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We survey some current research concerning the generation of random and pseu-
dorandom keystreams for use in cryptographic stream ciphers, incluaing the use of
chaotic discrete dvnamical svstems.

N . - ~‘ "w“ ?:
Introduction

Communications security is vital in the information age. For this reason. cryptography ithe
branch of cryptology dealing with the making of secure cipher svstems: the other branch.
cryptanalysis. attempts to break such systeris) is no longer of concern onlyv to the govern-
ment. but also to private industry. Simple cipher systems such as those in {Sinkov, are
easily broken today. if not by ingenuity then by brute force computer attacks ‘Bamford’:
more sophisticated methods are therefore necessary. One cipher system used when securitv
is essential (e. g.. the “hot line” connecting the Pentagon to Moscow {Kahn]) is the one-time
pad, or random Vernam cipher. Consider a message P to be encrvpted: P is called the
plaintext. We begin by converting P to binary form. say by using the ASCII code. The
encoded plaintext is a binary string S of some length .N. We now generate a bitstring R of
length .V, the entries of which are chosen uniformly and independently from {0.1}: that is.
R is a “random” bitstring (called the keystream). The enciphered message. or ciphertext

(C), 1s formed as the bitwise exclusive-or of 5 and R.
C=5+R(mod?2)
where the sum is formed bit-by-bit. The ciphertext C may now be transmitted. and the
receiving party may recover S as

S = C-Rimod?2)

= C*R(mOd 2}




’_——‘“

(bitwise) since subtraction is the same as addition in binary arithmetic. Then S can be
decoded to P using the original binary coding svstem.

This method is provably secure {Shannon] but has several drawbacks. First. generating
truly random bits is a time-consuming and difficult process. Second. the one-time pad
sequence R is as long as the (encoded form of the) message: this sequence must be kriown to
both the sender and the receiver. creating serious logistical problems. Although this is done
for sufficiently sensitive material [Bamford], for less sensitive material an additive stream
cipher is often emploved. Here the random bitstring R is replaced by a pseudorandom
bitstring generated by some method (commonly a linear shift register: see section 3. In .
this case a small key of fixed length (the seed of the pseudorandom number generator) is all
the information required to generate the enciphering sequence of length V. It might seem
apparent that this system inherits the known security of the random Vernam cipher. bu:
this depends on the quality of the pseudorandom number generator. We will discuss several
measures of pseudorandomness in the next section.

Before doing so, however. we mention another way to shorten the keyvlength Maurer |,

Consider a large. publicly available list of truly random bits-a list much larger than anyv
message which might be sent. Arrange it into A rows and T columns (so that there are a
total of KT bits in the list). Once again we will form our ciphertext C from the encoded
form S (of length V) of our plaintext P by

C=P+W(mod2)

(bitwise), where W is a “random” bitstring chosen from the list as follows. We select a secre
kev. known only to the sender and the {intended) receiver. This kev is a A'-vector. with each

entry an integer chosen from {1.- -.7}. For each of the A" rows of the list of random bu1s.
the corresponding element of the kev specifies a column. Beginning with this column. we
take the first .V bits in that row and form a binar: sequence w, for: = 1.---, A (wrapping

around to the first entry of the row if we reach its end). Then
W=wu 4+ +uw, imod2)

(bitwise) is the desired kevstream. This cipher svstem is stronglyv-randomized and reguires
a key of fixed length. but the logistics of generating and maintaining the public table max
make this scheme impractical.

2 Pseudorandom Bitstreams

Now we consider the problem of generating a pseudorandom kevstream R for use in an
additive stream cipher. What properties should such a bitstring have? There is no universal
agreement. However, it seems desirable that the bitstring be balanced. that is. have roughiv
the same proportion of ones and zeroes. If not. an enemy cryptanalyst could simply guess
that the keystream was

R=1{1.1.1.- .1}
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(or, alternatively, all zeroes) and have a fair chance of reading at least part of the message B
extension. the sequence should probably have balanced runs. that is. all binary subsequences
of length n < NV should appear equally often (roughly). For example. the keystream

R=1{0.1,0,1,---,0.1}

is balanced, but since the only runs of length two that appear are the subsequences {0.1}
and {1,0}. the cryptanalyst has an edge.

In additiou, prediction of the sequence from a small part of it should be difficuit (for
someone without knowledge of the underlying generator. of course). The next bit test
[Schrift] requires that prediction of the next bit in a sequence from the previous bits be
not significantly better than 50% successful. A more common means of achieving the goa:
of unpredictability is to require that the autocorrelation of the proposed keystream be smai;
for nonzero lags. In particular. the widelv-used Golomb postulates state that a sequence is
pseudorandom if it is balanced, has good runs properties. and has a small autocorrelation.
What is meant by “good™ and “small” depends on the application and the degree of security
needed.

There are a variety of other measures of pseudorandomness in use. includin.g the notions
of per bit entropy, Maurer’s universal statistical test [Maurer 2!, and many more. .. *'e
next section we discuss one final test. the linear complexity profile.

3 Linear Shift Registers

One of the most common methods of generating pseudorandom sequences used in practice
is the linear shift register. An n-stage linear shift register i1s the electronic implementation
of an nth order recurrence relation of the form

T, = a7y + G272+ -+ AnTyq 30

where a;.---.a, are chosen from {0.1}. an< the initial fill {ry.---.7,_,} (a binary sequence
of length n. not consisting entirely of zeroes) is given. For example. the recurrence relation

T = Tiey T T3 (3.2
can easily be implemented as a linear shift register [Heyman 1}. If the initial fill is {1.0.0}.
1. e.

To
™ = 0

res =

then the successive iterates can be computed from the formula (3.2) as

r3 = ry -+ To

0-1

I




= 1
Ty = e+
= 0+0
= 0
r3+ 1
140
= 1]

Ts

and so on. The sequence {rg,r,,r;,73. -} generated by this method is
{1,0,0,1,0,1,1,"‘} (33'

where the seven bits indicated repeat periodically. Although this may seem undesirable at
first, it is the best possible result. To see this, note that in the formula (3.2) each new iterate
is determined by the three preceding iterates. and hence the sequence must repeat as soon
as a three-tuple is repeated. As there are only seven possible nonzero three-tuples in this
case (the three-tuple {0.0,0} would lead to an infinite sequence of zeroes, which is not very
pseudorandom). and all are present in the sequence (3.3) (when repeated periodically]. the
sequence must begin to repeat itself. More generally. an nth order recurrence relation of the
form (3.1) leads to a binary sequence which is periodic with period at most

an - 1
and possibly less. By associating with the formula (3.1) a characteristic polynomial 'in
the usual way), it is possihle to characterize those linear shift registers that give rise to
sequences of maximal period (called m-sequences). These full length shift registers are the
ones emploved in practice. In addition to having maximal period. it follows that in an
m-sequence all n-tuples appear exactly once {except for the n-tuple of all zeroes).

Now suppose that one is confronted with a binary sequence of length .V which is known
to have been generated by an n-stage linear shift register. It would appear from (3.1) that
any subsequence of 2n consecutive bits

{bO‘ RN b'..’n-]}
could be used to set up a linear system in the unknown coeflicients {a;. - .a,}

by = a1bo + by + - + anba_;
bn+1 = albl + Ozbz + -+ anbn

b?n-l = albn~1+02bn+"'+onb2n—2

which might then be solved. giving the recurrence relation. In practice, the Berlekamp-
Massey [Massey] algorithm. or a variant. is used. This method does not attempt to solve
the system given above but instead finds the coefficients in a recurrence relation that could




have been used to generate the sequence; if the sequence in question is not an m-sequence,
the recurrence relation generated by the Berlekamp-Massey algorithm may be of lower order
than the one actually used to generate the sequence in the first place. The order of the
recurrence relation found by this algorithm is called the linear complexity of the sequence,
and a higher linear complexity generally indicates a greater degree of pseudorandomness.

Although m-sequences have many interesting and desirable properties (not all of which
can be mentioned here), including good autocorrelation properties, we mention some draw-
backs. First, notice that an n-stage linear shift register produces a sequence whose period is
bounded in terms of n. Second, the sequence can be completely simulated from the knowl-
edge of only 2n bits. Of course, these 2n pseudorandom bits are masked in the ciphertext by
the message, just as the message is masked by the keystream, and so finding such a string of
bits generally requires some extra information (knowledge of a small part of the plaintext,
for example). Finally, consider the sequence (of length N)

{0,0,0,--+,0,1} (3.4)

i.e. all zeroes except for the last bit. Since this is an .V-tuple, but not a p-tuple for p < . the
linear complexity of this sequence is V. Hence a very “bad” sequence can have arbitrarily
high linear complexity (m-sequences do not possess this problem).

One means of detecting sequences such as (3.4) is the linear complexity profile [Rueppel].
Given a binary sequence of length NV, we plot the linear complexity of the leading subse-
quence of length i, L,, versus i(i = 1,---..N). The sequence {L,,- -, Ly} is a nondecreasing
sequence of nonnegative integers. For a “good™ sequence, the leading subsequences should
have linear complexity near /2 (since the first ¢ points could be used to determine a recur-
rence relation of order i/2). For the sequence (3.4). the linear complexity profile would be
flat until the last element (L, = 0,1 =1,:--.V — 1), which would then jump up to the linear
complexity of the sequence (Ly = N). This does not follow the line with slope 1/2 and
hence would not be considered a “good” sequence.

Related to the linear complexity profile is the jump complexity profile [Niederreiter]. For
i =1,---, N, we form the first difference of {L,,---,L;}, and define the jump complexity
profile P, to be the number of positive integers (the “jumps”) in the vector of differences. It
is immediate that P, < L;, and for a “good™ sequence it can be shown that P; should follow

the line with slope 1/4 when plotted versus i(i = 1,---, N).

4 Cryptographically Strong Sequences

Are m-sequence pseudorandom? In a sense, they offer almost too much regularity to appear
random. However, they seem to have all the properties we might desire in a keystream-
balance, balanced runs, good autocorrelation, optimal linear complexity with a good linear
complexity profile, and period length that can be made as large as desired. In this sense
they are quasirandom, that is, random enough for our purposes. Of course, all we re-
ally are interested in is a sequence which will give a cipher that is as difficult to break as
possible-pseudorandomness is merely the most obvious method of finding such sequences.
In a cryptographic setting., we generally speak of a keystream as being cryptographically
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strong if 1t would make a “good” kevstream, in a sense that is rarelv made precisc: generalis.
pseudorandomness is a major aspect of cryptographic strength.

There is another pragmatic consideration in choosing a keystream: errors. Because of
the possibility of transmission errors, the encoding used to transfosrm the plaintext to its
binary form S often includes some redundancy so that the code can be error-correcting. For
sufficiently short messages, the entire plaintext may be encoded an odd number of times
and, in the event of discrepancies between the various copies of the message. the majority
rules. Other more sophisticsated methods are often used.

However, keystream errors can also occur. For this reason (among others). the notion
of k-complexity has been proposed by [Stamp]. Since the term k-complexity is also used
in another context in cryptography (namely. in describing certain noclinear shift registers..
we will use the term linear komplexity (of order k) instead. For a given sequence R. the
komplexity of order & is defined as the smallest linear complexity of all sequences which
differ from R in at most k places, which can be interpreted as the worst case result of at
most k errors occurring in the kevstream sequence. For example, sequence (3.4) has linear
komplexity (or complexity of order zero) .V. but the komplexity of order one is clearly zeru.
since changing a single bit (the final one) gives the sequence

{0.0.0.---.0)

which, by convention. has linear complexity zero (the lowest possible}. Hence this kevstream
1s not safe with respect to transmission errors. Another interpretation is to sav that the
komplexity of order one has detected the weaknesses that would have be. seen in the linear
complexity profile.

More generally. a linear komplexity profile can be created. The example (of length .V

(1.1.1.---.1)

(which has unit linear complexity but can be made into a sequence of zero linear complexit
with exactly .V changes) shows that the komplexity of order & should be computed for
k =0.---.N (unless it should reach zero before then). However. at most .N/2 changes can
alwavs give a sequence of all ones or all zeroes (byv changing whichever there are fewer of in
the sequencae—onec or 7eroes). and so the height of the profile is at most unity for values above
N/2. and therefore not especially interesting. The Linear kompiexity profile may be viewed
in two ways. First, a sharp drop for small k indicates a cryptographically weak sequence 1as
a relatively small shift register will approximate the sequence in all but k places). Second. if
the number of potential transmission errors can be estimated. then the resulting worst case
linear complexity can be checned for acceptability.

5 Chaotic Keystream Generation Schemes

Linear shift registers are commonly used for the generation of kevstream sequences (generallv
with their output further scrambled by a nonlinear Boolean function before being used ir
the cipher). However. their fixed maximal period (for a given number of stages) and the fac:




that they can be perfectly simulated from a relatively small number of bits of pure keystream
(2.V for an .V-stage register, using the Berlekamp-Massey algorithm). are causes for concern
For this reason it is important to investigate other methods of running keystream generation
An obvious choice for such a generator is a chaotic recurrence relation. One investigation of
such a scheme is reported in [Forré]. who used the Hénon map [Hénon}

Ty = 1—1.4ri+y,,

Ynar1 = 3Yn

(where (ro.y0) may be chosen anvwhere in a certain quadrilateral which includes the origin
as the basis of such a scheme. Her approach was to consider the strange attractor {Fig |.
generated by the map (independent of the initial condition (zo.yo)) and to estimate the
median of the abscissas of the orbits of the Hénon map on this attractor (note that this is
different from the median of the z-values of the attractor). A more accurate investigation
of this scheme was carried out in [Hevman 1]. where it was determined experimentally tha:
the median r -value of an orbit on the attractor is

r = .409

v F

independent of the initial condition. We now choose an initial condition and iterate tne
Hénon map. giving the orbit

(Ty oy X2y frayar.

and we gererate a corresponding binary sequence by using the median value as a spii* poir

(Fig. 21, 1. e
R‘z{l iz, > 1 .

0 otherwise

giving a binary sequence R. called a binary Hénon sequence. Hevman has shown jexperime:.
tallv) that such sequences have extremelv long periods (as might be expected from a chaot:c
map). are balanced. and have good autocorreiation properties and linear complexity profile
However. as noted also by Forre. the runs are poorly balanced: subsequences containing pr:-
marilyv alternating patterns of zeroes and ones tend to occur noticeably more frequently tharn
those containing longer runs of all zeroes or all ones (although runs uf consecutive ones as
long as 23 have been found by this author). In fact. [Fontanal has shown that the four-tupie

{1.1.0.0}

can never occur with this split point (and eight of the thirty-two possible five-tuples are unre-
alizable, including the five-tuple of all zeroes). Despite the attractiveness of the high periods.
this is enough to rule out Hénon generated kevstreams. Preliminary work indicates that using
a single split as in (3.1) on other two-dimensional maps possessing strange attractors lead~
to similarly decimated n-tuple profiles. even for relatively small values of n [Leader!. This
is unacceptable for cryptographic purposes: however. since a chaotic map must be home-
omorphic to the shift map on two symbols [Devaney!. there must be a way of convertins




the dynamical sequence into a binary sequence-namely. the topological conjugacy-suci: "Lt
perfect balancing of the runs is obtained. Evidently (5.1 is not such a homeomorph:sn..
despite its suggestive similarity to the topological conjugacy used to conjugate the quadrat;c
map to code space {Devaney].

The logistic equation. a chaotic map. was one of the first computer pseudorandom nur:-
ber generators ever .ised [Peitgen]. and research continues on the possible use of chaotic
dynamical syste, . as pseudorandom bit generators. Other nonstandard (and nonchaotic:
methods of ;' _udorandom number generation are being investigated as well Nisan'.

6 Conclusions

In cryptography as well as in other areas (such as simulation). there is a need to produce
large numbers of pseudorandom numbers quickly and without certain statistical defects. The
particular criteria to be met depend on the application but, in cryptography. generally in-
clude balance. balanced rurs. good autocorrelation properties. and a good linear compiexir-
profile: a large period is also desirable. Linear shift registers are the most commonit use
method {generally in conjunction with a nonlinea:r Boolean function to further mask the
output). but they have certain drawbacks. Chaotic discrete dynamical systems appear to
offer an interesting alternative. but more work 1s necessary in this area. Initial investigat.on-
indicate potential problems (the balancing of the n-tuples: but also potential pavoffs the
high periods and the nonlinearity. a defense against linear attacks). In ‘Heyman 2’ evidence
1s presented that a simple artificial neural network can identifv the type of kevstream use
(linear shift register vs. Hénon vs. linear congruential pseudorandom number generator: as
well as simulate a linear shift register (in the fashion of Berlekamp-Massev. althoueh us-
ing more bits: and effectively predict the next Hénon bit at about T0% accuracy. violatinz
the next-bit test. This research highlights additional weaknessess of both the linear anid
nonlinear methods: however. the fact that the neural net completely simulates 1j. e. gives
perfect prediction for) the shift register but is imperfect for the Hénon method shows another
advantage of the chaotic keystream generator 1at least for this type of attack:.
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