
PJ

AD-A263 412

RL-TR-92-311
Final Technical Report
December 1992

ELECTRON TRANSPORT
CALCULATIONS BETWEEN
1MeV AND 1 eV

Arcon Corporation

Stanley Woolf I JT

299

APPROVED FOR PUBLIC RELEASE" DISTRIBUTION UNLIMITED.

93-09041
9 3 4 2& 018 iiM9ll

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York



This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-92-311 has been reviewed and is approved for publication.

APPROVED:

JOHN C. GARTH
Project Engineer

FOR THE COMMANDER (~~

HAROLD ROTH, Director
Solid State Sciences

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify PL ( VTER ) Hanscom AFB MA 01731. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.



Form ApprovedREPORT DOCUMENTATION PAGE Go07418
Pubi reportirg burden fortis oollcdonkn of ~Inrn~ M a is sk~lgu toowderam i. hou rmpe r i rt&z*= Inu h. - ki r e~l u searchl ncerx g ostsouces,
93therr~gVanhi mt*1g t-i dea needed and crirMhg end rsm~wog hkUoled io of Ifmio Send cvvrnrts roginckg 0*~ burden et. kreoranyothere spect c
coaectriondInbformg kn cucing mggsgiw for feduig &t* burden to Waj*igtc Headquietas SuwAs. 0kctrste for klan ubri Opwua,. gnoRsorts. 1215 jeffefson
Davi HO-asa, Sulte 1204. A~grr~i VA 2202-4=0 edto theOfflos o Management and Budgg Papewrk Red ~Project (a704.OI8M. Ws.*rorn DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE a REPORT TYPE AND DATES COVERED

I December 1992 Final Sep 89 - Jul 92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ELECTRON TRANSPORT CALCULATIONS BETWEEN 1 MeV and 1 eV C-F92-9C08
CE - 61101F9--08

6. AUTHOR(S) PR - 2306
TA - J73

Stanley Woolf WU- 37

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &PERFORMING ORGANIZATION

Arcon Corporation REPORT NUMBER

260 Bear Hill Road N/A
Waltham MA 02154

9. SPONSORING7aMONiTORuNG AG'-NQY NAM*.E(S) AND ADDRESS (ES) 10. $PONSORINGIMONITORING

Phillips Laboratory (PL/VTER) AGENCY REPORT NUMBER

Hanscom AFB MA 01731-5000 RL-TR-92-31 1

11. SUPPLEMENTARY NOTES

Phillips Laboratory Project Engineer: John C. Garth (PL/VTER) (617) 377-2360

1 2a. DI$TRIBUllON/AVAILABI~LY STATEMENT 12b. DISTRIBUTiON CODE

Approved for public release; distribution unlimited.

13. ABSTRACT~'r-" 2w3 words)

In this report we describe mathematical analysis, physics research and computer
program development for the simulation of charged particle ..raaspart ini iriadiatcd
and non-irradiated solids. The simulation techniques described were used to calculate
energy deposition, charge, and current distributions in these solids. The scope of
the work included: (1) discrete ordinates transport calculations of low energy
(1 eV to 20 eV) electrons in silicon dioxide with and without electric fields;
(2) comparison testing of one-dimensional discrete ordinates transport codes for
charged and neutral particles with analytical benchmark calculations; (3) Monte
Carlo transport calculations for low energy electrons in the presence of strong
electric fields in silicon dioxide; (4) Monte Carlo transport calculations for high
energy (MeV) electrons in insulating materials with internal electric fields.

14.SUBJECTTERM$ Discrete Ordinates, Monte Carlo Calculations, iI. NUMBER OFPAGES
Electron Transport, Benchmark Calculations, Charge Distributions 5

In Insulators, Electron-Phonon Interactions, Electric Fields I aPRICE COOE

17. SECURITY CLASSIFICATION 1 &SECUR[ITYCLASSIFICATION 119. SECURITY CLASSIFICATION 20. UIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-2804=13 Standerd Form 258e Vev2 e
P I I- I N I oZ9



TABLE OF CONTENTS

Page

1. Introduction 1

II. Discrete Ordinates Electron Transport Calculations 2
1. Introduction 2
2. Low-Energy Electron Transport Calculations 2

2.1 High-Resolution(Energy) Calculations of Electron-Phonon
Scatter in Silicon Dioxide 2

2.2 Discrete Ordinates Treatment of Low Energy Electron Transport
in the Presence of an Electric Field 5
2.2.1 Electron Multiplication 9

2.3 Results 10
2.3.1 5eV Electron Source; Electric Field Strengths= 0 and

106V/cm 10
2.3.2 8eV Electron Source; Electric Field Strength= 106V/cm 11
2.3.3 12eV Electron Source; Electric Field Strength= 2x106V/cml2

2.4 The "Continuous" Approximation Restriction 15

III. Analytical Benchmark Verification of SNCODE Algorithm 16
1. Introduction 16
2. Multigroup Benchmark Calculations 16

2.1 Results 16
2.1.1 Plane Isotropic Source; One-Group; Linearly Anisotropic

Scattering 17
2.1.2 Plane Isotropic Source; Multigroup; Isotropic Scattering 18
2.1.3 Relation Between Spatial Resolution and Discretization

Error 22
2.1.4 Plane Isotropic Source; Anisotropic Scattering 23

3. Analytical Benchmark Testing of One-Group SNCODE Calculations
with a Material Discontinuity 27
3.1 Uniformly Distributed Source 27
3.2 Plane Isotropic Source 28

4. Analytical Benchmark Testing of One-Group SNCODE Calculations
in Half-Space Geometry 29

IV. Monte Carlo Transport Calculations for Electrons in Strong Electric Fields
in Silicon Dioxide 31

1. Introduction 31
2. Discussion 31

2.1 Inelastic Electron-Electron Scatter in Conducting Materials 34

V. Monte Carlo Calculations of the Transport of MeV Electrons in Insulators 37
1. Introduction 37
2. ELMC-Condensed Collision Electron Monte Carlo Code 37
3. ELMCF-Condensed Collision Electron Monte Carlo Code for

Applied Electric Field Problems 42

VI. References 44

1



I. Introduction

During the period from September 1, 1989 through July 22, 1992, the execution of
contract No. F19628-89-C-0189 was directed toward the performance of mathematical
analysis, research and computer program development for the simulation and analysis of
charged particle transport in irradiated and non-irradiated solids.

This report is organized into five sections in addition to this, the introduction.
Section II is a discussion and presentation of research in discrete ordinates transport
calculations of low energy (~- 1-20 eV) electrons in silicon dioxide with and without
applied electric fields such as are present in microelectronic devices. Section III is a
brief description of research activity in the development and application of analytical
benchmark calculations for one-dimensional transport in the evaluation of the accuracy
of approximate discrete ordinates methods. Section IV is an account of our Monte
Carlo transport calculations for low energy electrons in strong electric fields in silicon
dioxide. These calculations were developed for the purpose of describing and predicting
the extent and significance of the impact ionization process in microelectronic device
materials. Section V presents the results of another set of Monte Carlo electron
transport calculations which we developed for describing the transport of MeV electrons
in insulating materials with internal, polarization-induced electric fields. Section VI,
the final section, is the reference list.
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H. Discrete Ordinates Electron Transport Calculations

1. Introduction

In earlier research efforts involving the method of discrete ordhiates (SN) for the
solution of electron transport problems, we had made extensive use of the transport
code ONETRAN 11J, as reported in Ref. 2. As the research activity continued, however,
it became clear that creation of a new computer program with the ONETRAN linear
discontinuous and diamond differencing algorithms would be highly useful. It was our
intention to apply the SN method to a variety of electron transport problems covering a
wide range of electron energies and scattering processes, from the eV range in which
electron-phonon scattering is important to the MeV range in which the Mott scattering
model is applicable. It became apparent to us that if the SN method were to be
effectively applied to electron-phonon scattering in microelectronic device materials, it
would be necessary to build into the SN program a capability for inclusion of applied
electric field effects, since the voltages typically applied to silicon devices produce large
internal electric fields. Algorithm modifications such as this would be difficult, if not
impossible, to accomplish with the ONETRAN code without encountering serious
problems that could arise from programming error and/or algorithm incompatibility.

The applicability of SNCODE is restricted to slab geometry. The sacrifice in
generality has resulted in a program that is simpler than ONETRAN, which treats
cylindrical and spherical geometries as well. Another departure from the ONETRAN
method is that SNCODE computes, preserves and uses the angular components of the
flux, while ONETRAN does the same with the Legendre series expansion coefficients of
the angular flux. The actual angular components are computed for the spatial
differencing procedure and then discarded. The ONETRAN method is more
computationally efficient when the scattering cross sections are given in terms of their
Legendre expansion coefficients, which is usually the case. While the two methods are
equivalent, it is not convenient to apply the ONETRAN approach when dealing with
applied electric fields oriented along a single direction. In the following sections we will
discuss various applications of SNCODE to - 1)electron-phonon scattering with and
without applied electric fields; and 2)benchmark calculations and verification of
differencing algorithm accuracy.

2. Low-Energy Electron Transport Calculations

2.1 High-Resolution (Energy) Calculations of Electron-Phonon Scatter in Silicon Dioxide

The discrete ordinates transport method was used to calculate electron energy
spectra resulting from electron-phonon scatter in SiO2 under zero electric field
conditions. SNCODE was installed and run on the Phillips Laboratory CRAY-2. The
availability of the supercomputer provided an opportunity to make very high resolution
calculations of these electron energy spectra. A cross section set was generated for 2000
energy groups of uniform width over the interval 0-10 eV (AE=0.005 eV). This allowed
full recognition of the discrete optical mode energy transitions (.068, .153 eV) and a
reasonably accurate representation of the smaller acoustic mode energy changes
(maximum energy transfer -, 0.02 eV). A 5 eV electron source was positioned at the
center plane of a SiO 2 slab of thickness 100 nm. The source was directed to the right
side of the center plane with a cosine-squared (P 2 ; see insets of Figs. 1 and 2) angular
distribution. The 2000 group run was made using an energy group in-scatter source
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error tolerance of c = 10-s. That is, a number of outer (energy) iterations were made
until the group with largest error in in-scatter source reached a value < c. For this
case, the required number of outer iterations was 29. The highest energy group
containing up-scattered electrons (in-scatter source ~10-8), given the above
convergence condition, was group 883, corresponding to - 5.6 eV. The resulting energy
spectra show the optical mode transition lines at the low energy end superimposed on

6.0
Energy Spectrum at 40 nm from Source Plane

Zero Field

5.0 5 eV Source

" 4.00

x 3 .0

S" NSi02

x2.2.0 -50nm 0 +5onm

1.0

0.0-
0.0 0.5 1.0 1.5 2.0

Energy (eV)

Fig. 1. Electron energy spectrum at +40 nm in SiO 2 under zero
field conditions. Electron source, 5 eV, located at center plane of
100nm slab is Y2 distributed, directed to the right of center plane.
Spectrum structure results from electron-phonon interactions.
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2.5 Energy Spectrum at -4Onm from Source Plane
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2.0
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x .
-50nm 0 +50nm
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Fig. 2. Electron energy spectrum at -40 nm in Si0 2 under zero
field conditions. Electron source, 5 eV, located at center plane of
100nm slab is U2 distributed, directed to the right of center plane.
Spectrum structure results from electron-phonon interactions.

the largely acoustic mode generated smooth spectrum. As evidenced by the spectra
shown in Figs. 1 and 2, the SN method provided a degree of energy spectrum resolution
not obtainable with the Monte Carlo method. The two spectra, shown at + 40 nm (Fig.
1) and -40 nm (Fig. 2), are similar. The amount of electron scattering at these
distances is sufficient to nearly eradicate any differences due to source directionality.
The spacing of the peaks is consistent with the values of the optical mode energy
transitions given above.
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2.2 Discrete Ordinates Treatment of Low Energy El, Atron Transpor. in the Presence of
an Electric Field

Modifications were mad, - the SN program, SNCODE, to account for the effects
of the presence of an electric field on electron transport in solids. The objective of this
effort was to model low energy electron transport, electron-phonon scattering, and
production of secondary electrons due to impact ionization, in the oxide layer of a
silicon device under typical operating conditions, i.e. applied voltage ; 5 V. Much of
our method for the treatment of electric field effects was based on the earlier
formulation of Wienke 3 ] in which he incorporated a Lorentz force term into the
Boltzmann equation (no-relativistic) for electrons.

The multigroup non-relativistic Boltzmann transport equation (in one-dimension)
for group g electrons in the presence of an electric field is

Log +0g e "9
where Ox T g(Zp) + wroiig $Vt.,,g(Z,P) = Qfg + Q.g (1)

Og(Z,y) is the group g flux,

x and u are the position and velocity direction cosine, defined in the usual way,

a4 is the total cross section,

- is the electric field strength,

e is the electronic 4-hargo ,

mno is the electron rest mass,

vg is the velocity of group g electrons,

Qfg is the fixed source for group g,

and Qog is the in-scatter source to group g.

Our approach differed from that of Wienke in that we began with the Boltzmann
equation rather than the Fokker-Planck equation. SNCODE is a Boltzmann solver and,
as will be demonstrated elsewhere in this document, operates correctly for applications
in which no electric field is present. We treated the velocity gradient electric field term
in the same manner as Wienke.

Since our multigroup discrete ordinates equation solves for the flux as a function
of energy, i.e. tg(Zp) ; O(x,p,E.), it was necessary to re-express the velocity gradient
term in terms of the energy variable. The electric field 9 was assumed to be directed
along 1. With the electron velocity given by "V, and the velocity direction cosine with
respect to the field direction given by p (see Fig. 3),

V

r.v (2)

Fig. 3. Vector diagram showing relative
orientations of electric field and electron motion.
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The following useful identity for the velocity gradient operator is given in Ref. 3 as

v= + (•• .(3)
Defining

e - e- (4)
then M 0-V a J (4)

MOV V= +A. (5)

The procedure for incorporation of the velocity derivative term L into the multigroup
Boltzmann will be outlined first, and that for the angular derivative term A will be
given second.
The operator L can be simplified as follows:

eo
=* _0.; 0

= v v 0- (6)

Our multigroup-SN calculation requires that the flux be expressed in terms of energy
rather than velocity. For non-relativistic calculations, the velocity derivative can be
directly expressed in terms of energy derivatives.

o9 dE 8 and E = ImV 2 (7)

thus m0v a (8)

and LO (9)

Eqn. (1) can then be restated as0ýg

p + 40gi 9 (Xp) + [ecp - + AJ,](xp) = Qfg + Qag (10)

In finite difference terms, the energy derivative term becomes

Zg--•)g+l for p > 0, (11a)/L m eg~ Eg+i ha

-' - for p < 0. (llb)

The o>O case corresponds to energy upscatter by the field, and the p<0 case
corresponds to energy downscatter. In the former, the positive velocity direction cosine
indicates that the electron is moving with the field direction, while in the latter, the

--ctron motion is in opposition to the field direction. If we order the energy groups
such that E 1 > E9 .> Eg +1, and designate the energy group width at E9  as AEg,
then the field acceleration terms become
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erI 0 g• ---- 1•. for a > 0, (11a)

"L a d for p < 0. (l1b)

The finite difference (in the energy variable) form of Eq. 10 then becomes
0 0 9 e t p e s /o 4

-49--+ .g(xy)A+[:--E-+ Aog(Z,14) = - g+ + Qfg + QS9 (p > 0), (12a)

O~o erby eCIt9- + aj(x,p)+ EE- + Aj]o(xp) -) g-1 +Qg+ Qg + (,u < 0) (12b)
OX Ag g

In Eqs. 12a,b the terms involving 0 g: have been transposed to the right-hand (source)
side and can be regarded as positive, angulariy dependent contributions to the in-scatter
source. The e•p/AE 2 term on the left side has the effect of adding a positive angularly-
dependent term to the total cross section.

The angular derivative term,
S4 - (4)

can be written as[ 31 m 
(4)

AI~ e 1'0) 0ý_2 14 (13)

which has the same form as the angular part of the Fokker-Planck c .,tor and
represents a within-gioup angular redistribution (trajectory bending) by the electric
field. Because electron-phonon interactions are largely characterized by wide angle
scatters, the extended P 12 transport correction adequately handles the scattering
angular distribution. After a small number of scatters, the flux is not highly
anisotropic, and the angle derivative can be evaluated with a flux Legendre expansion of
order 12; assuming that 22

ZO(p) (I + 1) 0' Pj(p) (14)
1=0

then making use of the identity

142) apt+ •(1 - 2) O-I =1(+1 (P ..S") -P+())

yields 12 0) (PI -P 1(p) + ),)(1 -#•) • -- •, - -F -- ,a (P _,( ) -P• +•(o ) ,(15)

1=0

where the flux moments 01 are obtained with well-known expression

+1
= J du og(p)P,(p)

-1

With the above expression for A, the Boltzmann equation is then given by

Yb8 e+10 ±E +2 E T E' (1 To- )
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where the ± denotes + for p > 0 and - for p < 0.

In the above, it is assumed that energy transfers due to electric fields occur
between adjacent groups, the continuous approximation (CDSA). Eq. 16, the
multigroup transport equation, is solved in the usual manner by the method of discrete
ordinates. The spatial differencing scheme used is linear-discontinuous, and the discrete
urdinate angles are chosen as Gauss quadrature ordin.•es.

The formulation given above was implemented in SNCODE, and the results were
reported in Ref. 4. In this work, the cross section parameters for the multigroup
ral ulatiouý, ":.,re derived from the in,'erse mean free path and stopping power
expzes9J..,ns of kshley[5' 61. The width structure of the energy groups was chosen in order
to make "Ise of averaged quantities (cross section, stopping power). As illustrated in the
graph of Fig. 4, the stopping power, averaged over all individual electron-phonon
interaction modes, is negative. Thus in the Qog term of Eq. 16 above, the group
transfer cross sections for electron-phonon interactions, a'? in Eq. 17 below, wer3
characterized only by downscatter. d g 1 og

.ep Id, /6 modesode7 I
"g-+g - i--g ,E (17)

Up-scatter can only occur via electric field action.

ACA
1 0 - - -.. ..

11-NS1 0 - 4
% >0 w . .. . .. . LOA(.065 eV)

> LOE(. 153 eV) LOA(. 153 eV)

S--0.05 / •'L;)E(.068 eV) ..... C

0)

-_0.015 e

a~ -I

0

VY)

- 0.25 , , , , , , , , , , , , , , , , , , , , ,0 1 2 3 4 5 6 7 8 9 1
Energy (eV)

Fig. 4. Individual mode and averaged electron stopping powers for

electron-phonon interactions in SiO 2.
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2.2.1 Electron Multiplication

To account for the secondary electron production which can occur through impact
ionization in SiO 2 when the primary electron energy exceeds 8.9eV, we utilized as set of
ionization cross sections can calculated from the theory, developed by Ritchie[7 ] and
Ashleyls]* In our SN calculations, impact ionization was treated as (e, 2e') scattering.
The energies of the primary and secondary electrons after the ionizing collision were
assumed equal and were given as follows:

E = 41- (Ei- E ) (18)
where E4 = initial energy of primary electron,
and E1 = final energy of primary electron,

= energy of secondary electron.

The factor of 1/4, rather than 1/2 arose from the allocation of an equal amount of recoil
energy to holes. Figure 5 is a plot of the ionization cross section, shown together for
comparison purposes, with the phonon scatter cross section. It is seen that at 10eV, the
ionization component is lower than the phonon scatter by more than two orders of
magnitude. However, in the 12-14eV range, this factor is narrowed to approximately
15. Thus, at sufficiently high energies, significant impact ionization is possible.

-" 10O-I

0<

-- Electron-Phonon
O�QAQ Impact Ionization

C12

10
1= 0 --

Energy (eV) 1 52

Fig. 5. Comparison plot of electron-phonon interaction and
impact ionization cross sections in Si0 2
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2.3 Results

2.3.1 5eV Electron Source; Electric Field Strengths = 0 and 10'V/cm

S4 calculations were made with SNCODE for a 5eV isotropic source of electrons,
uniformly distributed over the interval 40-60 nm in the SiO 2 slab (thickness = 0.1 pm)
as shown in Fig. 6. A uniform electric field of strength 9. = 10 V/cm was assumed
oriented along the z-direction. The energy group structure consisted of 100 uniformly
spaced groups of width AEg = 0.1eV spanning the energy range 0-10eV. The spatial
discretization was chosen so that a change in the electron position of one Az interval
would not produce a field-induced change in the electron energy of more than one AE 0 .
This is an essential requirement for these calculations, since it is assumed that energy
transfers due to the electric field are allowed to occur only between adjacent groups, the
"continuous approximation" [2]. In order to maintain a consistent set of discretization
parameters in these SN calculations, either the spatial resolution or the energy group
width (or both) must also be increased as the value of rz is increased.

Fig. 6 shows a set of spatial flux profiles at 8 energies (1, 2, 3, 3.5, 4, 4.5, 5, 5.5
eV), for 9. = 106V/cm. The flux curves shifted in the direction of 9, and the field-
induced up-scatter is evidenced by the presence of flux curves at energies in excess of 5
eV.

1 5 eV Isotropic Source
Uniformly Distributed (.04-.06Mm)

10 5::: i
Slee~ I

10 -=;•0 Z'• .04 .06 .AlM

10 -

x

L 4 _. 1 0 -4

10 is 2 V

40- V= 10 6 V/cm

10- •

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Z (micrometers)

Fig. 6. Electron flux profiles at 10 energies with electric field
(S,=106V/cm). Uniformly distributed (.04-.06pm), 5 eV isotropic
electron source in SiO2
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The effect of the electric field on the distribution of electron energies is also shown
in Fig. 7 where the respective energy spectra for 89 = 0 and C = 106V/cm are plotted
at z = .09pin, where the spectra have stabilized. As can be seen, the results predict
that a field value of a i= 106V/cm is nearly sufficient to promote the electron energy
above the 8.9 eV ionization threshold.

0.07 Electron Energy Spectra at Z = .09 ,rn

0.06

S0.05 Z= 0

.0.04

0.03

UJ 6

X 0.02
:3

0.01

0.00
0 1 2 3 4 5 6 7 8 9 10

Energy (eV)

Fig. 7. Electron energy spectra for uniformly distributed (.04-
.06pm) 5 eV isotropic electron source in SiO 2 with 9,=0 and
9X=10V/cm. [4

2.3.2 8eV Electron Source; Electric Field Strength = 10 6 V/cm.

With the same geometry as shown in the Fig. 6 inset, the electron source energy
was increased to 8eV, a value slightly below the ionization threshold. From this
starting point, electron acceleration due to the 106V/cm. field, in combination with the
positive contribution of the phonon absorption terms to the electron-phonon interaction
stopping power, were sufficient to promote the source electrons to energies in excess of
E . The SN calculation was performed using 140 uniformly spaced energy groups (AE
= •.leV), 100 uniform spatial steps (Az = .001lm), and as in the previous case, 4
discrete ordinates. With the outer iteration convergence precision of 102, it was found
that 15 outer iterations were required for convergence.
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Figures 8a and 8b show the electron energy flux spectra as a function of distance
from the left and right edges, respectively, of the source band. These spectra are not
absolute. That is, at each value of z, the flux profile as a function of energy is shown.
Thus, while the low energy peak ( ~ 0.4eV) in Fig. 8a, for example, appears larger than
the peak at - 8eV, the opposite is actually true in absolute terms, as would be expected
from inspection of the cross section curves of Fig. 5. We concluded that the low energy
peak in Fig. 8a was primarily due to downscatter (phonon emission) and deceleration
caused by the electric field. The 0.4eV peak occurs at a distance 0.04 pum from the
source band. During the transport, these initially back-directed electrons travel in
opposition to the field direction; their mean free path increases as they lose energy; and
their direction of travel remains "locked-in" to the negative direction. The electric field
alone accounted for a 4eV energy loss over the .04 pm distance. On the right side of the
source region (Fig. 8b) there is a sharp peak at the 8eV source energy, with a high
energy tail extending to - 9.9eV. Clearly here, energy downscatter still dominates, but
the energy loss rate is moderated by acceleration due to the field, so that the peak
declines gradually. The low energy peak at .04 pm occurs at 1.8eV. This may be
attributable in part to acceleration by the field of both downscattered electrons and
secondary electrons arising from the promotion of the 8eV source electrons to energies
exceeding E9 0 p.

2.3.3 12eV Electron Source; Electric Field Strength = 2x10 ' V/cm.

Another 140 group SN calculation was performed for a 12eV source with
- =2x10 6V/cm. for the same problem geometry as above. To preserve the applicability
of the "continuous approximation" with regard to energy gain/loss due to the field, the
resolution of the spatial discretization mesh was doubled (Ax=.0005pm) beyond that
used in the previous case. This calculation converged with fewer outer iterations (12)
than were required for the 106V/cm. case (15). Three possible reasons for this are: 1)
fewer up-scatter (phonon absorption events) were required in this calculation to reach
the 14eV upper bound due to the higher source energy in this calculation, 12eV rather
than 8eV; 2) also because of the higher source energy, secondary electron production
began with the first outer iteration; and 3) the doubling of the electric field force
resulted in a more rapid promotion of the 12eV electrons to higher energies.

The doubling of the electric field strength, in combination with the increased
source energy, results in an enhancement of low energy secondary electron production.
Figure 9a is a plot of the electron energy spectra vs. distance from the left side of the
source. Unlike the 10WV/cm. case shown in Fig. 8a, there is a small peak of low energy
electrons adjacent to the source region. These are secondary electrons which, when
produced, can range in energy from 0.75 to 1.5eV. Similarly, in Fig. 9b, the spectra on
the right side of the source, a low energy peak near the source region appears, also in
contrast with the previous case. The electric field strength of 2xl0V/cm. was
insufficient to overcome the phonon emission downscatter; thus the secondary electron
energy remained low.
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Energy (eV)

Fig. 8a. Electron energy flux spectrum profiles vs. distance,
d(ym), from left edge of source region in SiO 2 (Fig.6 inset). 1.
Source energy =8eV. F,.=1O6V/cm. [4) .

& 01 _)

Fig. 8b. Electron energy flux spectrum profiles vs. distance,
d(pm), from right edge of source region in SiO2 (Fig.6 inset).
Source energy = 8eV. 8,=10PV/cm.[41
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Energy (e V)

Fig. 9a. Electron energy flux spectrum profiles vs. distance,
d(pm), from left edge of source regon in SiO 2 (Fig.6 inset).
Source energy = 12eV. 9,=2xlo6V/cm-.41

.02 4> IM nergV (eV

Fig. 9b. Electron energy flux spectrum profiles vs, distance,
d(pzn), from right edge of source rein inSO2 Fi.ine)
Source energy = 12eV. 9,=W(1O6V/cmIý 4'
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2.4 The "Continuous Approximation" Restriction

In the calculations described in Sections 2.2 - 2.3, we found that imposition of the
"continuous approximation"[s1 condition restricts the applicability of the SN method to
electron-phonon scattering problems. As previously stated, with this condition in force,
a field-induced change in energy over one spatial discretization interval must not exceed
one energy group width. That is,

egAx < AE0 . (19)

For field strength values - 5 - 10 MV/cm and for AE_ - 0.1 eV, the range of Az
values is - 1 - 2A. Typical SiO 2 slab thicknesses for these calculations were in the 500 -
1000A range. A low energy transport calculation for 0 - 20 eV electrons can require
- 500 - 1000 z-mesh cells and 100-200 energy groups. These requirements, combined

with the probable necessity of running ~ 20 - 40 outer (energy group) iterations lead to
a highly computationally intensive calculation. Based on these and other investigations
described elsewhere in this document, we have concluded that the Monte Carlo method
serves as well or better for calculations involving electron-phonon interactions.
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III. Analytical Benchmark Verification of SNCODE Algorithm

1. Introduction

The SN method is an approximate numerical method for the solution of the
transport equation. Due to the fact that we generally obtained good SN agreement with
standard Monte Carlo calculations of energy deposition in solids, there was adequate
reason to believe that the algorithms employed in SNCODE were providing "correct"
answers. At the least, this agreement provided indication that the integrals of the
scalar flux over energy checked out. This agreement did not, however, reveal much
information pertaining to the accuracy of the flux calculations. A collaborative effort
with B. D. Ganapol and J. C. Garthf9lprovided an excellent opportunity to monitor the
accuracy of the spatial differencing algorithms of SNCODE. Ganapol developed a
multigroup benchmark calculation that yielded exact determination of the group scalar
fluxes for electrons. The availability of this benchmark method made it possible, for
the first time, to make absolute determinations of the accuracy of the multigroup-SN
method as applied to electron transport. We give here a brief summary of the
methodology and report some of the results obtained.

2. Multigroup Benchmark Calculations

The multigroup Boltzmann equation1O°'11] (Eq. 20) provides the theoretical basis
for the approximate calculation of electron transport, scattering and energy loss in a
planar infinite medium (in practical terms, a medium larger than one electron range).

( a 1

PR+ X) ~(~~
9 L ±2+1 ' PAP) f d/ 'P 8(p'') "(x'xP') + Q(p)6(x)6, 1 " (20)

g'-1 •-'0 -1

In the above, the notation and symbols have their usual standard definitions: 0 (x,p) is
the group g flux; A9 is the group mean free path; and E , are the group transfer cross
sections, which are 9derived assuming applicability of confiififous slowing down theoryf11].

As reported in Ref. 9, Ganapol derived an exact expression for the Legendre
moments, ý, I , of the Fourier transform of the group flux ¢g(x,p). He then performs a
numerical inversion of the Fourier transform of the scalar group flux, ýg.0, to obtain an
exact determination of the scalar flux. The transform of the scalar flux is evaluated by
solving a matrix equation involving sums over Legendre moments. The scalar flux can
be evaluated to arbitrary accuracy, depending on the choice of the Legendre series
order.

For our benchmark tests of SNCODE, we assumed an isotropic source, located at

the center of the infinite medium, of electrons in the highest energy group (g =1), i.e.

Q = A . (21)

2.1 Results

The quantity taken as the basis for comparison of the SN and benchmark
calculations was the scalar flux. The approach taken in the comparisons between
multigroup SN and benchmark calculations began with a series of one-group calculations
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for the plane isotropic source embedded in an essentially infinite aluminum medium in
which the scattering cross section was taken to be linearly anisotropic. For this one-
group case we investigated the behavior of the ratio of successive errors as the spatial
mesh size was decreased in order to reproduce the known theory. The SN and
benchmark calculations were then made for the multigroup cases. These calculations,
carried out using 40 uniformly spaced electron energy groups, were made for a 200 keV
electron source in aluminum. Four scattering cases, corresponding to progressively
higher scattering anisotropy order, were investigated. In the first, an artificial isotropic
scattering cross section was devised, and in the remaining four, SN and benchmark
calculations were compared for extended transport corrected cross sections of order 2
through 4.

Because the benchmark calculations can only accommodate an infinite medium,
and the SN algorithm requires a finite medium, we chose the dimensions of the test
mesh portions of the scattering media to be deeply imbedded within two very thick
coarsely meshed slabs each of thickness 10 mean free paths. For the multigroup
calculations, we chose the slab dimensions to correspond to ± 1 r.u. (= range unit),
which for our 200 keV electron source in aluminum translates into a thickness of
±-0.058 g/cm2 . These geometries closely approximate infinite media for all practical
purposes.

2.1.1 Plane Isotropic Source; One-Group; Linearly Anisotropic Scattering

A set of 5 S12 calculations were made with the linear discontinuous differencing
algorithm for a plane isotropic source located at the center (x=0) of a thick scattering
medium extending 20 mean free paths in both positive and negative x-directions. The
scattering parameters were ( in units of mean free path), Et = 1.0, E = 0.8, Es =
E, /3. The spatial mesh discretization step sizes for the 5 calculations werA taken to 'be

A2. - 2 2-"-; n=1,2,3,4,5. In each calculation, Ax was held constant over the spatial
mesh test region (-10 < x < +10). Figure 10 is a plot of the successive error ratios rn(x)

Sf(x)/_ (x)]. From the curves shown, a region of uniformity(3 < lxj < 6) could be
identified lor successive discretization error ratios. In this region it was found that the
error always decreased for n=1,2,3. For the n=1 and n=2 cases, the ratio is nearly
constant and has the value . 8, which indicates second order accurate behavior for the
linear discontinuous algorithm (when the error decreases as the exponent n, the
approximation is said to be (n-1) order accurate). Also in this region, when n=3, it is
seen that the error ratio settles down to - 8 for one-half of the interval; however, the
ratio r4 does not show a consistent decrease in error as Ax is decreased from 0.25 to
0.125. This is attributable to the fact that it is not possible to further improve the
result by halving Ax with a fixed inner iteration convergence precision. The fractional
errors observed in these cases were generally comparable to the convergence precision
(10- 5). Large variations in r, were observed both near the source plane and the region
boundary. The poor results near the source plane arise from the singular nature of the
source geometry, while near the region boundary, chaniges in mesh size propagate errors
into the test zone. The uniform region is situated well away from both.
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Fig. 10. Ratios of successive errors for 5 one-group linear
discontinuous S12 calculations. Spatial disrectization step size is
varied according to Ax. = 22-n; n=1-5. Stable region, 3 < Izl < 6
(mean free path units), is indicated.?91

2.1.2 Plane Isotropic Source; Multigroup; Isotropic Scattering

Four sets of SNCODE calculations were made for the 200 keV isotropic electron
source imbedded in infinite aluminum. The scattering cross section employed for these
calculations is physically unrealistic in that 200 keV electrons in aluminum do not
scatter isotropically. However in this first attempt to test the multigroup benchmark,
we chose for convenience a cross section which contains only the zero-th order Legendre
coefficient of the P-12 extended transport corrected Mott cross section. These
calculations covered the following four cases: linear discontinuous and diamond
differencing, each used with S6 and S 12 Gauss-Legendre quadrature sets. In each of
these four cases, 5 separate SN calculations were made, corresponding to a graduated
scale of spatial mesh resolutions [ax = .02, .01, .004, .002, .001 r.u.] spanning a distance
of 0.2 r.u. from the source plane at x=0. The reasons for the restriction to 0.2 r.u. are
twofold: 1) to eliminate vacuum boundary effects in the SN calculations; 2) to operate
within the high accuracy range of the analytical benchmark solution.

As will be apparent in the graphs of Figs. 11 and 12 it was found that the
differences between S6 and S12 calculations were for practical purposes negligible.
Figure 11 is a plot of the scalar flux as calculated by the benchmark method (solid
lines) and SNCODE-S6 (circles) with the diamond difference scheme for spatial
resolution Ax=.004 r.u. The 10 curves are the energy spectra at x = .02(.02).2 r.u. As
can be seen, the agreement is excellent. Figure 12 is a plot for the identical conditions
except that the SN calculation was made with SNCODE-S12. While little or no
sensitivity to discrete ordinate order n was observed in these two calculations, we did
find that the accuracy of the SNCODE calculations was highly sensitive to the spatial
discretization. In Figure 13 we show the same case as given in Figure 12 (diamond
difference, S12, isotropic scatter), however the spatial mesh resolution was coarsened to
Ax=.01 r.u. Here we observe significant departures from the agreement obtained with
Ax=.004 r.u.
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Fig. 11. Comparison of the scalar flux, FZ(E) vs. E, for 40 energy
groups at 10 x positions as indicated. Solid lines represent the
benchmark calculation results; circles represent the results of a
diamond difference SNOODE -S 6 calculation. z-discretization
interval Ax = 0.004 range units. [9]
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2.1.3 Relation Between Spatial Resolution and Discretization Error

To further examine the sensitivity of SN calculations to spatial discretization, we
made a study of the dependence of discretization error on resolution. Having a set of
true benchmark calculations enabled this. Figure 14 is a plot of the exponent, b, of the
relative error dependence [c X (Ax)- b] of the spatial resolution vs. group midpoint
energy, for 6 positions along x, as the resolution is increased from ax=.02 to Ax=.O1
r.u. for the linear discontinuous algorithm. The relative error (c) was evaluated as the
deviation of the SN result from the benchmark result. The inner iteration convergence
precision for the upper graph was set to 10i-, while for the lower graph, we chose 10- 5 .
As anticipated, the exponent is -3 as dictated by theory. It should be noted that this
holds true for a wider energy range as the accuracy of the SN calculation was increased.
However, at some point sufficiently low on the energy scale, no further improvement
was achieved. As might be expected, the more accurate SN calculation, to the extent
that this crossover behavior exists at all, exhibited this behavior at a lower energy
value. We believe that this is explained by an accumulation of the downscatter source
error, which is not predominant in the high energy groups. It can also be noted that
tightening of the convergence precision mitigated most of the erratic behavior of the
exponent at the two positions (x=.02, .06 r.u.) closest to the source plane.

7-1 Linear Discontinuous
6 Error trend, AX=.02 to AX=.01 r.u.

Al. 200 keV. Isotropic Scatter
5-
4 Inner Iteration Convergence Precision = 10"3

.3 eex = .02 r.u.
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"`" 2- * x = .14 r.u.
C"a~e x = .16 r.u.
(1) 1 64-e--4 x = .15 r.u.

C- tt..,x= .20 r.u.
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bi -2-

-4--5"-

-6-7!
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X -4

0.o0 0.05 V.1 ... o. 0'1 0.20
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Fig. 14. Plots of the exponent [b] of the relative error •twhere cccAx-b, as Ax is
decreased from .02 to .01 r.u. The behavior of b is shown as a function of energy at the
six z positions indicated for two linear discontinuous S6 calculations with ininer iteration
convergence precisions given by 10-'s (upper graph) and 10- `(lower graph)l91.
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2.1.4 Plane Isotropic Source; Anisotropic Scattering

The 200 keV electron source (at x=0) and aluminum scatterer configuration
(lxi < 1.0 r.u.) chosen for the anisotropic scattering benchmark tests were the same as
those used in the previous isotropic scattering case. It had already been
demonstrated[11,12] that a realistic description of the transport, or at least the resultant
energy deposition, of 200 keV electrons in aluminum could be achieved using a P-12
extended transport corrected screened-Rutherford scattering cross section in conjunction
with the SN method. At the risk of sacrificing physical realism, we made successive
application of the extended transport correction from P-1 to P-4 to solve the "same"
problem if only approximately. This provided us with a means for systematically
increasing the scattering anisotropy order of the benchmark calculations. Figures 15-17
show plots of the scalar flux at 10 equispaced x values [0.04(0.04)0.41 for the P-2, P-3
and P-4 extended transport corrected cross sections (the L-th Legendre coefficient of the
P-L extended transport cross section is zero, hence these represent scattering anisotropy
orders 1,2,3). In all cases the linear discontinuous differencing algorithm was employed
in 40 group SNCODE-S12 calculations. The spatial discretization step was held constant
at Ax=0.002 r.u. As before, the solid curves represent the benchmark solution. The
agreement between the two methods ranges between the third and fifth significant
figure for all points except at the source plane.

These investigations served not only as a demonstration of the first multigroup
benchmark transport solution, but also as a validation of the operation of SNCODE. It
should be pointed out that the benchmark algorithm is analytically exact in spatial
dependence only. Both SN and benchmark calculations treat energy dependence
identically. The two calculation methods, multigroup-SN and benchmark,
complemented one another. The excellent agreement between multigroup-SN and the
benchmark results: 1) provided verification of the predicted error behavior for both the
linear discontinuous and diamond difference schemes; and 2) allowed us to proceed more
confidently to more realistic SN electron transport calculations with SNCODE.
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Fig. 15. Comparison of the scalar flux, Fx(E) vs. E, for 40 energy
groups at 10 z positions as indicated. Solid lines represent the
benchmark calculation results; circles represent the results of a
linear discontinuous SNCODE - S12 calculation. Anisotropic
scattering of 200 keV electrons in Al with P-2 extended transport
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3. Analytical Benchmark Testing of One-Group SNCODE Calculations with a Material
Discontinuity

Another series of analytical benchmark tests were conducted for the verification of
SNCODE. The objective of this research, a collaborative effort with B. D. Ganapol and
J. C. Garth[13], was the development of an analytical benchmark calculation for one-
group neutron transport in an infinite medium with a material discontinuity.
Participation in this research effort provided an opportunity for using SNCODE to
confirm the validity of the analytical benchmark solution and also resulted in an
evaluation of the accuracy of SNCODE for one-group transport in dissimilar media.

The analytical solution foL two irtcrfi~cing half spaces of dissimilar material was
obtained using a numerical Laplace transform inversion which has proven to be
successful for single half-space problems[141. Isotropic scattering was assumed with a
general spatially distributed isotropically emitting source in the right half-space. The
solution developed in Ref. 13 was used to benchmark an SNCODE which was written
primarily for application to electron transport where material boundaries have a
profound influence.

3.1 Uniformly Distributed Source

In Figure 18 a comparison between the analytical benchmark and SNCODE is
shown for S2, S4, S6, and S12 calculations. Isotropic scattering was assumed, and the
albedos for the left- and right-hand half-spaces were c2= 0.8, c1 = 0.95, respectively. A
uniform isotropic source is distributed throughout the right half-space. Note that, as
required, the flux for large x approaches 1/(1- c,) = 20. For 6 and 12 ordinates, the
results are virtually indistinguishable from the analytical solution. As will be shown,
this close agreement did not generally hold for sources located at the interface.

id s 4,S 6 1,SI, Bench

10-

1-a.

310 "

-10.0 -7.5 -5.0 -2.• 0.0 2.5 5.0 7.5 10.0
X

Fig. 18. Comparison of SNCODE discrete ordinates and
benchmark results (S2, S 4, S6 and S 12)1131.
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3.2 Plane Isotropic Source

Several test runs were made for a plane isotropic source located at the interface
between two dissimilar media. Every possible combination of cl and c2 for c = .8, .9,
.95 and .99 was tested. The SNCODE calculations were made for S2, S 12 and S20, thus
providing a wide range of angular quadrature precision. As the order of the SN
calculation was increased, the approximate result more closely approached the
analytical benchmark, as anticipated. However, even the S20 calculation did not closely
match the benchmark curve near the material interface. Figures 19 and 20 show the
plane source results for c2 = 0.8, cl = 0.95, and c2 = 0.95, cI = 0.8, respectively. We
found that, for these calculations, increasing the angular quadrature precision alone
provided limited improvement in the accuracy of the results. Better agreement near
the interface was obtained when the spatial discretization resolution was increased along
with the quadrature order.

10

02= 0.8 c1 = 0.95

C) 10 -'-

L__

o 10 -A

(o - 8 A 6 - 2 0 2 4 6 8 1

F i 1 Benchmark

u a o0000 S20
10ooooogS12

(C1=0-8C1 = 0-5$[1]1•cl 4-i11,1 1111i iii 11i 1, 11111 11i i III I-10 -8 -6 -4 -2 0 2 4 6 8 10
tDisI:ance from Source Plane (mfp)

Fig. 19. Comparison of SNCODE-S2,S 2,S20 and benchmark scalar flux
results as a function of distance from the material interface-source plane
(c 2 = 0"8'c 1 = O"95)[13]"
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4. Analytical Benchmark Testing of One-Group SNCODE Calculations in Half-Space
Geometry

In addition to the infinite medium electron and neutral particle transport
investigations described above, a further collaboration with B. D. Ganapol and J. C.
GarthL]has recently been initiated and continues to the present. This is a series of
analytical benchmark calculations were made and then used to test the performance of
the SN algorithms of SNCODE. The analytical benchmark calculation was formulated
by Ganapol for one-group neutral particle transport in half-space geometry, and is also
based on the Laplace transform inversion method[14]. A variety of source configurations
have been tested. Of these, the major effort has been directed thus far toward
boundary source problems. An example of our results is given in Figure 21. Here we
have shown a benchmark solution (solid curve) for the scalar flux in a semi-infinite,
isotropically scattering medium with albedo c = 0.5 where the source is specified by the
flux boundary condition f 1  crep 2)
where A is the normalization constant. Four SN calculations were made, correspon ig

to n = 6, 12, 20, 30. It is apparent from the graphs of Fig. 21 that the SN and
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benchmark calculations converge, as in the previously presented results. This work is
presently is progress, and benchmark comparisons will be made not only for several
source configurations, but also for other independent calculation methods such as
iterative solutions of the integral form of the Boltzmann equation.
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Fig. 21. Comparison of analytical benchmark and SN determinations of
scalar flux vs. z in an isotropically scattering medium (c = 0.5) for
e- flux entering free surface. Solid curve represents analytical
solution; dashed curves represent SNCODE-S6, SI 2, S20,S30 solutions[1 I
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IV. Monte Carlo Transport Calculations for Electrons in Strong Electric Fields in
Silicon DioxideI 161

1. Introduction

t Transport calculations[16] for electrons in the presence of a strong electric field in
the oxide layer of an idealized MOS device were made with the LOWENDI5 1 Monte
Carlo code. In the electron energy range 8.9 eV < E < 20 eV, where two processes,
electron-phonon scatter and electron-electron scatter overlap, it was reasonable to
expect that a significant amount of impact ionization should occur, since calculated
electron energy spectra in the presence of strong electric fields have high energy tails,
resulting from energy promotion by the electric field and phonon absorption, extending
well beyond the ionization threshold (Eg_ = 8.9 eV). One motivation for this
investigation was an attempt to explain the apparent inability to experimentally
observe substantial secondary electron production in SiO 2 and the high energy tail
observed in the vacuum emission spectra117-191 . A complete report of the results of
these Monte Carlo studies is given in Ref. 16, a collaborative effort with J. N. Bradford.

2. Discussion

In this work we demonstrated how: 1) a revised calculation of the ionization cross
section; 2) a change in the value of the deformation potential in acoustic phonon
scatter; and 3) variation of the electric field profile as a result of negative charge
trapping in the oxide reduce the high energy tail of the electron spectrum. These three
items combine to produce a substantial reduction in secondary electron production.
Further, in order to simulate experimental conditions as closely as possible, we added a
transport calculation through a 200 A aluminum coating at the anode side of the oxide
layer. For this we made calculations of inelastic electron-electron scattering cross
sections based on the Tung -Ritchie[20 1 dielectric response function and then wrote a
separate Monte Carlo code incorporating these cross sections.

A revision of the impact ionization cross section curveJ7] for SiO 2 was calculated
based on the Anderson-Crowell[22] ionization threshold value Eth. Their corrected value
for Eth is 11.9 eV, as contrasted with the generally accepted 8.9 eV value, and is
determined through an assertion that the ionization threshold is dependent on the ratio
of the electron effective mass values for the valence and conduction bands. As can be
seen from the two curves shown in Figure 22, the inverse mean free path (or cross
section) for impact ionization is significantly lowered as a result of the upward shift in
Eth. This combined with the fact that ionization cannot occur for energies less than
11.9 eV rather than 8.9 eV, resulted in lowering the production of secondary electrons .

The effects of a change in the acoustic phonon scatter deformation potential and
oxide charging on secondary electron production were studied with the original impact
ionization cross sections (Eth = E 0ga). This was done in order to isolate these factors
from changes in the ionization cross section. Figure 23 shows the fraction of secondary
electrons produced at 600A penetration depth in the oxide as calculated by LOWEND.
The effects of increasing the deformation potential from 3.5 eV to 5.0 eV and oxide
charging are investigated separately. The charged oxide condition was simulated by
specifying an anode field of 8 MV/cm which decreases linearly to zero at the cathode
end, resulting in an average field value of 4 MV/cm in the oxide layer. Contrasted with
this are LOWEND runs in which the field value is held constant at 4 MV/cm across the
oxide layer. This simulates an uncharged oxide with the same field strength as the
charged oxide average field strength. The combined effect of increased deformation
potential and oxide charging is considerably lower secondary electron production.
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The LOWEND Monte Carlo code was also used to calculate the vacuum emission
kinetic energy spectra with the 5 eV deformation potential, with and without oxide
charging. The spectra shown in Figure 24 were obtained with two electric field
configurations: linearly varying field, 8 MV/cm at the anode with average value 6
MV/cm (solid histogram); and constant electric field throughout, 8 MV/cm (dashed
histogram). The two cases shown illustrate that the value of the field at the anode, and
not the average field value, determines the energy spectrum shape. The second
spectrum graph, Figure 25, further demonstrates the important role of the anode field
value. The two spectra shown here result from different anode field values, 8 MV/cm
and 6 MV/cm. The average field for both spectra is 6 MV/cm. One case (solid
histogram) corresponds to a constant 6 MV/cm field, and the other (dashed histogram)
to a linearly varying field.

Finally, we performed a Monte Carlo simulation of the transport of electrons
emitted from the oxide layer through a 200A thick aluminum anode. The input
spectrum from the SiO 2 was the spectrum shown for the 8MV/cm anode field (Fig. 24,
solid histogram). The inelastic electron-electron cross sections were calculated using the
electron gas model of Tung and Ritchie120] which is outlined in Section 2.1.
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Fig. 24. Kinetic energy spectra from charged > E-Consto Anodetr6cMV/cm
and uncharged oxides with same anode - 0.03 E
field[16].
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2.1 Inelastic Electron-Electron Scatter in Conducting Materials

The differential cross section r(E,Aw) for energy loss hw by an electron passing
through a solid with kinetic energy E (= ½mv2 ) is given by[20 ]

k+

r(E,Aw) = me2 dk Im

where k_

E = kinetic energy of the incident charged particle (electron),
h,- Planck's constant,
hk= momentum transfer (incident electron to target electron),
hw = energy transfer (incident electron to target electron),
m = incident electron rest mass,
e = electronic charge,
(k,w) -= exact dielectric function of the solid,

and k ± correspond to the maximum (+) and minimum (-) allowed momentum
transfer values; [ E ± i- A-w] (24)k+- g ~ JhI,(4

For conducting materials, Ritchiel'] first proposed the use of the Lindharda23 ]form
for c(k,w), the dielectric response function for conduction band electrons, as follows:

w(k,w) = 1 + (Z) [fl(x,z) + if 2(x,z)], (25)where x 2 = e 2/.v ,rV

z = k/2kF,
x = h/w EF,
EF = Fermi enerfy of the scattering material,
VF = (2 EF/m)1/ - velocity of electron with kinetic energy EF,
kF= (2m EF/AI)1/2 = wave vector corresponding to the Fermi momentum;

the functions f, and f2 are given by

f1(xz) - 1+ ± [1-(z-x/4z)2I lnIz - x/4z +11 + [1.(z+x/4z) 21 lnlz + x/4z +1 1 (26a)2 -8-z z- -x/4z/-)1 z + x/4z -1
= I x/8z ; z + x/4z < 1

f2(x,z) = j/8z[ 1-(z-x/4z)2] ; z-x/4z[<l<z+x/4z (26b)0 ; Z+ jz-x/4z >1

Eq. 23 may be rewritten as X2 I/zf2
r(E,hw) = aEJ dz ( z 2+X2f,)2+(xf2)2 (27)

where, from Eq. 24,
z± =(x+1 -1). (28)

In Eq. 28 we have assumed that the incident charged particle is an electron. This
assumption will be carried through the remainder of this discussion. Thus, the constant
outside the integral is written in terms of the Bohr radius a0 = me2 /h2.

We evaluated the cross section function for ionization due to excitation of
conduction band electrons in aluminum. It was more convenient to express the
scattering cross section not as an explicit function of the incident electron energy, E,
and energy transfer, hw, but rather in terms of the dimensionless quantities c (not to be
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confused with the dielectric function) and x. The parameter x has been previously
defined. The parameter c is the incident electron energy (measured from the Fermi
level) in units of the Fermi energy:

f = (E - EF)/EF. (29)

The cross section for electron-electron inelastic scatter is then given as

x2E(c-x) dz zf2
wao(1+c) J (z2+ X2 f) 2 +( 2 f2)2  (30)

where E(c-x) is the step function which insures that the incident electron energy
remains above the Fermi level.

A consequence of expressing the cross section for electron-electron scatter as in Eq.
30 is that the quantity (1 + c) ree(E,x) is independent of C, except for the step function,
and could be readily evaluated by numerical integration. We have evaluated this
function for the range 0 < x < 7. Our result, shown in Figure 26, agrees with that
obtained by Tung and Ritchiet2 •.

0.3

"' 0.2

+
"-4 0.1

0.-
1 2. 0 3.0 4.0 5.0 6.0 7.'0

Fig. 26. Evaluation of normalized differential inverse mean free
path[(1 + c)ree(cx)] for inelastic scatter with individual conduction
band electrons in Al1 16]
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The czoss sections shown in Figure 26 were incorporated into a Monte Carlo code
that we wrote for the purpose of "transporting"• the electrons emerging from the SiO 2
layer through the aluminum layer. The trajectories of the primary electrons and the
secondaries produced in the aluminum layer were traced, paying due attention to the
multiple boundary crossings at the oxide-conductor interface. The electrons that re-
entered the oxide layer were "banked", passed through the LOWEND code, and re-
transported in the aluminum as many times as was necessary to produce a stable
transmission spectrum from the aluminum. The resulting vacuum emission spectrum is
shown in Figure 27. The integral transmission fraction was 0.064. This figure included
energetic secondaries produced in the aluminum. As can be seen, there is no high
energy tail as was experimentally observeds18,1 91. As stated in Ref. 16, there is reason to
believe, based on discussions among researchers in this field, that the aluminum layers
used in the experiments may have contained pinholes, and that the experimental data
can be reproduced by linearly combining a proportionately small amount
(fraction - 0.08) of the oxide anode spectrum with the aluminum emission spectrum.
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Transmission Spectrum from
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on oxide layer)

0.006

Lle SiO2  Al
z

0.004

0.00?

0.000 ..... . ... ,, , , , , , -
0 2 4 6 8 10 12 14 16 18 20

Energy (eV)

Fig. 27. Transmission spectrum through 200A Al anode adjoining
600A SiO 2 layer. Input, spectrum, Si0 2--Al, is characterist*- of
an 8MV/cm anode field[16].
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V. Monte Carlo Calculations of the Transport of MeV Electrons in Insulators

1. Introduction

The recent availability of experimental measurements of electric fields and charge
distributions in such materials as polymethylmethacrylate(PMMA) by Zahn, Wright,
Hikita, et al.(24'2l' has afforded an opportunity to study charge build-up in dielectric
materials, an important factor in spacecraft charging. To study this and other data,
and to perform numerical simulations of dielectric charging and breakdown, we wrote a
Monte Carlo program ELMCF to calculate current, charge and energy deposition
profiles in the presence of electric fields. Of existing electron Monte Carlo codes, the
most widely used (and tested) is the ITS[261 code series, which is incapable of handling
problems involving applied electric fields. We were advised by one of the ITS authors
that modification of this code to incorporate electric fields would probably destroy the
code's utility. For this reason, we undertook to write our own ELMC, a simple Monte
Carlo program that makes use of the same basic scattering algorithm as is used by the
ITS series, the multiple scattering (condensed collision) formulation of Berger 28].
After we were satisfied that ELMC performed correctly, we incorporated electric field
effects into this program and named the expanded version ELMCF.

2. ELMC - Condensed Collision Electron Monte Carlo Code

The electron scattering model used in ELMC, is based on the screened-Rutherford
cross section. Straggling and secondary electrons are not considered. Electron current,
energy, charge deposition, transmission and reflection are calculated for a single
material slab medium. The same algorithms as are found in the ITS series are used
here to calculate the Legendre expansion coefficients of the screened-Rutherford cross
section and the collision stopping power (including the energy-dependent density
correction terms). The single collision cross section Legendre coefficients are then used
to calculate the cumulative Goudsmit-Saunderson multiple-scattering angular
distribution[2sl. The basic idea underlying the multiple-scattering angular distribution
is that in the process of slowing down, the electron traverses a known path length
segment, say As, for a given energy loss AE. Along this path length segment the
electron undergoes many single collisions with other electrons in the scattering medium.
Depending on the electron energy, a representative path length segment may account
for as many as 3Q0 to 400 collisions. For the energy range of interest we adopted
Berger's algorithml28] of selecting N electron energy intervals where the upper bounds
(En, E,, +1 . . EN) of successive intervals (AE,, AE,, + 1, . , AEN), decreases by 2 -/' (=
.9170). With this as a guide, we then computed the As,, using the continuous slowing
down approximation.

The remainder of the Monte Carlo program is a simple, standard trajectory analog
code. The number of energy intervals, N, (or pathlength segments) depends on where
one chooses the low energy cut-off, Ec, for the calculation. We chose to use the default
value used in the ITS codes of EC = 0.05 E0, where E0 is the source energy. This
condition translate into 34 energy intervals, when the source energy was chosen as the
highest energy value in the cross section table. In the ELMCF program, the number of
energy intervals generally exceeded 34, since the presence of an electric field required
allowance for the possibility of energy promotion above the source value.

The number of trajectory steps actually used in our Monte Carlo calculations was
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approximately 3 times the number of energy intervals. In order to obtain an improved
representative sampling of the multiple-scattering angular distribution, we split the As,
into equal size sub-steps within each AE,, in this case 3 sub-steps of length As,/3, and
then sampling the multiple-scattering distribution 3 times as often. This is the same
procedure as appears in the ITS codes. In the following four figures, we show some of
the energy and charge deposition profile results obtained with ELMC, and compare
them with results obtained with TIGER, the one-dimensional ITS Monte Carlo
program. Both programs were run using 50000 case histories. The first two figures
(Figs. 28 and 29) compare the energy and charge deposition profiles in PMMA for the
case of a 0.4 MeV electron beam normally incident on a slab of thickness 0.14 g/cm2,
which corresponds to - 1.2 range units. The results are not identical, but track pretty
well. The ITS codes contain a more complete cross section library that includes
inelastic scatter. We believe that the differences are attributable to subtle differences in
the evaluation of the multiple-scattering models. In the second two figures (Figs. 30
and 31) the energy and charge deposition profiles in aluminum are compared for a 5.0
MeV electron beam incident on a 3.2 g/cm2 slab( - 1.2 range units). As can be seen,
the two Monte Carlo calculations are in good agreement.
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In Figure 32 we show current, energy and charge deposition profiles for one of the
experimental configurations reported in Ref. 25, a 2.6 MeV electron beam normally
incident on a PMMA slab of thickness 1.4 g/cm2 . The electron beam is first diffused by
0.1 g/cm2 PMMA before entering the 1 A g/cm2 ;lnb. The attenuation accounts for the
incident current having a value slightly less than unity. The histogram curves of Fig.
32 represent the first iteration ( zero applied field) in a series of Monte Carlo
calculations. Each subsequent iteration (Monte Carlo calculation) will be made using
ELMCF with internal electric fields calculated from the current profile curve of its
predecessor.
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Fig. 32. Current, energy and charge deposition profiles for a 2.6
MeV electron beam normally incident on 1.4 g/cm2 PMMA.32 q
The incident beam is diffused through 0.1 g/cm PMMA prior to
entry into slab.
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We also compared results obtained with ELMC with energy and charge deposition
profiles as calculated by our SN discrete ordinates program, SNCODE. In the next two
figures (Figs. 33 and 34) we compare the 0.4 MeV electron beam profiles as obtained by
the two methods. The physical models used in both methods are based on the same
screened-Rutherford scattering cross sections. ELMC incorporates these into the
Goudsmit-Saunderson multiple-scattering moaul, while SNCODE employs the P-12
extended transport correction. The results obtained by the two methods converge as
the number of energy groups (and the computational effort) is increased from 40 to 120.
Depending on the problem parameters, the ELMC run time on a 386 PC for 50000 case
histories is typically of the order of 1-2 hours.
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3. ELMCF-Condensed Collision Electron Monte Carlo Code for Applied Electric Field
Problems

Inclusion of electric field effects in our electron transport Monte Carlo calculations
required modification of the penetration (PENET) and energy tally (SCORE)
subroutines of ELMC. In the penetration routine, the principal modification was that of
dividing the pathlength increment into fine sub-intervals 6sJ(=As,/15) and calculating
the change in electron trajectory and energy within that sub-interval brought about by
the acceleration or deceleration due to the presence of the electric field. By the use of
sub-intervals, it was anticipated that each of these incremental changes would amount
to a small perturbation in the overall trajectory and that their cumulative effect would
be the smooth incorporation of energy and trajectory changes over a path length step
As,,. The following two graphs (Figs. 35 and 36) illustrate the effects of uniform
positively directed (along z) applied electric fields on energy and charge deposition
profiles. The calculations were made for a 2.6 MeV electron beam normally incident on
PMMA. There are four histograms in each graph, corresponding to _ = 0.0, 0.5, 1.0
1.5 MV/cm. In the simulation of the experimental situation described in Ref. 25, the
maximum field strength encountered is - 1.5 MV/cm and is in general not uniform
across the slab. ELMCF has the capability to operate with spatially varying electric
field sz.
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Fig. 35. Energy deposition profiles, as calculated by ELMCF, in
PMMA in the presence of a positively directed constant electric
field for a 2.6 MeV normally incident electron beam. Results for 4
field values are shown (0, 0.5, 1.0, 1.5 MV/cm).
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