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Abstract

In the last decade many efforts have been oriented towards the understanding of the unexpected behaviour of systems - linear
or non-linear. These could be large (weather systems, biological life) or small (automatic pilot). A new branch of dynamics is now
considered; it is called "Chaos". Some general theories have emerged and reconsideration of concepts of non-linear control to
determine the stability of such systems is now intensively studied in the scientific community.

ft is planned that the following topics will be covered:

- Linear (including time varying coefficients equations) vs non-linear systems. Types of non-linearity: curved characteristics.
jumps, bifurcation

- Non linear dynamics; sensibility to initial conditions and/or uncertainties on the system parameters. Robustness

- Neuronal-type machines

- Chaos - Random process behaviour

- Reversibility and irreversibility; Newtonian mechanics and thermodynamics

- Fractals

- Applications:
- Fluid mechanics, meteorology
- Aircraft behaviour
- Mechanical systems.

Abre'ge"

Au cours de la demiere decennie des efforts considerables ont 6t6 consacres a la comprehension du comportement imprevisible
des syst~mes lin~aires et non-lin~aires. De tels syst~mes peuvent ýtre de grande taille (systimes m~t~o, vie biologique) ou petits
(pilote automatique).

* Une attention particuli~re est actuellement accord~e i une nouvelle branche de l'aerodynamique; elle s'appelle "le chaos". Un
certain nombre de theories generales se sont digagees et les concepts du contr6le non-lin~aire pour la determination de la
stabilit6 de tels syst~mes ont 6t6 remis a l'itude de faqon intensive par la communaute scientifique.

Les sujets suivants seront examinis:

- Les syst~mes liniaires (y compris les equations ý coefficient variable dans le temps) compares aux systimes non-liniaires. Les
diff~rents types de non-lindarit6: les caract~ristiques courbes, les sauts, ]a bifurcation.

- La dynamique non-lin~aire; sensibilit6 aux conditions initiaies et/ou incertitudes concernant les paramitres du systime.
Robustesse.

- Les machines du type neuronales

- Le chaos - Ie comportement des procides aliatoires

- La revei sibiliti et Iirriversibilit6; )a m~canique Newtonienne et la thermodynamnique

- Les fractales

-Applications:

- a micaniquc des fluides, Ia meteorologic
-ecomportemnent des aeronefs

- lessystmes icanques



List of Authors/Speakers

Lecture Series Director

Dr Marc Pelegrin
Honorary Scientific Adviser
ONERA CERT
BP 4025
31055 Toulouse Cedex
France

Prof. P. Coullet Prof. C. Houpis

Universit6 de Nice Air Force Institute of Technology

Institut Non-Lin~aire de Nice ENG

UMR CNRS 129 Wright Patterson AFB.

Parc Valrose Ohio 45433

Sophia Antipolis United States

(near Cannes)
France

Prof. Ph. Guicheteau Prof. JJ. Slotine

ONERA Ecole Polytechnique

BP 72 91128 Palaiseau Cedex

92322 Chntillon Cedex France

France

a

iv



Contents

Page

Abstract/Abrigi

List of Authors/Speakers iv

Reference

Introduction to Lecture Series 191 on Non Linear Dynamics and Chaos 1E
by M. Pelegrin

Introduction a Ik "Lecture Series" LS 191 IF
par M. Pelegrin

Autonomous and Non-Autonomous Non-Linear (NL) Systems*
by JJ. Slotine

Concepts of Stability*

Robust and Adaptive Control of a NL System*

Adaptive Robot and Spacecraft*

Bifurcation Theory: Chaos & Patterns 2
by P. Coullet

Stability Analysis through Bifurcation Theory (1) 3
by Ph. Guicheteau

Stability Analysis through Bifurcation Theory (2) 4
by Ph. Guicheteau

Non-Linear Flight Dynamics 5
by Ph. Guicheteau

Introduction to Quantitative Feedback Theory (QFI) Technique 6
by C. Houpis

Bibliography B

I

"These papers have already been published in the textbook "Applied Nonlinear Control" by Slotine and U (Prentice-Hail).

V



INTRODUCTION TO LECTURE SERIES 191 ON
NON LINEAR DYNAMICS AND CHAOS

Dr Marc PELEGRIN
Honorary Scientific Adviser

ONERA / CERT
B P 4025

31055 TOULOUSE CEDEX
FRANCE

I do not intend to give a summary of what Prof P. Coulet. Ph. encourage us to examine the importance of the part played by the
Guicheteau, C. Houpis and JJ. Slotine will talk about during this correlation.
Lecture Series - it's merely a matter for the Conclusions.

The next concept to be introduced is order and disorder. Complete
I will try to mention some aspects of non-linear dynamics and/or disorder is independence. All other definitions are merely negative
chaos which p,.Laps a,, margin-al with regard to the core of the such as this one: a sufficient (but not necessary) condition to say that
subject which will be developed during these 3 days; eventually they a system is not disorganized is that correlations between the
could be commented on or discussed during the Round Table. fluctuating parameters - if any - are not null.

Most of us are involved in engineering studies or designs: although Hazard is generally associated to probability; however, complete
aeronautics and space are not mentioned in the title of the LS, it is disorder is considered to be a manifestation of hazard, but. from a
pertinent that these two fields will be dominant during the lectures, stochastic point of view, complete disorder escapes from laws of
However, it is always fruitful to look around and compare the probability: there is a contradiction.
different approaches to the subject. This is why Prof Houpis and
Guicheteau will speak mainly about aeronautics and space-related Then we arrive at chaos, which is normally associated with disorder.
problems, Prof Slotine will comment about robotics and Prof Coulet
will cover the general subject both from a theoretical viewpoint and The deterministic chaos has been introduced by Poincart around 1892
on application in various domains (fluid flows, optics. chemical and in his famous books (3 volumes) on "Les Mdthodes Nouvelles de la
biological systems). m6canique c6leste" 1892-93-99 reprinted by Dover Publications Inc..

1957.
1. SOME BASIC DEFINITIONS AND COMMENTSY

It seems that nobody has really considered the problem stated by
A system is an ensemble of components well delimited in space and Poincard until the '60s though the Bdnard's curls have been deeply
time; outside the system is the external world. If there is no mass studied both on an experimental and a theoretical basis. Nobody
transfer across the delimiting surface the system is said to be questioned - and still questions - the fact that organized large motions
"closed"; if there is no heat transfer - or mote generally no radiation of molecules (water, for example) appear gently from completely
exchanged with the external world, the system is said to be "isolated". unorganized motions when external parameters (the heat flux in th..

case) varies continuously in one direction; it is worthwhile noting that
The complexity of the system is difficult to precise; it implies the the container in which the Benard's curls appear is not an isolated
specification of observability scales; a trivial example is the system.
difference in the concept used for the engineer who designs a turbine
and the physicist who studies molecular transformations; both of them Major works have been provided by Lorentz on the Rayleigh-Benard
use the entropy concept. For the engineer, entropy S is defined as convection and by Ruelle and Takens-' on the turbulence in the '60s.
dS-dQ/T Q heat flux exchanged T absolute temperature; for the At that time high subsonic civilian planes and supersonic ones in the
physicist entropy is the logarithm of the probability that an event of military domain came into being. The power of the jet engine and
a given complexion (in terms of molecule arrangement) happens. This their high consumption (double flux jet engines did not yet exist)
notion of scale is of prime importance as we will see later, imposed a careful study of the aerodynamic drag of the plane. It was

recognized that the big problem was in the boundary layer and, in
The correlation concept is very useful in the study of systems (see, particular, the transition laminar/turbulent in the extrados of the
for example, the proceedingF of the International Symposium on "The wings. Aerodynamists shall try to arrive at a full laminar boundary
correlation" ref2l), layer along the entire wing chord.

Correlation apparently hears different meanings for mathematicians. The transition is not yet fully understood but progress is made every
physicists and engineers. The correlation is commonly used as a day. perhaps thanks to scientists working on chaos, as this transition
device to quantify an uncertainty in physics phenomena. The belongs to a more general phenomena, contrary to the Bernard's
uncertainty can be a fundamental one, like in the quantum mechanics, curls, the passage from organized flow structure to unorganized flow
or can be produced by the large number of parameters which are structure.
considered, or it can simply be an appearance like in phenomena
linked to the determinist chaos. To understand such situations, it is Extreme chaos is the molecular chaos which is an undeterministic
necessary to enlarge the concept of correlation and even to go beyond chaos governing thermodynamics. We will come back to it a little
its limits (concept of linkage, resemblance, distance). That's why it further on.
seems worthwhile considering the question.

A pure determinist chaos is represented in certain types of "fractals".
Finally the perception and comprehension mechanism of the human Discovered - or rediscovered - in 1975 by Henoit Mendelbrot, fractals
brain, as well as the "neuronal machines" which are being developed, can have regular but incredibly complex structures (such ones issue

from a triangle) or fully irregular structures though issued from a
mathematical iteration.

iL/For further details see ref I I the paper presented by A. Favre
"Correlations Spatio-Temporelles, determinisme et chaos". 2/ For bibliographic references see Footnote under Paragraph 6.
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Initially fractals did not seem to have any application except, perhaps, The de- il was looking at the speed of molecules; he let pass through
in the beauty of the presentation. Later on, it wac -'ecognized that, the hole only those which had a "great velocity". If pressure in the
firstly fractals may represent a good approximation of real features vessels was equal in the beginning, they will not be "ter a while...
such as maritime coast, secondly, that the "auto-similarity" which can An explanation ma. come from the fact that there are 6.023.10"
be considered as the intrinsic property of fractals, is certainly a molecules per mol .. Can the "classical mechanics" be extended to
general property of nature. For examples, the structure of a tree is such numbers of "components"? Previously we said yes. but if we
about the same if we look at it from very far or very near; types of now compute the time it can take to arrive at an "abnormal" molecule
ramifications are similar, the cosmos structur- seems to comply with repartition, we find (from C. Marchal):
the rule of auto-similarity (star with planets: galaxy with stars, cluster - Initial pressures in the vessels 1.4 10' Pa _1 and 0.6 l0s Pa.
of galaxies..). - The mode of choice of molecules which passes through the hole

does not notably influence the results.
A fractal dimension has been defined (the fractal dimension of the - If we measure the pressure with 10- Pa accuracy, we can notice
coast of Brittany is 1.26 and the "dust of Caritov" has a fractal fluctuations with regard to the average solution at a rate of about
dimension of 0.6309). once per two years.

- If we look for variations of 5m Pa th.. prohability of finding such

Anotlher apparent contradiction lies in the dimension of a structure a division is 10 ' before 1.4 10321 years.
and in 1890 G. Peano described a geometrically defined curve which - The a priori probability that the pressure in one vessel would

can cover a square completely: any point of the square can be reached be 1.4 l0W Pa or higher is 10 M with M=3.5 1016: it is not zero!...
by the curve. Then, what is the dimension of a square, 2 as normally
assumed or I because it is anything else than a curve? It is hard to say that this is a final answer to the dilemma. However.

we could not deny that the return time to initial conditions
On the other hand, a phenomenon that can be called anti-turbulence (Poincard's return time) exists; unfortunately we could not pass from
has been discovered and studied by John Russel in 1834. This is the macroscopic systems to microscopic systems on a continuous basis.
s )liton wave which is an isolated wave whose amplitude can be large State vector of dimension 100, even 1,000 are now considered
(a few decimeters on a canal 5m wide). This wave can travel (flexible structures, for example) in the macroscopic domain; in fluid
thousands of meters without any modification in shape. The two dynamics state vectors are on the order of 6,023 x 10" per mole!
problems rising from this fact are that first, how is the wave produced
and second, how can it travel without a quick damping? The answers The last concept we want to mention is the stability concept. At first
are not yetwell established. It seems that the soliton starts from the glance stability and chaos seem opposite - like stability and
complex and apparently unorginized turbulence which is created in instability: this is not always true.
front of an old-fashioned boat. This is why we have said above that
such a phenomenon is sometimes associated with anti-turbulence. As Is stability a measurable quantity - like mass, or an identifiable
to the absence of degradation of this isolated wave, we can only say quantity - like temperature? There are many definitions of stability,
that some non-linear interaction should be produced between the sometimes contradictory: in fact, it is a subjective quality which
bottom of the canal and the wave. should be defined in the context of the field considered. The reference

system in which the system evolves should he defined: stability m~y

Indeed it is rather difficult to produce a soliton in the laboratory; well exist in a given reference system, but no longer exist in another
some success has been obtained with large canals: it has always been reference system. Stability seems to be a dominant factor in aircraft
noted that the energy involved in tis process is quite a critical or missile control - or for that matter, of any type of vehicle.
parameter: too little energy causes a quick dumping of the wave However, stability and manoeuvrability are two opposing factors
produced, too much energy creates just turbulent motion. Some non- which intervene in aircraft control: for civilian aircraft, stability is the
linear partial derivative equations give an acceptable representation of dominant factor; for military aircraft or missiles, manoeuvrability is
the phenomenon (KdV equation of DJ. Kortweg and C. de Vries). the dominant factor. The above are some of the reasons which led to

the organization of a Workshop on "Stability" for the AGARD

It is time now to comment about the contradiction between the community.121
classical mechanics (which implies reversibility) and thermodynamics
(which implies irreversibility, the entropy of an isolated system can Basically, stability is related to irreversibility, which means no energy
only increase), dissipation for linear systems. While linear systems are very rare, they

often represent a suitable approximation of non-linear systems.
As a first remark, is the assumption that molecules, at least Stability is also a matter of accuracy. Take, for example, the rotation
monoatomic ones, behave like interacting bodies in macroscopic of the earth: is it stable or unstable? This question has no meaning
mechanics absolutely true? If we answer yes, then thermodynamics unless the range of accuracy we are looking for, and in fact. the
should be reversible and the entropy should no longer be a whole context can be specified. Thanks to the accuracy of existing
monotonous quantity. If we answer no, then thermodynamics is a atomic clocks, it can be demonstrated that dail) variations of the
separate branch of physics and everything has to be reconsidered order of Ims yearly or pluri-annual variations of the order of tens of
from the molecule behaviour. ms, occur in a pseudo periodic manner. However, angular velocity is

necessarily decreasing long-term; this is mainly due to the water/earth

Today and for the next 2 days, I propose to you that the answer is friction in tides. In the pre-Cambrian period (400 M years ago) the
yes. How to justify this worldwide accepted assumption? The basic day was only 15 hours long (that is Ims lost every 10 years)! What
point is Poincare's statement according to which a closed and isolated has been said about the angular velocity of the earth could also be
system will necessarily pass in the "vicinity" of any initial said about the direction of the earth's momentum. At the pole. (the
configuration from which it started :Y. I am unable to comment about trace of the rotational vector moves continuously in a circle of about
"vicinity", however, it does not cancel what is said below. 2m in diameter. However, for all human activities the earth's rotation

is considered stable (except by some astronomers).
In the famous statement called Maxwell's devil, two vessels initially
at different pressures (or temperatures) communicate through a small Poincard studied stability for non-autonomous and autonomous
hole. Everybody knows that after a while the pressure will be the problems in the 1870's. Lyapounov in the 1900's introduced a way
same in the two vessels. Poincard's statement says - just wait and in of proving whether or not stability exists. It was sufficient, but not
some moments pressure (or temperature) will be different. Nobody the necessary condition. Following this, the behaviour of a system in
has yet observed such a phenomenon. the vicinity of an "equilibrium point" was studied in detail by

Poincard and equilibrium points or "singularities" were classified as
nodes-summits-focus-saddle.

j/For more details see the paper presented by C. Marchal "Chaos
Entropy and Irreversibility: a Simple Example". which appears in 2 A mole (mol) cor'esponds to the number of atoms of 0.012kg of
relT2l. C12.

I/ I Pa (Pascal) ;., approximately IWs bar.
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A variety of possible behaviour patterns in the vicinity of a point, the and they arrive at a correct(?) forecast for 24 or now 48 hours. Their
limit cycles, which can be stable or unstable, were introduced; they goal is to achieve predictions with the same degree of accuracy for

a 72-hour period before the end of the century.
generalized the point of stability by letting a periodic motion,
normally of a small amplitude, around the point of stability (in the In the following paragraphs we will touch upon the coupling between
phase plane or space). More recently, new vocabulary has been the local atmosphere in which a plane flies and the plane itself.
introduced "strange attractor" instead of point of equilibrium or limit
cycle. 2. THE RANDOM ENVIRONMENT OF A PLANE

All aspects of physics are affected by the concepts of stability. This is probably the main characteristic of aeronautics. Marine and
Mechanical systems were the first to be affected by Poincar•'s space activities have to face adverse conditions, but probably not on
approach. Theories and studies concern non-linear systems. All that the same level as aeronautics.
can be said about linear systems has been said. At the present time
theories and studies concern non-linear systems. No global solution To start the design and computation of a plane, a "standard
is expected. The robustness concept of a control system is an atmosphere" has been specified (Fig. I). Assuming that the plane flies
extension of linear systems studies. This concept is important for within such an atmosphere, aerodynamic forces anr eventually their
applications in industry or vehicle control. Robustness can be defined associated phenomenas such as buffeting (called "buffet") or flutter
as the capacity to achieve the specified performances in spite of some (an aeroelt':c coupling between the airflow and the structure) can be
unknown concerning the parameters which define the system to be precisely computed. hence the attitude and motion of the plane. The
controlled - or sometimes, the control parameters themselves, flight envelopes (Fig. 2) are used by airline operators. air traffic
Obviously, a linear differential equation with such uncertainties on control or military people for the safe and optimum management of
coefficients is no longer a linear equation. In fact, even in the early the aircraft.
days of linear system studies "phase margin" and "gain margin" were
used to compensate for some errors in system description. Nowadays But the real atmosphere departs from the standard atmosphere in a
more elaborate techniques such as Hoo optimization enable us to deal way which is difficult to specify in the vicinity of the plane.
with multi-input, multi-output systems.

The atmosphere is composed of - the troposphere a 8,000-11.000m
We can probably say that the dilemma "stability-instability" has made high layer around the earth in which there are vertical motions
most progress in fluid mechanics, aero- and hydro-dynamics and namely in active cumulo-nimbus clouds - the stratosphere, just above
spectacular (in both meanings of the word) results arose from the the troposphere, in which air motions are mainly horizontal.
Benard's curls.

The separation is called tropopause, it is a transition layer in which
Nonetheless, in this domain, the aerodynamic flow around a wing can both characteristics are present. The position and thickness of this
be stable, though instability may appear locally in the boundary layer, layer varies with the latitude and the seasons.
during a "normal flight" the boundary layer becomes turbulent (i.e.,
locally unstable) somewhere between one-half or two-thirds of the In the troposphere, strong turbulence even in clear sky may exist.
wing chord. Buffer phenomena is due to the escape of curls from the Active cumulo-nimbus are dangerous for a plane due to the
boundary layer, a phenomena which should be avoided for aircraft turbulence, the vertical velocities (20m/s in the core of the ascending
performance and passenger comfort. Flutter phenomena which are mass of air-/water), lightning, icing...
very dangerous, are due to aero-elastic coupling between air flow and
wing elasticity: it appears when the frequencies of 2 modes converge If a plane enters such a cloud, it is like entering into chaos at least for
to a unique frequency (normally the 1,t bending and 1st torsion the passengers, (the crew tries just to maintain an acceptable angle of
modes). This is typically a case of instability which can gradually attack and to stabilize the roll motion of the plane).
emerge from stability when soiu.. flight parameters vary (velocity
and/or load factor). In the stratosphere, jet streams are frequent; there are "tubes" of some

hundreds of meters or of a few kilometers diameter of air. the flow
Stability - or instability - also has a meaning in static structures can be laminar and clear but the transition is highly turbulent.
(bridges If ' buildings, dams, earth embankments, ship or aircraft
structures. etc.) when loads reach a given value: this is buckling. Until the last few years, the only measurable parameters on board
Even in the earth's crust, instability appears (earthquakes). Roughly were static pressure p,. dynamic pressure Pd and total temperature T..
speaking, it can be said that as a result of tectonic plate motions, From there data true airspeed (TAS) and Mach number should be
when, in a given location, the friction constraint is surpassed. the derived by St Venaud or Rayleigh formulaes according to the Mach
sliding effect or the elastic deformation of a pan of the ground is number.
suddenly transformed into a jump.

Lastly, the scales of turbulence could vary from some meters to some
To conclude, I would like to briefly mention atmospheric conditions. kilometers and stationarity is normally not the rule.
Does stability have a meaning? Probably not, though in many
countries, like those in the temperate zone, weather has a certain To be certified, a plane must experience no damage (more precisely,
degree of stability: if you say "Tomorrow the weather will be like it should stay in the "elastic domain") when crossing a gust or when
today's" you are not making a bad forecast! (The probability of flying in a turbulent area. Gusts are defined by "specifications" which
success is well above 50% since in these countries weather does not vary - slightly - among the countries who certify planes. In France,
change every day - a certain degree of stability exists.) Weather is a two major conditions to be satisfied are:
consequence of air movement over the world: it should be predictable
as for any system for which the equations are known. Unfortunately. - a vertical gust of "I - cos" type
air movement is governed by partial derivative equations - they are
known with reasonable certainty - but a set of homogeneous initial w(t)=0 t <0
conditions (3-D) remains to be acquired even by meteorological I
satellites. Meteorologists proceed by region (they use some grids. WA(-Coini foro<s'C<
ranging in size from a few kilometers to hundreds or thousands of 2 din ) 0
kilometers) and try to start with coherent sets of initial conditions on = t
the boundaries of these grids. The computer then solves the equations

IL The Tacoma suspension bridge which collapsed on 7 Nov 1940 W. gust amplitude (mis)
was subjected to a relatively low wind (18.7 m/s). It was a
typical phenomenon similar to flutter (conjecture of 2 vibrating d., gust length wind (m)
modes).
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The loss of lift at a 10° pitch attitude is 2.5% per knot. This will
- a van Karman spectrum result in a maximum of 15% loss of lift at 150 ft (45 m) due to

the encountered downflow. The 42 kts (20 n/ec) loss of IAS was
very serious itn *his case, because it could induce the loss of lift

1t+ 8 [l.339Lv_'W.l~ €as much as 55%.

How can we make a decision, prior to takeoff, whether or not to
v t 3fly into such a severe windshear? Obviously. the use of radar

may hold the key to such a decision. Radar photographs taken by
the National Weather Service. Limon radar (10 cm) show a

with number of small echoes scattered all over the Denver area. The
at I 2 Ow() first echo of the Continental 426 microburst cloud was

2r_ -photographed at 1606 MDT. five minutes before the accident.
The echo reached the maximum size and intensity at 16h 12. one
minute after the accident. Thereafter. the echo split into two parts
and weakened. This evidence presents a difficult problem of
identifying microburst echoes by non-Doppler radars."

b) The second accident I will mention here is the Royal Jordanian

L. : turbulence scale 600 at Doha, Quatar, on May 1976 in its final approach.
oa.: velocity mean square value
wo : pulsation "Doha Airport has only one runway, oriented in a 160°-340°

direction. At 0208 LST. the pilot wanted to land towards the
south. Runway 16 was requested and was clearei for a visual

It is important to note that the numerical values which appear in the approach. As the aircraft began descending toward the requested
above equations must be revised according to the safety level reached runway. the wind direction changed from 90' at 17kts to 3410* at
at a time. As this safety level increases, one must look for the 6 kts. At that point, the pilot had not seen the runway. A missed
amplitude of the gust or turbulent spectra which have a probability of approach was initiated and a new approach to Runway 34 was
the same value as the safety level of the plane. requested.

3. WHEN CHAOS BECOMES DOWNBURSTS At 0235 LST when the aircraft completed the turn and the field
was in sight, landing clearance was given. However, the runway

"Some aircraft accidents that occurred at low altitudes during wind changed again to 1800 at 6 kts. which is a tailwind on
convective activity were regarded as pilot error without blaming the Runway 34. The rain was very heavy and visibility at the tower
weather systems as major contributing factors" from Theodore Fujita was less than 1.000 m (0.6 mile). Before reaching the decision
"The Downburst", University of Chicago 1985131. He proved that the height. a second missed approach was initiated at 0237:19 LST
"inquiry board" was wrong! at about 300 ft (90 m) AGL. The pilot then requested clearance

to Daran.

It is estimated that I to 3 commercial planes are lost each year
because of windshears due to downbursts (Russia and China are not The aircraft began climbing at a 120 pitch attitude at 1.300 fpm
accounted for). Downbursts result from the sudden instability of a (6.6 m/sec) rate of climb. During this climb. IAS kept decreasing
cold mass of air coming normally from a cloud: however, a to 140 kts. Upon reaching 750 ft (230 mi) AGL, the aircraft
downburst can be accompanied by a shower (sometimes very strong), began to descend until it struck the ground with a vertical speed
it can be dry or be accompanied by showers only in its upper part i.e. of 4,200 fpm (21 n/sec). During the last 7 seconds, the IAS
the droplets evaporate in between the cloud and the ground. Fig. 3 increased rapidly to 170 kts. while the ground proximity warning
modelizes a microburst and a tornado. system (GPWS) gave a continuous warning I I seconds prior to

the impact.
I'll give two examples to point om the quasi-impossibility for a pilot
first to understand what is happening, and second to control the plane The author's analysis in Fig. 5 shows that the aircraft
in order to avoid a fatal accident. The 2 examples are extracted from experienced a 28 kts increase of the headwind from 151 to 170
"The Downburst" (Theodore Fujita). kts. It is likely that the aircraft flew beneath a roll vortex. When

the second go-around was initiated at 0237:19. the aircraft was

a) Take-off accident: Continental 426. Denver Colorado, 7 August at the dead center of the downflow, without realizing that it was
1975 penetrating the second tailwind of the micro-burst. As the aircraft

was flying out of the microburst. the IAS was lost to the point
Two planes took off just before Continental 426. Both pilots that the aircraft could no longer maintain its altitude. After
reported "windshears during and immediately after take-off', reaching its peak altitude, the aircraft kept losing altitude until
"Continental 426 took off with the maximum takeoff thrust. It ground impact at 0237:58 LST."
entered rain shortly before the liftoff. After a normal liftoff, the
aircraft climbed with a 14° pitch attitude. Then all of a sudden, What to conclude from these accidents? They are the result of an
it lost 42 kts (22 m/see) (AS in less than 10 seconds. The captain unpredictable airflow pattern with high velocity gradients; due to the
lowered the pitch attitude to about l0°, but the aircraft continued inertia of the plane, its true air speed varies accordingly to these
to descend to the ground (Fig. 4). gradients and the plane may go to stall. In the Continental 426

accident the plane lost 42 kts (IAS) in less than 10 s. In addition.
The maximum divergence at the surface inside the Continental vertical descending winds may reach 20-25 m/s, a velocity higher
426 microburst was estimated to be 150-250 per hour (0.04-0.07 than the maximum vertical velocity of plane in calm air.
per second). If we assume that this magnitude of divergence
extended up to an estimated maximum height of 150 ft (45 m) When this mass of cold air reaches the ground, at first a giant toric
AGL, the downflow speeds at various AGL heights were vortex is generated and, as time passes, secondary, tertiary .... vortices

appear.
2-4 fps (1-2 kts) at 50 ft (15 m)
4-7 fps (2-4 kts) at 100 ft (30 mn) This is a non-deterministic chaos (or stochastic chaos) that the human

6-11 fps (3-6 kts) at 150 ft (45 m) brain can hardly identify and, even if well identified, there are major
difficulties to counter the quickly varying random disturbances and to
exit from them. Specific modes in the automatic pilot already exist

- .. * llSIIl I II II I..mII-
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and they behave quite well 1/; it is, however, ns.:ssary to detect such apparently be subjected to an additional noise and input-output
a phenomena in due time. It can be done by putting sensors on the correlation will only be slightly affected. In both cases we assumed
plane (a difficult problem and an expensive solution) or by equipping that the energy contained in the input signal (spectrum) in dq is very
airports with sensors and processors to detect the possibility of small. This is the usual ca e.
downbursts with a high probability and a very low rate of false
:alarms. If 4) is close to w, or if the spectrum of the input signal contains

significant energy at d(2, then input-output correlation may disappear
This is a very complex non-linear flow dynamics problem as it is completely and the response to an input may appear as unrelated to
imnossible to get a set of boundary conditions reset at a common it; it's a kind of deterministic chaos.
instant (4-D problem).

In fact, this example calls for two comments. First, it is assumed that
Currently, a heavy emphasis is on the sensors problems (lidars. radar, a model exists without any uncertainty about the values of the
infrartd sensors, acoustic sensors. etc.). coefficients at each instant; in other words the structure of the system

is perfectly known, it enters into the classical X = AX + Bu equation
There are many attempts to modelize windshears and downbursts. in which the coefficients of A depend on time. In any applications,
They use Na vier-Stokes, 3-D, non-stationary and incompressible flow. uncertainties on these coefficients make the time-varying assumption
From these equations the presence of droplets and their density, veak. Modem concepts in automatic control imply robustness concept
sometimes even their -:tze is possible to ascertain, as the choice of B in such a way that uncertainties or coefficients of

A do not reflect more than a given quantity on the output vector y
ONERA has studied some models and Fig. 6 gives the current lines (y--CX). Secondly, the , "fer function concept or the pole
in an axisymmetrical plane at two times (26mn and 43 inn) 151. The localisation concept does not account for ,ole variation and it is
flow was located in a 8km x 8 km x 5km (height) parallelipiped unfair to mix !he superposition principle and the stability concept
(cloud base at 5 kin). The characteristic length is the radius of the (poles in the rignt left plane).
cloud (I kin) the characteristic velocity is the maximum axial velocity
at the base of the cloud (0.02 knins). The Reynolds number is 5. 1 . Nevertheless, parametr. systems - such was the name given to these

linear systems with time-varying coefficient% - are no longer studied
Fig. 6a shows the birth of two vortices, same axis but opposite in and when they were, some 20-25 years ago, chaos was not yet
sign. Fig. 6b clearly shows the development of the two vortices, rediscovered It seems to me ti,at some academic studies on
There is a good correlation with the experimental data rek ted in parametric systems could be ;,onhwhile in a "chaoti.. approach".
Fuhita's book 131 141.

5. BRAIN DYNAMICS AND DETERMINISTIC CHAOS
4. STRANGE BEHAVIOUR OF LINEAR SYSTEMS

I would like to touch on this subleht although it is not in the field of
When linear systems behave chaotically the basic property of linear my activities. A chaotic system in a st:iionary state is unstable on its
systems is: if s,(t) is the response to input e,(t) and s(t) the one to attractor, and it thus possesses the lability and capabilities of
e,(0 then owe(t) + Bs,(t) gives an output of: Ls(t) + Bs,(t) exploring phase space that one might expect for tho nervous system.
(Superposition principle). The idea that brain dynamics, in some of its aspect., could he chaotic

and of small dimension, has aroused various speculations and
A linear system such as attempts to interpret the electro-encephalographic tL-EG) signal in

terms of deterministic chaos. It 's expected to find a strange attractor
S,(t) = za,(t) Mie(t) in almost every (x signal (frequencies in 8-13 Hz).

de
One major difficulty in studying EEG is the non-stationarity oi the

satisfies this condition, signal; it should be sampled in short duration time signal and thus
limit the dimensions of the attractor. Cat we conclude that this non-

Lets now return to the basic stability ,.oncept when using the transfer stationarity can be interpreted as the proof of the fugitive character of
function of the systems even if with a disturbance as additional input, brain attractors? Or. in other words, attractors are specific of the
if any. Let's first suppose that the coefficients are constant. A system matter considered by the brain at a given instant (or during a pcri,'ld
is stable if the poles of the transfer function lie in the left half plane of time).
(abs: real part of the pole; ordinate imaginary frequencies). Stability
means that if the system is temporarily departed from a stable state, 6. CONCLUSIONS
it will come back to its stable state after a while (Lyapounov's
asymptotic stability). If poles lie in the right half plane, the output Stochastic consideration in engineering systems were really introduced
will tend towards infinity which means toward saturation or by Norbert Wiener in the 40s (remember his famous book on
permanent oscillations because some non-linearities will happen cybernetics?). The first applications concerned the behaviour of
somewhere. determinitic systems subject to stochastic perturbations; at the same

time predicting linear networks were desgned and worked well fo-
This old-fashioned concept - still valid - is too far from reality and stationary random input function. While at the same time. Claude
from the user's point of view stability is normally attached to input- Shanon introduced the information theory and the decade 50-60
output correlation. If poles are closed to the imaginary ,xis. stability confirmed the well-founded statement of the stochastic approach in
is poor and the answer to a Dirac input is a low damped oscillation the engineer's activities.
(in case of no disturbances). If the input is a peMinanently varying
sigal. the output will vary, but with a poor correlatien. Later on, engineers asked for more; they noted that linear systems are

rare (but don't forget that o.ten they are still considered as good
If one now supposes that coefficients are time dependent. but approximations of non-linear systems) and stationarity is rare except
assuming that in any case they always stay in the left half plane. the
system is linear and stable Let's suppose that all poles are complex
(no real pole). If the pole Wi varies slowly with time with regard to
l/w, sinusoidally at frequency fA (A << Wi) then the system behaves F Prom: Compte Rendu Acadnmic des Sciences, Paris L31 1. Serie
like a collection of fixed coefficients and input-output corellation is U1, pp. 1037-1044, 1990, Roger Cerf et al. Among ,ie
very slightly modified. If Rl is much greater than co,. the output will bibliographic t,.ferences cited in the Compte Rendu I mention:
__E.N. Loretm, J. Atmos, h Sci 20, 1963. pp. 130-141.

j/It is surprising that the Autopilot reacts better than a pilot: this D. Ruelle andF.T akns Coninun. Math. Phys. 20, 1971. pp.
is partially due to the fact that the immediate action that the pilot 167-192.
should take is contrary to common sense: the plane is descending D. Ruelle. Proc. Roy. Soc. Lond A 42' 1990, pp 261-268.
and he must use full power immediately in order to increase the P. Grassberger and I Procaccia. Physic- 9D. 1983, pp. 189-208
plane's total energy. The Auto-pilot does not hesitate! J. Theiler. Phys. Review A 34. 1986, pp. 2427-2432.

U 1
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in some kind of perturbations such as those issuing from the granular REVERENCES
structure of electricity.ý! If the signal considered is not stationary, it

icannot be approximated by stationary signals. III1 La Co~rrlation. Acad~nfie des Science. et Acad~mie Nationale de

)'Air et de I'Espace. International Symposium, Toulouse. Nov.

Nowadays, engineers are familiar v.,da random functions and random 1091. Cepadues Ed. Toulouse or write to ANAE. I Avenue
process: the Kalman filters with many variants is fitted in GPS Camille Flammarion. 31500 Toulouse.
receivers, in automatic pilots in any intelligent mobile robot.
However, the tremendous iacrease in processor capabdity makes the [2] GCP Workshop on Stability in Aerospace Systems. AGARD
"engineer dissatisfied. He knows that the models he was using were Report 789, Feb. 1993.
approximations of the real systems as well as the type of signals
which enter the system (inputs or perturbations). The concept of [31 "The Downburst". Theodore Fujita. 1985, University of Chicago.
robustness was introduced some 20 years ago and new optimization
algorithms were used to accept some uncertainties on parameters. 14] "DFW Microburst". 'theodore Fujita, 1986. University of

Chicago.
Chaos then arrived or re-emerged because as we said it was
mentioned by Poincard more than 100 years ago. This is probably the [5] "Modelisation ues cisaillements de vent", B. Cankaloube, T.H. Le.
biological universal law concerning the evolution of a population of Nov. 1990. ONERA rapport 12/3619 SYA.
"living beings" which lead scientists to study carefully this simple
equation (Verhult's equation) X _ I = ot X, (I - X,) [61 "Turbulent Mirror", John Briggs. F. David Peat. 1989 (Harper
and all the consequences on non-linear s; .stem behaviour-2. and Row),

"Un miroir turbulent", version franqaise. 1991, (lnteredition).
From all this baggage a more structured theory on non-linear
dynamics which includes chaos has been elaborated on and
el•.t•i,'s continue. The lectures which follow will develop the
mll_:ill eat',, of this new chapter in view of tne applications in the
cngineeri g field.

i/ Across , resistance R, at temperature T, the voltage fluctuates in

a stationary way. If At is the frequency band in which the signal
is observed, the quadratic flucusations are given by

e2 ,=4 k RTAF k Boltzman's constant (1.380 10 " JK).
22 This equation :s well commented on in ref [61 when 0 varies

from 0 to 3.560199

IS
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vis Low+est selectable speed. It cocrponds to 1.13 Vs during take-off

or foltloing touch and go. It becoles 1.Z3 Vs as soon as any ftap/stat selection is made.

Va Design speed for maneuver

vb Design speed for max. gust intensity and rough air speed

( JAR 24.33S (d)

Mich soeed prf.ection:

mMo/V:O :.82/350 kt

w,.O.0.0/VXOQS kt : max steady speed uith full nose down stick

Nigh angle of attack protection:

This protection has priority ever alt other protections.

v Prot ain speed .(corresponding angte of attack : alpha prot)

fI aloha prot is exceeded, the angle of attack retwens to and maintains alpha proc.

Fig. 2 Right envelope (A320)
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Royal Jordanian 600 at Doha 14 May 1976
ItS

170.... Struck gmun6, fT

10 ond bowicsd

70.10- '-2!7 T

400 /

ft II R B R

300.A O - 2f

200 -21-2YS s

100 55000 % 20 0 t00 t50 260 so

Fig. 5 The flight pa th of Royal Jordanian 600, which
crash landed at Doha Airport, Qatar at 0238 LST 14 May 1976.
According to the author's analysis, the aircraft flew into
a strong tailwind inside the horizontal vortex of a strong
microburst. FROM FUJITA

Fig. 5 Trajectoire du Royal Jordanian 600 qui
percuta le aol A Doha, Qatar le 14 *ai 1976. Selon
l'auteur Dr Fujita, l'avion a vol6 dans une zone A
vent arridre A l'int~rieur d'un vortex d'axe horizontal
provenant d'un "dovnburst".
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Fig. 6 Downburst simulation from(5
Simulation de T"downburst" de(5
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V Introduction A la "Lecture Series" LS 191

Marc J. Pelegrin
Haut Conseiller Scientifique

ONERA -CERT
B.P. 4025

31055 Toulouse CUlex
France

11 n'est pas dans mes intentions de resumer ce est dit isLek (condition plus thdorique que
que les Professeurs P. Coulet, Ph. Guicheteau, rdaliste ...)
C. Houpis et J.i. Slotine vont vous dire durant
cette "lecture series". Ce serait plus un sujet La complexite d'un syst~me est difficile A
pour la conclusion. preciser: elle implique la definition des dchelles

d'observation ; un exemple trivial est ]a
Je vais essayer de souligner quelques aspects de difference de conception qu'utilise l'ingenieur
la dynamique non lineaire et du chaos qui, peut qui dessine une turbine et le physicien qui
etre, sont marginaux par rapport au ccmur du 6tudie une transformation moleculaire : tous les
sujet qui sera ddveloppd durant ces 3 jours ; ces deux utilisent la notion d'entropie. Pour le ler
aspects pourront faire I'objet de discussions l'entropie est definie par ds = dQ/T Q flux de
durant les tables rondes de ces journees. chaleur echang6, T temperature absolue

(processus reversible), pour le second
La plupart d'entre nous sont engages dans des l'entropie est le logarithme de la probabilit6
activites d'ingenierie ou de recherche ; bien quc d'apparition d'un 6tat de complexion donn&e
l'Aeronautique et l'Espace ne soient pas (en termes d'arrangement des mol6cules). La
mentionnes dans le titre de la "L.S.", il est clair notion d'echellc est de premiere importance,
que ces 2 domaines resteront dominants durant ainsi que nous le verrons plus tard.
ces 2 1/2 jours. Mais ii est souvent profitable de
regarder autour de soi et de comparer Ics Le concept de correlation est tr~s utile dans
differentes approches possibles du sujet. C'est l'etude des syst~mes (voir, par exemple, les
pourquoi les Prof. Houpis et Guicheteau compte-rendus du Symposium International sur
parleront principalement de sujets lies A "La Correlation" ref. [2].
I'Aeronautique et 1'Espace ; Prof. Slotine
parlera, entre autres, de robotique et le Prof. Le concept de corrdlation est utilise par Ics
Coulet couvrira l'ensemble du domaine, ý la mathematiciens, les physiciens et les
fois d'un point de vue theorique et d'un point ingenieurs. La correlation est un outil
de vue applicatif dans divers domaines couramment utilise pour tenter de quantifier une
(mecanique des fluides, optiquc, systi~mes incertitude apparaissant dans de nombreux
chimiques et biologiques). phenom~nes physiques. Cette incertitude peut

avoir un caract~re fondamental, comme celle
rencontree en m6canique quantique, Etre tide au

lQuelques d~finitions et comnmentairesl trop grand nombre de param~tres A considfter,
ou n'etre qu'une apparence comme dans les

Un syst~me est un ensemble de composants phenom~nes lis au chaos d~terministe. La
clairement delimites dans le temps et dans comprehension de telles situations n6cessite
l'espace ; le syst~me est contenu A l'interieur de parfois l'extension du concept de correlation et
sa fronti~re. S'il n'y a pas de transferts de m~me son depassement (concept de liaison, de
masse A travers cette fronftire le syst~me est dit ressemblance, de distance). 11 parait donc utile
ferme ; s'il n'y a pas d'Cchange de chaleur, ou, de faire le point sur la question.
plus generalement s'il n'y a pas de radiation
echangee avec le monde extdrieur, le systemne Enfin, le mecanisme de perception et de

comprehension du cerveau humain, tout autant
que les "machines neuronales" en cours de

pour plus de details voir en ref. [ I Il'article de A. Favre d~veloppement, conduisent A s'interroger sur
"Correlation spatio-temporelle". l'importance que peut y jouer la correltion.
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11I faut ensuite pa, er du concept d'ordr et de adrodynamique des avions. 11 fut confirmd que
diQJ:.d1e. Le desordre complet est le probl~me rdsidait principalement dans la
l'independance de tous les composants du nature de la couche limite et principalement dans
syst~me. Toutes ies autres definitions sont la transition laminaire-turbulent sur l'extrados
plut6t negatives, par exemple celle-ci :une de taile. Encore aujourd'hui le probl~me est
condition suffisante (mais non necessaire) pour d'actualitt et les aerodynamiciens essayent
dire qu'un syst~me nest pas desorganise et que d'obtenir une aile h ecoulement complttemnent
les correlations entre les differents param~tres laminaire sur toute la corde de l'aile.
qui caracterisent son evolution -s'ils sont
accessibles- ne sont pas nulles. La transition nest pas encore parfaitement

expliquee mais la connaissance du ph~nom~ne
Le basard est generalement associe A la notion s'accroit chaque jour, peut 8tre, grace aux
de probabilit6 ; cependant le desordre complet scientifiques qui 6tudient le chaos, parce que
est considere comme une manifestation du cette transition appartient A un phdnom~ne tr~s
hasard et, d'un point de vue stochastique, le general, A l'oppose des tourbillons de Benard :
desordre complet 6chappe aux lois de c'est le passage d'un mouvement organise A une
probabilit6: ii y a contradiction ! structure totalement desorganisee.

Et l'on arrive au Qh~A qui est normalement Le chaos extreme est le chaos moleculaire,
associ6 au desordre. c'est un chaos non deterministe qui preside i

toute la thermodynamnique ; nous reviendrons
Le chaos deterministe a ete introduit par H. plus tard sur cet aspect.
Poincare aux environs de 1892 dans son
famneux livre (2 tomes) sur : "Les methodes Un chaos purement deterministe est celui des
nouvelles de la m6canique celeste" 1892 - 93 - fractals (tout au momns de certains types de
99, r66dit6 par Dover Publications Inc., 1957. fractals). Decouverts ou plus precisement re-
11 semble que personne, depuis cette date, nait decouverts par Benoit Mendeibrot, les fractals
reellement repris le problme formul6 par peuvent avoir des structures parfaitement
Poincare jusqu'aux annees 60 bien que les rdguli~res mais incroyablement complexes, telle
tourbillons de Be6nard aient et etudies tr~s en celle par exemple issue d'un triangle equilateral.
profondeur tant du point de vue experimental Elles peuvent avoir aussi des structures
que du point de vue theorique. Personne ne compl~tement irregulires bien qu'elles soient
mettait en cause -et ne met en cause encore issues d'iterations mathematiques.
aujourd'hui- que des mouvements organises, A
grande echelle, de particules (molecules d'eau Au debut, les fractals ne paraissaient avoir
par exemple) apparaissent progressivement A aucune application, exceptd peut etre dans
partir de mouvements comnpl~tement l'exploitation de leur beaute. Plus tard il fut
ddsorganises, quand un param&re extenieur (le reconnu que, d'une part les fractals pouvaient
flux de chaleur dans ce cas) vanie de faqon Etre une bonne approximation d'objets reels -
continue dans un sens. 11 est cependant par exemple une c6te maritime, d'autre part que
important de noter que le recipient dans lequel Fauto-simnilarite, qui peut kre consider6 comme
les tourbillons de Benard apparaissent ne la propriet6 intrins~que de leur structure, est
constitue pas un syst~me isole. aussi une propriete frequente dans la nature. La

structure non dimensionalisde d'un arbre, par
Des travaux importants ont ete faits dans les exemple, est la meme qu'on le regarde de loin
annees 60 par Lorentz sur la convection de ou au contraire de tr~s pr~s : les types de
Rayleigh, Benard et par Ruelle et Takins 2 sur ramification sont les memes. De meme la
]a turbulence. A cette 6poque, les avions civils A structure du cosmos semble satisfaire la loi
Mach subsonique eleve et les avions d'autosimilarite des fractals : etoile avec ses
supersoniques du domaine militaire entraient en plan~tes, galaxie avec ses etoiles, amas de
service opdrationnel. La poussee des reacteurs galaxies avec ses galaxies..
et leur forte consommation (les reacteurs
double-flux n'existaient pas encore) imposaient Une dimension fractale a ete definie (la
des dtudes fines sur les causes de la trainee dimension fractale de la c~te bretonne est de

1,26 ; celle de la poussi~re de Cantor est de

2 voir le rappel en bas de page du § 5 pour les r~fdrences 060)

bibliographiques.
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Une autre contradiction -tout au moins L'hypoth~se selon laquelle les molecules se
*apparente- est lije 4 la dimension d'une comportent comme des corps en interaction

structure ; en 1890 G. Peano decrit une courbe, parfaitement dlastique, r..,mme dans le domaine
*gdomdtriquement ddfinie, qui peut macroscopique est-elle absolument exacte ?

comp1~tement couvrir un carr6 (la courbe passe
n~cessairement par n'importe quel point donne Si la reponse est oui, alors la themnrodynaxnique
A l'int~rieur du carr6). D~s lors, quelle est la doit 8tre reversible et lentropie nest plus une
dimension du carrd : 2 comme il est usuellement grandeur A variation monotone.
affirmd ou bien 1 car ce nWest autre chose

*qu'une courbe ? Si la reponse est non, alors la thermodynamnique
est une branche separde de la Physique et tout

A loppose, un phdnom~ne qu'on peut appeler doit etre reconsiderd A partir du comportement
anti-turbulence, a et decouvert et 6tudid par de la molecule.
John Russel en 1834. C'est la vague soliton. Il
s'agit d'une vague isolee, d'amplitude Aujourd'hui et pour les 2 jours qui suivent je
importante (quelques ddcim~tres dans un canal vous propose d'accepter la rdponse oui. Mais
de 5 m de largeur). Cette vague peut se alors comment justifier cette hypoth~se
propager sur des milliers de metres sans mondialement acceptde.
modification de forme, c'est-A-dire sans
amortissement notable. Deux probkmes Le point de depart de l'affirmation de Pomncar6
emergent de cette observation. D'abord selon laquelle, darts un syst~me ferm6 et isold
comment la vague est-elle produite, ensuite une trajectoire de phase passera ndcessairement
comment peut-elle se propager sans "dans le voisinage" d'un point quelconque, par
amortissement ? Les rdponses ne sont pas exemple la condition initiale d'oai le syst~me est
encore tr~s bien 6tablies. 11 semble que le parti 3 (je ne peux pas commenter le terme
soliton apparait darts la turbulence apparemment I"voisinage" car H. Poincare6 lui-meme ne l'a pas
tr~s desorganisee que l'on rencontre devant precise. De toute faqon je ne crois pas que cette
l'trave d'un bateau mal caren6, tel celle des "indetermidnation" rende caduc ce qui suit).
vieux bateaux. C'est pourquoi nous avons dit
que, quelquefois, ce phenom~ne est associd A Le famneux demon de Maxwell contr~le un trou
l'anti -turbulence. Quant A IPabsence de entre 2 recipients qui contiennent initialemnent un
degradation de forme de cette vague isolde on gaz A des pressions (ou temperatures
ne peut arguer que d'interactions non-lindaires differentes). Chacun sait qu'apr~s un certain
entre le fond du canal et ]a vague. temps la pression sera la m~me dans les 2

recipients. Poincar6 dit : attendez et il arrivera
En fait, l'experience est difficile A r~aliser au un instant oix les pressions (ou les temperatures)
laboratoire ; quelques succ~s ont 6td obtenus deviendront diffdrentes. Personne n'a observe
darts des canaux larges ; if a toujours 6td note un tel phdnom~ne.
que l'6nergie mise en jeu darts la production
d'une telle vague est un param~tre critique ; si Une explication possible vient du fait qu'il y a
l'energie est trop faible il se produit une vague 6,023 1023 molecules par mole 4~. La
qui est sujette A un fort amortissement ; 51 "mecanique classique" peut-elle 8tre 6tendue A
I'6nergie fournie est trop grande, un un tel nombre de "composants". Nous avons dit
mouvement turbulent est produit sans creation prdc~lemment oui ... mais alors si A partir de ce
d'une vague isolde. Des equations non lindaires nombre on calcule le temps qu'il faudra pour
aux ddrivees partielles donnent une arriver 4 une repartition "anormale" des
representation acceptable du phdnom~ne moldcules, on trouve sur un exemple les valeurs
(equation KdV de D.J. Kortweg et C. de suivantes (cf. C. Marchal ) : pression initiale
Vries). darts les recipients : 1,4.105 Pa 5 et 0,6.105 Pa.

11 et tmpsmaitennt d comener prpos La loi de probabilit6 definissant le mode de

de la contradiction entre la mecanique classique
qui, pour les syst~mes non dissipatifs, implique 3 pour plus de ddtails voir rdf. [21, confdrence prtsent&e
la reversibiliti et la thermodynamnique qui par Ch. Marchal "Chaos Entropy and Irreversibility a
implique l'irreversi-bilite : lentropie d'un simple example".

ssmeisole ne peut que crolitre). 4 une mole correspond au nombre d'atomes contenu tailS
syst~me0,012 kg de C12

5 1 Pa (Pascal) vaut 10-5 bar.
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choix des mol~cules qui passent A travers le trou aspects qui ont conduit AGARD/GCP i
n'a pas grande influence sur le r~sultat. organier un Atelier sur la Stabilit6 en Juin 1992

[2].
Si on effectue les mesures de pression avec une
prdcision de 10-3 Pa, on peut d~celer des Fondamentalement la stabilit6 est li~e A
fluctuations de la pression par rapport A la l'irreversibilit6, c'est-A-dire A Ia dissipation
solution moyenne environ I fois tous les 2 ans. d'~nergie pour les syst~mes lin~aires. Bien que
Si l'on adopte une precision de 5 m Pa la les syst~mes lin~aires soient tr~s rares, ius
probabilit6 de rencontrer un tel 6cart est de repr~sentent souvent une bonne approximation
10-200 avant 1,4.1i0 3 2 2 atnndes ... La de syst~mes non-lin~aires.
probabilitd a priori que la pression dans l'un des

r~pents soit 1.4 106 Pa (ou plus grande) est La stabilit6 est aussi une question de pr~cision.
1 0  i ,511 6 en's a eo Prenons par exemple ia rotation de la terre. Est-10% u 16...ce une propri~t6 stable ou instable ? Cette

11 .s ifcl edr s e xml s question n'a pas de sens tant q u'on a pas
Ii nes dificale ae dilrne si nct emplus est One sp&zifid la pr~cision avec laquelle on observe le

r~pose inae audilmme~noc~ pus aut On ph~nom~ne et, en fait, le problme plus g~n~ral
r etou paux copnditin initiales (le temps de qu on 6tudie. Grace A la precision des horlogesretor ax coditons nitales(letemp de atomniques d'aujourd'hui, ii est prouv6 que desretour de Poincar6) existe. On ne peut pas, variations joumnali~res de l'ordre de 1 ms par an
maiheureusement passer d'un syst~me et des variations de l'ordre de 10 ms sur
macroscopique A un syst~me microscopique de plusieurs ann~es, existent de faqon pseudo
faqon continue. Des vecteurs d'6tat de p~riodiques. Cependant, la vitesse de rotation
dimension 100, voire 1000 sont maintenant d~crolt n~cessairement A long termne A cause,
couramment utilis~s dans diff~rentes techniques principalement, du frottement eau/terre resultant
(structures flexibles par exemple) du domaine des mar~es. A l'dpoque prd-cambnienne (400 M
macroscopique ; en m~canique des fluides les ann~es) la dur~e du jour 6tait de 15 heures (le
vecteurs d'6tat sont de lordre de 6.1023 par ralentissement global sur cette p~riode
mole. correspond A 0,1 ms par an).
Le dernier concept que je voudrais mentionner Ce qui a &6 dir A propos de la vitesse de rotation

est celui de la stabilit6. Au premier abord, la de la tere aurait Pu 8tre dit A propos de ]a
stabilit6 et le chaos semblent excl'isifs comme la direction de l'axe de rotation. Au p6le, la trace
stabilit6 et l'instabilit6. Ce nest pas toujours de laxe de rotation se d~place constamnment
vrai. dans un cercle d'environ 2 m de diam&re. Et

pourtant, pour toutes les activit~s humaines le
La stabilitd est-elle une grandeur mesurable vecteur rotation de la terre est consid~r6 comme
comme la masse, ou bien une grandeur stable (sauf pour certains astronomes ...)
rep~rable comme la temp6rature (le zero nexiste
pas) ?. 11 y a de nombreuses definitions de la Poincar-6 6tudia la stabilit6 des syst~mes
stabilit6, quelquefois contradictoires :en fait, autonomes et non autonomes dans les anndes
c'est une quantitd subjective qui doit 8tre d~finie .1870 ; Ljapounov, dans les ann~es 1900,
dans le contexte du domaine considdi-6. Le introduisit une condition suffisante mais non
syst~me de r~fdrence dans lequel le syst~me n~cessaire permettant de dire si un syst~me est
6volue doit etre M~ini ; la stabilitd peut exister stable (fonctions de Ljapounov). A partir de ces
dans un syst~me de r~f6rence et ne pas exister notions, la stabilit6 d'un syst~me au voisinage
dans un autre syst~me de r~fdrence. d'un point d'dquilibre fut 6tudide en detail par

Poincard et les points d'6quilibre ou singularit~s
La stabilit6 est un crit~re dominant dans le furent classes en nceuds - sommets - foyers -
domaine de la commande des avions ou des col.
missiles, ou plus gdn~ralement pour la
commande tout v~hicule. Cependant, stabilit6 et Une variante possible de I'6volution d'un
manoeuvrabilit6 sont deux propri~t~s opposdes syst~rme dans l'espace des phases au voisinage
qui interviennent dans la commande des avions; d'un point sont les cycles limites qui peuvent
pour les avions civils la stabilitd est le facteur 8tre stables ou instables ; ils g~n~ralisent la
dominant, pour les avions militaires, c'est la notion de stabilit6 ponctuelle en acceptant un
manceuvrabilit6 qui domine. Ce sont ces deux mouvement pdriodique, g~ndralement de faible



1 F-5'Famplitude, autour du point de stabilit6. Un Le flottement est un ph~nom~ne dangereux. dfi
nouveau vocabulaire a dt6 introduit, il s'agit au couplage adro-dlastique entre Fair et l'aile ; il
d'attracteur, dventuellement 6tange .. apparait normnalement quand la fr~quence de 2

modes de vibration convergent en une unique
Tous les aspects de la physique sont concern~s fr~quence (il s'agit g~n~ralement du Iler mode
par le concept de stabilitd. Les syst~mes de flexion et du ler mode de torsion). Cest
m~caniques, fussent-ils c~lestes, ont W les typiquement un ph~nom~ne instable qui peut
premiers A 6tre concern~s par lapproche de apparaltre graduellement lorsqu'un paran~tre de
Poincar6. Tout ce qui pouvait 8tre dit sur les vol vanie, par exemple vitesse ou facteur de
syst~mes lin~aires a &6 dit. Les thories et charge.
6tudes concernent maintenant les syst~mes non
lindaires. Aucune solution globale ne peut 8tre Stabilit6 et instabilite ont aussi un sens dans le
espA-r~e pour les syst~mes non-lin~aires. domaine statique (ponts 6, b~timents, barrages,

digues, structures de navires ou d'avions)
Le concept de "robustesse" pour la commande Iorsque les charges atteignent une valeur
d'un syst~me est une extension des 6tudes de critique :c'est le flambage. MWme dans la croOte
syst~mes 1in~aires. Ce concept est important terrestre, l'instabilit6 existe (tremblements de
pour les applications dans l'industrie ou dans la terre). Approximativement on peut dire que la
commande des v~hicules. La robustesse peut r~sultante du mouvement des plaques
Utre d~finie commue ]a capacit6 de r~pondre A des tectoniques fait apparaitre des contraintes de
specifications de performance malgr6 des frottement qui d~passent le seuil, le glissement
incertitudes sur la valeur des param~tres qui ou la deformation 61astique d'une partie du sol
d~finissent le syst~me A contr~ler, et donne lieu, soudainement A un saut.
quelquefois aussi les incertitudes sur les
param~tres du "contri~leur". Evidemnment une Pour conclure ce paragraphe et introduire le
dquation diff~rentielle lin~aire avec incertitudes suivant, je voudrais mentionner bri~vement les
sur la valeur de certains coefficients West plus mouvements de l'atmosph~re. La stabilit6, dans
une 6quation diff~rentielle lindaire. En fait, d~jA ce domaine, a-t-elle un sens ? Probablement
&~s le debut de l'6tude des syst~mes lin~aires, non, bien qu'en de nombreuses contr~es,
les notions de marge de gain et marge de phase principalement celles de la zone tempor&, un
6taient utilis~es pour pallier ces incertitudes. certain degr6 de stabilit6 existe. Si vous dites
Aujourd'hui des concepts plus 6labor~s tels que "demain ii fera le m~me temps qu'aujourd'hui"
l'optimisation H-c permet de traiter ce probl~me vous ne faites pas une mauvaise prediction (la
pour des syst~mes multivariables. probabilit6 de succ~s est bien sup~rieure A 0,5

car, dans ces contr~es le temps ne change pas
Nous pouvons probablement dire que le chaque jour, c'est dire qu'un certain degr6 de
dilemme "stabilit6 - instabilit6" a fait le plus de stabilit6 existe).
progr~s en m~canique des fluides (a~ro et
hydro-m~canique). Des r~sultats spectaculaires Le temps r~sulte de mouvements de masses
(aux deux sens du terme) concernent les d'air sur la surface du globe. 11 devrait etre
tourbillons de Benard. pr6dictible comme pour tous les syst~mes pour

lesquels les 6quations qui les r6gissent sont
11 W'en reste pas moins vrai que 1P6coulement de connues. Maiheureusement c'est un syst~me
F'air autour d'une aile peut 8tre consid&r6 d'6quations aux d~riv~es partielles qui est
comme stable bien que des instabilit~s puissent connu avec une bonne approximation, mais
exister localement dans la couche limite ; lors pour le r6soudre i) faut disposer d'un ensemble
d'un vol en croisi~re, consid~r6 par tous comme homog~ne de conditions initiales (3-D) ; il est
stable, la couche limite devient turbulente Wcest- difficile de les acqudrir mn~me avec des
ýk-dire localement instable) quelque part entre la satellites. Les mdt~orologues proc~dent par
moitid et les 2/3 de ]a corde. regions (les grilles qu'ils utilisent vont de

Le h~nm~edetrebleentes dOk u der6 quelques km jusqu'A des centaines ou des

plus grand de cette instabilit6 puisqu'iI s'agit du
d~tachement de tourbillons qui s'&happent par 6 Le pont suspendu du Tacoma qui s'est 6crould le 7
paquet de la couche liniite ; ce ph~nom~ne doit Novembre 1940 F'a dt alors qu'iI dtait soumnis At un vent
8tre &Mit pour les performances de I'avion et le relativement modeste 18,7 m/s. C'est typiquement un
confort des passagers. phtdnom~ne similaire A celui du tiottement (conjonction

de 2 modes de vibrations).
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milliers de kmn et int~grent les 6quations A partir Dans la troposph~re, une turbulence s~v~re,
des donndes suppos~es convenablement m~me parfois en ciel clair, peut exister. Les
connues sur la grille consid~rde. L'aide de cumulo-nimbus actifs sont dangereux pour un
processeurs, parmi les plus puissants, conduit A avion, A cause de la turbulence, des vitesses des
une prevision bonne sur 24 H, acceptable sur masses d'air (ou d'eau, gouttes de pluie) dans
48 H. L'objectif est d'atteindre le m~me degr6 le centre du nuage :des vitesses ascensionnelles
de pr~cision sur 72 H avant la fin du si~cle de 20 rn/s peuvent etre atteintes au ceintre de la

colonne, avec des dclairs et du givrage.
Dans le paragraphe suivant nous allons
d~velopper quelque peu le couplage qui existe Si un avion pe6netre dans un tel nuage, c'est
entre I'atmosph~re locale dans laquelle l'avion comme s'il entrait dans le chaos... tout au
vole et l'avion lui-meme. momns pour les passagers ; le pilote (le pilotage

manuel, par rapport au pilotage automnatique est
recommand6) essaye de maintenir 1'incidence de

2. L'environnement stochastique d'un l'avion A une valeur acceptable, sans tenter de
avion stabiliser l'altitude ; il essaye aussi de contr6ler

au mnieux le roulis.
C'est probablement la caract~ristique principale
de l'AMronautique. La Marine et l'Espace ont Dans la stratosphere, des "jet streams" sont
aussi A faire face A des conditions adverses frequents ; ce sont des "tubes" de quelques
difficiles mais probablement pas du me~me centaines de m~tres ou quelques km de dian-i~tre
niveau que l'A~ronautique. correspondant A un d~placement quasi-

horizontal tr~s rapide de masses d'air. Le flux A
L'6tude et le calcul d'un avion n~cessite, l'int~rieur de ce tube peut kre laminaire mais
initialement qu'une "atmosphere standard" ait 6videmment la transition vers I'ext~rieur est
dt pr~cis~e (Fig. 1). En supposant que l'avion fortement turbulente.
vole dans une atmosph~re conforme A celle-ci,
les forces a~rodynamiques et 6ventuellement Jusqu'A ces derni~res arnndes. les seuls
leurs ph~nom~nes associ~s tels que le param~tres mesurables A bord 6taient la pression
tremblement ou le flottement peuvent etre statique ps, la pression dynamnique Pd et la
calcul~s avec pr~cision et, par suite, l'attitude et temperature totale Ta. De ces donn~es on peut
le mouvement de I'avion. Les domaines de vol calculer la vitesse propre et le nombre de Mach
(Fig. 2) sont utilis~s par les compagnies par les 6quations de St Venant (subsonique) ou
a~riennes, le contr6le du trafic a~rien et les Rayleigh (supersonique).
militaires pour la gestion optimale de l'avion.

L'6chelle de turbulence peut varier de quelques
Mais I'atmosph~re r~elle diffrre de I'atmospl~re m~tres A plusieurs km et la stationnarit6 de la
standard d'une faqon telle qu'il est difficile de le turbulence n'est, en g~n~ral, pas acquise.
pr~ciser dans le voisinage de l'avion.

Pour Etre certifi6 un avion ne doit pas subir de
L'atmosph~re est compos&e de: dommage (plus pr~cisdment, doit rester dans le
- la troposph~re, une couche de 8 A I11 km domaine 61astique) lorsqu'il rencontre une rafale
d'6paisseur autour de la terre dans laquelle il y a ou lorsqu'il vole dans une zone turbulente.
des mouvements horizontaux et verticaux,
ceux-ci exacerb~s dans les cumulo-nimbus Les rafales sont d~finies par des
actifs, "sp~cifications" qui varient 16g~rement selon les

pays qui ont une autorit6 de certification. Pour
- la stratosphere, au-dessus de la troposph&e, la France la rafale "type" est du type "I -cos"
dans laquelle les mouvements sont
principalement paralIl~es A la surface de la terre. w(t) =0 t <0o

La s~paratrice est appel&e tropopause, c'est une w(t) = )K I-o 2irvt fr t<dm
zone de transition dans laquelle les 2 -2 -cs fr0t
caract~ristiques sont pr~sentes. La position et d
I'6paisseur de la tropopause varient avec la W(t) = 0 t > d
latitude et les saisons.
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Wn amplitude de la rafale vitesse (mis) La Fig. 3 mod6lise une tornade (masse d'air
dm longueur caract~ristique (in) chaud ascendante) et un microburst (masse d'air

froid descendante).
-un spectre de von Karman

(y2 +83 quasi impossibilitd pour un pilote de
Ow +0 1.3wL 1/ comprendre la situation et de contr6ler l'avion

11+ .39 (11/ afin d'dviter un accident fatal. Ces 2 exemples
v sont extraits de "The Downburst" de Th. Fujita.

+00 a) accident au d~collage. Continental 426,
avec: Cy w f4o,(O)d(i) Denver, Colorado, le 7 aofit 1975.

2T_. Deux avions ont d~colI6 juste avant le
Continental. Les 2 pilotes ont reporte

L,= dchelle de turbulence "1cisaillement de vents durant et imm~diatement
Cy2= valeur quadratique moyenne de la vitesse apr~s le d6collage".

co = pulsation Continental 426 d~colla avec la pouss~e
maximum de d~collage. 11 entra rapidement

11 est important de noter que ces valeurs dans une pluie d~s la rotation ; apr~s celle-ci
num~riques doivent etre r~vis~es en fonction du 1'avion monta avec une assiette de 14'. Soudain
niveau de s~curit6 atteint par le matdriel. en momns de 10s ii perdit 42 kts (22 m/s) en
Lorsque ce niveau s'am~liore, il faut chercher vitesse indiquee.
quelle est la valeur de l'amplitude (vitesse) de la Le pilote prit alors 100 d'assiette et l'avion
rafale ou les paramntres du spectre qui ont la continua de descendre jusqu'au so] (Fig. 4).
meme probabilit6 d'occurence que le niveau de
sdcurit6 de I'av ion. La divergence du flux Ai la surface dans le

microburst que Continental 426 a rencontr6 dtait
estim6e A 150 - 250 par heure (soil 0,04 A 0,07

3. Lorsque le chaos devient par seconde). Si on suppose que cette amplitude
"downbursts'" de divergence s'6tendait jusqu'ý une altitude de

45 m au-dessus du sol, les vitesses du flux
"Quelques accidents d'avion qui se sont descendant A diff~rentes hauteurs 6taint:
produ its A basse altitude alors qu'une activitE 1 5 2 kts A 15 mn
convective r~gnait, furent considd&~s comme 2 ý 4 kts a 30 m
dfis ii une erreur de pilotage sans r~frrence aux 3 a 6 kts ii 45 m
conditions atmosph~riques comme cause La perte de portance 5 une asslette de 100 est de
possible" ; dc Theodore Fujita "The 2,5 % par kts. 11 en resulte une perte maximum
downburst", Universit6 de Chicago, 1985 [31. de 15 % de portance A 45 m ii cause du flux
11 a ddmontr6 que la commission d'enqu~te 6tait descendant. Les 42 kts de perte de vitesse
dans l'erreur pour de nombreux accidents. indiqu~e 6taient tr~s importants dans ce cas car

ils pouvaienl induire une perle de porlance
On estime actuellement que I A 3 appareils jusqu'A 55 %.
commerciaux sont perdus chaque ann6e A cause Comn etnprdeuedcioavt
de cisaillements de vent dus aux "downbursts" Comnpetnprdruedcionavt
(Russie et Chine non compt~es). le d~collage, de passer ou non dans un s~v~re

cisaillement de vent. Heureusernent, l'utilisation
Les "downbursts" proviennent d'une instabilitd du radar peut donner la r~ponse A cette
soudaine d'une masse d'air froid, provenant question. Les photographies radar prises par le
normalement d'un nuage ; un "downburst" peut National Weather Service (radar 10 cm)
8tre accompagnd d'une pluie (quelquefois tr~s montrent des petits 6chos disperses sur loute la
forte) ou pent &tre sec, ou peut etre accompagnd zone de Denver. Le premier dcho du microburst
de pluie seulement dans sa partie sup~rieure, du Continental 426 a dt photographi6 A 1606
c'est-A-dire que les gouttes de pluie s'6vaporent MDT, 5 minutes avant l'accident. L'intensitd
entre le nuage et le sol. maximale a dt atteinte A 1612, soit 1 minute

avant l'accident. Apr~s l'dcho s'est s~par6 en 2
parties, puis s'est 6vanoui. 11 est difficile
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d'identifier les dchos de microburst par les Ils r~sultent d'une situation impr~vislible du
radars qui ne sont p,! Doppler. champ de vitesse des masses d'air que I'avion a

rencontr6 (gradients de vitesse tr~s importants);
Le second accident dont je parlerai est le "Royal A cause de l'inertie de l'av ion sa vitesse
Jordanian 600" A Doha, Qatar, en Mai 1976 en indiqu~e subit ces gradients et l'avion peut
approche finale. attendre la vitesse de d~crochage. Dans

l'accident Continental 426 lavion a perdu 42
L'a~roport de Doha n'a qu'une piste 160 - 340*. kts de vitesse indiqude en momns de 10 s. En
A 0208 LST (temps local) le pilote voulait plus il se trouvait dans une colonne d'air
atterir face au Sud. La piste 16 6tait demand~e et descendant de 20 A 25 m/s, vitesse plus grande
attribute pour une approche visuelle. Alors que qut. la vitesse ascensionnelle maximum continue
l'av ion descendant vers cette piste, le vent passa que 1'avion peut prendre en air -.;alme.
de 900/17 kts A 3400/6 kts. A ce moment le
pilote navait pas encore vu Ia pistc. TUne Lorsque ces masses d'air froid rencontrent le
proc6dure d'interruption d'approche fut sol, un premier gigantesque vortex torique est
engag&e et une demande d'approche sur la piste engendrd puis un second, un troisi~me etc..
34 fut accept~e. C'est assimilable A un chaos non d~terministe

(ou chaos stochastique) ; le cerx'eau humain
A 0235 LST apr~s le dernier virage, le pilote vit peut difficilement identifier une telle situation et,
la piste ; la clairance d'atterrissage fut donn~e. meme s'il l'a correctement identifi~e il a les plus
Alors le vent changea A nouveau 1800/6 kts (ce grandeýs difficult~s pour contrer les
qui correspond A un vent arri~re sur la piste 34). perturbations al~atoires qui varient rapidement
La pluie 6tait dense et Ia visibilitd (A la Tour) et 6chapper sfirement de cette situation. Des
inf~rieure A 1000 m. Avant d'atteindre la modes sp~cifiques du P.A. existent et ont des
Hauteur de De6cision, une 2e interruption performances acceptables 7. Il est toutefois
d'approche fut initi~e A 0237:19 LST A 90 m au- n~cessaire de d~tecter A temps un tel
dessus du sol. Le pilote demanda alors une ph~nom~ne. Ce peut &tre fait par des d~tecteurs
clairance pour Daman. plac~s A bord de l'avion (probIme difficile,

solution ch~re) ou en 6quipant I'a~roport de
Lavion commenqa A monter avec une assiette d~tecteurs de vitesse de vent (plusieurs
de tangage de 120 et un variom~tre de 1300 centaines sont n~cessaires sur l'a~roport) et par
ft/mn (6,6 m/s). Pendant cette montde la vitesse traitement de signal identifier le "downbrust"
indiqu~e chuta a 140 kts. A 750 ft (230 m) avec une grande prob ibilitý de succ~s (mieux
environ, au-dessus du sol, I'avion commenqa A que 0.9) et un faible taux de fausse alarmne.
descendre, il heurta le sol avec une vitesse
verticale de 4200 ft/mn (21 m/s). Durant les 7 C'est un probkme de dynamique non lin~aire
derni~res secondes, Ia vitesse indiqu~e crut tr~s complexe car ii est impossible d'obtenir un
rapidement jusqu'A 170 kts tandis que ensemble coherent de donn~es iso-dat~es sur un
l'avertisseur de proximitd de sol donna une contour ou une surface.
alarme continue depuis 1 Is avant l'impact.

A I'hieure pr~sente ii y a beaucoup de recherches
L'analyse de I'auteur (Dr. Fujita) mnontre (Fig. sur les types de d6tecteurs les rnieux adapt~s:
5) que l'avion a rencontr6 un vent debout qui lidars, radars, senseurs IR, senseurs
s'est amplifi6 de 28 kts (151 A 179 kts). 11 est acoustiques...
probable que I'avion vola en-dessous du
rouleau du vortex. Lorsque la 2e remise de gaz 11 y a plusieurs faqons de mod~liser un
fut initide A 0237:19, I'avion 6tait dans la zone cisaillement de vent (et un downburst). On
morte du flux descendant, et le pilote n'a pas utilise les 6quations de Navier-Stokes en 3-D,
r~alis6 qu'iI 6tait en train de pdn~trer dans une non stationnaires pour un fluide
zone de vent arri~re du microburst. Lorsque incompressible. 11 est alors possible de mettre
I'avion vola en dehors du microburst, la vitesse
indiqu~e ne pouvait plus assurer A l'avion un
maintien d'altitude. Apr~s avoir atteint son 7 ii est surprenant qu'un PA rdagisse micux qu'un pilote:
altitude maximale, lavion perdit de l'altitude et ceci est partiellement dO au fait que l'action immediate
s'6crasa A 0237 : 58 LST" (fin de citation). que le pilote doit faire esi opposde au bon sens : I'avion

est en descente et ic pilote doil. en prioritd : mettre pleir.
Que conclure de ces 2 accidents ? gaz afin d'accrcitre le plus vite possible lI'nergie lotale

de l'avion. Le Pilote Automalique n'hdsite pas!
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en 6vidence la presence de gouitelettes, leur saturations apparaitront et limiteront l'amplitude
densit6 et parfois leur taille. ou les oscillations.

L'ONERA a 6tudi6 quelques mod~es et la Fig. Ce vieux concept de la stabilit6 -toujours
6 donne les lignes de courant dans un plan valable- est trop loin de la r~alit6 et du point de
axisym~trique A 2 instants 26 et 43 mn [5]. vue de l'utilisateur, la stabilit6 est normalement

attachde au degrd de corrdlation qui existe entre
Le flux est situ6 dans un parall6l6pip~de de 8 x l'entr~e et la sortie.
8 x 5 kmn (hauteur) ;Ia base du nuage 6tait A 5
km. La longueur caract~ristique est prise 6gale Si les pales sont prets de l'axe imaginaire, la
au rayon du nuage (I kin) la vitesse stabilit6 est faible et la r~ponse A un Dirac est
caract6ristique est la vitesse axiale maximale A ]a une oscillation faiblement amortie (dans le cas
base du nuage (0,02 k~m/s, le nombre de oii 11 n'y a pas, en plus, de perturbations). Si
Reynolds es. 5.1l03). 1'entr~e v'arie continuellement, la sortie vane

6galement mais la correlation est pauvre.
La Fig. 6a montre la naissance de 2 vortex de
ni~me axe mais de signes opposes. La Fig. 6b Supposons maintenant que les coefficients
montre clairement le d~veloppement de ces 2 varient dans le temps mais supposons qu'ils
vortex. 11 existe une bonne correlation avec les restent toujours dans le demi plan de gauche. Le
donn~es exp~rimentales expos~es dans syst~me peut htre consid~r6 comme lin~aire et
l'ouvrage de Fujita [31 [41. stable. Supposons que tous les p6les sont

complexes (s'il y a un p6le reel, ii gauche, ce
qui suit peut ne pas etre vrai). Si le p6le de

4. Coinportemnent ktrange de syst~mes fr~quence coj se d~place lentemen1 dans le
Ilnaires temps, lentement par rapport ý 1/wil, par

La propri~t6 fondarnentale d'un syst~.ne lin~atre exemple. sinusoldalement ýi Ia fr~quence QŽi telle
est le principe de superposition :si si(t) est la qeii< i lr ess~es onot

r~pose un enr~e l~t ets-)t) cllea e~t) comm-e une collection de syst~iies ýi coefficients
alors u e I (t) + ke 2(t) donne pour re'POnSe constants et la correlation entree-sortie n'est que
Q~s Wt + P3s,(t) - (at. coefficients num~riques) tr~s l~g~rement al~r&e. Si Q2i est beaucoup plus
Un syst~me tel que: d grand que wi, alors la sortie comporte

S(t) I . aj(t) ~ 3 apparamment un "bruit" additionnel et la
d U corr~Iation entree-sortie n'est. la encore, que

peu affect~e.
satisfait une telle propriete.

Dans les 2 cas, on Suppose que !'6nergie
Revenons maintenant sur le concept de stabilitý contenue dans le signal d'entr~e (spectre) dans
en partant de la fonction de transfert d'un dQi autour de Qi est faible. Cest le cas usuel.
syst~me, avec 6ventuellement une entree
"IIperturbation" et supposons d'abord que les Si Qi est proche de wi ou si le spectre du signal
coefficients des 6quations -donc de la fonction d'entr~e contient une ýnergie suffisante au
de transfert- soient constants. voisinage de f2i, alors !a corr6lation entree-

sortie peut disparaitre compktement et la
Un tel syst~me est stable si les p6les sont situds r~ponse ý une entree peut aparaitre comme
dans le demi plan de gauche (abscisses totalement ddcorrel6e A celle-ci : c'est une sorte
amortissements, ordonn~es : fr~quences). de chaos d~terministe.

Stabilit6 signifie que si le systme est En fait -et exemple appelle 2 commentaires.
temporairement, dcart6 d'un 6tat stable, il D'abord, dans ce qui pr~c~de on fait
reviendra ý cet 6tat apr~s un temps plus ou l'hypothese que le mod~Ie du syst~me existe et
momns long (degr6 de stabilit6, stabilit6 on raisonne sur ce mod~le. On suppose donc
asymptotique de Ljapounov). Si des p6les sont qu'il n'y a pa,- d'incertitudes sur les coefficients
situ~s dans le demi plan de droite la sortie tend, A chaque instant (puisque ceux-ci vanient dans Ie
th~oriquement, vers I'infini, mais souvent des temps). La structure du syst~me est alors

parfaitement connue -; elle entre dans M'quation



g~n6rale X = A + Bu, 6quation dans laquelle Un svst~me chaotique en 6tat stationnaire est
les coefficients de la matrice A dependent du instable sur son attracteur ii1 poss~de ainsi la
temps. Mais comme ii a 6t dit plus haut, dans propri~t6 et les possibilit~s d'explorer l'espace
toutes les applications les incertitudes sur les des phases que Ion peut attendre pour les
coefficients existent et l'hypothese sur la faqon syst~rnes nerveux. L'id~e selon laquelle la
dont varient les coefficients avec le temps dynamique du cerveau, dans certains de ses
s'estompe. Les concepts modernes de la aspects, pourrait &tre chaotique et de petites
Commande Automatique impliquent la dimensions est accept~e ainsi que divers essais
robustesse, c'est-A-dire le choix de B de faqon pour 1'interpr~tation de signaux
que les incertitudes sur A n'aient pas encephalographiques (EEG) en terme de chaos
d'incidence sur le vecteur de sortie (y =CX) d~terministe. On s'attend A trouver un attracteur
au-delA d'une certaine valeur (une partie de dtrange dans presque chaquz signal a
lerreur, en g~n~ral, erreur quadratrique (fr~quences 8 - 13 Hz).
moyenne, acceptable).

Une difficult6 majeure dans l'tude des EEG est
Ensuite, le concept de foniction de transfert ou la non-stationnarit6 du signal il1 doit Etre
de matrice de transfert (localisation des p6les) 6chantillonn6 en p~riodes courtes et de ce fait
ne pr~voit pas, a priori, de variation temporelle limite la dimension de l'attracteur. Peut-on
des positions des p6les ; la transform&e de conclure que cette non-stationnaritd peut Etre
Laplace suppose que les coefficients de interprke comme la preuve d'un caract~re
H'quation temporelle sont constants. 11 n'est fugitif des attracteurs du cerveau ? Ou bien, en
donc pas acceptable d'appliquer simultan~ment d'autres termes, les attracteurs sont sp~cifiques
le concept de Iin~arit6 d'une 6quation (c'est-ii- de la fonction ex~cut~e par le cerveau A un
dire le concept de superposition) et le concept instant donn6 (ou durant une courte ptfriode de
de stabilitd A partir de la localisation des p6les. temps).
tout au moms lorsque les fr~quences de
mouvement des p6les sont voisines de la
fr~quence des p6les. 6. Conclusions

Les "syst~mes param~triques" -tel 6tait le nom Les considerations stochastiques dans
donn6 A ces syst~mes lin~aires A coefficients I'ing~nierie des syst~mes ont &6 introduites par
d~pendant du temps- ne sont plus gu~re dtudids Norbert Wiener dans les ann~es 1940
ai ce jour:. lorsqu'ils 1'6taient, voici quelques 20 (souvenez-vous de son famneux livre
anri~es, le chaos n'6tait pas encore red~couven. "Cybernetics").
11 pourrait Wte int~ressant de reprendre IHtude
de ces syst~mes dans l'optique de ce que Ion Les premieres applications concernaient le
sait, aujourd'hui du chaos. comportement des syst~mes en presence de

perturbations stochastiques ; alamenme 6poque
des circuits lin~aires pr~dicteurs ont 6t calcul~s

5. Le cerveau et le chaos dkerministe et rdalis~s ; ils fonctionnaient bien pour des
entrees alkatoires stationnaires. A peu pr~s A la

Je voudrais mnentionner ce th~me bien quill soit me~me 6poque, Claude Shanon introduisait la
fort 6loign6 de mes preoccupations theorie de j'information et la d~cennie 50 - 60
quotidiennes. confirmait le bien fond6 et Fint&r& de

l'introduction des considerations stochastiques
dans les activit~s de l'ng~nieur.

Sd'apr6s C.R. Acaddrmie des Sciences, Paris t. 311, Plu:; tard, les inge'nieurs ont dernand6 plus : les
Sdrie 11. p. 1037-10f44, 1990 Roger Cei f e al. Parm i les syst~rnes lin~aires sont rares (mais souvenez-
rt~fdrenccs bibliographiqucs cittdes dans le CR je vous que souvent uls sont consid~r~s comme
mcntionnc : uebneapoiaind yt snnEN Lorcntz. J. Atmosph. Sci. 20. 1963. p. 130 - 14 1. uebneapoiaind ytmsnn
D. Ruclic and F. Takens. Commun. Math. Phys. 20. lin~aires) et la stationnarit6 d'un signal est rare,
197 1. p. 167 - 192. sauf cependant, dans certaines cat~gories de
D. Ruelle. Proc. Roy. Soc. Lond. A, 427, 1990. p. 261 perturbations, par exemple, celles rdsultant de Ia
248
P. Grassbergcr et 1. Procaccia. Physica. 9D. 1983. p.
189 - 208.
J. Theiler, Phys. Review A 34. 1986, p. 2427 - 2432.
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nature granulaire de 1'dlectricitd 9. Si le signal Refrences
considdr6 n'est pas stationnaire, alors ii ne peut
pas etre approch6 par des signaux stationnaires. [1] La Correlation. Acad~mie des Science et

Acaddmie Nationale de 1'Air et de 1'Espace.
Maintenant les ing~nieurs sont familiers avec les International Symposium, Toulouse, Nov.
notions de fonction et processus a1~atoires : les 1991. Cepadu~s Ed. Toulouse, ou ANAE 1,
filtres de Kalman, qui connaissent de avenue Camidlle Flammarion, 31500 Toulouse.
nombreuses variantes equipent les r~cepteurs
GPS, les pilotes automnatiques et tous les robots 12] Stability in Aerospace Systems. Agard
intelligents... Report 789, Feb. 1993.

Cependant l'accroissement des capacitds des [3] "The downburst". Theodore Fujita, 1985
calculateurs rendit l'ingdnieur insatisfait. 11 University of Chicago.
savait que les mod~les qu'il utilisait 6taient des
approximations des syst~mes reels, comme [41 "DFW Microburst". Theodore Fujita, 1986,
d'ailleurs le type de signaux qui entralent dans University of Chicago.
le syst~me (entrdes ou perturbations). Le
concept de robustesse a 6t6 introduit voici [5] "Mod6lisation des cisaillements de vent" B.
quelques 20 arnndes et de nouveaux algorithmes Cantaloube, Th. L6, Nov. 1990. Rapport
d'optimisation permettaient d'accepter quelques ONERA 12/36 19 SYA.
incertitudes sur les parametres.

[61 "Turbulent Miroir", John Briggs, F. David
Puis le chaos arriva ou plut~t resurgit parce Peat, 1989 (Harper and Row).
que, comme nous l'avons dit, ii a &6t annoncd "Un miroir turbulent", version franqaise, 1991
par Poincar-6 voici un peu plus de 100 ans. (Interedition).

C'est probablement la loi d'6quilibre biologique
d'une population d'etres vivants qui a conduit
les scientifiques par une 6tude minutieuse de
cette simple 6quation :

Xn a = XX (1 - Xn)

(6quation de Verkust) d'entrevoir toutes les
consdquences sur le comportement des
syst~mes non lin~aires to.

A partir de tout ce bagage une th~orie mieux
structur~e de la dynamique des systemes non
lin~aires qui inclut ]a th~orie du chaos a 6t6
6Iabor~e et continue de l'Etre.

Les conf~rences qui vont suivre d~velopperont
les principaux aspects de ce nouveau chapitre en
vue des applications dans le domaine de

9aux bornes d'une rdsistance R. 4k la temperature T. la
tension fluctue d'unc faqon stationnaire. Si AF est la
bande passante dans laquelle le signal est observe. la
valeuir quadratique moyenne de la fluctuation de tension
est e2 = 4kRTAf, k constante de Boltzman
(1,380.10-23 i.K-).
10 I'&uation de Verhust est bien comnmentee dans Ia
rdf~rence [61 lorsque (x varie de 0 A 3.56999..
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Bifurcation Theory:
Chaos and Patterns

P. Coullet
Iistitut Nonlin6aire de Nice

France
UMR CNRS 129

Abstract X(t) t, • ' ! ,
These lectures are devoted to study the transition t)

towards chaos and the bifurcations leading to pat- , " fl '
terns. The qualitative and universal aspects of these !I'
phenomena are emphasized. , . 1r11

1 Introduction

Natural systems provide a great variety of motions.
Some are regular such the seasonal rhythms, wheras Figure 1: A typical experimental signal
others are very complex an(l apl)parently r.,adomi, such
as ocean waves or the fluid motioii behind an obsta-
cle. H. Poincare, at the beginning of this century,
discovered that apparently random phenomena could X(t) = X(t t -elr) are then constructed with the
well 1)e the -unsequience of simple deterministic dy- help of the (elay. The space generated by these 'an-
lall;,,d systems [1]. More than 60 y'ears afterwardIs ables is called the n-dimensional reconstructed phase

physicists rediscovered Poincare theory and the sci- space. The b~asic idea behind the Takens reconstruc-
ence of chaos was born. tion is to reduce the comi)lexity of the signal by try-

The theory of dynamical systems allows us to de- ing to represent it in a finite dimensional phase space.
scribe the changes that a (leterministic system can Practically one considers the trajectory obtained by
suffer when some of its characteristic parameters are increasing the (dimensionality n of the phase space.
varied (21. It describes these changes in a qualitative For each n the aimension T' of the reconstructed at-
but universal way. In particular, it allows us to u-mi tos mea nmre. T l e sto when v
derstand why similar phenoniena arise in systems as tle not c fange anyiiior .a si ggese by t re
different as a mechanical system or a biological one. the diension of the attractor was suggested by Pro-

These lectures are divide(d into two parts. In caccia and Grassberger [6]. The number of points INr
the first part we study the transition towards chaos which falls in a small ball of radius r on the attractor
through the cascade of period d(oubling bifuircations. is measured. When r goes to zero this quantity ex-
The second part is devoted to the plenomena of symn- hibits a scaling law from which the local dimension
metry breaking and pattern formation. v is extracted X , r'. In the case of the signal pre-

sented in figure (1), the reconstruction with n = 2
leads to a phase portrait (see fig. (2)) which even-

2 Chaos tually fills a finite area of the plane. This suggests
that the attractor's dimension is greater or equal to 2.

One of the most exciting experimental discoveries of The three dimensional reconstruction confirms that
the last 20 years is that simple hydrodynamnical an•d the dimension is actually in between 2 and 3. A cut
chemical systems can show complex temporal bchav- of the attractor by a plane reveals the structure of the
|or (see fig. (1)) which can be, in turn, rel)roduced by attractor (see figure (3)). This analysis shows that
simple dynamical models [3] (4]. A powerful way to signals as complex as the one of figure (1) can be
analyze an experimentally obtained complex time se- coded with a finite number of data points. Three in
ries X(t) was proposed by F.Takens (5). An arbitrary our case: X(O), X(r) and X(2T). The data in figure
delay r is introduced. The signals Xo(t) = X(t), (1) were not obtained from a real experiments but

X (t) = X(t - T), X 2 (t) = X(t - 2r), ... up to from the numerical solution of a differential equation

S-m" l !m m m ]mm u m""..........
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whose phlase space is actually three dimensional

6 + vO + (1 + ff22 cos(Qt))sillO = 0 (1)

X(t) This equation describes the motion of a pendumhi in
a periodically varying gravitational field. Equation
(1) can be written as a set of three coup)led first order
equations

-xo = Xi

= -2vX, (2)

-(1 + f12 cos X 2 ) sil X0

/X = F(X) (3)

/ where X = (X0 ,X1 ,XA2) and the vector field F" is
given by

F = (XI, -vX- + (1 - fQ2 cos-V2) sin Xo), Q)
X(it-)

The dynamical system given by equation (3) depends
oil parameters which control the transition from regu-

Figure 2: Two dimensional phase space reconstruc- lar to irregular behavior. In what follows, we describe
tion of the signal shown oii figure (1) a numerical experiment where v and Q are kept fixed.

The amplitude, f, of the periodic modulation of the
gravitational field is increased from zero. The solu-
tion XA = -I = 0, X 2 = SOt represents the rest state
of the pendulum. In phase space, it corresponds to
a limit cycle with a period T = -. The projection
of this circle in the X0 - X1 plane is a point located
at the origin. The stability of this solution is con-
trolle(l by the Mathieu equation [7]. In the (f - Q)
p)lane the instability domains are located inside the

,. ... resonance tongues. The signal of figure (1) has been
ob)tained close to the strong resonance ,- 2. As
"f is increased, the attractor of equation (3) changes
its dimension. For f small enough the rest state is
stable. Above a critical value, fo, it loses its stabil-

,.. ity (see figure (4)) mad the pendulum oscillates. The
corresponding orbit in the phase plane is still topo-

logically a circle. The change of dynamical state that
the pendulum undergoes when the amplitude of the
m"lo(hulation is varied is a typical examnple of bifurca-

;; tion. One of the most useful results of tile theory of
bifurcation is the possil)ility of classifying tile generic
,bifurcations whichl occurs in real experiments. When

f is slightly above a second critical value, f2, a new
"bifurcation transform the cyclic attractor into a knot-

y ted orbit (see fig. (5)). In this process the period of
the solution doubles. This bifurcation provides the
key mechanism for the transition towards chaos. A

Figure 3: Poincare cut of the three dimensional re- further increase in the amnplitude of the forcing leads
constructed attractor. a complete cascade of such bifurcations. At each crit-

ical value f,, the orbit length doubles. At the n th step
a cut of Ale attractor consists of 2n points. The se-
quence of the fn is shown to converge geometrically
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Lt Lt

L 0

Figure 4: The parametric oscillation. Figure 6: Slightly above f.

to f•. The sequence of cuts suggests the existence
of a Cantor set for this parameter value. Above this
critical value the signal obtained (XI, for example, as
a function of time) exhibits weak irregularities (see
figure (6)). The chaotic behaviors can be charac-
terized by quantities which measures the amount of
chaos. These are entropies and Lyapunov numbers

Si! !/ i• h i i I 1 [8]. They are rigorously defined rigorously in the
,' I iframework of ergodic theory. Thoses very interest-

.K I ing aspects of dynamical systems are not covered in

SJ,• , I; - this lecture. We will instead focus our attention on
1" i i I the transition to chaos through a cascade of period

Lt doubling bifurcations. The cut of the flow by a plane
(Poincare cut) defines a diffeornorphism of the plane
into itself. The flow associated with equation (3) has
the property to uniformly contract the volume in the

llphase space. The contraction is given by the diver-
/ .gence of the vector field

0L OX OX+ OX 2

Obviously the Poincare miiap should then uniformly
contracts the areas in the plane. Let us define the
coordinates in a typical Poincare plane as x0 and yo.
The Poincare map may be written as

Figure 5: Period doubling bifurcation.
f (zo,yg0)

S= g(xo,yo)Yo=gX0 o
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Figure 7: 10000 first iterates of (0,0) of the cubic Figure 8: The logistic map
Henon's map

The simplest nonlinear diffeormorphisnm [91 of the For 3 < a < 3.5 almost all the initial conditions con-
plane which uniformly contract the areas can be writ- verge towards an alternate serie (x-, x+), solution of

ten as the equations
x+ = (X,()

x = axo(1 - xo) - byo (4) _ A0(x+)
t or

YO = Xo

At each iteration an arbitrary area in the plane is x+ = A.a(A•(X+)) = Aa•(2) (_
contracted by a constant factor given by the Jacobian x- = A (Aa(x-)) = A-a (x
of the transformation (4) where A•(I2 denotes the second iterate of Aa. For

j = -o -• Oo O b an < a < a,+, almost all initial conditions con-
OXo OYo Oyo Oxo verge towards a periodic cycle consisting of 2" points

• . X2 ,.X2 such that
Numerical simulations of the mapping (4) for increas-
ing values of a, for fixed b, reveal the existence of a xi = Aa2 (xi)
cascade of period doubling bifurcations as the pre-
cursor of chaotic behavior. In the chaotic regime, the for all i = 1 2". The sequence of the a, converge in
attractor of the cubic Henon's map (a*xo(1 - xO) -+ a geometric fashion towards a limit value a,:
ax0 (1 - X2) in equation (4)) exhibits strong similari-
ties to the Poincare map of the paranmetrically forced lina a,,+l - an - 4.669.. 6 (6)
pendulum shown in the figure (3) (see figure (7)). n-,, a.+ 2 - a,,+,
The mechanism of the cascade of period doubling bi- For a > a•, chaotic behaviors is observed for a mca-
furcations an(d its relationship to nonlinearity can be surable set of l)aramneter values (see fig. 9) . The
understood in the limit where b -* 0. The Henon map mechanism of the cascade of period doubling bifur-
(4), in this limit becomes a one-dinmensional map (see cations can be understood in the following way
figure (8)) known as the logistic map

x' = axo(1 - xo) =_A\(x) (5) e The first period doubling bifurcation is a simple
consequence of the nonlinearity of the map. The

As a increases from zero the following scenario is stability of the fixed point x" is controlled by
observed. For 0 < a < 1 the iterates of all the initial the derivative of the map at this point. A small
conditions converge toward zero. For 1 < a < 3 the deviation. Ax, around the fixed point becomes
iterates of all the initial condition except (0) and (1) after one iteration
converge towards a fixed point, a solution of

x"= \X*(x) X
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Figure 9: Sketch of the cascade of period doubling Figure 10: The logistic map and its second iterate
bifurcations

When r increases, the fixed point eventually
reaches the region where the map has a nega- (1024)
tive slope. When OA1o/azIj.I > 1, the fixed a
point x* loses its stability. This occurs when a
OAIOxjrz. = -1, which defines a, in an unique I
way. Slightly above a,, the iterates of almost all
initial conditions converge toward a periodic cy-'-f I I ti
cle of period two, whose elements are fixed points
of the second iterate of the map (see figure (10))

9 The form of the graph of A,2 ) allows us to under-
stand the existence of a cascade of bifurcations.
The restriction of A,2 ) to the interval denoted
1+ in figure (10) is similar to a2 ) itself. When

a is increased x+ reaches the domain of A\2) in

1+ where the slope N.A2)/gx' becomes smaller

than -1. The periodic solution of period two be- Figure 11: Self similarity of a...
comes unstable for this parameter value. This
simple idea is at the root of a theory proposed
simultaneously by M. Feigenbaum [111 and P.
Coullet and C. Tresser (12] [131 in order to ana- x' = a'x(1 - x) (8)
lyze the cascade of period doubling bifurcations.
We present here a crude calculation which illus- where a' = (2 - a)2.
trates this theory. The second iterate of the lo- This map is called the renormalization map. Up

gistic map A•) is to a translation, a change of scales and a change
of the parameter (renormalization), A (2) is equiv-
alent to A.. a' is called the renormalized param-

x'= (2 - a)2X (7) eter. The renormalization map has two fixed

-a(6 - 5a + r 2)z 2  points a = 1 and a = 4. Let us consider only the
+a2(4 - 3r)X 3 

- r3y4 fixed point with the positive slope (a = 4). We
identify this value of a with a,,. If our calcula-

We have chosen the origin of the coordinates tion was exact A(2) would be exactly self-similar
at the point (x*,A.(x*)). A truncation at to A., (see fig. (11)). When a is close enough

the quadratic order and a scaling tranformation to a"", \a2)_' is almost equivalent to ,
brings it into the form where 6 is the slope of the renomalization map

-
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at the fixed point a.. Thus a typical parameter Im a
range for the map Aa is shrunk by a factor 6 for

its second iterate a. In particular the (domaina
of stability of the cycle of period 2('"+ 0 is 6 time
smaller that the domain of stability of the cy-
cle 2". One gets 5 = 4. The truncation is the
only serious criticism of this analysis. This ap-
proximation introduces in particular a spurious

fixed point a = 1. Our crude calculation can be I
transformed into a poweful and rigourous theory Re a
(renormalization group) [14] which allows one to

prove the existence of a cascade of period dou-
bling bifurcation and its universality. It is be-
yond the scope of this review paper to go into
the details of this theory.

The main steps are the following:

1. Definition of a renormalization map as Figure 12: typical spectrum of Df,/DUIu. at a bi-

'I.(x) = h-1t(-(h(x))) furcation point

where h is an affine transformation. [16]. Patterns which are frequently observed in natu-

2. Computation of its fixed points ral systems can be understood as the result of a sym-
metry breaking bifurcation. Patterns break the ba-

v(x) = h-•'v($'(h(x))) sic symmetries of space and time: time translations,
space translations, rotations and space inversion.

In the introduction to this chapter, we will sum-points marize some of the simple tools of bifurcation theory.
Let U* be the fixed point associated with the flow of

A =D %a finite dimensional vector field F(U). Then

T)- . AU = F,(U) (9)

The main results are the following: where U = (Ul, U2 , ..U,,) and It is a set of k pa-
rameters it = (11,12,--41k). The fixed point U" is

1. Analytic maps have a denmnerable set of such that F,(U*). The topological type of the flow
fixed points, in the neighborhood of the fixed point U' changes

2. One of the fixed points (unimodal map with whenever an eigenvalue of the spectrum of the lin-
a quadratic maximum) has a spectrum with earized vector field, Df,/DUIu., crosses the imagi-
only one eigenvalue 6 = 4.669.. whose mod- nary axis. These changes are called bifurcations. In
ulus is greater than 1 many practical applications of bifurcation theory a

3. Multidimensional perturbations of this stable fixed point loses its stability at the bifurcation

fixed point, as for example the generaliza- point. In that case, the spectrum of DJfPDUI[,. is
lion of the Henon map, does not destroy completely contained in the right half of the comn-
the r t ma p, (. plex l)iane except for a finite number of eigenvalues
the results (1) and (2). which sit, at the bifurcation, on the imaginary axis

These results explains why the cascade of period (see figure (12)). The main result of bifurcation the-

doubling bifurcation with its universal number 6 = ory is that, close to the bifurcation equation (9) can

4.66920160910210909.. are actually observed in such be reduced to a simpler one called its normal form [2]

a wide class of dynamical systems. [15] [16]. This result is based on the central manifold
theorem which asserts the existence of a local man-
ifold which captures all the interesting phenomena

3 Patterns occuring at the bifurcation. The topological Change
that the vector field close to the fixed point suffers

The bifurcations provide the most obvious mathe- at the bifurcation can be analyzed on this manifold
matical explanation for the changes which occur in a only. It is the straightforward generalization of the
physical system when its parameters are varied [15) linear space generated by the part of the spectnrm

-- 4 , ti • iK l ii III1 I I |IIi',
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Central manifold T < Tc

ST>Tc T>Tc

Figure 13: Sketch of the central manifold Figure 14: The buckling of a plate

of Df/,/DUI1 ,. which lies on the imaginary axis (see apparatus) is associated with it. The simplest case
figure (13)). The restriction of equation (9) to this corresponds to a one dimensional central manifold
manifold using appropriate coordinates is the nor- parametrized by A only. The bifurcation equation
rnal form. Bifurcations of a fixed point are easily (normal form) is thus a priori
classified. The generic (co-dimension one) bifurca-
tions correspond either to the crossing of a single zero OA = f((A) (10)
cigenvalue (stationary bifurcation) or a pair of com-plex eigenvalues (oscillatory or Hopf bifurcation) [15o where, in order to satisfy the symmetry of the phys-[16] . ical system. f(-A) = -f(A). Since at the threshold

of the instability (bifurcation) A is small (at least
for short times), A can be expanded in a Taylor se-

3.1 Symmetry breaking ries. The truncation of the normal form at the first
nonlinear term can be written as

Symmetry groups play anm iml)ortant role in the un-
derstanding of physical systems. The description of (9 .4 = f,A4 + f3A3  (11)
the crystalline structure by Bravais is probably the
most famous success of this theory. The phenomenon where f, is proportionnal to T - T•, and T and T,
of symmetry breaking was first fully appreciated by represents the tension and the critical tension respec-
the French physicist P. Curie. Bifurcations in symn- tively. The sign of f, is crucial. In the case of the
metric dynamical systems often lead to the symmetry buckling, f3 is negative. In that case. the bifirca-
broken phenomenon [17] [18]. The theory of phase tion is supercritical and the amplitude of the bend
changes by Landau can be interl)reted in this frame- saturates to a finite value. A' = Vifl/(-f3). When
work. The buckling of a plate provides a simple ex- f3 > 0, the amplitude grows indefinitely in time. In
ample of a spontaneous symmetry breaking transi- that case, equation (11) is only valid for short times,
tion. A vertical tension is applied to a vertical elastic when A is still small. The bifiurcation of the buckling
plate (see figure (14)). When the tension exceeds a plate is known as the pitchfork bifiurcation (see figure
critical value, the plate bends. The side on which the (15)) and the amplitude equation (normal form) is
plate bends depends on the existence of small fliuctu- knownm as the Landau equation. From a purely math-
ations when the tension passes its critical value. In ematical point of view this bifiurcation corresponds to
a well controlled experiment there is as equal prob- the crossing of an eigenvalue through zero for a dy-
al)ility that the plate will bend to the left as to the namnical system which possesses reflection symmetry.
right. Let us denote the amplitude of the bend by Equation (11) cal be obtained in a rigourous way
a real numnber, A. This quantity (the order param- from the equations of elasticity. Technically one can
eter in Landau's terminology) should be one of the either use singular l)erturbation theories (Poincare-
coordinates of the central manifold since the most Lindsted and its generalization [7]) or normal form
obvious topological change associated with the bifur- theories [2] [15] [19] [21]. Let us consider, as a sim-
cation (the breaking of the left-right symmetry of the pier example of a pitchfork bifurcation, the behavior
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Supercritical bifurcation -
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Subcritical bifurcation
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Figure 15: Diagram of a supercritical pitchfork bifur- Figure 16: The conic pendulum
cation

of a ball gliding in a hoop which is rotating around a Y
vertical axis (also known as tihe problem of the conic
pendulum, see figure (16)). The motion of the ball is
described by the equation

e + 2v( + sinn-f 2 Sill Ocos- = 0 (12)

When the normalized velocity of the hoop Q? is greater
than or equal to 1 the equilibrium position of the ball,
o = 0 = 0, becomes unstable. The ball moves to-
wards a new equilibrium position. The bifurcation
is again a pitchfork bifurcation. The ball can either
reach a new position with a positive angle or with a
negative and opposite angle. The bifurcation breaks
the E -+ -0 symmetry. Close to the bifurcation
point, a straightforward calculation shows that the
spectrum of the linear operator consists of a negative
eigenvalue whose value is close to -v and an eigen- Figure 17: 1:2 parametric resonance
value close to zero. This suggests that the dynamnics
of the ball consists in a "fast" time relaxation (witha characteristic time r ,,, l/v) and a slow time varia- teeatrsnnead•=4( ).Teisa
tion Foracterist times largerh an d te fstelaio n time, vbility sets in when the forcing, f, exceeds a criticaltion. For times larger than the fast relaxation time, value (see figure (17)). The oscillatory motion of theof the motion is small. Since the amplitude A = is pendulum has a period which is then precisely half ofof the Am <<oAtion is small. Since theremudued tA =the driven frequency. This bifurcation is actually a
the Landau equation (11) with f be (f 2  1)/2v and period doubling bifurcation. Close to the instabilityta = -1/4v. threshold, a solution of the equation is considered tobe of the form

The third example of spontaneously broken sym-
metry we want to discuss is associated with the para- X = A(t)e'(' -r)t+i, + c.c + harmonics (14)
metric forcing of a pendulum (see equation (1 of chap-
ter (2)). We study here the case where the forcing where A(t) is a real function which is assumed to be
occurs close to twice the natural frequency of the slowly varying in time. The differential equation to
pendulum. In that case equation (1) becomes: be satisfied by A can be obtained by using averaging

techniques (2], since A does not vary much at the time
X + 2vX +,F cos(2(1 - YI)t))sin X = 0 (13) scale of the oscillation. This equation is, a priori:

where the detuning, Yq, measures the deviation from 0,A = 1(A) (15)
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Modulation 21rfl (17) is inserted into tile equation (13), taking account
that A is small and slowly varying, and that v and
f are also small quantities, one gets the amplitude
equation (normal form) as a compatibility condition,

OjA = (-v + iyl)A - iafAf 2A + iyiA (18)

where a = 1/4, -y = c/4 and A denotes the com-

21t/0 plex conjugate of A. When the forcing goes to zero
(y = 0) equation (18) becomes invariant under the
transformation A -- AeiB, where 9 is an arbitrary

A\ --,A. phase. This equivariance property is a consequence
of the translational invariance of the equation of the
unforced pendulum. The term y.4 in equation (18)

Pendulum oscillation 4E/1) represents the symmetry breaking induced by the

forcing. It reduces the symmetry group tinder which
(18) is invariant to the transformation A -+ -. 4. The
stability analysis of the pendulum at rest proceed as

Figure 18: Symmetry breaking in the parametric ex- follow. Let us introduce the real and imaginary parts
citation of a pendulum of the complex amplitude A = X + il'. The linear

equations to be satisfied by X-and Y are

Equation (13) is invariant uinder the transformation OtX = -vA + (I - i1)1' (19)

t -4 t + 2ir/f? o01' = -VY + (-Y + i)X (20)

where Q2 = 2(1 - il) is the actual period of the mod- Let X = X and Y = loe". The eqiatioi for o

ulation of gravity. Let us apply this transformation is (0 + V), 112
to the solution given by expression (14)

Tile eigewivalues are both real if 1-1 > J'il (frequency
X = A(t + 27r/Q)ee- (16) locking). Tile instability sets in inside the frequency

- I l-t+i0 + .. locking tongue, when -2 >_ 1}2 + V
2

At the instability threshold the eigenvalues are a =
Since X(t + 27r/Q) is a solution of equation (13). -A 0 and a = -2v. The marginal eigcnmuode is such that
should be a solution of equation (15). This require-
ment implies that f((A) = -f(-.4). At the leading -1 -

order. the equation to be satisfied by the amplitude m + ?I

is thenm the Landau equation (11). The paramnetrie
instability is a symmInetry breaking bifurcation. Two where XT,. and Y, are the comllponients of the unsta-

possible oscillatory states can be observed as the re- ble mlode ani(l 6 is the plialse introduiced in the sohm-

stilt of the instability. They differ by a plhatse shift of tion given by expression (14). Near the threshold the

7,, i.e. a period of the external driving frequency (see equation (18) can be reduced to a simpler one that

figure (18)). It means that if one considers all as- is first order in time. This equation for the real amn-

seznbly of such pendullnis. statistically half of them plitude, A, of tile nmarginal mode is none other that

will oscillate with a given amplitude and half of them the Landai equation.

with the opposite amplitude. Similar to the ease of
the buckling of the plate and the conic pendulum, 3.2 Pattern forming transitions
the viscous damping, v, is responsible for the reduc-
tion to a first order differential equation. When the At all scales matter exhibits structures. Some pat-

damping becomes weaker, the phase of the oscilla- terns are very regular, such as for example the
tion becomes an active parameter. The solution of honeycomb-like convective cells observed in a well

equation (13) is then considered to be of the form controlled experiment. Others are quite i-regular.
such as the hydrodynamical flow behind an obsta-

X = A(t)ei -1-t+ c.c + harmonics (17) tie at high Reynolds nmnber. Patterns arise due
to the spontaneous symmetry breaking of space-time

where A is now a complex amplitude which con- symmetries. When a material fills an empty space
tains informations on both the real amplitude and it usually inherits its homogeneity properties. Most
the phase of the oscillation. When the expression of the time patterns reflect the topology of the space

I-= , =lmm u u ri I[ u -" ..
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in which the physical system is embedded. In par-
ticular, patterns which are observed on a flat surface
or a curved one are quite different. Hexagonal pat-
terns can regularly fill a piece of plane, it is not the
case one the sphere. The matter itself ca,: influence
the morphogenesis when it breaks the homogeneity
of space. The molecule of a nematic liquid crystal,
for example breaks the isotropy of space at the mi-
croscopic level. Patterns observed in such systems
will have original features associated with the sym-
metry of the molecules. Mathematically, patterns are
the solutions of partial differential equations. Before
describing formal aspe~ts of the theory of pattern for-
mation, let us first discuss a very naive example of
pattern formation.

The problem of the coupling of two pendulums al-
lows one to introduce the basic mechanism of pattern
formation. In this problem, space is simulated by two
points, the two pendulums. The equations which de- Figure 19: Stability diagram of the two coupled pen-
scribe the motion of the pendulums are duluxns

61 +sin)I = K(02 -O) (21) +(1+ fp 2 (:os(ý2t))sillO 1  = K( 0
2 _-O1)

6 2 +sin0 2  = K(Oi-
0

2) (22) 62 + 21,0*2 (26)

where K, the torsion constant is assumed to be small. +(I + N 2 cOS()) Sil 02 = N (0I - 02)

One of the invariance properties of equation (21) where Q = 2(1-qI). Using the suni and the difference
(1) 4-+ (2) reflects the homogeneity of the "space". of the angles one get the linearizcý" equations
Let us introduce the sum and the difference of the
angle of the two pendulums E = 01 + 02 and i + 2v•" (27)
A = O0 - 02. Linearizing equation (21) around the +p1 + fS) 2 cos(fSt))E = 0
rest state one obtains : - + 2v., (28)

i+ = 0 (23) +(1+2K)A+p22cos(pt)A = 0

S+ (1 + 2K)A = 0 (24) We then look for solutions to these equations of

The normal modes of this simple mechanical system the form
are thus given by

"* A 5 0 and E = 0 where the two pemnduhlms -=Aei(x-Tj)t + c.C+----- (29)
oscillate with the same amplitude at the same Pim-vitt+c.c± (30)
frequency as a single pendulum.

"* A $ 0 and E = 0 where the two frequency oscil- The (linear) bifurcations equations (normal form)

late with opposite phase, at a higher frequency reads

v1-+ 2K Ot.4  = -vA + ijA + OA (31)

The first normal mode does not break the (1) +-* (2) (9,B = -vB + i(r1 + K)B + i-jB (32)
invariance while the second one does. We will say
that the second mode of oscillation describes a pat- The stability of the rest solution, .4 = B = 0, is
tern in its simplest form since this solution breaks the straightforward: when the forcing frequency is close
homogeneity of the "space". In order to understand to the frequency of the structured mode, the insta-
a little more about the spontaneous appearance of bility leads to a state which breaks the homogeneity
patterns, let us consider the case where the two cou- of the spa-e (see figure (19)).
pled pendulums are weakly damped and subjected to A more realistic example of pattern formation is
a small periodic variation of the gravitational field, obtained by coupling a large number of such identical
close to resonance (1:2). The dynamics of such a sys- pendulums. In the continuous limit the equation for
tem is described by the equations the chain may be written as

6, + 2v6, (25) 6 + V6 + (1 + f1
2 cos(llt)) sinO = c2 Ot (33)

-S DI [ •[ •.. ---- -]_ -m• -- [ [ -



where c is a velocity which depends upon the tor- a
sion constant and the distance between pendulumns.
Space now appears explicitely through the second or-

(ter derivative by respect to x. The homogeneity of
space implies the itzvariance of the equation under

the transformation x -4 x + a and x -4 -x. The

amplitude of the small oscillation of the chain A is q
now a function of time and position. It obeys the q q
equation 2291

OA = (p + i)lA - io,.-t A + i•.A - iA.4, (34)

where 3 = c2/2. This equation can be obtained as
usual by looking for a solution under the form (a) (b)

0 = Ae'(I -FI)t + exC + - Figure 20: a, as a function of q. (a) the most un-

When the parameters p and I vanish, the equation stable mode has a zero wavenumber (b) the most

becomes the well known nonlinear Scnoedinger equa- unstable mode breaks time translations.

tion [23]. Tr the case where o0 > 0, (this is the case
of our chain of pendula). the homogeneois solution where • ,- - - . The equivariance property A --

.4 = Aoe- iIlAI121 is unstable with respect to non- Ae'O is a direct consequence of the invariance of the
homogeneous perturbations. This instability (self fo- physical system described by the equation (34) with
cusing) leads to the formation of solitary structures, respect to space translation. Time invariance under
In the presence of small forcing and dissipation. pat- space reflection x -4 -x implies that the coefficients
terns can be observed depending upon tihe detuning of the amplitude equation (37) are real numbers.

paraneter 6. The mechanism underlying the forma- This simple example illustrates many of the features
tion of patterns call be understood as before in the of a real pattern forming system. The Faraday ex-

framework of the linear equations : periment. [26] [271 [291 [28] in which a fluid is sub-

OA = ((p + i')A + i-).4 - ij3A, (35) mitted to a periodic vertical acceleration, presents

strong similarities with our chain of pevidula. Above

The invariance of this equation under time and space a critical amnp!itude of the acceleration, patterns form
translation which reflects the isotropy of space allows spontaneously at the surface of the fluid. The meclha-

one to look for solution under the form nismn of the pattern formation in both cases is related
to the dispersive nature of the waves that this kind

.4 = Ake'te of system can sustain.

Time equation to lbe satisfied by a is Pattern formation is observed in a wide variety of
physical, chemical and biological systems.

-2 - 2-2a + 12 _ )2 + 12 (36)
From a purely mathematical point of view, pat-

where ilq = ql + 3q2 . Instability sets in when crq = 0. terns arise as the result of a symmetry break-
Depending on the f'--".mg frequency (detuning. the ing bifurcation. The broken symmetry is one

instability can amplifly a wave nunmber qo = V/-,//O of the symmetries imposed by the hornogene-
(see figure 20). The wave number is selected by the ity of space and time. The functions eifq.rat

dispersion relation of the waves that the unforced, are the eigenfunctions of time and space trans-

ulndamnpe(d chain can sustain ,q = V1 _+2q/2 - lations. The rotational inva-iance of the phys-

1 + c
2

q
2 /2 = I + i3q 2 . The nonlinear analysis al- ical spac, impl)ies that af is a function of the

lows one to compute the amnplitude of the pattern, modulus of ý only, ar = -r(q
2

). The two ele-

Close to the pattern forming transition, a solution of mentary bifurcations correspond to the crossing
equation (34) is looked for of the form of a real eigenvalue (stationary bifurcation) and

the crossing of a pair of eigenvalues (Hopf bi-
A = •e' + c.c + '' furcation) respectively. In the case a = 0 the

The equation to be satisfied by A is a normal form instability does not break time translation. Two

which describes in a universal way the transition to cases have to be considered. They depend on

one-dinmensional modulated structure [24] [25]. the form of a as a function of q (see figure (20)).
In the first case (see figure (20.a)) no breaking

O1 A = FA + f1,1 IAI2 A + DA.,. 2 (37) of symmetry occurs in the linear theory, while in
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0 tion of a coherent beam can exhibit structures

0 which are related to diffraction. In fluid mechan-

0 04 ics, the first appearance of a pattern is often as-
sociated with an intrinsic characteristic length.
The Rayleigh-Benard instability [331, for exam-

00 pie, leads to convective cells which have a typical
!{, size of the height of the container. In chemical

' and biological systems instabilities can lead to

03Ppatterns only because the species involved have
Q0 0 '0 different diffusion coefficients. This mechanism

Q4 is known as the Turing instability [341. Turing
ftO O !patterns have been observed experimentally onlyS0 1QV 0 very recently [351 [361.
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the second case, the linear theory selects modes

with a finite wave number qo (see figure (20.b)).
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1. ABSTRACT Series (LS 191) 11,2].These communications aims at the
This communication is the first part of the three papers which presentation of non-linear flight dynamics phenomena
are presented by the author in the same AGARD Lecture occurring on high performance aircraft [2]. To achieve this, the
Series (LS 191) 11,2]. It aims at the study of asymptotic first two paperq ire devoted to the prcrt,,tion of some
solutions of non-linear differential equations depending on theoretical results concerning non-linear dynamic systems. In
parameters. The first part of the communication is devoted to a particular, taking into account the class of non-linear equations
brief presentation of the basis of Bifurcation Theory which is encountered in Flight Dynamics, this paper deals with the
limited to the non-linear phenomena observed by the author study of asymptotic solutions of non-linear autonomous
when he has analysed high performance aircraft behaviour. In differential equations depending on parameters.
particular, complex bifurcations and chaotic motions are not
treated in this paper. Numerical procedures developed to use Although, a great number of specialised book exists in the
results from Bifurcation Theory are presented. Then, some literature, the first part of the communication is devoted to a
remarks are stated to establish a connection between brief presentation of Bifurcation Theory basis. It is limited to
asymptotic and quasi-stationary behaviour. Finally, a the non-linear phenomena which have been observed by the
methodology dedicated to the analysis of non-linear systems is author when he has analysed high performance aircraft
proposed. behaviour (fixed points, periodic orbits). In particular,

complex bifurcations and chaotic motions are not treated here.
2. RESUME
Cette communication est la premiere d'une s•rie de trois As in most practical cases it is not possible to get analytical
present~es par l'auteur dans le cadre de la Lecture Series de asymptotic solutions, the second part of the paper is related to
IAGARD (LS 191) [1, 2] dont robjet est d'aborder l'rtude des the numerical procedures which have been developed to use
solutions asymptotiques des systiames diff~rentiels non results from Bifurcation Theory. The construction of
lin~aires dependant de parametres. La premiere partie de cette equilibrium solutions by means of continuation process is
communication presente rapidement quelques fondements de discussed and a review of the available packages is presented.
la theorie des bifurcations en se limitant aux seuls
phenombnes non-lin.aires que l'auteur a rencontrý au cours de From a theoretical point of view, parameter variations are
l'tude du comportement des avions tr~s manoeuvrants. En assumed fixed an independent of time. When temporal
particulier les mouvements chaotiques ne sont pas trait~s ici. parameter variations are not small, one can observed
Ensuite, les procedures numeriques utilis~es pour mettre a behaviours which are different from those initially predicted
profit les resultats provenant de la th~orie des bifurcations sont by means of Bifurcation Theory. The following part of the
passees en revue. Puis, quelques commentaires sont effectuds paper is dedicated to a discussion of the connection between
en vue d'(tablir une liaison entre le comportement quasi- asymptotic behaviour and quasi-stationary and/or transient
stationnaire dun syst~me et son comportement asymptotique. behaviour. These last considerations are closely connected
Enfin, une methodologie d'•tudes des systames non lindaires with the attracting basin computation problem which will be
est proposde. treated in the following paper [I].

3. INTRODUCTION At the end of the paper, the methodology which has been used
In practical situations, non-linear dynamic systems are very to analyse non-linear systems behaviour, especially in Flight
frequently simplified or "linearised" at the beginning of their Dynamics, is proposed.
analysis. Unfortunately, such linearised equations do not give
a full account of the observed phenomena and only some 4. SOME SIMPLE EXAMPLES OF NON-LINEAR
limited conclusions regarding stability may be reached.. Thus SYSTEMS
under certain conditions the normal behaviour of dynamic Let us consider a set of linear or "linearised" differential
systems which is predictable on the basis of "linearised" theory equations depending on parameters. It is well known that, for a
suddenly gives way to "incomprehensible" behaviours when given value of the parameter, there exists only one solution to
linearised analysis is no longer valid, the fixed point problem the stability of which is provided by an

eigenvalue analysis. Even if the fixed point is unstable, there
Nevertheless, a careful examination of the observed is only one asymptotic solution when time tends to infinity1 .
phenomena in connection with mathematical results on non- As it will be shown in the two following examples, the
linear systems called Bifurcation Theory reveals that, in many
cases, these surprising behaviours can be well understood. 11f one or several eigenvaluea of the system have null real pail,

This communication is the first pail of the three papers which one can be noticed that it is possible to transform the initial
are presented by the author in the same AGARD Lecture system in a law dimensional one which exhibits only one

asymptotic solution.
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situation is more complex when the "linearisation" is not valid In this plane, (C) is the locus of points so that the equatio, (1)
and/or when the system is non-linear, admits three solutions is within a curve in the form of a cusp

a1/27+ b'/4 = 0
4.1 Riemann-Hugoniot's catastrophe This curve is called a bifurcation surface.
Let consider the differential scalar equation:

x = -(x. + ax + b) 4.2 Hopf s bifurcation
Let consider a 2-dimensional system mn polar coordinate

where x represents the state of the system and (a,b) slowly Le c)

varying parameters. This equation may be considered as (r,O)with a parameter C:

describing the evolution of X in a gradient field the potential
of which is defined by equations:LI 

= 4C-2)5i = -grad('P(x))

Consequently, a study on the extrema of (p(x) provides where r
2 

= X1
2 

+ X2
2 and e = Arcfg(X2 1 ). For c <0, only one

information on the stability of the equilibrium states (figure 1). stable equilibrium solution exists (r = 0). For c Ž0, solution

'P kP• (r = 0) becomes unstable and a new stable solution appears

X, X, / X (r=I -). This latter corresponds to a limit cycle (periodic

X2 orbit) the radius of which increases as 4' (figure 3).

b=-3 b=-2 b=-1
Jump X2 x 2 t

tP Cycle

x)2 x xxx, / X X X Ix,

b=O b=1 b=2

Jump C-o C=0 C>0
'P/

b=3 Lhft cycle

fig. I - Riemann-Hugoniot catastrophe: potential function.

0()=(.4/4)+(ax2/2)-b. with az--3

In the (x, a, b) space, the equilibrium manifold (M) is defined stable
-- unstable

as the set of equilibrium points (i = 0)and (C) is its projection

onto the (a, b) plane (figure 2). fig. 3 - Hopfs bifurcation. a) Equilibrium solutions as a
function of C, b) return to steady state as a fuiction of C.4equilibrium surface 5. FOUNDATIONS OF BIFURCATION THEORY

The mathematical basis of Bifurcation Theory can be found in
a great number of specialised books [3, 4, 5]. Nevertheless, it
appears to be essential to present a few aspects of this theory

M at the beginning of this communication in order to facilitate
I catastrophe the understanding of the following chapters. It can be noticed

catastrophe ithat chaotic motions are not treated here.

5.1 Preliminaries
X The present topic is devoted to the behaviour analysis of non-
Slinear autonomous ordinary differential equations depending

burcatiOf surface on parameters.

In the following, we will study system

.i =f(.V;L)(4)
f 2 - Riemann-Hugoniot catastrophe: equilibrium mainfold where X is an n-dimensional vector, P is an m-dimensiomal
and bifurcaflon surface. parameter vector and f: RI x Rm -+ R' are n non-linear conti-

nuous and differentiable relations.

........ ........
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The equilibrium states provide no information about the .(i)
transient response of the non-linear system to a parameter
variation. Nevertheless, the previous examples show that the y= -5 with (i.,,i) E W'x W'x W"
computation of fixed points and/or periodic orbits and the
characterisation of their stability are essential to analyse the Z = Z

asymptotic behaviour of non-linear equations. In order to
achieve this, the Implicit Function Theorem, only for gradient It can be noticed that the essential non-linearities of the

type systems, and the center manifold Theorem which are original system are described completely by equation 1, and

stated below are two of the most important contributions to since bifurcations occur only in non-linear systems, the

Bifurcation Theory. complete bifurcational behaviour can be studied by analysing
only the reduced system (2).

Implicit Function Theorem: Let f: R" x R" -+ R" be a gradient

type system satisfying, for some p, >0 and p2 >0 sufficently From a practical (and partial) point of view, an interesting case

small: occurs when the unstable manifold is empty. We assume that
the linear part of the bifurcating system is in block diagonal

i) f(xo, to) = 0, form:

ii) =[AxJaJhas a bounded inverse, i =Bx+fAX,y) (3)ý = ,., +.f(x~y) 3it f(x 0 ,L 0) =[fa~x0,,t0)/ar] ha onedivre = Cy+g(x,y)

iii) f(x,±t) and fj(x,) continuous for Jx-x 0 J<p, and where (x,y)ER' x R', B andC are nXn and nxn matrices

IR -R.1< P, whose eigenvalues have, respectively, zero real parts and
negative real parts, and f and g vanish, along with their first

Then, there exists x = x(p) for all lp- Jl < p 2 such that: partial derivatives, at the origin. Then, if we introduce the
a) x() center manifold in the y=0 space

W, = {(x,y):y = h(x)} with h(o) = Dh(0) = 0

b) f(x(ii),pi)=0, where h: U -* R' is defined on some neighbourhood U cR"

c) for li -/ jI < p2, there is no solution other than x of the origin (figure 4) and if we consider the projection of the

vector field on y = h(x) onto Ec one can estimates that
d) x(•) is continuous. Si=B +Ax,xh()) (4)

This theorem allows conditions under which a non-linear is a good approximation of(2) restricted to We.

gradient system of equations has a unique solution in a small ES

region around a fixed point.

Many real non-linear autonomous dynamic systems are non
gradient type. They can exhibit limit cycles (periodic orbits) we
when a pair of two conjugate imaginary eigenvalues crosses
the imaginary axis under a variation of a parameter. To
analyse this new situation one need to generalise the previous ' h I))
results to general system. This is achieved by the Center
Manifold Theorem [6].

IA

Center Manifold Theorem for flows: Let f be a C'vector field

on Rn vanishing at the origin (f(o) = 0) and let A the Jacobian

matrix at the origin (A = D(0)). Divide the spectrum of A

into three parts,a,,a,,o. with

< 0 if X e G fig.'4 4- The center manifold and the projected vector field.

Rel 1=0 if X eC,, From Henry ['7and Carr [8], it follows that h(x) can be
1>0 if XECF., approximated arbitrary closely as a Taylor series at x=0 and

that the local asymptotic stability or unstability of the original

Let the generalised eigenspces of a,, a, and a. be Es, Ec and systems is given by the stability properties of equation (4)

Eu, respectively. Then there exist C' stable and unstable which can be deduced floro the original system by means of

manifold Ws and Wu tangent to Es and Eu at 0 and a C(" the classical projection method [9, 101.

center manifold tangent to Ec at 0. The manifolds WS, Wu and Furthenqore, let the original system (3) depends upon a k-

We are all invariant for the flow f. The stable and unstable vector of parameter (R)
manifolds re unique, but We need not be. = BX+ f.(x,y)

At the bifurcation point the center manifold theorem implies 5,=C.c+g,(x,y)
that the bifurcating stn is locally topologically equivalent =
to
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where E xSchematically speaking, branching new solutions may occur,

w ex,y) R" x R and R. One can state that, at the in principle i three ways. These situations are called
origin, the parametrized system has an n+k dimensional transcritical, supercritical and subcritical bifurcation.

center manifold tangent to (x,p) space, which may be Transcritical bifurcation occurs at a bifurcation point (e to h)

e power s of the graph while supercritical (b, d) and subcritical (a, c) appear at
approximated as te r sees o e bifurcation-limit points.
h:R"x R -4R". The invariance properties of center
manifolds guarantee that any small solutions bifurcating from --
the origin must lie in any center manifold and thus we may b)
follow the local evolution of bifurcating families of solutions -)
in suspended family of center manifold. ,

5.2 Bifurcation of fixed points
When assumption ii) of the implicit function theorem does not
hold, i. e. a real eigenvalue changes sign, the uniqueness
assumptions c) no longer holds and branching solutions, C )-
starting from (xo,,o) can appear. The most common situation

occurs when the equilibrium curve exhibits a limit point
(figure 5). At this point a real eigenvalue must change sign as F). > - /
the parameter is varied and the solution curve is unique. -... 7)

/
/

fig. 6 - Double bifrcation points- bifurcation points (a to d),

S\ ,,bifurcation-limit (singular turning) points (e to h).
"- -- -- stable solution, - - - - unstable solution.

SThe previous figures are related to one dimensional, systems.gWhen the dimension of the system is greater than one, the

fig. S - Limit (regular turning) points( h following cases may be nountered (figure 7).
-- _stable solution, - -- - unstable solution.

In fact, considering one of the state variable as a new -
parameter and the ancient parameter as the missing state , / -- -

variable, it can be noticed that in most practical situation-, the X\ /
following inequality is valid2: \ \ -I- - - -

kf(x1, .. x_,~,,... ..~ *.) 0 /{,, iI \ . -• -- -0

and the implicit function theormn works. / \

With the same restrictions than for limit points, the second
case is related to double bifurcations points. They are irregular A
point, i. e. the implicit function theorem does not work,
through which pass two and only two equilibrium branches Fig. 7 - possible bifurcation cases when n is greater than I
with distinct tangent (figure 6). The stability of the bifurcating - stable solution, - - - - unstable solution.
branches is given by the following theorem.

Coming back to double point bifurcations, it is of interest to
Theorem :The stability of such equilibrium curves must change mention that there can exist isolated solutions which may be
at each regular turning point and at each singular point (which generated by breaking these bifurcations points under another
is not a turning point) and only at such points. system parameter variation (different from p ). This problem

is known as Imperfect or Perturbed Bifurcation Theory [3, 111.

2LtnIand(x,,a7) bearegular limitpointoff(x,a)=o" 0 In Flight Dymmics as in many physical Problem, this situationcan occur when the non-linear equations possess symmetry
cpropties which are broken by one of the parameters. The

Let conside the equation =f(x, a)r = 0 which has the following figure shows an illustration of this phenomenon in
same limit point. However, )f/ax 0 at this point. Thus which the sign of the breaking bifurcation parameter

determines the evolution of the initial stable branch beyond
Wd) is irregular for.
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the unperturbed bifurcation point and the location of new same equilibrium point. Therefore, through the center
isolated solutions, manifold theorem the complete bifurcational behaviour of

these systems can be analysed by studying either a one or a
two dimensional system. The exact form of the reduced system
depends on the nature of the higher order terms in its Taylor
series expansion. One can notice that the first example of § 4
in an illustration of the cusp catastrophe:

------- - - Finally, one has to consider the case when two conjugate
A 4 imaginary eigenvalues cross the imaginary axis as one of the

parameters varies while the other eigenvalues remain in the
left half plane. Known as Hopf Bifurcation, this situation
corresponds to the apparition of closed orbit in addition to the
fixed point as stated by the next theorem.

SH .... Hopf Bifurcation Theorem: Suppose that the system

/A • • mi=f(xg), xeRn and ptER has an equilibrium point

(x0, 9.) at which f,(x0 , 0 ) has a simple pair of pure imaginary
eigenvalue and no other eigenvalues with a zero real parts.

Then, there is a smooth curve of equilibrium points (x(4) p)

P4 P14 0 with x(t.o)=x,. The eigenvalues X(i),X(,4) of f,(x.,iL±)

which are pure imaginary at p= o (X(tL),X(tt)=+±i.)vary

smoothly with g .If, moreover,
fig. 8 - Imperfect Bifurcation Theory - a) the symmetric

problem, b) the asymmetric problem. . = d * 0

To conclude with real bifurcations, one must mention that then there is a unique three-dimensional center manifold
there exist (rare) cases for which more than one real

eigenvalue changes sign at the same equilibrium point. The passing through (xe,,R,) in R'xR and a smooth system of
case in which two eigenvalues vanish at the same point is coordinates (preserving the planes p =const.) for which the
called the Bogdanov-Takens bifurcation [12]. Taylor expansion of degree 3 on the center manifold is given

Coming back to gradient type or locally gradient type systems, by
it is necessary to mention that the theorem of Elementary X, =(dc't+a(ii+ +i2))i 1-(o+c,+b(i 1 2+ 2 2))i 2

Catastrophe proposed by Thom [13]. It classifies all ' 2+cy. + b(221+)2)) 2 +(aq±+a(.1 2+
bifurcational behaviour (catastrophes) of finite dimensional X2 =

gradient systems for up to four parameters. The list of the which is expressed in polar coordinates as
seven catastrophes which corresponds to bifurcations of (dt+ar-)r (5)
codimension 5 4 is in the following figure.

&M C.. vafl" Cdb..= ((o + c + br'

1) t 3manifold which has quadratic tangency with the eigenspace

•. x ,, 2 sX (iP) agreeing to second order with the paraboloid
NsaciOt )

(3) r", swlv X5 .V o ,oz 3 i±=-ar2 /d. If a < 0, the bifurcation is supercritical and thesetl 6 periodic solutions are stable limit cycles, while if a > 0, the

(4) The butternY X 14* WI
3 

4 , 2 ÷ 4 bifurcation is subcritical and the periodic solutions are
(5) mh W•,o•*ite X' 3,r3• W3.3*,,".÷ 3 unstable limit cycle (figure 10).

(6) UThse ei i 3 * 3 N .3 (z. • ÷ For an observer, the system behaviour is very different in the

(7) The W"011C ÷Y .r .* I two Hopf Bifurcation situations. Crossing a subcritical Hopf
( ,7) m mBifurcation leads to a smooth divergence to a limit cycle with a

small amplitude. Moreover, this divergence disappears if the

fig. 9- Clausiflcauton of the seven elementary parameter value comes back to its initial value. When the

bifurcation is supercritical a sudden and violent divergence can
be exhibited by the system. In the most simple cases, this
situation may lead to a stable periodic orbit with a great

Apart from this clamification, one can notice that, for such a amplitude. The return to the previous "quiet' situation can be
system, the Jacobian matrix describing its linearised problematic because of an hystensis effect of the orbits to
approximation is symmetrical and therefore have only real parameter variations which is very similar to the phenomenon
eigenvalues. Moreover, for systems with less than six observed in the Riemann-Hugoniots catastrophe for fixed
parameters, no more than two eigenvalues can vanish at the points (§4.1).

.- ,-.---.- ---- -- ...-.. ..
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X Although it seems to be very rare in Flight Dynamics, it is of
interest to consider the case bifurcation point for which there

are two conjugate pure eigenvalues in addition to a null real
eigenvalue. This case is known as the Gavrilov-Guckenheimer

a) •- bifurcation for which the normal form is given by the
following equations in cylindrical polar coordinates:

666#* i r= arz + ar'+ arz'+O(fr'z14)

S= b br2
+bz

2 +b3r2z+b 4z 3 +o(0r,4')

xAt, 4l 0= o + 00r, Z12)
Considering the interaction between the Hopf bifurcation and
the various real bifurcation point one can find additional
bifurcations of periodic orbits from non trivial branches and
additional bifurcations giving rise to three dimensional
dynamics such as invariant tori [5, 14].

5.3 Stability of periodic solutions
There are two ways to determine the stability of closed orbit.,A 'The first is the classical Floquet Theory, the second comes

from the use of Poincar6 Maps. Although these two methods
fig. 10- Hopfbifurcation. a) subcritical, b) supercritical lead to the same results, the last one is a more geometrical

approach.
Coming back to (5), one can note that these equations are

invariant under the symmetry (r,O) -4 (-r,-O). So, carrying Let y be a periodic solution of some flow 4, in Rn arising

the normal form of the Hopf bifurcation up to the fifth order
and replacing the third order coefficients (a) by a variable from a non-linear vector field f(x). Let I c R" be a local

cross 3ection of dimension n-I to which the flow is everywhere
parameter ( s2), it is then possible to study the generalised transverse. Let p be the unique3 point where y intersects and

Hopf bifurcation singularity with the radial part: let U ; E be a neighbourhood of p.
r- = a,,-' + 0(,-')

For a point q E U, the Poincard map or first return P: U-*
by independently varying the coefficients p, and ps2 [3]. Apart is defined by

from the standard Hopf bifurcation point, a second bifurcation p(q) = CD(q)
set is the semi parabola:

IL2 = 4a 2~p with 1a2/0 < 0 where 'c = r(q) is the time taken for the orbit (D,(q) to first

on which a pair of closed orbits, one an attractor and the other return to I (figure 12). Generally, T depends on q and need
a repeller, coalesce and vanish (figure 11).

not to be equal to the period (T) of y however 'T-4 T as

q._p.

'12

4

fig. 12 - The PoincarO map.

fig. 11 - The generaltsed Hopfbifsratiaon, a, <0 care. 31'-f has multiple intersections with I, then shrink I until

there is only one intersection.

I,-
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It can be noticed that p is a fixed point for themap P and
that the stability of p for P reflects the stability y for the rx
flow 4b, Moreover, considering P as a (n-I) discrete time ST

system, stability or instability of the orbit is given by the f ITo
situation of the (n-I) eigenvalues of the linearised map to the
unit circle. 2T .e** 2T .:ooo ooo0

9000 O0 0000000 1 0 00000

Coming back to Floquet Theory, the stability of Y is 60ooO°T
determined by the eigenvalues (Floquet multipliers) of the **O 0 0

following matrix 
00,0

Tl %Too°
H~ 000000000

0o
2T oOo

000 0 000

which is a representation of a particular fundamental solution 0oooOo° 3

matrix e', where R is a nxn matrix, of the system. From a
practical point of view, H can be obtained by generating a set

of n linearly independent perturbed solutions of f(x). fig. 13 - limit point and period doubling bifurcation.
CpsOf stable and 0000 unstable periodic orbits

Considering the particular form of the fundamental solution a) periodic limit orbit, b) supercritical - bifircation, c)
matrix, it can be noticed that the multiplier associated with subcritical-1 bifurcation, d) -1 bifurcation from an unstable
perturbations along y is always unity while the module of the branch, e) repeated -] bifurcations

remaimng (n - 1), if none are unity, determine the stability of The last type of bifurcation from the branch of periodic
the orbit. solutions occurs when two complex conjugate eigenvalues

intersect the unit circle. At this point, the originally stable
Finally, one can noticed that the (n - I xn - 1) matrix of the branch of periodic solutions becomes unstable and a stable or
previous linearised Poincar6 map is also a representation of unstable torus may appear (figure 14).
the fundamental solution matrix by suppressing all the
elements coming from perturbations along y.

5.4 Bifurcation from periodic orbit
The stability of periodic solutions may change with the
variations of system parameters, one or two multipliers can
move outside the unit circle.

The Bifurcation Theory for fixed point with eigenvalue I is
completely analogous to the Bifurcation Theory for equilibria
with eigenvalue 0. The typical case corresponds to a limit fig- 14- "Compler" bifurcation-
point along the dependence curve of periodic solutions on a
parameter (figure 13). However, one may encounter more
complicated behaviour of periodic solution branches in the Analogy with Hopf bifurcation suggests that orbits near the
neighbourhood of the bifurcation point when there is an bifurcation will be present and will encircle the fixed point of
inherent syrmetr, the Poincard map. As an individual orbit of a discrete mapping

cannot fill an entire circle, the bifurcation structure is much
The second case occurs when one multiplier crosses through more complicated than that which can be deduced from a
the unit circle at -1. This bifurcation do not have an analogue search of periodic orbit. Indeed, there are flows near the

* for equilibria. In the literature, this bifurcation is refereed as bifurcation which have no periodic orbits near the bifurcating
"Brunovsky bifurcation", "flip bifurcation", "period doubling one but have quasi periodic orbits instead,
bifurcation" or "subbarmonic bifurcation". At this point, the
originally stable periodic solution becomes unstable and a As for fixed point, one have to mention that there exist cases
branch of periodic solutions with a two fold period branches in which several eigenvalues cross the unit circle at the same
off (figure 13). parameter value. This leads to complex phenomena which will

not presented in this paper. See [5].
Multipliers on the new branch are equal to the square of the
original multipliers. With respect to the orientation of the 6 NUMERICAL PROCEDURES
parameter variation, the branching can be either supe,-ritical During the past ten or fifteen years many method have been
or subcritical. If the original branch of periodic solution is suggested for the numerical solution of non-linear prblana.
unstable, the new branch will also be unstable. Moreover, the This includes, in particular, the solution of parameter
period doubling bifurcation often occurs repeatedly leading to dependant non-linear equations by continuation techniques and
complex orbit associated to very long period, the related methods for bifurcation and stability analysis. In an

alphabetical order, and without claiming completeness, we list
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some relevant available packages: ALCON [15], ASDOBI in which the sign of the derivative dxk/dsis given by the[161, AUTO [171, BIFPACK [181, BISTAB [191, CONEX [201,
CONKUB [21], CONSOL [22], HOMPACK [23], LINLBF odentation of the parameter s along the curve. So, the other
[241, PATH [25], PITCON [261, PLTMG [27], Some of these derivatives are computed from (8) and the system of
codes are in the nature of packages that deal with several ential equations (7) can be solved by any numerical
aspects of the problem while others concentrate only on technique for the integration of initial value problem.

specific aspects. However all these codes are based on As the erors of approximation accumulate during integrationcontinuation methods. A h roso prxmto cuuaedrn nerto
and the computed solution deviates from the correct solution,

6.1 Continuation methods [28] i., e., equilibrium curve, it is necessary to improve the

Continuation methods are a direct result of the implicit accuracy of the obtained solution by means of Newton's
function theorem which states that if the Jacobian of a non- method applied to (7) with a fixed value of xk.
linear system at a fixed point (x,,IL0) is non-singular, then

6.2 Remarks
there exist a unique curve of fixed points containing the known It can be noticed that this continuation process allows the
fixed point Although this result is only valid in a small region computation of the various bifurcation points. This is achieved
around the fixed point, the curve of fixed points can be by introducing additional "bifurcation functions" to the original
extended by applying the implicit function theorem at a fixed system. As an example, a curve of limit points is determined
point near the end of the curve known to exist through by the solutions of the new system:

((X ). A - Ax, ,PsV)= 0

When the Jacobian is singular, the continuation process fails de{ ]0
and must be modified. The modification consists in taking the

The reader is invited to see [28] for other bifurcation
arc length of the solution curve (s) as a parameter to continue functions.

the equilibrium curve in the (n + 1) dimensional space as
follows. Another interesting case is the computation of the periodic

orbits envelope. Two different approaches are generally
encountered. In the first, the periodic orbit is considered as the
solution of a classical boundary value problem for partial
equations. Rather than considering the entire orbit, the
Poincare map is used in the second. It leads to the computation
of fixed point. The difference between these two approaches is
the dimension of the resulting set of algebraic equations to be
solved. It can be noticed that the second approach gives a low
dimensional set of equations compared with the first one.

Finally, it can be noticed that contiruation requires the
evaluation of the system and the computation of partial
derivatives which can be very time consuming. Thus, there is a
need to improve performance of such codes in order to get
almost interactive procedures even for high dimensional non-
linear systems.

fig. 15- Continuation principle. 7. QUASI-STATIONARY AND TRANSIENT BEHA-
VIOUR

Introducing the arc length with the following equation Up until now, it has been considered that the value of the
(dxV 2 (2 2 parameter ptis fixed and independent of time. In manydL+"" , ) + = 1 (6) practical situations it is not the case and the system exhibits

quasi-stationary behaviours and transient motions; theand differenting 0with respect to arc length, we obtain a difference between these two evolutions is the value ofsystem of n linear algebraic equations in n+l unknowns: parameter change over time. If it is slow in comparison to
_df= -y'- -o (i=I,...,n) (Q) changes of states variables, quasi-stationary behaviour is
ds , a d, L ds observable. There are at least two situations to be considered:

Let us assume that the matrix is regular for certain values s
and k. Then, the equation can be solved in the form a) movement along a stable branch,

d d•= Pd, ýý, i=l,2,...,k-l,k+l,...,n+l •) b) movement through bifurcation points.
di ds

In the first situation, Douglas and al 129] shows that if thein which the coefficients •, can be carried out by means of system has a stable manifold and fixed points corresponding to

Gauss elimination, comstant inputs, then an initial state close to this manifold and
a slowly varying input signal, in an average, sense produce a

Now, if we introduce (8) in (6), we get the relation trajectm that remains close to the manifold.

I + ,t = I. The second situations leads to different behaviour regarding
ds A the nature of the bifurcation point encountered. As an

illustation, the following figure shows posible situtions.
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necessary to check the predictions by means of numerical
X simulations . But for the difficult cases and if there is any

, -doubt, the last step of the methodology consists in performing
"only a few numerical simulations before testing the predictions
on the real system.

0 b CONCLUSION
This paper is the first part of the three communications
which are presented in the Agard Lectures Series (LS 191)
which are devoted to a presentation of non-linear phenomena

.,~' -oo°° -observed on high performance combat aircraft. More
generally we are concerned with the asymptotic behaviour of
non-linear differential equations depending on parameters.

After introducing the reader to non-linear dynamics by
means of simple example, the main part of this paper is

related to a brief presentation of Bifurcation Theory for
gsof possible crossingfbfurcation ordinary differential equations. This presentation has been

and limit points during quasi-stationary behaviour, limited to the lonely non-linear phenomena encountered by
the author in the Flight Dynamics domain. Nevertheless

basic theorems, bifurcation of fixed loints and periodic

Case a) corresponds to a simple bifurcation point. A solution orbits have been described.

continues after the bifurcation point along a stable branch. In
case b), where the bifurcation is also a limit point, the branch In order to compute the bifurcational behaviours, the basis of
on which the solution continues is chosen at random. In real numerical procedures have been discussed and a list (not

problems, the problem has to be formulated statistically; the exhaustive) of available numerical code have been given to
character of distribution of fluctuations of state variables the reader. Then, a methodology which has been set up to
determines the probability of the choice of individuai branches investigate the behaviour of high performance aircraft is
of solutions. Case c) is a very interesting one because after proposed.
crossing the limit point the system evolves into the closest
stable state, i., e., a state in whose domain of attraction the In many real problem, the parameter are fixed and

limit point belongs. This new notion will be treated in [I]. The independent of time. It may follow transient motions or/and
last case (d) corresponds to the Hopf bifurcation. Generally the quasi-stationary behaviours. In spite of the difficulty of this

apparition of the stable periodic orbit seems to be delayed and problem which is connected to the computation of the
the low amplitude solution around the bifurcation point is attracting domain of stable steady state treated in the next
unobservable (30]. paper [1], some typical examples are given in the last part of

the paper.

8 METHODOLOGY
In many real problem as in Flight Dynamics, one has to deal REFERENCES
with high dimensional sets of equations in which the 1. Guicheteau, P., "Stability analysis through Bifurcation
parameter cannot always be considered as independent of theory (2)", AGARD LSI91, 1993.
time. Then it is necessary to set up a methodology to
investigate non-linear behaviours. 2. Guicheteau, P., "Non-linear Flight Dynamics", AGARD

LSI91, 1993.

The first step is to compute all the steady solutions of the
Ssystem and their associated stability. As this step is generally 3. loos, G., and Joseph, D., D, "Elementary Stability and
* time consuming the computations are limited to the field of Bifurcation Theory", Springer Verlag, 1981.

interest. Nevertheless one must be very careful because, the
number of steady solutions for a given parameter in generally 4. Marsden, J., E., and Mc Cracken, M., "The Hopf
not known. Bifurcation and its Applications", Springer Verlag, 1976.

, The second step consists in making graphic representations of 5. Guckenheimer, J., and Holmes, P., "Nonlinear

the results in appropriate subspaces especially if the dimension Oscillations, Dynamical systems and Bifurcations of Vector
of the system is greater then 3. This step requires versatile Fields", Springer Verlag, 1983.

graphic codes and a good experience of the system under
consideration. Sometimes this step shows that equilibrium 6. Kelley, A., "The stable, center stable, center, center
branches miss. unstable and unstable manifolds", in J. Diff. Eqns., Vol 3,

1967.
The third step is concerned with the prediction of the system
behaviour when a bifurcation point is encountered. To 7. Henry, D., "Geometric Theory of Semilinear Parabolic
achieved this, the computation of the attracting domain of the Equations", Springer Lectures Notes in Mathematics, Vol
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I. ABSTRACT stability region or its boundary for low and high dimensional
This communication follows [1] which was presented in the non-linear dynamic systems.
same Agard Lecture Series (ILS 191). In the previous
communication, some theoretical foundations of Bifurcation 4. SOME REMARKS ABOUT CONTROL PROBLEM
Theory have been recalled and a methodology aiming at a As opposed to many theoretical approaches, practical control
systematic prediction of the behaviour of non-linear laws are generally non-linear because of their formulation or
differential equations has been presented. This communication the use of non-linear elements. Then, it is interesting to
mentions some problems which are connected with the investigate if the methodology proposed in [1] can help the
introduction of control laws in order to stabilise an unstable designer to design "good" control laws from a stability point of
dynamic system and presents a brief state of the art related to view. More precisely, one must answer the following question:
the determination of the attracting region of a stable can "stabilising" control laws introduce new bifurcations while
equilibrium point. they are used to "stabilise" the open loop system?

2. RESUME Without invoking Bifurcation Theory, these control problems
Cette communication est la suite de [I], pr~sent~e dans le are studied and, fortunately, "good" solutions have been found
m~me cadre de la Lecture Series 191 de rAgard. dans laquelle in many particular cases. An amount of results is already
des bases de la thdorie de bifurcations des systýmes available in the literature (see [2] among others).
diff~rentiels non linmaires ont 6t6 rappel6es et une
m~thodologie visant A pr6dire le comportement des syst~mes In this chapter. we are concerned with an autonomous dynamic
dynamiques a 6t6 pr~sente. Cette communication 6voque system:
quelques problgmes lies ý l'utilisation de lois de commande ;c()=f(x(t).u(t)) (4)
pour stabiliser des syst~mes instables en boucle ouverte et fait
une revue des mithodes employees pour determiner la region where x and u denote state and control vectors respectively. f
duattrevtuon d'un point demployeestable d uermnr la rgion and x are n-dimensional vectors, u is rn-dimensional vectord'attraction d'un point d'6quilibre stable d'un systeme
diff~rentiel non lin~aire, and f(x(t),u(t)) are non-linear functions satisfying Lipschitz

conditions.

3. INTRODUCTION
It is now well known that Bifurcation Theory can be of help As opposite to [I] in which u does not usually depend on x and
for the prediction of the asymptotic behaviour of non-l;near t, here we assume that u depends on the state variables in the
differential equations depending on parameter [1]. Efficient following way:
numerical procedures are now available and a number of u(t) = g(x(t).p) Q2)
previous studies have demonstrated that Bifurcation Analysis
can be used to predict complex phenomena. where p are new control parameters and g(x(t),p) are non-

linear functions satisfying Lipschitz conditions.
In practical situations non-linearities are numerous either in
the dynamic system or in its control laws. Rather than From the definition of the control vector (2), it follows that
detailing non-linear control theory, the first purpose of this every equilibrium point of the open loop system (1) is also an
communication is to show that, without invoking complex equilibrium point of the closed loop system and vice versa.
phenomena, it can be very instructive to introduce Bifurcation However, the stability of the closed loop solutions can differ
Analysis while designing control laws in order to exhibit basic from the stability of the open loop solutions and new complex
non-linear effects without performing extensive numerical asymptotic solutions may appear.
simulations.

In order to precise these phenomena, let us consider two cases:
Some objectives of control laws are to stabilise unstable
systems and/or to increase their robustnesses under system a) a linear control law applied to a non-linear system,
modifications and under perturbations. The robustness of a b) a non-linear control law applied to a linear system.
stable steady state is closely related to its attracting region.

4.1 Linear control law 131
The other purpose of this communication is to present a review The non-linear dynauxic system described motion equations of
of the methods employed to compute the attracting basin of a an F-15 fighter mathematical model. The control law is a
stable equilibrium state. Starting with the stability theory linear 3-axis control augmentation system (CAS) for a given
proposed by Liapounov. the review describes the different angle of attack:
fields of research actually investigated to compute either the U =Akx

--- mm [ ] nmn u uu ... [ mnI
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where k is a gain matrix. This control law has been designed,
among other, to delay and suppress wing rock at angle of

attack greater than 200.

When lateral control deflection are at neutral and considering
gains as new parameters in the continuation process described
in [1], it is possible to investigate their influence on Hopf
bifurcation at zero sideslip angle (figure 1) and to show that
this influence is not linear. Further more, beyond a particular

value of the gain (kc), the stable equilibrium domain

decreases.

fig. 3 - Controlled unstable second order dynamic system.

A linearised analysis of the closed loop systemft 0.1m ( ki. txe

OA shows the influence of the gain on the stability of the

asymptotic solution. When (3.(0)/&) goes from zero to the

o - adopted value k'for the closed loop system, it crosses a value
- -1-0 -6 kc for which the steady state admits two conjugate pure

imaginary eigenvalues.

fig. 1 - Evolution of the limit of stability of the Dutch rollmodeas fwstio of levtordefecton ad cntrl gin. From a non-linear point of view, one can say that there is amode as a function of elevator deflection and control gain.

Hopf bifurcation in kc. Moreover, let k(i) a non-linear gain in
Beyond the new stability limit for the controlled aircraft, one the following form:
can see the influence of the gains on the existence and on the 2 ki
stability of periodic orbits which are considered as wing rock k(i) 2 kt
(figure 2) thus helping to understand aircraft behaviour.

as i. e. the feedback is almost linear (k(.i) =_ k) in the vicinity of

ko •the equilibrium points and is saturated (k(i) = k(i)J) when

x tends to infinity. Then, one can easily show that the Hopf
bifurcation is sub critical. Thus, when k is greater than k',
periodic orbits surround the stabilised equilibrium points.
These orbits can exist even for the adopted gains value
k*(figure 4).

S2
* , I~-omp. x

fig. 2 - Maximum amplitude of periodic obits as a function -
* of elevator deflection and control gain`

4.2 Non-linear control laws e -

In practical situations, non-linearities are numerous in control j
laws. They can be introduce by the designer to solve specific • .

control problem (non-linear behaviour for a linear system, 0
"linearisation" of a non-linear systems, ...). They appear also
because non-linear etcuients are present (saturation, stop,
hysterisis, ... ). In spite of the numerous previous works in fig. 4 - Amplitude of the steady solutions as a fuwction of the
which Bifurcation Theory is used to solve control problems non-linear control gain.
[4,5,6,71, the following example shows that the methodology - stable, - -- - unstable, -.-.- oscillatory unstable.
proposed in f1] can be used to predict the robustness of the
controlled system under perturbations. In this 2-dimensional case, the unstable periodic orbit

envelope visualises the boundary of the attracting region of the

Let an unstable second order linear differential equation be controlled system. As an example, if the amplitude of a
stabilised by a control law which depends on a non-linear perturbation is greater then the amplitude of the periodic orbit,

element as it is described on figure 3. the controlled system exhibits a divergence.
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Applied to a typical combat aircraft with unstable lateral sustituting E x - V (t) in (3). the study of periodic solutions

modes which is stabilised by a saturated feedback on angular for time invariant system is transformed in the study of

rates and stops on lateral control deflections, computation of periodic systems (Poincar6 map).

the unstable orbit surrounding the stabilised equilibrium point
gives a first insight to the "robustness" of the control law. As The domain of attraction (attracting basin, region of
the dimension of the system ;s greater than two, the unstable asymptotic stability) of a steady state or of a periodic orbit is

periodic orbit is only one element of the attracting region defined as the set of all initial conditions x0(t 0 ) that tend
boundary(figure 5).

respectively to x° or to '(t) when time tends to infinity.

C' Numerous methods have been proposed in the literature for
estimating the region of asymptotic stability. They may be
roughly divided in several classes according to the following

40.3 
figure.

-/ A1) V scrne•pesmnsio
A) Zubov - A2) altemrtive siuuots

Lyapuno/ 
ctemiorm

Mehod/S) LA Salle ) P~rl YWfig. 5 - Fixed point and periodic orbits for a stabilised typical for RA
combat aircraft. unm o ý B2) abWoute sability

* fix.ed point. - stable orbit, ---- unstable orbit. C) Non-Lyapunov

In this example. stops on control deflections generate a stable
periodic orbit which surrounds the unstable limit cycle and fig. 6 - Classification of the methods for the estimation of the
limits the divergence of the motion. The unstable limit cycle domain of attraction.
belongs to the attracting region boundary of stable periodic
orbit. Nevertheless, the distinction between these different classes is

less obvious in modem methods because they use generally
5. ATTRACTING BASIN joint approaches.
A stable equilibrium state of a non-linear dynamic system is
surrounded by a stability region. The determination of this 5.2 Stability in the sense of Liapounov [8]
region is of great interest for dynamics and engineers. It allows To characterise the stability of an equilibrium point of non-
to define the limit of validity of linearised approximations for linear differential equations. two well-known methods are due
the original non-linear equations, to better understand the to Liapounov.
global behaviour of the system and to determine the maximum
values of the perturbations for which the perturbed system 5.2.1 First method
returns to the initial stable state. In the vicinity of an equilibrium point x', the non-linear

The aim of this chapter is to present several methods which differential equation (3) is rewritten under the following form

are used today in order to give an answer to the attracting =Ay + R(y). y = x - x ()
basin computation problem for sets of ordinary non-linear where A is the jacobian matrix of f in i and R(y) are non-differential equations. hr stejcba arxo nx n ~)aenn

linear functions which satisfies two conditions:

5.1 Preliminaries R(O) = 0
The systems under consideration are of the general form: VE _ 0,311 _ 0: I1 • _ T I R(Y)I YJ

i(t) = f(x(t)) (3)

where f and x are n-dimensional vectors and where f(x(t)) are The first method gives stability conditions for x' in (3) using
non-linear functions satisfying Lipschitz conditions. stability results from (4).

It exhibits, at least, a steady statex' Poincari-Liaunov's theorem: If all the eigenvalues of the

dx" (t)/adt = 0 t > t, jacobian matrix (A) have a strictly negative real part, then x"
is an asymptotic stable steady state for (3). If. at least, one

or a periodic orbit V'(t) defined by eigenvalue of the jacobian matrix (A) have a strictly positve

"'(t) =f(•'(t)) real part, then x' is an unstable steady state for (3).

where
V'(t + -) = V'(t) xr = NT 5.2.2 Second method

where N is a positiveinteger. This second method is based on the relation between
generalised energy functions around the equilibrium points

Considering periodic orbit and without loss of generality, we and their stability. These functions are called Liapounov
functions. They can be define for autonomous and non-

can assume that x' = 0 and t1 = 0 and notice that by autonomous systems.
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the origin is asymptotically stable, Zubov equations

Lemma 1: a function V(x) is said to be oti definite within (x) = [VV(x)r f(x) = O(x). (I + V(x)). 1+ f,an open 11 g R', X E l if-

a) V and its partial derivatives are continuous in fl, admit only one solution for all x belonging to A and satisfying
b) V(x) = 0 for x = 0, V(O)=0. Moreover, this solution verifies Zubov conditions for
c) V(x) > 0 for x* 0.

For an autonomous system, a Liapounov function is a definite all (D(x) such that Jqi(x)dx <00, for fx sufficently small.
positive function in the vicinity of x such that its time 0
derivative is negative or null along the trajectory defined by
(3). Following Zubov theorem, V(x)=-l is the boundary of the

attracting region. Unfortunately, this last equation never
Lemma 2: A non-autonomous function W(x,t), is said to be admits a closed form solution and, therefore, different

positive definite inside an open 12 g R", x E •2 if: approximations have been proposed in order to estimate the

a) W and its first partial derivatives are continuous in Q for attracting region.

all t>O, Referring to the hypothesis of the Poincari-iUapounov

b) W(0,t) = 0, for all t > 0, theorem, Zubov assumed that the system is written as
c) there exists an autonomous positive definite function V(x) ; = Ax + R(x)

such that W(x,t) a V(x), VX E 1, Vt 0. where A is a constant matrix having negative real part
eigenvalues and R(x) admits a Taylor expansion. In this case.

Then, an non-autonomous positive definite function W(xt) is a the solution of Zubov equation may be expressed in a form of

Liapounov function in fl if the seriesW~xg) Vx),Vx~ ~Ž0V~x) = V•(x) + 1(x) +...+ V(x) +...
where VK(x) is a homogeneous function of mth degree.

Theorem: The solution x = 0 of (3) is stable if a Liapounov
function exists in the vicinity of the origin. It is asymptotically Moreover, Zubov established the following properties

stable if, in addition, (-V'(x)) is also positive definite, a) V,(x) is negative definite,
b) the serie converges in the vicinity of the origin,

5.3 Liapounov methods c) V(x) is analytically continuous along the trajectory starting
The methods using Liapounov functions are derived from the
results obtained by Liapounov in [8]. Two approaches have from the origin and ending to the boundary (mA) of the
been developed using either results from Zubov or an attracting region,
extension of Liapounov's theorems due to La Salle. I.d) for every approximation (t?)of V(x) truncated at the term of
5.3.1 Zubov's methods [9, 101 degree m, the boundary of the attracting region lies between
All the fllowing methods are derived from a theorem the surfaces
proposed by Zubov. t(x)= =rina; e(x)i=iax

Theorem: Let us consider an equilibrium point x inside a It can be noticed that the computation of the terms V 1 , V2 ....
region A c Ri. A is an attracting region for (3) if and only if Vm is made by solving sequantially equations linear in their

there exists functions V(x) and D(x) such that: coefficients derived by substitution in

1'(x) = [Vv(x)]r .f(x) = -cl(x) (1-1V(x))

a) V(x) is a continuous function in A and (I(x) is a From a theoretical point of view, Zubov method provides the

continuous function in R', true attracting region when m tends to infinity but the
b) convergence is not uniform. From a practical point of view, it

Vx E A, l1x4 0, -1<1V(x) <0 can be remarked that the choice of the function 0 affects the

Vx E R'. lxi * 0, 4(x) > 0 domain of convergence of V(x) and influences the shape of the
c) sraei'=ceVy22>0. 3(ya,,)ER* suchthat V(x)<-y, forlxV>y 2  surface V= cre.

and O(x)> oa for |xJ >-y, Drawbacks of these methods appear to be the assumption of
analyticity of the system, the numerical computation, the

d) V(x) -+ 0 and O(x) -, 0 when xi --+ 0 arbitrariness of 0 and the non-uniform convergence of the

e) if y is on the boundary of A, y * O, (0 is an equilibrium procedures. On the other hand, an analytical estimate of the
true region of stability is obtained.

point), then lim V(x) = -1,
Based on Zubov equations other methods have been proposed
in the literature. Several authors express the solution in the

f)dV ( .lform of Lie series by means of differential geometry zoncepts.
f) -=(x) tl+V(x))- I " IlThe last class of method consists in using the followingJ equation
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r)
) = -x) V(x) The second group of method is related to the application of the

concept of absolute stability in the frequency domain as
as a generalised Zubov equation where the functions TP and proposed by Popov criterion, choosing a suitable Liapounov
must satisfy suitable equations. function holding for a whole class of non-linear systems

defined by a sector condition in the sense of Aizerman. Then,
5.3.2 La Salle method [11,121 the results obtained with this approach are specific of a type of
The largest class of methods for the estimation of the attracting non-linear system but they are more general than the previous
region refers to an extension of Liapounov theory due to La one. Nevertheless, they are also too conservative.
Salle and Lefschetz which applies to continuous and discrete
systems respectively. 5.4 Non-Liapounov methods

Nowadays, to compute the attracting region, there are

Theorem 1. Let V(x): R' -- R be a continuously essentially two methods which do not use explicitly Liapounov
functions.

differentiable function. Let 0, designate the region where
V(x) < 1. Assume that Q, is bounded and that within Q,: 5.4.1 Trajectory reversing method

This method is known as trajectory reversing method or
i) V(x)>0 for x*0, backward mapping. It is based on La Salle extension of the

Liapounov stability theory. It provides an iterative procedure
ii) V(x) < 0 along the trajectory of the system, for all x t 0 in for obtaining the global attracting region for multidimensional

ill systems, both time-invariant and time varying without

Then conditions on the topological nature of the asymptotically
stable point under study.

a) x = 0 is asymptotically stable,

b) every trajectory of the system in Q, tends to x = 0 as Following theorem 1 of §5.3.2, let CO the boundary of Q1 . Let

jt--±j.j=0+l±2, ... denote a sequence of time instants,

Theorem 2. Let V(x): R'-*4R be a continuously wheretj>tkforj >k, tj >0forj >0and tj <tkforj <0. Let

differentiable function. Let fU, designate the region where CJ denote the map of the points on C0 along the trajectories of

V(x) < 1. Assume that 0, is bounded and that within fl,: the system at time t = tj. Then
C cC , for j>k,j.k=±l.±2....

t) V(x) > 0 for x * 0, provided that the measure of distance of a point to the origin is
given by the value of the function V at this point.

ii) 8V(x) = V(x(m + 1))- V(x(m)) < 0 along the trajectory of

the discrete system. A curve C is obtained by integration of the dynamic equations
Then of (1) from t = 0 to t = tj. For j > 0. the integration is done

a) x = 0 is asymptotically stable, forward in time, while for j < 0 the integration is backward in
time.

b) every trajectory of the discrete system in fl tends to x = 0

as m- • o,,Then, if C_ denotes the map of the curve C. as t -4 -- , due

These theorems imply that every solution which starts within to the uniqueness of the solution of the equation (1), C _ is the

il, must remain in it. Also. if one adopts the level curves of domain of attraction of the origin.

V(x) as the measure of distance from the origin, every The last remaining problem is the construction of an initial

trajectory that starts within Q, converges to the origin estimation of the attracting region bounded by the curve C0. A
monotonically. solution to this problem follows from Liapounov results.

This approach has a more limited objective than the Zubov one Suppose that f(x) in (3) is continuously differentiable and
but it is still based on the construction of a suitable Liapounov suppose that its jacobian matrix A has eigenvalues with
functions. It can be decomposed in two groups of methods. negative real part. Then. noting that there exists a unique

positive derinite solution P to the matrix equation
The first group of methods may be applied to low dimensional PA to e Ar e=Q
non-linear systems with an exactly defined structure. In this
field, all the classical procedures ( graphical or numerical) for every positive definite matrix Q, Liapounov indirect

have been applied to construct Liapounov functions: method states that V = xrPx is a Liapounov function of (1)
close to the origin. Moreover, assuming an Euclidian norm. it

a) Lur6 Liapounov functions [13,14, 151, can be stated that:
b) variable gradient procedures [16, 171, X'PX <P.r' =
c) Krasowskii results [18).

where p. is the minimum eigenvalue of P. Hence a curve
Generally these methods lead to conservative results. fbr C defined as
higher dimensional systems, several optimisation approaches
have been used to modify an inital Liapounov function in order C.:xrpx = p..r'
to enlarge the volume of the attracting region [ 19]. is a suitable inital estimate boundary of the attraction domain.
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Based on the previous considerations, numerical procedures attracting region surrounding the origin is shown on the next
have been set up and applied on low dimensional continuous figure with h - it and C. at t --0.time systems [20,211.

Example 1: The Van der Pol's equation: 1.0 1.01XI•X

where g is a parameter. For 9 >0, the origin is C- 3

asymptotically stable and the attracting region is bounded by
an unstable periodic orbit. Considering g = 1, and starting X2 0.0+
with r = 0.5 in C0, the evolution of the successive estimations

of the attracting region is shown in the next figure.

2.0 - --1.0

C- -Ls 0.0 15'

X2 0.0 fig. 8 - Evolution of the domain of attraction of the originfor
the parametrically excited pendulum for the case

p. = 0.02, 8 = 0.1 and E = 1.5.

The trajectory methods are attractive because of their

-2.0 generality and simple theoritical framework. However, their
computational efficiency is generally poor and only low
dimensional systems have been treated with them.

-2.0 -1.0 0.0 1.0 2.0 To reduce the computational effort, (n-l) facets can be used to
X, approximate the basin boundary of an nth order system [22].

fig. 7 - Evolution of the domain of attraction of the origin for Starting from a local quadratic Liapounov function around the
stable equilibrium point under study, a small convex polytope1

is generated. Then, the vertices of this initial polytope are

domain of attraction. integrated backward in time to generate the vertices of a non-

It can be noticed that the backward image C, is convex polytope approximation of the basin boundary. Thus,

indistinguishable from the exact domain of attraction of the the real image approximates the attracting region as backwards

origin, integration time approaches infinity.

Using theorem 2 of §4.3.2, the previous procedure may be
extended to systems with periodic coefficients described by -tm X2(v I +v2 )]

difference equations. The existence of the inital curve C,

derives from unique and positive definite solution P of the -'-Error

discrete version of Liapounov's equation I
H T PH-P=-Q 2[0-t(v )+-t(v2 )]

where H = [aF / ax] 0 has eigenvalues with modulus less than

one for any given Q.

Example 2: Parametrically excited pendulum
The motion of a pendulum whose support is harmonically
excited in the vertical direction is given by the following
differential equation with periodically varying coefficients: Step-3.i', = Xi or Hypersphere

= -Px 2 - ( 8- 6 sin 2t) sin x,

where p., 6 and E are systems parameters. This system

possesses two equilibrium solutions x, = (0,0) and fig. 9 - An inital convex polytope and its backwards inte-
gration approximation.

x. = (±n, 0) as well as numerous periodic solutions of various

period. Considering the case p = 0.02, 8 = O.l and l = 1.5 for
which the origin is stable, t~e evol;ttion of estimates of the 1 A polytope is a finite, flat slide solid in any high dimensional

space.

Ip

-d
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VAs the system is a non-linear one, a test is applied to check approximation. More generally, extension to higher
whether the new non-convex polytope is a good approximation dimensional cases is limited actually by the rapid growth of
of the image of the original convex polytope. Adaptative facet the (facet number)/(vertex number) ratio with the growth of
refinement is used to correct any accuracy of the image state space dimension.
approximation (figure 9).

The vertices of P_ are derived by following the flow (half Apart from these numerical procedures, one must mention the
method proposed by Genesio [231 because he uses a very

tone curves with arrows) backwards from the vertices of P, simple trajectory method in connection with topological
considerations which have been recalled in the two followingThe non-linearity test for facet [v,,v,] is illustrated in the theorems.

* upper right-hand comer. The point generated by following the

flow backwards in time from the center of the P.. facet should Theorem 1: The boundary of the region of stability is formed
by whole trajectories.

be close to the center of the corresponding P. facet. As it is

not close, a new vertex will get added to the hypersphere As a consequence, excluding the trivial case n = 1. the

between v, and v, to generate the new polytope P.,- following conclusions may be drawn:

a) n = 2. If the region of asymptotic stability is bounded, its
Recently, this method has been applied to conster ct the boundary is formed by either a periodic orbit or a phase
attracting region of an unstable aircraft lateral directional polygon (with unstable equilibrium points) or a closed curve of
model with feedback stabilisation and control saturation [22]. critical points.

S..b) n > 2. If the region of asymptotic stability is bounded, there
exist constraints on the number of equilibrium points and

""4 : precisely the following holds.

2. ,.Theorem 2: Given an odd system (n * 5) without degenerate 2

equilibrium points, a necessary condition for the region of
stability to be bounded with a smooth boundary is that at least
two other equilibrium points exist apart from the origin, an

-2 - even number of which must lie on the boundary.

-4
For even order systems, the necessary condition for the region

. . -. of asymptotic stability boundedness is much weaker, since thesum of the indexes of the equilibrium points on the boundary
20 • - , ,is equal to0.

0 .

-20 6 Lt _L_7 1

20 .. . . .. 0. .

C) 0

fig. !1- Estimation of the domain of attraction of the origin-to. -'... .. .. , , "-:.
-10 .. for the van der Pol's equation.

-0 ... 0 o .. Rather than describing successive approximations of the
attracting region, Genesio used only a limited number of
starting points from an inital estimate of the attracting basin in

fig. 10 - Vertices of a polytope approximation of the basin connection with the knowledge of all the equilibrium states for
boundary (1= 1 sec)for the lateral/directional aircraft; a) the given system.
sideslip angle vs. yaw rate, b) roll angle vs. roll rate, c) roll
angle vs. sideslip angle.

Due to a linear representation of aircraft motion equations the 2 Degenerate equilibrium points are considered those for which
state values are not realistic. However, this example shows some of the eigenvalues of the linearised system are zero or
that a great number of vertices are still required for accurate pure complex in pairs.

*, -...
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Coming back to the Van der Pol oscillator, the region ofI asymptotic stability is obtained performing only one backward The following theorem characterises a critical state being on
integration from inside or from outside the periodic orbit the stability boundary of the region of stability.

(figure 11).

Although this method is only efficient and applicable to low part Of WU(Y)

order systems, use of topological considerations leads to the
following differential geometry method. - p

**--- port Of
WNY)

54.2 Differential geometry method [241
This method gives a complete characterisation of the stability W5 (P)
boundary for a fairly large class of non-linear autonomous WIp - -

dynamic systems satisfying two generic properties plus one
additional condition that every trajectory on the stability
boundary approaches one of the equilibrium states (fixed
points or/and periodic orbit) as the time t tends to infinity.
Then, it is shown that the stability boundary of this class on
non-linear systems consists of the union of the stable
manifolds of all equilibrium states on the stability boundary.

To present the theoritical basis of this theory, one need to
introduce some definitions. fig. 12 - Stable and unstable manifolds of a hyperbolic

periodic orbit.

An equilibrium point (i) of (3) is said to be hyperbolic if, in

local coordinate, none of the eigenvalues of the jacobian Theorem : Let A be the stability region of a stable equilibrium
matrix Jxf at x has zero real part. For this equilibrium point point. Let i be a critical element. Assume the following:
we can decompose the tangent space Tx uniquely as a direct
sum of two subspaces Es+Eu such that each subspace is
invariant under the linear operator Jxf. The eigenvalues of J f i) All the critical elements on the stability boundary (mA) are

restricted to E' have a negative real part. The eigenvalues of hyperbolic,
Jf restricted to Eu have a positive real part. The stable and ii) The stable and unstable manifolds of critical elements on

unstable manifolds W'(i), W'(i) are defined as follows: MA satisfy the transversality condition,

iii) Every trajectory on aA approaches one of the critical
W'() = {x e M:4,(x) .- • as t -- o} elements as t--,,.

W'(4)= x E M:4,(x) -"I * ,,r -- Then,

A periodic orbit (y), i. e. an image of a non-constant periodic a) Pis on the stability boundary aA if and only if
solution of (1) is said to be hyperbolic if all the eigenvalues of W'(i) c A = 0,
the transition matrix have modulus not equal to one (one must b) i is on the stability boundary aA if and only if
be always 1) [3]. The stable and unstable manifolds of a
hyperbolic periodic orbit are defined as follows: W'(i) g MA.

W'(Y) = {x E M:D,(x) -f T as t -- o*} The hypotheses of this theorem are very important and must be

W'(y) = {x e M:(D,(x)-- y as t-- checked carefully. For an example, we can observe that the
transversality condition does not hold for homoclinic and

Obviously, one can notice that these manifolds are invariant
sets, i. e. every traiec'try starting inside remains inside. In the
following, an equilibrium point or a periodic orbit of the vector
field f is said to be a critical element.

To further characterise the stability boundary, the idea of
transversality is introduced. First we say that a map g:M - N

is an immersion at x if the derivative map

df:T(M)-,,T,)(N) is injective, where T,(M) and

Tf(,,)(N) are the tangent spaces of M and N at points x e M and

f(x) e N, respectively. Then, if A, B are injectively immersed

manifolds in M, they satisfy the transversality condition if
either at every point of intersection x e A oB, the tangent
spaces of A and B span the tangent space of M at x or they do f1g. 13 - The transversality condition is not verified;
not intersect at all. An important feature of a hyperbolic prW,(')Wc(x)

equilibrium point i is that its stable and unstable manifolds

intersect transversaly at i,. Furthemore, the transversal heteroclinic orbit as it can be seen on the figure 13 because the
intersection persists under pertubation of the dynamic system. intersection of the unstable manifold of xI and the stable
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has dimension 1 . contains no source, then the stability region A(x,) is
In the next example (figure 14), the unstable manifold of x, unbounded.

does not intersect with the stability region and a part of the
stable manifold of xI is not on the stability boundary. With all these results, a numerical procedure can be set up to

determine the stability boundary by means of the construction
WNW,4) of the stable manifolds of all the critical elements which

belong to it 123, 24].

As an example, after computing the two stable equilibrium
points, (0., 0., 0.) and (-7.45, -7.45, -7.45), and the unstable

WIA iequilibrium point (-2.45, -2.45, -2.45) of the following system:
= -X + y

5' . lx + 2y - x-0. lx'

the procedure allows to compute the stability boundary of the
attracting domain of the stable equilibrium points as the stable
manifold of the unstable equilibrium point. A partial view of it
is shown in figure 15.

fig. 14 - The transversality conditzn is not verified; 3

W'(x)A = 0axs

The following theorems characterise the stability boundary.

Theorem : Let (3) be a dynamic system whose vector field 0

satisfies the following assumptions:

i) All the critical elements on the stability boundary are
hyperbolic, .3
ii) The stable and unstable manifolds of critical elements on
the stability boundary satisfy the transversality conditions,
iii) Every trajectory on the stability boundary approaches one Z ax#3
of the critical elements as t -- ,

0.

Let xi. i=1.2 .... be the equilibrium points and y,. j=l, 2.

be the periodic orbit on the stability boundary M)A of a stable
equilibrium point, then

ZA =UW'(x,)Uw'(Y,) -0

Now, the next theorem gives an insight on the structure of
equilibrium points on the stability boundary. 0

Theorem : Let (3) be a non-linear dynamic system which •320

contains two or more stable equilibrium points and satisfies fig. 15 - Partial view of the boundary of the domain of

the following assumptions stabilitv.

i) All the critical elements on the stability boundary (MA) are For higher dimensional system. graphic representation of the

hyperbolic, boundary is difficult. Nevertheless, its projection in particular
ii) The stable and unstable manifolds of critical elements on subspaces furnishes useful informations. The next figure

aA satisfy the transversality condition,
iii) Every trajectory on aA approaches one of the critical 6.00-
elements as 1 -- 6.00/ P Si

Then, the stability boundary must contain at least one -)

equilibrium point having an eigenvalue with a positive real .6.00-S

part. If, furthermore, the stability region is bounded, then M)A Ifts -- /
must contain at least one equilibrium point having an "12.00 , - ,I

eigenvalue with a positive real part and one source.

The contrapositive of the theorem gives a sufficient condition 2000 (90 D0 1000 1400 11400
for the stability region to be unbounded. p

Corollary : For the non-linear dynamic system (3), if it fig. 16 - Projection in the (pr) plane of the boundary of the
domain of stability. PESI and PES2 are stable equilibrium

satisfies the assumptions of the previous theorem and if aA(x,) points while PEII is an unstable one.
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shows partial view of the stability boundary between two 6. Holmes, P., "Bifurcation and chaos in a simple feedback
stable equilibrium points of a set of five non-linear equations control system", IEEE WP5-4:00, 1983.
describing aircraft motion at low angle of attack under inertia
coupling conditions. 7. Mitobe, K. and Adachi, N., "Hopf bifurcation in an

adaptative d. c. servo system", Int. J. Control, Vol 54, no
It should be noticed that this result seems to be 4,1991.
complementary to those obtained by the construction of the
attracting domain in §4.3.2. 8. Liapounov, A., M., "The general Problem of the stability

of Motion", Princeton University Press, Princeton, New
6. CONCLUSION Jersey, 1949.
This communication follows [11 which is presented in the
same Agard Lecture Series (IS 191). In the previous 9. Btliard, 0., "Dutermination du domaine S'attraction des
communication, some theoretical foundations of Bifurcation 6tats d'6quilibre stables d'un systame diffdrentiel non lin6aire
Theory have been recalled and a methodology aiming at a autonome", M6moire pour le Mastnre de techniques
systematic prediction of the behaviour of non-linear afronautiques et spatiales.
differential equations has been presented.

10. Zubov, V., I., "Methods of A. M. Liapounov and their
The first part of the communication is related to the applications", Nordhoff, Groningen, 1964.
examination of several problems which are connected with
the introduction of control laws in order to stabilise an 11. La Salle, J., P., "Some extensions of Liapounov second
unstable dynamic system. From a stability point of view and method", IEE Trans. Circuits Theory, Vol CT-7, 1960.
under implicit assumptions on the controlled system (
continuous time, continuous non-linearities, ... ) it has been 12. La Salle, J., P., and Lefschetz, S., "Stability by
shown that Bifuraction Theory can help the designer to Liapounov's Direct Method with Applications", Academic
predict system behaviour and to compute a "good" control Press, New York, 1961.
laws. Although promising results are available in the
literature, some efforts remain to be done to take into 13. Szergo, G., P., "A contribution to Liapounov's second
account practical discrete systems. These control problems method: Nonlinear systems" in International Symposium in
are closely connected with the attracting region of a stable Nonlinear Differential equations and Nonlinear mechanics,
steady state. Academic Press, New York, 1963.

The second part of the communication is related to 14. Schultz, D., G., "The generalisation of Liapounvov
determination of the attracting region of a stable equilibrium functions" in Advances in Control Systems, Academic Press,
point of non-linear dynamic systems. Many works have been New York, 1965.
done in this field. They are mainly based on Liapounov's
stability theory and the extensions due to Zubov and La Salle. 15. Hewit, J., R., and Storey, C., "Numerical application of
More recently, introducing topological considerations, Szergo's method for constructing Liapounov functions", IEEE
trajectory reversing methods have been developed and Trans. on automatic control, vol. AC 14, 1969.
numerous computational procedures have been proposed.
These procedures are appropriate on low dimensional dynamic 16. Schultz, D., G., and Gibson, J., E., "The variable
system. However, there is a need for improving them for gradient method for denerating Liapounov function", AJEE
higher dimension. Due to the difficulty to work with high Trans. Appl. Ind, Vol 81, 1962.
dimensional systems, a limited part of attracting basin is
generally computed. Is it sufficent? Are we interested by the 17. Hang, C., C., and Chang, J., A., "An Algorithm for
entire domain of attraction? It seems that a lot of work is constructing Liapounov functions based on the variable
needed to give practical answers to this problem [27]. gradient method", IEEE Trans. on automatic control, vol. AC

15, 1970.
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1. ABSTRACT For many years, study of losses of control and spins of combat
In Flight Dynamics, aircraft motion is described by a set of aircraft has been a very important field of research. In spite of
non-linear differential equations. depending on parameters, the efforts made, an analysis of such phenomena is still
associating the state vector (angle of attack, sideslip angle, difficult due to their complexity. their apparently random
speed, angular rates. ...) with the control vector (motivators, character and the small amount of knowledge available in the
...) through flight dynamics equations, aerodynamic model and field of high angle of attack aerodynamics.
flight control system. This communication presents some
works which aim at improving the knowledge and the Nevertheless, a careful examination of the many results
prediction of aircraft behaviour in particular flight phases for obtained from flight tests on very different aircraft reveals an
which classical linearised analysis of non-linear differential astonishing degree of similarity in behaviours which is
equations is insufficient or not valid, difficult to attribute to hazard. Further, the study of analytical

losses of control or spins showed that it was possible, given an
2. RESUME adequate model, to obtain satisfactory matching between
En dynamique du vol. le mouvement d'un avion est d~crit par comratational and either vertical wind tunnel or flight tests
un ensemble d'6quations diff(rentielles non lindaires, results. Thus it seems that control losses and spins are closely
d(pendant de param~tres, liant les variables d'6tat (incidence, related to the differential system used in simulation.
d6rapage, vitesse, vitesses angulaires. ...) et les variables de
commandes (gouvernes. ...) par lintermtdiaire des 6quations In Flight Dynamics, aircraft motion is described by a set of
de la mtcanique du vol, du module a~rodynamique et du non-linear differential equations, depending on parameters,
syst~me de contr6le du vol. La communication dvoque les associating the state vector (angle of attack, sideslip angle,
travaux ratais6s en France et s I'Etranger en vue d'amdliorer [a speed. ...) with the control vector (motivators) through flight
comprehension et de prtdire avec prtcision le comportement dynamics equations, aerodynamic model and flight control
de l'avion dans des situations de vol particuli6res pour system.
lesquelles I'analyse lintariste habituelle des 6quations
difftrentielles non lindaire est insuffisante ou inadapt&e. Since the beginning of the aviation era, analytical non-linear

methods on simplified sets of equations have been used to try
3. NOMENCLATURE to explain several phenomena occurring in Flight Dynamics.

Cý, C, C dimensionless body axes force coefficients lndependently of the interest of these approaches to analyse
dangerous Flight Dynamics phenomena, the simplified

C,.,C. C,: dimensionless rolling, pitching and yawing assumptions used in these calculus often reduce the quality
moment coefficients and the precision of the results.

XA, Y', Z' body axes aerodynamic forces This communication aims at the presentation of recent results

L',M',N' body axes aerodynamic moments obtained in Flight Dynamics with a global stability analysis

F, F, F, body axes thrust components methodology making use of Bifurcation Theory for non-linear
differential ordinary equations depending on parameters when

V. .N': body axes thrust moments linearized analysis is insufficient or not valid.
p.qr roll, pitch and yaw rates
u.v'w body axes components of aircraft velocity The first part is related to the early works about non-linear

phenomena using analytical techniques on reduced set ofcx angle of attack equations.

sideslip angle

8, ,, 8 aileron, elevator and rudder deflections Using two typical aircraft models, the second part of this
presentation is related to the application of Bifurcation Theory

S :lateral offset of the center of gravity to basic, but very simple and well-known, non-linear
phenomena such as, for example, spiral mode, auto-rotational

E,(D : pitch and roll angles rolling and Dutch Roll instability.
g :gravitational acceleration

The aim of the third part of this paper is to present the
m aircraft mass results obtained when the previously mentioned theory is

A.B.C moments of inertia for X, Y and Z axes applied to a real combat aircraft. i.e. the German-French
E product of inertia for X and Z axes Alpha-Jet from Dassault Aviation. The study is specifically

dedicated to oscillatory motions and to sensitivity analysis of
4. INTRODUCTION departures and spin predictions to a given set of parameters.
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After a brief description of the aircraft model, the oscillatory doubt that this approach is well suited for learning.
flight cases such as "agitated" spins are studied by means of However, this limited point of view cannot show the genesis
learning the stability characteristics of periodic orbits related of loss of stability and cannot explain more complex
to oscillatory unstable equilibrium points. Complex oscil- phenomena.
latory modes are pointed out. The synthesis of all these
results shows the existence of two very different spin modes Based on simple examples and others more complex, it is
for some given control deflections. It illustrates too that the proposed to show the contribution of the global methodology
lack of a realistic non-linear model may lead to great to the prediction of the behaviour of a natural aircraft for
difficulties for flight analysis when the motion is quasi- which motivators are considered as parameters.
periodic or chaotic. Comparisons between predictions and
flight tests at the French flight tests center are shown. 6.1 Motion equation and non-linearities classification
Analysis of the sensitivity of predictions to some model The adopted system of equations represents a six degree of
parameters modifications is also presented. The first freedom motion of a rigid aircraft. Since, there will be found:
sensitivity analysis deals with the influence of lateral offset
of the center of gravity on normal spin recovery. The second a. three momentum equations, assuming D = F = 0
one deals with the influence of gyroscopic torques induced
by engine rotors.A

AP - E" + (C- B)qr- Epq = LA + LF

Finally, the interest of this methodology is discussed in the B4 +(A- C)rp+ E(p2 -r2).= MA+MF
conclusion.

5. SIMPLIFIED NONLINEAR ANALYSIS OF Cr-Ep+(B-A)pq+Erq=N
AIRCRAFT BEHAVIOUR
The prediction and the analysis of control losses and spins of b. three force equations

aircraft are old problems. However, with the lack of m(u + qw - rv) =XA + F - mg sine

computers capabilities, the former works are related to the m(, + ru- pw) = YA + F, + mgcosesinD
application of exact or approximate analytical methods on
simplified non-linear equations. m( fv + pv - qu) = ZA + F + mg cos E cos (D

Among the others, one can notice the work done by Phillips c. two kinematic equations. Euler's kinematic equation for
[I] about inertial coupling at low angle of attack. In this heading angle is not taken into account
problem, the difficulty consists in taking into account the 4u= p+tanE(qsin0+rcos4i)
gyroscopic torques in the equations of motion. Neglecting
gravity effects and simplifying the force equations, he has 6=qcos01-rsinii
exhibited stability criteria which are still used today [2].
More recently, Hacker and Oprisiu revisited the validity The many non-linearities of this system can be classified into

domain of these criteria [3]. two groups.

At moderate angle of attack, losses of control are more The first one includes those which are intrinsic to the system
generally connected with aerodynamic non-linearities. They and which are due to the motion equations of a solid in space
are related to the loss of stability of longitudinal and/or (trigonometric lines and gyroscopic momentum).
lateral modes [4]. A lot papers are concerned with Dutch
Roll instability [5,6] for which aerodynamic non-linearities The second one includes those from the aerodynamic model.
are expressed as Taylor series. In this category, distinction should be made between

"At high angle of attack, quiet spin has been easily identified curvature non-linearities of coefficients (Cz(cc), C1(B), etc..)
as an equilibrium state of the complete set of motion and coupling non-linearities such as certain coefficients
equations providing adequate aerodynamic model is which connect longitudinal and lateral variables (Cm(B),
available [7]. These studies have shown that spin is a C1(a), etc..).
vertical helicoidal motion in which lift and drag balance
weight and centrifugal force. However, in spite of the
development of numerical tools and the similarity between Such a distinction is not immediately obvious but is justified

Euler-Poinsot motion and spin of modem combat aircraft. by experience. The first group leads to sudden jumps in

agitated spin was always considered as an hazardous aircraft motion for a smooth variation of the control

phenomena 181. deflections whereas the second induces more or less steady
oscillations.

The study of Schy and Hannah r9,101 can be considered as
one of the last works which can be related to a simplified 6.2 Aircraft models

treatment of control losses. They have shown the possibility These former applications of Bifurcation Theory are

of multiple equilibrium solutions for a simplified set of performed on two typical combat aircraft aerodynamic

flight equations; several of them are stable. It can be said models.

that these latest works have been the basis of the global
methodology used in this communication. Model A is a linear aerodynamic model with coefficients

independent of the angle of attack. It is used for the

6. BASIC NON-LINEAR PHENOMENA simplified auto-rotational rolling example.

The study of Flight Dynamics is generally based on a
linearized analysis of the motion equations. There is no Model B describes the aerodynamic model of a fictive

aircraft with high wing and tail unit. It is nevertheless

I...............
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realistic since it results from a synthesis of numerous wind gravity and pitch angle have an effect on the stability of the
tunnel tests. It is a non-linear aerodynamic model without motion at zero sideslip angle.
hysterisis. The validity of which is extended to angles of
attack from -10°to+W90 and sideslip angle from When lateral control deflections are at neutral, the
-40 0 to+40° (figure I). It is used for spiral mode example equilibrium surface of the system shows that spiral
and for Dutch roll instability, instability coincide with the existence of a fork bifurcation

on the lateral variables of the system 111,12]. Moreover, it
Important non-linearities important non.linearities shows the stable steady states which can be reached by the

as a function of 0 as a function of 0 system when the instability is encountered

40 
ofWO4

0j20 . 0

' J I ~~Large pitch up due to 0 4•• • .....
Non-linearitlies of Cm 

.........
t.

c fo ~40 Very considerable influence of IIcý 1 0 for 0 '' i II. i8o h

Cy. and Cvpchanga of sign-. a on the CL 4

cyandc s0fora 0---. C• enchanges of sign td)

S..-ci changesofsignl -8 -4 0 .r -9 4 0 4

"-.-Inflesion point on the CL #
on- th C L fig. 2 - Spiral bifurcation; a) (a. , )plane, b) (0, &)plane.

so 4o0 30 20 10o 10 70 30 40 50 -- stable fixed points, - - -- unstable fixed points

Non-linearities as a function of the state of the model
Starting from an equilibrium condition at an angle of attack
of 130 and a slightly nose up attitude, we encounter the
instability for an elevator deflection value of -0.50. It

Icaecorresponds approximately to the appearance of spiral
Increase in effectiveness instability foreseen by traditional criteria. Stability returns at

70 of ailerons and rudder about 8. = -4. 0 (figure 2).
- Czi- chinges of sign

60 10
for 6- - 0 A
•,,,jm tends L o 50teP) -- Perturbation

towards 0 ..-- C6I1 changes of sign
40 -.-- minimum of C61 0

C16t changes of sign
30. 16

20

00
Control srfaces effectiveness P(6)

fig . I - Recapitulative diagram for the principal non- -5
linearities of model B.

The formulation of model B has been adapted to the 0
requirements of flight mechanics numerical computations. r(°/$)

Each of six global coefficients:C,,C.,C0,CX.CyCZ. is
expressed independently as a function of the influencing 0

parameters: o, ,p.q,r. control surfaces. Thug the non-
linearities and aerodynamic coupling are expressed by means
of a Taylor series expansion around reference values (steady t (0)

state) defined as follows: -50
Ot=a. 0=0. p=q=r=O 6,=8,n =8=O 0 ,__ __

0 20 40 6
6.3 Spiral Instability Time (S)
This slow motion occurs at low angle of attack when the
aerodynamic model is symmetrical. Then inertial coupling is fig. 3 - Simulation of spiral instability.
negligible and the aerodynamic model is almost linear. Only
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Between these two limits of stability, the aircraft is unstable This last assumption has the advantage of decoupling the

in straight level flight and, in response to a lateral two kinematic equations, i. e. aircraft motion is not
disturbance, it tends towards a turning down flight, the constrained to be about a vertical axis. Furthermore,
characteristics of which are determined by the stable considering also that pitch rate and yaw rate are much more
equilibrium branches located between the two limits of smaller than roll rate, it is still possible to transform the
stability at zero sideslip angle (figure 3). initial problem in the study of a polynomial non-linear scalar

By comparison to the classical linearized flight mechanics, equation relating yaw rate and control deflections:
this methodology is able to predict the system behaviour 4 + (f& 1f5<)p4+.)

beyond the limit of stability. It gives also an idea on the non- + f &.' +

lineanties which are responsible of the instability. Thus, +(fISl +-f,,,Sn)p2+ f,(8.)p + (fSl + f,t Sn)
considering the essential non-linearities it is possible to which b nl
analyse the aircraft behaviour by reducing the motion which, by a change of variable:
equations to a scalar one: x = p+(fff)

S= (Asia 0+ Bcos Ecos 4)sin 4 comes back to the differential equation:

i=X5X +dX3 +cx 2 +b+ (C btl + C.8n) cos 0 + D,81 + D.8n • 5+d • + 2+bx +a

in which A, B, C, D, are coefficients which depend on the Thus, we demonstrate the canonical form of a singularity
aerodynamic chauracteristics. In particular, B is the classical -s R4 which is called butterfly catastrophe" a study of
stability criteria for the linearized motion equations when which gives bifurcation points which can result in jumps for

0 =0.
certain values of parameters (a,b,c,d). For our example, an

This scalar equation describes the evolution of variable 4) in illustration of the bifurcation surface is given in the figure 5.

a gradient field. The potential function (V) is defined by the

following equation: F I -a (

4)=-grad(V(4,))
In spite of its simplicity, this formulation synthesises aircraft
behaviour in the vicinity of the spiral instability. Moreover,

it exhibits that spiral bifurcation can appear in the ,

plane even if level flight at zero sideslip angle is stable

(8, =85 =0), (figure 4).

20Is 1•2-o O02

fig. 5 - Bifurcation surface in the (8t, 8r)plane. rudder at

'-O g • ' neutral.

For a pitch down elevator angle from the trim position

# (AS, =s- .S.. - , corresponding to the selected angle of

"-5 5 attack (a = 5) with the lateral control surfaces at neutral,

there are five possible equilibrium states identified by Al to
pa,& 4 - Spiral bifurcation; a) (61, 8) plane, b) (ca,3) plane. A5 on figure 6, and not only one as predicted by the linear

approximation. States Al, A3 and A5 are stable; A2 and A4

6.4 Auto-rotational rolling [12] are unstable.

This phenomena is known for a very long time and its study
has been recently revisited by Schy [9,101, Mehra 113 1, and Beginning from steady state A3, progressive ailerons

others [14 to 171. deflection which correspond to a small right hand roll.
performed at slightly negative load factor, displace the

Experiments and previous comipu:tations have shown that operating point ic' A'3 and then causes it to "jump" towards

auto-rotational rolling occurs at low angle, that speed varies A'i. Precisely, the roll rate responds at the very beginning

only a little and that the influence of gravity is negligible, more or less linearly (that is to say intuitively) to the pilot's

Thus, the complete set of equations of motion is simplified input and then it suddenly "jumps" to a level which is

as follows: excessively high in relation to the control deflection.
Generally the pilot immediately decides to return the

i) the aircraft aerodynamic model is model A, ailerons to neutral while the elevator remains in a pitch

ii) the drag equation is absent (constant speed), down deflection. It can be noticed that this action will be
more or less without effect, ai,d remains so even if he

iii) the terms including quantity g/V are assumed to be deflects the ailerons in the opposite direction.

always small and constant.
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roll (degrees/s) system under study using the reduced variable p*= pl/V.
A.Lm =6 , We then verify that, i-1 spite of the increase of the aircraft•4.5Weteveiytai

3V5 speed and the roll rate, the value of p* is perfectly stabilised
Al.5 10 at the value anticipated by the equilibrium computations.

-. -A2 2 6, = 0.5, ,,0- ,G)
" \A'3 so50 bmo 6

m trim at ao 5"

V 6V('
A3 0 oi(egess

-20 -1 0/ 10 20 rol61gess'.,, stick to the right te - S'

50 I
A4~ - Al I42.¢ ,o ,00•

2.5*~~~ A5 50 A

60 arn* bm -I

fig. 6 - Evolution of equilibrium roll rate as afunction of 0A- - --
ailerons deflections. 2 4 /6 dive

These two phenomena appear clearly in the following .
simulation which has been performed with complete /'
equations (figure 7). -10o =.-

2 
_ _

mrn(o) 0 fig. 8 - Auto-rotational rolling, elevator influence.

-2V"J Similarly, a pitch down elevator action can result in a
0 spontaneous jump from A3 type equilibrium to Al type

61 M - 10 (figure 8).

-201 WO) 2
70 1 0 __

-2at*) 0• _ 2

-OJI 6l(c) ii Perturbation

101

-10i a(*) 0 --

200

-2
p(o/•) 100 •

0(*) 0

0 5 10 15 20 25 30 35 -20
Time (s)

fig. 7 - Simulation of auto-rotational rolling conditions. 0 --I"" - -

Taking account of gravity effects, this simulation !eads to the
following remarks: -2001

a) giavits rfl.cts result in an oscillation of the state variables 0 5 Y!, 20 i5 30 35
around a tic.. i value and, Tine (s)
b) cause tI- aircraft to dive and accelerate. It follows that
the roll rate does not stabilise at the predicted value. More fig. 9 - Simulation of auto-rotational ro.ing conditions with a

generally, it is observed that it is possible to rewrite the pitch down elevator action.



"Finally, after an examination of the equilibrium curves, it WO)S~can be observed that, beginning from point Al, ailerons at J

neutral, it is possible to return to the initial state without roll 20'
rate. This can be achieved by another jump obtained by 61.//,( n
returning the elevator to its trim position (figure 9).

Regarding the influence of aerodynamic coefficients, it can
be noticed that, in spite of the differences between model A
and model B, the equilibrium surfaces are very similar 20
(figure 10).1-20

P.= Ptý Ptxl
V V

0,05 0,05
• " a- ,-100 -20

"', 6rn(*) a -10 6O M,,*
05 . fig. 12 - Auto-rotational rolling. Influence of the control law5 . : 1 0 5 l

in the (81, 8) plane.

-0,05 -0,05 It follows that if the system is constrained to remain in this
previously mentioned region, the aircraft will have a quasi-

A B - linear behaviour in response to pitch and roll control. In

fig. 10 - Auto-rotational rolling. Comparison between model A practice, such a system is an aileron-rudder coupling (ARI)

and model B. which is used on many aircraft. Although it does not modify

stable,------ unstable, - *oscillatory unstable the pattern of the bifurcation curves which is intrinsic to the
aircraft, it does modify their occurrence; the possible

From a practical point of view, it can be said that this type of equilibria are no longer the same, and are not so varied, as isFroma pactcal oin ofview itcanbe sid hatthistyp of shown in figure 13. In simulation, the jump disapears.

loss of control can be reached in spin recovery (figure I1).

P(-/s)
0 __100

M(°)-0 .20

100

50 6n=O (

r~ls)6n=0 0

fig. 13 - Auto-rotational rolling. Influence of the control law

200 on the roll rate.

P(-/s)
0 .6.5 Dutch roll instability

0 • " 0 This pheromena is very well reported in the literature (See
0 20 (0 60 [51, 161 and 1181 among the others!). It is now considered that

Time s) the instability is connected to a Hopf bifurcation point which

fig. 11 - Spin recovery by auto-rotational rolling, is approximated by classical theoretical and experimental

Handling Quality criteria (Critdyn. Kalviste....).

In addition to aircraft behaviour analysis, computation of
equilibrium surfaces and bifurcation points provides In this case, the first point of interest of Bifurcation Theory
valuable information on the appropriate method to be used in and especially the projection method is to characterise the
order to avoid jumps. In the present case, computation of the Hopf bifurcation (subcritical or supercritical) [191 in order to

get an indication about the amplitude of the periodic motion
bifurcation surface in the (8t,8fn) plane for a given beyond the limit of stability. The second point of interest is
deflection of the elevator shows that there is a region free of the computation periodic orbits envelope without usual
bifurcation (figure 12). simplified assumptions (figure 14) in order to investigate

"1Wlp
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secondary bifurcations which can induce the apparition of In this particular case [15], the motion seems to be a
wing rock or spins superposition of two periodic motions with very different

period (TI =4set T2 = 120s). Then it could result in some
(3 difficulties to analyse such a phenomena from flight tests

because the running time is generally less than the larger
= ---- ........- period.

The second illustration is related to flip bifurcation which
can considerably modify the appearance of spin behaviour

a*...e. ..•,.e. ",d ",, under small perturbations on controls [201 (figure 16).

---4' ) -. b)

- .. . .---- -"1

fig. 14- Dutch Roll instability and periodic orbits envelope. I I - .. , 4** -

6.6 More complex phenomena " 50.0 C)
In the previous paragraphs, it has been shown that
Bifurcation Theory is a powerful tool to give a better
understanding of several classical non-linear Flight 5 49.5
Dynamics phenomena for which a linearized approach is not
adapted. This last paragraph presents more complex
phenomena which are also encountered on combat aircraft. 0 49.0

Computation of periodic orbits envelope and their
bifurcations for different aircraft shows that agitated 48.5
behaviour can be also analysed by means of Bifurcation
Theory.

The most current bifurcation is periodic limit orbit as it is -- 6.40 -620
exhibited on the previous figure. • (degrees)

fig. 16 - Period doubling bifurcation. a) 8. = -18. 784',
When a pair of two conjugate imaginary eigenvalues crosses
the unit circle, the stable orbit becomes unstable and the b) . =-18.971*, c) 8. =19.002'.
motion lies on a toroidal surface surrounding the newly
unstable orbit (figure 15). Finally, when all the equilibrium states are unstable

excepted one which is weakly stable, very long transient
motions can appear [201. Sometimes, these motions seem to

i ,V,,C be complex and/or chaotic (figure 17).

-- w igI I o

t

fig. 15 - Motion on a torus (211. , *--,-* oscillatory unstable fig. 17 - Transient chaotic oscillations (211.
orbit.
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7. APPLICATION TO A REAL COMBAT AIRCRAFT o7
[21]
Alpha-Jet is a tandem two seat German-French aircraft for
close support and battlefield reconnaissance. With narrow
strake on each side of nose, it is also an advanced jet trainer. -tl

Considering its great ability to safely demonstrate numerous 50

and various high angle of attack behaviours and for flight
tests correlation, the training version was chosen to
investigate the interest of the methodology.

7.1 Aircraft Model

Each of six global coefficients Ct,CCnCX,Cy,Cz, is

expressed independantly as a function of flight and control
parameters. 20

-20
General expression of coefficients is in form "0

ci = Citar + cit unstat 80

Coefficients Cistat represent stationary aerodynamic effects.

They expresse the influence of sideslip, angle of attack, an (--
control deflections and angular rates.

Ciunstat terms take into account unsteady effects. They are
expressed as a transfert function. r

All these terms have been measured on a rotary balance in
the vertical wind tunnel at ONERA/IMFL and tabulated over
a wide state and control domain,

0-<c t-180'
_9O0°< 3_900 .• ;•- ..

-600°Is! <_!• 600 * Is

In order to prevent continuation problem and fictive
localized deformations of equilibrium surfaces, aerodynamic a
coefficients are usually smoothed to ensure continuity and OHM 20

derivability conditions for the resulting non-linear dynamic
system.

In our application, no preliminary smoothing was done. I?

Coefficients are evaluated by linear interpolation of the • ()
tabulated data. The following results will illustrate the
robustness of our continuation algorithm.

The adopted non-linear differential equations consists of:

a) a set of motion equations (6 DOF),
b) four additional equations according to the Laplace
formulation of unsteady aerodynamic influence on - - -

CI.C.,c,,cz. -

7.2 Spins
The results presented here are related to control losses, spin
and spin recovery. In order to simplify the interpretation of
computations, only typical cases will be shown. More
precisely, inverted spin and spin recovery using low negative
angles of attack are not considered. 8t()

Starting from a straight level flight at low angle of attack, fig. 18 - Equilibrium surface projection in characteristic
when the pilot moves the elevator for a full nose up attitude sub-spaces: (a) (cc88,)j (b) (r,8.8,.); (c)

(8m =--20r), we can observed that multiple steady states

appear at high angle of attack when both aileron and rudder (p,,gn).black stable, grey oscillatory unstable, little grey
deflection varies. The projection of the equilibrium surface unstable divergent

I '
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in three characteristic sub-spaces (ca,8t,8j), (r,8j,n) and So.

(p,6t,,,) allows easily to identify the domains of spins and
rolling motions (figure 18). 21

It should be observed that this surface is not symmetric. This
is due to non symmetrical aerodynamic data for symmetrical 0
aileron and rudder deflections at high angle of attack. 4to -1() o

As it can be seen on the previous figure, stability is very
different from a point to another. More precisely, it seems PMP P

that left spins, related to negative 8,, are much more --

unstable than right spins. Perhaps this low degree of -" ---

stability can explain pilot's difficulties to demonstrate left
steady spins on Alpha-Jet. The third type of steady states /
encountered on this surface corresponds to an important roll
motion at moderate angle of attack. In flight, this kind of
motion occurs mainly when pilots fail spin entry or fail the
transition from one spin on one side to another spin on the 0
other side. -O 0

fig. 20 - Envelope of periodic orbits when 81t varies forIn order to precise these motions, let us consider the

equilibrium curve corresponding to full rudder deflection 8, = -20* and 8, =-17*.

(= 171) (figure 19). Then, it seems that this behaviour will be very difficult to

60 15 observe and to characterise in flight. Finally, the most

1A7 important phenomena on this branch of the envelope is the
-. "rapid variation of orbits amplitude when 81 is less than -

40 0 -,--- 100. This could explain the sensibility of spin agitations4.0 versus aileron which is well known by pilots.

.1O_ On another branch of the periodic envelope, between
061•() 20 -. 0 0 t o() 80 1=-3.5' and 8,1=-7.5', there exist oscillatory unstable

orbits with great amplitude. (figure 20). Around them, the
i--.." motion takes place on a toroidal surface if it is stable.

S: 0 Nevertheless, the existence, for same values of 8t, of an
0 .,-invariant torus and a stable orbit can lead to non similar

flight behaviours. These different behaviours depend on the
initial state and of the history of control deflections during

-- -the manoeuvre.

-20 0 z() 2O -to 0 t o

fig. 19 - Equilibrium curve for 8, = 170.

--- stable, - - unstable divergent
-.- oscillatory unstable.

It can be observed that right spin is stable while left spin is A
always oscillatory unstable excepted for a few positive
aileron deflections. In the vicinity of this last equilibrium

branch (5, negative), there exist several periodic orbits i t (9)
when aileron deflection decreases from 8, =-O.2' to

6, = -20'. (figure 20).

Two distinct branches can be observed. On the first one, the 0

limit points are numerous. Between , = ---0.3080 to

5t =-70, two convergent series of flip periodic bifurcations f\ (_ .\&

determine a region in which an Alpha-Jet can exhibit a r
chaotic behaviour. In our case, on the contrary with typical
chaotic behaviours exhibited by well known particular 00 S
differential equations, there are only little differences in
amplitude between the different orbits of period T. 2T, etc. fig. 21 - Quiet left spin for 5, = -4'
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All these phenomena can be demonstrated in flight. In order SO

to make correlations between predictions and flight, flight
tests have been done at the French Flight Test Center in
Istres. The results which are going to be presented in the i5
following have been obtained at the end of 1988 and
analysed with standard flight test techniques at 0
ONERA/IMFL in Lille during 1989.

For full elevator and rudder deflections -

(6,,=-20',. =17') quiet left spin is obtained for

51 = -4'. (figure 21).

For an aileron deflection in the vicinity of 81 -5', chaotic !
motion was not demonstrated. This result is due to the short
duration of spin tests and to the absence of great -
differences between the orbits in presence as it was '1 1 1 .I ] IJ
previously mentionned.

When aileron deflection is close to -10', Alpha-Jet can M t (5) 50

exhibit three very different motions due to the existence of fig. 23 - Regular agitated spin for 81 = -100.
two stable orbits and a stable invariant torus. (figures 22 to
24).

Another very interesting behaviour is what happens when
pilots fail left spin entry. In this case, an oscillatory motion
at a moderate angle of attack appears. (figure 25). It
corresponds to orbits which surround the lower oscillatory A o e A V
unstable equilibrium branch of figure 19.

o~ i- I#t

020 t()10 W t b) O
fig. 24 - Motion on a toroidal surface for 8, -10°.

!oS0 90

rt " . -V V 'IV V
10 ao t(S) 50

ZOO ------------------------- ~

0..,[ 0 / ,-4 ' VA., r ,
o Q- i N

10 20 t(!) ý0
io to t (S) so

fig. 22- Quiet left spin for 8t moving from -200o 0. fl. 25- Unsuccessfl spin entry.
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Starting with the previous quiet left spin for 6t =-4' and CIO,

reversing rudder deflection, another quiet spin can be 4,

observed for a rather unusual combination of lateral control o
deflections. (figure 26). However, there is a very good o -

agreement with the stable equilibrium branch obtained for

-170 and negative aileron deflections. (figure 18).
10 zo t (5) "50

0 -

o0

10W ts )O+A ',) "

'z4 0 .lO t (S) .50 fig. 28- Flat spinfor 8m = 40.
7.3 Influence of a lateral offset of the cg

fig. 26 - Quiet left spin for 8,, = -17' and negative aileron During previous flight tests on Alpha-Jet and spin tests in

deflection, the vertical wind tunnel at ONERA/IMFL, it has been found
that spin is very sensitive to a lateral offset of the center of

Ccring back t3 ftill positive rudder deflection, quiet spin
turns into flat spin when pilots push on the stick accordingto equilibrium states computations for different elevator In the following, we will show that Bifurcation Theory is
deflectionequilib reu states computan f. dalso able to study this influence of the position of the cg on
deflections. (figure 27 and figure 28). spin recovery.

n(*) -- It is assumed that the lateral offset of the cg is only similar

to a shift (8) of the cg outside the symmetry plane. along
-n the Y body axis. Then, only moments due to exterior forces

are modified. Rudder at neutral and for a positive value of
a, (') ~elevator deflection, spin recovery from left spin is achieved

-. through a limit point for 8,< 40. Due the stabilising effect of

positiveS" on left spin and when , increases, the limit

"* �_-point moves in the (6t,8y) plane in a such way that spin

recovery may be less easy to obtain. (figure 29).

-•____ -. 6n :0

fig. 27- Equilibrium surface for . =40 in the(a, 81,8.) y(Cm)
space. black stable, grey oscillatory unstable, little grey RE.OVEM
unstable divergent. alOL

0
As it can be seen on the following figure, for example, spin o i•o 0 00
recovery is always satisfactory achieved by putting lateral

control deflections at neutral, after a transient small positive fig. 29 - Influence of lateral offset of the cg on left spin
aileron deflection, and pushing on the stick in order to
decrease elevator deflection. recovery in the (88,) plane.

_ ) I Illl l lil I n! •
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7.4 Influence of gyroscopic torques due to engines

Rotor speed effects appear in the momentum motion This difference cannot be explained by a possible instability
equation: of one equilibrium state. This phenomena is more surely

related to the stabilising effect of rotor speed during the
da = M transient motion which is closely related to the time history
dt of control deflections. Then, it can be said that, if no

significant effect is found on equilibrium state, gyroscopic
with 0 = afixed par + Cr,,or(.) torques due to rotor speed have to be taken into account, in

and 0r,,torks) = X(lroior "2r,,or) simulation, in order to increase the reality of spin entry.

8. CONCLUSION
In the following, we will consider constant rotor speed. At high angle of attack flight, fighter aircraft behaviour is so
Then, these effects are easier to take into account. It is complex that it is very difficult to predict it exhaustively.
similar to introduce additional moments in the previous Usually, this flight domain is investigated by means of
motion equations which have the same effect that taking into systematic or Monte Carlo numerical simulations before the
account cross coupling aerodynamic coefficients due to first flight and by means of extensive and expensive flight
angular rates tests.

Considering inertia characteristics and rotor speed of However, in spite of these tedious efforts, it remains that an
LARZAC engines which are used on Alpha-Jet, it seems that analysis of such phenomena is still very delicate due to their
these additional terms are non negligible damping terms. complexity and their apparently random character.

Equilibrium computations show no significant influence of Thanks to Bifurcation Theory and to computers capabilities,
this effect excepted only few localised deformations of a methodology and a software to investigate asymptotic
equilibrium surfaces. behaviour of non-linear differential equations depending on

parameters have been developed. This methodology has been
In simulation, when only one stable equilibrium exists, no used to study high angle of attack behaviours of an Alpha-Jet
difference can be seen with or without rotor effects, aircraft.
However, when several stable equilibrium states are in
presence, the influence of rotor speed is more important. In After predicting aircraft behaviours by means equilibrium
certain cases, it can lead to very different final states for the surfaces and periodic orbits envelopes, flight tests have been
same control deflections. (figure 30). performed. Thanks to flight test pilots, to which it has been

asked to perform rather unusual flight tests, very good
s •0correlations with results predicted by the theory have been

C6 (1) obtained.

The results presented in this paper show the interest of the
V .I 'V informations provided by this methodology. However, one

cannot forget that the quality of predictions is directly
"connected with the quality of the aerodynamic data base of

the aircraft model.

'10 WO Then, considering all these results, it can be said that this
technique has a great potentiality and is appropriate to
investigate aircraft behaviours, using only wind tunnel data.

r
At a further step, it can also be used to investigate non-linear
behaviours induced by non-linear elements in flight control

-systems. In this field, it seems very interesting to complete
? -the analysis by the determination of the region of asymptotic

stability of a stable equilibrium point in order to quantify
control laws robustness.

10 ZO t(s) )O
Finally, for a complete understanding of non-linear systems
behaviour, transient motion have also to be studied in order

to understand the immediate behaviour and the influence of
speed variation of controls on the motion.

o0 Independently of these future studies, it can be noticed that
steady behaviours are of great interest because if asymptotic
states are not always achieved by a limited number of
simulations and flight tests, they exist and probably will
happen, at least one time, during aircraft life.

In the future, due to its ability to deal with non-linear
fig. 30 - Influence of engines rotor gyroscopic torque on differential equations, this methodology would be
final state. - ....... without ---- with gyros. torques successfully applied to other highly non-linear systems like,
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INTRODUCTION TO

QUANTITATIVE FEEDBACK THEORY (QFT) TECHNIQUE

Constantine H. Houpis
Air Force Institute Of Technology

Wright-Patterson AFB, Ohio, 45433, USA

I -- INTRODUCTION sensitivity to parameter variation and
attenuate the effect of disturbances on

I-I -- Quantitative Feedback Theory -- QFT the plant output.
has achieved the status 9 as a powerful
design technique for the achievement of In designing a control system, it is de-
assigned performance tolerances over sired to utilize a technique that:
specified ranges of plant parameter uncer-
tainties without and with control effector a. Addresses all known plant variations up
failures. It is a frequency domain design front.
technique utilizing the Nichols chart (NC)
to achieve a desired robust design over b. Incorporates information on the desired
the specified region of plant parameter output tolerances.
uncertainty. An introduction to QFT
analog and discrete design techniques is c. Maintains reasonably low loop gain
presented for both multiple-input single- (reduce the "cost of feedback").
output (MISO)1' 5', 3 and multiple-input multi-
ple-output (MIMO) 3-4,6-710-12 control systems. Item c is important in order to avoid the
QFT CAD packages are readily available to problems associated with sensor noise
expedite the design process. The purposes amplification, saturation, and high fre-
of these lectures are: (1) to provide a quency uncertainties.
basic understanding of QFT, (2) to provide
the minimum amount of mathematics neces- 1-3 -- What Can OFT Do -- Assume the
sary to achieve this understanding, (3) to characteristics of a plant, that is to be
discuss the basic design steps, and (4) to controlled over a specified region of
present 2 practical examples. operation, vary. This plant parameter

uncertainty may be described by the Bode
1-2 -- Why Feedback? -- For the answer to plots of Fig. 3. This figure represents
the question of "Why do you need QFT?" the range of variation of plant magnitude
consider the following system. (dB) and phase over a specified frequency

range. The bounds of this variation, for
this example, can be described by 6 LTID| D22 plant transfer functions. By the applica-
tion of QFT a single compensator and a
prefilter may be designed to achieve a

y robust design.

-l40 _l _ _-

Fig. 1. An open-loop system (basic plant)

The plant P responds to the input r(t) -,o • .-.- ..... -

with the output y(t) in the face of dis- .,.
turbances d1 (t) and d 2 (t). If it is de--,- -_ . . . .. . . . . . . i
sired to achieve a specified system trans-
fer function T(s) [= Y(s)/R(s)] then it is 1-4,0 . ".,:
necessary to insert a prefilter, whose
transfer function is T(s)/P(s), as shown
in Fig. 2. .-:4 -

D, D2 .o,.

Fig. 3 Bode plots of 6 LTI plants: the
r 1y range of parameter uncertainty.

1-4 -- Benefits of OFT -- The benefits of
QFT may be summarized as follows:

Fig. 2 A compensated open-loop system a. The result is a robust design which is
insensitive to plant variation.

This compensated system produces the
desired output as long as the plant does b. There is one design for the full enve-
not change and there are no disturbances, lope (no need to verify plants inside
This type of system is sensitive to chang- templates).
es in the plant (or uncertainty in the
plant), and the disturbances are reflected c. Any design limitations are apparent up
directly into the output. Thus, it is front.
necessary to feed back the information in

the output in order to reduce the output d. There is less development time for a

. IN I III*i0HI.iIiii.II m
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full envelope design. model.
Step 2: Synthesize the desired disturbance

e. One can determine achievable specifica- model.
tions early in the design process. Step 3: Specify the J LTI plant models

that define the boundary of the region of
f. One can redesign for changes in the plant parameter uncertainty.
Sspecifications quickly. Step 4: Obtain plant templates, at speci-

g. Structure of compensator (controller) fied frequencies, that pictorially de-

is determined up front, scribed the region of plant parameter
uncertainty on the NC.

II. The M4SO Analog Control System' Step 5: Select the nominal plant transfer
function Po(s).

11-1 -- Introduction -- As shown in Sec Step 6: Determine the stability contour
IV-2, an mxm feedback control system can (U-contour) on the NC.
be represented by an equivalent m2 MISO Steps 7-9: Determine the disturbance,
feedback control systems shown in Fig. 4. tracking, and optimal bounds on the NC.
Thus this and the next section present an tepc10:g Syntiz al loopintroduction to the QFT technique by Step 10: Synthesize the nominal loop
considering only a MISO systemc function L,(s) = G(s)Po(s) that satisfies

all bounds and the stability contour.

Step 11: Based upon Steps 1 through 10
synthesize the prefilter F(s).
Step 12: Simulate the system to obtain the

- -time response data for all J plants.di t•, 2 d13

"!"' q 1 ' 3 9 1 3  The following sections illustrate this

q1-1 - 1

11-3 -- Synthesize Trackinq Models -- The

22 82l f2 92 d d23 tracking thumbprint specifications, based
3 2 f, g2  1 39 upon satisfying some or all of the step

L 2  -=f1 3'- 2
''2 , Y,3 forcing function figures of merit for

,1- -- underdamped (1.?, tP, t., tr, K,) and over-
_ __damped (t., t,, K.) responses, respective-

83) d32 833 ly, for a simple-second system, are de-
f32 03 ... dp2 picted in Fig. 6(a). The Bode plots corre-, .11 -3 f i

,V31 r3,7 , ,31 sponding to the time responses y(t), [Eq.

_-_- k(3)] and y(t)L [Eq. (4)] in Fig. 6(b)
-- represent the upper bound B, and lower

Fig. 4 m2 MISO equivalent of a 3x3 MIMO bound BL, respectively, of the thumbprint
feedback control system, specifications; i.e., an acceptable re-

sponse y(t) must lie between these
11-2 -- MISO System -- The MISO QFT design bounds. Note that for the m.p. plants,
technique is presented in terms of the only the tolerance on I TR(jC)JI need be
minimum-phase (m.p.) LTI MISO system of satisfied for a satisfactory design. For
pig. 5. The control ratios for tracking (D nonminimum-phase (n.m.p.) plants, toler-
= 0) and for disturbance rejection (R - 0)arerespctivlyances on LT,(j~o,) must also be specified
are, respectively, and satisfied in the design process.4,5 It

TR - F(s)G(s)P(s) - F(s)L(s) (1) is desirable to synthesize the tracking
1 + G(s) P(s) 1 + L(s) control ratios

TP (w•/a) (s + a)
P(s) - P(s) (2) S 2 + 2 Cs + G(3

I + G(S)P(s) I + L(S)

KDe T. (S - 01) (s- 2) (S -0) (4)

R F G , C corresponding to the upper and lower
bounds TRV and Tý, respectively, so that
5 R(jo),) increases as a, increases above the
0 dB crossing frequency of TRO. This

Fig. 5 A MISO plant characteristic of B., which determines the
tracking bounds B.(jwi), simplifies the

The design objective is to design the F(s) process of synthesizing L,(s) = G(s)Po(s).
and G(s) so the specified robust design is The achievement of the desired performance

achieved for the given region of plant specification is based upon the frequency
parameter uncertainty. The design proce- bandwidth BW, 0 < 0 < (4, which is deter-
dure to accomplish this objective is as mined by the intersection of the -12 dB
follows: line and the B0 curve in Fig. 6(b).

Stej 1: Synthesize the desired tracking
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Yu K
y(t) r(t) Thumbprint

10 Specifications 2 3 4

0.9 Region of

t • plant
Yt)L parameter

I uncertainty
I it

0" ' ' • t 6 5

(a) Thumbprint specifications I -a
0 1 5 10

Fig. 7 Region of plant uncertainty

Lm TR = mF- [ L] (6)

Bu= LmTfu=LmBR, The change in TR due to the uncertainty in

LmTR L / m~m P, since F is LTI, is

+ •I,• c•i Ih •A(Lm T) = Lm T, - Lm F Lm LL] (7)

By a proper design of L = L. and F, this
change in TR is restricted so that the
actual value of Lm T. always lies between
B, and BL of Fig. 6. The first step in

dB BL LmTR =LmBR,, synthesizing an L. is to make NC templates
which characterize the variation of the
plant uncertainty (see Fig. 8), as de-

6h1 scribed by the J LTI functions, for vari-

(b) Bode plots of T, ous values of o) over the BW. The plant
template boundary can be obtained by

Fig. 6 Desired response specifications mapping the boundary of the plant parame-
ter uncertainty region, Lm PLjG) vs

11-4 -- Disturbance Model -- The simplest LP,(j)j, as shown on the NC in Fig. 8. A

disturbance control ratio model specifica- curve is drawn through the points 1, 2, 3,

tion is I T0 (jw)I = I Y(j0)/D(jO)I < • a 4, 5, and 6. The shaded area, labeled

constant [maximum magnitude of the output 3P(jl), may be represented by a plastic

based on a unit step disturbance input (d, template. Templates for other values of (t)

of Fig.l)]. Thus the frequency domain are obtained in a similar manner. A

disturbance specification is Lm TD(jYO) : Lm characteristic of these templates is:

a over the specified BW. Thus the distur- starting from a low value of w0, they widen

bance specification is represented by only (angular width becomes larger) for in-

an upper bound on the NC over the BW. creasing values of a) then as (o takes on
larger values and approaches infinity they

11-5 -- J LTI Plant Models -- The simple become narrower and eventually approach a

plant, for illustrative purposes, is staight line of height V dB (see Eq. (9)].

= Ka - Aq (5) 11-7 -- Nominal Plant -- While any plant
Ps(s) s(s + a) s(s + a) case can be chosen it is an accepted

practice to select, whenever possible, a
where K' - Ka, K £ {i,10} and a £ 11,10}. plant whose NC point is always at the
The region of plant parameter uncertainty lower left corner for all frequencies for
is illustrated by Fig. 7. This region is which the templates are obtained.
described by J LTI plants, where j - 1,2,

J, which lie on the region's boundary. 11-0 -- U-Contour (Stability bound) -- The
That is, the points 1, 2, 3, 4, 5, & 6 are frequency domain specifications on system
utilized to obtain 6 LTI plant models that performance (Fig. 6(b)] identify a minimum
adequately define the region of plant damping ratio ý for the dominant roots of
parameter uncertainty, the closed-loop system which becomes a

bound on the value of M. - M. On the NC
II-6 -- Pleat TSiateS of P,(3.L.), 3 I j(J - this bound on 1 - ML (Figs. 6(b) and 91

With L - GP, Eq. (1) yields establishes a region that can not be
penetrated by the templates and by the

| | || |m m m i m m -a•---m m m I a -- ~---
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K-- = K 10 (actual) AT,(jW),) < 8R(jwý) dB (Fig. 6))

0 must be satisfied. Thus it is necessary
20 2- to determine the resulting constraint, or

bound BE(jwl), on L(jc)i. The procedure is
1 /./to pick a nominal plant Pc(s) and to derive

a= 10 NC tracking bounds, at specified 0), values

10"_, /•' ,<,,11/ and by use of templates or a CAD package,

on the resulting nominal function Lo(s)
ad- 1-/'..*' G(s)P.(s) . That is, along a NC phase angle

dB grid line move the nominal point on the
0 _____ I ,//," •template 3P(jcoj) up or down, without rotat-

ing the template, until it is tangent to
1800 3/\"900 two M-contours whose difference in M

.1 .,0 ,'.' values is essentially equal to S.. When
K 1--0.04 dB this condition has been achieved the

-3'-location of the nominal point on the
template becomes a point on the tracking

1 bound d.,(j6)) on the NC. This procedure is

Fig. 8 The template ZP(jl) repeated on sufficient NC angle grid lines
to provide enough points to draw B,(jco\)

L(jw0) plot for all Co. This region's and for all values of frequency for which
boundazy is referred to as the universal templates have been obtained.
high-frequency boundary (UHFB) or stabili-
ty bound (U-contour) because this becomes 11-9.2 -- Disturbance Bounds -- The gener-
the dominating constraint on L(j(o) . Thus, al procedure for determining disturbance
the top portion (efa) of the ML contour bounds for the MISO control system of Fig.
becomes part of the U-contour. For a 5 is outlined as follows (for details see
large problem class, as w -*O, the limit- Ref. 2). From Eq. (2) the following
ing value of the plant transfer function equation is obtained:
approaches PO PO

limp(.)_ (8) + (10)

dB (

M-Contour(LmML) where W = (P./P) + L.. From Eq. (10),L setting Lm TD = 8D = Lm a,, the following

0 relationship is obtained:

01 Lin w = noLM - (.1)

V g V For each value of (0, for which the NC
templates are obtained the magnitude of

B,-boundary I W(jo)•I is obtained from Eq. (11). This
b magnitude in conjuction with the equation

C W(jQo) = [Po(j(O)/P(jC0O)] are utilized to
7:..5ý obtain a graphical solution for B,(j•o) as

U-cantaur
shown in Fig. 10'. In this figure the

Fig. 9 U-contour construction template is plotted in rectangular or

polar coordinates.
where X represents the excess of poles
over zeros of P(s). The plant template, -130o _140
for this problem class, approaches a
vertical line of length equal to

S~~Lira"m iW( " oA& J (,,±,[L P" - Lm PmI,] (9j..,) -s, (1' ,

= Ki.. - Lm = V dB W1 ,.) -170'

If the nominal plant is chosen at K = Ký, B *---c-nlour
then the constraint ML gives a boundary -- -- -180°
which approaches the U-contour abcdefa of 1 2

Fig. 9. MP. ,I

II-9 -- Optimal Bounds B.(JO) on L.(iw) -- Fig. 10 Graphical evaluation of BD(jO•%)
The determination of the tracking B(jWo)
and the disturbance B3(j(o,) bounds are 11-9.3 -- Optimal Bounds -- For the case
required in order to yield the optimal shown in Fig. 11 Bo(jwj) is composed of
bounds B.(j(0i) on L.(jwi). those portions of each respective bound

BE(jco,) and B,(j(,) that have the largest dB
11-9.1 -- Trackina Bounds -- The solution values. The synthesized Lk(j(p) must lie
for 8,(JWo) requires that the condition on or just above these bound Bo(j(,).
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II-10 -- Synthesizing (or Loop Shaping) less than or equal to that allowed, i.e.,
L.(s) and F(s) -- The shap_ ng of Lo(j(0) is SR(jo) ). The purpose of the prefilter F(s)
shown by the dashed curve in Fig. 11. A is to position Lm [T(jo))] within the

frequency domain specifications, i.e.,
that it always lies between B. and B, [Fig.
6(b) ] for all J plants. The method for
determining F(s) is discussed in the next
section. Once a satisfactory L,(s) is

24 achieved then the compensator is given by
I d9 G(s) = Lo(s)/Po(s). Note that for this

4 example Lo(j(o) slightly intersects the U-
Scontour at frequencies above 4 . Because

_______ ____-I of the inherent over-design feature of the
81,21l QFT technique, as a first trial desicn, no

effort is made to fine tune the synthesis
of L.(s) . If the simulation results are
not satisfactory then a fine tunlng can be
made. The available CAD packages simplify

-• •and expedite this fine tuning.

[8.1 -11 -- Prefilter Desifnn.j ...... Design of
a proper Lo(s) guarantees only that the

._w I variation in I T,(jo))i is less than or equal
to that allowed, i.e., L TR(j(O),_ - Lm
TR(jO) 5i < - S(jo). The purpose of the

uc _ ITOURý -1 prefilter F(s) is to position

BOUND) _•) Lm T(jw) Lm (13)
n1•) 1 + L(jw)

40 within the frequency domain specifica-
0. •tions. A method for determining the

-o 2-4 bounds on F(s) is as follows:

- Step 1: Place the nominal point of the oý
100 __plint template on the Lo(j(o.) point on the

Lo(jW) curve on the NC (see Fig. 12).

Step 2: Traversing the template, determine

Fig. 11 Bounds B,(jo6)) and loop shaping the maximum Lm T_ and the minimum Lm T_•
values of Eq. (13) are obtained from the

point such as Lm L,(j2) must be on or above M-contours.

Bo(j2). Further, in order to satisfy the
specifications, L,(jW) cannot violate the dB C
U-contour. In this example a reasonable
Lo(j0) closely follows the U-contour up to RE-contours +P(pp

a) = 40 r/s and must stay below it above (0 LM
= 40 as shown in Fig 11. It also must be
a Type 1 fuiction (one pole at the ori- A
gin). Synthesizing a rational function __

Lo(s) which satisfies the above specifica-
tion involves building up the function .Lo(jw) = Lok(jw) 

M-contour

Pj w (12)

k=O uLL/Wk:0 U~~~0confour --. • .L(1w

where for k - 0, G. - 1L0°, and K = [_1..OKk,

In order to minimize the order of the
compensator a starting point for building

up the loop transmissicn function is to
initially assume that Lo0 (jWo) = Po(jco) as Fig. 12 Prefilter determination

indicated in Eq. (12) . L.(jwe) is built up
term-by-term or by a CAD loop shaping Step 3: Based upon obtaining sufficient

routine,' in order (1) that the point data points within the desired BW, for

Lo(jw•) lies on or above the corresponding various values of wi, and in conjunction

optimal bound 8o(jwoj) and (2) to stay just with the data used to obtain Fig. 6(b) the

outside the U-contour in the NC of Fig. plots of Fig. 13 are obtained.

11. The design of a proper Lo(s) guarantees
only that the variation in I T 5(joJ)I is Stop 4: Utilizing Fig. 13, the straight-



line Bode technique and the condition the QFT design for the controller G(w').
If the w'-domain simulations satisfy the

IMF(s) (14) desired performance specification then by
use of the bilinear transformation the z-
domain controller G(z) is obtained. With

for a step forcing function, an F(s) is this controller a discrete-time simulation
synthesized that lies within the upper and is obtained to verify the goodness of the
lower plots in Fig. 13. design. The QFT technique requires the

determination of the minimum sampling
frequency (O)J)-n bandwidth that is needed

for a satisfactory design.' 3 : 4 The larger
+ LmF the plant uncertainty and the narrower the
o system performance tolerances are, the

larger must be the value of (0,)•. Hence-
forth, the prime is omitted from w' thus
whenever the symbol w is used it is be
interpreted as w'.

dB LmT,- LmT

Lm T,, - Lm T.. - G Z~

Fig. 13 Frequency bourds on F(s)

11-12 -- Simulation -- The goodness of the Fig. 14 A MISO sampled-data control system
synthesized L.(s) and F(s) is determined by
simulating the QFT designed control system 111-2 -- The MISO Sampled-data Control
'or all J plants. CAP packages, discussed System -- Figure 14 represents the MISO
in lec. 11-13, are available that expedite discrete control, having plant uncertain-
this simulation phase of the complete ty, that is to be designed by the QFT
design process. technique. The equations that describe

this system are as follows:
11-13 -- MISO QFT CAD Packages -- The y

first useable MISO QFT CAD package was P (z) G,,P(z) = (I - z-')Z[ P(s) (15)
developed in 1986 for the analog design s
(see App. A) and in 1991 for the discrete = (1 - Z-1)P.(Z)
design (see App. B) at the Air Force
Institute of Technology (AFIT). This CAD
package has been a catalyst in assisting P(S)
the newcomer to QFT to understand the L(z) = GoP(z)G1z), Pe s (
fundamentals of this powerful design (

technique. Pý(Z) =Z FP Z I)P1 ]

11-13.1 -- MISO OFT CAD -- The AFIT pack-
age is called "ICECAP/QFT" which is de-
signed for the VAX. Those desiring a copy D(s) 1 P9 (s) = P(s)D(s) (17)
of this package can cont. :t: Professor s
Gary B. Lamont, AFIT/ENG, Wright-Patterson P.(z) ZIP(s)D(s)] = PD(z)
AFB, OH 45433. Currently Professor Lamont
is developing a PC version of this pack-
age. These packages have been .esigned as F(z)L(z) PD(z) (18)

, : an 'educational tool." L(z) 1 Y P(z)
LOO.,..1 + LWz 1 + L(z)

11-13.2 -- MISO CFT PC CAD -- Dr. Oded

Yaniv, Tel-Aviv University, Israel, has a Y(z) _L(z) F(z) 1 PD(z)
MISO QFT PC CAD package for both analog 1 R(z) 1 1 + L(z)
and discrete system design. This package = 4(z) + 4(z) = TR(z)R(z) + 4(z)
can be purchased from Dr. Yaniv. (19)

III. The MISO Discrete Control Sys'ei-r' 111-3 w'-Domain -- The pertinent s-, z-,
and w-plane relationships are:

III-1 -- Introduction -- The riln-ir IOT( 
2  

2, T (20)
transformation, z-domain to the w'-domain 29
and vice-versa, is utilized in order to
accomplish the QFT design for both MISO
and MIMO sampled-data (discrete) control s = a .j, (a)
system design in the w'-domain. This 2 u- (21)
transformation enables the ur of the MISO _-- (b) 1
QFT analog design technique to be readily
used, with minor exceptions, to perform

0 i mmlmmmmm m
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Z T + -2 (is function of o, and the phase margin
z = (a) angle as shown in Fig. 15,13 is given by

-Tw+ 2

v = (-)tan()= (w ) tan (-.)(b) 2tan-i(_.-) = 180. - y (29)

(22)

w,~~~ = 2ocl7, z erw xZcoT (23) 0,

111-4 -- Assumptions -- For this paper the
following assumptions are assumed:

a. Minimum-phase (mp) stable plants Lb. The analogue desired models, E4s (3) 6 " 5

and (4), yield the desired time response
characteristics for the discrete-time
system.
c. The sampling time T is small enough so
that over the BW, 0 < w < o4, Eq. (23) is
valid permitting the approximation s - w -64,_

and in-turn W) (s (24)

Both the upper and lower bound w-domain
tracking models are obtained in this 40

manner. The disturbance specification is
the same as for the analog case.

Fig. 15 The shifted bounds on the NC
111-5 -- Nonminimum Phase L,(w) -- It is
important to note that in the w domain any It should be mentioned that loop shaping
practical L(w) is nonminimum phase (nmp) or synthesizing Lo(w) can be done directly
containing a zero at 2/T (the sampling without the use of an apf.
zero). This result is due to the fact
that any practical L(z) has an excess of 111-6 -- Plant Templates 3P(iv,) -- The
at leasu one pole over zeros. Thus, the plant templates in the w-domain have the
design technique for a stable uncertain same characteristic as those for the
plant is modified 4 to incorporate the all- analog case (see Sec. 11-4) for the fre-
pass filter (apf) quency range 0 < w c 0)/2 (see 01ig.

16(a). In the frequency range o,/2 < w, <
2 2 _ the w-domain templates widen once again

A(w) - " - A'(w) - T i (25) and then eventually approach a vertical
W + 2 2 + wý line [see Fig. 16(b)].

T

111-7 -- Synthesizing L.(w) -- The fre-

as follows: let the nominal loop transmis- quency spectrum is divided into four

sion be defined as: regions for the purpose of synthesizing an
L_(w) that will satisfy the system perfor-

LO L.(w)A(w) = L.(w)AI(w) (26) mance specifications for the plant having
plant parameter uncertainty. These four

From Eq. (26) it is seen that regions are:

L,(j'v) = ZLL(jv) - ZA'(jv) (27) Region 1: For the frequency range where
Eq. (23) is satisfied use the analog

where templates; i.e. 3P(jo,) - 3P(jv,). The w-
- LA(jv) = 2 tan I vT > 0 (28) domain tracking, disturbance and optimal

2
bounds and the U-contour are essentially
the same as those for the analog system.

An analysis of Eqs. (26) through (28) The templates are used to obtain these
reveals th ththe bounds B(jv ) on L., (jv) bounds on the NC in the same manner as for
become the bounds B~o(jV•) on I•,(jv) by the analog system.

shifting, over the desired BW, B.,' (jv,)

positively (to the right on the NC) by the Region 2: For the frequency range v. ,, <
angle LA' (jv), as shown in Fig. 15. The
U-contour (B,') must also be shifted to the vpt where templaue the usdo

righ bythesameamontat te seciied templates. These templates are used toright by the same amount, at the specified obtain all 3 types of bounds, in the same
manner as for the analog system, in this

coquncoes toj,) Thoban the • shifted U
ntor B(i,) Th cntor B,'is hifed region and the corresponding B'•(jv•)-

to the right until it reaches the vertical con are a orond.

line LLj.. (jvx) - 0'. The value of v., which



6-8

IW

48 20 ... L(jv) = P n(jv) KG, (jv)] (30)\ 05 k=O

dB 80 ,-3810 where the nominal plant P.,(w) is the plant

0 -- I .7639 from the J plants that has the smallest dBvalue and the largest (most negative)

phase lag characteristic. The final syn-
100 thesized Lmo(w) function must be one that

- -0. ----- satisfies the following conditions:

10 1. In Regions 1 and 2 the point on the NC

-39,19 that represents the dB value and phase' ,0- .763•/angle of I•,(jv)1 must be such that it
-. ,381.972 lies on or above the corresponding ,o(jv,)

I2 .. 2 , bound (see Fig. 15).
-ISO -120* 0° 120* .,0o

2. The values of Eq. (30) for the frequen-
Fig. () wcy range of Region 3 must lie to the right

Fig. 16 w-domain plant templates or just below the corresponding B' h-contour

Region 3: For the frequency range vh < v, (see Fig. 15).

< v, for the specified value of o., only 3. The value of Eq. (30) for the frequency
the B',-contours are plotted. range of Region 4 must lie below the B.

contour for negative phase angles on the
Region 4: For the frequency range vh > vK NC (see condition 4).
use the w-domain templates. Since the
templates 3P,(jv,) broaden out again for v ,  4. In utilizing the bilinear transforma-
> v. (see Fig.16) it is necessary to obtain tion of Eq. 22a the w-domain transfer
the more stringent (stability) bounds Bs
shown in Fig. 17. The templates are used functions are all equal order over equal

only to determine the stability bounds B0.

5. The Nyquist stability criterion dic-
tates that the Lo (jv) plot is on the
"right side" or the "bottom right side" of
the Eý(jv,)-contours for the frequency

'0! ••-10 range of 0 < v, < v0 . It has been shown
that :3

(a must reach the right-hand
bottom -A' Bh(jv) , i.e., approximately

do 0 point R in Fig. 17, at a value of v <
S Q IIS.280) V., and

I(b) Ll/o(jv.) < 0' in order that there
exists a practical L.. which satisfies

_2a79 (1 528) the bounds B(jv) and provides the

S ......6 required stability.

0 B 6. For the situation where one or more of

15.18 the J LTI plants, that represent the
uncertain plant parameter characteris-" ,, S. , 1.5128.0GO) tics, represent unstable plants and one of
these unstable plants is selected as the
nominal plant, then the apf to be used in
the OFT design must include all right-

6,0 hand-plane (rhp1 zeros of P... This situa-
tion is not discussed in this paper.

52.800 • Note: for experienced QFT designers Lo(v)
630.000', 1.52.00• can be synthesized without the use of apf.

This approach is not covered in this
paper.

-90, s * 0 The synthesized L_(w), obtained following
Note Cumesdrownspproxtmatelyo4IlCto the guidelines of this section, is shown

Fig. 17 A satisfactory design: in Fig. 17.
L_(jv) at C. - 240.

gi1-8 -- Prefilter D•[ian -- The procedure
The synthesis of L_(w) involves the syn- for synthesizing F(w) is the same as for
thesizing the following function: the analog case (see Sec. I!-l) over the

frequency range 0 < v, < v,. In order to
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satisfy condition 4 of Sec. 111-7, a slight relocation of one or more control-
nondominating zero or zeros ("far-left" in ler pole in the vicinity of the -1 + jO
the w-plane) are inserted so that the point toward the origin may ensure a
final synthesized F(w) is equal order over stable system for all J plants and main-
equal order. tain the desired loop shaping characteris-

tic of G(z).
111-9 -- w-Domain Simulation -- The good-
ness of the synthesized L,,(w) [or Lo(w)] 111-10.4 -- Simulation and CAD Packages --
and F(w) is determined by first simulating With the design checks of Secs. III-10.1
the QFT w-domain designed control system through 111-10.3 satisfied then a dis-
for all J plants in the w-domain (an crete-time simulation is performed to
"analog" time domain simulation) . See verify that the desired performance
Sec. 11-13 for CAD packages that expedite specifications are achieved. To enhance
this simulation. the MISO QFT discrete control system

design procedure that is presented in this
III-10 -- z-Domain -- The test of the chapter the CAD flowchart of Sec. 11-13.1
goodness of the w-domain QFT designed is shown in App. B.
system is a discrete-time domain simula-
tion of the system in Fig. 14. To accom- IV -- MIMO Systems2 -1 2

plish this simulation, the w-domain trans-
fer functions G(w) and F(w) are trans- IV-1 -- Introduction -- Figure 18 repre-
formed to the z-domain by use of the sents an mxm MIMO closed-loop system in
bilinear transformation of Eq. (21b). which F, G, and P are each m x m matrices,
This transformation is utilized since the and P = {P} is a set of J matrices due to
degree of the numerator and denominator plant parameter uncertainty. There are m2

polynomials of these functions are equal closed-loop system transfer functions
a.nd the controller and prefilter do not (transmissions) t, contained within its
contain a zero-order-hold device, system transmission matrix, i.e., T = {t,}

relating the outputs y, to the inputs rj,
111-10.1 -- Comparison of the Controller's e.g., y, = t.r,. These relationship hold
w- and z-Domain Bode Plots -- Depending on for both the s- and w-domain analysis of a
the value of the sampling time T, warping MIMO system. In a quantitative problem
may be sufficient to alter the loop shap- statement there are tolerance bounds on
ing characteristics of the controller when each t,,, giving a
it is transformed from the w- to the z-
domain. For the warping effect to be
minimal the Bode plots of the w- and z-
domain controllers must essentially lie on , ÷,m
top of one another within the frequency N'-,

range 0 < 0o < [(2/3) (w./2)). If the , F G P

warping is negligible then a discrete-time ,,

simulation can proceed. If not, a smaller
value of T needs to be selected.

111-10.2 -- Accuracy -- The available CAD
package determines the degree of accuracy Fig. 18 A 3x3 MIMO feedback
of the calculations and simulations. The control system.
smaller the value of T the greater the
degree of accuracy that is required to be set of m2 acceptable regions T, which are
maintained. The accuracy is enhanced by to be specified in the design, thus t•. E
simulating G(z) and F(z) as a set of g and tc. and 3 = (T}I. From Fig. 18 the system
f cascaded transfer functions, respective- control ratio relating r to y is:
ly; that is (32)T = [X ÷PG]-'PGF (2

G (z) G, G ,()G (z) G, G ( Z) (31)

F(z) = W(z)F (z) F,(Z) The t. expressions derived from this
expression are very complex and not suit-
able for analysis. The QFT design proce-
dure systematizes and simplifies the

111-10.3 -- Analysis of Characteristic manner of achieving a satisfactory system
Equation 04.za -- Depending on the value of design for the entire range of plant
T and the plant parameter uncertainty, the uncertainty. In order to readily apply
pole-zero configuration in ti'e vicinity of the QFT technique another mathematical
the -1 + jO point in the z-plane for one system description is presenLed in the
or more of the J LTI plants can result in next section. The material presented in
an unstable discrete-time response. Thus this chapter pertains to both the s- and

* before proceeding with a discrete-time w-domain analysis of MIMO systems.
domain simulation an analysis of the
characteristic equation Q1 (z) for all J LTI IV-2 -- Derivation of z2 M S, System Eauiv-
plants must be made. If an unstable a -- The G, T, P and P` matrices are
system exists an analysis of Q,(z) and the defined as follows:
corresponding root-locus may reveal that a



6-10

point, i.e., T E 3 such that Y(T) = T,
g 0- 0 f1 f12 "f 11  then this T is a solution of Eq. (39).

0 g2 F0 fi f22 f2. For a 3x3 case, for a unit impulse input,
G =Eq. (40) yields the output:

f~l 42____1__=_ _ (_2L t3 1 )1 (41)

oo.-ggig' q12 q13- g~ 1

(33)

Based upon the derivation of all the y.,
* **. expressions from Eq. (40) yields the four

P 1 1 P 12  P1. P11 P12 PIM effective MISO loops (in the boxed area),

P P21 P22 P2  P p ;, Kp.ý2 p; 34) in Fig. 4, resulting from a 2x2 system and
1 
-the nine effective MISO loops resulting

. . from a 3x3 system. 4 The control ratios for
Pm1  2 . Pml PP.2 p2, the desired tracking inputs r. by the

corresponding outputs y. for each feedback
loop of Eq. (40) have the form

Although only a diagonal G matrix is

considered, the use of a nondiagonal G y1 1 = w.,(v., - dij) (42)
matrix may allow the designer more design
flexiblity. 2 The m2 effective plant trans- where wl, = q_/(l + giq,) and v, = glfl<.
fer functions are based upon defining: The interaction between the loops has the

1 - detP (form = (43)
•j- adiP, (35) d -' k = 1,2,2,.... m

There is a requirement that detP be mp. and appears as a "disturbance" input in
The Q matrix is then formed as: each of the feedback loops. Thus Eq. (42)

represents the control ratio of the ith
1 1 1 MISO system. The transfer function w,,v,,

q1I q-2  1 P11 P12 P1. relates the "desired" ith output to the
1 1 1 jth input r, and the transfer function

q 21 q 2 2 q2M -P P (36) w ,d,, relates the ith output to the jth
P i P2. "disturbance" input d,,. The outputs given

* q . . in Eq. (42) can thus be expressed as

1 ,, P I P . 1Y 1 = (y ,_) ~, - (y l) d ý, = y ,z, -y d l, (4 4 )

or, based on a unit impulse input,
The matrix P-1 is partitioned to the form: (45)

P-1 p~j]I = [ -- I] = A - B (37)
qlj where

where A is the diagonal part and B is the tz,, = Yr, = wiivi, td,, = Ydý = w- dj

balance of P-'; thus k, = 1i/q = p,,, b_ = (46)
0, and b_ = I/q,3 = pJ for i * j. Premul-
tipling Eq. (32) by [I + PG] yields: and where now the upper bound, in the low-

(38) frequency range (0 < o < z4), is expressed
[I - PG] T = PGF - [P-1 , G] T = GF as b,,'. Thus

where P is nonsingular. Using Eq. (37) Td, = bij - bij (47)
with G diagonal, Eq. (38) can be rear-
ranged to the form: represents the maximum portion of b,,

T = [A - G] '([OF - ET] (39) allocated toward disturbance rejection and
b,, represents the upper bound for the

Equation (39) is used to define the de- tracking portion, respectively, of t,.
sired fixed point mapping where each of For each MISO system there is a distur-
the m' matrix elements on the right side of bance input which is a function of all the
this equation can be interpreted as a MISO other loop outputs. The object of the
problem. Proof of the fact that design of design is to have each loop track its
each MISO system yields a satisfactory desired input while minimizing the outputs
MIMO design is based on the Schauder fixed due to the disturbance inputs.
point theorm.' This theorem is described
by defining a mapping In each of the 9 structures of Fig. 4 it

is necessary that the control ratio t,
T(V2 [A + 01] -'(F- -2B] (40) must be a member of the acceptable t,, r

T,,. All the gi and f,1 must be chosen to
where each member of T is from the accept- ensure that this condition is satisfied,
able set 3. If this mapping has a fixed thus constituting 9 MISO design problems.



If all of these MISO problems are solved, strictly proper systems, feedback is not
there exists a fixed point, and then yij on effective in the high frequency range.
the left side of Eq. (40) may be replaced
by t, and all the elements of T on the 1.0
right side by tki. This means that there
exists 9 t., and tk, each in its acceptable
set, which is a solution to Fig. 18. If INA
each element is 1:1, then this solution 0.8- J (J•!)

must be unique. A more formal and de-
tailed treatment is given in Ref. 7. T a

IV-3 -- Tracking and Disturbance Specifi- 0.6
cations -- The presentation for the re-

maining portion of this chapter and the I I I
next is based upon not only a diagonal G WI
matrix but also for a diagonal F matrix. Fig. 20 Allocation for disturbance
Thus, in Fig. 4 the t, terms, for i # j, and tracking specifications
represent disturbance responses due to the for the ti, responses.
cross-coupling effect whereas the t,,
terms, for i = j, [see Eq. (45)] is com- IV-3.2 -- Disturbance Specification --
posed of a desired tracking term tr and of Based upon the previous discussion the
an unwanted or disturbance term td. There- disturbance specification, an upper bound,
fore the desired tracking specifications is expressed as
for the diagonal MISO systems of Fig. 4
contain an upper and lower bounds as shown tdJ • Jb1jI (49)
in Fig. 6. The disturbance specification
for all MISO loops is given by only an Thus the synthesis of G must satisfy both

upper bound. These performance specifica- Eqs (48) and (49).
tions are shown in Fig. 19 for a 2x2 (in
the boxed area) and for a 3x3 MIMO feed- IV-4 -- Determination of Trackina, Distur-
back control system. bance, & Optimal Bounds -- The remaining

portion of the MIMO QFT approach is con-
+ . Ifined to a 2x2 system. The reader can

0 0 refer to the references for higher order
dB dB bo I systems (m > 2). From Eq. (39) the fol-

do lowing equations are obtained:

d + 
+ L. (50)

dB- .,. d where d=--, L, q,0

+ = 12q711
t12  i + L51

dA o do do where a 2 =- f 1 2 0"0 q,2
fmeq. fmq. freq-

Fig 19 Tracking and disturbance d• 22

specifications for a 2x2 (in t21 I + L2
boxed area) and for a 3x3 MIMO
system. where d.,- -- '--, L2 q2 W,

q2 1
IV-3.1 -- Tracking Specifications -- Based (52)
upon the analysis of Eqs. (45) through
(47), the specifications for the t_ re- L2 ff, 2 ý d 22 q2 2
sponses shown in Fig. 19 need to be modi- 2 1 2

fied as shown in Fig. 20. As shown in (53)
this figure a portion of 8,(jo,) (see Fig. where d2 - t-
6) has been allocated'- for the distur- 2 2
bance specification. Thus, based upon
this modification, given an uncertain Equations (50) and (51) correspond to the
plant 0 - (P,) (j - 1,2, .... , J) and the MISO systems for the first row of loops in
BW ( above which output sensitivity is Fig. 4 and Eqs. (52) and (53) correspond
ignored it is desired to synthesize G and to the MISO loops for the second row.
F such that for all P e P

(48) IV-4.1 -- Tracking Bounds -- The tracking
a1 1  1t 11(jw) I b, for w i w, bounds for the ii MISO system is deter-

mined in the same manner as for the MISO
system of of PART II (see Sec. 11-9.1).

Afinite ) is recomended because in By use of the templates for the ii loop
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plant the value of 8R' (jYI), shown in Fig. described the remaining loops to be de-
20, is used to satisfy the constraint of signed. For both methods it is necessary
Eq. (48). to make the decision as to the order that

the L. functions are to be synthesized.
IV-4.2 -- Disturbance Bounds -- From Eqs. Generally the loops are chosen on the
(50) and (52), considering only the first basis of the phase margin frequency 0,
row of MISO loops in Fig. 4, the following requirements. That is, the loop having
disturbance transfer functions are ob- the smallest value of 0, is chosen as the
tained: first loop to be designed, the loop having

the iext smallest value of Oq is selected

I I=I r cl td ý (Fig.20) as the second loop to be designed, etc.
1 + Ll This is an important requirement especial-

(54) ly for Method 2.

IV-5.1 -- Method 1 -- Method 1 involves

td b db2 q ( b19 (55) overdesign (worst case scenario), i.e., in
1 + b (Fig.19) )55 getting the M. values of Eqs. (56) and

(57), for the 2x2 case, the maximum magni-
tude that q12 and the minimum magnitude

By substituting for d1n and d 12 into Eqs. that qt, can have, for each value of (o,
(54) and (55), respectively, and replacing over the entire J LTI plants are utilized.
t 2 , and t 22 by their respective upper bound This method requires that the diagonal
values b2 l and b 22 , and rearranging these dominance condition2-" be met. If this
equations yield: condition is not satisfied then Method 2

needs to be utilized.
I qM2  . (56)

1 + "- M IV-5.2 -- Method 2 -- Once the order in
which the loops are to be designed and
designated accordingly (loop 1, loop 2,

i b 12 = (57) etc) then the compensator g, and the prefi-
1 _I (5 7 lter f, are synthsized. These are nowlL, q2J1 1 22  known LTI functions which are utilized to

define the loop 2 effective plant transfer
Substituting into these equations L, = l/l function. That is, substitute Eq. (50)
yields: into Eq. (52) and then rearrange the

result to obtain a new expression for t12
11 1 (58) in terms of q, and fl, as follows:
1 + 1 + M .i ) [ f 1,L q 2 2.

By analyzing these equations, for each of t21= %-_1L)59

the J plants, over the desired BW the 1 + g 2q 22 -

maximum value that M. that each of these
equations can have, for each value of W. where the effective loop 2 transfer func-
(or vj), is readily determined by use of a tion is:

CAD package. Thus, since L, = 1/1i, the q22 (1 + LI) q, q2 Z

reciprocal of these values yield the value L y where yl - 2

of the corresponding M-contours or distur- ( TL-1  q1 2q2

bance bounds, for o = o), (or v,), on the (60)
NC.

Repeating a similar procedure tne e:xpres-
IV-4.3 -- Optimal Bounds -- The points on sion for t22 is:
the optimal bound, for a given value of
frequency and for a given row of MISO f22g2 29 2 * (61)
loops of Fig. 4, are determined by select- 22 = 1 g2q22.

ing the largest dB value, for a given NC
phase angle, from all the tracking and
disturbance bounds for these loops at this Rememiber that a diagonal prefilter matrix
frequency. The MIMO QFT CAD package (Sec. has been specified. Note that Eqs. (59)
IV-7) is designed to perform this determi- through (61) involve the known f,, and g,
nation of the optimal bounds. which reduces the overdesign of loop 2.

IV-5 -- OFT Methods of Designing MINO IV-6 -- Synthesizina the Loop Transmission
Systems -- There are two methods of achie- and Prefilter Functions -- Once the opti-
ving a QFT MIMO design. Method 1 involves mal bound has been determined for each L.
synthesizing the loop transmission func- loop then the synthesis procedures for
tion L, and the prefilter f,, independent deter- mining the loop transmission and
of the previous synthesized loop transmis- prefilter functions are the same as for
sion functions and prefilters. Method 2 the MISO analog and discrete systems as
substitutes the synthesized g, and f_ of discussed in Chapters II and III, respec-
the first (or prior) MISO loop(s) that is tively.L (are) designed into the equations that
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Iv-7 -- Overview of the MIMO/OFT CAD package based on problem specifications.
Package -- The MIMO/QFT CAD package, The bounds are then used for loop shaping

implemented using Mathematica, is capable of Li. = g~q,,o on the NC. Loop shaping is
of carrying a discrete or analog MIMO QFT performed by adding and modifying poles
design problem from problem setup through and zeros and by adjusting the gain of g,
the design process to a frequency domain until the bounds on the NC are satisfied.
analysis of the compensated MIMO system.
For analog control problems, the design Once a satisfactory compensator g, has been
process is performed in the s-plane, while designed, the prefilter fzi is designed.
for the discrete control problems the The CAD program automatically generates a
pl •nts are discretized and the design set of prefilter bounds which must be
process is performed either in the w-plane satisfied by the nominal closed loop
using the direct design approach or in the transmission fi.Lio/(l+Lo) on the Bode plot.
s-plane using the pseudo-continuous design The prefilter is designed by adding and
approach (PCT). A flowchart of the pack- modifying poles and zeros and by adjusting
age is given in App C. the gain of f,, until the prefilter bounds

on the Bode plot are satisfied.
The package automates the many design
steps of the QFT control technique. For Once the compensator gi and prefilter f_
problem setup, the J plant models may be have been designed for the first row of
loaded directly in state space form from a the MISO loops chosen for the initial
MATRIXx fsave file or may be defined in designed loop Lio, the improved method may
transfer function form at the console. In be applied. When the designer applies the
addition, sensor dynamics, actuator dynam- improved method, a new set of equivalent
ics, and all problem specifications are plants are generated for use in designing
defined using a menu driven data entry the remaining compensators and prefilters.
process.

Once all compensators and prefilters are
The QFT design process then begins with designed, a frequency-domain analysis of
the selection of the weighting matrix W the completed design may be performed.
and sensor gain matrix WV,,9 for squaring For a stability analysis, the CAD program
non-square plants (mxe matrix P) to allows all open loop transmissions to be
achieve an effective mxm plant matrix P., plotted along with the ML contour on the
for i = 1, 2...... J. The CAD software NC. If no open loop transmissions violate
allows the designer to apply the Binet- the ML contour, the desired stability
Cauchy theorem to select, where possible, margin has been achieved for that channel.
a weighting matrix which results in the For a performance analysis, the CAD pro-
formation of a mininum-phase detP., gram allows an mxm array of Bode plots to

be generated, each illustrating the set of
The design process then continues with J possible transmissions for the true MIMO
formation of the square effective plants closed loop system along with the frequen-
P,, for t = 1, 2, ....... J. The poly- cy domain performance bounds. If no
nomial matrix inverse is then performed on performance bounds are violated, then the
the square effective plants P., to form performance specifications (tracking and
the equivalent plant matrices Q, for i = 1, disturbance) are met in the frequency
2 ..... .J. The designer may then perform domain.
automatic cancellation of nearly equal
pole-zero pairs after specifying a measure For the final step in design validation,
of how closely the pole-zero pairs must the completed design may be exported to
match. Once the Q, matricies are available, MATRIXx or Matlab for time-domain simula-
the compensators g, and prefilter f_ ele- tion. For a discrete design, the compen-
ments of the mxm diagonal G and F may be sators gi and prefilters f_ are first
designed based on the equivalent mxm set transformed into the z-domain. The tran-
of MISO loops which represent the more sient response of the closed loop system
difficult MIMO control problem. For a is then evaluated.
discrete design the steps, as discussed,
are identical except now P., and Q, are in V -- OFT APPLICATIONS
the w-domain. V-I -- Introduction -- Two MIMO QFT exam-

ples are presented to illustrate the power
For each channel, or feedback loop, a com- of this design technique. The first
pensator g, and a prefilter fi, are de- example is for a 2x2 analog flight control
signed to satisfy the specifications for syrtem whereas the second example is for a
row i of the mxm set of MISO loops associ- 3xi discrete flight control system.
ated with that channel. First, a set of
templates are generated for a user-select- V-2 -- Analoa OFT Desian -- The successful
'.d set of template frequencies and a validation of the MIMO/QFT CAD' package,
nominal template point is selected. Next, based on Arnold's design problem" was a
the designer selects the set of bounds to major landmark in the CAD software devel-
be used during loop shaping on the NC. opment effort. This validation illustrat-
All selected stability, tracking, distur- ed the increased accuracy and efficiency
bance, gamma, and composite bounds are achieved by the CAD package, and the
then automatically generated by the CAD straightforward method for designing an
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analog MIMO control system. The specif--. ..

ications" require a robust analog design
for the AFTI/F-16 which provides stability
and meets time domain performance require- -----

ments for the specified 4 flight condi- Y

tions (Table V-l) and the 6 aircraft .

failure modes (Table V-2). Table V-3 ".
lists the resulting set of 24 plant cases
which incorporate these flight conditions
and failure modes. For stability a 450----------
phase margin is required for each of the - " ,-

two feedback loops. Frequency domain- - - .II
performance specifications, when met, ,.. ..

result in the desired closed loop system
performance in the time domain. The Fig. 21 Channel 2 nominal loop
frequency domain specifications are shown with bounds on NC
as dashed lines on the Bode plots of Fig.
24. for example, the L2,(s) are plotted for the

1, = 1.... ,.24 possible open loop trans-
missions along with the ML contour on the

Ri& Condtdon ANC shown in Fig. 22. None of the 24 open
___ __ __ - loop transmissions violate the ML contour,

0.2 in accordance with the fact that the
S0.6 30M0 nominal loop transmission L2o(S) satisfied

3 0.9 20,000 all stability bounds. For the second step
4 1.6 30,000 in the design validation process the 2x2

Table V-I Flight conditions array of Bode plots shown in Fig. 24 is
generated showing on each plot the 24

possible closed loop transmissions from an
input to an output of the completed sys-

_ o-altJvaircra tem. The consequence of violating the
2 Oizone n faii- channel 2 disturbance bound for & = 2 r/s

~ 3 *Oneflwmomfails is seen where the closed loop transmis-14 Ow oiotalt ad oeRmonflail, same We miens violate b2l, denoted by dashed line,

Ohrmaiianm da~fla1ce.ides beginning at 0) = 2 r/s. Violation of
.6 1Boflmonsfa performance bounds during loop shaping may

Table V-2 Arnold's failure modes result in violation of the performance
specifications for the closed loop system.

______Mad Flizt Condition1 2 3 ,4 ,I
#1,, #7 A#-13 #19 t

2 . #2 08 . #14 -#20

3. #3 9 #15 #21
4 #4 #10 #16 #22 I

ý6 #6 #12 #18 #24

Table V-3 Plant models for
Arnold's design

The specifications, the plant models" for -
the 24 cases, and the weighting matrix are I
entered into the CAD package. The auto- I I I I
mated features accessed through the de-
signer interface of the CAD package re- Fig. 22 Open loop transmissions on NC
sulted in the synthesized loop transmis- - - __, _

sion function L2,(s) shown along with
associated bounds on the NC in Fig. 21. - - - 1 i
In this design, a trade-off exists between - i
performance and bandwidth and in synthe-
sizing L2 o(s)- In this example, the de- 30

signer chooses to accept the consequences K - .

of violating the disturbance bound for w - - - L - -

2 r/s. L,,(s) was synthesized in a - -

similar manner. With L1.(s) and L,,(s)
synthesized, the CAD package's automated .

4
.- -i- - -

features expedite the design of the pre- -2, .
filters f,,(s) and f 2 2 (s).

The CAD package validation routines are Fig. 23 Channel 1 nominal with
now tested. First, a stability analysis; bounds on NC

I -4p. ln|~'-a' •,•..
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b V
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.- ____ f (lad/sezj ___-.__"_"_ 0 r I ,• :

~b22
22

I"-

Fig. 24 Closed loop transmissions for an anal-,g system

As seen in Fig. 24 a robust design has The design process begins by entering the
been achieved for this 2x2 MIMO analog specifications, the plant models'", for the
flight control system. The time domain 36 cases (see Table V-5), and the weight-
results, although not drawn, meet all ing matrix into the CAD package. Because
specifications. of the nature of the failure cases and

being a digital design, loop shaping for
V-3 -- Discrete OFT Design -- The specifi- all three loops was difficult with respect
cations for the digital control design to satisfying a-1 bounds (tracking, dis-
require a digital controller be designed turbance, and stability bounds). For
for the AFTI/F-16 which provides the loops 2 and 3 the ML stability bounds were
required robustness with respect to soa- satisfied. However, all stability bounds
bility and satisfying the time domain could not be satisfied during the design
performance requirements for any of 4 of loop 1.
flight conditions (Table V-l) and 9 fail-
ure modes (Table V-4). For stability, a Faium Mo3de 4
45' phase margin is required for each of 1- i
the three feedback loops. Frequency 1 #L 140 019 #28

domain performance specifications are 2 2 #11 #20 #29
shown as dashed lines on the Bode plots of 3 #3 112 #21 #30
Fig. 27. 4 04 #13 #22 #31

_______________________ 5! #14 023 . #32.

FPilAtIill Cnn m - A6 015 024 033

SHeatV #!=7aft #7 #16 #25 034

2 Om hmon tau fals 8 #8 #17 026 #3

3Ore flQMe Ron fas 9 #9 #18 #27 #36

4 Rddafu " Table V-5 Plant models for

5 Cardfa; Schneider's design
6 Oe hoimmtal tal ad one flao•a faiL me AWde

7 0muhodoaid ,weo•flummnofaooo =ag The loop L,, (w) was shaped to minimize
violation of the stability bounds while

9 fW•maintaining the low frequency gain as
9 bothftMUOR gonaani fadl large as possible to achieve the best

Table V-4 Schneider's failure modes possible performance. The final loop
LI,(w) was in violation of the stability

bounds for v) - 2, 20, and 40 r/s and the

-- Imm•m mmmmmmm m mmmmm•m
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high frequency stability bound for w = 400 the design of f 33 (w), the prefilter bounds
r/s. A stability analysis is then per- were satisfied up to the frequency at
formed to evaluate the consequences of the which they cross (the frequency at which

stability bound violations, by plotting the tracking bounds were violated).
the open loop transmissions L,,(w) for all
i = 1, 2,..., 36 plant cases along with The 3x3 array of Bode plots shown in Fig.
the ML contour, as shown in Fig. 25. The 27 illustrates on each plot the 36 possi-
actual phase margin ble closed loop transmissions from an

input to ai output of the completed sys-
tem. The consequence of violating track-

.. - 1 1 1- 1- - --- - ing or disturbance bounds is seen where
10 - - - the closed loop transmissions violate

------------ ----- frequency domain performance specifica-
w --- tions, denoted by dashed lines. Note the
0 - - - violation of the upper bound b23 on the

so - I- third bode plot of the second row. The
-0 - - - --- -- violation translates into a larger-than-

10 -• _ - desired response in roll when a yaw com-
•r . _-A mand is applied to the channel 3 input.

-- - - ---- The resulting set of 36 possible step
s2.. .. responses of output 2 due to a unit step

-- - of input 3, shown in Fig. 26, illustrates
Q... . . the consequences of violating b 23 in the

time domain. Note for r, (t) = r 2 (t) = 0
Fig. 25 Lm L1 ,(jw) plots for 36 and r 3 (t) = u-,(t) that

cases and ML-contour (62)
Y2 (Ct)=Y ( t)-ya22 ( t).y 3 2 ( t) =y23  )( 62)

is thereby determined to be y = 200 rather
then the desired 45'. The shortfall is a
consequence of the degree of phase and For plant case #33 the most extreme
magnitude uncertainty among the 36 plant violation of b23 occurs, resulting in a

casds. Plant case 33 (FC 4, FM 6) was step response much larger than for any of

responsible for the largest contribution the other responses. For all other plant

in plant uncertainty, as shown in Fig. 25. cases and for all other transmissions the

The designer will have to accept whatever peak step disturbance responses are below
level of performance is achieved for the maximum specified peak value (that is,

channel 1 since stability is the most I YI ! Iy, I.. for i * j). The tracking

critical requirement. responses of channels 1 and 2 (that is, y.,
for i = 1, 2) fell tightly within the

y2duietou3 performance bounds a•, and b_, while the
0.8 responses Y33 for channel 3 fell outside a33

and b33 but did not exceed the maximum
0.6 allowable peak value. The larger than

desired settling time for Y33 is
0,4 accepted as a tradeoff for achieving the

desired stability margin.

0.2 •This design of the digital control problem
illustrates the results obtainable using

0 .. .......... an automated QFT CAD package. Despite the
difficulty and large scale of the MIMO

-0.2 problem, the MIMO/QFT CAD package provides
a straightforward method for design of a

4.4! robust digital controller while providing
insight into each stage of the QFT design
process.

-0.6
0 2 4 6 8 10 12

Fig. 26 y2 3,(t) responses to unit V-4 -- Dual Flight Control System Senario

step input for input 3 -- For a flight control system where
battle dammage is of concern, a possible

For the design of g 2 (w) for channel 2 (the dual flight control system is as follows:

Roll channel) and g3 (w) for channel 3 (the a control system designed by QFT in combi-

Yaw channel) the stability margins of y nation with an adaptive control system.

45* were acnieved while auding as much low The QFT controller is designed to maintain
frequency gain as possible to satisfy the a stable aircraft under certain battle

performance bounds. The disturbance dammage senarios while giving the adaptive

bounds for channel 2 and the tracking control system time to identify the battle

bounds for channel 3 proved to be impossi- dammage and adjust its controller to

ble to satisfy while maintaining the improve the flying qualities as much as

desired stability margin. The design of possible, as illustrated in Fig. 28.

the prefilter f 52 (w) for channel 2 was
straightforward, as for channel 1. For
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APPENDIX B

CAD flowchart for MISO discrete QFT
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APPENDIX C

MIMO/QFT CAD flowchart for analog and
discrete control systems
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CT - Second International Conference on Artificial Neural Networks.
LC - Bournemouth International Centre (GB)

*DC - 1991/11/18-1991/11/20
AU - FALLSIDE F.

*CS - lEE (GB)
DT - Congres
LA - ENG
PO - GB
ED - IEE.
SO - NO. 349; 383 p.; nb R f. ; nb Fig.; nb Tabl. ; DP. 1991
BN - 0-85296-531-1
SN - 0537-9989
LO - 05; ME131-3/349
AB - Les sujets de ces actes de conf~rences sont les suivants 1-La th~orie (Bartin

:une structure neuronale qul apprend A prendre des d~cisions de risque minimum
Bayesien, rdseaux neuronaux A correction aval par des algorlthmes g~n~tiques),
2-Les impl~mentations (mod~lisation de circuits CMOS analogiques pour
apprentissage, une conception rapide et nouvelle pour des re~seaux multi-couches
pouvant &tre mont~s en cascade). 3-Les images (identification et poursuite temps
r~el pour objets multiples dlans un environnement bruit6. un reseau neuronal base
sur un systbme de reconnaissance de couleur, rdseaux neuronaux pour la
reconstruction d'images), 4-Les applications en ing~nierie (reconnaissance d'image
A d~tecteurs rayon gamma sensibles d la position. r~seaux neuronaux pour des
diagnostics e§lectroniques), 5-Les syst:4mes dynamiques (structures temporelles A
apprentissage par rt6tropropagation continue), 6-Commandes et robotique (systeLmes
non lin~alres utilisant les rbseaux neuronaux. commandes intelligentes pour
v~hicules autonomes utilisant des reseaux neuronaux A m~moires associatives
adaptatives temps reel). 7-Syst~mes basds sur des r~gles. 8-Parole et langage
naturel (algorithmes ran~ides pour trouver des caractdristlques invariantes j
partir d'un r~seau neuronal reconnaissant les mots, apprentissage alg~brique dans
les r~seaux neuronaux syntaxiques). 9-Les applications m~dicales (surveillance des
6&ectrocardiogrammes avec des r~seaux neuronaux), 10-La reconn'aissance de
caract~res (texte calligraphique. caract~res 6crits A )a main), Il-Reconnaissance
de cibles, traitement de parole. probl~me de satisfaction de contraintes.
composition musicale, recherche visuelle de codes postaux.

AN - INFO/SN
CC - 09 02

VE- RESFAt' NEUPONAL*: DlECISION PROBABILISTE; APPRENTISSAGE; ALGORITHME; CMOS;
STRUCTURE MULTICOUCHE; TEMPS REEL: POURSUITE; kEWNAJI4ASSANCE AG;RECONSTRUCTION
IMAGE; DETECTEUR POSITION; SYSTEME NON LINEAIRE; ROBOrIOUE; RECONNAISSANCE PAROLE;
LANGAGE NATUREL; ELECTROCARDIOGRAMME; ELECTROENCEPHALOGRAPHIE; RECONNAISSANCE
CARACTERE; RECONNAISSANCE CIBLE; SYSTEME EXPERT; METHODE MOINDRE CARRE
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NO - C-92-010148
FT - Contr6le robuste d6centralis6 pour systdmes incertains a grande echelle : une

conception bas~e sur la limite d'incertitude.
ET - Decentralized robust control for large-scale uncertain systems : a design based

on the bound of uncertainty.
AU - CHEN Y. H.
AF - Georgia Inst. of rechnol., Atlanta (US)
OT - Publication en s(rie
LA - ENG
PO - US
JT - JOURNAL of DYNAMICS SYSTEMS, MEASUREMENT and CONTROL (Transaction of the "ASME")

- (S6rie G.) (US).
SO - VOL. 114; NO. 1; pp. 1-9; 28 Rdf.; 4 Fig.; OP. 1992/03
CD - JDSMAA
SN - 0022-0434
LO - 05; P 0470
AB - Etude d'une classe de systdmes lineaires incertains A grande 6chelle,

l'incertitude etant variable dans le temps. On ne suppose aucune information
deterministe ou stochastique A priori, excepte sa limite possible. Proposition
d'un contr6le robuste decentralisd pour chaque sous-syst6me. La caracteristique
saillante de la conception reside dans le fait qu'elle d6compose l]incertitude
interne et l'interconnexion. Ceci permet d'incorpc-ner la propriete structurelle de
1'incertitude dans Ia conception. En outre, proposition d'une version adaptive du
contr6le ddcentralise.

AN - INFO/LV
CC - 12 01
DE - INCERTITUDE*; SYSTEME LINEAIRE*; CONTROLE THEORIE*; ETUnE THEORIOUE.

STABILISATION; STABILITE SYSTEME

NO - C-92-F03292
FT - Structures dissipatives. Chaos et turbulence.
AU - MANNEVILLE P.
AF - CNRS, Saclay (FR)
DT - Ouvrage
LA - FRE
PO - FR
ED - CEA, Saclay.
SO - 417 p.; 196 RVf.; 142 Fig.; 1 Tabl.; DP. 1991/05
LO - 20; 92-62 STCAN/BIB
AB - Analyse de la stabilitt des structures dissipatives qui apparaissent dans les

milieu7: continus macroscopiques, et de la naissance du chaos dans les structures.
Aboutissement d'enseignements donn6s en troisi6me cycle A l'universits de Paris VI
et A l'Ecole de Physique de la mati6re condensde de BEG-ROHG, l'ouvrage constitue
une monographie didactique qul introduit le lecteur A la complexit6 des processus
non lin6aires.

AN - STCAN/LV
CC 20 13; 20 04
DE - STRUCTURE DISSIPATIVE*; CHAOS*; TURBULENCE*; SYSTEME NON LINEAIRE; CONVECTION

THERMIQUE; INSTABILITE THERMIQUE; SYSTEME DYNAMIQUE; COPSIB

I
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NO - C-92-F02127
FT - Optimisation approchee, en boucle fermee, des systemes non lineaires. par la

methodologie des perturbations singu~lires.
AU - FOSSARD A. J.; FOISNEAU J.
AF - ONERA, To,'"use (FR); ONERA, Toulouse (FR)
CS - ONERA CERT Toulouse
DT - Rapport

LA - FRE
PO - FR

NU - ONERA/CERT/DERA Nj V7709
SO - 113 p.; 20 Re§ • e' Fig.; DP. 1991/08; NO de la fiche programme T 233 B
CTR - DRET 88.34 *•9
LO - 05; M 50E-j/7709
AB - Le racýort comprend deux parties. I -On rappelle certaines notions de base sur

les y-stemes A &chelles de temps multiples (formes standard et non standard,
thtoreme de Tihonov...). 2 -On mesure l'int~rdt que peut avoir, dans le cas des
systemes A echelles multiples, un traitement des problemes d'optimisation. dars
une optique de perturbat inns singulleres, specialement dans la recherche d'une
solution en boucle fermee. Un certain nombre d'exemples, dans le domaine de
l'optimlsatlon de trajectoire, mettent en evidence d'une manlere concrete cet
intert.

AN - INFO/CD

CC - 12 01; 14 02
DE - SINGULARITE MATHEMATIQUE*;SYSTEME BOUCLE FERMEE*:SYSTEME NON LINEAIRE; ECHELLE

TEMPS;OPTIMISATION SYSTEME;OPTIMALISATION TRAJECTOIRE

CLI - PERTURBATION SINGULIERE; THEOREME TIHONOV

NO - C-92-004230

FT - Contr6le glissant des systemes non lineaires a entree A multivariables et a
sortie A multivariables.

ET - Sliding control of MIMO nonlinear systems.
CT - Actes de la premiere conference europeenne d'automatique Proceedings of the

first european control conference -ECC 91-.
LC - Grenoble (FR)
DC - 1991/07/02-1991/07/05
AU - FOSSEN T. I.
AF - Instit of technol, Trondheim (NO)
CS - Groupement de recherche automatique -CNRS- (FR)
DT - Memoire Congres
LA - ENG
PO - NO

ED - Hermes, Paris (FR)
SO - VOL 2; pp. 1855-1860; 8 Ref.; 3 Fig.; DP. 1991
BN - 2-866-01281-X
LO - 05; M 6153-1/1991 vol 2
AB - On discute ce contr6le pour des systemes A phase minimale. On insiste sur les

conditions de stabilit4 en rapport avec les erreurs du module. La stabllitL
asymptotique globale est garantie par I'appllcatlon du lemme de Barbalat semblable
A celut de Lyapunov. On applique la lo du contr6le A un simulateur d'un r6acteur
de polyfn6risation.

AN - INFO/CD
CC - 14 02; 07 04
DE - SYSTEME MULTIVARIABLE*; POLYMERISATION*; SYSTEME NON LINEAIRE; ERREUR; STABILITE

SYSTEME; COMPORTEMENT ASYMPTOTIQUE; LYAPOUNOV METHODE; RETROACTION; ROBUSTESSE



B-12

fNO-C-2032
FT - R~ssultats r~cents sur la stabilisation adaptative des systdines de dimensions

Er - Recent results on adaptive stabilization of infinite dimensional systems.
CT - Actes de la premi~re conference europ4§enne d'automatique. Proceedings of the

first european control conference - ECC 91 -
LC - Grenoble (FR)
DC - 1991/07/02-1991/07/05
AU - LOGEMANN H.; h4ARTENSSON B.
AF - Univ. of Bremen (DE); Univ. of Bremen (DE)
CS - Groupement de recherche automat ique - CNRS -(FR)

DT - Memoire Congres
LA - ENG
PO - DE
ED - Hermds, Paris (FR)
SO - VOL 3; pp. 2067-207 1; 31 Ref. ; 1 F ig. ; OP. 1991
BN - 2-866-01282-8
LO - 05; M 6153-1/1991 Vol 3
AB - L'auteur a montr6. pr6C~demment, que. pour stabiliser un syst~me lin~aire

inconnu. invariant dans le temps, de dimensions finies, ii 6tait suffisant de
connaltre l'ordre de chaque contr6leur de stabilisation. Ici, on g~n~ralise ce
r~su2 ,tat aiu, Syst:4mes A dimensions infinies. On donne quelcques resultats

di~o-r~ie:-,.;r ]a stabilisat ion adaptative de ces systemes.
AN - iV'C
CC - 12 C1
DE - ESTIMATION PARAMETRE*; SYSTEME STABILISATION; SYSTEME ADAPTATIF; SYSTEME

LINEAIRE; ALGORITHME: ESPACE HILBERT; SYSTEME A PARAMETRE REPARTI; COMMANDE
ADAPTATIVE; ROBUSTESSE

NO - C-92-003125
FT - Structures A grande 6chelle en physique non lin~aire.
ET - Large scale structures in nonlinear phisics.
CT - Proceedings of the workshop "Large scale structures in nonlinear physics".
LC - Villefranche sur Me," (FR)
DC - 1991/01/13-1991/01/18
AU - rOUNIERS J. 0.; SULEM P. L.
AF - Observation C6te d'Azur, Nice (FR); Observation C6te d'Azur. Nice (FR)
DT - Memoire Congres
LA - ENG
PO - FR
JT - Lecture notes in Physics (DE)
ED - Springer Verlag (DE)
SO - VOL 397: 353 p.; nb Ref.: nb Fig.; nb Tabi. ; OP. 1991
CO - LNPHA4
BN - 3540548998; 038754899-8
LO - 05; 8490-392
AB - La conf~rence 6tudie les 6tats coh~rents, les mod~les convectifs et turbulents.

les cascades inverses, les Interfaces et les ph~nonidnes coopdratifs dans les
fluides et les plasmas, l'impi~mentation des concepts de la m~canique statistique
A la physique des particules et A la mati~re nucl~aire. Elie insiste sur certains
ph~nom~nes commie la pr~dictabilit6 qui interviennent dans les caract~ristiques
macroscopiques. mime dans les processus dynamiques A faible 6chelle :structure
homoclInIque. thdorte KAM, stabilitL6 de Lyapunov. Un excpos6 est consacr6 au'c
nouvelles techniques perturbatives des champs classiques non lin~aires et
quantiques. On pr~sente de nouveaux r~sultats relatlfs A l'analyse des obejets
hi~rarchiquement organis~s.

AN - INFO/CO
CC - 20 05; 20O08
DE - MECANIQUE FLUIDOE; PHYSIQUE PARTICULE*; SYSTEME NON LINEAIRE; EFFET COHERENCE;

CONVECTION; TURBULENCE; STRUCTURE CASCADE; MECANIQUE STATISTIQUE; SYSTEME
DYNAMIQUE; LYAPOUNOV METHODE
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NO - C-92-001150

FT - R1ponse stationnaire exacte des systemes Oynamiques non llnbalres hamiltoniens

multi-dimenslonnels avec excitations externes et parametriques.

ET - Exact stationary response of multi-dimensional non-linear hamiltonian dynamical

systems under parametric and external stochastic excitations.
AU - SOIZE C.

AF - ONERA (FR)
DT - Publication en serie

LA - ENG
PO - FR

JT - ONERA Tires a Part (FR)

SO - NO 1991-185; pp. 1-24; 39 Ref.; DP. 1991

CD - ONTPAD
LO - 05; M 147-9/91-185
AS - On etudie une grande categorie de systbmes dynamiques non lineaires hamlitoniens

avec excitations externes et parametriques alatoires. Les excitations aleatotres

sont mod~lisies par un bruit blanc gaussien. La partie conservative est une

formulation hamiltonienne pour les systemes dynamiques non lineaires ind~pendants

du temps. La partie non conservative comporte trois termes : un terme
d'amortissement lin~aire ou non "ineaire, une excitation externe aleatotre qui est

le terme non homogene, et un terme d'excitation parametrique alatolre. La

stabilite du syst~me et l'existence d'une reponse statlonnaire asymptotique sont

etudi&es car 1'excitation parametrique alatiire a des variations des
caracteristiques dynamiques avec le temps. La fonction de densltt de probabilite

en regime 6tabli est construlte comme solution de 1'equation de Fokker-Planck. La

fonction caract~ristique et la matrice de croissance de la reponse statlonnaire

sont calculees explicitement. Piusleurs exemples montrent clairement les effets

des non linearites et de 1'excitation parametrique aieatoire pour des systemes

multi-dimensionnels.
AN - INFO/PA

CC 12 01; 14 02

DE - SYSTEME DYNAMIQUE*; REPONSE*; STABILiTE SYSTEME; ETUDE THEORIQUE; EQUATION

FOKKER PLANCK; EXCITATION STOCHASTIQUE; SYSTEME MULTIVARIABLE; SYSTEME NON

LINEAIRE; HAMILTONIEN

NO - C-91-013059

FT - Examen de plusieurs aspects de la conception de contr6leurs flous.

ET - A review of some aspects on designing fuzzy controllers.

CT - Knowledge-based system applications for guidance anC control.

LC - Madrid, ES

DC - 1990/09/18-1990/09/21
AU - TRILLAS E.; DELGADO M.; VERDEGAY J. L.; VILA M. A.

AF - Ministere de D~fense, Madrid, ES; Faculte des Sciences, Grenade, ES; Facult6 des

Sciences, Grenade, ES; Facult6 des Sciences, Grenade, ES

OT - Memoire Congres
LA - ENG

PO - ES

JT - AGARD Conference Proceedings (FR)

ED - AGARD (neuilly-sur-Seine)

SO - VOL CP474; pp. 31.1-31.12; 23 Ref.; 2 Fig.; I Tabl.; OP. 1990/04

CD - AGCPAV
SN - 9-283-50610-3

LO - 02; AGARD-CP-474
AS - Description des fondements les contr6leurs flous et Jes diff6rents moyens de les

mettre en oeuvre. Etude du management de l'information, c'est-A-dire des voles

utilisees pour realiser les inferences A partir des connaissances des specialistes

"(en g~ndral, la r~gle de base de deduction du calcul des predicats). Analyse des

fonctions d'implication possibles et des consequences de leur utilisation.
AN - INFO/CR

CC - 09 05; 13 08

DE - SYSTEME COAMANDE NON LINEAIRE*; CONTROLE PROCESSUS*; PROCESSUS INDUSTRIEL;

COMMANDE AUTOMATIQUE MACHINE; SYSTEME EXPERT; FONCTION FLOUE; REGLE INFERENCE;
BASE DONNEE DEDUCTIVE
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NO - C-91-002328

FT - Modlisation des systemes non lineaires A I'aide de modeles de calcul de la

moyenne mobile autordgressifs non lineaires (NARMAX).
ET - Modeling nonlinear systems by using nonlinear autoregressive moving average

models (NARMAX).
CT - IEEE-ICASSP-1990-International conference on acoustics. speech, and signal

processing- Vol 5 : Spectral estimation-Underwater signal processing.

LC - Albuquerque (US)
DC - 1990/04/03-1990/04/06
AU - SEIDEL 0. K.; DAVIES P.

AF - Purdue Univ. West Lafayette (US); Purdue Univ, West Lafayette (US)

DT - Memoire Congres

LA ENG
PO - US
ED - IEEE New York (US)

SO - NO 90CH2847-2; pp. 2559-2562; 9 Ref.; 4 Fig.; 2 Tabl.; DP. 1990
LO - 05; Me 349-98/1990 Vol 5

AB - Ces modules sont des extensions des modeles ARMA.Ils peuvent servir a simuler la

reponse echantillonnee des systemes non lineaires. Ce sont souvent des modeles

compacts, adaptes aux applications de contr6le et de conception. En etablissant
des relations entre ces modeles digitaux de donnees d'entree-sortie et les modeles
physiques des systemes, on peut gendrer des estimations de parametres physiques

d'un systeme. Ici, on decrit le comportement de deux oscillateurs couples non
lineaires par un systeme d'equations non lineaires couplees. On applique une

technique de representation a ces equations pour g~nerer des modeles NARMAX qui
relient l'entree echantillonnee a la reponse echantillonn&e des systemes non

lineaires.
AN - INFO/CD

CC - 09 03; 12 01

DE - Traitement s'gnal*; Moyenne mobile'; Systeme non lineaire; Systeme donn~e
echantillonnee; Donnee digitale; Estimation paramet-e; Equation non lineaire;
Modele autor~gressif*; Signal echantillonn*; Modele ARMA

NO - C-90-011266
FT - Dynamique chaotique des systemes non lineaires.

ET - Chaotic dynamics of nonlinear systems.
AU - RASBAND S. N.

AF - BRIGHAN Youry Univ. Provo (UJ)

DT - Ouvrage

LA - ENG
PO - ZZ
ED John Wiley and sons New York
SO - 230 p.; nbres Ref.; DP. 1990

BN 0-471-63418-2

LO - 05; 13859/6A
AB - Distributions A une dimension. Th~orle de l'universalite. Dimension fractale.

Dynamique differentielle. Exemples non-lin~aires avec chaos. Distribution A deux
dimensions. Dynamique conservative. Mesure du chaos. Complexit4 et chaos.

AN - INFO/VU

CC - 12 01; 14 02
DE - Gom~trie diffqrentlelle*; Syst~me non lineaire*; Objet fractal*; Chaos*;

Dynamique systdme; Thdorle bifu -atlon; Distribution multldimensionnelle
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NO - C-90-F01880
FT - Contr6labilitd exacte. perturbations et stabilisation de systemes distribu~s.
AU - LIONS J. L.

*AF - College de France (FR)
*OT - Ouvrage

LA - FRE
PO - FR
ED - Masson, Paris
SO - NO RMA 8 et 9; 536 et 272 p.; nb Ref.; Collection recherches math~matiques

appliqudes; OP. 1988
BN - 2225814775; 2-225814740
LO - 20; 90-68-1.2 STCAN/BIB
AS - Cet ouvrage prdsente la m~thode HUM (Hilbert Uniqueness Method) qui permet de

conduire un syst~me d'un e§tat initial A un 6tat final donn6. en un temps donn6
avec un contr6le optimal et un effort minimum. Ensuite les diverses perturbations
qui peuvent affecter un syst~me distribu6 sont 6tudi~es, afin d'examiner la
robustesse de la m~thode HUM. Un probleme mod~le ; contr6labilit:6 exacte de
1'6quation des ondes ;contr6le par Dirichiet. Formulation g4§n~rale du problome de
la contr6labilit6 exacte. Syst:4me de l'61asticit6 et quelques mod~les de plaques
vibrantes. Equation des ondeS: conditions aux limites de Neumann et de type m66
Contr6labilitd exacte simultan~e. Contr6labilit6 exacte de prob]L~mes de
transmission. Contr6le interne. Caractdrisation du contr6le donnL6 par HUM. Syst~me
de l'optimalit6 et m~thode de dualit6. Systemes coupl(ýs. Contr6labilit6 exacte et
penal isatlon. Contr6labilitO exacte et pertubations singuli~res. Perturbations des
modes d'act ion Sur les syst~mes. Perturbation des domaines. Homog~neisat ion.
Systemes d m~moire.

AN - INFO/AP
CC - 12 01: 13 13
OE- Th~orie contr6le optimal*; Syst~me 61astique*: Stabilitiý: Perturbation: Th~orie

syst~me; Analyse syst~me; Equation onde; Systeme commande: Systeme non lin~aire;
Th(ýorie perturbation; Stabilisation; Plaque: Condition limite; Systome A parametre
rc~parti*; Contr6labilit,6*: Etude dynamiQue: Optimnisation sous contrainte. COPBIB

NO - C-90-F00283
FT - A propos du chaos spatlo-temporel : concepts et experiences.
AU - CHIFFAUDEL A.
AF - Ecole Normale Sup~rieure, Paris (FR)
CS - Ec. Normale Supdr.. Groupe de Phys. du 501 ide (FR)
OT - Rapport
LA - FRE
P0 - FR
NU - ENS 1989
SO - Rapport de mise au point; 61 p.; 70 Ref.; 15 Fig.; OP. 1988
CTR - Convention IEP 87/82
LO - 05; 1605 M 600-1/ORET-IEP 87-822 F
AB - Ce rapport nous dclaire sur la notion de chaos spatio-temporel. c'est-A-dire la

perte de coherence temporelle O'un Syst~me non lin~aire, A peu de degr~s de
libert6. Cela nous fait prendre conscience clue le d~sordre peut dtre compriS.
formalisd et encadrb par des theories des syst~mes dynamiques. Cette th~orie sera
appliqu~e ici A 1'6tude des bcoulements turbulents.

AN - INFO/RI
CC - 20 04; 14 02
DE - Stabilit6 6coulenlent*; Th~orie systdme*; Ecoulement turbulent; Coh~rence:

Syst~me non lindaire; Instabilitd; Chaos*; Equation Kolmogorov
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NUMERO SIGNALEMENT AD-A252 520/2/XAD

TITRE ANGLAIS Learning Enhanced Flight Control System for High Performance
Aircraft.

AUTEUR(S) NISTLER N. F.

AUTEUR COLLECTIF Air Force Inst.of Tech., Wright-Patterson AFB, OH.

CLASSIFICATION INT 000805000; 012200

TYPE DE DOCUMENT Thesis

CODE LANGUE ENG

CODE PAYS D'ORIGINE US

NUMERO DE RAPPORT AFIT/CI/CIA-92-039

SOURCE Master's thesis; NP. 100; DP. 1992.

CODE JOURNAL NTIS U9220

CODE TARIF NTIS NTIS Prices: PC A05/MF A02

RESUME Numerous approaches to flight control system design have been
proposed in an attempt to govern the complex behavior of high
performance aircraft.Gain scheduled linear control and adaptive

control have traditionally been the most widely used

methodologies, but they are not without their limitations.Gain

scheduling requires large amounts of a priori design information

and costly manual tuning in conjunction with flight tests, while

still lacking an ability to accommodate unmodeled **dynamics** and

model uncertainty beyond a limited amount of robustness that can

be incorporated into the design.Adaptive control is suitable for

nonlinear systems with unmodeled **dynamics**, but has

deficiencies in accounting for quasi-static state

dependencies.Moreover, inherent time delays in adaptive control

make it difficult to match the performance of a well-designed gain

scheduled controller.An alternative approach that is atle to

compensate for the inadequacies experienceu with traditional

control techniques and to automate the tuning process is

desired.Recent Teaming techniques have demonstrated an ability to
synthesize multivariable mappings and are thus able to learn a

functional approximation of the initially unknown state dependent

**dynamic** behavior of the vehicle.By combining a learning

component with an adaptive controller, a new hybrid control system

that is able to adapt to unmodeled **dyramics** and novel

situations, as well as to learn to anticipate quasi-static state

dependencies is formed.

CODE CLASSIFICATION 51 05
DESCRIPTEUR(S) Flight control systems*;Learning*;Accounting;Aircraft;Approach;

Deficiencies;Delay;Dynamics;Gain;Limitations;Models;Nonlinear
systems;Schedullng;Statics;Test and evaluatlon;Tlme;Tuning;

Uncertainty

IDENTIFICATEUR(S) Theses;NTISDODXA

I
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NUMERO SIGNALEMENT N92-25636/1/XAD
TITRE ANGLAIS Analysis of Control Trajectories Using Symbolic and Database

Computing.
AUTEUR(S) GROSSMAN R.
AUTEUR COLLECTIF Chicago Univ., IL.
ORGAN FINANCEMENT National Aeronautics and Space Administration, Washington, DC.
CLASSIFICATION INT 000917000; C0455749
TYPE DE DOCUMENT Report

CODE LANGUE ENG
ORGAN FINANCEMENT Air Force Office of Scientific Research. Bolling AFB, DC.
CLASSIFICATION INT 043127127; 401997
TYPE DE DOCUMENT Report

CODE LANGUE ENG
CODE PAYS D'ORIGINE US

SOURCE Final rept. 15 Nov 90-14 Nov 91; NP. 11; DP. 10 Jan 92.
CODE JOURNAL NTIS U9212
CODE TARIF NTIS NTIS Prices: PC A03/MF A01
NUMERO ALLOCATION AFOSR-91-0033

NUMERO PROJET 2304
NUMERO ACTIVITE Al
NUMERO(S) AGENCE AFOSR-TR-92-0118
RESUME Significant progress was made in a number of aspects of nonlinear

and stochastic systems.An important problem in the adaptive
control of a finite state Markov chain was solved, and significant
progress was made along more general directions.A controlled
switching diffusion model was developed to study the hierarchical
control of flexible manufacturing systems and significant results
were obtained.In the area of deterministic nonlinear systems the
work continued on nonlinear observers and linearizable
**dynamics**.Finally, some important problems in the area of

discrete event systems were solved.
CODE CLASSIFICATION 62 03; 72 00
DESCRIPTEUR(S) Nonlinear systems*;Adaptfve control systems*;Contro):DOffusion;

Dynamics;Models;Numbers;Probability;Switching;Stochastic control
IDENTIFICATEUR(S) Markov chains;Hierarchical control;Flexible manufacturing systems;

NTISDODXA;NTISDODAF

NUMERO SIGNALEMENT N92-17998/5/XAD
TITRE ANGLAIS Neural Networks for Aircraft System Identification.
AUTEUR(S) LINSE D. J.
AUTEUR COLLECTIF Princeton Univ., NJ.Dept.of Mechanical and Aerospace Engineering.
ORGAN FINANCEMENT National Aeronautics and Space Administration, Washington. DC.
CLASSIFICATION INT 009938087; P3732113
TYPE DE DOCUMENT Report
CODE LANGUE ENG
CODE PAYS D'ORIGINE US
SOURCE In NASA. Langley Research Center, Joint University Program for Air

Transportation Research. 1990-1991 p 141-154; NP. 14: DP. Dec 91.
CODE JOURNAL NTIS 53008
CODE TARIF NTIS NTIS Prices: (Order as N92-17984/5, PC A09/MF A02)
RESUME Artificial neural networks offer some interesting possibilities

for use in control.Our current research is on the use of neural
networks on an aircraft model.The model can then be used in a

nonlinear control schemeThe effectiveness of network training is
demonstrated.

CODE CLASSIFICATION 51 05
DESCRIPTEUR(S) Aircraft control*;Aircraft models*:Control systems design*;Dynamic

control1;Machine learning*;Neural nets*;System identification*;
Mathematical models;Nonlinear systems

IDENTIFICATEUR(S) NTISNASA
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NUMERO SIGNALEMENT P592-148725/XAD
TITRE ANGLAIS Observer Design in the Tracking Control Problem of Robots.

AUTEUR(S) BERGHUIS H.; NIJMEIJER H.; LOEHNSERG P.

can be used to determine the important **dynamic** characteristics

of the Harmonic Drive gear reducer.The PHD, is a planar, three

degree of freedom arm with torque sensors integral to each joint

allowing joint torque feedback to be implemented.Preliminary

testing using the PHD has shown that a simple linear spring model

of the Harmonic Drive's flexibility is suitable in many

situations.Future work with the system could include a more
detailed Harmonic Drive model, as well as development of joint

torque feedback schemes for force control.(kr).
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for nonlinear control systems is presented.A local solution is
given by means of a constructive algorithm that is based on

Singh's algorithm and the clamped **dynamics** algorithm.The

nonlinear Model Matching Problem (MMP) is studied.This problem is
defined as follows: given a nonlinear control system, to be

referred to as the plant. and another nonlinear control system, to
be referred to as a model, can one find a compensator for the

plant in such a way that the input-output behavior of the

compensated plant matches that of the model.By proving that the

solvability of the nonlinear MMP is equivalent to the solvability

of an associated nDDDP a complete local solution of this problem

is established.
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RESUME Chaos is used to understand complex nonlinear **dynamics**.The

geometric and topological methods of Chaos theory are applied, for

the first time, to the study of flight test data.Data analyzed is

from the OH-6A Higher Harmonic Control (HHC) test aircraft.HHC is

an active control system used to suppress helicopter

vibrations.Some of the first practical applications of Chaos
methods are demonstrated with the HHC data.although helicopter
vibrations are mostly periodic, evidence of chaos was found.The

presence of a strange attractor was shown by computing a positive

Lyapunov exponent and computing a non integer fractal correlation

dimension.A broad band Fourier spectrum and a well defined

attractor in pseudo phase space are observed.A limit exists to HHC
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(2) it allows rapid determination of best phase for a HHC
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