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Abstract

The theoretical background and the procedure of executing a new moiré interferometry method,
which combines the advantages of geometric moiré method with the traditional moiré
interferometry, is reported. The method uses a steep geometric grating of about 40 lines/mm
on a mirror finished specimen surface to achieve high contrast moiré fringes. A special four
beam moiré interferometry bench is designed for the low grating frequency used. An application

to experimental fracture mechanics analysis is briefly discussed.
Introduction

Conventional geometric moiré (grating spatial frequency f < 40 lines/mm) utilizes a specimen
grating, which is projected on to a reference grating on the camera screen and generates a
geometric interference pattern. The major advantage of this method is its capacity for
measuring large deformation. The main disadvantage is its poor contrast, especially when the

specimen grating is generated by reflection from opaque materials.

Moiré interferometry (grating spatial frequency: f~2000 lines/mm) utilizes the interference
between two diffracted beams of a coherent light. Its advantages include high sensitivity and

good contrast. One of its disadvantages is that the specimen grating is destroyed with large



deformation, especially in the plastically deformed region where the moiré pattern is lost and a
uniformly dark pattern is observed. Moreover, under large deformation, the surface of the
specimen is warped, and the diffracted beam is projected away from the object lens and the

camera making it difficult to photograph the warped moiré patterns.

In this paper, we report on a new moiré interferometry which uses a steep geometric grating.
The method combines the advantages of the geometric and the traditional moiré interferometry

methods and eliminates the two disadvantages mention above.
Theory

The essence of moiré interferometry can be considered as a special application of strain analysis
using holography. Holography normally consists of two main operations, i.e. information

recording and reconstruction.

First, a sinusoidal wave grating is generated by exposing the two coherent, interfered oblique
collimated beams, i.e. object beam and reference beam, on the emulsion side of a holographic
plate. After being linearly developed and fixed, the contrast of the hologram shows the
amplitudes of the two beams. The spatial structure, i.e. the profile and the pitch between these

parallel inference of the sinusoidal waves record the phase angles of the two wave fronts.

Second, the moiré interferometry is a process of reconstructing the wave fronts of the object
beams. Moiré interferometry adopts two beams with a specific and symmetric entrance angle to
iluminate the specimen. The superposition of the plus and minus first order object beams of
the deformed grating generates the wave front interference fringes. These fringes carry the

information of the specimen deformation.



From the Hugens-Fresnel theory, the wave fronts of the secondary waves interfere and
determine the distribution of the light field. The mathematical model is the Fresnel-Kirchhoff
diffraction formula or the "the unique boundary solution for the infinite sourceless space."
Briefly speaking, when there is a change on the boundary, the light field will be redistributed,
and the solution is unique. Therefore, the wave front reconstruction is also unique and can be

observed only from a specific direction.

Rectangular grating also can be considered as a hologram, however, it is generated by

illuminating a series of collimated lights interfering with the O order reference light at
different entrance angles (sin8;=tmAf<1) with different intensities. These lights interfere and
superimpose at the film plane and create a hologram. Therefore, when a pair of beams
illuminate symmetrically a specimen, corresponding reconstructions of the interference
between O, £1, , £2, ..., £m, order diffraction object beams overlay as shown in Fig. 2.(d)
results. The interference pattern is unique, but, there are (2m)2 orders for the different
diffraction directions. When these diffraction beams, which carry the same black and white
fringe pattern shine on the screen of the grating surface, the dark areas become black lines and
the bright areas appear as white lines. Therefore, the interference pattern can be observed on

the specimen surface from any direction.

A black and white cross grating illustrated as an orthogonal matrix is shown in Fig.1. The
matrix consists of two arraying quasi-periodic unit rectangular functions along the x and y
axes. Assuming x,y symmetry, both arrays are composed of a finite odd number, N, of terms.

The Grit-Functions, G(x) and G(y), are defined as follows
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where d is the spatial period of the grating and the unit rectangular functions, Rect[x] and

Rect[y], are

H |4 <d/2
Rect [x] = { when

0 lxl >d/2

H |y| <d/2
Rect [y] ={ : when |y| D

The transparent rate function, T(x,y), or the reflective rate function, R(x,y), of the grating is

the product of a Grit-functions G(x) and G(y). or

T(x,y) = R(x,y) = G(x)+ G(y)

Consider a coherent laser beam, A, with a plane wave-front, which is projected normally on to
the grating, as shown in Fig. 2(a). The normal Fraunhoffer diffraction field, Un[x',y'], can be
calculated by the Fourier transformation on the spectral plane which is composed of a two

dimensional orthogonal array of diffraction points.

UIX'Yln =& {A«[T(XV)]}
=F {A -G(x) » G(¥)]

=A. F[GX)]- &F [G(Y)]
Sin(rde_fx/2) _ Sin(Nndfx) _ Sin(nds fy/2) _ Sin(Nrd. fy)
ndefx/2 Sin(rnde fx) nd«fy/2 Sin(nde fy)

=A



_A « Sinc(de fy/2) SOV | G047y, Sin(Nnde fy)
—A SInC(d fx/Z) Sin(nd- fX) S|nC(d fy/z) SIN(ﬂd'fy)

where symbol "&" represents the Fourier transformation and the terms, Sinc(d«fx/2) and
Sinc(d-fy/2), represent the diffraction factors of the unit rectangular functions, Rect(x] and
Rect(y], in the x and y directions of the grating, respectively. The product of the two terms
comprises a two-dimensional amplitude envelop surface.

Furthermore, the terms Sm(N_nd-fQ and My_) represent the interference factors

Sin(ndefy) Sin(ndefy)

between the rectangular functions of N units. fy and fy are the independent variable frequencies
of the grating along the x and y axes. Let A represent the wave-length of the incident light and F
be the focal length of the Fourier transform lens. With the grating in front of the focal plane of

the lens, the condition of an iso-optical path must be satisfied or for the x’ - y' spectrum plane

fx=)“x—F ; fy={F or x'=AFfx ; y'=AFfy
If defy =i and defy = j, where i and j are arbitrary integer number, then, Sin(Nrdefy) = O ;

Sin(rde fx) = 0, and Sin(Nnd. fy) = O ; Sin(nde fy) = 0.

. ’ Sin(Nnde fy) Sin(Nnde fy)
Since the ratio Sin(rde fy) = S fy)

=N

many principal maximums are created by the interference factor of N unit rectangular function

which consists of the diffraction points, i.e. a 2i x 2j matrix in the spectrum plane. These

points form an array at the positions x'=i -% : y’=j-% . The interval between the two

neighboring diffraction points are a constant, AF/d, and are inversely proportional to the spatial

period, d, of the grating. When the spatial frequency of the grating is f = 40 lines/mm and the

wave-length of the project beam is A = 514 nm, the minimum integral number i = j < i% =

+48

or iandj=<0, %1, +2, £3,...,+48

(57 ]




Let an incidence coherent beam llluminate the grating at an incident angle 6, as shown in
Fig.2(b).
A(X)=A » exp[z%I sin(6; +x)]

where exp[% sin®, « x] denotes a linear phase factor and 6, delineates an arbitrary inclination

angle of the beam in the z-x plane relative to the normal line, z. Let the spatial frequency of the

grating f, =S"_’)‘\9-‘-' On the Fourier's spectrum plane, the inclined Fraunhoffer diffraction field

Up [XWY']s
Ua [Xy'1=F {A«[T(xy)]«exp[2n ifye x]}
=A«F {T(x,y)} *F {exp[2nifie x]}
=Ae Un[x', y'1*8(fy-fy)
A L]
AF
= % - U [ (X' -Fsingy),y']

Unx', y'] #8 (X’ - Fsingq)

Here the asterisk "*" is a symbol indicating that these functions are to be convoluted and "§"
represents a delta function. From this result we can see that the inclined Fraunhoffer
diffraction field projection, UJA[x',y'], has the same spectrum field as the normal projection,
Un[x',y'], except that x' is replaced by (x’- Fsing,) which means that the whole diffraction field
Un only moves a parallel distance, -Fsinf1, toward the left side as shown in Fig. 2(b).

Similarly, a symmetric laser beam, B, with an incident angle, -6,, has a Fraunhoffer diffraction
spectrum field of

s o7dy B. ' . y
UBLX,y'] = 3¢ *Un [ (x'+Fsin6; ),y’]

The whole diffraction field Un can then shift a distance Fsin8, toward the right side.

The two symmetric incident angles, 6, and -6,, are then adjusted so that the condition sin6, = me
sing = mAf is satisfied, where “m” is the multiplication number. All points in the two
diffraction fields will coincide, but will be of different diffraction order. Each pair of the

arbitrary principal maximum points are formed by two coincident diffraction beams A(i+m,j)



and B(i-m,j), but all the coincident points have the same diffraction order differences of
(2m,0) as shown in Fig.(2d). For example, when m = 1 the whole diffraction order differences
are (2, 0) meaning that the multiplication numbers are 2 and O in the x and y direction,
respectively. The condition of iso-optical path can be satisfied by any pair of the two groups of

diffracted beams with the same diffraction angle shown in Fig. 3.

Let UA(i+m,j)(X,y) and Ug(i-m,j)(x,y) represent the wave fronts of any pair of the two matched
diffracted beams. Due to the iso-optical path, both beams, which are diffracted by the specimen
grating at the same phase angle, will have a uniform zero phase difference, i.e. a null field.
When the specimen grating is deformed due to specimen deformation, the two warping wave

fronts are
Ua(i+m,j)(x,y) = Aji{exp[iPa(x,y)]}
Ug(i-m,j) (x,¥) = Bjj{exp[idg(x,y)]}

where Ajj and Bjj are the amplitudes of the two diffracted beams in the direction of diffraction

order (i,j). ®a(x,y) and Pg(x,y) represent the changes in the phase angles due to plane

warping of the wave front.

Let p denote an arbitrary point in the specimen grating. As the specimen grating deforms, point
p will move to a new location p’ with u(x,y), v(x,y), and w(x,y) displacement as shown in
Fig.4. The inclination angle of the two incident beams is sin8; = mesin® and the changes in the

corresponding phase angles are

DA(xY) = {ulx,y)sind1+(1+cos81 w(x,y)]

DB(xy) =25 {-u(x,y)sing1+(1+c0s01 )w(x,y)]



The intensity, I(x,y) can be expressed as a product of [Ua(i+m,j)(x,y)+UB(i-m,j)(x,y)] and its

conjugation [UA(i+m,j)(%,y)+Ug(i-m,j)(x,y)]*

106Y)=[UAi+m, j) 06Y)+UB(i-m,j) <, Y) IUAG+m,j) (% Y)+UB(i-m,j) (x,¥)]*
= 4D2cosZ[Da(x,y) - Pg(x.y)]
= 4D%cos? [ & (x,y)/2]
When Ajj = Bjj = 2D, the phase difference, 5 (x,y), between the two diffraction beams can be

calculated as

3 (x,y)=D a(x,y) - Pa(x,y)
- —%‘3— [2u(x,y)] Sin@

= 2rnmf[2u(x,y)]

When &(x,y) = 2kr, the moire fringe pattern will be formed. Therefore

UKY) =oir k=0, £1, 22, £3,...

The result indicates that the displacement field generated by the diffracted beams Ajj and B |
depend only on u(x,y) and are unaffected by the out-of-plane displacement w(x,y) which is
generated by the lateral deformation of the specimen and the surface warping along the Z-axis.

The total interference images will have the fringe pattern of the same order. Similarly one can

prove that
k
= — =0, =
v(x,y) Smf k=0, £1, 22, £3,..

In the following, an experimental, which was included to verify the above theory, is described.

Experiment



The deep geometric grating consists of an ultra-thick semi-transparent film which is etched
with a deep grating on a mirrored surface of the specimen. The film combines the function of a
reference grating and a display screen. When the two coherent beam intersect on the specimen
surface and the radiated diffraction beams are projected on to the screen of the film, the
interference pattern can be observed clearly from any direction. For example, a grating of
f=40 lines/mm in an .argon laser field will project visible diffracted beams of about 9000 lines
in different directions. The good contrast of the displacement patterns for large deformation or

crack tip plastic zone is obtained even when the specimen surface is warped.

(1) Preparation of Steep Wall Profile Specimen Grating
Specimen gratings for a compact tension (CT) and an single edge notch (SEN) 2024-T3
specimens, as shown in Fig. 5, were fabricated following the procedure shown in Fig. 6. In
order to enhance the diffraction efficiency of the grating, the specimen surface must be
polished to a mirror grade . The steep grating and the display screen were made by spin
coating a ultra-thick AZ4903 photo resist or by using the immersion method with a 1400
series photo resist. Either method will achieve a coating layer thickness of 5-10 um which
forms the grating after exposure and developing. Either photo resist can be exposed with a
light source in the spectral range of 350-450 nm; i.e. a typical mercury exposure system.
The energy for proper exposure requirement is approximately 30mJ/cm? per thickness
um. Usually glycerol is spread between the master grating and the coating layer to eliminate
the ghost lines. After development, the photo resist has a convex and concave surface with
frequency f. The specimen is then placed into a bath of 85% concentrate liquid phosphoric

acid at a temperature of 70°C and etched to a steep wall profile.

(2) Compact u-v Set and Optical Path Arrangement
Since the grating spatial frequency of 40 lines/mm require an incidence angle between the

z-axis and the two coherent beams of 1.176°, a special compact u-v set as shown in Fig. 7,



was designed. The optical path arrangement of the moire interferometry test is shown in
Fig.8. The fringe patterns of typical u- and v-displacement fields corresponding to varying

loads are displayed on the screen of the specimen surface are shown in Fig.9

Stable Crack Growth Studies

40 lines/mm steep geometric specimen gratings were produced on 2024-T3 compact tension
(CT) and single edge notched (SEN) specimens, using the newly developed specimen grating
transfer procedure [4]. Fracture tests were then conducted to evaluate the performance of the
specimen grating under gradually increasing loads. Beyond the maximum load and with long
crack extension, large plastic zone formed and specimen surface was warped but the Moiré
fringes as shown in Figure 9, were clearly displayed on the surfaces of the specimen and could
be viewed from any direction, The average number of v-displacement fringes over the length of
a typical SEN specimen is kaye ~ 60 lines in a 25 mm interval. Thus the elongation Algye =

kave x d » 60 x 0.025 =1.5 mm, and the engineering strain in this interval can be expressed

as;

In the plastic zone the average number of v-displacement fringes over the length is Kpjastic

~180 lines per 25 mm, so that the plastic strain €pjastijc ~ 0.189.

Conclusion
The concept and theoretical background of a steep geometric grating for use in moiré interfero-
metry are presented. The utility of a steep geometric grating is demonstrated in stable crack

growth studies in 2024-T3 CT and SEN specimen.
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