
AD-A266 285, (
APIL193111101 11 11 SAIC 3,1Ii

The Intelligent Monitoring System

Software Integration Platform

DTIC
SPECIAL TECHNICAL REPORT

J*UL 011~99312 April 1993 9
Jeffrey W. Given, Warren K. Fox, James Wang, Thomas C. Bache

Geophysical Systems Operation

pcop~.vcd fox pulbl.ic 113

The views and conclusions contained In tth document a. those of the authors and should not be interpeeted as representing the official

Policies, either expressed or Implied, of the Defense Advanced %osearch Projects Agency or the U.S. Government.

Sponsored by:

DEFENSE ADVAuNCED RESEARCH PROJECTS AGENCY Principal lnvestigator:

Nuclear Monitoring Research Office Dr. Thomas C. Bache

ARPA Order Number 6266, Program Code No. 62714E (619) 458-2531

Nssued by: DARPA/CMO

Contract No. MDA972-92-C-0026 ,.j 9.993-1 48 4 7

S63 ~ 3 C~ (%~ 7 ~1111111 I /Il " lil tliililt

APRIL 1993 SAIC-93/1069

The Intelligent Monitoring System

Software Integration Platform

SPECIAL TECHNICAL REPORT

12 April 1993

Jeffrey W. Given, Warren K. Fox, James Wang, Thomas C. Bache

Geophysical Systems Operation

The vkwn and conclusions contained In ttl document are those of the authors and should not be Interpreted as representing the officiol
polices, either expressed or implied, of the Defense Advanced Riesearch Projects Agency or the U.S. Goverrnment.

Sponsored by:
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY Principal Investgator:

Nuclear Morutoring Research Office Dr. lhomas C, Bache

ARPA Order Number 6266, Program Code No. 62714E (619) 459-2531

Issued by: DARPA/CMO

Contract No. MDA972-92-C-0026

Table of Contents

ABSTRACT .

I. INTRODUCTION .. 2

1.1. Background .. 2..............

1.2. Overview .. 3

II. SOFTW ARE INTEGRATION PLATFORM (SIP) ... 9

2.1. Distributed Applications Control System (DACS) 9
2.1.1 The CommAgent ... 10

2.1.2 The DACS M anager ... 13

2.2. The Process Manager 15

2.3. Data M anagement System Interface .. 18
2.3.1 CSS3.0/IM S Interface ... 20
2.3.2 The Generic Database Interface .. 22
2.3.3 The Dynamic Object Interface .. 22

III. SUM M ARY ... 29

IV. DEFINITIONS, ACRONYMS AND ABBREVIATIONS 31

V. REFERENCES .. 32

APPENDIX ... 33

THE CSS3.0/IM S Database Interface ... 33
libdb30 ... 34

Synopsis ... 34
Calls From C Applications .. 34
Calls From Fortran Applications .. 41

Description ... 58
libdbims ... 61

Synopsis ... 61

Calls From C Applications .. 61
Calls From Fortran Applications 68

Description ... 71

The IMS Software Integration Platform

ABSTRACT
The Software Integration Platform (SIP) supports automated and interactive dis-

tributed processing for the Intelligent Monitoring System (IMS). The SIP addresses the
practical problem of integrating existing software and data archives into a processing sys-
tem distributed on a network of UNIX workstations. It consists of software components
that are widely applicable to other scientific data-processing operations. The SIP is divided
into two subsystems. The Data Management System (DMS) manages shared data stored in
archives distributed over a wide-area network. The Distributed Applications Control Sys-
tem (DACS) handles inter-process communication (IPC) and process control for user
applications distributed over a local-area network. The data archives managed by the DMS
consist of commercial relational database management systems (RDBMS) supplemented
by UNIX file systems. User applications access data stored in the archives through the
Data Management System Interface (DMSI). The DMSI allows global access to data inde-
pendent of a specific physical archive. Because IMS requires the capabilities provided by
commercial RDBMS products, the DMSI includes extensive support for these products.
The DACS divides the IPC and process-control services between two applications. The
CommAgent provides message routing and queueing. The DACS Manager interprets the
IPC and monitors local-area network resources to decide how and when to start processes.
Working together, these applications isolate user applications from network-specific
details. The messaging facilities of the DACS enable the distributed system to exploit con-
currency and pipelining to expedite data processing. The Process Manager is a general
application developed for the DACS that manages the processing of data through complex
configurable sequences of user applications. All components of the SIP exploit commer-
cially available software products and anticipate current trends in software-product devel-
opment. Acceý-ion For

NTIS CR'&I
UTTIC TAB i

Jutif~'tKCtc)
S... , , .. . :, . : •.L::I•S 7Z D U...........l

By
S............................

Dist, ibotioty o

Avail:ibility Codes

Avail •,,,!!or
Dist pca

1. INTRODUCTION

1.1 Background

Over the past several years we have been developing a new generation of technol-
ogy for automated and interactive interpretation of data from a network of seismic sta-
tions. The most complete expression of this technology is the Intelligent Monitoring
System or IMS (Bache et al. 1990a, b, 1991), which was initially developed to process the
data from four NORESS-type seismic arrays in Europe. These arrays produce over 100
channels of data with a total volume of about 1.2 Gybtes/day. Automated processing by
the IMS produces about 500-1000 characterized signal detections per day (many turn out
to be "noise"), and these signals are interpreted automatically to locate 50-100 events/day.
Many MIPS are required for these automated processes, but they are easily organized into
separate processes that can proceed in parallel or in a pipeline sequence with the time
required to complete each step being large compared to the time to transfer information
between steps. Organizing the processes this way also provides an architecture that scales
naturally by replicating processes. Thus, as was realized when we did our initial design in
1986, this kind of problem fits naturally with emerging concepts for solving big problems
by dividing them into semi-independent processes that are distributed across networks of
(relatively) inexpensive UNIX workstations.

While the UNIX distributed processing concept is attractive for systems like IMS,
the technology for fault-tolerant management of fully automated distributed processing
was quite immature in 1986, and commercial products have still not emerged to handle
many important management and administration tasks. That is, while there is excellent
support for client-server relationships between processes via RPC (remote procedure call)
mechanisms, these mechanisms must be extended to support the complicated inter-process
relationships in a dynamic, data-driven distributed processing system like IMS. Additional
mechanisms are needed for fault-tolerant inter-process communication (IPC), system
reconfiguration in response to changing processing requirements, and implementation of
policy for restarting or reconfiguring the system when faults occur.

The IMS is one product of the Nuclear Monitoring Research and Development
(NMRD) project, which also includes requirements to develop several other automated
and interactive systems to process seismic data from other seismic stations and networks
(e.g., Bratt, 1992). Also, there is a continuing requirement to integrate (for test and evalua-
tion) software modules developed by members of a disparate community of researchers at
other institutions, and there is a general requirement for an open system architecture with
minimal dependence on particular software and hardware vendors.

To meet these requirements, we have developed the Software Integration Platform
(SIP) described in this report. This SIP provides the infrastructure for IMS, our largest and
most complex system. However, it is also used for much smaller and simpler systems
(down to those made up of only a few loosely connected processes on a single worksta-
tion) because of its cnnveni-nce, flexibility and fault-tolerance-

2

1.2 Overview

The overall architecture of the IMS is data centric and data driven (Figure 1. 1). IMS
applications share entities1 (i.e., data) described by a common data model and stored in
data archives managed in a globally accessible Data Management System. IMS accepts
seismograms as input entities and responds by creating entities that describe those seismo-
grams and interpret them as seismic events. The IMS combines automated data acquiNi-
tion, processing and interpretation with subsequent analyst interaction to validate Lhe
automated results.

Several loosely coordinated groups (or sessions) of closely coordinated applica-
tions share the IMS data-processing tasks. These sessions are distributed over a wide-area
network (WAN); the applications within each session are distributed over a local-area net-
work (LAN). Inter-session (i.e., WAN) communication requirements are minimal. A ses-
sion primarily communicates with another session by polling the Data Management
System for new or modified entities. Within each session the applications require message-
based inter-process communication (IPC) for adequate operation and control.

The SIP, shown in Figure 1.2, is a collection of applications and interfaces that pro-
vide an IMS session with access to the Data Management System and IPC. While its
development was motivated by IMS, the SIP is entirely independent of IMS-specific
requirements. It provides support for a wide range of UNIX distributed-processing sys-
tems consisting of dozens of processes distributed on a local-area network. The SIP is
divided into two subsystems: the Data Management System, which handles all aspects of
managing shared data throughout the WAN, and the Distributed Application Control Sys-
tem, which provides the mechanisms for interprocess communication and control. In the
following, we describe how user (i.e., IMS) applications interact with the SIP components
and each other.

The user applications in each session retrieve and store entities through the Data
Management System Interface (DMSI). The DMSI isolates applications from the Data
Management System, which, as shown in Figure 1.1, can include multiple data archives
distributed over a geographically dispersed wide-area network. In IMS, the Data Manage-
ment System consists of a network of OracleTm Relational Database Management Systems
(RDBMS) supplemented by the UNIX file system and other media (i.e., optical disks and
magnetic tape) for storing large and complex entities. Three interfaces currently make up
the DMSI. These are: the CSS3.0/IMS Interface, which provides access to a relational
database that follows the CSS3.0/IMS database schema (Anderson, et al., 1990; Swanger,
et al., 1991); the Generic Database Interface (GDI), which provides schema-independent
access to a relational database; and the Dynamic Object Interface (DOI), which provides
access to general shared entities from heterogeneous data archives including relational and

1. Throughout this report, the term entity refers to a collection of attributes that describe a real-
world thing. Where confusion is possible, the term entity type distinguishes between a generic col-
lection o0 attribute names and a specific collection of attribute name-value pairs.

3

UNIX~~~ FieSse5NIX File system i

rU I Systeme

Data Management System
BMS 1 ':.........." :

RD ,'iR," ,.

work.b.the.atMgcmUNIX File Symtem.

e x i s t i g I M S p p l i c a t i on s T h pD Ii s st i l l u d r d v l p e t b t n e r y v r i n p o

Win e s t s RitD BSApplication C

tepyica bhaiori•!•: ofNteXsste.iT e DASypovdst temehnsmmo intrprcs

commuicaton IC) btweenusera ppiain. hog h DCue apiain

Local-Area Network

Figure m.s. The organization of data processing in the IMS. Processing osks are distributed over several
local-area networks. Within each local-area network, there are sessions isting of closely coordinated
applications dedicatM to a specific task. Each session shares entities managed throughout the wide-arca net-
work by the Data Management System.

non-relational databases. Of the three interfaces, the CSS3.0/IMS is the most widely used.
The development of the GD] is complete, but it has not been completely integrated into
existing IMS applications. The DOI is still under development but an early version pro-
vides critical functionality for the IMS Map program.

Within each session, the Distributed Application Control System (DACS) controls
the physical behavior of the system. The DACS provides the mechanisms for inter-process
communication (UP) between user applications. Through the DACS, user applications
send messages to command, alert, and inform other user applications. The DACS monitors
the IPC traffic to determine where and when to start applications. It handles all aspects of
configuring a group of user applications to a specific network of workstations. The IPC

IMS Software Integration Platform

ProcessManager
DAkS/IPC

AC Messages

/PC
Messages

Advisor /PDA IPCIP
DACS -Message DACS Message DACS

Executive Exerutive Secialist
or Specialist Application Arplication

DMSI DMSI DMS1I

Relational Database File System
Management System FieSsm

Figure 1.2 The Software Integration Platform. The applications access a common data model through a uni-
form interface to a global Data Management System. User applications transfer control through IPC man-
aged by the Distributed Application Control System (DACS). Each user application is either a Specialist or
an Executive based on its response to IPC messages. Advisor applications send unsolicited messages to
Executives. A Process Manager provides logical control of complex sequences of Specialists.

messages passed through the DACS primarily transfer control between user applications
in the SIP. The DACS does not directly provide facilities for efficient high-volume data-
transfer, but it can coordinate such transfer between applications. Typically the IPC mes-
sages contain references to entities maintained in the Data Management System.

There are two major components in the Distributed Application Control System
(DACS). One is the CommAgent, which handles the sending and receiving of messages,
routes messages between physical processes, and monitors the current status (e.g., active
or inactive) of the user applications. The CommAgent is independent of any specific net-
work of workstations and isolates user applications from the physical details of network
configuration. The second component is the DACS Manager, which manages network-
specific information. Its primary function is to start processes when it detects unread mes-
sages for inactive applications. The CommAgent is a strictly procedural application while
the DACS Marager is a highly configurable application that uses complex network-spe-
cific application-specific rules to manage a session. The DACS Manager also provides the
human interface to the DACS allowing an operator to control the decision-making pro-
cess.

5

In Figure 1.2, we distinguish between two types of user applications: Executive
and Specialist applications. We assume the behavior of any application is completely
determined by the messages sent to it. The behavior of a Specialist application is the i L-sult
of messages from, at most, one other application. The current state of an Executive appli-
cation is the result of unsolicited messages from many applications. A Specialist is essen-
tially a server in a simple remote procedure relationship; an Executive is an event-driven
application responding to messages from several other applications that are outside its
control. 1

A Specialist responds unambiguously to messages from another application. That
is, the same message sent to the same Specialist will always yield the same results. An
Executive responds a message according to its current state, which may be the result of
messages from many sources. A message to a Specialist is a command; a message to an
Executive is analogous to advice. This type of interaction motivates adding to Figure 1.2
the applications called the Advisors, which send unsolicited messages to an Executive.
Advisor applications are either Specialists or Executives, but they have the additional
property that they notify an Executive of events that are subsequently processed (or
ignored) according to the Executive's current state.

The classification of applications is used by the DACS when it associates an
abstract name of an application and a specific physical process. The DACS must restrict
IPC access to a Spcialist to prevent other applications from sending the Specialist mes-
sages while it is engaged in an assigned task. On the other hand, access to an Executive is
unrestricted to allow any Advisor to initiate communication at any time. Therefore, the
DACS maintains private identifiers for Specialist applications and public idetifiers for
Executives.

Because Specialist identifiers are private, several instances of the same Specialist
may be simultaneously active within the same session. Thus, a session may exploit con-
currency to optimize processing tasks. The Process Manager is an SIP application that
coordinates the simultaneous processing of many entities of the same type through com-
plex sequences of Specialist applications. The Process Manager exploits both concurrency
and pipelining and is configurable to a wide range of specific processing requirements.

The application names in Figure 1.2 are analogous to familiar organizational struc-
tures. In a typical session, there are a few Executives with a global perspective that make
the overall decisions guiding the construction of the final data-processing product. Thus,
the complex decision-making functions are concentrated in the Executives, while straight-
forward procedural functions are distributed among the Specialists. The Executives are
notified of important outside events by independent Advisors, which are either Specialists
or other Executives.

1. All of the interprocess interactions can be described in terms of remote procedures and client/
server relationships, but such a description offers little insight into the organization of user applica-
tions in the SIP. A familiar analogy to a Specialist is a network file server. An Executive application
is analogous to a display server (e.g. an X-window server), which accepts events from several inde-
pendent client applications..

6

A complex system like IMS includes dozens of applications organized into ses-
sions of closely coordinated applications interacting as described in Figure 1.2. Typical
IMS sessions are shown in Figure 1.3. The Analyst Review Station (ARS) is an Executive
application that selects data from the Data Management System for review and interactive
analysis. ARS functioniality is extended by analyst tools with a simple server-to-client
relationship to the ARS (i.e., Spccialist applications). An example of an Advisor applica-
tion to ARS is the Map program, which displays and manipulates digital maps, images,
and entities tied to geographical location, With the Map, a user may select entities based
on their geographical attributes and send messages to ARS identifying the selected enti-
ties. However, ARS does not request the Map to send messages, the Map does not know
how ARS handles the messages, and ARS cannot prevent other applications from sending
messages at the same time. Although it may be an Advisor application to ARS. the Map is
also an Executive that responds to events from several external sources, including ARS.

Automated processing in IMS is organized in sessions consisting of Specialist
applications. In these sessions one or more Specialists are responsible for periodic polling
of the Data Management System for specific data conditions. These data conditions are
usually the result of processing activity in another session, often at a remote site. A typical
circumstance occurs when new seismic events have been formed by the session responsi-
ble for interpreting detections and locating events. In another session the polling Specialist
(NewOrid in Figure 1.3) detects the new events and sends messages to other Specialists to
retrieve waveforms from the WAN, compute magnitudes, perform event identification.
and produce a top-level summary of system results. This sequence of processing is orga-
nized into a pipeline managed by the Process Manager. Bache (1990a, 1991) describes in
detail those applications that comprise the automated processing system in IMS.

The preceding is an abstract overview of the SIP. In the remainder of this report
we describe the major SIP elements in more detail. Section 2 includes -:bsections on the
DACS and its key elements (CommAgent and DACS Manager), the Process Manager, and
the DMSI. This description of the DMSI is supplemented by an Appendix that documents
the CSS3.0/IMS database interface. Separate reports describe the CommAgent (Given, et
al., 1993), the DACS Manager (Fox, 1993) and GDI (Anderson, et al., 1993).

7

IMS Analyst Session

eslsothauoaeevtloain sigteAnalyst Revolw SttinE(ARutivth Map , (Edxaduti ona)
(nl S peto ciLa incucs peitsdsg) rcsig n aadslyfntos.I h aaRqctSs

sion. ew~id dect nPreimcevns creste byanother sesoPadii itsproesling byasks ce
Ma (ert pclectiaddist)oa se(i ad Strbuedilithruhu Ah WA(ad Soprocalsts)ta aahog

Figsrs 1.at inc mlu es magn esitude cacuaton ane eve.n th Adnalysct Ssin nonlsnntrcieyeiw h

reuls f heauomtd vet octin sngth AalstReiw taio (RS, h Mpan adiioa

11. SOFTWARE INTEGRATION PLATFORM (SIP)

The three main elements of the SIP are the Distributed Applications Control Sys-
tem (DACS), the Process Manager, and the Data Management System Interface (DMSI).
These are described in this section.

2.1 Distributed Applications Control System (DACS)

The DACS provides the framework to connect distributed UNIX software pro-
cesses into a coherent data processing and analysis system. It is separated into two distinct
c,,mponents: the CommAgent, which manages the network- and application-independent
procedural aspects of interprocess communication (IPC), and the DACS Manager, which
oversees the complex details of configuring a set of user applications to a specific network.
These applications, working together, provide the IPC support for a session of closely
coordinated applications. A session may include user-driven, interactive applications or it
may consist entirely of applications performing automated data processing. The Process
Manager is a closely related SIP element designed to work in conjunction with the DACS
to control a complex logical processing sequence, and it is described in Section 2.2.

The CommAgent (see Section 2.1.1 for more detail) handles the posting and deliv-
ery of IPC messages between the applications in a session. The CommAgent maintains a
table associating logical application names with specific processes and message queues.
This table, whiL h is the result of the IPC, describes the physical state of the distributed sys-
tem. This state information indicates, for example, which applications are active and busy
performing a specific task, which applications are active without an assigned task, and
which applications are inactive with a pending task (indicated by undelivered IPC mes-
sages). The CommAgcnt takes no external action based on its state talle; it holds mes-
sages ince'finitely until a suitable recipient picks them up. The CommAgent cannot start a
process to pick up a message, it makes no decisions about how long to hold a message for
delivery, and it has no control on the sources, destinations, or contents of the messages.
The only irterface to the CommAgent is through an application-program interface (i.e., a
library of functions avaitable to the applications); there is no external user interface. How-
ever, the contents of the state table can be transferred to a managing process, such as the
DACS Manager, that can reconfigure the physical system in response to the CommAgent's
current state.

The DACS Manager makes the decsi(-is concerning where and when to start

applicati, ris. For example, when a message to an inactive application app,'ars in the
CommAgent state table, the CommAgent notifies the DACS Manager, which selects a
workstation and executes the application with the proper environment and command argu-
ments. To make these decisions the DACS Manager monitors session resource utilization
(e.g., active processes vs. overall number allowed), overall usage of the LAN, specific

9

hardware and software requirements (e.g., licenses), and the state of required external sys-
tems (e.g., database servers or file systems). The DACS Manager has a user interfaice that
allows an operator to start and terminate selected applications)r to modify system param-
eters. The interface also allows a user to monitor and modify the CommAgent state table.

The DACS is, therefore, divided between one application that follows rigorkus.
predictable, well-defined procedures and a second application that follows a complex, pos-
sibly heuristic, decision-making process. As the former, the CommAgent is inherently
more reliable, which is a crucial property for a process that maintains critical system state
information in a volatile form (i.e., in an active UNIX process). When controlling a com-
plex system with many applications competing for limited resources, the DACS Manager
must be expected to be less reliable. Therefore, the two applications have been designed so
that the DACS Manager, like any other user application, does not interfere with the action
of the CommAgent. In fact, the DACS Manager can be terminated at any time during a
session and replaced by either another reconfigured DACS Manager or operator interven-
tion.

The DACS is configurable to accommodate a wide range of requirements for a

group of applications. Both the CommAgent and the DACS Manager are designed to be
easily started and stopped by naive and novice users without restrictive administrative
overhead or adverse system impact. Any number of DACS Manager - CommAgent pairs
can be active on a LAN, each responsible for a distinct work session. The DACS provides
a convenient interface for a novice user to control a session distributed over one or several
workstations. Small sessions are simple to configure, yet there is sufficient Ilexibilitv to

impose adequate control on large sessions. Although the CommAgent and the DACS
Manager have evolved together, they are independent applications. The design permits

further independent development of the DACS Manager to exploit expert-system tech-
niques for managing complex systems.

2.1.1 The CommAgeni

The CommAgent coordinates the delivery of messages between applications dis-

tributed over a network of workstations. It provides both message routing and message
queueing services. Applications post messages with the CommAgent that are destined for
other applications identified by their abstract names. Applications receive messages by
requesting them from the CommAgent. The sending and receiving applications need not
synchronize to pass messages; they need not even be active at the same time. The Comm-
Agent holds messages indefinitely until a recipient requests them. The application-pro-
gram interface to the message handling facilities of the CommAgent is through a few
simple library functions. Applications require no network-specific information beyond a
single parameter necessary ,o locate a specific CommAgent running on any workstation in
the LAN.

10

The operational basis of the CommAgent is a state table that ass>ciates a name, a
task (specified by a task-id), a process (specified by a process-id), and a message queue
(see Figure 2.1). The name identifies an application that can execute somewhere on a net-
work of workstations. In operation, processes send messages that define tasks to be com-
pleted by other processes specified by name. A task is not completed until a UNIX process
(specified by a process-id) with the associated name starts, receives the messages, and
notifies the CommAgent that it ha- completed the task.

IPC through the CommAgent

App 1 App 2

monitor messages messages monitor

Comm Stale Table '

Name Tasks Processes Message Queues
(task-id) proc- id) (pending/saved) I

CommAgent

Figure 2.1 The CommAgent handles IPC between applications on a network, The state table contains mes-
sage queues associated with a destination identified by a name, a (logical) task, and a (physical) process. A
process sends a message by inserting it in the message queue of the destination. It receives a message by
querying its queue. An application must first establish a connection to the CommAgent, which is then moni-
tored to detect unexpected termination of the process.

When an application is started on a workstation, it is assigned a unique process-id
by the operating system. It joins a session by opening a connection to the corresponding
CommAgent and informing the CommAgent of its name and process-id. If the CommA-
gent has a pending task (e.g., pending messages) for an application with the same name,
the CommAgent associates the name, process-id, task-id, and message queue. The mes-
sage queue will contain the specific messages that direct the processing function. When
the process completes the assigned task, it notifies the CommAgent, which will disassoci-
ate the task-id from the process and delete the task-id. When a process exits, it disconnects
from the CommAgent. If the process disconnects before disassociating an assigned task-
id, that task-id (and its corresponding message queue) will be reassigned to another pro-
cess with the sami. name when it connects. The CommAgent monitors all connected pro-
cesses and can, therefore, detect when one terminates abnormally (ie., without
disconnecting).

11

ihe CommAgent is an inefficient facility for transferring large quantities of data
between applications. It is designed to handle short messages that transfer control between
applications. In general, data transfer is by reference to entities stored in the Data Manage-
ment System. Applications often access these entities through IPC mechanisms that are
outside control of the DACS (e.g., through an RDBMS). Otherwise, the transfer of large
volumes of data is most efficiently handled directly between applications. The DACS can
coordinate this interaction by handling the network-specific details needed to establish the
required communication connections and starting any requested data-server processes.

As an example, consider two applications, SelectData and ViewData, which are
executable programs that can run on workstations on the LAN. When SelectData is
started, it is assigned a process-id, proc-id-Select, by the operating system (e.g., from the
hostname and system process-id). That instance of SelectData directs the CommAgent to
associate its name, SelectData, with the specific process-id, proc-id-Select. After that,
when any message is sent to or from that process, the CommAgent will associate it with a
task, task-id-Slect (i.e., it assigns it a unique task-id). As an active process, SelectData
may send messages to an application named ViewData, for which the CommAgent has no
associated process. The CommAgent will then assign the name, ViewData, to a new task,
task-id-View and place the message into the associated message queue for later delivery.
The process, proc-id-Select, can continue or it can wait (i.e., block) for a reply from an
instance of ViewData concerning the status of the task. When a process opens a connection
with the CommAgent under the name ViewData, the CommAgent will assign it the pend-
ing task, task-id-View, and make the associated messages available for delivery. The
CommAgent can take no action to start ViewData; it does not have the necessary informa-
tion. It can, however, be directed to notify another application (i.e., the DACS Manager) of
all changes to its status table. That application can decide when and where to start the user
applications.

The CommAgent distinguishes between two kinds of tasks, public and private.
When a process initiates communication with another application, the CommAgent
assigns an identifier that specifies a task. The sender may specify that the identifier be pri-
vate, in which case the CommAgent generates an identifier and provides it to the sender so
that additional messages can be directed to the same task. Alternatively, the sender may
require that the identifier be public. In that case, the task is identified by a global address
known to all applications in the session. Messages to a private application are unambigu-
ously ordered. The messages from any single application to a public task are also strictly
ordered, but they may be unpredictably interspersed with messages from other processes.
A private task is a Specialist application; a public task is usually an Executive.

The CommAgent was developed using ISISTI, an [PC message management soft-
ware system and application toolkit initially developed at Cornell University under
DARPA support. A commercially supported version is available from ISIS Distributed
SystemsT', Ithaca, New York. ISIS provides a simplified and robust remote procedure
(RPC) interface as well as tools for monitoring the status of processes. ISIS also has addi-
tional capabilities beyond those offered by standard RPC mechanisms. In particular, it is

12

possible to replicate a CommAgent process (i.e., execute several CommAgents in a ses-
sion). If the CommAgent is replicated, any individual CommAgent process can fail with-
out interrupting the session. Replication protects critical sessions from a CommAgent
failure since the CommAgent process must always be active in order for a session to exist.
Furthermore, replication permits a CommAgent to be moved from one machine to another
without affecting the session. Using these features, the operation of a session is very toler-
ant of system errors. With the capabilities provided by the DACS Manager, described in
the following section, the physical state of a session may be easily manipulated during
operation to accommodate changes in the underlying physical system.

2.1.2 The DACS Manager

The DACS Manager provides the physical process-control services for the DACS.
Through the DACS Manager, either a user or another application may request a change in
the applications active in a session. Though an independent application, the DACS Man-
ager is explicitly designed to work with the CommAgent to provide overall physical con-
trol of a session. The DACS Manager encapsulates all knowledge of the LAN so that all
user applications are independent of LAN-specific details.

The DACS Manager monitors status changes in the CommAgent to decide which
processes to start to complete requests for tasks. The CommAgent table associating names,
tasks, and processes is a concise description of the physical system state. The DACS Man-
ager receives and interprets the entries in this table to make its decisions. The relationship
of the DACS Manager to the CommAgent is shown in Figure 2.2. The DACS Manager
connects to the CommAgent the same as any other user process. It directs the CommAgent
to transfer its state table and all subsequent updates to it. The CommAgent responds to the
DACS Manager through the standard IPC interface as it normally responds to other user
applications. That is, the DACS Manager has no special relationship with the CommA-
gent.

In the simplest case, the DACS Manager maps an application name to a specific
system command and starts the application on any machine. The resulting process con-
nects to the CommAgent, which then notifies the DACS Manager that the process started
successfully. However, the DACS Manager does have unlimited freedom to start applica-
tions. It interprets the request for an application as a request for system resources. The
DACS Manager then matches the resource request with the available system, session, and
workstation resources to schedule when and where to start the application. To perform this
function, the DACS Manager monitors resource utilization in order to enforce constraints
on the configuration of the physical system. In general, what is considered a resource will
be very specific to a session. Some sessions require detailed monitoring of many specific
resources; others require tracking of only a few general resources. The DACS manager is
designed to be configured to accommodate a wide range of session-specific requirements.
In the following we discuss the general resource-allocation problems that are part of the
overall DACS Manager design (although not fully addressed in the current operational
version).

13

Network-specific DACSS
parameters, UNIX Commands
constraints, DACS Manager to start and stop
definitions, processes.
and commands 4

Current Status &
Request updates, additions,

u and deletions

CImm n Messages User
t Monitor Application

Figure 2.2. The interaction between the DACS Manager, the CommAgert and the User applications. The
CommAgent notifies the DACS Manager of changes in its state table. The DACS Manager applies network-
specific constraints to decide where and when to start a user application.

The simplest resources to manage are static machine attributes that must match the
attributes required to support each application. For example, an application may require a
specific type of hardware, a specific workstation, a software license, or some combination
of these attributes. The DACS Manager uses simple pattern matching to select worksta-
tions with the required static attributes for a requested application.

At the next level of complexity, the DACS Manager tracks dynamic session
resources. Each session is allocated quotas that limit the resources it can obtain from the
LAN. These quotas limit the use of machines and software subsystems, both on an individ-
ual (i.e., machine by machine) basis and in the aggregate (i.e., groups of machines). The
session is free to allocate these resources to its applications as necessary to achieve its
objectives. If the quotas allocated to a session are much smaller than available LAN
resources, many of the constraints imposed by overall LAN resource limits can be ignored.
The DACS Manager has complete knowledge of the session environment, so tracking ses-
sion resources is a relatively simple procedure. The DACS Manager provides a config-
urable framework for identifying, tracking, and allocating dynamic session resources.

The most difficult resources to track and manage are the dynamic attributes of the
hardware (e.g., machines) and software (e.g., file systems, database management systems)
that are shared with other sessions and users in a heterogenous work environment. In the
simplest cases, it is sufficient for the DACS Manager to determine whether a specific
workstation is operational. Other circumstances require an estimate of a workstation's cur-
rent and anticipated extra-session load. Some sessions need to know the status of the data
management systems (e.g., data-storage capacity, or the number of active server connec-
tions). In these more complex sessions, the DACS Manager must access sensors that mon-
itor the status of hardware and software throughout the LAN. These sensors are usually

14

external processes designed to track the state of a specific external system (e.g., an Oracle
RDBMS). Different sessions will require quite different information. The DACS Manager
has an open design that allows it to be modified and configured to handle complex
resource management situations. At the same time, small sessions are not unnecessarily
complicated.

2.2 The Process Manager

The Process Manager (Figure 2.3) is a general application that manages a group of
Specialist applications to exploit concurrency and pipelining. It is independent of any spe-
cific processing objective or group of applications. The Process Manager allows the con-

figuration of a complex sequence of tasks organized around the processing of many
entities of a specific type. It is designed around a specific processing model that is fre-
quently encountered in a variety of data processing situations. In the following we
describe that model and the Process Manager.

Data Processing Management
lApp A

Entity

Process Manager
Parameters & - Entity Processing Status Table

Constraints Entity type Entity value Parent-Entity 'routing slip"

Entity Entity Entity

Ap-B IAp-C A-D
(Applications may, in turn, be other Process Managers)

Routing Slip:
Attached to each data object.
Managed independently for each data object.
Contains sequence and current state.

Figure 2.3 The Process Manager manages the processing of many entities of the same type through a pro.
cessing sequence specified by a "routing slip" attached to each entity.

15

Consider a data-processing system organized around the processing of independent
entities, which are collections of attributes that describe something (i.e., data). There may
be several distinct types of entities with many instances of each. Entities of different
types may be related hierarchically. That is, several child (or dependent) entities may be
related to a single parent entity. Processing of the entities is analogous to an assembly line.
Initially, only the primary attributes of an entity may be present in the Data Management
System. During processing, the entity is sent through a sequence of applications that result
in new attributes added to the entity or in the creation of related entities. At any time there
usually are many instances of several types of entities in the system, and we seek to exploit
distributed processing methods expedite their processing.

Specialist applications usually operate as procedures on a single instance of a par-
ticular type of entity. Thus, processing of an entity usually involves sending it to several
Specialis;s in a particular sequence. For example, the entity may first be sent to application
A; when A is complete it is to be sent to B; when B is complete it can be sent to C. D, and
E in any order; when these are complete it is sent to F, which completes the overall
sequence. The processing sequence and state for each entity can be concisely described in
a set of routing instructions (referred to in Figure 2.3 as the -routing slip"). One way to
speed processing of many entities is to organize a pipeline, which follows from the assem-
bly line analogy. Another way is to exploit concurrency for those time-consuming Special-
ist applications, which extends the analogy to multiple assembly lines. The following
discusses how the Process Manager allows the configuration and control of such a process-
ing system.

For each type of entity, the processing sequence in the Process Manager is speci-
fied through configurable instructions, called the "routing slip", attached to each instance
of the entity. An example processing sequence is shown in Figure 2.4. As implied by that
figure, the routing slip must specify which processing tasks are to be executed sequen-
tially, which may be executed concurrently, and which are conditional on the status of the
previous task. The synchronization of processing is handled by the Process Manager,
which, for each entity, keeps track of what tasks are complete, active, inactive, or in an
error state. An individual application has no knowledge about the applications that precede
or follow it. Therefore, processing instructions may be reconfigured to add new applica-
tions or rearrange the existing sequence without changing any of the existing applications.
Furthermore, the instructions for an individual entity may be modified during the process-
ing sequence.

The Process Manager recognizes hierarchical relationships between different types
of entities. While processing one entity (the parent), an application may send several new
dependent entities to the Process Manager. These are processed according to their own
instructions. The parent entity may be instructed to wait at some point during its process-
ing for its all of its dependents to reach a specified state in their sequences, (e.g., the parent

16

A pp- A p p-Ap4-?

S~DAn

Figure 2.4. An example processing sequence managed by the Process Manager. Under the supervision of the
Process Manager, an entity is passed between applications as indicated by the arrows.

waits for all dependents to complete their sequences). Thus, while each entity is processed
independently, there are mechanisms to synchronize processing between hierarchically
related entities. This design allows a divide and conquer approach to achieve an overall
processing objective.

The Process Manager must assume some of the responsibility for scheduling the
execution of applications in the session. The DACS Manager cannot schedule processing
based on specific knowledge of any entity, yet processing a particular entity may require
priority based on one of its attributes (e.g., its age). Furthermore, since the CommAgent
maintains its message queues in a volatile form, there are limits on the message traffic that
can be handled. Its overall reliability and performance is compromised if too many mes-
sages are sent simultaneously. With more knowledge of the logical processing objectives,
the Process Manager can impose ordering and assign priority to ensure that overall pro-
cessing is expedited. To allow configurable scheduling, the Process Manager maintains its
own processing queues that can be reordered as required. By maintaining its own queues,
the Process Manager also strictly limits the number of messages passed through the DACS
and avoids stress on the IPC infrastructure.

The Process Manager handles conditions raised by logical processing errors. An
application that encounters a logical error while processing an entity returns a status to the
Process Manager. The Process Manager interprets the status to decide what action to take
for that entity: continue processing the entity through the sequence, reschedule the appli-
cation, branch to another instruction, or wait for operator intervention. The implementa-
tion of a particular error-handling policy is configurable according to the session-specific
processing requirements.

The Process Manager maintains a log (e.g., a disk file) of its current state, which
includes the status of each entity. In the event of a Process Manager failure, the last logged
state may be used to recover. Any applications that are actively processing entities are also
assumed to have failed when a Process Manager fails; those entities will be rescheduled

17

for those applications upon recovery. These recovery rules assume that any entity can be
processed through the same application any number of times without affecting the final
result. User applications controlled by the Process Manager must comply with this
assumption to avoid inconsistencies in the processing results.

To exploit the Process Manager, many user applications and system commands
must be integrated with the DACS. This is a simple but tedious task, since there are many
useful Specialist applications. Furthermore, some applications from external developers
are either difficult or impossible to interface directly with the DACS IPC mechanisms.
Instead, these applications require command-line parameters that reference or otherwise
depend on the entity being processed. To facilitate integration of these applications, the
SIP includes a utility, the PMshell, to act as a proxy for a Specialist application. The
PMshell receives an IPC message from the Process Manager, translates the enclosed entity
into required command line arguments, executes its assigned application, and responds to
the Process Manager when that execution is complete. Thus, the Process Manager has
access to many applications and system commands to meet its processing objectives.

2.3 Data Management System Interface

The IMS applications are a collection of heterogenous software components that
share common entities (i.e., data) through a distributed globally accessible data-manage-
ment system. Thus, a key element of all IMS applications is a common data model based
on well-described entities (e.g., Anderson, et al. i990, Swanger, et al. 1991). In order to
integrate diverse applications and data archives, the applications must be insulated from
the physical details of how the data model is implemented in each archive. Ideally, an
application should access entities through an interface that requires only an abstract
description of the entity. That is, any entity represented by the data model should be acces-
sible through an interface that is independent of any archive-specific hardware or software
component. Another key requirement for IMS is that the data model itself must be
dynamic. IMS is a testbed for new research developments; it must be anticipated that new
entities will be defined and incorporated into the data model as new knowledge is
acquired.

Most of the entities used by IMS applications can be represented in a relational data
model, allowing the use of reliable commercially available Relational Database Manage-
ment Systems (RDBMS) to manage the physical data archive. The relational model is a
powerful abstraction that permits entities and their relationships to be succinctly specified
and accessed using a query language (e.g., the Structured Query Language, SQL). An
RDBMS was selected over competing alternatives because it supported the most flexible
way of organizing data that satisfied both the requirements of routine data processing and
knowledge acquisition. Knowledge acquisition, in particular, is enhanced by the flexibility
afforded by SQL. Commercial RDBMS also provide reliable transaction management and
concurrent data access that is crucial to the development of an automated, distributed,
near-real-time system.

18

It has been impractical to extend the relational model and RDBMS products to
incorporate all data shared by the IMS applications. Some entities (time-series, images,
a algorithm-specific parameters) must be managed through the file system. Some IMS
- ware is used in processing environments that do not provide access to an RDBMS.
I a centralized, monolithic, data-management system, as typified by current RDBMS
products, is an impediment to realizing some of the advantages of distributed data process-
ing. Thus, our applications require a Data Management System Interface to entities stored
in one or more RDBMS as well as data in local and remote file systems and other archives.

The design and development of the Data Management System Interface (DMSI)
has been guided by emerging methods and technologies (e.g., relational database manage-
ment systems, object-oriented programming methods, object-oriented database manage-
ment systems) while stressing the scientific objective of actually building and operating
IMS. It ultimately will provide a uniform application interface to all external entities that is
independent of the detailed structure and implementation of the data archive. However, the
DMSI will still allow applications to exploit specific features of the data archive. For
example, if a relational model is adopted, then the DMSI will allow applications to take
advantage of SQL in accessing data. Some applications will not be able to function with-
out access to an RDBMS. But the interface should not explicitly depend on SQL and,
instead, treat query-language constructs as configurable arguments. In that way individual
applications may be easily reconfigured to access archives managed by both RDBMS and
non-RDBMS, if appropriate.

The DMSI provides the following benefits to IMS software:

- The effects of modifying the data model and the physical data archive are isolated from
application code. That is, the application software need not change if a different
RDBMS product is used was chosen, or the underlying data model is expanded. Eccen-
tricities in a particular database management system are handled in the DMSI support
libraries, not by each application.

* The uniform DMSI interface improves developer productivity by providing reusable
software modules to handle data access, which is often a large element of an application
program. All applications are subject to consistent programming standards with respect
to the data-access interface, which enhances quality control. Also, consistent source
code across all software products is easier to maintain.

* The software for data access is produced in a uniform way by a small group of special-
ized developers, improving its consistency and quality.

a The effective use of emerging computer-aided software engineering (CASE) tools
luires an underlying structure to the basic software components. These tools promise
remove muL f the tedium (and cost) from the assembly of complex software prod-

ucts if the assembly process can be sufficient' abstracted. The DMSI is designed to
impose such a structure on the data-acc -,s functions.

19

During the IMS development, the DMSI has evolved along several paths resulting
in the three distinct products shown in Figure 2.5. The earliest version consists of an inter-
face library to a pre-defined set of entities described by the Center for Seismic Studies Ver-
sion 3.0 database schema plus IMS extensions (Anderson et al., 1990, Swanger et al.,
1991) and managed in an Oracle RDBMS. The next version provides an RDBMS interface
that is independent of the underlying database schema and uses the full power of SQL to
define and select entities. This interface, called the Generic Database Interface (GDI), is
built on a support library that simplifies transition from Oracle to other RDBMS products.
Neither the CSS3.0/IMS interface nor the GDI support access to entities that are not man-
aged in an RDBMS. The Dynamic Object Interface (DOI) provides a single application-
program interface for all data access, including data managed in various database manage-
ment systems and the UNIX file system. The DOI provides the additional capability to
define, construct, and manipulate entities during application execution. This simplifies the
development of general software components that are applicable to a wide range of spe-
cific data analysis tasks. These three stages of DMSI evolution are described in the follow-
ing sections.

2.3.1 CSS3.0/IMS Interface.

The CSS3.0/IMS Interface provides access to the entities described in the CSS3.0/
IMS schema and maintained in an RDBMS. Only those entities that exist as tables docu-
mented in the schema are accessible through the interface. Although the application-pro-
gram interface is independent of any vendor-specific RDBMS, only access to an Oracle
RDBMS is supported in IMS applications1. The CSS3.0/IMS interface consists of a library
of functions that invoke data selection criteria specified through SQL constructs. The fol-
lowing discusses the important characteristics of the CSS3.0/IMS interface; it is described
in detail in the Appendix.

For each entity, the access functions for data retrieval and insertion are similarly
structured, which allows them to be generated automatically from the entity's definition.
Therefore, the interface libraries are easy to build and maintain 2. When the database
schema is extended or modified, access functions are easily added or modified. Since the
interface functions are so similar for each entity, there is uniformity in the data-access
code used in the various software modiles, which improves maintenance. Finally, the
interface is simple and developers are do not need to involve themselves with the specific
details of an RDBMS product. This greatly simplifies the integration of software from
external developers.

I. This is only true to the extent that SQL itself is RDBMS product independent. Further, RDBMS
products deal with the details of transaction management in very different ways, so that true isola-
tion from a specific RDBMS is very difficult to achieve.
2. IMS was developed with versions of RDBMS products that had not been widely distributed and
tested in an operational environment of similar complexity. Our design allowed us to successfully
develop a large, complex software system while working with a new (and thus, changing) RDBMS
product in its initial stages of release.

2O

A [cation] B Application

CSS3O-9s* Arbitrary 'tuples Other data tuptes Other datadb~ ~ ~ ~ ~~ ~te datacei " b nefaei X

CSS 3.0 / IMS Generic
db Interface FlSytmdb interface

Fil S File Sy~ste~mSorac, e RDBMS IOracle ROAM7S

c l~plcationI
ObjectI

JDynamic Object Interfacel

Arbitr.ry
tuflles Other data

Generic IX
Idb Interface

'1_ 4 Nlý File System,

RBMS RDBMSI RDBMS

Figure 2.5 The evolution of the DMSI during the development of the IMS. A: the CSS3.0/IMS database inter-
face provides access to an Oracle CSS3.0/IMS RDBMS; applications access other data from the file system
through application-specific interfaces. B: GDI extends the RDBMS interface to an arbitrary schema, but
does not address non-RDBMS data. C: DOI unifies the RDBMS and the non-RDBMS data-access interfaces
with the GD! providing access to data managed in an RDBMS. New support libraries allow access to addi-
tional RDBMS products.

Although the CSS3.0/IMS interface has many productivity and maintenance
advantages, is has some important limitations. In particular, the database libraries are
restricted to entities enumerated in the CSS 3.0 and IMS schema. Therefore, complex enti-
ties that are formed by relational operations on the fundamental entities cannot be accessed
through the libraries. These entities must be constructed within individual applications,
which sacrifices some of the advantages of a relational database. Thus, software developed
with this interface has an explicit dependence on the CSS3.0 and IMS schema. Finally,
uniform access is not extended to those entities that cannot be represented relationally, that
cannot be practically maintained in a relational database, or that require access to several
independent RDBMS or data archives. In the IMS, the most important example is time-

21

series (i.e., waveform) data. Although the CSS schema provides a relational mechanism
for managing references to these data, the actual entities are accessed in ways incompati-
ble with a relational data model. Furthermore, efficient storage and access of large num-
bers of these entities precludes using the CSS3.0 and IMS schema at all.

2.3.2 The Generic Database Interface.

The GDI is a generic, schema-independent, vendor-independent interface to an
RDBMS. Through this interface, an application can take full advantage of a relational data
model (and the SQL) to define entities based on an arbitrary database schema. The GDI
also simplifies the adaptation of applications to other RDBMS products by further isolat-
ing and minimizing the library support modules that depend on vendor-specific compo-
nents.

In the CSS3.0/IMS interface, knowledge about each accessible entity is explicit. If
a new entity is required, a new set of library modules to access that entity must be devel-
oped and added to the library. In other words, the set of accessible entities is enumerable
and restricted to a subset of all entities that could be derived by relational operations on the
underlying data model. The GDI relaxes this restriction and allows access to any entity
defined by a relational query without modification to the underlying support library. With
the GDI, an application accesses an entity by specifying a complete and valid SQL query.
The query both defines the entity and constrains the selection of specific instances. This
feature decouples an application from the underlying database schema since the complete
entity-defining query is merely a parameter that can be easily configured to a particular
schema without modification to the GDI. The only constraint is, obviously, that th,%
requested entity be derived from relationa! operations on the underlying database schema.

The GDI significantly improves software development productivity and product
maintainability. However, it does not address access to entities that are not managed in an
RDBMS. Also, it does not provide any interface to the overall heterogeneous data-man-
agement system. In the IMS, for example, these required entities must be accessed on an
ad hoc basis that depends on the detailed structure of the specific archive. For each of
these entities, a significant effort has been devoted to systematically building interfaces to
these entities. It remains, however, to provide the user applications access to these entities
through a single, consistent interface. The Dynamic ObjecL Interface provides that unified
interface along with other important (and related) functionality.

2.3.3 The Dynamic Object Interface

The Dynamic Object Interface (DOI) provides a uniform object-oriented approach
to retrieving, manipulating, and ancessing the entities maintained in the Data Management
System. The DOI is under development and is ultimately intended to be the Data Manage-
ment System Interface for IMS applications.

22

In the DOI, an entity is generalized to an object, which includes both methods (i.e.,
functions for tmanipulation) and attributes (i.e., data or other objects). These objects are
encapri:ulated in a form that allows an application to define, interpret and manipulate them
through commands that are configurable during runtime. Through the DOI, an application
builds its required objects from primitive objects and entities available from a particular
data archive. The manipulations necessary to build these objects, which usually depend on
the details of the archive, are configurable through an extension language interpreted by
the application at runtime. If data access is through DOI, an application can be reconfig-
ured to access a new archive without the need to renuild the application. With DOI, the
separation between an application and its data access is complete, allowing for easier
maintenance and wider applicability of software components. Furthermore, with such an
interface it is possible to take full advantage of a client/server archit ":ture to partition the
data access and the application into separate physical processes. The final executable
application is then completely independent of a data archive.

DOI also provides a flexible interface to dynamicadly define, construct and manip-
ulate objects through interactive user commands. This functionality is important for devel-
oping general-purpose applications to be adapted to specific analysis tasks. An IMS
example is the Map program, which maniages the display of user-defined objet. s on digital
maps and images. Th-c''gh DOI, users define and construct very general objects that are
linked to geographical locato-,. The display of these objects is specified by user-defined
methods that interpret the user-sp.cified attributes of the object. Thus, the Map program
has no explicit knowv!ege)f the objects it is displaying, and can be applied to many dif-
ferent geographic visualization probems.

A fundamental objective of the SIP is the integration of diverse- and disparate
applications and data archives into a single system. Achieving this goal requires that we
deal with ubiquitous problems in converting entities ard reformatting data. DOI provides a
s tematic solution to these problems.

Figure 2.6 shows the typical data management problems encountered in software
integration. In #1, there are two sets of applications, A-/I...nj and B-(1...n], that require,
respectively, entities eA and eB from archives DataServer-A and DataServer-B. The A and
B applications are well designed software modules that access their respective entities
through remote procedures in a client-server architecture. Consider a scc:iario in which
entities eA and eB are similar enough to be procedurally (although perhaps incompletely)
derived from each other: eA = f(eB), eB = g(eA). Further ass,. me that the A and B applica-
tions have complementary functionality and are all required in an integrated analysis sys-
tem. Both sets of applications require access to both data archives. The design issue is to
determine the best place to perform the mapping between entities anticipating that a simi-
lar situation will be encountered when expanding to other archives and applicatioils.

One solution (, *n Figure 2.6) is to modify each program to recognize the new
entities and make the required conversions. This solution requires each application to be
modified, rebuilt, and redistributed to users. This procedure eliminates -,any of the advan-
tages of the client-server architecture. Another solution (#3) is to modify the entity-access

23

App A Entiy eADataServer B

Appl A3 g~A

AppB eB1 gA

Entiy eBDataServer B

App~eA Al AeB)eB

3 p A3 eA = f(e

DataServer A
App, 2 Enity A eA= g(eB)

Figure 2.6. The different approaches to adapting applications to access entities from different data archives
in a client/server architecture. 1: independent applications and archives: 2: applications are adapted by data
transformations within the application; 3:- archives are adapted by transformations within the archive man-
agement software.

24

libraries for each archive to convert between the specific entities, This seems like a better
solution s:nce there are fewer archives than applications. However, in an environment of
heterogenous databases distributed among different operations, this alternative frequently
requires more inter-institutional cooperation than can normally be mustered.

A better approach combines aspects of both solutions and is shown at the top of
Figure 2.7. In this approach, data conversion is handled in two steps. The entities are trans-
formed into a standard form in the database server. In our example, that standard form is
obtained using: eAB = U(eB) or eAB = V(eB). The standard entity is transformned back to the
application-specific (or site-specific) form in the client using eB = V*(eAB) or eA =
U*(eAB). Standardization is an important step, but real entities defy complete description
by an enumerable set of standard attributes. Standards and, therefore, software must be
expected to evolve. This is especially true in scientific data management in which a funda-
mental objective is to describe e:.tides in ever increasing detail.

App B1 eB = V*(eAB)
SB• DataServer A

AppB2 eB = V*(eAB) ntity eAB eAB= U(eA)

App B3 ee= V*(eAB)

App B1 eo=V(AO' ..

App B2 eB= V*(eAB) Entity eAB eAB UeA DataServer A

App B3 • = V*(eAB)____-

I Configurable through Extension Language

Figure 2.7 The inter-operability of applications is facilitated by agreeing on a standard form for all entities.
With the DOI the necessary transformations may be configured at runtime in both the client and server.

The DOI solution is shown at the bottom of Figure 2.7. With the DOI, each appli-
cation accesses its required entities through a general interface that is configured at runt-
ime to handle the convers.,,ns between the entities. Entities eA and eB are encapsulated and
each application accesses them through the DOI. The conversions required by each appli-
cation are specified at runtime, which reduces the need to rebuild applications and data-

2S

base servers. The servers, DataServer-A and DaraServer-B, independently package the
entities, eA and eB, into objects that are provided to the requesting applications. Since the
servers must package the objects into a form interpretable through DOI, the server can use
DOI to manipulate the objects into a standard form. In this way, the configurability is
extended to the server as well as the client. Thus, DOI simplifies the development, mainte-
nance, and extensibility of both client applications and data servers.

The DOI interprets a rich command (i.e., programming) language at runtime. The
command language has access to primitive archive-specific dat:a-access functions in order
to construct primitive objects. These basic objects are subsequently manipulated through
DOI for inclusion into more complex objects. The DOI command language is Scheme,
which has a Lisp-like syntax and structure. Scheme has a standard definition (IEEE Std.
1178-1990, Dybvig, 1987) and is a widely used extension language in the software-devel-
opment community. A Scheme interpreter can be implemented in a very compact form
that is easily embedded in applications written in more widely used languages (e.g., For-
tran, C, C++). Several suitable versions are available in the public domain.

Both DOI and GDI provide encapsulation of entities and an abstract data-access
interface. DOI extends access to more general data types and provides mechanisms to
manipulate the object. Thus, GDI and DOI together provide powerful capabilities to
access diverse data archives. The DOI encapsulates an object so that it can be defined and
manipulated at runtime. The details of accessing a specific physical data archive must be
addressed on a case by case basis, but with GDI, the data-access functions are provided for
those archives managed by an RDBMS.

We illustrate DOI with a simple IMS example. Over a dozen IMS applications
require an entity (here called seismic event) with attributes that specify the hypocentral
parameters (the origin: geographical coordinates, time, depth, magnitude) and attributes
that describe observations of signals from the event (the arrivals). The seismic event entity
is widely recognized in seismology and these IMS applications may be applied to any data
archive that supports the entity. Also, there are many non-IMS applications that recognize
seismic event. The IMS data archives are organized in a relational model in which the seis-
mic event object consists of three fundamental entities: origin, arrival, and assoc, which
relates origin and arrival. Non-IMS data archives are organized differently and may, for
example, manage origin and arrivals as one entity. In either case, the user (i.e., client)
applications in question should be independent of such details of the data-management
systems.

Figure 2.8 shows the interfaces and the sequence of procedures through which a
client application retrieves a seismic event entity through the DOI. The client requests a
seismic event object using its class name, "Seismic Event", and identifiers and parameters
needed to identify and construct it. For example, seismic event might be specified by bulle-
tin, which identifies the organization or operation that created it, and an event-id, which
uniquely identifies it in bulletin. The client application retrieves seismic event by invoking
a function (labelled 2.0 in Figure 2.8) providing the class name and identifiers as parame-
ters. The function will return the object, seismic event. At this point, seismic event is not

26

yet in data structures managed by the client. The client queries the object (3.0) to move the
attributes into the structures it needs. These data-access functions (1.0, 2.0 and 3.0) make
up the application-program interface of DOI. The mechanics of retrieving the object are
configurable and depend on where and how the data is physically stored. These details are
part of the data-management system and isolated from the client app!ication by the DOI.

Below the application-program interface of DOI in the client, the object must first
be located (labelled 2.1 in Figure 2.8). To perform this task, the client relates bulletin and
event-id to a server, a server object (or objects), and server-specific parameters. For exam-
ple, bulletin may map to a remote database and the event-id may map to physical identifi-
ers (i.e., hypocentral coordinates). After the object is located, the client sends a request to
the server and awaits a reply (2.2). Upon reply, the client converts the server object into a
client object (2.3). The details of constructing the client object depends on the server pro-
viding the object. The instructions for locating and constructing the client object are speci-
fied to the DOI in Scheme through the configurable inte.'rface. These instructions are
loaded into the application at runtime for interpretation by DOI. For example, depending
on the data archive, the client may need to modify the server object to rename attributes,
change units of measure, or transform coordinate systems. In more complex situations, a
client may require multiple server objects from different servers to construct its object.

The server translates the request for seismic event into a request for primitive
objects (labelled 2.2.1 in Figure 2.8). It invokes archive-specific functions to create these
objects, access the physical archive, and insert the resulting entities into these objects
(2.2.2). As shown in the figure, the server invokes the archive-specific functions as
instructed through the configurable interface of DOI. In our example, the archive-specific
functions query the RDBMS (2.2.2.1) through either the GDI or the CSS3.0/IMS interface
for the origin, assoc, and arrival entities that will be used to construct seismic event. The
archive-specific functions then use the DOI application-program interface (procedure
2.2.2.2) to construct primitive objects. The server subsequently manipulates these primi-
tive objects into the requested server objects as specified through the configurable inter-
face (procedure 2.2.3) and sends the object to the client.

The previous example illustrates several important software-design principles:
modularization, encapsulation, and isolation. User applications are often complex interac-
tive programs for analysis, visualization, and decision making. DOI isolates these applica-
tions from the application-independent details of accessing a specific physical data store.
The DOI consists of a powerful configurable interface separating the application from the
data archive. With DOI, data access can be divided into several layers, each containing
specific kn.wledge about those objects it can access and those it must produce. Complex
client applications are easier to maintain, since the data-access layer can be independently
developed, tested, and modified for a new data archive. Finally, DOI can exploit the Dis-
tributed Application Control Svstem to create user objects by invoking Specialist applica-
tions as servers. Again, all of the necessary complexity introduced by accessing the DACS
is completely isolated from the user application.

27

Bulletin name, '

Event identifier U ~~~

23Construt ClIetOjc
1.0 Iitiaize Seismic Event"

Evetient wifier

Clientn' Coafisracl

2. oaeServer APIEvetctents)e
22.21 ReadtrimitiSever Obentitis)
22.2. Construct Primitiv Objects)

accssis hrugha imlaraplictiS-rogrm inerae.Te ofigurable itrae oto hs eaI
tha deen ona secficphyicl dta rcivte.fc

2.21 Lcae Pimtiv Oje28 s

I1. SUMMARY

The Software Integration Platform provides a general framework for interconnect-
ing UNIX processes to cooperate on large data-driven processing and analysis tasks.
Although, it was designed to support IMS, the IMS-specific requirements have led to gen-
eral solutions that are widely applicable in both automated and interactive scientific data-
processing systems. The SIP explicitly addresses the problem of integrating diverse soft-
ware components and data archives that are distributed over a geographically dispersed
wide-area network of UNIX workstations. It further addresses the practical problems of
connecting existing applications to existing data-management systems. Indeed, it is explic-
itly designed to take advantage of and co-exist with external software subsystems.

The overall system supported by the SIP is data driven. That is, the state of the sys-
tem is the response to entities created by user applications monitoring the external envi-
ronment. These applications detect external events and create new entities that describe
and identify those events. However, these entities are distributed in heterogeneous data
archives, which precludes the close global coordination of data and process control. There-
fore, the SIP is designed around widely distributed loosely coordinated sessions of locally
distributed closely coordinated applications.

There are two distinct subsystems in the SIP: the Data Management System and
the Distributed Application Control System. The Data Management System provides
applications access to entities (i.e. data) distributed over a wide-area network. The DACS
provides inter-process communication and control in a session made up of a group of
applications distributed over a local-area network. In a system like IMS, sessions poll the
Data Management System for results from other sessions operating in the wide-area net-
work and initiate complex sequences of applications in response.

The Data Management System Interface (DMSI) provides uniform access to enti-
ties that are described by a data model common to all user applications. The physical data
archives consist of commercial relational database management systems (RDBMS), UNIX
file systems, and other media. The DMSI isolates the user applications from any specific
physical archive. Early versions of the DMSI consist specifically of interfaces to commer-
cial RDBMS products. The CSS3.0/IMS interface provides access to entities described by
the CSS3.0/IMS database schema. The Generic Database Interface is schema independent.
Under development, the Dynamic Object Interface (DOI) is an object-oriented interface to
all entities in the Data Management System, including those not managed in an RDBMS.
However, an RDBMS interface will continue to be an important component of the Data
Management System.

The DACS is further divided into two applications: the CommAgent, which han-
dles the mechanics of IPC, and the DACS Manager, which handles the details of managing
specific physical processes. The CommAgent is responsible for message routing and mes-
sage queueing in a session and is the interface to the subsystem that provides physical
message transport. The DACS Manager is responsible for deciding when and where to

29

start applications on a specific configuration of workstations with limited physical
resources. It provides the physical interface to the specific workstations and encapsulates
all network-specific nformation. The DACS Manager also provides a user interface to
allow an operator to monitor and manipulate the physical state of the session.

The Process Manager is a general application that exploits pipelining and concur-
rency to expedite processing. It simultaneously tracks the processing of many instances of
the same type of entity through a complex sequence of applications. The Process Manager
provides a simple interface through which to configure complex processing sequences and
to make decisions based on the logical processing state.

The SIP is designed to take advantage of currently available commercial software
and anticipate trends in product development. For example, the GDI is explicitly designed
to simplify extending the DMSI to allow access new RDBMS products. The current ver-
sion of the CommAgent is built on the ISIS Distributed ToolkitT11 to satisfy stringent fault-
tolerance requirements. These can be relaxed in some circumstances and the CommAgent
can be built on any messaging subsystem that supports reliable remote-procedure calls.
The DACS Manager is configurable to any UNIX workstation operating system. Thus, the
Software Integration Platform is not a replacement for commercial software products but
instead provides a framework that allows them to work together.

30

IV. DEFINITIONS, ACRONYMS AND ABBREVIATIONS

CSS Center for Seismic Studies.

CSS3.0/IMS schema The database schema describing the entities shared by IMS
applications in a relational database.

CSS3.0/IMS interface An application-program interface to the entities represented
in the CSS3.0/IMS schema.

CommAgent The component of the DACS that routes messages between
other applications.

DACS Distributed Application Control System. A set of computer
programs that provide interprocess communication and con-
trol.

DACS Manager The component of the DACS that controls starting and stop-
ping applications.

DMS Data Management System; the collection of data archives,
including RDBMS products and UNIX file systems, that
store the data shared by SIP applications.

DMSI Data Management System Interface; the application inter-
face to the Data Management System.

GDI Generic Database Interface; a schema-independent applica-
tion-program interface to an RDBMS.

IMS Intelligent Monitoring System; a seismic monitoring sys-
tem.

IPC Inter-process communication; communication of discrete
messages between independent computer processes.

IsIs An toolkit that provides fault-tolerant inter-process commu-
nication.

LAN Local-area network; a collection of computers linked
together.

RDBMS Relational Database Management System.

SIP Software Integration Platform. A collection of applications
and interfaces that allow other applications to work together
in a distributed environment.

WAN Wide-area network; a collection of local-area networks
linked together.

31

V. REFERENCES

Anderson, J., W. E. Farrell, K. Garcia, J. W. Given, and H. J. Swanger (1990) The Center for Seismic Studies
Version 3 Database Schema Reference Manual, Tech Rep. SAIC-C90-O).

Anderson, J, M. Mortell, and B. MacRitchie (1993). The Generic Database Interface (GDI) User's Manual,
Tech. Rep SAIC-9311003.

Bache, T., J. T. Anderson, D. Baumgardt, S. R. Bratt, W. E. Farrell, R. F. Fung, J. W. Given, A. S. Henson, J.
C. Kobryn, H. J. Swanger, and J. Wang (1990a). The Intelligent Array System, Final Rep. SAIC-90/
1437.

Bache, T., S. R. Bratt, J. Wang, R. Fung, C. Kobryn, and 1. W. Given (1990b). The Intelligent Monitoring
System, Bull. Seismol. Soc. Am., 80. 1833-1851.

Bache, T., S. R. Bratt, J. W. Given, T. Schroeder, H. Swanger (1991). The Intelligent Monitoring System
Version 2, Tech. Rep. SAIC-911)137.

Birman, K. P., R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck, and M. Wood
(1990). The ISIS System Manual V2.0. 411 pp.

Bratt, S. R. (1992). GSETT-2: An experiment in rapid exchange and interpretation of seismic data, Eos

Trans. AGU, 73, 520.

Dybvig, R. Kent (1987). The Scheme Programming Language, Prentice Hall, Englewood Cliffs, NJ

Fox, Warren K (1993) The DACS Manager Program, Tech. Rep. SAIC-9311012.

Given, J. W, Howard Turner, and Jerry Jackson (1993). The CommAgent Program, Tech. Rep. SAIC-93/
1013.

IEEE Std. 1178-1990 (1991) IEEE Standard for the Scheme Programming Language, New York, NY

Swanger, H. J., J. W. Given, and J. Anderson (1991). IMS Extensions to the Center for Seismic Studies
Version 3 Database Schema, Tech. Rep. SAIC-9111138.

32

APPENDIX

THE CSS3.0/IMS Database Interface

The CSS3.0/IMS Database Interface provides access to CSS3.0/IMS entities repre-
sented in the Center for Seismic Studies Version 3.0 database schema and the extensions
for the IMS. Reports by Anderson et al. (1990) and Swanger et al. (1991) describe these
entities. The CSS3.0/IMS entities correspond explicitly to rows from tables in a relational
data model, which is implemented in IMS using an Oracle RDBMS. However, the entities
and interface definition are independent of the underlying RDBMS product. With some
limitations and caveats, developing a consistent file-based interface is possible. Thus,
external developers without access to an RDBMS can build IMS applications for that are
easily converted to run in the IMS operational framework where most data access is via an
RDBMS.

The CSS3.0/IMS Interface consists of general functions to connect and disconnect
to an RDBMS, manage transactions, report errors, execute SQL commands, and read and
write CSS3.0/IMS entities. The functions provide a simple application-program interface
for applications written in both the Fortran and C programming languages. Wide-area
access to a network of RDBMS is transparent to the interface, and user applications need
take no special measures to access a remote RDBMS.

The read and write access for CSS3.0IMS entities is especially simple. For each
entity described in the CSS3.0/IMS database schema, there are specific C and Fortran data
structures. To read a specific entity, an application invokes a function that returns an array
of those structures. To write an array of those structures containing a specific type of
entity, the application passes the array to a function that inserts the entities into the corre-
sponding table. The interface has limitations. Specifically, derived entities that are defined
by joins between CSS3.0IMS entities are not accessible through the interface. Neverthe-
less, the simple interface is compatible with application development in the absence of an
RDBMS. If external developers follow the overall structure of the CSS3.0/IMS interface
and use similar data structures, convening an application from file to RDBMS data access
will involve minimal modifications. Similar guidelines apply to IMS applications that
must operate in environments without an RDBMS.

The CSS3.0/IMS interface uses SQL to select specific entities for reading. There-
fore, while the types of entities retrieved are limited to those described in the schema, an
application can take full advantage of SQL to select specific entities it requires. Thus, the
entity-selection criteria can directly use relationships between different types of entities.
Usually, construction of more complex entities within each application is not difficult. In
large systems, this is often a more efficient strategy, since the operational RDBMS
resources are always limited and often heavily i.ved.

The following UNIX manual pages describes the specific details of the CSS3.0/
IMS interface. We document two libraries: Iibdb30, which consists of functions for
RDBMS access, transaction management, error reporting, and access to CSS3.0 entities;
and libdbims, which provides functions for access to IMS-specific entities.

33

LIBDB3O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

NAME
Database Communications:

dbopen. dbclose. dbwhoanii, dbcancel

Transaction Management:

dbcommit, dbrollback

Key Counter Assignment:

dbgetcounter

String Handling:

cstr~to~pad, pad-to-cstr

Error Handling:

dberror app. dberror get, dberror mui, dberror sqica, dberror-unix

Fetch Routines:

get affihiatio, get-arrival, get~assoc, get~event, get~gregion, get instrument, get_netmag, get network,
get origerr. get origin, get-remark, get~sensor, get~site, ge _sitechan, get-sregion, get swamag,
get-stassoc, get wfdisc, get wftag, get wftape

Insert Routines:

affiliat~i Aadd, arrivalAadd, assoc -Aadd, eventAadd, gregion Aadd, instrwzlen Aadd, netmag_Aadd,
networkAadd, origerrfAadd, origin Aadd, sensor Aadd, siteAadd, sitechanAadd, sregion_Aadd,
stamag-jadd, stassocAadd, wfdisc Aiadd, wftagAadd, wftapeAadd, qa_attrib

SYNOPSIS
CALLS FROM C APPLICATIONS:

include files

#include "dhorac.h"
#include "dbsqlc.h"
#include "libdb3Oders~h"

Database Communications:
hit dbopen (uid)
char .uid;

int dbclose()
int dbwhoami(result)
char *result;

int dbcancel()

Transaction Management:

- 34 -

LIBDB30 (3) C LIBRARY FUNCTIONS LIBDB30(j3)

int dbcommit()

int dbrollbackO;

Counters (see dbgetcounter.3):

int dbgetcounter (ctype, increment, value)
char *ctype;
int increment *value;

String Maniputation:

int cstr topad (array, string, arraylength)
char *array, *string;
int arrayjlength;

int pad tocstr (string, array, stringjlength, array-length)
char *string, *array;
int stringjlength, array_length;

Error Handling (see dberror.3):

int
dberror-init (print-flag, warnflag)
int print-flag;
int warn flag;

int
dberrorget (error code, error-text, print flag, warn-flag)
int *error code;
char *error text;
int *print flag;
int *warn flag;

jut
dberrorsqlca (ptrsqlca)
struct sqlca *ptrsqlca;

int
dberror app (error code, ptrbuf)
int errorcode;
char *ptrbuf;

int
dberror unix (err-text)
char *err-text;

C Insert Routines (see array_insert.3):

#include "db affiliation.h"
int affiliati_Aadd(table, ptr, recnum, qaflag)
char *table;
struct affiliation *ptr;
int recnum;
int qaflag;

#include "db arrival.h"
int arrival Aadd(table, ptr, recnum, qaflag)
char *table;

- 35 -

LIBDB3O(3) C LIBRARY FUNCTIONS LIJDB30 (3)

struct arrival *ptr;
int recnum;
int qa-flag;:

#include "db assoc.h"
int assoc_Aadd(table, ptr, reenurn, qa-flag)
char *table;
struct assoc *ptr;
int recnum;
int qa~flag;

#include "db event.h"
int event_-Aadd(table, ptr, recnum, qa"?-',
char *table;
struct event *ptr;
int reenurn;
int qa~flag;

#define "db~gregion.h"
int gregion Aadd(table, ptr, recnum, qa-flag)
char *table;
struct gregion *ptr;
int recnum;
int qaflag;

*include "cib instrurnenth"
int instrumen Aadd(table, ptr, recnum, qa~flag)
char *table;
struct instrument *ptr;
int recnum;
int qa~flag;

#include "db -netmag.h"
int netmag-Aadd(table, ptr, recnuni, qa flag)
char *table;
struct netmag *ptr;
int recnurn;
int qa~flag;

#include "db network.h"
int networkA6add(table, ptr, recnum, qa-flag)
char *ab~le;
struct network * ptr;
int recnum;
mnt qaflag;

#incl'zde "db o'lgerrbh'
int origerrAadd(table, ptr, recnurn, qa~flag)
char *table;
struct origerr *ptr;
int recnum;

- 36 -

LIBDB3O(3) C LIBRARY FUNCTIONS LIBDB30(3)

jut qa~flag,

#include "db origin.h"
int originAadd(table, ptr, recnum, qa~flag)
char *table;
struct origin *ptr;
jut recnum;
jut qa-flag;

#include "db reiark~h"
jut remarkA add(table, ptr, remnum, qa~flag)
char *table;
struct remark *ptr;
jut recnumi;
iut qaflag;

#include "db seusor.h"
jut sensor_-Aadd(table, ptr, recnum, qa-flag)
char *table;
struct sensor *ptr;
jut recuum;
int qa-flag;

#iuclude "db situ.b"
int site_-Aadd-(tahle, ptr, recnum, qa-flag)
char *table;
struct site *ptr;
jut recuum;
iut qa~ffag;

#include 'db sitechan.h'
jut sitechan_-Aadd(table, ptr, recnum, qa-flag)
char *table;
struct sitechan 4pi..,

jut recnum:
jut qa-flag;

#inc'ude "db -sregion.h"
int sregionAadd(tabie, ptr, recnum, qaflag)
char *table;
struct sregion *ptr;
int recnum;
int qa~flag;

#include 'db -stamag.h'
int stamagAadd(table, ptr, recnum, qa~flag)
char *table;
sitruct stamag *ptr;
int recnul i;
jut qaflag;

- 37 -

LIBDB30O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

#i.iclude 'db-stassoc.h"
iut stassoc Aadd(table, ptr, recnum, qa_flag)
char *table;
struct stassoc 'ptr;
int recnum;
jut qa-flag;

An~clude "db wfdisc.h"
jut wfdiscAidd(table, ptr, recnum, qa~flag)
char 'table;
struct wfdisc 'ptr;
int recnumf;
jut qa~flag;

#include "db-wftag.h"
jut wftagAadd(table. ptr, recnum, qa-flag)
char 'table;
struct wftag 'ptr;
jut recnum;
int qa~fiag;

#incl. de "db wftape.h"
iut wftapeAadd(table, ptr, recnum, qa~flag)
char 'table;
struct wftape 'ptr;
int recuum;
int qa~fiag;

C Fetchi Routines (see array~fetch.3):

#include "db affiliation.h"
int get -affihiatio(table -name, where-clause, aflhltuples, maxrec)
char *table name;
char *where clause;
struct affiliation "*af'fil-tuples;
int maxrec;

#include 'db arrival.h"
jut get arrival(table -name, where-clause, arriv_tuples, tnaxrec)
char *table name;
char *where clause;
struct arrival "*arriv-tuples;
jut maxrec;

#jnclude "db assoc.h"
int get assoc(table -name, where-clause, assoc tuples, maxrec)
char 'table-name;,
char 'where clause;
struct assoc "*assoc~tuples;
int maxrec;

- 38 -

LIBDB30O(3) C LIBRARY FUNCTIONS LIBDB30(3)

#include "db-event-h"
iut get event(tabte name, where-clause, event tuples, maxrec)
char stable-name;
char *where-clause;
struct event **event-tuples;
iut maxrec;

#include "db~gregion-h"
jut get gregion(table -name, where-clause, gregion tuples, maxrec)
char *table name;
char *where-clause;
struct gregion **gregion_tuples;
jut maxrec;

#include "db-instrumeut~h"
jut get~instrument(table name, where clause, instr tuples, maxrec)
char *table name;
char *where clause;
struct instrumnent *A~nstr-tuples;
iut maxrec;

include "db netmag.h"
int get_netmag(table-name, where-clause, netmag_tuples, maxrec)
char *table name;
char *where-clause;
struct neftnag * *netmag~tupies;
jut maxrec;

#include "dh-network.h"
int get -network(table -name, where-clause, nwork tuples, maxrec)
char *table namie;
char *where-clause;
struct network **nwork-tuples;
iut maxrec;

#iuclude "db.-origerr.h"
int get origerr(table -name, where-clause, origerr tuples, maxrec)
char -table name;
char *where-clause;
struct origerr * *origerr-tuples;
iut maxrec;

Oinclude "db-origin.h"
int get -origin(table -name, where-clause, origin tuples, maxrec)
char *table name;
char *where-clause;
struct origin **origin tuples;
jut maxrec;

-39 -

LIBDB30O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

#include "db remark.h"
int get rema-rk(table -name, where-clause, remark-tuples, maxrec)
char *table name;
char *where clause;
struct remark **remark-tuples;
int maxrec;

#include "db sensor.h"
int get sensor(table name, where-clause, sens-tuples, maxrec)
char *taible name;
char *where clause;
struct sensor **sens-tuples;
int niaxrec;

#include "db site.h"
iut get,_site(table -name, where-clause, site tuples, maxrec)
char *table-name;
char *where -clause;
struct site **site -tuples;
iut maxrec;

#include "db sitechan.h"
iut get -sitechain(table -name, where-clause, s chan tuples, maxrec)
char *table -name;
char *where -clause;
struct sitechan * *s-chan-tuples;
int maxrec;

#include 'db sregion.h'
iut get sregion(table -name, where clause, sreg tuples, maxrec)
char *tabl name;
char *where clause;
struct sregion **sregtuples;
jut maxrec;

#include "db stamag.h"
int get_stamig(table -name, where-clause, staniag tuples, maxrer)
char *table -name;
char *where -clause;
struct stamag **stamag-tuples;
int maxrec;

#iuclude "db stassoc.h"
jut get stassoýc(table -name, where-clause, stassoc-tuples, maxrec)
char *table -name;
char *where clause;
struct stassoc **stassoc-tuples;
int maxrec;

- 40 -

LIBDB3O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

#indude "db wfdisc.h"
int get wfdisc(table-name, where-clause, wfdisc tuples, maxrec)
char *table-nanie;
char *where-clause;
struct wfdisc **wfdisc-tuples;
int maxrec;

#include "db-wftag.h"
int get -wftag(table -name, where-clause, wftag_ýtuples, maxrec)
char *table-name;,
char *where-clause;
struct wftag **wftag~tuples;
int maxrec;

#include "db-Wftape.h"
int get~wftape(table-name, where-clause, wftape tuples, maxrec)
char *table name;
char *where-clause;
struct wttape **wftape~tuples;
int maxrec;

CALLS FROM FORTRAN APPLICATIONS:

include files

include '.J.J/.Jdboraf.h'
include '.J.J/.Jdbsqlf.h'

Connecting to the Database:

integer function dbopen(uid)
character*80 uid
integer function dbcloseo

integer function dbwhoatni(user-name)
character*80 user-name

Transaction Management:

integer function dbcommito

integer function dbrollbacko;

Counters (see dbgetcounter3):

integer function dbgetcounter(ctype, increment, value)
character* 15 ctype
integer*4 increment
integer*4 value

Error Handling (see dberrori3):

integer function dberror init(print flag, warn flag)
integer*4 print -flag
integer*4 warn-flag

- 41 -

LIBDB30O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

integer function dberrorjget(error code, error text, print flag, warn flag)
integer*4 error -code
character*70 error text
integers4 print-flag
integer*4 warn flag

integer function dberror sqlca(sqlcode, sqiwarnO, sqlwarnl, sqlwarn2,
sqlwarn3, sqlwarn4, sqiwarn5, sqlwarn6, sqlwarn7, sqlerrmc
integer*4 sqicode
character* 1 sqiwarnO
character* 1 sqlwarni
character* 1 sqlwaru2
character* 1 sqlwarn3
character* 1 sqlwarn4
character* 1 sqiwarnS
character*1 sqlwarn6
character* 1 sqlwarn7
character*70 sqlerrmc

integer function dberror -app(error code, err msg)
integer*4 error -code
character*70 err-msg

integer function dberror -unix(err-text)
character*70 err-text

FORTRAN Insert Routines (see array insert .3):

integer function affiliatiIAadd(table, recnum, qa-flag,
x net, sta, Iddate, len f table)

character *80 table
integer*4 recnum
integer*4 qa~flag
cliaracter*8 net(recnum)
character*6 sta(recnum)
character* 17 lddate(recnum)
integer*4 leuf table

integer function arrival -Aadd(table, recnum, qa flag, sta,
"x time, jdate, stassid, chanid, chan, iphase, stype, deltim, azimuth,
"x delaz, slow, deislo, ema, rect, amp, per, logat, cdip, fin, snr,
"x qual, auth, commid, Iddate, Ien-ftable)

character *80 table
integer*4 recnum
integer*4 qa~flag
character*6 sta(recnum)
real*8 time
integer*4 arid
integer*4 jdate
integer*4 stassid
integer*4 chanid
character*8 chan(recnuin)
character*S iphase(recnum)
character' 1 stype(recnum)
real*4 deltim

- 42 -

LIBDB30O(3) C LIBRARY FUNCTIONS LIBDB30O(3)

real*4 azimuth
real*4 deli
real*4 sb'%
real'4 deish,
real*4 enia
real*4 rect
real'4 amp
real'4 per
real*4 logat
character' 1 clip(recnum)
character' 2 fm(recnum)
real'4 sar
character*1 qual(recnum)
character' 15 auth (recnum)
integer*4 commid
character' 17 lddate(recnum)
integer*4 len-f-table

integer function assocAadd(table, recnum, qa flag, arid, orid,
"x sta, phase, belief, delta, seaz, esaz, tim-eres, timedef,
"x azres, azdef, slores, slodef, emares, wgt, vinodel, commid,
"x Iddate, len f table)

character *80 table
integer*4 recnum
integer*4 qa-flag
integer*4 arid
integer'4 orid
character*6 sta(recnum)
character*8 phase(recnum)
real*4 belier
real*4 delta
real*4 seaz
real*4 esaz
real*4 ftieres
character' 1 timedef(recnum)
real*4 azres
character*1 azdef(recnum)
real*4 slores
character' 1 sloder(recnum)
real*4 emares
real*4 wgt
character' 15 vmodel(recnum)
integer*4 comniid
cha racter' 17 Iddate(recnurn)
integer*4 len-ftable

integer function event -Aadd(table, recnum, qa fag, evid, evname,
x prefor, auth, commid, Iddate, lea f table)

character *80 table
integer*4 reenum
integer*4 qa~flag
integer*4 evid
character' 15 evnarne(recnunl)

- 43 -

LIBDB3O (3) C LIBRARY FUNCTIONS LIBDB30 (3)

integer*4 prefor
character* iS auth(recnum)
integer*4 cominid
character*17 lddate(recnum)
integer*4 len-f-table

integer function gregionAadd(table, recnum, qa-flag, grn, grnarne,
x Iddate, le-f-table)

character *80 table
integer s4 recnum
integer*4 qa~flag
integer*4 gin
character*40 grnarne(recnum)
characters 17 lddate(recn ur)
integer*4 len f-table

integer function instrumen_-Aadd(table, recnum, qa flag, mnid, insname,
"x instype, band, digital, samprate, ncalib, ncalper, dir,
"x dfile, rsptype, Iddate, len-ftable)

character *80 table
integer*4 recnum
integer*4 qaflag
integer*4 inid
character*50 insname(recnum)
character*6 instype(recnum)
character*1 band(recnuni)[1J
character* 1 digital(recn ur)
real*4 samprate
real*4 ncalib
real*4 ncalper
character*64 dir(recn ur)
character*32 dfile(recnurn)
character*6 rsptype(recnum)
character* 17 lddate(recnum)
integer*4 len f table

integer function netmag_,Aadd(table, recnum, qa flag, magid, net,
"x orid, evid, magtype, nsta, magnitude, uncertainty, auth,
"x commid, Iddate, len f table)

character *80 table
integer*4 recnum
integer*4 qa~flag
integer*4 magid
character*8 net(recnum)
integer*4 orid
integer*4 evid
character*6 magtype(recnum)
integer*4 nsta
real*4 magnitude
real*4 uncertainty
character* 15 auth (recnum)
integer *4 commid

-44-

LIBDB3O (3) C LIBRARY FUNCTIONS LIBDB3O (3)

character* 17 Iddate(recnum)
Integer*4 len-f-table

integer function network_-Aadd(table, recnuin, qa flag, net, netname,
x nettype, auth, commid, Iddate, len-ftable, lenfLquery)

character *80 table
integer*4 recnum
integer*4 qa -flag
character*8 net(recnum)
character*80 netname(recnum)
character*4 nettype(recnuin)
cbaracter* 15 auth(recnum)
integer*4 commid
cbaracter* 17 lddate(recnum)
integer *4 len f-table

integer function origerr -Aadd(table, recnum, qa-flag, orid, sxx, syy,
"x szz, stt, sxy, sxz, syz, stx, sty, stz, sdobs, smajax, sminax,
"x strike, sdepth, stime, conf, 7ommid, Iddate, len-ftable)

character *80 table
integer*4 recnum
integer*4 qaflag
integer*4 orid
real*4 sxx
real*4 syy
real*4 szz
real*4 stt
real*4 sxy
real*4 sxz
real*4 syz
real*4 st
real*4 sty
real*4 stz
real*4 sdobs
real*4 smajax
real*4 sminax
real*4 strike
real*4 sdepth
real*8 stime
real*4 conf
integer*4 commid
character* 17 Iddate(recnurn)
integer*4 len (-table

integer function origin Aadd(table, recnuin, qa flag, tat, Ion, depth,
x time, orid, evid, jdate, nass, nder, ndp, 'grn, sin, etype, depdp,
x dtype, rnb, mbid, mns, nisid, ml, mlid, algorithm, auth, commid,
x Iddate, lenf (table)

character *80 table
integer*4 recnum
integer*4 qa~flag
real*4 lat

- 45 -

LIBDB3O (3) C LIBRARY FUNCTIONS LIBDB3O (3)

real*4 Ion
real*4 depth
real*8 time
integer*4 orid
integer*4 evid
integer *4 jdate
integer*4 nass
integer*4 ndef
integer*4 ndp
integer*4 gin
integer*4 sin
character*7 etype(recnuin)
real*4 depdp
character* 1 dtype(recnum)
real*4 mb
integer*4 mbid
real*4 ms
integer*4 msid
real*4 ml
iuteger*4 mlud
character* 15 algorithm(recnum)
character* 15 auth(recnum)
integer*4 commid
character* 17 lddate(recnum)
integer*4 lenf table

integer function remarkIAadd(table, recuum, qa flag, commid, lineno,
x remark, Iddate, len V table)

character *80 table
integer*4 recnum
integer*4 qa-flag
integer*4 comnild
integer*4 lineno
character*80 remark(recnurn)
character* 17 lddate(recnum)
integer*4 len V table

integer function sensorAadd(table, recnum, qa flag, sta, chan, time,
x endtime, inid, chanid, jdate, calratio, calper, tshift,
x instant, Iddate, lenV table)

character *80 table
integer*4 recnum
integer*4 qa~flag
character*6 sta(recnum)
character*8 chan(recnum)
real*8 time
real*8 endtime
integer*4 inid
integer*4 chanid
integer*4 jdate
real*4 calratio
real*4 calper
real*4 tshift

- 46 -

LIBDB30O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

cbaracter*I mnstant(recnum)
characters V7 addate(recnum)
integer*4 lentrtable

integer function site IAadd(table, recnum, qa flag, sta, ondate,
x ofidate. Wa, Ion, elev, staname, statype, relsta, dnorth,
x deast, Iddate, len-ftable)

character *80 table
integer*4 recnum
integer*4 qa~flag
character*6 sta(recnum)
integer*4 ondate
integer*4 offdate
real*4 la
real*4 Ion
real'4 elev'
character*S0 stanaine(recnum)
character*4 statype(recnuin)
character*6 refsta(recnuin)
real*4 dnorth
real*4 deast
characters 17 lddate(recnum)
integer*4 len f table

integer function sitechan -Aadd(table, recnum, qa flag, sta, chan, ondate,
"x chanid, offdate, ctype, edepth, hang, vang, descrip, Iddate,
"x le f table)

character .80 table
integer*4 recnum
integer *4 qa~flag
character*6 sta(recnum)
character*8 chan(recnum)
integer*4 ondate
integer*4 chanid
integer*4 ofidate
character*4 ctype(recnum)
real*4 edepth
real*4 hang
re.-1"4 yang
chdracter*50 descrip(recnum)
character' 17 lddate(recnum)
integer*4 len-ftable

integer function sregion_Aadd(table, recnum, qa flag, sin, smname,
x Iddate, len f table)

character *80 table
integer*4 recnum
integer*4 qa~flag
integer*4 sin
character*40 srname(recnum)
character' 17 lddate(recnum)
integer*4 len-f-table

- 47 -

LIBDB30(3) C LIBRARY FUNCTIONS LIBDB3O(3)

integer function stamag..Aadd(table, recnum, qa flag, mnagid, sta,
"x arid, orid, evid, phase, magtype, magnitude, uncertainty,
"x auth, commid, Iddate, len f table)

character *80 table
integer*4 recnum
integer*4 qa -flag
integer*4 magid
character*6 sta(recnum)
integer*4 arid
integer*4 orid
integer*4 evid
character*8 phase(recnum)
character*6 magtype(recnum)
real*4 magnitude
real*4 uncertainty
characters 15 auth(recnurn)
integer*4 commid
character* 17 lddate(recnum)
integer*4 len f table

integer function stassoc Aadd(table, recnum, qa flag, stassid, sta,
"x etype, location, dist, azimuth, lat, Ion, depth, time, imb,
"x ims, imi, auth, commid, Iddate, len-f-table)

character *80 table
integer*4 recnum
integer*4 qa~flag
integer*4 stassid
character*6 sta(recnum)
character*7 etype(recnum)
character*32 Iocation(recnum)
real*4 dist
real*4 azimuth
real*4 lat
real*4 Ion
real*4 depth
real*8 time
real*4 imb
real*4 irns
real*4 imi
character* 15 auth(recnum)
integer*4 commid
characters 17 lddate(recnum)
integer*4 len f table

integer function wfdiscAadd(table, recnum, qajfag, sta, chan, time,
"x wfid, chanid, jdate, endtime, nsamp, samprate, calib, calper,
"x instype, segtype, datatype, clip, dir, dfile, toff, commid,
"x Iddate, len (-table)

character *80 table
integer*4 recnum
integer*4 qa-flag
character*6 sta(recnum)
character*8 chan(recnum)

- 48

LIBDB30O(3) C LIBRARY FUNCTIONS LIBDB30O(3)

real*8 time
integer*4 wfid
integer*4 chanid
integer*4 jdate
real*8 endtirne
integer*4 nsamp
real*4 samprate
real*4 calib
real*4 calper
character*6 instype(recuum)
character* I segtype(recn ur)
character*2 datatype(recnum)
character* 1 clip(recnum)
character*64 dir(recnum)
character*32 dfile(recnum)
integer*4 foff
integer*4 commid
character* 17 lddate(recnum)
integer*4 len f table
integer*4 len f query

integer function wftagAadd(table, recnum, qa flag, tagnarne, tagid,
x wfid, Iddate, len f table)

character *80 table
integer*4 recnum
integer*4 qa -flag
character*8 tagname(recnum)
integer*4 tagid
integer*4 wtid
character* 17 lddate(recnum)
integer*4 len f table

integer function wftapeAadd(table, recnum, qa flag, sta, chan, time,
"x wfid, chanid, jdate, endtime, usamp, samprate, calib, calper,
"x instype, segtype, datatype, clip, dir, dfile, volname,
"x tapefile, tapeblock, commid, Iddate, Ien-ftable)

character *80 table
integer*4 recnum
integer*4 qa~flag
character*6 sta(recnum)
character*8 chan(recnum)
real*8 time
integer*4 wfid
integer*4 chanid
integer*4 jdate
real*8 end time
integer*4 usam p
reaI*4 samprate
real*4 calib
real*4 calper
character*6 instype(recnum)
character' 1 segtype(recnum)
character*2 datatype(recnum)

- 49 -

LIBDB3O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

character* I clip(recnum)
character*64 dir(recnum)
character*32 dfile(recnum)
character*6 volname(recnum)
integer*4 tapefile
integer*4 lapeblock
integer*4 commid
character* 17 lddate(recnum)
integer*4 len I -table

FORTRAN Fetch Rowines (see array jetch3):

integer function get Affiliatio(table, query, maxrec, net, sta, Iddate,
x lenf table, len V query)

character *80 table
character *80 query
integer*4 maxrec
character*8 net(maxrec)
character*6 sta(maxrec)
character* 17 lddate(maxrec)
integer*4 len - tab'e
integer*4 lenjfquery

integer function get arrival(table, query, maxrec, sta, time, arid,
x jdate, stassid, chanid, chan, iphase, stype, deltim, azimuth,
x delaz, slow, delslo, ema, rect, amp, per, logat, clip, fmn, snr,
x qual, auth, commid, Iddate, lenV-table, let'_20query)

cbar;,cter *80 table
character *80 query
integer*4 maxrec
character*6 sta(maxrec)
real*8 time
integer*4 arid
integer*4 jdate
integer*4 stassid
integer*4 chanid
character*8 chan(maxrec)
character*8 iphase(maxrec)
character* 1 stype(maxrec)
real*4 ddtim
real*4 azimuth
real*4 delaz
real*4 slow
real*4 delslo
real*4 ema
real*4 rect
real*4 amp
real*4 per
real*4 logat
character* 1 clip(maxrec)
character* 2 fm(maxrec)
real*4 snr

- 50 -

LIBDB30 (3) C LIBRARY FUNCTIONS L18DB30(3)

cbaracter* 1 qual(maxrec)
character*15 auth(znaxrec)
integer*4 commid
characters 17 lddate(maxrec)
integer*4 len f-table
integer*4 len f query

integer function get assoc(table, query, mAixrec, arid, grid,
"x sta, phase, belief, delta, seaz, esaz, timeres, timedef,
"x azres, azder, slores, slodef, emares, wgt, vmodel, comuiid,
"x Iddate, fen -f -table, len_fLquery)

character *80 table
character *80 query
integer*4 maxrec
integer*4 arid
integer*4 orid
character*6 sta(maxrec)
character*8 phase(maxrec)
real'4 belief
real*4 delta
real*4 seaz
real*4 esaz
real*4 timeres
characters 1 timedef(maxrec)
real*4 azres
characters I azdef~maxrec)
rea1*4 slores
character* 1 sloder(maxrec)
real*4 emares
real*4 wgt
character* 15 vmnodel(xuaxrec)
integer*4 commid
cbaracter* 17 lddate(maxrec)
mnteger*4 len f table
integer*4 len f query

intege~r function get event(table, query, maxrec, evid, evnarae,
x prefor, auth, commid, Iddate, len f-table, lenfLquery)

character *80 table
character *80 query
integer*4 maxrec
integer*4 evid
character* 15 evnanie(w-wrec)
integer*4 prefor
character* 15 auth(maxrec)
integer*4 commid
characters 17 Iddate(maxrec)
integer*4 len r table
integer*4 Ienfýquery

- 51 -

LIBDB3O (3) C LIBRARY FUNCTIONS LIBDB3O (3)

integer function get gregion(table, query, maxrec, grn, grname,
x Iddate, ien -f-table, len_t_query)

character .g80 table
character *80 query
integer*4 maxrec
integer*4 gin
character'40 grname(maxrec)
character* 17 lddate(maxrec)
integer*4 ten f-table
integer*4 len~fquery

integer function get -instrument(table, query, maxrec, inid, insnarne,
x instype, band, digital, samprate, ncalib, ncalper, dir,
x dfile, rsptype, iddate, len I table, lenV-query)

character *80 table
character *80 query
integer*4 maxrec
integer*4 mnid
character*5O insnatne(maxrec)
character*6 instype(maxrec)
character*1 band(uiaxrec)[11
character* I digital(maxrec)
real*4 samprate
real*4 ncalib
real*4 ncalper
character*64 dir(iuaxrec)
character*32 dfile(maxrec)
character*6 rsptype(maxrec)
character* 17 lddate(maxrec)
integer*4 len f table
integer*4 lentcquery

integer function get netmag(table, query, maxrec, magid, net,
"x orid, evid, magtype, usta, magnitude, uncertainty, auth,
"x commid, Iddate, len-ftable, lenjfquery)

character *80 table
character *80 query
integer*4 maxinec
integer*4 niagid
character*8 net(maxrec)
integer*4 orid
integer*4 evid
character*6 magtype(maxrec)
intleger*4 nsta
real*4 magnitude
real*4 uncertainty
character* 15 auth(maxrec)
integer*4 commid
character* 17 lddate(maxrec)
integer*4 lenV ftable
integer*4 len_V~query

-52 -

LIBDB3O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

integer function get network(tabie, query, maxrec, net, netname,
x nettype, auth, conmi~d, Iddate, len-f-table, len-fquery)

character s80 table
character *80 query
integer*4 maxrec
character*$ net(maxrec)
character*80 netname(maxrec)
character*4 nettype(maxrec)
character' 15 auth(maxrec)
integer'4 commid
character' 17 lddate(maxrec)
integer*4 len f table
integer*4 len_ f query

integer function get -origerr(table, query, inairec, orid, six, syy,
x szz. stt, sxy, sxz. syz, stx, sty, stz, sdobs, smajax, sminax,
x strike, sdepth, stime, conf, commid, Iddate, len I table,
x len fquery)

character *80 table
character *80 query
integer*4 maxrec
iiiteger*4 orid
real*4 six
reai'4 syy
real*4 sz
real*4 stt
real*4 sxy
real*4 sxz
real*4 syz
real*4 stx
real'4 sty
real*4 stz
real'4 sdobs
reai'4 smajax
real*4 sminax
real*4 strike
real*4 sdepth
real'S stime
real*4 conf
integer*4 commid
character* 17 Iddate(maxrec)
integer*4 lentf table
integer'4 lenfLquery

integer function get -origin(table, query, naxrec, lat, Ion, depth,
"x time, orid, evid, jdate, nass, ndef, ndp, gin, sin, etype, depdp,
"x dtype, mb, mbid, ins, insid, ml, mlid, algorithm, auth, commid,
"x iddate, len -f table, len_f_query)

character '80 table
character *80 query
integer*4 maxrec
reai'4 lat
real'4 Ion

- 53 -

LIBDB30(3) C LIBRARY FUNCTIONS LIBDB3O(3)

real*4 depth
real*8 time
integer*4 orid
integer*4 evid
integer*4 jdate
integer*4 nass
integer*4 ndef
integer*4 ndp
integer*4 gin
integer*4 sin
character*7 etype(maxrec)
real*4 depdp
character* 1 dtype(maxrec)
real*4 mb
integer*4 nibid
reals4 nis
integer*4 msid
real*4 ml
integer*4 mild
character* 15 algorithm(maxrec)
character*15 auth(maxrec)
integer*4 comniid
character* 17 Iddate(maxrec)
integer*4 Ien-f table
integer*4 lenf~query

integer function get remark(table, query, maxinec, commid, lineno,
x remark, Iddate, len t table, len_fLquery)

character *80 table
character *80 query
integer*4 maxinec
integer*4 commid
integer*4 lineno
cbaracter*80 remark(maxrec)
cbaracter* 17 Iddate(maxrec)
integer*4 len I table
integer*4 lenLquery

integer function get-sensor(table, query, maxrec, sta, chan, time,
"x endtime, inid, chanid, jdate, cairatio, calper, tshift,
"x instant, Iddate, len-ftable, len f query)

character *80 table
character *80 query
integer*4 maxrec
character*6 sta(maxrec)
character*8 chan(maxrec)
real*8 time
real*8 endtime
integer*4 inid
integer*4 chanid
integer*4 jdate
real*4 cairatio
real*4 calper

- 54 -

LIBDB30O(3) C LIBRARY FUNCTIONS LIBDB3Q(3)

reaI*4 tshift
character* 1 instant(maxrec)
character* 17 lddate(maxrec)
integer*4 len f table
integer*4 lenf query

integer function get -site(table, query, niaxrec, sta, ondate,
x offdate, lat, ion, elev, staname, statype, refsta, dnorth,
x deast, Iddate, len_f table, lenfLquery)

character *80 table
character *80 query
integer*4 maxrec
character*6 sta(maxrec)
integer *4 ondate
integer*4 ofidate
reai*4 lat
real*4 Ion
real*4 elev
character*50 staname(maxrec)
character*4 statype(maxrec)
character*6 refsta(maxrec)
real*4 dnorth
real*4 deast
character* 17 lddate(maxrec)
integer*4 len f table
integer*4 len f query

integer function get sitechan(table, query, maxrec, sta, chan, ondate,
"x chanid, offdate, ctype, edepth, hang, yang, descrip, Iddate,
"x len ftable, len f query)

character *80 table
character *80 query
integer*4 maxrec
character*6 sta(maxrec)
character*8 chan(maxrec)
integer*4 ondate
integer*4 chanid
integer*4 offdate
character*4 ctype(maxrec)
real*4 edepth
real*4 hang
real*4 yang
chairacter*S0 descrip(tnaxrec)
character* 17 Iddate(maxrec)
integer*4 len f table
integer*4 len-f-query

integer function get sregion(table, query, maxrec, sm, smname,
x Iddate, len f table, lenjf_query)

character *80 table
character *80 query
integer*"4 axrec

- 55 -

LIBDB30 (3) C LIBRARY FUNCTIONS LIBDB30 (3)

integer*4 srn
character*40 srname(maxrec)
character* 17 iddate(maxrec)
integer*4 lenf table
integer*4 len fquery

integer function getstamag(table, query, maxrec, magid, sta,
x arid, orid, evid, phase, magtype, magnitude, uncertainty,
x auth, commid, Iddate, ienf table, lenfquery)

character *80 table
character *80 query
integer*4 maxrec
integer*4 magid
character*6 sta(maxrec)
integer*4 arid
integer*4 orid
integer*4 evid
character*8 phase(maxrec)
character*6 magtype(maxrec)
real*4 magnitude
real*4 uncertainty
character*IS auth(maxrec)
integer*4 commid
character*IT lddate(maxrec)
integer*4 len..ftable
integer*4 len fquery

integer function getstassoc(table, query, maxrec, stassid, sta,
x etype, location, dist, azimuth, lat, Ion, depth, time, imb,
x ims, iml, auth, commid, iddate, |enf table, len fquery)

character *80 table
character *80 query
integer*4 maxrec
integer*4 stassid
character*6 sta(maxrec)
character*7 etype(maxrec)
character*32 Iocation(maxrec)
real*4 dist
real*4 azimuth
real*4 lat
real*4 ion
real*4 depth
real*8 time
real*4 imb
real*4 ims
real*4 iml
character*l$ auth(maxrec)
integer*4 commid
character*17 lddate(maxrec)
integer*4 len ftable
integer*4 len f..query

- 56 -

LIBDB3O(3) C LIBRARY FUNCTIONS LIBDB3O(3)

integer function get wfdisc(table, query, maxrec, sta, chan, time,
"x Mid, chanid, jdate, endtime, nsamp, samprate, calib, calper,
"x instype, segtype, datatype, clip, dir, dfile, foff, commid,
"x Iddate, len -f -table, lenjtquery)

character *80 table
character *80 query
integer*4 maxrec
character*6 sta(maxrec)
character*8 chan(inaxrec)
real*8 time
integer*4 wfid
integer*4 chanid
integer*4 jdate
real*8 endtime
integer*4 nsamp
real*4 samprate
real*4 calib
real*4 calper
character*6 instype(maxrec)
character* 1 segtype(maxrec)
character*2 datatype(niaxrec)
character* 1 clip(maxrec)
character*64 dir(maxrec)
character*32 dfile(maxrec)
integer*4 toff
integer*4 commid
cbaracter*17 lddate(maxrec)
Integer*4 len-ftable
integer*4 len I _query

integer function get -wftag(table, query, maxrec, tagname, tagid,
x wfid, Iddate, len f table, len_f query)

character *80 table
character *80 query
integer*4 maxrec
character*8 tagname(maxrec)
integer*4 tagid
integer*4 wfid

character* 17 Iddate(maxrec)
integer*4 len f table
integer*4 lenLquery

integer function get wftape(table, query, ntaxrec, sta, chan, time,
x wlid, chanid', jdate, endtime, nsantp, samprate, calib, calper,
x instype, segtype, datatype, cdip, dir, dfile, voiname,
x tapefile, tapeblock, commid, Iddate, lentftable, lenfýquery)

character *80 table
character *80 query
integer*4 maxrec
character*6 sta(maxrec)
character*8 chan(maxrec)
real*8 time
integer*4 wfid

- 57

LIBDB30(3)' C LIBRARY FUNCTIONS LIBDB30(3)

integer*4 chanid
integer*4 jdate
real*8 endtime
integer*4 nsamp
real*4 samprate
real*4 calib
real*4 calper
character*6 instype(maxrec)
character* 1 segtype(maxrec)
character*2 datatype(maxrec)
character* I clip(maxrec)
character*64 dir(maxrec)
character*32 dfile(maxrec)
character*6 volname(maxrec)
integer*4 tapefile
integer*4 tapeblock
integer*4 commid
character*17 lddate(maxrec)
integer*4 len f table
integer*4 lenjfquery

DESCRIPTION
These functions provide centralized access to the core relations of the Center for Seismic Studies Data-
base.

Include Files

The dbsqlfcfA.h header files contain application specific database codes such as BADDATA and
UNIXERR. The dbora~cfj'.h header files contain database specific (ORACLE) codes such as
DEADLOCK and NOTFOUND. db na.h contains definitions for minimum, maximum, and NA values
for database attributes that are checked prior to input into the database.

C programs which use any libdb3O.a insert and fetch routines must include the C structure declaration
for the table and use that defined structure for passing data to and from the routine. Include files for
each table in the database follow a specific convention. The db relation. h include files, such as
dbwfdisc.h, contain the C structure declarations for a given table. Names of structure elements are the
same as the attribute name in the database table. Character fields are one greater than the database
definition to allow for the NULL terminator. For example, the sta attribute is a VARCHAR(6) in the
database and the structure element is declared to be char sta[7].

Other include files are provided for C and FORTRAN development for convenience. The 0 RELA-
TION. H files, such as 0 WFDISC.H, contain simple variable C declarations for ORACLE. The OA
RELATION. H files, such as OA_WFDISC.H, contain array[50] variable C declarations for ORACLI.
Each variable is named table attribute. Character fields are the same size as the attribute in the data-
base, for example char wfdisc_sta[6]. Any code which interacts directly with the database will find
these include files helpful.

The f relation .h files, such asf wfdisc.h, contain variable declarations for FORTRAN.

The libdb3Odefs.h file contains function prototypes for libdb30 functions.

Database Communications

dbopen establishes a connection with the database using the database identifying string in uid. For
example:

S - 58 -

LIBDB30(3) C LIBRARY FUNCTIONS LIBDB30(3)

/* Sample C database opi
char userid[801;
int ierr;
ierr=-dbopen(userid);
if(ierr < DBNOERROR)

fprintf(stderr, "Error opening database0);
exit(ierr);

C

c Sample FORTRAN database open
c

character*80 userid
integer ierr
ierr = dbopen(80,userid)
if(ierr .It. DBNOER) then

write(GSTDOUT,*)'Error attaching to database'
goto 9000

end if

dbclose closes the database connection:

/* C Sample to close database */
ierr=dbcloseo;

c ---FORTRAN sample to close database---
ierr = dbcloseO

dbwhoami returns the name of the active ORACLE account.

dbcancel terminates the current query. The integer status it returns is not reliable at this time, so the
calling application should ignore a non zero status. The cancelled query itself will return return
DB CANCEL (ORA-01013, "user requested cancel of current operation"). dbcancel calls an OCI func-
tion, so any application that implements it must link in $(ORACLEHOME)/rdbms/lib/libocic.a.

Transaction Management

dbcommit and dbrollback provide commands for managing transactions:

/* C Transaction Management calls */
ierr = dbcommitO;
ierr = dbrollback0;

c FORTRAN Transaction Management calls
ierr = dbcommitO
i r = dbrollbacko

A database transaction is a statement, or statements, treated as an atomic unit. A transaction is also
called a work group. A logical unit of work begins when the first SQL statement is executed and ends
when a COMMIT or ROLLBACK statement is executed. A work unit also ends when a data definition
statement, such as CREATE TABLE or DROP INDEX, is executed. dbcommit explicitely ends the
current SQL work group by committing all pending changes. dbrollback ends the current SQL work
group by rolling back all pending changes.

- 59 -

LIBDB30 (3) C LIBRARY FUNCTIONS LIBDB30 (3)

Counters

Please see dbgetcounter3.

String Manipulation

Two functions convert between NULL-terminated C strings and the blanked padded arrays required by
the database. cstr_ioypad copies the contents of NULL-terminated C string to array and then blank
pads array to the size of array length. If string is larger than array only the number of characters
which will fit will be copied (in other words, the original string is truncated when it is copied to array).
If the string is truncated, Given the following includes and declarations:

#include "db arrival.h"
EXEC SQL INCLUDE OARRIVAL.H;
struct arrival arrival tuple;
if(cstr_topad(arrivalsta, arrivaltuple.sta, sizeof(arrival sta)) -- TRUNCATION)

fprintf(stderr, "Warning: arrival.sta value truncatedO);

padto cstr goes the opposite direction. It copies the data of a blank padded character array to a
NULL-terminated C string:

pad-to•cstr(arrivaltuple.staarrival-stasizeof(arrival tuple.sta),sizeof(arrival-sta));

Error Handling

Please see dberror.3.

Insert Routines

Please see arrayinsert3.

Fetch Routines

Please see array fetch.3.

SEE ALSO

dbgetcounter.3
dberror.3
array insert.3
arrayfetch.3
Center for Seismic Studies Version 3 Database: Schema Reference Manual

-60-

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

NAME
Database Routines:

apmaAadd, ceppksAadd, cpdiscAadd, db-count. db-delete, db delete array, db-exec_sql,
detection Aadd, evcharAadd, eventid-Aadd, flcdiscAadd, fsdisc-Aadd, sbsnr -Aadd, get_aprna,
get,_ceppks, get cpdisc, get _ceppks, get,_detction, get evchar, get-eventid, get fkdisc, get fsdisc,
get irnarray, get locregion. get,_mag_ coefs, get merstat, get-mine, get-sbsnr, get scnpt, get scriptioc,
get,_seisgrid, get~smatch, get~smatchvar, get spvar, get -timestarnp, locregionAadd, merstat-Aadd,
sbsnr_-Aadd, scriptAadd, scriptloc-Aadd, smatch-Aadd, smatchvarAadd, sptjimeadd, spvar-Aadd,
sqitrace, update sptime, update utmestrnp

Retained for backward compatibility:

apmaadd, detadd, flcdadd, fsdadd, Iocadd, sbsnradd,

Calls from fortran applications:

apmaaadd_, dbcount , dbdeletearray_ detection aadd. eventid aadd_ tIkdisc aadd_ fsdisc aadd,
get apma_, get-detection_, get eventid-, sbsnr-aadd_, get mane_, get Sbsnr_, get-scnpt_,
get scriptioc_, get r'seisgrid_, get -smatch_, get-smawchvar_, get~spvar_, sp-timeadd_, sbsnr-aadd_,
script~aadd_, scriptloc~aadd-, smatch-aadd-, smatchvar-aadd_, spvar-aadd_ update spire,
update utmstamp_, get-timestamp_

Retained for backward compatibility:

apmaadd_, detadd , flcdadd , fsdadd , sbsnradd-

SYNOPSIS
Include Files:

#include "dborac.h"
#include "dbsqlc.h"
#intlude "dbimsc.h"
#include "Iibdbims defs.h'

Fortran Include Files:

include '.J.J.Jdboraf.h'
include '.J.J.Jdbsqlf.h'

Insert Routines:

#include "db-apma.h"
int
apma -Aadd(table, ptr, recnurn, qa flag) I. adds an array of records to an apma structured relation. '
char *table; /* (1) dynamic name of table */
struct apma *ptr; 1* (i) beginning address of records to insert *
int recnum; /* (i) number of structures to insert */
int qa~flag; I* (i) if flag TRUE, data checking enabled ~

int
ceppksAadd(table, ptr, recnum, qa flag) /*adds an array of records to a ceppks structured relation .
char *table; /* (i) dynamic name of table *I
struct ceppks *ptr; 1* (i) beginning address of records to insert *
int recnum; /* (i) number of structures to insert */
mnt qa~flag; I* (i) if flag TRUE, data checking enabled .

- 61 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

int
cpdisc Aadd(table, ptr, recnum, qa flag) /* adds an array of records to a cpdisc structured relation. 0/
char *table; /* (i) dynamic name of table */
struct cpdisc *ptr; /* (i) beginning address of records to insert */
Jut recuum; /* (i) number of structures to insert *1
int qa flag; /* (i) if flag TRUE, data checking enabled */

#include "db detection.h"
int
detectionAadd(table, ptr, recnum, qa.flag) /* adds an array of records to a detection structured relation.
char *table; /* (i) dynamic name of table */
struct detection *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of structures to insert */
int qa-flag; /* (i) if flag TRUE, data checking enabled */

int
evcharAadd(table, ptr, recnum, qa flag)/* adds an array of records to a evchar structured relation. */
char *table; /* (i) dynamic name of table */
struct evchar *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of structures to insert */
int qaflag; /* (i) if flag TRUE, data checking enabled *1

int
eventid Aadd(table, ptr, recnum, qa flag) /* adds an array of records to a eventid structured relation. 'I
char *table; /* (i) dynamic name of table */
struct eventid *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of structures to insert */
int qa flag; /* (i) if flag TRUE, data checking enabled */

#include "db fkdisc.h"
int
fkdisc Aadd(table, ptr, recnum, qa flag) /* adds an array of records to a fkdisc structured relation. *1
char *table; /* (i) dynamic name of table */
struct fkdisc *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of structures to insert */
int qaflag; /* (i) if flag TRUE, data checking enabled */

#include "db fsdisc.h"
int
fsdiscAadd(table, ptr, recnum, qaflag) /* adds an array of records to a fsdisc structured relation. */
char *table; /* (i) dynamic name of table */
struct fsdisc *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of structures to insert */
int qa-flag; /* (i) if flag TRUE, data checking enabled */

#include "db-locregion.h"
int
locregionAadd(table, ptr, recnum, qaflag) /* adds an array of records to a
locregion structured relation. */
char *table; /* (i) dynamic name of table */
struct locregion *ptr; /* (i) beginning address of records to insert */

- 62-

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

int recnum; /* (i) number of structures to insert ,1
int qaflag; /* (i) if flag TRUE, data checking enabled '/

#include "db merstat.h"
int
merstat.Aadd(table, ptr, recnum, qa.flag) /* adds an array of records to
a merstat structured relation. */
char *table; /* (i) dynamic name of table */
struct merstat *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of structures to insert */
int qa.flag; /* (i) if flag is TRUE, data checking enabled *
I

#include "db sbsnr.h"
int
sbsnrAadd(table, ptr, recnum, qaflag) /* adds an array or records to
a sbsnr structured relation. */
char *table; /* (i) dynamic name of table */
struct sbsnr *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of sbsnr structures to insert */
int qaflag; /* (i) if flag is TRUE, data checking enabled */

#include "db-script.h"
int
scriptAadd(table, ptr, recnum, qaflag) /* adds an array of records to
a script structured relation. */
char *table; /* (i) dynamic name of table */
struct script *ptr; /* (i) beginning address of records to insert *1
int recnum; /* (i) number of script structures to insert */
int qaflag; /* (i) if flag is TRUE, data checking enabled */

#include "db scriptloc.h"
int
scriptlocAadd(table, ptr, recnum, qaflag) /* adds an array of records to
a scriptloc structured relation. */
char *table; /* (i) dynamic name of table */
struct scriptloc *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of scriptloc structures to insert *1
int qa flag; /* (i) if flag is TRUE, data checking enabled */

#include "db smatch.h"
int
smatchAadd(table, ptr, recnum, qa flag) /* adds an array of records to
a smatch structured relation. */
char *table; /* (i) dynamic name of table */
struct smatch *ptr; /* (i) beginning address of records to insert *1
int recnum; /* (i) number of smatch structures to insert *1
int qaflag; /* (i) if flag is TRUE, data checking enabled */

- 63 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

#include "db smatchvar.h"
int
smatchvarAadd(table, ptr, recnum, qa_flag) /* adds an array of records to
a smatchvar structured relation. */
char *table; /* (i) dynamic name of table */
struct smatchvar *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of smatchvar structures to insert */
int qaflag; /* (i) if flag is TRUE, data checking enabled */

#include "db spvar.h"
int
spvarAadd(table, ptr, recnum, qa-flag) /* adds an array of records to
a spvar structured relation. */
char *table; /* (i) dynamic name of table */
struct spvar *ptr; /* (i) beginning address of records to insert */
int recnum; /* (i) number of spvar structures to insert -/
int qa flag; /* (i) if flag is TRUE, data checking enabled */

int
sptimeadd(sta, time) /* adds a record to the sigpro-time relation*/
char *sta;
double *time;

Update Routines:

int
update sptime(sta, time) /* updates the sigpro .time relation*/
char *sta; /* (i) where sta = this value */
double *time; /* (i) set time to this value */

int
update timestamp(time, whereclause) /* updates the timestamp relation*/
double time; /* (i) set time to this value */
char *whereclause; /* (i) where procname = 'x' or where procclass = 'x' */

Database retrieval Routines.

#include "dbapma.h"
int
get apma(tablename, where clause, apma tupies, maxrec) /* retreive from apma structured table */
char *table name; /* (i) dynamic name of table */
char *whereclause; ;* (i) search criteria for table */
struct apma **apma-tuplcs; /* (o) address of records retrieved */
int maxrec; /* (i) max number of records to fetch */

#include "db_cpdisc.h"
int
get cpdisc(tablename, whereclause, cpdisctuples, maxrec) /* retreive from cpdisc structured table */
char *table name; /* (i) dynamic name of table
char *where clause; /* (i) search criteria for t'le */
struct cpdisc **cpdisctuples; /* (o) address of records retrieved */

-64 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

int maxrec; /* (0) max records to fetch */

#include "dbceppks.h"
int
get ceppks(tahle name, where clause, ceppki tuples, maxrec) /* retreive fr')m ceppks structured table */
char *tablename; /* (i) dynamic name of table *I
char *where clause; /* (i) search criteria for table */
struct ceppks **ceppks.tuple:; A* (o) address of records retrieved */
int maxrec; /* (i) max records to fetch */

#include "db detection.h"
int
get detection(tablename, whereclause, det tples, maxrec) /* retreive from detection structured table */
char *table name; /* (i) dynamic name of table */
char *whet eclause; /* (i) search criteria for table */
struct (letection **dettuples; /* (o) address of records retrieved */
int maxrec; /* (i) max number of records to fetch */

#include "db evchar.h"
int
get evchar(table name, whereclause, evchar tuples, maxrec)
char *tablename; /* (i) dynamic name of table */
char * vhere clause; /* (i) search criteria for table *I
struct evchar **evchar_'.iples; /* (o) address of records retrieved */
aIt maxrec; /* (i) max records to fetch 'I

#include "db eventid.h"
int
geteventid(table name, where-clause, eventid tuples, maxrec)
char *tablename; /* (i) dynamic name of table */
char *where clause; /* (i) search criteria for table 'I
struct eventid **eventidtuples; /* (o) address of records retrieved 'I
int maxrec; /* (i) max records to fetch */

int
get fkdisc(table name, where-clause, fkdisc tuples, maxrec) /* retreive from fldisc structured table */
char *table name, /* (i) dynamic name of table */
char *where clause; I* (i) search criteria for table *1
struct fkdisc **fkdisc t, pies; /* (o) address of return list of records '/
int maxrec; /* (i) max number of records to fetch '/

int
get intarray(select, int_array, maxrec) /* retrieve sn array of integers (e.g. id's) */
char *select; /* (i) search cri'-ria for table */
int **int array; /* (o) address of records retrieved */
int maxrec; /* (i) max records to fetch '/

#include "dblocregion.h"
int
get_locregion(tablename, whereclause, locregi tuples, maxrec) /* retreive from locregiop structured
char *table-name; /* (i) dynamic name of table '/

- 65 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

char *whereclause; /* (i) search criteria for table ./
struct locregion **locregi_tuples; /* (o) address of records retrie
ved */
int maxrec; /* (i) max records to fetch ./

#include "db_mag_coefs.h"
int
get mag_coefs(tablename, where_clause, mag_coefs _tuples, maxrec) /* retreive from mag_coefs structured
char *table name; /* (i) dynamic name of table */
char *whereclause; /* (i) search criteria for table */
struct mag_coefs **magcoefstuples; /* (o) address of return list of records */
int maxrec; I* (i) max number of records to fetch */

#include "db merstat.h"
int
get merstat(table name, where-clause, merstattuples, maxrec) /* retreive from merstat structured table '/

char *table-name; /* (i) dynamic name of table */
char *whereclause; /* (i) search criteria for table */
struct merstat ;*merstattuples; /* (o) address of records retrieved */
int maxrec; /* (i) max records to fetch

#include "db mine.h"
int
get mine(tablename, whereclause, mine tuples, maxrec) /* retreive from mine structured table -
char *tablename; /* (i) dynamic name of table */
char *whereclause; /* (i) search criteria for table *1
struct mine **minetuples; /* (o) address of records retrieved */
int maxrec; /* (i) max records to fetch

int
get sbsnr(tablename, where_clause, sbsnr tuples, maxrec) /* retreive from sbsnr structured table */
char *tablename; /* (i) dynamic name of table */
char *whereclause; /* (i) search criteria for table */
struct sbsnr **sbsnrtuples; /* (o) address of records retrieved */
int maxrec; /* (i) max records to fetch */

#include "db script.h"
int
get script(table name, where-clause, scripttuples, maxrec) /* retreive from script structured table */
char *tablename; /* (i) dynamic name of table */
char *where_clause; /* (i) search criteria for table */
struct script **scripttuples; /* (o) address of records retrieved */
int maxrec; /* (i) max records to fetch */

#include "db scriptloc.h"
int
get scriptloc(tablename, where-clause, scriptloctuples, maxrec) /* retreive from scriptloc structured table */
char *tablename; /* (i) dynamic name of table *1
char *whereclause; /* (i) search criteria for table */
struct scriptloc **scriptloc_tuples; I. (o) address of records retrieved */
int maxrec; /* (i) max records to fetch

-66-

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS(3)

#include "dbseisgrid.h"
int
get seisgrid(table name, where-clause, seisgrid tuples, maxrec) /* retreive from seisgrid structured table *I
char *tablename; /* (i) dynamic name of table *1
char *where clause; /* (i) search criteria for table */
struct seisgrid **seisgridtuples; /* (o) address of records retrieved */
int maxrec; /* (i) max records to fetch ./

#include "db smatch.h"
int
get smatch(table_name. whereclause, smatch tuples, maxrec) /* retreive from smatch structured table .1
char *tablename; /* (i) dynamic name of table */
char *whereclause; /* (i) search criteria for table */
struct smatch **smlatch_tuples; /* (o) address of records retrieved t-

int maxrec; /* (i) max records to fetch

#include "db smatchvar.h"
int
get.smatchvar(tablename, where-clause, smatchvar tuples, maxrec) /* retreive from smatchvar structure
char *table name; /* (i) dynamic name of table ./
char *where_clause; /* (i) search criteria for table */
struct smatchvar **smatchvartuples; /* (o) address of records retrieved t/

int maxrec; /* (i) max records to retch ti

#include "db_spvar.h"
int
getspvar(table name, whereclause, spvar tuples, maxrec) /* retreive from spvar structured table */
char *tablename; /* (i) dynamic name of table t/

char *where_clause; /* (i) search criteria for table t/

struct spvar **spvartuples; /* (o) address of records retrieved */
int maxrec; /* (i) max records to fetch

double
get timestamp(query) /* select time from any table .1
char *query; /* (i) "select time from table whereclause" t/

Count and Delete Routines:

int
dbdelete(table name, where-clause) /* delete rows from any table s/

char *table name; /* (i) dynamic name of table */
char *where-clause; /* (i) search criteria for table */

int
dbcount(table, key, whereclause) /* count the number of records in a result set */
char *table;
char *key;
char *whereclause;

Miscellaneous Routines:

- 67 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

int
sqltrace(mode) I' turn SQLTRACE on/off .
int mode;

Calls from fortran applications:

integer function apma aadd(table, irecnum, iqa flag,
& phase, arid, freq, snr, ampp, amps,
"& ampir, rect, plans, planir, hvratp, hvrat, hjnxmn,
"& inang3, seazp, seazs, seazir, inangi., ptirne, stime,
"& auth, apmarid, commid, Iddate, len-table)
character *80 table
integer*4 irecnum
integer*4 iqa flag
character*8 phase(irecnurn)
integer*4 arid(irecnum)
real*4 rreq(irecnum)
real*4 snr(irecnum)
real*4 ampp(irecnum)
real*4 amps(irecnurn)
real*4 amplr(irecnum)
real*4 rect(irecnuln)
real*4 plans(irecnum)
real*4 planlr(irecnum)
rea1*4 hvratp(irecnurn)
real*4 hvrat(irecnuni)
real*4 hmxmn(irecnuni)
real*4 inang3(irecnum)
real*4 seazp(irecnum)
real*4 seazs(irecnum)
real*4 seazlr(irecnurn)
real*4 inangl(irecnum)
real*8 ptime(irecnum)
real*8 stime(irecnum)
character* iS auth(irecnuni)
integer*4 apmarid(irecnuni)
integer*4 commid(irecnum)
character*17 lddate(irecnum)
integer*4 len-table

integer function dbcount(table, key, query, len table,
& len key, len query)
character*80 table
character*80 key
character*80 query
integer*4 len table
integer*4 len key
integer*4 len query

integer function dbdeletearray(table, whereclause, array, num,
& table f-len, where-f-ten)
character*80 table
character*80 whereclause
integer*4 arrayo

- 68 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

integer*4 num
integer*4 table -f-len
integer*4 where f~lea

integer function detection aadd(table, irecnum, iqa flag,
& arid, time, sta, chan, bmtyp, sproid,
& efreq, seaz, delaz, slow, deislo, snr, stay,
& fstat, deltim, bandw, fkqual, commid,
& iddate, len-table)
character*80 table
integer*4 irecnum
integer*4 iqa flag
integer*4 arid(irecnum)
real*8 tilne(irecnum)
character*6 sta(irecnum)
character*8 chan~irecnutn)
character*4 bmtyp(irecnum)
integer*4 sproid(irecnum)
real*4 cfreq(irecnum)
real*4 seaz(irecnum)
real*4 delaz(irecnum)
real*4 slow(irecnum)
real*4 delslo(irecnum)
real*4 snr(irecnum)

integer function fkdisc aadd(table, irecnum, iqa flag,
& time, tHen, sta, fktyp, arid,
& maxkx, maxsx, nx, maxky, maxsy, ny, cfreq, bandw,
& commid, flrid, fMid, datsw, f1off, dir, dflle,
& Iddate, fen table)
character *80 table
integer*4 irecnum
integer*4 iqa flag
reaI*8 time(irecnum)
real*4 tlen(irecnum)
cbaracter*6 sta(irecnum)
character*4 fktyp(irecnum)
integer*4 arid(irecnum)
real*4 maxkx(irecnum)
reai*4 maxsx(irecnum)
integers4 nx(irecnum)
real*4 maxky(irecnum)
real*4 maxsy(irecnum)
integer*4 ny(irecnum)
real*4 cfreq(irecnum)
real*4 bandw(irecnum)
integer*4 cuminid(ireenum)
integer*4 fkrid(irecnum)
integer*4 fkid(irecnum)
integer*4 datsw(irecnuin)
integer*4 foff(irecnum)
character*64 dir(irecnum)
character*32 dfile(irecnuin)

- 69 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

character*17 Iddate(irecnum)
integer*4 len table

integer function fsdisc aadd(table, irecnum, iqa_flag,
"& time, tden, sta, fstyp, arid,
"& maxf, nf, chanid, wfid, commid, fsrid, fsid, datsw,
"& toff, dir, dfile, Iddate, len table)
cbaracter*80 table
integer*4 irecnum
integer*4 iqa flag
real*8 tine(irecnum)
real*4 tlen(irecnuni)
character*6 sta(irecnum)
character*4 fstyp(irecnum)
integer*4 arid(irecnum)
real*4 maxf(irecnum)
integer*4 nf(ireenum)
integer*4 chanid(irecnum)
integer*4 wfld(irecnum)
integer*4 commid(irecnum)
integer*4 fsrid(irecnum)
integer*4 fsid(irecnum)
integer*4 datsw(irecnum)
integer*4 foIT(irecnum)
character*64 dir(irecnum)
character*32 dfile(irecnum)
character* 17 lddate(irecnum)
integer*4 len table

integer function sbsnr aadd(table, ireenum, iqa~fag,
& arid, sta, chan, stay, ltav, Mdate, len table)
character*80 table
integer*4 irecnum
integer *4 iqa flag
integer*4 arid(irecnum)
character*6 sta(irecnum)
character*8 chan(irecnum)
real*4 stav(irecnum)
real*4 ltav(irecnum)
characters:7 Iddate(irecnum)
integer*4 len-table

integer function sp timeadd(sta, time)
character*6 sta
real*8 time

integer function update sptm(sta, time)
character*6 sta
reai*8 time

- 70 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

integer function updatetimestamp(time, query)
character*80 query
real*8 time
integer*4 len-tquery

integer function get timestamp(query, len tquery)
character *80 query
real*8 time
integer*4 len-tquery

DESCRIPTION
These functions provide centralized access to the application specific IMS relations of the Center for
Seismic Studies Database Version 3 database. FORTRAN interfaces are provided for C routines when
requested. This library depends on libdb30.a for error handling and value checking routines.

Include Files

dbsqltcfl}.h contains application specific database codes such as BADDATA and UNIXERR.
dbora{cf"].h contains database specific (ORACLE) codes such as DEADLOCK and
ORACLE ROWCOUNT. dbimsc.h contains Function declarations for libdbims.a, #defines for fetches
and inserts and Structure definitions included for function prototyping.

Include files for each table in the database follow a specific convention.

db_ relation. h include files, such as dbWdisc.h, contain the C structure declarations for a given table.
Character fields are one greater than the database definition to allow for the NULL terminator, as in
char wfdisc sta[7].

f relation. h itclude files, such as f_wfdisc.h, contain the fortran structure declarations for a given
table.

The library routines include 0 RELATION. H files, such as O_WFDISC.H. These contain simple
variable declarations for ORACLE. Each structure element is named table attribute. Character fields
are the same size as the attribute in the database, for example char wfdisc_sta[61. Queries that do not
use the library routines but, interact directly with the database require this include.

The f relation .h files, such as f apma.h, contain variable declarations for FORTRAN. Character
fields are the same size as the field in the database.

The libdbimsdefs.h file contains function prototypes for libdbims routines.

Error Handling

See dberror.3

Insert Routines

The insert, routines add records to the application specific ims 3.0 release database relations. The records
are passed in as a pointer to a structure defined in the include files located in
../Jinclude/ims31db relationname.h Array insert.3 has a detailed description of the array insert rou-
tines. The sptimeadd is an exception with only two attributes no structure is used. The in relationadd
and out relationadd routines act on synonyms of the core database relations. These add routines have
been replaced with the array add routines in libdb30.a utilizing the dynamic table name feature. Please
see arrayinserL3 for additional information. Backward compatibility has been maintained for a transi-
tion period. The return value is less than DBNOERROR if an error occured. If a database error
occurred, a sql error code is returned. BADDATA is returned if the passed in attributes are out of
range. Error code and text can be retreived with dberror get (see dberror.3). Upon successful opera-
tion, the oracle row count is returned.

- 71 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

The SigPro insert routines call robustness checking programs to verify the attributes are in the specified
range before updating the database. The key attributes are checked for valid value or valid null when
passing data to the database. See libdb30.3 for an example of using the robustness checking program.

If Iddate is '0' or '-' (NA), it is assigned at insert time from "now" in Greenwich Meantime. The
insert routines will not overwrite a non-NA lddate. The Iddate must conform to the following ORA-
CLE date mask: 'YYYYMMDD HH24:MI:SS'. This is a 24 hour time clock. For example: 19901112
16:05:33 is November 12, 1990, at 4:05 pm and 33 seconds. The insert routines convert this string
TO DATE(:lddate,'YYYYMMDD HH24:MI:SS').

The attribute jdate is calculated by the insert routine based on time for relations detection, fkdisc, and
fsdisc.

Update Routines

The update routines alter a record in the application specific ires 3.0 release database relations. Updat-
ing is different than inserting in that on update existing data is altered. Inserts add supplemental
records. The attributes sta and proctime are passed in for updatesptime. The value of proctime asso-
cated with the specified sta is set by the routine for the relation sigpro time. The Iddate is also
assigned based on sysdate. The routine updatetimestampO updates the time attribute in the IMS times-
tamp relation for those tuples that statisfy the constraints in the where clause string. For example if
time = 621983454 and where clause = "WHERE PROCNAME = 'ESAL' AND PROCCLASS = 'IMS",
the complete SQL update statement would look like: UPDATE TIMESTAMP SET TIME = 621983454
WHERE PROCNAME = 'ESAL' AND PROCCLASS = 'IMS'. This would ,esult in the time attribute
being altered. The Iddate is not set.

The return value is less than DBNOERROR if an error occured. If a database error occurred, an sql
error code is returned. BADDATA is returned if the passed in attributes are out of range. Error code
and text can be retreived with dberrorget (see dberror.3). Upon successful operation, the oracle row
count is returned.

Database retrieval Routines:

The dastatus routines have a very specific application in the comm directory.

The get timestamp returns the (single) value of the time attribute from any table, especially the
time stamp table. Unlike the other get-relation routines The query must include full syntax for a
select. For example: "select time from time stamp where procname = 'esal'" The get-relation routines
(excluding gettimestamp) select an array of records from the IMS specific 3.0 release database rela-
tions. The table name is determined at runtime and passed in via the table argument. For example,
get detection fetches from a table which contains the structure of the 3.0 detection table, but the name
does not have to be detection. It could be a synonym such as in_detection or a table tagged with the
name of the owner such as esal.detection. This tablename string should contain the actual table name
and the correlation variable name which allows joins. The routines require that the correlation name
used for the main select be the same as the table structure name. Any correlation name may be used for
the join table or in sub-selects. If the table name is the same as the structure definition, no correlation
name is required. No host variables may be in this string. For example,

"in detection detection"
"detection, assoc a"
"my_detection detection, assoc asc"

If no correlation name is given with a one word table name, it will be added. No host variables may be
in this string.

- 72 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

The query is flexible and can be personalized. The "where clause" is a string containing the complete
where clause for the SELECT. For example,

"WHERE time > 600000000 and time <= 600001000"
"WHERE sta = 'NRAO"'
"WHERE detection.sta = a.sta order by detection.orid"

No host variables may be in the string. Character attributes as where clause delimeters must be in sin-
gle quotes(' '). If the keyword where is missing it will be prepended. If a trailing semicolon is
detected, it will be stripped. All attributes are selected for each record that meets the where clause. If
no where clause is specified (a NULL string) all records will be retrieved up to the limit integer maxrec
(the last argument). The records are passed back as a pointer to an array of structures defined in the
include files located in ../../include/db3/db relation. h. A place holder is passed in the argument list
for this pointer. The memory for this array of structures is dynamically allocated. The pointer should
be free'd by the calling routine when it is no longer needed. The integer maxrec is the limit number of
records to fetch. If all the records in the table are desired, the maxrec should be set above the max-
imum. number of 'ords that might be in the table. A large request for records will only result in valid
data being returneu. For exmple if maxrec is set to 1000 and only 3 rows of data actually satisfy the
query, three structures will be dynamically allocated and filled with the attributes from the three
records. The return value from the database routine will be the integer three and the place holder will
pcint to the three structures. Be aware that there could potentially be a large amount of valid data.
There is no upper limit on the maxrec parameter.

The following example shows how to call get-detection:

#include "dbsqlc.h"
#include "dborac.h"
#include "db detection.h"
int ierr; /* return code from get detection */
int recnum = 55; /* maximum number of records to fetch */

struct detection *detrecptr; /* place holder for detection records, memory dynamically
* allocated in get detection */

int errorcoot., /* dberror get: database error code */
char errorstring[DB_ERRORMSG SIZE+I]; /* dberror.get: database error text */
int print flag; /* dberror.get status of print-flag */
int warn flag; /* dberror get: status of warnflag */

if (dbopen(database) < DBNOERROR)

(void) dberrorget(&errorcode, error string, &print flag, &wam_flag);
fprintf(stderr, "Error detected: %d %sýn", error code, error-string);
exit(- 1);

ierr=getdetection("esal.detection", "where sta = 'ARC' and time <= 6000010000",
&detrec_ptr, recnum);

if(ierr < DBNOERROR)

(void) dberror_get(&error .code, error string, &print flag, &warnflag);
fprintf(stderr, "Error detected in get detectic'i: %d %s1n", error code, error_string);
dbcloseO;

- 73 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

* use the records as required

free(det-rec_ptr); /* calling application is responsible for freeing memory
* allocated in get detection. */

dbcloseo;

If a database error occurred, the sqlca.sqlcode is returned. UNIXERR is returned if the pointer to an
argument is NULL. Error code and text can be retreived with dberror-get (see dberror.3). Upon suc-
cessful operation, the oracle row count (number of records retrieved) is returned,

The timestamp and sigpro time Routines

get.timestamp, updatetimestamp, spjimeadd. updatesptime and fortran interface routines
get.timestamp_, updatetmstamp_, sp_timeadd_, updatesptm_, are used to insert, fetch and update data
in the sigprotime and timestamp relations. These are atypical relations used by the communication
code to assign a timestamp to an occurance. They are used to signal processing completion and to
track data transfers from NORSAR to Washington. Each sucessful transfer updates sigpro time or
timestamp thereby providing a timestamp as to how far processing for a given station has proceeded.
The sigpro.time relation routines are specific to the Sigpro process. The timestamp relation and associ-
ated routines are generic and will ultimately replace sigpro time and threshtime. The get-timestamp
routine has a dynamic query passed in and can select time from any relation.

Delete Routine

The delete routine deletes all rows in "table name" that meet the "where-clause" criteria. If the
whereclause contains a NULL string "", all rows in the table are deleted. The calling application is
responsible for transaction management The delete will not be visible untill a commit has been per-
formed. The dbdelete routine will wait if a parse lock is present on the tablename.

This code fragment illustrates a sample call to db-delete:

dberror init(TRUE, TRUE);

if (dbopen("dataset/passord") < DBNOERROR)

(void) dberror get(&error.code, errorstring, &print-flag, &warn_flag);
fprintf(stderr, "Error detected: %d %s\n", errorcode, error-string);
exit(-1);

/* delete rows from temp-assoc where the sta = 'ARO' */

ret= (db_delete("temp.assoc","where sta='ARO"'));

if (ret <= DBNOERROR) /* assumes 0 rows deleted is an application error *f

(void) dberrorget(&error code, error string, &print flag, &wam_flag);
fprintf(stderr, "Error detected in db.delete: %d %s\n", error code, error-string);
dbrollbacko;
dbcloseo;
exit(-l);

dbcommito;
dbcloseo;

- 74 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

If a database error occurred, the sqlca.sqlcode is returned. If no database error occurred, the oracle
rowcount is returned. A return code of 0 indicates no rows met the where clause criteria so none were
deleted. This maybe an error depending on the application. UNIXERR is returned if the pointer to an
argument is NULL. Error code and text can be retreived with dberror-get (see dberror.3).

Miscellaneous Routines

If the ORACLE instance has enabled TIMED STATISTICS but not set SQLTRACE = TRUE for the
ORACLE instance, sqitrace supports turning trace on a session by session basis for PRO*C applica-
tions. If set to TRUE, a trace file will be generated in the location specified in the ORACLE startup
parameter USER DUMPDEST. For more information about SQL TRACE, see your Database
Administrator.

FORTRAN INTERFACES
The routines which interface to Fortran usually have the same name as the non-interface routine, with
an underscore appended and all lower case. (.e.g sbsnr aadd_ is the interface to sbsnr..Aadd). For some
routines with long names (more than 12 characters) the interface routine called by Fortran has a
slightly different name to insure unique names within the first 12 characters. The Fortran compiler
automatically adds the underscore when the code is compiled. The Fortran call to the routine does not
need to show the underscore (See sample below). The interface routines will have a different list of
parameters than the non-interface routine since Fortran does not use structures. The number of mean-
ingful characters in the table name array is also passed to the routine.

Sample Fortran code

C
c Sample FORTRAN insert into wfdisc table
C

program wfdiscAaddexample
c

implicit undefined (a-z)
character*20 table
integer*4 ierr, printflag, warn flag, dberrno
character*70 error txt
integer*4 i, numrec, nwfdisc, len table, qa_flag

c
include '/nmrd/dev/include/db3/dbsqlf.h'
include '/nmrd/dev/include/db3/dboraf.h'

c
c ------ declare array variables to hold wfdisc attributes ---
c

parameter (numrec = 50)
character*64 dir(numrec)
character*32 dfile(numrec)
character* 17 lddate(numrec)
character*8 chan(numrec)
character*6 instype(numrec),sta(numrec)
character*2 datatype(numrec)
character* I segtype(numrec),clip(numrec)
integer*4 wfid(numrec),chanid(numrec)jdate(numrec)
intcger*4 nsamp(numrec),foff(numrec),commid(numrec)
real*4 samprate(numrec),calib(num rec),calper(numrec)
real*8 time(numrec),endtime(numnrcc)

- 75 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

c
c --------..-. declare functions ------------------
C

integer*4 wfdisc Aadd, dbopen, dbclose, dbcommit, dbrollback
c
c --------- turn debugging on, print errors and warnings ------
C

print-flag = I
warn flag = I
call dberrorinit(print-flag, warn flag)

c
c ---- FORTRAN strings are blank padded to the declared size.----
c ---- The interface routine needs to know how many characters --

c ---- are meaningful. --
c

table = 'wfdisc'
len table = 6

c
c --- blank pad character strings to initialize
c

do 1000 i=l,numrec
call padto blank(len(sta(i)),sta(i))
call padto blank(len(chan(i)),chan(i))
call pad to blank(len(instype(i)),instype(i))
call pad_to_blank(len(segtype(i)),segtype(i))
call pad to blank(len(datatype(i)),datatype(i))
call pad.toblank(len(clip(i)),clip(i))
call pad_to_blank(len(dir(i)),dir(i))
call pad_to_blank(len(dfile(i)),dfile(i))
call pad toblank(len(lddate(i)),lddate(i))

1000 continue
C
c ---- fill the arrays with valid data ---------
c

do 1200 i=lnumrec
time(i) = 632476541.0 + i
wfid(i) = I + i

chanid(i) = 2 + i
c ------- jdate calculated by the insert routine ------
c ------- endtime calculated by the insert routine ----

nsamp(i) = 300 + i
samprate(i) = 40.0 + i
calib(i) = 5.0 + i
calper(i) = 6.0 + i
foff(i) = 7 + i
commid(i) = 9 + i
sta(i) = 'NRAO'
chan(i) = 'ib'
instype(i) = 'SRO'
segtype(i) ='s'
datatype(i) = 's4'
clip(i) = V

-76 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

dir(i) = '/data/pipeline/1990262/'
dfile(i) = 'NRS.66003.02.w'

c ------ -- Iddate will allow insert routine to assign ---
Iddate(i)=

1200 continue
C
c

c ------- open database --------
c

ierr = dbopen('scotiLiger',80)
if (ierr .ne. DBNOERROR) then

call dberror_ge'(dbermo, error .xt, print flag, warn flag)
write(O,*) 'dbopen error:', dbermro, errortxt

c -----.exit on error -------
gore 9000

endif
c

c ---- turn data checking on ---------
qaflag = 1

C
nwfdisc = wfdiscAadd(table, numrec, qa flag, sta, chan,

& time, wfid, chanid, jdate, endtime, nsamp, samprate,
& calib, calper, instype, segtype, datatype,
& clip, dir, dfile, foff, commid, Iddate,
& len table)

c
c ----- error check: 1 or more rows to have been inserted -----
c

if (nwfdisc .At. DBNOERROR) then
call dberrorget(dberrno, errorlxi, printflag, warnflag)
write(O,*) 'wfdisc Aadd error:', dbermo, error txt

c
c --------- do not commit on error -----------

ierr = dbrollbackO
c
c-exit on error -------

goto 9000
endif

C
if (nwfdisc .ne. numrec) then

write(O,*) 'tried to insert', numrec,
& ' actually inserted', nwfdisc

endif
write(O,*) nwfdisc, 'rows inserted'

c
c ------ commit the insert, this must be done or data is lost ---
C

ierr = dbcommitO
c
c --------- close database ---------
c

ierr = dbcloseO
c

- 77.

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

c ------- skip over error exit -----
go to 9990

9000 write(0,*) 'Error -> Exit'
9990 stop

end
subroutine pad toblank (isizecharvar)

c
character*(*) charvar

c
do 1000 i=l,isize

charvar(i:i)= '

1000 continue
9990 return

end

NOTE
The arguments shown for the fortran interface routines are the arguments that should appear in the For-
tran call to the routine. The argument list in the interface routine itself includes an additional item for
each character string in the list. These additional arguments are integer values containing the length of
the character string. As with the unseen underscore added to the name, these arguments are added by
the f77 compiler. For example:

The interface routine sbsnr-aadd_.c - is actually coded as follows:

* Copyright 1990 Science Applications International Corporation

* FILENAME
* sbsnr aadd_

* DESCRIPTION
* Routine to interface fortran code to sbsnr Aadd
* and insert an array of records into an sbsnr structured table.

* ARGUMENTS
* Arguments are the same as for sbsnr Aadd with the addition
* of structure elements as individual arguments, string length of
* table and size of character array attributes.

* RETURN VALUE
* sbsnrAadd return value is passed on.

* CALLED BY
* Fortran application code

* SEE ALSO
* libdb30.3
* libdbims.3
* array insert.3
* dberror.3

* AUTHOR
* generated by machine

- 78 -

LIBDBIMS (3) C LIBRARY FUNCTIONS LIBDBIMS (3)

* See: Mari Mortell

* SCCSId: @(#)sbsnraadd_.c L.i 3/4/91 Copyright 1990 Science Applicatons International Corporation

*/

#include "db sbsnr.h"

int
sbsnr_aadd (table, recnum, qaflag, arid, sta, chan,

slav, ltav, Iddate, len-ftable, lentable. len-sta,
len chan, lenIddate)

char *table;
int *recnum;
int *qa.flag;
long *arid;
char stall[61;
char chan[][8];
float *stav;
float *ltav;
char lddate [171;
int *len f table;
int lentable;
int len sta;
int len chan;
int len-iddate;

FILES
../.J../libsrc/libdb30 Must follow in link path.

SEE ALSO
libdb30.3
arrayinsert.3
array fetch.3
dberror.3

NOTES
The routines apmaadd, detadd, fldadd, fsdadd and sbsnradd are being replaced with apmaAadd,

detectionAadd, fkdisc Aadd, fsdiscAadd and sbsnr Aadd. The routines apmaadd_, detadd , fkdadd ,
fsdadd and sbsnradd_ are being replaced with apma aadd_, detectionaadd_, fkdisc aadd,
fsdisc aadd and sbsnr aad'l. locadd is oeing obseleted. Backwards compatibility is b'.,ing maintained
for ail interi'm period. The sigpro_time routines will be replaced with the timestamp routines.

"The inarrivaladd, in-assocadd, in origerradd, in originadd, out-arrivaladd, out assocadd,
out netmagadd, oworigerradd out_stamagadd, c ittoriginadd and thcir respective interfaces to fortran

act on synonyms of the core database Lelations. These add routines have been replaced with the array

add routines in libdb30. These syrninymn names are passed into the dynamic table name. This also
results in th, iew data checking procedure be; •g utilized. Currently, these files simply pass arguments
to the respective array add routine. See libdb30/array-insert.3

WARNINGS
AUTHOPS

Jean Anderson. Mari Mortell, Donna Williams, Karen Garcia

-79.

REPORT DOCUMENTATION PAGE form ApDove

F OAA8 No 0704.01g18

"".I . , - - , , , to, '1 -9 1 9

I AGENCY USE ONLY (LeIJe W') 2 REPORT DATE . REPORT TYPE AND OATE$ COVERED
1993 April 12 Special Technical 11/27/91-3/21/93

4. TITLE AND SUBTITLE 5 FUNDING NUMBERS

The IMS Software Integration Platform MDA972-92-C-0026

6. AUTHOR(S)

,J.W. Given, W.K. Fox, J. Wang, T.C. Bache

7. PERFORMING ORGANIZATION NAMF(S) AND ADORESS(ES) 8, PERFORMING ORGANIZATION
Science Applications International Corporation REPORT NUMBER
10260 Campus Pt. Drive
San Diego, CA 92121 SAIC-93/1069

9 SPONSORINGJMONITORING AGENCY NAME(S) AND ADORESS(US) 10. SPONSORJNG, MONITORING

Defense Advanced Research Projects Agency AGENCY REPORT NUMBER

3701 N. Fairfax Drive, #717
Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

i2a. OISTRIBUTIONIAVAILABIIITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release;
Distributed Unlimited

13. ABSTRACT (Ma&mmum 200 wordo)

The Software Integration Platform (SIW) supports automated and interactive dis-
tributed processing for the Intelligent Monitoring System (IMS). The SIP addresses the
practical problem of integrating existing software and data archives into a processing sys-
tern distributed on a network of UNIX workstations. It consists of software components
that are widely applicable to other scientific data-processing operations. The SIP is divided
into two subsystems. The Data Management System (DMS) manages shared data stored in
archives distributed over a wide-area network. The Distributed Applications Control Sys-
lem (IJACS) handles inter-process communication (IPC) and process control for user
applications distributed over a local-area network. The data archives managed by the DMS
consist of commercial relational datahase management systems (RDBMS) supplemented
b-y UNIX file systems. User applications access data stored in the archives through the

14 SUBJECT TERMS 15. NUPICER OF PAGES

Dir-cribuLed processinP, , Inte r-pr,(wes. communication,

Snftware int.eoration. Data Minavement, Relational Database 16 PRICE CODE

I7. SECURITY CLASSIFICATION 1" SECUI'TY CLASSIFICATION 19 "" CURtTY CLASSIFICATION ?0 LIMITATION OF ABSTRACT
OF REPORT OF T741S PAGE OF ARSTRACT

Unca Is•sls i f ied t!nnja,.jfjpd Unc las 5 i f ird NONE

NSN •5A0 01 280 5500 V' d to-- 298 A91
,O~~ti%- 1;1 4t ~P

Data Management System Interface (DMSI). The DMSI allows global access to data inde-
pendent of a spec'fic physical archive. Because IMS requires the capabilities provided by
comnmercial RDBMS products, the DMSI includes extensive support for these products.
The DACS divides the IPC and process-control services between two applications. The
CommAgent provides message routing and queueing. The DACS Manager interprets the
IPC and monitors local-area network resources to decide how and when to start processes.
Working together, these applications isolate user applications from network-specific
details. The messaging facilities of the DACS enable the distributed system to exploit con-
cur -ncy and pipelining to expedite data processing. The Process Manager is a general
application developed for the DACS that manages the processing of data through complex
configurable sequences of user applications. All components of the SIP exploit commer-
cially available software products and anticipate current trends in software-product devel-
opment.

