
AD-A268 430USAISE C " -,lll~llL ,lkL
US Army Information Systems Engineering command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

Automation of Dynamic Help for U.S. Army
Installation-Level Software

ASQB-GM-92-002
, \ October 1991 1993,ý

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800 9 "967--'9 \\4\ \ -

SECURITY CLASSIFICATION OF THIS PAGE
Fcrm Approved

REPORT DOCUMENTATION PAGE No. 0704-0188
Exp. Date: Jun 30, 1986

la. REPORT SECURITY CLASSIFICATIC'. lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NOM,
2a. SECURITY CLASSIFICAION AUTHORITY 3. DISTRIBUTION/AVAILIBILTY OF REPORT

N/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A

* N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASOB-GM-92-002_ N/A
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)
AIRMICS ASQB-GM N/A

6c. ADDRESS (City, State. and Zip Code) 7b. ADDRESS (City. State, and ZIP Code)
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, Georgia 30332-0800 N/A

8b. NAME OF FUNDING/SPONSORING 1 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AIRMICS I ASQB-GM
Bc. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM I PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.
Atlanta, GA 30332-0800 62783A DY1O 05

11. TITLE (include Security Classification)

Automation of Dynamic Help for US Army Installation-Level Software

12. PERSONAL AUTHOR(S)

Cpt. Stanley K. Haines, US Army

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month. Dayl 15. PAGE COUNT

FROM TO October 1991 135

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TEAMS (Continue on reverse if necessary and Identify by block number)

FIELD GROUP SUBGROUP

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

The purpose of this paper was to determine the extent to which Dynamic Help specification
can be automated, and to propose a cost-effective procedure for implementing Dynamic Help
for the US Army's Installation Support Modules (ISM) programs. The proposed method de-
composes the message into fixed structure sentences having variable slots to be filled
with context-specific data. Each slot depends on only one or a few aspects of the con-
text. It is concluded that Dynamic Help is greatly automatable, and a set of program-
mer's tools can be developed to apply the automation method to provide Dynamic Help mes-
sages for many of the Army's software packages.

20. DISTRIBUTIONN/AVAILIBILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[3 UNCLASSIFIED/UNLIMITEDQ SAME AS RPT. [] DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(Include Area Code1 22c, OFFICE SYMBOL

LTC Michael E. Mizell (404) 894-3107 ASQB-GM

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

This research was performed for the Army Institute for Research in Management
Information, Communications, and Computer Sciences (AIRMICS), the RDTE organization
of the U.S. Army Information Systems Engineering Command (USAISEC).This research
report is not to be construed as an official Army position, unless so designated by other
authorized documents. Material included herein is approved for public release, distribution
unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

s/ S41~ _ _ __ _ _

"mes Gantt John R. Mitchell
"Division Chief Director

MISD AIRMICS

AUTOMATION OF DYNAMIC HELP FOR
U.S. ARMY INSTALLATION-LEVEL SOFTWARE

A THESIS
Presented to

The Academic Faculty

by

Stanley Kirk Haines

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Operations Research

Georgia Institute of Technology

October 1991

I

Automation of Dynamic Help for

U.S. Army Installation-Level Software

Approved:

Donovan Young, Chairman i I

S. Manivannan

Roy E. Marsten

Date Approved by Chairman 0&4* o, 4i"1

I II

Acknowledgements

I can never fully express the appreciation and gratitude I have for the tremendous

guidance and counsel I received from my thesis advisor, Dr. Donovan B. Young. I learned

more than I anticipated during the last year working on this thesis, and I think Dr. Young

may have grayed more than he expected.

I thank the other members of my Thesis Advisory Committee, Dr. Roy Marsten and

Dr. S. Mannivannan for their assistance in the development of this thesis.

Special thanks to Mr. John Mitchell and his staff at the Army Institute for Research

in Management Information, Communications and Computer Science (AIRMICS) for their

assistance, support, and Macintosh during the development of this thesis.

Finally, to Carol Ann who concurrently worked on her thesis in Physical Therapy.

We did it honey! And to Stanley Jr., who kept us both sane.

MIC QUAIT1- USPEC=ED 3

Accession F'or
KTIS '&

By-.

U |1'9 b7l&2d/O;

Dint S3pecial

TABLE OF CONTENTS

Page

LIST OF TABLES .. vii

LIST OF ILLUSTRATIONS ... viii

GLOSSARY .. ix

SUMMARY ... x

I. INTRODUCTION TO USER INTERFACES
1.1 Introduction .. 1
1.2 Novice/Intermittent User Productivity 2
1.3 Software and Interfaces ... 3
1.4 Improvements to User Interfaces ... 4
1.5 Embedded User Support (EUS) ... 5

1.5.1 Dynamic Help in EUS ... 6
1.5.2 What-if Data Manipulation in EUS 7
1.5.3 Embedded Tutorials in EUS ... 7
1.5.4 Interaction Monitoring in EUS 8
1.5.5 The EUS Project .. 9

1.6 Dynamic Help ... 10
1.7 The Research Problem ... 12
1.8 Guide to this Thesis ... 12

II. LITERATURE SEARCH
2.1 Computer Based Help Facilities ... 14
2.2 Dynamic Help and Context-Sensitive Help 18
2.3 Categories of Users .. 20
2.4 Software Design .. 21
2.5 Other Issues .. 22

III. AUTOMATION OF DYNAMIC HELP
3.1 An Automation Concept for Dynamic Help 23
3.2 Improvements to Dynamic Help Context Models 25

3.2.1 Evolution of Dynamic Help Context Modeling 26
3.2.2 Automatability for a Hypothetical Context Model 30
3.2.3 Automatability for Barge's Context Model 32
3.2.5 Acts, Objects, and Navigation in ACIFS Contexts 38

3.3 Improvement to the Dynamic Help Message Structure 40
3.3.1 Message Structure for ACIFS Dynamic Help Prototype 40
3.3.2 Message Structure for Barge's "Universal" Dynamic Help 42
3.3.3 A Proposed Dynamic Help Message Structure 43

iv

3.3.3.1 Dynamic Help "Ready to" Sentence 45
3.3.3.2 Dynamic Help Ad-Hoc Sentence 48
3.3.3.3 Dynamic Help Meaning Sentence 49
3.3.3.4 Dynamic Help Choices Sentence 50
3.3.3.5 Dynamic Help Format Sentence 50
3.3.3.6 Dynamic Help Domain Sentence 50
3.3.3.7 Dynamic Help Alternatives Sentence 51
3.3.3.8 Dynamic Help General Sentence 51

3.4 A Proposed Set of Dynamic Help Dictionaries 52
3.4.1 Slot Specifications .. 52
3.4.2 Dynamic Help OBJECr Dictionaries 53
3.4.3 Dictionaries ... 53

3.5 Application of Automation to ACIFS Dynamic Help 56
3.5.1 A Context Model forACIFS .. 56
3.5.2 A Message Model for ACIFS 58
3.5.3 ACIFS Dictionaries ... 61

IV. TESTS OF AUTOMATION VAIJDITY AND EFFICIENCY
4.1 Experimental Objectives .. 65

4.1.1 Treatments: Non-automated, Semi-automated, Automated 65
4.1.2 Hypothesis: Lower Cost for Comparable Quality 67

4.2 Experimental Design .. 67
4.2.1 Cost Measures .. 67
4.2.2 Quality Measures ... 68
4.2.3 Method of Comparison .. 68

4.3 Message Samples Generation .. 69
4.3.1 User Task Sample ... 69
4.3.2 Wolven Message Sample ... 70
4.3.3 Automated Message Sample .. 72
4.3.4 Quality Adjusted Automated Message Sample 74
4.3.5 Differences in Semi-Automated and Automated Messages 75

4.4 Cost Analysis ... 76

V. CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions ... 84
5.2 Recommendations .. 85

5.2.1 Application of Dynamic Help to ISM 85
5.2.2 Dynamic Help Generator .. 85
5.2.3 Dynamic Tutorial System .. 88

APPENDIX 1
SAMPLE DYNAMIC HELP MESSAGES FROM ACIFS 89

APPENDIX 2
SAMPLE CONTEXTS FROM ACIFS ... l I

APPENDIX 3
SAMPLE DATA DICTIONARIES ... 114

BIBLIOGRAPHY ... 120

V

LIST OF TABLES

TABLE Page

Table 3-1 Captain Barge's Contexts and "Ready to" Sentences 33

Table 3-2 Values to be Retrieved to Fill Sentence Slots 36

Table 3-3 Original Eight Generic Dynamic Help Sentences 41

Table 3-4 The Eight Generic Dynamic Help Sentence Types 42

Table 3-5 The New Eight Generic Dynamic Help Sentences 4..... 4

Table 4-1 lUlustration of Six Semi-Automated Dynamic Help Messages 71

Table 4-2a Act Fields for Twelve Contexts .. 72

Table 4-2b Object Fields for Twelve Contexts .. 73

Table 4-3 Illustration of Automated Message Sample 74

Table 4-4 Size Computations of Semi-Automated Wolven Messages 77

Table 4-5 Dictionary Overhead for Semi-Automated Wolven Messages 79

Table 4-6 Sentence Structure Size for Automated Messages 81

vi

LIST OF ILLUSTRATIONS

FIGURE Page

Figure 2-1 Interface Clarity for Novice/intermittent Users 20

Figure 5-1 Software Products in a Generic Dynamic Help System 86

vii

GLOSSARY

!1CRONYM Meaning

ACE Application Connectivity Engineering

ACIFS Automated Central Issue Facility System

AIRMICS Army Institution for Research in Management

Information, Communications, and Computer Science

DBMS Data Base Management System

DIC Document Identification Code

ETIP Extended Terminal Interface Program

EUS Embedded User Support

LIDB Installation Level Integrated Data Base

ISM Installation Support Module

SQL Standard Query Language

UIC Unit Identification Code

viii

SUMMARY

Dynamic Help is an online system of context-specific help messages introduced by

Dr. Donovan Young in 1990 and claimed to be automatable. A semi-automated set of

Dynamic Help messages had been implemented by AIRMICS (Wolven 1991) on an

interactive program that operates clothing warehouses, and had been determined via user

tests to make the program usable without user training.

The questions for this research were to determine the extent to which Dynamic Help

specification can be automated, and to propose a cost-effective procedure for implementing

Dynamic Help for the U.S. Army's ISM (Installation Support Module) programs.

An automation approach is proposed, based on identifying each interactive context

in terms of the currently active objects and acts. The lowest-level act is designated as the

primary act, and the message is intended to aid the user in either performing that act or

going to a different context. The proposed method decomposes the message into fixed-

structure sentences having variable slots to be filled with context-specific data. Each slot

depends on only one or a few aspects of the context. Data to fill slots is supplied directly

from the running program or its database, where available; where not available, it is stored

in Dynamic Help dictionaries whose contents the designer must author specifically for the

program (in lieu of authoring messages themselves).

The proposed method was applied to generate all the Dynamic Help messages for a

sample of contexts that occur in using the ACIFS program. These messages were

compared to the existing messages. It was found that they appeared comparable in clarity.

For the sample of automated messages, it was additionally found that they required less

ix

than half of the authorship effort (based on character counts) than the corresponding semi-

automated existing messages; for the whole program, a fivefold decrease in authorship

effort was estimated on the basis of the results for the sample.

It is concluded that Dynamic Help is greatly automatable, and it is recommended

that a Dynamic Help "generator" - a set of programmer's tools - be developed to apply

the automation method to provide Dynamic Help messages for many of the Army's ISMs.

x

CHAPTER I

INTRODUCTION TO USER INTERFACES

The problem of excessive diversity and uneven design of user interfaces for

interactive computer programs is widely documented (Gould, 1988). On Army

installations (posts, camps, and stations) there are dozens of interactive software packages

in daily use. Many of these packages are installation-unique systems that were developed

by the Major Army Command (MACOM). Their development and implementation has not

provided for much horizontal and vertical integration, nor for data sharing across functional

areas. In fact, many of these data initiatives are redundant and are functionally duplicative.

The total number of interactive software packages used daily on all US Army Installations

is estimated to be between 150 to 200 (Installation Support Modules, 1990).

Very few of these systems have been developed in accordance with a standard

architecture. It is difficult to deploy them to other installations or use them across varying

hardware platforms. The US Army Installation Support Modules (ISM) project, a high

priority project, has been established to enhance installation management Army-wide by

integrating this large family of software into a coherent system (Installation Support

Modules, 1990). Some of the goals of the ISM project are to develop an interface that non-

ADP users will find easy to use and to develop a standard data encyclopedia/dictionary for

use at installation level.

The ISM project is applicable at all Army installations. It will support the

sustaining software base and will interface with tactical and strategic systems. The ISM

1

project will provide installation commanders with an Installation Level Integrated Data Base

(ILIDB) and with software to effectively manage daily operations and perform the landlord

functions outlined in the U.S. Army Regulation 5-3, Installation Management and

Organization. The Installation Software Modules will reduce redundant data entry and

duplicative input terminals, serve as input and output mechanisms for the Standard Army

Management Information System (STAMIS), interface with STAMIS via the ILIDB, and

provide the required capability to share accurate and timely information at various levels of

installation management. Together ISM and ILIDB will help meet the information needs of

tenant activities and higher command echelons and provide the integration mechanism at

installation level for tactical and strategic systems (Installation Support Modules, 1990).

1.2 Novice/Intermittent User Productivity

A problem that faces the ISM project as well as software developers in general is

the low productivity of the novice or intermittent user. For an expert user or a user who

specializes in a single function and operates only one or two software modules, great

deficiencies in user interface design and user support can be tolerated and overcome. The

user's familiarization and skill-building is refreshed daily and is amortized over thousands

of performances. But novice or intermittent users will not enjoy this continual familiarity

with a software package. Instead, each time they use a package, they will have to relearn

some of the skills, techniques, and commands that are required to accomplish a task. The

problems of novice and intermittent users are compounded when software packages do not

share reasonably consistent and easy-to-learn user interfaces.

The severity of this problem is directly experienced by the ISM project in term of

the training effort necessary to alleviate it. According to Colonel Wayne Byrd, ISM Project

Manager, about $12 million of ISM money is expended annually for user training in

2

conjunction with the fielding of new or revised software. Much of this effort, which

includes having teams of software development personnel stay at a site for several days to

teach users how to use newly delivered products, could be avoided if interfaces were well

enough designed or documented to be immediately usable.

Users on US Army Installations fall into both categories: the expert or consistent

user, and the novice or intermittent user. In addition to initial unfamiliarity with newly

fielded products, several other factors can cause a user to behave as a novice or intermittent

user. If a user only performs a task periodically (monthly or quarterly reports for

example), then the user must relearn the software package each time he or she performs the

periodic task. Similarly, user who are temporarily assigned elsewhere, or go on leave, or

go to a school for training may come back and find they have forgotten how to execute

many of their normal tasks. Finally, a user proficient on a certain package may be

transferred to another installation that uses a different package, requiring retraining.

The ISM project will make it possible for one user to perform many functions, and

for soldiers to perform some functions themselves without a clerk as a chauffeur. As these

functions consolidate, the need for a better and more consistent user support is increased.

The expected efficiencies from the Installation Support Module project will be realized only

if the software modules have user interfaces that are reasonably consistent, easy to learn,

and designed for the needs of novice or intermittent users.

1.3 Software and Interfaces

The 150 to 200 software packages currently being used for daily operations of US

Army installations are diverse. Some have been thoroughly developed and tested by

software engineers. Others are programs written locally by an automation office to solve

an immediate problem on the installation. Still others were written by an individual whose

3

knowledge of interface design is limited to personal experience. But it is obvious that

within a category, and especially across categories, there will be a diverse assortment of

user interfaces.

1.4 Improvements to User Interfaces

There are three general ways to improve upon a user interface. The entire software

package could be rewritten from the ground up, enforcing a consistency in linguistics,

style, and interface. If all software packages were rewritten to a common standard, a user

trained in the use of, say, an inprocessing package, could easily learn how to use a suzpply

package. When a user was transferred from on installation to another, there would be no

need for retraining on the software packages at the new installation.

The chief drawback to rewriting is expense. To rewrite 150 to 200 diverse

packages under a common standard would require tens of man-years in programming time.

Not only would the programmers have to rewrite packages, but also have to provide

platform conversions to handle the diverse computer hardware at installations. Some small

packages could be rewritten fairly quickly and easily, but the large packages, like the

Central Issue Facility package or the Education Management package, would require

considerable programming time.

An alternative to total rewriting is to improve the user interfaces of some of the

programs. In many cases, this would require rewriting of only the user interface portions

of the code (or adding these portions if they do not exist). This alternative could provide a

consistent interface across packages, but it would also require a great deal of programming

time. Programming effort could be reduced by patching a shell over the existing interface,

but the shell would be another layer of computer code to process. Performance speed of

many of the packages would become unacceptably slow.

4

This is not to say that a given package should not be totally rewritten or have its

interface improved upon. If a package is based on old or archaic programming methods or

if its design is poor, then the best solution may be a total rewrite. Similarly, the main

portion of code in a package may be good, but the user interface may be poor or not to

standard so that rewriting the user interface is the best fix. For most packages, however,

what is required is an economically attractive method that with minimum time and effort can

improve a package's usability.

Less expensive than rewriting a whole program or rewriting its interface is to add

sophisticated online documentation that improves its usability. One approach to doing this

is called Embedded User Support (EUS)*. Embedded User Support involves adding

dynamic documentation to an existing software package. It does not change or necessarily

improve upon the existing user interface. Instead, it guides the user past pitfalls and

shortcomings in the interface. EUS does not involve rewriting software. A EUS module

can be written and tested in far less time than it takes to conduct a total rewrite of a package

or to rewrite the user interface.

1.5 Embedded User Support (EUS)

"EUS" was coined by Donovan Young of Georgia Tech in 1990. Based on his

experience in designing user interfaces for complex interactive project scheduling software

(Young, 1990a), Dr. Young became convinced that not only can a system be programmed

to monitor "where" the user is in its logic and what the data state of the system is, and that

such context and state information is enough to pinpoint the user's possible immediate

"* EUS, pronounced "use" as in "useful", is an acronym for Embedded User Support and is
also the first part of the word "eusophia" (eua-ooa), which means "having the quality of

being easy to learn", taken from the Greek "eu" (cu) for easy or well and "sophia" (aootc)
for wisdom or skill.

5

needs for information, but also, that the programming to accomplish this is largely

automatable. The following discussions is largely paraphrased, with permission, from Dr.

Young's EUS white paper (Young, 1990b).

It is first necessary to draw a distinction between functional training and software

famiiliarization. A "user-friendly" module is one for which the user can acquire the

necessary software familiarization by simply interacting with the module. All software

packages, in particular all Army installation support modules, can be made user-friendly.

On the other hand, the underlying function being supported (equipment issue, housing

requests) may require training. EUS does not teach the user what to do functionally, but

provides a user-friendly interface to show how the computer does the function.

The purpose of EUS features is to make a software interface sufficiently user-

friendly so that the novice or intermittent user can easily resolve all uncertainties about

vocabulary, interaction protocols, software capabilities, available actions, data

requirements, and standard expectations merely by continuing to interact with the software.

A EUS module can teach the user everything about the software's behavior.

Embedded User Support consists of a combination of one or more of the following

features:

- Dynamic Help

* what-if data manipulation

* embedded tutorial

- interaction monitoring

1.5.1 Dynamic Help in EUS

Dynamic Help subsystems display state-specific messages that replace older

collections of error messages, status reports, and prompts. A modem interactive system is

almost always in an input-ready state, and at any one time there is a narrow range of

6

appropriate inputs. A short message, usually stating what can now be done by the user, is

on display at all times (unless the interface design already provides this). Longer, more

detailed Help messages are invoked by user requests. Both kinds of Help messages are

dynamic; their content depends on the current state and on data values. The dynamic Help

subsystem builds messages as part of each interactive response. Thus, the programmer or

designer does not write specific messages, but only dictionaries and grammatical

structures. The computer will fill in all the details of the help message.

1.5.2 What-if Data Manipulation in EUS

A module that is not part of an integrated database typically grants the user too

much data destroying power. Modification to protect real data and allow manipulation of

what-if data can be accomplished by changing the module's file manipulation capabilities.

Modem practice is for the system to load a copy of the relevant data in local disk

storage or memory, interact with this, and then perform a verification or confirmation step

to test validity of the overall set of transactions before issuing the command to change the

real database. Protection for a training or practice session is provided simply by

suppressing the final step. The what-if data feature is useful not only for training, but for

experienced users who want to explore more than one way of accomplishing a transaction.

What-it data manipulation is essential in such packages as pricing in procurement, routing

in logistics, or scheduling in planning.

1.5.3 Embedded Tutorials in EUS

An ordinary tutorial for a software package is a computer-aided-instruction (CAI)

program consisting of a set of lessons and a user monitoring and evaluation system. Each

lesson teaches a set of skills for users of the target software package. The user

demonstrates skill via responses consisting of correct interactive data entries. The tutorial

7

program has its own database, and it calls the target software package (or contains a subset

or versions of it) to process user responses.

Embedded tutorials differ from ordinary tutorials in that 1) the user can invoke the

tutorial from within the module, and 2) a serial path through the tutorial is not enforced.

While working on a job, if a user comes to a place where it is desirable to use an unfamiliar

feature, he can invoke the tutorial, use it to learn the feature, and return to the job.

Unfortunately, tutorials are very inefficient to program, requiring design work and

programming work comparable to that of the program itself.

A newer concept for embedded tutorials is the Dynamic Tutorial (Smith, 1991).

Within the target software package, a dynamic tutorial consists of a set of task statements, a

separate database, and a user monitoring and evaluation system. It does not teach, but

relies on user friendliness of the system (perhaps as enhanced by Dynamic Help) to let the

user discover how to perform tasks.

A Dynamic Tutorial does not break down a task into steps, teach each step, nor

provide diagnostic feedback for the user's performance of each step. Instead, it merely

monitors overall task completion. Thus a Dynamic Tutorial has advantages of being

efficient to design and implement, of allowing for flexibility in the user's choice and order

of steps to accomplish a task, and of having "learning leverage" in that the user can

discover more than what the tutorial provider specifically provides. Conversely, a

Dynamic Tutorial has the disadvantages of requiring user friendliness and of being less able

than ordinary tutorials to provide training in the underlying real-world functions.

1.5.4 Interaction Monitoring in EUS

The final possible feature of EUS systems is interaction monitoring, which has

been called "learning management" in the computer training arena. There are two

alternative levels of interaction monitoring: record/playback, in which a file of user actions

8

is built during a session so that the session can be reconstructed; and the history file, in

which the sequence of major user actions is archived for later analysis. The former is very

useful for preparing and playing back a demonstration session, which can be a good

training device. The latter performs data aggregation and some analysis during the session,

and is typically used as an input file for a separate statistical analysis program that draws

conclusions about efficacy and efficiency of the product or of its user.

1.5.5 The EUS Project

In support of the ISM project, the Embedded User Support project is being

conducted at the Army Institute for Research, Management, Information Technology, and

Computer Science (AIRMICS) located at The Georgia Institute of Technology. The

purpose of incorporating EUS capabilities into software systems is the easing of the

learning process for a particular computer task by not requiring a user to recall a large

amount of information at once. EUS standards will be developed and will incorporate

principles of effective human-computer interface design.

The EUS project first added Dynamic Help to the interface for the Automated

Central Issue Facility System (ACIFS) program. This program is DBMS-based (built

around a relational database management system), which makes the context and data state

of the system very easy to monitor. Captain Ren6e S. Wolven fouid that, fr- the kind of

system represented by ACIFS, the Dynamic Help features of EUS were relatively easy to

provide. She also found that use of Dynamic Help by novice users significantly reduced

the number of dead ends (Wolven, 1991). (A dead end occurs where a user cannot

proceed without outside assistance). Additionally, for those users for whom complete

error data was available (the "careful" user), the use of Dynamic Help significantly reduced

the number of data entry errors. The use of Dynamic Help did not improve the overall user

performance times for novice users under the test conditions of Captain Wolven's

9

experiment. For those data entry fields where the user was required to recall difficult data

entry formats from memory, the use of Dynamic Help did improve performance times.

Captain Wolven also found that the specification of messages appeared to be mostly

automatable; she semi-automated the process and pointed out further automation

opportunities.

Work on EUS at AIRMICS is continuing with the conversion of ACIFS to the ACE

(Application Connectivity Engineering) programming environment provided by AT&T for

UNIX-based programming.

1.6 DynamicJHelp

This thesis will focus on the EUS feature Dynamic Help. Dynamic Help is context

sensitive (dependent on "where" the user is) that is also dynamic (dependent on the system

state). It is not interactive; that is, the help system does not collect and interpret its own

user input, nor interpose itself into the functional user interaction cycle. Dynamic Help is

implemented by adding a Dynamic Help module to a package. A Dynamic Help module

includes:

"* A set of generic grammatical structures for help sentences

"* A set of dictionaries of

commands

functions

objects

formats

variables

domains

protocols

"* A state monitoring system (if necessary)

10

The state monitoring system is distributed among the subprograms where necessary

if state changes are not reflected in global variables.

Dynamic help is economically attractive because the computer, not the programmer,

writes the help messages using parameters. Help messages are built rather than retrieved.

For each aspect of the system state, there is a message phrase that is a combination of fixed

and variable text. The message displayed is composed of those message phrases that are

relevant for the context, with their variable parts filled with values of monitored state

variables and the corresponding description from dictionaries.

For example, in an interactive CPM scheduling program, if the user is in the

process of reducing the duration attribute of an activity, the help system knows that the

context is that of an intermediate stage within the interactive duration change procedure and

it also knows the context relevant aspects of the system state, e.g. which object is active

and whether it is already at its minimal duration. Thus, a help message, built by the

computer, would be specific for the context and state.

What Dynamic Help does = do is improve upon a bad user interface; eliminate

traps in the software (where a restart is necessary); or correct poor design in the program.

These flaws in the software can generally only be corrected by one of the other methods

(total rewrite, interface rewrite) described above. Instead, Dynamic Help would help the

user understand a confusing or bad interface, tell the user how to avoid traps, or help the

user understand what the software requires.

Dynamic Help is more useful for the novice and intermittent user than for the expert

user. Regardless of a package's design, interface, or application, an advanced user will

have few problems working with a package and around its shortcomings. It is the novice

or intermittent user who will be most confused by poor design and a bad interface. A user

may accomplish a task many times, but after a break in use (for leave or temporary duty for

11

example) may become confused by the software again. Upon encountering confusion, a

user can invoke Dynamic Help, which will then build a specific help message that tells the

user where he is, what his options are, what the software requires as input, and how to

leave and start over or go back.

Dynamic Help promises to be a cost effective fix for existing packages as well as a

consistent method to help novice and intermittent users perform their missions (Young,

1990a). Until poorly designed packages can be rewritten or weak interfaces can be

improved, Dynamic Help allows users to maximize the usability of existing software

packages. It provides a consistent method for getting help from the software about the

software.

1.7 The Research Problem

The problem attacked in this thesis is to determine the extent to which Dynamic

Help message specification can be automated and to propose a cost-effective procedure for

implementing EUS add-ons for those ISM programs that will best benefit from EUS.

1.8 Guide to this Thesis

Chapter II reviews the findings of the EUS project, reviews the literature on user-

interface effectiveness and online documentation, and classifies and characterizes the user

interfaces of the general population of ISM software.

Chapter III examines the structure and synthesis of Dynamic Help messages as

exemplified in the EUS project, examines the potential extent to which appropriate

messages can by synthesized automatically, proposes a maximally automatable generic

structure for Dynamic Help messages, and proposes a procedure for generating messages

with that structure.

12

Chapter IV presents an experiment to test the message-generating procedure

proposed in Chapter III. A partial hypothetical documentation database will be created for

the ACIFS program and will be shown to contain only data that would appear in any

competent documentation system (for example, it will contain an English-language name

for every user action that can be taken). The message-generating procedure will be applied

to build messages for selected contexts and states by querying this database. These

messages will then be shown to have clarity equivalent to those previously generated for

the same contexts and states by the EUS project team. The contexts and states for which

the automatic message-generating procedure partially fails will be identified and classified.

Assuming the experiment does show automatability for ACIFS, it will be caried

further to test the prospective automation efficiency. It is expected that the total amount of

message material to be authored and stored with automated Dynamic Help should be no

more that half the amount required for a well designed non-automated or semi-automated

system.

Chapter V presents conclusions. It generalizes the application of Dynamic Help

results to make conclusions about the whole range of EUS techniques. It proposes a

specific selection procedure to identify the ISM programs to which EUS features should be

added. It identifies what seem to be the most fruitful prospective directions for further

EUS research.

13

CHAPTER U9

LITERATURE SEARCH

2.1 Computer Based Help Facilities

Why does computer software need a Help facility? Claire O'Malley provides an

explanation:

Help exists to answer questions. To decide what to put in help, anticipate the
questions users may ask and provide quick, clear answers to them. What kinds of
questions can we anticipate from users? Just about any kind: How do I...? When
doI...? WhatifI...? What is a ...? Is it true that ... ? What is the difference
between ... and...? What caused...? What did I do wrong...? Why won't this
work...? What else can I do...? (O'Malley, 1986)

What should a Help facility do? According to Patricia Dorazio, "The primary

function of an online Help facility is to supply immediate command and/or message

assistance that allows the user to complete a task."

As computer software has become more complex and computer hardware more

powerful, the number of computer users has increased dramatically. With initial computer

programs, typically the users were the programmers. As programmers began to share their

programs with other computer users, they provided documentation for these other users.

As the base of users grew, more and more users entered the computer age. Documentation

alone was no longer sufficient; these users needed a Help facility to guide them through the

software.

Initially Help facilities were produced after the software had already been put into

use. The Help was developed quickly and was in most cases simply the hardcopy

reference manual made available online (Dorazio 1988). These first help facilities were

14

used much the same way that a user would consult a hardcopy reference manual. The user

would look up in the index the command, function, or feature that he needed help with.

The index would refer to user to a page number in the reference manual.

The first significant improvement to online Help was command-based Help

facilities which enabled the computer user to specify the command, function, or feature

before going to the index. For example, to get help about a topic, the user enters at the

command prompt:

Command ==, help japj

The system responds with a screenful or two of information on the requested topic.

(Hurd, 1983)

There are many shortcomings with a command-based Help facility, not the least of

which is that the user must look up a command by name for a function he wishes to

preform. If the user wanted to "erase" an entry, he might reasonably enter.

Command -=* help erase

If the index only contained a listing for "delete" with no cross referencing of

synonyms, the user would be no closer to accomplishing his task than before requesting

help. Many methods attempted to improve on this deficiency. Besides a cross referencing

of synonyms, some help facilities listed other related topics at the end of the help message.

While this can help the user navigate to the appropriate help message, it still distracts from

the task at hand, and it provides no assistance if the target topic is not related to the one

accepted.

A popular variation of the command-based Help facility is the menu-driven Help

facility. Here when the user invokes help, he selects a choice from lists of options.

Selection is made either by typing the choice (or the corresponding number or letter) or

selecting the option with a mouse or cursor (Dorazio 1988). A menu-driven Help facility

15

may provide the user with a list, eliminating the need to know the exact command, but it

still distracts the user from the task at hand. The index has been moved to the front and

labelled a table of contents.

Another method of providing the user with help is the prompt-driven Help facility.

With this facility, the user is led through a series of menu and prompt screens to

accomplish the task. A simple example of a prompt-driven system is the automated tellers

used by banks (Hurd 1983). This system requires the user to answer a series of questions

at each level. Each level distracts the user from the task at hand.

Some software companies provide an online tutorial as a pseudo Help facility.

However,

The goal of a HELP system should not be to teach users about the system's
capabilities and function, but rather to provide quick and immediate access to
information about a specific task, command, or message. In other words, HELP
should refresh or remind the memory of what it already knows (Dorazio, 1986,
from Horton 1990)

Tutorials can provide the user knowledge about the idiosyncrasies of a software

package, but this is done through the long process of teaching the user about the commands

and functions of the package. While a tutorial is sometimes helpful, it is not a Help facility.

Interactive context-sensitive Help is one of the most recent developments in Help

facilities.

The help you get depends on where you are in the program when you request help.
If you are executing a particular command, for instance, you would get help on that
command. If an error has just occurred, then an explanation of that error will result
(Horton, 1990).

Many context-sensitive help facilities link the context-sensitive help and the online

reference manual. When the user requests help, the system opens the online reference

manual at the topic that corresponds to the user's context. From the initial help screen, the

16

user can navigate to other help messages, much as for the menu-driven Help facility

described above. (Horton, 1990)

A Natural-Language Query Help facility, also called a Diagnostic Help facility

(Horton, 1990), tries to diagnose the user's needs by engaging the user in a dialog. If a

user needs online help, the user communicates with the system in his natural language.

The system translates the natural-language request of the user into a form consistent with its

internal look-up table before delivering a response tailored to the user's level of expertise

and context (Dorazio, 1988).

In a broader sense, Help facilities can be forced into two categories: passive and

active. In active Help facilities, which include menu-driven, prompt-driven, context-

sensitive, and natural-language query facilities, both the user and the Help facility play

active roles in providing the required information to the user. The user initiates the Help

request and the system acts like a human tutor. In a passive help system, the user must

explicitly request help for either a command or a message (Dorazio, 1988).

There is a distinct difference between Help facilities and error messages. In both

active and passive Help facilities, the user initiates the message by requesting help. He

may enter into a dialog with the system to determine the type of help required (such as the

Menu-driven or Natural-Language query Help facilities), but the user initiates the help.

Error messages are initiated by the computer due to some invalid command, input, or

operation. Many error messages include a "fix" suggestion the end of the error message:

==, copy myfile myfile2
The file "myfile" is not in the current directory. Check the spelling of the name or
change the directory. (Horton, 1990).

Here the likely corrective actions is a known attribute of the error type, and of

course outputting this attribute is more useful to the user than outputting other attributes

such as what discrepancy was detected, or even what was the assumed cause. The above

17

example explains the error to the user, then based on what the programmer (or the writer of

the help message) felt was the most likely cause of this error, suggests a solution.

2.2 Dynamic Help and Context-Sensitive Help

Dynamic Help differs from context-sensitive help in two ways: protocol and

construction. The protocol for context-sensitive Help requires the user to invoke Help, to

indicate for which object of command the help is being sought, and to exit from Help. The

protocol for Dynamic Help, by contrast, is not interactive; the user activates objects or

commands before invoking help. This allows the Dynamic Help message to be truly

specific to the situation, rather than just being a canned blurb about a given object or

command. Note that the Dynamic Help protocol presupposes it is possible to activate

commands or objects without invoking them. If the basic interactive procedure has

"premature closure" (a keyboard entry or screen touch is acted upon instantly without

waiting for the user to press K<RETURN* or answer a confirm question), the situation is

too vague for Dynamic Help to be useful.

Dynamic Help messages differ from context-sensitive messages not only in

protocol, but also in construction. A Dynamic Help message is assembled from fixed and

variable components rather than retrieved. This makes it automatable, whereas someone

must specifically write each message verbatim in a context-sensitive Help facility.

Dynamic Help is neither interactive nor does it require hundreds of different

structures for help messages. It is applicable to programs in which the context is quite

narrowly defined by such information as cursor location, highlighted objects, and active

procedures or commands. Regardless of whether the user is in the right place , that

location in the program has a specific task allocated to it. The Dynamic Help module

assembles a message explaining everything about performing that task in the current

18

context. In a narrowly-defined context, the message needs to contain only three things: If

in the wrong place, the user needs instructions on how to leave this context to find a more

appropriate one to suit his purpose; if in the right place, the user needs either instructions

on how to accomplish a narrowly defined task or an explanation of the task.

Dynamic monitoring of the context and state provides a significant advantage over

the Help facilities explained above. Dynamic Help has a means of deriving all of the

questions that a user could ask. The user is not required to narrow the scope of his

question and use an index or table of contents. Of course, this advantage does not exist for

systems where the context is not narrowly defined. For example, a user typing at the end

of a document in a word processing program is in a vague context where any of dozens of

things could be done; Dynamic Help is not useful for highly general programs such as

word processors, or spreadsheets, but only for specific application programs.

Dynamic Help's main advantage over context-sensitive help is not in how well it

helps the user, but in the cost of providing it. Context-sensitive Help programmers could

create a help message for every location within a program, and these messages could be

just as understandable as Dynamic Help messages. However, Dynamic Help offers a way

of providing a complete array of context specific, state-specific help messages without

requiring each message to be written separately. The automation that allows this is the

main subject of this thesis.

In order for Dynamic Help to improve the interface clarity for novice and

intermittent users it must address the questions shown in Figure 2-1. The answers to these

questions are the basis for construction of the Dynamic Help sentences.

19

Where am I? (location name, functions supported)

[commands-
What objects are available?

rordinarily next

How can I get to the |last previous location?
Lnext higher

What does this object mean?
[~entry

rundo - [command-

How can I complete t o?abort entry

W t fotraty?

What is the [legal conten] of this entry?
Ldefault valudJ

-ordinarily nex rcomrand]

How can I get to the last previous | object ?
Lnext higher I Lentry I

Figure 2-1 Interface Clarity for Novice/Intermittent Users

2.3 Categories of Users

What are the categories of user that require a computer Help facility? Horton

(1990) suggests four specific users:

Novice: The Novice knows little about computers and nothing about the program.
The Novice is curious, but has trouble distinguishing the essential from the trivial.
Most of all, the novice is reluctant to ask for assistance, lacking a vocabulary of
concepts and terms to express questions.

Occasional Users: An Occasional user has mastered a system once, but because
of intermittent use has forgotten essential items. He makes frequent errors and is
impatient with paper documentation. He does not remember computer terms or
concepts, nor feels that he should have to. (Cuff, 1980: in Horton, 1990)

Transfer Users: The Transfer user knows how to use one computer system and
is trying to transfer this knowledge to a similar system in a new environment.

20

Experts: The Expert user is commonly referred to as a "Power" user. He
understands how to operate the program, how it is organized, and how it works.
To him, menus and prompts are obstacles to doing things fast.

John R. Brockman lists five levels of computer user sophistication: parrot, novice,

intermediate, expert, and causal (Brockman, 1986). Various authors have advocated

separate user interface design levels to tailor interfaces to various kinds of users. Others

(Gleason, 1984) have advocated classifying documentation according to sophistication so

that users can seek documentation at their own level. However, it is not clear that anyone

has presented convincing evidence of the practicality and usefulness of providing more than

two levels of documentation or two variations of interactive protocols.

For the purpose of this thesis, I will categorize users into three categories. The

Novice user as described above; the Intermittent user which includes the Occasional users

and the Transfer user from Horton's definitions; and the Expert user. I view these

categories as applying to user familiarity with a specific interface; along with other workers

in Dynamic Help, I assume all users have basic familiarity with interactive use of

computers in general, and with the real-world function that the interface mediates.

2.4 Software Design

Every interface design has multiple ways of displaying information that helps orient

the user, from a symbol that shows there are offscreen contents to which the user can

scroll, to full sets of onscreen instructions telling the user exactly what to do. Regardless

of what informative strategies are used in the design of a given interface, the interface is

likely to have some deficiencies that interfere with usability by a novice or intermittent user.

EUS techniques, including Dynamic Help, do not change the interface design. They are

added separately.

21

2.5 Other Issues

The most important characteristic of any help system is the quality of the text

presented to the user (Borenstein, 1985). Additionally, in Borenstein's thorough research

into various help systems, he reports:

1. A good help system can easily make up half the difference between an ordinary
bad help system and a human tutor.

2. The most important determining factor in the "goodness" of a help system seems
to be the quality and nature of the texts it presents, rather than the details of the help
access mechanism.

Dynamic Help focuses the user on the main task at that level of the program, that is,

the primary act. It provides the user with a terse but complete message describing how to

complete th- ctrrrent primary act, it explains the meaning, format, domain of any active

objects, and it identifies any potential dead-ends.

22

CHAPTER III

AUTOMATION OF DYNAMIC HELP

To provide for automation of Dynamic Help, this chapter proposes a new model of

the context of an interactive session and a new structure of the Dynamic Help message and

of each of its sentences. A set of Dynamic Help dictionaries is proposed and is shown to

be capable of translating contexts into Dynamic Help messages. The automation method is

applied to the ACIFS application program, both to illustrate the method and to provide a

sample of messages that can be compared with previous messages for the same contexts in

order to test the validity and automation efficiency of the method.

3.1 An Automation Concept for _Dynamic Help

From the introduction of Dynamic Help by Dr. Donovan Young (Young, 1990),

automation has been an integral part of the concept. The automation concepts and method

that I propose and test in this thesis are natural extensions of those developed by Dr.

Young, Captain Rende Wolven, Mr. Christopher Smith, and Captain Walter Barge, as

reviewed in Chapter [1.

The purpose of Dynamic Help automation is to free the designer from having to

author hundreds of separate help messages, and to free the program from having to keep

help messages ready for retrieval.

The structure of Dynamic Help message, consisting of fixed-structure sentences

having variable parts or slots, already allows for a substantial degree of what I will call

semi-automation: each slot depends not on the whole context but on as few as a single one

23

of the aspects of the context For example, one slot in one of the sentences may always call

for the name of the current screen, and another slot may always call for the name of the

datum that is ready to be added, changed, or deleted. There may be only a few commands

or user actions that are used throughout the program, and one slot may always call for a

description of the current command or user action. Thus, armed with lists of screens,

commands, fields, etc., a designer may take a fill-in-the-blanks approach to authoring

messages, and the fixed parts of the messages surrounding the variable slots may be

defined as text macros. This approach - call it semi-automation - was taken in the

specification of the prototype Dynamic Help messages that were previously implemented in

ACIFS and user-tested by Captain Wolven. The goal of the automation method to be

proposed here is to provide a substantial decrease in the volume of material authored and

stored, as compared to semi-automation.

To achieve this goal, there must be a formalization of context monitoring and

identification, and of message construction, sufficient to allow the designer to avoid the

necessity to visit every context. A general description of what needs to be formalized

follows.

At run time, when the user invokes Dynamic Help, the Dynamic Help module must

be able to identify the current context, and it must have a knowledge base that allows it to

construct the entire message from the context. This implies a necessity for context

monitoring by the program:

Context monitoring: The program monitors the context so that every aspect of the

current context is kept current and available to the Dynamic Help module.

The knowledge base for the Dynamic Help module must include a context model able to

identify the aspects of context that the program is keeping current. It must also include a

message model that contains the sentence structures and definite rules for filing each

24

variable slot in each sentence. Finally, it must include Dynamic Help dictionaries that store

the material to fill each variable slot (or store a query or procedure call to return the

material). Given the knowledge base, the context identification and message construction

functions performed by the Dynamic Help module can be described as follows:

Context identfi cation and message construction: From the message model is

obtained the rule for filling each slot, either directly with an aspect of the context, or

indirectly with a fragment obtained by querying the Dynamic Help dictionaries to

return a fragment that is functionally determined by one or more aspects of the

context.

The challenge for the automation method is to achieve the formalizations of context

and its aspects, of sentence structures and their variable slots, and of Dynamic Help

dictionaries and the slot-specific rules for querying them, so that context monitoring,

context identification, and message construction can be performed.

The following three sections will propose the necessary formalizations of context

modeling (Section 3.2), and message structure (Sections 3.3) and of Dynamic Help

dictionaries (Section 3.4).

3.2 Improvements to Dynamic Help Context Models

An interactive computer session can be perceived in a user-centered way, user

versus system, where the user takes actions that at a low level can be perceived as pressing

keys, moving a mouse, etc., or at a higher level can be perceived as making a data entry,

highlighting a menu item, pointing at a displayed object, etc. This user-centered viewpoint

does not directly focus on the application.

The same session can alternatively be perceived in an applicauion-centered way,

user and system together as a manipulator of application objects. In this perception there

25

are acts taken by the user and system together, such as issuing a clothing item to a soldier,

designating a vehicle as a member of a convoy, etc. This application-centered viewpoint

does not directly focus on the interactive interface; it is transparent. This is the viewpoint

taken by Dynamic Help.

A successful context model should represent the current acts and objects, because

the sentences in Dynamic Help messages turn out to be about them. It is current acts and

objects, and their attributes, that fill the message slots. Hence, the "aspects" of the context

should be current acts and objets. This was recognized early and was central to the generic

automation attempt by Captain Barge (Barge, 1991). Before proposing the context model

to be applied and tested here, I will review the previous context models that were used in

the prototype ACIFS Dynamic Help system and in Captain Barge's work. Then I will

discuss automatability efficiency issues for a hypothetical general context model and for

Captain Barge's context model. Finally I will propose a specific context model for

Dynamic Help, and will illustrate its treatment of acts, objects, and navigation for the

ACIFS program.

3.2.1 Evolution of Dynamic Help Context Modeling

A context is a place or condition in the interaction where at least one aspect of the

condition varies enough so that part of a Dynamic Help message for this condition should

be different from the corresponding part for another condition. This was the starting point

for context modeling for the messages authored and user-tested by Captain Wolven.

This concept implies an operational definition of context: a different context for

each different message, and vice versa. One could explore the program as a user, write a

message for the current context, take a user action, determine whether the resulting

condition is a different context (by examining the entire message for accuracy,

informativeness, and completeness), and either record a new context and write a new

26

message, or expand the description of the current context to include the after-action

condition in the same context as the before-action condition.

Given some method of ensuring that all conditions are explored, this process would

stop with all contexts defined and all messages written. A method of ensuring

completeness of the context set could be based on trying all responses that might change the

context, using a branching scheme. Either a breadth-first search or a depth-first search

would be equally valid, but a breadth-first search would require less record keeping. A

breadth-first search would first try all conditions on the initial screen or window, then all

conditions on each screen or window reachable in one step, etc. A depth-first search

would "fathom" the software, that is, take a path through various conditions to a condition

in which the most detailed or lowest level acts are performed, then "climb back up" to the

highest point not yet encountered, and repeal This depth-first search has the advantage of

imitating actual paths taken by users in performing tasks, perhaps allowing the message

author to maintain better awareness of the perspective user's knowledge state at each

context.

An informed way of organizing a context search would be to begin with a set of

tasks to be performed, and imitate their performance. Even if the set of tasks is complete,

the set of encountered contexts could be incomplete.

A Dynamic Help designer who used any context-search method for the ACIFS

program would find that there are only about 700 reachable contexts. Almost any lowest-

level user action - highlighting a new item, making a data entry, pressing a "y" or "n" key

to answer a displayed question - causes the program to perform a lowest-level act that

alters the context, except when the action is a repeated one on a series of object instances

(e.g. entering the quantity of each clothing item being issued to a soldier).

27

For ACTFS, which contains only menu screens and data-entry screens, the context

is neatly indicated by screen identifier and highlight or cursor locations for every lowest-

level act, there is a "place" (ccscreen, field*>) to perform it, and for every "place" there is a

unique primary act the user is intended to perform. Only minor exceptions exist to the one-

to-one correspondence of ((screen, field* to context different fields in a list of object

instances can be the same context (again, e.g. "quantity" fields for each clothing item), and

here can be more than one <<screen, field* where a given act can be performed (e.g. a menu

selection can be made either by highlighting the item and pressing ,,RETURN* or by

pressing the item's code key regardless of which item is highlighted.

Captain Wolven dealt with the exceptions in such a way as to preserve the exact

correspondence between oscreen, field* and context. Her semi-automated system provided

a message for the first field in a list, and then provided a pointer to that message, (in lieu of

a copy of it), for other fields in the same list. She also disentangled the menu-selection

contexts by defining the highlight-and-RETURN method as the primary act for performing

menu selection (a shortcut way of performing an act can either be ignored, since Dynamic

Help is for non-expert users, or can be explained in the ad-hoc sentence of messages).

Thus the contexts were exactly represented by "screen, field* pairs in the semi-automated

set of Wolven messages.

Recall from Chapter II that Captain Barge devised a data organization for Dynamic

Help that could be incorporated into the original design of a wide range of application

programs (Barge, 1991). He realized that a more general model of contexts would be

based not on screen locations but on objects and finctions. Beginning with the same

operational concepts as his predecessors - a one-to-one correspondence between

messages and contexts, and a primary ("ready to") act for each context - he was led by the

wide emphasis in the literature on object-oriented design and function-oriented design to

28

realize that, in general, a context can be indicated by combinations of active objects and

active functions. This realization was confirmed when he examined the contexts of the

variable parts of the already-established sentence frameworks and found that all of them

were attributes of the following objects and functions (Barge, 1991):

Global variables
High-level functions
[data] Objects
Screens (or windows)
Commands
General documentation

The last item in the list, general documentation, refers to context-independent parts

of messages. Captain Barge concluded from the list that dictionaries of each of the above-

listed objects and functions were needed, and that the context must track "the current

situation in terms of what parts of the system are 'active'." His context identification

procedure (Barge, 1991) made use of an implicit assumption that objects and functions

were of various kinds or types, and that an appropriate design need not allow the

complication of a context's having more than one active thing of each type. For example, a

university course registration program allows a student to build a class schedule in a

schedule window by highlighting courses in a course-offerings window and 'moving'

them to and from the schedule. The schedule, which is a set of courses, can be defined as

a different type of object than a course, and since the acts are performed one step at a time,

there need not be occasion for more than one window, more than one course, or more than

one command to be active at any one time. Because it is always possible to decompose a

complex act into steps, and to identify collections or subsets separately from the objects that

compose them or contain them, the requirement that only one Nng of each type can be

active in a given context does not seem too restrictive.

29

In Captain Barge's university registration example, he showed that the context

could be unambiguously specified by a vector of four values. For example, the context that

yielded the Dynamic Help message

"ready to add ISYE6650AI as a Primary course ..."

was

Active menu item: Register for Classes
Active window: Course Offerings
Active object: ISYE6650A 1
Active command: P

Dictionaries were built by Captain Barge, and he showed that they produced

suitable messages when queried to fill the sentence structures. Although the result was

impressive in terms of generality (because it showed that a single Dynamic Help sentence

structure applied to two very different programs), the degree of automation was

disappointing. One dictionary in particular was a kludge: it filled the "Ready to" sentence

with a complete verb clause that expressed a function acting on up to two objects, yet all

three variable elements - verb, first object, and second object - were explicitly written

rather than retrieved from dictionaries. In such a system there would be a row in the

"Ready to" dictionary for every reachable context. Thus one nearly compete "Ready to"

sentence would be authored for each message.

The challenge for context modeling can be viewed as that of retaining the generality

of Captain Barge's context data organization while achieving a degree of automation in

which no part of the message depends on a large fraction of the context.

3.2.2 Automatability for a Hypothetical Context Model

Let there be m distinct contexts, so that the number of messages is of order m. If

there are c different components in the context vector, and each component can take on d

distinct values, then let

30

d =m[1]

As an example, for d=10, c=3, we have m=1000.

A hypothetical system might have a context that is identified by its active screen, an

active object, and an active command (c is 3 components in the context identifier); if there

are 10 screens, 10 objects, and 10 commands (d=lO) then equation I yields m=103=1000

contexts.

Automation is possible if the Dynamic Help messages can be divided into parts

such that each part depends on only a part of the context. As a concrete example, suppose

the hypothetical 1000-context system had messages that could be split into two parts, one

of which depended only on the combination of active screen and active object, while the

other depended only on the active command. Let a represent the size of the screen/object

part of a message, and let 1-a represent the size of the command part of the message, so

that the entire message has size 1 whether presented in parts or as a whole. Then if the

same 10 objects and 10 commands are available on each of the 10 screens, the size of the

stored parts is

d2a + d(1-a) = 100a + 10(1-a)

This is between 10 and 100, depending on the relative size of the parts. For

example, if the screen/object part had size a=2/3 and the command part had size l-a=1/3,

the size of the stored parts would be 70. This compares to a size of 1000 without

automation.

Ideally, the best that could be done would be to split the messages into three parts,

one of which depended only on the screen, one only on the object, and one only on the

command. In this ideal case, supposing each part to have size a=-/3, the size of the stored

parts is

da +da+da= 10

31

We can recompute the hypothetical example for a more realistic case in which a

different 10 objects and a different 10 commands are available on each of the 10 screens.

Then the size of the stored parts is

d3a + d2(1-a) = 1000a + 100(1-a)

Letting the screen/object part have size a=2/3 as before, the size of the stored parts

would be 700. Note that in this case there are still 1000 distinct screen/object parts of the

message, so the only automation savings is from storing the 100 command parts of the help

message separately instead of having them each duplicated in the 10 object-distinct

messages for each screen.

In practice, the potential savings from automation of help messages for a typical

interactive program would be better than this 700/1000 ratio but worse than the 70/1000

ratio computed earlier. These extremes represent zero redundancy and full redundancy,

respectively, of objects and functions on screens, in both cases assuming that 1/3 of each

message is redundant to parts of other messages.

3.2.3 Automatability for Barge's Context Model

Examination of Captain Barge's "Ready to" sentences reveals that the context

vector, although it contains the minimum set of variables to identify the various conditions,

does not always contain the variables needed to fill (either directly or by dictionary

reference) its sentences. Table 3-1 extracts from Captain Barge's report (Barge, 1991) six

contexts and the corresponding "Ready to" sentences:

32

Table 3-1 Captain Barge's Contexts and "Ready to" Sentences
Contexts "Ready to" Sentences

1. Menu Item Register for Classes 1 Ready to create or modify your
Window None academic class schedule.
Object None
Command None

2. Menu Item Register for Classes 2 Ready to choose a command for
Window Course Offerings ISYE6650A1.
Object. IYSE6650A1
Command None

3. Menu Item Register for Classes 3 Ready to add ISYE6650Alas a Primary
Window Course Offerings course on your schedule.
Object IYSE6650AI
Command: P

4. Menu Item Register for Classes 4 Ready to modify or finalize your course
Window Schedule schedule.
Object None
Command None

5. Menu Item Register for Classes 5 Ready to choose a command for
Window Schedule ISYE6650A1.
Object ISYE6650A1
Command None

6. Menu Item Register for Classes 6 Ready to register for the primary
Window Schedule course(s) shown in the Schedule
Object ISYE6650AI window.
Command R

Note that every "Ready to" sentence contains nouns that are not in the context

vector, given this, automatability would require that the nouns either be attributes of single

items of the context vector or be part of a fixed phrase that itself meets these requirements.

Any more complex way of determining noun phrases from contexts would be undesirable.

Furthermore, it would be desirable for each slot in a sentence to have an unvarying rule by

which given elements of the context vector (only one, where possible) fill the slot. If the

slot is not filled directly with a context-vector value, it can be filled indirectly with material

retrieved from Dynamic Help dictionaries.

33

It would be desirable for the context vector to contain all information about the

application objects (schedule, course, etc.), and for the dictionaries to contain only

information about message objects (sentences, clauses, phrases, etc.).

To judge the automatability of Captain Barge's context model, consider the noun

phrase listed in the "Ready to" sentences as "your academic class schedule" (sentence 1),

"your schedule" (sentences 3 and 6), and "your course schedule" (sentence 4). Because

the messages are largely authored rather than constructed, the schedule object is named

several ways; with automation, it would be named only one way in all messages, say "your

class schedule," and obviously little or no useful information would be lost thereby. A

much more important barrier is that this schedule object is grammatically the direct object of

"Ready to" sentences I and 4, and the object of a preposition in "Ready to" sentences 3 and

6; in the former sentences it is the thing directly being manipulated, while in the latter

sentences it is something indirectly being manipulated via direct manipulation of a lower-

level object.

Apparently whenever the menu item element of the context vector has the value

"Register for Classes", the schedule is "active" and is the object to be directly manipulated

by an act that is higher level (such as "create or modify" of "modify or finalize"), while it is

the object to be indirectly manipulated by an act that is lower level (such as "add... as a

Primary course" or "remove"). Thus automatability appears to require that objects and acts

have levels; that more than one, but only one at a given level, can be active; and that the

directly manipulated object by an act would be the lowest-level active object, while the

indirectly manipulated object would be the next-higher-level active object. This apparently

would allow a consistent rule for filling the object slots in at least the "Ready to" sentence.

The apparent fact that the schedule object is active whenever the active menu item is

"Register for Classes" could be tracked either in the context vector or in the Dynamic Help

34

dictionaries. The context vector is the correct place for this, for two reasons: it is fact

about application objects, not about messages, and secondly, putting it in the context vector

allows flexibility and reliability, because the real rule about when the schedule object is

active might be more subtle, and it would be safer to read the object's status rather than

assume a rule for it.

.C4.3.2.4 A Proposed Dynamic Help Context Model

As motivated by the preceding automatability analyses of the Wolven context

model, a hypothetical context model, and the Barge context model, the following context

model is proposed:

1. Let the acts be classified by type, and let the types havelevels, so that in a

context there can be up to one active act of each type, and each active act is of a

higher or lower level than any other active act in the same context.

2. Let the objects be classified by type, and let the types have levels, so that in

a context there can be up to one active object of each type, and each active act is of a

higher or lower level than any other active object in the same context.

3. Let the context vector be a list of identifiers of active acts of each type and of

active objects of each type. If there are N types of acts, let element 1 of the context

vector identify the highest-level act type, element 2 identify the next-highest, and so

forth, an element N identify the lowest-level act. Then, if there are M types of

object, let element N+l identify the active object of the highest-level object type,

element N+2 identify the next-highest, and so forth, and element N+M identify the

lowest-level object.

4. Let the primary act be defined as the active act with the lowest act-type level

among those levels having an active act (e.g. if the active act for the lowest level is

null, the primary act is the active act of the next higher level that is not null).

35

This context model will allow slots in message sentences to be filled, each

according to a slot-specific rule, with any of the values given in Table 3-2 (listed in

approximately decreasing order of desirability for achieving simplicity and a high degree of

automation):

Table 3-2 Values to be Retrieved to Fill Sentence Slots
est The name of the active act or object of a given type

The name of the active act or object whose level is specified either
absolutely or relatively (e.g. the act one level higher than the primary act).

SII An attribute (to be retrieved from Dynamic Help dictionaries) of an active act
or object (specified by type or level as above).

An attribute (to be retrieved from Dynamic Help dictionaries) of more than
one active act or object.

, Worst An attribute to be retrieved from Dynamic Help dictionaries by a fixed
procedure that uses context values as input.

The adequacy of this proposed context model must be judged according to how

well it supports the message structure to be proposed below (and, indirectly, according to

the performance of constructed messages, to be tested in Chapter IV).

The context vector may be augmented with additional elements of two kinds: a

context key element and any number of apposidve elements. The context key is an

identifier of the context, which may be useful for design or debugging purposes. It should

be noted that such a key would not be useful at run time, since the purpose of Dynamic

Help automation is to materialize contexts at run time so as to avoid having to store and

retrieve them; but a hypothetical table of contexts, having a distinct context vector as each

36

row, would be a definition have all the context-defining elements as a multiple key, so that

a context identifier could be useful in discussions involving more than one context.

Appositive elements are added to the context vector when the program already

contains useful synonyms, descriptors, or context-specific facts that are available at run

time. For example, on a data-entry screen in ACIFS, the lowest-level active object is a data

field, if one is active. Associated with every data field is a data-field label (which is

displayed as a prompt). If a Dynamic Help designer judged these labels to be useful as part

of the message, the data-field label of the active data field could be added to the context

vector as an appositive element. Appositive elements are ignored in context identification

and message construction, except when a slot in the message is filled with one. Their act

type or object type is undefined, and thus their level is undefined.

It should be noted that appositives would typically be determined by only one or

two context-determining elements rather than by the whole context, so that a hypothetical

table of contexts would not be well normalized. However, since the point is to avoid

having to store such a table or retrieve from it, such relational database considerations as

normalization are irrelevant. What appositives could accomplish is to bring in message-

filling material from the running program, where available, thus avoiding storing that

material in the Dynamic Help knowledge base.

The program that is being documented by Dynamic Help must perform context

monitoring, so that the Dynamic Help system can perform context identification and

message construction. The foregoing context model places very limited demands on the

program's context monitoring capabilities. First consider the case where all the acts and

objects defined for a Dynamic Help system already exist as entities in the program. For

example, ACTFS has screens, documents, soldiers, inventory items, and data fields as

objects that it deals with, and it has a functional organization that "sees" the acts of data

37

entry as parts of higher-level acts such as issuing clothing to a soldier. If the Dynamic

Help designer has defined the acts and objects in the context vector strictly from among

these already existing in the program, the only context-monitoring issue is their availability.

At run time the Dynamic Help module must be able to retrieve each element. If the element

is one that is stored in a global variable, or one that is stored in a local variable that is

available while the current subroutine is suspended for Dynamic Help, or ff there is a

callable routine that can return the element's value, then context monitoring is already

accomplished. Otherwise, it may be necessary to make some adjustments in the program to

render the element's correct value accessible to the Dynamic Help system.

The other case is that an act or object needed for Dynamic Help does not already

explicitly exist in the program. As an example of such a case, suppose the active screen

identifier is needed because the message is to include an explanation of screen layout. (As

will be seen below, these explanations would be stored in a Dynamic Help dictionary

whose entry key would be the screen identifier.) Now suppose that the program suffers

from in-line coding; for example, the programmer may have written code by which the

screen is erased, new material and a prompt are displayed, user input is collected, and the

screen is again erased for the next context. In such a case there would have b'-en no

current-screen object defined, and it would be necessary to sprinkle context monitoring

code throughout the program. Since this would constitute an authoring task at every

context, much of the automation benefit would be lost.

3.2.5 Acts, Objects. and Navigation in ACIFS Contexts

In a DBMS-based program such as ACIFS, an interactive session can be viewed as

a series of database transactions that the user controls. The user exercises control by

navigating via menus and cursor keys to a desired context where the system is ready to

perform a given transaction. By invoking Dynamic Help while in a context, the user can

38

verify that he is in the right "place" (context), and can receive information on what the

transaction would mean (its consequences if completed), how to complete it or abort it, and

hov, to get somewhere else.

A context was defined above as the set of active objects and active acts, where there

can be up to one active object of each object type and up to one active act of each act.

Object types in ACIFS are the soldier objects, the inventory item object, the menu-screen

object, the date-entry screen object, etc. Act types in ACIFS are the data-entry act, the

menu-selection act, the clothing-issue act, etc. Acts are commands, procedures, functions,

or tasks - data tables (e.g. the soldier table), data attributes (e.g. the SSN attribute or

column heading), data values (e.g. 462-54-4872, a value of SSN for a particular soldier),

menu screens, data-entry screens, items in a menu, or fields in a data-entry screen.

Dynamic Help works best when it is easy to get into a context that allows help

messages to be as specific or as general as the user desires. Premature closure, where the

user cannot highlight commands and objects without invoking them, provides shortcuts for

the expert user, but prevents vome detailed Dynamic Help. For example, if a user gets into

a menu screen and cannot type "2" without invoking menu item "2" and going into another

screen, then there can be no Dynamic Help message that explains only item"2" is detail.

Lack of a neutral context provides shortcuts for the expert user by automatically

activating whatever object the designer assumes is wanted upon screen entry, but prevents

some higher-level Dynamic Help. For example, if a user gets into a menu screen where

item "1: is automatically highlighted and there is no neutral item, then there can be no

Dynamic Help message that explains only the overall group of items. ACIFS suffers florn

lack of a neutral context in data-entry screens. For this reason, Captain Wolven provided a

"global" sentence, which was essentially a complete message for the parent context of the

current context.

39

Navigation from context to context is an important issue in Dynamic Help. Dr.

Young compares Dynamic Help to a system of signage, as contrasted to a map. To get

more information about other contexts while using only the documentation provided by

Dynamic Help, the user must navigate to other contexts.

If a "global" sentence is not provided in a data screen, a message essentially

identical to it is available by going to the parent menu screen, and this message was in fact

available to the user earlier on the way down to the data-entry screen. It can be argued (in

favor of a global sentence) that novice and intermittent users may not realize how to get

more information by exploring contexts; on the other hand, it can be argued (against a

global sentence) that it dilutes the message for the primary act.

The primary act (recall item 4 of the proposed context model in Section 3.2.4) is of

central importance in the philosophy of Dynamic Help. The message is for the primary act,

not for any alternative acts that can be performed in the same context. Although an

alternatives sentence will be provided in Section 3.3, it is believed that alternative acts

should be explained only in rare instances, to avoid diluting the message. Dr. Nathaniel

Borenstein's doctoral thesis makes the point:

I begin with the assumption that the single most important criterion by which a help
system should be judged is the degree to which it facilitates the accomplishment of a
particular task by a user who did not previously know how to accomplish that task
(Borenstein, 1985, page 9).

3.3 Impovement to the Dynamic Help Message Structure

3.3.1 Message Structure for ACIFS Dynamic Help Prototype

In "Specifications of User Requirements, and Dynamic Help System Standards for

EUS Project and CIF Conversion" (Young, 1990b), Dr. Young established a Dynamic

Help message structure for ACLFS consisting of the set of sentences shown in Table 3-3.

40

Table 3-3 Original Eight Generic Dynamic Helri Sentences
1. Global ("Ready to" sentence for the neutral context rather than the context

of the highlighted item.

2. Ready to (called "context" sentence, explaining the primary act)

3. Navigation (how to go back or forward from the current context)

4. Meaning (meaning of the datum being entered or selected in the primary act)

5. Domain (limits on the datum being entu.red)

6. Choices (called "content sentence, giving a list of legal or illegal entries)

7. Format (example or description of acceptable format for the datum being
entered)

8. Procedure (description of how the entry can be completed or aborted, changed
before entry, or undone later, and descriptions of quirks and
alternatives)

The designer was to examine every context (about 700 of them) and author each

sentence, frequently letting sentences or parts of sentences be null where not needed, and

making maximal use of semi-automation techniques. These techniques included using

templates (one was developed for menu screens and one for data-entry screens) to make

context specification and message authoring a fill-in-the-blank task, and the use of macros

for fixed text fragments and for sentences, clauses, or phrases that appeared in multiple

messages. Contexts were identified by listing the names of the current screen and current

data object and equating their names to variable names such as A and X, so that symbols

such as <(A* and <.X>> could be used in sentences.

User testing and experience with the messages established that the global sentence

should not be first, and probably should be omitted; that the "Ready to" sentence should be

first; that the navigation sentence had limited utility; and that the "Choices" sentence took

too much space when list of choices was available.

41

At about the same time, it became clear that the ACE programming environment's

separation of "choices" from "help" was a good idea. Since the next version of ACIFS

was to be implemented under ACE, it was decided that the "choices" sentence should state,

when choices for a primary act's entry or selection were actually available, how to access

them (otherwise, as before, this sentence would be null).

3.3.2 Message Structure for Barge's "Universal" Dynamic Help

Captain Walter Barge, in his paper "Universal Software Documentation via

Dynamic Help" (1991) further advanced the structure of Dynamic Help messages by

identifying eight generic Dynamic Help sentence types associated with the variable parts of

a Dynamic Help message. These generic Dynamic Help sentences are given in Table 3-4.

Table 3-4 The Eight Generic Dynamic Help Sentence Types
1. Context Ready to 4<accomplish a particular task*.

2. Navigation, Global To return to <a previous location *cperform this action*.
To move to xthe next location,,perform this action*.

3. Navigation, Local (form depends on screen design; concerns management of
cursors, objects and commands on the current screen)

4. Meaning 4cdefinition of the current task or field*.

5. Domain Acceptable entries are 4'list of descriptors*.

6. Content "ca list of legal entries*.

7. Format Aan example of a correct entry*.

8. General For general documentation press the Fl key.

Captain Barge made two contributions to message structure. First, by documenting

the first serious attempt to render sentence structures able to be filled automatically by

42

context and dictionary material, his report clarified the automation issues (as summarized

earlier in Section 3.2.3).

Secondly, he realized that there were many parts of messages that were context-

independent or "general" - fragments or sentences that would be repeated in many

different messages. A user does not want to be told repeatedly, "To complete the entry,

press <RETURN,>". Such instructions are not only independent of context, but are often at

the user-action level, one level below the lowest-level act that accomplished something and

deals with application objects rather than interface objects; thus such instructions interfere

with transparency of the interface. The solution adopted by Captain Barge was to store all

general (context-independent) documentation in a separate on-line document and to provide

a fixed sentence telling the user how to access it. It should be noted that the definition of

general documentation includes standard non-c-ntext-specific help, so that this solution

also provides an appropriate way for Dynamic Help and standard help to cohabit.

3.3.3 A Proposed Dynamic Help Message Structure

In accordance with the experience gained from the previous message structures,

there should be no global sentence and no navigation sentences, but there should be a

context-specific sentence that could play these and other roles.

For the context-specific "ad-hoc" sentence and the "alternatives" sentence to be

proposed below, the context identification will be handled by defining a partial context as

follows: for a subset P of elements in the context vector, let the values of the elements

define a partial context. In any dictionary whose key entry is a partial context (specifically

the ad-hoc sentence dictionary and the alternatives-sentence dictionary, defined in Section

3.4), the full set of context elements will constitute the collective key field. A partial

context will be defined in the collective-key fields by specifying values for the elements in

P and leaving null the key-field values for elements not in P. In any current context vector

43

there can be null elements, whose interpretation is that there is no active act or active object

of the element's type, or there is no appositive. When the context vector is compared to the

collective-key fields in a dictionary, a match is declared if there is a match for all the

elements in P. (Thus the nulls in the context vector are meaningful, whereas the nulls in

the collective-key fields of the dictionary are "wild cards".) Table 3.5 lists the sentences in

the proposed message structure.

Table 3-5 The New Eight Generic Dynamic Help Sentences
1. Ready to: The context sentence names the primary act and the objects it

manipulates.

2. Ad-hoc: The ad-hoc sentence (usually null) gives the user any advice
peculiar to the specific context of partial context (hence it is not
automated) concerning quirks, consequences, special input
protocols, etc. that the automated sentences cannot provide.

3. Meanings: The meanings sentence (possibly null) states the meaning (if
available) for each relevant active act and relevant active object in
the context.

4. Choices: If a list of user-action choices is available (or already on display)
to invoke the primary act, the choices sentence (possibly null)
tells how to retrieve it (or reminds the user it is already on
display).

5. Format: The format sentence retrieves, if available a format for the direct
argument of the primary act.

6. Domain: The domain sentence retrieves, if available, the domain for the
direct argument of the primary act.

7. Alternatives: The alternatives sentence gives relevant alternative acts - one of
the undo or abort nature, and one, if available, of the commit or
closure nature.

8. General Help: The general help sentence tells how to access general (context-
independent) help.

44

3.3.3.1 Dynamic Help "Ready to" Sentence. Recall that the context of an

interaction is thought of as "where" the interaction is (what screen, what cursor location,

etc.) together with conditions of the interaction (what command is active, etc.). Every

command and every object has current status, such as being "active" or not; a list of active

or otherwise special-status commands and objects completely describes the context.

Besides context, there is state: the current values of all variables, parameters, and

data. (State includes context, but informally we can speak of state as excluding the

variables that express context.)

A context description in terms of cursor location, active window or screen, and

highlighted objects and commands is already available to the user before Dynamic Help is

accessed. The user requires, among other things, an indication of what can or should be

done in the context. A fundamental assumption of Dynamic Help is to associate with each

context a primary ("Ready to") act. The primary act is the next thing the user and system

are poised to do if this context is the intended one.

An act, which is something the user and system do together to manipulate

application objects, is described to the user in the form of an act clause that is assembled

with other elements to form sentences in a Dynamic Help message. An act is documented

with an act clause which has a grammatical structure specific to the act.

Standad structure of an act clause

<<verb* <<direct argument>> <"preposition* <indirect argument>)

where:

* <act-id> (the key field) contains the value of the active-act program variable that

identifies this act.

* <act-type* contains a value that classifies this act by its type.

45

4 Ieverb* contains the English-language verb that begins the act clause for this act.

The verb need not be unique (more than one act may have the same verb in its act

clause). To "delete" one type of object is a different act from to "delete" another

type. For some systems, the designer may find it convenient to establish and

enforce verb uniqueness.

0 4darg-type, contains the value of the object type that indicates the direct-

argument, a noun phrase, that defines which argument the act directly operates on.

(The direct argument of an act is the active object having one of the object types.

The value identifies which type.)

• *preposition* contains the English-language preposition, possibly with

modifiers. It continues the act clause for the act and introduces the indirect

argument (which grammatically is the object of the preposition).

* viarg-type, contains the value of the object type that indicates the indirect-

argument, the noun phrase. It defines the argument that the act indirectly operates

on. (The indirect argument of an act is the active object having one of the object

types, and this value identifies which type.)

The act clause has the same structure regardless of the act's act type. Every act has

an act type, which is one of the following:

Act Typ1es
command
procedure
functions
task

An act has a verb that identifies it (e.g. "add"), an act type (e.g. "command"), a

direct argument pointer (e.g. the active inventory item), a preposition (e.g. "to"), and an

indirect argument pointer (e.g. the active table). The act clause is constructed at run time by

46

consulting the dictionary for the active act, retrieving data, and performing further retrievals

(e.g. the identity of the active inventory item) until the at clause is filled.

Examples of act clauses are:

Issue clothing to soldier
Designate 5-ton stake truck as member of convoy
Update stock record

The fixed-text portion of an act clause, shown bold in the above examples,

describes the act, which is a task, function, procedure, or command. An act can consist of

a sequence of lower-level acts, and the lowest-level act to be documented is a command.

The variable portions of an act clause consist of noun phrases, each of which

describes an object that is one of the arguments of the task, function, procedure, or

command that the act clause describes. There is no specific restriction on the numbers or

kinds of arguments, but there is frequently a direct argument, which is the object that the

act directly manipulates, and an indirect argument, which is the object that the act indirectly

manipulates of effects.

A Dynamic Help act clause itself reads as an imperative sentence whose implied

subject is the user and system. Grammatically, the direct argument is usually the direct

object of the act, and the indirect argument is usually the indirect object of the act or the

object of a preposition in an adverbial phrase. In the above examples, clothing is a direct

argument and soldier is an indirect argument; 5-ton stake truck is a direct argument and

member of convoy is an indirect argument.

Objects are classified into types, usually identified by the name of the parent object

if there is one. For example, the soldier 462-54-4872 is an object of the "soldier" type.

these classifications of objects are peculiar to the application's data structure. The

classifications are established so that it is always true that either one object or no object of a

given type is active. The context is a list of active objects; for example, the active screen

47

may be "supply requisitions", the active soldier may be ,null,, the active inventory item

may be "hat, hot weather", and the active datum (cursor location) may be "required delivery

date".

Noun phrases are filled with state-specific descriptors. For example, soldier is an

object, soldier 462544872 is the descriptor of an instance of that object (the instance being

the soldier whose social security number is 462-54-4872); similarly, hat, hot weather is an

instance of clothing. Depending on the state, various Dynamic Help sentences could

contain versions of an act clause:

Issue clothing to soldier
Issue clothing to soldier 462544872
Issue hat, hot weather to soldier 462544872

The Dynamic Help designer would not be concerned directly with these variations,

because they would be constructed at runtime. For instance the act clause

Issue hat, hot weather to soldier

may never occur, because the problem is designed to issue clothing only when there is an

active instance of soldier. Nevertheless, the Dynamic Help module would be capable of

producing that act clause if (by program error or by design change) it ever happened that

the cursor was on this hat in the issue screen and there was no active soldier object.

3.3.3.2 Dynamic Help Ad-Hoc Sentence. The ad-hoc sentence tells the user about

any particularity regarding the specific context. In this regard, the ad-hoc sentence (a

sentence which is usually ,•null*) is a context specific message. The ad-hoc sentence can

be used to inform the user of quirks in the interface, special consequences of a user action,

or any special input protocol. The ad-hoc sentence has the structure:

sentence

48

where:

* The *sentence * is retrieved from the ad-hoc dictionary whenever the

context vector's values obey a specified partial context requirement P.

3.3.3.3 Dynamic Help Meaning Sentence. The meaning sentence tells the semantic

meaning, in application environment language, of the data objects currently active; of the

act-types currently active; of the menu-item currently active; or all of the above. The

meaning sentence has the structure:

<(verb* is to ",verb meaning*
'iarg* is ,,iarg meaning*
Kdarg* is ,cdarg meaning*

where:

0 wverb, refers to the English-language verb that begins the act clause for this

act. Again, the verb need not be unique.

* overb meaning* is the English language meaning, in application

environment terms, of the ,cverb* (if act meanings are to be included).

* ,•iarg. is the indirect argument of the act clause.

* •iarg meaning* is the English language meaning, in application

environment terms, of the indirect argument (if iarg meanings are to be included).

* ,,darg* is the direct argument of the act clause.

* ,<darg meaning* is the English language meaning, in application

environment terms, of the direct argument.

An alternative structure of the Meaning sentence, for programs where only the darg

requires explanation, is

Meaning: cdarg meaning*

49

In ACIFS the commands are very simple and the alternative structure can be used.

For programs with more complexity in its commands and functions, the first structure

allows meanings to be given for the primary act, any other act, the darg, and the iarg.

3.3.3.4 Dynamic Help Choices Sentence. The choices sentence gives a list of legal

or illegal entries. (Because recognitions is easier than recall, good interface design

provides that a user should be able to view a list when asked to make an input that

essentially chooses from one.) Dynamic Help should not provide a list when the list is

intentionally withheld for quality-control, security, or validation purposes.

The choices sentence has two forms:

See the displayed list of appropriate <<darg> entries.
For a list of choices vuser action*>.

3.3.3.5 Dynamic Help Format Sentence. The format sentence exemplifies or

describes the acceptable format of an entry. The format dictionary will contain an entry for

every object that the programmer feels needs an example or explanation.

The structure of the format sentence is:

Format: odata field, vdata field format>

where:

0 the format dictionary is queried for the value ((data field,>, and if found, the

value of the format field vdata field format>> is returned.

3.3.3.6 Dynamic Help Domain Sentence. The domain sentence gives limits on the

datum being entered, such as whether it is textual or numeric, whether it has upper or lower

limits or impermissible values, and the maximum or required number of characters. The

domain dictionary will contain an entry for every data-entry object that the programmer

feels needs an example or explanation.

The structure of the domain sentence is:

50

Domain: -dta field* 4data field domain*
or
Example: Kdata field* wdata. field domain*

where:

* the domain dictionary is queried for the value udata field*, and if found, the

value of the format field •data field domain* is returned.

3.3-3.7 Dynamic Help Alternatives Sentence. An alternatives sentence tells how to

undo or abort the primary act; how to commit or confirm recent actions or recently entered

data; or how to perform available acts other than the primary one.

The structure of the alternatives sentence is

To averbx• 'darg. wprep* kiarg-, <(procedure*

This is very similar to the "Ready to" sentence except that the variable slots are for

an alternative act rather than the primary act, the sentence begins with "To" rather than with

"Ready to", and there is a procedure (how-to) clause added at the end.

The undo/abort actions typically lose data for the lower active object or lose data for

the next lower active object or abort the primary act or the next higher act. In ACIFS,

pressing the delete key loses all data entered on a given screen and aborts the highest level

act that is performed entirely on that screen. Therefore, for ACIFS, the effort of deleting

can be described as "pressing DEL loses all data entered in this screen".

3.3.3.8 Dynamic Help General Sentence. The general sentence tells the user how

to access context-independent help. The general sentence provides the novice or

intermittent user with the very basic instructions. For example, a new user may never have

used a menu-driven system The general sentence provides help on navigating menu-

driven systems, which in itself has nothing to do with the primary act.

51

3.4 A Pronosed Set of Dynamic Hel, Dictionaries

All data needed to fill message slots must come from the context vector, from a

subroutine (in the running program) that returns a value, from a database query, or from

the Dynamic Help dictionaries. That is, the dictionaries must carry all message data not

available from the running program or database.

In the design for a given application program, the designer will choose a specific set

of detailed sentence structures. These detailed structures can be specified in the form of a

sentence specification string that contains literal text and slot specifications. The slot

specifications determine the structure of the required dictionaries.

The dictionaries are recursive. That is, the designer can store specifications in

dictionaries, so that when the system retrieves a value from a dictionary, the value is not

necessarily literal text but can be a specification that requires further evaluation.

3.4.1 Slot Specifications

A slot specification is an expression that can appear as a value in a sentence

specification or in a dictionary. The expression is constructed of sub-expressions of the

following forms, and usually all of the forms would be used in various places in a Dynamic

Help system for an application program:

"* literal text
" macro
"* dictionary retrieval code
• SQL query
"• name of (or pointer to) a context-vector element
* subroutine call

Except for the dictionary retrieval code, every form of sub-expression evaluates to text in

one step.

52

3.4.2 Dynamic Help OBJECT Dictionaries

Let D be a dictionary, and let k be the key entry field in the dictionary. Let F be the

field whose value is to be retrieved. Let S be a specified value that a value in k might

equal. A dictionary retrieval code has the form

D.F (k = S)

and it specifies the F field in dictionary D for the row in which the k field has value S. A

dictionary has the same structure as a relational database table, and the dictionary retrieval

code is equivalent to the SQL subquery

select F
fromD
where k = S

We allow k, F, S, and even D to be expressions that evaluate to the intended

values.

Let CV be the context vector. A variation of the dictionary retrieval code is

D.F (k - CV)

where the symbol "-" indicates a match between k and the current values in the context

vector. A match exists if every element matches. An element matches if

inki s. and in CV it is---

actually null anything
the text string "null" null
the text string "not null" not null
,KA, an expression that evaluates to ,.A*

where AA* is an expression that can be evaluated.

3.4.3 Dictionaries

The dictionary structures are determined by the dictionary retrieval codes that appear

in slot specifications. Consider the act clause from Section 3.3.3.1:

Kverb, odirect argument* Apreposition* Kindirect argument*

53

Such a clause appears in the "Ready to" sentence, in the Alternatives sentence, and in any

sentence (such as the Ad-hoc sentence) that is specified to include detailed mention of an

act.

Let the primary act, which could be of any act type, be denoted priact, and let

PRIDICT denote the dictionary for that act type. Then the act clause can be expanded:

cverb, is nPRIDICT.verb (k = priact)*

,idarg* is <PRLDIC`T.darg (k priact)*

<(prep>) is <<PRIDICT.prep (k = priact)*

<<iarg>> is <PRIDICT.iarg (k = priact)>

Let ACT be an act dictionary, and let its key field k contain one of the values that

may be in a specified act field of the context vector, denote this field CV(A). Then, to

support act clauses, it follows that act dictionaries must have the structure

ACT (L, verb, prep, darg, iarg)

for any act type for which act clauses must be built. The Commands dictionary in

Appendix 3 is an example of such an act dictionary.

Let FIELDS be an object dictionary for the screen-field object type. Suppose the

designer has decided that the direct argument of a particular act is to be named in a sentence

as the short descriptor of the active screen field, and that the identifier of the active screen

field is the "screenfield" element of the context vector. Then in the darg field of the act

dictionary the designer can write the expression

FIELDS.shortdescriptor (name = screen_field).

This requires that the dictionary of screen fields have the structure

FIELDS (U, short-descriptor)

where values of k are values of the screen_field element of the context vector.

54

If the designer also provides for storing meanings of screen fields, where the

meanings sentence for objects has the structure

Meaning: ((OBJ.meaning (k = darg)o

(This is an appropriate structure when the direct argument of the primary act is the

only object for which a meaning, when available, is to be included in the message.)

Now FIELDS is an object dictionary. If there are meanings to be supplied for

many screen fields, this dictionary could contain them:

FIELDS (L short-descriptor, meaning)

The choices of splitting or combining dictionaries should be made on an efficiency

basis. If there is to be a single object dictionary OBJ for objects of all types, it can have

the structure

OBJ (k, short-descriptor, meaning)

of if meanings are provided for only a few objects, it could be split into

OBJSHORT (IL, shortdescriptor)

and

OBJMEAN (L. meaning)

Similar dictionaries of choices, formats, and domains may exist for objects. If

there are only a few objects that require choices, formats, or domains, then a separate

dictionary would be best. A choices dictionary may look like

CHOICES (k., choice)

or if a choice existed for most all objects, then a column "choice" could be added to the

OBJ dictionary

OBJ (L, short-descriptor, meaning, choice)

The decision to add a column or add a separate dictionary would be made by the

designer based on the most efficient design.

55

A format dictionary,

FORMATS (k, format)

and a domain dictionary,

DOMAINS (k, domain)

could also be handled by either separate dictionaries or new columns in the OBJ dictionary

OBJ (L., short descriptor, meaning, choice, format, domain)

Regardless of how the dictionary is constructed, the designer can use the

expressions

CHOICES.choice (name = screen_field)

FORMATS.format (name - screen_field)

or

DOMAINS.domain (name = screenfield)

in the respective choices, formats, or domains sentence to retrieve from the dictionary. In

all of these cases, values of k are values of the screen field element of the context vector.

3.5 Application of Automation to ACIFS Dynamic Help

3.5.1 A Context Model for ACIFS

Four levels of act and five levels of object seem adequate for ACIFS Dynamic Help

context modeling.

The level-I (lowest-level, or command-type) act in ACIFS is to enter a datum, go to

another screen, or answer a yes/no question. We will call the corresponding values of the

command-type context-vector element "enter," "go to," and "y/n." The level-2 (or

function-type) act in ACIFS is to identify or designate an application-class object such as a

soldier, inventory item, or document, which is done by entering one or more data items (on

menu screens, this level of act is not needed). We will call the corresponding values of the

56

function-type context-vector element "id soldier," "id inv item," etc. The level-3 (or

procedure-type) act in ACIFS is to perform a major process: perform the Turn In Process,

Prepare a Statement of Charges, Prepare a Report of Survey, Create Supply Requisitions,

Perform a Complete Issue, etc. (On menu screens, this level of act is not needed.) We will

call the corresponding values of the procedure-type context-vector element "m8 1-Turn

Ins," "m21-S/C," "m22-R/S," "m61-Create Supply Requisitions," "m72-Complete Issue,"

etc. The level-4 (or task-type) act in ACIFS is the overall task or group of major processes;

for example, the task whose task-type context-vector element we will call "m2-Adjustment

Transactions," includes preparing a Statement of Charges, a Report of Survey, handling

Cash Collections, making Administrative Adjustments, etc. The level-4 task-type act upon

initial entry to the system is given the value "m-Main Menu."

The level-I (lowest-level) object in ACIFS is assigned the type designator "screen

field." On a menu screen this is the highlighted menu item, and on a data-entry screen it is

the cursor-resident data-entry field. Because of the strict hierarchical structure of the

ACIFS screens and screen fields, these can be uniquely identified by a numbering system

mijkJ, where the letter m is followed by a digit i that represents the choice on the main menu

that branches towards or to the current context. The main menu is screen m; its menu items

are ml, m2, etc; the menu screen that is invoked by choosing menu item m4 is screen m4,

where menu items are m41, m42, etc.; when a data-entry screen is reached, say screen

m444 (reached by choosing item 4 on the main menu, item 4 on the next, and item 4 on the

next), the data-entry fields are numbered n444. 1, m444.2, etc.

The data-entry fields are also identified uniquely with the database items they

define. For example, the database item "aebOl t.siz" (the "siz" column of the table

"aebOlt') is identified with data-entry field "m81.10" (the 10th field on screen m8l). Both

the screen field number and the database item identifier are maintained in the program, so

57

I ! ! |

we put both in the context vector, let the screen field number be the level-I object element,

and let the database item identifier be an appositive element. The screen field number

always exists; the database item identifier is null for fields on menu screens, but always

exists for fields on data entry screens (when the item is not being stored in the database, a

name such as "formonly.iqty" is available).

Exploitation of the program's maintaining two data-field identifiers by defining an

appositive in the context vector is an example of the flexibility of the automation method. If

ACIFS were less conveniently designed with respect to context modeling, at worst it would

be necessary to maintain a Dynamic Help dictionary to identify the data item that goes with

each field. On the other hand, if ACITS domains and formats were more conveniently

maintained in the program, we could define domains and formats as appositives as well and

avoid keeping the domain dictionary and format dictionary in the knowledge base.

The other object in the context of ACIFS are "inventory item" (level 2), "soldier"

(level 3), "document" (level 4), and "screen" (level 5). Although the screen is implied by

the screen field number, the program's available screen names (e.g. Turn Ins, Supply

Requisitions, Issue Additional Items) are sufficiently descriptive to be usable in messages;

thus there is no necessity to keep screen descriptors in a dictionary.

Appendix 2 illustrates the context model for a sample of actual contexts in ACIFS.

In Appendix 2, the screen field numbers for menu-screen fields and the database item

identifies for data-entry fields are shown in a single column labeled "Screen Fields."

3.5.2 A Message Model for ACIFS

Applying the proposed Dynamic Help message structure of Section 3.3.3 to

ACIFS, we have the following eight sentence structures:

1. "Ready to" sentences for ACTFS can all document the level- 1 command acts

(enter, go to, and respond), since in every ACIFS context the user is expected to enter a

58

datum, go to a different screen, or respond to a yes/no question. A typical "Ready to"

sentence will be

Ready to enter social security number of soldier.

"Ready to" is fixed text. The verb "enter" is wverb* from the dictionary of

commands for the primary act of "enter", which is the level-I act for this context as read

from the command element of the context vector. The noun phrase "social security

number" is (short descriptor* from the dictionary of screen fields for the active screen field

as read from the context vector as the darg (since a screen field is always active in ACIFS,

the darg is always the screen field). The word "of' is <(prep* from the dictionary of

commands for the primary act. It introduces the iarg, which is the darg for the hiact,

which in turn is the next higher level active act above the level of priact. (Recall priact is

the lowest-level act in the context vector.) The phrase would have been e.g. "462544862"

if the context had contained an active soldier.

2. Ad-hoc sentences are provided for partial contexts. An example is the

contexts where the active function (element 3 of the context vector) is "id inv item". Note

from Appendix 2 that many of the contexts in the sample of contexts have this partial

context. For those on screen m81, (element 5 of the context vector gives the screen), a

special instruction is needed and is stored in the ad-hoc dictionary. The instruction is

retrieved and included whenever the context is

(,,id ivn item,,Turn Ins).

3. Meanings sentences for ACIFS are provided whenever the darg is a screen

field for which the dictionary of screen fields provides an nun-null entry. Since the

meanings were inherited from previous documentation, they are stored as complete

sentences rather than as predicates. For example, the meanings sentence

59

The Demand Code indicates whether the demand is recurring or

nonrecurring

is stored whole because it came that way. If these were being authored by the message

designer, the equivalent meanings sentence would be

Meaning of demand code: indicates whether the demand is recurring
or nonrecurring

where "Meaning of" and ":" are fixed, "demand code" is the short descriptor, and the

remainder is kept in the meaning field of the screen fields dictionary.

4. Choices sentences are provided in AC[FS whenever a displayed list is on

view or can be retrieved. When the darg is the screen field for the datum "aebl5t.dic", for

example, the choices sentence (stored whole and kept in the choices dictionary under this

database item identifier is

See the displayed list of appropriate DIC entries.

5. Format sentences are stored whole in the dictionary of formats under the

database item identifier and are retrieved whenever the darg's identifier is listed in this

dictionary.

6. Domain sentences are stored whole in the dictionary of domains under the

database item identifier and are retrieved whenever the darg's identifier is listed in this

dictionary. A short example, when the darg is "aeb02t.sex", is

Acceptable entries are M for Male and F for Female.

Domain sentences are inherited from existing ACIFS documentation. If they had been

individually authored, the above sentence would have appeared as

Domain: M, F (male, female)

where "Domain:" is fixed text.

It should be noted that both formats and domains could have been finessed in

ACIFS by putting the available format and domain specifications in the context vector.

60

That would be unwise for two reasons: they are available in cryptic codes that themselves

would require explanation, and worse, giving formats and domains in every message

would dilute the message. The dictionaries allow the designer to provide format and

domain sentences only where needed, as for hat sizes, while avoiding unnecessarily telling

the user that no more than 99999 hats can be ordered in a single requisition.

7. Alternatives sentences are unnecessary in ACIFS, because every context is

associated with a single expected user action, except that using the ESC key to commit

data, using the DEL key to abort data entry, and using the BACKSPACE key and over-

striking to make corrections before entry are all available everywhire and are documented

in the general documentation to which the General Sentence refers. Note that the ad-hoc

sentences provide a less structured way of documenting alterative acts. An alternatives

sentence, which is structured like a "Ready to" sentence with an added procedure (how to)

clause, should be used only when the primary act is not the only "usual" thing to do in the

context.

8. The General Help sentence for ACIFS is the fixed text

To see general documentation, press Fl.

A dictionary of general sentences (see Appendix 3) should be prepared for ACIFS

in order to separate the general help for all menu screens from that for all data entry

screens. When the user accesses general documentation, only the general documentation

pertinent to the current kind of screen is retrieved.

3.5.3 ACIFS Dictionaries

For ACIEFS, where all contexts have an active command, and thus all "Ready to"

sentences refer to a level- I act, it is convenient to let acts of each level have separate

dictionaries. Let these dictionaries be

COMMANDS (ommand, verb, prep, darg, iarg) level 1

61

FUNCTIONS function verb, darg) level2

PROCEDURES (y dj, screen) level 3

TASKS (task, screen) level 4

The key (underlined) fields of the respective act dictionaries hold the values from

the respective act fields of the context vector. In act dictionaries that have a verb field or a

prep field, their contents are text provided by the designer to fill sentence slots. The darg

field identifies the type of active object that is the direct argument of the act; to make the

dictionary readable, let this identification be by the name of the object type rather than by a

pointer to the context vector. It can also contain literal text in quotation marks, a data base

item identifier, of both, separated by the word orm, in which case the value of the database

item is used if not null, otherwise the literal text is used. Thus a darg sentence slot can be

filled with a context vector value, a literal text string, or a database value, depending on

what is found in the dictionary and database. The iarg field (which occurs only in the

command dictionary) contains a dictionary retrieval code identifying how to determine

which object is the indirect argument of the act. For ACIFS, only the enter command has

an iarg, and its code is

FUNCTIONS.darg (function = CV(function))

Thus the iarg is the value from the darg field of the FUNCTIONS dictionary for the

function that is the active function as read from the function (level-2 act) element of the

context vector.

The PROCEDURES and TASKS dictionaries are not used in messages for

ACIFS, since these higher-level acts are simply names for related groups of lower-level

ones.

62

The act dictionaries for ACIFS are illustrated in Appendix 3, where for the sake of

completeness the procedures and tasks are given dictionaries that store their names and

screens.

ACIFS requires only one object dictionary, the one for screen fields.

FIELDS (name short-descriptor, meaning)

Because of the relationship in ACIFS whereby every data-entry field is associated

with a database item, the item identifies the value in the key field; for menu screens, the

screen field number is used. These values come from the context vector. See Appendix 3

for a sample of the dictionary of screen fields for ACIFS.

Other ACIFS objects (inventory items, soldier, document, screen) require no

dictionary, because their attributes necessary to fill sentence slots are available either from

the context vector or the database.

There are three dictionaries that give additional information about the darg; these

are the dictionary of choices, the dictionary of formats, and the dictionary of domains:

CHOICES (name. choice)

FORMATS (name, format)

DOMAINS (name domain)

For each of these dictionaries the key (name) field is the database item identifier, and the

other field is text, macros, dictionary retrieval codes, and SQL queries. When any macros,

codes, and queries are evaluated and assembled with the text, the resulting text string is

ready for filling the sentence slot in the Choices sentence, Format sentence, or Domain

sentence, respectively. These sentences are null unless a dictionary has a row for the

current darg.

The ad-hoc dictionary has the structure

ADHOC (context, sentence)

63

where the key field is a partial context. Given the context model for ACIFS (Section

3.5.1), the illustrative partial context

(,,id soldier,,Turn Ins,,,,)

can be the value of ADHlOC.context. When it is, the sentence ADHOC.sentence in

the same row of the ad-hoc dictionary will be assembled into the messages if the actual

context has the value "id soldier" as its third element (the level-2 act element) and the value

"Turn Ins" as its fifth element (the level-5 object element).

Finally the General Help dictionary contains fixed text for each of two partial

contexts - one for contexts in which the active screen field is a menu item and one for

contexts in which the active screen field is a data-entry field. Let there be a subroutine

GENCON that returns either the text value "menu-items" or the text value "data-items,"

determined by inspecting the context vector. The dictionary is

GENHLP (context, message)

The General Help message is filled with the text GENHLP.message for the row

where GENHLP.context equals the value returned by GENCON. (Recall this is the

message retrieved by invoking General Help; the General Help sentence in the General

Help message is fixed-text sentence that says how to invoke the General Help message.)

An experimental test of the automation proposed in this chapter is reported in

Chapter 4.

64

CHAPTER IV

TESTS OF AUTOMATION VALIDITY AND EFFICIENCY

In Chapter M1 a method of automating Dynamic Help was developed and illustrated.

This chapter reports an experiment to evaluate that method. The experiment compares non-

automated, semi-automated, and automated Dynamic Help with respect to cost and quality.

4.1 Expcimental Objectives

4.1.1 Treatments: Non-automated. Semi-automated. Automated

Recall that a Dynamic Help message depends both on the context and the data state.

There is one message for each context, and the message can contain state-dependent values

that are determined when the message is invoked.

A non-automated Dynamic Help message is one that is authored. The designer

provides text for all sentences of every message. The text can include macros, assumed to

be 5 characters long, which can retrieve current values of variables up to 160 characters

long; macros can also retrieve fixed text fragments. At run time, the message is retrieved

and its macros are filled. The message table and macros table constitute the knowledge

base for a non-automated Dynamic Help module. Many of the benefits of automation can

be obtained without resorting to the method proposed in Chapter Iil.

A semi-automated Dynamic Help message is one that takes advantage of cost-

effective ad-hoc automation opportunities discovered by the designer. For example, a

designer may find that the messages for a class of contexts are so similar that it is more

65

efficient to store the variations from a standard than to store all the whole messages.

Templates for sentences or for whole messages can be defined.

It is suspected that many application programs have special structures that can be

exploited, and that (1) a designer is likely to take advantage of some special structures

rather than blindly follow the non-automated procedure, and (2) some special structures are

likely not to be exploited by the proposed automation method (because of its generality).

For these reasons, it would not be valid to compare automated Dynamic Help only with

non-automated Dynamic Help. Semi-automated Dynamic Help must be a candidate.

It is impossible to define, in general, a semi-automated Dynamic Help design.

However, for purposes of the present experiment, the existing Dynamic Help system in the

ACIFS program, which generated the messages in Captain Wolven's user tests, is semi-

automated. Separate templates were prepared for messages for menu screens and data-

entry screens, certain closely-related contexts were grouped, macros were not confined

strictly to retrieval from memory but were allowed to be procedures that could compute a

result or query it from the database, and it was felt that some degree of automation was

being achieved. We take an operational viewpoint and define the ACIFS prototype

messages as representative of semi-automated Dynamic Help.

An automated Dynamic Help message is one generated according to the method

proposed in Chapter mI. Its knowledge base consists mainly of dictionaries of acts,

objects, and relationships, not a message table. For purposes of this experiment, the

tradeoff between context-generation logic and relationship dictionaries is resolved not for

overall efficiency but to avoid having the automated system place extra demands on context

generation. That is, no attempt will be made to modify the program so that the context

vector would carry appositives that could directly fill sentence slots; otherwise it would be

necessary to include context monitoring as a measured cost element.

66

4.1.2 Hypothesis: Lower Cost for Comnarable Quality

It is hypothesized that automated Dynamic Help can provide messages at lower cost

than semi-automated or non-automated Dynamic Help, when the messages are of

comparable quality. This hypothesis subsumes the more basic one that Dynamic Help

automation is valid in practice, which will be considered established if samples of

automated messages indeed are of comparable quality.

We do not treat this as a statistical hypothesis, and a positive result will not support

a strong conclusion. We will compare non-automated, semi-automated, and automated

messages for ACIFS, which is a representative Army DBMS-based program, but one that

cannot necessarily be claimed to be typical of any defined population of such programs. A

positive result will allow only the conclusion that automation is successful for ACIFS

which in turn will support a claim that Dynamic Help automation holds promise.

4.2 Exprimental Design

4.2.1 Cost Measures

It is believed that automation should have several cost-reducing effects: it should

reduce authoring effort, reduce the required size of the Dynamic Help knowledge base, and

make the Help system able to be easily updated when the software is revised. On the other

hand, it is believed that automation will add to the required run-time processing.

Size of the knowledge base will be used as an indicator of both authoring effort and

memory requirement. The Dynamic Help prototype knowledge base for ACIFS has a

directly measurable size in bytes (characters). The equivalent non-automated knowledge

base has a size that can be estimated on the basis of removing the effects of semi-

automation. The size of the automated knowledge base is directly measurable if the

dictionaries are actually constructed for a sample of messages.

67

Other cost measures will be discussed informally, but are assumed to be less

important than size of the knowledge base in indicating cost.

4.2.2 Quality Measures

It is believed that automation can either reduce or increase overall message clarity:

the ability of an author to adjust clarity of each message by rewording or adding material

should make semi-automated or non-automated messages clearer than automated ones; on

the other hand, the presumed brevity and consistency of automated messages could perhaps

make them clearer. With respect to clarity, we take a conservative stance: if the existing

semi-automated message actually imparts specific information that the corresponding

automated message omits, we will arbitrarily add clauses or phrases to the ad-hoc sentence

of other appropriate sentence of the automated message, until it can be claimed that the

automated message is at least as clear as its counterpart. This, of course, will add to the

size of the knowledge base, so that any potential clarity decrement is translated to a cost

increase.

Because the aim of semi-automation is to produce essentially the same messages as

the non-automated messages, we assume the non-automated messages would be identical

to the actual ACIFS messages.

4.2.3 Method of Comparison

A set of user tasks will be taken from the user-test project administered by Captain

Wolven (Wolven, 1991). This set of user tasks (listed in the following section) gives rise

to 46 contexts. In this group of contexts, Captain Wolven found that several of the

Dynamic Help messages were relatively frequently accessed and were helpful.

For the same group of contexts, automated Dynamic Help messages will be

generated by applying the proposed method of Chapter III. These will be compared,

message by message, with the corresponding messages user-tested by Captain Wolven (see

68

Tables 4-1 and 4-2 in the following sections). The automated messages will each be

augmented to match clarity levels (see Table 4-4 in Section 4.3.4), producing a set of

quality-adjusted automated messages.

The rows of the message table and the macros table actually accessed by the semi-

automated "Wolven" messages will be extracted, and the number of characters will be

counted. (These messages can be called "Wolven" messages for convenience, and it is

appropriate since she not only user-tested them, but previously authored them.) Call the

results Ns, the size of the Dynamic Help knowledge base for the semi-automated sample.

Nn, the size of the Dynamic Help knowledge base for the corresponding

hypothetical non-automated sample will be estimated by backing out the semi-automation

techniques (where messages for more than one context were combined, macros will be

defined where they are more efficient than duplicate section of messages).

Na, the size of the Dynamic Help knowledge base for the automated sample, will be

estimated as the size of the Dynamic Help dictionaries. This includes all relationship

dictionaries, even if they restate features of the program's data structure that could

alternatively be extracted by altering the context-generation logic.

Because the design of the automated Dynamic Help system is adjusted to equalize

the context-generation function for all three treatments, the code size for context generation

is not included in Ns, Nn, and Na. (Context-generation code for ACIFS occupies about

5M + N lines of code, where M is the number of screens and N is the number of data

fields.)

4.3 Message Samples Generation

4.3.1 User Task SamplRe

After a semi-automated prototype Dynamic Help system had been added to ACIFS,

the user test designed and administered by Captain Wolven was based on user tasks that

69

were intended to represent the most challenging tasks (because users would not access

Dynamic Help during non-challenging tasks) among the common tasks to be performed by

warehouse clerks using ACIFS. Among the tasks for which users frequently accessed

Dynamic Help and found the messages helpful were those described by Captain Wolven as

follows (Wolver., 1991):

1. Task 11, a single task under the Clothing Turn In Process Menu, consists of

posting of a manual turn-in of a soldier's clothing and equipment.

2. Task 12, a sequence of two subtasks under the Adjustment Transactions Menu,

consists of:

12.2 Posting a Statement of Charges (S/C)

13.3 Modifying a Report of Survey (R/S)

3. Task 13, a single task under the Document Register Actions Menu, consists of:

13.1 Creating four supply requisitions

4. Task 14, a sequence of two subtasks under the Document Register Actions

Menu, consists of:

14.1 Posting a receipt

14.2 Correcting an incorrect receipt posting.

5. Task 15, a sequence of two subtasks under the Clothing Issues Process Menu,

consists of:

15.1 Posting a completed clothing issue

15.2 Posting an issue of due-out clothing items

4.3.2 Wolven Message Sample

The user tasks listed above carry the user through 46 contexts for which Dynamic

Help messages were available. These semi-automated messages constitute the sample for

the present experiment.

70

Table 4-1 illustrates 6 of the 46 messages from Captain Wolven's semi-automated

Dynamic Help. A full listing of all Captain Wolven's semi-automated Dynamic Help

messages in the sample is given in the left column of Appendix 1.

Table 4-1 Illustration of Six Semi-Automated Dynamic Help Messages
Message from Context 1 Message from Context 7

CLOTHING TURN IN PROCESS CREATE SUPPLY REQUISITIONS
Ready to perform a complete or partial turn in, print Ready to Create Supply Requisitions. The system will
Clothing Record (DA 3645), or perform a direct exchange assign the document number. Once the NSN. Documemn
of sized items for an individual who has completed initial Identifier Code, Quantity Ordered, and Unit of Issue entries
issue. are completed and no other change is desired, press the ESC

To go to Clothing Turn In Process, press Return Key. Key. To return to Document Register Actions Menu, press
the DEL (Delete) Key.
NOTE: Backspace Key does not erase data.
NOTE: Once the NSN entry is completed, a correction to the
NSN cannot be made. Press DEL (Delete) Key and reenter
NSN to make a correction. To make a correction to any
other entry field (besides NSN). press UP Arrow Key or
press DOWN Arrow Key, perform entry again. and press
Return Key.

Message from Context 2 Message from Context S
CLOTHING TURN IN PROCESS Stock Number

Ready to perform a complete or partial turn in, pirt Ready to enter the Stock Numnber of a new requisition.
Clothing Record (DA 3645), or perform a direct -v ",ang, To go to Document Identifier Code. enter the Stock Number.
of sized items for an individual who has complete.,. : Acceptable entries are zero and positive numbers.
issue. Turn In Process Example: 8415011841352

Note: Filling the field signals completion, and the cursor
Ready to process a turn in of issued items. Do not use this jumps to the Document Identifier Code field.
option if an individual has not completed the issue cycle or To make a correction while still in the Stock Number field.
had completed a turn in already. use BACKSPACE and over-strike incorrect data.

Message from Context 3 Message from Context 9
TURN INS Document Identifier Code

Ready to process turn in of issued items for an individual. Ready to enter the Document Identifier Code (DIC) of the
To return to CIF Clothing Turn Ins Menu, press DEL supply requisition. NOTE: This entry is required to process
(Delete) Key. the transaction. To go to Quantity Ordered, enter the
Do not use this option if the individual has not completed Document Identifier Code.
the issue cycle or has already completed turn in. The DIC consists of 3 letters/digits which identify the

SSN
requisition type.

Ready to enter the individual's SSN.
LIST:

Examples: AOl - Overseas Shipment with NSN
123456789 for U.S. Soldier A0A5 Domerstc Shipment with NSN
K23456789 for KATUSA A05 - Overses Shipment without NSN
KC3456789 for Korean Civilian AGE. Domestic Shipment withou NSN

Note: Filling the field signals completion, and cursor
jurmps to Quantity Ordered field. To make a correction while
still in the Document Identifier Code field, use
BACKSPACE and overstrike incorrect data.

71

The message sample for non-automated messages is taken as equal to the sample of

semi-automated messages, since there is no basis for assuming how the ad-hoc semi-

automation techniques applied by Captain Wolven might have changed the messages from

what they otherwise would have been.

4.3.3 Automated Message Sample

Each Wolven message comes from a specific context. In the automated message

scheme, 12 of these contexts, including he ones that give the six messages illustrated in

Table 4-1, are as shown in Table 4-2a and Table 4-2b. All 46 sample contexts are listed in

Appendix 2.

Table 4-2a Act Fields for Twelve Contexts
Contexts - Acts

Context Key 4-Task 3-Procedure 2-Function 1-Command
context I m-Main Menu go to
context 2 m8-Clothing Turn In Process go tO

M enu

context 3 "ditto" m81-Tum Ins id soldier enter
context 4 "ditto" m8l,-Turn Ins id soldier enter
context 5 "ditto" m81-Turn Ins id inv item enter
context 6 m-Main Menu go-to
context 7 m6-Document Register go to

Actions

context 8 "ditto" m61 -Create Supply id inv item enter
Requisitions

context 9 "ditto" "ditto" id inv item enter
context 10 "ditto" "ditto" id inv item enter
context II "ditto" m72-Complete id soldier enter

Issue
context 12 "ditto" m76-Issue id mv item enter

,_ _ Additional Items

72

Table 4-2b Object Fields for Twelve Contexts
Contexts - Objects

Context Key Screen Oocument Soldier Inventory Screen Field
Item

context I Main Menu menu item 8
context 2 Clothing Turn Ins menu item 1
context 3 Turn Ins aebO2Lssn
context 4 Turn Ins SSN aeb02Luic
context 5 Turn Ins SSN LIN formonly.iqty
context 6 Main Menu menu item 6
context 7 Document Register menu item I

Actions
context 8 Supply Requisitions _, aebl5t.nsn
context 9 Supply Requisitions ,.,_ NSN aeb15Ldic

context 10 Supply Requisitions NSN aebl5Lqty
context 11 Complete Issue aebO2Lssn
context 12 Complete Issue aeb02Lssn

The 12 contexts in Table 4-2a and Table 4-2b were generated by the context-

generation method given in Section 3.5.1. Actual generation of the contexts was done by

hand following the method, since context-generation logic implementing the method has

not yet been installed in any version of ACIFS.

Each of the 46 sample contexts was used as the input for message construction by

the method given in Section 3.5.2. Actual generation of the messages was done by hand

following the method, since this method's message construction logic has not yet been

implemented into a Dynamic Help module for ACIFS. Message generation was done in

two steps: fi-st, the Dynamic Help dictionaries given in Section 3.5.3 were filled with

entries for this message sample only, omitting every row and column that would never be

accessed in constructing any message in the sample. These partial dictionaries arm listed in

Appendix 3.

Finally, the partial dictionaries were accessed to produce the sample of automated

messages. Table 4-3 illustrates the sample of automated messages. Note that they differ

73

from the Wolven messages illustrated in Table 4-1. A full listing of all automated messages

in the sample is given in the right column of Appendix 1.

Table 4-3 Illustration of Automated Message Sample
Message from Context 1 Message from Context 7

CLOTHING TURN IN PROCESS Create Supply Requisitions
Ready to go to clothing Turn In Process Menu. Ready to go to create supply requisitions.
Clothing turn in processes include: a complete or partial The system will assign the document number. Once the
rum in, print clothing record, or perform a direct exchange NSN. document identifier code, quantity ordered, and unit of
of sized items for an individual who has completed initial issue entries are completed and no other change is desired,
issue. press the ESC key.
To see general documentation, press Fl. To see general documentation, press Fl.

Message from Context 2 Message from Context 9
Turn In Process Stock Number

Ready to go to Turn In Process. Ready to enter national stock number of inventory item.
The turn in process will process a turn in of issued items. Acceptable entries are zero and positive numbers.
Do not use this option if an individual has not completed Example: 8415011841352
the issue cycle or had completed a turn in already. To see general documentation. press Fl.
To see general documentation, press Fl.

Message from Context 3 Message from Context 9
SSN Document Identifier Code

Ready to enter the social security number of a soldier. Ready to enter document identifier code of
"The turn in process will process a turn in of issued items. *LIN.descriptionm.
Do not use this option if an individual has not completed NOTE: This entry is required to process the transaction.
the issue cycle or had completed a turn in already. The DIC consists of 3 letters/digits which identify the
Examples: requisition type.

123456789 for U.S. Soldier Examples:
K23456789 for KATUSA A01 - Overseas Shipment with NSN
KC3456789 for Korean Civilian A0A - Domestic Shipment with NSN

To see general documentation. press FI. A05 - Overseas Shipment without NSN
AOE - Domestic Shipment without NSN

To see general documentation, press Fl.

4.3.4 Quality Adjusted Automated Message Sample

In some sentences, the Wolven message sample could impart specific information

that the corresponding automated message omitted. These instances were identified, and

the automated messages were augmented to impart the same information. The Ad-Hoc

Dictionary in Appendix 3 contains these augmentations.

74

4.3.5 Differences in Semi-Automated and Automated Messages

The automated messages in Table 4-3 do not contain the "global" reference that the

semi-automated messages in Table 4-1 contain. The author decided to focus the automated

Dynamic Help messages on the primary act. While this resulted in a smaller automated

message, it did not affect the size of the dictionaries necessary to construct the automated

messages. The global portion of the semi-automated messages is included in the

dictionaries for the automated messages. For example, in the message from context 2 in

Table 4-1, the global portion of the message is

CLOTHING TURN IN PROCESS
Ready to perform a complete or partial turn in, print Clothing Record (DA 3645), or
perform a direct exchange of sized items for an individual who has completed initial
issue.

This text is stored in the automated message dictionaries, although it does not

appear in the automated message from context 2 in Table 4-3. It is included as the primary

act of context I in Table 4-3. To add the global portion of the semi-automated messages to

the automated messages would not require adding data to the automated message

dictionaries.

Likewise, the general documentation of the semi-automated messages does not

appear in the automated messages. General documentation is reference in all automated

messages by the fixed text phrase

To see general documentation, press Fl.

The specifics of the automated message general documentation is included in the GENHLP

dictionary (see Appendix 3).

The automated messages of Table 4-3 are all readable, but would benefit from the

insertion of definite and indefinite articles. All 46 sample message pairs (semi-automated

and automated) can be examined side-by-side in Appendix 1.

75

It is believed that the automated messages are similar in quality to the semi-

automated messages and the usability results obtained by Captain Wolven are applicable to

the automated messages.

4.4 Cost Analysis

The primary indicators of cost are Ns, Nn, and Na as defined in Section 4.2.3.

The semi-automated message sample listed in Appendix 1 contains 15,844

characters, counting each macro call as 5 characters, and the corresponding rows of the

macros dictionary contain 4437 characters, for a total ofNs = 15,844 + 4437 = 20,281.

It turns out that no semi-automation techniques that affect knowledge storage were

used in this sample, so Nn = Ns.

For each of the 46 semi-automated Wolven messages, several counts were made

and recorded in Table 4-4:

Count 1. Gross size, the number of characters as printed,

Count 2. Global sentence quantity, the number of characters in global sentences,

Count 3. Global sentence size, the size of global sentences,

Count 4. Local repeated sentence quantity, the number of local repeated sentences,

Count 5. Local repeated sentence size, the size of local repeated sentences,

Count 6. Macro quantity, the number of macros,

Count 7. Macro size, the number of characters in macros,

Count 8. Stored Size. Adjusted size of each message.

76

Table 4-4 Size Computations of Semi-Automated Wolven Messag -

La Repeated Macros (larger
context Global sentence Sentence than 35 chars) Stored

Size
key Gross Qty Size Qty Size Qty Size

size
1 251 1 199 57
2 368 1 199 __ _ 174
3 409 1 170 244
4 793 1 631 167
5 786 1- 631 - 160
6 834 1 631 _ 208
7 1080 1 631 _ 454
8 935 1 631 309
9 873 1 631 247

10 968 1 631 1 70 277
11 785 1 591 199
12 741 1 591 155
13 755 1 591 ' 169
14 532 532
15 904 . . 1 198 711
16 889 1 549 345
17 793 1 549 249
18 831 1 549 287
19 888 1 198 695
20 699 1 364 340
21 605 1 364 246
22 642 1 364 283
23 621 1 198 428
24 636 1 198 443
25 1064 1 660 1 45 369
26 1306 1 660 1 45 611
27 1034 1 660 1 45 339
28 1227 1 660 1 45 532
29 1230 - 1 660 1 45 535
30 1217 1 660 1 45 522
31 1148 1 660 1 45 453
32 1099 1 660 1 45 404
33 1209 - 1 660 1 45 514
34 1247 1 660 1 45 552
35 1250: 1 660 595
36 193 1 660 1 45 498
37 1051 1 660 1 45 356
38 513 1 198 320
39 622 1 198 429
40 727 1 557 1 170 10
41 852 1 557 300
42 801 1 557 249
43 570 1 198 377
44 577 1 403 1 170 14
45 647 I 403 -249

46 635 1 4031 237

Totals: 38837 20787 510 1996 15844

77

The number of characters as printed (count 1) includes blanks and is the number of

characters that would have been authored and stored if no semi-automation had been

performed.

The Wolven messages contain a global sentence applying to the whole screen

whenever the context is that of a data entry on a data entry screen. Count 2 is the number

of these in the message (zero or one), and Count 3 is the number of characters. Each

global sentence is assumed to be stored in a global sentence dictionary, once, and called for

each message.

The Wolven messages sometimes contain a repeated local sentence telling how to

enter a datum that is entered on more than one screen (SSN, Total Price, and NSN). Count

4 is the number of these in the message (zero or one), and Count 5 is the number of

characters. Each local repeated sentence is assumed to be stored in a local-repeated-

sentence dictionary, once, and called for each message.

The Wolven messages sometimes contain stock phrases of 35 characters or more

that appear in at least two messages and are not already semi-automated by occurring only

as parts of global sentences or local repeated sentences. Count 6 is the number of these

(zero, one, or more), and Count 7 is their total number of characters. Each stock phrase of

35 characters or more that appears in at least two messages is assumed to be stored in a

macros dictionary, once, and called for each message.

The number of characters actually stored for a Wolven message, exclusive of

dictionary overhead, is Count 1, less the size of all called material (the sum of Counts 3, 5,

and 7), plus the size of all calls (the sum of 5 characters per call times the suni of Counts 2,

4, and 6). This result is recorded in Table 4-4 as Count 8. The sum of Count 8 is

15,844. This is the total number of characters stored, exclusive of overhead, for the 46

semi-automated Wolven messages.

78

The dictionary overhead for the semi-automated Wolven messages is the total of the

sizes of distinct global sentences, local repeated sentences, and macros. Table 4-5

summarizes the dictionary overhead.

Table 4-5 Dictionary Overhead for Semi-Automated Wolven Messages
nloba lentnce; 3954 characters

Turn-In Process .. 199 characters
Manual Turn-In ... 631 characters
Manual Turn-In Items 591 characters
Statement of Charges 549 characters
Report of Survey ... 364 characters
Supply Requisitions .. 660 characters
Complete Initial Issue 557 characters
Issue Additional Items 403 characters

Local Repeated Sentences: 170 characters
SSN ... 170 characters

Macros: 313 characters
Enter Y and press Return Key 70 characters
Use BACKSPACE and 45 characters
To make another selection 198 characters

TOTAL DICTIONARY OVERHEAD 4437 characters

Ns is the sum of characters stored plus the dictionary overhead:

Ns = 15,844 + 4437 = 20,281 characters.

To provide the 46 semi-automated Wolven messages, one would have to author and

store this number of characters.

The 46 automated messages are constructed entirely from dictionaries, context

structure, and sentence structures. The automated messages themselves are listed in

Appendix 1, right column, including all the ad-hoc sentences needed to duplicate the ad-hoc

material in the Wolven messages, but excluding the global sentences in the Wolven

messages.

79

Recall that the global sentences constitute, at most, the entire Dynamic Help

message for the parent context, which for a data entry screen is the context for being on the

screen with no active data-entry field. This context (hypothetical for ACIFS, since the

topmost data-entry field is activated upon screen entry) is almost identical to the context in

the parent menu screen where this screen's name is highlighted. As a consequence, we

observe that all dictionary entries needed to support the global sentences already exist in the

sample dictionaries.

Appendix 3 contains all the dictionaries, filled with the entries necessary to fill the

46 sample messages, including quality augmentation. Several rows and columns are never

accessed by the 46 sample messages, but they are included as necessary to the structure of

the dictionaries. The number of characters in these dictionaries, for purposes of this

experiment, includes all column headings and key fields, because these must all be

authored and stored. The number of characters in the Dynamic Help dictionaries for the

automated message sample is 7939, which was determined by counting the number of

characters in Appendix 3 including column headings and all fields, with each null entry

counted as one character.

The context structure (although not all of the context fields are accessed in the

sample of automated messages) contains 9 attribute type names (see appendix 2), which

could reasonably be allocated 20 characters apiece; for a total of 180 characters of context

fields; a data structure for assigning each act to an act type and each object to an object

type, which is assumed to occupy 200 characters; and a data structure for assigning a level

to each type, which is assumed to occupy 5 characters per type, or 45 characters. The total

number of characters of context structure needed for the 46 automated messages is:

180 + 200 + 45 = 425 characters

80

The sentence structures contain fixed text and dictionary calls, as listed in Table 4-.

Each call is assumed to occupy t characters. The total number of characters in sentence

structures is 160.

The total number of characters to be authored and stored for automated Dynamic

Help for the 46 sample contexts is thus:

Na = 7,939 + 425 + 160 = 8,524

Table 4-6 Sentence Structure Size for Automated Messages
Sentence Number of characters Number Total number

of fixed text of calls of characters

1. Ready to 8..............4.............. 28
2. Ad-hoc 0..............1.............. 5
3. Meaning 0..............1.............. 5
4. Choices 38.............. 1.............. 43
5. Format 7..............2.............. 17

6. Domain 8..............2.............. 18
7. Alternatives 0..............1 5
8. General Help 39..............0 39

160

The ratio Ns/Na = (20,281)/8,524 = 2.38 is a measure of automaLion efficiency for

the sample. Automation reduces the required amount of authoring and storing by the factor

Ns/Na.

Automation Efficiency for a Complete Dynamic Help System

The ration Ns/Na from the sample of 46 contexts underestimates the automation

benefits that would be realized in a complete program. The knowledge base for automated

Dynamic Help is already adequate, or almost adequate, for many more than the 46 contexts

81

in the sample, whereas the message file for semi-automated Dynamic Help would grow

almost linearly with the number of contexts.

The total number of reachable contexts in ACIFS is about 700. From Table 4-4 for

the semi-automated sample, we can see that the stored size is about 40% of the gross size.

Since the total dictionary overhead (Table 4-5) is only about 12% of the gross size, the

overhead is not a major factor. Let us make the conservative assumpuiun that the overhead

will not grow significantly as the number of messages increases from 46 to 700 On this

basis, the estimated stored size for 700 semi-automated messages is the 46-message

overhead plus 700/46 times the 46-message stored size:

4437 + (700/46) (15,844) = 245,541 characters

The automated sample has dictionary entries for 4 task-type acts out of the 9

available in ACIFS; 6 procedure-type acts out of the 100 available (6 screens of 100

available were encountered in the sample); 29 data-entry items out of an estimated total of

122 available (122 fields throughout ACIFS where the user can make a unique data entry

not made elsewhere); 17 domain sentences out of an estimated 70 items throughout ACIFS

requiring domain sentences; no format sentences, whereas all of ACIFS would require

about 15; 2 choices sentences, whereas all of ACIFS would require about 5; and 4 ad-hoc

sentences in 46 contexts.

From these facts and estimates, we can estimate that the act dictionaries for all of

ACIFS would increase in size by a factor of about 15, which would be a linear increase

(the 46 sample contexts are about 1/15 of the total number of contexts, and the acts

encountered are about 1/15 of the total number of acts); but the object dictionaries would

increase only by a factor of about 4.2. Since the object dictionaries contain the bulk of the

stored characters in dictionaries, it would be conservative to estimate that the total

82

dictionary size would increase by a factor of 5. The context structures and sentence

structures would remain the same sizes as for the sample.

In summary, a rough estimate of the number of characters required for the

automated Dynamic Help knowledge base for all of ACIFS is

5 Na = 42,620 characters

The ratio of 246,505 to 42,620 is about 5.8. For a complete software package such

as ACIFS, automation of Dynamic Help could be expected to require about 1/5 the

authorship effort and 1/5 the memory space compared to semi-automated Dynamic Help.

83

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This chapter examines the automatability and flexibility of Dynamic Help and the

generality of the context model and message structure (does the automation process apply

to other DBMS-based programs, and to non-DBMS-based programs?) and examines the

cost (in terms of required designer's effort) and applicability of the automation process to

various kinds of interactive programs. A brief discussion of requirements for a Dynamic

Help Generator - a designer's tool that would aid in the construction of Dynamic Help

dictionaries - is given. Development of this Generator and a Dynamic Tutorial system is

recommended

5.1 Conclusions

For one DBMS-based US Army installation-level software product, ACIFS, it has

been shown that it is feasible to prepare a set of Dynamic Help dictionaries that allows a

Dynamic Help module automatically to identify an interaction context and automatically to

construct a clear and complete Dynamic Help message for each context at run time.

As was shown in Chapters M] and IV, Dynamic Help can be automated. By

applying the developers tools of Figure 5-1, automated Dynamic Help was added to an

existing U.S. Army Installation Software program. The resultant messages were judged to

have the same clarity as the authored semi-automated messages written by Captain Wolven

(Wolven 1991).

84

The sample automated messages require less than half the authorship of the sample

semi-automated messages. It is estimated that there will be a fivefold decrease in the

authorship of all the automated messages as compared to the semi-automated messages.

My experience with authoring sentence structures and dictionaries convinces me

that automated Dynamic Help messages are much easier to change and therefore more

flexible when the program or the needs of the users change. The claim made by Dr. Young

(Young 1990a) that a Dynamic Help system is partially immune to changes in the supported

program, whereas an ordinary help system would need to be rewritten, appears to be

justified.

These conclusions are linked to the objected-oricnted nature of the relational

databases (Informix and ACE) used to design ACIFS. Similar results can be expected for

any program that was designed by either a database (relational or non-relational) or object-

oriented language (e.g. C++, Pascal OOP). User support in the form of Dynamic Help can

be written and tested in less time and with less authorship than either totally rewriting an

existing package or rewriting or changing its user interface.

5.2 Recommendations

5.2.1 Application of Dynamic Help to ISM

I recommend that the Dynamic Help generator shown in Figure 5-1 be used to

implement user support to the entire family of DBMS-based or object-oriented ISM

packages.

5.2.2 Dynamic Help Generator

The automation of Dynamic Help could be facilitated by a set of software

developer's tools that could be called a Dynamic Help Generator. An ad-hoc Dynamic

Help Generator was already under development at AIRMICS upon completion of the

present study (Washechek, 1991).

85

If the method proposed in Chapter I is followed in providing Dynamic Help for an

existing program, the software developer will be responsible for designing and

implementing several software products to be added to the existing program. These are

listed in Figure 5-1.

" IO AND CONTROL LOGIC

"* CONTEXT MONITOR

"* KNOWLEDGE BASE SYSTEM

- Dynamic Help dictionaries

- Knowledge maintenance system

-- Data base query system

-- Knowledge update system

-- Knowledge reconciliation and initiation

"* MESSAGE PRODUCTION SYSTEM

- Context identification system

- Message construction system
Figure 5-1 Software Products in a Generic Dynamic Help System

I/O control logic must be provided to allow Dynamic Help to be invoked at run

time, to allow messages to be displayed, and to allow for return to the context and state

from which Dynamic Help was invoked. The design and implementation of I/O and

control logic depends entirely on the existing program, not on Dynamic Help design.

Typically the context monitor would consist of code added to the screen control

system of the existing program, or to individual forms logic or trigger logic if the interface

86

design follows a DBMS forms utility. The main job of the context monitor is to translate

the existing program's context tracking into values of the active acts and active objects in

the Dynamic Help context vector. This translation must be performed, or at least triggered,

from wherever the existing program alters or tracks context variables. In a well-designed

object-oriented program some of the context values will already be available; for example,

in ACIFS the identifier of the current screen is a global variable, so this aspect of context

monitoring is already provided by the existing program.

The Dynamic Help dictionaries, as designed in Chapter m and illustrated in Chapter

IV, have a structure that is mostly independent of the data structure of the existing program.

This means that there may be an opportunity for a Dynamic Help Generator to provide

software developer's tools to aid in defining the structure and contents of the dictionaries.

Figure 5-1 lists a "knowledge maintenance system", a system that may be required

when low-level objects are database objects. For example, in ACTFS one can add soldiers

or clothing items to the database, and attributes of these added soldiers or clothing items

can be required for subsequent Dynamic Help messages.

One response to this possibility is to provide for queries to the database, either

routinely or only when the dictionaries fail to yield a definition. For DBMS-based

programs, such queries are very easy to include in the design, but of course they cause

delays because they require disk accesses. Another response is to provide for updating of

the dictionaries whenever a new object is added; since the dictionaries have mostly standard

structures, a Dynamic Help Generator could include most of the necessary code for this.

For systems that may be updated by more than one user, it may be necessary to design a

system for reconciliation of the knowledge base with the database. This system would be

able to provide the initial data for the knowledge base, as well. Thus a natural task for the

Dynamic Help Generator is to provide tools for designing knowledge reconciliation and

87

initialization of the dictionaries. (Reconciliations should probably occur at session

initiations.)

The message production system, including both context identification and message

construction, would be mostly independent of the data structure of the existing program.

Thus it can be programmed largely "in advance" in the Dynamic Help Generator.

From the foregoing review of the software products that constitute a Dynamic Help

system, we conclude that a Dynamic Help Generator can provide tools for designing the

dictionaries, the knowledge maintenance system, the context identification system, and the

message construction system. 1/0 and control logic - that is, fitting the Dynamic Help

into the existing software system - would be beyond the scope of a Dynamic Help

Generator. (context monitoring is also beyond the scope, it is implemented throughout the

application program.)

5.2.3 Dynamic Tutorial System

It is recommended that the Dynamic Tutorial system discussed in Section 1.5.3 be

implemented to substitute for sending out a user training team each time a new software

package is fielded on an installation. Software packages that included Dynamic Help

should be sufficiently usable so that a standard teaching tutorial would not be needed, but

only a less expensive Dynamic Tutorial system.

88

APPENDIX 1

SAMPLE DYNAMIC HELP MESSAGES FROM ACIFS

89

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

Task 11, pw" a nun clong turn _

CLOTHING TURN IN PROCESS CLOTHING TURN IN PROCESS
Ready to perform a complete or partial turn in, print Ready to go to Clothing Turn In Process Menu.
Clothing Record (DA 3645). or perform a direct Clothing turn in processes include: a complete or
exchange of sized items for an individual who has partial turn in, print clothing record, or perform a
completed initial issue, direct exchange of sized items for an individual who
To go to Clothing Turn In Process, press Return Key. has completed initial issue.

To see general documentation, press Fl.
2 CLOTHING TURN IN PROCESS Turn In Process

Ready to perform a complete or partial turn in, print Ready to go to Turn In Process.
Clothing Record (DA 3645), or perform a direct The turn in process will process a turn in of issued
exchange of sized items for an individual who has items. Do not use this option if an individual has not
completed mitial issue, completed the issue cycle or had completed a turn in

Turn In Process already.
Ready to process a turn in of issued items. Do not use To see general documentation. press Fl.
this option if an individual has not completed the issue
cycle or had completed a turn in already.

3 TURN INS SSN
Ready to process turn in of issued items for an Ready to enter social security number of soldier.
individual. To return to CIF Clothing Turn Ins Menu, Examples:
press DEL (Delete) Key. 123456789 for U.S. Soldier

Do not use this option if the individual has not K23456789 for KATUSA
completed the issue cycle or has already completed turn KC3456789 for Korean Civilian
in. To see general documentation, press Fl.

SSN
Ready to enter the individual's SSN.
Examples:

123456789 for U.S. Soldier
K23456789 for KATUSA
KC3456789 for Korean Civilian

To finish entering SSN. press Return Key.

4 MANUAL TURN INS Last Name
Ready to enter information on an individual with a turn Ready to enter last name of <SSN>.
in. Complete all entries and press Return Key to NOTE: BACKSPACE Key does not erase data. To make
continue the turn in process, or press DEL (delete) Key a correction in an entry field, press UP and DOWN
to start another Turn In or to return to Clothing Turn Ins Arrow Keys as needed and preform entry again, or press
Menu without saving entries. To complete an entry, BACKSPACE (non-destructive), overstrike, and press
press Return Key. Return Key.
NOTE: BACKSPACE Key does not erase data. To make To see general documentation. press Fl.
a correction in an entry field, press UP and DOWN
Arrow Keys as needed and preform entry again, or press
BACKSPACE (non-destructive), overstrike, and press
Return Key.
Do not use this option if the individual has not
completed the issue cycle or has already completed turn
in.

Last Name
Ready to enter the individual's Last Name. To go to
First Name, enter the Last Name and press Return Key.
To finish entering Last Name, press Return Key.

90

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

5 MANUAL TURN INS First Name
Ready to enter information on an individual with a turn Ready to enter first name of <SSN>.
in. Complete all entries and press Return Key to NOTE: BACKSPACE Key does not erase data. To make
continue the turn in process. or press DEL (delete) Key a correction in an entry field, press UP and DOWN
to start another Turn In or to return to Clothing Turn Ins Arrow Keys as needed and preform entry again, or press
Menu without saving entries. To complete an entry, BACKSPACE (non-destructive), overstrike, and press
press Return Key. Return Key.
NOTE: BACKSPACE Key does not erase data. To make To see general documentation, press Fl.
a correction in an entry field, press UP and DOWN
Arrow Keys as needed and preform entry again, or press
BACKSPACE (non-destructive), overstrike, and press
Return Key.
Do not use this option if the individual has not
completed the issue cycle or has already completed turn
in.

First Name
Ready to enter the individual's First Name. To go to
Sex, enter the First Name and press Return Key.
To finish entering First Name, press Return.

6 MANUAL TURN INS Sex

Ready to enter information on an individual with a turn Ready to enter sex of <SSN>.
in. Complete all entries and press Return Key to Acceptable entries are M for Male and F for Female.
continue the turn in process, or press DEL (delete) Key NOTE: BACKSPACE Key does not erase data. To make
to start another Turn In or to return to Clothing Turn Ins a correction in an entry field, press UP and DOWN
Menu without saving entries. To complete an entry. Arrow Keys as needed and preform entry again, or press
press Return Key. BACKSPACE (non-destructive), overstrike, and press
NOTE: BACKSPACE Key does not erase data. To make Return Key.
a correction in an entry field. press UP and DOWN To see general documentation, press Fl.
Arrow Keys as needed and preform entry again, or press
BACKSPACE (non-destructive), overstrike, and press
Return Key.
Do not use this option if the individual has not
completed the issue cycle or has already completed turn
in.

Sex
Ready to enter the individual's Sex. To go to Unit
Identification Code, enter the Sex and press Return Key.
Acceptable entries are M for Male and F for Female.
To finish entering Sex, press Return Key. I

91

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

7 MANUAL TURN INS Unit Identification Code
Ready to enter information on an individual with a turn Ready to enter unit identification code of <SSN>
in. Complete all entries and press Return Key to The UIC is a code identifying the unit to which an
continue the turn in process, or press DEL (delete) Key individual is assigned. The UIC may be found on the
to start another Turn In or to return to Clothing Turn Ins individual's DA 3645 (manual) or unit assignment
Menu without saving entries. To complete an entry. order.
press Return Key. Exa,.ple:
NOTE: BACKSPACE Key does not erase data. To make WEOQAA
a correction in an entry field, press UP and DOWN W134AA
Arrow Keys as needed and preform entry again, or press WRMAAA (UIC with largest assg. strength)
BACKSPACE (non-destructive), overstrike, and press Note: 0 (letter) and 0 (number) are distinct.
Return Key. NOTE: BACKSPACE Key does not erase data. To makeDo not use this option if the individual has not a correction in an entry field. press UP and DOWN
completed the issue cycle or has already completed turn Arrow Keys as needed and preform entry again, or press
in. BACKSPACE (non-destructive), overstrike, and press

Unit Identification Code Return Key.
Ready to enter an individual's Unit Identification Code To see general documentation, press Fl.
(UIC). To go to Grade, enter the U]C and press Return
Key.
The UIC is a code identifying the unit to which an
individual is assigned. The UIC may be found on the
individual's DA 3645 (manual) or unit assignment order.
Example:

WEOQAA
W134AA
WRMAAA (UIC with largest assg. strength)

Note: 0 (letter) and 0 (number) are distinct.
To finish entering UIC. press Return Key,

8 MANUAL TURN INS Grade
Ready to enter information on an individual with a turn Ready to enter grade of <SSN>
in. Complete all entries and press Return Key to Enlisted - E01 - ElO Civilian - GO1 - GI5
continue the turn in process, or press DEL (delete) Key Officer 001 -010 Korean - KOI - KI5
to start another Turn In or to return to Clothing Turn Ins Warrant - WOl -W05
Menu without saving entries. To complete an entry, Note: 0 (letter) and 0 (number) are distinct.
press Return Key. NOTE: BACKSPACE Key does not erase data. To makeNNOTE: BACKSPACE Key does not erase data. To make
NOT'E: BACKSPACE Key does not erase data. T o make a correction in an entry field, press UP and DOWN
a correction in an entry field, press UP and DOWN Arrow Keys as needed and preform entry again, or pressArrow Keys as needed and preform entry agan orprsArrow Keys as needed and preform entry again, or press BACKSPACE (non-destructive). overstrike, and press
BACKSPACE (non-destructive), overstrike, and press Return Key.
Return Key. To see general documentation, press Fl.
Do not use this option if the individual has not
completed the issue cycle or has already completed turn
in.

Grade
Ready to enter the Individual's Grade. To go to Duty
MOS, enter the Grade and press Return Key.
Enlisted - E01 - ElO Civilian - GOI - G15
Officer -O01 -O0 Korean - KO0 - K15
Warrant - WOl - W05
Note: 0 (letter) and 0 (number) are distinct.
To finish entering Grade. press Return Key. 1

92

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

9 MANUIL TURN INS Duty MOS
Ready to enter information on an individual with a turn Ready to enter duty MOS of <SSN>
in. Complete all entries and press Return Key to Examples:
continue the turn in process, or Press DEL (delete) Key I IB20 - infantry (E0)
to start another Turn In or to return to Clothing Turn Ins 95B - military police
Menu without saving entries. To complete an entry. 92B - supply officer
press Return Key. NOTE: BACKSPACE Key does not erase data. To make
NOTE: BACKSPACE Key does not erase dat. To make a correction in an entry field, press UP and DOWN
a correction in an entry field, press UP and DOWN Arrow Keys as needed and preform entry again, or press
Arrow Keys as needed and preform entry again, or press BACKSPACE (non-destructive), overstrike, and press
BACKSPACE (non-destructive). overstrike, and press Return Key.
Return Key. To see general documentation, press Fl.
Do not use this option if the individual has not
completed the issue cycle or has already completed turn
in.

Duty MOS
Ready to enter the Individual's Duty MOS. To go to
Special Issue, enter the Duty MOS and press Return Key.
Examples:

11B20 - infantry (E5)
95B - military police
92B - supply officer

To finish entering Duty MOS, press Return Key.
10 MANUAL TURN INS Special Issue?

Ready to enter information on an individual with a turn Ready to enter special issue status of <SSN>.
in. Complete all entries and press Return Key to Acceptable entries are Y and N.
continue the turn in process, or press DEL (delete) Key A special issue is authorized for the following Duty
to start another Turn In or to return to Clothing Turn Ins MOS's: 95B 15A 94B 67U 63B
Menu without saving entries. To complete an entry, if the individuals Duty MOS is listed above. enter Y
press Return Key. andI press Return Key. Otherwise, enter N and press
NOTE: BACKSPACE Key does not erase data. To make Return Key.
a correction in an entry field, press UP and DOWN RE: K Sy.
Arrow Keys as needed and preform entry again, or press N BAcKSAC Key does no asd TOmaBACKSPACE (non-destructive), overstrike, and press a correction in an entry field, press UP and DOWN
Return Key. Arrow Keys as needed and preform entry again, or pressBACKSPACE (non-destructive), overstrike, and press
Do not use this option if the individual has not Return Key.
completed the issue cycle or has already completed turn To see general documentation, press Fl.
in.

Special Issue?
Ready to determine whether an individual has a Duty
MOS which required a special issue.
Acceptable entries are Y and N.
A special issue is authorized for the following Duty
MOS's: 95B 15A 94B 67U 63B
If the individual's Duty MOS is listed above, enter Y and
press Return Key. Otherwise, enter N and press Return
Key.9

93

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

11 MANUAL TURN IN - ITEMS RETURNED TIQTY
Ready to enter the sizes and quantities turned in for each Ready to enter turn in quantity of <LlNdescription>.
LIN displayed. If a soldier was not signed for a listed If the quantity turned in matches the quantity under the
LIN, use the F2 Key to delete it. To add a[,IN, press the TIQTY field, press Return Key.
Fl key while on the LIN which alphanumerically Enter the sizes and quantities turned in for each LIN
follows the new LIN. When all entries are completed, displayed. If a soldier was not signed for a listed LIN,
press ESC Key on the first blank line. Press DEL u h 2 iL To add a UN, press the Fl
(Delete) Key to return to Clothing Turn Ins Menu key while on the LIN which alphanumerically follows
without saving entries. the new LUN. When all entries are completed, press

To complete an entry, press Return Key. To make a ESC Key on the first blank line. Press DEL (Delete)
correction, press UP Arrow Key, DOWN Arrow Key to return to Clothing Turn Ins Menu without
Key.BACKSPACE Key, or Return Key as needed, and saving entries.
perform entry again. TIQTY To see general documentation, press Fl.

Ready to enter for <LIN.description> the quantity turned
in.
If the quantity turned in matches the quantity under the
TJQTY field, press Return Key.
To finish entering TIQTY, press Return Key.

12 MANUAL TURN IN - ITEMS RETURNED Size

Ready to enter the sizes and quantities turned in for each Ready to enter size of <LIN.description>
UIN displayed. If a soldier was not signed for a listed Valid Size entries:
LIN, use the F2 Key to delete it. t'o add a LIN, press the <LUN.validsize>
Fl key while on the LIN which alphanumerically Enter the sizes and quantities turned in for each LIN
follows the new LIN. When all entries are completed, displayed. If a soldier was not signed for a listed LUN,
press ESC Key on the first blank line. Press DEL use the F2 Key to delete it. To add a UN. press the Fl
(Delete) Key to return to Clothing Turn Ins Menu key while on the LIN which alphanumerically follows
without saving entries. the new LIN. When all entries are completed. press

To complete an entry, press Return Key. To make a ESC Key on the first blank line. Press DEL (Delete)
correction, press UP Arrow Key. DOWN Arrow Key to return to Clothing Turn Ins Menu without
KeyBACKSPACE Key, or Return Key as needed, and saving entries.
perform entry again. To see general documentation, press Fl.

Size

Ready to enter size of <LIN.description>
To go to TIQTY, enter the Size and press Return Key.
Valid Size entries (Up to 32 values displayed):
L M

13 MANUAL TURN IN - ITEMS RETURNED LIN
Ready to enter the sizes and quantities turned in for eah Ready to enter line item number of inventory item.
lIN displayed. If a soldier was not signed for a listed Enter the sizes and quantities turned in for each LUN
lIN. use the F2 Key to delete it. To add a UIN, press the displayed. If a soldier was not signed for a listed LUN.
Fl key while on the LIN which alphanumerically use the F2 Key to delete it. To add a LIN, press the Fl
follows the new LIN. When all entries are completed, key while on the LIN which alphanumerically follows
press ESC Key on the first blank line. Press DEL the new LIN. When all entries are completed, press
(Delete) Key to return to Clothing Turn Ins Menu ESC Key on the first blank line. Press DEL (Delete)
without saving entries. Key to return to Clothing Turn Ins Menu without
To complete an entry, press Return Key. To make a saving entries.
correction, press UP Arrow Key, DOWN Arrow Entry should be of the form A#### where
Key.BACKSPACE Key, or Return Key as needed, and A denotes a letter and
perform entry again. # denotes a number.

LIN To see general documentation. press Fl.
Ready to enter the LIN number of an item which is part
of an addtional issue.

Entry should be of the form A#### where
A denotes a letter and
denotes a number.

94

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

Task IZ2, posting a statemet of charg es.
14 ADJUSTMENT TRANSACTIONS ADJUSTMENT TRANSACTIONS

Ready to perform Adjustment Transactions such as: Ready to go to Adjustment Transactions Menu.
- Statements of Charges (S/C) Adjustment transactions include: statements of
- Reports of Survey (R/S) charges. Reports of survey, cash collection, lateral
- Cash Collection (C/C) transfers, administrative adjustments, found on
- Lateral Transfers installation, turn ins to SSA/DRMO, and cancelling

AdrrY6iative Adjustments S/C, R/S, C/C.
- Fer 1nd on Installation To we general documentation. press Fl.
- Trn Ins to SSA/DRMO

Cancelling S/C, R/S, C/C
To go to Adjustment Transactions, press Return Key.
To make another selection. use LEFT and RIGHT Arrow
Keys to highlight the desired option number and press
Return Key,
To undo or reverse a selection after it has been pressed,
press DEL (Delete) Key.

15 ADJUSTMENT TRANSACTIONS MENU Statement of Charges
Ready to choose one of the following types of Ready to go to Statement of Charges.
transactions: A statement of charges subtracts losses from the

Statement of Charges property book on hand quantity and creates a
Report of Survey transaction record of the dollar value for the document
Cash Collection Voucher register.
Lateral Transfer Out To see general documentation, press Fl.
Lateral Transfer In
Administrative Adjustment
Found on Installation
Turn In to SSAIDRMO
Cancel S/C, R/S, C/C

To r-turn to CIF Main Menu, highlight option X and
press Return Key.
Proceed to the next help screen for more information
about menu option 1, Statement of Charges.

Statement of Charges
Ready to enter Statements of Charges. This option
subtracts losses from the Property Book on hand
quantity and creates a transaction record of the dollar
value for the document register.
To go to Statement of Charges, press Return Key.
To make another selection. use LEFT and RIGHT Arrow
Keys to highlight the desired option number and press
Return Key.
To undo or reverse a selection after it has been pressed,
press DEL (Delete) Key.

95

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

16 STATEMENT OF CHARGES NSN
Ready to enter a Statement of Charges. Up to 100 NSNs Ready to enter NSN of inventory item.
are allowed per statement. To return to Adjustment Acceptable entries are zero and positive numbers.
Transactions Menu, press DEL (Delete) Key. Example: 8415001841352
Enter the NSNs and quantities of the items listed. A r Up to 100 NSNs are allowed per statement. Enter the
all NSNs/quantities have been entered, press ESC Key, NSNs and quantities of the items listed. After all
enter the Total Price listed, and press Return Key. NSNs/quanuties have been entered, press ESC Key.
NOTE: BACKSPACE Key does not erase data. To make a enter the Total Price listed, and press Return Key.
correction in any of the NSN or Quantity fields, press To see general documentation, press Fl.
LEFT Arrow Key, UP Arrow Key. or Return Key to return
to the field. perform entry again, and press Return Key.

NSN
Ready to enter the NSN of an item listed on the
Staterrmt of Charges. To go to Quantity, enter the NSN
and press Return Key.
Acceptable entries are zero and positive numbers.
Example: 8415001841352
To finish entering NSN. press Return Key. To make a
correction while still in the NSN field, use BACKSPACE
and over-strike incorrect data.

17 STATEMENT OF CHARGES Quantity

Ready ao enter a Statement of Charges. Up to 100 NSNs Ready to enter quantity of <LIN.description>.
are allowed per statement. To return to Adjustment Acceptable entries are I to 99999.

ITransactions Menu. press DEL (Delete) Key. Up to 100 NSNs are allowed per statement. Enter the
Enter the NSNs and quantities of the items listed. After NSNs and quantities of the items listed. After all
all NSNs/quantities have been entered, press ESC Key, NSNs/quantities have been entered, press ESC Key,
enter the Total Price listed, and press Return Key. enter the Total Price listed, and press Return Key.

NOTE: BACKSPACE Key does not erase data. To make a To see general documentation, press Fl.
correction in any of the NSN or Quantity fields, press
LEFT Arrow Key. UP Arrow Key. or Return Key to return
to the field, perform en--y again, and press Return Key.

Quantity
Ready to enter for <,IN.description>the Quantity as
listed on the Statement of Charges.
To finish entering Quantity. press Return Key. To make
a correction while still in the Quantity field, use
BACKSPACE and over-strike incorrect data.

18 STATEMENT OF CHARGES Total Price

Ready to enter a Statement of Charges. Up to 100 NSNs Ready to enter total price of documenL
are allowed per statement. To return to Adjustment Acceptable values are .01 to 99999.99.
Transactions Menu, press DEL (Delete) Key. Up to 100 NSNs are allowed per statement. Enter the
Enter the NSNs and quantities of the items listed. After NSNs and quantities of the items listed. After all
all NSNs/quantities have been entered, press ESC Key. NSNs/quantities have been entered, press ESC Key.
enter the Total Price listed, and press Return Key. enter the Total Price listed, and press Return Key.
NOTE: BACKSPACE Key does not erase data. To make a To see general documentation, press Fl.
correction in any of the NSN or Quantity fields, press
LEFT Arrow Key. UP Arrow Key. or Return Key to return
to the field, perform entry again, and press Reur'n Key.

Total Price
Ready to enter the Total Price of the items listed on the
Statement of Charges.
Acceptable values are .01 to 99999.99.
To finish entering Total Price, press Return Key. To
make a correction while still in the Total Price field, use
BACKSPACE and overstrike incorrect data.

96

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

Task 12.3, moify a of survey.
19 ADJUSTMENT TRANSACTIONS MENU Report of Survey

Ready to choose one of the following types of Ready to go to Report of Survey.
transactions: A Report of Survey subtracts losses from the property

Statement of Charges book on hand quantity and creates a transaction record
Report of Survey of the dollar value for the document register.
Cash Collection Voucher To see general documentation, press Fl.
Lateral Transfer Out
Lateral Transfer In
Administrative Adjustment
Found on Installation
Turn In to SSA/DRMO
Cancel S/C. RIS. C/C

To return to CIF Main Menu, highlight option X and
press Return Key.
Proceed to the next help screen for more information
about menu option 2. Report of Survey.

Report of Survey
Ready to enter Reports of Survey. This option subtracts
losses from the Property Book on hand quantity and
creates a transaction record of the dollar value for the
document register.
To go to Report of Survey, press Return Key.
To make another selection, use LEFT and RIGHT Arrow
Keys to highlight the desired option number and press
Return Key.
To undo or reverse a selection after it has been pressed,
press DEL (Delete) Key.

20 REPORT OF SURVEY NSN
Ready to enter a Report of Survey. Up to 100 NSN's are Ready to enter NSN of inventory item.
allowed per report. Enter the NSNs and quantities of the Acceptable entries are zero and positive numbers.
items listed. After all NSNs/Quantities have been Example: 8415001841352
entered, press ESC key. enter the Total Price listed, andpress Return Key. To return to Adjustment Trantsactions Up to 100 NSNs wue allowed per statement. Enter the
Menu, press DEL (Delete) Key. NSNs and quantities of the items listed. After all

NSNs/quantities have been entered, press ESC Key.
NOTE: BACKSPACE Key does not erase data, enter the Total Price listed, and press Return Key.

NSN To see general documentation, press Fl.
Ready to enter the NSN of an item listed on the Report
of Survey. To go to Quantity. enter the NSN and press
Return Key.
Acceptable entries are zero and positive numbers.
Example: 8415001841352
To finish entering NSN. press Return Key. To make a
correction while still in the NSN field, use BACKSPACE
and over-strike incorrect data

97

Semi-Automated Messages Automated Messages
for 4" Sample Contexts for the Same Contexts

21 REPORT OF SURVEY Quantity
Ready to enter a Report of Survey. Up to 100 NSN's are Ready to enter quantity of <LJN.descripion>.
allowed per report. Enter the NSNs and quantities of the Acceptable entries are I to 99999.
items listed. After all NSNs/Quantities have been Up to 100 NSNs are allowed per statement. Enter the
entered, press ESC key, enter the Total Price listed, and NSNs and quantities of the items listed. After all
press Return Key. To return to Adjustment Transactions NSNs/quantities have been entered, press ESC Key.
Menu, press DEL (Delete) Key. enter the Total Price listed, and press Return Key.
NOTE: BACKSPACE Key does not erase data. To see general documentation, press Fl.

Quantity
Ready to enter for <LIN.description> the Quantity as
listed on the Report of Survey.
To finish entering Quantity, press Return Key. To make
a correction while still in the Quantity field, use
BACKSPACE and over-strike incorrect data.

22 REPORT OF SURVEY Total Price
Ready to enter a Report of Survey. Up to 100 NSN's are Ready to enter total price of document.
allowed per report. Enter the NSNs and quantities of the Acceptable values are .01 to 99999.99.
items listed. After all NSNs/Quantities have been Up to 100 NSNs are allowed per statement. Enter the
entered, press ESC key, enter the Total Price listed, and NSNs and quantities of the items listed. After all
press Return Key. To return to Adjustment Transactions NSNs/quantities have been entered, press ESC Key.
Menu. press DEL (Delete) Key. enter the Total Price listed, and press Return Key.
NOTE: BACKSPACE Key does not erase data. To see general documentation, press Fl.

Total Price
Ready to enter the Total Price of the items listed on the
Report of Survey.
Acceptable values are .01 to 99999.99.
To finish entering Total Price, press Return Key. To
make a correction while still in the Total Price field, use
BACKSPACE and overstrike incorrect data.

98

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

Task 13.1, create supply requisitions.
23 DOCUMENT REGISTER ACTIONS MENU DOCUMENT REGISTER ACTIONS MENU

Ready to perform the following Document Register Ready to go to Document Register Actions.
Actions: Document register actions include: creame supply

- Create Supply Requisitions requisitions; query document register; post status
- Query Document Register changes or cancelations; post receipts; request
- Post Status Changes or Cancellations change;, follow-ups, or cancellations; change stock
- Post Receipts number; print supply transactions; reopen a closed
- Request Changes, Followups, or Cancellations supply document or requisition; query due in documents
- Change Stock Number by NSN.
- Print Supply TransactionsbyN .
- Reopen a Closed Supply Document or Requisition To see general documentation, press Fl.

-Query Due In Documents by NSN
To go to Document Register Actions, press Return Key.
To make another selection, use LEFT and RIGHT Arrow
Keys to highlight the desired option number and press
Return Key.
To undo or reverse a selection after it has been pressed,
press DEL

24 DOCUMENT REGISTER ACTIONS MENU Create Supply Requisitions

Ready to create supply requisitions, maintain and query Ready to go to create supply requisitions.
the document register, print supply transactions and The system will assign the document number. Once
create floppy disk, or query due in documents by NSN. the NSN, document identifier code, quantity ordered,
To return to CIF Main Menu, highlight option X and and unit of issue entries are completed and no other
press Return Key. change is desired, press the ESC key. Once the NSN

Create Supply Requisitions entry is completed, a correction to the NSN cannot be

Ready to Create Supply Requisitions. The document made. Press the DEL (Delete) Key and reenter NSN to

number and date will be assigned by the system. make a correction.

To go to Create Supply Requisitions, press Return Key. To see general documentation, press Fl.

To make another selection, use LEFT and RIGHT Arrow
Keys to highlight the desired option number and press
Return Key.
To undo or reverse a selection after it has been pressed,
press DEL (Delete) Key.

25 CREATE SUPPLY REQUISITIONS Stock Number

Ready to Create Supply Requisitions. The system will Ready to enter national stock number of inventory
assign the document number. Once the NSN, Document item.
Identifier Code, Quantity Ordered, and Unit of Issue Acceptable entries ore zero and positive numbers.
entries are completed and no other change is desired, Example: 8415011841352
press the ESC Key. To return to Document Register NOTE: BACKSPACE Key does not erase daia.
Actions Menu, press the DEL (Delete) Key. Filling the field signals completion of the entry and
NOTE: Backspace Key does not erase data. the cursor jumps to the next data entry item.
NOTE: Once the NSN entry is completed, a correction to To see general documentation, press Fl.
the NSN cannot be made. Press DEL (Delete) Key and
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN). press UP Arrow
Key or press DOWN Arrow Key, perform entry again,
and press Return Key.

Stock Number

Ready to enter the Stock Number of a new requisition.
To go to Document Identifier Code. enter the Stock
Number.
Acceptable entries are zero and positive numbers.
Example: 8415011841352
Note: Filling the field signals completion, and the
cursor jumps to the Document Identifier Code field.
To make a correction while still in the Stock Number
field, use BACKSPACE and over-strike incorrect data. I

99

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

26 CREATE SUPPLY REQUISITIONS Document Identifier Code
Ready to Create Supply Requisitions. The system will Ready to enter document idntifier code of
assign the document number. Once the NSN, Document <LIN.description>.
Identifier Code, Quantity Ordered, and Unit of Issue NOTE: This entry is required to process the
entries are completed and no other change is desired, trnsaction. The DIC consists of 3 letterdigits which
press the ESC Key. To return to Document Register identify the requisition type.
Actions Menu. press the DEL (Delete) Key. See the displayed list of appropriate document
NOTE: Backspace Key does not erase data. identifier codes.
NOTE: Once the NSN entry is completed, a correction to Examples:
the NSN cannot be made. Press DEL (Delete) Key and A01 - Overseas Shipment with NSN
reenter NSN to make a correction. To make a correction AOA - Domestic Shipment with NSN
to any other entry field (besides NSN), press UP Arrow A05 - Overseas Shipment without NSN
Key or press DOWN Arrow Key. perform entry again, AOE - Domestic Shipment without NSN
and press Return Key. NOTE. BACKSPACE Key does not erase data.

Document Identifier Code Filling the field signals completion of the entry and
Ready to enter the Document Identifier Code (DIC) of the cursor jumps to the next data entry item.
the supply requisition. NOTE: This entry is required to To see general documentation, press Fl.
process the transaction. To go to Quantity Ordered,
enter the Document Identifier Code.
The DIC consists of 3 letters/digits which identify the
requisition type.
LIST:

A01 - Overseas Shipment with NSN
AOA - Domestic Shipment with NSN
A05 - Overseas Shipment without NSN
AOE - Domestic Shipment without NSN

Note: Filling the field signals completion, and cursor
jumps to Quantity Ordered field. To make a correction
while still in the Document Identifier Code field, use
BACKSPACE and overstrike incorrect data.

27 CREATE SUPPLY REQUISITIONS Quantity Ordered

Ready to Create Supply Requisitions. The system will Ready to enter quantity ordered of <LIN.description>.
assign the document number. Once the NSN, Document Acceptable entries are I to 99999.
Identifier Code. Quantity Ordered, and Unit of Issue NOTE: BACKSPACE Key does not erase data.
entries are completed and no other change is desired, Filling the field signals completion of the entry and
press the ESC Key. To return to Document Register the cursor jumps to the next data entry item.
Actions Menu. press the DEL (Delete) Key. To see general documentation, press Fl.

NOTE: Backspace Key does not erase data.
NOTE: Once the NSN entry is completed, a correction to
the NSN cannot be made. Press DEL (Delete) Key and
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key, perform entry again,
and press Return Key.

Quantity Ordered
Ready to enter the Quantity Ordered. To return to
Document Identifier Code, press UP Arrow Key. To go
to Unit of Issue enter the Quantity and press Return Key.
Acceptable entries are I to 99999.
To finish entering Quantity Ordered, press Return Key.
To make a correction while still in the Quantity Ordered
field, use BACKSPACE and over-strike incorrect data. I

100

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

28 CREATE SUPPLY REQUISITIONS Unit of Issue
Ready to Create Supply Requisitions. The system will Ready to enter unit of issue of <LIN.description>.
assign the document number. Once the NSN, Doctumet NOTE: This entry is required to process the
Identifier Code, Quantity Ordered, and Unit of Issue transaction. If the U1 is not listed, enter the U1 for the
entries are completed and no other change is desired, NSN as specified by teh current AMDF.
press the ESC Key. To return to Document Register Example: EA - Each PR -Pair
Actions Menu, press the DEL (Delete) Key. NOTE. BACKSPACE Key does not erase data
NOTE: Backspace Key does not erase data. Filling the field signals completion of the entry and
NOTE: Once the NSN entry is completed, a correction to the cursor jumps to the next data entry item.
the NSN cannot be made. Press DEL (Delete) Key and To see general documentation, press Fl.
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key. perform entry again,
and press Return Key.

Unit of Issue
Ready to verify or enter the Unit of Issue (1.1) of the
item to be requested. NOTE: This entry is required to
process the transaction. To return to Quantity Ordered,
press UP Arrow Key. To go to Media and Status Code,
press Return Key. If the U1 is not listed, enter the U] for
the NSN as specified by the current AMDF.
Example: EA - Each PR - Pair
Note: Filling the field signals completion, and cursor
jumps to Media and Status Code field. To make a
correction while still in the Unit of Issue field, use
BACKSPACE and over-strike incorrect data.

29 CREATE SUPPLY REQUISITIONS Media and Status Code
Ready to Create Supply Requisitions. The system will Ready to enter media and status code of
assign the document number. Once the NSN, Document <LIN.description>.
Identifier Code, Quantity Ordered, and Unit of Issue The Media and Status Code indicates whether the
entries are completed and no other change is desired, requisitioner and/or the DSU should receive status on a
press the ESC Key. To return to Document Register document by the supply source. See AR725-50 for
Actions Menu, press the DEL (Delete) Key. specific codes.
NOTE: Backspace Key does not erase data. NOTE: BACKSPACE Key does not erase data.
NOTE: Once the NSN entry is completed. a correction to Filling the field signals completion of the entry and
the NSN cannot be made. Press DEL (Delete) Key and the cursor jumps to the next data entry item.
reenter NSN to make a correction. To make a correction To see general documentation, press Fl.
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key, perform entry again.
and press Return Key.

Media and Status Code
Ready to change the Media and Status Code, if
applicable. Otherwise, press Return Key. To return to
Unit of Issue, press UP Arrow Key. To go to Demand
Code, press Return Key.
The Media and Status Code indicates whether the
requisitioner and/or the DSU should receive status on a
document by the supply source. See AR725-50 for
specific codes.
Note: Filling the field signals completion, and cursor
jumps to Demand Code field. To make a correction
while while still in the Media and Status Code field. use
BACKSPACE and over-strike incorrect data.

101

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

30 CREATE SUPPLY REQUISITIONS Demand Code
Ready to Create Supply Requisitions. The system will Ready to enter demand code of <LIN.description>.
assign the document number. Once the NSN, Document The Demand Code indicates whether the demand is
Identifier Code, Quantity Ordered, and Unit of Issue recurring or nonrecurring.
entries are completed and no other change is desired. R - Recurring Demand
press the ESC Key. To return to Document Register N - Non-rectming demand
Actions Menu, press the DEL (Delete) Key. S d list of appropriate demand codes.
NOTE: Backspace Key does not erase data. NOT BACKSPACE Key does not er data.
NOTE: Once the NSN entry is completed, a correction to Filling the field signals completion of the entry and
the NSN cannot be made. Press DEL (Delete) Key and the cursor jumps to the next data entry item.
reenter NSN to make a correction. To make a correction T
to any other enty field (besides NSN), press UP Arrow 0 see general documentation, press Fl.
Key or press DOWN Arrow Key. perform entry again.
and press Return Key.

Demand Code
Ready to change the Demand Code, if applicable.
Otherwise, press Return Key.
NOTE: This entry is required to process the transaction.
To retaun to Media and Status Code, press UP Arrow
Key. To go to Signal Code, press Return Key.
The Demand Code indicates whether the demand is
recurring or nonrecurring.
R - Recurring Demand
N - Non-recurring demand
Note: Filling the field signals completion, and cursor
jumps to Signal Code field. To make a correction while
while still in the Demand Code field. use BACKSPACE
and over-strike incorrect data.

31 CREATE SUPPLY REQUISITIONS Signal Code
Ready to Create Supply Requisitions. The system will Ready to enter signal code of <LIN.description>.
assign the document number. Once the NSN, Document The Signal Code designates the intended consignee and
Identifier Code, Quantity Ordered, and Unit of Issue the activity to receive/pay bills. See AR725-50 for
entries are completed and no other change is desired, specific codes.
press the ESC Key. To return to Document Register NOTE: BACKSPACE Key does not erase data.
Actions Menu, press the DEL (Delete) Key. Filling the field signals completion of the entry and
NOTE: Backspace Key does not erase data. the cursor jumps to the next data entry item.
NOTE: Once the NSN entry is completed, a correction to To see general documentation, press Fl.
the NSN cannot be made. Press DEL (Delete) Key and
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key. perform entry again,
and press Return Key.

Signal Code
Ready to change the Signal Code, if applicable.
Otherwise. press Return Key. To return to Demand
Code, press UP Arrow Key. To go to End Item Code.
press Return Key.
The Signal Code designates the intended consignee and
the activity to receive/pay bills. See AR725-50 for
specific codes.
Note: Filling the field signals completion, and cursor
jumps to End Item Code field. To make a correction
while still in the Signal Code field, use BACKSPACE
and over-strike incorrect data.

102

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

32 CREATE SUPPLY REQUISITIONS End Item Code
Ready to Create Supply Requisitions. The system will Ready to enter end item code of <IJN.description>.
assign the document number. Once the NSN, Document The End Item Code informs the supply system about
Identifier Code. Quantity Ordered, and Unit of Issue dhe major end item required.
entries are completed and no other change is desired, NOTE. BACKSPACE Key does not erase data
press the ESC Key. To return to Document Register Filling the field signals completion of the entry and
Actions Menu. press tie DEL (Delete) Key. the cursor jumps to the next data entry item.
NOTE: Backspace Key does not erase data. To see general documentation. press Fl.
NOTE: Once the NSN entry is completed, a correction to
the NSN cannot be made. Press DEL (Delete) Key and
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key, perform entry again.
nd press Return Key.

End Item Code
Ready to enter the End Item Code. This is an optional
entry field. To return to Signal Code, press UP Arrow
Key. To go to Priority Code, press Return Key.
The End Item Code informs the supply system about the
major end item required.
Note: Filling the field signals completion, and cursor
jumps to Priority Code field. To make a correction
while still in the End Item Code field, use BACKSPACE
and over-strike incorrect data.

33 CREATE SUPPLY REQUISITIONS Priority Code
Ready to Create Supply Requisitions. The system will Ready to enter priority code of <LIN.description>.
assign the document number. Once the NSN, Document The Priority Code is a combination of the Force
Identifier Code, Quantity Ordered, and Unit of Issue Activity Designator and the Urgency Need Designator.
entries are completed and no other change is desired, NOTE. BACKSPACE Key does not erase data.
press the ESC Key. To return to Document Register Filling the field signals completion of the entry and
Actions Menu. press the DEL (Delete) Key. the cursor jumps to the next data entry item.
NOTE: Backspace Key does not erase data. To see general documentation, press Fl.
NOTE: Once the NSN entry is completed, a correction to
the NSN cannot be made. Press DEL (Delete) Key and
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key. perform entry again.
and press Return Key.

Priority Code
Ready to change the Priority Code, if applicable.
Otherwise, press Return Key. NOTE: This entry is
required to process the transaction. To return to End
Item Code, press UP Arrow Key. To go to Required
Delivery Date, press Return Key.
The Priority Code is a combination of the Force
Activity Desi,'iator and the Urgency Need Designator.
Note: Filling the field signals completion. and cursor
jumps to Required Delivery Date field. To make a
correction while still in the Priority Code field, use
BACKSPACE and over-strike incorrect data.

103

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

34 CREATE SUPPLY REQUISITIONS Required Delivery Date

Ready to Create Supply Requisitions. The system will Ready to enter required delivery date of
assign the document number. Once the NSN. Document <LIN.description>.
Identifier Code. Quantity Ordered, and Unit of Issue Required Delivery Date is the date on which the item
entries are completed and no other change is desired. must be delivered to the CIF.
press the ESC Key. To return to Document Register Format is (YDDD). Example: 5 Jan 1991 = 1005.
Actions Menu, press the DEL (Delete) Key. NOTE. BACKSPACE Key does not erase dat
NOTE: Backspace Key does not erase dat Filling the field signals completion of the entry and

NOTE: Once the NSN entry is completed, a correction to the cursor jumps to the next data entry item.
the NSN cannot be made. Press DEL (Delete) Key and To see general documentation, press Fl.
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key, perform entry again,
and press Return Key.

Required Delivery Date
Ready to enter the Required Delivery Date. if applicable.
Otherwise, press Return Key. To return to Priority
Code, press UP Arrow Key. To go to Advice Code, press
Return Key.
Required Delivery Date is the date on which the item
must be delivered to the CIF.
Format is (YDDD). Example: 5 Jan 1991 = 1005.
To cancel this entry, over-strike any entries with
SPACE bar.
Note: Filling the field signals completion, and cursor
jumps to Advice Code field. To make a correction while
still in the Required Delivery Date field, use
BACKSPACE and over-strike incorrect data,.

35 CREATE SUPPLY REQUISITIONS Advice Code

Ready to Create Supply Requisitions. The system will Ready to enter advice code of <LIN.description>.

assign the document number. Once the NSN, Document The Advice Code provides additional information
Identifier Code, Quantity Ordered, and Unit of Issue about the requisition when necessary. See AR725-50
entries are completed and no other change is desired, for specific codes.

press the ESC Key. To return to Document Register Entry should be of the form AN, where
Actions Menu, press the DEL (Delete) Key. A denotes a letter, and

NOTE: Backspace Key does not erase data. # denotes a number.

NOTE: Once the NSN entry is completed, a correction to NOTE: BACKSPACE Key does not erase data.
the NSN cannot be made. Press DEL (Delete) Key and Filling the field signals completion of the entry and
reenter NSN to make a correction. To make a correction the cursor jumps to the next data entry item.
to any other entry field (besides NSN), press UP Arrow To see general documentation, press Fl.
Key or press DOWN Arrow Key. perform entry again,
and press Return Key.

Advice Code

Ready to enter the Advice Code for a new requisition, if
applicable. Otherwise, press Return Key. To return to
Required Delivery Date, press UP Arrow Key. To go to
Supplementary Address or Location, press Return Key.

The Advice Code provides additional information about
the requisition when necessary. See AR725-50 for
specific codes.
Entry should be of the form A#. where
A denotes a letter, and
denotes a number.

To cancel entry, over-strike any entries with SPACE
bar.
Note: Filling the field signals completion, and cursor

jumps to Supplementary Address or Location field.

104

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

36 CREATE SUPPLY REQUISITIONS Supplementary Address or Location
Ready to Create Supply Requisitions. The system will Ready to enter supplementary address of
assign the document number. Once the NSN, Document <LIN.description>.
Identifier Code, Quantity Ordered, and Unit of Issue The Supplementary Address or Location indicates the
entries are completed and no other change is desired, specific account for receiving materiel or
press the ESC Key. To return to Document Register documentaion.
Actions Menu. press the DEL (Delete) Key. NOTE BACKSPACE Key does not awe data.
NOTE: Backspace Key does not erase data. Filling the field signals completion of the entry and
NOTE: Once the NSN entry is completed. a correction to the cursor jumps to the next data entry item.
the NSN cannot be made. Press DEL (Delete) Key and To see general documentation, press Fl.
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key. perform entry again.
and press Return Key.

Supplementary Address or Location
Ready to change the Supplementary Address or
Location, if applicable. Otherwise, press Return Key.
To return to Advice Code, press UP Arrow Key. To go to
DSU Code, press Return Key.
The Supplementary Address or Location indicates the
specific account for receiving materiel or
documentation.
Note: Filling the field signals completion, and cursor
jumps to DSU Code field. To make a correction while
still in the Supplementary Address or Location field, use
BACKSPACE and over-strike incorrect data.

37 CREATE SUPPLY REQUISITIONS DSU Code
Ready to Create Supply Requisitions. The system will Ready to enter DSU code of <LIN.description>.
assign the document number. Once the NSN. Document The DSU Code indicates the direct support unit which
Identifier Code. Quantity Ordered. and Unit of Issue will process documentation and materiel.
entries are completed and no other change is desired, NOTE. BACKSPACE Key does not erase data.
press the ESC Key. To return to Document Register Filling the field signals completion of the entry and
Actions Menu. press the DEL (Delete) Key. the cursor jumps to the next data entry item.
NOTE: Backspace Key does not erase data. To see general documentation. press Fl.
NOTE: Once the NSN entry is completed, a correction to
the NSN cannot be made. Press DEL (Delete) Key and
reenter NSN to make a correction. To make a correction
to any other entry field (besides NSN), press UP Arrow
Key or press DOWN Arrow Key. perform entry again.
and press Return Key.

DSU Code
Ready to change the DSU Code. if applicable.
Otherwise, press Return Key. To return to
Supplementary Address or Location, press UP Arrow
Key.
The DSU Code indicates the direct support unit which
will process documentation and materiel.
To finish entering DSU Code, press Return Key. To
make a correction while still in the DSU Code field, use
BACKSPACE and over-strike incorrect data.

105

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

"Ta*s.W, poa a 3offing u___ue.
38 CLOTHING ISSUES PROCESS CLOTHING ISSUES PROCESS

Ready to select one of the following Issue Processes: Ready to go to Clothing Issues Process.
- Initial Issue Reception Clothing Issues processes include: initial issue
- Complete Initial Issue reception; complete initial issue; print clothing record
- Print Clothing Record (3645) (3645); issue due out items; print worksheet; issue
- Issue Due Out Items additional items; automate a manual record.
- Print Worksheet To see general documenaion. press Fl.
- Issue Additional Items
- Automate a Manual Record

To go to Clothing Issues Process, press Return Key.
To make another selection, use LEFT and RIGHT Arrow
Keys to highlight the desired option number and press
Return Key.
To undo or reverse a selection after it has been pressed.
press DEL (Delete) Key.

39 CLOTHING ISSUES Initial Issue
Ready to begin initial issue, complete initial issue, Ready to go to complete initial issue.
issue due-out or additional items, print clothing record Complete all entries and press ESC key on the first
(3645) or worksheet, or automate manual clothing blank row to process the entries. NOTE: The fastest
records. way to proceed to an item where a size entry is required
To return to CIF Main Menu. highlight option X and is to press the Return key repeatedly until a beep
press Return Key.Complete sounds.

Complete Initial Issue To see general documentation, press Fl.

Ready to enter the size and quantity issued to the
individual for every LIN on his clothing worksheet.
To go to Complete Initial Issue, press Return Key.
To make another selection. use LEFT and RIGHT Arrow
Keys to highlight the desired option number and press
Return Key.
To undo or reverse a selection after it has been pressed,
press DEL (Delete) Key.

40 COMPLETE INITIAL ISSUE SSN
Ready to complete an individual's initial issue. To Ready to enter social security number of soldier.
return to CIF Clothing Issues without saving entries, Examples:
press DEL (Delete) Key. 123456789 for U.S. Soldier
Complete all entries, and press ESC Key on the first K23456789 for KATUSA
lank row to process the entries. To complete an entry, KC3456789 for Korean Civilian
press Return Key. To see general documentation, press Fl.
NOTE: The fastest way to proceed to an item where a
Size entry is required is to press the Return Key
repeatedly until a beep sounds.
To make a correction in an entry field, press UP or
DOWN Arrow Keys, BACKSPACE Key, or Retun Key to
return to the field, and perform entry again.

SSN
Ready to input an individual's SSN.
Examples:

123456789 for U.S. Soldier
K23456789 for KATUSA
KC3456789 for Korean Civilian

To finish entering SSN. press Return Key.

106

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

41 COMPLETE INITIAL ISSUE IQTY
Ready to complete an individual's initial issue. To Ready to enter issued quantity of <LIN.description>.
return to CIF Clothing Issues without saving entries, If the quantity issued matches the quantity under the
press DEL (Delete) Key. IQTY field, press Return Key.
Complete all entries, and press ESC Key on the first Acceptable entries are zero and positive nunbers.
lank row to process the entries. To complete an entry. To see general documentation, press Fl.
press Return Key.
NOTE: The fastest way to proceed to an item where a
Size entry is required is to press the Return Key
repeatedly until a beep sounds.
To make a correction in an entry field, press UP or
DOWN Arrow Keys, BACKSPACE Key, or Return Key to
return to the field, and perform entry again.

IQTY
Ready to enter for <LIN.description> the quantity of an
item issued to the individual as annotated on his
clothing worksheet. If the quantity issued matches the
quantity under IQTY, press Return Key.
Acceptable entries are zero and positive numbers.
To finish entering IQTY, press Return Key.

42 COMPLETE INITIAL ISSUE Size
Ready to complete an individual's initial issue. To Ready to enter size of <LIN.description>.
return to CIF Clothing Issues without saving entries, Valid Size entries (Up to 32 values displayed):
press DEL (Delete) Key. <lIN.validsize>
Complete all entries, and press ESC Key on the first To see general documentation, press Fl.
lank row to process the entries. To complete an entry.
press Return Key.
NOTE: The fastest way to proceed to an item where a
Size entry is required is to press the Return Key
repeatedly until a beep sounds.
To make a correction in an entry field, press UP or
DOWN Arrow Keys, BACKSPACE Key. or Return Key to
return to the field, and perform entry again.

Size
Ready to enter size of <LIN.description> issued to
individual as indicated by the clothing worksheet. To
go to IQTY, enter Size and press Return Key.
Valid Size entries (Up to 32 values displayed):

To finish entering Size, press Return Key.

107

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

TaSk W5., post an Issm of *outcioliung Ban. _ _ __ _ __ _ _ __ _ _

43 CLOTHING ISSUES Issue Additional Items
Ready to begin initial issue, complete initial issue, Ready to go to issue additional items.
issue due-out or additional items, print clothing record Complete all entries, and press ESC Key to process the
(3645) or worksheet, or automate manual clothing entries. To complete an entry. press Return Key.
records. To see general documentation, press Fl.
To return to CIF Main Menu, highlight option X and
press Return Key.

Issue Additional Items
Ready to issue additional items to an individual.
To go to Issue Additional Items, press Return Key.
To make another selection, use LEFT and RIGHT Arrow
Keys to highlight the desired option number and press
Return Key.
To undo or reverse a selection after it has been pressed,
press DEL (Delete) Key.

44 ISSUE ADDITIONAL ITEMS SSN

Ready to issue additional items to an individual. To Ready to enter social security number of soldier.
return to CIF Clothing Issues without saving entries. Examples:
press DEL (Delete) Key. 123456789 for U.S. Soldier
Complete all entries, and press ESC Key to process the K23456789 for KATUSA
entries. To complete an entry, press Return Key. KC3456789 for Korean :ivilian
To make a correction in an entry field, press UP or To see general documentation, press Fl.
DOWN Arrow Keys. BACKSPACE Key, or Return Key to
return to the field, and perform entry again.

SSN
Ready to input an individual's SSN.

Examples:
123456789 for U.S. Soldier
K23456789 for KATUSA
KC3456789 for Korean Civilian

To finish entering SSN, press Return Key.

45 ISSUE ADDITIONAL ITEMS IQTY
Ready to issue additional items to an individual. To Ready to enter issued quantity of <LIN.description>.
return to CIF Clothing Issues without saving entries. If the quantity issued matches the quantity under the
press DEL (Delete) Key. IQTY field. press Return Key.
Complete all entries, and press ESC Key to process the Acceptable entries are zero and positive numbers.
entries. To complete an entry, press Return Key. To see general documentation, press Fl.
To make a correction in an entry field. press UP or
DOWN Arrow Keys, BACKSPACE Key. or Return Key to
return to the field. and perform entry again.

IQTY
Ready to enter for <LIN>descritpion> the quantity of an
item that is part of an additional issue. To go to AQTY,
enter the IQTY and press Return Key.

Acceptable entries are zero and positive numbers.
To finish entering IQTY. press Return Key.

108

Semi-Automated Messages Automated Messages
for 46 Sample Contexts for the Same Contexts

46 ISSUE ADDITIONAL ITEMS Size
Ready to issue additional items to an individual. To Ready to enter size of <LIN.description>.
return to CIF Clothing Issues without saving entries, Valid Size entries (Up to 32 values displayed):
press DEL (Delete) Key. <LIN.validsize>
Complete all entries. ant' press ESC Key to process the To see general documentation, press Fl.
entries. To complrce an entry, press Return Key
To make a correction in an entry field, press UP or
DOWN Arrow Keys, BACKSPACE Key. or Return Key to
return to the field, and perform entry rgain.

Size
Ready to enter size of <LiN.description> as part of an
additonal issue to an individual. To go to IQTY. enter
Size and press Return Key.
Vail" Size entries (Up to 32 values displayed):

To finish entering Size, press Return Key.

109

APPENDIX 2

SAMPLE CONTEXTS FROM ACIFS

111

Contexts - Acts
4-Task 3-Procedure 2-Function 1-Command

I m-Main Menu ,.,0go to
2 m8-Clothing Turn In Process go to

M enu
3 "ditto" m81-Tum Ins id soldier enter
4 "ditto" m81-Turn Ins id soldier enter
5 "ditto" m81-Turn Ins id soldier enter
6 "ditto" m81-Turn Ins id soldier enter
7 "ditto" m8l-Turn Ins id soldier enter
8 "ditto" m81-Turn Ins id soldier enter
9 "ditto" m8l-Turn Ins id soldier enter

10 "ditto" m81-Turn Ins id soldier enter
I I "ditto" m81-Turn Ins id inv item enter
12 "ditto" m81-Turn Ins id inv item enter
13 "ditto" m81-Turn Ins id inv item enter
14 m-Main Menu go to
15 m2-Ad.ustment Transactions go to
16 "di"tto m21-S/C id inv item enter
17 "ditto" m21-S/C id mv item enter
18 "ditto" m21-S/C id inv item enter
19 m2-Adiustment Transactions go to
20 "ditto" m22-R/S id inv item enter
21 "ditto" m22-R[S id inv item enter
22 "ditto" m22-R/S id inv item enter
23 m-Main Menu Ito to
24 m6-Document Register Actions go to
25 "ditto" m61-Create Supply id inv item enter

_.. R eq u isitio ns
26 ."ditto" "ditto" id inv item enter
27 "ditto" "ditto" id inv item enter
28 "ditto" "diwt" id inv item enter
29 "ditto" "ditto" id inv item enter
30 "ditto" "ditto" id inv item enter
31 "ditto" "ditto" .id mv item enter
32 "ditto" "ditto" id inv item enter
33 "ditto" "ditto" id inv item enter
34 "ditto" "ditto" id inv item enter
35 "ditto" "ditto" id inv item enter
36 . "ditto" "ditto" id inv item enter
37 "ditto" "'ditto" id inv item enter
38 rn-Main Menu so to
39 m7-Clothing Issues so_ go to
40 "ditto" m72-Complete Issue id soldier enter
41 "ditto" "ditto" id inv item enter
42 "ditto" "ditto" id inv item enter
43 m7-Clothing Issues go to
44 "ditto" m76-issue Addtional id soldier enter

Items
45 i"dit" "ditto" id inv item enter
46 "ditto" "ditto" id inv item enter

112

Contexts - Objects
Screen Document Soldier Inventory Iten Screen Field

1 Main Menu menu item 8
2 Clothing Turn Ins __ menu item I
3 Turn Ins aeb02t.ssn
4 Turn Ins SSN aeb)2Llname
5 Turn Ins SSN aeb02Lfname
6 Turn Ins SSN aeb02Lsex
7 Turn Ins SSN aeb02Luic
8 Turn Ins SSN .ae__2__
9 Turn Ins SSN aeb02t.mosd

10 Turn Ins SSN _ aebO2Lsissue
11 Turn Ins SSN aeb0lt.lin
12 Turn Ins SSN L1N aebO0LSiz
13 Turn Ins SSN LIN formonly.iqty
14 Main Menu _,menu item 2
15 Adjustment Transactions menu item 1
16 S/C DOC# ,,aebl4Lremarks
17 S/C DOC# NSN aebl4LqtY
18 S/C DOC# aebl4Ldolval
19 Adjustment Transactions menu item 1
20 R/S DOC# "_aebl4Lremarks
21 R/S DOC# NSN aebl4Lctty
22 R/S DOC# aebl44Ldolval
23 Main Menu menu item 6
24 Document Register menu item I

Actions
25 Supply Reguisitions aebl5Lnsn
26 Supply Requisitions NSN aebl5Ldic
27 Supply Requisitions NSN aebl5LqtY
28 Supply Requisitions ,,, NSN aebl5t.ui
29 Supply Requisitions NSN aebl5Lmsstat
30 Supply Requisitions NSN aebl5Ldemcde
31 Supply Requisitions NSN aebl5Lsigcde
32 Supply Requisitions NSN aeblSLeic
33 Supply Requisitions NSN aebl5ipricde

34 Supply Requisitions NSN aebl5Lrdd
35 Supply Requisitions NSN aebl5Lstatcde
36 Supply Requisitions NSN aebl5Lsumddr
37 Supply Requisitions NSN aeblSLdsucde
38 Main Menu menu item 7
39 Complete Initial Issue menu item 2
40 Complete Issue _aebO2t.ssn

41 Complete Issue aebl3Lsize
42 Complete Issue ,aebl3tLiqty
43 Complete Initial Issue menu item 6
44 Issue Additional Items aeb02t.ssn
45 Issue Additional Items _aebl3Lsize

46 Issue Additional Items aebl3Liqty

113

APPENDIX 3

SAMPLE DATA DIC11ONARIES

114

COMMANDS: Dictionary of Commands (command is the level-i type of act)
command verb prep darg iart
enter enter of FIELDS.short_descriptor (name = jFUNCTIONS.darg (function =

CV(screen field)) CV tion))
go to go to FIELDS.shortdescriptor (name =

CV(screen field))
_respond respond

FUNCTIONS: Dictionary of Functions (function is the level-2 type of act)
function verb dar2
id soldier idenfify "soldier" or soldier.SSN
id inventor item identify "inventory item" or LIN.description
id document identify

PROCEDURES: Dictionary of Procedures (procedure is the level-3 type of act)
procedure screen

repare Statement of Charges m21
Prepare Report of Survey m22
-Create Supply Re_ uisition m61

Complete Issue m72
Issue Additional Items m76
Perform Turn Ins m81

TASKS: Dictionary of Tasks (Task is the level-4 type of act)
task screen
Leave Main Menu mI
Perform Adjustment Transactions m2
Perform Document Register Actions m6 ,_.
Perform Clothing Issues m7
Perform Clothing Turn-Ins m8

115

FIELDS: Dictionary of Screen Fields (screen field is a type of object)
name short descriptor meaning
aebOlt.lin line item number
aebOILSiz size
aebO2Lfname first name
aeb_2t._rade wde
aebO2tLname last name
aebO2tmosd duty MOS
aebO2t.sex sex
aebO2t.sissue special issue status A special issue is authorized for the following Duty MOS's: 95B.

15A, 94B, 67U, 63B. If the individuals Duty MOS is listed above,
enter Y, otherwise enter N.

aebO2Lssn social security number
aeb02tuic unit identification code The LTIC is a code identifying the unit to which an individual is

assigned. The UIC may be found on the individual's DA 3635
(manual) or unit assignment order.

aebl3Liqty issue quantity If the quantity issued matches the quantity under the IQTY field, press
____ ____ ____ Return Key.

aebl3Lsiz size
aebl4Ldolval total price._
;aeb!4Lty quantity
aeb 4Lremarks NSN
aebl5Ldemcde demand code The Demand Code indicates whether the demand is recurring or

nonrecurring.

aebl5Ldic document identifier code NOTE: This entry is required to process the transaction. The DIC
consists of 3 letters/digits which identify the requisition type.

aebl5Ldsucde DSU code The DSU Code indicates the direct support unit which will process
documentation and materiel.

aebl5Leic end item code The End Item Code informs the supply system about the major end
I item required

aebl 5t.msstat media and status code The Media and Status Code indicates whether the requisitioner and/or
the DSU should receive status on a document by the supply source.

,,_ See AR725-50 for specific codes.
aebl5t.NSN national stock number
aebl5Lpricde priority code The Priority Code is a combination of the Force Activity Designator

and the Urgency Need Designator.
aebl5Lqty quantity ordered
aebl5Lrdd required delivery data Required Delivery Date is the date on which the item must be

delivered to the CIF.
aebl5Lsigcde signal code The Signal Co designates the intended consignee and the activity to

receive/pay bills. See AR725-50 for specific codes.
aebl5Lstatcde advice code The Advice Code provides additional information about the requisition

,._ _when necessary. See AR725-50 for specific codes.
aebl5mspaddr supplementary address The Supplementary Address or Location indicates the specific account

for receiving materiel or documentation.
aebl5Lui unit of issue NOTE: This entry is required to process the transaction. If the UI is

not listed, enter the U] for the NSN as specified by the current
AMDF.

formonly.iqty turn in quantity If the quantity turned in matches the quantity under the TIQTY field,
I press Return Key.

116

FIELDS: continued
name short descriptor meaninit
m8 Clothing Turn In Clothing turn in processes include: a complete or partial tum in,

Process Menu print clothing record, or perform a direct exchange of sized items for
an individual who has completed initial issue.

m81 Turn In Process The turn in process will process a turn in of issued items. Do not
use this option if an individual has not completed the issue cycle or
had completed a turn in already.

m2 Adjustment Transactions Adjustment transactions include: statements of charges, Reports of
Menu survey, cash collection, lateral transfers, administrative adjustments,

found on installation, turn ins to SSA/DRMO, and cancelling S/C,
......... VR/S. C/C.

m21 Statement of Charges A statement of charges subtracts losses from the property book on
hand quantity and creates a transaction record of the dollar value for
the document register.

m22 Report of Survey A report of survey subtracts losses from the property book on hand
quantity and creates a transaction record of the dollar value for the
document register.

m6 Document Register Document register actions include: create supply requisitions; query
Actions document register, post status changes or cancelations; post receipts;

request change;, follow-ups, or cancellations; change stock number;
print supply transactions; reopen a closed supply document or
requisition; query due in documents by NSN.

m61 Create Supply The system will assign the document number. Once the NSN,
Requisition document identifier code, quantity ordered, and unit of issue entries are

completed and no other change is desired, press the ESC key.
m7 Clothing Issues Process Clothing Issues processes include: initial issue reception; complete

initial issue; print clothing record (3645); issue due out items; print
worksheet, issue additional items; automate a manual record.

"m72 Complete Initial Issue Complete all entries and press ESC key on the first blank row to
process the entries. NOTE: The fastest way to proceed to an item
where a size entry is required is to press the Return key repeatedly
until a beep sounds.

m76 Issue Additional Items Complete all entries, and press ESC Key to process the entries. To
complete an entry, press Return Key.

117

CHOICES: Dictionary of Choices
name I choice
aebl5Ldic See the displayed list of appropriate DIC entries.
aebl5Ldemcde See the dispa ed list of ypnRia demand code entries.

FORMATS: Dictionary of Formats
I name format

DOMAINS: Dictionary of Domains
name domain
aebOLt.lin Entry should be of the form A#### where

A denotes a leer and
denotes a number.

aeb02Lgrade Enlisted- E01-E10 Civilian - GOI-GI5
Office- 001-010 Korean - KO0-KI5
Warrant- W01-W10
Note: 0 (letter) and 0 (number) are distinct

aebO2Lmosd Examples: 1B20 -infantry (E5)
95B - military police
92B - supply officer

aeb02Lsex Acceptable entries are M for Male and F for Female.
aeb02Lssn Examples: 1234565789 for U.S. Solder

K23456789 for KATUSA
KC3456789 for Korean Civilian

aeb02Luic Examples: WEOQAA
W134AA
WRMAAA (UIC with largest assg. strength)

Note: 0 (letter) and 0 (number) are distinct.
aebl3Ligty Acceptable entries are I to 99999.
aebl31siz Examples: *cselect uniquevalidsize from aebl3t where LIN =

CV(8)*
aebl4Liqty Acceptable entries are I to 99999.
aebl5t.demcde Examples: R - Recurring Demand, N - Nonrecwring Demand.
aebl5Ldic Examples: A01 - Overseas Shipment with NSN

AOA - Domestic Shipment with NSN
A05 - Overseas Shipment without NSN
AOE - Domestic Shipment without NSN

aebl5Ligty Acceptable entries are I to 99999.
aebl5t.nsn Acceptable entries are zero and positive numbers.
aebl5Lrdd Acceptable enries are (YDDD)
aebl5Lstatcde Entry should be of the form A#, where

A denotes a letter, and
denotes a number.

aebl5LUi Examples: EA - Each, PR - Pair.
aebl5Lqty Acceptable entries are I to 99999.

118

ADHOC: Ad-Hoc Dictionary
context Ad Hoc Sentence
.... supply requisitions NOTE: BACKSPACE Key does not erase data.

Filling the field signals completion of the entry and the cursor jumps to the next data
entry item.

,,id soldier,, Turn Ins NOTE: BACKSPACE Key does not erase data. To make a correction in an entry field,
press UP and DOWN Arrow Keys as needed and preform entry again, or press
SBACKSPACE (non-destrucive), overstrike, and press eturn Key.

id inv item,, Turn Enter the sizes and quantities turned in for each LIN displayed. If a soldier was not

Ins.... signed for a listed LIN, use the F2 Key to delete it. To add a LIN, press the FI key
while on the LIN which alphanumerically follows the new LIN. When all entries are
completed, press ESC Key on the first blank line. Press DEL (Delete) Key to return to
Clothing Turn Ins Menu without saving entries.

id inv item,, Complete Up to 100 NSNs are allowed per statement. Enter the NSNs and quantities of the items

Issue.... listed. After all NSNs/quantities have been entered, press ESC Key, enter the Total
I Price listed, and press Return Key.

GENHLP: General Dictionary
context General message
menu items To make another selection, use LEFT and RIGHT Arrow Keys to highlight the desired

option number and press Return Key.
To undo or reverse a selection after it has been pressed, press DEL (Delete) Key.

data items To commit all data entered on the screen, press the ESC (Escape) Key.
To erase all data entered on the screen, press the DEL (Delete) Key.

119

BIBLIOGRAPHY

Barge, Walter. (1991). Univera Software Documentation va D ai_ lp. Report
ASQB-GM-91-028, U.S. Army Information Systems Engineering Command, Fort
Huachuca, AZ 85613-5300, June 1991.

Borenstein, Nathaniel (1985). The Design and Evaluation of On-Line Help Systems.
Doctoral Dissertation, Carnegie-Mellon University, Pittsburgh, PA.

Brochmann, John R. (1986). Writing Better Computer User Documentation. New York:
Wiley.

Cannon, D. (1990). Automated Central Issue Facility [Computer Program]. Atlanta, GA:
U.S. Army Software Developmental Center - Atlanta, Fort Gillem, GA.

Dorazio, Patricia (1988). Help Facilities: A Survey of the Literature. Tcnical
Communication. 35, 118-121.

Gould, John D. (1988). How to Design Usable Systems. In Helander, M. (Editor),
Handbook of Human-Computer Interaction, Elsevier Science Publishers B. V. North-
Holland, 757-789.

Horton, William K. (1990). Designing & Writing Online Documentation. New York:
Wiley.

Hurd, John C. (1983) Writing Online Help. In Proceedings of the 30th International
Technical Communication QConference. Washington, DC: Society of Technical
Communication, W&E 151-154.

Installation Support Modules. (1990). A briefing paper dated 12 September. Office of the
Project Manager, U.S. Army Installation Support Modules, Fort Belvior, VA.
Photocopied.

Laurel, Brenda, (Ed.). (1990). The Art of Human-Computer Interface Design. Reading,
MA: Addison-Wesley.

Nicol, Anne, & Sellen, Abigail. (1990). Building User-centered On-line Help. In B.
Laurel (Ed.), The Art of Human-Computer Interface Design (pp. 143-153). Reading, MA:
Addison-Wesley.

Norman, Donald, & Craper, Stephen (Editors). (1986). User Centered System Design:
New Perspectives on Huyman-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum
Associates.

120

Wolven, Ren& (1991). Effectiveness Testing of Embedded 'ser Supor= for U.S. Army
Installation-Level Software. Masters thesis, Georgia Institute of Technology, Atlanta, GA.
Published as report ASQB-GM-91-027, U.S. Army Information Systems Engineering
Command, Fort Huachuca, AZ 85613-5300, June 1991.

Young, Donovan, Miller, M. Wayne, Jr. and Coleman, James P., Jr., (1987). Gidelt
DSS Development. Vol 1. Computer Systems and Technology Division, Electronics and
Computer Systems Laboratory, Georgia Tech Research Institute and School of Industrial
and Systems Engineering, Georgia Institute of Technology, Atlanta, GA. Published as
report ASQBG-A-88-001, U.S. Army Information Systems Engineering Command, Fort
Huachuca, AZ 85613-5300, June 1991.

Young, Donovan (1990a). Embedded User Sup=Or for U. S. Army Installation Software.
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332-0205.

Young, Donovan (1990b). Specification of User Requirements and Dynamic Help
Systems Standards for EUS project and C[F Conversion. School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205.

Washechek, Mark. (1991). A Dynamic Help Generator for U.S. Army Installation-Level
Software. Unpublished manuscript, Georgia Institute of Technology, Atlanta, GA.

121

