)

USACERL Interim Report FF-93/07
July 1993

. Integrated Persistent Modular Object Representation Translator
US i e,

smonii . AD-A268 568
T

Research in Persistent Simulation:
Development of the Persistent ModSim
Object-Oriented Programming Language

by

Charles Herring
Biju Kalathil
Joseph Teo

A general trend in object-oriented programming language

development is the addition of features for consistent

storage of objects. This capability is implemented through ‘ C
persistent programming languages and object-oriented

databases. The U.S. Army Construction Engineering ELECTE
Research Laboratories has developed Persistent ModSim, 3
an enhanced version of the ModSim programming AUGZs 199
language previously developed to provide a general-pur-

pose, object-oriented, process-based simulation language E

with support for programming large-scale simulations.

This report describes the pilot and prototype experiments e
leading to the development of a robust version of

Persistent ModSim. Details of the database class

libraries, transient and persistent object allocation,

transactions, and compilation management are given.

Example programs are provided to show how Persistent

Modsim'’s facilities are used. Directions for future research

in this area are outlined.

93 g | . 93-19727
! 24 063 WHERRNELL. .

Approved for public release; distribution is unlimited.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Pubiic reporting burden for this colection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and compieting and reviewing the coliection of information. Send comments regarding this burden estimate or any other aspect of this
coliection of intormation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefterson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

July 1993 Interim

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Research in Persistent Simulation: Development of the Persistent ModSim
Object-Oriented Programming Language

6. AUTHOR(S)
Charles Herring, Biju Kalathil, and Joseph Teo

5. FUNDING NUMBERS
4A162784
AT41
SE-AV2

Reimb
RP2P69QH 12

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Aty Construction Engineering Research Laboratories (USACERL)

P.O. Box 9005
Champaign, IL 61826-9005

8. PERFORMING ORGANIZATION
REPORT NUMBER

IR-FF-93/07

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Directorate of Combat Developments Model Improvement and Study
(DCD) Management Agency
ATTN: ATSE-CDC-M ATTN: ATSE-CDC-M
U.S. Army Engineer School Operations Analysis Center
Fort Leonard Wood, MO 65473-5000 Fort Leavenworth, KS 66027

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA

22161.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A general trend in object-oriented programming language development is the addition of features for consistent
storage of objects. This capability is implemented through persistent programming languages and object-oriented
databases. The U.S. Army Construction Engineering Research Laboratories has developed Persistent ModSim, an
enhanced version of the ModSim programming language previously developed to provide a general-purpose,
object-oriented, process-based simulation language with support for programming large-scale simulations. This
report describes the pilot and prototype experiments leading to the development of a robust version of Persistent
ModSim. Details of the database class libraries, transient and persistent object allocation, transactions, and
compilation management are given. Example programs are provided to show how Persistent Modsim's facilities

are used. Directions for future research in this area are outlined.

14. SUBJECT TERMS
object-oriented programming
Persistent ModSim
modeling

simulation

15. NUMBER OF PAGES
56

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500

Standard Form 208 (Rev. 2-80)
Prescribed by ANSI 5% 239-18
208-102

FOREWORD

This study was conducted for the Directorate of Combat Developments (DCD), U.S. Army Engineer
School (USAES), under Project 4A162784AT41, “Military Facilities Engincering Technology™; Work Unit
SE-AV2, “FAFS-Integrated Persistent Modular Object Representation Translator.” The technical monitor
was Dave Loental, U.S. Army Engineer School, ATSE-CDC-M. Also described in this report is work
done for Model Improvement and Study Management Agency (MISMA), under the reimbursable Work
Unit RP2P69QH 12, “FAFS-AMIP SimTech ModSim Data Management.” The MISMA Technical Monitor
was Harry P, Jones, U.S. Army Training and Doctrine Command (TRADOC) Analysis Command.

This research was performed by the Facility Management Division (FF) of the Infrastructure Labora-
tory (FL), U.S. Amy Construction Engineering Research Laboratories (USACERL). Janet H. Spoonamore
is Acting Chief, CECER-FF. Dr. Michael J. O'Connor is Chief, CECER-FL.

LTC David J. Rehbein is Commander of USACERL and Dr. L.R. Shaffer is Director.

Acceslon For N

NTIS CRA& g

pTIC TAB

U..announced O

Jstification

By .

Di:t ibution]
Availability Codes

Avail andjor
Dist Special
SPECTED 3
oTIC QUALTTY IV

CONTENTS

Page
SF298 1
FOREWORD 2
INTRODUCTION ... ittt tnesneacesssssnanasncnnannses 5
Background 5
Objective s
Approach 5
Mode of Technology Transfer 6
OBJECT-ORIENTED SOFTWARE TECHNOLOGYciiiiiiiennenns 7
The Object-Oriented Paradigm 7
Object-Oriented Programming Languages 8
Persistence and Object Data Management 9
MODSIM LANGUAGE OVERVIEWcitiirtiirininnnnnennnnnanss 12
ModSim as an Object-Oriented Language 12
ModSim as a Simulation Language 14
Implementation 17
PILOT AND PROTOTYPE DEVELOPMENTc.iiiiiiieneecrecnns 18
Pilot Experiment 18
Prototype Implementation 20
PERSISTENT MODSIMi ittt teennoenntnsssnsscsacnoncoans 24
Database Classes 24
Transient and Persistent Object Allocation 26
Transactions and Concurrent Database Access 27
Compilation Management 28
DATABASE CLASS LIBRARYttt eecessnsosocsasnnnnnns 29
The Database Class 29
The DatabaseRoot Class 30
The Collection Class 31
The Cursor Class 33
The Configuration Class 34
The Workspace Class 36
The Segment Class 37
EXAMPLE PROGRAMS it iiiiiiiteennnencsasscscnnscnonnennns 39
Using Database, DatabaseRoot, Collection, and Cursor 3
Examplel 40
Example2 41
Using Workspace and Configuration 42
A Note on Simulation 47
SUMMARY, CURRENT RESEARCH, AND FUTURE DIRECTIONS 48
Summary 48
Future Directions 49
REFERENCES 51

DISTRIBUTION

RESEARCH IN PERSISTENT SIMULATION: DEVELOPMENT OF THE
PERSISTENT MODSIM OBJECT-ORIENTED PROGRAMMING LANGUAGE

1 INTRODUCTION
Background

The Department of Defense (DoD) identifies modeling and simulation (M&S) as a critical
technology. This is reflected in the Army Technology Base Master Plan (U.S. Army 1992) which lists
computer- and electronics-based technology for training and readiness as one of the Army’s major science
and technology thrusts. In this plan, as in recent DoD and Defense Advanced Research Projects Agency
(DARPA) documents (DoD 1992; DARPA 1992), distributed interactive simulation is envisioned as the
chief means of training the future force. M&S is further classified as one of the Army’s five supporting
capabilities. Some applications of M&S as a supporting capability are computer M&S, physical
simulation, test and evaluation simulation, and battlefield simulation.

In support of these broad objectives, the Deputy Under Secretary of the Army for Operations
Research (DUSA(OR)) established the Army Model and Simulation Management Program (AMSMP) as
specified in AR 5-11. AR 5-11 creates a management program with the Army Model Improvement
Program (AMIP) and the Simulation Technology Program (SIMTECH) as subordinate entities. AMIP is
concemned with the development and management of Army combat models. SIMTECH is concerned with
the advancement of simulation technology to further the goals of AMIP. A major M&S technology
achievement was the development of the ModSim programming language under SIMTECH sponsorship
(Herring 1990). ModSim is a programming language based on Modula-2 and extended with an object
type. ModSim'’s process-based facilities support discrete-event simulation.

USACERL researchers began using ModSim to develop the Force Structure Trade-off Analysis
Model (Herring, Wallace, and Whitehurst 1991) as a combat simulation test-bed. During this
investigation, ModSim was enhanced to have a consistent mechanism for storing object information.
Seamless secondary storage management is a major trend in object-oriented languages. Languages with
this feature are called persistent. Further research led to pilot and prototype versions of Persistent
ModSim, which enables researchers to explore persistent simulation. The addition of consistent object
storage, persistence, within the context of the ModSim object-oriented process-based simulation language,
provides the user with a "database-centric” view of large-scale simulations. These capabilities dramatically
affect the approach to design and implementation of simulations, permitting easy access to functions that
would otherwise be available only in a ad hoc manner.

Objective

The objective of the research described in this report is the application of object-oriented database
technology to provide a number of enhancements to the ModSim language. The objective of the report
is to document the development of Persistent ModSim, and describe its key components and capabilities.
Approach

This report describes the pilot and prototype experiments leading to the development of a robust
Persistent ModSim programming language, and describes the Persistent ModSim in detail. This includes

the database class library, transient and persistent object allocation, transactions, and compilation
management. The use of these new facilities is illustrated by example programs.

Mode of Technology Transfer

Several joumal articles, technical papers, conference presentations, and numerous briefings to
Govemment agencies over the past 2 years have made researchers and developers aware of this research.
Under the direction of the DUSA(OR), transfer of Persistent ModSim to several Army agencies has begun.
Persistent ModSim is available to any Government agency on request to USACERL.

2 OBJECT-ORIENTED SOFTWARE TECHNOLOGY

Beginning in the mid-1980s, the object-oriented approach to software development replaced the
structured approach that flourished during the 1970s. While building on the major concepts of the
structured programming languages (e.g., Pascal, C, Ada) such as information hiding, abstract data types,
and modularity, the object-oriented approach represents a paradigm shift in software development.
Structured programming will remain the arena for software research and development for the remainder
of this century, and it is the enabling technology for the integration of many disparate software disciplines.
The concept of persistence is central to this integration. This chapter introduces the ccncepts of object-
oriented programming and persistence so that their impact on simulation technology can be appreciated.

The Object-Oriented Paradigm

The object-oriented paradigm is a philosophy for system development. It provides consistent and
unifying principles for decision-making at each level of system resolution, including the design,
construction, and operation of large software systems. In the context of the evolution of software
techniques over the last 30 years, object-oriented programming represents the most advanced embodiment
of the goal of software engineering: to produce quality software that precisely fulfiils user needs. Quality
here means software that is modifiable, efficient, reliable, and understandable (Ross, Goodenough, and
Irvine 1975).

True to the nature of a paradigm shift, many of the long-held notions and practices of the structured
approach must now be reexamined. For example, the revered top-down approach to systems requirements
analysis and design, when seen through “object-colored glasses™ seems totally inappropriate. The top-down
(structured) approach is characterized by analysis and specification of a system as a set of functions.
These functions are derived from the most abstract generalizations about the system. In a process known
as “stepwize refinement,” these generalized system functions are then broken down into ever more
specialized functions until they can be mapped directly into software procedures. The essence of this
approach is the focus on function or action. In sharp contrast, the object-oriented approach focuses on
the data or objects that make up the system.

Object-oriented software is an organized collection of units that encapsulate both data and the
operations or processes that operate on the data. In the structured or functional approach, the data and
the operations on them are treated separately. When approaching a problem domain, it is natural to begin
by identifying the real-world objects that are part of that domain. The first step is to abstract the attributes
and behaviors of these objects into written specifications. Object-oriented software technologies enable
programmers to realize the results of such analysis directly as software objects and arrange them into
software systems that do useful work.

The object-oriented approach is one of modeling—identifying the real-world objects that compose
the system. It is well known in control theory that any system (organism) that seeks to control the
functions of another system must possess and maintain an intemal representation—a model—of that system.
It is from the vantage point of a model that analysis proceeds, leading to the understanding and prediction
of system behavior. Software systems are models of some real-world enterprises. An accounting system
models how a company keeps up with finances; a CAD package lets engineers and architects model
buildings; a combat simulation models modem warfare. Thus, object-oriented software technology is
ideally suited to support the building of ever more complex software systems.

Object-Oriented Programming Languages

Object-oriented programming is in the phase, inevitable for any new technology, when its concepts
are being refined and its terminology clarified. There are currently several approaches to building object-
oriented languages. The languages most frequently credited with being the original object-oriented
languages are SIMULA (Dahl and Nygaard 1966) and Smalitalk (Goldberg and Robson 1983). Recently.
C++ (Stroustrup 1986) and CLOS (Bobrow, et al. 1988) have become popular for new applications
development. Despite this diversity, certain features are required for a language to be considered object-
oriented. This section briefly reviews these requirements and provides background for the discussion of
ModSim in the next chapter.

Two concepts central to object-oriented design and programming are class and object. In general,
a class is a set of things that have the same attributes and behaviors, e.g.. cars. In general, an object is
a specific instance of a class, e.g., Bill’s car. These two concepts have different connotations in software
design than they do in programming. In design, the general meanings of class and object, stated above,
are used. In implementation (programming languages), class and object take on specific meanings: class
is a software unit (module) that encapsulates the attributes and behaviors of some real-world class
identified in the design. An object is the instance or realization of an item of a particular class. One of
the attractions of the object-oriented approach is the fidelity of the mapping it permits between design and
implementation.

As object-oriented languages have evolved, four major characteristics have emerged: information
hiding, data abstraction, inheritance, and dynamic binding.

Information hiding was a significant conceptual advance made during the 1970s. It is generally
credited to Pamnas (1972). According to Parnas, each software unit encapsulates its data and procedures
and permits access to its iniernals only through a well-specified interface. In object-oriented programming,
objects communicate by sending messages requesting each other to perform their behaviors. Objects can
query each other to find the value of an internal-state variable, but they cannot change this value directly.
Information hiding is implemented in programming languages by giving objects the ability to store data
structures and operations in a single module. This module provides access through a specification
interface and is protected by scope rules from direct manipulation by other objects.

Data ubstruction is uuplemented in a language as the ahility to create new types, of which variables
are declared. In object-oriented languages, this is the ability to declare an object to be of a certain class.
Here the distinction between class and object is again evident. Class corresponds to an abstract data type,
and object corresponds to a variable of that abstract type. Data abstraction provides the ability to focus
on what is relevant in modeling the problem.

Inheritance is the mechanism by which classes are defined in terms of other classcs. Through
inheritance, classes can be created that are specializations or extensions of existing classes. The newly
created class inherits the data structures and behaviors of its ancestor class. These derived classes are
subclasses. The process of inheritance can be extended to many generations of subclasses. A familiar
example is the class of mammals, with its subclasses (orders, families, etc.) of other mammals representing
specializations.

Binding in programming refers to the time at which values are associated with variables. For
example, the declaration of a constant, pi=3.1416, is early binding-done at the time the code is written.
Dynamic binding occurs when values are determined at runtime. Dynamic binding delays the association
of data structures and behaviors until runtime. In object-oriented languages, the type of each operand and
operation is determined at runtime.

A feature closely related to dynamic binding is polymorphism. Polymorphism places the
responsibility for correct action on the object. For example, in the mammal analogy given above, all
mammals can “move,” but they do so in different manners. Some do so on two legs, some on four, and
some swim. Thus, the same message sent to different objects will illicite different, but appropriate,
behaviors.

A fifth requirement placed on object-oriented languages by some authors is multiple inheritance
(Meyer 1988). This feature permits classes to be created through inheritance from multiple parent classes.

Persistence and Object Data Management

The concepts of object-oriented programming can be extended naturally to database management.
The concept of a persistent object arises naturally from object-oriented programming. A persistent object
is an object allocated in secondary storage that is maintained beyond the life of the process that created
it. Such an object is retrievable by other, different processes in a well-defined manner. Languages with
this feature are referred to as persistent programming languages. They are the precursors to object-
oriented database management systems (ODBMS), which are essentially object-oriented database
programming languages. ODBMS applications are written in an existing programming language that has
been extended with database management facilities. This illustrates the blending of concepts from
programming and database management.

One proposed standard for object-oriented database design has received wide acceptance (Zolonik
and Maier 1989). Here the major elements of this model will be stated for use later in developing
requirements for persistent simulation. This model is composed of two submodels: a threshold model
and a reference model. The threshold model places requirements on any database system that claims to
be object-oriented. These four requirements are:

1. Database functionality
2. Object identity
3. Encapsulation
4. Complex State.

Database Functionality

Database functionality is described in terms of the features found in database systems. These features
are provided as follows:

Data Model and Data Manipulation Language. A database has some notion of data structure and
a language for manipulating the data. Generally, the data entities are thought of as records and groupings
of records are thought of as the structured data provided for in conventional databases. The data
manipulation language provides for operations on records and on files composed of records.

Relationships. A database provides for grouping of entities through relationships. In the relational
model, these relations are called tables. These relations can be named, and the data-manipulation language
can query them. Other database models provide for one-many and many-many relationships, as in the
hierarchical and network-type databases.

Permanence. An obvious goal of a database is to provide persistent and stable storage of data.
Persistence means that the data is available after the process (program) that created it has terminated.
Stability means there is some degree of robustness in cases of failure.

Sharing. Charing permits data to be accessed by more than a single user, possibly at the same time.
This is usually handled through a concurrency-control mechanism.

Arbitrary Size. A database should be able to occupy all of secondary storage. It should not be
limited by the processor «ddress range.

Integrity C~_.traints. Databases provide features for specifying integrity constraints on the entry
and manipulation of data. These constraints help ensure correctness. Examples of these constraints are
ranges for number fields and required fields. Another form of constraint is referential integrity, that
guarantees a reference in one entity does, in fact, reference another entity.

Authorization. Authorization deals with access control and security issues.

Querying. Modem databases provide a query language that is declarative and supports associative
access. Declarative means that the user makes a statement as to the goal of a query and the query
processor determines the process by which the data is obtained. The query language, especially in
relational databases, can retrieve data based on associations, such as relations, among the data entities.

Separate Schema. A database schema is a specification of all the types and of the names of all the
objects of those types. Most large database systems maintain the schema in a separate repository. Smaller
systems sometimes represent the schema as data within the system itself. The purpose of the schema is
to give disparate programs access to the information describing how the database is structured.

Views and Database Administration. Views are interfaces to the database. They are developed for
particular classes of users and the operations they perform. A special view of the database is the one
provided for database administration. This view provides access to functions not available to user views,
such as reorganization, auditing, security, and archiving.

Data Dictionary. A data dictionary is an extension of the schema concept. It provides more
information on the data contained in the database such as documentation, input and output format, and
relations to other database systems.

Distributed Data Access. Some database systems provide support for distributed data access over
multiple machines located at different sites.

Object Identity

Object identity is a major requirement for object-oriented database systems. The identity of an object
is independent of the values of the state variables and is invariant for the life of the object. Object identity
is the key characteristic that distinguishes object-oriented database systems. Systems that base identity
on the value of data variables are called value-oriented systems. Relational systems are value-oriented,
e.g., key fields are used to create indexes. The network model of database systems is object-oriented.

An object-oriented database system provides for testing the identity of objects. There is the concept
of shallow equal and deep equal. References can be to objects of the same class (shallow equal) or to
the same object (deep equal).

Object-oriented systems must address the problem of dangling references resulting from deletion of

objects. It should be noted that object-oriented models do not prevent the use of value-oriented access,
i.e., keys and relations.

10

Encapsulation

Encapsulation has the same meaning it has in object-oriented systems. An object encapsulates both
its data and the methods that operate on these data.

Complex State

Complex state means that objects can refer to other objects. This system stores pointers to elements
of objects and provides means for accessing those objects.

The Reference Model
The reference model subsumes the threshold model and adds the following requirements:

Structured Representation. The reference model goes beyond encapsulation by providing for objects
vnese siafe is a compound data structure.

Persistence by Reachability. The reference model requires that objects of any type can be persistent.
That is, persistence is orthogonal to type.

Typing of Objects and Variables. Every object instance knows its type and has a method that can
respond to a query of its type.

Three Hierarchies. There are three hierarchies in the reference model: specification of types,
implementation of representations and methods, and classification of explicit collections of objects.

Polymorphism. Polymorphism is accomplished through dispatching. The actual method chosen at
runtime is dependent on the type of the receiving object.

Collections. The reference model provides for aggregate objects such as sets and lists. All set-based
queries are against the collections. Collections can be indexed.

Name Spaces. Variables of any type can be persistent, and their names are available through a
hierarchical name space.

Queries and Indexes. There must be a query language capable of using the high degree of structure
in the database. The language must be aware of the three hierarchies mentioned above.

Relations. Named relations are supported.

Versions. The model requires that versions of an object’s state be accessible.

1

3 MODSIM LANGUAGE OVERVIEW

Object-oriented design and programming are of particular interest to the simulation community.
Object-oriented design consists of identifying the real-world objects that make up the system being
modeled. Object-oriented programming faithfully represents these real-world objects in a computer
simulation. The first object-oriented language was SIMULA 67 (Dahl 1984), which evolved from the
simulation language SIMULA 1. Object-oriented languages and simulation have been related from the
beginning.

In recognition of the trend towards object-oriented programming and its appropriateness for
modeling and simulation, the U.S. Army Model Improvement and Studies Management Agency sponsored
the development of an object-oriented language for simulation. This new language is cailed ModSim for
modular simulation language. The requirements for object-oriented programming languages were
established in Chapter 2. ModSim is now discussed with respect to these requirements. Its facilities for
supporting discrete-event simulation will be presented also.

ModSim as an Object-Oriented Language

ModSim is a general-purpose, block-structured, object-oriented programming language. The
modular structire of the language and its syntax is based on Modula-2 (Wirth 1982). (Modula-2 is a
direct descendent of Pascal.) ModSim is not an exact superset of Modula-2, however. For a detailed
comparison of the two languages, see Belanger and Rice (1988). For a complete treatment of ModSim,
see Mullamey (Mullamey, West, and Belanger 1988). The purpose here is to discuss the object-oriented
capabilities of ModSim in light of the criteria presented in Chapter 2. Note: capitalized words in the
following discussion are ModSim reserved words.

A ModSim program consists of a MAIN module and any number of library modules. Library
modules consist of two parts: a DEFINITION and an IMPLEMENTATION. These modules are stored
in separate files and are compiled separately.

A class is defined through the use of the TYPE statement as follows:

TYPE
CombatUnit = OBJECT
Personnel : INTEGER;
Location,
Destination : Coordinate;
Speed : INTEGER;
END OBJECT;

The new class identified as CombatUnit is declared similar to a Pascal record structure. One of the
attributes, Coordinate, is a user-defined type declared elsewhere within the scope of this class.

12

ModSim has two types of methods: ASK and TELL. CombatUnit is expanded to include
methods as follows:

TYPE

CombatUnit = OBJECT
Personnel : INTEGER;
Location,
Destination : Coordinate;
Speed : INTEGER;
ASK METHOD Status : INTEGER;

END OBJECT;

CombatUnit now has one method, Status, which retumns an INTEGER value. The use of TELL
methods will be explained in the next section, “ModSim as a Simulation Language.” In ModSim, all class
declarations appear in the DEFINITION module, and many classes can be defined within one module.

The IMPLEMENTATION module contains the code for the methods. The details of the
CombatUnit class would appear as follows:

OBJECT CombatUnit;
ASK METHOD Status : INTEGER;
BEGIN
implementation code
END METHOD;
END OBJECT;

Information hiding is implemented at several levels. The separation of interface specification
(DEFINITION) and code implementation (IMPLEMENTATION) pemmits information hiding and
facilitates software reusability through separate compilation. An advantage of separate compilation is that
source code for the DEFINITION can be supplied while the IMPLEMENTATION is supplied only in
object form. This physically prevents the subverting of the original author’s intent and thereby the
integrity of the design. The integration of objects into this scheme is quite natural. The class declaration
is in the DEFINITION module, and the code for class behaviors is in the IMPLEMENTATION module.

A second level of information hiding lies in the scope rules goveming object visibility. The scope
rules of ModSim restrict access of attributes and behaviors to those specified in the DEFINITION
modules. This provides the data and procedure encapsulation required of objects. The PRIVATE
statement provides additional information hiding capability. It is used to restrict access of an objects’s
data and behaviors to methods within the object itself.

Abstract data types are implemented by the TYPE and VAR statements, just as in Modula-2 and
Pascal. ModSim introduces the class declaration in the DEFINITION module, e.g., TYPE
CombatUnit = OBJECT. Objects arc realized as variables of a class (TY PE) by declaration in the
variable (VAR) section of a module.

13

In the example given above, the class CombatUnit was declared to be of TYPE OBJECT. It
is through the TYPE construct that ModSim implements inheritance. Another example of inheritance in
ModSim is shown in this code fragment:

TYPE
ArmorUnit = OBJECT(CombatUnit);
Tanks : INTEGER;

END OBJECT;

Notice the use of CombatUnit inthe TYPE declaration as a parameter to OBJECT. This specifies
that the new class, ArmorUnit, will inherit all the attributes and methods of the class CombatUnit
and is further refined by the addition of the Tanks attribute. In ModSim, complex derived classes can
be constructed through use of inheritance of multiple-path class hierarchies.

An object of the class ArmorUnit is realized by declaration as a variable of type ArmorUnit.
The ModSim standard procedure NEWOBJ is called to allocate storage for object variables. Now
consider:

VAR
ArmorPlatoon : ArmorUnit;

NEWOBJ (ArmorPlatoon);

The object ArmorPlatoon is now available to the program. Its attributes can be assigned values, and
it can interact with other objects.

Other object-related features of ModSim include the ability to: (1) OVERRIDE inherited methods,
(2) restrict the scope of attributes and methods through use of the PRIVATE statement, and (3) form
groups of related objects (collection classes). ModSim, as with all true object-oriented languages, uses
dynamic binding and provides for polymorphic behavior. ModSim also provides for classes to be defined
in terms of more than one base type (multiple inheritance). The declaration of a class from two base types
is shown in this example:

TYPE
ArmorBattalion = OBJECT (ArmorUnit, BattalionHeadQuarters);

END OBJECT;

Classes defined in this way inherit all the attributes and methods of the parent classes. This opens the
possibility for ambiguity in attribute and method names. ModSim resolves these conflicts by requiring
direct reference to multiply defined attributes and through use of the OVERRIDE statement for ambiguous
methods.

ModSim as a Simulation Language
There are two types of discrete-event simulation: event-oriented and process-oriented (Bratley, Fox,
and Schrage 1983). Event-oriented simulations are based on the sequencing of a dynamic event list. Each

event has an associated routine that determines when other events are placed on the event list. During
the execution of an event routine, simulation time does not advance. The event-list manager advances

14

time when the next scheduled event occurs. In process-oriented simulation, a process is a sequence of
logically related activities ordered in time. The routine implementing the process contains all of its related
activities. Each process maintains its own activity list. The system maintains a master activity list
containing the next activity from each process’s activity list. The process-oriented strategy is more
appropriate for object-oriented simulation. ModSim is based on the process model.

Process-oriented simulation in ModSim is supported through the addition of simulation primitives
that permit time-elapsing methods. Classes can have multiple, concurrent activities. There are provisions
for activities to operate synchronously or asynchronously and to interrupt activities within the same object
or in other objects. This section describes the primary ModSim constructs for object-oriented, process-
based simulation. These are: simulated time, the TELL METHOD, the WAIT statement, and the class
TriggerObj.

Simulated Time

Simulated time is a REAL (floating-point) value maintained by the ModSim runtime manager. It
is dimensionless and can be used to represent any time resolution desired in a simulation. It is accessed
by the function SimTime ().

The code fragment below illustrates some of the process-oriented simulation capabilities:

FROM SimMod IMPORT SimTime;
TYPE

CombatUnit = OBJECT
Personnel : INTEGER;
Location,
Destination : Coordinate;
Speed : INTEGER;
ASK METHOD Status : INTEGER;
TELL METHOD MoveTo(IN : NewDestination : Coordinate);

END OBJECT;

The first line of the example above shows the use of the IMPORT statement. The ModSim module
SimMod contains the procedure SimTime. This IMPORT statement makes the DEFINITION of
SimTime visible within the scope of the newly defined TYPE CombatUnit.

Also notice the addition of a new method, MoveTo, whichis a TELL METHOD. The operation
of TELL METHODs in a ModSim program differs from that of ASK METHODs. ASK METHODs
perform like procedure calls in most programming languages. When an ASK METHOD is encountered,
the program waits for the ASK to complete and then executes the next statement. However, when a
TELL METHOD is encountered, the program does not wait for it to complete; the next statement is
executed immediately.

It is use of the TELL METHOD combined w.th the WAIT statement that causes simulation time
to pass. WAIT statements can oniy appear in TELL METHODs, and TELL METHODSs can contain any
number of WAITs. The first form of the WAIT statement that we will examine is:

WAIT DURATION real-valued-expression
statement sequence

[ON INTERRUPT
statement sequence)

END WAIT;

15

When this form of the WAIT statement is encountered, the statements after the WALT are executed when
the specified simulation time has passed. An optional INTERRUPT clause is provided to permit other
objects to stop the WAIT. If the WAIT is interrupted, the statements after the INTERRUPT are
executed.

To continue with the example, the TELL METHOD MoveTo would contain a WAIT
DURATION statement in which the time to wait is calculated based on the IN parameter Coordinate.
Processes can be combined to operate synchronously through the use of another form of the WAIT:

WAIT FOR object TO tell-method (parameter)
Statement sequence

[ON INTERRUPT
statement sequence]

END WAIT;

Through use of this form of the WAIT, objects can synchronize their activities. This permits the dircct
expression of logical and physical time dependencies in a natural manner. From the example object we
declared above, we could have ArmorBattalion issuing orders to its ArmorPlatoon object:

WAIT FOR ArmorPlatoon TO MoveTo (2435)

The effect of this statement within a TELL. METHOD of ArmorBattalion is to synchronize its
activities with those of ArmorPlatoon.

The examples have shown how WAIT statements provide for elapsing simulated time and how they
can be used to synchronize activities. There are situations, however, where processes depend on the
occurrence of specific conditions. ModSim provides the class TriggerObj to use with the WAIT.
TriggerObj allows a method to wait for some arbitrary conditions to be met:

WAIT FOR trigger-object TO Fire

Trigger objects contain a method, Trigger, that is invoked (fired) by some other method. Its firing
permits all methods that are waiting on it to continue.

ModSim provides two constructs to stop methods that have invoked WAITs: Interrupt and
TERMINATE. The Interrupt method is called from another method to stop a WAIT statement and
invoke its ON INTERRUPT clause. For example, if our ArmorPlatoon’s MoveTo method had an
ON INTERRUPT clause in its WAIT: Interrupt (“MoveTo”) would cause the statements in
that clause to execute. The TERMINATE statement is called from within a process object's method to
stop execution immediately.

16

Implementation

The ModSim language compiler is implemented as a trans'ator. This translator generates C language
source code from ModSim source code. This approach has the advantage of easy porting to other
machines. The C code is compiled by the host’s native C compiler to object code and then linked to
produce an executable program. The needed runtime support libraries are supplied in object form with
the ModSim compiler. A compilation manager is also supplied to simplify the task of compilation.
ModSim is currently available for IBM-PC compatibles and Sun 3 and Sun 4 computers.

17

4 PILOT AND PROTOTYPE DEVELOPMENT

A major trend in language design is the integration of database management facilities to address the
problems of data-intensive applications. The paradigm shift from structured to object-oriented program-
ming has accelerated this trend. Large-scale simulations are extremely data-intensive. They place great
demands on developers to create preprocessing, runtime, and postprocessing environments.

Conventional programming languages lack advanced capabilities for data management. Tradi-
tionally, they are limited to simple forms of input and output manipulation. They can be extended with
program libraries and interfaced to database management systems. These approaches remain limited and
ad hoc because the internal representation of data is different from the stored representation. The data
must be converted from input format to internal format and from intemal format to output storage format.
This problem is known as impedance mismatch (Copeland and Maier 1984). The object-oriented
languages stimulated interest in providing consistent mechanisms for secondary storage management of
internal-format representation of data (objects).

This approach to consistent data management within large-scale simulations motivated experiments
with a persistent version of the ModSim simulation language. A pilot version was developed to explore
the benefits of persistence and to refine requirements. Based on the success of this pilot version, a more
robust prototype was implemented. This chapter describes the design rationale and implementation of
these experimental versions of Persistent ModSim.

Pilot Experiment

First, a note on the implementation environment and the limitations it placed on the development
of the pilot version of Persistent ModSim. A version of ModSim was used on IBM-compatible microcom-
puters running MS-DOS." The purpose was to develop the Force-Structure Trade-off Analysis (FSTAM)
combat modei (Herring et al. 1991). While the object-oriented data models had been studied and a desigi:
for Persistent ModSim had been developed based on them, certain limitations of the implementation
environment were known to present problems. Nevertheless, effort was put into refining the language’s
requirements. At the time, there were no object-oriented database systems running on MS-DOS. This
pilot version of Persistent ModSim was developed using a commercial package designed for managing
the storage of C language data structures (Database Technologies 1989). There were some limitations on
the type of data this package could store. The effect of these limitations will be explained. In this chapter
the design and features of this pilot Persistent ModSim will be reviewed in relation to the object-oriented
data models. The pilot Persistent ModSim work has been described in detail elsewhere (Herring and
Whitehurst 1991). Here it is summarized how the pilot addressed the requirements of the threshold model
for object-oriented database systems: database functionality, object identity, encapsulation, and complex
state.

Database Functionality
The data entities to be stored in ModSim are objects. The data model developed as a natural

extension of ModSim’s current object-definition facility. The data or state component of the object was
stored in the pilot version. Within the context of the current (compiled) ModSim, it is not feasible to store

‘MS-DOS: Microsoft Disk Operating System.

18

and reload methods, i.e., object code. However, this is the trend in true object-oriented database systems
and should be the subject of further consideration for ModSim as these systems develop.

The goal of this pilot development was to provide persistent objects within a simulation language.
There are two ways to determine which objects should persist: (1) store all objects created in the
simulation or (2) provide additional syntax to let the programmer control which objects persist. Because
ModSim was designed for simulation, it was decided that all objects should persist. This approach had
several benefits. It simplified both the design and the implementation. It required no language extensions
and therefore no changes to existing applications. It also relieved any additional programming burden that
might be required by adding syntax.

ModSim produces code to run on one processor at a time. Sharing was not addressed other than
to say that, in the context of multiuser and distributed simulations, it is an area of interest for the future.
The size of the database files produced should have no inherent limitation other than the amount of
secondary storage available.

Having addressed the essential features of database functionality, several of the frequently found
features were considered important. Many of the integrity constraints required by database systems are
imposed through the user views, e.g., entry forms. The system’s constraints were arrived at naturally
through the static type checking of the programmer-developed object definitions. The consistent data
model approach provided for logical constraints on the manipulation of data. Because ModSim produces
code for single-user applications, there was no need for security (authorization) at this time. A separate
schema, provided by the underlying data manager, facilitated the storage and dynamic retrieval of class
hierarchy information. The concept of views (administration being one) is useful in describing the
interfaces to the database management facility employed, particularly the ancillary programs, such as the
class hierarchy browser.

Of the less frequent features, report and form management could be developed as ancillary programs
to provide for data entry and output. Program generators can be developed for these functions. The
schema could be extended to accommodate more of the traditional data dictionary functions to aid in the
effort.

Object Identity

Object identity is a major requirement of the threshold model. The addition of object identity would
require a change in the workings of the ModSim implementation. Currently, all objects are referenced
by memory address calculated as offsets into an array of pointers. Objects do not have identity. ModSim
does generate a number for each unique class. This number is stored with the object and used for type
checking. It carries no class hierarchy information. The ability to determine the equality of objects is
essential for persistent storage. Identity is also necessary for referencing of complex objects. The
underlying data management facility that was used had a primitive notion of object identity required for
consistent object management. This capability was relied on, but it was used only implicitly.

Encapsulation
The data model was based on ModSim's definition of an object, which naturally provides for

encapsulation. The concem was with the storage of data only. There was no need to devise a mechanism
to store and retrieve methods (object code) in a compiled language.

Complex Type

The pilot version did not implement a provision for the storage of complex types (objects referenced
to other objects). Through the use of object identity available in the underlying data manager, complex
objects might have been supported, but with considerable effort. The storage of object references based
on memory address requires a dynamic address transiation scheme as found in virtual-memory operating
systems. This was beyond the level of effort required for the pilot version to be a useful demonstration.

Deficiencies

While the pilot version was very useful as a concept demonstration of persistent simulation, it had
limitations for serious application development. Some of these limitations were: the inability to store
complex types, lack of query facilities within the language (ancillary programs could be written to query
the databases, however), multiuser access, and version control.

Prototype Implementation

Based on the pilot experience, its limitations, and the insights gained, a number of decisions were
made about the future direction of the persistent compiler functionality and implementation. Also at this
time, Sun SPARCstation workstations running the UNIX operating system were acquired. This opened the
way to move the development work into a more robust environment. It also permitted using a commercial
object-oriented database manager as the basis for persistence in the prototype. The ObjectStore (Object
Design Inc. 1991) DBMS was selected. The following sections give the design rational for the prototype
Persistent ModSim compiler, describe its features, and illustrate its application.

Design Rationale

The approach to the prototype version followed the same basic rationale as the pilot version. All
objects would be persistent by default. There would be one default database for each application in which
all objects would be stored. As in the pilot version, this approach ensured that all existing code would
be compatible, and it relieved the programmer from needing any knowledge of persistence. The compila-
tion manager mscomp (Belanger et al. 1989) was extended to carry out all the additional instructions
needed to compile and link the application program with the database support libraries. Ancillary
programs could be written in a consistent manner to operate on any database produced by ModSim
simulation.

The ObjectStore database is a very advanced form of persistent database programming system. It
provides for full support of many of the desirable features not achievable in the pilot version, most
importantly: storage of complex types, multiuser database access, and version control. The prototype
made use of complex type storage. However, the researchers lacked sufficient experience with the
database manager and the requirements for persistent simulation to commit to implementing multiuser
access and version control. Thus, the prototype applications were single-transaction based.

Query Features

One major feature was considered necessary to make the addition of persistence useful and would
fit elegantly with the syntax. This was a mechanism for querying persistent objects from the database.
This enhancement would facilitate the development of programs to analyze data resulting from the
simulation runs of exiting programs written before the addition of persistence. It would also aid in the
development of new programs.

20

Research into introducing querying into persistent programming languages, particularly the work of
Agrawal and Gehani (1989), who extended C++ to create O++, was applicable to the prototype. Their
construct for queryin~ is straightforward. They demonstrate this notation’s power for expressing recursive
queries in a relational setting. They accomplish this by introducing an iteration operator. The prototype
Persistent ModSim incorporated this query iteration as follows:

FOR object IN class [SUCHTHAT expression [BY field-namel] statement sequence
END FOR

where object is a variable of type OBJECT, and class is the name of an object type. The statement
sequence is executed each time an object is found in the collection whose fields satisfy the SUCHTHAT
expression. The expression of the BY clause causes the loop iteration to examine stored objects in order
of increasing values of the field-name specified in the expression.

FOR statements can be nested to express order-independent joins, as follows:

FOR object, IN class,,
object, IN class,,

object, IN class,
[SUCHTHAT expression]| [BY field]
Statement sequence

END FOR

The iterator FORALL is added to permit accessing of class hierarchies:

FORALL object IN class {SUCHTHAT expression] [BY field-name] statement sequence
END FOR

FORALL spans all classes descending from the class of the specified object. Otherwise it works the same
as FOR.

The inclusion of the FOR and FORALL constructs provide the needed query operations at the
language definition level.

A Demonstration Application

The U.S. Army TRADOC Arnalysis Command (TRAC) working with the Los Alamos National
Laboratory (LANL) developed the Eagle combat model (Alexander 1991). Eagle is a corps/division-level,
deterministic, time-stepped combat model with resolution at battalion level. The approach taken in the
development of the Eagle model was to use state-of-the-art expert systems software technology. It was
implemented using the Knowledge Engineering Environment (KEE) expert system shell and programmed
in Common LISP and Common LISP Object System (CLOS).

Inherent in any ground-based combat model is a representation of terrain. The terrain model chosen
for Eagle is an object-oriented terrain model developed at LANL (Powell 1989). This model represents
terrain features uscd by military commanders and provides an object-oriented representation for thesec
features consistent with their usc and application in military terrain representation. The goal of this model

21

is a terrain representation implemented in software data structures. These data structures must correspond
to the conceptual objects reasoned on by military terrain analysts and planners and available in the larger
context of an expert-system-based combat model. Thus, modeled combat units continually interact with
the terrain model moving along mobility corridors, reasoning about avenues of approach, planning future
routes, and performing other complex unit behaviors.

As part of a related effort, LANL implemented the Eagle terrain model in ModSim along with a
demonstration combat simulation. The basic structure of this program is as follows. Terrain data is read
from UNIX “flat” files, one record at a time. The complex object terrain representation is built up of
dynamic (transient) ModSim memory objects. A number of “Red” and “Blue” combat units are created
and set in motion. These units interact with the terrain and each other for some predetermined amount of
simulation time, and the program halts. This program is approximately 30,000 lines of ModSim source
code.

This program was selected to test the Persistent ModSim prototype. When the program was
compiled, unchanged, with the prototype it ran to completion producing the exact output of the original
program.

The Persistent ModSim prototype stores all objects in a single database. A listing of the number,
size, and type of objects created is shown in Table 1. The total size of this database is approximately 16
Mbytes. Notice that 168,220 Point objects were generated along with 54,102 LineSegment
objects and 169 terrain aggregate (Terag) objects. Persistent ModSim stored the entire object terrain
representation complete with all the complex interobject references in a database. This database persisted
beyond the run of the program and is available for use by other Persistent ModSim programs. This
example will be discussed more later.

22

Total

168220
54102
68116
3621
2198
2285
2274
2148
1250
169

- AN N W

NA&~AA-—-IA&A-—-—8-—

Obj Size Total Size

32
80
32
160
120
72
40
40
52
232
32
1776
136
1192
1024
968
112
1296
96
96
408
128
136
64
700
24
312
296
40
40
36
20
132
32
28
104
24
16
16

5383040
4328160
2179712
579360
263760
164520
90960
85920
65000
39208
17920
17760
11968
11920
4096
3872
3696
2592
2304
1920
1632
1408
1360
896
700
624
312
296
160
160
144
140
132
128
112
104

96

64

32

Table 1

Objects Created by Persistent ModSim Prototype

Type

instance_Points_Point_
instance_LineSegments_LineSegment_
instance_ObjLists_ObjList_
instance_MobCorEdges_MobCorEdge_
instance_Edges_Edge_
instance_RouteGenerators_NTuple__
instance_Nodes_Node_
instance_Circles_Circle_
instance_RawReports_RawReport_
instance_Terags_Terag_
instance_SystemNumberPairs_SystemNumberPair_
instance_DirectFireMunitions_DirectFireMunition_
instance_RoadEdges_RoadEdge_
instance_DirectFireSystems_DirectFireSystem_
instance_ManeuverUnit_ManeuverUnit_
instance_MilitaryUnit_MilitaryUnit_
instance_Systems_System_
instance_HqUnit_HgUnit_
instance_IOMod_StreamObj__
instance_MobCorRoutes_MobCorRoute_
instance_SensorObjs_SensorObj_
instance_RiverEdges_RiverEdge_
instance_RouteGenerators_RouteGenerator_
instance_Rectangles_Rectangle_
instance_Maps_Map_
instance_HqC2s_UnitNumberPairObj__
instance_MainMod_MainObj_
instance_Graphic_GraphObj_
instance_HqC2s_IndicatorObj_
instance_HqC2s_IntelOrderObj_
instance_HqC2s_CollectionRequestObj_
instance_AssocLists_AssocList_
instance_InputObjs_InputObj_
instance_SensorObjs_SensorNumPairObj_
instance_HgC2s_UnitTaskingObj_
instance_InputUnits_InputUnit_
instance_AOIs_AOI_
instance_OAExpert_OAExpert_
instance_PhaseExpert_PhaseExpert __

Total Database Size: 16441344 bytes (16056 Kbytes)

23

5 PERSISTENT MODSIM

The previous chapter reviewed work on a pilot version of persistent ModSim and on further
prototype development. The major decision made in the prototype development effort was the use of the
commercial object-oriented database manager ObjectStore. The choice of a full-featured commercial
database product for implementing persistence brought with it many design decisions. The major
challenge was the tradeoff between preserving the syntax of the existing language definition and providing
flexibility in persistent object management. Using the prototype for development of several simulations
increased understanding of the requirements for persistent simulation. This understanding led to the
implementation of a new version of Persistent ModSim. The approach taken in the new implementation
is described here.

Experience showed that programmers need to know and understand the consequences of object
persistence. This capability dramatically changes the ways in which programs can be structured.
Therefore, programmer’s had to be given more access to the underlying database functionality, and this
access had to be provided in a consistent manner. The choice was to provide an interface to persistent
storage through a database class library.

This solution presents the essential features of database functionality to the user as objects. This
approach is common and permits control over how much detail is revealed. The class library represents
a simplified model of object database. This approach requires no syntax changes and is consistent with
the object paradigm of adding features through classes from which subclasses can inherit. This gives
programmers the flexibility to develop further specializations of this model for specific purposes.

This approach introduces two new concepts into the language in the form of extended syntax. They
are (1) the specification of persistent allocation of objects and (2) transaction management to permit
concurrent access to databases by multiple users. These extensions in no way make existing ModSim code
incorrect.

This chapter describes database class approach to implementing a general and robust Persistent
ModSim capable of supporting the development of complex, large-scale applications.

Database Classes

This section provides an overview of the database model developed for Persistent ModSim. This
model consists of a set of classes represcnting database functionality to the programmer. The database
class library consists of the following classes: Database, Segment, DatabaseRoot,
Collection, Cursor, Configuration, and Workspace. Each class is implemented as
in a scparate DEFINITION file that can bc imported into any ModSim program.

The ModSim database classes have no restrictions on them. They can be inherited from, and their
methods can be overridden as nccessary. However, there are no corresponding IMPLEMENTATION
files. The code implementing these classes is written entircly in C. These C implementation files call
through to the ObjectStore library functions. (It is a powerful feature of the implementation of ModSim
that any existing C library can be easily “objectized™ as described above.) The following sections give
overviews of each of these databasc classes. Chapter 6 details these classes and their methods and
provides examples of their use.

24

Database

ModSim variables of the object type (class) Database represent databases. Databases can be
thought of as files that store objects. In a ModSim program, an instance of a Database object is
associated with one physical database at any given time. Database objects have no fields, only
methods. These methods implement the basic notions associated with database operations. The methods
of Database objects include methods to create, open, close, and delete. There are methods for
determining the status of the database and methods associated with the functioning of the other classes
in the database library.

Segment

Databases are composed of segments. A segment can be thought of as the smallest unit of memory
that is transferred from persistent to transient storage. Every database is created with an initial segment.
As objects are stored in the database, additional segments are created automatically. The Segment class
is provided as a means of clustering groups of objects for performance reasons. Because a segment is the
unit of memory transfer, significant performance improvements can be gained by physically collocating
related objects. One of the methods of the Database class is the creation of segments. This method
retums a Segment object. The Segment class includes methods to determine state information, to
control size, and to destroy.

DatabaseRoot

The DatabaseRoot class provides for structuring entry points into databases. One of the
methods of the class Database is the creation of objects of type DatabaseRoot in the database
on which the method is called. DatabaseRoot objects are given string names for later retrieval.
These DatabaseRoot objects can point to any persistent object stored in the database. Any number
of DatabaseRoot objects can be created in a given database. Some of the functions of the
DatabaseRoot object include methods to find a named database root in a database, retrieve the name
of a given DatabaseRoot object, and to deallocate a DatabaseRoot object.

Collection

Objects in the Collection class serve to group other objects for convenient manipulation.
Collection objects can be ordered or unordered, and they can be created in a database, a segment.
or a configuration. Collection objects have methods to insert and remove objects. There are methods
for comparing various properties among collections such as being equal to, being greater than, etc. The
Collection class also provides methods to query over the field values of the contained objects. This
method returns another Col lection object containing the objects selected by the query.

Cursor

The Cursor class is related to the Collection class. It provides a means to iterate over the
elements of a Collection object. An instance of a Cursor object is created for a given instance
of aCollection object. The Cursor object has methods to return specific members of the given
Collection object. Some of the Cursor object’s methods are first, last, next, etc. The Cursor
object also has methods to insert objects into its collection. Any number of Cursor objects can be
instanciated for a given Collection object.

25

Configuration

Instances of the Configuration class provide a means to specify groupings of objects that are
to be treated as a unit for version control. Object instances of any type can be allocated into a given
configuration. This includes objects of type Configuration. Thus, the programmer can organize
subgroups of related objects with configurations to any level. Configuration objects are the unit
of both version control and database locking. They can be thought of as long-duration transactions on the
database. There can be no conflict when a Configuration object is checked out to a given
application; other applications can also check out versions of the Configuration object.
Configurations provide the mechanism to achieve change management in shared environments. Some of
the methods of the class Configuration include checking out, checking out on a branch, and
checking in. As versions of a Configuration object are checked out, changed, and checked back
in, a version tree is formed that permits users to go back to any previous version. There are methods for
traversing the version tree of a particular Configuration object to retrieve past versions.

Workspace

The Workspace class is related to use of configurations. Workspace objects provide a way
to structure shared and private access to Configuration objects. Calls to the various check-out
methods of Configuration objects are relative to the current workspace. Workspace objects are
linked (or nested) hierarchically into a workspace trec. Applications can set the access privileges to parts
of this workspace tree to control access (and hence change). There must be a default global workspace.
Workspace objects are then allocated within the context of this global workspace. Workspaces
combined with configurations supply the needed concepts for computer supported collaborative work. The
Workspace class includes methods to create child workspaces of a parent workspace, to get the parent
of given workspace, and to set a Workspace object to be the current workspace.

Transient and Persistent Object Allocation

The ModSim built-in function NEWOBJ is used for dynamic allocation of transient object instances.
This function takes an argument of type OBJECT, allocates transient memory for the object instance
fields, sets up virtual function tables for its methods, and calls its default initialization method, ObjInit.
In Persistent ModSim, this function was extended to permmit persistent allocation of object instances.
Persistent ModSim’s NEWOBJ function permits the use of an additional parameter to specify where the
given instance will be allocated in persistent storage. This additional parameter must be an instance of
an object of type Database, Segment, orConfiguration. Objects allocated in this manner
are persistently allocated in the corresponding physical database, database segment, or configuration within
a database (or segment). This approach permits persistent allocation of any object type. This property
is known as persistence orthogonal to type. It places 1o restriction on persistent allocation of existing
objects or on the construction of new ones. Note that the built-in function for deallocation of transient
object instances, DISPOSEOBJ, also works for deallocation of persistent objects.

The rules for assignment of transient and persistent objects (pointers) are as follows:
« Transient pointers can point to persistent memory.
« Persistent pointers can point to transient memory.

* Al transiently allocated memory is valid only during the process.

26

¢ Memory allocated in a database that is assigned to transient locations is valid only during the
process.

+ Persistent pointers across databases are valid only during the process.

* Both transient and persistent pointers are valid across all transactions.

Transactions and Concurrent Database Access

The concept of a transaction is basic to shared database systems. Transactions are necessary to
permit multiuser concurrent access to shared data in a database. For applications to read and update the
same data consistency, protocols have been developed to overcome problems, such as deadlock, that
arbitrate access to shared data.

A transaction is a sequence of program statements that has exclusive control over some shared data.
Once an application has achieved control of a portion of a database, other applications must wait for it
to finish before they have access to that data. Thus, transactions permit a group of program actions on
data to occur without interruption. This is necessary to guarantee integrity of the database system. Note
that transaction boundaries within concurrent database applications must be planned wisely. The goal is
to permit other applications access to the data. The amount of data locked within a transaction is a prime
consideration in multiuser database applications and must be structured appropriately.

The TRANSACTION Statement

A major design requirement for Persistent ModSim was to provide multiuser concurrent access to
shared databases. This requires some form of transaction management flexibility within the language.
In Persistent ModSim, this is accomplished with the TRANSACTION statement, which accommodates
concurrent database access. The Backus-Naur Form (BNF) representation of the TRANSACTION
statement is as follows:

TransactionStatement =>
TRANSACTION StatementSequence
[ON ABORT StatementSequence]
END TRANSACTION

All Persistent ModSim programs that access persistent objects must ensure that such access to these
objects in the database takes place within the bounds of a transaction blocked by a TRANSACTION
statement. Transactions can be nested to any level required.

The ABORT Statement

An additional built-in function, ABORT, is provided when program logic determines that a
transaction must terminate without committing the changes to the database. ABORT temminates the
current transaction. Program execution resumes at the next statement after the end of the transaction block
(after END TRANSACTION). The ABORT ALL statement aborts all pending transactions in the
application program and retumns control to the next statement after the end of the top-level transaction
statement.

To provide a further level of control when aborting a transaction, the TRANSACTION statement
can have an ON ABORT clause. When an ABORT is called within the scope of a TRANSACTION

27

statement that has an ON ABORT clause, program control is transferred to the section of code starting
with the first statement after ON ABORT and continues to the END TRANSACTION of that block.
Other, higher-level transactions are not disturbed by aborting a lower-level transaction.

Short-Term and Long-Term Transactions

Within the context of an object-oriented database that provides for version control, the type of
transaction processing described above should be considered short term, that is, taking seconds or minutes.
The version control provided by Configuration and Workspace objects is intended for long-
term transactions. These long-term transactions are the basis for model management within Persistent
ModSim. Short-term transactions are for concurrent multiuser access to a single object. Both kinds of
transactions are necessary; design requirements and methodology must guide their use.

Two considerations should guide the use of transactions related to version control: (1) only a top-
level transaction can be in effect during access to Configuration objects checked out into a
workspace, and (2) the method SetCurrent, when called on a Workspace object, will take effect
only after the transaction in which it was invoked has ended and a new transaction has begun.

Compilation Management

The ModSim mscomp compilation program manager (CACI 1988) is replaced in Persistent
ModSim with pmscomp. To the user, pmscomp works like ms comp, with these differences: (1) The
Database library is automatically linked to all applications. Therefore, it is not necessary to specify
this library in project files. (2) Two additional configuration options are present in the compilation
manager configuration file (pmscomp.cfqg): DBPATH and TRY. DBPATH is the database path
specification for persistent applications. Each application has certain information associated with it that
is stored in this path at compilation time. This option provides a convenient way to structure applications
and their databases. Programmers should use this option to segregate disparate database applications,
which can greatly improve performance. TRY specifies the number of times a transaction will try to
acquire a segment that is locked by another application. The default value of TRY is 10. Applications
that experience deadlock problems can be tuned with this option.

28

6 DATABASE CLASS LIBRARY

In Persistent ModSim, access to persistent object database functionality is achieved via a set of
database classes. This chapter provides complete documentation of these classes and provides example
programs that illustrate their use. The database classes are Database, DatabaseRoot,
Collection, Cursor, Configuration, Workspace, and Segment.

The Database Class

The class Database allows programs to create and manipulate persistent objects. Instances of
this class are used as parameters in calls to NEWOBJ to specify where new persistent objects will be
allocated. An open count is maintained for each database representing the number of times its Open
method was called during the current process. When the open count is set to O, the database is closed.
All databases are automatically closed when the program terminates. Object instances of this class need
not be persistent. The definition module for the Dat abase class is shown below, followed by descrip-
tions of the methods of this class.

DEFINITION MODULE Database;

FROM DatabaseRoot IMPORT DatabaseRoot;
FROM Segment IMPORT Segment;

TYPE

Database
OBJECT
ASK METHOD Close();

ASK METHOD Create (IN pathname
IN mode
IN 1f_exis
ASK METHOD CreateRoot (IN name

ARRAY OF CHAR;

INTEGER;

ts_overwrite BOQLEAN) ;

: ARRAY OF CHAR) : DatabaseRoot;

ASK METHOD CreateSegment () :
ASK METHOD Destroy () ;
ASK METHOD GetHostName (OUT hostName ARRAY OF CHAR) ;
ASK METHOD GetNumberOfRoots(): INTEGER;
ASK METHOD GetNumberOfSegments(): INTEGER;
ASK METHOD GetPathName (OUT pathName ARRAY OF CHAR) ;
ASK METHOD IsOpen{(): BOOLEAN;
ASK METHOD Lookup (IN pathname ARRAY OF CHAR;
IN createMode INTEGER) ;
(IN location REFERENCE;
OUT db Database) ;
Open (IN readOnly BOOLEAN) ;
Size(): INTEGER

Segment;

ASK METHOD Of
ASK METHOD
ASK METHOD

END OBJECT;

END MODULE.

.
’

Close decrements the open count of the database. If the open count is 0, the database is closed.
If the open count is greater than 0, the database access (read or read/write) is returned to the previous
access mode. If this method is called from within a transaction, the open count is not decremented until
the end of the current outermost transaction.

29

Create creates a new database with the specified pathname and mode. The values for mode are
the same as those used in the UNIX chmod command. If the parameter 1f_exists_overwrite
is set to true, a new database is created even if one by that name already exists; otherwise, a runtime error
will occur.

CreateRoot creates a root in the database with the specified name. This method returns an
object of type DatabaseRoot.

CreateSegment creates a segment in the database and retumns an object of type Segment.
Destroy deletes the database. This method must be called within a transaction.
GetHostName retums the host name of the machine on which the database resides.
GetNumberOfRoots retums the number of roots retrieved by the current process.
GetNumberOf Segments retums the number of segments in the database.

GetPathName returns the pathname of the database. This pathname will always begin with a
slash (/).

IsOpen retumns true if the database is open; otherwise, retums false.

LookUp associates the database specified in the pathname with an instance of the class
Database. If the database is not found, a runtime error occurs unless createMode is nonzero. If
createMode is nonzero and the database was not found, a new database is created. Note that this
method does not open the database.

Of takes a variable of type OBJECT and retums the Database object it is stored in.

Open opens the database associated with the object. If readOnly is nonzero, the database is
opened for read access only; otherwise, it is open for read/write.

Size retums the size of the database in bytes.

The DatabaseRoot Class

The DatabaseRoot class provides a means for manipulating database entrypoints. Data-
baseRoot objects provide for named entrypoints for structuring persistent object access. Database-
Root objects are associated with (point to) persistent objects. These objects can be found by name in
the database. The definition module for the DatabaseRootclass is shown below, followed by
descriptions of its methods.

DEFINITION MODULE DatabaseRoot;

TYPE
DatabaseRoot =
OBJECT
ASK METHOD Free() ;
ASK METHOD Find(IN name : ARRAY OF CHAR; IN db : REFERENCE) ;

30

ASK METHOD GetName {OUT name : ARRAY OF CHAR) ;

ASK METHOD GetValue() : REFERENCE;
ASK METHOD SetValue(IN newlItem: REFERENCE) ;
END OBJECT;
END MODULE.

Free deletes the persistent, named entrypoint.
Find associates the object instance with a specified, named entrypoint in the specified database.
GetName retumns the name associated with the DatabaseRoot object.

GetValue returns a pointer to the entrypoint object associated with the DatabaseRoot
object.

SetValue establishes the specified object as the entrypoint object associated with the
DatabaseRoot object.

The Collection Class

The Collection class provides for grouping objects, which are called the elements of the
collection. An object can be in the collection more than once. The definition module for the
Collection class is shown below, followed by descriptions of its methods.

DEFINITION MODULE Collection;

FROM Database IMPORT Database;

FROM Segment IMPORT Segment;

FROM Configuration IMPORT Configuration;

TYPE

Collection =
OBJECT

ASK METHOD Assign(IN coll : Collection);

ASK METHOD Contains(IN elem : REFERENCE): BOOLEAN;

ASK METHOD Count (IN elem : REFERENCE): INTEGER;

ASK METHOD CreateInDatabase IN db : Database;
IN Ordered : BOOLEAN) ;

ASK METHOD CreatelInSegment (IN seg : Segment;
IN Ordered : BOOLEAN} ;

ASK METHOD CreateInConfiguration (IN cnf: Configuration;
IN Ordered : BOOLEAN) ;

ASK METHOD Delete ();

ASK METHOD Difference(IN coll : Collection);

ASK METHOD Empty () : BOOLEAN;

ASK METHOD EqualTo(IN coll : Collection): BOOLEAN;

ASK METHOD GreaterThan(IN coll : Collection): BOOLEAN;

ASK METHOD GreaterThanOrEqualTo(IN coll : Collection):
BOOLEAN;

ASK METHOD Insert (IN elem : REFERENCE);

ASK METHOD InsertFirst (IN elem : REFERENCE) ;

ASK METHOD InsertLast (IN elem : REFERENCE) ;

31

ASK
ASK
ASK

METHOD Intersection(IN coll : Collection);
METHOD LessThan(IN coll : Collection): BOOLEAN;
METHOD LessThanOrEqualTo(IN coll : Collection) : BOOLEAN;

ASK METHOD NotEqualTo(IN coll : Collection): BOOLEAN;
ASK METHOD Only(): REFERENCE;
ASK METHOD Pick{): REFERENCE;
ASK METHOD Query (IN elementTypeName : ARRAY OF CHAR;
IN query String : ARRAY OF CHAR;
IN db : Database;
OUT result : Collection);
ASK METHOD QueryPick (IN elementTypeName : ARRAY OF CHAR;
IN queryString : ARRAY OF CHAR;
IN db : Database): REFERENCE;
ASK METHOD Remove(IN elem : REFERENCE) ;
ASK METHOD RemoveFirst();
ASK METHOD RemovelLast();
ASK METHOD Union{(IN coll : Collection);
END OBJECT;
END MODULE.

Assign copies the elements of the specified Collection object into the collection. This
makes the two collections equal.

Contains retums true if the specified object is in the collection.

Count retums the number of occurrences of the specified object in the collection.

CreateInDatabase creates a collection in the specified database. If Ordered is true, the
collection maintains the elements in the order they are inserted into the collection.

CreateInSegment creates a collection in the specified segment. If Ordered is true, the
collection maintains the clements in the order they are inserted into the collection.

CreateInConfiguration creates a collection in the specified configuration. If Ordered
is true, the collection maintains the elements in the order they are inserted into the collection.

Delete removes all the elements from the collection.

Dif ference removes each element from the collection that is in the specified collection.

Empty retums true if the collection contains no elements; otherwise, retumns false.

GreaterThan retums true if the collection is a proper subset of the specified collection.

GreaterThanOrEqualTo retums true if collection is a superset of the specified collection.

Insert inserts the specified object into the collection.

InsertFirst inserts the specified object as the first element of the collection.

InsertLast inserts the specified object as the last element of the collection.

32

Intersection modifies the collection to be the intersection of the collection and the specified
collection.

LessThan retums true if the collection is a proper subset of the specified collection.
LessThanOrEqualTo retums true if the collection is a subset of the specified collection.
NotEqualTo retums true if the collection is not equal to the specified collection.

Only retumns the only element of the collection, if it is a singleton set.

Pick returns an arbitrary element of the collection.

Query retums a Collection object created in the specified database, whose elements are of
the specificd type and meet the membership criteria specified by the query string.

QueryPick retums a single element from the Col 1ect i on object, from the specified database,
of the specified type, and meeting the membership criteria specified by the query string.

Remove removes the specified element from the collection.
RemoveFirst removes the first element of a collection.
Removelast removes the last element of a collection.

Union forms the set union of the elements of the Collection object with the elements of the
specified collection.

The Cursor Class

The Cursor class provides a way to iterate over objects of the type Collection. Cursor
objects record the state of an iteration over the collection they were created for. The definition module
for the Cursor class is shown below, followed by descriptions of its methods.

DEFINITION MODULE Cursor;
FROM Collection IMPORT Collection;

TYPE

Cursor =

OBJECT
ASK METHOD Copy (IN src: Cursor);
ASK METHOD CreateForCollection(IN coll: Collection);
ASK METHOD DeleteSelf();
ASK METHOD First(): REFERENCE;
ASK METHOD Last (): REFERENCE;
ASK METHOD InsertAfter (IN ref: REFERENCE)};
ASK METHOD InsertBefore(IN ref: REFERENCE) ;
ASK METHOD More(): BOOLEAN;
ASK METHOD Next (): REFERENCE;
ASK METHOD Previous(): REFERENCE;
ASK METHOD Current () : REFERENCE;

33

ASK METHOD Null(): BOOLEAN;
ASK METHOD Valid(): BOOLEAN;
END OBJECT;
END MODULE.

Copy copies the specified cursor over any exiting cursor state that exists within the cument
Cursor object.

CreateForCollection creates a cursor for the specified collection.

DeleteSelf deletes the state of the Cursor object and breaks any association with its
collection.

First retums a pointer to the first element of the collection.
Last retumns the last element of the collection.

InsertAfter inserts an object into the collection after the element the cursor is currently
positioned on.

InsertBefore inserts an object into the coilection before the element the cursor is currently
positioned on.

More returns true if the cursor is not positioned on the last element of the collection; otherwise,
it returns false.

Next advances the cursor to the next element in the collection and retums a pointer to that element.

Previous moves the cursor to the previous element in the collection and retums a pointer to that
element.

Current retums a pointer to the element the cursor is positioned on.

Null retums true if the cursor is valid, that is, if the cursor is positioned on an element of a
collection.

Valid returns true if the cursor is located at an element of the associated collection.

The Configuration Class

The Configuration class provides the unit of version control. It serves to group objects that
are to be treated as a unit for version-control purposes. Objects are allocated via the NEWOBJ function
into a Configuration object at the time of their creation. Configurations provide a means for long-
duration transactions. In all the methods of the Conf iguration class, if the parameter recursive
is true, the function of that method is applied to ail subconfigurations of the given configuration. Note
that configurations must be used within the context of workspaces. The definition module of the
Configuration class is shown below, followed by descriptions of its methods.

DEFINITION MODULE Configuration;
FROM Segment IMPORT Segment;

FROM Workspace IMPORT Workspace;
FROM Database IMPORT Database;

TYPE

Configuration =

OBJECT
ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD

ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD

ASK METHOD
ASK METHOD

ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD

ASK METHOD
ASK METHOD
ASK METHOD
ASK METHOD

END OBJECT;
END MODULE.

Create (IN db: Database);
CreateChild (IN db: Database): Configuration;
Checkin (IN recursive : BOOLEAN) ;
Checkout (IN recursive : BOOLEAN) ;
CheckoutBranch (IN branchName : ARRAY OF CHAR;
IN versionName :ARRAY OF CHAR;
IN recursive : BOOLEAN) ;
CreateSegment (OUT seg : Segment) ;
Delete ();
DestroyVersion ();
Freeze (IN recursive : BOOLEAN) ;
GetName {(OUT name : ARRAY OF CHAR);
GetNumAlternatives (): INTEGER;
GetNumSegments (): INTEGER;
GetVersionByName (IN name : ARRAY OF CHAR;
OUT config : Configuration) ;
IsValidObj (): BOOLEAN;
Merge (IN that : Configuration;
IN recursive : BOOLEAN) ;
NameVersion (IN name : ARRAY OF CHAR) ;
NewVersion (IN recursive : BOOLEAN) ;
Predecessor (OUT config : Configuration) : BOOLEAN;
Resolve (IN item : REFERENCE): REFERENCE;
SameVersion (IN iteml: REFERENCE;
IN item2 : REFERENCE): BOOLEAN;
SetSuccessor (IN s : Configuration);
Successor (OUT config : Configuration): BOOLEAN;
Use (IN name : ARRAY OF CHAR;
IN recursive : BOOLEAN) ; .
UseBranch (IN name : ARRAY OF CHAR;
IN recursive : BOOLEAN) ;

Create creates a configuration in the specified database, creating a branch containing the newly
created configuration. This initial version of the configuration is set to the default for the current

workspace.

CreateChild creates a child configuration of the configuration in the specified database.

Checkin removes

the current version of the configuration from the current workspace, puts it into

the parent workspace, freezes it, and makes it current for the parent on the branch that contains it.

Checkout creates a new version of the configuration and inserts it into the current workspace.
If the parameter recursive is true, all subconfigurations of the configuration are also checked out.

CheckoutBranch creates a new version of the configuration and inserts it into the current
workspace, but a new branch is created.

35

CreateSegment adds a segment to the specified configuration for clustering objects.
Delete deletes the configuration from the database.

DestroyVersion deletes the version from the current workspace.

Freeze blocks all subsequent attempts at write sccess to the configuration.

GetName retums the name of the cbnﬁguration

GetNumAlternatives retums the number of altemative branches of the configuration.
GetNumSegments retums the number of segments in the configuration.
GetVersionByName retrieves a given version of the configuration by name.
IsValidObj retums true if the configuration is valid (not null) object.

Merge checks out the specified configuration and calls Set Successor to set it to the new
version.

NameVersion adds the specified name to the list of names for this version.

NewVersion creates a new version of the configuration and makes it the current version on its
branch.

Predecessor retumns a pointer to the configuration that is the predecessor of the current
configuration. This does not change the current configuration in the workspace. This method retumns false
if there is no predecessor.

Resolve takes a pointer to an object in one version of a configuration and retums a pointer to
the corresponding version of the same object in another version of the configuration.

SameVersion retums true if the two pointers point to versions of the same object.
SetSuccessor sets the configuration’s successor to the specified configuration.
Successor retums a pointer to the successor of the specified configuration.

Use makes that version of the specified named configuration into the current version on its branch
in the current workspace.

UseBranch changes the current branch of the current workspace to be the branch containing the
specified named version.

The Workspace Class
The Workspace class provides a means for using configurations that can be both shared and
private. All manipulation of configurations must take place within a current workspace. Configurations

are checked in and out of workspaces. The definition module of the Workspace class is shown below,
follnwed by descriptions of its methods.

36

R |

DEFINITION MODULE Workspace;

FROM Database IMPORT Database;

TYPE
Workspace =
OBJECT
ASK METHOD CreateChild(IN name : ARRAY OF CHAR;
IN db : Database;
OUT ws : Workspace);
ASK METHOD CreateGlobal (IN db : Database;
IN name : ARRAY OF CHAR) ;
ASK METHOD Delete ();
ASK METHOD GetName (OUT name : ARRAY OF CHAR);
ASK METHOD GetParent (OUT parent : Workspace);
ASK METHOD Of (IN item : REFERENCE;
OUT ws : Workspace) ;
ASK METHOD Resolve (IN item : REFERENCE): REFERENCE;
ASK METHOD SetCurrent ();
END OBJECT;
END MODULE.

CreateChild creates a child of the current workspace in the specified database. This new child
workspace can be referenced by the specified name.

CreateGlobal creates a global workspace in the specified database and with the specified name.
This is the root workspace from which all child workspaces are rooted.

Delete deletes the current workspace from the database.
GetName returns the name of the current workspace.

GetParent returns a pointer to the parent workspace of the current workspace. This method does
not make the parent current.

Of retums a pointer to a workspace in which the specified object resides.

Resolve returns a pointer to the version of the specified object made visible by the current
workspace.

SetCurrent sets the workspace to be the current workspace. This takes effect at the beginning
of the next transaction.

The Segment Class
The Segment class provides the units into which databases are divided. Each segment is the
atomic unit of transfer from secondary storage to transient memory. Segments can be used directly to

cluster objects physically to enhance performance of memory transfers. The definition module for the
Segment class is shown below, followed by descriptions of its methods.

37

DEFINITION MODULE Segment;

TYPE
Segment =
OBJECT
ASK METHOD DatabaseOf{) : REFERENCE;
ASK METHOD DestroySelf();
ASK METHOD Of (IN item : ADDRESS; OUT restult : Segment);
ASK METHOD GetReadWholeSegment () : BOOLEAN;
ASK METHOD SetReadWholeSegment (IN state : BOOLEAN) ;
ASK METHOD GetSize() : INTEGER;
ASK METHOD SetSize{IN size : INTEGER) ;
END OBJECT;
END MODULE.

DatabaseOf retums a pointer to the Dat abase object containing this segment.
DestroySelf deletes this scgment from the database.
Of retums a pointer to the Segment object containing the specified object.

GetReadWholeSegment retums true when any object contained in the segment is referenced
if the segment is set to be read as a whole from the database.

SetReadWholeSegment specifies that the segment is read as a whole from the database when
any object contained in the segment is referenced. This is the default.

Get Size retumns the size of the segment in bytes.

SetSize sets the segment size to the specified number of bytes. If the segment is larger than the
specified number of bytes, there is no effect.

38

7 EXAMPLE PROGRAMS

This chapter contains several small example programs that illustrate the use of the Persistent
ModSim Database class library. These are not simulation programs. They simply show the use of
the Database classes in storing ModSim objects. The program begins by showing how to store a
simple object and retrieve it from the database using the Database, DatabaseRoot, Collec-
tion and Cursor classes. Later, it shows how to use Workspace and Configuration
objects to manage access and change in a multiuser environment. In short, this example shows how
Persistent ModSim can be used to achieve model management.

Using Database, DatabaseRoot, Collection, and Cursor

The program begins by defining a simple object, TestObj, that will be used in the other example
programs. The DEFINITION and TMPLEMENTATION modules are given below.

1 DEFINITION MODULE TestObkj;

2 TYPE

3 TestObj = OBJECT

4 TestFieldl: INTEGER;

5 TestField2: ARRAY [0..12] OF CHAR;
6 TestField3: REAL;

7 TestField4: BOOLEAN;

8 ASK METHOD Set (IN f1:INTEGER;

9 IN f£2:ARRAY OF CHAR;
10 IN £3:REAL;

11 IN £4:BOOLEAN) ;

12 ASK METHOD Print;

13 END OBJECT;

14 END MODULE.

Lines 1-3 above set up the declaration of the object TestObj. Lines 4-7 indicate that TestObj
has four fields. (Simple ModSim types are used for this object, but Persistent ModSim makes no
restriction on the data types that can be stored. Any legal ModSim type, including REFERENCE types,
can be declared as fields of objects and stored.) Lines 8-12 give the declaration for the two methods of
TestObj. The Set method permits the assignment of values to the fields of TestObj. The Print
method displays these values on the console. The IMPLEMENTATION module for TestObj is shown
below.

1 IMPLEMENTATION MODULE TestObj;

2 FROM StrMod IMPORT StrCpy;

3 OBJECT TestObj;

4 ASK METHOD Set (IN f1:INTEGER;
5 IN f2:ARRAY OF CHAR;
6 IN f3:REAL;

7 IN f4:BOOLEAN) ;
8 BEGIN

9 TestFieldl:=f1;

10 StrCpy (TestField2, £2);

11 TestField3:=£3;

12 TestField4:=f4;

13 END METHOD;

14 ASK METHOD Print;

39

15 BEGIN

16 OUTPUT("TestFieldl, INTEGER: ",TestFieldl);
17 OUTPUT("TestField2,ARRAY OF CHAR: ",TestField2);
18 OUTPUT("TestField3,REAL: ",TestField3);

19 IF TestField4

20 OUTPUT("TestField4, BOOLEAN: TRUE");

21 ELSE

22 OUTPUT("TestField4, BOOLEAN: FALSE");

23 ‘END IF;

24 END METHOD;

25 END OBJECT;

26 END MODULE.

The IMPLEMENTATION module contains the code implementing the two methods of TestObj
(Set and Print). Because TestField2 is acharacter array, a procedure, St rCpy, is IMPORTed
to copy arrays of characters into variables. This is shown in line 2. Lines 4-13 give the implementation
for the Set method. This method simply assigns the values of its four parameters to the four fields of
TestObj. The Print method is shown in lines 14-24. This method OUTPUTS to the console the
values of the fields of TestObj.

Examplel

A simple program illustrating the use of the database classes Database, DatabaseRoot,
Collection, and Cursor to store and retrieve instances of TestOb3j is given below. The
program, Examplel, performs as follows. It begins by making visible (IMPORTing) the needed class
definitions and declaring local variables for object instances. Examplel then begins a TRANS-
ACTION, creating a database and a named database root. A collection is created in the database and
assigned to the root. Then three instances of TestObj are allocated in the database, values are assigned
to their fields (via Set), and they are Inserted into the collection. To illustrate the syntax of a nested
transaction, another TRANSACTION is begun. It creates an instance of Cursor, and each object is
retrieved from the collection and its values Printed to the console. After all transactions have ended,
the database is closed, and the program terminates. The database and the objects allocated into it remain
(persisi) and can be retrieved by any Persistent ModSim program.

1 MAIN MODULE Examplel;
FROM Database IMPORT Database;

3 FROM DatabaseRoot IMPORT DatabaseRoot;
4 FROM Collection IMPORT Collection;
5 FROM Cursor IMPORT Cursor;
6 FROM TestObj IMPORT TestObj;
7 VAR
8 database : Database;
9 root : DatabaseRoot;
10 collection : Collection;
11 cursor: Cursor;
12 testobj, testobjl, testobj2, testobj3: TestObj;
13 BEGIN
14 TRANSACTION
15 NEWOBJ (database) ;
16 ASK database TO Create("/ModSim/Examplel", 664, TRUE) ;
17 root := ASK database TO CreateRoot ("a_collection"');
18 NEWOBJ (collection, database) ;
19 ASK collection TO CreatelnDatabase (database, TRUE) ;
20 ASK root TO SetValue({collection};
40

e

21 NEWOBJ (testobjl, database) ;

22 ASK testobjl TO Set(l, "testobjl",1.0,TRUE);
23 ASK collection TO Insert(testobjl);

24 NEWOBJ (testobj2, database) ;

25 ASK testobj2 TO Set(2,"testobj2",2.0,FALSE);
26 ASK collection TO Insert(testobj2);

27 NEWOBJ (testobj3,database) ;

28 ASK testobj3 TO Set(3,"testobj3*,3.0,TRUE);
29 ASK collection TO Insert (testobj3);

30 TRANSACTION

31 NEWOBJ (cursor) ;

32 ASK cursor TO CreateForCollection(collection);
33 testobj:= ASK cursor First();

34 REPEAT

35 ASK testobj TO Print;

36 testobj:= ASK cursor Next();

37 UNTIL ASK cursor Null();

38 END TRANSACTION;

39 ASK database TO Close;

40 END TRANSACTION;

41 END MODULE.

Example2

The program Example2, shown below, illustrates retrieval of objects from a database created by
another program. Example2 retrieves objects from the database created in Examplel. Example2
is similar to Examplel in that it IMPORTS the same class definitions. Note that Examp le2 does not
allocate any persistent objects, but there must nevertheless be transaction boundaries around operations
that access persistent data.

1 MAIN MODULE Example?2;

2 FROM Database IMPORT Database;

3 FROM DatabaseRoot IMPORT DatabaseRoot;

4 FROM Collection IMPORT Collection;

5 FROM Cursor IMPORT Cursor;

6 FROM TestObj IMPORT TestObj;

7 VAR

8 database Database;

9 root DatabaseRoot ;

10 collection Collection;

11 cursor Cursor;

12 testobj TestObj;

13 BEGIN

14 TRANSACTION

15 NEWOBJ (database) ;

16 ASK database TO Lookup("/ModSim/Examplel",0);
17 ASK database TO Open{FALSE) ;

18 NEWOBJ (root) ;

19 ASK root TO Find("a_collection",database);
20 NEWOBJ (collection) ;

21 collection:=ASK root TO GetValue();

22 NEWOBJ (cursor) ;

23 ASK cursor TO CreateForCollection(collection);
24 testobj:= ASK cursor First();

41

25 REPEAT

26 ASK testobj TO print;

27 testobj:= ASK cursor Next () ;
28 UNTIL ASK cursor Null();

29 ASK database TO Close;

30 END TRANSACTION;

31 END MODULE.

Using Workspace and Configuration

The examples in this section illustrate the use of the Workspace and Configuration classes.
The first example defines a simple object, Engine, that contains Piston objects. Many of the
database classes are used, and the Configuration class is introduced. The definition module for Engine
is shown below.

The Definition Module for Engine

1 DEFINITION MODULE Engine;

2 FROM Configuration IMPORT Configuration;

3 FROM Collection IMPORT Collection;

4 FROM Cursor IMPORT Cursor;

5 TYPE

6 Piston = OBJECT

7 PistonNumber: INTEGER;

8 Displacement: INTEGER;

9 ASK METHOD SetPiston{IN number, displacement : INTEGER) ;
10 ASK METHOD Print;

11 END OBJECT;

12 Engine = OBJECT

13 ASK METHOD InitEngine(IN engconfig: Configuration);
14 ASK METHOD AddPiston(IN piston : Piston);
15 ASK METHOD GetFirstPiston() : Piston;

16 ASK METHOD GetNextPiston() : Piston;

17 ASK METHOD Print;

18 PRIVATE

19 Pistons : Collection;

20 PistonCursor : Cursor;

21 END OBJECT;

22 END MODULE.

The definition module above defines the Piston and Engine objects’ extemal interface to other
modules that will use them. Lines 1-4 show that this is the definition module for Engine and import
the Collection, Cursor, and Configuration object definitions that will be used in this
module. The Piston object type is defined in lines 6-11. Piston has two fields: PistonNumber
and Displacement. These fields store the piston number in relation to the engine block and the size
of the piston in some unit of volume measure, such as cubic inches. Piston has two methods:
SetPistonand Print. SetPiston permits the assignment of values to the fields of a Piston
object, and Print displays these values on the console. The Engine object is defined in lines 12-21.
Engine has five methods and two private fields. The InitEngine method takes as its only
parameter a Configuration object. Its purpose is shown below in the discussion of the
implementation of Engine. The method AddPiston adds a new piston into the Engine object.
The methods GetFirstPiston and GetNextPiston retrieve the pistons from the Engine
object. The Print method displays what Engine knows about itself on the console. The two private

£ |

e -~

fields of Engine are a collection to store the Piston objects and a cursor to iterate over the collection.
The implementation for Engine is shown below.

The Implementation Module for Engine

PP WOWOoOJoWkxwhKrk
RO

el e Y gy
NSO s WwN

18
19
20
21
22
23
24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
41
42
43
44

IMPLEMENTATION MODULE Engine;
FROM Configuration IMPORT Configuration;
FROM Collection IMPORT Collection;
FROM Cursor IMPORT Cursor;
TYPE
OBJECT Piston;
ASK METHOD SetPiston(IN number, displacement:INTEGER) ;
BEGIN '
PistonNumber : =number;
Displacement :=displacement;

END METHOD;
ASK METHOD Print;
BEGIN
OUTPUT (*Piston: ",PistonNumber,
"Displacement:*,Displacement) ;
END METHOD;

END OBJECT;

OBJECT Engine;
ASK METHOD InitEngine(IN engconfig: Configuration);
BEGIN
IF Pistons = NILOBJ
NEWOBJ (Pistons, engconfig) ;
ASK Pistons TO CreateInConfiguration(engconfig, TRUE) ;
END IF;
NEWOBJ (PistonCursor) ;
ASK PistonCursor TO CreateForCollection(Pistons);
END METHOD;

ASK METHOD AddPiston(IN piston : Piston);
BEGIN

ASK Pistons TO Insert(piston);
END METHOD;

ASK METHOD GetFirstPiston() : Piston;
BEGIN

RETURN ASK PistonCursor First{();
END METHOD;
ASK METHOD GetNextPiston() : Piston;
BEGIN

RETURN ASK PistonCursor Next();
END METHOD;

ASK METHOD Print;

VAR
index, displacement : INTEGER;
piston : Piston;

BEGIN

43

45 OUTPUT("Engine: ") ;

46 piston := ASK PistonCursor First();

47 REPEAT

48 ASK piston TO Print;

49 displacement:=displacement +

50 ASK piston Displacement;
51 piston := ASK PistonCursor Next () ;

52 UNTIL ASK PistonCursor Null();

53 OUTPUT("Engine: Displacement:*, displacement);
54 END METHOD;

55 END OBJECT;

56 END MODULE.

The Piston object is very similar to TestObj of the last section. Its methods store and print
its field values. The Engine object is a little more complex but uses the same database classes with one
exception, the Configuration class. Engine’s InitEngine method takes a Configu-
ration object as a parameter and allocates the Pistons collection into the engconf ig object. The
implementor of the Engine object has assumed it will be used within a configuration allocated in a
database. InitEngine tests whether a Pistons collection already exists (line 21). If not, a call
to NEWOBJ with engconfig as a parameter allocates a Pistons collection into the configuration.
This method also allocates a transient PistonCursor object for use in accessing the members of the
Pistons collection. The methods AddPiston, GetFirstPiston, and GetNextPiston
perform operations on the Pistons collection. The Print method uses PistonCursor to iterate over
the collection, calling the Print method on each Piston object in the collection. This method also
gathers the total displacement for the Engine and displays it on the console. A main module (program),
Create, that uses the Engine module is shown below. Create will be used to illustrate use of the
Workspace and Configuration classes.

The Create Program

The Create program, shown below, creates a database, a global workspace, and a user workspace.
It sets the user workspace to be the current workspace and creates a configuration in that workspace. Then
an Engine object along with its eight pistons was allocated into the configuration. The program ends
by checking the configuration into the global workspace.

1 MAIN MODULE Create;

2 FROM Database IMPORT Database;

3 FROM DatabaseRoot IMPORT DatabaseRoot;

4 FROM Workspace IMPORT Workspace;

5 FROM Configuration IMPORT Configuration;
6 FROM Engine IMPORT Engine, Piston;

7 VAR

8 DB: Database;

9 WSRoot, CFRoot, EngRoot: DatabaseRoot;
10 GlobalWs, UserWs: Workspace;

11 EngineConfig : Configuration;

12 V8Engine : Engine;

13 V8Piston : Piston;

14 index : INTEGER;

15 BEGIN

16 TRANSACTION

17 NEWOBJ (DB) ;

18 ASK DB TO Create("/ModSim/Engine*, 664, TRUE) ;
19 NEWOBJ (GlobalWs,DB) ;

20 ASK GlobalWs TO CreateGlobal (DB, "GlobalWorkSpace") ;
21 ASK GlobalWs TO SetCurrent();

22 NEWOBJ (UserWs, DB) ;

23 ASK GlobalWs TO CreateChild("UserWorkSpace*,DB,UserWs) ;
24 WSRoot : =ASK DB TO CreateRoot ("UserWSRoot") ;

25 ASK WSRoot TO SetValue(UserWs);

26 ASK UserWs TO SetCurrent():;

27 END TRANSACTION;

28 TRANSACTION

29 NEWOBJ (EngineConfig, DB) ;

30 ASK EngineConfig TO Create(DB);

31 ASK EngineConfig TO NameVersion ("BigV8Engine") ;

32 CFRoot : =ASK DB TO CreateRoot ("EngineConfiguration") ;
33 ASK CFRoot TO SetValue (EngineConfig);

34 NEWORBJ (V8Engine, EngineConfig) ;

35 ASK V8Engine TO InitEngine(EngineConfig);

36 FOR index:=1 TO 8

37 NEWOBJ (V8Piston, EngineConfig) ;

38 ASK V8Piston TO SetPiston(index,50);

39 ASK V8Engine TO AddPiston(V8Piston) ;

40 END FOR;

41 ASK V8Engine TO Print;

42 EngRoot : =ASK DB TO CreateRoot ("EngineRoot") ;

43 ASK EngRoot TO SetValue (V8Engine);

44 ASK EngineConfig TO Checkin (FALSE) ;

45 END TRANSACTION;

46 ASK DB TO Close;

47 END MODULE.

The use of Database and DatabaseRoot in the Create program should be familiar from
Examplel in the previous section. Lines 1-6 establish the interface to other needed modules. Lines
7-14 declare variables to be used in the program. Of interest here are the GlobalWs and UserWS
variables, both of type Workspace, and EngineConfig of type Configuration. There are
also variables for VBEngine and V8Piston.

One can begin analyzing the Create program by observing its two transactions. The first
transaction (lines 16-27) starts by creating the database DB. Line 19 creates the Workspace object
GlobalWs in the database. Line 20 calls the method CreateGlobal on the object GlobalWs
and gives it the name GlobalWorkSpace. This illustrates that a global workspace must be allocated
in an application that uses workspaces. Line 22 allocates the workspace object UserWs in the database,
and Line 23 asks the GlobalWs object to make this a child of itself. This establishes UserWs as a
decendent workspace of GlobalWs. Lines 24-25 make a root in the database for UserWs. Finally
in line 26, UserWSs is asked to make itself the current (active) workspace. A transaction boundary must
now occur for the action of line 26 to take effect. It is crucial to remember that a call to SetCurrent
on a Workspace object takes effect only after the end of the transaction in which it was called. At the
end of the first transaction (line 27), UserWs is the current workspace.

The second transaction begins by allocating a Configuration object, EngineConfig, in
the database and giving it a name (lines 29-31). Lines 32-33 make a root in the database for
EngineConfig. Next, the VBEngine object is allocated into the EngineConf ig configuration
by a call to the built-in procedure NEWOBJ. This allocates VBEngineinto EnginConfig, which
is in the database DB and in the current workspace, UserWs. Lines 36-40 are a FOR loop to allocate
eight V8Piston objects into EngineConfig, set their values, and pass them to VBEngine.
There, as in the implementation of Engine, they are stored in the Pistons collection. Lines 4143

45

tell the VBEngine object to Print and then create a root in the database for this object. Line 44
causes the VBEngine object to be placed into the parent workspace of UserWs which is GlobalWs.
The transaction ends, causing the V8Engine object to be written to disk. The database is closed, and
the program ends.

The Mod1ify Program
The Modify program now illustrates the capabilities of workspaces and configurations for

consisteni management of change in in application. This program, shown below, changes the
displacement of the V8BEngine object.

1 MAIN MODULE Modify;

2 FROM Database IMPORT Database;

3 FROM DatabaseRoot IMPORT DatabaseRoot;

4 FROM Workspace IMPORT Workspace;

5 FROM Configuration IMPORT Configuration;

6 FROM Engine IMPORT Engine, Piston;

7 VAR

8

9 DB : Database;

10 WSRoot , CFRoot , EngRoot : DatabaseRoot;

11 GlobalWs,UserWs: Workspace;

12 EngineConfig: Configuration;

13 V8Engine: Engine;

14 V8Piston: Piston;

15 index: INTEGER;

16 BEGIN

17 TRANSACTION

18 NEWOBJ (DB) ;

19 ASK DB TO Lookup("/ModSim/Engine", 664);
20 ASK DB TO Open (FALSE) ;

21 NEWOBJ (WSRoot) ;

22 ASK WSRoot TO Find("UserWSRoot",DB) ;

23 UserWs:=ASK WSRoot TO GetValue();

24 ASK UserWs TO SetCurrent();

25 END TRANSACTION;

26 TRANSACTION

27 NEWOBJ (CFRoot) ;

28 ASK CFRoot TC Find{"EngineConfiguration",DB);
29 EngineConfig:=ASK CFRoot TO GetValue() ;
30 ASK EngineConfig TO Checkout (FALSE) ;

31 NEWOBJ (EngRoot) ;

32 ASK EngRoot TO Find("EngineRoot",DB);
33 V8Engine:=ASK EngRoot TO GetValue();

34 ASK V8Engine TO InitEngine(EngineConfig);
35 OUTPUT("Original Engine*);

36 ASK V8Engine TO Print;

37 OUTPUT("Make A Smaller Engine");

38 V8Piston := ASK V8Engine TO GetFirstPiston();
39 index:=1;

40 REPEAT

41 ASK V8Piston TO SetPiston(index, 44);
42 V8Piston:=ASK V8Engine GetNextPiston() ;
43 INC (index) ;

44 UNTIL V8Piston = NILOBJ;

45 ASK V8Engine TO Print;

46 ASK EngineConfig TO NameVersion('SmallV8Engine");
47 ASK EngineConfig TO Checkin (FALSE);

48 END TRANSACTION;

49 ASK DB TO Close;

50 END MODULE.

The Modify nrogram is identical to the Create program in lines 1-17. At this point, a
transaction begins by finding the database created in the Create program (/ModSim/Engine) and
opening it for writing. Lines 21-25 allocate a transient Workspace object, UserWs, and use the database
root named UserWSRoot to retrieve the persistent workspace object and assign it to UserWs.
UserWs is set to be the current workspace, and the transaction ends. Lines 26-30 use the root
established in the Creat e program to find the EngineConfig configuration and check it out of the
global workspace into the current workspace, UserWs. Next, the VBEngine object is retrieved by
finding its root and asked to perform its InitEngine inethod (lines 31-34). The program asks the
V8Engine object to Print its current state to the console. Now the program changes the
displacement of V8Engine. Line 38 retrieves the first Piston object from the collection stored in
V8Engine. Lines 39-44 ask each retrieved Piston object to SetPiston to a new, lesser value.
V8Engine is then asked to Print its new values. In line 46, a new name (SmallV8Engine)
is given to this version of EngineConfiguration. Line 47 checks this new version back into the

global workspace, and the transaction and program end.

Modify illustrates how to write a program that checks out a configuration, in this case
V8Engine, into a workspace, change the values of its objects and check it back in. There are now two
versions of V8Engine stored in the database: BigV8Engine and SmallV8Engine. More
versions of VBEngine (or V6Engine) can be created and organized into a version tree. The methods
of the Configuration object can be used to move and chose among these versions. CheckOut -
Branch can begin a separate development line off the main branch. Configurations have other
capabilities. They can be nested arbitrarily, that is, configurations can be created within configurations
and maintain their separate changes in a version tree. Workspace provide for multiuser access to
configurations in a distributed networked computing environment. Checkout and Checkin can be
tuned to the application’s pattem of use.

A Note on Simulation

While the examples have made no mention of simulation, it should be obvious that all the modeling
power of ModSim is available when using the database classes. The Engine object could be made more
complex by adding other components, such as a CrankShaft, CamShaft, Distributor,
or CylinderHeads. TELL methods could model the passage of simulation time and use ModSim's
synchronization features. In other words, it is possible to make a persistent simulation of a wide range
of Engines, to experiment with different configurations, such as Displacement, and to manage
these in a consistent, multiuser environment. Interesting intermediate state inforrnation about the running
Engine objects could be stored in a standard manner that permits the development of general purpose
tools for analysis. In short, one can build a model-management strategy for large, complex simulations
using Persistent ModSim's database classes.

47

8 SUMMARY, CURRENT RESEARCH AND FUTURE DIRECTIONS

The ModSim language was developed to support large-scale, general-purpose simulations. Exploring
the possible benefits of persistence was a natural next step in this research. This report has explained the
pilot and prototype development work demonstrating the usefulness of this technology. This chapter
summarizes the chief benefits expected from using a persistent, object-oriented approach to data
management for large simulations. Discussions of areas of current and future research follow.

Summary
First, Persistent ModSim can greatly simplify the development of large simulation systems:

» Use of the database class library can significantly reduce the amount of code required to store
information for scenario development and output analysis.

« Because this approach relies on a commercial object database, multiuser and distributed data
management are inherent.

» The consistency of the database class library should make development of preprocessing and
postprocessing environments easier and more general.

» If minimum care is taken to use common data structures, support tools can be developed that
are capable of working over a wide range of simulations.

« Change in a multiuser and distributed environment can be managed through versioning and long-
term transactions. This is perhaps the greatest benefit. It provides a most convenient approach to model
management. Applications being developed to demonstrate this feature in simulations show great promise.

The Eagle terrain demonstration discussed in Chapter 4 is suited to an application of versioning.
The original ModSim program begins by reading in flat UNIX files and building the complex object
representation of terrain. This complex memory structure is used by the simulated military units. When
the program ends, the terrain representation vanishes—there is no mechanism to store the interobject
pointers. With Persistent ModSim, the program can be restructured as follows. The code that reads in
the flat files can be made into a separate Create program whose only job is to initialize the object
representation of the terrain in a Configuration object in the persistent database. The Create
program stores the complex memory representation of the object terrain in the database. The original
program’s initialization code is replaced by a few lines that open the database and check out the terrain
configuration. The rest of the simulation remains the same.

A number of efficiencies are introduced with this approach:

» The speed of the simulation can be increased greatly. Reading in flat files and establishing
complex object representations in memory need to be done only once.

« The code size of the simulation has been reduced by eliminating the initialization code.

» The terrain can now be accessed in a consistent manner for other simulations, and the database
browser can be used to explore the terrain directly. Multiple users can access the terrain database over
a network.

An integrated development support tool is being developed currently for Persistent ModSim. This
includes a graphical browser for ModSim classes and a program editor based on Emacs (Kaplan 1992).

48

Advanced technology demonstrations of Persistent ModSim have begun in several Army and DOD
agencies. There have also been a number of other benefits to simulation technology as a result of this
work. Researching the requirements for persistent simulation has contributed to the requirements for the
object-oriented database effort (OpenDB) sponsored by DARPA (Herring and Whitehurst 1991). Another
direct consequence of the research into Persistent ModSim is the Integrated Systems Language Environ-
ment (ISLE) research effort, which is described below.

Future Directions

USACERL researchers apply a wide range of software technologies and require an advanced soft-
ware engineering environment. Their goal is to develop a new generation of integrated workstation appli-
cations to meet needs of engineers and managers in environment, energy, materials, and infrastructure.
These software systems will be characterized by model complexity, integration, distributed databases, and
the use of artificial intelligence. Currently available software engineering systems do not provide for the
integrated application of major software technologies in a consistent manner. USACERL, Army, and
DOD researchers need an advanced, open software engineering environment capable of accommodating
evolving requirements to produce quality integrated systems.

USACERL is developing ISLE, a software engineering facility that integrates five software tech-
nologies into a single programming environment. The goal is to produce a software development environ-
ment to support the development of the next generation of integrated applications. These technologies are:
(1) object-oriented programming, (2) process-based discrete-event simulation, (3) object databases,
(4) knowledge-based programming, and (5) computer-aided software engineering tools.

Object-oriented programming has become the paradigm for current software development and will
be the arena for future software research and development for the forseeable future. It provides a
formalism for specifying complex system designs and for their realization as software in a straightforward
manner.

Process-based discrete-event simulation is another natural consequence of the object-oriented
approach. It is an elegant extension to objects that provide for powerful simulation software development
that scales up for large applications.

Object databases are the natural extension of object concepts to data storage. They combine the
advantages of commercial database systems with the complex data modeling ability of objects. These sys-
tems are rapidly becoming the backbone for all computer-aided design (CAD) applications and will
become the standard in other areas now dominated by relational technology.

Knowledge-based programming is a software development strategy that grew from research in arti-
ficial intelligence. It is distinguished by the separation of the knowledge (logic, specific rules) from the
program (interpreter, inference engine) that operates on it. ISLE unites knowledge-based and object-
oriented programming in a single programming language.

Computer-aided software engineering tools are necessary to achieve the synergistic integration of
the above technologies into an advanced software engineering environment (SEE). This is the essence
of ISLE.

ISLE will permit researchers at USACERL, the Army, and DOD to begin developing the next
generation of integrated workstation applications that make full use of previously standalone or interfaced
software technologies. ISLE supports the integrated use of object-oriented programming, simulation,
knowledge-based programming, and databases to address development needs in complex applications such
as concurrent engineering. ISLE inherently provides for the development of software architectures in areas
as diverse as organizational modeling, construction management, geographic information systems (GIS),

49

and combat simulation. ISLE opens the door for development of domain-specific methodologies for
problem modeling consistent with the underlying software technologies.

The first phase of ISLE research began with the development of the IMPORT/DOME language
system. The IMPORT/DOME language is implemented in a unique manner to support ISLE’s goals. At
the heart of IMPORT/DOME is an object database. On top of this object database is an interface to a
generic object-oriented database (GOODB). A class hierarchy, based on this interface models the inter-
mediate forms of the IMPORT/DOME compilation structures. These classes constitute the basis for an
SEE. They permit storage in the object database of IMPORT/DOME programs. The following tools are
being built based on the SEE classes: a parser that takes IMPORT/DOME source code and stores as
intcrmediate form in database, 2 code-generator that generates C++ code based on an intermediate-form
representation, and a runtime library that supports the execution of compiled C++ code. This work is
scheduled for completion by first quarter FY93.

50

REFERENCES

Agrawal, R., and N. Gehani, “Rationale for the Design of Persistence and Query Processing Facilities in the Database
Programming Language O++,” 2nd International Workshop on Database Programming Languages (Morgan Kaufmann,
1989).

Alexander, Robert, “Eagle Engineer Model Development Process”, Proceedings, 30th Annual U. S. Army Operations Research
Symposium (1991).

Belanger, R., and S. Rice, ModSim User’s Manual (CACI Products Company, 1988).

Belanger, R. et al., ModSim: A Language for Object-Oriented Simulation User’s Manual, Deliverable A-010, Contract DABT60-
86-C-1382 (CACI Products Company, 1989).

Bobrow, D.G. et al,, “Common LISP Object System Specification,” SIGPLAN Notices, Vol 23 (September 1988).
Bratley, P., B. Fox, and L. Schrage, A Guide to Simulation (Springer-Verlag, 1983).
CACI Products Company, ModSim: A Language for Object-Oriented Simulation, User’s Manual (1988).

Copeland, G., and D. Maier, “Making Smalltalk a Database System,” SIGMOD '84, Proceedings of the Annual Meeting,
SIGMOD Record, Vol 14, No. 2 (1984), pp 316-325.

Dahl, O.J., B. Myrhaug, and K. Nygaard, SIMULA 67 Common Base Language (Norwegian Computing Center, Oslo, 1984).

Dahl, O.J., and K. Nygaard, “SIMULA—An Algol-Based Simulation Language,” Communications of the ACM, Vol 9, No. 9
(1966).

Database Technologies Inc., C-Data Manager User’s Guide and Reference Manual (Brookline MA, 1989).
Director of Defense Research and Engineering, DOD Key Technologies Plan (July 1992).

Director of Defense Research and Engineering, Defense Science and Technology Strategy (July 1992)..
Goldberg, A., and D. Robson, Smalltalk-80: The Language and Its Implementation (Addison-Wesley, 1983).

Herring, C., J. Wallace, A. Whitehurst, and D. Adams, “Design of an Engineer Functional Area Model Using Next-Generation
Software Tools and Methodology,” Proceedings, 30th U.S. Army Operations Research Symposium (1991), p 11-89.

Herring, C., “ModSim: A New Object-Oriented Simulation Language,” Object-Oriented Simulation (Society for Computer
Simulation, 1990).

Herring, C., and A. Whitehurst, “Adding Persistence to an Object-Oriented Simulation Language,” Object-Oriented Simulation,
Raimund K. Ege, Ed. (Society for Computer Simulation, 1991).

Herring, C., and A. Whitehurst, * Application Profile: Persistent Simulation,” Position Papers on DARPA/TI Open Object-Oriented
Database (Texas Instruments, Dallas, TX, 13 March 1991).

Herring, C., J. Wallace, and R. Whitehurst, “Design of an Engineer Functional Area Model Using Next-Generation Tools and
Methodology.” Proceedings, 30th Army Operations Research Symposium, Vol III (1991), pp 89-100.

Kaplan, Simon, “Epoch: GNU Emacs for the X Windowing System”, Technical Report (University of Illinois, Department of
Computer Science, May 1992).

51

Meyer, B., Object-Oriented Software Construction (Prentice Hall, 1988).
Mullarney, A., J. West, R. Belanger, and S. Rice, ModSim Tutorial (CACI Products Company, 1988).
Object Design Inc., ObjectStore Technical Overview Release 1.1 (May 1991).

Pamas, D., “On the Criteria To Be Used in Decomposing Modules,” Communications of the ACM, Vol 15, No. 2 (1972), pp
1053-58.

Powell, Dennis, “Object Oriented Terrain Analysis,” LA-UR-89-3665 (Los Alamos National Laboratory, 1989).

Ross, D., J. Goodenough, and C. Irvine, “Software Engineering Process, Principles, and Goals,” Computer (May 1975), p 65.
Stroustrup, B., The C++ Programming Language (Addison-Wesley, 1986).

U.S. Army, Army Technology Base Master Plan, Volume 1 (February 1992).

Wirth, N., Programming in Modula-2 (Springer-Verlag, 1982).

Zdonik, S., and D. Maier, Readings in Object-Oriented Databases (Morgan Kaufmann, 1989).

52

DISTRIBUTION

Chief of Engineers
ATTN: CEHEC-IM-LH (2)
ATTN: CEHEC-IM-LP (2)
ATTN: CERD-L
ATTN: CEMP

U.S. Army Engineer School 65473
ATTN: ATSE-CDC-M

TRADOC 66027
ATTN: MISMA

Defense Technical Info. Center 22304
ATTN: DTIC-FAB (2)

10

+27
0793

% U.S. GOVERNMENT PRINTING OFFICE: 1983—3510-5/80033

