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Abstract 

The theoretical background and the procedure of executing a new moire interferometry method, 

which combines the advantages of geometric moire method with the traditional moire 

interferometry, is reported. The method uses a steep geometric grating of about 40 lines/mm 

on a mirror finished specimen surface to achieve high contrast moire fringes. A special four 

beam moire interferometry bench is designed for the low grating frequency used. An application 

to experimental fracture mechanics analysis is briefly discussed. 

Introduction 

Conventional geometric moire (grating spatial frequency f ^ 40 lines/mm) utilizes a specimen 

grating, which is projected on to a reference grating on the camera screen and generates a 

geometric interference pattern. The major advantage of this method is its capacity for 

measuring large deformation. The main disadvantage is its poor contrast, especially when the 

specimen grating is generated by reflection from opaque materials. 

Moire interferometry (grating spatial frequency: f»2000 lines/mm) utilizes the interference 

between two diffracted beams of a coherent light. Its advantages include high sensitivity and 

good contrast.  One of its disadvantages is that the specimen grating is destroyed with large 
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deformation, especially in the plastically deformed region where the moire pattern is lost and a 

uniformly dark pattern is observed. Moreover, under large deformation, the surface of the 

specimen is warped, and the diffracted beam is projected away from the object lens and the 

camera making it difficult to photograph the warped moire patterns. 

In this paper, we report on a new moire interferometry which uses a steep geometric grating. 

The method combines the advantages of the geometric and the traditional moire interferometry 

methods and eliminates the two disadvantages mention above. 

Theory 

The essence of moire interferometry can be considered as a special application of strain analysis 

using holography. Holography normally consists of two main operations, i.e. information 

recording and reconstruction. 

First, a sinusoidal wave grating is generated by exposing the two coherent, interfered oblique 

collimated beams, i.e. object beam and reference beam, on the emulsion side of a holographic 

plate. After being linearly developed and fixed, the contrast of the hologram shows the 

amplitudes of the two beams. The spatial structure, i.e. the profile and the pitch between these 

parallel inference of the sinusoidal waves record the phase angles of the two wave fronts. 

Second, the moire interferometry is a process of reconstructing the wave fronts of the object 

beams. Moire interferometry adopts two beams with a specific and symmetric entrance angle to 

illuminate the specimen. The superposition of the plus and minus first order object beams of 

the deformed grating generates the wave front interference fringes. These fringes carry the 

information of the specimen deformation. 



From the Hugens-Fresnel theory, the wave fronts of the secondary waves interfere and 

determine the distribution of the light field. The mathematical model is the Fresnel-Kirchhoff 

diffraction formula or the "the unique boundary solution for the infinite sourceless space." 

Briefly speaking, when there is a change on the boundary, the light field will be redistributed, 

and the solution is unique. Therefore, the wave front reconstruction is also unique and can be 

observed only from a specific direction. 

Rectangular grating also can be considered as a hologram, however, it is generated by 

illuminating a series of collimated lights interfering with the 0 order reference light at 

different entrance angles (sine^tmA-f^l) with different intensities. These lights interfere and 

superimpose at the film plane and create a hologram. Therefore, when a pair of beams 

illuminate symmetrically a specimen, corresponding reconstructions of the interference 

between 0, ±1, , ±2, ..., ±m, order diffraction object beams overlay as shown in Fig. 2.(d) 

results. The interference pattern is unique, but, there are (2m)2 orders for the different 

diffraction directions. When these diffraction beams, which carry the same black and white 

fringe pattern shine on the screen of the grating surface, the dark areas become black lines and 

the bright areas appear as white lines. Therefore, the interference pattern can be observed on 

the specimen surface from any direction. 

A black and white cross grating illustrated as an orthogonal matrix is shown in Fig.1. The 

matrix consists of two arraying quasi-periodic unit rectangular functions along the x and y 

axes. Assuming x,y symmetry, both arrays are composed of a finite odd number, N, of terms. 

The Grit-Functions, G(x) and G(y), are defined as follows 
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where d is the spatial period of the grating and the unit rectangular functions, Rect[x] and 

Rect[y], are 
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The transparent rate function, T(x,y), or the reflective rate function, R(x,y), of the grating is 

the product of a Grit-functions G(x) and G(y). or 

T(x,y) = R(x,y) = G(x).G(y) 

Consider a coherent laser beam, A, with a plane wave-front, which is projected normally on to 

the grating, as shown in Fig. 2(a). The normal Fraunhoffer diffraction field, Un[x',y'], can be 

calculated by the Fourier transformation on the spectral plane which is composed of a two 

dimensional orthogonal array of diffraction points. 

UtX'.Vln   = 9 {A . [T(X,Y)]} 

-$MA.G(x).G(y)] 

= A . F [G(X)] . F [G(Y)] 

ASin(7td.  fx/2)  % Sin(N7id» fx) § Sin(7cd.fy/2)  § Sin(Nred.fy) 
«d»fx/2 Sin(7td«fx) nd»fy/2 Sin(nd»fy) 
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where symbol "&w represents the Fourier transformation and the terms, Sinc(d»fx/2) and 

Sinc(d»fy/2), represent the diffraction factors of the unit rectangular functions, Rect[x] and 

Rect[y], in the x and y directions of the grating, respectively. The product of the two terms 

comprises a two-dimensional amplitude envelop surface. 

Furthermore, the terms Sin(N7rd.fx) and Sin(NTrd.fy)  represent the interference factors 
Sin(nd»fx) Sin(rcd»fy) 

between the rectangular functions of N units. fx and fy are the independent variable frequencies 

of the grating along the x and y axes. Let A. represent the wave-length of the incident light and F 

be the focal length of the Fourier transform lens. With the grating in front of the focal plane of 

the lens, the condition of an iso-optical path must be satisfied or for the x' - y1 spectrum plane 

fx=^   ; fy-^   or x'-XFfx ; y' = XFfy 

If d»fx = i and d»fy = j, where i and j are arbitrary integer number, then, Sin(Nnd»fx) = 0 ; 

Sin(nd» fx) = 0, and Sin(Nrcd« fy) = 0 ; Sinfrd* fy) = 0. 

Sin(N7td. fx)       Sin(Njrd.fy) 
Smce the rat,° Sin(Kd.fx)     =   Sln(xd.fy)    = N 

many principal maximums are created by the interference factor of N unit rectangular function 

which consists of the diffraction points, i.e. a 2i x 2j matrix in the spectrum plane.   These 
ip ip 

points form an array at the positions x'=i -^ ; y'-j-j . The interval between the two 

neighboring diffraction points are a constant, XF/d, and are inversely proportional to the spatial 

period, d, of the grating. When the spatial frequency of the grating is f = 40 lines/mm and the 

wave-'en9tn of the project beam is X = 514 nm, the minimum integral number i = j < ±r; = 
AT 

±48 

or i and j < 0, ±1, ±2, ±3,...,±48 



Let an incidence coherent beam Illuminate the grating at an incident angle 6T as shown in 

Fig.2(b). 

A(x)= A . exp[^- sin(e! .x)] 

where exp[-=^ sinBi • x] denotes a linear phase factor and Qi delineates an arbitrary inclination 

angle of the beam in the z-x plane relative to the normal line, z. Let the spatial frequency of the 

grating f, =Sin6i_   Qn the Fourier's spectrum plane, the inclined Fraunhoffer diffraction field 

U,A [x\y'] is 

U|A [x'.y'] = 9 {A . [T(x,y)] . exp[27r If,, x]} 

= A . ^ { T(x,y)} * &  {exp[2ni fr x]} 

-A. Un[x',y']*8(fx-f1) 

-^•l^Dc,,y,]*»(x,-F«ne1) 

= A.Un[(x
,-Fsine1),y'] 

Here the asterisk "*" is a symbol indicating that these functions are to be convoluted and "8" 

represents a delta function.    From this result we can see   that the inclined Fraunhoffer 

diffraction field projection, U|A[x\y'], has the same spectrum field as the normal projection, 

Untx'.y'L except that x' is replaced by (x1- FsineJ which means that the whole diffraction field 

Un only moves a parallel distance, -FsinBi,  toward the left side as shown in Fig. 2(b). 

Similarly, a symmetric laser beam, B, with an incident angle, -8„ has a Fraunhoffer diffraction 

spectrum field of 

UlBtx'.y'] =   ^ ' Un [ ( x' + Fsine, ), y'] 

The whole diffraction field Un can then shift a distance FsinG! toward the right side. 

The two symmetric incident angles, 9i and -9,, are then adjusted so that the condition sin9! = m» 

sin9 - mXf is satisfied, where "m" is the multiplication number. All points in the two 

diffraction fields will coincide, but will be of different diffraction order. Each pair of the 

arbitrary principal maximum points are formed by two coincident diffraction beams A(i+m,j) 



and B(i-mJ), but all the coincident points have the same diffraction order differences of 

(2m,0) as shown in Fig.(2d). For example, when m = 1 the whole diffraction order differences 

are (2, 0) meaning that the multiplication numbers are 2 and 0 in the x and y direction, 

respectively. The condition of iso-optical path can be satisfied by any pair of the two groups of 

diffracted beams with the same diffraction angle shown in Fig. 3. 

Let UA(i+m,j)(x,y) and UB(i-m,j)(*.y) represent the wave fronts of any pair of the two matched 

diffracted beams. Due to the iso-optical path, both beams, which are diffracted by the specimen 

grating at the same phase angle, will have a uniform zero phase difference, i.e. a null field. 

When the specimen grating is deformed due to specimen deformation, the two warping wave 

fronts are 

UA(i+m,j)(x,y) = Ajj{exp[i<I>A(x,y)]} 

UB(i-m,j)(x,y) = Bij{exp[iO>B(x,y)]} 

where Ay and By are the amplitudes of the two diffracted beams in the direction of diffraction 

order (i,j). <J>A(x,y) and <I>B(x,y) represent the changes in the phase angles due to plane 

warping of the wave front. 

Let p denote an arbitrary point in the specimen grating. As the specimen grating deforms, point 

p will move to a new location p' with u(x,y), v(x,y), and w(x,y) displacement as shown in 

Fig.4.  The inclination angle of the two incident beams is sinGi = m»sin0 and the changes in the 

corresponding phase angles are 
2re 

<&A(x,y) = ^{u(x,y)sinei+(1+cos0i)w(x,y)] 

3>B(x,y) = Yl-u(t.y)sin8i+(1+cosei)w(x,y)] 



The intensity, l(x,y) can be expressed as a product of [UA(i+m,j)(x,y)+UB(i-m,j)(x,y)] ar,d its 

conjugation [UA(i+m,j)(x,y)+UB(i-mj)(x,y)]* 

l(x,y)=[UA(i+m,j)(x,y)+UB(j-m,j)(x,y)][UA(i+mj)(x,y)+UB(i-mj)(x,y)]* 

= 4D2cos2[<I>A(x,y) - OB(x,y)] 

= 4D2cos2 [ 8 (x,y)/2] 

When Ay = By = 2D, the phase difference, S (x,y), between the two diffraction beams can be 

calculated as 

8 (x,y)= <I> A(x,y) - <&B(x,y) 

= 2sm [2u(x,y)] Sine 

= 2nmf[2u(x,y)] 

When 8(x,y) = Zkit,   the moire fringe pattern will be formed. Therefore 

u(x-y)=s?!b.    k = 0,±1,±2,±3  2mf 

The result indicates that the displacement field generated by the diffracted beams Ajj and Bj j 

depend only on u(x,y) and are unaffected by the out-of-plane displacement w(x,y) which is 

generated by the lateral deformation of the specimen and the surface warping along the Z-axis. 

The total interference images will have the fringe pattern of the same order. Similarly one can 

prove that 

v(x,y)=  ^f,       k = 0,±l,±2,±3  

In the following, an experimental, which was included to verify the above theory, is described. 

Experiment 
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The deep geometric grating consists of an ultra-thick semi-transparent film which is etched 

with a deep grating on a mirrored surface of the specimen. The film combines the function of a 

reference grating and a display screen. When the two coherent beam intersect on the specimen 

surface and the radiated diffraction beams are projected on to the screen of the film, the 

interference pattern can be observed clearly from any direction. For example, a grating of 

f=40 lines/mm in an argon laser field will project visible diffracted beams of about 9000 lines 

in different directions. The good contrast of the displacement patterns for large deformation or 

crack tip plastic zone is obtained even when the specimen surface is warped. 

(1) Preparation of Steep Wall Profile Specimen Grating 

Specimen gratings for a compact tension (CT) and an single edge notch (SEN) 2024-T3 

specimens, as shown in Fig. 5, were fabricated following the procedure shown in Fig. 6. In 

order to enhance the diffraction efficiency of the grating, the specimen surface must be 

polished to a mirror grade . The steep grating and the display screen were made by spin 

coating a ultra-thick AZ4903 photo resist or by using the immersion method with a 1400 

series photo resist. Either method will achieve a coating layer thickness of 5-10 urn which 

forms the grating after exposure and developing. Either photo resist can be exposed with a 

light source in the spectral range of 350-450 nm; i.e. a typical mercury exposure system. 

The energy for proper exposure requirement is approximately 30mJ/cm2 per thickness 

nm. Usually glycerol is spread between the master grating and the coating layer to eliminate 

the ghost lines. After development, the photo resist has a convex and concave surface with 

frequency f. The specimen is then placed into a bath of 85% concentrate liquid phosphoric 

acid at a temperature of 70°C and etched to a steep wall profile. 

(2) Compact u-v Set and Optical Path Arrangement 

Since the grating spatial frequency of 40 lines/mm require an incidence angle between the 

z-axis and the two coherent beams of 1.176°, a special compact u-v set as shown in Fig. 7, 



was designed. The optical path arrangement of the moire interferometry test is shown in 

Fig.8. The fringe patterns of typical u- and v-displacement fields corresponding to varying 

loads are displayed on the screen of the specimen surface are shown in Fig.9 

Stable Crack Growth Studies 

40 lines/mm steep geometric specimen gratings were produced on 2024-T3 compact tension 

(CT) and single edge notched (SEN) specimens, using the newly developed specimen grating 

transfer procedure [4]. Fracture tests were then conducted to evaluate the performance of the 

specimen grating under gradually increasing loads. Beyond the maximum load and with long 

crack extension, large plastic zone formed and specimen surface was warped but the Moire 

fringes as shown in Figure 9, were clearly displayed on the surfaces of the specimen and could 

be viewed from any direction, The average number of v-displacement fringes over the length of 

a typical SEN specimen is kave " 60 lines in a 25 mm interval. Thus the elongation A^ave = 

kave x d » 60 x 0.025 =1.5 mm, and the engineering strain in this interval can be expressed 

as; 

^"Ib"^" °063 

In the plastic zone the average number of v-displacement fringes over the length is kp|astjC 

»180 lines per 25 mm, so that the plastic strain £p|astic " 0.189. 

Conclusion 

The concept and theoretical background of a steep geometric grating for use in moire interfero- 

metry are presented. The utility of a steep geometric grating is demonstrated in stable crack 

growth studies in 2024-T3 CT and SEN specimen. 
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