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FOREWORD

Skin blood flow is a critical indicator of the thermodynamic state of an
individual. Venous occlusion plethysmography is a non-invasive method used
to estimate skin blood flow. Venous (but not arterial) biood flow is occluded at
a proximal site on the limb (i.e., upper arm or thigh). The rate of change of
limb volume, measured using either a strain-gauge or volume plethysmograph
immediately following venous occlusion, is presumed to measure limb arterial
blood flow. Since muscle blood flow is assumed constant in a non-active limb,
changes in limb blood flow measured using venous occlusion plethysmography
are attributed to changes in skin blood fiow.

In the literature, numerous variations of the venous occlusion
plethysmography technique are described. These variations differ with respect
to the type of plethysmograph, the protocol for venous occlusion and release of
the occlusion, the addition of distal arterial and venous occlusion in some
cases, and the methods used to interpret records of limb volume change. Many
aspects of the venous occlusion plethysmography system in use in the
Environmental Physiology and Medicine Directorate at USARIEM are unique.
This report describes the methods and procedures developed and regularly
used at USARIEM and compares blood flows measured using the USARIEM
system with blood flows measured in the opposite limb of the same subject
using a more conventional system. These studies were done in order to
validate the venous occlusion technique after computer automation of
conventional procedures that employed strip chart recordings. The purpose in
writing this report is to document the USARIEM system as well as to enable
other researchers to more easily interpret blood flows measured at this
laboratory.
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EXECUTIVE SUMMARY

This report describes a microcomputer-controlled system which measures
limb blood flow by strain gauge plethysmography. Hardware components
include a suitable microcomputer, compatible data acquisition unit, Hokanson
EC-4 plethysmograph, pneumatic cuff infiation svstem, and a relay/switching
unit for remote calibration of the plethysmograph unit and inflation of the
pneumatic cuffs. The software developed for use with this system enables
automatic electronic calibration of the plethysmograph prior to each measure of
limb blood flow, collection and storage of limb volume records at usar-specified
time intervals, interpretation of limb volume records. and calculation of rates of
limb blood flow. To validate this system, we compared forearm blood flows
estimated using the automated system with forearm blood flows using a
conventional (Whitney) hardware configuration that uses millivolt strip chart
recordings. To enhance the range of expected skin blood flows, test subjects
exercised at 60% of their maximum oxygen uptake. Five subjects participated
in this study with individual correlations ranging from R?=0.12 te R?=0.92. Lack
of a good correlation in one subject appeared to be associated with a narrow
range of estimated blood flows for that subject. A second test was performed
to validate our use of a 12-second period of distal arterial and venous blood
flow occlusion (as opposed to prolonged distal arterial flow occlusion). Again,
blood flows were estimated in opposite forearms of human test subjects.
Correlation between blood flows measured in the right amm (automated system
with 12-second distal occlusion) with blood flows estimated in the left atm
(manual system with prolonged distal occlusion) were generally good. Six
subjects participated in this test with R? values ranging between 0.61 and 0.95.
We conclude from these studies that the automated system is an authentic
alternative to manual collection systems. It was confined that interpretation of
limb volume records and the use of 12-second periods of distal occlusion is
sufficient for stable records of limb blood flow.




INTRODUCTION

The volume plethysmograph, combined with the venous occlusion
procedure, has been used successfully to measure rates of limb blood flow
(Hewlett and van Zwaluwenberg, 1909). in this method, the limb segment
under investigation is placed in a rigid, fluid-filled, sealed enclosure so that
increases in limb volume cause a cormresponding fluid displacement which is
measured by a volume recorder. Venous blood flow is occluded at a proximal
site on the limb (i.e., upper arm or thigh). The rate of limb volume change,
measured using the volume plethysmograph immediately following the venous
occlusion, is presumed to measure limb arterial blood flow. in an inactive limb,
changes in limb blood flow are usually attributed to changes in skin blood flow.
For this reason, this system is often used in studies of temperature regulation.
The usefulness of this system is limited however, because the apparatus
severely restricts the movement of the limb under investigation, and requires
minimal movement of the specific limb and adjacent body segments. in
addition, placement of skin-surface probes to measure temperature, skin
wettedness, local sweating rates, or conductive heat loss is virtually impossible
with this system.

Whitney, 1953, was the first to introduce a viable altemative to measuring
limb volume directly. He showed a direct relationship between the rate of limb
volume increase and the rate of limb girth increase as measured by resistance
changes in a mercury-in-rubber strain gauge placed around the limb.
Compared to the volume plethysmograph, the strain gauge is small, light-
weight, nonimitating to the test subject, and allows free translational movement
of the limb. In addition, the gauge covers only a small area on the skin,
allowing placement of other skin surface probes on the same limb. The strain
gauge piethysmograph has been shown to be as reliable as the volume
plethysmograph in measuring limb blood flow (Burger ef af., 1859; Clarke ef al.,
1957, 1988; Whitney, 1953). For these reasons, the strain gauge
plsthysmograph has become the method of choioe for imb biood flow
measurements.




Strain gauge plethysmography systems in use today differ only slightly from
the one described by Whitney in 1953. In a simple system, strain gauge
resistance is measured with a Wheatstone bridge (Whitney, 1953) and output to
a strip chart recorder. More advanced systems use electronic plethysmograph
units that may be calibrated electronically by a small switch on the console. In
general, calibrations are performed pre- and post-experiment in both types of
systems. Because calibration can be affected by limb position, gauge
placement, and gain adjustments on the plethysmograph, it is preferable to
calibrate the system in situ, prior to each blood flow measurement. This paper
describes an automated system capable of automatically calibrating the
plethysmograph prior to each limb blood fiow measurement, controlling
pneumatic cuff inflation, and recording limb volume changes.

Whether the electrical output from a strain gauge is sent to a strip chart or a
separate computer, a final interpretation of limb volume records is usually
performed manually. The investigator selects an interval of the limb volume
record, then computes the rate of change of limb volume (slope or tangent)
over that interval. A single experiment may require hundreds of these
interpretations. This paper additionally describes computer software to
automate this process.

The use of a distal blood flow occlusion cuff varies from one laboratory to
another (Johnson et al., 1974; Roberts and Wenger, 1980; Wenger et al.,
1975). Distal occlusion (the occiusion of arterial blood flow at a site distal from
the strain gauge, such as the wrist or ankle) is used to partition aberrant back
fiow from the distal site which could confound arterial blood fiow measurements
in the intended limb (Grant and Pearson, 1838). Upon infiation of the distal
pneumatic cuff, limb volume increases then decreases sharply, returming to an
intermediate level after about one minute (Kersiake, 1948). Because of this
instability in initial limb volume, most researchers suggest taking blood flow
measurements after at ieast one-minute of distal cuff inflation (Clarke ef al.,
1958; Greenfield ef al., 1963; Johnson eof al., 1974; Kerslake, 1949; Roberts
and Wenger, 1980; Wenger et al., 1975). In our experience, however,
prolonged distal occlusion is uncomfortabie and may cause the test subject
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duress, increased catecholamine release and other factors which could affect
limb blood flow. A shorter distal occlusion period of 15 seconds has been
suggested (Grant and Pearson, 1938). However, this shorter time interval
includes the blood flow transients and could lead to errors in blood flow
estimation. In this paper, we compare forearm blood flows measured using a
12-second distal occlusion protocol, with forearm blood flows measured in
opposite forearms using a continuous distal occlusion protocol.

STATEMENT OF PURPOSE

This study was designed to compare an automated method for the
measurement of forearm blood flow using venous occlusion plethysmography
with a classical "Whitney" configuration. In addition, we compared different
lengths of time for the arterial occlusion of the hand before forearm blood fiow
measurements were made. Finally, we showed that software calculations of
forearm blood filow were as accurate as hand calculations with the additional
benefit of preventing investigator bias.




METHODS

HARDWARE

Both the automated and conventional systems in this study use a 4-wire
mercury-in-silastic strain gauge to measure changes in limb girth. In the
conventional manual system, gauge resistance is measured using a
Wheatstone bridge (Whitney, 1953) and output to a strip chart recorder. In the
automated system, the 4-wire gauge lead connects to the front of a modified
Hokanson EC-4 plethysmograph (Hokanson et al., 1975). Our modification was
to mount a small relay inside the plethysmograph in parallel with the 1%
electrical calibration switch (Fig. 5; Hokanson et al., 1975) to enable external
triggering of the calibration switch from a remote site or computer. Output from
the plethysmograph is sent to a Hewlett-Packard 3421A data acquisition/control
unit. Two surge tanks (Bi-Tronics model Bl-111) inflate the proximal and distal
occlusion cuffs to preselected pressures. Infiation and deflation of the cuffs are
controlied by electrical solenoid valves which can be switched either manually
or electrically from a remote site. For the automated system, a relay/switching
unit was designed and equipped with a 5-volt DC power supply to drive the
remote switches for the surge tanks and plethysmograph calibration. Three of
the channels on the HP-3421A have been configured as actuators to control
cuff inflation and plethysmograph calibration. A Hewlett-Packard model 87
desktop computer controls the HP-3421A and houses the software for
measurement, storage, and analysis of limb volume data. A schematic of the
electrical device for the control of cuff inflation and automatic calibration of the
plethysmograph is shown in Figure 1.

LIMB VOLUME MEASUREMENTS

The sequence of events for limb blood flow measurement begins with the
inflation of the distal occlusion cuff to a super-systolic pressure (usually 200-220
Tom, 27-29 kPa). Twelve seconds after inflation of the distal coliusion cuff, the
proximal venous occlusion cuff is inflated to approximately 50 Torr. Strain
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Figure 1. Schematic for cuff inflation control and automatic calibration of the
plethysmograph.
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gauge resistance is measured either by the Wheatstone bridge or the EC-4
plethysmograph device and output to either a strip chart recorder or data
acquisition system. At the end of this 10-second period, both occlusion cuffs
are defiated.

In the original conventional system, calibrations are performed pre- and post-
experiment and the surge tanks are triggered manually. in the automated
system, the surge tanks are under computer control and are triggered at the
appropriate times. Calibrations are performed automatically, ten seconds after
inflation of the distal occlusion cuff. Calibration consists of reading a baseline
voltage from the plethysmograph, triggering the 1% calibration switch, and
reading the resulting voltage. The system gain is calculated by dividing the 1%
increase in resistance by the measured change in voltage. The calibration
process is performed three times and the median value of the three gains is
used as the calibration factor for the subsequent limb volume measurements.

BLOOD FLOW ESTIMATION

The interpretation of limb volume records is based on suggestions originally
given by Whitney, 1953. Sample plots of forearm volume over a 20-second
sampling interval are shown in Figures 2 through 5. In all cases, the initial rate
of arterial inflow is represented by the slope of the tangent line. In Figure 2, the
rate of volume change is consistent and the entire 20-second interval is used to
determine the slope of the tangent line. In Figure 3, the curve levels off after
approximately five seconds, indicating that venous pressure exceeds venous
cuff pressure, and that venous blood is exiting the forearm. In this case, only
the initial, higher slope, is used to determine the rate of arterial inflow. Figure 4
shows a curve exhibiting a movement artifact due to involuntary limb muecile
tension which sometimes occurs during irfiation of the venous cuff. In this
case, the normakooking curve following the aberrant measurements is used to
determine the siope of the tangent line. Curves of the type in Figure 5 indicate
that, upon inflation of the venous cuff, biood is delayed in reaching the sivain
gauge. This type of curve indicates that the limb joint between the venous
occlusion cuff and the strain gauge (e.g., the elbow or knee) is flexed too far,
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partially restricting arterial blood flow. According to Greenfield et al., 1963,
there is no way to properly interpret such a curve.

in the conventional manual system, the investigator determines which data
intervals are suitable for blood flow estimation, determines the slope of the limb
volume curve over that interval, and adjusts this slope based on pre- and post-
experimental calibration factors. In the automated system, a computer program
resident in the data acquisition system is used to interpret records of limb
volume measures. The data are smoothed using a 4-2 median technique
(Vellamann and Hoaglin, 1981). Location of a possible inflection point (the
point at which venous pressure exceeds venous cuff pressure) is based on
slope differences between the data points prior to a potential inflection point (P)
and the data points after P. To speed up the process, the slope of each one-
second interval following the last zero or negative reading is calculated using
least-squares regression. Following this calculation, the mean of the one-
second-slopes prior to P and the mean of the one-second-slopes after P are
compared. The inflection point, corresponding to the largest difference between
one-second-slope means is used as the initial end-point for the interval. If the
percent difference between the two mean slopes is less than 25%, then the
end-point is set to 10-seconds (the last recorded point). If the inflection point
occurs prior to 3 seconds, which indicates a clear movement artifact (Figure 4),
the starting point is set to P and a new inflection point, between P and the 10-
second point, is determined. If the mean slope of the first group is less than
the mean siope of the second group, indicating a plot similar to that in Figure 5,
the interval from P to the 10-second point is used in an attempt to salvage the
data. The investigator must decide whether the curve should be discarded.
Plots of limb volume over the 10-second interval, with appropriate computer-
generated intervals and slopes, are presented to the investigator. The
investigator is allowed to review these plots and select different endpoints for
regression. Slopes for these user-selected intervais are caiculated by the
computer using linear least-squares regression. Rates of blood flow are
computed from the rates of limb volume change and stored on diskette for

subsequent analyses.
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EXPERIMENTAL VALIDATION

Two series of experiments were conducted io validate the hardware and
software components of the present system. Skin blood flow in both forearms
of 6 subjects (2 males; 4 females) seated in a supine position on a modified
sled-cycle ergometer (Bigland-Ritchie et al., 1973) at T, = 30°C were compared.
Measurements were made at rest and frequently during exercise to elicit a wide
range of blood flows for each subject.

A padded sling was tied about the wrist of each arm and suspended from
two supporting positions. The distance and orientation of the sling relative to
the two positions was selected to allow the arm to be extended (thereby
keeping arterial flow open) and raised to heart level (ensuring proper venous
retumn). This suspension system, as compared to a one-point suspension
system (Johnson et al., 1974), was found to reduce muscle tension and
irregularities in the strain gauge curve due to respiration (Rowell, 1983; Wenger
et al., 1975). In addition, this suspension system also appears to reduce
incidence of artifact due to proximal cuff inflation (Figure 4).

Pressure cuffs were placed around the wrist and upper arm, occluding blood
flow to-and-from the hand and venous retum from the forearm. The strain
gauges were placed symmetrically on the lower forearm, distal to the belly of
the forearm musculature. Esophageal temperature (T,,) and skin temperatures
(T,) on the medial ventral surface of the forearms were also measured.

After establishing that calculated forearm blood flows were laterally
symmetrical (unpublished observations), differences between manual (right am)
and automated (left arm) systems were tested. in the conventional manual
system, the strain gauge resistance was measured with a Wheatstone bridge
(Whitney, 1953) and the electrical output was transferred directly to a strip chart
recorder. All interpretation of strain gauge curves was made by a trained
investigator. In both arms, distal occlusion cuff inflation was intermittent, with
12 seconds from distal cuff inflation to proximal cuff inflation, and cuff deflation
10 seconds after proximal cuff inflation. A second experiment compared blood

13




flows measured following a short period (12 seconds) of distal blooa flow
occlusion (left arm) with blood flows measured in the opposite forearm in which
prolonged distal cuff inflation was used (right arm). The distal pneumatic cuff
on the right arm (manual system) remained infiated throughout the experiment
except for brief periods (approximately one minute) at the request of the test
subject. Collection of limb volume data and interpretation of limb volume
records was accomplished with the automated system on the left arm and
manual system on the right.

STATISTICAL ANALYSES

Comparisons batween left and right arm blood flows for each experiment
were quantified using linear least squares regression analysis. A statistical
regi 2ssion model was used on data derived from blood flow values measured
using the new automated system (left arm) and blood flow values measured
using the manual plethysmograph system (right arm). An accounting was made
for the thermal effect on local blood flow due to differences in local skin
temperature between right and left amms.

14
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RESULTS AND DISCUSSION

Results of regression analyses for the first experiment are provided in Table
1. In general, inclusion of local skin temperature differences in the regression
model did not significantly reduce the unexplained variance. Therefore, the
regression model includes left arm blood flow (measured using the automated
systeni with 12-second distal occlusion) as the dependent variable, and right
am blood flow (measured using the manual system with 12-second distal
occlusion) as the independent variable. Correlation coefficients for individual
subjects ranged from 0.35 to 0.96. Except for the 0.35 value, all other r-values
exceed 0.76. Although the correlations were not as high as we originally
expected, the overall variability in blood flow measurements from one instant to
the next was relatively high and might explain some of the discontinuity
between right and left arm blood flows. Review of the regression coefficients
and residuals indicates that blood flows measured using the automated system
were not consistently higher or lower than blood flows measured using the
manual! system. From these results, we can conclude that microcomputer data
capture and interpretation of strain gauge records produces statistically
equivalent results (calculated blood flows) as those produced by the more
tedious and time-consuming manual interpretation of strip-chart recordings.

Results of regression analyses for the second experiment, are provided in
Table 2. Again, local skin temperature differences were excluded from the
regression model because such inclusion did not significantly reduce the level
of unexplained variance. The regression model includes left arm blood flow
(measured using the automated system with 12-second distal occiusion) as the
dependent variable, and right arm blood flow (measured using the manual
system with continuous distal occlusion) as the independent variable.
Correlation coefficients for individual subjects ranged from 0.78 to 0.97.
Correlations were not as high as we originally expected, but again are
explained by the general variability in blood flow measurements from one
instant to the next. Blood flows measured using the automated system were
not consistently higher or lower than biood flows measured using the manual
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system. We conclude that 12-second distal occlusion is equivalent to
continuous distal occlusion as far as blood flow measurements are concemed.

The results of this study confirm the validity of the automated strain gauge
plethysmography system presently in use at this laboratory. This is equivalent,
analytically to the conventional manual technique. The advantages of the
automated system are obvious. In addition to freeing laboratory personnel who
would nomally attend to the plethysmograph during an experiment, the
automated system (with a 12-second distal occlusion period) enables
measurement of blood flow at intervals of 30 seconds, fast interpretation of limb
volume records, and storage of blood flow data in files along with other
cardiovascular and thermoregulatory variables. Additionally, calibration of the
strain gauge system prior to blood flow measurements enhances the
reproducibility of limb blood flow measurements. Finally, validation of the 12-
second distal occlusion period allows us to eliminate the possibly confounding
effects of test subject duress, associated with prolonged distal blood flow
occlusion, on limb blood flow measurements.
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Tabie 1. Regression analysis for the first experiment comparing forearm blood
flows measured using the automated (FBF,) and manual (FBF,,) systems with
12-second distal blood flow occlusion. Inclusion of skin temperature differences
did not reduce the level of unexplained variance. Therefore, the final regression
model may be expressed by: FBF, = B, + B,FBF,,

units are mie100ml'smin.

| subject n B | 8, |
2F a1 2.60 145 0.89
3F 40 -1.38 1.51 0.62
aF 42 1.12 0.57 0.60
M 46 052 0.65 0.58
oM 45 3.42 0.27 0.12

Table 2. Regression analysis for the second experiment comparing forearm
blood flows measured using the automated system with 12-second distal biood
flow occlusion (FBF,,) and using the manual system with prolonged distal
occlusion (FBF_.). Inclusion of skin temperature differences did not reduce the
level of unexplained variance in the regression model. Therefore, the final
regression model may be expressed by: FBF,, = B, + B,FBF_,

units are mie100m!'smin™.

subject n B, B, R? H
1F 45 -1.19 1.41 0.78 |
2F 46 -0.26 0.88 0.91
3F 43 -3.18 1.89 0.95
4F 39 -0.64 0.70 061 |
M 45 -0.09 1.06 0.87
M 0.43
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CONCLUSIONS

An automated strain gauge plethysmography system is described and
validated. This system provides estimations of forearm blood flow which are
equivalent to estimations produced by a conventional, non-automated system.
We showed that continuous or prolonged distal biood flow occlusion is not
necessary and validated our use of a 12-second pre-measurement period of
distal (wrist) occlusion for the measurement of forearm blood flow. This system
is routinely used in experiments supporting Science and Technology Objective
3T: Environmental Injury - Demonstrate the Efficacy of Strategies to Predict,
Prevent and Treat Environmental liinesses, Injuries and Performance
Decrements; specifically Task A "ldentify mechanisms controlling skin blood
flow for the purposes of thermoregulation in man: impact of neuronal, hormonal
and endothelial factors in regional cutaneous vasodilation® in the Environmental
Physiology and Medicine Directorate.
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