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Abstract

The Helmholtz integral equation may be formed by combining the scalar wave equation

with Euler's equation for motion within a fluid. The solution of this integral equation

yields the radiated pressure from a submerged, vibrating body and may be used to

characterize the scattering of incident sound waves from bodies.

In this report the scattering from underwater rigid spheres is investigated and results

are presented for ka < 8.0.
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Sound Wave Scattering from
a Rigid Sphere

1. Introduction

Anechoic coatings when applied to objects have the ability to absorb and
modify the scattering behaviour of incident sound waves. The first step in the
investigation of anechoic coatings is to consider their effect when applied to
simple objects such as a sphere or spherical shell. Before an analysis of this is
possible it is necessary to have a firm &rasp of the scattering characteristics of
the body prior to the coating being applied.

The purpose of this report is to investigate the scattering characteristics of a
rigid sphere. The mathematical derivation of the scattered pressure using the
Helmholtz integral equation essentially follows that given in the earlier work of
Junger and Feit (1]. When this is combined with various scattering parameters
found in the literature 12-5), such as target strength, reflection factor and
intensity field around the body, the scattering behaviour for the sphere, may be
characterized. It will be necessary to extend this work later to consider simple
elastic spheres and shells as well as those having complete or partial viscoelastic
(anechoic) coatings attached to their outer surface.

2. Helmholtz Integral Equation

2.1 Introduction

A sound wave can be thought of as a time dependent pressure fluctuation P
around the static pressure P. in a compressible fluid, such as water. A sound
field is generated by a vibrating elastic structure in contact with the fluid, and a
sound field can be modified by the presence of an object that reflects or scatters
the incident sound waves. The temporal and spatial variations of the pressure



fluctuation are governed by the wave equation

V2p z I ap2 (2.1)

where c is the wave propagation speed through the fluid. If we restrict
ourselves to steady-state situations associated with pressures varying
periodically with time, then any function V(t) which is periodic with penod T,
can be represented in the form of a Fourier series

0(t) a. + , [ancos(nwt) + bnsin(not)l

-- • [cn(e•i•y)n]

where to = 2ir/T is the fundamental frequency. The coefficients are computed
using the relations

T T
2 f2o(tcos(n t)dt, b fO(t)sin(ncst)dt (23a)

0 0

T- 0 M O)(e'(Ot)n dt (2.3b)
cn "f

0

In this report, only linear systems are considered, where the nth term of the
response is associated exclusively with the n term of the excitation.
Therefore, no restriction is imposed on the range of applicability of the solution
if one considers a harmonic excitation involving a single frequency only. The
time dependence of the wave equation may be factored out by inserting into the
equation a solution of the form

P(rt) = P(r)e-Ot (2.4)

to yield



(V2 ÷ k2)P(r) - 0 (2.5)

This equation is referred to as either the "Helmholtz equation" or 'steady-state
wave equation", where the acoustic wavenumber is given by k = (0/c). Euier's
equation of motion within a non-viscous, homogeneous fluid is given by

S ax (2.6)

where p andv are the density and velocity respectively. For a non-viscous
fluid, pressure can only exert forces in a direction normal to a surface boundary
S0, and the above equation becomes

VP-n -P (v •n) on S. (2.7)vp~T • n --

where n is the unit outward normal to So. Letting the normal component of
velocity be given by

where ro defines the surface S., results in

w - -- (-io)w-7aT

and the above boundary condition becomes

aP - (ip)zw on S. (2.8)

An elastic body vibrating with a surface velocity w will produce a pressure field
of the form and magnitude given by the homogeneous equation (2.5), and the
non-homogeneous boundary condition (2.8). Therefore, equations (2.5) and
(2.8) may be regarded as defining a pressure radiation problem. Instead of
solving these directly, it will be easier to combine these two equations into one
expression, to form the Helmholtz integral equation, which may then be solved
using the Green's function technique.
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2.2 Theory of Green's Functions

The Green's function technique may be explained as follows. The equation for
a pressure field in the presence of a source is an nhomogeneous partial
differential equation of the form

(V - k 2 )P (2.9)

where 4 is the source density, i.e. the strength of the source per unit volume.

Conversely, 4 is set to zero in the above equation for a field with no sources
present. Boundary conditions requiring the field to be zero at the surface are
termed homogeneous boundary conditions. For non-homogeneous boundary
conditions, the boundary values may be said to be caused by a surface laver of
sources, corresponding to an imhomogeneous equation. Therefore in
summary, when either the equation or boundary conditions are inhomogeneous,
sources may be said to be present. When both are homogeneous, no sources
are present.

Green's method is obvious enough physically. To obtain the field caused by
a distributed source, we calculate the effects of each part of the source and add
them all. If G(r I rt) is the field at the observer's point r caused by a unit point
source at r., then the field at r caused by a source distribution ý(ro) is the
volume integral of G(r I ro)ý(ro) over the whole range of r. occupied by the
source. G is called Green's function and is a solution of the inhomogeneous
Helmholtz equation

(V2 + k 2)G(rjrI) r 6(r- r) (2.10)

where 6r- r) is the Dirac delta function. G(r Ir) satisfies the reciprocity
principle

G(rI I) G GQr, i) (2.11)

Boundary conditions can be satisfied in the same way. We compute the field
at r for the boundary value P, (or normal gradient a3P/an) as zero at every
point on the surface except forg,, (which is on the surface). Atr,'o the
boundary value has a delta function behaviour, so that its integral over a small
surface area near rs is unity This field at r (not on the boundary) we can call
Gý. Lrs)P, (or G(rjJF,) aP/and) over the boundary. G here is also Green's
function.

One can solve the "inhomogeneous equation" for a field caused by a source
distribution 4, by means of a product of the source density with a Green's
function integrated over a volume. The solution of a homogeneous equation
having specified values on a surface can be obtained in terms of another

10



Green's function, integrated over the boundary surface. This Green's function
happens to be identical to the first. Therefore, Green's function for a radiation
problem governed by the equations

(V2 - k2 )p = 0, aP = (iuwp)w on So (2.12)

may be determined from

(V2 + k 2 )G(r LE) (-r •) ( 0 G') ý -n 0 on S. (2.13)

Before beginning to formulate the Helmholtz integral equation, there remains
the task of investigating the behaviour of Green's function G(r I r.) for the
situation where observation point r and the source point r0, are such that the
magnitude R = I r - r, I is small compared with the distance of either point from
a surface boundary. In this case, G is just a function of R, i.e. the source is
completely symmetrical, so that G cannot depend on the direction of R, only on
its magnitude. This Green's function is termed the free space Green's function
g, and has a singularity at R = 0. Therefore, for a general problem involving a
surface boundary, G(r I r,) may be separated into two parts: a part r which
depends on the boundary conditions at So. and a part g, which is continuous
everywhere except at r = r. and which is a function of R alone. In the next
section, the free space Green's function for a three dimensional situation is
derived.

2.3 The Free Space Green's Function

To begin with, the free space Green's function must be a solution to the
inhomogeneous Helmholtz equation

(V + k2)g(Ir-,•I) S(r-r) (2.14)

To construct a solution, a spherical system of coordinates is chosen where the
origin coincides with the singularity in equation (2.14). Thus the distance
Ir -_, I reduces to the radial coordinate R. In this spherical system, the
solution is a function of R only and not of the angular coordinates. Therefore,
except at the origin, Green's function satisfies the homogeneous Helmholtz
equation

11



-R + 2a , k2jg(R) = 0, R > 0 (2.15)

which has the general solution

g(R) = (1/R)(AekR + Be-") (2.16)

Earlier in this report, the Helmholtz equation was obtained from the wave
equation by specifying the time dependence as simple harmonic, i.e.
PQ~t) = P•)e"i. If g is to be used as a solution of the wave equation, then the
complete solution is

g(R)e-it (1/R)[Aei(kR-U +,Be-(kR÷wt)

To obtain waves travelling outward from the source point, we must set B to
zero, such that

g(R)e-it -= (A/R)ei(kR-w0

represents an outgoing wave. The coefficient A may be determined by
integrating equation (2.14) over a spherical volume element of radius a
concentric with the singular point R = 0, and then taking the limit as a -- 0.

This process yields

lim fffV gV = 1

From Gauss' divergence theorem, this may be rewritten as

lim V -I S = -
a--40 ffvg.nds -1

where n is a unit vector that points into the volume V. Now

12



Vg.n A, U -3 asa0-+, R -a

Since this formulation is independent of the angular coordinates, the surface
integral is obtained simply by multiplying this result by the area of the sphere,
4= 2, which yields A =- - 1/4t. Substituting for A and replacing the spherical
coordinate R by Jr-,TI, the free space Green's function is obtained

ik r -r
g(Iz-rl,) = -e (2.17)

2.4 Formulation of the Integral Equation

In order to formulate the Helmholtz integral equation, we will require the use
of Green's theorem which may be derived as follows. From Gauss' divergence
theorem

fff V.-FdV -f f .nds. n into the volume V (2.18)

Consider two scalar functions U and V and let the function F be gven by

F - UVV-VVU (2.19)

Substituting for F in the above integral expressiom, yields Green's relation
between volume and surface integrals, i.e.

fff [uv2v-vv2udv -- -ff tuvv-vvuv dS (2-20)

To formulate the Helmholtz integral equation, consider the two inhomogeneous
partial differential equations

13



(V2 +k2)P(r) ' (r) (2.21)

27 2

(V2 +k2)G(rlr.) - 8(r-,r) (2.2-)

Multiplying equation (2.22) by P(s) and equation (2.21) by G(.r•d and
subtracting, exchanging for. at the same time, yields

P~r V2 G~zjr)-G~r~jE)V2p(r tP~r )6r-r )-C,(rir.)9

Litegrating over the volume of S,, and using the property of the delta function.
namely

rffp(ISIr . (,P~r) Z inside V (2.23)
0 r outside V

yields

(2.24)

The first term may be expressed as a surface integral by using equation (220)
with the substitutions U = P r), V = G(I r,r), to yield

P~r)- -f[P(ryVG~r L. -G(rI VP~I rdS +F{IG~Yy;rO)

(2.25)

Earlier in the report, we had the equations for the radiation problem as being

(V +k )P 0, = (i(op)w, on S0. - 0 (2-26)(V2÷2)p -- 0 -n

Substituting equation (2.26) into (2.25), yields

14



P(r) = -ff [P(r) 'G -(iwp)G(rfr~O)W(r )IdS, b = S,, r inside V

(2.27)

We have now conme up against a problem. the solution to the above expression
represents the pressure fluctuation P(r) inside a boundary surface So, yet we are
trying to formulate an equation for the radiated pressure outside a vibrating
body. To overcome this problem, the volume V inside the boundary S is
defined as the volume V between the vibrating surface S, and that of an infinite

sphere of radius rl. The expression for the pressure field then becomes

P )= - f[pp)IG - (i(op)G r .E)&(r.) I)dS, r inside S = So + S|

where S, is the surf, .e of the infinite sphere. Unless the surface integral at

infinity in the above equation vanishes, one reaches the conclusion that the
pressure field is not uniquely determined by the boundary conditions over the
radiating surface S,. The surface integral over S, may be written as

S 4OG
-ff fp(F,) -G G(r IL)ap

hm - (4wr 2 )[P(r1 .a. _ G(rr) a-

Because there are no boundary conditions on the infinite sphere, the Green's

function G may be replaced by the free space Green's function, i.e.

-e -e

g(•-,) - 44t7r-c r

The surface integral becomes

lim ap P -a

r, IikP~b)- .e1-

To satisfy this condition, the pressure must decrease with increasing r, as

I - r, or faster. According to Jung( - and Feit [1], this is the case for aHl
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sources of finite extent, such as the sphere. Therefore, the integral equation
can be written as

P(r) -ff[P(r aG _ (iwp)GQJr) )dS(r) S

(228)

which is typically known as the Helmholtz integral equation. This integral
may be reduced to a simple expression involving only Green's function and the
known surface velocity on the boundary, providing that Green's function can be
constructed in a way that satisfies the Neumann boundary condition

aG 0 on the boundary S. (2.29)

then P(r) redures to

NOr) = iWP) jfGr~ ) tIdS. (2.30)

i.e. the field is just the surface integral of Green's function multiplied by the
boundary values as mentioned in section 2.2. If instead of a surface layer of
sources, a distributed source 4 is the only source present, then from equation
(2.25), the pressure field reduces to the volume integral

P(N fff{Gr roEt )]dV (231)

as mentioned previously, provided that G satisfies the Neumann condition on
the boundary for this case also.

3. Pressure Field for a Spherical Radiator

3.1 Green's Function for a Vibrating Sphere

In order to obtain a solution to the Helmholtz integral equation for a vibrating
source, Green's function G must be obtained. As mentioned earlier in section
2.2, a general Green's function may be constructed by adding a term r to the
free space Green's function, where G satisfies the boundary condition

16



" 0 on So (3.1)

This additional term contains the natural eigeniunctions for a sphere (see
Appendix A for eigenturwtion derivation). The first step in the construction of
Green's function is to express the free space Green's function in spherical
coordinates. To do this, we must first separate g as

- ec--k[Cos(kiL-,rj) isin(kf£-l)1 (3.2)

From trigonometry, the distance between the field point r and the source point
r is

I2,I 2+r - 2rroCOSW)"/ 2  (3.3)

where \w is the angle betweenr and,•. The components of g can be
represented in terms of w by the expressions (61

cos(klr--•j)/kfr-_r. = - £ y,(kr)(2n +1)j,(kr 0)Pr(cos w)
n-o (3.4)

sin(k 11- ra1)l/k j-_rl - n /(kr) (2n+ 1) j,,(kr,) Pn,(COS V)

n-o

where j(kr), yn(kro) are spherical Bessel functions and Pn(cos W) is the Legendre
polynomial. Thus

= -(ik/4n) • (2n + 1)j,(kr0 )h,(kr)P,(cosw) (3-5)
n-o

where

hn(kr) = j(kr) +iyn(kr) (3.6)

17



Due to symmety about the 0 = 0 axis, the angle W may be written as
0=O - 16., and

Pn(cosw) = Pn(CoS15)Pn(costd)

Thus, the free space Green's function in terms of (r, -) and (ro, 1%) instead of r
and r, is

g(jZ-_r•[) = -(ik/4x) i (2n+l) Pn (Cos -) P,(Cos -o)j.(kr.) h,(kr) (3-7)

11-0

The complete Green's function may be represented as

and must satisfy the boundary condition

a r g 0 at ro -- a (Sphere surface) (3.9)

Let the (r, ro) modal components of g and F be represented by g, and Fn
respectively. Assuming that Fn is made up of the eigenfunctions of the sphere
and must also satisfy the reciprocity condition r,(rz I r) = rn (ro I r) we then can
expect r, to have the form

n(r, ro) =Ah,(kro)hn(kr) (3.10)

where from equations (3.9) and (3.10)

at-niar. - kAh1(kr0)h,,(kr) = -kj (ka)h%(k)

Thus

tn (r, r,,) %- hn (kr)hn(kr.)jn(ka)/h (ka) (3.11)

18



Adding gn and r, and using the relation

j.(b)yI (ka) -yn(k)j (ka) (ka)- 2  (3.12)

yields

S) at r a (3.13)
(ka~hý (ka)

The function r has the same (10, 10) dependence as g. Therefore, the resulting
Green's function for a spherical source may be written as

G(r,.*!a,.) - (2n+D ÷ (vco515)PcOSol (3.14)

4xka~h n(0a)

3.2 Solution to Integral Equation

Now that Green's function has been determined, the radiated pressure field
may be obtained from the Helmholtz integral equation (2.30), i.e.

P(r) = (io0p)ff[G(rzr.I))w{r)IdS

X (3.15)
=i Up)ll(2Ufa2) f [IG(r,5 IaOo)w(1%)Isinto dOo

0

To solve this integral, it is helpful to express the surface velocity as

b(I) = • WnPi(cosa) (3.16)

where the coefficients of the series are given by

19



I

W (2nnl f Pn(r )d-l, Tj = cost (3.17)
2

Using the relation

f Pn,(rj)Pr(-q)d¶) = (28n,)/(2n+l) (3.18)

-1

results in the final expression for the pressure field, i.e.

P(r,16) i(pc) -~~( * Fn h(kv)1 (3-19)
n- h,'~ ,cs3 {(ka)J

4. Scattering of a Plane Wave from
a Rigid Sphere

Consider a distant point sound source, which generates a continuous sound
wave. Far away from this source and over suitably restricted regions, these
waves may be said to approximate plane waves. Consider these plane waves

to be incident upon a stationary rigid sphere, whose surface So is given by the
position vector ro, shown in Figure 1. If we define a wavenumber vector k,
whose magnitude is k and which lies in the direction of wave propagation, then
the incident pressure wave may be written as

P1 (•t) W Poexpi(ktr-cot)

In spherical coordinates, a wave incident from the 0 = 1800 direction is

represented by

Pi(r,O) = Poexpi(krcos,3) (4.1)

The introduction of the rigid boundary S, produces a disturbance in the
pressure field P1, which is termed the scattered pressure Ps., where the
symbol refers to the infinite impedance of the scattering surface. The resultant
pressure in the presence of the scatterer is defined as

20



P(r) PA P~r+P 5-(r (42)

Sca I tered
spherncai wave

Incident Z4
p(lane wave

Figure 1: Sound scattering from a rigid sphere.

In order to calculate the scattered pressure and hence the resultant pressure
field, we need to make use of the idea of re-radiation. This amounts to
regarding the boundary surface as having a distribution of virtual sources,
whose nature, strengths and phases are determined by the incident wave and
by the properties of the water and the boundary medium. The radiation from
these virtual sources then determines the behaviour of the reflected or scattered
wave. To use this method, we need to investigate the components that make
up the velocity distribution on the surface of the sphere. Since the boundary of
the sphere is rigid, the resultant velocity on S. normal to the surface must be
zero, i.e.

wr) zb, (r) + zi,- (r) =0 (4~3)

The resultant surface velocity may be related to the pressure gradient via

21



aP (iop)tb on S. (4.4)

which may be rewritten as

(k- - n)PI on So (4S)

(ki' -p- i (OP

Therefore, P_. may be regarded as the radiated pressure field due to a vibrating
spherical source with the velocity distribution w•., and hence the solution to
the Helmholtz integral equation for a spherical radiator may be used. In order
to apply the Helmholtz solution, the velocity w, must first be expressed in
terms of Legendre polynomials as

, --" i WnPn (cos*)

n-o

To do this, we proceed as follows. The expression for a plane wave

Pi(r,1)) = Poexpi(krc W)

can be written in terms of a series of concentric spherical waves as

Pj(rO) - PO - (2n+l)(i)np,(cosi1)jn(kr) (4.7)

The coefficients for w, then become

W,- (iP 0 /pc)(2n+I)(0)"j (ka) (4.8)

From the solution for a spherical radiator, the radiated pressure field is

represented by

22



P(rob) -. (Pipc Wnjn(COsO)hn (kr) /hn(ka) (4.9)

n-O

Substituting equation (4.8) for Wn into equation (4.9), yields the rigid scattered
pressure field

r P0 • (2n+l)(Inp(COS)n(ka)h(kr)/h/ (ka) (4.10)

n-O

The above series may be simplified somewhat if we restrict ourselves to large
distances r from the boundary such that kr >> 1. Then the Hankel function
hn(kr) may be approximated by

01/kr)eJ7W-(`+"n÷) kr >> n 2.1 (4.11)

Substituting hn(kr) into P,_ yields what is termed in this report as the "far-field"
scattered pressure

Ps (r,O) = (iPo/kr)exp(ikr) i (2n +l)Pn(cos13)jn (ka)/h' (ka) (4.12)
n-o

"Near-field" in this report, means that equation (4.10) is used for the rigid
scattered pressure, while for "far-field' (i.e. kA >> 1), equation (4.12) is applied.
The first ten terms of the series have been found to be sufficient to determine
the scattered pressure in the ka range under investigation.

5. Methods of Presenting the Scattering
Solutions

In this chapter mathematical expressions are developed for a number of
parameters which are useful in examining the scattering behaviour of the rigid
sphere. These parameters include (G) the resultant pressure field magnitude in
the backscatter direction, (ii) the target strength of the scatterer, (iW) the
reflection factor around the scattering body and (iv) the intensity field around
the scatterer. To determine these various parameters, the following values for
the propagation medium will be used.

23



Water

Density of medium p = 1000.0 (kg/m 3 )

Speed of sound c = 1500.0 (m/s)

5.1 Resultant Pressure Field in Front of Scatterer

Here, the resultant pressure magnitude as a function of distance from the
scatterer is computed, in the direction towards the incident waves. The
normalized resultant pressure field for the rigid sphere may be written as

P = IPI/Po - I (Pi/P.) + (P,/Po)l (5.1)

where the incident and rigid scattered pressures close to the sphere have been
determined previously to be

Pi/P, i pN (r,?)/Po = exp(iZ'rcosi5) (5.2)

and

N N (2- )iP, In (53)
P /P0 = P (r,5) /PO - (n+() (Cos 15) h (trf)

n-o

where

= ka, f = r/a (5.4)

5.2 Target Strength

Target strength is a far-field parameter which for convenience is defined as the
ratio of the scattered intensity considered at one metre to the incident intensity
expressed in decibels, i.e.

TS - 10 log,0 I *- (5r.
10

24



where I, is the intensity of the incident (plane) wave as defined in equation
(5.13). The scattered intensity is proportional to the square of the pressure, and
in the far-field Ps is proportional to i/r. Therefore, the target strength may
ý'e rewritten in the form

r's _ (r___ ) (5.6)TS = 20 loglo PO (5.6)0

where PF, is the scattered pressure in the far-field and

(riP0 ) P;(ro3) - i(a/r)exp(i'rf) (2n+l)Pr(cos*)[j"(-t)/h1$(,r)1 (57
n-o

Results obtained for different ka values, will be compared with the commonly
used expression for the target strength of a sphere, i.e.

TS = 10 logl0 (a 2 /4) (5.8)

5.3 Reflection Factor

Using the expressions in the previous section, the ratio of scattered to incident
pressure may be written as

p-n (5.9)S-- €i,•(1€•0'ilxn-o (2lPncs)hx)

The 1/r term characterizes the spherical spreading of the scattered wave, whilst
the exponential term takes into account the phases of the incident and scattered
waves. The reflection factor can be made independent of these terms by
defining it as

R =- ( /a) Ie-i'M t-cs-)[ F25

25



to yield

R = t(il'O •, (2n+1)P,(cos,) ) (5.10)
n-o 1

The reflection factor will be computed as a function of direction around the
body, for various ka values.

5.4 Intensity Field Around Scatterer

Using the solution to the resultant pressure field, the ccnstruction of two
different types of time-averaged intensity plots is possible.

(A) Plots of the intensity magnitude around the body
(both near-field and far-field)

(B) Plots of the intensity vector field around the body
(near-field only)

For both types A and type B plots, the intensities for the scattered and resultant
pressure fields have been computed. The radial and transverse components of
the intensity vector (averaged over one period of the wave) are defined as

1 Re[~rOar (,O)](5.11a)

l(r I Re[P(r,*W)j;(r,*)] (5.11b)
2

where Re denots the real part, * the complex conjugate and Ur, uo the velocity
components corresponding to the pressure field P, whether it be a scattered or
resultant pressure. The magnitude I and direction 0 of the intensity vector are
given by the formulae

J: = [/,(r,O) * 4c(r,c)1(5.12)
S= * ÷erc'tmi[lor, O)/I1 (r,O)]

where

26



S- arctanrz/x], r =- 2 ÷z2jI/2

and x, z are shown in Figure 1. For the polar intensity plots of type A, the
intensity value is first divided by the incident intensity

9P
2  (5,13)

2pc

and then normalized with respect to the maximum value that it obtains over the
range of 1 varying from 0 to 360. For the type B intensity vector plots, each
vector has first been divided by I., and then normalized with respect to the
magnitude of the largest vector in the plot. The square root of the magnitude
is then calculated and multiplied by the grid spacing. The vectors are plotted
over the coordinate range - 2 < x/a f- 2 and 0 - zla < 2, where a is the radius of
the spherical scattErer.

in order to comrpute the intensity, the velocity field associated with the
pressure field must be found. This may be determined from Euler's equation
VP = (iovp)u, which in component form becomes

=T [Ki ) LP [T~ JT ] )P (5.14)

Using the near-field and far-field pressure expressions given in sections 5.1 and

5.2, the following velocity components may be obtained.

Velocity due to incident pressure Pi

(PC/Po)[Urh- cosoe ilacos (5.15a)

(pc/Po)[t4ii = 2 sin7 et0cost (5-15b)
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Velocity due to rigid scattered pressure P,_

Near-field;

(pc/P)[ -i / . (2n+ )(f)"'1 Pn(coso) ( TW) (5.16a)

n-o h• CT)

(5.16b)

Far-field:

(pcPo)[Fs- ] Z (i/, ,)e , (2n)l)Pn(COS I) (5.17a)

n- o h /(t)

F j(t

(pc/P0 )[u1,1, _ (nF3/(ri) 2 le"" i (2n+l)P / (cosD) i (5.17b)
n-0

Therefore, by inserting the pressure and velocity formulae given respectively by
equations (5.2), (53), (5.7) and (5.15), (5.16), (5.17) into equation (5.11), the
scattered and resultant intensity expressions may be obtained.

6. Results and Discussion

6.1 Resultant Pressure Field

Figures 2(a) to 2(d) show the normalized resultant pressure as a function of r/a
for the ka values 1, 2, 4 and 8. In these figures, the reflected wave combines
with the incident wave to form a standing wave whose scattered component
decreases proportionally to 1/r where r is the distance from the scatterer. As
the frequency increases, (ka increasing), the pressure at the surface approaches
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twice the incident pressure amplitude, which is the case for a plane wave
incident upon a rigid wall.

6.2 Target Strength

Figure 3 shows the far-field target strength for the rigid sphere over the ka
range from 0 to 8. From this figure, it is evident that for frequencies
corresponding to ka greater than 2.0 and within the range considered, the target
strength is approximately constant. These results compare favourably with the
usual expression for the target strength (due to specular reflection) of a rigid
sphere, i.e.

TS = 10 log10 (a
2/4) = -6 (dB) for sphere of radius a I

which is shown by the dashed line in Figure 3.

2

S3
r/a

Figure 2(a): Resultant Pressure in front of Rigid Sphere.
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1 3 "-5

ka

Figure 2(b). Resultant Pressure in front of Rigid Sphere.

2

I 2 2 .

ka

Figure 2(c): Resultant Pressure in front of Rigid Sphere.
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22

/a

Figure 2(d): Resultant Pressure in front of Rigid Sphere.

20 ,I \ v

vI

. 0

r~ /a

II
-20
10

z 10I,

77

Figure 3: Monostatic Target Strength cf a Rigid Sphere. (Dashed line represents a
rigid sphere of radius a 2 ).
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6.3 Reflection Factor

Figures 4(a) to 4(d) show the bistatic reflection factor around the scatterer for

the ka values 1, 2, 4 and 8. From these figures, we can see that for small ka

values (where the sphere is small compared with the wavelength), the wave
propagates in all directions. For large ka values, part of the scattered wave
spreads out more or less uniformly in all directions from the scatterer, and the
rest is concentrated in the 00 direction. When the resultant field is computed
by adding the incident and scattered components, the 00 beam of the scattered
component interferes destructively with the unchanged plane wave behind the
sphere, creating a sharp edged shadow.

6.4 Intensity

Figures 5 and 6 show the scattered intensity magnitude around the body in the
near and far-fields for ka values 1, 2, 4 and 8. These figures exhibit essentially
the same behaviour as observed with the reflection factor. Figures 7(a) to 7(d)
show the resultant intensity close to the body. The large side-lobes evident in
Figures 7(a) and 7(d) arise from the constructive interference of the incident and
scattered waves.

Figures 8(a) to 8(d) show the scattered intensity vector field around the body,

and illustrates more dearly the polar intensity plots in Figure 5. Figures 9(a) to
9(d) represent the resultant intensity field around the body and show clearly the
reduction in intensity behind the sphere as the frequency increases.

7. Conclusion

An analysis of the plane wave scattering from a rigid sphere of radius a

submerged in water has been carried out and results are presented for ka values

up to 8. Various scattering parameters such as target strength, reflection factor
and the intensity field around the body have been computed to illustrate the

solutions. Resultant intensity vector plots show dearly the reduction in

intensity behind the sphere as the frequency increases.
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ka 1 90'

1800. 0

incident .... 0. ;. 23. 3.2 4:

:70'

Figure 4(a): Reflection Factor for 4 Rigid Sphere.

ka 2 900

1800~. 0

incident *.... . 0.8 16 2.4 3.2 4.

wave .....

2700

Figure 4flb): Reflection Factor for a Rigid Sphere.
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ka -4 900

loco ..... 0'

Incident .... 0.8 1.6 2.4 3.2 4.0
wave .

2701

Figure 4(c): Reflectzwn Factor for a Rigid Sphere.

ka 8 90'

60'0

incident ..... . L6 244.0
wave

2700

Figure 4(d): Reflection Factor for a Rigid Sphere.
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0.2 0.6 . t 0 '
Incident X
wave

2700

Figure 5(a): Scattered Intensity Ifimax around a Rsgid Sphere.

1-a .2

270'

Figure 5(b): Scattered Instensity Ijrmax around a Rigid Sphere.
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00

Incident
wave

2700

Figure 5(c): Scattered Intensity 1/Imax around a Rigid Sphere.

900
I,, nr /a - 1.2
10 3.3 +..•ka - 8

Incident .2 0.4 0.6 0.

2700

Figure 5(d): Scattered Intensity Jl/max around a Rigid Sphere.
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2700

Figure 6(a): Scattered Intensity J/Imax around a Rigid Sphere.
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I~AA
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Figure 6ON): Scattered Intensity IlImax around a Rigid Sphere.
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9000

280 0.. 0.'.

incident
wave

2701

Figure 6(c): Scattered Intensity lIlmax around a Rigid Sphere.

900
RAN /2 -50.0

wave

270'

Figure 6(d): Scattered Intensity I/imax around a Rigid Sphere.
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900

Incident
wave

2700

Figure 7(a): Resultant Intensity Ilimax around a Rigid Sphere.

90, / .

wave

270'

Figure 7(b,): Resultant Intensity I/Imnax around a Rigid Sphere.
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Wave

2700

Figure 7(c): Resultant Intensity lImax around a Rigid Sphere.

goo

wave

?700

Figure 7(d): Resultant Intensity Iffimax around a Rigid Sphere.
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ii A l

"wave

Figmne 8(a): Scattered Inten5ty [I/Imaxi]12 around a Rigid Sphere.

ka - 2 -- .56

incident....

wave
0 0.4 0.8 i.2 15 2.0

wa/a

Figure 8(b): Scattered Intensity [l/1max]12 around a Rigid Sphere.
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incident
wave ).• s.e "

Figure 8(c): Scattered Intensity fI/Jmaxil'2 around a Rigid Sphere.

k * B - . -'

/ -

- - -" - "---------

Incident i
wave 0 0-4 0.8 :.2 ý.5 :.0

f/2

Figure 8(d): Scattered Intensity [I/ImaxJ'/1 around a Rigid Sphere.
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iýaa

Figure 9(a): Resultant Intensity [I/Imzax]1/2 around 4 Rigid Sphere.

ka - 2-"

Incident .. .. I I , I ...-

0 0.4 0.8 1.2 1.6 2.0

r/a
Figure 9(a): Resultant Intensity [I/Imax11 2 around a Rigid Sphere.
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Figure 9(c): Resultant Intensity fllmax1112 around a Rigid Sphere.
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Figure 9(d): Resultant Intensityj 1I/max1112 around a Rigid Sphere.
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9. Glossary of Symbols

P Resultant pressure

P. Incident pressure wave amplitude
Pi Incident pressure
Ps-. Scattered pressure from a rigid body (infinite impedance)
w Normal velocity component of resultant pressure at SO
wi Normal velocity component of incident pressure at S,
ws- Normal velocity component of rigid scattered pressure at S.
1. Average intensity magnitude of the incident pressure
IS- Average intensity magnitude of the scattered pressure (rigid

body)
I Average intensity magnitude of the resultant pressure

•r, o Position vectors of the field and source points
G(rt r.) Green's function

g( Ir-r I) Free space Green's function
r, *, 0 Spherical coordinates
a Radius of sphere
So Boundary of sphere (r = a)
n Unit outward normal to boundary SO,
k Acoustic wavenumber

ka Dimensionless frequency parameter
0Angular frequency

c Speed of sound in water
p Density of water
R Reflection factor
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Appendix A

Eigenfunctions of a Sphere

In this section the eigenfunctions of a sphere, which are required in order to
construct a suitable Green's function for a spherical radiator, are derived. The
Helmholtz equation

(V2 .-k2 )P 0' (A.1)

may be expressed in spherical coordinates (r, -, 4)) as

Ia , I( a 1 p)ak2 (A.2)
-7i- 7aW -;-nr)+~P=(A2

-r )F r'u (s O,

where it is assumed that the sphere in question is symmetrical about the = 0
axis, such that the 0 dependence may be omitted. Letting the pressure be
represented by P(r, 0) = R(r)T(0), modifies the Helmholtz equation to

1 d r 2 dR ÷k2r2_ -I 1 d sindT (A.3)

Each side of this equation must equal the same constant C, i.e.

I d 2dR')+fk2_C) (AA

I d (sin* " T + dT 0 (A-5)Tm-''"si5 O/. C -M oa-

Letting 71 = cos 1, C = n(n + 1), Legendre's differential equation is obtained
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( d 2T_ 2 11dT +n(n+l)T = 0 (A.6)

which has the Legendre polynomial solution

Tn(O) -e Pn(COS')) (A.7")

The equation for the radial factor R can be modified by substituting z = kr, to
yield the equation for the spherical Bessel function

z2d 2 R dR (S

=z 7+
T 2z.T. +[z2-n(n+l)]R - A8

from which the possible solutions are jn(k), yn(k' hjd1Lr), <nd h(2)(kr), whe;e
jn(kr) and y,(kr) are the spherical Bessel functions, and kut (kr), hb)(kr) are the
Hankel functions of the first and second kind respectively. The chosen
solution is

RWr) = hn (kr) (A.9)

due to the fact that the spherical Hankel function hn("(kr) corresponds to an
outgoing wave, appropriate for the situation where acoustic energy is being
radiated outward into an unbounded medium. Therefore in summary, the
eigenfunctions of a sphere are P,(cos 0) and h,(1)(kr), and the pressure at an

arbitrary point may be written in terms of these eigenfunctions as

n-o
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