AD-A264 731
I

RL-TR-92-315
Final Technical Report
December 1992

AN APPROACH TO SOFTWARE
QUALITY PREDICTION FROM
ADA DESIGNS

The MITRE Corporation

W.W. Agresti, W.M. Evanco, M.C. Smith, and D.R. Clarson;,

| ‘}% T § C
e sl ! ™
::s-fﬁ TE R T 6
y -t P Sags [3
Ty
R 5
I

APFPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED.

| . 93-10101
$8 5 07 052 WVRPLERERN

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

This repor* has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service {(NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-92-315 has been reviewed and is approved for publication.

: : { /) g
APPROVED . oo /fz el £y

ANDREW J. CHRUSCICKI
Project Engineer

FOR THE COMMANDER % ﬁzé : ’

JOHN A. GRANIERO
Chief Scientist for C3

1f your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3CB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return coples of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE G (60504
OMB No. 0704 -01E8
P ublc reponing burden for this colection af rianmstion S estimated to sversge 1 NOLE P 1@SOONSe. ckax ¢ TG AT s

! ¥y "He e fOr revewr G rSiiCIRNS Sed G einark;
garurg mdmwtwrgtre ciata Nesded, arx COMpIEtngG 8 reviewng thi colection of Mformaton Serc CamImerts (egarang (s Do den estimige ll’il‘/ AC F Y
colection of rformation, Noludng SUOEestoNs for recucsng s burden to Washingon Heaoguaners Senices. Drectorate for rformmanon Comaars araienons ©o°

Cavis Highway, Sute 1204, Arirgron VA 222024302, and to the Office of Mansgerment and Buuget, Paperwork Hecuction Proect (C704 0188 wastecgor 5O

T

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. AEPORT TYPE AND DATES COVEIED
i December 1992 Final Oct 89 = Sep 90

4. TITLE AND SUBTITLE 15 FUNDING NUMBERS

AN APPROACH TO SOFTWARE QUALITY PREDICTION FROM ADA DESIGNS, € = FI19628-89-C-0U0]
PE ~ 62T02F

6. AUTHOR(S) 1;1:\ - m;; i

W. W. Agresti, W. M. Evanco, M. ¢. Smith, D. R. Clarsen W= s

7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

The MITRE Corporation BEPORT NUMBER

Washington C3 Center . .

MTR-90W001

7525 Colshire Drive TR-90WO0133

McLean VA 22102-3481

9. SPONSORING/MONITORING AGENCY NAME (5) AND ADDRESS(ES) 10. SPONSORINGMONITORING

Rome Laboratory (C3CB) AGENCY REPORT NUMBER

525 Brooks Rd

Griffiss AFB NY 13441-4505 RL-TR-92-315

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Anirew J. Chruscicki/C3CB/(315) 330-3476

12a. DISTRIBUTION/AVAILABIUITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maxdmum 200 words)

An ongoing research project on estimating software quality from Ada designs is
discussed. The research is motivated by the need for technology to analvze designs,
when they are first represented, for their likely effect on quality factors. The
objective of this research is to build multivariate models relating design character-
istics and environmental factors to reliability and maintainability. Early results

of the research are discussed, including alternative definitions of reliability and
maintainability, a representation of Ada design structure, characteristics of software
project data used for analysis, and preliminary statistical results testing hypotheses
concerning the effects of design structure on reliability and maintainabilityv.

14, SUBJECT TEBMS 15 NUMBER OF PAGES
Reliability, Maintainability, Software Design, Ada, Soltware b4 .
Qualiry, Metrics, Measurement, Prediction 18 PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION |19, SECURITY CLASSIFICATION [20. UMITATION OF ABSTIACT
OF REPORT OF THIS PAGE OF ABSTRACT . N OFABSTIRCT
UNCLASSIFIED UNCLASSTF1ED UNCLASS1FIED UL
ol 754001 -280-59500 Starnoard Form J98 (e 2oa
Pregsripet by AYS T 200 o
28-107

ABSTRACT

An ongoing rescarch project on estimating software quality {from Ada designs is discussed. The
research is motivated by the need for technology to analyze designs, when they are first represented.
for their likely effect on quality factors. The objective of this research is to build multivariate models
relating design characteristics and environmental factors to reliability and maintainability. Early
results of the research are discussed, including alternative definitions of reliability and
maintainability, a representation of Ada design structure, characteristics of software projcct data used

for analysis, and preliminary statistical results testing hypotheses concerning the effects of design
structure on reliability and maintainability.

KEYWORDS: software engincering, softwarc measurement, software quality, software reliability,
software maintainability, Ada

; Acossston Por
LNTTS ITARL

DTIC TAR 0
Ungncnunced O

N ESTE T B AD EIRPEIE b ¢ WU
[

1

P OBy
Sistrivaticn/

Avatlability Coles

. R R b e————
{&waii sud/er

Digt | Sypasiel

S ML

 PSUNITE

e

EXECUTIVE SUMMARY

This report describes preliminary results from an ongoing research project on software quality
prediction from Ada designs. The research is supported by the Mission Oriented Investigation and
Experimentation (MOIE) program of The MITRE Corporation.

The research objective is to establish a capability to project a software system’s reliability and
maintainability from an analysis of its design. The technical approach is to build muitivariate models
for estimaung reliability and maintainability. Independent, explanatory variables in the models
represent architectural design characteristics. Additional explanatory model variables are
environmental factors to account for the effect of the organization and its development process.

Ada designs arc analyzed because Ada is increasingly being used as a design language, thereby
enabling automated design analysis. An investigation of Ada system structure yields a design
representation consisting of compilation units and relations among them, Fifteen kinds of Ada
compilation units and five relations are defined as building blocks of Ada systems.

Data from four projects have been analyzed thus far to test our hypotheses about various design
structures leading to defect-prone or unmaintainable systems. The four projects total 183,000 non-
comment, non-blank source lines of Ada, comprising 21 subsystems which are the units of
observation in the analysis.

Design characteristic variables highlight the interconnection and resource-sharing among

compilation units. Environmental factor variables provide for effects of reusability and software
changes.

Reported results are preliminary because additional project data is being obtained and new
hypotheses are being developed and tested. Multivariate regression analyses were conducted with
different scts of variables. The resulting models explain 60-80 percent of the variation in reliability
and 40-50 percent of the variation in maintainability. Keliability was measured as defect density;
maintainability, as the percentage of simple defect corrections.

Rescarch is continuing through developing new hypotheses and seeking additional data to enable
new variables to be introduced into the models. Additional data will also Jead 10 stronger statistical
results which are needed to meet the objective of building useful quality estimation models.

ACKNOWLEDGEMENTS

The authors acknowledge the contributions 1o this rescarch of Frank McGarry and Jon Valett of
the Software Engincering Laboratory (SEL) at the National Acronautics and Space Administration
(NASA)/Goddard Space Flighi Center (GSFC) in allowing us to use SEL project data. Review
comments of MITRE collcagucs, Frank Maginnis, Arlene Wusterbarth, Roger Duncan, Tom Smith,
Brad Ulery, and Tom Walsh arc appreciated.

Vi

TABLE OF CONTENTS

SECTION PAGE
1 Introduction 1-1
1.1 Background and Research Objective 1-1

1.2 Software Quality Rescarch 1-2

1.3 Research Approach -3

2 Reliability and Maintainability Measures 2-1
2.1 Reliability Measurcs 2-1

22 Maintainability Mecasures 2-3

3 Design Hypotheses and Structure 3-1
34 Design Hypothescs 3-1

32 Representation of Ada Designs 3.3
3.2.1 Ada Program Units 3.3

3.2.2 Ada Compilation Units 34

3.2.3 Dynamic Creation of Task Objects 3-4

3.2.4 Design Units 3-6

3.2.5 Design Relations 3-6

4 Preliminary Analysis Results 4-1
4.1 Project Characteristics 4-1

4.2 Statistical Analysis and Model Building 4-3

4.3 Selection of Dependent Variables 4-6
4.3.1 Reliability 4-6

4.3.2 Maintainability 4-7

4.4 Sclection of Independent Variables 4-8
4.4.1 Context Coupling 4-8

4.42 Visibility 4-11

4.4.3 Import Origin 4-12

4.4.4 Intcrnal Complexity 4-12

4.45 Volatility 4-12

4.46 Rcuse 4-13

4.5 Preliminary Statistical Results 4-13
4.5.1 Reliability 4-13

452 Maintainability 4-19

5 Summary 5-1

vil

SECTION PAGE
List of References RE-1]
Glossary GL-1

viii

LIST OF TABLES
TABLE PAGE
3-1 Ada Compilation Units A5
4-1 Project Data Element Definitions 4.2
4-2 Characteristics of Projects 4-4
4-3 Characteristics of Subsystems 3-3
4-4 Independent Variables Used in Statistical Analysis 4-9
4-5 Descriptive Statistics for Model Variables 4-10
4-6 Log-Linear Regression Results for TOTDEFSL 4-is
4-7 Log-Linear Regression Results for SYACDEFSL 4-16
4-8 Three-Variable Log-Lincar Regression Results for TOTDEFSL 4-17
4-9 Three-Variable Log-Linecar Regression Results for SYACDEFSL 4-18
4-10 Estimates for Maintainability 4.22

SECTION 1

INTRODUCTION

This report describes preliminary results from a continuing research project on software quality
prediction from Ada designs. The project is supported under the Mission Oriented Investigation and
Experimentation (MOIE) program of The MITRE Corporation.

This section discusses the background and objective of the rescarch project. a perspective on
software quality research, and the research approach being pursued in this project.

1.1 BACKGROUND AND RESEARCH OBJECTIVE

High quality software is ¢ssential to the success of mission-critical systems, Design
characteristics are important determinants of this quality. Decisions made during design can affect
software reliability, maintainability, flexibility, and other quality factors. A shortcoming of most
large-scale software development projeccts is the lack of information concerning the consequences of
these design decisions until much later in the development process. For examnle, it may become clear
a system is not flexible in adapting to changing requirements only after cxtensive investment of time
and effort to implement the design, and to integrate, test, and use the system. Inflexibility of such a
system may be traced to design-structuring decisions made much carlier in the development process.

Greater capability is needed during the design phase to assess the design itself for indications that.
when implemented, the resulting system will have particular quality characteristics. The government
has an especially strong need for such carly design asscssment capabilitics because it expects
delivered systems to be reliable and supportable over long operationat lifetimes. For example,
maintainability, which may be measured by the casc of finding and repairing software defects, is
critically important during the operational phase. However, maintainability is principally a desigp
characteristic; that is, the ease of software maintenancc is strongly detcrmined by design decisions,
Decisions about allocaung functions and data to clements of the system affect the case of repairing
defects in the future.

The use of Ada for mission-critical software development prescents an oppottunity to more
effectively cvaluate software design. Prior to the development of Ada, desien products were typically
diagrams and text in documents. Assessing design quality required a labor-intensive examination o1
these documents to understand design relationships. For Ada projects, key design relationships can
be represented in the language itself. The resulting Ada design represenwation is a new intermediate
product, capturing software design relationships in the Ada language. Using Ada during design eases
the transition from design to implementation, since the products of both phascs are expressed in the
same language. Also, the Ada design representation can be checked by an Ada compiler and can be

-1

analyzed by other Ada tools, offering “ir. opportunity to autoniae part of the design ¢valuation
process. This role for Adaas adz.. . language has been recognized as Amicrican National Standards
Institute (ANSH/Institute of F'- sical and Electronics Engincers (IEEE) Standard 990-1987 [1],

In this report, we discuss a rescarch project on the evaluation of the quality of Ada-based designs,
An effective quality projection capability would enable a developmient wam 1o begin corrective action
immediate' s this research includes establishing relationships between design characteristics and the
quality of e software product. We view this rescarch as one thrust in a continuing effort to expand
upon and refine software quality models.

1.2 SOFTWARE QUALITY RESEARCH

attributes, developed by Rome Air Development Center (RADC). includes reliability, efficiency,
integrity, usability, survivability, correctness, maintainability, verifiability. portability. reusability.
interoperability, expandability, and flexibility {2]. This composite nature of software quality
encourages an approach to measuring it by addressing its individual atributes. Of these 13 awributes,
rcliability and maintainability arc among the most critical constituents of software quality and the
casiest to measure. Also, data for these quality factors is increasingly being collected on software
projects, For these reasons, reliability and maintainability are the initial quality factors addressed in
this research.

Reliability and maintainability are associated with events (svstem failures) and activities
{(cotrecting code) which occur after the implementation phase. Our perspective is that these events
and activities are influenced by design characteristics. The thrust of our research is to investigate
relationships of design characteristics to reliability and maintainability. I such relationships exist,
then we will have the basis for projecting the potential quality of a software product in terms ot
characteristics that manifest themselves during design. We want to test the hiypotaesis that the quality
of an Ada system can be predicted from analyzing its design.

Previous software quality measurearent studics have proposed measures that relate design or code
features 10 software reliability. Most of this work, however, has been tocused on asingle
characteristic or oriented toward program modules rather than Jarge software systems or subsystemis
as units of observation.

The cyclomatic complexity measure of McCabe has been correlated with software reliability [3}
Henry and Kafura showed the relationship of their data tlow measure to reliability 4. Extensions of
these control flow and data flow mietrics are reported in {S]and {6}, respectively. More relevant o the
current rescarch. Card and Agresti defined a system-fevel design measure that incorporates control
flow and data flow for FORTRAN designs and shows a strong correlation with rehability {7].

Nearest to this rescarch in its objectives is the development of COQUAMO, the COnstructive
QUALity MQdel to estimate software quality [}, COQUAMO is sponsored by the Luropean
Strategic Program for Research in Information Technology (ESPRIT). COQUAMO difters from our
rescarch by basing its estimate of software quality on the observed quality of previous projects
implemented by the samc organization, Our rescarch is basing the estimate on the design itsell:
essentially projecting the quality of the comiplete system from the analysis of the design stuucture of
that systenm.

1.3 RESEARCH APPROACH

Our approach differs from most previous work in two respects. First, we intend to build
multivariate models that incorporate more than one design characteristic to explain a quality facio .
Just as there are many dimensions to software quality, there is ruore than one dimension to
characterize design complexity {9]. To the extent these design complexity characterizations are
rclatively uncorrelated, they will cach contribute increnmientally 1o the explanation of soltware quality.

Second, we recognize differences in the way organizations develop software. One organization
may rely on sottwate reuse more heavily than another. Organizanons difter in the experience levels
of their software developers and the effectivencess of their approaches to testing. Such factors, cadled
envitonmental factors. influence software quality. Including environmental factors enables the
maodels to describe a variety of software development organizations and processes, and, hence, have
potentially broad applicability.

The general form of the multivariate quality estimation model, which we will reference in this
report as the quality equation, is as follows:

Y = § (DC. DC... DG,y EF EF . BFpla, 0, 00) +¢

277D
where:

Y: the speeific quality factor (e.g., reliability or maintainability)
DC:: the ith design characteristic variable (i=1,..,,n)
Ef.: the ith environmental factor variable (i=1,...,m)
azs the ith paramcter (i=1....,p)
¢ disturbance term for uncexplained variation.

The parameters in the quality equation are estimated front the emipirical data by multivariate
techniques such as lincar regression analysis or maximum likclihood estimation, Notall variations
in @ quality fuctor are explainable by the variables DC; and EF; included in the cquation. The
aisturbance term, in cffect, reveals the extent to which the model variables do not explain software
quality.

Four steps are involved in building this software quality model: specification, statistical
ostimation, vernification, and application. The specitication step involves a statement of the
stractural torm of the madel. A specific functional form of the quality equation is identified.
relating the design and environmental variables 1o the parameters. Typical functional forms for
regression analysis are lincar und logarithmic. More complicated functional forms may require the
use of nor-lincar methods.

The statistical estimation step determines specitic values for the parameters in the quality
cyuation. Most approaches for estizaating these parameters are based either on least-squares or
maximum likeliheod techniques. Empirical data must be collected and processed for statistical
analysis. The estimation step involves measures of overall goodness of fit for the equation. as well
as measures of the standard errors of the individual parameter estimates.

The venification step is concerned with decision rules to determine the success of the model.
Accuracy of the model in forecasting the quality of new systenis {prediction) is important.
Alternatively, understanding the effect of changes in specific design chrracteristics on quality
ipreseriptions is another way to use the model. In either case, criteria for acceptance or rejection of
the maodel must be established and applicd.

The application step cencerns the use of the model in a context that was not used to estimate
1y paramcters, It the parameters were estimated on the basis of an ensemble of projects, then the
model should be applicd to new projects to validate its predictive or prescriptive capabilities, and to
understand its limitations when applied to new environments.

This four-step approach to model building is being pursued in this rescarch. The preliminary
resudts of this approach are presented in section 4.

SECTION 2

RELIABILITY AND MAINTAINABILITY MEASURES

As a first step in building multivariate models in the form of the quality equation (introduced in
section 1), we established definitions for measures of reliability and maintainability. We allowed
several definitions for each quality factor to account for the diversc availability of data in
organizations in which the models may be used.

Several measurement issues were addressed in the urocess of identifying appropriate definitions.
One issue is the trend toward user-oriented rather than developer-oriented measures. An example is
the use of failure-related measures of reliability instead of de fect-related measurces. Failure-oriented
measures are preferred because they express reliability in terms of users” satistaction with the
operation of the software [10]. Defects are manifestations of errors made by the developer: still of
interest but not directly addressing user experience. A second issue is the time framic during which
the measures apply: before the release of software for production (pre-release) or after its release
(post-release). Failure data is most often collected post-release, although data may be gathered during
testing, in which the post-release environments arc simulated. Defcct data is more generally available
and collected pre-release. A third issue is the recognition that b oth calendar time and execution time
arc possible measures of the time period over which reliability is cxpressed. Definitions must be
explicit on the time measure used. Musa et al. [11] discuss the relationship between calendar time
and execution time for software.

We recognize that the reliability and maintainability mcasures in this section are not complete.
An abundant literature exists in software measurement (sec, for example, {11}, {12}, and [13]). We
regard the collection of measures presented here as a "working set.” open to expansion over time.
Three measurement trends not represented in the current working set are (1) composite metrics (€.g..
[14}), (2) metrics that stratify errors and changes, for example, by severity {15], and (3) relative
metrics. To sidestep the issue of size or time being the more appropriate normalization factor, refative
metrics compare two quantitics with identical units. A relative metric for maintainability is the ratio
of maintenance productivity to development productivity. Mcasures reflecting these three issues are
certainly candidates to cnter the working set in the {uture.

Our current rescarch focuses on only a few of the micasures cited below.

2.1 RELIABILITY MEASURES

Reliability is understood informally as the confidence that software will perform without failing.
Morc formally, reliability is defined in ANSVIEEE Standard 982.2-1988 as the probability that

software will not cause the failure of the system over a specified time interval under specified

conditions [1].

Reliability measures span a spectrum that bases definitions successively on failures, faults,
defects and errors. In this sense, the definitions range from uscr-oriented (based on failures) to
developer-oriented (based on crrors).

For our research, we identified seven rcliability measurcs, as follows:

o
s R2
e R3:
. R4:
s RS
. R6;
J RT:

R1: Probability of failure-frec operation over a specified time interval in a specific

environment--e.g., R(8) = 0.94 mcans "thc probability is 0.94 that the software will
operate without failure over the interval 0-8 (hours)”.

Failure rate--number of failures (c.g., software "problems” reported) per unit of time,
¢.g., 0.01 failures per hour of execution time.

Time beiween failures--elapsed time between successive failures, often cxpressed as
the mean or median of such times. This measure is the inverse of R2.

Fault density--number of faults divided by software size, ¢.g., 0.5 unique faults per
thousand source lines of code (KSLOC).

Defect density--number of defects divided by software size, e.g., 0.8 unique defects per
KSLOC.

Error density--number of errors divided by softwarc size, ¢.g., 0.4 errors per KSLOC.

Reliability rating (from [2])--crrors per line of code, subtracted from unity, ¢.g., 3
crrors per KSLOC yiclds a reliability rating of 0.997 (= 1 - [3/1000)).

We acknowledge taking liberty in identifying R4 through R7 as measures of rcliability, If
reliability is defined in terms of failures, R4 through R7 are measuring reliability-related quantitics.

Measures R1 through R3 depend on accurate failure occurrence data. These three measures are
morc clearly defined by using computer execution time. If calendar time is used instead, people using
the measures may not be aware of the assumed usage level of the system over the calendar time
period. Also, failures typically refer to system failures in a hardwares/software svstem. Qur focus on
software reliability causcs us, for a hardware/software system, to concentrate on software-induced
faiturcs in the system.

Mcasures R4 through R6 are distinguished by their reliance on three frequently confused terms:
fault, defect, and error. We usce the following ANSETEEE Standard 982.2-19%8 definitions [1]:

e Fault: an accidental condition that causes a functional unit to fail to perform its required
function; a manifestation of an error in software.

s Defect aproduct anomaly; examples include such things as (1) omissions and
imperfections found during carly life-cycle phascs and (2) faults contained in software
sufficiently mature for test or operation,

e Error: human action that results in software containing a fault,

These definitions illustrate that measure R4, relying on faults, cannot be as broadly applied
throughout the life cycle as measures RS and R6. Data for R4 depends on software being dzveloped
and available for testing. RS and R6 can be computed using data on defects and errors associated
with pre-implementation activitics like design.

Although failure-bascd, post-release measures (c.g., R1, R2, and R3) may be preferred, necessary
data may not be available to support their use. The alternative of applying fault. defect, and crror-
based measures before release still may be suggestive of post-relcase experience. Enpirical studics
(e.g., [12]) have shown positive relationships between defect densitics measured pre-release and post-
release.

The reliability rating, R7, derives from the software quality framework of Rome Air Development
Center {2]. Like R6, measure R7 uscs error data; however, R7 produces a rating in the range of zcro
to one. Also, unlike R2, R4, RS, and R6, higher values of R7 correspond to higher reliability.

The reliability aspects of this study will focus on measurc RS,

2.2 MAINTAINABILITY MEASURES

Maintainability may be defined informally as the case with which software can be maintained.
We arc viewing maintainability as referring exclusively to the ease of isolating and correcting faults.
Our focus is on corrective maintenance rather than adaptive or perfective maintenance [16]. This
view is consistent with the software quality framework in [2], in which the scparate quality factors of
expandability and flexibility refer to the case of enhancing the software.

We identilied cight maintainability measures. Four mcasures are based on the effort required to
perform maintenance. Three other mecasures use, as a proxy for cffort, the number of modules
cxamincd as well as changed, and the lines of code changed. The last measure focuses on the degree
of success in performing maintenance actions. The cight maintainability measures, {or purposes of
our rescarch, are as follows:

e Mi
s M2
e M3
» M4
¢ M5
o M6
s M7
e M

. Effort to correct--mean number of staff hours required to isolate the cause of a failure,

to develop necessary corrections, to conduct any necessary unit and regression tests, to
install the corrections, and to update all relevant documentation.

Time to repair--number of wall-clock hours required to perform a corrective
maintenance task, often expressed as the mean or median of such times.

: Maintainability Rating (from {2])--one-tenth of the mean numnber of staff days to

perform a corrective maintenance task, subtracted from unity, c.g., if it requires 2 staff
days, on average, to perform corrective maintenance, the maintainability rating is 0.8,
if greater than 10 days are required, the maintainability rating is zero.

: Easy fix frequency--when staff effort to isolate and repair a fault is available as ordinal

data (e.g., easy, medium, hard), this measurc is the percentage of corrections in the
desirable (lowest effort) category.

: Module handling impact--mean number of modulcs cxamined while performing a

corrective maintenance task. A variation of MS$ is the fraction (of total modules)
examined.

: Module change impact--mcan number of modules changed while performing a

corrective maintenance task. A variation of M6 is the fraction {of total moduices)
changed.

: Code change impact--mean number of source lines of code added, deleted, or modified

during a corrective maintenance task. A variation of M7 is the fraction (of total source
lines of code) added, deleted, or modificd.

Miscorrection frequency--the percentage of corrective maintenance actions that caused
new faults to be introduced, or failed 10 correct the original fault.

Measure M1 is frequently used because of a high availability of supporting data and its
interpretation of ease of maintenance as staff cffort [17,18].

Measure M2, especially as mean time to rcpair (MTTR), is used in hardware maintainability
analysis. It requires a history of failures and an accuratc log of the time to repair the faults causing
the failure. As Sunday [19] confirms, this information is typically not available. MTTR is most
relevant for software when the integrated hardwarc-software system is counted on for very high
availability such as in high-volume transaction processing or rescrvation systems. MTTR is the mean
time to restore a system to an operational state after a software failurc renders the system non-
operationai [20].

2-4

The maintainability rating M3 parallels R7 in its calculation of a measure in the range zero to one
[2]. Also, higher values of M3 (and M4) correspond to higher degrees of maintainability.

While measure M4 (easy fix frequency) is also bascd on staff effort, it reflects a diffcrence in
measurement scale. The collection instrument for maintenance data may be a form completed by a
maintainer. To simplify completion, the form may require the maintainer only to indicate cffort by
checking a box corresponding to casy, medium, and hard or similar ordinal ranking. The maintenance
aspects of this study will focus on measure M4,

Measure M5 (module handling impact) is derived from Belady and Lehman’s study of the
evolution of 0S/360 [21]. For successive QS/360 rcleases, they micasured the number of modulcs
handlcd; that is, examined for possible change and, if nccessary, changed. The rationale for M3 is
that more difficult maintenance corresponds to handling morc of the system. The samc rationale
underlies measurcs M6 (module change impact) and M7 (code change impact). Greater cffort is
expected to be reflected in more modules and code being changed. Mcasures M6 and M7 arce
frequently recommendced for maintainability [12]. Both measures (and MS as well) have a benefit of
potentially casier data collection. Configuration management systcms may provide automated
support for calculating these measures, while measures like M1 may require manual collection of
cffort data. Schacfer observes also that measures M4, M5, and M6 have an additional benefit of not
depending as much on staff expericnce as do maintainability measures based on staff effort {22].

Measure M7, miscorrection frequency, focuses on a different aspect of maintenance: Did the
maintenance action introduce new errors or fail to correct the original fault? An indication of
maintainable software is a high percentage of maintenance actions successfully repairing reported
faults without introducing new oncs.

SECTION 3

DESIGN HYPOTHESES AND STRUCTURE

An important aspect of our rescarch is relating design decision-making to design artifacts and,
ultimately, to reliability and maintainability. This section discusses these relationships and how they
suggest hypotheses about variables to enter our models. Ada design structure is studied to learn how
the design artifacts will appear. The analysis leads to an Ada design representation which serves as a
basis for defining design characteristics for our model-building activity.

3.1 DESIGN HYPOTHESES

We are developing hypotheses that particular design patterns relate to reliability and
maintainability of the implemented system. Our view is that these design patterns are the result of
design decisions. In this sense, our hypotheses encompass design decision-making as well as the
resulting artifacts. In considering design decisions, we arc not investigating the consequences of
using particular design methods like structured design or object-oriented design. Instead, we
postulate a simple, high-level design process which is sufficiently abstract as to embrace a wide array
of design decision-making.

The design process begins with developers who are starting to design software in response to a set
of requirements. If the developers are able to meet the requirements for system X with a single word
or expression (€.g., "Do X") then our research does not apply to their situation. Obviously, the more
realistic case is that the solution is much more extensive. As soon as a solution will require more than
a single word or expression, it is possible to speculate about the size, structure, and other attributes of
candidate solutions. Developers necessarily must decide how to fashion some arrangement of pieces
that, taken together, meet system requirements. Each piece, or design unit, has a role to fulfill in the
overall design. Our view of the design process model assumes solely that the software can be viewed
as a set of such design units and relations on the set.

We use the term "design unit" to retain the generality we seck. In practice, developers may
consider design units to be subsystems, computer software compongents (CSCs), objects, processes,
tasks, modules, packages, or other entities. Similarly, we refer to a design relation to include any
rclation on a set of design units. Simple relations, using modules as design units, include the
following:

e Control coupling--one module can potentially call another module.

s Data coupling--data from one modulc is made available to another module.

3-1

Decisions in our simple design process result in design artifacts which may be characterized by the
following attributes:

. Number of design units.
e Kinds of design units (e.g., tasks, modules) and their frequency of use.

o Number and kinds of design relations and their frequency of use.

We hypothesize that complex designs are more likely to correspond to software that is defect-
prone or difficult to maintain. We see evidence of complexity in high interconnection (¢.g., numerous
relations) among the design units.

Other design decisions lead to resources (e.g., subprograms and objects) declared in particular
design units. As units need resources from other units, patterns of resource sharing emerge. We view
extensive resource accessing among design units as contributing to complexity.

Both notions of complexity--high interconnection and extensive resource accessing are explored
in section 4,

To illustrate the linkages we see among design decisions, the design artifact, and resulting quality,
consider the following example: A project has recached the stage in which developers arc providing a
scheme for storing and retrieving data from a database supplied and maintained by a separate
organization. Suppose the developers decide all access to the database will be provided by design
unit X. Other units requiring data from the database will not access the database directly, but instcad
will call on unit X. This decision has consequences in the architectural design of the system.
Examination of the design artifact will reveal access relations only from unit X to the database. We
would expect numerous access relations from other units to unit X. Had the decision instead been
made for units to directly access the database, we would detect differences in the artifact, namely, the

absence of unit X and the presence of numerous access relations from other units directly to the
database.

A single design decision can affect many quality factors, like reliability, maintainability, and
flexibility. Continuing the example, a decision not to create unit X to handle database access may
lead to more difficult maintenance and more defects. Suppose a task lcader misunderstands the
cormunand format for accessing the database and communicates the incorrect information to the
development team. Several developers may then implement modules with incorrect databasc access
commands. Such a defect may persist through code reading and unit testing. Code readcrs, relying
on incorrect information, may not sce the code as defective. Unit testers may not actually access the
database, but, instead write test code to emulate the database input and output.

If access to the database is finally provided in integration testing, the defect may be detected.
Correcting the defective code would require handling all modulcs that uscd the faulty database

3-2

commands. Also, whenever a module is handled, the potential exists for a new defect to be
introduced.

This example traces the relationships we see betwecn a design decision, its observable
consequences on the design artifact, and the possible effects on maintainability and reliability.

3.2 REPRESENTATION OF ADA DESIGNS

We developed a representation of Ada designs to serve as the basis for identifying design
characteristics. Our interests centered on representing system-level architectures, rather than the
control flow and data flow within individual procedures. The approach, following scction 3.1, was to
view Ada systems as being composed of design units ("parts”), and design relations ("'conncctions'’.
The representation of software architectures as "parts” and "connections" is similar to representations
used by other investigators (see, for example, {23] and [24]). We developed a particular architectural
representation for Ada: one that provides a level of granularity appropriate to our consideration of
hypotheses about the way design artifacts reflect design decisions. The benefit this provides to our
reseatch is having key architectural relations expressible in a machine-processable form.

Our sole assuption was iha, i Ada design representation be compilable. Assuming
compilability, we examined the systcm structuring rules in the Ada language reference manual [25].
Our objective was to identify Ada language constituents that were candidates to serve as design units
and design relations. The first three subsections discuss the results of our examinat n of Ada
program units, Ada compilation units, and the issues related to the dynamic creation of task objects.
Our decisions concerning design units and relations are reported in the remaining two subsections,

3.2.1 Ada Program Units

Ada programs are composed of the following progran units: generic subprogram, gencric
package, subprogram, package, and task. Each program unit consists of a separate specification and
body, with two exceptions: a non-generic subprogram specification is not always necded, and certain
packages and generic packages do not nced a package body.

Generic units are templates which are instantiated to produce non-generic subprograms or
packages. Generic subprogram declarations, generic package declarations, generic subprogram
instantiations, generic packagc instantiations, subprogram declarations or bodices, or package
declarations may be compiled as library units. These may then be imported (via the Ada "with”
clause) to provide the context for other compilations.

Program unit bodies nested immediately within library unit bodics may be declared as body stubs

with the corresponding proper body compiled as a separate subunit. Subunits, in turn. may contain
program unit bodics declared as bady stubs. In this way, nesting can extend to multiple levels.

3.3

Task units may be declared as single task objects or as task types which are templates for any
number of task objects created at run-time. Each task object represents a separate thread of control
which is scheduledd for exccution by the Ada run-time environment.

3.2.2 Ada Compilation Units

In addition to a program unit, an Ada compilation unit emerged as likely candidate to serve as a
system building block. According to the Ada standard [25], "A program is a collection of one or
more compilation units submitted to a compiler in on¢ or more compilations.” Fifteen different Ada
compilation units were identified (table 3-1). A compilation unit is described in table 3-1 as
consisting of a program unit and a designation as either a specification, body, instantiation, or subunit.
Table 3-1 further identifies the compilation unit as a library unit or sccondary unit or (in the case of a
subprogram body) both.

3.2.3 Dynamic Creation of Task Objects

A task is one of the five Ada program »nits; 2 task subunit is one of the fifteen compilation units
from table 3-1.

Each task object declared during program execution provides a scparate thread of control
scheduled by the Ada run-time environment for its activation, synchronization and communication
with other task objects, and termination. Limited static analyses could be performed for single task
objects declared immediately within the specification or body of library packages or library package
instantiations since these declarative regions are elaborated exactly once before execution of the main
program begins. It is likely that task objects in the declarative part of the main program also would be
elaborated exactly once since it is unlikely that the main program would be recursively called,

Task type declarations visible to the main program or to other task bodics may be used as the
designated type in an access type declaration and as component types in a composite type. This
allows any number of tasks to be created by the claboration of object declarations and the exccution of
allocators at run-time. This requires dynamic analysis of the program units to determine the
complexity of the system operation. Any model for the intended interaction of thesc tasks probably
would need to be provided by the system designer together with a method of ensuring that only the
required number of task objects were created during system exccution. We find it ditficult to
cnvision a general analysis method being devised to predict the number of task objects that could be
created by a particular sct of Ada compilation units. Any alternative method for synchronizing and
communicating multiple threads of control probably would be as complex as the corresponding
system of Ada tasks and would have the disadvantage of being less well understood. This analysis
caused us to defer pursuing techniques for the identification of potential concurrency relations among
tasks.

3-4

Compilation
Unit
Number

10,
11.
12.
13.
14,

15,

Table 3-1. Ada Compilation Units

Compilation Unit Name

Program Unit

Generic Package
Generic Package
Generic Package
Generic Package
Package

Package

Package

Generic Subprogram
Generic Subprogram
Generic Subprogram
Generic Subprogram
Subprogram
Subprogram
Subprogram

Task

Suffix

Specification
Body
Subunit
Instantiation
Specification
Body
Subunit
Specification
Body
Subunit
Instantiation
Specification
Body
Subunit

Subunit

3-5

Library
Unit

Yes

Yes

Yes

Yes

Yes
Yes

Yes

Secondary
Unit

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Yes

3.2.4 Design Units

Three candidates for design unit emerged from our investigation: program unit, compilation unit,
and a library unit aggregation. We define a library unit aggregation to be a library unit, its
corresponding body (if any), and all subunits for which it is the ancestor library unit (as used in {25}).
Equivalently, library unit aggregation is the library unit’s declarative scope.

Compilation unit was sclected as the principal design unit for purposes of our rescarch, Our
experience with Ada systems indicates that compilation units are frequently used as the entitics tor
both project data collection and static analysis by off-the-shelf source code analysis tools.

3.2.5 Design Relations

Focusing on compilation units as design units, we investigated static relationships among such
units. The following observations refer by number to the compilation units in tablc 3-1 in discussing
the legal (in the sense of [25]) units for each relation.

Ada allows any compilation unit to import a library unit (units 1, 4,5, 8, 11, 12, 13 in table 3-1}
through a context clause. A generic instantiation (unit 4 or 11) would rcference only the single
generic specification (unit 1 or 8 respectively) mentioned in the instantiation since any other generic
specification would not provide any entitics to be used as actual parameters of the instantiation.

Since Ada allows a body stub to be declared only immediately within the declarative part of a
library subprogram body or sccondary unit, only these units (units 2, 3, 6,7, 9, 10, 13, 14, 15) may be
the parent unit for a subunit (units 3, 7, 10, 14, 15).

A generic unit specification declared in the visible part of a library package specification or
library package instantiation (units 4, 5) may be referenced as the name of the generic unit for a
generic instantiation (units 4, 11). If the context clause contained a use clausc for the library unit
(units 4, 5), any tools used to determine the location of the generic unit would need to inspect the
entities declared in the visible part of the library unit or of the generic package specification for the
library package instantiation.

The rules defining the order in which units can be compiled and recompiled form dependencics
among compilation units of a design representation. A legal order for the original compilation of the
compilation units is largely determined by context clauses and body stubs. However an Ada compiler
is allowed to introduce additional dependencics based on the actual compilation order used and
whether compilation units are submitted as separate compilations or included together as a single
compilation. These additional dependencics would affect the Iegality of subscaucent compilations or
linking operations and the cffectiveness ot pragina INLINE for the original or subsequent
compilations. Further, an implementation is allowed to retain compilation units if it can deduce that
some of the potentially affected units arc not actually affected by changes in recompilation. An
analysis tool for determining the recompilation complexity of an Ada design could identity the

3-6

potentially affected units for a proposed recompilation or possibly be tailored to the recompilation
rules for a particular compiler.

These observations resulted in the identification of the following five static design relations for
purposes of this rescarch; where A and B are compilation units defined in table 3-1:

1.

‘2

Context coupling relation

A "withs” B,
where A: any of the 15 compilation units
B: alibrary unit (units 1,4, 5,8, 11, 12, 13 from table 3-1)

Specification/body relation
A is the specification for body B.
where A: a library unit specification (units 1, 5,8 12)
B: aproper body (units 2, 6,9, 13)
Parent/subunit relation
A is the parent unit for subunit B,
where A: a library subprogram body or a sccondary unit (units 2.3, 6.7, 9, 10, 13, 14, 15)
B: a subunit (units 3,7, 10, 14, 15)
Generic template/instantiation relation
A contains a generic body for a gencric unit instantiated by B.

where A a generic unit body, package body, or subunit (units 2, 3, 6.7, 9, 10, [4,15)
B: any of the 15 compilation units

Note: If unit A is compiled before B and if the body is actually included INLINE at the point of
the generic instantiation then a dependency may exist. Subsequent recompilation of A would
require recompilation of B. This may add a dependency which originally did notexist. If unit B
was compiled before unit A, then no dependency would exist since the generic unit body was not
available for inclusion in the compilation of unit A. Somce compiler implementations may require
that somie or all of the bodics for gencric units declared in A be included in the same compilation
containing the specitication for unit A, This forces a dependency Tor all units that instantiate any
generic unit contained in A on all sccondary units that contain generic unit bodics since
recompitation of any of these forces recomptladon of library unit A,

Pragmut INLINE dependency relation

)

A contains a subprogram body or instantiation mentioned in pragma INLINE and calicd by
unit B,
where A: alibrary subprogram body or a subprogram instantiation,
body, or subunit (units 11, 13, 14)
B: any of the 15 compilation units

Note: If B is compiled before A, then no dependency exists since the pragma INLINE would
have to be ignored. If A is compiled before B and if the body is actually included INLINE at the
point of the subprogram call then a dependency exists. Subscquent recompilation of A would
require recompilation of B. This may add a dependency which did not exist at the end of the
original compilation.

Of the five relations, context coupling has been a particular focus in our research. When a context
coupling (e.g., A "withs" B) cxists, we know that compilation unit A requires resources in B, We
then want to know how many resources in B have been made visible to unit A (and to other units that
"with" B). Next we want to profile the resources provided by B as being cither program units, types,
or objects. Of the resources visible in B, how many arc actually accessed or used by vnit A? We
hypothesize that the number and profile of resources both available and accessed may be significant
design characteristics in estimating reliability and maintainability.

Context coupling also provides a medium for control flow and data flow relations among
compilation units. These two relations have been the most extensively rescarched for their effects on
software complexity (sce, for example, [S5] and [6]). Control flow potentially occurs when A "withs”
B, a subprogram is onc of the visible resources of B, and A includes code to call the subprogram.
Data flow occurs within the context coupling relation via subprogram parameters or visible objects.
The preliminary analysis results in scction 4 reflect the research attention on context coupling to
characterize the interconnection and resource sharing in Ada designs.

Y
e

SECTION 4

PRELIMINARY ANALYSIS RESULTS

This section presents preliminary results of analyzing project data to determine significant factors
affecting reliability and maintainability. The results are preliminary because the research project is
continuing to obtain project data and develop new hypotheses about the relationships between design
characteristics and quality factors. The resuits in this section are based on 21 observations
(subsystems) from four projects. The project data is described in section 4.1,

The statistical analysis and model building methodologies are discussed in section 4.2. Section
4.3 presents the specific reliability an'’ maintainability measures used in the analysis. Section 4.4
discusses the independent (explanatory) variables in this analysis. These variables reflect the design
hypotheses introduczd in section 3. In section 4.5, the statistical results for both reliability and
maintainability are discuused.

The project data elements used in statistical analyses are defined in table 4-1. Names of data
clements are consistently written in lower-case. The data elements are used 1o compute statistics for
regression analysis. The computed statistics are written in upper-case.

4.1 PROJECT CHARACTERISTICS

Data used in preliminary analysis of factors affecting reliability and maintainability were obtained
through the cooperation of the Software Engineering Laboratory (SEL) of NASA/G3FC. There are
two sources of data. First, Ada code for each project is analyzed using the Ada Static Source Code
Analyzer Program (ASAP) {26). The data generated by ASAP is used to compute design
characteristics in table 4-1 for the subsystems of each project. We are analyzing Ada code from
systems which have completed acceptance testing. We are extracting structural infermation whose
availability is reasonable to expect, based on our comparison of earlier design documents to design
features of the completed systems. The general issue of availability of design-related information at
various points in the development process is currenty being investigated.

A sccond source of data is the SEL database which characterizes the development process for
cach Ada projpect. This database includes information on the origin of cach compilation unit (c.g.,
extent of reuse, subsystem in which it is contained), defect and non-defect modifications, processor
utilization, and staff effort expended on various development activities [27].

Data has been obtained on four Ada projects, consisting of 21 subsystems. The projects involve
the development of interactive, ground-based, scientific applications.

4.1

Software Composition

sS
u

cu
ksctot
kscv

kscs
kscx
kscn
Design Characteristics
cC
dexp
dimp
dimpc

aimpint

dimpext

Table 4-1. Project Data Element Definitions

number of subsystems

number of library units

number of compilation units

thousands of source lines of codes - total

thousands of source lincs of code® - verbatim (i.c., reused
without modification)

thousands of source lines of code” - slightly modified (i.c., <
25 percent of source lines modified)

thousands of source lines of code® - extensively modificd
{(i.e., > 25 percent of source lines modified)

thousands of source lines of code® - newly developed

number of context couples

number of declarations exported

number of declarations imported

number of declarations imported - cascaded

number of declarations imported - internal (from within the
subsystem)

number of declarations imported - external (from other
subsystems)

Software Modifications and Errors

modtot
deftot
defsa

number of non-defect modifications - total

number of defects - total

number of defccts - reported during system testing and
acceptance testing

*Non-comment, non-blank source lines of code.

4-2

Table 4-1. (Concluded)

isovs number of times isolating the cause of the defect was very
simple (requiring < 1 hour)

isos number of times isolating the cause of the defect was simple
(requiring > 1 hour and < 1 business day)

isod number of times isolating the cause of the defect was
difficult (requiring > 1 day and < 3 days)

isovd number of times isolating the cause of the defect was very

difficult (requiring > 3 days)

fixvs number of times fixing the defect was very simple (requiring
< 1 hour)

fixs number of times fixing the defect was simple (requiring > 1
hour and < 1 business day)

fixd number of times fixing the defect was difficult (requiring > |
day and < 3 days)

fixvd number of times fixing the defect was very difficult
(requiring > 3 days)

Seiected project characteristics are shown in table 4-2. Across all projects, approximately 183
thousand source lines of code (KSLOC) in 1,984 compilation units have been analyzed. The projects
range between 33 and 73 KSLOC. Reuse ratios (fraction reused verbatim or with slight
modifications) lic between nine and thirty percent. The reliability varics between 3.0 and 9.3 total
defects per KSLOC. Total defects include those reported during unit testing, system testing, and
acceptance testing. Maintainability is indicated by two different measures. The fraction of defects
taking less than or equal to on¢ hour to isolate varies between 2% percent and 73 percent, while the
fraction of defects taking less than or equal to one hour to correct varies between 39 percent and 72
percent.

In table 4-3, the equivalent data is given for each of the subsystems of the projects. The
subsystems for project i are denoted i-1, i-2, ctc. Note, in particular, the increased ranges over which
the reusability, reliability and maintainability measures vary when data is reported at the level of
subsystem instead of project.

4.2 STATISTICAL ANALYSIS AND MODEIL BUILDING

Our research is built around the identification of hypotheses regarding the detcrminants of
software reliability and maintainability, and the empirical testing of thesc hypotheses.

4-3

1931109 01 MOY U0 01 [enba Jo we $591 JuLInbal $159J9p JO UONEI} AP ((101IP/SAXY) SB PAUYIP UORIILOY) 3

*31RJOS{ 0} MOY 2UO 03 Tenba Jo wew ss9 SuLNbAI §19259p Jo UONJRIY AP (I0IP/SAOSI) SB PIULJIP UONR[OS] P

*9p0D JO saUTf 50mOs puesnoy 1ad $150J2p :(101053/1039p) Se pauyydp AfIqered O

"3p02 payipow ApySiys pue WNEQIA PISNAI JO UONIRLY A JOIOSH(SISH+AISY) Se PaUyap 33y q

(1 3[QE.L UT 10195)) P02 JO SAUT I0IMOS YUB[Q-UOU JUIRLWIOI-UOU JO SPUESNOYL Se pauyap 971§ ®

g9’ 09 LY (44 $86'1 80S P8I s199fo1g

184

53 LS (X7 5T 433 991 0t 4
o gL £'6 [44) 31y 86 tee 13
6t 8T 0t LT oLy LI g6t 4
oL 1o’ (Y 8T 859 L91] 1'eEL I

,UONOILI0) UOTIE[0S] NSTTCTITEN REIEN ST §itin eI AEATJOS 133101g

KfiqedTene N vonerdwo) Ariqry

$103(04g JO sapstIddRIRY)) “7-p QL

"1921109 01 oY 2u0 0) enbd Jo uep ss9f Suriinbas s1005op Jo vonoey A ((101JIP/SAXL) Se POULJIP UORIALO)) 2

"J1e[0St 01 oY auo 01 fenby Jo ueyd s$9 Furnnbol s190J0p JO UONDEY) JYI ((J0IOP/SAOST) SE PIULJOP UonRjOS] P
*IP0OD JO $ULf 92IN0S puesnoy J1ad $100§op Se pourjop Aujigeldy o
“2pod payipowt ARYSiYS pue WNeqIdA PIsnal JO uonOel) A1 OIS ASISN+AISY) S8 poulydp asnay g
(1-p 91QE.L U1 101083) 2pPOD JO SOUI| 20INOS JUR[G-UOU “JUIUNLOI-UOU JO SPURSNOL Se PIUIp 32§ ©

or’ 95 9T v
SL 00! L€ 19
s 9€” 6 SO
op op' 0'8 60
8¢’ 8¢’ TS 00’
by 09’ 8'€ 8¢"
w 89 L'01 00
sL oL 991 60
68 b9’ 6T 00’
69 8L’ 9'8 W0
<3 8’ 6T 00
or 0T vl yL
9T 1T 8'€ w0
I 4 L't g
6L Ls' 8 00
68 99 91 v6
9 vy’ 79 by’
6L 9T 9'8 w
8L’ 69 Sy L0’
LL LL 0'8 0g'
43 Sp b9 00’

TCETE GEPEN B

48!
£l
33
99
SOt
101

$6
£9
LOT
8¢l
154

09
6S1
L
0t

tL
G8l1
it
98¢
114
€9

siun)
vonedwio)

SwSAsqng JO SHNSLIILIRYD) *C-p Qe

134
S
6
Zl
LY
0t

91
9
14!
61
£

114
91
89
o1

81
8¢
L
4]
L
el

STuy
Aseiqry

96
A
(A4
St
6Tl
99

99
oS
L
911
9C

6'9
8¢l
127!
67

LS
£'Le
oy
192
Le
tL

TS
oIRMIJOS

9
v
Vv
a7
(44
[-v

St
V-t
et
(43
I-€

v-C
t-Z
¢z
1-Z

9-1
¢l
V-1
£l
[
I-1

WIsAsqns

Ugl

The overarching perspective is that design complexity is a major determinant of software system
defects generated during post-design implementation. Design complexity is multidimensional, and
may be characterized in terms of measurable variables. If these design measures exhibit independent
variation within an ensemble of empirical observations, their impacts on software defects can be
estimated.

We also recognize the environment within which software is developed may influence defect
occurrences. Examples of environmental factors are the experience of the software development
team, and the extent to which the software development organization reuses software.

Design characteristics and environmental factors are introduced into multivariate models to
explain reliability and maintainability as depicted in the quality equation from scction 1.3.

The following two subsections discuss the dependent variables and independent variables of the
models.
4.3 SELECTION OF DEPENDENT VARIABLES

This section defines the dependent variables, corresponding to reliability and maintinability,
used in the analysis. The selection of measures for reliability and maintainability was guided by the
set of candidate definitions in section 2 and the availability of project data as described in section
4.1.
4.3.1 Reliability

Project data, discussed in section 4.1, supports a rcliability measure based on defects. We used
measure RS (from scction 2), defect density. The project data provides pre-release defect data

collected during unit, systcm, and acceptance testing.

We regard this complete project defect record as total defects (deftot from table 4-1). leading to
the reliability measure TOTDEFSL defined as follows:

TOTDEFSL = deftot/ksctot {2y

16

Our research focus on architectural design, rather than detailed, intra-procedural design, led us
to investigate a second reliability measure. We subtracted the unit testing defects from the total,
leaving the defects reported during system and acceptance testing (defsa). We wanted to explore the
matchirg of architectural design decisions with defects likely to reflect those decisions. Defects
during unit testing are more likely to reflect implementation or detailed design decisions. When unit
testing is completed, collections of units are tested during system and acceptance testing in the SEL
environment. These testing activities are more likely to expose defects reflecting higher-level design
decisions concerning inter-unit operation and relationships. Note, however, that defects were
associated with either unit, system, or acceptance testing by matching the date of the defect report
with phase dates for each testing activity. Defects reported during system and acceptance cannot be
expected exclusively to correspond to inter-unit relationships. Original defect reports were not
examined to attempt to make a finer determination by, for example, analyzing the description of the
defect. We maintain only that defsa is more likely to exclude implementation-related defects
corrected during unit testing. The resulting reliability measure, SYACDEFSL, is defined as follows:

SYACDEFSL = defsa/ksctot 3)

The analysis results in this section indicate when either TOTDEFSL or SYACDEFSL is used
as the dependent variable for reliability.

4.3.2 Maintainability

Ideally, we want to know the time (in hours or days) required to isolate the defects and make
the necessary changes to repair the defects (measure M1 from Section 2). Our project data instead
provides this time data in four ordinal categories:

Less than or equal to one hour

Greater than one hour but less than or equal to one business day
Greater than one day but less than or equal to three days
Greater than three days

This maintenance data is more informative than a simple ordinal ranking (e.g., from 1 to 4)
because the ranks are associated with ranges of staff effort. In this sense, the data clearly supports
measure M4, easy fix frequency, and provides information concerning M1, effort to correct.

An additional feature of the project data is the prescnce of two rankings: one for effort to isolate
the defect and the other for effort to correct the defect. Table 4-1 defines the cight data elements
corresponding to the four ordinal categories for isolation time and correction time, respectively.

Our approach was 10 use M4, defining an easy fix as the first category requiring less than or equal
to one hour. The two maintainability measures are defined by the EFFISQ and EFFFIX, as follows:

EFFISO = isovs/deftot ()
EFFFIX = fixvs/deftot &)

4.7

4.4 SELECTION OF INDEPENDENT VARIABLES

Our research identified independent measures for design characteristics and environmental
factors. The number of independent (explanatory) variables which can be introduced is restricted by
the number of observations collected thus far. This section discusses the independent variables used
in the preliminary statistical analyses. Four design characteristics (context coupling, visibility, import
origin, and internal complexity) and two environmental factors (volatility and reuse) are discussed.
Table 4-4 summarizes the independent variables defined in this section. Table 4-5 provides
descriptive statistics for the independent variables using project data (21 subsystems).

4.4.1 Context Coupling

Context coupling refers to the use of "with" clauses allowing the exporting of declarations from a
library unit to another compilation unit. The compilation unit is said to import the declarations of the
library unit.

Context coupling measures the interconnection of compilation units as an indication of design
complexity. Higher values of context coupling measures are hypothesized to be associated with
higher defect densities and lower maintainability.

Several context coupling measures have been identified. The most obvious measure is the
number of context couples per library unit aggregation (defined in section 3) denoted by CCPLU and
defined as follows:

CCPLU =cc/lu %)

If the identical library unit is "withed” into a package specification and its corresponding body,
then the contribution to CCPLU is one rather than two. Importing declarations to the specification
makes the declarations available to the corresponding body, so for our purposes the context clause for
the body is redundant.

Another context coupling measure is the import/export ratio, IMPEXP, defined by:
IMPEXP = dimp/dexp @)

For a closed system (i.e., no exports or imports across the system boundary), all of whose library
units export the same number of declarations, the value of IMPEXP equals the value of CCPLU.
When the library units do not export the same number of declarations, the measure is interpreted as a
weighted average of the context couples. The weights are chosen in proportion to the number of
declarations exported across a context couple. So that the weights sum to unity, the proportionality
constant is set equal to the total number of exports. Thus, context clauses with relatively high
numbers of exported declarations are more heavily weighted.

4-8

Table 4-4. Independent Variables Used in Statistical Analysis

Independent Independent
Design Variable Variable
Characteristic Name Definition’
Context CCPLU: Context Couples CCPLU = cc/lu
Coupling Per Library Unit
IMPEXP; Import/Export Ratio IMPEXP = dimp/dexp
CIMPEXP: Cascaded CIMPEXP = dimpc/dexp
Import/Export Ratio
Visibility CIMPIMP: Cascaded Imports CIMPIMP - dimpc/dimp
Import Origin FINTIMP: Fraction of Intemnal FINTIMP = dimpint/d*mp
Imports
Internal EXPPLU: Exports Per Library EXPPLU = dexp/lu
Complexity Units
Independent Independent
Environmental Variable Variable
Factor Name Definition

Volatility MODPLU: Modifications Per MODPLU = modtot/lu

Library Unit
Reuse FNEMSL: Fraction of New or FNEMSL =

Extensively Modified (kscn+kscx)ksctot

Code?

1 Data elements cc, lu, and so on are defined in Table 4-1.

2 FNEMSL measures the fraction of code not reused (see Section 4.4.6).

49

Table 4-5. Descriptive Statistics for Model Variables’

Standard

Variable Mean Deviation Minimum Maximum
TOTDEFSL 6.1 3.8 1.4 16.6
SYACDEFSL 35 2.2 .18 7.8
EFFISO 57 21 20 1.0
EFFFIX .64 17 .26 .89
CCPLU 13.1 S .67 353
IMPEXP 24.6 22.6 .87 102.2
CIMPEXP 60.4 42.7 23 167.6
CIMPIMP 29 1.6 1.2 7.4
FINTIMP 31 .31 01 1.0
EXPPLU 39.1 20.3 15.0 91.2
MODPLU 3.7 4.6 13 19.3
FNEMSL 77 29 .06 1.0

+ Sample size = 21

4-10

An alternative interpretation is that the import/export ratio represents the average number of times
an cxport in a closed system is uaported, wliich is an indicator of coupling.

Still a third perspective, applicable to both open and closed systems, interprets the imporvexport
ratio as the average number of declarations imported to ""support” an exported declaration. Imports
can be viewed as providing services to the importing unit. The unit depends on these imports, for
example, to provide a data type or a procedure. Of course, some imported declarations will not be
used, but they nevertheless contribute to complexity from the perspective of a programmer
responsible for implementing the design or isolating and correcting defects. For example, a
programmer must consider the possibility that a declaration which has not been referenced may be the
source of a defect.

A final measure of context coupling can be derived by observing that the declarations exported by
a library unit to a specification, for example, will cascade through any corresponding body and
subunits, effectively importing to these compilation units as well. Thus, the import count is
magnified by this cascading effect. A context coupling measure accounting for this effect is defined
as follows:

CIMPEXP = dimpc/dexp ®)

The value of this measure may be controlicd somewhat by placing context clauscs at the lowest
possible level in the library unit aggregation.

4.4.2 Visibility

Visibility has been investigated as a measure of interest in Ada development {28]. A library unit
aggregation may have cxteasive structure in terms of a corresponding body and perhaps multiple
levels of subunits. Context clauses for such a library unit aggregation may be all at the specification
level, or may appear at the body or subunit fevels providing only the needed visibility. Information
hiding is served by the appropriate placement of context clauses within a library unit aggregation. If
all context clauses are at the highest level (the specification), thien the programmer may be working
with an excessive number of imported declarations which cascade through the entire aggregation,

A measure which accounts for this cffect is given by CIMPIMP, defined as follows:
CIMPIMP = dimpc/dimp)

This measurc cffectively allows us to split the measure in (8) into the direct effect given in (7Y and the
cascade effect in (9).

4.4.3 Import Origin

Exports and imports may occur among compilation units within a subsystem, or compilation units
may import declarations from other subsystems. If software development tcams are organized by
subsysiem, then a team may be less familiar with the imports coming from other subsystems. We
might expect defects to decrease as the ratio of internal imports to total imports increases, This
measure, FINTIMP, is defined as follows:

FINTIMP = dimpint/dimp (10)
4.4.4 Internal Complexity

Context coupling measures are basically measures of the "external" or architectural complexity of
the design. The visibility measure exhibits characteristics of both an extcrnal and an internal
complexity measure. It reflects both importing of declarations among units (an architectural feature)
and positioning of context clauses within a library unit aggregation (an internal complexity feature).
However, we belicve a more complete explanation of reliability and maintainability requires greater
consideration of internal complexity within a library unit aggregation. Marginally, we might expect
some negative correlation between internal and external complexity. Thus, ignoring internal
complexity might result in an upward bias in the estimate of the coefficicnts associated with external
complexity {29, p. 291-298].

Internal complexity may be characterized by the partitioning of the calling tree within the
program library. ASAP does not have the capability of providing this information. Thercfore, the
incorporation of a measure based on calling tree fragmentation into models for reliability and
maintainability has not been possible.

Accordingly, a less satisfactory measure of internal complexity was devised. The number of
declarations a library unit exports was regarded as a crude proxy of its internal complexity. Thesc
declarations are used and implemented in the secondary units associated with the library unit. Thus,
the average internal complexity of a subsystem is the number of exported declarations per library unit
denoted by EXPPLU and defined as follows:

EXPPLU = dexp/lu (an
4.4.5 Volatility
The project data also reflects non-defect modifications. These changes are interpreted as an

indicator of software volatility which may be expected to increase the defect rate. The volaility
mcasure MODPLU is defined as follows:

MODPLU = modtot/lu {1

4-12

4.4.6 Reuse

Reuse has been shown to improve reliability [30}. The project data provides information on
software reuse for each compilation unit. The origin of a compilation unit is identified according to
four categories:

Reused verbatim (without change)

Reused with slight modification (< 25 percent of the source lines)
Reused with extensive modification (> 25 percent of the source lines)
Newly developed code

FNEMSL is the fraction of source code that was ncw or extensively modified. The rcuse measure
was defined in this way to eliminate zero values from entering into the logarithmic transforms.
FNEMSL is defined as follows:

FNEMSL = (kscn + kscx) / ksctot (13)

4.5 PRELIMINARY STATISTICAL RESULTS

Preliminary results of statistical analyses are presented in this section. The results are based on 21
observations (subsystems) from the project data described in section 4.1, Analysis results are
presented first for reliability and then for maintainability.

4.5.1 Reliability

Results are presented for the two measures of reliability discussed in section 4.3: total defects per
thousand source lines of code (TOTDEFSL), and system and acceptance test defects per thousand
source lines of code (SYACDEFSL). Multivariaic regression techniques are used to regress the two
forms of defect density against various combinations of the explanatory variables discussed in section
4.4, After initial experiments with linear models, we decided to focus on log-linear models because
of the inhzrent curvature in the relationships between the dependent and ind~pendent variables. These
models take the form of:

log(Y) = a + a log (X1)+ a, » log (Xz) + . (14
where:

Y = dependent variable (¢.g. TOTDEFSL or SYACDEFSL)

Xi = ith indcpendent (explanatory) variable, i=1,2, ...

Initial univariate regression analyses were conducted for the three dificrent context couping
measures in table 4-4. The results are shown in the first three equations of table 4-6 (for
TOTDEFSL), and table 4-7 (for SYACDEFSL). The variables shown in the tables are logarithmic
transforms of the dependent and independent variables. Thus equation (1) of table 4-6 can be writien
explicitly as:

log (TOTDEFSL) = .58 + .47+log (CCPLU) (15

The numbers in parcntheses in tables 4-6 and 4-7 represent the standard errors of the parameter
estimates. RZ the coefficient of determination, is the fraction of variation of the dependent variable
explained by the independent variables.

In all cases, the coefficient estimates have the expected signs: defect densities increase as design
complexity, measured by context coupling, incrcases. Of the three context coupling measures,
CCPLU performs poorly in tables 4-6 and 4-7. In both tables, the cascaded imporvexport ratio,
CIMPEXP, performs about the same as direct import/export ratio, IMPEXP,

Results from equations 2 and 3 in both tables suggest that the context coupling cffect and the
cascade effect might each enter the regression analysis as independent variables. The process by
which context coupling is established may be viewed in two steps. First, declarations arc imported
into a library unit aggregation without reference to the specific compitation uaits into which the
declarations are imported; the complexity associated with this step is characterized by the dircct
import-cxport ratio IMPEXP. Sccond, decisions are made to attach the context clauses 1o particular
compilation units. CIMPIMP measurcs the cffect of this second step. This two-step process uses
IMPEXP and CIMPIMP rather than the single variable CIMPEXP.

Resutlts of incorporating IMPEXP and CIMPIMP in a regression are shown in cquation 4 of tables
4-6 and 4-7. In both cascs, the coefficient of CIMPIMP cnters with the appropriate sign. and the
equations have a bit more explanatory power as indicated by R?) than equation 3.

Tables 4-8 and 4-9 present the resuits of three-variable regression analysces for the two difterent
measures of defect density. Thesc analyses are more exploratory in nature, because they arc based on
only 21 obscrvations. Spurious correlations among the explanatory variables (multicollinearityy and
the lower number of degrees ot frecdom associated with the coefficient estimates may contribute o
larger standard crrors for these cstimates,

4.14

Table 4-6. Log-Linear Regression Results for TOTDEFSL

Variable Equation | Equation 2
Interoept Swd .27
(24P (.28)
CCpPLU 47
i
IMPEXP AR
.09

CIMPEXP

CIMPIMP

x

4
;Ji
to
Lh
x

a Parameter o pmate,
b Standard crror of the parameter estimate.,

Coetinaent of deternunation,

4-15

Equation 3

.47
(.09

59

Lquation 4

-04
(.35)

S
(.09)

.26
(.18)

Table 4-7. Log-Linear Regression Results for SYACDEFSL

Variable Equation 1 Equation 2 Equation 3 Equation 4
Intercept -.248 -.87 -.15 -1.42
(24 (39) (.47) (.48)
CCPLU .54
(.16)
IMPEXP 65 70
(.13) (.13)
CIMPEXP .66
(12)
CIMPIMP 46
(.25)
R*C .37 .56 61 63

a Parameter estimate.
b Standard error of the parameter estimate.

¢ Coefficient of determination,

4-16

Table 4-8. Three-Variable Log-Linear Regression
Results for TOTDEFSL

Variable Equation 1 Equation 2 Equation 3 Equation 4
Intercept 023 -1.5 0l 65
(.36)° (1.04) (.66) (.36)
IMPEXP 41 .61 .49 217
(.15) (1D (.16) (.11)
CIMPIMP .28 27 .25 05
(.18) (.18) (.21 (.16)
FINTIMP -11
(.13)
EXPPLU 34
(.22)
FNEMSL 03
(.24)
MODPLU 27
(.08)
R ¢ 64 67 .62 76

a Parameter estimate
b Standard error of the parameter cstimatc.

¢ Coefficient of determination.

4-17

Variable

Intercept

IMPEXP

CIMPIMP

FINTIMP

EXPPLU

FNEMSL

MODPLU

R2C

Table 4-9. Three-Variable Log-Linear Regression
Results for SYACDEFSL

Equation 1 Equation 2 Equation 3
-1.48 -1.7 77
(5P (1.5) (.65)

.69 72 .19
(21 (.16) (.16)
.46 46 07
(.26) (.26) (21)

-01
(19
06
(.32)
97
(24)
63 63 81

a Paramcter estimate,

b Standard error of the parameter cstimate.

¢ Coefficient of determination.

4-18

Equation 4

-1.5
(.62)

74
(.18)

.49
(.28%)

-.04
14

For all equations in the tables, estimated coefficients are of the expected signs. Equation 4 in
table 4-8, which involves the non-defect modifications per library unit, MODPLU, is the strongest
predictor of defect density. On the other hand, equation 3 in table 4-9, which incorporates the fraction
of new and extensively modified code, is the strongest predictor of system and acceptance test defects
per thousand lines of code.

The three-variable regression estimates suffer from the fact that the four new variables
(FINTIMP, EXPPLU, FNEMSL, and MODPLU) introduced in tables 4-8 and 4-9, are all highly
correlated with the import-export measure IMPEXP, as follows (using the Pearson correlation
coefficient): FINTIMP (-.79), EXPPLU (-.59), FNEMSL (.75), and MODPLU (.65).

While all of these correlations may be spurious, resulting from the relatively small number of
observations, the correlations for the last three variables deserve special discussion. The negative
correlation of the internal complexity variable, EXFPLU, with the external complexity variable,
IMPEXP, might be expected on the grounds that tradeoffs may exist between these two types of
complexity. Decisions to incorporate exported declarations into larger library units may lead to lower
context coupling. Therefore, this correlation may not be spurious.

The correlation of the fraction of new and extensively modified code, FNEMSL, with the external
complexity measure is intriguing. The correlation possibly suggests that the decision to extensively
reuse software components may result in lower complexity. The exact mechanism through which this
occurs is open to discussion, but reuse may possibly encourage a more careful analysis of interfaces
and a looser coupling of the compilation units.

The last correlation of the non-defect modifications per library unit, MODPLU, with context
coupling may result from modifications causing new information to be accessed from other library
uits, leading to greater context coupling. On the other hand, more complex coupling may lead to
more modifications to improve clarity, maintainability, or documentation as a consequence, for
example, of code inspections. A resolution of this question requires further analysis.

4.5.2 Maintainability

Section 4.3 discusses two measures for maintainability, effort to isolate defects and effort to
correct defects. To estimate these measures, we used ordered response models as discussed by
Gurland et al. [31]. Assume that there is an underlying responsc variable, denoted by Y, which is
cither effort to isolate defects or effort to correct defects, defined by the following regression
relationship for observation i

log(Y;)= -a, - a + log Xp-a, »logXp- .. +y (16)

where;

a; = jthregression parameter to be estimated, j=1,...,n
)gji = value of jth explanatory variable for the ith observation, i=1,....m
u; = disturbance term for the ith observation.

The minus signs in front of the coefficients are chosen for convenience. The disturbance term, u,
represents the unexplained variation, and is characterized by some as yet unspecificd probability
distribution.

Y;" is a continuous variable measuring effort to isolate or correct defects and is not directly
observable in our categorical data. Instead, what is observed in the categorical data is a discretc
dependent variable, Y; , defined by:

Yl =] if Yvl * <1 hour

=2 if lhour<Y;
=3 if lday <Y
=4 if Y{ >3days

day

<1
< 3 days

On the basis of this categorical data, 2 polychotomous ordinal analysis including all four
categories can be conducted [31]. However, such a model would require the estimation of three
constants, as well as any additional parameters associated with the explanatory variables. Since only
21 observations are currently available, we decided to conduct a dichotomous ordinal analysis,
involving only two categories as defined below:

Y-

i if O«< Yi‘ < | hour

=1

=2 if Y{ >1hour

The "< 1 hour” cutoff was chosen because over 90 percent of the isolate and correct data was in the
"less than one day" category. This definition corresponds to EFFISO and EFFFIX from section 4.3.
Expressing the inequalities above in terms of logarithms yields the comparable relationships:

Y, =1 if log (Yi’)s C,
=2 if log (Yi') >C,

where the logarithm of the time constraint is expressed in terms of the more genceral parameter C.
Substituting ¢quation (16} into the above inequalitics, and rearranging terms gives:

Y, =1 if us ay+ asog(X) +aslog(X;) + ..+ C,

=2 if u>ag+ al-log(Xli) + az'log(X_zi) + ..+ Co

With the u normally distributed, the probabilities of the occurrences of the dependent variable Y
are given by:

Prob(Y; =)= F (a4 adopg(X;) +a log(X;) +...+ C.)
Prob(Yj=2)=1-F(ay +alog(X) +aslogX 5} +... + Cp)

where F(.) is the cumulative normal distribution function centered at the origin and with unit standard
deviation,

The parameters of these equations were estimated using the logistics procedure of the Statistical
Analysis System (SAS) which provides for the estimation of the parameters of models of the kind
cited above. These preliminary estimates for EFFISO and EFFFIX are shown in table 4-10. The
design characteristic variables identified in the reliability analyses were also used here with one
notable exception. It was noted from the empirical data that subsystems with larger defect densities
tended to have greater fractions of defects in the simple-to-isolate and correct categories. This
observation is consistent with that of Jones [32] who pointed out that low-defect software may have a
larger proportion of "difficult to fix" defects. On this basis, we decided to incorporate the defect
density as an explanatory variable for maintainability.

In the case of the effort to correct defects, EFFFIX, shown in table 4-10, the estimated
coefficients all appear with the expected signs. Fifty percent of the variation of the effort to correct
defects is explained by the independent variables. Thus, the positive sign associated with the defect
density, TOTDEFSL, was expected on the basis of the observation above. The negative signs
associated with the context coupling variable, IMPEXP, the ratio of cascaded to direct imports,
CIMPIMP, and the exports per library unit, EXPPLU, all indicate that as complexity increases, there
is a shift toward more difficult defects (¢.g., greater than one hour to correct). Finally, the coefficient
associated with the internal import ratio, FINTIMP, is positive, indicating that as the fraction of

imports which are internal to a subsystem rises, the fraction of defects taking less than one hour to
correct increases.

The first column in table 4-10 shows the results for the effort to isolate. All estimated coefficients
are of the expected signs except for the import/export ratio. However, because of the large associated
standard error, this coefficient estimate is not inconsistent with a negative valuc. Forty-one percent
of the variation of the effort to isolate defects is explained by the independent variables.

Environmental factor variables were not introduced into the analyses for two reasons. First, the
limited number of observations cannot support additional variables. Second, an environmental factor
characterizing staff experience wih particular subsystems, which might be expected to play arole in
maintainability, has not been available.

4-21

Table 4-10. Estimates for Maintainability

Variable ErTISO EFFFIX

Intercept 022 2.29
(.90)° (:90)

TOTDEFSL 52 T2
(.14) (.14)

IMPEXP 13 -27
(.15) (.15)

CIMPIMP -.47 -.40
(.10) (.10)

FINTIMP 27 14
(.06) 07

EXPPLU -.05 -.49
(.18) (.18)

R? € .41 .50

a Paramecter estimate.
b Standard error of the paramcter estimatc.

¢ Cocfficient of determination.

422

SECTION 5

SUMMARY

We have discussed the need for technology to analyze software designs for their likely impact on
software quality. We outlined a research approach, involving the construction of multivarjate models
that explain reliability and maintainability in terms of design characteristics and environmental
factors. The progress reported thus far is in establishing a working set of definitions of reliability and
maintainability, developing a representation of Ada design structure, and conducting preliminary
statistical analyses.

We reemphasize that the results for both reliability and maintainability are based on static design
analysis and a limited sample of 21 observations. Within these limitations, the results of the analyses
arc promising. Several design and environmental explanatory variables expected to influence
software quality factors have been identified and analyzed.

Context coupling measures consistently show strong correlations witli reliability. These
measures quantify the strength of coupling of the top-level, manifest architecture (i.c., the association
among compilation units) of Ada programs. The context clause visibility measure, and the
internal/external import measure provide additional refinements to the top-level context coupling.
The justification for the inclusion of these variables is based on our hypothesis concerning the effects
on software quality of library unit structure (i.e., the visibility measure), and the work load
distribution among project subteams (i.e., internal/external import measure).

A final design variable, the internal complexity measure, is brought into play to account for the
impact of library unit complexity on reliability. This measure is viewed as relatively crude one which
will be replaced by a more refined measure based on the fan-out structure of the library unit when
appropriate analysis tools become available.

The variables introduced in addition to the context coupling variables show relatively high
correlations with the context coupling variables. With the limited number of observations at this
point, it is not clear if these correlations will persist for larger numbers of observations, or if they are
an artifact based on spurious correlations. Theoretical arguments can be made for persistence. For
cxample, we can argue that tradeoffs will exist between external (i.c., architectural) complexity and
the internal complexity of library units. We look forward to resolving this question with additional
cmpirical study.

[t must be stressed, to an even greater degree than for reliability, that the analysis results for

maintainability arc preliminary. We intend to develop a polychotomous model whose dependent
variable represents four levels of maintainability. But, the model immediately requires that threc

5-1

constant parameters be estimated leaving little room for the addition of variables and their associated
parameters. Instead a dichotomous model was developed and estimated.

With the exception of the parameter associated with the importvexport ratio for EFFISO, all
parameters enter with the expected signs. However, the import/export ratio parameter is statistically
insigniticant (as evidenced Dy Ui ldige sidindaid Coron).

Additional thought must be given to the process of maintenance, and the potential variablcs which
may affect it. These variables may not necessarily be the same set as those which influence
reliability. For example, an environmentat variable influencing maintainability may be the extent to
which the maintenance staff also participated in the devclopment of the subsystem. This familiarity
should make the maintenance job easier. Regarding variables, tue extent to which a library unit
exports declarations o compilation units in the system may be more important for maintenance than
the extent to which it imports declarations. The argument here is that a person making changes w0 a
library unit may have to trace the impact of those changes on any compilation unit to which the
library unit exports declarations. This activity may take more time for library units having more
complex export couplings.

In summary, the results of the analyses ihus far are heartening. They have provided initial
evidence in support of our hypotheses, and have opened new perspectives to be explored with
aaditional project data during the continuation of this research.

10.

It

12.

13,

LIST OF REFERENCES

Software Engineering Standards, Third Edition, October 1989, New York: The Institute of
Electrical and Electronics Engineers.

Bowen, T. P, G. B. Wigle, and J. T. ('sa1, 1985, Specification of Softwarc Quality Attributes,
RADC-TR-85-37, Vol. 1, Romec Air Development Center.

McCabe, T. J., December 1976, "A Complexity Measure," IEEE Transactions on Software
Engineering, Vol. SE-2, No. 4, pp. 308-320.

Henry, S. M., and D. G. Kafura, September 1981, "Software Structure Metrics Based on
Information Flow", IEEE Transactions on Software Enginecring, Vol. SE-7, No. 5, pp. 510-518.

McCabe, T. J.,, and C. W. Butlcr, December 1989, "Design Complexity Measurement and
Testing," Communications of the ACM, Vol. 32, No. 12, pp. 1415-1425.

Henry, S. M., and C. A, Sclig, March 1990, "Predicting Source-Code Complexity at the Design
Stage," IEEE Software, Vol. 7, No. 2, pp. 36-44.

Card, D. N,, and W. W. Agresti, March 1988, "Measuring Software Design Complexity,”
Journal of Systems and Software, Vou. 8§, No. 3, pp. 185-197.

Kitchenham, B., August 1989, "Measuring Software Quality," Proceedings of the First Annual
Software Quality Workshop, Rochester, NY, 25 pp.

Munson, J. C., and T. M. Khoshgoftaar, May 1988, "The Dimensionality of Program
Complexity," Proceedings of the Eleventh International Conference on Software Engineering,
pp. 245-253.

Musa, J. D., March 1989, "Faults, Failures, and a Metrics Revolution,'" IEEE Software, vol. 6.
No.2,n.85.

Musa, J. D., A. Iannino, and K. Okumoto, 1987, Software Reliability, New York: McGraw-
Hill,

Grady, R. B., and D. L. Caswell, 1987, Softwarc Mctrics: Establishing a Company-Wide
Program, Englewood Cliffs, NJ: Prentice-Hall.

Conte, S. D, H. E. Dunsmore, and V. Y. Shen, 1986, Softwarc Enginecring Mctrics and
Madcls, Menlo Park, CA: Benjamin/Cummings.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23,

24,

Katura, D. G., and G. R. Reddy, March 1987, '"The Use of Softwarc Complexity Metrics in
Software Maintenance," IEEE Transactions on Software Engincering, Vol. SE-13, No. 3, pp.
335-343,

Chruscicki, A., June 1989, "Software Maintainability Prediction and Assessment,” Proceedings
i the Internationar Association of science and Technology for Development (IASTED)
Conference on Reliability and Quality Control, Lugano, Switzerland.

Agresti, W, W, February 1982. "Managing Program Maintenance, " "Journal of Systems
Management, pp. 34-37.

Rombach, H. D., and B. T. Ulery, April 1989, "Improving Softwarc Maintenance Through
Measurcment,” Proceedings of the IEEE, Vol. 77, No. 4., pp. 581-395

Gibson, V. R., and J. A, Senn, March 1989, "System Structure and Softwarc Maintenance
Performance," Communications of the ACM, Vol 32, No. 3, pp. 347-358.

Sunday, D. A., 1989, "Softwarc Maintainability: A New 'llity’," Procecdings of the IEEE
Annual Reliability and Maintainability Symposium, pp. 50-51.

Agresti, W, W., March 1982, "Measuring Program Maintainability.” Joumal of Svstems
Management, pp. 26-29.

Belady, L. A., and M. M. Lchman, 1976, "A Modcl of Large Program Development,” 1BM
Systems Journal, Vol. 15, No. 3.

Schaefer, H., 1983, "Metrics for Optimal Maintenance Management,” Procecedings of the IEEE
Conference on Software Maintenance, pp. 114-117.

Perry, D. E., 1987, "Software Interconncction Models,” Proceedings of the Ninth International
Conference on Software Engineering, pp. 61-69.

Chot, S., and W. Scacchi, January 1990, "Extracting and Restructuring the Design of Large
Software Systems,” IEEE Software, Vol. 7, No. 1, pp. 66-71.

ANSIMIL-STD-1815A - 1983, Reference Manual for the Ada Programming Language,
Amcrican National Standards Institute, Inc.

Doublcday, D. L., August 1987, "ASAP: An Ada Static Source Code Analycer Program.” TR-
1895, Department of Computer Science, University of Marviand.

RE-2

27.

28.

29.

30.

31.

32,

Valett, J. D., and F. E. McGarry, February 1989, "A Summuary of Software Measurciment
Experiences in the Software Engineering Laboratory,” Joumnal of Systemn and Software. Vol. 9,
No. 2, pp. 137-148.

Basili, V. R, and E. E. Katz, 1983, "Metrics of Interest in Ada Development,” Procecdings of
the IEEE Workshop in Software Engincering Technology Transfer, pp. 22-29.

Murphy, J., 1973, Introductory Econometrics, Homcewoaod, Illinois: Richard D. Irwin, Inc.

Card, D. N, V. E. Church, and W. W. Agresti, Fcbruary 1986, "An Empirical Study of Softwarc
Design Practices,” IEEE Transactions on Software Enginecring, Vol. SE-12, No. 2, pp. 264-271.

Gurland, J., T. Lee, and P. Dahm, 1960, "Polychotomous Quantal Response in Biological
Assay," Biometrics, Vol. 16, pp. 382-398.

Jones, T. C., 1986, Programming Productivity, Ncw York, McGraw-Hill.

RE-3

ANSI
ASAP

COQUAMO
CSC

ESPRIT
GSFC
IEEE
KSLOC

MOIE
MTTR

NASA
0S/360
RADC

SAS
SEL

GLOSSARY

American National Standards Institute
Ada Static Source Code Analyzer Program

Constructive Quality Model
Computer Software Camponent

European Strategic Program for Research in Information Technology
Goddard Space Flight Center

Institute of Electrical and Electronics Engineering

Thousand Source Lines of Code

Mission Oriented Investigation and Experimentation
Mean Time to Repair

National Aeronautics and Space Administration
Operating System/360
Rome Air Development Center

Statistical Analysis System
Software Engineering Laboratory

)5, GOVERNMENT PRINTING OFFICE- 1333-T710~393-0011%3

GL.-1

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (Cgr) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of comp=stence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C31 systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Alr Force user coimunity, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillanc./sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

