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Abstract

We survey some current research concerning the generation of random and pseu-
dorandom keystreams for use in cryptographic stream ciphers, inclualng the use of
chaotic discrete dynamical systems.

1 Introduction

Communications security is vital in the information age. For this reason. cryptography the
branch of cryptology dealing with the making of secure cipher systems: the other branch.
crvptanalvsis. attempts to break such systen~si, is no longer of concern only to the govern-
ment. but also to private industry. Simple cipher systems such as those in [Sinkox are
easily broken today, if not by ingenuity then by brute force computer attacks 'Baniford':
more sophisticated methods are therefore necessary. One cipher system used when securiTv
is essential (e. g., the "'hot line" connecting the Pentagon to Moscow iKahný) is the one-time
pad, or random Vernam cipher. Consider a message P to be encrypted: P is called the
plaintext. We begin by converting P to binary form, say by using the ASCII code. The
encoded plaintext is a binary string S of some length N. We now generate a bitstring R of
length N, the entries of which are chosen uniformly and independently from {0, 1 }: that i-.
R is a "random" bitstring (called the keystream). The enciphered message, or ciphertex.
(C), is formed as the bitwise exclusive-or of 3 and R,

C = S + R (mod 2)

where the sum is formed bit-by-bit. The ciphertext C may now be transmitted. and the'
receiving partx' may recover S as

S = C-R(mod2)

= C+R mod'2)



(bitwise) since subtraction is the same as addition in binary arithmetic. Then S ca% nE
decoded to P using the original binary coding system.

This method is provably secure [Shannon] but has several drawbacks. First. generating
truly random bits is a time-consuming and difficult process. Second. the one-time pa,"
sequence RI is as long as the (encoded form of the) message: this sequence must be known to

both the sender and the receiver, creating serious logistical problems. Although this is done
for sufficiently sensitive material [Bamford), for less sensitive material an additive stream
cipher is often employed. Here the random bitstring ft is replaced by a pseudorandom
bitstring generated by some method (commonly a linear shift register: see section 31. In
this case a small key of fixed length (the seed of the pseudorandom number generator) is all
the information required to generate the enciphering sequence of length N. It might seem
apparent that this system inherits the known security of the random Vernam cipher, bu:
this depends on the quality of the pseudorandom number generator. We will discuss several
measures of pseudorandomness in the next section.

Before doing so, however, we mention another way to shorten the keylength "Maurer 1',
Consider a large, publicly available list of truly raiidom bits-a list much larger than anv

message which might be sent. Arrange it into K rows and T columns (so that there are a
total of KT bits in the list). Once again we will form our ciphertext C from the encodce
form S (of length N) of our plaintext P by

C = P II' (mod 2)
(bitwise), where VV is a -random" bitstring chosen from the list as follows. We select a sect,

key, known only to the sender and the i intended) receiver, This key is a K-vector. with each
entry an integer chosen from {1,.. .T. For each of the A rows of the list of random birs.
the corresponding element of the key specifies a column. Beginning with this column. we
take the first N bits in that row and form a binary sequence w., for I= 1.---,K twrappin
around to the first entry of the row if we reach its end). Then

11" = U., + "-- - - mod 2)

(bitwise) is the desired keystream. This cipher system is strongly-randomized and require,
a key of fixed length. but the logistics of generating and maintaining the public table ma-:
make this scheme impractical.

2 Pseudorandom Bitstreams

Now we consider the problem of generating a pseudorandom keystream R for use in an
additive stream cipher. What properties should such a bitstring have? There is no universal
agreement. However, it seems desirable that the bitstring be balanced, that is. have rouehlv
the same proportion of ones and zeroes. If not. an enemy cryptanalyst could simply guess
that the keystream was

R8



(or, alternatively, all zeroes) and have a fair chance of reading at least part of the message. B,
extension, the sequence should probably have balanced runs. that is. all binary subsequer.ce.
of length n < N should appear equally often (roughly). For example. the keystream

R= {0.1,0,1,..1.0. l}

is balanced, but since the only runs of length two that appear are the subsequences {0. }
and {1,0}, the cryptanalyst has an edge.

In additiou, prediction of the sequence from a small part of it should be difficult (for
someone without knowledge of the underlying generator. of course). The next bit test
[Schrift] requires that prediction of the next bit in a sequence from the previous bits be
not significantly better than 50% successful. A more common means of achieving the goal
of unpredictability is to require that the autocorrelation of the proposed keystream be smat,
for nonzero lags. In particular, the widely-used Golomb postulates state that a sequence is
pseudorandom if it is balanced, has good runs properties. and has a small autocorrelation.
What is meant by "good" and "small" depends on the application and the degree of securitv

needed.
There are a variety of other measures of pseudorandornness in use. including the notions

of per bit entropy, Maurer's universal statistical test [Maurer 21 and many more. X. ,
next section we discuss one final test. the linear complexity profile.

3 Linear Shift Registers

One of the most common methods of generating pseudorandom sequences used in practwicc
is the linear shift register. An n-stage linear shift register is the electronic implementation
of an nth order recurrence relation of the form

r, = ar,._ 1 - a2r • + a r,_, i3 1

where al... .. o are chosen from {0, 1}. and the initial fill {ro..--.r,-_} (a binary sequence
of length n. not consisting entirely of zeroes) is given. For example, the recurrence relation

r, = r,_ 2 + r,_ 3  13.21

can easily be implemented as a linear shift register [Heyman 11. If the initial fill is {1. O. 0}.
i. e.

r0 1

r, = 0

r 2 = 0

then the successive iterates can be computed from the formula (3.2) as

r 3 = rI + r0

30-1

.3



= ]

r 4  = ?'- r

= 0-0

= 0
7'5 -- r3 + r2

= 1+0
= 1

and so on. The sequence {ro, ri, r 2 ,r 3 ,...} generated by this method is

{1,O,0, 1,0, 1,1,--.} (3.3

where the seven bits indicated repeat periodically. Although this may seem undesirable a,

first, it is the best possible result. To see this, note that in the formula (3.2) each new iterate
is determined bv the three preceding iterates. and hence the sequence must repeat as soon
as a three-tuple is repeated. As there are only seven possible nonzero three-tuples in this

case (the three-tuple {0, 0, 0} would lead to an infinite sequence of zeroes, which is not ver-

pseudorandom), and all are present in the sequence (3.3) (when repeated periodically), the
sequence must begin to repeat itself. More generally, an nth order recurrence relation of the
form (3.1) leads to a binary sequence which is periodic with period at most

2- 1

and possibly less. By associating with the formula (3.1) a characteristic polynomial iin
the usual way), it is possible to characterize those linear shift registers that give rise to
sequences of maximal period (called m-sequences). These full length shift registers are th-
ones employed in practice. In addition to having maximal period, it follows that in an
rn-sequence all n-tuples appear exactly once (except for the n-tuple of all zeroes).

Now suppose that one is confronted with a binary sequence of length N which is known
to have been generated by an n-stage linear shift register. It would appear from (3.1 tha"
any subsequence of 2n consecutive bits

{bo.- , b2n-1}

could be used to set up a linear system in the unknown coefficients {al,.. .,,

b, = alb0 + a2b, +," + a~b_
b,,,.+ = crib, + CO-, + .- + ab,•

b2, -1 = alb,,-1 + o~bn + -. + anb:,n_2

which might then be solved, giving the recurrence relation. In practice. the Berlekamp-
Massey [Massey] algorithm, or a variant, is used. This method does not attempt to solve
the system given above but instead finds the coefficients in a recurrence relation that couid
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have been used to generate the sequence; if the sequence in question is not an m-sequence,
the recurrence relation generated by the Berlekamp-Massey algorithm may be of lower order
than the one actually used to generate the sequence in the first place. The order of the
recurrence relation found by this algorithm is called the linear complexity of the sequence.
and a higher linear complexity generally indicates a greater degree of pseudorandomness.

Although m-sequences have many interesting and desirable properties (not all of which
can be mentioned here), including good autocorrelation properties, we mention some draw.
backs. First, notice that an n-stage linear shift register produces a sequence whose period is
bounded in terms of n. Second, the sequence can be completely simulated from the knowl-
edge of only 2n bits. Of course, these 2n pseudorandom bits are masked in the ciphertext by
the message, just as the message is masked by the keystream, and so finding such a string of
bits generally requires some extra information (knowledge of a small part of the plaintext,
for example). Finally, consider the sequence (of length N)

{0,0,0,...,0, 1) (3.4)

i.e. all zeroes except for the last bit. Since this is an N-tuple, but not a p-tuple for p < N. the
linear complexity of this sequence is N. Hence a very "bad" sequence can have arbitrarily
high linear complexity (m-sequences do not possess this problem).

One means of detecting sequences such as (3.4) is the linear complexity profile [RueppelI.
Given a binary sequence of length N. we plot the linear complexity of the leading subse-
quence of length i, L,, versus i(i = I,. .. N). The sequence {L 1,...,LN} is a nondecreasing
sequence of nonnegative integers. For a "good" sequence, the leading subsequences should
have linear complexity near i/2 (since the first i points could be used to determine a recur-
rence relation of order i/2). For the sequence (3.4). the linear complexity profile would be
flat until the last element (Li = 0,i = 1.... N- 1), which would then jump up to the linear
complexity of the sequence (Lv = N). This does not follow the line with slope 1/2 and
hence would not be considered a -good" sequence.

Related to the linear complexity profile is the jump complexity profile [Niederreiter]. For
Z = 1, ... N, we form the first difference of {Li,..,L,1, and define the jump complexity
profile P, to be the number of positive integers (the "jumps") in the vector of differences. It
is immediate that P, < Li, and for a "good" sequence it can be shown that P, should follow
the line with slope 1/4 when plotted versus i(i = 1,..., N).

4 Cryptographically Strong Sequences
Are m-sequence pseudorandom? In a sense, they offer almost too much regularity to appear
random. However, they seem to have all the properties we might desire in a keystream-
balance, balanced runs, good autocorrelation. optimal linear complexity with a good linear
complexity profile, and period length that can be made as large as desired. In this sense
they are quasirandom, that is, random enough for our purposes. Of course, all we re-
ally are interested in is a sequence which will give a cipher that is as difficult to break as
possible-pseudorandomness is merely the most obvious method of finding such sequences.
In a cryptographic setting. we generally speak of a keystream as being cryptographically



strong if it would make a "good" keystream, in a sense that is rarely made precis,: genera.,
pseudorandornness is a major aspect of cryptographic strength.

There is another pragmatic consideration in choosing a keystream: errors. Because of
the possibility of transmission errors, the encoding used to transfosrm the plaintext to ?'>
binary form S often includes some redundancy so that the code can be error-correcting. For
sufficiently short messages, the entire plaintext may be encoded an odd number of times
and, in the event of discrepancies between the various copies of the message, the majority
rules. Other more sophisticsated methods are often used.

However, keystream errors can also occur. For this reason (among others). the notion
of k-complexity has been proposed by (Stamp]. Since the term k-complexity is also used
in another context in cryptography (namely. in describing certain nonlinear shift registers..
we will use the term linear komplexity (of order k) instead. For a given sequence R. the
komplexity of order k is defined as the smallest linear complexity of all sequences which
differ from R in at most k places, which can be interpreted as the worst case result of at
most k errors occurring in the keystream sequence. For example, sequence (3.4) has linear
komplexity (or complexity of order zero) N. but the komplexity of order one is clear!ly zeru,,.
since changing a single bit (the final one) gives the sequence

{0.0.0... . .0}

which, by convention, has linear complexity zero (the lowest possible&. Hence this kevstream
is not safe with respect to transmission errors. Another interpretation is to say that :he
komplexitv of order one has detected the weaknesses that would have be;.i, seen in the rinear

complexity profile.
More generally, a linear komplexity profile can be created. The example (of length .V

(which has unit linear complexity but can be made into a sequence of zero linear complext,,
with exactly N changes) shows that the komplexity of order k should be computed for
k = 0...... (unless it should reach zero before then). However, at most .N/2 changes can
alway'Is give a sequence of all ones or all zeroes (by changing whichever there are fewer of in
the seq,-nc'-nPe ,-- 7eroes). and so the height of the profile is at most unity for values above
N/2, and therefore not especially interesting. The linear kompiexity profile may be viewed
in two ways. First, a sharp drop for small k indicates a cryptographically weak sequence t as
a relatively small shift register will approximate the sequence in all but k places). Second. if
the number of potential transmission errors can be estimated. then the resulting worst case
linear complexity can be checked for acceptability.

5 Chaotic Keystream Generation Schemes

Linear shift registers are commonly used for the generation of keystream sequences (generally
with their output further scrambled by a nonlinear Boolean function before being used ir.
the cipher). However, their fixed maximal period (for a given number of stages) and the fac-

6



that they can be perfectly simulated from a relatively small number of bits of pure keystream
(2.V for an .V-stage register, using the Berlekamp-Massey algorithm). are causes for concern
For this reason it is important to investigate other methods of running keystream generation

An obvious choice for such a generator is a chaotic recurrence relation. One investigation of

such a scheme is reported in [Forr•l, who used the Henon map [Henoni

.q+l = I - 1.4n + Y,,

Yn+i =3y

(where (zo.yo) may be chosen anywhere in a certain quadrilateral which includes the origin

as the basis of such a scheme. Her approach was to consider the strange attractor (Fig I

generated by the map (independent of the initial condition (zoyo)) and to estimate the

median of the abscissas of the orbits of the Henon map on this attractor (note that this is

different from the median of the x-values of the attractor). A more accurate investigation

of this scheme wa.- carried out in IHevman 11. wherc it was determined experimentally that

the median x -value of an orbit on the attractor is

.r = .409S

independent of the initial condition. We now choose an initial condition and itera.-o'
Henon map. giving the orbit

(xi.yi ,. (12-.1:. ,-r-3.Yý'.,

and we generate a corresponding binary sequence by using tne median value as a 5pi.

(Fig. 2). i. e.
R I if-, >.

'{= 0 otherwise

giving a binary sequence R, called a binary H non sequence. Heyman has shown •iexper7.-J':.
tallv) that such sequences have extremely long periods (as might be expected from a cnaot:,
map). are balanced. and have good autocorrelation properties and linear complexity profile
However. as noted also by Forr&, the runs are poorly balanced: subsequences containing pr:
marily alternating patterns of zeroes and ones tend to occur noticeably more frequently that
those containing longer runs of all zeroes or all ones (although runs vU consecutive ones as
long as 23 have been found by this author). In fact. [Fontana, has shown that the four-tuple

{1,1.0,0}

can never occur with this split point (and eight of the thirty-two possible five-tuples are unre-

alizable, including the five-tuple of all zeroes). Despite the attractiveness of the high, periods.
this is enough to rule out H1non generated keystreams. Preliminary work indicates that usinM
a single split as in (5.1) on other two-dimensional maps possessing strange attractors lead-
to similarly decimated n-tuple profiles, even for relatively small values of n [Leader>. This
is unacceptable for cryptographic purposes: however, since a chaotic map must be home-

omorphic to the shift map on two symbols [Devaney'. there must be a way of conver',il:,-



the dynamical sequence into a binary sequence-namely, the topological conjugacv-suc:: :.ia,
perfect balancing of the runs is obtained. Evidently (.5.1j is not such a horneomorp",:s::..
despite its suggestive similarity to the topological conjugacy used to conjugate the quadra::c
map to code space !Devanev>.

The logistic equation. a chaotic map, was one of the first computer pseudorandom n~z-
ber generators ever .ised [Peitgen], and research continues on the possible use of chao,:_
dynamical systc,-, as pseudorandom bit generators. Other nonstandard (and nonchaot:c,
methods of , _adorandom number generation are being investigated as well 'Nisani.

6 Conclusions

In cryptography as well as in other areas (such as simulation). there is a need to produce
large numbers of pseudorandom numbers quickly and without certain statistical defects. The
particular criteria to be met depend on the application but, in cryptography. genera:,x, in-
clude balance. balanced runs, good autocorrelation properties. and a good linear cornpiex"'.
profile: a large period is also desirable. Linear shift registers are the most commonrl,:>:.
method (generally" in conjunction with a nonlinear Boolean function to further mask le-
output), but they have certain drawbacks. Chaotic discrete dvnarmical systems appear7
offer an interesting alternative, but more work is necessary in this area. Initial investi__a:.o0:
indicate potential problems (the balancing of the n-tuples, but also potential payoffs',
high periods and the nonlinearity, a defense against linear attacks). lI 'Hvman 2' evido7.
is presented that a simple artificial neural network can identify the type of kevstream ,:-,
(linear shift register vs. Henon vs. linear congruential pseudorandom number generators as
well as simulate a linear shift register (in the fashion of Berlekamp-Massev. althous:"!s
ing more bits; and effectively predict the nex: Henon bit at about 707 accuracy. v~oia:::z
the next-bit test. This research highlights additional weaknessess of both the linear a":-,
nonlinear methods: however, the fact that the neural net completely simulates 1i. e. 'v,,'
perfect prediction for the shift register but is irnperfec: for the Henon method shows anotli.e
advantage of the chaotic keystream generator 'at least for this type of attack.
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