Army Research Laboratory

Technique for Measuring the Spin Rate of Kinetic Energy Projectiles

Eugene M. Ferguson Robert B. Bossoli Elisa A. Jara

MAY 1 0 1993

ARL-MR-60

April 1993

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-018		
Public reporting burden for this collection gathering and maintaining the data neede collection of information, including sugge	of information is estimated to average 1 hour d, and completing and reviewing the collection stions for reducing this burden, to Washington	per response, including the time of information. Send comments Headquarters Services, Directora	for reviewing instructions, searching existing regarding this burden estimate or any other te for information Operations and Reports. 12		
Davis Highway, Suite 1204, Arlington, VA 1. AGENCY USE ONLY (Leave	22202-4302, and to the Office of Management blank) 2. REPORT DATE	and Budget, Paperwork Reduction 3. REPORT TYPE	AND DATES COVERED		
	April 1993	Final, 1 Jan 9	I, 1 Jan 91 - 1 Feb 92		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
Technique for Measuring	g the Spin Rate of Kinetic En	ergy Projectiles	PR: 1L162618AH80		
6. AUTHOR(S)					
Eugene M. Ferguson, Re	obert B. Bossoli, and Elisa A.	Jara			
7. PERFORMING ORGANIZATIO	N NAME(S) AND ADDRESS(ES)	· · · · · · · · · · · · · · · · · · ·	B. PERFORMING ORGANIZAT REPORT NUMBER		
U.S. Army Research Lat	poratory				
Aberdeen Proving Groun	id, MD 21005-5066				
9. SPONSORING / MONITORING	AGENCY NAME(S) AND ADDRESS	(ES)	10. SPONSORING / MONITORI AGENCY REPORT NUMBE		
U.S. Army Research Lab	poratory				
ATTN: AMSRL-OP-CI-B (Tech Lib) Aberdeen Proving Ground, MD 21005-5066			ARL-MR-60		
11. SUPPLEMENTARY NOTES					
Approved for public relea	use: distribution is unlimited.		125. DISTRIBUTION CODE		
	,				
13. ABSTRACT (Maximum 200 w	vords)	······································			
Kinetic energy projec measure their spin histor approximate steady-state	tiles were fitted with dihedral ies via Doppler radar. Data f spin rates were obtained.	plugs in their tracer v rom three projectiles	wells in an attempt to were reduced and the		
14. SUBJECT TERMS			15. NUMBER OF PA		
14. SUBJECT TERMS doppler radar; kinetic ene	ergy projectiles; roll		15. NUMBER OF PA 27 16. PRICE CODE		
14. SUBJECT TERMS doppler radar; kinetic ene 17. SECURITY CLASSIFICATION OF REPORT	ergy projectiles; roll 18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASS OF ABSTRACT	15. NUMBER OF PA 27 16. PRICE CODE IFICATION 20. LIMITATION OF A		
14. SUBJECT TERMS doppler radar; kinetic ene 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASS OF ABSTRACT	15. NUMBER OF PA 27 16. PRICE CODE IFICATION 20. LIMITATION OF A		

· . ___ . ___

. •

-

ā

-

Prescribed	by	ANSI	Std.	Z39-18	
298-102					

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

Page LIST OF FIGURES v ACKNOWLEDGMENTS νï INTRODUCTION 1. 1 2. BACKGROUND 1 2.1 Laboratory Experiments With the Tracer-Well Plug •1 Field Testing With the Tracer-Well Plug 2.2 3 FIELD TEST RESULTS 3. 3 CONCLUDING REMARKS 4. 8 5. REFERENCES 21 DISTRIBUTION LIST 23

.

INTENTIONALLY LEFT BLANK.

--

LIST OF FIGURES

Figure		<u>Page</u>
1.	Tracer-Well Plug for KE Projectile	9
2.	Anisotropy vs. Frequency for Tracer-Well Plug	10
3a.	Variation of Tangential Velocity With Depth	11
3b.	Variation of Area Across the Surface of the Tracer-Well Plug With Depth	11
4.	Depth When V_r and Area Across the Tracer-Well Plug are Optimized \ldots	12
5.	Radar Radiation Path During Contact With Tracer-Well Plug	13
6.	Discriminated Doppler Radar Data From a Projectile Without the Tracer-Well Plug	14
7.	Discriminated Doppler Radar Data From a Projectile With the Tracer-Well Plug	15
8.	Band-Pass Filtered, Discriminated Data of Projectile With the Tracer-Well Plug	16
9.	Spin History of Round P1	17
10.	Spin History of Round P2	18
11.	Spin History of Round P3	19
12.	Equipment Used to Reduce the Doppler Data	20

INTENTIONALLY LEFT BLANK.

ACKNOWLEDGMENTS

The authors are indebted to Dr. Jonathan Bornstein, Mr. Wallace H. Clay, and Mr. Fred J. Brandon of the Launch and Flight Division, U.S. Army Ballistic Research Laboratory (BRL), for offering support and insight with data acquisition and reduction, and the personnel of the Exterior Ballistics Branch of the Combat Systems Test Activity (CSTA), Aberdeen Proving Ground, MD, for providing test support.

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

Knowing the spin history of a kinetic energy (KE) projectile is essential in designing this type of ammunition since spin frequencies that are close to the projectile's structural frequencies, or its yaw frequency, could be catastrophic.

Obtaining spin data for this type of projectile is not a trivial task. Yaw cards may be used to measure the spin rate (Pennekamp 1990), but this technique is very expensive, is labor intensive, and can yield misleading results if the projectile spin is unusual. High-speed motion pictures may also be utilized to measure the spin rate, but only a fraction of the flight will be recorded. Radar data have been used to measure the spin of artillery projectiles, but the small radar cross section and the slow spin rates of the KE rounds may prevent such analysis.

This report describes the use of a notched plug located in the tracer-well of the projectile as an aid for measuring the spin history of KE rounds via Doppler radar. The initial results are promising, but further refinements must be made.

2. BACKGROUND

2.1 <u>Laboratory Experiments With the Tracer-Well Plug</u>. A series of experiments conducted at the U.S. Army Ballistic Research Laboratory (BRL) revealed that a 90° dihedral plug manufactured to fit into the tracer-well of KE rounds would induce an amplitude modulation (AM) of the reflected radar signal when the plug/fin assembly was rotated (Bossoli, unpublished data). The reflective surface of the plug must have dimensions on the order of the wavelength of the transmitted radar signal. The plug designed for typical Doppler radars used in projectile testing is pictured in Figure 1.

The laboratory tests involved mounting the plug (Figure 1) into the tracer-well of a fin assembly for a KE projectile. The fin assembly was then mounted on a stand and rotated about its axis of symmetry to discrete angular positions. At each position, the plug/fin set was illuminated by continuous wave, linearly polarized radiation over a range of frequencies

1

common to tracking radars. The power of the reflected radiation for each frequency and orientation was then measured.

The experiments showed that the amplitude of the reflected signal varied with the angular orientation of the plug as well as with the frequency of the impinging radiation. Figure 2 shows the maximum difference, or anisotropy, in reflected signal power due to roll orientation for a specific frequency range. The radar available for the field test operated in the x-band (8–12 Ghz) frequency range. The anisotropy is expressed in dB* which is a measure of power relative to a reference power. In the frequency band that was studied, the lowest degree of anisotropy was approximately 5 dB, which means that at that frequency, the reflected signal power fluctuated by about a factor of three as the assembly was rotated. A 90° dihedral corner reflector will only exhibit orientational anisotropy with respect to radar polarization if its dimensions are less than several wavelengths long, otherwise the dihedral's radar cross section (RCS) is considered to be in its optical regime and this anisotropy will not be seen (Skolnik 1990). The diameter of the dihedral plug that was tested is approximately equal to one wavelength of x-band radiation (25 mm-37.5 mm) and, therefore, does not put its RCS in the optical regime. In the nonoptical regime, the area of the reflecting surface which is aligned with the linearly polarized E-field of the impinging radiation greatly affects its RCS. When the E-field is parallel to the dihedral axis (as shown in Figure 1), the reflective surfaces offer the most area and therefore the largest RCS. At other orientations, the dihedral RCS will be less with the minimum occurring when the dihedral axis and the E-field are perpendicular. This changing area and the fact that the dihedral's dimensions put its RCS in the nonoptical regime for x-band radiation give rise to the measured orientational anisotropy presented in Figure 2. The RCS of the dihedral plug, as seen by a linearly polarized x-band radar, will, therefore, have a rotational dependence of the form,

 $RCS \propto A|\cos\theta| + Constant$

or

 $RCS \propto A |cos2\pi ft| + Constant$

^{*} dB = 10LOG₁₀ (Reference Power/Measured Power)

where A is the maximum amplitude, θ is the angular difference between the dihedral axis and the E-field, f is the dihedral plug roll rate, and t is time.

2.2 <u>Field Testing With the Tracer-Well Plug</u>. In order to test the concept of using a tracerwell plug and a radar to measure spin rates, it was decided to install plugs on KE projectiles tested at a firing range of the Combat Systems Test Activity (CSTA), Aberdeen Proving Ground (APG), in July of 1991.

This test utilized an x-band Doppler radar to provide velocity data. The radar was of the continuous wave, linearly polarized variety. A number of rounds were fitted with the tracerwell plug in order to see if the Doppler return signal would be amplitude modulated by the projectile spin. The Doppler return signal from the radar was recorded with an analog tape recorder for later analysis.

It should be noted that this test is slightly different than the laboratory experiments in that the Doppler return signal was being monitored instead of the reflected signal since it was readily available from the radar. The Doppler return signal is the difference in frequency of the transmitted signal and the reflected signal. The Doppler return signal is produced by circuits internal to the radar and has a much lower frequency than the reflected signal. Equipment to monitor the reflected signal in the field could not be obtained in a timely and cost effective manner. However, it was hoped that any AM produced upon the reflected signal by the plug would carry through onto the Doppler return signal.

3. FIELD TEST RESULTS

The data were examined for an AM response, but no realistic data were found. The automatic gain control (AGC) circuits of the radar had masked this modulation. However, frequency modulation (FM) was found in the Doppler return signal. The source of this FM has been theorized to be the result of the measurement of the velocity due to rotation of the plug. Calculations based on plug geometry showed that the velocities of certain points on the plug are consistent with velocities measured from the ripples of the discriminator output. A description of this theory follows.

Initially, when the radar radiation hits the surface of the plug, its frequency is shifted by an amount, f_{d1} , due to the projectile velocity, V_d . This shift in frequency is commonly called the *Doppler shift frequency* or the *Doppler shift*. The value of f_{d1} can be expressed as:

$$f_{d1} = |V_d|/\lambda$$

where f_{d1} is the Doppler shift frequency due to projectile velocity, $|V_d|$ is the magnitude of the projectile velocity in the direction of the radar radiation propagation, and λ is the original wavelength of the radar radiation. The radiation is then reflected and propagates toward the other surface of the plug.

When the radiation hits this surface, its frequency is Doppler shifted again due to the tangential velocity, V_r , of the rotating plug. The component of V_r in the radiation propagation direction actually causes this Doppler shift, but since the magnitude of this component is equal to that of V_r at certain locations, which provide maximum Doppler shift, it can be said that V_r is the velocity that causes the Doppler shift to simplify this explanation.

Radiation hits all points on the surface of the plug. With that in mind, one must wonder which magnitude of V_r is being measured since V_r is not constant for all points on the plug. At a constant spin rate, the tangential velocities of the points on the plug will vary with their distance from the plug center line (Figure 3a). This distance can be expressed as a function of depth into the plug. The points on the plug at shallow depths posses more tangential velocity and therefore larger Doppler shift than those at the deeper depths. Larger Doppler shifts are resolved better by the radar.

The surface area across the plug is also a function of depth. This area increases with depth (Figure 3b). The Doppler shifts created by the velocities of the points in the regions of larger surface area are more readily detected than those in regions of less surface area since more radiation is reflected back to the radar. The amount of radiation reflected back is directly proportional to the power of the signal that the radar receives. The radar will resolve the signals with higher power levels.

There is a depth where the combination of these properties are optimized. This depth can be determined by finding the maximum of the product of V_r and the surface area across the plug as functions of depth. Figure 4 shows a plot of this product vs. depth. The depth at which these properties are optimized was calculated to be approximately 29% into the plug. With this, $|V_r|$ can be expressed as:

$$|V_r| = 2\pi (.71D) f_s$$

or

$$|V_r| = 1.36\pi Df_s$$

where $|V_r|$ is the magnitude of the effective tangential velocity of the points on the plug's surface due to plug rotation, D is the maximum depth of the plug, and f_s is the projectile spin frequency. The Doppler shift caused by the tangential velocity of the plug can, therefore, be expressed as:

$$f_{d2} = |V_r|/\lambda$$

or

$$f_{d2} = 1.36\pi D f_s / \lambda \,.$$

The radiation is reflected again so that it propagates in a direction opposite to that which it was transmitted (i.e., it propagates toward the radar). When the radiation reaches the radar receiver, its frequency is shifted again due to the apparent velocity of the radar moving away from the projectile (an observer on the projectile would see the radar traveling with velocity V_d). This Doppler shift frequency can be expressed as:

$$f_{d3} = |V_d|/\lambda$$

where f_{d3} is the Doppler shift frequency due to projectile velocity (or apparent radar velocity), $|V_d|$ is the magnitude of the projectile velocity (or apparent radar velocity) in the direction of the radar radiation propagation, and λ is the original wavelength of the radar radiation.

The total Doppler shift frequency that is measured by the radar is the sum of the three previously described Doppler shifts. Algebraically stated,

 $f_{d \text{ total}} = f_{d1} + f_{d2} + f_{d3}$

since $f_{d1} = f_{d3}$, and $f_{d2} = 1.36\pi D f_s / \lambda$, it can be written:

 $f_{d \text{ total}} = 2f_{d1} + 1.36\pi Df_s / \lambda$

or

$$f_{d \text{ total}} = (2|V_d| + 1.36\pi Df_s)/\lambda.$$

The linearly polarized radiation transmitted from the radar will only achieve optimum reflections across the plug when the plug is aligned with the radiation's E-field as described in Section 2.1. This alignment occurs twice per spin cycle due to the plug symmetry. Misalignment of the plug and the radiation's E field attenuate the effect that f_{d2} has on $f_{d total}$. Because of this, an attenuation factor must be included in the $f_{d total}$ equation. This factor is:

$$\alpha = |\cos 2\pi f_s t|$$

where α is the misalignment attenuation factor, f_s is the projectile spin frequency, and t is time. This attenuation factor only affects the f_{d2} term in the $f_{d \text{ total}}$ equation. Looking at only the time varying f_{d2} term, we see that

$$f_{d2}(t) = 1.36\pi D f_s |\cos 2\pi f_s t|/\lambda$$

$$f_{d2}(t) = A[\cos 2\pi f_s t]$$

and

$$f_{d \text{ total}}(t) = 2|Vd| + A|\cos 2\pi f_s t|$$

which signifies that a modulated Doppler shift in addition to the Doppler shift due to projectile velocity should be produced with the plug installed. Figure 5 shows a typical propagation path of the radar radiation during its interaction with the plug.

The Doppler data were input to a standard telemetry frequency discriminator that converts input frequency to a DC output voltage. If properly calibrated, the discriminator will produce the velocity history of a projectile when the Doppler data are input. The discriminator output for a round not fitted with the plug is pictured in Figure 6. The trace shows system noise and the projectile velocity history, which is apparent from the downward slope, but no FM is apparent. Recall that the discriminator output is proportional to the frequency that is input. Therefore, a change in input frequency corresponds to a change in the amplitude of the output voltage.

Figure 7 shows the discriminator output for a round that was fitted with the tracer-well plug. This trace too has a downward slope indicating the projectile velocity history, but in addition, it has a periodic signal superimposed on it.

A band-pass filter was applied to the discriminator output in order to remove the highfrequency noise and the downward slope due to the decreasing projectile velocity. Figure 8 shows the filtered discriminator data.

The filtered data were then digitized, and zero crossings were detected via a computer program. The projectile spin rate was then calculated by dividing the zero crossing frequency data by a factor of two. The division by two is necessary since the plug visits its most reflective orientation twice per revolution.

The spin frequency vs. time plots for three KE rounds that were fitted with the tracer-well plug can be seen in Figures 9–11. These plots represent realistic spin histories for the projectiles that were tested (Brandon, private communication). The data points designated by the plus symbol were obtained by measuring the projectile fin signatures from yaw cards.*

A block diagram of the equipment used to obtain the spin history from the Doppler radar and the flow of the data is shown in Figure 12.

4. CONCLUDING REMARKS

This first attempt in developing a technique for measuring the spin history of KE rounds has exposed areas of improvement that could make future efforts more accurate and less tedious.

It is apparent from the scatter of the spin frequency estimates vs. time that more work must be done in building a better zero crossing detector program and/or digitizing the filtered data at a higher sampling rate to obtain better resolution.

The AM caused by the plug rotation may be preserved by eavesdropping on the reflected radar signal. An independent antenna and receiver can be used to detect the reflected signal directly rather than the Doppler return signal. Ideally, the only AM in the reflected signal would be caused by the plug.

Tests with a radar of a higher transmitter frequency will take place in the future. This radar may eliminate the need for the tracer-well plug altogether by looking at the modulation produced by the projectile fins themselves and, therefore, allowing the measurement of spin rate without disturbing the projectile hardware.

^{*} Mr. Richard A. Pennekamp, of BRL, obtained this data.

Figure 1. Tracer-Well Plug for KE Projectile.

Q

.

Figure 2. Anisotropy vs. Frequency for the Tracer-Well Plug.

The tangential velocity at point A is greater than that at point B.

The area across the plug at A is less than that at B.

Figure 3b. Variation of Area Across the Surface of the Tracer-Well Plug With Depth.

Vr * AREA ACROSS THE PLUG VS. DEPTH

Vr * Area (Normalized)

13

- 1. Radiation hits plug and Doppler shift, f_{d1} , due to V_d is created.
- 2. Radiation is reflected to opposite side of plug where it "sees" the component, V_x , of the tangential velocity V_r , and Doppler shift, f_{d2} is created.
- 3. Radiation returns to radar with Doppler shifts caused by both $\rm V_d$ and $\rm V_r$

Figure 5. Radar Radiation Path During Contact With the Tracer-Well Plug.

Figure 6. Discriminated Doppler Radar Data From a Projectile Without the Tracer-Well Plug.

•

Amplitude (Volts)

Figure 7. Discriminated Doppler Radar Data From a Projectile With the Tracer-Well Plug.

(stloV) sbutilqmA

Figure 9. Spin History of Round P1.

(zH) niq2

(zH) niq2

ļ

(zH) niq2

5. REFERENCES

- Bossoli, R. B. Unpublished data, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.
- Brandon, F. J. Private communication, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.
- Pennekamp, R. A. "Yaw and Spin Characteristics of the XM900E1 Model 545 APFSDS-T Projectile." BRL-MR-3846, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, June 1990.

Skolnik, M. The Radar Handbook. Second Edition, McGraw-Hill, p. 11.6, 1990.

INTENTIONALLY LEFT BLANK.

No. of Copies Organization

1

- 2 Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145
- 1 Commander U.S. Army Materiel Command ATTN: AMCAM 5001 Eisenhower Ave. Alexandria, VA 22333-0001
 - Director U.S. Army Research Laboratory ATTN: AMSRL-OP-CI-AD, Tech Publishing 2800 Powder Mill Rd. Adelphi, MD 20783-1145
- 1 Director U.S. Army Research Laboratory ATTN: AMSRL-OP-CI-AD, Records Management 2800 Powder Mill Rd. Adelphi, MD 20783-1145
- 2 Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000
- 2 Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000
- Director Benet Weapons Laboratory U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050
- (Unclass. only)1 Commander U.S. Army Rock Island Arsenal ATTN: SMCRI-IMC-RT/Technical Library Rock Island, IL 61299-5000
 - Director

 U.S. Army Aviation Research
 and Technology Activity
 ATTN: SAVRT-R (Library)
 M/S 219-3
 Ames Research Center
 Moffett Field, CA 94035-1000

No. of <u>Copies</u> Organization

- 1 Commander U.S. Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
- 1 Commander U.S. Army Tank-Automotive Command ATTN: ASQNC-TAC-DIT (Technical Information Center) Warren, MI 48397-5000
- 1 Director U.S. Army TRADOC Analysis Command ATTN: ATRC-WSR White Sands Missile Range, NM 88002-5502
- 1 Commandant U.S. Army Field Artillery School ATTN: ATSF-CSI Ft. Sill, OK 73503-5000
- (Class. only)1 Commandant U.S. Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
- (Unclass. only)1 Commandant U.S. Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
 - 1 WL/MNOI Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

- 2 Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen
- 1 Cdr, USATECOM ATTN: AMSTE-TC
- 1 Dir, ERDEC ATTN: SCBRD-RT
- 1 Cdr, CBDA ATTN: AMSCB-CI
- 1 Dir, USARL ATTN: AMSRL-SL-I
- 10 Dir, USARL ATTN: AMSRL-OP-CI-B (Tech Lib)

No. of <u>Copies</u> <u>Organization</u>

1 Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-FSP-A (R. Kline) Picatinny Arsenal, NJ 07806-5000

Commander U.S. Army Armament Research Development, and Engineering Center ATTN: SMCAR-CCH-V (K. Fehsal) Picatinny Arsenal, NJ 07806-5000

2 Commander U.S. Army Yuma Proving Ground ATTN: STEYP-MT-I A. Hooper R. Faulstich Yuma Proving Ground, AZ 85365-9110

Aberdeen Proving Ground

- 2 Commander, USACSTA ATTN: STECS-EN-BE (R. Cheek) STECS-DA-I (L. Francis)
- 1 Commander, USATECOM ATTN: AMSTE-TC-D (John Schnell)

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number <u>ARL-MR-60</u> Date of Report <u>April 1993</u>

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)_____

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

.

Organization

CURRENT ADDRESS Name

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization

OLD ADDRESS Name

.

City, State, Zip Code

Street or P.O. Box No.

(Remove this sheet, fold as indicated, tape closed, and mail.) (DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFRCIAL BUSINESS

BUSINESS REPLY MAIL FIRST CLASS FERMIT NO 0001, APG, MO

NO POSTAGE NECESSARY IF MAILEO IN THE UNITED STATES

Postage will be paid by addressee.

Director

U.S. Army Research Laboratory ATTN: AMSRL-OP-CI-B (Tech Lib) Aberdeen Proving Ground, MD 21005-5066