
AD-A264 731

RL-TR-92-315
Final Technical Report
December 1992

AN APPROACH TO SOFTWARE
QUALITY PREDICTION FROM
ADA DESIGNS

The MITRE Corporation

W.W. Agresti, W.M. Evanco, M.C. Smith, and D.R. Clarsor°,

41Y 1j. 1993~MAU

APPROVED FOR PUBLIC REL EASE, 0IS TRIBU TION UNOIMITED.

0 toy93-10101:•80 7 0.. a !l!lllI"'l!.Il~ii'li!!

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

This repor, has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-92-315 has been reviewed and is approved for publication.

APPROVED: (/)

ANDREW J. CHRUSCICKI
Project Engineer

FOR THE COMMANDER

JOHN A. GRANIERO
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form Arpproveoc

"REPORT DOCUMENTATION PAGE oFa o Appr oled

Pubir Wc"x braefo ttisk coledxnri cf u1ozmgxylis e~urTgm2 tower" I racitpw resweoe - mve~wr.i3reat~iaG leaZ~ a c - IK ;

gatffr- and ffnW-rtw rec tt nedga and caTW "W)0~revevnr tte co1aial rtormstonz Serd cr1T sfWa1 l t Vk1 *r II'a C. "0 IVe

Cocxro ifoToen r *V a.M* g S gesxY1S tor ret 5V trIS budar- to WMa-r'o~r Hea=ýWS SGIViCe. Orectortze fy llr"IaO~x~n Vortr r-

I'w~JIW SLA9 1204, A,*1VcYt VA 222022-43O wid to3 t Offe. d Mwagerwitax "&kipet, Pa*~rroa PgdtAlroPforec (07D44l04P WasEqc;,

I AGENCY USE ONLY (Leave Blank) 2. REPORT DATE i3. REPORT T`YPE AND DATE* CONL DT
December 1992 vF [a1 u t S9 9i"cp i

4. TITLE AND SUBTITLE 5, FUNDING NUMBFRS

AN APPROACH TO SOFTWARE Q'AI, TY PRED)ICTION FRO>T A)A 9ESIGNS -DESIGN-S9-(-(a' F

-1 1 PR - Fi
8. AUThOFR(S) T[A - 1

W. W. Agresti, W. M. Evanco, M. C. Smith, 1). R. Clarson A- i

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSE) -. PERFORMING ORGANIZ.ATIO

The MiTRE Corporation REPORT NUMBER

Washington C3 Center MTR-90W00135
7525 Colshire Drive
McLean VA 22102-3481

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGWMONITORIN0J7

Rome Laboratory (C3CB) AGENCY REPORT NUMR•[W

525 Brooks Rd

Griffiss AFB NY 13441-4505 RL-TR-92-315

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Anirew J. Chruscicki/C3CB/(315) 330--4J6

12a. DISTRIBUTIONIAVAILABIUTY STATEMENT i 2b. DISTRIBUTION CODE

Approved for public release; distrib-;tion unlimited.

13. ABSTRACT(IM'd2wwo, 2 s)

An ongoing research project on estimating software quality from Ada designs is

discussed. The research is motivated by the need for technology to analyze designs,

when they are first represented, for their likely effect on quality factors. The

objective of this research ib to build multivariate models relating design character-

istics and environmental factors to reliability and maintainability. Early results

of the research are discussed, including alternative definitions of reliability and

maintainability, a representation of Ada design structure, characteristics of sot twarc,

project data used for analysis, and preliminary statistical results testing hypotheal)s

concerning the effects of design structure on reliability and maintainability.

14. SUBJECT TERMS IS, NUMBER OF PAGES

Reliability, Maintainability, Software Design, Ada, Software 64

Quality, Metrics, Measurement, Prediction IS PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABS SR AC I
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASS I F I lD UNCLASSIFiED UNCLASS 1, FI ED

. 15401 I5 xm FcvI " p

S•t, V,

ABSTRACT

An ongoing research project on estimating software quality from Ada designs is discussed. The
research is motivated by the need for technology to analyze designs, when they are first represented.
for their likely effect on quality factors. The objective of this research is to build multivariate models
relating design characteristics and environmental factors to reliability and maintainability. Early
results of the research are discussed, including alternative definitions of reliability and
maintainability, a representation of Ada design structure, characteristics of software project data used
for analysis, and preliminary statistical results testing hypotheses concerning the effects of design
structure on reliability and maintainability.

KEYWORDS: software engineering, software measurement, software quality, software reliability•
software maintainability, Ada

k&ocssion Por
ý- DTI T A, S[-

By

AvlVZ.1d,oilltr'i Col;0

i it

EXECUTIVE SUMMARY

This report describes preliminary results from an ongoing research project on software quality
prediction from Ada designs. The research is supported by the Mission Oriented Investigation and
Experimentation (MOTE) program of The MITRE Corporation.

The research objective is to establish a capability to project a software system's reliability and
maintainability from an analysis of its design. The technical approach is to build multivariate models
for estimating reliability and maintainability. Independent, explanatory variables in the models
represent architectural design characteristics. Additional explanatory model variables are
environmental factors to account for the effect of the organization and its development process.

Ada designs are analyzed because Ada is increasingly being used as a design language, thereby
enabling automated design analysis. An investigation of Ada system structure yields a design
representation consisting of compilation units and relations among them. Fifteen kinds of Ada
compilation units aid five relations are defined as building blocks of Ada systems.

Data from four projects have been analyzed thus far to test our hypotheses about various design
structures leading to defect-prone or unmaintainablc systems. The four projects total 183,000 non-
comment, non-blank source lines of Ada, comprising 21 subsystems which are the units of
observation in the analysis.

Design characteristic variables highlight the interconnection and resource-sharing mnong
compilation units. Environmental factor variables provide for effects of reusability and software
changes.

Reported results are preliminary because additional project data is being obtained and new
hypotheses are being developed and tested. Multivariate regression analyses were conducted with
different sets of variables. The resulting models explain 60-80 percent of the variation in reliability
and 40-50 percent of the variation in maintainability. Reliability was measured as defect density;
maintainability, as the percentage of simple defect corrections.

Research is continuing through developing new hypotheses and seeking additional data to enable
new variables to be introduced into the models. Additional data will also lead to stronger statistical
results which are needed to meet the objective of building useful quality estimation models.

V

ACKNOWi G• M J IEMNI1NTS

The authors acknowledge the contributions to this research of Frank McGarry and Jon Valctt of
the Software Engineering Laboratory (SEL) at the National Aeronautics and Space Administration
(NASA)/Goddard Space Flighi Ccrntcr (GSFC) in allowing us to use SEL project data. Review
comments of MITRE colleagues, Frank Maginnis, Arlene W usterbarth, Roger Duncan, Tom Smith.
Brad Ulery, and Torn Walsh are appreciated.

TABLE OF CONTENTS

SECTION PAGE

Introduction 1-

1.1 Background and Research Objective 1-

1.2 Software Quality Research 1-2

1.3 Research Approach 1-3

2 Reliability and Maintainability Measures 2-1

2.1 Reliability Measures 2-1

2,2 Maintainability Measures 2-3

3 Design Hypotheses and Structure 3-1

3.1 Design Hypothescs 3-1

3.2 Representation of Ada Designs 3-3

3.2.1 Ada Program Units 3-3

3.2.2 Ada Compilation Units 3-4

3.2.3 Dynamic Creation of Task Objecs 3-4

3.2.4 Design Units 3-6

3.2.5 Design Relations 3-6

4 Preliminary knalysis Results 4-1

4.1 Project Characteristics 4-1

4.2 Statistical Analysis and Model Building 4-3

4.3 Selection of Dependent Variables 4-6

4.3.1 Reliability 4-6

4.3.2 Maintainability 4-7

4.4 Selection of Independent Variables 4-8

4.4.1 Context Coupling 4-8

4.4.2 Visibility 4-11

4.4.3 Import Origin 4-12

4.4.4 Internal Complexity 4-12

4.4.5 Volatility 4-12

4.4.6 Reuse 4-13

4.5 Preliminary Statistical Results 4-13

4.5. I Reliability 4-13

4.5.2 Maintainability 4-19

5 Summary

vii

SECTION PAGE

List of References RE- I

Glossary GL- I

viii

LIST OF TABLES

TABLE PAGE

3-1 Ada Compilation Units -

4-1 Project Data Element Definitions 4-2

4-2 Characteristics of Projects 4-4

4-3 Characteristics of Subsystems 4-5

4-4 Independent Variables Used in Statistical Analysis 4-9

4-5 Descriptive Statistics for Model Variables 4-10

4-6 Log-Linear Regression Results for TOTDEFSL 4-15

4-7 Log-Linear Regression Results for SYACDEFSL 4-16

4-8 Three-Variable Log-Linear Regression Results for TOTDEFSL 4-17

4-9 Three-Variable Log-Linear Regression Results for SYACDEFSL 4-18

4-10 Estimates for Maintainability 4-22

ix

SEICTION 1

INTRODUCTION

This report describes prcliminary results from a continuing research project on soltware quality
prediction from Ada designs. The project is supported under the Mission Oriented lnvcstigation and
Experimentation (MOlE) program of The MITRE Corporation.

This section discusses the background and objective of the rescarch project. a perspective on
software quality research, and the research approach being pursued in this project.

1.1 BACKGROUND AND RESEARCH OBJECTIVE

High quality software is essential to the success of mission-critical systents. Dcsign
characteristics are important determinants of this quality. Decisions made during design can affect
software reliability, maintainability, flexibility, and other quality factors. A shortcoming of most
large-scale software development projects is the lack of information concerning the consequences of
these design decisions until much later in the development process. For exanmpe, it may become clear
a system is not flexible in adapting to changing requirements only after extensive investment of time
and effort to implement the design, and to integrate, test, and use the system. Inflexibilily of such a
system may be traced to design-structuring decisions made much earlier in the development process.

Greater capability is needed during the design phase to assess the design itself for indications that.
when implemented, the resulting system will have particular quality characteristics. The government
has an especially strong need for sucn early design assessment capabilities because it expects
delivered systems to be reliable and supportable over long operational lifetimes. For example,
maintainability, which may be measured by the case of finding and repairing software defects, is
critically important during the operational phase. However, maintainability is principally a desir•n
characteristic; that is, the ease of software maintenance is strongly determined by design decisions.
Decisions about allocating functions and data to elements of the system affect the case of repairing
defects in the future.

The use of Ada for mission-critical software development presents an opportunity to more
effectively evaluate software design. Prior to the dcvclopzncn: , Ada, desitm products were typically
diagrams and text in documents. Assessing design quality required a labor-intensive examination oi
these documents to understand design relationships. For Ada projects. key design relationships can
be represented in the language itself, The resulting Ada design representiticn is a new intermediate
product, capturing software design relationships in the Ada language. Using Ada during design cases
the transition from design to implementation, since the products of both phases arc expressed in the
same language. Also, the Ada design representation can bc checked by an Ada compiler and can be

I-1

analyzed by other Ada tools, otferine s'. pportunitv to autojlliIj part ot thle design c valuation
process. This role for Ada as it i: language has been rccognitcd as Amecrican Nationial Standards,
Institute (ANSI)/Institutc of F-- itcal and Electronics Eng~ineers (IEEE-) Standard 990(1-987 1l1,

In this report, we discuss a research project onl thle cvaluation of the quality of '\da-bascd designs.ý
An effective quality' projection capability would enable a dcvclopmcnat team it) begin corucctive ac'Tion
immtediate'. thiis research includes establishing relationships, betwecen de si,-n ehiiractc ristic:s and thec
quality of ,je software product. We view this research as one thrust in a continuing effort to expand
upon and refine software quality models.

1.2 SOFTWARE QUALITY RESEARCH

Software quality is thle dlegree to which software posses~ses, desired attributes. One such set ()I
attributes, developed by Rome Air Development Center (RADC). includes teCl iaN lit)'. c14ic inCM V
integrity, usability, survivability, correctness, maintainabil ity', N en tiabil ity. portab ility. reusabilIity.
interoperabi lity, expandability. and flexibility [21. This comipositc nature of- software quality

encuraes an approach to measuring it by addressing its indfividual at:r~utes. OF these 13 atuributes,.
reliability and maintainability are among the most critical constituents of software quality and(The
easiest to measure. Also, data for these quality f-actors is increasingly bcing, collected onl software
projeCts. For these reasons, reliability and maintainability are the initial quality faictors addressed in
this research.

Reliability and maintainability -.re associated withl events (systemi failures) and activ itie's
(correcting code) which occur after the imiplementation phase. 'Our perspective is that these events
and activities are influenced by design characteristics. The thrust of our research is to Investigate
relationships of design characteristics to reliability and maintainability. If such relationsýhips exist.
then we will have the basis for projecting the potential quality of a software pr~dLIC', in termis 01'

characteristics that manifest themselves during design. We want to test thle hvpouiesis that the quality
of an Ada system can be predicted front analyzing itsdei.

Prtevious software quality nieasureiluent studies have propos'ed measu.1Lres thalt r'elate Jdcsign or code
features to software reliability. Most of this work, howecver, ha~s been tocused onl a- sinfle
characteristic or oriented toward program mnodules ratieir than large software sy stemsý or subsystemsw
as units of observation.

Thle cycloniatic complex ity measure ol McCabe has, beeni correlatedi with soflware reliabilit, 131.
Henry and Kafura showed thle relationship of their data flow mecasure to ref iahility 141. Ixtenisions of
these control flow andI data flow metrics are reported in 151 and 16.1. respecti velv. Mowe relevant to the
current research. Card aind Aigrcsti (defined a sys tem- level detsignl me1asulre that inlcorporte 1dcý ontrol
flow andl data flow for FORTRAN designs andl shows at stro'n2p cone ~taion wkith ic IiaN i dv 171.

1 2

Nea:rest to this research in its objectivcs is thle development of COQUAMO, thle C'0nstructiveC
QUAlity MOdel to estimate software quality [81. ('OQUIAMO is sponsored by the Luropean
Strategic Program for Research in Information lechinology (ESPRIT). COQI.AIN() dliffetrs from our
research by basing its estimate of sot tware quality onl the observed quality ot previOUs pro jctsý
implemented by thle samec organization. Our research is basing the estimate onl the design Itself:
essentially projecting the quality of the complete systcmn from the analysils of' thle design struct"ure of
that sv ste n

1.3 REFI'ARCH APPROACH

Our approach differs fromi most previous work in two respects, First, we intend to buil d
multivariate modes that incorporate more than one desigzn characteristicý to explain a quality vct

Just as there are many dimensions to software quality, there is more than one dimension to
charac.ýterize design comiplexity, (91. To the extent these decsign cornplexitty characterizations are
relatively uncorre lated, they will each contribute incrementally to the explanation of sof tware qual Ity.

Secýond, we recoetnize differences in the way organizations develop softwar-e. One organization
may relyý on softwvare reuse more heavily than another. Orgyanizamions (liffer in the experieceic levells
of('their software developers and the effectiveness of'their approaches to testing. Such factors. cailled
environmental factors, influenice software quality. including environmental factors enables, the
models to describe at variety of software development organizations and processes, and, hience. hiave
potentially broad applicability.

The general form of tile multivariate quality estimation mlodel, which wve will ref-cerence in this
report as the qua!lity eqluation. is ats follows:

Y =f (DC. DC,-... DC11 EFI FF..,EF [a!, a2 . a)+Ceh

Y: thle specific quality factor (exg., reliability or maintainability)
DC'i: the ithl design characteristic variable(i1,.,n
Il -- I the ith env ironmental f'actor variable (i=I..,)

a i: the ith parameter (i= 1-.,p)
e: dlisturbance term [or unexplained variation.

'The paramelters in thle quality equation are estimated fr-om the empirical data by IIIultivariate
tedl in iq tics st-ih as inear regression analys is or max inmumil ikchil iood xlstin i at ion. Notal '11 "ariat i ns
in ; q ual ity fiector arc explainable by *the variables DCi and EF. included iii the equatio n. *l'h
ListurIbace term. in effec:t, reveals thec extent to which thle modxel variables do not explainl sot' 11aC

qua~liit%.

1 -3

Four steps are involved in building thwi software quality model: specification, statistical
estimation, verification, and application. The specification step involves a statement of the
st uctural form of dlic model. A specific functional form of the quality equation is identified,
relating Jie design and environmental variables to the parameters. Typical functional foirms for
regression analysis are linear and logarit 'fic. More complicated functional forms may require the
use (I non-linear meth•ls.

Th, statistical etimation step determines specific values for the parameters in the quality
equation. Mo.t approachs for esti:,iating these ramuneters arc based either on least-squares or
maI imun likelihoodl techniques. Empirical data must be collected and processed for statistical
analysis. The estimation step involves measures of overall goodness of fit for the equation, as well
as measures of the standard errors of the individual paranmeter estimaý.tes.

The 'verification step is concerned w ith decision rules to determine the success of the motdel.
A'ccuracv of the moxlel in forecasting the quality of new syste'., (prediction) is important.
Altcmati clv, undcrstanding the effect of changes in specific design c,,."acteristics on quality
ipr•scription s another way to use the motlel. In either case, criteria for acceptance or rejection of
W.he modcl must be C sta',lished and applied.

The application step concerns the use of the model in a context that was not used to estimate
jir' parameters. If the parameters were estimated on the basis of an ensemble of projects, then the
model should be applied to new projects to validate its predictive or prescriptive capabilities, and to
understand its limitations when applied to new environments.

'his four-step approach to model building is being pursued in this research. The preliminar'.
rcuits of this approaach arc prcscnted in section 4.

t-4

SECTION 2

RELIABILITY AND MAINTAINABILITY MEASURES

As a first step in building multivariate models in tile form of the quality equation (introduced in
section 1), we established definitions for measures of reliability and maintainability. We allowed
several definitions for each quality factor to account for the diverse availability of data in
organizations in which the models may be used.

Several measurement issues were addressed in the)rocess of identifying appropriate definitions.
One issue is the trend toward user-oriented rather than developer-oriented measures. An example is
the use of failure-related measures of reliability instead of de fect-rclated measures. Failure-oriented
measures are preferred because they express reliability in terms of users' satisfaction with the
operation of the software [10]. Defects are manifestations of errors made by the developer: still of
interest but not directly addressing user experience. A second issue is the time frame during which
the measures apply: before the release of software for production (pre-release) or after its release
(post-release). Failure data is most often collected post-release, although data may be gathered during
testing, in which the post-release environments are simulated. Defect data is more generally available
and collected pre-release. A third issue is the recognition that t, .th calendar time and execution time
arc possible measures of the time period over which reliability is expressed. Definitions must be
explicit on the time measure used. Musa et al. 1111 discuss the relationship between calendar time
and execution time for software.

We recognize that the reliability and maintainability measures in this section are not complete.
An abundant literature exists in sottware measurement (see, for example, [111 , [121. and [131). We
regard the collection of measures presented here as a 'working set." open to expansion over time.
Three measurement trends not represented in the current working set are (1) composite meutics (e.g..
[141), (2) metrics that stratify errors and changes, for example, by severity 1151, and (3) relative
mctrics. To sidestep the issue of size or time being the more appropriate normalization factor, relative
metrics compare two quantities with identical units. A relative metric for maintainability is the ratio
of maintenance productivity to development productivity. Measures reflecting these three issues are
certainly candidates to enter the working set in the future.

Our current research focuses on only a fcw of the measures cited below.

2.1 REIlABILITY NM EASUJRES

Reliability is understood informally as the confidence that software will perform without failing.
More formally, reliability is defined in ANSlIIEEE Standard 982.2-1988 as the probability that

2- 1

software will not cause the failure of the system over a specified time interval under specified
conditions [I ,

Reliability measures span a spectrum that bases definitions successively on failures, faults,
defects and errors. In this sense, the definitions range from user-oriented (based on failures) to
developer-oriented (based on errors).

For our research, we identified seven reliability measures, as follows:

RI: Probability of failure-free operation over a specified time interval in a specific
environment--e.g., R(8) = 0.94 means "the probability is 0.94 that the software will
operate without failure over the interval 0-8 (hours)".

R2: Failure rate--number of failures (e.g., software "problems" reported) per unit of time,
e.g., 0.01 failures per hour of execution time.

"* R3: Time between failures--elapsed time between successive failures, often expressed as
the mean or median of such times. This measure is the inverse of R2.

"* R4: Fault density--number of faults divided by software size, e.g., 0.5 unique faults per
thousand source lines of code (KSLOC).

" R5: Defect density--number of defects divided by software size, e.g., 0.8 unique defects per
KSLOC.

"* R6: Error density--number of errors divided by software size, e.g., 0.4 errors per KSLOC.

R7: Reliability rating (from [21)--crrors per line of code, subtracted from unity, c.g., 3
errors per KSLOC yields a reliability rating of 0.997 (= I - [3/10001).

We acknowledge taking liberty in identifying R4 through R7 as measures of reliability. If
reliability is defined in terms of failures, R4 through R7 are measuring reliability-related quantities.

Measures RI through R3 depend on accurate failure occurrence data. These three measures are
more clearly defined by using computer execution timc. If calendar time is used instead, people using
the measures may not be aware of the assumed usage level of the system over the calendar time
period. Also, failures typically refer to system failures in a hardware;software system. Our locus oi
software reliability causes us, for a hardware/software system, to concentrate on software-induced
failures in the system.

Measures R4 through R6 are d(isringuished by their reliance on three frequently confused terms:
fault. (Icfect, and error. We use tile following ANSIL t1E-1 Standard 982.2-1MMX definitions Ill:

Fault: an accidental condition that causes a functional unit to fail to pcrform its required
function; a manifestation of an error in software.

" Defect: a product anomaly; examples include such things as (1) omissions and
imperfections found during early life-cycle phases and (2) faults contained in software
sufficiently mature for test or operation.

"* Error: human action that results in software containing a fault.

These definitions illustrate that measure R4, relying on faults, cannot be as broadly applied
throughout the life cycle as measures R5 and R6. Data for R4 depends on software being d&veloped
and available for testing. R5 and R6 can be computed using data on defects and errors associated
with pre-implemcntation activities like design.

Although failure-based, post-release measures (e.g., R 1, R2, and R3) may be preferred. necessar%
data may not be available to support their use. The alternative of applying fault. defect, and error-
based measures before release still may be suggestive of post-release experience. Empirical studies
(e.g., [12]) have shown positive relationships between defect densities measured pre-rclease and post-
release.

The reliability rating, R7, derives from the software quality framework of Rome Air Development
Center 121. Like R6, measure R7 uses error data; however, R7 produces a rating in the range of zero
to one. Also, unlike R2, R4, R5, and R6, higher values of R7 correspond to higher reliability.

The reliability aspects of this study will focus on measure R5.

2.2 MAINTAINABILITY MEASURES

Maintainability may be defined informally as the case with which software can be maintained.
We are viewing maintainability as referring exclusively to the case of isolating and correcting faults.
Our focus is on corrective maintenance rather than adaptive or perfective maintenance 161. This
view is consistent with the software quality framework in [21, in which the separate quality factors of
expandability and flexibility refer to the ease of enhancing the software.

We identified eight maintainability measures. Four measures arc based on the effort required to
perform maintcnance. Three other mcasures use, as a proxy for effort, the number of modules
examincd as well as changed, and thc lines of code changed. The last measure focuscs on the deinrcc
of success in performing maintenance actions. The eight maintainability foeasures, for purposes of
our research, are as follows:

2-3

MI: Effort to correct--mean number of staff hours required to isolate the cause of a failure,
to develop necessary corrections, to conduct any necessary unit and regression tests, to
install the corrections, and to update all relevant documentation.

M2 Time to repair--number of wall-clock hours required to perform a corrective
maintenance task, often expressed as the mean or median of such times.

M3: Maintainability Rating (from [21)--one-tenth of the mean number of' staff days to
perform a corrective maintenance task, subtracted from unity, e.g., if it requires 2 staff
days, on average, to perform corrective maintenance, the maintainability rating is 0.8,
if greater than 10 days are required, the maintainability rating is zero.

M4: Easy fix frequency--when staff effort to isolate and repair a fault is available as ordinal
data (e.g., easy, medium, hard), this measure is the percentage of corrections in the
desirable (lowest effort) category.

M5: Module handling impact--mean number of modules examined while performing a
corrective maintenance task. A variation of M5 is the fraction (of total modules)
examined.

M6: Module change impact--mean number of modules changed while performing a
corrective maintenance task. A variation of M6 is the fraction (of total modules)
changed.

M7: Code change impact--mean number of source lines of code added, deleted, or modified
during a corrective maintenance task. A variation of M7 is the fraction (of total source
lines of code) added, deleted, or modified.

M8: Miscorrection frequency--the percentage of corrective maintenance actions that caused
new faults to be introduced, or failed to correct the original fault.

Measure MI is frequently used because of a high availability of supporting data and its
interpretation of ease of maintenance as staff effort [17,18].

Measure M2, especially as mean time to repair (MTTR), is used in hardware maintainability
analysis. It requires a history of failures and an accurate log of the time to repair the faults causing
the failure. As Sunday [191 confirms, this information is typically not available. MTTR is most
relevant for software when the integrated hardware-software system is counted on for very high
availability such as in high-volume transaction processing or reservation systems. MITTR is the mean
time to restore a system to an operational state after a software failure renders the system non-
operational [201.

2-4

The maintainability rating M3 parallels R7 in its calculation of a measure in tie range zero to one
[2]. Also, higher values of M3 (and M4) correspond to higher degrees of maintainability.

While measure M4 (easy fix frequency) is also based on staff effort, it reflects a difference in
measurement scale. The collection instrument for maintenance data may be a form completed by a
maintainer. To simplify completion, the form may require the maintainer only to indicate effort by
checking a box corresponding to easy, medium, and hard or similar ordinal ranking. The maintenance
aspects of this study will focus on measure M4.

Measure M5 (module handling impact) is derived from Bclady and Lehman's study of the
evolution of OS/360 [21]. For successive OS/360 releases, they measured the number of modules
handled; that is, examined for possible change and, if necessary, changed. The rationale for M5 is
that more difficult maintenance corresponds to handling more of the system. The same rationale
underlies measures M6 (module change impact) and M7 (code change impact). Greater effort is
expected to be reflected in more modules and code being changed. Measures M6 and M7 are
frequently recommended for maintainability [121. Both measures (and M5 as well) have a benefit of
potentially easier data collection. Configuration management systems may provide automated
support for calculating these measures, while measures like M I may require manual collection of
effort data. Schaefer observes also that measures M4, M5, and M6 have an additional benefit of not
depending as much on staff experience as do maintainability measures based on staff effort [22J.

Measure M7, miscorrection frequency, focuses on a different aspect of maintenance: Did the
maintenance action introduce new errors or fail to correct the original fault? An indication of
maintainable software is a high percentage of maintenance actions successfully repairing reported
faults without introducing new ones.

2-5

SECTION 3

DESIGN HYPOTHESES AND STRUCTURE

An important aspect of our research is relating design decision-making to design artifacts and,
ultimately, to reliability and maintainability. This section discusses these relationships and how they
suggest hypotheses about variables to enter our models. Ada design structure is studied to learn how
the design artifacts will appear. The analysis leads to an Ada design representation which serves as a
basis for defining design characteristics for our model-building activity.

3.1 DESIGN HYPOTHESES

We are developing hypotheses that particular design patterns relate to reliability and
maintainability of the implemented system. Our view is that these design patterns are the result of
design decisions. In this sense, our hypotheses encompass design decision-making as well as the
resulting artifacts. In considering design decisions, we are not investigating the consequences of
using particular design methods like structured design or object-oriented design. Instead, we
postulate a simple, high-level design process which is sufficiently abstract as to embrace a wide array
of design decision-making.

The design process begins with developers who are starting to design software in response to a set
of requirements. If the developers are able to meet the requirements for system X with a single word
or expression (e.g,, "Do X") then our research does not apply to their situation. Obviously, the more
realistic case is that the solution is much more extensive. As soon as a solution will require more than
a single word or expression, it is possible to speculate about the size, structure, and other attributes of
candidate solutions. Developers necessarily must decide how to fashion some arrangement of pieces
that, taken together, meet system requirements. Each piece, or design unit, has a role to fulfill in the
overall design. Our view of the design process model assumes solely that the software can be viewed
as a set of such design units and relations on the set.

We use the term "design unit" to retain the generality we seek. In practice, developers may
consider design units to be subsystems, computer software components (CSCs), objects, processes,
tasks, modules, packages, or other entities. Similarly, we refer to a design relation to include any
relation on a set of design units. Simple relations, using modules as design units, include the
following:

"* Control coupling--one module can potentially call another module.

"• Data coupling--data from one module is made available to another mnodule.

3-I

Decisions in our simple design process result in design artifacts which may be characterized by the
following attributes:

"* Number of design units.

"* Kinds of design units (e.g., tasks, modules) and their frequency of use.

"* Number and kinds of design relations and their frequency of use.

We hypothesize that complex designs are more likely to correspond to sottwarc that is defect-
prone or difficult to maintain. We see evidence of complexity in high interconnection (e.g., numerous
relations) among the design units.

Other design decisions lead to resources (e.g., subprograms and objects) declared in particular
design units. As units need resources from other units, patterns of resource sharing emerge. We view
extensive resource accessing among design units as contributing to complexity.

Both notions of complexity--high interconnection and extensive resource accessing are explored
in section 4.

To illustrate the linkages we see among design decisions, the design artifact, and resulting quality,
consider the following example: A project has reached the stage in which developers are providing a
scheme for storing and retrieving data from a database supplied and maintained by a separate
organization. Suppose the developers decide all access to the database will be provided by design
unit X. Other units requiring data from the database will not access the database directly, but instead
will call on unit X. This decision has consequences in the architectural design of the system.
Examination of the design artifact will reveal access relations only from unit X to the database. We
would expect numerous access relations from other units to unit X. Had the decision instead been
made for units to directly access the database, we would detect differences in the artifact, namely, the
absence of unit X and the presence of numerous access relations from other units directly to the
database.

A single design decision can affect many quality factors, like reliability, maintainability, and
flexibility. Continuing the example, a decision not to create unit X to handle database access may
lead to more difficult maintenance and more defects. Suppose a task leader misunderstands the
cornmand format for accessing the database and communicates the incorrect information to the
development team. Several developers may then implement modules with incorrect database access
commands. Such a defect may persist through code reading and unit testing. Code readers, relying
on incorrect information, may not see the code as defective. Unit testers may not actually access the
database, but, instead write test code to emulate the database input and output.

If access to the database is finally provided in integration testing, the defect may be detected.
Correcting the defective code would require handling all modules that used the faulty database

3-2

commands. Also, whenever a module is handled, the potential exists for a new defect to be
introduced.

This example traces the relationships we see between a design decision, its observable
consequences on the design artifact, and the possible effects on maintainability and reliability.

3.2 REPRESENTATION OF ADA DESIGNS

We developed a representation of Ada designs to serve as the basis for identifying design
characteristics. Our interests centered on representing system-level architectures, rather than the
control flow and data flow within individual procedures. The approach, following section 3.1, was to
view Ada systems as being composed of design units ("parts"), and design relations ("conncctions").
The representation of software architectures as "parts" and "connections" is similar to representations
used by other investigators (see, for example, [231 and [241). We developed a particular architectural
representation for Ada: one that provides a level of granularity appropriate to our consideration of
hypotheses about the way design artifacts reflect design decisions. The benefit this provides to our
research is having key architectural relations expressible in a machine-processable form.

Our sole as~u..put, waN rigt dii Ada design representation be compilable. Assuming
compilability, we examined the system structuring rules in the Ada language reference manual [251.
Our objective was to identify Ada language constituents that were candidates to serve as design units
and design relations. The first three subsections discuss the results of our examinat n of Ada
program units, Ada compilation units, and the issues related to the dynamic creation of task objects,
Our decisions concerning design units and relations are reported in the remaining two subsections.

3.2.1 Ada Program Units

Ada programs are composed of the following program units: generic subprogram, generic
package, subprogram, package, and task. Each program unit consists of a separate specification and
body, with two exceptions: a non-generic subprogram specification is not always needed, and certain
packages and generic packages do not need a package body.

Generic units are templates which are instantiated to produce non-generic subprograms or
packages. Generic subprogram declarations, generic package declarations, generic subprogram
instantiations, generic package instantiations, subprogram declarations or bodies, or package
declarations may be compiled as library units. These may then be imported (via the Ada "with"
clause) to provide the context for other compilations.

Program unit bodies nested imniediately within library unit bodies may be declared as body stubs
with the corresponding proper body compiled as a separate subunit. Subunits, in turn, may contain
program unit bodies declared as body stubs, In this way, nesting can extend to multiple levels.

3-3

Task units may be declared as single task objects or as task types which are templates for any
number of task objects created at run-time. Each task object represents a separate thread of control
which is scheduled for execution by the Ada run-time environment.

3.2.2 Ada Compilation Units

In addition to a program unit, an Ada compilation unit emerged as likely candidate to serve as a
system building block. According to the Ada standard [25], "A program is a collection of one or
more compilation units submitted to a compiler in one or more compilations." Fifteen different Ada
compilation units were identified (table 3-1). A compilation unit is described in table 3-1 as
consisting of a program unit and a designation as either a specification, body, instantiation, or subunit.
Table 3-1 further identifies the compilation unit as a library unit or secondary unit or (in the case of a
subprogram body) both.

3.2.3 Dynamic Creation of Task Objects

A task is one of the five Ada program ,nits; i task subunit is one of the fifteen compilation units
from table 3-1.

Each task object declared during program execution provides a separate thread of control
scheduled by the Ada run-time environment for its activation, synchronization and communication
with other task objects, and termination. Limited static analyses could be performed for single task
objects declared immediately within the specification or body of library packages or library package
instantiations since these declarative regions are elaborated exactly once before execution of the main
program begins. It is likely that task objects in the declarative part of the main program also would be
elaborated exactly once since it is unlikely that the main program would be recursively called,

Task type duclarations visible to the main program or to other task bodies may be used as the
designated type in an access type declaration and as component types in a composite type. This
allows any number of tasks to be created by the elaboration of object declarations and the execution of
allocators at run-time. This requires dynamic analysis of the program units to determine the
complexity of the system operation. Any model for the intended interaction of these tasks probably
would need to be provided by the system designer together with a method of ensuring that only the
required number of task objects were created (luring system execution. We find it difficult to
envision a general analysis method being devised to predict the number of task objects that could be
created by a particular set of Ada compilation units. Any alternative method for synchronizing and
communicating multiple threads of control probably would be as complex as the corresponding
system of Ada tasks and would have the disadvantage of being less well understood. This analysis
caused us to defier pursuing techniques for the identification of potential concurrency relations among
tasks.

3-4

Table 3-1. Ada Compilation Units

Compilation
Unit Compilation Unit Name Library Secondary
Number Program Unit Suffix Unit Unit

1. Generic Package Specification Yes

2. Generic Package Body Ycs

3. Generic Package Subunit Yes

4. Generic Package Instantiation Yes

5. Package Specification Yes

6. Package Body Yes

7. Package Subunit Yes

8. Generic Subprogram Specification Yes

9. Generic Subprogram Body Yes

10. Generic Subprogram Subunit Yes

11, Generic Subprogram Instantiation Yes

12. Subprogram Specification Yes

13. Subprogram Body Yes Yes

14. Subprogram Subunit Yes

i5, Task Subunit Yes

3-5

3.2.4 Design Units

Three candidates for design unit emerged from our investigation: program unit, compilation unit,
and a library unit aggregation. We define a library unit aggregation to be a library unit, its
corresponding body (if any), and all subunits for which it is the ancestor library unit (as used in 1251).
Equivalently, library unit aggregation is the library unit's declarative scope.

Compilation unit was selected as the principal design unit for purposes of our research. Our
experience with Ada systems indicates that compilation units are frequently used as the entities for
both project data collection and static analysis by off-the-shelf source code analysis tools.

3.2.5 Design Relations

Focusing on compilation units as design units, we investigated static relationships among such
units. The following observations refer by number to the compilation units in table 3-1 in discussing
the legal (in the sense of [25]) units for each relation.

Ada allows any compilation unit to import a library unit (units 1, 4, 5, 8, 1I, 12, 13 in table 3-I)
through a context clause. A generic instantiation (unit 4 or 11) would reference only the single
generic specification (unit I or 8 respectively) mentioned in the instantiation since any other generic
specification would not provide any entities to be used as actual parameters of the instantiation.

Since Ada allows a body stub to be declared only immediately within the declarative part of a
library subprogram body or secondary unit, only these units (units 2, 3, 6, 7, 9, 10, 13, 14, 15) may be
the parent unit for a subunit (units 3, 7, 10, 14, 15).

A generic unit specification declared in the visible part of a library package specification or
library package instantiation (units 4, 5) may be referenced as the name of the generic unit for a
generic instantiation (units 4, 11). If the context clause contained a use clause for the library unit
(units 4, 5), any tools used to determine the location of the generic unit would need to inspect the
entities declared in the visible part of the library unit or of the generic package specification for the
library package instantiation.

The rules defining the order in which units can be compiled and recompiled form dependencies
among compilation units of a design representation. A legal order for the original compilation of the
compilation units is largely determined by context clauses and body stubs. However an Ada compiler
is allowed to introduce additional dependencies based on the actual compilation order used and
whether compilation units are submitted as separate compilations or included together as a single
compilation. These additional dependencies would affect the legality of subseniuent compilations or
linking operations and the effectiveness ot pragina INLINE for the original or subsequent
compilations. Further, an implementation is allowed to retain compilation units if it can deduce that
some of the potentially affected units arc not actually affccted by changes in recompilation. An
analysis tool for determining the recompilation complexity of an Ada design could identily the

3-6

potentially affected units for a proposed recompilation or possibly be tailored to the rccompilation

rules for a particular compiler,

These observations resulted in the identification of the fbllowing five static design rclations for

purposes of this research; where A and B arc compilation units defined in table 3- 1:

1. Context coupling relation

A "withs" B,
where A: any of the 15 compilation units

B: a library unit (units 1, 4, 5,8, 11, 12, 13 from table 3-1)

2. Specification/body relation

A is the specification for body B,
where A: a library unit specification (units 1, 5, 8 12)

B: a proper body (units 2, 6, 9, 13)

3. Parentisubunit relation

A is the parent unit for subunit B,
where A: a library subprogram body or a secondary unit (units 2. 3, 6, 7, 9, 10. 13, 14, 15)

B: a subunit (units 3, 7, 10, 14, 15)

4. Generic template/instantiation relation

A contains a generic body for a generic unit instantiatcd by B.
where A: a generic unit boly, package body, or subunit (units 2, 3. (,. 7, 9. 10. 14, 15)

B: any of the 15 compilation units

Note: If unit A is compiled betore B and if the body is actually includcd INI.INE at tOc point of

the generic instantiation then a dependency may exist. Subsequent recompilation otfA \w ould

require recompilation of B. This may add a dependency which originally did not exist. I unit B

was compiled before unit A. then no dependency would exist since the gencric unit body wa,, not

available for inclusion in the compilation of unit A. Some compilcr implemcntation m),,y rcquite

that some or all of the bodies for generic units declared il A bc includeCd in the iale cOn pilation

containing the specification for unit A. This forccs a dependency for all unit.,, that instant iatc ant

generic unit contained inl A on all sccond:arv units that contain (cnrICr unit bodics ,,inle

recompilalion of any of these forces recompilation of library Uanit A.

5. Pragmat INLINU depcndcncy rclation

A contains a subprogram bxly or instantiation mentioned in pragma INLINE and called by
unit B,
where A: a library subprogram body or a subprogram instantiation,

body, or subunit (units 1t, 13, 14)
B: any of the 15 compilation units

Note: If B is compiled before A, then no dependency exists since the pragma INLINE would
have to be ignored. If A is compiled before B and if the body is actually included INLINE at the
point of the subprogram call then a dependency exists. Subsequent recompilation of A would
require recompilation of B. This may add a dependency which did not exist at the end of the
original compilation.

Of the five relations, context coupling has been a particular focus in our research. When a context
coupling (e.g., A "withs" B) exists, we know that compilation unit A requires resources in B. We
then want to know how many resources in B have been made visible to unit A (and to other units that
"with" B). Next we want to profile the resources provided by B as being either program units, types.
or objects. Of the resources visible in B, how many are actually accessed or used by unit A? We
hypothesize that the number and profile of resources both available and accessed may be significant
design characteristics in estimating reliability and maintainability.

Context coupling also provides a medium for control !low and data flow relations omong
compilation units. These two relations have been the most extensively researched for their effects on
software complexity (see, for example, [51 and 161). Control flow potentially occurs when A "withs"
B, a subprogram is one of the visible resources of B, and A includes code to call the subprogram.
Data flow occurs within the context coupling relation via subprogram parameters or visible objects.
The preliminary analysis results in section 4 reflect the research attention on context coupling to
characterize the interconnection and resource sharing in Ada designs.

SECTION 4

PRELIMINARY ANALYSIS RESULTS

This section presents preliminary results of analyzing project data to determine significant factors
affecting reliability and maintainability. The results are preliminary because tie research project is
continuing to obtain project data and develop new hypotheses about the relationships between design
characteristics and quality factors. The results in this section are based on 21 observations
(subsystems) from four projects. The project data is described in section 4.1.

The statistical analysis and model buildirg methodologies are discussed in section 4.2. Section
4.3 presents the specific reliability an,' mavaitainability measures used in the analysis. Section 4.4
discusses the independent (explanatory) variables in this analysis. These variables reflect the design
hypotheses introduce-d in section 3. In section 4.5, the statistical results for both reliability and
maintainability are discussed.

The project data elements used in statistical analyses are defined in table 4-1. Names of data
elements are consistently written in lower-case. The data elements are used to compute statistics for
regression analysis. The computed statistics are written in upper-case.

4.1 PROJECT CHARACTERISTICS

Data used in preliminary analysis of factors affecting reliability and maintainability were obtained
through the cooperation of the Software Engineering Laboratory (SEL) of NASA/GSFC. There are
two sources of data. First, Ada code for each project is analyzed using the Ada Static Source Code
Analyzer Program (ASAP) 1261. The data generated by ASAP is used to compute design
characteristics in table 4-1 for the subsystems of each project. We are analyzing Ada code from
systems which have completed acceptance testing. We are extracting structural information whose
availability is reasonable to expect, based on our comparison of earlier design documents to design
features of the completed systems. The general issue of availability of design-related information at
various points in the development process is currently being investigated.

A second source of data is the SEL database which characterizes the development process for
each Ada project. This database includes information on the origin of each compilation unit (e.g.,
extent of reuse, subsystem in which it is contained), defect and non-defect modifications, processor
utilization, and staff effort expended on various development activities 1271,

Data has been obtained on four Ada projects, consisting of 21 subsystems. The projects involvt
the development of interactive, ground-based, scientific applications.

4-1

Table 4-1. Project Data Element Definitions

Software Composition

ss number of subsystems
lu number of library units
cu number of compilation units
ksctot thousands of source lines of code. - total
kscv thousands of source lines of code" - verbatim (i.e., reused

without modification)
kscs thousands of source lines of code* - slightly modified (i.e., !5

25 percent of source lines modified)
kscx thousands of source lines of code* - extensively modified

(i.e., > 25 percent of source lines modified)
kscn thousands of source lines of code* - newly developed

Design Characteristics

cc number of context couples
dexp number of declarations exported
dimp number of declarations imported
dimpc number of declarations imported - cascaded
aimpint number of declarations imported - internal (from within the

subsystem)
dimpext number of declarations imported - external (from other

subsystems)

Software Modifications and Errors

modtot number of non-defect modifications - total
deftot number of defects - total
defsa number of defects - reported during system testing and

acceptance testing

"Non-comment, non-blank source lines of code.

4-2

Table 4-1. (Concluded)

isovs number of times isolating the cause of the defect was very
simple (requiring 5 1 hour)

isos number of times isolating the cause of the defect was simple
(requiring > I hour and < 1 business day)

isod number of times isolating the cause of the defect was
difficult (requiring > 1 day and _< 3 days)

isovd number of times isolating the cause of the defect was very
difficult (requiring > 3 days)

fixvs number of times fixing the defect was very simple (requiring
<_ 1 hour)

fixs number of times fixing the defect was simple (requiring > 1
hour and < 1 business day)

fixd number of times fixing the defect was difficult (requiring > I
day and < 3 days)

fixvd number of times fixing the defect was very difficult
(requiring > 3 days)

Selected project characteristics are shown in table 4-2. Across all projects, approximately 183
thousand source lines of code (KSLOC) in 1,984 compilation units have been analyzed. The projects
range between 33 and 73 KSLOC. Reuse ratios (fraction reused verbatim or with slight
modifications) lie between nine and thirty percent. The reliability varies between 3.0 and 9.3 total
defects per KSLOC. Total defects include those reported during unit testing, system testing, and
acceptance testing. Maintainability is indicated by two different measures. The fraction of defects
taking less than or equal to one hour to isolate varies between 29 percent and 73 percent, while the
fraction of defects taking less than or equal to one hour to correct varies between 39 percent and 72
percent.

In table 4-3, the equivalent data is gi .en for each of the subsystems of the projects. The
subsystems for project i are denoted i- 1, i-2, etc. Note, in particular, the increased ranges over which
the reusability, reliability and maintainability measures vary when data is reported at the level of
subsystem instead of project.

4.2 STATISTICAL ANALYSIS AND MODEL BUILDING

Our research is built around the identification of hypotheses regarding the detcnrinants of
software reliability and maintainability, and the empirical testing of these hypotheses.

4-3

0

00(

0 0

00 Q

Ix~

o 00

VI cn 00 0
\>

IX~ '0 cc -

00

0~ > U

a0

o .~oo>Con

o~. 0 o

4-4

o a--r-- 00ONWON OV)CCSV)0 lkj

-) r- 00IT000

cl N IC 10) ce) -o o r-11- V 't

+C.)

*o P Z -

4.*5

The overarching perspective is that design complexity is a major determinant of software system
defects generated during post-design implementation. Design complexity is multidimensional, and
may be characterized in terms of measurable variables. If these design measures exhibit independent
variation within an ensemble of empirical observations, their impacts on software decects can be
estimated.

We also recognize the environment within which software is developed may influence defect
occurrences. Examples of environmental factors are the experience of the software development
team, and the extent to which the software development organization reuses software.

Design characteristics and environmental factors arc introduced into multivariate models to
explain reliability and maintaidability as depicted in the quality equation from section 1.3.

The following two subsections discuss the dependent variables and independent variables of the
models.

4.3 SELECTION OF DEPENDENT VARIABLES

This section defines the dependent variables, corresponding to reliability and maintainability.
used in the analysis. The selection of measures for reliability and maintainability was guided by the
set of candidate definitions in section 2 and the availability of project data as described in section
4.1.

4.3.1 Reliability

Project data, discussed in section 4.1, supports a reliability measure based on defects. We used
measure R5 (from section 2), defect density. The project data provides prc-releasec dfect data
collected during unit, system, and acceptance testing.

We regard this complete project defect record as total defects (deftot from table 4- 1). leading to
the reliability measure TOTDEFSL defined as follows:

TOTDEFSL = deftot/ksctot (2)

.4-6

Our research focus on architectural design, rather than detailed, intra-procedural design, led us
to investigate a second reliability measure. We subtracted the unit testing defects from the total,
leaving the defects reported during system and acceptance testing (defsa). We wanted to explore the
matchipg of architectural design decisions with defects likely to reflect those decisions. Defects
during unit testing are more likely to reflect implementation or detailed design decisions. When unit
testing is completed, collections of units are tested during system and acceptance testing in the SEL
environment. These testing activities are more likely to expose defects reflecting higher-level design
decisions concerning inter-unit operation and relationships. Note, however, that defects were
associated with either unit, system., or acceptance testing by matching the date of the defect report
with phase dates for each testing activity. Defects reported during system and acceptance cannot be
expected exclusively to correspond to inter-unit relationships. Original defect reports were not
examined to attempt to make a finer determination by, for example, analyzing the description of the
defect. We maintain only that defsa is more likely to exclude implementation-related defects
corrected during unit testing. The resulting reliability measure, SYACDEFSL, is defined as follows:

SYACDEFSL = defsalksctot (3)

The analysis results in this section indicate when either TOTDEFSL or SYACDEFSL is used
as the dependent variable for reliability.

4.3.2 Maintainability

Ideally, we want to know the time (in hours or days) required to isolate the defects and make
the necessary changes to repair the defects (measure MI from Section 2). Our project data instead
provides this time data in four ordinal categories:

* Less than or equal to one hour
* Greater than one hour but less than or equal to one business day
* Greater than one day but less than or equal to three days
• Greater than three days

This maintenance data is more informative than a simple ordinal ranking (e.g., from I to 4)
because the ranks are associated with ranges of staff effort. In this sense, the data clearly supports
measure M4, easy fix frequency, and provides information concerning Ml, effort to correct.

An additional feature of the project data is the presence of two rankings: one for effort to isolate
the defect and the other for effort to correct the defect. Table 4-1 defines the eight data elements
corresponding to the four ordinal categories for isolation time and correction time, respectively.

Our approach was to use M4, defining an easy fix as the first category requiring less than or equal
to one hour. The two maintainability measures are defined by the EFFISO and EFFFIX, as follows:

EFFISO = isovs/dcftot (4)

EFFFIX = fixvs/deftot (5)

4-7

4.4 SELECTION OF INDEPENDENT VARIABLES

Our research identified independent measures for design characteristics and environmental
factors. The number of independent (explanatory) variables which can be introduced is restricted by
the number of observations collected thus far. This section discusses the independent variables used
in the preliminary statistical analyses. Four design characteristics (context coupling, visibility, import
origin, and internal complexity) and two environmental factors (volatility and reuse) are discussed.
Table 4-4 summarizes the independent variables defined in this section, Table 4-5 provides
descriptive statistics for the independent variables using project data (21 subsystems).

4.4.1 Context Coupling

Context coupling refers to the use of "with" clauses allowing the exporting of declarations from a
library unit to another compilation unit. The compilation unit is said to import the declarations of the
library unit.

Context coupling measures the interconnection of compilation units as an indication of design
complexity. Higher values of context coupling measures are hypothesized to be associated with
higher defect densities and lower maintainability.

Several context coupling measures have been identified. The most obvious measure is the
number of context couples per library unit aggregation (defined in section 3) denoted by CCPLU and
defined as follows:

CCPLU = cc/lu (6)

If the identical library unit is "withed" into a package specification and its corresponding body,
then the contribution to CCPLU is one rather than two. Importing declarations to the specification
makes the declarations available to the corresponding body, so for our purposes the context clause for
the body is redundant.

Another context coupling measure is the import/export ratio, IMPEXP, defined by:

IMPEXP = dimp/dexp (7)

For a closed system (i.e., no exports or imports across the system boundary), all of whose library
units export the same number of declarations, the value of IMPEXP equals the value of CCPLU.
When the library units do not export the same number of declarations, the measure is interpreted as a
weighted average of the context couples. The weights are chosen in proportion to the number of
declarations exported across a context couple. So that the weights sum to unity, the proportionality
constant is set equal to the total number of exports. Thus, context clauses with relatively high
numbers of exported declarations are more heavily weighted.

4-8

Table 4-4. Independent Variables Used in Statistical Analysis

Independent Independent
Design Variable Variable

Characteristic Name Definition'

Context CCPLU: Context Couples CCPLU - cc/lu
Coupling Per Library Unit

IMPEXP. Import/Export Ratio IMPEXP = dimp/dexp

CIMPEXP: Cascaded CIMPEXP = dimpc/dexp
Import/Export Ratio

Visibility CIMPIMP: Cascaded Imports CIMPIMP dimpc/dimp

Import Origin FINTIMP: Fraction of Internal FINTIMP = dimpint/d'nip
Imports

Internal EXPPLU: Exports Per Library EXPPLU - dexp/lu
Complexity Units

Independent Independent
Environmental Variable Variable

Factor Name Definition

Volatility MODPLU: Modifications Per MODPLU = modtot/lu
Library Unit

Reuse FNEMSL: Fraction of New or FNEMSL =
Extensively Modified (kscn+kscx)/ksctot
Code2

I Data elements cc, lu, and so on arc defined in Table 4-1.

2 FNEMSL measures the fraction of code not reused (sec Section 4.4.6).

4-9

Table 4-5. Descriptive Statistics for Model Variables'

Standard
Variable Mean Deviation Minimum Maximum

TOTDEFSL 6.1 3.8 1.4 16.6

SYACDEFSL 3.5 2.2 .18 7.8

EFFISO .57 .21 .20 1.0

EFFFIX .64 .17 .26 .89

CCPLU 13.1 .5 .67 35.3

IMPEXP 24.6 22.6 .87 102.2

CIMPEXP 60.4 42.7 2.3 167.6

CIMPIMP 2.9 1.6 1.2 7.4

FINTIMP .31 .31 .01 1.0

EXPPLU 39.1 20.3 15.0 91.2

MODPLU 3.7 4.6 .13 19.3

FNEMSL .77 .29 .06 1.0

Sample size - 21

4-10

An alternative interpretation is that the import/export ratio represents the average number of times
an ,xport in a closed system is L,-xported, u-ILi"" Is an indicator of coupling.

Still a third perspective, applicable to both open and closed systems, interprets the import/export
ratio as the average number of declarations imported to "support" an exported declaration. Imports
can be viewed as providing services to the importing unit. The unit depends on these imports, for
example, to provide a data type or a procedure. Of course, some imported declarations will not be
used, but they nevertheless contribute to complexity from the perspective of a progranuner
responsible for implementing the design or isolating and correcting defects. For example, a
programmer must consider the possibility that a declaration which has not been referenced may be the
source of a defect.

A final measure of context coupling can be derived by observing that the declarations exported by
a library unit to a specification, for example, will cascade through any corresponding body and
subunits, effectively importing to these compilation units as well. Thus, the import count is
magnified by this cascading effect. A context coupling measure accounting for this effect is defined
as follows:

CIMPEXP = dimpc/dexp (8)

The value of this measure may be controlled somewhat by placing context clauses at the lowest
possible level in the library unit aggregation.

4.4.2 Visibility

Visibility has been investigated as a measure of interest in Ada development [281. A library unit
aggregation may have extensive structure in terms of a corresponding body and perhaps multiple
levels of subunits. Context clauses for such a library unit aggregation may be all at the specification
level, or may appear at the body or subunit levels providing only the needed visibility. Information
hiding is served by the appropriate placement of context clauses within a library unit aggregation. If"
all context clauses arc at the highest level (the specification), then the programmer may be working
with an excessive number of imported declarations which cascade through the entire aggregation.

A measure which accounts for this effect is given by CIMPIMP, delined as follows:

CIMPIMP = dlimpc/dimp (9)

This measure effectivcly allows us to split thc measure in (8) into the direct effect given in (7) and the
cascade effect in (9).

4-11

4.4.3 Import Origin

Exports and imports may occur among compilation units within a subsystem, or compilation units
may import declarations from other subsystems. If software development teams are organized by
subsystem, then a team may be less familiar with the imports coming from other subsystems. We
might expect defects to decrease as the ratio of internal imports to total imports increases, This
measure, FINTIMP, is defined as follows:

FINTIMP = dimpint/dimp (10)

4.4.4 Internal Complexity

Context coupling measures are basically measures of the "external" or architectural complexity of
the design. The visibility measure exhibits characteristics of both an external and an internal
complexity measure. It reflects both importing of declarations among units (an architectural feature)
and positioning of context clauses within a library unit aggregation (an internal complexity feature).
However, we believe a more complete explanation of reliability and maintainabillty requires greater
consideration of internal complexity within a library unit aggregation. Marginally, we might expect
some negative correlation between internal and external complexity. Thus, ignoring internal
complexity might result in an upward bias in the estimate of the coefficients associated with external
complexity [29, p. 291-2981.

Internal complexity may be characterized by the partitioning of the calling tree within the
program library. ASAP does not have the capability of providing this information. Therefore, the
incorporation of a measure based on calling tree fragmentation into models For reliability and
maintainability has not been possible.

Accordingly, a less satisfactory measure of internal complexity was devised. The number of
declarations a library unit exports was regarded as a crude proxy of its internal complexity. These
declarations are used and implemented in the secondary units associated with the library unit. Thus,
the average internal complexity of a subsystem is the number of exported declarations per library unit
denoted by EXPPLU and defined as follows:

EXPPLU = dexp/lu (11)

4.4.5 Volatility

The project data also reflects non-defect mo(lifications. These changes are interpreted as an
inlicator of software volatility which may be expected to increase the detect rate. The volatilitN
measure MODPIAU is (clined as follows:

MODPLU -J m(×ltot'lu (12)

4-12

4.4.6 Reuse

Reuse has been shown to improve reliability 1301, The project data provides information on
software reuse for each compilation unit. The origin of a compilation unit is identified according to
four categories:

* Reused verbatim (without change)
* Reused with slight modification (< 25 percent of te source lines)
* Reused with extensive modification (> 25 percent of the source lines)
* Newly developed code

FNEMSL is the fraction of source code that was new or extensively modified. The reuse measure
was defined in this way to eliminate zero values from entering into the logarithmic transforms.
FNEMSL is defined as follows:

FNEMSL = (kscn + kscx) / ksctot (13)

4.5 PRELIMINARY STATISTICAL RESULTS

Preliminary results of statistical analyses are presented in this section. The results are based on 21
observations (subsystems) from the project data described in section 4. 1. Analysis results are
presented first for reliability and then for maintainability.

4.5.1 Reliability

Results are presented for the two measures of reliability discussed in section 4.3: total defects per
thousand source lines of code (TOTDEFSL), and system and acceptance test defects per thousand
source lines of code (SYACDEFSL). Multivaria:-2 regression techniques are used to regress the two
forms of defect density against various combinations of the explanatory variables discussed in section
4.4. After initial experiments with linear models, we decided to focus on log-linear models because
of the inhl'rent curvature in the relationships between the dependent and ind-pendent variables, These
models take the form of:

log(Y)= ao + a log (X1)+ a2 - log (X2)+... (14)
where:

Y dependent variable (e.g. TOTDEFSL or SYACDEFSL)
Xi = ih independent (explanatory) variable, i=1,2 .,

4-13

Initial univariate regression analyses were conducted for the three different context coupilng
measures in table 4-4, The results are shown in the first three equations o1 table 4-6 (for
TOTDEFSL), and table 4-7 (for SYACDEFSL). The variables shown in the tables are hogarilhmic
transforms of the dependent and independent variables. Thus equation (1) of table 4-6 can be written
explicitly as:

log (TOTDEFSL) = .58 + .47,log (CCPLU) (15)

The numbers in parentheses in tables 4-6 and 4-7 represent the standard errors of the parameter
estimates. R2, the coefficient of determination, is the fraction of variation of the dependent variable
explained by the independent variables.

In all cases, the coefficient estimates have the expected signs: defect densities incrcasc as design
complexity, measured by context coupling, increases. Of the three context coupling measures,
CCPLU performs poorly in tables 4-6 and 4-7. In both tables, the cascaded import;export ratio,
CIMPEXP, performs about die same as direct import/export ratio, IMPEXP.

Results from equations 2 and 3 in both tables suggest that the context coupling effect and the
cascade effect might each enter the regression analysis as independent variables. The process by
which context coupling is established may be viewed in two steps. First, declarations are imported
into a library unit aggregation without reference to the specific compilation units into which th1e
declarations are imported; the complexity associated with this step is characterized by the direct
import-export ratio IMPEXP. Second, decisions are made to attach the context clauses to particular
compilation units. CIMPIMP measures the effect of this second step. This two-step process uses
IMPEXP and CIMPIMP rather than the single variable CIMPEXP.

Results of incorporating IMPEXP and CIMPIMP in a regression are shown in equation 4 of tables
4-6 and 4-7. In both cases, the coefficient of CIMPIMP enters with the appropriate sign. and the
equations have a bit more explanatory power (as indicated by R2) Cian equation 3.

Tables 4-8 and 4-9 present the results of three-variable regression analyses for the two differcnt
measures of defect density. These analyses are more exploratory in nature, because they are based on
only 21 observations. Spurious correlations among the explanatory variables (multicollinearitv and
the lower number of degrees of freedom associated with the coefficient estimates may contribute to
larger standard errors for these estimates.

4-14

Table 4-6. Log-Linear Regression Results for TOTDEFSI.

Vari.able E"quationl I E-quation 2 Equation 3 l-quation 4

lntcr:cept .5'.27 -.14 -.04
(.4b(.28) (.35) (.35)

CCPLU .47

.IMPE-XP .48 5
(.09)(.09)

(i.MPEXI> .47

(iMPIMP.26

R58 .59 .61

a Iaramcictr c, nw

bSi~indard crrr ()t ot it paramictr cslimatc.

(~'~t1 iiO'n Oti tictr tnaio(n.

4-15

Table 4-7. Log-Linear Regression Results for SYACDEFSL

Variable Equation I Equation 2 Equation 3 Eqation 4

Intercept -.24a -.87 -. 15 -1.42
(.24)b (.39) (.47) (.48)

CCPLU .54
(.16)

IMPEXP .65 .70
(.13) (.13)

CIMPEXP .66
(.12)

CIMPIMP .46
(.25)

R2 C .37 .56 .61 .63

a Parameter estimate.

b Standard error of the parameter estimate.

c Coefficient of determination.

4-16

Table 4-8. Three-Variable Log-Linear Regression
Results for TOTDEFSL

Variable Equation I Equation 2 Equation 3 Equation 4

Intercept .0 2 a -1.5 .01 .65
(.36)b (1.04) (.66) 0.36)

IMPEXP .41 .61 .49 .27
(.15) (.11) (.16) (.11)

CIMPIMP .28 .27 .25 .05
(.18) (.18) (.21) (.16)

FINTIMP -.11
(.13)

EXPPLU .34
(.22)

FNEMSL .03
(.24)

MODPLU .27
(.08)

R2 C .64 .67 .62 .76

a Parameter estimate

b Standard error of the parameter estimate.

c Coefficient of determination.

4-17

Table 4-9. Three-Variable Log-Linear Regression
Results for SYACDEFSL

Variable Equation I Equation 2 Equation 3 Equation 4

Intercept - 1.4a -1.7 .77 -1.5
(.51P (1.5) (.65) (.62)

IMPEXP .69 .72 .19 .74
(.21) (.16) (.16) (.18)

CIMPIMP .46 .46 .07 .49
(.26) (.26) (.21) (.28)

FINTIMP -.01
(.19)

EXPPLU .06
(.32)

FNEMSL .97
(.24)

MODPLU -.04
(.14)

R2 c .63 .63 .81 .63

a Parameter estimate.

b Standard error of the parameter estimate.

c Coefficient of determination.

4-18

For all equations in the tables, estimated coefficients are of the expected signs. Equation 4 in
table 4-8, which involves the non-defect modifications per library unit, MODPLU, is the strongest
predictor of defect density. On the other hand, equation 3 in table 4-9, which incorporates the fraction
of new and extensively modified code, is the strongest predictor of system and acceptance test defects
per thousand lines of code.

The three-variable regression estimates suffer from the fact that the four new variables
(FINTIMP, EXPPLU, FNEMSL, and MODPLU) introduced in tables 4-8 and 4-9, are all highly
correlated with the import-export measure IMPEXP, as follows (using the Pearson correlation
coefficient): FINTIMP (-.79), EXPPLU (-.59), FNEMSL (.75), and MODPLU (.65).

While all of these correlations may be spurious, resulting from the relatively small number of
observations, the correlations for the last three variables deserve special discussion. The negative
correlation of the internal complexity variable, EXI PLU, with the external complexity variable,
IMPEXP, might be expected on the grounds that traleoffs may exist between these two types of
complexity. Decisions to incorporate exported declarations into larger library units may lead to lower
context coupling. Therefore, this correlation may not be spurious.

The correlation of the fraction of new and extensively modified code, FNEMSL, with the external
complexity measure is intriguing. The correlation possibly suggests that the decision to extensively
reuse software components may result in lower complexity. The exact mechanism through which this
occurs is open to discussion, but reuse may possibly encourage a more careful analysis of interfaces
and a looser coupling of the compilation units.

The last correlation of the non-defect modifications per library unit, MODPLU, with context
coupling may result from modifications causing new information to be accessed from other library
u fits, leading to greater context coupling. On the other hand, more complex coupling may lead to
more modifications to improve clarity, maintainability, or documentation as a consequence, for
example, of code inspections. A resolution of this question requires further analysis.

4.5.2 Maintainability

Section 4.3 discusses two measures for maintainability, effort to isolate defects and effort to
correct defects. To estimate these measures, we used ordered response models as discussed by
Gurland et a]. [311. Assume that there is an underlying response variable, denoted by Y', which is
either effort to isolate defects or effort to correct defects, defined by the following regression
relationship for observation i:

log(Yi) = -ao - a, log (X1i) - a, - !og(X 2i) -.. , + ui (16)

4-19

where:

a. jth regression parameter to be estimated, j= ,...,n
4 - value of jth explanatory variable for the ith observation, i=1,...,m
ui - disturbance term for the ith observation.

The minus signs in front of the coefficients are chosrn for convenience. The disturbance term, u,
represents the unexplained variation, and is characterized by some as yet unspecified probability
distribution.

Yi* is a continuous variable measuring effort to isolate or correct defects and is not directly
observable in our categorical data. Instead, what is observed in the categorical data is a discrete
dependent variable, Yi, defined by:

Yi =1 if Yi <lhour
= 2 if I hour < Yi* < I day
= 3 if I day < Yi* < 3 days
= 4 if Yi* > 3 days

On the basis of this categorical data, a polychotomous ordinal analysis including all four
categories can be conducted [3 1]. However, such a model would require the estimation of three
constants, as well as any additional parameters associated with the explanatory variables. Since only
21 observations are currently available, we decided to conduct a dichotomous ordinal analysis,
involving only two categories as defined below:

Yi =1 if O<Yi -<lhour
= 2 if Yi > I hour

The "< 1 hour" cutoff was chosen because over 90 percent of the isolate and correct data was in the
"less than one day" category. This definition corresponds to EFFISO and EFFFIX from section 4.3.
Expressing the inequalities above in terms of logarithms yields the comparable relationships:

Yi = 1 if log (Yi*)< Co

= 2 if log (Yi*) > Co

where the logarithm of the time constraint is expressed in terms of the more gencral parameter C.

Substituting equation (16) into the above inequalities, and rearranging terms gives:

Yi = 1 if ui<_ ao + a,.log(X i) + a2log(Xi) + ...+ Co
= 2 if ui> ao + a,-log(X i) + a 2.og(Xzi) + .,.+ C

4-20

With the u normally distributed, the probabilities of the occurrences of the dependent variable Y

are given by:

Proh(Yi - 1) - F (ao 4 a,-! g(Xd) + a .log(X2i) + ... + C-)

Prob(Yi - 2) - I - F (ao + a1 .log(X1 i) + a2.log(X2 i) + ... + Co)

where F(.) is the cumulative normal distribution function centered at the origin and with unit standard
deviation.

The parameters of these equations were estimated using the logistics procedure of the Statistical
Analysis System (SAS) which provides for the estimation of the parameters of models of the kind
cited above. These preliminary estimates for EFFISO and EFFFIX are shown in table 4- 10. The
design characteristic variables identified in the reliability analyses were also used here with one
notable exception. It was noted from the empirical data that subsystems with larger defect densities
tended to have greater fractions of defects in the simple-to-isolate and correct categories. Thifs
observation is consistent with that of Jones [32] who pointed out that low-defect software may have a
larger proportion of "difficult to fix" defects. On this basis, we decided to incorporate the defect
density as an explanatory variable for maintainability.

In the case of the effort to correct defects, EFFFIX, shown in table 4- 10, the estimated
coefficients all appear with the expected signs. Fifty percent of the variation of the effort to correct
defects is explained by the independent variables. Thus, the positive sign associated with the defect
density, TOTDEFSL, was expected on the basis of the observation above. The negative signs
associated with the context coupling variable, IMPEXP, the ratio of cascaded to direct imports,
CIMPIMP, and the exports per library unit, EXPPLU, all indicate that as complexity increases, there
is a shift toward more difficult defects (e.g., greater than one hour to correct). Finally, the coefficient
associated with the internal import ratio, FINTIMP, is positive, indicating that as the fraction of
imports which are internal to a subsystem rises, the fraction of defects taking less than one hour to
correct increases.

The first column in table 4-10 shows the results for the effort to isolate. All estimated coefficients
are of the expected signs except for the import/export ratio. However, because of the large associated
standard error, this coefficient estimate is not inconsistent with a negative value. Forty-one percent
of the variation of the effort to isolate defects is explained by the independent variables.

Environmental factor variables were not introduced into the analyses for two reasons. First, the
limited number of observations cannot support additional variables. Second, an environmental factor
characterizing staff experience widh particular subsystems, which might be expected to play a role in
maintainability, has not been available.

4-21

Table 4-10. Estimates for Maintainability

Variable EFFISO EFFFIX

Intercept .02 a 2.29
(.90)b (.90)

TOTDEFSL .52 .72
(.14) (.14)

IMPEXP .13 -.27
(.15) (.15)

CIMPIMP -.47 -.40
(.10) (.10)

FINTIMP .27 .14
(.06) (,07)

EXPPLU -.05 -.49
(.18) (.18)

R2 c 41 .50

a Parameter estimate.

b Standard error of the parameter estimate.

c Coefficient of determination.

4-22

SECTION 5

SUMMARY

We have discussed the need for technology to analyze software designs for their likely impact on
software quality. We outlined a research approach, involving the construction of multivariate models
that explain reliability and maintainability in terms of design characteristics and environmental
factors. The progress reported thus far is in establishing a working set of definitions of reliability and
maintainability, developing a representation of Ada design structure, and conducting preliminary
statistical analyses.

We reemphasize that the results for both reliability and maintainability are based on static design
analysis and a limited sample of 21 observations. Within these limitations, the results of the analyses
are promising. Several design and environmental explanatory variables expected to influence
software quality factors have been identified and analyzed.

Context coupling measures consistently show strong correlations with reliability. These
measures quantify the strength of coupling of the top-level, manifest architecture (i.e., the association
among compilation units) of Ada programs. The context clause visibility measure, and the
internal/extemal import measure provide additional refinements to the top-level context coupling.
The justification for the inclusion of these variables is based on our hypothesis concerning the effects
on software quality of library unit structure (i.e., the visibility measure), and the work load
distribution among project subteams (i.e., internal/extemal import measure).

A final design variable, the internal complexity measure, is brought into play to account for the
impact of library unit complexity on reliability. This measure is viewed as relatively crude one which
will be replaced by a more refined measure based on the fan-out structure of the library unit when
appropriate analysis tools become available.

The variables introduced in addition to the context coupling variables show relatively high
correlations with the context coupling variables. With the limited number of observations at this
point, it is not clear if these correlations will persist for larger numbers of observations, or if they are
an artifact based on spurious correlations. Theoretical arguments can be made for persistence. For
example, we can argue that tradeoffs will exist between external (i.e., architectural) complexity and
the internal complexity of library units. We look forward to resolving this question with additional
empirical study.

ft must be stressed, to an even greater degree than for reliability, that the analysis results for
maintainability are preliminary. We intend to develop a polychotomous model whose dependent
variable represents four levels of maintainability. But, the model immediately requires that three

5-I

constant parameters be estimated leaving little room for the addition of variables and their associated
parameters. Instead a dichotomous model was developed and estimated.

With the exception of the parameter associated with the import/export ratio for EFFISO, all
parameters enter with the expected signs. However, the import/export ratio parameter is statistically
ins;gniflicant (as evidenced by fi. ai•c•g da. ..r.or..

Additional thought must be given to the process of maintenance, and the potential variables which
may affect it. These variables may not necessarily be the same set as those which influence
reliability. For example, an environmental variable influencing maintainability may be the extent to
which the maintenance staff also participated in the devc!,)pment of the subsystem. This familiarity
should make the maintenance job easier. Regarding variables, 1i]e extent to which a library unit
exports declarations to compilation units in the system may be more important for maintenance than
the extent to which it imports declarations. The argument here is that a person making ctangcs to a
library unit may have to trace the impact of those changes on any compilation unit to which the
library unit exports declarations. This activity may take more time for library units having more
complex export couplings.

In summary, the results of the analyses thus far are heartening. They have provided initial
evidence in support of our hypotheses, and have opened new perspectives to be explored with
au5itional project data during the continuation of this research.

5-2

LIST OF REFERENCES

1. Software Engineering Standards, Third Edition, October 1989, New York: The Institute of
Electrical and Electronics Engineers.

2. Bowen, T. P., G. B. Wigle, and J. T. fsai, 1985. Specification of Software Quality Attributes,
RADC-TR-85-37, Vol. 1, Rome Air Development Center.

3. McCabe, T. J., December 1976, "A Complexity Measure," IEEE Transactions on Software
Engineering, Vol. SE-2, No. 4, pp. 308-320.

4. Henry, S. M., and D. G. Kafura, September 1981, "Software Structure Metrics Based on
Information Flow", IEEE Transactions on Software Engineering, Vol. SE-7, No. 5, pp. 510-518.

5. McCabe, T. J., and C. W. Butler, December 1989, "Design Complexity Measurement and
Testing," Communications of the ACM, Vol. 32, No. 12, pp. 1415-1425.

6. Henry, S. M., and C. A. Selig, March 1990, "Predicting Source-Code Complexity at the Design
Stage," IEEE Software, Vol. 7, No. 2, pp. 36-44.

7. Card, D. N., and W. W. Agresti. March 1988, "Measuring Software Design Complexity,"
Journal of Systems and Software, Voi. 8, No. 3, pp. 185-197.

8. Kitchenham, B., August 1989, "Measuring Software Quality," Proceedings of the First Annual
Software Quality Workshop, Rochester, NY, 25 pp.

9. Munson, J. C., and T. M. Khoshgoftaar, May 1988, "The Dimensionality of Program
Complexity," Proceedings of the Eleventh International Conference on Software Engineering,
pp. 245-253.

10. Musa, J. D., March 1989, "Faults, Failures, and a Metrics Revolution," IEEE Software, vol. 6.
No. 2, p. 85.

11. Musa, J. D., A. lannino, and K. Okumoto, 1987, Software Reliability, New York: McGraw-
Bill.

12. Grady, R. B., and D. L. Caswell, 1987, Software Metrics: Establishing a Company-Wide
Program, Englewxod Cliffs, NJ: Prentice-Hall.

13. Conte, S. D., Ft. E. Dunsmore, and V. Y. Shen, 1986, Softwarc Engyinecring Metrics and
Mxdels, Menlo Park, CA: Benjamin/Cummings.

RE-I

14. Kafura, D. G., and G. R. Reddy, March 1987, "The Use of Software Complexity Metrics in
Software Maintenance," IEEE Transactions on Software Engineering, Vol. SE- 13, No. 3. pp.
335-343.

15. Chruscicki, A., June 1989, "Software Maintainability Prediction and Assessient," Proceedings
ol the Internationai Association of Science and Technology for Development (lASTED)
Conference on Reliability and Quality Control, Lugano, Switzerland.

16. Agresti, W. W., February 1982. "Managing Program Maintenance,"Journal of Systems
ýýeý_ent, pp. 34-37.

17. Rombach, H. D., and B. T. Ulery, April 1989, "Improving Software Maintenance Through
Measurement," Proceedings of the IEEE, Vol. 77, No. 4., pp. 581-595

18. Gibson, V. R., and J. A. Senn, March 1989, "System Structure and Software Maintenance
Performance," Communications of the ACM, Vol. 32, No. 3, pp. 347-358.

19. Sunday, D. A., 1989, "Software Maintainability: A New 'Itity'," Procccdinujs of the IEEE
Annual Reliability and Maintainability Symposium, pp. 50-51.

20. Agresti, W. W., March 1982, "Measuring Program Maintainability." Journal of Systems
Management, pp. 26-29.

21. Belady, L. A., and M. M. Lehman, 1976, "A Model of Large Program Development." IBM
Systems Journal, Vol. 15, No. 3.

22. Schaefer, H., i985, "Meurics for Optimal Maintenance Management," Pr(xec(lings of the IEEE
Conference on Software Maintenance, pp. 114-117.

23. Perry, D. E., 1987, "Software Interconnection Models," Proceedings of the Ninth Intcrnational
Conference on Software Engineering, pp. 61-69.

24. Choi, S., and W. Scacchi, January 1990, "Extracting and Restructuring the Design of Large
Software Systems," IEEE Software, Vol. 7, No. 1, pp. 66-71.

25. ANSIiMIL-STD-1815A- 1983, Reference Manual for tie Ada Programming Language,
American National Standards Institute, Inc.

26. Doubleday, D. I.., August 1987, "ASAP: An Ada Static Source C(dec Analv:c r Procrani." TR-
1895, Department of Computer Science, University of Maryland.

RE-2

27. Valett, J. D., and F. E. McGarry, February 1989, "A Summary of Software Measurcrment
Experiences in the Software Engineering Laboratory," Journal of System and Software. Vol. 9.
No. 2, pp. 137-148.

28. Basili, V. R., and E. E. Katz, 1983, "Metrics of Interest in Ada Development," Proceedings of'
the IEEE Workshop in Software Engincerin, Technology Transfer, pp. 22-29.

29. Murphy, J., 1973, Introductory Econometrics, Homewood, Illinois: Richard D, Irwin, Inc.

30. Card, D. N., V. E. Church, and W. W. Agresti, February 1986, "An Empirical Study of Software
Design Practices," IEEE Transactions on Software Engineering, Vol. SE- 12, No. 2, pp. 264-27 1.

31. Gurland, J., T. Lee, and P. Dabmr, 1960, "Polychotomous Quantal Response in Biological
Assay," Biome-trics, Vol. 16, pp. 382-398.

32. Jones, T. C., 1986, Programming Productivity, New York, McGraw-Hill.

RI-3

GLOSSARY

ANSI American National Standards Institute
ASAP Ada Static Source Code Analyzer Program

COQUAMO Constructive Quality Model
CSC Computer Software Component

ESPRIT European Strategic Program for Research in Information Technology

GSFC Goddard Space Flight Center

IEEE Institute of Electrical and Electronics Engineering

KSLOC Thousand Source LineN of Code

MOlE Mission Oriented Investigation and Experimentation
MTTR Mean Time to Repair

NASA National Aeronautics and Space Administration

OS/360 Operating System/360

RADC Rome Air Development Center

SAS Statistical Analysis System
SEL Software Engineering Laboratory

.u.S. GOVERNMENT PRINTING OFFICE - ,

Gl,-I

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

searchi, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C3 1) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of compitence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C3 1 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user co imunity, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillanc, /sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

