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1.0 EXECUTIVE SUIMMARY

The Spatial Light Rebroadcaster (SLR) Architecture Study Program was

funded by Wright Laboratory WL/ELOT. The performance period of the program

3I was from April 19, 1990 to August 14, 1992. The goal of the program is to develop,

analyze and demonstrate optical processing architectures based on SLR devices.

1.1 Motivation

Spatial Light Rebroadcasters may offer higher data throughput rates if they can

be incorporated into avionic's systems to alleviate the bottlenecks associated with

sensor fusion, target classification, voice recognition, and interprocessor

communications. Target recognition is chosen here as generally representative of all

I these problems because they are all plagued by a lack of high speed "smart"

interconnection.

I Reconnaissance and targeting are increasingly performed via electronic

3 sensors. With the development of smart weapons and Unmanned Aerial Vehicles

(UAV) as reconnaissance and autonomous weapons delivery platforms, there is a need

3 for automatic target classifiers (ATC) that are compact and consume little electrical

power. The computation and memory requirements of ATC algorithms generally

5 increase with their effectiveness. Moreover, with the emergence of critical mobile

targets, the processing hardware must be capable of very high throughput in order to

3 meet the search rate requirement. With conventional electronic processors, higher

computation speed can only be achieved at the expense of higher power consumption.

3 At this time, the Air Force does not have any fieldable real time ATC for weapon

delivery and reconnaissance systems. Optical processing technology offers a potential

3 means to meet the computation rate and the power consumption requirements of

current and foreseeable ATC systems.I
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Most optical processing s stems being proposed are based on coherent optical

processing technology which requires a spatial light modulator (SLM). Substantial

efforts have been expended in the development of SLMs to meet the ATC processing

requiremert but the performance achieved thus far is still seriously lacking. A new

class of optical devices, spatial light rebroadcasters (SLR), have been developed 3
recently with potential performance far exceeding current SLMs. Instead of spatially

modulating the input light field, an SLR absorbs the incident radiation and re-emits I
when triggered to do so. The triggering can be accomplished with an optical or

electrical signal that carries additional spatial information. The relationship between I
the intensities of the incident (input), triggering (readout) and emitted (output)

radiations can be used to perform massively parallel mathematical operations. I

In addition to the incoherent nature of the radiation and the temporal I
properties, the storage and transfer characteristics of SLRs are also substantially

different from those of SLMs. Optical processing architectures developed for SLMs

are generally inappropriate for use with SLRs. While promising, the unique features

of SLRs have not been shown definitively to offer significant advantages over

conventional processors or more importantly, to provide potential performance that 3
can meet the Air Force avionics requirements. The goals of this program are to 1)

select or develop optical processing architectures most suitable for use with SLRs, 2) 3
analyze the potential performance of the selected architectures, and 3) demonstrate the

basic operations of the selected SLR-based optical processors. 1
1.2 Program Structure 3

The SLR Architecture Study program is composed of four tasks, beginning

with a technology survey and finishing with concept demonstration experiments at the

Air Force Wright Laboratory. The four tasks are as follows. 3

I
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Task 1: Identify Air Force missions requiring high speed compact processors and define

the computation requirements. Survey, analyze and invent optical processing

architectures and select candidates with the best potential for satisfying the computation

requirements.

Task 2: Analyze selected optical processing architectures and estimate potential

performance based on projected device parameters. Select the three most promising

architectures for experimental investigation. Selection criteria include potential

performance, SLR requircments, current and near term SLR availability, and potential

for insertion into Air Force systems.

Task 3: Identify key operations arid component requirements. Perform preliminary

experiments to evaluate the performance and feasibility of implementing the three optical

processing architectures chosen in Task 2. Select two optical processing architecture for

experimental demonstration..

Task 4: Develop and perfL-rm concept demonstration experiments on the two optical

processing architectures selected in Task 3 at the Air Force Wright Laboratory.

1.3 Spatial Light Rebroadcasters (SLRs)

The generic description of an SLR is shown schematically in Figure 1-1. The

input light field with data coded spatially in intensity impinges on the SLR which stores

the information. The SLR emits light when triggered by either electrical or optical

signals encoded spatially with a second set of data. The SLR can perform basic

processor functions such as memory, summation of spatial and temporal data,

multiplication of two data sets represented by the incident and readout signals, and

nonlinear transformations such as thresholding.

3
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SLMs and SLRs both operate with ot ,icai signals with information encoded

spatially and possess read/write storage capabilities. However, there are substantial

differences. The phase and coherence of the input light field are not preserved by an

SLR. Therefore, information in the input and output beams can only be encoded in

3• the intensity of the radiation. As we shall show in Section 2, this restriction impacts

strongly the design of optical architectures that utilize SLRs.

There are two main types of SLRs: active and passive SLRs. While both can

perform the generic functions described above, their operating characteristics are

fundamentally different. Optical processing architectures that optimally utilize these

two types of SLRs therefore cannot be the same.

An active SLR can be considered to be an integrated optoelectronic device

with an array of elements as illustrated in Figure 1-2. Each element of the device is

composed, at a minimum, of a photodetector, an electronic logic and control unit and

3 an emitter. The input to the logic and control unit may be a signal from another

photodetector. The output emission is determined by the input light intensity and the

3 electronic control signal which may have been originated by an optical signal. An

example of a series of operations that can be implemented with an SLR is to 1)

3 multiply an input value by a weight represented by the control signal, 2) threshold

the product and 3) output the binary result. This can be achieved by encoding the

3 input value in the intensity of the input beam and the weight in the control signal.

The control unit is composed of an amplifier and a comparator for thresholding. The

3 control signal, which can be generated optically via a photodetector, controls the gain

of the amplifier. The output voltage is thus proportional to the product of the input

3 and the control signals. If the product of the two values exceeds a preset threshold,

the emitter is turned on. It is interesting to note that this series of simple operations

is the heart of an artificial neural network which will be described in Sections 2.4.3

and 3.2. With a two-dimensional array of these elements, the processing function

I5
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5 described can be performed in parallel by all the elements in the array, achieving a

very high processing throughput.I
Passive SLRs operate by a very different principle even though they perform

I the same generic functions as active SLRs. Instead of an array of individual

elements, a passive SLR typically consists of a uniform layer of an electo-optics

I material. An example is the electron trapping phosphor material manufactured by

Quantex [Lindmayer]. Incident energy at a short wavelength (e.g., Xi= green) is

I absorbed by the material, exciting electrons up to the communication band. The

electrons then fall into traps where they are stored. When the material is radiated by

I light at a longer wavelength (e.g., Xr=near infrared), the trapped electrons are

excited out of the trapping level and fall back to the valance band, emitting light at

wavelength Xo where Xi < Xo < Xr. The number of trapped electrons is determined

by the product of the intensity of the input radiation and the number of trap sites.

The intensity of the output emission is proportional to the number of occupied traps

times the intensity of the readout beam. The products of two arrays of values can be

obtained by, for example, inputting a light pattern representing the values of one of

the arrays and reading the SLR out with a light pattern corresponding to the second

array. The output intensity pattern of the emitted radiation is proportional to the

product of the two arrays. The dynamic behavior of a passive SLR and its use in

incoherent optical processing architectures are discussed in Section 3.5.

The performance of an optical processor is strongly dependent on the

5 performance of the components used in its fabrication. To develop and evaluate

optical processing architecture utilizing SLRs, the performance parameters achievable

3 with SLRs must first be defined. In Table 1-1, the projected performances of active

and passive SLRs are compared with that of an SLM. The projected performance for

3 the active and passive SLRs are based on data from AT&T Bell Laboratory [Taylor]

and Quantex Corporation [Lindmayar], respectively. The performance measure used

I
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for comparison is space-bandwidth product rate (SBWP/T) in units of pixels/sec. If a 5
single operation is performed each time the device goes through a read/write cycle,

the SBWP/T is also the system throughput in terms of operations/sec. The potcntial

performance of optical processors based on SLRs are orders of magnitude higher than

those implemented with SLMs. 5
Table 1-1: Projected Performance of an SLR

Device SBWP Frame Time SBWP/T Dynamic Range 3
(pixels) (sec) (pixels/sec) (dB) I

Active SLR 102x10 2  10-9 1013 30
(Opto-Electronics) g
Passive SLR 1014x10 14  10-1 1011 50
(Phosphor) 3
SLM l01x10& 10-2 108 30 I

There are other considerations in evaluating devices besides raw performance 3
such as SBWP/T. The features and limitations of the two types of SLRs are

summarized in Table 1-2. 3

I
U
I
I
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3 Table 1-2: Features of SLRs

Device Features Limitations

Active SLR High speed, programmability, Relatively small
(Opto-electronics) nonlinearity, memory, SBWP (100x!O0),

provides gain, ideal for high cost3 pipelined architectures

Passive SLR Large SBWP, memory, low Weak nonlinearity, read
(Phosphor) cost, write and erase out destructive, low effic-

simultaneously for bias iency, relatively slow, read-
subtraction write at different wavelengths

1.4 Architecture Study Results

The choice of optical processing architectures is constrained by the operating

I characteristics of SLRs. The optical fields used to write on or read out an SLR can be

coherent or incoherent, as long as they are at the proper wavelengths but the output

emission is always incoherent. The output data are, therefore, represented by the beam

intensity which takes on only positive real values. Moreover, an SLR does not simply

modulates the intensity of the input light field, it also destroys all the phase information

in the input light field. Therefore, SLRs cannot be used as direct replacement for SLMs

in optical processors. Even with incoherent optical processing architectures, the

destruction of the phase information limits the functions an SLR can perform. For

example, an SLR cannot be used as an aperture mask in an imaging system. The SLR

g randomizes the phase at the aperture plane and no image can form at the output.

3 The active and passive SLRs also have distinct characteristics that affect the

selection of optical processing architectures. Being passive devices, passive SLRs offer

5 no gain. Moreover, the input and output wavelengths are substantially different.

Together, they make it almost impossible to cascade SLRs to perform sequential or

* 9
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iterative operations. On the other hand, active SLRs can provide optical gain and the 3
devices can be easily cascaded. Active SLRs can, therefore, be used in optical

processing architectures that perform sequential or iterative operation. This is important 3
because the SBWP of the device is relative small (< 100 x 100). Image processing

functions cannot be performed on large images in a single pass. Partitioning the image 3
and the processing algorithm is often necessary. Compensating for its small SBWP is

the very fast (nsec) cycle time achievable with active SLRs. The time constants for the I
fluorescence and the stimulated photoluminescence are relative long which limits the

cycle time of a processor utilizing passive SLR. However, the space-bandwidth product I
(SBWP) provided by a passive SLR can be very large. The spatial resolution of a

phosphor based SLR can be as high as 40 Ip/mm. With a 25mm x 25mm sample, the I
number of resolvable elements or SBWP is 1000 x 1000. Optical processing

architectures utilizing passive SLRs must not demand fast cycle time and should take full
advantage of their large SBWP. 3

A pre-selection was performed that resulted in seven candidates for evaluation. u
The unique operating characteristics of active and passive SLRs were taken into account

in the preliminary selection of optical processing architectures. The selection was based I
primarily on the functionality, versatility and practicality of the architecture. The

architectures chosen for study were 1) Scanning Correlator, 2) Interferometric processor, 5
3) OTF synthesis Optical Preprocessor, 4) Artificial Neural Network, 5) Quadratic

Processor, 6) Morphological Processor and 7) Multispectral Optical Processor. 3
The scanning correlator [Lee] utilizes the capability of a passive SLR to store 3

image information and produce an output that is proportional to the product of the stored

image data and the image data encoded in the read beam. The interferometric processor 5
[Tai, Aleksoff] performs Fourier transformation on the intensity distribution of an

incoherent input field. The large dynamic range provided by a passive SLR is used with I
its simultaneous write-erase capability to enhance the output of an interferometric

I
10 i 3



processor which is characterized by a high bias. The same features are employed in the

OTF synthesis optical processor [Rhodes] to perform pre-detection spatial filtering of

image data. The artificial neural network [Lippman] , the quadratic processor [Rugh]

and the morphological processor [Steinberg] perform nonlinear imaging processing

operations. They all require sequential sum of products operations which are particularly

suited for active SLRs. The multispectral optical processor takes advantages of the fact

that different wavelengths are used to write on and erase data from a passive SLR to

perform real time pre-detection enhancement of the image signal-to-clutter ratio.

Of the seven, five were down selected for further analyses. The down selection

was based primarily on functionality, versatility and practicality. They are the artificial

neural network, the quadratic processor, the morphological processor, the interferometric

processor and the OTF synthesis optical preprocessor. Reasons for their selection are

described below.

Unlike, for example, a Fourier transform based processor, an artificial neural
network (ANN) operates from a low level which makes it the most versatile of the

architectures studied. It can be used to implement nearly all the functional elements in

ATC. The basic operation required is sum of products and thresholding which can be

performed very efficiently with an optical processor. In addition, the massive fan-outs

in an ANN architecture can be accomplished more easily with optical interconnects than

with electrical wires.

A quadratic processor performs pixel-by-pixel statistical target detection on the

target scene. It utilizes local spatial variations (reflectance or emittance) as a

discriminant between targets and clutter. The processing architecture can utilize the

incoherent sensor image directly as the input. It allows the quadratic processor to bypass

the limitations of optical to electrical and electrical to optical converters, making it

particularly useful as a preprocessor. In addition, the nonlinear operations performed by
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a quadratic processor provide processing capabilities not available with conventional 3
linear optical systems. I

The morphological processor is also a neighborhood processor capable of

nonlinear processing functions. Instead of matching to the overall shape of a target, a 3
morphological processor performs ATC by extracting features that define a target. Such

a process tends to be more robust than matched filtering or template matching whose

performance can be adversely affected by changes in aspect, lighting and operating

condition. Morphological processing is typically implemented electronically using a 3
recirculating pipeline architecture to minimize the size of the processor. With the

inherent parallelism of an optical processor, the neighborhood operation can be 3
performed simultaneously for all pixels in the image.

The last two are diffraction based incoherent optical processors whose

architectures are well known. Diffraction based systems provide the largest space- I
bandwidth product, making them attractive for wide area search applications. The

difficulty has been with the bias which could easily overwhelm the signal at the output. I
With both architectures, the role of the SLR is bias reduction. Since the principles of

these two types of incoherent optical processors are well established, the discussion in

Section 3 will concentrate on the use of a passive SLR for bias reduction.

The scanning correlator was not chosen because of its limited capability (the 3
reference function must be real and positive) and relatively slow speed due the serial

nature of the scanning operation. The multispectral optical preprocessor did not survive 3
the down selection because the laser power required for flood illumination may be too

high to be practical in view of the sensitivity of available passive SLRs . Moreover, 3
discrimination between different sets of target and clutter may involve different

combinations of wavelengths. To reprogram the preprocessor will require a change in I
the SLR material to one with different input and readout wavelengths.

I
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1.5 Performance Evaluations

In this section, the predicted performances of the selected optical processing

architectures are presented. The purpose of the performance evaluation is to compare

the performance of the optical processors with those of their electronics counterparts in

performing similar ATR/C algorithms. It is not the goal of this project to evaluate the

effectiveness of various ATR/C approaches and algorithms. Therefore, the performance

was evaluated in terms of processing throughput instead of the probabilities of detection

and false alarms.

1.5.1 Optical Artificial Neural Network

Optical processing generally has less accuracy than electronic digital processing

but greater speed. In other ERIM work, a study was done to determine the accuracy

required for artificial neural network computations. The problem chosen was that of

determining terrain type (forest, grass, soil) from airborne sensor imagery of the ground

in five wavelength bands in the visible, near infrared, and short wave infrared. A

Kohonen self-organizing network was successfully developed for this purpose. The

network has five inputs, three nodes, and three outputs corresponding to the terrain

classification. The network was trained with floating point computation. The network

was then used to classify the input data with varying accuracy in the input data and

weights. The result is that floating point performance is maintained down to 5-bit

accuracy in the data and weights. Although this is only a single test, it was assumed that

6-bit accuracy is sufficient for artificial neural network computations during use, but not

during training.

In Section 2.4.4, five optical neural network architectures are described. To

perform the performance evaluation, a cylindrical optics architecture and a planar

architecture with fixed weights were chosen. Two versions of the cylindrical optics
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architecture were designed and analyzed using a lens design program. The following I
parameters were used in the point design for a neural network processor with cylindrical

optics. I

Input: 100 laser diodes at 1 mm spacing and 1 MHz operation rate, Mask: 100 by 200
1mm by 250 micron pixels

QuW : 200 photodiodes at 250 micron spacing and 1 MHz operation rate. 3
This leads to the following performance characteristics:

Volume: L by W by H = 20 cm by 10 cm by 5 cm = 1000 cm3 ,

Input data rate: 100 x 1 MHz = l0 data values/sec

Computation rate: 100 x 200 x I MHz = 2 x 1010 operations/sec. 3
Computations/Volume: 2 x 167 operations/sec/cm 3.

Power (for 1% accuracy4: 100 x 40 mW = 4W I

For the planar architecture, the following parameters were used: I
Input: 100 laser diodes at 100 micron spacing and 1 MHz operation rate

Mask: 100 by 200 100 micron by 50 micron pixels

Output: 200 linear photodiodes at 50 micron spacing and 1 MHz operation
rateI

This leads to the following characteristics:

Volume: L by W by H =6cm by 1cm by 1cm =6cm3 - 3
Input data rate: 100 x 1 MHz = l0 data values/sec

Computation rate: 100 x 200 x 1 MHz = 2 x 10 operations/sec I
Computations/cm 3: 3 x 109

Power (for 1% accuracy): 100 x 40 mW = 4W W

This second architecture is superior to the first in computation/cm3 as desired.

I1
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1.5.2 Optical Quadratic P'ocessor

The optical implementation of a quadratic processor geared toward automatic

target recognition (ATR) was considered. This processor implements the likelihood ratio

detector which is used extensively in ATR activities. Our analysis has shown that the

optical implementation of the quadratic processor has a number of distinct advantages

over their electronic (and other optical architectures) counterparts, most notably in

throughput rate and density. The number or operations performed on each input pixel

is summarized as:

Multiplication by mask: 81 multiplications

Lens summation (8 adds x 9 real.) 72 additions

Multiplication by neighborhood 09 multiplications

Final summation 08 additions

Total 170 ops/input pixel

For input image sizes of 500 x 500 pixels, the system throughput rate is:

1.4 Gops/sec (SLR response time = 30 msec)

42.5 Gops/sec (SLR response time = 1 msec)

42,500 Gops/sec (SLR response time = 1 Asec)

In addition, our analysis showed that the system size is approximately 41,000 cm3

and a prime power requirement of 750 Watts. The throughput rate per unit volume is

then 1 Gop/sec cm 3 and the throughput rate per unit power is 57 Gop/sec W (SLR

response time = 1 1sec). The signal-to-noise ratio of the system was shown to be at

approximately 17dB. These specifications make the optical implementation an extremely
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viable architecture. In addition, it should be noted that this architecture requires no 3
optical/electronic/optical transduction, it operates directly on the imaging sensor

pre-detected output. 3
1.5.3 Optical Morphological Processor 3
The ideal processor architecture for morphological processing in terms of 3

performance is the parallel full array. All image pixels are transformed simultaneously,

providing a tremendously high throughput. Its implementation, unfortunately, is not 3
feasible with current microelectronics fabrication technology. The inherent massive

parallelism of an optical processor, however, may make it possible to implement a 3
parallel full array in a reasonably compact package, resulting in orders of magnitude

improvement in system throughput. I

The heart of an optical morphologic image processor is the computation unit I
which is composed simply of an input SLR, an imaging lens, a programmable pupil mask

and an output SLR as described in Section 3.4. This basic module can be cascaded and

arranged in a feedback architecture. The data circle back after passing through and

processed by the N stages. The processing throughput of such a processor is maximized

when the time required to alter the transmittance of the SLMs is matched to the 3
processing time through the N stages. If for example, the switching time of the SLR is

1 nsec and N = 50, the SLM and the SLR logic must be programmable within 50 nsec 3
to keep up. Otherwise, the processing speed must be slowed down or the number of

processing stage has to be increased. 3
Let us assume that the structure element is composed of 3 x 3 neighborhood 3

pixels, a single transformation will require a minimum of nine multiplies and one

summation for a total of ten arithmetic operations. If the space-bandwidth product 3
(SBWP) of the SLRs is 256 x 256 pixels, then with the speed assumed in Table 1 for the

I



active SLR devices, the processing speed of the optical morphological processor will be

2562 x 10 ops/l nsec = 6 x 1014 ops/sec.

A rough estimate of the processor size is about 5cm x 5cm x 10cm for each

optical stage. The optics of a 10 stage system will occupy about 2500 cm3 . Adding

another 10,000 cm3 for the control and driving electronics, the total processor volume

is about 12,500 cm3. The processor throughput per unit volume is then equal to 5 x 1010

operations/sec/cm3 .

If we use a more modest and realistic processor size and the throughput becomes

SLM switching time limited, then with a SLM switching speed of I jsec, the processing

speed is lowered to 2562 x 10 x 10 ops/ 1 /ssec = 6.5 x 1012 ops/sec. The processing

speed per unit volume acheved with these rather conservative parameters is then equal

to 5.2 x 108 ops/sec/cm3 which is still very high.

1.5.4 Interferometric Processor

The interferometric processor can be implemented with a different architecture.

Since the optical input to an interferometric processor is incoherent, the natural target

scene can theoretically be used directly. However, the amount of light available in a

natural scene at the write wavelength of an SLR may not be enough to write on the SLR

at a high rate. To perform image processing at high speed, the write beam must have

sufficient amount of optical power. One optical architecture considered is based on

acousto-optics scanners/modulators. Let the aperture time be r, N be the number of

pixels on a carrier in the A-O cell and M2 be the space-bandwidth product of the

processor output. The processing speed of the processing systent is then equal to M2N!r.

As an example, with a Crystal Tech 4075 A-O modulator, the carrier frequency

f, = 75MHz, the bandwidth BW = 50MHz, r = 80jtsec and M = N = 4000. The

processing speed is then equal to 1.25 x 1013 op/sec. The optics in the interferometric
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processor should occupy about 8700 cm 3 Including all the driving electronics, the 3
overall processor size is estimated to be approximately 3 x 104 cm 3 . The predicted

system performance of the optical interferometric processor per unit volume is about 3
4.2 x 108 ops/sec/cm 3. I
1.6 Conclusion I

The Spatial Light Rebroadcaster, particularly of the active type, can potentially

be a powerful device that can serve as the heart of a compact high speed processor. The 3
devices, however, are still in a very early developmental stage and they require

significant amount of further developn ,nt b-.'ore they can be competitive in optical I
processing architectures such as those described in this report.

Passive SLRs such as those implemented with electron-trapping materials, exist

today. Some of these materials were developed for wavelength down-conversion to I
visualize near infrared radiation and they are commercially available. The performance

of these passive SLR materials and devices, however, require substantial improvement

in several of areas to make them competitive.

1) The slow temporal response of the passive SLR, particularly in erasure, limits the
cycling rate. The throughput achievable is too slow to be competitive at this time.

2) Compounding the problem of low cycling rate is the low optical efficiency. The
output is so dim that the output must be integrated over a significant amount of time
to gather enough photons to provide the needed signal dynamic range.

3) The erasure is often incomplete unless very strong light or heat is used. The need I
for a powerful source for rapid and complete erasure impacts negatively on power
consumption. 3

One solution to the problem may be to develop an SLR that emits light 3
directionally (current devices radiate isotopically, over 47r radian). Improving the optical

I
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efficiency would allow the use of a thin layer of rebroadcasting material and improve the

cycling speed of the device.

More serious are some of the inherent characteristics of passive SLRs which limit

their usefulness.

1) The readout is destructive. The material requires constant refreshing to keep the data
stored in the device. A trade off between output brightness and the number of
number of times the stored in formation can be readout is required.

2) The input and readout wavelengths are different which precludes the cascading of
devices to perform sequential operations even if adequate optical efficiency can be
achieved.

3) The nonlinearities exhibited by passive SLRs are weak and they can not be easily
changed. The type of operation that can be performed is therefore restricted.

With these inherent limitations, passive SLR devices are less likely to have a

significant impact on the optical processor development.

Active SLR devices have the inherent flexibility and power to be a significant

player in the future development of compact high speed processing systems. They may

be utilized as interconnects in an electronic processor, or as the processing elements in

an hybrid electronic/optical processor. The programmable gain and nonlinearity

provided by the device are particularly crucial to many optical computing architecture.

The development of these devices, however, is still in an early stage. Specific area that

requires further development includes the following.

1) Space-Bandwidth Product. The advantage offered by an optical processor is the
massive parallelism of the computation. This advantage can be realized only if the
space-bandwidth product of the input and output devices are sufficiently large.
Devices being fabricated at this time are very small. The manufacturing technology
to fabricate a large array with acceptable cost and yield remains to be developed.

2) Packing Density. The most attractive promise of optical processing is high speed
processing in a small physical package with low power consumption. To fulfill this
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promise, the large space-bandwidth product must be accomplished in a small package
that draws little power. Therefore, the device size must be small and the packing
density must be very high. Considering that each element in an active SLR consists
of a detector, a signal conditioner and an emitter, a 3-dimensional structure is likely
to be required to achieve the density desired.

3) Addressing Schemes. To maintain a high throughput, particularly with a pipelined,
recirculating processing architecture, an efficient means must be available to address
and program the elements in the SLR in parallel.

Optical processing and computing approaches typically fall into one of two

categories. The optical processor either performs complete high level operations such

as correlation for matched filtering or it is designed to perform low level logic operations

that emulate electronic processors. Performing the bulk of the ATR functions optically

will restrict the ATR algorithms to linear filtering operations which severely limits the i
power and robustness that can be accomplished. On the other hand, optics has limited

success in challenging the well developed and entrenched electronics technology in

performing low level logic operations. The optical processing architectures presented in

this report offer an alternative approach where optics and electronics share the burden,

each doing what it does best. Such a hybrid processing architecture has the potential to

combine the speed and efficiency provided by optical processors with the flexibility and

programmability offered by electronic processors. Five promising optical processing

architectures were developed and analyzed. Based on the projected performance of the

passive and active SLRs, the performance of the five processing systems were estimated

and the results are summarized in Table 1-3.

I
I
I
I
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Table 1-3. Summary of Predicted Performance of Five Optical Processor Architectures

Minimum
Architecture Device RateNol. PowerNol. Volume

_...._ (ops/sec/cm 3 ) (mw/cm 3) (cm3)
Neural Network

ANN 1 Active 1x10 7  2 1x10 3

ANN 2 Active 3x10 9  33 6x100

Planar ANN Active 2x10 10  400 0.5x10 0

Quadratic Processor Active 1xl0 9  18 41x10 3

Morphological Active 6x1010 33 3x103

OTF Synthesis Passive 1 x106 33 3x1 02

Interferometric Processor Passive 4x1 08 20 9x1 03
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2.0 TASK 2: ARCHITECTURE STUDY 3
The goal of this task is to identify several promising optical processing 3

architectures that can take advantages of the unique features of SLRs, evaluate their

applicability to Air Force problems, perform preliminary analyses of their potential 3
performance, and select five candidates for in depth evaluation in Task 2. I
2.1 Architecture Study Methodology l

The methodology used for the architecture study is summarized in Figure 2.1-1.

The study began with an examination of Air Force applications and identified automatic m

target classification (ATC) as a primary application for high speed processors. ATC was

first broken down into functional elements. The processing algorithms for these ATC I
functional elements were surveyed and the mathematical operations required were

identified. Next, optical processing architectures that can be used to perform ATC m

functions were assessed. The assessment started with existing optical processing

architectures that may be utilized to implement the ATC algorithms. Each architecture

was analyzed to determine if and how processing performance can be improved by the

,ise of SLRs. Based on the insight gained by the assessments, modifications of the m
existing architectures were made and new architectures were developed to better utilize m

the characteristics of SLRs. The architecture selection was influenced from the top by

the potential of the optical processing architecture to satisfy specific needs of the Air 3
Force and from the bottom by the availability of an SLR with the required performance

characteristics. 3
2.2 ATC Application Requirements and Functional Elements

An automatic target classifier assigns target categories with associated confidence 3
measures to the detected targets. The level of classification is dependent on the mission.

I
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The classification can range from coarse (e.g., tree clutter versus vehicle) to very fine 3
(e.g., an M-1 tank with Allied markings versus an M-1 tank with markings of the

adversary). ATC typically begins with interest point location which defines the 3
probability of an area having a target. It could be based on terrain information or target

attributes such as target brightness and contrast or multispectral signature. Areas 3
identified as points of interest are then segmented further into regions such as vehicles,

trees, roads, houses, hangers, etc. Segmentation may be based on the overall dimension

of the region, surface roughness or spectral properties. If required, even finer features

in the segmented areas can be extracted. Features of interest could include wheels, 3
tracks, gun barrels, raised deck or recessed bay, antennae, camouflage and other

markings. The final step is to classify or assign target categories with associated I
confidence measures to the segmented regions in the image, identifying them as clutter,

friendly targets, and hostile targets of high or low value. The functional elements in a I
automatic target classifier [ATRWGI are summarized graphically in Figure 2.2-1.

The ultimate figures of merit for an ATC are the probabilities of detection and

false alarm. The goal of this project, however, is not to develop or optimize :C I

algorithms. The goal is to study the feasibility of implementing existing ATC algorithms

with optical processors that employ SLRs. The figure of merit that will be used is how

well the optical processor can perform the ATC algorithms. 3
As a first order estimate of the processing throughput requirement for ATC,

consider two imaging systems: 1) a pushbroom imager with 104 linear pixels providing

1 ft ground resolution on a airborne platform travelling at 600mph, and 2) a focal plane 3
imager with 512 x 512 pixel refreshing at 30 frames/sec. For both sensors, the pixel rate

is 107 pixels/sec. Let us assume that it requires 10 operations /pixel to perform a simple 3
detection algorithm. The required system throughput is then 108 ops/sec which is within

the range of state-of-the art all electronic processors. However, simple detection 3
algorithms are generally not robust enough for Air Force applications. They tend to

I
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degrade substantially with target and clutter variability. More robust adaptive ATC

algorithms typically require > > 10 operations/pixel to implement. The processor

throughbut requirement is, therefore, in the range of 109 ops/sec.

Optical processors are most effective as special purposed "hardwired" processing

units where their strengths are optimally utilized and its weaknesses are circumvented.

Therefore, it is generally more practical and efficient to implement one or more

functional elements of ATC by an optical processor instead of an entire automatic target

classifier. In the following section, incoherent optical processing techniques are first I
reviewed. Candidate processor architectures are then described in Section 2.4 and the

ATC functions that can be performed by each architecture are discussed. I

2.3 Incoherent Optical Processing Techniques Overview I

An SLR does not modulate the input or the readout radiation, it absorbs the input I
radiation and re-emits. There is no correlation between the phases of the input, the

readout and the output light waves. Moreover, the output radiation is spatially incoherent

and, in most cases, temporally incoherent as well. Optical processing architectures

utilizing SLMs must therefore employ incoherent optical processing techniques. In this

section, basic operations that can be accomplished with incoherent optical processing

techniques using an SLR are described, starting from low level operations such as

addition and multiplication to high level operations such as Fourier transformation. The

optical processing architectures described later all make use of one or more of these

techniques.

2.3.1 Arithmetic Operations

Addition and multiplication are natural operations for incoherent optical

processing with an SLR. Processing algorithms requiring only additions and

I



3 multiplications are most efficiently performed. Other operations such as division are also

possible but requires more complexity or steps.

Addition, 1o(x,y) = Il(x,y)+I 2 (x,y):

Passive SLR - The number of the excited and trapped electrons is proportional to the
total absorbed energy. With two input light patterns incident on the SLR simultaneously,
the number of trapped electrons is given by the sum of the intensities. With the storage
capability of the SLR, the summation can also be performed by two input patterns
incident on the device sequentially. The ability to sum sequential inputs is the primary
benefit of SLR over a conventional detector.

Active SLR - Data can be stored as charges in capacitors and summation can be
performed serially or in parallel as with a passive SLR.

Multiplication, Io(x,y) = I(x,y)I2 (x,y):

Passive SLR -The light pattern Il(x,y) is input to the SLR and stored. The SLR is then
readout with light pattern 12 (x,y). The emitted output light pattern is proportional to

II(x,y)I2(x,y) provided that the number of trapped electrons depleted by the readout
beam is small compared to the total number of trapped electrons.

Active SLR - Multiplication can be achieved by using one input value to control the gain
of the amplifier. The amplified output is then proportional to the product of the input
value and the stored value controlling the gain.

Contrast Reversal, I0(xy) = C - 11(x,y)

Passive SLR - A uniform pattern is input and store, then read out with II(x,y). What
remains stored in the trap sites of the material is C1 - Ii(x,y). Reading the SLR out
again with a uniform beam produces Io(x,y) = C2 [C 1 - Ii(x,y)].

Active SLR - Contrast reversal can be accomplished with an inverting amplifier.

Subtraction, Io(x,y) = Ii(x,y) - I2(x,y)

Passive SLR - Contrast reversal is first performed on the input pattern II(x,y) as
described above and obtain [CI - II(x,y)]. The input second light pattern I2(x,y) is then
read out with a uniform beam. The emitted output is given by Io(x,y) = Cl + 12(x,y) -
II(X,Y).
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Active SLR - Charges stored in capacitors can be depleted by the desired amount to
perform subtraction.

Division, 10(x,y) = 12(x,y) / II(x,y) 3
Passive SLR - Division can be performed with a device having a nonlinear input/output
transfer characteristic described by I = I"'Y above the toe region where 'y = 1. It is a
natural characteristic of many materials to have a negative input-output transfer
characteristic which gradually reaches saturation. The material acts as an invertor, i.e.,
I'(x,y) = l/11(x,y) for input values that are >0. Reading out the SLR with a light
pattern 12 (x,y), we have 1(xy) = 12 (x,y) I•(x,y) = 12(x,y) / Ii(x,y).

Actve SLR - The same nonlinearity can be used to implement division. i

We note that the operations are performed in parallel on all elements of the array. If we i
have a large number of elements in the array, the computation rate in terms of

operation/sec can be very high. i

2.3.2 Higher Level Operations I

Higher level operations can be implemented by combining basic arithmetic I
operations. However, optical phenomena can also be used to implement higher order

operations directly. Coherent optical processors, for example, make extensive use of the

Fourier transform property of a lens. Equivalent operations can also be performed with

incoherent optical processors.

2.3.2.1 Matrix Multiplication [I
The most well known higher order operations accomplished by combining basic

arithmetic operations are vector-matrix multiplications, AN = BMCMN and matrix-

matrix multiplications, AMN = BMKCKN . The elements in the output vector in a

vector-matrix multiplication are given by:
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m=1

g For matrix-matrix multiplication, the output matrix is equal to:

KA,,,, B,, ckn (2)
kk=1

Both involve sum of products operations requiring only additions and multiplications

which can be performed very efficiently by an optical processor. Sum of products is the

heart of many processing algorithms including Fourier transformation and spatial

frequency filtering, convolution, correlation, quadratic processing and artificial neural

networks.

£ 2.3.2.2 Fourier Transformation

3I Fourier transformation:

F(u, v) = .7 [f(x, y)] = fix, y) e -i2-(ux + vy) dxdy (3)

P or its discrete form:

F(u, v) = --. [f(xm, yn)]= f(xm, Yd e-i 2 T(uxm+vY3 ) (4)

can be implemented as vector-matrix multiplications. The Fourier transform kernel is

complex (i.e., with real and imaginary parts). Even if the input is composed only of

positive real values, the processor must still be able to perform complex multiplications

and additions. With an incoherent optical vector- matrix or matrix-matrix multiplier

I
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which can only represent positive real values via light intensities, the computations have

to be carried out with a minimum of three parallel channels.

Fourier transformation can be more efficiently accomplished by taking advantage

of the properties of light propagation. With coherent light, there is a Fourier transform

relationship between the complex amplitudes of the fields at two widely separated planes.

The long propagation distance for Fraunhofer diffraction can be significantly shortened 5
with the use of a lens which performs the coherent integration operation in the Fourier

transformation. The Fourier transformation property of a focussing lens is the basis for 3
coherent optical processing (Goodman. Lee]. With incoherent radiation, a Fourier

transform relationship exists between the intensity distribution and the spatial coherence 5
of the field at two widely separated planes. Once again, a lens can be used to shorten

the propagation distance of the field. Interferometric optical processing architecturesI

that make use of this coherence property of a propagating light field are described in

Section 2.4.2. 1

2.3.2.3 Convolution and Correlation I

Convolution: I

f J f1(x, y) f2(a-x, O-y) dxdy = -1[ F1(u, v) F2 (u, v) (5) 3
and correlation: I

f J fl(x, y) f"; (x-o, y-0) dxdy-- 9- -'[ F1(u, v) F2 (u, v) (6)

can be performed by operating in the spatial or spatial frequency domain. In the above

expressions, 9'1 [ ] represents inverse Fourier transformation, * denotes conjugation. 3
Implementation in the spatial frequency domain requires sequential Fourier

transformations and a multiplication. It is the usual approach taken in coherent optical 3
processing using SLMs as the input device and the spatial filter. Incoherent optical

I
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3 processing architectures using SLRs, however, are not as easily cascaded to perform

sequential Fourier transformations. First of all, the wavelengths of the input, readout

Iand output light beams may not be the same. More importantly, only positive real values

can be represented by the intensity of incoherent light. Multiple separate channels and

5 the addition of a bias are required to represent complex and bipolar values which greatly

complicate the implementation of sequential operations.

For the special case where the input and reference functions, f, and f2 are both

U positive and real, incoherent optical processing techniques can be used to perform

convolution and correlation operations directly. For example, the output of an incoherent

I imaging system can be described by:

1 I(a, 03)=J J If(x, y)12 Ih(a-x, 0-y)12 dxdy (7)

where I(ct, f) is the output image intensity, I h(x,y) 2 is the incoherent point spread

I function and I f(x,y) 1 2 is the intensity distribution of the input. The spatial filtering

of an input image pattern can therefore be accomplished by designing the proper aperture

function F(u, v) where F(u, v) = .9"[h(x,y)]. It is important to note that with such an

incoherent optical processor, the aperture or filter function F(u,v), which can be real or

complex, must be implemented with an SLM. The aperture mask in an imaging system

has to operate on the complex amplitude of the light field. A mask implemented with

an SLR would destroy all the phase information of the input field. The role of the SLR

3 in such an optical processor is therefore limited to the input and output functions such

as the removal of the bias at the output of the incoherent optical processor as described

I in Section 3.5.

3 2.4 Candidate Optical Processing Architectures

3 The choice of optical processing architectures is constrained by the operating

characteristics of SLRs. First, the optical fields used to write on or read out an SLR can
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be coherent or incoherent, as long as they are at the proper wavelengths, but the output I
emission is always incoherent. The output data are, therefore, represented by the beam

intensity which takes on only positive real values. Second, an SLR does not simply I
modulate the intensity of the input light field, it also destroys all the phase information

in the input light field. Therefore, SLRs cannot be used as direct replacements for SLMs 1
in optical processors. Even with incoherent optical processing architectures, the

destruction of the phase information limits the functions that an SLR can perform. For j
example, an SLR cannot be used as an aperture mask in an imaging system. The SLR

randomizes the phase at the aperture plane and no image can form at the output. I
The active and passive SLRs also have distinct characteristics that affect the

selection of optical processing architectures and they must be discussed separately. I
Passive SLRs: Being passive devices, they offer no gain. Moreover, the input and output
wavelengths are substantially different, Together, they make it almost impossible to
cascade SLRs to perform sequential or iterative operations. The time constants for the
fluorescence and the stimulated photoluminescence are relative long which limits the
cycle time of a processor utilizing passive SLR. On the other hand, the space-bandwidth I
product (SBWP) provided by a passive SLR can be very large. The spatial resolution
of a phosphor based SLR can be as high as 40 lp/mm. With a 25mm x 25mm sample,
the number of resolvable elements or SBWP is 1000 x 1000. Optical processing
architectures utilizing passive SLRs must not demand fast cycle time and should take full
advantage of their large SBWP. i
Active SLRs: Active SLRs can provide optical gain and the devices can be easily
cascaded. Active SLRs can, therefore, be used in an optical processing architectures that
perform sequential or iterative operation. This is important because the SBWP of the
device is relatively small (<100 x 100). Image processing functions cannot be
performed on large images in a single pass. Partitioning the image and the processing
algorithm is often necessary. Compensating for its small SBWP is the very fast (nsec)
cycle time achievable with active SLRs.

Passive SLRs do not possess strong nonlinearity. To implement algorithms such

as neural net require strong nonlinearity, an external means must be used to produce the I

I
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nonlinearity. With an active SLR, on the other hand, the desired nonlinearity can be built

into the SLR.

These unique operating characteristics of active and passive SLRs were taken into

account in the preliminary selection of optical processing architectures for SLRs. The

architectures chosen for study were 1) Scanning Correlator, 2) Interferometric processor,

3) OTF synthesis Optical Preprocessor, 4) Artificial Neural Network, 5) Quadratic

Processor, 6) Morphological Processor and 7) Multispectral Optical Processor. The

implementation of these optical processing architectures with passive or active SLRs are

described below.

2.4.1 Scanning Correlator

A scanning correlator performs correlation in the spatial domain in the form of:

fl(a, 0) * f2 (a, 0) = J fl(x' y) f2* (x-a, y-0) dxdy. (8)

The lateral shifting of the reference function f2(x, y) encoded on an SLM is provided by

two orthogonal acousto-optic (AO) scanners as shown in Figure 2.4.1-1. The input

image from the sensor is written onto an SLR and, at the same time, the scanning image

of the reference is used to readout the SLR. The emitted output of the SLR corresponds

to the product of the input and the reference images, f1(x,y)f2(x-a 0 , y-0o). The output

of the SLR is then imaged onto a large area detector which detects the total incident

optical power, effectively performing the spatial integration. By scanning the input

image in a raster fashion, the amount of lateral shift (a, 0) of the reference image is

encoded into time by the relationship a = Vt/h - int(Vt/h) and 0 = int(Vt/h) where V

is the velocity of the horizontal scan, h is the length of the horizontal scan which is

determined by the combined size of f, and f2 , t is time and int denotes the integer

function. The temporal output of the detector, therefore, represents the time encoded

spatial correlation of the input and reference images.
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input but it requires an SLM for the reference template. For many applications, it is not

necessary to change the reference template rapidly. The use of an SLM as the reference

does not represent a significant disadvantage.

There are, however, drawbacks in the use of a scanning correlator. First of all,

the correlation operation is performed via sequential steps, indexing along a and 0. The

operating speed is, therefore, much slower than a Fourier transform based correlator that

operates in the spatial frequency domain. In addition, the input and the reference

functions of a scanning correlator must both be real and positive. There is a large body

of work in optimizing and expanding the capabilities of correlation filters to make them

invariant to the size, orientation and aspect of the target, and more tolerant of variation

in lighting conditions and partial obscuration. These filters, unfortunately, require the

reference function to be complex. A scanning correlator cannot take advantage of these

recent advances in correlation filter design.

2.4.2 Interferometric Processor

From coherence theory, it is wel known that a Fourier transform relationship

exist between the intensity distribution and the coherence of the radiation in the far field

[Born). That is:

p.(U, V) =JfI(ai, 0) e -i2v(ua+vO)/X dafdo (9)

where 14(u, v) s the complex degree of spatial coherence (CDSla I(on, i) is the intensity

distribution of the input function and E is the field of view of the sensor. Using a

shearing interferometer [Aleksoff, Tail to measure the CDSC at a range of spatial

frequencies simultaneously, the Fourier transform of the intensity of the target scene can

be obtained at the speed of light without requiring an intervening spatial light modulator.
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The output intensity of a shearing interferometer, I. , is given by: I
Io(U, v)- f [ Ii(x, y){l + cos[2 "(ux+Vy)]} dxdy

= J[ I,(x, y) dxdy+J [ I (x, y) cos[21r(ux + vy)] dxdy 10

= Bias + Re{.t [I(x, y)]} 3
To obtain the imaginary part of the Fourier transform, a i-/2 phase shift is inserted in one I
of the sheared beams to produce:

Io(U, v) = J I I(x, y) dxdy+f II,(x, y) sin[21r(ux + vy)] dxdy

= Bias + Im{Sr [/i(x, y)]}

A rotation shearing interferometer such as a modified KUster interferometer £
[AleksoffJ as illustrated in Figure 2.4.2-1 can provide the two-dimensional transform of

an incoherent input pattern. However, the interferometer can only operate with narrow 5
band radiation and the image of the target scene cannot be used directly as the input. A

grating interferometer is achromatic [Tail and can operate directly on the incoherent 5
radiation from the target scene. The grating interferometer, however, is a one-

dimensional device. For a two-dimensional input, the interferometer output corresponds 3
to a radial line in the Fourier spectrum. A two-dimensional transform of the input can

be obtained by rotating the interferometer about its optical axis. 3
Since the bipolar output is on a bias, the signal is often overwhelmed, particularly U

if the size of the image support, E, is large. For the processor to be viable, a means to

reduce the bias is necessary. The fact that the real and imaginary parts of the Fourier I
transform reside at the outputs of two separate channels also makes cascading the

processor more difficult. I

1
I
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2.4.3 OTF Synthesis Optical Preprocessor

As described in Section 1.4.2.3, incoherent nptical processing techniques can be

used to perform convolution and correlation operations for the special case where the

input and reference functions are both positive and real. Specifically, the output of an

incoherent imaging system can be described by:

I(c, 0)=J I jf(x, y)12 Ih(a-x, _-y)1 2 dxdy (12)

where I(a, 0) is the output image intensity, I h(x,y) 2 is the incoherent point spread

function and I f(x,y) 1 2 is the intensity distribution of the input. The Optical Transfer

Function (OTF) of the imaging system is defined as the normalized Fourier transform

of I h(x,y) 1 2 That is, [Rhodes]:

OTF(u, v) = [I h(x, y)12] (13)J I h(x, y)12 dxdy

Spatial filtering of an incoherent input image can be accomplished by designing the

proper aperture function F(u, v) where F(u, v) = Vlh(x,y)]. We note that F(u,v) can

be complex. Complex operations such as matching filtering can therefore be performed.

F(u,v) must be implemented with an SLM. The filter function may be complex

as we have just indicated. More importantly, the coherence and the phase of the input I
field must be preserved by the spatial filter which is not the case with SLRs where the

input and output photons are different. 3
2.4.4 Artificial Neural Networks 3

Artificial neural networks consist of nodes (or artificial neurons) which are 3
connected together [Lippman]. Figure 2.4.4-1 shows a node with inputs x and output y.
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The node performs the function of weighting each input with a corresponding weight w, 3
summing these weighted inputs, subtracting a threshold 0, and passing the result through

a nonlinearity f() to produce the output y. Sample nonlinear functions f are also shown I
in Fig. 2.4.4-1. Typically, nodes are grouped to form layers and the layers are

massively interconnected. Figure 2.4.4-2 shows a three-layer perceptron artificial neural 3
network. The N inputs x are applied to the first layer of N nodes. The N outputs x' of

the first layer serve as inputs to second layer and so on to the final N outputs y. Layers 3
which neither receive the initial input nor produce the final output are called hidden

layers. Many other connections are possible including feedback connections, but a single I
network seldom has more than three layers. Entire networks may sometimes be

cascaded, however. I
The computations found in artificial neural networks are multiplication, addition, I

and nonlinearity. Artificial neural networks also require massive data broadcasting and

reception. Linear, passive optical processing techniques can provide the multiplication m
and addition. Optical methods may also be used to provide the massive interconnections.

Nonlinear optics or opto-electronic spatial light rebroadcasters can provide the nonlinear

operations. A schematic of a possible opto-electronic node is shown in Fig. 2.4.4-3.

The weighted inputs are summed as they strike detectors. Incoherent optical processing

is assumed and two channels are shown to handle positive and negative weight values.

The op-amp performs subtraction of the positive and negative channels and applies the

nonlinearity. The output is rebroadcast to the next layer by a laser diode.

Implementations with light emitting diodes are equally possible. I
Five optical architectures for artificial neural networks were studied. The first

three assume fixed weight values and use holographic, cylindrical, and lenslet array 3
optics respectively to perform the interconnections. The fourth architecture assumes

fixed weights and uses cylindrical optics, but uses a phosphor type spatial light 3
rebroadcaster. The fifth architecture includes optical training or computation of the

4
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3i weight values. All of the architectures are shown for a single layer artificial neural

network. They would be cascaded for multiple layer networks.i
2.4.4.1 Holographic Architecture

Figure 2.4.4-4 shows the holographic artificial neural network. At each node,

I holographic light redistribution elements are located which consist of superimposed or

spatially multiplexed gratings. These elements take the output of a node, break it into

I multiple parts, weight each part, and send each part toward a specific node in the next

layer. To do this, each grating has a diffraction angle appropriate to diffract the light

to a specific node and a diffraction efficiency corresponding to the weight required for

that input to the node. The nodes would be opto-electronic spatial light rebroadcasters,

for example of the type shown in Fig. 2.4.4-3. Although shown as one-dimensional inu Ithe figure, the processor could operate in two dimensions.

3 In addition to the spatial light rebroadcasters, the critical element of this

architecture is the fabrication of the holographic elements. Figure 2.4.4-5 shows one

I method for fabrication in which an SLM would be used to program the recording beams

to write individual gratings on a holographic recording media. Binary optics fabrication

1 techniques could also be used. It will be difficult to maintain sufficient accuracy in the

weights (diffraction efficiencies). Other studies performed by ERIM have shown that 3 %

3 accuracy (5 bits) is needed at a minimum for successful neural net operation

[Cederquist]. This would be difficult for the spatially multiplexed gratings, let alone for

3 the superimposed grating approach.

1 2.4.4.2 Cylindrical Optics Architecture

Figure 2.4.4-6 shows a cylindrical optics based artificial neural network. The

input is a linear array of laser diodes or light emitting diodes each of which is collimated
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5 by the first cylindrical optic. The resulting light passes through an intensity (or gray

scale) mask where it is multiplied by the weights. A second cylindrical optic oriented

II at 90 degrees to the first focuses this light onto a linear array of opto-electronic spatial

light rebroadcasting devices. At their detectors summation is performed, nonlinearity is

3 performed electronically, and the output is optically rebroadcast to the next layer.

I The critical elements of this architecture are the performance of the cylindrical

optics and the fabrication of the two-dimensional weight mask. Fabrication of a spatially

U multiplexed weight mask to 1 % accuracy can be achieved with table look-up linearization

[Cederquist and Lee]. This architecture is known in the literature and some experimental

I results for a matrix-vector multiplier have also already been published, so the risk of the

cylindrical optics was judged to be low. Therefore, this architecture was chosen over

I the other approaches for in-depth analysis.

1 2.4.4.3 Lenslet Array Architecture

I The third architecture studied is shown in Fig. 2.4.4-7. It is similar to the second

architecture in that it uses a spatially multiplexed weight mask, but it uses lenslets to

image the input onto the mask and lenslets to collect the light onto the detectors. The

3 critical elements of this architecture are the performances of the two lenslet arrays. Each

element of the first array must demagnify the input and image it to a specific location on

the mask. This means the input FOV of the lenses is large and the lenses will have

different vignetting over their FOV depending on their location in the array. This

variation would have to be computed and compensated in the weight mask. Light leaving

the mask does not in general propagate along the optical axis, but at an angle to it which

3 becomes greater toward the edges of the mask. This requires lenslets of the second array

to be capable of capturing and focusing light arriving at large angles to their optical axes.

3 On balance, this architecture seemed to have no advantage of size and probable

4
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disadvantages in accuracy and complexity (use of lenslet arrays) over the second

architecture and so was not analyzed further.

2.4.4.4 Phosphor Based ArchitectureI
The fourth architecture studied is shown in Fig. 2.4.4-8. It uses the cylindrical

3 optics architecture, but substitutes a phosphor type of spatial light rebroadcaster for the

opto-electronic type. This is done by having two inputs, one at a write wavelength for

3 positive weight values and one at an erase wavelength for negative weight values. Each

is multiplied by the weights using a mask, but the subtraction is done optically by writing

I and erasing the phosphor rather than electronically in an opto-electronic spatial light

rebroadcaster. The critical element of this architecture is the requirement of the spatial

light rebroadcaster to perform the nonlinear operation required by artificial neural

networks. As discussed in Section 3.5, accurate subtraction followed by nonlinearity is

not a natural operation of phosphors. In addition, this architecture is not optically

cascadable since the wavelength of the rebroadcast is not suitable for either the write or

erase inputs. For these reasons, this architecture was not analyzed in depth.

2.4.4.5 Adaptive Weight Architecture

The fifth architecture studied is shown in Figure 2.4.4-9. Unlike the others, it

3does not use fixed weights, but electronically computes any necessary changes to the

weights (such as occurs during artificial neural network training) and optically updates

3 the weight mask. The architecture uses cylindrical optics with the weight mask written

on a phosphor spatial light rebroadcaster. Since this weight mask will be partially erased

3 each time it is read out, it is refreshed (rewritten) every 10 cycles by a weight mask in

digital electronic memory and displayed on a CRT. The output of the artificial neural

5network processor is not only rebroadcast to the next processor, but is also input to a

digital electronic processor. In the digital electronic processor, this input is used to
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compute changes to the weights (training the artificial neural network). Any changes to 5
the weights are fed to scanned laser diodes or light emitting diodes which write or erase

the weight mask stored on the phosphor spatial light rebroadcaster. For a multi-layer 3
perceptron neural network, training would traditionally be done by the back-propagation

algorithm and the computational load on the electronic processor would limit I
performance. Neither would an optical processor have sufficient flexibility to compute

this algorithm. However, for a Kohonen self-organizing neural network, the weight 3
modification algorithm is much simpler and only small regions of the weight mask need

to be modified at each cycle. For this case, the load on the electronic processor would

not be the limiting factor. Instead the overall computation rate would be determined by

the space-bandwidth product of the CRT and the rate at which weight changes could be I
optically made. Therefore, if real-time artificial neural network training is required,

then, for networks like the Kohonen, this architecture is d candidate. I

2.4.5 Quadratic Processor I

The optical architecture that we will discuss in this section will affect the I
operation of quadratic systems. Quadratic systems are extremely important in a number

of applications [Rugh]. We will focus on automatic target detection operations which is

the primary goal of these processors. The general input/output relationship is given as:

g(r) = f f (rl) f* (r2) q(r-r,' r-r2) dr, dr2

where fir) is the input and q(rl, r2 ) is the kernel function. For sampled data, the

quadratic processor can be rewritten in vector/matrix notation as: 3
g =fTQf

wherefis the input signal vector, g is the output vector, and Q is the kernel matrix and

T denotes vector transpose. 3

I
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The quadratic operation is one of the most important operations in target

detection. The target detection problem can be seen as a binary hypothesis test where

the two hypotheses are:

HI: clutter with distribution pl(f)=N(gl, E1)

H2: target plus clutter with distribution p2() =N(OA2 , E2)

where N denotes multivariate Gaussian distribution, with 1A , and g2 are the mean

vectors and E, , and E2 as the covariance matrices of the two distributions.

The optimal test to differentiate between these two hypotheses is the likelihood

ratio test (LRT) [VanTrees]. In this test, the ratios of the two probability distribution

functions, A(f) = pj(1 )/po(t) are calculated. This will produce an operation on the

incoming data which is then compared to a threshold. We will assume the input signal

vector f to be provided by an electro-optical sensor. In this instance, f can be composed

of multispectral and/or spatial data. Whenf is spatial data from the local neighborhood

of the pixel under test, the LRT effectively compares the local spatial texture for target

detection. This has been shown to provide significant detection advantage of pure energy

detection [STAR report]. For an input data vectorf the LRT becomes:

f --E)f -fT- 1  s )<-1
1 )> r

The first term is the quadratic operation where the kernel is represented by Q=(r" 1 -

r2"1). These two covariance matrices can be computed off-line via training data of both

the clutter and target. The second term is a simple linear processor with impulse

response h =-' 1 o - EI-1 IA2. This term can be eliminated entirely when "demeaned" data

are used. We will consider this case in our subsequent discussions.

An optical implementation of the quadratic operation is shown in Figure 2.4.5-1.

This architecture has some significant advantages when compared to its electronic
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counterparts. The first and foremost is that this processor computes the LRT for each

pixel in the scene simultaneously. In electronic implementations, a window is translated

around the image and the LRT is computed serially. The SLR implementation allows

the system to operate directly on the optical intensity at the focal plane of the sensor.

No arbitrary optical/electronic-electronic/optical transduction (i.e., a detector array

followed by a spatial light modulator) is required.

There are two specific technologies used in the quadratic processor architecture,

the spatial light rebroacaster, and lenslet arrays. The spatial light rebroadcaster allows

real time data insertion, filtering and thresholding whereas the lenslet arrays provide the

means for local neighborhood isolation, pixel replication and local spatial integration.

The first SLR in the architecture detects and rebroadcasts the sensor data into the optical

processor. The first lenslet array selects (through reimaging) a local 3 x 3 neighborhood

around each pixel in the image. This requires the same number of lenslets as the number

of pixels in the input image. The second lenslet array replicates each neighborhood 3 x 3

times (also through reimaging). The replicated neighborhood are incident on the filtering

SLR where the matrix Q is stored. The third lenslet array integrates each 3 x 3 segment

and images the result onto the third SLR. This SLR also has the selected local

neighborhood data as a readout beam incident on it via a network of two beam splitters,

a lenslet array for neighborhood selection and a one-to-one imaging system. The SLR

then produces the multiplication of the two data sets. A final lenslet array integrates the

local 3 x 3 output of the SLR and images the result to a final active SLR which provides

the thresholding operation. The output "image" of this system is a binary mapping

whose pixels are either detection of target (on) or clutter (off). Refer to section 3.3 for

specific operational details.

The initial assessment of benefit for the optical processor can be calculated via

its throughput. We will make this calculation based on the number of operations that are

applied to any specific input pixel. The key to this calculation is the realization that each
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input pixel is replicated 81 times (local neighborhood selection and neighborhood 3
replication). Note that each pixel is contained in the neighborhoods of all 9 of its

neighbors. This is shown in Figure 2.4.5-2. The filtering SLR then performs 81 3
multiplies on a particular input pixel. The lenslet array following the filtering SLR

produces 8 additions (replicated/filtered pixel being added to each element in its

neighborhood) for each replicated neighborhood (9 times). This produces 72 additions

on each input pixel. Multiplication by the neighborhood data at the third SLR provides I
another 9 multiplications per pixel. Finally, the last lenslet array sums over each local

neighborhood (8 additions). The thresholding operation will be ignored in this I
calculation. This produces a total of 170 operations on each input pixel. This is

summarized as: I

Multiplication by mask: 81 multiplications I
Lens summation (8 adds x 9 real.) 72 additions

Multiplication by neighborhood 09 multiplications I
Final summation 08 additions

Total 170 ops/input pixel

We will assume an input image size of 500 x 500 pixels (2.5 x 105 pixels). For an SLR I
response time of 30 msec (30 frames/sec) the processor architecture effectively operates

at a throughput rate of 1.4 Gops/sec. Conversely, for an SLR response time of I msec, 3
the processor throughput rate is 42.5 Gops/sec. Clearly, this is significantly higher than

any low power electronic system can achieve. Therefore, we advise that the quadratic 3
architecture introduced in this section be further studied.

5
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2.4.6 Morphological Processor 3
Morphological image processing has been applied successfully in a variety of 3

applications including automatic target recognition and classification [Sternberg,

Maragos, Crimmins]. Morphological processing is based on a series of local operations

and neighborhood transformations which are performed identically on all image pixels.

This translation-invariant property makes morphological processing suitable for optical

implementation and allows the parallelism to take full advantage of an optical processor. I
In this section, morphological image processing is first reviewed and the

implementations of its basic operations with an i.'oherent optical processor are 3
described. Processing algorithms for ATC applications based on a series of these

elementary operations and transformations are then discussed and the system architecturesI

for a hybrid optical morphological image processor are examined.

2.4.6.1 Image Algebra g
It is well known in image algebra that there are two fundamental local operations

and one neighborhood transformation with which most other operations or transforms can I
be implemented. The two fundamental local operations are: [Serra, Huang]:

Complement of an image: i

A = {(x,y)I(x,y) E W and (x,y) 1 A} (14)

where W is the image space containing all image pixels.

I
I
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Union of two images A and R:

3 A U R = {(x,y)I(x,y) E A or (x,y) E R} (15)

The fundamental neighborhood transformation isU
Dilation of image A by R:I

I{(Xa+xr(Ya+Yr)YWI(xa'Ya)EA' (xr'Yr)ER} (A*0 ) and (R ) 0

0 otherwise

(16)

I where 0 denotes the null image set. In other words, dilation is the union of the

translation of A by the elements in R. That is, if we let p be a pixel in W and denote

the shifting of the origin of A to p by:

A(p) = {a+p I aEA}

then dilation can also be expressd as:

A A(R= U A(ri) (17)
rjER

I where A(rj, r2 .... rN) are the translated images of A by the pixels in R = {rl, r2,....rN}.

I Based on these three fundamental operations and transformations, other operations and

transformations can be implemented. For example:

I
I
I s

U 59



Erosion:

A G( R=(i ) (18)

where W• denotes the symmetric set of R, that is, the rotation of R by 180':

Difference:

A - R =(A UR) (19)

Intersection:

AfnR 6 U R) (20)

Symmetric difference:

AAR = (AEDR)U(AUR) (21)

Opening:

AR = (A ED R) 0 R = (A eR ®) (D R (22)

Closing:

(23)
Al = (AGDR)GDFR = (AGDR E)eR

The operations and transformations are illustrated in Figure 2.4.6-1 for the case R = R.

Other more complex transformations include:

flit or Miss transform:

A 0 R = (A OR 1) - (A () R2) = (X O R,) n (X eR,) (24)
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Figure 2.4.6-1. Morphological Operations and Transformations that can be
Implemented with Complement, Union and Dilation.
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Thinning:

A O R =A - (A 9R) (25)

Thickening:

A OR -AU (A®R) (26)

and Skeletonization:

SK(A) = U {(A G rB)p]} (27)
r >0

where rB is an open disk of radius r and p is a closed disk of the size of a single pixel,

and (.)P denotes the opening of (.) by p.

In image processing, A is generally the input image and R is referred to as the

structure element which operates on A. R can be of any shape. Some commonly used

shapes are circle (disk), square, line and rhombus.

2.4.6.2 Optical Implementation of Elementary Operations and
Transformations

As described in Section 1.0, there are two elementary local operations and one

neighborhood transformation with which other morphological operations and

transformations can be implemented, namely, complement, union and dilation. In this

section, the optical implementations of these elementary functions are described. The

system architecture of an optical morphological processor is discussed later in

Section 5.0.

Complement

Complement or negation requires a device with an input-output intensity transfer

characteristic that has a negative slope. Many spatial light modulators can be made to
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produce positive or negative ouq-uts by varying the bias intensity or voltage levels. The

SLR is assumed to also have the capability to be switched to produce a positive or

negative output.

Union

Union is equivalent to a logical OR operation. It can be implemented with

summation and thresholding operations. That is:

A U R = {(x,y)l(x,y) e [kA(x,y) + kR(x,y)] >_ 1} (28)

where A and R are binary images with values of 0 and 1, kA and kR are the indicator

functions associated with compact sets A and R. The summation of intensity is a natural

function of a square law detector such as a SLR. Two images incident on the SLR

simultaneously will be summed. With the storage capability of the SLR, the summation

can also be performed on images which impinge on the SLR sequentially. Thresholding

can be implemented with an active SLR by the appropriate design of the electronics

between the detectors and the emitters of the device.

Dilation

Dilation is the union of the translations of A by the elements in R. It can be

expressed in the form of a convolution cperation:

A (@ R = a[kA(x,y) * kR(x,y)] (29)

where * denotes the convolution operation and a indicates the support of convolution

product. The convolution can be performed optically and the support can be obtained

by simple thresholding.

With an incoherent imaging system, the output image intensity for an input,

kA(x,y), is given by kA(x,y) * I h(x,y) 12 where I h(x,y) 12 is the point spread function of

the imaging system. It is related to the pupil function, P(u,v), via h(x,y) = .9[P(uv)]
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where .[ ] denotes Fourier transformation. Dilation can, therefore, be performed by

choosing a pupil function P(u,v) whose point spread function matches the desired

structure element R. When the structure element is large, the pupil function becomes

small, severely affecting the optical efficiency of the optical processor. A simple

means to improve the optical throughput through the lens aperture is to replicate the pupil

function as illustrated in Figure 2.4.6-2. The spatial separation of the pupil functions has

to be large enough such that the resulting spurious fringe pattern cannot be resolved by

the out detector array or SLR.

The point spread function is always real and positive. Performing the convolution

with an incoherent imaging system will restrict the type of structure elements that can be

realized directly. With dilation, the structure element is defined only by points which

belongs to R. (In hit or miss transform which will be described in the following section,I

the structure element is also defined by points that belong to the background or R.) kR'

is, therefore, real and positive and the convolution can be realized with an incoherent

imaging system.

To summarize, A ( R can be implemented by thresholding the output image 3
obtained with an incoherent imaging system having a pupil function, P(u,v), where:

kR(x,y) = 1.9 -1 [P(u,v)] F . (30)

A detailed description of the pupil function design for morphological processing will be

presented later in Section 3.4.

Hit or Miss Transformation, Thinning and Thickening

In Hit or Miss transform, A E R, the structure element is composed of two

components R, and R2 where R, is defined by points that belong to A (shape of

foreground) and R2 is defined by points that belong to A (shape of background). The

I
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Pupil function that produces disk-like structure element

Figure 2.4.6-2. Replication of Pupil Function to Increase Optical Throughput
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condition of the transform is that A matches R1 and A matches R2 . A simple example 3
is shown in Figure 2.4.6-3. which performs an asymmetric form of edge filtering where

only the left vertical edge is enhanced. I

Closely related to hit or miss transform are thinning and thickening. Thinning is I
obtained by subtracting X ® R from A. Thickening is obtained by taking union of A with

A®R.

With the structure element composing of two components, the hit of miss I
transform (Eq. 24) can be implemented optically using two pupil masks to produce R1

and R2. The two parts of the hit or miss transform, (X E R1) and (X e R2), can be

performed with parallel imaging optics and then summed and thresholded to obtain the 3
intersection. Alternatively, the operations can be implemented sequentially using the

storage capability of the SLR. 3
Some commonly used structure elements are given in Figure 2.4.6-4. Notice that

the centers of R1 and R2 are often off-set from each other. With an incoherent optical

system, however, the point spread function convolving with the input image is always i
centered at the optical axis. A means must, therefore, be available to shift one of the two

output images before they are summed and thresholded. The amount of shift required I
is quite small. The shift may be obtained by adding a grating structure to the pupil

function if the programmable pupil mask (SLM) provides enough space-bandwidth I
product. Alternatively, it can be achieved with electro-mechanical means by tilting a

mirror or a beamsplitter with a piezoelectric driver. The shift can also be performed I
electro-optically by adding a wedge of electro-optics material at the pupil plane. The

application of voltage changes the amount of linear phase retardation and shifts the output

image. It may also be possible to shift the image stored in an active SLR electronically

by using a charge couple device structure to fabricate the SLR.
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2.4.6.3 Extension to Gray Scale Images

So far, we have limited ourselves to binary input images. In this section,

approaches to allow the optical morphological processor to handle gray scale images are

described.

Gray scale morphological operations are very computation intensive. A gray scale

opening for example, requires much more computation than a thresholding operation

followed by a binary opening. For high speed processing, gray scale 2-dimensional

images are typically decomposed into 2-dimensional binary images which are then

processed efficiently by binary morphological operations and transformation.

Two approaches to decompose a gray scale image into binary images will be

described. The most powerful approach utilizes a concept called umbra with which gray

scale images can be processed in 3-space.

2.4.6.3.1 Umbra

A gray scale image can be considered to be a binary three- dimensional (i,x,y)

image and morphological operations and transformations can be performed by breaking

the gray scale image into a series of binary two-dimensional images. Let A2 be a set of

points in 2-space and G is a function which assigns a gray scale value Ix'y to each point

(x,y) in A2. G(A2) is then a gray scale image having a binary representation in 3-space.

p3 is an element in A3 if p2 is an element in A2 and has gray value I,y,. A3 essentially

defines a surface in 3-space corresponding to the gray scale function. A3 can be

converted into a binary 3-dimensional image called Umbra. The umbra of A3 is the

space below the surface, it can be expressed as [Sternberg]:
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U(A 2) = U3 = {(ix,y) I (ix,), < (i,x,y) - Aa} (31) U
The gray scale image, its surface and umbra are illustrated in Figure 2.4.6-5 for a

one-dimensional image. I
For a two-dimensional gray scale image, its three-dimensional umbra can be

further decomposed into slices of two-dimensional binary images:

A23  U A (32)
n--l,N

Three-dimensional morphological operations can be performed by operating on

two-dimensional slices and recomposing the image. For example, to perform a dilation

u3 E R3 , the three dimensional umbra is first decomposed into slices in the y direction.

Operating on the 2-D slices, an intermediate result:

B 3  A 2 6 2 (33)

, Y RYn

is obtained. Then, turning to the orthogonal direction, we have:

2 2 (U 3 EDR3 U. R,. B EDR (34)

weeRan deoeem4l,M Xm e x

where R2y and R2x denote the two-dimensional slicers of the three- dimensional structure:
element R3 projected onto the i-x and i-y planes respectively. 3

2.4.6.3.2 Threshold Decomposition 3
The processing approach described above is quite complex, requiring electronic 3

buffer memory to hold the intermediate step B3 . Threshold decomposition offers a

I
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Figure 2.4.6-5. Umbra Representation of a One-dimensional Gray Scale Image
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simpler approach to gray scale morphology [Shih]. It can be shown that gray scale 3
morphological operation is the summation of a series of unioned binary operations. If

the structure element is binary, the processing is reduced to the summation of a series 3
of binary morphological operations on the gray scaled image which has been decomposed

into a set of binary images according to intensity levels. The processing for the 3
decomposed images can be performed by the optical processor in parallel. Such a

plane-parallel architecture allows the processor to maintain real-time processing

performance with gray scale input images. Alternatively, the decomposed images can

be processed in serially, using a detector or an SLR to sum the output in order to .

minimize hardware complexity. I
To make the results of threshold decomposition consistent, the shading or slowly

varying bias of the gray scale image should first be removed. This can be achieved with I
the same optical processor by using the storage and gray scale properties or the SLR.

Let G(x,y) be the two-dimensional gray scale input image. The slowly varying bias can 3
be estimated by:

S(x,y) = G(x,y) * Ih(x,y)12  

(35)

where I h(x,y) 12 the point spread function of an incoherent imaging system which I
performs a low pass filtering operation. The modified gray scale image is given by

M(s,y) = G(x,y) - S(xy) which can be sliced at different intensity levels into a set of

two dimensional binary images.

2.4.7 Multisiectral Optical Preprocessor 3
Many targets have spectral reflectance characteristics that are different from those 3

of the clutter background that can be used to aid target detection. Even with camouflage

paints and markings designed to make the target blends in with the background, there are 3
measurable differences in their finer spectral structures. For example, background clutter

7
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has chlorophyll and water absorption lines that are hard to emulate accurately with man-

made materials. Similarly, synthetic material and paints may reflect particularly strongly

or weakly at certain wavelengths. The target-to-clutter ratio can be enhanced by

comparing the relative spectral reflectance at two different wavelengths. As an example,

Figure 2.4.7-1 shows the spectral reflectance of a fictitious target and the background

clutter over certain spectral region. The spectral reflectance of the target is measurably

different between wavelengths X, and X2 but for the clutter, they are about the same.

If the image intensity acquired at wavelength X2 is subtracted from image taken at

wavelength X1 , an enhanced image of the target is obtained. That is:

1(xY) = 17(xY; X1) + Ic(xY; X1) - 1I(x,Y; X2) - Ic(x,Y; X2) (36)I-- 17(x,Y; X)0 - l 7(x,Y; X92)

I! where 1o(x,y) is the intensity distribution of the resulting image, I7(x,y; \) is the

intensity of the target at X and Ic(x,y) is the intensity of the clutter. With the specific

spectral reflectance and the choice of the two wavelengths, the background clutter is

largely removed.

2.4.7.1 Optical Processing Architectures for Multispectral Preprocessor

"The ability of an SLR to perform subtraction can be used as multispectral

I~ preprocessor. A possible optical processing architecture is illustrated in Figure 2.4.7-2.

As explained in Section 1.3, a passive SLR is written and read out at the two different

wavelengths. As a multispectral preprocessor, an SLR with write-in wavelength of X1

and readout wavelength of X2 is used as the input device for the imaging sensor with a

two-band spectral filter centering at X1 and X2 . For day-night operation, the object

I scene can also be actively illuminated with two lasers emitting at X1 and X2 . The

relative brightness of the clutter image at X1 and X2 is adjusted such that the rate of build

up of trapped electrons by wavelength X1 is about the same as the rate depletion by

wavelength X2 . Under such a condition, the number of trapped electrons due to the

I
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3target image will increase with time since the target is brighter at X,. A clutter

suppressed image of the target can be obtained by simply reading the image in the SLR

out with a uniform readout beam at wavelength X2.

£ If the target image is brighter at the readout wavelength, instead, the SLR can

first be flooded with light at wavelength X, to saturate the SLR. The number cf trapped

electrons due to the image will reduce with time and the result is an enhanced and

contrast reversed image of the target.

2.5 Down Selection

A pre-selection was performed that resulted in seven candidates for evaluation.

Of the seven, five were down selected for further analyses. They are the artificial neural

network, the quadratic processor, the morphological processor, the interferometric

processor and the OTF synthesis optical preprocessor. Reasons for their selection are

given below.

U.nlike, for example, a Fourier transform-based processor, an artificial neural

network (ANN) operates from a low level which makes it the most versatile of the

architectures studied. It can be used to implement nearly all the functional elements in

ATC. The basic operation required is sum of products and thresholding which can be

U performed very efficiently with an optical processor. In addition, the massive fan-outs

in an ANN architecture can be accomplished more easily with optical interconnects than

with electrical wires.

I quadratic processor performs pixel-by-pixel statistical target detection on the

target scene. It utilizes local spatial variations (reflectance or emittance) as a3 discriminant between targets and clutter. The processing architecture can utilize the

incoherent sensor image directly as the input. It allows the quadratic processor to bypass
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the limitations of optical to electrical and electrical to optical converters, making it

particularly useful as a preprocessor. In addition, the nonlinear operations performed by

a quadratic processor provide processing capabilities not available with conventional

linear optical systems.

The morphological processor is also a neighborhood processor capable of

nonlinear processing functions. Instead of matching to the overall shape of a target, a

morphological processor performs ATC by extracting features that define a target. Such

a process tends to be more robust than matched filtering or template matching whose

performance can be adversely affected by changes in aspect, lighting and operating

condition. Morphological processing is typically implemented electronically using a

recirculating pipeline architecture to minimize the size of the processor. With the

inherent parallelism of an optical processor, the neighborhood operation can be

performed simultaneously for all pixels in the image.

The last two are diffraction based incoherent optical processors whose

architectures are well known. Diffraction based systems provide the largest space-

bandwidth product, making them attractive for wide area search applications. The

difficulty has been with the bias which could easily overwhelm the signal at the output.

With both architectures, the role of the SLR is bias reduction. Since the principles of

these two types of incoherent optical processors are well established, the discussion in

Section 3 will concentrate on the use of a passive SLR for bias reduction.

The scanning correlator was not chosen because of the its limited capability (the

reference function must be real and positive) and relatively slow speed due the serial

nature of the scanning operation. The multispectral optical preprocessor did not survive

thc down selection because the laser power required for flood illumination may be too

high to be practical in view of the sensitivity of available passive SLRs. For example,

to illuminate and image a 120 m x 120 m area which has an average reflectance of 0.2
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3 from a distance of 1 km using a laser source with P watts of power and an f/2 lens with

a 4 cm aperture, the image intensity on the SLR will be about 3.2 x 10-1 P watts/cm2 .

1 The Quantex SLR requires about 10 mJ/cm2 of exposure energy to reach saturation.

With an exposure time of 0. 1 second, P = 3.1 x 108 watts. The laser has to emit over

3 300 Mwatts of power. Moreover, discrimination between different sets of target ana

clutter may involve different combinations of wavelengths. To reprogram the

3 preprocessor will require a change in the SLR material to one with different input and

readout wavelengths.

II,
I
I
1

I

I
I
I
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3.0 TASK 2: IN-DEPTH ANALYSES I

The candidate optical processing architectures were down selected in Task 2 to J
five: 1) Artificial Neural Network, 2) Quadratic Processor, 3) Morphological Processor,

4) OTF Synthesis Preprocessor and 5) Interferometric processor. In this section, the

design of the selected architectures are analyzed in greater depth to evaluate their

potential performance and viabilities. j

3.1 Evaluation Criteria I

The SLR-based incoherent optical processors have to compete with well I
entrenched electronic processors and with coherent optical processors as well as with

each other. The primary performance figure for processor comparison is computation ,1

speed or system throughput in terms of the number of operations per second. However,

for Air Force ATR missions, the sensors and processors have to be carried on aircraft, I
unmanned aerial vehicles and missiles. The processor size and weight become important i
issues. Electronic processors can achieve processing speed as fast or faster than any

optical processor by implementing massive amount of parallelism. Such a feat is

accomplished at the expense of processor size. A better performance figure for

comparison is throughput per unit volume (e.g., operations per second per cm3). Power

consumption is also important issue, particularly for satellite borne processors. Rough

estimates of the power requirements of the optical processors are also provided. Beside

the ultimate potential performance, the near term availability of optical components for

the optical processing architectures were also investigated to determine the viability of

the optical processing architectures.
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5 3.2 Artificial Neural Network

5 In Section 2.4.3, five architectures for artificial neural networks were discussed.

The cylindrical optics architecture with a fixed weight mask was chosen for it.-depth

3 analysis. An architecture allowing real-time optical modification of the weights was also

identified as a candidate for further analysis. The in-depth analysis began with a study

i of computing accuracy requirements and led to a decision that optical processing is

neither suited for nor needed for weight computation. The cylindrical optics architecture

I was then analyzed in-depth. It was found that the cylindrical optics architecture requires

some significant modifications. A new opto-electronic architecture based on integrated

optics was then developed, analyzed, and shown to be superior in terms of size required

while not sacrificing performance in any other area.

3.2.1 Accuracy and Real-Time Computation Requirements

Optical processing generally has less accuracy than electronic digital processing

but greater speed. IP other ERIM work, a study was done to determine the accuracy

3 required for artificial neural network computations. That study is briefly summarized

here [Cederquist et al]. The problem chosen was that of determining terrain type (forest,

grass, soil) from airborne sensor imagery of the ground in five wavelength bands in the

visible, near infrared, and short wave infrared. A Kohonen self-organizing network was

I successfully developed for this purpose. The network has five inputs, three nodes, and

three outputs corresponding to the terrain classification. The network was trained with

5 floating point computation. The network was then used to classify the input data with

varying accuracy in the input data and weights. The results are shown as confusion

I matrices in Fig. 3.2-1. The result is that floating point performance is maintained down

to 5-bit accuracy in the data and weights. Although this is only a single test, it was

3 assumed that 6-bit accuracy is sufficient for artificial neural network computations during

use, but not during training.

I
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Figure 3.2-1. Confusion Matrix for Test Data with Finite Weight and Input Precision

(a) Floating-point Weight and Input Precision; (b) 6-bit Weight and Input
Quantization; (c) 5-bit Weight and Input Quantization
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5Optical computation of weight values was then considered. From ERIM

experience with perceptron and Kohonen artificial neural networks for automatic target

I classification applications such as edge enhancement (ship wakes in SAR imagery),

segmentation (terrain classification from optical multispectral imagery), and object

I detection (mine location in laser imagery), it is known that, during training, the changes

in the weights at each cycle require much more than 6-bit accuracy. Optical processing

I in general and the architecture discussed in Section 2.4.5 in particular have never been

shown to be capable of this greater accuracy. As an example, the few optical processors

I which were carefully tested for accuracy generally achieved about 5% [Cederquist and

Lee].

The need for real-time computation of weights was also critically analyzed. For

the automatic target classification application, which is one application of interest to the

i Air Force, it is very difficult to argue that weights would be computed in real-time, i.e.,

during an Air Force mission. Air Force doctrine requires pre-mission planning and high

confidence in the success of the mission. The automatic target classification algorithms

used would need to be known and tested for performance before the mission. If artificial

3 neural networks were to be trained during the mission, there is no current knowledge that

guarantees that training would be successful and no current method of measuring

I performance other than comparison with targets and backgrounds identified by the air

crew during the mission. In short, artificial neural network training algorithms are not

3 yet sufficiently developed to be used during a mission, so there is not a compelling

reason for pursuing optical computation of artificial neural network training algorithms.I
3.2.2 Cylindrical Optics Architecture Analysis3

Two versions of the cylindrical optics architecture were designed using the GENII

3 lens design software and analyzed. The first is shown in Fig. 3.2-2. A laser diode array

was chosen for the linear input device. In a cascaded version, this would be the outputI
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of the spatial light rebroadcaster. An array of cylindrical (plano-elliptical cross-section)

lenses is used to collimate the asymmetrical beams from the lasers in one-dimension.

The first cylinder lens is elliptical-piano in cross-section and provides collimated beams

at the weight mask. The second cylinder lens is piano-hyperbolic in cross-section and

focuses the beams onto a linear photo-diode array (input side of spatial light

rebroadcaster). Additional raytraces are shown in Fig. 3.2-3. The mask layout is shown

in Fig. 3.2-4 for cases where the number of nodes per network is small and multiple

networks can, therefore, be computed simultaneously. Positive and negative weight

I channels are needed because of intensity detection. The point design of this architecture

was completed by specifying the following:

SIInput: 100 laser diodes at 1 mm spacing and 1 MHz operation rate, Mask: 100 by 200

I 1mm by 250 micron pixels

1OuIpu: 200 photodiodes at 250 micron spacing and 1 MHz operation rate.

This leads to the following characteristics:

I Volume: LbyWbyH =20cmby10cmby5cm = 1000cm3

3 Input data rate: 100 x 1 MHz = 108 data values/sec

Computation rate: 100 x 200 x 1 MHz = 2 x 1010 operations/sec

I Computations/cm 3 : 2 x 107

3Power (for 1% accuracy): 100 x 40 mW = 4 W

The main disadvantage of this first architecture is the large volume resulting in

a relatively low number of computations per unit volume. This large required volume

Sis not generally recognized in the optical processing literature because other researchers

have not attempted to design an actual optical system use optical raytracing design

3 software. The literature generally shows only very simplified, schematic drawings of

cylindrical optics architectures usually for matrix-vector multipliers.
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In an effort to reduce the processor volume, a second cylindrical optics I
architecture was developed and analyzed. The architecture is shown in Figure 3.2-5.

Again, a laser diode array was chosen for the linear input device. A pair of cylinder

lenses with an aperture stop is used to transfer the input to the weight mask by imaging

it in one-dimension and collimating it in the other. Again, the GENII optical design

software was used in our analysis. The mask layout is identical to that for the first

architecture, shown in Figure 3.2-4. The main difference of this architecture from the

first is that a linear array of long, narrow photodiodes is used to electrically collect the

light passing through the mask rather than using optics to focus the light onto a linear

array of point detectors. Using this mode of operation means that the light at the mask

does not need to be collimated and thereby reduces the constraints on the cylindrical lens

design. This in turn allows a more compact design. A 1 MHz readout rate is assumed

for both architectures so the computation rate is not decreased. The point design of this

architecture was completed by specifying the following:

Input: 100 laser diodes at 100 micron spacing and 1 MHz operation rate
Mask: 100 by 200 100 micron by 50 micron pixels
Output: 200 linear photodiodes at 50 micron spacing and 1 MHz operation rate

This leads to the following characteristics:

Volume: LbyWbyH = 6cmbylcmby lcm =6cm3-_

Input data rate: 100 x 1 MHz -- 108 data values/sec
Computation rate: 100 x 200 x 1 MHz = 2 x 1010 operations/sec
Computations/cm 3 : 3 x 109 I
Power (for 1% accuracy): 100 x 40 mW = 4 W I

This second architecture is superior to the first in computation/cm 3 as desired. i
It was found in both these designs that the mask two-dimensional space-bandwidth

product was proportional to the square root (W x H). The two designs have, of course, I
different proportionality constants. This result is not surprising. It is well known in the
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Figure 3.2-5. Alternate Cylindrical Optics Architecture for an Artificial Neural Network
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optical processing literature that optical systems which can implement arbitrary optical 5
interconnections of the input to the output (e.g., cross bar switches) have their

space-bandwidth product limited by diffraction effects to the square root (W x H). To 3
overcome this fundamental limit, a new optical architecture was developed and analyzed. I
3.2.3 Integrated Optics Architecture Analysis I

The integrated optics architecture is shown in Figure 3.2-6. Once again, t laser

diode array was chosen for the linear input device. The lasers are coupled into a linear I
array of optical multimode waveguides, one laser for each waveguide. Each waveguide

has, along its length, a number of devices which couple light out of the waveguide. I
Either by controlling the amount of light coupled out or by placing a mask next to the

waveguide array, the input light is multiplied by the desired artificial neural network I
weights. This light is then electrically collected by a linear array of long, narrow

photodiodes similar to that used in the second cylindrical optics architecture. Processing i
of positive and negative channels is done electronically. The results can be rebroadcast

to the next layer by electrical connection to another laser diode array. Both of these I
functions could be done with integrated electronics to maintain a compact artificial neural

network processor.

The technology required for the implementation of this processor is currently I
available (laser diode arrays, optical waveguides, linear photodiode arrays) or an 3
extension of current electronic technology (integration of photodiodes with operational

amplifiers and laser diodes) except for the method of coupling light out of the 3
waveguides. Possible methods for achieving this coupling are (1) transparent windows

in otherwise totally reflecting waveguide walls which would let light escape, (2) diffuse

regions in the walls which would scatter light out, and (3) grating couplers which would

diffract light out of the waveguide. This methods are discussed further in Section 4.3. 3
I
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The point design of this architecture was completed by specifying the following: 5
Volume: Lby W by H = 0.5cm by 1 cm by 1 cm = 0.5 cm 3 (where L is 3
measured perpendicular to the plane of the waveguides)
Input data rate: 100 by 1 MHz = 108 data values/sec
Computation rate: 100 x 200 x 1 MHz = 2 x 1010 operations/sec
Computations/cm 3: 4 x 1010
Power (for 1% accuracy): 100 x 40 mW = 4 W

The length L (or more properly device thickness) is only an estimate based on

integrated electronic flip chip ana bump bonding practices. The integrated optics I
architecture has about a factor of 10 greater computations/cm3 . It should also be noted

that the space-bandwidth product is proportional to W x H. This means that, if it were I
desired to scale the space-bandwidth product of the point designs presented in this section

up by a factor of 2 in each dimension, the integrated optics architecture would grow by i
a factor of 4 in volume while the cylindrical architectures would grow by 16. Other

advantages of the integrated optics architecture are (1) that it builds on electronic I
microfabrication technology and will benefit from advances in that arena and (2) that the

device is a single component which should be more rugged and easier to keep in

alignment than the cylindrical optics architecture with its multiple, separated optical

components.

Some initial concepts were developed for further integration of the integrated

optics architecture. First, multiple layers of an artificial neural net could be integrated 3
onto a single substrate as shown in Figure 3.2-7. A two-dimensional spatial light

rebroadcaster, such as the three terminal device being developed by AT&T could thea I
be used as the optical to electrical to optical convertor and input-output device.

I
I
I
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3.3 Quadratic Processor 3
The primary function of the quadratic optical processor (shown in Figure 3.3-1)

is to implement a pixel-by-pixel statistical target detection algorithm applied to 2D optical

scenes. This optical processor would be a pre-detection processor whereby "detection"

signifies the detection of an extended multipixel target. The main attributes of this

architecture is the total parallelism in its implementations (all pixels are processed 3
simultaneously) and the lack of optical/electronic/optical interfaces. No arbitrary

detection and spatial light modulation is incorporated in the architecture. 3
An understanding of the salient features of the optical architecture can be I

facilitated through a detailed analysis of the quadratic algorithm. The quadratic operation

used in the pixel-by-pixel detector is: I

L =fTAf >r (37) 1
where f is the feature vector under consideration and A is proportional to the inverse of

the covariance matrices and T denotes transpose. The feature vectorf will be assumed

to be the image data over a local 3 x 3 neighborhood. The covariance matrix A can be

calculated off-line through training data.

The optical realization of matrix vector operations is through

coefficient-by-coefficient multiplication and summation. The first part of the quadratic 3
operation f TA can be written as:

g T = fTA = 9g1,..., gn,..., gNlI. (38) 1
Note that ýbach coefficient g. is produced by the multiplication of each member of the

row vectorf T with the members of the. specific column of A and then summed :s:

I
I
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g,n=rn 'f , ai,, . (39)
=1 I

Note that the fi are feplicated for each column n in A producing ai, . Lastly, the

vector inner product gTf is computed as: I
g IV 

(40)
i=1

Recall that the input data are produced by an optical imaging sensor. The feature I
vector is defined as the local 3 x 3 neighborhood around a specific pixel. This physical

situation requires an altered lexicographic numbering of the input vector f and filtering

array A. Instead of the input vector having the formffT=[tj .... f, ... , fg] , the input

vector will be ordered as: 3
flfAf 3  I

f =f f f 6

which is what is physically present in the optical system. By allowing this numbering

convention, no additional special optics need be applied to display the vectors in the I
conventional way.

The first lenslet array selects the local 3 x 3 neighborhood f. As shown in Figure

3.3-2, each pixel in the scene is contained in 9 neighborhoods. Its own and that of the I
8 neighbors. Figure 3.3-2 shows how the lenslet array isolates each neighborhood. Each

lens in the array has an overlapping field-of-view where two columns (or two rows for

vertically oriented lenslets) of the 3 x 3 area are shared between two horizontally spaced I
lenslets. In order for this system to operate, three conditions must be met: 1) the number

I
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of lenslets in the array must be equivalent to the number of pixels in the input image.

This is due to the fact that the number of neighborhoods is equivalent to the number of

pixels. 2) the lenslet size must be less than or equal to the pixel size of the input image.

When equal, the light throughput of each lenslet is maximum. The input pixel size will

be assumed to be approximately 200 t~m (consistent with the SLR pixel size

specification). 3) When imaged, the local neighborhood will be minified by the lenslet

array. This requirement attempts to control crosstalk for the next lenslet array which 3
replicates f. I,

The second lenslet array replicates the local neighborhood as shown in Figure

3.3-3. This step is required to affect the vector matrix productf T A as outlined above. I
The input vector (the lo<-;al neighborhood) is replicated and multiplied by the appropriate

column in the matrix A. The basis for this step is the use of multiple lenslets withm

completely overlapping fields-of-view to reimage the local neighborhood numerous times.

In our case 9 lenslets are required per neighborhood replicating the same neighborhood

9 times.

The multiplication of the replicated vectorf by the matrix A is accomplished via

point-by-point multiplication through a mask (either film or SLR). The matrix A must

also be lexigraphically reordered as described previously and shown in Figure 3.3-4. 3
Once reordered, a simple incoherent multiplication is affected by the mask. The final

summation which then produces the output g =fTA is provided by the next lenslet array. 3
In this system, each lenslet has distinct fields-of-view which are the neighborhoods in

their entirety (see Figure 3.3-5). A simple integration via focusing is then accomplished. 3
The number of lenslets in this array correspond to the number of neighborhoods. I

The output g=ffT A is incident on the next SLR which also has the radiation of

the replicated neighborhood impinging upon it from the other side. This neighborhood 3
data are simply the output of the sensor split from the main path of the quadratic system

9
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via a beamsplitter as shown in Figure 3.3-1. These data have their neighborhoods

selected via a lenslet array as discussed previously. The same conditions apply to the

lenslet array as previous (number of lenslet are equai to the number of input points). A

second lens (non-lenslet) reimages the neighborhoods onto the SLR via a second

beamsplitter. A point-by-point multiplication of g fT is then produced by the SLR. I

The final summation of the terms in gfT to produce the output scalar is provided I
by the last lenslet array of the system. Each lenslet in the array has a distinct

field-of-view and provides the summatior operation through focusing the energy onto a I
spot. The number of lenslets in this array is equal to the input number of points. The

output spot must be small enough such tha. the finite size of the detection elements of the I
SLR completely cover the focused spot. Lastly, the final SLR is used as a means of

setting a threshold on the incident radiation producing the final binarized output.

We will now embark on a detailed analysis of the system size and the I
specifications on the optical components. This analysis, in conjunction with Section

2.3.2 will allow us to completely determine the system throughput density (ops per

volume per unit power) which is the performance metric useful for a comparison to 3
digital systems. In our analysis we will rely on system geometry and simple imaging

equations (lensmakers equation, F-number, magnification, and Rayleigh resolution

criterion) to drive our analysis. In addition, we will also design the system to fall within

well accepted specifications on the lenslet arrays described in [Borelli] and summarized 3
here:

Lenslet diameter: 70,m < D < 1000/Am

Lenslet spacing: 151m < Delta

Focal lengths: 200gm < f < 50mm 3
F-number: F# > 1.43

I
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To begin our analysis, we will define the lensmakers equation as:

l1 f-- 1/so /si (41)

where f is tide lens focal length, so, is the object distance and s, is tue image distance.

The magnification factor is given as:

M=-si Iso=Yi /Yo (42)

where yi is the image size and y, is the object size. In order to facilitate the analysis in

terms of len, diameters, spacings, etc., we will define :,izes in terms of the lens diameter

as ,,=kl D, yi=k2 D, and M=k2 k1.. We can now calculate the object and image

distLnces in terms of the constants k1 and k2 as:

so=-Si IM=f (k1 /K2- 1). (43)

The last required parameter for the analysis is the minimum resolvable spot size. This

parameter defines the lenslt diameter. We will use the Rayleigh criterion which states

6 = 1.22 X si /D where X is the wavelength of the radiation.

The parameters of each lenslet array are influenced by subsequent arrays in the

optical system. These arrays help define required magnifications (or minifications). The

requirements are also usually defined in terms of their lenslet sizes D, and spacings An.

We will now derive the numerical parameters of the neighborhood selection lenslet array

in detail. The subsequent arrays are analyzed in an equivalent manner. Therefore, only

their results will be given.

Figure 3.3-6 shows the lenslet geometry that will be used in this analysis. It will

be assumed that the input pixel spacing is equal to the lenslet spacing. Since the field

of view of the lenslet must encompass 3 input pixels, the object size to be imaged is:
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Figure 3.3-6. Lenslet Geometry in Optical Quadratic Processor
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yo= 2D 1 -2A,= k1D 1  (44)

where D1 and A, are the lenslet diameter and spacing, respectively. Since the object

consists of only 3 points, the minimum resolvable spot separation at the output is:

1 = yi /3 = k2D, /3 = 1.22Xsi ID (45)

which leads to:

5 D1 > V3.66Xf (1/k2 +l/kl) (46)

From the geometry of Figure 3.3-6:

D1 +A1 = 3D 2 +3A 2. (47)

U We will also assume symmetry such that 3D2 = D and 2A2 = A. In order to minimize

crosstalk between the lenslets in the replication stage yi < D2 = D,!3 which leads to

k2 < 1/3. We will use as our baseline, a lenslet array with D, = 300 um and

3 A1 = 45 14m which is within the specifications of [Borelli]. From this, we can easily

derive that the focal length of the first lenslet array must be f = 8.9 mm with an F#=30.

5 The lenslet array must be a distance of s. = 7cm from the object and its formed image

is a distance of si = 1.02 cm from the array. These results are shown in Figures 3.3-6

3 and 3.3-7. A similar set of derivations can be performed for the neighborhood

replication, summing over the filtered output, and summing over the second inner

"5 Iproduct lenslet arrays. The results of these calculations are shown in Figure 3.3-6 with

the overall system size (and object/image distances) shown in Figure 3.3-7.I
The system power is defined by the final active SLR, all the other components

Sare passive. The SLR required power is assumed to be 3mW per pixel. The total power

then becomes 3mW x (500)2 = 750 Watts for the entire system. The power per unit

5 volume is then 18mW/cm*3 (based on the calculated 41,000 cm3 processor volume).
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The last calculation for system performance is the system signal-to-noise ratio.

This determines whether or not there are sufficient photons in the system to produce a

usable signal above the noise floor. In order to proceed, we must assume an operational

scenario. This scenario was discussed in Section 2.1. We will just summarize the

parameters here as:

Sensor range: 15 km

Sensor Lens Diam.: 17 cm

F5 system: f=85 cm

Scene: Sunlight veg.R ve g= .05 1 -2M /A
FsU- 4 x 10-2 watts/cm24sm (Q = 0.61Am)

These specifications produce an average intensity at the image plane of the sensor as

I = 0.282 Watts/m 2 (based on Tien = 0.9, AX = 0.5 usm). Figure 3.3-8 depicts the

assumed transmission coefficients, responsivities and optical power division and increase

(through summation) in the system. In addition, the optical power densities are shown

at different points along the system. Lastly, the assumed specifications of the SLR

(quantum efficiency, time constant, and spectral bandwidth) are given. Based on these

specifications the signal to noise (photon) ratio is 51.4 (17dB). This signal-to-noise ratio,

when completely used by target energy would provide a detection probability of PD =77

with a false alarm probability of PFA = 106. This is predicated on the use of Gaussian

models for both the clutter and target and only the use of energy as the discriminant

[VanTrees].

As noted in Section 2.3.2, the system throughput is related to the SLR response

time. The best case response is 1 jssec. In this instance the system throughput rate is

42,500 Gops/sec (see Section 2.3.2 for analysis details). For a processor volume of

41,000 cm3, and prime power of 750 watts, the throughput rate per unit volume is 1

Gop/sec cm3 and the throughput rate per unit power is 57 Gop/sec W. These
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specifications are extremely high and provide a favorable comparison to state of the art

electronic systems [Gary].

3.4 Morphological Processor

An important feature of morphological image processing is its inherent parallel

nature where the same transformations operate on all pixel elements. Morphological

processing can be performed at very high speed with an appropriate parallel processing

architecture. There several basic architectures that can be used to implement a

morphological image processor.

1) Parallel Full Array:

A full array of two-dimensional processors with each processor connected to other

processors in its neighborhood. All processors execute the same instruction

simultaneously which is broadcast from a central controller. This type of Single

Instruction Multiple Data (SIMD) processor architecture is extremely difficult to be

implemented with conventional microelectronics, requiring a hugh number of parallel

processors and interconnects. A full parallel array has not been fabricated with

conventional electronics.

2) Parallel Subarray:

SA parallel subarray is simply a portion of a full array which reduces the hardware

requirements. However, to process the full image, the image has to be partitioned and

3 loaded into the subarray processor sequentially which adds to system complexity.

3 Several parallel subarrays processors have been built, most notably the Cellular

Logic Image Processor (CLIP) series and the Massively Parallel Processor (MPP).

i These machines are still quite massive, requiring many processors and interconnects.

In addition,the I/O time required to shift the subimages into and out of the subarrays
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limits the processor performance. Extracting and combining information from multiple

images are complex tasks which further limit the system throughput. I
3) Raister Subarray: A raster subarray consists of a special memory unit to produce a

complete set of neighborhood pixels for the computation unit. The input image is loaded

serially in a raster format. Each time a pixel passes through the first register of the

memory unit, the previously entered pixels are shifted along. The number of shift 3
registers per line, M, is equal to the number of pixels per line in the image. A minimum

of nine registers have to be available to the computation unit to form a 3 x 3 structure I
element which requires a total of 3M shift registers. The output is in same raster format

as the input with in delay in time. I

To maintain real time operation, the processor can be pipelined with a cascade I
of parallel subarrays such that the output of a raster subarray becomes the input to a

next array in the cascade. The number of subarrays required is equal to the number ofU
transformations needed to perform the algorithm. If the input data rate is slow or the

processing speed is sufficiently fast, the number of cascaded subarrays required can be

reduced by cycling the data back to the first array to continue the processing before the

next stream of image data is loaded. ERIM's Cytocomputer is the most prominent

processor of this type.

The ideal processor architecture in terms of performance is the parallel full array. 3
All image pixels are transformed simultaneously, providing a tremendously high

throughput. Its implementation, unfortunately, is not feasible with current 3
microelectronics fabrication technology. The inherent massive parallelism of an optical

processor, however, may make it possible to implement a parallel full array in a 3
reasonably compact package, resulting in orders of magnitude improvement in system

throughput.

I
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The heart of an optical morphologic image processor is the computation unit

which is composed simply of an input SLR, an imaging lens, a programmable pupil mask

and an output SLR as shown in Figure 3.4-1 which performs the dilation operation. This

basic module can be cascaded and arranged in a feed back architecture as illustrated in

Figure 3.4-2. The data circle back after passing through and processed by the N stages.

The processing throughput of such a processor is maximized when the time required to

alter the transmittance of the SLMs is matched to the processing time through the N

stages. If for example, the switching time of the SLR is 1 nsec and N = 50, the SLM

and the SLR logic must be programmable within 50 nsec to keep up. Otherwise, the

processing speed must be slowed down or the number of processing stage has to be

increased.

The pupil functions can be complex and it may be difficult to obtain an SLM with

independent amplitude and phase control and high switching speed. One possible design

that can be used to circumvent to problem is to spatially multiplex the needed complex

aperture functions on a transparency and make use of the fact that the output intensity

distribution of an incoherent imaging system is independent of the spatial position of the

aperture mask. Placed over the multiplex aperture mask is a binary SLM which blocks

out all but the selected aperture function as illustrated in Figure 3.4-3. As the data are

cycled through the n stage optical morphological processor, the desired aperture function

is selected by controlling the on-off pattern of the binary SLM. Candidate SLM devices

include the magneto optics SLMs which are capable of 11sec switching speed..

Let us assume that the structure element is composed of 3 x 3 neighborhood

pixels, a single transformation will require a minimum of 9 multiplies and 1 summation

for a total of 10 arithmetic operations. If the space-bandwidth product (SBWP) of the

SLRs is 256 x 256 pixels, then with the speed assumed in Table 1-1 for the active SLR

devices, the processing speed of the optical morphological processor will be 2562 x 10

ops/l nsec = 6 x 1014 ops/sec.
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Figure 3.4-1. Basic Element in Optical Morphological Processor
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A rough estimate of the processor size is about 5 cm x 5 cm x 10 cm for each

optical stage. The optics of a 10 stage system will occupy about 2500 cm3 . Adding

another 10,000 cm 3 for the control and driving electronics, the total processor volume

is about 12,500 cm 3 . The processor throughput per unit volume is then equal to

5.0 x 1010 operations/sec/cm 3 .

If we use a more modest and realistic processor size with N= 10 and a SLM

switching speed of 10 jisec, the processing speed is lowered to 2562 x 10 x 10 ops/ 10

osec = 6.5 x 1011 ops/sec. The processing speed per unit volume achieved with these

rather conservative parameters is then equal to 5.2 x 107 ops/sec/cm 3 which is still very

high.

With electronic implementations, the small structure element (e.g., 3 x 3) is

typically used to minimize hardware requirement. Larger structure element is obtained

through successive dilation with smaller structure elements, taking advantage of the

distributivity of dilation. With an optical processor, no such constraint is needed and a

large structure element can be used directly. The dilation by a large structure element

can be performed in a single step, further increasing the system throughput. For

example, if the structure element is composed of 9 x 9 pixels instead of 3 x 3, the system

throughput is increased further by almost an order magnitude.

The computation unit is only one component in an image processor. Other

components required include input and output interfaces, image memories, controller,

system interconnects and decision maker. A possible system architecture of a special

purpose optical morphologic image processor may operate as follows. For simplicity

only a single stage is shown. The input image, typically from video source, is read into

two frame buffers with high read out rate. After a full frame fills one of the buffers, it

is loaded rapidly into the SLR, either optically or electronically. While the data are

being loaded into the SLR and processed by the optical processor, input image data are
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directed to fill the second frames buffer. This is done to ensure there will be no loss of 3
data. If the input image can be loaded into the SLR in parallel (e.g., a direct image of

the scene), then a simple shutter can replace the dual buffer to freeze a frame of data to

be processed.

The SLRs are controlled to produce either the direct image or its complement at

the output, and the threshold level is set by the control computer. The SLMs are

programmed by the controller to give the desired pupil function. The output of the Nth II
stage is fed back the first processor stage to continue the processing.

The optical processor filters and enhances the image and extracts target features. I
An electronic processor has to examine the features to recognize or classify the targets.

The processed optical output is read out with a CCD detector array and digitized. The I
decision making will be perfo. med by an electronic processor. !

3.4.1 ATC Applications for Morphological Processor

Morphological processing has been successtully used in many difficult image

processing applications, including ATC anI ATR with low contrast irnfrared images and I
speckled radar images. It has also been employed extensively in medicai image

processing to, for example, recognize specific cells. Various image processing functions 3
related to ATC can be implemented with a series of morphological operations and

transformations. Some example of simple image processing functions are given below. I
(1) Differencing or intersection can be used for change detection. 3
(2) Opening and closing can be used to remove salt and pepper noise,

smoothing and size filtering. i

1
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(3) Difference between dilated and eroded images can be used to ietect the
edges of an target image.

j(4) Dilation, hit and miss transform can be used for template matching.

(5) Thinning and thickening can be used to extract and enhance certain target
features.

(6) Skeletonization can be used to extract target features and to establish the
connectivity of features.

A complex imaging processing of algorithms can be implemented with a series

of elementary operations or transformations in the form of an algorithm. For example,

to perform feature extraction or dimension reduction, the algorithm may involve for

example, removal of salt and pepper noise to smooth out the image, perform size

filtering to find the features that look like wheels on a vehicle and to locate objects that

match the overall size of the target, perform a skeletonization to extract the gross feitures

such as the number of corners in the target image or to determine the connectivity of the

wheels. To implement an algorithm may require the performance of hundreds of

elementary operations and transformations on each pixels. To be able to perform the

algorithm in real-time (video frame rate, or up 107 pixels/sec), special purpose

processing hardware is required.

3.4.2 Summary Comment on the Optical Morphological Processor

The single instruction multiple data (SIMD) processing architecture is the most

efficient architecture for morphological image processing but it is also the most difficult

to implement with conventional electronics technology. The SIMD architecture,

however, is idea; for optical implementation. An optical processor can process data at

a very high rate with its massive parallelism but it is also relatively slow in chang;"0g tre

instructions to individual elements in the processor (e.g., reprogramming an SLM). It
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allows a large amount of data to be processed simultaneously with the same instruction 5
which are broadcasted optically to all processing elements. I

We have shown that most morphological operations and transformations can be

implemented as series of two fundamental local operations (complement and union) and i
one neighborhood transformation (dilation). The optical implementation of these three

fundamental operations and transformation were described. An optical processing 3
architecture for a target features extractor was presented around which an automatic

target classifier can be built. i

3.5 OTF Synthesis Preprocessor and Interferometric Processor I

OTF synthesis preprocessing and interferometric processing are well established I
incoherent optical processing techniques. The basic operation of the two optical

processors will not be changed by the use of SLRs. The most distinctive feature of an

SLR based system is ability to perform bias subtraction on tiie detection device which

contrasts with conventional implementation using a detector arrays where bias

substraction is performed external to the detector. Since bias build up is the primary

problem for both incoherent optical processors, the section will concentrate on addressing

the performance of an SLR in bias subtraction. 3
Bias build up limits the performance of an incoherent optical processor because 3

it occupies the bulk of the dynamic range of the detector. The optical output of the

incoherent optical processor can be modelled as B + mB where B is the bias, m is the

modulation depth of the signal and m • 1. Utilizing the full dynamic range of the

detector, B(1 +m) = N where N is the number of electrwLis in the well of a CCD 5
detector array, we have:

1
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SSNR 2mmN' for m -c2mI 1. (48)
I •B(1+m) 1+m

The SNR can, therefore, be improved by using a detector with a larger storage capacity,

N, or by increasing the contrast (m) of the signal or both. In the following section, the

3 use of an SLR to enhance the output SNR of an interferometric processor is described.

U 3.5.1 Spatial Light Rebroadcaster for Bias Subtraction

i A passive SLR typically consists of a uniform layer of electro-optic material such

as an electron trapping phosphor [Lindmayar]. Incident writing energy at short

wavelength (e.g., Xi = green) is absorbed by the material, exciting electrons to the

conduction band. The electrons then fall into traps where they are stored. When the3 material is exposed by a read out beam at a longer wavelength (e.g., X, =near infrared),

the trapped electrons are excited out of the trapping level and fall back to the valance

I band.as shown in Figure 3.5-1, emitting light at wavelength X0 where Xi < Xo < X,

3, The rate at which electrons are filling the traps is determined by the product of

the write beam intensity and the number of unoccupied trap sites. If the input radiation

I is far from saturating the SLR and the readout depletes only a small percentage of tne

trapped electrons, the intensity of the output emission is approximately proportional to

the number of occupied traps times the intensity of the readout beam. The products of

two arrays of values can be obtained by, for example, inputting a light pattern

I representing the values of one of the array and reading it out with a light pattern

corresponding to the second array. The output intensity pattern of the emitted radiation

is proportional to the products of the two arrays. The device has been used to implement

vector-matrix multipliers and neural networks [Jutamulia, McAulay]. What we are

interested in, however, is the dynamic behavior of a passive SLR.

1
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I An impetus in utilizing an SLR for bias substraction in incoherent optical

processing is the large dynamic range provided by an SLR. The number of traps

available in an SLR is much larger than the well capacity of CCD detector arrays. A

thin film SLR with a thickness of a few micrometers can have as many as 106 traps/pm2

[Lindmayar]. With a cell or pixel size of 101im x 10jm, there are 108 traps per pixel.

The well size of a typical CCD detector array by comparison has only about 106

electrons. Another reason for using an SLR is its simultaneous write and erase capability

which allows the bias to be reduced as the output of an incoherent optical processor is

being written onto the device.

1 ~3.5.2 Dynamic Behavior of Passive SiLR

The rate at which the trap sites are occupied when an SLR is illuminated with

the green (Xi) write beam is given by:

dTw(x't) - 5i7iW(x)[Ts - TW(x,t)] (49)

dt

where bi is the absorption cross section for the write wavelength, 71i is the quantum

efficiency of the SLR in filling a trap, W(x) in the photon flux density of the write beam

and T. is the available trap density (i.e., total number of available traps per unit area)

and Tw(x,t) is the density of occupied traps at time t. The solution to the differential

Ii equation is given by:

Tw(x,t) =T{1 - exp[-i5qiW(x) t ]} (50)

assuming the initial condition of Tw(x,0) = 0.I
In the case of read out by an infrared (\r) beam, some of the trapped electrons

I are excited out of the traps and fall back to the valance band. The rate that the trapped

electrons are released is given by:

I
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dTr(X,t) _ 8o0 7Tr(x,t)R(x) (51)

dt

where 6o is the absorption cross section for the readout wavelength, %7(, is the transfer

efficiency in releasing the electrons and R(x) is the readout photon flux density. The 3
solution to the differential equation is:

Tr(X,t) = Tr(X,O) exp[-6o0 7R(x) t ] (52) 1
where Tr(x,t) is the number of traps that remains occupiec per unit area and Tr(x,O) • I
0 is the initial condition. I

If we first write on the SLR with a beam at wavelength Xi over an exposure time

of t' with a flux density of W(x) and then read out the SLR with an IR (Xr) pattern with

flux density R(x) for a time period of t", we have Tr(xO) = Tw(x,t') and the number of

traps per unit area that remains occupied is equal to:

Twr(X, t', t") = Tr{1 - exp[-6it/iW(x)t']} exp[-b.5%R(x)(t')] (53) 1
The final readout is accomplished with an uniform IR beam with photon flux density 'R. I
The emitted photon flux density is given by:

Iout(t) = T(x,O) fle6 oJo'R exp[-bo'ooIR t ] (54)

where T(x,O) = Tw(x ,t', t") and ie is the transfer efficiency of the device in converting U
energy released by the electrons into photons. Detecting the output of the SLR, we

have:I

Eout(XT) = Ir T(x,O) Ae'5o7IR exp[-boD1IR t j dt (55) 1
= T(x,O)?e{ 1 - exp[-3 7o0 IRr]} I

where r is the integration time of the detector array. The output of the detector array

I
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I is linearly proportional to the distribution of the trapped electrons remaining in the SLR.

In the following section, the use of an SLR to reduce the bias in the output of an

3 incoherent optical processor is described.

3 3.5.3 Bias Subtraction in Incoherent Optical Processing

3 With the input and output both represented by light intensities which take on only

positive real values, bias build up is a significant limiting factor for incoherent optical

processing systems such as those employing OTF synthesis and interferometric
techniques. Consider an interferometric output that is described by:

I 0(x) = B + mB cos(fx + O). (56)I
If we add a second channel with a ir phase shift inserted between the interfering

wavefronts, an inverted output is obtained. That is:

L.(x) = B - mB cos(fx 0) (57)

I This form of output is obtained with OTF synthesis utilizing spatial frequency carrier or

two pupil synthesis techniques. Two parallel output channels, one at wavelength hi and

3 Ithe other at wavelength k- can be obtained with the optical arrangement illustrated in

Figure 3.5-2 and Figure 3.5-3 respectively.

The outputs described in Eq. (45) and (46) also represent the cosine transform

I of a single point in an incoherent input field. The transform output obtained with an

interferometric processor can be described as a superposition of cosines of different

3 spatial frequencies and phases. A two-channel interferometric processor that provides an

inverted set of outputs at wavelengths X,, and Xr is shown in Figure 3.5-4.

I
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Let W(x) = IwIo(x) and R(x) = Ir17(x). From Eq. (11), the number of trapped

electrons after t" sec of destructive readout is equal to:

Twr(x, t', t-) = Tw(x, t') e 601,0tIr[B-nBcos(fX (59)

= Th(1- e-_-5t' "IB+mBcos(fx+0)1) e-6°%t'oIrB-mBcos(fx+0)]

where Iw and Ir are the relative brightness of the write and read beams. Reading out the
SLR with a umform beam, the intensity distribution of the emitted radiation is directly

proportional to T(x,t',t") which is plotted in Figure 3.5-5 for Jifferent values of

E = exp[ - o~ort " /&iilwt'] and B=1, m=0.1. We see that the bias is gradually
reduced as the bias removal exposure 0oqIr t" increases. The trend continues until e

falls below 0.3 where the signal level also begins to be reduced by the bias subtraction3 process. In Figure 3.5-6, the gain in signal-to-noise ratio is plotted against the erase

exposure as expressed by e. Sm denotes the highest SNR that can be achieved without3 bias subtraction. Since the characteristic of an SLR is nonlinear, the highest SNR is not

achieved near saturation as with a CCD detector array. Instead, the optimum exposure3 is achieved when the mean or bias level occupies 45% of the available traps. With

T,=10', Sm=982 for an input signal with 10% contrast. From Figure 3.5-6, we see that

Sthe largest improvement in SNR is obtained when e= 0.29 where the gain is about 44%.

SInstead of performing the write and bias subtraction sequentially, the processing

can be speeded up by performing the input writing and the bias subtraction3 simultaneously. With both beam patterns illuminating the SLR at the same time, the rate

of change in the number of trapped electrons is given by:

ST(x,t) = biIiW(x)[Ts - T(x,t)] - 6o71,T(x,t)R(x) (60)
Id"

and the solution to the differential equation is:

I
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T(x, t) 3ijniW(x)TS [ -e -(16jqw(X) + t50.10R(x)l t] (60)
biiWix) ÷Oo7,oR(,X)

assuming an initial condition of T(x,O) =0. Using once again the write and read patterns

given in Eq. (14) and (15) as the inputs, the outputs of the SLR are plotted in Figure 3
3.5-7 for different exposure times and different relative beam intensities. The SLR

reaches a steady state after a certain amount of exposure. The amount of SNR I
enhancement achieved when the SLR reaches steady state is plotted in Figure 3.5-8 as

a function of the erase-write beam ratio, P = -borlolrt"/~iiwt'. The largest gain in 1
SNR is achieved when r = 2 where the gain is about 57%. The SNR is zero when

there is no erase beam because the SLR is driven to saturation. 3
Due to vignetting ard other effects, the bias in the output of an incoherent optical 5

processor output is typically not uniform. Often, the amount of spatial variation in the

bias term is larger than the signal. The bias subtraction process achieved at steady state 3
with the SLR is not dependent on the level of the original bias. The bias subtraction

method produces a uniform residual bias which can be removed by simply subtractingI

a constant from the output of the detector array. This is illustrated in Figure 3.5-9.

With a rectangular input window, the compressed output is a Sinc (sinrx/u-x) function.

In Figure 3.5-6(a), we show the case where the output Sinc function is on a uniform

bias. The bias level is as expected, reduced by the processing with the SLR. In Figure I
3.5-9(b), the Sinc function is imbedded in a low frequency nonuniform bias. T.

residual bias in the SLR output is flat much like the case in Figure 3.5-9(a). The

uniform bias can be easily removed by subtracting a constant value from the detector

output. In Figure 3.5-9(c), the Sinc function is imbedded in a high frequency non

uniform bias which makes it difficult to discern the presence of the signal. The

processing by the SLR once again reduces the level of the bias and makes it constant

over the entire output. 3

I
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With the proposed processor architecture, the SLR reaches a steady state instead I
of saturating with increased exposure. The bias subtraction technique, therefore, adds

robustness to the incoherent processing system as well. The exposure does not have to 5
be controlled precisely. As long as the exposure is sufficiently long, an enhanced signal

is achieved. I

3.5.4 Projected Performance of Acousto-Optics Based Interferometric Processor I

Consider an acousto-optic based interferometric processor as illustrated in Figure 3
3.5-4. Let the aperture time be r, N be the number of pixels (on a carrier in the A-O

cell and M2 be the space-bandwidth product of the processor output. The processing I
speed of the processing system is then equal to M2N/r. As an example, with a Crystal

Tech 40-'5 A-O modulator, the carrier frequency f,=75MHz, the bandwidth BW = I

50MHz, r = 80Asec and M = N = 4000. The processing speed is then equal to 1.25

X 1013 op/sec. The optics in the interferometric processor should occupy about 0.3 cubic I
feet. Including all the driving electronics, the overall processor size is estimated to be

approximately 1 cubic foot. The predicted system performance of the optical

interferometric processor per unit volume is about 1.25 x 1013 ops/sec/ft = 4.2 x

108 ops/sec/cm2 .

3.5.5 Assessment UU
The optical interferometric performs the function of an array processor at very

high speed. The large bias at the output, however, limits the performance of incoherent 3
optical processors. A processing architecture utilizing a spatial light rebroadcaster as an

intermediate detector can potentially enhance the output signal-to noise ratio by providing 3
a larger dynamic range, removing a substantial part of the bias and all of its non-

uniformity. By using the dynamic properties of an SLR, the bias reduction technique 3
also provides the added benefit of making the system more robust. The exposure does

1
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5 not have to be carefully controlled to achieve the optimum performance. The SLR

reaches a steady state which prevents the device from saturating and losing the signal.

5 The steady state can be reach rapidly if adequate laser powers are available for writing

on and reading out the SLR.

Incoherent optical processors have the potential of utilizing the incoherent image

I of an object scene directly as the input, bypassing the bottle neck created by spatial light

modulator. However, to utilize an SLR, the image of the input scene generally cannot

be used directly because the natural scene may not possess enough of the desired ratio

of energies at the write and read wavelengths of the SLR.

1
I
I
I
I
II

I
I
I

£ 131



1
U

4.0 TASK 3: PRELIMINARY EXPERIMENTS I

Preliminary experiments were performed to evaluate the hardware required to

implement some of the concepts that were developed, specifically the waveguides of the

integrated optics artificial neural network and the electron trapping material manufactured I
by Quantex that has been used as passive SLR. I
4.1 Integrated Optics Architecture I

In Section 3.2.3, the integrated optics architecture for artificial neural network

processing applications was developed, analyzed, and a point design given. A I
proof-of-concept device was then designed, partially assembled, and preliminary

experiments performed. It was found that many of the components needed for the I
proof-of-concept device were available off-the-shelf. A research quality waveguide array

with the couplers did need to be fabricated, however. Preliminary experiments showed I
successful coupling of light into the waveguide array, but were only partially successful

in coupling light of the waveguides.

4.1.1 Proof-of-Concept Device Design

The artificial neural network application chosen for demonstration was that of

determining terrain type from airborne multispectral imagery of the ground. Other 3
ERIM work had successfully demonstrated a Kohonen self-organizing network for this

application [Kohonen]. T'he specific network chosen was a five input, five node, five 3
output Kohonen network operating on five wavelength bands of visible to short wave

infrared data. As discussed in Section 3.2.1, 5-bit accuracy in the input data and the 3
weights is required for this application. From the earlier work, the desired weight values

were already known. 3

1
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3 The basic design of the integrated optics processor is shown in Figure 4.1-1. The

off-the-shelf components will be described first. For the proof-of-concept device, the

3 laser diode array was replaced by an LED array. The array chosen was the ROHM

JA303012CL-01, an LED print head. It has 3,584 pixels at 84.5-micron spacing. The

3 emitting area of each pixel is 50 microns by 65 microns. The intensity output is

0.83 microwatts at a wavelength of 0.66 microns and is focussed by a GRIN lens. The

3 LEDs can be modulated at up to 5 MHz.

I The LED array and interface electronics were connected to an IBM PC and

software was developed to control the array. Because the LEDs only give a binary

output (on or off), the software converts the 5-bit input data to pulse-width modulated

i form. The resulting maximum data rate is 100 KHz.

An EG&G TB series linear photodiode array was chosen. This array has

128 photodiodes, 50 microns in width by 2.5 mm in length. A fiber optic faceplate

consisting of 6-micron diameter, N.A. = I fibers, couples light onto the diodes. The

saturation exposure for the diodes is 0.05 microjoules/cm 2 resulting in a saturation charge

I of 29 picoCoulombs and a dynamic range of 175,000:1. The maximum readout rate is

2.5 MHz. This array was also interfaced to the computer and controlling software

3 written.

3 4.1.2 Waveguide Array Fabrication and Preliminary Experiments

3 !To match the characteristics of the off-the-shelf components, the waveguide array

was designed to have waveguides 50 microns wide by 65 microns deep by 2.5 mm long.

3 The center to center spacing of the waveguides is 84.5 microns. The waveguide core is

made of Norland optical cement (index of refraction, n = 1.56) with a silicon oxide

3 bottom and side cladding layer (n = 1.46) and a methylsiloxane polymer top cladding

layer (n = 1.38). The initial coupling mechanism chosen was to place diffuse regions

1
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3 in the top surface of the waveguide to scatter light toward the photodiode array. The

mask weights would be implemented by area encoding the diffuse regions and would be

done as part of the waveguide fabrication process. Thus there would be no separate

mask to align with the waveguide array during the experiment. The maximum size of

an individual weight was chosen to be 10 microns by 40 microns which easily allows the

necessary 5-bit array-encoding accuracy.

The waveguide fabrication process uses microfabrication technology. Masks were

designed and made for the two photolithography steps. Mask 1 consists of long parallel

stripes to form the waveguide pattern. Mask 2 consists of the known weight values

area-encoded in five by five arrays as well as some test five by five arrays with non-zero

weights only on the diagonal of the array. The fabrication process consists of the

3I following steps:

1. Use high resistivity (P type Boron, 1 to 3 ohm-cm) intrinsic < 110 > silicon3 substrates polished on both sides.

2. Grow a 1.5-micron-thick layer of thermal oxide on the substrate in a furnace5 at 10000 C with oxygen and water vapor for 20 hours.

3. Use photoresist and Mask 1 to place the waveguide pattern on the thermal5 oxide layer.

4. Wet etch the waveguide pattern through the thermal oxide using NHsub4:HF
for 28 minutes and remove the photoresist with stripper.

5. Wet etch the waveguides 65 microns into the silicon using a hot anisotropic
KOH:Hsub2O etch for 108 minutes.

6. Grow a 1.5-micron-thick layer of thermal oxide on the waveguide wall and
bottom surfaces. This is the cladding layer for the waveguide.

7. Fill the waveguides with Norland 61 optical cement, expose to UV, and cure
the cement at 900 C for 12 hours.

8. Spin on a 0.5 micron methylsiloxane polymer (Accuglass 512) top cladding
layer and heat cure at 1500 C for 24 hours.
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9. Use a 1.5-micron-thick photoresist layer and Mask 2 to place the weight 1
mask (area-encoded) pattern on the top cladding layer.

10. Reactive ion etch through the cladding layer to the top surface of the Norland
cement waveguides. This process leaves a diffuse surface on the Norland
cement in the weight mask regions.

The fabrication process described above is the product of a collaborative effort between

ERIM and WL/ELOT. The actual fabrication was done at WL. I

Waveguide arrays were made at WL on several silicon wafers and delivered to

ERIM for the preliminary experiments. The cross sections of the waveguides were

examined under a microscope and found to be of the required size. A sample photograph I
is shown in Figure 4.1-2. Light was coupled into the waveguides from the LED array.

Examination of light leaving the far end of the waveguides and microscopic examination I
of the top surface of the waveguides showed that, for the most part, light was indeed

coupled into and contained within the waveguides and propagated to the far end with I
sufficiently low losses, crosstalk, and stray scattered light for a preliminary experiment

to be successful. A few waveguides did have cracks in the Norland cement perpendicular

to the direction of light propagation which scattered nearly all the light out of the

waveguide at that point. The incidence of these defects was low enough so that, over

the many redundant arrays fabricated on a 2-inch wafer, at least one would be found 3
which was defect-free. I

The weight masks were also subjected to careful examination under a microscope.

A sample photograph is shown in Figure 4.1-3. It was found that the diffuse regions did

not scatter very much light in a direction which would be within the acceptance angle of

the fibers in the faceplate of the photodiode array. (The microscope had a greater £
acceptance angle than the fibers.) However, light propagating in directions very nearly

along the length of the waveguide did leave the waveguide in the diffuse regions, strike I
the nearly perpendicular wall of the top cladding layer, and scatter into the microscope.

1
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5 This effect can be seen in Figure 4.1-3 as narrow lines of light at these perpendicular

walls. This light appeared to be modulated only by the width of the weight masks and,

5 therefore, would not be of the correct value.

i Step 10 of the fabrication process was, therefore, modified. The substrate was

placed on a 45 degree angle during the reactive ion etching to create walls angled at

45 degrees in the top cladding layer. An index matching fluid (n = 1.56 to match the

Norland cement) would then be used to couple light out of the waveguide in the weight

mask regions (no longer relying on diffuse scattering). This light would strike the angled

wall at an angle of approximately 45 degrees to the wall normal and be reflected toward

the fiber faceplate at near normal incidence to the faceplate. WL is currently fabricating

this new waveguide array design. When ready, it will be used to continue these

preliminary experiments.

4.2 Commercial Phosphor Based Passive SLR

An SLR based on electron trapping phosphor was acquired from Quantex Corp.

3 and its read-write capability and temporal response was tested. The experimental setup

is shown in Figure 4.2-1. The blue (488nm) beam from an Ar+ laser was used to write

onto the SLR and the near infrared (1.06A•m) beam from a Nd:YAG laser was use to read

out the device. To assure that the output detector detects only emission from the SLR,

the laser light from the Ar+ laser was spectrally filtered to remove any orange discharge

glow from the laser tube and IR and blue blocking filters were used at the output to

reject the read and write beams. The read and write beams from the Nd:YAG and Ar+

lasers were modulated by shutters which sent a write pulse, a time gap and then a read

pulse. The SLR emission was detected by a photomultiplier (PM) and monitored by a

digital scope.
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Figure 4.2-1. Experimental Setup to Test Phosphor-Based Passive SLR
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3 There are two types of emission by the SLR, spontaneous fluorescence caused by

the blue write beam and photoluminescence due to the IR readout beam. Fluorescence

3 occurs because some of the excited electrons spontaneously fall back to the valence band

instead of into traps. Photoluminescence occurs when the trapped electrons are excited

3 by the IR beam out of the traps and give up the stored energy. The communication band

is quite broad and some of the fluorescence emission are at the orange wave!;.ngth of

I photoluminescence. The write beam must, therefore, be turned off when the SLR is read

out.

In Figure 4.2-2, the output of the PM is shown as a function of time. The write

beam was turned on for about 20 seconds followed by an 8-second time gap and then the

read beam. When the write beam was turned on, the fluorescence level steadily built up

with exposure time because electrons were excited up to the communication band at a

higher rate than they are falling back rpontaneously to the valence band or into the traps.

The increase in electrons population in the communication band produced a stroi.ger

3 fluorescence emission with time. When the IR read beam was turned on, the SLR

emitted via photoluminescence. The emission fell off exponentially with time as the

5 populatior of trapped electrons was depleted.

3 If a short IR pulse is used to read out the SLR and only a small percentage of the

trapped electrons are released, the stored information can be readout repeatedly. The

output beam brightness, however, will decrease exponentially with each subsequent

readout. Repeated read out is illustrated in Figure 4.2-3. The SLR was written on by

3 a strong blue pulse from an Ar+ laser and then readout by two sequential pulses from

a Nd:YAG laser. The first pulse in Figure 4.2-3 was due to fluorescence when the SLR

3 was written by an Ar+ laser and the subsequent two output pulses are photoluminescence

induced by the read pulses. Some of the trapped electrons were released by the first read

out pulse leaving a small population of trapped electrons. As expected, the intensity of

the output die to the second readout pulse was slightly lower than the first.
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In the experiments, several drawbacks of the electron-trapping phosphor material 3
as exemplified by Quantex's product became evident. (I) The light emitted by the SLR

is very dim. One reason is that the SLR emits uniformly front and back over 4r 3
steradian. A f/2 lens imaging one-to-one onto the detector gathers only 1/32 of the

emitted light. (2) Rapid erasure of the stored information requires a large amount of 3
energy (approximately 200 MJ/cm 2). In addition, the erasure did not appear to be

complete, at least with the samples we obtained from Quantex. This resulted in a 5
gradual build up of background bias with repeated write-read-erase cycles. (3) The

readout is destructive. To use the device as a reference mask or matrix, for example,

the device must be written periodically to refresh the memory. There is also a trade off

between output brightness and the number of times the stored information can be read I
out. (5) The shift in wavelength between the input and the output makes it impossible to

cascade two passive SLRs unless they can be doped very differently such that the I
wavelength of emission of the first SLR matches the wavelength of the write beam of the

second. I

1
I
I
I
1
I
I
I
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3 5.0 CONCLUSION AND FUTURE DEVELOPMENT

The Spatial Light Rebroadcaster, particularly of the active type, can potentially

be a powerful device that can serve as the heart of a compact high speed processor. The

devices, however, are still in a very early developmental stage and they require

significant amount of further development before they can be used competitively in

I optical processing architectures such as those described in this report.

I 5.1 SLR Performance Requirements

I Passive SLRs such as those implemented with electron-trapping materials, exist

today. Some of these materials were developed for wavelength down-conversion to

visualize near infrared radiation and they are commercially available. The performance

of these passive SLR materials and devices, however, require substantial improvement

in several areas to make them competitive.

I 1) The slow temporal response of the passive SLR, particularly in erasure, limits the
cycling rate. The throughput achievable is too slow to be competitive at this time.

2) Compounding the problem of low cycling rate is the low optical efficiency. The
output is so dim that the output must be integrated over a significant amount of time
to gather enough photons to provide the needed signal dynamic range.

3) The erasure is often incomplete unless very strong light or heat is used. The need
for a powerful source for rapid and complete erasure impacts negatively on power
consumption.I
One solution to the problem may be to develop an SLR that emits light directionally

3 (current devices radiate isotopically, over 4,r radian). Improving the optical efficiency

would allow the use of a thin layer of rebroadcasting material and improve the cycling

3 speed of the device.

1
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In addition, there are inherent characteristics of passive SLRs that limit their

usefulness. I
1) The readout is destructive. The material requires constant refreshing to keep the

data stored in the device. A trade off between output brightness and the number
of number of times the stored in formation can be readout is required.

2) The input and readout wavelengths are different which precludes the cascading of
devices to perform sequential operations even if adequate optical efficiency can be
achieved.

3) The nonlinearities exhibited by passive SLRs are weak and they cannot be easily

changed. The type of operation that can be performed is, therefore, restricted. I
Active SLR devices have the inherent flexibility and power to be a significant

player in the future development of compact high speed processing systems. They may

be utilized as interconnects and as the processing elements in an hybrid.electronic/optical

processor. The programmable gain and nonlinearity provided by the device are

particularly crucial to many optical computing architectures. The development of these

devices, however, are still in an early stage. Specific area that requires further

development includes the following.

1) Space-Bandwidth Product. The advantage offered by an optical processor is the
massive parallelism of the computation. This advantage can be realized only if the
space-bandwidth product of the input and output devices are sufficiently large.
Devices being fabricated at this time are very small. The manufacturing technology
to fabricate a large array with acceptable cost and yield remains to be developed.

2) Packing Density. The most attractive promise of optical processing is high speed
processing in a small physical package with low power consumption. To fulfill this
promise, the large space-bandwidth product must be accomplished in a small
package that draws little power. Therefore, the device size must be small and the
packing density must be very high. Considering that each element in an active SLR
is consists of a detector, a signal conditioner and an emitter, a 3-dimensional
structure is likely to be required to achieve the density desired.

I
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3 3) Addressing Schemes. To maintain a high throughput, particularly with a pipelined,

recirculating processing architecture, an efficient means must be available to
address and program the elements in the SLR in parallel.

g 5.2 SLR-Based Optical Processors

3 We have analyzed several optical processing architectures that utilize either active

or passive SLRs as processing elements, storage, input and/or output devices. The

g capabilities of those that employ passive SLRs are more restrictive. The advantage of

using a passive SLR in lieu of conventional input, output and storage devices such as

3 detector arrays and electronic memory is not compelling at this time. The lack of gain

and the inability to be cascaded, in particularly, limit its usefulness. The potential

3 strength of the passive SLR lies primarily in the large dynamic range it can provide. It

may be able to enhance the performance of systems such as the interferometric

3 processors where this feature is of crucial importance.

3 The active SLR is essentially an integrated array of elements each of which is

composed of an input detector, a signal conditioner that is programmable electronically

3 or by the output of a second detector, and an emitter. The ability to provide gain, non-

linearity and high cycling rate, gives the active SLR unique power. It can perform

3I simultaneously the functions of parallel optical interconnects and processing elements.

The optical quadratic processor described in this report is an excellent example of the

3 integration of these processor functions.

So far, the SLR is being developed as a general purpose device that can be utilized

in different optical processing architectures. The system performance can be further

optimized if the SLR is designed as an integral part of the processor. With such an

approach, the SLR is not a stand alone component but is made specifically to match and

operate with the other components. The integrated optics artificial neural network

processor is a good example of this design approach.
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It is recommended that future development of SLR based optical processors be

directed towards the active SLR technology and optical processing architectures that

combine the interconnects and processing elements with SLRs. In addition, instead of

treating the SLR as a generic component to be inserted into an optical processor, the

SLR should be considered as an integral part of the optical processor design. The pixel 3
size, number and spacing, the temporal response, the packaging and integration of the

SLR should be custom designed to match all other components to maximize the processor I
speed and efficiency.

I
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