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AN ANALYTICAL MODEL FOR TURBULENCE-INDUCED

FLEXURAL NOISE IN LARGE CONFORMAL SONAR ARIAYS

TMODUCTION

Large-area conformal arrays that can be mounted to the hull of a ship

offer unique tactical advantages over towed arrays. The performance of

such arrays is usually limited by self-noise and platform noise. In the

latter category, the noise induced by the turbulent boundary layer, located

near the hull, is a major concern.

Boundary layer turbulence produces a random pressure field that is

detected by the array as a noise source. This is the so-called direct path

for flow noise. This path for flow noise exists more or less independently

of how the sensors are supported and whether or not they are point sensors

versus extended sensors. Flow noise degrades the signal-to-noise ratio but

can be reduced by using outer decoupler blankets that serve to attenuate

the turbulent boundary layer (TBL) pressure field. The use of extended

sensors to provide spatial filtering of the flow noise is also an

attractive way to diminish flow noise.

Secondary sources for flow-induced noise can also be significant. If

the structural support plate (SSP) is relatively lightweight and compliant,

then the TBL can induce flexure of the SSP, which then serves as a

secondary source of noise. This noise can enter the array via direct

flexure of the extended sensors or as acoustic noise radiated by the edges

of the SSP. The radiated component has been addressed by other

investigators [1-8]. The former source, flexure induced into the sensors,

is the focus of this paper.

Manuscript approved 19 January 199S
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The problem will be modeled as follows: the SSP, sensor array, and

outer decoupler (OD) are considered to constitute a curved, layered

shell with water on the OD side and a vacuum on the SSP side. A backing of

a vacuum was chosen because it is simple to model and, in addition, it

represents a worst-case scenario; i.e., the case in which the SSP is backed

by a pressure release baffle. The Corcos [9] model will be used for the

TBL pressure spectrum although the theoretical development is applicable to

any model of the wall pressure spectral density. This baseline model is

illustrated in Fig. 1. The formalism to be developed makes no presumptions

about the boundary conditions on the plate. Later we shall assume that the

edges are simply supported in order to illustrate a specific application.

Numerous analytical studies of shell and plate motion indicate that, for a

large shell or plate, simple supports usually give results that accurately

reflect the actual response of a plate supported in more complicated ways.

The fluid loading on the plate will be included by using a rather simple

model developed by Junger and Feit [103. The validity of this model will

be established by comparing the in-water displacements so derived with the

more exact predictions of Sandman's model [11].

TURBULEN4T FLOW

IrYDROPHONES

BLANKET

Fig. 1 - Baseline Model

2



R.E. MONTGOMERY

ARRAY RESPONSE TO PLATE FLKEUBE

Typically, the extended sensor array is situated on or very near the

SSP as shown in Fig. 2. If the plate flexes in response to an external

excitation the sensors will follow; therefore, noise will be generated.

The external excitation will also be detected by the array even if the

plate is rigid; this is the so-called direct path for flow noise discussed
earlier. In order to analyze only the flexural contribution, it will be

assumed that the sensors do not respond to the direct component.

Suppe kt

NO NOME CCM[L.ATON

Fig. 2 - Mechanism by which flexural noise
is induced into the array

The flexural response of a piezoelectric plate has been modeled by

Ricketts [12]. The relevant constitutive equatinns are

T1 D 1S + C S - h3D (la)
11 1 122 31 3

3



NRL Memorandum Report 7175

T2 -CD s C S -h D (1b)2 12 1 22 2 32 3'(b

E3 = -h 3 1 S - h3 2 S2 + P3 D3 D (ic)

and
T 3 = T4 T T5 = 0 ,(1d)

where T, S, E, and D represent stress, strain, electric field intensity,

ad electric displacement, respectively. The matrix components

Cio P33' and h,, are the elastic, dielectric, and piezoelectric material

constants [13]. The superscripts indicate that the designated parameter is

held constant.

According to thin plate theory, the strains S1 and S2 are related to

the displacement of the plate as follows:

S =-d -- and S d 8w2  (2)1 2 2 ;y2

where d is the distance from the sensor midplane to the neutral plane. S1

and S2 are assumed to be constant through the thickness of the sensor

hydrophone and D)3 is also constant through the thickness, as can be shown

by applying Gauss' law to a dielectric. Consequently, E3 is constant

through the thickness and we can write

B3 = Y, (3)

where V is the voltage between the electrodes and a is the thickness of the

sensor.

Assume that the hydrophones are electrically connected in parallel.

This is equivalent to steering the array to broadside. Typically,

piezoelectric sensnrs operate in an open circuit mode; hence, the total

charge qT appearing on the electrodes is zero. Therefore, since D3

corresponds to the charge density, we can write

4



R.g. MONTGOMERY

I I

N Xi Yi

QT =OI= -I I JD 3 dx dy (4)
i= x. yi

where the integrals are performed over the lateral dimensions of

each sensor. N denotes the total number of sensors in the array.

Using Eq. (ic), we obtain

I I

N xi yi

7 j. j a A 3 1 S1 +h32 s dx dy = . 5i=l x i yi

The first term is independent of x and y; therefore,

N i

N= x.i ly. d d .. L
d dy x V, 8

1 2a a
i x xi Yi

where 1, and 1 are the lateral dimensions of an individual sensor.

Combining Eq. (5) with Eq. (6) we can write

N -Na 1 fJ (h3 1 S1 +h3 2 SO A (xy) dx dy , (7)

where A (x,y) is an array sensitivity function. For an array composed of

unshaded hydrophones we can write

) 1 if (x,y) is on a sensorA (x,y) = if (x,y) is not on a sensor. (&)

Equation (7) gives the noise (in volts) that results from a flexural

response in terms of the strain components S1 and S2 . If the external

excitation function is deterministic, then there will exist unique, well-

defined strains that can be computed with thin plate or shell theories. On

5
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the other hlar, if the excitation is a random pressure field (such as TBL),

then the displacement and strains must be thought of as stochastic

variables, which can be represented by a probability distribution function.

In such cases the vu..tage induced intu the array will also be a distributed

variable. There-lre, in order to properly assess the noise due to flexure,

one must account for the statistical nature of the excitation, which, in

our case, is the turbulent boundary layer.

Before proceeding with the development of a stochastic model, it is

convenient to express the noise sensed by the array in terms of an

equivalent-plane-wave pressure field. This will allow direct comparison of

flexural noise with ambient sea noise and other noise specifications. In a

free field environment the sensors operate in a hydrostatic mode. An

incoming plane wave of amplitude P will produce an electric field, E3 ,

across the electrodes of a nonflexing sensor of magnitude

=3 = (g3 3+g 3 1 ÷g 32) P,

where g 33 is the transverse piezoelectric constant, and g3 1 and g3 2 are the

lateral piezoelectric constants for a piezoelectric slab that is poled

through its thickness. Since E3 is constant through the thickness, the

voltage across the electrodes is V = E3 a. Therefore,

V = (aghoP 1 (10)

where gh = g3 3 * g3 1 + g3 2 is known as the hydrostatic g constant.

Equation (10) allows the noise, Eq. (7), to be expressed in terms of an

equivalent-plane-wave pressure field impinging on an array in the free

field.

S.... , I6



R.E. MONTGOMERY

POWER SPECTRAL DENSITY FOR FLKIURAL NOISE

The spectral density pp(w) for direct flow noise is typically computed

by the following relationship:

e(w) d d2 k A (t,k*,w) H (t,w) T (;,w) P (k,)

where A ( is the array function steered to ;; H(tw) is the

hydrophone function; T (;,w) is the transfer function; and P(I,w) is

the wall pressure spectrum. The essential features of the derivation of

this relationship are derived in Blake [14] and other references [15-17].

This equation gives the noise level sensed by the thickness mode (3-3

mode); however, for flexure, the noise is induced via an extensional mode.

Therefore, Eq. (11) is not appropriate. Starting with the first principles

that govern random vibration theory, an analogous expression for flexural

noise can be derived. The result will be formally similar to Eq. (11), but

the interpretation of the component functions will be quite different.

The following derivation of the power spectral density employs the

notation and terminology found in Lin [18].

By combining Eqs. (7) and (10) we can express the equivalent pressure

as

Ph(t) = N 1 (h3 1 SI+h3 2 S2) A(x,y) dx dy . (12)

As indicated previously, the excitation field is random; therefore, the

array output voltage, and hence the equivalent-plane-wave pressure, must be

considered as random variables. The transverse displacement w and the

lateral strainus S1 and S2 are also random variables. The power spectral

density for the equivalent-plane-wave pressure can be found by taking the

7
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Fourier transform of the corresponding correlation function Rpp (t,t') that

is defined as

l pp (t~t )=E (P(t) P(t )],(13)

where E [ ] indicates the expected value. Because P depends linearly

on S1 and S2, we obtain from Eq. (12)

441
Let (t~ ,,t) )h deot th impls dresos h functiono-Iepae

= 1 12r R (r(trr it tt(14)

21 +
that isl aple at R S ,rtt .t Th prnil of caSalt Srequ4ires tat'

1 222

where RIS1,S1 RS 1 S2 and R 2S2, are the cross correlations on strains. !

For example,

RS Is2 (rt,r It E I 1. *'rt) S2(r It')].(s

Let h(r,r t,t ) denote the impulse response function of the plate,

which is defined as the displacement of the plate at r,t due to an

impulsive load given by

Pi(r,t) 5 (r-4') 6(t-t') (6

that in applied at r It . The principle of causality requires that

h~,r ,t,t )be zero when t < t'. A general excitation can be represented

by a superposition of impulses; likewise, the displacement can be

8 i-



R.E. MONTGOMERY

represented as a superposition of impulse responses when the system is

linear. In addition, h will depend only on the difference t-t'. Thus, we

can write

f= d h(d, r , t-7) P (r , r) , (17)0 R

where P is the applied pressure and R is the region occupied by the plate.

The in-plane strains are, therefore,

S82w to .14

Si(c, t) = - d - d dr hxx r . , t-'r).P, (I r) (18)@x 0- o R

and

S2 (r t) = - d 82w = - dj j d2r hyy(r, r , t-r)P(r , r) (19)

where h.x = 82 h/8x2 and hyy = a2 h/Dy2 .

Using Eqs. (18) and (19), the correlation functions for strains (18] can be

written as

" "4 t= 2J7 d- Jt t-2T2
' 2,, d s ar fj

RI1(r, t, r , t d = d2 dfs dds h.(, 4, t-,r)

(20)
48 14 I 8 4 4l

xx (pp

where Rpp is the correlation on pressure. A similar expression is found

for R.1s and S .22* The cross spectral densities are obtained from the

9
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Fourier transforms of the correlation functions. For example, the cross

spectral density for S1 is given by

4 1 1 i2~

S , r , 2 ) = r,( t; r , t)

(21)

exp-i(Wt - t dt dt,

Assuming the excitation to be weakly stationary, the correlation function

for the wall pressure will depend only on the temporal separation

t-t . I- this case, it can be shown [18] that the correlation

functions for the responses also depend only on the temporal separation.

Subsequently, the cross spectral densities depend only on a single

frequency parameter. Thus, for stationary excitations, Eqs. (20) and

(21) may be combined to yield

s , r W) = d2 J d2 RjJd 2  *' (;, " i) j( P W

(22)

O r, s , W)
x x

Similarly,

12 + + 2r. fRf24Opp 4I~52 r•, r , w) =d_ __J d2e ( 8 , 6p) H. (r, a, Y)

(23)

•. , (r , s , 60)
y y

where the frequency influence function H(*,s,w) is defined as

r (;9'" - h ('r, 's, t) -i•t
H dt (24)

10
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and * is the Fourier transform of Rf with respect to time. The
4 41Isubscripts on H denote partial derivatives with respect to r or r

For spatially homogeneous excitations, * will depend only on thepp

spatial separation. In this case, we can replace the integrands of Eqs.

(22) and (23) by their spatial Fourier transforms to obtain

S r, r , w) = d pp (t, ) G xx(, * , W)

(25)

x x

where
(L) 12 . I. i 4.. 4,,

(•,w) = , *pp (-,w) d(s-s )W,
pp 6,) p

and (26)

r. 24C (*, t, w) = J& ('r, w, ) e d .

Similar expressions are obtained for # S2 and *S1S2' The function

C (4,t,w) is called the sensitivity function. It represents

the structural response at point r when the excitation is harmonic,

having wave number t and frequency v.

For linear structures, Lin (18] and Strawderuan [3] have shown that

the sensitivity function may be written as a superposition of normal modes.

Using the method of Lin, we obtain

11
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c=(", ]f, 58,) = X2f 5, Cr) H(w,) for rcR}

m---1(27)

0 for reR

where fM(4) = normal mode m for the plate in vacuo, and

Is(t) • f fRf (4 •.. te';r d2r. (28)

The frequency response of mode m, HU(M), is defined as the modal

displacement of the panel when the excitation is a unit harmonic pressure

having wave numbers corresponding to mode a. The function S.(6) is

commonly referred to as the modal shape function. From Eqs. (25) and

(27), we get

C- "' d2•I 8 2f:(;'2 2
0 S is1 (r+, r W) d=x H m(W) H n(W)

m,n Ox:

(29)

• 4 p (towe) SO() S* (6) d 2k

Similarly,

12 d2Z) 82f
2~ m r y

0SS(,r ,)fiex2 byn1 2 H:(N) Hn (W)

son

(30)

"Opp (tM) Sm (t) S* (t) d2 k

Eq. (29) also gives $2S2 by replacing 8/8x with 8/8y.

12
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Equations (29) and (30) give the cross spectral densities for strains

in terms of the modal response of the structure and the wave number

frequency spectrum of the excitation. The power spectral density for

flexural noise can now be found by combining the Fourier transform of

Eq. (14) with Eqs. (29) and (30). Again invoking temporal stationarity,

the time Fourier transform of Eq. (14) yields

Wgdlxy 2 2 2

,(W) = hN,,,, f- d-r f f dr'r [h•3 SS2(•- r

(31)
h S1 hS2 --,. +' 2 ""s +' ,) A(;) l•

+ 2 h 31 h 32 0 1 2(rr ,W) + h3 2 .+2S2(r r

Combining Eqs. (29), (30), and (31) we obtain

2

82f (•-) D2f (•-)
ffd 2  I ffW) dt2  S [1 d~ 2x k

d2 _r r f )

(32)

2  2;m(r") a2fn(•",)
+ h 32 2- 2- A ('L) A r

If we define p S (t) S* d 2 k (33)

13
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2 82 f 82 f a2f 82 ff
and a (r, r) h 32 =2 + h3 1 h r 2

(34)
82 f M a2 n 2 a2f M82f n

h3 1 h3 2  2 2 h22 -y• 8y

then Eq. (32) can be written as

pp ~~ x 12 n n *fd

m~n

(35)

djd2r a.(r, r ) A (*) A (r)

Equation (35) is the central result of this paper. It provides the

formal connection between the wave number-frequency spectral density of the

excitation field and the power spectral density for the equivalent-plane-

wave pressure sensed by the array. This relationship is the analog of Eq.

(11), the formula that is used for direct path flow noise. The term 4p in

Eq. (35) is the analog of the term P(i,m) in Eq. (11). It accounts forimhe

spectrum of the excitation field through the relationship given by Eq. (33),

where 4 is identical to P(I,w). The last term in Eq. (35) is the analogPP
of the product of the array and hydrophone functions in Eq. (11). This term

accounts for the sise and location of the sensors in the array. The terms

Bm(w) and H*(w), called frequency response functions (FRF), are not found in

Eq. (11). These terms account for the modal response of the plate to a

harmonic excitation; that is, the response to each modal component of

pressure in the spectrum of the excitatiou field. The FRF carries

information about the material properties of the plate as well as the

effects of water loading and intermodal coupling.

The double sum over modes in Eq. (35) can be thought of as representing

a type of intermodal coupling. Thus, one could have two types of intermodal

coupling: (1) via the water loading on the plate, and (2) via the off-

14
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diagonal terms in Eq. (35). These off-diagonal terms arise from cross-

correlations of normal mode strains.

THE FREQUENCT R WPONSE FUNCTION

The modal frequency response function Hm (w) can be found by solving for

the steady state motion of the system when a unit-amplitude, harmonic-

generalized force in mode m is applied. For a rectangular isotropic thin

plate, simply supported and fluid loaded on one side, Lin [18] derives the

following frequency response function:

m( ) -L xLy aD x 2+ k-

ipf 222 -1 a ,_ (36)

k a_ k2 - k2a mx kmJ

where Lx and Ly are the plate dimensions, p is the mass per unit area of

the plate, D is the plate flexural rigidity, ka is the acoustic wave
number, and pi is the density of the fluid. The modal wave numbers are

given by

kmxLx , I = 0, 1, 2,

and (37)

k M m. y = 0, 1, 2,

Equation (36) provides a good model for the frequency response function

when the mass and stiffness of the isotropic support plate is much greater

15
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than those of the sensors and the outer decoupler. When the support plate

is orthotropic, and/or comparable in mass and stiffness to the other

components, then the entire structure must be thought of as a composite

layered plate or shell. In such cases, the frequency response function may

be obtained using the Donnel shell theory as generalized by Dong [19] to

include layered shells.

Consider an open shell of N layers as shown in Fig. 3. The boundaries

of the shell are defined as x=O, 8=0 and xx 0o, --a0 . The radius of the

shell is R. Each layer is homogenous and isotropic. The stress-strain

relationship for the kth layer is

(k) ACk) A(k) ox 11 12 x

(k) = A(k) A(k) 0 (38)
59 12 11

(k)o o A (k) 7 j
Txe 66 .7 x

with

A(k) _ E(k)
11 V(k)2

Ak) -,(k) E(k)A (k) (39)

and

AFk) = E(k)
66 2 1+,(k))

where B and v represent Young's modulus and Poisson's ratio.

16
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lIt LAYER
2nd LAYER

RETEREENCE
SURFACE Zk

kth LAYERk

Nt LAYER

<x
Y

Fig. 3 - Composite shell model

Evaluation of the force-resultant and moment-resultant integrals

requires piecewise integration through the thickness. The resulting

equations of motion are

[ri v CIO (40)

where (Fr is a differential operator matrix given by

a2  C%6 82 _ 2 (41a)

x 8t2
1ll =l 11;x2 * R2 802 2(4)

C22  a2 (41b)

22 868 8x 2  R2 892 8t

17
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a 4: 2 rD 22  14r3  D1 4+ D+2D 1r33- ax 4 2 D12 8) ax 2 8 2 R4  (41c)

[D.* a 2 2 a 22 82+•1D2 8X2÷ R2 ae2÷-2÷P-~~
R 1 ;x2 +8t2

(C1 2+C68 ) a2

r12 = r21 " R x 8 , (41d)

c1 a83 83

r3 13 r * D66} 0

r1 31 = R F - -11 ax31 -2-a -- , (41e)

and

2 3 r3  C2 2 8 26 8 3 I D2* D * -2r3 R 12 6-• 6 ex2 88 (41f)

where

N[CiP Dj, D* Aý)(,z 2 2_
ij'~ ~ 1 Di}= A()•kZ_l) , 2 'k-zk-1),

k=l

(42)
1 z3 _ z.31]

N

P II Pk (zk-zk-1) (43)
k=l

18
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and Pk = Volume density of layer k, R = Shell radius, p = Area density of

the composite plate and qx q6 qz are surface loads (pressures). All edges

are assumed to be supported by shear diaphragms; i.e.,

along x = 0 and x = x , v = w = 0 and Nx =lx = 0, (44)

and

along 0 = 0 and 0 = 0 , u = w = 0 and N = 0. (45)

These boundary conditions are satisfied exactly by choosing displacement

functions as follows

u = u a jwt cos (Xs) sin (n0)

v = v 0 e jut sin (Xs) cos (0G) , (46)

and

w = w • jut sin (Xe) sin (n8)

where u is the displacement in the x direction, v the displacement in the e
direction, and w the displacement in the z direction. Also, s is defined

as x/R and

X - Re=0, 1, 2....
x

0

(47)
krn=- k=0, 1,2....

0

19
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In general n is not an integer. The index k is one more than the number of

longitudinal node lines along the shell.

Inserting Bq. (46) into Eq. (41), we obtain

r c X 2 C6 6 n2 +÷P 2 
,(48a)

r2 =-c 8  
2  C1 l n2 ÷ #2

r - A - I . (48b)

= D A4 + [ ÷ 212 2 4

* 2 +D; .2] + C .L 2 (48c)12 JR 2

r ~(C 12 + '756 8  n(4dr1 2 =- Rnd

S.2D; n
c12 86 2s117

r13 = R - DIA' +[D 12+72 Xn (48e)

and

r - U + 2D, (48f)

writing

9I 11 r 11 a 12 r r12

a22 = r22 a 13 =- r13 (49)

Cr 33 r r33 Ca23 - r 2 3

The resonance frequencies of the shell can be found by solving
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11 a12 a 13

M12 c22 a23 =0. (50)

13 a 23 a 33

Model Verification

The natural frequencies of a closed, two-layered cylindrical shell were

computed from Eq. (50). The results are identical to Dong's results [19]
when the reference surface is taken to be the neutral fiber.

The resonance frequencies of various open shells of one layer of

isotropic material have been computed and compared to the Donnel-Mushtari

model values reported by Leissa [20]. A partial comparison, Table 1, shows

excellent agreement with the Donnel-Mushtari model for a single-layered,

isotropic open shell.
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Table 1 - Lowest Resonances of a Single Layer Open Shell [20)

Xol/mR Computed Resonance (Hz) Leissa (Hz)

n = 1/3

0.10 14.27821 14.2782

0.25 2.471323 2.47132

1.00 0.9465441 0.946544

4.00 0.422183 0.422183

20.00 5.1433217B-02 5.14333E--02

100.00 2.6873313B-03 2.68829B-03

n = 1/2

0.10 14.28020 14.2802

0.25 2.472816 2.47281

1.00 0.9308990 0.930899

4.00 0.3814159 .0381416

20.00 3.6844123B-02 3.68447B-02

100.00 2.3361256E-03 2.326408-03

n = 2/3

0.10 14.28297 14.2830

0.25 2.47491 2.47491

1.00 0.9103304 0.910330

4.00 0.3378275 0.337827

20.00 2.74299428-02 2.74266B-02

100.00 3.7624016B-03 3.74949B-03

The results given in Table 1 show that the model is consistent with

published results that are known to be valid for thin plate or shell
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applications. The key question is whether or not the model provides a good

representation of a typical support plate/sensor array/outer decoupler for

a practical sonar array. An illustrative example, to be discussed further

in a subsequent section of this report, consists of a 0.0254m thick

cylindrical steel shell overlayed with a 0.0508m thick elastomer blanket.

The lateral dimensions are Lx = 4m and Ly = 2m. The radius of curvature of

the shell is 5.2 m. The frequency range of interest is 1 kHz to 10 kfz.

The material parameters are

Elastomer layer: E = 1.0X106 Pa v = 0.49 p = 1200 kg/m 3

11 3Steel support: B = 2.1X10 Pas v = 0.3 p = 7900 kg/m3

Many resonances are found in the frequency range of 1 kHz to 10 kHz as

shown in Fig. 4. The same computation has been performed for a flat plate

having the same size as the structure of interest. Figure 5 shows a

comparison of the results for the flat plate and the shallow shell. The

differences are significant only for modes having mx < 17 and my < 5.

These modes are below 1 kHz; so, to simplify the model, the curvature of

the shell can be neglected. The same conclusions were found to be true for

a fiberglass support plate.

3000:C'

2500

20001-

U- 1500 I

C*

a,
?~1000-

500--

0 . .
o 5 10 15 20

Circumferen•tial wavenumber

Fig. 4 - Modes of a shallow shell
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10o
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10.4
0 5 10 Is 20 25 30

CircumFerentiai wovenumber

Fig 5. - The relative error, in frequency,

incurred setting the shell curvature to zero

As reported by Dong [19], the shallow shell model can be converted to a
flat plate model by making the following transpositions:

I..

e0o 0 (51)

ROo L Ly, the length along curved edge.

The equation of motion Eq. (40) now becomes

r 33 . w , (52)

with

r D k4 A4 2 2 20,,,] k2 k 2  PW2 (53233 D11 t m x m Yx MXMY
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and

m T
kx L = 0, 1, 2,.

k m m 0, 1, 2,

M Ly y

For a single layer of isotropic material these equations reduce to the

classical equation of motion for a thin rectangular plate.

Validity of the Thin Plate Assumption

A general criteria for the range of validity of a thin plate model does

not exist. The critical frequency proposed by Junger and Feit [10] for a

0.0254-um thick steel plate is f = 8006 Rs, and even higher for a

fiberglass plate. Therefore, a thin plate approximation would seem to be

valid below about 8 kHz.

Water Loading and Driving Force

Let qr denote the forcing function, and let Pa represent the acoustic

pressure created in the fluid by the plate motion. Equation (52) becomes

r"33 w = qt; - Pa (55)

We assume that w can be expressed as a sum of in vacuo eigenvectors

w = j > w sin (km x) sin [kmyy)* (56)

M=1 a1
x y

Similarly, qpl and Pa can be expressed as:
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fF~ qI m xayin(km xx) sin (k Y) (57)
m =1 m =1 I
x y

and

P = a ' sin (x) sin (kmyY) (58)

M 1 23=1

to obtain a linear set of equations.

Modal Decomposition of the Forcing Function

The forcing function used in flow noise computation is usually a wall
pressure spectrum. The amplitude qo depends on the particular model used

to represent the spectrum. A given wave number component is equivalent to

a forcing function that can be expressed as

S= q sin (kx) sin (k yy) (59)

Following Timoshenko and Woinowsky-Krieger [21], a modal component of

qm xy , Eq. (57), can be obtained by

Lx L .(m XI

1LF(P)sn x sin (60L yJ

Water Loading Effect

This problem has been studied by many authors [22-26). Most of the
available models have been summarised by Leibowitz [27). The major

complication arising from water loading is that the orthogonal in vacuo

eigenmodes become intercoupled by the water loading. That is, the
interaction of the fluid and plate is a function of all the modes.
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We shall adopt the Junger and Feit model as described by Leibowitz

[27]; this model was developed for symmetric modes of the plate. However,

the analytical result is valid for both symmetric and antisymmetric modes

(Leibowits [27], Table 1).

The Junger and Feit model for the water loading can be decomposed into

modal components in the same way as was done for an externally applied

pressure (Eq. (60)]. The result for mode (m,n) is

PMn = i Imnpq W , (1)

pq

where

PWkmk(n (-1) m)n

mnpq =2 _ I)p+q kpkq
pq (62)

I J3C082 7xLx Cos52 7 YL Xd7x d7y k~fJ 2_ 2_ 2 1/2 -7 ( 2-y 2 2-7 2) 2-22

(r mpq -Whmmnpq) LxLy /4

and

r npq = Re I(mnpq] (83)

=mmpq - Imag I(mnpq]

By examination of Eq. (61) we see that each mode (m,n) is coupled to all of

the other modes via the term I mnpq
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Cross Coupling

Leibowitz (27] has shown that the cross coupling terms are much smaller
than the self-impedance components when kaLx and kLy >3, which for W<<wC

is equivalent to k L and k L y>1 (the thin plate criteria). Here k is
mxx my a

the acoustic wave number w/c. This criteria is satisfied for the SSP over

the frequency band of interest. Moreover, Sandman [11] has shown that when

moderate structural damping is included, the cross coupling terms are

negligible. For reassurance, cross coupling terms were computed
numerically and were found to be negligible for the problem of interest.

Approxiuate Water Loading

When cross terms are negligible, as is the case for the SSP, the

equivalent modal pressure on the plate can be expressed as [101

i P

Pmxm a k x (64)

a m my

where pf is the density of water and ka is the acoustic wave number.

As a final check on this approximation, some typical modes were

computed and the resulbs compared to the more exact results obtained by

numerical integration of Eq. (62). A representative comparison is shown in

Table 2 for 8 kHz, where the agreement is expected to be the worst. The

differences between the approximate values and the exact values are found

to lead to errors of no more tkan 1 dB in the final result.
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Table 2 - Water Loading: Comparison of Approximate

and Exact Methods

Frequency = 8000 Hs

I Aprproximate ExactInr INs/r) (Ns/m)

11 11 1.368x10 7  (1.367x107 - j 1.665x10°)

20 20 20 20 7.887x107  (5"208x10 7  - j 2.671x10 7 )

I21 21 21 21 j5.222x107  (2.160xi07  + j 4.963x10 7 )

I30 30 30 30 j1.253x107 (3.281x107  + j 1.162x10 7 )

Flexural Response of the SSP

Substituting Eqs. (63), (56), (57), and (64) into Eq. (55) leads to an

infinite set of uncoupled equations

D k1 k( ) + 2 P 1 2 +2 D86) k 2 - 2 (65)Dl Mx myJ mxy

ipf V 2 1
-yx k

The total displacement can then be found by summing over modes, as

V a sin NI~ mm ~(X) sin (kmy) (68)
m =1 m =1 y
x y
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In practice, the response needs to be determined for only a finite number

of modes as follows:

M Nmax max

-= 2- >1 w sin (kx sin (k•y (57)

min min

The minimum and maximum values must be chosen to include all the modes that

contribute to the response of the plate in the frequency range of interest.

In order to assess reasonable values of Mmax and Nmax, a numerical

analysis was performed on a prototypical SSP subjected to a harmonic

excitation. The following material properties were assumed:

Elastomer layer: B = 1.0x106 Pa V = 0.49 p = 1200 kg/mi3

Steel support: E = 2.1x1OII Pa v = 0.3 p = 7900 kg/a 3 .

The forcing function was taken as

P =sin kx e jut (68)

where k = 25 m-1 and f = = 1500 Hs

The computed normal displacement is shown in Figs. 6 and 7, taking into

account the 10, 73, and 886 modes that most contribute to the radiation

impedance. In this case, the radiation impedance has been computed

numerically using Sandman's technique. It appears that about 73 modes are

required to model the essentials of the flexural response of the SSP. The

modes that make the largest contributions are those that have both resonant

frequencies and wave numbers that nearly match the excitation. It appears

possible to obtain an accurate descr.'rtion of the flexure by keeping only

the modes having relative contributions higher than one percent.

30



R.E. MONTGOMERY
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Fig. 6. - The normal displacement of the plate
at y = 1.065 m computed with varying numbers of modes
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Fig 7. - The normal displacement of the plate computed
at x = 2.13 m with varying numbers of modes
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Finally, the flexural response as computed with the radiation impedance

from Sandman's [11) numerical technique was compared to a similar result

using Junger and Feit's [10] approximate formula. Figures 8 and 9 compare

the results of these two methods for two representative sections through

the plate; one parallel to the x axis, the other parallel to the y axis.

The two methods give essentially the same results; i.e., the differences

are less than the resolution of the plots. These results support the use

of the simpler Junger and Feit expression for the purposes of modeling the

TBL excitation of the SSP. The additional developments that follow will

assume the Junger and Feit model is being employed; however, these could be

generalised in a straightforward way to include Sandman's model for the

water loading. Modal coupling, should it be important, could also be

accommodated, but the numerical computations would become much more

difficult.

1.5 ."

z 1.0

0.5

0.0

-0.5

-1.0

-1.5
0 I 2 3 4

X COORDINATE OF PLATE (M)

Fig. 8 - The normal displacement at y = 1.065 m computed
with the Junger and Feit radiation term, compared

with the more exact expression of Sandman
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0 0.5 I 1.5 -2

Y COORDINATE OF PLATE (M)

Fig. 9 - The normal displacement at x = 2.13 a computed
with the Junger and Feit radiation terms, compared

with the more exact expression of Sandman

Recall from the structure of Eq. (35) that the double summation over

modes introduces an additional type of modal coupling into the problem.

Thus, one could have two types of modal coupling: (1) via the water

loading on the plate, and (2) via the double summation in Eq. (35) which
arises from crosscorrelations between modes. We have argued above that the
first kind of modal coupling is negligible for our problem. We shall see

that the second kind is also negligible.

The Modal Frequency Response Function

The frequency response function Hm (w) is, by definition, the complex

modal amplitude wa when the applied excitation is a unit modal force [18]
given by
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F = Vs- sin f- sin (69).
x y xy

The first factor serves only as a convenient normal1zation factor. For

a composite panel, fluid loaded on one face, pressure-released on the other

face, we have already shown the following relationship between modal force

and modal displacement (see Eq. (65)]:

D1 1  
4 m+2D6 k "2  2

Lx myJ + D1 2 6 6  m xkM

(70)

- 2 - V~W al mxm m ~

10 - k 2 - - k2  xy xy
a m m

So, for the excitation of Eq. (69), qm m Therefore, by

definition of FRF, we have

[Dk4 +A4  + 2 D1 2 +2D6 , k2Ha' 11 D1 mx 12j m x my

(71)

- w22 L 4- L
k 2 _ k 2  _- I 2

a Mx m T

THE ARRAY FILTER FUNCTION

As derived previously, the eigenfunctions for a plate of dimension L

and L are
y
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marx m U

f (-) =sin -•it sin _ (72)
M x- Lyx y

where m represents a pair of modal indices (mx my) that take on integral

values from I to 0. From Bq. (34) we have

2h1  
2  k2  2h3 1h k k2  +k 2  k2

2 k2  k2  fm (+) f (1) (73)

+h3 2 k nj r n(3
y Y

(h3 1 k2 2 h[h 3 1 k2 )h 2 k Jf ('2) (2) "
3 mx h32 m 3 nAx + h32 n)ay

We can perform the integration over a single sensor located in region R. e

(xi) yi; xIi' YIi) obtaining

d2 r d2 r' a (h3 1 k
2  + h32 h3 1 k2 + h32 K y

okM x coo k X .o kay - coS ka y
fck ak X -o k YCO(74)

cosco {co-k 1okU xi - knx i cok kUy - os k y
x . k nx kIy

By summing over all regions R. occupied by sensors we obtain the total

array filter function.
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THE MODAL SPECTRAL DENSITY OF THE RICITATION

Before evaluating 0 Pmn(w) it will first be necessary to evaluate the

form factors Sm(t), which are the Fourier transforms of the mode shapes;

i.e.,

SM(t) = e sin (kmx] sin NY Y) dx dy, (75)

P

where A denotes integration over the surface of the composite SSP. ThisP
integration can easily be done by parts, yielding

km {1 - exp[-i(kxLx-mxiw]} km {1 - exp[7i(kyLY-m.1)]}

S = k 2  k 2 k2  2 (7)
m x m yx y

The power spectral density of the excitation 0 (k, w) willpp
be represented by the Corcos [9] model

P (0,,) [ 2 k 2]

*pp(] ")= {,2 [[k-kJ, a 2 [ k1 k J 2 ] [ + ["2 kJ 2 ] }

where kc -- w/Uc and Uc is the convection velocity. In addition,

PO -w) a+ (1+7) Pf /I

where pf is the water density and V, is the friction velocity. The other

terms a+, 7, U1, and a2 are empirically determined constants.

We shall first evaluate the diagonal terms of 0 Pmn(W); that

is, those terms for which m = n. In this case, we can combine Eqs. (33),
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(76), and (77) to obtain

P,, (w) = ) , 'M (k) , (78)

where

k2, [1- cos (k L.- my)] dkm x

#xm)_ 2 - k3  l kJ2+ tcil k~jJ] (

1 2 _ 22k2  11 -Cos (kL -L r) dkay
E )2 -7 2 1 2 [+ 2 J 2 ] ,(80)

and 2

P(k 2) - P(O,.W) r2 (81)

Consider Eq. (79). This integral can be written as

2 k2 [1 - 0 i(ZL x-X1 'd

()=Real Ii Z~k.J 2 [Z~k.j 2 [Z-k I+ia ]Z-k (1..im 1] (82)

where the variable of the integration has been replaced by complex number

Z. This integral may be evaluated using the contour shown in Fig. loa.

The numerator has been replaced by the real part of an exponential in order

to avoid a pole where the C. contour intersects the imaginary axis. There

are simple poles at -kA and + ka , and a second-order pole at
x x

Zk c(1 * it,). Using the theorem of residues, we find the following

results:
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p (w) =Real f2 k 2 - exp i [k Lx (1+ic) - 1]
ps nx aI kc [k 2c {li a1)2.- k 2 ]2

(83)

[ 1 11

I [ (k ax k3C + (a, kj2  (k.x-k ]2 +~ kJ j

The expression for # P (w) can be evaluated in a similar fashion, the only

x
difference being that the second order pole will be located on the

imaginary axis. The result is

( =2k2 1 exp I- C12 k c Li') cos 0 r

~~~~~ ( . )k (C 2 C )
pa 2Yka - 2 k ~ k( 2 k. ~2]222 c a y

(84)

rL

+ F. (C[ kj 2]

This completes the evaluation of #pn (m) for the diagonal terms a n.

The analogous expressions for the off-diagonal terms (a 0 n) are

Pp P 3 (N) p pmk( ) ) (85)
n x y

where

- • (kkLx-mr)[,. [ ei(kxLx-nxlr)] dk
#p r k %2 kk nk L2 _ ka 2j 2_ 2 (86)Pax k xkn k x .k aIkxk nj [(kx k )2 + (alk )21

and
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S -k [ky-k) L - (k " L -. r] d (87)
y y myJ1 y n y11 y Lzc

These expressions are similar to the previous ones except that there

are now four simple poles on the real axis (see Fig. lOb), and the off-axis

poles are now simple poles. The evaluation is straightforward if one

writes the numerator as 1 + ei(,x-n)t i~kLx-nx) -eiekxLx-ExT)

The first three terms may be integrated using the upper contour in Fig.

lOb, whereas the fourth term may be integrated using the lower contour.

The results will not be presented because they are at least two orders of

magnitude smaller than the diagonal terms for the problem of interest.

This is to be expected, for upon examination of Eq. (33) it is seen that

when 9 (Pt6w) is a slowly varying function of t (as compared to Sa and Sn)

then the ,ontributions from the orthogonal form factors S and S* tend toa n

cancel upon integration. Thus, the cross terms are negligible except when

Land L y are so small that Sm and Sn vary as slowly as # pp(,v). Even if

this were not the case, the off-diagonal terms in the array filter function

are small for the problem of interest. A numerical study of the off-

diagonal terms indicates that they are typically eight orders of magnitude

smaller than the diagonal terms. The largest contributions from off the

diagonal are terms for which three of the indices ax, my, nx, and ny are

equal, and the fourth index is only slightly different from the others. In

such cases, the off-diagonal contribution is at least two orders of

magnitude smaller than the diagonal terms.
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(a)

k c(le+i

C 

R

t-xk- x kmx

Fig. 10 (a) - Contour of integration for Eq. (82)

(b)

\-kn x - km× kmx -%
\ /

N k c(li._ ./

Fig. 10 (b) - Contour of integration for Eq. (86)

Now consider the product H (w) Hn(w). The diagonal terms have peaks at

frequencies where the real part of the FRF goes to zero. Fig. 11 shows some

cases for light damping. At the FRF resonance frequencies the major

contribution to the modal sum comes from only one mode. In the case of

heavy damping the Q of these resonances is greatly reduced; thus, more than
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one mode may contribute. Even so, the number of modes that need to be
retained is not large because only nearest neighbors contribute at that
frequency. For example, as seen from Fig 11, it is evident that to compute
Spp(w) at about 1.25 kHz one needs only to retain mod-. that have indices
clustered about mode mn = fx = nfy = 12. Exclusion of the other modes
greatly reduces the computational complexity of Eq. (33).

* 10

1.0 r .n -n- 12

r.n,-nt 5

to

j~on*H'jrn-n-20

.001

.0001

.00001
0 1 2 3 4 5 6 7 8 9 10

FREOUENCY N144)

Fig. 11 - Frequency response function for
several modes for which a = n

A representative plot of off-diagonal terms B (w) R *(&) is presented in
Fig. 12. It is seen that the off-diagonal terms may have peaks at an FRF
resonance frequency, but the amplitudes of the off-diagonal terms are still
at least one order of magnitude smaller than the diagonal terms.
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Fig. 12 - Comparison of FRF diagonal terms
with FRY off-diagonal terms

HUMIEICAL PIOCEDUKE

Because the largest values of the product H-(w) H>(w) occur at the

resonances of the FRF, an upper bound on Q(w) can be found by evaluating

Eq. (35) at those frequencies alone. Only a few modes about each resonance

need to be retained in the summation. Additionally, the off-diagonal

contributions of each term in Eq. (35) are at least two orders of magnitude

less than the diagonal terms. Therefore, the product

Em(W) E1 (at) f f a Em dxdy (88)m1 ( n (w Pmn (,

is at least six orders of magnitude less for m 0 n, than for m = n.
Therefore, no off-diagonal terms need to be retained.

The following procedure was used to evaluate Eq. (33). First, the

resonances of the FRF in the frequency range of interest were determined.

There are about 20 such resonances for the cases studied. For each of
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these resonant frequencies pp(w) was computed by summing over 100 of the

nearest neighbor diagonal terms. Some results and conclusions follow.

IRLMTS

As i"U.'cated previously, the spectral density +.p (w) represents the

equivalent-plane-wave pressure sensed by the array. In this form Q(w) can

be directly compared to sea states and also to specifications for flow

noise. Three specific cases have been studied numerically. All three

cases are dual layer laminations consisting of a SSP and an elastomer of

0.051 m (the OD). The stiffness and mos of the sensor are not included.

This is done to obtain relative comparisons that do not depend on the

specific properties of the sensor. Thus, the three cases differ only in

terms of the properties of the SSP. Figure 13 shows the results for a

0.0254 m steel SSP and a 0.0191 m glass fiber plate. Two values of loss

tangent were used for the glass fiber SSP to show the influence of damping.

The smaller value is more representative of practical materials.

60.0

50.0

40.0

0. 30.0

-u 20.0 0 N,-F- berglos.. ton 8 - 0.01
3 10.0 - ,

0.00 •-Steel, ton . , .01

-10.0 Fiberglass, ton 8 - 0.1

-20.0
1.0 10.0

FREQUENCY (kHz)

Fig. 13 - Spectral density for flexural noise induced

into support plates of various compositions
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CONCLUSIONS

The results indicate that a 0.0254 m steel SSP of light damping and a

0.191 a glass fiber SSP of heavy damping will both perform satisfactorily.

However, the glass fiber SSP with light damping may exceed many flow noise

specifications. It is also seen that flexural noise rises as frequency

decreases. Therefore, flexural noise arising from TBL excitations must be

considered if the array is to be used at lower frequencies.

The results presented here do not account for sensor material

properties or for the effects of the inner decoupler (ID). This was done

for two reasons. First, the properties of the sensor and inner decoupler

vary with array performance requirements. In addition, it was considered

prudent to first exercise the model for a worst-case scenario in order to

determine the severity of a potential noise source. The added stiffness,

mass, and damping contributed by the sensor and the ID will lower the

predicted noise levels. Therefore, the results represent upper limits on

flexural noise for the various types of SSP's. Inclusion of the sensor in

the analysis is a straightforward process if its properties are known.

However, to include the ID, more analytical development will be required.

One can draw a number of conclusions about flexural noise from an

examination of Eqs. (64), (67), and (73) without actually performing

numerical computations. To minimize flexural noise, one should:

"* Minimise d, the distance from the midplane of the SSP to the mid

plane of the sensor.

"• Maximise gh/h 1 2 and gh/h 1 3 , the ratios of the hydrostatic sensitivity

to the lateral sensitivities.

"• Maximise the number of sensors in the array and the lateral

dimensions of the SSP.
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" Minimize the gap between sensors. We "ee from Eq. (67) that if the

gaps were closed in at least one dimension, then there would be

essentially no noise due to flexure of the sensors. However, noise

would still be radiated into the water by the edges of the SSP.

"* Locate the neutral axis of the flexure at the midplane of the sensor.

For example, the piesorubber or Polyvinlidene deflouride (PYDF) type

sensors could be mounted on both sides of the SSP. Then, their

flexural responses would cancel. However, other noise sources such

as direct path flow noise and hull noise would be enhanced by such a

design.

SUMMARY

Large-area, hull-mounted conformal sonar arrays are evolving in the

direction of less weight and reduced hull standoff. These new array

designs employ lightweight, flexible, planar sensors and lightweight

support plates. Increased levels of flow-induced flexural noise may be one

undesirable consequence of replacing heavier, stiffer components with

lightweight, flexible components. Models exist for the radiated component

of flexural noise. In this report, a model is developed that accounts for

a heretofore neglected flexural noise mechanism; i.e., direct coupling of

the flexure with the lateral displacement of a planar sensor. The

development of the model was presented for piezoelectric sensors such as

rubber-lead titanate composites and PVDF; however, the development could be

adapted to consider other sensor types such as fiber optic sensors. The

expression derived for the spectral density arising from this model [Eq.

(35)] has terms of which some are analogous to the expression for the

direct path spectral density [Eq. (11)). On the other hand, some terms in

Eq. (35) are unique; these account for the modal response of the plate and

intermodal coupling arising from fluid loading as well as cross-modal

correlations.

Some perspectives on the model, and its implementation, were presented

for one particular array configuration that approximates arrays of

practical interest. The support plate with sensors and inner decoupler was

represented as a thin, finite, composite plate, water loaded on the sensor
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side and pressure relieved on the opposite face. The water loading was

modeled with an approximate expression derived by Junger and Feit [10].

The validity of these assumptions and approximations was demonstrated by

comparing the approximated resonances and displacements with values

obtained by more exact models.

An exact analytical expression for the spectral density of flexural

noise was derived for the case where the random excitation field is

characterized by the Corcos model. In general, this expression involves a

quadruple summation, each to infinity, over the normal modes of the plate.

However, it was shown that only a few modes need to be included for each

frequency of interest. Therefore, the model is easily tractable for

practical applications.

Finally, the sensitivity of the spectral density to various array

parameters was presented. The parameters of influence include the

piezoelectric constants of the sensors, the sensor standoff distance, the

material constants of the support plate, and the size and spacing

characteristics of the array.

Most of the limiting assumptions of the model could be addressed

without modifying the basic approach. For example, if the assumption of a

pressure-release backing to the support plate is not valid for a given

application, then one could employ a boundary condition that specifies a

known impedance which might represent, for example, an ID placed between

the support plate and the hull of the ship. Another limiting assumption is

that the structure behaves as a thin plate. This assumption manifests

itself in the model via the relationships between lateral strains and the

normal displacement [Eq. (2)]. This limitation may be removed by replacing

Eq. (2) with analogous expressions obtained from thick plate theory.

The results of this report provide an analytical approach and a

mathematical expression for the noise induced in an array of extended

sensors that derives from the coupling of the lateral sensitivity of the

sensor to the flexure of the support structure.
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