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ABSTRACT

We present a systematic method for constructing boundary conditions (numerical and physical)
of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic
systems. First a proper summation-by-parts formula is found for the approximate derivative. A
“simultaneous approximation term” (SAT) is then introduced to treat the boundary conditions.
This procedure leads to time-stable schemes even in the system case. An explicit construction of

the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the

approach.
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Introduction

Emphasis on the long-time numerical integration of the fluid mechanics equations has increased
in recent years. As a result, high-order spatially accurate schemes are favored, because of their lower
phase error. Such schemes, although they are stable in the classical sense (Lax and G-K-S stability).
may exhibit a non-physical growth in time. For a fixed time T, these schemes converge as the mesh
size Az — 0. However, from a practical point of view, in order to achieve reasonable accuracy for
large T', meshes much too fine for the computers available in the foreseeable future are required.
Since long-time integrations are encountered in present day computations, it is important to devise
schemes which are not only classically stable but also time-stable. Specifically, they do not allow a

growth in time that is not called for by the differential equations.

To retain the formal accuracy of a high-order scheme, boundary closures must be accomplished
with accuracies that are at most one order less than the interior scheme {1]. For the scalar explicit
central-differencing case, Kreiss and Scherer (2] have presented a method for constructing a boundary
condition of accuracy one order less than the inner scheme such that a generalized summation-by-parts
property of the differential equation is preserved. Strand [3] has used their approach to construct
in the scalar case, fourth- and sixth-order central-differencing schemes with boundary closures of
the appropriate order such that the resulting expression for +he derivative satisfies the summation-
by-parts property. Recent attempts to utilize these boundary closures to numerically solve a 2 x 2

hyperbolic system have shown that, in certain cases, an unwarranted growth in time still results.

In reference [4], the stability characteristic of various compact fourth- and sixth-order spatial
operators were assessed using the theory of Gustafsson, Kreiss and Sundstrom (G-K-S) [5] for the
semidiscrete initial-boundary-value-problem (IBVP). This study showed that many of the higher
order schemes that are G-K-S stable are not time stable. It was concluded that in practical calcula-
tions, only those schemes which satisfied both definitions of stability were of any usefulness for long
time integrations. Of practical importance was a new sixth-order scheme with fifth-order boundary
conditions which was shown to be G-K-S and time-stable. Recently, however, it has been found that
most of the high-order schemes that were time-stable in the scalar case, exhibited time divergence

when applied to a 2 x 2 system.

In this paper, we outline a systematic procedure for designing time-stable, as well as G-K-S
stable schemes of high-order accuracy. The new schemes are guaranteed to be time-stable for any
hyperbolic system (as long as the system has a bounded energy). The first step in this procedure is
to construct an approximation to the first derivative (internal plus boundary points) that admits a
summation-by-parts formula. We 1 :ly on the work of Strand [3] for high-order explicit formulations.
For high-order compact scheres, we derive a new methodology for construction of such schemes,
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Appendix I includes an exposition of the methodology, and a detailed example of the fourth-order
compact central difference scheme with third-order boundary closures. In section 1, we discuss a scalar
hyperbolic equation. We show that in general a summation-by-parts formula does not guarantee time
stability. However, we introduce a new procedure for imposing boundary conditions (simultaneous
approximation term, (SAT)), that solves a linear combination of the boundary conditions and the
differential equations near the boundary. This technique is an extension of the techniques used in
reference [6] to stabilize the pseudo-spectral Chebychev collocation method. It is shown that if the
approximation of the derivative operator admits a summation-by-parts formula then the SAT method

is stable in the classical sense and is also time-stable.

In section 2 we discuss the implementation of the SAT method to systems of hyperbolic equations.
We show that also in the system case, time stability (as well as Lax stability) is assured by having a
summation-by-parts property for the numerical derivative operator, provided that the SAT method

is utilized.

In section 3 we present numerical results that confirm the efficacy of the SAT procedure even in
the cases where previous attempts could not attain time stability. It is shown that the theoretical
predictions for the time stability of the SAT method are realized in practice for both the scalar
hyperbolic case and the 2 x 2 hyperbolic system. Finally, an optimization of the parameter 7 (which

arises in the SAT procedure) is performed, with regard to efficiency and accuracy.

1. The Scalar Case

We consider the scalar hyperbolic equation
Gu _ , Ou
ot Oz

for which there exists the energy rate

%/{;1 u¥(z,t)dr = Mu?(1,t) — u?(0,¢))

For positive A, we have the boundary condition

u(l,t) = g(t)

We denote by u a vector of the unknowns (uo(?),u1(¢),...un(t)) which corresponds to grid points

0<r<1 (1)

.’L'()(= 0),1’], J?N(: I)

In this work, we deal primarily with compact schemes for the discretization of the spatial operator

%. Fcr a compact spatial operator, the approximation to the first derivative can be written as
du
P—=Qu (2)
dz
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where P and @ are (N + 1) x (N + 1) matrices. We further assume that:
Assumption I

(i) Equation (2) is accurate to order m. Specifically, if we denote by v the vector (v(zo, 1), ..., v(zn, )

where v(z,t) € C™ and z; = jAz = -L , and by v the values of ((3%)o, ..., (32)n)T then

—Qv=PT,
where the truncation error 7, satisfies
|Te| = O(Az)™
(ii) The matrix P has a simple structure (preferably tridiagonal) and is easily invertible.
(iii) There exists a matrix H, and positive constants y;, g, independent of N such that
#11 <HP< #21

specifically, H P is a symmetric positive definite matrix.

(iv) There exists a matrix G = H Q such that G + G7 has only two elements: go ¢ and gn n.

In general we require ggo < 0 < gn,N-

Assumptions 1 and 2 are common to any useful compact scheme. Assumptions 3 and 4 are specific

to the summation-by-parts requirement for the spatial operator.

Equation (1) is now semi-discretized using formula (2) to yield

‘fl‘t’ = AP~'Qu (3)
Note that assumptions & and 4 from above admit a summation-by-parts formula in the sense that
dE
o = Joou 5+ gNNuy (4)
where
E(t) = 5 (u(t), HPu(t) (5

In Appendix I we show how to construct a fourth-order compact scheme that satisfy Assumption
1 and therefore (4).

Interestingly, equations (4) and (5) were obtained without imposing the boundary conditions. We
will use the summation-by-parts property defined in equations (4) and (5) to construct a scheme
3




that admits a decreasing energy norm when the boundary condition is imposed. Note that the
way in which the boundary condition is imposed is important for numerical stability. The most
common procedure of imposing the boundary conditions (A > 0 ). is to use equation (3) to update
the unknowns ug, ..un, followed by overwriting ux = g(t). This procedure accounts for the fact that
in a general hyperbolic system the precise location for each boundary coundition is not known nmil
after a characteristic decomposition is performed at all boundaries. This procedure (particularly if
H is a nontrivial matrix), may not yield the estimate (4) with unx replaced by ¢{(f). In short. the
imposition of certain boundary treatments may ruin the structure of the summation norm. which

results in a numerical scheme that is not time-stable.

A simple counter-example is presented which demonstrates the necessity of careful boundary
implementation. Consider the scalar equation u, = u, with the boundary condition ux = ¢(t). The
semi-discretization in the absence of boundary conditions becomes v, = Awu, where A = P71 Q. As
described earlier, once the matrix A is formed. the boundary conditions are imposed. This has the
effect of pre-multiplying the matrix A by the boundary matrix D. Without loss of generality. we use

the boundary condition g(¢) = 0 in this problem; the resulting boundary operator is the matrix

I 00
0 00
For time stability, the resulting matrix At = D P~! Q, rather than the matrix A must exhibit a

summation-by-part norm.

For simplicity, we discretize the domain into two even intervals, such that the discrete solution

. T e AN . . . .
vector 1s (ug, u,uy) . The boundary condition is imposed at wuy. A first-order discretization that

satisfies the summation-by-parts energy norm is

TT/48  (=19)/12 (—13)/43 (=25)/16 1 (=39)/16
Py = | (=19)/12  32/3  (=13)/12 |: Qs = 4 0 1
(—143)/48 (=13)/12  53/48 39/16 —1  25/16
Note that the matrices P and Q satisfy 3 = Pl and Q3 = —QT except for quy and 0. In

this example, the matrix I is the identity matrix. The characteristic equation for the P matrix is
—1920% 4 25680% — 5026 + 501 = 0. The symmetry of Py and the alternating signs of the respective
terms in the characteristic polynomial guarantee the positive definiteness of P45, The discretization

operator Az = P71 Q4 can be written as




11/1002  (—512)/501 1013/1002
As = | (—55)/334 (=112)/167 279/334
2059/1002 (—2560)/501 3061/1002

All the requirements of the summation-by-parts energy norm are satisfied by this discretization, and

a precise energy norm exists in the absence of boundary conditions.

The combined operator A} = D, A; becomes

11/1062 (=512)/501 1013/1002
Al = (=55)/334 (=112)/167 279/334
0 0 0

for which the characteristic polynomial is —1002)3--661A2+176A = 0. The roots of the characteristic
polynomial are A = —0.86317..., and A = 0.20349..., respectively. The numerical solution will grow
in time as a result of the eigenvalue in the right half of the complex plane (RH-P) and will not be

time-stable.

As demonstrated by the previous counter-example, a spatial operator which satisfies the summation-
by-parts energy norm may not be time-stable. Many of the high-order schemes that satisfy the sum-
mation property are time-stable for the scalar case. A notable exception is the sixth-order explicit
scheme with fifth-order boundary conditions reported in the work of Strand [3]. (See Appendix Il for
details of this scheme.) For this sixth-order scheme, time stability can be guaranteed only if the last
row and column of the matrices HP and H@ are removed before matrix inversion and multiplication

are performed.

The underlying reason for the growth in time is the imposition of the boundary condition operator,
which has an effect on the structure of the norm matrix P in u, = D P~!' Q. Specifically, D P!
destroys the structure of the norm P. In the scalar case, this problem can be eliminated in certain
circumstances. For instance, if the matrix P is a restricted full norm, then D P~ still produces a
useful norm by eliminating the zero element. A restricted full norm is defined where the diagonal
is the only nonzero element in the first (or last) row and column of the matrix P (See Strand [3]).
A special case of the restricted full norm is the diagona! case, which is of some practical interest.
Unfortunately, even for cases where P is a restricted full norm, stability cannot be generalized to the
case of a hyperbolic system. An alternative means of imposing boundary conditions must be found

for these cases.

At this point, we introduce the SAT methodology for boundary implementation. We show in
the following text that the SAT method leads not only to stability but also to time stability for the
scalar wave equations, and this property applies to arbitrary hyperbolic systems. The SAT method
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involves the indirect imposition of the physical boundary conditions. This is accomplished by adding
a term to the derivative operator, which is proportional to the difference between the discrete value
un and the boundary term g¢(t). Thus, we propose the discretization,
du
P—r =AQu - TAGN NS(un — g(1)) (6)

where
S = H7Y(0,0,...,0,1)T (7)

Contrary to the common practice of satisfying the boundary condition directly by imposing uy = g(¢),
the SAT method involves solving a derivative equation everywhere, including the boundary points.
The extra term which is added accounts for the boundary information to within the accuracy of the
original discretization. Note that the SAT is added not only to the boundary equation but to other
points depending on the structure of the vector S, (which is the last column of the matrix H~').
The extra SAT term does not alter the accuracy of the scheme, since the SAT term vanishes upon

substitution of the analytic solution.

We now demonstrate that the SAT method yields a Lax stable and time-stable scheme. For the
time stability analysis, we take g(t) = 0. We pre-multiply equation (6) by H and use equation (7)

to obtain
HP%E:- = AHQu — 7Agn (0,0, ...,0,1)Tuy (8)
We now define the energy E(t) as in equation (5) to get
d—lz—it—) = gooUs + gN.NUN — TYNNUY, (9)

With gop < 0 < gy, N, we can immediately state the following theorem.
Theorem 1.1:

The SAT method presented in equation (6) is both stable and time-stable if

r>1 (10)

In addition to proving the stability of the SAT scheme defined in equation (6), we must show that
the procedure preserves the order of accuracy m of the spatial operator. This is accomplished by a

direct convergence proof showing that the SAT term indeed preserves the spatial order of accuracy.

T

Denote by v the vector (u(zq,t),...,u(zn,t))" , i.e. the values of the true solution of (1) at the

grid points. Combining the accuracy condition found in Assumption I with equation (6) we have

d
P-d—‘t,- = AMQv — TAgv NS [u(zn,t) — g(t)] + PTe (11)




Note that u(zn,t) — g(t) = u(1,t) — g(t) = 0. Now define

€i(t) = u(z;,t) — u;(t)
where u;(t) solves (6) , to obtain

P% = /\Qﬁ - TAgN,NSGN + PT, (12)
where Te is the truncation error defined in Assumption /. We now use the energy estimate presented
in (9) to obtain

d(e, HP
Ao AP < (e, nPr)

- and the inequality

(e, HPT.) < \/(e, HPe)\/(T., HPT.)

to obtain

d\/(e, H Pe)
—_ <
y7 </(T.,HPT.) (13)
By assumption I ,the truncation error is of order m, and we get
\/ (e, HPe) < O(Az)™
which proves the convergence of the scheme.

In conclusion, a precise means is now available for the scalar case to impose boundary condi-
tions that are guaranteed to be time stable, and that preserve the formal accuracy of the original

discretization.

2. The Hyperbolic System

In this section, we explain how to use the SAT method for systems of hyperbolic equations and
show that the resulting scheme satisfies an energy estimate similar to the one obtained for the scalar

differential equation. First the system of differential equations is described.
Let u! and u!! be the two function-valued vectors

ol = (uD(z, 1), ., u™)(z, 1))




ull = () u)(r,t))
that solve the system of differential equations

ogu! oul

ot 9z
(15)
Jull _ Al oull
at Jdx
where A’ and A’! are diagonal matrices of the form
A" = diag(M, ..., Ax)
(16)
AT = diag(Aks1s ey Ar)
In order to impose the boundary conditions we assume that
M>A> .. > >0> My >0 > A,
For this case, a well-posed set of boundary conditions is given by
ul(1,1) = Rul(1,2) + gl(t)
(17)
u'l(0,2) = Lu'(0,¢) + g!(t)
Where
g'(t) = (gV(t), ..., gM(1))
and,

g'(t) = (g"*V(t),....g™(t))

In equation (17), the matrix R has k rows and r — k columns, while the matrix L has r — k rows
and k columns. Without loss of generality, for the stability analysis we will assume that both gl(t)

and gl(t) vanish.

Equation (17) is well-posed for any L and R. However, to guarantee no growth in time some

conditions must be imposed on the matrices L and R. These conditions are
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Condition I:
|L||R| <1

where the matrix norm is defined by

Al = p(ATA)?

and p(A) is the spectral radius of A.

The Continuous case

(18)

It is instructive to establish and prove an energy estimate for the continuous hyperbolic system

although such a proof is well known. The same basic steps that are used in the continuous proof will

be used later in the text to prove the energy estimate resulting from the semi-discrete hyperbolic

system.

Condition I is a sufficient condition for the solution of equation (15) to be bounded in time. In

fact one can state

Theorem 2.1:

Let ul(z,t) and u!l(z,t) be the solution of equation (15) with the boundary conditions (17).
Recall that we take ¢/ = g’/ = 0. Suppose that L and R in equation (17) satisfy Condition I. Define

an inner product

(w,v) = '[ w(z,t)v(z,t)dx

and an energy function E(t)

k N *|Rl . ..
B(t) = 3wt u) + 3 ll)‘.l‘(u(,)’u(,))

=1 M i=k+1
then the time rate of the energy function salisfies

dE
— <
dt‘0

Proof

We start by differentiating equation (19) with respect to ¢ to obtain

d(u(‘l)’ u(i)) _ 2/1 u(i)u(‘.) de
dt 0 !
9

(19)

(20)

(21)




Using equation (15) we obtain

d(u(‘) u(i)) 1. :
ot Sl R (i)} .,
7 2/0 u'YNu, dx
so that
d(u® . ,
L) w1, 07 - (0,07 (22)
Differentiating equation (20) and substituting equation (22) we obtain the energy rate for the system
as
dE k ; 2 ; 2 . ; 2 ; 2 o
e o ILIO(1,8) = u(0,6)7) = 3 |RI(uI(1,t)" - ul(0,2)") (23)
i=1 i=k+1

relating the time rate of change of the energy function to the energy that crosses the boundaries.
Note the change of sign in the second term which results from the negative sign of the eigenvalues

A; for k < i. We must now quantify the magnitude of the boundary terms in equation (23).

Replacing the sums in equation (23) with the vector operations

k
S uw®(1,8)” = ul(1,8) ul(1, )

=1

(24)
> u(0,1)° = u'(0,2) u'(0,2)
t=k+1
we can now make use of the boundary conditions in equation (17) to obtain
I 7yl = ull(1 T pT pyll
u(1,t) u(1,£) =u(1,¢) R"Ru’(1,t)
(25)
ul(0,¢)"ul(0,¢) = u(0,¢)" LT LuY(0, ?)
Substituting the equations (24) and (25) into (23) we obtain
dE
= = WO {RTRIL| — RN (1) + ul(0,0) (LT LIR| - |L|}Y(0,1) (26)

Because Condition I ensures that
RTR|L| - |R|I <0
and
LTL|R| —-IIL| <0
10




equation (21) is established. Therefore the continuous energy function E(t) is bounded in time. This

completes the proof of Theorem (2.1).

The Semi-discrete Case

We are ready now to discuss the implementation of the SAT technique for the system in equation
(15) with the boundary condition given in equation (17). As in section 1 we denote by u' a vector of
unknowns (u((,i), ugi), ...ug,))T which correspond to the grid points zo(= 0), z1,...2n(= 1). We assume
that we have matrices P , ) and H such that the scalar case admits a summation-by-parts energy

norm given in section 1. The SAT discretization of equations (15) - (17) is chosen as

F{Z==&Qﬁ—yMNMr“Wﬂw—(RJHW-ﬂm) 1<i<k
(27)
PEE — 0Qui — guohir SO — (L)) - @) k+1<i<y

where T is a stabilizing factor to be determined later. As in the scalar case, we choose S(*) to be one

of the vectors
S = H7Y0,0,..,0,1)T 1<:i<k

(28)

SO = g-41,0,...,0,007  k+1<i<r

We recall from the scalar case that HP is symmetric positive definite and H@ is skew symmetric
except for the terms goo = (HQ)oo < 0 and gny = (HQ)nn > 0. Thus equation (27) is well
defined.

Before proving the stability (and time stability) of the SAT method in equation (27), we would like
to comment on the role of the matrix H. Explicit knowledge of H is required for the implementation
of the SAT method, specifically the knowledge of goo and gy n as well as the vectors S{*) are needed
to implement equation (27). Thus H is not only a theoretical tool (as in reference [2]) but is also of

practical importance.

We are now ready for the stability proof of the SAT method in equation (27). The proof is
analogous to Theorem 2.1 with the continuous integrals replaced by discrete sums. The scalar
product is defined, analogous to equation (19), as

N ..

(', uf) = 3 ufu? (29)
=0
11




A different scalar product to be uscd later, analogous to equations (24), is

k
[uI$ ul]m = Z U'E:L)u‘frll)
i=1

r

Im 1y _ ), (2

= 3 wldul)
i=k+1

form=0,N.
Theorem (2.2)

Let the SAT method defined by equation (27) satisfy Assumption 1, for the discretization of the
hyperbolic system defined in equation (15) with boundary conditions (17), (with gl(t) = gll(t) = 0).
Then the discretization is both stable and time-stable provided that

2 —2,/1- |R||L| _oor 2./1 - |RI|L|

< 31)
IRITE] RITE] ‘
Moreover, let the discrete energy be defined as
_ i . |R| i o
En(t) = ZT(u JHPU) + > m(u , HPu') (32)
=1 "t i=k+1 1

where the scalar product (u’,u?) is defined in equation (29). Then

dEN(t)
dt

<0

Proof

As in theorem 2.1 we differentiate the scalar product (u‘, H Pu‘) and use equation (27) to obtain

4 u', HPu') = A (u', HQu') — gy v hir(xl) — (RuI)Q)(u’, HSO 1<i<k
dt ' N

dit(u", HPu') = \(u', HQu') — goohit(ul) — (RuUDHY (', HSY)  k41<i<y

We now use the definition of SU*) from equation (28) and the properties of HQ from Assumption
I to obtain

%(ui,HPu‘) =
12




go,o/\i(ug))2 + /\1'91\1,1\1(115\"/))2 - /\igN,NT(us\i/))z + A,-gN,Nru&'}’(Ru“)X}’, 1 <<k
(34)
d . .
= (v, HPu') =
@' u’)
~goolMil(u§”)? — [Xilgnn (ul)? + [Nilgoom(ud)? — [Milgoorudd (Lul)y), k+1<i <y

Note that in equation (34) we used the fact that the \; are negative for k + 1 < i < r. We must
now quantify the magnitude of the boundary terms in equations (34). If the sums in equations (34)

are replaced with the vector operations defined in equations (30) we get an estimate for the discrete

dE N (t
energy rate _Eu

dEN(t
) — | Ligoolu®, ullo + 1 Llgw (1 = ), + | Llgy.v[u, AulT)y
(35)
+|R|( — Dgoolu™, uM]o — |Rlgn,n[u™, u]y — go ol RIr[ut, LuT],
Substituting the estimates
[u', Ru'lly < [ul|n|Rl[u™|y
(™, Lulo < [u™o|L][u'fo
where
lullm = [uliuI]m'
into equation (35), and collecting like terms yields
dEN(t
N < gl 1L = D)y rlLI Rl + (R
(36)

+g00{|RI(r = Du™|§ - 7|L| Rllu’jolu™]o + | L]}u*[3}
For i%l to be negative we require each curly bracket to be positive. Thus we need
ILI(r = Dlu'fy ~ 7( Ll Riful|vJu"|y + [Rlla™} > 0
and also
|RI(r — DI — 7| L[ Rl|u"|oju™o + |L]Ju'3 > 0

Both inequalities are satisfied if
|RIILI7* < a(r ~ 1)

and this is equivalent to equation (31). Thus, the proof is established.
13




3. Results

Conventional Boundary Conditions

Three high-order spatial discretizations (two explicit and one compact) are the focus of the results
section: the fourth-order explicit scheme with third-order boundary conditions, the fourth-order
compact scheme with third-order boundary conditions, and the sixth-order explicit scheme with
fifth-order boundary conditions. All satisfy the summation-by-parts requirement in the absence of
physical boundary conditions. The fourth-order explicit scheme is reported elsewhere (see [3] or [7]
for specific details) and will not be derived here. The fourth-order compact scheme is new, and
a systematic procedure for deriving both it and other compact high-order schemes is presented in
Appendix I. The sixth-order explicit scheme was first reported in reference [3], but is also included

in Appendix II.

First we demonstrate that all three schemes behave in accordance with their respective order
properties. We then comment with regard to the sixth-order explicit scheme, that satisfying the

summation-by-parts energy norm is not sufficient for time stability.

The model problem used to test the three schemes is the scalar hyperbolic equation

Ou Ou
— 4+ — = <rzr< >
5t 5 0,0<z<1,t>0 (37)
u(0,t) = sin27x(—t), t >0 (38)
u(z,0) = sin2x(z), 0 <z <1, (39)
The exact solution is
u(z,t) =sin27(z —t), 0<z<1, >0 (40)

For all calculations, the time discretization used was a fourth-order Runge-Kutta (R-K) method
with the time step small enough such that the temporal errors are much smaller than the spatial
truncation error. In all cases, the boundary condition was implemented at the end of each R-K stage

by overwriting the value of the solution at the boundary point.

Table I shows a grid refinement study performed on equation (37) for all three spatial discretiza-
tions. Both the absolute (log L;) error at a fixed time T and the convergence rate between two

successive grid densities are plotted.
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(fourth | explicit) | (fourth | compact) | (sixth | explicit)

Grid | log L, Rate log L, Rate log L Rate
21 -0.501 -1.418 1.379
31 | -2.080 8.96 -2.133 4.06 1.048 1.88
41 | -2.607 4.22 -2.627 3.95 0.137 7.29
61 | -3.329 4.10 -3.316 3.91 -1.302 | 8.17
81 -3.832 4.03 -3.806 3.92 -1.798 3.96

Table I: Grid convergence of three high-order schemes on u,; + u, = 0.

This refinement study suggests that all three schemes are Lax stable (the exact solution is approached
at a fixed time T as mesh is refined) and grid converge consistent with each respective theoretical
rate. The convergence rates for both of the fourth-order schemes asymptote to the theoretical value
of 4. The convergence rate of the sixth-order explicit scheme is sporadic but is approximately 6
(5.28 for the interval between 21 and 81 points). This spurious behavior results from the exponential
divergence of the solution for long times T. At T = 70, the absolute error of the two fourth-order
schemes is comparable; however, that of the sixth-order scheme is two to three orders of magnitude

larger.

These numerical results indicate that the two fourth-order schemes are time-stable; the sixth-
order scheme is not. Nothing in the definition of Lax stability precludes exponential divergence of
the solution for long times T as long as the divergence rate is bounded independently of the grid
used. (See reference [4].) The numerical divergence of the solution results from a spatial operator
matrix which has an eigenvalue with a positive real part (an RH-P eigenvalue). For long times T,

the solution is dominated by this eigenvalue.

To quantify this assertion, a comparison is presented between the numerically observed divergence
rate, and a theoretical prediction from eigenvalue analysis. By assuming that the numerical error can
be represented as ex(t) = en(0)e*~t, a growth rate ay is determined. Similarly, an effective growth
rate as defined by e*sMAt = |G,...(At)|™, is calculated from an eigenvalue determination. (See
reference [4] for details). Table II shows a comparison of the observed growth rate of the sixth-order

explicit scheme with the rate predicted from an eigenvalue determination.

Grid ONumerical | X(Smaz)
21 0.1672 0.1673
31 0.1879 0.1886
41 0.1880 0.1879
61 0.1659 0.1746
81 0.1785 0.1808
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Table II: Numerical vs. Theoretical Growth Rate for the sixth-order explicit.

The agreement is very good, with a slight discrepancy in the comparison on the 61 and 81 grid-point

cases.

The time-divergence seen in the sixth-order scheme is the same as that predicted in the counter-
example presented in section 1. Specifically, numerical time stability is not guaranteed by a dis-
cretization which satisfies a summation-by-parts properiy. Very specific boundary treatments must

be used to guarantee time stability.

SAT Boundary Conditions {Scalar)

The SAT method for treating the boundary conditions guarantees time stability for the hyperbolic

system. This method relies on a spatial operator that satisfies the summation-by-parts energy norm

for the scalar case and on very specific boundary treatments to ensure time stability.

We begin by showing that the procedure does not destroy the formal accuracy of the spatial
discretization. This result was proven in section 1 for the scalar case. Tables IIl.a and IIL.b show a
grid convergence study of the SAT method on the scalar wave equation defined by equations (37),
(38) and (39). Fourth-order R-K time advancement is used for all runs with a time step such that
no appreciable temporal error accumulates. All calculations are run to time T = 10. In all cases,
the calculations remained bounded on all grids (and CFL’s less than CFL,,,,) for times as large as
T = 1000, which indicates time stability. This result is consistent with the results from eigenvalue

determinations in which no RH-P eigenvalues were found.

7 =1 | (fourth | explicit) | (fourth | compact) | (sixth | explicit)

Grid | log L, Rate log L, Rate log L, Rate
21 | -1.2289 -1.4005 -2.5750
31 |-2.0878 | 4.88 |-2.0479 3.67 -3.8300 7.13
41 | -2.5784 3.93 | -2.5096 3.70 -4.6500 | 6.56
61 | -3.2211 3.65 |-3.1689 3.74 -5.7880 | 6.46
81 |-3.6806 3.68 | -3.6464 3.82 -6.6056 | 6.54

Table I1l.a. Absolute error (log L2) and convergence exponent with SAT parameter 7 = 1, for the

fourth explicit, fourth compact and sixth explicit spatial discretizations.
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7 = 2 | (fourth | explicit) | (fourth | compact) | (sixth | explicit)

Grid | log L, Rate log L, Rate log L, Rate
21 | -1.3472 -1.8061 -2.7007
31 |-2.0866 | 4.20 | -2.4296 3.54 -3.8229 |  6.37
41 |-2.5980 | 4.09 |-2.8773 3.58 -4.6666 | 6.75
61 |-3.3107 | 4.05 |-3.5243 3.67 -5.8518 | 6.73
81 |-3.8145 | 4.03 |-3.9978 3.79 -6.6485 | 6.38

Table I11.b: Absolute error (log L2) and convergence exponent with SAT parameter 7 = 2, for the

fourth explicit, fourth compact and sixth explicit spatial discretizations.

A comparison of the SAT grid refinement studies (table Ill.a and IIL.b) with those from the con-
ventional boundary treatment (table I), indicates that the formal accuracy of the spatial operator is
unaffected by the SAT treatment. The proof of stability given in section 1 indicated that a sufficient
condition for stability of the scalar wave equation with the SAT method is I < 7. The results shown
in tables I1l.a and IIL.b indicate that the magnitude of the error is dependent on the value of the
parameter 7. To optimize the value of the parameter 7 for these simulations, the error at ' = 10
was studied as a function of 7. An eigenvalue code was then used to determine the maximum CFL

of the scheme as a function of 7. The results of this study are shown in Table IV.

T log L, | CFL
3.0 |-3.8220 | 1.17
2.5 |-3.8221 | 1.77
2.0 |-3.8145 | 2.07
1.75 | -3.8038 | 2.07
1.50 | -3.8833 | 2.07
1.25 | -3.7460 | 2.07
1.00 | -3.6806 | 2.07
0.97 0.0

Table IV: Absolute error (log L;) and CFL for various values of the SAT parameter 7, for the fourth

explicit spatial operator.

Note that a fairly sharp cutoff at the theoretical value of 7 = 1 is observed for the fourth-order
explicit spatial operator. (Values of 7 = 0.93 and r = 0.99 were obtained for the fourth-order
compact and sixth-order explicit schemes, respectively. In addition, precise agreement was obtained
at the 7 cutoff between the eigenvalue determination and the numerical simulation of the scalar wave
equation.) For the fourth-order explicit spatial operator, the error decreased monotonically with 7.

which suggests that the value of 7 should be as large as possible. Conversely, the maximum CFL
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that is achievable with the fourth-order R-K scheme decreases dramatically at + = 2. A value of

7 = 2 was determined to be optimal for these studies.

SAT Boundary Conditions (System)
The last part of the validation study is to verify that the SAT boundary procedure ensures stability

for the hyperbolic system. Equation (31) defines sufficient conditions for time stability W(Z -

21— |R||IL]) < 7 < WIITI(Q + 2y/1 — |R||L]) in terms of T and the boundary coupling matrices L

and R. The test case chosen is the hyperbolic system

Ju Ou
%ty =0
%_Z_Z = 0,0<z<1,¢{>0 (41)
u(0,t) = av(0,t), v(1,t) = Bu(l,t), t >0 (42)
u(z,0) = sin27rz, v(z,0) = —sin2zrz, 0 <z < I, (43)
The exact solution fora = 8 = 1is
u(x,t) =sin2x(x —t), v(z,t) = —sin2x(z +1), 0<xr <1, t>0 (44)
The case |a 8] = 1 is neutrally stable and provides an extremely severe test of the time stability

of a numerical method. No central difference scheme of an order greater than two, is time-stable for
this system, in spite of the fact that the spatial operator is stable for the scalar case (@« = 8 = 0).
Examples include the (3-4-3) compact and (3,3-4-3,3) explicit fourth-order schemes, and the (52, 52
6-52, 5%) sixth-order scheme that is shown in reference [4] to be time-stable for the scalar case. All
three schemes used in the scalar analysis (fourth-order explicit and compact and sixth-order explicit),
that satisfy the summation-by-parts property are not time-stable. In all cases, the discrete solution
of the system defined by equations (41) through (44) diverges as time becomes large. Grid refinement

shows Lax stability and an order property for each scheme, but not time stability.

The scalar analysis demonstrates a precise relationship between schemes that are time-stable and
the structure of the eigenvalue spectrum that arises from the discretization matrix. Precisely, if
RH-P eigenvalues exist, then numerical divergence can be expected from the numerical simulation.
Unfortunately, this statement is a function of the CFL that is used to advance the solution. (See
reference [4].) Values of the CFL can be chosen for which no numerical divergence is experienced with
an R-K time advancement scheme; for this reason testing the numerical stability of various spatial

operators for the fully discrete system in time is impractical.
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The alternative is to use the eigenvalue structure of the semi-discrete problem as the test for
stability. If a spatial discretization operator has no RH-P eigenvalues, then it is assumed to be time-
stable. A derivation of the discretization matrix operators for the model hyperbolic system [equations

(41) and (42)] is presented in Appendix III. In addition, the structure of the eigenvalues is derived.

For our test system, we take & = 3 in (44) and thus the sufficient condition for stability becomes
(2'—2%}?—"‘7) < 1 < (M=) Given a value of a and a stable scheme incorporating the SAT
boundary treatment for the system, there exist a range in 7 for which the time discretization is
stable. As in the scalar case, good agreement exists between the theoretical and numerical stability
limit. Therefore, the agreement between the theoretical prediction and the numerical eigenvalue

determination was used as a test of the validity of the thecry.

Table V compares the stability limits of the three high order schemes for various values of the
parameter «; the theoretical limit is compared with that predicted from the eigenvalue determination
for the 2 x 2 system. The number of grid points used in each case was 101. A study with 61 points
showed similar results. In the study, 71 is the theoretical value of 7 based on -2—‘%‘/—2‘——'——‘7 = 7,and Ty
is the value as determined from the eigenvalue determination. Specifically, 7y was the smallest value
of r for which the numerical eigenvalues all had negative real parts. In all cases the agreement was

very good, which suggests the validity of the theory.

a [1.010.990.90 | 0.80 | 0.50
Exact r (2.0 [1.75]1.39 | 1.25 | 1.07
fourth explicit | 75 [ 2.0 | 1.75 1 1.39 [ 1.24 | 1.05
fourth compact | 7o 1 2.0 | 1.75 | 1.39 | 1.25 | 1.08
sixth explicit | 7 | 2.0 ] 1.72 | 1.25 | 1.01 | 1.00

Table V: The theoretical and numerical stability limits of SAT boundary scheme for various values

of a.

In these simple examples, we have demonstrated that the SAT boundary procedure retains the
formal accuracy of the underlying spatial operator and provides a mechanism to stabilize those spatial
operators that satisfy a summation-by-parts energy property. The resulting scheme is time-stable for
both the scalar and system case. The numerically predicted stability boundaries for the parameter 7
closely match the theoretical predictions. From a practical perspective, the numerical stability and
CFL of the fully discrete algorithm are functions of the value of 7. The choice 7 = 2 seems to be
well suited for both the scalar and system cases and guarantees stability even for the neutrally stable

system case wherea = 8 = 1.
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4. Conclusions

In this paper we studied the stability and time stability of the semi-discrete hyperbolic system
of partial differential equations. The spatial discretizations considered were high order (explicit and
compact), and their boundary terms were constructed such that the derivative matrix satistied a

summation-by-parts formula.
The following results were obtained:

1. A systematic way was developed to obtain high-order accurate derivative matrices (includ-
ing boundary terms) having a summation-by-parts property. The method is illustrated by

finding explicit forms in the 4th order compact case.

2. The summation-by-parts property does not, by itself, guarantee the stability and time
stability of the scheme, not even in the scalar case. (Refer to the explicit sixth-order

example cited in the text.)

3. To overcome this difficulty we introduce the simultaneous approximation term (SAT) in
order to account for the effect of the coupling of the physical boundary conditions. The

SAT contains a free parameter 7.

4. We give bounds on 7 such that the resulting scheme for the system (or scalar) case, we

have stability as well as time stability.

5. Numerical studies verify the theory.
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APPENDIX 1

Construction of the Fourth-Order Compact Scheme

We begin with the semi-discrete equation u, = A'u where u = (u;,uy,..., uN)T, which results from a
particular discretization of the equation u; = u,. The matrix A' is then decomposed as At = P~' Q.

The interior scheme used is the fourth-order compact scheme defined implicitly as

1du,~-1 du,- 1du,—+1 _ 3 ) )
el o rallb VUSSR (AL

Note that the interior scheme satisfies the summation-by-parts energy norm (as well as the generalized

norm). The matrices P and @ can be written in general form, with boundary closures of arbitrary

size NV as
| . [ oo 0
p(),() . . . pO,N 0 q070 qO,N 1
P = . ; _ .
1 ¢ qN,0 qN N %
pN,O L pN,N Z -3 0 3
1 1 1L 2 i
1 1 0 :
| 0
i i |
with the H matrix written as
[ hoo ho,n 0]
H =
hN,O c e hN,N z
T Yy z
0 -

To simplify the matrix algebra, the following new matrices are introduced:

0 1 0 4 10
-1 0 1 1 4 1
- 3 ) - 1
5_40—101 » C 14101 41
v z 0 0 0
p= [2V7 . A= | .
0 z y =z 0
1 0. .0

22




Note that S, C, and D are M x M matrices, where M is an arbitrary number that corresponds to
the number of interior points in the discretization. The structure of the matrices is tri-diagonal in

nature. The matrix A is N x M, and the only non-zero element is ay; = 1.

Thus, we can write H, P, and @ as

where 15, Q, and H are the N x N submatrices that involve the unknown quantities in the matrices

P, @, and H, respectively.

The spatial operator that involves P and ) satisfies the generalized summation-by-parts energy
norm if a matrix H can be found which simultaneously symmetrizes H P and yields an H @ matrix

that is nearly skew symmetric. By defining W = H P and V = H @, the matrices W and V become

AP +2AAT zAC+1HA

| tATP 4+ L'DAT DC + AT A
4 4

~ A

HQ -3 AAT zAS+3HA

4

zATQ - 3DAT DS 4+3zATA

Thus, the matrices W and V are important to the stability properties of the spatial operator.
Several notes about the structure of W and V should be made at this point. First, the matrices
A AT and AT A are zero except for the (N, N) and (0,0) elements, respectively. Second, the matrix
DC + % AT A is automatically symmetric and it has the same tri-diagonal structure as the D and
C matrices. Third, the matrix D S + ?TI AT A is automatically skew-symmetric which includes the
zero at the (0,0) position. The fourth quadrant of W and V automatically satisfy the conditions on
the generalized summation-by-parts energy norm. The remaining conditions that W and V must
satisfy, written in terms of the submatrices H, 15, Q, C, D, S, and A, are

~ ~

P =HPT (AL 2)
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1 - .
~ATHT 4+ zCT AT = iDAT + AT P (AL 3)

4

o 3.

HQ+(HQ)T=7$AAT+/\60,01 (AL 4)
3 T 4T T AT 3 T T A
JATHT + 25T AT = TDAT — 2 ATQ (AL 5)

where A 8 is the non-zero element that occurs in the first row and column of the matrix. This

contribution to equation (Al 4) allows for a non-zero value at the (0,0) element in the matrix V.

By expanding the specific terms in equations (Al. 2 through Al 5), we have

[ hO,n <. hn,n ] . Pno - - - Pun
. 0 0 A 0 0
AT HT = . . N AT P =
| 0 0 | 0 0
[ qn,O qn,n F O O 1 .‘
0 0 :
AT Q = . . ; CT AT = 0
| 0 0 | | 0 0
[0 0 0] 0. .0y
3 T
ST AT = 0]; DAT = 0
| 0 0 | 0 0
By comparing the matrices involved in equation (Al. 3), it is apparent that
1
n hin + Téen = Tpnk + %&,N; k=0,N (Al 6)
Similarly, equation (Al 5) yields the expression
3 3
7N = —Tang + Ty bkny k=0,N (AL T)

Eliminating ki y between equation (Al 6) and equation (Al. 7) yields the expression

gk = —3pnk +3 6N kK=0,N (AL 8)
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These properties of the matrices P and ( must be satisfied regardless of the order properties of the

boundary.

We now derive the additional constraints that must be satisfied near the boundaries to guarantee
the order properties of these points. Substitution of the equations u; = j7 and "d—J" = rj77 " into
the matrices  and P, respectively, yields the constraints that ensure the accuracy of the boundary

points. The general expression at the boundary written in terms of an arbitrary accuracy r becomes

N N .

r— r T— or '3 14 T r

r E Pk.j ] ! + Zék’N (N + 1) - E Gk,; ] + ’4‘ 6k,N (1\' + l) ] k= 0.7 (\l .())
=0

j=0

Third-order accuracy at the boundary points requires » = 0,3 with N > 3.

Thus far, we have not specified the exact value of the parameter N. We now specify a precise
value for the parameter NV so that specific boundary conditions can be derived for the fourth-order
interior Pade scheme. To retain the formal accuracy of the interior scheme, the boundary closure
must be accomplished to at least third-order accuracy, and reqri:+ . .hat N > 3. For V = 3.

equation (Al 9) can be written concisely in matrix notation as

0%0™" 1%0° 2%0' 3+02 0° o' 0 0° 00 0 0
plO*ITh Lel® 241 312 ] o 110 104 1) 10 0 00
0#27" 1520 2420 3422 | 20 21 22 2 00 0 0
0%37 1%3° 243" 3432 L3031 32 3 3 1Ly 36

Solving this expression for the matrix Q results in the expression

-11 9 =3
273 (oo o
o pl T T 5
=Pt 5 Pt Lo 0 0 0
o3 3o 7= 17 -2
3 2 6 24 4 8 12

which relates the matrix Q to the matrix P through third-order accuracy counstraints.

We will now solve for the last row of the matrices P and @ and for the last column of the matrix
H. Equation (Al 9) is written for k = N, and gn; and pn; (defined in equation (Al 8)) are used
to yield the relationship

b
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N N .
N i T 2 3 T B T «
rS pay it + i(N+1) b= 3 pwgiT+ ZINHDTH BN 1= 0.3 (AL 10)
=0 =0

,and p33 = L.

FNE

Setting N = 3 and solving the system for p; 4, k = 0,3 yields p3o = p3; = 0, p32 =

Equation (Al 8) can be used to show that g30 = ¢31 = 0,932 = —%, and ¢33 0. Similarly,
equation (Al 6) yields the values of ki3 as hg3 = k13 = 0,h23 = z, and hz3 = y. Thus, the last
row of P and () are the same as the interior scheme. In addition, the specific form of the matrix H

must be

hoo hoi ho2 O
i = hio hi1 ha2 O
hz,o h2,1 h2,2 z
hao hsi hs2 y

Thus, accuracy constraints on the last row of the matrices P and Q, combined with the structure
requirements imposed by equations (Al. 3) and (Al 5), allow for the direct solution of the last rows
of P and Q, and the last column of H. Multiplying the expression relating P to Q by the matrix H,
and using the substitutions # Q = V and A P = W yields the expression for V of the form

- - 1
$ITA 3l
V=W| i 2 1 1|+ |z =52 172 -m:
:61 3 _zgﬁ ﬁiﬂﬁa—%y
3 2 6 24 4 8 12

Solving for W and V such that equation (Al 2) (where W = WT) and equation (AL 4) (V+ VT =
22 A AT 4+ X op I) are satisfied to obtain

r —9a 1536 v+1536 §—899 _ 7687+7683-T03a  1536~+1536 51481 a W
16 768 192 768
_15364+1536 5—899 a 0 1536 y+1536 §—1277a  __ 768~v+768 B-733
. 768 256 192
V =
768 y+768 8—703 a __15364+1536 81277 & 0 1536 741536 §—947 o
192 256 768
1536441536 31481 768 y+768 8—733 a _1536++1536 3—947 o -3a
768 192 768 32 i

and
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- 137a-192+ ~512y=128 34525 & _ 145a-144~ 3 1
192 128 48 f
—5127-128 345250 _ —816~v—3848+737a  —3072y~1344 343001 & 55T a=5T6~
. 128 48 192 192
W =
_ 145a-144~ —30724y~1344 43001 __ —32647-1536 8+3011a  —15367-384 341543
48 192 192 384
3 _ 557a-5767 —1536y—384 +1543 o
L 192 384 v J
with z = =* and y = a. Three arbitrary parameters remain after all accuracy, symmetry and

skew-symmetry conditions are satisfied.

The final step in the discretization is to find a specific form of the matrix P that will lead to a
simple algorithm. Because the matrix P is tri-diagonal in the interior, the boundary closure should
retain the tri-diagonal structure. After Pis specified, we can solve for the matrix H from H = VP
if the inverse of P exists, and the last column of H is [0,0,y,x]T. The matrix Q follows immediately

from Q = PV-'W. The last test is to ensure that both W and that the full matrix W are positive

definite.

Many matrices P have been found that satisfy all of the criteria given in the generalized summation-

by-parts energy norm analysis. From a numerical perspective, all behaved similarly. The results

presented here are those that were the simplest to code. Choosing a specific matrix P of the form

r 21
2 1 0 O
3563 =1
R I jes s O
P =
0 43 183 139
17 1054 186
0 0 1 1
yields a matrix ) of the form
[ o-289 279 75 =T ]
234 286 286 2574
—8635 6987 1851 —203
0 3376 3376 3376 3376
—15043 —4089 147 29353
18972 2108 124 18972
-3
| 0 0 4 0

The resulting matrix H is therefore
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- ——

[ 70282007653 —9426299 -192913
7658388480 2268480 1067520
—55530689643 8051589 149823
" 2552796160 756160 355840
H =
63842626133 —=9153739 —4433
2552796160 756160 355840
—71498870443 10110149 102703
L 7658388480 2268480 1067520

(From a practical point of view, the inconvenient form of the H matrix is not of great concern

since the matrix H is only inverted once and one column is stored for use.

The matrices 15, Q, and H can be used to establish both the symmetry of the matrix V and the

near skew-symmetry of the matrix W. The first six rows and columns of the V matrix are

- 16513 —261

46080 5120

—261 9153
5120 5120
2993 —2943
. 15360 5120
V =
6223 1611

46080 5120

[ =9 45
16 64
—45
64 0
1 -8
a 12 128
W =

7 =9
128 128

0 0

| 0 0

2993 —6223 0
15360 46080

—2943 1611 0
5120 5120

7473 —2063 -1
5120 15360 32

—2063 47953
15360 46080

1
8

1 15

8 16

—1 1

32

-1 =7

128 128 0 0

81 9

128 128 U 0
41 -3

0 64 32 0

—41 3 -3

64 0 4 32

3 -3 3

32 4 0 3
3 -3

0 32 4 0

As shown, the matrix W is nearly skew symmetric, and the inatrix V' is symmetric. For the matrix W

is positive definite, it is necessary to show that every submatrix is positive definite. The inner scheme

is diagonally dominant and contributes to the definiteness of the complete matrix W. However, the
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boundary elements are not diagonally dominant, and suppress the positive-definiteness. The 1 x |

boundary matrix W/ = W + A AT has the following characteristic polynomial
754974720 MY — 3507814400 A* 4+ 5299068928 A2 — 3079323424 A + 536779791 = 0 (AL 11)

The symmetry of the W’ matrix and the alternating signs of each term in the characteristic polynomial
guarantee that the matrix is positive definite. The characteristic polynomial of every submatrix (up
to ten points, which includes four boundary and six interior points) of the matrix W results in a
positive definite matrix. No proof that the complete discretization is positive definite for an arbitrary

number of interior points has been found.

The accuracy of the new scheme is third order at the boundaries and fourth order in the interior.
To show this, the Taylor expansion for long wavelength modes is made using the stencil at each of

the first four points. The results are

17
P&+ %—f“ +...
i€+ 2—854
Zf‘:zbtl)rf54

1€ — i—l—§6€5+...

(AL 12)

At high resolution, the boundary points behave with third-order truncation error; the interior behaves

with fourth-order error. Therefore, the resulting scheme is formally fourth-order accurate.




APPENDIX II

Sixth Order Explicit Scheme

Here, we derive an explicit scheme that is formally sixth-order accurate. Unlike the fourth-order

compact case presented earlier, the matrix H can be the identity matrix. To constrain the matrix P
to be symmetric and the matrix @ be nearly skew symmetric, six alternative formulas are required
at the boundaries, each of which is closed to fifth-order accuracy to retain the formal accuracy. The

corner T x 7 submatrices of the global matrices P and ) can be written as

2113 18487 553 14759 (—29269) 54839 0 7
10800 345600 57600 172800 172800 345600
18487 175781 (—28361) 129329 (—346319)  (—19061) 0
345600 51840 6912 34560 207360 172800
553 (—28361) 43807 (—915) 126833 {—39307) 0
57600 6912 5184 128 34560 518400

Ps = 14759 129329 (=915) 67769 (—25289) 34811 0
172800 34560 128 8640 6912 172800

(-29269) (-346319) 126833 (—25289) 156053  (—21059)

172800 207360 34560 6912 51840 115200 0
54839 (=19061) (—39307) 34811 (—21059) 32569 0
345600 172800 518400 172800 115200 32400
0 0 0 0 0 0 1
[ (-1 1235503  (—859597) 398 (—603059) 14969 0 b
2 1036800 518400 225 518400 41472
{—1235503) 0 16343 (—68005) 186797 (—184657) 0
1036800 5760 20736 69120 172800
859597 (—16343) 0 128759 (—18743) 3799 0
518400 5760 51840 6912 2700
Q = (=398) 68005 (—128759) 0 110351 (~607693) 1
6 225 20736 51840 51840 518400 60
603059 (—186797) 18743 (—110351) 0 376549 (=3)
518400 69120 6912 51840 345600 20
(—14969) 184657 (=3799) 607693 (—376549) 0 3
41472 172800 2700 518400 345600 4
()} 3 (=3)
L 0 0 0 60 20 4 0 J

The characteristic polynomial of the matrix Ps is

10399739562845798400000000 A\° — 243512609916244983808000000 A\°

+ 1003578630643249838161920000 A* — 1639038223377237368051712000 A\®
30




+ 1248376737213799711434406800 A> — 412235365042816633559197440 A

+ 37455444120716264727507839 = 0

(AIL 1)

The symmetry of the matrix Ps and the alternating signs of the terms in the polynomial are sufficient

for positive definiteness of both the matrix Pg and the global matrix P.

The truncation error at the boundary points is

6448299997451547397244467¢°

224732664724297588365047034
551784593419970625547321¢£°

1123663323621487941825235170
90378114042816098962729619¢°

2247326647242975883650470340
62520732887440126777806839¢°

2247326647242975883650470340
215210210826949659177331¢£°

1123663323621487941825235170
7101580254197116302053905¢°

22473266472429758836504 7034

which indicates fifth-order accuracy at the six boundary points.
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APPENDIX III

Eigenvalues of the Discrete System

The eigenvalues of the semi-discrete system are used in the results section to compare the theoretical
and the numerical stability boundaries. The model equation is the hyperbolic system used in the
main text and defined by equations (41), and (42). For convenience, we define the (N 4+ 1) x (N +1)
matrix A = P71 Q. The matrix A contains all the information from the spatial discretization

a .. .
operator 5=. The semi-discrete form of equation (41) becomes

du

'd—t+Au =0

dv

— — Ay = 0. t> Alll.
o A 0. t>0 (AL 1)

with the boundary conditions defined by equation (42). In matrix notation, the discrete system takes

the form

At . oaB
A = . . . u
at
BJ-'BJ . JYANJ
where
i (3] | r b
ayy (l];) e (ll“\r‘,] (1]“\'
, az,; a2 . a2 N1 a, N
UN -1
u = Al =
Vo
Uy
anv-1,1 a4N-12 . . . AN QA N-1 AN N
anNa aNe - - - UNN- aN.nN J
L UN-1 ]
and
(31 00 . . .0 1
a0 00 .. .0 0 l
B = I =
aAN-10 g 0 . . .90 | 0
ano 0 0 . . . 0 | 1 ]




Note that JJ = [, so that J = J~'. The vector & is the concatenated vector of discrete values
from the scalar vectors u and v with the elements ug and vy removed. These elements are removed
because the physical boundary condition relates them to known elements in the vector i, so that and
need not need to solve for them. The matrix Al is the N x N submatrix of A which is obtained by
eliminating the zeroth row and zeroth column. Note that this was the matrix that was analyzed in the
scalar analysis to determine time stability of the spatial operator. The matrix B is zero everywhere
except the first column, where the zeroth column of the original A matrix is written. This column is

precisely the coupling between the u and v vector, which occurs at the boundary.

It is instructive to relate the system eigenvalues to those obtained in the scalar analysis [(A! ~

A I)u = 0]. By defining the matrix H~! and H as

. VBI . Jald val . —Jal
-1 = ! . . . 7 H = ! . . .
wWeb | /BT . JaJ 2veb | /BI . JBJ

with H"' H = H H™! = I, we note that the system matrix can be made block diagonal with the

similarity transform H

VBI . JaJ At . aB Jal . —yal
1 1
Web | /Bl . Jad BJ-'BJ . JT'AtJ VBJ . VBJ 2y/ap

Al + Vo BJ . 0

0 . At - VagBJ

For scalar time-stable spatial schemes, the eigenvalues of the matrix A! are bounded to the left half-
plane. Note that for « = 0 (or # = 0) the contribution from the boundary coupling matrix B is
identically zero, and the eigenvalues of the resulting system are simply the scalar eigenvalues with
a multiplicity of two. For non-zero values of the parameters a and j3, the eigenvalues of the total
matrix are different from those of the original matrix A!. Also note that two distinct eigenvalue
scenarios exist for the boundary parameters o and 3, depending on whether their signs are equal or

opposite.
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