105 IS - NS1 , NS2		1652 1653
1655	28	KS = IS - NSI + 1		1654
1655	29	C		1655
1656	30	IV1 = JS(1, IS) IV2 = JS(2, IS)		1656
1657 1658	31 32	IV2 = JS(2, IS) IV3 = JS(3, IS)		1657 1658
1659	33	XVI = XV(1, IVI)		1659
1660 1661	34 35	XV2 = XV( 1 , IV2 ) XV3 = XV( 1 , IV3 )		1660 1661
1662	36	XVS = XV(1, 1VS) YV1 = XV(2, IV1)		1662
1663	37	YV2 = XV(2, IV2)		1663
1664	38 30	YV3 = XV(2, IV3) C = (XV2, XV1) + (XV3, XV2) (XV3, XV2) + (XV2, XV1)		1664
1665 1666	39 40	C ≈ ( XV2 - XV1 ) * ( YV3 - YV2 ) - ( XV3 - XV2 ) * ( YV2 - YV1 ) CINV = 1. / C		1665 1666
1667	41	C		1667
1668	42	$\frac{\text{RRMDL1}}{\text{HYDVVV(IV1, 1)}} = \frac{\text{HYDVVV(IV1, 1)}}{\text{HYDVVV(IV1, 2)}}$		1668
1669 1670	43 44	UUMDL1 = HYDVVV( IV1 , 2 ) / RRMDL1 VVMDL1 = HYDVVV( IV1 , 3 ) / RRMDL1		1669 1670
1671	45	PPMDL1 = ( HYDVVV( IV1 , 4 )5 * RRMDL1 * ( UUMDL1 * UUMDL1 +		1671
1672	46	. VVMDL1 * VVMDL1 ) ) * ( HYDVVV( IV1 , 5 ) - 1. )		1672
1673 1674	47 48	C RRMDL2 = HYDVVV(IV2,1)		1673 1674
1675	49	UUMDL2 = HYDVVV(IV2, 2) / RRMDL2		1675
1676 1677	50 51	VVMDL2 = HYDVVV(IV2,3)/RRMDL2 ppmol2 = (HYDVVV(IV2,4) = 5 * ppmol2 * (HUMDL2 * HUMDL2 +		1676 1677
1678	51 52	PPMDL2 = ( HYDVVV( IV2 , 4 )5 * RRMDL2 * ( UUMDL2 * UUMDL2 +		1678
1679	53	C		1679
1680	54	$\frac{\text{RRMDL3}}{\text{HYDVVV}(1V3, 1)}$		1680 1681
1681 1682	55 56	UUMDL3 = HYDVVV( IV3 , 2 ) / RRMDL3 VVMDL3 = HYDVVV( IV3 , 3 ) / RRMDL3		1681 1682
1683	57	PPMDL3 - ( HYDVVV( 1V3 , 4 )5 * RRMDL3 * ( UUMDL3 * UUMDL3 +		1683
1684	58	. VVMDL3 * VVMDL3 ) ) * ( HYDVVV( IV3 , 5 ) - 1. )		1684
1685	59	C		1685

Thu Jul	1 14:15:55 1	993 gradhd.f SUBROUTINE GRADNG	page	24
1686 1687 1688 1689	60 61 62 63	ZV1 = RRMDL1 ZV2 = RRMDL2 ZV3 = RRMDL3 A = (YV2 - YV1) * (ZV3 - ZV2) - (YV3 - YV2) * (ZV2 - ZV1)		1686 1687 1688 1689
1690 1691 1692 1693 1694	64 65 C 66 67 68 C	B = ( ZV2 - ZV1 ) * ( XV3 - XV2 ) - ( ZV3 - ZV2 ) * ( XV2 - XV1 ) RGRAD( IS , 1 ) = - A * CINV RGRAD( IS , 2 ) = - B * CINV		1690 1691 1692 1693 1694
1695 1696 1697 1698 1699	69 70 71 72 73	ZV1 = UUMDL1 ZV2 = UUMDL2 ZV3 = UUMDL3 A = (YV2 - YV1) * (ZV3 - ZV2) - (YV3 - YV2) * (ZV2 - ZV1) B = (ZV2 - ZV1) * (XV3 - XV2) - (ZV3 - ZV2) * (XV2 - XV1)		1695 1696 1697 1698
1700 1701 1702 1703	74 C 75 76 77 C	UGRAD( IS , 1 ) = - A * CINV UGRAD( IS , 2 ) = - B * CINV		1699 1700 1701 1702 1703
1704 1705 1706 1707 1708	78 79 80 81 82	ZV1 = VVMDL1 ZV2 = VVMDL2 ZV3 = VVMDL3 A = (YV2 - YV1) * (ZV3 - ZV2) - (YV3 - YV2) * (ZV2 - ZV1) B = (ZV2 - ZV1) * (XV3 - XV2) - (ZV3 - ZV2) * (XV2 - XV1)		1704 1705 1706 1707 1708
1709 1710 1711 1712 1713	83 C 84 85 86 C 87	VGRAD( IS , 1 ) = - A * CINV VGRAD( IS , 2 ) = - B * CINV ZV1 = PPMDL1		1709 1710 1711 1712 1713
1714 1715 1716 1717 1718	88 89 90 91	ZV2 = PPMDL2 ZV3 = PPMDL3 A = (YV2 - YV1) * (ZV3 - ZV2) - (YV3 - YV2) * (ZV2 - ZV1) B = (ZV2 - ZV1) * (XV3 - XV2) - (ZV3 - ZV2) * (XV2 - XV1)		1714 1715 1716 1717
1719 1720 1721 1722	93 94 95 C 96 105	PGRAD( IS , 1 ) = - A * CINV PGRAD( IS , 2 ) = - B * CINV CONTINUE		1718 1719 1720 1721 1722
1723 1724 1725 1726 1727	97 C 98 99 100 90 101 C	NS1 = NS2 + 1 NS2 = NS2 + NOFVES( INS + 1 ) CONTINUE		1723 1724 1725 1726 1727
1728 1729 1730 1731 1732	103 C 104 C 105 C 106	CALL THE MONOTONICITY LIMITER		1728 1729 1730 1731 1732
1733 1734 1735 1736 1737	109 C 110 C	EXIT POINT FROM SUBROUTINE		1733 1734 1735 1736 1737
1738 1739 1740 1741 1742	112 C 113 C 114 115 C 116 C	RETURN		1738 1739 1740 1741 1742
1742 1743 1744	110 C 117 C 118	END		1743 1744

Thu Jul	1 14:1	5:55 1	93 gradt	d.f SUBROUTINE GRADNO	page	25
1745	1		SUBROUTINE G	RADNO		1745
1746	2	C				1746
1747	3 4	C C				1747
1748 1749	5	č	GRADNO COMP	UTE THE GRADIENT FOR SECOND ORDER CALCULATION		1748 1749
1750	5 6	r		G THE INFORMATION STORED ASSOCIATED WITH THE I		1750
1751	7	č		ICIES OF THE TRIANGLE TO COMPUTE THE GRADIENT I		1751
1752 1753	8 9	C C	APPL	YING THE GRADIENT THEOREM I		1752 1753
1755	10	C				1755
1755	11	č		-		1755
1756	12		include	'cmsh00.h'		1756
1757 1758	13 14		include include	'chyd00.h' 'cint00.h'		1757 1758
1759	15		include	'cphs10.h'		1759
1760	16		include	'cphs10.h' 'cphs20.h'		1760
1761	17	Ç				1761
1762 1763	18 19	C	**********	2927#227##±\$9#F#66F#13F#12229F#4E##59#E# <del>23</del> ##¥4£8 <del>2</del> 3%		1762 1763
1764	20	•	REAL RRMIDL(	MBP), PPMIDL(MBP), UUMIOL(MBP), VVMIDL(MBP)		1764
1765	21			MBP), PIGRAD(MBP), UIGRAD(MBP), VIGRAD(MBP)		1765
1766 1767	22 23			MBP), PJGRAD(MBP), UJGRAD(MBP), VJGRAD(MBP)		1766
1768	23			P),PMAX(MBP),UMAX(MBP),VMAX(MBP) P),PMIN(MBP).UMIN(MBP),VMIN(MBP)		1767 1768
1769	25		REAL RLEFTT(	MBP), ULEFTT(MBP), VLEFTT(MBP), PLEFTT(MBP)		1769
1770	26			MBP), URIGHT(MBP), VRIGHT(MBP), PRIGHT(MBP)		1770
1771 1772	27 28		REAL RUR(3),	UOR(3),VOR(3),POR(3) UOL(3),VOL(3),POL(3)		1771 1772
1773	29		REAL AA(3.3)	BB(3,4),B(3),INDX(3),ATEMP(3,3,3),BTEMP(3,4,3)		1773
1774	30		REAL AAO(3,3			1774
1775	31	ç				1775
1776 1777	32 33	(==== (		⋓ۑૡ૾ઙ૾ઙ૾ઙૡ૾ઙૢઙૻ૱ૡ૾ૢૢૢૢૢૢૢૢૢૢૢૢૡૻૻ૱ૡૻૻૢૻૢૢૢૢૢૢૢૢૡૻઌૻ૽ૻ૽ૻૢૻૻૢ૽ૢૢૢૢૢૢૢૢૢૢૢૡૻૻૻૻૻૡૻૡૻૡૻૡૻૡૻૡૻૡ		1776 1777
1778	34	č	BEGIN LOOP C	VER ALL CELLS IN THE DOMAIN		1778
1779	35	С				1779
1780 1781	36 37		D0 120 IH = D0 120 IS =			1780 1781
1782	38		RGRAD( IS .			1782
1783	39		UGRAD( IS .	IH  = 0.		1783
1784	40		VGRAD( IS ,	IH = 0.		1784
1785 1786	41 42	120	PGRAD( IS . CONTINUE	IN ) = U.		1785 1786
1787	43	ĉ	CONTINUE			1787
1788	44		NE1 = 1			1788
1789 1790	45 46		NE2 = NOFVEE DO 90 INE =			1789 1790
1791	47	С	00 30 THE -			1791
1792	48		FETCH HYDRO	QUANTITIES		1792
1793 1794	49 50	C	DO 105 IE =	NE3 NE2		1793 1794
1795	51		KE * IE -	•		1795
1796	52	С				1796
1797	53		IV1 = JE(1)			1797
1798 1799	54 55		IV2 = JE(2 RRMDL = (1)	, 1E ) YDVVV( IV1 , 1 ) + HYDVVV( IV2 , 1 ) ) * .5		1798 1799
1800	56		UUMDL = ( H	YDVVV(IV1,2) + HYDVVV(IV2,2)) * .5 / RRMOL		1800
1801	57		VVMDL = ( F	YDVVV( IV1 , 3 ) + HYDVVV( IV2 , 3 ) ) * .5 / RRMDL		1801
1802	58 50		PPMDL = (H)	(YDVVV(IV1, 4) + HYDVVV(IV2, 4)) * .5		1802 1803
1803 1804	59 60		GGMDL = (H PPMDL = (PPMDL =	YDVVV( IV1 , 5 ) + HYDVVV( IV2 , 5 ) ) * .5 PMDL5 * RRMDL *		1804
1805	61	_	(i	UMDL * UUMDL + VVMDL * VVMDL ) ) * ( GGMDL - 1. )		1805
1806	62 63	С		) _ DDMDI		1806 1807
1807 1808	63 64		REMIDL( KE			1808
1809	65		VVMIDL( KE	) = VVMDL		1809
1810	66 67	c	PPMIDL( KE	) * PPMDL		1810
1811 1812	67 68	C 105	CONTINUE			1811 1812
1813	6 <b>9</b>	C				1813
1814	70		00 110 IE -			1814
1815 1816	71 72	С	KE = 1E -	NLI + I		1815 1816
1817	73	v	XEXN = XE( I	. IE ) * XN( IE )		1817
1818	74			. IE ) * YN( IE )		1818
				26 DE		

Thu Jul	1 14:	15:55	1993 gradhd.f	SUBROUTINE GRADNO	page	26
1819 1820	75 76	C	RIGRAD( KE ) = RRMIDL( KE )	* XFXN		1819 1820
1821	77		UIGRAD( KE ) = UUMIDL( KE )	* XEXN		1821
1822 1823	78 79		VIGRAD( KE ) = VVMIDL( KE ) PIGRAD( KE ) = PPMIDL( KE )	) * XEXN ) * XEXN		1822 1823
1824 1825	80	C				1824
1826	81 82		RJGRAD(KE) = RRMIDL(KE) UJGRAD(KE) = UUMIDL(KE)			1825 1826
1827 1828	83 84		VJGRAD( KE ) = VVMIDL( KE ) PJGRAD( KE ) = PPMIDL( KE )	* XEYN		1827 1828
1829	85	C				1829
1830 1831	86 87	110 C	CONTINUE			1830 1831
1832 1833	88 89		DO 130 IE = NE1 , NE2 KE = IE - NE1 + 1			1832
1834	90	C				1833 1834
1835 1836	91 92		ISL = JE( 3 , IE ) ISR = JE( 4 , IE )			1835 1836
1837	93	<u> </u>	IJE5 = JE(5, IE)			1837
1838 1839	94 95	C	IF( IJE5 . EQ . 0 ) THEN			1838 1839
1840 1841	96 97	С	RGRAD(ISL, 1) = RGRAD(I	SI 1) + RIGRAD( KE )		1840 1841
1842	98		RGRAD(ISR, 1) = RGRAD(I	SR , 1 ) - RIGRAD( KE )		1842
1843 1844	99 100		RGRAD(ISL, 2) = RGRAD(I RGRAD(ISR, 2) = RGRAD(I	SL, 2) + RJGRAD( KE ) SR, 2) - RJGRAD( KE )		1843 1844
1845 1846	101		UGRAD(ISL, 1) = UGRAD(I	SL, 1) + UIGRAD(KE)		1845
1847	102 103		UGRAD( ISL , 2 ) = UGRAD( I	SR , 1 ) – UIGRAD( KE ) SL , 2 ) + UJGRAD( KE )		1846 1847
1848 1849	104 105		UGRAD(ISR, 2) = UGRAD(I VGRAD(ISL, 1) = VGRAD(I	SR , 2 ) – UJGRAD( KE ) SL , 1 ) + VIGRAD( KE )		1848 1849
1850	106		VGRAD( ISR , 1 ) = VGRAD( I	SR , 1 ) - VIGRAD( KE )		1850
1851 1852	107 108		VGRAD(ISL, 2) = VGRAD(I VGRAD(ISR, 2) = VGRAD(I	SL , 2 ) + VJGRAD( KE ) SR , 2 ) - VJGRAD( KE )		1851 1852
1853 1854	109		PGRAD(ISL, 1) = PGRAD(I	SL, 1) + PIGRAD(KE)		1853
1855	110 111		PGRAD(ISL, 2) = PGRAD(I	SR , 1 ) – PIGRAD( KE ) SL , 2 ) + PJGRAD( KE )		1854 1855
1856 1857	112 113	С	PGRAD(ISR, 2) = PGRAD(I	SR , 2 ) – PJGRAD( KE )		1856 1857
1858	114		ELSE			1858
1859 1860	115 116	C	RGRAD(ISL, 1) = RGRAD(I	SL . 1 ) + RIGRAD( KE )		1859 1860
1861 1862	117 118		RGRAD( ISL , 2 ) = RGRAD( I	SL , 2 ) + RJGRAD( KE ) SL , 1 ) + UIGRAD( KE )		1861
1863	119		UGRAD(ISL, 2) = UGRAD(I	SL , 2 ) + UJGRAD( KE )		1862 1863
1864 1865	120 121		VGRAD(ISL, 1) = VGRAD(I VGRAD(ISL, 2) = VGRAD(I	SL , 1 ) + VIGRAD( KE ) SL , 2 ) + VJGRAD( KE )		1864 1865
1866 1867	122		PGRAD(ISL, 1) = PGRAD(1)	SL, 1) + PIGRAD( KE )		1866
1868	123 124	С	PGRAD(ISL, 2) = PGRAD(I	SL, 2) + PJGRAD( KE )		1867 1868
1869 1870	125 126	С	END IF			1869 1870
1871 1872	127	130				1871
1873	128 129		NE1 = NE2 + 1 NE2 = NE2 + NOFVEE( INE + 1	)		1872 1873
1874 1875	130 131	90 C	CONTINUE			1874 1875
1876	132	•	DO 140 $IH = 1$ , 2			1876
1877 1878	133 134		DO 140 IS = 1 , NS RGRAD( IS , IH ) = RGRAD( I	S , IH ) * SAREA( IS )		1877 1878
1879 1880	135		UGRAD( IS , IH ) = UGRAD( I	S , IH ) * SAREA( IS )		1879
1881	136 137		VGRAD(IS, IH) = VGRAD(I PGRAD(IS, IH) = PGRAD(I			1880 1881
1882 1883	138 139	140 C	CONTINUE			1882 1883
1884	140	C = = = =	^녹 쎀락莱리는구날픽프슈퍼노북프슈트는드날이가보험제트드로	######################################		1884
1885 1886	141 142	С С	CALL THE MONOTONICITY LIMIT	ER		1885 1886
1887 1888	143 144	C	CALL MONOTN			1887 1888
1889	145	C				1889
1890 1891	146 147	C===• C	ኊ⋌⋣⋣ <b>⋋⋨</b> ⋕⋣⋿⋐⋧⋧⋪⋝⋿⋷⋈⋨∊⋷∊⋍∊∊∊∊∊	**************		1890 1891
1892	148	Ċ				1892

Thu Jul	1 14:15:5	5 1993	gradhd.f		SUBROUTINE	GRADNO		page	27
1893	149 C	EXIT PO	INT FROM SUBROUTI	NE			***		1893
1894	150 C								1894
1895	151 C								1895
1896 1897	152 153 C	RETURN							1896 1897
1898	155 C								1898
1899	155 C								1899
1900	156	END							1900
Ծիս փմ	1 14-15-5	5 1003	gradhd.f		SURDAUTINE	CRADNS			
			-		SUDNUUTINE	GROUND			
1901 1902	1 2 C	SUBROUT	INE GRADNS						1901 1902
1902	3 C-		****						1902
1904							÷		04
1905	5 C	GRADNS	COMPUTE THE GRAD	IENT FOR S	ECOND ORDER	CALCULATION	I		1905
1906	6 C		COMPUTE THE GRAD USING THE INFORM	ATION ASSO	CIATE WITH	THE BARICENTER			1906
1907 1908	7 C 8 C		FORE COMPLETING T	GLES FRUM HE VALUE E	UB THE EDGE	AND APPLYING	1		1907 1908
1909	9 Č		USING THE INFORM OF THE TWO TRIAN EDGE COMPUTING THE THE GRADIENT THE	OREM TO CO	MPUTE THE G	RADIENT	Î		1909
1910									1910
1911	12 0						-1		1911
1912 1913	12 C 13	include	'msh00_b1						1912 1913
1913	13	include	'chyd00.h'						1914
1915	15	include	<pre>'cmsh00.h' 'chyd00.h' 'cint00.h' 'cint00.h' 'cphs10.h' 'cphs20.h'</pre>						1915
1916	16	include	cphs10.h'						1916
1917 1918	17 18 C	Include	e chiiszo.u.						1917 1918
1919	19 C-	**********	e 'cphs10.h' e 'cphs20.h'		*******		******		1919
1920	20 C								1920
1921	21	REAL RR	MIDL(MBP),PPMIDL( GRAD(MBP),PIGRAD(	MBP),UUMID	L(MBP), VVMI	DL(MBP)			1921 1922
1922 1923	22 23	REAL RI	GRAD(MBP), PIGRAD(I	MBP) ULGRA	D(MBP),VIGR	AD(MBP)			1922
1924	24	REAL RM	AX(MBP), PMAX(MBP)	,UMAX(MBP)	.VMAX(MBP)				1924
1925	25	REAL RM	IIN(MBP), PMIN(MBP)	.UMIN(MBP)	VMIN(MBP)				1925
1926 1927	26	REAL RL	EFTT(MBP), ULEFTT(	MBP), VLEFT	T(MBP),PLEF	TT (MBP)			1926 1927
1927	27 28	REAL RO	IGHT(MBP),URIGHT( R(3),UOR(3),VOR(3	nor),vklun ).POR(3)	(MDP), PRIG	ni(nor)			1927
1929	29	DEAL DO	1 (3) HOL (3) VOL (3)	<u>)</u> DOI (3)					1929
1930	30	REAL AA	(3,3),BB(3,4),B(3) (3,3),BB(3,4),B(3)	), INDX(3),	ATEMP(3,3,3	),8TEMP(3,4,3)			1930
1931 1932	31 32 C								1931 1932
1933	33 C=		**************************************	*******			****		1933
1934	34 C								1934
1935 1936	35 C 36 C	BEGIN L	OOP OVER ALL CELLS	S IN THE D	OMAIN		*****		1935 1936
1937	37	00 120	IH = 1 , 2						1930
1938	38	DO 120	1S = 1 , NS						1938
1939	39		IS, IH) = 0.						1939
1940 1941	40		IS, IH) = 0. IS, IH) = 0.						1940 1941
1941 1942	41 42		15, 18 = 0. 15, 18 = 0.						1941
1943	43 12								1943
1944	44 C								1944
1945 1946	45 46	$\frac{NE1 = 1}{NE2 = N}$	OFVEE(1)						1945 1946
1940	40		NE = 1 , NVEEE						1940
1948	<b>48</b> C								1948
1949	49 C	FETCH H	YDRO QUANTITIES -		*********				1949
1950 1951	50 C 51	00 106	IE = NE1 , NE2						1950 1951
1951	52		IE = NE1 + I						1951
1953	53 C								1953
1954	54		JE( 3 , IE )						1954
1955 1956	55 56		JE(4, IE) JE(5, IE)						1955 1956
1950	50 57 C	1969 #	υ <b>ι</b> τ, τι <i>μ</i>						1950
1958	58	IF( IJ	165 . EQ . O ) THE	N					1958
1959	59	-	VVN1017 15 1 -	( 11/01/ 10	<b>n</b> • \				1959
1960 1961	60 61	RRMUL	= XYMIDL( IE ) *			HYDV( ISL , 1	)		1960 1961
1961	62	UUMDL	= XYMIDL( IE ) *	(HYDV(IS	R, 2) -	1104( 13C - 1	. 1		1962
1963	63	•	• • •			HYDV( ISL , 2	:)		1963
				nado	27				
				page	L1				

1

(

(

ſ

1965         64         VWOL - XWHOL ( E ) * ( MYOV ( ISR , 3 ) - MYOV ( ISL , 3 ) ) MYOV ( ISL , 3 ) ) MYOV ( ISL , 4 ) ]         1965           1966         66         PPROL - XWHOL ( E ) * ( MYOV ( ISR , 4 ) - MYOV ( ISL , 4 ) ]         1967           1967         67         7         1968         1966           1967         67         7         1967         1967           1970         70         RMPOL - MYOV ( ISL , 4 ) ]         1967           1971         71         RMPOL - MYOV ( ISL , 2 ) [         1977           1977         7         WHOL ( K ) - MYOV ( ISL , 4 ) [         1973           1977         7         RMPOL - MYOV ( ISL , 4 ) [         1974           1977         7         RMPOL - MYOV ( ISL , 4 ) [         1974           1977         7         RMPOL ( K ) - MPOL [         1977           1978         7         WHOL ( K ) - MPOL [         1977           1977         7         RMPOL ( K ) - MPOL [         1977           1978         7         WHOL ( K ) - MPOL [         1977           1978         7         WHOL ( K ) - MPOL [         1977           1978         7         WHOL ( K ) - MPOL [         1970           1980         10         10 <t< th=""><th>Thu Jul</th><th>1 14:</th><th>15:55</th><th>1993 gradhd.f</th><th>SUBROUTINE GRADNS</th><th>page</th><th>28</th></t<>	Thu Jul	1 14:	15:55	1993 gradhd.f	SUBROUTINE GRADNS	page	28
Image         Openation         PPMOL + XMHIDL(IE) * (MOV(ISL, 4)) - HYOV(ISL, 4)         Image				VVMDL = XYMIDL( IE ) * ( H	YDV(ISR, 3) -		1964
1960       64       C       HYDV(15L, 4)) + HYDV(15L, 4)       1967         1960       64       C       1968       64       C       1968         1970       C       RAML - HYDV(15L, 1)       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971       1971				. н	(YDV(ISL, 3)) + HYDV(ISL, 3)		1965
1988         68         C         1966         1967         1967         1968         1969         1969         1969         1969         1969         1969         1969         1969         1969         1970         1970         1970         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         1971         197					(15R, 4) = (15R, 4) + HYDV(15L, 4)		
1970         70         C         1971         71         1971           1972         72         UUDD. HTOU (ISL, 2)         1972           1973         73         VVGOL         1974           1973         73         VVGOL         1974           1974         74         PPMDL - HTOU (ISL, 3)         1973           1974         75         C         1975           1977         75         C         1976           1977         75         C         1976           1977         75         C         1976           1978         75         C         1976           1978         75         C         1976           1979         79         UUHDL(KE) - RMPDL         1980           1980         84         C         1982           1987         7         C         1982           1988         84         XEXN - XE(1, 1E) * XN(1E)         1983           1988         84         XEXN - XE(1, 1E) * XN(1E)         1983           1989         95         C         1984           1991         91         C         1984           1993         Y (IGAAU (KE)		68	C				1968
			С	ELSE			
1973       73       VVMOL - HYDV(ISL, 3)       1974         1974       24       PPHDL - HYDV(ISL, 4)       1974         1975       75       C       1976         1977       7       C       1976         1977       7       C       1977         1978       75       C       1977         1978       75       C       1977         1978       75       UMMIDL (KL) - UMDUL       1978         1978       75       UMMIDL (KL) - UMDUL       1978         1981       BI       PPHOL       1980         1982       82       C       1981         1983       83       105       CONTINUE       1983         1986       80       KE - IE - MEL + I       1986         1986       80       KE - KE - MEL + IE ) * XM(IE )       1986         1987       91       C       1987       1988         1988       80       KEXN - XE(I ) E ) * AM(IE ) * XKN IE )       1987         1989       90       C       RERAD (KE ) * PHIDL (KE ) * XKN IE )       1988         1989       91       C       RERAD (KE ) * PHIDL (KE ) * XKN IE )       1989         1994	1971	71	-				
1974       74       PPPOL - HYDV( ISL , 4 )       1975         1975       75       C       1975         1976       75       C       1975         1977       75       C       1977         1978       75       C       1977         1978       75       UMEDIC (K ) - PMOL       1979         1970       1980       60       VMIDL (K ) - VMOL       1979         1980       84       C       C       1981         1984       84       C       010 IL C = NEI , NC2       1982         1986       86       C       101 IL E - NEI , NC2       1986         1986       86       C       110 IE - NEI , NC2       1986         1987       87       C       SKK + SKC ( 1, IE ) * XM ( IE )       1987         1988       88       XEXN + XE ( 1, IE ) * XM ( IE )       1988       1989         1989       90       C       116800 (K ) - PMIDL ( K ) * XEXN       1981         1989       90       C       RIGAD ( K ) - PMIDL ( K ) * XEXN       1981         1989       90       VIGAD ( K ) - PMIDL ( K ) * XEXN       1983         1989       90       JAGAD ( K ) - PMIDL ( K ) * XEXN       19							
1976       76       END IF       1977         1977       77       RRHDL(KE) - RRHDL       1977         1978       73       UWHOL(KE) - UWHOL       1978         1978       73       UWHOL(KE) - UWHOL       1990         1980       80       UWHOL(KE) - WHOL       1980         1981       81       C       1981       1981         1983       85       CONTINUE       1981         1984       85       CONTINUE       1986         1985       85       CONTINUE       1986         1986       86       KEN - KE(1, IE) * XM(IE)       1986         1987       97       UGRAD(KE) - RRHDL(KE) * XEXH       1991         1988       88       XEYN - XE(1, IE) * XM(IE)       1988         1990       90       C       RIGRAD(KE) - RHDL(KE) * XEXH       1991         1991       91       RIGRAD(KE) - RHDL(KE) * XEXH       1993         1993       91       VIGRAD(KE) - RHDL(KE) * XEXH       1993         1994       92       UGRAD(KE) - RHDL(KE) * XEXH       1993         1995       96       RIGRAD(KE) - RHDL(KE) * XEXH       1993         1996       97       UJGRAD(KE) - RHDL(KE) * XEXH	1974	74					
			C	END TE			
	1977	77	C				
1980       80 $V'MIDL(KE) = VWDL$ 1580         1981       81 $PPHIDL(KE) = PPMOL$ 1981         1982       82       C       1982         1983       83       105       CONTINUE       1983         1984       94       0       1984       1983         1985       85       C       1984       1985         1986       85       KE - IE - NEL + I       1986         1987       87       C       1987       1987         1988       83       XEXH - XE(1, IE) * YM(IE)       1988         1989       95       C       C       1990         1989       95       C       REAM / KE) - ROMIDL(KE) * XEXH       1991         1992       92       UIGRAD(KE) - POHIDL(KE) * XEXH       1992         1993       93       VIGRAD(KE) - POHIDL(KE) * XEXH       1993         1994       94       VIGRAD(KE) - POHIDL(KE) * XEXH       1993         1995       95       C       XIGAD(KE) - POHIDL(KE) * XEYH       1995         1996       94       VIGRAD(KE) - POHIDL(KE) * XEYH       1995         1997       VIGRAD(KE) - POHIDL(KE) * XEYH       1995         1998 <t< td=""><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td></t<>				· · · · · · · · · · · · · · · · · · ·			
1981       81       PPHIDL (KE) = PPHOL       1991         1982       62       C       1992         1983       83       105       CONTINUE       1993         1984       84       C       1993         1984       84       C       1993         1986       85       DO 110 [E + NE1 + NE2       1996         1986       86       XEXN - XE(1 , IE ) * XN( IE )       1998         1986       88       XEXN - XE(1 , IE ) * XN( IE )       1998         1986       90       C       1990       1990         1991       91       C READI KE ) = RMIDL (KE ) * XEXN       1991         1993       92       UIGADO KE ) = WHIDL (KE ) * XEXN       1992         1993       95       C       RGRAD (KE ) = WHIDL (KE ) * XEXN       1993         1994       95       C       RGRAD (KE ) = WHIDL (KE ) * XEYN       1994         1995       97       UAGRAD (KE ) = PHIDL (KE ) * XEYN       1997         1996       96       RAGRAD (KE ) = PHIDL (KE ) * XEYN       1999         20001       100       C       2001         20021       101       C       2001         200201       100       IF = NE1							
1938       83       105       CONTINUE       1994         1994       84       C       00       100       IE - NEI + NE2       1996         1995       85       C       KE'N - KE(1 , IE ) * XN(IE )       1996         1998       88       XE'N - KE(1 , IE ) * YN(IE )       1997         1998       89       XE'N - KE(1 , IE ) * YN(IE )       1998         1999       90       C       1990       1990         1991       RIGRAD(KE ) - RAMIDU(KE ) * XEXN       1991         1992       YIGRAD(KE ) - WIDIC(KE ) * XEXN       1992         1993       93       YIGRAD(KE ) - WIDIC(KE ) * XEXN       1993         1994       94       PIGRAD(KE ) - WIDIC(KE ) * XEXN       1994         1995       95       C       IGGRAD(KE ) - WIDIC(KE ) * XEYN       1995         1995       95       C       IGGRAD(KE ) - WIDIC(KE ) * XEYN       1996         1995       95       C       IGGRAD(KE ) - WIDIC(KE ) * XEYN       1997         1996       94       PIGRAD(KE ) - WIDIC(KE ) * XEYN       1998         1996       95       C       IGGRAD(KE ) - WIDIC(KE ) * XEYN       1998         1996       90       DJGRAD(KE ) - WIDIC(KE ) * XEYN       1998<			r	PPMIDL( KE ) = PPMDL			1981
1984         84         C         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1985         1986         86         KC = IE - MEI + I         1997         1988         88         XEXN - XE(I, I, EE) * XM(IE)         1998         1989         1989         1989         1989         1989         1989         1989         1989         1989         1989         1989         1991         1982         116RAD(KE) - WHIDL(KE) * XEXN         1993         1993         1974         1993         914         PIGRAD(KE) - WHIDL(KE) * XEXN         1993         1993         1994         94         PIGRAD(KE) - PHIDL(KE) * XEXN         1993         1994         94         PIGRAD(KE) - WHIDL(KE) * XEXN         1995         1995         1995         1995         1997         UJGRAD(KE) - WHIDL(KE) * XEXN         1995         1997         1997         1997         1997         1997         1997         1997         1997         1997         1998         96         VJGRAD(KE) - WHIDL(KE) * XEXN         1998         1999         1990         1997         1998         1997         199				CONTINUE			
1986       86 $KE - IE - NEI + I$ 1987         1987       83       C       XEW + XE(1, IE) * XW(IE)       1989         1989       88       XEW + XE(1, IE) * XW(IE)       1989         1990       90       C       ISGRAD(KE) - RENTDL(KE) * XKXN       1999         1991       91       C       ISGRAD(KE) - RENTDL(KE) * XEXN       1991         1992       92       UIGRAD(KE) - UWHDL(KE) * XEXN       1993         1994       94       PIERAD(KE) - PPHIDL(KE) * XEXN       1993         1995       95       C       RIGRAD(KE) - UWHDL(KE) * XEXN       1995         1995       95       C       RIGRAD(KE) - UWHDL(KE) * XEXN       1995         1996       96       VIGRAD(KE) - UWHDL(KE) * XEYN       1995         1997       VIGRAD(KE) - UWHDL(KE) * XEYN       1996         2001       100       C       2000         2001       100       C       2000         2001       101       ID       CONTINUE       2000         2003       102       C       2001       2000         2004       104       KE - IE - NEI + I       2000         2005       105       C       2000       2000			С				1984
1987       67       C       1987       100       1988       100       1988       100       1988       100       1988       100       1988       100       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1991       1992       1992       1992       1992       1992       1992       1992       1993       1997       1996       1997       1996       R. GRAD( KE ) - WHIDL( KE ) * XEYN       1999       1999       1990       1997       1996       N. GRAD( KE ) - WHIDL( KE ) * XEYN       1999       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990       1990<							
1989       89       XEYN - XE(1, 1, 1E) + YN(1E)       1090         1990       C       RIGRAD(KE) = RPHIDL(KE) + XEXN       1991         1992       91       UIGRAD(KE) = RPHIDL(KE) + XEXN       1991         1993       93       VIGRAD(KE) = UUHIDL(KE) + XEXN       1993         1994       94       PIGRAD(KE) = PPHIDL(KE) + XEXN       1993         1995       95       C       1996         1996       95       NJGRAD(KE) = UHIDL(KE) + XEYN       1996         1997       UJGRAD(KE) = UHIDL(KE) + XEYN       1997         1998       96       VJGRAD(KE) = UHIDL(KE) + XEYN       1998         1999       P) GDRAD(KE) = UHIDL(KE) + XEYN       1998         2001       100       C       2001         2002       102       C       2001         2003       103       E - NE1 + NE2       2003         2004       104       KE - I E - NE1 + 1       2004         2005       C       2006       2007       107       ISR - JE(4), IE )       2007         2008       108       LJES - JE(5, IE )       2006       2001       2011       10         2011       10       IF ( LJES . EQ . 0 ) THEN       2014       2012		87	C				1987
1992       92       UIGRAD( KE) - UMIDL( KE) * XEXN       1993         1994       94       PIGRAD( KE) - PMIDL( KE) * XEXN       1993         1994       94       PIGRAD( KE) - PMIDL( KE) * XEXN       1993         1995       0       1996       1996       1997       1997         1998       96       VIGRAD( KE) - RMIDL( KE) * XEYN       1996         1999       97       UIGRAD( KE) - UMIDL( KE) * XEYN       1997         1998       96       VIGRAD( KE) - UMIDL( KE) * XEYN       1998         1999       99       PJGRAD( KE) - UMIDL( KE) * XEYN       1998         2000       100       C       2001       2001       111       10         2001       011       110       CONTINUE       2002       2003         2004       104       KE - IE - NE1 + NE2       2004       2005         2005       105       C       2006       2006       2007       2007       2008       1315 - JE( 5 , IE )       2008         2008       108       1.JE5 - JE( 5 , IE )       2001       2011       2012       2012       2012       2014       RGRAD( ISL , 1 ) - RGRAD( ISL , 2 ) + RIGRAD( KE )       2013         2011       111       C <t< td=""><td>1990</td><td>90</td><td>С</td><td></td><td>•</td><td></td><td></td></t<>	1990	90	С		•		
1993       93       VIGRAD( KE ) = VMIDI(KE ) * XEXN       1994         1995       95       C       1994         1996       95       C       1995         1996       96       RJGRAD( KE ) = PPHIDL(KE ) * XEXN       1995         1997       UJGRAD( KE ) = RMIDL(KE ) * XEYN       1997         1998       98       VJGRAD( KE ) = VMIDL(KE ) * XEYN       1997         1999       99       PJGRAD( KE ) = VMIDL(KE ) * XEYN       1998         2001       100       C       2000         2001       101       CONTINUE       2001         2002       102       C       2003         2003       103       LE - NE1 + NE2       2005         2004       104       KE - IE - NE1 + I       2006         2005       106       ISL = JE( 5 , IE )       2007         2006       106       ISL = JE( 5 , IE )       2006         2010       10       IF( IJES - EQ , 0 ) THEN       2010         2011       11       C       RGRAD( ISL , 1 ) = RGRAD( ISL , 1 ) + RIGRAD( KE )       2014         2015       115       RGRAD( ISL , 1 ) = CORAD( ISL , 2 ) = RIGRAD( KE )       2014         2014       114       RGRAD( ISL , 1 ) = KGRAD							
1994       94       PIGRAD( KE ) = PPHIDL( KE ) * KEXN       1995         1995       95       C       1995         1996       96       RJGRAD( KE ) = RENIDL( KE ) * KEYN       1997         1998       98       VJGRAD( KE ) = UWHIDL( KE ) * KEYN       1998         1999       99       PJGRAD( KE ) = VPHIDL( KE ) * KEYN       1998         1999       99       PJGRAD( KE ) = VPHIDL( KE ) * KEYN       1998         2000       100       C       2001         2001       101       110       CONTINUE       2001         2002       C       2002       2003       2004       104       KE = IE - NE1 + NE2       2004         2004       104       KE = IE - NE1 + NE2       2005       2006       2006       2007       151 + JE ( JE ( JE ( JE ( JE ( JE ( JE ( JE	1993	93		VIGRAD( KE ) = VVMIDL( KE )	* XEXN		
1996       96       RJGRAD(KE) - RMHIDL(KE) * KEYN       1997         1997       97       UJGRAD(KE) - UWHIDL(KE) * KEYN       1998         1998       99       PJGRAD(KE) - UWHIDL(KE) * KEYN       1998         1999       99       PJGRAD(KE) - UWHIDL(KE) * KEYN       1998         2000       100       C       2000         2001       101       110       CONTINUE       2000         2002       C       2000       2001       2001       2001         2003       103       D0 130 IE = NE1 , NE2       2003       2004         2004       104       KE = IE - NE1 + NE2       2003       2006         2005       105       C       2006       2006       2007       2008         2006       106       ISL = JE(3, IE)       2007       2008       2009       2007         2011       110       IF( LES - EQ , 0 ) THEN       2010       2010       2010       100       2011       2010         2011       110       IF( LES - EQ , 0 ) THEN       2011       2011       2011       2011         2012       112       RGAD(ISL , 1 ) - KGRAD(ISL , 1 ) - KGRAD(ISL , 1 ) - KIGRAD(KE )       2013       2013         2014 <td></td> <td></td> <td>c</td> <td>PIGRAD( KE ) = PPMIDL( KE )</td> <td>* XEXN</td> <td></td> <td>1994</td>			c	PIGRAD( KE ) = PPMIDL( KE )	* XEXN		1994
			L	RJGRAD( KE ) = RRMIDL( KE )	* XEYN		
1999       99       PJGRAD( KE ) = PPHIDL( KE ) * XEYN       1999         2000       100       C       2000         2001       101       110       CONTINUE       2000         2003       102       C       2002         2004       104       KE = NE1 + NE2       2003         2005       105       C       2006         2006       106       ISL = JE( 3 , IE )       2006         2007       107       ISR = JE( 4 , IE )       2007         2008       108       IJE5 = JE ( 5 , IE )       2008         2010       110       IF( IJE5 , EQ , 0 ) THEN       2010         2011       111       C       2011       2012         2013       113       RGRAD( ISR , 1 ) = RGRAD( ISL , 1 ) + RIGRAD( KE )       2013         2014       114       RGRAD( ISR , 2 ) = RGRAD( ISL , 2 ) + RJGRAD( KE )       2014         2015       115       RGRAD( ISR , 1 ) = UGRAD( ISL , 1 ) + UIGRAD( KE )       2015         2016       116       UGRAD( ISR , 1 ) = UGRAD( ISL , 1 ) + UIGRAD( KE )       2016         2017       117       UGRAD( ISR , 1 ) = UGRAD( ISL , 1 ) + UIGRAD( KE )       2017         2018       118       UGRAD( ISR , 1 ) = UGRAD( ISL , 1 ) + UIGRAD				UJGRAD(KE) = UUMIDL(KE)	* XEYN		1997
2000         100         C         2001         2001         2001           2001         101         110         CONTINUE         2001         2002           2001         103         D0 130 IE = NE1 , NE2         2003         2004           2005         105         C         2004         2005           2006         106         ISL = JE( 3 , IE )         2006           2007         107         ISR = JE( 4 , IE )         2007           2008         108         IJE5 = JE( 5 , IE )         2008           2009         09         C         2010         2010           2011         110         IF( IJE5 - EQ , 0 ) THEN         2010           2011         110         IF( IJE5 - EQ , 0 ) THEN         2010           2011         110         IF( IJE5 - EQ , 1 ) THEN         2010           2011         110         IF( IJE5 - EQ , 2 ) THEN         2010           2011         110         IF( IJE5 - EQ , 1 ) THEN         2010           2012         113         RGRAD( ISL , 1 ) - HGRAD( ISL , 1 ) + HIGRAD( KE )         2011           2014         113         RGRAD( ISR , 2 ) - RGRAD( ISR , 1 ) + HIGRAD( KE )         2014           2015         2016				PJGRAD(KE) = VMIDL(KE)	* XEAN		
2002         102         C         2002           2003         103         DO 130 IE = NE1 + NE2         2003           2004         104         KE = IE - NE1 + 1         2004           2005         105         C         2005           2006         106         ISL = JE(3, IE)         2006           2007         107         ISR = JE(5, IE)         2007           2008         108         IJ25 = JE(5, IE)         2009           2010         110         IF(IJ25, EQ, 0) THEN         2010           2011         11         C         2012           2013         113         RGRAD(ISL, 2) = RGRAD(ISL, 1) - RIGRAD(KE)         2014           2014         114         RGRAD(ISR, 2) = RGRAD(ISL, 2) - RJGRAD(KE)         2015           2016         116         UGRAD(ISR, 2) = RGRAD(ISL, 2) + RJGRAD(KE)         2015           2016         116         UGRAD(ISL, 2) = UGRAD(ISL, 1) + UIGRAD(KE)         2017           2018         118         UGRAD(ISL, 2) = UGRAD(ISR, 2) - UJGRAD(KE)         2018           2019         119         UGRAD(ISR, 2) = UGRAD(ISR, 1) - UIGRAD(KE)         2012           2020         120         VGRAD(ISR, 2) - VGRAD(ISR, 1) - VIGRAD(KE)         2022							2000
				CONTINUE			
2005       105       C       2005         2006       106       ISL = JE(3, IE)       2006         2007       107       ISR = JE(4, IE)       2007         2008       108       IJE5 = JE(5, IE)       2008         2010       110       IF(IJE5.EQ.0) THEN       2010         2011       111       C       2011       2012         2013       113       RGRAD(ISL, 1) = RGRAD(ISL, 1) - RIGRAD(KE)       2012         2014       114       RGRAD(ISR, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2014         2015       115       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2015         2016       116       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2016         2017       117       UGRAD(ISL, 2) = UGRAD(ISL, 1) + UIGRAD(KE)       2017         2018       118       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2018         2019       199       UGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2021         2020       120       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2022         2021       120       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2022         2021       120       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2022         2021<	2003	103					2003
2006         106         ISL = JE(3, IE)         2006           2007         107         ISR = JE(4, IE)         2007           2008         108         IJES = JE(5, IE)         2009           2010         110         IF(IJES - EQ · 0) THEN         2010           2011         110         IF(IJES - EQ · 0) THEN         2011           2012         112         RGRAD(ISL · 1) = RGRAD(ISL · 1) + RIGRAD(KE)         2012           2013         113         RGRAD(ISL · 2) = RGRAD(ISL · 2) + RJGRAD(KE)         2013           2014         114         RGRAD(ISL · 2) = RGRAD(ISL · 2) + RJGRAD(KE)         2015           2015         115         RGRAD(ISR · 1) - UGRAD(ISL · 2) + RJGRAD(KE)         2016           2017         117         UGRAD(ISR · 1) - UGRAD(ISR · 1) + UIGRAD(KE)         2017           2018         118         UGRAD(ISL · 1) + UGRAD(ISR · 1) + UIGRAD(KE)         2019           2020         120         VGRAD(ISL · 1) + VGRAD(ISL · 1) + VIGRAD(KE)         2020           2021         120         VGRAD(ISL · 1) + VGRAD(ISL · 1) + VIGRAD(KE)         2021           2020         120         VGRAD(ISL · 1) + VGRAD(ISL · 1) + VIGRAD(KE)         2022           2021         120         VGRAD(ISL · 1) + VGRAD(ISL · 1) + VIGRAD(KE)         2022			c	KE = IE - NEI + I			
2008       108       IJE5 = JE(5, IE)       2008         2009       109       C       2009         2011       110       IF(IJE5, EQ, O) THEN       2010         2011       111       C       2011       2011         2012       112       RGRAD(ISL, I) = RGRAD(ISL, I) + RIGRAD(KE)       2011         2013       113       RGRAD(ISR, I) = RGRAD(ISR, I) - RIGRAD(KE)       2013         2014       114       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2014         2015       115       RGRAD(ISL, 2) = RGRAD(ISR, 2) - RJGRAD(KE)       2015         2016       116       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2016         2017       117       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2017         2018       118       UGRAD(ISL, 2) = UGRAD(ISL, 2) - UJGRAD(KE)       2019         2020       120       VGRAD(ISL, 2) = UGRAD(ISL, 1) + VIGRAD(KE)       2019         2020       120       VGRAD(ISL, 2) = UGRAD(ISL, 1) + VIGRAD(KE)       2020         2021       121       VGRAD(ISL, 2) = VGRAD(ISL, 2) + UJGRAD(KE)       2021         2022       122       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2022         2021       122       VGRAD(ISL, 1) = PGRAD(ISL, 2) + VJGRAD(KE) <td>2006</td> <td>106</td> <td>-</td> <td>ISL = JE(3, IE)</td> <td></td> <td></td> <td></td>	2006	106	-	ISL = JE(3, IE)			
2009       109       C       2009         2010       110       IF(IJE5.EQ.0) THEN       2010         2011       111       C       2011         2012       112       RGRAD(ISL.1) = RGRAD(ISL.1) + RIGRAD(KE)       2012         2013       113       RGRAD(ISL.2) = RGRAD(ISL.1) + RIGRAD(KE)       2013         2014       114       RGRAD(ISL.2) = RGRAD(ISL.2) + RIGRAD(KE)       2014         2015       115       RGRAD(ISL.2) = RGRAD(ISL.2) + RIGRAD(KE)       2015         2016       116       UGRAD(ISL.1) = UGRAD(ISL.1) + UIGRAD(KE)       2016         2017       117       UGRAD(ISL.1) = UGRAD(ISL.1) + UIGRAD(KE)       2017         2018       118       UGRAD(ISL.1) = UGRAD(ISL.2) + UIGRAD(KE)       2018         2019       119       UGRAD(ISL.1) = VGRAD(ISL.1) + UIGRAD(KE)       2019         2020       120       VGRAD(ISL.1) = VGRAD(ISL.1) + VIGRAD(KE)       2020         2021       121       VGRAD(ISL.1) = VGRAD(ISL.1) + VIGRAD(KE)       2021         2022       122       VGRAD(ISL.2) = VGRAD(ISR.2) + VIGRAD(KE)       2022         2021       122       VGRAD(ISL.2) = VGRAD(ISR.2) + VIGRAD(KE)       2022         2022       122       VGRAD(ISL.2) = VGRAD(ISR.2) + VIGRAD(KE)       2023							
2011       111       C       2011         2012       112       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2012         2013       113       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2013         2014       114       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RIGRAD(KE)       2014         2015       115       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RIGRAD(KE)       2015         2016       106       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2016         2017       117       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2016         2019       119       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UIGRAD(KE)       2019         2020       120       VGRAD(ISL, 1) = VGRAD(ISL, 2) + UIGRAD(KE)       2019         2021       120       VGRAD(ISL, 1) = VGRAD(ISL, 2) + UIGRAD(KE)       2020         2021       120       VGRAD(ISL, 1) = VGRAD(ISL, 2) + VIGRAD(KE)       2021         2022       122       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VIGRAD(KE)       2022         2023       123       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VIGRAD(KE)       2023         2024       124       PGRAD(ISL, 1) = PGRAD(ISL, 2) + VIGRAD(KE)       2025         2026       125       PGRAD(ISL, 1) = PGRAD(ISL, 2) + PIGRAD(KE)       2025         2026	2009	109	С				
2012       112       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2012         2013       113       RGRAD(ISR, 1) = RGRAD(ISR, 1) - RIGRAD(KE)       2013         2014       114       RGRAD(ISL, 2) = RGRAD(ISR, 2) + RJGRAD(KE)       2014         2015       115       RGRAD(ISL, 2) = RGRAD(ISR, 2) + RJGRAD(KE)       2015         2016       116       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2016         2017       117       UGRAD(ISL, 1) = UGRAD(ISL, 2) + UJGRAD(KE)       2018         2019       119       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2019         2020       120       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2019         2021       121       VGRAD(ISR, 1) = VGRAD(ISL, 2) + UJGRAD(KE)       2019         2020       120       VGRAD(ISR, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2020         2021       121       VGRAD(ISR, 1) = VGRAD(ISL, 2) + UJGRAD(KE)       2021         2022       122       VGRAD(ISR, 1) = VGRAD(ISL, 2) + VJGRAD(KE)       2022         2021       122       VGRAD(ISR, 1) = VGRAD(ISL, 2) + VJGRAD(KE)       2022         2022       122       VGRAD(ISL, 2) = VGRAD(ISL, 1) + VIGRAD(KE)       2023         2024       124       PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE)       2025			c	IF( IJE5 . EQ . 0 ) THEN			
2014       114       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2014         2015       115       RGRAD(ISR, 2) = RGRAD(ISL, 2) - RJGRAD(KE)       2015         2016       116       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2016         2017       117       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2017         2018       118       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2018         2019       19       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2019         2020       120       VGRAD(ISL, 1) = VGRAD(ISL, 2) + UJGRAD(KE)       2020         2021       121       VGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2021         2022       122       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2022         2023       123       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2024         2024       124       PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE)       2025         2025       125       PGRAD(ISL, 1) = PGRAD(ISL, 2) + VJGRAD(KE)       2026         2027       127       PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)       2026         2028       22       223       15       2026       2027         2030       130       C       2028       2029       2029 <t< td=""><td>2012</td><td>112</td><td>C</td><td>RGRAD( ISL , 1 ) = RGRAD( IS</td><td>SL , 1 ) + RIGRAD( KE )</td><td></td><td></td></t<>	2012	112	C	RGRAD( ISL , 1 ) = RGRAD( IS	SL , 1 ) + RIGRAD( KE )		
2015       115       RGRAD(ISR, 2) = RGRAD(ISR, 2) - RJGRAD(KE)       2015         2016       116       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2016         2017       117       UGRAD(ISL, 2) = UGRAD(ISR, 1) - UIGRAD(KE)       2017         2018       118       UGRAD(ISL, 2) = UGRAD(ISR, 2) + UJGRAD(KE)       2018         2019       119       UGRAD(ISR, 2) = UGRAD(ISR, 2) - UJGRAD(KE)       2019         2020       120       VGRAD(ISL, 1) = VGRAD(ISR, 2) - UJGRAD(KE)       2020         2021       121       VGRAD(ISL, 2) = VGRAD(ISL, 1) + VIGRAD(KE)       2021         2022       122       VGRAD(ISL, 2) = VGRAD(ISR, 2) + VJGRAD(KE)       2022         2023       123       VGRAD(ISR, 2) = VGRAD(ISR, 2) + VJGRAD(KE)       2023         2024       124       PGRAD(ISR, 1) = PGRAD(ISR, 1) + PIGRAD(KE)       2024         2025       125       PGRAD(ISR, 1) = PGRAD(ISR, 1) + PIGRAD(KE)       2026         2027       127       PGRAD(ISR, 2) = PGRAD(ISR, 2) + PJGRAD(KE)       2027         2028       128       C       2029       202         2031       131       RGRAD(ISL, 2) = RGRAD(ISL, 2) + PJGRAD(KE)       2031         2032       132       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2032         <				RGRAD(ISR, 1) = RGRAD(ISR)	SR , I ) – RIGRAD( KE )		
2016       116       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2016         2017       117       UGRAD(ISR, 1) = UGRAD(ISL, 2) + UIGRAD(KE)       2017         2018       118       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UIGRAD(KE)       2018         2019       119       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UIGRAD(KE)       2019         2020       120       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2020         2021       121       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2021         2022       122       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2022         2023       123       VGRAD(ISL, 1) = PGRAD(ISL, 2) + VJGRAD(KE)       2023         2024       124       PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE)       2024         2025       125       PGRAD(ISL, 1) = PGRAD(ISL, 2) + VJGRAD(KE)       2025         2026       126       PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)       2026         2027       127       PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)       2027         2028       128       C       2029       2029         2030       130       C       2030       2031         2031       131       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2031         2032       <	2015	115		RGRAD(ISR, 2) = RGRAD(ISR)	SR , 2 ) - RJGRAD( KE )		2015
2018       118       UGRAD( ISL, 2) = UGRAD( ISL, 2) + UJGRAD( KE )       2018         2019       119       UGRAD( ISR, 2) = UGRAD( ISR, 2) - UJGRAD( KE )       2019         2020       120       VGRAD( ISL, 1) = VGRAD( ISL, 1) + VIGRAD( KE )       2020         2021       121       VGRAD( ISL, 2) = VGRAD( ISL, 1) + VIGRAD( KE )       2021         2022       122       VGRAD( ISL, 2) = VGRAD( ISL, 2) + VJGRAD( KE )       2022         2023       123       VGRAD( ISL, 2) = VGRAD( ISL, 2) + VJGRAD( KE )       2023         2024       124       PGRAD( ISL, 1) = PGRAD( ISL, 1) + PIGRAD( KE )       2024         2025       125       PGRAD( ISR, 1) = PGRAD( ISL, 2) + VJGRAD( KE )       2025         2026       126       PGRAD( ISR, 1) = PGRAD( ISL, 2) + PJGRAD( KE )       2026         2027       127       PGRAD( ISR, 2) = PGRAD( ISL, 2) + PJGRAD( KE )       2026         2028       128       C       2030       2030         2031       131       RGRAD( ISL, 1) = RGRAD( ISL, 2) + RJGRAD( KE )       2032         2033       133       UGRAD( ISL, 1) = UGRAD( ISL, 2) + RJGRAD( KE )       2033         2034       134       UGRAD( ISL, 2) = UGRAD( ISL, 2) + UJGRAD( KE )       2034         2035       136       VGRAD( ISL, 2) = VGRAD( ISL, 2) + VJGRAD(				UGRAD(ISL, 1) = UGRAD(IS	SL , 1 ) + UIGRAD( KE )		
2019       119       UGRAD(ISR, 2) = UGRAD(ISR, 2) = UJGRAD(KE)       2019         2020       120       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2020         2021       121       VGRAD(ISL, 1) = VGRAD(ISR, 1) - VIGRAD(KE)       2021         2022       122       VGRAD(ISL, 2) = VGRAD(ISR, 1) - VIGRAD(KE)       2022         2023       123       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2023         2024       124       PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE)       2024         2025       125       PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE)       2025         2026       126       PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)       2026         2027       127       PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)       2027         2028       128       C       2029       202         2030       130       C       2031       2031       2032         2031       131       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2032         2033       133       UGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2033         2034       134       UGRAD(ISL, 1) = UGRAD(ISL, 2) + UJGRAD(KE)       2034         2035       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2035 <td>2018</td> <td>118</td> <td></td> <td>UGRAD(1SL, 2) = UGRAD(19)</td> <td>SL, 2) + UJGRAD( KE)</td> <td></td> <td></td>	2018	118		UGRAD(1SL, 2) = UGRAD(19)	SL, 2) + UJGRAD( KE)		
2021       121       VGRAD(ISR.1) = VGRAD(ISR,1) - VIGRAD(KE)       2021         2022       122       VGRAD(ISL,2) = VGRAD(ISL,2) + VJGRAD(KE)       2022         2023       123       VGRAD(ISR,2) = VGRAD(ISL,2) + VJGRAD(KE)       2023         2024       124       PGRAD(ISL,1) = PGRAD(ISL,1) + PIGRAD(KE)       2024         2025       125       PGRAD(ISR,1) = PGRAD(ISL,1) + PIGRAD(KE)       2025         2026       126       PGRAD(ISL,2) = PGRAD(ISL,2) + PJGRAD(KE)       2026         2027       127       PGRAD(ISR,2) = PGRAD(ISR,2) - PJGRAD(KE)       2027         2028       128       C       2029       2029         2030       130       C       2031       2031       2031         2031       131       RGRAD(ISL,2) = RGRAD(ISL,1) + RIGRAD(KE)       2032         2033       133       UGRAD(ISL,2) = UGRAD(ISL,2) + UJGRAD(KE)       2033         2034       134       UGRAD(ISL,2) = UGRAD(ISL,2) + UJGRAD(KE)       2034         2035       136       VGRAD(ISL,2) = VGRAD(ISL,2) + VJGRAD(KE)       2035				UGRAD(ISR, 2) = UGRAD(ISR)	SR, 2) - UJGRAD(KE)		2019
2022       122       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2022         2023       123       VGRAD(ISR, 2) = VGRAD(ISR, 2) - VJGRAD(KE)       2023         2024       124       PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE)       2024         2025       125       PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE)       2025         2026       126       PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)       2026         2027       127       PGRAD(ISR, 2) = PGRAD(ISR, 2) - PJGRAD(KE)       2027         2028       128       C       2029       2029         2030       130       C       2030       2032         2031       131       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2032         2033       133       UGRAD(ISL, 1) = RGRAD(ISL, 2) + RJGRAD(KE)       2033         2034       134       UGRAD(ISL, 2) = UGRAD(ISL, 1) + UIGRAD(KE)       2034         2035       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2035		121		VGRAD( ISR , 1 ) = VGRAD( IS	SR , 1 ) - VIGRAD( KE )		
2024       124       PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE)       2024         2025       125       PGRAD(ISR, 1) = PGRAD(ISR, 1) - PIGRAD(KE)       2025         2026       126       PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)       2026         2027       127       PGRAD(ISR, 2) = PGRAD(ISR, 2) - PJGRAD(KE)       2027         2028       128       C       2029         2030       130       C       2030         2031       131       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2031         2033       133       UGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2032         2033       133       UGRAD(ISL, 2) = UGRAD(ISL, 1) + UIGRAD(KE)       2033         2035       135       VGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2034         2035       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2035				VGRAD(ISL, 2) = VGRAD(ISL)	SL, 2) + VJGRAD( KE)		2022
2025       125       PGRAD(ISR, 1) = PGRAD(ISR, 1) = PIGRAD(KE)       2025         2026       126       PGRAD(ISL, 2) = PGRAD(ISL, 2) + PJGRAD(KE)       2026         2027       127       PGRAD(ISR, 2) = PGRAD(ISR, 2) + PJGRAD(KE)       2027         2028       128       C       2029         2030       130       C       2030         2031       131       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2031         2032       132       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2032         2033       133       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2033         2034       134       UGRAD(ISL, 2) = UGRAD(ISL, 1) + VIGRAD(KE)       2034         2035       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2035	2024			PGRAD( ISL , 1 ) - PGRAD( IS	SL , 1 ) + PIGRAD( KE )		
2027       127       PGRAD(ISR, 2) = PGRAD(ISR, 2) - PJGRAD(KE)       2027         2028       128       C       2028         2029       129       ELSE       2029         2030       130       C       2030         2031       131       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2031         2032       132       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2032         2033       133       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2033         2034       134       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2034         2035       135       VGRAD(ISL, 1) = VGRAD(ISL, 2) + VJGRAD(KE)       2035         2036       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2035				PGRAD( ISR , 1 ) = PGRAD( IS	SR 1) – PIGRAD( KE )		2025
2028       128       C       2028         2029       129       ELSE       2029         2030       130       C       2030         2031       131       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2031         2032       132       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2032         2033       133       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2033         2034       134       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2034         2035       135       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2035         2036       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2035	2027			= PGRAD(ISR, 2) = PGRAD(ISR)	SC, $2$ ) + PJGRAD( KE ) SR, $2$ ) - PJGRAD( KE )		
2030       130       C       2030         2031       131       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2031         2032       132       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2032         2033       133       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2033         2034       134       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2034         2035       135       VGRAD(ISL, 2) = UGRAD(ISL, 1) + VIGRAD(KE)       2035         2036       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2035	2028	128	C				2028
2031       131       RGRAD(ISL, 1) = RGRAD(ISL, 1) + RIGRAD(KE)       2031         2032       132       RGRAD(ISL, 2) = RGRAD(ISL, 2) + RJGRAD(KE)       2032         2033       133       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2033         2034       134       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2034         2035       135       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2035         2036       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2036			С				
2033       133       UGRAD(ISL, 1) = UGRAD(ISL, 1) + UIGRAD(KE)       2033         2034       134       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2034         2035       135       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2035         2036       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2036		131		$\frac{\text{RGRAD}(\text{ISL}, 1) = \text{RGRAD}(\text{ISL}, 2) = \frac{1}{2}$	SL, 1) + RIGRAD( KE )		2031
2034       134       UGRAD(ISL, 2) = UGRAD(ISL, 2) + UJGRAD(KE)       2034         2035       135       VGRAD(ISL, 1) = VGRAD(ISL, 1) + VIGRAD(KE)       2035         2036       136       VGRAD(ISL, 2) = VGRAD(ISL, 2) + VJGRAD(KE)       2036				UGRAD( ISL , 1 ) = UGRAD( IS	$SL_1 + UIGRAD(KE)$		
2036 136 VGRAD(ISL, 2) ~ VGRAD(ISL, 2) + VJGRAD(KE) 2036	2034	134		UGRAD( ISL , 2 ) - UGRAD( 19	SL . 2 ) + UJGRAD( KE )		2034
2037 137 PGRAD(ISL, 1) = PGRAD(ISL, 1) + PIGRAD(KE) 2037				VGRAD( ISL , 2 ) = VGRAD( IS	$SL_{1}$ (2) + VJGRAD( KE )		
	2037			PGRAD(ISL, 1) = PGRAD(IS	SL , 1 ) + PIGRAD( KE )		

2038         139         C         PGRA0(15L, 2) - PGRA0(15L, 2) + PJGRA0(KE)         2039           2030         140         C         2040         2040           2031         140         C         2040         2040           2034         141         C         2040         2040           2034         141         PGRA0(15L, 2) - PGRA0(15L, 1)         2041         2042           2034         144         PGRA0(15L, 1)         2041         2042           2035         144         PGRA0(15L, 1)         2041         2042           2036         144         PGRA0(15L, 1)         2041         2041           2037         131         PGRA0(15L, 1)         2041         2041           2038         132         PGRA0(15L, 1)         2041         2041           2031         131         PGRA0(15L, 1)         2041         2041           2031         144         PGRA0(15L, 1)         2041         204	Thu Jul	1 14:	15:55 1	993	gradhd.f		SUBROUTINE GRADNS		page	29
2040         140         END IF         204           2041         141         C         204           2041         141         C         204           2041         144         150         204           2041         144         150         204           2041         144         100         CONTINUE         204           2041         144         00         140         14         204           2045         146         00         140         15         1         204           2046         146         00         140         15         1         1         204           2040         143         REPART [15         11         1         5         204           2050         150         URARD [15         11         1         5         204           2051         155         C         2040         205         205         205           2055         155         C         204         204         205         205           2056         156         C         205         205         205         205           2056         166         C			<u>,</u>	PGRAD(	ISL , 2 ) = PG	RAD( ISL, 2	) + PJGRAD( KE )			
2042         141         C         2042           2043         130         CONTINUE         2042           2044         144         190         CONTINUE         2043           2044         144         100         14         12         2043           2044         145         100         140         15         14         2044           2045         145         100         140         15         14         2045           2049         149         RERAD(15         14         ) + SAREA(15         2049           2050         150         UGRAD(15         14         ) + SAREA(15         2050           2051         151         UGRAD(15         14         ) + SAREA(15         2050           2051         151         C			C	END IF						
2031       143       WEI - NE2 + 10       204         2044       144       WEZ + NOYEE( INE + 1 )       204         2045       145       90       CONTINUE       204         2046       147       DO 140 IN - 1 , 2       204         2047       147       DO 140 IN - 1 , 2       204         2048       145       DO 140 IN - 1 , 2       204         2049       149       UGRAD IS - IN ) - HORADO IS - IN ) - SAREA (IS )       204         2051       151       UGRAD IS - IN ) - FGRAD (IS - IN ) - SAREA (IS )       205         2052       152       Continue       2033       2033         2053       153       Continue       2035       2033         2054       154       Continue       2035         2055       Continue       2036       2035         2056       Continue       2036       2036         2056       Continue       2036       2036         2056       Continue       2035       2036         2057       Continue       2036       2036         2058       155       Continue       2036         2059       155       Continue       2037         <	2041	141								2041
2044         144         MEZ = NEZ + NOVECE(INE + 1)         204           2045         146         C         204           2046         146         C         204           2047         140         I + 1, 2         204           2048         146         C         204           2059         151         WEADO IS, IH ) = VEADO IS, IH ) = SAREA(IS)         205           2052         153         C         205           2053         153         C         205           2054         154         C         205           2055         155         C         205           2056         155         C         206           2058         155         C         206           2056         155         C         206           2057         157         C         206           2058         155         C         206           2050			130							
2046         146         C         2047         14         1.1., NS         2047           2048         148         00 140 15 - 11, NS         2048         2049           2049         149         RERAD(15, 1H) - GRAD(15, 1H) - SAREA(15)         2049           2051         151         UGRAD(15, 1H) - UGRAD(15, 1H) - SAREA(15)         2051           2051         151         UGRAD(15, 1H) - UGRAD(15, 1H) - SAREA(15)         2051           2052         152         PGRAD(15, 1H) - UGRAD(15, 1H) - SAREA(15)         2051           2053         151         140         Continue         2055           2055         155         C         2056         2056           2056         155         C         2056         2056           2056         155         C         2056         2056           2056         156         C         2056         2056           2058         155         C         2056         2056           2056         156         C         2056         2056           2056         156         C         2057         2056           2057         157         C         2057         2056           2056 <td></td> <td></td> <td>00</td> <td></td> <td></td> <td>NE + 1 )</td> <td></td> <td></td> <td></td> <td>2044</td>			00			NE + 1 )				2044
2047         147         D0 140 IH = 1, P.         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2049         2049         2049         2040         15. IH ) + GRAD(15. IH ) + SAREA(15.)         2055         15.5         2055         15.5         2055         15.5         2055         15.5         2055         15.5         2055         15.5         2055         15.5         2055         15.5         2055         2055         2055         2055         2055         2055         2055         2055         2055         2056         2057         15.7         2048         16.6         2057         2056         2056         2056         2056         2056         2056         2056         2056         2056         2056         2056 <t< td=""><td></td><td></td><td></td><td>CUNTING</td><td>JE</td><td></td><td></td><td></td><td></td><td></td></t<>				CUNTING	JE					
2049         149         RCRAD(IS, IH) = RCRAD(IS, IH) = SAREA(IS)         2049           2050         1050         UGRAD(IS, IH) = VGRAD(IS, IH) = SAREA(IS)         2050           2051         151         VCRAD(IS, IH) = VGRAD(IS, IH) = SAREA(IS)         2052           2052         152         PCRAD(IS, IH) = VGRAD(IS, IH) = SAREA(IS)         2052           2053         153         140         CONTINUE         2053           2054         154         C         2054         2055           2056         155         C         2054         2054           2056         155         C         2056         2056           2056         156         C         2056         2056           2058         156         C         2056         2056           2056         156         C         2052         2052           2056         156         C         2065         2065           2056         160         C         2062         2062           2056         160         C         2067         2067           2066         166         C         2067         2072           2066         1         2077         C										2047
2051         151         VERAD(1 S, IH ) + VERAD(1 S, IH ) * SAREA(1 S)         2052           2052         153         140         CONTINUE         2052           2054         154         C         2052           2055         155         C         2053           2056         155         C         2054           2056         155         C         2054           2056         156         C         2056           2057         157         C         CALL THE MONTON CITTY LIMITER         2056           2058         156         C         2056         2056           2056         156         C         2056         2056           2056         156         C         2065         2065           2056         156         C         2065         2065           2056         165         C         2067         2067           2050         157         RETURN         2067         2070           2050         167         RETURN         2071         2071           2066         1         2077         1         2072           2071         11         1415155         1993	2049			RGRAD (	IS . IH ) = RG	RAD( IS , IH	) * SAREA( IS )			2049
2052         152         PGRAD(15, 1H) - PGRAD(15, 1H) * SAREA(15)         2052           2053         153         140         CONTINUE         2053           2054         154         C         2054           2055         155         C				UGRAD(	IS, IH) = UG	RAD( IS , IH	) * SAREA( IS )			
2054         154         C         2055           2055         155         C         2056           2056         156         C         2056           2056         157         C         2057         157         2058           2056         158         C         2058         2059         2050         2059         2050         2059         2050         2050         2050         2050         2050         2050         2050         2050         2050         2050         2050         2050         2050         2050         2051         2051         2052         2052         2055         2055         2055         2055         2053         2051         2051         2051         2052         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2055         2057         2057         2057         2057         2057         2057         2057         2057         2057         2057	2052			PGRAD (	IS , IH ) = PG	RAD( IS , IH	) * SAREA( IS )			
2055         155         C			-	CONTINU	JE					
2057         157         C CALL THE HONOTONICITY LIMITER         2057           2058         158         C         2058           2059         159         CALL MONOTN         2059           2050         160         C         2060           2061         161         C	2055	155	(*****	****	***********	*****		*****		2055
2058         158         C         2059           2059         159         CALL MONOTN         2059           2060         160         C         2060           2061         161         C         2061           2062         162         C         2063           2064         164         C         2063           2065         165         C         2064           2066         165         C         2065           2066         166         C         2067           2067         170         C         2067           2070         170         C         2070           2071         11         END         2070           2073         2         C         2073           2074         3         C         2073           2075         4         C         2073           2076         1         SUBROUTINE LUDCMP (A, N, NP, INDX, D)         2073           2075         4         C         2073           2076         7         C         2073           2077         5         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         2075			C C			I IMITER				
2060         160         C         2061         2061         2062         2062         2063         2064         2064         2064         2064         2064         2064         2064         2064         2065         2065         2065         2065         2065         2065         2065         2065         2065         2066         2066         2067         2070         2066         2067         2070         2066         2070         2070         2070         2070         2070         2070         2070         2070         2071         END         2071           Thu Jul 1 14:15:55 1993         gradhd.f         SUBROUTINE LUDCHP (A, N, NP, INDX, D)         2072         2073         2         2073         2073         2073         2073         2074         2075         4         2075         2075         2075         2075         2075         2075         2075         2075         2075         2075         2075         2075         2075         2075         2076         2077         2076         2077         2076         2077         2076         2077         2076         2077         2076         2077         2076         2077         2076         2077         2077         2077         2	2058	158								2058
2061         161         C         2062           2063         163         C         2063           2064         164         C         2064           2065         165         C         2065           2066         166         C         2066           2067         167         C         2067           2068         168         C         2068           2071         170         C         2069           2071         170         C         2070           2071         171         END         2071           2072         1         SUBROUTINE LUDCMP (A, N, NP, INDX, D)         2072           2073         2         C         2073           2074         3         C         2074           2075         4         C         2076           2076         5         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         I           2077         6         C         2078         2079           2080         9         PARAMETER (NHAX=100, TINY=1.0E-20)         2080           2081         10         DIMENSION A(NP, NP), INDX(N), VV (NMAX)         2082			C	CALL MC	DNOTN					
2063         163         C         2064         164         C         2064         2065         165         C         2064         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2065         2071         2071         2071         2071         2071         2071         2071         2072         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2073         2         2072         2073         2         2072         2073         2         2072         2073         2         2073         2         2073         2         2074         3         2077<	2061	161	C====	******	*======================================	********	*****************	***********		2061
2064         164         C EXIT POINT FROM SUBROUTINE         2065           2065         165         C         2065           2066         166         C         2068           2067         167         RETURN         2068           2069         169         C         2069           2070         10         C         2070           2071         11         END         2071           2072         1         SUBROUTINE LUDCMP(A, N, NP, INDX, D)         2072           2073         2 C         2073         2074         3           2074         3         C			ŕ							• _
2066         167         RETURN         2067           2067         167         RETURN         2068           2068         168         C         2069           2070         170         C         2070           2071         171         END         2070           2072         1         SUBROUTINE LUDCMP(A, N, NP, INOX, D)         2072           2073         2         C         2073           2074         3         C         2073           2075         4         C         1           2076         5         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         1           2077         6         C         2073         2072           2078         7         C         2076         2073           2079         8         C         2079         2070           2081         10         DIMENSION A(NP, NP), INDX(N), VV(MMAX)         2081           2081         10         DIMENSION A(NP, NP), INDX(N), VV(MMAX)         2083           2083         12         OD 12 -1, N         2083           2084         13         AAMAX-0,         2084           2085         11	2064	164	Č	EXIT PO	DINT FROM SUBRO	UTINE				2064
2067         167         RETURN         2068           2068         168         C         2069           2071         169         C         2069           2071         171         END         2071           2072         1         SUBROUTINE LUDCMP (A, N, NP, INDX, D)         2072           2073         2         C         2073           2074         3         C         2073           2075         4         C         1           2075         4         C         1           2076         5         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         1           2076         6         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         1           2076         7         C         1         2075           2078         7         C         1         2077           2078         7         C         1         2076           2079         8         C         2072         2079           2080         9         PARAMETER (NMAX=100, TINY=1.0E-20)         2080           2081         10         DIMENSION A(N, VV (NMAX)         2081           2082 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
2069         169         C         2069           2070         170         C         2070           2071         171         END         2070           2071         171         END         2070           2072         1         SUBROUTINE LUDCMP(A, N, NP, INOX, D)         2072           2073         2         C         2073           2074         3         C         2073           2075         5         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         1           2076         5         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         1         2077           2078         7         C         2077         2078         7         2077         2079         8         2079         2079         2079         2070         2080         9         PARAMETER (NMAX-100, TINY-1, 0E-20)         2080         2081         2081         2081         2081         2081         2081         2081         2082         2081         2082         2081         2082         2081         2082         2081         2082         2082         2083         2084         2084         2084         2085         14         2011         2084	2067	167		RETURN						
2070         170         C          2070           2071         171         END         2071           Thu Jul 1 14:15:55 1993         gradhd.f         SUBROUTINE LUDCMP         2072           2073         2         C         2073         2073           2074         3         C										
Thu Jul 1 14:15:55 1993 gradhd.f       SUBROUTINE LUDCMP         2072       1       SUBROUTINE LUDCMP(A, N, NP, INDX, D)       2072         2074       3       C       2073         2075       4       C       1         2076       5       C       PERFORM AN L U DECOMPOSITION OF THE A MATRIX       1       2076         2077       6       C       1       2077       1       2077         2079       8       C       1       2078       2078       2079       2080       9       PARAMETER (NMAX=100, TINY=1, 0E-20)       2080       2080       2081       2081       2082       2081       2082       2082       2082       2083       2083       2083       2083       2083       2083       2083       2083       2083       2083       2083       2083       2083       2084       2085       11       CONTINUE       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2085       2092       2091       2091       2091       2091       2091       2092       2092 </td <td>2070</td> <td>170</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2070</td>	2070	170								2070
2072         1         SUBROUTINE LUDCHP(A, N, NP, INDX, D)         2072           2073         2         C         2073           2074         3         C         2073           2075         4         C         2073           2076         5         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         1         2075           2078         7         C         1         2077         2078         7         2079         2077         2078         1         2077           2078         7         C         1         2077         2078         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2079         2071         2079         2080         2071         2079         2081         2071         2079         2081         2082         2081         2082         2083         2082         2083         2084 <td< td=""><td>2071</td><td>171</td><td></td><td>END</td><td></td><td></td><td></td><td></td><td></td><td>2071</td></td<>	2071	171		END						2071
2073       2       C       2074       3       C       2074       2075         2076       5       C       PERFORM AN L U DECOMPOSITION OF THE A MATRIX       I       2076         2077       7       C       I       2077       I       2076         2078       7       C       I       2077       2078       I       2077         2079       8       C       2079       2080       9       PARAMETER (NMAX=100,TINY=1.0E-20)       2080       2081       2077       2080       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2081       2082       2081       2083       2081       2083       2083       2083       2084       2085       14       0011.0=1.N       2082       2083       2084       2085       14       0011.0=1.N       2085       2088       2089       2081       2085       2088       2089       2085       2088       2089       2082       2081       2084       2086	Thu Jul	1 14:	15:55 1	993	gradhd.f		SUBROUTINE LUDCMP			
2074       3       Ci       2074         2075       4       C       I       2075         2076       5       C       PERFORM AN L U DECOMPOSITION OF THE A MATRIX I       2076         2077       6       C       I       2077         2078       7       C       I       2077         2079       8       C       I       2079         2080       9       PARAMETER (NMAX=100,TINY=1.0E-20)       2080       2080         2081       10       DIMENSION A(MP.NP),INDX(N).VV(NMAX)       2081       2082         2083       12       DO 12       I-1.N       2082         2084       13       AAMAX=0.       2083         2085       14       DO 11 J-1.N       2085         2086       15       IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))       2086         2086       17       IF (AAMAX.EQ.0.) PAUSE 'Singular matrix.'       2087         2081       10       D1 J-1.N       2087         2082       11       CONTINUE       2087         2083       12       CONTINUE       2087         2084       13       CONTINUE       2089         2091       12			r	SUBROUT	TINE LUDCMP(A,N	,NP,INDX,D)				
2076         5         C         PERFORM AN L U DECOMPOSITION OF THE A MATRIX         I         2076           2077         6         C         I         2077           2078         7         C         I         2077           2079         8         C         2079           2080         9         PARAMETER (NMAX=100,TINY=1.0E-20)         2080           2081         10         DIMENSION A(NP,NP),INDX(N),VV(NMAX)         2081           2082         11         D=1.         2082         2083           2084         10         11 J=1,N         2082           2085         14         DO 11 J=1,N         2082           2086         15         IF (ABS(A(I,J)),GT.AAMAX) AAMAX=ABS(A(I,J))         2086           2086         17         IF (AAMAX=E0.0.) PAUSE 'Singular matrix.'         2089           2090         19         12         CONTINUE         2090           2091         20         D0 19 J=1,N         2091         2091           2092         20         14 I=1,J=1         2092         2093           2093         22         D0 14 I=1,J=1         2093         2094         23           2094         23         SUM	2074	3	C				*****	1		2074
207/         b         C         1         2078           2078         7         C         2078         2079           2080         9         PARAMETER (NMAX=100,TINY=1.0E-20)         2080           2081         10         DIMENSION A(NP,NP),INDX(N),VV(NMAX)         2081           2082         11         D=1.         2082           2083         12         DO 12 I=1.N         2084           2084         13         AAMAx=0.         2084           2085         14         DO 11 J=1.N         2085           2086         15         IF (ABS(A(I,J)),GT.AAMAX) AAMAX=ABS(A(I,J))         2086           2086         17         IF (AAMAX_EQ.O.) PAUSE 'Singular matrix.'         2087           2086         17         IF (AAMAX_EQ.O.) PAUSE 'Singular matrix.'         2088           2089         18         VV(1)=1./AAMAX         2091           2091         20         D0 19 J=1.N         2091           2092         21         IF (J.GT.1) THEN         2092           2093         20         D0 14 I=1,J=1         2093           2094         23         SUM=ACI,K)*A(K,J)         2095           2095         24         IF (I.GT.1)THEN			C C	PERFOR	M AN I ILDECOM	POSITION OF	THE A MATRIX	I		
2080       9       PARAMETER (NMAX=100.TINY=1.0E-20)       2080         2081       10       DIMENSION A(NP.NP).INDX(N).VV(NMAX)       2081         2082       11       D=1.       2082         2083       12       D0 12 I=1.N       2083         2084       13       AAMAX=0.       2083         2085       14       D0 11 J=1.N       2085         2086       15       IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))       2086         2087       16       11       CONTINUE       2087         2088       17       IF (AAMAX.EQ.O.)       PAUSE 'Singular matrix.'       2088         2089       18       VV(I)=1./AAMAX       2089       2090       2091       2012         2091       20       D0 J J=1.N       2091       2092       2091       IF (J.GT.1) THEN       2092         2093       22       D0 14 I=1.J=1       2093       2094       2093       2094       2095         2096       25       D0 13 K=1.I=1       2095       2096       25       2097       2097         2097       26       SUM=A(I,J)       2097       2098       27       13       CONTINUE       2097         2096       <	2077	6	ē	. 21 01				1		2077
2080       9       PARAMETER (NMAX=100,TINY=1.0E-20)       2080         2081       10       DIMENSION A(NP,NP),INDX(N),VV(NMAX)       2081         2082       11       D=1.       2082         2083       12       D0 12 I=1.N       2083         2084       13       AAMAX=0.       2083         2085       14       D0 11 J=1.N       2085         2086       15       IF (ABS(A(I,J)),GT.AAMAX) AAMAX=ABS(A(I,J))       2086         2087       16       11       CONTINUE       2087         2088       17       IF (AAMAX.EQ.0.)       PAUSE 'Singular matrix.'       2088         2089       18       VV(1)=1./AAMAX       2089       2090       2091       200       D0 19 J=1.N       2091         2091       20       D0 14 I=1.J=1       2092       2091       2091 J=1.N       2092         2091       20       D0 14 I=1.J=1       2092       2093       22       D0 14 I=1.J=1       2092         2092       21       IF (J.GT.1) THEN       2095       2096       25       D0 13 K=1.I=1       2095         2096       25       D0 13 K=1.I=1       2097       2098       27 13       CONTINUE       2097 <t< td=""><td>2078 2079</td><td>7</td><td>C</td><td></td><td></td><td>***********</td><td></td><td>I</td><td></td><td></td></t<>	2078 2079	7	C			***********		I		
Z081         10         DIMENSION A(NF, NF), INDA(N), VV(NMAA)         Z081         2081         2081         2083           2083         12         DO 12 I=1, N         2083         2083         2083         2083         2083         2083         2083         2083         2083         2083         2084         3         AAMAX=0.         2083         2084         2085         2085         2085         2085         2085         2086         15         IF (ABS(A(I,J)), GT.AAMAX) AAMAX=ABS(A(I,J))         2085         2086         15         IF (AAMAX.EQ.O.) PAUSE 'Singular matrix.'         2088         2087         2088         17         IF (AAMAX.EQ.O.) PAUSE 'Singular matrix.'         2088         2089         2090         19         12         CONTINUE         2092         2091         20         D0 19 J=1, N         2091         2091         2091         20         D0 19 J=1, N         2091         2091         2091         2092         2091         IF (J.GT.1) THEN         2092         2091         2091         2092         2091         14 I=1, J=1         2093         2094         23         SUM=A(I,J)         2094         2095         2091         2092         2092         2093         2094         2095         2095         2095	2080	9		PARAMET						2080
2083       12       DO 12 I=1.N       2083         2084       13       AAMAX=0.       2084         2085       14       DO 11 J=1.N       2085         2086       15       IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))       2086         2087       16       11       CONTINUE       2087         2088       17       IF (AAMAX.EQ.O.) PAUSE 'Singular matrix.'       2088         2089       18       VV(I)=1./AAMAX       2089         2090       19       12       CONTINUE       2092         2091       20       DO 19 J=1.N       2092       2091         2092       21       IF (J.GT.1) THEN       2092         2093       22       DO 14 I=1.J=1       2093         2094       23       SUM=A(I,J)       2094         2095       24       IF (I.GT.1)THEN       2095         2096       25       DO 13 K=1.I=1       2096         2097       26       SUM=SUM=A(I,K)*A(K,J)       2097         2098       A(I,J)=SUM       2097       2096         2097       26       SUM=SUM=A(I,K)*A(K,J)       2097         2098       A(I,J)=SUM       2099       2099       209 <td>2081 2082</td> <td>10</td> <td></td> <td></td> <td>ION A(NP,NP),IN</td> <td>IDX(N),VV(NMA)</td> <td>()</td> <td></td> <td></td> <td></td>	2081 2082	10			ION A(NP,NP),IN	IDX(N),VV(NMA)	()			
2085       14       D0 11 J=1,N       2085         2086       15       IF (ABS(A(I,J)),GT.AAMAX) AAMAX=ABS(A(I,J))       2086         2087       16       11       CONTINUE       2087         2088       17       IF (AMAX.EQ.O.) PAUSE 'Singular matrix.'       2088         2089       18       VV(1)=1./AAMAX       2089         2090       19       12       CONTINUE       2092         2091       20       D0 19 J=1,N       2092       2092         2092       21       IF (J.GT.1) THEN       2093         2093       22       D0 14 1=1,J=1       2093         2094       23       SUM=A(I,J)       2094         2095       24       IF (I.GT.1)THEN       2095         2096       25       D0 13 K=1,I=1       2096         2097       26       SUM=SUM=A(I,K)*A(K,J)       2097         2098       27       13       CONTINUE       2098         2099       28       A(I,J)=SUM       2099         2100       29       ENDIF       2100         2101       201       ENDIF       2102         2103       20       AAMAX=0.       2103         2104 <td>2083</td> <td>12</td> <td></td> <td>DO 12 I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2083</td>	2083	12		DO 12 I						2083
2086         15         IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))         2086           2087         16         11         CONTINUE         2087           2088         17         IF (AAMAX.EQ.O.) PAUSE 'Singular matrix.'         2088           2089         18         VV(1)=1./AAMAX         2089           2090         19         12         CONTINUE         2092           2091         20         D0         19         J.T. MAMAX         2092           2092         21         IF (J.GT.1) THEN         2092         2093           2093         22         DO         14         1=1.J=1         2093           2094         23         SUM=A(I,J)         2094         2095         2095         2096           2095         24         IF (I.GT.1)THEN         2096         2097         2097         2097         2097         2097         2097         2097         2097         2097         2097         2098         27         13         CONTINUE         2096         2097         2097         2097         2097         2097         2097         2097         2097         2097         2097         2097         2097         2097         2097         2097										
2088         17         IF (AAMAX.EQ.0.) PAUSE 'Singular matrix.'         2088           2089         18         VV(I)=1./AAMAX         2089           2090         19         12         CONTINUE         2092           2091         20         D0 19 J=1,N         2091         2092           2092         21         IF (J.GT.1) THEN         2093           2093         22         DD 14 I=1,J=1         2093           2094         23         SUM=A(I,J)         2094           2095         24         IF (I.GT.1)THEN         2095           2096         25         D0 13 K=1,I=1         2096           2097         26         SUM=SUM=A(I,K)*A(K,J)         2097           2098         27         13         CONTINUE         2098           2099         28         A(I,J)=SUM         2099         2100         29         ENDIF         2100           2101         30         14         CONTINUE         2101         2101           2103         32         AAMAX=0.         2103         2104         33         00 16 I=J,N         2102           2104         33         00 16 I=J,N         2104         2105         2105	2086	15		IF	(ABS(A(1,J)).G	T.AAMAX) AAM	AX=ABS(A(I,J))			2086
2089       18       VV(I)=1./AAMAX       2089         2090       19       12       CONTINUE       2092         2091       20       D0       19       J=1, N       2091         2092       21       IF (J.GT.1) THEN       2092       2093         2093       22       D0       14       I=1, J=1       2093         2094       23       SUM=A(I,J)       2094       2095         2095       24       IF (I.GT.1) THEN       2095         2096       25       D0       13       k=1, I=1         2097       26       SUM=SUM=A(I,K)*A(K,J)       2097         2098       27       13       CONTINUE       2098         2099       28       A(I,J)=SUM       2098         2100       29       ENDIF       2100         2101       30       14       CONTINUE       2101         2102       31       ENDIF       2102       2103         2104       33       00       16       I=J, N       2103         2104       33       00       16       I=J, N       2104         2105       34       SUM=A(I,J)       2106       2106			11			USE 'Sincular	r matrix,'			
2091       20       D0       19       J=1,N       2091         2092       21       IF (J.GT.1) THEN       2092         2093       22       D0       14       I=1,J=1       2093         2094       23       SUM=A(I,J)       2094       2094         2095 *       24       IF (I.GT.1) THEN       2095         2096       25       D0       13       K=1,I=1         2097       26       SUM=SUM=A(I,K)*A(K,J)       2097         2098       27       13       CONTINUE       2098         2099       28       A(I,J)=SUM       2099         2100       29       ENDIF       2100         2101       30       14       CONTINUE       2101         2102       31       ENDIF       2102       2102         2103       32       AAMAX=0.       2103       2103         2104       33       00       16       I=J,N       2104         2105       34       SUM=A(I,J)       2105       2106       2105         2106       35       IF (J.GT.1)THEN       2106       2106         2106       35       IF (J.GT.1)THEN       2106	2089	18	10	- VV(İ)	=1./AAMAX					2089
2092       21       IF (J.GT.1) THEN       2092         2093       22       D0 14 I=1, J-1       2093         2094       23       SUM=A(I, J)       2094         2095 *       24       IF (I.GT.1) THEN       2095         2096       25       D0 13 K=1, I-1       2096         2097       26       SUM=SUM=A(I,K)*A(K,J)       2097         2098       27       13       CONTINUE       2098         2099       28       A(I,J)=SUM       2099         2100       29       ENDIF       2100         2101       30       14       CONTINUE       2101         2103       32       AAMAX=0.       2103         2104       33       00 16 I=J,N       2104         2105       34       SUM=A(I,J)       2104         2106       35       IF (J.GT.1)THEN       2106         2106       35       IF (J.GT.1)THEN       2106         2106       35       IF (J.GT.1)THEN       2106			12							
2094       23       SUM=A(I,J)       2094         2095 *       24       IF (I.GT.1)THEN       2095         2096       25       D0 13 K=1,1-1       2096         2097       26       SUM=SUM=A(I,K)*A(K,J)       2097         2098       27       13       CONTINUE       2099         2009       28       A(I,J)=SUM       2099         2100       29       ENDIF       2100         2101       30       14       CONTINUE       2101         2102       31       ENDIF       2102         2103       32       AAMAX=0.       2103         2104       33       00 16 1=J.N       2104         2105       34       SUM=A(I,J)       2106         2106       35       IF (J.GT.1)THEN       2106         2107       36       D0 15 K=1,J-1       2107	2092	21		IF (J	J.GT.1) THEN					2092
2095*       24       IF (I.GT.1)THEN       2095         2096       25       D0 13 K=1, I-1       2096         2097       26       SUM=SUM-A(I,K)*A(K,J)       2097         2098       27       13       CONTINUE       2098         2099       28       A(I,J)=SUM       2099       2100       29       2100         2101       30       14       CONTINUE       2101       2101       2101       2102       2102       2101       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2102       2104       33       00 16 I=J,N       2104       2104       2104       2105       2104       31       00 16 I=J,N       2105       2105       2106       35       IF (J.GT.1)THEN       2106       2106       2107       36       D0 15 K=1,J-1       2107		22 23								
2097         26         SUM=SUM=A(I,K)*A(K,J)         2097           2098         27         13         CONTINUE         2098           2099         28         A(I,J)=SUM         2099           2100         29         ENDIF         2100           2101         30         14         CONTINUE         2101           2102         31         ENDIF         2102           2103         32         AAMAX=0.         2103           2104         33         00         16         I=J,N           2105         34         SUM=A(I,J)         2105           2106         35         IF         (J.GT.1)THEN         2106           2107         36         D0         15         K=1,J-1         2107	2095 -	24			F (I.GT.1)THEN					2095
2098         27         13         CONTINUE         2098           2099         28         A(I,J)=SUM         2099           2100         29         ENDIF         2100           2101         30         14         CONTINUE         2101           2102         31         ENDIF         2102           2103         32         AAMAx=0.         2103           2104         33         00         16         I=J,N           2105         34         SUM=A(I,J)         2105         2106           2106         35         IF         (J.GT.1)THEN         2106           2107         36         D0         15         K=1,J-1         2107										
2100         29         ENDIF         2100           2101         30         14         CONTINUE         2101           2102         31         ENDIF         2102           2103         32         AAMAX=0.         2103           2104         33         00 16 1=J.N         2104           2105         34         SUM=A(I,J)         2105           2106         35         IF         (J.GT.1)THEN         2106           2107         36         D0 15 K=1,J-1         2107	2098	27	13		CONTINUE					2098
2101       30       14       CONTINUE       2101         2102       31       ENDIF       2102         2103       32       AAMAX=0.       2103         2104       33       00       16       I=J,N       2104         2105       34       SUM=A(I,J)       2105       2105         2106       35       IF       (J.GT.1)THEN       2106         2107       36       D0       15       K=1,J-1       2107				F						
2103         32         AAMAX=0.         2103           2104         33         00 16 I=J,N         2104           2105         34         SUM=A(I,J)         2105           2106         35         IF (J.GT.1)THEN         2106           2107         36         D0 15 K=1,J-1         2107	2101	30	14	CON	ITINUE					2101
2104       33       00 16 I=J.N       2104         2105       34       SUM=A(I,J)       2105         2106       35       IF (J.GT.1)THEN       2106         2107       36       D0 15 K=1,J-1       2107										
2106         35         IF (J.GT.1)THEN         2106           2107         36         D0 15 K=1,J-1         2107	2104	33		00 16	5 I=J.N					2104
2107 36 DÓ 15 K=1,J-1 2107										
2100 J/ SUM=SUM=A(1,K)*A(K,J) 2108	2107	36			0 15 K=1,J-1	()++/// ))				2107
	2108	3/			sum=sum-A(I,K	.j~A(K,J)				2100

•

Î

Thu Jul	1 14:	15:55	1993 gradhd.f	SUBROUTINE LUDCM	tP D	age	30
2109	38	15	CONTINUE				2109
2110	39		A(I,J)=SUM				2110
2111	40		ENDIF				2111
2112	41		DUM=VV(I)*ABS(SUM)				2112
2113	42		IF (DUM.GE.AAMAX) THEN				2113
2114 2115	43 44						2114
2115	45		AAMAX-DUM ENDIF				2115
2117	46	16	CONTINUE				2116
2118	47		IF (J.NE.IMAX)THEN				2117 2118
2119	48		DO 17 K=1, N				2110
2120	49		DUM=A(IMAX,K)				2120
2121	50		A(IMAX,K)=A(J,K)				2121
2122	51		A(J,K)=DUM				2122
2123 2124	52 53	17	CONTINUE				2123
2125	55		DD VV(IMAX)=VV(J)				2124
2126	55						2125
2127	56		INDX())=IMAX				2126 2127
2128	57		IF(J.NE.N)THEN				2127
2129	58		IF(A(J,J).EQ.D.)A(J,J)=TINY				2129
2130	59		DUM=1./A(J,J)				2130
2131	60		DO 18 I=J+1,N				2131
2132 2133	ь1 62	18	A(I,J)=A(I,J)*DUM				2132
2133	£3	10	CONTINUE ENDIF				2133
2135	64	19	CONTINUE				2134 2135
2136	65		IF(A(N,N).EQ.O.)A(N,N)=TINY				2135
2137	66		RETURN				2137
2138	67		END				2138
2139	68	c					2139
Thu Jul	1 14:1	15:55	1993 gradhd, f	SUBROUTINE LUBKSE	3		
2140	1		SUBROUTINE LUBKSB(A, N, NP, INDX, B)				2140
2141	2		DIMENSION A(NP,NP), INDX(N), B(N)				2141
2142	3		II=0				2142
2143	4		DO 12 I=1,N				2143
2144 2145	5 6		LL-INDX(I)				2144
2145	7		SUM-8(LL) 8(LL)-8(I)				2145
2147	8		IF (II.NE.O)THEN				2146
2148	ğ		DO 11 J=11.1-1				2147 2148
2149	10		SUM=SUM~A(I,J)*B(J)				149
2150	11	11	CONTINUE				150
2151	12		ELSE IF (SUM.NE.O.) THEN			2	2151
2152 2153	13 14		II=I ENDIF				152
2154	15		B(I)~SUM				153
2155	16	12	CONTINUE				154
2156	17		DO 14 I=N,1,-1				155 156
2157	18		SUM=B(1)				157
2158	19		IF(I.LT.N)THEN			2	158
2159 2150	20		00 13 $J=I+1,N$				159
2160	21 22	13	SUM-SUM-A(I,J)*B(J) CONTINUE				160
2162	23	10	ENDIF				161
2163	24		B(I)-SUM/A(I,I)				162 163
2164	25	14	CONTINUE				164
2165	26		RETURN			2	165
2166	27		END				166

Thu Jul	1 14:	15:55	199.° g	radhd.f		SUBROUTINE FIRST	page	31
2167	1	•	SUBROUTI	NE FIRST				2167
2168 2169	2 3	С С		******		I		2168 2169
2170 2171	4 5	C C C	FIRST	S USED TO I	FIND TI	HE LEFT AND RIGHT INTERFACE I		2170 2171
2172 2173	6 7	Č	Ŷ	UANTITIES "	TO FIRS	ST ORDER WITHOUT USING EITHER THE I HARACTERISTICS.		2172 2173
2174	8	C				I		2174
2175 2176	9 10	С С				I		2175 2176
2177 2178	11 12		include include	'cmsh0 'chyd0				2177 2178
2179 2180	13 14		include include	'cint0 'cphs1	0.h'			2179 2180
2181	15		include	cphs2	D.h'			2181
2182 2183	16 17		*********		*****			2182 2183
2184 2185	18 19	C	DO 110 I	E = 1 , NE				2184 2185
2186 2187	20 21			E(3.IE E(4.IE				2186 2187
2188	22		IJE5	= JE( 5 , 1 IE ) = 1	IE)	10 1 1		2188 2189
2189 2190	23 24		UL (	IE) = 1	HYDV (	ISL, 2) * XN( IE )		2190
2191 2192	25 26		VL(	IE ) = -	HYDV ( 🗌	ISL . 3 ) * YN( IE ) ISL . 2 ) * YN( IE )		2191 2192
2193 2194	27 28		•	+ IE) =	HYDV(	ISL, 3) * XN( IE )		2193 2194
2195 2196	29 30	C C				AL DOMAIN		2195 2196
2197	31	č						2197
2198 2199	32 33		RR(	. EQ . O IE ) =	ĤYÐV (	ISR , 1 )		2198 2199
2200 2201	34 35		•	+	HYDV( 🗌	ISR , 2 ) * XN( IE ) ISR , 3 ) * YN( IE )		2200 2201
2202 2203	36 37		VR(	IE ) = - !	HYDV ( 🗌	ISR , 2 ) * YN( IE ) ISR , 3 ) * XN( IE )		2202 2203
2204	38 39	r	· PR(	IE) =	HYDV (	ISR , 4 )		2204 2205
2205 2206	40	с с	- EDGES ON	THE BOUND	ARY WIT	TH ENFORCED CONDITIONS		2206
2207 2208	41 42	C C	IJ			TH REFLECTING NORMAL COMPONENTS		2207 2208
2209 2210	43 44	C C		= 7 SUP = 8 INF	ERSONII LOW WI	C OUTFLOW ZERO NORMAL DERIVATIVE TH PRESPECIFIED VALUES (RIN,UIN,VIN,PIN)		2209 2210
2211 2212	45 46	Č	ELSETE/	IJE5 . EQ				2211 2212
2213	47		RŔ(	IE) =	RIN			2213 2214
2214 2215	48 49		VR(	IE ) = -	UIN * '	XN( IE ) + VIN * YN( IE ) YN( IE ) + VIN * XN( IE )		2215
2216 2217	50 51	С			PIN			2216 2217
2218 2219	52 53			IJE5 . EQ IE ) =	.7) [.] RL(1E			2218 2219
2220 2221	54 55		UR(	IE) = 1	UL( IE VL( IE	)		2220 2221
2222	56	c			PL( IE			2222
2223 2224	57 58	C				OR . ICE5 . EQ . 5 ) THEN		2224
2225 2226	59 60			IE ) = IE ) = -	RL( IE UL( IE			2225 2226
2227 2228	61 62				VL( IE PL( IE			2227 2228
2229 2230	63 64	C	END IF	•	, -			2229 2230
2231	65	110						2231 2232
2232 2233	66 67	C C=≈:	I 교통 후역 홍수상 포율 포	**********		₩₩₽₽₩₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩		2233
2234 2235	68 69	с с-	- EXIT POI	NT FROM SU	BROUTI	NE		2234 2235
2236 2237	70 71	C C	~~~~~					2236 2237
2238 2239	72 73	c	RETURN					2238 2239
2240	74	č						2240

[hu Ju]	1 14	:15:55	1993	gradhd.f	SUBROUTINE FIRST	page	32
2241 2242	75 76	С	END				2241 2242
u Jui	1 14	:15:55	1993	gr <b>ad</b> hd.f	SUBROUTINE FCHART		
243	1		SUBRO	DUTINE FCHART			2243
44 45		С С					2244 2245
6	4	Č			Ī		2246
7 8	5	C C		ART LIMITS THE P RACTERISTICS.	ROJECTED INTERFACE VALUES ACCORDING TO 1		2247 2248
19	7	С			Ĩ		2240
0		-					2250
	9 10		inclu	ude 'cmsh00.			2251 2252
3	-11		inclu		h' 51		2253
4 5	12 13		inclu	ude 'cint00. ude 'cphs10.	រា h'		2254 2255
6	14		inclu	ide 'cphs20.	h'		2256
7 B	15 16	C (==:	******				2257 2258
3	17	С					2259
0 1	18 19				EFT(MBP),ZMLEFT(MBP) HGT(MBP),ZPRIGT(MBP)		2260 2261
52	20		REAL	UPLEFT (MBP), UML	EFT(MBP), URLEFT(MBP), SQGMTL(MBP)		2262
53 54	21 22				IGT(MBP),URRIGT(MBP),SQGMTR(MBP) IGT(MBP),CNLEFT(MBP),CNRIGT(MBP)		2263 2264
55	23				FTT(MBP), VLEFTT(MBP), PLEFTT(MBP)		2265
66 67	24		REAL	RRIGHT(MBP), URI	GHT(MBP),VRIGHT(M8P),PRIGHT(MBP)		2266
68	25 26		******		*************		2267 2268
59	27						2269
70 71	28 29		NE1 · NE2 ·	• 1 • NOFVEE( 1 )			2270 2271
2	30			D INE = Ì , ŃVEE	Έ		2272
3 4	31 32		DO 11	10 IE - NE1 , NE	2		2273 2274
5	33			KE = IE - NE1 +			2275
5 7	34 35	С	151	- JE(3, IE)			2276 2277
8	36		I SR	= JE(4, IE)			2278
9 0	37 38	С	GAM	AL( KE ) = HYDV(	ISL , 5 )		2279 2280
1	39				) * HYDV( 15L . 4 ) / HYDV( 1SL , 1 )		2281
2 3	40 41			FT = SQRT( CNLFT FT = HYDV( IS)	S) 2) * XXN(IE) +		2282 2 <b>2</b> 83
4	42				3  + YYN( IE )		2284
5 6	43 44		1 104	5 = JE( 5 , IE )			2285 2286
7	45			I = JE(5, IE) IJE5 . EQ . 0 )			2287
38	46	С	CAN				2288
39 30	47 48			AR( <u>ke</u> ) = Hydv( GTS = GAMAR( KE	) * HYDV(ISR, 4) / HYDV(ISR, 1)		2289 2290
91	49	c		GT = SQRT( CNRGT			2291
92 93	50 51	C	UVR(	GT - HYDV( ISR .	2 ) * XXN( IE ) +		2292 2293
)4	52	~	•		3) + YYN( IE )		2294
)5 )6	53 54	С	ELSE	£			2295 2296
37	55	С					2297
98 99	5ô 57			MAR( KE ) = GAMA RGT = CNLFT	IL( KE )		2298 2299
00	58			RG7 = UVLFT			2300
01 02	59 60		END	IF			2301 2302
)3	61	C					2303
)4 )5	62			NLEFT( KE ) = CN			2304
06	63 64		LI.	NRIGT( KE ) = CN			2305 2306
07	55			VLEFT( KE ) ~ UV			2307
:08 109	66 67	С	U	VRIGT( KE ) = UV	KUI		2308 2309
10	68	11	O CONTI	INUE			2310
811	69	C					2311

Thu Jul 1 14:15:55 1993 SUBROUTINE FCHART gradhd.f page DO 130 KE = 1 , NOFVEE( INE ) C ZZLEFT( KE ) = .5 * ( UVLEFT( KE ) + CNLEFT( KE ) ) * DTT ZZRIGT( KE ) = - .5 * ( UVRIGT( KE ) - CNRIGT( KE ) ) * DTT С 130 CONTINUE С С CHARACTERISTICS LOCATIONS C DO 140 KE = 1 , NOFVEE( INE ) C IF(  $ZZLEFT(KE) \cdot LT \cdot 0 \cdot ) ZZLEFT(KE) = 0$ . IF (ZZRIGT (KE) . LT . 0.) ZZRIGT (KE) = 0.С 140 CONTINUE C DO 150 KE = 1 , NOFVEE( INE ) C С ZOLEFT( KE ) = .5 * UVLEFT( KE ) * DTT ZORIGT( KE ) = .5 * UVRIGT( KE ) * DTT ZPRIGT( KE ) = .5 * ( UVRIGT( KE ) + CNRIGT( KE ) ) * DTT ZMLEFT( KE ) = .5 * ( UVLEFT( KE ) - CNLEFT( KE ) ) * DTT Č C С C C C 150 CONTINUE С FIRST GUESS LEFT AND RIGHT VARIABLES. LINEAR INTERPOLATON С Ĉ DO 160 IE = NE1 , NE2 KE = IE - NEI + IC ISL = JE(3, IE)ISR = JE(4, IE)C XX = XMIDL(IE) - ZZLEFT(KE) * XXN(IE) - XS(1, ISL)YY = YMIDL(IE) - ZZLEFT(KE) + YYN(IE) - XS(2, ISL)С HRRL = HYDV( ISL , 1 ) + RGRAD( ISL , 1 ) * XX + RGRAD( ISL , 2 ) * YY HUUL = HYDV( ISL , 2 ) + UGRAD( ISL , 1 ) * XX + UGRAD( ISL , 2 ) * YY HVVL = HYDV( ISL , 3 ) + VGRAD( ISL , 1 ) * XX + VGRAD( ISL , 2 ) * YY HPPL = HYDV( ISL , 4 ) + PGRAD( ISL , 1 ) * XX + PGRAD( ISL , 2 ) * YY С GMTLFT = GAMAL( KE ) * HRRL * HPPL SOGMTL(KE) = SORT(GMTLFT)C С IIMLFT = 0. UMLFT = 0. IF(UVLEFT(KE) - CNLEFT(KE).GT.0.) THEN XX = (ZHLEFT(KE) - ZZLEFT(KE)) * XXN(IE) YY = (ZHLEFT(KE) - ZZLEFT(KE)) * YYN(IE) UUU = UGRAD(ISL, 1) * XX + UGRAD(ISL, 2) * YY VVV = VGRAD(ISL, 1) * XX + VGRAD(ISL, 2) * YY UVU = UUU * XXN(IE) + VVV * YYN(IE) PPP = PGRAD(ISL, 1) * XX + PGRAD(ISL, 2) * YY UHLFT = .5 * (UVU - PPP / SQGMTL(KE)) / SQGMTL(KE) С С С С С C С C C END IF C С URIFT = 0.IF( UVLEFT( KE ) . GT . O. ) THEN XX = ( ZOLEFT( KE ) - ZZLEFT( KE ) ) * XXN( IE ) YY = ( ZOLEFT( KE ) - ZZLEFT( KE ) ) * YYN( IE ) PPP - PGRAD( ISL , 1 ) * XX + PGRAD( ISL , 2 ) * YY С С С С XX = XMIDL(IE) - ZOLEFT(KE) * XXN(IE) - XS(1, ISL)YY = YMIDL(IE) - ZOLEFT(KE) * YYN(IE) - XS(2, ISL) С С RRR = HYDV( ISL , 1 ) + RGRAD( ISL , 1 ) * XX + RGRAD( ISL , 2 ) * YY C С C URLFT - PPP / GMTLFT + 1. / HRRL - 1. / RRRR С END IF C IJE5 = JE(5, IE)IF(IJE5.EQ.O) THEN С 

Thu Jul	1 14:15:55	i 1993 gradhd.f	SUBROUTINE FCHART	page	34
2386	144	XX = XMIDL( IE ) +	ZZRIGT( KE ) * XXN( IE ) - XS( 1 , ISR )		2386
2387	145		- ZZRIGT( KE ) * YYN( IE ) - XS( 2 , ISR )		2387
2388 2389	146 C 147	HRRR = HYDV( ISR	. 1 ) +		2388 2389
2390	148	. RGRAD( ISF	R, 1) * XX + RGRAD( ISR, 2) * YY		2390
2391	149	HUUR = HYDV( 1SR			2391
2392 2393	150 151	HVVR - HYDV(ISR	(, 1) * XX + UGRAD( ISR , 2) * YY , 3) +		2392 2393
2394	152	. VGRAD( ISF	(, 1) * XX + VGRAD( ISR , 2) * YY		2394
2395	153	HPPR = HYDV(ISR)			2395
2396 2397	154 155 C	. PURAD( 15	R, 1) * XX + PGRAD( ISR, 2) * YY		2396 2397
2398	156	GMTRGT = GAMAR( KE			2398
2399 2400	157 158 C	SQGMTR( KE ) = SQF	IT( GMTRGT )		2399 2400
2401	159 C	UPRGT = 0.			2401
2402	160 C	IF( UVRIGT( KE )	+ CNRIGT( KE ) . LT . O. ) THEN		2402
2403 2404	161 C 162 C		) – ZPRÍGT( KE ) ) * XXN( IE ) ) – ZPRIGT( KE ) ) * YYN( IE )		2403 2404
2405	163 C	UUU = UGRAD( ISR	, 1 ) * XX + UGRAD( ISR , 2 ) * YY		2405
2406 2407	164 C 165 C	VVV = VGRAD( ISR	, 1 ) * XX + VGRAD( ISR , 2 ) * YY IE ) + VVV * YYN( IE )		2406
2407	165 C		(1) + XX + PGRAD(ISR, 2) + YY		2407 2408
2409	167 C	UPRGT =5 * (	UVU + PPP / SQGMTR( KE ) ) / SQGMTR( KE )		2409
2410 2411	168 C 169 C	END IF			2410 2411
2412	170 C	URRGT = 0.			2412
2413 2414	171 C 172 C	IF( UVRIGT( KE )	. LT . O. ) THEN : ) - ZORIGT( KE ) ) * XXN( IE )		2413
2414	172 C	YY = (ZZRIGT(KE)	) - ZORIGT( KE ) ) * YYN( IE )		2414 2415
2416	174 C	PPP = PGRAD(ISR)	, 1 ) * XX + PGRAD( ISR , 2 ) * YY		2416
2417 2418	175 C 176 C	XX = XMIDL(IE) YY = YMIDL(IE)	+ ZORIGT( KE ) * XXN( IE ) - XS( 1 , ISR ) + ZORIGT( KE ) * YYN( IE ) - XS( 2 , ISR )		2417 2418
2419	177 C	RRRR = HYDV( ISR	, 1) +		2419
2420 2421	178 C 179 C	. RGRAD( ISP	R, 1) * XX + RGRAD( ISR , 2) * YY RGT + 1. / HRRR - 1. / RRRR		2420 2421
2422	180 C	END IF	RUT + 1. / DRRR - 1. / RRRR		2422
2423	181 C	F1 65			2423
2424 2425	182 183 C	ELSE			2424 2425
2426	184	HRRR = HRRL			2426
2427 2428	185 186	HUUR = HUUL HVVR = HVVL			2427 2428
2429	187	HPPR = HPPL			2429
2430	188 C 189 C				2430
2431 2432	189 C 190 C	UPRGT = UMLFT URRGT = URLFT			2431 2432
2433	191 C				2433
2434 2435	192 193 C	END IF			2434 2435
2436	194	RRL( KE ) = HRRL			2436
2437 2438	195 196	VUL(KE) = HUUL	* XN( IE ) + HVVL * YN( IE ) * YN( IE ) + HVVL * XN( IE )		2437 2438
2439	197	PPL(KE) = HPPL			2439
2440	198 C				2440
2441 2442	199 200	RRR( KE ) ≠ HRRR UUR( KE ) = HUUR	* XN( IE ) + HVVR * YN( IE )		2441 2442
2443	201	VVR( KE ) = - HUUR	* YN( IE ) + HVVR * XN( IE )		2443
2444 2445	202 203 C	PPR( KE ) = HPPR			2445 2445
2446	204 C	UMLEFT( KE ) = UML	FT		2446
2447 2448	205 C 206 C	URLEFT( KE ) = URL	FT		2447 2448
2440	200 C 207 C	UPRIGT( KE ) = UPR	GT		2449
2450	208 C	URRIGT( KE ) = URR	GT		2450
2451 2452	209 C 210 16	O CONTINUE			2451 2452
2453	211 C				2453
2454 2455	212 C 213 C	FINAL VALUES FOR RIGHT	AND LEFT STATES		2454 2455
2456	214 C	00 180 KE = 1 , NO	FVEE( INE )		2456
2457 2458	215 C 216 C	GMTEFT - SOCMTEF	KE ) • SQGMTL( KE )		2457 2458
2450	210 C		KE ) * SQGMTR( KE )		2459
			nage 34		

34

Thu Jul	1 14:15:	55 1993	gradhd.f		SUBROUTINE FC	HART		page	35
2460 2461 2462 2463	218 C 219 C 220 C 221 C	RRL( - UUL(	KE) - 1. / (1. KE) - UUL(KE)	- SQGMTL(	URLEFT( KE) * UMLEFT	KE ) ) )			2460 2461 2462 2463
2464 2465 2466 2467	222 C 223 C 224 C 225 C	RRR(	KE ) = PPL( KE ) KE ) = 1. / ( 1.	/ RRR( KE	) - ( UPRIGT( URRIGT(	KE ) ) )			2464 2465 2466 2467
2468 2469 2470 2471		PPR( 180 CONTI	KE) = UUR(KE) KE) = PPR(KE) NUE			( KE )			2468 2469 2470 2471
2472 2473 2474 2475	230 C 231 232 233 C	DO 200 KE	IE = NE1 , NE2 = IE - NE1 + 1						2472 2473 2474 2475
2476 2477 2478 2479	234 235 236 C 237	ISR =	JE(3, IE) JE(4, IE) JE(5, IE)						2476 2477 2478 2479
2480 2481 2482 2483	240 C 241	PROJEC	TED VALUES ON THE = ) = RRL{ KE }	LEFT SIDE	OF THE INTERF	ACE			2480 2481 2482 2483
2484 2485 2486 2487	242 243 244 245 C	VL( I PL( I	E ) = UUL( KE ) E ) = VVL( KE ) E ) = PPL( KE )			5465			2484 2485 2486 2487
2488 2489 2490 2491	246 C 247 C 248 C 249 C	EDGES	TED VALUES ON THE	IAL DOMAIN					2488 2489 2490 2491
2492 2493 2494 2495 2495 2496	250 251 252 253	RR( UR( VR(	E5 . EQ . O ) THEM IE ) = RRR( KE ) IE ) - UUR( KE ) IE ) = VVR( KE ) IE ) = PPR( KE )	1					2492 2493 2494 2495 2496
2490 2497 2498 2499 2500	254 255 C 256 C 257 C 258	EDGES	DN THE BOUNDARY						2497 2498 2499 2500
2501 2502 2503 2504	259 260 261 262	RR( UR( VR(	$\begin{array}{l} \text{IE} \ ) = & \text{RIN} \\ \text{IE} \ ) = & \text{UIN} * \text{XN} \end{array}$	I( IE ) + 1	/IN * YN( IE ) /IN * XN( IE )				2501 2502 2503 2504
2505 2506 2507 2508	263 C 264 265 266	ELSEIF RR( UR(	(IJE5.EQ.7) IE) = RL(IE) IE) = UL(IE)	THEN					2505 2506 2507 2508
2509 2510 2511 2512	267 268 269 C 270	PR( ELSEIF	IE) = VL(IE) IE) = PL(IE) (IJE5.EQ.6.	OR . IJE5	. EQ . 5 ) TH	EN			2509 2510 2511 2512 2513
2513 2514 2515 2516 2517	271 272 273 274 275 C	UR( VR( PR(	IE ) = RL( IE ) IE ) = - UL( IE ) IE ) = VL( IE ) IE ) = PL( IE )	)					2515 2514 2515 2516 2517
2518 2519 2520 2521	276	END IF 200 CONTIN	JE NE2 + 1						2518 2519 2520 2521
2522 2523 2524 2525	280 281 282 C 283 C	NE2 - 1 90 CONTIN	NE2 + NOFVEE( INE	+ 1 )		******	****		2522 2523 2524 2525
2526 2527 2528 2529	284 C 285 C 286 C 287 C	EXIT P	DINT FROM SUBROUTI	NE			* * * * *		2526 2527 2528 2529
2530 2531 2532 2533	288 289 C 290 C 291 C								2530 2531 2532 2533

Thu Jul	1 14:15:55	1993	gradhd.f		SUBROUTINE	FCHART	ţ	bage	36
2534	292	END							2534
Thu Jul	1 14:15:55	1993	gradhd.f		SUBROUTINE	PRLCTN			
2535	1	SUBROUT	INE PRLCTN						2535
2536 2537	2 C 3 C					I			2536 2537
2538	4 C								2538
2539 2540	5 C 6 C	PRECIN		PARTICLES LOC THE FIRST TIM		COMPUTATION I			2539 2540
2541	7 C					ļ			2541
2542 2543	8 C 9 C								2542 2543
2544	10	include		.h'					2544
2545 2546	11 12	include include	cint00	.h'					2545 2546
2547	13	include		.h'					2547
2548 2549	14 15 C	include	cphs20						2548 2549
2550		********	*************		***********				2550
2551 2552	17 C 18	IPT = 0	)						2551 2552
2553	19	DO 110	IPRTCL = 1 ,	NPT					2553
2554 2555	20 C 21	IDUM =	0						2554 2555
2556	22	DO 130	IS = 1 , $NS$	THEN					2556
2557 2558	23 24 C	1+( 100	M.EQ.0)	IHEN					2557 2558
2559	25		IS( 1 , IS )						2559
2560 2561	26 27		IS(2, IS) IS(3, IS)						2560 2561
2562	28 C								2562
2563 2564	29 30	X1 = XV Y1 = XV	(1, IV1) (2, IV1)						2563 2564
2565	31	X2 - XV	(1.IV2)						2565
25 <del>66</del> 2567	32 33 C	¥2 = XV	(2,1V2)						2566 2567
2568	34	XX = (	X2 - X1 )						2568
2569 2570	35 36 C	XXP = (	APRILL( 1 .	IPRTCL ) - X	1)				2569 2570
2571	37	YY = (	Y2 - Y1 )		• `				2571
2572 2573	38 39 С	TTP = (	APRILL 2.	IPRTCL ) - Y	1)				2572 2573
2574	40 41 C	A1 = XX	( * YYP - YY	* XXP					2574 2575
2575 2576	41 C 42	X1 - XV	(1, IV2)						2576
2577 2578	43	Y1 = XV	(2, IV2)						2577 2578
2579	44 45		(1, IV3) (2, IV3)						2579
2580 2581	46 C 47								2580 2581
2582	48		X2 - X1 ) XPRTCL( 1 .	IPRTCL ) - X	1)				2582
2583 2584	49 C 50		Y2 - Y1 )						2583 2584
2585	51	YYP = (	XPRTCL ( 2 ,	IPRTCL ) - Y	1)				2585
2586 2587	52 C 53		( * YYP - YY						2586 2587
2588	54 C			<i></i>					2588
2589 2590	55 56		(1, IV3) (2, IV3)						2589 2590
2591	57	X2 = XV	(1, IVI)						2591
2592 2593	58 59 C	Y2 = XV	(2, IVI)						2592 2593
2594	60	XX = (	X2 - X1 )						2594
2595 2596	61 62 C	XXP = (	XPRICL( 1,	IPRTCL ) - X	1 ]				2595 2596
2597	63		Y2 - Y1 )	100121	• \				2597
2598 2599	64 65 C	YYP = (	XPRICE( 2 ,	IPRTCL ) - Y	1)				2598 2599
2600	66	A3 = XX	( * YYP - YY	* XXP					2600 2601
2601 2602	67 C 68	IA1 = I	NT( SIGN( 1.	1 , A1 ) )					2602
2603 2604	69	[A2 - [	NT( SIGN( 1.	1 , A2 ) )					2603 2604
2004	70	143 <b>m</b> 1	NT( SIGN( 1.	1 1 10 1 1					2004

Thu Jul	1 14:1	5:55 199	3 gradhd.f SUBROUTINE PRLCTN	page	37
2605	71	L	AJ = IA1 + IA2 + IA3	-	2605
2606	72	C			2606
2607	73		F(IAJ.EQ.3) THEN		2607
2608 2609	74 75		PT = IPT + 1 JKPRT( IPT ) = IS		2608 2609
2610	76	X	PRTCL(1, IPT) = XPRTCL(1, IPRTCL)		2610
2611	77	X	PRTCL(2, IPT) = XPRTCL(2, IPRTCL) PRINT *, XPRTCL(1,IPT),XPRTCL(2,IPT),IJKPRT(IPT)		2611
2612 2613	78 79	C I	PRINT ", XPRICL(1,1PT),XPRICL(2,1PT),IJKPRI(1PT) DUM = 1		2612 2613
2614	80		ND IF		2614
2615	81		ND IF		2615
2616 2617	82 83	C 130 C	ONTINUE		2616 2617
2618	84	110 C	ONTINUE		2618
2619	85	N			2619
2620 2621	86 87	C	PRINT *, NPT,(XPRTCL(1,IPT),XPRTCL(2,IPT),IPT=1.NPT) WRITE (10.*) NPT,(XPRTCL(1,IPT),XPRTCL(2,IPT),IPT=1,NPT)		2620 2621
2622	88	č			2622
2623	89	C			2623
2624 2625	90 91	C E	XIT POINT FROM SUBROUTINE		2624 2625
2626	92	-			2626
2627	93		ETURN		2627
2628 2629	94 95	С - С			2628 2629
2630	96	-			2630
2631	97	E	ND		2631
Thu Jul	1 14:	15:55 199	3 gradhd.f SUBROUTINE PRPTHC		
2632	1		UBROUTINE PRPTHC		2632
2633	2 3	C	*****		2633
2634 2635	3 4	C	**************************************		2634 2635
2636	5	C	PRPTHC TRACE PARTICLES PATH IN THE COMPUTATION DOMAIN		2636
2637	6	ç	Į		2637
2638 2639	7 8	C	······································		2638 2639
2640	ğ		nclude 'cmsh00.h'		2640
2641	10		nclude 'chyd00.h' nclude 'cint00.h'		2641
2642 2643	11 12		nclude 'cint00.h' nclude 'cphs10.h'		2642 2643
2644	13	i	nclude 'cphs20.h'		2644
2645	14				2645
2646 2647	15 16		O 110 IPRTCL = I , NPT FIND = 0		2646 2647
2648	17				2648
2649	18		$0 \ 110 \ \text{IK} = 1 \ , \ 3$		2649
2650 2651	19 20		FIND = 0 JE5 = 0		2650 2651
2652	21	I	S = IJKPRT( IPRTCL )		2652
2653	22		P = XPRTCL(1, 1PRTCL)		2653
2654 2655	23 24	C	P = XPRTCL(2, IPRTCL)		2654 2655
2656	25	D	$0 \ 120 \ IJ = 1$ , 3		2656
2657 2658	26		E = JS(IJ + 3, IS)		2657 2658
2658 2659	27 28	C 1	F( 1E . GT . 0 ) THEN		2659
2660	29	С			2660
2661	30		VI = JE(1, IE)		2661
2662 2663	31 32	C	V2 = JE(2, IE)		2662 2663
2664	33	Х	1 = XV(1, IVI)		2664
2665	34	Y	1 = XV(2, IV1)		2665
2660 2657	35 36		2 = XV(1, IV2) 2 = XV(2, IV2)		2666 2667
2668	37	с '			2668
2669	38		X = (X2 - X1)		2669
2670 2671	39 40	C X	XP = (XP - X1)		2670 2671
2672	41	¥.	Y = (Y2 - Y1)		2672
2673	42		YP = ( YP - Y1 )		2673 2674
2674 2675	43 44	C A	а = XX * УУР - YY * XXР		2675
	• •				

Thu Jul	1 14:15:	55 1993	gradhd.f	SUBROUTINE PRPTHC	page	38
2676	45	IF(	A . LT . 0. )	) THEN		2676
2677	46	IJK	PRT( IPRTCL )	≠ JE(4, IE)		2677
2678 2679	47 48		5 = JE( 5 , IE V = 1. / XE( 1			2678
2680	49		ND = KFIND + 1			2679 2680
2681	50	END	IF			2681
2682 2683	51 C 52	ELS	F			2682
2684	53 C					2683 2684
2685	54	IV1	= JE(2, -1)			2685
2686 2687	55 56 C		= JE( 1 , - 1	it )		2686
2688	57	X1 -	- XV( 1 , IV1	)		2687 2688
2689 2690	58 59		• XV( 2 , IV1	2		2689
2691	60		• XV( 1 , IV2 • XV( 2 , IV2			2690 2691
2692	61 C			,		2692
2693 2694	62 63		• ( X2 - X1 ) • ( XP - XI )			2693
2695	64 C	~^F	- ( AF - AI )			2694 2695
2696	65		• ( Y2 - Y1 )			2696
2697 2698	66 67 C	YYP	= ( YP - Y1 )			2697
2699	68	A =	XX * YYP - YY	/ * XXP		2698 2699
2700 2701	69 70		A . LT . 0. )			2700
2702	71		i = JE(5, -)	= JE(3, - IE) IF)		2701 2702
2703	72	XRE	/ = 1. / XE( 1	, - IE )		2703
2704 2705	73 74	KFIN END	ID = KFIND + 1			2704
2706	75	END	-			2705 2706
2707 2708	76 C 77 1	130 0001				2707
2709	78 C	120 CON1	INUE			2708 2709
2710	79			0. AND. IJE5. NE. 0) THEN		2710
2711 2712	80 81 C	IJKF	RT( IPRTCL )	= IS		2711
2713	82	AA -	× X2 – X1			2712 2713
2714 2715	83 84		Y2 - Y1			2714
2715	85		× XP - X1 • YP - Y1			2715 2716
2717	86	TREV	= ( CC * AA	+ DD * BB ) * XREV * XREV		2717
2718 2719	87 88		BB . NE . O. CP = X1 + TRE			2718
2720	89			L) = XP + 1.1 * ( XPRTCP - XP )		2719 2720
2721 2722	90 91	END	1			2721
2723	92		AA . NE . O. CP = Y1 + TRE			2722 2723
2724	93	XPRT	CL( 2 , IPRTC	L ) * YP + 1.1 * ( YPRTCP - YP )		2724
2725 2726	94 95 C	END	11			2725 2726
2727	96	END				2727
2728 2729	97 1 98 C	10 CONT	INUE			2728
2730	99	DO 1	80 IPRTCL = 1	. NPT		2729 2730
2731 2732	100 C 101	10	1 10001/ 1001	C1 \		2731
2733	101		IJKPRT( 1PRT( CL = HYDV( IS			2732 2733
2734	103		CL = HYDV( IS			2734
2735 2736	104 C 105	XPRT	CL( 1 . TPRTCI	L ) = XPRTCL( 1 , IPRTCL ) + UPRTCL * DTT		2735 2736
2737	106	XPRT	CL(2, IPRTCI	L) + XPRTCL(2, IPRTCL) + VPRTCL * DTT		2737
2738 2739	107 1 <b>08</b>	WPRT	CL( 1 , IPRTCI CL( 2 , IPRTCI	L) = UPRTCL		2738
2740	109 C	96.61	art r i truici	L / - VINILL		2739 2740
2741 2742	110		100  IK = 1, 3			2741
2742	111 112	XP =	IJKPRT( IPRT( XPRTCL( 1 , 1	LC / IPRTCL )		2742 2743
2744	113	YP =	XPRTCL( 2 , 1			2744
2745 2746	114 115	KFIN IJE5	D = 0 = 0			2745 2746
2747	116 C					2740
2748 2749	117 118		70 IJ = 1 . 3 JS( IJ + 3 .	( 21		2748 2749
<b>L</b> · · · ·		10 -	AN 10 . 2 *			6/45

2750       119       C       If (IE., GI., D.) THEN       2750         2751       102       C       If (IE., GI., D.) THEN       2751         2753       102       VI JE (I.) [E.)       2754         2754       123       VI JE (I.) [E.)       2754         2755       124       C       2756         2756       125       VI XV (I., VI.)       2756         2756       125       X XV (I., VI.)       2756         2761       130       C       X (X - XI.)       2760         2761       130       C       Y (Y - YI.)       2761         2766       135       C       Y (Y - YI.)       2766         2767       136       C       X (KZ - XI.)       2766         2768       135       C       A - XX * YP - YY * XXP       2766         2766       135       C       A - XX * YP - YY * XXP       2766         2777       134       C       EXE       2777         2778       135       C       A - XX * YP - YY * XXP       2776         2777       143       C       C       2777         2777       144       C       2777       2777	Thu Jul	1 14:	15:55	1993 gradhd.f	SUBROUTINE PRPTHC page	39
2751       120       IF(IE.GT.0) THEN       2752         2752       122       IVI - JE(1.IE)       2753         2753       122       IVI - JE(1.IE)       2753         2753       123       IVI - JE(1.IE)       2753         2753       123       IVI - JE(1.IVI)       2753         2754       125       IVI - JE(1.IVI)       2753         2755       125       IVI - JE(1.IVI)       2753         2757       125       IVI - JE(1.IVI)       2753         2759       126       IVI - JE(1.IVI)       2753         2750       126       IVI - VI - IVI)       2764         2761       130       IVI - (Y2 - Y1)       2764         2765       132       C       IVI - VI - VI)       2764         2766       135       IVI - (Y2 - Y1)       2766       2766         2771       136       A - XX + YP - YY + XXP       2766       2766         2771       136       IVI - IF(A, II-E)       2773       2774         2771       140       KFINO - KFINH + I       IE)       2773         2773       142       END IF       2773       2774         2777       144       C	2750	119	C			2760
2753       122 $VII - JE(1, IE)$ 2754         2754       123 $VIZ - IE(2, IE)$ 2755         2755       124       C       2755         2757       125       125       2757         2757       126       X1 - XV(1, IV1)       2750         2757       125       Y2 - XV(2, IV2)       2759         2750       126       Y2 - XV(2, IV2)       2750         2756       126       Y2 - XV(2, IV2)       2760         2756       125       YP - (Y2 - Y1)       2761         2766       136       YP - (Y2 - Y1)       2763         2766       137       ILMCPAI(IPATCL) - ME(4, IE)       2766         2776       136       A - XX + YP - YY + XXP       2766         2776       136       A - XX + YP - YY + XXP       2766         2777       136       ILMCPAI(IPATCL) - ME(4, IE)       2770         2771       136       ILMCPAI(IPATCL) - ME(4, IE)       2770         2771       140       METMO - KENMO + IE       2771         2775       145       C       2775         2775       145       C       2775         2776       145       C	2751	120		IF( IE . GT . 0 ) TH	IEN	2751
2754       123 $1V2 - JE(2, IE)$ 275         2755       125       C       275         2756       125       11       11         2757       126       Y1 - XV(2, IU1)       275         2758       126       Y1 - XV(2, IU1)       275         2759       126       Y2 - XV(2, IU2)       2760         2760       129       C       XX - (X2 - XI)       2760         2761       130       XX - (X2 - XI)       2761       2762         2764       130       YY - (Y2 - YI)       2764       2763         2764       133       C       YY - (Y2 - YI)       2764         2764       135       C       A - XX + YYP - YY + XXP       2767         2764       135       LiJES - JE(5, IE)       2770       2769         2771       140       XREY - I, / XE(1, IE)       2771         2774       142       ELSE       2775       2775         2775       144       ELSE       2775       2775       2776       145       2776         2777       146       IVI - JE(2, - IE)       2776       2776       2776       2777         2778       147	2752		C	IV1 - JE( 1 . IE )		
2755       125       X1 - XV(1, 1 VL)       2757         2757       126       Y1 - XV(2, 1VL)       2757         2758       127       X2 - XV(1, 1VZ)       2759         2751       126       Y2 - XV(2, 1VZ)       2759         2751       126       X2 - (X2 - X1)       2760         2761       130       C       X (X2 - X1)       2761         2762       133       C       YP - (YP - X1)       2762         2764       133       C       YP - (YP - Y1)       2763         2765       136       YP - (YP - Y1)       2766       2766         2766       135       C       2766       2766         2771       136       LMCPAI(1 PARCL) + ME(4 + IE )       2760         2771       140       MCPIMO - KFIMO + IE )       2770         2771       141       KFIMO - KFIMO + IE )       2777         2771       142       ELSE       2777         2772       144       ELSE       2779         2778       147       ELV + JU(1 + JU(1 + IE )       2779         2780       145       C       2779         2781       142       ELV + JU(1 + JU(2 + ZI(1 + IE )       2779	2754	123	-			2754
275       126 $Y1 - XV(2,  VI )$ 275         275       127 $XV(1,  VV )$ 275         276       120 $XX + XV(1,  VV )$ 275         276       130 $XP - (X2 - X1)$ 276         276       131 $XP - (Y2 - Y1)$ 276         276       132 $VY - (Y2 - Y1)$ 276         276       133 $VY - (Y2 - Y1)$ 276         276       135 $C$ $XX + YYP - YY + XXP$ 276         276       135 $C$ $XX + YYP - YY + XXP$ 276         276       135 $C$ $XX + YYP - YY + XXP$ 276         276       135 $C$ $XX + YYP - YY + XXP$ 276         276       136 $VYP - (YP - Y1)$ 276       276         277       137 $LKS + L(S + L(L + LE )$ 277         277       140 $KWP - 1 (X + X(1 + IE )$ 277         277       141 $KFNP - YY + YX + XY$ 277         277       144       C       277       277         277       144       C       277       277         278       145		-	C	$x_1 = x_V(1) = t_V(1)$		
2759       12 $X^2 - XV(1,  VZ )$ 2759         2750       120       C $XV - (XZ - XI)$ 2760         2761       120       C $XV - (XZ - XI)$ 2761         2762       131       C $XV - (YZ - YI)$ 2763         2764       132       C $YV - (YZ - YI)$ 2763         2766       134       YVP - (YP - YI + XXP       2766         2767       136 $A = XX + YVP - YY + XXP$ 2766         2768       131       LARPAT(LPTEL) - JE(4, LE)       2766         2771       135       LARPAT(LPTEL) - JE(4, LE)       2766         2773       142       END IF       2777       2770         2774       143       C       2777       2777         2777       144       ELSE       2777       2777         2776       145       C       2778       2779         2778       147       C       1.4       2.7       2779         2778       147       C       C       2779       2779         2779       147       C       2779       2779       2779         2780       150       XX - (Y - XI) <td>2757</td> <td></td> <td></td> <td>Y1 = XV(2, IV1)</td> <td></td> <td></td>	2757			Y1 = XV(2, IV1)		
2760       129       C       XX - (XZ - XI)       2761         2761       130       XXP - (XZ - XI)       2761         2765       131       XXP - (YZ - YI)       2763         2764       133       YY - (YZ - YI)       2763         2765       134       YYP - (YY - XXP       2763         2766       135       C       A = XX + YYP - YY + XXP       2765         2766       136       C       A = XX + YYP - YY + XXP       2766         2766       137       C       A = XX + YYP - YY + XXP       2766         2776       138       LIMPART (IPTCL) - JE(4 + IE)       2770         2771       140       KFINO - SFINO + 1       2772         2773       142       C       2777         2776       143       C       2776         27776       144       C       2776         2778       144       C       2776         2778       144       C       2776         2778       147       IV2 - XV(2 - IE)       2778         2780       150       X1 - XV(1 / IV2)       2783         2781       150       Y1 - ZY + XYP       2780         2782						2758
2761       130 $XX - (X2 - X1)$ 2762         2762       131 $XP - (XP - X1)$ 2763         2764       133 $C$ $YP - (YP - Y1)$ 2763         2765       136 $C$ 2764       2764         2765       136 $C$ 2766       2766         2766       136 $C$ $XX + YVP - YY + XXP$ 2766         2769       136 $A + XX + YVP - YY + XXP$ 2766       2769         2769       136 $A + XX + YVP - YY + XXP$ 2766       2769         2770       140       XFVP - I, I / XE(1 + IE )       2771       140       XFVP - I / YZ + XI(1 + IE )       2773         2777       144       EENE F       2775       2776       145       C       2777         2776       145       C II - JE )       2777       2776       2777       147       2777       2778       147       147       2772       2777       147       2772       2777       147       147       2772       2777       147       147       2772       2777       147       2772       2777       147       2772       2777       147       2777       2777 <td>2760</td> <td></td> <td>С</td> <td>12 = X4( C , 14C )</td> <td></td> <td></td>	2760		С	12 = X4( C , 14C )		
2763       132       C       C       2763         2764       133       YY - (Y2 - Y1)       2765         2765       134       YY - (Y - Y1)       2765         2766       137       Tf (A - LT . 0.) THEN       2766         2767       136       LakeR1(IPRICL) - JE(4 - LE)       2769         2771       130       LJES - JE(5 - LE)       2770         2771       140       KFINO - KFINO + I       2771         2773       142       END - KFINO + I       2771         2773       143       C       END - KFINO + I       2773         2774       144       ELSE       2776       2773         2774       144       ELSE       2776       2776         2777       146       IV2 - JE(1 IE)       2776       2776         2778       147       IV2 - JE(1 - IE)       2776       2776         2778       147       IV2 - JE(1 - VI )       2776       2776         2780       149       X1 - VI (2 / VI )       2776       2776         2781       150       Y1 - VI / VI )       2780       2780         2781       151       X2 - VI (2 / VZ - VI )       2784       2786		_				2761
2764       133 $YY - (Y2 - Y1)$ 2766         2765       134 $YY - (YP - Y1)$ 2765         2766       135       C $Y - (YP - Y1)$ 2765         2766       137       IF(A., LT.O.) THEN       2766         2767       138       LAREAT(L PRICL ) - JE(4 L IE )       2770         2771       140       XREY - L./ XE(1 , IE )       2771         2773       142       ELSE       2771         2774       143       C       ELSE       2771         2774       144       ELSE       2774       2774         2778       147       IV2 - JE(1 , - IE )       2773       2776         2778       147       IV2 - JE(1 , - IE )       2774       2776         2778       147       IV2 - JE(1 , - IE )       2776       2776         2778       147       IV2 - Z. IV1 )       2780       2780         2781       150       Y1 - YY(2 , IV1 )       2780       2783         2784       153       C       2784       2783         2785       154       XX + (X2 - X1)       2786         2786       155       XP - (YP - Y1 )       2784	2763		С	AAF = ( AF = A1 )		
2766         135         C         2766           2767         136         A = XX * YYP - YY * XXP         2760           2768         137         IF(A.:LT.0.) THEN         2760           2769         139         LJES = JE(5, IE)         2770           2771         140         XREY = I.(, XE(I, IE)         2771           2772         141         KFINO = KFINO + I.         2771           2773         142         C         ND IF         2772           2774         143         C         ELSE         2776           2776         144         C         IV1 = JE(2, - IE)         2776           2776         144         C         IV2 = JE(1, - IE)         2776           2778         144         C         IV2 = JE(2, - IE)         2776           2778         144         C         IV1 = JE(2, - IE)         2776           2780         150         Y1 = XY(2, -IV1)         2778         2778           2784         150         Y1 = XY(2, -IV1)         2783         2783           2784         150         XX = (X2 - XI)         2784         2785           2786         154         XX = (X2 - XI)         2786 <td></td> <td></td> <td></td> <td></td> <td></td> <td>2764</td>						2764
2767       136       A = XX * YYP - YY * XXP       2767         2768       137       IF (A : LT . 0. ) THEN       2769         2770       138       LJKPRT(IPRTCL) = JE (4 : IE )       2779         2771       140       XREV = 1. / XE (1 : IE )       2771         2771       140       XREV = 1. / XE (1 : IE )       2772         2773       142       END IF       2773         2775       144       ELSE       2775         2776       147       C       2777         2777       146       UI = JE (2 , - IE )       2776         2777       146       C       2775         2777       146       C       2776         2777       146       UI = JE (2 , - IE )       2776         2778       149       XI = XV (1 . IVI )       2780         2781       159       XI = XV (2 . IVI )       2781         2783       153       C X = XV (2 . IVI )       2781         2784       153       C XP - (XP - XI )       2786         2789       154       XP - (YP - YI )       2782         2789       155       XPP - (YP - YI )       2796         2791       160       A = XX			C	11P = ( 1P - 11 )		
2760138IJKPRT( I) - J(4, I, IE)27762770139IJKP - I, / XE (I, IE)27712771140XEV - I. / XE (I, IE)27712773142END IF27712773143C27732774144ELSE27752775144C27762776147IVI = JE (2, - IE)27762777146IVI = JE (2, - IE)27772778147IVI = JE (2, - IE)27772779148C27782770148C27782771150YI = XV (1, IVI )27802778150YI = XV (2, IVI )27812781150YI = XV (2, IVI )27822783152YZ = XV (2, IVZ )27842784153C27762785154XX = (XZ = XI )27862786155XXP = (YP - YI )27862786159C27902791160A = XX * YP - YY * XXP27912792161IJ (A, II, I.O, I)1162793162IJAPRT (IPATCL) = JC (3, - IE)27932794153JAPRT (IPATCL) = JC (3, - IE)27942795164XREV - I. / XE (1, - IE)27952795164XREV - I. / XE (1, - IE)27952796167C27992797166END IF280028001170CONTINUE280428010 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>2767</td>						2767
2770       139       IJE 5 - JE (5 , IE )       2770         2771       140       KF HMD - K (F HD + 1       2772         2772       141       KF HMD - K (F HD + 1       2772         2774       143       C       2773         2774       144       ELSE       2773         2774       144       ELSE       2775         2776       145       C       2777         2777       147       IV2 - JE (1 , - IE )       2776         2778       147       IV2 - JE (1 , - IE )       2778         2778       147       IV2 - JE (1 , - IE )       2778         2778       147       IV2 - JE (1 , - IE )       2778         2780       150       Y1 - XV (2 , IV1 )       2780         2781       153       C       XX - (XZ - XI )       2780         2786       155       XXP - (XP - XI )       2780       2780         2787       156       C       2780       157       2780         2780       159       C       XX - (XZ - XI )       2780       2780         2780       159       C       2791       2780       2791       2792         2793       151 <td></td> <td></td> <td></td> <td>$IF(A \cdot LI \cdot U \cdot ) = J$ IJKPRT( IPRTCL ) = J</td> <td>HEN IE(4, TE)</td> <td></td>				$IF(A \cdot LI \cdot U \cdot ) = J$ IJKPRT( IPRTCL ) = J	HEN IE(4, TE)	
2773       141       KFIND + KFIND + 1       2772         2774       143       C       2773         2774       143       C       2773         2775       144       ELSE       2775         2776       145       C       2775         2776       145       C       2775         2777       146       UV = JE(2, - HE)       2777         2778       147       UV = JE(1, - HE)       2777         2780       149       X1 = XV(1, IV1)       2780         2781       150       Y1 = XV(2, IV1)       2780         2783       152       Y2 = XV(2, IV2)       2783         2784       153       C       X2 = XV1       2783         2785       154       XX = (X2 - X1)       2786       2787         2786       155       XXP = (Y2 - Y1)       2788       2790         2789       158       YY = (Y2 - Y1)       2789       2789         2790       159       C       A = XX * YP - YY * XXP       2791       2792         2791       163       LJES + JE(5 - FE)       2793       163       LJES + JE(5 - FE)       2793         2795       164 <td< td=""><td>2770</td><td>139</td><td></td><td>IJE5 = JE(5, IE)</td><td></td><td>2770</td></td<>	2770	139		IJE5 = JE(5, IE)		2770
2773       142       END IF       2775         2774       143       C       2776         2775       144       C       ELSE       2776         2777       145       C       111       2776       2776         2777       145       C       112       216       1.       2776         2779       146       C       2777       2778       2778       2778         2781       150       Y1 - XV(2, 1V1)       2778       2778       2778         2781       150       Y1 - XV(2, 1V1)       2780       2778       2783         2782       151       X2 - XV(1, 1V2)       2780       2783       2783       2785         2785       154       XX - (X2 - X1)       2786       2787       2786       2787         2786       155       XX - (Y2 - Y1)       2788       2789       2790       159       C       2791       160       A - XX * YP - YY * XXP       2791         2792       161       IF(A, LT, 0., ) THEN       2792       2793       163       IJEE * JEC(S, - 1E)       2793         2794       163       IJEE * JEC(S, - 1E)       2793       2795       166       KFIND +					IE )	
2775       144       ELSE       2776         2776       145       C       2776         2777       146       IV2 - JE(1, - IE)       2778         2778       147       IV2 - JE(1, - IE)       2778         2779       148       C       2778         2780       149       VI - JV(1, IV1)       2780         2781       150       Y1 - XV(1, IV1)       2780         2782       151       X2 - XV(1, IV2)       2781         2783       152       Y2 - XV(2, IV2)       2781         2784       153       C       2786         2785       154       XX - (X2 - X1)       2782         2786       155       XX - (X2 - X1)       2783         2786       157       YY - (Y - Y1)       2783         2788       157       YY - (Y - Y1)       2783         2790       159       C       2791       160       A - XX * YP - YY * XXP       2791         2792       161       IF(A, LT, 0, ) THEN       2792       2793       163       ILES * JE(5, - IE)       2793         2794       163       ILES * JE(5, - IE)       2794       2795       2795         2795	2773	142				
2776145C27762778147 $ V2 = JE(1, -IE)$ 27772778147 $ V2 = JE(1, -IE)$ 27782779148C27792781149 $XI = XV(1, IV1)$ 27802781150 $XI = XV(2, IV1)$ 27812782151 $XZ = XV(1, IV2)$ 27812784152 $YZ = XV(2, IV2)$ 27832784152 $YZ = XV(2, IV2)$ 27852785154 $XX = (XZ - XI)$ 27862786155 $XX = (YZ - YI)$ 27862787156C $YY = (YZ - YI)$ 27892790150C27912791160 $A = XX + YYP - YY + XXP$ 27912792161 $IF(A, I, I, 0, )$ $HEN$ 27922793162 $IJAVPRT(IPRTCL) = JE(3, -IE)$ 27932794163 $IJES - JE(S, G, -IE)$ 27932795164 $XREV = I, XE(1, -IE)$ 27952796165 $KFIND = KFIND + 1$ 27962797166 $END IF$ 27982798170 $C$ $RA = X2 - XI$ 2800169170 $C$ $AA = X2 - XI$ 2801170 $C$ $AA = X2 - XI$ 28032806175 $BB = Y2 - YI$ 28032806175 $BB - Y2 - YI$ 28062807176 $C = XA + AD + BB ) + XREV + XREV28032808177OO - YP - YI28132814183IF(AA . NE .$			C	FISE		-
2778147 $IV2 = JE(1, -IE)$ 27792780148C2792781150Y1 = XV(1, IV1)27802781150Y1 = XV(2, IV1)27812781152Y2 = XV(1, IV2)27822781152Y2 = XV(2, IV2)27832784153C27842785154XX = (X2 - X1)27852786155XX = (X2 - X1)27862787156C27892790159C27912791160A = XX * YYP - YY * XXP27912792161IF(A, LT) - O, THEN27922793162IJAPRT(IPRTCL) - JE(3, -IE)27932794163LJES - JE(5, -IE)27932795164XREV - I. / XE(1, -IE)27952796165KFIND + KFIND + 127962797166END IF27982798167C27932799166END IF27982800169170CONTINUE2801170CA + X2 - X12806173C28042807176CC + XP - X12808177OD - YP - Y12809180YP - YI + TREV + AA2801170CC * AA + DD * BB ) * XREV * XREV2803170OD - YP - Y12804173C2805174AA - X2 - X12806175BB + Y2 - Y12811180	2776	145	C			
2779148C27762780149X1 - XV(1, IV1)27802781150Y1 - XV(2, IV1)27812782151X2 - XV(1, IV2)27822783152Y2 - XV(2, IV2)27832784153C27842785154XX - (X2 - X1)27852786155XXP - (XP - X1)27862787156C27872788157YY - (Y2 - Y1)27882789158YYP - (YP - Y1 + XXP27892790159C27932791160A - XX * YYP - YY * XXP27912792161IF(A, LT, O, ) THEN27922793162IJKPRT(IPTCL) - JE(3, - IE)27932794163LIGE * JE(5, - IE)27942795164XREV + I. / XE(1, - IE)27952796END IF27962797166END IF27982800167C27932801170CIF(KFIND GT . O . AND . IJE5 . NE . 0 ) THEN28022803172IJKPRT(IPRTCL) = IS28032804177OD - YP - Y128052805174A + X2 - X128052806175B8 - Y2 - Y128052807175B8 - Y2 - Y128052808174A + X2 - X128052809175B8 - Y2 - Y128052809176C - XA + DD * BB ) * XREV * XREV2809				IV1 = JE(2, -IE) IV2 = JE(1, -IE)		
2781150 $Y1 + xy(2, 1Y1)$ 27512782151 $x2 + xy(1, 1Y2)$ 27632784153C27642785154 $xx - (x2 - x1)$ 27652786155 $xXP - (XP - x1)$ 27682787156C27672788157 $YY - (Y2 - Y1)$ 27682789158 $YYP - (YP - Y1)$ 27692790158 $YYP - (YP - Y1)$ 27692791160 $A - xx + YYP - YY + xxP$ 27902792161 $\Gamma(A - LI - 0.) THEH$ 279227931621JKPRT(1PRTCL) = JE(3, - IE)27932794163LJES - J(C 5, - IE)27942795164XREV + 1. / XE(1, - IE)27952796165KFIND + KFIND + 127962797166END IF27972798167C27982799168END IF27992800169170CONTINUE2802171IF(KFIND . GT . 0 . AND . IJE5 . NE . 0 ) THEN28032804173C28042805174AA = x2 - x128052806175BB + Y2 - Y128072807176CC = xA + AD + BB ) * XREV * XREV28092808174AA = x2 - X128072809178TREV + (CC * AA + DO * BB ) * XREV * XREV28092801176CC * AA + DO * BB ) * XREV * XREV28092801176CC * AA + DO * BB ) * XREV * X	2779	148	C			
2782151 $\chi 2 = \chi v(1, 1, V2)$ 27832783152 $\gamma 2 = \chi v(2, IV2)$ 27842784153C27842785154 $\chi X = (\chi 2 - \chi 1)$ 27862786155 $\chi X P = (\chi P - \chi 1)$ 27862787156C27872788157 $\gamma Y = (\gamma 2 - \gamma 1)$ 27882790159C27902791160 $A = \chi \chi * \gamma Y P = \gamma Y * \chi X P$ 27912792161IF(A, LT, O, ) THEN27922793162IJXPRT(IPRICL) = JE(3, - IE)27932794153LJES = JE(5, - IE)27942795154XREV = 1, V X (X (1, - IE))27952796155KFIND = KFIND + 127962797156END IF27972798157C27982799166END IF27992800169170CONTINUE2801170CONTINUE28012802171IF(KFIND, GT, O, AND, IJE5, NE, O) THEN28022803172IJXPRT(IPRICL) = IS28032804173C280428052805174AA + X2 - XI28052806173CC * X - XI28062807176CC * X - XI28052808173IF (BB, NE, O, ) THEN28062809174AA + X2 - XI28052809178TREV - (CC * AA + DD * BB ) * XREV * XREV28082809 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
2783152 $Y2 = XV(2, IV2)$ 27632784153CXX = (X2 - X1)27642785154XX = (X2 - X1)27662786155XXP = (XP - X1)27672788157YY = (Y2 - Y1)27682790159C27912791150A = XX * YYP - YY * XXP27902792161IF(A . LT . 0. ) THEN27922793162IJXPRT(IPTCL) = JE(3, - IE)27932794163IJE5 - JE(5, - IE)27932795164XREV = I. / XE(1, - IE)27932796156END IF27962797166END IF27992800169170CONTINUE2802171IF(KIND. GT. 0. AND . IJE5 . NE . 0 ) THEN28022803172IJXPRT(IPRTCL) = IS28032804173C28042805174AA = X2 - X128052806175B8 - Y2 - Y128062807176CC = XP - X128052808175B8 - Y2 - Y128082809178TREV = (CC * AA + DD * BB) * XREV * XREV28092811180XPRTCL(1 . IPRTCL) = XP + 1.1 * (XPRTCP - XP )28122811180XPRTCL(2 . IPRTCL) * XP + 1.1 * (YPRTCP - YP )28122813181XPRTCL(2 . IPRTCL) = YP + 1.1 * (YPRTCP - YP )28122814183IF(AA . NE . 0. ) THEN28132815XPRTCL(2 . IPRTCL) = YP + 1.1 * (Y	2782			X2 = XV(1, IV2)		
2785154XX = (X2 - X1)27862786155XXP = (XP - X1)27862787156C27872788157YY = (Y2 - Y1)27882789158YYP = (Y2 - Y1)27902790159C27902791160A = XX * YYP - YY * XXP27902792161IF(A. LT. 0.) THEN27922793162JJKPRT(IPRTCL) = JE(3, - IE)27932794163LJE5 = JE(5, - IE)27952795164XREY = 1. / XE(1, - IE)27962797165KFIND = KFIND + 127962797166END IF27972798167C27982799166END IF28002800169170CONTINUE2802170CONTINUE28032804172JJKPRT(IPRTCL) = IS28032804173C28042805174A = X2 - X128052806175BB = Y2 - Y128072807176CC = XP - X12807280817700 - YP - Y128122809181IF(K BB . NE . 0. ) THEN28112811180XPRTCL( 1. IPRTCL) = XP + 1.1 * (XPRTCP - XP)28122813182END IF28132814183IF(A A. NE . 0. ) THEN28132815184YPRTCP = Y1 + TREV * 8828142816185XPRTCL( 2 . IPRTCL ) = YP + 1.1 *			r	Y2 = XV(2 , IV2)		2783
2786155 $XXP = (XP - X1)$ 27862787156C???2788157YY = (Y2 - Y1)2790159C2791160A = XX * YYP - YY * XXP2792161IF(A . LI . 0.) THEN2793162IJKPRT(IPRTCL) = JE(3, - IE)2794163IJES - JE(5, - IE)2795164XREV - I. / XE(1, - IE)2796165KFIND - KFIND + 12797166END IF2798167C2799168END IF2799168END IF28001691702801170C2802111IF(K KIND . GT . 0 . AND . IJE5 . NE . 0 ) THEN2803172IJKPRT(IPRTCL) = IS2804173C2805174AA = X2 - X12806175BB = Y2 - Y12808177OD - YP - Y12809178TREV = (CC * AA + DD * BB) * XREV * XREV2809178TREV = (CC * AA + DD * BB) * XREV * XREV2809178TREV = (CC * AA + DD * BB) * XREV * XREV2811180XPRTCL(I . IPRTCL) = XP + 1.1 * (YPRTCP - XP)2812181YPRTCP - YI + TREV * AB2813182END IF2814183IF(AA . NE . 0. ) THEN2813184IPRTCL(I . IPRTCL) = YP + 1.1 * (YPRTCP - YP )281628172817186END IF281828162819180 <trr>2819&lt;</trr>	2785		C	XX = ( X2 - X1 )		
2788157YY = (Y2 - Y1)27882789158YYP = (YP - Y1)27902790159C27912791160A = XX * YYP - YY * XXP27912792161IF(A, LT . 0. ) THEN27922793162IJKPRT(IPRTCL) = JE(3, - IE)27932794163LJES = JE(5, - IE)27952795164XREV = 1. / XE(1, - IE)27952796165KFIND = KFIND + 127962797166END IF27972798167C27982799168END IF28002800169170CONTINUE2802171IF(KFIND . GT . 0 . AND . IJE5 . NE . 0 ) THEN28022803172IJKPRT(IPRTCL) = IS28032804173C28052805174AA = x2 - X128052806175BB * Y2 - Y128062807176CC = XP - X128052808177DD = YP - X128062809178TREV = ( CC * AA + DD * BB ) * XREV * XREV28092810179IF(BB . ME . 0. ) THEN28112811180XPRTCL(1 . IPRTCL) = XP + 1.1 * (YPRTCP - XP )28122813182END IF28132814183IF(AA . NE . 0. ) THEN28122815184YPRTCL(2 . IPRTCL) = YP + 1.1 * (YPRTCP - YP )28162815184YPRTCL(2 . IPRTCL) = YP + 1.1 * (YPRTCP - YP )2816 <t< td=""><td></td><td></td><td>r</td><td>XXP = (XP - X1)</td><td></td><td>2786</td></t<>			r	XXP = (XP - X1)		2786
2789158YYP = (YP - Y1)27802790159C27912791160 $A = XX * YYP - YY * XXP$ 27912792161IF(A.LT.O.) THEN27922793162JJKPRT(I PRTCL) = JE(3, - IE)27932794163IJES = JE(5, - IE)27942795164XREV = 1. / XE(1, - IE)27952796165KFIND + I27962797166END IF27972798167C27982799168END IF27992800169170CONTINUE28012802171IF(KFIND.GT.O.AND.IJE5.NE.O) THEN28022803172IJKPRT(I PRTCL) = IS28032804173C28042805174AA = X2 - XI28052806177OO * YP - YI28072808177OO * YP - YI28082809180TREV = (CC * AA + DD * BB) * XREV * XREV28082809176CC = XP - XI28072810179IF(BB.NE.O.) THEN281128112811XPRTCL(1.IPRTCL) = XP + 1.1 * (XPRTCP - XP)28122811180XPRTCP = Y1 + TREV * AA28112812181XPRTCL 2.IPRTCL) = YP + 1.1 * (YPRTCP - YP)28162813182END IF281628122814183IF(AA.NE.O.) THEN28162815184YPRTCP = Y1 + TREV * BB28162816185 <td>2788</td> <td></td> <td>L</td> <td>YY = ( Y2 - Y1 )</td> <td></td> <td></td>	2788		L	YY = ( Y2 - Y1 )		
2791160 $A = XX * YYP - YY * XXP$ 27912792161IF(A.LT.O.) THEN27922793162JJKPRT(I (PRTCL) = JE(3, - IE))27932794163LJE5 = JE(5, - IE)27942795164XREV = 1. / XE(1, - IE)27962796165KFIND + I27962797166END IF27972798167C27982799168END IF27992800169170CONTINUE28012801170CXIEPRTCL) = JS28022803172JJKPRT(I PRTCL) = JS28042804173C28042805174AA = X2 - XI28052806175BB = Y2 - YI28062807176CC - XP - XI28072808177D0 + YP - YI28082809178TREV = ( CC * AA + DD * BB ) * XREV * XREV28092801180XPRTCP - XI + TREV * AA28112811180XPRTCP - XI + TREV * AA28112812181XPRTCL(1 , IPRTCL) = XP + 1.1 * (YPRTCP - XP )28122814183IF(AA.NE.O.) THEN28132814183IF(AA.NE.O.) THEN28132814183IF(AA.NE.O.) THEN28142815184YPRTCP - YI + TREV * BB28142816185XPRTCL(2 , IPRTCL) = YP + 1.1 * (YPRTCP - YP )28162817186END IF28172818			r i	YYP = ( YP - Y1 )		2789
2793162 $IJKPRT(IPRTCL) = JE(3, -IE)$ 27932794163 $IJES = JE(5, -IE)$ 27942795164 $XREV = I. / XE(1, -IE)$ 27952796165 $KFIND = KFIND + 1$ 27962797166END IF27972798167C27982799168END IF27992800169170CONTINUE28002801170CONTINUE28022802171IF(KFIND.GI.O.AND.IJE5.NE.O) THEN28022803172JKPRT(IPRTCL) = IS28032804173C28042805174AA = X2 - X128052806175BB = Y2 - Y128062807176CC = AP - X128072808177OO = YP - Y128082809178TREV = (CC * AA + DD * BB) * XREV * XREV28082809178TREV = (CC * AA + DD * BB) * XREV * XREV28092811180XPRTCP = X1 + TREV * AA28112812181XPRTCL(1, IPRTCL) = XP + 1.1 * (XPRTCP - XP)28122813182EMD IF28132814183IF(AA.NE.O.) THEN28152815184YPRTCP = Y1 + TREV * BB281528162817186END IF28162817186END IF281628172818187C281828172819180CONTINUE281928192820189 <td>2791</td> <td></td> <td>v</td> <td>A = XX * YYP - YY *</td> <td></td> <td></td>	2791		v	A = XX * YYP - YY *		
2794       163       IJES = JE(5, - IE)       2794         2795       164       XREW = 1. / XE(1, - IE)       2795         2796       165       KFIND = KFIND + 1       2796         2797       166       END IF       2797         2798       167       C       2798         2799       168       END IF       2797         2798       167       C       2798         2799       168       END IF       2799         2800       169       170       CONTINUE       2800         2801       170       C       IF(KFINDGT.O.AND.IJES.NE.O.) THEN       2802         2803       172       IJKPRT(IPRICL) = IS       2803       2804         2805       174       AA = X2 - XI       2805       2805         2806       175       BB = Y2 - Y1       2806       2807         2807       176       CC = XP - X1       2806       2807         2808       177       DO + YP - Y1       2806       2807         2809       181       180       XPRTCP - X1 + TREV * AA       2810         2811       180       XPRTCP - Y1 + TREV * AA       2811         2811       16						
2795       164       XREV - 1. / XE(1, - IE)       2795         2796       165       KFIND = KFIND + 1       2796         2797       166       END IF       2797         2798       167       C       2798         2799       168       END IF       2799         2800       169       170       CONTINUE       2800         2801       170       C       IF(KFIND.GI.O.AND.IJE5.NE.O) THEN       2802         2803       122       JJKPRT(IPRICL) = IS       2803       2804         2805       174       A4 = X2 - XI       2805       2804         2805       174       A4 = X2 - XI       2806       2807         2806       175       B8 Y2 - Y1       2806       2807         2806       177       D0 = YP - Y1       2806       2807         2807       176       CC = XP - X1       2807       2807         2808       177       D0 = YP - Y1       2808       2807         2809       180       TREV = (CC * AA + DD * BB) * XREV * XREV       2809         2810       179       IF(BB . NE . 0.) THEN       2810         2811       180       XPRTCP - X1 + TREV * AA       2811						
2797       166       END IF       2797         2798       167       C       2798         2799       168       END IF       2800         2800       169       170       CONTINUE       2800         2801       170       C       2801       2802         2802       171       IF(KFIND.GT.O.AND.IJE5.NE.O) THEN       2802         2803       172       JJKPRT(IPRTCL) = JS       2803         2804       173       C       2804         2805       174       AA = X2 - X1       2805         2806       175       BB = Y2 - Y1       2806         2807       176       CC = XP - X1       2807         2808       177       DO = YP - Y1       2808         2809       178       TREV = (CC * AA + DD * BB) * XREV * XREV       2809         2810       179       IF(BB.NE.O.) THEN       2810         2811       180       XPRTCP - X1 + TREV * AA       2810         2811       180       XPRTCL(1 . IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2812         2813       182       END IF       2813       2814         2815       184       YPRTCP = YI + TREV * BB       2815       2815 </td <td></td> <td></td> <td></td> <td>XREV = 1. / XE( 1 ,</td> <td>- IE )</td> <td></td>				XREV = 1. / XE( 1 ,	- IE )	
2798       167       C       2798       2799         2800       169       170       CONTINUE       2800         2801       170       C       2801         2802       171       IF(KFIND.GI.O.AND.IJE5.NE.O) THEN       2802         2803       172       JJKPRT(IPRTCL) = IS       2803         2804       173       C       2804         2805       174       A4 = X2 - XI       2805         2806       175       BB = Y2 - YI       2805         2806       175       BB = Y2 - YI       2806         2807       176       CC = XP - XI       2807         2808       177       DD = YP - YI       2808         2809       178       TREV = (CC * AA + DD * BB) * XREV * XREV       2809         2810       179       IF(BB.NE.O.) THEN       2810         2811       180       XPRTCL(1.IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2812         2813       182       END IF       2813         2814       183       IF(AA.NE.O.) THEN       2814         2815       184       YPRTCP - YI + TREV * BB       2815         2816       185       XPRTCL(2.IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816						
2800       169       170       CONTINUE       2800         2801       170       C       2801       2801         2802       171       IF(KFIND.GT.0.AND.IJE5.NE.0) THEN       2802         2803       172       IJKPRT(IPRTCL) = IS       2803         2804       173       C       2804         2805       174       AA = X2 - XI       2805         2806       175       BB = Y2 - YI       2806         2807       176       CC = XP - XI       2808         2809       178       TREV = (CC * AA + DD * BB ) * XREV * XREV       2809         2810       179       IF(BB .NE.O.) THEN       2810         2811       180       XPRTCP = XI + TREV * AA       2811         2811       180       XPRTCL(1.IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2812         2813       182       END IF       2813         2814       183       IF(AA . NE . 0.) THEN       2814         2815       184       YPRTCP - YI + TREV * BB       2815         2816       185       XPRTCL(2 . IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2817         2818       187 <c< td="">       2819</c<>			С			2798
2801       170       C       2801         2802       171       IF(KFIND.GT.O.AND.IJE5.NE.O) THEN       2802         2803       172       IJKPRT(IPRTCL) = IS       2803         2804       173       C       2804         2805       174       AA = X2 - XI       2805         2806       175       BB = Y2 - YI       2806         2807       176       CC = XP - XI       2807         2808       177       DD = YP - YI       2808         2809       178       TREV = (CC * AA + DD * BB) * XREV * XREV       2809         2810       179       IF(BB . NE . O.) THEN       2810         2811       180       XPRTCP - XI + TREV * AA       2811         2811       180       XPRTCL(1 . IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2812         2813       182       END IF       2813         2814       183       IF(AA . NE . D.) THEN       2813         2816       185       XPRTCL(2 . IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2815         2816       185       XPRTCL(2 . IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2819         2818       187       C       2818 <td></td> <td></td> <td>170</td> <td></td> <td></td> <td></td>			170			
2803       172       IJKPRT( IPRTCL ) = IS       2003         2804       173       C       2804         2805       174       AA = X2 - XI       2805         2806       175       BB = Y2 - Y1       2806         2807       176       CC = XP - XI       2807         2808       177       DO = YP - Y1       2808         2809       178       TREV = ( CC * AA + DD * BB ) * XREV * XREV       2809         2810       179       IF ( BB . NE . 0. ) THEN       2810         2811       180       XPRTCP = X1 + TREV * AA       2811         2812       181       XPRTCL ( 1 . IPRTCL ) = XP + 1.1 * ( XPRTCP - XP )       2812         2813       182       END IF       2813         2814       183       IF ( AA . NE . 0. ) THEN       2815         2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL ( 2 . IPRTCL ) = YP + 1.1 * ( YPRTCP - YP )       2816         2817       186       END IF       2818       2819         2818       187       C       2819       2820         2820       189       180       CONTINUE       2820         2821       190			С			2801
2804       173       C       2804       2804         2805       174       AA = X2 - X1       2805         2806       175       BB = Y2 - Y1       2806         2807       176       CC = XP - X1       2807         2808       177       OD = YP - Y1       2808         2809       178       TREV = (CC * AA + DD * BB) * XREV * XREV       2809         2810       179       IF(BB - NE · O. ) THEN       2810         2811       180       XPRTCP = X1 + TREV * AA       2811         2812       181       XPRTCL(1 . IPRTCL) = XP + 1.1 * (XPRTCP - XP )       2812         2813       182       END IF       2813       2814         2814       183       IF(AA . NE . O. ) THEN       2813         2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL(2 , IPRTCL) = YP + 1.1 * (YPRTCP - YP )       2816         2817       186       END IF       2819         2820       189       180       CONTINUE       2820         2821       190       C       2821       2821         2822       191       C       2821       2822						
2806       175       BB = Y2 - Y1       2806         2807       176       CC = XP - X1       2807         2608       177       DD = YP - Y1       2808         2809       178       TREV = (CC * AA + DD * BB ) * XREV * XREV       2809         2810       179       IF(BB . NE . 0.) THEN       2810         2811       180       XPRTCP = X1 + TREV * AA       2811         2812       181       XPRTCL(1, IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2812         2813       182       END IF       2813         2814       183       IF(AA . NE . 0.) THEN       2814         2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL(2, IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2817         2818       187       C       2818         2819       188       END IF       2819         2820       189       180       CONTINUE       2820         2821       190       C       2821       2822			С	AA V3 V1		2804
2807       176       CC = XP - X1       2807         2808       177       DD = YP - Y1       2808         2809       178       TREV = (CC * AA + DD * BB) * XREV * XREV       2809         2810       179       IF(BB . NE . 0.) THEN       2810         2811       180       XPRTCP = X1 + TREV * AA       2811         2812       181       XPRTCL(1 . IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2812         2813       182       END IF       2813         2816       183       IF(AA . NE . 0.) THEN       2814         2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL(2 . IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2817         2818       187       C       2819         2819       188       END IF       2819         2820       189       180       CONTINUE       2820         2821       190       C       2821       2822						
2809       178       TREV = { (CC * AA + DD * BB ) * XREV * XREV       2809         2810       179       IF(BB.NE.O.) THEN       2810         2811       180       XPRTCP = X1 + TREV * AA       2811         2812       181       XPRTCL(1. IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2813         2813       182       EMD IF       2813         2814       183       IF(AA.NE.O.) THEN       2814         2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL(2. IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2817         2818       187       C       2819       2819         2820       189       180       CONTINUE       2819         2821       190       C       2821       2822						2807
2810       179       IF(BB.NE.O.) THEN       2810         2811       180       XPRTCP = X1 + TREV * AA       2811         2812       181       XPRTCL(1.IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2812         2813       182       EMD IF       2813         2814       183       IF(AA.NE.O.) THEN       2814         2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL(2.IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2818         2818       187       C       2819         2819       188       END IF       2818         2820       189       180       CONTINUE       2820         2821       190       C       2821       2822						
2812       181       XPRTCL(1. IPRTCL) = XP + 1.1 * (XPRTCP - XP)       2812         2813       182       END IF       2813         2814       183       IF(AA.NE.O.) THEN       2814         2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL(2. IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2817         2818       187       C       2818         2819       188       END IF       2819         2820       189       180       CONTINUE       2820         2821       190       C       2821       2822				IF( BB . NE . 0. ) T	HEN	2810
2813       182       END IF       2813         2814       183       IF(AA.NE.O.) THEN       2814         2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL(2, IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2817         2818       187       C       2818         2819       188       END IF       2819         2820       189       180       CONTINUE       2820         2821       190       C       2821       2822					• XP + 1.1 * ( XPRTCP - XP )	
2815       184       YPRTCP = Y1 + TREV * BB       2815         2816       185       XPRTCL(2, IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2817         2818       187       C       2818         2819       188       END IF       2819         2820       189       180       CONTINUE       2820         2821       190       C       2821       2822				END IF		2813
2816       185       XPRTCL(2, IPRTCL) = YP + 1.1 * (YPRTCP - YP)       2816         2817       186       END IF       2817         2818       187       C       2818         2819       188       END IF       2819         2820       189       180       CONTINUE       2820         2821       190       C       2821       2822         2822       191       C       2822	2815					
2818         187         C         2818           2819         188         END IF         2819           2820         189         180         CONTINUE         2820           2821         190         C         2821         2822           2822         191         C         2822	2816	185		XPRTCL( 2 , IPRTCL )	= YP + 1.1 * ( YPRTCP - YP )	2816
2819         188         END IF         2819           2820         189         180         CONTINUE         2820           2821         190         C         2821         2821           2822         191         C         2822			С	LAD IF		
2821 190 C 2821 2822 191 C 2822		188	100			2819
2822 191 C 2822	2821			CONTINUE		
		191	-	CYTT DOTHE FOOM CHOOL		2822
	2023	196	6	- CVII LAIMI LKALI 200K	VV: LNC	2023

Thu Jul	1 14:	15:55	1993	gradhd.f	SUBROUTINE PRPTHC	page	40
2824 2825 2826 2827 2828 2829 2829 2830	193 194 195 196 197 198 199	С С С С С С	RETURN				2824 2825 2826 2827 2828 2829 2830

## Thu Jul 1 14:16:08 1993 adaphd.f

•

•

0

۲

0

	1 14:1	0:00 1993	adapno, r
	#	routine	page
	1	VERCEN	1
		DISECT	. 4
	2 3 4 5 6 7 8	OYNPTN	12
	4	DYYPTN	21
	5	INTPTN	30
	6	DELPTNT	40
	1	RELAXY	42
		LAPLAC	47
	9	RECNC	49
	10	EOS	53
	11	LIFTDR	56
Thu Jul	1 14:16	5:08 1993	a <b>daphd.</b> f
Thu Jul	1 14:16 #	5:08 1993 routine	adaphd.f page
Thu Jul	*	routine DELPTNT	•
Thu Jul	*	routine DELPTNT DISECT	page
Thu Jui	*	routine DELPINI DISECI DYNPIN	page 40 4 12
Thu Jui	*	routine DELPTNT DISECT DYNPTN DYYPTN	page 40 4 12 21
Thu Jui	*	routine DELPINT DISECT DYNPIN DYYPIN EOS	page 40 4 12 21 53
Thu Jul	*	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN	page 40 4 12 21 53 30
Thu Jul	# 1 2 3 4 5 6 7	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC	page 40 4 12 21 53 30 47
Thu Jul	# 12 34 56 78	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC LIFTDR	page 40 4 12 21 53 30 47 56
Thu Jul	# 123456789	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC LIFTDR RECNC	page 40 4 12 21 53 30 47 56 49
Thu Jul	# 1 2 3 4 5 6 7 8 9 10	routine DELPINT DISECT DYNPIN EOS INTPIN LAPLAC LIFTDR RECNC RELAXY	page 40 4 12 21 53 30 47 56 49 42
Thu Jul	# 123456789	routine DELPINT DISECT DYNPIN OYYPIN EOS INTPIN LAPLAC LIFTDR RECNC	page 40 4 12 21 53 30 47 56 49

Module List - order of occurence

page

i

Module List - alphabetical order

Thu Jul 1 14:15:08 1993 adaphd.f

## SUBROUTINE VERCEN

SUBROUTINE VERCEN( IT ) С C-C I VERCEN ADD A VERTEX IN THE IT TRIANGLE. THE VETTEX С IS ADDED IN THE CENTROID OF THE TRIANGLE. С Ţ С. ______ Q С IMPLICIT REAL (A-H,O-Z) С 'cmsh00.h' include include 'chyd00.h' include 'cint00.h' 'cphs10.h' include include 'cphs20.h' С С SET UP THE NEW TRIANGLE BOOKKEEPING. 20 20 Ĉ IV1 = JS(1, IT)IV2 = JS( 2 , IT ) IV3 = JS( 3 , IT ) 24 25 26 С  $\begin{array}{r} \text{IE1} &= \text{JS}(4, \text{IT}) \\ \text{IE2} &= \text{JS}(5, \text{IT}) \\ \text{IE3} &= \text{JS}(6, \text{IT}) \\ \text{IE1A} &= \text{IABS}(1\text{IE1}) \\ \text{IE2A} &= \text{IABS}(1\text{IE2}) \\ \text{IE2$ IE3A = 1A8S( IE3 ) Ç PUT IN NEW TRIANGLES C C NV = NV + 1XV(1, NV) = (XV(1, IV1) + XV(1, IV2) +XV(2, NV) = (XV(2, IV1) + XV(2, IV2) + XV(2, IV3)) * THIRDXV(1, NV) = 038 JV(1, NV) = 0C DO 110 IR - 1 , MHQ HYDVVV( NV , IR ) = ( HYDVVV( IV1 , IR ) + HYDVVV( IV2 , IR ) + HYDVVV( IV3 , IR ) ) * THIRD . CONTINUE С NE = NE + 1 JE(1, NE) = NV JE(2, NE) = IV1 JE(5, NE) = 0JE(5, NE) = 0 NE = NE + 1 JE(1, NE) = NV JE(2, NE) = 1V2 JE(5, NE) = 0 NE = NE + 1 JE(1, NE) = NV JE(2, NE) = 1V3 JE(5, NE) = 0JE( 5 , NE ) = 0 NEM1 = NE - 1NEM2 - NE - 2 C С С TRIANGLE ONE, THE ORIGINAL IT. JS( 3 , IT ) = NV JS( 5 , IT ) = - NEM1 JS( 6 , IT ) = NEM2 С С TRIANGLE TWO. С NS = NS + 1JS(1, NS) = IV2 JS(2, NS) = IV3 JS(2, NS) = NV JS( 4 , NS ) = IE2 

.72

¢

page

t

б

lhu Jul	1 14:16:08 19	93 adaphd.f	SUBROUTINE VERCEN	page
74 75	74 75	JS(5,NS)=-NI JS(6,NS)=NEM		
76 77	76 C 77 C	TRIANGLE THREE.		
78	78 C			
79 80	79 80	NS = NS + 1 JS(1, NS) = IV3		
81 82	81 82	JS(2, NS) = IV1 JS(3, NS) = NV		
83 84	83 84	JS(4, NS) = IE3 JS(5, NS) = - NE	- 40	i
85	85	JS(6, NS) = VE	.π <b>ζ</b>	
86 87	86 C 87 C	NOW FIX THE LEFT AN	ID RIGHT FOR EDGES.	
88 89	88 C 89	NSM1 = NS - 1		
90 91	90 91	IF( JE( 4 , IE2A )	. EQ . 1T ) JE( 4 , IE2A ) = NSM1 . EQ . IT ) JE( 3 , IE2A ) = NSM1	4
92	92	IF( JE( 4 , IE3A )	EQ = IT ) JE(4 , IE3A) = NS	
93 94	93 94	JE(4, NEM2) = NS		
95 96	95 96	JE(3, NEM2) = IT JE(4, NEM1) = IT		
97 98	97 98	JE(3, NEMI) = NS JE(4, NE) = NSMI	M1	<u> (</u>
99	99	JE(3, NE) = NS		4
100 101	100 C 101	JV(2,NV) = NE		10
102 103	102 C 103	XSAREA = XS(3,1T	) * THIRD	10
104 105	104 105	XS(3, IT) = XSAR XS(3, NSM1) = XS	IEA	10
106	106	XS(3, NS) = XSAR		10
107 108	107 C 108	XS(1,IT) = (XV	(1, IV1) + XV(1, IV2) +	10
109 110	109 . 110	XV XS(1,NSM1)=(	(1, NV)) * THIRD XV(1, IV2) + XV(1, IV3) +	10
111 112	111 . 112		XV(1, NV)) * THIRD (1, IV3) + XV(1, IV1) +	11
113 114	113 . 114	XV	(1, NV)) * THIRD (2, IV1) + XV(2, IV2) +	11
115	115 .	XV	(2, NV)) * THIRD	11
116 117	116 117 .		XV(2, IV2) + XV(2, IV3) + XV(2, NV)) * THIRD	11
118 119	118 119 .	XS(2,NS) = (XV	(2, IV3) + XV(2, IV1) + (2, NV)) * THIRD	11
120 121	120 C 121	XSAREA = 1. / XS( 3		12
122	122	SAREA( IT ) = XSARE	A	12
123 124	123 124	SAREA( NS ) = XSARE SAREA( NSM1 ) = XSA	REA	12 12
125 126	125 C 126	DO 630 IR = 1 , MHQ		12 12
127 128	127 128 .	HYDV( IT , IR ) = (	HYDVVV( IVI . IR ) + HYDVVV( IV2 . IR ) +	12 12
129 130	129 . 130		HYDVVV(NV, IR)) * THIRD HYDVVV(IV3, IR) +	12
131	131 .	11104( 15 , 1K ) - (	HYDVVV(IVI, IR) +	13
132 133	132 . 133	HYDV( NSM1 , IR ) =	HYDVVV(NV,IR)) * THIRD (HYDVVV(IV2,IR) +	13
134 135	134 . 135 .		HYDVVV(IV3, IR) + HYDVVV(NV, IR)) * THIRD	13
136 137	136 630 137 C	CONTINUE		13
138	138	HDUM = 1.	/ ( HYDV( IT , 1 ) + 1.E-12 )	13
139 140	139 140	HYDV(IT, 2) = HYIHYDV(IT, 3) = HYI	DV(IT, 3) * HOUM	13
141 142	141 142 .	HYDV(IT,4)=(  .5*	HYDV(IT,4) - HYDV(IT,1) *	14
143 144	143 . 144 .	( HYDV( IT , 2 ) * 1		14
145	145 .		HYDV(IT, 5) - 1.)	14
	146 C 147	HDUM = 1.	/ ( HYDV( NS , 1 ) + 1.E-12 )	14 14
145 146 147	146 C			

Thu Jul	1 14:16:08	1993 adaphd.f	SUBROUTINE VERCEN	pa <b>ge</b>	3
148 149	148 149		- HYDV( NS , 2 ) * HDUM - HYDV( NS , 3 ) * HDUM		148 149
150	150		= ( HYDV( NS , 4 ) -		150
151	151	•	.5 * HYDV( NS , 1 ) *		151
152 153	152 153	. (HYDV(NS, 2 HYDV/NS 3	) * HYDV( NS , 2 ) + ) * HYDV( NS , 3 ) ) ) *		152 153
155	155		(HYOV(NS, 5) - 1.)		155
155	155 C	-			155
156	156	HOUM	= 1. / (HYDV(NSM1, 1) + 1.E-12)		156
157 158	157 158		) = HYDV( NSM1 , 2 ) * HDUM ) = HYDV( NSM1 , 3 ) * HDUM		157 158
159	159		= (HYDV(NSM1, 4) -		159
160	160		.5 * HYDV( NSM1 , 1 ) *		160
161 162	161 162	. (HTUV(MSML, HYDV(NSML)	2) * HYDV( NSM1, 2) + 3) * HYDV( NSM1, 3) ) ) *		161 162
163	163	•	(HYDV(NSM1, 5) - 1.)		163
164	164 C				164
165 166	165 166	$\frac{100 114 \text{ IR} \neq 1}{\text{RGRAD}(NS - 1)}$	, 2 ) = RGRAD( IT , IR )		165 166
167	167		IR  = RGRAD( $IT$ , $IR$ )		167
168	168 C				168
169 170	169 170		L) = UGRAD( IT , IR ) IR ) = UGRAD( IT , IR )		169 170
171	171 C	UNIONU ( IISIIX )			171
172	172		() = VGRAD(IT, IR)		172
173 174	1 <b>73</b> 1 <b>74</b> C	VGRAD( NSM1 ,	IR ) = VGRAD( IT , IR )		173 174
175	175	PGRAD( NS . IR	) = PGRAD( IT , IR )		175
176	176	PGRAD( NSM1 ,	$I\dot{R}$ ) = PGRAD( $I\dot{T}$ , $I\dot{R}$ )		176
177 178	177 114 178 C	CONTINUE			177 178
179	179	JEN(1) = IEI	A		179
180	180	JEN(2) = IE2	A		180
181	181	JEN(3) = IE3			181 182
182 183	182 183	JEN( 4 ) = NEM JEN( 5 ) = NEM			183
184	184	JEN( 6 ) = NE	-		184
185	185 C	00 30 TENN - 1	6		185 186
186 187	1 <b>86</b> 187	DO 30 IENN = 1 IEN = JEN( IEN			187
188	188	JVI = JE(1)	IEN )		188
189 190	1 <b>89</b> 1 <b>90</b>	JV2 = JE(2),			189 190
191	191		N2 ) - XV( 1 , JV1 ) N2 ) - XV( 2 , JV1 )		191
192	192	XE(1, IEN)	* SQRT( AX $*$ AX $+$ AY $*$ AY )		192
193 194	193 194	XEREV = 1. / X XN(IEN) = AY	E(I,IEN)		193 194
194	195	YN(IEN) = -	AX * XEREV		195
196	196	ISSR = JE(4)	IEN )		196
197	197 198 C	ISSL = JE(3)	IEN )		197 198
198 199	198 C 199	IJE5 = JE(5, IE)	N )		199
200	200	IF( IJE5 . NE . C			200
201 202	201 C 202	AA = XVI 1	IV2 ) - XV( 1 , JV1 )		201 202
203	2 <b>03</b>	88 = XV(2,3	V2) - XV(2, JV1)		203
204	204	XEL = XS(1)	ISSL )		204 205
205 206	205 206	YEL = XS( 2 . CC = XEL - XV(			206
207	207	DD = YEL - XV	2, JV1)		207
208	208	EE = (AA * CC)	C + BB * DD ) * XEREV * XEREV		208 209
209 210	209 210		JV1 ) + AA * EE JV1 ) + 8B * EE		210
211	211	AX = XER - XEL			211
212	212	AY + YER - YEL	- = SQRT( AX * AX + AY * AY )		212 213
213 214	21 <b>3</b> 214	x = (2 + 16) x = 1 + 7			214
215	215	XXN(IEN) = A	X * XEREV		215
21 <del>6</del> 217	216 217	$\frac{YYN(IEN) = 4}{XE(2 IEN)}$	+Y * XEREV = 2. * XE( 2 , IEN )		216 217
217	218	XYMIDL( IEN )			218
219	219	XMIDL( IEN ) =	• XER		219 220
220 221	2 <b>20</b> 2 <b>21</b> C	YMIDL( IEN ) -	• TEK		220
221					

Thu Jul	1 14:16:08	1993 adaj	ohd.f	SUBROUTINE VERCEN	page 4
222 223 224 225 226 227 228	222 223 C 224 225 226 227 228 C	YER = ) XEL = )	XS(1, ISSR) XS(2, ISSR) XS(1, ISSL) XS(2, ISSL)		222 223 224 225 226 227 228
229 230 231 232 233 234 235 236	229 230 231 232 233 234 235 236	B8 - X\ CC - XE DD - YE ACA - ) DBD - \ EE - ( XMIDL(	V(1, JV2) - XV(1, V(2, JV2) - XV(2, EL - XER EL - YER KER - XV(1, JV1) YER - XV(2, JV1) ACA * DD - DBD * CC), IEN) = XV(1, JV1)	JVI ) / ( AA * DD - BB * CC ) + AA * EE	229 230 231 232 233 234 235 236
237 238 239 240 241 242 243 243 244	237 238 C 239 240 241 C 242 243 244	XEMID = YEMID = AX = XE AY = YE XE(2,	IEN) = XV(2, JV1) - XMIDL(IEN) - XEL - YMIDL(IEN) - YEL ER - XEL ER - YEL , IEN) = SQRT(AX * AX		237 238 239 240 241 242 243 243 244
245 246 247 248 249 250 251 251 252	245 246 247 248 C 249 250 C 251 252 C	XXN( IE YYN( IE XYMIDL( END IF	= 1. / XE( 2 , IEN ) EN ) = AX * XEREV EN ) = AY * XEREV ( IEN ) = SQRT( XEMID *	XEMID + YEMID * YEMID ) * XEREV	245 246 247 248 249 250 251 252
253 254 255 256 257 258 259 269	256 C 257 C 258 259 C 260 C	CONTINUE - EXIT POINT 	FROM SUBROUTINE		253 254 255 256 257 258 259 269 260
261 262 Thu Jul	261 C 262 1 14:16:08	END 1993 adag	ohd.f	SUBROUTINE DISECT	261 262
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288	1 14.10.003 1 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20 C 21 C 22 C 23 C 24 C 25 C 25 C 24 C 25 C 25 C 26 C 27 C 27 C 28 C 27 C 28 C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 27 C 28 C 27 C 28 C 20 C 21 C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 27 C 28 C 20 C 21 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 27 C 28 C 20 C 21 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 27 C 28 C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 27 C 28 C 27 C 27 C 28 C 27 C 28 C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 27 C 2	SUBROUTINE DISECT A NEW V ONE NEY DISECT CALL TO BEFORE INPUT:	DISECT ( N , IDONE , II DISECTS THE LINE N TO ( VERTEX. IF THE LINE N I N TRIANGLE IS CREATED. CANNOT BE USED FOR PERI D TSHIFT CAN BE USED TO CALLING DISECT. N - THE SIDE TO BE DI SOUTH AND AND AND AND AND CALLING DISECT. N - THE SIDE TO BE DI SOUTH AND AND AND AND AND CALLING DISECT. N - THE SIDE TO BE DI SOUTH AND AND AND AND AND CALLING DISECT. N - THE SIDE TO BE DI SOUTH AND AND AND AND AND CALLING DISECT. N - THE SIDE TO BE DI SOUTH AND AND AND AND AND CALLING DISECT. N - THE SIDE TO BE DI SOUTH AND AND AND AND AND AND AND CALLING DISECT. N - THE SIDE TO BE DI SOUTH AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND	DUMP ) CREATE TWO NEW TRIANGLES AND I IS ON A SOLID BOUNDARY, ONLY I IODIC SIDES. HOWEVER, A MAKE THOSE SIDES INTERNAL ISECTED. DF WHAT WAS N. WHEN N IS DEX N IS RETAINED FOR ONE OF HE OTHER IS N3. IFEX OF THE INPUT LINE N;	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 284 285 286 287 288
289 290 291 292	27 28 C 29 30	[MPLIC] include include	IT REAL (A-H,O-Z) 'cmsh00.h' 'chyd00.h'		289 290 291 292

K

6

•

0

page

4
Thu Jul	1 14:	16:08 1993	adaphd.f	SU	BROUTINE DISECT		page	6
367	105	С	DRAW THE THREE NEW L	INES, ALL EN	DING AT 15.			367
368 369	106 107	С	$D0 \ 30 \ I = 1 \ 2$					368
370	108		IF( JE( 5 - 1 , N		) THEN			369 370
371 372	10 <b>9</b> 110		NE = NE + JE(1, NE) = IVS(					371 372
373	111	C	JE(2, NE) = 15	• ,				373
374 375	112 113	С	JE(5, NE) ≖	0				374 375
376 377	114		IF( I . EQ . 1	) N1 = NE				376
378	115 116		IF(I.EQ.2 ENDIF	) 112 = NE				377 378
379 380	117 118	30 C	CONTINUE					379
381	119	C	WE NEED TO HANDLE TH	E LINE FROM	2 TO IS SEPARATEL	1.		380 381
382 383	120 121	C C	SINCE WE ARE NOT ADD THE OLD ONE.	ING A LINE TO	) 12, BUT REPLACING	3		382
384	122	č						383 384
385 386	123 124	С	NE = NE + 1					385
387	125	•	JE(5, NE) = JE(	5,N)				386 387
388 389	126 127		N3 = NE JE(3,N3) = 0					388 389
390 391	128	C	JE(4, N3) = 0					390
392	129 130	C C	RESET THE OLD TRIANG	LES AND SET L	P THE NEW TRIANGLE	s.		391 392
393 394	131 132	C C	N WAS ORIGINALLY DRA					393
395	133	С	N1 IS THE NEW LINE F	ROM 13 TO 15.		10 15.		394 395
396 397	134 135	C C	NZ IS THE NEW LINE F					396 397
398	136	С	NAA IS THE OLD LINE	FROM 14 TO 11				398
399 400	137 138	C C	NBB IS THE OLD LINE NCC IS THE OLD LINE					399 400
401 402	139	С	NDO IS THE OLD LINE	FROM 12 TO 14	•			401
403	140 141	C C	THE DIRECTIONS OF LI EXPLICITLY USED.	NES NAA THRUU	GH NUU ARE NUT			402 403
404 405	142 143	С	IF( IT1.NE.0)	THEN				404
406	144		NCC	= JS( IS1	+ 3 , IT1 )			405 406
407 408	145 146		JS( IS1 + 3 , IT1 J	) = N1 = MOD( IS1	. 3 ) + 1			407 408
409 410	147 148		IF( JS( J , IT1 )					409
411	149		IEROR = 2 J1 = J					410 411
412 413	150 151		END IF JS( J , IT1 ) = I					412
414	152	С						413 414
415 416	153 154		JJ = MOD( IS1 + 1 NBB = IABS( JS( JJ	(3) + 1 + 3, IT1)	)			415 416
417 418	155	C			,			417
419	156 157		NS = NS JS(1, NS) = I2	+ 1				418 419
420 421	158 159		JS(2, NS) = I5 JS(3, NS) = I3					420 421
422	160		JS(4, NS) = N3					422
423 424	161 162		JS(5,NS) = - N JS(6,NS) = NC(					423 424
425	163		JE(3, N3) = NS					425
426 427	164 165		JE(4, N1) = NS JE(3, N1) = ITI					426 427
428 429	166 167		NCC = IAE	IS( NCC )	JE( 4 , NCC ) = N	¢		428 429
430	168	C			JE(3, NCC) = N			430
431 432	169 170	С	END IF					431 432
433 434	171 172	С		IEN				433
435	173			( IS2 + 1 ,				434 435
436 437	174 175		NDD = JS( JS(J + 3, IT2)	J + 3 , IT2 ≖ - N2	)			436 437
438	176 177		IF( JS( J , IT2 )	. NE . 12 )	THEN			438
439 440	178		IEROR = 3 J2 = J					439 440
				page 6				

Thu Jul	1 14:1	6:08	1993	adaphd.f	SUBROUTINE DISEC	CT	page	7
441 442	179 180			END 1F JS(J, 112) = 11				441 442
443 444	181 182	С		NAA - IABS( JS( IS	+ 3 . IT2 ) )			443 444
445 446	183 184	C		NS = NS				445 446
447 448	185 186			JS(1, NS) = 12 JS(2, NS) = 14				447 448
449 450	187 188			JS(3, NS) = 15 JS(4, NS) = ND				449 450
451 452	189 190	С		JS(5, NS) = N2				451 452
453 454	191 192	c		IF( ITRING . EQ . O	THEN			453 454
455	193	L		JE(1, N3) = I2				455
456 457	194 195			JE(2, N3) = 15 JS(6, NS) = -15	3			456 457
458 459	196 197	С		JE(4, N3) = NS				458 459
460 461	198 199	C		ELSE				460 461
462 463	200 201			JE(1, N3) = 15 JE(2, N3) = 12				462 463
464 465	2 <b>02</b> 2 <b>03</b>			JS( 6 , NS ) = N3 JE( 3 , N3 ) = NS				464 465
466 467	2 <b>04</b> 205	С		END II				466 467
468 469	2 <b>06</b> 2 <b>07</b>	C		JE(3,N2) = NS				468 469
470 471	20 <b>8</b> 2 <b>09</b>			JE(4, N2) = IT NDD = [A	S(NDD)			470 471
472 473	21 <b>0</b> 211				. EQ . IT2 ) JE( 4 , NDD . EQ . IT2 ) JE( 3 , NDD			472 473
474 475	212 213	С		END IF				47 <b>4</b> 475
476 477	214 215	C		NSM1 = NS - 1				476 477
478 479	216 217			NEM1 = NE - 1 $NEM2 = NE - 2$				478 479
480 481	218 219	C		IF( !TRING . EQ . O	) THEN			480 481
482 483	2 <b>20</b> 2 <b>21</b>				(XV(1,11) + XV(1 XV(1,13) + XV(1			482 483
484 485	2 <b>22</b> 2 <b>23</b>			XV(2,15) = 0.25	(XV(2, 11) + XV(2 XV(2, 13) + XV(2	. 12 ) +		484 485
486 487	224 225	с		JV(1, 15) = 0		• - • •		486 487
488 489	2 <b>26</b> 2 <b>27</b>			DO 85 IR = 1 , MHQ HYDVVV( I5 , IR ) = (	.25 * ( HYDVVV( I1 . IR )	) +		488 489
490 491	228 229		•		HYDVVV( I2 , IR HYDVVV( I3 , IR	) +		490 491
492 493	230 231	85	•	CONTINUE	HYDVVV( 14 , IR			492 493
494 495	232 233	ເັ		JV(2, NV) = N				494 495
496 497	234 235	C			.0)JV(2.I2)=N3			496 497
498 499	236 237	÷		DX = XV(1, I3) - 3 DXX = XV(1, I5) -				498 499
500 501	238 239			DY = XV(2, I3) - 1 DYY = XV(2, I5) -	V(2, I1)			500 501
502 503	240 241				( DX * DYY - DXX * DY )			502 503
504 505	242 243			DXX = XV(1, 15) - DY = XV(2, 12) - 12	XV(1,13)			504 505
506 507	244 245			DYY = XV(2, 15) -				506 507
508 509	2 <b>46</b> 247			DX = XV(1, 14) - 1 DXX = XV(1, 15) - 1	V(1,12)			508 509
510 511	248 249			DY = XV(2, 14) - DYY = XV(2, 15) -	V(2, I2)			510 511
512 513	250 251				DX * DYY - DXX * DY)			512 513
514	252			DXX = XV(1, 15) -				514

Thu Jul	1 14:16:08 1993	adaphd.f	SUBROUTINE DISECT	page	8
515 516 517 518	253 254 255 256 C	DYY = XV( 2 , XS( 3 , 1T2 )	11) - XV(2, I4) 15) - XV(2, I4) = .5 * (DX * DYY - DXX * DY)		515 516 517 518
519 520 521	257 258 . 259		= (XV(1, !1) + XV(1, 13) + XV(1, NV)) * THIRD + = (XV(1, 13) + XV(1, 12) +		519 520 521
522 523 524	260 . 261 262 .		XV(1,NV)) * THIRD = (XV(2,I1) + XV(2,I3) + XV(2,NV)) * THIRD		522 523 524
525 526 527	263 264 . 265 C	XS( 2 , NSM1 )	) = ( XV( 2 , I3 ) + XV( 2 , I2 ) + XV( 2 , NV ) ) * THIRD		525 526
528 529	265 266 267 .	XS(1,NS)=	<pre>( XV( 1 , 12 ) + XV( 1 , 14 ) + XV( 1 , NV ) ) * THIRD</pre>		527 528 529
530 531	268 269	XS( 1 , IT2 )	= ( XV( 1 , I4 ) + XV( 1 , I1 ) + XV( 1 , NV ) ) * THIRD		530 531
532 533	270 271		= ( XV( 2 , I2 ) + XV( 2 , I4 ) + XV( 2 , NV ) ) * THIRD		532 533
534 535 536	272 273 . 274 C	XS(2,112)	= ( XV( 2 , 14 ) + XV( 2 , 11 ) + XV( 2 , NV ) ) * THIRD		534 535
537 538	274 C 275 276	DO 94 IR = 1, HYDV( IT1 IR	MHQ R) = ( HYDVVV( I1 , IR ) +		536 537 538
539 540	277 .		HYDVVV( 13 , IR ) + HYDVVV( NV , IR ) + THIRD		539 540
541 542	279 280	HYDV( NSM1 , 1	R) = (HYDVVV(I3, IR) + HYDVVV(12, IR) +		541 542
543 544 545	281 . 28 <b>2</b> 283 .	HYDV( IT2 , IR	HYDVVV(NV,IR)) * THIRD t) = (HYDVVV(I4,IR) + HYDVVV(I1,IR) +		543 544 545
546 547	284 . 285	HYDV(NS.IR	HYDVVV( NV , IR ) ) * THIRD ) = ( HYDVVV( 12 , IR ) +		546 547
548 549	2 <b>86</b> . 2 <b>87</b> .	·	HYDVVV( 14 , IR ) + HYDVVV( NV , IR ) ) * THIRD		548 549
550 551	2 <b>88</b> 94 2 <b>89</b> C	CONTINUE			550 551
552 553 554	290 291 292	HYDV(IT1, 2	= 1. / ( HYDV( IT1 , 1 ) + 1.E-12 ) ) = HYDV( IT1 . 2 ) * HDUM ) = HYDV( IT1 , 3 ) * HDUM		552 553 554
555 556	2 <b>93</b> 294	HYDV( IT1 , 4	) = ( HYDV( IT1 , 4 ) - .5 * HYDV( IT1 , 1 ) *		555 556
557 558	295 . 296 .	( HYDV( ITI . HYDV( ITI .	2) * HYDV(IT1,2) + 3) * HYDV(IT1,3)) *		557 558
559 560 561	2 <b>97</b> 298 C 299	HDUM	(HYDV(IT1,5)-1.) = 1./(HYDV(NSM1,1)+1.E-12)		559 560 561
562 563	300 301	HYDV( NSM1 , 2	2) = HYDV( NSM1 , 2) * HDUM 3) = HYDV( NSM1 , 3) * HDUM		562 563
564 5 <b>65</b>	302 303	HYDV( NSM1 , 4	<pre></pre>		564 565
566 567	304 . 305 .		2) * HYDV( NSM1 , 2) + 3) * HYDV( NSM1 , 3) ) ) *		566 567 568
568 569 570	306 . 307 C 308	HDUM	( HYDV( NSM1 , 5 ) - 1. ) = 1. / ( HYDV( IT2 , 1 ) + 1.E-12 )		569 570
571 572	309 310	HYDV( IT2 , 2	) = HYDV( IT2 , 2 ) * HDÚM ) = HYDV( IT2 , 3 ) * HDÚM		571 572
573 574	311 312 .	•	) = ( HYDV( 1T2 , 4 ) - .5 * HYDV( 1T2 , 1 ) *		573 574
575 576 577	313 . 314 . 315 .		2) * HYDV( IT2, 2) + 3) * HYDV( IT2, 3) )) * ( HYDV( IT2, 5) - 1. )		575 576 577
578 579	316 C 317	HDUM	= 1. / ( HYDV( NS , ' ) + 1.E-12 )		578 579
580 581 582	318 319 320	HYDV(NS, 3)	= HYDV( NS , 2 ) * HDUM   = HYDV( NS , 3 ) * HDUM   = (HYDV( NS , 3 ) * HDUM		580 581 582
583 584	321 322		) = ( HYDV( NS , 4 ) - .5 * HYDV( NS , 1 ) * ? ) * HYDV( NS , 2 ) +		583 584
585 586	32 <b>3</b> . 324.	HYDV( NS . 3	3) * HYDV( NS , 3 ) ) * (HYDV( NS , 5 ) - 1. )		585 586
587 588	325 C 326	SAREA( ITI ) =	1. / XS( 3 , IT1 )		587 588

Thu Jul	1 14:16	:08	1993	adaphd.f	SUBROUTINE DISECT	p <b>age</b>	9
589 590 591	327 328 329	c		SAREA( IT2 ) =	= 1. / XS( 3 , NSM1 ) 1. / XS( 3 , IT2 ) 1. / XS( 3 , NS )		589 590 591
592 593 594 595	330 331 332 333	С			, 2 2 ) = RGRAD( IT2 , IR ) IR ) = RGRAD( IT1 , IR )		592 593 594 595
596 597 598	334 335 336			UGRAD( NS , IR UGRAD( NSM1 ,	E) = UGRAD( IT2, IR) IR) = UGRAD( IT1, IR) E) = VGRAD( IT2, IR)		596 597 598
599 600 601	337 338 339			PGRAD( NS , IR PGRAD( NSM1 ,	IR ) = VGRAD( IT1 , IR ) t ) = PGRAD( IT2 , IR ) IR ) = PGRAD( IT1 , IR )		599 600 601
602 603 604	341	112 C		CONTINUE KSDELT( NS ) =			602 603 604
604 605 606	342 343 344			KSDELT( NSM1 ) KSDELT( ITI )	* IDUMP		604 605 606
607 608	345 346	с		KSDELT( IT2 )			607 6 <b>08</b>
609 610 611	347 348 349			JEN(1) = NAA JEN(2) = NBB JEN(3) = NCC			609 610
612 613	350 351			JEN(4) = NDD JEN(5) = N			611 612 613
614 615	352 353			JEN(6) = N1 JEN(7) = N2			614 615
616 617	354 355	c		JEN( 8 ) = N3 JENN = 8			616 617 618
618 619 620	357	с с	ε	LSE			619 620
621 622	3 <b>59</b> 360			XV(2, 15) =	0.5 * ( XV( 1 , I1 ) + XV( 1 , I2 ) ) 0.5 * ( XV( 2 , I1 ) + XV( 2 , I2 ) )		621 622
623 624 625	361 362 363	С		JV(1, 15) =	0 Q.1.AND.IJE5.EQ.6) THEN		623 624 625
626 627	364 365			ANGL = 1.57079 DXX = XV( 1 ,	6327		626 627
628 629	366 367			XV(1, 15) =	0.) ANGL = ATAN2( XV( 2 , I5 ) , DXX ) COS( ANGL ) + 1.5		628 629 630
630 631 632	368 369 370 (	С		XV(2,15) = END IF	SIN( ANGL )		631 632
633 634	371 372	-		DO 80 IR = 1 . HYDVVV( I5 . I	R) = 0.5 * (HYDVVV(II, IR) +		633 634
635 636 637	37 <b>3</b> 374 375 (	80 C	•	CONTINUE	HYDVVV(I2,IR))		635 636 637
638 639	37 <b>6</b> 37 <b>7</b>	C		JV(2, I1) = JV(2, NV) =			638 639
640 641	378 379	С		XSAREA = .5 *			640 641
642 643 644	380 381 382	С		XS(3, IT2) XS(3, NS) =	= XSAREA XSAREA		642 643 644
645 646	383 384	ŭ		•	(XV(1,12)+XV(1,14)+ XV(1,NV))*THIRD		645 646
647 648	385 386		•	• • •	= (XV(1, I4) + XV(1, I1) + XV(1, NV)) * THIRD - (XV(2, I2) + XV(2, I4) +		647 648 649
649 650 651	387 388 389		•		XV(2, NV)) * THIRD = (XV(2, I4) + XV(2, I1) +		650 651
652 653	3 <b>90</b> 391	с	•		XV(2, NV)) * THIRD		652 653
654 655 6 <b>56</b>	392 393 394		_	DO 92 IR = 1 , HYDV( IT2 , IR	MHQ t) = (HYDVVV(I4,IR) + HYDVVV(I1,IR) +		654 655 656
657 658	395 395		•	HYDV( NS , IR	HYDVVV( NV . IR ) ) * THIRD ) = (HYDVVV( I2 , IR ) +		657 656
659 660	397 398	0.2	•	-	HYDVVV(I4, IR) + HYDVVV(NV, IR)) * THIRD		659 660 661
661 662	39 <b>9</b> 40 <b>0</b>	92 C		CONTINUE			662

Thu Jul	1 14:	16:08 1	.993 adaphd	d.f SUBROUTINE DISECT	page	11
737 738	475 476			EN ) = XER		737
739	476	C	INIDE( IC	EN ) = YER		738
740	478	C	ELSE			239 740
741	479	С				741
742	480		XER = XS(	(1, ISSR)		742
743	481		YER = XS(	(2, ISSR)		743
744	482			(1, ISSL)		744
745 746	483 484	С	YEL = X5(	(2, ISSL)		745
740	485	L	$\Delta A = XVI$	1 , JV2 ) - XV( 1 , JV1 )		746
748	486		BB = XV(	2, JV2 - XV(2, JV1)		747 748
749	487		CC = XEL	- XER		749
750	4 <b>88</b>		DD = YEL	- YER		750
751	489		ACA = XER	R - XV(1, JV1)		751
/52	490		DBD - YER	R - XV(2, JV1)		752
753 754	491 492			A * DD - DBD * CC ) / ( AA * DD - AB * CC )		753
755	493			IN ) = XV( 1 , JV1 ) + AA * EE IN ) = XV( 2 , JV1 ) + 8B * EE		754
756	494	С		$(\mathbf{r}) = \mathbf{A}\mathbf{v}(\mathbf{z}, \mathbf{J}\mathbf{v}\mathbf{I}) + \mathbf{D}\mathbf{D} + \mathbf{C}\mathbf{C}$		755 756
757	495	J	XEMID = X	(MIDL( IEN ) - XEL		757
758	496			MIDL( IEN ) - YEL		758
759	497	С				759
760	498		AX = XER			760
761 762	499 500					761
763	500			EN ) = SQRT( AX * AX + AY * AY ) . / XE( 2 , IEN )		762
764	502			) = AX * XEREV		763 764
765	503			) = AY * XEREV		765
7 <b>66</b>	504	C	•			766
767	505		XYMIDL( II	EN ) = SQRT( XEMID * XEMID + YEMID * YEMID ) * XEREV		767
768 769	506	С	CND IC			768
770	5 <b>07</b> 5 <b>08</b>	С	END IF			769
771	509	و 90	CONTINUE			770 771
772	510	C				772
773	511			I.NE.O ) THEN		773
774	512		WRITE	(6,1000) N		774
775 776	513			ROR.EQ.2 ) WRITE (6,1002) 12, J1, IT1, 15		775
777	514 515		STOP	ROR.EQ.3 ) WRITE (6,1003) 12, J2, IT2, I5		776
778	516		END IF			777 778
779	517	С				779
7 <b>80</b>	51 <b>8</b>	С	EXIT POINT FRO	OM SUBROUTINE		780
781	519	C				781
782	520	С				782
783 784	521 522	C	RETURN			783
785	523	Č				784 785
786	524		FORMATS	******		786
787	525	Ċ	•••••			787
788	5 <b>26</b>	1000	FORMAT(/'C	O TROUBLE WITH BOOKKEEPING DATA FOUND IN DISECT ',		788
789	527	1002	. 'F	FOR LINE ', 15///)		789
790 791	528 529	1002	FORMAT( L	DISECT 12= ',15,' J= ',15,' 1T1= ',15,' 15= ',15) DISECT 12= ',15,' J= ',15,' 1T2= ',15,' 15= ',15)		790 701
792	530	6	EVINENTI L	010001 12° 10, 0° 10, 112° 10, 10° 10)		791 792
793	531	č		•		793
794	532		END			794

.

Thu Jul	1 14:16:	:08 1	993 adaphd.f SUBROUTINE DYNPTN	page	12
795	I		SUBROUTINE DYNPTN( DAREA , NOFDIV , IDUMP , LTRIG )		795
796 797		C C	1		796
798	4 (	C	- 		797 798
799 800		C C	DYNPTN ADAPT THE GRID DYNAMICALLY, ADD VERTECES		799
801	7 (	Č	]		800 801
802 803	8 ( 9	2			802
804	10 0	2	IMPLICIT REAL (A-H,O-Z)		803 804
805	11		include 'cmsh00.h'		805
806 807	12 13		include 'chyd00.h' include 'cint00.h'		806
808	14		include 'cphs10.h'		807 808
809 810	15 16 0	-	include 'cphs20.h'		809
811	17	-	INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM)		810 811
812 813	18 19 C		INTEGER JSE(MEM), JEE(MEM), IOFDVS(10), NOFDVS(10)		812
814	20	-	EQUIVALENCE (UL, JTRIG)		813 814
815 816	21 22		EQUIVALENCE (VR.KTRIG)		815
817	23		EQUIVALENCE (VL, IRECNC) EQUIVALENCE (PR, JSE)		816 817
818 819	24 25 C		EQUIVALENCE (PL, JEE)		818
820	25 C 26	-	SMINVG = SAREVG * DAREA		819 820
821	27		RMINVG = .7 * SMINVG		821
822 823	28 29		DO 115 IS = 1 , NS JEE( IS ) = 0		822 823
824	30	115	CONTINUE		824
825 826	31 C 32		NSS = 0		825
827	33		FLUXPP = .00001 * HYDMOM(4)		826 827
828 829	34 35		FLUXUU = .00001 * HYDMOM(2) FLUXRR = .00001 * HYDMOM(1)		828
830	36		$DO \ 120 \ IS = 1$ , NS		829 830
831 832	37 38		PCRTRY = HYDFLX( IS , 4 ) - FLUXPP		831
833	39		IPCRTR = SIGN( 1. , PCRTRY ) UCRTRY = HYDFLX( IS , 2 ) - FLUXUU		832 833
834	40		IUCRTR = SIGN( 1. , UCRTRY )		834
835 836	41 42		RCRTRY = HYDFLX( IS , 1 ) ~ FLUXRR IRCRTR = SIGN( 1. , RCRTRY ) IF( (		835 836
837	43				837
838 839	44 45	•	IPCRTR . EQ . 1 . OR . IUCRTR . EQ . 1 . OR .		838 839
840	46		IRCRTR . EQ . 1 ) . AND .		^40
841 842	47 48	•	KSDELT(IS).LT.IDUMP) THEN KSDELT(IS) = IDUMP		841 842
843	49		JEE(IS) = 1		843
844 845	50 51		NSS = NSS + 1 JTRIG( NSS ) = IS		844 845
846	52		END IF		846
847 848	53 54 C	120	CONTINUE		847 848
849	55		DO 130 IS = 1 , NSS		849
850 851	56 57 :	130	JSE(IS) = JTRIG(IS) CONTINUE		850 851
852	58 C				852
853 854	59 60		MSS = NSS DO 140 KDIV ≈ 1 , NOFDIV		853 854
855	61		ITRIG = $0$		855
856 857	62 63 C		DO 150 KS = 1 , NSS		856 857
858	64		ISS = JSE( KS )		858
859 860	65 C 66		DO 160 KR = 1 , 3		859 860
861	67		IVV = JS( KR , ISS )		861
862 863	68 C 69		IE = JV(2, IVV)		862
864	70		IE = 50(2, 100) IF(IE.GT.O) THEN		863 864
865 866	71 C 72		5V1 - 16/ 1 15 )		865
867	73		IV1 = JE( 1 , IE ) IF( IV1 . EQ . IVV ) THEN		866 867
868	74		ISI = JE(3, IE)		868

Thu Jul	1 14:1	16:08 1993	adaphd.f	SUBROUTINE DYNPTN	page	13
869 870 871	75 76 77		ELSE ISI – JE(4, IE) END IF			869 870 871
872	78		IS = ISI			872
873	7 <b>9</b>	C	CONTINUE			873
874 875	80 81	750 C	CONTINUE			874 875
876	82	•	JES = JEE( IS )			876
877	83		XAS = XS(3, 1S)			877
878 879	84 85		IF( JES . EQ . 0 . AND . XA ITRIG = ITRIG + 1	IS . LT . SAREVG ) THEN		878 879
880	86		KTRIG(ITRIG) = IS			880
881	87		KSDELT(IS) = 1DUMP			881
882 883	88 89		JEE(IS) = 1 ENDIF			882 883
884	90	С				884
885	91		D0 760 $IR = 1, 3$			885
886 887	92 93		JR = MOD(IR, 3) + 1			886 887
888	94		IEA = IABS( JS( JR + 3 , IS IF( IEA . EQ . IE ) THEN			888
889	95		JJR = MOD(JR + 1, 3) + 4			889
890	96	С	IER = IABS( JS( JJR , IS )	)		890
891 892	97 98	L	IV1 = JE(1, IER)			891 892
893	99		IF( IV1 . EQ . IVV ) THEN			893
894	100		$^{\dagger}SR = JE(3, IER)$			894
895 896	101 102		ELSE ISR = JE(4, IER)			895 896
897	103		END IF			897
898	104	•	END IF			898
899 900	105 106	C 76 <b>0</b>	CONTINUE			899 900
901	107	C	CONTINCE			901
902	108		IT( ISR . NE . ISI ) THEN			902
903 904	109 110		IS = ISR IE = IER			903 904
905	111		GO TO 750			905
906	112		END IF			9 <b>06</b>
907 908	113 114	С	ELSE			907 908
909	115	С				909
910	116		IE = -IE			910
911 912	117 118		IVI = JE( 1 , IE ) IF( IV1 . EQ . IVV ) THEN			911 912
913	119		ISI = JE(3, IE)			913
914	120		ELSE			914
915 916	121 122		ISI = JE(4, IE) END IF			915 916
917	123		IS - ISI			917
918	124		ISI = 0			918
919 920	125 126	с	IIE = IE			91 <b>9</b> 920
921	127	650	CONTINUE			921
922	128	C				922
923 924	129 130		JES = JEE(IS) XAS = XS(3, IS)			923 924
925	131		IF( JES . EQ . 0 . AND . XA	S. LT. SAREVG ) THEN		925
926	132		ITRIG = ITRIG + $1$			926
927 928	133 134		KTRIG( ITRIG ) = IS KSDELT( IS ) = IDUMP			927 928
929	135		JEE(IS) = 1			92 <b>9</b>
930	136	c	ENDIF			930 931
931 932	137 138	C	DO 660 IR = 1, 3			932
933	1 <b>39</b>		JR = MOD(IR, 3) + 1			933
934	140		IEA = IABS(JS(JR + 3, IS))	5))		934 035
935 936	141 142		IF(IEA.EQ.IE) THEN JJR = MOD(JR + 1, 3) + 4			935 936
937	143		IER = IABS( JS( JJR , IS )			937
938	144	C				938 939
939 940	145 146		IV1 = JE( 1 , IER ) IF( IV1 . EQ . IVV ) THEN			939
941	147		ISR = JE(3, IER)			941
942	148		ELSE			942

Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE DYNPTN	page	14
943 944	149		ISR = E(4, IER)			943
945	150 151	•	END IF END IF			944 945
946 947	152 153	C 660	CONTINUE			946 947
948 949	154 155	C	IF( ISR . NE . ISI ) THEN			948 949
950 951	156 157		IS = ISR IE = IER			950 951
952 953	158 159		GO TO 650			952
954	160	С	END IF			953 954
955 956	161 162	160	END IF CONTINUE			955 956
957 958	163 164	C 150	CONTINUE			957 958
959 960	165 166	C	DO 170 IS = 1 , ITRIG			95 <b>9</b>
961	167		JTRIG(IS + MSS) = KTRIG(IS)	S )		960 961
962 963	168 169	170	JSE( IS ) = KTRIG( IS ) CONTINUE			962 963
964 965	17 <b>0</b> 1 <b>71</b>		NSS = ITRIG MSS = MSS + ITRIG			964 965
966 967	172 173	C 140	CONTINUE			96 <b>6</b> 967
968 969	174 175		NSS = MSS			968
970	17 <b>6</b>	С	DO 300 KDIV = 1 , 1			969 970
971 972	177 17 <b>8</b>	C	LTRIG = NSS			971 972
973 974	17 <b>9</b> 18 <b>0</b>		DO 310 IS = 1 , NSS ISS = JTRIG( IS )			973 974
975 976	181 182		XSAREA = XS(3, ISS)	ערט		975
977	183	С	IF( XSAREA . GE . RMINVG ) TH			976 977
978 979	184 185		DO 335 IR = 4 , 6 IE = IABS( JS( IR , ISS ) )			978 979
980 981	186 187		1JE5 = JE( 5 , 1E ) IF( IJE5 . NE . 0 ) THEN			980 981
982 983	188 189		JR2 = MOC(IR - 3, 3) + 4 IE2 = IABS(JS(JR2, ISS))	)		982 983
984 985	190		JR3 = MOD(IR - 2, 3) + 4			984
986	191 192		IE3 = IABS( JS( JR3 , ISS ) ) XE1 = XE( 1 , IE )	)		985 986
9 <b>87</b> 988	193 194		XE2 = XE(1, IE2) XE3 = XE(1, IE3)			987 988
989 990	195 196		XEDIST = 1. / XE1 YE2 = XE2 * XEDIST			989 990
991 992	197 198		YE3 = XE3 * XEDIST			991
993	199		$\frac{7E2}{2E3} = (YE2 - 1.5) * (YE2 - 2E3) = (YE3 - 1.5) * (YE3 - 1.5) * (YE3 - 2E3) = (YE3 - 2E3) * (YE3 - 2E3) = (YE3 - 2E3) * (YE3 - 2E3) = (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * (YE3 - 2E3) * $	)		992 993
994 995	200 201		YY3 = XE1 * XE1 + XE3 * XE3 +	+ .35 * XE1 * XE2 - XE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2		994 995
996 997	2 <b>02</b> 2 <b>03</b>		IF( ZE2 . LT0 . AND . ZE2 . YY2 . GT . 0 AND . YY3	3.LT.OAND. 3.GT.O.) THEN		996 997
998 999	204 205	с	CALL DISECT ( IE , IDONE , IC			998 999
1000 1001	206 207	•	LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS			1000 1001
1002	2 <b>08</b>	<b>c</b>	KSOELT(NS) = IDUMP			1002
1003 1004	209 210	C	END IF			1003 1004
1005 1006	211 21 <b>2</b>	335	END IF CONTINUE			1005 1006
1007 1008	213 214	310	END IF CONTINUE			1007 1008
1009 1010	215 216	C				1009
1011	217		NSS = LTRIG IEDGE = 0			1010 1011
1012 1013	218 219	С	NCOLOR = 0			1012 1013
1014 1015	2 <b>20</b> 2 <b>21</b>		DO 295 IE = 1 , NE JSE( IE ) = 0			1014 1015
1016	222	2 <b>95</b>	CONTINUE			1016

Thu Jul	1 14:	16:08	1993	adaphd.f	SUBROUTINE DYNPTN	pa <b>ge</b>	15
1017	223	C	00.37				1017
1018 1019	2 <b>24</b> 2 <b>25</b>			20 IS = 1 , NSS = JTRIG( IS )			1018 1019
1020	226	c		EA = XS( 3 , ISS	5)		1020
1021 1022	227 2 <b>28</b>	С	XXS -	- XS( 1 , ISS )			1021 1022
1023	2 <b>29</b>		YYS =	= XS(2, ISS)			1023
1024 1025	2 <b>30</b> 2 <b>31</b>		IZZ -	- 1 IWINDW . EQ . 1	) THEN		1024 1025
1026	2 <b>32</b>		XXSS	= - XXS * XXS +	+ XXS + .75		1026
1027 1028	233 234			= - YYS * YYS + = INT( SIGN( 1	+ 1. , XXSS * YYSS ) )		1027 1028
1029	2 <b>35</b>		END		, , , , , , , , , , , , , , , , , , , ,		1029
1030 1031	2 <b>36</b> 2 <b>3</b> 7	Ç	15( )	YSADEA CT DA	1INVG . AND . IZZ . EQ . 1 ) THEN		1030 1031
1032	238	С	IF ( )	ADARCA . UI . RI	11110 . AND . 122 . EQ . 1 ) THEM		1031
1033	239			35  IR = 4, 6			1033
1034 1035	240 241			IABS(JS(IR, JSE(IE).EQ.			1034 1035
1036	2 <b>42</b>		IEDGE	E = IEDGE + 1			1036
1037 1038	243 244			NC( IEDGE ) = IE DR = NCOLOR + 1	-		1037 1038
1039	245		JEE(	NCOLOR) = IE			1039
1040 1041	246 247		JSE( END	IE) = 1 IF			1040 1041
1042	248	735	CONT				1042
1043 1044	2 <b>49</b> 250	С	ADEAN	KS = SAREA( ISS			1043 1044
1044	251			= IABS(JS(4),			1044
1046	252			= XE( 1 , IE1 )			1046
1047 1048	253 254			= AREAXS * XE1 * = JE( 5 , IE1 )			1047 1048
1049	255		IE2 -	- IABS( JS( 5 ,			1049
1050 1051	256 257		XE2 = HD2 =	= XE( 1 , IE2 ) = AREAXS * XE2 *	XE2		1050 1051
1052	2 <b>58</b>		IJE5	= IJE5 + JE( 5	, IE2 )		1052
1053 1054	2 <b>59</b> 2 <b>60</b>		IE3 =	= IABS( JS( 6 , = XE( 1 , IE3 )	ISS ) )		1053 1054
1055	261			- AREAXS * XE3	* XE3		1055
1056 1057	26 <b>2</b> 2 <b>63</b>			= IJE5 + JE( 5 0 = AMAX1( HD1 ,			1056 1057
1058	264			10 = 0	, <b>nuz</b> , nuz )		1058
1059	265		IF( I	RATIO . LE . 7.	. AND . IJE5 . EQ . O . AND .		1059 1060
1060 1061	266 267		IF( 1	IJE5 . GT . 0 )	XSAREA . GT . SMINVG ) IRATIO = 1 IRATIO = 2		1061
1062	268	С	15(		) THE		1062 1063
1063 1064	2 <b>69</b> 2 <b>70</b>		IJE5	IRATIO . EQ . 2 1 = JE(5, IE1)	)		1063
1065	271		IJE52	2 = JE(5, IE2)	)		1065
1066 1067	27 <b>2</b> 27 <b>3</b>			3 = JE( 5 , IE3 IJE51 . NE . 0 )			1066 1067
1068	274		IEDIS	ST = 1E1			1068
1069 1070	275 276		XE2 ·	= XE(1, IE1) • XE(1, IE2)			1069 1070
1071	277		XE3 =	= XE(1, IE3)			1071
1072 1073	278 279		END I IF( )	IF IJE52 . NE . 0 )	) THEN		1072 1073
1074	280		IEDIS	ST = 1E2	,		1074
1075 1076	281 282			• XE(1, IE2) • XE(1, IE1)			1075 1076
1077	283		XE3 •	• XE( 1 , IE3 )			1077
1078 1079	2 <b>84</b> 2 <b>85</b>		END I	IF IJE53 . NE . 0 )	) THEN		1078 1079
1080	286		IEDIS	ST = 1E3	,		1080
1081 1082	287 288		XE1 -	= XE(1,1E3) = XE(1,1E2)			1081 1082
1083	289		XE3 ·	- XE(1, IE1)			1083
1084	290		END	IF	160157.)		1084 1085
1085 1086	291 292		YE2	ST = 1. / XE( 1 = XE2 * XEDIST	,		1086
1087	293			= XE3 * XEDIST	* ( ¥52		1087 1088
1088 1089	294 295			= ( YE2 - 1.5 ) = ( YE3 - 1.5 )			1089
1090	296				E2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3		1090

Thu Jul	1 14:16	:08 1993	adaphd.f		SUBROUTINE D	YNPTN		page	16
1091	297	YY3 -	• XE1 * XE1 + X	E3 * XE3 + .3	5 * XEI * XE3	- XE2 * XE	2		1091
1092 1093	298 299	IF( 2	ZE2 . LT0 .	AND ZE3 . I	LT . O AND				1092
1093	300		Y2 . GT . O DISECT ( IEDI )			N			1093
1095	301 (	2		, 100nc , 11					1094 1095
1096	302		i = LTRIG + 1						1096
1097 1098	30 <b>3</b> 304		S(LTRIG) = NS						1097
1099	304 305 (		T(NS) = IDUM	٢					1098
1100	306		= IEDGE + 1						1099 1100
1101	307		IC( IEDGE ) = N						1101
1102 1103	308 309		R = NCOLOR + 1						1102
1104	310		NCOLOR) = NE NE) = 1						1103 1104
1105	311		= IEDGE + 1						1105
1106	312		IC(IEDGE) = N						1106
1107 1108	313 314		R = NCOLOR + 1						1107
1109	315		NCOLOR) = $NENE - 1$ ) = 1	- 1					1108 1109
1110	316 (		, _						1110
1111	317	END I							1111
1112 1113	3 <b>18</b> 31 <b>9</b> (	END I	.F						1112
1113	320		RATIO . EQ . 1	) THEN					1113 1114
1115	321 0			) men					1115
1116	322		VERCEN( ISS )						1116
1117 1118	32 <b>3</b> 324		.T( ISS ) = IDU i = LTRIG + I	MP					1117
1119	325		i(LTRIG) = NS	- 1					1118 1119
1120	326	KSDEL	.T( NS - 1 ) =	-					1120
1121	327 (								1121
1122 1123	328 329		i = LTRIG + 1 i( LTRIG ) = NS						1122
1124	330		T(NS) = IDUM	Þ					1123 1124
1125	331 C		,						1125
1126 1127	3 <b>32</b> 3 <b>33</b>		= IEDGE + 1	-					1126
1128	334		IC( IEDGE ) = N IR = NCOLOR + 1	E.					1127 1128
1129	335		NCOLOR ) = NE						1129
1130	336		NE) = 1						1130
1131 1132	3 <b>37</b> 3 <b>38</b>		: = IEDGE + 1 IC( IEDGE ) = N	<b>c</b> 1					1131 1132
1133	339		R = NCOLOR + 1	L <b>-</b> 1					1132
1134	340	JEE (	NCOLOR ) = NE	- 1					1134
1135	311		NE - 1 = 1						1135
1136 1137	342 343		= IEDGE + 1 C(IEDGE) = N	F _ 2					1136 1137
1138	344		R = NCOLOR + 1	<u> </u>					1138
1139	345		NCOLOR ) = NE	- 2					1139
1140 1141	346 347 C		NE - 2 = 1						1140
1142	348	ELSE							1141 1142
1143	3 <b>49</b> C								1143
1144	350	IDISC							1144
1145 1146	351 352		5 KK = 4 , 6 JS( KK , ISS	)					1145 1146
1147	353	1EF =	IABS( IEE )	·					1147
1148	354		= JE( 5 , IEF						1148
1149 1150	355 356		JE55 . EQ . 0 EE . GT . 0 )						1149 1150
1151	357		JE( 4 , IEE )						1151
1152	358	ELSE							1152
1153 1154	35 <b>9</b> 360	ISI - END I	JE(3,1EF) F						1153 1154
1155	361		S = SAREA( ISI	)					1154
1156	362	IE1 =	IABS( JS( 4 ,						1156
1157	363		XE(1, IE1)	,					1157
1158 1159	364 365		= JE( 5 , IE1 AREAXS * XE1						1158 1159
1160	366	E2 =	IABS( JS( 5 ,						1160
1161	367	XE2 =	XE(1, IE2)						1161
1162 1163	368 369		= IJE55 + JE( AREAXS * XE2 *						1162 1163
1164	370		IABS( JS( 6,						1164
			•						

0

u) 1 14:16:08	1993 adaphd.f	SUBROUTINE DYNPTN	page 1
371	XE3 = XE( 1 , 1E3 )		116
372	1JE55 = 1JE55 + JE(		116
373 374	HD3 = AREAXS * XE3 ' RATIO = AMAX1( HD1 ,		116
375	YSAREA = XS(3, 1S)		116
376		. AND . YSAREA . GT . SMINVG . AND .	117
377	•	IJE55 . EQ . 0 ) THEN	117
378	IDISCT = 1		117
379	$D0 \ 435 \ IR = 4 \ . \ 6$		117
380	IE = IABS( JS( IR , IF( JSE( IE ) , EQ ,		117
381 382	1EDGE - 1EDGE + 1	. 0 ) MCN	11
383	IRECNC( IEDGE ) - II	E	117
384	NCOLOR = NCOLOR + 1		117
385	JEE( NCOLOR ) = IE		117
386	JSE(IE) = 1		118
387 38 <b>8</b> 439	END IF CONTINUE		118
389	CALL VERCEN( ISI )		118
390	KSDELT( ISI ) = IDU	IMP	110
391	LTRIG - LTRIG + 1		110
392	JTRIG(LTRIG) = NS		118
<b>393</b>	KSDELT(NS - 1) *	LOOMA	118
394 C 395	LTRIG = LTRIG + 1		110
395 396	JTRIG( LTRIG ) = NS	5	119
397	KSDELT( NS ) = 1DUM		119
3 <b>98</b> C			11
399	IEDGE = IEDGE + 1	_	11
400	IRECNC( IEDGE ) = N		119
401	NCOLOR = NCOLOR + 1		11
402 403	JEE( NCOLOR ) ≖ NE JSE( NE ) ≖ 1		11
404	IEDGE = IEDGE + 1		119
405	IRECNC( IEDGE ) = N	NE - 1	11
406	NCOLOR - NCOLOR + 1		12
407	JEE ( NCOLOR ) = NE	- 1	12
408 409	JSE( NE - 1 ) = 1 1EDGE = 1EDGE + 1		12
409 410	IRECNC( IEDGE ) = N	4F = 2	12
411	NCOLOR - NCOLOR + 1		12
412	JEE( NCOLOR ) = NE		12
413	JSE(NE - 2) = 1		12
414	END IF		12
415 416 54	END IF 5 CONTINUE		12
417 C			12
418	IF( IDISCT . EQ . 0	D) THEN	12
419	IE1 - IABS( JS( 4 ,	, ISS ) )	12
420	XE1 = XE(1, IE1)		12 12
421 422	IE2 = IABS( JS( 5 , XE2 = XE( 1 , IE2 )	, 133 <i>j</i> j	12
422 423	IE3 = IABS(JS(6))	, ISS ) )	12
424	XE3 = XE(1, IE3)		12
425	IEDIST = IE1		12
426	XEDIST = XE1	TCT ) 1000	12 12
427	IF( XE2 . GT . XEDI	ISI / HEN	12
428 429	XEDIST = XE2 IEDIST = IE2		12
430	END IF		12
431	IF( XE3 . GT . XEDI	IST ) THEN	12
432	xedist = xe3		12
433	IEDIST = IE3		12 12
434	END IF	ST )	12
435	ISL = JE( 3 , IEDIS ISR = JE( 4 , IEDIS		12
436 437	XSISL = XS(3, 1SL)	Ĺ)	12
438	XSISR = XS(3, 1SR)		12
439	IJE5 = JE( 5 , IEDI	IST )	12
440	IF( XSISL . GT . RM	MINVG . AND . XSISR . GT . RMINVG . AND .	12 12
441		. AND . IRATIO . NE . 2 ) THEN	12
442 443	IF( ISS . NE . ISL DO 345 IR = 4 , 6	) ENCH	12
			12

•

•

1

•

١

1

1

1

1

ł

Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE	DYNPTN	page	18
1239	445		IF( JSE( IE ) . EQ . 0 )	THEN			1239
1240 1241	446 447		IEDGE = IEDGE + 1 IRECNC( IEDGE ) = IE				1240
1242	448		NCOLOR = NCOLOR + 1				1241 1242
1243 1244	449 450		JEE( MCCLOR ) = IE JSE( IE ) = 1				1243
1245	451		END IF				1244 1245
1246 1247	452 453	345	CONTINUE END IF				1246
1248	454	С					1247 1248
1249 1250	455 456		IF( ISS . NE . ISR ) THE DO 355 IR = 4 , 6	N Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco			1249
1251	457		IE = IABS( JS( IR , ISR )	))			1250 1251
1252 1253	458 459		IF( JSE( IE ) . EQ . 0 )	THEN			1252
1255	459		IEDGE = IEDGE + 1 IRECNC( IEDGE ) = IE				1253
1255	461		NCOLOR - NCOLOR + 1				1254 1255
1256 1257	462 463		JEE( NCOLOR ) = IE JSE( IE ) = 1				1256
1258	464		END IF				1257 1258
1259 1260	465 466	355	CONTINUE END IF				1259
1261	467	С					1260 1261
1262 1263	468 469		IDONE = 0				1262
1265	470		CALL DISECT ( LEDIST , LC IF( LDONE . EQ . 1 ) THEM	IONE, LOUMP)			1263 1264
1265	471	С					1265
1266 1267	472 473		LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS				1266
1268	474		KSDELT( NS ) = IDUMP				1267 1268
1269 1270	475 476		LTRIG = LTRIG + 1				1269
1271	477		JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP				1270 1271
1272 1273	478	C					1272
1273	47 <b>9</b> 48 <b>0</b>		IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE				1273
1275	481		NCOLOR = NCOLOR + 1				1274 1275
127 <del>6</del> 1277	482 483		JEE( NCOLOR ) = NE JSE( NE ) <del>=</del> 1				1276
1278	484		IEDGE = IEDGE + 1				1277 1278
1279 1280	485 486		IRECNC(IEDGE) = NE - 1 NCOLOR = NCOLOR + 1				1279
1281	487		JEE(NCOLOR) = NE - 1				1280 1281
1282 1283	488 489		JSE(NE - 1) = 1				1282
1284	490		IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2				1283 1284
1285 1286	491		NCOLOR = NCOLOR + 1				1285
1287	492 493		JEE(NCOLOR) = NE - 2 $JSE(NE - 2) = 1$				1286 1287
1288	494	~	ENDIF				1288
1289 1290	495 496	С	END IF				1289 1290
1291	497		END IF				1290
1292 1293	498 499		END IF END IF				1292
1294	50 <b>0</b>	C					1293 1294
1295 1296	501 502	320 C	CONTINUE				1295
1297	503		DO 340 IEM = 1 , NCOLOR				1296 1297
1298 1299	504 505	с	IE = JEE( IEM )				1298
1300	506	L.	ISL = JE( 3 , IE )				1299 1300
1301 1302	507 508		YSAREA = XS(3, ISL)				1301
1303	509		IJE5 = JE( 5 , IE ) IF( YSAREA . GE . RMINVG .	AND JJES . NE .	0 ) THEN		1302 1303
1304	510		IE1 = IABS(JS(4, ISL))	)	- ,		1304
1305 1306	511 512		IE2 - IABS( JS( 5 , ISL ) IE3 - IABS( JS( 6 , ISL )	)			1305 1306
1307	513		IJE51 = JE(5, IE1)	,		:	1307
1308 1309	514 515		IJE52 = JE( 5 , IE2 ) IJE53 = JE( 5 , IE3 )				1308 1309
1310	516		IF( IJE51 . NE . 0 ) THEN				1310
1311 1312	517 518		IEDIST = IE1 XE1 = XE( 1 , IE1 )				1311
			the the states of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s				1312

Thu Jul	1 14:16:	08 1993	a <b>daphd.</b> f	SUBROUTINE DYNPTN	page	19
1313 1314	519 520		2 = XE(1, IE2) 3 = XE(1, IE3)			1313 1314
1315	521	EN	D IF	<b>T</b> ((C))		1315
1316 1317	522 523		( IJE52 . NE . 0 ) DIST = IE2	IHEN		1316 1317
1318 1319	524	XE	1 = XE(1, IE2)			1318
1320	52 <b>5</b> 52 <b>6</b>	XE	2 = XE(1, IE1) 3 = XE(1, IE3)			1319 1320
1321 1322	527 528		D IF (IJE53 . NE . 0 )	THEN		1321 1322
1323	52 <b>9</b>	IE	DIST = IE3			1323
1324 1325	530 531		1 = XE(1, IE3) 2 = XE(1, IE2)			1324 1325
1326 1327	532 533	XE	3 = XE(1, 1E1) D IF			1326
1328	534	XE	DIST = 1. / XE(1)	. IEDIST )		1327 1328
1329 1330	535 536		2 = XE2 * XEDIST 3 = XE3 * XEDIST			1329 1330
1331	537	ZE	2 = (YE2 - 1.5)	* ( YE21 )		1331
1332 1333	538 539	ZE YY	3 = ( YE3 - 1.5 ) 2 = XE1 * XE1 + XE	* ( YE31 ) 2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3		1332 1333
1334 1335	540	YY	3 = XE1 * XE1 + XE	3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2		1334
1336	541 542	- 16		AND . ZE3 . LT . O AND . AND . YY3 . GT . O. ) THEN		1335 1336
1337 1338	543 544 C		LL DISECT ( IEDIST	, IDONE , IDUMP )		1337 1338
1339	545	LT	RIG = LTRIG + 1			1339
1340 1341	546 547		RIG( LTRIG ) = NS DELT( NS ) = IDUMP			1340 1341
1342	5 <b>48</b> C					1342
1343 1344	549 550		DGE = IEDGE + 1 ECNC( IEDGE ) <del>=</del> NE			1343 1344
1345 1346	551 552		OLOR = NCOLOR + 1 E( NCOLOR ) = NE			1345 1346
1347	553	JS	$\mathbf{E}(\mathbf{NE}) = 1$			1347
1348 1349	5 <b>54</b> 5 <b>55</b>		DGE = IEDGE + 1 ECNC( IEDGE ) = NE	- 1		1348 1349
1350	5 <b>56</b>	NC	OLOR = NCOLOR + 1	с.		1350
1351 1352	557 5 <b>58</b>		E( NCOLOR ) = NE - E( NE - 1 ) = 1	i		1351 1352
1353 1354	5 <b>59</b> C 5 <b>60</b>		LSE			1353 1354
1355	6 <b>61</b> C					1355
1356 1357	562 563		DIST = IE1 DIST = XE1			1356 1357
1358	564	IF	( XE2 . GT . XEDIS	T ) THEN		1358
1359 1360	5 <b>65</b> 5 <b>66</b>		DIST = XE2 DIST = IE2			1359 1360
1361 1362	567 568		D IF ( XE3 . GT . XEDIS	T ) THEN		1361 1362
1363	5 <b>69</b>	XE	DIST = XE3	, ,		1363
1364 1365	570 571	EN	DIST = 1E3 D IF			1364 1365
1366 1367	572 573		L = JE( 3 . IEDIST R = JE( 4 , IEDIST			1366 1367
1368	574	XS	$ISL = \dot{X}S(\dot{3}, ISL)$	)		1368
1369 1370	575 576		ISR = XS( 3 , ISR E5 = JE( 5 , IEDIS			1369 1370
1371	577			NVG . AND . XSISR . GT . RMINVG . AND .		1371
1372 1373	578 579		645 IR = 4, 6	IJE5 . EQ . 0 ) THEN		1372 1373
1374 1375	580 581		= IABS( JS( IR , ( JSE( IE ) . EQ .			1374 1375
1376	582	IE	DGE = IEDGE + 1			1376
1377 1378	5 <b>83</b> 584		ECNC( IEDGE ) = IE OLOR = NCOLOR + 1			1377 1378
1379	5 <b>85</b>	JE	E(NCOLOR) = IE E(IE) = 1			1379 1380
1380 1381	586 587	EN	DIF			1381
1382 1383	5886 589		NTINUE 655 IR = 4 , 6			1382 1383
1384	590	IE	= IABS( JS( IR ,			1384 1385
1385 1386	591 592		( JSE( IE ) . EQ . DGE = IEDGE + 1	V ) INCN		1385

•

1387593138859413895951390596139159713925981393599139460013956011396602139760313986041399605140060614016071402608140360914046101405611140661214076131408614140561114066121407613140861414096151410616141161714126181413619141462014156211416622141762314186241419625420626421627422638433639434640435641436642437643438644439645440646	655 C	<pre>IRECNC( IEDGE ) = IE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = IE JSE( IE ) = 1 END IF CONTINUE IDONE = 0 CALL DISECT ( IEDIST , IDONE , IDUMP ) IF( IDONE . EQ . 1 ) THEN LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE MCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF</pre>	$\begin{array}{c} 133\\ 133\\ 133\\ 133\\ 133\\ 133\\ 133\\ 133$
1389595139059613915971392598139359913946001395601139560213976031398604139960514006061401607140260814036091404610140561114066121407613140861414096151410616141161714126181414620141562114166224176231418624419625420636421627422638423639434640435641436642437638438644439645	655 C C	JEE( NCOLOR ) = IE JSE( IE ) = 1 END IF CONTINUE IDONE = 0 CALL DISECT ( IEDIST , IDONE . IDUMP ) IF( IDONE . EQ . 1 ) THEN LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR - NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF	$\begin{array}{c} 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	655 C	JSE(IE) = 1 END IF CONTINUE IDONE = 0 CALL DISECT (IEDIST, IDONE, IDUMP) IF(IDONE . EQ. 1) THEN LTRIG = LTRIG + 1 JTRIG(LTRIG) = NS KSDELT(NS) = IDUMP LTRIG = LTRIG + 1 JTRIG(LTRIG = NS - 1 KSDELT(NS - 1) = IDUMP IEDGE = IEDGE + 1 IEDGE = IEDGE + 1 IEDGE = NCOLOR + 1 JEE(NCOLOR) = NE JSE(NE) = 1 IEDGE = IEDGE + 1 IEDGE = IEDGE + 1 IEDGE = IEDGE + 1 JEE(NCOLOR) = NE - 1 NCOLOR - NCOLOR + 1 JEE(NCOLOR) = NE - 1 JSE(NE - 1) = 1 IEDGE = IEDGE + 1 IEDGE = IEDGE + 1 JEE(NCOLOR) = NE - 2 NCOLOR - NCOLOR + 1 JEE(NCOLOR) = NE - 2 JSE(NE - 2) = 1 END IF END IF	$\begin{array}{c} 133\\ 133\\ 133\\ 133\\ 133\\ 133\\ 133\\ 133$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	655 C	END IF CONTINUE IDONE = 0 CALL DISECT ( IEDIST , IDONE , IDUMP ) IF( IDONE . EQ . 1 ) THEN LTRIG = LTRIG + 1 JTRIG( LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	$\begin{array}{c} 133\\ 133\\ 133\\ 133\\ 133\\ 133\\ 133\\ 133$
1392       598         1393       599         1394       600         1395       601         1396       602         1397       603         1398       604         1397       603         1398       604         400       606         .400       606         .401       607         .402       608         .403       609         .404       610         .405       611         .406       612         .407       613         .408       614         .409       615         .410       616         .411       617         .412       618         .413       619         .414       620         .415       621         .416       622         .417       623         .418       624         .419       625         .420       626         .421       627         .422       633         .423       629         .424       630      <	655 C C	CONTINUE IDONE = 0 CALL DISECT ( IEDIST , IDONE , IDUMP ) IF( IDONE . EQ . 1 ) THEN LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF	$\begin{array}{c} 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\$
1393       599         1394       600         1395       601         1396       602         1397       603         398       604         400       606         401       607         402       608         403       609         404       610         405       611         406       612         410       616         411       617         413       619         414       620         415       621         416       622         417       623         418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         430       636         431       637         432       638         433       639         434	C	IDONE - 0 CALL DISECT ( HEDIST , IDONE , IDUMP ) IF( IDONE . EQ . 1 ) THEN LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF	$\begin{array}{c} 133\\ 133\\ 133\\ 133\\ 139\\ 139\\ 139\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140$
394         600           395         601           396         602           397         603           398         604           399         605           400         606           401         607           402         608           403         609           404         610           405         611           406         612           407         613           408         614           409         615           410         616           411         617           412         518           413         619           414         620           415         621           416         622           417         623           420         626           421         627           422         628           421         627           422         628           421         627           422         628           423         639           434         630           432	C	CALL DISECT ( IEDIST , IDONE , IDUMP ) IF( IDONE , EQ , 1 ) THEN LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF	$\begin{array}{c} 139\\ 139\\ 139\\ 139\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140$
1395       601         1396       602         1397       603         1398       604         1399       605         1400       606         1401       607         1402       608         1403       609         1404       610         1405       611         1406       612         1407       613         1408       614         1409       615         1410       616         1411       617         1412       618         4110       616         411       621         414       620         415       621         416       622         417       623         418       624         419       625         421       627         423       629         424       630         425       631         426       632         427       633         430       636         431       637         432       638         4	C	CALL DISECT ( IEDIST , IDONE , IDUMP ) IF( IDONE , EQ , 1 ) THEN LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF	$\begin{array}{c} 139\\ 139\\ 139\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C	IF( IDONE . EQ . 1 ) THEN LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF	$\begin{array}{c} 139\\ 139\\ 139\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140$
1398       604         1399       605         1400       606         1401       607         1402       608         1403       609         1404       610         1405       611         1406       612         1407       613         1408       614         1409       615         1410       616         1411       617         1412       618         1414       620         1415       621         1416       622         417       623         418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         430       636         431       637         432       638         433       639         434       640         435       641         43	C	LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	$\begin{array}{c} 139\\ 139\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 JSE( NCOLOR ) = NE - 1 JSE( NCOLOR ) = NE - 1 JSE( NCOLOR ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	$\begin{array}{c} 139\\ 139\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C	KSDELT( NS ) = IDUMP $LTRIG = LTRIG + 1$ $JTRIG( LTRIG ) = NS - 1$ $KSDELT( NS - 1 ) = IDUMP$ $IEDGE = IEDGE + 1$ $IRECNC( IEDGE ) = NE$ $NCOLOR = NCOLOR + 1$ $JEE( NCOLOR ) = NE$ $JSE( NE ) = 1$ $IEDGE = IEDGE + 1$ $IRECNC( IEDGE ) = NE - 1$ $NCOLOR = NCOLOR + 1$ $JEE( NCOLOR ) = NE - 1$ $JSE( NE - 1 ) = 1$ $IEDGE = IEDGE + 1$ $IRECNC( IEDGE ) = NE - 2$ $MCOLOR = NCOLOR + 1$ $JEE( NCOLOR ) = NE - 2$ $MCOLOR = NCOLOR + 1$ $JEE( NCOLOR ) = NE - 2$ $MCOLOR = NCOLOR + 1$ $JEE( NCOLOR ) = NE - 2$ $MCOLOR = NCOLOR + 1$ $JEE( NCOLOR ) = NE - 2$ $MCOLOR = NCOLOR + 1$ $JEE( NCOLOR ) = NE - 2$ $JSE( NE - 2 ) = 1$ $END IF$	$\begin{array}{c} 139\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C	LTRIG = LTRIG + 1 JTRIG(LTRIG) = NS - 1 KSDELT(NS - 1) = IDUMP IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE JSE(NE) = 1 IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE - 1 JEE(NCOLOR) = NE - 1 JSE(NE - 1) = 1 IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE - 2 NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE - 2 JSE(NE - 2) = 1 END IF	$\begin{array}{c} 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\$
	C	JTRIG( LTRIG ) = NS - 1 KSDELT( NS - 1 ) = IDUMP IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	$\begin{array}{c} 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	KSDELT(NS - 1) = IDUMP $IEDGE = IEDGE + 1$ $IRECNC(IEDGE) = NE$ $NCOLOR = NCOLOR + 1$ $JEE(NCOLOR) = NE$ $JSE(NE) = 1$ $IEDGE = IEDGE + 1$ $IRECNC(IEDGE) = NE - 1$ $NCOLOR = NCOLOR + 1$ $JEE(NCOLOR) = NE - 1$ $JSE(NE - 1) = 1$ $IEDGE = IEDGE + 1$ $IRECNC(IEDGE) = NE - 2$ $NCOLOR = NCOLOR + 1$ $JEE(NCOLOR) = NE - 2$ $JSE(NE - 2) = 1$ $END IF$	$\begin{array}{c} 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 141\\ 141$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C	IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	140 140 140 140 140 140 141 141 141 141
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	140 140 140 140 140 141 141 141 141 141
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	140 140 140 140 141 141 141 141 141 141
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	140 140 140 141 141 141 141 141 141 141
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	JEE( NCOLOR ) = NE JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	140 140 141 141 141 141 141 141 141 141
409       615         410       616         411       617         412       618         413       619         414       620         415       621         416       622         417       623         418       624         419       625         420       626         421       627         423       629         424       630         425       631         426       632         427       633         430       636         431       637         432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       545	С	JSE( NE ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	140 141 141 141 141 141 141 141 141 142 142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	IEDGE = IEDGE + 1 $IRECNC(IEDGE) = NE - 1$ $NCOLOR = NCOLOR + 1$ $JEE(NCOLOR) = NE - 1$ $JSE(NE - 1) = 1$ $IEDGE = IEDGE + 1$ $IRECNC(IEDGE) = NE - 2$ $NCOLOR = NCOLOR + 1$ $JEE(NCOLOR) = NE - 2$ $JSE(NE - 2) = 1$ $END IF$	14) 14) 14) 14) 14) 14) 14) 14) 14) 14)
412       618         413       619         414       620         415       621         416       622         417       623         418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         430       636         431       637         432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       645	с	NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE - 1 JSE(NE - 1) = 1 IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE - 2 NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE - 2 JSE(NE - 2) = 1 END IF END IF	14) 14) 14) 14) 14) 14) 14) 14) 14) 14)
413       619         414       620         415       621         416       622         417       623         418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         430       636         431       637         432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       645	С	JEE( NCOLOR ) = NE - 1 JSE( NE - 1 ) = 1 IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE - 2 NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	14) 14) 14) 14) 14) 14) 14) 14) 14) 14)
414       620         415       621         416       622         417       623         418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         429       635         431       637         432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       645	С	JSE(NE - 1) = 1 IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE - 2 NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE - 2 JSE(NE - 2) = 1 END IF END IF	14) 14) 14) 14) 14) 14) 14) 142 142 142
415       621         416       622         417       623         418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         429       635         431       637         432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       645	С	IEDGE = IEDGE + 1 IRECNC(IEDGE) = NE - 2 NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE - 2 JSE(NE - 2) = 1 END IF END IF	141 141 141 141 141 141 142 142
416       622         417       623         418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         430       636         431       637         432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       645	с	IRECNC(IEDGE) = NE - 2 NCOLOR = NCOLOR + 1 JEE(NCOLOR) = NE - 2 JSE(NE - 2) = 1 END IF END IF	14: 14: 14: 14: 14: 14: 14: 14: 14:
417       623         418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         429       635         431       637         432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       645	с	NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	14) 14) 14) 14) 14) 14) 14)
418       624         419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         429       635         430       636         431       637         432       638         434       640         435       641         436       642         437       643         438       644         439       645	С	JEE( NCOLOR ) = NE - 2 JSE( NE - 2 ) = 1 END IF END IF	141 141 142 142
419       625         420       626         421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         429       635         430       636         431       637         432       638         433       639         435       641         436       642         437       643         438       644         439       645	С	JSE(NE-2) = 1 END IF END IF	141 142 142 142
420         626           421         627           422         628           423         629           424         630           425         631           426         632           427         633           428         634           429         635           430         636           431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645	C	END IF	142 142 142
421       627         422       628         423       629         424       630         425       631         426       632         427       633         428       634         429       635         430       636         431       637         432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       645	С	END IF	142
422         628           423         629           424         630           425         631           426         632           427         633           428         634           429         635           430         636           431         637           432         638           433         639           435         641           436         642           437         643           438         644           439         645	•		142
423         629           424         630           425         631           426         632           427         633           428         634           429         635           430         636           431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645			
425         631           426         632           427         633           428         634           429         635           430         636           431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645		END IF	144
426         632           427         633           428         634           429         635           430         636           431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645		END IF	142
427         633           428         634           429         635           430         636           431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645	340	CONTINUE	142
428         634           429         635           430         636           431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645	C		142
429         635           430         636           431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645		NSS - LTRIG	142
430         636           431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645	C		142
431         637           432         638           433         639           434         640           435         641           436         642           437         643           438         644           439         645		DO 370 IEM = 1 , NCOLOR	142
432       638         433       639         434       640         435       641         436       642         437       643         438       644         439       545		IE = JEE( IEM ) CALL DECNC( IE IDONE ITH ITD IA ID IC ID )	143
433       639         434       640         435       641         436       642         437       643         438       644         439       645		CALL RECNC( IE, IDONE, ITL, ITR, JA, JB, JC, JD)	143
434 640 435 641 436 642 437 643 438 644 439 645		CALL RECNC( JA , JADONE , ITL , ITR , JAA , JAB , JAC , JAD ) CALL RECNC( JB , JBDONE , ITL , ITR , JBA , JBB , JBC , JBD )	14
435       641         436       642         437       643         438       644         439       645		CALL RECNC( JC , JCDONE , ITL , ITR , JCA , JCB , JCC , JCD )	143
436 642 437 643 438 644 439 645		CALL RECNC( JD , JDDONE , ITL , ITR , JDA , JDB , JDC , JDD )	14
437 643 438 644 439 645	370	CONTINUE	14
439 645	С		143
	300	CONTINUE	14
440 646	C		143
		NVECE = NE / MBL	144
441 647		NREME - NE - NVECE * MBL	144
442 648		NVECS = NS / MBL	144
443 649		NREMS = NS - NVECS * MBL	144
444 650 445 651		NVECV - NV / MBL NREMV - NV - NVECV * MBL	144
446 652	С	NUCLIE - HE - HELLE " FIOL	144
447 653	-	DO 400 INE = 1 , NVECE	144
448 654		NOFVEE( INE ) = MBL	144
49 655	40 <b>0</b>	CONTINUE	144
450 656		NVEEE - NVECE	145
451 657		IF( NREME . GT . 0 ) THEN	145
452 658		NVEEE = NVECE + 1	145
153 659		NOFVEE( NVEEE ) = NREME	145
454 660			145
455 661		END IF	145
456 662	C		145
457 663	С	00_410_INS 1 . NVECS	145
458 664 450 665		DO 410 INS - 1 , NVECS NOFVES( INS ) = MBL	
459 665 460 666	C 41 <b>0</b>	00_410_INS 1 . NVECS	145

1

(

Jul I	14:1	6:08 1	1993 adaphd.f SUBROUTINE DYNPTN	p <b>age</b>	21
51 6	67		NVEES - NVECS + 1		1461
	68		NOFVES( NVEES ) = NREMS		1462
-	69		END IF		1463
	70	С			1464
	71	-	00 420 INV - 1 , NVECV		1465
56	72		NOFVEV( INV ) = MBL		1466
76	73	420	CONTINUE		1467
	74		NVEEV = NVECV		1468
	75		IF( NREMV . GT . 0 ) THEN		1469
	76		NVEEV + NVECV + 1		1470
	77		NOFVEV( NVEEV ) = NREMV		1471 1472
	78	~	END IF		1473
	79	С	PRINT*, NV, NE, NS		1474
	80 81	С			1475
	82	č	- EXIT POINT FROM SUBROUTINE		1476
	83	č	· LAIT FORM FROM SODIOFFIC		1477
	84	č			1478
	85	•	RETURN		1479
	86	С	****		1480
	87	č			1481
	88	č			1482
	89		END		1483
Jul I	14:1	6:08 1	1993 adaphd.f SUBROUTINE DYYPTN		
A	t		SUBROUTINE DYYPTN( DAREA , NOFDIV , IDUMP , LTRIG )		1484
4 5	1 2	С	JUDNUTTHE UTITING UNNER , MULUEY, IDUNE , CINEN /		1485
5	3				1486
	4	C			1487
1		C	DYYPTN ADAPT THE GRID DYNAMICALLY, ADD VERTECES		1488
		č	SUB DIVIDE THE TRIANGLE THAT WERE FLAGED IN DYNPTH I		1489
	ž	č			1490
	8	-	***************************************		1491
	ĝ.				1492
	10		IMPLICIT REAL (A-H,O-Z)		1493
	11	С	• • •		1494
	12		include 'cmsh00.h'		1495
	13		include 'chyd00.h'		1496
	14		include 'cint00.h'		1497
	15		include 'cphs10.h'		1498 1499
	16	-	include 'cphs20.h'		1500
	17	C	THTERE ITRIC/UEN) VIOTE/UEN) INCOVE/UEN)		1500
	18		INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM)		1501
	19	c	INTEGER JSE(MEM), JEE(MEM), IOFDVS(10), NOFDVS(10)		1502
	20	С			1504
	21		EQUIVALENCE (UL.JTRIG)		1505
	22		EQUIVALENCE (VR.KTRIG)		1506
	23		EQUIVALENCE (VL.IRECNC) EQUIVALENCE (PR.JSE)		1507
	24 25		EQUIVALENCE (PL, JEE)		1508
	25	С	charmenine fictory		1509
	27	v	SMINVG = SAREVG * DAREA		1510
	28		ANINVG = SAREVG * THIRD		1511
	29		RMINVG = .7 * SMINVG		1512
	30		DO 115 IS = 1 , NS		1513
	31		JEE(IS) = 0		1514
	32	115			1515
	33		MSS = 0		1516
	34		NSS = LTRIG		1517
	35	С			1518
	36		DO 140 KDIV = 1 , NOFDIV		1519 1520
	37		ITRIG = 0		1520
	38	-	DO 150 KS = 1 , NSS		1521
	39	C			1522
	40		ISS = JTRIG(KS)		1523
	41	~	IF(ISS.NE.0) THEN		1525
1	42	С			1526
5	43		DO 160 KR = $1, 3$		1527
	44	•	IVV = JS(KR, ISS)		1528
7	A 2	С			1529
3	45		$h_{1} = h_{1} h_{2} + h_{3} h_{3} h_{3}$		
3	46		IE = JV(2, IVV)		
3		С	IF( IE . GT . 0 ) THEN		1530 1531

Thu Jul	1 14:	16:08	1993 a	daphd.f		SUBROUTIN	E DYYPTN	page	2 <b>2</b>
1532 1533 1534 1535 1536 1537 1538 1539	49 50 51 52 53 54 55 56	С	IF( ISI ELSE		IVV ) THEN E )				1532 1533 1534 1535 1536 1537 1538
1540 1541	57 58	750 C	CONT	INUE					1539 1540 1541
1542 1543 1544 1545	59 60 61 62		XAS = IF( .	• JEE( IS ) • XS( 3 , IS JES . EQ . 0 G = ITRIG +	) AND . XAS	G. GT. RMIN	IVG ) THEN		1542 1543 1544
1546 1547 1548 1549	63 64 65 66		KTRI ( KSDEL	G( ITRIG ) = _T( IS ) = I _IS ) = 1	· IS				1545 1546 1547 1548
1550 1551	67 68	С	00 76	50 IR = 1 ,	3				1549 1550 1551
1552 1553 1554 1555	69 70 71 72		IEA = IF( 1	MOD( IR , 3 IABS( JS( EA , EQ , 1 MOD( JR +	JR + 3 , IS E ) THEN	))			1552 1553 1554
1556 1557 1558	73 74 75	С	IER =	IABS( JS(	JJR, ÍS))				1555 1556 1557
1559 1560 1561	76 77 78		IF( I	JE(1, IE V1.EQ.I JE(3, IE	VV ) THEN				1558 1559 1560 1561
1562 1563 1564	79 80 81		ISR = END I END I		R )				1562 1563 1564
1565 1566 1567	82 83 84	С 76 <b>0</b> С	CONTI	NUE					1565 1566 1567
1568 1569 1570	85 86 87		IF( 1 IS = IE =		SI ) THEN				1568 1569
1571 1572 1573	88 89 90	С	GO TO END I	750					1570 1571 1572
1574 1575	91 92	C	ELSE						1573 1574 1575
1576 1577 1578	93 94 95		IF( I	JE(1, IE V1.EQ.IV	VV ) THEN				1576 1577 1578
1579 1580 1581	96 97 98		ELSE ISI =	JE(3, IE JE(4, IE					1579 1580 1581
1582 1583 1584	99 100 101		END I IS - ISI -	ISI 0					1582 1583 1584
1585 1586 1587	102 103 104	C 650	IIE = Contii						1585 1586 1587
1588 1589 1590	105 106 107	С		JEE( IS ) XS( 3 , IS	)				1588 1589 1590
1591 1592 1593 1594	108 109 110 111		IF( JI Itrig Ktrig	ES . EQ . O = ITRIG + 1 ( ITRIG ) =	. AND . XAS I IS	. GT . RMINN	/G ) THEN		1591 1592 1593
1594 1595 1596 1597	112 113 114	С		( IS ) = 10 IS ) = 1 -	70MF				1594 1595 1596 1597
1598 1599 1600	115 116 117		JR = N IEA =	) IR = 1 , 3 10D( IR , 3 IABS( JS( J	) + 1 IR + 3 , IS )	)			1598 1599 1600
1601 1602 1603 1604	118 119 120 121	с	JJR =	A . EQ . IE MOD(JR + 1 IABS(JS(J	(, 3) + 4				1601 1602 1603
1605	122	•	IV1 =	JE(1, IER	:)				1604 1605

Thu Jul	1 14:1	6:08 19	93 adaphd.f	SUBROUTIN	E DYYPTN	page	23
1606	123		IF( IVI . EQ . IVV )	THEN			1606
1607 1608	124 125		ISR = JE(3, IER) ELSE				1607
1609	125		ISR = JE(4, IER)				1608 1609
1610	127		END IF				1610
1611	128	c	END IF				1611
1612 1613	129 130	C 660	CONTINUE				1612 1613
1614	131	Ċ					1614
1615	132		IF( ISR . NE . ISI )	THEN			1615
1616 1617	133 134		IS = ISR IE = IER				1616 1617
1618	135		GO TO 650				1618
1619	136	c	END IF				1619
1620 1621	137 138	С	END IF				1620 1621
1622	139	160	CONTINUE				1622
1623	140	С	CND 10				1623
1624 1625	141 142	150	END IF CONTINUE				1624 1625
1626	143	C					1626
1627	144		DO 170 IS = 1, ITRIG				1627
1628 1629	145 146	1 <b>70</b>	JTRIG( IS + MSS ) = KTF CONTINUE	(16(15)			1628 1629
1630	147		NSS = ITRIG				1630
1631	148	c	MSS = MSS + ITRIG				1631
1632 1633	149 150	C 140	CONTINUE				1632 1633
1634	151	1.0	NSS = MSS				1634
1635	152	C	00 200 /01/ 1 1				1635
1636 1637	153 154		DO 300 KDIV = 1 , 1 LTRIG = NSS				1636 1637
1638	155	С	LININ - 055				1638
1639	156		00 310 IS = 1 , NSS				1639
1640 1641	157 158		ISS = JTRIG( IS ) XSAREA = XS( 3 , ISS )				1640 1641
1642	159		IF( XSAREA . GE . RMIN	IG ) THEN			1642
1643	160	C	00 135 ID 4 6				1643
1644 1645	1 <b>61</b> 162		DO 335 IR = 4 , 6 IE = IABS( JS( IR , ISS	; ) )			1644 1645
1646	163		IJE5 = JE( 5 , IE )	, , ,			1646
1647	164		IF( IJE5 . NE . 0 ) THE	N .			1647
1648 1649	165 166		JR2 = MOD( IR - 3 , 3 ) IE2 = IABS( JS( JR2 ,	(SS))			1648 1649
1650	167		JR3 = MOD(IR - 2, 3)	+ 4			1650
1651	168 169		IE3 = IABS( JS( JR3 , )) XE1 = XE( 1 , IE )	SS ) )			1651 1652
1652 1653	170		XE2 = XE(1, 1E2)				1653
1654	171		XE3 = XE(1, IE3)				1654
1655 1656	172 173		XEDIST = 1. / XE1 YE2 = XE2 * XEDIST				1655 1656
1657	173		YE3 = XE3 * XEDIST				1657
1658	175		ZE2 = (YE2 - 1.5) * (	YE21 )			1658
1659 1660	1 <b>76</b> 1 <b>77</b>		ZE3 = (YE3 - 1.5) * ( YY2 = XE1 * XE1 + XE2 *		XF2 - XF3 * XF3		1659 1660
1661	178		YY3 = XE1 * XE1 + XE3 *	XE3 + .35 * XE1 *	XE3 - XE2 * XE2		1661
1662	179		IF( ZE2 . LT0 . AND	). ZE3 . LT . O	AND .		1662
1663 1664	180 181	•	CALL DISECT ( IE , IDON	) · YY3 · GT · O. ) IF · IDUMP )	INEN		1663 1664
1665	182	С					1665
1666	183		LTRIG = LTRIG + 1				1666 1667
1667 1668	184 185		JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUMP				1668
1669	186	C					1669
1670	187		END IF				1670 1671
1671 1672	188 189	335	END IF CONTINUE				1672
1673	190		END IF				1673
1674	191	310 C	CONTINUE				1674 1675
1675 1676	192 193	L L	NSS = LTRIG				1676
1677	194		IEDGE = 0				1677
1678 1679	195 196	С	NCOLOR = 0				1678 1679
10/3	130	6					

Thu Jul	1 14:	16:08 1	993 adaphd.f	SUBROUTINE DYYPTN	page	24
1680	197		DO 295 IE = 1 , NE			1680
1681	198		JSE(IE) = 0			1681
1682 1683	199 200	295 C	CONTINUE			1682
1684	200	L	DO 320 IS = 1 / NSS			1683
1685	202		ISS = JTRIG(IS)			1684
1686	203		XSAREA = XS(3, ISS)			1685 1686
1687	204	C				1687
1688	205	<u> </u>	IF( XSAREA . GT . RMINVG ) THE	N		1688
1689 1690	206 207	С	00 735 10 - 4 - 6			1689
1691	208		DO 735 IR = 4 , 6 IE = IABS( JS( IR , ISS ) )			1690
1692	209		IF( JSE( IE ) . EQ . 0 ) THEN			1691 1692
1693	210		IEDGE = IEDGE + 1			1693
1694	211		IRECNC( IEDGE ) = IE			1694
1695 1696	212 213		NCOLOR = NCOLOR + 1			1695
1697	213		JEE(NCOLOR) = IE JSE(IE) = 1			1696
1698	215		END IF			1697
1699	216	735	CONTINUE			1698 1699
1700	217	C				1700
1701 1702	218		AREAXS = SAREA( ISS )			1701
1702	219 220		IE1 = IABS(JS(4, ISS)) $XE1 = XE(1, IE1)$			1702
1704	221		HD1 = AREAXS * XE1 * XE1			1703
1705	222		IJE5 = JE( 5 , IE1 )			1704 1705
1706	223		IE2 = IABS(JS(5, ISS))			1706
1707	224		XE2 = XE(1, IE2)			1707
1708 1709	225 226		HO2 = AREAXS * XE2 * XE2			1708
1710	227		IJE5 = IJE5 + JE( 5 , IE2 ) IE3 = IABS( JS( 6 , ISS ) )			1709
1711	228		XE3 = XE(1, IE3)			1710 1711
1712	229		HD3 = AREAXS * XE3 * XE3			1712
1713	230		IJE5 = IJE5 + JE(5, IE3)			1713
1714 1715	231 232		RATIO - AMAX1( HD1 , HD2 , HD3	)		1714
1716	233		IRATIO = 0 IF( RATIO . LE . 7 AND . 1JR	5 50 0 AND		1715
1717	234		XSARI	EA. GT. SMINVG ) IRATIO = 1		1716 1717
1718	235		IF( IJE5 . GT . 0 ) IRATIO = 2			1718
1719	236	С				1719
1720 1721	237 238		IF( IRATIO . EQ . 2 ) THEN			1720
1722	239		IJE51 = JE( 5 , IE1 ) IJE52 = JE( 5 , IE2 )			1721
1723	240		IJE53 = JE(5, IE3)			1722 1723
1724	241		IF( IJE51 . NE . O ) THEN			1724
1725 1726	242		IEDIST = IEI			1725
1727	243 244		XE1 = XE(1, IE1) XE2 = XE(1, IE2)			1726
1728	245		XE3 = XE(1, IE3)			1727 1728
1729	246		END IF			1729
1730	247		IF( IJE52 . NE . 0 ) THEN			1730
1731 1732	248 249		IEDIST = IE2 XE1 = XE(1, IE2)			1731
1733	250		XE2 = XE(1, 1E2) XE2 = XE(1, 1E1)			1732 1733
1734	251		XE3 = XE(1, IE3)			1734
1735	252		END IF			1735
17 <b>36</b> 1 <b>73</b> 7	253 254		IF( IJE53 . NE . 0 ) THEN			1736
1738	255		$\begin{array}{l} \text{IEDIST} = 1\text{E3} \\ \text{XE1} = \text{XE}(1, 1\text{E3}) \end{array}$			1737
1739	256		XE2 = XE(1, IE2)			1738 1739
1740	257		XE3 = XE(1, IE1)			1740
1741	258		END IF			1741
1742 1743	259 260		$\begin{array}{l} \text{XEDIST} = 1. \ / \ \text{XE}(1, \text{ IEDIST}) \\ \text{YE2} = 1. \ \text{YE2} \ \text{XEDIST} \end{array}$			1742
1743	261		YE2 = XE2 * XEDIST YE3 = XE3 * XEDIST			1743 1744
1745	262		ZE2 = ( YE2 - 1.5 ) * ( YE2	1)		1744
1746	263		ZE3 = ( YE3 - 1.5 ) * ( YE3	1)		1746
1747	264		YY2 = XE1 * XE1 + XE2 * XE2 + .	35 * XE1 * XE2 - XE3 * XE3		1747
1748 1749	265 266		YY3 = XE1 * XE1 + XE3 * XE3 + .	35 * XE1 * XE3 + XE2 * XE2		1748
1750	267		IF( ZE2 . LT0 . AND . ZE3 . YY2 . GT . 0 AND . YY3 .	GT . 0. ) THEN		1749 1750
1751	268	•	CALL DISECT ( IEDIST , IDONE ,	IDUMP )		1751
1752	269	C		-		1752
1753	270		LTRIG - LTRIG + 1			1753

1754       271       JTRIG (LTRIG ) - WS       1755         1755       273       C       1755         1757       274       1756       1757         1757       274       1756       1757         1758       275       1768       1757         1758       276       MCOLOR - NCUCAR - I       1759         1750       276       MCOLOR - NCUCAR - I       1759         1761       277       1756       1761       1762         1762       279       1506       1763       1761         1764       280       MCOLOR - I       1761       1762         1764       280       MCOLOR - I       1761       1764         1766       283       JEEK KOLOK I > MC - I       1764       1766         1767       284       JEEK KOLOK I > MC - I       1766       1766         1770       287       C       JEK KOLOK I S > I       1776         1777       280       C       JEK KOLOK I S > I       1777         1777       281       LTRIG - ITRIG - I       1776         1777       283       JEREK KOLOK I > MOUP       1776         1777       285       C	Thu Jul	1 14:16:08	1993 adaphd.f	SUBROUTINE DYYPTN	page 25
176       27       1000000000000000000000000000000000000	1754	271	JTRIG( LTRIG ) = NS		1754
1757       274       IEDEC - IEDEG + I       175         1758       275       IRECK (IEDEG ) - WE       1759         1760       275       MCDUR - MCQUR - ME       1760         1761       277       JEE (MCQUR ) - WE       1760         1762       279       JEEC (MCQUR ) - WE       1760         1762       270       JEE (MCQUR ) - WE       1760         1763       280       IRECK (IEDEG ) - WE - 1       1763         1764       281       MCQUR - NCQUR + WE - 1       1764         1765       282       JEE (MCQUR ) - WE - 1       1765         1766       287       JEE (MCQUR ) - WE - 1       1765         1766       287       JEE (MCQUR ) - WE - 1       1766         1776       283       LFG (IEDE ) - 1       1766         1772       280       C       1770       1770         1772       280       CALL VERCEW (ISS )       1771         1777       284       KSDELT (WS - 1) = NOMP       1771         1778       285       C       1772         1777       294       KSDELT (WS - 1) = NOMP       1772         1778       295       C       1777       1776			KSDELT( NS ) = 100MP		
1758       275       IRECRCI [EDCE] + HE       1758         1759       276       MOLOR + RCUOR + I       1760         1760       277       JEEL (MOLOR ) + HE       1760         1762       278       JEEL (MOLOR ) + HE       1760         1763       279       JEEL (MOLOR ) + HE       1760         1764       281       MOLOR + NCUOR + I       1761         1765       282       278       JEEL (MOLOR ) + HE - I       1763         1766       283       C       JEEL (MOLOR ) + HE - I       1766         1766       283       C       HE (I RATIO - EQ - I ) THEN       1776         1770       287       C       CLIFIE - LIFIE - I INEN       1777         1777       286       EHO IF       1776       1777         1777       287       C       CLIFIE - LIFIE - I INEN       1777         1777       294       C KALL VERCENT (ISS ) - NS - I       1776         1777       294       KSDELT (NS - I ) - IDUMP       1777         1778       295       LIFIE - LIFIE - I S - NS       1778         1778       295       LIFIE - LIFIE - I S - NS       1778         1778       295       LIFIE - LIFIE - NS - NS					
1799       276       MCOLOR + MCOLOR + 1       179         1760       277       JEC (MCOLOR ) + ME       1761         1781       279       IEDEC + IEDEC + IE       1762         1783       279       IEDEC + IEDEC + IE       1762         1784       279       IEDEC + IEDEC + IE       1763         1785       282       JEC (MCOLOR + KCOLOR + IE       1764         1786       282       JEC (MCOLOR + KCOLOR + IE       1766         1786       282       JEC (MCOLOR + IE       1767         1786       282       JEC (MCOLOR + IE       1767         1787       280       IF (IATIO - EQ - 1 ) THEN       1776         1772       283       IF (IATIO - EQ - 1 ) THEN       1777         1774       279       KOBELT (ISS ) = IDUMP       1777         1777       290       ITRIC - IRG - I & ITRIC - IRG       1777         1777       291       ITRIC - IRG - I & ITRIC - IRG       1777         1778       295       ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG       1777         1778       295       ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & ITRIC - IRG - I & I					
1761       276 $35C (NC) = 1$ 1761         1762       279       HEGDE + HEGE + I       1763         1784       280       HREUKC( IEGDE + NE - 1       1764         1784       281       ACLUMA - NCHLOM + I       1764         1784       281       ACLUMA - NCHLOM + I       1764         1786       285       CEC ( MCOLOR ) - ME - 1       1766         1786       285       CEC ( MCOLOR ) - ME - 1       1766         1787       284       CEC ( MCOLOR ) - ME - 1       1767         1786       285       CEN IF       1769       1766         1787       286       CEN IF       1770       1776       1777         1772       289       C       CLI ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( TRIC ) - 1 ( T	1759	276	NCOLOR = NCOLOR + 1		1759
1762       279       IEDGE - IEDE - I       1762         1763       280       IRCENC(IEDE - ME - I       1763         1764       281       MCDUR - MCUOR + ME - I       1764         1765       282       JEEL (MCUR) + ME - I       1766         1766       283       C       1766         1776       286       MCUOR - IEDE - IEDE       1766         1776       286       FF (IRATIO . EQ . I ) THEN       1776         1771       288       C       1772         1771       288       C       1772         1771       289       C       1772         1771       289       C       1773         1777       291       KSDELT (MS - I ) DUMP       1777         1777       292       C       1776         1777       293       LTRIE - LTRIE - I N       1776         1778       295       C       1776       1777         1780       295       C       1781       1777         1781       296       ITRIE - LTRIE - I NE       1778         1782       297       JTRIE - LTRIE - I NE       1782         1783       301       IEDEE - I NE       1782					
1763       280       IRCENC (IEDE ) = NE - 1       1763         1764       281       NCOLOR = NCOLOR + 1       1765         1765       282       JEE (NCOLOR ) = NE - 1       1765         1766       283       JEE (NCOLOR ) = NE - 1       1766         1766       284       FMO IF       1766         1767       285       FMO IF       1766         1770       287       C       1776         1777       289       FMO IF       1770         1777       290       C       1771         1777       291       KSDELT (ISS ) = NUMP       1777         1777       294       KSDELT (ISS ) = NUMP       1778         1777       294       KSDELT (ISS ) = NUMP       1778         1777       295       C       1778         1777       294       KSDELT (ISS ) = NUMP       1778         1778       295       C       1778         1778       295       <					
1765       282       JEE( MCOURD ) = NE - 1       1765         1766       284       C       1767         1768       284       C       1767         1768       285       END IF       1769         1771       288       C       1761         1772       288       C       1761         1771       288       C       1771         1772       288       C       1771         1773       290       C       1771         1774       291       KSDEL1(1S5.)       1774         1777       293       JTRIG (LTRIG + 1       1775         1777       294       KSDEL1(NS - 1       1776         1777       295       C       C       1776         1778       295       C       1776       1777         1780       1776       1778       1778       1778         1781       1776       1778       1781       1778         1782       295       C       1786       1787         1783       1780       1786       1787       1783         1784       301       IECCMC108 + N = 1       1788       1788	1763	28 <b>0</b>	IRECNC( IEDGE ) = NE	- 1	
1766       283       JSE( NE - 1 ) - 1       1767         1767       284       C       1767         1768       285       END IF       1768         1776       286       C       1770         1771       287       C       1771         1771       287       C       1771         1774       293       C       1771         1775       292       LTRIG - LTRIG + 1       1773         1776       293       JTRIG(LTRIG + 185 - 1       1776         1776       294       KSDEL1( NS - 1 ) = 100MP       1777         1778       295       C       1778       1776         1778       295       C       1778       1778         1780       297       JTRIG(LTRIG - 185 - 1       1778         1781       298       KSDEL1( NS - 1 = 0       1781         1782       298       KSDEL1( NS - 1 = 100MP       1781         1783       300       IEDEC + 1       1782         1783       301       IEDEC + 1       1782         1783       302       IEDEC + 1       1783         1784       303       MEEL (NOLOR ) + NE - 1       1783      <		281			
1767       284       C       176         1768       285       END IF       176         1770       280       C       1770         1771       288       IF (IRATIO.EQ.1) THEN       1771         1772       280       C       1771         1772       280       CALL VERCEN (ISS)       1773         1773       270       CALL VERCEN (ISS)       1773         1774       271       CALL VERCEN (ISS)       1773         1775       272       CALL VERCEN (ISS)       1773         1774       273       CALL VERCEN (ISS)       1773         1777       274       KSDELI (ISS) - 100HP       1775         1778       275       JTRIG (ITRG) - #S       1780         1778       276       JTRIG (ITRG) - #S       1780         1781       296       KSDELI (NS) - 100HP       1781         1782       297       JTRIG (ITRG) - #S       1780         1783       301       IEDCE - 1EDCE + 1       1782         1784       301       IEDCE + 1EDCE + 1       1781         1785       302       MCOLOR + NCOLOR + NCOLON + 1       1785         1786       303       JEEL (NCOLOR + NCO				1	
1768         285         END IF         1769           1769         26         END IF         1769           1771         28         C         1770           1771         28         C         1770           1771         28         C         1771           1772         28         C         1771           1772         28         C         1772           1773         290         CALL VECENT (ISS)         1775           1776         293         JTRICI - ITRIC + I         1776           1777         294         KSDELI (INS - I) = IDUMP         1777           1778         295         C         1778           1780         297         JTRIG - ITRIC + I         1778           1781         298         KSDELI (INS - I) = IDUMP         1778           1782         299         C         1781           1782         299         IEDGE - IEDGE + I         1782           1783         300         IEDGE + IEDGE + I         1783           1783         304         IECNC (IEDGE + NE - I         1783           1789         305         IEDGE + IEDGE + I         1786           1			<b>USE(</b> IIE - 1 ) - 1		
170       287       C       IF(IRATIO.EQ.1)THEN       1771         172       289       C       1772         173       290       C       1772         174       291       KSDELT(ISS.) = 100MP       1774         1774       291       KSDELT(ISS.) = 100MP       1775         1776       293       JTRIG(LIRIG.) = NS = 1       1775         1776       293       JTRIG(LIRIG.) = NS       1770         1777       294       C       DELI(INS. = 1) = 100MP       1777         1778       295       LTRIG. = LTRIG. + NS       1770         1782       300       IERCF. = IEDEE + NS       1781         1784       301       IERCVI (IENCE ) = NK       1782         1785       302       MCOLOR + NOLOR + NOLOR + 1       1785         1785       303       UEE (NOLOR ) = NE       1786         1785       304       JSEC (NC) NOR + 1       1786         1786       305       IERCVIC (IEDEE ) = NE - 1       1786         1788       305       IERCVIC (IEDEE ) = NE - 1       1787         1789       306       IRCENC (IEDEE ) = NE - 2       1797         1791       308       JEE (NOLOR ) = NE - 2		285			
		285	END IF		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			IF( IRATIO . EQ . 1 )	THEN	
	1772	2 <b>89</b> C			
		290			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	177 <b>6</b>	2 <b>93</b>	JTRIG( LTRIG ) = NS -		1776
			KSDELT(NS - 1) = IDI	UMP	
			ITRIG = ITRIG + 1		-
1783       300       IEDE = IEDE + 1       1784         1784       301       IEDEC + IEDE + 1       1784         1785       302       MCDLOR - MCDLOR + 1       1785         1787       303       JEE( MCDLOR ) = NE       1786         1787       304       JSE( ME ) - 1       1787         1788       305       IEDEE + IEDE + 1       1787         1789       305       IEDE + IEDE + 1       1789         1789       307       MCDLOR + NCDLOR + 1       1799         1791       306       JEE( MCDLOR ) = NE - 1       1791         1792       309       JSE( ME - 1 ) - 1       1792         1793       310       IEDE = IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE + IEDE		298	KSDELT( NS ) = IDUMP		
1784       301       IRECKC([ECGE] = NE       1785         1785       302       MCOLOR + NCOLOR + 1       1785         1786       303       JEE( HCOLOR ) = NE       1786         1787       304       JSE( NE ) = 1       1787         1788       305       IEEGE = IEDGE + 1       1787         1790       306       IRECNC(IEDGE) = NE - 1       1789         1791       306       IRECNC(IEDGE) + NE - 1       1790         1791       308       JEE( HCOLOR + I       1791         1792       305       IRECNC(IEDGE) + NE - 1       1792         1793       310       IEDGE + I - 1       1792         1794       JSE( NE - 1) - 1       1792       1793         1794       JSE( NE - 2) - 1       1794       1795         1795       313       JEE( NCOLOR + NCOLOR + I       1795         1796       314       JSE( NE - 2) - 1       1797         1797       314       JSE( NE - 2) - 1       1797         1798       315       C       1798         1800       1165       ELSE       1800         1801       1055 - JE( 5 , IEF )       1803         1802       1164       1165 </td <td></td> <td></td> <td>IENCE - IENCE + 1</td> <td></td> <td></td>			IENCE - IENCE + 1		
1785       302       MCDLOR - NCDLOR + 1       1785         1786       303       JEE (NCDLOR ) - NE       1787         1787       304       JSE (NE ) - 1       1787         1788       305       IEDGE - 1 EDGE + 1       1788         1789       306       IRECMC (IEDGE ) - NE - 1       1789         1790       307       MCDLOR - NCOLOR + L       1791         1791       308       JEE (NCOLOR ) - NE - 1       1791         1792       309       JSE (NE - 1 ) - 1       1792         1793       310       IEDGE - 1 EDGE + 1       1793         1794       311       IRECMC (IEDGE ) - NE - 2       1794         1795       312       MCDLOR N - NCOLOR + L       1795         1796       313       JEE (NCOLOR ) - NE - 2       1797         1798       315       C       1797         1798       315       C       1799         1800       IDISCT - 0       1800       1801         1801       101SCT - 0       1800       1802         1802       122       JEES - JEC (S, IEF )       1804         1804       22       1795 S       1802         1804       324 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
	1785	3 <b>02</b>	NCOLOR = NCOLOR + 1		1785
1788       305       1206 = 1 (EDGE + 1       1788         1790       307       MCOLOR + NCOLOR + 1       1790         1791       308       JEE( MCOLOR + NCOLOR + 1       1791         1792       309       JEE( MCOLOR + 1 - 1       1791         1793       300       HECONC (DOE + NE - 2       1793         1793       310       EEOGE - 1 EDGE + NE - 2       1794         1795       312       MCOLOR + NCOLOR + 1       1795         1796       313       JEE( MCOLOR ) - NE - 2       1795         1796       314       JSE( NE - 2 ) = 1       1795         1797       314       JSE( NE - 2 ) = 1       1797         1798       315       C       1799         1797       314       JSE( NE - 4 , 6       1800         1800       317       C       1800       1800         1801       IDISCT = 0       1801       1802         1803       300       1EE = JSE (K K , 1SS )       1803         1804       321       1EF = JASE (K K , 1SS )       1803         1805       322       JAESS - EQ & 0 ) THEN       1805         1806       322       IJESS - EQ & 0 ) THEN       1804					
1789       306       IPECPEC (EDGE) = WE - 1       1789         1790       307       MCDLOR = MCOLOR + 1       1790         1791       308       JEE( MCOLOR) = NE - 1       1791         1792       309       JSE( MC - 1) = 1       1792         1793       310       IECGE = IECGE + 1       1793         1794       311       IRECNC (IEDGE) = WE - 2       1794         1795       312       MCOLOR - NCOLOR + NE - 2       1795         1796       313       JEE( MCOLOR) = NE - 2       1795         1796       313       JEE( MCOLOR) = NE - 2       1797         1797       314       JSE( NE - 2) = 1       1797         1798       315       C       1798         1800       318       IDISCT = 0       1800         1801       318       IDISCT = 0       1801         1802       319       DO 545 KK - 4 , 6       1802         1803       320       IEE - JS( KK , ISS )       1803         1804       321       IEF - JS( KK , ISS )       1803         1805       22       JJESS - C (S , IEF )       1805         1806       323       IF (IEE C T · 0 ) THEN       1807         18					
	1789	3 <b>06</b>		- 1	1789
1793310IEDGE - IEDGE + 117931794311IRECNC(IEDGE) - NE - 217941795312MCOLOR - NCOLOR + 117951796313JEE(NCOLOR) - NE - 217961797314JSE(NE - 2) - 117971798315C17981799316ELSE17981800181IDISCT = 018001801318IDISCT = 018011802319DO SKK + 4, 618021803320IEE - JS(KK, ISS)18031804321IEF - TABS(IEE)18041805322JJESS - JE(S, IEF)18051806323IF(IJESS, EQ, 0) THEN18061807324IF(IEE, GT, 0) THEN18061809326ELSE18091809326ELSE18091809326ELSE18111811328END IF18121813330IEI - IABS(JS(4, ISI))18121814331KEI - XE(1, IEE)18151815332LIESS - JE(5, IEI)18151816333HDI - AREAXS * XEI * XEI18161817344IEZ - IABS(JS(5, ISI))18171818355KE2 - XE(2, IEE)18181819336LIESS + JE(5, IEZ)18181819336LIESS + JE(5, IEZ)18181819336LIESS + JE(5, IEZ)18181819336LIESS + JE(5, IEZ) <t< td=""><td></td><td></td><td></td><td>1</td><td></td></t<>				1	
1794311IRCCNC (IEDGE) = NE - 217941795312NCOLOR = NCOLOR + 117951796313JEE (NCOLOR + NE - 217961797314JSE (NE - 2) = 117971798315C17981799316ELSE17991800317C18001801101SCT = 018011802319D0 545 KK = 4 , 618021803320IEE = JS(KK, ISS)18031804321IEF = JS(KK, ISS)18031805322IJE55 - JE( 5 , IEF )18051806323IF (JE55 - S, O ) THEN18061807180718071808325ISI = JE( 4 , IEE )18071808325ISI = JE( 3 , IEF )18101811328EMD IF18101811328LAKS = SAREA( ISI )18121813330IEI = IABS( JS( 4 , ISI ) )18131814331XEI = XE( 1 , IEI )18141816333HOI = AREAXS * XEI * XEI18161816333HOI = AREAXS * XEI * XEI )181718181819336IZ55 + JE( 5 , IEZ )18171819336IZ55 + JE( 5 , IEZ )18171819336IZ55 + JE( 5 , IEZ )18171819336IZ55 + JE( 5 , IEZ )18181819336IZ55 + JE( 5 , IEZ )18171821338IE3 - IABS(JS( 6 , ISI ) )1827 <tr< td=""><td></td><td></td><td>IEDGE = IEDGE + 1</td><td></td><td></td></tr<>			IEDGE = IEDGE + 1		
1796313JEE( NCOLOR ) = NE - 217961797314JSE( NE - 2 ) = 117971798315C17981799316ELSE17991800317C1800180118IDISCT = 018001802319D0 545 KK = 4 . 618011803320IEE = JS( KK , ISS )18031804211IEF = IABS( IEE )18041805322IJ555 - JE( 5 , IEF )18051806323IF( IEE , GT . 0 ) THEN18051807324IF( IEE , GT . 0 ) THEN18071808325ISI = JE( 3 , IEF )18091810327ISI = JE( 3 , IEF )18101811328END IF18121813330IEI = IABS( JS( 4 , ISI ) )18131814331XEI = XE( 1 , IEI )18151816333HOI = AREAXS * XEI * XEI18161817334IE2 = IABS( JS( 5 , ISI ) )18171818335XE2 - XE( 1 , IE2 )18181819336IJE55 + JE( 5 , IE2 )18181819336IJE55 + JE( 5 , IE2 )18191820337MO2 = AREAXS * XE2 * XE218201821338IE3 = IABS( JS( 6 , ISI ) )18211822339XE3 = XE( 1 , IE3 )18221823340IJE55 + JJE( 5 , IE3 )18221824341MO3 = AREAXS * XE3 * XE318241825342 <td< td=""><td></td><td></td><td></td><td>- 2</td><td></td></td<>				- 2	
1797314JSE( NE - 2 ) = 117971798315C17981799316ELSE17991800317C18001801318IDISCT = 018001802319D0 545 KK = 4 . 618011802320IEE = JS( KK , ISS )18021803320IEE = JS( KK , ISS )1803180421IEF = IA8S( IEE )18051805322IJJES5 = JE( 5 , IEF )18051806323IF( IJES5 , EQ , 0 ) THEN18061807324IF( IEE , GT , 0 ) THEN18061808325ISI = JE( 3 , IEF )18081809326ELSE18091810327ISI = JE( 3 , IEF )18101811328END IF18111812329AREAXS = SAREA( ISI )18121813330IEI = IA85( JS( 4 , ISI ) )18131814311XEI = XE( 1 , IEI )18141815332IJE55 = JE( 5 , IE1 )18151816333HDI = AREAXS * XEI * XEI181618171818335XE2 = XE( 1 , IE2 )18181818335XE2 = XE( 1 , IE2 )18181819336IJE55 = IJE55 + JE( 5 , IE2 )18181820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IA85( JS( 6 , ISI ) )18211822339XE3 = XE( 1 , IE3 )18211823340IJE55				2	
1798315C17991799316ELSE17991800317C18001801318101SCT = 018011802319D0 545 KK = 4 , 618021803320IEE = $JS(KK, ISS)$ 18031804321IEF = IABS(IEE)18041805322IJE55 - JE(5, IEF)18051806323IF(IJE55, EQ , 0) THEN18061807324IF(IEE, GT , 0) THEN18061809326ELSE18091809326ELSE18091809326ELSE18091810327ISI = JE(3, IEF)18101811330IEI = IABS(JS(4, ISI))18131814331XEI = ARE(1, IEI)18141815332IJE55 = JE(5, IEI)18161816333HDI = AREAXS * XEI * XEI18161817334IE2 = IABS(JS(5, IE2))18171818335XE2 = XE(1, IE2)1818181936IJE55 = IJE55 * JE(5, IE2)18171822339KE3 = KE(1, IE3)18221823340IJE55 * IJE(5, IE2)18201824341HD3 = AREAXS * XE3 * XE318241824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAXI(HD1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1825					1797
1800317C18001801318IDISCT = 018011802319D0 545 KK = 4 , 618011803320IEE = JS(KK, ISS)18031804321IEF = IABS(IEE)18041805322IJE55 = JE(5, IEF)18051806323IF(IDE55, EQ, 0) THEN18061807324IF(IEE, GT, 0) THEN18061808325ISI = JE(4, IEE)18091810327ISI = JE(3, IEF)18101811328END IF18111812329AREAXS = SAREA(ISI)18121813330IEI = IABS(JS(4, ISI))18131814331XEI = XE(1, IEI)18151815332IJE55 = JE(5, IEI)18151816333HDI = AREAXS * XEI * XEI18161817334IE2 = IABS(JS(5, ISI))18171818335XE2 = XE(1, IE2)18191820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211823340IJE55 + JE(5, IE2)18211823340IJE55 + JE(5, IE3)18221823340IJE55 + JE(5, IE3)18231824341HD3 - AREAXS * XE3 * XE318241825342RATIO - AMAXI(HD1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1825	1798	315 C			
1801318IDISCT = 018011802319DD 545 KK = 4, 618021803320IEE = JS( KK , ISS )18031804321IEF = IABS( IEE )18041805322IJE55 = JE( 5 , IEF )18051806323IF( IJE55 , EQ , 0 ) THEN18061807324IF( IEE , GT , 0 ) THEN18071808325ISI = JE( 4 , IEE )18081809326ELSE18091810327ISI = JE( 3 , IEF )18101811328END IF18101812329AREAXS = SAREA( ISI )1812181330IEI = IABS( JS( 4 , ISI ) )18131814331XEI = XE( 1 , IEI )18151816333HDI = AREAXS * XEI * XEI18161817334IE2 = IABS( JS( 5 , ISI ) )18171818335XE2 = XE( 1 , IE2 )18181820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS( JS( 6 , ISI ) )18211823340IJE55 + JE( 5 , IEI )18221823340IJE55 + JE( 5 , IEI )18231824341HD3 = AREAXS * XE3 * XE318231824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAXI (HD1 , HD2 , HD3 )18251826343YSAREA = XS( 3 , ISI )1825		316 317 C	ELSE		
1802319D0 545 KK = 4 , 618021803320IEE = JS(KK , ISS)18031804321IEF = IABS(IEE)18041805322IJE55 = JE(5, IEF)18051806323IF(IJE55 . EQ . 0) THEN18061807324IF(IEE . GT . 0) THEN18071808325IS1 = JE(4 . IEE)18071809326ELSE18091801327IS1 = JE(3 . IEF)18101811328END IF18111812329AREAXS = SAREA(ISI)18121813330IE1 = IABS(JS(4 , ISI))18131814331XE1 = XE(1 , IE1)18141815332IJE55 = JE(5 , IE1)18151816333HD1 = AREAXS * XE1 * XE118161817334IE2 = IABS(JS(5 , ISI))18171818335XE2 = XE(1 , IE2)18191820337HO2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6 , ISI))18211823340IJE55 + JE(5 , IE3)18221823340IJE55 + JE(5 , IE3)18221823340IJE55 + JE(5 , IE3)18241824341HO3 - AREAXS * XE3 * XE318241825342RATIO = AMAXI (HO1 , HO2 , HO3 )18251826343YSAREA = XS(3 , ISI )1825			1DISCT = 0		
1804321IEF = IABS( IEE )18041805322IJE55 = JE(5, IEF )18051806323IF( IJE55 : EQ . 0 ) THEN18071807324IF( IEE . GT . 0 ) THEN18071808325ISI = JE(4 . IEE )18081809326ELSE18091810327ISI = JE(3, IEF )18101811328END IF18111812329AREAXS = SAREA( ISI )18121813300IE1 = IABS( JS(4 , ISI ) )18131814331XEI = XE(1, IEI )18141815332IJE55 = JE(5, IEI )18151816333HDI = AREAXS * XEI * XEI18161817334IE2 = IABS( JS(5, ISI ) )18171818335XE2 * XE(1, IE2 )18181819336IJE55 = JE(5, IE2 )18191820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS( JS(6, ISI ) )18211822340IJE55 + JE(5, IE3 )18221823340IJE55 + JE(5, IE3 )18221824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAXI(HOI , HD2 , HD3 )18251826343YSAREA = XS(3, ISI )1826	1802	319	DO 545 KK = 4 , 6		
1805322IJE55 + JE(5, IEF)18051806323IF(IJE55 . EQ . 0 ) THEN18061807324IF(IEE . GT . 0 ) THEN18071808325ISI - JE(4 . IEE)18071809326ELSE18091810327ISI - JE(3 . IEF)18101811328END IF18111812329AREAXS = SAREA(ISI)18121813330IEI - IABS(JS(4 . ISI))18131814331XEI = XE(1 . IEI)18141815332IJE55 = JE(5 . IEI)18151816333HDI = AREAXS * XEI * XEI18161817344IZE 2 IABS(JS(5 . ISI))18171818335XE2 = XE(1 . IE2)18181819336IJE55 = JE(5 . IE2)18191820337HO2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6 . ISI))18211822339XE3 = XE(1 . IE3)18221823340IJE55 = JE(5 . IE2)18231824341HD3 = AREAXS * XE3 * XE318231825342RATIO = AMAXI(HO1 . HO2 . HD3)18251826343YSAREA = XS(3 . ISI)1825					
1806323IF(IJE55.EQ.O) THEN18061807324IF(IEE.GT.O) THEN18071808325ISI = JE(4.IEE)18081809326ELSE18091810327ISI = JE(3.IEF)18101811328END IF18111812329AREAXS = SAREA(ISI)18121813300IEI = IABS(JS(4.ISI))18131814331XEI = XE(1.IEI)18141815332IJE55 = JE(5.IEI)18151816333HOI = AREAXS * XEI * XEI18161817334IE2 = IABS(JS(5.ISI))18171818335XE2 = XE(1.IE2)18181819336IJE55 = JJE55 + JE(5.IE2)18191820337HO2 = AREAXS * XE2 * XE218201821339XE3 = XE(1.IE3)18211823340IJE55 = IJE55 + JE(5.IE3)18231824341HO3 = AREAXS * XE3 * XE318241825342RATIO = AMAXI(HO1, HO2, HO3)18251826343YSAREA = XS(3.ISI)1825				•	
1808325ISI = JE(4, IEE)18081809326ELSE18091810327ISI = JE(3, IEF)18101811328END IF18111812329AREAXS = SAREA(ISI)18121813330IEI = IABS(JS(4, ISI))18131814331XEI = XE(1, IEI)18141815332IJE55 = JE(5, IEI)18151816333HDI = AREAXS * XE1 * XE118161817334IE2 = IABS(JS(5, ISI))18171818335XE2 = XE(1, IE2)18181819336IJE55 = JJE5 + JE(5, IE2)18191820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211823340IJE55 = AIE(5, IE3)18231824341HD3 = AREAXS * XE3 * XE318241826343YSAREA = XS(3, ISI)1825	1806	323	IF( IJE55 . EQ . 0 )	THEN	
1809326ELSE18091810327ISI = JE(3, IEF)18101811328END IF18111812329AREAXS = SAREA(ISI)18111813330IE1 = IABS(JS(4, ISI))18131814331XEI = XE(1, IEI)18141815332IJE55 = JE(5, IEI)18151816333HDI = AREAXS * XE1 * XE118161817334IE2 = IABS(JS(5, ISI))18171818335XE2 = XE(1, IE2)18181819336IJE55 = JIE(5, IE2)18191820337HO2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211823340IJE55 = IJE55 * JE(5, IE3)18231824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAXI (HD1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1826		324		EN	
1810327 $ISI = JE(3, IEF)$ 18101811328END IF18111812329AREAXS = SAREA(ISI)18121813330IE1 = IABS(JS(4, ISI))18131814331XE1 = XE(1, IE1)18141815332IJE55 = JE(5, IE1)18151816333HDI = AREAXS * XE1 * XE118161817334IE2 = IABS(JS(5, ISI))18171818335XE2 = XE(1, IE2)18181819336IJE55 = IJE55 + JE(5, IE2)18191820337HO2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211823340IJE55 = IJE55 + JE(5, IE3)18231823340IJE55 + JE(5, IE3)18231825342RATIO = AMAX1(HD1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1827					1809
1812329AREAXS = SAREA(ISI)18121813330IE1 = IABS(JS(4, ISI))18131814331XE1 = XE(1, IE1)18141815332IJE55 = JE(5, IE1)18151816333HD1 = AREAXS * XE1 * XE118161817334IE2 = IABS(JS(5, ISI))18171818335XE2 = XE(1, IE2)18181819336IJE55 = IJE55 + JE(5, IE2)18181820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211823340IJE55 + JE(5, IE3)18231824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAX1(HD1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1826	1810	327	ISI = JE(3, IEF)		
1813330IE1 = IABS(JS(4, ISI))18131814331XE1 = XE(1, IE1)18141815332IJE55 = JE(5, IE1)18151816333HD1 = AREAXS * XE1 * XE118161817334IE2 = IABS(JS(5, ISI))18171818335XE2 = XE(1, IE2)18181819336IJE55 = IJE55 + JE(5, IE2)18191820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211822339XE3 = XE(1, IE3)18221823340IJE55 + JE(5, IE3)18231824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAX1(HD1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1826		328			
1814331XE1 = XE(1, IE1)18141815332IJE55 = JE(5, IE1)18151816333HD1 = AREAXS * XE1 * XE118161817334IE2 = IABS(JS(5, ISI))18171818335XE2 = XE(1, IE2)18181819336IJE55 = IJE55 + JE(5, IE2)18191820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211822339XE3 = XE(1, IE3)18221823340IJE55 = IJE55 + JE(5, IE3)18231824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAX1(HD1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1826		330			
1816333HD1 = AREAXS * XE1 * XE118161817334IE2 = IABS( JS( 5, ISI ) )18171818335XE2 = XE( 1, IE2 )18181819336IJE55 = IJE55 + JE( 5, IE2 )18191820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS( JS( 6, ISI ) )18211822339XE3 = XE( 1, IE3 )18221823340IJE55 + JE( 5, IE3 )18231824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAX1( HD1, HD2, HD3 )18251826343YSAREA = XS( 3, ISI )1826	1814	331	XE1 = XE(1, IE1)		
1817334IE2 = IABS(JS(5, ISI))18171818335XE2 = XE(1, IE2)18181819336IJE55 = IJE55 + JE(5, IE2)18191820337HO2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211822339XE3 = XE(1, IE3)18221823340IJE55 = IJE55 + JE(5, IE3)18231824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAX1(HO1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1826		332			
1818       335       XE2 = XE(1, IE2)       1818         1819       336       IJE55 = IJE55 + JE(5, IE2)       1819         1820       337       HD2 = AREAXS * XE2 * XE2       1820         1821       338       IE3 = IABS(JS(6, ISI))       1821         1822       339       XE3 = XE(1, IE3)       1822         1823       340       IJE55 + JE(5, IE3)       1823         1824       341       HD3 = AREAXS * XE3 * XE3       1824         1825       342       RATIO = AMAX1(HD1, HD2, HD3)       1825         1826       343       YSAREA = XS(3, ISI)       1826					
1819336 $IJE55 = IJE55 + JE(5, IE2)$ 18191820337HD2 = AREAXS * XE2 * XE218201821338IE3 = IABS(JS(6, ISI))18211822339XE3 = XE(1, IE3)18221823340IJE55 = IJE55 + JE(5, IE3)18231824341HD3 = AREAXS * XE3 * XE318241825342RATIO = AMAX1(HD1, HD2, HD3)18251826343YSAREA = XS(3, ISI)1826	1818	335	XE2 = XE( 1 , IE2 )		1818
1821       338       IE3 = IABS(JS(6, ISI))       1821         1822       339       XE3 = XE(1, IE3)       1822         1823       340       IJE55 = IJE55 + JE(5, IE3)       1823         1824       341       HD3 = AREAXS * XE3 * XE3       1824         1825       342       RATIO = AMAX1(HD1, HD2, HD3)       1825         1826       343       YSAREA = XS(3, ISI)       1826					
1822       339       XE3 = XE(1, IE3)       1822         1823       340       IJE55 = IJE55 + JE(5, IE3)       1823         1824       341       HD3 = AREAXS * XE3 * XE3       1824         1825       342       RATIO = AMAX1(HD1, HD2, HD3)       1825         1826       343       YSAREA = XS(3, ISI)       1826					
1823       340       I JE55 = I JE55 + JE(5, IE3)       1823         1824       341       HD3 = AREAXS * XE3 * XE3       1824         1825       342       RATIO = AMAX1(HD1, HD2, HD3)       1825         1826       343       YSAREA = XS(3, ISI)       1826	1822	339	XE3 = XE( 1 , IE3 )		1822
1825       342       RATIO = AMAX1(HO1, HD2, HD3)       1825         1826       343       YSAREA = XS(3, ISI)       1826	1823	340	IJE55 + IJE55 + JE( 5		
1826 343 YSAREA = XS( 3 , ISI ) 1826					
			YSAREA = XS(3, ISI	)	1826
		344	IF( RATIO . LT . 7	AND . YSAREA . GT . SMINVG . AND .	1827

Thu Jul	1 14:	16:08	1993	adaphd.f	SUBROUTINE DYYPTN	page	26
1828 1829	345 346		1015	CT = 1	IJE55 . EQ . O ) THEN		1828
1830	347			35 IR = 4 , 6			1829 1830
1831	348		= 3I	IABS( JS( IR	, ISI ) )		1831
1832 1833	349 350			JSE( IE ) . EQ E = IEDGE + 1	. O ) THEN		1832
1834	351			NC(IEDGE) =	IE		1833
1835	352		NCOL	OR = NCOLOR +	1		1834 1835
18 <b>36</b> 1837	353 354			NCOLOR) = IE IE) = 1			1836
1838	355		END				1837
1839	356	435	CONT	INUE			1838 1839
1840 1841	357 358			VERCEN( ISI )	1940		1840
1842	359			LT( ISI ) = ID  G = LTRIG + 1	UNY		1841
1843	360		JTRIC	G( LTRIG ) = N	S = 1		1842 1843
1844 1845	361 362	С	KSDEL	.T( NS - 1 ) =	IDUMP		1844
1846	363	ί.	LTRIG	G = LTRIG + 1			1845
1847	364			I ( LTRIG ) = N	5		1846 1847
1848 1849	365	С	KSDEL	.T( NS ) = IDU	4P		1848
1850	366 367	L	TEDGE	E = IEDGE + 1			1849
1851	368			IC( IEDGE ) = N	VE		1850 1851
1852 1853	369 370			R = NCOLOR + 1	l		1852
1854	371			NCOLOR ) = $NE$ ) = 1			1853
1855	372			= IEDGE + 1			1854 1855
1856	373			C(IEDGE) = N			1856
1857 1858	374 375			NR = NCOLOR + 1 NCOLOR ) = NE			1857
1 <b>859</b>	376		JSE (	NE - 1 ) = 1	- 1		1858 1859
1860	377		IEDGE	= 1EDGE + 1			1860
1861 1862	378 379			C(IEDGE) = N			1861
1863	380			R = NCOLOR + 1 NCOLOR ) = NE			1862 1863
1864	381		JSE(	NE - 2) = 1			1864
1865 1866	382 383		END I End I				1865
1867	384	54 <b>5</b>	CONTI				1866
1868	385	C					1867 1868
1869 1870	386 387		IF( 1	DISCT . EQ . 0	) THEN		1869
1871	388		XE1 =	IABS( JS( 4 . XE( 1 , IE1 )	122 ) )		1870
1872	389		IE2 =	IABS( JS( 5,	ISS ) )		1871 1872
1873 1874	390 391		XE2 =	XE( 1 , IE2 ) IABS( JS( 6 ,			1873
1875	392		XE3 =	XE(1, IE3)	155 ) )		1874
1876	3 <b>93</b>		IEDIS	T = 1E1			1875 1876
1877 1878	394 395			T = XE1	57 ) Turk		1877
1879	396			E2 . GT . XEDI T = XE2	SI ) HER		1878 1879
1880	397		IEDIST	r = 1E2			1880
1881 1882	398 399				CT ) TUCH		1881
1883	400			E3 . GT . XEDI: T = XE3	51 ) INCN		1882 1883
1884	401			[ = IE3			1884
1885 1886	402 403		END II	JE(3, IEDIS	τ.)		1885
1887	404			JE( 4 , IEDIS			1886 1887
1888	405		XSISL	- XS( 3 . ISL			1888
1889 1890	406 407		ASISR	= XS( 3 , ISR JE( 5 , IEDI	) ST )		1889
1891	408		IF( XS	SISL . GT . RMI	INVG . AND . XSISR . GT . RMINVG . AND .		1890 1891
1892	409		. I.	IE5 . EQ . O .	AND . IRATIO . NE . 2 ) THEN		1892
1893 1894	410 411			SS.NE.ISL; iIR=4,6	) iHEN		1893
1895	412			ABS( JS( IR ,	ISL ) )		1894 1895
1896	413		IF( JS	E(IE).EQ.	. O ) THEN		1896
1897 1898	414 415			= 1EDGE + 1 ( 1EDGE ) = 1E			1897
1899	416			$\approx$ NCOLOR + 1	-		1898 1899
1900	417		JEE( N	COLOR ) - IE			1900
1901	418		J2E( I	E) = 1			1901

Thu Jul	1 14:16:0	8 1993	ad <b>aphd.f</b>		SUBROUTINE	DYYPTN	pa <b>ge</b>	27
1902 1903	419 420 34		) IF NTINUE					1902
1904	420 54		) IF					1903 1904
1905	422 C							1905
1906	423		( ISS . NE . 1					1906
1907	424	DO	355 IR = 4 ,	6				1907
1908	425		- IABS( JS( I					1908
1909 1910	426 427		(JSE(IE). DGE = IEDGE +					1909
1911	428		ECNC( IEDGE )					1910 1911
1912	429		DLOR = NCOLOR					1912
1913	430	JEE	E( NCOLOR ) =					1913
1914	431		E(IE) = 1					1914
1915	432		) IF					1915
1916	433 35							1916
1917 1918	434 435 C	ENL	DIF					1917 1918
1919	435	IDC	DNE = 0					1919
1920	437			DIST , IDONE , ID	UMP)			1920
1921	438	IF(	( IDONE . EQ .	1) THEN				1921
1922	439 C							1922
1923	440		RIG = LTRIG +					1923
1924 1925	441 442		RIG(LTRIG) = DELT(NS) = I					1924 1925
1926	143		RIG = LTRIG +					1925
1927	444		RIG( LTRIG ) =					1927
1928	145		DELT( NS - 1 )					1928
1929	146 C							1929
1930	447		DGE = IEDGE +					1930
1931 1932	4 <b>48</b> 4 <b>49</b>		ECNC ( IEDGE )					1931 1932
1932	450		DLOR = NCOLOR E( NCOLOR ) =					1933
1934	451		E(NE) = 1					1934
1935	452		GE = IEDGE +	1				1935
1936	453		ECNC( IEDGE )					1936
1937	454		DLOR - NCOLOR					1937
1938 1939	45 <b>5</b> 45 <b>6</b>		E(NCOLOR) = E(NE - 1) =					1938 1939
1939	450		GE = IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE + IEDGE +					1939
1941	458		ECNC( IEDGE )					1941
1942	459		DLOR = NCOLOR					1942
1943	460	JEE	E( NCOLOR ) =	NE - 2				1943
1944	461	JSE	E(NE - 2) =	1				1944
1945 1946	4 <b>62</b> 4 <b>63</b> C	ENL	DIF					1945 1946
1940	464	EN	) IF					1940
1948	465		D IF					1948
1949	466		) IF					1949
1950	467	ENC	) IF					1950
1951	468 C	20 00						1951
1952 1953	469 3 470 C	20 CON	NTINUE					1952 1953
1955	471	00	340 IEM = 1 .	NCOLOR				1955
1955	472		= JEE( IEM )					1955
1956	473 C							1956
1957	47 <b>4</b> 47 <b>5</b>	ISL	L = JE(3, IE)	)				1957 1958
1958 1959	475 476		AREA = XS( 3 , E5 = JE( 5 , I					1950
1959	477	IF	YSAREA . GE	. RMINVG . AND .	LJE5 . NE .	0) THEN		1960
1961	478		= IABS( JS(			• ,		1961
1962	479	IE2	2 = IABS( JS(	5 , ISL ) )				1962
1963	480		3 = IABS(JS(					1963
1964	481 482		E51 = JE(5), E52 = JE(5),					1964 1965
1965 1966	483		E52 = JE(5)					1966
1967	484		( IJE51 . NE .					1967
1968	485	IEC	DIST = IE1					1968
1969	486		I = XE(1, IE)					1969
1970	487		2 = XE( 1 , IE					1970 1971
1971 1972	488 489		3 = XE(1, IE ) IF	<b>)</b>				1971
1972	409		( IJE52 . NE .	0) THEN				1973
1974	491	IEC	DIST = IE2					1974
1975	492	XE1	1 = XE(1, IE)	2)				1975

1976         493         XE2 - XE(1, IE1)         1976           1977         495         EMO IF         1978           1978         495         EMO IF         1978           1979         496         IE(I,I,IE1)         1978           1990         497         IEOIST - IE3         1990           1981         498         XE1 - KE1 - IE1         1980           1984         500         KE1 - IE1         1980           1984         500         KE1 - IE1         1980           1985         502         XEDIST - IE3         1987           1986         502         XEDIST - IE1         1980           1986         503         YE2 - KE1 - XEI / KEI / KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI - KEI -	Thu Jul	1 14:1	16:08	1993 adaphd.f	F SUBROUTINE DYYPTN	page	28
	1976	493		XE2 = XE( 1 .	IE1 )		1976
1979       496       if(1,E53, RE, 0) THEN       1970         1980       497       KE1 - KE(1, IE2)       1980         1981       498       KE1 - KE(1, IE2)       1981         1982       500       KE1 - KE(1, IE1)       1982         1983       500       KE1 - KE(1, IE1)       1982         1985       500       KE1 - KE(1, IE1)       1982         1985       503       YE2 - KE2 * KDIST       1986         1986       505       ZE2 - (YE2 - I.5) * (YE2 - I.)       1986         1986       505       ZE2 - (YE2 - I.5) * (YE2 - I.)       1989         1980       505       ZE2 - (YE2 - I.5) * (YE2 - I.)       1989         1980       506       ZE2 - (YE2 - I.5, MAD, YYE, GL, GL, AAD, YYE, GL, GL, GL, AAD, YYE, GL, GL, GL, AAD, YYE, GL, GL, GL, AAD, YYE, GL, GL, GL, AAD, YYE, GL, GL, GL, AAD, YYE, GL, GL, GL, AAD, YYE, GL, GL, GL, AAD, YYE, GL, GL, GL, GL, GL, GL, GL, GL, GL, GL							
1900       497       HEDIST - HE3       1980         1901       498       KE - KE (1, HZ )       1981         1902       499       KE - KE (1, HZ )       1981         1905       500       KE - KE (1, HZ )       1982         1905       500       KE - KZ + KE (1, HZ )       1982         1906       500       KE - KZ + KZ + KE (1, HZ )       1983         1907       504       KE - KZ + KZ + KZ )       1986         1908       505       ZZ + (YZ - 1.5) * (YZ - 1.1)       1986         1909       507       YY + KZ + KZ + KZ )       150*       1996         1909       507       YY + KZ + KZ + KZ )       150*       1997         1909       507       YY + KZ + KZ + KZ )       150*       1997         1909       507       YY + KZ + KZ + KZ )       150*       1997         1901       FI (YZ - 1.5) * (YZ - 1.1)       1988       1997       1197       1197         1905       512       C       1700*       100**       1997         1905       512       C       1700*       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       19							
1901       498       XE1 - KE(1, IE3)       1991         1902       498       XE2 - KE(1, IE1)       1992         1933       500       KE2 - KE(1, IE1)       1994         1944       501       KE1 - KE(1, IE1)       1994         1955       502       YE2 - KE(2, IEE)       1994         1956       503       XEDIST 2 XE(1, IE1)       1994         1957       504       YE2 - YE2 - I.5) * (YE2 - I.1)       1995         1958       505       ZE2 + (YE2 - I.5) * (YE2 - I.1)       1996         1959       506       ZE2 + (YE2 - I.5) * (YE2 - I.1)       1997         1950       507       YY2 + KE1 * KE1 + KE2 * KE3 * SE1 * KE2 * KE2 * KE3 * KE3 * 1990       1991         1951       506       ZE2 + (YE2 - I.0 & AMO · YZ - KE * KE1 * KE2 * KE2 * KE2 * 1991       1991         1951       CALL DISECT (IEDIST , IDOME / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / IDEM / I					L. U) THEN		
1982         499         XE2 - XE(1, [E2]         1983           1984         500         END [F         1984           1985         502         KEDIST - 1. / XE(1, [EDIST)         1985           1986         503         YE2 - XE2 * KEDIST         1986           1986         503         YE2 - XE2 * KEDIST         1986           1986         505         YE2 - XE2 * KEDIST         1980           1980         506         YE2 - XE1 * KE1 * KE2 * KE3 - 3.5 * XE1 * KE3 - XE3 * YE3         1980           1980         507         YY2 - KE1 * XE1 * KE3 - XE3 - 3.5 * XE1 * KE3 - XE2 * XE2         1991           1981         508         YY3 - KE1 * XE1 * KE3 - XE3 - 3.5 * XE1 * KE3 - XE2 * XE2         1991           1992         509         IF( FE2 - UT . 0. AND . ZE3 - U. C. 0. AND . ZE3 - XE2 * XE2         1991           1994         511         CALL DISCT ( IEDEST , IDDNP         1996           1995         512         C         TRECK ( IEDE - 1         2000           2001         518         IRECK( IEDE - 1 * E1         2000         2000           2003         520         JEC ( NOCOR ) - KE - 1         2005           2004         521         IEDEG - IEDE + 1         2005           2005					(F3)		
1984         501         END IF         1.1.1.2         1.1.1.2         1.1.1.2         1.1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2         1.1.2							
1985         592         XEDIST = 1, / XE(1, :[EDIST)         1986           1986         593         YE2 = KE2 * KEDIST         1987           1988         504         YE3 = KE3 * KEDIST         1988           1989         505         ZE2 = ( YE2 - 1.5 ) * ( YE21 )         1988           1989         506         ZE3 = ( YE2 - 1.5 ) * ( YE21 )         1988           1980         507         YZ = KE1 * KE1 + KE1 + KE2 = KE2 - KE3 * KE3         1999           1981         506         YT = KE1 * KE1 + KE1 + KE2 = KE2 - KE3 * KE3         1999           1983         506         YT = KE1 * KE1 + KE2 * KE2 - KE3 * KE3         1999           1984         506         YT = KE1 * KE1 * KE2 * KE2 - KE3 * KE3         1999           1985         512         C         AKE1 * KE3 * KE1 * KE1 * KE2 * KE2 = KE2 * KE2         1991           1985         513         LTRIG = LIRGG + 1         1996         1997         514         JRIEG(LIRGG + 1) * NS         1997           2001         516         C         IEDEE + IEDEE + 1         2000         2001         2001           2003         521         IEDEE + IEDEE + 1         2001         2001         2001         2001         2002         2002         2002         2002<				XE3 = XE( 1 ,			
1986       503       YE2 - KE2 * KEDIST       1986         1987       504       YE3 * KEDIST       1987         1988       505       ZE2 * (YE2 - L5) * (YE2 - L)       1989         1990       507       YYZ - KE1 * KE1 * KE1 * KE2 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3 * KE3							
1990       507       YY2 - XEI * XEI + XE2 - XE2 + 3.5 * XEI * XE2 - XE3 * XE3       1990         1991       508       YY2 - XEI * XEI + XE3 - XE2 + .55 * XEI * XE3 - XE2       1991         1992       509       IF( ZE2 - LT . 0 - AND . ZE3 - LC . 0 - AND . XE3 - XE2       1991         1993       510       CALL DISCT ( IEDIST , IDOME , IDUMP )       1994         1995       512       LTRIG = LTRIG + I       1996         1995       514       JTRIG + IEDGE + 1       1996         1990       516       C       1996       1997       14       JTRIG + IEDGE + 1         1990       516       C       1996       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997       1997				ZE2 = (YE2 -	1.5) * (YE21)		
191       508       YY3 - XE1 * XE1 - XE3 - XE1 * XE3 - XE2 * XE2       1991         1932       510       . YY2 - GT . 0 . AND . YY3 . GT . 0 . ) THEN       1993         1934       510       . YY2 . GT . 0 . AND . YY3 . GT . 0 . ) THEN       1994         1935       510       . CALL DISCT ( IEDIST , IDOME , IDOMP )       1994         1936       512       C       . STRIG ( IRIG + 1       1995         1937       514       JTRIG ( IRIG + 1       1997         1938       515       KSDELT (NS ) = NE       1999         2000       517       IEDGE + IEDGE + 1       2000         2001       518       IRECNC( IEDGE ) = NE       2001         2001       518       IRECNC( IEDGE ) = NE       2002         2004       521       IEEGE + IEDGE + 1       2005         2005       522       IEEGE + IEDGE + 1       2005         2006       522       IEEGE + NCOLOR + NE - 1       2006         2007       532       IEEGE + NCOLOR + NE - 1       2007         2008       542       IEEGE + IEDGE + 1       2007         2009       536       ELE (NOLOR + NE - 1       2006         2011       532       IEIGEE + IEDGE + 1ED       2007				ZE3 = (YE3 -	1.5) * (YE31)		
1992       509       IF(222.LT0.AND223.LT.0.AND.       1992         1994       511       CALL DISCT(IEDIST., IDOME, IDUMP)       1994         1995       512       C       1995         1996       513       LTRIG = LTRIG + 1       1995         1996       513       KSDELT(MS) = TDUMP       1995         1997       514       JTRIG = LTRIG + 1       1997         1998       515       KSDELT(MS) = TDUMP       1998         2000       517       IEDGE - IEDGE + 1       2000         2001       518       IRECKCI LEDGE ) = ME       2001         2005       521       IEDGE - IEDGE + 1       2002         2006       522       IEDGE + IEDGE + 1       2005         2006       523       IRECKCI LEDGE / 1       2007         2007       524       MCDLR - MCOLOR + MCOLOR + MCOLOR + 1       2006         2008       525       JEEL MCOLOR + NE - 1       2006         2009       526       JEEL MCOLOR + NE - 1       2007         2009       527       C       2011       202         2011       528       JEEL MCOLOR + NE - 1       2008         2012       529       C       2011       20				YY3 - YE1 * YE	1 + XEZ * XEZ + .35 * XEI * XEZ - XE3 * XE3 1 + YE3 * YE3 + 35 * YE1 * YE3 - YE9 * YE9		
1933         510         . 'Y?, GT. 0 AMD. YY3. GT. 0. ) THEN         1993           1934         511         CALL DISCT ( IEDIST , IDOME , IDUMP )         1994           1936         512         C         1995           1936         514         JTRIG LTRIG + I         1996           1937         514         JTRIG ( LTRIG ) - NS         1997           1938         S15         KSDELT (NS ) - IDUMP         1999           1939         516         C         1997           2000         S17         EDGE - IEDGE + I         2000           2001         S18         IRCAC( IEDGE ) - NE         2001           2003         S20         JEE( NCOLGR ) - NE - 1         2005           2004         S21         IEDGE - IEDGE + 1         2005           2005         S22         IEDGE - IEDGE + NE - 1         2005           2006         S24         IEEGE + IEDGE + NE - 1         2005           2007         S24         MCOLGR + NCOLGR				IF( ZE2 . LT .	.0, AND, ZE3, L( $.0$ , AND,		
	1993	510					
1996       513       LTRIG = LTRIG + 1       1997         1998       515       KSDELIT(NS) = IDUMP       1998         1999       515       KSDELIT(NS) = IDUMP       1999         2000       517       IEOCE - IEDOE + 1       2000         2001       518       IRECNCI (IEDOE ) = NE       2001         2002       519       NCOLOR + NCOLOR + 1       2002         2003       521       JSEL (MCOLOR ) = NE       2003         2004       521       JSEL (MCOLOR ) = NE - 1       2005         2005       523       IRECMCI (IEDOE ) = NE - 1       2006         2006       524       JSEL (MCOLOR ) = NE - 1       2006         2007       54       NCOLOR + NCOLOR + I       2007         2008       525       JEEL (MCOLOR ) = NE - 1       2008         2011       526       JSEL (NE - 1 ) = 1       2010         2012       527       C       2013       2011         2011       528       ELSE       2013       2014         2015       521       If (XZ - GT - XEDIST ) THEN       2018         2016       533       XEDIST - KE2       2016         2017       544       IEDIST - IEI       2017<			•	CALL DISECT (	IEDIST , IDONE , IDUMP )		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			L	1 TRIC - 1 TRIC	- 1		
1998         515         KSDELT( MS ) - IDUMP         1999           1999         516         C         2000           2001         517         IEOGE - IEOGE + 1         2001           2002         519         MCOLOR - NCOLOR + 1         2002           2004         521         JSEL ME ) + 1         2003           2004         521         JSEL ME ) + 1         2004           2005         523         IRCENC( IEDGE + IEOGE + 1         2005           2006         523         IRCENC( IEDGE + IEOGE + 1         2005           2007         524         MCOLOR - NCOLOR + 1         2005           2008         525         JEEL (NOLOR ) + NE - 1         2006           2010         527         C         JSEL NE - 1 ) = 1         2007           2011         528         JEEL NCLOR - NCOLOR + NCOLOR + 1         2010           2012         529         C         ZSEL NE - 1 ) = 1         2011           2013         530         IEDIST = IEI         2013         2014           2015         533         XEDIST - XE2         2017         2017           2016         535         IF (XE3 - GT - XEDIST ) THEN         2020           2020							
2000         517         IEGGE - IEGGE + 1         2000           2001         S18         IRECKC( IEGGE ) + ME         2001           2003         S20         JEE ( MCOLOR + MCOLOR + 1         2003           2004         S21         JSE ( MCOLOR + MCOLOR + 1         2004           2005         S22         IEDGE - IEDGE + 1         2005           2006         S21         JSE ( ME - 1         2006           2006         S23         IRECKC ( IEDGE ) - ME - 1         2006           2007         S24         MCOLOR - MCOLOR + 1         2006           2008         S25         JEE ( MCOLOR ) - ME - 1         2007           2010         S27         C         2008           2011         S28         ELSE         2011           2012         S29         C         2012           2013         S30         IEDIST - IEI         2013           2014         S31         IEDIST - KEI         2016           2015         S32         IF( K2, GT - XEDIST ) THEN         2018           2016         S33         KEDIST - KEI         2021           2017         S38         IEDIST - IEI         2022           2021         S38<	1998						
2011         518         IRCCWC (IEDGE ) + WE         2002           2003         520         JEEL (MOLOR + 1         2002           2004         521         JSEL WE ) - 1         2004           2005         522         IEDGE - 1 (EDGE + 1         2005           2006         523         IRFCMC(IEDGE ) + WE - 1         2006           2007         524         MCOLOR - WCOLOR + T         2005           2008         525         JEEL (MOLOR ) + NE - 1         2006           2009         526         JSEL (WCOLOR ) + NE - 1         2009           2011         528         C         2011         2009           2011         528         ELSE         2011         2012           2013         530         IEDIST - IE1         2013         2014         2014           2014         531         XEDIST - XE1         2017         2017         2017         2017           2016         533         XEDIST - XE2         2016         2021         2021         531         XEDIST - XE3         2021           2021         531         KEDIST - XE3         2021         2021         531         2021         2021         2021         2021         2021<			С				
2002         519         MCULOR + UCULOR + 1         2002           2004         521         JSE( MCULOR ) - ME         2003           2005         523         IFECK - IFDEC + I         2005           2006         523         IFECK - IFDEC + I         2005           2007         524         MCULOR - MCOLOR + 1         2005           2008         525         JEE( MCULOR ) - ME - 1         2009           2010         527         CEL (MCULOR ) - ME - 1         2009           2010         527         CEL (MCULOR ) - ME - 1         2009           2011         528         ELSE         2011           2012         529         C         2015           2014         531         KEDIST - KE1         2015           2015         532         IF( XE2 , GT . KEDIST ) THEN         2016           2016         533         KEDIST - KE2         2017           2018         535         EMD IF         2019           2021         538         IEDIST - IE3         2020           2022         539         EMD IF         2022           2023         540         ISL - JE( 3, IEDIST )         2022           2024         541							
2003       520       JEE(MCOLOR) - ME       2004         2004       521       JSE(ME) - 1       2004         2005       522       IEDBE - IEDGE + I       2005         2006       523       JRECMC(IEDGE) - ME - 1       2006         2007       524       MCOLOR + NCOLOR + I       2006         2008       525       JEE(MCOLOR) - ME - 1       2007         2009       526       JSE(ME - 1) - 1       2009         2010       527       C       2010         2011       528       ELSE       2011         2012       529       C       2012         2013       530       IEDIST - KEI       2016         2016       533       XEDIST - KE2       2016         2017       534       IEDIST - IE2       2017         2020       537       XEDIST - KE3       2019         2021       538       IEDIST - IE2       2019         2022       540       ISL - JE(3, IEDIST)       2021         2023       540       ISL - JE(3, IEDIST)       2022         2024       541       ISR - JE(4, IEDIST)       2022         2025       542       XSISL - GT - RMINNG - AND - XSISR - GT -							
2004521 $3E(ME) = 1$ 20042005522IEDEE - IEDEE + I20052006523NECHC (IEDEE + I20052007524NCOLOR - NCOLOR + I20092008525JEE( NCOLOR ) = NE - 120092010527C20102011528ELSE20112012529C20122013530IEDIST = IEI20142015532IF( XE2 , GT , XEDIST ) THEN20152016533XEDIST = KE120162017534IEDIST = IE220172018535EMO IF20182020537XEDIST - KE320212021538IEDIST = IE320212022539EMO IF20222023540ISL - JE( 3 , IEDIST )20232024541ISR - JE( 3 , IEDIST )20252025542XSISR - XS( 3 , ISL )20252026543XSISR - XS( 3 , ISL )20252027544IJES - JE( 5 , IEDIST )20312031549IF( JSE( IE ) , EQ , 0 ) THEN20322033550IEDEE + IEDEE + I20332034551IRECHC( IEDEE + 120352035552MOLOR + I20352036553JEE( MCOLOR ) = IE20352037554JEE( IE ) - E ( 0 , 0 ) THEN20322038555EMD IF20352039556645 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
2006         523         IRECMC( IEDGE ) - NE - 1         2007           2007         524         NCOLOR + NCUOR + 1         2009           2008         525         JEEL MCOLOR ) - NE - 1         2009           2010         526         JSEL MCOLOR + 1         2009           2010         527         C         2010           2011         528         ELSE         2011           2012         529         C         2012           2013         530         IEDIST - IEI         2013           2014         531         XEDIST - XEI         2016           2015         532         IF(XEZ - GT . XEDIST ) THEN         2015           2016         533         XEDIST - XE3         2017           2018         535         EMD IF         2018           2020         537         XEDIST - XE3         2020           2021         538         IEDIST - IE3         2021           2022         539         END IF         2023           2023         541         ISL = JE( 3 , IEDIST )         2024           2025         542         XSISL = XS( 3 , ISL )         2025           2027         544         IJES - IEO ( 5 , IE							
2007         524         MCDLOR + ICOLOR + 1         2007           2008         525         JEE( NCOLOR ) = NE - 1         2008           2009         526         JSE( NE - 1 ) = 1         2009           2011         527         C         2011           2012         529         C         2013           2013         530         IEDIST = IEI         2013           2014         531         XEDIST = XEI         2014           2015         532         IF( XE2, GT. XEDIST ) THEN         2015           2016         533         XEDIST = XEI         2016           2017         534         IEDIST = IE2         2016           2020         537         XEDIST - XE3         2020           2021         538         IEDIST - IE3         2021           2023         540         ISL = JE( 3, IEDIST )         2023           2024         541         ISR = wE( 3, ISL )         2025           2025         543         XSISL = XS( 3, ISL )         2027           2026         543         XSISL = S( 3, ISL )         2027           2028         545         IF( XSISL , GT , RMINVG , AND , XSISR , GT , RMINVG , AND , 2028           2030							
2008         525         JEE (MCOLOR ) = NE - 1         2009           2010         526         JSE (NE - 1 ) = 1         2009           2011         528         ELSE         2010           2011         528         ELSE         2011           2012         529         C         2011           2013         530         IEDIST = IE1         2013           2014         531         XEDIST - KE1         2014           2015         532         IF (XE2 - GT - XEDIST ) THEN         2015           2016         533         KEDIST - KE2         2016           2017         534         IEDIST - IE2         2017           2018         535         EMO IF         2018           2020         537         XEDIST - XE3         2021           2021         538         IEDIST - IE3         2021           2022         539         END IF         2023           2024         541         ISL - JE( 3 , IEDIST )         2025           2025         542         XSISR - XS( 3 , ISL )         2025           2026         543         XSISR - KS( 3 , ISL )         2025           2026         544         IJES - JE( - N OLO A -							
2009         526         JSE(NE - 1) = 1         2009           2011         527         C         2010           2012         529         C         2011           2013         530         IEDIST = IE1         2013           2014         531         XEDIST = XE1         2014           2015         532         IF(XE2, GT. XEDIST) THEN         2015           2016         533         XEDIST = XE2         2016           2017         534         IEDIST = IE2         2017           2018         535         END IF         2018           2020         537         XEDIST - XE3         2020           2021         538         IEDIST - IE3         2021           2022         539         EMD IF         2022           2023         540         ISL - JE(3, IEDIST)         2024           2025         542         XSISL - XS(3, ISL)         2027           2028         545         IF(XSISL, GT . RMINVG . AND . XSISR . GT . RMINVG . AND .         2028           2030         547         OD 645 IR - 4, 6         2039         2031           2031         548         IE - IABS(JS(IR, ISL))         2031         2032							
2011       528       ELSE       2011         2012       529       C       2013         2014       530       IEDIST = IE1       2013         2014       531       XEDIST = XE1       2014         2015       532       IF(XE2, GT, XEDIST ) THEN       2015         2016       533       XEDIST = XE2       2016         2017       534       IEDIST = IE2       2017         2018       535       EMO IF       2018         2020       537       XEDIST - XE3       2020         2021       538       IEDIST - 1E3       2021         2022       539       END IF       2022         2023       540       ISL = JE( 3 , IEDIST )       2022         2024       541       ISR = JE( 5 , IEDIST )       2025         2025       542       XSISL = GT , RHING , AND , XSISR , GT , RMINVG , AND , 2028       2026         2025       544       IJES - JE( 5 , IEDIST )       2021         2030       547       D0 645 IR - 4 , 6       2030         2031       548       IE - IABS( JS( IR , ISL )       2034         2033       550       IEDGE + 1       2034         2034       551	2009	52 <b>6</b>					2009
2012       529       C       2013         2013       530       IEDIST = IEI       2013         2014       531       XEDIST = XE1       2014         2015       532       IF(XE2,GT,XEDIST) THEN       2015         2016       533       XEDIST = XE2       2016         2017       534       IEDIST = IE2       2017         2018       535       END IF       2019         2020       537       XEDIST = XE3       2020         2021       538       IEDIST = IE3       2021         2022       539       END IF       2022         2023       540       ISL = JE(3, IEDIST)       2022         2024       541       ISR = JE(4, IEDIST)       2024         2025       542       XSISR = XS(3, ISR)       2025         2026       543       XSISR - GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2030         2031       544       IJEE = JE(5, IEDIST)       2031       2031         2032       549       IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2030         2033       551       IRECK(IEDGE + 1       2033       2033         2034       552       MCOLOR + NCOLOR + 1       <		527	С	<i>c. c.</i>			
2013       530       IEDIST = IEI       2013         2014       531       XEDIST = XE1       2014         2015       532       IF(XE2.GT.XEDIST) THEN       2015         2016       533       XEDIST = XE2       2016         2017       534       IEDIST = IE2       2017         2018       535       END IF       2018         2020       537       XEDIST = XE3       2020         2021       538       IEDIST = 1E3       2021         2022       539       END IF       2022         2023       540       ISL = JE(3, IEDIST)       2022         2024       541       ISN = JE(4, IEDIST)       2024         2025       542       XSISR = XS(3, ISL)       2025         2026       543       XSISR = XS(3, ISL)       2025         2026       544       IJES = JE(5, IEDIST)       2021         2028       545       IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2029         2031       548       IE = IABS(JS(IR, ISL))       2031         2032       549       IF(JSE(IE, ISL))       2031         2033       540       IEDGE + I       2034         2034       5			c	ELSE			
2014       531       XEDIST = XE1       2014         2015       532       IF(XE2,GT,XEDIST) THEN       2015         2017       534       IEDIST = IE2       2016         2019       535       EMD IF       2018         2020       537       XEDIST = XE3       2020         2021       538       IEDIST = IE3       2021         2022       539       EMD IF       2022         2023       540       ISL = JE(4, IEDIST)       2022         2024       541       ISR = JE(4, IEDIST)       2024         2025       542       XSISR = XS(3, ISL)       2025         2026       543       XSISR = XS(3, ISR)       2026         2027       544       IJES = JE(5, IEDIST)       2026         2028       545       IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2029         2030       547       00 645 IR = 4, 6       2030       2030         2031       548       IE = IABS(JS(IR, ISL))       2031         2033       550       IEDEC = 1 EDEC + 1       2033         2034       551       IRECNC(IEDCE ) = IE       2034         2035       552       MCOLOR = NCOLOR + 1       2033 <td></td> <td></td> <td>C</td> <td>IEDIST = IE1</td> <td></td> <td></td> <td></td>			C	IEDIST = IE1			
2016       533       XEDIST = XE2       2016         2017       534       IEDIST = IE2       2017         2018       535       END IF       2018         2019       536       IF(XE3.GT.XEDIST) THEN       2019         2020       537       XEDIST = XE3       2020         2021       538       IEDIST = IE3       2021         2022       539       END IF       2023         2023       540       ISL = JE(3, IEDIST)       2023         2024       541       ISR = JE(5, IEDIST)       2024         2025       542       XSISR = XS(3, ISL)       2026         2026       543       XSISR = XS(3, ISR)       2026         2027       544       IJES = JE(5, IEDIST)       2027         2028       545       IF(XSISL, GT.RHINVG, AND.XSISR, GT.RHINVG, AND.       2028         2029       546       .       IJES.EQ.0       THEN       2029         2031       546       IF (XSISL, GT., SISL)       2031       2032       2033       550       IEDGE + 1       2033         2033       550       IEDGE + 1EDGE + 1       2034       2035       2035       2036         2034       551       I	2014	531					2014
2017       534       IEDIST = IE2       2017         2018       535       END IF       2018         2020       537       XEDIST = XE3       2020         2021       538       IEDIST = IE3       2022         2023       540       ISL = JE(3, IEDIST)       2023         2024       541       ISR = JE(4, IEDIST)       2023         2025       542       XSISR = XS(3, ISR)       2025         2026       543       XSISR = XS(3, ISR)       2027         2028       544       IJE5 = JE(5, IEDIST)       2028         2029       545       IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2029         2029       546         2028         2030       547       D0 645 IR = 4, 6       2030       2031         2031       548       IE = IABS(JS(IR, ISL))       2031       2032         2033       550       IEDGE + IEDGE + 1       2033       2034         2034       551       IRECNC(IEDGE ) = IE       2034       2035         2035       552       MCOLOR + COLOR + 1       2035       2036         2036       553       JEE(I NOLOR ) = IE       2036       2037					XEDIST ) THEN		
2018       535       END IF       2018         2019       536       IF(XE3.GT.XEDIST) THEN       2019         2020       537       XEDIST = XE3       2020         2021       538       IEDIST = IE3       2021         2022       539       END IF       2022         2023       540       ISL = JE(3, IEDIST)       2023         2024       541       ISR = JE(4, IEDIST)       2024         2025       542       XSISR = XS(3, ISL)       2026         2027       544       IJES = JE(5, IEDIST)       2026         2027       544       IJES = JE(5, IEDIST)       2027         2028       545       IF(XSISL, GT.RINING, AND.XSISR.GT.RNING, AND.       2028         2029       546       .       IJES - EQ.O) THEN       2029         2030       547       00 645 IR = 4, 6       2030       2031       2031       204         2031       548       IE = IABS(JS(IR, ISL))       2031       2032       2033       550       IEDGE + IEDGE + 1       2033         2034       551       IRCOLOR + NCOLOR + 1       2035       2036       2036       2037         2035       552       NOOLOR - NCOLOR + 1       2038							
2019       536       IF(XE3.GT.XEDIST)THEN       2019         2020       537       XEDIST = XE3       2020         2021       538       IEDIST = XE3       2021         2022       539       END IF       2022         2023       540       ISL = JE(3, IEDIST)       2024         2025       542       XSISL = XS(3, ISL)       2024         2025       542       XSISR = XS(3, ISR)       2026         2026       543       XSISR = XS(3, ISL)       2027         2028       545       IF(XSISL, GT.RMINVG, AND.XSISR, GT.RMINVG, AND.       2028         2029       546       IF(XSISL, GT.RMINVG, AND.XSISR, GT.RMINVG, AND.       2028         2030       547       00       645 IR = 4, 6       2030         2031       548       IE = IABS(JS(IR, ISL))       2031         2032       549       IF(JSE(IE) = EQ.0)       THEN       2032         2033       550       IEDGE + IEDGE + 1       2033       2034         2034       551       IRECNC(IEDGE) = IE       2036         2035       552       NCOLOR = NCOLOR + 1       2038         2036       553       JEE(I NOOLOR) = IE       2038         2037							
2021538IEDIST = IE320212022539END IF20232023540ISL = JE(3, IEDIST)20232024541ISR = JE(4, IEDIST)20242025542XSISL = XS(3, ISL)20262026543XSISR = XS(3, ISR)20262027544IJE5 = JE(5, IEDIST)20272028545IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 20282029203054700 645 IR = 4, 620302031548IE = IABS(JS(IR, ISL))20312032549IF(JSE(IE), EQ, 0) THEN20322033550IEDGE + IEDGE + 120332034551IRECNC(IEDGE ) = IE20362037554JSE(IE) = 120352038555END IF20382039556645CONTINUE2040557D0 655 IR = 4, 620392041558IE + IABS(JS(IR, ISR))20412042559IF (JSE(IE) = 120422043560IEDGE + IEDGE + 120432044561IRECNC(IEDGE ) = IE20442045562MCOLOR + NCOLOR + 120422046563JEE( NCOLOR ) = IE20462047564JEE(IE) = 120442045562MCOLOR + I20452046563JEE(IED = IE20462047564JEE(IE) = 120452046565END IF2046 <td>2019</td> <td>5<b>36</b></td> <td></td> <td>IF( XE3 . GT .</td> <td>XEDIST ) THEN</td> <td></td> <td>2019</td>	2019	5 <b>36</b>		IF( XE3 . GT .	XEDIST ) THEN		2019
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
2023540 $ISL = JE(3, IEDIST)$ 20232024541 $ISR = JE(4, IEDIST)$ 20242025542 $XSISL = XS(3, ISL)$ 20252026543 $XSISR = XS(3, ISR)$ 20262027544 $IJE5 = JE(5, IEDIST)$ 20272028545 $IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 202820292030547DO 645 IR = 4, 620302031548IE = IABS(JS(IR, ISL))20312032549IF(JSE(IE), EQ, 0) THEN20322033550IEDGE = IEDGE + 120332034551IRECNC(IEDGE) = IE20352035552MCOLOR + NCOLOR + 120352036553JEE(ICNOLOR) = IE20382039556645CONTINUE20392040557DO 655 IR = 4, 620402041558IE = IABS(JS(IR, ISR))20412042559IF(JSE(IE), EQ, 0) THEN20422044561IRECNC(IEDGE) = IE20432045562MCOLOR = NCOLOR + 120442045562MCOLOR = NCOLOR + 120452046563JEE(NCOLOR) = IE20452046563JEE(NCOLOR) = IE20462047564JSE(IE) = 120452046565END IF20462047565END IF2046$							
2024       541       JSR - JE(4, IEDIST)       2024         2025       542       XSISL - XS(3, ISL)       2025         2026       543       XSISR - XS(3, ISL)       2026         2027       544       IJE5 = JE(5, IEDIST)       2027         2028       545       IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2029         2030       547       D0 645 IR = 4, 6       2030         2031       548       IE = IABS(JS(IR, ISL))       2031         2032       549       IF(JSE(IE), EQ, 0) THEN       2032         2033       550       IEDEC = IEDEC + 1       2033         2034       551       IRECNC(IEDGE) = IE       2034         2035       552       NCOLOR = NCOLOR + 1       2035         2036       553       JEE( NCOLOR) = IE       2037         2039       556       645       CONTINUE       2039         2040       557       D0 655 IR = 4, 6       2039       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE) - EQ, 0) THEN       2042         2043       560       IEOGE + 1       2043         2044       561 <t< td=""><td></td><td></td><td></td><td></td><td>IEDIST )</td><td></td><td></td></t<>					IEDIST )		
2025       542       XSISL = XS(3, ISL)       2025         2026       543       XSISR = XS(3, ISR)       2026         2027       544       IJE5 = JE(5, IEDIST)       2027         2028       545       IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2029         2029       546       IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2029         2030       547       D0 645 IR = 4, 6       2030         2031       548       IE = IABS(JS(IR, ISL))       2031         2032       549       IF(JSE(IE), EQ, 0) THEN       2032         2033       550       IEDGE = IEDGE + 1       2033         2034       551       IRECNC(IEDGE ) = IE       2035         2035       552       NCOLOR + NCOLOR + 1       2035         2036       553       JEE(NCOLOR) = IE       2036         2037       554       JSE(IE) = 1       2037         2040       557       DO 655 IR = 4, 6       2039         2040       557       DO 655 IR = 4, 6       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE), EQ, 0) THEN       2042         2043       560				ISR = JE(4)	IEDIST )		
2027       544       IJE5 = JE(5, IEDIST)       2027         2028       545       IF(XSISL, GT, RMINVG, AND, XSISR, GT, RMINVG, AND, 2028       2029         2030       547       D0 645 IR = 4, 6       2030         2031       548       IE = IABS(JS(IR, ISL))       2031         2032       549       IF(JSE(IE), EQ, 0) THEN       2032         2033       550       IEDGE = IEDGE + 1       2033         2034       551       IRECNC(IEDGE) = IE       2034         2035       552       NCOLOR = NCOLOR + 1       2035         2036       553       JEE(NCOLOR) = IE       2037         2039       556       645       CONTINUE       2039         2040       557       D0 655 IR = 4, 6       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2043       560       IEDGE = IEOGE + 1       2042         2044       561       IRECNC(IEDGE) = IE       2042         2045       562       NCOLOR = NCOLOR + 1       2043         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2043         2046       563       JEE(NCOLOR) = IE				XSISL = XS(3)	, ISL )		
2028       545       IF(XSISL.GT.RMINVG.AND.XSISR.GT.RMINVG.AND.       2028         2029       546       IJE5.EQ.O) THEN       2029         2030       547       D0 645 IR = 4, 6       2030         2031       548       IE = IABS(JS(IR,ISL))       2031         2032       549       IF(JSE(IE).EQ.O) THEN       2032         2033       550       IEDGE + 1       2033         2034       551       IRECNC(IEDGE) = IE       2034         2035       552       NCOLOR - NCOLOR + 1       2035         2036       553       JEE(NCOLOR) = IE       2037         2037       554       JSE(IE) = 1       2037         2038       555       END IF       2038         2039       556       645       CONTINUE       2039         2040       557       D0 655 IR = 4, 6       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE) = 1       2042         2043       560       IEDGE + 1       2042         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR + NCOLOR + 1       2045         204							
2029546IJE5 . EQ . 0 ) THEN20292030547D0 645 IR = 4 , 620302031548IE = IABS( JS( IR , ISL ) )20312032549IF( JSE( IE ) . EQ . 0 ) THEN20322033550IEDGE = IEDGE + 120332034551IRECNC( IEDGE ) = IE20342035552NCOLOR - NCOLOR + 120352036553JEE( NCOLOR ) = IE20362037554JSE( IE ) = 120382038555END IF20392040557D0 655 IR = 4 , 620402041558IE = IABS( JS( IR , ISR ) )20412042559IF( JSE( IE ) . EQ . 0 ) THEN20422043560IEDGE = IEDGE + 120432044561IRECNC( IEDGE ) = IE20442045562NCOLOR = NCOLOR + 120452046563JEE( NCOLOR ) = IE20462047564JSE( IE ) = 120472048565END IF2048							
2031       548       IE = IABS( JS( IR , ISL ) )       2031         2032       549       IF( JSE( IE ) . EQ . 0 ) THEN       2032         2033       550       IEDGE = IEDGE + 1       2033         2034       551       IRECNC( IEDGE ) = IE       2034         2035       552       NCOLOR = NCOLOR + 1       2035         2036       553       JEE( NCOLOR ) = IE       2036         2037       554       JSE( IE ) = 1       2037         2038       555       END IF       2038         2039       556       645       CONTINUE       2039         2040       557       D0 655 IR = 4 , 6       2040         2041       558       IE = IABS( JS( IR , ISR ) )       2041         2042       559       IF( JSE( IE ) . EQ . 0 ) THEN       2042         2043       560       IEDGE + 1       2043         2044       561       IRECNC ( IEDGE ) = IE       2044         2045       562       NCOLOR + NCOLOR + 1       2045         2046       563       JEE ( NCOLOR ) = IE       2046         2047       564       JEE ( NCOLOR ) = IE       2047         2048       565       END IF       2048	2029	546		•	IJE5.EQ.O) THEN		2029
2032       549       IF(JSE(IE).EQ.O)THEN       2032         2033       550       IEDGE = IEDGE + 1       2033         2034       551       IRECNC(IEDGE) = IE       2034         2035       552       NCOLOR = NCOLOR + 1       2035         2036       553       JEE(NCOLOR) = IE       2036         2037       554       JSE(IE) = 1       2037         2038       555       END IF       2038         2039       556       645       CONTINUE       2039         2040       557       DO 655 IR = 4, 6       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE) . EQ. 0) THEN       2042         2043       560       IEDGE = IEDGE + 1       2043         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NOLOR) = IE       2045         2046       565       END IF       2047         2048       565       END IF       2048							
2033       550       IEDGE = IEDGE + 1       2033         2034       551       IRECNC(IEDGE) = IE       2034         2035       552       NCOLOR = NCOLOR + 1       2035         2036       553       JEE(NCOLOR) = IE       2036         2037       554       JSE(IE) = 1       2037         2038       555       END IF       2038         2040       557       DO 655 IR = 4, 6       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE), EQ, 0) THEN       2042         2043       560       IEDGE = IEDGE + 1       2044         2044       561       IRECNC(IEDGE) = IE       2045         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NCOLOR) = IE       2045         2046       563       JEE(NCOLOR) = IE       2047         2048       565       END IF       2047							
2034       551       IRECNC(IEDGE) = IE       2034         2035       552       NCOLOR = NCOLOR + 1       2035         2036       553       JEE(NCOLOR) = IE       2036         2037       554       JSE(IE) = 1       2037         2038       555       END IF       2038         2039       556       645       CONTINUE       2039         2040       557       D0 655 IR = 4, 6       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE) - EQ.O) THEN       2042         2043       560       IEDGE = IEDGE + 1       2043         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NCOLOR) = IE       2045         2046       563       JEE(NCOLOR) = IE       2047         2048       565       END IF       2048							
2036       553       JEE(NCOLOR) = IE       2036         2037       554       JSE(IE) = 1       2037         2038       555       END IF       2038         2039       556       645       CONTINUE       2039         2040       557       D0 655 IR = 4, 6       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE), EQ, 0) THEN       2042         2043       560       IEDGE + 1       2043         2044       561       IRCNC(IEDGE) = IE       2044         2045       562       NCOLOR + NCOLOR + 1       2045         2046       563       JEE( NCOLOR ) = IE       2046         2047       564       JSE(IE) = 1       2047         2048       565       END IF       2048	2034	551		IRECNC ( IEDGE	) = IE		2034
2037       554       JSE(IE) = 1       2037         2038       555       END IF       2038         2039       556       645       CONTINUE       2039         2040       557       D0 655 IR = 4, 6       2040         2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE) . EQ . 0) THEN       2042         2043       560       IEDGE = IEDGE + 1       2043         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NCOLOR) = IE       2046         2047       564       JSE(IE) = 1       2047         2048       565       END IF       2048							
2038       555       END IF       2038         2039       556       645       CONTINUE       2039         2040       557       D0 655 IR = 4, 6       2040         2041       558       IE = IABS( JS( IR , ISR ) )       2041         2042       559       IF( JSE( IE ) . EQ . 0 ) THEN       2042         2043       560       IEDGE = IEDGE + 1       2043         2044       561       IRCNC( IEDGE ) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE( NCOLOR ) = IE       2046         2047       564       JSE( IE ) = 1       2047         2048       565       END IF       2048					- 10		
2039       556       645       CONTINUE       2039         2040       557       D0       655       IR = 4, 6       2040         2041       558       IE = TABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE).EQ.0) THEN       2042         2043       560       IEDGE = 1EDGE + 1       2043         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NCOLOR) = IE       2046         2047       564       JSE(IE) = 1       2047         2048       565       END IF       2048							2038
2041       558       IE = IABS(JS(IR, ISR))       2041         2042       559       IF(JSE(IE), EQ, 0) THEN       2042         2043       560       IEDGE = IEDGE + 1       2043         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NCOLOR) = IE       2046         2047       564       JSE(IE) = 1       2047         2048       565       END IF       2048	2039	5 <b>56</b>	6 <b>45</b>	CONTINUE	_		2039
2042       559       IF(JSE(IE).EQ.0) THEN       2042         2043       560       IEDGE = IEDGE + 1       2043         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NCOLOR) = IE       2046         2047       564       JSE(IE) = 1       2047         2048       565       END IF       2048				DO 655 IR = 4			
2043       560       IEDGE = IEDGE + 1       2043         2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NCOLOR) = IE       2046         2047       564       JSE(IE) = 1       2047         2048       565       END IF       2048							
2044       561       IRECNC(IEDGE) = IE       2044         2045       562       NCOLOR = NCOLOR + 1       2045         2046       563       JEE(NCOLOR) = IE       2046         2047       564       JSE(IE) = 1       2047         2048       565       END IF       2048							2043
2046         563         JEE(NCOLOR) = IE         2046           2047         564         JSE(IE) = 1         2047           2048         565         END IF         2048	2044	561		IRECNC ( IEDGE	) = IE		
2047 564 JSE(IE) = 1 2047 2048 565 END IF 2048							
2048 565 END IF 2048					* IC		
				END IF			2048
			655				2049

Thu Jul	1 14:16	:08	1993	adaphd.f	SUBROUTINE DYYPTN	p <b>age</b>	29
2050	567	С					2050
2051	568	•	IDONE	<b>=</b> 0			2051
2052	569				ST , IDONE , IDUMP )		2052
2053	570	~	IF( IC	DONE . EQ . 1	) THEN		2053
2054 2055	571 1 572	С	LTDIC	= LTRIG + 1			2054 2055
2056	573				S		2055
2057	574			r( NS ) = IDU			2057
2058	57 <b>5</b>			= LTRIG + 1			2058
2059 2060	576 577			(LTRIG) = N:			2059
2061		С	KOULLI	「(NS - 1 ) ≈	DONF		2060 2061
2062	579		IEDGE	= IEDGE + 1			2062
2063	580			( IEDGE ) = I			2063
2064	581			r = NCOLOR +			2064
2065 2066	582 583			ICOLOR ) = NE IE ) = 1			2065 2066
2067	584			= 1EDGE + 1			2067
2068	58 <b>5</b>			( IEDGE ) =	NE - 1		2068
2069	586			R = NCOLOR + 1			2069
2070 2071	587 588			ICOLOR ) = NE IE - 1 ) = 1	- 1		2070 2071
2072	589			= IEDGE + 1			2072
2073	590			C( IEDGE ) = I	NE - 2		2073
2074	591			R = NCOLOR +			2074
2075	592			(COLOR) = NE	- 2.		2075
2076 2077	593 594			NE - 2) = 1			2076 2077
2078		С					2078
2079	5 <b>96</b>		END IF				2079
2080	597		END IF				2080
2081 2082	5 <b>98</b> 5 <b>99</b>	340	END IF				2081 2082
2083		сŰ	CONTRA				2083
2084	5 <b>01</b>		NSS +	LTRIG			2084
2085		С	00.330				2085
2086 2087	603 604			) IEM = 1 , N JEE( IEM )	COLOR		2086 2087
2088	605				DONE, ITL, ITR, JA, JB, JC, JD)		2088
2089	6 <b>06</b>		CALL P	RECNC( JA , J/	ADONE, ITL, ITR, JAA, JAB, JAC, JAD)		2089
2090	6 <b>07</b>		CALL F	RECNC ( JB , JI	BDONE, ITL, ITR, JBA, JBB, JBC, JBD)		2090
2091 2092	6 <b>08</b> 6 <b>09</b>				CDONE, ITL, ITR, JCA, JCB, JCC, JCD) DDONE, ITL, ITR, JDA, JDB, JDC, JDD)		2091 2092
2093		370	CONTIN		booke, The, The, Obe, Obe, Obe, Obe,		2093
2094	611	С					2094
2095		300	CONTIN	IUE			2095
2096 2097	613 614	С	NVECE -	NE / MBL			2096 2097
2098	615			NE - NVECE	* MBL		2098
2099	6 <b>16</b>		NVECS =	⊧ NS / MBL			2099
2100	617			NS - NVECS	* MBL		2100
2101 2102	618 619			• NV / MBL • NV - NVECV '	* MBI		2101 2102
2102		С		- 174 - 194664			2103
2104	621			INE = 1 , NV			2104
2105	622	405		(INE) = MBL			2105
2106 2107	623 624	40 <b>0</b>	CONTINU				2106 2107
2108	625			ME.GT.0	) THEN		2108
2109	62 <b>6</b>		NVEEE =	NVECE + 1			2109
2110	627			( NVEEE ) = NI	REME		2110 2111
2111 2112	628 629	с	END IF				2111
2113	630	-	DO 410	INS = 1 , $NVI$	ECS		2113
2114	631		NOFVES(	(INS) = MBL			2114
2115		410	CONTINU				2115 2116
2116 2117	633 634		NVEES =	MVECS	) THEN		2110
2118	635			= NVECS + 1	, men		2118
2119	6 <b>36</b>		NOFVES	( NVEES ) = N	REMS		2119
2120	637	~	END IF				2120 2121
2121 2122	638 639	С	NU 750	INV = 1 , NVI	FCV		2122
2123	640			(INV) = MBL			2123

2124       641       420       CONTINUE       212         2125       642       NVEEV - NVECV       '12         2126       644       NVEV - NVECV + 1       212         2127       644       NVEV - NVECV + 1       212         2128       644       NVEV - 1       212         2129       644       NVEV - NVECV + 1       212         2129       647       C       212         2131       648       PRINT-NV.NE.NS       213         2133       651       C       213       213         2136       652       C       213       213         2136       653       RETURN       213         2136       655       C       213         2136       656       C       213         2137       656       C       213         2138       655       C       214         11       SUBROUTINE INTPTN (DAREA , NOFDIV , IDUMP , LTRIG )       214         2144       C       214       214         2143       3       C       214         2144       C       144       C         2144       C       144       C<
2141       1       SUBROUTINE INTPIN( DAREA , NOFDIV , IDUMP , LTRIG )       214         2142       2       C       214         2143       3       C       1         2144       4       C       1         2145       5       C       INTPIN ADAPT THE GRID DYNAMICALLY, ADD VERTECES       1         2146       6       C       SUB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION I       214         2147       7       C       1       214         2148       8       C       1       214         2149       9       C       1       214         2150       10       IMPLICIT REAL (A-H, O-Z)       215       215         2151       11       C       215       215       216         2152       12       include 'chyd00.h'       215       215       215         2151       11       C       215       215       215       215       215         2154       14       include 'chyd00.h'       215       215       215       215       215         2155       15       include 'chyd00.h'       215       215       215       215       215       215       <
2142       2       C       214         2143       3       C       214         2144       4       C       1       214         2145       5       C       INTPIN ADAPT THE GRID DYNAMICALLY, ADD VERTECES       1       214         2146       6       C       SUB DIVIDE TO REFINE AT THE INITIAL STAGE OF THE SIMULATION I       214         2147       7       C       1       214         2148       B       C       1       214         2149       9       C       1       214         2149       9       C       1       214         2148       8       C       1       214         2150       10       IMPLICIT REAL (A-H,O-Z)       215         2151       11       C       215       215         2152       12       include 'cmsh00.h'       215         2153       13       include 'chyd00.h'       215         2154       14       include 'chyb10.h'       215         2155       15       include 'cph520.h'       215         2156       16       include 'cph520.h'       215         2157       17       C       215<
217838C125 + JE(5, IE)217217939XSS = XS(1, IS)217218040IF(XSS, GT05, AND, XSS, LT05, AND.218218141KSDELT(IS), LT. IDUMP) THEN218218242CIF(IJE5, EQ, 8) THEN218218343KSDELT(IS) = IDUMP218218444JEE(IS) = I218218545NSS = NSS + 1218218646JTRIG(NSS) = IS218218747END IF218218848120CONTINUE218219950DO 130 IS = 1, NSS219219151JSE(IS) = JTRIG(IS)219219252130CONTINUE219219353C219

•

6

Thu Jul	1 14:16:08	1993 adaphd. f	SUBROUTINE INTPIN	page	31
2195	55	DO 140 KDIV = 1 , NO	OFD1V		2195
2196 2197	56 57	ITRIG = 0 DO 150 KS = 1 , NSS			2196 2197
2198	58 C				2198
2199 2200	59 60 C	ISS = JSE( KS )			2199 2200
2201	61	DO 160 KR = 1 , 3			2201
2202 2203	62 63 C	IVV = JS( KR , ISS )	)		2202 2203
2204	64	IE = JV(2, IVV)			2204
2205 2206	65 66 C	IF( IE . GT . O )	) THEN		2205 2206
2207	67	IVI - JE( 1 , IE			2207
2208 2209	68 69	IF( IV1 . EQ . I\ ISI - JE( 3 , IE			2208 2209
2210 2211	70 71	ELSE			2210 2211
2212	72	ISI = JE(4, IE END IF	)		2212
2213 2214	73 74 C	IS = ISI			2213 2214
2215	75 750	CONTINUE			2215
2216 2217	7 <b>6</b> C 77	JE <b>S =</b> JEE( IS )			2216 2217
2218	78	XAS = XS(3), S	)		2218
2219 2220	79 80	IF( JES . EQ . 0 ITRIG = ITRIG + 1	. AND . XAS . LT . SAREVG ) THEN		2219 2220
2221	81	KTRIG( ITRIG ) =	IS		2221
2222 2223	82 83	KSDELT( IS ) = IE JEE( IS ) = 1	JUMP		2222 2223
2224	84 85 C	END IF			2224
2225 2226	85 C 86	DO 760 IR = 1 , 3	3		2225 2226
2227 2228	87 8 <b>8</b>	JR = MOD( IR , 3 IEA = IABS( JS( J			2227 22 <b>28</b>
2229	89	IF( IEA , EQ . IE	E) THEN		2229
2230 2231	90 91	JJR = MOO( JR + 1 IER = 1ABS( JS( J			2230 2231
2232	92 C				2232
2233 2234	93 94	IV1 - JE( 1 , IEF IF( IV1 . EQ . I\			2233 2234
2235	95	ISR = JE(3, IEF			2235
2236 2237	96 97	ELSE ISR = JE(4, IEF	R )		2236 2237
2238 2239	98 99	END IF END IF			2238 2239
2240	100 760	CONTINUE			2240
2241 2242	1 <b>01</b> C 1 <b>02</b>	IF( ISR . NE . IS	ST ) THEN		2241 2242
2243	103	IS = ISR			2243
2244 2245	1 <b>04</b> 1 <b>05</b> C	IE - IER			2244 2245
2245	106	GO TO 750			2246
2247 2248	107 108 C	END IF			2247 2248
2249 2250	109 110 C	ELSE			22 <b>49</b> 2250
2251	111	IE = -IE			2251
2252 2253	112 113	IV1 = JE( 1 , IE IF( IV1 . EQ . IV			2252 2253
2254	114	ISI = JE(3, 1E)			2254
2255 2256	115 116	ELSE ISI = JE(4, IE	)		2255 2256
2257	117	END IF			2257 2258
2258 2259	118 119	IS = ISI ISI = 0			2259
2260 2261	120 C 121 650	CONTINUE			2260 2261
2262	122 C				2262
2263 2264	123 124	JES = JEE( IS ) XAS = XS( 3 , IS	}		2263 2264
2265	125	IF( JES . EQ . O	. AND . XAS . LT . SAREVG ) THEN		2265 2266
2266 2267	126 127	ITRIG = ITRIG + 1 KTRIG( ITRIG ) =			2267
2268	128	KSDELT(IS) = IE			2268
			7.		

Thu Jul	1 14:	:16:08	1993 adaphd.f	SUBROUTINE	INTPTN	page	32
2269	129		JEE(IS) = 1			P-94	2269
2270 2271	130 131	С	END IF				2270
2272	132	ç	DO 660 IR = 1 , 3				2271 227 <b>2</b>
2273	133		JR = MOD(IR, 3)	+ 1			2273
2274	134		IEA = IABS( JS( JR	+ 3 , IS ) )			2274
2275 2276	135 136		IF( IEA . EQ . IE )				2275
2277	137		JJR = MOD( JR + 1 IER = IABS( JS( JJ				2276
2278	138	С		· · ·			2277 2278
2279 2280	139		IV1 = JE(1, IER)				2279
2280	140 141		IF( IV1 . EQ . IVV ISR = JE( 3 , IER )				2280
2282	142		ELSE				2281
2283	143		ISR = JE(4, IER)	•			2282 2283
2284 2285	144 145		END IF				2284
2286	145	С	END IF				2285
2287	147	660	CONTINUE				2286 2287
2288	148	С					2288
2289 2290	149 150		IF( ISR . NE . ISI	) THEN			2289
2291	150		IS = ISR IE = IER				2290
2 <b>292</b>	152		GO TO 650				2291 2292
2293	153		END IF				2293
2 <b>294</b> 2 <b>295</b>	154 155	160	END IF				2294
2296	155	160 C	CONTINUE				2295
2297	157	150	CONTINUE				2296 2297
2298	158	С	DO 130 IC				2298
2299 2300	159 160		DO 170 IS = 1 , ITRIG JTRIG( IS + MSS ) = KT	DIC( 15 )			2299
2301	161		JSE(IS) = KTRIG(IS)				2300 2301
2302	162	170	CONTINUE	,			2302
2303 2304	163 164		NSS = ITRIG				2303
2305	165	С	MSS = MSS + ITRIG				2304
2306	166	140	CONTINUE				2305 2306
2307	167	c	NSS = MSS				2307
2308 2309	168 169	C	DO 300 KDIV - 1 , 1				2308
2310	170		LTRIG = NSS				2309 2310
2311	171		IEDGE = 0				2311
2312 2313	172 173	с	NCOLOR = 0				2312
2314	174	Ċ.	DO 290 IE = 1 , NE				2313 2314
2315	175		JSE(IE) = 0				2315
2316 2317	176 177	2 <b>90</b> C	CONTINUE				2316
2318	178	L	DO 310 IS = 1 , NSS				2317
2319	179		ISS = JTRIG(IS)				2318 2319
2320	180		XSAREA = XS(3, ISS)				2320
2321 2322	181 182	C	IF( XSAREA . GE . RMIN	/G ) THEN			2321
2323	183	ů.	DO 335 IR = 4 , 6				2322 2323
2324	184		IE = IABS( JS( IR , ISS	<b>;                                    </b>			2324
2325 2326	185 186		IJE5 = JE( 5 , IE ) IF( IJE5 . NE . 0 ) THE	. n			2325
2327	187		JR2 = MOD(1R - 3, 3)	n ∣ + 4			2326 2327
2328	188		IE2 = IABS( JS( JR2 , 1	SS ) )			2328
2329 2330	189 190		JR3 = MOD(IR - 2, 3)	+ 4 			2329
2331	191		IE3 = IABS( JS( JR3 , 1 XE1 = XE( 1 , 1E )	22 ) )			2330
2332	192		XE2 = XE(1, IE2)				2331 2332
2333 2334	193		XE3 = XE( 1 , IE3 )				2333
2334	194 195		XEDIST = 1. / XE1 YE2 = XE2 * XEDIST				2334
2336	196		YE3 = XE3 * XEDIST				2335 2336
2337	197		ZE2 = (YE2 - 1.5) * (	YE21 )			2337
2338 2339	198 199		ZE3 = ( YE3 - 1.5 ) * ( YY2 = XE1 * XE1 + XE2 *	YE31 ) YE2 + 35 * VE1 * VE	2 YE2 * YE2		2338
2340	200		YY3 = XE1 * XE1 + XE3 *	XE3 + .35 * XE1 * XE3	3 - XE2 * XE2		2339 2340
2341	201		IF( ZE2 . LT0 . AND	. ZE3 . LT . O ANI	).		2341
2342	202		TTZ . GI . 0 AND	. YY3 . GT . O. ) TH	:N	i	2342

• - · · ·	14:10:1	18 1993 adaphd.f SUBROUTINE INTPTN	page 33
	03 04 C	CALL DISECT ( IE , IDONE , IDUMP )	2343
	05	LTRIG = LTRIG + 1	2344
	06	JTRIG(LTRIG) = NS	2345 2346
17 20	07	KSDELT( NS ) = IDUMP	2347
	0 <b>8</b> C		2348
	09	IEDGE = IEDGE + 1	2349
	10	IRECNC (IEDGE) = NE	2350
	11 12	NCOLOR - NCOLOR + 1 JEE( NCOLOR ) = NE	2351
	13	JSE(NE) = 1	2352 2353
	14	IEDGE = IEDGE + 1	2353
	15	IRECNC(IEDGE) = NE - 1	2355
	16	NCOLOR - NCOLOR + 1	2356
	17	JEE(NCOLOR) = NE - 1	2357
8 21		JSE(NE - 1) = 1	2358
i9 21 i0 22		END IF	2359
1 22		END IF	2360 2361
2 22			2362
3 22		END IF	2363
4 22	24 31		2364
5 22			2365
6 22		NSS = LTRIG	2366
7 2 <b>2</b> 8 22		$\begin{array}{l} \mathbf{IEDGE} = 0 \\ \mathbf{NCOLOR} = 0 \end{array}$	2367
9 22		NCULUR # U	2368 2369
0 23		DO 295 IE = 1 , NE	2370
1 23		SE(IE) = 0	2371
<b>2</b> 23		95 CONTINUE	2372
3 23			2373
4 23		$DO_{320}$ IS = 1 , NSS	2374
5 23 6 23		ISS = JTRIG(IS)	2375
7 23		xsarea = xs(3, iss)	2376 2377
8 23		D0 735 IR = 4, 6	2378
9 23		IE = IABS(JS(IR, ISS))	2379
0 24		IF( JSE( IE ) . EQ . O ) THEN	2380
1 24		IEDGE = IEDGE + 1	2381
2 24		IRECNC(IEDGE) = IE	2382
3 24		NCOLOR = NCOLOR + 1	2383
4 24 5 24		JEE( NCOLOR ) = IE JSE( IE ) = 1	2384
6 24		END IF	2385 2386
7 24			2387
8 24			2388
9 24	19	IF( XSAREA . GT . RMINVG ) THEN	2389
0 25			2390
1 25		AREAXS = SAREA( ISS )	2391
2 25		IE1 = IABS(JS(4, ISS))	2392
325 425		$\begin{array}{rcl} XE1 &= & XE(1, 1E1) \\ HD1 &= & APEAYS + & YE1 + & YE1 \end{array}$	2393 2394
4 25 5 25		HD1 = AREAXS * XE1 * XE1 IJE5 = JE( 5 , IE1 )	2394
6 25		IE2 - IABS(JS(5, ISS))	2396
7 25		XE2 = XE(1, 1E2)	2397
8 25	8	HD2 = AREAXS * XE2 * XE2	2398
9 25		IJE5 = IJE5 + JE(5, 1E2)	2399
0 26		IE3 = IABS(JS(6, ISS))	2400
126		XE3 = XE(1, IE3)	2401
2226 326		HD3 = AREAXS * XE3 * XE3 IJE5 = IJE5 + JE( 5 , IE3 )	2402 2403
4 26		RATIO = AMAX1(HD1, HD2, HD3)	2403
5 26		IRATIO = 0	2405
6 26	6	IF( RATIO . LE . 7 AND . IJE5 . EQ . O . AND .	2406
7 26		. XSAREA . GT . SMINVG ) IRATIO $= 1$	2407
8 26		IF( IJE5 . GT . 0 ) IRATIO = $2$	2408
9 26			2409
D 27		IF(IRATIO.EQ.2) THEN	2410
1 27 2 27:		IJE51 = JE( 5 , IE1 ) IJE52 = JE( 5 , IE2 )	2411 2412
3 27		$1JE53 \approx JE(5, 1E2)$	2412
4 27		IF( IJE51 . NE . 0 ) THEN	2414
5 27		IEDIST + IE1	2415
	6	XE1 - XE(1, IE1)	2416

ø

Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE INTPTN	page	34
2417	277		XE2 = XE( 1 , 1E2 )			2417
2418 2419	27 <b>8</b> 2 <b>79</b>		XE3 = XE(1, IE3)			2418
2420	280		END IF IF( IJE52 . NE . 0 )	) THEN		2419
2421	281		IEDIST - LE2			2420 2421
2422 2423	282 283		XE1 = XE( 1 , IE2 ) XE2 = XE( 1 , IE1 )			2422
2424	284		XE3 = XE(1, 1E1)			2423 2424
2425 2426	285		END IF			2425
2420	286 287		IF( IJE53 . NE . 0 ) IEDIST = IE3	HEN .		2426
2428	288		XE1 = XE(1, 1E3)			2427 2428
2429 2430	289 290		XE2 = XE(1, IE2)			2429
2431	291		XE3 = XE( 1 , IE1 ) END IF			2430
2432	2 <b>92</b>		XEDIST = i. / XE( 1	, IEDIST )		2431 2432
2433 2434	293 294		YE2 = XE2 * XEDIST YE3 = XE3 * XEDIST			2433
2435	295		ZE2 = (YE2 - 1.5)	* ( YE21 )		2434 2435
2436	296		ZE3 = (YE3 - 1.5)	* (YE31)		2435
2437 2438	297 298		YY2 = XE1 = XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1 + XE1	2 * XE2 + .35 * XE1 * XE2 - XF3 * XE3 3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2		2437
2439	2 <b>99</b>		YY3 = XE1 * XE1 + XE	3 * XE3 - XE2 * XE2		2438 2439
2440	300		IF( ZE2 . LT0 .	AND . ZE3 . LT . O AND .		2440
2441 2442	301 302		CALL DISECT ( IEDIST	AND . YY3 . GT . O. ) THEN		2441
2443	303	С		, IDONE, IDONP)		2442 2443
2444 2445	304		LTRIG = LTRIG + 1			2444
2445	305 306		JTRIG( LIRIG ) = NS KSDELT( NS ) = IDUMP			2445
2447	307	C				2446 2447
2448 2449	308 309		$\frac{10000}{10000} = 10000 + 1$			2448
2450	310		IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1			2449
2451	311		JEE(NCOLOR) = NE			2450 2451
2452 2453	312 313		JSE(NE) = 1 $IEDGE = 1EDGE + 1$			2452
2454	314		IRECNC( 1EDGE ) = NE	- 1		2453 2454
2455	315		NCOLOR = NCOLOR + 1			2455
2456 2457	316 317		JEE( NCOLOR ) = NE - JSE( NE - 1 ) = 1	1		2456
2458	318	С				2457 2458
2459 2460	319 320		END IF END IF			2459
2461	321	С				2460 2461
2462 2463	322 323	с	IF( IRATIO . EQ . 1	) THEN		2462
2463	324	ι	CALL VERCEN( ISS )			2463
2465	325		KSDELT ( ISS ) = IDUM	<b>)</b>		2464 2465
2466 2467	326 327		LTRIG = LTRIG + 1	,		2466
2468	328		JTRIG( LTRIG ) = NS - KSDELT( NS - 1 ) = II			2467 2468
2469	329	С				2400 2469
2470 2471	330 331		LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS			2470
2472	332		KSDELT( NS ) = IDUMP			2471 2472
2473 2474	333 334	С				2473
2475	335		IEDGE = IEDGE + 1 IRECNC( IEDGE ) = NE			2474 2475
2476	336		NCOLOR = NCOLOR + 1			2475
2477 2478	337 338		JEE( NCOLOR ) = NE JSE( NE ) = 1			2477
2479	339		JSE(ME) = 1 IEDGE = IEDGE + 1			2478 2479
2480	340		IRECNC( IEDGE ) = NE	- 1	:	2480
2481 2482	341 342		NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE -	1		2481
2483	343		JSE(NE - I) = 1	•		2482 2483
2484 2485	344 345		IEDGE = IEDGE + 1	2		2484
2485	345		IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1	~ L		2485 2486
2487	347		JEE( NCOLOR ) = NE -	2		2487
2488 2489	348 349	С	JSE( NE - 2 ) = 1			2488
2490	350	-	ELSE			2489 2490
						-

Thu Jul	1 14:1	16:08	1993	adaphd.f	SUBROUTINE INTPTN	page	35
2491	351	С		•			2491
2492 2493	352 353		1DISC D0 54	5 KK = 4, 6			2492 2 <b>493</b>
2494	354			JS( KK , ISS	)		2494
2495 2496	355 356			IABS( IEE ) = JE( 5 , IEF	)		2495 2496
2497	357		IF( I	JE55 . EQ . 0	) THEN		2497
2498 2499	35 <b>8</b> 3 <b>59</b>			EE . GT . O ) ( JE( 4 , IEE )	IAEN		2498 2499
2500 2501	360 361		ELSE	JE(3, IEF)			2500 2501
2502	362		END I	F			2502
2503 2504	363 364			S = SAREA(ISI) 1485(JS(4))			2503 2504
2505	365		XE1 =	XE(1, IE1)			2505
2506 2507	366 367			= JE( 5 , IEI AREAXS * XE1			2506 2507
2508	368		1E <b>2 -</b>	IA8S( JS( 5 ,	ISI))		2508
2509 2510	369 370		XE2 =	XE( 1 , IE2 ) = IJE55 + JE(	5 . [F2 ]		2509 2510
2511	371		HD2 =	AREAXS * XE2 '	* XE2		2511
2512 2513	37 <b>2</b> 37 <b>3</b>		1E3 = XE3 =	IABS( JS( 6 , XE( 1 , IE3 )	151 ) )		2512 2513
2514	374		IJE55	= IJE55 + JE(			2514
2515 2516	375 376			AREAXS * XE3 *			2515 2516
2517	377		YSARE	A = XS( 3 , IS)	I )		2517
2518 2519	37 <b>8</b> 37 <b>9</b>		1F( R	AIIO . LI . /.	. AND . YSAREA . GT . SMINVG . AND . IJE55 . EQ . O ) THEN		2518 2519
2520	380		IDISC				2520
2521 2522	381 382		00 43 IE =	5 IR = 4 , 6 IABS( JS( IR ,	ISI))		2521 2522
2523	383		IF( J	SE(IE).EQ			25 <b>23</b> 2 <b>524</b>
2524 2525	384 385			= IEDGE + 1 C(IEDGE) = II	E		2525
2526	386		NCOLO	R = NCOLOR + 1			2 <b>526</b>
2527 2528	387 388			NCOLOR ) = IE IE ) = 1			2527 2528
2529 2530	389	435	END I	F			2529 2530
2530	3 <b>90</b> 391	400	CONTI	VERCEN( ISI )			2531
2532 2533	392 393			T( ISI ) = IDU = LTRIG + 1	MP		2532 2533
2534	394		JTRIG	(LTRIG) = NS			2534
2535 2536	395 396	C	KSDEL	T(NS - 1) =	IDUMP		2535 2536
2537	397	•		= LTRIG + 1			2537
2538 2539	398 399			( LTRIG ) = NS T( NS ) = IDUMI			2538 2539
2540	400	С					2540
2541 2542	401 402			= IEDGE + 1 C( IEDGE ) = N	E		2541 2542
2543	403		NCOLO	R = NCOLOR + 1 NCOLOR ) = NE			2543 2544
2544 2545	40 <b>4</b> 405			NE ) = 1			2545
2546 2547	406 407			= IEDGE + 1 C( IEDGE ) = N	F _ 1		2546 2547
2548	408		NCOLO	R = NCOLOR + 1			2548
2549 2550	409 410			NCOLOR ) = NE · NE - 1 ) = 1	- 1		2549 2550
2551	411		IEDĠE	= IEDGÉ + 1	-		2551
2552 2553	412 413			C( IEDGE ) = N R = NCOLOR + 1			2552 2553
2554	414		JEE (	NCOLOR ) = NE ·			2554 2555
2555 2556	415 416		ENDI				25 <del>56</del>
2557 2558	417 418	54 <b>5</b>	END I Conti				2557 2558
2559	419	545 C					2559
2560 2561	420 421			DISCT . EQ . 0 IABS( JS( 4 ,			2560 2561
2562	422		XE1 =	XE( 1 , 1E1 )			2562
2563 2564	42 <b>3</b> 424			IABS( JS( 5 , XE( 1 , IE2 )			2563 2564
•	- •			· · · · · · ·			

Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE	INTPTN	page	36
2565 2566	425 426		IE3 = IABS(JS(6))	(ISS))			2565
2567	427		XE3 = XE( 1 , IE3 IEDIST = IE1	1			2566 2567
2568 2569	428 429		XEDIST = XE1	15T ) THEN			2568
2570	430		IF( XE2 . GT . XED XEDIST - XE2	nsi j men			2569 2570
2571 2572	431 432		IEDIST = IE2 END IF				2571
2573	433		IF( XE3 . GT . XED	IST ) THEN			2572 2573
2574 2575	434 435		XEDIST = XE3 IEDIST = IE3				2574
2576	436		END IF				2575 2576
2577 2578	437 438		ISL = JE(3, IEDI)				2577
2579	439		ISR = JE(4, IEDI) XSISL = XS(3, IS	L)			2578 2579
2580 2581	440 441		XSISK = XS(3, 1S) IJE5 = JE(5, IED				2580
2582	442		IF( XSISL . GT . R	MINVG . AND . XSISR . GT .	RMINVG . AND .		2581 2582
2583 2584	443 444		. IJE5 . EQ . O IF( ISS . NE . ISL	. AND . IRATIO . NE . 2 )	THEN		2583
2585	445		DO 345 IR = 4 , 6	-			2584 2585
2586 2587	446 447		IE = IABS( JS( IR IF( JSE( IE ) . EQ	, ISL ) ) . 0 ) THEN			2586
2588	448		IEDGE = IEDGE + 1				2587 2588
2589 2590	49 450		IRECNC( 1EDGE ) = NCOLOR = NCOLOR +				2589
2 <b>59</b> 1	451		JEE(NCOLOR) = IE	•			2590 2591
2592 2593	452 453		JSE(IE) = 1 ENDIF				2592
2594	454	345	CONTINUE				2593 2594
2595 2596	455 456	C	END IF				2595 2596
2597	457		IF( ISS . NE . ISR	) THEN			2597
2598 2599	458 459		DO 355 IR = 4 , 6 IE = IABS( JS( IR ,	, ISR ) )			2598 2599
2600 2601	460 461		IF( JSE( IE ) . EQ				2600
2602	462		IEDGE = IEDGE + 1 IRECNC( IEDGE ) = 1	IE			2601 2602
2603 2604	463 46 <b>4</b>		NCOLOR = NCOLOR +	1			2603
2605	465		JEE(NCOLOR) = IE $JSE(IE) = 1$				2604 2605
2606 2607	466 467	35 <b>5</b>	END IF Continue				2606
2608	468		END IF				2607 2608
2609 2610	469 470	C	IDONE = 0				2609 2610
2611	471		CALL DISECT ( IEDIS	ST , IDONE , IDUMP )			2611
2612 2613	472 473	с	IF( IDONE . EQ . 1	) IHEN			2612 2613
2614 2615	47 <b>4</b> 475		LTRIG = LTRIG + 1				2614
2616	476		JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUN				2615 2616
2617 2618	477 478		LTRIG = LTRIG + 1 JTRIG( LTRIG ) = NS	5 - 1			2617
2619	479		KSOELT(NS - 1) =	IDUMP			2618 2619
2620 2621	480 481	C	IEDGE = IEDGE + 1				2620
2622	482		IRECNC( IEDGE ) = N				2621 2622
2623 2624	483 484		NCOLOR - NCOLOR + 1 JEE( NCOLOR ) = NE				2623 2624
2625	485		JSE( NE ) = 1				2625
2626 2627	486 487		IEDGE = IEDGE + 1 IRECNC(IEDGE) = N	E - 1			2626 2627
2628 2629	488 489		NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = NE				2628
2630	190		JSE(NE - 1) = 1	- 1			2629 2630
2631 2632	491 492		IEDGE = IEDGE + 1 IRECNC(IEDGE) = N	F - 2			2631
2633	493		NCOLOR = NCOLOR + 1				2632 2633
2634 2635	49 <b>4</b> 495		$JEE( NCOLOR ) = NE \\ JSE( NE - 2 ) = 1$	- 2			2634 2635
2636	496	c	END IF				2636
2637 2638	497 498	С	END IF				2637 2638

Thu Jul	1 14:1	6:08 19	93 adaphd.f SUBROUTINE INTPTN	page	37
2639	499		END IF		2639
2640 2641	500 501		END IF END IF		2640 2641
2642	502	C			2642
2643 2644	503 504	32 <b>0</b> C	CONTINUE		2643 2644
2645	505	•	DO 340 IEM = 1 , NCOLOR		2645
2646 2647	506 507	С	IE = JEE( IEM )		2646 2647
2648	508		ISL = JE(3, IE)		2648
2649 2650	509 510		YSAREA = XS( 3 , ISL ) IJE5 = JE( 5 , IE )		2649 2650
2651 2652	511		IF( YSAREA . GE . RMINVG . AND . IJE5 . NE . 0 ) THEN		2651 2652
2653	512 513		IE1 = IABS( JS( 4 . ISL ) ) IE2 = IABS( JS( 5 . ISL ) )		2653
2654 2655	51 <b>4</b> 51 <b>5</b>		IE3 = IABS( JS( 6 , ISL ) ) IJE51 = JE( 5 , IE1 )		2654 2655
2656	51 <b>6</b>		IJE52 = JE(5, 1E2)		2656
2657 2658	517 518		IJE53 = JE( 5 , IE3 ) IF( IJE51 . NE . 0 ) THEN		2657 2658
2659	51 <b>9</b>		IEDIST = IE1		265 <del>9</del>
2660 2661	520 521		XE1 = XE( 1 , IE1 ) XE2 = XE( 1 , IE2 )		2660 2661
2 <b>662</b>	522		XE3 = XE(1, IE3)		2662
2663 2664	523 524		END IF IF( IJE52 . NE . 0 ) THEN		2663 2664
2665	52 <b>5</b>		IEDIST = IE2		2665
2666 2667	526 527		XE1 - XE( 1 , IE2 ) XE2 - XE( 1 , IE1 )		2666 2667
2668	52 <b>8</b>		XE3 = XE(1, IE3)		2668
2669 2670	529 530		END IF IF( IJE53 . NE . 0 ) THEN		2669 2670
2671	531		IEDIST = IE3		2671
2672 2673	532 533		XE1 = XE( 1 , IE3 ) XE2 = XE( 1 , IE2 )		2672 2673
2674	534		XE3 = XE(1, IE1)		2674 2675
2675 2676	535 536		END IF XEDIST = 1. / XE( 1 , IEDIST )		2675
2677 2678	537 5 <b>38</b>		YE2 = XE2 * XEDIŠT YE3 = XE3 * XEDIŠT		2677 2678
2678	539 539		ZE2 = (YE2 - 1.5) * (YE21)		2679
2680 2681	540 541		ZE3 = ( YE3 - 1.5 ) * ( YE31 ) YY2 = XE1 * XE1 + XE2 * XE2 + .35 * XE1 * XE2 - XE3 * XE3		2680 2681
2682	542		YY3 = XE1 * XE1 + XE3 * XE3 + .35 * XE1 * XE3 - XE2 * XE2		2682
2683 2684	543 544		IF(ZE2.LT.O.AND.ZE3.LT.O.AND. YY2.GT.O.AND.YY3.GT.O.)THEN		2683 2684
2685	545		CALL DISECT ( IEDIST , IDONE , IDUMP )		2685
2686 2687	546 547	С	LTRIG = LTRIG + 1		2686 2687
2688	548		JTRIG(LTRIG) = NS		2688
2689 2690	549 550	с	KSDELT( NS ) = IDUMP		2689 2690
2691	551 552		IEDGE = IEDGE + 1		2691 2692
2692 2693	553		IRECNC( IEDGE ) = NE NCOLOR = NCOLOR + 1		2693
2694 2 <b>695</b>	554 555		JEE( NCOLOR ) = NE JSE( NE ) = 1		2694 2695
2696	556		IEDGE = IEDGE + 1		2696
2697 2698	557 558		IRECNC( IEDGE ) = NE - 1 NCOLOR = NCOLOR + 1		2697 2698
2699	5 <b>59</b>		JEE( NCOLOR ) = NE - 1		2699
2700 2701	560 561	С	JSE(NE - 1) = 1		2700 2701
2702	562		ELSE		2702 2703
2703 2704	563 564	С	IEDIST - IE1		2704
2705	565 566		XEDIST = XE1		2705 2706
2706 2707	567		IF( XE2 . GT . XEDIST ) THEN XEDIST - XE2		2707
2708 2709	568 569		IEDIST = IE2 END IF		2708 2709
2710	570		IF( XE3 . GT . XEDIST ) THEN		2710
2711 2712	571 572		XEDIST - XE3 IEDIST - IE3		2711 2712

Thu Jul	1 14:	:16:08	1993 ad <b>aphd.</b> f	SUBROUTINE INTPTN page	38
2713 2714 2715 2716	573 574 575 576		END IF ISL = JE( 3 , IEDIS ISR = JE( 4 , IEDIS XSISL = XS( 3 , ISL	ST )	2713 2714 2715
2717	577		$\frac{x_{SISE} = x_{S}(3, 1)}{x_{SISR} = x_{S}(3, 1)}$		2716 2717
2718 2719	57 <b>8</b> 579		IJE5 = JE(5, IED) IF(XSISL, GT, R		2718
2720	5 <b>80</b>		. IJE5 . EQ . 0 )		2719 2720
2721 2722	581 582		DO 645 IR = 4 , 6 IE = IABS( JS( IR ,		2721 2722
2723	583		IF( JSE( IE ) . EQ	A 1 THEN	2723
27 <b>24</b> 27 <b>25</b>	584 585		IEDGE = IEDGE + 1 IRECNC(IEDGE) = I		2724 2725
2726	586		NCOLOR = NCOLOR + 1	l	2726
27 <b>2</b> 7 27 <b>28</b>	587 588		JEE( NCOLOR ) = IE JSE( IE ) = 1		2727 2728
2729	589	6 A F	END IF		2729
27 <b>30</b> 2731	590 591	645	CONTINUE DO 655 IR = 4 .6		2730 2731
2732 2733	592 593		IE = IABS( JS( IR ,	ISR ) )	2732
2734	593		IF( JSE( IE ) . EQ IEDGE = IEDGE + 1		27 <b>33</b> 2734
2735 2736	595 596		IRECNC( IEDGE ) = I	E	2735
2737	597		NCOLOR = NCOLOR + 1 JEE( NCOLOR ) = IE		27 <b>36</b> 2737
2738 2739	5 <b>98</b> 599		JSE(IE) = 1 ENDIF		2738
2740	600	655	CONTINUE		27 <b>39</b> 27 <b>40</b>
2741 2742	601 602	C	IDONE = 0		2741
2743	603		CALL DISECT ( IEDIS	T, IDONE, IDUMP)	2742 2743
2744 2745	604 605	С	IF( IDONE . EQ . 1	) THEN	2744
2746	6 <b>06</b>	~	LTRIG = LTRIG + 1		2745 27 <b>46</b>
2747 2748	607 608		JTRIG( LTRIG ) = NS KSDELT( NS ) = IDUM		2747 2748
2749	609		LTRIG = LTRIG + 1		2749
2750 2751	610 611		JTRIG( LTRIG ) = NS KSDELT( NS - 1 ) =		2750 2751
2752	612	C			2752
2753 2754	613 614		IEDGE = IEDGE + 1 IRECNC(IEDGE) = N		2753 2754
2755 2756	615		NCOLOR - NCOLOR + 1		2755
2757	61 <b>6</b> 617		JEE( NCOLOR ) = NE JSE( NE ) = 1		2756 2757
2758 2759	618 619		IEDGE = IEDGE + 1 IRECNC( IEDGE ) = N		2758
27 <b>60</b>	62 <b>0</b>		NCOLOR = NCOLOR + 1		27 <b>59</b> 2760
2761 2762	621 622		JEE( NCOLOR ) = NE - JSE( NE - 1 ) = 1	- 1	2761
2 <b>763</b>	623		IEDGE = IEDGE + 1		2762 2763
2764 2765	624 625		IRECNC( IEDGE ) = NI NCOLOR = NCOLOR + 1		2764 2765
2766	62 <b>6</b>		JEE( NCOLOR ) = NE -	- 2	2766
2767 2768	627 628	С	<b>JSE( NE - 2 ) =</b> 1		27 <b>67</b> 2768
2769 2770	629 630		END IF		2769
2771	631		END IF END IF		2770 2771
2772 277 <b>3</b>	632 633	340	END IF Continue	2	2772
2774	634	C 0	CONTINUE		2773 2774
2775 2776	635 636	с	NSS = LTRIG	2	2775 2776
2777	637	-	DO 370 IEM = 1 , NCC	DLOR 2	2777
2778 2779	638 639		IE = JEE( IEM ) CALL RECNC( IE , IDC		2778 2779
27 <b>80</b>	640		CALL RECNC( JA , JAD	DONE, ITL, ITR, JAA, JAB, JAC, JAD) 2	2780
2781 2782	641 642		CALL RECNUL JB , JBD CALL RECNC( JC , JCD		2781 2782
2783	643	370	CALL RECNC( JD , JDD	DONE, ITL, ITR, JDA, JDB, JDC, JDD) 2	2783
2784 2785	644 645	37 <b>0</b> C	CONTINUE		2784 2785
2786	64 <b>6</b>	300	CONTINUE		786

(

Thu Jul	1 14:1	6:08	1993	adaphd.f	SUBROUTINE INTPIN	page	39
2787	647	C					2787
2788	648		NVFCF	= NE / MBL			2788
2789	649			= NE - NVECE * MBL			2789
2790	650			= NS / MBL			2790
2791	651			= NS - NVECS * MBL			2791
2792	652			= NV / MBL			2792
2793	653			= NV - NVECV * MBL			2793
2794	654	С					2794
2795	655	•	00 40	O INE = 1 , NVECE			2795
2795	65 <b>6</b>			E( INE ) = MBL			2796
2797	657	400	CONTI				2797
2798	658			- NVECE			2798
2799	659			REME . GT . 0 ) THEN			2799
2800	660			= NVECE + 1			2800
2801	661			E( NVEEE ) = NREME			2801
2802	662		END 1				2802
2803	663	С					2803
2804	664	č	DO 41	0  INS = 1 , NVECS			2804
2805	665			S( INS ) = MBL			2805
2806	666	410	CONTI				2806
2807	667	410		+ NVECS			2807
2808	668			REMS . GT . 0 ) THEN			2808
2809	6 <b>69</b>			= NVECS + 1			2809
2810	670			S( NVEES ) = NREMS			2810
2811	671		END I	F			2811
2812	672	С		•			2812
2813	673	Ç	DO 42	O INV = 1 . NVECV			2813
2814	674			V(INV) = MBL			2814
2815	675	420	CONTI				2815
2816	676	.20		= NVECV			2816
2817	677			REMV . GT . 0 ) THEN			2817
2818	678			- NVECV + 1			2818
2819	679			V( NVEEV ) = NREMV			2819
2820	680		END I				2820
2821	681	С		•			2821
2822	682	v	PRIN	IT*, NV, NE, NS			2822
2823	683	С		, intractine			2823
2824	684		- FXIT	POINT FROM SUBROUTIN	E		2824
2825	685	č					2825
2826	686	č		•			2826
2827	687	~	RETUR				2827
2828	688	С					2828
2829	689	č					2829
2830	690	č		,			2830
2831	691	•	END				2831
2001							

Thu Jul	1 14	:16:08	1993 adaphd.f SUBROUTINE DELPTNT	page	40	
2832 2833	1 2		SUBROUTINE DELPTNT( DAREA , IDUMP )		2832	
2834	3	C			2833 2834	
2835 2836	4 5	C C	DELPTN ADAPT THE GRID DYNAMICALLY, DELETE VERTECES I		2835	
2837	6	С	WILL FLAGED TRIANGLES FOR DELETION		2836 2837	
2838	7	-	t		2838	
2839 2840	8 9	C			2839	
2841	10	-	IMPLICIT REAL (A-H,O-Z)		2840 2841	
2842 2843	11 12	C			2842	
2844	13		include 'cmsh00.h' include 'chyd00.h'		2843	
2845	14		include 'cint00.h'		2844 2845	
2846 2847	15 16		include 'cphs10.h' include 'cphs20.h'		2846	
2848	17	С	include 'cphs20.h'		2847	
2849	18		INTEGER JTRIG(MEM), KTRIG(MEM), IRECNC(MEM)		2848 2849	
2850 2851	19 20		INTEGER JSE(MEM), JEE(MEM), IOFDVS(10), NOFDVS(10) INTEGER IITRIG(200)		2850	
2852	21		REAL ADFCTR(8), DLFCTR(8)		2851 2852	
2853	22	С			2853	
2854 2855	23 24		EQUIVALENCE (UL,JTRIG) EQUIVALENCE (VR,KTRIG)		2854	
2856	25		EQUIVALENCE (VL, IRECNC)		2855 2856	
2857	26		EQUIVALENCE (PR.JSE)		2857	
2858 2859	27 28	с	EQUIVALENCE (PL, JEE)		2858	
2860	29	Ũ	OLFCTR( 1 ) = DAREA		2859 2860	
2861	30		DLFCTR(2) = .4		2861	
2862 2863	31 32		DLFCTR(3) = .5 DLFCTR(4) = .65		2862	
2864	33		DLFCTR(5) = .8		2863 2864	
2865 2866	34	С			2865	
2867	35 36		SMINVG = SAREVG * DAREA DO 112 IS = 1 , NS		2866	
2868	37		JSDELT(IS) = 0		2867 2868	
2869 2870	38	112	CONTINUE		2869	
2871	39 40	с	ISDELT = 0		2870	
2872	41	•	NSS = 0		2871 2872	
2873 2874	42 43		FLUXPP = .00001 * HYDMOM( 4 )		2873	
2875	44		FLUXVU = .00001 * HYDMOM(2) FLUXRR = .00001 * HYDMOM(1)		2874	
2876	45		$00\ 120\ 1S = 1$ , NS		2875 2876	
2877 2878	46 47		PCRTRY = HYDFLX( IS , 4 ) - FLUXPP IPCRTR = SIGN( 1. , PCRTRY )		2877	
2879	48		UCRTRY = HYDFLX(IS, 2) - FLUXUU		2878 2879	
2880	49		IUCRTR = SIGN( 1. , UCRTRY )		2880	
2881 2882	50 51		RCRTRY - HYDFLX(IS,I) - FLUXRR IRCRTR = SIGN(I., RCRTRY)		2881	
2883	52		NIDUMP – IDUMP – NAREAD		2882 2883	
2884 2885	53 54		IF(		2884	
2886	55	•	. IPCRTR . EQ 1 . AND . . IUCRTR . EQ 1 . AND .		2885 2886	
2887	56		IRCRTR . EQ 1 . AND .		2887	
2888 2889	57 58	•	KSDELT(IS).LE.NIDUMP.AND. KSDELT(IS).NE.O)THEN		2888	
2890	59	•	NSS = NSS + 1		2889 2890	
2891	60		JTRIG(NSS) = 1S		2891	
2892 2893	61 62	120	END IF CONTINUE		2892	
2894	63	C			2893 2894	
2895 2896	64 65	С	PRINT*, NV, NE, NS, NSS		2895	
2897	66	L.	ISDELT = NSS		2896 2897	
2898	67		DO 210 IS = 1 , NSS		2898	
2899 2900	68 69	210	JSDELT( IS ) = JTRIG( IS )		2899	
2901	70	C 210	CONTINUE		2900 2901	
2902	71		DO 300 KDIV - 1 , 1		2902	
2903 2904	72 73	310	ILCOP = 1 CONTINUE		2903	
2905	74	- • •	ISS = JSDELT( ILOOP )		2904 2905	
Thu Jul	1 14:	16:08	1993 adaphd.f	SUBROUTINE DELPTNT	p <b>age</b>	41
----------------------	------------	-------------	-------------------------------------------	-------------------------------------	--------------	----------------------
2906	75		XSAREA = XS( 3 , IS	S)		2906
2907	76		INDCTR = 0			2907
2908 2909	77 78	С	IF( XSAREA . LT . SI	MINVG ) THEN		2908
2910	79	L	CALL VERDELTC ISS	INDCTR , NIDUMP , JJTRIG , IITRIG )		2909 2910
2911	80		IF( INDCTR . EQ . 1			2911
2912	81		ILOOP = 1			2912
2913 2914	82 83		ELSE JSDELT( ILOOP ) = 0			2913
2915	84		ILOOP = ILOOP + 1			2914 2915
2916	85		END IF			2916
2917 2918	86 87					2917
2919	88		JSDELT(ILOOP) = 0 $ILOOP = ILOOP + 1$			2918 2919
2920	89		END IF			2920
2921	90	C				2921
2922 2923	91 92		IF( ISDELT . GT . II			2922
2924	93	300	PRINT *,KDIV,NV,NE, CONTINUE	13, ULTCIK(KUIV)		2923 2924
2925	94	C				2925
2926	95		NVECE = NE / MBL			2926
2927 2928	96 97		NREME = NE - NVECE * NVECS * NS / MOL	MBL		2927
2929	98		NREMS = NS - NVECS *	MBL		2928 2929
2930	99		NVECV = NV / MBL			2930
2931 2932	100	c	NREMV = NV - NVECV *	MBL		2931
2932	101 102	С	DO 400 INE = 1 , NVEC	۲ <b>۲</b>		2932 2933
2934	103		NOFVEE( INE ) = MBL			2933
2935	104	40 <b>0</b>	CONTINUE			2935
29 <b>36</b> 2937	105 106		NVEEE = NVECE	TUCH		2936
2938	100		IF( NREME . GT . 0 ) NVEEE = NVECE + 1	INCN		2937 2 <b>938</b>
2939	108		NOFVEE( NVEEE ) = NRE	IME .		2939
2940	109	~	END IF			2940
2941 2942	110 111	C	DO 410 INS = 1 . NVEC	·c		2941 2942
2943	112		NOFVES( INS ) = MBL			2942
2944	113	410	CONTINUE			2944
2945 2946	114 115		NVEES = NVECS IF( NREMS . GT . 0 )	TUEN		2945
2947	116		NVEES = NVECS + 1	וחבת		2946 2947
2948	117		NOFVES( NVEES ) = NRE	MS		2948
2949	118	r	END IF			2949
2950 2951	119 120	C	DO 420 INV = 1 , NVEC	v		2950 2951
2952	121		NOFVEV( INV ) = MBL	•		2951
2953	122	420	CONTINUE			2953
2954 2955	123 124		NVEEV = NVECV IF( NREMV . GT . 0 )			2954
2956	125		NVEEV = NVECV + 1			2955 2956
2957	126		NOFVEV( NVEEV ) - NRE	MV		2957
2958	127	c	END IF			2958
2959 2960	128 129	C	PRINT*, NV, NE, NS			2959 2960
2961	130	C	· · · · · · · · · · · · · · · · · · ·			2961
2962	131		EXIT POINT FROM SUBRO	UTINE		2962
2963 2964	132 133	C C				2963 2964
2965	134	u	RETURN			2965
2966	135	C				2966
2967	136	C				2967
2968 2969	137 138	C	END			2968 2969
						2303

Thu Jul	1 14:1	16:08	1993 adaphd.f	SUBROUTINE RELAXY	page	42
2970	1		SUBROUTINE RELAXY( IV )			2970
2971	2		IMPLICIT REAL (A-H, 0-Z)			2971
2972	3	С	• • •			2972
2973	4	-				2973
2974	5	Č				2974
2975	6	C C	THIS ROUTINE RELAX THE	GRID AFTER DELETION		2975
2976 2977	7 8	C				2976 2977
2978	9	č				2978
2979	10	u	include 'cmsh00.h'			2979
2980	11		include 'chyd00.h'			2980
2981	12		include 'cint00.h'			2981
2982	13		include 'cphs10.h'			2982
2983	14		include 'cphs20.h'			2983
2984 2985	15 16		ITRIG = 0 IETRIG = 0			2984 2985
2986	17		IE = JV(2, IV)			2986
2987	18		IF( IE GT . O ) T	HEN		2987
2 <b>988</b>	19	С	•			2988
2989	20		IV1 = JE(1, IE)			2989
2990	21		IV2 = JE(2, IE)	T. (74)		2990
2991	22		IF( IV1 . EQ . IV )	THEN		2991 2992
2992 2993	23 24		ISI = JE(3, IE) ELSE			2992
2994	25		ISI = JE(4, IE)			2994
2995	26		END IF			2995
2996	27		IS = ISI			2996
2997	28	С				2997
2998	29	75	CONTINUE			2998
2999	30	С	DO 65 IR = 1, 3			2999 3000
3000 3001	31 32		JR = MOD(IR, 3)	+ 1		3001
3002	33		IEA - IABS( JS( JR			3002
3003	34		IF( IEA . EQ . IE )	THEN		3003
3004	35		IIR = MOD(JR, 3)			3004
3005	36		IEI = JS(IIR, IS)	)		3005
3006	37		IEII = IABS( IEI )			3006 3007
3007 3008	38 39		IETRIG = IETRIG + 1 JECRSS( IETRIG ) =			3008
3009	40		JJR = MOD(JR + 1),	(3) + 4		3009
3010	41		IEM = JS( JJR , IS	)		3010
3011	42		IER = IABS( IEM )			3011
3012	43		IETRIG = IETRIG + 1			3012
3013	44	с	JECRSS( IETRIG ) =	IER		3013 3014
3014 3015	45 46	L	IV1 = JE(1, IER)			3015
3015	47		IV2 = JE(2, IER)			3016
3017	48		IF( IV1 . EQ . IV )	THEN		3017
3018	49		ISR = JE(3, IER)			3018
3019	50		ITRIG = ITRIG + 1			3019
3020	51		$\frac{\text{IICOLR}(\text{ IIRIG}) = I}{\text{IICOLR}(\text{ IIRIG}) = I}$			3020 3021
3021 3022	52 53		JSCRSS( ITRIG ) = I Else	70		3022
3022	54		ISR = JE(4, IER)			3023
3024	55		ITRIG = ITRIG + 1			3024
3025	56		IICOLR(ITRIG) = I			3025
3026	57		JSCRSS(ITRIG) = I	<u> ЭК</u>		3026 3027
3027 3028	58 59		END IF END IF			3027
3029	60	65	CONTINUE			3029
3030	61	c				3030
3031	62		IF( ISR . NE . ISI	) THEN		3031
3032	63		IS = ISR			3032 3033
3033	64 65		IE = IER GO TO 75			3033
3034 3035	66		END IF			3035
3036	67	С				3036
3037	68		DO 510 IE = 1 , ITR	IG		3037
3038	69	C				3038
3039	70		IEM = MOD(IE - 1),			3039 3040
3040	71 72		IEP = MOD( IE , ITR IEI = MOD( IE + 1 ,			3040
3041 3042	73	С	ILI = MVV(IL = 1)	1 ( <b>1 1 )</b> " <b>1</b>		3042
3043	74	-	IV1 = IICOLR( IEM )			3043

Thu Jul	1 14:16:08 1993	adaphd.f	SUBROUTINE RELAXY	page	43
3044 3045	75 76	IV2 = IICOLR( IEP ) IV3 = IICOLR( IEI )			304 <b>4</b> 3045
3046	77 C				3046
3047 3048	78 79	X1 = XV(1, IV1) - XV(1) Y1 = XV(2, IV1) - XV(2)			3047 3048
3049	80	X2 = AV(1, IV3) - XV(1)			3049
3050	81	Y2 = XV(2, IV3) - XV(2)	, IV2 )		3050
3051 3052	82 83	XSIN = (X2 * Y1 - X1 * Y2) XCOS = (X1 * X2 + Y1 * Y2)			3051 3052
3053	84	ANGLE( IE ) = $XSIN / (ABS)$			3053
3054	85	IF( ANGLE( IE ) . LT . 0.			3054
3055	86 C	CONTINUE			3055 3056
305 <del>6</del> 3057	87 510 88 C	CONTINUE			3057
3058	89	XSUM = 0.			3058
3059	90	YSUM = 0.			3059
3060 3061	91 92	HSUMR = 0. HSUMU = 0.			3060 3061
3062	93	HSUMV = 0.			3062
3063	94	HSUMP = 0.			3063
3064	95 96 C	HSUMG = 0.			3064 3065
3065 3066	96 C 97	DO 110 IT = 1 , ITRIG			3066
3067	98	IVV = IICOLR( IT )			3067
3068	99 C		, ,		3068 3069
3069 3070	100 101	XSUM = XSUM + XV(1, IVV) $YSUM = YSUM + XV(2, IVV)$			3070
3071	1 <b>02</b> C		, ,		3071
3072	103	HSUMR = HSUMR + HYDVVV( I			3072
3073 3074	104 105	$\begin{array}{rcl} \text{HSUMU} &= \text{HSUMU} + \text{HYDVVV}(1) \\ \text{HSUMV} &= \text{HSUMV} + \text{HYDVVV}(1) \end{array}$			3073 3074
3075	105	HSUMP = HSUMP + HYDVVV( I			3075
3076	107	HSUMG = HSUMG + HYDVVV( I	VV , 5 )		3076
3077 3078	108 110 109 C	CONTINUE			3077 3078
3078	1 <b>09</b> C	XINVRG = 1. / ITRIG			3079
3080	111	XV(1, IV) = XSUM * XINV			3080
3081	112	XV(2, IV) = YSUM * XINV	RG		3081 3082
3082 3083	113 114	HYDVVV( $IV$ , 1 ) = HSUMR * HYDVVV( $IV$ , 2 ) = HSUMU *			3083
3084	115	HYDVVV( IV , 3 ) - HSUMV *			3084
3085	116	HYDVVV( $IV$ , 4 ) = HSUMP *			3085 3086
3086 3087	117 118 C	HYDVVV(IV, 5) = HSUMG *	X INVKG		3087
3088	119	ELSE			3088
3089	120 C				3089 3090
3090 3091	121 122	IE = - IE IVI = JE( 1 , IE )			3090
3092	123	IV2 = JE(2 . IE)			3092
3093	124	IF( IV1 . EQ . IV ) THEN			3093 3094
3094 3095	125 126	ISI = JE(3, IE) ITRIG = ITRIG + 1			3095
3096	127	JSCRSS(ITRIG) = ISI			3096
3097	128	IICOLR(ITRIG) = IV2			3097
3098 3099	129 130	ELSE ISI = JE(4, IE)			3098 3099
3100	130	131 = 32(4, 12) 1TRIG = ITRIG + 1			3100
3101	132	JSCRSS( ITRIG ) = ISI			3101
3102 3103	133 134	IICOLR( ITRIG ) = IV1 END IF			3102 3103
3104	135 C				3104
3105	136	IS = ISI			3105
3106 3107	137 138	ISI = 0 IIE = IE			3106 3107
3107	139	IETRIG = IETRIG + 1			3108
3109	140	JECRSS( IETRIG ) = IE			3109
3110	141 C	CONTINUE			3110 3111
3111 3112	142 670 143 C	CONTINUE			3112
3113	144	DO 680 $IR = 1, 3$			3113
3114	145	JR = MOD(IR, 3) + 1	5))		3114 3115
3115 3116	146 147	IEA = IABS( JS( JR + 3 , I IF( IEA , EQ , IE ) THEN	3 ] ]		3116
3117	148	IIR = MOD(JR, 3) + 4			3117

Thu Jul 1 14:16:08 1993	adaphd.f	SUBROUTINE RELAXY	page	44
3118       149         3119       150         3120       151         3121       152         3122       153         3123       154         3124       155         3125       156         3126       157         3127       158	IEI = JS( IIR , IS IEII = IABS( IEI ) IETRIG = IETRIG + 1 JECRSS( IETRIG ) = JJR = MOD( JR + 1 , IEM = JS( JJR , IS IER = IABS( IEM ) IETRIG = IETRIG + 1 JECRSS( IETRIG ) =	IEII 3) + 4 )		3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
3128       159         3129       160         3130       161         3131       162         3132       163         3133       164         3134       165         3135       166         3136       167         3137       168	IV1 = JE(1, IER) $IV2 = JE(2, IER)$ $IF(IV1 = EQ = IV)$ $ISR = JE(3, IER)$ $ITRIG = ITRIG + 1$ $IICOLR(ITRIG) = I$ $JSCRSS(ITRIG) = I$ $ELSE$ $ISR = JE(4, 'ER)$ $ITRIG = ITRIG + 1$	THEN V2 SR		3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
3138       169         3139       170         3140       171         3141       172         3142       173       C         3143       174       680	IICOLR( ITRIG ) = I JSCRSS( ITRIG ) = I END IF END IF	VI SR		3138 3139 3140 3141 3142
3144       175       C         3145       176         3146       177         3147       178         3148       179         3149       180         3150       181	CONTINUE IF( ISR . NE . ISI IS = ISR IE = IER GO TO 670 END IF ITRIG = ITRIG - 1	) THEN		3143 3144 3145 3146 3147 3148 3149 3150
3151       182       C         3152       183         3153       184         3154       185       C         3155       186	IV1 = JE( 1 . IIE ) IV2 = JE( 2 , IIE ) IV3 = JE( 1 , IER ) IV4 = JE( 2 , IER )			3151 3152 3153 3154 3155 3156 3156 3157
3158       189         3159       190         3160       191         3161       192         3162       193         3163       194         3164       195	X1 = XV(1, IV1) Y1 = XV(2, IV1) X2 = XV(1, IV4) Y2 = XV(2, IV4) XSIN * (X2 * Y1 - ) XCOS = (X1 * X2 + ) XANGLE = XSIN / (AE	- XV(2, IV2) - XV(1, IV3) - XV(2, IV3) XI * Y2)		3158 3159 3160 3161 3162 3163 3164
3165       196       C         3166       197       3167         3167       198       C         3168       199       3169         3170       201       3171         3171       202       3172	IF( ABS( XANGLE ) . IVI = IV1 IF( IV . EQ . IV1 ) IVL = IV3 IF( IV . EQ . IV3 ) IVTRIG = ITRIG + 1			3165 3166 3167 3168 3169 3170 3171
3173 204 3174 205 C 3175 206 3176 207 C 3177 208 3178 209	IICOLR(IVTRIG) = I $IICOLR(IVTRIG) = I$ $D0 512 IE = 1 , IVTR$ $IEM = MOD(IE - 1 , IVTR$ $IEP = MOD(IE , IVTR$	RIG IVTRIG ) + 1		3172 3173 3174 3175 3176 3177 3178
3179       210         3180       211       C         3181       212         3182       213         3183       214         3184       215       C         3185       216	IEI = MOD( IE + 1 , IVI = IICOLR( IEM ) IV2 = IICOLR( IEP ) IV3 = IICOLP( IEI ) X1 = XV( 1 , IV1 ) -	IVTRIG ) + 1		3179 3180 3181 3182 3183 3183 3184 3185
3186       217         3187       218         3188       219         3189       220         3190       221         3191       222	Y1 = XV(2, IV1) - X2 = XV(1, IV3) - Y2 = XV(2, IV3) - XSIN = (X2 * Y1 - X XCOS = (X1 * X2 + Y	- XV(2, IV2) - XV(1, IV2) - XV(2, IV2) - XV(2, IV2) (1 * Y2)		3185 3186 3187 3188 3189 3190 3191

Thu Jul	1 14:16:08 199	3 adaphd.f SUBROUTINE RELAXY	pa <b>ge</b> 45
3192	223	IF( ANGLE( IE ) . LT . O. ) RETURN	3192
3193	224 C	CONTINUE	3193
3194	225 512		3194
3195	2 <b>26</b> C	XV(1,IV) = .5 * (XV(1,IVI) + XV(1,IVL))	3195
3196	2 <b>27</b>		3196
3197	2 <b>28</b>	XV(2, IV) = .5 * (XV(2, IVI) + XV(2, IVL))	3197
3198	2 <b>29</b>	HYDVVV(IV, 1) = .5 * (HYDVVV(IVI, 1) +	3198
3199	2 <b>30</b> .	HYDVVV(IVL.1))	3199
3200	2 <b>31</b>	HYDVVV(IV,2) = .5 * (HYDVVV(IVI.2) +	3200
3201	232 .	HYDVVV(IVL.2))	3201
3202	233	HYDVVV(IV.3) = .5 * (HYDVVV(IVI.3) +	3202
3203	234 .	HYDVVV(IVL, 3))	3203
3204	235	HYDVVV(IV, 4) = .5 * (HYDVVV(IVI, 4) + HYDVVV(IVI, 4))	3204
3205	236 .		3205
3206	237	HYDVVV( IV , 5 )5 * ( HYDVVV( IVI , 5 ) +	3206
3207	238 .	HYDVVV( IVL , 5 ) )	3207
3208	239 C	END IF	3208
3209	240		3209
3210	241 C	DO 120 ISNN - 1 , ITRIG	3210
3211	242		3211
3212	243	IAS - JSCRSS( ISNN )	3212
3213	244 C		3213
3214	245	IV1 = JS(1, INS)	3214
3215	246	IV2 = JS(2, INS)	3215
3216	247	IV3 = JS(3, INS)	3216
3217	2 <b>48</b>	AX = XV(1, IV2) - XV(1, IV1)	3217
3218	2 <b>49</b>	AY = XV(2, IV2) - XV(2, IV1)	3218
3219	2 <b>50</b>	BX = XV(1, IV3) - XV(1, IV1)	3219
3220	2 <b>51</b>	BY = XV(2, IV3) - XV(2, IV1)	3220
3221	2 <b>52</b>	XS( 3 , INS ) = 0.5 * ( AX * BY - AY * BX )	3221
3222	2 <b>53</b> C		3222
3223	254	SAREA(INS) = $1. / XS(3, INS)$	3223 3224
3224	255	HYDFLX( INS . 4 ) - 0.	3225
3225	256	HYDFLX( INS . 1 ) - 0.	
3226	2 <b>57</b>	HYDFLX( INS , 2 ) = 0.	3226
3227	2 <b>58</b>	KSDELT( INS ) = 1	3227
3228	2 <b>59</b> C	XXC = ( XV( 1 , IV1 ) + XV( 1 , IV2 ) + XV( 1 , IV3 ) ) *	3228
3229	2 <b>60</b>		3229
3230	261 .	THIRD	32 <b>30</b>
3231	262	YYC = ( XV( 2 , IV1 ) + XV( 2 , IV2 ) + XV( 2 , IV3 ) ) *	32 <b>3</b> 1
3232	2 <b>63</b> .	THIRD	3232
3233	264	XS(1, INS) - XXC	3233
3234	2 <b>65</b>	XS(2, INS) = YYC	3234
3235	2 <b>66</b> C		3235
3236	267	DO 130 IR = 1, MHQ	32 <b>36</b> 3237
3237	268	HYDV( INS , IR ) = ( HYDVVV( IVI , IR ) +	3238
3238	269	HYDVVV( IV2 , IR ) +	
3239	270 .	HYDVVV(IV3,IR)) * THIRD	3239
3240	271 130	CONTINUE	3240
3241	27 <b>2</b> C	HDUM = $1. / (HYDV(INS, 1) + 1.E-12)$	3241
3242	27 <b>3</b>		3242
3243	274	HYDV( INS , 2 ) - HYDV( INS , 2 ) * HDUM	3243
3244	275	HYDV( INS , 3 ) - HYDV( INS , 3 ) * HDUM	3244
3245	276	HYDV( INS , 4 ) - ( HYDV( INS , 4 ) -	3245
3246		.5 * HYDV( INS , 1 ) *	3246
3247	278.	( HYDV( INS , 2 ) * HYDV( INS , 2 ) +	3247 3248
3248	279 .	HYDV( INS , 3 ) * HYDV( INS , 3 ) ) ) *	3249
3249	280 .	( HYDV( INS , 5 ) - 1. )	
3250	281 C	CONTINUE	3250
3251	282 120		3251
3252	283 C	DO 140 IENN = 1 , IETRIG	3252
3253	284		3253
3254	2 <b>85</b>	IEN - JECRSS( IENN )	3254
3255	286 C		3255
3256	287	JV1 = JE(1, IEN)	3256
3257	288	JV2 = JE(2, IEN)	3257
3258	289	AX = XV(1, JV2) - XV(1, JV1)	3258
3259	290	AY = XV(2, JV2) - XV(2, JV1)	3259
3260	291	XE(1, IEN) = SQRT(AX * AX + AY * AY)	3260 3261
3261	2 <b>92</b>	XEREV = 1. / XE( I , IEN )	3262
3262	2 <b>93</b>	XN( IEN ) = AY * XEREV	3263
3263	294	YN( IEN ) = - AX * XEREV	3264
3264	295	ISSR - JE( 4 , IEN )	
3265	296	ISSL = JE(3, IEN)	3265

Thu Jul	1 14:	16:08	.993 adaphd. f	SUBROUTINE RELAXY	page	46
3266 3267	297 2 <b>98</b>	С	IF( JE( 5 , IEN )	NF. 0) THEN		3266 3267
3268	299	С				3268
3269 3270	300 301		AA = XV(1, JV2) BB = XV(2, JV2)			3269
3271	302		XEL = XS( 1 , ISSL	L )		3270 3271
3272 3273	303 304		YEL = XS( 2 , ISSL CC = XEL - XV( 1 ,			3272
3274	305		DD = YEL - XV(2)	, JV1 )		3273 3274
3275 3276	306 307		EE = ( AA * CC + B XER = XV( 1 , JV1	BB * DD ) * XEREV * XEREV		3275
3277	308		YER = XV(2, JV)			3276 3277
3278 3279	309 310		AX = XER - XEL AY = YER - YEL			3278
3280	311			QRT( AX * AX + AY * AY )		3279 3280
3281 3282	312 313		XEREV = 1. / XE(2)	2 , IEN )		3281
3283	314		XXN( IEN ) = AX * YYN( IEN ) = AY *			3282 3283
3284 3285	315 316		XE(2, IEN) = 2.			3284
3286	317		XYMIDL( IEN ) = .5 XMIDL( IEN ) = XER			3285 3286
3287	318	c	YMIDL( IEN ) + YER			3287
3288 3289	319 320	С	ELSE			3288 3289
3290	321	С		· ·		3290
3291 3292	322 323		XER = XS(1, ISSR) $YER = XS(2, ISSR)$			3291 3292
3293	324		XEL = XS(1), ISSL	. )		3293
3294 3295	325 326	C	YEL - XS( 2 , ISSL	. )		3294 3295
3296	327		AA = XV(1, JV2)			3296
3297 3298	328 329		BB = XV( 2 , JV2 ) CC = XEL - XER	- XV( 2 . JVI )		3297 3298
3299	3 <b>30</b>		DD = YEL - YER			3299
3300 3301	331 332		ACA = XER - XV( 1 DBD = YER - XV( 2			3300 3301
3302	3 <b>33</b>		EE = (ACA * DD - )	DBD * CC ) / ( AA * DD - BB * CC )		3302
3303 3304	334 3 <b>35</b>			1 . JV1 ) + AA * EE 2 . JV1 ) + BB * EE		3303 3304
3305	336	C				3305
3306 3307	337 3 <b>38</b>		XEMID = XMIDL( IEN Yemid = Ymidl( Ien			3306 3307
3308	339	C		,		3308
3309 3310	340 341		AX = XER - XEL AY = YER - YEL			3309 3310
3311	342		XE( 2 , IEN ) = SQ	RT( AX * AX + AY * AY )		3311
3312 3313	34 <b>3</b> 344		XEREV = 1. / XE( 2 XXN( IEN ) = AX * 1			3312 3313
3314	345	c	YYN( IEN ) = AY *			3314
3315 3316	346 347	¢	XYMIDL( IEN ) = SO	RT( XEMID * XEMID + YEMID * YEMID ) * XEREV		3315 3316
3317 3318	348 349	C				3317
3319	349	C	END IF			3318 3319
3320 3321	351 352	140 C	CONTINUE			3320
3322	353	C	DO 142 IENN = 1 ,	IETRIG		3321 3322
3323 3324	354 355		IE = JECRSS( IENN	) DONE,ITL,ITR,JA,JB,JC,JD)		3323
3325	356		CALL RECNC( JA , JA	ADONE, ITL, ITR, JAA, JAB, JAC, JAD)		3324 3325
3326 3327	357 358			BDONE, ITL, ITR, JBA, JBB, JBC, JBD)		3326 3327
3328	359		CALL RECNC( JD , JU	CDONE, ITL, ITR, JCA, JCB, JCC, JCD) DDONE, ITL, ITR, JDA, JDB, JDC, JDD)		3328
3329 3330	360 361	142 C	CONTINUE			3329 3330
3331	362	C	EXIT POINT FROM SUBROUT	TINE		3331
3332 3333	363 364	C C	*****			3332 3333
3334	365		RETURN			3334
3335 3336	366 367	C C	*****			3335 3336
3337	368	č	- 4 4			3337
3338	369		END			3338

•

6

page 46

.

Thu Jul	1 14:1	6:08 19	993 adaphd.f SUBROUTINE LAPLAC	page	47
3 <b>339</b>	1		SUBROUTINE LAPLAC		3339
3340 3341	2 3	C C			3340 3341
3342	4	C	I		3342
3343	5	Ç	LAPLAC COMPUTE THE LAPLACIAN FOR GRID ADAPTATION		3343 3344
3344 3345	6 7	С С	] ] 		3345
3346	8	Č			3346
3347 3348	9 10		include 'cmsh00.h' include 'chyd00.h'		3347 3348
3349	11		include 'cint00.b'		3349
3350	12		include 'cphs10.h'		3350 3351
3351 3352	13 14	С	include 'cphs20.h'		3352
3353	15	•	REAL RRMIDL (MBP), PPMIDL (MBP)		3353
3354 3355	16 17		REAL ROR(3),UOR(3),VOR(3),POR(3) REAL ROL(3),UOL(3),VOL(3),POL(3)		3354 3355
3356	18	C	RLAL ROL(J), 002(J), 002(J), 02(J)		3356
3357	19	•	EPSLON = .025		3357 3 <b>358</b>
3358 3359	20 21	C	DO 120 IS - 1 , NS		3359
3360	22		RR(IS) = 0.		3360
3361 3362	23 24	120	RL( IS ) = 0. CONTINUE		3361 3362
3363	25	C			3363
3364	26		BEGIN LOOP OVER ALL EDGES IN THE DOMAIN		3364 3365
3365 3366	27 28	C	NE1 = 1		3366
3367	29		NE2 = NOFVEE(1)		3367
3368	30	c	DO 90 INE = $1$ , NVEEE		3368 3369
3369 3370	31 32	С С	FETCH HYDRO QUANTITIES		3370
3371	33	Č			3371
3372 3373	34 35		D0 105 IE = NE1 . NE2 KE = IE - NE1 + 1		3372 3373
3374	36	C			3374
3375	37		ISL = JE(3, IE)		3375 3376
3376 3377	38 39	С	ISR = JE(4, IE)		3377
3378	40		IF( JE ( 5 , IE ) . EQ . O ) THEN		3378 3379
3379 3380	41 42	C	RRMDL = XYMIDL(IE) * (RGRAD(ISR, 1) -		3380
3381	43		RGRAD(ISL, 1) + RGRAD(ISL, 1)		3381
3382	44		RLMDL = XYMIDL(IE) * (RGRAD(ISR, 2) - RGRAD(ISL, 2)) + RGRAD(ISL, 2)		3382 3383
3383 3384	45 46		PRMDL = XYMIDL( IE ) * ( PGRAD( ISR , 1 ) -		3384
3385	47		PGRAD(ISL, 1) + PGRAD(ISL, 1)		3385 3386
3386 3387	48 49		PLMDL = XYMIDL(IE) * (PGRAD(ISR, 2) - PGRAD(ISL, 2)) + PGRAD(ISL, 2)		3387
3388	50	C			3388
3389	51	с	ELSE		3389 3390
3390 3391	52 53	L	RRMDL = RGRAD(ISL, 1)		3391
3392	54		RLMOL = RGRAD(ISL, 2)		3392 3393
3393 3394	55 56		PRMDL = PGRAD(ISL, I) PLMDL = PGRAD(ISL, 2)		3394
3395	57	C			3395
3396	58 59	С	END IF		3396 3397
3397 3398	60	6	RRMIDL( KE ) = ( RRMDL * XN( IE ) + RLMDL * YN( IE ) ) *		33 <b>98</b>
3399	61		. XE(1, IE)		3399 3400
3400 3401	62 63		PPMIDL( KE ) ~ ( PRMDL * XN( IE ) + PLMDL * YN( IE ) ) * XE( 1 , IE )		3401
3402	64	C			3402 3403
3403 3404	65 66	1 <b>05</b> C	CONTINUE		3404
3404	67	6	DO 130 IE = NE1 , NE2		3405
3406	68 60	r	KE = IE - NE1 + 1		3406 3407
3407 3408	69 70	С	ISL = JE(3, IE)		3408
3409	71	~	ISR = JE( 4 , IE )		3409 3410
3410 3411	72 73	C	IF( JE( 5 , IE ) . EQ . 0 ) THEN		3411
3412	74	C	····		3412

Thu Jul	1 14:16:0	08 19	193 adaphd.f	SUBROUTINE LAPLAC	page	48
3413 3414 3415 3416 3417 3418	75 76 77 78 79 C 80		RR(ISR) = RR(IS) RL(ISL) = RL(IS)	SL) + RRMIDL( KE ) SR) - RRMIDL( KE ) SL) + PPMIDL( KE ) SR) - PPMIDL( KE )		3413 3414 3415 3416 3417
3418 3419 3420 3421 3422 3423 3424	81 C 82 83 84 C 85		RR(ISL) = RR(IS RL(ISL) = RL(IS END IF			3418 3419 3420 3421 3422 3423
3424 3425 3426 3427 3428 3429 3430	87 1 88 C 89 90	130 90	CONTINUE NE1 = NE2 + 1 NE2 = NE2 + NOFVEE CONTINUE	( INE + 1 )		3424 3425 3426 3427 3428 3429 3430
3431 3432 3433 3434 3435 3436	93 94 95 96 97		DO 135 IS = 1 . NS ZRR = ABS( RR( IS ZPR = ABS( RL( IS RR( IS ) = ZRR * S RL( IS ) = ZPR * S CONTINUE	)) * SAREA(IS) )) * SAREA(IS) AREVG		3430 3432 3433 3434 3435 3436
3437 3438 3439 3440 3441 3442	99 C 100 101 102 103 104		DO 140 IS = 1 , NS ZRL = ( RGRAD( IS RGRAD( IS ZPL = ( PGRAD( IS	. 1 ) * RGRAD( IS , 1 ) + , 2 ) * RGRAD( IS , 2 ) ) * SAREVG , 1 ) * PGRAD( IS , 1 ) + , 2 ) * PGRAD( IS , 2 ) ) * SAREVG		3437 3438 3439 3440 3441 3442
3443 3444 3445 3446 3447 3448	105 106 107 108 109 1		ZRR = ABS( HYDV( I ZPP = ABS( HYDV( I RR( IS ) = RR( IS RL( IS ) = RL( IS CONTINUE	S , 1 ) ) * EPSLON S , 4 ) ) * EPSLON ) / ( ZRL + ZRR )		3443 3444 3445 3446 3447
3449 3450 3451 3452 3453	III     C       112     C       113     C       114     C       115     C		EXIT POINT FROM SU RETURN	BROUTINE		3448 3449 3450 3451 3452 3453
3454 3455 3456	116 C 117 C 118		END			3454 3455 3456

Thu Juì	1 14:16:08	1993 adaphd.f	SUBROUTINE RECNC	page	49
3457 3458	1 2	SUBROUTINE RECNC( IMPLICIT REAL (A-1	IE, IDONE, ITL, ITR, JA, JB, JC, JD)		3457 3458
3459	3 C				3459
3460 3461	5 C		I I		3460 3461
3462 3463	6 C 7 C		KS FOR RECONNECTION OF EDGE NUMBER IE I ONNECTIVITY BETWEEN ADJACENT TRIANGLES I		3462 3463
3464	8 C	USED AFTER ADDITI	ON AND DELETION I		3464
3465 3466	9 C 10 C		I l		3465 3466
3467 3468	11 C 12	include 'cmsh	00 b'		3467 3468
3469	13	include 'chyd	00.h'		3469
3470 3471	14 15	include 'cint( include 'cphs			3470 3471
3472 3473	16 17 C	include 'cphs	20.h'		3472 3473
3474	18	EROR = 1.0E-3			3474
3475 3476	19 C 20	IDONE = 0			3475 3476
3477	21	IF( IE . EQ .			3477
3478 3479	22 23	ITR = JE(4)	E).NE.O)RETURN IE)		3478 3479
3480 3481	24 25 C	ITL = JE(3),	IE )		3480 3481
3482	2 <b>6</b> C	IDENTIFY VERTICES			3482
3483 3484	27 C 28	I1 = JE( 1 , 1	IE )		3483 3484
3485 3486	29	12 = JE( 2 , 1	IE )		3485
3480 3487	30 31	DO 1 IV = 1 , ID = JS( IV ,	ITL )		3486 3487
3488 3489	32 33	IF( ID . NE . I4 = ID	II . AND . ID . NE . I2 ) THEN		3488 3489
3490	34	IV4 = IV			3490
3491 3492	35 36 1	END IF CONTINUE			3491 3492
3493 3494	37 C 38	$00 \ 3 \ IV = 1$ ,	3		3493 3494
3495	39	ID = JS(IV)	ITR )		3495
3496 3497	40 41	IF( ID . NE . I3 = ID	II . AND . ID . NE . I2 ) THEN		3496 3497
3498	42	IV3 = IV			3498
3499 3500	<b>43</b> 44 3	END IF Continue			3499 3500
3501 3502	45 C 46	IT MAY HAPPEN THAT	F 13 1S 14. 14 ) GO TO 999		3501 3502
3503	47 C	• • • • • •	,		3503
3504 3505	48 C 49 C		ANGLE PAIRS IN THE QUADRILATERAL AND RECONNECT TO DOMINANCE OF THE POISSON SOLVER.		3504 3505
3506 3507	50 C 51	AX - XV( 1	(3) - XV(1, I1)		3506 3507
3508	52	AY = XV( 2 , )	13 ) - XV(2, 11 )		3508
3509 3510	53 54		14) - XV(1, I1) 14) - XV(2, I1)		3 <b>509</b> 3510
3511 3512	55	CX = XV( 1 , 1	(4) - XV(1, 12)		3511 3512
3513	56 57	DX = XV(1, 1)	14) - XV(2, 12) 13) - XV(1, 12)		3513
3514 3515	58 59	DY = XV( 2 , 1 AI2 = AX * BY	13) - XV(2, 12) - AY * BX		3514 3515
3516	60	AI1 = CX + DY	- CY * DX		3516 3517
3517 3518	61 62	XLN = XE( 1 , ROUNDF = EROR			3518
3519 3520	63 C 64 C	IA IS BETWEEN 11 /	AND 13		3519 3520
3521	65 C	IB IS BETWEEN II /	AND [4		3521 3522
3522 3523	66 C 67 C	IC IS BETWEEN 12 / ID IS BETWEEN 12 /			3523
3524 3525	68 C 69	IB = JS( IV4 -	→ 3 . ITL )		3524 3525
3526	70	ID = JS(IV3 +	→ 3 , ITR )		3526 3527
3527 3528	71 72	IV3 = MOD(IV3)	3 + 1 , 3 ) + 1 3 + 1 , 3 ) + 1		3528
3529 3530	73 74	IC = JS(IV4 + IA = JS(IV3 + IA = JS(IV3 + IA = JS(IV3 + IA = IA = IA = IA = IA = IA = IA = IA	+ 3 , ITL )		3529 3530

Thu Jul	1 14:	16:08	1993	adaphd.f	SUBROUTINE RECNC	page	50
3531	75	C					3531
3532	76			JB = IABS( IB )			3532
3533 3534	77 78			JD = IABS( ID ) JA = IABS( IA )			3533 3534
3535	79			C = IABS(IC)			3535
3536	80	_			ROUNDF . OR . AII . LT . ROUNDF ) RETURN		3536
3537 3538	81 82	C	,	(1) _ VE( 1 )	14		3537
3539	83			(L1 = XE( 1 , J (L2 = XE( 1 , J			3538 3539
3540	84		)	(L3 = XE(1, J)	ic )		3540
3541	85 86	c	)	(L4 = XE( 1 , J	D)		3541
3542 3543	87	C	,	$(\mathbf{X} = \mathbf{X}\mathbf{V}(1 + \mathbf{I}3)$	3) - XV(1, I4)		3542 3543
3544	88				1 - XV(2, 14)		3544
3545	89	c	>	(LL = SQRT( XX	* XX + YY * YY )		3545
3546 3547	90 91	C		AREATL = SAREA(	171 )		3546 3547
3548	92			AREATR = SAREA(			3548
3549	93			SP2 = AREATL *			3549
3550 3551	94 95			\SP3 = AREATL * \SPTL = AREATL			3550 3551
3552	96		P	SP1 = AREATR *	XL1 * XL1		3552
3553	97			SP4 = AREATR *			3553
3554 3555	98 99			\SPTR = AREATR \SPN = AMAX1{ A	- XLN = XLN ISPTL , ASPTR , ASP1 , ASP2 , ASP3 , ASP4 )		3554 3555
3556	100	C		•			3556
3557	101			(SISR = 0.5 * A)			3557
3558 3559	102 103	С	,	(SINSR = 1. / X)	515K		3558 3559
3560	104	Ť	Х	(SISL = 0.5 * A	11		3560
3561	105	~	X	(SINSL = 1. / X	SISL		3561
3562 3563	106 107	С	۵	SP2 = XSINSR *	×12 + x12		3562 3563
3564	108		A	SP1 - XSINSR *	XL1 * XL1		3564
3565	109		A	SPSR = XSINSR	* XLL * XLL		3565
3566 3567	110 111			SP3 = XSINSL * SP4 = XSINSL *			35 <b>66</b> 3567
3568	112			SPSL = XSINSL			3568
3569	113	~	A	SPL = AMAX1( A	ISPSL , ASPSR , ASP1 , ASP2 , ASP3 , ASP4 )		3569
3570 3571	114 115	С	1	FC ASPN . IT .	ASPL ) RETURN		3570 3571
3572	116	C			HE OLD CONNECTION VIOLATES DIAGONAL DOMINANCE.		3572
3573 3574	117	С С	DRAW	LINE DIRECTED	FROM 14 TO I3 , IE ) THE SAME SINCE IE IS STILL INTERNAL.		3573 3574
3575	118 119	ſ,		DONE = 1	, IE J THE SAME SINCE IE IS STILL INTERNAL.		3575
3576	120		J	E(1, IE) =	14		3576
3577 3578	12 <b>1</b> 122			E(2, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE) = E(1, IE)	13		3577 3578
3579	123	С		(1,1)-			3579
3580	124	C			RIGHT, ITL TO THE LEFT OF THE NEW LINE IE .		3580
3581 3582	125 126	C C	FIND	THE OTHER DIRE	CTED LINE SEGMENTS		3581 3582
3583	127	C	0	0301=1,2			3583
3584	128			M5 = 5 - 1			3584
3585 3586	129 130			IF( JE( 1M5 , J BE( IM5 , JB )	18). NE. ITL) GO TO 26		3585 3586
3587	131	26		CONTINUE	- 110		3587
3588	132				D). NE. ITR) GO TO 28		3588
3589 3590	133 134	28	-	DE(IM5,JD) CONTINUE	= <u>1</u> ≹L		3589 3590
3591	135	30		ONTINUE			3591
3592	1 <b>36</b> 137	C	05654	· 10/ 1 - 1			3592 3593
3593 3594	137	C C		ˈJS( 1 - 6 , I ˈBOTH TRIANGLE	IL AND TIR ) S AT 14 WITH ( AND PUT IN COUNTERCLOCKWISE		3595
3595	139	č	MANNE	(R)	·		3595
3596 3597	140 141			IS(4, ITR) = IS(5, ITR) =			3596 3597
3598	141				- IE		3598
3599	143		J	IS( 1 , ITR ) =	14		3599
3600 3601	144 145				· 11 • 13		3600 3601
3602	145				IE		3602
3603	147		J	IS( 5 , ITL ) =	10		3603 3604
3604	148		ل ل	IS( 6 , ITL ) -			JUU4

Thu Jul	1 14:16:08 1993	adaphd.f SUBROUTINE RECNC	page	51
3605	149	JS(1, ITL) = 14		3605
3606	150	JS(2, ITL) = I3		3606
3607	151	JS(3, ITL) = 12		3607
3608 3609	152 C 153	IF( JV( 2 , I1 ) . GT . 0 ) JV( 2 , I1 ) = JA		3608 3609
3610	154	IF(JV(2, 12), GT, 0), JV(2, 12) = JC		3610
3611	155 C			3611
3612	156	XEL = (XV(1, I3) + XV(1, I2) + XV(1, I4)) * THIRD		3612
3613 3614	157 158	YEL = (XV(2, I3) + XV(2, I2) + XV(2, I4)) * THIRD XER = (XV(1, I3) + XV(1, I1) + XV(1, I4)) * THIRD		3613 3614
3615	159	YER = (XV(2, 13) + XV(2, 11) + XV(2, 14)) * THIRD		3615
3616	160 C			3616
3617	161	DO 92 IR = 1 , MHQ		3617
3618 3619	162 163	HYDV(ITL,IR) = (HYDVVV(I3,IR) + HYDVVV(I2,IR) +		3618 3619
3620	164 .	$\frac{12}{12}, \frac{1}{12}, \frac{1}{12}$		3620
3621	165 C			3621
3622	166	HYDV(ITR, IR) $\neq$ (HYDVVV(I3, IR) +		3622
3623 3624	167 . 168 .	$\frac{HYDVVV(II, IR) +}{HYDVVV(II, IR) +}$		3623 3624
3625	169 92	HYDVVV(I4,IR)) * THIRD CONTINUE		3625
3626	170 C			3626
3627	171	HDUM = $1. / (HYDV(ITL, 1) + 1.E-12)$		3627
3628	172	HYDV(ITL, 2) = HYDV(ITL, 2) * HOUM		3628
3629 3630	173 174	HYDV( ITL , 3 ) = HYDV( ITL , 3 ) * HDUM HYDV( ITL , 4 ) = ( HYDV( ITL , 4 ) -		3629 3630
3631	175 .	.5 * HYDV( ITL , 1 ) *		3631
3632	176.	( HYDV( ITL , 2 ) * HYDV( ITL , 2 ) +		3632
3633	177	HYDV(ITL, 3) * HYDV(ITL, 3)) *		3633
3634 3635	178 . 179 C	(HYDV(ITL, 5) - 1.)		3634 3635
3636	180	HDUM = 1. / (HYDV(ITR , 1 ) + 1.E-12 )		3636
3637	181	HYDV(ITR, 2) = HYDV(ITR, 2) * HDUM		3637
3638	182	HYDV( ITR , 3 ) = HYDV( ITR , 3 ) = HDUM		3638
3639 3640	183 184 .	HYDV( ITR , 4 ) = ( HYDV( ITR , 4 ) - .5 * HYDV( ITR , 1 ) *		3639 3640
3641	185	( HYDV( ITR , 2 ) * HYDV( ITR , 2 ) +		3641
3642	186 .	HYDV( ITR , 3 ) * HYDV( ITR , 3 ) ) ) *		3642
3643	187 .	(HYDV(ITR, 5) - 1.)		3643 3644
3644 3645	188 C 189	RGRAD1 = RGRAD( ITL , 1 ) + RGRAD( ITR , 1 )		3645
3646	190	RGRAD2 = RGRAD(ITL, 2) + RGRAD(ITR, 2)		3646
3647	191	RGRAD(ITL, 1) = .5 * RGRAD1		3647
3648	192	RGRAD( ITR , 1 ) = .5 * RGRAD1 RGRAD( ITL , 2 ) = .5 * RGRAD2		3648 3649
3649 3650	193 194	RGRAD(11L, 2) = .5 + RGRAD2 RGRAD(1TR, 2) = .5 + RGRAD2		3650
3651	195 C			3651
3652	196	UGRAD1 = UGRAD(ITL, 1) + UGRAD(ITR, 1)		3652
3653	197	UGRAD2 = UGRAD(ITL, 2) + UGRAD(ITR, 2)		3653 3654
3654 3655	198 199	UGRAD( ITL , 1 ) = .5 * UGRAD1 UGRAD( ITR , 1 ) = .5 * UGRAD1		3655
3656	200	UGRAD(ITL, 2) = .5 * UGRAD2		3656
3657	201	UGRAD( ITR , 2 ) = .5 * UGRAD2		3657
3658 3659	2 <b>02</b> C 2 <b>03</b>	VGRAD1 = VGRAD( ITL , 1 ) + VGRAD( ITR , 1 )		3658 3659
3660	203	VGRADI = VGRAD(11L, 1) + VGRAD(11R, 1) VGRAD2 = VGRAD(1TL, 2) + VGRAD(1TR, 2)		3660
3661	205	VGRAD(ITL, 1) = .5 * VGRAD1		3661
3662	206	VGRAD( ITR , 1 ) = .5 * VGRAD1		3662
3663 3664	207 208	VGRAD( ITL . 2 ) = .5 * VGRAD2 VGRAD( ITR . 2 ) = .5 * VGRAD2		3663 3664
3665	209 C	ANARY THE FEE OF ADDATE		3665
3666	210	PGRAD1 = PGRAD(ITL, 1) + PGPAD(ITR, 1)		3666
3667	211	PGRAD2 = PGRAD(ITL, 2) + PGRAD(ITR, 2)		3667 3668
3668 3669	212 213	PGRAD( ITL , 1 ) = .5 * PGRAD1 PGRAD( ITR , 1 ) = .5 * PGRAD1		3668 3669
3670	213	PGRAD(ITK, 1) = .5 * PGRAD1 $PGRAD(ITL, 2) = .5 * PGRAD2$		3670
3671	215	PGRAD(ITR, 2) = .5 * PGRAD2		3671
3672	216 C			3672 367 <b>3</b>
3673 3674	217 218	XS( 1 , ITL ) = XEL XS( 2 , ITL ) = YEL		3674
3675	219	XS(1, 1TR) = XER		3675
3676	220	XS(2, ITR) = YER		3676
3677	221 C	Q212Y - ( TT1 ) - Y212Y		3677 3678
3678	22 <b>2</b>	XS(3, ITR) = XSISR		5514

Thu Jui	1 14:1	6:08	1993 adaphd.1	f SUBROUTINE RECNC page	<b>e</b> 52
3679	223		XS( 3 , ITL	L) = XSISL	3679
3680 3681	224	C	<b>.</b>		3680
3682	225 226		SAREA( ITL SAREA( ITR	) = XSINSL ) - YSINSD	3681
3683	2 <b>2</b> 7	C	Senterit Tin	y - Astisk	3682 3683
3684	228		JEN(1) =		3684
3685 3686	2 <b>29</b> 2 <b>30</b>		JEN(2) = JEN(3) =		3685
3687	231		JEN(4) =		3686 3687
3688 3689	232	<u> </u>	JEN(5) =	IE	3688
3690	233 234	С	00 80 IENN	• 1 5	3689
3691	235		IEN = JEN(		3690 3691
3692 3693	236 237		JV1 = JE(1)	. IEN )	3692
3694	238		JV2 = JE(2) $AX = XV(1)$	, JV2 ) - XV( 1 , JV1 )	3693
3695	239		AY = XV( 2	, JV2 ) - XV(2 , JV1 )	3694 3695
3696 3697	240 241		XEREV = 1.	/ XE( 1 , 1EN ) • AY * XEREV	3696
36 <b>98</b>	242		YN(IEN) =	- AX * XEREV	3697
3699	243		ISSR = JE(	4 , IEN )	3698 3699
3700 3701	244 245		ISSL = JE( IJE5 = JE(	3, IEN) 5 TEN )	3700
3702	246		IF( IJE5 .	NE. 0) THEN	3701 3702
3703 3704	247	C			3703
3705	248 249		AA = XV(1) $BB = XV(2)$	, JV2 ) - XV( 1 , JV1 ) , JV2 ) - XV( 2 , JV1 )	3704
3706	250		XEL = XS(1)	, ISSL )	3705 3706
3707 3708	251 252		YEL = XS(2)	, ISSL )	3707
3709	253		DD = YEL - 2	XV(1, JV1) XV(2, JV1)	3708
3710	254		EE = ( AA *	CC + BB * DD ) * XEREV * XEREV	3709 3710
3711 3712	255 256		XER = XV(1)	, JV1 ) + AA * EE , JV1 ) + BB * EE	3711
3713	257		AX = XER - X	XEL	3712 3713
3714 3715	258		AY - YER - Y		3714
3716	259 260		XE(2) = 1	) = SQRT( AX * AX + AY * AY ) / XE( 2 , IEN )	3715
3717	261		XXN(IEN) =	= AX * XEREV	3716 3717
3718 3719	262 263		YYN(IEN) = YF(2 IEN	= AY = XEREV ) = 2. * XE( 2 . IEN )	3718
3720	264		XYMIDL( IEN	(2 - 2) = -5	3719 3720
3721 3722	265 266		XMIDL( IEN )	) = XER	3721
3723		С	YMIDL( IEN )	) = YER	3722
3724	268	~	ELSE		3723 3724
3725 3726	269 270	C	XER - XS( 1	( 0221	3725
3727	271		YER = $XS(2)$	, ISSR )	3726 3727
3728 3729	272		XEL = XS(1)	, ISSL )	3728
3730	27 <b>3</b> 274 (	C	YEL = XS(2)	, ISSL )	3729
3731	275		AA = XV(1)	, JV2 ) - XV( 1 , JV1 )	3730 3731
3732 3733	276 277		88 = XV(2, CC = XEL - X	, JV2 ) - XV( 2 , JV1 )	3732
3734	278		DO = YEL - Y	(ER	3733 3734
3735 3736	279 280		ACA - XER -	XV(1, JV1)	3735
3737	281		EE = (ACA *	XV(2, JVI) * DD - DBD * CC) / (AA * DD - BB * CC)	3736 3737
3738	282		XMIDL( IEN )	) = XV(1, JV1) + AA * EE	3738
3739 3740	283 284 (		TRIUL( IEN )	= XV( 2 , JV1 ) + BB * EE	3739
3711	285	-	XEMID = XMID	NL( IEN ) - XEL	3740 3741
3742 3743	2 <b>86</b> 2 <b>87</b> (		YEMID = YMID	IL( IEN ) - YEL	3742
3744	288	•	AX = XER - X	EL	3743 3744
3745	289		AY = YER - Y	EL	3745
3746 3747	290 291		XEL 2 , 12N XEREV = 1. /	) = SQRT( AX * AX + AY * AY ) XE( 2 , IEN )	3746 3747
3748	2 <b>92</b>		XXN(IEN) =	AX * XEREV	3748
3749 3750	293 294 C		YYN( IEN ) -	AY * XEREV	3749
3751	295		XYMIDL( IEN )	) = SQRT( XEMID * XEMID + YEMID * YEMID ) * XEREV	3750 3751
3752	2 <b>96</b> C			· · · · · · · · · · · · · · · · · · ·	3752

Thu Ju)	1 14:	16:08 1	1993 adaphd.f SUBROUTINE RECNC	page	53
3753	297		END IF		3753
3754	298	С			3754
3755	299	80	CONTINUE		3755
3756	300	С	DETIDN		3756
3757 3758	301 302	С	RETURN		3757 3758
3759	303		WRITE (6,1000) IE		3759
3760	304	<b>^</b>			3760
3761	305		EXIT POINT FROM SUBROUTINE		3761
3762 3763	306 307	ç			3762
3763	308	C	RETURN		3763 3764
3765	309	С	*****		3765
3766	310	С			3766
3767	311		FORMATS		3767
3768 3769	312 313	C 1000	FORMAT('OITS ABOUT TO BOMBRECNC ON EDGE ',15)		3768 3769
3770	313	C 1000	TORNAL ( 0113 ADUDI TO DUND-*ACCINE DI EDGE ,15)		3770
3771	315	č			3771
3772	316		END		3772
Thu Jul	1 14:	16:08 1	993 adaphd.f SUBROUTINE EOS		
3773	1		SUBROUTINE EOS (RRR,EEE,N,GAMMA)		3773
3774	2				3774
3775 3776	3 4	C C	T		3775 3776
3777	5	č	AIR IS ASSUMED TO BE CALORICALLY IMPERFECT, THERMALLY PERFECT. THEREFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE GAMMA DEPENDENTON DENSITY AND INTERNAL ENERGY. THIS ROUTINE PERFORMS A TABLE LOOK UP FOR GAMMA.		3777
3778	6	č	PERFECT. THEREFORE, INCLUDE IMPERFECTIONS VIA A VARIABLE		3778
3779	7	C	GAMMA DEPENDENTON DENSITY AND INTERNAL ENERGY.		3779
3780	8	C	THIS ROUTINE PERFORMS A TABLE LOOK UP FOR GAMMA.		3780
3781 3782	9 10	L	 		3781 3782
3783	11	Č	······································		3783
3784	12	C	INPUT VARIBLE DEFINITIONS.		3784
3785	13	Ç	RRR = MASS DENSITY		3785
3786	14	C C	EEE - INTERNAL ENERGY PER UNIT VOLUME (CONVERTED FOR INTERNAL *CALL TO ENERGY PER UNIT MASS)		3786 3787
3787 3788	15 16	C	N - NUMBER OF ENTRIES IN ARRAYS RRR & EEE		3788
3789	17	č			3789
3790	18		PARAMETER (M = 64 )		3790
3791	19	C			3791 3792
3792 3793	20 21		DIMENSION RRR(N), EEE(N), GAMMA(N) DIMENSION T11(M), T12(M), T21(M), T22(M), RHO(M), E(M)		3793
3794	22		DIMENSION OMP(M), Q(M), I(M), J(M)		3794
3795	23		DIMENSION G1(168),G2(112),G3(112),G4(112),G5(112),		3795
3796	24		I G6(112),G7(112),GF(840)		3795
37 <b>97</b> 37 <b>9</b> 8	25 26	C C	NOTE: THE TABLE LOOK UP TREATS ARRAY GF AS THOUGH IT		3797 3798
3799	27	č	WERE DIMENSIONED (8,105).		3799
3800	28	Ċ			3800
3801	29		EQUIVALENCE (G1(1),GF( 1)), (G2(1),GF(169)), (G3(1),GF(281)),		3801
3802	30		t (G4(1),GF(393)), (G5(1),GF(505)), (G6(1),GF(617)), t (G7(1),GF(729))		3802 3803
3803 3804	31 32	С	(G7(1),GF(729))		3804
3805	33		DATA XL16E /2.7725887222397744835689081810414791107177734375/		3805
3806	34	C			3806
3807	35	Ç	G = GAMMA - 1.0 IS STORED FOR 32 BIT WORD MACHINES IN POWERS OF		3807
3808 3809	36 37	C C	16 ACROSS FOR MASS DENSITY VARIATION AND INTERMEDIATE VALUES 1 - 16 FOR POWERS OF 16 VERTICALLY WHICH REPRESENT THE INTERNAL		3808 3809
3810	38	č	ENERGY VARIATION.		3810
3811	39	С			3811
3812	40	C	16**(2) .GE. RHO .GE. 16**(-6)		3812
3813	41	C	16**(15) .GE. E .GE. 16**(8)		3813 3814
3814 3815	42 43	(	DATA G1 /8*.4222,8*.4152,8*.4110,8*.4081,8*.4058,8*.4040,		3815
3816	44		1 8*.4024,8*.4011,8*.3998,8*.3988,8*.3978,8*.3969,		3816
3817	45		1 8*.3961,8*.3953,8*.3935,8*.3918,		3817
3818	46		1 .3723.3715.3707.3699.3690.3680.3663.3637.		3818
3819 3820	47 48		<ol> <li>.3555,.3538,.3522,.3502,.3476,.3430,.3344,.3238,</li> <li>.3370,.3370,.3370,.3364,.3347,.3277,.3099,.2885,</li> </ol>		3819 3820
3821	49		1 .32573227320131343062301428842591.		3821
3822	50		1 .3166,.3110,.3063,.2946,.2831,.2783,.2677,.2358/		3822
3823	51		DATA G2/.31113006294027872635258825022236.		3823

Thu Jul	1 14:16:08	1993 adaphd.f	SUBROUTINE EOS	page 54
3824	52	.30752906		3824
3825	53	1 .3043,.2819	.269525542317226922162038.	3825
3826	54			3826
3827 3828	55 56	.2840,.20/2	250023662166201519881879, 242922852125189018901811,	3827 3828
3829	57			3829
3830	58	1 .2669,.2504	,.2343,.2141,.2037,.1822,.1709,.1689,	3830
3831	59	1 .26242473	230420961998182816841639.	3831
3832	60		, .2268, .2087, .1961, .1834, .1673, .1601,	3832
3833 3834	61 62	1 .2401,.2191	,.1972,.1775,.1592,.1444,.1358,.1203, ,.1749,.1536,.1376,.1252,.1107,.1044,	3833 3834
3835	63		, 1633, 1420, 1266, 1101, 1012, 0933,	3835
3836	64	1 .1950, .1781	,.1566,.1415,.1241,.1118,.1009,.0948/	3836
3837	65	DATA G3/.2001,.1789	,.1594,.1443,.1306,.1189,.1095,.1013.	3837
3838 3839	66 67	L .2040,.1820	1657,.1494,.1338,.1177,.1081,.0980, 1683,.1497,.1322,.1169,.1051,.0946,	3838 3839
3840	68	.19691855		3840
3841	<b>69</b>	1 .1899,.1837	1677 1475 1287 1126 1002 0900.	3841
3842	70		.1667,.1464,.1272,.1109,.0983,.0888,	3842
3843 3844	71 72		,.1659,.1455,.1262,.1097,.0965,.0878, ,.1657,.1450,.1254,.1087,.0949,.0868,	3843 3844
3845	73		,.1656,.1447,.1250,.1080,.0939,.0859,	3845
3846	74	1 .1783, .1778	,.1658,.1448,.1248,.1076,.0933,.0851,	3846
3847	75	1 .1808,.1781	,.1667,.1451,.1248,.1074,.0930,.0843,	3847
3848 3849	76 77		,.1978,.1782,.1565,.1368,.1206,.1074, ,.1957,.1739,.1516,.1312,.1137,.1000,	3848
3850	78			3849 3850
3851	79		.2017.1795.1579.1384.1221.1090.	3851
3852	80	1 .2350, .2157	2023,.1798,.1575,.1370,.1197,.1057,	3852
3853	81		. 2034, .1796, .1572, .1372, .1205, .1070,	3853
3854 3855	82 83	2452,.222/	,.2050,.1805,.1576,.1379,.1236,.1118, ,.2069,.1814,.1581,.1383,.1231,.1103,	3854 3855
3856	84	1 .25602282	,.2091,.1822,.1585,.1385,.1226,.1083,	3856
3857	85	I .2605,.2312	2111,.1829,.1588,.1386,.1222,.1070,	3857
3858	86		.2129.1836.1592.1386.1218.1071.	3858
3859 3860	87 8 <b>8</b>	1 .2/59,.2403	,.2145,.1857,.1598,.1389,.1219,.1078, ,.2160,.1878,.1603,.1394,.1223,.1084,	3859 3860
3861	89		,.2175,.1898,.1613,.1399,.1226,.1090,	3861
3862	90	! .2963,.2531	,.2199,.1918,.1625,.1407,.1230,.1096,	3862
3863	91	.4323,.3582		3863
3864 3865	92 93		362432122926255123752015/ 340129792623231821081854,	3864 3865
3866	94	.39243642	,.3194,.2760,.2427,.2157,.1902,.1721,	3865
3867	95	1 .3794,.3479	,.3025,.2673,.2311,.2019,.1842,.1613,	3867
3868	96 97		,.2961,.2593,.2255,.1994,.1785,.1594, 2010, 2513, 2203, 2006, 1843, 1570	3868 3869
3869 3870	97 98		291025172293200618431679. 293525972336222521432116.	3870
3871	99			3871
3872	1 <b>00</b>	1 .3685,.3453	,.3210,.3014,.2942,.2933,.2932,.2932,	3872
3873	101			3873
3874 3875	102 103		3570,.3522,.3513,.3510,.3506,.3496, 3782,.3751,.3743,.3741,.3734,.3713,	3874 3875
3876	104			3876
3877	105	1 .4290,.4205	411840924077406540594047.	3877
3878	106		.5359.5353.5351.5350.5350.5350/	3878
3879 3880	107 108		,.5801,.5797,.5796,.5797,.5797,.5797, ,.6085,.6082,.6082,.6083,.6083,.6083,	3879 3880
3881	109			3881
3882	110	.6481,.6483	,.6485,.6483,.6484,.6486,.6487,.6487,	3882
3883	111		,.66376636,.6637,.6640,.6640,.6640, 6750, 6759, 6773, 6773, 6773, 6773	3883 3884
3884 3885	112 113		,.6769,.6768,.6770,.6773,.6773,.6773, .6885,.6884,.6886,.6890,.6890,.6890,	3885
3886	114		,.6989,.6989,.6991,.6995,.6995,.6995,	3886
3887	115	1.7056,.7070	<b>,</b> .7083,.7083,.7085,.7090,.7090,.7090,	3887
3888	116		,.7169,.7169,.7172,.7176,.7177,.7177, 7249, 7249, 7251, 7256, 7256, 7256	3888 3880
3889 3890	117 118		,.7248,.7248,.7251,.7256,.7256,.7256, ,.7321,.7321,.7325,.7330,.7330,.7330,	3889 3890
3891	119		,.7390,.7390,.7393,.7398,.7399,.7399,	3891
3892	120	! .7411,.7432	,.7453,.7454,.7457,.7463,.7463,.7463/	3892
3893	121	DATA G7/.8069,.8103	,.8138,.8139,.8145,.8152,.8153,.8153,	3893
3894	122		,.8538,.8540,.8547,.8556,.8557,.8557, 8822 8825 8832 8842 8843 8843	3894 3895
3895 3896	12 <b>3</b> 124		,.8822,.8825,.8832,.8842,.8843,.8843, ,.9042,.9046,.9054,.9064,.9065,.9065,	3896
3897	125		9222,.9226,.9235,.9246,.9247,.9247,	3897

i

page

1 1 14:1	6:08 1	993 adaphd.f SUBROUTINE EOS	pa <b>ge</b>	55
126		9258,9316,9374,9379,9387,9399,9400,9400,         9384,9445,9506,9511,9520,9532,9533,9533,         9496,9559,9622,9627,9637,9649,9650,9650,         9596,9661,9727,9731,9741,9754,9755,9755,         9686,9753,9821,9826,9836,9849,9850,9850,         9769,9837,9906,9912,9922,9936,9937,9937,         9845,9915,9986,9991,9999,9999,9999,9999,         9915,9987,9999,9999,9999,9999,9999,9999,         9915,9987,9999,9999,9999,9999,9999,9999,999		3898
127		! .9384,.9445,.9506,.9511,.9520,.9532,.9533,.9533,		3899
128 129		<pre>! .9496,.9559,.9622,.9627,.9637,.9649,.9650,.9650, ! .9596,.9661,.9727,.9731,.9741,.9754,.9755,.9755,</pre>		3900
130		1 .9596, 9753, 9821, 9826, 9836, 9849, 9850, 9850,		3901 3902
131		1 .9769,.9837,.9906,.9912,.9922,.9936,.9937,.9937,		3903
132		1       .9496,.9559,.9522,.9627,.9637,.9649,.9650,.9650,.9650,         1       .9596,.9661,.9727,.9731,.9741,.9754,.9755,.9755,         1       .9686,.9753,.9821,.9826,.9836,.9849,.9850,.9850,         1       .9769,.9837,.9906,.9912,.9922,.9936,.9937,.9937,         1       .9845,.9915,.9986,.9991,.9999,.9999,.9999,.9999,         1       .9915,.9987,.9996,.9991,.9999,.9999,.9999,.9999,         1       .9915,.9987,.9999,.9999,.9999,.9999,.9999,.9999,		3904
133		1 .9915, .9987, .9999, .9999, .9999, .9999, .9999, .9999, .		3905
134 135	C	.9981,.9999,.9999,.9999,.9999,.9999,.9999,.9999/		3906
135	C	REAL AIR EOS, TABLE LOOKUP ON GILMORE DATA. (NO TEMP. MODEL)		3907 3908
137	č	TO AVOID COSTLY LOGARITHMIC FUNCTIONS THE TABLE "G" IS STORED IN A		3909
138	С	FORM SO THAT THE HEXADECIMAL WORD STRUCTURE OF A 32 BIT MACHINE		3910
139	C	MAY BE EXPLOITED.		3911
140 141	C C	THIS LOGIC MAY BE TRANSFERED TO OTHER MACHINES BY RECALCULATING		3912 3913
141	č	THE TABLE "G" APPROPRIATE TO THE WORD ARCITECTURE OF THAT MACHINE. MACHINE DEPENDENT FUNCTIONS AND KEY NUMBERS MUST ALSO BE CHANGED.		3913
143				3915
144		RL16E = 1./XL16E		3916
145		IST = 0		3917
146	~	NR = N		3918
147 148	C 10	CONTINUE		3919 3920
140	10	NST = MINO(NR,M)		3921
150	С			3922
151		DO 20 IRE-1, NST		3923
152		RHO(IRE) = .774413*RRR(IST+IRE)		3924
153 154	с	E(IRE) = AMAX1(3.e8,10000.*EEE(IST+IRE)/RRR(IST+IRE))		3925 3926
154	č	CALCULATE MASS DENSITY VARIATION INDEX "I".		3920
155	č			3928
157	-	TEM = ALOG(RHO(IRE)) * RL16E + 500.0		3929
158		I(IRE) = AINT(TEM)		3930
159		OMP(IRE) = TEM - FLOAT(I(IRE))		3931
160 161		I(IRE) = 502 - I(IRE) I(IRE) = MAXO(I(IRE),1)		3932 3933
162	C			3934
163	Č	CALCULATE INTERNAL ENERGY VARIATION INDEX "J".		3935
164	C			3936
165		TEM = ALOG(E(IRE))*RL16E		3937
166 167		JCY = AINT(TEM) TEM = TEM - FLOAT(JCY)		3938 3939
168		TEM = EXP(XL16E*TEM)		3940
169		JCY = JCY - 7		3941
170		JS = AINT(TEM)		3942
171		Q(IRE) = TEM - FLOAT(JS)		3943
17 <b>2</b> 17 <b>3</b>		J(IRE) = JS + 15*JCY J(IRE) = MINO(J(IRE),104)		3944 3945
174		J(IRE) = I(IRE) + 8*J(IRE)		3946
175		I(IRE) = J(IRE) - 8		3947
176	20	CONTINUE		3948
177	С	00 20 10E-1 NCT		3949 3950
178 179		DO 30 IRE=1,NST T11(IRE) = GF(I{IRE})		3950
180		T21(IRE) = GF(I(IRE)+1)		3952
181		T12(IRE) = GF(J(IRE))		3953
182	•-	T22(IRE) = GF(J(IRE)+1)		3954
183 184	30 C	CONTINUE		3955 3956
185	C	CALCULATE GAMMA BY LINEAR INTERPOLATION.		3957
186	č			3958
187		DO 40 IRE=1,NST		3959
188		T12(IRE) = T12(IRE) - T11(IRE)		3960
189		T22(IRE) = T22(IRE) - T21(IRE) GAMMA(IST+IRE) = OMP(IRE) *(T11(IRE) + O(IRE)*T12(IRE))		3961 3962
190 191		GAMMA(IST+IRE) = OMP(IRE) *(T11(IRE) + Q(IRE)*T12(IRE)) ! + (1 OMP(IRE))*(T21(IRE) + Q(IRE)*T22(IRE))		3963
191		+ 1.		3964
193	40	CONTINUE		3965
194	C			3966
195		NR = NR - NST		3967 3968
196 197		IST = IST + NST IF(NR.GT.0) GO TO 10		3969
197	C	•		3970
V	-	EXIT POINT FROM SUBROUTINE		3971

Thu Jul	1 14:10	6:08	1993	adaphd.f		SUBROUTINE	EOS		pa <b>ge</b>	56
3972	200	C								3972
3973	201	C								3973
3974 3975	2 <b>02</b> 2 <b>03</b>	c	RETURN							3974
3975	203	C C	******							3975
3977	205	č								3976 3977
3978	206	Ŭ	END							3978
Thu Jul	1 14:16	5:08	1993	adaphd.f		SUBROUTINE	LIFTDR			
3979	1		SUBROUT	INE LIFTDR						3979
3980 3981	2 3	С	include	Imeh00 h						3980
3982	4		include include							3981
3983	5		include							3982 3983
3984	6		include							3984
3985	7		include							3985
3986	8	~	REAL PR	ESS(1000), DYNPR	S(1000),XLOC	AT(1000),YI	LOCAT(1000)			3986
3987 3988	9 10	С	¥1 767	= 0.						3987
3989	11		XDRAG							3988 3989
3990	12		XMOMN							3990
3991	13			= 2. / UVIN /	UVIN / RIN					3991
3992	14			COS( ALPHA )						3992
3993 3994	15 16		XYV = NBB =	SIN( ALPHA )						3993
3995	17			210 IE = 1 . N	F					3994 3995
3996	18			JE( 5 , IE )	•					3996
3 <b>997</b>	19		IF( IJ	E5.EQ.5)T	HEN					3997
3998	20			<b>B</b> = NB <b>B</b> + 1						3998
3999	21			1 = JE(1, IE)						3999
4000 4001	22 23		1V 1 S	2 = JE(2, IE) L = JE(3, IE)	{					4000
4002	24				, , 4 ) - PINL					4001 4002
4003	25		PR	ESS(NBB) = PR	ES					4003
4004	26		XL	IFT = XLIFT + P						4004
4005 4006	27		• •		XN( IE ) * 1	XYV + YN( 1	IE ) * XYU )			4005
4007	28 29		AU AU	RAG = XDRAG + P	N( IE ) * XY		) * ***			4006 4007
4008	30		. XL	OCAT(NBB) = $\frac{1}{2}$	5 * ( XV( 1	(V1) + (V1)	(v(1), v(2))			4008
4009	31		XX	V = XLOCAT( NBB	)	-				4009
4010	32		YL	OCAT(NBB) = .	5 * ( XV( 2	, IVI ) + )	KV(2,IV2))			4010
4011 4012	33 34			V - YLOCAT (NBB		10 1 4				4011
4012	35			omn = xmomn + p ( x	KES * XE( I N( IE ) * XX	, IC ) " V _ YNF TF	) * YYV )			4012 4013
4014		С	•	( //			,,			4014
4015	37		EN	D IF						4015
4016		C	~~	MT 1 11115						4016
4017 4018	39 40	210 C	CO	NTINUE						4017
4019	41	u.	XLIFT	- XLIFT * UINV	R					4018 4019
4020	42		XDRAG	= XORAG * UINV	R					4020
4021	43			= XMOMN * UINV						4021
4022 4023	44 45		WRITE	(4) NBB, (XLOCA)	I(KK),YLOCAT	(KK),PRESS(	(KK),KK=1,NBB)			4022
4023	45			(9) XLIFT, XDRAG *, XLIFT, XDRAG						4023 4024
4025		С		F THEFT FLOOD		ing much Pl				4025
4026			- EXIT PO	INT FROM SUBROU	TINE			****		4026
4027		Ç								4027
4028 4029	50 51	C	RETURN							4028 4029
4029		C	ACTURN							4029
4031		č								4031
4032		С								4032
4033	55		END							4033

## Thu Jul 1 14:16:26 1993 delthd.f

page

1

1 2 3	1 2 3	С С	SUBROUTINE VERDELT( KSD , INDCTR , NIDUMP , JJTRIG , IITRIG )
4 5 6	4 5 6	C C C	VERDEL FORCE DELETION OF CELL NUMBER KSD I I
8 9 10	8 9 10	c c	IMPLICIT REAL (A-H,O-Z)
7 8 9	7 8 9	С С	I
69 70 71 72 73	69 70 71 72 73		IJE51 = JE( 5 , IKE1 ) IJE52 = JE( 5 , IKE2 ) IJE53 = JE( 5 , IKE3 ) IKKE = 0 IF( IJE53 , NE , 0 , AND , JKV2 , LT , 0 ) THEN

page

1

----

Thu Jul	1 14:16:26 1993	delthd.f	main program
74 75 76 77 78 80 81 82 83 84 83 84 85 86	74 75 76 77 78 79 80 81 82 83 83 84 85 85 86 C	IKKE = 4 IEIN1 = - JKV1 IEIN2 = - JKV2 IKKE1 = IKE3 KKV1 = KV3 IKKE2 = IKE1 KKE2 = KE1 KKV2 = KV1 IKKE3 = IKE2 KKE3 = KE2 KKV3 = KV2	-
87 88 90 91 92 93 94 95 96 97 98 99 100	87 88 89 90 91 92 93 94 95 96 97 98 99 99 100 C	ELSE IF( IJE52 IKKE = 4 IEIN1 = - JKV3 IEIN2 = - JKV1 IKKE1 = IKE2 KKV1 = KV2 IKKE2 = IKE3 KKV2 = KV3 IKKE3 = IKE1 KKE3 = KE1 KKV3 = KV1	. NE . O . AND . JKV1 . LT . O ) THEN
101 102 103 104 105 106 107 108 109 110 111 112 113	101 132 103 104 105 106 107 108 109 110 111 112 113	ELSE IF( IJE51 IKKE = 4 IEIN1 = - JKV2 IEIN2 = - JKV3 IKKE1 = IKE1 KKV1 = KK1 KKV1 = KV1 IKKE2 = IKE2 KKV2 = KV2 IKKE3 = IKE3 KKE3 = KE3 KKV3 = KV3	. NE . 0 . AND . JKV3 . LT . 0 ) THEN
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128	114       C         115       116       .         117       118       .         119       120       .         121       122       .         123       124       .         125       126       .         127       128       .	ELSE IF( IJE53 IKKE = 3 IEIN1 = - JKV3 IEIN2 = - JKV1 IKKE1 = IKE3 KKV1 = KV3 IKKE2 = IKE1 KKE2 = KE1 KKV2 = KV1 IKKE3 = IKE2 KKE3 = KE2 KKV3 = KV2	. EQ . O . AND . JKV3 . LT . O . AND . JKV1 . LT . O ) THEN
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	129 C 130 131 . 132 133 134 135 136 137 138 139 140 141 142 143	ELSE IF( IJE52 IKKE = 3 IEIN1 = - JKV2 IEIN2 = - JKV3 IKKE1 = IKE2 KKV1 = KV2 IKKE2 = IKE3 KKV2 = KV3 IKKE3 = IKE1 KKE3 = KE1 KKV3 = KV1	. EQ . O . AND . JKV2 . LT . O . AND . JKV3 . LT . O ) THEN
144 145 146 147	144 C 145 146 - 147	ELSE IF( IJE51 IKKE = 3	. EQ . O . AND . JKV1 . LT . O . AND . JKV2 . LT . O ) THEN

*

186

2

4

0

.

۲

page

page

Thu Jul	1 14:16:26 199	3 delthd.f	main program	page	3
148	148	IEIN1 = - JKV1			140
149	149	IEIN2 = - JKV2			148 149
150	150	IKKE1 = IKE1			150
151	151	KKE1 = KE1			151
152	152	KKV1 - KV1			152
153	153	IKKE2 = IKE2			153
154 155	154 155	KKE2 = KE2			154
155	155	KKV2 = KV2 IKKE3 = IKE3			155
157	157	KKE3 = KE3			156
158	158	KKV3 = KV3			157 158
159	159 C	·····			158
160	160	ELSE IF( IJE53 .	NE.O) THEN		160
161	161	IKKE = 1			161
162	162	IEIN = - JKV1			162
163 164	163 164	IKKE1 = IKE3			163
165	165	KKE1 = KE3 KKV1 = KV3			164
166	166	IKKE2 = IKE1			165
167	167	KKE2 - KE1			166 167
168	168	KKV2 = KV1			168
169	169	KKE3 = KE2			169
170	170	IKKE3 = IKE2			170
171 172	171 172 C	KKV3 = KV2			171
173	172 0	ELSE IF( IJE52 .			172
174	174	IKKE $\approx 1$	nc . v ) inch		173
175	175	IEIN = - JKV3			174 175
176	176	IKKE1 = IKE2			176
177	177	KKE1 = KE2			177
178	178	KKV1 = KV2			178
179 180	179 180	IKKE2 = IKE3			179
181	181	KKE2 = KE3 KKV2 = KV3			180
182	182	IKKE3 = IKE1			181 182
183	183	KKE3 - KE1			183
184	184	KKV3 = KV1			184
185 186	185 C				185
187	186 187	ELSE 1F( IJE51 . IKKE = 1	NE.U) HEN		186
188	188	IEIN = - JKV2			187
189	189	IKKE1 = IKE1			188 189
190	190	KKE1 = KE1			190
191	191	KKV1 = KV1			191
192 193	192	IKKE2 = IKE2			192
195	193 194	KKE2 = KE2 KKV2 = KV2			193
195	195	IKKE3 = [KE3			194
196	196	KKE3 = KE3			195
197	197	KKV3 = KV3			196 197
198	198 C				198
199	199	ELSE IF( JKV3 . L	T.O) THEN		199
200 201	200 201	IKKE = 2 IEIN = - JKV3			200
202	202	IKKE1 = IKE3			201
203	203	KKE1 = KE3			202
204	204	KKV1 = KV3			203 204
205	205	IKKE2 = IKE1			205
206	206	KKE2 = KE1			206
207 208	207 208	KKV2 = KV1			207
209	209	IKKE3 = IKE2 KKE3 ⇒ KE2			208
210	210	KKV3 = KV2			209 210
211	211 C				211
212	212	ELSE IF ( JKV2 . LT	. O ) THEN		212
213	213	1KKE = 2			213
214	214	IEIN = - JKV2			214
215 216	215 216	IKKE1 = IKE2			215
210	217	KKE1 = KE2 KKV1 = KV2			216
218	218	IKKE2 = IKE3			217 218
219	219	KKE2 = KE3			218
220	220	KKV2 = KV3			220
221	221	IKKE3 = IKE1			221

	1 14:16:2	6 1993	delthd.f	main program	page	4
22	222		KKE3 = KE1			222
23	223		KKV3 = KV1			223
24	224 C					224
25	225		ELSE IF( JKV1 . L	I O ) THEN		225
26	226		IKKE = 2			226
27	227		IEIN = - JKV1			227
28	228		IKKE1 = IKE1			228
29 30	229 230		KKE1 = KE1 KKV1 = KV1			229 230
31	231		IKKE2 = IKE2			230
32	232		KKE2 = KE2			232
33	233		KKV2 = KV2			233
34	234		IKKE3 = IKE3			234
35	235		KKE3 = KE3			235
36	236		KKV3 = KV3			236
37	237		END IF			237
38	238 C					238
39	239		IF( IKKE . EQ . 4	) THEN		239
40	240		JVI = JE(1, IEI)	N2 )		240
41	241		JV2 = JE(2, IEI)	N2 )		241
42	242		JJV3 = JE(1, IK)			242
43	243		JJV4 = JE(2, IK)			243
44	244		IF( JJV3 . EQ . J	IVI ) THEN		244
15	245		JV3 = JJV3			245
16	245		JV4 = JJV4			246
17	247		ELSE			247
18	248		JV3 = JJV4			248
9	249		JV4 = JJV3			249
50 11	250		END IF	) YU( 1 1V1 )		250
51 52	251 252		XA = XV(1, JV2) $YA = XV(2, JV2)$			251 252
53	253		XB = XV(1, JV4)			252
54	254		YB = XV(2, JV4)			254
55	255		AB = XA * XB + YA			255
56	256		IF( AB . GT . 0.			256
57	257		END IF	<i>y</i> 2000		257
58	258 C					258
59	259 C	IJTRI	IG NUMBER OF CIRCUM	IFERENCE EDGES AROUND VOID		259
i0	260 C		S NUMBER OF TRIANGL			260
51	2 <b>61</b> C	IETRI	IG NUMBER OF EDGES	TO BE DELETED		261
j2	2 <b>62</b> C	JVDEL	LT NUMBER OF VERTIC	ES TO BE DELETED		262
53	2 <b>63</b> C					263
54	264 C	IVDEL	LT(*) SEQUENCE OF V	ERTICES TO BE DELETED		264
5	265 C	ISCRS	SS(*) SEQUENCE OF T	RIANGLES TO BE DELETED		265
6	266 C	IECRS	SS(*) SEQUENCE OF EI	DGES TO BE DELETED		266
7	267 C					267
8	268			EQ. 3) RETURN		268
9	269 270			EQ. 3) RETURN		269 270
0	270		IF(JV(I, KVJ)) IJTRIG = 0	. EQ . 3 ) RETURN		270
2	272		I J R I G = 0			272
3	273		IETRIG = 0			273
14	274		JVDELT = 0			274
5	275		JL00P = 0			275
6	276 C					276
7	277		IF( IKKE . EQ . O	) THEN		277
8	278 C		-			278
9	279 C			ETED IS INTIRELY IN THE DOMAIN OF COMPUTATION .		279
10	2 <b>80</b> C	THE	FIRST LOOP IS AROU	ND VERTEX KV1 .		280
31	281 C		••••			281
32	282		IVV = KV1			282
33	283		IE = IKE3	<b>`</b>		283
34	284		IV1 = JE(1, IE)			284
35	285		IF( IV1 . EQ . IV)			285
16	286		ISI = JE(3, IE)	1		286
17	287			۱ ۱		287
8	288		ISI = JE(4, IE)	)		288
39 10	289		END IF			289 290
10 11	290 201 C		IS = ISI			
2	291 C 292 11	n	CONTINUE			291 292
		U	CONTINUE			292
						233
)3 )4	293 C 294		ITRIG = ITRIG + $1$			294

Thu Jul	1 14:	16:26	1993	delthd.f	main program	page	5
296 297	296 297	C		IF( ITRIG . EQ .	2 ) THEN		296
298	298			IJTRIG = 0			297 298
299 300	299 300			IETRIG - IETRIG - IECRSS( IETRIG )			299 300
301 302	301 302	С		END IF			301
303	303	C		IETRIG = IETRIG			302 303
304 305	304 305	С		IECRSS( IETRIG )	- IE		304 305
306	306	•		IF(			306
307 308	307 308		•	HYDFLX(IS, HYDFLX(IS,	4 ) . GT . FLUXPP . OR . 2 ) . GT . FLUXUU . OR .		307 308
309 310	309 310		•	HYDFLX( IS ,	1).GT.FLUXRR.OR. GT.NIDUMP.OR.		309
311	311		•	XS(3, IS)	. GT . AREVGG ) THEN		310 311
312 313	312 313			INDCTR = 3 Return			312
314	314	~		END IF			313 314
315 316	315 316	C		DO 120 IR = 1 , 3			315 316
317 318	317 318			JR = MOD( IR , 3 IEA = IABS( JS( J	) + 1		317
319	319			IF( IEA . EQ . IE	) THEN		318 319
320 321	320 321			IIR = MOD( JR , 3 IEI = JS( IIR , I	) + 4 S }		320 321
322 323	322 323			IEIB = IABS( IEI	)		322
324	324			XEIEB = XE( 1 , I XYLNGT = XYLNGT +	XEIEB		323 324
325 326	325 326			IF( XYLONG . LT .	XEIEB ) XYLONG = XEIEB XEIEB ) XYSHRT = XEIEB		325
327	327			IJTRIG = IJTRIG +	1		326 327
328 329	328 329			IICOLR( IJTRIG ) JJR = MOD( JR + 1	- IEI . 3 ) + 4		328 329
330 331	330 331	С		IER = IABŠ( JS( J			330
332	332	L		IV1 = JE(1, IER)	)		331 332
333 334	333 334			IF( IV1 . EQ . IV ISR = JE( 3 , IER	/ ) THEN		333
335	335			ELSE			334 335
336 337	336 337			ISR = JE( 4 , IER END IF	)		336 337
338 339	338 339	с		END IF			338
340	340	120		CONTINUE			339 340
341 342	341 342	С		IF( ISR . NE . IS	( ) THEN		341 342
343	343			IS = ISR			343
344 345	344 345			IE = IER GO TO 110			344 345
346 347	346 347	С		END IF			346
348	348	U		IETRIG = IETRIG +	1		347 348
349 350	349 350			IECRSS( IETRIG ) = IJTRIG = IJTRIG -			349 350
351 352	351 352	C C	C 1 D \$ 1		-		351
353	353	č	r IKJI		VI IS DONE, SECOND LOOP OVER KV2 START .		352 353
354 355	354 355			IVV = KV2 IE = IABS( IICOLR	LITPIC $+ 1$ ) )		354 355
356 357	356			IV1 = JE(1, IE)			356
358	357 358			IF( IV1 . EQ . IV) ISI = JE( 3 , IE	) IHEN		357 358
359 360	359 360			ELSE ISI = JE( 4 , IE )			359 360
361	361			END IF			361
362 363	362 363	С		IS = ISI			362 363
364 365	364 365	130		ILCOP = 0			364
366	366			CONTINUE JDOUBL = IABS( II(	OLR( IJTRIG ) )		365 366
367 368	367 368	C		ITRIG = ITRIG + 1			367 368
369	369			ISCRSS( ITRIG ) =	15		369

page

5

puge

Thu Jul	1 14:16	:26 1	93 delthd.f	main program	page	6
370	370		IETRIG = IETRIG + 1			370
371	371	c	IECRSS( IETRIG ) = I	E		371
372 373	372 373	С	IF(			372 373
374	374		HYDFLX(IS, 4)	. GT . FLUXPP . OR .		374
375	375			. GT . FLUXUU . OR .		375
376 377	376 377			. GT . FLUXRR . OR . T . NIDUMP . OR .		376 377
378	378			T . AREVGG ) THEN		378
379	379		INDCTR = 3			379
380 381	380 381		RETURN END IF			380 381
382		С				382
383	383		DO 140 IR = $1, 3$	•		383
384 385	384 385		JR = MOD(IR, 3) + IEA = IABS(JS(JR +			384 385
386	386		IF( IEA . EQ . IE )	THEN		386
387	387		IIR = MOD(JR, 3)	+ 4		387
388 389	388 389		IEI = JS( IIR , IS ) IEIB = IABS( IEI )			388 389
390	390		XEIEB = XE( 1 , IEIB	)		390
391	391		XYLNGT = XYLNGT + XE			391
392 393	392 393		IF( XYLONG . LT . XE IF( XYSHRT . GT . XE			392 393
394	394		ILOOP = ILOOP + 1			394
395	395			AND . JDOUBL . EQ . IEIB ) THEN		395
396 397	396 397		JLOOP = 1 IETRIG = IETRIG + 1			396 397
398	398		IECRSS( IETRIG ) = J	DOUBL		398
399	399		IJTRIG = IJTRIG - 1	WEN .		399
400 401	400 401		IF( IEI . GT . O ) T JKVV = JE( 1 , IEIB			400 401
402	402		ELSE			402
403	403		JKVV = JE(2, IEIB)	)		403
404 405	404 405		END IF JVDELT = JVDELT + 1			404 405
406	406		IVDELT( JVDELT ) = J	KVV		406
407 408	407 408		ILOOP = 0 ELSE			407 408
409	409		IJTRIG = IJTRIC + 1			409
410	410		IICOLR( IJTRIG ) = I	EI		410
411 412	411 412		END IF JJR = MOD(JR + 1,	3 ) + 4		411 412
413	413		IER = IABS( JS( JJR	•		413
414		С				414
415 416	415 416		IV1 = JE(1, IER) IF(IV1 . EQ . IVV)	THEN		415 416
417	417		ISR = JE(3, IER)	() CH		417
418	418		ELSE			418
419 420	419 420		ISR = JE(4, IER) END IF			419 420
421	421		END IF			421
422 423		C	CONTINUE			422 423
423		140 C	CONTINUE			424
425	425		IF( IER . NE . IKE2	) THEN		425
426 427	426 427		IS - ISR IE - IER			426 427
428	428		GO TO 130			428
429	429		END IF			429
430 431	430 431	с	IJTRIG = IJTRIG - 1			430 431
432	432	C :	ECOND LOOP SUROUNDING KV	2 IS DONE, THIRD LOOP OVER KV3 START .		432
433		С	VET _ TECHCE( 2 )			433
434 435	434 435		KET = IECRSS(2) IVV = KV3			434 435
436	436		IE = IABS( IICOLR( I			436
437	437		IF( IE , EQ , KET )	THEN		437 438
438 439	438 439	С	JL00P = 2			438 439
440	440	150	CONTINUE			440
441	441		IKET = IICOLR(1)			441 442
442 443	442 443		KKET = IABS( IKET ) JKET = IABS( IICOLR(	IJTRIG ) )		442 443
				, ,		

Thu Jul	1 14:	16:26	1993	delthd.f		main program		page	7
444	444			IF( JKET . EQ .	KKET ) THEN				
445	445			JL00P = 3	KKET J THEN				444
446	446			IF( IKET . GT .	0) THEN				445
447	447			JKVV = JE( 1 , M	KET)				446 447
448	448			ELSE					448
449	449			JKVV = JE(2, K)	KET )				449
450	450			END IF					450
451 452	451			JVDELT = JVDELT	+ 1				451
453	452 453			IVDELT( JVDELT ) DO 160 KK = 2 .					452
454	454			IICOLR( KK - 1 )	= TICOLD( KK	١			453
455	455	160		CONTINUE	Trevent in	,			454
456	456			IJTRIG = IJTRIG	- 2				455
457	457			IETRIG = IETRIG	+ 1				456 457
458	458			IECRSS( IETRIG )	= KKET				458
459 460	459			GO TO 150					459
400	460 461			END IF GO TO 170					460
462	462			END IF					461
463	463			IVI = JE( 1 , IE	)				462
464	464			IF( IV1 . EQ . I					463 464
465	465			ISI = JE(3, IE)					465
466	466			ELSE	_				466
467	467			ISI = JE(4, IE)	)				467
468 469	468 469			END IF IS = ISI					468
409	470	C		12 = 121					469
471	471	U		ILOOP = 0					470
472	472	180		CONTINUE					471
473	473			KDOUBL = IABS( I	ICOLR( IJTRIG	))			472 473
474	474	С				, ,			474
475	475			ITRIG = ITRIG + 1					475
476 477	476			ISCRSS( ITRIG )					476
478	477 478			IETRIG = IETRIG · IECRSS( IETRIG )	+ <u>1</u> _ TE				477
479	479	С		ICCN00( IEINIG )	• IC				478
480	480	•		IF(					479
481	481		•		4).GT.FL	IXPP OR .			480 481
482	482		•	HYDFLX( IS ,	2).GT.FL	UXUU . OR .			482
483	483		•	HYDFLX( IS ,	1).GT.FL	UXRR . OR .			483
484 485	484 495		•	KSDELT( IS )	. GT . NIDUMP	. OR .			484
486	485 486		•	AS(3, 15) INDCTR = 3	. GT . AREVGG	) THEN			485
487	487			RETURN					486
488	488			END IF					487 488
489	489	С							489
490	490			DO 190 IR = 1 , 3					490
491	491			JR = MOD(IR, 3)	) + 1				491
492 493	492 493			IEA = IABS( JS( J	IK + 3 , 15 ) )				492
494	494			IF( IEA . EQ . IE IIR = MOD( JR , 3					493
495	495			IEI = JS(IIR, I					494
496	496			IEIB = IABS( IEI					495 496
497	497			XEIEB = XE(1, I)	ÉIB)				497
498	498			XYLNGT = XYLNGT +	XEIEB				498
499 500	499			IF( XYLONG . LT .	XEIEB ) XYLON	G = XEIEB			499
500	500 501			IF( XYSHRT . GT .	YETER ) XAZHK	$x = x \in E$			500
502	502			ILOOP = ILOOP + 1 IF( 100P = FO		BL . EQ . IEIB ) TH	СМ		501
503	503			JLOOP = 4		or	En		502
504	504			IETRIG = IETRIG +	1				503 504
505	505			IECRSS( IETRIG )	= KDOUBL				505
506	506			IJTRIG = IJTRIG -					506
507 508	507 508			IF( IEI . GT . 0					507
509	508			JKVV = JE( 1 , IE ELSE	10 )		•		508
510	510			JKVV = JE(2, IE)	IB)				509
511	511			END IF	,				510 511
512	512			JVDELT = JVDELT +	1				512
513	513			IVDELT( JVDELT )	- JKVV				513
514	514			1LOOP = 0					514
515 516	515 516			ELSE IJTRIG = IJTRIG +	1				515
517	517			IICOLR( IJTRIG )					516
					. = =	_		:	517

page

Thu Jul	1 14:10	5:26 1	993 delthd.f ma	ain program	page	8
518 519 520 521 522 523	518 519 520 521 522 523	С	END IF JJR = MOD(JR + 1, 3) + 4 IER = IABS(JS(JJR, IS)) IV1 = JE(1, IER) IF(IV1 - EQ - IVV) THEN			518 519 520 521 522 523
523 524 525 526 527 528	523 524 525 526 527 528		ISR = JE(3, IER). ELSE ISR = JE(4, IER) END IF END IF			524 525 526 527 528
529 530	529 530	C 190	CONTINUE			529 530 531
531 532 533 534	531 532 533 534	С	IF(IER.NE.KET) THEN IS = ISR IE = IER ID TO 100			532 533 534 535
535 536 537	535 536 537	C	GO TO 180 END IF			535 536 537 538
538 539 540 541	538 539 540 541	200	CONTINUE IKET = IICOLR(1) KKET = IABS(IKET) JKET = IABS(IICOLR(IJTRIG))			530 539 540 541 542
542 543 544 545	542 543 544 545		IF(JKET.EQ.KKET) THEN JLOOP = 5 IF(IKET.GT.O) THEN JKVV = JE(1,KKET)			543 544 545 546
546 547 548 549	546 547 548 549		ELSE JKVV = JE(2, KKET) END IF JVDELT = JVDELT + 1			547 548 549 550
550 551 552 553	550 551 552 553	210	IVDELT( JVDELT ) = JKVV DO 210 KK = 2 , IJTRIG IICOLR( KK - 1 ) = IICOLR( KK ) CONTINUE			550 551 552 553 554
554 555 556 557	554 555 556 557		IJTRIG = IJTRIG - 2 IETRIG = IETRIG + 1 IECRSS( IETRIG ) = KKET GO TO 200			555 556 557 558
558 559 560 561	558 559 560 561	C 170 C	END IF CONTINUE			550 559 560 561 562
562 563 564 565	562 563 564 565	C C	INDCTR = 2 IF( XYLONG / XYSHRT . GT . 10. ELSE IF( IKKE . EQ . 1 ) THEN	. AND . JLOOP . EQ . 0 ) RETURN		563 564 565 566
566 567 568 569	566 567 568 569	C C C C	BEGINING THE DELETION PROCESS IF KSD THE FIRST LOOP IS AROUND VERTEX KKV2			567 568 569 570
570 571 572 573	570 571 572 573		IVV = KKV2 IE = IEIN IVIN = JE(2, IE) XXYYIB = XE(1, IE) + XE(1,	IKKE1 )		571 572 573 574
574 575 576 577	574 575 576 577		IV1 = JE( 1 , IE ) IF( IV1 , EQ , IVV ) THEN ISI = JE( 3 , IE ) ELSE			575 576 577
578 579 580 581	578 579 580 581	C	ISI = JE(4, IE) END IF IS = ISI			578 579 580 581 582
582 583 584 585	582 583 584 585	2 <b>20</b> C	CONTINUE ITRIG = ITRIG + 1 ISCRSS( ITRIG ) = IS			582 583 584 585 585
586 587 588 589	586 587 588 589	с с	IETRIG = IETRIG + 1 IECRSS( IETRIG ) = IE			586 587 588 589
590 591	590 591		IF( . HYDFLX(IS,4).GT.FLU	IXPP . OR .		590 591

Thu Jul	1 14:	16:26	1993	delthd.f	main program	page	9
592	592		•	HYDFLX( IS	, 2 ) . GT . FLUXUU . OR .		592
593 594	593 594		•	HYDFLX( IS	, 1). GT. FLUXRR. OR.		593
595	595		•	KSUELI( 15	). GT . NIDUMP . OR . ). GT . AREVGG ) THEN		594
596	596		•	INDCTR = 3	) . di . Aktada ) inten		595
597	597			RETURN			596 597
598	598	~		END IF			598
599 600	599 600	Ç		DO 230 IR = 1 .	2		599
601	601			JR = MOD(IR)	3) + 1		600
602	602			IEA = IABS(JS(	JR + 3 , IS ) )		601 602
603 604	603			IF( IEA . EQ .	IE ) THEN		603
604 605	604 605			IIR = MOD( JR , IEI = JS( IIR ,	3 J + 4 15 V		604
606	606			IEIB = IABS( IE	I )		605 505
607	607			XEIEB = XE(1)			506 607
608	608			XYLNGT - XYLNGT	+ XEIEB		608
609 610	609 610			IFE ATLUNG . LI	. XEIEB ) XYLONG = XEIEB . XEIEB ) XYSHRT = XEIEB		609
611	611			IJTRIG = IJTRIG	+ 1		610
612	612			IICOLR( IJTRIG	) = IEI		611 612
613 614	613			JJR = MOD(JR + IDR)	1, 3) + 4		613
615	614 615	С		IER = IABS( JS(	JUR , IS ) )		614
616	616	v		IV1 = JE( 1 , I	ER)		615 616
617	617			IF( IV1 . EQ .	IVV ) THEN		617
618 619	618 619			ISR = JE(3, I)	ER )		618
620	620			ELSE ISR = JE( 4 , II	F9 )		619
621	621			END IF			620 621
622	622			END IF			622
623 624	623 624	C 230		CONTINUE			623
625	625	230 C		CONTINUE			624
626	626	-		IF( IER . NE . )	IKKE1 ) THEN		625 626
627	627			IS = ISR			627
628 629	628 629			IE = IER GO TO 220			628
630	630			END IF			629
631	631	C					630 631
632 633	632			IETRIG = IETRIG			632
634	633 634			IECRSS( IETRIG ) IJTRIG = IJTRIG	= 1KKE1 - 2		633
635	635	C			- 2		634 635
636	636	Ç	FIRST	LOOP SUROUNDING	KKV2 IS DONE, SECOND LOOP OVER KKV3 START .		636
637 638	637 638	C		IVV <b>-</b> KKV3			637
639	639			TE = TARS( TICOL	R(IJTRIG + 1))		638
640	640			IV1 = JE(1, IE)			639 640
641	641			IF( IV1 . EQ . I	VV ) THEN		641
642 643	642 643			ISI = JE( 3 , IE Else	()		642
644	644			ISI = JE(4, IE)	· )		643 644
645	645		l	END IF	,		645
646 647	646 647	c		IS = ISI			646
648	647 648	С		LOOP - 0			647
649	649	240	(	ONTINUE			648 649
650	650	~	•	IDOUBL = IABS( I	ICOLR( IJTRIG ) )		650
651 652	651 652	С	1	TDIG - 11010 -	1		651
653	653			TRIG = ITRIG + SCRSS( ITRIG )			652 663
654	654		1	ETRIG = IETRIG	+ 1		653 654
655 656	655 656	c	]	ECRSS( IETRIG )	≂ IE		655
657	657	С	1	F(			656
658	658		•	HYDFLX( IS ,	4).GT, FLUXPP.OR.		657 658
659	659		•	HYDFLX( IS ,	2).GT, FLUXUU.OR.		659
660 661	660 661		•	HYDFLX( IS .	1).GT.FLUXRR.OR.		660
662	662		•		. GT . NIDUMP . DR . . GT . AREVGG ) THEN		661 662
663	663			NDCTR = 3	· · · · · · · · · · · · · · · · · · ·		663
664 665	664 665						664
303	JUJ		E	ND IF			665

)

)

b

b

page

Thu Jul	1 14::	16:26	1993 delthd.f main program	page	10	
666	666	C			666	
667 668	667 668		DO 250 IR = 1 , 3 JR = MOD( IR , 3 ) + 1		667	
669	669		IEA = IABS(JS(JR + 3, IS))		668 669	
670	670		IF( IEA . EQ . IE ) THEN		670	
671 672	671 672		IIR = MOD( JR , 3 ) + 4' IEI = JS( IIR , IS )		671 672	
673	673		IEIB - IABS( IEI )		673	
674	674		XEIEB = XE(1, IEIB)		674	
675 676	675 676		XYLNGT = XYLNGT + XEIEB IF( XYLONG . LT . XEIEB ) XYLONG = XEIEB		675	
677	677		IF( XYSHRT . GT . XEIEB ) XYSHRT - XEIEB		676 677	
678	678		ILOOP = ILOOP + 1		678	
679 680	679 680		IF(ILOOP.EQ.1.AND.JDOUBL.EQ.IEIB) THEN JLOOP = 1		679	1
681	681		IETRIG = IETRIG + 1		680 681	
682	682		IECRSS( IETRIG ) = JDOUBL		682	
683 684	683 684		IJTRIG = IJTRIG - 1		683	
685	685		IF( IEI . GT . 0 ) THEN JKVV - JE( 1 , IEIB )		684 685	
686	686		ELSE		686	
687	687 688		JKVV = JE(2, IEIB)		687	
688 689	689		END IF JVDELT = JVDELT + 1		688 689	
690	690		IVDELT( JVDELT ) = JKVV		690	
691	691 602		ILOOP = 0		691	
692 693	692 693		ELSE IJTRIG = IJTRIG + 1		692 693	
694	694		IICOLR( IJTRIG ) = IEI		694	
695	695		END IF		695	(
696 697	696 697		JJR = MOD( JR + 1 , 3 ) + 4 IER = IABS( JS( JJR , IS ) )		696 697	
698	698	С			698	
699	699 700		IVI = JE(1, IER)		699	
700 701	700 701		IF(IV1.EQ.IVV) THEN ISR = JE(3,IER)		700 701	
702	702		ELSE		702	
703	703		ISR = JE(4, IER)		703	
704 705	704 705		END IF END IF		704 705	
706	706	С			705	
707	707	250	CONTINUE		707	
708 709	708 709	С	IF( IER . NE . IKKE3 ) THEN		708 709	
710	710		IS = ISR		710	
711	711		IE = IER		711	
712 713	712 713		GO TO 240 END IF		712 713	
714	714	С			714	
715	715		$\mathbf{IFTRIG} = \mathbf{IETRIG} + 1$		715	
716 717	716 717		IECRSS( IETRIG ) = IKKE3 IJTRIG = IJTRIG - 1		716 717	
718	718	С			718	
719 720	719 720	C C	SECOND LOOP SUROUNDING KKV3 IS DONE, THIRD LOOP OVER KKV1 START .		719	
721	721	L	IVV - KKV1		720 721	
722	722		IE = IABS( IICOLR( IJTRIG + 1 ) )		722	
723 724	723 724		IF(JE(5,IE).NE.O)THEN IER = IE		723	
725	725		GO TO 260		724 725	
726	726		END IF		726	
727 728	727 728		IVI = JE(1, IE)		727 728	
729	729		IF(IVI.EQ.IVV) THEN ISI = JE(3,IE)		729	
730	730		ELSE		730	
731 732	731 732		ISI = JE(4, IE) END IF		731 732	
733	733		IS - ISI		733	
734	734	•	ISI - 0		734	
735 736	735 736	C	ILOOP = 0		735 736	
737	737	270	CONTINUE		737	
738	738	c	KDOUBL = IABS( IICOLR( IJTRIG ) )		738	
739	739	С			739	

Thu Jul	1 14:	:16:26	1993	delthd.f	main program	page	11
740 741	740 741			ITRIG = ITRIG + 1 ISCRSS( ITRIG ) = 1S			740 741
742 743	742 743			IETRIG = IETRIG + 1 IECRSS( IETRIG ) = 11	-		742
744	744	С					743 744
745 746	745 746			IF( HYDFLX(IS A)	. GT . FLUXPP . OR .		745
747	747			HYDFLX( IS , 2 )	. GT . FLUXUU . OR .		746 747
748 749	748 749		•	HYDFLX(IS,I) KSDELT(IS).GT	GT FLUXRR OR		748
750 751	750		•	XS(3, IS).G	AREVGG ) THEN		749 750
752	751 752			INDCTR = 3 Return			751
753 754	753 754	с		END IF			752 753
755	755	C		DO 280 IR = 1 , 3			754 755
756 757	756 757			JR = MOD(IR, 3) +	1		756
758	758			IEA = IABS( JS( JR + IF( IEA . EQ . IE ) T	5 . 15 <i>)</i> ) HEN		757 758
75 <del>9</del> 760	759 760			<pre>IIR = MOD( JR , 3 ) + IEI = JS( IIR , IS )</pre>			759
761	761			IEIB = IABS( IEI )			760 761
762 763	762 763			XEIEB = XE( 1 , IEIB XYLNGT = XYLNGT + XEI	)		762
764	764			IF( XYLONG . LT . XEI	EB ) XYLONG = XEIEB		763 764
765 766	765 766			IF( XYSHRT . GT . XEI ILOOP = ILOOP + 1	EB ) XYSHRT - XEIEB		765
767	767			IF( ILOOP . EQ . 1 .	AND . KDOUBL . EQ . IEIB ) THEN		766 767
768 769	768 769			JLOOP = 2 IETRIG = IETRIG + 1			768
770	770			IECRSS( IETRIG ) = KD	OUBL		769 770
771 772	771 772			IJTRIG = IJTRIG - 1 IF( IEI . GT . 0 ) TH	FN		771
773 774	77 <b>3</b> 774			JKVV = JE(1, IEIB)			772 773
775	775			ELSE JKVV = JE(2, IEIB)			774 775
776 777	776 777			END IF JVDELT = JVDELT + 1			776
778	778			IVDELT( JVDELT ) = JK	<i>I</i> V		777 778
779 780	7 <b>79</b> 780			ILCOP = 0 ELSE			779
781	781			IJTRIG = IJTRIG + 1			780 781
782 783	782 783			IICOLR( IJTRIG ) = IE: END IF	I		782
784 785	784			JJR = MOD(JR + 1, 3)			783 784
786	785 786	С		IER = IABS( JS( JJR ,	15))		785
787 788	787 788			IV1 = JE(1, IER)			786 787
789	7 <b>89</b>			IF( IV1 . EQ . IVV ) 1 ISR = JE( 3 , IER )	HEN		788 789
790 791	790 791			ELSE ISR = JE(4, IER)			790
792	792			END IF			791 792
793 794	793 794	С		END IF			793
795 796	795	280		CONTINUE			794 795
797	796 797	С		IF( ISR . NE . ISI ) T	HEN		796
798 799	798 799			IS = ISR	16.17		797 798
800	800			IE = 1ER GO TO 270			799 800
801 802	801 802	С		END IF			801
803	803	260	ł	CONTINUE			802 803
804 805	804 805	С		IETRIG = IETRIG + 1			804
806	806	c		IECRSS( IETRIG ) = IER			805 806
807 808	807 808	С		ITYPE = JE( 5 , IER )			807
809 810	809	C					808 809
811	810 811			(EIEB = XE( 1 . IER ) (EIEB = XXYYIB + XEIEB			810 811
812 813	812 813		2	(YLNGT = XYLNGT + XEIE			812
- <b>1</b> 1	011			F( XYLONG . LT . XEIE	S ) ATLUNG # XELEB		813

Thu Jul	1 14:16	i:26	1 <b>9</b> 93	delthd.f	main program	page	12
814	814			IF( XYSHRT . GT .	XEIEB ) XYSHRT = XEIEB		814
815		C					815
816 817	816 817	С			IRT . GT . 10 AND . JLOOP . EQ . 0		816 817
818		č			INT	) NETURA	818
819	819	•		IV1 = IVIN			819
820	820			IE1 - IICOLR( IJTE			820
821 822	821 822			IF( IE1 . GT . 0 ) IV2 = JE( 2 , IE1			821 822
823	823			ELSE	1		823
824	824			IV2 = JE( 1 , - IE	1)		824
825	825	~		END IF			825
826 827	826 827	C		NEC = IECRSS( IETR			826 827
828	828			IETRIG = IETRIG -			828
829	829	C					829
830	830 831			JV(2, IV2) = -			830 831
831 832	832			JE(1, NEC) = IV $JE(2, NEC) = IV$			832
833	833			JE(4, NEC) = 0			833
834	834	~		JE(5, NEC) = 11	YPE		834
835 836	835 836	C		IJTRIG = IJTRIG +	1		835 836
837	837			IICOLR( IJTRIG ) =			837
838	838	С					838
839	839	c		ELSE IF( IKKE . EC	2) THEN		839
840 841		C C	BEGI	NING THE DELETION I	ROCESS IF KSD HAS A VERTEX ON THE BOU	INDARY	840 841
842	842	С		FIRST LOOP IS AROUN			842
843		C		*			843
844 845	844 845			IVV = KKV1 IE = IEIN			844 845
846	846			IVIN = JE(2, IE)	)		846
847	847			XXYYIB = XE(1, 1)	Ê)		847
848 849	848 849			IV1 = JE( 1 , IÉ ) IF( IV1 , EQ , IV	) E) /) THEN		848 849
850	850			ISI = JE(3, IE)			850
851	851			ELSE			851
852 853	852 853			ISI = JE(4, IE) END IF			852 853
854	854			IS = ISI			854
855		C		0.011 * 1 411 F			855
856 857		290 C		CONTINUE			856 857
858	858			ITRIG = ITRIG + 1			858
859	859	~		ISCRSS( ITRIG ) =	15		859
860 861	860 861	C		IETRIG = IETRIG +	1		860 861
862	862			IECRSS( IETRIG ) =			862
863		С					863
864 865	864 865				) . GT . FLUXPP . OR .		864 865
866	866			HYDFLX( IS , 2	) . GT . FLUXUU . OR .		866
867	867		•	HYDFLX( IS , 1	). GT. FLUXRR. OR .		867
868 869	868 869		•		GT . NIDUMP . OR . GT . AREVGG ) THEN		868 869
870	870		•	INDCTR = 3			870
871	871			RETURN			871
872 873	872 873	С		END IF			872 873
874	874	•		00 300 IR = 1 , 3	_		874
875	875			JR = MOD(IR, 3)			875 876
876 877	876 877			IEA = IABS( JS( JF IF( IEA . EQ . IE			877
878	878			IIR = MOD(JR, 3)	) + 4		878
879	879			IEI = JS(IIR, IS)	; )		879 880
880 881	880 881			IEIB = IABS( IEI ) XEIEB = XE( 1 , IE			881
882	882			XYLNGT = XYLNGT +	XEIÉB		882
883	883				XEIEB ) XYLONG = XEIEB		883 884
884 885	884 885			IJTRIG = IJTRIG +	XEIEB ) XYSHRT - XEIEB 1		885
886	886			IICOLR( IJTRIG ) =	IEI		886
887	887			JJR = MOD(JR + 1)	, , , ) + 4		887

Thu Jul	1 14:1	16:26	1993	delthd.f	main program	page	13
888	888			IER = IABS( JS( JJR ,	, IS ) )		888
889	889	С					889
890	890			IV1 = JE(1, IER)	THEN		890
891 892	891 892			IF( IV1 . EQ . IVV ) ISR = JE( 3 , IER )	inta		891 892
893	893			ELSE			893
894	894			ISR = JE(4, JER)			894
895	895			END IF			895
896 897	896 897	С		END IF			896 897
898	898	300		CONTINUE			898
899	8 <b>99</b>	Ç					899
900	900			IF( IER . NE . IKKE3	) THEN		900
901 902	901 902			IS = ISR IE = IER			901 902
903	903			GO TO 290			903
904	904			END IF			904
905	905			IJTRIG = IJTRIG - 2			905
906	906	C C	C105	T LOOD SUDOUNDING WW	TE DONE SECOND LOOD OVER KENO START		906 907
907 908	907 908	ĉ	rina	I LUUP SUKUUNUTNU KKV.	I IS DONE, SECOND LOOP OVER KKV2 START .		908
909	909	•		IVV = KKV2			909
910	910			IE = IABS( IICOLR( I.	JTRIG + 1 ) )		910
911	911			IV1 = JE(1, IE)	T. 1. 17 61		911
912 913	912 913			IF( IV1 . EQ . IVV ) ISI = JE( 3 , IE )	IHEN		912 [.] 913
914	914			ELSE			914 914
915	915			ISI = JE(4, IE)			£15
916	916			END IF			916
917	917	С		IS = ISI			917 918
918 919	918 919	C		ILOOP = 0			919
920	920	310		CONTINUE			920
921	921			IDOUBL = IABS( IICOLI	R( IJTRIG ) )		921
922	922	С		TTDIC - ITDIC + 1			922 923
923 924	923 924			ITRIG = ITRIG + 1 ISCRSS( ITRIG ) = IS			923 924
925	925	С					925
926	926			1ETRIG = 1ETRIG + 1	_		926
927	927	c		IECRSS( IETRIG ) = II	E		927 928
928 929	928 929	С		IF(			929
930	930				. GT . FLUXPP . OR .		930
931	931		•	HYDFLX( IS , 2 )			931
932	932		•	HYDFLX(IS, 1)			932 933
933 934	933 934		•	KSDELT(IS).G	T . AREVGG ) THEN		934
935	935		•	INDCTR = $3$			935
936	936			RETURN			936
937	937	c		END IF			937 938
938 939	938 939	С		DO 320 IR = 1 , 3			939
940	940			JR = MOD(IR, 3) +	1		940
941	941			IEA = IABS( JS( JR +	3, 1S))		941
942	942			IF(IEA.EQ.IE)			942
943 944	943 944			IIR = MOD(JR, 3) - IEI = JS(IIR, IS)			943 944
945	945			IEIB = IABS( IEI )			945
946	946			XEIEB = XE(1, IEIB)			946
947	947			XYLNGT = XYLNGT + XE			947 948
948 949	948 949			IF( XYLONG . LT . XE IF( XYSHRT . GT . XE			940 949
950	949			ILOOP = ILOOP + 1	LO / ATOMA - ALILO		950
951	951			IF( ILOOP . EQ . 1 .	AND . IDOUBL . EQ . IEIB ) THEN		951
952	952			JLOOP = 1			952
953 954	953 954			IETRIG = IETRIG + 1 IECRSS( IETRIG ) = II	DOUBL		953 954
955	954 955			IJTRIG = IJTRIG - 1			955
956	95 <b>6</b>			IF( IE1 . GT . 0 ) TI			956
957	957			JKVV = JE(1, IEIB)	)		957 068
958 959	958 959			ELSE JKVV = JE(2, IEIB	)		958 959
960	959 960			END IF	,		960
961	961			JVDELT = JVDELT + 1			961

Thu Jul	1 14:10	5:26	1993	delthd.f	main program	page	14
962	962			IVDELT( JVDELT ) =	JKVV		962
963	963			ILOOP = 0			963
964	964			ELSE			964
965	965			IJTRIG = IJTRIG +			965 065
966	966			IICOLR( IJTRIG ) =	IEI		966 967
967 968	967 968			END IF JJR = MOD(JR + 1	. 3 ) + 4		968
969	969			IER - IABS( JS( JJ			969
970	970	C					970
971	971			IV1 = JE(1, IER)			971
972	972			IF( IV1 . EQ . IVV			972 973
973 974	973 974			ISR = JE( 3 , IER ELSE	)		974
975	975			ISR = JE(4, IER)	)		975
976	976			END IF			976
977	977	~		END IF			977 978
978	978	C 220		CONTINUE			978 979
979 980	979 980	320 C		CONTINUE			980
981	981	•		IF( IER . NE . IKK	E2 ) THEN		981
982	982			IS = ISR			982
983	983			IE = IER			983 984
984 985	984 985			GO TO 310 END IF			985
986	986	С					986
987	987	·		IJTRIG = IJTRIG -	1		987
988	988	C					988
989	98 <b>9</b>	Č	SECO	ND LOOP SUROUNDING	KKV2 IS DONE, THIRD LOOP OVER KKV3 START .		989 990
990 991	990 991	C		IVV - KKV3			991
992	992			IE = IABS( IICOLR(	IJTRIG + 1 ) )		992
993	993			IV1 = JE(1, IE)			993
994	994			IF( IV1 . EQ . IVV	) THEN		994
995	995			ISI = JE(3, IE) ELSE			995 996
996 997	9 <b>96</b> 9 <b>9</b> 7			ISI = JE(4, IE)			997
998	998			END IF			998
<b>99</b> 9	9 <b>99</b>			IS = ISI			999
1000	1000	С		1000 - 0			1000 1001
1001 1002	1001 1002	330		ILOOP - 0 CONTINUE			1002
1003	1003	554		KDOUBL - IABS( IIC	OLR( IJTRIG ) )		1003
1004	1004	C					1004
1005	1005			ITRIG = ITRIG + 1	16		1005 1006
1006 1007	10 <b>06</b> 1007			ISCRSS( ITRIG ) = IETRIG = IETRIG +			1003
1008	1008			IECRSS( IETRIG ) =			1008
1009	1009	С		•			1009
1010	1010			IF(			1010
1011 1012	1011 1012		•		) . GT . FLUXPP . OR . ) . GT . FLUXUU . OR .		1011 1012
1012	1012		•	HYDFLX(IS, 1	). GT . FLUXRR . OR .		1013
1014	1014		•	KSDELT( IS ) .	GT. NIDUMP. OR.		1014
1015	1015		•	XS(3, IS).	GT . AREVGG ) THEN		1015
1016	1016			INDCTR = 3			1016 1017
1017 1018	1017 1018			RETURN END IF			1018
1019	1019	С					1019
1020	1020			DO 340 IR = $1, 3$			1020
1021	1021			JR = MOD(IR, 3)			1021 1022
1022 1023	1022 1023			IEA - IABS( JS( JR IF( IEA . EQ . IE			1022
1023	1023			IIR = MOD(JR, 3)			1024
1025	1025			IEI = JS(IIR, IS)			1025
1026	1026			IEIB = IABS( IEI )			1026
1027	1027			XEIEB = XE( 1 , IE XYLNGT = XYLNGT +			1027 1028
1028 1029	1028 1029				XEIEB ) XYLONG • XEIEB		1029
1029	1030			IF( XYSHRT . GT .	XEIEB ) XYSHRT - XEIEB		1030
1031	1031			ILOOP = ILOOP + 1			1031
1032	1032			IF(ILOOP + EQ + 1) $JLOOP = 2$	. AND . KDOUBL . EQ . IEIB ) THEN		1032 1033
1033 1034	1033 1034			IETRIG = IETRIG +	1		1034
1035	1035			IECRSS( IETRIG ) =			1035

Thu Ju	} 1 14	:16:26	1993 delthd.f	main	program	page	15
1036	1036		IJTRIG = IJTRIG	- 1			1026
1037	1037		IF( IEI . GT .	O) THEN			1036 1037
1038 1039	1038 1039		JKVV = JE( 1 , ELSE	IEIB)			1038
1040	1040		JKVV = JE(2,	IEIB)			1039 1040
1041 1042	1041		END IF				1041
1042	1042 1043		JVDELT = JVDELT IVDELT( JVDELT	) ≂ 'JKAA + T			1042
1044	1044		ILOOP = 0	,			1043 1044
1045 1046	1045 1046		ELSE IJTRIG = IJTRIG	. 1			1045
1047	1047		IICOLR( IJTRIG	) = IEI			1046
1048	1048		END IF				1047 1048
1049 1050	1049 1050		JJR = MOD( JR + IER = IABS( JS(	1, 3) + 4			1049
1051	1051	С	1211 1100( 05(	00k , 13 / /			1050 1051
1052 1053	1052 1053		IV1 = JE(1, IE)				1052
1055	1055		IF( IV1 . EQ . 1 ISR = JE( 3 . IE	ER)			1053
1055	1055		ELSE				1054 1055
1056 1057	1056 1057		ISR = JE( 4 , IE END IF	ER)			1056
1058	1058		END IF				1057 1058
1059	1059	C					1056
1060 1061	1060 1061	340 C	CONTINUE				1060
1062	1062	•	IF( IER . NE . I	KKE3 ) THEN			1061 1062
1063 1064	1063 1064		IS = ISR				1063
1065	1065		IE = IER GO TO 330				1064
1066	1066	•	END IF				1065 1066
1067 1068	1067 1068	C	IETRIG = IETRIG	<u>، 1</u>			1067
1069	1069		IECRSS( IETRIG )	≠ IKKE3			1068 1069
1070 1071	1070		IETRIG = IETRIG	+ 1			1070
1071	1071 1072	С	IECRSS( IETRIG )	= IKKE2			1071
1073	1073		IJTRIG = IJTRIG	- 1			1072 1073
1074 1075	1074 1075	C C					1074
1076	1075	Ċ	THIRD LOUP SURDUNDING	KKV3 IS DUNE, FOUR	H LOOP OVER KKV1 START .		1075
1077	1077		IVV = KKV1				1076 1077
1078 1079	1078 1079		IE = IABS( IICOL IF( JE( 5 , IE )	R(IJTRIG + 1))			1078
1080	1080		IER - IE	• NC • V ) INCN			1079 1080
1081 1082	1081 1082		GO TO 350				1081
1083	1082		END IF IV1 = JE(1, IE	)			1082
1084	1084		IF( IV1 . EQ . IV	VV ) THEN			1083 1084
1085 1086	1085 1086		ISI = JE( 3 , IE ELSE	)			1085
1087	1087		ISI = JE(4, 1E)	)			1086 1087
1088 1089	1088 1089		END IF				1088
1009	1009		IS = ISI ISI = 0				1089
1091	1091	C					1090 1091
1092 1093	1092 1093	360	ILOOP = 0 CONTINUE				1092
1094	1094	100	JDOUBL = IABS( II	(COLR( IJTRIG ) )			1093 1094
1095	1095	C					1095
1096 1097	1096 1097		ITRIG = ITRIG + 1 ISCRSS( ITRIG ) =				1096
1098	1098		IETRIG = IETRIG +	• 1			1097 1098
1099 1100	1099 1100	С	IECRSS( IETRIG )	= IE			1099
1101	1100	<b>L</b>	IF(				1100
1102	1102		. HYDFLX( IS ,	4).GT.FLUXPP.	OR .		1101 1102
1103 1104	1103 1104		- HYDFLX(IS,	2). GT. FLUXUU.	OR .	1	103
1105	1105		• KSDELT(IS)	1).G. FLUXRR. GT. NIDUMP. OR			L104 L105
1106	1106		• XS(3, IS)	. GT . AREVGG ) THE	1		105
1107 1108	1107 1108		INDCTR = 3 RETURN				107
1109	1109		END IF				108 109
							-

Thu Jul	1 14:16:26 1993	delthd.f	main program	page	16
1110 1111	1110 C 1111	DO 370 IR - 1 , 3			1110 1111
· 1112 1113	1112 1113	JR = MOD(IR, 3) + 1 $IEA = IABS(JS(JR + 3))$	( ( 21		1112 1113
1114	1113	IF( IEA . EQ . IE ) THE	N		1114
1115	1115	IIR = MOD(JR, 3) + 4			1115 1116
1116 1117	1 <b>116</b> 11 <b>17</b>	IEI = JS( IIR , IS ) IEIB = IABS( IEI )			1117
1118	1118	XEIEB = XE(1, IEIB)			1118 1119
1119 1120	1119 1120	XYLNGT = XYLNCT + XEIEB IF( XYLONG . LT . XEIEB	) XYLONG - XEIEB		1120
1121	1121	IF( XYSHRT . GT . XEIEB	) XYSHRT = XEIEB		1121 1122
1122 1123	1122 1123	ILOOP = ILOOP + I IF( ILOOP . EQ . 1 . AN	D . JDOUBL . EQ . IEIB ) THEN		1122
1124	1124	JLOOP = 3			1124
1125 1126	1125 1126	IETRIG = IETRIG + 1 IECRSS( IETRIG ) = JDOU	BL		1125 1126
1127	1127	IJTRIG = IJTRIG - 1			1127
1128 1129	1128 1129	IF(IEI.GT.O) THEN JKVV = JE(1, IEIB)			1128 1129
1130	1130	ELSE			1130
1131 1132	1131 1132	JKVV = JE(2, IEIB) END IF			1131 1132
1133	1133	JVDELT = JVDELT + 1			1133
1134 1135	1134 1135	IVDELT( JVDELT ) = JKVV ILOOP = 0			1134 1135
1136	1136	ELSE			1136
1137 1138	1137 1138	IJTRIG = IJTRIG + 1 IICOLR( IJTRIG ) = IEI			1137 1138
1139	1139	END IF			1139
1140 1141	1140 1141	JJR = MOD(JR + 1, 3) IER = IABS(JS(JJR, I			1140 1141
1142	1142 C		- , ,		1142
1143 1144	1143 1144	IV1 = JE( 1 , IER ) IF( IV1 . EQ . IVV ) TH	EN		1143 1144
1145	1145	ISR = JE(3, IER)			1145
1146 1147	1 <b>146</b> 1147	ELSE ISR = JE(4, IER)			1146 1147
1148	1148	END IF			1148
1149 1150	1149 1150 C	END IF			1149 1150
1151	1151 370	CONTINUE			1151 1152
1152 1153	1152 C 1153	IF( ISR . NE . ISI ) TH	EN		1153
1154 1155	1154 1155	IS = ISR IE = IER			1154 1155
1155	1155	GO TO 360			1156
1157	1 <b>157</b> 1158 C	END IF			1157 1158
1158 1159	1159 350	CONTINUE			1159
1160 1161	1160 C 1161	IETRIG = IETRIG + 1			1160 1161
1162	1162	IECRSS( IETRIG ) = IER			1162
1163 1164	1163 C 1164	ITYPE = JE( 5 , IER )			1163 1164
1165	1165 C				1165
1166 1167	1166 1167	XEIEB = XE( 1 , IER ) XEIEB = XXYYIB + XEIEB			1166 1167
1168	1168	XYLEGT = XYLNGT + XEIEB			1168
1169 1170	1169 1170	IF ( XYLONG . LT . XEIEB IF ( XYSHRT . GT . XEIEB			1169 1170
1171	1171 C				1171
1172 1173	1172 1173 C	INDCTR ≠ 2 IF( XYLONG / XYSHRT .	GT. 10 AND . JLOOP . EQ . 0 ) RETURN		1172 1173
1174	1174 C				1174
1175 1176	1175 1176	IV1 = IVIN IE1 = IICOLR( IJTRIG )			1175 1176
1177	1177	IF( IE1 . GT . 0 ) THEN			1177 1178
<b>1178</b> 1179	1178 1179	IV2 = JE(2, IE1) ELSE			1179
1100	1180	IV2 = JE(1, - IE1)			1180 1181
1181 1182	1 <b>181</b> 11 <b>82</b> C	END IF			1182
1183	1183	NEC = IECRSS( IETRIG )			1183

Thu Ju	1 14:16	:26 19	993 delthd.f	main program	page	17
1184	1184		IETRIG = LETRIG -	. ]		1104
1185		С		•		1184 1185
1186 1187	1186 1187		JV(2, IV2) = -			1186
1188	1188		JE(1, NEC) = 1 JE(2, NEC) = 1			1187
1189	1189		JE(4, NEC) = (			1188 1189
1190 1191	1190 1191	с	JE(5, NEC) = I	ТҮРЕ		1190
1192	1192		IJTRIG = IJTRIG +	- 1		1191
1193	1193		IICOLR( IJTRIG )			1192 1193
1194 1195	1194 ( 1195	С				1194
1196		C	ELSE IF( IKKE . E	Q · 3 ) inth		1195
1197		C B	EGINING THE DELETION	PROCESS IF KSD HAS TWO VERTECIS ON THE BOUNDARY		1196 1197
1198 1199		L 8	UT THE EDGE THAT CONN HE FIRST LOOP IS AROU	ECT THEM IS IN THE COMPUTATIONAL DOMAIN.		1198
1200		C I	DE FINST LOUP IS AROU	NU VERIEA KRVI ,		1199 1200
1201	1201		IVV = KKV1			1200
1202 1203	1202 1203		IE = IEINI XXYYIB = XE( 1 ,			1202
1204	1204		IV1 = JE(1), IE			1203 1204
1205	1205		IVIN1 = JE(2, 1)	Ε)		1205
1206 1207	1206 1207		IF( IV1 . EQ . IV ISI = JE( 3 , IE	V) THEN		1206
1208	1208		ELSE	)		1207 1208
1209 1210	1209 1210		ISI = JE(4, IE)	)		1209
1211	1210		END IF IS = ISI			1210
1212	1212 0					1211 1212
1213 1214	1213 3 1214 0	80	CONTINUE			1213
1215	1215	•	ITRIG = ITRIG + 1			1214
1216	1216		ISCRSS( ITRIG ) =			1215 1216
1217 1218	1217 1218		IETRIG = IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + IETRIG + I			1217
1219	1219 C		IECRSS( IETRIG )	* IL		1218
1220	1220		IF(			1219 1220
1221 1222	1221 1222	•	HYDELX( IS , 4 HYDELX( IS , 2	) . GT . FLUXPP . OR . 2 ) . GT . FLUXUU . OR .		1221
1223	1223		HYDFLX( IS , 1	L).GT.FLUXRR.OR.		1222 1223
1224 1225	1224 1225	•	KSDELT( IS ).	GT . NIDUMP . OR .		1224
1226	1225	•	AS(5, 15). INDCTR = 3	GT . AREVGG ) THEN		1225 1226
1227	1227		RETURN			1220
1228 1229	1228 1229 C		END IF			1228
1230	1230		DO 390 IR = 1 , 3			1229 1230
1231 1232	12 <b>31</b> 12 <b>32</b>		JR = MOD(IR, 3)			1231
1233	1232		IEA = IABS( JS( JA IF( IEA . EQ . IE			1232
1234	1234		IIR = MOD(JR, 3)	) + 4		1233 1234
1235 1236	1235 1236		IEI = JS( IIR , IS IEIB = IABS( IEI )			1235
1237	1237		XEIEB = XE(1, IE)			1236 1237
1238	1238		XYLNGT = XYLNGT +	XEIEB		1238
1239 1240	12 <b>39</b> 12 <b>40</b>		IF ( XYLONG . LT . IF ( XYSHRT . GT	XEIEB ) XYLONG = XEIEB XEIEB ) XYSHRT = XEIEB		1239
1241	1241		IJTRIG = IJTRIG +	1		1240 1241
1242 1243	1242 1243		IICOLR( IJTRIG ) =	IEI	1	1242
1245	1244		JJR = MOD( JR + 1 IER = IABS( JS( JJ			243
1245	1245 C					1244 1245
1246 1247	1246 1247		IV1 = JE(1, IER) IF(IV1.EQ.IVV	) ) THEN	1	246
1248	1248		ISR = JE(3, IER)	) (161)		247 248
1249 1250	1249 1250		ELSE		1	249
1250	1250		ISR = JE( 4 , IER END IF	)		250
1252	1252		END IF			.251 252
1253 1254	1253 C 1254 39	n	CONTINUE		1	253
1255	1255 C		CONTINUE			254 255
1256 1257	1256 1257		IF( IER . NE . IKK	E3 ) THEN	1	256
1631	12.37		IS = ISR		1	257

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	18
1258	1258			IE = IER			1258
1259	1259			GO TO 380			1259
1260	1260			END IF			1260
1261	1261	Ç					1261
1262	1262	ç	FIR2	LOOP SUKUUNUING KKVI IS UU	NE, SECOND LOOP OVER KKV2 START .		1262
1263 1264	1263 1264	C		IJTRIG = IJTRIG - 1			1263 1264
1265	1265	400		CONTINUE			1265
1266	1266	с С		CONTINUE			1265
1267	1267	•		IEJK = IICOLR( IJTRIG )			1267
1268	1268			IF( IEJK . GT . 0 ) THEN			1268
1269	1269			IVIEJK = JE(1, IEJK)			1269
1270	1270			IJEJK5 = JE(5, IEJK)			1270
1271	1271						1271
1272 1273	1272 1273			IVIE(K = JE(2, -IEJK)) $IJEJF5 = JE(5, -IEJK)$			1272 1273
1274	1274			END 1F			1274
1275	1275	С					1275
1276	1276			IF( IJEJK5 . EQ . 0 ) THEN			1276
1277	1277			JL00P = 1			1277
1278	1278	Ç					1278
1279	1279	ç	INIE	RMEDIATE LOOP START .			1279
1280 1281	1280 1281	С		IEJKI = IABS( IICOLR( IJTRI	C 1 ) )		1280 1281
1282	1282			IEJK2 = IABS(IEJK)	d = 1 ) )		1282
1283	1283			IETRIG = IETRIG + 1			1283
1284	1284			IECRSS( IETRIG ) = IEJK2			1284
1285	1285			IJTRIG = IJTRIG - 2			1285
1286	1286			IVV - IVIEJK			1286
1287	1287			JVDELT = JVDELT + 1			1287
1288 1289	1288 1289			IVDELT( JVDELT ) = IVV IE = IEJKI			1288 1289
1290	1290			IVI = JE(1, IE)			1290
1291	1291			IF( IV1 . EQ . IVV ) THEN			1291
1292	1292			ISI = JE(3, IE)			1292
1293	1293			ELSE			1293
1294 1295	1294 1295			ISI = JE(4, IE) END IF			1294 1295
1296	1296			IS = ISI			1296
1 <b>29</b> 7	1297			IET = IEJK2			1297
1298	1298	C					1298
1299 1300	1299 1300	410 C		CONTINUE			1299 1300
1301	1301	L		ITRIG = ITRIG + 1			1301
1302	1302			ISCRSS( ITRIG ) = IS			1302
1303	1303	С					1303
1304	1304			IETRIG = IETRIG + 1			1304
1305	1305	r		IECRSS( IETRIG ) = IE			1305
1306 1307	1306 1307	С		IF(			1306 1307
1308	1308		-	HYDFLX( IS , 4 ) . GT .	FLUXPP , OR ,		1308
1309	1309			HYDFLX( IS , 2 ) . GT .			1309
1310	1310		•	HYDFLX(IS, 1). GT.	FLUXRR OR .		1310
1311 1312	1311 1312		•	KSDELT( IS ) . GT . NID XS( 3 , IS ) . GT . ARE	UMMY . UK . V(C) Then		1311 1312
1313	1313		•	INDCTR = 3	VGG ) INCN		1313
1314	1314			RETURN			1314
1315	1315			END IF			1315
1316	1316	С					1316
1317 1318	1317			DO 420 IR = 1, 3 JR = MOD(IR, 3) + 1			1317 1318
1319	1318 1319			IEA = IABS(JS(JR + 3, IS))	) )		1319
1320	1320			IF( IEA . EQ . IE ) THEN	, ,		1320
1321	1321			IIR = MOD(JR, 3) + 4			1321
1322	1322			IEI = JS(IIR, IS)			1322
1323	1323			$\begin{array}{llllllllllllllllllllllllllllllllllll$			1323 1324
1324 1325	1324 1325			XEIEB = XE( 1 , IEIB ) XYLNGT = XYLNGT + XEIEB			1324
1326	1326			IF( XYLONG . LT . XEIEB ) X	YLONG - XEIEB		1326
1327	1327			IF( XYSHRT . GT . XEIEB ) X	YSHRT = XEIEB		1327
1328	1328			IIKK = IABS( IICOLR( IJTRIG			1328
1329 1330	1329 1330			IF( IIKK . EQ . IEIB ) THEN JLOOP - 2			1329 1330
1331	1330			$\frac{1}{1} \frac{1}{1} \frac{1}$			1331

Thu Ju	1 1 14	:16:26	1993 delthd.f	main program	page	19
1332	1332		IECRSS( IETRIG ) = IE	, <b>-</b>	r-9*	
1333	1333		IJTRIG = IJTRIG - 1			1332 1333
1334 1335	1334 1335		IF( IEI . GT . 0 ) TH JKVV = JE( 1 , IEIB )	EN		1334
1336	1336		ELSE			1335 1336
1337 1338	1337 1338		JKVV = JE(2, IEIB)			1337
1339	1339		END IF JVDELT = JVDELT + 1			1338
1340	1340		IVDELT( JVDELT ) = JK	vv		1339 1340
1341 1342	1341 1342		ELSE IJTRIG = IJTRIG + 1			1341
1343	1343		IICOLR( IJTRIG ) = IE	I		1342 1343
1344 1345	1344		END IF			1345
1345	1345 1346		JJR = MOD( JR + 1 , 3 IER = IABS( JS( JJR ,			1345
1347	1347	С		15 / /		1346 1347
1348 1349	1348 1349		IV1 = JE(1, IER)	r 1 17° 54		1348
1350	1350		IF( IV1 . EQ . IVV ) 1 ISR = JE( 3 , IER )	HEN.		1349
1351	1351		ELSE			1350 1351
1352 1353	1352 1353		ISR = JE(4, IER) END IF			1352
1354	1354		END IF			1353 1354
1355 1356	1355 1356	С 420	CONTINUE			1355
1357	1357	Ç	CONTINUE			1356
1358	1358		IF( IER . NE . IET ) T	HEN		1357 1358
1359 1360	1359 1360		IS = ISR IE = IER			1359
1361	1361		GO TO 410			1360 1361
1362 1363	1362 1363	c	END IF			1362
1364	1364	С	GO TO 400			1363
1365	1365	_	ENDIF			1364 1365
1366 1367	1366 1367	С С	INTERMEDIATE LOOD IS DONE			1366
1368	1368	č	INTERNEDIATE LOOP 15 DUNE,	SECOND LOOP OVER KKV2 START .		1367 1368
1369 1370	1369 1370		IVV - KKV2			1369
1370	1370		IE = IEIN2 $IVIN2 = JE(2, IE)$		:	1370
1372	1372		IEJKK = IICOLR( IJTRIG	)		L371 L372
1373 1374	1373 1374		IV1 = JE(1, IE)	19721	1	1373
1375	1375		IF( IV1 , EQ , IVV ) T ISI = JE( 3 , IE )	at N		L374 L375
1376 1377	1376 1377		ELSE			376
1378	1378		ISI = JE(4, IE) END IF			377
1379	1379		IS = ISI			378 379
1380 1381	1380 1381	C 430	CONTINUE		1	380
1382	1382	C	CONTINUE			.381 .382
1383 1384	1383 1384		ITRIG = ITRIG + 1		1	383
1385	1385	C	ISCRSS( ITRIG ) = IS			.384 385
1386 1387	1386		IETRIG = IETRIG + 1			386
1388	1387 1388	C	IECRSS( IETRIG ) = IE			387
1389	1389		IF(			388 389
1390 1391	1390 1391		HYDFLX(IS, 4).	GT FLUXPP OR	1	390
1392	1392		HYDFLX(IS,2). Hydflx(IS,1).	GT . FLUXRR . OR .		391 392
1393 1394	1393 1394		. KSDELT(IS).GT.	NIDUMP, OR,	1	393
1395	1394		• XS(3, IS).GT. INDCTR = 3	AREVGG ) THEN	1	394
1396	1396		RETURN			395 396
1397 1398	1397 1398	c	END IF		1	397
1399	1399	-	DO 440 $IR = 1$ , 3			398 399
1400 1401	1400 1401		JR = MOD(1R, 3) + 1		1	400
1402	1401		IEA = IABS( JS( JR + 3 IF( IEA . EQ . IE ) THE	N		401 402
1403	1403		IIR = MOD(JR, 3) + 4			403
1404 1405	1404 1405		IEI = JS(`IIR', IS') IEIB = IABS( IEI )			404
	-		the should be y		14	405

Thu Jul	1 14:10	5:26	1993	delthd.f	main	program		page	20
1406 1407 1408 1409 1410	1406 1407 1408 1409 1410		)   	EIEB = XE(1, IEI YLNGT = XYLNGT + X F(XYLONG.LT.X F(XYSHRT.GT.X JTRIG = IJTRIG + Ī	EIEB EIEB ) XYLONG - EIEB ) XYSHRT -				1406 1407 1408 1409 1410
1411 1412 1413 1414 1415	1411 1412 1413 1414 1415	С	Ì	ICOLR( IJTRIG ) = JJR = MOD( JR + 1 , ER = IABS( JS( JJR VI = JE( 1 , IER )	3)+4				1411 1412 1413 1414 1415
1416 1417 1418 1419 1420	1415 1416 1417 1418 1419 1420		1 1 E	F(IVI.EQ.IVV SR = JE(3.IER) ISE SR = JE(4.IER) ND IF	) THEN				1416 1417 1418 1419 1420
1421 1422 1423 1424 1425	1421 1422 1423 1424 1425	C 440 C	E	ND IF CONTINUE F( IER . NE . IKKE	2 ) THEN				1420 1421 1422 1423 1424 1425
1426 1427 1428 1429 1430	1426 1427 1428 1429 1430	с	1 1 0	S = ISR E = IER IO TO 430 IND IF	- , , , , , , , , , , , , , , , , , , ,				1426 1427 1428 1429 1430
1431 1432 1433 1434 1435	1431 1432 1433 1434 1435	C C C	SECON	JTRIG - IJTRIG - 1 ) LOOP SUROUNDING K VV - KKV3	KV2 IS DONE, THI	IRD LOOP OVER KKV3 S	TART .		1431 1432 1433 1434 1435
1436 1437 1438 1439 1440	1436 1437 1438 1439 1440		1	E = IABS( IICOLR( VI - JE( 1 , IE ) F( IVI . EQ . IVV SI - JE( 3 , IE ) LSE					1436 1437 1438 1439 1440
1441 1442 1443 1444 1445	1441 1442 1443 1444 1445	С	E ] ]	SI = JE(4, IE) ND IF S = ISI					1441 1442 1443 1444 1445
1446 1447 1448 1449 1450	1446 1447 1448 1449 1450	4 <b>50</b> C	1 1 1	CONTINUE DOUBL = IABS( IICO TRIG = ITRIG + 1 SCRSS( ITRIG ) - I	S				1446 1447 1448 1449 1450
1451 1452 1453 1454 1455	1454 1455	C	1	ETRIG = IETRIG + 1 ECRSS( IETRIG ) = F( HYDFLX( IS , 4	IE ) . GT . FLUXPP	. OR .			1451 1452 1453 1454 1455 1456
1456 1457 1458 1459 1460 1461	1456 1457 1458 1459 1460 1461		F	HYDFLX(IS,1 KSDELT(IS). XS(3,IS). NDCTR = 3 ETURN	) . GT . FLUXUU ) . GT . FLUXRR GT . NIDUMP . OF GT . AREVGG ) TH	. OR . R.			1457 1458 1459 1460 1461
1462 1463 1464 1465 1466 1467	1462 1463 1464 1465 1466 1467	С	Ĩ	ND IF NO 460 IR = 1 , 3 IR = MOD( IR , 3 ) IEA = IABS( JS( JR IF( IEA . EQ . IE )	+3,IS))				1462 1463 1464 1465 1466 1467
1468 1469 1470 1471 1472	1468 1469 1470 1471 1472		1 1 ) )	IR = MOD( JR , 3 ) EI = JS( IIR , IS EIB = IABS( IEI ) EIEB = XE( 1 , IEI YLNGT = XYLNGT + X	+ 4 ) B ) EIEB				1468 1469 1470 1471 1472
1473 1474 1475 1476 1477	1473 1474 1475 1476 1477			F( XYLONG . LT . X F( XYSHRT . GT . X LOOP = 1LOOP + 1 F( ILOOP . EQ . 1 ILOOP = 3 ETRIG = 1ETRIG + 1	EIEB) XYSHRT =	XEIEB			1473 1474 1475 1476 1477 1478
1478 1479	1478 1479			ECRSS( IETRIG ) =	IDOUBL				1479
Thu Jul	1 14	:16:26	1993 deithd.f	main program	page	21			
--------------	------------------------------	--------	----------------------------------------------	----------------------------------------	------	--------------			
1480	1480		IJTRIG - IJTRIG - 1		-	1 400			
1481	1481		IF( IEI . GT . 0 ) THE	EN		1480 1481			
1482	1482		JKVV = JE(1, IEIB)			1482			
1483 1484	1483 1484		ELSE JKVV = JE(2, IEIB)			1483			
1485	1485		END IF			1484			
1486	1486		JVDELT = JVDELT + 1			1485 1486			
1487	1487		IVDELT( JVDELT ) = JKV	/v		1487			
1488 1489	1488 1489		1LOOP = 0			1488			
1409	1409		ELSE IJTRIG = IJTRIG + 1			1489			
1491	1491		IICOLR( IJTRIG ) = IEI			1490			
1492	1492		END IF			1491 1492			
1493	1493		JJR = MOD(JR + 1, 3)	) + 4		1493			
1494 1495	1494 1495	С	IER = IABS( JS( JJR ,	IS ) )		1494			
1496	1496	Ľ	IV1 = JE(1, IER)			1495			
1497	1497		IF( IVI . EQ . IVV ) T	HEN		1496 1497			
1498	1498		ISR = JE(3, IER)			1498			
1499 1500	1499 1500					1499			
1501	1501		ISR = JE(4, IER) END IF			1500			
1502	1502		END IF			1501 1502			
1503	1503	C				1503			
1504	1504	460	CONTINUE			1504			
1505 1506	1505 1506	C	IF( IER . NE . IKKE3 )	THEN		1505			
1507	1507		IS = ISR	Incu		1506 1507			
1508	1508		IE = IER			1508			
1509	1509		GO TO 450			1509			
1510 1511	1510 1511	С	END IF			1510			
1512	1512	C	IETRIG - IETRIG + 1			1511			
1513	1513		IECRSS( IETRIG ) = IKK	E3		1512 1513			
1514	1514		IETRIG = IETRIG + 1			1514			
1515 1516	1515 1516	С	IECRSS( IETRIG ) = IKKI	E2		1515			
1517	1517	L	IJTRIG = IJTRIG - 1			1516			
1518	1518	С				1517 1518			
1519	1519	C	THIRD LOOP SUROUNDING KKV3	IS DONE, FOURTH LOOP OVER KKV1 START .		1519			
1520 1521	1 <b>520</b> 1 <b>521</b>	С				1520			
1522	1522		IVV - KKV1 IE - IABS( IICOLR( IJTF			1521			
1523	1523		IF( JE( 5, IE ) . NE	O) THEN		1522 1523			
1524	1524		IER = IE			1523			
1525	1525		GO TO 470			1525			
1526 1527	1526 1527		END IF IVI = JE(1, IE)			1526			
1528	1528		IF( IVI . EQ . IVV ) TH	IEN		1527 1528			
1529	1529		ISI = JE(3, IE)			1529			
1530	1530		ELSE			1530			
1531 1532	1531 1532		ISI = JE(4, IE) END IF			1531			
1533	1533		IS = ISI			1532 1533			
1534	1534		ISI = 0			1535			
1535 1536	1535	С	11000		1	1535			
1536	1536 1537	480	ILOOP = 0 CONTINUE			1536			
1538	1538		JDOUBL = IABS( IICOLR(	IJTRIG ) )		1537 1538			
1539	1539	C				1539			
1540 1541	1540 1541		$I^{T}RIG = ITRIG + 1$		1	1540			
1541	1541		ISCRSS( ITRIG ) = IS ETRIG = IETRIG + 1			1541			
1543	1543		ECRSS( IETRIG ) = IE			1542 1543			
1544	1544	С	- · ·			544			
1545 1546	1545				1	545			
1540	1546 1547		. HYDFLX( IS , 4 ) . . HYDFLX( IS , 2 ) .	GT FLUXFF . UK .		546			
1548	1548		. HYDFLX(IS, 1).			547 548			
1549	1549		<ul> <li>KSDELT(IS).GT.</li> </ul>	NIDUMP . OR .		549			
1550	1550		• XS(3,15).GT.	AREVGG ) THEN	1	550			
1551 1552	1551 1552		INDCTR = 3 Return			551			
1553	1553		END IF			552			
			····· •		1	553			

Thu Jul	1 14:1	16:26 1993	delthd.f	main program	page	22	(
1554	1554	С				1554	
1555	1555		00 490 IR = 1 , 3			1555	
1556	1556		JR = MOD(IR, 3) + 1			1556	
1557 1558	1557 1558		IEA = IABS( JS( JR + 3 , IS ) IF( IEA . EQ . IE ) THEN	)		1557 1558	
1559	1559		IIR = $MOD(JR, 3) + 4$			1559	
1560	1560		IEI = JS( IIR , IS )			1560	(
1561	1561		IEIB = IABS( IEI )			1561	
1562	1562		XEIEB = XE(1, IEIB)			1562	
1563	1563		XYLNGT = XYLNGT + XEIEB	000 - VETER		1563	
1564 1565	1564 1565		IF( XYLONG . LT . XEIEB ) XYL IF( XYSHRT . GT . XEIEB ) XYS			1564 1565	
1565	1566		ILOOP = ILOOP + 1			1566	
1567	1567		IF( ILOOP . EQ . 1 . AND . JE	OUBL . EQ . IEIB ) THEN		1567	
1568	1568		JLOOP = 4	• •		1568	:
1569	1569		IETRIG = IETRIG + 1			1569	
1570	1570		IECRSS( IETRIG ) = JDOUBL			1570	
1571	1571		IJTRIG = IJTRIG - 1			1571	
1572 1573	1572 1573		IF( IEI . GT . 0 ) THEN JKVV = JE( 1 , IEIB )			1572 1573	
1574	1574		ELSE			1574	
1575	1575		JKVV = JE(2, IEIB)			1575	
1576	1576		END IF			1576	(
1577	1577		JVDELT = JVDELT + 1			1577	
1578	1578		IVDELT( JVDELT ) = JKVV			1578	
1579 1580	1 <b>579</b> 1580		ILOOP = 0 ELSE			1579 1580	
1580	1581		IJTRIG - IJTRIG + 1			1500	
1582	1582		IICOLR( IJTRIG ) = IEI			1582	
1583	1583		END IF			1583	
1584	1584		JJR = MOD(JR + 1, 3) + 4			1584	
1585	1585	_	IER = IABS( JS( JJR , IS ) )			1585	
1586	1586	C				1586	
1587 1588	1587 1588		IV1 = JE( 1 , IER ) IF( IV1 . EQ . IVV ) THEN			1587 1588	
1589	1589		ISR = JE(3, IER)			1589	
1590	1590		ELSE			1590	
1591	1 <b>591</b>		ISR = JE(4, IER)			1591	
1592	1592		END IF			1592	
1593	1593		END IF			1593	
1594	1594	C	CONTINUE			1594	
1595 1596	1 <b>595</b> 1 <b>596</b>	490 C	CONTINUE			1595 1596	
1597	1597	u u	IF( ISR . NE . ISI ) THEN			1597	
1598	1598		IS = ISR			1598	
15 <b>9</b> 9	1599		IE = IER			1599	-
1600	1600		GO TO 480			1600	
1601	1601	c	END IF			1601 1602	
1602 1603	1602 1603	C 470	CONTINUE			1602	
1604	1603	C .	Contract			1604	
1605	1605	-	IETRIG - IETRIG + 1			1605	
1606	1606		IECRSS( IETRIG ) - IER			1606	
1607	1607	С				1607	
1608	1608	c	ITYPE = JE(5, IER)			1608	
1609 1610	1609 1610	С	XEIEB = XE( 1 , IER )			1609 1610	
1611	1611		$\frac{1}{XEIEB} = \frac{1}{XXYYIB} + \frac{1}{XEIEB}$	•		1611	
1612	1612		XYLNGT = XYLNGT + XEIEB			1612	
1613	1613		IF( XYLONG . LT . XEIEB ) XYL			1613	
1614	1614	•	IF( XYSHRT . GT . XEIEB ) XYS	HRT - XEIEB		1614	
1615	1615	C	INDCTR = 2			1615 1616	
1616 1617	1616 1617	С		0 AND . JLOOP . EQ . 0 ) RETURN		1617	
1618	1618	č	and the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for the second for th	c		1618	
1619	1619		JE(2, IEJKK) = IVIN2			1619	
1620	1620	C				1620	
1621	1621		IV1 = IVIN1			1621	
1622	1622		IE1 = IICOLR(IJTRIG)			1622 1623	
1623 1624	1623 1624		IF( IE1 , GT , O ) THEN IV2 = JE( 2 , IE1 )			1624	l l
1625	1625		ELSE			1625	
1626	1626		IV2 = JE( 1 , - IE1 )			1626	
1627	1627		END IF			1627	

Thu Jul	1 14:	16:26	1993 deithd.f	main program	page	23
1628	1628	С				1628
1629 1630	1629 1630		NEC = IECRSS(IET)			1629
1631	1630	С	IETRIG = IETRIG -	• 1		1630
1632	1632	•	JV(2, IV2) = -	NEC		1631 1632
1633 1634	1633		JE(1, NEC) = I			1633
1635	1634 1635		JE(2, NEC) = I JE(4, NEC) = 0			1634
1636	1636		JE(5, NEC) = I			1635 1636
1637 1638	1637	C				1637
1639	1638 1639		IJTRIG = IJTRIG + IICOLR( IJTRIG )			1638
1640	1640	C				1639 1640
1641	1641		ELSE IF( IKKE . E			1641
1642 1643	1642 1643	С	print*,'ikke <del>~</del> 4'	, ksd, i kke		1642
1644	1644	č	BEGINING THE DELETION	PROCESS IF KSD HAS AN EDGE ON THE BOUNDARY		1643 1644
1645	1645	C	AND THE THIRD VERTEX I	S OLSO ON THE BOUNDARY.		1645
1646 1647	1646 1647	C C	THE FIRST LOOP IS AROU	ND VERTEX KKV2 .		1646
1648	1648	L	IVV = KKV2			1647 1648
1649	1649		IE = IEIN1			1649
1650 1651	1650 1651		XXYYIB = XE( 1 , IV1 = JE( 1 , IE )	IE ) + XE( 1 , IKKE1 )		1650
1652	1652		IVI = JE(1, 1E) IVIN1 = JE(2, 1E)	J E )		1651
1653	1653		IF( IV1 . EQ . IV)	V ) THEN		1652 1653
1654 1655	1654 1655		ISI = JE(3, IE) ELSE	)		1654
1656	1656		ISI = JE(4, IE)	)		1655
1657	1657		END IF			1656 1657
1658 1659	1658	с	IS = ISI			1658
1660	1659 1660	500	CONTINUE			1659
1661	1661	Ç				1660 1661
1662 1663	1662		ITRIG = ITRIG + 1			1662
1664	1663 1664		ISCRSS( ITRIG ) = IETRIG = IETRIG +			1663
1665	1665		IECRSS( IETRIG ) -			1664 1665
1666	1666	C	15/			1666
1667 1668	1667 1668		IF( HYDELX(IS A	).GT.FLUXPP.OR.		1667
1669	1669		HYDFLX(IS, 2	2). GT. FLUXUU. OR.		1668 1669
1670 1671	1670		HYDFLX(IS, 1	I). GT. FLUXRR. OR.		1670
1672	1671 1672		$\cdot$ KSUELI(15).	GT . NIDUMP . OR . GT . AREVGG ) THEN		1671
1673	1673		INDCTR - 3	di : Ancedd ) Inch		1672 1673
1674	1674		RETURN			1674
1675 1676	1675 1676	С	END IF			1675
1677	1677	•	DO 510 IR = $1$ , $3$			1676 1677
1678	1678		JR = MOD(IR, 3)			1678
1679 1680	1679 1680		IEA = IABS( JS( JR IF( IEA 、EQ , IE	(+3, IS)) ) THEN		1679
1681	1681		IIR = MOD( JR , 3	) + 4		1680 1681
1682 1683	1682		IEI = JS( IIR , IS			1682
1684	1683 1684		IEIB = IABS( IEI ) XEIEB = XE( 1 , IE	TR )		1683
1685	1685		XYLNGT = XYLNGT +	XEIÉB		1684 1685
1686	1686		IF( XYLONG . LT .	XEIEB ) XYLONG = XEIEB		686
1687 1688	1687 1688		IF( XYSHRT . GT . IJTRIG = IJTRIG +	XEIEB ) XYSHRT = XEIEB		1687
1689	1689		IICOLR( IJTRIG ) =	IEI		1688 1689
1690 1691	1690		JJR = MOD(JR + 1)	, 3) + 4	1	690
1691	1691 1692	С	IER = 1ABS( JS( JJ	к. (2))		691
1693	1693	-	IV1 - JE( 1 , IER	)		1692 1693
1694 1605	1694		IF( IV1 . EQ . IVV	) THEN	1	694
1695 1696	1695 1696		ISR = JE( 3 , IER ELSE	)	1	695
1697	1697		ISR = JE(4, IER)	)		.696 .697
1698	1698		END IF		1	698
1699 1700	1699 1700	C	END IF			699
1701	1701	510	CONTINUE			.700 .701
					1	

Thu Jul	1 14:1	16:26	1993	delthd.f	main program	page	24
1702	1702	С			1/F 1 ) THEM		1702
1703 1704	1703 1704			IF( IER . NE . IK IS = ISR	KEI ) (HEN		1703 1704
1705	1705			IE = IER			1705
1706	1705			GO TO 500			1706
1707 1708	1707 1708	C		END IF			1707 1708
1709	17 <b>09</b>	С	FIRS	LOOP SUROUNDING	KKV2 IS DONE, SECOND LOOP OVER KKV3 START .		1709
1710 1711	17 <b>10</b> 17 <b>11</b>	C		IJTRIG = IJTRIG -	1		1710 1711
1712	1712	520		CONTINUE	-		1712
1713	1713	С		1514 - 11COLD/ 11			1713
1714 1715	1714 1715			IEJK = IICOLR( IJ IF( IEJK . GT . 0			1714 1715
1716	1 <b>716</b>			IVIEJK = JE(1)	IEJK )		1716
1717 1718	1717 17 <b>18</b>			IJEJK5 = JE( 5 , ELSE	IEJK )		1717 1718
1719	1719			IVIEJK = $JE(2)$			1719
1720	1720			IJEJK5 = JE(5, -	-IEJK)		1720
1721 1722	1 <b>721</b> 1 <b>722</b>	С		END IF			1721 1722
1723	1723			IF( IJEJK5 . EQ .	O ) THEN		1723
1724 1725	1724 1725	C C	INTE	RMEDIATE LOOP STAR	τ.		1724 1725
1726	1726	č					1726
1727	1727			JLOOP = 1			1727
1728 1729	1728 1729			IEJK2 = IABS(IEJ)	OLR( IJTRIG – 1 ) ) K )		1728 1729
1730	1730			IETRIG = IETRIG +	1		1730
1731 1732	17 <b>31</b> 17 <b>32</b>			IECRSS( IETRIG ) IJTRIG = IJTRIG -			1731 1732
1733	1733			IVV = IVIEJK			1733
1734 1735	1 <b>734</b> 17 <b>35</b>			JVDELT = JVDELT + IVDELT( JVDELT )			1734 1735
1736	1736			IE = IEJKI	- 100		1736
1737	1737			IV1 - JE( 1 , IE			1737
1738 1739	17 <b>38</b> 17 <b>39</b>			IF( IV1 . EQ . IV ISI = JE( 3 , IE			1738 1739
1740	1740			ELSE			1740
1741 1742	17 <b>41</b> 17 <b>42</b>			ISI = JE( 4 , IE END IF	)		1741 1742
1743	1743			IS = ISI			1743
1744	1744	~		IET = IEJK2			1744
1745 1746	17 <b>45</b> 1746	С 530		CONTINUE			1745 1746
1747	1747	C		·•			1747
1748 1749	17 <b>48</b> 17 <b>49</b>			ITRIG = ITRIG + 1 ISCRSS( ITRIG ) =	15		1748 1749
1750	1750	С					1750
1751 1752	17 <b>51</b> 17 <b>52</b>			IETRIG = IETRIG + IFCRSS( IETRIG )			1751 1752
1753	1753	С		TERDOL TERMIN /			1753
1754	1754			IF(			1754
1755 1756	1755 1756		:	HYDFLX( IS .	4 ) . GT . FLUXPP . OR . 2 ) . GT . FLUXUU . OR .		1755 1756
1757	1757		•	HYDFLX( IS ,	1).GT.FLUXRR.OR.		1757
1758 1759	1758 1759		•	KSDF1(15)	. GT . NIDUMP . OR . . GT . AREVGG ) THEN		1758 1759
1760	1760		•	INDCTR = 3			1760
1761 1762	1761 1762			RETURN END IF			1761 1762
1763	1763	С					1763
1764	1764			D0 540 IR = 1 , 3	N 1 1		1764
1765 1766	1765 1766			JR = MOD( IR , 3 IEA = IABS( JS( J			1765 1766
1767	1767			IF( IEA . EQ . IE	) THEN		1767
1768 1769	1768 1769			IIR = MOD(JR, 3 IEI = JS(IIR, I	S)		1768 1769
1770	1770			IEIB = IABS( IEI			1770
1771 1772	1771 1772			XEIEB = XE( 1 , I XYLNGT = XYLNGT +			1771 1772
1773	1773			IF( XYLONG . LT .	XEIEB ) XYLONG - XEIEB		1773
1774 1775	1774 1775			IF( XYSHRT . GT . IIKK = IABS( IICO	XEIEB ) XYSHRT = XEIEB FR( LITRIG ) )		1774 1775
1113	1//3			**/// - fund( 1100			

Thu Jul	1 14:	:16:26	1993	delthd.f		main program		page	25
1776	1776			IF( IIKK . EQ . IE	TR ) THEN				
1777	1777			JLOOP = 2	10 ) 1020				1776
1778	1778			IETRIG = IETRIG +	1				1777
1779	1779			IECRSS( IETRIG ) -	IEIB				1778 1779
1780	1780			IJTRIG = IJTRIG -	1				1780
1781	1781			IF( IEI . GT . 0 )					1781
1782	1782			JKVV = JE( 1 , IEI	В)				1782
1783 1784	1783			ELSE	~ `				1783
1785	1784 1785			JKVV = JE( 2 , IEI	8)				1784
1786	1786			END IF JVDELT = JVDELT +	1				1785
1787	1787			IVDELT( JVDELT ) =	114/1/1				1786
1788	1788			ELSE	ORVY				1787
1789	1789			IJTRIG = IJTRIG +	1				1788
1790	1790			IICOLR( IJTRIG ) =					1789 1790
1791	1791			END IF					1791
1792	1792			JJR = MOD(JR + 1)	, 3) + 4				1792
1793	1793	•		IER = IABS( JS( JJ	R , IS ) )				1793
1794	1794	C		••••					1794
1795 1796	1795			IV1 = JE(1, IER)	)				1795
1790	1796			IF( IVI . EQ . IVV	) THEN				1796
1798	1 <b>797</b> 17 <b>98</b>			ISR = JE(3, IER)	)				1797
1799	1799			ELSE ISR = JE(4, IER	<b>`</b>				1798
1800	1800			END IF	)				1799
1801	1801			END IF					1800
1802	1802	С							1801
1803	1803	540		CONTINUE					1802
1804	1804	C							1803 1804
1805	1805			IF( IER . NE . IET	) THEN				1805
1806	1806			IS = ISR					1805
1807	1807			IE = IER					1807
1808	1808			GO TO 530					1808
1809 1810	1809 1810	С		END IF					1809
1811	1811	C		GO TO 520					1810
1812	1812			END IF					1811
1813	1813	С							1812
1814	1814	č	INTE	RMEDIATE LOOP IS DO		OOP OVER KKV3 START			1813
1815	1815	Č				OUP OVER KRYD DIMKI	•		1814
1816	1816			IVV = KKV3					1815
1817	1817			IE = IEIN2					1816 1817
1818	1818			IVIN2 = JE(2, 1E)	)				1818
1819	1819			IEJKK = IICOLR( IJT					1819
1820	1820			IVI = JE(1, IE)					1820
1821	1821			IF( IV1 . EQ . IVV	) THEN				1821
1822 1823	1822 1823			ISI = JE(3, 1E)					1822
1824	1824			ELSE ISI = JE(4, IE)					1823
1825	1825			END IF					1824
1826	1826			IS = ISI					1825
1827	1827	C							1826 1827
1828	1828	550		CONTINUE					828
1829	1829	C							829
1830	1830			ITRIG = ITRIG + 1				i	830
1831	1831	~		ISCRSS(ITRIG) = I	5				831
1832 1833	1832	C						1	832
1834	1833 1834			IETRIG = IETRIG + 1	16				.833
1835	1835	C		IECRSS( IETRIG ) =	16				.834
1836	1836	•		IF(					835
1837	1837			HYDFLX( IS , 4	) . GT . EH				836
1838	1838		•	HYDFLX( IS , 2	).GT.FLU	IXUU . OR .			.837 .838
1839	1839		•	HYDELX( IS , I	) . GT . FLU	JXRR . OR .			839
1840	1840		•	KSDELT( IS ).	GT . NIDUMP	. OR .			840
1841	1841		•	XS(3, IS).					841
1842	1842			INDCTR = 3					842
1843 1844	1843 1844			RETURN					843
1845	1845	С		END IF					844
1846	1846	~		DO 560 IR = 1 , 3					845
1847	1847			JR = MOD(IR, 3)	► 1				846
1848	1848			IEA - TABS( JS( JR -					847 848
1849	1849			IF( IEA . EQ . IE )	THEN				040 849
								, r	- • •

Thu Jul	1 14:1	6:26	1993	delthd.f	main	program	page	26
1850	1850			IIR = MOD( JR , 3	) + 4			1850
1851	1851			IEI = JS(IIR, IS)	)			1851
1852 1853	1852 1853			IEIB = IABS(IEI)	10.)			1852 1853
1854	1854			XEIEB = XE( 1 , IE XYLNGT = XYLNGT + 3				1854
1855	1855			IF( XYLONG . LT . )		XEIEB		1855
1856	1856			IF( XYSHRT . GT . )		XEIEB		1856
1857	1857			IJTRIG = IJTRIG + 1				1857
1858 1859	1858 1859			<pre>IICOLR( IJTRIG ) = JJR = MOD( JR + 1</pre>				1858 1859
1860	1860			IER = IABS( JS( JJ				1860
1861	1861	С						1861
1862	1862			IV1 = JE(1, IER)				1862
1863 1864	1863 1864			IF( $IV1 \cdot EQ \cdot IVV$ ISR = $JE(3, IER)$				1863 1864
1865	1865			ELSE	,			1865
1866	1866			ISR = JE( 4 , IER )	)			1866
1867	1867			END IF				1867
1868	1868 1869	С		END IF				1868 1869
1869 1870	1870	560		CONTINUE				1870
1871	1871	Č						1871
1872	1872			IF( IER . NE . IKK	E3 ) THEN			1872
1873	1873			IS = ISR				1873 1874
1874 1875	1874 1875			IE = IER GO TO 550				1875
1876	1876			END IF				1876
1877	1877	C						1877
1878	1878			IJTRIG = IJTRIG - 1				1878
1879 1880	1879 1880			IETRIG = IETRIG + 1 IECRSS( IETRIG ) =				1879 1880
1881	1881			IETRIG = IETRIG + 1				1881
1882	1882			IECRSS( IETRIG ) =				1882
1883	1883	ç	6660					1883
1884 1885	1884 1885	C C	2FCO	ND LOOP SUKUUNDING I	KKV3 IS DUNE, IH	IRD LOOP OVER KKV1 START .		1884 1885
1886	1886	C		IVV = KKV1				1886
1887	1887			IE = IABS( IICOLR(				1887
1888	1888			IF( $JE(5, IE)$ .	NE.O) THEN			1888
1889 1890	1889 1890			IER = IE GO TO 570				1889 1890
1891	1891			END IF				1891
1892	1892			IV1 = JE(1, IE)	•			1892
1893	1893			IF( IV1 . EQ . IVV	) THEN			1893
1894 1895	1894 1895			ISI = JE(3, IE) ELSE				1894 1895
1896	1896			ISI = JE(4, IE)				1896
1897	1897			END IF				1897
1898	1898			IS = ISI				1898
1899 1900	1899 1900	С		ISI = 0				1899 1900
1901	1901	580		CONTINUE				1901
1902	1902	C						1902
1903 1004	1903 1904			ITRIG = ITRIG + 1 ISCPSS(ITPIC) =	15			1903 1904
1904 1905	1904			ISCRSS( ITRIG ) = IETRIG = IETRIG +				1904
1906	1906			IECRSS( IETRIG ) =				1906
1907	1907	C						1907
1908 1909	1908 1909				) . GT . FLUXPP	OP		1908 1909
1909	1910		:	HYDFLX( IS . 2	). GT . FLUXUU	OR .		1910
1911	1911		•	HYDFLX( IS , 1	) . GT . FLUXRR	. OR .		1911
1912	1912		•	KSDELT( IS ) .	GT . NIDUMP . OF			1912
1913 1914	1 <b>913</b> 1 <b>914</b>		•	XS(3, 15). INDCTR = 3	GT . AREVGG ) TH	1211		1913 1914
1915	1915			RETURN				1915
1916	1916	~		END IF				1916
1917	1917	C		00 K00 ID - 1 3				1917 1918
1918 1919	1918 1919			DO 590 IR = 1 , 3 JR = MOD( IR , 3 )	+ 1			1918
1920	1920			IEA - IABS( JS( JR				1920
1921	1921			IF( IEA . EQ . IE	) THEN			1921
1922	1922			IIR = MOD(JR, 3)				1922 1923
1923	1923			IEI = JS(IIR, IS)	)			1363

Thu Jul	1 14:	16:26 1993	delthd.f	main program	page	27
1924	1924		IEIB = IABS( IEI )			1924
1925	1925		XEIEB = XE( 1, IEIB )			1925
1926 1927	1926 1927		XYLNGT = XYLNGT + XEIE IF( XYLONG . LT . XEIE			1926
1928	1928		IF( XYSHRT . GT . XEIE	B ) XYSHRT = XFIFB		1927
1929	1929		IJTRIG = IJTRIG + 1			1928 1929
1930	1930		IICOLR( IJTRIG ) = IEI			1930
1931 1932	1931		JJR = MOD(JR + 1, 3)			1931
1933	1932 1933	С	IER = IABS( JS( JJR ,	15))		1932
1934	1934	·	IV1 = JE( 1 , IER )			1933 1934
1935	1935		IF( IVI . EQ . IVV ) T	HEN		1935
1936	1936		ISR = JE(3, IER)			1936
1937 1938	1937 1938		ELSE ISR = JE(4, IER)			1937
1939	1939		END IF			1938 1939
1940	1940		END IF			1940
1941	1941	C				1941
1942 1943	1942 1943	590 C	CONTINUE			1942
1944	1944	L	IF( ISR . NE . ISI ) TH	IFN		1943
1945	1945		IS = ISR			1944 1945
1946	1946		IE = IER			1946
1947 1948	1947 1948		GO TO 580			1947
1940	1940	С	END IF			1948
1950	1950	570	CONTINUE			1949 1950
1951	1951	С				1951
1952	1952		IETRIG = IETRIG + 1			1952
1953 1954	1953 1954	С	IECRSS(IETRIG) = IER			1953
1955	1955	C	ITYPE = JE( 5 , IER )			1954 1955
1956	1956	С				1955
1957	1957		XEIEB = XE(1, IER)			1957
1958 1959	1958 1959		XEIEB = XXYYIB + XEIEB			1958
1959	1960		XYLNGT = XYLNGT + XEIEB IF( XYLONG . LT . XEIEB	) XYLONG - YETER		1959
1961	1961		IF( XYSHRT . GT . XEIEB			1960 1961
1962	1962	С		,		1962
1963 1964	1963 1964	С	INDCTR = 2			1963
1965	1965	č	IT ALUMU / ALSHKI .	GT . 10 AND . JLOOP . EQ . 0 ) RETURN		1964 1965
1966	1966		JE(2, IEJKK) = IVIN2			1965
1967	1967	С				1967
1968 1969	1968 1969		IVI = IVIN1			1968
1970	1970		IE1 = IICOLR( IJTRIG ) IF( IE1 . GT . 0 ) THEN			1969
1971	1971		IV2 = JE(2, IE1)			1970 1971
1972	1972		ELSE			1972
1973 1974	1973 1974		IV2 = JE(1, - IE1)			1973
1974	1974	С	END IF			1974
1976	1976		NEC = IECRSS( IETRIG )			1975 1976
1977	1977		IETRIG = IETRIG = 1			1977
1978 1979	1978 1979	C	W/ 2 IV2 - HEC			1978
1979	1979		JV(2, IV2) = - NEC JE(1, NEC) = IV2			1979
1981	1981		JE(2, NEC) = IV1			1980 1981
1982	1982		JE(4, NEC) = 0			1982
1983 1984	1983 1984	С	JE(5, NEC) = ITYPE			1983
1985	1985		IJTRIG = IJTRIG + 1			1984 1985
1986	1986		IICOLR( IJTRIG ) = NEC			1985
1987	1987	С				1987
1988 1989	1988 1989		ELSE IF( IKKE . EQ . 5			1988
1989	1990	С	print*,'ikke=5',ksd,il	KKE		1989
1991	1991		ING THE DELETION PROCES	S 1F KSD HAS AN EDGE ON THE BOUNDARY		1990 1991
1992	1992	C AND T	HE THIRD VERTEX IS OLSO	ON THE BOUNDARY.		1992
1993	1993	C THE F	IRST LOOP IS AROUND VER	TEX KKV3 .		1993
1994 1995	1994 1995	C	1VV = KKV3			1994
1996	1996		IE = IEIN2			1995 1996
1997	1997		XXYYIB = XE( 1 , IE )			1997

Thu Jul	1 14: <u>1</u> 6	:26 1	993	delthd.f	main program	page	28
1998	1998			IVI = JE(1, IE)			1998
1999	1999			IVIN1 = JE(2, IE)			1999
2000	2000			IF( IV1 . EQ . IVV ) 1	THEN		2000
2001	2001			ISI = JE(3, IE)			2001
2002	2002			ELSE $ISI = JE(4, IE)$			2002 2003
2003 2004	2003 2004			END IF			2004
2005	2005			IS = ISI			2005
2006		С					2006
2007		600		CONTINUE			2007
2008		С					2008
2009	2009			ITRIG = ITRIG + 1			2009 2010
2010 2011	2010 2011			ISCRSS( ITRIG ) = IS IETRIG = IETRIG + 1			2011
2012	2012			IECRSS( IETRIG ) = IE			2012
2013		C					2013
2014	2014			IF(			2014
2015	2015		•		. GT . FLUXPP . OR .		2015
2016	2016		•	HYDFLX(IS, 2)	GT FLUXUU OR .		2016
2017	2017		•	KSDELT( IS ) . GT	GT . FLUXRR . OR .		2017 2018
2018 2019	2018 2019		•	XS(3, IS). GT	ADEVGG ) THEN		2019
2020	2020		•	INDCTR = 3			2020
2021	2021			RETURN			2021
2022	2022			END IF			2022
2023		C					2023
2024	2024			DO 610 IR = $1, 3$			2024
2025	2025			JR = MOD(IR, 3) + 1			2025 2026
2026 2027	2026 2027			IEA = IABS(JS(JR + 1)) IF(IEA . EQ . IE ) T			2027
2028	2028			IIR = MOD(JR, 3) +			2028
2029	2029			IEI = JS( IIR , IS )			2029
2030	2030			IEIB = IABS( IEI )			2030
2031	2031			XEIEB = XE(1, IEIB)			2031
2032	2032			XYLNGT = XYLNGT + XEI			2032 2033
2033 2034	2033 2034			IF( XYLONG . LT . XEI IF( XYSHRT . GT . XEI			2033
2034	2034			IJTRIG = IJTRIG + 1			2035
2036	2036			IICOLR( IJTRIG ) = IE	Ι		2036
2037	2037			JJR = MOD(JR + 1, 3)	) + 4		2037
2038	2038	_		IER - IABS( JS( JJR ,	IS ) )		2038
2039		С					2039 2040
2040	2040			IV1 = JE( 1 , IER ) IF( IV1 , EQ , IVV )	TUCN		2040
2041 2042	2041 2042			ISR = JE(3, IER)	Inch		2042
2043	2043			ELSE			2043
2044	2044			ISR = JE(4, IER)			2044
2045	2045			END IF			2045
2046	2046			END IF			2046
2047		C		CONTINUE			2047 2048
2048 2049	2048 2049	610 C		CONTINUE			2049
2050	2050	6		IF( IER . NE . 1KKE2	) THEN		2050
2051	2051			IS = ISR			2051
2052	2052			IE = IER			2052
2053	2053			GO TO 600			2053
2054	2054	~		END IF			2054 2055
2055	2055 2056	C C	EIDC	T LOOP SUPOUNDING KKV3	IS DONE, SECOND LOOP OVER KKV2 START .		2056
2056 2057	201	č	r1K3	I LOOP SURDING KRYS	13 DONE, SECOND ECON WER REVE START :		2057
2058	2	v		IJTRIG = IJTRIG - 1			2058
2059	•	620		CONTINUE			2059
2060	J	C			<b>,</b>		2060
2061	.61			IEJK = IICOLR( IJTRIG			2061 2062
2062 2063	.062 2063			IF( IEJK . GT . 0 ) T IVIEJK = JE( 1 , IEJK			2062
2063	2063			IJEJK = JE(1, 1EJK)			2064
2065	2065			ELSE	,		2065
206:	2066			IVIEJK = JE( 2 , -IEJ			2066
206	2067			IJEJK5 = JE(5, -IEJ			2067
206	2068	~		END IF			2068 2069
2065	2069	С		IF( IJEJK5 . EQ . 0 )	THEN		2009
2070 2071	2070 2071	С		( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ing g		2071
LV/1	20/1	U I					-

28

Thu Ju	1 1 14:	16:26	1993 delthd.f	main program	page	29
2072	2072	С	INTERMEDIATE LOOP STA	RT.		2072
2073	2073	Ċ				2072 2073
2074	2074		JLOOP = 1			2073
2075	2075		IEJKI = IABS( III	COLR( IJTRIG - 1 ) )		2075
2076 2077	2076 2077		IEJK2 = IABS( IE.	JK )		2076
2078	2078		IETRIG = IETRIG IECRSS( IETRIG )	+ ן _ ודע?		2077
2079	2079		IJTRIG = IJTRIG -			2078
2080	2080		IVV = IVIEJK			2079 2080
2081	2081		JVDELT = JVDELT			2081
2082 2083	2082 2083		IVDELT( JVDELT ) IE = IEJKI	= IVV		2082
2084	2083		IVI = JE(1, IE)	1		2083
2085	2085		IF( IV1 . EQ . I)	VV ) THEN		2084 2085
2086	2086		ISI = JE(3, IE)	)		2085
2087	2087		ELSE	<b>`</b>		2087
2088 2089	2088 2089		ISI = JE(4, IE END IF	)		2088
2090	2090		IS = ISI			2089
2091	2091		IET = IEJK2			2090 2091
2092	2092	C				2092
2093 2094	2093	630	CONTINUE			2093
2094	2094 2095	С	ITRIG = ITRIG + 1			2094
2096	2096		ISCRSS( ITRIG ) =			2095
2097	2097	C	, , ,			2096 2097
2098	2098		IETRIG = IETRIG +	-		2098
2099 2100	20 <b>99</b> 2100	с	IECRSS( IETRIG )	= IE		2099
2100	2100	L	IF(			2100
2102	2102			4).GT.FLUXPP.OR.		2101
2103	2103		• HYDFLX(IS,	2).GT.FLUXUU.OR.		2102 2103
2104	2104		. HYDFLX(IS,	1). GT. FLUXRR, OR		2104
2105 2106	2105 2106		- KSUELI(IS)	. GT . NIDUMP . OR .		2105
2107	2107		1 NDCTR = 3	. GT . AREVGG ) THEN		2106
2108	2108		RETURN			2107 2108
2109	2109	•	END IF			2109
2110 2111	2110 2111	C	00 640 10 1 0			2110
2112	2112		DO 640 IR = 1 , 3 JR = MOD( IR , 3	<b>)</b> + 1		ziii
2113	2113		IEA = IABS( JS( J	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		2112
2114	2114		IF( IEA . EQ . IE	) THEN		2113 2114
2115	2115		IIR = MOD( JR , 3	) + 4		2115
2116 2117	2116 2117		IEI = JS( IIR , I IEIB = IABS( IEI	5)		2116
2118	2118		XEIEB = XE(1, 1)	/ FIR )		2117
2119	2119		XYLNGT = XYLNGT +	XEIEB		2118 2119
2120	2120		IF( XYLONG . LT .	XEIEB ) XYLONG = XEIEB		2120
2121 2122	2121 2122		IF ( XYSHRI . GT .	XEIEB ) XYSHRT = XEIEB	:	2121
2123	2123		IIKK = IABS( IICOL IF( IIKK . EQ . IE	LK( IJIKIG ) ) FTR ) THEN		2122
2124	2124		JL00P = 2			2123 2124
2125	2125		IETRIG = IETRIG +	1		2125
2126 2127	2126		IECRSS( IETRIG ) =	= IEIB		2126
2128	2127 2128		IJTRIG = IJTRIG - IF( 1EI . GT . 0 )			2127
2129	2129		JKVV = JE(1, IEI)			2128
2130	2130		ELSE			2129 2130
2131	2131		JKVV = JE(2, IEI)	(8)		2131
2132 2133	2132 2133		END IF JVDELT = JVDELT +	1		2132
2134	2134		IVDELT( JVDELT ) =			2133
2135	2135		ELSE		-	2134 2135
2136	2136		IJTRIG = IJTRIG +			2136
2137 2138	2137 2138		IICOLR( IJTRIG ) =	EI	2	2137
2139	2130		END IF JJR = MOD( JR + 1	. 3) + 4		2138
2140	2140		IER = IABS( JS( JJ	NR, IS))		2139 2140
2141		С				2141
2142 2143	2142		IV1 = JE(1, IER)		2	2142
2143	2143 2144		IF( IV1 . EQ . IVV ISR = JE( 3 , IER	ן הבת )		2143
2145	2145		ELSE	,		144 145
						- 15

Thu Jul	1 14:1	6:26	1993	deithd.f	main program	page	30
2146	2146			ISR = JE(4, IER)			2146
2147	2147			END IF			2147
2148	2148			END IF			2148
2149	2149	С					2149
2150	2150	640		CONTINUE			2150
2151	2151	С			<b>F</b> 11		2151
2152	2152			IF( IER . NE . IET ) TH	Ln		2152
2153 2154	2153 2154			IS = ISR IE = IER			2153 2154
2155	2155			GO TO 630			2155
2156	2156			END IF			2156
2157	2157	C					2157
2158	2158			GO TO 620			2158
2159	21 <b>59</b> 2160	r		END IF			2159
2160 2161	2161	C C	INTE	MEDIATE LOOP IS DONE S	ECOND LOOP OVER KKV2 START .		2160 2161
2162	2162	č	1002				2162
2163	2163			IVV = KKV2			2163
2164	2164			IE - IEIN1			2164
2165	2165			XXYYIC = XE(1, IE) +	XE(1, IKKE1) + XE(1, IEIB)		2165
2166	2166			XYLNGT = XYLNGT + XXYYI	$C \sim XE(1, IEIB)$		2166
2167 ?168	2167 2168			IF( XYLONG . LT . XXYYI IF( XYSHRT . GT . XXYYI			2167
2169	2169			IVIN2 = JE(2, IE)	C) ATSHRI = AATTIC		2168 2169
2170	2170			IEJKK = IICOLR( IJTRIG	)		2170
2171	2171			IVI = JE(1, IE)			2171
2172	2172			IF( IV1 . EQ . IVV ) TH	EN		2172
2173	2173			ISI = JE(3, IE)			2173
2174 2175	2174 2175			ELSE $ISI = JE(4, IE)$			2174 2175
2176	2176			END IF			2175
2177	2177			IS = ISI			2177
2178	2178	C					2178
2179	2179	650		CONTINUE			2179
2180 2181	2180 2181	C		ITRIG = ITRIG + 1			2180 2181
2182	2182			ISCRSS( ITRIG ) = IS			2182
2183	2183	C		· ·			2183
2184	2184			IETRIG = IETRIG + 1			2184
2185	2185	С		IECRSS( IETRIG ) = IE			2185
2186 2187	21 <b>86</b> 21 <b>87</b>	L		IF(			2186 2187
2188	2188			HYDFLX(IS, 4).	GT . FLUXPP . OR .		2188
2189	2189			HYDFLX( IS , 2 ) .	GT . FLUXUU . OR .		2189
2190	2190		•	HYDFLX( IS , 1 ) .	GT . FLUXRR . OR .		2190
2191	2191		•	KSDELT( IS ) . GT .	NIDUMP . OR .		2191
2192 2193	2192 2193		•	XS(3, IS). GT. INDCTR = 3	AREVGG ) THEN		2192 2193
2195	2194			RETURN			2194
2195	2195			END IF			2195
2196	2196	С					2195
2197	2197			DO 660 IR = 1, 3			2193
2198 2199	2198 2199			JR = MOD(IR, 3) + 1 IEA = IABS(JS(JR + 3)	15)		2198 2199
2200	2200			IF( IEA . EQ . IE ) THE			2200
2201	2201			IIR = $MOD(JR, 3) + 4$			2201
2202	2202			IEI = JS( IIR , IS )			2202
2203	2203			IEIB = IABS( IEI )			2203
2204 2205	2204 2205			XEIEB = XE( 1 , IEIB ) XYLNGT = XYLNGT + XEIEB			2204 2205
2205	2206			IF( XYLONG . LT . XEIEB	) XYLONG = XEIEB		2206
2207	2207			IF( XYSHRT . GT . XEIEB			2207
2208	2208			IJTRIG = IJTRIG + 1			2208
2209	2209			IICOLR(IJTRIG) = IEI	* 4		2209
2210 2211	2210 2211			JJR = MOD(JR + 1, 3) IER = IABS(JS(JJR, I			2210 2211
2212	2212	C		TEW - TUDOF COF CON + T	<i>у</i> ј (		2212
2213	2213			IV1 = JE( 1 , IER )			2213
2214	2214			IF( IV1 . EQ . IVV ) TH	EN		2214
2215	2215			ISR = JE(3, IER)			2215 2216
2216 2217	2216 2217			ELSE ISR = JE(4, IER)			2217
2218	2218			END IF			2218
2219	2219			END IF			2219

Thu Ju	1 1 14	:16:26	1993 deithd.f	main program	page	31
2220 2221	2220 2221	C 660	CONTINUE			2220
2222	2222	С	CONTINUE			2221 2222
2223 2224	2223 22 <b>24</b>		IF( IER . NE . 14 IS = ISR	KKE2 ) THEN		2223
2225	2225		IS = ISR IE = IER			2224 2225
2226 2227	2226 2227		GO TO 650			2226
2228	2 <b>228</b>	С	END IF			2227 2228
2229 2230	2229 2230		IJTRIG = IJTRIG -			2229
2231	2231		IETRIG = IETRIG + IECRSS( IETRIG )			2230 2231
2232 2233	2232 2233		IETRIG = IETRIG +			2232
2234	2234	С	IECRSS( IETRIG )			2233 2234
2235 2236	2235 2236	C C	SECOND LOOP SUROUNDING	KKV2 IS DONE, THIRD LOOP OVER KKV3 START .		2235
2237	2237	L	1VV = KKV3			2236 2237
2238 2239	2238 2239		IE = IABS( IICOLR	$\left(\begin{array}{c} \text{IJTRIG} + 1 \\ \text{IJTRIG} \end{array}\right)$		2238
2240	2240		IF(JE(5,IE) IER = IE	. NE . U J HEN		2239 2240
2241 2242	2241 2242		GO TO 670 END IF			2241
2243	2243		IV1 = JE(1, IE)	)		2242 2243
2244 2245	2244 2245		IF( IV1 . EQ . IV			2244
2246	2246		ISI = JE(3, IE ELSE	1		2245 2246
2247 2248	2247 2248		ISI = JE(4, IE END IF	)		2247
2249	2 <b>249</b>		IS = ISI			2248 2249
2250 2251	2250 2251	С	ISI <b>-</b> 0			2250
2252	2252	680	CONTINUE			2251 2252
2253 2254	2253 2254	C	ITRIG = ITRIG + 1			2253
2255	2255		ISCRSS( ITRIG ) =	15		2254 2255
2256 2257	2256 2257		IETRIG = IETRIG + IECRSS( IETRIG ) =			2256
2258	2 <b>25</b> 8	C		- 10		2257 2258
2259 2260	2259 2260			4).GT.FLUXPP.OR.		2259
2261	2261		. HYDFLX( IS , 2	2). GT. FLUXUU. OR.		2260 2261
2262 2263	2262 2263			1).GT.FLUXRK OR. GT.NIDUMP.OR.		2262
2264	2264		• XS(3, IS).	GT . AREVGG ) THEN		2263 2264
2265 2266	2265 2266		INDCTR = 3 RETURN			2265
2267	2267	~	END IF			2266 2267
2268 2269	2268 2269	С	DO 690 IR = 1 , 3			2268 2269
2270	2270		JR = MOD(IR, 3)	) + 1		2270
2271 2272	2271 2272		IEA = IABS( JS( JA IF( IEA . EQ . IE	) THEN		2271 2272
2273 2274	2273 2274		IIR = MOD(JR, 3)	) + 4		2273
2275	2275		IEI = JS( IIR , IS IEIB = IABS( IEI )			2274 2275
2276 2277	2276 2277		XEIEB = XE(1, 1É XYLNGT = XYLNGT +	(IB)		2276
2278	2278		IF( XYLONG . LT .	XEIEB ) XYLONG = XEIEB		2 <b>2</b> 77 2278
2279 2280	2 <b>279</b> 2 <b>280</b>		IF( XYSHRT . GT . IJTRIG = IJTRIG +	XEIEB ) XYSHRT = XEIEB		2279
2281	2281		IICOLR( IJTRIG ) =	IEI		2280 2281
2282 2283	2282 2283		JJR = MOD(JR + 1) $IER = IABS(JS(J)$	, 3) + 4 IR (5) )		2282
2284	2284	С				2283 2284
2285 2286	2285 2286		IV1 = JE( 1 , IER IF( IV1 , EQ , IVV	) >> THEN	i	2285
2287	2287		ISR = JE(3, IER)		ì	2286 2287
2288 2289	2288 2289		ELSE ISR = JE( 4 . IER	)		2288 2289
2290 2291	2290		END IF	, ,	á	2290
2292	2 <b>29</b> 1 2 <b>29</b> 2	С	ENG IF			2291 2292
2293	2293	690	CONTINJE			2293

age

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	32
2294	2294	С					2294
2295	2295			IF( ISR . NE . ISI	) THEN		2295
2296	2296			15 [°] = 1SR			2296
2297	2297			IE - IER			2297
2298	2298			30 TO 680			2298
2299 2300	2 <b>299</b> 2 <b>300</b>	С		END IF			2299 2300
2301	2301	670		CONTINUE			2301
2302	2302	Č		Contract			2302
2303	2303			IETRIG = IETRIG + 1			2303
2304	2304	•		IECRSS( IETRIG ) =	IER		2304
2305	2305	С			<b>)</b>		2305
2306 2307	2 <b>306</b> 2 <b>30</b> 7	С		ITYPE - JE( 5 , IER	)		2306 2307
2308	2308	U.		XEIEB = XE(1, IER)	)		2308
2309	2309			XEIEB = XXYYIB + XE			2309
2310	2310			XYLNGT = XYLNGT + X			2310
2311	2311				EIEB ) XYLONG = XEIEB		2311
2312	2312	c		IF( XYSHRT . GT . X	EIEB ) XYSHRT = XEIEB		2312
2313 2 <b>3</b> 14	2313 2314	С		INDCTR = 2			2313 2314
2315	2315	С			T.GT.10., AND.JLOOP.EQ.0) RETURN		2315
2316	2316	č		•••••••••••			2316
2317	2317			JE( 2 , IEJKK ) = I	VIN2		2317
2318	2318	С					2318
2319	2319			IVI = IVINI	с )		2319
2320 2321	2320 2321			IE1 - HICOLR( IJTRI IF( IE1 . GT . 0 )	u ) Then		2320 2321
2322	2322			IV2 = JE(2, IE1)			2322
2323	2323			ELSE			2323
2324	2 <b>324</b>			IV2 = JE(1, - IE1)	)		2324
2325	2325	~		END IF			2325
2326 2327	2 <b>326</b> 2 <b>32</b> 7	C		NEC = IECRSS( IETRI	c )		2326 2327
2328	2328			IETRIG = IETRIG - 1	u )		2328
2329	2329	С					2329
2330	2330	-		JV(2, IV2) = - N	EC	-	2330
2331	2331			JE(1, NEC) = IV2			2331
2332	2332			JE(2, NEC) = IV1			2332
2333 2334	23 <b>33</b> 2 <b>334</b>			JE(4, NEC) = 0 JE(5, NEC) = ITY	PF		2333 2334
2335	2335	С		02( 5 , 120 ) - 111			2335
2336	2336	-		<b>!JTRIG = IJTRIG + 1</b>			2336
2337	2337			IICOLR( IJTRIG ) =	NEC		2337
2338	2338	С		500 IC			2338
2339 2340	2 <b>339</b> 2340	С		END IF			2339 2340
2341	2341	č	1 00P	OVER TRIANGLE KSD I	S DONE		2341
2342	2342	Č					2342
2343	2343	C	ELIM	INATING THE DELETED	TRIANGLES FROM JSDELT ARRAY		2343
2344	2344	C					2344
2345 2346	2345 2346			LSDELT = 0 DO 1520 IS = 1 , IS	DF1 T		2345 2346
2340	2340			JSP = JSDELT(IS)	521.		2340
2348	2348			ILOOP = 0			2348
2349	2349			IF( JSP . EQ . 0 )	THEN		2349
2350	2350			ILOOP = 1			2350 2351
2351 2352	2351 2352			ELSE DO 1525 IKS = 1 , I	TRIG		2351
2353	2353			ISP = ISCRSS( IKS )	1410		2353
2354	2354			IF( JSP . EQ . ISP	) ILOOP = 1		2354
2355	2355	1525		CONTINUE			2355
2356	2356			END IF	) THEN		2356
2357	2357			IF( ILOOP . EQ . 0			2357 2358
2358 2359	2358 2359			LSDELT = LSDELT + 1 JSDELT( LSDELT ) =			2358
2360	2359			END IF			2360
2361	2361	1520		CONTINUE			2361
2362	2362			ISDELT = LSDELT			2362
2363	2363	С					2363
2364 2365	2364 2365			JVDELT = JVDELT + 1 IVDELT( JVDELT ) =	KV1		2364 2365
2365	2365			JVDELT = JVDELT + 1	N # 4		2366
2367	2367			IVDELT( JVDELT ) =	KV2		2367

Thu Ju	1 1 14	:16:26	1993	delthd.f	main program	page	33
2368 2369 2370	2368 2369 2370			JVDELT = JVDELT + IVDELT( JVDELT ) =			2368 2369
2370 2371 2372	2371 2372			DO 700 IE = 1 , IJ			2370 2371
2373 2374	2373			IEM = IABS( IICOLR JUE( IE ) = IEM	· · · ·		2372 2373
2375 2376	2375			IV1 = JE(1, IEM) IV2 = JE(2, IEM)			2374 2375
2377 2378	2377			IEE1 = JV(2, IV1) IEE2 = JV(2, IV2)	)		2376 2377
2379 2380	2379 2380	700		IF( IEE2 . GT . 0 )	) JV( 2 , IV1 ) = IEM ) JV( 2 , IV2 ) = IEM		2378 2379
2381 2382	2380 2381 2382	C					2380 2381
2383 2384	2383 2384			JTRIG = IJTRIG ISTOP = 0 NSINT: - 0			2382 2383
2385	2385 2386	С		NSINTL = 0			2384 2385
2387 2388	2387 2388			JJTRIG = IJTRIG DO 710 IE = 1 , JTR	IIG		2386 2387
2389 2390	2389 2390			IEM - IICOLR( IE ) IF( IEM , GT . 0 )			2388 2389
2391 2392	2391 2392			JUV(IE) = JE(1), ELSE			2390 2391
2393 2394	2393 2394			JUV(1E) = JE(2, END IF			2392 2393
2395 2396	2395 2396	710 C		IITRIG( IE ) = JUV( CONTINUE	(E )		2394 2395
2397 2398	2397 2398	72 <b>0</b> C		CONTINUE			2396 2397
2399 2400	2399 2400	C		JTRIGP = JTRIG + 1 DO 730 IE = 1 , JTR	IC.		2398 2399
2401 2402	2401 2402			IEM = IICOLR( JE ) IF( IEM . GT . 0 )			2400 2401
2403 2404	2403 2404			JUV(IE) = JE(1)	IEM )		2402 2403
2405 2406	2405 2406			JUV(IE) = JE(2, END IF	- IEM )	*	2404 2405
2407 2408	2407 2408	730 C		CONTINUE			2406 2407
2409 2410	2409 2410	-		AREMIN = 1000000, IEMIN = 1			2408 2409
2411 2412	2411 2412	С		DO 740 IE = 1 , JTR	16		2410 2411
2413 2414	2413 2414			IEM = MOD( IE - 1, IEP = MOD( IE , JTR)	JTRIG ) + 1 IG ) + 1		2412 2413
2415 2416	2415 2416	с		IEI = MOD( IE + 1 ,	JTŔIGĴ + 1		2414 2415 2415
2417 2418	2417 2418			IV1 = JUV( IEM ) IV2 = JUV( IEP )			2416 2417 2418
2419 2420	2 <b>419</b> 2420	С		IV3 = JUV( IEI )			2419 2420
2421 2422	2421 2422			X1 = XV(1, IV1) - Y1 = XV(2, IV1)	- XV(1, IV2) - XV(2, IV2)		2421 2422
2423 2424	2423 2424			X2 = XV(1, IV3) - Y2 = XV(2, IV3) -	· XV(1, IV2)		2423 2424
2425 2426	2425 2426			XSIN = ( X2 * Y1 - X XCOS = ( X1 * X2 + Y	11 * Y2 ) /1 * Y2 )		2425 2426
2427 2428	2427 2428			XCOT = XCOS / ( XSIN IF( XSIN . LT . 0	+ 1.E-8 ) AND . XCOT . LT . AREMIN ) THEN		2427 2428
2429 2430	2429 2430			AREMIN = XCOT IEMIN = IE			2429 2430
2431 2432	2431 2432			END IF ANGLE( IE ) = XSIN /	( ABS( XCOS ) + 1.E-7 )		2431 2432
2433 2434	2433 2434	C 740		CONTINUE			2433 2434
2435 2436	2435 2436	C		DO 750 IE = 1 , JTRI			2435 2436
2437 2438	2437 2438			JEN( IEP ) = IICOLR(	N + JTRIG , JTRIG ) + 1 [E]		2437 2438
2439 2440	2439 2440	750		ANGLER( IÉP ) = ANGL CONTINUE	E( IE )		2439 2440
2441	2441	¢					2441

Thu Jul	1 14:1	6:26	1993	delthd.f	main program	page	34	
2442	2442			DO 760 IE = 1 , JTRIG			2442	
2443	2443			IICOLR( IE ) = JEN( IE			2443	
2444	2444			ANGLE(IE) = ANGLER(	IE )		2444	
2445	2445	760		CONTINUE			2445	
2446 2447	2446 2447	C		IFINAL = 0			2446 2447	
2448	2448			IEI = 1			2448	
2449	2449			DO 770 IE = 1 , JTRIG			2449	
2450	2450			SANGLE = ANGLE( IE )			2450	
2451	2451			IANGLE(IE) = -1	$2 \rightarrow 1$ ANC $II = 1$		2451	
2452 2453	2452 2453	770		IF( SANGLE . GT . 1.E- CONTINUE	$\mathcal{L}$ ) IANGLE( IE ) = I		2452 2453	
2454	2455	c		CONTINUE			2454	
2455	2455	-		D0 780 IE = 1 , JTRIG			2455	
2456	2456			IEM - MOD( IE - 1 , JT			2456	
2457	2457			IEP = MOD(IE, JTRIG			2457	
2458 2459	2458 2459			IKM = MOD( IE + 1 , JT KEM = IANGLE( IEM )	(10) + 1		2458 2459	
2460	2460			KEP = IANGLE( IEP )			2460	
2461	2461			KKM = IANGLE( IKM )			2461	
2462	2462			IF( KEM . EQ 1 . A			2462	
2463	2463		•	KEP.EQ.1.AND			2463 2464	
2464 2465	2 <b>464</b> 2465		•	IEI = IKM	ND . IFINAL . EQ . 0 ) THEN		2465	
2466	2466			IFINAL = 1			2466	
2467	2467			END IF			2467	
2468	2468	780		CONTINUE			2468	
2469	2469	C			THEN		2469	
2470 2471	2470 2471			IF( IFINAL . EQ . 0 ) DO 790 IE = 1 , JTRIG	INCN		2470 2471	
2472	2472			IEM = MOD( IE - 1 , JT	RIG ) + 1		2472	
2473	2473			IEP = MOD( IE , JTRIG			2473	
2474	2474			KEM = IANGLE( IEM )			2474	
2475 2476	2475 2476			KEP = IANGLE(IEP)	ND.KEP.EQ.1.AND.		2475 2476	
2477	2477				IFINAL . EQ . 0 ) THEN		2477	
2478	2478		•	IEI = MOD( IE + I , JT			2478	
2479	2479			IFINAL = 1			2479	
2480 2481	2 <b>480</b> 2481	7 <b>90</b>		END IF CONTINUE			2480 2481	
2482	2482	/ 90		END IF			2482	
2483	2483	С					2483	
2484	2484			IF( IFINAL . EQ . 0 )	THEN		2484	
2485 2486	2 <b>485</b> 2 <b>486</b>			ANGMIN = 10000000.			2485 2486	
2480	2480			DO 800 IE = 1 , JTRIG XANGLE = ANGLE( IE )			2487	
2488	2488			SANGLE = ABS( XANGLE -	1.)		2488	
2489	2489			IF( XANGLE . GT . 0	AND . SANGLE . LT . ANGMIN ) THEN		2489	
2490	2490			IEI = MOD( IE , JTRIG	) + 1		2490	
2491 2492	2 <b>491</b> 2 <b>492</b>			ANGMIN = SANGLE END IF			2491 2492	
2493	2493	800		CONTINUE			2493	
2494	2494			END IF			2494	
2495	2495	С					2495	
2496	2496			DO 810 IE = 1 , JTRIG			2496 2497	
2497 2498	2497 2498			IEP * MOD( IE - IEI + JEN( IEP ) = IICOLR( I			2497	
2499	2499			ANGLER(IEP) = ANGLE(			2499	
2500	2500	810		CONTINUE			2500	
2501	2501	С		0(- 000 TF 1 - 1TB1C			2501	
2502 2503	2502 2503			DU 820 IE = 1 , JTRIG ANGLE( IE ) = ANGLER(	IF )		2502 2503	
2504	2504			IICOLR( IE ) = JEN( IE			2504	
2505	2505	820		CONTINUE			2505	
2506	2506	С					2506	
2507	2507			DO 830 IE = 1 , JTRIG			2507 2508	
2508 2509	2508 2509			IEM = JEN( IE ) IF( IEM . GT . 0 ) THE	N		2508	
2510	2510			JUV(IE) = JE(1, IE)			2510	
2511	2511			ELSE			2511	
2512	2512			JUV(1E) = JE(2, ~	IEM )		2512	
2513 2514	2513 2514	830		END IF CONTINUE			2513 2514	
2515	2515	010		CONTINUE			2515	
		-						

Thu Ju	1 1 14:	16:26	1993	delthd.f		main program		page	35
2516	2516			IF( JTRIG . EQ .	3) THEN				2516
2517	2517	С							2516 2517
2518 2519	2518 2519			NSC = ISCRSS( IT ITRIG = ITRIG -					2518
2520	2520			NSINTL = NSINTL					2519
2521	2521			INVTRG( NSINTL )					2520 2521
2522	2522			JS(1, NSC) =					2522
2523 2524	2523 2524			JS(2, NSC) = JS(3, NSC) =	JUV(2)				2523
2525	2525			JS(4, NSC) =	JEN( 1 )				2524
2526	2526			JS(5,NSC) ≖	JEN(2)				2525 2526
2527 2528	2 <b>52</b> 7 2 <b>528</b>	С		JS(6, NSC) =	JEN(3)				2527
2529	2529	ι.		IV1 = JS( 1 , NS	C )				2528
2530	2530			IV2 = JS( 2 , NS	C )				2529 2530
2531	2531			IV3 = JS(3, NS)	C )				2531
2532 2533	2532 2533			AX = XV(1, IV2) $AY = XV(2, IV2)$	) - XV(1)	, IVI )			2532
2534	2534			BX = XV(1, IV3)	) = XV(2)	, IVI ) , IVI )			2533
2535	2535			BY = XV(2, IV3)	) - XV( 2	. IV1 )			2534 2535
2536 2537	25 <b>36</b> 2537	С		XS(3, NSC) =	0.5 * ( AX )	* BY - AY * BX )			2536
2538	2538	L		SAREA( NSC ) = 1	/ XS( 3	NSC )			2537
2539	2539			XXC = (XV(1),	IVI ) + XV(	1, IV2) + XV(1, IV3)	) *		2538 2539
2540 2541	2540 2541		•	THIRD					2540
2541	2541			THU = (XV(2, ) THIRD	IVI ) + XV(	2 , IV2 ) + XV( 2 , IV3 )	) *		2541
2543	2543		•	XS(1, NSC) = )	KXC				2542 2543
2544	2544			XS(2, NSC) = '	YYC				2543
2545 2546	2545 2546			HYDFLX( NSC , 4 HYDFLX( NSC , 1	) = 0.				2545
2547	2547			HYDFLX( NSC , 2	) = 0. ) = 0.				2546
2548	2548	_		KSDELT( NSC ) =					2547 2548
2549 2550	2549 2550	C		DO 840 TO - 1	810				2549
2551	2551			DO 840 IR = 1 , M HYDV( NSC , IR )	יחע = ( איזעעעו				2550
2552	2552		•	,	HYDVVV(	(IV2, IR)+			2551 2552
2553 2554	2553 2554	840	•	CONTINUE	HYDVVV(	IV3 , IR ) ) * THIRD			2553
2555	2555	C		CONTINUE					2554 2555
2556	2556			HDUM =	1. / ( HYDV	( NSC , 1 ) + 1.E-12 )			2556
2557 2558	2557 2558			HYDV( NSC , 2 ) = HYDV( NSC , 3 ) =	HYDV (NSC	, 2 ) * HOUM			2557
2559	2559			HYDV(NSC, 4) =	(HYDV(NSC	, 3 ) * HDUM SC , 4 ) -			2558 2559
2560	2560		•	.5	* HYDV( NS	C 1 1 *			2560
2561 2562	2 <b>561</b> 25 <b>62</b>		•	(HYDV(NSC, 2) HYDV(NSC, 3)	* HYDV( NS	(C, 2) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (C, 3) + (			2561
2563	2563		:	1104( 115C , 5 )	(HYDV(NS	iC, 5) - 1.)			2562 2563
2564	2564	С		15700					2564
2565 2566	2565 2566	С		ISTOP = 1				:	2565
2567	2567			ELSE IF( JTRIG .	EQ.4)TH	EN			2566 2567
2568	2568	C							2568
2569 2570	2 <b>569</b> 2570			NSC = ISCRSS( ITR ITRIG = ITRIG - 1					2569
2571	2571			NSINTL = NSINTL +	1				2570 2571
2572	2572			INVIRG( NSINTL )					2572
2573 2574	2573 2 <b>574</b>			NEC = IECRSS( IET IETRIG = IETRIG -	RIG)				2573
2575	2575	C		reinia - icinia -	1				2574 2575
2576	2576			IJTRIG = IJTRIG +					2576
2577 2578	2577 2578	С		JUE( IJTRIG ) = N	LU			2	2577
2579	257 <del>9</del>	-		JE(1, NEC) = J	UV(1)				2578 2579
2580	2580			JE( ? , NEC ) = JI	UV(3)				2580
2581 2582	2581 2582	С		JE(5, NEC) = 0				2	2581
2583	2 <b>583</b>	•		JS( 1 , NSC ) = JI	JV(1)				2582 2583
2584	2584			JS(2,NSC) = JI	JV (2)				2584
2585 2586	2585 2586		•	JS( 3 , NSC ) = JI JS( 4 , NSC ) = JI	JV( 5 ) - / / / /				2585
2587	2587			JS(5,NSC) = JE	N(2)				2586 2587
2588 2589	2588 2589	с	۲	JS(6, NSC) = -	NEC			2	2588
2303	2303	L						2	2589

Thu Jul	1 14:16:2	6 1993	delthd.f	main program	page	36
2590 2591 2592 2593	2590 2591 2592 2593		NSC = ISCRSS( ITRI ITRIG = ITRIG - 1 NSINTL = NSINTL + INVTRG( NSINTL ) =	1		2590 2591 2592 2593
2594 2595 2596 2597 2598	2594 C 2595 2596 2597 2598		JS(1, NSC) = JU JS(2, NSC) = JU JS(3, NSC) = JU JS(4, NSC) = NE	V(3) V(4)		2594 2595 2596 2597 2598
2599 2600 2601 2602	2599 2600 2601 C 2602		JS( 5 , NSC ) = JE JS( 6 , NSC ) = JE DO 850 IKR = 1 , 2	N(3) N(4)		2599 2600 2601 2602
2603 2604 2605 2606	2603 2604 2605 2606		NSS = INVTRG( NSIN IV1 = JS( 1 , NSS IV2 = JS( 2 , NSS IV3 = JS( 3 , NSS	) )		2603 2604 2605 2606
2607 2608 2609 2610	2607 2608 2609 2610		AX = XV(1, IV2) AY = XV(2, IV2) BX = XV(1, IV3) BY = XV(2, IV3)	- XV(2, IV1) - XV(1, IV1) - XV(2, IV1)		2607 2608 2609 2610
2611 2612 2613 2614 2615	2611 2612 C 2613 2614 2615		SAREA( NSS ) = 1.	5 * ( AX * BY - AY * BX ) / XS( 3 , NSS ) 1 ) + XV( 1 , IV2 ) + XV( 1 , IV3 ) ) *		2611 2612 2613 2614 2615
2615 2616 2617 2618 2619	2615 2616 2617 2618 2619	•				2615 2616 2617 2618 2619
2620 2621 2622 2623	2620 2621 2622 2623		HYDFLX(NSS, 4) HYDFLX(NSS, 1)	= O.		2620 2621 2622 2623
2624 2625 2626 2627	2624 C 2625 2626 2627		DO 860 IR = 1 , MH HYDV( NSS , IR ) =	(HYDVVV(IV1, IR) + HYDVVV(IV2, IR) +		2624 2625 2626 2627 2628
2628 2629 2630 2631 2632	2628 2629 86 2630 C 2631 2632		CONTINUE HDUM = 1 HYDV(NSS, 2) =	HYDVVV( IV3 , IR ) ) * THIRD . / ( HYDV( NSS , 1 ) + 1.E-12 ) HYDV( NSS , 2 ) * HDUM		2629 2630 2631 2632
2633 2634 2635 2635 2636	2633 2634 2635 2636	•	HYDV(NSS.3) = HYDV(NSS.4) = .5 (HYDV(NSS,2)	HYDV(NSS, 3) * HDUM (HYDV(NSS, 4) - * HYDV(NSS, 1) * * HYDV(NSS, 2) +		2633 2634 2635 2636
2637 2638 2639 2640	2637 2638 2639 C 2640 85	60	CONTINUE	* HYDV( NSS , 3 ) ) ) * ( HYDV( NSS , 5 ) - 1. )		2637 2638 2639 2640
2641 2642 2643 2644 2645	2641 2642 C 2643 2644 C 2645		ISTOP = 1 ELSE NSC = ISCRSS( ITRI	6)		2641 2642 2643 2644 2645
2646 2647 2648 2649	2646 2647 2648 2649		ITRIG = ITRIG - 1 NSINTL = NSINTL + INVTRG( NSINTL ) = NEC = IECRSS( IETR	1 NSC IG)		2646 2647 2648 2649
2650 2651 2652 2653	2650 2651 C 2652 2653		IETRIG = IETRIG - IJTRIG = IJTRIG + JUE( IJTRIG ) = NE	1		2650 2651 2652 2653
2654 2655 2656 2657 2658	2654 C 2655 2656 2657 2658 C		JE(1, NEC) = JU JE(2, NEC) = JU JE(5, NEC) = 0			2654 2655 2656 2657 2658
2659 2660 2661 2662	2659 2660 2661 2662		JS(1, NSC) = JU JS(2, NSC) = JU JS(3, NSC) = JU JS(4, NSC) = JE	V(2) V(3)		2659 2660 2661 2662
2663	2 <b>663</b>		JS(5,NSC) = JE	N(2)		2663

......

Thu Jul	1 14:	16:26	1993	delthd.f	main program	page	37
2664	2664			JS( 6 , NSC )	= - NEC		2664
2665	2665	С		• • •			2665
2666 2667	2666 2667			IICOLR(1) = JTRIG = JTRIG			2666
2668	2668			DO 870 IEE -	2, JTRIG		2667 2668
2669	2669	070		IICOLR( IEE )	= JEN( IEE + 1 )		2669
2670 2671	2670 2671	870 C		CONTINUE			2670
2672	2672	U		IV1 = JS(1)	NSC )		2671 2672
2673	2673			IV2 = JS(2)	NSC )		2673
2674 2675	2674 2675			IV3 = JS(3)	NSC ) IV2 ) - XV( 1 , IV1 )		2674
2676	2676			AY = XV(2)	IV2 ) - XV (2 , IV1 )		2675 2676
2677 2678	2677			BX = XV(1)	IV3 ) - XV(1 , IV1 )		2677
2679	2678 2679			BY = XV(2), XS(3), NSC	IV3 ) - XV(2, IV1) = 0.5 * (AX * BY - AY * BX)		2678
2680	2680	С			· · · · · ·		2679 2680
2681 2682	2681 2682			SAREA(NSC)	= 1. / XS( 3 , NSC )		2681
2683	2683			THIRD	, IV1 ) + XV( 1 , IV2 ) + XV( 1 , IV3 ) ) +		2682 2683
2684	2684			YYC = (XV(2)	, IV1 ) + XV( 2 , IV2 ) + XV( 2 , IV3 ) ) *		2684
2685 2686	2585 2686		•	THIRD XS(1, NSC)	- XXC		2685
2687	2687			XS(2, NSC)	= YYC		2686 2687
2688	2688			HYDFLX( NSC .			2688
2689 2690	2689 2690			HYDFLX( NSC , HYDFLX( NSC .			2689
2691	2691			KSDELT( NSC )			2690 2691
2692 2693	2692	C		00.000 10 1	NHO.		2692
2693	2693 2694			DO 880 IR = 1 HYDV( NSC . IF	, MHQ R) = ( HYDVVV( IV1 , IR ) +		2693
2695	2695		•		HYDVVV(IV2, IR) +		2694 2695
2696 2697	2696 2697	880	•	CONTINUE	HYDVVV(IV3,IR)) * THIRD		2696
2698	2698	000		CONTINUE			2697 2698
2699	2699			HOUM	= 1. / ( HYDV( NSC , 1 ) + 1.E-12 )		2699
2700 2701	2700 2701			HYDV(NSC, 2 HYDV(NSC, 3	) = HYDV( NSC , 2 ) * HOUM		2700
2702	2702			HYDV ( NSC , 4	) = HYDV( NSC , 3 ) * HDUM ) = { HYDV( NSC , 4 ) _		2701 2702
2703	2703		•		.5 * HYDV( NSC , 1 ) *		2703
2704 2705	2704 2705		•	HYDV (NSC .	2) * HYDV(NSC, 2) + 3) * HYDV(NSC, 3)) *		2704
2706	2706		•		(HYDV(NSC, 5) - 1.)		2705 2706
2707 2708	2707 2708	C		END IF			2707
2709	2709				. 0 ) GO TO 720		2708 2709
2710	2710	С					2710
2711 2712	2711 2712			DO 890 ISS = 1 IS = INVTRG( I			2711
2713	2713			D0 890 IR = 4	, 6		2712 2713
2714 2715	2714 2715			IE = JS(IR)			2714
2716	2716			IF( IE . GT . JE( 3 , IE ) =			2715 2716
2717	2717			ELSE			2717
2718 2719	2718 2719			JE(4,-1E) END IF	= I\$		2718
2720	2720	890		CONTINUE			2719 2720
2721	2721	C		00 000 1588			2721
2722 2723	27 <b>22</b> 27 <b>23</b>			DO 900 IENN = IEN = JUE( IEN			2722
2724	2724			JV1 = JE( 1 ,	IEŃ )		2723 2724
2725 2726	2725 2726			$JV2 = JE(2, \dots)$			2725
2727	2727			AY * XV(2,J)	V2) - XV(1, JV1) V2) - XV(2, JV1)		2726 2727
2728	2728			XE(1,IEN) :	= SQRT(AX $+$ AX $+$ AY $+$ AY )		2728
2729 2730	27 <b>2</b> 9 27 <b>30</b>			KEREV = 1. / XI KN( IEN ) = AY	t(I, ILN) * XEREV		2729
2731	2731			(N( IEN ) = - /	AX * XEREV		2730 2731
2732 2733	2732 2733			ISSR = JE(4),		2	2732
2734	2734	с		ISSL = JE(3)	1LW J		2733 2734
2735	2735	_		IF( JE( 5 , IEI	N).NE.O)THEN	2	2735
2736 2737	27 <b>3</b> 6 27 <b>3</b> 7	C	1	<b>A - XV( 1</b>	/2) - XV(1, JV1)		2736
			,				2737
					nade 37		

F - J -

Thu Jul	1 14:1	6:26	1993	delthd.f	mai	n program		page	38
2738	27 <b>38</b>			BB = XV(2, JV2)		)			2738
2739	2739			XEL = XS(1, ISSL)					2739
2740 2741	27 <b>40</b> 27 <b>41</b>			YEL = XS( 2 , ISSL ) CC = XEL - XV( 1 , .					2740
2742	2742			DD = YEL - XV(2)					2742
2743	2743			EE = (AA * CC + BB)		V * XEREV			2743
2744 2745	27 <b>44</b> 27 <b>45</b>			XER = XV(1, JV1) YER = XV(2, JV1)					2744 2745
2746	2746			AX = XER - XEL	55 EC				2746
2747	2747			AY = YER - YEL		14 A AM A			2747
2748 2749	27 <b>48</b> 27 <b>49</b>			XE(2, IEN) = SQRT XEREV = 1. / XE(2)	I ( AX * AX + A TEN )	Y * AY )			2748 2749
2750	2750			XXN(IEN) = AX + XE	EREV				2750
2751	2751			YYN( IEN ) = AY * XE	EREV				2751
2752	2752			$\begin{array}{c} XE(2, IEN) = 2.7\\ XYMIDL(IEN) = .5 \end{array}$	* XE( 2 , IEN	)			2752 2753
2753 2754	27 <b>53</b> 2754			XMIDL( IEN ) = XER					2754
2755	2755			YMIDL( IEN ) = YER					2755
2756	2756	С							2756 2757
2757 2758	2757 2758	С		ELSE					2758
2759	2759	•		XER = XS( 1 , ISSR )	)				2759
2760	2760			YER = XS(2, ISSR)					2760
2761 2762	27 <b>61</b> 27 <b>62</b>			XEL = XS(1, ISSL) YEL = XS(2, ISSL)					2761 2762
2763	2763	С		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•				2763
2764	2764			AA = XV(1, JV2) -					2764
2765 2766	27 <b>65</b> 27 <b>66</b>			BB = XV(2, JV2) - CC = XEL - XER	- XA( 5 ° AAT	)			2765 2766
2767	2767			DD = YEL - YER					2767
2768	2 <b>768</b>			ACA = XER - XV(1)					2768
2769 2770	27 <b>69</b> 27 <b>70</b>			DBD = YER - XV(2), EE = (ACA * DD - DE		AA * DD _ RR * (C )			2769 2770
2771	2771			XMIDL(IEN) = XV(I					2771
2772	27 <b>72</b>	_		YMIDL( IEN ) = XV( 2					2772
2773	27 <b>73</b> 2 <b>774</b>	С		XEMID = XMIDL( IEN )	) YEI				2773 2774
2774 2775	2775			YEMID = YMIDL( IEN )					2775
2776	27 <b>76</b>	C							2776
2777	2777			AX = XER - XEL					2777 2778
2778 2779	27 <b>78</b> 27 <b>79</b>			AY = YER - YEL XE( 2 , IEN ) = SQR1	T( AX * AX + A	Y * AY )			2779
2780	2 <b>780</b>			XEREV = 1. / XE( 2 ,	, IEN )				2780
2781	2781			XXN(IEN) = AX * XE					2781 2782
2782 2783	27 <b>82</b> 27 <b>83</b>	C		YYN( IEN ) = AY * XE	LKEV				2783
2784	2784			XYMIDL( IEN ) = SQR	T( XEMID * XEM	ID + YEMID * YEMID ) *	XEREV		2784
2785	2785	С							2785 2786
2786 2787	27 <b>86</b> 27 <b>87</b>	С		END IF					2787
2788	2788	900		CONTINUE					2788
2789	2789	Ç	ADDC	A THE OCIETED VEBTER	15 TN A DECEND	ED ORDER IN AN ARRAY			2789 2790
2790 2791	27 <b>90</b> 27 <b>91</b>	C C	NVDE		IS IN A DECEND	ED ORDER IN AN ARAAN			2791
2792	27 <b>92</b>	č							2792
2793 2794	27 <b>93</b> 27 <b>94</b>			KFLIP = JVDELT DO 910 KK = 1 , JVD	רבו ד				2793 2794
2794	2795			IFLIP = 1					2795
2796	2796			NVDELT( KK ) = IVDEL	LT(1)				2796
2797	2797			DO 920 KI = 1 , KFL	IP T NUDELT/ M				2797 2798
2798 2799	27 <b>98</b> 27 <b>99</b>			NVDELT( KK ) = IVDEL		K ) / INCN			2799
2800	2800			IFLIP = KI					2800
2801	2801	020		END IF					2801 2802
2802 2803	2802 2803	920		CONTINUE ISS = 0					2803
2804	2804			DO 930 KI = 1 , KFL					2804
2805	2805			IF( KI . NE . IFLIP	) THEN				2805 2806
2806 2807	2806 2807			ISS = ISS + 1 IVDELT( ISS ) = IVDE	ELT( KI )				2807
2808	2808			END IF					2808
2809	2809	93 <b>0</b>		CONTINUE					2809 2810
2810 2811	2810 2811	910		KFLIP = KFLIP - 1 Continue					2811
	~~**								

.

Thu Ju	1 1 14	:16:26	1993 delthd.f	main program pag	<b>je</b> 39
2812 2813	2812 2813	C C	ORDER THE DELETED	EDGES IN A DECENDED ORDER IN AN ARRAY	2812 2813
2814	2814	C	NECRSS		2813
2815 2816	2815 2816	С	KFLIP = IETRI	2	2815
2817	2817		DO 940 KK = $1$	LETRIG	2816
2818	2818		IFLIP = 1		2817 2818
2819 2820	2819 2820		NECRSS( KK ) D0 950 KI = 1	* IECRSS(1)	2819
2821	2821		IF( IECRSS( K	I). GT. NECRSS( KK )) THEN	2820
2822	2822		NECRSS( KK )	= IECRSS( KI )	2821 2822
2823 2824	2823 2824		IFLIP = KI		2823
2825	2825	950	END IF CONTINUE		2824
2826	2826		ISS = 0		2825 2826
2827 2828	2827		DO 960 KI = 1	, KFLIP	2827
2829	2 <b>828</b> 2 <b>829</b>		IF( KI . NE . ISS = ISS + 1	IFLIP ) THEN	2828
2830	2830			= IECRSS( KI )	2829
2831	2831		END IF		2830 2831
2832 2833	2832 2833	960	CONTINUE KFLIP = KFLIP	,	2832
2834	2834	940	CONTINUE	- 1	2833
2835	2835	C			2834 2835
2836 2837	2836 2837	C	ORDER THE DELETED (	CELLS IN A DECENDED ORDER IN AN ARRAY	2836
2838	2838	C C	NSCRSS		2837
2839	2839	•	KFLIP = ITRIG		2838 2839
2840 2841	2840		DO 970 KK = 1	, ITRIG	2840
2841	2841 2842		IFLIP = 1 NSCRSS( KK ) =	( ( ) 220721	2841
2843	2843		DO 980 KI = 1	, KELIP	2842
2844	2844		IF( ISCRSS( KI	) . GT . NSCRSS( KK ) ) THEN	2843 2844
2845 2846	2845 2846		NSCRSS(KK) =	ISCRSS( KI )	2845
2847	2847		IFLIP = KI END IF		2846
2848	2848	980	CONTINUE		2847 2848
2849 2850	2 <b>849</b> 2 <b>850</b>		ISS = 0		2849
2851	2851		DO 990 KI - 1 IF( KI . NE .	, KELIY IFIID ) THEN	2850
2852	2852		ISS = ISS + 1		2851 2852
2853 2854	2853 2854		ISCRSS(ISS)	= ISCRSS( KI )	2853
2855	2855	990	END IF CONTINUE		2854
2856	2856		KFLIP = KFLIP	- 1	2855 2856
2857 2858	2857 2858	970 C	CONTINUE		2857
2859	2859	L	DO 1000 KI = 1		2858
2860	2860		IVDELT( KI ) =		2859 2860
2861 2862	2861	1000	CONTINUE		2861
2863	2862 2863	C	00 1010 KI = 1	ITTDIC	2862
2864	2864		IECRSS( KI ) =	NE + 1 - KI	2863 2864
2865 2866	2865 2866	1010 C	CONTINUE		2865
2867	2867	ι	DO 1020 KI = 1	ITRIC	2866
2868	2868		ISCRSS(K1) =	NS + 1 - KI	2867 2868
2869 2870	2869 2870	1020 C	CONTINUE		2869
2871	2871	č	IT MAKE SURE THAT VE	RTICES THAT ARE TO BE DELETED ARE NOT	2870
2872	2872	C	REPLACED BY VERTICES	S THAS ARE TO BE DELETED ALSO	2871 2872
2873 2874	2873 2874	C	DO 1000 VI 1	10517	2873
2875	2875		DO 1030 KI = 1 IVM = NVDELT( H	, JVUELI (I )	2874
2876	2 <b>876</b>		DO 1030 KK = 1	, JVDELT	2875 2876
2877 2878	2877 2878		JVM - IVDELT( K	(K )	2877
2879	2879		IF( IVM . EQ . IVDUM = IVDELT(	JVM . AND . KK . NE . KI ) THEN	2878
2880	2880		IVOELT( KI ) =		2879 2880
2881 2882	2881		IVDELT( KK ) =		2881
2883	2882 2883	1030	END IF CONTINUE		2882
2884	2884	C			2883 2884
2885	2885	C	IT MAKE SURE THAT ED	GES THAT ARE TO BE DELETED ARE NOT	2885
				06 and	

Jul 11	4:16:26	1993 delthd.f main program	page 40
86 288		REPLACED BY EDGES THAS ARE TO BE DELETED ALSO	2886
37 288 38 288			2887 2888
88 288 89 288		DO 1040 KI - 1 , IETRIG IEM - NECRSS( KI )	2889
90 289		DO 1040 KK = 1 , IETRIG	2890
91 289		JEM = IECRSS( KK )	2891
92 289	12	IF( IEM . EQ . JEM . AND . KK . NE . KI ) THEN	2892
93 289		IEDUM = IECRSS(K1)	2893
94 289		IECRSS(KI) = IEM	2894
95 289		IECRSS( KK ) = IEDUM	2895
96 289 97 289		END IF O CONTINUE	2896 2897
98 289	08 C	U CONTINGE	2898
289		IT MAKE SURE THAT CELLS THAT ARE TO BE DELETED ARE NOT	2899
0 290	0 C	REPLACED BY CELLS THAS ARE TO BE DELETED ALSO	2900
01 290			2901
02 290		DO 1050 KI = 1 , ITRIG	2902
03 290		ISM = NSCRSS(KI)	2903
04 290		DO 1050 KK = 1, ITRIG	2904
05 290 06 290		JSM = ISCRSS(KK) IF(ISM . EQ . JSM . AND . KK . NE . KI) THEN	2905 2906
07 290	17	TSUBM - ISUBSS( KI )	2007
8 290	8	ISCRSS( KI ) = ISM	2908
09 290	)9	ISCRSS( KK ) = ISDUM	2909
10 291	10	END IF	2910
1 291	1 1050	D CONTINUE	2911
12 291 13 201	2 C	THREET (*) CENTENCE OF HERTICES TO BE DELETED FUN OF FIST	2912
13 291 14 291	13 C 14 C	ISCRSS( KI) = ISM ISCRSS( KK) = ISDUM END IF O CONTINUE IVDELT(*) SEQUENCE OF VERTICES TO BE DELETED END OF LIST NVOELT(*) SEQUENCE OF VERTICES TO BE REPLACED CURRENT IN LIST ISCRSS(*) SEQUENCE OF TRIANGLES TO BE DELETED END OF LIST NSCRSS(*) SEQUENCE OF TRIANGLES TO BE REPLACED CURRENT IN LIST IECRSS(*) SEQUENCE OF EDGES TO BE DELETED END OF LIST NECRSS(*) SEQUENCE OF EDGES TO BE REPLACED CURRENT IN LIST NECRSS(*) SEQUENCE OF EDGES TO BE REPLACED CURRENT IN LIST NECRSS(*) SEQUENCE OF EDGES TO BE REPLACED CURRENT IN LIST NECRSS(*) SEQUENCE OF EDGES TO BE REPLACED CURRENT IN LIST NECRSS(*) SEQUENCE OF EDGES TO BE REPLACED CURRENT IN LIST	2913 2914
14 291 15 291	14 C	ISCRSS(*) SEQUENCE OF TRIANGLES TO BE REFERCED CORRENT IN LIST	2914
16 291	6 C	NSCRSS(*) SEQUENCE OF TRIANGLES TO BE REPLACED CURRENT IN LIST	2916
17 291	7 Č	IECRSS(*) SEQUENCE OF EDGES TO BE DELETED END OF LIST	2917
18 291	8 C	NECRSS(*) SEQUENCE OF EDGES TO BE REPLACED CURRENT IN LIST	2918
19 291	9 C		2919
20 292	.U	DU 1000 KI * 1 , JVDELI	2920
21 292 22 292		IVM = NVDELT(KI)	2921
2 292 3 292		JVM - IVDELT( KI )	2922 2923
24 292		XV(1, IVM) = XV(1, JVM)	2924
25 292		XV(2, IVM) = XV(2, JVM)	2925
26 292		JV(1, IVH) = JV(1, JVH)	2926
27 292	27 C	JVM = IVDELI( KI ) XV(1, IVM) = XV(1, JVM ) XV(2, IVM) = XV(2, JVM ) JV(1, IVM) = JV(1, JVM) DO 1060 IR = 1, MHQ HYDVVV(IVM, IR) = HYDVVV(JVM, IR)	2927
28 292		DO 1060 $IR = 1$ , MHQ	2928
29 292	9	HYDVVV(IVM, IR) = HYDVVV(JVM, IR)	2929
30 293 31 293		O CONTINUE	2930 2931
32 293		NVM = NV - JVDELT	2932
3 293	13	NEM = NE - IETRIG	2933
34 293	34	NSM = NS - ITRIG	2934
35 293	15 C		2935
36 293		UPDATE THE EDGES AND CELLS THAT ARE CONNECTED TO THE DELETED	2936
7 293 8 293	17 C 18 C	VERTICES	2937 2938
o 293 9 293	ю с 19	JNVEDG = 0	2930
0 294		JNVTRG = 0	2940
1 204		DO 1070 JVDL = 1 , JVDELT	2941
2 294		IVDL = NVDELT( JVDL )	2942
3 294		NVDL = IVDELT( JVDL )	2943
4 294		IF( IVDL . NE . NVDL ) THEN	2944
294		IE = JV(2, NVDL)	2945 2946
6 294 7 294		IF( IE . GT . 0 ) THEN	2940 2947
3 294		IV1 = JE(1, IE)	2948
9 294		IF( IVI . EQ . NVDL ) THEN	2949
0 295	0	ISI = JE(3, IE)	2950
1 295	1	ELSE	2951
2 295		ISI = JE(4, IE)	2952
3 295	3	END IF	2953
4 295 5 205		IS = ISI	2954 2955
55 295 56 295	5 L	JNVEDG → JNVEDG + 1	2955
c.).		INVEDG ( JNVEDG ) = IE	2957
57 295	,,		
7 295 8 295 9 295	8	JNVTRG = JNVTRG + 1 INVTRG( JNVTRG ) = IS	2958 2959

2967 2968 2970 2971 2971 2972 2973 2974 2975 2974 2975 2977 2978 2979 2979 2977 2978 2979 2979	2960 2961 2962 2963 2964 2965 2966 2967 2968	C 1090 C	CONTINUE DO 1080 IR = 1 , 3 JR = MOD( IR , 3 ) + 1			2960 2961 2962
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2977 2977 2978 2977 2978 2979 2978 2979 2980 2981 2985 2988 2985 2984 2985 2984 2985 2984 2985 2984 2985 2986 2987 2988 2984 2985 2986 2987 2988 2984 2985 2986 2987 2988 2989 2980 2984 2985 2986 2987 2988 2986 2987 2988 2989 2980 2984 2985 2986 2987 2988 2986 2987 2988 2989 2980 2987 2988 2989 2990 2991 2993 2994 2995 2994 2995 2994 2995 2994 2995 2995	2963 2964 2965 2966 2967	Ū				2962
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2974 2975 2977 2978 2977 2978 2979 2978 2979 2978 2979 2979	2964 2965 2966 2967					2963
2966 2967 2968 2970 2971 2972 2973 2974 2975 2974 2975 2977 2978 2979 2979 2979 2979 2979 2979	2966 2967					2903
2967 2968 2969 2970 2971 2972 2973 2974 2975 2974 2975 2974 2975 2975 2977 2978 2979 2980 2981 2980 2981 2988 2988 2988 2988 2988 2988 2988	2967		IEA = IABS( $JS(JR + 3, IS)$	) )		2965
2968 2969 2971 2972 2973 2974 2975 2976 2976 2977 2978 2979 2980 2980 2981 2980 2981 2988 2988 2988 2988 2988 2988 2988			IF( IEA . EQ . IE ) THEN			2966
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 988 985 988 989 985 989 990 991 992 993 993 993 995	2300		JJR = MOD(JR + 1, 3) + 4			2967
970 971 972 973 974 975 976 977 978 979 980 981 988 988 988 988 988 988 988 988 988	2969	С	IER = IABS( JS( JJR , ÍS ) )			2968
971 972 973 974 975 976 977 978 979 980 981 982 988 988 988 988 988 988 988 988 988	2970	C	IV1 = JE(1, IER)			2969
972 973 974 975 976 977 980 981 982 983 984 985 988 985 988 989 998 9980 9990 9991 9991 9991 99	2971		IF( IVI . EQ . NVDL ) THEN			2970 2971
974 975 976 977 978 979 980 981 982 988 988 988 988 988 988 988 989 9987 988 989 999 99	2972		ISR = JE(3, IER)			2972
975 976 977 978 979 980 981 982 983 984 985 986 987 988 988 989 998 999 991 992 991 992 993 994 995 995	2973		ELSE			2973
976 977 978 979 980 981 982 983 984 985 986 987 988 989 999 999 999 999 999 999 999	2974		ISR = JE(4, IER)			2974
977 978 979 980 981 982 983 984 985 984 985 986 987 988 998 999 999 9991 9991 9992 9993 9994 9995 996	2975 2976		END IF END IF			2975
978 979 980 981 982 983 984 985 984 985 986 989 991 991 991 991 991 992 993 994 995	2977	С				2976
979 980 981 982 983 984 985 986 987 988 989 990 990 991 992 993 994 995	2978	1080	CONTINUE			2977 2978
181 182 183 184 185 186 185 186 188 188 188 188 190 191 192 193 193 194 195 196	2979	C				2979
982 983 984 985 986 987 988 989 990 990 991 992 993 993 993 994 995	2980		IF( ISR , NE . ISI ) THEN			2980
983 984 985 986 988 990 990 990 992 992 993 993 994 995	2981		IS = ISR			2981
984 985 986 987 988 989 990 991 992 993 993 994 995 996	2982 2983	С	IE = IER			2982
85 86 87 88 89 90 91 92 93 94 95 95 96	2984	6	JNVEDG = JNVEDG + 1			2983
986 987 988 999 990 991 992 993 993 994 995	2985		INVEDG( JNVEDG ) = IE			2984
988 989 990 991 992 993 994 995 996	2986		JNVTRG = JNVTRG + 1			2985 2986
989 990 991 992 993 994 995 996	2987		INVTRG( JNVTRG ) = IS			2987
990 991 992 993 994 995 996	2988	С				2988
991 992 993 994 995 996	2989		GO TO 1090			2989
192 193 194 195 196	2990 2991	С	END IF			2990
193 194 195 196	2992	L	ELSE			2991
94 95 96	2993	с				2992
96 8	2994	-	IE = - IE			2993 2994
96	2995		IV1 = JE(1, IE)			2995
	2996		IF( IV1 . EQ . NVDL ) THEN			2996
	2997 2998		ISI = JE(3, IE)			2 <b>99</b> 7
	2999		ELSE ISI = JE(4, IE)			2998
	3000		END IF			2999
	3001		IS = ISI			3000 3001
	3002		ISI = 0			3002
	3003	C				3003
	3004 3005		JNVEDG = JNVEDG + 1 INVEDG( JNVEDG ) = IE	,		3004
	3006		JNVTRG = JNVTRG + 1			3005
	3007		INVTRG( JNVTRG ) = IS			3006 3007
08 3	3008	C				3008
	3009	1100	CONTINUE			3009
		C	00 1110 10 1 0			3010
	3011 3012		DO 1110 IR = 1 , 3 JR = MOD( IR , 3 ) + 1			3011
	3012		IEA = IABS(JS(JR + 3, IS))	1		3012
	3014		$IF(IEA \cdot EQ \cdot IE)$ THEN	/		3013 3014
)15 3	3015		JJR = MOD(JR + 1, 3) + 4			3015
<b>)16</b> 3	3016		IER = IABS( JS( JJR , IS ) )			3016
		C	•			3017
	3018 3019		IVI = JE(1, IER)			3018
	3020		IF( IV1 . EQ . NVDL ) THEN ISR - JE( 3 , IER )			3019
	3021		ELSE			3020 3021
	3022		ISR = JE(4, IER)		:	3022
23 3	3023		END IF			3023
	3024		END IF		3	3024
		C	CONTINUE			3025
		1110 C	CONTINUE			3026
			IF( ISR . NE . IS1 ) THEN		1	3027
29 3	5028					3028
<b>30</b> 3	3028 3029		IS = ISR			
31 3	3029 3030					3029 3030
32 3 33 3	3029 3030 3031	с	IS = ISR		3	3029 3030 3031

Thu Jul	1 14:16:2	6 19	93 delthd.f main program	page	42
3034	3034		JNVTRG = JNVTRG + 1	30	34
3035	3035		INVTRG(JNVTRG) = 1S	30	
3036	3 <b>036</b> C			30	
3037	3037		GO TO 1100	30	
3038	3038		END IF	30	
3039 3040	3039 C 3040			30	39
3040	3040		JNVEDG = JNVEDG + 1 INVEDG( JNVEDG ) = IER	30 30	
3042	3042 C		INACOO( ONACOO ) - ICK	30	
3043	3043		END IF	30	
3044	3044		END IF	304	
3045		70	CONTINUE	30-	45
3046	3046 C			30	
3047 3048	3047 3048 C		NSMNPT - INVTRG(1)	30	
3040	3048 C		DO 1120 IE = 1 , JNVEDG	304 304	
3050	3050		IEE = INVEDG( IE )	30	
3051	3051		DO 1120 IIDG = IE + 1 , JNVEDG	30	
3052	3052		IF( INVEDG( IIDG ) . EQ . IEE ) THEN	30	
3053	3053		INVEDG(IIDG) = 0	30	
3054	3054	20		30	
3055 3056	3055 11 3056 C	20	CONTINUE	30 30	
3057	3057		IEDUM = 0	30	
3058	3058		DO 1130 IIDG = 1 , JNVEDG	30	
3059	3059		IF( INVEDG( IIDG ) . NE . 0 ) THEN	30	
3060	3060		IEDUM - IEDUM + 1	30	
3061	3061		INVEDG( IEDUM ) = INVEDG( IIDG )	30	
3062 3063	3062 3063 11	30		30	
3063	3064	30	CONTINUE JNVEDG = IEDUM	30 30	
3065	3065 C			30	
3066	30 <b>66</b>		DO 1140 IS = 1 , JNVTRG	30	66
3067	3067		ISS = INVTRG( IS )	30	
3068 3069	3068 3069		DO 1140 IITG = IS + 1 , JNVTRG	30	
3070	3070		IF( INVTRG( IITG ) . EQ . ISS ) THEN INVTRG( IITG ) = 0	30 30	
3071	3071		END IF	30	
3072	-	40	CONTINUE	30	
3073	3073 C			30	
3074	3074		ISDUM = 0	30	
3075 3076	3075 3076		DO 1150 IITG = 1 , JNVTRG IF( INVTRG( IITG ) . NE . 0 ) THEN	30 30	
3077	3077		ISDUM = ISDUM + 1	30	
3078	3078		INVTRG( ISDUM ) = INVTRG( IITG )	30	
3079	3079		END IF	30	79
3080	3080 11	50	CONTINUE	308	
3081 3082	3 <b>081</b> 3082 C		JNVTRG = ISDUM	300	
3083	3082 C 3083 C	18	PDATE THE VERTECIS AND CELLS THAT ARE CONNECTED TO THE DELET	300 TED 300	
3084	3084 C		DGES	300	
3085	30 <b>85</b> C			308	
3086	3086		DO 1160 IE = 1, IETRIG	304	
3087	3087 3088 C		IES = IECRSS(IE)	308	
3088 3089	3088 C 3089		IV = JE( 1 , IES )	308 308	
3090	3090		IER = JV(2, IV)	30	
3091	3091		IIN = ISIGN(1, IER)	30	91
3092	3092		IEE = IABS(IER)	30	
3093 3094	3093 3094		IEM = IEE DO 1170 KK = 1 , IETRIG	309 309	1
3095	3095		JEM = 1ECRSS(KK)	30	
3096	3096		IF( IEE . EQ . JEM ) IEM = NECRSS( KK )	30	
3097	3097 11	70	CONTINUE	309	97
3098	3098		JV(2,IV) = IIN * IEM	30	
3099	3099 C		W = 10(2) (CS)	30	
3100 3101	3100 3101		IV = JE(2, IES) IER = JV(2, IV)	31( 31(	
3102	3102		IIN = ISIGN(1, IER)	310	
3103	3103		IEE = IABS( IER )	310	03
3104	3104		IEM = IEE	310	
3105 3106	3105 3106		DO 1180 KK = 1 , IETRIG JEM = IECRSS( KK )	31( 31)	
3107	3107		$IF(IEE \cdot EQ \cdot JEM) IEM = NECRSS(KK)$	31(	

Thu Jul	1 14:1	l <b>6:2</b> 6	1993 delthd.f	main program	page	43
3108	3108	1180	CONTINUE			3108
3109	3109	•	JV(2, IV) = IIN	* IEM		3109
3110 3111	3110 3111	C 1160	CONTINUE			3110 3111
3112	3112	C	CONTINUE			3112
3113	3113		DO 1190 KK = $1$ , J			3113
3114	3114 3115		IVV = IITRIG(KK)			3114
3115 3116	3115		DO 1190 JVDL = 1 . IVDL - NVDELT( JVD			3115 3116
3117	3117		NVDL = IVDELT( JVD	L)		3117
3118	3118	1100		L) IITRIG( KK ) = IVDL		3118
3119 3120	3119 3120	11 <b>90</b> C	CONTINUE			3119 3120
3121	3121	J	D0 1200 JVDL = 1 ,	JVDELT		3121
3122	3122		IVDL = NVDELT( JVD			3122
3123 3124	3123 3124		NVOL = IVDELT( JVD) JV( 2 , IVDL ) = J			3123 3124
3125	3125	1200	CONTINUE			3125
3126	3126	C		11/70 0		3126
3127 3128	3127 3128		DO 1210 IS = 1 , JI ISS = INVTRG( IS )			3127 3128
3129	3129	C	122 - 144460( 12 )			3129
3130	3130		IV = JS(1, ISS)			3130
3131 3132	31 <b>31</b> 31 <b>3</b> 2		IVM = IV DO 1220 KI = 1 , JV			3131
3132	3133		JVM = IVDELT(KI)			3132 3133
3134	3134			) IVM = NVDELT( KI )		3134
3135	3135	1220	CONTINUE			3135
3136 3137	3136 3137	С	JS( 1 , ISS ) = IV	n		3136 3137
3138	3138	U	IV = JS(2, ISS)			3138
3139	3139		IVM = IV			3139
3140 3141	3140 3141		DO 1230 KI = 1 , J JVM = IVDELT( KI )			3140 3111
3142	3142			) IVM = NVDELT( KI )		3142
3143	3143	12 <b>30</b>	CONTINUE			3143
3144 3145	3144 3145	с	JS(2, ISS) = IV	Ħ		3144 3145
3145	3145	L	IV = JS(3, 1SS)			3145
3147	3147		IVM = IV			3147
3148 3149	3148		D0 1240  KI = 1 . J			3148
3150	3149 3150		JVM = IVDELT( KI ) IF( IV , EO , JVM )	) IVM = NVDELT( KI )		3149 3150
3151	3151	1240	CONTINUE			3151
3152	3152	c	JS( 3 , ISS ) = IVI	M		3152
3153 3154	3153 3154	C 1210	CONTINUE			3153 3154
3155	3155	C	00001002			3155
3156	3156		D0 1250 IE = 1, J	NVEDG		3156
3157 3158	3157 3158	С	IEE = INVEDG( IE )			3157 3158
3159	3159	-	IV = JE( 1 , IEE )			3159
3160	3160		IVM = IV			3160
3161 3162	31 <b>61</b> 31 <b>62</b>		DO 1260 KI = 1 , J JVM = IVDELT( KI )			3161 3162
3163	3163		IF( IV . EQ . JVM	) IVM = NVDELT( KI )		3163
3164	3164	1260	CONTINUE			3164
3165 3166	3165 3166	С	JE(1, IEE) = IVI	<b>M</b>		3165 3166
3167	3167	v	IV = JE(2, IEE)			3167
3168	3168		IVM - IV			3168
3169 3170	3169 3170		DO 1270 KI = 1 , J\ JVM = IVDELT( KI )			3169 3170
3171	3171		IF( IV . EQ . JVM	) IVM = NVDELT( KI )		3171
3172	3172	1270	CONTINUE			3172
3173 3174	3173 3174	С	JE(2, IEE) = 1V	m		3173 3174
3175	3175	1250	CONTINUE			3175
3176	3176	С				3176
3177 3178	3177 3178	C C		EDGES THAT ARE CONNECTED TO THE DELETED		3177 3178
3179	3170	C	CELSS			3179
3180	3180	-	DO 1280 IS = 1 , II	TRIG		3180
3181	3181	С				3181

÷

)

ł

Thu Jul	1 14:16:26 19	93 delthd.f	main program	page	44
3182	3182	ISE = ISCRSS( I	S )	31	
3183	3183 C	15 1406/ 36/		31	
3184 3185	3184 3185	IE = IABS( JS( ISS = JE( 3 , I		31 31	85
3186	3186	ISM = ISS		31	86
3187	3187	DO 1290 KI = 1		31	
3188 3189	3188 3189	JSM = ISCRSS(K)	'SM ) ISM = NSCRSS( KI )	31 31	
3190	3190 1290	CONTINUE		31	
3191	3191	JE(3, IE) =	ISM	31	
3192 3193	3192 C 3193	ISS = JE(4, I)	F)	31 31	
3194	3194	ISM = ISS		31	
3195	3195	$DO \ 1300 \ KI = 1$		31	95
3196 3197	3196 3197	JSM = ISCRSS( K	JSM ) ISM = NSCRSS( KI )	31 31	
3198	3198 1300	CONTINUE		31	
3199	3199	JE(4, 1E) =	ISM	31	
3200 3201	3200 C 3201	IE = IABS( JS(	5 (SE ) )	32 32	
3202	3202	ISS = JE(3, I)		32	
3203	3203	ISM = ISS		32	03
3204	3204	DO 1310 KI = 1		32	
3205 3206	3205 3206	$J^{**} = ISCRSS(K)$	JSM ) ISM = NSCRSS( KI )	32 32	
3207	3207 1310	CONTINUE		32	07
3208	3208	JE(3, IE) =	ISM	32	
3209 3210	3209 C 3210	ISS = JE(4, I	F)	32 32	
3211	3211	ISM = ISS	- /	32	
3212	3212	DO 1320 KI = $1$		32	
3213 3214	3213 3214	JSM = ISCRSS( K	JSM ) ISM = NSCRSS( KI )	32 32	
3215	3215 1320	CONTINUE		32	
3216	3216	JE(4, IE) =	ISM	32	16
3217 3218	3217 C 3218	IE = IABS( JS(	6 ISE \ )	32 32	
3219	3219	1SS = JE(3, 1)	E)	32	
3220	3220	ISM = ISS		37	20
3221	3221	DO 1330 KI = 1		32	
3222 3223	3222 3223	JSM = ISCRSS(K) IF(ISS, EQ.	JSM ) ISM = NSCRSS( KI )	32 32	
3224	3224 1330	CONTINUE		32	24
3225	3225	JE(3, IE) =	ISM	32	
3226 3227	3226 C 3227	1SS = JE(4, 1)	F)	32 32	
3228	3228	ISM = ISS	- ,	32	28
3229	3229	DO 1340 KI = 1 JSM = .3CRSS( K	, ITRIG	32 32	
3230 3231	32 <b>30</b> 3231	IF( ISS, EQ .	JSM ) ISM = NSCRSS( KI )	32	
3232	3232 1340	CONTINUE		32	32
3233	3233	JE(4,IE)=	ISM	32	33
3234 3235	3234 C 3235 280	CONTINUE		32 32	
3236	3236 C			32	36
3237	3237	00 1350 IE = 1		32	
3238 3239	3238 3239 C	IES - IECRSS( I	<b>L</b> )	32. 32	
3240	3240	IS = JE( 3 , IE	S )	32	40
3241	3241	ISS = IS		32	41
3242 3243	3242 3243	DO 1360 KI = 1 ISM = NSCRSS( K		32 32	
3244	3244		SM ) ISS = ISCRSS( K( )	32	44
3245	3245 1360	CONTINUE		32	
3246 3247	3246 C 3247	IF( ISS . NE .	() THEN	32 32	
3248	3248 C	17 ( 199 + HL +	o y then	32	48
3249	3249	IER = JS(4, 1)		32	
3250 3251	3250 3251	IEE = IABS( IER IEM <del>=</del> IEE		32 32	
3252	3252	DO 1370 KI = 1	, IETRIG	32	52
3253	3253	JEM = LECRSS( K	1)	32	
3254 3255	3254 3255 1370	IF( IEE . EQ . CONTINUE	JEM ) IEM * NECRSS( KI )	32 32	
ゴビョゴ	JEAG IJ/V	GUITINUL		54	• -

6

Thu Jul	1 14:16:26	5 1993	delthd.f	main program	page	45
3256	3256		JS(4, ISS) = 1	ISIGN(1, IER) * IEM		3256
3257	3257 C					3257
3258	3258		IER = JS(5, 1SS)			3258
3259	3259		IEE = IABS( IER )			3259
3260 3261	3260 3261		IEM = IEE DO 1380 KI = 1 ,	IFTRIC		3260 3261
3262	3262		JEM = IECRSS( KI			3262
3263	3263			EM ) IEM - NECRSS( KI )		3263
3264	3264 138	30	CONTINUE			3264
3265	3265		JS(5, ISS) = 1	ISIGN(1, IER) * IEM		3265
3266 3267	3266 C 3267		IER = JS( 6 , ISS	5)		3266 3267
3268	3268		IEE = IABS( IER )			3268
3269	3269		IEM = IEE			3269
3270	3270		DO 1390 KI = 1 ,			3270
3271	3271 3272		JEM + IECRSS( KI			3271
3272 3273	3273 139	0	CONTINUE	EM ) IEM = NECRSS( KI )		3272 3273
3274	3274			ISIGN(1, IER) * IEM		3274
3275	3275 C					3275
3276	3276		END IF			3276
3277 3278	3277 C 3278		1S = JE(4, IES)	1		3277 3278
3279	3279		ISS = IS	,		3279
3280	3280		DO 1400 KI = 1 ,	ITRIG		3280
3281	3281		ISM = NSCRSS( KI			3281
3282	3282			1) ISS = ISCRSS( KI )		3282
3283 3284	3283 140 3284 C	10	CONTINUE			3283 3284
3285	3285		IF( ISS . NE . O	) THEN		3285
3286	3 <b>286</b> C			,		3286
3287	3287		IER = JS(4, ISS)			3287
3288 3289	3288 3289		IEE = IABS( IER ) IEM = IEE			3288 3289
3290	3290		DO 1410 KI = 1 .	IETRIG		3290
3291	3291		JEM * IECRSS( KI			3291
3292	3292	•		IM ) IEM = NECRSS( KI )		3292
3293 3294	3293 141 3294	0	CONTINUE	CTCN/ 1 TED \ * TEM		3293 3294
3295	32 <b>95</b> C		03(4,133) = 1	ISIGN(1, IER) * IEM		3295
3296	3296		IER = JS(5, ISS)	5)		3296
3297	3297		IEE = IABS( IER )			3297
3298	3298		IEM = IEE	167070		3298
3299 3300	3299 3300		DO 1420 KI = 1 , JEM = IECRSS( KI			3299 3300
3301	3301			/ ) IEM = NECRSS( KI )		3301
3302	3302 142	20	CONTINUE			3302
3303	3303		JS(5, ISS) = I	SIGN(1, IER) * IEM		3303
3304 3305	3304 C 3305		IER = JS(6. ISS)	• )		3304 3305
3305	3306		IER = IABS(IER)			3305
3307	3307		IEM = IEE			3307
3308	3308		DO 1430 KI = $1$ .			3308
3309	3309		JEM = IECRSS( KI			3309
3310 3311	3310 3311 143	10	CONTINUE	IM ) IEM - NECRSS( KI )		3310 3311
3312	3312			SIGN(1, IER) * IEM		3312
3313	3 <b>31</b> 3 C					3313
3314	3314		END IF			3314
3315 3316	3315 C 3316 135	0	CONTINUE			3315 3316
3317	3317 C	~	CONTINUL			3317
3318	3318		00 1440 IE = 1 ,			3318
3319	3319		IEM - NECRSS( IE			3319
3320 3321	3320 3321 C		JEM = IECRSS( IE	)		3320 3321
3322	3321 C 3322		DO 1450 IK = 1 ,	5		3322
3323	3323		JE( IK , IEM ) =			3323
3324	3324 145	0	CONTINUÊ			3324
3325	3325 C		VE( 1 TEM ) V	(E( 1 1EM )		3325 3326
3326 3327	3326 3327		XE( 1 , IEM ) = X XE( 2 , IEM ) = X			3320
3328	3328 C			····( •·· ) ······ )		3328
3329	3329		XN(IEM) = XN(J	JEM )		3329
				11		

Thu Jul	1 14:1	6:26 19	93 deithd.f	main program	page	46
3330 3331	3330 3331		YN( IEM ) = YN( JEM ) XXN( IEM ) = XXN( JEM )			3330 3331
3332	3332		YYN(IEM) = YYN(JEM)			3332
3333	3333		XMIDL( IEM ) = XMIDL( JEM )			3333
3334	3334		YMIDL( IEM ) = YMIDL( JEM )			3334
3335 3336	3335 3336	1440	XYMIDL( IEM ) = XYMIDL( JEM ) Continue			3335 3336
3337	3337	Ĉ				3337
3338	3338		DO 1460 IS = 1 , ITRIG			3338
3339 3340	3339 3340		ISM = NSCRSS( IS ) JSM = ISCRSS( IS )			3339
3341	3341	С	03N - 136K35( 13 )			3340 3341
3342	3342	•	DO 1470 $IK = 1$ , 6			3342
3343	3343	1.170	JS(IK, ISM) = JS(IK, JSM	)		3343
3344 3345	3344 3345	1 <b>470</b> C	CONTINUE			3344 3345
3346	3346	v	XS(1, ISM) = XS(1, JSM)			3346
3347	3347		XS(2, ISM) = XS(2, JSM)			3347
3348 3349	3348 3349	r	XS(3, ISM) = XS(3, JSM)			3348
3350	3350	C	SAREA( ISM ) = SAREA( JSM )			3349 3350
3351	3351		KSDELT( ISM ) = KSDELT( JSM )			3351
3352	3352	С				3352
3353 3354	3353 3354		DO 1480 IK = 1 , MHQ HYDV( ISM , IK ) = HYDV( JSM ,	( <b>X</b>		3353 3354
3355	3355	1480	CONTINUE			3355
3356	3356	С				3356
3357 3358	3357 3358		HYDFLX( ISM , 4 ) = HYDFLX( JS HYDFLX( ISM , 1 ) = HYDFLX( JS			3357
3359	3359		HYDFLX( ISM , 2 ) = HYDFLX( JS			3358 3359
3360	3360	С				3360
3361	3361	1460	CONTINUE			3361
3362 3363	3362 3363	C	NV - NVM			3362 3363
3364	3364		NE = NEM			3364
3365	3365	-	NS - NSM			3365
3366 3367	3 <b>366</b> 3 <b>367</b>	С	DO 1490 IENN = I . IJTRIG			3366 3367
3368	3368		IE = JUE(IENN)			3368
3369	3369		DO 1490 KI = 1 , IETRIG			3369
3370 3371	3370 3371		JEM = IECRSS( KI ) IF( IE . EQ . JEM ) JUE( IENN	) - NECOSS( KI )		3370 3371
3372	3372	1490	CONTINUE	, heados ( kr )		3372
3373	3373	C				3373
3374 3375	3374 3375		DO 1540 IENN = 1 , JJTRIG IVV = IITRIG( IENN )			3374 3375
3376	3376		IF( JV( 1 , IVV ) . NE . 3 ) C	CALL RELAXY( IVV )		3376
3377	3377	1540	CONTINUE			3377
3378 3379	3378 3379	C	DO 1500 IENN - 1 , IJTRIG			3378 3379
3380	3380		IE = JUE( IENN )			3380
3381	3381		CALL RECNC( IE , IDONE , ITL ,	ITR, JA, JB, JC, JD)		3381
3382 3383	3382 3383			, ITR , JAA , JAB , JAC , JAD ) , ITR , JBA , JBB , JBC , JBD )		3382 3383
3384	3384		CALL RECNC( JC , JCDONE , ITL	, ITR , JCA , JCB , JCC , JCD )		3384
3385	3385		CALL RECNC( JD , JDDONE , ITL	, ITR , JDA , JDB , JDC , JDD )		3385
3386 3387	3386 3387	15 <b>0</b> 0 C	CONTINUE			3386 3387
3388	3388	L	DO 1510 IPRTCL = 1 . NPT			3388
3389	3389		ISM = IJKPRT( IPRTCL )			3389
3390 3391	3390 3391		DO 1510 KI = 1 , ITRIG JSM = NSCRSS( KI )			3390 3391
3392	3392		IF( ISM . EQ . JSM ) IJKPRT( I	PRTCL ) - NSMNPT		3392
3393	3393	1510	CONTINUE			3393
3394 3395	3394 3395	C C UI	PDATE THE JSDELT ARRAY			3394 3395
3396	3396	C UI	UNIT INT JUCTI ANNAT			3395
3397	3397		DO 1530 IS = 1 , ISDELT			3397
3398 3399	3398 3399		JSP = JSDELT( IS ) DO 1530 KI = i , ITRIG			3398 3399
3400	3400		JSM - ISCRSS( KI )			3400
3401	3401	1	IF( JSP . EQ . JSM ) JSDELT( 1	S) = NSCRSS( KI )		3401
3402 3403	3402 3403	1530 C	CONTINUE			3402 3403
- 145		-				

Thu Jul	1 14:	16:26 19	193 delt	thd.f	main program		47
3404 3405 3406 3407 3408 3409 3410 3411 3412	3404 3405 3406 3407 3408 3409 3410 3411 3412	C C C C	INDCTR EXIT POINT RETURN		SUBROUTINE	page	3404 3405 3406 3407 3408 3409 3410 3411
3413	3413	-	END				3412 3413

APPENDIX C

COPIES OF PUBLICATIONS



## AIAA 89-2446 A REVIEW OF PROPULSION APPLICATIONS OF THE PULSED DETONATION ENGINE CONCEPT S. EIDELMAN, W. GROSSMANN AND I. LOTTATI

S. EIDELMAN, W. GROSSMANN AND I. LOTTATI SCIENCE APPLICATIONS INTERNATIONAL CORP. APPLIED PHYSICS OPERATION MCLEAN, VA

# AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference

Monterey, CA / July 10-12, 1989

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W. Washington, D.C. 20024

### A REVIEW OF PROPULSION APPLICATIONS OF THE PULSED DETONATION ENGINE CONCEPT

S. Eidelman, W. Grossmann and I. Lottati

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Dr., McLean, VA 22102

#### Introduction

The early development leading to practical propulsion engines was almost completely associated with steady state engine concepts. Unsteady concepts, which initially appeared promising, never evolved from the conceptual state and have remained for the most part unexplored. The early work in unsteady propulsion suffered from a lack of appropriate analytical and design tools, a condition which seriously impeded the advancement of the unsteady concepts to a practical stage.

In this paper we review the historical development of unsteady propulsion by concentrating on one particular concept, the intermittent detonation engine, and discuss current research activities in this area. A review of the literature¹⁻²⁴ reveals that a significant body of experimental and theoretical research exists in the area of unsteady propulsion. However, this research has not been extended to the point where a conclusive quantitative comparison can be made between impulsive engine concepts and steady state concepts. For example, the analysis given in References 8-11 of the performance of a detonation engine concept does not include frequency dependence, nor any analysis of losses due to multi-cycle operation. A new generation of analytical and computational tools exists today and allows us to revisit and analyse such issues with a high degree of confidence. Numerical simulation has developed to the state where it can now provide time dependent two and three dimensional modeling of complex internal flow processes 20,24,25 and will eventually result in tools for systematically analyzing and optimizing engineering design. In addition to a review of applications of the Pulsed Detonation Engine Concept here we will report results of a numerical study of the gasdynamics of a model of an air-breathing detonation engine with detailed analysis of the nonsteady flow pattern. This study was performed using new unsteady CFD tools which we will also describe.

Our paper is structured as follows: 1) historical review of the pulsed detonation development efforts; 2) description of the basic phenomenology of the air-breathing Pulsed Detonation Engine concept; 3) description of the mathematical formulation and new numerical scheme used to simulated the problem; 4) discussion of the simulation results; and 5) conclusions.

#### **Historical Review**

#### **Constant Volume Combustion**

From the very early development of jet-propulsion engines it was known that an engine based on a constant volume combustion process achieves higher efficiency than a constant pressure engine. This follows from a thermodynamic analysis of the engine cycle.¹

Constant volume combustion was used in gas turbine engines at the beginning of this century, and the first gas turbine engines in commercial use were based on the constant volume cycle. Jet-propulsion engines were one of the applications of the constant volume cycle (or explosion cycle) which was explored in the late 1940s.² Although the explosion cycle operates at a larger pressure variation in the combustion chamber than in a pulse-jet^{3,4}, the cycle actually realized in these engines was not a fully constant volume one since the combustion chamber was open ended². In Reference 2 the maximum pressure ratio measured in an explosion cycle engine was 3:1, whereas the pressure ratio for the same mixture under the assumption of a constant volume cycle would be 8:1. Also, this engine was limited by the available frequency of cycles, which in turn is limited by the reaction rate. A simple calculation ² showed that if the combustion time could be reduced in this engine from 0.006 sec to 0.003 sec, the thrust per pound of mixture would increase 100%. Thus the explosion-cycle engine has two main disadvantages:

- Constrained volume combustion (as distinguished from constant volume combustion) does not take full advantage of the pressure rise characteristic of the constant volume combustion process.
- The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrative combustion rate.

The main advantage of the constant pressure cycle is that it leads to engine configurations with steady state processes of injection of the fuel and oxidiser, combustion of the mixture, and expansion of the combustion products. These stages can be easily identified and the engine designer can optimize them on the basis of relatively simple steady state considerations:

At the same time an engine based on constant volume combustion will have an intermittent mode of operation, which may complicate its design and optimization. We are interested in the question of whether this complication is worth the potential gains in engine efficiency.

#### Pulsed Detonation Engine as an Ultimate Constant Volume Combustion Concept

The detonation process, due to the very high rate of reaction, permits construction of a propulsion engine in which the constant volume process can be fully realised. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and the fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Usually, each detonation is initiated separately by a fully controlled ignition device. and the cycle frequency can be changed over a wide range of values. This also means that a device based on a detonative combustion cycle can be scaled and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. In the following we give a description of the most relevant past experimental and analytical studies of the detonation engine concept.

#### Hoffmann's Report.

The first reported work on intermittent detonation is attributed to Hoffmann⁵ in 1940. He operated an intermittent detonation test stand with acetylene-oxygen and bensine-oxygen mixtures. The addition of water vapor was used to prevent the highly sensitive acetyleneoxygen mixture from premature detonation. Hoffmann⁵ indicated the importance of the spark plug location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies which will produce an intermittent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, time of transition from deflagration to detonation, and time of expansion of the detonation products. Hoffmann attempted to find the optimum cycle frequency experimentally. It was discovered that detonation-sube firing occurred at lower frequencies than the spark-plug energising frequencies indicating that the injection flow rate and ignition were out of phase. Events prevented further work by Hoffmann and co-workers.

#### Nicholls Experiments.

A substantial effort in intermittent detonation engine research was done by a group headed by J. A. Nicholls⁶⁻¹⁰ of The University of Michigan beginning in the early 50's. The most relevant work concerns a set of experiments carried out in a six foot long detonation tube⁶. The detonation tube was constructed from a one inch internal diameter stainless steel tube. The fuel and oxidiser were injected under pressure from the left end of the tube and ignited at the some distance down stream. The tube was mounted on a pendulum platform, suspended by support wires. Thrust for single detonations was measured by detecting tube (platform) movement relative to a stationary pointer. For multi-cycle detonations thrust measurement was achieved by mounting the thrust end of the tube to the free end of the cantilever beam. In addition to direct thrust measurements the temperature on the inner wall of the detonation tube was measured.

Fuel mixtures of hydrogen/oxygen, hydrogen/air, acetylene-oxygen and acetylene-air mixtures were used. The gaseous oxidizer and fuel were continuously injected at the closed end wall of the detonation tube and three fixed flow rates were used. Under these conditions the only parameters which could be varied were the fuel/oxidiser ratio and frequency of ignition. A maximum gross thrust of ~ 3.21b was measured in hydrogen/air mixture at the frequency of ≈ 30 detonations per second. The most promising results were demonstrated for the  $H_2$ /Air mixture, where a fuel specific impulse of  $I_{op} = 2100$  sec was reached. The maximum frequency of detonations obtained in all experiments was 35 Hs. The temperature measurements on the inner wall showed that for the highest frequency of detonations the temperature did not exceed 800° F.

In their later work,^{5,9,10} the University of Michigan group concentrated on development of the Rotating Detonation Wave Rocket Motor. No further work on the pulsed detonation cycle was pursued.

#### Krsvcki Experiments

In a setup somewhat similar to Nicholl's, L. J. Krsycki¹¹ performed an experimental investigation of intermittent detonations with frequencies up to 60 cps. An attempt was also made to analyze the basic phenomena using unsteady gas dynamic theory. Krsycki's attempt to analyze the basic phenomena relied on wave diagrams to trace characteristics, assumptions of isentropic flow for detonation and expansion, and incompressible flow for mixture injection processes. The most convincing data from the experiments is the measurement of thrust for a range of initiation frequencies and mixture flow rates. Unfortunately no direct pressure measurement in the device are reported so that only indirect evidence exists of the nature of the process observed.

The basic test stand used by Krsycki is very similar to that used by Nicholls et al.⁶ The length of the detonation tube and internal diameter were exactly the same as those in Nicholl's experiments. A Propane/Air mixture was continuously injected through a reversedflow diffuser for better mixing, and ignited at the some distance from the injection point by an automobile spark plug. The spark frequency was varied from 1 to 60 cps. The spark plug power output was varied inversely with the initiation frequency and at the frequency of 60 cps was only 0.65 Joule. This fact alone eliminated the possibility of direct initiation of the detonation wave by the spark and consequently all of the experiments must have been based on transition from deflagration to detonation. According to experimental data and theory,¹² for direct initiation of a mixture of propane-air at the detonability limits, an energy release on the order of 10⁶ Joules is required. Thus, the required defiagration-detonation transition region length would have been prohibitively large for the propane-air mixture. It follows that in all of the experiments a substantial part of the process was defiagrative. This resulted in low efficiency, and negligible thrust. Krsycki repeated the experiments of Nicholls using exactly the same size detonation tube and basically the same rates of injection of the detonable mixture. Krsycki's experimental results are very well documented, allowing a clear picture of the physical processes occurring in the tube to be deduced. A conclusion, arrived at by the author, was that thrust was possible from such a device but practical applications did not appear promising. It is unfortunate that, possibly based on Krsycki's extensive but misleading results, all experimental work related to the pulsed detonation engine concept stopped at this time.

#### Work Reported in Russian sources on Pulse Detonation Devices

A review of the Russian literature has not uncovered work concerning applications of pulsed detonation devices to propulsion. However there are numerous reports of applications of such devices for producing nitrogen oxide¹³ (an old Zeldovich idea to bind nitrogen directly from air to produce fertilisers) and as rock crushing devices¹⁴.

Korovin et al.¹³ provide a most interesting account of the operation of a commercial detonation reactor. The main objective of this study was to examine the efficiency of thermal oxidation of nitrogen in an intermittent detonative process as well as an assessment of such techno-

logical issues as the fatigue of the reactor parts exposed to the intermittent detonation waves over a prolonged time. The reactor consisted of a tube with an inner diameter of 16 mm and length 1.3 m joined by a conical diffuser to a second tube with an inner diameter of 70 mm and length 3 m. The entire detonation reactor was submerged in running water. The detonation minsure was introduced at the end wall of the small tube.  $CH_4$ ,  $O_2$  and  $N_2$  comprised the mixture composition and the mixture ratios were varied during the continuous operation of the reactor. The detonation wave velocity was measured directly by piesoelectric sensors placed in the small and large tubes. The detonation initiation frequency in the reactor was 2-16 Hs. It is reported that the apparatus operated without significant changes for 2000 hours.

Smirnov and Boichenko¹⁴ studied intermittent detonations of gasoline-air mixtures in a 3 m long and 22 mm inner diameter tube operating in the 6-8 Hs ignition frequency range. The main motivation of this work was to improve the efficiency of a commercial rock crushing apparatus based on intermittent detonations of the gasoline-air mixtures.¹⁵ The authors investigated the dependence of the length of the transitional region from deflagration to detonation on the initial temperature of the mixture.

As a result of the information contained in the Soviet reports, it can be concluded that reliable commercial devices based on intermittent detonations can be constructed and operated.

#### Development of the Blast Propulsion System at JPL

Work at the Jet Propulsion Laboratory (JPL) by Back, Varsi and others¹⁶⁻¹⁹ concerned an experimental and theoretical study of the feasibility of a rocket trus.er using intermittent detonations of solid explosive useful for propulsion in dense or high-pressure atmospheres of certain solar system planets. The JPL work was directed at very specific applications; however, the studies¹⁷⁻¹⁹ addressed some key issues of devices using unsteady process such as propulsion efficiency. The JPL studies have important implications to pulsed detonation propulsion systems.

Reference 19 gives the basic description of the test stand used. In this work a Deta sheet type C explosive was detonated inside a small detonation chamber attached to nossles of various length and geometry. The nossles, complete with firing plug, were mounted in a containment vessel which could be pressurised with the mixture of various inert gases from vacuum to 70 atm. The apparatus measured directly the thrust generated by single detonations of a small amount of solid explosive charge expanding into conical or straight nossles. Thrust and specific impulse was measured by a pendulum balance system.

Results obtained from an extensive experimental study of the explosively driven rocket have lead to the following conclusions. First, rockets with long nossles show increasing specific impulse with increasing ambient pressure in  $CO_2$  and  $N_2$ . Short nozzles, on the other hand, show that specific impulse is independent of ambient pressure. Most importantly, most of the experiments obtained a relatively high specific impulse of 250 seconds and larger. This result is all the more striking since the detonation of a solid explosive yields a relatively low energy release of approximately 1000 cal/gm compared with 3000 cal/gm obtained in hydrogen oxygen combustion. Thus, it can be concluded that the total losses in a thruster based on unsteady expansion are not prohibitive and, in principle, very efficient propulsion systems operating on intermittent detonations are possible.

#### **Detonation Engine Studies at Naval Postgraduate School**

A modest exploratory study of a propulsion device utilising detonation phenomena was conducted at the Naval Postgraduate School.²⁰⁻²³ During this study, several fundamentally new elements were introduced to the concept distinguishing the new device from previous ones.

First, it is important to note that the experimental apparatus constructed by Helman et al.21 was the first successful self aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hs were obtained. This frequency was in phase with the fuel mixture injection through timed fuel valve opening and spark discharge. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

### Simulations of Pulsed Detonation Engine Cycle at NASA-Ames Center

Recently Cambier and Adelman ²⁴ carried out numerical simulations of a pulsed detonation engine cycle taking into account finite rate chemistry. Unfortunately, the simulations were restricted to a quasi-one dimensional model. The configuration considered had a 6 cm inner diameter 50 cm long main chamber which was attached to a 43 cm diverging nossle. It was assumed that a stoichiometric mixture of hydrogen/air at 3.0 atmospheres is injected from an inlet on the closed end wall of the detonation chamber. At such conditions Cambier and Adelman estimated a large range of possible detonation frequencies of engine operation up to 667 Hs. The origin of this estimate is not clear from their work, since according to their simulations, the detonation, expansion and fresh charge fill requires 2.5 msec. This value leads to a maximum frequency of 400 Hs. The simulated engine performance yielded a large average thrust of 893 lb and an unusually high specific impulse of 6507 sec. These simulations were the first to demonstrate the use of modern CFD methods to address the technical issues associated with unsteady pulsed detonation concepts.

In the remaining sections we discuss a particular propulsion concept based on the results of the experiments of Helman et al.²² and describe a computational study of its performance characteristics. The unsteady numerical scheme used for the study made use of unique simulation techniques; the key ingredients of these techniques are also described.

#### A Generic Pulsed Detonation Engine

The generic device we consider here is a small engine 15 cm long and 15 cm in diameter. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of engines into one large propulsion engine. A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical processes requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is:

- 1. Initiation and propagation of the detonation wave inside the chamber,
- 2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers.
- 3. Reverse flow from the surrounding air into the chamber resulting from over expansion of the detonation products,
- 4. Pressure buildup in the chamber due to reverse flow. The flow pattern inside the chamber during postexhaust pressure buildup determines the strategy

for mixing the next detonation charge,

5. Strong mutual interaction between the flow processes inside the chamber and flow around the engine.

All of these processes are interdependent and their timing is crucial to the engine efficiency. Thus, unlike simulations of steady state engines, the phenomena described above can not be evaluated independently.

The need to resolve the flow regime inside the chamber accounting for nossles, air inlets etc., and at the same time resolve the flow around the engine, where the flow regime varies from high subsonic, locally transonic and supersonic, makes it a challenging computational problem.

The main issue is to determine the timing of the air intake for the fresh gas charge. It is sufficient to assume invicid flow for the purpose of simulating the expansion of the detonation products and fresh gas intake. In the following we present the first results of an invicid simulation of the detonation cycle in a cylindrical chamber. First, we describe our computational method for solving the time dependent Euler equations used in the study.

#### The Unsteady Euler Solver

A new second order algorithm for solving the Euler equations on an unstructured grid was used in our study of the detonation concept. The approach is based on first and second order Godunow methods. The method leads to an extremely efficient and fast Flow Solver which is fully vectorised and easily lends itself to parallelisation. The low memory requirements and speed of the method are due to the use of a unique data structure.

Until recently most CFD simulations were carried out with logically structured grids. Vectorisation and/or parallelisation did not present a problem. The increased need for simulation of flow phenomena in the vicinity of complex geometrical bodies and surfaces has led to the development of CFD codes for logically unstructured grids. The most successful of these unstructured grid codes are based on finite elements or finite volume methods. For an unstructured grid in two-dimensions, the computational domain is usually covered by triangles and the indices of the arrays containing the values of the hydrodynamic flow quantities are not related directly to the actual geometric location of a node. The calculations performed on unstructured grids evolve around the elemental grid shape (e.g. the triangle for two-dimensional problems) and there is no obvious pattern to the order in which the local integrations should be performed. Explicit integration of hydrodynamic problems on an unstructured grid requires that a logical substructure should be created which identifies the locations in the global arrays of all the local quantities necessary for the integration of one element. This usually results in a large

price in computational efficiency, in memory requirements, and in code complexity. As a consequence, vectorisation for the conventional unstructured grid methods has concentrated on rearrangement of the data structure in a manner such that these locally centered data structures appear as global arrays. This can be done to some extent using machine dependent Gather-Scatter operations. 25,28 Additional optimisation can be achieved using localisation and search algorithms. However, these methods are complex and result in marginal improvement. Most optimized unstructured codes to date run considerably slower and require an order of magnitude more memory per grid cell then their structured counterparts. Parallelisation of the conventional unstructured codes is even more difficult, there is very little experience with unstructured codes on massively parallel computers.

The method we have developed overcomes these difficulties and results in code with speed and memory requirements comparable to those found in structured grid codes. Moreover, the ability to construct grids with arbitrary resolution leads to a flexibility in dealing with complex geometries not attainable with structured grids. The essence of the method is based on independent flux calculation across the edges of a dual baricentric grid, followed by node integration. This approach is order independent. Below we give the essential details of our algorithm; a complete description follows later.

#### Basic Integration Algorithm.

We begin by describing the first order Godunov method for the system of two-dimensional (axi-symmetric) Euler equations written in conservation law form as

$$\frac{\partial \vec{Q}}{\partial t} + \frac{\partial \vec{F}}{\partial z} + \frac{\partial \vec{G}}{\partial r} = -\frac{1}{r}\vec{C} , \qquad (1)$$

where,

$$\vec{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \end{pmatrix}, \ \vec{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ (e+p)u \end{pmatrix}, \ \vec{G} = \begin{pmatrix} \rho v \\ \rho v u \\ \rho v^2 + p \\ (e+p)v \end{pmatrix},$$
$$\vec{C} = \begin{pmatrix} \rho v \\ \rho v u \\ \rho v^2 \\ (e+p)v \end{pmatrix}.$$

Here u and v are the x and r velocity vector components, p is the pressure,  $\rho$  is the density and e is the total energy of the fluid per unit volume. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set of equations (1) and that an initial distribution of the fluid parameters is given at t = 0 and some boundary coulitions defining a unique solution are specified on the boundary of the computational domain.

We look for a solution of the system of equations represented by Eq. 1 in the computational domain covered by as unstructured grid. As an example, Fig. 1a shows the unstructured triangular grid used in the pulsed detonation engine simulation. Here most of the computational effort is committed to the resolution of the flow inside the engine detonation chamber and in the immediate vicinity of the nossle. In Figure 1b an enlargement of the nossle region is shown, illustrating the ability to represent geometry of arbitrary complexity and with localized resolution.



Figure 1a Computational domain and grid used in simulation of PDE operation.



Figure 1b Enlargment of computational grid in the vicinity of the PDE nossis.

Fig. 2 displays a fragment of the computational domain with the corresponding dual grid. The secondary or dual grid is formed by connecting the baricenters of the primary mesh, thus forming fither polygons around the primary vertices.



Figure 2 The primary (triangles) and secondary (poligons) unstructured grids.

We have found, as have others,²⁷ that the best practical representation of the integration volume is obtained when the dual grid is formed by connecting baricenters of the triangles. Integration by the Godunov method²⁸ can be divided into two basic steps: 1. Calculation of the fluxes at the edges of the secondary grid using solutions of a set of one dimensional Riemann problems; 2. Integration of the system of partial differential equations which amounts to addition of all the fluxes for every polygon at a particular time step.

To define the fluxes for the grid shown in Fig. 2 at every edge of the main grid it is necessary to solve the corresponding Riemann problem. For example, to define the flux at the edge ab, we solve the Riemann problem between points A and B. The solution of this problem is in coordinates local to the edge of the dual grid ab so that the tangential component of velocity will be directed along this edge (ab). Implementation of our approach requires maintaining strict consistency when defining the "left" and "right" states for the Riemann problems at the edges ab. bc. cd. de. ef, and fa. For this reason we define not only the location of the vertices and lengths of the edges but also the direction of the edges with respect to the primary grid. For the clockwise integration pattern in the same Polygon, point A will be the "right" state for all the Riemann problems related to this point and the neighbor will represent the "left" side of the diaphragm.

It is easy to see that the flux calculation is based on information at only two nodes and requires single geometrical parameters defining the edge of the secondary grid that dissects the line connecting the two points. Thus, we can calculate all the values needed for flux calculation in one loop over all edges of the primary grid without any details related to the geometrical structures which these edges form. This in turn assures parallelisation or vectorisation of the algorithm for the bulk of the calculations involving the Riemann solver that provides the first order flux. The only procedure not readily parallelisable is the integration of the fluxes for the flow variables at the vertices of the grid. Here we use the "edge coloring" technique which allows us to split the flux addition loop into 7 or 8 loops for edges of different color. Each of these loops is usually large enough not to impair vectorisation. At this stage all the fluxes are added with their correct sign corresponding to the chosen direction of integration within the cell. The amount of calculation required here is minimal since the fluxes are known and need only to be multiplied at each time step by a simple factor and added to the vertex quantity.

#### Second Order Integration Algorithm

٤

The second order solver is constructed along lines similar to that from the first-order method. At each cell edge the Riemann problem is solved for some specified pair of left and right conditions. The solution to this Riemann problem is then used in the calculation of fluxes which are added later to advance to the next integration step. The extension to second order is achieved by using extrapolation in space and time to obtain time-centered left and right limiting values as inputs for the Riemann problem. The basic implementation of the method of calculation of second order accurate fluxes is fundamentally the same as for one dimensional cases. The only difference is in the method of obtaining linear extrapolation of the flow variables as a first guess of their value at the edges of the dual grid. To obtain the first guess we need to know the gradient of some gasdynamical parameter U at the vertices of the primary mesh. The value of  $\nabla$  U can be evaluated by using a linear path integral along the edges which delineates the finite volume associated with the vertex. For vertex A in Figure 2:

$$\int_{A} \nabla U dA = \oint_{l} U n \ dl \tag{2}$$

where integration along the path l in this case is equivalent to integration along the edges ab, bc, cd, de, ef, fa. Knowing the gradient of the gasdynamic parameter in the volume related to vertex A will allow us to extrapolate the values of this parameter at any location within the volume. This permits us to evaluate the first guess for U at the edges of the dual grid. The final four steps of the implementation of the second order algorithm has been described previously.²⁸

A schematic flow chart of the basic steps of the second order algorithm implementation is shown in Figure 3.





#### Simulations of the Generic Pulsed Detonation Engine

In this section we present sample results of simulations of the generic PDE device using the numerical code described in the preceding section. In Figure 1a the computational domain containing the PDE main detonation chamber is shown covered with the unstructured grid. In our sample simulation we have chosen a small ≈ 15 cm long and ≈ 15 cm internal diameter cylindrical chamber with a small converging nossle. This geometry is one of a number of the geometries we have analyzed in a parametric study whose goal is to evaluate and optimise a typical PDE device. The device shown in Figure 1a does not represent the optimum and is given here to illustrate our methodology. We consider a situation when the PDE serves as a main thruster for a vehicle traveling in air with the velocity of M = 0.9 and located at the aft end of the vehicle. The main objectives of the simulations presented here are:

1. To find the maximum cycle frequency. This is determined by the time required from detonation, exhaust of combustion products and intake of fresh charge for the next detonation.
2. To calculate the thrust produced during each cycle and the integrated thrust as a function of time.

The simulation begins at t = 0 when a strong detonation wave is initiated inside the detonation chamber. Initially the detonation wave travels from the open aft end of the chamber towards the interior with a maximum velocity of 1800  $\frac{m}{100}$  and maximum pressure of 20+10⁵ Pa. The distribution of pressure, velocity, and density of the detonation wave is defined through the selfsimilar solution for a planar detonation wave. The wave was directed towards the interior of the chamber to capture the kinetic energy of the wave and to prolong exposure of the inner chamber walls to the high pressure. In Figure 4a simulation results are shown at time t = 0.19 msec in the form of pressure contours and particle paths from different locations inside and outside the detonation chamber. From the pressure contour plots we observe that the shock reflection from the inner wall has taken place and detonation products are expanding into the ambient airstream. The flow inside the chamber is choked due to the converging nossle and the maximum pressure behind the shock is a Satm. The pressure inside the chamber is less than 3 atm. The strong expansion of the detonation products into the ambient airstream produces a shock wave with a spherical like front rapidly decaying in strength. As a result of the interaction of the expaning detonation products with the external flow a large toroidal vortex is created. The vortex is carried away quickly from the chamber by the external flow and by its own flow momentum.

In Figure 4a we also show particle paths for the particles introduced inside the chamber and outside just above the nossle. Examination of these trajectories allows us to follow the dynamics of the chamber evacuation and refill. In order to track the detonation products we initially place marker particles inside the chamber at three cross sections in clusters of four distributed equally normal to the detonation chamber axis. Each particle has a different color; however, particles in the same cluster have the same shade of color. At the three chosen cross sections we have designated shades of red, yellow, and blue for the particles located correspondingly at the left end, center and beginning of the nossle cross sections of the chamber. The movement of these particles is shown by connecting them with a continuous line beginning with particle location at t = 0 to the present time. In Figure 4a we observe that at time  $t = 0.19 \cdot 10^{-3}$ sec all particles originally in the nozzle cross section and three of the particles originally in the mid section have left the detonation chamber. However, particles originally introduced on the inner wall of the chamber have only advanced to the nossle region.

We use a different technique for observing the motion of the ambient gas outside the chamber. Here a

cluster of seven particles is introduced every 0.5 • 10⁻⁴ seconds in the external flow above the nossie. All such particles are traced as they move with the flow until they leave the computational domain. At any myen time only the current location of the particle is displayed, and since the particles are introduced periodically with time there is a large number of particles to trace. We assign a color to every cluster of external particles to keep track of the time when they were introduced in the calculation. The colors vary from magenta for those particles introduced early in calculation, to blue for those introduced shortly at the time before the end of a detonation cycle. In Figure 4a corresponding to very early times, only one cluster of external particles is visible. This cluster was introduced at t = 0 and is tracking the expanding flow of the detonation products.

In Figure 4b the simulation results are shown for  $t = 1.7 + 10^{-3}$  sec. The pressure contours show that a shock wave develops at the external edge of the nossle as a result of a strong expansion of the Mach 0.9 external flow. A result of overexpansion of the detonation products is that the pressure inside the detonation chamber is lower than the ambient pressure, causing the shock to be located lower on the external surface of the nossie. The external flow about the chamber has a stagnation point on the axis of symmetry downstream at ~ 25cm. At this time as it is evident from the particle trajectories that most of the detonation products have left the chamber. Figure 4b shows one continuous trace of the particles originating at the back wall of the detonation chamber having advanced well ahead of the stagnation point in the external flow.

The marker particles released outside and just above the nossles exit show two distinct flow paths. One path takes the flow past the stagnation point to the right of the detonation chamber; this flow path is marked by the four upper particle traces. Another flow path, marked by three lower particle released close to the nossle surface is deflected towards the detonation chamber exit. Figure 4b shows this deflected stream approaching the detonation chamber nossle. The magenta color of these particles indicates they were released at  $\approx 0.5 \times 10^{-3}$  sec.

Figure 4c corresponds to the simulation time  $t = 0.47 \cdot 10^{-3}$  sec. The pressure inside the chamber has risen as 1*atm*. Higher pressure at the chamber exit has caused the shock standing on the external surface of the nossle to move upwards. The particles marking the movement of fresh air into the chamber show these to be well inside with some reflecting from the end wall giving a second stagnation point for the reversed fresh airflow.

Figure 4d corresponds to the end of the first cycle when the detonation chamber should be filled with fresh charge and ready for the next detonation. In this figure the particle paths indicate that the chamber refills in a



b) t = 1.7 msec,

•

d) t = 7.4 msec, end of first detonation cycls.

Figure 4 Pressure contours and particle paths for various times during the PDE simulation; a) t = 0.19 msec, b) t = 1.7 msec,

c) t = 4.7 msec, d) t = 7.4 msec, end of first detonation cycle.

pattern suitable for fast mixing of the fuel-air mixture. We conjecture that fuel injection along the chamber axis will promote fast fuel-air mixing. We can see in Figure 4d that the farther injection of the external air flow inside the chamber stopped, and from that point on the mixture composition in the chamber will be fixed.



Figure 5 Thrust and force generated by PDE as function of time.

In Figure 5 total force and time averaged thrust generated by the device in the simulations discussed previously are shown as a function of time. The time averaged thrust is based on the total time for one cycle. As seen in Figure 5, initially a very large force of  $\approx 7 \pm 10^4$ lb is felt on the end wall of the detonation chamber. This is a result of the inwardly moving detonation wave used in our simulation. Very early during the sequence, this wave reflects from the left wall of the detonation chamber generating briefly a large force. This force rapidly decays and at  $t \approx 1.0 + 10^{-4}$  sec changes sign due to interaction of the strong shock wave with the converging nossle. This effect is noticeable in the thrust data; the average thrust decreases somewhat after reaching levels of a 200lbs. The shock partially reflects from the converging nossle walls and generates a wave moving to the left wall. The reflected wave thereafter generates positive thrust from  $t \approx 3.0 + 10^{-4}$  sec. Finally thrust levels reach the maximum of 225 lbs. and then decays slowly as a result of the cross sectional drag force. The simulations predict that to sustain this level of thrust will require a detonation frequency of about 150 Hz.

## Conclusions

The main intent of the present study was to carry out a review of the relevant literature us the area of detonation propulsion, to assess the state-or-the-art, and to recommend future research based on our findings. We have reviewed the literature and presented our summary in first section of this paper. Our initial conclusion from the review is that there is a substantial body of evidence leading toward the possibility of producing propulsion engines with significant thrust levels based on an intermittent detonation.

Most of the historical attempts at producing thrust based on the intermittent detonation cycle were carried out with the same basic experimental setup; namely, a long straight detonation tube employing forced fuel injection at the closed tube end. We have discussed the many reasons why such a device cannot take proper advantage of the physical processes associated with detonation.

The experiments performed at the Naval Postgraduate School using a self-aspirating mode of operation for pulsed detonation thruster produced very useful results which, upon further examination, provide us with a route towards practical propulsion engines of variable thrust levels which are both controllable and scalable.

We have explored some of the implications of the possible applications of the self aspirating detonation engine concept and have developed a suitable numerical simulation code to be used as a design, analysis and evalustion tool. In fact, the preliminary analysis of a candidate detonation chamber flow properties was shown to be dominated completely by unsteady gasdynamics. An attempt to understand the flow properties based on any steady state model or one-dimensional unsteady analytical model will miss such important aspects as fuel-air mixing and, shock refielction from internal geometrical obstacle such as the converging nossle. The unsteady similation code developed during the course of our study is a necessary tool that we plan to use in a study leading to a feasible prototype engine design realising the full potential of the intermittent detonation process.

## Acknowledgements

The authors would express appreciation to Drs. Adam Drobot and Aharon Friedman for helpful suggestions and advice. The work reported on here was supported by DARPA under contract N66001-58-D-0088.

#### REFERENCES

- 1. Stodola, A., Steam and Gas Turbines, McGraw-Hill Inc., 1927.
- Zipkin, M. A., and Lewis G. W., "Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jet Propulsion Engine," NACA TN-1702, Sept. 1948.
- Shults-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.
- Zinn, B. T., Miller, N. Carvelho, J. A., and Daniel B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," 19th International Symposium on Combustion, 1197-1203, 1982.
- Hoffmann, N., "Reaction Propulsion by Intermittent Detonative Combustion," Ministry of Supply, Volkenrode Translation, 1940.
- Nicholls, J. A., Wilkinson, H. R. and Morrison, R. B. "Intermittent Detonation as a Thrust-Producing Mechanism," Jet Propulsion, 27, 534-541, 1957.
- Dunlap, R., Brehm, R. L. and Nicholls, J. A., " A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine", ARS J., 28, 451-456, 1958.
- Nicholls, J. A., Gullen, R. E. and Ragland K. W., "Fessibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1966.
- Adamson, T. C. and Olsson, G. R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
- Shen, P. I., and Adamson, T. C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, 17, 715-728, 1972.
- Krsycki, L. J., Performance Characteristics of an Intermittent Detonation Device, Navweps Report 7655, U. S. Naval Ordnance Test Station, China Lake, California 1962.
- Matsui, H., and Lee, J. H., " On the Measure of the Relative Detonation Hasards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, 1269-1280, 1978.
- Korovin, L. N., Losev A., S. G. Ruban and Smekhov, G. D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fis. Gor. Varyva, Vol. 17, No.3, p.86, 1981.
- Smirnov, N. N., Boichenko, A. P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fis. Gor. Vsryva, 22, No.2, 65-67, 1986.
- 15. Lobanov, D. P., Fonbershtein, E. G., Ekomasov, S. P., "Detonation of Gasoline-Air Mixtures in Small

Diameter Tubes," Fis. Gor. Vsryva, 12, No.3, 446, 1976.

- Back, L. H., "Application of Blast Wave Theory to Explosive Propulsion," Acta Astronautica, 2, No 5/6, 391-407, 1975.
- 17. Varsi, G., Back, L. H., and Kim, K., "Blast Wave in a Nossle for Propulsion Applications," Acta Astronautica, 8, 141-156, 1976.
- Kim, K., Varsi, G., Back and L. H., "Blast Wave Analysis for Detonation Propulsion," AIAA Journal, Vol. 10, Oct. 1977.
- 19. Back L. H., Dowler, W. L. and Varsi, G., "Detonation Propulsion Experiments and Theory," AIAA Journal Vol. 21 Oct. 1983.
- Eidelman, S., Shreeve, R. P., "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Pressure Rise in a Diverging Channel," ASME FED-Vol. 18, Multi-Dimensional Fluid Transient, p.77, 1984.
- 21. Eidelman, S., "Rotary Detonation Engine," U.S. Patent 4 741 154, 1988.
- Helman, D., Shreeve, R. P., and Eidelman, S., "Detonation Pulse Engine,", AIAA-86-1683, 24nd Joint Propulsion Conference, Huntsville, 1986.
- Monks, S. A., "Preliminary Assessment of a Rotary Detonation Engine Concept," MSc Thesis, Naval Postgraduate School, Monterey, California, Sept. 1983.
- Camblier, T. L. and Adelman, N. G., "Preliminary Numerical Simulations of a Pulsed Detonation Wave Engine," AIAA-88-2960, AIAA 29th Joint Propulsion Conference, Boston 1988.
- R. Lohner, K. Morgan, and D.C. Zienkiswics, "Finite Element Methods for High Speed Flows," *AIAA 7th Computational Fluid Dynamics Confer*ence, Cincinnati, Ohio, AIAA Paper 85-1531 (1985).
- R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategies for Finite Element Aerodynamic Computations," AIAA 29th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 86-0499 (1986).
- T.J. Barth and D.C. Jespersen, "The Design and Application of Upwind Schemes on Unstructured Meshes," 27th Aerospace Sciences Meeting, AIAA-89-0366, Reno, Nevada.
- S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and It's Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10, 1984.



## AIAA-90-0460 COMPUTATIONAL ANALYSIS OF PULSED DETONATION ENGINES AND APPLICATIONS

S. EIDELMAN, W. GROSSMANN AND I. LOTTATI SCIENCE APPLICATIONS INTERNATIONAL CORPORATION McLEAN, VA

# **28th Aerospace Sciences Meeting**

January 8-11, 1990/Reno, Nevada

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

## COMPUTATIONAL ANALYSIS OF PULSED DETONATION ENGINES AND APPLICATIONS

S. Eidelman, W. Grossmann and I. Lottati

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Drive McLean, Virginia 22102

1

### 1. Introduction

This paper presents the results of a computational fluid dynamic simulation/ parameter study of the SAIC Pulsed Detonation Engine (PDE) concept. Results from computer simulations of generic PDE geometries over a wide range of subsonic and supersonic flight Mach numbers indicate that potentially practical detonation engines can now be conceptualized and optimized for specific flight requirements and missions. Specifically, the study shows that primary propulsion for aerodynamic vehicles of the PENAID variety may be possible at Mach numbers 0.5 < M < 0.8, thrust levels on the order of 100 pounds and a specific fuel consumption of the order of 1 lb./(lb.hr.). The predicted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. Finally, the PDE concept is scalable over a wide range of engine sizes and thrust levels. For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices which provide thousands of pounds thrust.

A literature search of past research on related concepts and devices uncovered important information which proved useful in pursuing our present study. A review of the literature¹⁻²⁴ reveals that a significant body of experimental and theoretical research exists in the area of unsteady propulsion. However, this research was not sufficiently extensive to provide a conclusive quantitative comparison between impulsive engine concepts and steady state concepts. In addition, the computational and analytical techniques were not sufficiently developed in the past to treat the inherently unsteady flows of pulsed engines. A new generation of analytical and computational tools exists today, allowing us to revisit and analyze these devices with a high degree of confidence.

Our paper is organized into the following sections: 2) description of the basic phenomenology of the airbreathing Pulsed Detonation Engine concept; 3) discussion of the numerical simulation results; and 4) conclusions. Details of the mathematical formulation of the simulation and a discussion of the numerical code used in the present study are given elsewhere.^{25,26}

## 2. The Generic Pulsed Detonation Engine

A detonation process, due to the very high rate of reaction, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device, with a wide range of variable cycle frequencies. There is no theoretical restriction on the range of operating frequencies; they are uncoupled from acoustical chamber resonancies. This is very important feature of the constant volume detonation process that differentiates it from the process occurring in a pulse-jet;³⁻⁴ the pulse jet cycle is tuned to the acoustical resonances of the combustion chamber. This leads to a lack of scalability for the pulse jet concept.

A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. The most recent and successful of these attempts was carried out at the Naval Postgraduate School (NPS) by Helman et al.²² During this study, several fundamentally new elements were introduced to the concept distinguishing the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successful self aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained. This frequency

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States. was in phase with the fuel mixture injection through timed fuel valve opening and spark ignition. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

As a result of the survey of past research on intermittent detonation devices, we have focussed our attention on the NPS experiments of Helman et al.²² The remainder of this paper is concerned with a computer simulation of performance characteristics of such a device. We have chosen a generic geometry, applicable to certain present day vehicle and mission requirements. and have parametrically varied key features which affect performance and assessed the effects of these variations.

The generic device we consider here is a small engine 15 cm long and 15 cm in diameter. Figure 1 shows a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload or aerodynamic vehicle, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine. As an example, a PENAID vehicle has been conceptualized requiring an engine with a diameter of roughly 15 cm and a useful continuous thrust at Mach 0.8 approximately 60-90 pounds. Such an engine should have a specific fuel consumption in the range of 1.7 to 1.9 lb. fuel/hr per pound and an endurance on the order of 10-30 minutes. These specifications are met by present day small turbojets. Hence, in order to be competitive, a PDE must at least meet these requirements. Should this prove to be the case, a PDE with no moving parts would be a very attractive engine from the point of view of performance, ease of manufacturing and cost.

A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical process requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is:

- 1. Initiation and propagation of the detonation wave inside the chamber,
- 2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers,
- 3. Fresh air intake from the surrounding air into the chamber.
- 4. The flow pattern inside the chamber during postexhaust pressure buildup which determines the strategy for mixing the next detonation charge,
- 5. Strong mutual interaction between the flow inside the chamber and surrounding the engine.





All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus, unlike simulations of steady state engines, the phenomena described above can not be evaluated independently.

The need to resolve the flow regime inside the chamber accounting for nozzles, air inlets etc., and at the same time resolve the flow outside and surrounding the engine, where the flow regime varies from high subsonic, locally transonic and supersonic, makes it a challenging computational problem.

The single most important issue is to determine the timing of the air intake for the fresh charge leading to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. The assumption of inviscid flow makes the task of numerically simulating the PDE flow phenomena somewhat easier than if a fully viscous flow model were employed. For the size of the generic device studied in this work the effects of viscous boundary layers are negligible with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently. Boundary layer effects on the present results are discussed later.

### 3. Results of Simulational Parameter Study

As mentioned, and as shown in Figure 1, we have chosen a small  $\approx 15$  cm long and  $\approx 15$  cm internal diameter cylindrical chamber as the basic device. In the figure, the detonation chamber including detonation wave and inlet valves are shown schematically. The PDE, as envisioned in the present study, would most naturally be applicable for a class of aerodynamic vehicles such as target drones and PENAID missiles among others. The exact details of this basic chamber geometry were modified during the course of the study in order to obtain the required aerodynamic or propulsion effects; however, these modifications did not significantly change the total internal volume of the chamber. Thus, the performance results for the different cases can be compared holding the chamber volume constant. The schematic shown in Figure 1 does not represent an optimum configuration and is given here mainly to illustrate our methodology. We consider a situation where the PDE serves as the main thruster for an aerodynamic vehicle traveling in air with Mach numbers between M = 0.2 and M = 5.0, and is located at the aft end of the vehicle. The main objectives of our study are:

- 1. To calculate the thrust produced during each cycle and the integrated thrust as a function of time,
- 2. To find the maximum cycle frequency. This is determined by the time required from detonation to the final exhaust of combustion products and intake of fresh charge for the next detonation,
- 3. To evaluate the parametric dependence of the thrust and detonation frequency on the flight Mach number and detonation chamber geometry details.

In addition to the technical objectives outlined above, we have set another goal for our study. We require that the best, but by no means optimum, configuration produce a minimum of 60 pounds thrust at an operating frequency of 140 cycles per second. The definition of best is that configuration which satisfies the technical objectives outlined above and meets the operational goal of 60 pounds thrust and 140 Hz frequency over the flight regimes from M=.2 to M=0.9. (The Mach number range corresponds to that of a PENAID missile mission profile.)

To achieve these objectives we have conducted a comprehensive parametric simulational study of the PDE performance. We have studied PDE engine performance for a range of Mach numbers with two separate initial detonation locations in the chamber and for various geometry modifications. In addition to the range of subsonic Mach numbers we have examined PDE performance in the supersonic regime, 2 < M < 5. The geometry modifications included converging exhaust nozzles, inlets and dynamic valves. A computer simulation code was developed and optimized for a Stellar graphics workstation to carry out the analysis. In addition, a particletracing package was developed and implemented in the code. This allowed us to analyze the flow pattern inside and outside the detonation chamber, the main sources creating this pattern as a function of time, and the composition of the resulting gas mixture (air/detonation products).





First we will describe in detail the results for a typical simulation, Case 1, and illustrate the main features of our analysis.

<u>Case 1</u>. The simulation begins at t = 0 when a strong detonation wave is initiated inside the detonation chamber. The detonation chamber for this case includes a simple annular inlet which remains open during operation. The external freestream Mach number is 0.8. The specific fuel chosen for the present simulations is ethylene. The chemical reaction occurring in the ethylene/air detonation process is given by:

$$C_2H_4 + 3O_2 + 11.24N_2 - 2H_2O + 2CO_2 + 11.24N_2$$

The detonability limits of ethylene in air range from 4 to 12% by volume and depend somewhat on temperature and pressure. We assume for the sake of simplicity that the fuel/air ratio is 6% by volume. Because the detonation initiation and propagation (detonative combustion) takes place several orders of magnitude faster than any of the other flow processes in or surrounding the device. finite rate chemistry is not included in the simulations. Instead the equation of state for the flow in the chamber immediately after detonative combustion was adjusted to represent the correct physical state of the combustion products. Initially the detonation wave travels from the closed end of the chamber towards the open aft end with a maximum velocity of 1800 m/sec and maximum pressure of  $20 * 10^5 Pa$ . The initiation of the main detonation wave is assumed to take place via a device proposed and successfully implemented by Helman, et al.;²² namely, a primary detonation is established in a small tube containing an oxygen rich mixture. This mixture requires a low initiation energy but will sustain a detonation which, in turn, is used to trigger the main detonation wave. We do not model the detonation tube; but, we assume that such a device is present to trigger the main detonation at t = 0. The distribution of pressure, velocity, and density of the detonation wave is defined through the selfsimilar solution for a planar detonation wave. A schematic of the detonation wave distribution in space in Figure 2 shows pressure, temperature and velocity as a function of the spatial extent of the detonation wave.

In Figure 3a simulation results are shown at time t = 0.64 m/sec in the form of pressure contours and particle paths from different locations inside and outside the detonation chamber. The free stream Mach Number is 0.8. From the pressure contour plots we observe that the detonation shock wave has left the chamber and is freely expanding outwardly in the external flow. The strong expansion of the detonation products into the ambient airstream produces a shock wave with a spherical-like front that rapidly decays in strength away from the source. A large toroidal vortex is created as a result of the interaction of the expanding detonation products with the external flow. The vortex is carried away quickly from the chamber by the external flow and by its own momentum. At the time shown in Figure 3a, the detonation products are almost fully expanded into the ambient air and the maximum pressure at the front of the shock wave is 1.2 atm. As a result of this expansion the detonation products inside the detonation chamber are overexpanded and their pressure is 0.45 atm.

In the upper frame of Figure 3a we show particle paths for the marker particles introduced inside the chamber and outside just above the nozzle exit. Examination of these trajectories allows us to follow the dynamics of the chamber evacuation and subsequent refill. In order to track the detonation products we initially place marker particles inside the chamber at three separate cross sections in clusters of four. Each particle has a different color; however, particles in the same cluster have the same shade of color. At the three chosen cross sections we have designated shades of red, yellow. and blue for the particles located correspondingly at the left chamber end, center and aft end of the nozzle cross section. The movement of these particles is shown by connecting them with a continuous line beginning with particle location at t = 0 to the present time. In Figure 3a we observe that at time  $t = 0.64 \times 10^{-3}$  sec all particles originally in the nozzle cross section (the cross section at the aft end) and three of the particles originally in the mid section have left the detonation chamber. However, particles originally introduced at the inner end wall of the chamber (red traces) have only advanced to the nozzle region.

We use a different particle technique for observing the motion of the ambient gas outside the chamber. Here a cluster of seven particles is introduced every  $0.5 * 10^{-4}$ seconds in the external flow above the nozzle. All such particles are traced as they move with the flow until they leave the computational domain. At any given time only the current location of the particle is displayed, and since the particles are introduced periodically with time, there are many particles to trace. We assign a color to every cluster of external particles to keep track of the time when they were introduced in the calculation. The colors vary from magenta for those particles introduced early in the calculation, to blue for those introduced near the end of a detonation cycle. In Figure 3a, which corresponds to early times, only 12 clusters of external particles are visible. These clusters were introduced from t = 0 to  $0.6 \pm 10^{-3}$  second, vary from magenta to red in color. and are tracking the expanding flow of the detonation products.

In Figure 3b the simulation results for the same case are shown for  $t = 1.4 * 10^{-3}$  sec. The pressure contours show that a strong stagnation point develops on the axis of symmetry downstream at  $\approx 25$  cm as a result of a strong expansion of the Mach 0.8 external flow around the engine. At this time it is evident from the particle trajectories that most of the detonation products have left the chamber. Figure 3b also shows that only traces of the particles originating at the back wall of the detonation chamber are left in the computational domain. These particles advanced to the aft end of the chamber and then following the contraction of the over expanded detonation products, reversed their flow direction. The pressure contour plots in Figure 3b show the formation of an additional stagnation point at the closed end wall of the detonation chamber resulting from the inverse flow of the detonation products. The average pressure in the chamber is below ambient and is  $\approx 0.55$  atm.

The marker particles released outside and just above the nozzle exit show two distinct flow paths. One path takes the flow past the stagnation point to the far right of the detonation chamber; this flow path is marked by the four upper particle traces. Another flow path, marked by three lower particles released close to the external wall of the chamber, are deflected from the stagnation region towards the detonation chamber exit. The magenta color of these particles indicates they were released at  $t \approx$  $0.6 \pm 10^{-3}$  sec.

Figure 3c corresponds to the simulation time  $t = 2.2 \pm 10^{-3}$  sec. The pressure inside the chamber has risen to  $\approx 0.8$  atm. The stagnation region at the closed end of the detonation chamber continues to develop and has produced a compression wave moving toward the open end of the chamber. The particles marking the movement of fresh air into the chamber show these to be well inside the chamber, with some reflecting from the end wall and contributing to the pressure at the second stagnation point. The circular motion of a few of the detonation products particles (red solid lines), indicates that the detonation products which did not expand with the first shock wave are now "trapped" inside the detonation chamber.

Figures 3d and 3e correspond to the end of the first cycle when the detonation chamber should be filled with fresh charge and ready for the next detonation. However, these figures indicate that the fresh air refill is not totally satisfactory for this chamber configuration. The marker particle paths indicate that the chamber refill is incomplete and at a time of  $t = 4.7 \times 10^{-3}$  sec the refill process has essentially stopped. As a result, only about a third of the detonation chamber volume has enough fresh air for the next detonation cycle.

In Figure 4 the total force and time averaged thrust generated by the device in the simulations just discussed, are shown as a function of time. The time averaged thrust is based on the total time for one cycle defined as  $7.0 \pm 10^{-3}$  sec. This time is equivalent to a detonation frequency of 140 Hz. As seen in the figure, initially a very large force of  $\approx 3.2 \pm 10^3$  lb is felt on the end wall of the detonation chamber. This force is a result of the high pressure behind the detonation wave. It rapidly decays and at  $t \approx 0.5 * 10^{-3}$  sec changes sign due to over expansion and dynamic pressure of the external flow. This effect is noticeable in the thrust data; the average thrust increases rapidly but decreases after reaching levels of  $\approx 55$  lbs. At the end of the simulation the thrust is actually negative  $\approx -20$  lbs. The average thrust for one cycle in this case will be  $\approx 10$  lbs.

The simulation just described has served to illustrate the information generated with the numerical simulations. For the remaining simulations, emphasis was placed on determining the effects of propagation direction of the main detonation wave, effects of inlet and valve geometry, detonation chamber geometry and Mach number. Many of the simulations produced unsatisfactory results from the point of view of ineffective fresh air refill and hence either not enough fresh charge for repetitive detonations or too slow a refill resulting in low detonation frequency. We give below examples of successful simulations at Mach 0.8, Case 2 and Mach 2, Case 3.



Figure 4. Time averaged thrust and force data from simulation of Case 1.

<u>Case 2</u>. The results from all simulations show that, irrespective of the inlet geometry, but with a straight nozzle and initial detonation position at the nozzle exit plane, sufficient thrust levels can be produced. A remaining problem in view of the objectives is to demonstrate that enough fresh air can be injected into the chamber to produce the required conditions for intermittent detonation at a frequency of 140 Hz. To accomplish this, we have considered a contoured inlet in the periphery of the end wall of the detonation chamber. The details of this inlet geometry and the computational grid are shown in Figure 5.

For the initial tests with this inlet no attempt was made to optimize the inlet geometry for a given flow regime. Figures 6a-f present results for the simulation of the chamber geometry shown in Figure 5.

The flight Mach number in this case is 0.8. The initial detonation wave is launched inwards and its energy parameters are the same as in all previous cases. In Figure 6a we see two distinct shock waves expanding into ambient air: one generated by expansion from the aft of the chamber and another produced by the expansion through the inlet. We also notice some particles tracing the motion of the detonation products flowing out through the inlet. In Figure 6b, at time  $t = 0.7 * 10^{-3}$ sec., fresh air is noted entering the chamber through the inlet. At this time the dominant pressure in the chamber is 0.77 atm. Figure 6c shows that at the time  $t = 1.4 * 10^{-3}$  sec. 3/4 of the detonation chamber is filled with fresh air. The strong air jet entering the chamber impinges the axis of symmetry, creating two large vortices which rotate in opposite directions. Such vortical motion would promote effective fuel-air mixing in the chamber. In Figure 6d,  $t = 2.4 * 10^{-3}$  sec., the fresh air stream begins to exit the chamber. At this point the mixture inside the chamber has achieved the required conditions for the next detonation. This result translates to a sustained detonation frequency of  $\approx 400$  Hz. In Figures 6e-f we follow the later evolution of the flow pattern inside and outside the chamber. We observe strong air flow through the inlet with a strong recirculation pattern, which will assure fuel air mixing even if the fuel is injected into the chamber with a delay to sustain intermittent detonation at a lower frequency. In Figure 7 thrust and force simulated for the last case are shown as a function of time. First we notice that the maximum thrust for this case is  $\approx$  70 lbs., somewhat lower than for the cases with a very simple annular inlet and completely flat end walls.



Figure 5. Computational grid for the inlet geometry used in simulation of Case 2.

This results from a reduction of the area normal to the propagation direction of the detonation wave due to the inlet geometry. It is surprising that the case with the inlet results in a reduction of the average thrust as a function of time that is almost the same as for a case without inlet at the same Mach number ( $\approx 90$  lb reduction without the inlet and 100 lb reduction with the inlet). This strongly indicates that the generic inlet we have just considered will not contribute significantly to the drag produced by the chamber dynamics and interaction with the ambient flow. The cycle average thrust generated by the PDE based on 150 Hz operation frequency in this case is  $\approx 100$  lbs. This value is somewhat larger than the thrust targeted for this study.



Figure 7. Time averaged thrust and force data from simulation of Case 2.

<u>Case 3</u>. Results for a Mach 2.0 simulation of the same geometry as in the previous simulation; but with a more geometrically complex inlet are shown in Figures 8a-b. The inlet geometry for this case was determined from near choked flow conditions in the throat region of the inlet. In addition to the pressure contours and particle paths, in this case we also show velocity vectors. We observe in these figures that the detonation chamber is quickly filled with fresh air at the time  $t = 1.3 * 10^{-3}$ sec., which corresponds to a detonation frequency of 700 Hz. In practice this high frequency will be difficult to realize, because of the mixing and initiation problems. In Figure 9 we show angle and force results for this simulation. We observe that after  $3.0 * 10^{-3}$  sec. the net average thrust is still 50 lbs.



Figure 9. Time averaged thrust and force data from simulation of Case 3, 140 Hz detonation frequency.



Figure 10. Time averaged thrust and force data from simulation of Case 3, 200 Hz detonation frequency.

The cycle averaged thrust based on 140 Hz detonation frequency, for this simulation is  $\approx$  70 lbs. However, as

previously mentioned the fresh air refill time allows a much higher frequency of detonations. Figure 10 shows the same results as Figure 9, but calculated for a 200 Hz cycle frequency. In this case the maximum average thrust is  $\approx 280$  lbs. and the net cycle averaged thrust is  $\approx 100$  lbs. This result indicates the promising potential of the PDE concept for supersonic propulsion.

## 4. Conclusions

In this section we present our conclusions reached after carrying out a review of past research on detonative propulsion and a detailed numerical simulation of a generic pulsed detonation engine (PDE) device. The primary conclusion is that the PDE shows promising potential in providing primary propulsion for a range of present day aerodynamic vehicles such as target drones. PEN.AID missiles and other smart missiles that require loitering and throttling capability. The operating flight regimes of such a propulsion engine may extend from the low subsonic to supersonic regimes.

Most of the past attempts at producing thrust based on an intermittent detonation cycle were carried out with the same basic experimental set-up; namely, a long straight detonation tube employing forced fuel injection at the closed tube end. We have pointed out the reasons²⁵ why such a device cannot take proper advantage of the physical processes associated with detonative combustion. We have also indicated that, because of the conclusions reached during experiments with such devices, the development of intermittent detonative propulsion was adversely prejudiced and stalled at an early stage.

The experiments performed at the Naval Postgraduate School based on a self-aspirating mode of operation for a pulsed detonation thruster produced very useful results which, upon further examination, provide us with a route towards practical detonation engines of variable thrust levels that are both controllable and scalable. A generic PDE device based on the NPS experiments was conceptualized and served as the basic model for a comprehensive series of numerical simulations. The goal of the simulations was to understand the parametric dependence of the PDE device variables on propulsion performance such as thrust and detonation cycle frequency.

The principle conclusions drawn from the simulation results are as follows. First, the target thrust and cycle frequency of 60-90 pounds and 140 Hz, respectively, have been realized in the simulations. These target values were dictated by knowledge of present day requirements for planned aerodynamic vehicles such as PENAID devices. Before proceeding, it is appropriate to mention again that the performance of the PDE device is governed entirely by unsteady flow processes. Note of the wave averaging effects which had been predicted by previous studies were found and, it was shown dramatically that the internal (detonation, expansion, refill and mixing) flow processes are directly coupled to the external (shock formation, stagnation point formation, vortex shedding, etc.) flow processes. These two flows must be simultaneously analyzed if a reliable estimate of performance is to be determined. The present study is the first fully unsteady computational analysis of an intermittent detonation scheme with realistic geometry and external flow computed self-consistently.

The simulations further showed that the best thrust performance was realized when the full kinetic energy of the detonation wave was captured on the thrust surface (the closed end wall of the detonation chamber). This indicates that the detonation initiation must be controlled; the ignition must take place in the vicinity of the exit plane of the chamber resulting in initial propagation of the wave towards the chamber wall. The magnitude of the total and time averaged thrust is a strong function of the strength of the wave, the cross-sectional area of the end wall normal to the wave direction, and a weak function of the specific geometrical details of such variables as valve or inlet shape. The simulations also showed that for most situations involving simple inlets (flat cylindrically symmetric openings in the chamber external wall) the thrust data was independent of whether the valve intermittently opens or remains open during the full cycle. This leads to the possibility of a permanently open valve and a no moving parts manifestation of a PDE device. The thrust data indicates a dependence on the external flight conditions, e.g. Mach number. The Mach number plays a role in the wave drag that the geometry of the PDE will incur; the details of the valve and inlet configurations figure prominently in the total wave drag.

On the other hand the simulations showed that the timing of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products, the resulting overexpansion of the chamber flow and, the external flow regime and interaction of the external flow with the internal flow. For subsonic flight, Mach 0.2-0.9, the fresh air entering the chamber comes from two separate principal flow processes; one comes from the flow through any valve or inlet and the other comes from the selfaspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interdependent, as reported in Section 3, and, in order to search for a given performance in a given device requires variation of many parameters. The simulation results obtained to date provide an understanding of the effects caused by variation of the above mentioned parameters, and with the information available we are able to conclude that a PDE propulsion unit can be optimized (although no optimization studies were carried out) for a given flight regime. In order to find an optimum configuration satisfying given performance over a wide flight regime a more extensive simulation study will be required. It was mentioned earlier that the simulations presented here were carried out under the assumption of inviscid flow; boundary layer effects were not included. The addition of boundary layers to the PDE engine inlets and valves, the only components where boundary layers will be significant, will lead to increased performance. Roughly the same amount of fresh air will flow into the over expanded detonation chamber but at a somewhat slower rate and in a pattern that will promote enhanced circulation and hence fuel/air mixing. We return to the issue of optimization below.

We give now results from sample performance calculations of the application of the PDE device to proposed aerodynamic vehicles such as a PENAID missile based on the results from our simulations. These predictions are based on point design data for an inlet geometry which has not been optimized. We believe that increased performance can be found through a systematic optimization of the PDE device characteristics. First we consider the Mach 0.8 case and the inlet described in Case 2.

The maximum operation frequency for the device is 400 Hz. The following performance is a consequence of the simulation data:

For a frequency of 100 Hz.:

Thrust	9 lb.
Fuel flow rate	sec.
Fuel weight for 12 min	8 Ib.
Oxygen weight	3 lb.
Fuel for detonation tube	ib.
Total oxygen and fuel weight	4 ІЬ.
Total engine weight	216.
Specific fuel consumption 1.14 lb./(lb.*	hr.)

Assuming the PDE device geometry is kept fixed. a higher detonation frequency will result in a linear increase in thrust and fuel flow rate at the same specific fuel consumption. For example, if the detonation frequency is increased to 200 Hz., the performance data are:

Thrust	157 lb.
Fuel flow rate	lb./sec.
Fuel weight for 12 min	.36 lb.
Oxygen weight	.3.6 lb.
Fuel for detonation tube.	.1.2 ІЬ.
Total oxygen and fuel weight	40.8 lb.
Total engine weight.	54.4 lb.
Specific fuel consumption	b.*hr.)

At lower Mach numbers, M=0.5, the maximum operating frequencies will be lower since the external dynamic pressure responsible for supplying fresh air to the chamber is also lower. For the device under consideration here the maximum frequency is 250 Hz.

For a frequency of 100 Hz.:
Thrust
Fuel flow rate 0.025 lb./sec.
Fuel weight for 12 min
Oxygen weight
Fuel for detonation tube 0.6 lb.
Total oxygen and fuel weight
Total engine weight
Specific fuel consumption 0.9 lb./(lb.*hr.)

Again, if the frequency is increased the thrust will increase linearly; operation at 200 Hz. yields:

Thrust
Fuel flow rate 0.05 lb./sec.
Fuel weight for 12 min
Oxygen weight
Fuel for detonation tube 1.2 lb.
Total oxygen and fuel weight 40.8 lb.
Total engine weight
Specific fuel consumption 0.9 lb./(lb.*hr.)

The examples of performance of PDE devices given above are based on point design conditions arising from the simulations discussed in Section 3 of this report. They cannot be extrapolated with any degree of reliability to other conditions or configurations. We conclude however, that the performance computed for the indicated device is encouraging from the point of view of thrust, thrust control, simplicity of the device (no moving parts) and specific fuel consumption (SFC). The specific fuel consumption computed above is competitive with present day small turbojet engines. The SFC for a PDE could be significantly lower than for small turbojets (SFC's for small turbojets are in the range of 1.8-2.0 lb./(lb.*hr.)). Thus, for a given mission and vehicle, a PDE propulsion unit would be more fuel efficient resulting in increased range. Moreover, if the expected thrust control in PDE's is realizable, it may be possible to produce propulsion units that can slow down, loiter and maneuver and finally accelerate to full thrust again rapidly.

A final conclusion can be made concerning the application of PDE's to supersonic vehicles. As shown in the simulations the ability to refill the detonation chamber with fresh air charge is a very strong function of valve and inlet geometry. Refilling may also be somewhat enhanced by the self-aspiration effect, but; to a much less extent than in the subsonic case. The example of supersonic operation discussed in Section 3 shows that care must be taken in design of the inlet or valve configuration. The flow in the chamber must allow for refill and fuel/air mixing. More than likely choked flow conditions will be required at the inlet entrance to the chamber. This could lead to complications in the design of a PDE with simple geometry; choked flow conditions are a function of the external Mach number and a fixed inlet will be optimal only for a small range of the operating envelope. On the other hand, if a given vehicle is to fly at supersonic speeds and is launched at supersonic speeds, this problem may not appear. Further, if the given vehicle is launched at subsonic speeds and a booster is used to bring it up to the required supersonic operating speed, the problem may again not appear. We conclude that the PDE has potential for the supersonic flight regime and it is not excluded that a configuration can be found which will operate over the flight regimes 0.2 < Mach number < 3 in a fuel efficient manner.

Finally it is appropriate to speculate that the PDE concept is a candidiate for a hybrid propulsion device. Consider the following scenario. At low altitudes, up to 30-50 km, and at speeds ranging from low supersonic to hypersonic (2 < Mach number < 10) an air breathing engine can operate. Above these conditions air breathing is not effective and rocket propulsion is required. A PDE can operate in an air breathing mode as long as the external conditions allow it, and when no longer possible, the detonation chamber may be considered a rocket chamber in which detonation occurs with the fuel and oxygen supplied from on-board storage. Similar considerations have been made for NASP propulsion; serious penalties are made in that large quantities of fuel must be carried. However, for vehicles such as the current Pegasus, a PDE propulsion device may be attractive from the point of view of thrust control over a large portion of the flight envelope.

### Acknowledgements

The authors would like to express appreciation to Drs. Adam Drobot and Aharon Friedman of SAIC for helpful suggestions and advice during the course of this work. The work reported on here was supported by DARPA under contract N66001-88-D-0088. The authors would like to thank Col. Doc Daugherty for his encouragement and interest in this project.

## References

- Stodola, A., Steam and Gas Turbines. McGraw-Hill Inc., 1927.
- Zipkin, M. A., and Lewis G. W., "Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jet Propulsion Engine." NACA TN-1702, Sept. 1948.
- 3. Shultz-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.
- Zinn, B. T., Miller, N. Carvelho, J. A., and Daniel B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," 19th International Symposium on Combustion, 1197-1203, 1982.
- Hoffmann, N., "Reaction Propulsion by Intermittent Detonative Combustion," Ministry of Supply, Volkenrode Translation, 1940.
- Nicholls, J. A., Wilkinson, H. R. and Morrison, R. B. "Intermittent Detonation as a Thrust-Producing Mechanism." Jet Propulsion, 27, 534-541, 1957.
- Dunlap, R., Brehm, R. L. and Nicholls, J. A., " A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine", ARS J., 28, 451-456, 1958.
- Nicholls, J. A., Gullen, R. E. and Ragland K. W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1966.
- Adamson, T. C. and Olsson, G. R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
- Shen. P. I., and Adamson, T. C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, 17, 715-728, 1972.
- Krzycki, L. J., Performance Characteristics of an Intermittent Detonation Device, Navweps Report 7655, U. S. Naval Ordnance Test Station, China Lake, California 1962.
- Matsui, H., and Lee, J. H., "On the Measure of the Relative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, 1269-1280, 1978.
- Korovin, L. N., Losev A., S. G. Ruban and Smekhov, G. D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fiz. Gor. Vzryva 17, 86 (1981).
- Smirnov, N. N., Boichenko, A. P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fiz. Gor. Vzryva 22, 65 (1986).
- Lobanov, D. P., Fonbershtein, E. G., Ekomasov, S. P., "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes," Fiz. Gor. Vzryva 12, 446 (1976).

- Back, L. H., "Application of Blast Wave Theory in Explosive Propulsion," Acta Astronautica 2, 391 (1975).
- 17. Varsi, G., Back, L. H., and Kim, K., "Blast Wave in a Nozzle for Propulsion Applications," Acta Astronautica, 3, 141 (1976).
- Kim, K., Varsi, G., Back and L. H., "Blast Wave Analysis for Detonation Propulsion," AIAA Journal 10, Oct. 1977.

1

- 19. Back L. H., Dowler, W. L. and Varsi, G., "Detonation Propulsion Experiments and Theory," AIAA Journal 21, Oct. 1983.
- Eidelman, S., Shreeve, R. P., "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Pressure Rise in a Diverging Channel," ASME FED Multi-Dimensional Fluid Transient 18, 77 (1984).
- 21. Eidelman, S., "Rotary Detonation Engine." U.S. Patent 4 741 154, 1988.
- Helman, D., Shreeve, R. P., and Eidelman, S., "Detonation Pulse Engine,", AIAA-86-1683, 24th Joint Propulsion Conference, Huntsville, 1986.
- Monks, S. A., "Preliminary Assessment of a Rotary Detonation Engine Concept," MSc Thesis, Navai Postgraduate School, Monterey, California, Sept. 1983.
- Camblier, T. L. and Adelman, N. G., "Preliminary Numerical Simulations of a Pulsed Detonation Wave Engine," AIAA-88-2960, AIAA 25th Joint Propulsion Conference, Boston 1988.
- Eidelman, S., W. Grossmann, I. Lottati, "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 39-2466, AIAA/ASME/ SAE/ASEE 25th Joint Propulsion Conference. Monterey, CA, July 10-12, 1989 (to be published in AIAA Journal of Propulsion).
- Lottati, I., S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," Paper AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno. CA, Jan 8-11, 1990.











a) t = 1.3 msec,



b) t = 2.1 msec,

Figure 8 Pressure contours and marker particle paths for Case 3, M = 2.0, sculptured inlet, outward initial detonation location.



AIAA-90-0699

## A FAST UNSTRUCTURED GRID SECOND ORDER GODUNOV SOLVER (FUGGS)

Itzhak Lottati, Shmuel Eidelman, and Adam Drobot Science Applications International Corporation McLean, VA

# **28th Aerospace Sciences Meeting**

January 8-11, 1990/Reno, Nevada

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

## A FAST UNSTRUCTURED GRID SECOND ORDER **GODUNOV SOLVER** (FUGGS)

## Itzhak Lottari, Shmuel Eidelman, and Adam Drobot

Applied Physics Operation Science Applications International Corporation McLean, Virginia 22102

## ABSTRACT

We describe a new technique for solving Euler's equations on an unstructured triangular grid with arbitrary connectivity. The formulation is based on Godunov methods and is second order accurate. The use of a unique data structure leads to an easily vectorized and parallelized code with speed and memory requirements comparable to those found with logically structured grids. The new algorithm has been tested for a wide range of flow conditions ranging from low speed subsonic flow to hypersonic flow with Mach number 32. The results obtained are comparable to or better than those obtained with leading flow solvers in all of the regimes tested. The code contains no free parameters and can be used in complex flow problems where a variety of flow conditions may be encountered.

#### INTRODUCTION

This paper introduces a new second order algorithm for solving the Euler equations on an unstructured grid, using an approach based on first and second order Godunov methods. The formulation presented here leads to an extremely efficient and fast Flow Solver which is fully vectorized and easily lends itself to parallelization. The low memory requirements and speed of the method are due to the use of a unique data structure.

Explicit hydrodynamic numerical algorithms are easily adapted to Massively Parallel Computers (MPC) for logically structured grids. This is a consequence of the fact that the calculation of the flow quantities are locally determined. For logically structured quadrilateral grids, the integration algorithm or Flow Solver computes the new flow values at the grid cell nodes (or centers) using the values of the flow parameters from the previous timestep employing four or more of the adjacent nodes. Higher order structured solvers are usually more computationally intensive, but retain the ability of the solver algorithm to be separated into several distinct steps, each of which can easily be vectorized and parallelized.

Until recently, most CFD simulations were carried out with logically structured grids and consequently vectorization and/or parallelization did not present a problem. The increased need for simulation of flow phenomena in the vicinity of complex geometrical bodies and surfaces has led to the emergence of CFD codes based on logically unstructured grids. The most successful of these unstructured grid codes are based on finite elements [1-6] or finite volume [7-12] methods.

Unstructured grid CFD computations in two-dimensions usually decompose the simulation domain into triangular clements. The physical location of the triangular elements and the accompanying list of vertices and edges is random with respect to the element index, making it necessary to maintain an indirect addressing system containing the connectivity information.

Calculations performed on unstructured grids evolve around the elemental grid shape (e.g. the triangle for twodimensional problems); there is no obvious pattern to the order in which the local integrations should be performed. Explicit integration of hydrodynamic problems on an unstructured grid requires that a logical substructure be created identifing the locations in the global arrays of all the local quantities necessary for the integration of one element. As a result, there is usually a significant cost in computational efficiency, memory requirement, and code complexity: Approaches to vectorization for the conventional unstructured grid methods have concentrated on rearrangement of the data structure in a manner such that these locally centered data structures appear as global arrays. This can be done to some extent using machine dependent Gather-Scatter operations. Additional optimization can be achieved using localization and search algorithms [13]. However, these methods are complex and result in marginal performance. To date, most optimized unstructured codes have run considerably slower and require an order of magnitude more memory per grid cell than their structured Parallelization of the conventional counterparts. unstructured codes is even more difficult, and there is very little experience with unstructured codes on Massively Parallel Computers.

The method we describe in this paper overcomes these difficulties and results in code with speed and memory requirements comparable to those found in structured grid codes. Moreover, the ability to construct grids with arbitrary resolution leads to a flexibility in dealing with complex geometries which is not attainable with structured grids. The essence of the method is based on independent flux calculation across the edges of a dual baricentric grid, followed by node integration. This approach allows the flux and integration calculations to be performed on global arrays, coded as large vector loops, and is independent of element position on the unstructured grid.

In this paper we discuss our choice for data structure. the numerical algorithm (for first and second order solvers), and the results of test calculations. In realistic CFD

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

1

problems the physical domain may contain regions that span all flow regimes. It is very important that the numerical code be able to perform well over the full range of flow parameters with no a priori code "refinement." This is especially true of complex problems where flow conditions cannot be easily assessed in all subdomains. A robust code has clear advantages if it is possible to apply it with confidence under such circumstances. We have chosen four test problems to benchmark and validate the FUGGS code. These include: i) a subsonic flow case for steady flow with M = 0.2; ii) supersonic steady flow with M = 2.0; iii) hypersonic steady flow with M = 32.0; and iv) transit supersonic flow in a shock tube and over a wedge. For all of the test cases the method developed resulted in accurate solutions comparable to or better than reported in the literature by other leading CFD researchers. At the same time, the combination of using unstructured methods and our specific implementation yielded the lowest utilization of computer time and memory needed to achieve a given level of accuracy.

#### DATA STRUCTURE

On an unstructured grid, the data that describes the connectivity of a grid and the associated geometrical coefficients can represent a considerable overhead on memory usage. We have implemented a rather simple data structure which permits efficient finite difference integration of fluid quantities with only one level of indirection. For two dimensions, the data consists of lists of vertices, edges, and triangles. The physical quantities are stored at vertex locations. The vertex list consists of: the vertex positions (x,y), the fluid variables, the vertex volume, and workspace. The edge data is composed of: the addresses of the two vertices which form an edge, a vector which indicates the normal to the face that crosses an edge, the face area, and storage for the fluxes. The face is formed by joining the baricenters of the adjoining triangles which lie along the edge. This is the only data required in performing an iteration step. For convenience and ease of diagnostics, we have also maintained a list of triangles, including the positions of the baricenters, and the addresses of both the vertices and edges which form a triangle.

The data structure is compatible with algorithms which decompose the solution of the Euler equations into two steps. The first is determination of the fluxes. This can be realized by a loop over edges where the fluid quantities along the edge can be fetched through the indirect addressing of vertex data. The second step is to integrate the fluxes which contribute to the vertex. There are two options here: one is to maintain a list of flux elements at each vertex and to perform a loop over vertices and then fluxes to each vertex; the other is to again have a loop over edges where each contribution to the vertex is done as a random fetch and store using the appropriate vertex addresses stored by each edge.

## **BASIC INTEGRATION ALGORITHM**

We begin by describing the first order Godunov method for a system of two-dimensional Euler equations written in conservation law form as

$$\frac{\overrightarrow{\partial Q}}{\partial t} + \frac{\overrightarrow{\partial F}}{\partial x} + \frac{\overrightarrow{\partial G}}{\partial y} = 0, \qquad (1)$$

where,

$$\overrightarrow{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \end{pmatrix}, \quad \overrightarrow{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ (e + p)u \end{pmatrix}, \quad \overrightarrow{G} = \begin{pmatrix} \rho \\ \rho vu \\ \rho v^2 + p \\ (e + p)v \end{pmatrix}.$$

Here u and v are the x and y velocity vector components, p is the pressure,  $\rho$  is the density and e is the total energy of the fluid per unit volume. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set of equations (1), and that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

We seek a solution of the system of equations represented by Eq. (1) on a computational domain which is decomposed into triangles with arbitrary connectivity. An overwhelming advantage of using this method of domain decomposition is the ability to resolve extremely complicated geometries where the characteristic dimensions of subdomain features can vary over many orders of magninude.

As an example, Figure 1 shows an unstructured triangular grid used in the simulation of flow for a new generation of the wide body tennis rackets with 21 cross string rows represented as solid circles and a tennis ball. In Figure 1a a blowup of the region near the racket surface is shown. This example illustrates the ability of the unstructured grids to represent geometry of arbitrary complexity and with localized resolution.

There are several options possible for storing physical information on an unstructured triangular grid: i) vertex centered; and ii) triangle centered on either a baricentric or Voronoi node. The selection of a specific grid structure offers two contrasting approaches. The first is to place the effort on creating an optimal grid, as is the case with Voronoi - Delauney meshes, while the second is to rely on the robustness of the integration algorithm. For complex configurations it is more difficult to achieve an optimum Voronoi-Delauney mesh and we have therefore opted for a simple baricentric grid.

This grid can always be constructed for a set of arbitrary triangles. The integration algorithm we have constructed can easily be implemented for both vertex and baricentered control volumes. Figure 2 displays a fragment of such a computational domain with the corresponding dual grid. The secondary or dual grid is formed by connecting the baricenters of the primary mesh, thus forming finite polygons around the primary vertices. Independent of the remarks made in Ref. 17 concerning usefulness or Dirichlet tessellation, we have confirmed that the best practical representation of the integration volume is obtained when the dual grid is formed by connecting baricenters of the triangles.



Figure 1 An illustration of the ability of a triangular grid to efficiently resolve the geometric complexity and features of objects with disparte spatial scales.



Figure 1a Detail showing the features of a wide body tennis racket simulation including 22 strings and a tennis ball.

In keeping with the philosophy that the overall scheme should be able to perform in all flow regimes with no prior tuning of "free" parameters, we have chosen Godunov methods for performing the numerical integration of the Euler equations in the control volume. These schemes are self consistent and do not contain any adjustable knobs. The superior performance of Godunov type schemes for logically structured grids is well documented and the advantages can be readily realized on triangular grids. Integration by the Godunov method consists of two basic steps: i) determination of the fluxes on the faces of the dual grid, which defines the control volume. This is accomplished by solving a set of one-dimensional Riemann problems along triangle edges; and ii) integration of the system of partial differential equations, which now amounts to a summation of all the fluxes for the vertex-centered control volume at each timestep.



Figure 2 A triangular grid and the baricentered dual grid which defines the control volume. The fluxes are found on the faces of the control volume on each edge joining adjacent vertex points.

To define the fluxes flowing into the control volume shown in Figure 2, it is necessary to solve the Riemann problem along every edge of the primary grid and transverse to the faces of the dual grid. For example, to define the flux through the face ab, we solve the Riemann problem between vertices A and B. The solution of this problem is in coordinates local to the face of the dual grid ab so that the tangential component of velocity will be directed along ab. Implementation of our approach requires maintaining strict consistency when defining the "left" and "right" states for the Riemann problem at the faces ab, bc, cd, de, ef, and fa. For this reason we define not only the location of the vertices and areas of the faces but also the direction of the areas with respect to the primary grid edges. For the clockwise integration pattern in a polygon, vertex A will be the "left" state for all the Riemann problems related to this point and the neighbors will represent the "right" sides of the diaphragm.

It is easy to see that the flux calculation is based on information at only two nodes and requires simple geometrical parameters defining the face of the secondary grid which dissects the line connecting the two points. Thus, we can find all the values needed for the flux calculation in one vector loop over all edges of the primary grid without requiring any details related to the geometrical structures which these edges form. This in turn assures parallelization or vectorization of the algorithm for the bulk of the calculations involving the Riemann solver, which provides the first order fluxes.

The only procedure not obviously parallelizable is the integration of the fluxes for the flow variables at the vertices of the grid.

This operation requires a random fetch and store which can lead to conflicts that impair both parallelization and vectorization. Several common methods have been developed to deal with this difficulty. A practical approach is to split the integration of the fluxes into a small number of independent loops through the use of "edge" coloring. The number of loops necessary is determined by the maximum connectivity of any vertex in the domain and is usually 7 or 8. Each of these loops is usually large enough not to impair vectorization. At this stage all the fluxes are added with their correct sign corresponding to the chosen direction of integration within the cell. The amount of computation required here is minimal since the fluxes are known and need only to be multiplied at each time step by a simple factor and added to the vertex quantity. This simple procedure results in a first order solver which is fully vectorized.

## SECOND ORDER INEGRATION ALGORITHM

The second order solver is constructed along lines similar to that of the first-order method. At each cell face the Riemann problem is solved for the appropriate pair of left and right conditions. The solution to the Riemann problem is then used in calculation of fluxes, which are to be integrated later to advance to the next integration step. The extension to second order is achieved by using extrapolation in space and time to obtain time-centered left and right limiting values as inputs for the Riemann problem. The basic implementation of the method for finding the second order accurate fluxes is the same as for the one dimensional case and can be found in Refs. 14 and 16. The difference is the method of obtaining linear extrapolations for the flow variables as a first guess of their value on the faces of the dual grid. To obtain the initial guess we need to know the gradient of each gasdynamical parameter U at the vertices of the primary mesh. The value  $\forall$  U can be evaluated by using the linear path integral around the finite volume associated with the vertex. For venex A in Figure 2:

where integration along the path I in this case is equivalent to integration along the lines ab, bc, cd, de, ef, fa, and where n is a unit vector pointing outward from the control volume centered at A and normal to the integration path I. Knowing the gradient of the gasdynamic parameter in the volume related to vertex A allows us to extrapolate the values of this parameter at any location within the volume. This permits us to evaluate the first guess for U at the edges of the dual grid. The rest of the implementation of the second order algorithm is the same as described in Refs. 8 and 9. This includes monotonicity constraints similar to those introduced by VanLeer [15] and characteristic constraints described in Refs. 14 and 16.

A schematic of the basic steps for the second order algorithm is shown in Figure 3. This consists of five steps. They are: i) the calculation of the linearly extrapolated values at each side of the control volume faces using the left and right adjacent vertices and the values for each quantity and its gradient: ii) limiting the quantities obtained based on a monotonicity constraint; iii) a further limiter based on the solution of a one dimensional characteristic equation, which assures that the extrapolation does not violate the characteristics; iv) solution of the Riemann problem for the final extrapolated values with the limiters applied; and v) integration over the control volume.

The advantages of the method described will be demonstrated in the following section. The inclusion of the characteristic limiter has significantly improved the treatment of contact discontinuities and is the first such implementation on a triangular mesh.



Figure 3 Schematic for stepwise implementation of the second order Godunov method on an unstructured grid.

## **RESULTS FOR TEST PROBLEMS**

We have picked a set of test problems to demonstrate the performance of the FUGGS code for unsteady shock wave problems, and for subsonic, supersonic and hypersonic steady state flows. The cases in the chosen examples have analytical solutions that can be used to quantify the accuracy of the code and to validate the performance. This set of problems is frequently used by other CFD researchers and forms a basis for comparing FUGGS with other techniques.

#### . Unsteady Shock Problem

As a first test we have chosen a case of planar shock wave propagation in a channel.

A section of the grid used for this test problem is shown in Figure 4. The total grid contained - 2000 vertices with a resolution of 100 points in the direction of propagation. We simulated a simple shock tube problem on this grid where the gasdynamic parameters to the left and right of the diaphragm have the following values:

$$P_{I} = 1.0; \ \rho_{I} = 1.0; \ U_{I} = 0;$$
  

$$V_{I} = 0; \ \gamma_{I} = 1.4;$$
  

$$P_{r} = 0.1; \ \rho_{r} = 0.125; \ U_{r} = 0$$
  

$$V_{r} = 0; \ \gamma_{r} = 1.4.$$





This one dimensional problem was simulated on a rather ill formed grid (from the viewpoint of connectivity), Consequently the quality of the solution depended on the flow solver for accuracy. For the triangular shape of the elementary cell, planar shock and rarefaction waves generated by the solution always propagate at conflicting angles with respect to four out of the six edges of the control volume. The triangular grid chosen for this simple test problem therefore indicates the accuracy of FUGGS for shock waves of arbitrary shape and orientation moving through the computational domain. The density distribution found from three different versions of FUGGS is shown in Figure 5 as a function of x along the median cross section of the grid. The three cases are: i) first order Godunov method; ii) second order Godunov; and iii) second order Godunov with the characteristic limiter. The data displayed in the figure represents a loss of resolution due to interpolation of the actual grid values to the projected midsectional line. It is clear from Figure 5 that the final implementation of FUGGS with characteristic constraints yields the best results for contact discontinuities. The code also maintains the one dimensional structure for the shock in all three cases described above. The accurate representation of the density is also typical for all the other gasdynamic parameters.



Figure 5 Solution to the density distribution of shock problem with three different versions of FUGGS: a) First Order Godunov, b) Second Order Godunov without characteristics and c) Second Order Godunov with characteristics.

#### b. Shock on Wedge

Here we demonstrate the performance of the methods for steady supersonic flow simulations. An analytical solution from oblique shock wave theory exists and can serve as an unambiguous comparison with the numerical simulation.

The initial grid for the shock on wedge problem is shown in Figure 6. This gridding results in ~ 500 vertices and ~ 800 triangles. The wedge angle in Figure 6 is 10°. The incoming flow enters the computational domain normal to the left boundary at Mach number M=2. Figures 7a and 7b show isomach lines for the steady flow solution from the first and second order Godunov solvers on the original grid. Comparing these two solutions we can see that the second order solution substantially improves the shock resolution. However, it is obvious that the grid density is too small to adequately resolve the oblique shock wave in both cases.



Figure 6 Coarse grid for shock on wedge problem.



Figure 7a First order Godunov solution for the coarse grid shown in Figure 6.





To improve the accuracy a higher grid density is required in the region of discontinuity. This is achieved by subdividing the original elements of the grid in regions of large changes in flow parameters.

A variety of criteria can be devised to identify regions which require mesh refinement. An example is given in Ref. 2 where a preset condition is imposed on the resolution from local derivatives of the flow parameters. The implementation of this criteria in FUGGS would have led to a significant loss of computational efficiency because the stencil for the Laplacian is nonlocal and would require more than one level of indirectness. Instead we used a simple parameter variation criteria based on the local variation in pressure or density to select the grid regions needing refinement. Figure 8 shows an enhanced grid derived from the mesh shown in Figure 6 by two levels of subdivision. The number of triangles in this case increase from 800 to 1200. Figure 9 shows isomach lines of the solution using the second order method for the same shock on wedge problem as in Figures 7a and 7b. The improvement in shock resolution is dramatically noticeable. This problem also illustrates the ability of unstructured grid methods to provide local resolution for important flow features, without requiring excessive overhead for other regions of the computational domain.



Figure 8 Improved grid for the shock on wedge problem with two levels of refinement based on 5% variation in local value.



Figure 9 Second order Godunov solution for the shock on wedge problem using a grid with two levels of refinement.

#### c. Subsonic Flow

A challenging test problem to assess the performance of Euler codes for subsonic flow has been suggested by Pulliam (19]. He has computationally simulated a steady subsonic flow over an ellipse with major to minor axis ratio of 6:1. The numerical solution of Euler equations reported for this case at  $M_{\infty} = 0.2$  with angle of attack  $\alpha = 5^{\circ}$ produced a lift coefficient of  $C_L = 1.545$ . As is well known from D'Alembert's Paradox, inviscid flow at low Mach numbers should yield  $C_L = 0$  and have zero drag for a profile of an arbitrary shape. For this reason the problem posed by Pulliam is a good indicator of the accuracy and amount of artificial dissipation introduced by a numerical algorithm. Moreover, while a Euler solver is not meant to treat potential flow, a general purpose solver should be capable of simulating such flow conditions if they occur in a portion of a given problem without resorting to a different algorithm. In making a transition to full Navier-Stokes treatment, the use of a Euler solver is an essential step; it is important to have confidence that the artificial viscosity introduced does not dominate the solution.

For the case under consideration, it is very important to understand in detail the potential flow solution over an ellipse. Fortunately, the analytical solution is available and is relatively simple. The complex potential for the flow over a cylindrical ellipse is given by the following [20]:

$$F(z) = -\frac{1}{2} M_{oo}(a + b)e^{-i\alpha} \left[ \frac{z + \sqrt{z^2 - (a^2 - b^2)}}{a + b} + \frac{z - \sqrt{z^2 - (a^2 - b^2)}}{a - b} \right]$$

where Z = x+iy and  $M_{oo}$  is the Mach number. By taking the gradient of the potential we can find the velocity flow field explicitly:

$$\frac{U}{U_{ee}} = \frac{(1+\lambda)\sin(\theta+\alpha)\sin\theta}{\lambda^2\cos^2\theta+\sin^2\theta},$$

$$\frac{V}{U_{ee}} = \frac{(1+\lambda)\lambda\sin(\theta+\alpha)\cos\theta}{\lambda^2\cos^2\theta+\sin^2\theta},$$
(3)

where  $\lambda = b/a$  is the ratio of minor to major axis,  $\theta$  is the angle in polar coordinates from the center of the ellipse, and a is the angle of attack.

In examining this equation, we find that the maximum value of velocity is a strong function of  $\lambda$ . For an ellipse with  $\lambda = 1/6$ , the maximum value  $V/U_{\infty}$  occurs at  $\theta = 0$  or  $\pi$  and where  $V_{MAX}/U_{\infty} = 7 \sin \alpha$ . For a flat plate where  $\lambda \rightarrow 0$  the maximum velocity is infinite. The angle  $\alpha$ defines the distance between the stagnauon point where the velocity is zero (at  $\theta = -\alpha$  and  $\pi - \alpha$ ) and the point where the velocity is maximum (at  $\theta = 0$  and  $\pi$ ). For the case selected by Pulliam the distance between the point with minimum and maximum velocity is 0.19% of the length of the major axis.

This means that the gradient of velocity along the major axis of the ellipse in the vicinity of stagnation points is extremely high. With ~ 1000 points uniformly distributed on the surface of the ellipse, only one grid spacing is available to resolve both the stagnation point and the point at which maximum velocity occurs. Even though one would normally construct a nonuniform grid in the vicinity of the stagnation point, we estimate that enormous computational resources would be required to resolve the characteristic scale length for this problem. Traditional methods encounter difficulties in this situation because spatial splitting leads to a poor estimate of the gradient and the low connectivity of the mesh introduces spurious vorticity.

We performed two simulations for the conditions described by Pulliam. The number of nodes used on the surface of the ellipse is the same as in Ref. [19]. The grid is shown in Figure 10 for these simulations in the region immediately proximate to the ellipse. This grid is of poor quality and highly distorted; contains ~ 6000 vertices and ~ 130 points on the surface of the ellipse. The results are shown in the form of pressure contours in Figures 11 and 12 for the first order and second order solvers respectively. In the case of the first order algorithm, we obtained a lift coefficient of  $C_L = 0.29$ . The pressure contours for this simulation are not smooth, attributable to the low level of accuracy of the solver. The same situation resulted in  $C_L =$ 0.252 when computed with the second order solver, and as can be seen in Figure 12 the pressure contours are considerably smoother. The result presented by Pulliam was  $C_{\rm L} \approx 1.55$ , almost an order of magnitude higher than achieved with FUGGS. This highlights an important quality of our approach: the low generation of artificial viscosity. In comparison the lift obtained by Pulliam is as high as one would expect from thin profile theory and hence would mask real viscosity effects if they were added to the algorithm.



Figure 10 Section of the grid used in simulation of subsonic flow over an ellipse for conditions suggested by Pulliam [19].



Figure 11 First Order Euler Solution for 6:1 Ellipse. Pressure contours.  $\alpha = 5^{\circ}$ ; Mach = 0.2; 6065 vertices;  $C_{L} = 0.381$ ;  $C_{D} = 0.101$ .



Figure 12 Second Order Euler Solution for 6:1 Ellipse. Pressure Contours.  $\alpha = 5^{\circ}$ ; Mach = 0.2; 6065 vertices; C_L = 0.252; CD = 0.004.

We also simulated flow over a cylinder at M = 0.2. The grid for this case is shown in Figure 13. We examined the numerically produced lift with inflow conditions at various angles with respect to the x - axis (0°, 5°, 20°, 45°). The lift coefficient was angle independent and had a value  $C_L = 0.76$ , almost 20 times smaller than reported by Pulliam, whose results are angle sensitive. With the first order scheme we achieved a lift coefficient of  $C_L = 0.47$  with the drag coefficient  $C_D \equiv 1.49$ . For the second order scheme, shown in Figure 14, the drag coefficient was reduced to  $C_D = 0.19$  but the lift coefficient increased somewhat to the

value cited above. We also investigated the effects of grid refinement and found that a simple one level of refinement (adding ~ 400 vertices) led to a modest reduction in lift coefficient of about 20%. To reinforce a point made earlier, all of the results were achieved with no "free" parameters to adjust. These parameters are present in many CFD codes in the form of coefficient for artificial viscosity terms present the practitioner with a practical problem of how they should be selected for different flow conditions.



Figure 13 Grid for simulation of flow over a cylinder at varying inflow angles with respect to the mesh.



Figure 14 Second Order Euler Solution for a circular cylinder:  $\alpha = 45^{\circ}$ ; Mach = 0.2; 6311 vertices; C_L = 0.761; C_D = 0.196.

#### d. Hypersonic Flow

To demonstrate the versatility of the method for the entire range of flow regimes we have simulated a hypersonic flow test problem. One of the advantages of the Godunov type methods is that for the whole range of calculations performed (from low subsonic flow, supersonic flow, unsteady flow with strong shock, or hypersonic flow at Mach number M=32) it is unnecessary to change or adjust the numerical algorithm. In Ref. 21 performance of first and second order Godunov methods has been analyzed for hypersonic flow regimes. There, as a test problem, an analytical solution was used for a hypersonic flow around a flat plate of finite thickness. This solution was obtained based on the analogy between hypersonic flow over a flat plate of finite thickness and a strong planar explosion. Here we will use one expression from Ref. 21 which defines the shape of the shock wave as a function of plate thickness d,  $\gamma$ the adiabatic coefficient, and a a nondimensional scale factor related to the energy released at the stagnation point.

$$Y_{SHOCK} = \left(\frac{1}{2} D_f \frac{dx^2}{2}\right)^{1/3}$$

where Df is a coefficient of order unity,

$$a = k_1 (\gamma - 1)^{\frac{1}{2} + k_3 \ln(\gamma - 1)}$$

while  $k_1 = 0.36011$ ,  $k_2 = -1.2537$ , and  $k_3 = -0.1847$ .

As a direct comparison we solved the hypersonic flow problem for the same set of conditions as in Ref. 21:

$$U_{ee} = 10011$$
 meters/sec. p = 98.72 Pa,  
o = 1.24x10⁻³kg/m³ and  $\gamma = 1.2$ .

The grid used for this simulation is shown in Figure 15. This grid has  $\sim$  5500 vertices and it's spatial resolution at the leading edge of the plate is of the same order as that of a 300 x 60 rectangular grid used in Ref. 12.



Figure 15 Grid for simulation of hypersonic flow over a flate plate.

In Figure 16 results for this simulation are shown in the form of pressure contours. Figure 16 also shows the location of the analytically calculated shock front by a discrete line (squares). The shock resolution and accuracy of its location are comparable to that obtained in Ref. 21, even though our triangular grid has less than 1/3 the nodes than the rectangular grid used in Ref. 21. This is due to the fact that in constructing the triangular grid we had the flexibility to place the highest concentration of nodes in the area of the leading edge where the main properties of the flow are established.



Figure 16 Second order solution for a flat plate. Pressure Contours. Mach = 32; 5509 grid vertices;  $P_{max} = 5.0 \times 10^4$ ;  $P_{min} = 98.7 P_a$ .

## CODES COMPUTATIONAL EFFICIENCY

During the code development effort, great amention was paid to the code data structure, its efficiency and extendability to three dimensional calculations. In fact, the two dimensional version of the code has all the data structures required for the three dimensional simulations. That fact should be factored in comparing our storage overhead figures to those in other codes. Also while developing FUGGS we made a decision not to rely on machine-dependent functions, in order to assure portability. This feature is very important in the current supercomputing environment where a host of powerful parallel supercomputers and super workstations with diverse architecture are available and useful for different aspects of design.

The following performance characteristics have been achieved for the latest version of the FUGGS code:

1. First Order Godunov version:

Memory Requirement	36 places per triangle includes 5 physical quantities integer indexing arrays all geometric parameters
CPU Performance CRAY XMP-24 STELLAR 1000	15 μsec/vertex/timestep 79 μsec/vertex/timestep

2. Second Order Godunov version:

Memory Requirement	39 places per triangie	
CPU Performance CRAY XMP-24	45 µsec/vertex/timest Monotonicity step Characteristic limiter Riemann Solver Integration	5096 1596 3096 596
STELLAR 1000	214 usec/vertex/timestep	

These numbers are provisional since the code is still under development. We feel that further improvements in code performance will be achieved with respect to both timing and storage requirements.

## CONCLUSION AND DISCUSSION

We have presented a method for the numerical solution of Euler equations on an unstructured triangular grid. The method was tested for a wide range of flow conditions from low subsonic flow and unsteady flow with strong shock waves to hypersonic flow with Mach 32. For all these regimes, the method performed extremely well both in terms of solution accuracy and computational efficiency. The method is very robust and does not resort to adjustable computational parameters for the tested range of flow conditions. This is due to the fact that the numerical algorithm in FUGGS is based on Second Order Godunov schemes adapted to triangular grids. The method appears natural for unstructured triangular grids because the greater connectivity intuitively should lead to greater accuracy in eliminating errors introduced by splitting. In a typical hexagonal (or greater) control volume the contribution of fluxes is available from all six adjacent directions as opposed to just two in the case of a rectangular grid. Since the FUGGS method has been implemented on unstructured grids, it is possible to simulate flows over bodies of arbitrary geometry where the grid density can be concentrated in a region of flow discontinuity.

Especially interesting is the code's superior performance for the simulations of subsonic flow. For the test cases calculated here, our method appears to perform better than the leading industry codes like ARC2D and SYMTVD. We think that the two main reasons for the better performance are multidirectional splitting (to distinguish from two directional splitting typical for logically structured quadrilateral grids) and finite volume integration, more should be done to investigate this important aspect of the code's performance.

Historically, Euler solvers were developed to simulate nonisoentropic flows for which potential flow assumptions are incorrect. From the criginal development of numerical methods for the solution of Euler's equations, great effort has been devoted to resolving shocks and contact discontinuities, producing in dramatically improved results for shock wave hydrodynamics. At the same tune, attention to the accurate solution of the velocity gradients has been neglected. While these gradients are more difficult to discern than shock waves, they are more prevalent in practical flow problems and could lead to very significant errors in such important parameters as lift and drag coefficients. In addition, all vorticity and viscosity dominated phenomena depend on accurate solution of the velocity gradients. In view of the performed numerical simulations for subsonic flow over the ellipse and cylinder it is clear that unless these features are resolved, the numerical solution of Euler equations can introduce spurious vorticity, making the results from a fuil Navier-Stokes implementation impossible.

## Acknowledgment

This work was partially supported by Wright-Patterson Research and Development Center under contract No. F33615-88-C-3002 and by DARPA through AFOSR contract No. FY9620-89-C-0087 We would also like to thank Dale Nielsen, Jr. of Lawrence Livermore National Laboratory for the initial gridding software and STELLAR Computer for providing assistance and facilities.

#### REFERENCES

- 1. F. Angbrand, V. Boulard, A. Dervieux, J. Periaux, and G. Vuayasundaram, in *Computing Methods in Applied Sciences and Engineering*, edited by R. Glowinski et al. (North-Holland, Amsterdam, 1984).
- F. Angbrand, V. Boulard, A. Dervieux, J.A. Desideri, J. Periaux, and B. Stougglet, in *Proceedings Ninth International Conference on Numerical Methods in Fluid Dynamics, Saclay, France*, 1984, edited by Soubbaramayer and Boujot, Lecture Notes in Physics, Vol. 218 (Springer-Verlag, 1985).
- 3. L. Fezoui and B. Stougglet, "A Class of Implicit Upwind Schemes for Euler Simulations with Unstructured Meshes," J. of Comp. Phys. <u>84</u>, 174-206 (1989).
- R.A. Shapiro and E.M. Murman, "Adaptive Finite Element Methods for the Euler Equations," AIAA-88-0034, 26th Aerospace Sciences Meeting, Reno, Nevada, 1988.
- R. Lohner, K. Morgan, and D.C. Zienkiewicz, "Finite Element Methods for High Speed Flows," AIAA 7th Computational Fluid Dynamics Conference, Cincinnati, Ohio, AIAA Paper 85-1531 (1985).
- R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategies for Finite Element Aerodynamic Computations," AIAA 29th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 86-0499 (1986).
- D. Mavriplis and A. Jameson, "Multigrid Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes, AIAA-87-0353, 1987.
- T.K. Dukowicz, M.C. Cline, and F.L. Addessio, "A General Topology Godnuov Method," J. of Comp. Phys. 82, 29-63 (1989).
- T.J. Baker and A. Jameson, "A Novel Finite Element Method for the Calculation of Inviscid Flow Over a Complete Aircraft," Sixth International Symposium

on Finite Element Methods in Flow Problemns. Antibes, France (1986).

- 10. A. Jameson and T.J. Baker, "Improvements to the Aircraft Euler Method," AIAA 25th Aerospace Sciences Meeting, Reno. Nevada, AIAA Paper 87-0452 (1987).
- 11. T.J. Baker, "Developments and Trends in Three-Dimensional Mesh Generations," Transonic Symposium, NASA Langley Research Center, Virginia (1988).
- 12. A. Jameson, T.J. Baker, and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 86-0103 (1986).
- L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations," J. Comp. Phys. <u>73</u>, 325-348 (1987).
- 14. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and It's Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10 (1984).
- B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. v. <u>32</u>, 101-136 (1979).
- P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdybanucak Simulations," J. Comp. Phys. v. <u>54</u>, 174-201 (1984).
- T.J. Barth and D.C. Jespersen, "The Design and Application of Upwind Schemes on Unstructured Meshes," 27th Aerospace Sciences Meeting, AIAA-89-0366, Reno, Nevada (1989)
- H.M. Glaz, P. Collela, I.I. Glass, and R.L. Deschambault, "A Detailed Numerical. Graphical, and Experimental Study of Oblique Shock Wave Reflections," DNA-TR-86-365, Technical Report, 1986.
- T.K. Pulliam, "Computational Challenge: Euler Solution for Ellipses," AIAA-89-0469, Reno, Nevada, 1989.
- Schaum's Outline Series, Fluid Dynamics, by W.F. Hughes and J.A. Brighton, McCraw-Hill Book Co., New York, 1967.
- S. Eidelman, "Application of the Hypersonic Analogy for Validation of Numerical Simulations," AIAA Journal 27, 11, 1566-1571 (1989).

# Reflection of the Triple Point of the Mach Reflection in a Planar and Axisymmetric Converging Channels

## Shmuel Eidelman and Itzhak Lottati

Science Applications International Corporation McLean, Virginia, USA

9th Mach Reflection Symposium Freiburg June 1990

## Reflection of the Triple Point of the Mach Reflection in Planar and Axisymmetric Converging Channels

Shmuel Eidelman and Itzhak Lottati Science Applications International Corporation, McLean, VA. USA

## Introduction

Depending on their parameters, the encounter between a planar shock wave and a wedge can produce a classic case of the Mach Reflection. The Mach Reflection has a characteristic triple point, where three shocks and the contact discontinuity coalesce. In a shock tube or in a channel, a developed Mach Reflection can reflect further from the walls opposite the wedge. In this case, the Mach shock of the Mach Reflection will start reflecting when its triple point reaches the wall opposite the wedge. Upon reflection of this shock wave, a secondary Mach Reflection can form. Although the primary Mach Reflection has received considerable attention in scientific literature (Refs. 1,2,3), the phenomenology of the subsequent reflections was gone virtually unnoticed. In our literature review, we found only a short qualitative description of the phenomena by Bazhenova and Gvozdeva (Ref. 4). This omission is unfortunate, since it is a very practical case for propagation of the shock waves in channels of variable cross sections.

The direct simulation of the various cases of Mach Reflection has only become possible in the last decade. This problem is a challenging test for the numerical methods used in Computational Fluid Dynamics (CFD). An impressive demonstration of the capabilities of the direct numerical simulations of Mach Reflection phenomena is given by Glaz et al. (Ref. 5). They demonstrate that all the important phenomenology of the Mach Reflection, including slip line vortex and Mach shock wave bulging, can be simulated directly. This was achieved by using the Second Order Godunov method, numerical technique, developed in 80th, which is extremely robust and allows very accurate simulation of flow discontinuities.

The Second Order Godunov method was implemented on rectangular grids (Ref. 6) and in a few cases on general quadrilateral grids (Ref. 7). This approach has limited application, since the structured quadrilateral grids have great difficulty describing a complicated computational domain with multiple bodies of different geometries and scales. Recently, we have implemented the Second Order Godunov for unstructured triangular grids (Ref. 8). This enables us to combine the robust and accurate numerical algorithm with a griding technique, allowing us to describe very complex domains with ease and efficiency. In addition, we have developed a novel Dynamic Grid Adaptation methodology which allocates a dense computational grid only to regions where enhanced resolution is needed to resolve strong gradients in flow parameters. As demonstrated in our paper, this enables an extremely economical allocation of computational resources and accurate simulation of a complicated phenomena like Mach Reflection.

In our study, we numerically simulate the formation of a Double Mach Reflection on a sloped wall of a converging channel, with subsequent reflection of the reflected wave at the straight wall of the channel. Presented here numerical results were obtained with the new numerical technique and we will describe in detail all the important new elements which we have introduced.

## The Problem

Figure 1 shows a converging channel with a sloped wall at 27°. The figure illustrates our assumption that a Mach 8.7 shock wave travelling normally to the parallel walls enters the channel at the left hand side. According to analysis presented in Reference 9, this shock will have a Complex Mach Reflection when it encounters the converging wall of the channel. At some stage of the reflection process, the triple point will reach the opposite wall of the channel. Here the Mach stem shock wave will become incident, moving at an angle to the channel wall, as illustrated in Figure 2. The shock and wedge parameters chosen in our problem will cause formation of a secondary Mach reflection. The question is: What form will this secondary reflection take? Bazhenova and Gvozdeva offer a very general description of the anticipated effect, illustrated in Figure 3 (Ref. 4). In this reference, a system of secondary reflections shows the incident and Mach shocks are interchanging their positions with every new reflection, and the strength of the shock waves is increasing. It is not clear from Reference 4 what type of Mach Reflection will form, or how the secondary reflected wave, which expands in already perturbed gas, will be affected by the interactions with the strong slip surfaces located behind the original Mach shock.

We will directly simulate formation of the Mach Reflection at the channel oblique wall, as well as all secondary reflections which will occur according to the conditions outlined above for the channel geometry shown in Figure 1. In addition we will consider cases in which the channel shown in Figure 1 is axisymmetric and will study the same problem for this case. The motivation is further study of the phenomenology of shock wave focusing when a three-dimensional contraction occurs.

In our study we will consider an ideal, invisid gas which can lead to some distortion of our results compared with experimental data. However, we believe that this simplification will still capture the main phenomenology of wave formation and reflection. and will be of general value to the Mach Reflection Theory.

## Numerical Method

In Reference 8 we introduced a new numerical algorithm: FUGGS (Fast Unstructured Second Order Godunov Solver), for solving Euler's equations of gasdynamics on unstructured triangular grids. The algorithm formulated and tested in Reference 8 is vertex-based. Here we will describe a new volume based version of the FUGGS method. The new version of the algorithm as illustrated in our paper, produces considerably more accurate solutions and it is more efficient. This contradicts published results (Ref. 10,11) on implementation of the triangle-based TVD schemes for unstructured triangular grids. The new algorithm has been validated for the range of subsonic, supersonic and hypersonic steady state and transient problems. Here we show only results for Mach Reflection in planar and axisymmetric channels..

The new triangle-based version of the FUGGS algorithm was extended to allow dynamic adaptive grid refinement for transient problems. We will give a description of the dynamic grid adaptation methodology used in FUGGS code.

A three dimensional version of the FUGGS algorithm was developed in an extremely short period of time. This was made possible by the simple structure of the basic algorithm. We will not present simulation results for the three dimensional FUGGS, however, the main elements of the FUGGS algorithm implementation in the three dimensions will be illustrated.

## Vertex-Based and Triangle-Based Integration Algorithms

We consider a system of Euler equations written in conservation law form in three dimensions as:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{f}}{\partial x} + \frac{\partial \mathbf{g}}{\partial y} + \frac{\partial \mathbf{h}}{\partial z} = 0 \tag{1}$$

where

$$\mathbf{U} = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{vmatrix}, \mathbf{f} = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uw \\ \rho uw \\ \rho uH \end{vmatrix}, \mathbf{g} = \begin{vmatrix} \rho v \\ \rho uv \\ \rho uv \\ \rho v^2 + p \\ \rho vw \\ \rho vW \\ \rho vW \\ \rho vW \\ \rho vH \end{vmatrix}, \mathbf{h} = \begin{vmatrix} \rho w \\ \rho w \\ \rho uw \\ \rho w \\ \rho w \\ \rho wH \end{vmatrix}$$

Here u, v, and w are the x, y, and z velocity vector components, p is the pressure,  $\rho$  is the density and H is the total enthalpy and E is total energy of the fluid. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set of equations (1), that an initial distribution of the fluid parameters is given at t=0, and the boundary conditions defining a unique solution are specified for the computational domain. We seek a solution of the system of equations (1) on the computational domain which is decomposed into tetrahedrons (triangles in two dimensions) with arbitrary connectivity. An overwhelming advantage of this method of domain decomposition is the ability to resolve extremely complicated geometries and flow regimes accurately and efficiently. This has been demonstrated in numerous publications on this topic (Ref. 12, 13, 14).

There are several options possible for storing natural physical parameters of the problem on an unstructured tetrahedral or triangular grid. In particular, we have examined: i) vertex centered; and ii) tetrahedron (or triangle) centered. These two approaches, while equivalent from the point of view of the formal numerical representation of the governing equations, lead to different algorithms. As shown below, this will have important consequences not only on data structure and algorithm efficiency, but moreover the different connectivity will affect the overall accuracy of the numerical solution.

In Figure 4, a fragment of the two-dimensional computational domain is shown. Here, together with the original triangular grid (solid lines), the secondary grid (broken line) is shown. This secondary grid is formed by connecting the barycenters of the primary grid. If a vertex based grid is used, the physical parameters of the problem are stored at vertices A, B, C..., and the integration is done for the volumes delineated by the polygons of the secondary grid. For instance, integration volume associated with vertex A is defined by the edges ab, bc, cd, de, ef, fa. For a triangle-based grid the physical parameters will be stored at the nodes of the secondary grid, and integration volume will be the triangle itself. We have shown (Ref. 15) that these two approaches lead to numerical algorithms with different connectivity, accuracy and efficiency. The fundamental algorithm of the second order Godunov method implemented in FUGGS can be illustrated in two dimensions for an edge of the grids control volume shown in Figure 5. The algorithmic steps of the second order Godunov method can be defined as follows:

1. Find the value of the gradient at the vertex point (or at the baricenter of the triangle for the triangle-based version) for the gasdynamic Parameter U;

2. Using the gradient values, find the interpolated values of U at the edges defining the control volume (sides of the triangle for the triangle-based scheme)

3. Limit these interpolated values based on a monotonicity condition (Ref. 16)

4. Subject the resulting values to the characteristic's constraints (Ref. 6)

5. Solve the Riemann problem for the corrected values.

This last step completes the definition of the fluxes at the edges of the control

volume. The flux values can be stored at the edges and the flux calculation loop will be arranged for the list of edges, which is the largest vector in the system. If the algorithm is vertex-based to calculate  $U^{n+1}$  values, we will integrate the fluxes at the edges of the secondary grid which define the control volume for the vertex. For the triangle-based algorithm  $U^{n+1}$ , value is obtained by integrating the fluxes at the sides of the triangles.

Implementation of the algorithm in three dimensions will have the same basic steps in flux calculation 1-5. To illustrate that point, Figure 6 shows a tetrahedral element of the grid. Here the fluxes are defined on the faces of the tetrahedral at the edge points. At step 1 the gradient is caluclated at the barycenter cell point for the tetrahedral. All the rest of the steps are identical to those described above. To find the value of  $U^{n+1}$  in the three dimensional case, we will add fluxes defined at the faces of the tethraletral. Most elements developed for the two dimensional code are applicable to this implementation of the three dimensional algorithm.

## Direct Dynamic Refinement Method (DDRM)

Practical numerical simulations of the fluid dynamic problems call for modeling flows over complicated shapes. In addition, important flow features such as shed vortices, shock waves, slip lines and boundary layers usually have widely varied lengths and time scales and need to be resolved. Accurate solution of these problems require computational grids dynamically adapted to the evolving flow feature, and with full control over solution accuracy in the key regions of the computational domain. It is commonly accepted that only unstructured grids can provide full flexibility in obtaining the local grid resolution sufficient to accurately resolve subscale flow features. The five years since the introduction of these grids and methods in CFD research have produced landmark simulations clearly demonstrating their advantages (Ref. 12, 14, 17).

Although a number of research groups have demonstrated application of unstructured grids to simulations of steady state problems (Ref. 14, 17, 18), simulations of time-dependent problems were accomplished by a significantly smaller group (Ref. 19, 20). An adaptive refinement method developed by Lohner (Ref. 20) is based on a hierarchical system of grid refinement/coarsening in which each level of refinement has six possible cases and coarsening three cases of triangular cells formation. Every layer of refinement has a father/son relation with the previous layer, and all these layers of refined mesh move on the basic predefined grid. This technique has the demonstrated capability of carrying out simulations of extremely complex flow regimes. However, its rigid hierarchic approach to generating grid results in some implicit limitations. For example, a dynamically evolving grid will not have an element larger than the cell of the initial grid, or it will be impossible to reduce the cell volume abruptly in some areas without passing through all the necessary level of refinement.
In our paper we will report a new method of dynamic grid adaptation. This method is based on direct refinement and reconnection in the areas of monotonic flow preceding the regions with strong flow gradients. In Figure 7 we have illustrated the basic process of refinement accomplished in the DDRM method. The original grid is shown in Figure 7a. Figure 7b illustrates a one step grid refinement in which a new vertex is introduced into a triangular cell forming three new cells. This is followed by reconnection which modifies the grid in a manner demonstrated in Figure 7c. The process of refinement and reconnection can be continued until the necessaary grid resolution is achieved, as illustrated in Figures 7d and 7e. This direct approach to the grid refinement grants extreme flexibility in resolving local flow features. A similar simple method is applied to grid coarsening. In the first step of coarsening the marked vertices, all associated elements of the grid are simply removed, as shown in Figure 8a. During the second step, this void in the grid is filled with new larger triangles (Figure 8b), and then reconnected as shown in Figure 8c.

The Direct Dynamic Refinement Method (DDRM) was implemented for the second order-Godunov method (FUGGS algorithm Ref. 7, 15). Here we demonstrate its performance for a classical Mach Reflection problem.

# Results

In Figures 8a, 8b, and 8c, simulation results are shown in the form of density contours for different stages of Mach Reflection in a planar channel. To illustrate the dynamics adaptation of the computational grid to the solution in the same figures, we show the grid as it evolves in time. The numerical solution develops as a classical case of Mach Reflection. Because we have assumed that the gas is ideal with  $\gamma = 1.4$ , according to Ben-Dor and Glass (Ref. 9) for the shock wave and wedge angle conditions chosen we should have a case of Complex Mach Reflection (CMR). We can observe in Figures 8a, 8b and 8c that the density contours definitely display the pattern of discontinuities attributed to CMR. In these figures we observe a well defined slip line vortex, slip line, triple point and the kink. For real gas, in this case, the Double Mach Reflection should occur. The slip line and slip line vortex will be located close to the Mach shock and will cause the Mach shock bulging (Ref. 5). However the perfect gas assumption will lead to CMR and extensive bulging will not arise, as is accurately predicted in our simulations. It is striking to observe in Figures 8a, 8b, and 8c that the numerical grid closely follows the evolving system of waves, and the high density grid is only observed in the areas of shock waves, slip lines and other flow discontinuities. The result is tremendous savings in both CPU and storage. For example, the grid shown in Figure 8c has only 6000 points (an equivalent of a grid 60x100 in the case of a structured rectangular grid).

Reflection of Mach shock from the wall opposite the wedge will start immediately after the stage shown in Figure 8c. This reflection results in formation of the secondary Mach Reflection which expands towards the channel's oblique wall. In Figure 9a, this secondary Mach Reflection can be clearly identified. In Figure 9b, the blow up of the region of the secondary Mach Reflection is shown. All the distinguishing characteristics of the Mach Reflection can be identified in this figure, including triple point, Mach shock. reflected shock and slip line. In addition to all these features, the secondary Mach Reflection has an additional kink, resulting from interaction of the reflected shock with the slip surface. It is clear that this interaction will affect significantly the dynamics of the secondary reflection.

In Figures 10a, 10b, and 10c, simulation results are shown for the Mach Reflection in an axisymmetric channel which has the same cross section as the planar channel. For direct comparison here the simulation results are presented in the same format as in Figures 8a, 8b, and 8c for the case of a Mach Reflection in a planar channel. The Mach Reflection in Figure 10a is analogous to its planar counterpart in Figures 8a and 8b. In Figure 10b it can be observed that the area of the shock between the triple point and the kink in the reflected shock tilts towards the axis of symmetry of the channel. This is even more pronounced in Figure 10c where the density contours are shown before the secondary reflection starts. It is apparent that the secondary reflection of the Mach shock will occur earlier in the axisymmetric channel than in its planar counterpart. Contraction in the radial direction results in a significant jump in density upon reflection. In Figure 11a we see that at the initial stages of the axisymmetric reflection, maximum density increased three-fold compared with the values observed in the initial reflection. This increase in density affects the increment between the contour levels displayed in Figure 11a and causes the slip line not to show. In Figure 11c a more advanced stage of the secondary reflection is shown. To examine in more detail the features of the secondary reflection in Figures 11b and 11d, we show an enlarged view of the secondary reflection region corresponding to Figures 11a and 11c. In these figures, we can observe the formation of a distinct reflected wave pattern with a characteristic double kink of the reflected wave similar to that seen in the secondary reflection in a planar channel. In the axisymmetric case, the secondary reflection is significantly stronger than in the case of a planar channel. Since this reflected wave propagates along the radius of the channel, it will expand rapidly. This can be observed in Figure 11c where the maximum value of density dropped 30% compared with the maximum in Figure 11a. For the same reason the triple point of the secondary Mach Reflection has advanced much farther towards the oblique wall in Figure 11d than in Figure 9b.

# Conclusions

A computer code has been developed for Euler's equations of gas dynamics. This code uses unstructured grids for computational domain decomposition and ite integration algorithm is based on the Second Order Godunov method. The code uses the Dynamic Grid Adaptation methodology, allowing economical allocation of omputer resources to evolving flow features. In turn, it is then possible to carry out accurate simulations of complicated gas dynamic phenomena with affordable computer resources. Here the code has been demonstrated to produce an accurate simulation of Complex Mach Reflection in planar and axisymmetric channels. We also have simulated the initial stages of the secondary Mach Reflection from the channel wall opposite the oblique wall. In this case we observed new wave structures with a characteristic double kink. The formation of the second kink was a result of the interaction between the secondary reflected wave and the original slip line. It was noted that the dynamics of the secondary reflection is different in the planar and axisymmetric cases. In the axisymmetric case reflection in significantly stronger than in the planar case.

## References

- 1. Ben-Dor, G., and I.I. Glass, "Nonstationary Oblique-Shock Wave Reflections: Actual Isopycnics and Numerical Experiments," AIAA J. 16 (1978), pp. 1146-1153.
- 2. Gvozdeva, L.G., T.V. Bazhenova, O.A. Predvoditeleva, V.P. Fokeev, 1969. Mach Reflection of Shock Waves in Real Gases, Astron. Acta 14:503-8.
- Hornung, H.G., H. Oertel, R.J. Sandeman, 1979. Transmission to Mach Reflexion of Shock Waves in Steady and Pseudosteady Flow with and without Relaxation. J. Fluid Mech. 90:541-60.
- 4. Bazlenova, T.V. and L.G. Gvozdeva, "Unsteady Interactions of Shock Waves," Nauka, Moskow, 1977.
- Glaz, H.M., P. Colella, I.I. Glass, and R.L. Deschambault, A Detailed Numerical, Graphical, and Experimental Study of Oblique Shock Wave Reflections, DNA-TK-86-365, 1986.
- 6. Woodward, P.R., and P. Colella, "Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks," J. Comp. Phys. 54 (1984), pp. 115-173.
- Eidelman, S., P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10 (1984).
- Lottati, I., S. Eidelman and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)", 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV, 1990.
- 9. Ben-Dor, G. and I.I. Glass, 1979 Domains and Boundaries of Nonstationary Oblique Shock-Wave Reflexions: 1. Diatomic gas. J. Fluid Mech. 92:459-96.
- Barth, T.J. and D.C Jespersen, "The Design and Application of Upwind Schemes on Unstructured Meshes," 27th Aerospace Sciences Meeting, AIAA-89-0366, Reno, NV, (1989).
- 11. Mavriplis, D. and A. Jameson, "Multigrid Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes," AIAA-87-0353, 1987.
- Baum, J.D. and R. Löhner, "Numerical Simulation of Shock- Elevated Box Interaction Using an Adaptive Finite Element Shock Capturing Scheme," AIAA Preprint 89-0653, Presented at the AIAA 27th Aerospace Sciences Meeting, Jan. 8-12, 1989, Reno. NV.

- Löhner, R., K. Morgan, J. Peraire and M. Vahdati, "Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations" Chapter 6 in Finite Elements in Fluids Vol. VII (R.H. Gallagher, et al. eds.), J. Wiley and Sons (1988).
- 14. Mevriplis, D.T., "Accurate Multigrid Solutions of the Euler Equations on Unstructured and Adaptive Meshes," AIAA Journal, 2, V. 28, p. 231, 1990.
- 15. Eidelman, S. and I. Lottati, "Triangle Based FUGGS and its Validation for Two and Three Dimensional Flow Problems," to be presented at 29th Aerospace Sciences Meeting, Reno, NV, 1991.
- 16. van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. v. 32, 101-136 (1979).
- Jameson, A., T.J. Baker and N.P. Weatherill, "Calculations of Inviscid Transonic Flow Over a Complete Aircraft." AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
- Peraire, J., M. Vahdati, K. Morgan and O.C. Zienkiewicz Adaptive Remeshing for Compressible Flow Computations; J. Comp. Phys. 72, 449-466 (1987).
- 19. Palmerio, B. and A. Dervieux Application of a FEM Moving Node Adaptive Method to Accurate Shock Capturing; Proc. First Int. Conf. on Numerical Grid Generation in CFD, Landshut, W. Germany, July 14-17, 1986, Pineridge Press.
- Löhner, R. Adaptive Remeshing for Transient Problems; Comp. Meth. Appl. Mech. Eng. 75, 195-214 (1989).







Figure 2. Reflected and Mach Stern Shock Waves at the Start of the Secondary Reflection.



Figure 3. Schematics of Wave Propagation in a converging channel accoding to Bazhenova and Gvozdeva.



Second Order Edge Based Flux Calculation



Tetrahedral Element Defined by four Vertices and Baricentric Cell Point Scheme for Baricentric Three Dimensional Integration

- Vertex Point
- Cell Point at Tetrahedral Baricenter

0

Edge Point equidistant from defining Vertices

Figure 6.



a. Original grid.



c. Grid after one refinement and one reconnection.



b. Grid after one refinement.



d. Second refinement.



e. Second reconnection.

Figure 7. Illustration of the grid refinement process.



a. Point removal.



b. Construction of new cells.



c. Final coarse grid after reconnection.





Density contours



Grid

Figure 8a. Mach Reflection in a planar channel.  $M_{\bullet} = 8.7$ ;  $\alpha = 27^{\circ}$ .



Density contours



Grid Figure 8b. Mach Reflection in a planar channel. M, = 8.7;  $\alpha = 27^{\circ}$ .



Figure 8c. Mach Reflection in a planar channel.  $M_s = 8.7$ ;  $\alpha = 27^{\circ}$ .

(















Density contours



Grid

Figure 10b. Mach Reflection in an axisymmetric channel.  $M_s = 8.7$ ;  $\alpha = 27^{\circ}$ .



Density contours



Figure 10c. Mach Reflection in an axisymmetric channel. M, = 8.7;  $\alpha = 27^{\circ}$ .



Figure 11a. Start of the secondary Mach Reflection. Axisymmetric channel. Density contours.



Figure 11b. Blow up of the secondary Mach Reflection area shown in Figure 11a.



Figure 11c. Secondary Mach Reflection axisymmetric channel. Density contours.



Figure 11d. Blow up of the secondary Mach Reflection area shown in Figure 11c.

# Solution of Euler's Equations on Adaptive Grids Using A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)

Itzhak Lottati, Shmuel Eidelman and Adam Drobot Science Applications International Corporation 1710 Goodridge Drive McLean, Virginia 22102

Abstract. We describe a new technique for solving Euler's gasdynamic equations on unstructured triangular grids with arbitrary connectivity. The formulation is based on the second order Godunov method. The use of data structure with only one level of indirectness leads to an easily vectorized and parallelized code with a low level of overhead in memory requirement and high computational efficiency. The performance and accuracy of the algorithm has been tested for a very wide range of Mach numbers starting from very low subsonic to high hypersonic flows, without the need to adjust any code parameters. The algorithm was implemented in a vertex based and triangle based scheme. The computational results produced by the triangle based version showed an extremely low level of artificial viscosity.

A new method of direct dynamic refinement of unstructured grids, as described in this paper, allows an automatic adaptation of the grid to regions of pressure or density discontinuity, steep pressure or density gradient, and high vortical activity. Results using the algorithm with dynamic grid refinement are presented.

# Flow Solver on an Unstructured Grid

The specific use of triangular meshes provides a very flexible means for simulating flows in extremely complex geometries. The data that identifies a triangular mesh (unstructured grid) provides the flexibility needed to properly discretize the complex geometry of the computational domain, especially on the boundary where the geometry and the implementation of boundary conditions, are extremely crucial for the accuracy of the simulation. The flexibility of unstructured grids enables adaptation to physical features in the flow. The price of resolution results in a local rather than a global penalty. Consequently, it is possible to simulate problems on computers with limited memory and still achieve highly resolved solutions. A typical example, which is illustrated in this paper, is a cravelling shock passing over an obstacle. The challenge is to simulate such problems with fine resolution across the shock while limiting the total number of mesh points in the calculation.



Figure 2: Sod problem, effect of the characteristics correction on the density.

# Performance and Validation of FUGGS

FUGGS has proven to be a very robust algorithm capable of high quality solutions while using triangles with large variations of aspect ratios. The code was tested on a variety of unstructured grids and consistently provided results, despite the apparent poor quality of the underlying mesh. We were able to simulate efficiently and accurately a wide spectrum of flow regimes starting from low subsonic to high hypersonic. The code has no free parameters to choose and thus does not require any "tuning" to specific problems. The user has only to specify the boundary conditions (around the grid) and initial flow conditions. The algorithm is fully vectorized and can be easily parallelized in the future. We describe the detailed algorithm below and then present typical results.

# Direct Dynamic Refinement Method for Unstructured Triangular Grids

As stated, an unstructured grid is very suitable to implement boundary conditions on complex geometrical shapes and refinement of the grid if necessary. This feature of the unstructured triangular grid is compatible with efficient usage of memory resources. The adaptive grid enables the code to capture moving shocks and high gradient flow features with high resolution. The memory resources available can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture the main features of the physical property of the solution. Dynamic refinement controls the resolution

of the grid according to available memory resources and subject to prescribed priorities. These priorities can be set according to the physical features which the user wishes to emphasize in the simulation. The user has control over the resolution of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement is the hierarchical dynamic refinement (H refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughters grid). The H refinement subdivides the initial grid into two or four triangles in each level, and keeps track of the number of subdivision levels each triangle has undertaken. In the H refinement method, one has to keep overhead information on the level of each triangle subdivision, and needs double indirect indexing to keep track of the H refinement process. This slows down the computation by partially disabling the vectorization of the code. As mentioned, the H refinement does rely heavily on the initial grid as it subdivides the mother grid and returns back to it after the passage of the shock.

Direct Dynamic Refinement for capturing the shocks basically requires the refinement to be in the region ahead of the shock. This requirement minimizes the dissipation in the interpolation process when assigning values to the new triangles created in the refined region. Additionally, it requires that the coarsening of the grid should be done after the passage of the shock. In principle, the interpolation and extrapolation in the refinement and coarsening of the grid is done in the region where the flow features are smooth.

The physics of the problem should be involved in the process that identifies the region of refinement and coarsening. One can derive error criteria that will allow grid adaptation to stationary or moving pressure or density discontinuities, region of high voritical activity, etc. For each of the physics features to be resolved, there should be an error indicator that is suited best to capture and identify the region of importance corresponding to this feature.

# Criteria for Refinement (Error Indicator)

We have implemented an algorithm with multiple criteria for capturing a variety of features in the physics of the problem to be solved. That means that we were able to derive a number of error indicators that enable identification of moving shock waves or stationary shocks in the computational domain.

To identify the location of a moving shock, we use the flux of energy or momentum into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov algorithm for solving the Euler's equations, and are used to update the physical variables for each time step in each triangle. A shock wave means that there is a "step function" change in the cell that is caused by an influx of energy, momentum or density.

Stationary shock can be identified by density gradients computed as required in the second order Godunov algorithm. The refinement process is done in two ways: i) adding a vertex in the center of a triangle and ii) adding a vertex on an edge of a triangle. Figure 3 illustrates the two alternative ways used to refine the grid. Figure 4 shows an example of the refinement procedure. In the coarsening stage we identify a vertex to be removed. With the point removal, we delete the connecting edges and triangles surrounding the point. The next step is to triangulate the void polygon by creating new triangles using only the vertices of the polygon. Figure 5 shows an example of how the coarsening proceeds.

In the process of refinement and coarsening, we often create triangles with large aspect ratios (the base-to-height maximum ratio for the three edges). We use reconnection to flip the diagonal between two adjacent triangles to obtain triangles with a "better" aspect ratio. This procedure is referred to as the reconnection step in Figs.4 and 5.

• Adding a vertex in

barycenter of triangle.



Advantage: does not effect other triangles.

Disadvantage: effects the aspect ratio of the triangles.





This method is used on the boundary to improve the triangles with acute angles.





a) Original grid.
b) One refinement.
c) First reconnection.
d) Second refinement.
e) Second reconnection.

Figure 4: Illustration of the grid refinement process.



Figure 5: Illustration of the grid coarsenning process.

## Results

Direct dynamic refinement was used to solve the transient behavior of the flow entering a channel with a double wedge having an inclination of 20°. The flow Mach number entering the channel is 2.5. The flow is from left to right. A sequence of snapshots illustrates the density contours, and the grid for each timestep is given in Figs. 6 (countour plots) and 7 (grid). These figures clearly demonstrate the automatic adaptation of the grid to the moving shocks and the ability to capture the detailed physics of the simulation with very high resolution and minimal memory requirements. The initial grid can clearly be seen to the right of the shock ("ahead") in the early stage of the shock propagation from left to right. The coarsening algorithm is able to produce a reasonable mesh in the region trailing the shock as shown in Fig. 7.

The ability to capture stationary shocks is illustrated in Fig. 8 in which a supersonic free flow (M = 2.5) has been run over a diamond shape bump  $(20^{\circ} \text{ wedge})$  driven to a steady state. The shock emerges from the first corner (left), the fan of rarefaction waves appears from the apex of the diamond shape bump, and the secondary shock from the second corner (right) is clearly illustrated by the ability of the algorithm to adapt the grid to the physics of the flow. Figure 9 illustrates the sharpness of the reflected shock obtained for an axisymmetric converged channel with an angle of 27° and M = 8.7.

The few examples shown here represent a small subset of results obtained with FUGGS. The examples are indicative of the excellent performance that can be achieved for physically complicated situations. We would like to emphasize that these calculations involved no free parameters.

# Acknowledgment

We would like to thank Dr. Aharon Friedman and Dr. Marty Fritts for their valuable contributions. This work was partially supported by the Wright Research and Development Center under contract No. F33615-88-C-3002 and by DARPA through contract F49620-89-C-0087 administered by AFOSR.



Figure 6. A sequence of density snapshots of countour plots for a propagating shock (M = 2.5, wedge angle = 20°).



Figure 7. A sequence of grids corresponding to countour plots in figure 6.







Figure 9. Initial grid, countour plot and the adaptive grid for flow in axisymmetric channel (M = 5.7, wedge angle = 27°).



AIAA-90-2420

Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study S. Eidelman, W. Grossmann and I. Lottati Science Applications International Corporation, McLean, Va

# AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference

July 16-18, 1990 / Orlando, FL

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

## AIR-BREATHING PULSED DETONATION ENGINE CONCEPT: A NUMERICAL STUDY

S. Eidelman, W. Grossmann and I. Lottati

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Drive McLean, Virginia 22102

#### 1. Introduction

The airbreathing Pulsed Detonation Engine (PDE) concept was introduced by us and reported on in the past^{1,2,3}. As described in the previous reports, we have carried out a systematic series of parametric studies of the PDE via Computational Fluid Dynamics (CFD) and have analyzed engine performance over a wide range of flight regimes including subsonic and supersonic flows and physical geometries including various nozzle and air inlets. In addition, we have performed static table top experiments¹ to demonstrate that the principle of pulsed or repetitive detonation can be achieved in a generic PDE configuration. To date, our results indicate that practical engines for certain vehicles and missions can be conceptualized and designed with the information that has already been generated from the studies. Specifically, our studies have shown that the PDE is an excellent candidate for the primary propulsion source for small aerodynamic vehicles that operate over the flight envelope, 0.2<M<3 and altitude between sea level and 30,000 ft. Further, our analysis of the simulation results indicate that the PDE is a high thrust to weight ratio device with a specific fuel consumption on the order of one pound per hour per pound fuel. The predicted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. Finally, the PDE concept is scalable over a wide range of engine sizes and thrust levels. For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices which provide thousands of pounds thrust.

The parametric studies that we have carried out to date were possible due to the development of a new generation of CFD tools that have allowed us to accurately simulate the details of the complex nonlinear time dependent processes. A brief description of the CFD methods employed in our studies is given in section 3.

The purpose of the present paper is: (1) to report

the most recent studies of a full simulation of the operation of the PDE with a generic missile configuration cruising at supersonic speeds, (2) to report the results of a parametric-scaling study of the thrust produced as a function of the variation of a given engine configuration with respect to engine size.

The present paper is organized as follows: Section 2 gives, for completeness, a brief description of the PDE concept, Section 3 describes briefly the CFD methods used in our most recent studies, Section 4 gives the results of the parametric-scaling study and, Section 5 describes the simulations of the complete flow around a generic missile configuration powered by a PDE, Section 6 gives our summary and conclusions.

## 2. The Pulsed Detonation Engine Concept

A detonation process, due to the very high rate of reaction, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device, with a wide range of variable cycle frequencies. There is no theoretical restriction on the range of operating frequencies; they are uncoupled from acoustical chamber resonance. This is very important feature of the constant volume detonation process that differentiates it from the process occurring in a pulse-jet;^{4,5} the pulse jet cycle is tuned to the acoustical resonances of the combustion chamber. This leads to a lack of scalability for the pulse jet concept.

A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. The most recent and successful of these attempts was carried out at the Naval Postgraduate School (NPS) by Helman et al.¹ During this study, several fundamentally new elements were introduced to the concept distinguishing the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successful self aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained. This frequency was in phase with the fuel mixture injection through timed fuel valve opening and spark ignition. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated. many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

The generic device we consider here is a small engine shown in Figure 1. Figure 1 shows a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload or aerodynamic vehicle, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine.

A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical process requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is:

- 1. Initiation and propagation of the detonation wave inside the chamber,
- 2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers.
- 3. Fresh air intake from the surrounding air into the chamber.
- 4. The flow pattern inside the chamber during postexhaust pressure buildup which determines the

strategy for mixing the next detonation charge,

5. Strong mutual interaction between the flow inside the chamber and surrounding the engine.



Figure 1. Schematic of the generic PDE showing detonation chamber, inlet, detonation wave, fuel injectors and position relative to an aerodynamic vehicle.

All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus, unlike simulations of steady state engines. the phenomena described above can not be evaluated independently. The need to resolve the flow regime inside the chamber accounting for nozzles, air inlets etc., and at the same time resolve the flow outside and surrounding the engine, where the flow regime varies from high subsonic, locally transonic and supersonic, makes it a challenging computational problem.

The single most important issue is to determine the timing of the air intake for the fresh charge leading to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. The assumption of inviscid flow makes the task of numerically simulating the PDE flow phenomena somewhat easier than if a fully viscous flow model were employed. For the size of the generic device studied in this work the effects of viscous boundary layers are negligible with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently..

### 3. Computational Methods used in the Studies

The basic computational tool that was used for our studies is the FUGGS (Fast Unstructured Grid Second Order Godunov Solver) code, described in detail in Refs. 6,7. This code provides a method for solving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The formulation is based on a second order Godunov method⁸. The use of a data structure with only one level of indirectness leads to an easily vectorized and parallelized code with a low level of overhead in memory requirement and high computational efficiency. The performance and accuracy of the algorithm has been tested for a very wide range of Mach numbers and geometrical situations, and has demonstrated robustness without the need for any adjustable parameters. The algorithm can either be triangle or vertex based; experience with the method has shown that extremely low levels of artificial viscosity can be achieved using the triangle based version of the method.

A new method of direct dynamic refinement of unstructured grids has been developed, (Ref. 6), and allows an automatic adaptation of the grid to the region of the moving detonation wave inside the PDE geometry. This refinement guarantees that the associated highly inhomogeneous pressure and density contours of the detonation wave are accurately tracked in the simulation. This is an important ingredient in our simulations, since the main component of the detonation process contributing to the thrust generated by the PDE is the total kinetic energy of the wave. Use of the new refinement scheme has more accurately describe the moving detonation wave behavior. These new results concern nonplanar wave evolution and, as pointed out in Section 4. may be a factor in controlling the magnitude of the generated thrust.

## 4. Scaling Study of the PDE

We have shown in our previous study that in the Pulsed Detonation Engines, thrust is primarily produced by the unsteady interaction of shock wave generated by the propagating detonation wave and the thrust wall of the detonation chamber. This interaction will be nonlinear and scalability of the engine will greatly depend on the extent of nonlinearity. For example, for the engine geometry shown in Figure 1, the engine volume can be increased just by elongating the wall of the detonation chamber. If the area of the thrust wall in Figure 1 remains the same and the composition of the detonation mixture does not change, the increase in the detonation chamber length will result in longer duration of the interaction between the shock wave and the thrust wall. This simple situation poses a question concerning the relationship between the increase in PDE thrust and increase in its volume. This is very practical issue in scaling up the size of the engine, since increase in the detonation chamber diameter will eventually result in difficulty generating a planar detonation front, leading to loss of engine efficiency.

To study this aspect of the detonation engine scalability we have conducted a set of numerical simulations for the engine geometry very similar to these shown in Figure 1. The detonation chamber diameter was kept constant at 8cm and its length varied from 8cm to 16cm. The main objective of our study is to determine how the thrust produced by the detonation engine increases when the engine length doubles and the rest of the engine parameters will remain the same. This section describes the results of two simulations for the detonation chamber geometry described above, using a detonation chamber length of 8 cm and 16 cm. The simulation begins at t = 0 when the detonation chamber is placed in an external freestream with the Mach number of 0.8. The detonation wave is initiated at the aft end of the detonation chamber. The detonation chamber for these cases includes a simple annular inlet which remains open during operation. The specific fuel chosen for the present simulations is ethylene. The chemical reaction occurring in the ethylene/air detonation process is given by:

# $C_2H_4 + 3O_2 + 11.24N_2 \longrightarrow 2H_2O + 2CO_2 + 11.24N_2.$

The detonability limits of ethylene in air range from 4% to 12% by volume and depend somewhat on temperature and pressure. We assume for the sake of simplicity that the fuel/air ratio is 6% by volume. In contrast with our previous presentations here, as well as in case of supersonic PDE simulation presented in this paper, we have simulated a propagating detonation wave by releasing the energy of detonative combustion in our mixture immediately behind the detonation front. In our simulations we have used the Dynamically Adaptive FUGGS code which we have developed recently. Figures 2a, 2b. and 2c, present three frames of the results for simulation in a 16 cm long detonation chamber. In these figures, results are presented in the form of pressure contour plots. For illustration of the dynamic grid adaptation to the evolving flow pattern, we have plotted the unstructured triangular grid corresponding to the stage at which contour plots are shown. In Figure 2a, pressure contour plots are shown shortly after the detonation wave has been initiated at the aft end of the detonation chamber. We can observe that the shock wave front is planar. The detonation wave velocity is 1800 m/sec and the pressure at the front of the detonation wave is  $\approx 20$  atm. corresponding to the CJ condition for the ethylene/air mixture. Figure 2b shows the results of the detonation wave reflecting from the thrust wall and the detonation products starting to expand into the flow stream surrounding the detonation chamber. The detonation products expand through the inlet and into the detonation chamber. This simultaneous expansion results in a complicated wave structure which can be observed in Figure 2b. Here we also note that the dynamically adjustable grid closely follows developing wave structures. In Figure 2c, results are shown at the stage when the two main shock waves generated by the PDE cycle have interacted and are about to leave the computational domain. The maximum pressure here dropped to 1.7 atm. The computational grid follows the shocks and vortices propagating through the computational domain and we can observe the substantially reduced grid density in the regions of relatively monotonic flow. Figure 2 illustrates the level of detail of this complicated flow regime which can be studied with modern CFD methods and algorithms.



Figure 3. Time averaged thrust and force data from simulation of 8cm (solid lines) and 16cm (dashed lines) detonation chambers, 200 Hz detonation frequency.

In Figure 3 the total force and time averaged thrust generated by the device in the simulations just discussed for 8cm and 16cm long detonation chambers, are shown as a function of time. The time averaged thrust is based on the total time for one cycle defined as  $5.0 \times 10^{-3}$ sec. This time is equivalent to a detonation frequency of 200 Hz. As seen in the figure, initially the force acting on the thrust wall is close to zero. The simulation was run for  $2.0 \times 10^4$  sec physical time to establish a flow pattern characteristic of the steady nonreactive flow of ambient air around the detonation chamber. At the time  $2.0 \times 10^4$  sec the detonation wave started to propagate from the aft of the chamber. We can see in Figure 3 that the detonation wave reaches the thrust wall at the time  $2.45 \times 10^4$  sec (for 8cm case) and  $2.9 \times 10^4$  sec (for 16cm case), when a very large force of  $\approx 5.0 \times 10^{3}$  lb is felt on the end wall of the detonation chamber. This force is a

result of the high pressure behind the detonation wave. It rapidly decays to virtually zero level in  $\approx 0.5 \times 10^{-4}$ sec in the 8cm case and  $\approx 1.0 \times 10^{-4}$  sec in the 16cm case. The maximum force produced on the thrust wall is the same in both cases. The increase of e detonation chamber volume is most noticeable in thrust data. As we can see in Figure 3 the average the last increases from 12 Lbs in the 8cm chamber use to 24 Lbs in 16cm chamber case. This resshows that the thrust of the detonation chamber with ale linearly with an increase in detonation chamber length when the other parameters are kept constant.

#### 5. Supersonic Missile Simulation

In this section we present the results of a full simulation of a generic supersonic missile powered by a PDE. The purpose of this simulation was to study the requirements placed on the PDE air inlets and internal structures that may be needed to produce a well mixed. uniform flow inside the detonation chamber. In addition, the simulations were carried out on the full vehicle in order to account for all wave drag that a real missile produces; the resulting thrust predictions for the simulations are therefore true net thrust values. We show here the results of a successful geometry that satisfies the requirements of choking flow in the inlet throat and uniform predetonation flow in the chamber produced by means of a grill. The missile geometry and computational grid are shown in figures 4a, 4b, and 4c.



Figure 4a. Unstructured Grid for Missile and Engine Simulation.



Figure 4b. Grid Detail for Inlet and Manifold.



Figure 4c. Grid Detail for Manifold.

Figure 4a shows the main missile body with the PDE covered by the high density of grid points necessary to resolve the details of the PDE chamber, inlets and, grill as shown in the enlarged views of the chamber, figures 4b and 4c.

The simulations were performed by allowing steady subsonic flow conditions to be established in the detonation chamber holding a steady supersonic flow, Mach 2. about the missile. The degree to which this steady and uniform flow can be established in the chamber using the inlet and grill of figure 4 is shown in figure 5. Here the complete flow including the bow shock is shown, figure 5a, as well as an enlarged view of the flow in the vicinity of the inlets showing smaller shocks, figure 5b, and a particle trace showing the streamlines of the uniform chamber flow, figure 5c. When steady flow conditions are reached in the detonation chamber, plane detonation is started at the rear end of the chamber. The detonation then travels towards the inner thrust wall at approximately Mach 4. Figure 6 shows the same sequence of views as figure 5, but with the detonation approximately having travelled halfway to the thrust wall. Notice that the detonation remains more-or-less planar indicating that the flow properties are uniform in the chamber. Figure 7 shows the phenomena associated with the detonation impacting the thrust wall, the high pressure of the detonation wave exhausting from the inlet and particles leaving the chamber through the inlets. The principle results from the simulations of the supersonic missile case are that the use of such a grill structure and inlet shape allow uniform flow to be established before and after detonation in sufficient time that detonation frequencies of 200 cycles per second are obtainable. It is not clear at this time whether such internal grill structures are desirable from the standpoint of structural integritry. This question will be addressed later in planned experimental studies of the PDE.

## 6. Conclusions

The simulation of the PDE presented in this paper are partial results from an ongoing SAIC research program aimed at development of a practical PDE engine for a wide spectrum of applications including small UAV's and PENAID missiles among others. The primary focus of the results presented here is the scaling of PDE performance with respect to size variation and the establishment of uniform subsonic flow conditions in the detonation chamber before and after detonation.

The results of the scaling studies described in the text lead to scaling laws that can be used to predict the performance of PDE's over some range of parameters assuming that other parameters are held fixed. For example, holding the external Mach number and basic chamber and inlet geometry fixed suggests that the thrust at constant specific fuel consumption produced by the PDE scales as:

Thrust = 
$$T_1 * \left(\frac{\nu}{\nu_1}\right) * \left(\frac{f}{f_1}\right)$$
,

where  $T_1$ ,  $(v/v_1)$  and  $(f/f_1)$  are the thrust computed for a chamber of volume  $v_1$  operating at frequency  $f_1$ , the ratio of a new volume to  $v_1$  and the ratio of the new frequency to  $f_1$  respectively. Thus, thrust should scale linearly with the parameter  $(v/v_1) * (f/f_1)$  over some range of this parameter. Departure from this linear variation may occur due to the following reasons: First, since volume is proportional to the product of cross- sectional area and length,  $v \sim r^2 l$ ,  $(r \sim detonation chamber ra$ dius,  $l \sim$  chamber length) physical limits will be placed on r and l; if r is too small (less than 1 cm) a detonation will not be sustainable and if l is too small (less than 10 cm) it may be difficult to mix fuel and air effectively. Using the thrust relation established above, we make the following observations. For a PDE device producing 100 pounds thrust at 100 Hz, doubling the frequency and increasing the volume by a factor of 5 yields a thrust level of 1000 pounds. Assuming that the aspect ratio of the chamber (chamber length to radius) is fixed, this would required an engine only 25.5 cm in diameter and 25.5 cm in length. Similarly, scaling the engine down in size to a 5 cm diameter, 5 cm length detonation chamber operatin at 100 Hz yields thrust levels of the order of 3.7 pounds. Of course, the derive relation between thrust and  $(v/v_1) * (f/f_1)$  cannot be believed over too wide a range of parameters; but, it does serve to point out the

flexibility in scaleup or scaledown permitted by the PDE concept.

We further conclude that the performance computed for PDEs is encouraging from the point of view of thrust. thrust control, simplicity of the device (no moving parts) and specific fuel consumption (SFC). The specific fuel consumption computed from our simulations (~ 1Lb/hr./lb) is competitive with present day small turbojets (SFCs for small turbojets are in the range of 1.8-2.0 lb./(lb.*hr.)). Thus, for a given mission and vehicle, a PDE propulsion unit could be more fuel efficient resulting in increased range. Moreover, if the expected thrust control in PDEs is realizable, it may be possible to produce propulsion units that can slow down, loiter and maneuver and finally regain full thrust within the time it takes to increase the detonation frequency.



Figure 8. Thrust versus Mach number variation obtained from simulation data.

Another result from the scaling situdies is that the thrust data show a dependence on the external flight conditions, e.g. Mach number. The Mach number plays a role in the wave drag that the geometry of the PDE will incur; the details of the valve and inlet configurations figure prominently in the total wave drag.

On the other hand, the simulations showed that the timing of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products, the resulting overexpansion of the chamber flow and the external flow regime and interaction of the external flow with the internal flow. For subsonic flight, Mach 0.2-0.9, the fresh air entering the chamber comes from two separate principle flow processes: one comes from the flow through any valve or inlet and the other comes from the self- aspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interdependent and, in order to search for a given performance in a given device, requires variation of many parameters. The simulation results obtained to date provide an understanding of the effects caused by variation of the above-mentioned parameters and, with the information available, we are able to conclude that a PDE propulsion unit can be optimized (although no optimization studies were carried out) for a given flight regime. For example, if we consider the simulations obtained for constant (number and inlet) geometry but at Mach numbers 0.8, 0.5, 0.2, and 0.0 respectively, the variation of maximum time averaged thrust and mean thrust as a function of Mach number can be characterized as shown in Figure 8.

The decrease in thrust with Mach number has been described earlier³ to be a result of the increased wave drag produced by the inlet geometry. Optimization of the inlet geometry could help in eliminating a large part of the wave drag. The data contained in Figure 8 could be used to determine the detonation frequency at a given Mach number yielding constant thrust. For a constant thrust level of 90 pounds, the required detonation frequency varies from 84 Hz at M = 0.0 to 140 Hz to M =0.8. In a similar fashion, parametric variations of other important aspects of PDE performance, such as minimum time for refill at given Mach number as a function of air inlet opening, can be obtained. In order to find an optimum configuration satisfying given performance over a wide flight regime, a more extensive simulation study will be required. It was mentioned earlier that the simulations presented here were carried out under the assumption of inviscid flow; boundary layer effects were not included. The addition of boundary layers to the PDE engine inlets and valves, the only components where boundary layers will be significant, will lead to increased performance. Roughly the same amount of fresh air will flow into the over-expanded detonation chamber but at a somewhat slower rate and in a pattern that will promote enhanced circulation and hence fuel/air mixing.

A final conclusion can be made concerning the application of PDE's to supersonic vehicles. As shown in the simulations the ability to refill the detonation chamber with fresh air charge is a very strong function of valve and inlet geometry. Refilling may also be somewhat enhanced by the self-aspiration effect, but; to a much less extent than in the subsonic case. The example of supersonic operation discussed in Section 5 shows that care must be taken in design of the inlet or valve configuration. The flow in the chamber must allow for refill and fuel/air mixing. More than likely choked flow conditions will be required at the inlet entrance to the chamber. This could lead to complications in the design of a PDE with simple geometry; choked flow conditions are a function of the external Mach number and a fixed inlet will be optimal only for a small range of the operating envelope. On the other hand, if a given vehicle is to fly at supersonic speeds and is launched at supersonic speeds, this problem may not appear. Further, if the given vehicle is launched at subsonic speeds and a beoster is used to bring it up to the required supersonic operating speed, the problem may again not appear. We conclude that the PDE has potential for the supersonic flight regime and it is not excluded that a configuration can be found which will operate over the flight regimes 0.2 < Mach number < 3 in a fuel efficient manner.

#### Acknowledgements

The authors would like to express appreciation to Dr. Adam Drobot of SAIC for helpful suggestions and advice during the course of this work. The work reported on here was partially supported by DARPA under AFOSR contract FY9620-89-(-0087). The authors would like to thank Dr. L. Auslander for his encouragement and interest in this project.

#### References

- Helman, D., Shreeve, R. P., and Eidelman, S., "Detonation Pulse Engine,", AIAA-86-1683, 24th Joint Propulsion Conference, Huntsville, 1986.
- Eidelman, S., W. Grossmann, I. Lottati, "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 89-2466, AIAA/ASME/ SAE/ASEE 25th Joint Propulsion Conference, Monterey, CA, July 10-12, 1989 (to be published in AIAA Journal of Propulsion).
- Eidelman, S., W. Grossmann, and I. Lottati. "Computational Analysis of the Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11, 1990.
- 4. Shultz-Grunow, F., "Gaz-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.
- 5. Zinn, B. T., Miller, N. Carvelho, J. A., and Daniel B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," 19th International Symposum on Combustion, 1197-1203, 1982.
- Lottati, I., S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," Paper AIAA 90- 0699, 28th Aerospace Sciences Meeting, Reno. NV, Jan 8-11, 1990.
- Lottati, I., J. Eidelman, A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a FUGGS," to be published in Proceedings of Second International Conference on Free-Lagrange Methods, Held at Jackson Hole, June 1090.
- Eidelman, S. Collela, P., and Shreeve R. P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling,", AIAA Journal v. 22, 10 (1984).

ī









c)

Figure 2. Pressure contours and computational grid for 16 cm long PDE. External flow M = 0.8.


a. Pressure Contours. Missile and Engine.



- b. Pressure Contours. Detonation Engine.
- c. Traced Particles. Detonation Engine.





a. Pressure Contours. Missile and Engine.



b. Pressure Contours. Detonation Engine.

c. Traced Particles. Detonation Engine

Figure 6. Supersonic missile simulation. Missile speed M = 2.0. Time t =  $2.0 \cdot 10^{-5}$  sec.



a. Pressure Contours. Missile and Engine.



b. Pressure Contours. Detonation Engine.



c. Traced Particles. Detonation Engine.



## Plasma enhanced chemical vapor deposition modeling

E. Hyman, K. Tsang, I. Lottati and A. Drobot

Science Applications International Corporation, 1710 Goodridge Drive, McLean, VA 22102 (U.S.A.)

B. Lane*, R. Post and H. Sawin⁺

Applied Science and Technology, 35 Cabot Road, Woburn, MA 01801 (U.S.A.)

#### Abstract

We are developing a model to simulate the plasma enhanced chemical vapor deposition (PECVD) of thin diamond films. The emphasis to date has been on the development of stand-alone modules to simulate the microwave-induced time-dependent electric and magnetic fields, the generation and energization of plasma electrons in the discharge, the non-equilibrium hydrocarbon chemistry, and the development of a two-dimensional unstructured mesh hydrodynamics solver capable of simulating flow through geometrically realistic reactors. The coupling of the various modules, and the incorporation of a surface chemistry module for the substrate deposition, into a self consistent reactor model is underway. We present some preliminary results from components of a model 2.45 GHz microwave reactor employing  $H_2$  with 1% CH₄ and operating at a gas pressure of  $5.3 \times 10^3$  Pa (40 Torr). We have completed an electromagnetic model of the microwave energy deposition in the plasma and calculated the field patterns in the reactor. We have also performed point calculations of the time-dependent electron distribution and of the build-up of atomic hydrogen, the gas temperature, and the resulting generation of CH₁, C₂H₂, and other hydrocarbon radicals. We have also completed a fluid simulation of the flow through the reactor using unstructured mesh techniques. The results we discuss in this paper indicate that careful treatment of non-equilibrium processes in PECVD reactors as well as accurate representation of reactor geometry are essential to a useful simulation capability.

#### 1. Introduction

The ability to deposit thin diamond films rapidly onto substrates with a high degree of uniformity using the plasma enhanced chemical vapor deposition (PECVD) technique is a high priority technology goal. It is generally recognized that an improved understanding of the microscopic mechanisms in PECVD reactors and of the sensitivity of the various reactor parameters is needed. The important design issues for PECVD reactors are as follows: efficient coupling of microwave energy to the plasma and to the process gas; efficient transport of activated process gas to the wafer or substrate deposition area; efficient use of the injected gas; uniformity of chemically active species flux across the deposition area. It is desirable to avoid reactor designs that have the following: high microwave electric fields in regions away from the desired plasma formation location. leading to plasma discharge near chamber walls or breakdown of dielectric materials; flow patterns which carry activated species to the reactor walls or out through pumping ports rather than to the wafer; stagnant or circulating flow patterns above the wafer, buffering the wafer from the desired chemically active species.

To understand these issues and to provide input to improved reactor designs we are developing a self-consistent numerical model which simulates each of the essential mechanisms in the PECVD reactor. A physically realistic model requires careful simulation of the electromagnetics, the plasma physics, the neutral gas flow, and the homogeneous and heterogeneous chemistry. Furthermore, the different elementary processes in the reactor are highly interactive; for this reason it is difficult to foresee intuitively the impact of varying one or another reactor parameter. For example, the microwave source induces a complex, geometrically dependent and time varying electric field which ionizes the gas; the resultant build-up of electrons alters the developing electric field distribution. The microwave energy input heats the electrons, and the energetic part of the non-Maxwellian electron energy distribution dissociates the gas, inducing a rise in the gas temperature. The amount of dissociation and heating depends sensitively on the high energy tail of the electron distribution which consequently must be accurately determined. The interaction of the neutral gas with the plasma alters the molecular input stream of H₂ to include a substantial

[•]Permanent address: MIT, Plasma Fusion Center, Cambridge, MA 02139, U.S.A.

^{*}Permanent address: MIT, Chemical and Electrical Engineering Department, Cambridge, MA 02139, U.S.A.

component of atomic hydrogen, and this, in turn, affects the ionization rate and the electron distribution. The hydrocarbon chemistry is non-equilibrium and both the flux and the spatial distribution of appropriate radicals reaching the wafer are very sensitive to the geometrical configuration of the reactor and to the details of the flow configuration through the reactor.

We have focused to date on the development of modules to simulate the microwave-induced time-dependent electric and magnetic fields, the generation and energization of plasma electrons in the discharge. the evolution of the molecular and atomic hydrogen gas, the non-equilibrium hydrocarbon chemistry, and the development of a two-dimensional unstructured mesh hydrodynamics solver capable of simulating flow through geometrically realistic reactors. The coupling of these modules, and the incorporation of a surface chemistry module for the substrate deposition, into a self consistent reactor model is underway. In the next section we describe in some detail the generation of the microwave field and the transfer of the field energy to the electrons. This is followed by preliminary model results and our conclusions.

#### 2. Microwave field and plasma generation

The absorption of microwaves and the creation of the plasma which transfers energy to the neutral species in the reactor involves the solution of two closely coupled problems. They are (1) the determination of the electromagnetic field patterns in the complex geometry of the reactor and (2) the formation of the electron distribution function. At a pressure of  $5.3 \times 10^3$  Pa (40 Torr) and a gas temperature in the plasma region greater than 2000 K, the mean free path of an electron with neutrals is approximately  $5 \times 10^{-5}$  m. During the time an electron gains the average electron energy (approximately 2 eV) typical of the reactors we are modeling, it undergoes around 150 collisions and has a mean displacement of approximately  $7 \times 10^{-4}$  m. Thus, to an excellent approximation, the heating of the electrons results from the microwave electric fields which are local to the electron's spatial location.

The electron distribution function satisfies the Boltzmann equation. Because an electron undergoes many collisions as it is heated, the distribution function is nearly isotropic and can be well approximated by the zero and first o der terms of a spherical expansion, the latter representing a distortion of the distribution function in the direction of the applied field, oscillating at the microwave frequency  $\omega$ . The equation for the electron distribution function is

$$\frac{1}{3} \left[ \left( \frac{eE_0}{m_e} \right)^2 \frac{1}{v^2} \frac{\hat{c}}{\hat{c}v} \left( v^2 \frac{v_m}{v_m^2 + \omega^2} \frac{\hat{c}F_0}{\hat{c}v} \right) + v^2 \nabla \cdot \left( \frac{1}{v_m} \nabla F_0 \right) + v \nabla \cdot \left( V \frac{\hat{c}F_0}{\hat{c}v} \right) \right]$$
$$= L_1 + L_x - \frac{2m_e}{M} \frac{1}{v^2} \frac{\hat{c}}{\hat{c}v} \left( v^3 v_m F_0 \right)$$

where  $E_0$  is the amplitude of the electric field, e,  $m_e$ , and v are the electron charge, mass, and velocity respectively,  $v_m$  is the electron momentum transfer frequency.  $F_0$  is the zero order approximation to the distribution function, V is the bulk fluid velocity, M is the neutral mass, and  $L_i$  and  $L_x$  are the inelastic loss terms that affect the distribution function respectively via ionization and excitation of rotational, vibrational, and electronic levels. The first term on the left represents the electron velocity diffusion due to the cumulative affect of many small angle scatterings of the electron induced by the oscillating electric field. The next two terms give the affect of the divergence of the diffusive and convective fluxes respectively. The last term on the right gives the energy loss due to elastic collisions.

Below a critical electric field the ionization rate is exceedingly small and hence the electron density and power deposited per unit volume are also small. Above the critical field the ionization rate and power deposition increase rapidly. If the power deposition is kept approximately constant and equal to the power injected into the reactor the electric field will rapidly adjust to a level close to the breakdown value. The power deposited per unit volume scales as  $E_0^2 n_e$ , where  $n_e$  is the electron density; as the electron density rises the electric field drops. The above considerations provide the necessary prescription for determining the time-dependent evolution of the electric field, the electron density, and the electron energy distribution. Using a set of elastic and inelastic cross-sections, the last two parameters define the time-dependent evolution of the fluid, including the build-up of atomic hydrogen and the rise in the gas temperature as the gas dissociates. In addition to H, and H, the Boltzmann calculation monitors the evolution of  $H_2^+$ ,  $H_3^+$ ,  $H^+$ , and  $H^-$  and separately tracks each of the three lowest vibrational levels of  $H_2$ . The hydrocarbon chemistry is initiated by energetic electrons, but being trace constituents the hydrocarbons do not significantly affect the electron development. It is useful to take advantage of the separation of time scales inherent in this problem. The electron distribution function is established on a time scale of around 10⁻⁸ s, the electron density growth occurs over approximately 1 µs, and the hydrogen dissociation and hydrocarbon chemistry as well as fluid convection and diffusion occur on a millisecond time scale.

#### 3. Results

We present calculations from the modules of the PECVD model that have been constructed and tested. The results obtained are designed to identify important physical mechanisms and to determine the regimes where they are critical. The calculation of the electric and magnetic fields was accomplished using SAIC's MASK code, a general two-dimensional electromagnetic code designed for the study of microwave devices of arbitrary geometrical configuration. The code introduces the electric fields at the input port and allows them to propagate into the reactor, which can include arbitrarily shaped regions of dielectric or conducting bodies. It employs a finite difference representation of the full set of time-dependent Maxwell equations and solves the initial value problem. Figure 1 shows the results of a simulation for a generic reactor in which the plasma is modeled as a spherical shell with a finite conductivity and a finite dielectric constant. Ultimately the plasma model will be replaced by results of Boltzmann calculations over the plasma region. The MASK calculation retains both the field strength and the phase dependence and determines the energy deposition in the target plasma. The results shown are contours of constant field amplitude for the axial (a) and radial (b) electric components in an azimuthally symmetric configuration. The bottom horizonta! line is the axis of symmetry. The input



Fig. 1. MASK calculation of (a) the axial and (b) the radial components of the electric field in a model reactor. Shown in the figure are contours of constant amplitude. The reactor axis is the bottom horizontal line. The substrate shelf is at the right and the outlet for the reacting gases is above it. The plasma shell is centered on the axis to the left of the substrate.



Fig. 2. Time development of the electron density at a point in the reactor of high electric field corresponding to the one-point simulation described in the text.

wave is introduced on the left and propagates into the reactor region through a radially expanding transition region. The substrate is on the right in the figure and immediately above it is the outlet for the reacting gases. The figure indicates regions of high and low field concentration which will provide an important tool for reactor design. This calculation determines the energy deposition in the plasma and, hence, the reactor efficiency. When performed self consistently it also predicts the shape of the plasma region and the subsequent coupling to the hydrodynamic calculation.

The Boltzmann module calculation simulates the electron and heavy particle evolution at a location within the reactor where the electric field is sufficiently high to create and sustain a plasma. We maintain a constant deposited microwave power and assume the gas pressure is kept constant at  $5.3 \times 10^3$  Pa (40 Torr). The simulation runs for several milliseconds, beyond which time advection and diffusion effects, not included in this calculation, would become important. The initial conditions are  $[H_2] = 1.28 \times 10^{24} \text{ m}^{-3}$ ,  $[CH_4] = 1.28 \times 10^{24} \text{ m}^{-3}$  $10^{22}$  m⁻³, gas temperature T = 300 K. Figure 2 shows the electron density rising rapidly to approximately 10¹⁵ m⁻³ in around 1 ns, a result of the very energetic electron distribution at early times. Thereafter, it increases nearly two more decades over about 10⁻⁵ s, the slower increase being reflective of the less energetic electron spectrum as the electrons give up energy to the various inelastic processes. The increase on a millisecond time scale is associated with the conversion of the gas from the molecular to the atomic state which leads to an increasing fraction of atomic ions (which recombine much more slowly than molecular ions) and also causes



an adjustment in the electron distribution function. The evolution of the electron distribution function as determined by the Boltzmann equation is illustrated for these three time regimes in Fig. 3 in which the ordinate scale is arbitrary. In Fig. 3(a) at 1.5 ns we see the very energetic electron spectrum: the average electron energy is around 8 eV. In Fig. 3(b) at 55.2  $\mu$ s the average energy has dropped to 2 eV and in Fig. 3(c) at 4.8 ms when atomic hydrogen predominates, the spectrum has changed again, the average electron energy increasing moderately to about 2.7 eV.

The evolution of the hydrocarbon species is simulated with a chemistry code that uses the output of the Boltzmann code. The reactions used in the hydrocarbon model are listed in Table 1 along with the constants A. b, and E which determine the rate coefficient k according to  $k = AT^{b} \exp(-E/T)$ . The code calculates the rate for each reverse reaction that is not known. using detailed balance. The hydrocarbon chemistry is initiated by the electrons which dissociate H2 (and also the CH₄), causing the release of chemical energy and heating the gas. Figure 4 shows the gas temperature as a function of time for the simulation described above. In Fig. 5 we show the evolution of 12 hydrocarbon species plus  $H_2$  and H out to 3 ms, at which time the  $H_2$  and H densities are approximately equal. Although the formation of H is initiated by the electron dissociation of H₂, after about 2.5 ms with rise in temperature, thermal dissociation of H, becomes predominant. The build-up of CH₁ due to the dissociation of CH₄ occurs very early (approximately 30 µs) but it reacts with itself to form  $C_2H_6$  and drops to a local minimum before 1 ms. As the temperature increases, however, the CH, recombination reaction rate decreases and CH₃ increases to a new maximum near 2 ms; thereafter it decreases once more as the  $CH_4$  becomes exhausted. Acetylene ( $C_2H_2$ ) results from the chain of reactions initiated by the formation of  $C_2H_6$ , thence to  $C_2H_5$  and, in turn, to  $C_2H_4$ ,  $C_2H_3$  and finally to  $C_2H_2$  which persists to the end of the simulation. In general, the hydrocarbon species do not have time to reach the equilibrium values that the gas temperature would dictate. Thus, the time between their formation in the plasma and their reaching the substrate determines the densities of the critical radical species reaching the substrate.

Fig. 3. Electron energy distribution for the simulation as in Fig. 2. (a) at a time before inelastic processes reduce the average electron energy; (b) at an intermediate time when the average electron energy is about 2 eV; (c) at a time when dissociation of the  $H_2$  is nearly complete. The ordinate scale is arbitrary.

TABLE 1. Hydrocarbon reactions and rate coefficients

Reaction	$A(10^{6(n-1)}(m)^{3(n-1)}s^{-1})^n$	b	<i>E</i> (K)	Range(K)
$H + H + H_2 \rightarrow H_2 + H_3$	2.7 × 10 ^{-M}	-0.6	0	100-5000
$H_2 + H_2 \rightarrow H + H + H_2$	$1.5 \times 10^{-9}$	0	$4.84 \times 10^{4}$	2500-8000
$CH_4 + H \rightarrow CH_3 + H_2$	$3.6 \times 10^{-20}$	3.0	$4.40 \times 10^{3}$	300-2500
$CH_1 + H_2 \rightarrow CH_4 + H$	$1.1 \times 10^{-21}$	3.0	3.90 × 10 ³	3 <b>00-25</b> 00
$CH_4 + \frac{H_2}{CH_4} \rightarrow CH_3 + H + \frac{H_2}{CH_4}$	(12.9) 3.3 × 10 ⁻⁷	0	4.45 × 10 ⁴	1500-3000
$CH_3 + H + \frac{H_2}{CH_4} \rightarrow CH_4 + \frac{H_2}{CH_4}$	$(\frac{12.9}{18.6})^2.2 \times 10^{-21}$	- 3.0	0	300-2500
$CH_1 + CH_1 \rightarrow C_1H_1 + H$	$1.3 \times 10^{-9}$	0	$1.34 \times 10^{4}$	15003000
$C_1H_1 + H \rightarrow CH_1 + CH_1$	$5.0 \times 10^{-11}$	0	0	3 <b>00</b> -1500
$CH_3 + CH_3 \rightarrow C_2H_4 + H_2$	$1.7 \times 10^{-8}$	0	$1.61 \times 10^4$	1500-2500
$CH_3 + \frac{H_2}{CH_4} \rightarrow CH_2 + H + \frac{H_2}{CH_4}$	$(\frac{12.9}{18.6})$ 1.7 × 10 ⁻⁸	0	$4.56 \times 10^4$	1500-3000
$CH_2 + H \rightarrow CH + H_2$	$6.6 \times 10^{-11}$	0	0	300-2500
$CH_2 + CH_3 \rightarrow C_2H_4 + H$	6.6 × 10-11	0	0	300-2500
$C_2H_6 + H \rightarrow C_2H_5 + H_2$	$9.0 \times 10^{-22}$	3.5	$2.62 \times 10^{3}$	300-2000
$C_2H_6 + CH_1 \rightarrow C_2H_5 + CH_4$	$9.1 \times 10^{-25}$	4.0	$4.17 \times 10^{3}$	300-2000
$C_2H_6 + \frac{H_2}{CH_4} \rightarrow CH_3 + CH_3 + \frac{H_2}{CH_4}$	$(\frac{(2.9)}{(18.6)}$ 1.7 × 10 ⁻⁵	0	$3.43 \times 10^4$	800-2500
$C_2H_5 + C_2H_5 \rightarrow C_2H_4 + C_2H_6$	$2.3 \times 10^{-12}$	0	0	300-1200
$C_2H_5 + \frac{H_2}{CH_4} \rightarrow C_2H_4 + H + \frac{H_2}{CH_4}$	$1.7 \times 10^{-7}$	0	1.56 × 10 ⁴	700-1500
$C_1H_4 + H \rightarrow C_1H_1 + H_1$	$2.5 \times 10^{-10}$	0	5.14 × 10 ³	700-2000
$C_2H_4 + \frac{H_2}{C_2H_2} \rightarrow C_2H_2 + H_2 + \frac{H_2}{C_2H_2}$	$(18.6)^{(2.9)}$ 4.3 × 10 ⁻⁷	0	3.99 × 104	1500-2500
$C_2H_4 + \frac{H_2}{C_2H_3} \rightarrow C_2H_3 + H + \frac{H_2}{C_2H_4}$	$(2.9)_{(18,6)}$ 4.3 × 10 ⁻⁷	0	$4.86 \times 10^{4}$	1500-2500
$C_1H_4 + CH_1 \rightarrow C_1H_1 + CH_4$	$7.0 \times 10^{-1.3}$	0	5.59 × 10 ³	300-1000
$C_1H_1 + H \rightarrow C_2H_1 + H_2$	$3.3 \times 10^{-11}$	0	0	300-2500
$C_2H_3 + C_2H_2 + C_2H_2 + H + C_{H_2}$	$(18,4)^{(2,9)}5.0 \times 10^{-9}$	0	$1.61 \times 10^{4}$	500-2500
$C_2H_2 + H + \frac{H_2}{CH_4} \rightarrow C_2H_3 + \frac{H_2}{CH_4}$	$(18.6)^{(2.9)}$ 1.11 × 10 ⁻³⁰	0	$3.5 \times 10^{2}$	3 <b>00 - 5</b> 00
$C_1H_1 + H \rightarrow C_2H + H_3$	$1.0 \times 10^{-10}$	Õ	$1.19 \times 10^{4}$	300-3000
$C_1H + H_1 \rightarrow C_1H_1 + H$	$2.5 \times 10^{-41}$	Õ	$1.56 \times 10^{3}$	300-3000
$C_1H_1 + CH_1 \rightarrow C_1H_1 + H$	$3.0 \times 10^{-12}$	Ő	0	> 298
$C_1H_1 + C_1H \rightarrow C_4H_1 + H$	$5.8 \times 10^{-11}$	0	0	300-2500
$C_2H_2 + \frac{H_2}{CH_4} \rightarrow C_2H + H + \frac{H_2}{CH_4}$	$(2.9)_{(18,6)}^{(2.9)}6.6 \times 10^{-8}$	0	5.38 × 104	1 <b>500</b> 3500

"n denotes the number of reactants.



Fig. 4. Evolution of the gas temperature for the simulation as in Fig. 2.

Finally, we present preliminary results of a fluid simulation of a generic PECVD reactor, using SAIC's FUGG code which is capable of performing fluid calculations over arbitrarily complex geometries. The code employs an unstructured grid allowing extremely fine resolution in critical areas while employing coarser gridding in regions where quantities vary slowly. The code was designed for the study of flow problems dominated by convection and is presently being modified to incorporate thermal conduction and viscosity effects. In Fig. 6 we show two examples of the code's triangular gridding capability. In both cases a crosssection of the azimuthally symmetric model reactor is shown, where the left vertical boundary represents the reactor axis. Three gas inlet ports are modeled allowing the gas to enter at the top (in Fig. 6(a) the plenum region above the inlet ports is also modeled). The gas exits through the horizontal boundary at the bottom right. The substrate wafer is represented in Fig. 6(a) by the left half of the lower horizontal boundary and in Fig. 6(b) by the shelf at the lower left. In Fig. 6(a) the variable gridding capability is clearly illustrated and, in particular, the fine gridding needed in the inlet ports is shown. Figure 7 shows results of a fluid calculation for the reactor of Fig. 6(b) in which hydrogen gas enters at  $50 \text{ m s}^{-1}$  at a pressure of  $5.3 \times 10^3 \text{ Pa}$  (40 Torr). A heating source of 1.5 kW over a spherical volume of radius 0.035 m, centered on the reactor axis and mid-





(b) Fig. 5. Evolution of the hydrocarbon densities for the simulation as in Fig. 2.

Time

(ms)





Fig. 6. Examples of the FUGG code's unstructured gridding capability for two model reactors ((a) and (b)).

10¹

10

way between the inlet port and the wafer, is included to simulate approximately the effect of the plasma source. Shown are velocity vectors for the flow 2.6 ms after the plasma is turned on. Also calculated but not shown are the pressure, density, and temperature fields. While conclusions should be tempered because of the current lack of inclusion of thermal effects in the code and because the results represent a transient pre-steady-state stage, the effects of buoyancy are apparent. The complex vortex flows seen suggest this reactor configuration would be very poor for efficient diamond deposition.

#### 4. Discussion and conclusions

We have presented results of a model under development that will permit the simulation of PECVD reactors of arbitrary geometry. The model will be an important tool providing better understanding of the microscopic processes occurring within the reactor. permit parameter studies to identify those parameters which critically affect both the rate of deposition and the uniformity of the deposition over the wafer surface, and ultimately enable the design of improved reactors. We have identified several critical elements in the modeling effort that need to be treated carefully if simulation results are to be meaningful. First, the electromagnetic fields which initiate the plasma formation need to be determined in the realistic reactor geometry, including

effects of all metallic, dielectric, and insulator elements actually present, to ensure that the fields are high in the desired plasma formation region but not elsewhere. Second, the coupling of the fields to the plasma electrons, to determine accurately both the time development of the electron density and their energy distribution, is most important for determining the evolution of the rate of hydrogen dissociation and the rise in the gas temperature. This, in turn, critically determines the non-equilibrium hydrocarbon chemistry development, a third area that needs to be carefully modeled. Finally, the flow of hydrocarbon radicals to the wafer is very sensitive to the reactor's geometrical configuration, its thermal properties, and the location of the plasma relative to the wafer. In conclusion, our results emphasize the highly non-equilibrium and coupled nature of PECVD reactor processes and the strong influence of reactor geometry. A numerical simulation that is useful must address all such issues.

#### Acknowledgment

This research was supported by the U.S. Army Missile Command and sponsored by the Defense Advanced Research Projects Agency (DARPA) under contract DAAH01-90-C-0279 and by the Independent Research and Development Program of Science Applications International Corporation (SAIC). Nonlinear signal processing using integration of fluid dynamics equations

by

S. Eidelman, W. Grossmann and A. Friedman^{*} Science Applications International Corporation 1710 Goodridge Drive McLean, Virginia 22102

## 1. INTRODUCTION

Very recently, there have been exploratory efforts in image processing based on nonlinear methods.^[1] These efforts involve systems of nonlinear hyperbolic partial differential equations in combination with local wave representation, such as wavelets, for signal enhancement.^[2,3,4] Techniques based on Kalman filtering for feature extraction from complex time-evolving scenes, as well as neural network approaches to image analysis and feature identification, can also be shown to involve nonlinear PDE analogies. The use of nonlinear methods, however, is largely unexplored and may provide another level of improvement for image processing.

If the purpose of an image enhancement process is to highlight the edges of an image, then the technique used in the frequency domain is usually highpass filtering. An image can be blurred, however, by attenuating the high-frequency component of its Fourier transform. Since edges and other abrupt changes in the gray levels are associated with high-frequency components, image sharpening can be achieved in the frequency domain by a highpass filtering process, which attenuates the low-frequency without disturbing high-frequency information in the Fourier transform. The primary problem with this technique is that an ideal discontinuity will have an infinite spectrum of frequencies associated with it. When filtering is applied, some frequencies are cut off, leading to a loss of some edges in an image.

It is interesting to observe that in the field of Computational Fluid Dynamics (CFD) similar problems exist in simulating flows with discontinuities. The problem of simulating flows with discontinuities is less forgiving, since an incorrect calculation usually leads to a complete distortion of the flow field. This has led CFD scientists to develop sophisticated algorithms that identify and preserve discontinuities while integrating the 90w field in the computational domain. In the image domain, sharpening is usually done by differentiation. The most commonly used methods involve the use of either gradients or second derivatives of the pixel information. Central differencing is usually used to calculate the derivatives. CFD research has shown that this strategy will lead in many cases to a smearing of the flow discontinuities (analog of the image edges in image enhancement).

Here, we describe a new and unique image sharpening method based on computational techniques developed for CFD. Our preliminary experience with this method shows its capability for nonlinear enhancement of image edges as well as deconvolution of an image with random noise. This indicates a potential application for image deconvolution from sparse and noisy data resulting from measurements of backscattered laser-speckle intensity.

*Present address: Brookhaven National Lab., Apton, NY 11973

## 2. THE CFD IMAGE ENHANCEMENT TECHNIQUE

Considerable attention has been devoted to the development of numerical methods and algorithms for Computational Fluid Dynamics during the last thirty years. In recent years, however, our understanding of numerical algorithms for a particular class of problems in gas dynamics described by the Euler equations has become more complete. The main numerical difficulty in solving invisid compressible flows described by Euler equations is the occurrence of features that, in the invisid approximation, are discontinuous and even in the presence of viscosity are too small to be resolved on an affordable computational mesh. These flow discontinuities in which the fluid state jumps across shock waves or contact surfaces are extremely important in fluid simulations. Most of the efforts in developing numerical techniques in fluid dynamics over the last twenty years were devoted to accurate simulations of these discontinuities. Initially, naive numerical methods that used a formal finite difference representation of the conservation equations on a computational grid were employed. That led to disastrous results, smearing of the discontinuities, and spurious oscillations. Subsequently, sophisticated nonlinear techniques, which allowed accurate simulations of complex discontinuities without smearing and ringing, were developed. These new methods also satisfy a very demanding criteria for robustness and allow simulation of the wide range of flow problems without adjustment or tuning of the numerical technique.

The numerical methods that allow high accuracy resolution of flow discontinuities are so-called TVD (Total Variation Diminishing) methods. The Second Order Godunov Method is one of the most successful numerical techniques developed for this purpose. In Figure 1, an example is given of a solution using the Second Order Godunov Method for a complicated case of multiple shock waves,^[5] illustrating the ability of this method to capture and simulate sharp discontinuities.

The Second Order Godunov Method was developed based on an understanding of the phenomenology of signal propagation in the gasdynamical system. The numerical algorithm implementing this method is not analytic and is based on a set of steps that can be considered as wave filters. These filters are designed to not smear the discontinuity (edge), suppress the spurious oscillations, and propagate the relevant signals through the system. The following algorithmic steps are performed to advance the solution for a single iteration in the Second Order Godunov Method:

- 1. Local Extrapolation
- 2. Monotonicity Constraint
- 3. Characteristics Constraint
- 4. Riemann Problem Solution
- 5. Integration

It is interesting to note that most of these steps have an analog in conventional image processing methods. Here, we will give an explanation of the function of each algorithmic step of the Second Order Godunov Method and where applicable, will point to its possible analog in conventional signal processing techniques.

Step 1 consists of extrapolation of the values in the computational grid (pixel) cell to the edges of the cell. Linear or nonlinear extrapolation can be used. This step is analogous to the standard edge sharpening techniques used in image processing, with one important difference: the extrapolation is done not for the value itself but for its flux (change of value across cell boundary).

Step 2 includes a monotonicity constraint for the values at the cells' edges. This is analogous to the nonlinear technique of the locally monotonic regression^[6] only recently introduced for signal processing.

ł

Step 3 subjects the values at the edges to the constraints derived from a solution of one dimensional characteristics. This step assures that the values at the edges have not been extrapolated from directions inconsistent with the characteristic solutions. This prevents extrapolation as well as smearing or overshoot of the discontinuities. For the image processing application, this can be regarded as a form of automatic edge detection step where the shock waves are associated with the edges of an image.

Step 4 uses an exact solution of the system of the gas dynamic equations for calculation of the flux values based on the extrapolated values of the parameters at the left and right side of the edges. This step has no analogy in image processing. However, since the analytical solution includes discontinuities, an exact calculation of the flux at the edge location is allowed, even if this flux is calculated through a discontinuity.

Step 5 consists of finite volume integration of the system of conservation laws. Here, the image is effectively treated as a flow field; the flux integration serves as a smoothing filter from the image perspective.

Application of these steps can be considered as the application of a unique filter stack with proven properties of discontinuity preservation and robustness. Below we illustrate uses of this technique for practical problems of image processing that exemplify the feasibility and advantages of this approach.

The use of image analogies for image processing is not new. One widely applied technique treats an image as a potential field where the image potential acts as a force on the edges that are represented as elastic curves with some elastic properties.^[3] Our approach, as stated, involves an application of a technique developed for gas dynamic problems for image deconvolution. Although this technique is very new, an analysis of the basic steps presented above and our experience with its application for image deconvolution show that this nonlinear algorithm has considerable potential for edge enhancement and filtering of extremely noisy signals.

## 3. IMAGE ENHANCEMENT BY THE SECOND ORDER GODUNOV METHOD

The field of gray scale intensity of an image can be translated into a flow field. To every image pixel we add a corresponding cell of the computational domain with values of the gas dynamical parameters proportional to the values of the gray scale. Since there are at least five gasdynamical parameters that can be defined in every cell of the computational domain (pressure, density, two velocity components and  $\gamma$ ) and only one parameter in the image domain, cell mapping is not unique. Our understanding of the basic gasdynamical processes plays a major role in completing the analogy. Appropriate mapping of the image gray scale intensity into a flow field creates conditions favorable for the formation or enhancement of field discontinuities. For example, a shock wave reflecting from a wall or a contact surface can increase in strength, or two colliding flow streams will produce a contact surface that will become stronger in time. If we have a numerical technique to resolve these discontinuities accurately, then with successive numerical integration of the flow field, the discontinuities will sharpen as the solution evolves in time. Then by inverse mapping of the flow field to the image gray scale field, we can reconstruct an enhanced image. Below we give some examples of practical application of this technique.

## 3.1. Edge sharpening for a sinusoidal distribution

In Figure 2 results are given for edge definition of a one dimensional signal. The original sinusoidal signal is shown in Figure 2a. This example was chosen to test the ability of our technique to identify the edges of an image where the signal strength has deteriorated in the vicinity of the

edges, producing a gradual (instead of sharp) increase in the gray scale intensity. We observe that application of our technique results in significant sharpening of the edges, even after 15 or more iterations.

In Figure 3 random noise has been added to the sinusoidal signal shown in Figure 2a. The level of random noise addition corresponds to 10% of the maximum intensity of the original signal. The original signal with the random noise is shown in Figure 3a. In Figures 3b. 3c. 3d – e observe successive noise filtering and edge enhancement with application of our algorithm for .5, 30, and 45 interations correspondingly. We see that the edges of the final processed signal t = 1 located at exactly the same position as shown in Figure 2d for the uncontaminated signal.

Figure 4 illustrates the application of our algorithm to the signal that has been contaminated with 50% addition of random noise. Significant noise filtering occurs after 15 iterations and edge definition at the exact original locations after 45 iterations.

In Figure 5 the results are shown for a signal with 100% random noise added. Here again the signal is quickly filtered and the edges are picked up exactly at the correct locations.

## 3.2. Edge sharpening for a two dimensional image

Figure 3 contains a picture of Washington. DC taken from a Russian satellite. Digital representation of this picture had 150 dots per inch resolution. A fragment of the picture shown in Figure 6 is represented on an evenly spaced  $400 \times 360$  grid. We take the gray scale pixel information of this picture and convert the data into initial conditions for a gasdynamic problem by assigning the values of pressure and density in the computational domain directly proportional to the values of the pixels on the gray scale. Now the gasdynamic problem is defined and we can solve it using our high resolution Second Order Godunov Method. In Figures 7a, 7b, and 7c results in the pixel plane are shown after three, six, and nine iterations respectively in the gasdynamic domain. By "iteration," we mean that the flow solver integration algorithm was applied to the given flow field, or in this case, the pressure and density data derived from the initial picture. Even after three iterations, the picture is significantly sharper and continues to improve with more iterations.

A more detailed examination of the sharpening effect can be obtained by looking at the onedimensional cross section of the picture plane. In Figure 8, an arbitrary cross section of the original picture shown in Figure 6 is given. For clarity we show only the first fourth of the actual pixels in the cross section. We can see here that this particular cross section contains a multitude of sharp edges expressed only by three or four points. Further sharpening of these edges by a standard differentiation technique will lead to significant smearing of a number of the discontinuities. In Figure 9, the same cross section is shown after three iterations with the Second Order Godunov solver. Significant enhancement of all the sharp edges is evident. The process of enhancement can be followed in Figures 6b, 6c and 6d corresponding to six, nine, and twelve iterations. Continuous improvement in the definition of edges can be observed.

In Figures 10, 11a, 11b, 11c, and 11d, we demonstrate the ability of the current nonlinear PDE methodology to enhance simultaneously the high and low frequency features of an image. The amplitudes of both short and long wavelengths are simultaneously enhanced. However, as seen in the circled area, long wavelength features that retain one grid-cell discontinuities exhibit interesting behavior in that the cell-specific discontinuity, which appears in Figure 10, disappears in Figures 11b and 11c, but reappears in Figure 11d. The long wavelength definition continues to be enhanced in Figures 11a-11d. The origin of this behavior is presently unknown.

## 3.3. Application to Medical Imaging

Images of internal organs obtained with a Gamma Camera are usually of marginal quality and need significant post-processing to be useful for medical diagnostics. This is especially true if multiple pictures are taken of moving parts of the body, such as the heart, with low pixel resolution. In this section, we will demonstrate the application of our CFD technique for deconvolution of Gamma Camera images obtained during medical examinations.

Shown in Figure 12 is an image of the human heart produced by the staff of the Georgetown University Hospital, Department of Nuclear Medicine, using a Siemens Gamma Camera. This image contains a sequence of 64x64 pixel frames showing the heart at a sequence of time intervals. This plane image, originally recorded in 256 shades of gray scale, is presented here in 64 shades of gray. In Figures 12b, 12c and 12d the deconvoluted image is shown after 6, 12 and 18 processing iterations by our nonlinear technique. We observe in these figures a significant improvement in the image quality over the images in Figure 12a. Some of the diffuse edges in Figure 12a are clearly pronounced in Figures 12c and 12d. We have also applied our CFD technique to the Gamma Camera images of the brain and liver and have found a significant image deconvolution and edge enhancement.

## 4. CONCLUSIONS

The CFD technique described here for nonlinear signal and image processing is based on numerical techniques developed for Computational Fluid Dynamics, namely, the Second Order Godunov Method. We have demonstrated the application of this numerical method to signal processing, resulting in significant signal deconvolution and edge enhancement effects. Our preliminary analysis has shown that the Second Order Godunov Method, when applied to the gray scale intensity field of an image, is equivalent to an application of an unique filter stack. This filter stack has automatic edge detection, noise reduction and edge enhancement properties. We have demonstrated this nonconventional technique for the system of gas dynamic equations, where the Second Order Godunov Method assures high accuracy resolution of the flow discontinuities that are analogous to the edges in the image field. However, the same methodology can be applied to a reduced set of nonlinear hyperbolic partial differential equations, which will result in a significant optimization of the proposed technique.

### 5. REFERENCES

- 1. Nonlinear Image Processing, Proceedings of SPIE, Feb. 1990, Santa Clara, CA.
- 2. Osher, S. and L. Rudin, "Feature-Oriented Image Enhancement Using Shock Fielders," Siam J. Numer. Anal., Vol. 27, pp. 919-940, NY, 1990.
- 3. Samadani, R. et al., "A Computer Vision System for Automatically Finding the Auroral Oval from Satellite Images," Image Processing Algorithms and Techniques. Proceedings of SPIE, 1244, 68-75, Feb. 1990.
- 4. Greene, R. R. et al., "Process and Apparatus for the Automatic Detection and Extraction of Features in Images and Displays," U.S. Patent 4,906,340, Mar. 1990.
- 5. Collela, P. and P. Woodward, "Piecewise Parabolic Method (PPM) for Gasdynamic Simulations." J. Comp. Phys., Vol. 54, 174-201, 1984.
- 6. Restrepo, A. and A.C. Bovik, "Statistical Optimality of Locally Monotonic Regression," Nonlinear Image Processing, Proceedings of SPIE, 1247, 89-99, Feb. 1990.



Fig. 1. High resolution of flow discontinuities obtained with the Second Order Godunov Method.



Fig. 2. Edge enhancement for a sinusoidal distribution without noise.



Fig. 4 Edge enhancement for a sinusoidal distribution with 50% intensity random noise.



Fig. 3. Edge enhancement for a sinusoidal distribution with 10% intensity random noise.



Fig. 5. Edge enhancement for a sinusoidal distribution with 100% intensity random noise.



Fig. 6. The original satelite photograph of Washington. DC with resolution reduced to 150 dots/inch.



Fig. 7a. The sharpened picture after the Godunov solver has been used. After three iterations. Note the details that appeared on the Potomac. These details are barely visible even on the original high resolution photograph.



Fig. 7b. After six iterations.

J



Fig. 7c. After nine iterations.

SPIE Vol. 1567 Applications of Digital Image Processing XIV (1991) / 447



Fig. 8. Gray scale density of a cross section of the original image.



Fig. 9. Gray scale density of the CFD processed image: (a) after 3 iterations: (b) after 6 iterations: (c) after 9 iterations; (d) after 12 iterations.



ł

Fig. 10. Gray scale density of a cross section of the original image.



Fig. 11. Gray scale density of the CFD processed image: (a) after 3 iterations; (b) after 6 iterations; (c) after 9 iterations; (d) after 12 iterations.



(a) (b) (c) (d)

Fig.12. Image of human heart taken by a Siemens Gamma Camera. (a) Original image 64x64 pixels per frame; (b) Image after six processing iterations; (c) Image after 12 processing iterations; (d) Image after 18 processing iterations.

## Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept

S. Eidelman,* W. Grossmann,† and I. Lottati*

Science Applications International Corporation, McLean, Virginia 22102

Here we review experimental and computational studies of the pulsed detonation engine concept (PDEC) and present results of our recent numerical study of this concept. The PDEC was proposed in the early 1940s for small engine applications: however, its potential was never realized due to a complicated, unsteady operation regime. In this study, we demonstrate the use of current advances in numerical simulation for the analysis of the PDEC. The high-thrust/engine volume ratio obtained in our simulations demonstrates promising potential of the pulsed detonation engine concept.

#### Introduction

E ARLY developments of engine technology leading to practical propuision engines were almost completely associated with steady-state engine concepts. Unsteady concepts, which initially appeared promising, never evolved from the conceptual state and have remained for the most part unexplored. The early work in unsteady propulsion suffered from a lack of appropriate analytical and design tools, a condition which seriously impeded the advancement of the unsteady concepts to a practical stage.

In this paper, we review the historical development of unsteady propulsion by concentrating on the particular concept of the intermittent detonation engine, and discuss current research activities in this area. A review of the literature¹⁻²⁴ reveals that a significant body of experimental and theoretical research exists in the area of unsteady propulsion. However, this research has not been extended to the point where a conclusive quantitative comparison can be made between impulsive engine concepts and steady-state concepts. For example, the analysis given in Refs. 8-11 of the performance of a detonation engine concept includes neither frequency dependence nor analysis of losses due to multicycle operation. A new generation of analytical and computational tools exists today and allows us to revisit and analyze such issues with a high degree of confidence. Numerical simulation has developed to the state where it can now provide time-dependent two- and three-dimensional modeling of complex internal flow processes^{20,24,25} and will eventually result in tools for systematically analyzing and optimizing engineering design. In addition to a review of applications of the pulsed detonation engine concept (PDEC), we will report results of a numerical study of an air-breathing detonation engine. This study was performed using new unsteady computational fluid dynamics (CFD) tools that we will also describe.

Our paper is 'structured as follows: 1) historical review of the pulsed detonation development efforts; 2) description of the basic phenomenology of the air-breathing pulsed detonation engine concept; 3) description of the mathematical formulation and new numerical scheme used to simulate the problem; 4) discussion of the simulation results; and 5) conclusions.

Senior Scientist, Applied Physics Operation, Member AIAA.

*Chief Scientist, Applied Physics Operation, Member AIAA.

#### **Historical Review**

#### Constant-Volume Combustion

From the very early development of jet-propulsion engines, it was known that an engine based on a constant-volume combustion process achieves higher thermodynamics efficiency than a constant pressure engine. This follows from a thermodynamic analysis of the engine cycle.¹

Constant-volume combustion was used in gas turbine engines at the beginning of this century, and the first gas turbine engines in commercial use were based on the constant-volume cycle. Jet-propulsion engines were one of the applications of the constant volume cycle (or explosion cycle) which was explored in the late 1940s.² Although the explosion cycle operates at a larger pressure variation in the combustion chamber than in a pulse jet,^{3,4} the cycle actually realized in these engines was not a fully constant-volume one since the combustion chamber was open-ended.² In Ref. 2, the maximum pressure ratio measured in an explosion cycle engine was 3:1, whereas the pressure ratio for the same mixture under the assumption of a constant-volume cycle would be 8:1. Also, this engine was limited by the available frequency of cycles, which in turn was limited by the rear ion rate. A simple calculation² showed that if the combustion time could be reduced in this engine from 0.006-0.003 s, the thrust per pound of mixture would increase 100%. Thus, the explosion-cycle engine has two main disadvantages:

1) Constrained volume combustion (as distinguished from constant-volume combustion) does not take full advantage of the pressure rise characteristic of the constant-volume combustion process.

2) The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrative combustion rate.

The main advantage of the constant-pressure cycle is that it leads to engine configurations with the steady-state processes of injection of the fuel and oxidizer, combustion of the mixture, and expansion of the combustion products. These stages can be easily identified and the engine designer can optimize them on the basis of relatively simple steady-state considerations.

At the same time, an engine based on constant-volume combustion will have an intermittent mode of operation, which may complicate its design and optimization. We are interested in the question of whether this complication is worth the potential gains in engine efficiency.

#### Pulsed Detonation Engine as an Ultimate Constant-Volume Combustion Concept

The detonation process, due to the very high rate of reaction, permits construction of a propulsion engine in which the

Presented as Paper 89-2446 at the AIAA/ASME/ASEE/SAE 25th Joint Propulsion Conference, Monterey, CA, July 10-12, 1989; recelved Sept. 8, 1989; revision received April 12, 1990. This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

constant-volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and the fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Usually, each detonation is initiated separately by a fully controlled ignition device. and the cycle frequency can be changed over a wide range of values. There is only an upper limit for the detonation cycle frequency. This limit is determined by the time it takes to refill the detonation chamber with the fresh combustible mixture. This in turn will depend on chamber geometry and the external flow parameters. In our study, we have established that detonation frequencies of 200-250 Hz appear to be feasible. At the same time, the same PDEC engine can operate at very low detonation frequency with thrust almost linearly proportional to the frequency. This also means that a device based on a detonative combustion cycle can be scaled, and its operating parameters can be modified for a range of required output conditions. There have been numerous attempts to take advantage of detonative combustion for engine applications. In the following, we give a description of the most relevant past experimental and analytical studies of the detonation engine concept.

#### Hoffmann's Report

The first reported work on intermittent detonation is attributed to Hoffmann⁵ in 1940. He operated an intermittent detonation test stand with acetylene-oxygen and benzine-oxygen mixtures. The addition of water vapor was used to prevent the highly sensitive acetylene-oxygen mixture from premature detonation. Hoffmann⁵ indicated the importance of the spark plug location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies that will produce an intermittent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, the time of transition from deflagration to detonation, and the time of expansion of the detonation products. Hoffmann attempted to find the optimum cycle frequency experimentally. It was discovered that detonation-tube firing occurred at lower frequencies than the spark-plug energizing frequencies, indicating that the injection flow rate and ignition were out of phase. World War II prevented further work by Hoffmann and co-workers.

#### Nicholis' Experiments

A substantial effort in intermittent detonation engine research was done by a group headed by Nicholls⁶⁻¹⁰ of the University of Michigan beginning in the early 1950s. The most relevant work concerns a set of experiments carried out in a 6-ft-long detonation tube.^o The schematics of the detonationtube experiments test rig used by Nicholls and co-workers are shown in Fig. 1. The detonation tube was contructed from a 1-in.-i.d. stainless-steel tube. The fuel and oxidizer were injected under pressure from the left end of the tube and ignited at the 10-in. distance downstream. The tube was mounted on a pendulum platform that was suspended by support wires. Thrust for single detonations was measured by detecting tube (platform) movement relative to a stationary pointer. For multicycle detonations, thrust measurement was achieved by mounting the thrust end of the tube to the free end of the cantilever beam. In addition to direct thrust measurements, the temperature on the inner wall of the detonation tube was measured.

Fuel mixtures of hydrogen/oxygen, hydrogen/air, acetyleneoxygen, and acetylene-air were used. The gaseous oxidizer and fuel were continuously injected at the closed end wall of the detonation tube and three fixed flow rates were used. Under these conditions, the only parameters that could be varied were the fuel/oxidizer ratio and frequency of ignition. A maximum gross thrust of  $\approx 3.2$  lb was measured in hydrogen/ air mixture at the frequency of  $\approx 30$  detonations/s. The most promising results were demonstrated for the hydrogen/air mixture, where a fuel specific impulse of  $I_{sp} = 2100$  s was reached. The maximum frequency of detonations obtained in all experiments was 35 Hz. The temperature measurements on the inner wall showed that for the highest frequency of detonations the temperature did not exceed 800°F.

In their later work,⁸⁻¹⁰ the University of Michigan group concentrated on development of the rotating detonation wave rocket motor. No further work on the pulsed detonation cycle was pursued.

#### Krzycki's Experiments

In a setup somewhat similar to Nicholls', Krzycki¹¹ performed an experimental investigation of intermittent detonations with frequencies up to 60 cps. An attempt was also made to analyze the basic phenomena using unsteady gas dynamic theory. Krzycki's attempt to analyze the basic phenomena relied on wave diagrams to trace characteristics, assumptions of isentropic flow for detonation and expansion, and incompressible flow for mixture injection processes. The most convincing data from the experiments are the measurement of thrust for a range of initiation frequencies and mixture flow rates. Unfortunately, no direct pressure measurement in the device are reported so that only indirect evidence exists of the nature of the process observed.

The basic test stand used by Krzycki is very similar to that used by Nicholls et al.⁶ The length of the detonation tube and internal diameter were exactly the same as those in Nicholls' experiments. A propane/air mixture was continuously injected through reversed-flow diffuser for better mixing and



Fig. 1 Detonation tube used in experiments by Nicholls et al.

ignited at the 25-cm distance from the injection point by an automobile spark plug. The spark frequency was varied from 1-60 Hz. The spark plug power output was varied inversely with the initiation frequency and at the frequency of 60 Hz was only 0.65 J. This fact alone eliminated the possibility of direct initiation of the detonation wave by the spark and consequently all of the experiments were performed in the region dominated by transition from deflagration to detonation. According to experimental data and theory,¹² for direct initiation of a mixture of propane/air at the detonability limits, an energy release on the order of 10⁶ J is required. Thus, the required deflagration-detonation transition region length would have been prohibitively large for the propane/air mixture. It follows that in all of the experiments a substantial part of the process was deflagrative. This resulted in low efficiency and negligible thrust. Krzycki repeated the experiments of Nicholls using exactly the same size detonation tube and basi cally the same rates of injection of the detonatable mixture. Krzycki's experimental results are very well-documented, giving enough information to deduce a clear picture of the physical processes occurring in the tube. A conclusion, arrived at by the author, was that thrust was possible from such a device out practical applications did not appear promising. It is unfortunate that, possibly based on Krzycki's extensive but misleading results, all experimental work related to the pulsed detonation engine concept stopped at this time.

#### Work Reported in Russian Sources on Pulse Detonation Devices

A review of the Russian literature has not uncovered work concerning applications of pulsed detonation devices to propulsion. However, there are numerous reports of applications of such devices for producing nitrogen oxide¹³ (an idea proposed in the 1940s by Zeldovich to use detonation for binding nitrogen directly from air to produce fertilizers) and as rock crushing devices.¹⁴

Korovin et al.¹³ provide a most interesting account of the operation of a commercial detonation reactor. The main objective of this study was to examine the efficiency of thermal oxidation of nitrogen in an intermittent detonative process as well as an assessment of such technological issues as the fatigue of the reactor parts exposed to the intermittent detonation waves over a prolonged time. The reactor consisted of a tube with an inner diameter of 16 mm and length 1.3 m joined by a conical diffuser to a second tube with an inner diameter of 70 mm and length 3 m. The entire detonation reactor was submerged in running water. The detonation mixture was introduced at the end wall of the small tube. Methane, oxygen. and nitrogen comprised the mixture composition and the mixture ratios were varied during the continuous operation of the reactor. The detonation wave velocity was measured directly by piezoelectric sensors placed in the small and large tubes. The detonation initiation frequency in the reactor was 2-16 Hz. It is reported that the apparatus operated without significant changes for 2000 h.

Smirnov and Boichenko¹⁴ studied intermittent detonations of a gasoline/air mixtures in a 3-m-long and 22-mm-i.d. tube operating in the 6-8 Hz ignition frequency range. The main motivation of this work was to improve the efficiency of a commercial rock-crushing apparatus based on intermittent detonations of the gasoline/air mixtures.¹⁵ The authors investigated the dependence of the length of the transitional region from deflagration to detonation on the initial temperature of the mixture.

As a result of the information contained in the Soviet reports, it can be concluded that reliable commercial devices based on intermittent detonations can be constructed and operated.

## Development of the Blast Propulsion System at JPL

Back.¹⁶ Varsi et al.,¹⁷ Kim et al.,¹⁸ and Back et al.¹⁹ at the Jet Propulsion Laboratory (JPL) studied the feasibility of a rocket thruster powered by intermittent detonations of solid explosive. The main application foreseen by the authors is propulsion in dense or high-pressure atmospheres of certain solar system planets. The JPL work was directed at very specific applications; however, the studies¹⁷⁻¹⁹ addressed some key issues of devices using unsteady processes such as propulsion efficiency. The JPL studies have important implications to pulsed detonation propulsion systems.

Reference 19 gives the basic description of the test stand used. In this work, a data sheet type C explosive was detonated inside a small detonation chamber attached to nozzles of various length and geometry. The nozzles, complete with firing plug, were mounted in a containment vessel that could be pressurized with the mixture of various inert gases from vacuum to 70 atm. The apparatus measured directly the thrust generated by single detonations of a small amount of solid explosive charge expanding into conical or straight nozzles. Thrust and specific impulse were measured by a pendulum balance system.

Results obtained from an extensive experimental study of the explosively driven rocket have led to the following conclusions. First, rockets with long nozzles show increasing specific impulse with increasing ambient pressure in carbon dioxide and nitrogen. Short nozzles, on the other hand, show that specific impulse is independent of ambient pressure. Most importantly, most of the experiments obtained a relatively high specific impulse of 250 s and larger. This result is all the more striking since the detonation of a solid explosive yields a relatively low energy release of approximately 1000 cal/g compared with 3000 cal/g obtained in hydrogen/oxygen combustion. Thus, it can be concluded that the total losses in a thruster based on unsteady expansion are not prohibitive and, in principle, very efficient propulsion systems operating on intermittent detonations are possible.

## **Detonation Engine Studies at Naval Postgraduate School**

A modest exploratory study of a propulsion device utilizing detonation phenomena was conducted at the Naval Postgraduate School (NPS).²⁰⁻²³ During this study, several fundamentally new elements were introduced to the concept distinguishing the new device from previous ones.

First, it is important to note that the experimental apparatus constructed by Helman et al.²² showed the first successful self-aspirating, air-breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained. This frequency was in phase with the fuel-mixture injection through timed fuel-valve opening and spark discharge. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Furthermore, selfaspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

#### Simulations of Pulsed Detonation Engine Cycle at NASA Ames Research Center

Recently. Camblier and Adelman²⁴ carried out numerical simulations of a pulsed detonation engine cycle taking into account finite-rate chemistry. Unfortunately, the simulations were restricted to a quasi-one-dimensional model. The configuration considered had a 6-cm-i.d., 50-cm-long main chamber that was attached to a 43-cm-long diverging nozzle. It was assumed that a stoichiometric mixture of hydrogen/air at 3.0 atm is injected from an inlet on the closed end wall of the detonation chamber. Under these conditions, Camblier and Adelman estimated a large range of possible detonation frequencies of engine operation up to 667 Hz. The origin of this estimate is not clear from their work since, according to their simulations, the detonation. expansion, and fresh charge fill requires 2.5 ms. This value leads to a maximum frequency of 400 Hz. The simulated engine performance yielded a large average thrust of  $\approx$  4000 N and an unusually high specific impulse of 6507 s. These simulations were the first to demonstrate the use of modern CFD methods to address the technical issues associated with unsteady pulsed detonation concepts.

In the remaining sections, we discuss a particular propulsion concept based on the results of the experiments of Helman et al.²² and describe a computational study of its performance characteristics. The unsteady numerical scheme used for the study made use of unique simulation techniques; the key ingredients of these techniques are also described.

#### **Generic Pulsed Detonation Engine**

The generic device we consider here is a small cylindrical engine, 15 cm long and 15 cm in diameter. The combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave propagates through the mixture. The size of the engine suggests a small payload, but the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of engines into one large propulsion engine. A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flowfield, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical processes requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance is very broad. A partial list is as follows:

1) Initiation and propagation of the detonation wave inside the chamber.

2) Expansion of the detonation products from the chamber into the airstream around the chamber at flight Mach numbers.

3) Reverse flow from the surrounding air into chamber resulting from overexpansion of the detonation products.

4) Pressure buildup in the chamber due to reverse flow. The flow pattern inside the chamber during postexhaust pressure buildup determines the strategy for mixing the next detonation charge.

5) Strong mutual interaction between the flow processes inside the chamber and flow around the engine.

All of these processes are interdependent and their timing is crucial to the engine efficiency. Thus, unlike simulations of steady-state engines, the phenomena described above cannot be evaluated independently.

The need to resolve the flow inside the chamber accounting for nozzles, air inlets, etc., and at the same time resolve the flow around the engine, where the flow regime varies from high subsonic, locally transonic, and supersonic, makes it a challenging computational problem.

The main issue is to determine the timing of the air intake for the fresh gas charge. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh gas intake. In the following, we present the first results of an inviscid simulation of the detonation cycle in a cylindrical chamber. First, we describe our computational method for solving the time-dependent Euler equations used in the study.

#### **Unstendy Euler Solver**

A new second-order algorithm for solving the Euler equations on an unstructured grid was used in our study of the detonation concept. The approach is based on first- and secondorder Godunov methods. The method leads to an extremely efficient and fast flow solver that is fully vectorized and easily lends itself to parallelization. The low memory requirements and speed of the method are due to the use of a unique data structure.

Until recently most CFD simulations were carried out with logically structured grids. Vectorization and/or parallelization did not present a problem. The increased need for simulation of flow phenomena in the vicinity of complex geometrical bodies and surfaces has led to the development of CFD codes for logically unstructured grids. The most successful of these unstructured grid codes are based on finite elements or finite volume methods. For an unstructured grid in two dimensions, the computational domain is usually covered by triangles, and the indices of the arrays containing the values of the hydrodynamic flow quantities are not related directly to the actual geometric location of a node. The calculations performed on unstructured grids evolve around the elemental grid shape (e.g., the triangle for two-dimensional problems), and there is no obvious pattern to the order in which the local integrations should be performed. Explicit integration of hydrodynamic problems on an unstructured grid requires that a logical substructure should be created which identifies the locations in the global arrays of all of the local quantities necessary for the integration of one element. This usually results in a large price in computational efficiency, in memory requirements, and in code complexity. As a consequence, vectorization for the conventional unstructured grid methods has concentrated on rearrangement of the data structure in a manner such that these locally centered data structures appear as global arrays. This can be done to some extent using machine dependent gatherscatter operations.^{25,26} Additional optimization can be achieved using localization and search algorithms. However, these methods are complex and result in marginal improvement. Most optimized unstructured codes to date run considerably slower and require an order of magnitude more memory per grid cell than their structured counterparts. Parallelization of the conventional unstructured codes is even more difficult, and there is very little experience with unstructured codes on massively parailel computers.

The method we have developed overcomes these difficulties and results in codes with speed and memory requirements comparable to those found in structured grid codes. Moreover, the ability to construct grids with arbitrary resolution leads to a flexibility in dealing with complex geometries not attainable with structured grids. The essence of the method is based on an independent flux calculation across the edges of a dual baricentric grid, followed by node integration. This approach is order independent. Below we give the essential details of our algorithm; a complete description follows later.

#### Basic Integration Algorithm

We begin by describing the first-order Godunov method for the system of two-dimensional (axisymmetric) Euler equations written in conservation law form as

$$\frac{\partial Q}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial r} = -\frac{1}{r}C$$
(1)

where

$$Q = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \end{pmatrix}, \quad F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ (e + p)u \end{pmatrix}$$
$$G = \begin{pmatrix} \nu \\ \rho v u \\ \rho v^2 + p \\ (e + p)v \end{pmatrix}, \quad C = \begin{pmatrix} \rho v \\ \rho v u \\ \rho v^2 \\ (e + p)v \end{pmatrix}$$

Here u and v are the x and r velocity vector components, p the pressure,  $\rho$  the density, and e the total energy of the fluid per unit volume. It is assumed that a mixed (initial conditions, boundary conditions) problem is properly posed for the set,



Fig. 2a Computational domain and grid used in simulation of PDEC operation.



Fig. 2b Enlargement of computational grid in the vicinity of the PDEC nozzle.

Eq. (1), and that an initial distribution of the fluid parameters is given at t = 0 and some boundary conditions defining a unique solution are specified on the boundary of the computational domain.

We look for a solution of the system of equations represented by Eq. (2) in the computational domain covered by an unstructured grid. As an example, Fig. 2a shows the unstructured triangular grid used in the pulsed detonation engine simulation. Here most of the computational effort is committed to the resolution of the flow inside the engine detonation chamber and in the immediate vicinity of the nozzle. In Fig. 2b, an enlargement of the nozzle region is shown, illustrating the ability to represent geometry of arbitrary complexity and with localized resolution.

Figure 3 displays a fragment of the computational domain with the corresponding dual grid. The secondary or dual grid is formed by connecting the baricenters of the primary mesh, thus forming finite polygons around the primary vertices.

We have found, as have others,²⁷ that the best practical representation of the integration volume is obtained when the dual grid is formed by connecting baricenters of the triangles. Integration by the Godunov method²⁸ can be divided into two basic steps: 1) calculation of the fluxes at the edges of the secondary grid using solutions of a set of one-dimensional Riemann problems: and 2) integration of the system of partial differential equations, which amounts to addition of all of the fluxes for every polygon at a particular time step.

To define the fluxes for the grid shown in Fig. 3 at every edge of the main grid, it is necessary to solve the corresponding Riemann problem. For example, to define the flux at the edge ab, we solve the Riemann problem between points A and B. The solution of this problem is in coordinates local to the



Fig. 3 The primary (triangles) and secondary (polygons) unstructured grids.

edge of the dual grid ab so that the tangential component of velocity will be directed along this edge (ab). Implementation of our approach requires maintaining strict consistency when defining the "left" and "right" states for the Riemann problems at the edges ab, bc, cd, de, ef, and fa. For this reason, we define not only the location of the vertices and lengths of the edges but also the direction of the edges with respect to the primary grid. For the clockwise integration pattern in the same polygon, point A will be the "right" state for all of the Riemann problems related to this point, and the neighbor will represent the "left" side of the diaphragm.

It is easy to see that the flux calculation is based on information at only two nodes and requires single geometrical parameters defining the edge of the secondary grid that dissects the line connecting the two points. Thus, we can calculate all of the values needed for flux calculation in one loop over all edges of the primary grid without any details related to the geometrical structures that these edges form. This in turn assures parallelization or vectorization of the algorithm for the bulk of the calculations involving the Riemann solver that provides the first-order flux. The only procedure not readily parallelizable is the integration of the fluxes for the flow variables at the vertices of the grid. Here we use the "edge coloring" technique that allows us to split the flux addition loop into seven or eight loops for edges of different color. Each of these loops is usually large enough not to impair vectorization. At this stage, all of the fluxes are added with their correct sign corresponding to the chosen direction of integration within the cell. The amount of calculation required here is minimal since the fluxes are known and need only to be multiplied at each time step by a simple factor and added to the vertex quantity.

#### Second-Order Integration Algorithm

The second-order solver is constructed along lines similar to that of the first-order method. At each cell edge, the Riemann problem is solved for some specified pair of left and right conditions. The solution to this Riemann problem is then used in the calculation of fluxes that are added later to advance to the next integration step. The extension to second-order is achieved by using extrapolation in space and time to obtain time-centered left and right-limiting values as inputs for the Riemann problem. The basic implementation of the method of calculation of second-order accurate fluxes is fundamentally the same as for one-dimensional cases. The only difference is in the method of obtaining linear extrapolation of the flow variables as a first guess of their value at the edges of the dual grid. To obtain the first guess, we need to know the gradient of some gasdynamical parameter U at the vertices of the primary mesh. The value of  $\nabla U$  can be evaluated by using a linear path integral along the edges, which delineates the finite volume associated with the vertex. For vertex A in Fig. 3,

$$\int_{A} \nabla U \mathrm{d}A = \oint_{i} U n \, \mathrm{d}i \tag{2}$$

where integration along the path l in this case is equivalent to integration along the edges *ab. bc, cd, de, ef,* and *fa.* Knowing the gradient of the gasdynamic parameter in the volume related to vertex A will allow us to extrapolate the values of this parameter at any location within the volume. This permits us to evaluate the first guess for U at the edges of the dual grid. The final implementation of the second-order algorithm has been described previously.

A schematic flowchart of the basic steps of the second-order algorithm implementation is shown in Fig. 4.

#### Simulations of the Generic Pulsed Detonation Engine

In this section, we present sample results of simulations of the generic PDE device using the numerical code described in the preceding section. In Fig. 2a, the computational domain containing the PDE main detonation chamber is shown covered with the unstructured grid. In our sample simulation, we have chosen a small = 15-cm-long and = 15-cm-i.d. cylindrical chamber with a small converging nozzle. This geometry is one of a number of the geometries we have analyzed in a parametric study whose goal was to evaluate and optimize a typical PDEC device. The device shown in Fig. 1a does not represent the optimum and is given here to illustrate our methodology. We consider a situation when the PDEC serves as a main thruster for a vehicle traveling in air with the velocity of M = 0.9 and located at the aft end of the vehicle. The main objectives of the simulations presented here are as follows:

1) To find the maximum cycle frequency. This is determined by the time required from detonation, exhaust of combustion products, and intake of fresh charge for the next detonation.

2) To calculate the thrust produced during each cycle and the integrated thrust as a function of time.



Fig. 4 Grid schematic and outline of steps for second-order Godunov method.

The simulation begins at t = 0 when we assume an ideal detonation process has taken place in a stochiometric propane/air mixture. Initially the detonation wave has traveled from the open aft end of the chamber toward the interior with a maximum velocity of 1800 m/s and maximum pressure of 20 x 10⁵ Pa. The distribution of pressure, velocity, and density of the detonation wave is defined through the self-similar solution for a planar detonation wave. These distributions are shown schematically in Fig. 5. The wave was directed toward the interior of the chamber to capture the kinetic energy of the wave and to prolong exposure of the inner chamber walls to the high pressure. In Fig. 6, simulation results are shown at time t = 0.19 ms in the form of pressure contours and particle paths from different locations inside and outside the detonation chamber. From the pressure contour plots, we observe that the shock reflection from the inner wall has taken place and detonation products are expanding into the ambient airstream. The flow inside the chamber is choked due to the converging nozzle and the maximum pressure behind the shock is = 8 atm. The pressure inside the chamber is less than 3 atm. The strong expansion of the detonation products into the ambient airstream produces a shock wave with a spherical-like front rapidly decaying in strength. As a result of the interaction of the expanding detonation products with the external flow, a large toroidal vortex is created. The vortex is carried away quickly from the chamber by the external flow and by its own flow momentum.

In Fig. 6a, we also show trajectories of the particles introduced inside the chamber and just above the nozzle. Examination of these trajectories allows us to follow the dynamics of the chamber evacuation and refill. In order to track the detonation products, we initially place marker particles inside the chamber at three cross sections in clusters of four distributed normally to the detonation chamber axis. Each particle has a different color; however, particles in the same cluster have the same shade of color. At the three chosen cross sections, we have designated shades of red, yellow, and green for the particles located correspondingly at the left end, center, and beginning of the nozzle cross sections of the chamber. The movement of these particles is shown by connecting them with a continuous line beginning with particle location at t = 0 to the present time. In Fig. 6a, we observe that at time t = 0.19ms all particles originally in the nozzle cross section and three of the particles originally in the midsection have left the detonation chamber. However, particles originally introduced on the inner wall of the chamber have only advanced to the nozzle region.

We use a different technique for observing the motion of the ambient gas outside the chamber. Here a cluster of seven



Fig. 5 Distribution of gasdynamic parameters behind the detonation wave according to a one-dimensional self-similar solution.



b) t = 1.7 msec



particles is introduced every 0.05  $\mu$ s in the external flow above the nozzle. All such particles are traced as they move with the flow until they leave the computational domain. At any given time only the current location of the particle is displayed, and since the particles are introduced periodically with time there are a large number of particles to trace. We assign a color to every cluster of external particles to keep track of the time when they were introduced in the calculation. The colors vary from magenta, for those particles introduced early in calculation, to blue, for those introduced shortly before the end of a detonation cycle. In Fig. 6a, corresponding to very early times, only one cluster of external particles is visible. This cluster was introduced at t = 0 and is tracking the expanding flow of the detonation products.

In Fig. 6b, the simulation results are shown for t = 1.7 ms. The pressure contours show that a shock wave develops at the external edge of the nozzle as a result of a strong expansion of the Mach 0.9 external flow. As a result of overexpansion of the detonation products, the pressure inside the detonation chamber is lower than the ambient pressure, causing the shock

to be located lower on the external surface of the nozzle. The external flow about the chamber has a stagnation point on the axis of symmetry downstream at = 25 cm. At this time, it is evident from the particles' trajectories that most of the detonation products have left the chamber. Figure 6b shows one continuous trace of the particles originating at the back wall of the detonation chamber having advanced well ahead of the stagnation point in the external flow.

The marker particles released outside and just above the nozzle's exit show two distinct flow paths. One path takes the flow past the stagnation point to the right of the detonation chamber; this flow path is marked by the four upper particle traces. Another flow path is marked by three lower particle paths released close to the nozzle surface and is deflected toward the detonation chamber exit. Figure 5b shows particles marking this deflected stream approaching the detonation chamber nozzle. The magenta color of these particles indicates they were released at  $\approx 0.5$  ms.

Figure 6c corresponds to the simulation time t = 4.7 ms. The pressure inside the chamber has risen = 1 atm. Higher





Fig. 7 Thrust and force generated by PDEC as a function of time.

pressure at the chamber exit has resulted in the shock standing on the external surface of the nozzle to move upward. The particles marking the movement of fresh air into the chamber show these to be well inside with some reflecting from the end wall giving a second stagnation point for the reversed fresh airflow.

Figure 6d corresponds to the end of the first cycle when the detonation chamber is filled with fresh charge and ready for the next detonation. In this figure, the particles' paths indicate that the chamber refills in a pattern suitable for fast mixing of the fuel-air mixture. We conjecture then that fuel injection along the chamber axis will promote fast fuel-air mixing. We can see in Fig. 6d that further injection of external air inside the chamber stopped, and from that point on the mixture composition in the chamber will be fixed.

In Fig. 7, the total force and time-averaged thrust generated by the device in the simulations discussed previously are shown as a function of time. The time-averaged thrust is based on the total time for one cycle. As seen in Fig. 7, initially a very large force of  $\approx 1.5 \times 10^5$  kg is felt on the end wall of the detonation chamber. This is a result of the inwardly moving detonation wave used in our simulation. Very early during the sequence, this wave reflects from the left wall of the detonation chamber briefly generating a large force. This force rapidly decays and at t = 0.1 ms changes sign due to interaction of the strong shock wave with the converging nozzle. This effect is noticeable in the thrust data: the average thrust decreases somewhat after reaching levels of ~ 1980 N. The shock partially reflects from the converging nozzle walls and generates a wave moving to the left wall. The reflected wave thereafter generates positive thrust from t = 0.3 ms. Finally, thrust levels reach the maximum of = 2200 N and then decay slowly as a result of the cross-sectional drag force. The simulations predict that to sustain this level of thrust will require a detonation frequency of about 150 Hz. All simulations were performed on a Stellar workstation.

#### Conclusions

The main intent of the present study was to carry out a review of the relevant literature in the area of detonation propulsion, to assess the state of the art, and to recommend future research based on our findings. We have reviewed the literature and presented our summary in the first section of this paper. Our initial conclusion from the review is that there is a substantial body of evidence leading toward the possibility of producing propulsion engines with significant thrust levels based on an intermittent detonation.

Most of the historical attempts at producing thrust based on the intermittent detonation cycle were carried out with the same basic experimental setup; namely, a long straight detonation tube employing forced fuel injection at the closed tube end. We have discussed the many reasons why such a device cannot take proper advantage of the physical nuclesses associated with detonation.

The experiments performed at the Nav.. Postgraduate School using a self-aspirating mode of operation for a pulsed detonation thruster produced very useful reality which, upon further examination, provide us with a route toward practical propulsion engines of variable thrust levels that are both controllable and scalable.

We have explored some of the implications of the possible applications of the self-aspirating detonation engine concept and have developed a suitable numerical simulation code to be used as a design, analysis, and evaluation tool. In fact, the preliminary analysis of a candidate detonation chamber flow was shown to be dominated completely by unsteady gasdynamics. An attempt to understand the flow properties based on any steady-state model or one-dimensional unsteady analytical model will miss such important aspects as fuel-air mixing and shock reflection from internal geometrical obstacle such as the converging nozzle. The unsteady simulation code developed during the course of our study is a necessary tool that we plan to use in a study leading to a feasible prototype engine design realizing the full potential of the intermittent detonation process.

#### Acknowledgments

The work reported here was supported by the Defense Advanced Research Projects Agency under Contract N66001-88-D-0088. The authors express appreciation to Adam Drobot and Aharon Friedman for helpful suggestions and advice.

#### References

. .

¹Stodola, A., Steam and Gas Turbines, McGraw-Hill, New York, 1927.

²Zipkin, M. A., and Lewis, G. W., "Analytical and Experimental Performance of an Explosion-Cycle Combustion Chamber of a Jea Propulsion Engine," NACA TN-1702, Sept. 1948.

³Shultz-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NACA TM-1131, Feb. 1947.

⁴Zinn, B. T., Miller, N., Carvelho, J. A., and Daniel, B. R., "Pulsating Combustion of Coal in Rijke Type Combustor," *19th International Symposium on Combustion*, Combustion Inst., Pittsburgh, PA, 1982, np. 1197-1203.

PA, 1982, pp. 1197-1203. ⁵Hoffmann, N., "Reaction Propulsion by Intermittent Detonative Combustion," Ministry of Supply, Volkenrode Translation, 1940.

⁶Nicholls, J. A., Wilkinson, H. R., and Morrison, R. B., "Intermittent Detonation as a Thrust-Producing Mechanism." Jet Propulsion, Vol. 27, 1957, pp. 534-541.

⁷Dunlap, R., Brehm, R. L., and Nicholls, J. A., "A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine," *Jet Propulsion*, Vol. 28, 1958, pp. 451-456.

⁸Nicholls, J. A., Gullen, R. E., and Ragland, K. W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," *Journal of* Spacecraft and Rockets, Vol. 3, 1966, pp. 893-898.

⁹Adamson, T. C., and Olsson, G. R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," *Astronautica Acta*, Vol. 13, 1967, pp. 405-415.

¹⁰Shen, P. I., and Adamson, T. C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, Vol. 17, 1972, pp. 715-728.

¹¹Krzycki, L. J., "Performance Characteristics of an Intermittent Detonation Device," U. S. Naval Ordnance Test Station. China Lake, CA, Navweps Rept. 7655, 1962. ¹²Matsui, H., and Lee, J. H., "On the Measure of the Relative

¹²Matsui, H., and Lee, J. H., "On the Measure of the Relative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, Combustion Inst., Pittsburgh, PA, 1978, pp. 1269-1280

¹³Korovin, L. N., Losev, A., Ruban, S. G., and Smekhov, G. D.,

"Combustion of Natural Gas in a Commercial Detonation Reactor," Fizika Gor. Vzryva, Vol. 17, No. 3, 1981, p. 86.

14Smirnov, N. N., and Boichenko, A. P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fizika Gor. Vzryva, Vol. 22, No. 2, 1986, pp. 65-67.

¹⁵Lobanov, D. P., Fonbershtein, E. G., and Ekomasov, S. P., "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes," Fizika Gor. Vzrvva, Vol. 12, No. 3, 1976, p. 446.

¹⁶Back, L. H., "Application of Blast Wave Theory to Explosive Propulsion," Acta Astronautica, Vol. 2, No. 5/6, 1975, pp. 391-407.

¹⁷Varsi, G., Back, L. H., and Kim, K., "Blast Wave in a Nozzle for Propulsion Applications," Acta Astronautica, Vol. 3, 1976, pp. 141-156.

¹⁸Kim, K., Varsi, G., and Back, L. H., "Blast Wave Analysis for Detonation Propulsion," AIAA Journal, Vol. 10, No. 10, 1977, pp. 1500-1502.

¹⁹Back, L. H., Dowler, W. L., and Varsi, G., "Detonation Propul-sion Experiments and Theory," AIAA Journal, Vol. 21, No. 10, 1983, pp. 1418-1427.

²⁰Eidelman, S., and Shreeve, R. P., "Numerical Modeling of the Nonsteady Thrust Produced by Intermittent Pressure Rise in a Diverging Channel." American Society of Mechanical Engineers, Multidimensional Fluid Transient, FED-Vol. 18, 1984, p. 77.

²¹Eidelman, S., "Rotary Detonation Engine," U.S. Patent 4 741

154, 1988. ²²Heiman, D., Shreeve, R. P., and Eidelman, S., "Detonation Pulse Engine," AIAA Paper 86-1683, June 1986.

²³Monks, S. A., "Preliminary Assessment of a Rotary Detonation Engine Concept," M.Sc. Thesis, Naval Postgraduate School. Monterey, CA, Sept. 1983.

²⁴Camblier, T. L., and Adelman, N. G., "Preliminary Numerical Simulations of a Pulsed Detonation Wave Engine." AIAA Paper 88-2960, Aug. 1988.

²⁵Lohner, R., Morgan, K., and Zienkiewicz, D. C., "Finite-Element Methods for High Speed Flows," AIAA Paper 85-1531, July :985

²⁶Lohner, R., and Morgan, K., "Improved Adaptive Refinement Strategies for Finite-Element Aerodynamic Computations," AIAA Paper 86-0499, Jan. 1986.

Barth, T. J., and Jespersen, D. C., "The Design and Application o Jpwind Schemes on Unstructured Meshes," AIAA Paper 89-0366, Jan 1989.

²⁸Eidelman, S., Collela, P., and Shreeve, R. P., "Application of the Godunov Method and Its Second-Order Extension to Cascade Flow Modelling," AIAA Journal, Vol. 22, No. 1, 1984, p. 10. ²⁹Baker, T. J., "Developments and Trends in Three-Dimensional

Mesh Generations," Transonic Symposium, NASA Langley Research Center, Hampton, VA, 1988.

³⁰Jameson, A., Baker, T. J., and Weatherill, N. P., "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA Paper 86-0103, Jan. 1986.

³¹Greengard, L., and Rokhlin, V., "A Fast Algorithm for Particle Simulations," Journal of Computational Physics, Vol. 73, 1987, pp. 325-348.

³²Eidelman, S., Collela, P., and Shreeve, R. P., "Application of the Godunov Method and its Second Order Extension to Cascade Flow Modeling," AIAA Journal, Vol. 22, No. 1, 1984, p. 10.

³³van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method," Journal

of Computational Physics, Vol. 32, 1979, pp. 101-136. ³⁴Collela, P., and Woodward, P., "The Piecewise Parabolic Method (PPM) for Gasdynamical Simulations." Journal of Computational Physics, Vol. 54, 1984, pp. 174-201.

¹⁵Barth, T. J., and Jespersen, D. C., "The Design and Application of Upwind Schemes on Unstructured Meshes." AIAA Paper 89-0366. Jan. 1989.

³⁶Glaz, H. M., Collela, P., Glass, I. I., and Deschambault, R. L., "A Detailed Numerical, Graphical, and Experimental Study of Oblique Shock Wave Reflections," Defense Nuclear Agency, DNA-TR-86-365, 1986.

# Numerical and analytical study of transverse supersonic flow over a flat cone

D.L. Book¹, S. Eidelman², I. Lottati² and X. Yang²

¹ Code 4405, Naval Research Laboratory, Washington, DC 20375
 ² Science Applications International, McLean, VA 22102

Received February 8, 1991; accepted March 21, 1991

Abstract. Quasisteady supersonic flow over a flat cone on a plane surface is studied. A formula is derived for the angle through which the flow lines turn at the cone. The results are used to justify the use of two-dimensional simulations of the flow. Peak pressures and total impulses are obtained numerically for various cone angles.

Key words: Cone, Euler equation, Mach reflection, CFD, Supersonic flow

#### 1. Introduction

The purpose of this study is to determine the maximum pressure on the surface of a flat cone (one for which the height is much less than the diameter) in the quasiuniform flow behind a strong blast wave propagating at right angles to the axis of the cone. If the cone is small compared with the radius of the blast wave, the undisturbed flow is approximately rectilinear. First, the blast wave passes over the cone and an unsteady load builds up on the surface. In general the shock will undergo Mach reflection over at least part of the surface of the cone, the extent depending on the cone angle  $\alpha$ , the adiabatic index  $\gamma$ , and the Mach number M. After a short transitional stage the cone will then be subject to the quasisteady supersonic flow field behind the blast front. (For a strong blast wave in air, the pressure drops to one-half the peak value about one-tenth of the way back from the front toward the origin of the blast (Sedov 1959). Thus, if the blast center is located  $\sim 100$  radii from the cone, the pressure arriving at the cone is reduced to half its initial value  $\sim 10$ radii behind the front.) The post-shock flow velocity varies on the same scale. We would like to find whether the pressure on the cone reaches its maximum during

the quasisteady or the unsteady regime of the flow and determine its magnitude.

The cone, shown schematically in Fig. 1, is located on a plane surface. We take its axis to be normal to the surface, and we model the front of the spherical blast wave as a planar shock wave propagating normally to this axis. This is a reasonable approximation when the distance to the blast center is much larger than the radius, i.e., in the same limit for which we can assume that the state behind the front is uniform. The flow over the cone is substantially three-dimensional. The only symmetry is with respect to inversion about the midplane (the plane through the cone axis and parallel to the flow). In the general case in which the cone axis is not normal to the plane, the problem is totally asymmetrical.

Previous studies of the effect of supersonic flows on conical bodies have focused primarily on situations in which the flow is parallel or nearly parallel to the axis of the cone. Those results are applicable to, e.g., the aerodynamical effects associated with the nose cones of re-entry vehicles. In contrast, the problem we are considering may be regarded as an idealized model of the interaction between a blast wave and a ground or shipboard structure. It can also model the flow over a bump or a housing on the skin of a supersonic aircraft or missile. The results may thus be relevant to both damage studies and flight characteristics.

A number of experimental studies related to the problem of oblique supersonic flow over a cone have been carried out, beginning at least three decades ago (Tracy 1963; Damkevala and Zumwalt 1968). Most of this work has dealt with small deviations from axisymmetry, although angles of attack as large as 30° have been studied (Yahalom 1971). Less experimental effort seems to have been devoted to transverse flows (angle of attack equal to 90°). Likewise, theoretical studies by Goman and Davydov (1975) and Gusarov et al. (1979) have concentrated on small deviations from conical shapes in axisymmetric flow. Numerical simulations have been car-

Offprint requests to: D.L. Book

198

ried out at large angles of attack  $(30^{\circ}-50^{\circ})$  by Fletcher and Holt (1976). These results are useful, and the same techniques can be applied to transverse flows, but they have definite limitations. At the Mach numbers investigated ( $M \leq 6-8$ ) the flow is strongly conditioned by the presence of a viscous boundary layer. This necessitates solution of the Navier-Stokes equations instead of the Euler equations, and it may be necessary to incorporate a turbulence model as well. In three dimensions it is difficult to obtain good resolution even for inviscid flow; the presence of a thin boundary layer makes the problem even more formidable.

In the next section we determine the streamlines associated with transverse flow over a cone in the Newtonian approximation, i.e., assuming that the streamlines follow the contours of the body surface. We show that for a flat cone the streamlines deviate very little from the vertical plane in which they were propagating before reaching the cone. We use this result to argue that the flow over the cone can be accurately modeled by treating each cross section made by a vertical plane separately. i.e., by solving a series of two-dimensional problems. In the section following that, we describe the results of such calculations. For this purpose we use an Euler code, which is only valid at low flow Mach numbers (M $\leq$ 5). In our calculations the shock Mach number equals 25, but the Mach number of the flow in the heated region behind the shock is  $\sim 3$ , so we are justified in ignoring viscous effects. At higher values of M our results are at least indicative and can be expected to yield accurate values of the peak pressures on the cone. (Of course the reduction of the problem to two dimensions is a consequence of the cone geometry and would be equally useful for Navier-Stokes applications.) We show that these results can be combined to draw a picture of most of the flow field. In the final section we summarize our conclusions.

#### 2. Streamline trajectories

If the flow deflected by a solid object remains supersonic after deflection, the angle between the flow direction and the surface determines the flow parameters behind the shock for given inlet flow parameters. For shock Mach numbers  $M\gtrsim 10$ , the shock angle is small and the deflected flow on the upwind side closely follows the form of the deflecting object. The streamlines are determined by the condition that the angle through which they are deflected be as small as possible. We would like to analyze how this deflection angle varies on the surface of the cone shown in Fig. 1. Based on this analysis we can estimate most of the characteristics of steady supersonic flow directed transversely toward the cone.

The equation for the frustrum of a cone with the geometrical center of its base located at the center of coordinates (see Fig. 1) is

$$(x^{2} + y^{2}) \tan^{2} \alpha = (z - h)^{2}, \qquad (1)$$

where h is the height of the cone and  $\alpha$  is the angle between the side of the cone and the base. The angle



Fig. 1. Schematic of the model. The z axis coincides with the axis of the cone and the flow is taken in the direction of the positive x axis. The angles  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\omega$  are defined in the text

 $\delta$  between the propagation direction n (taken to be the positive x-direction) and the deflected streamline at the leading edge of the cone, which determines the shock strength, is bounded above by the angles between n and the conic sections in the x-y and x-z planes.

The cross sections of the cone parallel to the x-yplane are circles given by

$$x^{2} + y^{2} = (z_{0} - h)^{2} / \tan^{2} \alpha \equiv r^{2},$$
 (2)

where  $z_0$  is constant for each particular cross section and r is the radius of the circle. The angle  $\beta$  between n and the tangent to this circle at the point with ordinate y is given by

$$\tan \beta = \frac{\partial y}{\partial x} = -\frac{x}{(r^2 - x^2)^{1/2}} = -\frac{(r^2 - y^2)^{1/2}}{y}.$$
 (3)

The sign is chosen so that positive values of  $\beta$  correspond to negative values of x (i.e., the upwind side).

The cross sections parallel to the x-z plane form hyperbolas on the surface of the cone. The equation for this family of curves is

$$\frac{(z-h)^2}{\tan^2 \alpha} - x^2 = y_0^2,$$
 (4)

where  $y_0$  is constant for each particular cross section. The angle  $\gamma$  between n and the tangent to this hyperbola is given by

$$\tan \gamma = \frac{\partial z}{\partial x} = \tan \alpha / \left(1 + {y_0}^2 / x^2\right)^{1/2}$$
  
=  $\left(1 - {y_0}^2 / r^2\right)^{1/2} \tan \alpha$  (5)

Let us examine now how  $\tan \beta$  and  $\tan \gamma$  vary on the intersection of the cone with the x-y plane when y changes from 0 to  $\pm R$ , where  $r = R = h/\tan \alpha$ . From (3),  $\tan \beta$  approaches  $\infty$  and 0, i.e.,  $\beta = 90^{\circ}$  and  $\beta = 0^{\circ}$ , in the limits  $y \rightarrow 0$  and  $y \rightarrow \pm R$ , respectively. From (5),  $\tan \gamma$  approaches  $\tan \alpha$  and 0 in the same limits. corresponding to  $\gamma = \alpha$  and  $\gamma = 0^{\circ}$ .

Comparing (3) and (5), we seadily conclude that for  $\tan \alpha < 1$ 

 $\tan \gamma < \tan \beta, \quad 0 < y < R;$  $\tan \gamma = \tan \beta = 0, \quad y = R,$  (6)

and for  $\tan \alpha > 1$ 

 $\tan \gamma < \tan \beta, \quad 0 < y < R/\tan \alpha;$   $\tan \gamma = \tan \beta, \quad y = R/\tan \alpha;$   $\tan \gamma > \tan \beta, \quad R/\tan \alpha < y < R;$  $\tan \gamma = \tan \beta = 0, \quad y = R.$ (7)

Thus, at any point with  $x \leq 0$  on the cone specified by (1) for  $\tan \alpha < 1$ , the propagation vector **n** makes a smaller angle with the cone in the cross section parallel to the x-z plane than in the one parallel to the x-yplane. For supersonic flow over the cone shown in Fig. 1, condition (6) implies that the velocity vectors behind the shock front in the region of compression of the flow will always be directed over the cone and not around it.

Now we consider intermediate cross sections of the cone, obtainable by rotating through an angle  $\omega$  about the line AB defined by the intersection of the x-y plane and a plane parallel to the x-z plane. We would like to find the minimum angle between n and the tangent in these cross sections when  $\omega$  varies from 0° (cross section parallel to the x-y plane) to 90° (cross section parallel to the x-z plane).

This family of cross sections is defined by (1) together with the equation of the cross-section plane,

$$z - Z = (y - Y) \tan \omega. \tag{8}$$

where  $\omega$  is the angle between the cross-section plane. We restrict ourselves to points lying in the x-y plane as shown in Fig. 1, since the bow shock produced by the interaction between the flow and the cone will either be attached at this point or will stand off slightly ahead of the cone. The coordinates of the point where the flow encounters the cone are  $X = (R^2 - Y^2)^{1/2}$ , Y, and Z = 0. The tangent line is the intersection of this plane and the plane tangent to the cone at (X, Y, Z). The equation of the latter is obtained from (1):

$$(xX + yY)\tan^2 \alpha + h(z - h) = 0.$$
(9)

Solving (8) and (9) simultaneously yields the equations describing the tangent line:

$$z = (y - Y) \tan \omega = \frac{-(x - X)X \tan^2 \alpha \tan \omega}{h \tan \omega + Y \tan^2 \alpha}.$$
 (10)

The angle  $\delta$  between this line and n is given by

$$\tan \delta = \frac{\left[ (y-Y)^2 + z^2 \right]^{1/2}}{x-X}$$

$$= \frac{\left(h^2 - Y^2 \tan^2 \alpha\right)^{1/2} \tan \alpha}{h \sin \omega + Y \tan^2 \alpha \cos \omega} \equiv f(\omega).$$
(11)



Fig. 2. Value of angle  $\omega$  which minimizes deflection angle as a function of Y/R

Now we look for the extrema of  $f(\omega)$  when  $\omega$  varies from 0° to 90°:

$$\frac{df}{d\omega} = \frac{\tan \delta \left( Y \tan^2 \alpha \sin \omega - h \cos \omega \right)}{h \sin \omega + Y \tan^2 \alpha \cos \omega},$$
(12)

which vanishes only for

$$\tan \omega = \frac{h}{Y \tan^2 \alpha} \equiv \tan \omega_{\min}.$$
 (13)

It is easy to show that (13) defines the minimum of f. Substituting (13) into (11), we find

$$\tan \delta_{\min} = \frac{\left(h^2 - Y^2 \tan^2 \alpha\right)^{1/2} \tan \alpha}{\left(h^2 + Y^2 \tan^4 \alpha\right)^{1/2}},$$
 (14)

which determines the angle  $\delta_{\min}$  through which the streamline of the supersonic flow behind the shock wave turns as a function of Y.

From (13) we see that  $\tan \omega > 1$  holds for  $\tan \alpha < 1$ , since  $Y \le h/\tan \alpha$ . Figure 2 shows how  $\omega_{\min}$  changes when Y varies from 0 to R for various values of  $\tan \alpha$ . This figure implies that for flat cones the supersonic flow will be almost parallel to the x-z plane.

Another way to reach the same conclusion is by finding the maximum y-displacement of a streamline from its original trajectory. This occurs for x = 0, when the trajectory reaches its highest point on the surface of the cone. The tangent to the cone at x = 0, i.e., the section of the cone in the y-z plane, is described by

$$y\tan\alpha + z = h. \tag{15}$$

Solving this equation together with

$$z = (y - Y) \tan \omega_{\min} = \frac{h(y - Y)}{Y \tan^2 \alpha},$$
 (16)

we obtain

$$y = \frac{hY \sec^2 \alpha}{h + Y \tan^3 \alpha} \equiv y_0. \tag{17}$$

Maximizing  $\Delta y = y_0 - Y$  with respect to Y, we find that the largest value of  $\Delta y$  occurs for

$$Y = \frac{h\cos^2\alpha}{\sin\alpha(1+\cos\alpha)} = \frac{R\cos\alpha}{1+\cos\alpha}$$
(18)

200

and equals

$$(\Delta y)_{\max} = \frac{h \sin \alpha \cos \alpha}{(1 + \cos \alpha)^2} = \frac{h \tan^2 \alpha/2}{\tan \alpha}.$$
 (19)

547

For  $\alpha \ll 1$  we have  $Y_{\max} \approx R/2$  and  $(\Delta y)_{\max} \approx h\alpha/4$ .

In summary, the vertical deflection of the streamlines over a cone of small edge angle  $\alpha$  is of order  $\alpha$ , while the horizontal deflection is of order  $\alpha^2$ . For  $\alpha \leq 0.1$  we see that the flow over the cone deviates from the vertical plane in which it starts out by an amount 0.01. Thus the compression region of supersonic flow over flat cones can be calculated accurately by modeling the flow over separate cross sections of the cone made by planes parallel to the x-z plane. A wedge, being two-dimensional, is easier to model than a cone. For this reason we carried out several calculations of the interaction between blast waves and wedges, described in the next section.

We can also conclude that the maximum change in the direction of a streamline for such cones will be  $\alpha$ . If the shock undergoes regular reflection, uniform supersonic flow over a wedge with base angle  $\alpha$  gives an upper bound for the pressure on the cone. Where Mach reflection occurs it is necessary to model the transient regime, as the pressure peaks associated with the Mach stem and the contact surface could conceivably be larger.

#### 3. Numerical modeling

Let us consider a cone with  $\alpha = 10^{\circ}$  (tan  $\alpha = 0.176$ ) at the base. According to the analysis in the preceding section of a transversely directed supersonic flow over a cone, an upper limit can be obtained by modeling the same supersonic flow over a wedge with opening angle  $\alpha$ .

Here we present the result obtained by numerically solving the equations for the flow over the wedge when it is loaded by a passing blast wave. For the simulation we used the Fast Unstructured-Grid Second-Order Godunov Solver, described by Eidelman and Lottati (1990). This code, which is based on a second-order Godunov method (Eidelman et al. 1984), provides a method for solving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The use of a data structure with only one level of indirectness leads to an easily vectorized and parallelized code with low memory requirements and high computational efficiency. The algorithm has been tested for performance and accuracy over a wide range of Mach numbers and geometrical situations, and has demonstrated robustness without the need for any adjustable parameters. It can be implemented in either a triangle- or vertex-based form; experience with the method has shown that extremely low levels of artificial viscosity can be achieved using the triangle-based version of the method. Direct dynamic refinement of the grid (Eidelman and Lottati 1990) allows automatic adaptation to the front of the moving blast wave. This refinement guarantees that the associated highly inhomogeneous pressure and density features are accurately tracked.



Fig. 3. Unstructured grid for  $\alpha = 10^{\circ}$  at times (a) 35  $\mu$ s, (b) 55  $\mu$ s, and (c) 130  $\mu$ s, associated with the density and pressure contour plots of Figs. 4 and 5.Distances are in meters. These reproductions are unable to resolve the smallest triangles, which show up as dark regions roughly coincident with the locations of gasdynamic discontinuities

For the initial conditions in the computational domain we assume air at standard temperature and pressure. At t = 0, a strong (M = 25) blast wave, propagating to the right, is located at the left boundary. We assume that the blast wave is "square" and that conditions at the left boundary of the computational domain remain constant for the whole time of the simulation. A constant value of  $\gamma = 1.2$  was used (appropriate to flow behind shocks with this value of M on account of real-gas effects). For these values of  $\alpha$ ,  $\gamma$ , and M, shock tube measurements described by Glass (1987) of diffraction over a wedge indicate that double Mach reflection should occur.

Figure 3 shows the computational grid at various times t: (a) at  $t = 35 \,\mu$ s, shortly before the blast front reaches the apex of the wedge, located at a horizontal distance  $l = 1 \,\mathrm{m}$  from the corner; (b) at  $t = 55 \,\mu$ s, just after it passes the apex; and (c) at  $t = 130 \,\mu$ s, after the leading shock has exited from the computational domain and a quasisteady state has developed. The highly refined portions of the grid follow shock fronts, contact discontinuities, etc. The numbers of vertices shown are 4166, 11785, and 10959, respectively, reflecting the complexity of the corresponding states, i.e., the amount of structure in the gasdynamic processes present.

Figure 4 shows contours of density scaled by the ambient density  $\rho_0 = 1.29 \text{ kg m}^{-3}$  at the same times as in Fig. 3. In the first frame the flow is still identical with that for a shock reflecting from a single wedge with opening angle  $\alpha$ , and therefore is evolving self-similarly (Glass 1987). The first Mach stem and incident shock are clearly defined. The associated contact surface is barely discernible, both because the contour levels are bunched near the much larger jumps at the shocks and because at very high Mach numbers the slip line is found quite close



Fig. 4. Scaled density contours for  $\alpha = 10^{\circ}$  at times (a) 35  $\mu$ s, (b) 55  $\mu$ s, and (c) 130  $\mu$ s. Thirty-five contour levels are plotted, with  $\rho/\rho_0$  varying from 1.0 to 13.5. They are concentrated at the large density jumps in the strong shocks. This causes the shocks to be emphasized more than the contact discontinuity, where the density change is relatively small. The structure of the Mach reflection is discernible only in the earliest frame. In the final frame the flow has become essentially steady

to the Mach stem (Glaz et al. 1985). In Fig. 4b the front has passed the apex and the evolution is no longer selfsimilar. The flow behind the front expands through an expansion fan attached to the corner. Also clearly visible is the recompression shock two-thirds of the way from the corner to the front. This shock, which serves to reconcile the high pressures in the region following the Mach stem with the lower values appropriate to the expanded flow downstream from the corner, is propagating backward but is being swept to the right by the strong flow behind the leading shock. The triple points have moved far above the cone and no longer appear on the grid. Note that the supersonic outflow boundary condition imposed at the top of the mesh allows material and waves to pass out of the system without reflecting and without causing other signals to propagate back inside. Figure 4c depicts the flow at late times, when transients have essentially disappeared. The only gasdynamic features visible are shocks at the leading and trailing edges and the expansion fan.

Figure 5 shows traces of the static and dynamic pressure scaled by the ambient pressure  $p_0 = 101.3$  kPa along the top surface of the wedge as functions of the horizontal distance x in meters at the three specified times. Ahead of the blast these quantities are at ambient levels, they rise sharply when the shock sweeps past, fluctuate, and finally reach their asymptotic values. Note that, as is seen experimentally in shock-tube studies (Glass 1987), the pressure on the surface of the wedge is highest at the leading edge. It is also important to notice that, although these traces exhibit considerable structure (especially the static pressure), the maximum values of the pressure and density for the transient stages are



Fig. 5. Scaled dynamic and static pressure on the wedge surface in the case  $\alpha = 10^{\circ}$  as functions of the distance for times 35  $\mu$ s ( $\Box$ ), 55  $\mu$ s ( $\sigma$ ), and 130  $\mu$ s ( $\Delta$ ). Ahead of the shock these quantities have their ambient values; far behind the shock they become essentially steady

always smaller than those in the quasisteady flow regime. At the same time, values of the Mach number in the transitional stage can be higher than in the quasisteady state. For our case, however, the maximum Mach number is at most 10% higher than the steady-state value. This shows that the maximum force is applied to any point on the surface of the wedge in the quasisteady state.

Figure 6 shows as functions of time the drag and lift coefficients, defined by

$$C_D = \frac{\int p_{\parallel} dx}{\rho_{\infty} u_{\infty}^2 l} \tag{20}$$

and

$$C_L = \frac{\int p_\perp dx}{\rho_\infty u_\infty^2 l}.$$
(21)

Here  $p_{\parallel} = p \cos \theta$  and  $p_{\perp} = p \sin \theta$  are the horizontal and vertical components of the pressure in terms of the angle  $\theta$  between the normal to the surface and the xaxis, the integrals are carried out over the surface of the wedge, and  $\rho_{\infty}$  and  $u_{\infty}$  are the density behind the undisturbed shock front. The lift grows monotonically, but the drag first rises, then drops to its quasisteady value. The decrease results from the increase in pressure on the trailing side of the wedge when the shocked air reaches that side.


Fig. 6. Lift and drag coefficients for  $\alpha = 10^{\circ}$  as functions of time



Fig. 7. Scaled dynamic and static pressure on the wedge surface in the case  $\alpha = 20^{\circ}$  as functions of the distance for times  $34 \mu s$ (C),  $94 \mu s$  (o), and  $168 \mu s$  ( $\Delta$ )

To learn how sensitive the flow is to the wedge angle, we carried out a second calculation with  $\alpha = 20^{\circ}$ ( $\tan \alpha = 0.364$ ) and the other parameters unchanged. This calculation was done with a coarser grid than the previous one, with triangles about a factor of three larger. Most of the features resembled those of the first case. For example, the traces of the static and dynamic



Fig. 8. Lift and drag coefficients for  $\alpha = 20^{\circ}$  as functions of time (in milliseconds)

pressure along the top surface, shown in Fig. 7, are qualitatively similar to those for  $\alpha = 10^{\circ}$ . One difference is that the drag rises monotonically as a function of time (Fig. 8), rather than decreasing after the shock has passed. This is because the expansion fan attached to the top of the cone is stronger and a low-pressure "bubble" forms on the lee side.

We carried out additional calculations with other values of the parameters. As long as  $\alpha$  was small and M was large the results resembled those discussed above. They are not described here, since in no case did the transient pressures exceed those in the quasisteady state, nor were the features in the flow qualitatively different.

## 4. Conclusions

From the foregoing treatment it is clear that the same modeling technique can be used to determine the pressure distribution in cross sections other than the midplane. So long as |y| does not approach R, the deflection is mostly vertical. The corresponding profile is now a hyperbola, but it differs noticeably from a wedge only near the top. The principal difference is in the expansion wave at the top, which becomes broader than the centered rarefaction wave seen above. For larger values of y the cross section of minimum deflection, found by solving (1) and (8) together, is more rounded at the top but the leading edge of this hyperbolic "wedge" has a smaller angle. By combining pressure distributions at several representative values of y we can find the pressure loading over the entire cone. The picture breaks down only at the lateral extremities of the cone  $(|y| \sim R)$ .

On the basis of qualitative arguments and numerical simulation, our study of the flow resulting from a blast wave propagating transversely over a cone leads to the following conclusions:

1. Flow over a cone with small base angle can be accurately simulated by individually modeling the twodimensional flows over cross sections of the code made by vertical planes perpendicular to the shock front.

2. The maximum load on the cone can be calculated from the solution of the flow over the cross section determined by the plane through the cone axis (Fig. 1).

 $\vartheta$ . In this solution the pressure attains its maximum as a function of time in the quasisteady supersonic regime established after the front has passed.

Acknowledgements. This work was sponsored in part by the Defense Nuclear Agency. The work of the first author was supported by the Naval Research Laboratory.

## References

- Damkevala RJ, Zumwalt GW (1968) Technique for studying interactions between a body moving at supersonic speeds and blast waves approaching obliquely. Rev Sci Instr 39:1254-1256
- Eidelman S, Colella P, Shreeve RP (1984) Application of the Godunov method and its second-order extension to cascade flow modeling. AIAA J 22:1604-1615

- Eidelman S, Lottati I (1990) Redection of the triple point of Mach reflection in planar and axisymmetric converging channels. In: Reichenbach H, (Ed) Proc 9th Mach Reflection Symp Freiburg FGR
- Fletcher CJ, Holt M. (1976) Supersonic viscous flow over cones at large angles of attack. J Fluid Mech 74:561-591
- Glass II (1987) Some aspects of shock-wave research. AIAA J 25:214-228
- Glaz HM, Colella P. Glass II, Deschambault RL (1985) A numerical study of oblique shock-wave reflections with experimental comparisons. Proc R Soc London A398:117-140
- Goman OG, Davydov VI (1975) Determination of aerodynamic characteristics of cone with arbitrary small surface deviations. Izv VUZ Aviats Tekh 18:58-62. [Transl Soviet Aeronautics 18(4):44-48]
- Gusarov AA, Dvoretskil, VM, Ivanov, MYa, Levin VA, Chernyi, GG (1979) Theoretical and experimental investigation of the aerodynamic characteristics of three-dimensional bodies. Izv Akad Nauk SSSR Mekh Zhidkosti i Gaza No 3, 97-102. [Transl Fluid Dynamics 14:402-406]
- Sedov LI (1959) Similarity and dimensional methods in mechanics. Academic Press, New York
- Tracy RR (1963) Hypersonic flow over a yawed cone. Memo 69 Calif Inst Tech Graduate Aeronautical Labs
- Yahalom R (1971) An experimental investigation of supersonic flow past yawed cones. Rept AS-71-2 Univ Calif Berkeley

This article was processed using Springer-Verlag T_EX Shock Waves macro package 1990.



AIAA 92-0346 Detonation Wave Propagation in Variable Density Multi-Phase Layers S. Eidelman and X. Yang Science Applications International Corporation McLean, VA 22102

# 30th Aerospace Sciences Meeting & Exhibit

January 6-9, 1992 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C., 20024

## Detonation Wave Propagation in Variable Density Multi-Phase Layers Shmuel Eidelman and Xiaolong Yang Science Applications International Corporation McLean, VA 22102 ABSTRACT

A mathematical model is presented describing a physical system of detonation waves propagating in a solid particle/air mixture with a wide range of solid phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waves propagating in mixtures with concentrations of solid phase from  $0.75 \text{ kg/m}^3$  to 1000 kg/m³. Numerical solution was obtained for detonation waves propagating in a system consisting of layers of explosive powder with substantial variation in particle density between the layers. The study revealed a specific detonation front structure that is dependent on the thickness of the layers and their energetic content. The dynamics of lateral initiation of the adjacent layers and the structure of detonation waves in this system were investigated. Results are given for detonation of clouds having a small concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud.

### 1. INTRODUCTION

It is of considerable practical interest to study diffraction and transmission of the detonation waves into bounding layers of explosives. When combustible particles are intentionally or unintentionally dispersed into the air, the resulting mixture can be detonable. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. The experimental and theoretical study of these phenomena until now has addressed only homogeneous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion will always lead to inhomogeneous particle density distribution. Some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. Also a multi-layer system can be formed from several layers of condensed explosives of different density. The structure of the detonation waves, phenomenology of its initiation, and propagation in these environments, are the main subjects of this paper.

When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind its shock front starts to have a larger role in support of the shock wave motion. When the initial explosion energy exceeds some critical value, transition to steady state detonation occurs.⁽¹⁻⁴⁾ In explosive dust mixtures with a nonuniform distribution of particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density regions is not necessarily adequate for other regions. Also, when there is a significant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can result in an overdriven detonation in an adjacent layer. Liu et al.⁵ has studied experimentally a system of gaseous layers and lateral interactions for gaseous detonations. Our paper demonstrates that the phenomenoiogy of these interactions is somewhat different from these experimental studies of multi-layer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multi-gas layer experiment⁵ varies by a factor of less then two, whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from  $1000 \text{ kg/m}^3$  in the ground layer to  $0.75 \text{ kg/m}^3$  for the upper edges of the cloud. The effects of variation of the cloud density on detonation wave parameters will be examined for different cases of cloud particle density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

Section 2 of this paper describes a mathematical model that includes governing conservation equations for two phases and the constitutive laws, as well as the model for a particle gas interaction, combustion and equation-of-state for gas phase. The numerical integration technique for solving the mathematical model will is also outlined. In Section 3, we present our numerical simulation results. We first validate our model by conparing one-dimensional detonation wave simulation with available experimental results. We then give the twodimensional simulation for detonation wave propagation in combustible particle/air mixtures with variable particle density distribution. Concluding remarks are given in Section 4.

## 2. THE MATHEMATICAL MODEL AND THE NU-MERICAL SOLUTION

The mathematical model consists of conservation governing equations and constitutive laws that provide closure for the model. The basic formulation adopted here follows the two-phase fluid dynamics model presented in the text by Kuo⁷. The approach assumes that there are two distinct continua, one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. With these assumptions, distinct equations for continuity, momentum and energy are written for each phase. The interaction effects between the two phases are accounted as the source terms on the right hand side of the governing equation. The following is a short description of the two phase flow model used in our study, with conservation equations written in Eulerian form for two-dimensional flow in Cartesian coordinates.

## Conservation Equations

Continuity of gaseous phase

$$\frac{\partial \rho_1}{\partial t} + \frac{\partial (\rho_1 u_g)}{\partial x} + \frac{\partial (\rho_1 v_g)}{\partial y} = \Gamma ; \qquad (2.1)$$

Continuity of solid particle phase

$$\frac{\partial \rho_2}{\partial t} + \frac{\partial (\rho_2 u_p)}{\partial x} + \frac{\partial (\rho_2 v_p)}{\partial y} = -\Gamma ; \qquad (2.2)$$

Conservation of momentum of gaseous phase in xdirection

$$\frac{\partial(\rho_1 u_g)}{\partial t} + \frac{\partial(\rho_1 u_g^2 + \phi p_g)}{\partial x} + \frac{\partial(\rho_1 u_g v_g)}{\partial y} = -F_x + \Gamma u_p;$$
(2.3)

Conservation of momentum of solid particle phase in ydirection

$$\frac{\partial(\rho_1 v_g)}{\partial t} + \frac{\partial(\rho_1 u_g v_g)}{\partial x} + \frac{\partial(\rho_1 v_g^2 + \phi p_g)}{\partial y} = -F_y + \Gamma v_p ;$$
(2.4)

Conservation of momentum of solid particle phase in xdirection

$$\frac{\partial(\rho_2 u_p)}{\partial t} + \frac{\partial(\rho_2 u_p^2)}{\partial x} + \frac{\partial(\rho_2 v_p u_p)}{\partial y} = F_s - \Gamma u_p ; \quad (2.5)$$

Conservation of momentum of solid particle phase in ydirection

$$\frac{\partial(\rho_2 v_p)}{\partial t} + \frac{\partial(\rho_2 u_p v_p)}{\partial x} + \frac{\partial(\rho_2 v_p^2)}{\partial y} = F_y - \Gamma v_p ; \quad (2.6)$$

Conservation of energy of gas phase

$$\frac{\partial(\rho_1 E_{fT})}{\partial t} + \frac{\partial(\rho_1 u_g E_{fT} + u_g \phi p_g)}{\partial x} + \frac{\partial(\rho_1 v_g E_{fT} + v_g \phi p_g)}{\partial y}$$
$$\Gamma\left(\frac{u_p^2 + v_p^2}{2} + Echem + C_s \bar{T}_p\right) - \left(F_s u_p + F_y v_p\right) - \dot{Q}; \quad (2.7)$$

Conservation of energy of solid particle phase

$$\frac{\partial(\rho_2 E_{pT})}{\partial t} + \frac{\partial(\rho_2 E_{pt} u_p)}{\partial x} + \frac{\partial}{\partial y}(\rho_2 E_{pt} v_p) = \dot{Q} + (F_x u_p + F_y v_p) - \Gamma\left(\frac{u_p^2 + v_p^2}{2} + Echem + C_s \bar{T}_p\right); \qquad (2.8)$$

Conservation of number density of solid particle

$$\frac{\partial N_p}{\partial t} + \frac{\partial (N_p u_p)}{\partial x} + \frac{\partial (N_p v_p)}{\partial y} = 0.$$
 (2.9)

In the above equations,  $\phi = 1 - \frac{N_r M_r}{\rho_0}$ ,  $\rho_1 = \phi \rho_g$ ,  $\rho_2 = (1 - \phi) \rho_p$ , where  $N_p$  and  $M_p$  are the number density and mass of each particle, respectively, and  $\rho_p$ and  $\rho_p$  are the material density of gas and particle densities, respectively.  $u_g, v_g, p_g$  are gas phase x-velocity, y-velocity and pressure, respectively;  $u_p, v_p, \tilde{T}_p$ , are xvelocity, y-velocity and average temperature of particle, respectively.  $C_s$  is specific heat of solid particle and *Echem* is chemical energy of solid phase,  $\Gamma$  is the rate of phase change from solid to gas and Q is heat transfer between the two phases;  $F_x, F_y$  are the drag force between the two phases in x and y directions, respectively.

Equations (2.2) and (2.7) are linked through the relation  $\rho_2 = nM_p$ . In the case of a reactive solid phase,  $M_p$  decreases due to combustion. The mass d a single particle at any point can be obtained from  $M_p = \rho_2(x,y)/n(x,y)$ , and the diameter of a particle at any spatial location is  $D(x,y) = \{\delta M_p(x,y)/\pi \rho_p\}^{1/3}$ . The total internal energy of gaseous phase

$$E_{gT} = E_g + \frac{1}{2}(u_g^2 + v_g^2)$$
 and  $E_g = E_g(p_g, \rho_g)$  (2.10)

where  $E_g(P_g, \rho_g)$  is the equation-of-state for the gas phase, which will be discussed later.

The total internal energy of solid particle phase is

$$E_{pt} = E_p + \frac{1}{2}(v_p^2 + v_p^2)$$
 and  $E_p = Echem + C_s \bar{T}_p$ .  
(2.11)

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which include mass generation rate,  $\Gamma$ , drag force between particles and gas,  $F_x$ ,  $F_y$  and the interphase heat transfer rate  $\dot{Q}$ . The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations, is explained in detail in the next subsection.

### Model for a Particle Gas Interaction and Combustion

Presently, the physics of the energy release mechanisms in solid particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions,⁷ it was demonstrated that the volatile components released by the particle heated behind the shock front play a major role in determining the detonability limits of the mixture. Eidelman and Burcat⁸ successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multi-phase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman⁹ defined five different disintegration regimes for a relatively simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multi-phase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example, Eidelman and Burcat,¹⁰ using simple models for particle evaporation and shattering, obtained simulation results that compared very favorably with experimental data. Because of our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper we consider solid particles consisting of explosive material. Explosive material contains fuel and oxidizer in a passive state at low temperature; however, when the temperature rises the fuel and oxidizer react, leading to detonation or combustion. The initiation of reaction for explosives will occur at relatively low temperature. For example, TNT will detonate when heated to the temperature¹¹ of 570°C. Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. We consider here particles smaller than 4mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particle heating needs to be resolved in detail. Our simulations numerically solve the temperature field in the particles at every step of numerical integration of the global conservation equations. The explosive particle combustion model examined in this paper assumes that the fraction of the particle that reaches the critical temperature will burn instantaneously.

Energy transfer by convection and conduction is simulated by solving the unsteady heat conduction equation in each computational cell at each time step. Assuming a particle's temperature  $T_p$  to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:

$$\frac{d^2w}{dr^2} = \frac{1}{\alpha}\frac{dw}{dt} , \qquad (2.12)$$

subject to the boundary conditions:

$$w=0 \quad at \quad r=0, \quad t>0$$

$$k_s \frac{dw}{dr} = (h - \frac{1}{R})w = hRT_g \quad at \quad r = R, \quad t > 0 \quad (2.13)$$

where:

 $w(r,t) = rT_{p}(r,t)$ r = radial position T(r,t) = temperature R = particle radius T_g = temperature of surrounding gas k_s = thermal conductivity of particle h = convective heat transfer coefficient.

The Nusselt number, used to find h, is given by an empirical relation provided by Drake.¹² The gas viscosity is found from Sutherland's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Lastly, the boiling temperature at a given pressure is found from the Clapeyron-Clausius equation, assuming: 1) constant latent enthalpy of phase change, 2) the vapor obeys the ideal equation of state, and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point. regardless of pressure. Equation (2.13) with boundary condition (2.14) can be numerically integrated using either implicit or explicit schemes.

Since the particle radius, R, will become very small due to evaporation, the implicit Crank-Nicolson algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme to predict the particle temperature profiles at times  $t_1$  and  $t_2$  permits easy calculation of the total energy exchange, Q between  $t_1$  and  $t_2$  due to convection and conduction.

Knowledge of the particle temperature profile also allows us to determine  $\Gamma$ , the rate of phase change from solid particle to gas. Once any point at a radial location  $0 \le r \le R$  has a temperature exceeding the boiling temperature, the entire mass between r and R is transferred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle intrinsic energy is transferred by the particle to the gas.

The interphase drag force (Fx, Fy) is determined from the experimental drag for a sphere, as presented by Schlichting¹³.

$$F_{g} = \left(\frac{\pi}{8}\right) N_{pg} C_D |\mathbf{V}_g - \mathbf{V}_p| (u_g - u_p) R^2 \qquad (2.14)$$

where

$$C_D = \begin{cases} \frac{24}{Re} \left( 1 + \frac{Re^{2/3}}{6} \right) & \text{for } Re < 1000; \\ 0.44 & \text{for } Re > 1000, \end{cases}$$
(2.15)

and  $Re = \frac{2R|V-V_{g}|}{\mu_{g}}$ , R is radius of partricle and  $\mu g$  is gas viscosity at temperature of  $T_{film} = \frac{1}{2}(T_{g} + \bar{T}_{p})$ . Similarly, the formulae for Fy is

$$Fy = \frac{\pi}{8} N_p \rho_g C_D |\mathbf{v}_g - \mathbf{v}_p| (v_g - v_p) R^2. \qquad (2.16)$$

### Equation of State for Detonation Products

To close the system of governing equations, one needs a constitutive relation between density, pressure, temperature and energy for gas phase, which is an equation-of-state. This study uses the Becker-Kistiakowsky-Wilson (BKW) equation-of-state^{14,15} that is,

$$p_{e}V_{e}/\bar{R}T_{e} = 1 + xe^{bx},$$
 (2.17)

where  $V_g$  = volume of gas phase  $p_g$  = pressure of gas phase  $T_q$  = temperature of gas phase

## $\bar{R} =$ - universal gas constant $z = k/F_{e}(T + \Theta)^{a} k = K\Sigma_{i}X_{i}k_{i}$

with empirical constants a, b, K,  $\Theta$  and  $k_i$ . The constants  $k_i$ , one for each molecular species, are co-volumes. The co-volumes are multiplied by their mole fraction of species,  $X_i$ , and are added to find an effective volume for a mixture. For a particular explosive, if we know the composition of detonation products and a, b,  $\Theta$ , K, and all  $k_i$ 's can be found in Ref. 15.

The internal energy is determined by thermodynamics relation

$$\left(\frac{\partial E_g}{\partial V_g}\right)_T = T_g \left(\frac{\partial_{pg}}{\partial T_g}\right)_V - p_g . \tag{2.18}$$

Integration of this equation for a fixed composition of the detonation products will allow us to calculate the energy of the detonation products as a function of temperature and volume. For each component, its thermodynamic properties as functions of temperature were calculated from the NASA tables compiled by Gordon and McBride¹⁶.

The BKW equation-of-state is the most common and well calibrated of those equations-of-state used to calculate the properties of detonation products. The detailed discussion and review of the BKW equation-ofstate can be found in Ref. 15.

## Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. The Second Order Godunov method is used for the integration of the subsystem of equations describing flow of gaseous phase material. This method is described in Ref. 17. In the following, we will elaborate only on some specifics of its application to simulations of detonation products. The subsystem of equations describing the flow of particles is integrated using a simple upwind integration. This is done because our mathematical model neglects pressure of interparticle interaction and that prevents formulation of a Second Order Godunov scheme for particles.

The physical system under study will have concentrations of solid explosive powder ranging from 1000 kg/m³ near the ground to 0.75 kg/m³ or less in the cloud. Detonation of this mixture will create detonation products with effective  $\gamma$  ranging from 3 to 1.1. To describe the flow of detonation products, we use the BKW equation-of-state described above. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficult. In our simulations, we have resolved this problem by using direct and inverse equations-of-state. After integrating a system of gas conservation laws, we use the direct BKW equation-of-state to calculate pressure, gamma and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes in the Second Order Godunov method as well as interaction of the multi-phase processes. The "inverse" EOS calculates internal energy as a function of density, pressure and mixture composition. In our code we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux of primitive variables.

For the multi-phase system under study, dx=dy=1mm was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times, the time step was adjusted by some fraction to assure stability. However, this did not result in a significantly smaller time step as compared with that calculated by CFL criteria. For larger cell sizes, this approach is impractical. Recently we implemented a scheme in which multi-phase processes are calculated implicitly; however, this will be reported elsewhere.

The numerical method is implemented in a code named MPHASE, which is fully vectorized and supported by number of graphics and diagnostics codes. 3. RESULTS

## Model Validation for One-Dimensional Detonation Wave Problem

The main advantage of our particle combustion model is its description of the phenomenology of detonation for a wide range of explosive particle sizes and densities. We will demonstrate this capability on a set of one-dimensional test problems. For these test problems, we simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformly through the shock tube volume.

Results of these simulations are summarized in Table 1, which shows detonation wave velocity, peak pressure, and peak density given as a function of the average density of the solid explosive. Here the explosive two-phase mixture is composed from RDX particles and air, where RDX particle concentration varies from 0.75 kg/m³ to 1000 kg/m³. This concentration variation covers the whole range of solid explosive concentrations of interest to our problem. The simulations performed with the MPHASE code were compared with the experimental results,^{15,16} and the calculations presented in Ref. 19 were done with the TIGER code.

From Table I, it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than 15% for the entire range of explosives densities. Considering that our results were obtained with a single model for particle combustion applied to the extreme range of densities, our model gives an excellent prediction of the detonation wave parameters.

## **Two-Dimensional Simulation Results**

In our two-dimensional simulations, we first study the dynamic of the lateral initiation in a simple system formed by two layers of explosive with different concentrations of the explosive powder in the layers. These layers of explosive will be considered confined in a rectangular shock tube with rigid walls. The schematics of the set up for a typical simulation of this type are shown in Figure 1. The detonation wave is initiated in the lower layer, and its propagation though the shock tube causes lateral initiation of the adjacent layer. In one of the test cases, both layers are initiated simultaneously with a planar front.

First we simulated initiation and propagation of the detonation in a system of two layers of detonable RDX powder/air mixture contained in a rectangular channel 4 cm wide and 35 cm long. The lower layer has an RDX powder concentration of 800  $\frac{kg}{M^3}$  and occupies half of the channel width, and the upper layer of the channel has a mixture concentration of 200  $\frac{kg}{M^3}$ . Detonation is initiated in the lower layer by a planar front that is propagating from left to right. In Figures 2a:2f, results of this simulation are shown in the form of pressure contours on a logarithmic scale in MPa for a sequence of time frames. In these figures, we can follow the evolution of the lateral initiation and formation of the detonation wave structure in this system.

In Figure 2a, contour plots are shown at time t=0, which corresponds to the beginning of the simulation and depicts initial conditions of the planar wave in the lower layer. This initial wave causes lateral initiation of the upper layer through an oblique detonation front shown in Figure 2b at  $t=9 \times 10^{-6}$  sec. The oblique front reflects from the upper wall of the channel, and in Figure 2c we observe that the wave pattern indicates it is a single Mach reflection. The Mach stem is very short at this point. In Figure 2d, the pressure contours are shown at the time  $t=31 \times 10^{-6}$  sec. Here the Mach stem is clearly visible and the reflected shock has reached the lower wall of the channel. The Mach stem will continue to grow and the triple point will propagate towards the high density layer. In Figure 2e, the simulation results are shown at  $t=52 \times 10^{-6}$  sec when detonation wave complex has reached steady state propagation regime. The triple point has reached the interface between the two layer and is unable to continue propagation downwards due to the high level of pressure and density in the lower layer. Also at this stage of the detonation wave propagation, the reflected shock has reached the upper wall

.

of the channel. In Figure 2f, the simulation results are shown at  $t=64 \times 10^{-6}$  sec. Here the structure of the detonation front is basically unchanged from the previous picture, except for an additional reflection from the upper wall of the channel. The detonation wave parameters are also unchanged from the previous time frame, indicating that the detonation wave in this two layer system has reached steady state.

To validate that the detonation waves complex observed in above reported simulation is not a function of the initial conditions, we simulated a test case in which all problem parameters, except the initiation wave, are the same as in the previous case. The initiation is done by a single planar wave that starts propagating simultaneously in both layers of the explosive. In Figures 3a:3e, results for this simulation are shown in the form of pressure contours for a sequence of time frames. The initial conditions are shown in Figure 3a. Here we can observe a planar front impinging simultaneously on both layers of explosive in the channel. At first, this front propagates some distance planarly, as observed in Figure 3b. However, a significant difference in the explosive powder density quickly leads to formation of the oblique front in the upper layer, as shown in Figure 3c. As in the previous case, the oblique front reflects from the upper wall in the single Mach reflection shown in Figure 3d. And as in the previous case, the triple point of the Mach stem propagates downward to the interfaces between the layers to form the stable wave pattern shown in Figure 3e. The parameters of the detonation waves and the structure of the detonation wave complex are identical to those observed in the previous case, which proves that it is not a function of the initial conditions, but physical conditions of the layers.

We studied the effects of the channel walls using a system that included a 2cm thick lower layer of high density (800  $\frac{kg}{M^3}$ ) RDX powder and a 10cm thick upper layer of low density (200  $\frac{k_{f}}{M^{3}}$ ) RDX powder. The results of this simulation are shown as pressure contours on a logarithmic scale in Figures 4a:4d. Figure 4a shows the initial conditions. In Figure 4b, we can see at the time  $t = 25 \times 10^{-6}$  a planar detonation wave is propagating through the lower layer and an oblique wave is propagating through the upper layer. In Figure 4c, the detonation wave is shown at the time  $t=41 \times 10^{-6}$  from the initiation. Here the oblique wave is reflecting from the upper wall; however, it is distinct from the previous cases because only a regular reflection pattern is formed. This is due to the shallow angle of incidence of the detonation wave, that corresponds to the large wedge angles in classical reflection problems. Figure 4d shows the results of the simulation at  $t = 52 \times 10^{-6}$ . Here we can observe the same regular reflection pattern as in the previous stage; however, the incidence angle of the oblique wave in the upper layer is increasing. Thus, if this trend continues, later in the detonation wave evolution we will see the formation of the Mach reflection pattern, as we have in previous cases.

We have also examined propaga: on of the detona tion wave in the system shown in ... gure 5 that cor responds to the situation where the upper layer is no confined by the channel wall. Here the computationa domain is  $25 \text{cm} \times 25 \text{cm}$  in size. The explosive powde: density is distributed according to the 4th power law of vertical distance, starting from the ground where the density is 860 kg/m³, to 1.2cm, where the density i 0.75 kg/m³. From this point to 25cm height, the deg sity is constant and equal to 0.75 kg/m³. The densit distribution in the direction of the"x" axis is uniform The boundary conditions for the computational domain shown in Figure 5 are specified as follows: solid was along the "x" axis; symmetry conditions along the "y axis; supersonic outflow for upper boundary and at the right of the computational domain. The mixture con sists of RDX powder and air at ambient conditions and it is assumed to be quiescent at the time of initiation.

The simulation starts at t=0 when the mixture i initiated at the lower left corner of the computational domain, as shown in Figure 5. The energy released the initiating explosion leads to formation of the detone tion wave propagating through the multi-phase media Figure 6a shows pressure contours for the propagatin detonation wave at the time of  $t=12 \times 10^{-6}$  msec after initiation. Here the pressure contour levels are show on logarithmic scale in MPa. The maximum presse value of 7940 MPa is observed in the layer of condense explosive located near the ground. The pressure in th laver is two to three orders of magnitude higher tha pressure behind the detonation wave in the 0.75 kg/m RDX cloud and air, which is located above the distanc of 1.2cm from the ground. Figure 6a demonstrates the the detonation wave in the cloud is overdriven, since the pressure behind the shock continuously rises and reache its maximum in the layer. From this figure, we also of serve that the overdriven wave propagates faster in th cloud than in the layer. This is explained by the fact the it is easier to compress air that is very lightly loaded with particles and located above the ground layer, than it to compress air heavily loaded with a particle mixtu: near the ground. It is interesting to note a discontin uous pressure change between the yellow contours ar. the light blue and green contours behind the deton tion front. This discontinuity is over-emphasized by or presentation of contour lines on the logarithmic scal however, further examination of our simulation resul indicates this feature is real and is similar in nature . barrel shocks observed for strong jets. It is different nature from the triple shock structures described abox

In Figure 6b, gas phase density contours are shown for the time  $t = 12 \times 10^{-6}$  sec. Here the contour lines are distributed on logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. Here we see that a jet of high density gases reflects from the center of symmetry axis, creating a contact discontinuity that we will observe at a later time. The barrel shock is clearly visible in this figure. In Figure 6c, the particle density contour plots are shown for  $t=12 \times 10^{-6}$  sec. The contour levels in this figure are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be clearly observed. The black contour lines delineate the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an area with combustion products and to the right unburned particles in the cloud. Here we can see that the reaction zone length is of the order of 1cm.

Figure 6d shows pressure contours for the same simulation for the time  $t = 55 \times 10^{-6}$  sec, just before the detonation wave leaves the computational domain. In this figure, we see that the global structure of the wave did change slightly from Figure 6a. We observe that the barrel shock wave is fully developed and has a half ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates vertically weakened as it got further away from the detonation front in the layer. In Figure 6e, gas temperature contours are shown at  $t = 55 \times 10^{-6}$  sec. In this case, it is interesting to note that the highest temperatures are observed behind the front of the overdriven detonation wave in the cloud, in the immediate vicinity of the upper strata of the layer. Very high temperatures in this region can be explained by the high pressure generated by the detonation of the explosive material in the layer and by relatively low density of strata of the cloud in the immediate vicinity to the layer. Here, as in the pressure contours graph, the area of barrel shock can be clearly identified.

We also observe in Figure 6 a clear development of two detonation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive powder in the layer is about three orders of magnitude larger than that in the cloud, the vertical parts of the front represent overdriven detonation waves in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the selfsustained detonation regime in the cloud will develop at the distance of about three meters from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very close to detonation front in the layer. In Figure 6f, particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about 1cm. Consistent with the gradual transition from overdriven to self-sustained detonation. the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately 4048 m/sec, which is significantly lower than the detonation wave velocity observed in RDX with a density of 860 kg/m³ (see Table 1), which is the highest density in the ground layer. This can be explained by the high gradient of particle density distribution in the layer, where the density drops rapidly from 860 kg/m³ at the bottom of the layer to  $0.75 \text{ kg/m}^3$  at the top strata of the layer at 12 mm above the ground.

### 4. CONCLUSIONS

We have presented a mathematical model and numerical solution for the simulation of initiation and propagation of the detonation waves in multi-phase mixtures consisting of solid combustible particles and gas. Using this model, we studied detonations in mixtures of solid RDX particles and air for the purpose of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of layers of explosive RDX powder confined in a channel and studied initiation and propagation of the detonation waves in this system. This study revealed a specific structure of the detonation front that is dependent on the thickness of the layers and their energetic content. We showed that for the system consisting of two layers of the same thickness but of vastly different powder density, a Mach stem reflection occurs that propagates to the interface between the layers and helps create a stable detonation front. However, formation of the Mach stem reflection will be a strong function of the relative thickness of the layer; in one of the simulated examples, only a regular reflection would form in the simulation time frame.

For the system consisting of a solid particle cloud in air and a layer of high particle density near the ground, our simulations have revealed a specific detonation front shape with a characteristic precursor of the blast front in the strata immediately above the layer. This feature of the detonation front can be explained by the fact that the energy released in the detonation wave in the ground layer produces a faster shock wave in the dilute cloud than in these heavily loaded with solid particles stratums of the ground layer. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

The maximum pressure affecting the ground was di-

rectly related to the maximum particle density in the lower strata of the layer. However, the detonation front velocity for the fourth power distribution case was considerably lower than calculated for a one-dimensional case with 860 kg/m³ particle density, reflecting the significant effect of two-dimensional expansion. Existence of the high density strata at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground, and produced higher detonation wave velocity.

Using a variable density layer, one can reach a combination of pressure and velocity conditions outside of Chapmen-Jougett limitations. The range of conditions that can be obtained in the variable density system and its parametrics of that system needs a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of interest. In addition, we have given some examples of its application for two-dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

### REFERENCES

- Eidelman, S., Timnat, Y.M., and Burcat, A., (1976). "The Problem of a Strong Point Explosion in a Combustible Medium," 6th Symp. on Detonation, Coronado, CA, Office of Naval Research, 590.
- Burcat, A., Eidelman, S., and Manheimer-Timnat, Y., (1978). "The Evolution of a Shock Wave Generated by a Point Explosion in a Combustible Medium," Symp. of High Dynamic Pressures (H.D.P.), Paris, 347.
- Oved, Y., Eidelman, S., and Burcat, A., (1978). "The Propagation of Blasts from Solid Explosives to Two-Phase Medium," Propellants and Explosives, 3, 105.
- Eidelman, S., and Burcat, A., (1980). "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets; Part I, Influence of the Igniting Explosion," AIAA Journal, 18, 1103.
- Liu, J.C., Kauffman, C.W., and Sichel, M., (1990). "The Lateral Interaction of Detonating and Detonable Mixtures," (Private communication).
- 6. Kuo, K., (1990). "Principles of Combustion," John

Wiley and Sons, Inc.

- 7. Kauffman, C.W., et al., (1979). "Shock Wave Initiated Combustion of Grain Dust," Symposium on Grain Dust, Manhattan, KS.
- Eidelman, S., and Burcat, A., ('981). "Numerical Solution of a Non-Steady Plast Wave Propagation in Two-Phase ('Separated Flow') Reactive Medium," J. Comput. Physics. 39, 456.
- 9. Reinecke, W.G., and Waldman, G.D., (1975). "Shock Layer Shattering of Cloud Drops in Reentry Flight," AIAA Paper 75-152.
- Eidelman, S., and Burcat, A., (1980). "The Mechanism of Detonation Wave Enhancement in a Two-Phase Combustible Medium," 18th Symposium on Combustion, The Combustion Institute, Waterloo, Ontario, Canada.
- 11. "Engineering Design Handbook, Explosives Series, Properties of Explosives of Military Interest," AMC Pamphlet, AMCP 706-7177, 1971.
- Drake, R.M., Jr., (1961). "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transfer, 83, 170.
- Schlichting, H., (1983). "Bounday Layer Theory," 7th ed. McGraw-Hill.
- Cowan, R.D., and Fickett, W., (1956). "Calculation of the Detonation Products of Solid Explosives with the Kistiakowsky-Wilson Equation of State," Journal of Chemical Physics, 24, 932.
- Mader, C.L., (1979). "Numerical Modeling of Detonation," University of California Press, Ltd. London, England.
- Gordon, S., and McBride, B.J., "Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and C-J Detonations," NASA SP-273, 1976 Revision.
- Eidelman, S., Collela, P., and Shreeve, R.P., (1984).
   "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," AIAA Journal, 22, 10.
- 18. Stanukovitch, K.P., (1975). "Physics of Explosion" (in Russian), Nauka.
- 19. Wiedermann, A., (1990). "An Evaluation of Bimodal Layer Loading Effects," IITRI Report, February.

D[m/sec] - Detonation wave velocity, Pcs[Pa] - Pressure at Chapman-Jouguet Point P_p[Pa] - Peak pressure; p_p[kg/m³] - Peak density

RDX Density (kg/m ³	Parameters	l ² resent Calculation	Expt'l Ref. 1	Tiger Calculation Ref. 2	BKW Calculation Ref. 1	Soviet Experiments Ref. 3
1000 kg/m ³	D Pcs P,	6155 1.220 × 10 ¹⁰ 2.57 × 10 ¹⁰	5981		6128 1.08 × 10 ¹⁰	1.00 × 10 ¹⁸
860 kg/m ³	р. D Рс;	1936 6031 0.986 × 10 ¹⁰	······	5900 0.88 × 10 ¹⁰		0.82 × 10 ¹⁶
466 kg/m ¹	Ρ, ρ. D	$     1.95 \times 10^{16} \\     1722 \\     4800     1010   $		4500		<b></b>
	Ρ _{CJ} Ρ,  D	$\begin{array}{r} 0.379 \times 10^{10} \\ 0.625 \times 10^{10} \\ 924 \end{array}$		0.30 × 10 ¹⁰	0.3 × 10 ¹⁶	
250 kg/m ³	D P _{CJ} P,	$\frac{4049}{0.2478 \times 10^{10}}$ 0.4538 × 10 ¹⁰		3600 0.13 × 10 ¹⁰		
100 kg/m ³	P, D P _{CJ} P,	552 3495 0.5013 × 10 ⁹ 0.7658 × 10 ⁹			<u></u>	<u></u>
0.75 kg/m ¹	ρ, D	220 1622	1410*	1870*		
	Pcj P,	$0.25 \times 10^7$ $0.484 \times 10^7$ 8	0.284 × 10 ⁷ *	0.25 × 10 ⁷ *		

Ref. 1 - Mader, C., "Numerical Modeling of Detonation," (University of California Press, Ltd., 1979), p. 47. Ref. 2 - Wiedermann, A., "An Evaluation of Bimodal Layer Loading Effects," IITRI Report, Feb., 1990. Ref. 3 - Stanukovitch, K.P., "Physics of Explosion" (in Russian), Nauka, 1975.









Figure 2. Initiation and propagation of the detonation wave in a two layers system. Only lower layer is initiated. Pressure contours.



Figure 3. Initiation and propagation of the detonation wave in a two layers system. Both layers are initiated. Pressure contours.



Pressure

4.16 U.57

3.98

2.39

1.81

0.63

Figure 4. Propagation of the detonation wave in a system with different thickness of explosive layers. Pressure contours.







4

Figure 6. Fourth power layer distribution. Maximum density in the layer 800 kg/m³. Density in the cloud 0.75 kg/m³. Time 0.012 msec and 0.055 msec after initiation.



AIAA 92-0392 A Parametric Study of the Air-Breathing Pulsed Detonation Engine

S. Eidelman, I. Lottati and W. Grossmann Science Applications International Corporation McLean, VA 22102



# 30th Aerospace Sciences Meeting & Exhibit January 6-9, 1992 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

## A PARAMETRIC STUDY OF AIRBREATHING PULSED DETONATION ENGINE

S. Eidelman, I. Lottati, and W. Grossmann

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Drive, McLean, Virginia 22102

#### Abstract

The airbreathing Pulsed Detonation Engine (PDE) is analyzed by direct simulations of its cycle using Computational Fluid Dynamics. We describe a new CFD methodology of composite structured/unstructured grids, which is used for detailed analysis of the PDE performance. This performance is analyzed for a unique engine geometry in which the PDE is located in a wing section. Examination of the key processes in the PDE device shows that the largest portion of its thrust is produced during the very short time interval when the detonation wave reflects from the thrust wall, and that detonation cycle frequency up to 200Hz is feasible. We conclude that the PDE type devices can compete with small diameter turbojet engines in performance characteristics while surpassing them in simplicity of design, flexibility of geometrical configuration, and price.

### 1. Introduction

Our first reports on the airbreathing Pulsed Detonation Engine (PDE) concept¹⁻⁵ described a systematic series of parametric studies of the PDE via computational fluid dynamics (CFD). They also detailed an analysis of engine performance over a wide range of flight regimes, including subsonic and supersonic flows and physical geometries with various nozzle and air inlets. Additionally, static table top experiments¹ demonstrated that the principle of pulsed or repetitive detonation can be successfully applied. To date, our results indicate that practical engines for certain vehicles can be conceptualized and designed with the information that has already been generated from the studies. Specifically, our studies have shown that the PDE is an excellent candidate for the primary propulsion source for small aerodynamic vehicles that operate over the flight envelope, 0.2<M<2.0. Further, our analysis of the simulation results indicates that the PDE is a high thrust-to-weight ratio device. The predicted performance places the PDE propulsion concept in a strongly competitive position compared with present day small turbojets. The PDE concept has the added attractiveness of rapid variable thrust control, no moving parts and the potential for low cost manufacturing. The PDE concept is scalable over a wide range of engine sizes and thrust levels.⁴ For example, it is theoretically possible to produce PDE engines on the order of one to several inches in diameter and thrusts on the order of pounds, as well as devices that provide thousands of pounds thrust. One of the unique features of the PDE that will be explored in this paper is its geometric flexibility. All the configurations of the engine that we have examined in previous papers had an axisymmetric geometry. However, the PDE concept allows a

tremendous flexibility in engine geometry. In this paper we will investigate the possibility of fitting a PDE det onation chamber into a section of a conventional wing One of the obvious advantages of this design is reductior of the drag and weight penalty; other advantages can be associated with stealth quality of the Wing-PDE design

The parametric studies to date were made possible by the development of a new generation of CFE tools. These tools have allowed us to accurately simulate the details of the complex nonlinear time dependent processes. In this article, we used a new algorithm implemented on a composite structured/unstructurec grid. This algorithm combines the flexibility of describing complicated geometries characteristic of the unstructured triangular grids with the computational efficiency of the structured grids. A brief description of the CFE methods employed in our studies is given in Section 3.

### 2. The Pulsed Detonation Engine Concept

A detonation process, due to the very high rate of reaction, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, the strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge. The speed of the detonation wave is about two orders of magnitude higher than the speed of a typical deflagration. This allows the design of propulsion engines with a very high power density. Each detonation has to be initiated separately by a fully controlled ignition device with a wide range of variable cycle frequencies. A physical restriction dictating the range of detonation frequency arises from the rate at which the fuel/air mixture can be introduced into the detonation chamber. This also means that a device based on a detonative combustion cycle can be scaled and its operating

parameters can be modified for a range of required output conditions.

There have been numerous attempts to take advantage of detonative combustion for engine applications,^{6,7,8} the most recent and successful which was carried out at the Naval Postgraduate School¹ (NPS) by Helman et al. During this study, several fundamentally new elements were introduced to the concept that distinguished the NPS research device from previous studies. First, it is important to note that the NPS experimental apparatus was the first successful self- aspirating air breathing detonation device. Intermittent detonation frequencies of 25 Hz were obtained, which was in phase with the fuel mixture injection through the timed fuel valve opening and spark ignition. The feasibility of intermittent injection was established. Pressure measurements showed conclusively that a detonation process occurred at the frequency chosen for fuel injection. Further, self- aspiration was shown to be effective. Finally, the effectiveness of a primary detonation as a driver for the main detonation was clearly demonstrated. Although the NPS studies were abbreviated, many of the technical issues considered to be essential for efficient intermittent detonation propulsion were addressed with positive results.

The generic device we considered in our previous studies²⁻⁵ is a small engine shown in Figure 1, which is a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. In the current study, we considered a Wing-PDE configuration that will be described below; however, for the sake of simplicity we will describe the basics of the PDE concept using the illustration in Figure 1. For the engine configuration shown in this figure, the combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave, initiated at the aft end of the detonation chamber, propagates through the mixture. The main portion of the thrust is produced by the detonation wave in a very short period of time as it impinges on the thrust wall. After the detonation wave has reflected from the thrust wall, the detonation products will vent from the volume of the detonation chamber through the open aft end of the chamber and air inlets shown in Figure 1. Then the chamber volume will be filled with the fresh combustible gas mixture and the process will be repeated with the frequency of 100 to 200Hz. A key issue in the pulsed detonation engine concept is the design of the main detonation chamber. The detonation chamber geometry determines the propulsion efficiency and the duration of the cycle (frequency of detonations). Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. The range of the physical processes requiring simulation in order to model the complet flow phenomena associated with the detonation engine performance is very broad. This processes include 1 initiation and propagation of the determining wave inside the chamber; 2) expansion of the determining products from the chamber into the air tream around the chamber at flight Mach numbers:  $\beta$  fresh air intake from the surrounding air into the chamber; 4) the flow pattern in side the chamber during protexhaust pressure buildup which determines the strategy for mixing the next detonation charge; and 5) strong mutual interaction between the flow inside the chamber and surrounding the engine

All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus unlike simulations of steady state engines, the phenomena described above cannot be evaluated independently The need to resolve the flow regime inside the chamber and account for nozzles, air inlets, etc., and at the same time resolve the flow outside and surrounding the engine where the flow regime varies from high subsonic locally transonic and supersonic, makes it a challenging computational problem.

The single most important issue is to determine the timing of the air intake and mixing of the fresh charge leading to repetitive detonations. It is sufficient to as sume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. This assumption makes the numerical simulation of the PDE flow phenomena somewhat easier than using a fully viscous flow model. For the size of the generic device studied in this work, the effects of viscous boundary lay ers are negligible, with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently.

### 3. Computational Method Used in the Study

The basic computational tool used for our studies is the AUGUST (Adaptive Unstructured Goduno Upwind Second Order on Triangular Grids) code, described in detail by Lottati et al.9,10 This code provides a method for solving the Euler equations of gasdynamics on unstructured grids with arbitrary connectivity. The formulation is based on a second order Godunov method.¹¹ For the current study, the AUGUST code has been implemented on a composite structured/unstructured grid. The combined structured/unstructured method is a much more efficient approach to domain decomposition than the separate application of each method. In the following discussion. we show that the results of applying this technique to the complex problem of the external/internal reactive flow typical for the PDE engine show complex wave patterns propagating seamlessly through interfaces between structured/unstructured grids without reflections or distortions. This new approach provides ultimate flexibility

in domain decomposition with maximum code efficiency. Introduction

Structured rectangular grids allow the construction of numerical algorithms that perform an efficient and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and para'lelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algorithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved boundaries of the computational domain using the stair-step approximation available with the rectangular domain decomposition technique. The techniques of boundary-fitted coordinates were developed to overcome this difficulty. With these techniques, the computational domain is decomposed on quadrilaterals that can be fitted to the curved domain. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary fitted coordinated approach leads to efficient codes, with approximately a 4:1 penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body fitted coordinates that are used for simulations of flows over a profile with sharp trailing edges. In this case, increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of 10, and will run about 20 times slower when compared on a per cell per iteration basis with a structured rectangular code.

Unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows dynamic decomposition of the computational domain subregions, thus leading to an order of magnitude reduction in the number of cells for some problems, as compared to the unstructured grid without this adaptive capability. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over the unadaptive unstructured domain decomposition if the area of high resolution domain decomposition is less than one tenth of the global area of the computational domain. This explains the fact that while the adaptive unstructured method may be extremely effective for solutions with multiple shock waves in complex geometries. it becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstructured methods for achieving better efficiency and accuracy. Using this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Figure 2), or to conform to the curved boundaries of the computational domain (Figure 3). In these figures, an unstructured triangular grid is used to decompose the regions of the computational domain that have a simple geometry.

Our paper will illustrate the performance gains achieved from the use of this composite grid decomposition approach. We apply the Second Order Godunov method¹¹ to solve the Euler equations on both structured and unstructured sections of the grid.

Mathematical Model and Integration Algorithm We consider a system of two-dimensional Euler

equations written in conservation law form as:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \tag{1}$$

where

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ \rho e \end{vmatrix}, F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{vmatrix}, G = \begin{vmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{vmatrix}$$

Here u, v are the x, y velocity vector components, p is the pressure,  $\rho$  is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is given by the equation-of-state.

$$p = (\gamma - 1)(e - \frac{\rho}{2}(u^2 + v^2))$$
 (2)

where  $\gamma$  is the ratio of specific heats and typically taken as 1.4 for air. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (1) can be written as

$$\frac{\partial U}{\partial t} + \nabla \cdot Q = 0 \tag{3}$$

where Q represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} Q dl = 0 \tag{4}$$

where  $dl = nd\mathcal{L}, n$  is the unit normal vector in the outward direction, and  $d\mathcal{L}$  is a unit length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) in the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^M Q_j^n n_j \Delta L_j$$
(5)

where  $A_i$  is the area of the cell;  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time n and at the update n = 1time step;  $Q_j$  is the value of the fluxes across the Mboundaries on the circumference of the cell where  $n_j$  is the unit normal vector to the boundary edge j, and  $\Delta L_j$ is the length of the boundary edge j. The fluxes  $Q_j^n$ are computed by applying the Second Order Godunov algorithm, and Eq. (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each marching time step  $\Delta t$ . The marching time step is subjected to the CFL (Courant-Fredrichs-Lewy) constraint.

We seek a solution to the system of Eq. (1) in the computational domain, which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured  $grid^{12-15}$  to describe the curved boundary of the computational domain and areas that need increased local resolution; this covers 10% of

the total computational domain. The structured grid occupies the remaining 90% of the computational domain in our example. The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. 9-10, and the technique for the structured grid is described in Ref. 11. These numerical techniques apply some of the ideas that were introduced in Refs. 17-18. The structured and unstructured codes apply the center-based formulation, i.e., the primitive variables are defined in the center of the cell, which makes the cell the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second Order Godunov method can be defined as follows:

- 1. Find the value of the gradient at the baricenter of the cell for each gas dynamic parameter  $U_{ij}$
- 2. Find the interpolated values of U at the edges of the cell using the gradient values;
- 3. Limit these interpolated values based on the monotonicity condition;
- 4. Subject the projected values to the characteristic's constraints;
- 5. Solve the Riemann problem by applying the projected values at the two sides of the edges;
- 6. Update the gas dynamic parameter U according to the conservation equations (1) applying to the fluxes computed and the current time step.

As was advocated in Ref. 9, we prefer the triangle center-based over the vertex-based version of the code. For the same unstructured grid, a triangle-based algorithm will result in smaller control volumes than a vertex-based. In addition, for the Second Order Godunov solver, implementation of the boundary conditions is more straightforward and accurate for the centerbased algorithm than in the vertex-based. These two factors, along with the effects of grid connectivity, strongly affect the algorithm accuracy and performance, and are the main reasons for the superiority of the center-based version over the vertex version.

### 4. Results for Wing-PDE configuration

All of our previous studies considered axisymmetric configurations of the PDE devices. However, because PDE does not have rotating parts, it allows another degree of flexibility that enables us to configure the PDE devices in other than axisymmetric geometries. To illustrate this, we used the inner volume of a section of the wing as a detonation chamber for a PDE device. The schematic of the Wing-PDE geometry considered in this study is shown in Figure 4. We assume that the wing is located in a subsonic air flow stream with M = 0.8. The particular wing shape used is the Gastelow cusped supercritical airfoil.¹² Two significant modifications of the original Gastelow airfoil geometry, provision for an inlet at the leading edge and an outlet nozzle at the trailing edge, allow its use as a PDE device.

In Figure 5, the cross section of the Wing-PDE geometry is shown in the computational domain that is decomposed into structured rectangular and unstructured triangular grids. For clarity, we show only every sixth point of the grid used in simulation. In our simulations we have used a structured grid with  $255 \times 131$  nodes and an unstructured grid with 7229 nodes. The area covered by the unstructured grid is about 10% of the total area of the computational domain. It is obvious from Figure 5 that the unstructured grid is used in the regions of the computational domain having complex geometry, i.e., wing external and internal surfaces, inlet, and nozzle. The structured rectangular grid is used to cover the rest of the computational domain. As mentioned previously, this method of domain decomposition leads to the most efficient use of computer resources. Our results demonstrate that flow propagates through the interfaces between the triangular unstructured and rectangular structured sections seamlessly.

First, we have to examine the flow pattern for the steady state flow regime of the Wing-PDE device shown in Figure 5. This will also establish the reference values of the airdynamic drag and lift for this configuration. In Figure 6a, the results are shown in form of the pressure contours for the converged steady state solution for the Wing-PDE configuration in M=0.8 external flow stream at zero angle of attack. We can observe in Figure 6a a very complex internal/external flow pattern around Wing-PDE geometry. In addition to the shock wave near the trailing edge on the upper surface of the wing, we can observe two additional shock waves. One is created by the flow exiting from the inner volume of the wing through the nozzle at the trailing edge, and another is created at the flow inlet located under the leading edge. The air flow enters the inner volume of the wing through the inlet and creates a complex flow field with an average pressure of  $\approx 1.0$  atm. It is easy to improve the flow uniformity in the inner volume of the inlet geometry and geometry of the inner surfaces. However, these aspects of the Wing-PDE design will be considered in future studies; for the purposes of this paper, we examine only the main features of the Wing-PDE configuration. The air flow in the inner volume of the wing create considerable drag. By integrating the pressure over the inner and outer surface of the Wing-PDE configuration, we have calculated the basic air dynamic characteristics of this profile at M = 0.8 flow. The following values for the steady state flow:

Lift:  $C_l = 0.18$ ; Drag:  $C_d = -0.138$ ; Pitching Moment:  $C_m = 0.034$ .

We have assumed that at t = 0, the inner volume of the wing is filled with a detonable gas mixture. The detonation wave is initiated at the aft end of the inner volume of the wing by a planar front. The fuel chosen for these simulations was ethylene. The detonability limits of ethylene in air range from 4% to 12% concentrations by volume, and depend somewhat on temperature and pressure. We assume for the sake of simplicity that the fuel/air ratio is 6% by volume.

In Figure 6b, the pressure contours are shown at  $t = 1.18 \times 10^{-4}$  sec. The propagation of the detonation front is planar. However, because of the curved inner walls of the wing, the detonation front reflects from the wall surfaces and the maximum pressure in the reflected waves reach 36.6 atm. However, this level of pressure is observed in a very small area of the detonation front where reflected or colliding transverse waves can cause a local maximum. The detonation wave velocity for this mixture is about 1800 m/sec.

In Figure 6c, the pressure contours are shown at the time  $t = 5.24 \times 10^{-4}$  sec, shortly after the detonation front has reflected from the inner surface of the leading edge. Here the maximum pressure was dropped to 12.1 atm. the reflected shock is moving in the direction of the trailing edge, and the expansion of the detonation products through the inlet was created a semicircular shock wave that propagates in the opposite direction to the external flow stream. In Figure 6d at the time  $t = 9.5 \times 10^{-4}$  sec, the reflected wave reaches the nozzle at the trailing edge, and expansion of the detonation products through this nozzle creates an additional shock wave that expands in the direction of the flow stream. When the original reflected shock has reached the converging area at the trailing edge, it will partially reflect and send a shock wave towards the inner surface of the leading edge. In Figure 6e, the pressure contours are shown at  $t = 1.39 \times 10^{-3}$  sec. Here the shock waves created by the detonation products emitting from the inlet and nozzle of the Wing-PDE device collide, creating a complex flow pattern with two triple point shocks, a vortex at the trailing edge and a complex system of waves propagating through the inner volume of the wing. The maximum pressure observed in Figure 6e at the wave shock wave interaction is 3.2 atm. It is important to note that the numerical method simulates the flow evolution seamlessly through the structured/unstructured grid interfaces.

In Figure 6f, the simulation results are shown at  $t = 5.7 \times 10^{-3}$  sec; this corresponds to the end of one cycle for the Wing-PDE configuration. Here we can observe that the flow pattern is very similar to the one in Figure 6a, except for some vortices propagating in the lower right part of the computational domain. The maximum pressure is reached at the leading edges and has the same values as shown in Figure 6a. The inner volume of the wing has a relatively uniform flow pattern

with an average pressure of 0.83 atm. At this time the gaseous mixture in the inner chamber of the wing will be initiated at the trailing edge and the second cycle will get started.

Examination of the details of the flow pattern resulting from a single detonation not only allows evaluation of the timing between the subsequent detonations but also provides important information for optimization of mixing, detonation products expansion, and other gasdynamic processes related to operation of the PDE cycle. Performance characteristics of the PDE device can be analyzed by integrating in time the forces exerted by pressure on the inner and outer surfaces of the Wing-PDE device. In Figure 7, results for such an integration of the force parallel to the ground as a function of time are shown. Calculation of this force, taking into account the drag and the thrust resulting from the detonation cycle, yields the net thrust force. Figure 7 gives this force for a linear meter of the wing in pounds. In this figure, we observe that the net thrust force is negative before the detonation is initiated, reaches the value of  $4.6 \times 10^5$  Lb/M during the reflection of the main detonation front from the inner walls of the wing, and quickly decays to its negative initial values that correspond to the drag of the Wing-PDE configuration in M=0.8 ambient flow stream. The positive thrust force is produced by the detonation engine in a very short time interval;  $\approx 3.0 \times 10^{-4}$  sec.

The time integral of the force shown in Figure 7 is thrust produced by the PDE device. Because of its intermittent operation, we need to assume the cycle frequency to be able to calculate the net thrust. In Figure 8, the results of thrust force integration are shown in the assumption of 200Hz detonation frequency of the Wing-PDE device. Our analysis above of a single cycle shows that this frequency of operation is feasible. In Figure 8, we observe that the maximum thrust of 5000 lb per linear meter of the wing is achieved in the first  $\approx 4.0 \times 10^{-4}$  sec after the detonation wave impinges on the thrust wall. This period of time corresponds to the duration of the positive thrust force shown in Figure 7. After this, the thrust will erode because of drag force to the value of 4000 lb at the end of the cycle. The average thrust for the duration of the cycle is 4250 lb per linear meter of the wing.

One of the advantages of the Wing-PDE configuration is that it will generate lift. Our simulations show that the chosen configuration will produce significant lift even at zero angle of attack because of the flow of detonation products. In Figure 9, the net integrated lift is presented as a function of time in the same format as the net thrust shown in Figure 8. The integrated lift shown in Figure 9 is not a linear function of time, as will be the case for the steady state flow regime. Substantial lift is generated shortly after the detonation products start to expand into the surrounding flow stream. The average lift generated is about 2250 lb per meter of wing length: this is comparable to the net thrust of 4250 lb. Our estimates indicate that about half of this lift is generated by the detonation products and the other half by the free stream flow through the chamber.

## 5. Conclusions

We have presented a powerful numerical technique for analysis of nonsteady flow over a complex geometrical configuration in the computational domain decomposed on unstructured triangular and structured rectangular grids. Simulations of the Wing-PDE cycle have demonstrated flexibility and efficiency of this technique of domain decomposition. Numerical results show seamless propagations through structured/unstructured grid interfaces of the multiple shocks, contact discontinuities. vortices, rarefaction waves and other complex flow features.

Use of this powerful numerical technique allowed us to examine the operation cycle and propulsion characteristics of the Wing-PDE device. We demonstrated in this study that in principle, the Wing-PDE device can operate with the 200 Hz cycle frequency producing 4250 lb per linear meter of the wing of the net thrust. We examined the Wing-PDE configuration to illustrate the geometric flexibility of this engine. This is an additional advantage to efficiency,³ scalability,⁴ thrust control,³ simplicity, and low cost of this device discussed in our previous publications.

#### References

- 1 Helman, D., Shreeve, R.P., and Eidelman, S., (1986), "Detonation Pulse Engine," AIAA-86-1683, 24th Joint Propulsion Conference, Huntsville.
- 2 Eidelman, S., W. Grossmann, I. Lottati, (1989) "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," AIAA 89-2466, AIAA, July 10-12 (to be published in AIAA Journal of Propulsion), Nov - Dec issue.
- 3 Eidelman, S., W. Grossmann, and I. Lottati, (1990), "Computational Analysis of the Pulsed Detonation Engines and Applications," AIAA 90-0460, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11.
- Eidelman, S., W. Grossmann, and I. Lottati, "Air-Breathing Pulsed Detonation Engine Concept; A Numerical Study," AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference, Orlando, FL, July 16-18, 1990.
- Eidelman, W., W. Grossmann, and I. Lottati, "A Propulsiohn Device Driven by Reflected Shock Waves," 18th International Symposium on Shock Waves, Sendai, Japan, 1991.
- 6 Hoffman, N., (1940), "Reaction Propulsion by Intermittent Detonative Combustion." Ministry of Sup-

ply, Volkenrode Translation.

- 7 Nicholls, J.A., Wilkinson, H.R., and Morrison, R.B., (1957), "Intermittent Detonation as a Thrust-Producing Mechanism," Jet Propulsion, 27, 534-541.
- 8 Nicholls, J.A., Gullen, R.E. and Ragland K.W., (1966), "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," J. of Spacecrafts and Rockets, 3, 893-896.
- 9 Lottati, I., S. Eidelman, A. Drobot (1990a), "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," Paper AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, Jan 8-11.
- 10 Lottati, I., S. Eidelman, A. Drobot (1990b), "Solution of Euler's Equations on Adaptive Grids Using a FUGGS," to be published in Proceedings of Second International Conference on Free-Lagrange Methods, Jackson Hole, WY.
- 11 Eidelamn, S., Collela, P., and Shreeve R.P., (1984) "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," AIAA Journal, v. 22, 10.
- A. Jameson, T.J. Baker and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences

Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.

- R. Löhner, "Adaptive Remeshing for Transient Problems," Comp. Meth. Appl. Mech. Eng. <u>75</u>, 195-214 (1989).
- J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, "Adaptive Remeshing for Compressible Flow Computations," J. Comp. Phys. <u>72</u>, 449-466, (1987).
- 15. D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes," AIAA 88-3707 (1988).
- I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids," Proceeding of the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.
- B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," J. Comp. Phys. <u>32</u>, 101-136 (1979).
- P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. <u>54</u>, 174-201 (1984).
- 19 Dulikravich, D.S., (1982), Private communication.



Figure 1. Schematic of the generic PDE showing detonation chamber, inlet, detonation wave, fuel injectors and position relative to an aerodynamic vehicle.



Figure 2. An example of hybrid structured/unstructured domain decomposition.



Figure 3. An example of hybrid structured/unstructured domain decomposition.









f. t =  $5.77 \times 10^{-3}$  sec

Figure 6. Pressure contours for the various time intervals of the wing-PDE cycle (continued).



Figure 7. Thrust force as function of time for the wing-PDE device simulation.



Figure 8. Net integrated thrust for the wing-PDE simulation.



A Second Order Godunov Scheme on Spatial Adapted Triangular Grid

Itzhak Lottati and Shmuel Eidelman

Science Applications International Corporation

## ABSTRACT

Spatial adaptation procedure for the accurate and efficient solution of unsteady inviscid flow simulation is described. The adaptation procedures were developed and implemented applying a second order Godunov scheme. These procedures involve mesh enrichment/coarsening to either add/remove vertices in high/low gradient regions of the flow, respectively. The goal is to achieve solutions of high spatial accuracy at minimal computational cost. The paper describes a very effective error estimator to detect high/low activity regions of the flow to be enriched or coarsened, respectively. The error estimator is based on total energy and density fluxes into the cell combined with gradient of density. Included in the paper is a detailed description of the direct dynamic refinement method that is used for adaptation. A detailed simulation of a reflection and diffraction of multiple shock waves flowing over a diamond shape wedge is presented and compared with experimental results. The simulated results are shown to be in excellent agreement with the experiment primarily in that all the complicated features of the physics are accurately accounted for and the shock waves, slip lines. vortices are sharply captured.

# INTRODUCTION

Considerable progress has been made over the past decade in developing methods for spatial adaptation of the computational meshes based on the numerical solution of the simulated physics. These methods are being developed to produce higher spatial accuracy in such simulation more efficiently. The goal of mesh adaptation is to enrich meshes locally, based on the numerical solution, in order to capture physical features of importance; in contrast to globally fine meshes, this process will minimize computer run times and memory costs. The methods of mesh adaptation can be categorized into three general classes: 1) mesh regeneration, 2) mesh movement, and 3) mesh enrichment.

The idea of mesh regeneration is systematically to identify high/low activity region in the flow and accordingly remesh those regions applying mesh generation code. This is done by assigning criteria for spatial accuracy and number of vertices. This procedure requires a mapping of the "old" flow solution into the "new" generated meshes by using one of the interpolated schemes. For the second method, mesh movement, the number of points in the computational domain remains fixed. The adaptation procedure moves vertices from low activity regions to high gradient regions to achieve a high concentration of vertices to resolve high activity regions. The movement of the points is dictated by forcing functions in the Poisson - equation in the grid generator code. The final method of spatial adaptation is mesh enrichment. In this method, vertices are added or removed according to the spatial resolution of the physical features in the flow. The advantages of mesh enrichment over regeneration and movement are its higher degree of flexibility in being able to add points where they are needed and to remove points where they are not needed. In our mesh enrichment method, we add points ahead of the shock wave, thus preventing the need of interpolation in the high gradient region for achieving higher accuracy of the results. Adding and removing points are done in monotone/very low activity regions to prevent numerical dissipation.

Lohner⁽¹⁾ has developed procedures to enrich the mesh for transient flow problems locally by subdividing elements in the grid according to specific spatial resolution criteria. The method, referred to as H-refinement, keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). The H-refinement relies heavily on the initial grid as it is subdivided for enrichment and recovered in the coarsening stage. A similar adaptive strategy to Lohner is adopted by  $Rausch^{(2)}$  et al., but applies a different error estimator and upwind type algorithm for a solver.

In our paper, we describe a Godunov scheme to solve Euler equations on an unstructured adaptive triangle mesh. We discuss the methodology of a cell centered Second Order Godunov scheme applied to a triangular mesh, and the method of Direct Dynamic Refinement that is used for adaptation of the unstructured triangular grid. Simulation and experimental results are compared for a test case applying the adaptive unstructured grid to a complicated pattern of planar shock wave flow diffraction over a half diamond shape wedge.

# SECOND ORDER GODUNOV

# ALGORITHM ON UNSTRUCTURED GRID

This section describes the implementation of the Second Order Godunov algorithm on a triangular unstructured grid. The algorithm is explicit and is cell-center based.

We consider a system of two-dimensional Euler equations written in conservation law form as:

$$\frac{\partial \bar{U}}{\partial t} + \frac{\partial \bar{F}}{\partial x} + \frac{\partial \bar{G}}{\partial y} = 0$$
 (1)

where

$$U = \left\{ \begin{array}{c} \rho \\ \rho u \\ \rho v \\ e \end{array} \right\}, F = \left\{ \begin{array}{c} p u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{array} \right\}, G = \left\{ \begin{array}{c} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{array} \right\}$$

Here u, v are the x, y velocity vector components, p is the pressure,  $\rho$  is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas. The total energy of gas is given by the following equation:

$$e = \frac{p}{\gamma - 1} + \frac{\rho}{2}(u^2 + v^2)$$
 (2)

where  $\gamma$  is the ratio of specific heats. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equation (1) can be written in the following form:

$$\frac{\partial U}{\partial t} + \bar{\nabla} \cdot \bar{Q} = 0 \tag{3}$$

where  $\bar{Q}$  represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} \bar{Q} \cdot d\bar{l} = 0$$
(4)

where  $d\bar{l} = \bar{n}d\mathcal{L}$ ,  $\bar{n}$  is the unit normal vector in the outward direction, and  $d\mathcal{L}$ is a unit length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) of the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^3 \bar{Q}_j^{n+\frac{1}{2}} \bar{n}_j \Delta L_j$$
(5)

where  $A_i$  is the area of the cell;  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time n and at the update n + 1 time step;  $\bar{Q}_j$  is the value of the fluxes across the three boundaries edges on the circumference of the cell where  $\bar{n}_j$  is the unit normal

vector to the boundary edge j, and  $\Delta L_j$  is the length of the boundary edge j. Equation (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each time step  $\Delta t$ . The time step is subjected to the CFL (Courant-Fredrichs-Lewy) constraint.

To obtain a second order spacial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell's edge, as is shown in Figure 1. The gradient is approximate by a path integral

$$\int_{\Omega} \bar{\nabla} U_i^{cell} dA = \oint_{\partial \Omega} U_j^{edge} d\bar{l} .$$
 (6)

The notation is similar to the one used for Eq. (5) except the domain  $\Omega$  is a single cell and  $U_i^{cell}$  and  $U_j^{edge}$  are values at the baricenter and on the edge respectively. The gradient is estimated as

$$\bar{\nabla}U_i^{cell} = \frac{1}{A} \sum_{j=1}^3 \tilde{U}_j^{edge} \bar{n}_j \Delta L_j \tag{7}$$

where  $\tilde{U}_{j}^{edg^{*}}$  is an average value representing the primitive variable value for edge j.

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints.⁽³⁾ The monotonicity constraint assures that the interpolated values are not creating new
extrema.

The monotonicity limiter algorithm can be written in the following form:

$$U_{projected}^{edge} = U_i^{cell} + \phi \bar{\nabla} U_i \cdot \Delta \bar{r} \tag{8}$$

where  $\Delta \bar{r}$  is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge.  $\phi$  is the limiter coefficient that limits the gradient  $\bar{\nabla}U_i$ .

First, we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 1):

$$U_{cell}^{\max} = Max \left( U_{k}^{cell} \right)$$

$$U_{cell}^{\min} = Min \left( U_{k}^{cell} \right)$$

$$k = i, 1, 2, 3.$$
(9)

The limiter can be defined as:

$$\phi = Min \{1, \phi_k^{lr}\} \quad k = 1, 2, 3 \tag{10}$$

where superscript lr stands for left and right of the three edges (6 combinations in total).  $\phi_k^{lr}$  is defined by:

$$\phi_{k}^{lr} = \frac{\left[1 + Sgn\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{cell}^{max} + \left[1 - Sgn\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{cell}^{min}}{2(\Delta U_{k}^{lr})} \qquad k = 1, 2, 3$$
(11)

where  $\Delta U_k^{lr} = \bar{\nabla} U_i^{lr} \cdot \Delta \bar{r}_k$ . and

$$\Delta U_{cell}^{\max} = U_{cell}^{\max} - U_{i}^{cell}$$

$$\Delta U_{cell}^{\min} = U_{cell}^{\min} - U_{i}^{cell}$$
(12)

To obtain a second order of accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one dimensional characteristic predictor is applied to the projected values at half time step  $t^n + \frac{\Delta t}{2}$ . The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector  $\bar{n}_c$ . The Euler equations for this direction can be written in the following form:

$$W_t + A(W)W_{nc} = 0 \tag{13}$$

where

$$W = \begin{cases} \tau \\ u \\ p \end{cases}; \ A(W) = \begin{pmatrix} u & -\tau & 0 \\ 0 & u & \tau \\ 0 & \rho c^2 & u \end{pmatrix}$$
(14)

where  $\tau = \rho^{-1}$ ,  $\rho$  denotes density while u, p are the velocity and pressure. The matrix A(W) has three eigenvectors  $(l^{\#}, r^{\#})$  (*l* for left and *r* for right where # denote +, o, -) associated with the eigenvalues  $\lambda^{+} = u + c$ ,  $\lambda^{\circ} = u$ ,  $\lambda^{-} = u - c$ . An approximation of projected value to an edge accurate to second order in space and time can be written as:

$$W_{i+\Delta r}^{n+1/2} \approx W_i^n + \frac{\Delta t}{2} \frac{\partial W}{\partial t} + \Delta r \frac{\partial W}{\partial r_{nc}}$$

$$\approx W_i^n + \left[ \Delta r - \frac{\Delta t}{2} A(W_i) \right] \frac{\partial W}{\partial r_{nc}}$$
(15)

An approximation to  $W_{i+\Delta r}^{n+1/2}$  can be written as:

$$W_{i+\Delta r}^{n+1/2} = W_i + (\Delta \bar{r}_i - \frac{\Delta t}{2} (M_x M_n) \cdot \bar{n}_c) \bar{\nabla} W_i$$
(16)

where

$$(M_x M_n) = \begin{cases} Max(\lambda_i^+, o) & \text{for cell left to the edge} \\ Min(\lambda_i^-, o) & \text{for cell right to the edge} \end{cases}$$
(17)

The gradients applied in the process of computing the projected values at  $t^n + (\Delta t/2)$  are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux  $\bar{Q}^{n+\frac{1}{2}}$  through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus giving an updated value of the variables at  $t^{n+1}$ . One of the advantages of the described algorithm is that calculation of the fluxes is done over the largest loop in the system (loop over edges) and can be carried out in the vectorized or parallelized loop. This fact leads to an efficient algorithm. The algorithm presented is a modification of the algorithm of Ref. 5 which was derived for structured mesh. This algorithm has been applied to simulate a wide range of flow problems and has been found very accurate in predicting the features of the physics. The performance of the algorithm is well documented in Refs. 6-8. The next section, the spatial adaptive procedure, is described in detail. These descriptions include explanations of the error estimator for flow feature detection and the Direct Dynamic Refinement Method used to enrich and coarsen the mesh.

## DIRECT DYNAMIC REFINEMENT METHOD FOR ADAPTATION ON AN UNSTRUCTURED TRIANGULAR GRID

The Direct Dynamic Refinement method (DDR) is a new method for adapting unstructured triangular grids during the computational process. As stated, an unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes as well as the adaptation of the grid, if necessary. The adaptation of the unstructured triangular grid leads to efficient usage of memory resources. The adaptive grid enables the user to capture moving shocks and high gradient flow features with high resolution. The available memory resources can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture features of the physical property of the solution as they are evolved. Dynamic refinement controls the resolution priorities. These priorities can be set according to the physical features that the user wishes to emphasize in the simulation. The user has control over the accuracy of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement (DDR) is the hierarchical dynamic refinement (H-refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the H-refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is needed to keep track of the H-refinement process. As mentioned, the H-refinement relies heavily on the initial grid as it subdivides this grid and returns to it after the passage of the shock.

To minimize the dissipation caused by the interpolation and extrapolation in the refinement and coarsening of the grid, the addition and deletion of point is done in the region where the flow features are smooth. Thus for capturing the shock, the refinement should be applied in the region ahead of the shock. The coarsening of the grid is done in the flow regions where the gradients of the flow parameters are small.

In the present version of AUGUST (<u>A</u>daptive <u>U</u>nstructured <u>G</u>odunov <u>Upwind Second order Triangular</u>), we implemented an algorithm with multiple criteria for capturing a variety of features that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov

algorithm for solving Euler's equations, and are used to update the physical variables for each time step in each triangle. Supplementary to the fux of energy as an error indicator, we use the flux of total density into t ______ngles and the density gradient. The error indicator is the only sensor that is solely responsible for identifying the area to be refined or coarsened in the computational domain. As such, the error indicator should be sensitive enough to detect physical features that are of interest to the user, such as shock waves, rarefaction waves, slip lines and vortices. The error indicators that are implemented in the code are able to sense very weak slip lines in the presence of strong shock waves. The ability of the error indicators to identify weak physical features in the presence of strong ones, without picking up numerical noises, is essential to the simulation of adaptive grids. As stated, the quality of the results is as good as the error indicators applied. If the error indicators fail to identify the physical feature, this feature probably will be overlooked in the simulated results. It should be noted that the process of applying error indicators for identifying the areas to be adaptively refined or coarsened is an expensive loop that has to check the whole triangles table in the simulation. Thus, the error indicators are applied each 9 to 15 time steps. This process is preceded by application of an algorithm that refines a buffer zone ahead of the features and coarsens the grid after it was moved away. The buffer zone ahead of the feature is identified by using a search pattern of finding the neighbors of the flagged triangles sorted by the error indicators.

12

We are not applying any physical parameters to identify the cones "ahead."

The refinement algorithm follows several basic steps. The process of adding points to refine the grid locally is done by either adding a new vertex in the baricenter of the triangle or adding a new vertex in the middle of the edge. Adding a new vertex in the baricenter of a triangle is very efficient in the sense that the refinement affects this individual triangle only. We apply this process exclusively for refinement. As a supplement, especially on the boundary, we apply the method of adding a new vertex on an edge. As a complement to adding new vertices, we apply the reconnection/swapping algorithm that flips the diagonal (common edge) of two adjacent triangles to improve the quality of the triangles constructed. Figure 2 displays a chain of those basic steps to illustrate the refinement process. Figure 2a shows the original grid. Figure 2b illustrates a one step scheme refinement in which a new vertex is introduced into a triangular cell forming three cells (two new ones). On the boundary edges, a new vertex is introduced in the middle of those edges to form two cells (one new one). This refinement is followed by reconnection that modifies the grid as demonstrated in Fig. 2c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved. As an example, another loop of refinement is illustrated in Figs. 2d and 2e. This direct approach to grid refinement provides extreme flexibility in resolving local flow features.

A similar direct approach is applied to grid coarsening. The basic step

in this process is deleting the cells and edges associated with a vertex to be removed, as shown in Fig. 3b. During the second step, this void in the grid is filled with new larger triangles (Fig. 3c) without introducing neterices. The last step is local reconnection and relaxation as shown in  $F^*$ . 3d. The relaxation procedure is a simple relocation of the vertex moved  $\sim$  the center of the polygon surrounding this vertex (only if the polygon is a convex).

The algorithm of direct dynamic refinement proved to be very efficient in refining and coarsening the grid adaptively. The refinement and coarsening followed a short inquiry on the quality and shape of the triangle flagged and its close neighbors. Since we do not keep any history or tree for each triangle, the DDRM algorithm has much less checking to do as compared to the Hrefinement algorithm. The vectorization and parallelization of the solver is straightforward.

## NUMERICAL RESULTS FOR THE TWO DIMENSIONAL TEST PROBLEM

We have tested the Second Order Godunov algorithm in a variety of flow simulations ranging from the low subsonic to the high hypersonic Mach  $^{(6-8)}$  regime. The AUGUST code proved to be very robust and accurate. The results obtained are comparable to or better than those obtained applying leading flow solvers in all of the regimes tested.

To validate our DDRM implemented in the AUGUST code, we simulated the problem of interaction of a Mach 2.85 planar shock wave, propagating are accurately accounted for and the shock waves, slip lines, vortices are sharply captured.

1

in a channel with a 45° symmetrical double ramp. Figure 4 shows the experimental interferogram of the problem to be simulated (reproduced). The example that we chose to simulate is most appropriate to test the performance of an adaptive algorithm. The experimental results show a complex flow pattern containing a mix of strong discontinuities, as shock aves, and very weak features such as slip lines, vortices, and rarefaction waves. The error estimator must recognize and flag all these features for refinement. The error estimator should be sensitive enough to identify very weak slip lines without picking up numerical noises present in the simulation. We have simulated the shock wave reflection and diffraction over a 45° corner at the conditions that correspond to the experimental result shown in Fig. 4. Here we present results for several shapes of the flow evolution. The flow in the channel is from left to right. Figure 5 displays density contour plots after the shock passed the apex of the double wedge obstacle. In Fig. 5a, the density contours are overlayed on the grid used at this stage of the evolving flow. For clarity, only the density contours are displayed in Fig. 5b. The grid displayed in Fig. 5a shows how well the adaptation technique follows the high activity region in the flow. The grid is adapting to regions with high pressure gradients and high density gradient. In Fig. 5a, one can observe high quality grid produced by the DDR method. The shock has a relatively thin buffer zone ahead of its front, allowing us to avoid the interpolations related to grid adaptation of the flow variables in the area of high gradient.

The flow features are resolved accurately, and the contact discontinuity and triple point are clearly defined.

Figure 6 shows the density contours at a later time in the same format as in Fig. 5. This figure demonstrates the ability of the DDRM to identify and follow flow features in the computational domain. In this figure we can observe a complicated flow pattern developing as a result of interaction of the rarefraction wave with the complex pattern of shock waves. A recompression shock and a strong vortex that are developed in this time frame are well resolved. We can also observe a slip line originating at the triple point. The adaptation algorithm, as in the previous time frame, follows both shock waves and contact discontinuities.

Figure 7 displays the density contours at the stage comparable to that shown in Fig. 4 for the experimental results. The computed results as displayed in Fig. 7b show a flow pattern similar to the experiment. The slip line and the formation of vertices along it are clearly depicted. The shock and reflected shock as well as the recompression shock are very sharply defined with very low numerical noise. The vortex developed after the compression shock is distinctly displayed. A new reflected shock can be seen developing at the channel wall behind the double wedge.

The results shown in Figs. 5-7 display the ability of the algorithm to simulate a complex transient flow problem on dynamically adapting grid. The error estimates used in our algorithm allow detection of strong and weak shock waves, conducted discontinuities, vortices or other fronts that need enhanced resolution.

#### CONCLUSION

The Direct Dynamic Refinement (DDR) method was developed and tested for a challenging problem of reflection and diffraction of a strong shock over a double ramp. For this test problem we have demonstrated that a set of error indicators developed for the DDR allow capturing strong and weak features of the complex wave structure developing in this test case.

The above described algorithms were implemented in the AUGUST code. The AUGUST code was used for a range of subsonic, transonic, and supersonic transient and steady problems. For all these conditions the AU-GUST code produced robust results with the error indicators proving to be applicable for all these diverse flow regimes.

#### ACKNOWLEDGMENT

The work reported here was partially supported by DARPA and AFOSR under Contract #F49620-89-C-0087. The authors would like to thank Col. James Crowley and Dr. A. Nachman for their interest in this project.

#### REFERENCES

 R. Lohner, "An Adaptive Finite Element Scheme for Transient Problems in CFD," Comp. Meth. Appl. Mech. Eng., Vol. 61, 323-338, 1987.

- R.D. Rausch, J.T. Batina, H.T.Y. Yang "Spatial Adaptation of Unstructured Meshes for Unsteady Aerodynamic Flow Computation." AIAA Journal, Vol 30, No. 5, May 1992, pp. 1243-1251.
- B. Van Leer, "Toward the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov Method," J. Comp. Phys., 32, 101-136, 1979.
- P. Collela and H.M. Glaz, "Efficient Solution Algorithm for the Riemann Problem for Real Gases," J. Comp. Phys. 59, 264-289, 1985.
- S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10, 1984.
- I. Lottati, S. Eidelman, and A.T. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
- 7) I. Lottati, S. Eidelman, and A.T. Drobot. "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceedings of the Free Lagrange Conference, Jackson Lake. WY, June 1990.
- I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Triangular Grid," Proceedings of 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.

 D.L. Zhang, I.I. Glass, "An Interferometric Investigation of the Diffraction of Planar Shock Waves Over a Half-Diamond Cylinder in Air," NTIAS Report No. 322, March 1988.



Representative triangular cell in the mesh and its neighbors showing fluxes across the edges





Figure 1. Representative triangular cell in the mesh showing fluxes and projected values.

(

(

(

(



a. Original grid.



c. Grid after one refinement and one reconnection.



b. Grid after one refinement.



d. Second refinement.



e. Second reconnection.

Figure 2. Illustration of the grid refinement process.



a. Original grid.



b. Point removal.



c. Constructing of new cells.



d. Grid after reconnection and relaxation.

Figure 3. Illustration of the grid coarsenning process.



Figure 4. An experimental interferogram taken at 96  $\mu$ s after shock wave hits a diamond shaped obstacle, Mach  $M_s = 2.85$ .













A Second Order Godunov Scheme on Spatial Adapted Triangular Grid Itzhak Lottati and Shmuel Eidelman Science Applications International Corporation

#### ABSTRACT

Spatial adaptation procedure for the accurate and efficient solution of unsteady inviscid flow simulation is described. The adaptation procedures were developed and implemented applying a second order Godunov scheme. These procedures involve mesh enrichment/coarsening to either add/remove vertices in high/low gradient regions of the flow, respectively. The goal is to achieve solutions of high spatial accuracy at minimal computational cost. The paper describes a very effective error estimator to detect high/low activity regions of the flow to be enriched or coarsened, respectively. The error estimator is based on total energy and density fluxes into the cell combined with gradient of density. Included in the paper is a detailed description of the direct dynamic refinement method that is used for adaptation. A detailed simulation of a reflection and diffraction of multiple shock waves flowing over a diamond shape wedge is presented and compared with experimental results. The simulated results are shown to be in excellent agreement with the experiment primarily in that all the complicated features of the physics are accurately accounted for and the shock waves, slip lines, vortices are sharply captured.

#### INTRODUCTION

Considerable progress has been made over the past decade in developing methods for spatial adaptation of the computational meshes based on the numerical solution of the simulated physics. These methods are being developed to produce higher spatial accuracy in such simulation more efficiently. The goal of mesh adaptation is to enrich meshes locally, based on the numerical solution, in order to capture physical features of importance; in contrast to globally fine meshes, this process will minimize computer run times and memory costs. The methods of mesh adaptation can be categorized into three general classes: 1) mesh regeneration, 2) mesh movement, and 3) mesh enrichment.

The idea of mesh regeneration is systematically to identify high/low activity region in the flow and accordingly remesh those regions applying mesh generation code. This is done by assigning criteria for spatial accuracy and number of vertices. This procedure requires a mapping of the "old" flow solution into the "new" generated meshes by using one of the interpolated schemes. For the second method, mesh movement, the number of points in the computational domain remains fixed. The adaptation procedure moves vertices from low activity regions to high gradient regions to achieve a high concentration of vertices to resolve high activity regions. The movement of the points is dictated by forcing functions in the Poisson - equation in the grid generator code. The final method of spatial adaptation is mesh related to grid adaptation of the flow variables in the area of high gradient.

15

enrichment. In this method, vertices are added or removed according to the spatial resolution of the physical features in the flow. The advantages of mesh enrichment over regeneration and movement are its higher degree of flexibility in being able to add points where they are needed and to remove points where they are not needed. In our mesh enrichment method, we add points ahead of the shock wave, thus preventing the need of interpolation in the high gradient region for achieving higher accuracy of the results. Adding and removing points are done in monotone/very low activity regions to prevent numerical dissipation.

Lohner⁽¹⁾ has developed procedures to enrich the mesh for transient flow problems locally by subdividing elements in the grid according to specific spatial resolution criteria. The method, referred to as H-refinement, keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). The H-refinement relies heavily on the initial grid as it is subdivided for enrichment and recovered in the coarsening stage. A similar adaptive strategy to Lohner is adopted by Rausch⁽²⁾ et al., but applies a different error estimator and upwind type algorithm for a solver.

In our paper, we describe a Godunov scheme to solve Euler equations on an unstructured adaptive triangle mesh. We discuss the methodology of a cell centered Second Order Godunov scheme applied to a triangular mesh, and the method of Direct Dynamic Refinement that is used for adaptation of the unstructured triangular grid. Simulation and experimental results are compared for a test case applying the adaptive unstructured grid to a complicated pattern of planar shock wave flow diffraction over a half diamond shape wedge.

#### SECOND ORDER GODUNOV

#### ALGORITHM ON UNSTRUCTURED GRID

This section describes the implementation of the Second Order Godunov algorithm on a triangular unstructured grid. The algorithm is explicit and is cell-center based.

We consider a system of two-dimensional Euler equations written in conservation law form as:

$$\frac{\partial \bar{U}}{\partial t} + \frac{\partial \bar{F}}{\partial x} + \frac{\partial \bar{G}}{\partial y} = 0$$
 (1)

where

$$U = \left\{ \begin{array}{c} \rho \\ \rho u \\ \rho v \\ e \end{array} \right\}, F = \left\{ \begin{array}{c} p u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{array} \right\}, G = \left\{ \begin{array}{c} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{array} \right\}.$$

Here u, v are the x, y velocity vector components, p is the pressure,  $\rho$  is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas. The total energy of gas is given by the following equation:

$$e = \frac{p}{\gamma - 1} + \frac{\rho}{2}(u^2 + v^2)$$
 (2)

where  $\gamma$  is the ratio of specific heats. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equation (1) can be written in the following form:

$$\frac{\partial U}{\partial t} + \bar{\nabla} \cdot \bar{Q} = 0 \tag{3}$$

where  $\bar{Q}$  represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} \bar{Q} \cdot d\bar{l} = 0$$
(4)

where  $d\bar{l} = \bar{n}d\mathcal{L}$ ,  $\bar{n}$  is the unit normal vector in the outward direction, and  $d\mathcal{L}$ is a unit length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the circumference boundary of this domain.

Equation (4) can be discretized for each element (cell) of the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^3 \bar{Q}_j^{n+\frac{1}{2}} \bar{n}_j \Delta L_j$$
(5)

where  $A_i$  is the area of the cell;  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time n and at the update n + 1 time step;  $\tilde{Q}_j$  is the value of the fluxes across the three boundaries edges on the circumference of the cell where  $\tilde{n}_j$  is the unit normal

vector to the boundary edge j, and  $\Delta L_j$  is the length of the boundary edge j. Equation (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each time step  $\Delta t$ . The time step is subjected to the CFL (Courant-Fredrichs-Lewy) constraint.

To obtain a second order spacial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell's edge, as is shown in Figure 1. The gradient is approximate by a path integral

$$\int_{\Omega} \bar{\nabla} U_i^{cell} dA = \oint_{\partial \Omega} U_j^{edge} d\bar{l} .$$
 (6)

The notation is similar to the one used for Eq. (5) except the domain  $\Omega$  is a single cell and  $U_i^{cell}$  and  $U_j^{edge}$  are values at the baricenter and on the edge respectively. The gradient is estimated as

$$\bar{\nabla}U_i^{cell} = \frac{1}{A} \sum_{j=1}^3 \tilde{U}_j^{edge} \bar{n}_j \Delta L_j \tag{7}$$

where  $\tilde{U}_{j}^{edge}$  is an average value representing the primitive variable value for edge j.

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints.⁽³⁾ The monotonicity constraint assures that the interpolated values are not creating new extrema.

The monotonicity limiter algorithm can be written in the following form:

$$U_{projected}^{edge} = U_i^{cell} + \phi \bar{\nabla} U_i \cdot \Delta \bar{r} \tag{8}$$

where  $\Delta \bar{r}$  is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge.  $\phi$  is the limiter coefficient that limits the gradient  $\bar{\nabla}U_i$ .

First, we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 1):

$$U_{cell}^{\max} = Max \left( U_{k}^{cell} \right)$$

$$U_{cell}^{\min} = Min \left( U_{k}^{cell} \right)$$

$$k = i, 1, 2, 3. \qquad (9)$$

The limiter can be defined as:

$$\phi = Min \{1, \phi_k^{lr}\} \ k = 1, 2, 3 \tag{10}$$

where superscript lr stands for left and right of the three edges (6 combinations in total).  $\phi_k^{lr}$  is defined by:

$$\phi_{k}^{lr} = \frac{\left[1 + Sgn\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{cell}^{max} + \left[1 - Sgn\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{cell}^{min}}{2(\Delta U_{k}^{lr})} \qquad k = 1, 2, 3$$
(11)

where  $\Delta U_k^{lr} = \bar{\nabla} U_i^{lr} \cdot \Delta \bar{r}_k$ . and

$$\Delta U_{cell}^{\max} = U_{cell}^{\max} - U_{i}^{cell}$$

$$\Delta U_{cell}^{\min} = U_{cell}^{\min} - U_{i}^{cell}$$
(12)

To obtain a second order of accuracy in time and space, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one dimensional characteristic predictor is applied to the projected values at half time step  $t^n + \frac{\Delta t}{2}$ . The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector  $\bar{n}_c$ . The Euler equations for this direction can be written in the following form:

$$W_t + A(W)W_{nc} = 0 \tag{13}$$

where

$$W = \begin{cases} \tau \\ u \\ p \end{cases}; \ A(W) = \begin{pmatrix} u & -\tau & 0 \\ 0 & u & \tau \\ 0 & \rho c^2 & u \end{pmatrix}$$
(14)

where  $\tau = \rho^{-1}$ ,  $\rho$  denotes density while u, p are the velocity and pressure. The matrix A(W) has three eigenvectors  $(l^{\#}, r^{\#})$  (*l* for left and *r* for right where # denote +, 0, -) associated with the eigenvalues  $\lambda^{+} = u + c$ ,  $\lambda^{\circ} = u$ ,  $\lambda^{-} = u - c$ . An approximation of projected value to an edge accurate to second order in space and time can be written as:

$$W_{i+\Delta r}^{n+1/2} \approx W_i^n + \frac{\Delta t}{2} \frac{\partial W}{\partial t} + \Delta r \frac{\partial W}{\partial r_{nc}}$$

$$\approx W_i^n + \left[\Delta r - \frac{\Delta t}{2} A(W_i)\right] \frac{\partial W}{\partial r_{nc}}$$
(15)

An approximation to  $W_{i+\Delta r}^{n+1/2}$  can be written as:

$$W_{i+\Delta r}^{n+1/2} = W_i + (\Delta \bar{r}_i - \frac{\Delta t}{2} (M_x M_n) \cdot \bar{n}_c) \bar{\nabla} W_i$$
(16)

where

$$(M_x M_n) = \begin{cases} Max(\lambda_i^+, o) & \text{for cell left to the edge} \\ Min(\lambda_i^-, o) & \text{for cell right to the edge} \end{cases}$$
(17)

The gradients applied in the process of computing the projected values at  $t^n + (\Delta t/2)$  are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux  $\bar{Q}^{n+\frac{1}{2}}$  through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus giving an updated value of the variables at  $t^{n+1}$ . One of the advantages of the described algorithm is that calculation of the fluxes is done over the largest loop in the system (loop over edges) and can be carried out in the vectorized or parallelized loop. This fact leads to an efficient algorithm. The algorithm presented is a modification of the algorithm of Ref. 5 which was derived for structured mesh. This algorithm has been applied to simulate a wide range of flow problems and has been found very accurate in predicting the features of the physics. The performance of the algorithm is well documented in Refs. 6-8. The next section, the spatial adaptive procedure, is described in detail. These descriptions include explanations of the error estimator for flow feature detection and the Direct Dynamic Refinement Method used to enrich and coarsen the mesh.

# DIRECT DYNAMIC REFINEMENT METHOD FOR ADAPTATION ON AN UNSTRUCTURED TRIANGULAR GRID

The Direct Dynamic Refinement method (DDR) is a new method for adapting unstructured triangular grids during the computational process. As stated, an unstructured grid is very suitable for implementing boundary conditions on complex geometrical shapes as well as the adaptation of the grid, if necessary. The adaptation of the unstructured triangular grid leads to efficient usage of memory resources. The adaptive grid enables the user to capture moving shocks and high gradient flow features with high resolution. The available memory resources can be very efficiently distributed in the computational domain to accommodate the resolution needed to capture features of the physical property of the solution as they are evolved. Dynamic refinement controls the resolution priorities. These priorities can be set according to the physical features that the user wishes to emphasize

10

in the simulation. The user has control over the accuracy of the physical features resolved in the simulation, without being restricted to the initial grid. The alternative to Direct Dynamic Refinement (DDR) is the hierarchical dynamic refinement (H-refinement) that keeps a history of the initial grid (mother grid) and the subdivision of each level (daughter grids). In the H-refinement method, it is necessary to keep overhead information on the level of each triangle subdivision, and double indirect indexing is needed to keep track of the H-refinement process. As mentioned, the H-refinement relies heavily on the initial grid as it subdivides this grid and returns to it after the passage of the shock.

To minimize the dissipation caused by the interpolation and extrapolation in the refinement and coarsening of the grid, the addition and deletion of point is done in the region where the flow features are smooth. Thus for capturing the shock, the refinement should be applied in the region ahead of the shock. The coarsening of the grid is done in the flow regions where the gradients of the flow parameters are small.

In the present version of AUGUST (<u>A</u>daptive <u>Unstructured G</u>odunov <u>Upwind Second order Triangular</u>), we implemented an algorithm with multiple criteria for capturing a variety of features that might exist in the physics of the problem to be solved. To identify the location of a moving shock, we use the flux of total energy into triangles. The fluxes entering and leaving triangles are the most accurate physical variables computed by the Godunov

algorithm for solving Euler's equations, and are used to update the physical variables for each time step in each triangle. Supplementary to the cux of energy as an error indicator, we use the flux of total density into t _____ngles and the density gradient. The error indicator is the only sensor that is solely responsible for identifying the area to be refined or coarsened in the computational domain. As such, the error indicator should be sensitive enough to detect physical features that are of interest to the user, such as shock waves, rarefaction waves, slip lines and vortices. The error indicators that are implemented in the code are able to sense very weak slip lines in the presence of strong shock waves. The ability of the error indicators to identify weak physical features in the presence of strong ones, without picking up numerical noises, is essential to the simulation of adaptive grids. As stated, the quality of the results is as good as the error indicators applied. If the error indicators fail to identify the physical feature, this feature probably will be overlooked in the simulated results. It should be noted that the process of applying error indicators for identifying the areas to be adaptively refined or coarsened is an expensive loop that has to check the whole triangles table in the simulation. Thus, the error indicators are applied each 9 to 15 time steps. This process is preceded by application of an algorithm that refines a buffer zone ahead of the features and coarsens the grid after it was moved away. The buffer zone ahead of the feature is identified by using a search pattern of finding the neighbors of the flagged triangles sorted by the error indicators.

12

We are not applying any physical parameters to identify the zones "ahead."

The refinement algorithm follows several basic steps. The process of adding points to refine the grid locally is done by either adding a new vertex in the baricenter of the triangle or adding a new vertex in the middle of the edge. Adding a new vertex in the baricenter of a triangle is very efficient in the sense that the refinement affects this individual triangle only. We apply this process exclusively for refinement. As a supplement, especially on the boundary, we apply the method of adding a new vertex on an edge. As a complement to adding new vertices, we apply the reconnection/swapping algorithm that flips the diagonal (common edge) of two adjacent triangles to improve the quality of the triangles constructed. Figure 2 displays a chain of those basic steps to illustrate the refinement process. Figure 2a shows the original grid. Figure 2b illustrates a one step scheme refinement in which a new vertex is introduced into a triangular cell forming three cells (two new ones). On the boundary edges, a new vertex is introduced in the middle of those edges to form two cells (one new one). This refinement is followed by reconnection that modifies the grid as demonstrated in Fig. 2c. The process of refinement and reconnection can be continued until the necessary grid resolution is achieved. As an example, another loop of refinement is illustrated in Figs. 2d and 2e. This direct approach to grid refinement provides extreme flexibility in resolving local flow features.

A similar direct approach is applied to grid coarsening. The basic step

in this process is deleting the cells and edges associated with a vertex to be removed, as shown in Fig. 3b. During the second step, this void in the grid is filled with new larger triangles (Fig. 3c) without introducing new vertices. The last step is local reconnection and relaxation as shown in Fig. 3d. The relaxation procedure is a simple relocation of the vertex moved to the center of the polygon surrounding this vertex (only if the polygon is a convex).

The algorithm of direct dynamic refinement proved to be very efficient in refining and coarsening the grid adaptively. The refinement and coarsening followed a short inquiry on the quality and shape of the triangle flagged and its close neighbors. Since we do not keep any history or tree for each triangle, the DDRM algorithm has much less checking to do as compared to the Hrefinement algorithm. The vectorization and parallelization of the solver is straightforward.

### NUMERICAL RESULTS FOR THE TWO DIMENSIONAL TEST PROBLEM

We have tested the Second Order Godunov algorithm in a variety of flow simulations ranging from the low subsonic to the high hypersonic Mach (6-8) regime. The AUGUST code proved to be very robust and accurate. The results obtained are comparable to or better than those obtained applying leading flow solvers in all of the regimes tested.

To validate our DDRM implemented in the AUGUST code, we simulated the problem of interaction of a Mach 2.85 planar shock wave, propagating in a channel with a 45° symmetrical double ramp. Figure 4 shows the experimental interferogram of the problem to be simulated (reproduced). The example that we chose to simulate is most appropriate to test the performance of an adaptive algorithm. The experimental results show a complex flow pattern containing a mix of strong discontinuities, as shock waves, and very weak features such as slip lines, vortices, and rarefaction waves. The error estimator must recognize and flag all these features for refinement. The error estimator should be sensitive enough to identify very weak slip lines without picking up numerical noises present in the simulation. We have simulated the shock wave reflection and diffraction over a 45° corner at the conditions that correspond to the experimental result shown in Fig. 4. Here we present results for several shapes of the flow evolution. The flow in the channel is from left to right. Figure 5 displays density contour plots after the shock passed the apex of the double wedge obstacle. In Fig. 5a, the density contours are overlayed on the grid used at this stage of the evolving flow. For clarity, only the density contours are displayed in Fig. 5b. The grid displayed in Fig. 5a shows how well the adaptation technique follows the high activity region in the flow. The grid is adapting to regions with high pressure gradients and high density gradient. In Fig. 5a, one can observe high quality grid produced by the DDR method. The shock has a relatively thin buffer zone ahead of its front, allowing us to avoid the interpolations related to grid adaptation of the flow variables in the area of high gradient.

The flow features are resolved accurately, and the contact discontinuity and triple point are clearly defined.

Figure 6 shows the density contours at a later time in the same format as in Fig. 5. This figure demonstrates the ability of the DDRM to identify and follow flow features in the computational domain. In this figure we can observe a complicated flow pattern developing as a result of interaction of the rarefraction wave with the complex pattern of shock waves. A recompression shock and a strong vortex that are developed in this time frame are well resolved. We can also observe a slip line originating at the triple point. The adaptation algorithm, as in the previous time frame, follows both shock waves and contact discontinuities.

Figure 7 displays the density contours at the stage comparable to that shown in Fig. 4 for the experimental results. The computed results as displayed in Fig. 7b show a flow pattern similar to the experiment. The slip line and the formation of vertices along it are clearly depicted. The shock and reflected shock as well as the recompression shock are very sharply defined with very low numerical noise. The vortex developed after the compression shock is distinctly displayed. A new reflected shock can be seen developing at the channel wall behind the double wedge.

The results shown in Figs. 5-7 display the ability of the algorithm to simulate a complex transient flow p oblem on dynamically adapting grid. The error estimates used in our algorithm allow detection of strong and
weak shock waves. conducted discontinuities, vortices or other fronts that need enhanced resolution.

# CONCLUSION

The Direct Dynamic Refinement (DDR) method was developed and tested for a challenging problem of reflection and diffraction of a strong shock over a double ramp. For this test problem we have demonstrated that a set of error indicators developed for the DDR allow capturing strong and weak features of the complex wave structure developing in this test case.

The above described algorithms were implemented in the AUGUST code. The AUGUST code was used for a range of subsonic. transonic. and supersonic transient and steady problems. For all these conditions the AU-GUST code produced robust results with the error indicators proving to be applicable for all these diverse flow regimes.

# ACKNOWLEDGMENT

The work reported here was partially supported by DARPA and AFOSR under Contract #F49620-89-C-0087. The authors would like to thank Col. James Crowley and Dr. A. Nachman for their interest in this project.

# REFERENCES

 R. Lohner, "An Adaptive Finite Element Scheme for Transient Problems in CFD," Comp. Meth. Appl. Mech. Eng., Vol. 61, 323-338, 1987.

- R.D. Rausch, J.T. Batina, H.T.Y. Yang "Spatial Adaptation of Unstructured Meshes for Unsteady Aerodynamic Flow Computation." AIAA Journal, Vol 30, No. 5, May 1992, pp. 1243-1251.
- B. Van Leer. "Toward the Ultimate Conservative Difference Scheme.
   V. A Second Order Sequel to Godunov Method." J. Comp. Phys., 32, 101-136, 1979.
- P. Collela and H.M. Glaz, "Efficient Solution Algorithm for the Riemann Problem for Real Gases," J. Comp. Phys. 59, 264-289, 1985.
- S. Eidelman, P. Collela, and R.P. Shreeve. "Application of the Godunov Method and its Second Order Extension to Cascade Flow Modeling," AIAA Journal 22, 10, 1984.
- I. Lottati, S. Eidelman, and A.T. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
- 7) I. Lottati, S. Eidelman, and A.T. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceedings of the Free Lagrange Conference, Jackson Lake. WY, June 1990.
- I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Triangular Grid," Proceedings of 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.

 D.L. Zhang, I.I. Glass. "An Interferometric Investigation of the Diffraction of Planar Shock Waves Over a Half-Diamond Cylinder in Air," NTIAS Report No. 322, March 1988.



Figure 1. Representative triangular cell in the mesh showing fluxes and projected values.



a. Original grid.



c. Grid after one refinement and one reconnection.



b. Grid after one refinement.



d. Second refinement.



e. Second reconnection.

Figure 2. Illustration of the grid refinement process.



a. Original grid.

b. Point removal.



c. Constructing of new cells.



- d. Grid after reconnection and relaxation.
- Figure 3. Illustration of the grid coarsenning process.



Figure 4. An experimental interferogram taken at 96  $\mu$ s after shock wave hits a diamond shaped obstacle, Mach  $M_s = 2.85$ .







Figure 6. Computed density contours simulating flow identical to the setup of the experiment of Fig. 4. The grid is composed of 65624 vertices.



Figure 7. Computed density contours comparable to time of the experimental results shown in Fig. 4. The grid is composed of 79352 vertices.

Advances in Computer Methods for Partial Differential Equations VII R. Vichnevesky, D. Knight and G. Richter (Editors) ©1992 IMACS. All rights reserved.

# DECOMPOSITION BY STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS FOR EFFICIENT INTEGRATION IN DOMAINS WITH COMPLEX GEOMETRIES

Itzhak Lottati and Shmuel Eidelman Applied Physics Operation, MS 2-3-1 Science Applications International Corporation McLean, VA 22102

#### Abstract

The Second Order Godunov method has been simultaneously implemented on both unstructured triangular and structured rectangular grids. This combined structured/unstructured method is a much more efficient approach to domain decomposition as compared to the separate application of each method. Application of this new technique to the complex problem of acoustic wave focusing in an ellipsoid reflector has demonstrated its advantages over both structured and unstructured methods of domain decomposition. It has been shown that the complex pattern of acoustic waves propagates seamlessly through structured/unstructured grid interfaces without reflection or distortion. The new approach provides ultimate flexibility in domain decomposition with minimum penalty in terms of memory and CPU requirements, and at the same time capitalizes on the advantages of both structured and unstructured grid methods.

#### Introduction

Structured rectangular grids allow the construction of numerical algorithms that perform an efficient and accurate integration of fluid conservation equations. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing that also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces the highest possible accuracy of the numerical algorithms. The disadvantage of structured rectangular grids is that they cannot be used for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved boundaries of the computational domain using the stair-step approximation available with the rectangular domain decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were developed. With these techniques, the computational domain is decomposed on quadrilaterals that can be fitted to the curved domain. The solution is then obtained in the physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary fitted coordinates approach leads to efficient codes, with approximately a 4:1 penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body fitted coordinates that are used for simulations of flows over a profile with sharp trailing edges. In this case, increased resolution in the vicinity of the trailing edge leads to increased resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, an unstructured grid code requires greater storage by a factor of 10, and will run about 5 times slower when compared on a per cell per iteration basis with a structured rectangular code. Unstructured triangular meshes are designed to provide a grid that is fitted to the boundary of complex geometry. The flexibility of the unstructured mesh that allows gridding complex geometry should be weighed against the huge memory requirement needed to define the inter connectivity between the triangles. To cut down on the memory overhead, unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows the dynamic reallocation of triangles according to the physics and geometry of the problem solved, which leads to a substantial reduction in the number of cells needed for the domain decomposition. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over the unadaptive unstructured domain decomposition if the area of high resolution needed is around one-tenth of the global area of the computational domain. As a result, while the adaptive unstructured method may be extremely effective for simulating flow with multiple shock waves in complex geometries, it becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstructured methods for achieving better efficiency and accuracy. Under this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Fig. 1), or to conform to the curved boundaries of the computational domain (Fig. 2). In these figures, an unstructured triangular grid is used to accurately define the curved internal or external boundaries and a structured rectangular grid is used to decompose the regions of the computational domain that have a simple geometry.

TI	, . T			11	( FT	i.E		111	
						+			
1 VISE	KIN	MA	ŇZ	XX	N.	ŻŻ		İKL	1
	SNAV		20			55	<u> </u>	<b>6</b> 35-	
	-						512.	892t	
		ĠЖ	X	XX		XX	XX	XX-	
			Ţ.		111	11			
	+++	+++	++-	┝┾╄	+++	++-	+++	+++	++

Figure 1. A possible candidate configuration for hybrid structured/unstructured domain decomposition.



Figure 2. A possible candidate configuration for hybrid structured/unstructured domain decomposition, representing the ellipsoid reflector grid used for the numerical simulation.

Our paper will illustrate the performance gains achieved from the use of this composite grid decomposition approach. We apply the Second Order Godunov method to solve the Euler equations on both structured and unstructured sections of the grid. The challenging problem of acoustic wave focusing in an ellipsoid is used as a test case to confirm the soundness of the approach and to check its performance characteristics and accuracy.

# Mathematical Model and Integration Algorithm

We consider a system of two-dimensional Euler equations written in conservation law form as:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \tag{1}$$

where

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \end{vmatrix}, \quad F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{vmatrix}, \quad G = \begin{vmatrix} \rho v \\ \rho u v \\ \rho v v \\ \rho v^2 + p \\ v(e+p) \end{vmatrix}.$$

Here u, v are the x, y velocity vector components, p is the pressure,  $\rho$  is the density and e is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is given by the equation-of-state

$$p = (\gamma - 1)(e - 0.5\rho(u^2 + v^2))$$
⁽²⁾

where  $\sim$  is the ratio of specific heats and typically taken as 1.4 for air. It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (1) can be written as

$$\frac{\partial U}{\partial t} + \nabla \cdot Q = 0 \tag{3}$$

where Q represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, the following expression is obtained

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} Q \, dl = 0 \qquad (4)$$

where  $dl = nd\mathcal{L}n$  is the unit normal vector in the outward direction, and  $d\mathcal{L}$  is a unit length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial\Omega$  is the circumference boundary of this domain.

Eq. (4) can be discretized for each element (cell) in the domain

$$\frac{(U_i^{n+1} - U_i^n)}{\Delta t} A_i = \sum_{j=1}^M Q_j^n n_j \ \Delta L_j$$
(5)

where A, is the area of the cell:  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time n and at the update n+1 tir⁻ step;  $Q_j$  is the value of the fluxes across the M boundaries on the circumference of the cell where  $n_j$  is the unit normal vector to the boundary edge j, and  $\Delta L_j$  is the length of the boundary edge j. The fluxes  $Q_j^n$  are computed applying the Second Order Godunov algorithm, and Eq. (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each marching time step  $\Delta t$ . The marching time step is subjected to the CFL (Courant-Frerichs-Lewy) constraint.

We seek a solution to the system of Eq. (1) in the computational domain, which is decomposed in part into triangles with arbitrary connectivity and in part into rectangles using a logically structured grid. We use the advantage of the unstructured grid (Refs. 1-4) to describe the curved boundary of the computational domain and areas that need increased local resolution. In our example, the unstructured grid covers 10% of the total computational domain while the structured grid occupies the remaining 90%. The numerical technique for solving Euler's equation on an unstructured grid is described in Refs. 5-7, and the technique for the structured grid is described in Refs. 8. These numerical techniques apply some of the ideas that were introduced in Refs. 9-10. The structured and unstructured codes apply the center-based formulation, i.e., the primitive variables are defined in the center of the cell, which makes the cell the integration volume, while the fluxes are computed across the edges of the cell. The basic algorithmic steps of the Second Order Godunov method can be defined as follows:

1. Find the value of the gradient at the baricenter of the cell for each gas dynamic parameter U;

- 2. Find the interpolated values of U at the edges of the cell using the gradient values:
- 3. Limit these interpolated values based on the monotonicity condition (Ref. 9);
- 4. Subject the projected values to the characteristic's constraints (Ref. 10);
- 5. Solve the Riemann problem applying the projected values at the two sides of the edges:
- 6. Update the gas dynamic parameter U according to the conservation equations (1) applying to the fluxes computed and the current time step.

As was advocated in Ref. 7, we prefer the triangle center-based over the vertex-based version of the code. For the same unstructured grid, a triangle-based algorithm will result in smaller control volumes than a vertex-based. In addition, for the Second Order Godunov solver, implementation of the boundary conditions is more straightforward and accurate for the center-based algorithm than in the vertex-based. These two factors, along with the effects of grid connectivity, strongly affect the algorithm accuracy and

performance, and are the main reasons for the superiority of the center-based version over the vertex version.

#### Sound Wave Focusing in an Ellipsoid Reflector

Research relating to focusing of shock and acoustic waves is of considerable practical interest for application to Extracorporeal Shock Wave Lithotripsy (ESWL). Most of the interest in this area is related to acoustic waves in liquids: however, the basic reflection and focusing mechanisms for a given reflector geometry can be studied in air as well. For our test simulation, we chose a deep reflector shaped like an ellipsoid, which was used for ESWL by Dornier (Ref. 11) and other companies. A schematic of the cross section of this reflector is shown in Fig. 3. Strong acoustic waves are generated in the left focal point of the ellipsoid by an instantaneous release of energy and are refocused at the right focal point. Ideally, focusing should be based on waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to significant distortions in wave propagation and impair simple geometrical focusing.



Figure 3. A schematic drawing of the center cross section of the ellipsoid reflector.

Figure 2 shows the computational domain and grid for the ellipsoid reflector example. In order to illustrate the concept of the composite structured/unstructured grid, we have shown only every 1/16 ceil of the grid that was actually used for the simulation. In this example, we observe that the structured rectangular grid covers about 90% of the computational domain and the unstructured triangular grid is restricted to the curved surface of the ellipsoid and covers about 10% of the domain. The major axis of the ellipsoid is 150 mm and the minor axis is 90 mm.

The integration in the structured part of the domain is performed using a version of the split Second Order Godunov method described in Ref. 8. For the unstructured triangular grid, we used our implementation of the Second Order Godunov method that includes a compact integration stencil suitable for unstructured grids (Refs. 5-7). In the current implementation, the two sections of the grid communciate through the boundary conditions at their interfaces. According to this, the values in the mirror points at the grid interfaces for the triangular grid are taken from the computational domain of the structured grid and vice versa. These mirror values are used for calculations of the flux at the interface boundaries. For focusing problem simulations, we used 55188 triangles in the unstructured part of the grid and 141312 ( $736 \times 192$ ) rectangles in the structured grids have the same level of refinement), the unstructured portion of the code was run with adaptivity (adding and deleting vertices). This ability enabled us to match the grid resolution based on cell areas in the structured/unstructured grids while computing the results. The initial grid had a very refined grid at the left focal point to initiate accurately the detonation. This area was coarsened later in the simulation by turning on the adaptive capability of the unstructured code.

We used the following initial condition at the time t = 0 for the simulation of the acoustic wave focusing:

- a. Quiescent air in the cavity of the reflector, i.e., Pressure  $P_o = 101350$ . Pa and Density  $\rho_o = 1.2 \text{ Kg/m}^3$ .
- b. Blast in the left focal point of the ellipsoid confined in a spherical volume of a radius of R = 2mm. Condition at initial blast area: Pressure  $P_b = 45. * P_o$ , and Density  $\rho_b = 4.5 * \rho_o$ .

This definition of the initial conditions guarantees that a weak blast wave will be generated, ensuring that waves of acoustic intensity will be reflected from the wall of the ellipsoid. We examined this particular reflection regime because the blast wave focusing in water occurs in acoustic mode. As it was pointed out in Ref. 11. reflection of even very weak waves in water will lead to considerable deviations from the reflection mode of a pure acoustic wave. However, the purpose of this simulation is to demonstrate the numerical method and not to study in detail the focusing modes of the ellipsoid reflector. Therefore, we present results for one simulation following conditions outlined above.

In Fig. 4a, the simulation results are shown in the form of pressure contours at the time  $t = 1.31 \times 10^{-4}$  sec when the incident shock started its reflection from the reflector wall. Here we can observe that the maximum reflected pressure is no higher than 14% over the ambient pressure, which is consistent with our objective to create weak waves. Figure 4b is an enlargement of the region in the computational domain that contains structure and unstructured grids. We can also observe that the incident wave propagates seamlessly through the interface of the structured and unstructured regions. In Fig. 5, we show pressure contour plots at time  $t = 2.09 \times 10^{-4}$  sec. We observe that the interfaces between the two grids carry the information seamlessly.



Figure 4a. Pressure contours at time  $t = 1.31 \times 10^{-4}$  sec showing the incident wave as reflected from the reflector's wall.



Figure 4b. Blowup of the pressure contours at time  $t = 1.31 \times 10^{-4}$  sec showing the matching pressure contours between the structured and the unstructured grid.



Figure 5. Pressure contours at time  $t=2.09 \times 10^{-4}$  see showing the incident wave and the reflected wave pattern.

Figure 6 shows the simulation results at time  $t = 4.35 \times 10^{-4}$  sec. At this stage, the blast wave front that propagated to the left has undergone full reflection and the reflected wave propagates in the direction of the incident wave to the right. However, the incident and the reflected wave are both of acoustic intensity and they are propagating at the speed of sound. Therefore, the reflected wave will not be able to catch up with the incident wave at this stage of expansion. We can observe in Fig. 7, where the two waves are shown past the ellipsoid centers ( $t = 5.41 \times 10^{-4}$  sec), that the distance between these acoustic waves does not change as compared with Fig. 6. The reflected wave has maximum pressure in the vicinity of the axis and its value remains relatively constant (about 1.10  $\times 10^{5}$  Pa) through the propagation process. The wave complex at the axis of symmetry consists of the incident acoustic wave front, a reflected wave that has positive followed by negative phases.



Figure 6. Pressure contours at time  $t=4.35 \times 10^{-4}$  sec showing the incident wave and the reflected wave pattern.



Figure 7. Pressure contours at time  $t=5.41 \times 10^{-4}$  sec showing the wave pattern past the center of the ellipsoid.

The enhancement of the reflected wave's amplitude starts gradually when the reflected wave is approaching the second focal point caused by the convergence of the ellipsoid. In Fig. 8, the pressure contours ( $t = 8.41 \times 10^{-4}$ sec) are shown at the stage that the maximum focused pressure is obtained in the system. As we can observe in Fig. 8, the incident front has left the computational domain, and the maximum pressure is obtained in small volume in the vicinity of the right focal point. In our simulation, the maximum focused pressure has reached  $1.32 \times 10^{5}$ Pa and is located 11 mm to the right of the focal point of the ellipsoid.



Figure 3. Pressure contours at time  $t=8.41 \times 10^{-4}$  sec showing the stage at which the maximum focused pressure is obtained.

In all the figures presented, the method of composite domain decomposition works extremely well, producing seamless solutions at the interfaces. We should mention here that our test problem is particularly sensitive because the main acoustic waves are weak, and any inaccuracy introduced at the grid interfaces would produce a distortion in the phase or in the intensity of the traveling waves that would be a visible disturbance evident in the results needless to mention that an adaptive scheme would have difficulty in simulating this problem due to the weakness of the wave pattern.

## Conclusions

A composite method of structured/unstructured domain decomposition is introduced as an efficient technique for dealing with the computational domains of complex geometry. We have simulated a demanding acoustic wave focusing problem and have shown that our approach leads to accurate wave propagation without any reflection or distortion at the structured/unstructured grid interfaces. It should be noted that for the acoustic focusing problem as simulated and presented in this paper, both structured and unstructured methods of domain decomposition can be shown to be inadequate if used separately. The structured method has difficulty describing the curved boundaries of the computational domain, while the unstructured method is totally inefficient in describing phenomena with wide fronts that occupy a large portion of the computational domain. Our hybrid method combines the advantages of structured and unstructured grid to accurately represent curved walls, with the computational and memory efficiency of the structured grid in the majority of the computational domain. We also attribute the quality of the numerical result to the Second Order Godunov method, which allows a consistent. accurate and robust formulation for handling both grids and boundary conditions.

#### Acknowledgments

The work reported here was partially supported by DARPA and AFOSR under Contract #F49620-89-C-0087. The authors would like to thank Col. James Crowley and Dr. A. Nachman for their interest in this project.

#### References

- 1. A. Jameson, T.J. Baker, and N.P. Weatherill, "Calculation of Inviscid Transonic Flow Over a Complete Aircraft," AIAA 24th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 86-0103, January 1986.
- 2. R. Löhner, "Adaptive Remeshing for Transient Problems," <u>Comp. Meth. Appl. Mech. Eng</u>. 75, 195-214, 1989.
- 3. J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz, "Adaptive Remeshing for Compressible Flow Computations," J. Comp. Phys. 72, 449-466, 1987.
- 4. D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes," AIAA 88-3707, 1988.
- 5. I. Lottati, S. Eidelman, and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV, 1990.
- I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," <u>Proceeding of the Free Lagrange Confer-</u> ence, Jackson Lake, WY, June 1990.
- 7. I. Lottati and S. Eidelman. "Second Order Godunov Solver on Adaptive Unstructured Grids." <u>Proceeding of the 4th International Symposium on Computational Fluid Dynamics</u>, Davis, CA, September 1991.
- 8. S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," <u>AIAA Journal</u> 22, 10, 1984.
- 9. B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V: A Second Order Sequel to Godunov's Method," J. Comp. Phys. 32, 101-136, 1979.
- P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. 54, 174-201, 1984.
- 11. H. Gronig, "Past, Present and Future of the Shock Focusing Research." Proceedings of the International Workshop on Shock Wave Focusing, Sendai, Japan. March 1989.

Advances in Computer Methods for Partial Differential Equations VII R. Vichneversky, D. Knight and G. Richter (Editors) ©1992 IMACS. All rights reserved.

## TWO-PHASE COMPRESSIBLE FLOW COMPUTATION ON ADAPTIVE UNSTRUCTURED GRID USING UPWIND SCHEMES

Xiaolong Yang, Shmuel Eidelman and Itzhak Lottati Applied Physics Operation, MS 2-3-1 Science Applications International Corporation McLean, VA 22102

#### ABSTRACT

A computer program called MPHASE for numerical study of shock wave propagation in a multiphase, multi-component gas environment is described and applied. The mathematical model of the multiphase, multi-component system is based on the multi-fluid Eulerian approach. Basically, we consider the two phases(i.e. gas and particle) to be interpenetrating continua: the dynamics of the flow is governed by conservation equations for each phase, and the two phases are coupled by interactive drag force and heat transfer. The code is formulated on unstructured triangular grids.

The numerical solution method is based on the Second Order Godunov Method for the gaseous medium, an upwind integration for the particles, and an implicit integration technique for the gasparticle interaction simulation. In order to produce a solution with high spatial accuracy at minimal computational cost, an adaptive procedure on the unstructured grid is used. The adaptive procedure will automatically enrich the grid by adding points in the high-gradient (or high flow activity) region and by removing points (coarsening the mesh) where they are not needed. This technique allows a detailed study of the complex two-phase shock reflection phenomena, where the effects of momentum and heat exchange between phases will significantly modify the shock structure and shock parameters.

Results will be given from the code validation study for the shock propagation in the dusty gases. The code performance will be illustrated by solving the problem of reflection and diffraction of a plan shock wave over a semicircular cylinder in a dusty gas.

#### 1. THE MATHEMATICAL MODEL AND THE NUMERICAL SOLUTION

#### Conservation Equations

The mathematical model consists of conservation governing equations and constitutive laws that provide closure for the model. The basic formulation adopted here follows the gas and dilute particle flow dynamics model presented by Soo¹. The following assumptions are used during the derivation of governing equations:

(1) The gas is air and is assumed to be ideal gas;

(2) The particles do not undergo a phase change because particles are considered as sand whose phase transition temperature is much higher than the gas temperature considered here;

(3) The particles are solid spheres of uniform diameter and have a constant material density;

(4) The volume occupied by the particles is negligible;

(5) The interaction between particles can be ignored:

(6) The only force acting on the particles is drag force and the only heat transfer between the two phases is convection. The weight of the solid particles and their buoyancy force are negligibly small compared to the drag force;

(7) The particles have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Under the above assumptions, distinct equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are listed as the source terms on the righthand side of the governing equation. The two dimensional unsteady conservation equations for the two phases can be written in the vector form in Cartesian coordinates:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S.$$
(1)

Here U is the vector of conservative variables, F and G are fluxes in x and y direction, respectively, and S is the source term for momentum and heat exchange. The definition of these vectors are:

where  $\rho, u, v$ , and e are gas density, velocities, and energy, respectively;  $\rho_p, u_p, v_p$  and  $e_p$  are particle density, velocities, and energy, respectively;  $(f_x, f_y)$  and q denotes drag force components acting on the particles and heat transfer to the particles, respectively. The gas pressure p is related to  $\rho, u, v$  and e for by

$$p = (\gamma - 1)[e - 0.5\rho(u^2 + v^2)]$$
(2)

where  $\gamma$  is the specific heat ratio. The gas temperature can be found through the equation-of-state for ideal gas

$$\rho = \rho R T \tag{3}$$

where R is the gas constant.

The particle temperature  $T_p$  is calculated through relation

$$e_p = \rho_p c_p T_p + 0.5 \rho_p (u_p^2 + v_p^2). \tag{4}$$

The source terms on the righthand side of equation (1) are momentum and heat exchange between gas and particle phases. If we let  $r_{\mu}$  and  $\rho_{s}$  be the particle radius and material density, respectively, then the drag forces are

$$\binom{f_{x}}{f_{y}} = \frac{3}{8} \frac{\rho_{p}\rho}{\rho_{s}r_{p}} C_{d} \left[ (u - u_{p})^{2} + (v - v_{p})^{2} \right]^{1/2} \binom{u - u_{p}}{(v - v_{p})}$$
(5)

The particle drag coefficient  $C_d$  is a function of Reynolds number, Re, which is based on the relative velocity between the gas and particle phases. After testing the drag coefficients given by Sommerfeld² and by Clift *et al.*³, the following were two adopted:

$$C_{d} = \frac{24}{Re} (1 + 0.15Re^{0.687}) \text{ for } Re < 800$$
  
d  
$$C_{d} = \frac{24}{Re} (1 + 0.15Re^{0.687}) + \frac{0.42}{1 + 42500Re^{-1.16}} \text{ for } Re > 800.$$
 (5)

Here the Reynolds number, Re is defined as

an

$$Re = \frac{2\rho r_p [(u - u_p)^2 + (v - v_p)^2]^{1/2}}{\mu}$$
(6)

Viscosity,  $\mu$  is calculated at film temperature, namely,  $T_f = 0.5(T_p + T)$ , and the temperature dependency of the viscosity is evaluated according to Sutherland's law

$$\mu = \mu_r \left(\frac{T}{T_r}\right)^{3/2} \frac{T_r + \Phi}{T + \Phi} \tag{7}$$

where  $\mu_{\tau}$  is the dynamic viscosity of the gaseous phase at the reference temperature and  $\Phi$  is an effective temperature, called the Sutherland constant.

The rate of heat transfer from gaseous phase to the particle phase is given by

$$Q = \frac{3}{2} \frac{\rho_p}{\rho_s} \frac{\mu C_p}{P_r} N u \left( T_o - T_p \right)$$
(8)

where  $Pr = \mu c_p/k_g$  is the Prandtl number, and  $c_p$  and  $k_g$  are the specific heat and thermal conductivity of gas, respectively. The Nusselt number Nu is a function of this Reynolds number and the Prandtl number as given by Drake⁴

$$Nu = \frac{2r_p h}{R} = 2 + 0.459 R e^{0.55} P r^{0.33}.$$
 (9)

#### Initial and Boundary Conditions

The geometry of the computational domain is shown in Fig. 1. The initial conditions for gas are  $\rho_0 = 1.2kg/m^3$  and  $p_0 = 101.3kpa$ , with a coming shock at x = -0.5. There are no particles from  $-1.0 \le x \le 0.0$ . From  $x \ge 0.0$ , particles are initially in thermal and kinematic equilibrium with surrounding gas. The particles that are uniformly distributed in the dusty region have the following parameters for different test problems:

Mass loading,  $\rho_p$ : 0.25 kg/m³, 0.76 kg/m³; Mass material density,  $\rho_s$ : 2500 kg/m³; Particle radii,  $r_p$ : 10  $\mu$ m, 25  $\mu$ m, 50  $\mu$ m; Specific heat,  $c_s$ : 766 J/kg/K.



Figure 1. An illustration of the considered flow field.

The lower boundary and cylinder surface are solid walls and assumed adiabatic and impermissible. A reflecting boundary condition is assumed for both the gas and particle phase. Particles are assumed to experience a perfect elastic collision with the wall and reflect from the wall. The right and upper boundaries are open boundaries where a nonreflection boundary condition is used for the gas phase and a zero normal gradient condition is used for particle phase.

# Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. Equation (1) is repeated here:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S.$$
(1)

In order to solve this equation numerically, an operator time-splitting technique is used. Assuming that all flow variables are known at a given time, we can calculate its advancement in time by splitting the integration into two stages.

In the first stage, the conservative part of equation (1) is solved:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0.$$
(10)

The Second Order Godunov method is used for the integration of the subsystem of equations describing the flow of the gaseous phase (first four components of equation (1)). The method is well documented in literature.^{5,5,7} The subsystem of equations describing the particle phase flow is integrated using a simple finite difference upwind scheme. This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:

$$\frac{\partial U}{\partial t} = S. \tag{11}$$

To integrate this equation in time, we need to obtain S as a function of U. We calculate S through equations (5) to (8).

In order to produce a solution of the high spatial accuracy at minimal computational cost, an unstructured triangular grid with adaptive procedure is used. The adaptive procedure will automatically enrich the mesh by adding points in the high gradient (or high flow activity) region of the flow field and by removing points (coarsening mesh) where they are not needed. The dynamic nature of mesh enrichment is shown in Fig. 3 for two different time frames. One can see that a very fine mesh is generated around shock fronts and other steep density gradient regions.

#### 2. RESULTS

#### Model Validation for One-Dimensional Shock Wave Propagation in A Dusty Gas

To test the momentum and heat exchange mechanism for the current two-phase model, we first simulate a one-dimensional problem of a normal shock wave propagating into a dusty gas. We numerically simulate the experiments conducted by Sommerfeld². In the experiments, small glass sphere particles of material density  $\rho_s = 2500 kg/m^3$ , specific heat capacity  $c_s = 766 J/kg/K$ , and average diameter of 27  $\mu m$  were used as suspension particle phase. The incoming shock, and particle loading ratio  $\eta = \rho/\rho_p$ , are two varying parameters. The experimental results and our numerical simulation results of shock Mach number as a function of distance for two test cases are shown in Fig. 2a ( $\eta = 0.63$  and Fig. 2b ( $\eta = 1.4$ ) for comparison purpose. As one can see, the agreement between the prediction of our present model and the experimental results is very good.

#### Two-Dimensional Simulation Results of Pure Gas Flow

To test the accuracy of the two-dimensional computation, we compute the pure gas flow case of a shock wave reflection and diffraction over a semicircular cylinder. We then compare the simulation with experimental results. Shock wave reflection on a wedge has been extensively studied by many researchers (see e.g., review paper of Hornung⁸). Shock wave reflection by circular cylinders was numerically simulated by Yang et al.⁹ and experiments were performed by Kaca¹⁰. Fig. 3a and 3b show density contours with adapted grids at two moments in time. In Figs. 4a nd 4b, the interferogram from the experiment³ and density contours from the present simulation are compared for the same flow condition and same time. Note that the density levels are normalized by the ambient gas density in Fig. 4. As one can see from Fig. 4a and Fig. 4b, the results show an excellent quantitative as well as qualitative agreement between the numerical simulation and experimental results.



Figure 2. Comparison between computational prediction and experimental measurement of shock wave attentuation for (a)  $M_o = 1.40$ ,  $\eta = \frac{\rho_o}{\rho_o} = 0.63$  and (b)  $M_o = 1.7$ ,  $\eta = \frac{\rho_o}{\rho_o} = 1.4$  (o experiment, - calculation).



Figure 3. Computed density contours with adapted grid at two different times.



Figure 4. Comparison for  $M_s = 2.80$  gas – only flow, (a) interferogram from experiment conducted by Kaca (1988), (b) density contours from present calculation.

# Two-Dimensional Simulation Results of Two-Phase Flow

The basic setup for the two-phase simulation is shown in Fig. 1. Here the planar shock with Ms=2.3 impinges on an area of a dusty gas. The interface between clear air and dusty air is located at x=0.0 of the computational domain. The area of the dusty air contains a semicylinder with a radius of 1m. The size of the computational domain, initial parameters of the gas, parameters of the incoming shock, size of the semicylinder and its location in the computational domain, are the same as in the reflection and diffraction simulation presented in the previous section.

The main objective of this set of simulations is to study the effects of particle size and particle loading on the parameters of the reflected and diffracted shock waves. It is also of interest to study the dynamics of reflection and diffraction in particle media. This is especially valuable since it is extremely difficult to observe these interactions experimentally in an optically thick dusty gas.

The first set of simulation results is shown for the case with dust parameters  $r_p = 10\mu m$  and  $\rho_p = 0.25 kg/m^3$ . The gas parameters and the parameters of the incoming shock wave are the same as in the pure gas case presented above. In Figs. 5a and 5b, particle density contours and gas density contours are shown at the stage when the incident shock wave has reached the top of the semicylinder. At this stage, particles have very little effect on the dynamics and parameters of the shock in the gas phase. The presence of the particles causes a small widening of the shock that is more noticeable for the incident shock. Also, one can observe an additional contour line at the dusty gas/pure gas interface. The particle density contours depict significant piling up of the dust particles at the leading edge stagnation point of the cylinder.



Figure 5. Density contours for the case;  $M_s = 2.8$ ,  $\rho_p = 0.25kg/m^3$ ,  $r_p = 10\mu m$  at two different times. (a) particle density at  $t_1$ , (b) gas density at  $t_1$ , (c) particle density at  $t_2$ , and (d) gas density at  $t_2$ .

In Figs. 5c and 5d, the particle density and gas density contours are shown at the stage where significant diffraction has taken place and the shock front is approaching the trailing edge of the cylinder. The small particle loading and small particle size leads to very small modification of the gas shock structure and parameters. One can observe further widening of the shock and some smearing of the slip line that originates at the triple point. The particle density contours reveal that the particles piled up at the stagnation point were swept by the gas flow to the area of triple point and slip line for the gas flow, leaving a small amount of particles at the leading edge. We should note that this behavior is specific for our problem, where at t=0, the dusty gas area was located at x=0 and there is no influx of the dust from the left boundary. Also in Fig. 5c, we note that the particles reach a distinct local maxima at the distance about 25 cm behind the main shock front. At this maxima the particle density is  $0.86 kg/m^3$ , which is more than three times the initial particle density. The particle density reaches a maximum value at the location of the gas slip line. We observe a significant accumulation of the particles that have been moved along the slip line by the shear flow. The larger concentration of particles in the vicinity of triple point is, in fact, the remainder of the particles that have concentrated first at the leading edge and then were swept up with the flow. It is also interesting to observe that an essentially particle- free zone is formed due to the effects of particles slipping over the top of the cylinder and the rarefaction wave behind the cylinder.

#### 3. CONCLUSIONS

In this paper, a computer program for two-phase compressible flow computation on adaptive grids using upwind schemes is described. The following validation study and conclusion can be made.

(1) The validation study for a one-dimensional shock wave propagating in a dusty gas shows a good agreement between the prediction of our model and the results of the experiment.

(2) For a two-dimensional gas-only flow, numerical results agree well with existing experimental data qualitatively and quantitatively, indicating that the gas phase is accurately simulated by adaptive grid technique.

(3) Particles in the gas can have a profound effect on the shock wave reflection and diffraction pattern, which is a function of particle size and loading. The smaller the particle and the lesser the particle loading, the less the inference of particle on the flow field.

(4) There is a particle accumulation behind the "back shoulder" of the semicircular cylinder due to the effect of particles inertia and gas rarefaction wave.

#### 4. ACKNOWLEDGMENTS

The work reported here was partially supported by DARPA and AFOSR under contract no. F49620-89-C-0087. The authors would like to thank Col. J. Crowley and Dr. A. Nachman for their interest in this project. The authors also acknowledge support from DNA under contract no. DNA001-91-C-0047, and A. Frederickson for his encouragement.

#### 5. REFERENCES

1. S. L. Soo, Particulates and Continuum, Hemisphere Publishing Corporation. 1989.

- 2. M. Sommerfeld, "The Unsteadiness of Shock Waves Propagating through Gas-Particle Mixtures," Experiments in Fluids, Vol. 3, p. 197, 1985.
- 3. R. Clift, J. R. Grace, and M. E. Weber, <u>Bubbles</u>. Drops and Particles, Academic Press, New York, 1978.
- 4. R. M. Drake, Jr., "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transfer, Vol. 83, p. 170, 1961.
- 5. S. Eidelman, P. Collela, and R. P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," <u>AIAA Journal</u>, Vol. 22, p. 10, 1984.
- P. Collela, "A Direct Eulerian MUSCL Scheme for Gas Dynamics," <u>SIAM J. Stat. Comput.</u>, Vol. 6, p. 104, 1985.
- 7. P. Collela, and H. M. Glaz, "Efficient Solution Algorithms for the Riemann Problem for Real Gases," J. Comput. Physics, Vol. 59, p. 264, 1985.
- 8. H. Hornung, "Regular and Mach Reflection of Shock Waves," <u>Ann. Rev. Fluid Mech.</u>, Vol. 18, p. 33, 1986.
- 9. J. Y. Yang, Y. Liu, and H. Lomax. "Computation of Shock Wave Reflection by Circular Cylinder." AIAA Journal, Vol. 25, p. 683, 1987.
- 10. J. Kaca, "An Interferometric Investigation of Diffraction of a Planar Shock Wave over a Semicircular Cylinder," <u>UTIAS Technical Note 269</u>, 1988.



AIAA 92-3168 PULSED DETONATION ENGINE EXPERIMENTAL AND THEORETICAL REVIEW S. Eidelman and W. Grossmann Science Applications International Corporation McLean, VA







# AIAA/SAE/ASME/ASEE **28th Joint Propulsion Conference and Exhibit** July 6-8, 1992 / Nashville, TN

For permission to copy or republish, contact the American institute of Aeronautics and Astronautics

# PULSED DETONATION ENGINE EXPERIMENTAL AND THEORETICAL REVIEW

Shmuel Eidelman and William Grossmann

Applied Physics Operation Science Applications International Corporation 1710 Goodridge Drive, McLean, VA 22102

# Abstract

A Review of past and current research on pulsed detonation engine devices connects early experimental work originating with the V1 pulsejet to recent interest in such propulsion devices. The recent interest has been, in part, stimulated by Aviation Week where sightings of aircraft contrails lead to question if some sort of PDE device has already been developed. This review summarizes what is known about PDEs, makes predictions for applications to realistic flight vehicles including missiles and full scale aircraft, and outlines what is yet required for successful PDE development.

# 1. Introduction

This paper reviews past and recent theoretical and experimental work related to the Pulsed Detonation Engine (PDE) concept. Such a review is timely since much interest in the PDE concept has been generated from several recent Aviation Week (AW) articles.^{1,2} The AW articles, in addition to describing SAIC PDE studies, describe observations of aircraft flight and engine sound generation that are similar to what would be expected from PDE operation. These observations are intriguing since, to our knowledge, there has been no previously reported use of PDE devices in any past or recent flight vehicles. The reported observations include loud pulsing sounds at Beale AFB and photographs of high altitude contrails with "cotton ball" like beads strung on the contrails in a repetitive pattern. It is tempting to try to connect the AW reports with what we understand about PDE operation. It has come to our attention that a ground observer has identified the frequency of the pulsing sounds emanating 1 the vehicle that made the contrails appearing in . . . AW article to be of the order of 50-60 Hertz. To obtain the source (aircraft engine) frequency we must correct the observed frequency for the Doppler effect, taking into account the temperature variation between ground and flight altitude. Assuming an altitude of 45-50,000 ft. (cirrus clouds are observed behind the trails in the published photographs), a flight Mach number

between one and two gives a source frequency, f, between 100 and 200 Hertz. As we show later in this paper, a PDE generating 25,000-50,000 lbs. thrust should, theoretically, operate in this frequency range. Of course we have no information concerning the subject aircraft characteristics and consequently we cannot conclude that PDEs are powering present day aircraft. On the other hand the observations appear to be consistent with expected PDE operation.

#### 2. Early Pulsed Combustion Propulsion Devices

It is instructive to point out the differences between the PDE concept and the more commonly understood pulsejet devices. The first full scale application of pulsed propulsion devices was for the V1 flying "buzz bomb." The engine used for this vehicle was the Schmidt-Argus³ engine and has since been generally referred to as a "pulsejet." The pulsejet for the VI engine was based on repetitive combustion ignitions accomplished through the use of mechanical reed valves that allowed fresh air charge to be drawn into the combustion chamber. The timing of the reed valve opening was pegged to the acoustical frequency (organ pipe modes) of the combustion chamber, which consisted of a central ignition region joined to an exhaust duct. Thus, the operating parameters of the engine were fixed with engine size; only narrow ranges of thrust level variation are possible in such an engine. An increase or decrease of thrust can only be made through changes in engine internal geometry. Ever since the first occurrence of pulsejets, these engines have been considered for other applications including full scale aircraft propulsion. One of the major obstacles in the early development of the pulsejet for wider applications was the complete absence of a theoretical approach to understanding the thermodynamic process in the combustion chamber. It was assumed that the pulsejet combustion process was similar to the steady-state Lenoir constant-volume cycle and that the frequency of the combustion pulsations could be predicted by means of steady-state acoustical wave motion. However, the efficiency of the pulsejet, as determined experimentally, was much lower than a constant-volume process would predict. We know now that the early pulsejet devices operated on an approximately constant-pressure cycle, which is known to have a lower thermodynamic efficiency than the constant-volume cycle. We have previously argued that the lack of a firm theoretical understanding of the physics and thermodynamics was primarily responsible for the failure to develop the pulsejet further for a wider range of practical applications. This argument will be discussed again later in this review.

In the meantime, the term pulsejet has become generally understood to refer to a pseudo-generic series of engines. The term "propulsive duct" is a more comprehensive descriptor encompassing a wider range of pulsed combustion engine concepts. An early series of papers by Tharjatt⁴⁻⁶ described the status of work on such devices up to 1965, and provides a guide to the early attempts to understand the physics and aerodynamics of the internal gas flows in them. Even though these early investigations were seriously handicapped by a lack of knowledge of unsteady aerodynamics and the physics of repetitive combustion, it is remarkable that the conclusions offered in Tharjatt's papers are close to what we have concluded over the past several years for the PDE concept. Specifically, it was concluded that the propulsive duct engine concept should theoretically be capable of any desired level of thrust per unit area, with a corresponding reduction in specific fuel Valveless operation was also consumption. investigated and shown to offer a route to eliminating the dependency on fixed acoustical frequencies tied to a given chamber geometry. Figure 1 is representative of the valveless propulsive duct conceptualized by Tharjatt. Further, it was shown that the use of feedback techniques via multiple tube arrangements. which may not be practical from an engineering standpoint, leads to the possibility of very high frequency operation beyond the audible range. This would result in near silent operation. Finally, it was concluded that the propulsive duct should be capable of supersonic operation, and a Mach 3 engine was conceptualized; a schematic of this supersonic concept is shown in Figure 2.

Somewhat later, in a 1982 report by Kentfield,⁷ the pulsejet was analyzed for predicted flight performances based on well established experimental test-stand data and available theoretical studies.⁸ The results were compared against other engine alternatives suitable for small, high subsonic speed flight vehicles. The predicted performance for valveless engine configurations was shown to be highly competitive with turbojets at high subsonic Mach numbers. Actual flight tests with a drone type aircraft at Mach 0.85 showed increased performance over predicted performance values due possibly to a combination of increased air-breathing, increased intake density, and a ram effect superimposed on the pulsejet cycle. Conclusions from these studies include suggestions that valveless pulsejet performance could be comparable and, in some cases, exceed that of turbojet engines. A strong point was made concerning the low cost, simplicity and relatively high thrust-to-weight ratio of pulsejets when compared with turbojets.

The main reason for including the preceding review of pulsejets and propulsive ducts is to draw attention to the similarity between the early conclusions concerning the future performance expectations of pulsejets and the conclusions drawn to date concerning expected PDE performance. As mentioned above, we believe a primary reason that such devices have not been pursued in the past is that adequate analysis and evaluation tools did not exist at the time to help understand the complexities of pulsed operation. Modern CFD techniques now allow a comprehensive analysis of the internal and external flows associated with pulsed propulsion devices. It may well be more than just an interesting exercise to re-examine the pulsejet engines using present day CFD tools, and to compare the results with those from similar PDE studies.

# 3. Constant Volume Combustion and Early Pulsed Detonation Studies

## Constant Volume Combustion

A constant volume combustion process is known to have a higher thermodynamic efficiency than a constant pressure combustion process. Constant volume combustion was adopted very early for use in gas turbine engine development, and the first gas turbine engines in commercial use were based on the constant volume cycle. Jet propulsion engines were one of the applications of the constant volume cycle (or explosion cycle), which was explored in the late 1940s.⁸ Although the explosion cycle operates at a larger pressure variation in the combustion chamber than in a pulsejet, the cycle actually realized in these engines was not a fully constant volume one since the combustion chamber was open ended.9 In Reference 8 the maximum pressure ratio measured in an explosion cycle engine was 3:1, whereas the pressure ratio for the same mixture under the

assumption of a constant volume cycle would be 8:1. Also, this early engine was limited by the available cycle frequency, which in turn is limited by the reaction rate. A simple calculation⁸ showed that if the combustion time could be reduced in this engine from 0.006 sec to 0.003 sec, the thrust per pound of fuel-air mixture would increase 100%. Thus, a propulsion device based on an explosion-cycle has two main disadvantages:

- Constrained volume combustion (as distinguished from constant volume combustion) does not take full advantage of the pressure rise characteristic of the constant volume combustion process.
- The frequency of the explosion cycle is limited by the reaction rate, which is only slightly higher than the deflagrative combustior. rate.

The main advantage of the constant pressure cycle is that it leads to engine configurations with steady state processes of fuel and oxidizer injection, combustion, and expansion of the combustion products. These stages can be easily identified and the engine designer can optimize them on the basis of relatively simple steady state considerations.

#### Pulsed Detonation Studies

There have been numerous attempts in the past to take advantage of detonative combustion for engine applications. The following is a brief description of some of the most relevant past experimental and analytical studies of pulsed detonation.

The Work of N. Hoffmann. The first reported work on intermittent detonation is attributed to Hoffmann¹⁰ in 1940. Hoffmann's experiments on intermittent detonation were carried out in a long, narrow tube mounted on a test stand using acetyleneoxygen and benzine-oxygen fuel mixtures. Water vapor was added to prevent the highly sensitive acerylene-oxygen mixture from premature detonation. Hoffmann pointed out the importance of the detonation initiation (spark plug) location in reference to tube length and diffuser length. It was found that a continuous injection of the combustible mixture leads to only a narrow range of ignition frequencies that will produce an intermittent detonation cycle. These frequencies are governed by the time required for the mixture to reach the igniter, time of transition from deflagration to detonation, and time of expansion of the detonation products. Hoffmann attempted to find the optimum cycle frequency experimentally. It was

discovered that detonation-tube firing occurred at lower frequencies than the spark-plug energizing frequencies, indicating that the injection flow rate and ignition were out of phase. Wartime events prevented further work by Hoffmann and his co-workers.

The Work of Nicholls and Co-Workers. A substantial effort in intermittent detonation research was made by a group headed by J. A. Nicholis¹¹⁻¹² of the University of Michigan beginning in the early 50's. The most relevant work concerns a set of experiments carried out in a six foot long detonation tube.¹¹ The detonation tube was constructed from a one inch internal diameter stainless steel tube. The fuel and oxidizer were injected under pressure from the (closed) left end of the tube and ignited at some distance down stream. The tube was mounted on a pendulum platform, suspended by support wires. Thrust for single detonations was measured by detecting tube (platform) movement relative to a stationary pointer. For multi-cycle detonations, thrust measurement was achieved by mounting the thrust end of the tube to the free end of a cantilever beam. In addition to direct thrust measurements, the temperature on the inner wall of the detonation tube was measured. Fuel mixtures of hydrogen/oxygen, hydrogen/air, acetylene/oxygen and acetylene/air mixtures were used. The gaseous oxidizer and fuel were continuously injected at the closed end of the detonation tube and three fixed flow rates were investigated. Under these conditions, the only parameters that could be varied were the fuel/oxidizer ratio and frequency of ignition. A maximum gross thrust of ~ 3.21b was measured in the hydrogen/air mixture at the frequency of ~ 30 detonations per The most promising results were second. demonstrated for the H2/air mixture, where a fuel specific impulse of  $I_{SP} = 2100$  sec was reached. The maximum frequency of detonations obtained in all experiments was 35 Hz. The temperature measurements on the inner wall showed that for the highest frequency of detonations the temperature did not exceed 800° F. This temperature is approximately the mean between the temperature of the injected gasses and the detonation wave temperature averaged over the cycle frequency.

In their later work, 13-15 the University of Michigan group concentrated on development of the Rotating Detonation Wave Rocket Motor. No further work on the pulsed detonation cycle was pursued.

The Work of L. J. Krzycki. In a setup very similar to Nicholl's, L. J. Krzycki¹⁶ performed an

experimental investigation of intermittent detonations with frequencies up to 60 cps. An attempt was also made to analyze the basic phenomena using unsteady gas dynamic theory. Krzycki's attempt to analyze the basic phenomena relied on wave diagrams to trace characteristics, assumptions of isentropic flow for detonation and expansion, and incompressible flow for mixture injection processes. The most convincing data from the experiments are the measurement of thrust for a range of initiation frequencies and fuel mixture flow rates. Unfortunately no direct pressure measurement in the device is reported, so there is only indirect evidence of the nature of the process observed.

The basic test stand used by Krzycki is very similar to that used by Nicholls and his co-workers. The length of the detonation tube and the internal diameter were exactly the same as those in Nicholl's experiments. Figure 3 presents a schematic of the experimental apparatus containing common, generic elements of the Hoffmann-Nicholls-Krzycki experiments. A propane/air mixture was continuously injected through a reversed-flow diffuser for better mixing, and was ignited at the same distance as in the Nicholls' experiments from the injection point by an automobile spark plug. The spark frequency was varied from 1 to 60 cps. The spark plug power output was varied inversely with the initiation frequency, and at the frequency of 60 cps was only 0.65 Joule. This value is too low for direct initiation of a detonation wave by the spark. and consequently all of the experiments must have been based on transition from deflagration to detonation. According to experimental data and theory,¹⁷ direct initiation of a mixture of propane/air at the detonability limits requires an energy release on the order of 10⁶ Joules. Thus, we conclude that the required deflagration-detonation transition region length in Kryzcki's experiments would have been prohibitively large for the propane/air mixture. It follows that in all of the experiments a substantial part of the process was deflagrative. This resulted in low efficiency and negligible thrust. Krzycki repeated Nicholls' experiments using basically the same rates of injection of the detonable mixtures. Krzycki's experimental results are very well documented. allowing us to deduce a clear picture the physical processes occurring in the tube. The author arrived at the conclusion that thrust was possible from such a device but practical applications did not appear promising. It is unfortunate that, possibly based on Krzycki's extensive but misleading results, all

experimental work related to the pulsed detonation engine concept stopped at this time.

Russian Work on Pulse Detonation Devices. A review of the Russian literature has not uncovered work concerning applications of pulsed detonation devices to propulsion. However, there are numerous reports of applications of such devices for other purposes such as for producing nitrogen oxide¹⁸ (an old Zeldovich idea to bind nitrogen directly from air to produce fertilizers) and as rock crushing devices.¹⁹

Korovin et al.¹⁸ provide a most interesting account of the operation of a commercial detonation reactor. The main objective of this study was to examine the efficiency of thermal oxidation of nitrogen in an intermittent detonative process as well as an assessment of such technological issues as the fatigue of the reactor parts exposed to the intermittent detonation waves over a prolonged time. The reactor consisted of a tube with an inner diameter of 16 mm and length 1.3 m joined by a conical diffuser to a second tube with an inner diameter of 70 mm and length 3 m. The entire detonation reactor was submerged in running water. The detonation mixture was introduced at the end wall of the small tube. CH4. 02 and N2 comprised the mixture composition and the mixture ratios were varied during the continuous operation of the reactor. The detonation wave velocity was measured directly by piezoelectric sensors placed in the small and large tubes. The detonation initiation frequency in the reactor was 2-16 Hz. It is reported that the apparatus operated without significant maintenance for 2000 hours.

Smirnov and Boichenko¹⁹ studied intermittent detonations of gasoline-air mixtures in a 3 m long and 22 mm inner diameter tube operating in the 6-8 Hz ignition frequency range. The main motivation for this work was to improve the efficiency of a commercial rock crushing apparatus based on intermittent detonations of the gasoline/air mixtures.²⁰ The authors investigated the dependence of the transitional region length from deflagration to detonation on the initial temperature of the mixture.

As a result of the information contained in the Russian reports, we conclude that reliable commercial devices based on intermittent detonations have been constructed and operated.

Pulsed Solid Explosion Studies at JPL. Work at the Jet Propulsion Laboratory (JPL) by Back. Varsi and others²¹⁻²⁴ concerned an experimental and

theoretical study of the feasibility of a rocket thruster based on intermittent detonations of solid explosive for propulsion in dense or high-pressure atmospheres of certain solar system planets. The JPL work was directed at very specific applications: however, these studies also addressed more general key issues concerning intermittent propulsion devices such as propulsion efficiency. In this work, a Deta sheet type C explosive was detonated inside a small detonation chamber attached to nozzles of various length and geometry. The nozzles, complete with firing plug, were mounted in a containment vessel that could be pressurized with mixtures of various inert gases from vacuum to 70 atm. The apparatus directly measured the thrust generated by single detonations of a small amount of solid explosive charge expanding into conical or straight nozzles. Thrust and specific impulse were measured by a pendulum balance system.

The results obtained from the JPL experimental study of an explosively driven rocket led to the following conclusions. First, rockets with long nozzles show increasing specific impulse with increasing ambient pressure in CO2 and N2. Short nozzles, on the other hand, show that specific impulse is independent of ambient pressure. Most importantly, most of the experiments obtained a relatively high specific impulse of 250 seconds and larger. This result is all the more striking since the detonation of a solid explosive yields a relatively low energy release of approximately 1000 cal/gm compared with 3000 cal/gm obtained in hydrogen oxygen combustion. Thus, it can be concluded that the total losses in a thruster based on unsteady expansion are not prohibitive and hence, in principle, very efficient intermittent detonation propulsion systems are possible.

# 4. Description of the PDE Concept

# **Basic Principles**

A detonation process, due to the very high chemical reaction rate in the detonation wave, leads to a propulsion concept in which the constant volume process can be fully realized. In detonative combustion, a strong shock wave, which is part of the detonation wave, acts like a valve between the detonation products and fresh charge; the detonation wave functions at the same time as a valveless compressor between the fresh fuel/air mixture and the detonation products. The speed of the detonation

wave is about two orders of magnitude higher than the speed of a typical deflagration wave. Because of this, very high power densities can be created in the detonation chamber. Each detonation can be initiated independently and, depending on the chamber geometry and external flow characteristics pertaining to a particular device, a wide range of frequencies is possible. There is no theoretical restriction on the range of operating frequencies: they are uncoupled from any acoustical chamber resonance. The independence of detonation cycle frequency is the feature that most differentiates the PDE concept from the pulseiet. It is also the feature that leads theoretically to scalability of PDE configurations for a wide range of flight applications. A key physical restriction on the range of allowable detonation frequencies arises from the rate at which the fresh fuel/air mixture can be introduced into the detonation chamber. Obviously the detonation products must be discharged from the chamber before fresh charge is injected.

## First PDE Experiments

To our knowledge, the first experiments that successfully demonstrated repetitive or pulsed detonation was attainable in a propulsion-like device were carried out by Helman, Shreeve and Eidelman²⁵ at the Naval Postgraduate School in 1985-86, During these studies, several fundamentally new ideas were developed for pulsed detonation applications to propulsion. First, to overcome the energy requirements for detonation initiation, a predetonation was initiated in a small detonation tube where an oxygen rich fuel mixture could be detonated at substantially lower energies than those required for full fuel/air mixtures. Next, the experimental PDE was operated in a self-aspirating mode; the detonation exhaust gases were discharged through gasdynamic expansion and fresh air was drawn into the detonation chamber due to chamber overexpansion following detonation product exhaust. Figure 4 is a schematic of one of the variations of the PDE experimental configurations. The pre-detonation initiation tube is shown attached to a spark plug. The most important results were obtained when the fuel injection (injection was accomplished with a toroidal ring containing holes near the exhaust plane of the device) rate was timed appropriately (the lag time between the fuel/air travel to the pre-detonation port and the arrival of the pre-detonation pulse) with detonation initiation. The principle of repetitive detonation initiation and control was definitively established in these experiments. Pressure transducer traces unambigiously showed that a detonation wave was

formed in the chamber and propagated with the Mach number appropriate for the fuel-air mixture. The fuel used in the NPS experiments was ethylene and the maximum detonation frequency obtained was 25 Hz, limited only by the mechanical nature of the solenoid valve used for fuel injection control. Figures 5 and 6 are two frames from a videotape of the early NPS experiments. Figure 5 shows the experimental apparatus and Figure 6 shows the apparatus during repetitive detonation. The figures also show the fuel injector ring between the two concentric detonation chamber cylinders. It was determined that the duration of a single cycle was less than 7 msec. This means that the NPS device could have potentially operated at frequencies up to 150 Hz in the static or no flow (M = 0) case. At the time of the NPS experiments, performance extrapolations included thrust levels up to 40 lbs at 100 Hz. As described later, SAIC simulations of static operation show higher thrust levels at these frequencies due to new ideas and improvements in the PDE concept. These new ideas are incorporated in the generic PDE concept.

# The Generic PDE Device

In this section, we refer to the generic PDE device, which is represented as a small engine in Figure 7. The figure shows a schematic of the basic detonation chamber attached to the aft end of a generic aerodynamic vehicle. A combustible gas mixture is injected at the closed end of the detonation chamber and a detonation wave is shown propagating through the mixture. Also shown are air injection inlets and an important part of the device that we have termed the thrust wall. The schematic suggests a smallpayload aerodynamic vehicle; however, as we describe later, the concept can be extended to larger payloads simply by scaling up the size of the detonation chamber and possibly combining a number of chambers into one larger engine.

The geometry of the main detonation chamber, which determines the propulsion efficiency and the duration of the cycle (frequency of detonations), is a key issue for the PDE concept. Since the fresh charge for the generic engine is supplied from the external flow field, the efficiency of the engine depends on the interaction of the surrounding flow with the internal flow dynamics. Following is a partial list of the broad range of physical processes requiring simulation in order to model the complex flow phenomena associated with the detonation engine performance: 1. Initiation and propagation of the detonation wave inside the chamber:

2. Expansion of the detonation products from the chamber into the air stream around the chamber at flight Mach numbers:

3. Fresh air intake from the surrounding air into the chamber;

4. The flow pattern inside the chamber during post-exhaust pressure buildup, which determines the strategy for mixing the next detonation charge;

5. Strong mutual interaction between the flow inside the chamber and the external flow surrounding the engine.

All of these processes are interdependent, and interaction and timing are crucial to engine efficiency. Thus, unlike simulations of steady state engines, the phenomena described above cannot be evaluated independently. It is a challenging computational problem to resolve the flow regime inside the chamber to account for nozzles, air inlets, etc., and at the same time resolve the flow outside and surrounding the engine, where the flow regime varies from high subsonic, locally transonic and supersonic.

The single most important issue is to determine the timing of the air intake for the fresh charge that leads to repetitive detonations. It is sufficient to assume inviscid flow for the purpose of simulating the expansion of the detonation products and fresh air intake. The assumption of inviscid flow makes the task of numerically simulating the PDE flow phenomena somewhat easier than if a fully viscous flow model were employed. The effects of viscous boundary layers are negligible for the size of the generic device studied in this work, with the exception of possible boundary layer effects on the valve and inlet geometries discussed subsequently.

SAIC has performed an extensive study of the generic PDE over a wide range of operating conditions for a wide range of device configurations.²⁶⁻³⁰ Numerical simulations of the unsteady flow and detonation processes, in addition to theoretical analysis, have resulted in an understanding and an approach to analyzing and evaluating PDE propulsion performance. Although the basic concept remains the same, there are subtle differences in the PDE manifestation for particular applications. These will be described subsequently. Details of the

numerical simulations (including assumptions used for detonation wave physics and chemistry, use of adaptive unstructured grids and Godunov methods for the Euler gasdynamic equations) are given elsewhere.²⁶⁻³¹ The following section is a summary of the results from numerical and theoretical studies of various applications and operating regimes for the generic PDE.

# 5. Operating Regimes

In this section we summarize the results of several applications and operating regimes identified in the course of our studies of the PDE concept.

#### M = 0 Static Operation

Under static conditions, M = 0, the PDE is completely self-aspirating. Such was the case for the early NPS PDE studies. Without an external airstream, the PDE must obtain fresh air charge as a result of the detonation chamber overexpansion immediately following exhaust of air-fuel detonation products. To the lowest approximation, the available time for chamber refill due to this overexpansion process is, for a given chamber geometry and fuel-air combination, directly proportional to its length. For M = 0 operation, we assume that the PDE configuration does not contain any air inlets other than the aft end of the device or, if inlets are present, they are closed. Simulations²⁶ of M = 0 PDE operation show that the time required for fresh air refill for a device with dimensions equivalent to the NPS experimental apparatus is on the order of 6-7 msec. This agrees with the NPS results and means that a maximum frequency of 150 Hz should be possible. Simulated thrust levels were higher than those estimated from scaling the NPS results. This is due to a new operating scenario that was uncovered by the simulations: detonation initiation from the aft end results in the kinetic energy of the shock wave being transferred to the thrust wall. The amount of extra thrust obtained from this mode of operation is considerably larger than that expected from gasdynamic expansion following detonation initiation at the thrust wall. The physical reason for this is found in the shock wave energetics.

The importance of M = 0 PDE performance is associated with applications of the concept for full scale aircraft propulsion, including rollout and takeoff. Simple scaling laws derived from the numerical simulation results and described later, show that M = 0 thrust levels can be large (tens of thousands of lbs.) depending on the engine cross sectional area, length and detonation frequency.

#### Subsonic-Transonic Operation

PDE operation in the subsonic-transonic regime differs from the static case in that the self aspiration effect decreases with increasing Mach number. This is due to the formation of a rear stagnation point behind the exhaust plane above certain Mach numbers for given geometries. The stagnation region prevents complete detonation product exhaust and subsequent fresh charge injection. For example, over the Mach number range,  $0^+ < M < 0.5$ , full to partial self aspiration occurs; the effect decreases rapidly for Mach numbers above 0.5, resulting in the need for some type of air inlet or air intake valve configuration. Simulations of various detonation chamber and air inlet geometries^{26,28} have shown that, depending on the free-stream Mach number, appropriate shaping of the air inlet geometry and total inlet area leads to propulsion engines that are attractive for certain applications. We present here a summary of studies²⁸ carried out in an attempt to find a satisfactory PDE configuration for a small missile engine (the final configuration was not optimum, by any means, since all variables were not parametrically varied).

A PENAID-type missile with associated mission requirements such as range, speed, system weight, total thrust, and specific fuel consumption was used for the study. The detonation chamber dimensions were 6 cm diameter and 9 cm length with a cylindrical cross-section. A schematic of PDE integration into such a missile configuration is shown in Figure 8. The simulations showed that, for practically all cases involving simple inlets (circumferential slits around the cylindrical cross-section), the thrust data were independent of whether the inlets open intermittently (valved) or remain open during operation. This is due partially to the very short time that detonation products have to escape from the inlets thereby adding to negative thrust; this negative thrust, determined in the simulations, is negligible compared to the total integrated thrust. The thrust data do indicate a strong dependence on external flow conditions, e.g., Mach number. The Mach number plays a role in the wave drag; the details of valve and inlet configuration geometry figure prominently in the total wave drag. These studies answered an important question: can an air inlet be configured such that the inlet remains open over the full flight regime and operating conditions? The answer is "yes." Thus, at least for this regime, the PDE offers the possibility of a nomoving-parts propulsion device. For the PENAID missile under discussion here, a configuration was found that operates between 0.2 < M < 0.9 with open air inlets.

The following performance data were obtained for the PENAID missile configuration. For M=0.8 at sea level altitude and a detonation frequency, f=100Hz, the PDE characteristics are:

Thrust	
Fuel flow rate	0.025 lb./sec.
Fuel weight for 12 min	
Oxygen weight	
Fuel for detonation tube	0.6 lb.
Total oxygen and fuel weight	
Total engine weight	
Specific fuel consumption	1.14 lb./(lb.*hr.)

Assuming the PDE device geometry is kept fixed, a higher detonation frequency will result in a linear increase in thrust and fuel flow rate at the same specific fuel consumption. For example, if the detonation frequency is increased to 200 Hz, the performance data are:

Thrust	157 lb.
Fuel flow rate	0.05 lb/sec.
Fuel weight for 12 min	
Oxygen weight	
Fuel for detonation tube	1.2 lb.
Total oxygen and fuel weight	
Total engine weight	54.4 lb.
Specific fuel consumption1	.14 lb./(lb.*hr.)

At lower Mach numbers, M=0.5, the maximum operating frequencies for constant thrust will be lower since the external dynamic pressure responsible for supplying fresh air to the chamber is also lower. For the device under consideration here, the maximum frequency is 250 Hz. For a frequency of 100 Hz:

Thrust	
Fuel flow rate	0.025 lb/sec.
Fuel weight for 12 min	
Oxygen weight	1.8 lb.
Fuel for detonation tube	0.6 lb.
Total oxygen and fuel weight	
Total engine weight	
Specific fuel consumption	0.9 lb./(lb.*hr.)

Again, if the frequency is increased the thrust will increase linearly; operation at 200 Hz yields:

Thrust	
Fuel flow rate	0.05 lb/sec.
Fuel weight for 12 min	
Oxygen weight	
Fuel for detonation tube	
Total oxygen and fuel weight	-0.8 lb.
Total engine weight	
Specific fuel consumption	

The examples of the PDE device performance given above are based on point design conditions arising from the simulations reported earlier.²⁶ They cannot be extrapolated with any degree of reliability to other conditions or configurations. We conclude. however, that the performance computed for the indicated device is encouraging from the point of view of thrust, thrust control, simplicity of the device (no moving parts), and specific fuel consumption (SFC). The specific fuel consumption computed above is competitive with present day small turbojet engines. The SFC for a PDE could be significantly lower than for small turbojets (SFC's for small turbojets are in the range of 1.8-2.0 lb./(lb.*hr)). Thus, for a given mission and vehicle, a PDE propulsion unit may be more fuel efficient, resulting in increased range. Moreover, if the expected thrust control in PDE's is realizable, it may be possible to produce propulsion units that can slow down, loiter and maneuver, and finally accelerate to full thrust again rapidly. Depending on the detonation frequency, which determines the thrust for all other conditions fixed, the thrust-to-weight ratio for the PDE can be as high as 20:1. This value is certainly competitive with other propulsion concepts.

The results of the scaling studies at subsonictransonic speeds lead to scaling laws that can be used to predict the performance of PDE's over some range of parameters, assuming that other parameters are held fixed. For example, holding the external Mach number and basic chamber and inlet geometry fixed suggests that the thrust at constant specific fuel consumption produced by the PDE scales as:

Thrust = 
$$T_1 * \left(\frac{v}{v_1}\right) * \left(\frac{f}{f_1}\right)$$
,

where  $T_1$ ,  $(v/v_1)$  and  $(f/f_1)$  are the thrust computed for a chamber of volume  $v_1$  operating at frequency  $f_1$ , the ratio of a new volume to  $v_1$  and the ratio of the new frequency to  $f_1$ , respectively. Thus, thrust should scale linearly with the parameter  $(v/v_1) * (f/f_1)$  over some range of this parameter. Departure from this linear variation may occur due to the following argument: First, since volume is proportional to the product of cross-sectional area and length,  $v \sim r^2 l$ , (r ~ detonation chamber radius, 1 ~ chamber length) physical limits will be placed on r and l; if r is too small (less than 1 cm), a detonation will not be sustainable and if I is too small (less than 10 cm), it may be difficult to mix fuel and air effectively. Using the thrust relation established above, we make the following observations. For a PDE device producing 100 pounds thrust at 100 Hz, doubling the frequency and increasing the volume by a factor of 5 yields a thrust level of 1000 pounds. Assuming that the aspect ratio of the chamber (chamber length to radius) is fixed, this would require an engine only 25.5 cm in diameter and 25.5 cm in length. Of course, the relation between thrust and  $(v/v_1) * (f/f_1)$ cannot be believed over too wide a range of parameters; but, it does serve to point out the flexibility permitted by the PDE concept.

The subsonic-transonic simulations showed that the timing of the fresh air refilling required to recharge the chamber for subsequent detonations is a strong function of the details of the valve and inlet geometry, the expansion of the combustion products, the resulting over-expansion of the chamber flow, and the external flow regime and interaction of the external flow with the internal flow. For subsonic flight, Mach 0.2-0.9, the fresh air entering the chamber comes from two separate principal flow processes; one comes from the flow through any valve or inlet and the other comes from the selfaspiration or reverse flow from the aft end of the chamber due to strong over-expansion. All these processes are interdependent and, in order to search for a given performance in a given device, require variation of many parameters. The simulation results obtained to date provide an understanding of the effects caused by variation of the above-mentioned parameters. With the information available, we conclude that a PDE propulsion unit can be optimized (although no optimization studies were carried out) for a given flight regime. The decrease in thrust with increasing Mach number has been described earlier to result from increased wave drag produced by the inlet geometry. Optimization of the inlet geometry could help to eliminate a large part of the wave drag. The simulation data can be used to determine the detonation frequency at a given Mach number yielding constant thrust. For example, for a constant thrust level of 90 pounds, the required detonation frequency varies from 84 Hz at M-0.0 to 140 Hz to M=0.8. In a similar fashion, we can obtain parametric variations of other important aspects of PDE performance, such as minimum time for refill at given Mach number as a function of air inlet opening. To find an optimum configuration that satisfies given performance over a wide flight regime requires a more extensive simulation study. It was mentioned earlier that the simulations presented here were carried out under the assumption of inviscid flow: boundary layer effects were not included. Boundary layers are only significant for the air inlets and valves.

There is an important feature of PDE operation for missiles such as the one considered here: if the expected thrust control is attainable, then the detonation frequency can be varied to produce constant thrust over a given flight envelope, or the frequency can be varied to make the missile slow down, loiter and maneuver, and finally ramp back to full thrust more or less instantaneously. Since each detonation is controlled separately, this capability should depend only on on-board electronics and power.

#### Supersonic-Hypersonic Operation

Numerical simulations have been carried out for PDE operation in the supersonic and hypersonic flight regimes.²⁹ The results of these simulations show that there are differences when compared with the lower speed regimes. The main difference, with respect to operating characteristics, is the air intake inlet must be more carefully considered. For supersonic and hypersonic flow air scoops may be required, adding to wave drag. For PDEs enclosed in a duct connected to upstream air inlets, pressure recovery from free-stream to duct inlet and finaly to PDE inlet must be accounted for. To date, several detailed studies have been carried out for the higher speed regimes; a supersonic, M = 2 PENAID missile engine simulation and a sizing analysis for a large engine operating in the supersonic to hypersonic flight regime.

Supersonic M = 2 PDE The M = 2 PENAID missile study has been reported earlier²⁹ and, representative simulation results are shown on the cover of this review paper. It was found that a fixed air inlet geometry could be conceptualized to operate over the Mach number range, 0.5 < M < 2. By this is meant the timing for fresh air charge allowed a detonation frequency of 200 Hz at M = 2 and this, in turn, means that any lower frequency is allowable at any other Mach number below M = 2. Detonation frequency control may result in enhanced control over missile flight trajectory since a constant thrust, a cruise-dash-loiter-cruise or any other tailored thrust profile can be realized. We conclude that supersonic PDE operation appears possible for missile applications, and there may also be advantages for longer range air-to-air missiles due to enhanced propulsion energy management capability.

Sizing Analysis for Large PDEs A zeroth order sizing analysis has been carried out to define and size a PDE configuration satisfying high thrust level requirements from sea level to 30,000 ft altitude and for a flight trajectory including the Mach number range, 0 < M < 4. The nominal target thrust level was 50,000 pounds and we assume that the aircraft/engine integration requires an air inlet duct to deliver fresh air to the PDE. We sketch here an outline of the analysis and give the main results.

We use the simple scaling argument given and use the thrust data obtained from simulations of the smaller missile configurations. We also assume a nominal detonation frequency, f = 100 Hz. We then establish the following baseline PDE performance operating point. At  $3x10^4$  ft. altitude for M = 2 the thrust in pounds per cubic meter detonation chamber volume is  $2.5x10^4$  lbs/m³. Therefore, an engine producing  $5x10^4$  pounds thrust requires a 2 m³ chamber volume. The sizing study answers the following questions : what is the size and shape of the detonation chamber, required detonation chamber air inlet areas, frequency variation range, and effect of air inlet duct losses on a PDE developing the nominal target thrust?

We denote free-stream conditions by ()0, PDE air inlet conditions by ()2, and PDE detonation chamber conditions by ()3. To account for air inlet duct losses we define the ratio of PDE inlet total pressure to free-stream total pressure by C or:

$$\frac{P_{t_2}}{P_{t_0}} = C.$$
 (1)

The simplest condition to assume for the PDE air inlet is choked flow. Although this is not valid over much of the required regime, certainly not for subsonic external flow, it will result in a pessimistic bound on the sizing parameters. Using well known gasdynamic analysis³² the static and total pressures and density at the PDE inlet can be found as:

$$P_{1_{1}} = CP_{0} \left( 1 + \frac{M_{0}^{2}}{5} \right)^{\frac{1}{2}}$$
(2)  
$$P_{2} = P_{0} C \left( \frac{5 + M_{0}^{2}}{6} \right)^{\frac{7}{2}}$$
(3)

$$\rho_2 = 1.2 \text{ C } \rho_0 \left(\frac{5 + M_0^2}{6}\right)^{\frac{7}{2}} \left(\frac{5 + M_0^2}{5}\right)^{-1} (4)$$

The mass flow rate through the engine inlet is:

$$m = \rho_2 U_2 A_2$$
, (5)

and, using equations 2-4, gives:

$$\dot{m}_{2} = A_{2} \left( 1.2 \gamma C^{2} \left( \frac{P_{0}^{2}}{RT_{0}} \right) \left( \frac{5 + M_{0}^{2}}{6} \right)^{7} \left( \frac{5 + M_{0}^{2}}{5} \right)^{-1} \right)^{\frac{1}{2}} (6)$$

An equation for the area ratio A2/A3 can be found as:

$$\frac{A_2}{A_3} = \frac{216}{125} M_3 \left( 1 + \frac{M_3^2}{5} \right)^5.$$
(7)

where  $M_2$  has been set equal to unity. Our analysis does not include the thermodynamics of the PDE cycle; the sizing analysis is based totally on a determination of the allowable detonation frequencies in the PDE chamber. We obtain a bound on allowable flow speeds in the detonation chamber by requiring the detonation chamber to refill in the time between detonations. We further require the fuel to mix and flow with the mean speed U₃ from inlet to chamber exit, a distance equal to L, the chamber length. Thus, we obtain the relation  $U_3 = f L$ , where f is the detonation frequency. A calculation of M₃ gives:

$$M_{3} = \frac{U_{3}}{U_{3}} = f L \sqrt{\frac{\rho_{3}}{\gamma P_{3}}}.$$
 (8)

Since the total pressure in the chamber equals the total pressure at the PDE inlet, the static pressure in the chamber as a function of chamber Mach number, given in Eq. (8), can be related to the free-stream static pressure as follows:

$$P_{3} = CP_{0} \left( 1 + \frac{M_{0}^{2}}{5} \right)^{\frac{7}{2}} \left( 1 + \left( \frac{A_{2}}{A_{3}} \right) C_{1} \frac{Lf}{\gamma} \frac{1}{5P_{3}} \right)^{\frac{7}{2}} (9)$$

where C1 is:

$$C_{1} = \left(1.2 \gamma C^{2} \left(\frac{P_{0}^{2}}{RT_{0}}\right) \left(\frac{5+M_{0}^{2}}{6}\right)^{7} \left(\frac{5+M_{0}^{2}}{5}\right)^{-1}\right)^{\frac{1}{2}}$$

Another relation between  $P_3$  and  $P_0$  as a function of  $M_3$  can be given as:

$$P_{3} = CP_{0} \left( 1 + \frac{M_{0}^{2}}{5} \right)^{\frac{1}{2}} \left( 1 + \frac{M_{3}^{2}}{5} \right)^{\frac{1}{2}}$$
(10)

Equations (7), (9) and (10) form a closed set for the variables P3, A2/A3 and M3 with parameters C, P0, M₀, L, f, T₀, g, and R, the universal gas constant. The volume, V, of the detonation chamber is given by the product,  $V = L A_3$ . Thus, for a given volume, Equations (7), (9), and (10) can be solved for  $A_2/A_3$ versus L or A3. Figure 9 gives a schematic of the PDE showing the air inlet gap width "l" resulting in an inlet area of A₂, the detonation chamber length L. and the chamber cross-sectional area A3. We choose first a square chamber cross-section; the total inlet area is therefore given by the expression  $A_2 = 41$  ( A3) $^{1/2}$ . Results obtained from solving Eqs. (7), (9) and (10) are presented in Figure 10 for the baseline conditions. There, the area ratio, A2/A3, is given versus A3. If A3 is chosen to be  $1.2 \text{ m}^2$  then the length of the PDE is 1.67 m and the engine inlet opening is 15 cm. Also shown in Figure 10 is the effect of C, the pressure recovery factor. The range of values chosen for C was: 0.7 < C < 1. The effect of C is negligible for the range studied here. More realistic estimates for duct losses resulting in much lower values of C at high Mach numbers may well have a more pronounced effect. If the cross-sectional area is held fixed, Eqs. (7), (9) and (10) yield the results shown in Figure 11. The curve cannot be extended below M = 1 since the assumption of choked flow at A2 is not valid; indeed, the assumption is not valid somewhere before M = 1 due to duct loss effects. The results from Figure 11 can be translated into inlet gap widths as shown in Figure 12. Figure 12 shows a range of inlet openings that, when compared with the total engine length, is equivalent to 8-12% of the total engine length. Below M = 1, a combination of self- aspiration and recharge from air inlets must be considered depending on Mach number. For self-aspiration at M = 0, the ratio of A2/A3 is unity; the inlets are not needed. For Mach numbers between zero and say, 0.5, partial air inlet opening is required and for Mach numbers greater than 0.5, the inlets will be fully open. For a fixed PDE configuration, varying the detonation frequency changes the thrust according to the scaling law given

earlier. Figure 13 shows the effect of frequency variation on  $A_2/A_3$ . Recall the design point was at f = 100 Hz. Figures 10-13 contain the answers to the questions asked during this sizing analysis; reasonable physical sizes for PDEs developing high thrust levels are predicted. A more rigorous analysis is required to validate these predictions.

To conclude this section, we show the variation of thrust as a function of chamber volume derived from the baseline conditions used above. Figure 14 gives this variation and, if a circular cross-section engine is considered, varying the baseline thrust yields engine sizes shown in Figure 15. For example, a 45,000 pound thrust engine 1.67 meters long has an engine diameter of 1.2 meters. This number is not unreasonable and compares well with sizes of current turbojet engines. As mentioned, a more detailed analysis of PDE performance is needed, including an effective "steady state" thermodynamic cycle model, to validate the PDE as a credible alternative for high thrust propulsion engines.

# 6. Summary and Conclusions

Past and recent studies have shown that pulsed propulsion devices theoretically offer significant advantages over steady state engines. The advantages range from the possibility of a no-moving-parts configuration to high thermodynamic efficiency constant volume cycles. Numerical simulations, theoretical analysis and scaling studies of PDE performance have shown applicability to many different flight vehicles including small missiles and full scale aircraft. Configurational flexibility offered by the PDE include non-circular cross-sectional detonation chambers allowing consideration of unique aircraft/engine integration possibilities. Thus, the numerical simulation and theoretical studies of PDE performance to date have shown interesting and important propulsion applications.

In order to realize the PDE potential, experimental data is required to validate the theoretical predictions and, most importantly, provide a proof of principle demonstration of the PDE mode of operation described in this paper, namely, detonation initiation from the exhaust end of the engine. The principle of sustained repetitive detonation has already been demonstrated in the NPS experiments, but, this took place at the inner thrust wall. The next step in the development of practical PDE devices requires a comprehensive experimental program where such key
issues as detonation initiation, air inlet design including boundary layers, fuel/air injection and mixing can be studied and understood. In addition, thrust measurements, both static and in an external flow are required to validate the numerical and theoretical predictions. Plans for such an experimental program are presently under consideration.

#### Acknowledgments

The work reviewed in this paper received partial support from the Defense Advanced Research Projects Agency under the following contracts: N66001-88-D-0088 (NOSC) and F49620-89-C-0087 (AFOSR). The authors would like to acknowledge Robert Pegg and Larry Hunt of NASA LaRC, John Leingang of the Wright Aeronautical Laboratory, and Major David Neyland of DARPA for their interest and for stimulating discussions concerning PDE applications. Over the course of these studies, SAIC colleagues Ed Rogan, Adam Drobot, Isaac Lottati and Ahron Freidman provided support and advice on many of the technical areas required to carry out this work.

<u>Note Added in Proof</u> The authors would like to thank Mr Robert Pegg of NASA's Langley Research Center for bringing their attention to early documents and reports describing pulsed detonation engine research.

#### References

- Scott, William B., "Renewed Interest in Pulsed Engines May be Linked to Black Aircraft," Aviation Week, 28 October 1991 (68-69).
- 2. Scott, William B., "New Evidence Bolsters Reports of Secret, High-speed Aircraft," Aviation Week, May 11, 1992 (62-63).
- Wolfe, M.O.W., Luck, G.A., "Pressure Measurements on the F.Z.G. 76 Flying Bomb Motor," Technical Note No. EA237/1, Royal Aircraft Establishment, Farmborough, 1944.
- 4. Tharratt, C.E., "The Propulsive Duct," Aircraft Engineering, November 1965, (327-337).
- 5. Tharratt, C.E., ibid, December 1965, (359-371).
- 6. Tharratt, C.E., ibid, February 1966, (23-25).
- Kentfield, J.A.C., "Valveless Pulsejets and Allied Devices for Low Thrust, Subsonic, Propulsion Applications," AGARD Conf -Proc. No. 307, Ramjets and Rockets for Military Applications, March (1982).
- 8. Zipkin, M.A. and Lewis G.W., "Analytical and Experimental Performance of an

Explosion-Cycle Combustion Chamber of a Jet Propulsion Engine," NACA TN-1702. September 1948.

- Shultz-Grunow, F., "Gas-Dynamic Investigation of the Pulse-Jet Tube," NCA TM-1131, February 1947.
- Hoffmann, N., "Reaction Propuls a by Intermittent Detonative Compution," Ministry of Supply, Volkenrode Translation, 1940.
- Nicholls, J.A., Wilkinson, H.R. and Morrison, R.B., "Intermittent Detonation as a Thrust-Producing Mechanism," Jet Propulsion, 27, 534-541, 1957.
- Dunlap, R., Brehm, R.L. and Nicholls, J.A., "A Preliminary Study of the Application of Steady State Detonative Combustion of a Reaction Engine," ARS J., 28, 451-456, 1958.
- Nicholls, J.A., Gullen, R.E. and Ragland K.W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor," Journal of Spacecrafts and Rockets, 3, 893-898, 1966.
- Adamson, T.C. and Olsson, G.R., "Performance Analysis of a Rotating Detonation Wave Rocket Engine," Astronautica Acta, 13, 405-415, 1967.
- 15. Shen, P.I. and Adamson, T.C., "Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors," Astronautica Acta, 17, 715-728, 1972.
- Krzycki, L.J., Performance Characteristics of an Intermittent Detonation Device, Navweps Report 7655, U.S. Naval Ordnance Test Station, China Lake, California 1962.
- Matsui, H. and Lee, J.H., "On the Measure of the Relative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures," Seventeenth Symposium (International) on Combustion, 1269-1280, 1978.
- Korovin, L.N., Losev, A., S.G. Ruban and Smekhov, G.D. "Combustion of Natural Gas in a Commercial Detonation Reactor," Fiz. Gor. Vzryva, Vol. 17, No. 3, p. 86, 1981.
- Smirnov, N.N. and Boichenko, A.P., "Transition from Deflagration to Detonation in Gasoline-Air Mixtures," Fiz. Gor. Vzryva, 22, No. 2, 65-67, 1986.
- Lobanov, D.P., Fonbershtein, E.G. and Ekomasov, S.P., "Detonation of Gasoline-Air Mixtures in Small Diameter Tubes," Fiz. Gor. Vzryva, 12, No. 3, 446, 1976.

- 21. Back, L.H., "Application of Blast Wave Theory to Explosive Propulsion," Acta Astronautica, 2, No. 5/6, 391-407, 1975.
- 22. Varsi, G., Back, L.H. and Kim, K., "Blast Wave in a Nozzle for Propulsion Applications," Acta Astronautica, 3, 141-156, 1976.
- Kim, K., Varsi, G. and Back, L.H., "Blast Wave Analysis for Detonation Propulsion," AIAA Journal, Vol. 10, October 1977.
- 24. Back, L.H., Dowler, W.L. and Varsi, G., "Detonation Propulsion Experiments and Theory," AIAA Journal Vol. 21, October 1983.
- Helman, D., Shreeve, R.P. and Eidelman, S., "Detonation Pulse Engine," AIAA-86-1683, 24th Joint Propulsion Conference, Huntsville, 1986.
- Eidelman, S., Grossmann, W. and Lottati, I., "Propulsion Applications of the Pulsed Detonation Engine Concept," SAIC Report Number 89/1684, December 31, 1989.
- Eidelman, S., Grossmann, W. and Lottati, I., "A Review of Propulsion Applications of the Pulsed Detonation Engine Concept," J. Propulsion and Power, Vol. 7, No. 6, November-December 1991 (857-865).
- Eidelman, S. and Grossmann, W., "Computational Analysis of Pulsed Detonation Engines and Applications," AIAA-90-0460, January 8-11, 1990/Reno, Nevada.
- Eidelman, S., Grossmann, W. and Loutati, I., "Air-Breathing Pulsed Detonation Engine Concept: A Numerical Study," AIAA-90-2420, July 16-18, 1990/Orlando, Florida.
- Eidelman, S., Lottati, I. and Grossmann, W., "A Parametric Study of the Air-Breathing Pulsed Detonation Engine," AIAA-92-0392, January 6-9, 1992/Reno, Nevada.
- Lottati, I., Eidelman, S. and Drobot, A., "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA-90-0649, January 8-11, 1990/Reno, Nevada.
- 32. Anderson, J. D., <u>Modern Compressible Flow</u>, McGraw-Hill, 2nd Edition, New York, 1982.



Figure 1. Valveless propulsive duct concept due to Tharjatt.



Figure 3. Schematic of the Hoffmann - Nicholls -Krzycki detonation tube experimental apparatus.



Figure 2. Supersonic, M = 3 conceptualization of the propulsive duct.



Figure 4. Schematic of the Helman, Shreeve, Eidelman PDE experimental configuration from the NPS studies.



Figure 5. The PDE experimental apparatus used in the NPS studies.



Figure 6. The PDE experiment during repeative detonation.



Figure 7. Schematic of the generic PDE.



Figure 10. Results for  $A_2/A_3$  as a function of  $A_3$ . The results are, for the chosen conditions, independent of pressure recovery.



Figure 8. Schematic of PDE/PENAID missile integration.





Figure 9. Schematic of PDE describing key sizing variables.

Figure 11. Results for  $A_2/A_3$  as a function of Mach number.

h = 10,000 m, A3=1.2, Prec = 1.0, f=100, Vot = 2 m^3



Figure 12. Results for inlet gap width, I, as a function of Mach number.



Figure 13. Results for A₂/A₃ as a function of detonation frequency.



Figure 15 PDE engine radius (cylindrical crosssection) versus engine length.



Figure 14. PDE thrust versus detonation chamber volume at a given frequency, f = 100 Hz.

# Synthesis of Nanoscale Materials Using Detonation of Solid Explosives

Shmuel Eidelman and Anatoly Altshuler Science Applications International Corporation 1710 Goodridge Drive Mail Stop 2-3-1 McLean, Virginia 22102

<u>First International Conference on</u> <u>Nanostructured Materials</u> Cancun, Mexico September 21-26, 1992

## Synthesis of Nanoscale Materials Using Detonation of Solid Explosives

Shmuel Eidelman and Anatoly Altshuler Science Applications International Corporation McLean, Virginia 22102

## Abstract

Direct synthesis of nanophase materials in detonations is considered. Article discusses a number of methods that can lead to formation of super saturated states of media that in turn will presipitate as nanoscale particles when the detonation products are quenched in the expansion process. Several examples are given of reactions that will lead to production of nanophase particles of metals, oxides, diamond and other unique materials. It is shown that conditions of nucleation and growth of nanoscale material can be analysed using advanced methods of computer simulation of detonation and blast wave phenomena. A sample of this kind of simulations is given. It is concluded that detonative synthesis of nanophase material can lead to low cost technology that will produce a range of unique materials.

## 1. Introduction

Recent enhanced interest in nanoscale materials is merited by the discovery of a set of unconventional material properties in the form of particles that are less than 10 nm in size. Anomalous chemical activity, lower critical temperatures of oxidation and sintering, sintering of composite materials with manifold increase in tensile strength, and sintering unique semiconducting and ferromagnetic materials, have all been demonstrated for nanoscale materials. This wide range of applications makes nanosize materials an extremely interesting and important material state that is the subject of intense study by many researchers.

The synthesis of nanoscale materials is accomplished through methods such as ion-sputtering and ion-deposition, laser ablation, evaporation and condensation in a vacuum, solgel, electroprecipitation, and plasma-jet techniques. Each of these techniques has produced 2-10 nm particles of various materials; however, the yield of such processes is extremely low and the cost of materials obtained is very high.

In this article we will consider detonative synthesis, a method of nanosize materials synthesis that offers an alternative to other more costly methods of production. Detonative synthesis is extremely advantageous because it allows very high pressure and temperature conditions to be created using low cost explosive materials and simple processing equipment. The synthesis occurs directly in the plasma created by the detonation wave. Conditions for detonative synthesis can be modified by changing the physical and chemical conditions of the detonation wave and expanding detonative products. For example, for nanoscale diamond powder synthesis, rapid expansion and cooling of the detonation products are required to prevent diamond graphitization. Thus, the explosive charge and atmosphere surrounding it should be designed to create these conditions.

In the following, we will review a range of conditions necessary for nanosize material synthesis that is provided by detonative synthesis methods, and examine their applicability for specific materials.

## 2. Detonation Waves as Generators of High Energy Density Plasmas

Detonations are reactive wave phenomena in which a reaction is initiated by the shock waves propagating at supersonic speeds through an explosive mixture. This wave consists of a shock wave discontinuity followed by a narrow zone of homogeneous chemical reaction. The shock wave compresses the explosive from its initial state with pressure P₀ and density  $\rho_0$  to the shocked state P_s,  $\rho_s$ , with subsequent reaction of explosive in the reaction zone that extends up to the Chapman-Jouguet (CJ) state.

## Condensed Explosive Detonations

Table I gives some typical parameters for detonation waves in solid explosives. We can see from this data that temperatures of about 3000°C at pressures of 30 GPa are typical for solid explosive detonations. These parameters create extremely oversaturated conditions for some detonation products. Subsequent ultra-fast quenching can lead to synthesis of nanophase material. Behind the detonation wave reaction zone, temperatures and pressures are high and detonation products will usually contain various active chemical components. It is challenging in this environment to preserve nanosize material from further reaction.

TABLE I								
Some Typical Conditions for Detonation of Solid Explosives (1)								

	Pressure GPa	Temperature °K	D velocity m/sec
TNT, $\rho = 1.6 \text{ g/cm}^3$	20.6	2940	6950
RDX, $\rho = 1.8 \text{ g/cm}^3$	34.7	2590	8750
HMX, $\rho = 1.9 \text{ g/cm}^3$	39.5	2364	9160
PbN ₃ $\rho$ =4.0 g/cm ³	23.1	2660	5000

#### Multi-Phase Detonations

Multi-phase detonations can cover a range of conditions between gaseous and condensed material detonations. Multi-phase detonable mixtures can be composed of solid or liquid fuel particles dispersed in gaseous oxidizer, solid particles of explosive material dispersed in gas, gaseous explosive mixture mixed with the inert or reactive liquid phase (2), or explosive slurries. All these possible methods of generating detonation waves greatly extend the range of conditions available for material synthesis. It should be noted that there is a difference in the character of condensed explosive detonation and gaseous detonations. With condensed explosives, high rate decomposition reactions usually take place. For gaseous detonations, reactions can be characterized as detonative combustion. Multi-phase detonations can be based on detonative combustion, high rate decomposition, and combinations of these processes.

## Nonstandard Regimes for Detonative Reaction

A classical self-sustained detonation wave has a fixed wave structure that moves through the explosive with constant velocity. In a self-sustained detonation, a balance is achieved between the compression work of the shock wave and energy released in the reaction zone. If a self-sustained detonation is possible in a given explosive mixture at given initial conditions, it will propagate with a constant speed.

However, for many important reactive mixtures it is either very difficult or impossible to obtain a selfsustained detonation wave.

Over the last forty years, many nonstandard detonation regimes have been discovered that significantly reduce the restrictive limitations of the classical self-sustained detonation. The following is an incomplete list of the detonation regimes that significantly deviate from the classical self-sustained detonation wave:

- a. Transient detonation (forms when a deflagration wave undergoes transition to detonation);
- b. Overdriven detonation (compression work of the leading shock is partially sustained by an external source of energy);
- c. Spinning detonation (formed by small number of detonative combustion fronts that propagate through the mixture by spinning);
- d. Multi-layer detonation (propagates in layers of explosives where the detonation wave in one layer can lead to lateral initiation of an overdriven detonation wave in the adjacent layer);
- e. SWACER (Shock Wave Amplification by Coherent Energy Release) detonation;
- f. Light supported detonation (detonation front is supported by a laser beam heating the area behind the shock front).

All these possible regimes for initiating and sustaining detonation waves allow substantial flexibility in adapting a detonative process for the purpose of material synthesis.

#### 3. Detonative Synthesis Chemistry for Nanophase Materials

The elementary composition of known explosives is quite limited. The most common class, CHNO explosives, produces only one condensed phase under normal thermodynamic conditions – ultra fine carbon (1):

$$C_{3}H_{6}N_{6}O_{6}(RDX) \xrightarrow{3}{} 3H_{2}O + 1.49CO_{2} + 0.022 \cdot CO + 3N_{2} + 1.49C_{(s)}$$

$$C_{7}H_{5}N_{3}O_{6}(TNT) \xrightarrow{2}{} 2.5H_{2}O + 1.66CO_{2} + 0.188 \cdot CO + 0.001 \cdot NH_{3} + 1.5N_{2} + 5.15C_{(s)}$$

$$C_{4}H_{8}N_{8}O_{8}(HMX) \xrightarrow{3}{} 4 \cdot H_{2}O + 2 \cdot CO_{2} + 0.008 \cdot CO + 4N_{2} + 2 \cdot C_{(s)}$$

These reactions have the following yield limits for solid phase carbon: 9% for RDX or HMX, and 29% for TNT.

More "exotic" BCHNO explosives can decompose, which produces solid BN or  $B_2O_3$ . For example, the powerful explosive  $B_{10}H_{100}C_{5.75}N_{15}O_{30}$ , decomposes with the 26% yield of BN by weight, while less hydrogenized  $B_{10}H_{18}C_{5.75}N_{15}O_{30}$  produces primarily  $B_2O_3$  with 34% yield.

From the point of view of chemical productivity, the most promising class of explosives is presented by acetylides and azides. For example, explosive decomposition of silver acetylide  $(Ag_2C_2 \rightarrow \%Ag + 2C + 87kcal/mol)$  generates a 90% silver yield. A more powerful explosive decomposition of  $Ag_2C_2 \cdot AgNO_3 \rightarrow 3Ag(vapor) + CO_2 + CO + 0.5N_2 + 185kcal/mol$ , gives 80% silver yield but much finer dispersity is expected. The decomposition of silver acetylides is interesting to compare with a silver azide explosion,  $2Ag(N_3) \rightarrow 2Ag(v) + 3N_2$ , with a respective yield of silver on

the order of 72% by weight. Over two dozen metals form explosive azides, while explosive acetylides are less common. Among the most interesting azides for nanosize powder production are explosive azides of cobalt, gold, strontium, and platinum. The main challenge in producing nanophase metals by explosive decomposition of azides or acetylides will be to assure rapid quenching of nanoscale phase components of the explosive products.

#### Loaded Explosive Synthesis

Explosive compositions are unknown for some chemical elements, as in the case of aluminum. The most obvious solution is to mix the explosive carrier with the powder or liquid form of the desired chemical. There is already a substantial history of adding aluminum powder to explosives in order to increase their performance. It has been established that at a grain size of several microns, aluminum does not have time to sublimate in the detonation wave reaction zone; thus, it will not affect the reaction rates. On the other hand, detonation energies and temperatures are high enough to evaporate a substantial amount of additive. In order to overcome the diffusion barrier, we are considering mixing a melted explosive carrier with a liquid aluminum compound like AlBr₃, which has a melting point of 97°C and comparatively low evaporation energy and temperature. Aluminum azide is also a possibility.

The same approach can be implemented in the loaded explosive synthesis of the nanoscale Hf. In this case, we can use detonation mixture of  $Hf(BH_4)_4$  and an explosive carrier. Similarly, Ir can be produced using an IrF₆ load: Pu using a PuF₆ load: Re using a ReF₆ load: U using an UF₆ load; W using a WCl₆ load: V using a VF₅ load; Ti by means of a TiCl₄ load, etc. The reduction of metals in all these cases is taking place both physically, as the result of shock-temperature dissociation of molecules, and chemically, by ionized hydrogen and, in some cases, lithium vapors.

For carbon synthesis, loading the explosives cited above with benzol ( $C_6H_6$ ), 1-hexadecen ( $C_{16}H_{32}$ ), hexacozan ( $C_{26}H_{54}$ ), dibenzyl ( $C_{14}H_{14}$ ) etc., can greatly increase the yield of carbon without substantially diminishing the energetic characteristics of detonation. For example, a mixture of benzol with HMX on mol to mol basis will decompose in the detonative reaction as follows:

$$C_6H_6 + C_4H_8N_8O_8 \rightarrow 7H_2O + 0.5CO_2 + 4N_2 + 9.5C_{(s)}$$

This reaction yields 30% by weight of solid carbon that has a potential to be preserved in nanoscale form.

All these examples illustrate that the loading of explosives for nanophase material synthesis expands the range of opportunities beyond the synthesis that results from the detonative decomposition of explosives.

#### Phase Composition of Synthesis Products

The crystalline structure of nanoscale powders obtained from detonation generally composited high-pressure modifications of the solids. This is the result of high temperature and his pressure conditions in the detonation wave reaction zone and subsequent ultra-fast quenching and coling of detonation products. In the case of carbon, diamond is formed. The phase diagram for carbon shown below easily illustrates this point. Area marked with number 1 on the phase diagram reflects parameters typical for detonation of HMX, while the area marked with 2 corresponds to detonation of TNT. It is quite obvious from Figure 1 that the detonation of TNT cannot produce diamond, while the detonation of HMX brings all condensed carbon into diamond form.

The same situation occurs with the synthesis of BN, when explosive decomposition of boron azide  $B(N_3)_3$  produces hexagonal modification of BN, while powerful BCHNO explosives can produce BN with cubic sfalerite structure. Other compounds that can be obtained include interesting compositions such as  $ZrO_2$ , HfC, and WC, sometimes in their metastable modifications. Much more diverse are crystalline modifications of nanoscale metals. In cases like Gadolinium (Gd) and Samarium (Sm), five different structure modifications could be obtained as a result of different experimental conditions.



Figure 1. Carbon phase diagram schematics.

## Nucleation and Growth of Nanophase Material Behind the Detonation Waves

We have discussed above the detonation wave structure in solids. We made important assumptions in our previous analysis regarding chemical equilibrium and physical stationarity of the processes on detonation front. The characteristic time of typical explosive decomposition reactions under detonation conditions in solid explosives lies in the range of  $10^{-11} + 10^{-12}$  sec. As we noted above, the characteristic time length of the reaction zone for detonations in solids is  $10^{-7} + 10^{-8}$  sec. This difference in time scales allows us to consider reactions behind the detonation front as equilibrium decompositions. Phenomenologic criteria of nucleation stationarity according to V. Shreidman (2) can be presented as follows:

$$\nu \leq \left(\frac{W}{T}\right)^{-1} \rho \sigma^2 / \eta^3 \qquad (1)$$

where v - characteristic frequency of external forces; W - activation energy of nucleation; T - temperature in energetic units;  $\rho$  and  $\eta$  - density and viscosity of gases;  $\sigma$  - surface tension coefficient for nuclei.

Following are Follmer theory (3) we present activation energy through thermodynamic parameters:

$$W = \frac{16\pi}{3} \frac{\sigma^{3} V^{2}}{(T \ln P / P_{e})^{2}}.$$
 (2)

Here, P - partial pressure in gaseous precipitous phase;  $P_e$  - equilibrium pressure of saturation for condensate at given T; V - atomic volume in condensed phase.

For the conditions typical for diamond condensation in the process of detonative synthesis, the barrier of nucleation at 100 kbar pressure and 3000°k temperature behind the detonation from, is  $W = 13 \cdot 10^{-12}$  erg. Criteria (1) in this case gives:  $v \le 10^{13} \div 10^{14} Hz$ . Considering the time span of the detonation wave reaction zone  $(10^{-7} \div 10^{-8} \text{ sec})$ , we can assume stationarity of diamond nucleation. Calculations made for metals and some inorganic compounds lead to the same conclusion.

In accordance with the stationary approximation, the nucleation rate can be presented as follows (3):

$$I = \frac{2\alpha P^2 V \sigma^{1/2}}{(2\pi m T)^{1/2} T^{3/2}} \exp\left(-\frac{W}{T}\right)$$
(3)

 $\alpha$  - condensation coefficient, m - atomic mass of condensate. For our reference case of diamond nucleation,

calculation using equation (3) gives:  $I \approx 10^{21} \frac{muclei}{\text{sec} \cdot cm^3}$ 

The diameter of critical nuclei can be estimated from activation barrier:  $D = \sqrt{\frac{3W}{\pi\sigma}}$ . For diamond it gives D ~ 5Å.

#### 4. Solid Explosive Charge Detonation in a Confined Volume

Experimentally developed conditions for diamond powder synthesis rely on the multi-layered detonation of several explosives and inert material. This system undergoes a complex detonation under conditions that are overdriven for the explosive producing diamond powder, and are standard for the driver detonation with some complex multi-dimensional expansion into the surrounding media. The details of the detonation process in this system have never been studied computationally, but experimental methods indicate that very specific conditions are required. It is known that the end result of this process is extremely sensitive to conditions of the multi-layered detonation. Currently, it is not clear what variables control particle sizes, or the maximum amount of free carbon released during the detonative combustion process that can be synthesized into diamond. Experimental work in this field is sketchy; numerical analysis of this complex process will enable us to understand the sensitivity to the basic parameter variations controlling diamond synthesis. Below are the results of numerical simulation of detonation and detonation products expansion for a composite TNT/RDX charge detonated in a 1 M³ chamber. This simulation will give the conditions of the detonative products at various stages of expansion that determines the environment prevalent in the detonative synthesis.

In Figure 2 schematics of the blast sphere cross section are shown with the solid explosive charge located at the sphere's center. The inner volume of the sphere is  $1 M^3$ . Solid explosive is a composite charge formed from a TNT main charge with the layer of RDX around it. Detonation of a high energy RDX layer leads to the formation of an overdriven detonation wave in the main charge. Because the problem is symmetric, it is sufficient to simulate one quarter of the sphere volume to describe the full range of blast interaction that will occur for this condition. To increase the simulation's accuracy, we have divided the numerical modeling in the near field and global blast simulations. For the near field, a square grid with DR = DX = 1 mm was used to describe a region 10 cm x 10 cm containing the solid explosive charge. The simulation results from the near field region are mapped on the larger computational domain, which includes the inner wall of the blast sphere. For higher resolution and computational efficiency, we have used structured/unstructured grids to describe the sphere's inner volume. The mathematical formulation and numerical method for the solution used in the near field are described in detail in Reference 2. These computational techniques are implemented in the MPHASE code. The model and numerical methods used for simulations in the computational domain shown in Figure 2 are described in Reference 5. These computational techniques are implemented in AUGUST code. Both MPHASE and AUGUST have been validated for the range of detonation and strong shock wave reflection and diffraction problems.(6)



Figure 2. Schematics of the blast sphere cross section with the solid explosive charge. The computational domain is covering the upper right quadrant.

In Figure 3, simulation results for the near field region are shown as pressure density and temperature contour plots for an instant of time when the detonation wave is at 2 mm distance from the right edge of the charge. t = 0 is the time of detonation wave initiation in a solid explosive. Pressure and temperature contour plots are shown using a linear scale. In Figure 3 we observe propagation of the complex detonation front through the composite charge and the initial stages of detonation product expansion. The outer layer of the RDX leads to the formation of an overdriven detonation wave in the TNT charge that has shorter reaction zone, higher wave speed, higher temperatures, and higher pressures as compared with a homogeneous TNT charge detonation. The maximum temperature is reached in the air strata located in the immediate vicinity of the charge. This temperature maximum is created by a strong shock wave produced by expanding detonation products in air. The following conditions are reached at the detonation wave front in the TNT charge: P = 62.6 GPa;  $T = 6000^{\circ}\text{C}$ ;  $\rho = 2900 \text{ kg/m}^3$ . It should be noted that because of high resolution of the numerical scheme we are simulating the Von Neumann spike of the detonation wave front, where the pressure is considerably higher than at the Chapman-Jouguet point.

When the shock wave reaches the edges of the computational domain for the near field simulation, the simulation results are mapped to the grid of the global domain shown in Figure 2 and are continued on larger grid. In Figure 4 pressure and temperature contour plots are shown for three consecutive instances of time for the global domain simulation. In Figure 4a results are shown at t = 0.05 µsec, shortly before the detonation products reached the walls of the sphere. Here we can observe significantly lower pressures as compared with Figure 3 values due to strong expansion; however, the propagating shock is leading to considerable heating of the surrounding air. In Figure 4b pressure and temperature contour plots are shown at some stage of the wave front reflection from the inner wall of the blast sphere. The average pressures and temperatures are significantly lower; however, several focus points are created during the reflection that have significantly higher pressure and temperature values. In Figure 4c, the shock wave complex is converging towards the blast sphere center, with significant amplification of the shock strength and temperature at the front. It is obvious that this system of shock waves will undergo a number of reflections. focusing, and expansions until quiescent conditions are reached in the blast sphere.

The simulations illustrated above will provide the global conditions in the blast chamber as a function of time. This information can be used for the nucleation simulations of the material behind the shock front, and estimates of possible phase transformation or reaction of the newly formed material. As a result of this multi-step approach, we can consider all the stages of the detonative synthesis process that are important for nanoscale material formation. This approach will allow us to minimize the number of experiments, understand the physics of detonative synthesis, and control the quality and yield of nanoscale materials produced experimentally.

## 5. Conclusions

Detonative synthesis of nanoscale material is a new technology and the nature of this process is widely unexplored. More studies should be done in addressing chemical and phase transformations under extreme and fast changing conditions in waves of detonation, shock and rarefraction. An unlimited array of elements and compounds, as well as their structural modifications (some highly metastable), is attainable through such processing.

Detonation synthesis combines the best features of traditional nanophase material technology - the most effective generation of hot plasma and vapors, and fast quenching of a condensing product. The most unique feature of the process is the extreme density of the generated plasmas, which makes them highly supersaturated in regard to pressure and temperature.

Detonative technology has promising industrial prospects, due to very low production cost and the unique materials it yields. As a reference we can use ultra-fine carbon. In this case common nanotechnology produces carbon black; detonative synthesis diamond. These factors are completely changing the traditional view of nanomaterials applications. (7)

## 6. Acknowledgment

The work reported here was partially supported by ONR under Contract #N00014-92-C-0168. The authors would like to thank Dr. L.T. Kabacoff for his interest in this project.

## 7. References

1. C.L. Mader, "Numerical Modeling of Detonations," University of California Press Ltd., London, England. (1979).

2. V. Shreidman, Zhurn Eksperim, Teor. Fiz., v 91, 8, p 520, (1986).

3. D. Fedoseev, Uspekhi Khimii, V 53, p 7 53, (1983).

4. S. Eidelman and X. Yang, "Detonation Wave Propagation in Variable Density Multi-Phase Layers," AIAA 92-0346, 30th Aerospace Sciences Meeting, Reno, NV, Jan. 6-10, 1992.

5. I. Lotatti, S. Eidelman, A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," AIAA 90-0699, 28th Aerospace Sciences Meeting, Reno, NV, Jan. 8-11, 1990a.

6. I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids." Proceedings of the 4th International Symposium on Computational Fluid Dynamics, Davis, CA, September 1991.

7. A. Altshuler and J.L. Sprague, "The Synthesis, Properties, and Applications of Diamond Ceramic Materials," 41st Electronic Components Technology Conference, Atlanta, Georgia, May 1991.









a. t = 0.05 msec







5.31

0.00



c. t = 0.3 msec



Temperature

1.00

a, Li a

Ξ

.....

1:33-18 콡

1.91-19 1.93-19

# Detonation Wave Propagation in Combustible Mixtures with Variable Particle Density Distributions

Science Applications International Corporation. McLean. Virginia 22102

## Abstract

A mathematical model is presented describing a physical system of detonation waves propagating in a solid particle/air mixture with a wide range of solid-phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waves propagating in mixtures with concentrations of solid phase from 0.75 kg/m³ to 1000 kg/m³. Numerical solution was obtained for detonation waves propagating in a system consisting of clouds with a small concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud. Three different particle concentration distributions in the ground layer were simulated and compared in terms of detonation wave structure and parameters.

## Introduction

When combustible particles are intentionally or unintentionally dispersed into the air, the resulting mixture can be detonable. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects.

Copyright © 1993 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

^{*}Research Scientist, Applied Physics Operation.

#### VARIABLE PARTICLE DENSITY DISTRIBUTIONS

The experimental and theoretical study of these phenomena until now has addressed only homogenous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion will always lead to inhomogeneous particle density distribution. Some industrial methods of explosive-forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. The phenomenology of detonation wave initiation and propagation in this environment is the main subject of this paper.

When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind its shock front starts to have a larger role in support of the shock wave motion. When the initial explosion energy exceeds some critical value. transition to steady-state detonation occurs.¹⁻⁴ In explosive dust mixtures with a nonuniform distribution of particle density, the initiation dynamics are significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density strata regions is not necessarily adequate for other regions. Also, when there is a significant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can result in an overdriven detonation in an adjacent layer. Our paper demonstrates that the phenomenology of these interactions is distinctly different from the classical studies of multilayer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multigas layer experiment⁵ varies by a factor of two or four, whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from 1000 kg/m³ in the ground layer to  $0.5 \text{ kg/m}^3$  or 0 for the upper edges of the cloud. The effects of variation of the cloud density on detonation wave parameters will be examined for different cases of cloud particle density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

The outline of this paper is as follows. Section 2 gives a description of a mathematical model that includes governing conservation equations for two phases and the constitutive laws. We describe the model for a particle-gas interaction, combustion, and equation-of-state for gas phase. The numerical integration technique for solving the mathematical model will also be outlined. In Section 3, we present our numerical simulation results. We first validate our model by comparing one-dimensional detonation wave simulation with available experimental results. We then give the two-dimensional simulation for detonation wave propagation in combustible particles/air mixtures with variable particles density distribution. Concluding remarks are given in Section 4.

# Mathematical Model and the Numerical Solution

The mathematical model consists of conservation governing equations and constitutive laws that provide closure relations for the model. The basic formulation adopted here follows the two-phase fluid dynamics model presented in the text by Kuo.⁶ The approach assumes that there are two distinct continua, one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. With these assumptions, distinct equations for continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are accounted for by the source terms on the right-hand side of the governing equation. The following is a short description of the two-phase flow model used in our study, with conservation equations written in Eulerian form for two-dimensional flow in Cartesian coordinates:

Continuity of gaseous phase

$$\frac{\partial \rho_1}{\partial t} + \frac{\partial (\rho_1 u_g)}{\partial x} + \frac{\partial (\rho_1 v_g)}{\partial y} = \Gamma$$
(1)

# VARIABLE PARTICLE DENSITY DISTRIBUTIONS 231

Continuity of solid-particle phase

$$\frac{\partial \rho_2}{\partial t} + \frac{\partial (\rho_2 u_p)}{\partial x} + \frac{\partial (\rho_2 v_p)}{\partial y} = -\Gamma$$
(2)

Conservation of momentum of gaseous phase in x direction

$$\frac{\partial(\rho_1 u_g)}{\partial t} + \frac{\partial(\rho_1 u_g^2 + \phi p_g)}{\partial x} + \frac{\partial(\rho_1 u_g v_g)}{\partial y} = -F_x + \Gamma u_p \quad (3)$$

Conservation of momentum of gaseous phase in y direction

$$\frac{\partial(\rho_1 v_g)}{\partial t} + \frac{\partial(\rho_1 u_g v_g)}{\partial x} + \frac{\partial(\rho_1 v_g^2 + \phi p_g)}{\partial y} = -F_y + \Gamma v_p \qquad (4)$$

Conservation of momentum of solid-particle phase in x direction

$$\frac{\partial(\rho_2 u_p)}{\partial t} + \frac{\partial(\rho_2 u_p^2)}{\partial x} + \frac{\partial(\rho_2 v_p u_p)}{\partial y} = F_x - \Gamma u_p \qquad (5)$$

Conservation of momentum of solid-particle phase in y direction

$$\frac{\partial(\rho_2 v_p)}{\partial t} + \frac{\partial(\rho_2 u_p v_p)}{\partial x} + \frac{\partial(\rho_2 v_p^2)}{\partial y} = F_y - \Gamma v_p \qquad (6)$$

Conservation of energy of gas phase

$$\frac{\partial(\rho_1 E_{gT})}{\partial t} + \frac{\partial(\rho_1 u_g E_{gT} + u_g \phi p_g)}{\partial x} + \frac{\partial(\rho_1 v_g E_{gT} + v_g \phi p_g)}{\partial y} = \Gamma\left(\frac{u_p^2 + v_p^2}{2} + Echem + C_s T_p\right) - \left(F_x u_p + F_y v_p\right) - \dot{Q} \quad (7)$$

ł

Conservation of energy of solid-particle phase

$$\frac{\partial(\rho_2 E_{pT})}{\partial t} + \frac{\partial(\rho_2 E_{pT} u_p)}{\partial x} + \frac{\partial}{\partial y}(\rho_2 E_p v_p) = \dot{Q} + (F_x v_p + F_y v_p)$$
$$-\Gamma\left(\frac{u_p^2 + v_p^2}{2} + Echem + C_s T_p\right) \tag{8}$$

Conservation of number density of solid-particle

$$\frac{\partial N_p}{\partial t} + \frac{\partial (N_p u_p)}{\partial x} + \frac{\partial (N_p v_p)}{\partial y} = 0$$
(9)

In the above equations, we have the following definitions and constitutive laws:

Phase densities

$$\rho_1 = \phi \rho_g, \quad \rho_2 = (1 - \phi) \rho_p \tag{10a}$$

and fractional porosity

$$\phi = 1 - \frac{N_p M_p}{\rho_p} = \frac{\text{Volume of void}}{\text{total volume}}$$
(10b)

where  $M_p$  is the mass of each particle and  $\rho_p$  is the solidparticle density.

Total internal energy of gaseous phase

$$E_{gT} = E_g + \frac{1}{2}(u_g^2 + v_g^2)$$
 and  $E_g = E_g(p_g, \rho_g)$  (11)

where  $E_g(p_g, \rho_g)$  is the equation-of-state for gas phase, which will be discussed later.

Total internal energy of solid-particle phase

$$E_{pT} = E_p + \frac{1}{2}(v_p^2 + v_p^2)$$
 and  $E_p = Echem + C_s T_p$  (12)

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which include mass generation rate,  $\Gamma$ , drag force between particles and gas,  $F_x$ ,  $F_y$ , and the interphase heat transfer rate  $\dot{Q}$ . The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations is explained in detail in the next subsection.

## Model for a Particle Gas Interaction and Combustion

Presently, the physics of the energy release mechanisms in solid-particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct nonobtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions,⁷ it was demonstrated that the volatile components released by the particle heated behind the shock front play a major role in determining the detonability limits of the mixture. Eidelman and Burcat⁸ successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multiphase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman⁹ defined five different disintegration regimes for a relatively simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multiphase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example, Eidelman and Burcat¹⁰ used simple models for particle evaporation and shattering to obtain simulation results that compared very favorably with experimental data. Because of

our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper, we consider solid particles consisting of explosive material. Explosive material contains fuel and oxidizer in a passive state at low temperature; however, when the temperature rises the fuel and oxidizer react, leading to detonation or combustion. The initiation of reaction for explosives occurs at relatively low temperature. For example, TNT will detonate when heated to the temperature¹¹ of 570°C. Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. Here, consider particles smaller than 4 mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particle heating needs to be resolved in detail. Our simulations numerically solve the temperature field in the particles at every step of numerical integration of the global conservation equations. The explosive particle combustion model examined in this paper assumes that the fraction of the particle that reaches the critical temperature will burn instantaneously.

Energy transfer by convection and conduction is simulated by solving the unsteady heat conduction equation in each computational cell at each time step. Assuming a particle's temperature to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:

$$\frac{d^2w}{dr^2} = \frac{1}{\alpha}\frac{dw}{dt} \tag{13}$$

subject to the boundary conditions:

$$w=0 \quad \text{at} \quad r=0, \quad t>0$$

$$k\frac{dw}{dr} + (h - \frac{1}{R}) w = hRT_g \quad \text{at} \quad r = R, t > 0 \qquad (14)$$

_234

where

w(r,t) = rT(r,t) r = radial position T(r,t) = temperature R = particle radius  $T_g = temperature of surrounding gas$  k = thermal conductivity of particleh = convective heat transfer coefficient

The Nusselt number, used to find h, is given by an empirical relation given by Drake.¹² The gas viscosity is derived from Sutherland's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Finally, the boiling temperature at a given pressure is derived from the Clapeyron-Clausius equation under the following assumptions: 1) phrasing-constant latent enthalpy of phase-change; 2) the vapor obeys the ideal equation-of-state; and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point, regardless of pressure.

Equation 13 with boundary condition 14 can be numerically integrated using either implicit or explicit schemes.

Since the particle radius R becomes very small due to evaporation, the implicit Crank-Nicolson algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme to predict the particle temperature profiles at times  $t_1$  and  $t_2$  permits easy calculation of the total energy exchange  $\dot{Q}$  between  $t_1$  and  $t_2$ , due to convection and conduction.

Knowledge of the particle temperature profile also allows the precise determination of the quantity of the mass to transfer from the particle to the gas  $\Gamma$ . Once any point at a radial location  $0 \le r \le R$  has a temperature exceeding the boiling temperature, the entire mass between r and R is transferred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle intrinsic energy is transferred by the particle to the gas.

The interphase drag force Fx, Fy is determined from the experimental drag for a sphere, as presented by Schlichting.¹³

$$F_{z} = \left(\frac{\pi}{8}\right) N_{p} \rho_{g} C_{D} |\mathbf{V}_{g} - \mathbf{V}_{p}| (u_{g} - u_{p}) R^{2}$$
(15)

where

$$C_D = \begin{cases} \frac{24}{Re} \left( 1 + \frac{Re^{2/3}}{6} \right) & \text{for Re} < 1000; \\ 0.44 & \text{for Re} > 1000 \end{cases}$$
(16)

and  $Re = \frac{2R|V-V_p|}{\mu_g}$ , R is radius of particle, and  $\mu_g$  is gas viscosity at temperature of  $T_{film} = \frac{1}{2}(T_g + T_p)$ . Similarly, the formulae for Fy is

$$Fy = \frac{\pi}{8} N_p \rho_g C_D |V_g - V_p| (v_g - v_p) R^2$$
(17)

## Equation-of-State for Detonation Products

To close the system of governing equations, one needs a constitutive relation between pressure, temperature, and energy for gas phase, which is an equation-of-state. This study uses the Becker-Kistiakowsky-Wilson (BKW) equation-of-state,^{14,15} that is,

$$p_g V_g / \bar{R} T_g = 1 + x e^{bx} \tag{18}$$

where

 $V_g$  = volume of gas phase  $p_g$  = pressure of gas phase  $T_g$  = temperature of gas phase  $\bar{R}$  = universal gas constant  $x = k/V_g(T + \Theta)^a$  $k = K\Sigma_j X_i k_i$ 

with empirical constants  $a, b, K, \Theta$ , and  $k_i$ . The constants  $k_i$ , one for each molecular species, are covolumes. The covolumes are multiplied by their mole fraction of species  $X_i$  and are added to find an effective volume for a mixture. For a particular explosive, if we know the composition of detonation products,  $a, b, \Theta, K$ , and all  $k_i$ s can be found in Ref. 15.

The internal energy is determined by thermodynamics relation

$$\left(\frac{\partial E_{g}}{\partial V_{g}}\right)_{T} = T_{g} \left(\frac{\partial p_{g}}{\partial T_{g}}\right)_{V} - p_{g}$$
(19)

Integration of this equation for a fixed composition of the detonation products will allow us to calculate the energy of the detonation products as a function of temperature and volume. For each component, its thermodynamic properties as functions of temperature were calculated from the NASA tables compiled by Gordon and McBride.¹⁶

The BKW equation-of-state is the most commonly used and well-calibrated of those equations-of-state used to calculate the properties of detonation products. The detailed discussion and review of the BKW equation-of-state can be found in Ref. 15.

# Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. The Second Order Godunov method is used for the integration of the subsystem of equations describing flow of gaseous phase material and is described in Ref. 17. In the following, we will elaborate only on some specifics of its application to simulations of detonation products. The subsystem of equations describing the flow of particles is integrated using a simple upwind integration. This is done because our mathematical model neglects the pressure of interparticle interaction, and that prevents formulation of a Second Order Godunov scheme for particles.

The physical system under study will have concentrations of solid explosive powder ranging from  $1000 \text{ kg/m}^3$  near the

ground to  $0.75 \text{ kg/m}^3$  or less in the cloud. Detonation of this mixture will create detonation products with effective  $\gamma$  ranging from 3 to 1.1. To describe the flow of detonation products. we use the BKW equation-of-state described above. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficult. In our simulations, we have resolved this problem by using direct and inverse equations-of-state. After integrating a system of gas conservation laws. we use the direct BKW equation-of-state to calculate pressure, gamma, and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes in the Second Order Godunov method as well as interaction of the multiphase processes. The "inverse" EOS calculates internal energy as a function of density, pressure, and mixture composition. In our code, we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux of primitive variables.

For the multiphase system under study, dx=dy=1mm was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times, the time step was adjusted by some fraction to assure stability. However, this did not result in a significantly smaller time step than the one calculated using CFL criteria. For larger cell sizes, this approach will be impractical. Recently, we implemented a scheme in which multiphase processes are calculated implicitly; however, this will be reported elsewhere.

The numerical method is implemented in a code named MPHASE, which is fully vectorized and supported by number of graphics and diagnostics codes.

### Results

# Model Validation for One-Dimensional Detonation Wave Problem

The main advantage of our particle combustion model is its description of the phenomenology of detonation for a wide

#### VARIABLE PARTICLE DENSITY DISTRIBUTIONS

Table 1 One-dimensional validation result

Diminut - Delension wave volutity.

PortiPal - Promos at Champer-institut i'

P. [Pa] - Peak pressure: pp[kg/m2] - Peak deemty

RDX dentity (ig/m ¹ )	Parameters	Presses calculation	Expt's Ref. 8	Tiger colociation - Ref. 3	BKW calculation Ref. 1	Soviet experiments Rol. 3
1000 kg/m ²	D Pcj Pp Pi	4155 1.228 x 16 ¹⁸ 2.57 x 16 ¹⁸ 1936	5861		4128 1.86 x 18 ¹⁸	1.00 X 10 ¹⁸
998 kg/m ³	D Pcj P,	6652 0.965 x: 19 ¹⁰ 2.86 x: 19 ¹⁸ 1722		1000 9.80 × 10 ¹⁰		0.82 × 10 ¹⁸
+66 kg/m ³	D Pcj P,	4866 6 370 % 10 ¹⁰ 8.425 % 10 ¹⁰ 924		4648 6.36 × 18 ¹⁸	0.3 × 10 ¹⁰	
25# kg/m²	D Pcj Pp Pp	4640 6.2476 × 10 ¹⁸ 6.4638 × 19 ¹⁸ 552		3669 0.13 × 10 ¹⁸		
100 kg/m²	D Fcj F,	3496 0.5072 × 10 ⁸ 0.7650 × 10 ⁹ 720				
6.75 kg/m ²	0 Fes Fs fs	1622 0.26 xt 10 ⁷ 0.486 xt 10 ⁷ 0	1410" 0.200 x 10 ⁷ *	1070" 0 26 X 10 ⁷ "		

Raf. 1. Muster, C., <u>Human et Mulching at Deisennen</u>, (Universary et California Press, Lot., 1970) p. et. Rol. 3. Wiesenware, A., "An Evaluation of Humatei Layer Lucking Effects," <u>HTRE Report</u>, Feb. 1990, Rol. 3 - Stambarvich, K. P., "Physics of Kurkinsis," for Humanik, Nucle, 1975.

range of explosive particle sizes and densities. We will demonstrate this capability on a set of one-dimensional test problems. For these test problems, we simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformly through the shock tube volume.

Results of these simulations are summarized in Table 1, which shows detonation wave velocity, peak pressure, and peak density given as a function of the average density of the solid explosive. Here, the explosive two-phase mixture is composed from RDX particle and air, where RDX particle concentration varies from  $0.75 \text{ kg/m}^3$  to  $1000 \text{ kg/m}^3$ . This concentration variation covers a whole range of solid explosive concentrations of interest to our problem. The simulations performed with the MPHASE code were compared with the experimental results^{15,18} and calculations done with the TIGER code that are presented in Ref. 19.

From Table 1, it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than 15% for the entire range of explosives densities. Considering that our results were obtained with a single model for particle combustion applied to the extreme range of densities, our model gives an excellent prediction of the detonation wave parameters.

## **Two-Dimensional Simulation Results**

Figure 1 shows a setup for a typical simulation with a computational domain of 25 cm  $\times$  25 cm. The explosive powder density is distributed according to the 4th power law of vertical distance, starting from the ground where the density is 1000 kg/m³, to 1.2 cm, where the density is 0.75 kg/m³. From this point to 25 cm height, the density is constant and equal to 0.75 kg/m³. The density distribution in the direction of the "x" axis is uniform. The boundary conditions for the computational domain shown in Fig. 1 are specified as follows: solid wall along the "x" axis, symmetry conditions along the "y" axis, supersonic outflow for upper boundary, and at the



Fig. 1 Computational domain and boundary conditions.

#### VARIABLE PARTICLE DENSITY DISTRIBUTIONS

right of the computational domain. The mixture consists of RDX powder and air at ambient conditions, and it is assumed to be quiescent at the time of initiation.

The simulation starts at t=0 when the mixture is initiated at the lower left corner of the computational domain, as shown in Fig. 1. The energy released by the initiating explosion leads to formation of the detonation wave propagating through the multiphase media. Figure 2a shows pressure contours for the propagating detonation wave at the time of t=0.012 msec after initiation. The pressure contour levels are shown on the logarithmic scale in MPa. The maximum pressure value of 7940 MPa is observed in the layer of condensed explosive located near the ground. The pressure in the layer is two to three orders of magnitude higher than pressure behind the detonation wave in the 0.75 kg/m³ RDX cloud and air located above the distance of 1.2 cm from the ground. Figure 2a demonstrates that the detonation wave in the cloud is overdriven, since the pressure behind the shock continuously rises and reaches its maximum in the layer. From this figure, we also observe that the overdriven wave propagates faster in the cloud than in the layer. This is explained by the fact that it is easier to compress air that is very lightly loaded with particles and located above the ground layer than it is to compress air heavily loaded with a particle mixture near the ground. It is interesting to note a discontinuous pressure change between the yellow contours and the light blue and green contours behind the detonation front. This discontinuity is overemphasized by our presentation of contour lines on the logarithmic scale; however, further examination of our simulation results indicates this feature is real and is similar in nature to barrel shocks observed for strong jets.

In Fig. 2b, gas-phase density contours are shown for the time t=0.012 msec. Here the contour lines are distributed on the logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. We see that a jet of high-density gases reflects from the center of symmetry axis, which will create a contact discontinuity that we will observe at later times. The barrel

shock is clearly visible in this figure. In Fig. 2c, the particle density contour plots are shown for t=0.012 msec. The contour levels in Fig. 2c are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be clearly observed. The white contour line delineates the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an area with combustion products and to the right are unburned particles in the cloud. The reaction zone length is of the order of 1 cm.

Figure 2d shows pressure contours for the same simulation for the time t=0.055 msec, just before the detonation wave leaves the computational domain. In this figure, we see that the global structure of the wave did change slightly from Fig. 2a. We observe that the barrel shock wave is fully developed and has a half-ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates vertically weakened because it gets further away from the detonation front in the layer. Another noticeable feature is the increase in distance between the detonation front in the laver and in the cloud area close to the laver. This is a result of the fact that the lightly loaded two-phase media above the layer can be compressed much more easily than the particle-heavy ground layer. In Fig. 2e, temperature contours are shown for t=0.055 msec. Comparing this figure with an early stage of the wave propagation, we observe a significant cooling of the front area propagating upwards, which indicates transition from the overdriven detonation regime to a self-sustained detonation. We also observe in Fig. 2a clear development of two detonation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive powder in the laver is about three orders of magnitude larger than in the cloud, the vertical parts of the front represent an overdriven detonation wave in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the self-sustained detonation regime in the cloud will



Fig. 2. Fourth power layer distribution; maximum density in the layer 800 kg/m³; density in the cloud 0.75 kg/m³; time 0.012 m/s and 0.055 m/s after initiation.



Fig. 2 (continued) Fourth power layer distribution: maximum density in the layer 800 kg/m³; density in the cloud 0.75 kg/m³; time 0.012 m/s and 0.055 m/s after initiation.

#### VARIABLE PARTICLE DENSITY DISTRIBUTIONS

develop at the distance of about 3 m from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very close to the detonation front in the laver. In Fig. 2f. particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about 1 cm. Consistent with the gradual transition from overdriven to self-sustained detonation, the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately 4048 msec. which is significantly lower than the detonation wave velocity observed in RDX with a density of 860 kg/m³ (see Table 1), the highest density in the ground layer. This can be explained by high gradient of particle density distribution in the layer, where the density drops rapidly from 860 kg/m³ at the bottom of the layer to  $1 \text{ kg/m}^3$  at the top strata of the layer at 12 mm above the ground.

To further explore properties and phenomenology of the detonation waves propagating in the layer/cloud systems, we simulated additional cases in which explosive powder density distribution was different from the case reported above, although total weight of fuel per unit area remained the same.

In Fig. 3, results are shown for the case of a uniform 2.5 cm-thick layer of RDX with a density of 100 kg/m³ and a 0.75 kg/m³ cloud initiated under the same conditions as in the previous example. Figures 3a, 3b, and 3c show pressure, gas density, and particle density contour plots at t=0.066 msec. We observe that because the layer has considerably smaller density compared to the case reported above, the precursor effect of the detonation wave in the cloud preceding the wave in the layer is less pronounced. Also, one can observe a significant difference in the shape of the strong contact discontinuity in the region of the shock front close to the layer. In Fig. 3b, we can clearly distinguish two contact surfaces. One is between condensed explosive detonation products in the layer and in the cloud, and another is between the detonation products from



Fig. 3 Constant density 2.5-cm-thick layer; maximum density in the layer 100 kg/m³; density in the cloud 0.75 kg/m³; time 0.055 m/s after initiation.
VARIABLE PARTICLE DENSITY DISTRIBUTIONS



Fig. 4 Constant density 1.2-cm-thick layer; maximum density in the layer 250 kg/m³; density in the cloud 0.75 kg/m³.

247

## S. EIDELMAN AND X. YANG

layer explosive detonation and from cloud particle detonation. We should note that these contact surfaces are overemphasized by the logarithmic display of the contour plot levels. The maximum pressure observed in this simulation is 955 MPa, which is about one order of magnitude smaller than in previous simulation. This is consistent with the one order of magnitude difference in the maximum density of the ground layer in the two cases. The detonation wave speed in the case presented in Fig. 3 is 3407 msec. That is only slightly lower than the speed predicted by one-dimensional simulations presented in Table 1, which reflects the influence of the two-dimensional expansion on the detonation wave propagation.

Figure 4 presents results for the case of a uniform density of 250 kg/m³ in 1.2 cm ground layer. All other parameters are the same as in the previous two cases. In Figs. 4a, 4b, and 4c, pressure, gas density, and particle density contour plots are shown at the time t=0.066 msec after initiation of the detonation wave. Here, the detonation wave propagates faster than in the previous cases U=3660 msec. This is about 400 msec slower than in the case of parabolic density distribution. Maximum pressure on the ground is 2150 MPa, which is consistent with the increase of powder density in the layer. The basic structure of the detonation front and the contact surfaces is similar to the case of parabolic density distribution.

# Conclusions

We have presented a mathematical model and numerical solution for the simulation of initiation and propagation of the detonation waves in multiphase mixtures consisting of solid combustible particles and gas. Using this model, we studied detonations in mixtures of solid RDX particles and air, with the objective of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of solid particle clouds in air, in which a significant amount of particles settle on the ground and the condensed-phase concentrations in the particle/air mixture range from 0 to 1000 kg/m³. This range of solid-phase densities necessitated development of the

model and its numerical implementation for a wide range of particle concentrations. Our validation study has shown good agreement between the simulations and referenced results for the whole range of particle concentrations.

Two-dimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution within 12 mm above ground with a maximum density on the ground of 860 kg/m³; a uniform 25 mmthick layer with a density of 100 kg/m³; and a 12 mm-thick uniform layer with a density of 250 kg/m³. In all these cases, the weight of condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.

In all examined two-dimensional cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of 2-3 m above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as pressure on the ground.

In all three two-dimensional simulations, we observed a very distinct shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation front can be explained by the fact that the energy released in the detonation wave in the ground layer produces a faster shock wave in the dilute cloud than in those heavily loaded with solid particle stratas from the ground layer. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

The maximum pressure affecting the ground was directly related to the maximum particle density in the lower strata of the layer. However, the detonation front velocity for the fourth

249

## S. EIDELMAN AND X. YANG

power distribution case was considerably lower than calculated for a one-dimensional case with 860 kg/m³ particle density, reflecting the significant effect of two-dimensional expansion. Two other cases with 250 kg/m³ and 100 kg/m³ maximum densities had the detonation wave velocity only slightly lower than the one-dimensional simulations of the same RDX/air concentrations. It is interesting to compare the simulation of the fourth power density distribution case and 250 kg/m³ case. In both cases, the same amount of explosive was distributed in the same physical space; however, the parameters of developed detonations were vastly different. Existence of the highdensity strata at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground and produced higher detonation wave velocity.

Using a variable density layer, one can reach a combination of pressure and velocity conditions outside of Chapmen-Jougett limitations. The range of conditions that can be obtained in the variable density system and the parametrics for this range need a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of interest. In addition, we have given some examples of its application for two-dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

# References

¹Eidelman, S., Timnat, Y. M., and Burcat, A., "The Problem of a Strong Point Explosion in a Combustible Medium," 6th Symposium on Detonation, Office of Naval Research, Coronado, CA, 1976, p. 590.

²Burcat, A., Eidelman, S., and Manheimer-Timnat, Y., "The Evolution of a Shock Wave Generated by a Point Explosion in a Combustible Medium," Symposium of High Dynamic Pressures (H.D.P.), Paris, 1978, p. 347.

³Oved, Y., Eidelman, S., and Burcat, A., "The Propagation of Blasts from Solid Explosives to Two-Phase Medium," *Propellants and Explosives*, Vol. 3, No. 105, 1978.

⁴Eidelman, S., and Burcat, A., "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets; Part I, Influence of the Igniting Explosion," AIAA Journal, Vol. 18, 1980, p. 1103.

⁵Liu, J. C., Kauffman. C. W., and Sichel. M., "The Lateral Interaction of Detonating and Detonable Mixtures," Private communication. 1990.

⁶Kuo. K., Principles of Combustion, John Wiley and Sons. Inc., New York, NY, 1990, pp. 513-626.

⁷Kauffman, C. W., et al., "Shock Wave Initiated Combustion of Grain Dust," Symposium on Grain Dust, Manhattan, KS, 1979.

⁸Eidelman. S., and Burcat, A., "Numerical Solution of a Non-Steady Blast Wave Propagation in Two-Phase ('Separated Flow') Reactive Medium," Journal of Computational Physics, Vol. 39, 1981, p. 456.

⁹Reinecke. W. G., and Waldman, G. D., "Shock Layer Shattering of Cloud Drops in Reentry Flight," AIAA Paper 75-152, 1975.

¹⁰Eidelman. S., and Burcat. A.. "The Mechanism of Detonation Wave Enhancement in a Two-Phase Combustible Medium." 18th Symposium on Combustion, The Combustion Institute, Waterloo, Ontario. Canada, 1980, pp. 1661-1670.

¹¹Engineering Design Handbook, Explosives Series, Properties of Explosives of Military Interest, AMC Pamphlet. AMCP 706-7177, 1971.

¹²Drake, R. M., Jr., "Discussions on G. C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transfer, Vol. 83, 1961, p. 170.

¹³Schlichting, H., Boundary Layer Theory 7th ed., McGraw-Hill, New York, 1983.

¹⁴Cowan, R. D., and Fickett, W., "Calculation of the Detonation Products of Solid Explosives with the Kistiakowsky-Wilson Equation of State," Journal of Chemical Physics, Vol. 24, 1956, p. 932.

¹⁵Mader, C. L., Numerical Modeling of Detonation, University of California Press, Ltd. London, England, 1979.

¹⁶Gordon, S., and McBride, B. J., "Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and C-J Detonations," NASA SP-273, 1976 (revision).

¹⁷Eidelman, S., Collela, P., and Shreeve, R. P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," *AIAA Journal*, Vol. 22, 1984, p. 10.

¹⁸Stanukovitch, K. P., *Physics of Explosion* (in Russian), Nauka. 1975.

¹⁹Wiedermann, A., "An Evaluation of Bimodal Layer Loading Effects," *IITRI Report*, February 1990.

Combust. Sci. and Tech., 1993. Vol. 89, pp. 201-218 Photocopying permitted by license only ©Gordon and Breach Science Publishers S.A. Printed in United States of America

# Detonation Wave Propagation in Combustible Particle/Air Mixture with Variable Particle Density Distributions

#### SHMUEL EIDELMAN and XIAOLONG YANG Corporation McLean, VA 22102

Science Applications International

(Received June 11, 1991; in final form June 18 1992)

Abstract—A mathematical model is presented describing a physical system of detonation waves propagating in a solid particle/air mixture with a wide range of solid phase concentrations. The mathematical model was solved numerically using the Second Order Godunov method, and numerical solutions were validated for detonation waves propagating in mixtures with concentrations of solid phase from 0.75 kg/m³ to 1000 kg/m³. Numerical solution was obtained for detonation waves propagating in a system consisting of clouds with a small concentration of particles and a ground layer in which solid particle densities are three orders of magnitude larger than in the cloud. Three different particle concentration distributions in the ground layer were simulated and compared in terms of detonation wave structure and parameters.

Key words. detonation wave, two-phase flow, numerical simulation

#### 1. INTRODUCTION

When combustible particles are intentionally or unintentionally dispersed into the air, the resulting mixture can be detonable. Formation of this potentially explosive dust environment and the properties of its detonation are of significant practical interest in view of its destructive or creative effects. The experimental and theoretical study of these phenomena until now has addressed only homogenous particle/oxidizer mixtures. However, intentional or accidental processes of the explosive dust dispersion will always lead to inhomogeneous particle density distribution. Some industrial methods of explosive forming rely on detonation of explosive powder. This powder can be deposited as a thin layer over the surface area of the forming metal, with some remaining concentration in the vicinity of the layer. The structure of the detonation waves and the phenomenology of their initiation and propagation in these environments are the main subjects of this paper.

When the detonation wave is generated in a homogeneous mixture by a "direct initiation," it starts with a strong blast wave from the initiating charge. As the blast wave decays, combustion of the reactive mixture behind its shock front starts to have a larger role in support of the shock wave motion. When the initial explosion energy exceeds some critical value, transition to steady state detonation occurs (cf. Eidelman et al., 1976; Burcat et al., 1978; Oved et al., 1978; Eidelman and Burcat, 1980). In explosive dust mixtures with a nonuniform distribution of particle density, the initiation dynamics is significantly more complicated. The critical initiation energy sufficient for one of the explosive particle density strata regions is not necessarily adequate for other regions. Also, when there is a significant variation in density between the different layers (regions) of the mixture, steady detonation in one layer can result in an overdriven detonation in an adjacent layer. Our paper demonstrates that the phenomenology of these interactions is distinctly different from the classical studies of multi-layer detonations in gases. This is primarily because the energy content of adjacent layers in a typical multi-gas layer experiment varies by a factor of two or four (Liu et al., 1990), whereas the energy content in explosive dust/air mixtures can vary by several orders of magnitude.

#### SHMUEL EIDELMAN AND XIAOLONG YANG

In this paper we use detailed numerical simulation to study the initiation dynamics and propagation phenomenology for a general case of explosive dust dispersion. We will consider particle density variation from 1000 kg/m³ in the ground layer to 0.75 kg/m³ for the upper edges of the cloud. The effects of the cloud density variation on detonation wave parameters will be examined for different cases of cloud particle density distribution. When possible, the results of computer simulations are validated in comparison with experimental and theoretical studies.

The outline of this paper is as follows. Section 2 gives a description of mathematical model that includes governing conservation equations for two phases and the constitutive laws. We describe the model for a particle gas interaction, combustion and equation-of-state for gas phase. The numerical integration technique for solving the mathematical model will also be outlined. In Section 3, we present our numerical simulation results. We first validate our model by comparing one dimensional detonation wave simulation with available experimental results. We then give the two dimensional simulation for detonation wave propagation in combustible particles/air mixtures with variable particle density distribution. Concluding remarks are given in Section 4.

## 2. THE MATHEMATICAL MODEL AND THE NUMERICAL SOLUTION

The mathematical model consists of conservation governing equations and constitutive laws that provide closure relations for the model. The basic formulation adopted here follows the two-phase fluid dynamics model presented in the text by Kuo (1990). The approach assumes that there are two distinct continua, one for gas and one for solid particles, each moving at its own velocity through its own control volume. The sum of these two volumes represents an average mixture volume. Furthermore, particles in their own control volume are assumed monodisperse and they are moving with the same velocity. With these assumptions, distinct equations for continuity, momentum and energy are written for each phase. The interaction effects between the two phases are accounted as the source terms on the right hand side of the governing equation. The following is a short description of the two phase flow model used in our study, with conservation equations written in Eulerian form for two dimensional flow in Cartesian coordinates.

## **Conservation Equations**

Continuity of gaseous phase:

$$\frac{\partial \rho_1}{\partial t} + \frac{\partial (\rho_1 u_g)}{\partial x} + \frac{\partial (\rho_1 v_g)}{\partial y} = \Gamma; \qquad (2.1)$$

Continuity of solid particle phase:

$$\frac{\partial \rho_2}{\partial t} + \frac{\partial (\rho_2 u_p)}{\partial x} + \frac{\partial (\rho_2 v_p)}{\partial y} = -\Gamma; \qquad (2.2)$$

Conservation of momentum of gaseous phase in x-direction:

$$\frac{\partial(\rho_1 u_g)}{\partial t} + \frac{\partial(\rho_1 u_g^2 + \phi p_g)}{\partial x} + \frac{\partial(\rho_1 u_g v_g)}{\partial y} = -F_c + \Gamma u_p; \qquad (2.3)$$

Conservation of momentum of solid particle phase in y-direction:

$$\frac{\partial(\rho_1 v_g)}{\partial t} + \frac{\partial(\rho_1 u_g v_g)}{\partial x} + \frac{\partial(\rho_1 v_g^2 + \phi p_g)}{\partial y} = -F_y + \Gamma v_p; \qquad (2.4)$$

Conservation of momentum of solid particle phase in x-direction:

$$\frac{\partial(\rho_2 u_p)}{\partial t} + \frac{\partial(\rho_2 u_p^2)}{\partial x} + \frac{\partial(\rho_2 v_p u_p)}{\partial y} = F_x - \Gamma u_p; \qquad (2.5)$$

Conservation of momentum of solid particle phase in y-direction:

$$\frac{\partial(\rho_2 v_p)}{\partial t} + \frac{\partial(\rho_2 u_p v_p)}{\partial x} + \frac{\partial(\rho_2 v_p^2)}{\partial y} = F_y - \Gamma v_p; \qquad (2.6)$$

Conservation of energy of gas phase:

$$\frac{\partial(\rho_{1}E_{gT})}{\partial t} + \frac{\partial(\rho_{1}u_{g}E_{gT} + u_{g}\phi p_{g})}{\partial x} + \frac{\partial(\rho_{1}v_{g}E_{gT} + v_{g}\phi p_{g})}{\partial y} = \Gamma\left(\frac{u_{p}^{2} + v_{p}^{2}}{2} + E_{chem} + C_{s}\bar{T}_{p}\right) - \left(F_{x}u_{p} + F_{y}v_{p}\right) = Q; \qquad (2.7)$$

Conservation of energy of solid particle phase:

$$\frac{\partial(\rho_2 E_{\rho T})}{\partial t} + \frac{\partial(\rho_2 E_{\rho T} u_p)}{\partial x} + \frac{\partial}{\partial y}(\rho_2 E_{\rho t} v p = \dot{Q} + (F_x v_p + F_y v_p)) - \Gamma\left(\frac{u_p^2 + v_p^2}{2} + E_{chem} + C_s \bar{T}_p\right); \qquad (2.8)$$

Conservation of number density of solid particle:

$$\frac{\partial N_p}{\partial T} + \frac{\partial (N_p u_p)}{\partial x} + \frac{\partial (N_p v_p)}{\partial y} = 0.$$
(2.9)

In the above equations,  $\phi = 1 - \frac{N_p M_p}{\rho_p}$ ,  $\rho_1 = \phi \rho_g$ ,  $\rho_2 = (1 - \phi)\rho_p$ , where  $N_p$  and  $M_p$ are the number density of particles and mass of each particle, respectively, and  $\rho_g$  and  $\rho_p$  are the material density of gas and particle densities, respectively.  $u_g$ ,  $v_g$ ,  $p_g$  are gas phase x-velocity, y-velocity and pressure, respectively;  $u_p$ ,  $v_p$ ,  $T_p$ , are x-velocity, y-velocity and average particle temperature, respectively.  $C_s$  is the solid particle specific heat, and  $E_{chem} = E_{comb} - E_{evap}$ , where  $E_{comb}$  is heat of combustion and  $E_{evap}$  is heat of evaporation.  $\Gamma$  is the rate of phase change from solid to gas and Q is heat transfer between the two phases;  $F_x$ ,  $F_y$  are drag force between the two phases in x and y directions, respectively.

Equations (2.2) and (2.9) are linked through the relation  $\rho_2 = N_p M_p$ . In the case of a reactive solid phase,  $M_p$  decreases due to combustion. The mass of a single particle at any point can be obtained from  $M_p = \rho_2(x,y)/N_p(x,y)$ , and the diameter of a particle at any spatial location is  $D(x,y) = [6M_p(x,y)/\pi\rho_p]1/3$ . The total internal energy of gaseous phase

$$E_{gT} = E_g + \frac{1}{2}(u_g^2 + v_g^2)$$
 and  $E_g = E_g(p_g, \rho_g)$  (2.10)

#### SHMUEL EIDELMAN AND XIAOLONG YANG

where  $E_g(p_g, \rho_g)$  is the equation-of-state for gas phase, which will be discussed later. The total internal energy of solid particle phase is

$$E_{pT} = E_p + \frac{1}{2}(u_p^2 + v_p^2)$$
 and  $E_p = E_{comb} + C_s \bar{T}_p$ . (2.13)

In order to close the above system of conservation equations, it is necessary to define certain criteria and interaction laws between the two phases, which include mass generation rate,  $\Gamma$ , drag force between particles and gas,  $F_x$ ,  $F_y$  and the interphase heat transfer rate  $\dot{Q}$ . The model for particle and gas interaction and particle combustion that results in the constitutive relation for the conservation equations, is explained in detail in the next subsection.

## Model for a Particle Gas Interaction and Combustion

Presently the physics of the energy release mechanisms in solid particles/air mixtures is not clearly understood. This can be attributed to the obvious difficulties of making a direct non-obtrusive measurement in the optically thick environment typical for this system. In the experimental and theoretical work done for the grain dust detonation conditions (Kauffman *et al.*, (1979), it was demonstrated that the volatile components released by the particle heated behind the shock front play a major role in determining the detonability limits of the mixture. Eidelman and Burcat (1981) successfully applied a combination of fast evaporation and aerodynamic shattering mechanisms to simulate a two-phase detonation process.

The chemical processes of a single particle combustion, which mainly occur in the gaseous phase, are significantly faster than the physical processes of particle gasification or disintegration. Thus, in the multi-phase mixtures, the rate of energy release will be mostly determined by physics of particle disintegration. It is very difficult to describe the details of particle disintegration in the complex environment prevalent behind the shock or detonation wave. For example, Reinecke and Waldman (1975) defined five different disintegration regimes for a relatively simple environment of water droplets passing through a weak shock. Fortunately, in most cases of multi-phase detonation, only the main features of the particle disintegration dynamics need to be captured to describe the phenomena. For example, Eidelman and Burcat (1980) used simple models for particle evaporation and shattering to obtain simulation results that compared very favorably with experimental data. Because of our inability to resolve the particle disintegration problem in all its complexity, the validation of the model against known experimental data is essential.

In this paper we consider solid particles consisting of explosive material. Explosive material contains fuel and oxidizer in a passive state at low temperature; however, when the temperature rises the fuel and oxidizer react, leading to detonation or combustion. The initiation for explosives will occur at a relatively low temperature. For example, TNT will detonate when heated to the temperature of 570°C. Only particles larger than a critical detonation size can detonate directly when initiated by a shock wave. We consider here particles smaller than 4mm in diameter that will not detonate when heated, but will burn when the temperature on the particle surface reaches a critical value. Since the heat conduction inside the explosive material is relatively slow, the process of particle heating needs to be resolved in detail. Our simulations numerically solve the temperature field in the particles at every time step of numerical integration of the global conservation equations. The explosive particle that reaches the critical temperature will burn instantaneously. Energy transfer by convection and conduction is simulated by solving the unsteady heat

conduction equation in each computational cell at each time step. Assuming a particle's temperature  $T_p$  to be a function of time and radial position only, the unsteady heat conduction equation may be transformed to:

$$\frac{d^2w}{dr^2} = \frac{1}{\alpha} \frac{dw}{dt},$$
(2.12)

subject to the boundary conditions:

$$w = 0 \ at \ r = 0, \ t > 0$$
  
$$k \frac{dw}{dr} = (h - \frac{1}{R})w = hRT_g \ at \ r = R, t > 0$$
(2.13)

where:

$w(\mathbf{r},t)$	=	$rT_p(r,t)$
r	=	radial position
T(r,t)	=	temperature
R	=	partial radius
Tg k	=	temperature of surrounding gas
ĸ	=	thermal conductivity of particle
h	==	convective heat transfer coefficient.

The Nusselt number, used to find h, is given by an empirical relation given by Drake (1961). The gas viscosity is found from Sutherland's Law. The gas thermal conductivity is calculated by assuming a constant Prandtl number. Lastly, the boiling temperature at a given pressure is found from the Clapeyron-Clausius equation under the assumptions of: 1) constant latent enthalpy of phase change, 2) the vapor obeys the ideal equation-of-state, and 3) the specific volume of the solid/liquid is negligible compared to that of the vapor. A critical temperature is also employed to serve as an upper limit to the boiling point, regardless of pressure.

Equation (2.12) with boundary condition (2.13) can be numerically integrated using either implicit or explicit schemes, which will be explained later.

Knowledge of the particle temperature profile also allows us to determine.  $\Gamma$ , the rate of phase change from solid particle to gas. Once any point at a radial location  $0 \leq r \leq R$  has a temperature exceeding the boiling temperature, the entire mass between r and R is transferred to the gas phase in one time step. In so doing, an energy equal to the product of the mass lost and the particle combustion of heat minus heat of evaporation energy is transferred from the particle to the gas.

The interphase drag forces (Fx, Fy) are determined from the experimental drag for a sphere, as presented by Schlichting (1983).

$$F_{x} = \left(\frac{\pi}{8}\right) N_{p} \rho_{g} C_{D} |\mathbf{V}_{g} - \mathbf{V}_{p}| (\mathbf{u}_{g} - \mathbf{u}_{p}) \mathbf{R}^{2}$$
(2.14)

where

$$C_D = \begin{cases} \frac{24}{Re} \left( 1 + \frac{Re^{2/3}}{6} \right) & for \ Re < 1000; \\ 0.44 & for \ Re > 1000. \end{cases}$$
(2.15)

and  $Re = \frac{2R[V - V_p]}{\mu_q}$ , R is the radius of the particle and  $\mu_g$  is gas viscosity at a temperature of  $T_{fllm} = \frac{1}{2}(T_g + \bar{T}_p)$ . Similarly, the formula for  $F_y$  is

## SHMUEL EIDELMAN AND XIAOLONG YANG

$$F_{\mathbf{y}} = \frac{\pi}{8} N_{\rho} \rho_{g} C_{D} |\mathbf{v}_{g} - \mathbf{v}_{\rho}| (\mathbf{v}_{g} - \mathbf{v}_{\rho}) \mathbf{R}^{2}.$$
(2.16)

# Equation of State for Detonation Products

To close the system of governing equations, one needs a constitutive relation between density, pressure, temperature, and energy for gas phase, which is an equation-of-state. This study uses the Becker-Kistiakowsky-Wilson (BKW) equation-of-state (cf. Cowan and Fickett, 1956: Mader, 1979), which is.

$$p_g V_g / \hat{R} T_g = 1 + x e^{bx}. (2.17)$$

where  $V_g =$  volume of gas phase

 $p_g$  = pressure of gas phase  $p_g$  = temperature of gas phase  $\overline{R}$  = temperature of gas phase  $\overline{R}$  = universal gas constant  $x = k/F_g(T + \Theta)^a$   $k = K \sum_i X_i k_i$ 

with empirical constants 
$$a, b, K, \Theta$$
 and  $k_i$ . The constants  $k_i$ , one for each molecular species, are co-volumes. The co-volumes are multiplied by their mole fraction of species.  $X_i$ , and are added to find an effective volume for a mixture. For a particular explosive, if we know the composition of defonation products  $a, b, \Theta, K$ , and all  $k_i$ 's can be found

in the book by Mader (1979).

The internal energy is determined by thermodynamics relation

$$\left(\frac{\partial E_{\mathfrak{g}}}{\partial V_{\mathfrak{g}}}\right)_{T} = T_{\mathfrak{g}} \left(\frac{\partial \rho_{\mathfrak{g}}}{\partial T_{\mathfrak{g}}}\right)_{V} - \rho_{\mathfrak{g}}.$$
(2.18)

Integration of this equation for a fixed composition of the detonation products will allow us to calculate the energy of the detonation products as a function of temperature and volume. The thermodynamic properties as functions of temperature were calculated for each component from the NASA tables compiled by Gordon and McBride (1976).

The BKW equation-of-state is the most used and well calibrated of those equationsof-state used to calculate the properties of detonation products. The detailed discussion and review of the BKW equation-of-state can be found in the literature (cf. Cowan and Fickett, 1956; Mader, 1979).

#### Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. Equations (2.1)—(2.9) can be written in the following vector form.

$$\frac{\partial \Phi}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = \Omega.$$
(2.19)

In order to numerically solve this equation, an operator time-splitting technique is used. Assuming that all flow variables are known at a given time, we can calculate its advancement in time by splitting the integration into two stages.

In the first stage, the conservative part of Eq. (2.19) is solved:

$$\frac{\partial \Phi}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0.$$
 (2.20)

The Second Order Godunov method is used for the integration of the subsystem of equations describing the gaseous phase flow. The method is well documented in the literature (cf. Eidelman *et al.*, 1984; Colella, 1985; Colella and Glaz, 1985). In the following we will elaborate only some specifics of application of the method with BKW equation-of-state to simulate detonation product.

The physical system under study will have concentrations of solid explosive particle ranging from 1000 kg/m³ near the ground to 0.75 kg/m³ in the cloud. Detonation of this mixture will create detonation products with effective  $\gamma$  ranging from 3 to 1.1. To describe the flow of detonation products, we use the BKW equation-of-state described previously. Since the Second Order Godunov method uses primitive variables to calculate Riemann problems at the edges of the cells, its implementation for non-ideal EOS is difficult. In our simulations, we have resolved this problem by involving a local parameterization of EOS and by using direct and inverse equations-of-state to calculate pressure, gamma, and temperature as functions of thermal energy, density, and mixture composition. After this step, we have a complete set of parameters allowing calculation of the fluxes obtained from solving the Riemann problem (Colella and Glaz, 1985). The "inverse." EOS calculates internal energy as a function of density and pressure. In our code we use the "inverse" EOS to calculate the fluxes of conserved variables after calculation of the flux from Riemann problem of primitive variables.

The subsystem of equations describing the particle phase flow is integrated using a simple finite difference upwind scheme. This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:

$$\frac{\partial \Phi}{\partial t} = \Omega. \tag{2.21}$$

To integrate this equation in time, we need to obtain  $\Omega$  as a function of  $\Phi$ . To do this, we first solve the particle heat conduction and heat transfer equation (2.12) with a boundary condition (2.13) that gives the temperature distribution as a function of particle radius and time using a local particle grid. Since the particle radius, R. will become very small due to evaporation, the implicit Crank-Nicolson algorithm is used because of its stability properties and its second order temporal and spatial accuracy. Using the Crank-Nicolson scheme to predict the particle temperature profiles at times  $t_1$ and  $t_2$  permits easy calculation of the total energy exchange, Q between  $t_1$  and  $t_2$ , due to convection and conduction. Knowing the temperature distribution inside the particle, we can calculate gas generation rate  $\Gamma$ , drag force  $F_x$ ,  $F_y$ , and heat exchange Q, between two phases and hence,  $\Omega$  of Eq. (2.21). After obtaining the source term, we can integrate Eq. (2.21) by an explicit scheme.

For the multiphase system under study,  $\Delta_x = \Delta_y = 1mm$  was used to allow explicit integration of the gasdynamic and physical processes of evaporation and heat release. When a mismatch occurred between the physical and gasdynamical characteristic times, the time step was adjusted by some fraction to assure stability. However, the resulting time step was not significantly smaller than that calculated by CFL criteria. For larger cell sizes, this approach will be impractical.

The numerical method is implemented in a code named MPHASE, which is fully vectorized and supported by number of graphics and diagnostics codes.

#### Table I.

One Dimensional Validation Result

D[m/sec]-Detonation wave velocity,

Pcl [Pa]-Pressure at Chapman-Jouguet Point

 $P_p[Pa]$ -Peak pressure:  $\rho_p[kg/m^3]$ -Peak density

				Tiger	BKW	Soviet
RDX		Present	Expt'l	Calculation	Calculation	Experiments
Density (kg/m ³	Parameters	Calculation	Ref. 1	Ref. 2	Ref. 1	Ref. 3
1000 kg/m ³	D	6155	5981		6128	
	P _{CJ}	$1.220 \times 10^{10}$			$1.08 \times 10^{10}$	$1.00 \times 10^{10}$
	P _p	$2.57 \times 10^{10}$				
	ρ	1936				
860 kg/m ³	D	6031		5900		
	PCI	$0.986 \times 10^{10}$		$0.88 \times 10^{10}$		$0.82 \times 10^{10}$
	Pp	$1.95 \times 10^{10}$				
	Pp	1722				
466 kg/m ³	D	4800		4500		
	PCI	$0.379 \times 10^{10}$		$0.30 \times 10^{10}$	$0.3 \times 10^{10}$	
	Pp	$0.625 \times 10^{10}$				
	Pp	924				
250 kg/m ³	D	4049		3600		
-	PCI	$0.2478 \times 10^{10}$		$0.13 \times 10^{10}$		
	Pp	$0.4538 \times 10^{10}$				
	· Pp	552				
100 kg/m ³	D	3495				
-	P _{CJ}	$0.5013 \times 10^{9}$				
	P _p	$0.7658 \times 10^{9}$				
	ρ	220				
0.75 kg/m ³	D	1622	1410"	1870*		
-	PCI	$0.25 \times 10^7$	$0.284 \times 10^{7*}$	$0.26 \times 10^{7*}$		
	Pp	$0.484 \times 10^7$				
	Pp	8				

Ref. 1-Mader, C., "Numerical Modeling of Detonation," (University of California Press, Ltd., 1979), p. 47.

Ref. 2-Wiedermann, A., "An Evaluation of Bimodal Layer Loading Effects," IITRI Report. Feb., 1990. Ref. 3-Stanukovitch, K.P., "Physics of Explosion" (in Russian), Nauka, 1975.

# 3. RESULTS

## Model Validation for a One Dimensional Detonation Wave Problem

The main advantage of our particle combustion model is its description of the detonation phenomenology for a wide range of explosive particle sizes and densities. We will demonstrate this capability on a set of one dimensional test problems. For these test problems we have simulated the initiation and propagation of the detonation waves in a shock tube-like setting, where the explosive particles are distributed uniformly through the shock tube volume.

Results of these simulations are summarized in Table I, which shows detonation wave velocity, peak pressure, and peak density given as a function of the average density of the



FIGURE 1 Computational domain and boundary conditions.

solid explosive. Here the explosive two-phase mixture is composed from RDX particle and air, where RDX particle concentration varies from  $0.75 \text{ kg/m}^3$  to  $1000 \text{ kg/m}^3$ . This concentration variation covers the whole range of solid explosive concentrations of interest to our problem. The simulations performed with the MPHASE code were compared with the experimental results (Mader, 1979; Stanukovitch, 1975), and calculations were done with the TIGER code presented by Wiedremann (1990).

From Table I, it is clear that our simulation results compare favorably with other simulation results and experimental data. The maximum deviation between our results and referenced results is no greater than 15% for the entire range of explosives densities. Considering that our results were obtained with a single model for particle combustion applied to the extreme range of densities, our model gives an excellent prediction of the detonation wave parameters.

## **Two Dimensional Simulation Results**

Figure 1 shows a setup for a typical two dimensional simulation. Here the computational domain is  $25 \text{cm} \times 25 \text{cm}$ . The explosive powder density is distributed according to the 4th power law of vertical distance, starting from the ground where the density is 800 kg/m³, and rising to 1.2cm, where the density is 0.75 kg/m³. From this point to 25cm height, the density is constant and equal to 0.75 kg/m³. The density distribution in the

,



FIGURE 2 Fourth power distribution of particle density in the layer. The maximum density in the layer is 800 kg/m³. (2a), (2b), and (2c) are gas pressure, gas density, and particle density at 12  $\mu$ sec, respectively. See COLOR PLATE IV.



FIGURE 2 (Continued) (2d), (2e), and (2f) are gas pressure, temperature, and particle density at 55  $\mu$ sec, respectively. See also COLOR PLATE IV.

#### SHMUEL EIDELMAN AND XIAOLONG YANG

direction of the "x" axis is uniform. The boundary conditions for the computational domain shown in Fig. 1 are specified as follows: solid wall along the "x" axis; symmetry conditions along the "y" axis; supersonic outflow for upper boundary and at the right of the computational domain. The mixture consists of RDX powder and air at ambient conditions and it is assumed to be quiescent at the time of initiation.

The simulation starts at t = 0 when the mixture is initiated at the lower left corner of the computational domain by an initiating charge, as shown in Fig. 1. The initiating charge is 6 mm  $\times$  10 mm, with pressure of 4 GPa and density of 450 kg/m³. The energy released by the initiating explosion leads to formation of the detonation wave propagating through the multiphase media. Figure 2a shows pressure contours for the propagating detonation wave at the time of  $t = 12 \ \mu sec$  after initiation. Here the pressure contour levels are shown on logarithmic scale in MPa. The maximum pressure value of 7940 MPa is observed in the layer of condensed explosive located near the ground. The pressure in the layer is two to three orders of magnitude higher than pressure behind the detonation wave in the 0.75 kg/m³ RDX cloud and air located above the distance of 1.2cm from the ground. Figure 2a demonstrates that the detonation wave in the cloud is overdriven, since the pressure behind the shock continuously rises and reaches its maximum in the layer. From this figure, we also observe that the overdriven wave propagates faster in the cloud than in the layer. This is explained by the fact that it is easier to compress air that is very lightly loaded with particles and located above the ground layer, than it is to compress air heavily loaded with a particle mixture near the ground. It is interesting to note a discontinuous pressure change between the yellow contours and the light blue and green contours behind the detonation front. This discontinuity is over-emphasized by our presentation of contour lines on the logarithmic scale; however. further examination of our simulation results indicates this feature is real and is similar in nature to barrel shocks observed for strong jets.

In Fig. 2b, gas phase density contours are shown for the time  $t = 12 \ \mu$ sec. Here the contour lines are distributed on logarithmic scale. The main features of the shock wave structure are very similar to those observed in the pressure contours figure. Here we see that a jet of high density gases reflects from the center of symmetry axis, creating a contact discontinuity that we will observe at later times. The barrel shock is clearly visible in this figure. In Fig. 2c, the particle density contour plots are shown for  $t = 12 \ \mu$ sec. The contour levels in Fig. 2c are given on the logarithmic scale and the initial deposition of the explosive material in the ground layer of the computational domain can be clearly observed. The black contour lines delineate the beginning and the end of the reaction zone in the cloud. To the left of these contours lies an area with combustion products and to the right unburned particles in the cloud. Here we can see that the reaction zone length is of the order of 1cm.

Figure 2d shows pressure contours for the same simulation for the time  $t = 55 \ \mu \text{sec}$  just before the detonation wave leaves the computational domain. In this figure we see that the global structure of the wave did change slightly from Fig. 2a. We observe that the barrel shock wave is fully developed and has a half ellipse shape. The detonation wave in the cloud is still overdriven; however, part of the shock wave front that propagates vertically becomes weaker as it gets further away from the detonation front in the layer. In Fig. 2e, gas temp_rature contours are shown at  $t = 55 \ \mu \text{sec}$ . In this case, it is interesting to note that the highest temperatures are observed behind the front of the overdriven cloud detonation wave in immediate vicinity of the layer's upper strata. Very high temperatures in this region can be explained by the high pressure generated from the detonation of the explosive material in the layer and by relatively low density of cloud strata in the layer's immediate vicinity. Here, as in the pressure contours graph, the area of barrel shock can be clearly identified.



FIGURE 3 History of pressure distribution on the ground from initiation to steady detonation:  $\Box = 0$  µsec, o = 12 µsec,  $\Delta = 24$  µsec, + = 34 µsec, x = 44 µsec and  $\diamond = 55$  µsec.

We also observe in Fig. 2 a clear development of two detonation fronts, one moving vertically in the cloud and another moving horizontally in the layer. Because the energy density of the explosive particle in the layer is about three orders of magnitude larger than it is in the cloud, the vertical parts of the front represent an overdriven detonation wave in the cloud. Even though the vertical front has slowed down compared with the horizontal front, its speed and parameters far exceed those typical for detonation waves in a cloud. In fact, the self-sustained detonation regime in the cloud will develop at the distance of about three meters from the layer. The area of the front close to the detonation wave in the layer will remain hot and overdriven, since it is located very close to the detonation front in the layer. In Fig. 2f, particle density contours are shown on a logarithmic scale. We can clearly observe the reaction zone delineated by black contour lines. In this case, the reaction zone length in the cloud is about 1cm. Consistent with the gradual transition from overdriven to self-sustained detonation, the reaction zone length is larger for the vertical part of the detonation front. The detonation wave velocity observed in our simulation is approximately 4048 m/sec, which is significantly lower than the detonation wave velocity observed in RDX with a density of 860 kg/m³ (see Table I), which is the highest density in the ground layer. This can be explained by a high gradient of particle density distribution in the layer, where the density drops rapidly from 800 kg/m³ at the bottom of the layer to 0.75 kg/m³ at the top strata of the layer at 12 mm above the ground.



FIGURE 4 = 2.5 cm thick layer at constant density of 100 kg/m³. Density in the cloud is 0.75 kg/m³. (4a), (4b), and (4c) are gas pressure, gas density, and particle density at 66  $\mu$ sec, respectively. See COLOR PLATE V.



FIGURE 5 1.2 cm thick particle layer at constant density of 250 kg/m³. Particle density in the cloud is 0.75 kg/m³. (5a), (5b), (5c) are gas pressure, gas density, and particle density at 65  $\mu$ sec, respectively. See COLOR PLATE VI.

#### SHMUEL EIDELMAN AND XIAOLONG YANG

To show the transient process from initiation to steady-state detonation, we plot the pressure-distance profiles at six separate times after ignition (Fig. 3). Here the pressure is taken on the ground. Examining the profiles, we observe that the steady detonation is reached after 10cm. For each profile, we see that the pressure distribution is characterized by a strong detonation front followed by a fast expansion wave because of lateral expansion.

To further explore properties and phenomenology of the detonation waves propagating in the layer/cloud systems, we simulated additional cases in which explosive powder density distribution was different from the case reported above, although total weight of particle per unit area remained the same.

In Fig. 4, results are shown for the case of a uniform 2.5 cm thick layer of RDX with density of 100 kg/m³, and a 0.75 kg/m³ cloud initiated under the same conditions as in the previous example. Figures 4a, 4b, and 4c show pressure, gas density, and particle density contour plots at  $t = 66 \mu sec$ . Here we observe that because the layer has much less density than the case reported above, the precursor effect of the detonation wave in the cloud preceding the wave in the layer is less pronounced. We also observe a significant difference in the shape of the strong contact discontinuity in the region of the shock front close to the layer. In Fig. 4b, we can clearly distinguish two contact surfaces, one between condensed explosive detonation products in the layer and in the cloud, and another between the detonation products from layer explosive detonation and from cloud particle detonation. We should note that these contact surfaces are over-emphasized by the logarithmic display of the contour plot levels. The maximum pressure observed in this simulation is 955 MPa, which is about one order of magnitude smaller than in the previous simulation. This is consistent with one order of magnitude difference in the maximum density of the ground layer in the two cases. The detonation wave speed (3407 m/sec) for the case presented in Fig. 4, which is only slightly lower than the speed predicted by the one dimensional simulations presented in Table I, reflects the influence of the two dimensional expansion on the detonation wave propagation.

Figure 5 presents results for the case of a uniform density of 250 kg/m³ in a 1.2 cm ground layer. All other parameters are the same as in the previous two cases. In Figs. 5a, 5b, and 5c, pressure, gas density, and particle density contour plots are shown at the time  $t = 65 \ \mu$ sec after detonation wave initiation. Here, the detonation wave propagates faster than in the previous cases U = 3660 m/sec. This is about 400 m/sec slower than in the case of fourth power density distribution. Maximum pressure on the ground is 2150 MPa, which is consistent with the increase of powder density in the layer. The basic structure of the detonation front and the contact surfaces is similar to the case of fourth power density distribution.

## 4. CONCLUSIONS

We presented a mathematical model and numerical solution for the simulation of detonation wave initiation and propagation in multiphase mixtures consisting of solid combustible particles and gas. Using this model, we studied detonations in mixtures of solid RDX particles and air, with the objective of examining the effects of wide variation in particle density distribution on the dynamics and structure of detonation waves. We considered a physical system of solid particle clouds in air where a significant amount of particle can settle on the ground and the particle phase concentrations in the particle/air mixture can range from 0 to 1000 kg/m³. This range of solid phase densities necessitated development of the mode¹ and its numerical implementation for a wide range of particle concentrations. Our validation study has shown good agreement between the simulations and referenced results for the whole range of particle concentrations.

Two dimensional simulations were done for the system of low particle density concentration clouds and ground layers formed by high concentrations of the RDX powder. We examined three cases of ground layer density distribution: a fourth power distribution within 12 mm above ground with a maximum density on the ground of 800 kg/m³; a uniform 25 mm thick layer with a density of 100 kg/m³; a 12 mm thick uniform layer with a density of 250 kg/m³. In all these cases, the weight of condensed phase per unit area was the same, which allowed examination of the effects of the particle density distribution on detonation wave parameters.

In all examined two dimensional cases, the detonation wave in the cloud in the computational domain was significantly overdriven and did not play an important role. We estimated that the self-sustained regime of the detonation wave in the cloud for the examined cloud concentrations can occur only at the distances of 2-3 M above ground. At the same time, the particle density distribution in the layer determines the dynamics of the detonation wave as well as the pressure on the ground.

We observed in all three two dimensional simulations a very distinct shape of the detonation wave front in the vicinity of the layer. In this area, the overdriven detonation in the cloud is preceding the detonation wave in the ground layer. This feature of the detonation front can be explained by the fact that the energy released in the ground layer detonation wave produces a faster propagating shock wave in the dilute cloud than in the ground layer which is heavily loaded with solid particles. However, these structures were not observed experimentally, and more studies are needed to examine their parameters.

The maximum pressure affecting the ground was directly related to the maximum particle density in the lower strata of the layer. However, the detonation front velocity for the fourth power distribution case was considerably lower than calculated for a one dimensional case with 860 kg/m³ particle density, reflecting the significant effect of two dimensional expansion. Two other cases with 250 kg/m³ and 100 kg/m³ maximum densities had detonation wave velocity only slightly lower than the one dimensional simulations of the same RDX/air concentrations. It is interesting to compare the simulation of the fourth power density distributed in the same physical space: however, the parameters of developed detonations were vastly different. Existence of the high density strata at the bottom of the ground layer in the fourth power case significantly increased the maximum pressure at the ground, and produced higher detonation wave velocity.

Using a variable density layer, we can reach a combination of pressure and velocity conditions outside of the Chapmen-Jougett limitations. The range of conditions that can be obtained in the variable density system and its parametrics needs a more systematic study. In this article, we introduced only the mathematical formulation and numerical simulation method validated for the range of conditions of interest. In addition, we have given some examples of the method's application for two dimensional simulations. However, this methodology should be linked to an experimental study for a more in-depth analysis of the phenomenology discussed here.

#### ACKNOWLEDGMENTS

The work reported here was partially supported by DARPA and AFOSR under contract no. F49620-89-C-0087. The authors would like to thank Col. J. Crowley and Dr. A. Nachman for their interest in this project.

#### REFERENCES

 Burcat, A., Eidelman, S., and Manheimer-Timnat, Y. (1978). "The Evolution of a Shock Wave Generated by a Point Explosion in a Combustible Medium," Symp. of High Dynamic Pressures (H.D.P.). Paris, 347.
 Colella, P. (1985). "A Direct Eulerian MUSCL Scheme for Gas Dynamics," SIAM J. Stat. Comput. 6, 104.
 Colella, P. and Glaz, H.M. (1985). "Efficient Solution Algorithms for the Riemann Problem for Real Gases."

J. Comput. Physics. 59, 264.

#### SHMUEL EIDELMAN AND XIAOLONG YANG

Cowan. R.D., and Fickett, W. (1956). "Calculation of the Detonation Products of Solid Explosives with the Kistiakowsky-Wilson Equation of State." *Journal of Chemical Physics.* 24, 932.

Drake, R.M., Jr. (1961). "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," Journal of Heat Transfer, 83, 170.

Eidelman, S., Timnat, Y.M., and Burcat, A. (1976). "The Problem of a Strong Point Explosion in a Combustible Medium." 6th Symp. on Detonauon. Coronado. CA, Office of Naval Research. 590.
Eidelman, S., and Burcat, A. (1980). "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets:

Eidelman, S., and Burcat, A. (1980). "The Evolution of a Detonation Wave in a Cloud of Fuel Droplets: Part I, Influence of the Igniting Explosion." ALAA Journal, 18, 1103.

Eidelman, S., Collela, P., and Shreeve, R.P. (1984). "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," ALAA Journal. 22, 10.

Eidelman, S., and Burcat, A. (1980). "The Mechanism of Detonation Wave Enhancement in a Two-Phase Combustible Medium," 18th Symposium on Combustion. The Combustion Institute, Waterloo, Ontario. Canada.

Eidelman, S., and Burcat, A. (1981). "Numerical Solution of a Non-Steady Blast Wave Propagation in Two-Phase (Separated Flow) Reactive Medium." J. Comput. Physics, 39, 456.

Gordon, S., and McBride, B.J. (1976). "Computer Program for Calculations of Complex Chemical Equilibrium Compositions. Rocket Performance. Incident and Reflected Shocks and C-J Detonations," NASA SP-273. 1976 Revision.

Kauffman, C.W., Wolanski, P., Vral, E., Nicholls, J.A. and Van Dyke, R. (1979). "Shock Wave Initiated Combustion of Grain Dust," Proc. of the Intl, Symp. on Grain Dust, p. 164. Manhattan, KS. Kuo, K. (1990). "Principles of Combustion." John Wiley and Sons. Inc.

Liu, J.C., Kauffman, C.W. and Sichel, M. (1990). "The Lateral Interaction of Detonating and Detonable Mixtures," (Private communication).

Mader C.L. (1979). "Numerical Modeling of Detonation." University of California Press, Ltd. London. England.

Oved, Y., Eidelman, S., and Burcat, A. (1978). "The Propagation of Blasts from Solid Explosives to Two Phase Medium," Propellants and Explosives, 3, 105.

Reinecke, W.G., and Waldman, G.D. (1975). "Shock Layer Shattering of Cloud Drops in Reentry Flight." AIAA Paper, 75-152.

1

Schlichting, H. (1983). "Bounday Layer Theory," 7th ed. McGraw-Hill.

Stanukovitch, K.P. (1975). "Physics of Explosion" (in Russian), Nauka.

Wiedermann, A. (1990). "An Evaluation of Bimodal Layer Loading Effects," IITRI Report. February.



AIAA 93-2940 Computation of Shock Wave Reflection and Diffraction Over a Semicircular Cylinder in a Dusty Gas X. Yang, S. Eidelman, and I. Lottati Science Applications International Corporation McLean, VA 22102



# COMPUTATION OF SHOCK WAVE REFLECTION AND DIFFRACTION OVER A SEMICIRCULAR CYLINDER IN A DUSTY GAS

Xiaolong Yang," Shmuel Eidelman,† and Itzhak Lottati" Science Applications International Corporation

### Abstract

The unsteady shock wave reflection and diffraction generated by a shock wave propagating over a semicircular cylinder in a dusty gas are studied numerically. The mathematical model is a multi-phase system based on a multi-fluid Eulerian approach. A Second Order Godunov scheme is used to solve the gas phase Euler equations and an upwind scheme is used to solve the particle phase conservation equations on an unstructured adaptive mesh. For the validation of the model, the numerically predicted one dimensional shock wave attenuation is compared with experimental results. Shock wave reflection and diffraction over a semicircular cylinder in a pure gas flow is simulated first to show the excellent agreement between the present computation and the experimental results. For a shock wave reflection and diffraction in a dusty gas, the effects of particle size and particle loading on the flow field are investigated. Gas and particle density contour plots are presented. It has been shown that the shock wave configuration differs remarkably from pure gas flow depending on the particle parameters. The difference is explained as the result of momentum and heat exchange between the two phases.

## Introduction

Shock wave propagation into a gas particle suspension medium has attracted great attention in recent years due to its many engineering applications. Some of these applications include blast wave propagating over a dusty surface, exhaust from a solid propellant rocket, and coal or grain dust detonation. Many studies dealing with two phase environment can be found in literature. A general description and theoretical analysis of such flow can be found in review papers by Marble¹ and by Rudinger,² and in a book by Soo.³ Numerical models for dilute gasparticle flows were reviewed by Crown.⁴ Numerical studies of gas-particle flow in a solid rocket nozzle can be found in Refs. 5 and 6. Miura and Glass ⁷ theoretically and numerically studied the oblique shock waves in a dusty-gas flow over a wedge. The one-dimensional unsteady structure of shock waves propagating through a gas-particle mixture was investigated both experimentally and numerically by Sommerfeld.⁸ Recently, Kim and Chang⁹ illustrated a numerical simulation of shock wave propagation into a dusty gas and the reflection of the wave from a wedge. Shock wave ignition of different reactive dust is experimentally investigated by Sichel *et al.*¹⁰ and comprehensive model for the structure of dust detonations is also described by Fan and Sichel.¹¹

In this paper, we study shock wave reflection and diffraction over a semicircular cylinder in a dusty gas. We numerically simulate the problem of a shock wave initiated in a pure gas section moving into a dusty region and impinging on a semicircular cylinder. We first formulate the compressible two-phase flow on the basis of a Eulerian multi-fluid formulation. We consider the two phases (i.e., gas and particle) to be interpenetrating continua. The dynamics of the flow are governed by conservation equations of each phase and the two phases are coupled by interactive drag force and heat transfer. We solve the system of conservation equations numerically on an unstructured adaptive grid. The objectives of the study are: (a) to solve the two-phase compressible flow field and compare the simulation with available experimental results; (b) to observe and investigate the reflection and diffraction wave patterns when a shock wave propagates over a semicircular cylinder in a dusty gas, with particle radius and loading as parameters.

The outline of this paper is as follows. Section 2 gives a description of the mathematical model and method of numerical solution, including governing conservation equations for two phases, the constitutive laws, the initial and boundary conditions, and particle parameter. A brief outline of numerical schemes and the adaptive unstructured grid is also given. In Section 3, we present our numerical simulation results. We validate our model by comparing a one-dimensional simulation of a shock wave propagating into a dusty gas with available experimental results. We also show the excellent agreement between our two-dimensional gas-on'y simulation with existing experimental results. Results for reflection and diffraction of shock wave over a semicircular cylinder are given for different particle parameters. Concluding remarks are given in Section 4.

^{*}Drs. Yang and Lottati are Research Scientists with Science Applications International Corp. (SAIC), 1710 Goodridge Dr., MS 2-3-1, McLean, VA 22102. [†] Shmuei Eidelman, Research Scientist, SAIC, Associate Fellow AIAA

Copyright @ American Institute of Aeronautics and Astronautics, Inc., 1993, All rights reserved.

## Mathematical Model and the Numerical Solution

# Conservation Equations

The mathematical model consists of conservation governing equations and constitutive laws that provide closure for the model. The basic formulation adopted here follows the gas and dilute particle flow dynamics model presented by Soo.³ The following assumptions are used during the derivation of governing equations:

(1) The gas is air and is assumed to be ideal gas;

(2) The particles do not undergo a phase change because for particles considered here (sand) phase transition temperature is much higher than the temperatures typical for the simulated cases;

(3) The particles are solid spheres of uniform diameter and have a constant material density;

(4) The volume occupied by the particles is negligible:

(5) The interaction between particles can be ignored:

(6) The only force acting on the particles is drag force and the only heat transfer between the two phases is convection. The weight of the solid particles and their buoyancy force are negligibly small compared to the drag force;

(7) The particles have a constant specific heat and are assumed to have a uniform temperature distribution inside each particle.

Under the above assumptions, distinct equations of continuity, momentum, and energy are written for each phase. The interaction effects between the two phases are listed as the source terms on the righthand side of the governing equation. The two-dimensional unsteady conservation equations for the two phases can be written in the vector form in Cartesian coordinates:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S. \tag{1}$$

Here U is the vector of conservative variables, F and G are fluxes in x and y direction, respectively, and S is the source term for momentum and heat exchange. The definition of these vectors are:

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \\ \rho p \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho p u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\ \rho u \\$$



where  $\rho$ , u, v, and e are gas density, velocities, and energy, respectively;  $\rho_p$ ,  $u_p$ ,  $v_p$  and  $e_p$  are particle density, velocities, and energy, respectively;  $(f_x, f_y)$  and q denotes drag force components acting on the particles and heat transfer to the particles, respectively. The gas pressure p is related to  $\rho$ , u, v and e for by

$$p = (\gamma - 1)[e - 0.5\rho(u^2 + v^2)]$$
(2)

where  $\gamma$  is the specific heat ratio. The gas temperature can be found through the equation-of-state for ideal gas

$$p = \rho RT \tag{3} \bullet$$

where R is the gas constant.

The particle temperature  $T_p$  is calculated through relation

$$e_p = \rho_p c_p T_p + 0.5 \rho_p (u_p^2 + v_p^2). \tag{4}$$

The source terms on the righthand side of Eq. (1) are momentum and heat exchange between gas and particle phases. If we let  $r_p$  and  $\rho_s$  be the particle radius and material density, respectively, then the drag forces are

$$\begin{pmatrix} f_{s} \\ f_{y} \end{pmatrix} = \frac{3}{8} \frac{\rho_{p}\rho}{\rho_{s}r_{p}} C_{d} \left[ (u-u_{p})^{2} + (v-v_{p})^{2} \right]^{1/2} \\ \begin{bmatrix} (u-u_{p}) \\ (v-v_{p}) \end{bmatrix}.$$
 (5)

The particle drag coefficient  $C_d$  depends on relative Reynolds number, Re and relative Mach number,  $M_r$ . In the present study, since the relative Mach number is small ( $M_r < 0.5$ ), the effect of  $M_r$  on  $C_d$  is neglected. The Reynolds number, Re, is based on the relative velocity between the gas and particle phases. After testing the drag coefficients given by Sommerfeld⁸ and by Clift *et al.*,¹² the following two were adopted:

$$C_{d} = \frac{24}{Re} (1 + 0.15Re^{0.687}) \text{ for } Re < 800.$$
  
and  
$$C_{d} = \frac{24}{Re} (1 + 0.15Re^{0.687}) + \frac{0.42}{1 + 42500Re^{-1.16}}$$
  
for  $Re > 800$ .

(6)

Here the Revnolds pumber Re is defined as

$$Re = \frac{2\rho r_p [(u - u_p)^2 + (v - v_p)^2]^{1/2}}{\mu}$$
(7)

Viscosity,  $\mu$ , is calculated at film temperature, namely,  $T_f = 0.5(T_p + T)$ , and the temperature dependency of the viscosity is evaluated according to Sutherland's law

$$\mu = \mu_r \left(\frac{T}{T_r}\right)^{3/2} \frac{T_r + \Phi}{T + \Phi} \tag{8}$$

where  $\mu_r$  is the dynamic viscosity of the gaseous phase at the reference temperature and  $\Phi$  is an effective temperature, called the Sutherland constant.

The rate of heat transfer from gaseous phase to the particle phase is given by

$$Q = \frac{3}{2} \frac{\rho_{p}}{\rho_{s}} \frac{\mu C_{p}}{P_{\tau}} N u (T - T_{p})$$
(9)

where  $Pr = \mu c_p / k_g$  is the Prandtl number, and  $c_p$  and  $k_g$  are the specific heat and thermal conductivity of gas, respectively. The Nusselt number Nu is a function of Reynolds number and the Prandtl number as given by Drake¹³

$$Nu = \frac{2r_ph}{R} = 2 + 0.459Re^{0.55}Pr^{0.33}.$$
 (10)

Initial and Boundary Conditions

The geometry of the computational domain is shown in Fig. 1. The initial conditions for gas are  $\rho_o =$  $1.2kg/m^3$  and  $p_o = 101.3kpa$ , with a coming shock at x = -0.5. There are no particles from  $-1.0 \le x \le 0.0$ . From  $x \ge 0.0$ , particles are initially in thermal and kinematic equilibrium with surrounding gas. The particles that are uniformly distributed in the dusty region have the following parameters for different test problems:

Mass loading,  $\rho_p$ : 0.25 kg/m³, 0.76 kg/m³; Mass material density,  $\rho_s$ : 2500 kg/m³; Particle radii,  $r_p$ : 10  $\mu$ m, 25  $\mu$ m, 50  $\mu$ m; Specific heat,  $c_s$ : 766 J/kg/K.

The lower boundary and cylinder surface are solid walls and assumed adiabatic and impermeable. A reflecting boundary condition is assumed for both the gas and particle phase. Particles are assumed to experience a perfect elastic collision with the wall and reflect from the wall. The right and upper boundaries are open boundaries where a nonreflection boundary condition is used for the gas phase and a zero normal gradient condition is used for particle phase.

## Numerical Method of Solutions

The system of partial differential equations described in the previous paragraph is integrated numerically. Equation (1) is repeated here:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = S. \tag{1}$$

In order to solve this equation numerically, an operator time-splitting technique is used. Assuming that all flow variables are known at a given time, we can calculate its advancement in time by splitting the integration into two stages.

In the first stage, the conservative part of Eq. (1) is solved:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0.$$
(11)

The Second Order Godunov method is used for the integration of the subsystem of equations describing the flow of the gaseous phase (first four components of Eq. (1)). The method is well documented in literature.^{14,15,16} The subsystem of equations describing the particle phase flow is integrated using a simple first order finite difference upwind scheme¹⁷. This is done because there is no shock in the particle phase and the upwind scheme leads to a robust and accurate integration scheme.

In the second stage, the source term is added and the following equation is solved:

$$\frac{\partial U}{\partial t} = S. \tag{12}$$

To integrate this equation in time, we need to obtain S as a function of U. We calculate S through Eqs. (5) to (10).

In order to produce a solution of the high spatial accuracy at minimal computational cost, an unstructured triangular grid with adaptive procedure is used. The adaptive procedure will automatically enrich the mesh by adding points in the high gradient (or high flow activity) region of the flow field and by removing points (coarsening mesh) where they are not needed. The dynamic nature of mesh enrichment is shown in Fig. 4 for three different time frames. One can see that a very fine mesh is generated around shock fronts and other steep density gradient regions.

## Results

# Model Validation for One-Dimensional Shock Wave Propagation in Dusty Gas

To test the momentum and heat exchange mechanism for the current two-phase model, we first simulate a one-dimensional problem of a normal shock wave propagating into a dusty gas. We numerically simulate the experiments conducted by Sommerfeld.³ In the experiments, small glass spherical particles of material density  $\rho_s = 2500 kg/m^3$ , specific heat capacity  $c_s = 766J/kg/K$ , and average diameter of 27  $\mu m$  were used as the suspension particle phase. The incoming shock Mach number M, and particle loading ratio  $\eta = \rho_p / \rho$ , are two varying parameters. The experimental results and our numerical simulation results of shock Mach number as a function of distance for two test cases are shown in Fig. 2a ( $\eta = 0.63, M_s = 1.49$ ) and Fig. 2b  $(\eta = 1.4, M_s = 1.7)$  for comparison purposes. It is clear that the agreement between the prediction of shock wave attenuations from our present model and the experimental results is very good.

# Two-Dimensional Simulation Results for Pure Gas Flow

To test the accuracy of the two-dimensional computation, we first compute the pure gas flow case of a shock wave reflection and diffraction over a semicircular cylinder. We then compare the simulation with experimental results. Shock wave reflection on a wedge has been extensively studied by many researchers (see e.g., review papers of Ben-Dor and Dewey¹⁸ and Hornung¹⁹). Shock wave reflection over circular cylinders was numerically simulated by Yang et al.²⁰. Recently, Glass et al.²¹ using high order Godunove scheme numerically simulated the shock wave reflection over a half diamind and semicircular cylinder and compared the simulation with experimental results obtained by Kaca.²². Figure 3 is a schematic sketch to show four stages of a shock wave reflection over a semicircular cylinder and terminologies which will be used to describe the flow fields. Figures 4a, 4b and 4c show the calculated density contours at three moments in time. When the planar shock wave propagates and encounters the cylinder, it first experiences a head-on collision with the front stagnation point of the semicylinder and then immediately reflects from the first quarter of the cylinder, forming a regular reflection (RR), which is shown in Fig. 4a. The regular reflection consists of two shocks, i.e., the incident shock and reflected shock, both originating from a common point on the cylinder wall. As the shock wave propagates up the cylinder, the angle between the incident shock and the tangent of the cylinder becomes larger and the regular reflection changes into a Mach Reflection (MR) as shown in Fig. 4b. The MR is characterized by three waves, incident shock (I), reflected shock (R), and Mach stem (M). All three shocks intersect at one common point called triple point (T). For Mach reflection, one can further observe both Simple Mach Reflection (SMR) and Complex Mach Reflection (CMR). Later, as the incident shock wave passes over the top of the semicircular cylinder, it experiences a rarefaction on the back side of the cylinder. The shock wave system grows upward and rightward with a curved Mach stem and forms a slipline(S) or a contact discontinuity (CD) as shown in Fig. 4c. In Figs. 5a and 5b, the interferogram from

the experiment²² and density contours from the present simulation are compared for same time. Note that the a by the ambient gas density from Fig. 5, the results sh as well as qualitative agree simulation and experiment

e same flow condition and sity levels are normalized Fig. 5. As one can see an esseilent quantitative nt between the numerical results.

# Two-Dimensional Simulation Results of Two-Phase Flow

The basic setup for the two-phase simulation is shown in Fig. 1. Here the planar shock with Ms = 2.8propagates into an area of a dusty gas and impinges on a semicircular cylinder. The interface between pure air and dusty air is located at x = 0.0 of the computational domain. The area of the dusty air contains a semicylinder with a radius of 1m. The size of the computational domain, initial parameters of the gas, parameters of the incoming shock, size of the semicylinder and its location in the computational domain, are the same as in 🜰 the reflection and diffraction simulation presented in the previous section.

The main objective of this set of simulations is to study the effects of particle size and particle loading on the parameters of the reflected and diffracted shock waves. It is also valuable to study the dynamics of particle media, since it is extremely difficult to observe these interactions experimentally in an optically thick dusty g**as**.

The first set of simulation results is shown for the case with dust parameters  $r_p = 10 \mu m$  and  $\rho_p = 0.25$  $kg/m^3$ . The gas parameters and the parameters of the  $\blacksquare$ incoming shock wave are the same as in the pure gas case presented above. In Figs. 6a and 6b, particle density contours and gas density contours are shown at the stage when the incident shock wave has reached the top of the semicylinder. At this stage, the largest difference of velocity and temperature between the two phases exists ( and the nonequilibrium between the two phases causes extensive heat and momentum exchange between particles and the gas. The presence of the particles causes a widening of the shock that is more noticeable for the incident shock. Also, an additional contour line is observed at the dusty gas/pure gas interface. Comparing gas density for pure gas flow field shown in Fig. 4b and the dusty gas density of Fig. 6b, we see that Mach stem and contact discontinuity resulting from Mach reflection are smeared in the dusty gas flow due to the presence of the particle. The particle density contours depict significant piling up of the dust particles at the leading edge stagnation point of the cylinder.

In Figs. 6c and 6d, the particle density and gas density contours are shown at the stage where significant diffraction has taken place and the shock front is

approaching the trailing edge of the cylinder. Further widening of the shock and some smearing of the slip line that originates at the triple point is evident. The particle density contours reveal that the particles were swept by the gas flow to the area of triple point and slip line for the gas flow, leaving a small amount of particles at the leading edge. We should note that this behavior is specific for our problem, where at t = 0, the dusty gas area was located at x = 0 and there is no influx of the dust from the left boundary. Also in Fig. 6c, we note that the particles reach a distinct local maxima at the distance about 25 cm behind the incident shock front. At this maxima the particle density is 0.86  $kg/m^3$ , which is more than three times the initial particle density. The particle density reaches a maximum value at the location of the gas slip line. We observe a significant accumulation of the particles that have been moved along the slip line by the shear flow. The larger concentration of particles in the vicinity of triple point is, in fact, the remainder of the particles that were swept up with the flow. It is also interesting to observe that an essentially particle-free zone is formed due to the effects of particles slipping over the top of the cylinder and the rarefaction wave behind the cylinder.

To study the influence of particle loading on the dynamics of reflection and diffraction, we have simulated the case with a dust density of  $\rho_p = 0.76$ , and with  $r_p = 10 \mu m$ . The results for this simulation are shown in Figs. 7a and 7b in the form of particle and gas density contour plots. In Fig. 7a, the particle density contours are shown at the diffraction phase. Here we can observe two local maxima for particles accumulated in the regions along the slip line characteristic for the shock diffraction process. It should be noted here that in our problem the conditions behind the incident shock wave and its structure are in constant flux. At higher loading, dust will have a profound effect on the gasdynamics of reflection and diffraction. Figure 7b shows gas density contours for the reflection stage corresponding to the particle density contours shown in Fig. 7a. We observe from Fig. 7b that the incident shock wave is significantly smeared and the triple point cannot be clearly identified. Because of the widening of the incident shock, the area where the reflected and incident shock join is spread over 50 cm distance. From Fig. 7a, we see that the high density particle region is spread wider than in the previous case, and the particle density reaches its maximum at about 25 cm behind the front. There is a visible maximum in gas density in the area where the reflected shock is interacting with the area of maximum particle density behind the incident shock. A part of the reflected shock front that is moving to the left side of the computational domain is not affected by the dust since it is propagating into an area with little dust concentration. The parameters and structure of this part of the front remain basically the same as in the case of pure gas flow.

To examine the effect of particle size on the reflection-diffraction process, we simulated a case where the particle loading and gas flow conditions are the same as in the previous case with particle density  $\rho_p = 0.76$ . However, the particle size is  $r_p = 50 \mu m$ . In Figs. 8a and 8b, results for this simulation are illustrated by particle density and gas density contours correspondingly. The particle contour plots depict a significantly wider particle relaxation zone than in the previous case. The longer relaxation zone is caused by the larger inertia of larger particles. The maximum particle density of 2.64  $kg/m^3$  is reached 50 cm behind the incident shock front. This value is significantly lower than 4.01  $kg/m^3$  reached behind the shock in calculation with 10  $\mu m$  particles. Larger particles skip above the apex of the cylinder creating a void where particle density is very small. Also. because of larger particle size, the maxima of particle concentration that has been created by a slip surface of the reflected Mach stem is indistinct. The main reason for this is that the particles do not follow the gas flow as closely as they did in the previous case due to the inertia of large particles. The maximum particle density is reached here at the slip line behind the Mach stem.

Comparing gas density of Fig. 8b to the previous case shown in Fig. 7b, we observe that the slip line behind the curved Mach stem becomes less distinguishable in Fig. 7b. This result is expected, since at fixed particle loading, smaller particles have a larger surface/volume ratio and the larger surface/volume ratio increases momentum and heat exchange between the two phases.

One general comment regarding all three cases presented above: Due to the heat and momentum exchange between the two phases, the shock is decaying as it traverses the cylinder. Ultimately, it will reach a new equilibrium state as suggested by Fig. 2. It should be noted that the shock considered in the previous three cases is still in the process of transition in the gas-particle mixture.

## Conclusion

In this paper, numerical study for a two-phase compressible flow is performed for the reflection and diffraction of a shock wave propagating over a semicircular cylinder in a dusty gas. The following conclusions can be made:

(1) The validation study for a one-dimensional shock wave propagating in a dusty gas blows a good agreement between the prediction of our model and the results of the experiment:

(2) For a two-dimensional gas-only flow, numerical results agree well with existing experimental data quali-

tatively and quantitatively, indicating that the gas phase is accurately simulated by the adaptive grid technique;

(3) Particles in the gas can have a profound effect on the shock wave reflection and diffraction pattern. which is a function of particle size and loading. The lesser the particle loading, the less the influence of particle on the flow field:

(4) In the three simulation cases, there is a particle accumulation behind the "back shoulder" of the semicircular cylinder due to the effect of particle inertia and gas rarefaction wave;

(5) For different particle size at fixed particle loading, the larger particle will have a longer relaxation zone and less accumulation at "back shoulder" and behind incident shock. The gas density contours show a less distinguishable slip line in small particle case than in the large particle case.

## Acknowledgments

The work reported here was partially supported by DARPA and AFOSR under contract no. F49620-89-C-0087. The authors would like to thank LtCol. J. Crowley and Dr. A. Nachman for their interest in this project.

## References

¹Marble, F., "Dynamics of Dusty Gases," Annual Review of Fluid Mechanics, Vol. 2, 1970, pp. 369-377.

²Rudinger, G., "Some Properties of Shock Relaxation in Gas Flows Carrying Small Particles," *Physics* of Fluids, Vol. 7, 1964, pp. 658-663.

³Soo, S. L., *Particulates and Continuum*, Hemisphere Publishing Corporation, New York, 1989, pp.266-324.

⁴Crowe, C. T., "Review-Numerical Models for Dilute Gas Particle Flow," Journal of Fluids Engineering, Vol. 104, Sept. 1982, pp. 297-303.

⁵Hwang, C. J. and Chang, G. C., "Numerical Study of Gas-Particle Flow in a Solid Rocket Nozzle," AIAA Journal, Vol. 26, No. 6, 1988, pp. 682-689.

⁶Chang, I-Shih, "Three-Dimensional. Two-Phase, Transonic, Canted Nozzle Flows," AIAA Journal, Vol. 28, No. 5, 1989, pp. 790-797.

⁷Miura, H. and Glass I. I., "Oblique Shock Wave in a Dusty-Gas Flow Over a Wedge," *Proceedings of Royal Society of London A.*, Vol 408, 1986, pp. 61-68.

⁸Sommerfeld, M., "The Unsteadiness of Shock Waves Propagating through Gas-Particle Mixtures," *Experiments in Fluids*, Vol. 3, No. 2, 1985, pp. 197-206. ⁹ Kim, S-W. and Chang, K-S. ⁽Reflection of Shock Wave from a Compression Corner 1⁽⁾ Particle-laden Gas Region," Shock Waves, Vol. 1, No (), 1991, pp. 65-73.

¹⁰Sichel, M., Baek, S. W., Kau B. and Nicholls. "The Shock w-AIAA Journal, Vol. 23, No. 9, 1

¹¹Fan, B. and Sichel, M., "' omprehensive Model for the Structure and Dust Detc tions," *Twenty-Second Symposium (International) on Combustion*, The Combustion Institute, PA, 1988, pp. 1741-1750.

¹²Clift, R., Grace, J. R. and Weber, M. E., Bubbles. Drops and Particles, Academic. New York, 1978.

¹³Drake, R.M., Jr., "Discussions on G.C. Vliet and G. Leppert: Forced Convection Heat Transfer from an Isothermal Sphere to Water," *Journal of Heat Transfer*, Vol. 83, No. 2, 1961, pp. 170-179.

¹⁴Eidelman. S., Colella, P., and Shreeve, R.P., "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modelling," *AIAA Journal*. Vol. 22, No. 11, 1984, pp. 1609-1615.

¹⁵Colella, P., "A Direct Eulerian MUSCL Scheme for Gas Dynamics," SIAM Journal Scientifical and Statistical Computation, Vol. 6, 1985, pp. 104-117.

¹⁶Colella, P. and Glaz, H.M., "Efficient Solution Algorithms for the Riemann Problem for Real Gases," Journal of Computational Physics, Vol. 59, No. 3, 1985, p. 264-289.

¹⁷Peyret, R. and Taylor, T. D., Computational Methods for Fluid Flow Springer-Verlag, New-York, 1983, pp. 18-31.

¹⁸Ben-Dor, G. and Dewey J. M., "The Mach Reflection Phenomenon: A Suggestion for and International Nomenciature," *AIAA Journal*, Vol. 23, N. 10, 1985, pp. 1650-1652.

¹⁹Hornung, H., "Regular and Mach Reflection of Shock Waves," Annual Review of Fluid Mechanics, Vol. 18, 1986, pp. 33-58.

²⁰Yang, J. Y., Liu, Y. and Lomax H., "Computation of Shock Wave Reflection by Circular Cylinder," AIAA Journal, Vol. 25, 1987, No. 5, pp. 683-689.

²¹Glass, I. I., Kaca, J. Zhang, D. L. Glas, H. M., Bell, J. B. and Tangenstein, J., Current Topics in Shock Waves, 17th Int'l Symp. on Shock Tubes and Waves, edited by Y. W. Kim, AIP Conference Proceedings 208, American Institute of Physics, New York, 1990, pp. 246-251.

²²Kaca, J., "An Interferometric Investigation of Diffraction of a Planar Shock Wave over a Semicircular Cylinder." UTIAS Technical Note 269, Institute for Aerospace Studies, University of Toronto, 1988.

Reflection of Shock Particle-laden Gas 1991, pp. 65-73. nan, C. W., Maker. ignition of Dusts." . pp. 1374-1380.





I – Incident Shock R – Reflected Shock M – Mach Stem S – Slipline T – Triple Point

Figure 1. An illustration of the considered flow field.

Figure 3. Stages of shock wave reflection over a semicircular cylinder, (a) before collision, (b) regular reflection, (c) Mach reflection, (d) well developed Mach reflection.



Figure 2. Comparison between computational prediction and experimental measurement of shock wave attenuation for (a)  $M_s = 1.49$ ,  $\eta = \frac{\rho_s}{\rho_o} = 0.63$  and (b)  $M_s = 1.7$ ,  $\eta = \frac{\rho_s}{\rho_o} = 1.4$  (o experiment. - calculation).







Figure 4. Computed density contours with adapted grid at three different times: (a) regular reflection (RR), (b) Mach reflection (MR) and (c) diffraction with slipline (S).



(a)



Figure 5. Comparison for  $M_r = 2.80$  gas - only flow. (a) interferogram from experiment conducted by Kaca (1988), (b) density contours from present calculation.

•



Figure 7. Density contours for the case:  $M_s = 2.8$ ,  $\rho_p = 0.76 \text{ kg/m}^3$  and  $r_p = 10 \mu \text{m}$ , (a) particle density and (b) gas density.

Figure 8. Density contours for the case:  $M_s = 2.8$ ,  $\rho_p = 0.76$  and  $r_p = 50 \mu m$ . (a) particle density and (b) gas density.



Figure 6. Density contours for the case:  $M_s = 2.8$ ,  $\rho_p = 0.25 \text{ kg/m}^3$ ,  $r_p = 10 \mu \text{m}$  at two different times, (a) particle density at  $t_1$ , (b) gas density at  $t_1$ , (c) particle density at  $t_2$ , and (d) gas density at  $t_2$ .



AIAA 93-3089 Acoustic Wave Focusing in an Ellipsoidal Reflector for Extracorporeal Shock-wave Lithotripsy Itzhak Lottati and Shmuel Eidelman Science Applications International Corporation

McLean, VA 22102

# AIAA 24th Fluid Dynamics Conference July 6-9, 1993 / Orlando, FL

# ACOUSTIC WAVE FOCUSING IN AN ELLIPSOIDAL REFLECTOR FOR EXTRACORPOREAL SHOCK-WAVE LITHOTRIPSY

by

Itzhak Lottati^{*} and Shmuel Eidelman[†] Science Applications International Corporation

### Abstract

Simulations of acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy (ESWL) are presented. The simulations are done on a structured/unstructured grid with a modified Tail equation of state for water. The Euler equations are solved by applying a second-order Godunov method. The computed results compare very well with the experimental results.

## Introduction

Research relating to focusing of shock and acoustic waves is of practical interest for extracorporeal shockwave lithotripsy (ESWL). A considerable body of work is dedicated to this subject (see e.g., review in Ref. 1), and numerical simulations play a prominent role in research on these devices. It is conceivable that real-time numerical simulation can be used for better assessment of shock-wave impact on the targeted areas and more effective focusing. Requirements for these real-time simulations in terms of robustness, accuracy and efficiency are very stringent, and can be satisfied only with the most advanced numerical methods.

Structured rectangular grids allow the construction of numerical algorithms that integrate the fluid conservation equations efficiently and accurately. The efficiency of these schemes results from the extremely low storage overhead needed for domain decomposition and the efficient and compact indexing, which also defines domain connectivity. These two factors allow code construction based on a structured domain decomposition that can be highly vectorized and parallelized. Integration in physical space on orthogonal and uniform grids produces numerical algorithms with the highest possible accuracy. The disadvantage of structured rectangular grids is that they cannot be used to decompose computational domains with complex geometries. Thus it

[•]Dr. Lottati is a Research Scientist with Science Applications International Corp. (SAIC), 1710 Goodridge Dr., MS 2-3-1, McLean, VA 22102, [†]Dr. Eidelman, Research Scientist, SAIC, Associa - Fellow AIAA

Copyright @ American Institute of Aeronautics and Astronautics, Inc., 1993, All rights reserved. is difficult to represent computationally a complex computational domain with the curved boundaries characteristic of typical reflectors used in ESWL devices.

The early developers of computational methods realized that, for many important applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe curved computational domain boundaries using the stair-step approximation available with the rectangular domain decomposition technique. To overcome this difficulty, the techniques of boundary-fitted coordinates were developed. With these techniques, the computational domain is decomposed on quadrilaterals that can be fitted to the curved domain. The solution is then obtained in physical space using the geometrical information defining the quadrilaterals, or in the computational coordinate system that is obtained by transformation of the original domain into a rectangular domain. The advantage of this technique is that it employs the same indexing method as the rectangular structured domain decomposition methods that also serve to define domain connectivity. The boundary fitted coordinate approach leads to efficient codes, with approximately a 4:1 penalty in terms of memory requirement per cell as compared with rectangular domain decomposition. However, this approach is somewhat restricted in its domain decomposition capability, since distortion or large size variations of the quadrilaterals in one region of the domain lead to unwanted distortions or increased resolution in other parts of the domain. An example of this is the case of structured body-fitted coordinates used to simulate flows over a profile with sharp trailing edges. In this case, increasing the resolution in the vicinity of the trailing edge increases resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this disadvantage are those using unstructured triangular grids. These methods were developed to cope with very complex computational domains. The unstructured grid method, while efficient and powerful in domain decomposition, results in codes that must store large quantities of information defining the grid geometry and connectivity, and have large computational and storage overheads. As a rule, a code with an unstructured grid requires greater storage by a factor of 10, and will run about 5 times slower on a per cell per iteration basis than a structured rectangula: code.

Unstructured triangular meshes are designed to pro-

vide a grid that is fitted to the boundary of complex geometry. The flexibility of the unstructured mesh that allows complex geometry to be gridded should be weighed against the huge memory requirement needed to define the interconnectivity of the triangles. To cut down on the memory overhead, unstructured grid methods are used to their best advantage when combined with grid adaptivity. This feature usually allows the dynamic reallocation of triangles according to the physics and geometry of the problem solved, which leads to a substantial reduction in the number of cells needed for the domain decomposition. However, this advantage is highly dependent on the problem solved. Adaptive unstructured grids have an advantage over nonadaptive unstructured domain decomposition if the area of high resolution needed is around one-tenth of the global area of the computational domain. As a result, while the adaptive unstructured method may be extremely effective for simulating flow with multiple shock waves in complex geometries. it becomes extremely inefficient when high resolution is needed in a substantial area of the computational domain.

Our approach to domain decomposition for ESWL applications combines the structured and unstructured methods to achieve better efficiency and accuracy. Under this method, structured rectangular grids are used to cover most of the computational domain, and unstructured triangular grids are used only to patch between the rectangular grids (Fig. 1) or to conform to the curved boundaries of the computational domain (Fig. 2). In these figures. an unstructured triangular grid is used to accurately define the curved internal or external boundaries and a structured rectangular grid is used to decompose the regions of the computational domain that have a simple geometry.

## Mathematical Model

We consider a system of two-dimensional Euler equations written in conservation law form:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \tag{1}$$

where

$$U = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \end{vmatrix}, \quad F = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{vmatrix}, \quad G = \begin{vmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(e+p) \end{vmatrix}.$$

Here u, v are the x, y velocity vector components, p is the pressure.  $\rho$  is the density, and e is total energy of the fluid.

The equation of state for water was adopted from Ref. 2. The actual pressure and density  $\tilde{p}, \tilde{\rho}$  in water are modified and then applied in the Euler solver. The modified pressure and density are given as

$$p = \tilde{p} + B. \tag{2}$$

$$\rho = \tilde{\rho}/(1 + \tilde{\rho}/B)^n, \qquad (2a)$$

where B = 2955 bar and n = 7.44 to adjust the velocity of sound to that for water ( $a_0 = 1483$  m/sec).

The initial pressure distribution  $\tilde{p}(r)$  in the left focal point is chosen as

$$\tilde{p}(r) = 1.0 \text{ bar } + \Delta p \exp \left[-(r - r_0)/(a_0 r)\right],$$
 (2b)

where  $\Delta p$  is the intensity of the blast,  $\tau$  is a time scale and  $a_{\sigma}$  is sound speed in water ( $\tau = 3\mu$ sec).

It is assumed that an initial distribution of the fluid parameters is given at t = 0, and the boundary conditions defining a unique solution are specified for the computational domain.

## Integration Algorithm

The system of governing equations (1) can be written in the following form:

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{Q} = 0, \qquad (3)$$

where Q represents the convective flux vector. By integrating Eq. (3) over space and using Gauss' theorem, we obtain the following expression:

$$\frac{\partial}{\partial t} \int_{\Omega} U dA + \oint_{\partial \Omega} \mathbf{Q} \cdot d\mathbf{l} = 0, \qquad (4)$$

where dl = ndl, n is the unit normal vector in the outward direction, and  $d_i$  is the element of length on the boundary of the domain. The variable  $\Omega$  is the domain of computation and  $\partial \Omega$  is the domain boundary.

Equation (4) can be discretized for each element (cell-triangle) of the domain:

$$\frac{(U_i^{n+1}-U_i^n)}{\Delta t}A_i = \sum_{j=1}^3 \mathbf{Q}_j^{n+\frac{1}{2}} \mathbf{n}_j \Delta l_j, \qquad (5)$$

where  $A_i$  is the area of the cell;  $\Delta t$  is the marching time step;  $U_i^{n+1}$  and  $U_i^n$  are the primitive variables at the center of the cell at time *n* and at the updated (n+1)sttimestep;  $Q_j^{n+\frac{1}{2}}$  are the value of the fluxes across the three boundaries edges on the circumference of the cell, where  $n_j$  is the unit normal vector to edge *j* of the boundary, and  $\Delta l_j$  is the length of the boundary edge j. Equation (5) is used to update the physical primitive variables  $U_i$  according to computed fluxes for each timestep  $\Delta t$ . The time step is subjected to the Courant-Fredrichs-Levy (CFL) constraint.

To ensure a second order spatial accuracy, the gradient of each primitive variable is computed in the baricenter of the cell. This gradient is used to define the projected values of primitive variables at the two sides of the cell edge, as shown in Fig. 3. The gradient is approximated by a path integral

$$\int_{\Omega} \nabla U_i^{\text{cell}} dA = \oint_{\partial \Omega} U_j^{\text{edge}} d\mathbf{l} .$$
 (6)

The notation is similar to the one used for Eq. (5), except that the domain  $\Omega$  is a single cell and  $U_i^{cell}$  and  $U_j^{edge}$  are values at the baricenter and on the edge respectively. The gradient is estimated as

$$\nabla U_i^{\text{cell}} = \frac{1}{A} \sum_{j=1}^3 \tilde{U}_j^{\text{edge}} \mathbf{n}_j \Delta l_j, \qquad (7)$$

where  $\tilde{U}_{j}^{\text{edge}}$  is an average value representing the primitive variable value for edge j.

The gradients that are computed at each baricenter are used to project values for the two sides of each edge by piecewise linear interpolation. The interpolated values are subjected to monotonicity constraints.³ The monotonicity constraint assures that the interpolated values are not creating new extrema.

The monotonicity limiter algorithm can be written in the following form:

$$U_{\text{pro}}^{\text{edge}} = U_i^{\text{cell}} + \phi \nabla U_i \cdot \Delta \mathbf{r}, \qquad (8)$$

where  $\Delta r$  is the vector from the baricenter to the point of intersection of the edge with the line connecting the baricenters of the cells over the two sides of this edge.  $\phi$ is the limiter coefficient that limits the gradient  $\nabla U_i$ .

First, we compute the maximum and minimum values of the primitive variable in the i's cell and its three neighboring cells that share common edges (see Fig. 3):

$$U_{\text{cell}}^{\max} = \max\left(U_{k}^{\text{cell}}\right) \\ U_{\text{cell}}^{\min} = \min\left(U_{k}^{\text{cell}}\right) \} k = i, 1, 2, 3 . \tag{9}$$

The limiter can be defined as:

$$\phi = \min\{1, \phi_k^{lr}\}, \ k = 1, 2, 3, \tag{10}$$

where the superscript lr stands for left and right of the three edges (6 combinations altogether).  $\phi_k^{lr}$  is defined by:

$$\phi_{k}^{lr} = \frac{\left[1 + \operatorname{Sgn}\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{\text{cell}}^{\max} + \left[1 - \operatorname{Sgn}\left(\Delta U_{k}^{lr}\right)\right] \Delta U_{\text{cell}}^{\min}}{2\Delta U_{k}^{lr}}$$

 $\mathbf{k} = 1, 2, 3, (11)$ 

where  $\Delta U_k^{lr} = \nabla U_i^{lr} \cdot \Delta r_k$  and

$$\Delta U_{\text{cell}}^{\max} = U_{\text{cell}}^{\max} - U_{i}^{\text{cell}}$$

$$\Delta U_{\text{cell}}^{\min} = U_{\text{cell}}^{\min} - U_{i}^{\text{cell}}$$
(12)

To obtain second-order accuracy in space and time, we subject the projected values of the left and right side of the cell edge to characteristic constraints following Ref. 4. The one-dimensional characteristic predictor is applied to the projected values at the half timestep  $t^n + \Delta t/2$ . The characteristic predictor is formulated in the local system of coordinates for the one dimensional Euler equation. We illustrate the implementation of the characteristic predictor in the direction of the unit vector  $n_e$ . The Euler equations for this direction can be written

$$W_t + A(W)W_{nc} = 0,$$
 (13)

where

$$W = \begin{cases} \tau \\ u \\ p \end{cases}; \ A(W) = \begin{pmatrix} u & -\tau & 0 \\ 0 & u & \tau \\ 0 & \rho c^2 & u \end{pmatrix}, \quad (14)$$

where  $\tau = \rho^{-1}$ ,  $\rho$  denotes density, and u, p are the velocity and pressure. The matrix A(W) has three eigenvectors  $(l^{\#}, r^{\#})$  (*l* for left and *r* for right, where # denote +, 0, -) associated with the eigenvalues  $\lambda^{+} = u + c$ ,  $\lambda^{0} = u$ ,  $\lambda^{-} = u - c$ .

An approximation of the value projected to an edge, accurate to second order in space and time, can be written

$$W_{i+\Delta r}^{n+1/2} \approx W_i^n + \frac{\Delta t}{2} \frac{\partial W}{\partial t} + \Delta r \frac{\partial W}{\partial r_{nc}}$$

$$\approx W_i^n + \left[ \Delta r - \frac{\Delta t}{2} A(W_i) \right] \frac{\partial W}{\partial r_{nc}}$$
(15)

An approximation for  $W_{i+\Delta r}^{n+1/2}$  can be written as

$$W_{i+\Delta r}^{n+1/2} = W_i + (\Delta \mathbf{r}_i - \frac{\Delta t}{2} (M_x M_n) \mathbf{n}_c) \cdot \nabla W_i, \quad (16)$$

where

$$(M_x M_n) = \begin{cases} \operatorname{Max}(\lambda_i^+, 0) & \text{for cell left to the edge} \\ \operatorname{Min}(\lambda_i^-, 0) & \text{for cell right to the edge} \end{cases}$$
(17)

The gradients t = 1 ied in the process of computing the projected values at  $t^n + \Delta t/2$  are subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is solved at the edge. The solution of the Riemann problem defines the flux  $\mathbf{Q}_{j}^{n+\frac{1}{2}}$  through the edge. The fluxes through the edges of triangles are then integrated (Eq. 5), thus updates the variables at  $t^{n+1}$ . One of the advantages of this algorithm is that calculation of the fluxes is done over the largest loop in the system (the loop over edges) and can be carried out in the vectorized or parallelized loop. This makes the algorithm efficient.

The algorithm presented is a modification of the algorithm of Ref. 5, which was derived for a structured mesh. The present algorithm has been applied to simulate a wide range of flow problems and has been found to be very accurate in predicting the features of the physics. The performance of the algorithm is well documented in Refs. 6-9. The algorithm for the rectangular cells are identical except the cell has four edges (Eq. 5).

## Sound Wave Focusing in an Ellipsoidal Reflector

For our simulations, we chose a deep reflector shaped like an ellipsoid, which was used for ESWL by Dornier and other companies. A schematic of the cross section of this reflector is shown in Fig. 4. Strong acoustic waves are generated in the left focal point of the ellipsoid by an instantaneous release of energy and are refocused at the right focal point. Ideally, a reflector should employ waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to significant distortions in wave propagation and impair simple geometrical focusing.

Figure 2 shows the computational domain and grid for the ellipsoidal reflector that we used in our study. In order to illustrate the concept of the composite structured/unstructured grid, we have shown only every sixteenth cell of the grid that was actually used for the simulation. In this example, we observe that the structured rectangular grid covers about 90% of the computational domain, and the unstructured triangular grid is restricted to the curved surface of the ellipsoid and covers about 10% of the domain. The major axis of the ellipsoid is 150 mm and the minor axis is 90 mm.

Two simulations were conducted with two different  $\Delta p$  values to study how the intensity of the blast affects focusing of waves in the reflector. The first simulation was done with  $\Delta p = 725$  bar and  $\tau = 3\mu$ s where  $|r-r_0| < 10$  mm. The other simulation was done by using pressure three times larger than in first simulation.

In Figs. 5a-5d simulation results for the  $\Delta p = 725$  bar conditions are shown in the form of pressure con-

tour plots. Figure 5a shows pressure distribution for the initial stage of wave propagation before the wave front has reached the surface of the reflector. The contour plots are shown at  $t=1.10 \times 10^{-1}$  sec. At this time the maximum pressure in the wave as dropped to 173 bar. In Fig. 5b pressure concours  $\Rightarrow$  shown at t=3.32 ×10⁻⁵sec. Here we observe that the wave reflected from the surface of the reflector has man mum pressure about five times than that of the incident wave. However, both wave fronts propagate through the water with a constant speed equal to the speed of sound, and the phase shift observed in Fig. 5b holds through the calculation. In Fig. 5c the simulation results are shown at the stage when the incident wave is crossing the center of symmetry of the reflector. Here  $t = 8.88 \times 10^{-6}$  sec. It is interesting to note that the value of the overpressure at this location was used in Ref. 1 as a normalizing value for presentation of the experimental and computational results. In our case for the initialization with  $\Delta p = 725$ bar the incident pressure at the center of the ellipsoid is p = 11.1 bar. In Fig. 5d simulation results are shown at  $t = 19.2 \times 10^{-5}$ sec, when maximum focusing of the reflected wave take place. The pressure values in the focal point reaches 188 bar. This maximum is immediately followed by a negative phase with a minimal pressure of 163 bar. This strong pressure variations can cause, disintegration of the stones by the ESWL apparatus.

In Figs. 6a-6b simulation results are shown for the second case of  $\Delta p = 2175$  bar. As we can see in Fig. 6a, this value of the initial overpressure produces an incident wave with about 33 bar, which is a bit higher than the 29 bar value observed in Ref. 1. The wave structure at the time of focusing is shown in Fig. 6b. Here we can observe that for this case the maximum pressure reaches 494 bar, followed by a 371 bar minimum. Comparing this case with that reported above, we conclude that the amplification at the focal point is smaller in the second case.

The waves observed in the system are of acoustic intensity and are propagating at the speed of sound. The reflected wave will therefore not be able to catch up with the incident wave. Except for some compressibility effects in the initiation and focusing stages when pressures are high, the fluid will behave as incompressible. Figure 7 shows the density contour for the first case ( $\Delta p = 725$ bar). As expected, the compressibility effect is negligible.

In Fig. 8 the simulation results are compared with the experimental results in a plot of normalized pressures as function of distance from the focal point. In this figure the simulation results for the case of initiation with  $\Delta p = 725$  bar and  $\Delta p = 2175$  bar are shown by the curves marked with triangles and rectangles respectively. The experimental results for the 29-bar incident pressure (which most closely fits our second simulation) are shown by the curve marked by circles. In Fig. 8 we see that the maximum reflection factor is achieved for weaker waves, which is consistent with the results reported in Ref. 1. The simulation results are very close to the experimental ones in the case of  $\Delta p = 2175$  bar initiation for focal point location and pressure amplification factor, which validates the simulation methodology.

In all the figures presented, the method of composite domain decomposition works extremely well, producing solutions with no seams at the interfaces. We should mention here that our test problem is particularly sensitive because the main acoustic waves are weak, and any inaccuracy introduced at the grid interfaces would produce a distortion in the phase or in the intensity of the traveling waves that would be a visible disturbance evident in the results.

## **Conclusions**

A composite method of structured/unstructured domain decomposition is introduced as an efficient technique for dealing with the computational domains of complex geometry. We have simulated a demanding acoustic wave focusing problem and have shown that our approach leads to accurate wave propagation without any reflection or distortion at the structured/unstructured grid interfaces. Note that for the acoustic focusing problem as simulated and presented in this paper, both structured and unstructured methods of domain decomposition can be shown to be inadequate if used separately. The structured method has difficulty describing the curved boundaries of the computational domain, while the unstructured method is totally inefficient in describing phenomena with wide fronts that occupy a large portion of the computational domain. Our hybrid method combines the advantages of structured and unstructured methods of domain decomposition. This hybrid technique combines the efficiency of the unstructured grid, which accurately represents curved walls, with the computational and memory efficiency of the structured grid in the majority of the computational domain. We also attribute the quality of the numerical result to the Second Order Godunov method. which allows a consistent, accurate and robust formulation for handling both grids and boundary conditions.

## Acknowledgment

The work reported here was partially supported by ARPA and ONR. The authors would like to thank Col James Crowley and Dr. Lawrence Kabecoff for their interest in this project.

# References

- 1. H. Gronig, "Past, Present and Future of the Shock Focusing Research," Proceedings of the International Workshop on Shock Wave Focusing, Sendai, Japan, March 1989.
- K. Isuzugawa and M. Horiuchi, "Experimental and Numerical Studies of Blast Wave Focusing in Water," Proceedings of the International Workshop on Shock Wave Focusing, Sendai, Japan. March 1989.
- 3. B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second Order Sequel to Godunov's Method," <u>J. Comp. Phys. 32</u>, 101-136 (1979).
- P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gasdynamic Simulations," J. Comp. Phys. 54, 174-201 (1984).
- S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and Its Second Order Extension to Cascade Flow Modeling," <u>AIAA Journal</u> 22, 10, 1984.
- I. Lottati, S. Eidelman and A. Drobot, "A Fast Unstructured Grid Second Order Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699, Reno, NV (1990).
- I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive Grids Using a Fast Unstructured Grid Second Order Godunov Solver," <u>Proceeding of the Free Lagrange Conference</u>, Jackson Lake, WY, June 1990.
- I. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured Grids," <u>Proceeding of the 4th International Symposium on</u> <u>Computational Fluid Dynamics</u>, Davis, CA, September 1991.
- I. Lottati and S. Eidelman, "A Second Order Godunov Scheme on Spatial Adapted Triangular Grid," To appear in a special issue of Applied Numerical Mathematics (Proceedings of U.S. Army Workshop on Adaptive Methods for Partial Differential Equations, R.P.I., March 1992).



Figure 1. A possible candidate configuration for hybrid structured/unstructured domain decomposition.



Figure 2. A possible candidate configuration for hybrid structured/unstructured domain decomposition, representing the ellipsoid reflector grid used for the numerical simulation.



Figure 3. Second order triangular based flux calculation.



Figure 4. A schematic drawing of the center cross section of the ellipsoid reflector.





a. Time =  $1.08 \times 10^{-4}$ sec

b. Time =  $1.96 \times 10^{-4}$ sec





Figure 7. Density contours emphasizing the fact that the compressibility effect is negligible ( $\Delta p = 725$  bar at  $t = 1.92 \times 10^{-4}$ sec).



Figure 8. Normalized maximum pressure distribution on the axis of symmetry. A comparison between computed and experimental results.