L) ' N
REPORT DOCUMENTATION PAGE @

—m— : -

—_— T. SGENCY USE ONLY e3ws ~1ra) 14 <EPOAT Lalt TPl AT TiRE AN GATTE Gyidio

 —— :

—] FINAL/OI DEC 91 TO 31 MaR 93
A TITLE AND SUBTITLE T TS

gt

il

UUGM CODE DEVELOPMENT (U)

1P S,

!
s

I

6 AUTHORS)

W

6775 /DARFA

Professor 3. Eidelman F49620-89-C-0087

i e s e

AD-A269 945
|

;7 PERFCANMENG - 30ANIIAT ON o RS I R R

§ Science Applications International Corp { R

! 1710 Goodridge Drive. MS 2-3-1 :

i McLean VA 22102 AFOSRTR- | o, o 2

]

{

13 2PONSCAMG ot maime —o T Ty : T SPTNS DA MG e TORING
i AFOSR/NM C ~,~NCY AEP T NUANBER

¢ 110 DUNCAN AVE, SUITE B115 F49620-89-C-0087

. BOLLING AFB DC 20332-0001 EL ECTE

! o gEP281993

P SUDPUIAENTARY S0 TES N

* E

| i
T TSTRAUTION WALATT T 12b DiSTRIBUTION CODE

; APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED (L

i

§ 13, ABSTRALT Atyomym 200 o

The primary objective of SAIC was to develop an unstructured grid algorithm and code
that dynamically adapts to the computed solution of the time dependent Euler equations
of gasdynamics in two and three spatial dimensions. Important requirements that were
imposed on the algorithm were: robustness, accuracy, efficiency, flexibility. and
adaptability. The main research and code development effort was focused on achieving
these objectives; extensive testing and code validation effort was undertakem to
demonstrate the code's performance for realistic CFD problems. The method is accurate
in all flow regimes from subsonic to hypersonic. The main achievement was the
development of the AUGUST :ode Adaptive Unstructured Grid Upwind Second Order for
Triangles). AUGUST is implemented for solution of Euler’'s equations on dynamically
adaptive triangular or tetrahedral grids. The code fully implements the Second-Order
Godunov method, allowing ace-.rae and robust numerical solution of Euler equations of
gas dynamics. A new method was :leveloped for Direct Dynamic Grid Refinement (DDR). The .
AUGUST code was also implemented for multiphase, multicomponent flows. A combined
' structured/unstructured version of rhe AUGUST code was also developed. The AUGUST code
{ was extensively validatéd for a wide ranoe nf mnenklows -=4 has proven to be .. robust
tool.

R 22349 e
W!HMMWWMNM N

17, SECURITY CLASSIFICATION o, >eLURIIY CLASSIFICATION 19 SECURITY CLASSIFICATION {20 LIMITATION OF ABSTRALT

uNAAEEPRTED A8t rED G4ABATF1ED . |SAR(SAME AS REPORT)

[P,

5 nm i e e

NI — i
SBMTRAD YT 35500 Staraardg Snree 23R ey
Soeg By afNS. g T
LMty

UUGM CODE DEVELOPMENT

Science Applications international Corporation
An Employee-Owned Company

p’:\ :'\hr.' -

TR
'

BTN

UUGM CODE DEVELOPMENT

Science Applications International Corporation
An Employee-Owned Company

Accesion For

NTIS CRA& @’
DTIC TAB
Unannounced 0
Justification

Disiribution]

Availability Codes

) Avail and]or
Dist Special

-

>~

pen T TTTRT, 2

Past Office Box 1303, 1710 Goedridge Drive, Mclean, Virginia 22102 (703} 821-4300

UUGM CODE DEVELOPMENT

SAIC Final Report #SAIC-93/1152

Final Report for work accomplished under
AFOSR Contract #F49620-89-C-0087 during period
15 October 1990 through 30 November 1992

Contributors:
Shmuel Eidelman
William Grossmann
Isaac Lottati
Xiaolong Yang
Marty Fritts
Adam Drobot
Michael Kress
Aaron Friedman

Prepared by:
Science Applications International Corporation
Applied Physics Operation
1710 Goodridge Drive, MS 2-3-1
McLean, VA 22102

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. 6775
Monitored by AFOSR Under Contract No. F49620-89-C-0087

July 26, 1993

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied.
of the Defense Advanced Research Projects Agency or the U.S. Government.

 DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK
AND WHITE MICROFICHE.

e

EXECUTIVE SUMMARY

This progress report documents the effort conducted at SAIC from 15 October
1990 through 31 May 1993, under DARPA and AFOSR contract #F49620-89-C-0087
entitled "UUGM Code Development".

Scope of Research

The primary objective of SAIC was to develop an unstructured grid algorithm and
code that dynamically adapts to thc computed solution of the time dependent Euler
equations of gasdynamics in two and three spatial dimensions. Important requirements
that were imposed on the algorithm were: robustness, accuracy, efficiency, flexibility, and
adaptability. The main research and code development effort was focused on achieving
these objectives; extensive testing and code validation effort was undertaken to
demonstrate the code's performance for realistic CFD problems. The method is accurate
in all flow regimes from subsonic to hypersonic.

Achievements

The main achievement was the development of the AUGUST code (Adaptive
Unstructured Grid Upwind Second Order for Triangles). AUGUST is impiemented for
solution of Euler's equations on dynamically adaptive triangular or tetrahedral grids. The
code fully implements the Second-Order Godunov method, allowing accurate and robust
numerical solution of Euler equations of gas dynamics.

A new method was developed for Direct Dynamic Grid Refinement (DDR). This
method allows grid refinement in arbitrary regions of the computational domain, using
only one level of undirectness in the logical data structure. The DDR is an integral part of
the AUGUST solver and allows manipulation of the grid as a part of the solution. The
adapted grid is not only more refined in the adaptation regions of the flow but is also
improved structurally due to a refinement algorithm.

The AUGUST code was also implemented for muitiphase, muiticomponent flows.
We used a multiple-fluid description, where a separate set of conservation laws is used to

describe every flow component. In our approach Lagrangian tracers are used to describe
sparse or discrete flow components that do not form a continuum. Use of unstructured

triangular grids allows adjustment of the grid resolution to the accuracy requirements in
the flow subdomains.

A combined structured/unstructured version of the AUGUST code was also
developed. Following this approach the unstructured adaptive grid is used only in the
flow regions requiring adaptation or description of the complex geometry elements. The
structured grid is used to simulate the larger part of the computational domain. This
approach has allowed us to capitalize on the advantages of both structured and
unstructured grid approaches. Using the structured/unstructured grid version of the

AUGUST code, we simulated the shock wave focusing problem for the reflector used for
extracorporeal shock-wave lithotripsy. In this simulation, we showed that the solution
smoothly transits through the interfaces between the grids, maintaining the same accuracy
and resolution.

The AUGUST code was extensively validated for a wide range of probler.: and
has proven to be a robust tool. The code was initiated at the start of the UUGM :roject
and has now evolved into a production code that is used for many applied problems. The
list of applications includes potential flow past an ellipse, hypersonic flow past a flat plate,
shock diffraction over single and double wedges, mine explosions under vehicles, pulsed
detonation engines, shock focusing in air, and nonideal airburst in multiphase media. The
code has shown the required robustness and insensitivity to the initial user specified grid.
The number of nodes required to obtain a high-quality solution is significantly smaller than
for structured grid codes. This is particularly true for transient problems with complicated
flows having discontinuities.

It is important to note that the AUGUST code obtains a high resolution solution
with no "knobs." The various flow regimes, except those requiring a different definition of
boundary and initial conditions, were simulated using the same code.

®
TABLE OF CONTENTS
® TR I 4:00) 01000y (0 ST 1
1.1 RECENT CFD DEVELOPMENToovvovoooooeeeeeeeeeeeeeeeseereseessoeeeeos 1
1.2 UNSTRUCTURED MESHES IN COMPLEX GEOMETRIES 1
| 2. UUGM: UNIVERSAL CFD SIMULATION ENVIRONMENT ... 2
o 2.1 MATHEMATICAL MODEL AND INTEGRATION ALGORITHM 3
2.2 MULTIPHASE MULTICOMPONENT REACTIVE FLOW ... 9
2.3 DIRECT DYNAMIC REFINEMENT METHOD FOR UNSTRUC-
TURED TRIANGULAR GRIDS...........oovooooeroeeeeeeeeeeeeessseeseesesesessesseseseesere 13
. 2.4 STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS 16
2.5 THREE-DIMENSIONAL CAPABILITYoeoeeeeroeerooeo. 19
STV 8 (0) % & (0) < J oo 22
3.1 POTENTIAL FLOW OVER AN ELLIPSEoooeeoerooeooooeoooooooo 23
3.2 HYPERSONIC FLOW PAST A FLAT PLATE. ... 24
o 3.3 SHOCK ON WEDGE WITH ADAPTIVE GRIDDING 26
3.4 MINE EXPLOSION UNDER VEHICLEc.oovooooommooooorooooooooeoeooo 30
3.5 PULSED DETONATION ENGINE -......ooesseoooo oo 36
3.6 SHOCK FOCUSING IN ATRooovvvoroeeeeeeee e ereeeeeemeseenreree oo 36
3.7 NONIDEAL AIRBURST IN MULTIPHASE MEDIAoooooo...... 39
3.8 FLOW IN THE SARL WIND TUNNELoooesosoeeeeccceeoeooerreroooe. 39
3.9 SHOCK ON DOUBLE WEDGEooooeseesesseeeceeseeeeeeomeeeeereeoeereereon 42
3.10 SUPERSONIC SPRAY COATING DEVICES.........ovovooroooooorooreoooeoeoo 46
3.11 DUSTY FLOW OVER A CYLINDERocooomeeoommoroeeereoroeroereeoeee 49
3.12 IMAGE PROCESSINGooeeeooeeer oo seeeeeseeeeeeeesesesseeseeeseeereeeeeeesenees 52
3.13 DETONATION IN A MULTIPHASE MEDIUM..............ocoovooorrorrrroe 55
8. CONCLUSIONS.........oovovvooooeeeeeeesesseoeeeessseseeeeeeeeeesseses e eeoserees 60
REFERENCES ... oooooeeooeeee oo seseseeeeeesees s eeee et ee e 61

APPENDIX A: Code Description
APPENDIX B: Listings

APPENDIX C: Copies of Publications

iil

Figure 2.1.1

Figure 2.1.2

Figure 2.3.1
Figure 2.3.2
Figure 2.4.1
Figure 2.4.2
Figure 2.5.1
Figure 2.5.2
Figure 2.5.3
Figure 3.1.1

Figure 3.2.1a
Figure 3.2.1b

Figure 3.3.1a
Figure 3.3.1b
Figure 3.3.2a
Figure 3.3.2b
Figure 3.3.3a
Figure 3.3.3b
Figure 3.4.1
Figure 3.4.2
Figure 3.4.3

Figure3.4.4

Figure 3.5.1
Figure 3.6.1a

Figure 3.6.1b

LIST OF ILLUSTRATIONS

Representative triangular cell in the mesh showing fluxes and
projected values.

Density profile comparison between analytical resuits and resuits
obtained by applying the second-order Godunov algorithm using
structured or unstructured grids.

Hustration of the grid refinement process.

Illustration of the grid coarsening process.

A possible candidate configuration for hybrid structured/unstructured
domain decomposition.

Hybrid structured/unstructured grid used to simulate ellipsoidal
reflector, showing adaptation to curved boundaries.

An elongated tetrahedron can be refined using smaller tetrahedra that
are nearly regular.

Points used to define structure of vehicle.

Tetrahedral grid generated by Finite Octree method.

The grid used for simulating the flow over an ellipse.

Grid for simulation of hypersonic flow over a flat plate.

Second order solution for a flat plate, pressure contours. Mach = 32:
5509 grid vertices: Ppay = 5.0 x 104 Pa, Poyjp = 98.7 Pa.

Density contours at early time for shock in planar channel
(M = 8.7, wedge angle = 27°).
Grid at early time
(M = 8.7, wedge angle = 27°).
Density contours at intermediate time for shock in planar channel
(M = 8.7, wedge angle = 27°).

Grid at intermediate time for
(M = 8.7, wedge angle = 27°).
Density contours at late time for shock in planar channel
(M = 8.7, wedge angle = 27°).
Grid at late time for
(M = 8.7, wedge angle = 27°).
Two views of interaction between mine blast and M92S cargo truck:
pressure contours at f = 0.574 msec.

Blast — plow interaction: pressure contours in initial stage.

Blast — plow interaction: pressure contours in advanced stage.
Structural response of the plow to blast load:a) ¢ = 0; b) ¢t = 200
msec; ¢) £ = 400 msec; d) £ = 600 msec.

Pulsed detonation engine simulation: flow tracers.

Hybrid structured/unstructured grid used for numerical simulation of
ellipsoidal reflector.

A schematic drawing of the center cross section of the ellipsoidal
reflector.

for shock in planar channel

shock in planar channel

shock i planar channel

iv

14
15

18
18
20
21
21
24
25
26
27
28
28
29
29
30
31
33
33

34
35

37

37

Figure 3.6.2
Figure 3.6.3
Figure 3.7.1
Figure 3.8.1
Figure 3.8.2
Figure 3.9.1
Figure 3.9.2
Figure 3.9.3
Figure 3.9.4

Figure 3.10.1

Figure 3.10.2

Figure 3.10.3

Figure 3.10.4

Figure 3.10.5

Figure 3.11.1

Figure 3.11.2

Figure 3.11.3

Figure 3.12.1
Figure 3.12.2

Pressure contours at time t = 1.21 x 10-9sec showing the incident
wave as reflected from the reflector wall.

Pressure contours at time t = 8 41 x 10-4sec showing the stage at
which the maximum focused pressure is obtained.

Formation of a radiative cloud. Multiphase simulation.

The unstructured grid used to simulate the SARL wind tunnel.

The pressure contours from the simulation of the SARL wind tunn«
Experimental interferogram of a shock hitting a 45° corner at N* -
2.85.

Interaction of a Mach 8.7 planar shock wave with a 27° double ramp:
Mach reflection stage.

Interaction of Mach 8.7 planar shock wave with a 27° double ramp:
start of the diffraction stage.

Interaction of Mach 8.7 planar shock wave with a 27° double ramp:
shock diffraction stage.

The figure shows the inittal computational grid for the jet spray
simulation demonstration. Shown are the nozzle, injection region and
target surface depicted as a flat plate with perforations, oriented
perpendicular to the mean spray flow. The boundary conditions used
for the sample simulation were: Vg = 1000 m/sec, Pg = 0.1 kg/m3,
Ty, = 3500 K at the inlet of the reactor nozzle, Vo, = 1500 mvsec, Pg
=0.3 kg/m3, Tg = 1500 K, Vp, = 1500 mysec, 13,, = 1500 K, Np =
2000 at the inlet of the reactor nozzle. '

Lagrangian marker particles are shown in color representing the
evolution of injected particle temperature as a function of particle
position and time in the jet spray stream.

Gas temperature contours in the jet spray stream. The maximum
temperature is 3500°K and the minimum is 600°K.

Gas density contours in the jet spray stream. The injected stream and
the main flow mix poorly. The diamond patterns describe the shock
wave pattern resulting from the flow's overexpansion.

Pressure contours in the jet spray stream. The diamond patterns
show that supersonic flow is maintained near the vicinity of the target
surface.

Comparison for Mg = 2.8 pure-gas flow: (a) interferogram from
experiment; (b) density contours from present calculation.

Density contours for the case Mg = 2.8, pp =025 kg/m?, rp = 10um
at two different times: (a) particle density at t}, (b) gas density at ty;
¢) particle density at t, (d) gas density at t5.

Density contours for the case Mg = 2.8, pp = 0.76 kg/m3, for two
different particle sizes: (a) particle density and (b) gas density for fp =
10um; ¢) particle density and (d) gas density for Tp = 50um.

Edge enhancement for a sinusoidal distribution without noise.

Edge enhancement for a sinusoidal distribution with 10% intensity
random noise.

38
38
40
41
41
42

43

45

46

47

48

48

48

50

51

51

56

54

Figure 3.12.3
Figure 3.12.4
Figure 3.13.1
Figure 3.13.2

Figure 3.13.3

Edge enhancement for a sinusoidal distribution with 50% intensity
random noise.

Edge enbancument for a sinusoidal distribution with 100% intensity
randon1 noise.

Computational domain and boundary conditions.

Explosive initially localized in 2.5-cm layer at constant density of 100
kg/m3. Density in the cloud is 0.75 kg/m3. (a), (b), and (c) are gas
pressure, gas density, and particle density at 66 usec, respectively.
Particle density distributed in layer in accordance with the fourth
power of height. Gas pressure, temperature, and particle density at
55 psec, respectively.

55

55

57

58

59

1. INTRODUCTION
1.1 RECENT CFD DEVELOPMENT

Computationat fluid dynamics (CFD) development over the past twenty years has
truly been outstanding. The recent CFD developments that are particularly important are:
1) advances in flow solvers in all the regimes of fluid flow (very low speed and subsonic
flows, transonic flow, supersonic and hypersonic flows), 2) advances in unstructured
adaptive gridding techniques and, 3) advances in chemical and particle kinetic modeling
for fluid flows. Developments in graphics and visualization, construction of graphical user
interfaces (GUIs) and advances in large database management have also played an
important role in the scale and complexity of problems that can now be realisticaily
simulated by CFD techniques. SAIC has been involved in all aspects of these
developments and is on the forefront of CFD technology development.

DARPA, NASA, DNA and DOE have for the most part been the largest
benefactors of CFD development. and each agency today is actively pursuing CFD
applications to real problems. Full 3-D unsteady flows about military and commercial
aircraft are routinely simulated to assess aerodynamic performance characteristics, and
where it used to require several hundred hours of CRAY CPU time it now takes minutes
to an nour on a supercomputer or a like time on workstations, depending on the specifics
of the problem being solved. The U.S. Marine Corps' latest initiative in the development
of blast (due to land mines) resistant vehicles is being pursued successfully with the aid of
full 3-D CFD simulations of land mine blast effects on truck configurations. The CFD
technology developed in SAIC's UUGM contract is playing a leading role in this Marine
Corps effort (see Section 3.4). Many other such examples of improvements in CFD
performance exist. In view of this, it is quite appropriate to begin to transition CFD
technology into other disciplines that can take advantage of realistic CFD based
simulation.

1.2 UNSTRUCTURED MESHES IN COMPLEX GEOMETRIES

Current emphasis in CFD calls for solutions of applied physical problems for
complex realistic geometries.! In addition to the inherent difficulties in describing the
details of the complex three-dimensional geometry, the flow fields usually have an
inhomogeneous structure. Regions of rapid change of the flow functions and chemical
reactions will be embedded in regions where the flow gradients are relatively small.
Accurate simulations of flows in regions with strong gradients is key to the overall
accuracy of physical, chemical and biological simufations. For this reason most of the
software and hardware computational resources are defined by the accuracy requirements
of these flow regions and geometry of the computational domain.

Early CFD research was almost entirely concerned with the formulation the
mathematical models of the flow and methods of solution. Mesh generation was regarded
as secondary and meshes were developed for specific cases. During this early period very

significant improvements were made in the methods of integration of the partial
differential equations of gasdynamics. Presently, as a result of steady improvement in the
various integration techniques, the advantages which could be gained by using bette -low
solvers have become limited. On the other hand substantial progress is anticipatec - the
areas of grid generation and algorithm development.2

Currently, most numerical simulations employ structured meshes comp-sed of
quadrilaterals in two dimensions or hexahedra in three dimensions. However, it has
become evident that the quadrilateral structured grids cannot satisfy the requirements of
large scale numerical simulations over complex geometries in three dimensions. The
physics of the flow abe it a complete aircraft is extremely complex. Yet the flow in many
distinct regions and regimes may be represented by fairly well-known physical theories.
Vortices shed by lifting surfaces are confined to faitly thin wake regions. Exhaust plumes
can be initially approximated by regular bounding surfaces. Flow disturbances due to
shocks are confined to thin discontinuities. Boundary layers are restricted to near-wall
regions. Each of these flow regions requires different theories, different resolution and
different numerical algorithms. This diversity of computational requirements cannot e
satisfied by the quadrilateral structured grids.

Recently proposed alternatives to quadrilateral grids use triangles in two
dimensions and tetrahedra in three dimensions. For these grids the mesh will generally
lose its structure, allowing a new degree of flexibility in treating complex geometries.3.4
Unstructured grids can relatively easily be adapted to follow flow features, thereby
increasing the solution accuracy. The result has been the development of adaptive
refinement techniques which have been used with great success for two dimensional
simulations on unstructured triangular grids. These methods have resuited in the
resolution of previously difficult details in the evolving flows over compiex configurations.

However, it is not a trivial task to adapt this approach to three-dimensional
simulations. One of the problems is the generation of the adaptive grid. Since the grid is
constructed from the volume elements (tetrahedra) the moving front is made up of a
surface of triangular faces. It should be noted that this moving front can and will change
its shape during the computatiun as time evolves. It is necessary to take care when
determining the intersections of planar faccs, and to ensure that no overlapping of
tetrahedra occurs.

2. UUGM: UNIVERSAL CFD SIMULATION ENVIRONMENT

The Ultimate Unstructured Grid Method (UUGM) represents a new approach to
the computational domain discretization. The principal advantage of the method is most
apparent for simulations of complicated flow regimes with physical and chemical
processes over bodies with complex geometries in three dimensions.

The usual technique employed in regridding is called hierarchical dynamic
refinement (H refinement). The idea here is to retain a history of the original grid and the

subdivisions needed to change it into the current grid, so that 1t is always possible to
retrace these steps and get back to previous grids. While this feature is useful in modeling
reversible processes, it is generally unnecessary, and it increases overhead costs. Our
implementation (Direct Dynamic Refinement) is Markovian, in the sense that the way
regridding is done depends only on the current grid and flow conditions.

The other distinguishing feature is the use of the Second-order Godunov method
to solve the Euler equations of gasdynamics. The philosophy behind it is to treat the local
values of the dependent variables at every point on the grid as initial conditions for a
Riemann problem, and to use the resultant solution of that problem to calculate the fluxes
of material, momentum, and energy from one ce!l to the rest. Previous implementations of
this method were confined to structured meshes.

2.1 MATHEMATICAL MODEL AND INTEGRATION ALGORITHM

We consider a system of two-dimensional Euler equations written in conservation
law form as

SU OF 9G _, @1
ot Jdx Jy
where
P pu pv |
‘i
v=" F=PY TP g PMY |
pv puv pv:i+p
e ule+p) v(e +p)

Here u, v are the x, y velocity vector components, p is the pressure, o is the density and e
is total energy of the fluid. We assume that the fluid is an ideal gas and the pressure is
given by the equation of state,

p=(r- 1)[8-(?)("2 +vi)., (2.2)

where y is the ratio of specific heats ard is typically taken as 1.4 for air. It is assumed that
an initial distribution of the fluid parameters is given at 7 = 0, and the boundary conditions
defining a unique solution are specified for the computational domain.

The system of governing equations in Eq. (2.1) can be written as

%Y v.g=0, (2.3)
ot -

where () represents the convective flux vector. Integrating Eq. (2.3) over space and using
Gauss' theorem produces the expression

Zi
= IaUdA +§ _0-di=o, (2.9)

where dl = ndl, n is the unit normal vector in the outward direction, and dl is the element
of length on the boundary of the domain. Here Q is the domain of computation and 5 is
the boundary of this domain.

We seek a solution to the system of Eq. (2.1) in the computational domain, which
is decomposed in part into triangles with arbitrary connectivity and in part into rectangles
using a logically structured grid. We use the advantage of the unstructured grid (Refs. 5-8)
to describe the curved boundary of the computational domain and areas that need
increased local resolution; this covers a small part of the total computational domain. The
largest area of the computational domain is decomposed by the structured grid. The
numerical technique for solving Euler's equation on an unstructured grid is described in
Refs. 9-11, and the technique for the structured grid is described in Ref 9. These
numerical techniques apply some of the ideas that were introduced in Refs. 13-14. The
structured and unstructured codes apply the center-based formulation, i.e., the primitive
variables are defined in the center of the cell, which makes the cell the integration volume,
while the fluxes are computed across the edges of the cell. The basic algorithmic steps of
the Second-Order Godunov method can be defined as follows:

1. Find the value of the gradient at the baricenter of the cell for each gasdynamic
parameter Uj;

2. Find the interpolated values of U at the edges of the cell using the gradient values;

3. Limit these interpolated values based on the monotonicity condition; 13

P

. Subject the projected values to the characteristics constraints; 14
5. Solve the Riemann problem applying the projected values at the two sides of the edges;

6. Update the gas dynamic parameter U according to the conservation equations (1)
applying to the fluxes computed and the current timestep.

As was recommended in Ref. 11, we prefer the version based on triangle centers
over the vertex-based version of the code. For the same unstructured grid, a center-based
algorithm will resuit in smaller control volumes than a vertex-based. In addition, for the
Second-Order Godunov solver, implementation of the boundary conditions is more
straightforward and accurate for the center-based algorithm than in the vertex-based
version. These two factors, along with the effects of grid connectivity, strongly affect the
algorithm accuracy and performance and are the main reasons for the superiority of the
center-based version over the vertex version.

Equation (2.4) can be discretized for each element (cell) in the domain

n+l L] M
(Y, “U')A,:-ZQ;-n,AL,. (2.5)
At =

where A; is the area of the cell; Ar is the marching timestep; U] and U™' are the
primitive variables at the center of the cell at time # and at the updated (1 + 1)st timestep,
Qj is the value of the fluxes across the boundaries on the circumference of the cell where
n; is the unit normal vector to the boundary edge j, and AL; is the length of the boundary
edge /. The fluxes Q 7 are computed applying the Second-Order Godunov algorithm, and
Eq. (2.5) is used to update the physical primitive variables »; according to computed

fluxes for each marching timestep 4s. The marching timestep is subjected to the Courant-
Friedrichs-Lewy (CFL) constraint.

Representative trianguiar cell in the mesh
and its neighbors showing fiuxes across
the edges

Value at baricenter of left celi

g

U

Projected values at the edge

Value at baricenter of right cell

Figure 2.1.1 Representative triangular cell in the mesh showing fluxes and projected
values

To obtain second-order spatial accuracy, the gradient of each primitive variable is
computed in the baricenter of the cell. This gradient is used to define the projected values
of primitive variables at the two sides of the cell edge, as shown in Fig. 2.1.1. The
gradient is approximated by a path integral

cell - edge
[yustaa= uUseadl. (2.6)

The notation is similar to the one used for Eq. (2.5), except that the domain 2 is a single
cell and U, and U, are values at the baricenter and on the edge respectively. The gradient

is estimated as
3
VU =%ZU7‘8‘ nAaL, 2

J=i

where U 5 is an average value representing the value o: ,...mitive variable for edge .

The gradients that are computed at each baricenter are used to project values for
the two sides of each edge by piecewise linear interpolation. The interpolated vaiuzs are
subjected to monotonicity constraints.” The monotonicity constraint ensures : it the
interpolated values do not create new extrema.

The monotonicity limiter algorithm can be written in the following form

U =y +¢VU,-Ar 2.8)

where Ar is the vector from the baricenter to the point of intersection of the edge with the
line connecting the baricenters of the cells over the two sides of this edge. Here ¢ is the
coefficient that limits the gradient VU,.

First we compute the maximum and minimum values of the primitive variable in
the /th cell and its three neighboring cells that share common edges (see Fig. 2.1.1):

U =max (U ")

, k=i123. .
U;;*:m(Uf")} o3 @9

The limiter can be defined as
¢=min {1,¢;}, k=123 (2.10)

where the superscript /r stands for left and right of the three edges (6 combinations
altogether); ¢ is defined by

Ir*[l-{—sgn(AUL’)}AU:‘; +[1-SBH(AUL')]AU'“‘“
b=

cell
' , k=123 2.11
2407 @11)

where AU, =VU!" -Ar, and

cell

AU =Um -0

cell

max max celi
AV =V ~U, } (2.12)

cell

To obtain second-order accuracy in time and space, we subject the projected
values of the left and right side of the cell edge to characteristic constraints following Ref.
4. The one-dimensional characteristic predictor is applied to the projected values at the
half timestep ¢ " + A¢/2. The characteristic predictor is formulated in the local system of
coordinates for the one-dimensional Euler equation. We illustrate the implementation of

the characteristic predictor in the direction of the unit vector n.. The Euler equations for
this direction can be written in the form

W, +AW)W , =0; (2.13)
T u -r 0

W=sur; AW)={0 u 1|, (2.14)
p 0 pc? u

where 7= p ™', p denotes density, u, p are the velocity and pressure. The matrix A(W)
has three eigenvectors (/#, r#) (! for left and r for right, where # stands for +, 0, —)
associated with the eigenvalues A * =u+¢, X' =u, A " =u-c.

An approximation of the value projected to an edge, accurate to second order in
space and time, can be written as

ALOW oW

Wia =W+ ———+ Ar — -
o +far 8040)| 22 &1
An approximation to ' "} ,’? can be written as
W oy +(Ar,—-£2£-(M,M,,)nc)-VW,, (2.16)
where
(M, M,)= {max (ll‘ .0} for the cell on the left of the edge 217
min (1 ; ,0) for the cell on the right of the edge.

The gradients applied in the process of computing the projected values at " + At/2 are
subjected to the monotonicity limiter.

Following the characteristic predictor described above, the full Riemann problem is
solved at the edge. The solution of the Riemann problem defines the flux @ **"? through
the edge. The fluxes through the edges of triangles are then integrated (Eq. 2.5), thus
giving an updated value of the variables at ¢ ™*'. One of the advantages of this algorithm is
that calculation of the fluxes is done over the largest loop in the system (the loop over
edges) and can be vectorized or parallelized. This leads to an efficient algorithm.

We have carried out an extensive and painstaking series of tests in the course of
developing and implementing the algorithm. Most of these used a standard benchmark,
the exploding diaphragm or "Sod problem" (Fig. 2.1.2). In this problem two regions
containing an ideal gas at different densities and pressure are separated by an infinitely thin
interface (the diaphragm). A shock wave, a rarefaction wave, and a contact discontinuity
propagate away from that point at different speeds when this diaphragm is instantaneousty
removed. The Riemann solution yields an analytical solution in terms of simple waves
which can be compared with the numerical approximation.

We used this problem as a testbed to compare structured vs. unstructured grids,
first-order vs. second-order Godunov schemes, schemes with and without limiters, etc.
For example, Fig. 2.1.2 shows that the solution obtained with an unstructured grid is
noticeably better than that obtained with a structured grid.

Analytical results

® & e Structured grid
v v v Unstructured grid

e
L . J
(]
LJ

Figure 2.1.2 Density profile comparison between analytical results and results obtained by
applying the second-order Godunov algorithm using structured or unstructured grids.

2.2 MULTIPHASE MULTICOMPONENT REACTIVE FLOW

Multiphase multicomponent reacting flows (MPMCRF) consist of material media
(continua and particles) dispersed in a flow varying in space and time. Two basic
approaches can be used to describe MPMCRFs, heterogeneous and homogenecus phass
descriptions. For homogeneous mixtures one assumes that each mixture component
occupies the same volume with other mixture components on an equal basis (V1=Vj=...
=Vu=V). This approach is justified for an interpenetrating mixture of gases or a dilute
suspension of particles in a gas. In a heterogeneous description of a suspension, each
component occupies only part of the global volume (V{+V2+...+V=V). Therefore in
the mathematical description of the heterogeneous suspensions, in addition to the density
of the i-th component p; one needs to introduce the fractional volume of the components:

$+é.+. . dn=1 (4,>0), (2.18)
o,

Consider a chemically reacting system containing an N-component gaseous phase
and one solid particle phase. The conservation equations can be written as follows:3

which allows us to define the real density of each of the components as o, =

Conservation of Mass

Global continuity for gaseous phase:

apg + .__.a_.(
Jt Ox

J

pgu(w)=lg. (2.19)

Continuity of N-1 species or components of gaseous phase:

gy’ @) 1, gt
Gt e e b)= 0 220)
Continuity for solid particle phase:
op Vi
" o Pt = @20

J

In the above equation of mass conservation, Pg is the partial gas density. The gas volume
fraction is ¢g The relation between partial gas density and material density Og is
Pe=9,0, Similarly, we define the partial phase density Pp and material density Op.
The refation between the two is then p, =¢,0 ,. We assume volume conservation,
which is

g, +9,=1 (2.22)

The species diffusion velocity ¥ | is calculated through Fick's law:
yla- 2 (2.23)

where D is the diffusion coefficient. Finally, we assume mass conservation in all chemucal
reactions:

N N
dwi=0 and [,=-31Il=-1,. (2.24)
1 i

Conservation of Momentum

Conservation of momentum for the gaseous phase:
o(p,u) .9

[ps”(g)- Ui2) +5i,¢gpg]

ot Ix
b7 I- 2)aulg)k ou ﬁu(
- ' _ = _____6 g g .
5xl.L(ﬂ 3 4 dx, yTH dx " dx, (225)
-E(’)+[Pu(y)i

Conservation of momentum for the particle phase:

a(pPu(Pﬁ) 7 Vi
at +0”x -[ppu (P)iu(P)J+6i]¢Ppp]=_-—"ax (r,P,,j)+Ff”’—1 Sy (226)

J J

In the above momentum conservation equations, Pp and pg are the pressure of the solid
particle and gaseous phases respectively, F (¥’ represents the interaction force between the
two phases, and 7 ;. is the stress tensor for the particle phase, to be determined by

experimental or empirical correlations.

For the gaseous phase, the stress tensor can be written as

, 2 \ou Ju. OJu,.
r(g>g,=-P5,,+(ll _Eﬂ)ax" 6i1.+y[-g,—x-—'+-5—x—}~), (227)
k ; i

where u is the dynamic viscosity and u”is the second viscosity coefficient.
Conservation of Energy

The governing equation for conservation of energy for the gaseous phase is usually written

10

5[;: s(e gt 05U o) u ;\] + 74
ot Ox

J

09 (g); 4 (, 2)a“ (a5 ou
= (8 -~ -S| s | 2L
dx tO,* dx (u{” [Bo3H x, " o x, (2.28)

‘F(p)iu(p)i +QP‘

[pgu{x)j (ex +0.5u(”, u(xh)+¢x b, u(g).v]

The equation for conservation of energy for the particle phase has the form

a2 74
‘0«7[" ACT,+ 0-5”(,,).~)]+ % [p, 4, (C.7, +05u ,, Uopn)t 0 U (5,0 ,,]
i
(2.29)
9y . 8
== ﬁxp‘l + Ox (u (p)i z'(p)u)"' Ff’)u (phi— 0 r’
J 7
. o4 @, ar sents i ;
In the conservation of energy, and > are the heat flux gradients in the jth
x

J /
direction in the gaseous and particle phases, respectively. (Qp, is the energy source due to
heterogeneous chemical reactions (between the gaseous and particle phases), plus heat

N
transfer between the two phases. Here O = Z(-— w,Ah ‘},) is the energy source due to
i=l

homogeneous (gaseous) chemical reactions, which is defined in the chemical reaction
model.

Conservation of Number of Particles
An equation for total conservation of particles is given by

on Vi
ot ox, (n o) =0. (2.30)

Equation of State

The equation of state for all gases can be put into the generic form
e,=f (Peog ¥ b)), (2.31)

where for an ideal gas the form is

11

0, = —t— (-32)
. 3(7 £ l)
and p,=0 R, T gz ' : 33)
An equation of state for the particle phase can be written in symbolic form as
p,zf(a'l,,Tp), (2.34)

where the exact form of Eq. (2.34) that is to be used in a numerical simulation depends on
experimental data or results from physical approximations.

In the above equations, Yg is the ratio of specific heats of the gaseous mixture and
Ry, is the universal gas constant.

Chemical Reaction Model

A phenomenological chemical reaction model for the gaseous phase (including M chemical
reactions) has been formulated as

M (leg

Wlkz=(r (1) __ (1)) 7 ok exp(R T) \R T }"/r] (2.35)

Similarly, a phenomenological heterogeneous (for gas and particle phases) chemicals
reaction model can be written symbolically as

Iy=f(T,. P, (2.36)

and again the exact form of Eq. (2.36) will depend on experimental data or
approximations from physical models.

The following nomenclature defines the symbols used in the above system of
equations (2.19) - (2.36): B - chemical reaction collision frequency factor; Cg — specific
heat for solid particle; ¢ — internal energy; D — mass diffusion coefficient; £ ,, - activation

energy for the kth reaction; F; — interphase force in ith direction; I — source function
generated by chemical reaction; pg — gas pressure; g; - heat flux in the ith direction; R, —
universal gas constant; 7 — time; 7 — temperature; u; — velocity in ith direction; V; —
species diffusion velocity in ith direction; #¥ — molecular weight of ith component of gas;
x; ~ coordinate in ith direction. x’ - mode fraction of ith component of gas; ¥ — mass
fraction of ith component of gas; a ~ temperature exponent of the kth reaction; y — ratio
of specific heat; 1 — thermal conductivity of gas; u — dynamic viscosity of gas; u’ - second

12

viscosity coefficient of gas; 7jj — stress tensor; @ ' — mass rate of production of species i;
p — density; v; g — stoichiometric coefficient for species 7/ appearing as a reactant in the kth
reaction; v g — stoichiometric coefficient for species / appearing as a product in the Ath
reaction; ¢ -- veiume fraction; o — material density. Subscripts are defined as follows: g -
gas phase; p - particle phase; ik, - direction indexes; / — species index. Superscripts
refer to species type.

The comprehensive mathematical model and system of equations given above for
an MPMCRF simulation of advanced material synthesis processes is based on volume
averaging, assuming that each phase or component can be described by continuous flow.
Such averaging leads to a loss of information that can be recovered by appropriate closure
relations. The closure relations such as interphase forces, chemical reaction models and
the equations of state are usually developed from correlations involving experimental data
or from simple physical or chemical models describing interphase or intraphase
interactions. Such correlations are generally only valid within the range of known
experimental data; the choice of appropriate closure models reflects the understanding of
the underlying physical and chemical nature of the system to be simulated.

2.3 DIRECT DYNAMIC REFINEMENT METHOD FOR UNSTRUCTURED
TRIANGULAR GRIDS

As stated, an unstructured grid is very well suited to implement boundary
conditions on complex geometrical shapes and to refine the grid if necessary. This feature
of the unstructured triangular grid is compatible with efficient use of memory resources.
The adaptive grid enables the code to capture moving shocks and large-gradient flow
features with high resolution. The memory resources available can be very efficiently
distributed in the computational domain to accommodate the resolution needed to capture
the main features of the solution's physical property. Dynamic refinement controls the
resolution priorities. These priorities can be set according to the physical features that the
user wishes to emphasize in the simulation. The user has control over the resolution of the
physical features, without being restricted to the initial grid. The alternative to Direct
Dynamic Refinement is the hierarchical dynamic refinement® (H refinement) that keeps a
history of the initial grid (mother grid) and the subdivision of each level (daughter grids).
In the H refinement method, it is necessary to keep overhead information on the level of
each triangle subdivision, and double indirect indexing is required to keep track of the H
refinement process. As mentioned, H refinement relies heavily on the initial grid as it
subdivides the mother grid, and returns to that grid after the passage of the shock.

The Direct Dynamic Refinement (DDR) method for capturing the shock requires
the refinement to be in the region ahead of the shock. This requirement minimizes the
dissipation in the interpolation process when assigning values to the new triangles created
in the refined region. Additionally, it requires that the coarsening of the grid be done after
the passage of the shock. The interpolation and extrapolation in the refinement and
coarsening of the grid is done in the region where the flow features are smooth.

13

2. Original grid.

¢. Grid after one refinement
and one reconnection.

Figure 2.3.1 Illustration of the grid refinement process.

14

c¢. Counstructing of new cells. d. Grid after reconnection and relaxation.

Figure 2.3.2 Illustration of the grid coarsening process.

15

——)

The physics of the problem is involved in the process that identifies the region of
refinement and coarsening. Error criteria can be derived that will allow grid adaptation 1o
stationary or moving pressure or density discontinuities, region of high vortical activ-:v,
etc. There should be an error indicator specially suited to capture and identify the rez:on
of importance for each of the physics features to be resolved.

The original FUGGS algorithm reported in Ref. 9 was modified to - .able
adaptivity of the grid in the course of the computation. In AUGUST, v have
implemented an algorithm with multiple criteria for capturing a variety of feat..zs that
might exist in the physics of the problem to be solved. To identify the locauon of a
moving shock, we use the flux of total energy into triangles. The fiuxes entering and
leaving triangles are the most accurate physical variables computed by the Godunov
algorithm for solving the Euler equations, and are used to update the physical variables for
each timestep in each triangle. A shock wave means that there is a "step-function” change
in the cell that is caused by an influx of energy, momentum or density. Stationary shocks
can be identified by density gradients that are computed in the course of implementing the
Second-Order Godunov algorithm.

In Fig. 2.3.1, we illustrate the basic process of refinement accomplished in the
DDR. The original grid is shown in Fig. 2.3.1a. Figure 2.3.1b illustrates a one-step
scheme refinement in which a new vertex is introduced into a triangular cell, forming three
new cells. This is followed by reconnection, which modifies the grid as demonstrated in
Fig. 2.3.1c. The process of refinement and reconnection can be continued until the
necessary grid resolution is achieved, as illustrated in Figs. 2.3.1d and 2.3.1e. This direct
approach to the grid refinement provides extreme flexibility in resolving local flow
features. A similar simple method is applied to grid coarsening. In the first step of
coarsening the marked vertices, all associated elements of the grid are simply removed, as
shown in Fig. 2.3.2a. During the second step, this void in the grid is filled with new larger
triangles (Fig. 2.3.2b) and then reconnected as shown in Fig. 2.3.2c. When a very large
increase of the local grid density is required, these simple algorithms of grid addition and
deletion can create triangles with an unacceptably large aspect ratio. To avoid this
condition for very large grid densities (when the area of the triangles in the dense region is
reduced to less than 2% of the initial area), we introduced local grid relaxation
immediately after the grid deletion procedure.

AUGUST has proven to be a very robust and efficient algorithm capable of
computing transient phenomena, and with the ability to sense the region of physical
mterest and resolve it by refining and coarsening the grid as needed.

2.4 STRUCTURED/UNSTRUCTURED COMPOSITE GRIDS
Structured rectangular grids allow the construction of numerical algorithms that
perform an efficient and accurate integration of fluid conservation equations. The

efficiency of these schemes results from the extremely low storage overhead needed for
domain decomposition and the efficient and compact indexing that also defines domain

16

connectivity. These two factors allow code construction based on a structured domain
decomposition that can be highly vectorized and parallelized. Integration in physical space
on orthogonal and uniform grids produces the highest possible accuracy of the numerical
algorithms. The disadvantage of structured rectangular grids is that they cannot be used
for decomposition of computational domains with complex geometries.

The early developers of computational methods realized that, for many important
applications of Computational Fluid Dynamics (CFD), it is unacceptable to describe
curved boundaries of the computational domain using the stair-step approximation
available with the rectangular domain decomposition technique. To overcome this
difficulty, the techniques of boundary-fitted coordinates were developed. With these
techniques, the computational domain is decomposed into quadrilaterals that can be fitted
to the curved domain boundaries. The solution is then obtained in the physical space using
the geometrical information defining the quadrilaterals, or in the computational coordinate
system that is cb*ained by transformation of the original domain into a rectangular domain.
The advantage of this technique is that it employs the same indexing method as the
rectangular structured domain decomposition methods that also serve to define domain
connectivity. The boundary-fitted coordinate approach leads to efficient codes, with
approximately a 4:1 penalty in terms of memory requirement per cell as compared with
rectangular domain decomposition. However, this approach is somewhat restricted in its
domain decomposition capability, since distortion or large size variations of the
quadrilaterals in one region of the domain leads to unwanted distortions or increased
resolution in other parts of the domain. An example of this is the case of structured body
fitted coordinates used for simulations of flows over a profile with sharp trailing edges. In
this case, increased resolution in the vicinity of the trailing edge leads to increased
resolution in the whole row of elements connected to the trailing edge elements.

The most effective methods of domain decomposition developed to overcome this
disadvantage are those using unstructured triangular grids. These methods were
developed to cope with very complex computational domains. The unstructured grid
method, while efficient and powerful in domain decomposition, results in codes that must
store large quantities of information defining the grid geometry and connectivity, and have
large computational and storage overheads. As a rule, an unstructured grid code requires
greater storage by a factor of 10, and will run about 20 times slower per cell per iteration
than a structured rectangular code.

Unstructured grid methods are used to their best advantage when combined with
grid adaptivity. This feature usually allows dynamic decomposition of the couputational
domain subregions, thus leading to an order-of-magnitude reduction in the number of cells
for some problems, as compared to the unstructured grid lacking this adaptive capability.
However, this advantage is highly dependent on the problem soived. Adaptive
unstructured grids have an advantage over the unadaptive unstructured domain
decomposition if the area of high-resolution domain decomposition is less than one tenth
of the global area of the computational domain. This explains why the adaptive
unstructured method may be extremely effective for solutions with multiple shock waves

17

in complex geometries, but becomes extremely inefficient when high resolution is needed
in a substantial area of the computational domain.

Our approach to domain decomposition combines the structured and unstrucrured
methods for achieving better efficiency and accuracy. Under this method, stru--— -ed
rectangular grids are used to cover most of the computational domain, and unstn. red
triangular grids are used only to patch between the rectangular gnds (Fig. 2.4.1° .r to
conform to the curved boundaries of the computational domain (Fig. 2.4.2). . these
figures, an unstructured triangular grid is used to decompose the region: of the
computational domain that have a simple geometry.

Figure 2.4.1 A possible candidate configuration for hybrid
structured/unstructured domain decomposition.

Figure 2.4.2 Hybrid structured/unstructured grid used to simulate
ellipsoidal reflector, showing adaptation to curved boundaries.

18

2.5 THREE-DIMENSIONAL CAPABILITY

Once the 2D capability was fully developed, we initiated the development of a fully
3D CFD adaptive unstructured simulation capability. This part of our effort is not yet
documented in published material.

The first step in solving a 3D CFD problem is to discretize the computational
domain into tetrahedra. The grid generation is a recognized bottleneck in the time it takes
to evaluate an aerodynamic configuration.!5 One could even argue that it represents the
most time-consuming portion of the evaluation process. There are a handful of codes that
are capable of gridding any given domain into tetrahedra. In order to shorten the part to
our objective of achieving a 3D adaptive solver capability, we decided to make use of an
existing grid generator to provide the initial grid.

OCTREE, 16 which was developed at Rensselaer Polytechnic Institute (RPI), is a
Finite Octree 3D grid generator that provides the initial grid for our adaptive solver. The
productivity of a 3D grid generator is a function of the complexity of the surfaces that
define the domain of computation. Usually, this task is the most time-consuming and
painful for the user. OCTREE does not have a CAD/CAM package to assist the user in
defining the surfaces of the geometry to be gridded. Nevertheless, OCTREE is a very
robust and reliable grid generator.

The OCTREE algorithm is based on the concept of dividing the computational
domain into octants. In each step, the code defines three planes that halve the domain in
each of the three dimensions, thus dividing the volume into eight octants. Those three
planes intersect the surfaces of the geometry, defining vertices. All the vertices are
collected and sorted into topological loops. If the vertices are not sufficient to define
correct topological loops, the code will subdivide the corresponding octant into eight
smaller octants until the topology is fully resolved. The user is allowed to specify the level
of the local octree subdivision he wishes to resolve. Once the code subdivides the volume
into the level of octree specified by the user or needed to resolve the local geometrical
details, the code defines tetrahedra to fill the volume of the computation domain. The
code provides the user with an option that improves the quality of the tetrahedra by
smoothing and eliminating the very small ones.

As stated, OCTREE provides the initial grid for the 3D solver. The adaptivity of
the mesh is controlled by specific physical features that the user defines based on the
physics of the problem to be soived. The adaptivity of the mesh automatically traces the
physical features in the simulation and refines and coarsens the mesh accordingly to the
criteria and the resolution specified by the user.

19

Figure 2.5.1 An elongated tetrahedron can be refined using smaller tetrahedra that are
nearly regular.

The target tetrahedra are refined by first subdividing each of the four surfaces into
smaller triangles that satisfy the resolution set by the user. There are no constraints on the
way each face is subdivided. Each edge of the face is subdivided according to the local
resolution needed, and the points along the edges are connected to construct the best
triangles possible. The code adds points inside the face along with points on the edges to
achieve an adequate triangulation of the faces. The triangies of the four faces of the target
tetraheda are used to define smaller tetrahedra that will fill the volume. If needed, the
code will add points inside the volume of the target tetrahedron to achieve the best
tetrahedra possible. The code has the ability to reconnect tetrahedra to improve quality.
The reconnection is done by pulling out an edge, sorting ail the tetrahedra connected to
this edge, deleting these tetrahedra and filling the void with better shaped tetrahedra.

Figure 2.5.1 shows how the subdivision process can fill an irregular (elongated)
tetrahedron with smaller tetrahedra that are nearly equilateral. (This is not the case with H
refinement.) Figure 2.5.2 shows points used to create octree refinement to grid a problem
involving surface-mine blast effects on the underside of a truck. Figure 2.5.3 is the
corresponding tetrahedral grid. The calculated overpressures on the surface of the truck
underbody for an eight-pound expiosive are shown in Sec. 3.4.

The algorithm used to solve the 3D gasdynamic equations is an immediate
extension of the 2D case described in Sec. 2.1. Thus, Eq. (2.6) is replaced by

jeusdr= [ui=ds, (2.6
n a9

20

Figure 2.5.2 Points used to define structure of vehicle.

Figure 2.5.3 Tetrahedral grid generated by Finite Octree method.

® 21

where now Q and Q2 are the volume and surface of a tetrahedron, and dV and dS are the
corresponding differential elements. Its finite-difference approximation is

I &
VU = ;Z‘Uﬁ @.7)

where the summation is over the four faces and n; is the normal to the jth face with
surface area dS;. In the equations corresponding to E!qs (29)-(2.11), therange 1, 2,3 is
replaced by 1, 2, 3, 4. Equations (2.12) - (2.16) are formally unchanged, and Eq. (2.17)
becomes

max (4,0
(M Mn) _ { (i) for the cell on the left of the edge 217"

min (AT, o) for the cell on the right of the edge.

3. APPLICATIONS

The AUGUST code was extensively validated for a wide range of known CFD
problems and has been shown to be a robust simulation tool. It has been utilized on a
variety of problems which span flow regimes ranging from low subsonic Mach numbers to
hypersonic Mach numbers (Table 3.1).

Appendix C contains a complete collection and description of the CFD problems
addressed during the UUGM research. Additional details of the AUGUST code are
contained in SAIC's progress report for the UUGM DARPA program, submitted in
November 1991. Here we briefly describe the most noteworthy applications.

It is worth underscoring again that in the past it was necessary to use a sequence
of codes as well as numerical parameter adjustment to bridge the gap in flow phenomena
occurring in different flow regimes. An important point to be made here is that the
AUGUST code allows robust, accurate and efficient solutions across these different
regimes without the necessity of adjusting coefficients to enhance convergence accuracy
or efficiency.

Table 3.1 AUGUST Applications

Problem Activity
1. Calculation of potential flow about an Reported at the 4th International
ellipse. Symposium on Computational Fluid

Dynamics, Davis, CA, Sept 1991.

2. Hypersonic flow past a flat plate. Reported at AIAA Reno Meeting (AIAA-
90-0699), 1990.

22

Problem

3. Shock on wedge with adaptive
gnidding.

4. Simulation of mine explosion under a
vehicle.

5. Simulation of pulsed detonation engine.

6. Shock focusing in air using
structured/unstructured grids.
7. Nonideal airburst calculations for

muitiphase media.
8. Flow in the SARL wind tunnel.
9. Simulation of a shock on a double

wedge.

10. Supersonic spray coating devices.

11. Nanomaterial synthesis.

12. Dusty flow over a cylinder.

13. Image processing.

14. Multiphase detonation.

3.1

Activity

Reported at the Free Lagrange
Conference, Jackson Lake, WY, 1990.

Performed for U.S. Army Corps of
Engineers, Ft. Belvoir, VA.

Published in J. of Propulsion and Power
Nov/Dec 1991 Vol. 7 (6) pp. 857-865 and
AIAA Meeting, Reno, NV 1992

Presented at the ICAM Conference,
Rutgers, NJ, June 1992.

Performed for the Defense Nuclear
Agency, Alexandria, VA.

Performed for Wright-Patterson AFB.
Presented at the Army workshop on
Adaptive Methods for PDEs, RPI, March
1992.

To be published.

Published in Surf. Coating Tech. 49, 387-
393 (1991).

To be published in AIAA Journal.
Presented at SPIE conference on
Applications of Digital Image Processing,
San Diego, July 1991.

Published in Combust. Sci. Tech. 89, 201-
218 (1993).

POTENTIAL FLOW OVER AN ELLIPSE

One of the outstanding early CFD computational challenges (from the point of
view that no satisfactory solution had been obtained) was associated with simulating
subsonic (Mach 0.2 ¢nd less) flow over a symmetric elliptical airfoil using the Euler
equations (Fig. 3.1.1). All previous attempts to compute the flow over such an ellipse
resulted in spurious lift and drag values that were significantly larger than the classical

23

IIPIIIIIIORESNNN——————————

AV AV AV o 3
97t Vo Vil V2
Vi VoA VL
,‘/|/I/ el
1‘7‘1‘
aval
-
R
AL
e Vs s
e 4 7 P
s
~d
Z
Df P Pk Pt Pl WA T

Figure 3.1.1 The grid used for simulating the flow over an ellipse.

potential flow solution. The potential flow resuit should have been closely approximated
if there were no numerical viscosity present. This test case is important because, in
transitioning from an Euler solver to a full Navier-Stokes solver, one needs confidence
that the artificial (numerical) viscosity wiil not dominate the physical viscosity included in
the Reynolds' stress terms. As shown in Appendix C-1, use of an earlier version of the
AUGUST code, the Fast Unstructured Grid Godunov Solver (FUGGS) code provided
solutions to this test case that were very close to the potential flow solution. Other
attempts resulted in lift and drag values that were off by several orders of magnitude
compared with the SAIC FUGGS resuits. The results described here were prepared for a
poster presented to Dr. Arje Nachman, SAIC's UUGM AFOSR program monitor and Dr.
James Crowley, SAIC's UUGM DARPA program manager.

3.2 HYPERSONIC FLOW PAST A FLAT PLATE

To demonstrate the versatility of the method for the entire range of flow regimes
we have simulated a hypersonic flow test problem. One of the advantages of the Godunov
methods is that over the whole range of calculations performed (low subsonic flow,
supersonic flow, unsteady flow with strong shock, or hypersonic flow at Mach number
M=32) it is unnecessary to change or adjust the numerical algorithm. In Ref. 17 the
performance of first- and second-order Godunov methods was analyzed for hypersonic
flow regimes. There, as a test problem, an analytical solution was used for a hypersonic
flow around a flat plate of finite thickness. This solution was obtained based on the
analogy between hypersonic flow over a flat plate of finite thickness and a strong planar
explosion. Here we use an expression from Ref. 17 which defines the shape of the shock
wave as a function of plate thickness d; y is the adiabatic coefficient, and a is a
nondimensional scale factor related to the energy released at the stagnation point.

24

1 dx?\v
Ysuocu :(EDFT)

where Dfis a coeflicient of order unity,
as= k : (y - l)k;+k,¢'n(r—l)
with £1 =0.36011, k3 = 1.2537, and k3 = -0.1847.

As a direct comparison we solved the hypersonic flow problem for the same set of
conditions as in Ref. 17:

U,=10011m/sec, p=9872Pa, p=124x10"kg/m">, and y =1.2.

The grid used for this simulation is shown in Fig. 3.2.1a. This grid has = 5500
vertices and its spatial resolution at the leading edge of the plate is of the same order as
that of 2 300 x 60 rectangular grid used in Ref. 5.

out flow
G ; 3 47\
127 N
3 RN out
Z 32
; Z % PN L] flow
; ; g S £
n ¥ N SYENSYS
flow § 3 JREI
e NNNSN EEZZeS3Y
2 127552338
T .11)1:11
3
wall
i | 1

1 wall | |

Figure 3.2.1a Grid for simulation of hypersonic flow over a flat plate.

Figure 3.2.1b shows results for this simuiation in the form of pressure contours.
Figure 3.2.1b also represents the location of the analytically calculated shock front by a
discrete line (squares). The shock resolution and accuracy or its location are comparable
to that obtained in Ref. 17 even though our triangular grid has less than one third as many
nodes as the rectangular grid used in Ref. 17. This is because in constructing the
triangular grid we had the flexibility to place the highest concentration of nodes in the area
of the leading edge where the main properties of the flow are established.

25

0.1
1

0.2

0.0

] i i } i

0.0 0.2 0.4 0.6 g.8 1.0

Figure 3.2.1b Second order solution for a flat plate, pressure contours. Mach =32: 5509
grid vertices: Ppax = 5.0 x 104 Pa, Pyip = 98.7 Pa.

3.3 SHOCK ON WEDGE WITH ADAPTIVE GRIDDING

An unstructured grid is very suitable for implementing boundary conditions on
complex geometrical shapes and refining the grid if necessary. This feature of the
unstructured triangular grid is compatible with efficient usage of memory resources. The
adaptive grid enables the code to capture moving shocks and large-gradient flow features
with high resolution. The memory resources available can be very efficiently distributed in
the computational domain to accommodate the resolution needed to capture the main
features of the physical property of the solution.

One strategy for doing this is called hierarchical dynamic refinement (H
refinement). It keeps a history of the initial grid (other grid) and the subdivision of each
level (daughter grid). H refinement subdivides the initial grid into two or four triangles in
each level, and keeps track of the number of subdivision levels each triangle has
undertaken. In the H refinement method, one has to keep overhead information on the
level of each triangle subdivision, and needs double indirect indexing to keep track of the
H refinement process. This slows down the computation by partially disabling the
vectorization of the code. As mentioned, H refinement relies heavily on the initial grid as
it subdivides the mother grid and returns back to it after the passage of the shock.

AUGUST and its predecessor FUGGS use a second-order Godunov solver on an

unstructured grid. The refinement strategy incorporated in these codes is called Direct
Dynamic Refinement. For shock capturing, Direct Dynamic Refinement basically requires

26

the refinement to be in the region ahead of the shock. This requirement minimizes the
dissipation in the interpoiation process when assigning values to the new triangles created
in the refined region. Additionally, it requires that the coarsening of the grid should be
done after the passage of the shock. In principle, the interpolation and extrapolation in the
refinement and coarsening of the grid are done in the region where the flow features are
smooth.

FUGGS was used with direct dynamic refinement to solve the transient behavior of
the flow entering a channel with a wedge (prism) having an inclination of 27°. The flow
enters the channel from the left with Mach number 8.7. A sequence of snapshots
illustrates the density contours, and the grid for each timestep is given in Figs. 3.3.1a -
3.3.3a (contour plots) and 3.3.1b - 3.3.3b (grid). These figures clearly demonstrate the
automatic adaptation of the grid to the moving shocks and the ability to capture the
detailed physics of the simulation with very high resolution and minimal memory
requirements. The initial grid can clearly be seen to the right of the shock ("ahead") in the
early stage of the shock propagation from left to right. The coarsening algorithm is able
to produce a reasonable mesh in the region trailing the shock as shown in the figures.

.52x10;
L37x10
.23x10;
.19%10
.05»10;
L0110,
.65x10,
.Zﬂul'.OT1
B30
0110}
.smo.
.18x10,
.82#10°
1.36n10°
1.00%10°

4
(80 SHIEE GUIE BOROE ouenn adN tin
AL A U INGD @O0 omom e s 2 e

Figure 3.3.1a Density contours at early time for shock in planar channel
(M = 8.7, wedge angle = 27°).

27

w

(=]

-

o

~

o

~N AV

o

- 5

o L

Q

a. . .

0.0 0.2 0.4 0.6 a.8 1.0
Figure 3.3.1b Grid at early time for shock in planar channel
(M = 8.7, wedge angle = 27°).
1.44=10,

= 1.30=10
= 1.16%10
= 113010

n £ 9.910)

S =~ 9.57%10
£ 8.19#10,
= 7.85%10

- £ 6.48+10;

a1 ~ B.i4wig
£ 4.77%10]
= 4.43x10

" = 3.06w10;

< = 2.71=10
£ 1.3400

~ 1.00=10

O.“

S

2

Q T 4 T =\ 1

0.0 0.2 0.4 0.5 0.8 1.0

Figure 3.3.2a Density contours at intermediate time for shock in planar channel
M = 8.7, wedge angle = 27°).

28

AN AN

R T
ra s

CJ
™ K
ihﬂaslﬂq“‘
‘D'A'&\g.}u’x‘? 03
AP
NSRS
DRI RO 'A"“
PO ARSOGEAIY
av,ras Sl
s AR EAARNS
by
IS e i A TN Avew
LA\ POrS 4
v A%A4A‘~v-‘(Y va BB/ XN AL 2%
S 7] L X] X 'ﬂ'QVy "
AT AN Vo e ey, | ANIRAY. S POATRE TS
) NSV LS Tavg Ry A 49
LKL DO SO SISISISSISI SISO

a'

Figure 3.3.2b Grid at intermediate time for shock in planar channel
(M = 8.7, wedge angle = 27°).

}.44%10;
1.30#10°
1.16n10,
1.13»10
9.91»10;
9.57»10
8.19+10!
7.85%i0
§.48#10;
6.14%10
4.77=10;
4.43x10!
3.06%1D;
2.21.10
1.34n10
1.00%10"

L1111 O T T

Figure 3.3.3a Denstty contours at !ate time for shock in planar channel
(M = 8.7, wedge angle = 27°).

29

0.5

0.1

0.3

0.2

a.i

0.0

0.0 0.2 0.4 0.8 c.8 1.0

Figure 3.3.3b Grid at late time for shock in planar channel
(M = 8.7, wedge angle = 27°).

3.4 MINE EXPLOSION UNDER VEHICLE

The main objective of this joint Marine-Army program was the development of
vehicles hardened against antitank (AT) land mines. The basic vehicle is the M925 5-ton
cargo truck. Numerical simulations were used to determine the dynamic loads produced
by the AT mine detonation on the cargo bed and other structural elements of the truck.

The algorithms, techniques and codes developed under the UUGM program
provided two key elements necessary for the numerical simulations for this project: a)
flexibility in describing the very complex geometry of the truck; b) high resolution-
calculation of the shocks and other discontinuities using an adaptive unstructured grid. A
version of the AUGUST-2D code developed under the UUGM program is being used for
the analysis of blast resistance of different truck geometries.

We have carried out four such calculations, using four, eight, eight, and 20 pounds
of C-4 explosive. These employed fixed (nonadaptive) meshes with 30,000 (4-1b case),
21,000 (8-lIb cases).

A one- or twan-dimensional calculation was performed to produce the initial blast

profiles laid down on the three-dimensional grid. Aside from the amount of explosive, the
calculations differed in the following ways: all but the 4-1b blast were centered beneath

30

Figure 3.4.1 Two views of interaction between mine blast and M925 cargo truck:
pressure contours at / = 0.574 msec.

the left front wheel of the truck (the 4-Ib blast was situated 70 cm further back); for the
first 8-Ib case a crater with diameter 60 cm and depth 30 cm was situated underneath the
blast.

All but the second 8-Ib case used an ideal-gas equation of state with A = 7/5 for e
air and detonation products. Twenty pressure "sensors” positioned on the mesh at pc .is
corresponding to the pressure gauges used in actual field tests were used to recorc :he
pressure and impulse histories there for comparison with the experimental data.

The calculations were run out to about 4.5 msec. The pressure stations closest to
ground level and to the blast center exhibited peaks up to ~ 103 psi. In some cases
multiple peaks were present, corresponding to reflected shocks.

An example of the domain decomposition of the computational grid for a typical
mine-truck interaction problem is shown in Fig. 2.5.2. In Fig. 2.5.3 the unstructured
triangular grid is used to describe a cross section of an M925 cargo truck. Use of
unstructured grids allows detailed description of the truck geometry. Figure 3.4.2 shows
results of the simulation in the form of pressure contours overlaid on the unstructured
grid, viewed from two different directions haive a millisecond after the detonation.

At Ft. Belvoir's request, SAIC also assessed the damage to a mine-clearing plow
due to a single detonation of an AT mine at close range during the Desert Storm
operation. At that time, Ft. Belvoir RDEC had responsibility for support of countermine
activity in the Desert Storm operation.

To simulate the plow-mine blast interaction, SAIC used computational capabilities
partially developed under the UUGM program. Use of unstructured triangular grids again
enables detailed description of the plow geometry and use of Direct Dynamic grid
Adapration method allows detailed simulation of the complex pattern of the shock wave
reflections.

In Fig. 3.4.2 the initial stage of the blast-plow cross section interaction is shown in
the form of pressure contours overlaid on the dynamically adapting grids. In Fig. 3.4.3 a
more advanced stage of the blast-structure interaction is shown in the same format as in
Fig. 3.42. The adaptive grid allows high resolution of a complex blast interaction
phenomena.

SAIC has also simulated the structural response of the plow to the dynamic load
that is defined by the gas dynamic simulations described above. In Figs. 3.4.4a - d resuits
are shown for the plow deformation in response to dynamic load. Recent experimenral
assessment of the plow damage showed that SAIC predictions correctly described blast
damage to the plow.

32

e

Ui e

Ia 1300

~3

[To 3 SN RPN RS EAl
e » . .
R B BT s FEEL ST N e

Figure 3.4.2 Blast ~ plow interaction: pressure contours in initial stage.

w
e e mmm e o
I
5
\ '
s >
3 \,".‘“' . <
>
.;I —
&
o
. - T 3
0.0 0.5 1.0 1.5

i

i

it ooy

fal

n
't
B

%

4.18w10]
4.74%10
8.77x10"

Figure 3.4.3 Blast — plow interaction: pressure contours in advanced stage

33

Plow exptasien
daf + Q,)108e0!
tines @,

. wn
om 1
v |
- e
wwn |
».--
-~ -
-
wmm |
-~ o
LA]
» e
ma 4§
e {
e |
»es L
- |
mew |
v e
‘-
-
-
LX
*am

=Y

«u P

9

Plow expiasien
dof * 9, 100e+81
(inee O, 4Q0w+03
-~ e P.
"o 4
wap
wes |
e ¢
wa |
- |
o)
wme |
- e 3
v
ae |
- .
5 -
LA TS
L. X NS
i 3
e t
"

“w .-
v
LA Y
* -
L1 T Y
sms |
. -
o 3
- |
LR] :
-+ -

o won
L]
” .

Plow explusisn
Jaf ¢ O, 100ee21
Line e Q. 200wrgd

.-y
S
- e 4
“ em)
“w e
nm)
“m)
aas 5
<.m
a.a 4

LX IS
e 4
e
-
rw §
nus
.o
LY %
e |
e b
o b
e e -
rue |
i
ame &
w“me §
‘homm 4
e |

Plow explagisn
Jdsf + Q.100eep1
Lines O.EQ2er0%

& e
)
~ .,
= .
nee
.
..
™awe b
- o
" o

lll!_t_l_!
A AREEE]

2% sew
o me
&8 pe
€3 enn
& .
"0
.00
- oo
" .
- osn
0 oee

wes L

v L

- - b

e 3

sam)

Figure 3.4.4 Structural response of the plow to blast load:
a) =0, b) 1 = 200 msec; c) = 400 msec; d) ¢ = 600 msec.

a. Predetonation stage

b. Detonation

¢. Detonation product expansion
Figure 3.5.1 Pulsed detonation engine simulation: flow tracers.

35

3.5 PULSED DETONATION ENGINE

The main objective was the development of a revolutionary propuision concept
based on intermittent detonative combustion. Development of this concept will resuit in a
new class of engines with performance surpassing those of small turbines at signific- -:1y
reduced cost. SAIC's PDE research was noted in a recent article [Aviation * -zk,
October 28, 1991, pages 68-89]. The PDE is currently considered as a candidate ¢ :acept
for numerous propulsion systems including the air-to-air missile, cruise missilc. RPV
engine, high altitude UAVs and others.

The codes developed under the UUGM program have enabled SAIC to conduct a
detailed study of the PDE concept. The unstructured grids used in the simulations
allowed us to describe the complex geometries of the detonation chamber and air inlets for
a full missile configuration. Adaptive gridding allowed efficient and accurate simulation of
the detonation and resulting shock waves interacting with the thrust-producing surfaces of
the engine.

In Fig. 3.5.1 results are shown for the simulation of the PDE detonation cycle for a
Mach 2 missile. Lagrangian flow tracers are used to track air and fuel trajectories in the
engine. The figures demonstrate the sequence of stages in one PDE cycle. Shown in Figs.
3.5.1a-c are the fuel mixing stage, the detonation stage and the detonation products
discharge stage, respectively. Detailed CFD analysis of various geometries and flow
regimes allowed us to develop an understanding of the parametric dependence of the
fundamental variables that determine the PDE performance.

3.6 SHOCK FOCUSING IN AIR

Research relating to focusing of shock and acoustic waves is of considerable
practical interest for application to extracorporeal shock-wave lithotripsy (ESWL). A
schematic of the cross section of such a reflector is shown in Fig. 3.6.1. Strong acoustic
waves are generated in the left focal point of the ellipsoid by an instantaneous release of
energy and are refocused at the right focal point. I[deally, focusing should be based on
waves of acoustic intensity, since the nonlinear reflections of strong shock waves lead to
significant distortions in wave propagation and impair simple geometrical focusing.

Figure 3.6.1 shows the computational domain and gnid for the ellipsoidal reflector.
Figure 3.6.2 shows the simulation resuits at time t = 1.21 x 10-Osec. At this stage, the
wave front that propagated to the left has undergone full reflection and the reflected wave
propagates in the direction of the incident wave to the right. Figure 3.6.3 shows the
pressure contours (t = 8.41 x 10~4sec) when the maximum focused pressure is obtained in
the system. The incident front has left the computational domain, and the maximum
pressure occurs in a small volume in the vicinity of the right focal point. The maximum
focused pressure has reached 1.37 x 105 Pa and is located 11 mm to the right of the focal
point of the ellipsoid. In all the figures presented, the method of composite domain
decomposition works extremely well, producing seamless soiutions at the interfaces.

36

Figure 3.6.1a Hybrid structured/unstructured grid
used for numerical simulation of ellipsoidal reflector.

7 T e
L RN Q
/ s77/77 "y

/ ‘\4

/ S,

/ // \\\J“'l

y

/ [‘\
I

)
5
eeisd
s 2NN
W\ N

Figure 3.6.1b A schematic drawing of the center cross section of the ellipsoidal reflector.

\ ‘F2

37

g b — R
2~ :
o (
; T . "i
w N E [
* = - 3
q = ST
o = - ‘
E: .
8 : _— T el
S = |
= E 9.7« 0"
— 9.20%10°
w — J
S | = £.76%10%
g L 8.73~10"
& S
o t
n.29¢

Figure 3.6.2 Pressure contours at time t = 1.21 x 10-Ssec showing the incident wave as
reflected from the reflector wall.

1-.3,7,~m;
= 1
=]
—
: =
- = = f%-it:-j
gq = E«.S?-II;\‘{
S g.54~11
<]
[ngl ~
g ~-.
= e T
G000 {.14%

Figure 3.6.3 Pressure contours at time t = 8.41 x 10-4sec showing the stage at which the
maximum focused pressure is obtained.

38

3.7 NONIDEAL AIRBURST IN MULTIPHASE MEDIA

The main objective was to advance the understanding of the formation dynamics
and microphysics of the multiphase flow of clouds developing as a result of a nuclear
explosion. A main difficulty in analysis of nuclear cloud formation is the necessity to take
into account physical phenomena that are interdependent and occur on vastly different
scales. At about 30 seconds after a nuclear detonation, the cloud can be 4 km high and
the shock wave will be at the distance of 10 km. The multiphase interactions that occur
on a scale of 10-100 meters are very important and have to be accounted for.

SAIC has developed a multiphase, multicomponent version of the AUGUST-2D
code developed under the UUGM program. We use an explicit method for the solution of
the muitiphase flow described by equivalent Euler equations, and an implicit integration
for simulation of the particle-fluid interactions. The grid adaptivity allows efficient and
accurate simulation of this multiphase phenomenon. The grid adaptivity is used for
adjusting the spatial scale of the domain decomposition to the scale required for accurate
simulation of various physical interactions. Other code improvements such as introduction
of the real-gas equation of state and Lagrangian particle tracing were employed to enable
simulations and analysis of this complicated phenomena.

In Fig. 3.7.1a the computational domain and grid are shown for the nuclear cloud
simulation. In this figure the temperature contours are overlaid on the unstructured grid.
In Fig. 3.7.1b the particle density contours are shown for the same stage of the cloud
evolution as in Fig. 3.7.1a. In Fig. 3.7.1c particle radius is shown for the same stage of
the cloud evolution, and Fig. 3.7.1d shows locations of the Lagrangian tracers that mark
evolution of the detonation products.

3.8 FLOW IN THE SARL WIND TUNNEL

One of the problems to which AUGUST 3D has been applied is that of modeling
the SARL wind tunnel at Wright Laboratory. This example is a good test of the use of the
Second-Order Godunov method to do nearly incompressible flow calculations. To
illustrate the results, Fig. 3.8.1 shows the grid used for simulating the flow. The
calculation was performed by specifying the inflow and outflow parameters and running
the simulation to convergence. The run was performed at SAIC on the Stardent
workstation and repeated on an Iris at FIMM. Figures 3.8.2 and 3.8.3 show the pressure
levels in the tunnel. The results were visualized using AVS.

Figures 3.8.1 and 3.8.2 show two views of the pressure contours generated in a
calculation of subsonic flow (Mach number 0.05). The results were confirmed by
comparison with those obtained using a code with a structured grid, and by checking them
against measurements.

39

M7 H (S YA T

b. Particle densi

d.

ar

a. Temperature contours and

Il LTIt]

traces.

ngian

d. Lagra

20y 070/ (5 sy

Hio il

c. Particle radius.

NTL

Figure 3.7.1 Formation of a radiative cloud. Multiphase simulation.

40

Figure 3.8.1 The unstructured grid used to simulate the SARL wind tunnel.

Figure 3.8.2 The pressure contours from the simulation of the SARL wind tunnel.

41

3.9 SHOCK ON DOUBLE WEDGE

A much more complicated problem, which has been extensively studied to
benchmark and validate Euler solvers, is flow over a double wedge. This probiem
contains multiple fluid phenomena and is a stringent test for any solver. It includes sh-c
formation, a Mach stem, rarefaction, a slip line, vortex generation and rollup, ana is
transient in nature. To validate our direct dynamic refinement method in AUGUST. we
simulated a Mach 2.85 shock wave propagating in a channel and impinging on a
symmetric 45° wedge, and also a Mach 8.7 shock impinging on a symmetric 27° wedge.

Both of these compared well with experimental results. Figure 3.9.1 shows an
interferogram taken from Glaz et al.,!7 showing the M = 8.7 shock interacting with the
front surface of the 27° wedge. Our results are shown in Figs. 3.9.2 - 3.9.4. The first of
these illustrates the grid and density when the shock is on top of the wedge. The shock is
well resolved and the grid is well adapted in the vicinity of important features and
coarsened in the region that the shock has passed through. The next two figures show the
evolution of the flow and the grid after the wedge where comparison can be made with the
experimental results. AUGUST produces no artificial features and recovers the
phenomenology seen in the experiment.

Figure 3.9.1 Experimental interferogram of a shock hitting a 45° corner at M = 2.85.

42

In the figures showing the triangular grids, the area of a triangle in the dense

~egion of the grid is roughly 100 times smaller than the area of a triangle in the initial grid.

] The figures show that the grid adaptivity is capable of capturing the flow gradients

including shocks, contact discontinuities and slip lines. Formation of a triple point of the

Mach reflection, slip line and strong vortex formation are seen in Fig. 3.9.2a. In faimess,

most of the flow phenomena that is captured by AUGUST have also been captured by

other CFD schemes.18 However, the accuracy estimated for the AUGUST numerical

calculations in this example is on the order of 4%, equal to the accuracy of the
experimental observations.

/i

| }.0685
i{ § . —;‘..
|
3.0 -
e IO XL b
SR Rl
1 = 0.1786
-1 = o0.0822
| D.0476
3.0

b. Adaptive grid, 15,123 vertices

Figure 3.9.2 Interaction of a Mach 8.7 planar shock wave with a 27° double ramp: Mach
reflection stage.

43

I

b Adaptive grid, 27,132 vertices

Figure 3.9.3 Interaction of Mach 8.7 planar shock wave with a 27° double ramp. start of

the diffraction stage.

44

HIH

I
t

A i

!

LY

0. 1647
(1. 0485

1.050¢

ag.0

el
'

(AN

1 ! h h
.0 0.5 1.0 1.5 2.0 2. KN

i

a. Density contours

U

N WRE S

R N A

o’

v, n

T v T T T T

L 0.G PO] . & < 0 a5 ERE

b. Adaptive grid, 46,462 vertices

Figure 3.9.4 Interaction of Mach 8.7 planar shock wave with a 27° double ramp:
shock diffraction stage.

45

3.10 SUPERSONIC SPRAY COATING DEVICES

In this section we present the results of an application of the UUGM sim- n
technology to a sample problem involving spray-coating devices. Here we only trc ae
aerodynamic flow of particles in a high temperature gas which is moving supersc ly:
we consider a reasonably complex geometry including a simulated surface tha: the
substrate to be coated. The details of the surface interaction resulting in depos:: .. are
not treated in this example.

In Fig. 3.10.1 the computational domain and grid are shown for a model
supersonic jet sprayer device that includes reactor nozzle, solid particle injector, and
expansion nozzle. Also shown in Figure 3.10.1 is a perforated flat surface substrate
placed in the flow field. The high-velocity high-temperature flow stream exiting the
reactor nozzle accelerates the injected particles. The particles are heated during
acceleration, melt, then expand with the flow in the nozzle, gain more speed, and finally
impinge onto the surface. Details of the flow-surface interaction (here without boundary
layers taken into account) will strongly affect the uniformity with which the surface will be
"coated" by the particles carried by the flow.

I A A N NN T I A T S A IR IR
NOOISONNININN N AAITLLA R N)
T e A v vama vy
~‘““"V"“‘-“Vi“““V“""V"‘r‘r""":" : L/ ININIS
‘w‘w‘nr,r‘v,‘ug“ggr,“r‘r,'."r‘r‘r"l"' "‘ [INIZINNNT
RN IASANI NG '4 QNI /ZNINING
NG IZININNINGLLPLAILIL LT N “ 4'4"'4" NSNS
ARRIANIA R R R AR AN T, A
NS AN NI LML IR "' N\
RIS LTINS

L
DONCZININAIIZINNILAAIA Y B NN/

OGN LT XD K ""“t‘“r‘
RO MM AZLILIIN JUR ‘.r" ' <
AN IAAPZSINIKIEA T Nyl - ’ 4 "A\‘L [\
DO INNNINI AP LA M IS 4 4"&“&&&
‘:,~.‘r,r‘r,“‘v.“«rlr_,r‘r‘r"‘"'

AN NS AN IS EAN AN LA S -
3 .'."4‘\.‘r,g“"r‘?‘r‘r"""":> .

:A;‘:::‘:'V‘r,gr,"r,r‘r‘r‘r"‘v‘,‘ -t

.“..:‘, LA NAPIAAAAAN AN NS

RS L N IAAARMICK R AN

IOAANAAANANINARANINA

["‘.J'J.J'A""'A’1"'-"'4’4’4'.

IA M PIAAAAAINIAINAAR AR NN
"'l'l"""’4’[’1'[’-'[""""’1" Y4?,

Figure 3.10.1 The figure shows the initial computational grid for the jet spray simulation
demonstration. Shown are the nozzle, injection region and target surface depicted as a flat
plate with perforations, oriented perpendicular to the mean spray flow. The boundary
conditions used for the sample simulation were: Vg = 1000 m/sec, pg = 0.1 kg/m3, Tg =
3500 K at the inlet of the reactor nozzle; Vg = 1500 m/sec, pg = 0.3 kg/m3, Tg=1500K,
Vp= 1500 m/sec, Ty = 1500 K, Np = 2000 at the inlet of the reactor nozzle.

46

To trace the motion of the particles in the plasma spray device and the interaction
pattern with the target surface we have injected Lagrangian "marker" particles (massless
but moving with the local flow speed) in the particle injector flow stream. In Fig. 3.10.2
results are shown in the form of marker particle locations. To monitor the particle
temperatures we have introduced particle coloring, where the color defines the local
particle temperature. Thus one can evaluate the evolution of the particle temperature by
observing the particle color transition. This coloring scheme can be used to show other
parameters such as particle residence time or density. This represents a simple method of
visualization that we have used successfully in past UUGM simulations.

0.04

.02

0.00

-0.91 2001 9.0 .08 0.0 G

Figure 3.10.2 Lagrangian marker particles are shown in color representing the evolution
of injected particle temperature as a function of particle position and time in the jet spray
stream.

In Fig. 3.10.3 simulation results for the steady state are presented in the form of
gas temperature contours for the jet spray system. Here it is possible to observe a very
large temperature variation in the nozzle. The cold gas that is injected with the particles
remains at the edge of the jet stream. At the same time the main jet cools through the
expansion in the nozzle from 3500°K to 2000°K, and then undergoes a series of
expansions and compressions in the system of shock waves created by overexpansion of
the supersonic jet. Figure 3.10.3 also shows a nonuniform temperature distribution on the
surface that is partially created by the gas flow through the perforated holes.

In Figs. 3.10.4 and 3.10.5 simulation results are shown for the density and pressure
contours. Here we can observe the formation of several diamond-shaped shock structures
as a result of supersonic flow over expansion. However, for the flow regimes in our
simulation these shocks do not lead to a higher rate of mixing by injected cold gas with
particles and the main hot gas stream. This can be noticed in the density contours, where
one clearly observes that the high-density cold gas does not penetrate the main hot jet
flow. By changing the condition (injection pressure, angle of entry, etc.) of the injected
flow one can improve mixing, thus achieving higher particle temperatures and velocity.

47

——

0.04

0.0z
i

G = a A -
P ‘1]’4"9'
;\ -

5 | ‘ \ 5— ;-
: [y 7 R e
4 ! 7/) Fﬁ ({fce. 4 \\\\N ‘}r |

1,03 Ll a.03 ‘i T 0,

- ST

(.

(g}

Figure 3.10.3 Gas temperature contours in the jet spray stream. The maximum
temperature is 3500°K and the minimum is 600°K.

.00

a! .01 J.c~ n.os a0 N0

Figure 3.10.4 Gas density contours in the jet spray stream. The injected stream and the
main flow mix poorly. The diamona patterns describe the shock wave pattern resulting
from the flow's overexpansion,

a.04

——— e

J —

Figure 3.10.5 Pressure contours in the jet spray stream. The diamond patterns show that
supersonic flow is maintained near the vicinity of the target surface

48

3.11 DUSTY FLOW OVER A CYLINDER

A numerical study of two-phase compressible flow has been performed for the
reflection and diffraction of a shock wave propagating over a semicircular cylinder in a
dusty gas. The following model was used to derive the governing equations:

(1) The gas is air and is assumed to be ideal;

(2) The particles do not undergo a phase change because for the particles
considered here (sand) the phase transition temperature is much higher than the
temperatures typical for the simulated cases;

(3) The particles are solid spheres of uniform diameter and have a constant
material density;

(4) The volume occupied by the particles is negligible;
(5) The interaction between particles can be ignored;

(6) The only force acting on the particles is drag and the only mechahism for heat
transfer between the two phases is convection. The weight of the solid particles and their
buoyant force are negligibly small compared to the drag force;

(7) The particles have a constant specific heat and are assumed to have a uniform
temperature distribution inside each particle.

Under the above assumptions, separate equations of continuity, momentum, and
energy are written for each phase. The interaction effects between the two phases appear
as source terms on the right-hand sides of the governing equations. The two phases are
coupled by interactive drag force and heat transfer.

The objectives of the study were (a) to solve the two-phase compressible flow field
and compare the simulation with available experimental results; (b) to observe and
investigate the reflection and diffraction wave patterns when a shock wave propagates
over a semicircular cylinder in a dusty gas, with particle radius and loading as parameters.

To test the accuracy of the two-dimensional computation, we first computed the
pure gas flow case of shock wave reflection and diffraction over a semicircular cylinder.
We then compared the simulation with experimental results. Shock wave reflection on a
wedge has been extensively studied by many researchers (see e.g., review papers of Ben-
Dor and Dewey!8 and Hornung.!2 As one can see from Fig. 3.11.1, the results show
excellent quantitative and qualitative agreement between the numerical simulation and
experimental results.

49

J 85«10

o 24oel0

- 1 S9a50

e
»
IRERR

(a) {b)

Figure 3.11.1 Comparison for Mg = 2.8 pure-gas flow: (a) interferogram from
experiment; (b) density contours from present calculation.

In the two-phase simulation a planar shock with Mg = 2.8 propagates into an area
of dusty gas and impinges on a semicircular cylinder. The interface between pure air and
dusty air is located at x = 0.0 of the computational domain. The area of the dusty air
contains a semicylinder with a radius of Im. The size of the computational domain, initial
parameters of the gas, parameters of the incoming shock, size of the semicylinder and its
location in the computational domain, are the same as in the reflection and diffraction
simulation in the pure gas case. The main objective of this set of simulations was to study
the effects of particle size and particle loading on the parameters of the reflected and
diffracted shock waves.

The first set of simulation results is shown for the case with dust parameters rp=
10um and pp = 0.25 kg/m3. The gas parameters and the parameters of the incoming
shock wave were the same as in the pure gas case presented above. In Figs. 3.11.2a and
3.11.2b, the particle density and gas density contours are shown at the stage where
significant diffraction has taken place and the shock front is approaching the trailing edge
of the cylinder. To study the influence of particle loading on the dynamics of reflection
and diffraction, we have simulated the case with a dust density of pp = 0.76 kg/m3 and
with rp = 10um. To examine the effect of particle size on the reflection-diffraction
process, we simulated a case where the particle loading and gas flow conditions were the
same as in the previous case with particle density pp = 0.76 kg/m3, but the particle size
was rp = 50um (Fig. 3.11.3).

On the basis of these calculatrions we reached the following conclusions:
(1) For a two-dimensional pure-gas flow, numerical results agree well with existing

experimental data qualitatively and quantitatively, indicating that the gas phase is
accurately simulated by the adaptive grid technique,

50

®

-
- -y
) . - .
o = 278010 £ 1.2te10
- : 2 3810 2 103010
- 3
- (
=5 s 15810 ! 6.85010
- 118010 = 5.11=10
L) = - = .
= = yr13010 = 337010
5 175010" i L.é3et0”
- =
s B i
10 ee 16 20 30 40
(a) {¢)
e
-
g bi2wi0 = 1dpelu
= P =
§ 965010 - = ¥ alet0
=3 =
g 6.37410° ~ = 5T
= 475010 2, ...
= , =z
§ 3.14010 2. £ 1m0
" =
= 152010 = 13m10°
10 e¢ 190 30 30 40 -1e ‘0
b ()

Figure 3.11.2 Density contours for the case Mg = 2.8, Pp= 0.25 kg/m3, rp = 10um at
two different times: (a) particle density at t{, (b) gas density at ty; c) particle density at t5,

(d) gas density at t.
bed

- o —_
= 471010 = 183e10
= . o & .
= 403010 - = 328e10
= F

-]

i 2.67e10" ~ g 2.17010°
% 1.99210 o ;:‘_; 162810
E » - = *
= 1.31010 % 107010
& 636010 o = 51710’
g s g

‘0 ‘0

(a) (¢}

& 0o z 101919
'—; B 7isiQ :_‘; 4§ selp
= Z
£ 577410 H 5.80e10
= 4 e T4 32en
= 1 m4eto’ = 185010
= =
= tarao £ 1isa0
H 4 g

40 40

{(h {ch

Figure 3.11.3 Density contours for the case Mg = 2.8, pp =0.76 kg/m3, for two different
particle sizes: (a) particle density and (b) gas density for rp = 10um,; c) particle density and
(d) gas density for p = 50um.

51

(2) Particles in the gas can have a profound effect on the shock wave reflection
and diffraction pattern, which is a function of particle size and loading. The :-ss the
particle loading, the less the influence of particle on the flow field;

(3) In the three simulation cases, particles accumulate behind the "back .ulder”
of the semicircular cylinder due to the effect of particle inertia and the rarefactior ave;

(4) For different particle sizes at fixed particle loading, the larger particie will have
a longer relaxation zone and less accumulation at the "back shoulder" ana behind the
incident shock. The gas density contours show a less distinguishable slip line in the small
particle case than in the large particle case.

3.12 IMAGE PROCESSING

Very recently, there have been exploratory efforts in image processing based on
nonlinear methods. If the purpose of an enhancement process is to highlight the edges of
an image, then the technique used in the frequency domain is usually highpass filtering.
An image can be blurred, however, by attenuating the high-frequency component of its
Fourier transform. Since edges and other abrupt changes in the gray levels are associated
with high-frequency components, image sharpening can be achieved in the frequency
domain by a highpass filtering process, which attenuates the low-frequency without
disturbing high-frequency information in the Fourier transform. The primary problem with
this technique is that an ideal discontinuity has an infinite spectrum of frequencies
associated with it. When filtering is applied, some frequencies are cut off, leading to a loss
of edges in the image.

In computational fluid dynamics (CFD) similar problems exist in simulating flows
with discontinuities. The problem of simulating flows with discontinuities is less forgiving,
since an incorrect calculation usually leads to a complete distortion of the flow field. This
has led CFD scientists to develop sophisticated algorithms that identify and preserve
discontinuities while integrating the flow field in the computational domain. In the image
domain, sharpening is usually done by differentiation. The most commonly used methods
involve the use of either gradients or second derivatives of the pixel information. Central
differencing is usually used to calculate the derivatives. CFD research has shown that this
strategy will lead in many cases to smearing of the flow discontinuities (analog of the
image edges in image enhancement).

A new and unique image sharpening method based on computationai techniques
developed for AUGUST has been developed. Preliminary experience shows that it can
enhance image edges and deconvolve images with random noise. This indicates a
potential application for image deconvolution from sparse and noisy data resulting from
measurements of backscattered laser-speckle intensity.

52

—————f

The Second-Order Godunov Method used in AUGUST was developed from an

understanding of the phenomenology of signal propagation in gasdynamical systems. The

® numerical algorithm implementing this method is not analytical and contains a set of steps

that can be regarded as wave filters. These filters are designed to not smear the

discontinuity (edge), suppress the spurious oscillations, and propagate the relevant signals

through the system. The following algorithmic steps are performed to advance the
solution for a single iteration in the Second-Order Godunov Method:

1. Local Extrapolation

2. Monotonicity Constraint
3. Characteristics Constraint
4. Riemann Problem Solution
5. Integration

Most of these steps have an analog in conventional image processing methods.
Here we will give an explanation of the function of each algorithmic step of the Second-
Order Godunov Method and where applicable, will point to its possible analog in
conventional signal processing techniques.

Step 1 consists of extrapolation of the values in the computational grid (pixel) cell
to the edges of the cell. Linear or nonlinear extrapolation can be used. This step is
analogous to the standard edge-sharpening techniques used in image processing, with one
important difference: the extrapolation is done not for the value itself but for its flux
(change of value across cell boundary).

Step 2 includes a monotonicity constraint for the values at the cell edges. This is
analogous to the nonlinear technique of locally monotonic regression only recently
introduced for signal processing.

Step 3 subjects the values at the edges to the constraints derived from a solution of
the one-dimensional characteristics. This step assures that the values at the edges have
not been extrapolated from directions inconsistent with the characteristic solutions. This
prevents extrapolation as well as smearing or overshoot of the discontinuities. For the
image-processing application, this can be regarded as a form of automatic edge detection
step where the shock waves are associated with the edges of an image.

Step 4 uses an exact solution of the system of the gasdynamic equations for
calculation of the flux values based on the extrapolated values of the parameters at the left
and right side of the edges. This step has no analogy in image processing. However, since
the analytical solution includes discontinuities, an exact calculation of the flux at the edge
location is allowed, even if this flux is calculated through a discontinuity.

53

Step 5 consists of finite-volume integration of the system of conservation laws.
Here, the image is effectively treated as a flow field: the flux integration serves as a
smoothing filter from the image perspective.

The effect of these steps is equivalent to the application of a unique filte stack
with proven properties of discontinuity preservation and robustness.

The field of gray scale intensity of an image can be translated into a flow :ield. To
every image pixel we assign to the corresponding cell of the computational domain values
of the gasdynamical parameters proportional to the values of the gray scale. Our
understanding of the basic gasdynamical processes plays a major role in completing the
analogy. Appropriate mapping of the image gray scale intensity into a flow field creates
conditions favorable for the formation or enhancement of field discontinuities. For
example, a shock wave reflecting from a wall or a contact surface can increase in strength,
or two colliding flow streams will produce a contact surface that will become stronger in
time. If we have a numerical technique to resolve these discontinuities accurately, then
with successive numerical integration of the flow field, the discontinuities will sharpen as
the solution evolves in time. Then by inverse mapping of the flow field to the image gray
scale field, we can reconstruct an enhanced image.

i 1
1 .-'/\'-. i /\
3 i .&ﬂdﬁ________“
.:o'_ = 3 [T v} :ﬂo_ b ol - e
d
t$ f/\ H f’
. ! “hhaaems L eespes
-— re rvy Pvy e e w [ue
| 3
* — v - - b -’ PO
© A 0 Horwasa. by PO S - -
i . 3
 §
Il 'Y
- ! ! - .

Figure 3.12.1 Edge enhancement for a Figure 3.12.2 Edge enhancement for a
sinusoidal distribution without noise. sinusoidal distribution with 10%
intensity random noise.

54

2y 9.
: F,“"':NV"P". : ‘}u:ﬁmb

3 . t ®
hat N st e
g i
3 /““ H /MM

q’ M 3 M u ’

i P \ 1A QY
o] pr A i Kaas

:»-Ah Ilil:—- - = - . :. Al U6 u:-. = - “
% H

$

: V\\——' q TAIW\L\—
i‘\”j f) h«f'\' ‘
. . Alar 20 iteramamn. & ; ¢ ARar 30 itermmene.

4 o . ! s
! V‘M ! # .‘MM*L
i o o L.—-_.; i . \’_

4 Aer ¢ taranema. d Alar <5 nwensns.
Fig. 3.12.3 Edge enhancement for a Fig. 3.12.4 Edge enhancement for a
sinusoidal distribution with 50% intensity sinusoidal distribution with 100%
random noise. intensity random noise.

Applications have been made to two-dimensional images derived from satellite
reconnaissance and gamma-ray medical diagnostics (see Appendix C). Note that the
images shown there are distorted by the xerographic process used to reproduce these
illustrations, which also act as a nonlinear filter but is not iuned to these images.

Analogous extensions of nonlinear CFD techniques can be used for image
compression.

3.13 DETONATION IN A MULTIPHASE MEDIUM

In this study the main subjects were the initiation, propagation, and structure of
detonations occurring when combustible particles are intentionally or unintentionally
dispersed into the air. Formation of this potentially explosive dust environment and the
properties of its detonation are of significant practical interest in view of its destructive or
creative effects. Previous experimental and theoretical studies of these phenomena
addressed only homogeneous particle/oxidizer mixtures. However, intentional or
accidental processes of the explosive dust dispersion always lead to inhomogeneous
particle density distribution.

55

On the other hand, some industrial methods of explosive forming rely on
detonation of explosive powder. This powder can be deposited as a thin layer over - e
surface area of the forming metal, with a residual concentration in the vicinity of the la. r.

When the detonation wave is generated in a homogeneous mixture by " ¢t
initiation," it starts with a strong blast wave from the initiating charge. As the blast .ve
decays, combustion of the reactive mixture behind its shock front starts to have a iger
role in support of the shock wave motion. When the initial explosion energy » -eeds
some critical value, transition to steady state detonation occurs. In explosiv. dust
mixtures with a nonuniform particle density, the initiation dynamics is significantly more
complicated. The critical initiation energy sufficient for one of the explosive particle
density regions is not necessarily adequate for other regions. We have demonstrated that
the phenomenology of these interactions is distinctly different from the classical studies of
multilayer detonations in gases. This is primarily because the energy content of adjacent
layers in a typical muitigas layer experiment varies by a factor of two or four, whereas the
energy content in explosive dust/air mixtures can vary by several orders of magnitude.

At present the physics of the energy release mechanisms in solid particles/air
mixtures is not clearly understood. This can be attributed to the obvious difficulties of
making a direct non-obtrusive measurement in the optically thick environment typical for
this system. The chemical processes of single-particle combustion, which mainly occur in
the gaseous phase, are significantly faster than the physical processes of particle
gasification or disintegration. Thus, in the multiphase mixtures, the rate of energy release
is mostly determined by physics of particle disintegration. It is very difficult to describe
the details of particle disintegration in the complex environment prevalent behind the
shock or detonation wave. Fortunately, in most cases of multiphase detonation, only the
main features of the particle disintegration dynamics need to be captured to describe the
phenomena.

In this work we considered solid particles consisting of explosive material. Two-
dimensional simulations were done for the system of low particle density concentration
clouds and ground layers formed by high concentrations of the RDX powder. We
examined three cases of ground layer density distribution: a fourth power distribution
with 12 mm above ground with a maximum density on the ground of 800 kg/m3; a
uniform 25-mm layer with a density of 100 kg/m3; and a 12-mm uniform layer with a
density of 250 kg/m3. In all these cases, the weight of the condensed phase per unit area
was the same, which allowed examination of the effects of the particle density distribution
on detonation wave parameters.

Figure 3.13.1 shows a setup for a typical two-dimensional simulation. Here the
computational domain is 25cm x 25cm. The explosive powder density is distributed
according to the 4th power law of the vertical distance, starting from the ground where
the density is 800 kg/m3, and rising to 1.2cm, where the density is 0.75 kg/m3. From this
point to 25cm height, the density is constant and equal to 0.75kg/m>. The density
distribution is uniform in the x direction.

56

z
Q

E Cloud

-

%)

©

R

>

<

Initiation Charge
§
P Ground Layer
]
Solid Wall

Figure 3.13.1 Computational domain and boundary conditions.

In all three cases, the detonation wave in the cloud in the computational domain
was significantly overdriven and did not play an important role. We estimated that the
self-sustained regime of the detonation wave in the cloud for the examined cloud
concentrations can occur only at the distances of 2-3m above ground. At the same time,
the particle density distribution in the layer determines the dynamics of the detonation
wave as well as the pressure on the ground.

In all three two-dimensional simulations, we observed a very distinctive shape of
the detonation wave front in the vicinity of the layer. In this area, the overdriven
detonation in the cloud is preceding the detonation wave in the ground layer. This feature
of the detonation fru.'t can be explained by the fact that the energy released in the ground
layer detonation wave produces a faster propagating shock wave in the dilute cloud than
in the ground layer which is heavily loaded with solid particles. However, these structures
were not observed experimentally, and more studies are needed to examine their

parameters.

57

o Log P MPa
~
ta)

@
S - —
~ =

= 2.87
e =
ot =
27 = 166
) _ L26
v =

= 0.85
o =
e = 045

0.0 50 10.0 150 20.0 25.0

Log pg kg/m®

(b)

2.35
2.07

T

1.49
1.21

V.92
0.63

ONAAOOAR 1 ¢ g

10.0 150 20.0 25.0

o Log pp kg/m®
a
{c)

o
o =
~ =

= 208
o =
n = 178
e =
=7 = 119
i =

= 059
L] o=
S = 0.30

0.0 50 100 150 20.0 25.0

Figure 3. 13 2 Explosive initially localized in 2.5-cm layer at constant densitv of 100
kg/m Density in the cloud is 0.75 kg/m3. (a), (b), and (c) are gas pressure,
gas density, and particle density at 66 pusec, respectively.

58

t'!
-
o -4
il u
"&;
Y

3.96
3.40
2.84
2.28
| B]

1.16

0.60

s

10.0 15.0 20.0 25.0

T

0.0 5.0

15392
13234
11076
8919
6761
4603
2446

(A

10.0 15.0 20.0 25.0

T

0.0 50

0.0 50 10.0 150 20.0 25.0

Log

)

» kg/ m®

2.97
2.55
2.12
1.70
1.27
0.85
0.42

I

10.0 150 20.0 25.0

AR ¢ T

0.0 5.0

0.0 S0 10.0 150 20.0 25.0

Figure 3.13.3 Particle density distributed in layer in accordance with the fourth power of
height. Gas pressure, temperature, and particle density at 55 psec, respectively.

59

4. CONCLUSIONS

The AUGUST-2D and AUGUST-3D adaptive unstructured CFD sim: .ation
codes, developed under SAIC's UUGM (through a contract form ARPA's Appli- i aza
Computational Mathematics Program) program have been tested through the s«
standard CFD benchmark test cases and have been applied to a wide range ot :2. ¢
problems for a variety of end-users. In most cases where these codes have bee:. apg:ied,
significant improvements in accuracy, resolution, and ease of use have been not=i. ' ‘se of
the Second Order Godunov flow solver algorithm has provided a robust capabiiity :o treat
low Mach number subsonic-to high Mach number hypersonic flow problems within one
simulation code without the necessity of tuning the flow solver via adjustable parameters.
In addition, the extension of the AUGUST family of codes to treat multiphase,
multicomponent reactive flow phenomena provides the capability, for the first time, of
simulating a wide variety of physically interesting and challenging problems that are rich in
physics-chemical phenomena. The range of these problems includes: 1) full 3D flows
about complex aircraft in all flight regimes (except rarefied flows), 2) shock-body
interactions, 3) chemicaily reacting flows typical in combustion problems, and 4)
detonation phenomena found in explosives, shock tubes, and specific applications to such
devices as the pulsed detonation engine.

SAIC's UUGM program has resulted in over 20 publications in various stages of
preparation, and numerous presentations at U.S. and international technical meetings,
conferences, and workshops. The AUGUST family of simulation codes is presently being
applied to several current materials development and synthesis areas of research. In
particular, the ability of the AUGUST codes to capture the complex geometry of material
synthesis reactor configurations, resolve the compiex flow patterns, and treat the complex
physics and chemistry of the synthesis process provides a simulation and modeling tool
that is useful for design of such process reactors, analyse and evaluate experimental
results, and (depending on successful benchmarking) provide a process control tool based
on validated models. SAIC intends to exploit this capability in future programs.

SAIC's Applied Physics Operation, Hydrodynamic Modeling Division staff
members performed the work under the DARPA UUGM program. Dr. Shmuel Eideiman
and Dr. William Grossmann were co-program managers. Important contributions were
made by Drs. Itzhak Lottati, Xiaolong Yang, Marty Fritts, Adam Drobot, Ahron
Friedman, and Michael Kress. SAIC's UUGM team would like to acknowledge the
support and interest of Dr. James Crowley (ARPA ACMP program manager), Drs. Lois
Auslander and Helena Wisniewski (previously DARPA ACMP program managers), and
Dr. Arje Nachman (AFOSR) who served as the ARPA agent for the UUGM program.

60

2.

LN

0

10.

11.

12.

REFERENCES

. T.J. Baker and A. Jameson, "A Novel Finite Element Method for the Calculation of

Inviscid Flow Over a Complete Aircraft,” Sixth International Symposium on Finite
Element Methods in Flow Problems, Antibes, France (1986).

T.J. Baker, "Developments and Trends in Three-Dimensional Mesh Generations,"
Transonic Symposium held at NASA Langley Research Center, Virginia (1988).

. R. Lohner, "Generation of Three-Dimensional Unstructured Grids by the Advanced-

Front Method," ATAA 26th Aerospace Sciences Meeting, Reno, AIAA Paper 88-
0515, January 1988.

R. Lohner and K. Morgan, "Improved Adaptive Refinement Strategies for Finite
Element Aerodynamic Computations," AIAA 29th Aerospace Sciences Meeting,
Reno, AIAA Paper 86-0499, January 1986.

. A. Jameson, T.J. Baker, and N.P. Weatherill, "Calculation of Inviscid Transonic Flow

Over a Complete Aircraft,” AIAA 24th Aerospace Sciences Meeting, Reno, NV,
AIAA Paper 86-0103, January 1986.

R. Lohner, "Adaptive Remeshing for Transient Problems, Comp. Meth. Appl.
Mech. Eng. 75 195-214 (1989).

J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz, "Adaptive Remeshing for
Compressible Flow Computations," J. Comp. Phys. 72, 449-466 (1987).

D. Mavriplis, "Accurate Multigrid Solution of the Euler Equations on Unstructured
and Adaptive Meshes," AIAA 88-3707 (1988).

I. Lottati, S. Eidelman, and A, Drobot, "A Fast Unstructured Grid Second Order
Godunov Solver (FUGGS)," 28th Aerospace Sciences Meeting, AIAA-90-0699,
Reno, NV (1990).

I. Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive
Grids Using a Fast Unstructured Grid Second Order Godunov Solver," Proceeding of
the Free Lagrange Conference, Jackson Lake, WY, June 1990.

[. Lottati and S. Eidelman, "Second Order Godunov Solver on Adaptive Unstructured
Grids," Proceeding of the 4th International Symposium on Computational Fluid
Dynamics, Davis, CA, September 1991.

S. Eidelman, P. Collela, and R.P. Shreeve, "Application of the Godunov Method and

Its Second Order Extension to Cascade Flow Modeling," AIAA Joumnal 22, 10
(1984).

61

13.

14.

15.

16.

17.

18.

19.

B. van Leer, "Towards the Ultimate Conservative Difference Scheme, V.A. Second
Order Sequel to Godunov's Method," J. Comp. Phys. 32, 101-136 (1979).

P. Collela and P. Woodward, "The Piecewise Parabolic Method (PPM) for Gas-
dynamic Simulations,” J. Comp. Phys. 54, 174-201 (1984).

JF. Thompson, "Grid Generation Techniques in Computational Fluid Dynamics,”
AIAA Tour., Vol. 22, No. 11, pp. 1505-1523, November, 1984.

M.S. Shepherd and M.K. Georger, "Automatic Three-Dimensional Mesh Generation
by the Finite Octree Method," Intern. J. Num. Meth. Eng., Vol. 32, pp. 709-749,
(1991).

HM. Glaz, P. Colella, L.I. Glass, and R.L. Deschambauit, "A Detailed Numerical,
Graphical and Experimental Study of Oblique Shock Wave Reflections," DNA-TK-
86-365, 1986.

LI Glass and D.L. Zhang, "Interferometric Investigation of the Diffraction of Plariar
Shock Waves Over a Half-Diamond Cylinder in Air," UTIAS Report No. 322, March
1988.

H. Hornung, "Regular and Mach Reflection of Shock Waves," Annual Review of
Fluid Mechanics, Vol. 18, pp. 33-58, 1986.

62

v

PUBLICATIONS UNDER THE UUGM PROJECT

. S. Eidelman, W. Grossmann, and 1. Lottati, "A Review of Propuision Applications of

the Pulsed Detonation Engine Concept,” AIAA 89-2446, AIAA/ASME/SAE/ASEE
25th Joint Propuision Conf., Monterey, CA, July 1989.

. S. Eidelman, W. Grossmann, and I. Lottati, "Computational Analysis of Pulsed

Detonation Engines and Applications,” AIAA 90-0460, 28th Aerospace Sciences
Meeting, Reno, NV, January 1990.

. L Lottati, S. Eidelman, and A. Drobot, "A Fast Unstructured Grid Second Order

Godunov Solver (FUGGS)", AIAA 90-0699, 28th Aerospace Sciences Meeting,
Reno, NV, January 1990.

. S. Eidelman and I. Louati, “Refiection of the Triple Point of the Mach Reflection in a

Planar and Axisymmetric Converging Channels," 9th Mach Reflection Symposium,
Freiburg, Germany, June 1990.

. L Lottati, S. Eidelman, and A. Drobot, "Solution of Euler's Equations on Adaptive

Grids Using A Fast Unstructured Grid Second Order Godunov Solver (FUGGS),” in
H.E. Trease, M.J. Fritts, and W.P. Crowley (Eds.), Proceedings of the Next Free-
Lagrange Conference, Jackson Lake, WY, June 1990 [Advances in the Free-Lagrange
Method, Springer-Verlag, New York (1992)).

. S. Eidelman, W. Grossmann, and I. Lottati, "Air-Breathing Pulsed Detonation Engine

Concept; A Numerical Study," AIAA 90-2420, AIAA/SAE/ASME/ASEE 26th Joint
Propulsion Conf., Orlando, FL, July 1990.

. E. Hyman, K. Tsang, I. Lottati, A. Drobot, B. Lane, R. Post, and H. Sawin, "Plasma

Enhanced Chemical Vapor Deposition Modeling," Surface and Coatings Tech. 49,
387 (1991).

. S. Eidelman, W. Grossmann, and A. Friedman, "Nonlinear Signal Processing Using

Integration of Fluid Dynamics Equations," Applications of Digital Image Processing
XIV, SPIE Vol. 1567, 1991.

. S. Eidelman, W. Grossmann, and I. Lottati, "Review of Propulsion Applications and

Numerical Simulations of the Pulsed Detonation Engine Concept," J. Propulsion 7,
857 (1991).

10. D.L. Book, S. Eidelman, I. Lottati, and X. Yang, "Numerical and Analytical Study of

Transverse Supersonic Flow Over a Flat Cone,” Shock Waves 1, 197, 1991,

63

11. S. Eidelman and X. Yang, "Detonation Wave Propagation in Variable Density Multi-
phase Layers," AIAA 92-0346, 30th Aerospace Sciences Meeting, Reno, NV, January
1992.

12. S. Eidelman, I. Lottati, and W. Grossmann, "A Parametric Study of the Air-B: --ning
Pulsed Detonation Engine," AIAA 92-0392, 30th Aerospace Sciences Me: g &
Exhibit, Reno, NV, January 1992.

13. I Lottati and S. Eidelman, "A Second Order Godunov Scheme on a Spatiai Adapted
Triangular Grid," in U.S. Armmy Workshop on Adaptive Methods ror Partiai
Differential Equations, Rensselaer, NJ, 1992.

14.1. Lottati and S. Eidelman, "Decomposition by Structured/unstructured Composite
Grids for Efficient Integration in Domains with Complex Geometries," in Adv. in
Computer Methods for Partial Differential Equations VII, R. Vichnevetsky, D.
Knight, and G. Richter (Eds.), 1992.

15. X. Yang, S. Eidelman, and I. Lottati, "Two-Phase Compressible Flow Computation on
Adaptive Unstructured Grid Using Upwind Schemes,” in Adv. in Computer Methods
for Partial Differential Equations VII, R. Vichnevetsky, D. Knight, and G. Richter
(Eds.), 1992.

16. S. Eidelman and W. Grossmann, "Pulsed Detonation Engine Experimental and
Theoretical Review," AIAA 92-3168, AIAA/SAE/ASME/ASEE 28th Joint Propulsion
Conf. and Exhibit, Nashville, TN, July 1992.

17. S. Eidelman and A. Altshuler, "Synthesis of Nanoscale Materials Using Detonation of
Solid Explosives," /st Intern. Conf. on Nanostructured Materials, Cancun, Mexico,
September 1992.

18. S. Eidelman and X. Yang, "Detonation Wave Propagation in Combustible Mixtures
with Variable Particle Density Distributions,” AIAA J. 31, 228, 1993.

19. S. Eidelman and X. Yang, "Detonation Wave Propagation in Combustible Particle/Air
Mixture with Variable Particle Density Distributions," Combust. Sci. and Tech. 89,
201, 1993.

20. X. Yang, S. Eidelman, and I. Lottati, "Computation of Shock Wave Reflection and
Diffraction Over a Semicircular Cylinder in a Dusty Gas," AIAA 93-2940, 24th Fluid
Dynamics Conf., Orlando, FL, July 1993.

21 I. Lottati and S. Eidelman, "Acoustic Wave Focusing in an Ellipsoidal Reflector for

Extracorporeal Shock-wave Lithotripsy,” ATAA 93-3089, 24th Fluid Dynamics Conf,,
Orlando, FL, July 1993.

64

APPENDIX A

CODE DESCRIPTION

APPENDIX A
CODE DESCRIPTION

A.1 AUGUST (2D)

The subroutines in the AUGUST code are organized here as they appear
in the listing in Appendix B. A brief description indicates the function
performed by each subroutine.

TABLE A.1

JBROUTINES =

1. MAIN Governing program for AUGUST. Reads
input files and sets the mode for the
computation.

Computes the fluxes at interfaces by}
applying the Godunov algorithm to solve the}
Riemann problem across the interface.

Controls the computation. The integration
of the fluxes and update of the physical
variables, adaptation of the grid and writing
to output files are performed in this
subroutine.

4. GEOMTR Calculates the geometrical quantities not

provided by the input data file but needed
for the computational algorithm. GEOMTR
is only used once for starting a new
simulation.

5. UPDATE Reads the input file for a new simulation

and calls GEOMTR to update the geo-
metrical variables needed to perform the
computation.

6. UPGRAD Called if a restart run is performed. Will
read the appropriate file written at the end
of the previous run.

u7- GRADNT Computes the gradient of the physical

variables to improve the prediction of those
variables for the two sides of the interface.
The gradients are subjected to the
monotonicity condition that limits the
projected values, thus preventing new
maxima-minima from being caused

artificially by interpolation (IOPORD = 2).%
Calls FCHART in order to compute projected
values at the half timestep associated with
the local characteristics of the flow.

8. GRDFLX

Computes the gradient of the pressure and
Mach number in each cell. This information
is used as an error indicator for the
adaptation needed in a steady stateff
solution.

9. FIRST

The equivalent of GRADNT if run in a first
order mode (IOPORD = 1). Using FIRST
assumes that the physical variables are
constant in each cell. Takes care of the
boundary conditions if the interface is a
boundary.

10. FCHART

Computes the projected values at a half
timestep for the two sides of the interface
based on the local characteristics of the
flow. Called by GRADNT, it modifies the
projected values for the two sides of the
interface and assigns them to the correct
location in memory. Takes care of the
boundary conditions if the interface is a
boundary.

Hu. PRLCTN

Determines particle cell location in the
initial phase of tracing a group of particles.

| 12. PRPTHC

Advances the position of each particle,
assuming that the particle has the flow
velocity of the cell. PRPTHC will find the cell
location of the particle after it advances by
the timestep of the computation.

13. VERCEN

Places an additional vertex at the center of a
specified cell to refine the size of the cell by
a factor of three.

14. DISECT

Places an additional vertex at the middle of
a specified edge to refine the size of the two
cells adjacent to the edge by a factor of two.
This method of refinement is used only on
the edges lying on the boundaries of the
computational domain.

15. DYNPTN

Tests and flags the cells for specified
refinement criteria. DYNPTN is called only if
the parameter IOPADD = 1. Will start the
refinement procedure by calling VERCEN
and DISECT and will call DYYPTN for
further refinement. This insures that the
buffer zone ahead of the shock is resolved
according to the specified area criteria
(AREADD).

16. DYYPTN

Refines the cells flagged by DYNPTN by
calling VERCEN and DISECT until the area
of each flagged cell meets the area criteria
specified by the parameter AREADD.

17.

INTPTN

Refines the cells in the inlet region.
Prepares the inlet region for the introduction
of a shock wave. This initial refinement is
essential to prevent additional refinement of
the grid in the presence of a shock wave. It
is called only if the parameters ICOND=0
and IOPTN= 2 (solution for transient
phenomena).

18.

DELPTN

Tests and flags the cells for the specified
criteria for coarsening. DELPTN is called
only if parameter IOPDEL = 1. i

it 19.

Relaxes the vertices of the cells that were
created in the process of deleting a vertex.

20.

VERDEL

Deletes a specified vertex.

21.

RECNC

Tests two cells adjacent to the speciﬁedﬂ
edge. Compares them to the two cells that
can be created if this edge is flipped to pass
between the other two vertices of the
quadrilateral containing the original two
cells. If the tests result in a better quality
triangle, then RECNC will swap the edge.

22.

EOS

Applies Gilmore equation of state to
compute y = cp/cy, giving the internal energy
and density of the fluid in a cell. This
option is controlled by the parameter
IOPEOS = 1.

23.

LIFTDR

controlled by the parameter IOPLFT = 1.

A diagnostic to compute the lift, drag, and
transfer momentum developed in the
configuration. Takes into account all
boundary edges that are specified as 5. Itis

All of the data input and initiation of a run (or a restart run) is performed
in MAIN. The actual simulation is controlled by HYDRMN, which is called from
MAIN. At the completion of a run, control is returned to MAIN and a successful
termination prints the message STOP 777.

MAIN contains one name list (file no. 2) and requires an input file that
contains tne grid data description (file no. 16). The data organization for the
grid file is described in Appendix A. There are five files that should be
P included: CINTO00.H, CMSHO0O.H, CPHS10.H, CPHS20.H, CHYDOO.H.

“ VARIABLE PURPOSE “

ICOND = 0 READ INPUT GRID FOR A NEW SIMULATION
= 1 READ THE GRID FROM PREVIOUS RUN

MAIN will read the initial grid definition stored in file
number 16. The current setting is to read the inpur e as
provided by Smart, a two dimensional triangul.. grid
generator that runs interactively on the Macintosh p- sonal
computer.

MAIN will call UPDATE, which will call CZOMTR.
GEOMTR will compute essential geometrical param aters that
are not provided by file 16. All geometrical information is
dumped into output flles (8 and 88) so that ICOND=0 is used
only once at the beginning of a new simulation.

MAIN will call UPGRAD, which will call one of the
output files (8 or 88) written by the previous run. This will
load the geometrical definition of the grid (either 8 or 88---
they are identical). Writing identical files provides a backup
in the event that the job terminates for lack of time while in
the proress of writing to one of those output files.

PURPOSE

PRIMITIVE VARIABLES INITIALIZED
VARIABLES READ FROM PREVIOUS RUN

Initialize the primitive variables in computational
domain with an initial value specified by the user. The two
options set by the code are controlled by IOPTN.

The flow field condition reads in files 8 or 88 and
provides a followup run set from the previcus run.

b
FRC
VARIABLE PURPOSE
E ITRIGF. = 0 USING THE INPUT GRID AS THE INITIAL
: GRID
i = 1 THE INPUT GRID TRIPLED BY ADDING AN
‘ EXTRA VERTEX IN EACH TRIANGLE
I"m AR A Sy 7 TS TR
p
The original grid cells will be tripled by adding an extra
vertex in the baricenter of each triangle. This option can be
r triggered at the beginning of a simulation only (ICOND = 0).

ADDED VERTEX
AT BARICENTER

VARIABLE PURPOSE

[IOPTN = 1 SOLUTION FOR STEADY STATE
= 2 SOLUTION FOR TRANSIENT PHENOMENA

There are two choices available to set the initial condition of the problem.

Assign the conditions at the inlet to the computational
domain. This is the fastest way to get a steady state solution
for the conditions specified at the inlet. In this option. PIN
(pressure), RIN (density) and XMCHIN (Mach number: are
assigned to the pressure density and velocity (the spe:d of
sound is computed in the code) and imposed at th: inlet
boundaries.

Used if a shock wave is to be simulated moving from
the inlet (edge boundary 8) to the outlet (edge boundary 7).
For this setting, specify PIN (ambient pressure in the
chamber), RIN (ambient density in the chamber] and
XMCHIN (upstream Mach number). The code will use the
normal shock wave relations for an adiabatic flow of a
completely perfect fluid to compute the static-pressure ratio
across the shock P2/P; and the density ratio pa/p;. and the
ratio of the Mach number across the shock M;/M,. These
computed quantities are applied to set correctly the
condition on the pressure density and velocity at the inlet

boundary.
VARIABLE PURPOSE
ALPHA THE DIRECTION OF INFLOW IN DEGREES RELATIVE TO

A RIGHT HAND COORDINATE SYSTEM. ALPHA =0
MEANS FLOW FROM LEFT TO RIGHT.

&

y

/\ :

The velocity computed by the code according to the input data provided by the
user is split (projected) in the X and Y directions by using a.

ll VARIABLE

PURPOSE u

INITIAL y IN THE EQUATION OF STATE.
THE CODE RUNS USING THE IDEAL EQUATION OF |
STATE AS A BASELINE AND SHOULD BE MODIFIED |

IF SOMETHING ELSE IS DESIRED. IOPEOS=1 WILL |
TRIGGER THE USE OF GILMORE EQUATION OF ?

u VARIABLE PURPOSE “

VARIAELE

NUMBER OF ITERATIONS IN THE RIEMANN
SOLVER TO FIND THE DIAPHRAGM SOLUTION.
(THREE TO FOUR SHOULD BE USED AND
INCREASED ONLY FOR A VERY HIGH MACH
NUMBER CASES.)

PURPOSE

NTIME

L g O S e A ST 20 e S Y

NUMBER OF REPEATS FOR THE INTEGRAﬂON/
REFINEMENT/COARSENING SEQUENCE. AN
OUTPUT DUMP IS DONE FOR EVERY SEQUENCE
REPEAT.

H VARIABLE PURPOSE “

NUMBER OF OUTERMOST LOOP ITERATIONS IN
THE CALCULATION WHERE COARSENING OF THE
GRID IS PERFORMED EVERY SEQUENCE REPEAT.

PURPOSE

NUMBER OF OUTER LOOP ITERATIONS IN THE
CALCULATION WHERE REFINING IS DONE FOR
EVERY SEQUENCE REPEAT WITHOUT
COARSENING.

PURPOSE

NUMBER OF ITERATIONS PERFORMED WITH NO
REFINEMENT OR COARSENING. THE INNER LOOP
OF THE CALCULATION. IF KDUMP =0, KDUMP
WILL BE SET BY THE CODE AUTOMATI-CALLY
ACCORDING TO THE SETTING OF THE VARIABLE
AREADD.

10

O NTIME - DUMPING DATA
O MDUMP - COARSENING
O NDUMP - REFINEMENT
O KDUMP - INTEGRATION

O CLOSING INNER LOOP
O CLOSING OUTER LOOP

O CLOSING OUTERMOST LOOP
O CLOSING DUMPING LOOP

ﬂ VARIABLE PURPOSE

IOSPCL = 0 NOT USING REDEFINITION OF POINTS ON
THE BOUNDARY

= 1 USING REDEFINITION OF POINTS ON THE

BOUNDARY

Modifies the definition of points along the boundary
according to a presetting in the code. The setting currently
will redefine the points along the edge boundary 5 to exactly
match NACAO0012 airfoil shape. This is done to redefine
points on a boundary that has an analytical definition of
points, but where these points have been dislocated by a
refining procedure.

11

" VARIABLE PURPOSE

IOPLFT = 0 THE COMPUTATION OF LIFT DRAG AND
MOMENT TURNED OFF

= 1 THE COMPUTATION OF LIFT DRAG AND
MOMENT TURNED ON

Set IOPLFT = 1 {f integral quantities need to be computed. The current setting
will calculate the lift, drag and moment on edge boundary 5.

VARIABLE PURPOSE

IOPRCN = 0 A GLOBAL SWAPPING (RECONNECTION)
PROCEDURE IS OFF

= 1 A GLOBAL SWAPPING (RECONNECTION)
PROCEDURE IS ON

This swapping is done by calling subroutine RECNC. It is used only in a new
simulation (ICOND = 0).

H VARIABLE PURPOSE E

= 1 THE CODE WILL RUN FIRST ORDER
GODUNOV METHOD
= 2 THE CODE WILL RUN SECOND ORDER

PURPOSE

0 NO BUOYANCY EFFECTS ARE COMPUTED

1 BUOYANCY EFFECTS IN THE X DIRECTION
ARE COMPUTED

2 BUOYANCY EFFECTS IN THE Y DIRECTION
ARE COMPUTED

12

The buoyancy effect applies the gravity acceleration as g = 9.81.

PURPOSE

“ VARIABLE PURPOSE

= 0 THE CODE WILL RUN IN A PURE TWO
DIMENSIONAL MODEL

= 1 THE CODE WILL RUN IN AN AXISYMMET-
RICAL MODE (X AS THE AXIS OF SYMMETRY)

= 2 THE CODE WILL RUN IN AN AXISYMMET-

RICAL MODE (Y AS THE AXIS OF SYMMETRY)

IOPEOS

= 0 THE CODE WILL RUN WITH CONSTANT vy

= 1 THE CODE WILL RUN WITH VARIABLE v
USING THE EQUATION OF STATE FOR AIR

The initial v is not changed and is kept constant across
the computational domain at all times (with value set by
HRGG).

The yof each cell will be modified according to local
internal energy and density. Thus, if IOPEOS = 1, the actual
pressure and density should be input (in the appropriate
dimension). Otherwise (IOPEOS=0), a normalized pressure
and density of unity can be used for simulation.

PURPOSE

THE CODE WILL TRACE PARTICLES

0 NO PARTICLE TRACING u
]

13

The ability to trace particles will be turned on. Initially
PRLCTN is called to identify the cell location of each particle.
For each time step, PRPTHC will be called to update the cell
location of each particle if it is relocated., assuming the
particle moves at the same velocity as the fluid.

The initial location of the particles is defined in MAIN.

PURPOSE

0 DOES NOT PREPARE A BUFFER ZONE.
1 INITIALLY PREPARE A BUFFER ZONE AHEAD

OF EDGE BOUNDARY 8

For simulating transient phenomena, the refining of the grid is done in
the region ahead of the shock. In this way, we avoid interpolating in a region
where large gradients reside. IOPINT = 1 will refine the region of the inlet flow
to prepare a buffer zone (edge boundary 8). If refining is needed in another
region, subroutine INTPTN should be modified accordingly.

PURPOSE

O THE REFINEMENT PROCEDURE IS TURNED OFF
1 THE REFINEMENT PROCEDURE IS TURNED ON

VARIABLE PURPOSE

IOPDEL = 0 THE COARSENING PROCEDURE IS TURNED OFF
= 1 THE COARSENING PROCEDURE IS TURNED ON

14

(TR
VARIABLE PURPOSE H

AREADD SPECIFIES THE MINIMUM AREA VALUE THAT A

¢ TRIANGLE SHOULD HAVE AFTER REFINEMENT.
SPECIFIED AS A FRACTION OF THE AVERAGE
TRIANGLE AREA OF THE INITIAL GRID. THIS
REFERENCE AREA IS KEPT CONSTANT THROUGH
THE WHOLE SIMULATION.

PURPOSE

® SPECIFIES THE MAXIMUM VALUE THAT A TRIANGLE
SHOULD HAVE AFTER COARSENING DEFINED AS A
FRACTION OF THE REFERENCE AREA.

o “ VARIABLE PURPOSE H

= 0 NO RESTRICTION ON THE REGION FOR
REFINING THE GRID
= 1 SETTING A WINDOW FOR REFINING THE GRID

RUTNT The user can specify a region in which the refinement
Py T process will take place. Otherwise, the refinement takes
place everywhere in the computational domain.

° VARIABLE PURPOSE
ISTATC = 0 THE ADAPTATION WILL BE DONE ON A
MOVING WAVE
= 1 THE ADAPTATION WILL BE DONE ON A
STEADY STATE CONDITION
‘ _
Because the criteria for refinement in the presence of a static shock are
not suited to treating a moving shock, the code sets different error indicators
L for adapting the grid for the two cases.
15
|

The energy and density net fluxes across each cell are
tested for sensing the level of activity. This method is a very
good error indicator for sensing transient phenomena as
traveling shocks.

The pressure and Mach gradients in each cell are
tested for sensing steady state shocks.

The gradient of density is always tested as a third criteria for making
sure that static shocks are not ignored in computing a transient flow.

Computes the fluxes across interfaces when the conditions for both sides
are given. The fluxes are computed assuming a shock solution at a broken
diaphragm simulated by the presence of the interface. The conditions existing
on the two sides of the diaphragm will define the condition of the flow at the
diaphragm location. These conditions are computed by solving the Riemann
problem using the Godunov algorithm. The condition at the diaphragm defines
the flux of energy, mass, and momentum passing across the interface. The
Euler conservation law is applied to conserve energy, mass, and momentum
crossing interfaces from one cell to the other.

Quantity Side 1 Dijaphragm (Interface) Side 2
Density P1 P P2
Pressure P P Py
Velocity uj u ug
Perpendi uar to
Interfac
Velocit- -arallel Vi v Vo
to Inte: _ce

16

Controls the code and the iteration loops. It calls HYDRFL to find the
interface fluxes. These fluxes are integrated to update the physical variables in
each cell. If adaptation of the grid is required, HYDRMN will set the criteria for
controlling the adaptation of the grid. The refining (DYNPTN, DYYPTN) and
coarsening (DELPTN) of the grid is invoked by HYDRMN. HYDRMN also
controls the output by writing the necessary information on files for post
processing data and for restarting the AUGUST code at a later time. It also
manages print file diagnostics.

Calculates geometrical variables that are not supplied by the input data
and are needed to run the code. For example, it will compute:

1)
2)
3)

4)

Area of the cells;

Length of the edges:

Unit vector perpendicular to the edge. (For boundary edges, this
unit vector is direct from the computational domain outward);

Unit vector directed from the baricenter of the left cell to the
baricenter of the right cell. For boundary edges, the unit vector is
perpendicular to the edge (from left cell outward).

The code will change the direction of the boundary edges so that all are
arranged counterclockwise and the associated computational cell is always on
the left side. GEOMTR is called once in the beginning of a new simulation.

Called in the beginning of a new simulation for setting geometrical
variables not pro.ided by the input data. (It calls GEOMTR.)

17

Called if the run is a restart. UPGRAD will read the appropriate file
(either 8 or 88) dumped by the previous run.

Compute the gradients of the physical variables in each cell. These
computed gradients, along with the physical values at the baricenters, are
applied using linear interpolation to predict the values on the interface.

The computed gradients are subjected to the monotonicity condition.
ensuring that the projected values are bounded by the value of each quatity in
the three adjacent cells, and to make sure that no new maxima or minima
occurs. The projection of quantities to the interface improves the resuits from
the code and provides second order accuracy in space.

GRADNT calls FCHART, which computes the projected values at the
interfaces at the half timestep level according to the local characteristics of the
flow in each cell bordering the interface cell. The assignment of values at the
two sides of each interface is done at the end of FCHART. This same loop will
also impose the boundary conditions for the interfaces at the boundaries of the
computational domain.

Computes the gradient of the Mach value and pressure gradient in each
cell. These gradients are applied if the adaptation is done on a steady state
converged solution. These variables, in addition to the computed density
gradient, provide the criteria for adaptation if it is necessary to refine the grid
for steady state problems.

Assigns flow quantities to each side of an edge. These are based on the
values at the baricenter of the triangles on either side of the edge. FIRST uses
a first order approximation to find the values at the edge.

The user can specify FIRST or GRADNT by choosing 1 or 2 for the
parameter IOPORD.

18

Called by GRADNT to compute the values projected at the interfaces at
the half timestep. These calculations are done by applying the local velocity
characteristics in each cell. This projection in time improves the results and
makes the code second order accurate in time.

Identifies the initial cell location of each particle. Called once after
specifyir g the starting location of each particle to be traced.

Advances the particle position by the marching timestep. It finds the
new cell location if a particle crosses an interface. The assumption is that the
particles move at the fluid velocity.

Introduces a TS new vertex at the
baricenter of the designated cell during the refinement process.

Tests the cells according to the refining criteria and flags each cell which
requires refinement. The flagged cells are refined in DYYPTN. The refinement
is subjected to geometrical constraints on the cell shape to retain a high better
quality refined grid.

The user can specify a window in the computational domain for
refinement. The parameter to trigger this option is IWINDW = 1. For
specifying the actual window, it may be necessary for the user to alter this
subroutine and provide a definition of the geometrical area to be refined.

19

Traces the cells that are flagged for refinement by DYNPTN. It subdivides
them until each one of the refined cells meets the area refinement criteria of
AREADD. Because each loop of refinement is restricted to a one-third
reduction in cell area (calling VERCEN), DYYPTN will perform the necessary
number of loops to meet the area reduction specified for refinement. AREADD
is a fraction of the average area of the initial grid. This reference area is kept
constant and fixes the minimum resolution in the simulation domain.

Performs the initial refinement of the grid before the initialization. The
assumption is that a shock wave is introduced through the inlet boundary.
Consequently, L.«.PTN will test for the inflow boundary interface and will refine
the appropriate cells. (Note: It is not recommended that the code automatically
refine the grid in the inlet region in the presence of a shock wave. If a shock
wave is not introduced through the inlet, INTPTN should be modified to
accommodate the change of the initial condition.)

Tests the cells according to coarsening criteria and flags them. Each
triangle is tested to determine which vertex of the triangle is most appropriate
for removal. This vertex is removed by calling VERDEL. DELPTN cannot delete
nodes that have the status JV(1,IV) = 3. It is therefore recommended that
nodes at sharp comers or nodes on important boundaries that are curved, be
flagged as JV(1,IV) = 3.

Relaxes the cells that are created in the process of deleting a vertex. The
relaxation procedure relocates the designated vertex to the mass center of the
surrounding vertices.

20

Deletes a designated vertex.

RECNC

Tests the possibility of swapping the designated interface to create two
triangles of better quality than the original two.

w2

Original
Interface

Swapped

1va Interface

21

Computes y using to the equation of state for air (Gilmore equation of
state), given the density and internal energy of the air. The user may choose to
apply the equation of state by setting IOPEOS = 1.

Computes integral quantity diagnostics on any configuration. The
integral quantities are lift. drag, and momentum and are found on boundary
interfaces designated as 5.

Computes the gradient of a scalar variable at the center of a cell. It uses
a least squares technique to interpolate the values at the center of four
triangles (the cell and its three adjacent triangles) to fit (four equations with
three unknowns).

f=ap+aix+agy

22

-

Those gradients are subjected to a monotonicity limiter that ensures no new
minima or maxima are produced artificially in the projected values at the
® interfaces.
The monotonicity algorithm involves the following steps

1) find maximum and minimum of fy, f2. i3, {4
fmax = Max (fy, {2, f3, fg)
¢ fmin = Min (£, f2. 3, f4)
2) compute

Afmax = fmax - f1

Afmin = frun - 1

3) compute incremental projected values at the
interfaces

fmr - fR = ViR TR

fogr - fL = VL. L

AMfmyr = fmr-fR '-'va‘_;jR
M = fgu-fu =V - g

where j stands for every interface of the cell and fmj is the interpolated value at
the middle of the interface.

23

4} compute the limiter by calculating the minimum of indicator for
each edge of the three edges of the cell.

{1 + sign Afmir) Afmax + (1 - sign Afmr)Afmin

right to the interface RUVPR =

(1+ sign Afmﬂ:) Afm_aic + (1 - sign Afmﬂ)Afm
2 AfmjL .

left to the interface RUVPL =

This formulation ensures that

AfmJ<ORUVP=Em-;~

the outcome of RUVP is always positive. If RUVP > 1 then the projected value

at the interfaces will introduce a new minimum or maximum relati--~ to the

values at the Laricenters of the appropriate cells.
Select the minimum between the six values for RUVP (two for ev2ry one
of the three interfaces of the cell) not exceeding unity. The selected n::nimum

24

of RUVP is the required limiter. The gradient is muitiplied by this limiter that

is always less or equal to unity.

Computes the projected values at the half time step level based on the
local characteristics of the flow. This process extends the accuracy of the code
to be second-order in time as well as in space.

The characteristic projection consists of several steps.

1) Calculate the velocity of sound in the two cells bordering the

designated interface

CNLEFT = Yy - PL/pL sound speed in left cell

CNRIGT = \/YR -Pr/pr sound speed in right cell
UVLEFT = ETL .t velocity of fluid at the left cell projected in t direction

UVRIGT = ﬁR -t velocity of fluid at the right cell projected in t direction

where

25

2)

3)

To compﬁte the interpolated left and right projected values at time
tN + At/2, we calculate the distances that the disturbances

generated from the baricenter of the cells. traveling toward the
interface:

ZZLEFT = {(UVLEFT + CNLEFT) - At/2
ZZRIGT = - (UVRIGT - CNRIGT) - At/2
If ZZLEFT or ZZRIGT is negative they are reset to zero.

Calculate the distances that the flow will travel if it were to flow at
the velocity of each of the local characteristics:

ZOLEFT = UVLEFT - At/2

ZORIGT = - UVRIGT - At/2

26

ZPLEFT = (UVLEFT + CNLEFT) - At/2
ZPRIGT = - (UVRIGT + CNRIGT) - At/2
ZMLEFT = (UVLEFT - CNLEFT) - At/2
ZMRIGT = - (UVRIGT - CNRIGT) - At/2.
4) Calculate the projected values of the nonconservative variables

(density, velocity component (perpendicular and tangential to the
interface), and pressure).

For the left cell:

Density HRRL pL+ VpL - (FL - ZZLEFT - t)

Perpendicular Velocity HUUL UL+ VUL (fL -~ ZZLEFT - t)

27

Tangential Velocity HVVL = VL+VVy.(fL-ZZLEFT - t)

Pressure HPPL = PL+ VPL- (fL - ZZLEFT - t)
GMTLFT = pp HRRL- HPPL

For the right cell:

Density HRRR = pr+ VpRr- (fR - ZZRIGT - t)

Perpendicular velocity HUUR = Ur+ VUg: (Fr - ZZRIGT - t)

Tangential velocity HVVR = VR+ VVR- (Fr - ZZRIGT - t)

Pressure HPFR = Pr+ VPR (frR - ZZRIGT - t)
GMTRGT = pgr- HRRR: HPPR

For the left cell, taking into account the following characteristics:

® For UVLEFT + CNLEFT:

UUU = VUL (ZPLEFT - ZZLEFT) t
PPP = VPL.(ZPLEFT - ZZLEFT) t
UPLFT = -0.5-(UUU+PPP/ VGMTLFT) / VGMTLFT

If UVLEFT + CNLEFT is negative, UPLFT is reset to zero.

® For UVLEFT - CNLEFT:

UUU = VUL (ZMLEFT -ZZLEFT) -t

PPP = VPL-(ZMLEFT - ZZLEFT} - t
UM..T = 0.5-(UUU-PPP/NGMTLFT) / VGMTLFT
if U 'LEFT - CNLEFT 1s negative, UPLFT is reset to zero.

28

® Yor UVLEFT:

. —-— —

PPP = VP (ZOLEFT - ZZLEFT) - t

RRRR = pL+ VpL- (fL - ZOLEFT) -t

URLFT = PPP/GMTLFT + 1/HRRL - 1 /RRRR
¢ If UVLEFT is negative, URLEFT is reset to zero.

For the right cell, taking into account the following characteristics:

® ® For UVRIGT + CNRIGT:

UUU = VUgr- (ZZRIGT - ZPRIGT) t
® PPP = VPRr- (ZZRIGT - ZPRIGT) t

UPRGT = -0.5- (UUU + PPP/ VGMTRGT) /YGMTRGT

If UVRIGT + CNRIGT is positive, UMRGT is reset to zero.
g ® For UVRIGT - CNRIGT:

UUU = VUg (ZZRIGT - ZMRIGT) - t
o PPP = VPg- (ZZRIGT - ZMRIGT) - T

UMRGT = 0.5 - (UUU - PPP/VGMTRGT) /YGMTRGT

If UVRIGT - CNRIGT is positive, UMRGT is reset to zero.
o ® For UVRIGT:

PPP = VPRr- (ZZRIGT - ZORIGT) - t
d RRRR = pr+ VpR- (FR+ ZORIGT) - t

URRGT = PPP/GMTRGT + 1/HRRR - 1/RRRR
If UVRIGT - CNRIGT is positive, URRGT is reset to zero.

29

The projected values will be:

RRL = 1/(1/HRRL - (UPLFT + UMLFT + URLFT))
UUL = HUUL + (UPLFT - UMLFT) VGMTLFT

VVL = HVVL + (UPLFT - UMLFT) VGMTLFT

PPL = HPPL + (UPLFT + UMLFT) GMTLFT

RRR = 1/(1/HRRR - (UPRGT + UMRGT + URRGT))
UUR = HUUR + (UPRGT - UMRGT) VGMTRGT
VVR = HVVR + (UPRGT - UMRGT) VGMTRGT

= HPPR + (UPRGT + UMRGT) - GMTRGT.

3

Those values are the assigned condition for the two sides of the interface.
If the interface is a boundary, the right condition is determined according to
the type of boundary.

DYNPTN applies three distinct criteria to test cells to determine their
need for refinement. They are as follows:

For unsteady dynamic simulation
1) total energy flux entering or leaving a cell
2) total density flux entering or leaving a cell
3) density gradient in each cell.

For steady state simulation
1) Pressure gradient in each cell
2) Mach number gradient in each cell
3) density gradient in each cell.

Cells that meet one of those three criteria are flagged. and are actually
subdivided in DYYPTN until they meet the area criteria set for refinement
(AREADD). The code will compute the maximum of each of the three criteria
and set a 5% of the maximum or higher to the refinement criteria for the fluxes
and 3% for the gradient. These criteria work extremely well for moving waves.

30

It should be noted that those error indicators and their levels are set
according to the actual simulated condition. For different cases, other error
indicators and level settings might be more appropriate than the above.

Tests the cells for coarsening criteria. The same criteria that refines the
grid are applied to coarsen the grid but in a different setting. Each cell that
has less than 5% of the fluxes and less than 3% of the gradient criteria is
eligible for coarsening. The code will test the cell flagged for coarsening and
will choose one of the three vertices of the cell for deletion by determining
which of the three has the smallest aspect ratio. (The aspect ratio is defined as
the ratio between the height emerging from the node and its corresponding
base.) There are vertices that cannot be removed. such as corners or vertices
that preserve the original shape of th'. boundaries (JV(1,IV) = 3).

After the vertex is deleted, a relaxing procedure is performed on the
vertices surrounding the deleted vertex, as well as a swapping procedure to
improve the quality of the trtangles constructed in the deletion procedure.

Adds an additional vertex at the baricenter of the designated cell.

31

ADDED VERTEX
AT BARICENTER

VERCEN assigns one of the three new triangles the number of the
original triangle and will add two more at the end of cells table. A new vertex
plus three new interfaces are added at the end of the associated tables.

Adds a new vertex at the middle of the designated edge.

VERTEX ADDED
AT MIDDLE

32

DISECT will add one new vertex. three new edges and two new triangles.
all of which are added at the end of the corresponding tables (vertices, edges
® and cells).

e
Forces deletion of a designated vertex. There are two types of vertices:
deletion of a vertex in the interior of the computational domain and deletion of
a vertex on the boundary. The steps of deleting a vertex are:
®
1) Identify the edges and cells surrounding the designated vertex in
the computational domain
o Interior Vertex to be Deleted
@
o
L
@

and on the boundary.

Deletion is more difficult and needs more computational resources than
addition. The new vertices edges and cells being added are stacked at the
bottom of the corresponding tables while undergoing deletion is always a
member in the table. In order not to leave gaps in the table. a more
complicated procedure was developed to replace the deleted member by the
member at the bottom of the table.

2) Once the vertex, edges and cells joining the designated vertex are
deleted we rezone the void (polygon) without adding new vertices.
The adding of the new edges and cells are stacking at the end of
the corresponding tables.

34

Interior Vertex

Boundary Vertex

3) A relaxation procedure is performed on the vertices of the
polygon (void). This procedure improve the quality of the cells that
fill the void.

35

4) A swap procedure is performed on the new edges that were
added in the process of filling the void.

A.1.1 Pre-Processor for the Unstructured Grid

The input geometrical data for AUGUST should provide the .llowing
data:

1) Number of:
vertices (NV)
flagged vertices (NVM)
edges (NE)
cells (NS)
2) A table of vertices specifying:
number of vertex (IV)
x coordinate (XV(1,IV))
y coordinate (XV(2,IV)).
3) Atable of flagged vertices that cannot be removed by the
coarsening process:
number of vertex (IV)
status of vertex (JV(1, IV))
The only status of vertex that is currently implemented is
the flagging node that does not allow removal:
JV(1,IV)=3
4) A table of edges specifying:
number of edges (IE)
vertex number indicating the beginning of the
edge (JE(1,IE))
vertex number indicating the end of the dge
(JE(2,IE))
cell number indicating the cell at the lei:
the edge (JE(3.IE))
cell number indicating the cell at the righ.
the edge (JE(4.IE))
number associated with the status of the - .ge
(JE(5.IE))

36

If JE(5.IE)=0, the edge is an ordinary edge inside the
computational domain.

If JE(5,IE)»0, the edge lies on the boundary of the domain.
The labeling number will indicate what type of boundary to
be applied through this edge.

va2

2
"

JE(1,IE) vertex indicating the beginning of
the edge

v2 JE(2.IE) vertex indicating the end of the
edge

The direction of the edge is defined from 1V1 to 1V2.

37

5)

ISL = JE(3.IE) left triangle
ISR = JE(4,IE)} right triangle

IJES = JE(S.IE) status of the edge

IJES5 = 5 simulating wall conditions

IJES = 6 simulating wall conditions

JES5= 7 simulating supersonic outlet conditions
IJES = 8 simulating supersonic inlet conditions
A table of cells specifying:

number of cells (IS)

number of first edge (JS(4.1S))
number of second edge (JS(5,1S))
number of third edge (JS(6.,1S))

The sign of JS{4,1S), JS{5,1S), JS(6.1S) indicates whether the
direction of the edge is counterclockwise (positive} or
clockwise (negative).

The three associated vertices for the triangle JS(1.1S),
JS(2,18), JS(3,1S) are defined by the code in GEOMTR.

IvV3

. 38

The three vertices of the cell are ordered in a counterclockwise
arrangement.

V1 = JS(1.1S) first vertex
V2 = JS(2.1S) second vertex
V3 = JS(3.15) third vertex

IE1 = JS(4.19) First edge of the triange directed from IV1 to IV2
(IE1 is positive).

IE2 = JS(5,1S) Second edge directed originally from IV3 to IV2.
(IE2 will be negative because its direction is
clockwise)

IE3 = JS(6,1S) Third edge directed originally from IV3 to [V1 (IE3
is positive)

A.1.2 Post-Processor for the Unstructured Grid

Postprocessing for visualization of the results on an unstructured grid is
done in two different codes. The first code, DRAWBF, reads the data as
dumped by AUGUST and performs the whole load of computation necessary to
produce the information needed for the graphic.

The second code DRAWAF reads the data file written by DRAWBF and
uses the DISSPLA software to produce the image on the screen. Breaking the
postprocessing job into two separate codes enables the user to run the two
codes on different machines.

Reads an input data file produced by AUGUST and will read another
input data file (drawbf.d) specifying the option that the user chooses to have
processed.

The input data file drawbf.d specifies the window of the computational
domain chosen by the user to be processed. This window is specified by XMIN,
XMAX. DX and YMIN, YMAX, DY. where XMIN, XMAX, YMIN, YMAX, will
specify the lower and upper limit of the region to be drawn. DX and DY will be
parameters for DISSPLA to subdivide the axis into tick marks.

39

DISSPLA is constrained to seven colors. To extend the number of
contour levels, the code can be set to draw a couple of levels in each color (7 x
NLEV where NLEV is the number of levels for each color).

The user should specify the variable he wants to draw:

IHYD = 1 is density,
= 2 is velocity in the x direction
= 3 is velocity in the y direction
= 4 {s pressure '
=5 is gamma (y}
= 6 s Mach number
= 7 is entropy
= 8 is a vector plot of the velocity field
= 9 is a plot of the location of particles

The last parameter that the user should specify is IREC. IREC specifies
how many dumps are in the input file produced by AUGUST. If IREC=0, the
user will get as many figures as the number of dumps produced by AUGUST.
Otherwise, the user will get the figure corresponding to IREC specified in the
input file.

Subroutine NEXTREC reads a whole dump from the input file (written by
AUGUST]. It will make sure that the allocation of memory is adequate
according to the number of vertices, edges and triangles to be processed. If the
memory allocation is not adequate, the code will stop with an explanatory
message.

Subroutine LOADF loads the portion of data needed according to the
specification of the window and according to the specified IHYD into the
appropriate matrices in the code.

Subroutine PHYDR produces the data for the contour plots.

Subroutine VECTOR produces the data for the vector plot of the velocity
field.

Subroutine TRACER produces the data for the location of particles.

DRAWAF reads an input data file (drawbf.k) produced by DRAWBF and
another input file (drawaf.d} that specifies the format chosen for display.

40

The parameters‘specified in drawaf.d are:

No grid is drawn.

JEMESREON

Grid is drawn.

A single frame is drawn.

ZRBTON SO

Two frames are drawn. one for the grid and one for
displaying results. The frame for the grid is drawn even if
IFMESH=0, but in this case the frame will stay empty.

Identical mth IOPTN=1 except the level on the bar
chart is written in engineering format (XE+Y). As in the
former, it is written keeping a four decimal digit.

The basic dimension for the frames is specified as 6.0
x 3.0 inches (in the x and y axis. respectively). The code
makes sure that the proportionality of the frame matches the
physical window to be drawn, so that the figure will not be
distorted. This is done by redefining the x or y dimension of
the frame accordingly, but not to exceed the 6.0 x 3.0 on the
screen (ICONFG=0 should be picked if IOPTON > 0 and a
two-frame drawing is desired).

The same as ICONFG=0 except that the basic
dimensions are defined now as 6.0 x 6.0 inches. This option
should be specified if a one frame drawing is desired.

41

The user can specify a header for the drawing
composed of two lines to be specified as Caption 1 and
Caption 2 in the input file.

The standard drawing includes the number of vertices, edges and cells as
well as the Mach number, lift, drag, moment, angle of attack {for drawing
diagnostics for a wing profile). An indication of the nature of the results that
appear on the drawing is also included, i.e., the physical variables drawn are
identified by the parameter passing from DRAWBF.

It should be noted that the format of the output drawing is very eastly
redesigned to meet the needs of an individual user.

1. Read geometrical data defining the initial grid. The current format is set
to read data file from Smart {two dimension grid generator).

2. Read geometrical data defining the grid read from a file dumped by a
previous run of the code.

3. Initialize the physical variables according to IOPTN (either steady state or
moving shock wave). If a different initial setting 1s needed, it should
replace the current setting.

4. Read the physical variables from a fille dumped by a previous run.

A.2 AUGUSTT (3D)

The subroutines in the AUGUSTT code are organized here as they appear
in the listing in Appendix B. A brief description indicates the function
performed by each subroutine.

TABLE A.2.1

The subroutines in the AUGUST code are organized here as they appear
in the listing in Appendix B. A brief description indicates the function
performed by each subroutine.

42

Governing program for AUGUST. Reads
input files and sets the mode for the
computation.

Computes the fluxes at interfaces by
applying the Godunov algorithm to solve the
Riemann problem across the interface.

Controls the computation. The integration
of the fluxes and update of the physical
variables and writing to output files are
performed in this subroutine.

Calculates the geometrical quantities not
provided by the input data file but needed
for the computational algorithm. GEOMTR
is only used once for starting a new
simulation.

Reads the input file for a new simulation
and calls GEOMTR to update the geo-
metrical variables needed to perform the
computation.

Called if a restart run is performed. Will
read the appropriate file written at the end
of the previous run.

43

7. GRADNT Computes the gradient of the physical

variables to improve the prediction of those
variables for the two sides of the interface.
The gradients are subjected to the
monotonicity condition that limits the
projected values, thus preventing new
maxima-minima to be caused artificially by
interpolation (IOPORD = 2). Calls FCHART
in order to compute projected values at the
half timestep associated with the local
characteristics of the flow.

|8. FIRST The equivalent of GRADNT if run in a first
order mode (IOPORD = 1}. Using FIRST
assumes that the physical variables are
constant in each cell. Takes care of the
boundary conditions if the interface is a
boundary.

Computes the projected values at a half
timestep for the two sides of the interface
based on the local characteristics of the
flow. Called by GRADNT, it modifies the
projected values for the two sides of the
interface and assigns them to the correct
location in memory. Takes care of the
boundary conditions if the interface is a
boundary.

All of - 2e data input and initiation of a run (or a restart run) is performed
in MAIN. 7 :e actual simulation is controlled by HYDRMN, which is called from
MAI” A* e completion of a run, control is returned to MAIN and a successful
termr:_nat. 1 prints the message STOP 777.

M. N contains one name list {file no. 2) and requires an input file that
contains ne grid data description (file no. 16). The data organization for the

44

grid file is described in Appendix A. The following files should be included:
DMSHO00.H, DPHS$0.H, DHYDOO.H.

VARIABLE

rw

PURPOSE

ICOND

0 READ INPUT GRID FOR A NEW SIMULATION
1 READ THE GRID FROM PREVIOUS RUN

MAIN will read the initial grid definition stored in file
number 16. The current setting is to read the input file as
provided by Smart, a two-dimensional triangular grid
generator that runs interactively on a Macintosh personal
computer.

MAIN will call UPDATE, which will call GEOMTR.
GEOMTR will compute essential geometrical parameters that
are not provided by file 16. All geometrical information is
dumped into output files (8 and 88) so that ICOND=0 is used
only once at the beginning of a new simulation.

MAIN will call UPGRAD, which will call one of the
output files (8 or 88) written by the previous run. This will
load the geometrical definition of the grid (either 8 or 88---
they are identical). Writing identical files provides a backup
in the event that the job terminates for lack of time while in
the process of writing to one of those output files.

45

“ VARIABLE , PURPOSE

ICONP = 0 PRIMITIVE VARIABLES INITIALIZED
= 1 VARIABLES READ FROM PREVIOUS RUN

Initialize the primitive variables in computational
domain with an initial value specified by the user. The two
options set by the code are controlled by IOPTN.

The flow field condition reads in files 8 or 88 and
provides a follow-up run set from the previous run.

Assign the conditions at the inlet to the computational
domain. This is the fastest way to get a steady-state solution
for the conditions specified at the inlet. In this option, PIN
(pressure), RIN (density) and XMCHIN (Mach number) are
assigned to the pressure density and velocity (the speed of
sound is computed in the code) and imposed at the inlet
boundarizs.

46

Used if a shock wave is to be simulated moving from

the inlet (edge boundary 8) to the outlet (edge boundary 7).
o For this setting, specify PIN (ambient pressure in the
chamber)., RIN (ambient density in the chamber) and

XMCHIN (upstream Mach number). The code will use the

normal shockwave relations for an adiabatic flow of a

o completely perfect fluid to compute the static-pressure ratio
across the shock P2/P1 and the density ratio r2/rl, and the
ratio of the Mach number across the shock M2/M1. These
computed quantities are applied to set correctly the

@ condition on the pressure density and velocity at the inlet
boundary.
@ VARIABLE PURPOSE
ALFA THE DIRECTION OF INFLOW IN DEGREES RELATIVE

TO A RIGHT-HAND COORDINATE SYSTEM. ALFA =0
MEANS FLOW FROM LEFT TO RIGHT.

N
Y u

The velocity computed by the code according to the input data provided by the
user is split (projected) in the X and Y directions by using c.

47

VARIABLE PURPOSE

HRGG INITIAL y IN THE EQUATION OF STATE.

THE CODE RUNS USING THE IDEAL EQUATION OF
STATE AS A BASELINE AND SHOULD BE MODIFIED
IF SOMETHING ELSE IS DESIRED. IOPEOS=1 WILL
TRIGGER THE USE OF GILMORE EQUATION OF
STATE.

VARIABLE PURPOSE

IHRN NUMBER OF ITERATIONS IN THE RIEMANN
SOLVER TO FIND THE DIAPHRAGM SOLUTION.
(THREE TO FOUR SHOULD BE USED AND THE
NUMBER INCREASED ONLY FOR VERY HIGH
MACH NUMBER CASES.)

VARIABLE PURPOSE H

NTIME NUMBER OF REPEATS FOR THE INTEGRATION
SEQUENCE. AN OUTPUT DUMP IS DONE FOR
EVERY SEQUENCE REPEAT.

VARIABLE PURPOSE “

NDUMP NUMBER OF OUTER LOOP ITERATIONS IN THE
CALCULATION WHERE REFINING IS DONE FOR
EVERY SEQUENCE REPEAT WITHOUT
COARSENING.

VARIABLE PURPOSE
IOPORD =1 THE CODE WILL RUN FIRST ORDER
GODUNOV METHOD
=2 THE CODE WILL RUN SECOND ORDER
GODUNOV METHOD
e T e e

48

Subroutine FIRST is called.

Subroutine GRADNT is called.

Computes the fluxes across interfaces when the conditions for both sides
are given. The fluxes are computed assuming a shock solution at a ruptured
diaphragm simulated by the presence of the interface. The conditions existing
on the two sides of the diaphragm will define the condition of the flow at the
diaphragm location. These conditions are computed by solving the Riemann
problem using the Godunov algorithm. The condition at the diaphragm defines
the flux of energy, mass, and momentum passing across the interface. The
Euler conservation law is applied to conserve energy, mass, and momentum
crossing interfaces from one cell to the other.

Quantity Side 1 Diaphragm (Interface) Side 2
Density 1 p ra
Pressure Py P Py
Velocity Perpendicular to ui u ug
Interface
Velocity Parallel to \41 v \'p)
Interface
Velocity Parallel to w1 w wo
Interface to Construct a
Right-Hand Coordinate
System (u, v, w,)

49

Controls the code and the iteration loops. It calls HYDRFL to find the
interface fluxes. These fluxes are integrated to update the physical variables in
each cell. If adaptation of the grid is required, HYDRMN also controls the
output by writing the necessary information on files for postprocessing data
and for restarting the AUGUST code at a later time. It also manages print file
diagnostics.

Calculates geometrical variables that are not supplied by the input data
and are needed to run the code. For example, it computes:

1) distances between baricentzrs of adjoining cells;
2) the location of the intersection between the line joining adjacent
baricenter cells and the interface.

The code changes the direction of the boundary edges so that all are
arranged counter clockwise and the associated computational cell is always on
the left side. GEOMTR is called once in the beginning of a new simulation.

Called in the beginning of a new simulation for setting geometrical
variables not provided by the input data. (It calls GEOMTR.)

~ Called if the run is a restart. UPGRAD will read the appropriate file
(efther 8 or 88} dumped by the previous run.

50

Compute the gradients of the physical variables in each cell. These
computed gradients, along with the physical values at the baricenters, are
applied using linear interpolation to predict the values on the interface.

The computed gradients are subjected to the monotonicity condition,
ensuring that the projected values are bounded by the value of each quantity in
the three adjacent cells, and to make sure that no new maxima or minima
occur. The projection of quantities to the interface improves the resuits from
the code and provides second order accuracy in space.

GRADNT calls FCHART, which computes the projected values at the
interfaces at the half timestep level according to the local characteristics of the
flow in each cell bordering the interface cell. The assignment of values at the
two sides of each interface is done at the end of FCHART. This same loop also
imposes the boundary conditions for the interfaces at the boundaries of the
computational domain.

Assigns flow quantities to each side of an edge. These are based on the
values at the baricenter of the triangles on either side of the edge. FIRST uses
a first order approximation to find the values at the edge.

The user can specify FIRST or GRADNT by choosing 1 or 2 for the
parameter IOPORD.

Called by GRADNT to compute the values projected at the interfaces at
the half timestep. These calculations are done by applying the local velocity
characteristics in each cell. This projection in time improves the results and
makes the code second order accurate in time.

Computes the gradient of a scalar variable at the center of a cell. The
gradient theorem is applied for each cell.

51

fv.dv= _f;fﬁds

volume four surfaces

Those gradients are subjected to a monotonicity limiter that ensures no new
minima or maxima are produced artificially in the projected values at the

interfaces.

The monotonicity algotithm involves the following steps.

1) find maximum and minimum of f1. f2, 13, 4. 15
fmax = Max (fy, fa, f3, f4, f5)
i fmin = Min (fy, 3, f3, fa. fs)
2) compute
Afmax = fmax - f1
Afmin = frun - f1
3) compute incremental projected values at the

interfaces

foyr - fR = ViR TR

fg — . = VIL - TjL

DfmyrR

DfmjL

fmr - fR = ViR TR

fogL - fL = VL. TL

where j stands for every interface of the cell and fmj is the interpolated
value at the middle of the interface.

52

4) compute the limiter by calculating the minimum of indicator for each
edge of the four surfaces of the cell.

(1 + sign AfyR) Afmax + (1 - sign AfpyR)Afmn
2 Afij

right to the interface RUVPR =

1+si 1 - sign Afiy)Af,
left to the interface RUVPL = (1 + stgn Afmyr) Afmax + (1 - Sign Afyr) min

This formulation ensures that:

Af,
Afmy > O RUVP = — =&
Afmj
if A,
Afmy < O RUVP = —=—
my Afmj

the outcome of RUVP is always positive. If RUVP > 1 then the projected value
at the interfaces will introduce a new minima or maxima as compared to the
values at the baricenters of the appropriate cells.

53

Select the minimum between the six values for RUVP (two for every one
of the three interfaces of the cell) not exceeding unity. The selected minimum
of RUVP is the required limiter. The gradient is multiplied by this limiter that
is always less or equal to unity.

Computes the projected values at the half timestep level based on the
local characteristics of the flow. This process extends the accuracy of the code
to be second-order in time as well as in space.

The characteristics projection consists of several steps.

1) Calculate the velocity of sound in the two cells bordering the

designated interface:

CNLEFT = \/n, - PrL/pL sound speed in left cell

CNRIGT = \)m - PR/pR sound speed in right cell
UVLEFT=UL- t velocity of fluid at the left cell projected in t direction
UVRIGT = UR - £ velocity of fluid at the right cell projected in t direction

where:

=XXN-T+YYn-j+zznk

U=U-T+v-J+w-k

54

2) To compute the interpolated left and right projected values at time tN +
Dt/2, we calculate the distances that the disturbances generated from the
baricenter of the cells, traveling toward the interface:

ZZLEFT = (UVLEFT + CNLEFT) - At/2

ZZRIGT = - (UVRIGT - CNRIGT) - At/2

If ZZLEFT or ZZRIGT are negative they are reset to zero.

3) Calculate the distances that the flow will travel if it were to flow at the
velocity of each of the local characteristics:

ZOLEFT

ZORIGT

ZPLEFT

ZPRIGT

UVLEFT - At/2
- UVRIGT - At/2
(UVLEFT + CNLEFT) - At/2

- (UVRIGT + CNRIGT) - At/2

55

ZMLEFT

ZMRIGT

(UVLEFT - CNLEFT) - At/2

- (UVRIGT - CNRIGT) - At/2.

4) Calculate the projected values of the nonconservative variables (d :asity,
velocity component (perpendicular and tangential to the interfac:;,

pressure).

For the left cell:

Density

Perpeadicular Velocity

Tanc 2ntial Velocity

Pressure

HUUL

HPPL
GMTLFT

56

L}

pL+ VpL - (FL - ZZLEFT - t)

UL+ VUL - (FL - ZZLEFT - t)

VL + VVL - (FL - ZZLEST - t)

PL+ VP - (T, - ZZLEFT - t)
pL- HRRL - HPPL

and

For the right cell:

Density HRRR PR + VpR - (TR - ZZRIGT -)

Perpendicular velocity HUUR Ur + VUR - (TR - ZZRIGT - 1)

Tangential velocity HVVR = Vgr+VVR: (TR - ZZRIGT - t)
Pressure HPPR = Pr+ VPR- (FR - ZZRIGT - t)
GMTRGT = pr- HRRR- HPPR

For the left cell, taking into account the following characteristics:

® For (UVLEFT + CNLEFT):

UUU = VUL - (ZPLEFT - ZZLEFT) t

PPP = VPy, - (ZPLEFT - ZZLEFT} t
UPLFT = - 0.5 - (UUU + PPP/ VGMTLFT) / VGMTLFT
If UVLEFT + CNLEFT is negative, UPLFT is reset to zero.

® TFor UVLEFT - CNLEFT:

UUU = VUL - (ZMLEFT - ZZLEFT) - t

PPP = VP - (ZMLEFT - ZZLEFT) - t
UMLFT = 0.5 - (UUU - PPP/YGMTLFT) / VGMTLFT
If UVLEFT - CNLEFT is negative, UPLFT is reset to zero.

® For UVLEFT:

PPP = VP - (ZOLEFT - ZZLEFT) - t

57

RRRR = pL + VpL - (fL - ZOLEFT) - t
URLFT = PPP/GMTLFT + 1/HRRL - 1/RRRR
If UVLEFT is negative, URLEFT is reset to zero.

For the right cell, taking into account the following characteristics:

® For UVRIGT + CNRIGT:

UUU = VUR - (ZZRIGT - ZPRIGT) t

PPP = VPR - (ZZRIGT - ZPRIGT) t
UPRGT = - 0.5 - (UUU + PPP/ VGMTRGT) /YGMTRGT
If UVRIGT + CNRIGT is positive, UMRGT is reset to zero.

® For UVRIGT ~ CNRIGT:

UUU = VUgr (ZZRIGT - ZMRIGT) - t

PPP = VPR - (ZZRIGT - ZMRIGT) - t
UMRGT = 0.5 - (UUU - PPP/VGMTRGT) /NGMTRGT
If UVRIGT - CNRIGT is positive, UMRGT is reset to zero.

® For UVRIGT:

PPP = VPR - (ZZRIGT - ZORIGT) - t

RRRR = pR + VpR - (fR + ZORIGT) - t

URRGT = PPP/GMTRGT + 1/HRRR - 1/RRRR

If UVRIGT - CNRIGT is positive, URRGT is reset to zero.
The projected values will be:

RRL = 1/(1/HRRL - (UPLFT + UMLFT + URLFT))
UUL = HUUL + (UPLFT - UMLFT) VGMTLFT

58

VVL = HVVL + (UPLFT - UMLFT) VGMTLFT

PPL = HPPL + (UPLFT + UMLFT) GMTLFT

RRR = 1/{1/HRRR - (UPRGT + UMRGT + URRGT))
UUR = HUUR + (UPRGT - UMRGT) VGMTRGT
VVR = HVVR + (UPRGT - UMRGT) YGMTRGT

PPR = HPPR + (UPRGT + UMRGT) - GMTRGT.

Those values are the assigned condition for the two sides of the interface.
If the interface is a boundary, the right condition is determined according to
the type of boundary.

A.2.1 Preprocessor for the Three-Dimensional Unstructured Grid

The input geometrical data for AUGUST should provide the following
data:

1) Number of vertices (NV)

2) A table of vertices specifying:
number of vertex (IV)
x coordinate (XV(1,IV))
y coordinate (XV(2,IV))
z coordinate (XV(3,IV).

3) Number of edges (NE)

4) A table of edges specifying

number of edges ([E)
vertex number indicating the beginning of the
edge (JE(1,IE))
vertex number indicating the end of the edge
(JE(2.IE))

IV1 = JE(1,IE) vertex indicating the beginning of the

edge
IV2 = JE(2,IE) vertex indicating the end of the edge

59

The direction of the edge is defined from IV1 to IV2.
5) Number of sides (NS)

5) A table of sides (triangles) specifying:
number of sides (IS)
number of first vertice (JS(1,1S))
number of second vertices (JS(2,IS))
number of third vertices (JS(3,1S})
number of first edge (JS(4,IS))
number of second edge (JS(5,1S))
number of third edge (JS(6.1S))
The sign of JS(4,1S), JS(5.1S), JS(6.IS) indicates whether the
direction of the edge is counter clockwise (positive} or
clockwise (negative).
tetrahedra on left to the side (JS(7.1S))
tetrahedra on right to the side (JS(8,IS))
Number associated with the status of the side (JS(9,1S)).
if JS(9,IS) = O the side is an ordinary side inside the
computational domain.
if JS(9.IS) # O the side lies on the boundary of the domain.
The labeling number will indicate what type of boundary to
applied through this side.

60

The three vertices of the side are ordered in a counter clockwise

arrangement.

IV1 =JS(1,15)
IV2 = JS{2.1S)
IV3 = JS(3,1S5)
IE1 = JS{4.I1S)

IE2 = JS(5,1S)

IE3 = JS(6.1S)

IC1 =JS(7.1S)
IC2 = JS(8.1S)

first vertex

second vertex

third vertex

First edge of the triangle directed from IV1 to IV2
(IE1 is positive).

Second edge directed originally from IV3 to [V2.
(IE2 will be negative because its direction is clockwise.)
Third edge directed originally from IV3 to IV1 (IE3
is positive).

tetrahedra on the left

tetrahedra on the right

The normal to the side is directed from IC1 toward IC2. If the side is a
boundary, the normal is always from the computational domain pointing
outside (out of the fluid domain). The three vertices are ordered in a counter
clockwise direction opposite to the direction of the normal to the side. For a
boundary side, IC2 will be always zero.

61

1JS = JS(9,IS) Status of the side

IJS9 =6 Simulating wall conditions

JsS9 =7 Simulating supersonic outlet conditions
[JS9 =8 Simulating supersonic inlet conditions.
7) A table of sides specifying:

8}

9)

10)

x coordinate of baricenter of side (XS(1,1S))
y coordinate of baricenter of side (XS(2,IS))
z coordinate of baricenter of side (XS(3,IS))
area of side {XS(4.,IS))

A table of sides specifying:
the three component of the vector normal to the side:
N = XN(IS) T +yNUS) J + ZNIS)K

the three component of the parallel vector tangential to the side:

- - -—d
P =XP(IS) r +YP(S) + ZP(IS}k

the three component of the parallel vector tangential to the side:
T = XTUS) T +YT{S) J + ZTUS) kK

where P x T = N (the normal. perpendicular and parallel vectors
form a local right-handed coordinate system).

number of cells (tetrahedrals) (NC)

A table of cells specifying:

Number of cells (IC)

Numt-=r of first vertex (JC(1,1C))
Num©er of second vertex (JC(2,1C))
Nu-.ber of third vertex (JC(3,IC))

N aber of fourth vertex (JC(4.IC))

I mber of the first side (JC(5,IC))

I .mber of the second side (JC(6,IC))

62

Number of the third side (JC(7.IC))
Number of the fourth side (JC(8,IC))
IV1 = JC(1,IC) first vertex
V2 = JC(2,IC) second vertex
IV3 = JC(3,IC) third vertex
IV4 = JC(4.IC) fourth vertex
Seen from inside the tetrahedron. the first three vertices are counter clockwise
around the large with the fourth vertex at the apex.
IS1 = JC(5,IC) first side
1S2 = JS(6,IC) second side
1S3 = JS(7,IC) third side
1S4 = JS(8.IC) fourth side
Face ISJ is opposite the IVJ vertex
11) A table of cells specifying:

x coordinate of the baricenter of cell (Xc(1,1cy
y coordinate of the baricenter of cell Xc(2.10))
z coordinate of the baricenter of cell (XC(3,1C))
Volume of the cell (XC(4.1C))

63

A.2.2 Face(Triangle) information

xfill.k} - area of the kth face

xfl2.k} - x position of face centroid
xfl3.k) - y position of face centroid
xfl4,k] - z position of face centroid

yfl1.k} - x component of normal to face
yfl2.ki - y component of normali to face
yfl3.k} - z component of normali to face

Ifl1.k) - the index of the first vertex
Ifl2.k] - the index of the second vertex
ift3.k} - the index of the third vertex
ifl4.k] - the signed index of the first edge
Ifl5.ki - the signed index of the second edge
Ifl6.k} - the signed index of the third edge
Ifl7.k} - the md;x of the tetrahedron

to the left of face .
if8.ki - the index of the tetrahedron Restricting

to the rigth of face line/surface
9.k - s-‘:__tg?s of the kth face , element jf{10,k)

‘ace unrestricted hen i

s-é }wt used sugace when ifi9.k>0

s=2 face restricted to a

s=3 face is fixed
If110.k) - potnter to surface that

restricts the face.
JAi11,k} - the boundary condition for this face

"kth' face

tetrahedron
on the right

ifi8.K)

tetrahedron
on the left

iﬂ79 k)

naormal to the
face yfl1-3.k)

face centroid
xf(2-4.k)

vertex-2

vertex-1

Cell(Tetrahedral) information

xc{l.k) - x position of cell centroid
xci2.k) - y position of ceil centroid
xcf3.k) - z position of cell centroid
xcf4.k) - votume of cell

jetl.k) - the index of the first base vertex

jcf2.k) - the index of the second base vertex
je3.k) - the index of the third base vertex
je{a.k) - the index of fourth vertex opposite base
Jef5.kl - the index of face opposite first vertex
jet6.k) - the index of face opposite first vertex
je(7.k} - the index of face opposite seconduvertex
jef8.k} - the index of face opposite third vertex
jef9.k) - the index of face opposite fourth vertex
Jje{10.k) - the index of cell opposite first vertex
je(11.k} - the index of ceil opposite second vertex
jet12.k) - the index of cell opposite third vertex
jci13.k) - the index of cell opposite fourth vertex

Cell Centroid
Face-2 Position

Cell-4

APPENDIX B

LISTINGS

Thu Jul 1 14:17:00 1993 threed. f Module List - order of octurence page
routine page
1 main H
2 HYDRFL 13
3 RYORFL 19
4 KYDRFL 22
5 HYDRMN 26
6 GEOMTR 13
7 UPGRAD i8
8 GRADNT 39
9 FIRST 51
10 FCHART 53
11 EO0SL 59
12 MATRLA 62
13 PSH 64
14 BILD 64
15 MATRLX 64
16 VOLMTEYC 66
Thu Jul 1 14:17:00 1993 threed. f Module List - alphabetical order
routine page
1 8ID 64
2 EO0S1 59
3 FCHART 53
4 FIRST 51
5 GEOMTR 13
6 GRADNT 39
7 HYDRFL 13
8 HYDRMN 26
9 KYDRFL 22
10 MATRLA 62
11 MATRLX 64
12 PSM 64
13 RYDRFL 19
14 UPGRAD 38
15 VOLMTETC 66
16 main 1

Thu Jul 1 14:17:00 1993 threed.f main program

1 1
2 2
k| 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
k| k)
32 k¥4
kX 33
34 k!
kL] 35
36 35
37 37
k] k'
39 39
4 40
41 4
42 42
43 43
44 44
45 45
46 46
47 47
48 48
49 49
50 50
51 51
52 52
53 53
54 54
55 55
56 86
§7 e ~B7
58 58
59 59
60 60
61 61
62 62
& 63
64
. 65
5 66
1 67
68 68
69 69
70 70
71 71
72 72
73 73

[a¥aTelslolalalalelslialalolelis¥alaleto el falaRalatalaRelaialo T alo e le i a¥aYate Y a e inkeinlininininisiasininlisiaixisinialakinininininialn ke knln]

PROGRAM AUGUSTT

The AUGYSTT Code

Adaptive
Unstructured
Godunov

Upwind

Second order
Triangular -
Three dimension

The geometry structure comes from BERMUDA
The solver is based on FUGGS

Version: 1.00 22 july, 1991

Authors: [tzhak Lottatt {703)749-8648
Shmuel Eideiman (703)448-6491
Adam Orobot {703)734-5840

Science Applications International Corporation
Applied Physics Operation

1710 Goodridge Drive

McLean, Virginia 22102

BERMUDA IS A MULTIOIMENSIONAL CODE WHICH IS BASED ON THE
USE OF TRIANGULAR GRIDS AS THE FUNDAMENTAL MESH
FOR FIELD LIKE QUANTITIES. THE CODE REQUIRES
THAT ALL QUANTITIES ARE BASED AT THE BARICENTER
OF SIDES/TRIANGLES.

THE QUIP IS THAT THOSE WHO WORK ON BERMUDA
TRIANGLES ARE NEVER HEARD FROM AGAIN.

THE BASIC MODULES IN BERMUDA INCLUDE:

A HYDRODYNAMICS CODE
.BASED ON A FIRST ORDER GODUNOV
METHOD OR A SECOND ORDER GODUNOV
WITH MESH ADAPTATION.

Pt Py bt Pt 6 et P fod et P Pt g Pt Pt Gend fmed B S et

GRID S;IUP”TABLES AND THEIR MEANING:

B i s & e e 22

+ +
+ LIST OF VERTICES +
4+ +
+ 1V - VERTEX INDEX +
. XV(1,IV) - X POSITION OF VERTEX .
+ XV(2,IV) - Y POSITION OF VERTEX .
+ XV(3,IV) - Z POSITION OF VERTEX .
+ +
B N T T T S L Y T A A R Y
B s et o as s ot SR LTSS
+ +
+ LIST OF EDGES +
+ +
N IE - EDGE INDEX .
+ JE(1,1E) - INDEX OF LOWER EDGE VERTEX +
+ JE(2,IE) - INDEX OF UPPER EDGE VERTEX +
+ JE(3,1E) - INDEX OF LEFT SIDE +

page 1

page

p—

OO~ D N

Thu Jul

74
75
76
77
78
79
80
81
82
83
84
85

1 14:17:00 1993 threed. f main program
74 C + JE{4,1E) - INDEX OF RIGHT SIDE +
75 C + XE{1,lE) - LENGTH OF EDGE +
76 C + XE(2,1E) - DISTANCE BETWEEN ADJOINING SIDE *
17 C + POINTS. +
78 C + +
9 C B O L L L LI T ST OO YT Tewe TR e e ey
8 C
81 ¢ D T L L T L T T TSP R T DR Oy
82 C * +
83 C + LIST OF SIDES +
84 C + +
8 ¢C + IS - SIDE INDEX +
86 C + J8{1,1S) - INDEX OF FIRST VERTEX +
87 ¢C + JS(2,1S) - INDEX OF SECOND VERTEX +
gg g + J§(3.15) - INDEX OF THIRD VERTEX +
) + +
90 C + THE VERTICES RUN ARGUND THE SIDE IN ORDER +
g% E + COUNTER-CLOCKWISE FASHION +
+ +
93 C + JS(4,1S) - INDEX OF THE FIRST EDGE +
9 ¢ + JS(5,13) - INDEX OF THE SECOND EDGE +
gg E + JS(5,13) - INDEX OF THE THIRD EDGE +
+ +
97 C 4 THE EDGES ARE ARRANGED IN COUNTER-iCLOCKWISE -
%8 ¢ + FASHION. EDGE ONE RUNS FROM VERTEX-ONE TO +
9 + VERTEX-TWO ETC.. THE SIGN OF JS(4-6,1S) INDICATES +
100 € + IF EDGE DATA IS STORED THE SAME WAY. IF IT IS +
101 C + JS>0 AND IT IS REVERSED JS<0 +
102 € + Js(7,1S) - INDEX OF CELL ON LEFT +
103 C + JS(8.1S) - INDEX OF CELL ON RIGHT +
104 C + +
105 C + XS(1,19) - X POSITION OF CENTROID OF TRIANGLE +
106 C + XS(2,15) - Y POSITION OF CENTRQID OF TRIANGLE +
107 C + XS(3,15) - I POSITION OF CENTROID OF TRIANGLE +
108 C + X5(4,1S) - AREA OF TRIANGLE +
109 ¢ + Xs(5, 1S} - DISTANCE BETWEEN ADJOINING CELLS +
110 C + POINRTS CROSSING TRIANGLE IS +
m < + +
im ¢ + +
13 ¢ B e ot S T NP TS VO I SO TN
114 C
115 C FHE SR bbb EE bbb bbb b bbb bbb P b bbb bbb bbb bbb bbb bbb bbbt
16 ¢ + *
117 € + LIST OF CELLS +
1ms C + +
119 € + IC ~ CELL INDEX +
120 C + JC{1,1C) - INDEX OF FIRST VERTEX +
121 C + JC(z, IC) - INDEX OF SECOND VERTEX +
122 C + JC(3.10) - INDEX OF THIRD VERTEX +
1%3 g + JC{4,1C) - INDEX OF FOURTH VERTEX +
124 + +
125 € + THE CONVENTION FOR VERTICES IS THAT 1-3 +
126 C + ARE ARRANGED COUNTER-CLOCKWISE ABOUT THE +
127 C + BASE AND THAT 4 IS AT THE APEX. +
128 C + +
129 € + JC(5,IC) - INDEX OF FIRST SIDE +
130 C + JC(6,1C) - INDEX OF SECOND SIDE +
131 C + JC(7.1C) - INDEX OF THIRD SIOE - +
l3§ g + Jc(s,1C) - INDEX OF FQURTH SIDE +
13 + +
13 ¢ + THE CONVENTION FOR SIDES IS THAT SIDE ONE COVERS +
135 ¢ + THE SPACE BETWEEN VERTEX-ONE,VERTEX-TWO,AND THE -
136 C + VERTEX AT THE APEX ETC.. SIDE FOUR IS THE BASE -
137 C + +
138 C + xC{1,1C) - X POSITION OF CELL POINT +
139 ¢ + xC(2,1C) - Y POSITION OF CELL POINT +
140 € + XC(3,IC) - 1 POSITION OF CELL POINT +
141 C + XC(4,1C) - CELL VOLUME. +
12 € + +
143 C . +
144 C L L L T T Y ruwpureawen
145 C
146 C
147 ¢ -

page 2

page

Thu Jul

148
149
150
151
152
183
154
155
156
157
158

1 14:17:00 1993 threed, f

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

206
27

214
215
216
7
218
219
220
221

main program

c .
C --- DEFINITION FOR ALL HYORODYNAMIC QUANTITIES ---- -

-1

USE OF PARAMETERS:
MHQ - MAXIMUM NUMBER OF HYDRO QUANTITIES.

OIIAAMIOIOICIOIOIOICIC

include 'dmsh00.h'
include ‘dhydm0. h'
include ‘dphsm0.h’
include ‘dutri0.h’

REAL Xx(600),PP(600),HR(600),
Uu(600),6G{600) ,AA(600),EE(600)

"DOUBLE PRECISION VOL1,VOL2,V0L3,VOL4, VOLL, XXI,YYE, 121

DOUBLE PRECISION DEFVOL

OPEN(2 ,FILE="data.dd*,FORM«'FORMATTED')
OPEN(4 ,FILE«'thermo.d’,FORM='FORMATTED')
OPEN(8 ,FILE='threed2.5', FORM='UNFORMATTED')
OPEN(88 ,FILE~'threed82’, FORN="UNFORMATTED")
OPEN(9 ,FILE='threed3',FORM='UNFORMATTED')
OPEN(10,FILE="threedd*, FORM=‘FORMATTED')
OPEN(15,FILE="AVSfmhail.inp’, FORM="'FORMATTED")
OPEN{14,FILE="AVSsmhai].inp', FORM="'FORMATTED")
OPEN(16,FILE="0UTPUT.MSH' , FORM="'FORMATTED')
OPEN(26, FILE="EXPLSV.RNO"® , FORM='FORMATTED' }
OPEN(17,FILE="'ve0640.stv', FORM="FORMATTED")
OPEN(18,FILE='f0640.stv', FORM="FORMATTED")
OPEN(19,FILE="pr640.stv', FORM='FORMATTED')
OPEM(11,FILE«"truck.input.8b*,STATUS="0LD')

IO CIICIAICIOOOOCIOOOOCOMNOOOOOOODOOMOOO00

NAMELIST /OATA/ ICOND,ICONP,IOPTN,XMCHIN,RIN,PIN,ALFA, HRGG, IHRN,
NTTHE, NDUMP, IOPORD

--- MEANING OF NAMELIST VARIABLES:

ICOND = O READ INPUT GRID FOR A NEW RUN
= 1 READ THE GRID FROM PREVIQUS RUN

1ICOKP = O PRIMITIVE VARIABLES SET 10 ZERD
= | VARIABLES READ FROM PREVIOUS RUN
10PTN = 1 SOLUTION FOR STEADY STATE,

2 SOLUTION FOR TRANSIENT PHENOMENA

XMCHIN = FOR TRANSIENT SHOCK CALCULATIONS(IOPTN=2)THIS VARIABLE
[S USED TO SPECIFY THE UPSTREAM MACH NUMBER

RIN = THE AMBIENT DENSITY IN THE CHAMBER
PIN = THE AMBIENT PRESSURE IN THE CHAMBER

APPLYING NORMAL SHOCK WAVES RELATIONS FOR AN ADIABATIC
FLOW RELATION STATIC-PRESSURE RATIO ACROSS THE SHOCK
AS WELL AS THE DENSITY RATIO AND MACH NUMBER RATIO

ARE COMPUTED TO SET CORRECTLY THE CONDITION AT THE
INLET EDGES(EDGE BOUNDARY 8) OF THE COMPUTATIONAL
DOMAIN

FOR STEADY STATE SHOCK CALCULATIONS(IOPTN«1)THIS IS THE
INFLOW MACH NUMBER. ALL DOMAIN VELOCITIES ARE THEN
INITIALIZED WITH THIS VALUE.

RIN = THE AMBIENT DENSITY AT INFINITY
page 3

Pt @ b 3t P e S Bt Bornd Bed Bt Bck (g piod Pang P frwnl S et Peaef Juad pump By st e Bt Bt Pt Bang et Do

page

149

@ Thu Jul

222

223

224

225

 J 228
: 229
: 230
231

232

233

A

® 2%
237

238

239

240

241

E:

o 244
: 245
246

247

248

249

® 252
253

254

255

256

257

* 260
261

262

263

264

265

266

o 267
268

269

270

n

2712

273

274

L J 215
276

n

278

279

280

L J 283

284

285

286

287

288

3%

o 291

292

293

294

295

St Gha0 Bt Dot el g Gnet oot Geaq Peed ea§ g Bt Paeq el P Bt P Jung Bomd q fmd peq peeq et P Dt bk e e Bk Dt bt Pt

1 14:17:00 1993 threed. f main program

22 C

g%z E PIN = THE AMBIENT PRESSURE AT INFINITY

25 € ALL COMPUTATIONAL DOMAIN ARE THEN INITIALIZED WITH
26 C THOSE VALUES.

21 ¢

28 C ALFA = THE DIRECTION OF INFLOW IN DEGREES RELATIVE TO A RIGHT
228 C HAND COORDINATE SYSTEM. ALFA=0 MEANS FLOW FROM LEFT TO
230 C RIGHT. ALFA=Q0 MEANS FROM BOTTOM TO TOP. ALFA=--90 OR 270
31 C MEANS FLOW FROM TOP TO BOTTOM ETC.

232 ¢ HRGG = INITIAL GAMMA IN THE EQUATION OF STATE

233 C THE CODE RUNS USING THE AIR EQUATION AS A BASELINE AND
238 C SHOULD BE MODIFIED IF SOMETHING ELSE 1S DESIRED.

235 C IHRN = NUMBER OF ITERATIONS IN THE RIEMANN SOLVER TO FIND THE
%6 € DIAPHRAGM SOLUTION.(3 to 4 SHOULD BE USED AND INCREASED
%gg g ONLY FOR HIGH MACH NUMBER CASES).

29 ¢ NTIME = NUMBER OF REPEATS FOR THE INTEGRATION SEQUENCE.

240 € AN QUTPUT DUMP IS DONE EVERY SEQUENCE REPEAT.

g:; g NDUMP « NUMBER OF ITERATIONS IN THE INNER LOOP

243 (+ o NTIME - DUMPING DATA

244 C 1

285 C I + o NDUMP - INTEGRATION

286 C I 1

247 C I I

288) + 0 INNER LOOP

249 C I

%gg g + 0 DUMPING LOOP

252 C IOPORD = 1 THE CODE WILL RUN FIRST ORDER GODUNOV METHOD

%gi g » 2 THE CODE WILL RUN SECOND ORDER GODUNOV METHOD

55 C

%6 C

257 ICOND = 0

258 ICONP- = O

259 10PTN = 1

260 IE0S =1

261 C

262 XMCHIN = 2.5

263 RIN = 1.25

264 PIN - 101350.

265 RGAS - = 8314.3

266 GPERCC = .001

267 €

268 ALFA = 0.

269 HRGG = 1.4

270 IHRN = 4

27 NTIME = 12

2712 NDUMP = 200

273 10PORD = 2

2774 €

275 C --- READ THE INPUT DATA

2716 C

77 € READ (2,DATA)

218 C

Zgg E -=- PRINTOUT THE RUN PARAMETERS

2

281 PRINT 101, [COND, ICONP, IOPTN, XMCHIN,RIN,PIN,ALFA, HRGG, THRN,
Zg§ c . NTIME,NDUMP, 10PORD

2

284 C --- SET RUN CONDITIONS AND PRINTOUT TO CONSOLE

285 C

286 C READING GRID DATA FROM EDGE.ZON

81 ¢C

288 THIRD = 1. / 3.

289 IF({ ICOND . EQ . O) THEN

290 C

291 CALL UPDATE

292

293 ELSE

294

295 CALL UPGRAD

Tha Jul

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
k)
312
3
14
15
316
7
18
319
320
21
322
KrX]
324
325
326
7
328
329
330
31
32
313
334
335
336
iy
338
339
340
341
332
343
k17
345
346
347
348
3149
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

1 14:17:00 1993 threed. f main program
29 C
297 END IF
298 CALL MATRLA
299 CALL MATRLX
300 €
381 g -~= INITIALIZATION OF THE PROBLEM
2
303 HRSM = }.£-8
304 HRGP = HRGG + 1.
305 HRGM = HRGG - 1.
306 CF = HRGP / (2. * HRGG)
307 T = 0.
8 €
309 PIRAD = ATAN(1.) / 45.
1o ALPHA = ALFA * PIRAD
gl% c PRINT *,ALFA,PIRAD,ALPHA
1
313 COSS = COS(ALPHA)
314 SINN = SIN(ALPHA)}
315 TANN = TAN(ALPHA)
6 C
17 ¢
8 C
gég g -~= SET THE INITIAL VALUE FOR PRIMITIVE VARIABLES -
321 C(2)>>>>
122 TLIMIT = .9
323 ITER = &
324 IF(1COND . EG . O) THEN
325 UVIN = XMCHIN * SORT(HRGG * PIN / RIN)
326 UIN = UVIN * COSS
27 VIN = UVIN * SINN
328 WIN = 0.
329 ¢
330 DO 150 IC =1, NC
FE) HYDV(IC , 1) = RIN
33 HYDV{ IC , 2) = 0.
333 HYOV{ IC , 3) « 0.
334 HYOV(IC , 4) « 0.
335 HYOV(IC , 5) = PIN
336 KYOV{ IC , 6) = 1.E-6
¥ HYDV{ IC,7)=1.8
g%g c HYOV(IC , 8) =PIN/ { HYDV(IC , 7) - 1.)
340 150 CONTINUE
41 RADIUS =~ .0001
352 EXPLSV = 8,
343 DO IC =1, NC
344 XXI = XC{ 1, IC)
345 YYI - xC{2, IC)
346 71 = xC{ 3, IC)
347 RSS = SQRY(XXI * XXI + YYI * YY1 + 721 * 2Z1)
48 IF(RSS . LT . RADIUS) THEN
349 print* xxi,yyi,zzi,radius
350 HYOV(IC , 1) = EXPLSV * .4536 * .75 / 3.141569 /
351 . { RADIUS * RADIUS * RADIUS)
352 HYOV(IC , 6) = 1.
353 HYOV(IC , 8) = WYOV(IC , 1) * 1080. * 4,185 *
354 . 1000. * 1.01 / .7
358 NITER = 0
356 DST = HYDV(IC , 1) * GPERCC
387 VOL = WMX * (1, - DST / FSX) / DST / XGX
ggg c EMEQ = HYDV(IC , 8) / HYDV(IC , 1) * WMX / RGAS
360 IYY = (EMEO - EMEOX{ 3)) / RANGEX + 1
361 IYY = MAXO(1, MINO(IYY , 47))
62 C
363 K= vy +2
364 1YYy = 1YY
365 . + INT(AMAX1(EMEQ - EMEOX(K) , 0.) / DYX(K })
366 . = INT/, AMAXI(EMEOX{ X + 1) - EMEO , Q.) / DYX{ K))
367 1YY = MAXO(1, MINOC IYY , 47))
368 C
359 Kl « 1YY + 2

page 5

page

344
345

369

Thy Jul

370
n
72
373
374
375
376
Vi
378
379
380
381
382
383
384
385
386
387
388
389
390
301
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
817
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

1 14:17:00 1993 threed. main program
370 K2 = KI + 1
n RT = (EMEO - EMEOX(Kl))/« Ensox(K2) - EMEOX{ K1))
372 T = TX(K1) + 100,
373 CVM = CVMX(K1) + RT ' (CVMX(K2) - CVMX(X1))
374 ERS = 0.
35 C
376 10 CONTINUE
377 P » RGAS * T / VOL / GPERCC
378 RGAMMY = CVM
3719 ¢
380 X = COVX /VOL / ((T+ THETAX) ** ALFAX)
381 I =X " EXP(BETAX * X)
382 X = 1. + BETAX * X
383 RT » ALFAX * T / (T + THETAX)
384 ERS = ERS ¢+ RT * 2 * T
B C
ggg c IF (ITER .EQ. NITER) GO 70 20
388 CVM = CVM * XGX + SCVX
389 * +RT*Z* (2. -RT/ALFAX - RT * X)
ggo T~ 7T - AMINI(ERS / CVM , TLIMIT * T)
1 ¢
392 NITER = NITER + 1
383 ¢
394 RT « 0.01 * T
395 Kl = RT
366 KI = MINO (K1, 49)
397 K1 = MAXO (K1, 3)
398 K2 = KL + 1
399 RT = RT - K1
400 CVM = CVMX(K1) + RT * (CVMX(K2) - CWMX{ K1))
401 ERS = EMEOX(K1) + RT * (EMEOX{ K2) - EMEOX(K1))
402 ERS = ERS - EMEO
03 C
408 GO TO 10
405 C
406 20 CONTINUE
407 PepPr(1.+¢1)
408 RGAMMI = (RGAMML +
409 * RT*Z*(2. -RT/ALFAX-RT* X))/ (1. +12)
410 XeX*2/(1l.+1)
411 RGAMMI = RGAMML / ({ 1. - RT * X) ** 2 4+ x * RGAMMIL)
412 ERS = ERS / EMEO
413 HYOV(IC , 7) = 1 / RGAMMY + 1.
314 HYOV(IC , 5) =
415 END IF
416 END DO
427 ¢
118 XCOUNT = 0
419 DO IC =1, NC
420 RCOUNT = HYDV(IC , 8) + 5= HYDV(IC , 1) *
21 . (HYOV(IC , 2) *wyDV(IC , 2) +
422 . HYOV(IC , 3) *HYOV(IC, 3) +
423 HYOV(IC , 4) * HYDV(IC , 4))
424 "XCOUNT = XCOUNT + XC(4, IC) * RCOUNT
425 END DO
426 PRINT * , XCOUNT
427 [13d=1
428 IF(11JJ.EQ.0) GO TO 1122
29 C remove the followed IF statement for reguiar run
430 ¢ IF(I0PTN . EQ . 2) THEN
31 C IF(IOPTN . EQ . 1) THEN
32 ¢
433 NX = 360
434 DO 190 IX = 1 , NX
435 AX(IX) = (IX-.5)*.002
336 190 CONTINUE
437 READ (11.1001) (PP(IX),IX=1,NX)
438 READ (11,1001) (UU(IX),IX=1,NX)
439 READ (11,1001) (HR(IX),IX=1,NX)
440 READ (11,1001) (AA(IX),IX=1,NX)
441 READ (11,1001) (GG(IX),IX=1,NX)
442 READ (11,1001 (EE(IX),IX=},NX)
143 1001 FORMAT(6£12.5)

page 6

page

410

418
419

AW

436
LxY

439
440
44]
442
443

Thu Jul

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
an
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

1 14:17:00 1993 threed. f main page
448 ¢
445 ICOUNT = 0
446 DO 260 IC = 1, NC
47 ¢ XX} = XC(1, IC) + .2667
448 XXI = XC(1, IC) + .1:43
449 YY1 - xC(2, IC) - 1.96596
450 ¢ IZT = xC(3, IC) - 1.25
451 IZ1 = xC{ 3, IC) - 1.905
452 RSS = SQRT(XXI * XXI + YYI * yY] + 721 ~ 721)
453 XYS = SORT(XXI * XXI + YYI * ¥l)
454 ¢
458 DO 270 IX = 1 , NX-1
456 XUD1 = xX(IX)
357 xDD2 = XX(IX+1)
458 IF(RSS . GT . XOD1 . AND . RSS . LT . XDD2) THEN
459 XKSI = (RSS - XxODI) / (XDD2 - XxDD1)
460 ICOUNT = ICOUNT + 1
61 C
462 HYDV(IC,1) = HR{IX) * (1.-XKS1) +
463 . HR(IX+1) * XKSI
464 C
465 HYDUVH = LU(IX)} * (1.-XKSI) +
466 . UU(IX+1) * xKSI
467 HYDV(IC,4) = ZZI / RSS * HYDUVW
asg HYDVUV = XYS / RSS * HYDUVW
469 ¢
470 THETHA = ATAN2(YY! , XXI)
471 HYOV(IC,2) = HYDVUV * COS{ THETHA)
azg HYOV(IC,3) = HYDVUV * SIN(THETHA)
473 ¢
474 HYOV(IC,5) = PP(IX) * (1.-XKSI) +
475 PPIX+1) * XKSI
476 ¢ HYDV{IC,5) = 1.08*HYDV(IC,5)
s HYDV(IC,7) = GG(IX) = (1.-XKSI) +
478 GG(IX+1) * XKSI
479 HYOV(IC,6) = AA(IX) * (1.-XKSI) +
480 . AA(IX+1) * XKSI
481 HYOV(IC,8) = EE(IX) * (1.-XKSI) +
482 . EE(IX+1) * XKSI
483 ¢
484 GOTO 301
485 ENDIF
486 270 CONTINUE
487 301 CONTINUE
488 NITER = 6
489 IF(NITER.EQ.0) THEN
490 IF(HYDV(IC , 6) . LT . .2) THEN
491 OST = HYOV(IC , 1) * GPERCC
492 VOL = WMA * (1. - DST / FSA) / DST / XGA
493 TT = HYDV(IC , 5) * VOL * GPERCC / RGAS
494 C
495 T=77
496 RT « 0.01 * T
497 Ki = RT
498 K1 « MING { K1, 49)
499 KI = MAXO (K1, 3)
500 K2 =Kl +1
501 RT = RT - K1
502 ENERGY = EMEOA(K1) + RT * (EMEOA(K2) - EMEOA(K1))
233 ENERGY = ENERGY * RGAS / WMA
'}
505 DO ITER = 1 , NITER
506 X = COVA / VOL / (T+ THETAA)} ** ALFAA
507 €
508 BETAZX = BETAA * X
509 RT = X * £XP(BETAZX)
510 RTINV « 1. / (L. + RT)
511 C - ERS IS THE FUNCTION, RT IS THE DERIVATIVE
512 ERS = T - TT * RTINV
513 RT « 1. - TT * PTINV * RTINV * ALFAA ~ RT * (1. + BETAZX) /
514 . { T + THETAA)
515 ERS = ERS / RT
516 T«T-ERS
517 END 00

page 7

... &7

4 Thu Jul 1 14:17:00 1993 threed.f main program page 8
518 518 C 518
519 519 RT =001+ 7 519
520 520 K1 = RT 520
521 sl K1 = MINO (K1, 49) 521
522 522 K1 = MAXO (K1, 3) $22
523 523 K2 = KI + 1 23

4 54 524 RT = RT - K1 523
525 525 ENERGY = EMEQA(X1) + RT * (EMEQA(K2) - EMEOA(X1)) 525
526 s86 C 526
57 527 X = COVA / VOL / ((T+ THETAA) ** ALFAA) 527
528 528 £X = EXP(BETAA * X) 528
529 529 Z«X*EX 529
530 530 AT = ALFAA * T / (T + THETAA) 530
531 531 ENERGY = ENERGY + RT = 2 * T 531
532 532 HYDV(IC , 8) = ENERGY * RGAS / WMA 532
533 533 EMEQ = HYDV(IC , 8) / HYOV{ IC , 1) = WMA / RGAS 533
534 534 ¢ 534
535 535 IYY = (EMEO - EMEOA{ 3)) / RANGEA + 1 535
536 536 IYY = MAXO(1 ., MINO(IYY , 47 }) 536
537 537 ¢ §37
538 538 K= 1YY + 2 538

. 539 538 Yy = ivy 539
540 540 .+ INT{ AMAX1(EMED - EMEOA(K)) DYA(K)) 540
541 541 . = INT(AMAX1(EMEDA(K + 1) - . 0.) /OYA(K)) 541
542 542 1YY = MAXO(1, MINO(1YY , 47) 542
543 543 ¢ 543
544 544 Kl = [YY + 2 544
545 545 K2 = Kl «t 545
546 546 RT = { EMEQ - EMEOA({ Kl) Y/ (EMEOA(X2) - EMEOA(K1)) 546

. 547 547 T = FA(K1) + 100, 547
548 548 CVH-CVMA(KI)*RT'(CVHA(KZ)-CVHA(KI)) 548
549 549 ERS = 0. 549
550 550 C 550
851 551 P = RGAS * T / VOL / GPERCC 851
552 552 RGAMM]L = CVM 552
553 553 HYOV(IC , 7) » 1. / RGAMMI + 1. 553
554 554 HYOV(IC , 5) =P 554
555 855 C 555
556 556 ELSE 556
557 587 C 557
558 558 DST = HYDV{ IC , 1) * GPERCC 558
859 559 VOL = WMX * (1, - DST / FSX) / DST / XGX 559
560 560 TT = HYDV(IC , 5) * VOL * GPERCC / RGAS 560
561 561 C 561
562 562 T=17 562
563 563 RT =001 *7 563
564 564 K1 = RT 564
565 565 Ki = MINO (KI, 49) . 565
566 566 Kl = MAXO (KI, 3) 566
567 567 K2 = K1 + 1 567
568 568 RT = RT - K1 568
569 569 ENERGY = EMEOX(K1) + RT * (EMEOX(K2) - EMEOX{ K1)) 569
570 570 ENERGY = ENERGY * RGAS / WMX 570
571 571 € 571
572 872 DO ITER = | , NITER 572
573 573 X = COUX / VOL / (7 +« THETAX)} =* ALFAX 573
574 574 ¢C 574
575 575 BETAZX = BETAX * X 575
576 576 RT = X * £XP{ BETAIX) 576
577 YX RTIRV = 1. / (1. + RT) 577
578 578 C - ERS IS THE FUNCTION, RT IS THE DERIVATIVE 578
579 579 ERS = T ~ TT * RTINV 579
580 580 RT = 1. - TT * RTINV * RTINV * ALFAX * RT * (1. + BETAZX) / 580
581 581 . (T + THETAX) 581
582 §82 ERS = ERS / RT 582
583 533 T =T - ERS 583
584 584 END DO 584
585 585 C 585
586 586 RT « 0.01 * 7 586
587 587 K1 =« RT 587
588 588 K1 = MINO (K1, 49) 588
589 589 K1 = MAXO (KI, 3) 589
590 590 K2 = K1 + 1 590
591 591 RT = RT - K} 591

page 8

Thu Jul

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

1 14:17:00 1993 threed. f main program

ggg c ENERGY » EMEOX(K1) « RT * (EMEOX(K2) - EMEOX{ X1))
594 X = COVX /VOL/ ((T« THETAX) ** ALFAX)

595 EX » EXP{ BETAX * X)

596 I=X*EX

597 RT = ALFAX = T / (T + THETAX)

598 ENERGY ~ ENERGY + RT * Z * T

599 HYOV(IC , 8) = ENERGY * RGAS / WMX

600 VOL = WMX = (1. - DST / FSX) / DST / x6X

gg% c EMEQ « HYDV(IC , 8) / HYOV(IC , 1) = wMX / RGAS
603 IYY « (EMEQ - EMEOX(3)) / RANGEX + 1

604 IYY = MAXO(1 ., MINO(IYY , 47))

605 C

606 K= IYY +2

607 1YY = 1YY

608 .+ INT(AMAX1{ EMEQ - EMEOX(K) ,) DYX(})
609 « = INT(AMAX1(EMEOX{ K + 1) - EMEO , 0.) / DYX{ K))
610 IYY = BAXO{ 1, MINO(1YY , 47))

611 C

612 KI = IYY + 2

613 K2 = K1 + |

614 RT = (EMEO - EHEOX(KI)) / (EMEOX{ K2) - EMEOX(X1))
615 T« TX{ Kl) + 100.

616 CVM « CVMX(K1) + RT * (CVMX(K2 } - evmx(K1))
617 ERS = 0,

618 C

619 401 CONTINUE

620 P = RGAS * T / VOL / GPERCC

621 RGAMM] ~ CVM

622 C

623 X = COVX / VOL / ((T + THETAX) ** ALFAX)

624 Z=X*EXP{ BETAX * X)

625 X =1, + BETAX * X

626 RT = ALFAX * T / (T + THETAX)

627 ERS = ERS + RT * Z * T

628 C

ggg IF (ITER .EQ. NITER) GO TO 201

631 CVH « CVM * XGX + SCVX

632 +RT*Z* (2, -RT /ALFAX - RT * X)
g;i c T = T - AMINI(ERS 7 CVM , TLIMIT * T)

635 NITER = NITER + |

636 C

637 RT = 0.01 *7

638 K1 « RT

639 Kl = MINO (K1, 49)

540 K1 = MAXO (K1, 3)

641 K2 = KI + 1

642 RT « RT - K1

643 CVM = CUMX(X1) + RT * (CVMX({ K2) - CVUMX(K1))
644 ERS = EMEOX(K1) + RT * { EMEOX{ K2) - EMEO:{ K1))
645 ERS = ERS - EMEQ

646 C

647 GO T0 401

648 C

649 201 CONTINUE

650 Pepr(1,+¢17)

651 RGAMM1 = (RGAMM1 +

652 * RT * Z * (2. ~RT /ALFAX -RT* X))/ (1.
653 XeX*2/(1.+1)

654 RGAMM] = RGAMM] / ((1. ~RT*X)* 2+ X* RGAMMI)
6§55 ERS = ERS / EMEO

656 HYDV(1C , 7) = 1. / RGAMMI + 1.

657 HYOV(IC , 5) = P

658 END IF

659 END IF

680 260 ConTI™T

661 C

662 C(2)----

663 ELSE

664

665 YMSQR = XMCHIN * XMCHIN

page 9

1)

page

Thu Jul

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

683

1 14:17:00 1993

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
115
716

nr

718
719
720
121
722
123
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

threed. f main program
PINL = PIN
RINL = RIN
RINRTO « (HRGG « L.) * XMSQR /
((HRGE - 1.) * XMSQR + 2,)
PINRTO = (2. * HRGG * XMSQR - (HRGG - 1.)) [
{ HRGG + 1.)
PIN = PINRTO * PINL .
RIN = RINRTO * RINL
YMCHIN = SQRT{ { (HRGG - 1. } * XMSQR + 2.) /
{ 2. " HRGG * XMSOR - (HRGG - 1.) })
PRINT*,HRGG,RIN,PIN, YMCHIN
PRINT* HRGG,RINL,PINL, XMCHIN
UVIN = XMCHIN * SQRT(HRGG * PINL / RINL) -
YMCHIN * SQRT(HRGG * PIN / RIN)
UIN = UVIN * COSS
VIN = UVIN * SINN
WIN = 0.
o
DO 185 IC =1, NC
HYOV(1C , 1) = RINL
HYOV(IC , 2) = UIN
HYDV(IC , 3) = VIN
HYDV(IC , 4) = WIN
c HYOV(IC , 5) = PINL
185 CONTIRUE
NOIF
¢ remove the followed ENO IF for regular run
C ENDIF
c ENDIF
C(2)<<<<
I
1122 CONTINUE
IF{ ICOND . EQ . O) THEN
NPRTCL = 25
XPRICL(1,1) = .443
XPRYCL(2,1) - 1.0414
XPRYCL(3,1) = 1.4224
XPRTCL(1,2) = -.002
XPRTCL(2,2) = .3556
XPRTCL(3,2) = 0.5842
XPRTCL(1,3) = -.275
XPRTCL(2,3) = -.3058
XPRYCL(3,3) = -1.4224
XPRTCL{1,4) ~ 2.032
XPRTCL(2,4) = -.3048
XPRTCL(3,4) = -4.572
XPRTCL(1,5) = .3048
XPRYCL(2,5) = .1016
XPRTCL(3,5) = .3048
XPRTCL(1,6) = .4572
XPRTCL(2,6) = .1016
XPRTCL(3,6) = .4572
XPRTCL(1,7) - .6096
XPRTCL(2,7) = .1016
XPRTCL(3,7) = .3048
XPRTCL(1,8) = .4572
XPRTCL(2.8) = .1016
XPRTCL(3,8) - .1524
XPRTCL(1,9) = 1.3462
XPRTCL(2,9) = .1016
XPRTCL(3,9) = .3048

XPRTCL(1,10) = 1.4986
XPRTCL(2,10) = .1016
XPRTCL(3,10) = .4572
XPRTCL(1,11) = 1.651
XPRTCL(2,11) = .1016
XPRTCL(3,11) = .3048
XPRTCL(1,12) = 1.4986
XPR(CL(2,12) = .1016
XPRTCL(3,12) = .1524
XPRTCL(1,13) = .6096
XPRTCL(2,13) = .7740
XPRTCL(3,13) = 1.0668

page 10

page

Thu Jul

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
m
772
73
778
775
776
m
778
778
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

1 14:17:00 1993 threed. f main program

740
741
742
743
784
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
m
72
773
778
775
176
m
778
779
780
781
182
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

XPRTCL(1,14) = .6096

XPRTCL{2,14) = .8138

XPRTCL{3,14) = .5334

XPRYCL{1,15) = 1.4224

XPRYCL{2,15) = .7740

XPRTCL(3,15) = 1.0668

XPRTCL(1,16) = 1.4224

XPRYCL(2,16) = .8128

XPRTCL(3,16) « .5334

XPRTCL(1,17) = -.3058

XPRTCL(2,17) = 1.3208

XPRTCL(3,17) = -.4318

XPRTCL(1,18) = .2032

XPRTCL(2,18) = .7590

XPRTCL(3,18) ~ 1.1898

XPPICL(1,19) = 254

XPRTCL(Z2,19) = .1772

XPRTCL(3,19) = 1.1948

XPRTCL(1,20) = .9144

XPRTCL(2,20) = .4064

XPRTCL(3,20) = .9652

XPRTCL(1,21) = .2032

XPRTCL(2,21) = .7680

XPRTCL(3,21) = 1.1888

XPRTCL{1,22) = .1532

XPRTCL(2,22) = .7670

XPRTCL(3,22) ~ 1.1888

XPRTCL(1,23) ~ .1532

XPRTCL(2,23) - .7665

XPRTCL(3,23) ~ 1.1878

XPRTCL(1,24) - .1532

XPRTCL(2,24) ~ .7765

XPRTCL(3,24) ~ 1.1898

XPRTCL(1,25) = .1532

XPRTCL(2,258) =~ .7655

XPRTCL(3,25) = 1.1898

DO IK = 1 , NPRICL

RAMINN = 100000000.

DOIC =1, NC

11=JC(1,1C)

12=JC(2,1C)

[3=JC(3.1IC)

14=JC(4,1C)

XX = XPRTCL{ 1 ., IK)

YYD = XPRTCL(2 , IK)

ZZ1 = XPRTCL{ 3, IK)

CALL VOLMTETC (11, I2, I3, XXI, YYI, ZZI , vOLl)

CALL VOIMTETC (I, 12, I8, XXI, YYI, ZZI , voLZ)

CALL VOLMTETC { I, I3, 14, xxi, YYI, ZZI , VvOL3)

CALL VOLMYETC { 12, I3, I4, XXI, YYI, ZZI , VOL4)

XXI = XV(1, 14)

Ywr=xv(z, 14)

121 - Xv(3, 14)

CALL VOLMTETC (II, 12, 13, XxI, YYI, ZZ1 , vOLL)

DEFVOL=-DABS(VOL1)+DABS(VOL2)+DABS(VOL3) +DABS(VOL4)

. -DABS(VOLL)

1F({ DABS(DEFVOL/VOLL) . LT . .001) THENM
TJKPRT(IK) = IC
PRINT®,ik,voil,vol2,v0i13,vol4
PRINT*,ic,voll,defvol,defvol/voll
PRINT*, (XV(kk,jc{l,ic}),kk=1,3)
PRINT*, (XV(kk,jc(2,ic)).kk=1,3)
PRINT*, (XV(kk,jc(3,ic)),kk=1,3)
PRINT*, (XV(kk,jc(4,ic)), kk=1,3)
PRINT*, (JS(9,jc(kk,ic)), kk=5,8)

END If

END DO

END DO

D0 IK = 1 , NPRTCL
IC = [JKPRT(IK)
1SS = JC(5,1IC)

DO IKK=5, 8
1S « JCIKK,IC)
IBC « JS(9,1S)

page 11

page

770
771

803

807

810
811
812
813

Thy Jul

814
815
816
817
818
819

1 14:17:00 1993 threed. f main program
814 IF(I8C . EQ . 6) THEN
815 ISS = IS
816 END IF
817 END DO
818 [JKPRT(IK) = ISS
819 END DO -
820 END IF
821 C
822 PRINT * , ICOND, ICONP
823 ¢C
824 {F(ICONP . EQ . 1) THEN
828 READ(8) RIN,PIN,RINL,PINL,UVIN,UIN,VIN,WIN,TT
826 PRINT *, RIN,PIN.RINL.PINL,UVIN,UIN,VIN, WIN,TT
827 ¢ READ (8) NPRTCL
828 C IF(NPRTCL.GT.0)
829 ¢ . READ (8) (1JKPRT(IK),IK=1,NPRTCL)
830 BOIl=1,5
832 END DO
833
834 END IF
835
836 ZCOUNT = O
837 D0 380 1IC =1, KC
838 RCOUNT = HYOV(IC , 8) + .5 *HYDV(IC , 1) *
839 . (HYOV(IC , 2 Y~ HYDV(IC, 2) +
840 . HYOV(IC , 3) = HYOV(IC , 3) +
841 . HYDV(IC , 4) « HYDV(IC , 4))
842 ICOUNT = ZCOUNT + XC{ 4 , IC) * RCOUNT
843 380 CONTINUE
844 YCOUNT = ZCOUNT - XCOUNT
845 PRINT * ,ZCOUNT,YCOUNT
846 CALL HYDRMN
87 C
848 C --- EXIT POINT FROM PROGRAM
849 C
850 C -eemee--
851 sToP 777
852 (€ ccacaca-
853 C
854 C --- FORMATS
858 ¢
856 101 FORMAT(1H ,'ICOND=‘,12,5X,'1CONP=',12,5X,'I0PTN=",12./,1X,
857 . *XMCHIN=',F13.6,5X, 'RIN=’,F13.6,5X,'PIN=',F13.6,/,1X,
858 . ‘ALFA=',F13.6,5X, 'HRGG=",F13.6,5X, ' IHRN=",12,5X,/,1X,
ggg . 'NTIME=',12,5X, 'NDUMP="', [5,5X, ' IOPORD=",12)
851 END
862 ¢
page 12

page

Thu Jul 1 14:17:00 1993 threed. f SUBROUTINE HYORFL page 13
863 1 SUBROUTINE HYORFL 863
864 2 C 864
865 3 ¢ ———- -1 865
866 4 C I 866
867 5 C HYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES | 867
868 6 C FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES 1 868
869 7 € VARIABLES . I 869
870 8 ¢ I 870
871 9 C I 871
872 10 C 872
873 11 include 'dmsh00.h° 873
874 12 include 'dhydm0.h' 874
875 13 include ‘dphsm0.h* 875
876 14 include ‘dmtri0.h 876
877 15 € 877
878 16 REAL DELP(128),WS0P(128),WSOM(128),WS00(128), 878
879 17 . RSTAR(128),CSTAR(128),PMAX(128), PMIN(128) 879
880 18 REAL RRIGHT(128),URIGHT(128),VRIGHT(128),PRIGHT{128) 880
881 19 REAL RLEFTT(128) ,ULEFTT(128),VLEFTT(128),PLEFTT(128) 881
882 20 REAL ENRGYI(128),ANRGYI(128) 882
883 21 C 883
884 22 C --- BEGIN LOOP OVER ALL EDGES IN THE DOMAIN 884 .
885 23 ¢ 88s
886 24 D028C IH=1, 6 886
887 25 D0 280 IC = 1 , NC 887
888 26 HYDFLX(IC , IK) = 0. 888
889 27 280 CONTINUE 889
890 28 C 890
891 29 NSl = 1 891
892 30 NS2 = NOFVES(1) 892
893 k)| DO 110 INS « 1 , NVEES 893
894 2 C 894
895 33 C --- FETCH HYDRO QUANTITIES 895
896 ¥ ¢ 896
897 35 DO 120 IS = NS1 , NS2 897
898 36 KS = IS - NS1 + 1 898
899 37 ¢ 899
900 38 RRR{ KS) = RR(IS) 900
901 39 UUR(KS) = UR(IS) 901
902 40 VWR(KS) = VR(IS) 902
903 41 WWR(KS j = WR(IS) 903
904 42 PPR(KS) = PR(IS) 904
905 43 AR(KS) = AR(IS) 905
906 44 EER(KS) = ER(1S) 9056
907 45 GGR(KS)} = GR{ IS) 907
908 6 C 908
909 47 RRL(KS) = RL{ IS) 909
910 48 UUL(KS) = uL(IS) 910
911 49 WL KS) = VL(IS) 911
912 50 WHL(KS) = WLE IS) 912
913 51 PPL{ KS } =PL{ IS) 913
914 52 AAL(KS) = AL{ IS) 914
915 53 EEL(KS) = EL{ IS) 915
916 54 GGL{ KS) = &L{ IS) 916
917 5 C 917
918 56 120 CONTINUE 918
919 57 C 919
920 58 D0 130 KS = 1 , NOFVES{ INS) 920
921 59 € 921
922 60 C --- THIS SECTION OF CODE SOLVES FOR "PSTAR™ AND "USTAR™ IN 922
923 61 C THE RIEMANN PROBLEM USING NEWTON'S METHOD. 923
924 62 ¢ 924
925 63 WLEFT(XS) = SQRT(GGL(KS)} * PPL(KS) * RRL{ KS }) 925
926 64 WREGT(KS) = SQRT({ GGR{ KS) * PPR(KS) * RRR(kS }) 926
927 65 WLESQ(KS) = WLEFT(KS) * WLEFT(KS) 927
928 66 WRISQ(XS) = WRIGT(KS) * WRIGT({ KS) 928
929 67 C 929
930 68 PMIN(KS) = AMINI(PPL{ KS) , PPR(KS)) 930
931 69 PSML(KS) = HRSM * PMIN(KS) 931
932 n c 932
933 71 C --- FORM THE STARTING GUESS FOR THE SOLUTION -cemeccccmccccmaca-n 933
934 72 € 934
935 73 PSTAR(KS) = (WLEFT({ KS) * PPR(KS) + 935
936 74 . WRIGT{ KS) * PPL(KS) - 936

page 13

Thy Jul

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
1
972
973
974
975
976

1 14:17:00 1993 threed. f

75

123
124

135
136

139
140
141
142
143
144
145
146
147
148

laXunXe] (e

c150 " CONTINUE

152 CONTINUE
c

e XeTe) (]

170 "CONTINUE
c

172 CONTINUE
c

(m) VIO (]

.

.

SUBROUTINE HYDRFL

WLEFT(KS) * WRIGT(KS) *
(WUR(KS) - UL kS)))/
{ WLEFT{ KS) + WRIGT(KS })
PSTAR(KS) = AMAX1(PSTAR(KS) , PSML(kS))

130 CONTINUE

--- BEGIN THE NEWTOM ITERATION

160
140

--~ FORM FINAL SOLUTIONS -

180 CONTINUE

--- BEGIN PROCEDURE TO OBTAIN FLUXES FROM REIMANN FORMALISM --

00 140 1 = 1, IHRN

DO 150 KS = 1 , NOFVES{ INS)
CFFL = (GGL{ KS) + 1.) / { 2. * GGL{ KS))
WLEFS{ KS) = (1. « CFFL * (PSTAR(KS) /

PPL{ KS) - 1.)) * WLESQ(XS)

WLEFT(KS) ~ SQRT(WLEFS{ KS))

ZLEFT(KS) = 2. * WLETT! KS) * WLEFS(KS) /
(WLESQ(KS) + WLEFS{ KS))

USTL(KS '} = UUL(kS) -

D0 152 KS = 1 , NOFVES{ INS)
CFFR = (GGR(KS) + 1.) / (2. * GGR{ kS))
WRIFS(KS } = (1. + CFFR * { PSTAR(XS) /

PPR(XS) - 1.)) * WRISQ{ kS)

WRIGT(KS) = SQRT(WRIFS{ KS))

IRIGT(KS) = 2. * WRIGT(KS) * WRIFS(KS) /
{ WRISQ(KS) + WRIFS{ KS))

USTR(KS) = UUR(kS) +

00 160 KS =« 1 , NOFVES(INS)
DPST(KS) = ZLEFT(KS) * ZRIGT(KS) *
(USTR{ KS) - USTL{ XS) } /
(ZLEFT(KS) + ZRIGT(kS))
PSTAR(KS) = PSTAR(XS) - DPST(S)
PSTAR(KS) = AMAXI{ PSTAR{ KS) , PSML{ XS))
CONTINUE

CONTINUE

(PSTAR(KS) - PPL{ KS)) / WLEFT(KS)

{ PSTAR(KS) - PPR(KS)) / WRIGT(KS)

DO 170 XS = 1 , NOFVES(INS)
CFFL = (GGL(KS) + 1.) / (2. * GGL{ KS))
HLEFT{ KS) = SQRT(WLESQ(KS) * (1. +

DO 172 KS = 1 , NOFVES(INS)
CFFR = (GGR(KS) + 1,) / (2. * GGR(kS))
WRIGT(KS } = SQRT(WRISQ{ KS) * (1. +

DO 180 KS = 1 , NOFVES{ INS)
USTAR(KS) = { PPL{ KS) - PPR{ KS } »
WLEFT{ KS)} * UUL(KS) +
WRIGT{ KS } * WUR(KS)) /
{ WLEFT({ XS } + WRIGT(kS))

DO 190 KS = 1 , NOFVES(INS)

IF(USTAR{ KS) . LE , 0.0) THEN

RO{ KS) = RRR{ KS)

PO(XS } = PPR{ KS }

UO{ KS) = UUR(KS)

CO({ KS) = SQRT(HRGG * PPR{ KS) / RRR{ KS })
WO{ KS) = WRIGT(KS)

page 14

CFFL * (PSTAR(KS) / PPL{ KS) - 1.)))

CFFR * (PSTAR(KS) / PPR(KS) -~ 1.)))

page

Thu Jul

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1022
10:2
1027
1023
102¢
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

1 14:17:00 1993 threed.f SUBROUTINE HYDRFL
149 GO(KS) = GGR(KS)

150 ISN(KS) = 1

151 C

152 ENRGYI(KS) = EER(KS)

153 ANRGYI(KS) = AAR({ XS)

154 VGDNV(KS) = WWR(K5)

155 WGDNV{ KS) = WHR(K5)

156 C

157 ELSE

158 ¢

159 RO(KS) = RRL(K5)

160 PO(KS) = PPL{ KS)

161 00(KS) = UuL(XS)

162 €O(XS) = SQRT(HRGG * PPL{ KS) / RRL{ KS))
163 WO{ KS } = WLEFT{ KS)

164 GO(KS) = GGL(KS)

165 ISN(KS) = ~ 1

166 ¢

167 ENRGYI(KS) = EEL(KS)

168 ANRGYI(KS) = AAL{ KS)

169 VGDRV(KS) = WL{ KS)

170 WGDNV(KS) = WWL{ KS)

mn END IF

172 190 CONTINUE

17 ¢

178 DO 200 XS = 1 , NOFVES(INS)

175 DELP(KS) = PSTAR(KS) - PO(KS)

176 WSOP(KS) = ISN(KS) * UO{ KS) + WO{ KS } / RO({ KS)
177 WSOM(KS) = ISN(KS) * UO{ KS) + CO{ K5)
178 200 CONTINUE

179 ¢

180 00 210 KS = 1 , NOFVES(INS)

181 IF{ DELP(KS') . GT . 0.) THEN

182 NSOD(KS) = WSOP(KS)

183 ELSE

184 NSOG(KS) = WSOM(KS)

185 END IF

185 210 CONTINUE

187 ¢

133 . DO 220 KS = 1 , NOFVES(INS)

1

1gg C - USE OUTER STATE SOLUTION

1

192 PGORV(KS) = PO{ KS)

193 UGDNV(KS) = UO(KS)

194 CGONV(KS) = CO(KS)

195 RGDNV(KS) = RO{ KS)

106 220 CONTINUE

197 ¢

198 C - COMPUTE STARRED VALUES -

199

200 D0 270 kS « 1, NOFVES(INS)

201 RSTAR(KS) = i. / (1. / RO(K5 } - DELP(XS) /
202 (WOUKS) ~WO(KS)))
203 CSTAR(KS) = SQRT{ GO{ KS) * PSTAR(KS) / RSTAR(KS))
204 WSOM(KS) = ISN{ KS } * USTAR(KS) + CSTAR(KS)
205 230 CONTINUE

206 ¢

207 00 240 KS = 1 , NOFVES(INS)

208 IF(DELP(KS') . GT . 0.) THEM

209 SPIN(KS) = WSOP(K5)

2i0 ELSE

21 SPIN(KS) = HWSOM({ KS)

212 END IF

213 240 CONTINUE

218 C

215 DO 250 XS = 1 , NOFVES(INS)

216

217 TF(WSOO(KS) . GE . 0.) THEN

218 IF(SPIN(KS) . GE . 0.) THEN

219 ¢

220 C --- USE THE STARRED STATE RESULTS ~----s S
221 C

222 RGONV(KS) = RSTAR(KS)

page 15

page

15

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

1029
1031

1070
1071
1072
1073
1074
1075
1076
1677
1078
1079
1080
1081
1082
1083
1084

Thu Jul

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

223
224
225
226
227
228
229
230
231
22
233
234
235
236
237
238
239
240
241
242
243
244
245
286
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
N
212
273
274
275
276
n
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

C
C --- EVALUATE THE INSIDE RAREFACTION WAVE

¢

C

1 14:17:00 1993 threed.

.

SUBROUTINE HYDRFL

UGDNV(XS) = USTAR(KS)

CGDNV(KS) = CSTAR{ KS)

PGONV(KS) = PSTAR{ KS)
ELSE

CGDNV(KS) = (CSTAR{ KS } * 2, -
ISNC KS) * USTAR(XS) = { GO(KS)))
! (6O K

- 1.
S)+1.)
UGDNV(KS)} = - ISN{ KS) * CGDNV(kS)
RGONV(KS) = (CGONV{ KS) / CO{ KS)) **
{2,/ (GO(KS) -1.)) *~RO(KS)
PGONV(KS) = CGONV(KS) * CGDNV(kS) * RGDggE ﬁg ; /

END IF

END IF
CONTINUE

00 260 KS = 1 , NOFVES{ INS)
IS« KS+ NS1 -1

ICL=JS(7.,1S)
ICR=JS(8, IS)

CTT = SQRT(GO{ KS) * PGDNV(KS) / RGONV(KS)})
XSS = XS(5, IS)
XYZ = 1. / XSS

IATRB = JS(9 , 1S)
iF(IATRB . EQ . O) THEN

XXN = (XCC 1, ICR)-XC(1,ICL)) "X
YN = (XC02, ICR) -XC(2, ICL)) = XV¥Z
IIN= (XC{ 3, ICR) -Xc(3, ICL)) *xv2

VEL =
(UGDNV(KS) * XN(IS) +
VGONV(KS) * XP(IS) +
WGONV(KS) * XT(IS}) * XXN +
(UGDNV(KS) * YN(IS) +
VGONV(KS) * YP(IS) »
WGDNV(KS) * YT(IS)) * YYN +
(UGDNV(KS) * ZN(IS) »
VGONV(KS) * 2P(IS) +
WGDNV(KS) * ZT(IS)) * ZIN
DTU = XSS / (CTT + ABS(VEL))

DIT = AMINX(DTU , OTT)
ELSE
XXM ~ (XYZMOL(1, IS) - xC(1, ICL)) * xvZ

YYN = (XYZMOL(2 , IS) - xC(2, ICL)) * xvZ
ZIN « (XYZMDL(3 , IS) - xC(3, ICL)) * xvZ

VEL -
(UGDNV(KS) * XN(IS) +
VGDNV(KS) * XP(IS) +
WGDNV(KS) * XT(IS)) * XXN +
{ UGDNV(KS) * YN(IS) +
VGDNV(KS) * YP(IS) +
WGDNV(KS) * YT(IS)) * YYN +
{ UGDNV(KS) * ZN({ IS) +
VGDNV(KS) * ZP(IS) +
WGONV(KS) * 2T(IS)) * ZIN
DTU = XSS / (CIT + ABS(VEL))

DTT = AMINI(OTU , DTT)
END IF

260 CONTINUE

page 16

page

1099
1100
1101
1102
1103
1104
1108
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

Thu Jul

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
117
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

1 14:17:00 1993 threed. f

297
298
299
300
Jol
302
o3
304
305
306
307
308
309
310
k391
2
K) &)
34
315
316
i
318
319
320
321
322
323
324
325
326
32
328
128
330
a1
R
33
334
335
136
37
338
339
340
k1))
a2
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

¢

YO (e XeNe]

30

[ar) © e XuX el

(]

oM

Iy IO

OO

DO 270 XS = 1 , NOFVES({ INS)
IS = KS + NS1 - 1

... FLUX FOR DENSITY seeersen
RO(KS) = RGDRV(KS) * UGDNV{
.o« FLUX FOR MOMENTUM DENSITY

SUBROUTINE HYORFL

---------------- ssssessenssvennssy

KS)

---------------- tesesesesssrvonnse

UO{ KS) = PGDNV(KS) * XN(IS) +

) ROC KS) * (UGDNV(KS) * XN(IS) +
. VGONV(KS) * XP(IS) +
: WGDNV(KS) * XT(IS))
CO{ KS) = PGDNV(KS) * YN(IS) +
) RO(KS) * { UGDNV{ KS) * YN(IS) +
: VGDNV(KS) * YP(IS) +
. WGDNV(KS) * YT(IS))
WO(KS) = PGDNV(KS) * ZN(IS) +
) RO(KS) * (UGDNV(kS) * ZN(IS) +
. VGDNV(KS) *» 2P(IS) +
. WGDNV(KS) * ZT(IS))
wen FLUX FOR ENERGY DENSITY ..oevvererernnernssensrsnssonnnsannnnee
PO(KS) = UGDNV(KS) * (ENRGYI(KS) +
. .5 * RGDNV(KS) * (UGDNV(KS) * UGDNV(KS) +
. VGONV(KS) * VGDNV(KS) +
WGDRV(KS) * WGDNV(XS)))

oo FLUX FOR COMBUSTION INTERFACE TRACKING ..vvvvevevevacees ceseare

AD(KS) = UGDNV(KS) * RGDNV(

270 COKTINUE

DO 290 IS = NS1 , NS2
KS = IS - NS1 + 1

ICL=J5(7,1S)
ICR=Js(8,IS)

IATRB = JS{ 9 , IS)
IF(IATRB . EQ . 0) THEN

<. FLUX FOR DENSITYevevennnn
DLENG = XS(4 , IS) * RO(kS)

KS) * ANRGYI(XS)

s aseevcevsrcsssavcnans sescocne .

HYOFLX(ICL , 1) = HYDFLX(ICL , 1) + DLENG
HYDFLX(ICR , 1) = HYDFLX{ ICR , 1) - OLENG

«es FLUX FOR MOMENTUM DENSITY (U DIRECTION) .iecececerencrconennen

DLENG = XS(4 , IS) * UO[KS)

HYDFLX(ICL , 2) = HYDFLX(ICL , 2) + DLENG
HYOFLX(ICR , 2) = HYDFLX{ ICR , 2) - DLENG

oo FLUX FOR MOMENTUM DENSITY (V DIRECTION) cereveeae

DLENG = XS(4 , IS) * CO(KS)

HYDFLX(ICL , 3) = HYDFLX(ICL , 3) + OLENG
HYDFLX(ICR , 3) = HYDFLX(ICR , 3) - DLENG

... FLUX FOR MOMENTUM DENSITY (W DIRECTION) ceseravaceene

DLENG = XS(4 , IS) * WO(kS)

HYDFLX(ICL , 4) = HYDFLX({ ICL , 4) + DLENG
4

HYDFLX(ICR , 4) = HYDFLX(ICR ,

+«. FLUX FOR ENERGY DENSITY
DLENG =~ XS(4, IS) * PO(KS)

) - DLENG

HYDFLX(ICL , 5)} = HYDFLX{ ICL , 5) + DLENG
HYDFLX{ ICR , 5) =~ HYDFLX(ICR , 5) - DLENG

page

17

page

17

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

———ﬁ*

Thu Jul 1 14:17:00 1993 threed. f SUBROUTINE HYDRFL page 18
1233 31 ¢ 1233
1238 372 C ... FLUX FOR COMBUSTION INTERFACE TRACKING.....ouseseorenseomnnsn 1233
1233 373 ¢ 1235
1236 374 OLENG = XS(4 , IS) * AO(KS) 1236
1237 375 HYDFLX(ICL , 6) = HYDFLX(ICL , 6) + DLENG 1237

b 1238 376 HYDFLX(ICR , 6) = HYOFLX{ ICR , 6) - DLENG 1238
1228 37 1239
1240 378 ELSE 1240
1241 39 ¢ 1241
1242 380 C ... FLUX FOR DENSITY .eueuenerenenenrnrneenercnracncnonsencesnsnannns 1242
1243 381 C 1243
1248 382 DLENG = XS{ 4 , IS) * RO(KS) 1284
1245 383 HYDFLX(ICL , 1) = HYDFLX(ICL , 1) + DLENG 1245

» 1246 84 C 1246
1247 385 C ... FLUX FOR MOMENTUM DENSITY { U DIRECTION) .eeveereeeececncnnnnns 1247
148 386 C 1248
1249 387 DLENG = XS{ 4 , IS) * UO(KS) 1249
1250 388 HYOFLX(ICL , 2) = HYDFLX(ICL , 2) + OLENG 1250
1251 389 ¢ - 1251
1252 390 C ... FLUX FOR MOMENTUM DENSITY (V DIRECTION } vuevveveeenvecncencens 1252
1253 301 ¢ 1253
125 392 DLENG = XS{ 4 , IS) * CO(KS) . 1254
1255 393 HYDFLX(ICL , 3) = HYDFLX(ICL , 3) + OLENG 1255
1256 394 C 1256
1267 395 C ... FLUX FOR MOMENTUM DENSITY { W DIRECTION) vevuveveeneeronconcans 1257
128 39 C 1258
1259 397 DLENG = XS(4 , IS) * HO(KS) 1259
1260 398 HYOFLX(ICL , 4) = HYDFLX(ICL , 4) + OLENG 1260
1261 399 C 1261
1262 400 C ... FLUX FOR ENERGY DENSITY eevreeeerrecarnnns ceenens 1262
1263 401 C 1263
1264 402 DLENG = XS{ 4 , IS) * PO(KS) 1264
1265 403 RYOFLX(ICL , 5) = HYDFLX(ICL , 5) + OLENG 1265
1266 404 C 1266
1267 405 C ... FLUX FOR COMBUSTION INTERFACE TRACKING.....eveveseensneansnenns 1267
1268 406 C 1268
1269 407 OLENG = XS{ 4 , IS) * AG(KS) 1269
1270 408 HYDFLX(ICL , 6) = HYDFLX(ICL , 6) + DLENG 1270
21 49 ¢ 1271
122 410 END IF 1212
1273 411 290 CONTINUE 1213
1274 412 C 1274
1215 413 NS1 = NS2 + 1 1275
1276 414 NS2 = NS2 + NOFVES{ INS + 1) 1276
1277 415 110 CONTINUE 121
1278 416 C 1278
12719 417 RETURN 1279
1280 418 END 1280

1281 419 ¢ 1281

Thu Juil

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
134
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355

1 14:17:00 1993
SUBROUTINE RYDRFL

CIIIICICCIOIO

C

g --- BEGIN LOOP OVER ALL EDGES IN THE DOMAIN
NSt = 1
NS2 = NOFVES(1)
00 110 INS = i , NVEES
~--= FETCH HYDRO QUANTITIES ----

00 120 IS = NSI , NS2

(o]

OITITIO ()

threed. f

SUBROUT [N

E RYORFL

RYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTVEGRATES

FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES

VARIABLES .

PPR(KS

D0 130KS =1,

--- THIS SECTION OF CODE SOLVES FOR "PSTAR® AND "USTAR" IN
THE RIEMANN PROBLEM USING REWTON'S METHOD.

include 'dmsh00.h'
include *dhydm0.h'
include ‘dphsm0.h*
include ‘dmtrio.h’

REAL DELP(128),WSOP(128),WSOM(128),4WS00(128),

RSTAR(128),CSTAR(128),PMAX(128),PMIN(128)

KS = IS5 - NS +1

ICL=JdS(7,15)
18C = JS(9 ., IS)

RRL(KS) = HYDV(ICL
UUL(KS) = HYOV(ICL
HYDV(ICL
HYOV(ICL
WWL(KS) = HYOV(ICL
HYDV(ICL
HYOV(ICL
WHL(KS) = HYOV(ICL
HYOV(ICL
HYOV(ICL
PPL(KS) = HYDV(ICL
AAL(KS) = HYOV(ICL
EEL(KS) = HYDV(ICL
GGL(KS) = HYOV(ICL

RRR(KS) « RRL(KS)

REAL RRIGHT(128),URIGHT(128),VRIGHT(128},PRIGHT(128)
REAL RLEFTT(128),ULEFTT(128),VLEFTT(128),PLEFTT(128)
REAL ENRGYI(128),ANRGYI{128)

e % ® % = a4 w ®w e w e = ® @
SO U e RN B LN D LN
R L A D D N S

IF(IBC . EQ . O) THEN

UUR(KS) = UUL(kXS)

ELSE

UUR{ KS) = - UUL(KS

END 1F

WR(XS) = WL({ KS)

WWR(KS) = WHL(KS)
) = PPL(KS)

AAR(KS) = AAL(KS)

EER(KS) = EEL(KS)

GGR(KS) = GGL{ KS)

120 CONTINUE

WLEFT(KS
WRIGT(K3
HLESQ(KS
WRISQ(X5

)

NOFVES(INS)

page

L2 R BE B 2 ER 2R 2R 4
D It et
-S4 VUV OV2ER
s, —, g —— o~ S~ S~ S~ 2~
bl o bolodoleoderdol
wurnnnwmrunnnnnnne
Nt sl et e s St s ¥ "o

)} = SQRT(GGL{ KS) * PPL(KS)
) = SOQRT{ GGR(KS) * PPR{ KS) * RRR{ KS))
) = WLEFT(KS) * WLEFT(K5)
) = WRIGT(KS) * WRIGT(KS)

19

+ 4+

+ +

+ +

* RRL(KS))

19

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1308
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321

1323
1324
1328
1326
1327
1328
1329
1330
1331
1332
13313
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355

Fl.llIllllIIlllllllIlIlllIlIIIlllIIIIllllllIIIIIIII-IIIIIIIIIIT“’

Thu Jul

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

1 14:17:00 1993 threed. f

75
76
77
78
79
80
81
82
83
84
85
86
87

SUBROUTINE RYDRFL

C
PMIN(KS) = AMINL{ PPL(KS) , PPR{ KS))
PSML(KS) = HRSM * PMIN(KS)

€

C --- FORM THE STARTING GUESS FOR THE SOLUTION --

C

PSTAR(KS) = (WLEFT{ XS) * PPR{ KS) +
WRIGT(KS) * PPL(KS) -
WLEFT(KS) * HRKGT(KS) *
(WR(KS) -uuL{KkS)))/
(WLEFT(KS) + WRIGT({ KS))
PSTAR(KS) = AMAX1{ PSTAR{ KS) , PSML{ kS))
130 CONTINUE

D0 140 I = 1 , IHRN
--- BEGIN THE NEWTON ITERATION

D0 150 KS = 1 , NOFVES(INS)
CFFL = (GGL(KS) + 1.) / { 2. * GGL(KS))
WLEFS(KS) = (1. + CFFL * { PSTAR(KS) /
PPL{ KS) - 1.)) * WLESQ(KS)
WLEFT(KS) = SQRT(WLEFS(KS) }
ILEFT{ KS) = 2. * WLEFT{ KS) * WLEFS(KS) /
. (WLESQ(KS) + WLEFS(KS))
USTL(KS) = UUL(KS) -
(PSTAR(KS) - PPL{ KS)) / WLEFT(KS)

IO o

150 CONTINUE
c

DO 152 KS = 1 , NOFVES{ INS)
CFFR = (GGR(KS) + 1.) / (2. * GGR(XS))
WRIFS(KS) = (1. + CFFR * (PSTAR(kS) /
. PPR{ KS ') - 1.)) * WRISQ(KS)
WRIGT{ KS) = SQRT(WRIFS(KS))
ZRIGT{ KS) = 2. * WRIGT(KS) * WRIFS(KS) /
. { WRISQ{ KS) + WRIFS(KS))
USTR{ XS) = UUR(XS) +
. (PSTAR(KS) - PPR{ XS)) / WRIGT(XS)
c152 CONTINUE

DO 160 KS « 1 , NOFVES(INS)
OPST(KS) = ZLEFT(KS) * ZRIGT(KS) *
. (USTR(KS) - USTL(KS }) /
. (ZLEFT(KS) + ZRIGT(XS))
PSTAR(KS) = PSTAR(KS) - DPST(KS)
PSTAR(KS) = AMAX1(PSTAR(KS) , PSML(KS))
160 CONTINUE

140 CONTINUE
--~ FORM FINAL SOLUTIONS -

DO 170 KS = 1 , NOFVES{ INS)
CFFL = (GGL{ KS) + 1. (2. GGL(KS))
WLEFT(XS) = SQRT(WLESQ(XS) * (1
. CFFL * (PSTAR(KS) / PPL(KS)-1.)))
C170 CONTINUE

DO 172 KS = 1 , NOFVES{ INS)
CFFR = (GGR{ KS) + 1.) /7 (2. * GGR(KS))
HRIGT(KS) = SQRT(WRISQ(KS) * (1
CFFR * (PSTAR(KS) / PPR(KS)-1.)1))

(e X aXwl (]

172 CONTINUE
C
DO 180 KS = 1 , NOFVES(INS)

USTAR(KS) = (PPL(KS) - PPR{ KS) +
WLEFT(KS) * UUL(KS)} +
WRIGT(KS) * UUR(KS)) /
(WLEFT(KS) + WRIGT(KS))

180 CONTINUE
C 190 Ks -1 , NOFVES(INS)
C --- BEGIN PROCEDUR. TO OBTAIN FLUXES FKGM REIMANN FORMALISM --
page 20

page

Thu Jul

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
144}
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477

1 14:17:00 1993 threed. f

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
11

SUBROUTINE RYDRFL

IF(USTAR(KS) . LtE . 0.0) THEN

RO(KS)} = RRR(KS)

PO(KS) = PPR(KS)

UO(KS) = UUR(KS)

CO(KS) = SQRT(HRGG * PPR(KS) / RRR{ KS })
WO{ KS } = WRIGT{ KS)

G0(KS) = GGR({ KS)

ISN(KS) = 1

ENRGYI{ KS) = EER(KS)
ANRGYI{ KS) = AAR(KS)
VGONV(KS) = VWR(KS)
WGDNV(KS) = WWR(K5)

ELSE

RO(KS) = RRL{ KS)

PO(KS } = PPL(KS)

UO(KS) = 4UL(KS)

CO{ KS) = SQRT(HRGG * PPL(KS) / RRL{ XS))
WO(KS) = WLEFT({ KS)

GO(KS) = GGL{ KS)

ISR XS) = -1

ENRGYI(XS) = EEL(KS)
ANRGYT(KS) = AAL(KS)
VGDNV(KS) = VWL(KS)
WGDRV(KS) = WNL{ KS)
END IF
C190 CONTINUE

DO 200 KS = 1 , NOFVES(INS)
DELP(KS) = PSTAR(KS) - PO(K
WSOP{ KS) = ISN(KS) * U0{ KS
WSOM{ KS) = ISN{ KS) * uo(kS
CZDO CONTINUE

DO 210 XS = 1 , NOFVES(INS)

S
) 1 HO{ KS) / RO(XS)
) + CO(KS)

IF{ DELP{ KS) . GT . 0.) THEN
WS0O(KS) = WSOP{ KS)
ELSE
WS00(KS) = wSOM(KS)
END IF
szo CONTINUE
c 0O 220 KS = 1 , NOFVES(INS)
E -~- USE QUTER STATE SOLUTION --- -
PGDNV(KS) = PO(KS)
UGONV(KS) = U0(KS)
CGONV(KS) = CO(XS)
RGDNV(KS) = RO(KS)

CZZO CONTINUE
C <-- COMPUTE STARRED VALUES ---
C

DO 230 KS = 1 , NOFVES(INS)
RSTAR(KS) = 1. / (1. / RO(KS) - DELP(KS) /
(WO(KS) * WO(KS)))
CSTAR(XS) = SQRT(GO(KS) * PSTAR(kS) / RSTAR(KS))
WSOM(KS) = ISN(KS) * USTAR(KS) + CSTAR(KS)
230 CONTINUE

¢
DO 280 XS = 1 , NOFVES(INS)
IF(DELP{ KS) . GT . 0.) THEN
SPIN(KS) =~ WSOP(KS)
ELSE
SPIN(KS } ~ WSOM(KS)
END 1F
240 CONTINUE
C

page 21

page

Thu Jut

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545

Thu Jul

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1857
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574

1 14:17:00 1993 threed. f SUBROUTINE RYDRFL
223 DO 250 KS = 1 , NOFVES{ INS)
228 ¢
225 IF(WSOO(KS)} . GE . 0.) THEN
%g? IF(SPIN(KS) . GE . 0.) THEN
C
gga C ~-- USE THE STARRED STATE RESULTS --cccmmmmmmmmccmcccccaccaae
9 C
230 RGONV(KS)} = RSTAR(KS)
231 UGDNV{ KS) = USTAR{ KS)
232 CGONV(KS) = CSTAR(kS)
233 PGONV(KS) = PSTAR({ XS)
234 ELSE
235 C
ggg C ~-- EVALUATE THE INSIDE RAREFACTION WAVE ~ccccccemerccocvaccen
C
238 CGONV(KS)} = (CSTAR(KS) * 2. -
239 ISN(KS) * USTAR(KS) * (GO(KS)} - 1.))
240 /I (GO KS) +1.)
24 UGDNV(KS) = - ISN(KS) * CGONV(XS)
242 RGONV(KS) = (CGDNV(KS } / CO(KS)}) **
243 (2. /¢(GO(KS)-1.)) *ROCKS)
244 PGONV(KS)} = CGDNV(KS) * CGONV(KS)} * RGDNV(KS) /
245 GO{ kS)
26 ¢
47 END IF
248 €
249 END IF
250 250 CONTINUE
251 €
252 DO 260 KS = 1 , NOFVES(INS)
253 IS = KS + NSI - 1
254 RR(IS) = RGONV(KS)
255 PR(IS) = PGDNV(KS)
256 260 CONTINUE
87 C
258 NSI = NS2 + 1
259 NS2 = NS2 + NOFVES(INS + 1)
260 110 CONTINUE
261 C
262 RETURN
263 END
264 C
1 14:17:00 1993 threed.f SUBROUTINE KYORFL
1 SUBROUTINE KYDRFL
2 C
3 C- R S -1
4 C i
5 ¢ KYDRFL IS A 2 DIMENSIONAL RIEMANN SOLVER THAT INTEGRATES |
6 C FLUXES ACROSS NORMAL INTERFACES TO UPDATE VERTICES I
7 € VARIABLES . I
8 C I
9 (emeneccccmemcrmonrascm e e e e e s e ccmesccamescaenme s manmo e I
10 ¢
11 include 'dmsh00.h'
12 inciude 'dhydm0.h'
13 include ‘dphsm0.h'
14 include ‘dmtri0.h'
15 €
16 REAL DELP(128),WSOP(128),WS0M(128),WS00(128),
17 R RSTAR(128),CSTAR(128),PMAX{128),PMIN{128)
i8 REAL ARIGHT(128),URIGHT{128),VRIGHT(128},PRIGKT(128)
19 REAL RLEFTT(128),ULEFTT{128),VLEFTT(128),PLEFTT(128)
gO INTEGER NOFVEP(128)
1 C
22 C --- FETCH HYDRO QUANTITIES cremmocccrcmmmam e accccvcccmncccm s
23 ¢
24 DO 120 KS =~ 1 , NPRTCL
25 1S = IJKPRT{ KS)
26 ICL = JS{ 7., 1S)
27 IBC = J5(9, IS)
28 ¢
29 RRL(KS) = HYOV(ICL , 1)

page 22

page

22

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1518
1516
1517
1618
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1837
1538
1539
1540
1541

1543
1544
1545

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1856
1557
1558
1559
1560
1861
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574

Thu Jul 1 14:17:00 1993 threed. f SUBROUTINE KYDRFL page 23
1575 30 UUL{ KS) = HYDV(ICL , 2) * XN(IS) + 1575
1576 3 . HYOV(ICL , 3) " YN(IS) + 1576
1577 32 . HYOV(ICL , 4) * IN(IS) 1577
1578 33 WL KS) = HYOV{ ICL , 2) ~ XP(IS) + 1578
1579 34 . HYDV(ICL , 3) * YP(IS) + 1579
1580 35 . HYDV(ICL , 4) * ZP{ IS) 1580 ®
1581 36 WHL{ KS) = HYDV(ICL , 2 } * XT(IS) + 1581
1582 37 . HYOV(ICL , 3) = YT{ IS) + 1582
1583 38 . HYDV(ICL . 4) * 2T{ IS) 1583
1584 39 PPL{ KS) = HYDV(ICL , 5§) 1584
| 1585 30 AAL(KS) = HYDV(ICL , 6) 1585
1586 31 EEL(KS)} = HYDV(ICL . 8) 1588
1587 42 GGL{ KS) = HYDV(ICL , 7) 1587
1588 43 C 1588 ®
1589 44 RRR(KS) = RRL(KS) 1589
1590 11 IF(I8C . EQ . C) THEN 1590
1591 46 UUR(KS) = uuL(KS) 1591
1592 & " ELSE 1592
1593 48 UUR(KS) = - UUL{ KS) 1593
1594 49 END IF 1594
1595 50 WR{ KS) = WL(XS) 1595
1596 51 WWR(KS) = WHL(KS) : 1596 @
1597 52 PPR(KS) = PPL(XS) 1597
1598 53 AAR(KS) = AAL(KS) 1598
1599 54 EER(KS) = EEL{ XS) 1599
1600 55 GGR(KS) = GGL{ XS) 1600
1601 5 C 1601
1602 57 120 CONTINUE 1602
1603 58 C 1603
1604 59 DO 130 KS = 1 , NPRTCL 1604 ®
1605 60 C 1605
1606 61 C --- THIS SECTION OF CODE SOLVES FOR "PSTAR" AND "USTAR" IN 1606
1607 62 ¢ THE RIEMANN PROBLEM USING NEWTON'S METHOD. 1607
1608 63 C 1608
1609 64 WLEFT(KS) = SQRT(GGL{ KS) * PPL{ KS) * RRL(KS)) 1609
1610 65 WRIGT(KS) = SQRT{ GGR{ XS) * PPR{ KS) * RRR(KS)) 1610
1611 66 WLESQ{ KS) = WLEFT{ KS) * WLEFT(KS) 1611
1612 67 WRISQ(KS) = WRIGT(KS) * WRIGT{ XS) 1612 ®
1613 68 ¢ 1613
1614 69 PMIN(KS) = AMIN1{ PPL(KS) , PPR(KS)) 1614
1615 70 PSML(KS) = HRSM * PMIN(KS) 1615
1616 ¢ 1616
1617 72 C --- FORM THE STARTING GUESS FOR THE SOLUTIOM 1617
1618 73 C » 1618
1619 74 PSTAR(KS) = { WLEFT(KS) * PPR(KS) + 1619
1620 75) WRIGT(KS) * PPL{ KS) - 1620 ®
1621 76 . WLEFT(KS) = WRIGT({ kS) * 1621
1622 77 . (UUR(KS) - WUL{ XS))) / 1622
1623 78 . { WLEFT{ KS)} + WRIGT(XS)) 1623
1624 79 PSTAR{ KS) = AMAX1{ PSTAR{ KS) , PSML(KS)) 1624
1625 80 130 CONTINUE 1625
1626 81 ¢ 1626
1627 82 D0 140 I = 1, IHRN 1627
1628 83 ¢ 1628 ®
1629 84 € ~-v BEGIN THE NEWTON ITERATION v-vermeewecesessamcemcomsasnnns 1629
1630 85 ¢ 1630
1631 86 DO 150 KS = 1 , NPRTCL 1631
1632 87 CFFL = (GGBL{ XS) + 1.) / (2. * GGL{ KS)) 1632
1633 88 WLEFS{ KS) = (1. + CFFL = (PSTAR(KS) / 1633
1634 89 . PPLE KS) - 1.)) * WLESQ(KS) 1634
1635 90 WLEFT{ KS) = SQRT(WLEFS{ XS)) 1635 ®
1636 91 ZLEFTU KS) = 2. = WLEFT(KS) * WLEFS(KS) / 1636
1637 92 . { WLESQ{ KS)} + WLEFS{ kS)) 1637
1638 93 USTL{ KS '} = UUL(KS) - 1638
1639 94 . (PSTAR(KS) - PPL{ KS)) / WLEFT(KS) 1639
1640 95 150 CONTINUE 1640
1641 9% ¢ 1641
1642 97 DO 152 kS = 1 , NPRTCL 1642
1643 98 CFFR « { GGR{ KS } + 1.) / (2. * GGR(kS }) 1643 ®
1644 99 WRIFS{ KS) = (1. + CFFR * { PSTAR(KS) / 1644
1645 100 . PPR{ KS) - 1.))} * WRISQ(KS) 1645
1646 101 WRIGT(K5) = SQRT(WRIFS{ KS }) 1646
1647 102 ZRIGT(KS) = 2. * WRIGT(KS) * WRIFS{ KS) / 1647
1648 103 . { WRISQ(KS) + WRIFS(kS }) 1648
page 23
[

Thu Jul

1649
1650
1651
1652
1633
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665

1 14:17:00 1993 threed. f

104
105
106
107
108
109
110
199
112
13
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
12
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
182
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

152
C

160
140

-

I I Lo

170
c

172
¢

180

o OO (md

190
¢

200
C

"CONTINUE

"CONTINUE

"CONTINUE

" CONTINUE

SUBROUTINE KYDRFL

USTRC KS) = UUR(KS) +
(PSTAR(KS) - PPR(KS)) / WRIGT(KS)

DO 160 KS = 1 , NPRTCL
OPST(KS) = ZLEFT(KS) * ZRIGT({ XS) *
(USTR({ KS } - USTL({ KS)) /
{ ZLEFT(KS) + ZRIGT{ KS))
PSTAR(KS)} = PSTAR{ KS) - OPST(KS)
PSTAR(KS) = AMAX1(PSYAR(KS) , PSML(KS })
CONG INUE

CONTINUE
FORM FINAL SOLUTIONS -
DO 170 KS = 1 , NPRTCL

CFFL = (GGL(KS) + 1.)/ (2. * GGL(KS))

WLEFT{ KS) = SQRT(WLESQ({ KS } * (1
CFFL * (PSTAR{ KS) / PPL(KS)-1.)})

DO 172 KS = 1 , NPRTCL
CFFR = (GGR(KS) + 1.)/ (2. * GGR(KS))
WRIGT(KS) = SQRT(WRISQ(KS) *
CFFR * { PSTAR(KS) / PPR(KS)-1.)))

DO 180 KS = 1 , NPRICL
USTAR(KS) = { PPL{ KS) - PPR(KS) +
WLEFT(KS) * uuL(kS) +
WRIGT(KS) * UUR(K5 }) /
(WLEFT(KS) + WRIGT(KS))

D0 190 KS = 1 , NPRICL
BEGIN PROCEDURE TO OBTAIN FLUXES FROM REIMANN FORMALISM --
IF(USTAR(KS) . LE . 0.0) THEN

RO(KS) = RRR{ KS)

PO(XS) = PPR(KS)

JO(KS) = YUR(KS)

CO(KS) = SQRT(HRGG * PPR(KS) / RRR{ KS))
WO(XS) = WRIGT{ KS)

GO(KS) = GGR(KS)

ISR(KS) = 1

VGDNV(KS) = WR(KS)
WGDNV(KS) = WWR(KS)

ELSE

RO{ KS) = RRL{ kS)

PO(KS) = PPL(KS)

YO(XS) = UUL{ KS)

CO(KS) = SQRT(HRGG * PPL(KS) / RRL(KS))
WO{ KS) = WLEFT(KS)

GO{ KS) = GGL{ KS)

ISNCKS) = - 1

VGDNV(KS) = wwi(kS)
WGDNV(KS) = WWL(KS)
END IF
CONTINUE

DO 200 KS = 1, NPRTCL
DELP(KS) = PSTAR(KS) - PO{ KS)
WSOP(KS) = ISN{ KS) * UO{ KS) + WO({ KS) / RO(KS)
WSOM(KS) = ISN{ KS) * UO(KS) + CO(KS)

CONTINUE

DO 210 KS = 1 , NPRYCL
page 24

page

Thu Jul

1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
174
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
178t
1782
1783
1784
1785
1786
1782
1788
1789
1790
1791
1792
1793

1 14:17:00 1993 threed. f

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
228
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
285
246
247
248

IF{ DELP{ KS) . GT . 0.) THEM
WSOO(KS } = WSOP{ KS)
ELSE
WSOO(KS) = WSOM(KS)
END IF
210 CONTINUE

DO 220 XS = 1 , NPRTCL
--~ USE QUTER STATE SOLUTION ------

SUBROUTINE KYDRFL

IO 3

PGONV(KS) = PO(KS)

UGDNV(KS) = UO(KS)

CGDNV(KS) = CO(KS)

RGONV{ KS) = RO KS)
C220 CONTINUE

.....

E -=-~ COMPUTE STARRED VALUES --
DO 230 KS = 1 , NPRTCL

RSTAR(KS) = 1. / (1. / RO{ KS) - DELP(KS) /

(WO(KS) * WO(KS)))
CSTAR(KS) = SQRT{ GO(KS) * PSTAR(KS) / RSTAR(kS))

WSOM(KS) = ISN{ KS) * USTAR(KS) + CSTAR(KS)

230 CONTINUE
c

00 240 KS = 1 , NPRICL
IF{ DELP(KS) . GT . 0.) THEN
SPIN{ KS) = WSOP(KS)

ELSE
SPIN(KS) = WSOM(KS)
END IF
240 CONTINUE
€

DO 250 XS = 1 , KPRTCL

IF(WSOO(XS) . GE . 0.) THEN
c IF{ SPIN{ KS)} . GE . 0.) THEM

E --- USE THE STARRED STATE RESULTS

RGONV(KS) = RSTAR(KS

UGDNV(KS) = USTAR(KS

CGONV(KS) = CSTAR(kS

PGDRV(KS) = PSTAR(KS
c ELSE

C --- EVALUATE THE INSIDE RAREFACTION WAVE -
C
CGONV(KS) = (CSTAR(kS) * 2. -

ISN{ XS) * USTAR(kS) * (GO(
60¢

/{(
UGDNV(KS) = - ISN(KS) * CGONV(KS)
RGONV(KS) = (CGONV(kS) / CO(KS)) **

. (2.7 (GO(KS)-1.)) *RO(CKS)

PGONV(KS) = CGDNV(KS) * CGDNV(XS) * RGONV(kS) /

¢
END IF

C
END IF
C250 CONTINUE

DO 260 kS = 1 , NPRICL
RR{ KS) = RGDNV(KS)
PR(KS) = PGDRV(KS)
260 CONTINUE
¢

RETURN
END

page 25

GO(XS)

KS) - 1.
XS) + 1.

page

25

1723
1724
1725
1726
1727
1728
1728
1730
1731
1732
1733
1734
1738
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
17582
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793

Thu Jul

1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818

1 14:17:00 1993 threed. f

WOo WU & NS

(;’("’
[]
]
]

SUBROUTINE HYDRMN
SUBROUTINE HYDRMN

HYDRMN IS A 2 DIMENSIONAL RIEMANN SOLVER THAT CALCULATES
FLUXES ACROSS NORMAL INTERFACES.
1T IS CORFIGURED TO WORK IN EITHER TWO OR THREE
DIMENSIONAL SITUATIONS. THE HYDRODYNAMIC QUANTITIES
CAN BE SIDE OR VERTEX CENTERED FOR 2-D AND CELL OR
VERTEX CENTERED FOR 3-D. THE SPECIFIC USE IS BASED
ON THE CONTENTS OF "OPTHYD".

QOO NCIOOOOIOOOOOOCIOOOCOOOOOOIOOOOOOIOOOOOMIOOOOMON

THE USE OF THE HYDRO VARIABLES IS AS FOLLOWS:

B Lo T S S O e s

HYOV(IV,IH) CONTAINS VERTEX CENTERED HYDRO-
DYNAMIC QUANTITIES. IT IS USED WITH ALL CASES.

HYOE(1H,IE) CONTAINS EDGE CENTERED HYDRO-
DYNAMIC FLUX QUANTITIES WITH ORIENTATION
DETERMINED BY THE “SIDE® "VERTEX" OR "CELL "
OPTIONS . [T IS USED FOR THE CASES WHERE
"OPTHYD™ = "SIDE 2D" 2.D SIDE CENTERED

= "VERTEX2D" 2-0 VERTEX CENTERED

= "VERTEX3D" 3-D VERTEX CENTERED

HYDC(IC,IH) CONTAINS CELL CENTERED HYDRO-
DYNAMIC QUANTITIES. IT IS USED FOR THE CASE
"O0PTHYD" = "CELL 3D" 3-D CELL CENTERED

IV - VERTEX INDEX
IS - SIDE INDEX
IE - EDGE [NDEX
IC - CELL INDEX
IH - HYORO [INDEX

1 = RO DENSITY IN *wewssusaws
2 - ux x vELmITY PRABARERTNY
3 - UY Y vELmITY RHENRERRRAN
4 - UZ RANARFARRANRNRERRRNRAN
5 = PO PRESSURE [N wwswwsewes
6 = EN ENERGY IN <mwwwemwws

L L R B I S B R N R L R N A I A A A B R B B 4

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

R e 2 S T T S et S SR 2N

include 'dmsh00.h’
include 'dhydm0.h*
include ‘dphsm0.h’
inciude ‘dmtr10.h'

REAL RRN(128),URN(128),VRN(128),WAN{128),EPN(128),
ARN(128),X525(128) ,XSAR(128)

REAL HYDVR(128),HYDVU(128),HYDVV(128),HYDVW(128),
HY2UP(128)

INTEGER NDUMMY1, NOUMMY2,NOUMMY3

INTEGER IDUMMY(4),VDATA{(2),FDATA(2)

CHARALTER*31 VLABEL

CHARACTER*32 FLABEL

CHARACTER*6 CTRI, CTET

INYEGER ISURF{400000)

REAL CD1(4),CD2(4)

NDUMMY1«1
NOUMMYZ =4
NDUMMY3=0
IDUMMY(1) = 0
IDUMMY(2) - O
[DUMMY(3) = 0

page 26

Pt Bt Pt et Bt bt D Bk bk et Sk bt

page

26

1794
1795
1796
1797
1798
1799

1805

1865
1866
1867

Thu Jul

1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1830
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907

1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1923
1921
1035
1936
1937
1938
1939
1940
1941

1 14:17:00 1993 threed. f

75
76
77
78
79
80
81
82
83
84
85
86
87

145
146
147
148

¥ oY)

150
C

IDUMMY(4) = O

VOATA(1) = 1
VDATA(2) = 1

FDATA(1) = 1

FDATA(2) = 4

VLABEL=* pressure, new / m**2'
FLABEL-' tets faces,'

CTRI=* tri '

CTET=' tet '
TLIMIT=TT
TLIMIT=30.

IJKNUM = 0
IF(ICONP . EQ . 1) THEN
REWIND 10
REWIND 26
READ (26,*) IJKNUM
DO KKJ = 1 , TJKNUM
READ (26,*) RO, (RRN(IK),IK=1,NPRTCL)
WRITE (10,*) RO, (RRN(IK),IK=1,NPRTCL)
END DO
END IF
DO 120 JT = 1 , NTIME
IF(JT.GT.5) IE0S=0

DOKK=1,5
DOIV=1, N
HNUM{ IV , KK) = 0,
END DO
END DO

DO 140 ITT = 1 , NODUMP

SELECT ORDER OF INTEGRATION

SUBROUTINE HYDRMN

IF(10PORD.EQ.1) THEN
CALL FIRST

ELSEIF(IOPORD.£Q.2) THEN
CALL GRADNY

ENOIF

OTY = 1.E24
CALL HYDRFL

OTT = DIT * .4
TT « 17 + DIT
PRINT *, 07, ITT,DTT,TT, NS

NC1 =}
NC2 = NOFVEC(1)
DO 110 INC = 1, NVEEC

00 150 IC = NC1 , NC2
KC = IC - NC1 + 1
RRR(KC) = HYDV(IC
UUR(KC) = HYDV(IC
VR(KC) = HYDV(IC
WHR(KC) = HYDV(IC
PPR(KC) « HYDV(IC
AAR(« HYDV(IC

)

KC)
RRL(KC) = HYDFLX(IC
UUL(KC ; = HYDFLX{ IC

)

)

)

“« * v s 4 o

(= WO VY AR
R L W)

WL({ KC) = HYDFLX(IC
WWL(KC) = HYDFLX(IC
PPL(KC) = HYDFLX(IC
AAL(KC) = HYDFLX(IC

XS2S(%C) = XC(2, IC)
XSAR(&L } = SVOLM(IC)
CONTINUE

D0 170 KC = 1 , NOFVEC(INC)
IC = KC + NCL - 1

Ch L & L N
et Nt e e “mat? !

page 27

page

L Thu Jul

1942
1943
1944
1945
o
194
L 1948
1949
1950
1951
1952
1953
1352
195
o 1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1067
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

1 14:17:00 1993 threed. f

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
i71
172
173
174
175
176
177
178
179
180
181
182
183

170

SUBROUTINE HYDRMN

RRN(KC) = RRR(KC)
URN(KC) = RRR(KC) * UUR(KC)
VRN(KC) = RRR(KC) * WVR(KC)
HRN(KC) = RRR(KC) * WWR(KC)
) = HYOV(IC , 8) + .5 =
()
)
)

EPN(KC RRR(KC) *
UYR(KC) ~ YUR(KC) +
WR(KC) * VWR({ KC) +
WWR(KC) * WWR(KC))
" ARN(KC) = RRR(KC) * AAR(KC)

CONTFINUE

C -~- COMPUTE THE SOURCE TERM FOR AXI SYMMETRY FLOW PROBLEM
E -~~ IF THE FLOW IS NOT AXI SYMMETRY , COMMENT LOOP 160

[B & TR o T o)

190

195

200
c

DO 190 KC = 1 , NOFVEC(INC)
IC = KC + NC1 - 1
DTA « DTT * XSAR(KC)

RALL = DTA * RRL{ KC)
UULL = DTA * QUL(KC)
VVLL = DTA * WL(KC)
WHLL = DTA * WWL(KC)
RRN(KC) = RRN(KC) - RRLL
URN{ KC) = URN(KC) - WULL
VRN{ KC) = VRN(KC) - WLL
WAN(KC) = WRN(KC) - WiWLL

PPLL = OTA * PPL(KC)
EPN(KC) = EPN(KC) - PPLL

AALL = DTA * AAL(KC)
ARM(KC) = ARN(KC) - AALL

CONTINUE

DO 195 IC = NC1 , NC2
KC = IC - NC1 + 1

HOUM = 1. / RRN(KC)
KYOV(IC , 1) = RRN{ KC)

HYOV(IC , 2) = URN(KC) * HOUM
HYOV(IC . 3) = VRN(KC) * HDUM
HYOVC IC . 4) = WRN(KC) * HDUM
KYDV(IC , 6) = ARN(KC) * HDUM

CONTINUE

D0 200 IC = HC1 , NC2
KC = IC - NC1 + 1

HYOV(IC , 8) « (EPN(KC) STHRYDV(IC, 1) ¢
(HYOV(IC , 2) *HYDV(IC , 2) +
HYOV(IC , 3) * HYDV(IC , 3) +
HYDV(IC , 4) *HYDV(IC , 4)))
CONTINUE
IF(IEOS . EQ . 1) THEN
TUIMIT - .9
ITER = 6

00 IC = NC1 , NC2
KC = IC - NC1 + 1

NITER = 0
IFCHYDV(IC , 6) . LE . .2) THEN

OST = HYDV(IC , 1) * GPERCC
VOL = WMA * (1. - DST / FSA) / DST / XGA
EMEO = HYOV(IC , 8) / HYDV(IC , 1) * WMA / RGAS

IYY = (EMEQ - EMEOA(3)) / RANGEA + 1
1YY = MAXO(1 , MINOC IYY , 47))

K= 1YY+ 2
IvY = IYY

. + INT(AMAX1(EMEO - EMEOAC K) , 0.) / OYA(K })

page 28

bage

Thu Jul

2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2083
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085

1 14:17:00 1993 threed.f

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
a1
212
273
273
275
276
217
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

SUBROUTINE HYDRMN
. - INT(AMAXI(EMEOA(K + 1) - EMEG-, 0.) / OYA(K))
IYY = MAXO(1, MINO(IYY , 47))

Kl = IYY + 2

K2 = K1 + 1

RT = (EMEO - EMEOA(Kl) } / (EMEOA{ K2) - EMEOA(K1))
T = TA{ K1 } + 100,

CV: - SVMA(Kl)+ RT ’ (CVMA(K2) - CVMA(K1))

ERS = 0.

P = RGAS * T / YOL / GPERCC
RGAMM1 = CVM

HYOV(IC , 7) = 1. / RGAMML + 1.
HYOV(IC , 5) =P

ELSE

OST = HYOV(IC , 1) * GPERCC
VOL = WMX * (1. - DST / FSX) / DST / XGX
EMEQ = HYOV(IC , 8) / HYDV(IC , 1) * WMX / RGAS

1YY = { EMEO - EMEOX(3)) / RANGEX + 1
IYY = MAXO(1 , MINO(IYY , 47))

K= IYY + 2

IVY = 1YY

. + INT(AMAX1(EMEO - EMEOX(X) ,) DYX(K))
. - INT(AMAX1(EMEOX(K + 1) - EMEO , 0.) / OYX(K })
IYY = MAXO(1, MINO(IYY , 47))

Kl = 1YY + 2

K2 =KL + 1

RT = { EMEO - EHEOX(Kl) Y /7 (EMEOX({ K2) - EMEOX(K1))
T=TX(KI) +100. *

cvg - gvnx(K1) +RT - (CVMX(K2) - CWMX(K1))

£RS = 0.

¢

10 CONTINUE
P = RGAS * T / VOL / GPERCC
RGAMML - CVM

X = CovX / VoL / (
Z =X * EXP(BETAX

* X
RT = ALFAX * T / (T
Tz

IF (ITER .EQ. NITER) GO 70 20

CVH = CVM * XGX + SCVX
+RT*Z* (2. -RT/ALFAX - RT * X)
T=T- AMINI{ ERS / CVM , TLIMIT * T)

NITER = WITER + 1

RT=0.01*7

K1 = RT

K1 « MINO (K1, 49)

Kl = MAXO (K, 3)

K2 =K1l + 1

RT = RT - K1

CVM = CYMX(KI) + RT * (CVMX(K2) - CVMX(K1) }

ERS = EMEOX{ K1) + RT * (EMEOX{ K2) - EMEOX{ Kl))
ERS = ERS - EMEO

GO TO 10
20 CONTINUE

PeapP*r(1.+1)
RGAMM1 = (RGAMM] +

* RT *Z* (2, -RT /JALFAX -RT*X))/ (1. +1

XaX*72 /(1. +2)
RGAMM1 = RGAMMI / { (1. - RT * X) *¥ 2 + X * RGAMM])
€RS = ERS / EMEO

page 29

Al

)

page

Thu Jul 1 14:17:00 1993 threed.f SUBROUTINE HYDRMN page 30
2090 297 HYOV(IC , 7)} = 1. / RGAMML + 1, . 2090
2091 298 HYOV(IC , 5) =P 2091
2092 299 END IF 2092
2093 300 END 00 2003
209 301 ¢ 2094
2095 302 ELSE 2095
209 303 ¢ 2096
2097 304 00 IC = NC1 , NC2 2097
2098 305 HYOV(IC , 5) = HYDV(IC , 8) * (HOV(IC, 7) - 1.) 2098
2099 306 END DO 2099
2100 307 END IF 2100
2101 308 C 2101
2102 309 NC1 = NC2 + 1 2102
2103 310 NC2 = NC2 + NOFVEC(INC + 1) 2103
2104 311 110 CONTINUE 2104
2105 312 ¢ 2105
206 313 IF(NPRTCL . NE . 0) CALL KYDRFL 2106
2107 34 TJKNUM = LJKNUM + 1 2107
2108 315 WRITE(10,*) TT,(PR(KKJJ),KKJJ=1,NPRTCL) 2108
2109 316 140 CONTINUE 2109
10 317 ¢ 2110
a11 318 PMAX = -10000000. 2111
12 319 00 415 IC = 1 , NC 2112
13 320 Iv1-J3(1,IC) 2113
A4 321 Iv2=J(2,1IC) 2114
a5 32 V3 =JC(3,1C) 2115
2116 323 Iva = JC(4, IC) 2116
17 324 HNUMM = HYDV(IC , 5) 2117
218 325 HNUMN = XC(4 , IC) 2118
2119 3% HNUM(IV1 , 5) = HNUM(IV1 , §) + HNUMM * HNUMN 2119
2120 327 HNUM(TVL , 1) = HNUM{ IV1 . 1) + HNUMN 2120
2121 328 HNUM(TV2 , 5) = HNUM(IV2 . 5) + HNUMM * HNUMN 2121
22 39 HNUM(TV2 , 1) = HNUM{ IV2 . 1) + HNUMN 2122
2123 330 HNUM(IV3 , 5) = HNUM(IV3 | 5) + HNUMM * HNUMN 2123
2124 331 HNUM(IV3 , 1) = HNUM(IV3 , 1) + HNUMN 2124
2125 332 HNUM(IV4 , 5) = HNUM(VA , 5) + HNUMM * HNUMN 2125
126 333 HNUMC TV4 , 1) = HNUM{ TV4 | 1) + HNUMN 2126
2127 334 415 CONTINUE 2127
2128 335 DOIV=1, N 2128
2129 3% HNUM(IV , 5) = HNUM(IV , 5) / HNUM(IV , 1) 2129
23 33 END DO 2130
2131 338 DOIV=1, N 2131
2132 339 IF(HNUM(IV , 5) .GT. PMAX) PMAX = HNUM(IV , 5) 2132
2133 340 END DO 2133
234 341 PRINT * , PMAX 2134
2135 382 ¢ 2135
2036 343 ISNS = 0 2136
2137 m 00 300 IS = 1 , NS 2137
2138 345 1F(JS(9, 15).EQ.6.AND.XS(2,15).LT.1.9649) THEN 2138
2139 346 ISNS=ISNS+1 2139
2180 34 ISURF(ISNS)=IS 2140
241 348 END IF 2141
2142 349 300 CONTINUE 2142
2143 350 print*, ISNS 2143
2148 351 C 2144
2145 32 ¢ STEVE FORMAT 2145
246 353 ¢ 2146
47 354 0312 IV=1, W 2147
2148 355 WRITE(17,1001) IV, (XV(KK, IV),KK=1,3) 2148
2149 356 1001 FORMAT('n,’,I5,',',2(F10.5,,'),F10.5) 2149
2150 357 312 CONTINUE 2150
2151 358 ¢ 2151
2152 359 00 322 IS = 1, ISNS 2152
2153 360 IK=ISURF(IS) 2153
2154 361 WRITE(18,1002) IS, (JS(KK, IK),KK=1,3),J5(3, 1K) 2154
2155 362 1002 FORMAT('em,',4(110,'.'),110) 2155
2156 363 322 CONTINUE 2156
2157 364 ¢ 2157
2158 365 WRITE(19,1005) TT 2158
2159 366 1005 FORMAT('time,',£13.5) 2159
2160 367 ITHO = 1 2160
2161 368 1ZERO = 0 2161
2162 369 D0 342 IS = 1, ISNS 2162
2163 370 IK=ISURF(IS) 2163

page 30

Thu Jul 1 14:17:00 1993 threed. f SUBROUTINE HYDRMN page 31
2164 37N WRITE(19,1003) IS, ITWO, IZERO, HNUM(JS(1, IK),5), HNUM(JS(2.1K).,5), 2164
2165 372 . HNUM(JIS(3, IK),5), HNUM(JS(3, IK),5) 2165
2166 373 1003 FORMAT('sfe,’,2(15,','),'pres,’,I5,", ', 3(£12.5, ", '}.E12.5) 2166
2167 374 342 CONTINUE 2167
2168 75 C 2168
2169 376 WRITE(14,10101) 3*ISNS, ISNS,NDUMMY1, NDUMMY3, NDUMMY3 2169
2170 377 10101 FORMAT{518) 2170
2n 378 10102 FORMAT(IB,3£20.7) 2171
2172 379 10103 FORMAT(218,A6,318) 2172
2173 380 10104 FORMAT(18,£20.7) 2173
2174 381 CALL RYDRFL 2174
2175 382 KKW = 0 2175
2176 383 D0 310 IV = 1 , ISNS 2176
2177 384 IK=ISURF(IV) 2177
2178 385 V1 = JS(1,1K) 2178
2179 386 V2 = J5(2, 1K) ' 2179
2180 87 V3 = JS(3,IK) 2180
2181 388 XXV = XV(1,Iv1) 2181
2182 389 YYV = XV(2,1V1) 2182
2183 390 2V = X¥(3,1V1) 2183
2184 391 XNN = -XK(IK) 2184
2185 392 YNN = -YN(IK) 2185
2186 393 INN = -IN(IK) 2186
2187 394 XXX = XXV + XNN * .001 2187
2188 395 YYY = YYV + YNN * 001 2188
2189 396 222 = 22V + NN * .0D) 2189
2190 397 KKW = KKW + 1 2190
2191 398 WRITE(14,10102) KKVV,XXX,YYY,27Z 2191
2192 399 XXV = XV(1,1v2) 2192
2193 400 YYV = XV(2,1v2) 2193
2194 401 IV = Xv(3,1v2) . 2194
2195 402 XXX = XXV + XNN = 001 2195
2196 403 YYY = YYV + YNN * .001 219
2197 404 1IZ = 1IV + INN * .001 219
2198 405 KKVV = KKV + 1 2198
2199 406 NRITE(14,10102) KKVV,XXX,YYY,22Z 2199
2200 407 KXV = XV(1,1v3) 2200
2201 408 YYV = XV(2,1V3) 2201
2202 409 IV = XV(3,1v3) 2202
2203 410 XXX = XXV + XNN * .001 2203
2204 411 YYY = YYV + YRN * 001 2204
2205 412 LI = IV + IKN * .001 2205
2206 413 KKV = KKW + 1 2206
2207 414 WRITE(14,10102) KXVV,XXX,YYY,2ZZ 2207
2208 415 310 CONTINUE 2208
2209 416 KKW = 0 2209
2210 17 DO 320 1S = 1 , ISNS 2210
2211 418 IK=ISURF(1S) 2211
2212 419 WRITE(14,10103) 1S,1S,CTRI,KKVV+1,KKVV+2,KKVV+3 2212
2213 420 KKV = KKW + 3 2213
2214 421 320 CONTINUE 2214
2215 422 WRITE(14,10101) VDATA 2215
2216 423 WRITE(14,*) VLABEL 2216
2217 824 KKW = 0 2217
2218 425 DO 430 IV = 1, ISNS 2218
2219 426 IK=ISURF(IV) 2219
2220 427 PRR « PR(IK) 2220
22 428 WRITE(14,10104) KKVVs1,PRR 2221
2222 429 WRITE(14,10104) KKVV+2,PRR 2222
2223 430 WRITE(14,10104) KKVV+3,PRR 2223
2224 431 KKVV = KKW + 3 22234
2225 432 430 CONTINUE 2225
2226 433 ISHS = 0 2226
2227 434 DO IS =1, NS 2227
2228 435 IF(J5(9,15).£Q.6) THEN 2228
2229 436 XXS = XS$(1,15) 2229
2230 437 YYS = XS$(2,15) 2230
2231 438 715 = XS5(3,15) 2231
2232 439 ISNS=1SNS+1 2232
22313 440 ISURF (ISNS)=IS 2233
2234 441 END IF 2234
2235 442 END DO : 2235
2236 443 print#, ISNS 2236
2237 444 WRITE(15,10101) 3*ISNS, ISNS, NDUMMY1, NDUMMY3, NDUMMY3 2237

page 31

Thu Jul

2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2211
2272
22713
2274
2215
2276
2217
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

500
501

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

3

4

DO W

1 14:17:00 1993

threed. f

KKW = 0
DO 410 IV = 1 , ISKS
IK=JSURF(1V)
IVl = J5(1,IK)
IVZ2 = JS(2,1K)
V3 = J5(3, 1K)
XHN = -XN(IK)
YNK = -YN(IK)
INN = -ZN(IK)
XXV = XV(1,IV1)
YYV = XV(2,1V1)
1IV = XV(3,1V1)
XXX = XXV + XNN * .001
YYY = YYV + YNN * (01
IIL = IIV + INK * ,001
KKW = KKV + 1

SUBROUTINE HYDRMN page 32

2238
2239
2240
2241
2242
2243
2244
2245
2246
247
2248
2249
2250
2251
2252
2253

WRITE(15,10102) KKVV, XXX, YYY,27Z 2254
XXV = XV(I.IVZ; 2255
YYV = XV(2,1IV2 2256
1IV = XV(3,1IV2) 2257
XXX = XXV + XNN * ,001 2258
YYY = YYV + YAN * .001 2259
IIT = 77V + INN * .001 2260
KKVV = KKV + 1 2261
WRITE(15,10102) KKV, XXX,YYY,22Z 2262
XXV = Xv(1,1Iv3) 2263
YYV = XVv(2,1V3) 2264
IIV = XV(3,1V3) 2265
XXX = XXV + XNN * .001 2266
YYY = YYV + YNN * 001 2267
177 = 7IV + INN * .001 2268
KKVV = KKV + 1 2269
WRITE(15,10102) KKVV,XXX,YYY,222 2270

10 CONTINUE 2271
KKW = 0 2272
DO 420 IS =~ 1, ISNS 2273
IK=ISURF(1S) 2274
WRI